CATALOG 1977

Xezoie 03130 NEC

E DXSe

BOBOAF PISZE NEC 03720 K66011

NEC micro computers, inc.

CONTENTS

1. Numerical Index

2. Memories Index Selection Guide Alternate Source Guide

- **3.** Random Access Memories (RAMs) Dynamic Static
- **4.** Read Only Memories (ROMs) Electrically Eraseable (EEPROMs) Field Programmable (PROMs) Mask Programmable (ROMs) ROM Ordering Information
- 5. New Memory Products RAMs EPROMs
- 6. Microcomputers Index Selection Guide Alternate Source Guide
- **7.** μCOM-4 Microcomputers
- 8. μCOM-8 Microcomputers Processors Peripherals New Products
- **9.** New Microcomputer Families
- 10. Reference Section Representatives and Distributors μ COM-8 Microcomputer Program Card Process Flow Chart

NEC MICTOCOMPUTERS, INC.

NUMERICAL INDEX

•			
PRODUCT	÷.,	· P/	AGE
μ PD371			175
μPD379			189
μ PB405			
μ PB406			
μ PB408			
p			
P		• • • • • • • • • • •	
P	••••••••••		
p	• • • • • • • • • • •		
μ PD418			,
	• • • • • • • • • • •		
	•••••		
	• • • • • • • • • • •		
	••••••		
• • • • • •			
p	•••••		
p	••••		
	• • • • • • • • • • •		
··· · · · · · · · · · · · · · · · · ·	•••••		
μPD2102AL			
μPD2111AL			
	. <i>.</i>		
	• • • • • • • • • • •		
	• • • • • • • • • • •		
	• • • • • • • • • • •		
	• • • • • • • • • • •		
	• • • • • • • • • • •		
	• • • • • • • • • • •		
μ PB2401			.124

PRODUCT PA	GE
μPD2716	27
μPB2901	251
μPB2902	251
μPB2905	251
μPB2906	251
μPB2907	
μΡΒ2909	251
μPB2911	251
μPB2915	
μPB2916	
μPB2917	
μPB2918	
μPD41041	
μPD5101	
μPD5101L	
μPD65081	
μPD8035	
μPD8048	
μΡ D8080A	
μPD8080AF1	
μPD8085	
μPD8155	
μPD8156	
μΡΒ8212	
μPB8214	
μPB8216	
μPB8224	
μΡΒ8226	
μPB8228	
μPB82381	
μPD8251	
μ PD8253	
p. 20200	
μPD8255A	
μPD8257	
μ PD8259	
μΡD8355	
μΡD8748	
μΡD8755	
μευ2.ου	.01

MEMORY INDEX

RANDOM ACCESS MEMORIES Dynamic RAMs PAGE μPD411 9 μPD411A 16 μPD411-M 24 μPD414 29 μPD416 37 μPD418 46
Static Bipolar RAMs μPB2205
Static MOS RAMs 54 μPD410 54 μPD2101AL 58 μPD2102AL 63 μPD2111AL 67 μPD5101 72 μPD5101L 77
READ ONLY MEMORIESElectrically Erasable Programmable ROMsμPD454μPD45888
Field Programmable ROMs μPB403 96 μPB405/425 100 100 μPB406/426 104 104
Mask Programmable ROMs 108 μPD464 108 μPD2308 112 μPD2316A 115 μPD2332 119 ROM Ordering Information 122
NEW PRODUCTS RAMs μ PD414A 123 μ PD6508 123 μ PD2114 124 μ PB2400/2401 124 μ PD4104 125
PROMs 126 μPB427 126 μPD2716 127 μPD2316E 127

MEMORY SELECTION GUIDE

					SUPPLY	PACKAG	GE
DEVICE	SIZE	TECHNOLOGY	ACCESS TIME	CYCLE	VOLTAGES	MATERIAL	PINS
х х	DYNAMIC RANDOM ACCESS MEMORIES						
μPD411	4K x 1 TS	NMOS	150 ns	380 ns	+12, +5, -5	Cerdip	22
μPD411-4	4K x 1 TS	NMOS	135 ns	320 ns	+15, +5, -5	Cerdip	22
μPD411A	4K x 1 TŚ	NMOS	200 ns	400 ns	+12, +5, -5	Plastic	22
μPD411M	4K x 1 TS	NMOS	200 ns	400 ns	+12, +5, -5	Cerdip	22
μPD418	4K x 1 TS	NMOS	200 ns	400 ns	+12, -5	C/P	18
μPD414	4K x 1 TS	NMOS	200 ns	375 ns	+12, +5, -5	C/P	16
μPD414A (F)	4K x 1 TS	NMOS	150 ns	320 ns	+12, +5, -5	C/P	16
μPD416	16K x 1 TS	NMOS	150 ns	375 ns	+12, +5, -5	C/P	16
		STATIC RA	ANDOM ACCESS	MEMORIE	S		
μPD2101AL	256 x 4 TS	NMOS	250 ns	250 ns	+5	Plastic	22
µPD2102AL	1K x 1 TS	NMOS	250 ns	250 ns	+5	Plastic	16
μPD2111AL	256 x 4 TS	NMOS	250 ns	250 ns	+5	Plastic	18
μPD5101	256 x 4 TS	CMOS	800 ns	800 ns	+5	Plastic	22
μPD5101L	256 x 4 TS	CMOS	450 ns	450 ns	+5	Plastic	22
μPB2205	1K x 1 OC	Bipolar	50 ns	50 ns	+5	Cerdip	16
μPD410	4K x 1 TS	NMOS	100 ns	220 ns	+12, +5, -5	Cerdip	22
μPB2400 (F)	4K x 1 OC	Bipolar	50 ns	50 ns	+5	Cerdip	18
μPB2401 (F)	4K x 1 TS	Bipolar	50 ns	50 ns	+5	Cerdip	18
μPD4104 (F)	4K x 1 TS	NMOS	200 ns	3.10 ns	+5	C/P	18
μPD2114 (F)	1K x 4 TS	NMOS	300 ns	300 ns	+5	C/P	18
μPD6508 (F)	1K x 1 TS	CMOS	200 ns	200 ns	+5	C/P	16
	1	MASK PROGRA	MMED READ ON		DRIES		
μPD464	256 x 8 TS	NMOS	450 ns	450 ns	+12, +5	C/P	24
μPD2308	1K x 8 TS	NMOS	450 ns	450 ns	+12, +5, -5	Cerdip	24
μPD2316A	2K x 8 TS	NMOS	450 ns	450 ns	+5	C/P	24
μPD2316E (F)	2K x 8 TS	NMOS	450 ns	450 ns	+5	C/P	24
μPD2332	4K x 8 TS	NMOS	450 ns	450 ns	+5	C/P	24
		FIELD PROGRAM	MABLE READ C		NORIES		
μPB403	256 x 4 OC	Bipolar	60 ns	60 ns	+5	Cerdip	16
μPB405	512 x 8 OC	Bipolar	70 ns	70 ns	+5	Cerdip	24
μPB425	512 x 8 TS	Bipolar	70 ns	70 ns	+5	Cerdip	24
μPB406	1K x 4 OC	Bipolar	70 ns	70 ns	+5	Cerdip	18
μPB426	1K x 4 TS	Bipolar	70 ns	70 ns	+5	Cerdip	18
μPB408 (F)	1K x 8 OC	Bipolar	85 ns	120 ns	+5	Cerdip	24
μPB428 (F)	1K x 8 TS	Bipolar	85 ns	120 ns	+5	Cerdip	24
μPB427 (F)	1K x 8 TS	Bipolar	120 ns	120 ns	+5	Cerdip	24
μPD2716 (F)	2K x 8 TS	NMOS	450 ns	450 ns	+5	Cerdip	24
μPD454	256 x 8 TS	NMOS	800 ns	800 ns	+12, -5*	Cerdip	24
μPD458	1K x 8 TS	NMOS .	450 ns	450 ns	+12, -5*	Cerdip	28
				L		L	L

(F) Future Product

* Read Mode

NEC MICRO

MANUFACTURER	PART NUMBER	DESCRIPTION	NEC REPLACEMENT	MANUFACTURER	PART NUMBER	DESCRIPTION	NEC REPLACEMENT
AMD	AM2101	256 × 4 SRAM	μPD2101AL	Harris	HPROM-1024A	256 × 4 PROM	μPB403
	AM2101	1024 x 1 SRAM	µPD2102AL		HM6501	256 x 4 SR AM	μPD5101
	AM2111	256 x 4 SRAM	μPD2111AL		HM6508	1024 × 1 SRAM	µPD6508
	AM27LS00	256 x 1 SRAM	µPB2200/µPB2202		HM7610	256 x 4 PROM	μPB403
	AM27LS01	256 x 1 SRAM	μPB2206		HM7640	512 × 8 PROM	μPB405
	AM27LS02	16 × 4 SRAM	µPB2089/µPB2289		HM7641	512 x 8 PROM	μPB425
	AM27LS10	256 x 4 PROM	μPB403		HM7642	1024 x 4 PROM	μPB406
1. 	AM27S80	1024 x 8 PROM	μPB408		HM7643	1024 x 4 PROM	μPB426
	AM27S81	1024 × 8 PROM	μPB428				
	AM3101	16 x 4 SRAM	μPB2089	Intersil	2608	1024 × 8 ROM	μPD2308
	Sn7489	16 x 4 SRAM	μPB2089	1	2616	2048 x 8 ROM	μPD2316
	Sn74S289	16 × 4 SRAM	μPB2289		IM5501	16 x 4 SRAM	µPB2089/µPB2289
	AM9050	4096 × 1 DRAM	μPD418		IM5508	1024 x 1 SRAM	μPB2205
	AM9060	4096 × 1 DRAM	μPD411/μPD411A		IM5523A	256 × 1 SRAM	µPB2200/µPB2202
	AM9101	256 x 4 SRAM	μPD2101AL		IM5533A	256 x 1 SRAM	μPB2206
	AM9102	1024 x 1 SRAM	µPD2102AL		IM5603	256 × 4 PROM	μPB403
	9107	4096 x 1 DRAM	μPD411/μPD411A		IM5605	512 x 8 PROM	μPB405
	AM9111	256 x 4 SRAM	µPD2111AL		IM5625	512 x 8 PROM	μPB425
	AM9208	1024 × 8 ROM	μPD2308		IM6508A	1024 × 1 SRAM	μPD6508
	AM9216	2048 × 8 ROM	μPD2316E		7005	4096 x 1 DRAM	μPD414
					7027	4096 x 1 DRAM	μPD414A
EM&M Semi	4200	4096 x 1 SRAM	μPD410		7101	256 x 4 SRAM	μPD2101AL
	4402	4096 × 1 SRAM	μPD410		7111	256 x 4 SRAM	μPD2111AL
	R03-8316A	2048 × 8 ROM	μPD2316A		7114	1024 × 4 SRAM	μPD2114
	R03-8316B	2048 x 8 ROM	µPD2316A	•	7116	16384 × 1 DRAM	μPD416
					7270	4096 × 1 DRAM	μPD418
Fairchild	2101L	256 × 4 SRAM	µPD2101AL		7271A	4096 x 1 DRAM	μPD418
	2102	1024 x 1 SRAM	#PD2102AL		7280/A	4096 x 1 DRAM	μPD411/μPD411A
	3508	1024 x 8 ROM	µPD2308		IM7552	512 x 1 SRAM	μPD2102AL
	3538	256 × 4 SRAM	μPD2101AL				,
	FM4027	4096 x 1 DRAM	μPD414A	Intel	2101	256 × 4 SRAM	µPD2101AL
	4096	4096 x 1 DRAM	μPD414		2102	1024 x 1 SRAM	μPD2102AL
4	F16K	16384 x 1 DRAM	μPD416		2104	4096 x 1 DRAM	μPD414/μPD414A
	7489	16 x 4 SRAM	μPB2089		2107	4096 × 1 DRAM	μPD411/μPD411A
	93411	256 x 1 SRAM	μPB2206		2111	256 × 4 SRAM	µPD2111AL
	93415	1024 x 1 SRAM	μPB2205		2114	1024 × 4 SRAM	μPD2114
	93417	256 x 4 PROM	μPB403		2116	16384 × 1 DRAM	μPD416
	93438	512 x 8 PROM	μPB405		2308	1024 × 8 ROM	μPD2308
	93448	512 x 8 PROM	μPB425		2316A	2048 × 8 ROM	μPD2316A
	93452	1024 x 4 PROM	μPB406		2316E	2048 × 8 ROM	μPD2316E
	93453	1024 x 4 PROM	μPB426		3101A	16 x 4 SRAM	μPB2089/μPB2289
					3107	256 x 1 SRAM	μPB2206
Fujitsu	MB2114	1024 × 4 SRAM	μPD2114		3106	256 x 1 SRAM	μPB2200/μPB2202
	MB7054	1024 × 4 PROM	μPB426		3601	256 x 1 PROM	μPB403
	MB7057	256 × 4 PROM	μPB403		3604	512 × 8 PROM	μPB405
	MB7059	1024 x 4 PROM	μPB406		3605	1024 x 4 PROM	μPB406
×	MB8101	256 × 4 SRAM	μPD2101AL		3608	1024 x 8 PROM	μPB408
	MB8107	4096 x 1 DRAM	μPD411/μPD411A		3624	512 × 8 PROM	μPB425
	MB8111	256 × 4 SRAM	μPD2111AL		3625	1024 x 4 PROM	μPB425 μPB426
	MB8116	16384 x 1 DRAM	μPD2111AL μPD416		3628	1024 x 4 PROM	μPB426 μPB428
	MB8224	4096 x 1 DRAM	μPD416 μPD414		4316A	2048 × 8 ROM	
	MB8227	4096 x 1 DRAM			51.01	1	μPD2316A
	MB8308		μPD414A			256 x 4 SRAM	μPD5101
	MBM93415	1024 × 8 ROM	μPD2308	· ·	8101A 8102A	256 × 4 SRAM	µPD2101AL
	101010193415	1024 × 1 SRAM	µPB2205		8102A 8111A	1024 x 1 SRAM	μPD2102AL
						256 × 4 SRAM	µPD2111AL
					8308	1024 × 8 ROM	μPD2308
	I	L		L	8316A	2048 × 8 ROM	μPD2316A

MEMORY ALTERNATE SOURCE GUIDE

NEC MCOUPUIGES, and

MANUFACTURER	PART NUMBER	DESCRIPTION	NEC REPLACEMENT	MANUFACTURER	PART NUMBER	DESCRIPTION	NEC REPLACEMENT
ммі	6300	256 x 1 PROM	μPB403	Signetics	2101	256 x 4 SRAM	µPD2101AL
	6340	512 x 8 PROM	μPB405		2102	1024 x 1 SRAM	μPD2102AL
	6341	512 x 8 PROM	μPB425		2111	256 x 4 SRAM	µPD2111AL
	6348	512 x 8 PROM	μPB405		2316	2048 × 8 ROM	μPD2316
	6349	512 x 8 PROM	μPB425		2601	256 x 4 SRAM	µPD2101AL
	6352	1024 x 4 PROM	μPB406	÷	2608	1024 x 8 ROM	μPD2308
· · · · · · · · · · · · · · · · · · ·	6353	1024 x 4 PROM	μPB426		2611	256 x 4 SRAM	µPD2111AL
	6380	1024 x 8 PROM	μPB408		2680	4096 × 1 DRAM	µPD411/µPD411A
	6381	1024 × 8 PROM	μPB428		N3101A	16 x 4 SRAM	µPB2089/µPB2289
	6530	256 x 1 SRAM	μPB2206		74\$89	16 x 4 SRAM	µPB2089/µPB2289
	6531	256 x 1 SRAM	µPB2200/µPB2202		74\$200	256 × 1 SRAM	µPB2200
	6560	16 x 4 SRAM	μPB2089/μPB2289		7 4 S201	256 x 1 SRAM	μPB2200
			μ. υ		74\$301	256 x 1 SRAM	µPB2202
Mostek	мкз0000	1024 x 8 ROM	μPD2308		82507	256 × 1 SRAM	μPB2206
moster	MK31000	2048 × 8 ROM	μPD2316A		N82S10	256 x 1 SRAM	μPB2206
	MK32000	4096 x 8 ROM	μPD2332		82516	256 x 1 SRAM	μPB2206
	MK34000	2048 × 8 ROM	μPD2316E		82517	256 × 1 SRAM	µPB2200/µPB2202
	MK4027	4096 x 1 DRAM	μPD414A		82526	256 x 4 PROM	μPB403
	MK4102	1024 x 1 SRAM	μPD2102AL		N82S115	512 x 8 PROM	μPB425
	MK4102 MK4104	4096 x 1 SRAM	μPD2102AL μPD4104		825126	256 × 4 PROM	μPB403
	MK4104 MK4116	16384 x 1 DRAM	μPD416		N82S136	1024 × 4 PROM	μΡΒ406
	WIK4110	10364 X T DRAM	με0416	5 m	N82S137	1024 x 4 PROM	μPB426
Motorola	MCM2102	1024 x 1 SRAM	µPD2102AL		825140	512 × 8 PROM	μPB405
wotorola	MCM2102 MCM2111	256 x 4 SRAM	μPD2102AL μPD2111AL		825140	512 × 8 PROM	μPB425
	MCM2111 MCM6604	4096 x 1 DRAM	μPD2111AL μPD414		N93415A	1024 × 1 SRAM	μPB2205
	MCM6616	16384 x 1 DRAM	μPD414 μPD416		1000410A		µ102200
		256 x 4 SRAM	1 ·	т.і.	TMS2101	256 × 4 SRAM	µPD2101AL
	MCM68111		μPD2111AL	1.1.	TMS2101	1024 × 1 SRAM	μPD2102AL
	MCM68317	2048 × 8 ROM 512 × 8 PROM	μPD2316E		TMS4027	4096 × 1 DRAM	μPD2102AC
	MCM7640		μPB405		TMS4027	1024 x 1 SRAM	μPD2102AL
	MCM7641	512 × 8 PROM	μPB425		TMS4033	1024 x 1 SRAM	μPD2102AL
	MCM7642	1024 x 4 PROM	μPB406			256 x 4 SRAM	μPD2102AL μPD2101AL
	MCM7643	1024 × 4 PROM	μPB426		TMS4039		1 ' '
				1. A.	TMS4042	256 × 4 SRAM	μPD2111AL
National	MM2101	256 × 4 SRAM	μPD2101AL	•	TMS4050	4096 × 1 DRAM	μPD418
	MM2102A	1024 × 1 SRAM	μPD2102AL		TMS4051	4096 × 1 DRAM	μPD418
	MM2111	256 × 4 SRAM	µPD2111AL		TMS4060	4096 × 1 DRAM	μPD411/μPD411Λ
	MM2316A	2048 × 8 ROM	μPD2316A		TMS4116	16384 x 1 DRAM	μPD416
	MM4280	4096 × 1 DRAM	μPD411M		TMS4732	4096 × 8 ROM	μPD2332
	MM5280A	4096 × 1 DRAM	μPD411/μPD411A		SN74S44	512 x 8 PROM	μPB425
	MM5281	4096 x 1 DRAM	μPD411/μPD411A		SN7489	16 × 4 SRAM	µPB2089/µPB2289
	DM7489	16 × 4 SRAM	µPB2089/µPB2289		SN74S201	256 × 1 SRAM	μPB2200
· · ·	MM74S289	16 × 4 SRAM	µPB2089/µPB2289		SN74S289	16 × 4 SRAM	µPB2089/µPB2289
	DM74S387	256 x 4 PROM	μPB403		SN 74S301	256 × 1 SRAM	µPB2200/µPB2202
	DM74S572	1024 × 4 PROM	μPB406	1	SN 745,314	1024 x 1 SRAM	μPB2205
	DM74S573	1024 × 4 PROM	μPB426		SN74S387	256 x 4 PROM	µPB403
	MM74C920	256 × 4 SRAM	μPD5101		SN 74S4 75	512 x 8 PROM	μPB405
	DM7535	256 × 4 PROM	μPB403				
	DM7574	256 × 4 PROM	μPB403				
	DM77S295	512 x 8 PROM	μPB405				
	DM77S296	512 x 8 PROM	μPB425			· · · ·	l
	DM93415	1024 × 1 SRAM	μPB2205				

MEMORY ALTERNATE SOURCE GUIDE

NEC MICROLIMPITERS, INC.

μ PD411-E μ PD411 μ PD411-1 μ PD411-2 μ PD411-3 μ PD411-4

FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION

The μ PD411 Family consists of six 4096 words by 1 bit dynamic N-channel MOS RAMs. They are designed for memory applications where very low cost and large bit storage are important design objectives. The μ PD411 Family is designed using dynamic circuitry which reduces the standby power dissipation.

Reading information from the memory is a non-destructive. Refreshing is easily accomplished by performing one read cycle on each of the 64 row addresses. Each row address must be refreshed every two milliseconds. The memory is refreshed whether Chip Select is a logic high or a logic low.

FEATURES

All of these products are guaranteed for operation over the 0 to 70° C temperature range.

Important features of the μ PD411 family are:

- Low Standby Power
- 4096 words x 1 bit Organization
- A single low-capacitance high level clock input with solid ±1 volt margins.
- Inactive Power/0.3 mW (Typ.)
- Power Supply: +12, +5, -5V
- Easy System Interface
- TTL Compatible (Except CE)
- · Address Registers on the Chip
- Simple Memory Expansion by Chip Select
- Three State Output and TTL Compatible
- 22 pin Ceramic Dual-in-Line Package
- Replacement for INTEL'S 2107B, TI'S 4060 and Equivalent Devices.
- 4 Performance Ranges:

	ACCESS TIME	R/W CYCLE	RMW CYCLE	REFRESH TIME
μPD411-E	350 ns	800 ns	960 ns	1 ms
μPD411	300 ns	470 ns	650 ns	2 ms
μPD411-1	250 ns	470 ns	640 ns	2 ms
μPD411-2	200 ns	400 ns	520 ns	2 ms
μPD411-3	150 ns	380 ns	470 ns	2 ms
μPD411-4	135 ns	320 ns	320 ns	2 ms

PIN CONFIGURATION

· · · · ·		~~~	
∨ввС	1	•	22 🗖 V _{SS}
A9 🕻	2 '		21 🗖 A8
A10 🗖	3		20 🗖 A7
A11 🗖	4		19 🗖 A ₆
cs 🗖	5	μPD	
Din 🗖		411	17 🗖 CE
POUT	7		16 🗖 NC
A0 C	8 -		15 🗖 A5
A1 🗖	9		14 A4
A2 🗖	10		13 🗖 A3
Vcc 🗖	11	·	12 WE

PIN NAMES

A0 · A11	Address Inputs
A0 - A5	Refresh Addresses
CE	Chip Enable
<u>Ĉ</u> Ŝ	Chip Select
DIN	Data Input
DOUT	Data Output
WE	Write Enable
VDD	Power (+12V)
Vcc	Power (+5V)
VSS	Ground
VBB	Power (-5V)
NC	No Connection

Rev/2

FUNCTIONAL DESCRIPTION

CE Chip Enable

A single external clock input is required. All read, write, refresh and read-modify-write operations take place when chip enable input is high. When the chip enable is low, the memory is in the low power standby mode. No read/write operations can take place because the chip is automatically precharging.

CS Chip Select

The chip select terminal affects the data in, data out and read/write inputs. The data input and data output terminals are enabled when chip select is low. The chip select input must be low on or before the rising edge of the chip enable and can be driven from standard TTL circuits. A register for the chip select input is provided on the chip to reduce overhead and simplify system design.

WE Write Enable

The read or write mode is selected through the write enable input. A logic high on the \overline{WE} input selects the read mode and a logic low selects the write mode. The \overline{WE} terminal can be driven from standard TTL circuits. The data input is disabled when the read mode is selected.

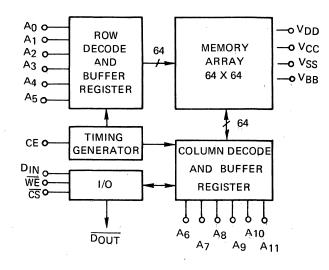
A0-A11 Addresses

All addresses must be stable on or before the rising edge of the chip enable pulse. All address inputs can be driven from standard TTL circuits. Address registers are provided on the chip to reduce overhead and simplify system design.

DIN Data Input

Data is written during a write or read-modify-write cycle while the chip enable is high. The data in terminal can be driven from standard TTL circuits. There is no register on the data in terminal.

DOUT Data Output


The three state output buffer provides direct TTL compatibility with a fan-out of two TTL gates. The output is in the high-impedance (floating) state when the chip enable is low or when the Chip Select input is high. Data output is inverted from data in.

Refresh

Refresh must be performed every two milliseconds by cycling through the 64 addresses of the lower-order-address inputs A_0 through A_5 or by addressing every row within any 2*-millisecond period. Addressing any row refreshes all 64 bits in that row.

The chip does not need to be selected during the refresh. If the chip is refreshed during a write mode, the chip select must be high.

* μ PD411-E = 1 millisecond refresh period.

BLOCK DIAGRAM

μPD411 FAMILY (EXCEPT 411-4)

μPD411-4

	•
Operating Temperature	$0^{\circ}C$ to +70°C $+10^{\circ}C$ to +55°C
Storage Temperature	-55°C to +150°C55°C to +150°C
	-0.3 to +20 Volts0.3 to +25 Volts ①
All Input Voltages	-0.3 to +20 Volts0.3 to +25 Volts ①
Supply Voltage VDD	-0.3 to +20 Volts0.3 to +25 Volts ①
Supply Voltage VCC	-0.3 to +20 Volts0.3 to +25 Volts ①
Power Dissipation	
_	

Note: 1 Relative to VBB

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$T_a = 25^{\circ}C$

DC CHARACTERISTICS

ABSOLUTE MAXIMUM

RATINGS*

$$\label{eq:tau} \begin{split} T_a = 0^\circ C \mbox{ to } 70^\circ C, \mbox{ } V_{DD} = +12V \ \pm 5\%, \ V_{CC} = \pm 5V \ \pm 5\%, \ V_{BB} = -5V \ \pm 5\%, \ V_{SS} = 0V, \\ \mbox{ Except } V_{DD} = \pm 15V \ \pm 5\% \mbox{ for } 4114. \end{split}$$

DADAMETER	SYMBOL		LIMITS			TEST CONDITIONS
PARAMETER	STWBUL	MIN	түр 🕦	мах	UNIT	TEST CONDITIONS
Input Load Current	ILI .		0.01	10	μA	VIN = VIL MIN to VIH MAX
CE Input Load Current	LC		0.01	10	μA	VIN = VILC MIN to VIHC MAX
Output Leakage Current for High Impedance State	'LO		0.01	±10	μА	CE = V _{ILC} or CS = V _{IH} V ₀ = 0V to 5.25V
VDD Supply Current during CE off	DDOFF		20	200	μA	CE = -1.0V to 0.6V
VDD Supply Current during CE on	DD ON.		35°	60 ^s	mA	CE = VIHC, T _a = 25°C
Average V _{DD} Current µPD411-E µPD411 µPD411-1 µPD411-2 µPD411-3 µPD411-4	IDD AV IDD AV IDD AV IDD AV IDD AV IDD AV		29 37 37 37 41 55	60 60 60 65 80	mA mA mA mA mA	$T_a = 25 C. \\ Cycle Time = 800 ns \\ Cycle Time = 470 ns \\ Cycle Time = 470 ns \\ Cycle Time = 470 ns \\ Cycle Time = 400 ns \\ Cycle Time = 380 ns \\ Cycle Time = 320 ns \\ Cycle $
VBB Supply Current ②	IBB		5	100	μA	
V _{CC} Supply Current during CE off ③	ICC OFF		0.01	10	μΑ	CE = VILC or CS = VIH
Input Low Voltage	VIL	-1.0		0.6	v	х
Input High Voltage	VIH	2.4 ④		V _{CC} +1	v	5
CE Input Low Voltage	VILC	-1.0		0.6	v	
CE Input High Voltage	VIHC	V _{DD} -1	V _{DD}	V _{DD} +1	<	
Output Low Voltage	VOL	0		0.40	v	IOL = 3.2 mA
Output High Voltage	V _{OH}	2.4		Vcc	v	I _{OH} = -2.0 mA

Notes: (1) Typical values are for T_a = 25 $^{\circ}\mathrm{C}$ and nominal power supply voltages.

2 The IBB current is the sum of all leakage currents.

Ouring CE on V_{CC} supply current is dependent on output loading.

V_{CC} is connected to output buffer only.

(4) 3.5V for µPD411-E

- 65 mA for μPD411-3
- 80 mA for μPD411-4 ⑥ 41 mA for μPD411-3
- 55 mA for µPD411-3

CAPACITANCE

$T_a = 0^\circ - 70^\circ C$

DADAMETED.	0/44001		LIMITS			TEST	
PARAMETER	SYMBOL	MIN	түр	MAX	UNIT	CONDITIONS	
Address Capacitance, CS	CAD		4	6	pF	V _{IN} = V _{SS}	
CE Capacitance	CCE		18	` 2 7	pF	VIN = VSS	
Data Output Capacitance	COUT		5	7	pF	VOUT = 0V	
DIN and WE Capacitance	CIN		8	10	pF	VIN = VSS	

AC CHARACTERISTICS

READ CYCLE

 T_a = 0°C to 70°C, V_DD = 12V ± 5%, V_CC = 5V ± 5%, V_BB = -5V ± 5%, V_SS = 0V, unless otherwise noted, Except V_DD = +15V ± 5% for 411-4

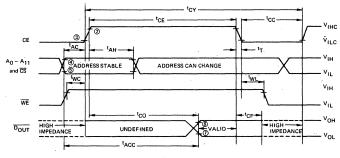
		LIMITS										1		
PARAMETER	SYMBOL	μPD411-E		μPD411		μPD411-1		µPD411-2		µPD411-3		μPD411-4		UNIT
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	1
Time Between Refresh	tREF		1		2	1. S.	2		· 2		2		2	ms
Address to CE Set Up Time	tAC .	0		0		, 0		0		0		0		ns
Address Hold Time	^t AH	150		150		150		150		150		100		ns
CE Off Time	tCC	380		130		170		130		130		80		ns
CE Transition Time	tŢ	0	40	0	40	0	40	0	40	0	40	0	40	ns
CE Off to Output High Impedance State	tCF	0	130	b	130	0	130	0	130	0	130	0	130	ns
Cycle Time	tCY	800		470		470		400		380		320	·	ns
CE on Time	^t CE	380	3000	300	3000	260	3000	230	3000	210	3000	200	3000	ns
CE Output Delay	tco		330		280		230		180		130		115	ns
Access Time	^t ACC		350		300		250		200		150		135	ns
CE to WE	tWL	40		40		40		40		40		40		ns
WE to CE on	twc	0		0	· .	0.		0		0		0		ns

WRITE CYCLE

 T_a = 0° C to 70° C, V_DD = 12V ± 5%, V_CC = 5V ± 5%, V_BB = -5V ± 5%, V_{SS} = 0V, unless otherwise noted, Except V_DD = +15V ± 5% for 411-4

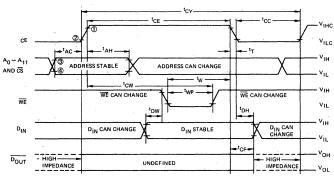
		LIMITS												
PARAMETER	SYMBOL	µPD411∙E		μP	μPD411 μ		μPD411-1 μF		µPD411-2		411-3	µPD411-4		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MÌN	MAX	MIN	MAX	MIN	MAX	
Cycle Time	tCY	800		470		470		400		380		320		ns
Time Between Refresh	^t REF		1		2		2		2		2		2	ms
Address to CE Set Up Time	^t AC	0		Ó		0		. 0		0	- ·	0		ns
Address Hold Time	tан	150		150		150		150		150		100		ns
CE Off Time	100	380		130		170		130		130		80		ns
CE Transition Time	tŢ	0	40	0	40	0	40	0	40	0	40	0	40	ns
CE Off to Output High Impedance State	tCF	0	130	0	130	0	130	0	130	0	130	0	130	ns
CE on Time	^t CE	380	3000	300	3000	260	3000	230	3000	210	3000	200	3000	ns
WE to CE off	tw	200		180	1	180		150		150	1	65		ns
CE to WE	tCW	380		300		260		230		210		200		ns
DIN to WE Set Up (1)	tDW	0		0		0		0		0		0		ns
D _{IN} Hold Time	^t DH	40		40		40		40		40		40		 ns
WE Pulse Width	tWP	200		180		180		150		100		. 65		ns

Note: (1) If $\overline{\text{WE}}$ is low before CE goes high then D_{IN} must be valid when CE goes high.


READ-MODIFY-WRITE CYCLE

 $T_{a}=0^{\circ}C \text{ to } 70^{\circ}C, V_{DD}=12V\pm5\%, V_{CC}=5V\pm5\%, V_{BB}=-5V\pm5\%, V_{SS}=0V, \text{ unless otherwise noted}, \\ \text{Except } V_{DD}=+15V\pm5\% \text{ for } 411\cdot4$

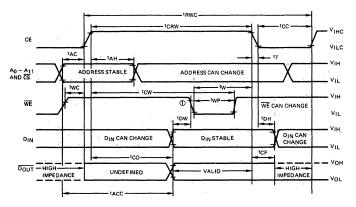
			LIMITS											
PARAMETER	SYMBOL	µPD411∙E		μPD411		μPD411-1		µPD411-2		µPD411-3		μPD411-4		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Read-Modify-Write (RMW) Cycle Time	^t RWC	960		650		640		520		470		320		ns
Time Between Refresh	^t REF	[1		2		2		2		2		2	ms
Address to CE Set Up Time	tAC	0		0		0		0		0		0		ns
Address Hold Time	^t AH	150		150		150		150		150		100		ns
CE Off Time	tCC	380		130		170		130		130		80		ns
CE Transition Time	tŢ	0	40	0	40	0	40	0	40	0	40	0	40	ns
CE Off to Output High Impedance State	^t CF	0	130	0	130	0	130	0	130	0	130	0	130	ns
CE Width During RMW	^t CRW	540	3000	480	3000	430	3000	350	3000	300	3000	200	3000	ns
WE to CE on	twc	.0	1	0		0		0		0		0	1	ns
WE to CE off	tw	200		180		180		150		150		65		ns
WE Pulse Width	tWP	200		180		180		150		100		65		ns
DIN to WE Set Up	tDW	0		0		0		0		0		0		ns
DIN Hold Time	tDH.	40		40		40		40		40		40	1	ns
CE to Output Display	tCO	•	330		280		230		180		130		115	ns
Access Time	tACC		350		300		250		200		150		135	ns


TIMING WAVEFORMS

READ CYCLE ①

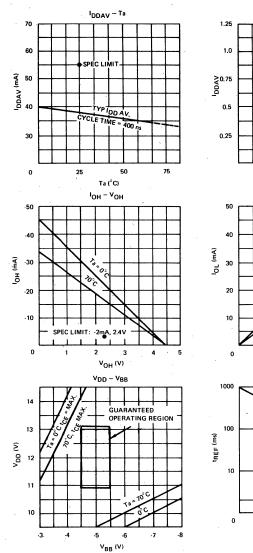
Notes: 1 For refresh cycle row and column dresses must be stable tac and remain

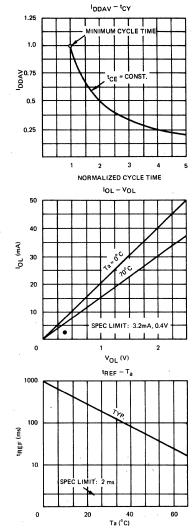
- stable for entire tAH period.
- V_{DD} -2V is the reference level for measuring timing of CE.
 V_{SS} +2V is the reference level for measuring timing of CE.
- VIHMIN is the reference level for measuring timing of the addresses, CS, WE and DIN.
- VILMAX is the reference level for measuring timing of the addresses, CS, WE and DIN.
- (6) V_{SS} +2.0V is the reference level for measuring timing of $\overline{D_{OUT}}$.
- (7) VSS +0.8V is the reference level for measuring timing of DOUT.



WRITE CYCLE

Notes: 1 VDD - 2V is the reference level for measuring timing of CE.


② V_{SS} +2V is the reference level for measuring timing of CE. ③ V_{SS} +2V is the reference level for measuring timing of the addresses, CS, WE and D_{IN}.


(a) V_{ILMAX} is the reference level for measuring timing of the addresses, \overline{CS} , \overline{WE} and D_{IN} .

READ-MODIFY-WRITE CYCLE

Note 1 WE must be at V_{1H} until end of t_{CO}.

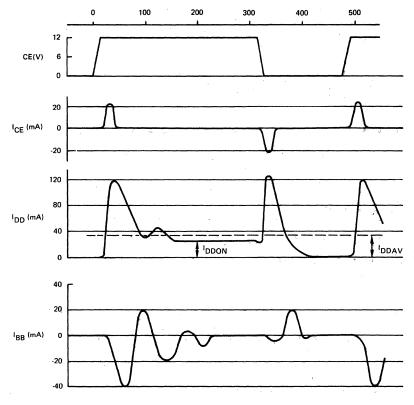
TYPICAL OPERATING CHARACTERISTICS (Except 411-4)

Power consumption = $V_{DD} \times I_{DDAV} + V_{BB} \times I_{BB}$.

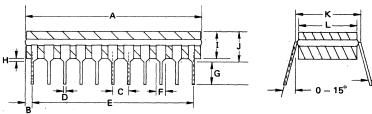
Typical power dissiption for each product is shown below.

	mW (TYP.)	CONDITIONS
μPD411-E	350	Ta = 25° C, t _{cy} = 800ns, t _{CE} = 380ns
μPD411	450	Ta = 25° C, t _{cy} = 470ns, t _{CE} = 300ns
μPD411-1	450	Ta = 25° C, t _{cy} = 470ns, t _{CE} = 260ns
μPD411-2	450	Ta = 25° C, t _{cy} = 400ns, t _{CE} = 230ns
μPD411-3	550	Ta = 25° C, t_{cy} = 380ns, t_{CE} = 210ns
μPD411-4	660	Ta = 25° C, t _{cy} = 320ns, t _{CE} = 200ns

See above curves for power dissipation versus cycle time.


POWER CONSUMPTION

14


にはなるので

CURRENT WAVEFORMS

ITEM	MILLIMETERS	INCHES
A	27.43 MAX	1.079 MAX
В	1,27 MAX	0.05 MAX
С	2.54 ± 0.1	0.10
D	0.42 ± 0.1	0.016
Ę	25.4 ± 0.3	1.0
F	1.5 ± 0.2	0.059
G	3.5 ± 0.3	0.138
Н	3.7 ± 0.3	0.145
1.	4.2 MAX	0,165 MAX
J	5,08 MAX	0.200 MAX
ĸ	10.16 ± 0.15	0.400
L	9.1 ± 0.2	0.358
М	0.25 ± 0.05	0.009

SP411-8-77-GY-CAT

BE CONT

á

120,020

NEC MICROMPHERS, INC.

μΡD411A-E μΡD411A μΡD411A-1 μΡD411A-2

4096 BIT DYNAMIC RAMS

The μ PD411A Family consists of four 4096 words by 1 bit dynamic N-channel MOS RAMs. They are designed for memory applications where very low cost and large bit storage are important design objectives. The μ PD411A Family is designed using dynamic circuitry which reduces the standby power dissipation.

Reading information from the memory is non-destructive. Refreshing is easily accomplished by performing one read cycle on each of the 64 row addresses. Each row address must be refreshed every two milliseconds. The memory is refreshed whether Chip Select is a logic high or a logic low.

- Low Standby Power
- 4096 words x 1 bit Organization
- A single low-capacitance high level clock input with solid ±1 volt margins.
- Inactive Power 0.7 mW (Typ.)
- Power Supply +12, +5, -5V
- Easy System Interface
- TTL Compatible (Except CE)
- Address Registers on the Chip
- Simple Memory Expansion by Chip Select
- Three State Output and TTL Compatible
- 22 pin Plastic Dual-in-Line Package
- Replacement for INTEL's 2107B, TI's 4060 and Equivalent Devices.
- 4 Performance Ranges:

	ACCESS TIME	R/W CYCLE	RMW CYCLE	REFRESHTIME
µPD411A-E	350 ns	800 ns	960 ns	1 ms
μPD411A	300 ns	470 ns	650 ns	2 ms·
μPD411A-1	250 ns	430 ns	600 ns	2 ms
μPD411A-2	200 ns	400 ns	520 ns	2 ms

∨вв	1		22 🗖 V _{SS}	
^9 C	2		21 🗖 A8	
A10 🗖	3		20 🗖 A7	
A11 🗖	4		19 🗖 🗛	
cs 🗖	5	μPD		
	6	411A		
	7		16 DNC	
^o 🗖	8		15 🗖 A5	
A1 🗖	9			
A2 🗖	10		13 🗖 A3	
Vcc 🗖	11		12 WE	

PIN NAMES

A0 · A11	Address Inputs
A0 - A5	Refresh Addresses
CE	Chip Enable
CS	Chip Select
DIN	Data Input
DOUT	Data Output
WE	Write Enable
VDD	Power (+12V)
Vcc	Power (+5V)
V _{SS}	Ground
V _{BB}	(Power –5V)
NC	No Connection

.

PIN CONFIGURATION

DESCRIPTION

FEATURES

μPD411A

FUNCTIONAL DESCRIPTION

CE Chip Enable

A single external clock input is required. All read, write, refresh and read-modify-write operations take place when chip enable input is high. When the chip enable is low, the memory is in the low power standby mode. No read/write operations can take place because the chip is automatically precharging.

CS Chip Select

The chip select terminal affects the data in, data out and read/write inputs. The data input and data output terminals are enabled when chip select is low. The chip select input must be low on or before the rising edge of the chip enable and can be driven from standard TTL circuits. A register for the chip select input is provided on the chip to reduce overhead and simplify system design.

WE Write Enable

The read or write mode is selected through the write enable input. A logic high on the $\overline{\text{WE}}$ input selects the read mode and a logic low selects the write mode. The $\overline{\text{WE}}$ terminal can be driven from standard TTL circuits. The data input is disabled when the read mode is selected.

A0-A11 Addresses

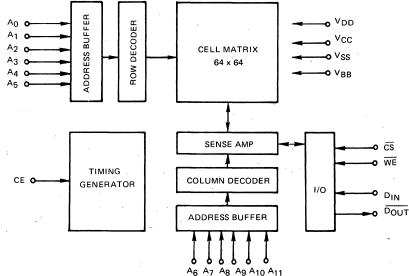
All addresses must be stable on or before the rising edge of the chip enable pulse. All address inputs can be driven from standard TTL circuits. Address registers are provided on the chip to reduce overhead and simplify system design.

DIN Data Input

Data is written during a write or read-modify-write cycle while the chip enable is high. The data in terminal can be driven from standard TTL circuits. There is no register on the data in terminal.

DOUT Data Output

*µPD411A-E = 1 millisecond refresh period.


The three state output buffer provides direct TTL compatibility with a fan-out of two TTL gates. The output is in the high-impedance (floating) state when the chip enable is low or when the Chip Select input is high. Data output is inverted from data in.

Refresh

Refresh must be performed every two milliseconds by cycling through the 64 addresses of the lower-order-address inputs A_0 through A_5 or by addressing every row within any 2*-millisecond period. Addressing any row refreshes all 64 bits in that row.

The chip does not need to be selected during the refresh. If the chip is refreshed during a write mode, the chip select must be high.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM

RATINGS*

Operating Temperature
Storage Temperature
Output Voltage ①+20 to -0.3 Volts
All Input Voltages ①+20 to -0.3 Volts
Supply Voltage VDD ①
Supply Voltage V _{CC} ①+20 to -0.3 Volts
Supply Voltage VSS (1)+20 to -0.3 Volts
Power Dissipation

Note: 1 Relative to VBB.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

1 () () () () () () () () () (LIMITS			
PARAMETER	SYMBOL	MIN.	ТҮР. 🛈	MAX.	ŲŅIT	TEST CONDITIONS
Input Load Current	ILI	х. 	0.01	10	μA	VIN = VIL MIN to VIH MAX
CE Input Load Current	ILC		0.01	10	μA	VIN = VILC MIN to VIHC MAX
Output Leakage Current for High Impedance State	1LO		0.01	±10	μA	$CE = V_{ILC} \text{ or } \overline{CS} = V_{IH}$ $V_0 = 0V \text{ to } 5.25V$
VDD Supply Current during CE off	IDD OFF		50	200	μA	CE = -1.0V to 0.6V
VDD Supply Current during CE on	IDD ON		35	50	mA	CE = VIHC, T _a = 25°C
Average V _{DD} Current μPD411A-E μPD411A μPD411A-1 μPD411A-1	I _{DD} AV I _{DD} AV I _{DD} AV I _{DD} AV		25 38 38 38	40 55 55 55	mA mA mA mA	T _a = 25°C Cycle Time = 800 ns Cycle Time = 470 ns Cycle Time = 430 ns Cycle Time = 400 ns
VBB Supply Current ②	IBB		5	100	μA	
VCC Supply Current during CE off ③	ICC OFF		0.01	10	μA	$CE = V_{ILC} \text{ or } \overline{CS} = V_{IH}$
Input Low Voltage	VIL	- 1.0	``	0.6	V	
Input High Voltage	∨ін	2.4		Vcc + 1	v	-
CE Input Low Voltage	VILC	- 1.0		0.6	Ŷ	
CE Input High Voltage	VIHC	V _{DD} - 1	V _Q D	V _{DD} + 1	v	
Output Low Voltage	VOL	0	10 N. 10	0.40	, V	I _{QL} = 3.2 mA
Output High Voltage	VOH	2.4		Vcc	Ý	IOH = -2.0 mA

 $T_a = 0^{\circ}C$ to $70^{\circ}C$. Voc = +12V ± 10%. Vcc = +5V ± 10%. Vpp = -5V ± 10%

(1) Typical values are for $T_a = 25^{\circ}C$ and nominal power supply voltages. Notes:

2 The IBB current is the sum of all leakage currents.

③ During CE on VCC supply current is dependent on output loading,

$T_a = 0^\circ C$ to 7	°C, V _{DD}	= +12V ± 10%	, VCC =+5V ± 10%,	VBB = -5V ±	10%, V _{SS} = 0V
------------------------	---------------------	--------------	-------------------	-------------	---------------------------

· · · ·		LIMITS			TEST	
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Address Capacitance	CAD		50 B	6	pF	VIN = VSS
CS Capacitance	CCS			6	pF	VIN = VSS
DIN Capacitance	CIN			6	pF	VIN = VSS
DOUT Capacitance	Соит			7	pF	VOUT = VSS
WE Capacitance	CWE	· .		7	pF	VIN = VSS
CE Capacitance	C _{CE1}			27	pF	VIN = VSS
	CCE2			22	pF	VIN = VDD

DC CHARACTERISTICS

CAPACITANCE

AC CHARACTERISTICS

READ CYCLE

 $T_a = 0^{\circ}$ C to 70°C, V_{DD} = 12V ± 10%, V_{CC} = 5V ± 10%, V_{BB} = -5V ± 10%, V_{SS} = 0V, unless otherwise noted.

					LIF	NITS					
PARAMETER	1 e	µPD411A-E		μPD411A		μPD411A-1		μPD411A-2		1	
	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
Time Between Refresh	tREF		1		2		2		2	ms	
Address to CE Set Up Time	tAC	0		0		0		0		ns	
Address Hold Time	tAH	150		150		150		150		ns	
CE Off Time	tCC	380		130		130		130		ns	tT = t _r = t _f = 20 ns CL = 50 pF Load = 1TTL Gate
CE Transition Time	τ	0	40	0	40	0	40	0	40	ns	
CE Off to Output High Impedance State	tCF	Ó	130	0	130	0	130	0	130	ns	
Cycle Time	tCY	800		470		430		400		ns	V _{ref} = 2.0 or 0.8 Volt
CE on Time	tCE	380	3000	300	3000	260	3000	230	3000	ns	
CE Output Delay	tCO		330		280		230		180	ns	1
Access Time	tACC		350		300		250		200	ns	
CE to WE	ťWL	40		40	,	40		40		ns	
WE to CE on	tWC	0		0		0		0		ns	

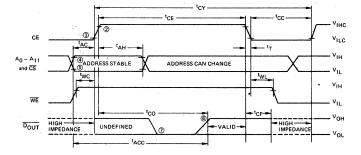
3

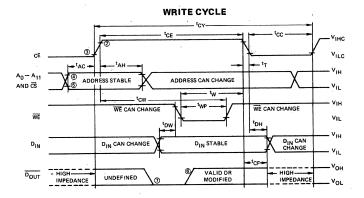
WRITE CYCLE

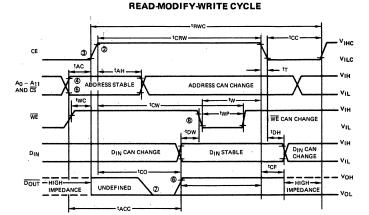
 $T_a = 0^{\circ}$ C to 70°C, V_{DD} = 12V ±10%, V_{CC} = 5V ± 10%, V_{BB} = -5V ± 10%, V_{SS} = 0V, unless otherwise noted.

		LIMITS									
		μPD4	11A-E	μPD	411A	µPD4	11A-1	µPD4	11A-2		
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
Cycle Time	ťCΥ	800		470		430		400		ns	
Time Between Refresh	tREF		. 1		. 2	·	2		2	ms	
Address to CE Set Up Time	^t AC	0		. 0		0		0		ns	
Address Hold Time	tAH	150		150		150		150		ns	
CE Off Time	tCC	380		130		130		130		ns	
CE Transition Time	tŢ	0	40	0	40	0	40	0 .	40	ns	
CE Off to Output High Impedance State	^t CF	0	130	Ö	130	0	130	0	130	ns	tT = t _f = t _f = 20 ns CL = 50 pF
CE on Time	†CE	380	3000	300	3000	260	3000	230	3000	ns	Load = ITTL Gate
WE to CE off	tw	200		180		180		150		ns	V _{ref} = 2.0 or 0.8 Volts
CE to WE	tCW	380		300		260		230		ns	
DIN to WE Set Up. (1)	tDW	0		0		0		0		ns	
DIN Hold Time	tDH	40		40		·40		40		ns	
WE Pulse Width	tWP	200		180		180		150		ns	

Note: 1 If WE is low before CE goes high then DIN must be valid when CE goes high.

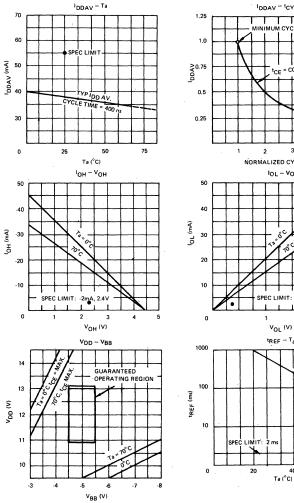

READ-MODIFY-WRITE CYCLE

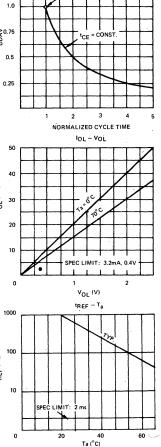

 $T_{e} = 0^{\circ}C$ to 70°C, V_{DD} = 12V ± 10%, V_{CC} = 5V ± 10%, V_{BB} = -5V ± 10%, V_{SS} = 0V, unless otherwise noted.


		LIMITS									
,		μPD4	11A-E	μΡΟ	411A	µPD4	11A-1	µPD4	11A-2		
PARAMETER	SYMBOL	MIN	MAX	MIN	МАХ	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
Read-Modify-Write (RMW) Cycle Time	tRWC	960		650		600		520		ns	
Time Between Refresh	^t REF		1		2		2		2	ms	
Address to CE Set Up Time	tAC	0		0		0		0		ns	
Address Hold Time	tAH	150	, •	150		150		150		ns	
CE Off Time	tCC	380		130		130		130		ns	
CE Transition Time	۲T	0	40	· 0	40	0	40	.0	40	ns	
CE Off to Output High Impedance State	¹ CF	0	130	0	130	0	130	0	130	ns	tT = t _r = t _f = 20 ns CL = 50 pF
CE Width During RMW	tCRW	540	3000	480	3000	430	3000	350	3000	ns	Load = 1TTL Gate
WE to CE on	tWC	Ö		0		0		0		ns	V _{ref} = 2.0 or 0.8 Volts
WE to CE off	tw	200		180	<u>`</u>	180		150		ns	
WE Pulse Width	tWP	200		180		180		150		ns	
DIN to WE Set Up	۲DW	0		0	-	0		0		ns	
DIN Hold Time	ťDН	40		40	-	. 40		40		ns	
CE to Output Delay	tCO		330		280		230		180	ns	
Access Time	tACC		350		300		250		200	ns	

TIMING WAVEFORMS

READ AND REFRESH CYCLE 1


Notes:


1 For refresh cycle row and column addresses must be stable tAC and remain stable for entire tAH period.

- 2 VDD 2V is the reference level for measuring timing of CE.
- ③ VSS + 2V is the reference level for measuring timing of CE.
- UIHMIN is the reference level for measuring timing of the addresses, CS, WE and DIN.
- UILMAX is the reference level for measuring timing of the addresses, CS, WE and DIN.
- 6 VSS + 2.0V is the reference level for measuring timing of DOUT.
- \heartsuit V_{SS} + 0.8V is the reference level for measuring timing of $\overrightarrow{D_{OUT}}$.
- (8) WE must be at VIH until end of tCO.

μPD411A

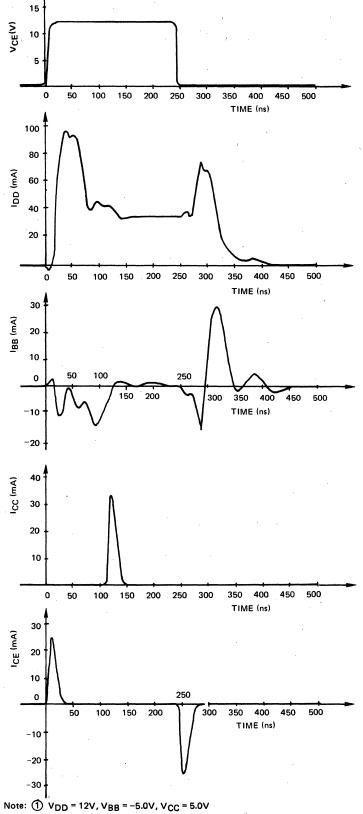
TYPICAL OPERATING CHARACTERISTICS

Т

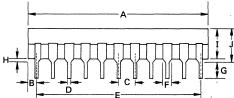
CYCLE

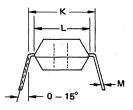
POWER CONSUMPTION

Power consumption = $V_{DD} \times I_{DDAV} + V_{BB} \times I_{BB}$


Typical power dissipation for each product is shown below.

	mW (TYP.)	CONDITIONS
μPD411A-E	300 mW	$T_a = 25^{\circ}C$, $t_{CY} = 800$ ns, $t_{CE} = 380$ ns
μPD411A	460 mW	$T_a = 25^{\circ}C$, $t_{CY} = 470$ ns, $t_{CE} = 300$ ns
μPD411A-1	460 mW	$T_a = 25^{\circ}C$, $t_{CY} = 430$ ns, $t_{CE} = 260$ ns
μPD411A-2	460 mW	$T_a = 25^{\circ}C$, $t_{CY} = 400$ ns, $t_{CE} = 230$ ns


See curve above for power dissipation versus cycle time.


μPD411A

CURRENT WAVEFORMS ①

PACKAGE OUTLINE µPD411AC

μ**PD411AC** (Plastic)

ITEM	MILLIMETERS	INCHES
Α	28.0 Max.	1.10 Max.
В	1.4 Max.	0.025 Max.
С	2.54	0.10
D	0.50	0.02
E	25.4	1,00
F	1.40	0.055
G	2.54 Min.	0.10 Min.
н	0.5 Min.	0.02 Min.
I	4.7 Max.	0.18 Max.
J	5.2 Max.	0.20 Max.
к	10.16	0.40
L	8,5	0.33
м	0.25 ^{+0.10} -0.05	0.01 ^{+0.004} -0.002

NEC MCCOMPUERS, MC

μ PD411-M μ PD411-1M μ PD411-2M

4096 BIT DYNAMIC MOS RANDOM ACCESS MEMORY

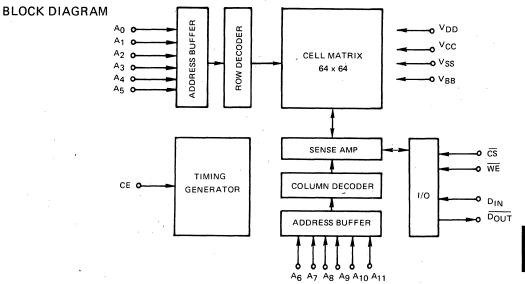
The μ PD411-M Family consists of three 4096 words by 1 bit dynamic N-channel MOS RAMs. They are designed for memory applications where wide operating environmental temperatures are important design considerations. The μ PD411-M Family is designed using dynamic circuitry which reduces the standby power dissipation.

Reading information from the memory is non-destructive. Refreshing is easily accomplished by performing one read cycle on each of the 64 row addresses. Each row address must be refreshed every two milliseconds. The memory is refreshed whether Chip Select is a logic high or a logic low.

- 4096 Words x 1 Bit Organization.
- Wide Operating Temperature Range ($T_a = -40$ to $+85^{\circ}$ C).
- TTL Compatibility on All Inputs (except CE).
- Three-State Output Providing TTL Compatibility.
- 22 Pin Dual-In-Line Ceramic Package.
- 3 Performance Ranges:

	ACCESS TIME	R/W CYCLE	RMW CYCLE	REFRESH TIME	POWER DISSIPATION
μPD411-M	300 ns	470 ns	650 ns	2 ms	65 mA
μPD411-1M	250 ns	430 ns	600 ns	2 ms	65 mA
μPD411-2M	200 ns	400 ns	520 ns	2 ms	65 mA

∨вв₫	1	~	22 VSS
^9 C	2		21 🗖 A8
A10.	3		20 🗖 A7
A11 🗖	4		19 🗖 🗛
cs 🗖	5	μPD	
	6	411-M	17 CE
DOUT	7		16 🗖 NC
A0 C	8		15 A5
A1 C	9		
A2 🗖	10		13 🗖 A3
Vcc 🗖	11		12 🗖 WE


A0 - A11	Address Inputs
A0 - A5	Refresh Addresses
CE	Chip Enable
ĊŚ	Chip Select
DIN	Data Input
DOUT	Data Output
WĒ	Write Enable
VDD	Power (+12V)
Vcc	Power (+5V)
VSS	Ground
VBB-	Power (- 5V)
NC	No Connection

DESCRIPTION

FEATURES

PIN CONFIGURATION

μPD411-M

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature
Storage Temperature
All Output Voltages
All Input Voltages
Supply Voltage V _{DD} 2000 Supply Voltage V _{DD}
Supply Voltage V _{CC} 20 Volts (2)
Supply Voltage VSS $\dots \dots $
CE Input Voltage0.3 to +20 Volts
Power Dissipation
Notes: ① Still Air

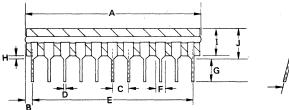
② Relative to VBB

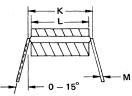
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $V_{CC} = +5V \pm 5\%$, $V_{DD} = +12V \pm 5\%$, $V_{SS} = 0V$, $V_{BB} = -5V \pm 5\%$, $T_a = -40$ to $+85^{\circ}C$

CAPACITANCE

				S ·		
PARAMETER	SYMBOL	MIN	түр	MAX	UNIT	TEST CONDITIONS
Address Capacitance	C _{AD}			7	pF	VIN = VSS
CS Capacitance	CCS			6	pF	V _{IN} = V _{SS}
DIN Capacitance	CIN			6	pF	V _{IN} = V _{SS}
DOUT Capacitance	COUT			7	pF	Vout = Vss
WE Capacitance	CWE			7	рF	VIN = VSS
CE Capacitance	CCE1			27	рF	VIN = VSS
	CCE2			22	pF	VIN = VDD


μPD411-M


DC CHARACTERISTICS

 $T_a = -40^{\circ}C$ to +85°C, $V_{DD} = +12V \pm 5\%$, $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, $V_{SS} = 0V$

PARAMETER			LIMITS				
PARAMETER	SYMBOL	MIN	түр 🕦	MAX	UNIT	TEST CONDITIONS	
Input Load Current	. ^ו נו			10	μA	VIN = VIL MIN to VIH MAX	
CE Input Load Current	ILC			10	μA	VIN = VILC MIN to VIHC MAX	
Output Leakage Current for High Impedance State	ILO			10	μA	$CE = VILC \text{ or } \overline{CS} = VIH$ V0 = 0V to 5.25V	
VDD Supply Current during CE off	IDD OFF			200	μA	CE = -1.0V to 0.6V	
VDD Supply Current during CE on	IDD ON			65	mA	CE = VIHC, T _a = 25°C	
Average VDD Current μPD411-M μPD411-1M μPD411-2M	I _{DD} AV I _{DD} AV I _{DD} AV	-		65 65 65	mA mA mA	T _a = 25°C Cycle Time = 470 ns Cycle Time = 430 ns Cycle Time = 400 ns	
VBB Supply Current (2)	IBB		5 -	100	μÁ		
VCC Supply Current during CE off ③	ICC OFF			10	μΑ	$CE = V_{ILC} \text{ or } \overline{CS} = V_{IH}$	
Input Low Voltage	VIL	-1.0		0.6	v		
Input High Voltage	⊻ін	2.6		V _{CC} + 1	v		
CE Input Low Voltage	VILC	- 1.0		0.6	v		
CE Input High Voltage	⊻інс	V _{DD} - 1	V _{DD}	V _{DD} + 1	v		
Output Low Voltage	VOL	0		0.40	v	IOL = 3.2 mA	
Output High Voltage	∨он	2.4		Vcc	v	I _{ОН} = -2.0 mA	
Time Between Refresh	^t REF			2	ms		

Notes: Typical values are for $T_a = 25^{\circ}C$ and nominal power supply voltages. The IBB current is the sum of all leakage currents. During CE on V_{CC} supply current is dependent on output loading.

PACKAGE OUTLINE μPD411-MD

ITEM	MILLIMETERS	INCHES
Α	27.43 Max.	1.079 Max.
В	1,27 Max.	0.05 Max.
С	2,54 ± 0.1	0.10
D	0.42 ± 0.1	0,016
E	25.4 ± 0.3	1.0
F	1.5 ± 0.2	0.059
G	3.5 ± 0.3	0.138
Н	3.7 ± 0.3	0.145
1	4.2 Max.	0.165 Max.
J	5.08 Max.	0.200 Max.
ĸ	10.16 ± 0.15	0.400
Ĺ	9.1 ± 0.2	0.358
M	0.25 ± 0.05	0.009

μPD411-M

AC CHARACTERISTICS

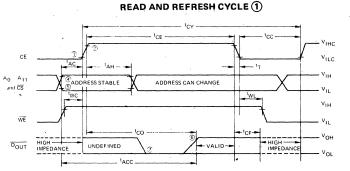
READ CYCLE

 $T_a = -40^{\circ}$ C to +85°C, $V_{DD} = 12V \pm 5\%$, $V_{CC} = 5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, $V_{SS} = 0V$, unless otherwise noted.

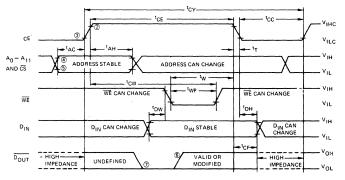
				LI	MITS							
PARAMETER	SYMBOL	μPC	0411-M	μPD	0411-1M μPD		11-2M	UNIT	TEST CONDITIONS			
		MIN	MAX	MIN	MAX	MIN	MAX					
Time Between Refresh	^t REF		2		2		2	ms				
Address to CE Set Up Time	tAC	0	,	0		0		ns	1			
Address Hold Time	^t AH	150		150		150		ns	1			
CE Off Time	tCC	130		130		130		ns	1			
CE Transition Time	tτ	0	40	0	40	0	40	ns	$t_{T} = t_{r} = t_{f} = 20 \text{ ns}$			
CE Off to Output High Impedance State	^t CF	0	130	0	130	0	130	ns	CL = 50 pF			
Cycle Time	tCY	470		430		400		ns	Load = 1TTL Gate			
CE on Time	^t CE	300	3000	260	3000	230	3000	ns	V _{ref} = 2.0 or 0.8 Volts			
CE Output Delay	tco		280		230		180	ns	1			
Access Time	[†] ACC		300		250		200	ns	1			
CE to WE	tWL	40		40		40		ns	1			
WE to CE on	twc	0		0		0		ns				
CS Hold Time	^t CSH	150		150		150		ns	1			
CS Set Up Time	tCSC	0		0		0		ns				

WRITE CYCLE

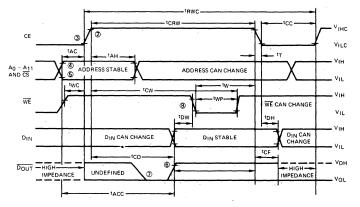
 $T_{a} = -40^{\circ}$ C to +85°C, $V_{DD} = 12V \pm 5\%$, $V_{CC} = 5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, $V_{SS} = 0V$, unless otherwise noted.


				L	IMITS							
PARAMETER	SYMBOL	μPD	411-M	μPD	μPD411-1M		11-2M	UNIT	TEST CONDITIONS			
		MIN	MAX	MIN	MAX	MIN	MAX					
Cycle Time	tCY	470		430		400		ns				
Time Between Refresh	tREF		2		2		2	ms				
Address to CE Set Up Time	†AC	0		0		0		ns				
Address Hold Time	^t AH	150		150		150		ns				
CE Off Time	tCC	130		130		130		ns				
CE Transition Time	tŢ	0	40	0	40	0	40	ns				
CE Off to Output High Impedance State	^t CF	0	130	0	130	0	130	ns	tT = t _r = t _f = 20 ns CL = 50 pF			
CE on Time	tCE	300	3000	260	3000	230	3000	ns	Load = 1TTL Gate			
WE to CE off	tw	180		180		150		ns	Vref = 2.0 or 0.8 Volts			
CE to WE	tCW	300		260		230		ns				
DIN to WE Set Up ①	tDW	0		0		0		ns				
DIN Hold Time	^t DH	40		40		40		ns				
WE Pulse Width	tWP	180		180		150		ns				
CS Set Up Time	tCSC	0		0		0		ns				
CS Hold Time	^t CSH	150		150		150		ns				

Note: ① If WE is low before CE goes high then DIN must be valid when CE goes high.


READ-MODIFY-WRITE CYCLE

 $T_a = -40^{\circ}$ C to +85°C, V_{DD} = 12V ± 5%, V_{CC} = 5V ± 5%, V_{BB} = -5V ± 5%, V_{SS} = 0V, unless otherwise noted.


				LI	MITS		TEST CONDITIONS		
PARAMETER	SYMBOL	μPD	411-M	μPD4	μPD411-1M				µPD411-2M
•		MIN	MAX	MIN	MAX	MIN	MAX		-
Read-Modify-Write (RMW) Cycle Time	^t RWC	650		600		520		ns	
Time Between Refresh	TREF		2		2		2	ms	
Address to CE Set Up Time	^t AC	0		0		0		ns	1. A.
Address Hold Time	tAH	150		150		150		ns	
CE Off Time	tCC	130		130		130		ns	1
CE Transition Time	tT	0	40	0	40	0	40	ns	1
CE Off to Output High Impedance State	tCF	0	130	0	130	0	130	ns	
CE Width During RMW	^t CRW	480	3000	430	3000	350	3000	ns	tT = t _r = t _f = 20 ns ·
WE to CE on	twc	0		0		0,		ns	CL = 50 pF
WE to CE off	tw	180		180		150	1	• ns	Load = 1TTL Gate
WE Pulse Width	tWP	180		180		150		ns	V _{ref} = 2.0 or 0.8 Volts
DIN to WE Set Up	tDW	• 0		0		0		ns	
DIN Hold Time	^t DH	40		40		40		ns	
CE to Output Delay	tco		280		230		180	ns	
Access Time	tACC		300		250		200	ns	
CE on Time	^t CE	480	3000	430	3000	350	3000	ns]
CS Set Up Time	tCSC	0		0		0		ns]
CS Hold Time	tCSH	150		150		150	1	ns	
CE to WE	tCW	480	·	430		350		ns	1

WRITE CYCLE

READ-MODIFY-WRITE CYCLE

Notes: ① For refresh cycle, row and column addresses must be stable t_{AC} and remain stable for entire t_{AH} period.

- ② VDD 2V is the reference level for measuring timing of CE.
- 3 \qquad VSS + 2V is the reference level for measuring timing of CE.
- $\textcircled{\sc 0}$ $\underbrace{V_{IHMIN}}_{CS, \overline{WE}}$ and D_IN.
- (5) V_{1LMAX} is the reference level for measuring timing of the addresses, $\overline{CS}, \overline{WE}$ and D_{1N} .
- (6) V_{SS} + 2.0V is the reference level for measuring timing of $\overline{D_{OUT}}$.
- \bigcirc VSS + 0.8V is the reference level for measuring timing of $\overrightarrow{\text{DOUT}}$.
- 8 WE must be at VIH until end of tCO.

NEC MICROCOMPUTERS, MC

μPD414-E μPD414 μPD414-1 μPD414-2

FULLY DECODED RANDOM ACCESS 4096 BIT DYNAMIC MEMORY

DESCRIPTION

The NEC μ PD414 is a 4096 words by 1 bit Dynamic N channel MOS RAM. It was designed for memory applications where very low cost and large bit storage are important design objectives. The μ PD414 uses a single transistor dynamic storage cell and dynamic circuitry to achieve high speed and low power dissipation.

The μ PD414 is packaged in the standard 16 pin dual-in-line package. The 16 pin package provides the highest system bit densities and is available in either cerdip or plastic.

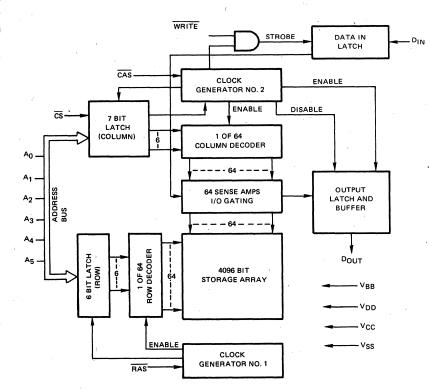
The use of the 16 pin package is made possible by multiplexing the 12 address bits (required to address 1 of 4096 bits) into the μ PD414 on 6 address input pins. The two 6 bit address words are latched into the μ PD414 by the two TTL clocks, Row Address Strobe (RAS) and Column Address Strobe (CAS). Noncritical clock timing requirements allow use of the multiplexing technique while maintaining high performance.

The single transistor dynamic storage cell provides high speed along with low power dissipation. The memory cell requires refreshing for data retention. Refreshing is most easily accomplished by performing a read cycle at each of the 64 row addresses every 2 milliseconds.

FEATURES

- 4096 Words x 1 Bit Organization
- Refresh Period 2 ms
- Standard 16 Pin Cerdip and Plastic Packages
- Low Standby Power
- All Inputs Including Clocks TTL Compatible
- Standard Power Supplies +12V, +5V, -5V
- Gated CAS Characteristic
- On-Chip Latches for Addresses, Chip Select and Data In
- Simple Memory Expansion Chip Select
- Output is Three State, TTL Compatible; Data is Latched and Valid into Next Cycle
- 4 Performance Ranges:

	ACCESS TIME	R/W CYCLE	RMW CYCLE
μPD414-E	350 ns	500 ns	700 ns
μPD414	300 ns	425 ns	590 ns
μPD414-1	250 ns	375 ns	480 ns
µPD414-2	200 ns	375 ns	420 ns


PIN CONFIGURATION

1 A						
VBB	d	1	\sim	16	þ	Vss
DIN	Ц	2		15	þ	CAS
WRITE	Ц	3		14	þ	POUT
RAS	C	4	μPD	13	þ	cs
A ₀	q	5	414	12	þ	А ₃
A ₂	q	6		11	Þ	A4
A1	d	, 7		10	Þ	A5
VDD	q	8		9	þ	Vcc

PIN NAMES

A0-A5	Address Inputs
CAS	Column Address Strobe
ĈŜ	Chip Select
DIN	Data In
POUT	Data Out
RAS	Row Address Strobe
WRITE	Read/Write
V _{BB}	Power (-5V)
Vcc	Power (+5V)
VDD	Power (+12V)
VSS	Ground

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature
Storage Temperature
All Output Voltages ①0.5 to +25 Volts
All Input Voltages $\textcircled{0}$
Supply Voltages VDD, VCC, VSS ①0.5 to +25 Volts
Power Dissipation

Note: 1 Relative to VBB

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

 $T_a = 0^{\circ}C$ to 70°C, $V_{DD} = +12V \pm 10\%$, $V_{CC} = +5V \pm 10\%$, $V_{BB} = -5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted. (1)(2)

PARAMETER	SYMBOL		LIMITS	5		TEST	
FARAWETER	STNBUL	MIN	ТҮР	MAX	UNIT	CONDITIONS	
Address Capacitance	C _{AD}			10	рF	VIN = VSS	
CAS, RAS, CS Capacitance	СC			7	pF	VIN = VSS	
Data Output Capacitance	COUT			8	pF	VOUT = 0V	
DIN and WRITE Capacitance	CIN			7	pF	VIN = VSS	

CAPACITANCE

Notes: 1 All voltages referenced to V_{SS}. The only requirement for the sequence of applying voltages to the device is that V_{DD}, V_{CC}, and V_{SS} should never be 0.5V or more negative than V_{BB}.

2 Capacitance measured with Boonton Meter.

DC CHARACTERISTICS $T_a = 0^{\circ}C t_0 + 70^{\circ}C, V_{DD} = +12V \pm 10\%, V_{CC} = +5V \pm 10\%, V_{BB} = -5V \pm 10\%, \textcircled{0} V_{SS} = 0V,$

unless otherwise noted.	State of the state							
PARAMETER	SYMBOL		LIMITS		UNIT	TEST CONDITIONS		
FANAMETEN	STWDUL	MIN	ТҮР 2	MAX	UNIT			
Input Load Current (any input)	1 _{Li}			10	μA	6		
Output Leakage Current for High Impedance State	ILO	-		10	μA	Chip deselected (6) ⑦		
V _{DD} Supply Current	IDDOFF ③			2.0	۱mA	CAS and RAS at VIH. Chip deselected. 6		
Average VDD Current	IDDAV ③			35	mA	Cÿcle time = Min (4) t _{RP} = 150 ns, T _a = 25°C		
V _{CC} Supply Current when deselected	ICCOFF			10	μA	8		
Average V _{BB} Current	IBB ③			75	μA			
Average V _{DD} Power Supply Current During "RAS only" cycles	IDD3			28	mA	4		
Input Low Voltage (any input)	VIL	-1.0		0.8	V	09		
Input High Voltage except RAS, CAS, WRITE	VIH	2.4		7.0	V	19		
Output Low Voltage	VOL	0		0.4	V	IOL = 2.0 mA		
Output High Voltage	VOH	2,4		7.0	v	IOH = -5.0 mA		
Supply Voltage	VDD	10.8	12.0	13.2	V	1		
Supply Voltage	V _{CC}	VSS	5.0	VDD	v	0 10		
Supply Voltage	V _{SS}	0	0	0	Ý	0		
Supply Voltage	V _B g	-4.5	5.0	-5.5	v	0		
Logic 1 Voltage, RAS, CAS, WRITE	VIHC	2.7		7.0	v	9		

Notes:

- ∩ All voltages referenced to VSS. VBB must be applied before and removed after other supply voltages.
 - 2 Typical values are for $T_a = 25^{\circ}C$ and nominal power supply voltages.
 - The IDD current flows to VSS. The IBB current is the sum of all leakage currents. 3
 - 4 Current is proportional to cycle rate; maximum current is measured at the fastest cycle rate.
 - All device pins at 0 volts except V_{BB} which is at –5 volts and the pin under test 6 which is at +10 volts.
 - Output is disabled (open-circuit) and $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ are both at a logic 1. 6
 - 0 $OV \leq V_{OUT} \leq +10V.$
 - 8 When chip is selected V_{CC} supply current is dependent on output loading; V_{CC} is connected to output buffer only.
 - (9) Device speed is not guaranteed at input voltages greater than TTL levels (0 to +5V).
 - (10) Output voltage will swing from V_{SS} to V_{CC} if $V_{CC} \leq V_{DD} - 4$ volts. If $V_{CC} \ge V_{DD}$ -4 volts, the output will swing from V_{SS} to a voltage somewhat less than VDD.

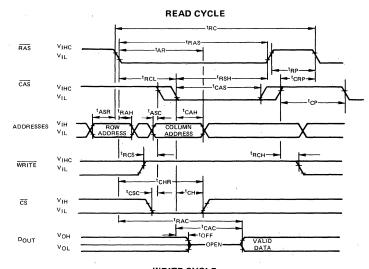
AC CHARACTERISTICS

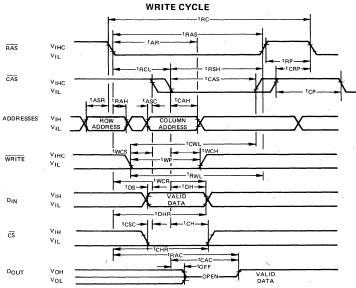
$T_a = 0^{\circ}C$ to 70°C, VDD = 12V ± 10%, VCC = 5V ± 10%, VBB = -5V ± 10%, VSS = 0V, unless otherwise noted.

							LIN	ITS								
			414-			414	Ļ		414	-1		414-	2			
PARAMETER	SYMBOL	MIN	түр	MAX	MIN	түр	MAX	MIN	TYP	MAX	MIN	TYP	MAX	SYMBOL	TEST CONDITIONS	
Random read or write cycle time	tRC	500			425			375			375			ns	G	0
Read write cycle time	tRWC	700			590	ļ		480			420			ns		
Access time from row address strobe	TRAC			350			300			250			200	ns	3	6
Access time from column address strobe	*CAC			200			165			140			135	ns	4	6
Output buffer turn-off delay	tOFF			100			80			60			50	ns	(3)
Row address strobe precharge time	tRP	150			125			120			120			ns		
Row address strobe pulse width	^t RAS	350		32,000	300		32,000	250		32,000	200		32,000	ns		
Row address strobe hold time	tRSH .	200			165			140			135			ns		
Column address strobe pulse width	tCAS	200		3,000	165	1	3,000	140		3,000	135		3,000	ns		
Row to column strobe lead time	tRCL	110		150	90		135	35		110	25		65	ns	C	0
Row address set-up time	tASR	0			0			0			0		Ļ	ns		
Row address hold, time	tRAH	100			80			35			25			ns		
Column address set-up time	tASC	0			0			0			0			ns		
Column address hold time Column address hold	*CAH	100			80			60 160			40 120			ns		
time referenced to RAS	tAR	210			170									ns		
Chip select set-up time	tCSC	0			0			0			0			ns		
Chip select hold time	тсн	100			80			60			40			ns		
Chip select hold time referenced to RAS	tCHR	210			170			160		50	120 3		50	ns	- 0	
Transition time (rise and fall)	म	5		50	5		50	3		50	3		50	ns		9
Read command set-up time Read command	tRCS	0			0			0			0			ns		
hold time Write command	tRCH	150			130			75			55			ns		
write command hold time Write command	tWCH					'		160			120			ns		
hold time referenced to RAS	tWCR	260			220			100			120			113		
Write command pulse width	tWP	200			165			75			55			ns		
Write command to row strobe lead time	tRWL	200			165			140			135			ns		
Write command to column strobe lead time	^t CWL	200			165			140			135			ns		
Data in set-up time	tDS	0			0			0			0,			ns	(
Data in hold time	^t DH	150			130			110			110			ns	()
Data in hold time referenced to RAS	tDHR	260			220			⁻ 195			175			ns		
CAS to RAS precharge time	tCRP	0 150			0 125			0			0			ns		
Column precharge time	tCP	150			125			120			120			ns		
Refresh period	tRFSH			2			2			2			2	ms		
CAS to WRITE delay	tCWD	200			165			90			80			ns	6	0
RAS to WRITE delay	tŔWD	350			300			175			145			ns	6	0

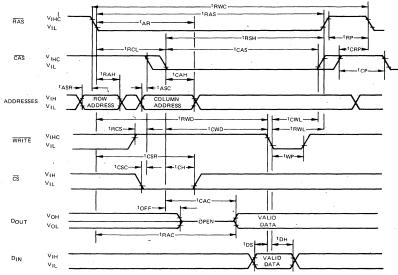
Notes:

000000

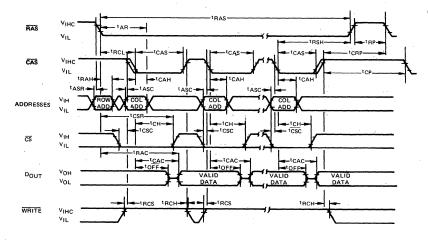

(8)

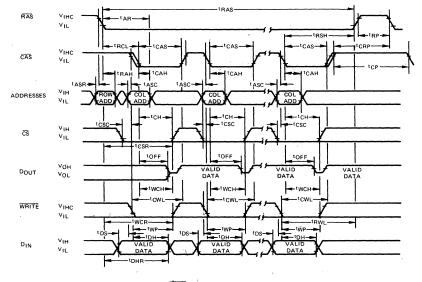

A.C. measurements assume tT = 5 ns. Minimum cylce time (tR_C) is greater than tR_{AS} + tRP + 2TT in order to limit power dissipation. Assumes that tR_{CL} + tT < tR_{CL} (max). Assumes that tR_{CL} + tT > tR_{CL} (max). Measured with a load circuit equivalent to 2 TTL loads and 100 pF. Assumes that tR_{CL} + tT > tR_{CL} (max). If tR_{CL} + tT < tR_{CL} (max), 60 + tR_{CL} (max) - tR_{CL} - tT ns min. Operation within the tR_{CL} (max) limit insures that tR_{AC} (max) can be met. tR_{CL} (max) is specified as a reference point only; if tR_{CL} is greater than the specified tR_{CL} (max) limit, then access time is controlled exclusively by tC_{AC}. V |_{HC} (min) or V |_H (min) and V|_L (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V |_{HC} or V |_H and V|_L. These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or read-modify-write cycles. TCWD and tRyMp are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: 9

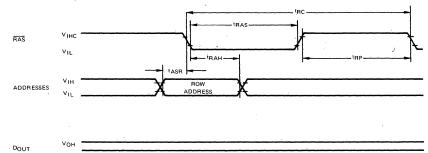
Treatmounty write cycles.
(tyQ) and type are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only:
If tQWD + tT < tQWD (min), the data out latch will contain high level data.</p>
If tQWD > tQWD (max) + tT and tRWD = tRWD (max) + tT, the data out latch will contain the data read from the selected cell.
If tQWD does not meet the above constraints, then data out latch will contain indeterminate data. 10


になったとう病

TIMING WAVEFORMS


READ-MODIFY-WRITE CYCLE


MARA ALCOLUMN


TIMING WAVEFORMS (CONT.)

PAGE MODE WRITE CYCLE

"RAS ONLY" REFRESH CYCLE

Note: DOUT remains unchanged from previous cycle.

34

VOL

記が小いののの

ADDRESSING

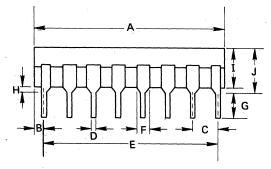
The 12 address bits required to decode 1 of 4096 bit locations are multiplexed onto the 6 address pins and then latched on the chip with the use of the Row Address Strobe (RAS), and the Column Address Strobe (\overline{CAS}). The 6 bit row address is first applied and \overline{RAS} is then brought low. After the \overline{RAS} hold time has elapsed, the column address and chip select signals are applied and \overline{CAS} is brought low. Since the column address and chip select are not needed internally until a time of t_{RCL} MAX after the row address, this multiplexing operation imposes no penalty on access time as long as \overline{CAS} is applied no later than t_{RCL} MAX. If this time is exceeded, access time will be defined from \overline{CAS} instead of \overline{RAS} .

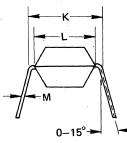
DATA I/O

For a write operation, the input data is latched on the chip by the negative going edge of $\overline{\text{WRITE}}$ or $\overline{\text{CAS}}$, whichever occurs later. If $\overline{\text{WRITE}}$ is active before $\overline{\text{CAS}}$, Data out will unconditionally assume a logic "1" state. If $\overline{\text{WRITE}}$ is mode active after the access time, as in a read/write cycle, the output will reflect the data read. The output data is latched and will remain in its proper state until the next negative transition of $\overline{\text{CAS}}$.

PAGE MODE

The μ PD414 may also be operated in page mode for either reading or writing by keeping RAS low after strobing in the row address, and cycling CAS for each new column address.

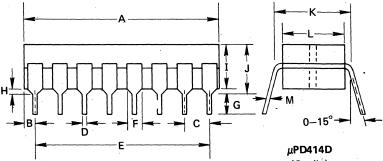

REFRESH


Refresh of the memory matrix is accomplished by performing a memory cycle at each of the 64 row addresses every 2 milliseconds or less. Any memory cycle will refresh the chip regardless of the state of chip select although the chip must be deselected if a write cycle is used to avoid altering data. The data output will go to the high impedance state if chip select is high when CAS is brought low.

Refresh may also be achieved by cycling RAS only and strobing in each of the 64 row addresses. The data output will remain unaffected by this "RAS-only" refresh.

CAS ONLY OPERATION

If RAS is decoded and applied only to the desired chips, the remaining chips will dissipate no power on the CAS edges. In addition, the outputs will assume the high impedance state regardless of chip select. 体の呼ばれる



PACKAGE OUTLINE µPD414C/D

μ**PD414C** (Plastic)

Plastic)	
----------	--

ITEM	MILLIMETERS INCHES		
Α	19.4 MAX. 0.76 MAX		
В	0.81	0.03	
С	2.54	0.10	
D	0.5	0.02	
E	17.78	0.70	
F	• 1.3	0.051	
G	2.54 MIN.	0.10 MIN.	
н	0.5 MIN. 0.02 MII		
I	4.05 MAX.	0.16 MAX.	
J	4.55 MAX.	0.18 MAX.	
к	7.62	0.30	
L	6.4	0.25	
м	0.25 +0.10 - 0.05	0.01	

(Cerdip)

ITEM	MILLIMETERS INCHES		
A	19.9 MAX ⁺	0.784 MAX	
В	1.06 0.042		
С	2.54	0.10	
D	0.46 ± 0.10	0.018 ± 0.004	
E	17.78	0.70	
F	1.5	0.059	
G	2.54 MIN	0.10 MIN	
н.	0.5 MIN	0.019 MIN	
I	4.58 MAX	0.181 MAX	
J	5.08 MAX	0.20 MAX	
к	7.62	0.30	
L	6.4	0.25	
м	0.25 ^{+ 0.10} - 0.05	0.0098 + 0.0039 - 0.0019	

36

のためにあ

μΡD416 μΡD416-1 μΡD416-2 μΡD416-3

16384 x 1 BIT DYNAMIC MOS RANDOM ACCESS MEMORY

DESCRIPTION

The NEC μ PD416 is a 16384 words by 1 bit Dynamic MOS RAM. It is designed for memory applications where very low cost and large bit storage are important design objectives.

The μ PD416 is fabricated using a double-poly-layer N channel silicon gate process which affords high storage cell density and high performance. The use of dynamic circuitry throughout, including the sense amplifiers, assures minimal power dissipation.

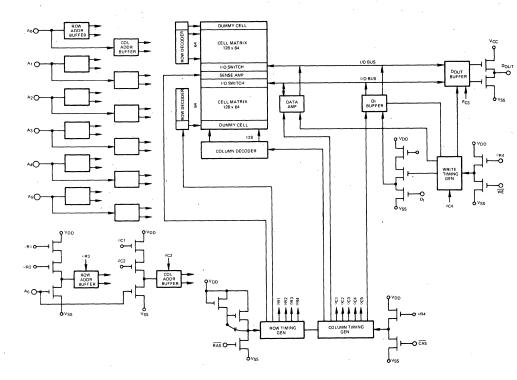
Multiplexed address inputs permit the μ PD416 to be packaged in the standard 16 pin dual-in-line package. The 16 pin package provides the highest system bit densities and is available in either ceramic or plastic. Noncritical clock timing requirements allow use of the multiplexing technique while maintaining high performance.

FEATURES

- 16384 Words x 1 Bit Organization
- High Memory Density 16 Pin Ceramic and Plastic Packages
- Multiplexed Address Inputs
- Standard Power Supplies +12V, -5V, +5V
- Low Power Dissipation; 462 mW Active (MAX), 20 mW Standby (MAX)
- Output Data Controlled by CAS and Unlatched at End of Cycle
- Read-Modify-Write, RAS-only Refresh, and Page Mode Capability
- All Inputs TTL Compatible, and Low Capacitance
- 128 Refresh Cycles
- 4 Performance Ranges:

	ACCESS TIME	R/W CYCLE	RMW CYCLE
μPD416	300 ns	510 ns	510 ns
μPD416-1	250 ns	430 ns	430 ns
μPD416-2	200 ns	375 ns	375 ns
μPD416-3	150 ns	375 ns	375 ns

PIN CONFIGURATION


v_{BB}	d.	~~~		V _{SS}
D _{IN}	C 2	· •	15 Þ	CAS
WRIT	≣□ 3		ı₄þ	D _{OUT}
RAS	d ₄	μισ	13 🏳	A ₆
A ₀	d 2	416		A3
A ₂	G 6		11	A4
A ₁	7 🗖	1	₀⊨	A5
VDD			9	Vcc

PIN NAMES

Address Inputs	
Column Address Strobe	
Data In	
Data Out	
Row Address Strobe	
Read/Write	
Power (-5V)	
Power (+5V)	
Power (+12V)	
Ground	

Operating Temperature
Storage Temperature
All Output Voltages ①
All Input Voltages ①
Supply Voltages VDD, VCC, VSS ①
Supply Voltages VDD, VCC 2 1.0 to +15 Volts
Short Circuit Output Current
Power Dissipation

Notes: 1 Relative to VBB 2 Relative to VSS

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $*T_{a} = 25^{\circ}C$

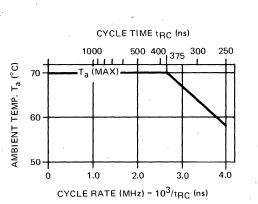
 T_a = 0°C to 70°C, V_{DD} = +12V \pm 10%, V_{BB} = -5V \pm 10%, V_{CC} = +5V \pm 10%, V_{SS} = 0V

PARAMETER	SYMBOL		LIMITS		UNIT	TEST
TANAMETEN	STWDUL	MIN	TYP	MAX	ONT	CONDITIONS
Input Capacitance (A0-A6), DIN	C _{I1}		4	5	pF	
Input Capacitance RAS, CAS, WRITE	CI2		8	10	pF	
Output Capacitance (DOUT)	C ₀		5	7	рF	

CAPACITANCE

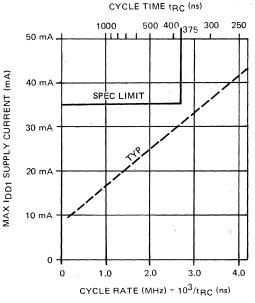
ABSOLUTE MAXIMUM RATINGS* $T_a = 0^{\circ}C \text{ to } +70^{\circ}C (1)$, $V_{DD} = +12V \pm 10\%$, $V_{CC} = +5V \pm 10\%$, $V_{BB} = -5V \pm 10\%$, $V_{SS} = 0V$

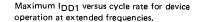
DC CHARACTERISTICS

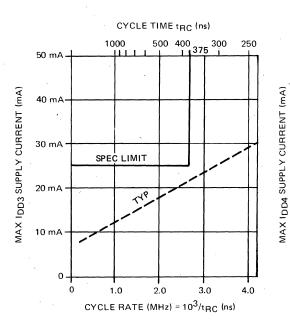

		LIMITS				TEST	
PARAMETER	SYMBOL	MIN	ΤΥΡ	MAX	UNIT	CONDITIONS	
Supply Voltage	V _{DD}	10.8	12.0	13.2	v	2	
Supply Voltage	Vcc	4.5	5.0	5.5	v	23	
Supply Voltage	V _{SS}	0	0	0	v	2	
Supply Voltage	V _{BB}	-4.5	-5.0	-5.5	V	2	
Input High (Logic 1) Voltage, RAS, CAS, WRITE	VIHC	2.7		7.0	v	2	
Input High (Logic 1) Voltage, all inputs except RAS, CAS WRITE	VIH	2.4		7.0	v	2	
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0		0.8	v	2	
Operating V _{DD} Current	IDD1			35	mA	RAS, CAS cycling; tRC = tRC Min. 4	
Standby V _{DD} Current	IDD2			1.5	mA	RAS = VIHC, DOUT = High Impedance	
Refresh V _{DD} Current	1DD3			25	mA	RAS cycling, CAS = VIHC: tRC = 375 ns4	
Page Mode V _{DD} Current	IDD4			27	mA	RAS = V _{IL} , CAS cycling; tp _C = 225 ns (4)	
Operating V _{CC} Current	ICC1				μÁ	RAS, CAS cycling; t _{RC} = 375 ns (5)	
Standby V _{CC} Current	ICC2	-10		10	μA	RAS = VIHC, DOUT = High Impedance	
Refresh V _{CC} Current	ICC3	-10		10	μA	RAS cycling, CAS = VIHC, t _{RC} = 375 ns	
Page Mode V _{CC} Current	ICC4				μA	RAS = V _{IL} , CAS cycling; tp _C = 225 ns (5)	
Operating V _{BB} Current	IBB1			200	μA	RAS, CAS cycling; t _{RC} = 375 ns	
Standby V _{BB} Current	IBB2			100	μA	RAS = V _{IHC} , D _{OUT} = High Impedance	
Refresh V _{BB} Current	IBB3			200	μA	RAS cycling, CAS = VIHC; t _{RC} = 375 ns	
Page Mode V _{BB} Current	IBB4			200	μA	RAS = V _{IL} , CAS cycling; tp _C = 225 ns	
Input Leakage (any input)	(∟)	-10	×	10	μA	$V_{BB} = -5V, 0V \le V_{IN} \le +7V,$ all other pins not under test = 0V	
Output Leakage	¹ 0(L)	-10		10	μA	D _{OUT} is disabled, 0V ≤ V _{OUT} ≤ +5.5V	
Output High Voltage (Logic 1)	Vон	2.4			V	IOUT = -5 mA ③	
Output Low Voltage (Logic 0)	VOL			0.4	V	I _{OUT} = 4.2 mA	

Notes: ① Ta is specified here for operation at frequencies to t_{RC} > t_{RC} > (min). Operation at higher cycle rates with reduced ambient temperatures and high power dissipation is permissible, however, provided AC operating parameters are met. See Figure 1 for derating curve.
 ② All voltages referenced to Vss.
 ③ Output voltage will swing from Vss.
 ③ Output voltage will swing from Vss.
 ④ Output voltage mode, Vcc may be reduced to Vss, without affecting refresh operations or data retention. However, the Vcpt (min) specification is not guaranteed in this mode.
 ④ Inov_Lopera delong delend on cycle rate. See Figures 2.3 and 4 for Lop limits at other cycle rates.

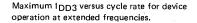
(4) IDD1, IDD3, and IDD4 depend on cycle rate. See Figures 2, 3 and 4 for IDD limits at other cycle rates.
 (5) ICC1 and ICC4 depend upon output loading. During readout of high level data VCC is connected through a low impedance (135Ω typ) to data out. At all other times ICC consists of leakage currents only.

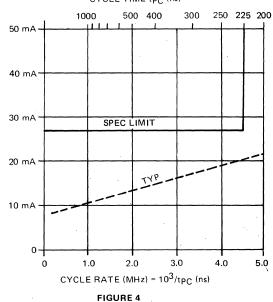

μPD416




FIGURE 1

Maximum ambient temperature versus cycle rate for extended frequency operation. T_a (max) for operation at cycling rates greater than 2.66 MHz ($t_{CYC} < 375$ ns) is determined by T_a (max) [°C] = 70 - 9.0 x (cycle rate [MHz] -2.66).




FIGURE 2

Maximum IDD4 versus cycle rate for device operation in page mode.

CYCLE TIME tPC (ns)

A Sharing Back

μPD416

AC CHARACTERISTICS

 $T_a = 0^{\circ}C$ to +70°C, $V_{DD} = +12V \pm 10\%$, $V_{CC} = +5V \pm 10\%$, $V_{BB} = -5V \pm 10\%$, $V_{SS} = 0V$

		LIMITS									
PARAMETER	SYMBOL	μPI	0416	μΡΕ	416-1	μPD	416-2	μP	D416-3	UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	1	CONDITIONS
Random read or write cycle time	^t RC	510		430		375		375		ns	3
Read-write cycle time	tRWC	510		430		375		375		ns	3
Page mode cycle time	tPC	330		280		225		170		ns	
Access time from RAS	^t RAC		300		250		200	,	150	ns	46
Access time from	[†] CAC		200		170		135		100	ns	56
Output buffer tum-off delay	tOFF	0	80	0 /	70	0	50	0	40	ns	0
Transition time (rise and fall)	म्	3	50	3	50	3	50	3	35	ns	2
RAS precharge time	tRP	200		170		120		100		ns	
RAS pulse width	†RAS	300	32,000	250	32,000	200	32,000	150	32,000	ns	
RAS hold time	tRSH	200		170		135	, , , , , , , , , , , , , , , , , , ,	100		ns	
CAS pulse width	tCAS	200	10,000	170	10,000	135	10,000	100	10,000	ns	
RAS to CAS delay time	tRCD	40	100	35	85	25	65	20	50	ns	8
CAS to RAS precharge time	^t CRP	- 20		- 20		20		20		ns	
Row address set-up time	tASR	0		0		0		0		ns	
Row Address hold time	^t RAH	40		35		25		20		ns	
Column address set-up time	tASC	- 10		- 10		- 10		10		ns	
Column address hold time	^t CAH	90		75 [.]		55		45		ns	
Column address hold time referenced to RAS	^t AR	190		160	1	120		95		ns	
Read command set-up time	^t RCS	0		0		0		0		ns	
Read command hold time	^t RCH	0		0		0		0		ns	
Write command hold time	tWCH	90		75		55		45		ns	
Write command hold time referenced to RAS	tWCR	190		160		120	х.	95		ns	
Write command pulse width	tWP	90		. 75		55		45		ns	
Write command to RAS lead time	tRWL	120		100		80	-	60		ns	
Write command to CAS lead time	tCWL	120		100		80	,	60		ns	
Data-in set-up time	tDS	0		0		0		0		ns	9
Data-in hold time	^t DH	90		75		55		45		ns	9
Data-in hold time referenced to RAS	^t DHR	190		160		120		95		ns	
CAS precharge time (for page mode cycle only)	tCP	120		100		80		60		ns	
Refresh period	tREF		2		2		2		2	ms	للليب مودي مناملة بمارمة
WRITE command set-up time	tWCS	- 10		- 10		- 10		- 10		ns	
CAS to WRITE delay	tCWD	140		120		95		70		ns	
RAS to WRITE delay	^t RWD	210		175		160		120		ns	

(1) AC measurements assume $t_T = 5$ ns. Notes:

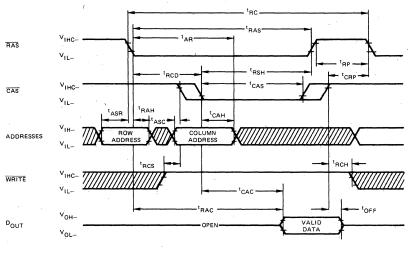
(2) VIHC (min) or VIH (min) and VIL (max) are reference levels for measuring timing of input signals. Also, transition times are measured between $V_{IHC} \text{ or } V_{IH} \text{ and } V_{IL}.$

3 The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C < T₈ < 70°C) is assured.

 $\label{eq:constraint} \begin{array}{c} \textcircled{4} \\ \hline \\ \end{array} \\ \begin{array}{c} \textbf{Assumes that t_{RCD} \leqslant t_{RCD} (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} \\ \hline \\ \textbf{will increase by the amount that t_{RCD} exceeds the values shown. \end{array}$

 \bigcirc Assumes that tRCD \ge tRCD (max).

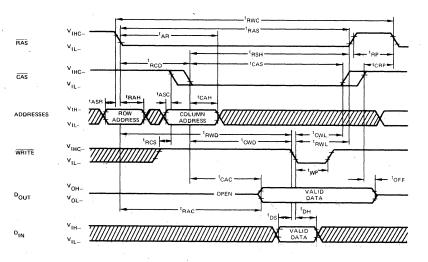
6 Measured with a load equivalent to 2 TTL loads and 100 pF.


(7) tOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

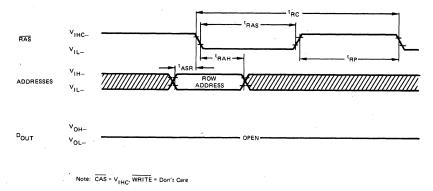
 $\textcircled{\textbf{B}} \begin{array}{c} \textbf{O} \\ \textbf{D} \\ \textbf$


(9) These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in delayed write or read-modify-write cycles.

READ CYCLE

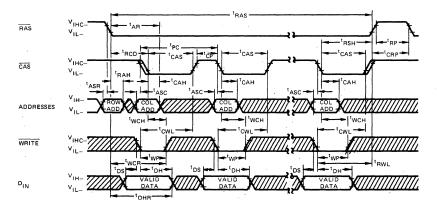


WRITE CYCLE



READ-WRITE/READ-MODIFY-WRITE CYCLE

TIMING WAVEFORMS (CONT.)


"RAS-ONLY" RÉFRESH CYCLE

^tRAS v_{IHC-} TAR RAS VIL-^tRSH ^tRP ^tPC -^tCRP ^tRCD "CP CAS VIHC-CAS V_{IL-} RAH ^tCAH ^tсан ¹САН ^tASF v_{IH-} ADDRESSES VIL-COL ADD COL ADD. ^tCAC CAC ^tCAC RAC OFF OFF v_{он-} DOUT OPEN VOL-^tRCS ^tRCS-^tRCH tRCHv_{IHC-} WRITE

PAGE MODE READ CYCLE

The 14 address bits required to decode 1 of 16,384 bit locations are multiplexed onto the 7 address pins and then latched on the chip with the use of the Row Address Strobe (\overline{RAS}), and the Column Address Strobe (\overline{CAS}). The 7 bit row address is first applied and \overline{RAS} is then brought low. After the \overline{RAS} hold time has elapsed, the 7 bit column address is applied and \overline{CAS} is brought low. Since the column address is not needed internally until a time of t_{CRD} MAX after the row address, this multiplexing operation imposes no penalty on access time as long as \overline{CAS} is applied no later than t_{CRD} MAX. If this time is exceeded, access time will be defined from \overline{CAS} instead of \overline{RAS} .

For a write operation, the input data is latched on the chip by the negative going edge of WRITE or CAS, whichever occurs later. If WRITE is active before CAS, this is an "early WRITE" cycle and data out will remain in the high impedance state throughout the cycle. For a READ, WRITE, OR READ-MODIFY-WRITE cycle, the data output will contain the data in the selected cell after the access time. Data out will assume the high impedance state anytime that CAS goes high.

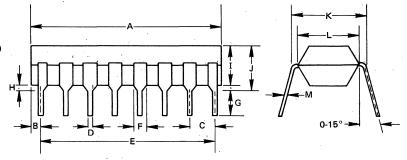
The page mode feature allows the μ PD416 to be read or written at multiple column addresses for the same row address. This is accomplished by maintaining a low on \overrightarrow{RAS} and strobing the new column addresses with \overrightarrow{CAS} . This eliminates the setup and hold times for the row address resulting in faster operation.

Refresh of the memory matrix is accomplished by performing a memory cycle at each of the 128 row addresses every 2 milliseconds or less. Because data out is not latched, "RAS only" cycles can be used for simple refreshing operation.

Either RAS and/or CAS can be decoded for chip select function. Unselected chip outputs will remain in the high impedance state.

ADDRESSING

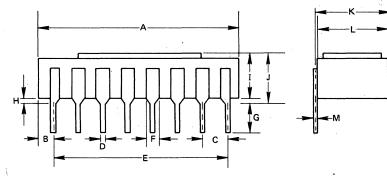
DATA I/O


PAGE MODE

REFRESH

CHIP SELECTION

μPD416


PACKAGE OUTLINE µPD416C/D

μPD416C

(PI	astic)
(–)	astic)

ITEM	MILLIMETERS	INCHES
Á	19.4 MAX.	0.76 MAX.
В	0.81	0.03
С	2.54	0.10
D	0.5	0.02
E	17.78	0.70
F	1.3	0.051
G	2.54 MIN.	0.10 MIN.
· H	0.5 MIN.	0.02 MIN.
I	4.05 MAX.	0.16 MAX.
J	4.55 MAX.	0.18 MAX.
к	7.62	0.30
L	6.4	0.25
м	0.25 ^{+0.10} -0.05	0.01

μ**PD416D** (Ceramic)

	(Geranne)								
ITEM	MILLIMETERS	INCHES							
Α	20.5 MĄX.	0.81 MAX.							
В	1.36	0.05							
С	2.54	0.10							
D	0.5	0.02							
E	17.78	0.70							
F	1.3	0.051							
G	3.5 MIN.	0.14 MIN.							
н	0.5 MIN.	0.02 MIN.							
I	4.6 MAX.	0.18 MAX.							
J	5.1 MAX.	0.20 MAX.							
ĸ	7.6	0.30							
L	7.3	0.29							
м	0.27	0.01							

SP416-8-77-GY-CAT

NEC MICROcomputers, Inc.

4096 BIT DYNAMIC MOS RANDOM ACCESS MEMORY

The μ PD418 series is composed of high speed, dynamic, 4096 words x 1 bit, N channel, DESCRIPTION MOS, random access memories.

All inputs, except the clock (chip enable), are fully TTL compatible and require no pull-up resistors. The low capacitance of the address and control inputs precludes the need for specialized drivers. The data input and output are multiplexed to facilitate compatibility with a common bus system.

The μ PD418 has only one clock (chip enable), to simplify system design. The low capacitance clock input requires a positive voltage (+12 volts) which can be driven by a variety of widely available drivers.

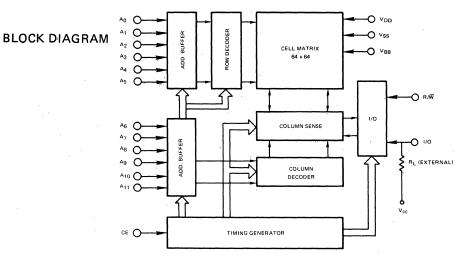
- 4096 words x 1 bit Organization
- High Memory Density 18 Pin Cerdip and Plastic Package
- 10% Supply Margins

医学校の

- Multiplexed Data Input/Output
- High Speed Access, Low Power Dissipation (370 mW Max)
- Full TTL Compatibility on All Inputs (except CE)
- Resistors for Address Inputs Provided on Chip
- Open Drain Output Buffer
- Single Low Capacitance Clock (CE)
- Power Supply +12V, -5V
- Replacement for TI's 4050 and Equivalent Devices
- 3 Performance Ranges:

	ACCESS TIME	R/W CYCLE	RMW CYCLE	POWER (TYP)
µPD418D	· 300 ns	470 ns	650 ns	200 mW
μPD418D-1	250 ns	430 ns	610 ns	200 mW
μPD418D-2	200 ns	400 ns	580 ns	200 mW

∨вв□	1	~~	18	□ vss
1/0 🗖	2		17	A11
^o □	3		16	A10
A1 🗖	4	μPD	15	□ ^A 9
A2 [5	418	14	A8
R/₩	6		13	□ A7
	7		12	A6
^3 □	8		11	A5
^ ₄ C	9		10	


PIN NAMES

A0-A11	Address Input
A0-A5	Refresh Address
R/₩	Read/Write Control
1/0	Input/Output Terminal
CE	Chip Enable (Clock)
V _{DD}	Power Supply (+12V)
V _{BB}	Power Supply (-5V)
V _{SS}	Ground

PIN CONFIGURATION

FEATURES

Rev/1

ABSOLUTE MAXIMUM **RATINGS***

Operating Temperature	0°C to +70°C
Storage Temperature	-55°C to +150°C
All Output Voltages ①	-0.3 to +25 Volts
All Input Voltages ①	-0.3 to +25 Volts
Supply Voltage VDD ①	-0.3 to +25 Volts
Supply Voltage VSS ①	-0.3 to +25 Volts
Power Dissipation	

Note: 1 Relative to VBB

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

DC CHARACTERISTICS

			LIMITS				
PARAMETER	SYMBOL	MIN	TYP 2	MAX	UNIT	TEST C	ONDITIONS
Input Current (All Inputs Except CE)	li			10	μA	VI = -0.3V	to 5.5V
CE Input Current	II(CE)			10	μA	VI = -0.3V	to 13.6V
Supply Current From VDD Standby	DD(OFF)	÷		200	μA	VI(CE) = 0.	6V
Supply Current From VDD	IDD(ON)		6	15	mA	VI(CE) = 1	3.6V
			16	28		Minimum	μPD418
Average Supply Current		-	16	28		Cycle	µPD418-1
From VDD During . Read or Write Cycle	DD(av)		16	28	mA	Timing	µPD418-2
nead of winte Cycle							
Average Supply Current				28			µPD418
From VDD During				28			µPD418-1
Read-Modify-Write	IDD(av)			28	mA		µPD418-2
Cycle							
Supply Current From VBB	^I ВВ			100	μA	V _{BB} = -5.5 V _{SS} = 0V .	v, v _{dd} = 13.2
High Level Output Voltage	VOH	2.4		Vcc	v	$ t_a = Guaranteed max acce time RL = 2.2 k\Omega to 5.5V CL = 50pF Load = 1 TTL Gate $	
Low Level Output Voltage	VOL	VSS		0.4	v		
Low Level Output Current	'OL	5			mA	time	vol = 0.4V
High Level Input Voltage (Except CE)	∨ін	2.2		5.5	v		
High Level CE Voltage	VIH(CE)	V _{DD} - 1		V _{DD} + 1	v		*********************
Low Level Input Voltage (Except CE)	VIL	- 0.6		0.6	v		
Low Level CE Voltage	VII (CE)	-0.6		0.6	v		

Notes:

(1) All voltages referenced to V_{SS}. (2) Typical values are for $T_a = 25^{\circ}$ C and nominal power supply voltages.

11日間に換ける際にな

諁

READ CYCLE

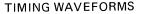
 $T_a = 0^{\circ}$ C to 70° C, V_{DD} = +12V ± 10%, V_{BB} = -5V + 10%, V_{SS} = 0V unless otherwise noted

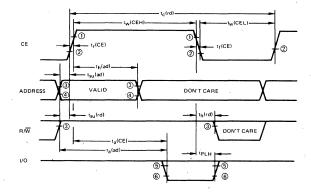
		LIMITS								
		μΡ	D418	μΡΟ	0418-1	μPD	μPD418-2		1	
PARAMETER	SYMBOL	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	TEST CONDITIONS	
Refresh Time	t _{ref.}		2		2		2	ms		
Read Cycle Time	t _c (rd)	470		430		400		ns		
Pulse Width, CE High	t _W (CEH)	300	4000	260	4000	230	4000	ns		
Pulse Width, CE Low	tw(CEL)	130		130		130		ns		
CE Rise Time	t _r (CE)		40		40		40	ns		
CE Fall Time	tf(CE)		40		40		40	ns		
Address Setup Time	t _{su} (ad)	0		0		0		ns		
Read Setup Time	t _{su} (rd)	0		0		0		ns		
Address Hold Time	th(ad)	150		150		150		ns		
Read Hold Time	th(rd)	40		40		40		ns	-	
Access Time From Address	ta(ad)		300		250		200	ns	$\label{eq:cl} \begin{array}{l} \textbf{C}_L = 50_p \textbf{F}, \textbf{R}_L = 2.2 \; \textbf{k} \Omega \; \text{to} \; 5.5 \textbf{V} \\ \textbf{Load} = 1 \; \textbf{TTL} \; \textbf{Gate}, \; \textbf{t}_f(\textbf{CE}) = 20 \; \textbf{ns} \end{array}$	
Access Time From CE	ta(CE)		280		230		180	ns		
Propagation Delay Time, Low to High Level Output From CE	₩LH	40		40		40		ns	CL = 50pF, RL = 2.2 kΩ to 5.5V Load = 1 TTL Gate	

WRITE CYCLE

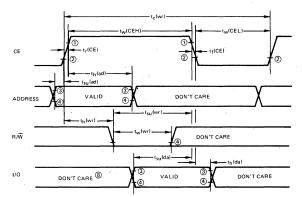
 $T_a = 0^\circ$ C to 70° C, V_{DD} = +12V ± 10%, V_{BB} = -5V ± 10%, V_{SS} = 0V unless otherwise noted.

		LIMITS									
		μP	D418	μPD	418-1	μPD418-2		μPD418-2			J.
PARAMETER	SYMBOL	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	TEST CONDITIONS		
Refresh Time	t _{ref.}		2		2		2	ms			
Write Cycle Time	t _C (wr)	470		430		400		ns			
Pulse Width, CE High	tw(CEH)	300	4000	260	4000	230	4000	ns			
Pulse Width, CE Low	tw(CEL)	130		130		130		ns			
Write Pulse Width	t _W (wr)	180		180		180		ns			
CE Rise Time	tr(CE)		40		40		40	ns			
CE Fall Time	tf(CE)		40		40		40	ns			
Address Setup Time	t _{su} (ad)	0		0		0		, ns			
Data Setup Time	t _{su} (da)	150		150		150		ns			
Write Pulse Setup Time	t _{SU} (wr)	200		200		200		'ns	· · · · · · · · · · · · · · · · · · ·		
CE High to Write Delay Time (2), (8)	td(CEH-wr)		40		40		. 40	ns	1		
Data Hold Time	t _h (da)	40		40		40		ns			
Address Hold Time	th (ad)	150		150		150		ns			
Write Hold Time ᄀ 🛞	t _h (wr)		40		40		40	ns			

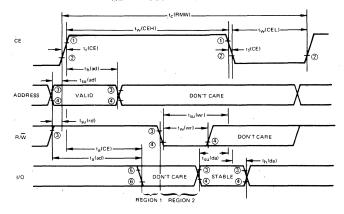

READ-MODIFY-WRITE CYCLE


			LIMITS						
		μPI	D418	μPD418-1 μPD418-2		418-2			
PARAMETER	SYMBOL	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	TEST CONDITIONS
Refresh Time	tref.		2		2	[2	ms	
Read Modify Write Cycle Time	t _c (RMW)	650		610		580		ns	
Pulse Width, CE High	tw(CEH)	480	4000	440	4000	410	4000	ns	
Pulse Width, CE Low	tw(CEL)	130		130		130		ns	
Write Pulse Width	t _w (wr)	180		180		180		ns	
CE Rise Time	tr(CE)		40		40		40	ns	
CE Fall Time	t _f (CE)		40		40		40	ns	
Write Pulse Setup Time	t _{su} (wr)	200		200		200		ns	
Address Setup Time	t _{su} (ad)	0		0		0		ns	
Read Pulse Setup Time	t _{su} (rd)	0		0		0		ns	
Data Setup Time	t _{su} (da)	150		150		150		ns	
Data Hold Time	t _h (da)	40		40	4	40		ns	
Address Hold Time	t _h (ad)	150		150		150		ns	
Access Time From Address	t _a (ad)		300		250		200	ns	$C_L = 50_pF$, $R_L = 2.2 \text{ k}\Omega$ to 5.5V Load = 1 TTL Gate, $t_r(CE) = 20 \text{ ns}$
Access Time From CE	t _a (CE)		280		230		180	ns	CL = 50pF, RL = 2.2 kΩ to 5.5V Load = 1 TTL Gate

 $T_a = 0^{\circ}$ C to 70°C, $V_{DD} = +12V \pm 10\%$, $V_{BB} = -5V \pm 10\%$, $V_{SS} = 0V$ unless otherwise noted.


AC CHARACTERISTICS

μPD418



READ-MODIFY-WRITE CYCLE

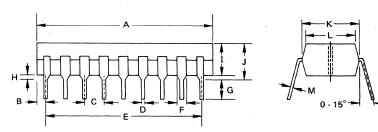
Notes:

(1) ② V_{DD} – 2V is the reference level for measuring timing of CE.

V_{SS} + 2V is the reference level for measuring timing of CE.

 $V_{IH\ MIN}$ is the reference level for measuring timing of addresses, R/W, I/O (Write cycle). VIL MAX, is the reference level for measuring timing of addresses, R/W, I/O (Write cycle).

- V_{OH} MIN, is the reference level for measuring timing of addresses, (iv), iv
 V_{OH} MIN, is the reference level for measuring timing of I/O (Read cycle).
- VOL MAX, is the reference level for measuring timing of I/O (Read cycle).

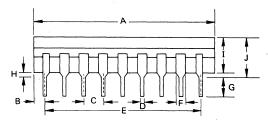

During the time from the rise of CE to the fall of R/W, R/W is permitted to change from high to low only.

- (8) If R/W remains high more than $t_h(wr)$ from CE goes to high, the Data in driver must be disabled until R/W goes to low. (See Note 9.)
- In region 1, Data out is valid until the I/O terminal is forced high or low by the data in driver. A transition from low to high is permissible but additional power to overcome the output buffer will be required. A transition from high to low is permitted without power penalty. In region 2, during the time from the fall of R/W to (t_f(R/W) + 50 ns, MAX.), a transition from low to high permissible but additional power to overcome the output buffer will be required.

 $T_a = 0^{\circ}C$ to 70°C, $V_{DD} = +12V \pm 10\%$, $V_{BB} = -5V \pm 10\%$ $V_{SS} = 0V$, unless otherwise noted.

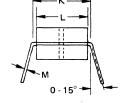
			LIMITS		Φ	TEST CONDITIONS	
PARAMETER	SYMBOL	MIN.	TYP.	MÁX.	UNIT		
Input Capacitance Address Inputs	CI (ad)		3.5	6	pF	VI = 0V	
Input Capacitance	C1(CE)		13	18		VI(CE) = 12V	
CE Input	CI(CE)		13 18		pF	VI(CE) = 0V	
Input Capacitance R/W Input	CI(R/W)		4.5	6	pF	VI = 0V	
I/O Terminal Capacitance	Cj(1/O)		5	7	pF	VI = 0V	

Note: ① All voltages referenced to VSS.



PACKAGE OUTLINE µPD418C/D

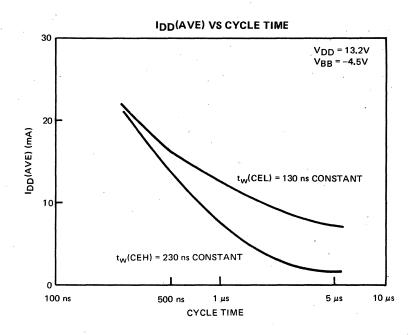
CAPACITANCE


µPD418C (Plastic)

ITEM	MILLIMETERS	INCHES
А	22.5 MAX.	0.89
В	1.09	0.04
С	2.54	0.10
D	0.50 ± 0.10	0.02
E	20.32	0.80
F	1.2 MIN.	0.05
G	2.54 MIN.	0.10 MIN.
н	0.5 MIN.	0.02 MIN.
I	4.05 MAX.	0.16 MAX.
J	4.55 MAX.	0.18 MAX.
к	7.62	0.30
L	6.4	0.25
м	0.25 ^{+0.10} -0.05	0.01

µPD418D (Cerdip)

ITEM	MILLIMETERS	INCHES
А	23.2 MAX.	0.91 MAX.
В	1.44	0.055
С	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN.	0.1 MIN.
н	0,5 MIN.	0.02 MIN.
I	4.6 MAX,	0.18 MAX.
J	5.1 MAX,	0.2 MAX.
к	7.62	0.3
L	6.7	0.26
м	0.25	0.01



μPD418

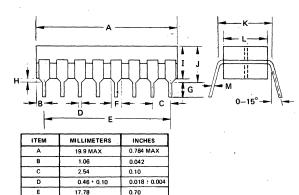
IDD CHARACTERISTICS

S IDD WAVEFORM CE UD WAVEFORM $V_{DD} = 12V$ $V_{BB} = -5V$ $V_{BB} = -5V$ $V_{BB} = -5V$ $V_{BB} = -5V$

TIME (NS)

NEC Microcomputers, mc.

1024-BIT BIPOLAR TTL RAM


The NEC μ PB2205 integrated circuits are high-speed Open-Collector TTL interface, DESCRIPTION 1024-bit Random Access Memories.

- 1024 Words x 1 Bit Organization (Fully Decoded)
- TTL Interface
- Fast Access Time 50 ns max.
- Power Consumption 500 mW typ.
- A Chip Select Input for Memory Expansion
- Open-Collector Output
- Ceramic 16-Lead Dual-In-Line Package
- Compatibility with Fairchild's "93415" and Equivalent Devices

cs [1	\sim	16	
Ao [2		15	D DIN
A1 [1 3		14	
A2 [μPB		
A3 [5	2205	12	
A4 [6		11	À AŻ
DOUT [7		10	A6
GND	8		9	A5

CHIP SELÈCT	WRITE ENABLE	OPERATION	OUTPUT
0	0	WRITE	1
0	1	READ	Non-Inverted Data Written in Memory
1	х	HOLD	1

X - High or Low.

0.059

0.10 MIN 0.019 MIN

0.181 MAX

0.20 MAX

0.30

0.25 0.0098 ⁺ 0.0039 - 0.0019

PIN CONFIGURATION

FEATURES

FUNCTION TABLE

PACKAGE OUTLINE µPB2205D

F

G

н

1

J

L

м

1.5

2.54 MIN

0.5 MIN

4.58 MAX

5.08 MAX

0.25 + 0.10

7.62

6.4

μPB2205

ABSOLUTE MAXIMUM **RATINGS***

DC CHARACTERISTICS

AC CHARACTERISTICS

Operating Temperature
Storage Temperature
Output Voltage
Input Voltage
Supply Voltage V _{CC}
Output Current
damage to the device. This is a stress rating only and functional operation of the device at these or
any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect device
reliability.

*T_a ≈ 25°C

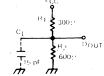
75 to 5.25V ①

$T_a = 0 C to 75 C; V_{CC} = 4.75 to 5.25V (1)$											
	0.0.000	LIMITS				TENT CONDITIONS					
PARAMETER	SYMBOL	MIN	ŤΥΡ	MAX	UNIT	TEST CONDITIONS					
Input High Voltage	VIH	2.0			v						
Input Low Voltage	VIL			0.8	V						
Input High Current	ЧН			40	μA	V ₁ = 2,7V					
Input Low Current	-46			0.40	mA	VI = 0.4V					
Output Low Voltage	VOL			0.50	V	I _{OL} = 16 mA					
Output High Current	юн			100	μA	V _{OH} = 5.25V					
Input Clamp Voltage	-VIC			1.3	V	-I _I = 12 mA					
Power Supply Current	'cc		100	155	mA	All input except WE grounded.					

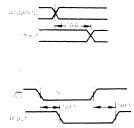
Note: 1 Guaranteed with transverse airflow exceeding 400 linear F.P.M. and two minute warm-up.

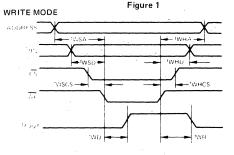
Typical thermal resistance values of the package are:

 θ_{JA} (Junction to Ambient) = 50° C/W (at 400 F.P.M. airflow) θ_{JA} (Junction to Ambient) = 70° C/W (Free Air)


Under free air condition, ambient temperature is guaranteed 0°C to 65°C.

 $T_a = 0^{\circ}C$ to 75°C; $V_{CC} = 4.75$ to 5.25V


PARAMETER			UNIT		
		MIN	TYP	MAX	UNIT
Address Access	tAA	10		50	ns
CS Access	tACS	5		30	ns
Time CS Recovery Write Pulse Width Time				30	ns
				60	ns
Address Set-Up	tWSA	25			ns
Data-In Set-Up	t₩SD	5			ns
CS Set-Up	twscs	5		1	ns
Address Hold	twha	5			ns
Data-In Hold	tWHD	5			ns
CS Hold	twhcs	5		1	ns
Write Disable Time Write Recovery Time				40	ns
				40	ns
	Address Access CS Access CS Recovery e Width Time Address Set-Up Data-In Set-Up CS Set-Up Address Hold Data-In Hold CS Hold ble Time	Address Access tAA CS Access tACS CS Recovery tRCS e Width Time tW Address Set-Up tWSA Data-In Set-Up tWSD CS Set-Up tWSCS Address Hold tWHA Data-In Hold tWHD CS Hold tWHCS	MIN Address Access tAA 10 CS Access tACS 5 CS Recovery tRCS e Width Time tw Address Set-Up tWSD 5 CS Set-Up tWSCS 5 Address Hold tWHA 5 Data-In Hold tWHD 5 CS Hold tWHCS 5	Min TYP Address Access tAA 10 CS Access tACS 5 CS Recovery tRCS - e Width Time tw - Address Set-Up tWSA 25 Data-In Set-Up tWSD 5 CS Set-Up tWSCS 5 Address Hold tWHA 5 Data-In Hold tWHD 5 CS Hold tWHCS 5	RAMETER SYMBOL MIN TYP MAX Address Access tAA 10 50 CS Access tACS 5 30 CS Recovery tRCS 30 e Width Time tw 60 Address Set-Up tWSA 25 Data-In Set-Up tWSCS 5 Address Hold tWHA 5 Data-In Hold tWHA 5 Data-In Hold tWHCS 5 Data-In Hold tWHC 5


Notes: 1) Output Load - Fig. 1. Capacitances CL in Fig. 1 including jig and scope.

- (2) Input Waveform 0V for "0" level and 3.0V for "1" level, less than 10 ns for both rise and fall time.
- 3 Measurement Reference 1.5V for both inputs and output.

TIMING WAVEFORMS READ MODE

SP2205-8-77-GY-CAT

NEC microcomputers, inc.

4096 BIT HIGH SPEED STATIC MOS RANDOM ACCESS MEMORY

The μ PD410 is a very high speed 4K bit static random access memory. It is organized as 4096 words by 1 bit per word and fabricated using N channel silicon gate MOS technology.

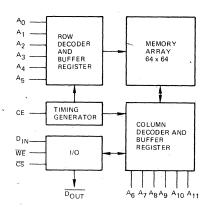
All signals to the device are TTL compatible except for Chip Enable which is standard +12 Volt MOS level.

Circuit operation starts with the rising edge of CE. Data is latched and valid until falling edge of CE. Address and Chip Select signals are latched on-chip to simplify system timing requirements.

- 4096 Words x 1 Bit Organization
- Fully Decoded
- TTL Compatible (except CE)
- High Speed-Access Time: 100 ns max.
- Cycle Time: 220 ns min.
- Static Operation No Refresh Required
- Standby Power: 75 mW max.
- Active Power: 470 mW typ.
- Supply Voltages: V_{DD} = +12V, V_{CC} = +5V, V_{BB} = -5V
- Address Registers on the Chip
- Three State Output
- Standard 22 Pin Ceramic Dual-in-Line Package
- Pin Compatible with µPD411 and Other 4K Dynamic RAMs

∨вв₫	1	~	22 Vss
A9 🗖	2		21 A8
A10 🗖	3		20 🗖 A7
A11 🗖	4		19 🗖 A ₆
cs 🗖	5	μPD	
	6	410	17 CE
	7		16 (NC)
<u>^o</u> C	8		15 🗖 A5
A1 🗖	9		
A2 🗖	<u>1</u> 0		
Vcc 🗖	11		12 WE

y •


μPD410

μΡD410-1 μΡD410-2

DESCRIPTION

FEATURES

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature	 	0° C to +70 $^{\circ}$ C
Storage Temperature	 -6	5°C to +150°C
All Output Voltages	 -0	.3 to +20 Volts
All Input Voltages	 -0	1.3 to +20 Volts
Supply Voltage VDD		
Supply Voltage VCC	 0	.3 to +20 Volts
Supply Voltage VSS		
Power Dissipation		
~		

Note: 1 Relative to VBB

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

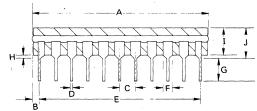
DC CHARACTERISTICS

*T_a = 25°C T_a = 0°C to 70°C; V_{DD} = 12V ± 5%; V_{CC} = 5V ±5%; V_{BB} = -5V ± 5%; V_{SS} = 0V

			LIMITS			TEST
PARAMETER	SYMBOL	MIN TYP 1		MAX	UNIT	CONDITIONS
Input Leakage Current	1u			10	μA	VIN = VILMIN to VIH MAX
CE Input Leakage Current	1LC			10	μA	VIN = VILC MIN to VIHC MAX
Output Leakage Current	ILO			10	μA	$\frac{CE}{CS} = VILC \text{ or}$ $\frac{CE}{CS} = VIH$ $V_{O} = 0V \text{ to } 5.25V$
VDD Supply Current during CE off	DDOFF	,		200	μA	CE = -1.0V to 0.6V
VDD Supply Current during CE on	IDDON			60	mΑ	CE = VIHC
Average V _{DD} Current	IDDAV			60	mA	Cycle Time = min
VBB Supply Current	^I BB			100	μA	
V _{CC} Supply Current during CE off	CCOFF			15	mA	CE = VILC or CS = VIH
Average V _{CC} Current	ICCAV			21	mA	DOUT = No load
Input Low Voltage	VIL	-1.0		0.6	v	· · · · · · · · · · · · · · · · · · ·
Input High Voltage	VIH	2.4		V _{CC} +1	V	
CE Input Low Voltage	VILC	-1.0		0.6	v	
CE Input High Voltage	VIHC	VDD-1		VDD+1	v	
Output Low Voltage	VOL	0		0.4	V	IOL = 3.2 mA
Output High Voltage	Voн	2.4		Vcc	V	IOH = 2.0 mA

Note: (1) Typical values are for $T_a = 25^{\circ}$ C and nominal supply voltages.

CAPACITANCE


$T_a = 0^{\circ}C$ to 70°C; $V_{DD} = 12V \pm 5\%$; $V_{CC} = 5V \pm 5\%$; $V_{BB} = -5V \pm 5\%$; $V_{SS} = 0V$	$T_a = 0^{\circ}C$ to 70	0°C; VDD =	12V ± 5%; VCC	= 5V ± 5%; V _{BB}	$= -5V \pm 5\%$; Vss = 0V
---	--------------------------	------------	---------------	----------------------------	----------------------------

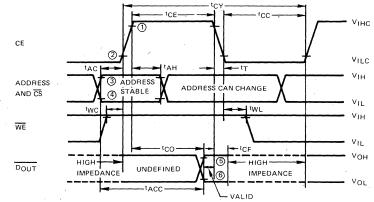
	01/11/2001		LIMIT	S 👘	та, е е	TEST	
PARAMETER	SYMBOL	MIN	TYP MAX		UNIT	CONDITIONS	
Address Capacitance	CAD		.4	6	pF	VIN = VSS	
CS Capacitance	CCS		4	6	рF	VIN = VSS	
DIN Capacitance	CIN		8	10	pF	VIN = VSS	
DOUT Capacitance	COUT		5	7	pF	VOUT = VSS	
WE Capacitance	CWE		8	10	pf	VIN = VSS	
CE Capacitance	CCE		18	27	pŤ	VIN = VSS	

AC CHARACTERISTICS

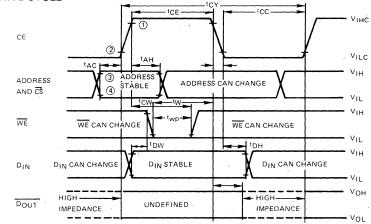
$T_{a} = 0^{\circ}C \text{ to } 70^{\circ}C; V_{DD} = 12V \pm 5\%; V_{CC} = 5V \pm 5\%; V_{BB} = -5V \pm 5\%; V_{SS} = 0V \text{ (} 410 - 2; T_{a} = 0^{\circ}C \text{ to } 55^{\circ}C)$

						LIMITS	;						
PARAMETER	SYMBOL	410			410-1			410-2		UNIT	TEST CONDITIONS		
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		CONDITIONS	
			F	READ, W	RITE A	ND RE	AD-MOD	IFY-WR	ITE			1	
Address to CE Set Up Time	^t AC	0			0			0			ns		
Address Hold Time	^t AH	90			70			50			ns		
CE Off Time	tCC	190			140			90			ns		
CE Transition Time	۲Ţ	0		40	0		40	0		40	ns		
CE off to Output High Impedance State	[†] CF	0		90	0		90	0		90	ns		
					· ·	READ)						
Cycle Time	tCY	440			330			220			ns	t _T = 10 ns	
CE on Time	^t CE	230		2000	170		2000	110		2000	ns		
CE Output Delay	tCO			190			140			90	ns	Load = 50 pF + ITTL, Ref = 2.0 or 0.8V tACC = tAC + tCO + tT	
Access Time	*ACC			200			150			100	ns .		
CE to WE	τWL	20			20			20			ns		
WE to CE on	twc	0			0			0			ns		
						WRIT	E						
Cycle Time	tÇY	440			330			220			ns	t γ = 10 ns	
CE on Time	^t CE	230		2000	170		2000	110		2000	ns		
WE to CE off	tW	130			100			70	· · · · ·		ns		
CE to WE	tCW	130			100			70			ns		
D _{IN} to WE Set Up	^t DW	0			0		,	0			ns		
D _{IN} Hold Time	^t DH	60			40			20			ns		
WE Pulse Width	twp	130			100			70			ns		
					READ	MODIF	Y-WRIT	_					
Read-Modify- Write (RMW) Cycle Time	TRWC	560			420			280			ns	t _T = 10 ns	
CE Width During RMW	^t CRW	350		2000	260		2000	170		2000	ns		
WE to CE on	tWC	0			0			0			ns		
WE to CE off	tw	130			100			70			ns		
WE Pulse Width	tWP	130			100			70			ns		
DIN to WE Set Up	^t DW	0			0			0			ns		
DIN Hold Time	^t DH	60			40			20			ns		
CE to Output Delay	tCO			190			140			90	ns	Load = 50 pF + ITTL, Ref = 2.0 or 0.8V	
Access Time	^t ACC			200			150			100	ns	tACC = tAC + tCO + tT	

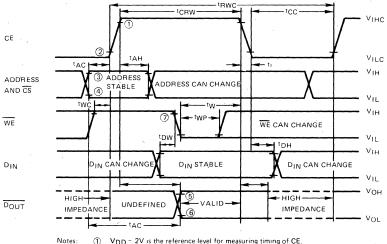
L
(VIIIII)
//M
\rightarrow 0 - 15°


ITEM	MILLIMETERS	INCHES
Α	27.43 Max.	1,079 Max.
В	1.27 Max.	0.05 Max.
. C	2.54 ± 0.1	0.10
D	0.42 ± 0.1	0.016
E	25.4 ± 0.3	1.0
F	1.5 ± 0.2	0.059
G	3.5 ± 0.3	0,138
н	3.7 ± 0.3	0.145
I	4.2 Max.	0.165 Max.
·J	5.08 Max.	0.200 Max.
К	10.16 ± 0.15	0.400
L	9.1 ± 0.2	0.358
м	0.25 ± 0.05	0.009

PACKAGE OUTLINE µPD410D


μPD410

READ CYCLE


TIMING WAVEFORMS

WRITE CYCLE

READ-MODIFY-WRITE CYCLE

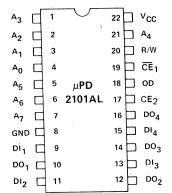
(1) $V_{DD} = 2V$ is the reference level for measuring timing of CE.

- 2 VSS + 2V is the reference level for measuring timing of CE.
- 3 \underline{VIHMIN} is the reference level for measuring timing of the addresses, CS, WE and DIN.
- 4 VILMAX is the reference level for measuring timing of the addresses, CS, WE and DIN.
- (5) VSS + 2.0V is the reference level for measuring timing of $\overline{D_{OUT}}$.
- V_{SS} + 0.8V is the reference level for measuring timing of $\overline{D_{OUT}}.$ 6
- Ø WE must be at VIH until end of tCO.

いたいに、いいています

NEC MCCORDER AND A HARD

1024 BIT (256 X 4) STÂTIC MOS RAM WITH SEPARATE I/O


The μ PD2101ALC is a 256 word by 4 bit static random access memory requiring no clocks or refreshing. It features high speed, low cost, and simplicity of interfacing.

It is directly TTL compatible in all respects; inputs, outputs, and a single +5V supply. Two chip-enables allow easy selection of an individual package when outputs are OR-tied. An output disable is provided so that data inputs and outputs can be tied for common I/O systems. The output disable function eliminates the need for bidirectional logic in a common I/O system. Output data is the same polarity as input data, and readout is non-destructive.

The uPD2101ALC family of devices offers access times from 450 ns to 250 ns with a typical standby mode power dissipation of only 36 mW.

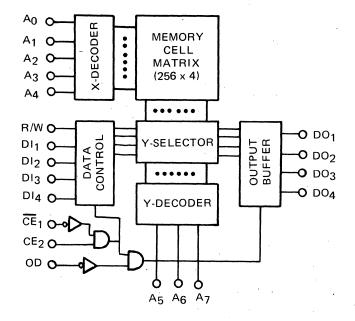
The use of NEC's N-channel silicon gate MOS process, with its excellent protection from contamination, permits the use of a low cost 22 pin plastic package in providing a high performance, high reliability MOS circuit at a most cost effective price level. The μ PD2101ALC is pin-compatible with the μ PD5101C CMOS static RAM.

- 256 x 4 Organizations to Meet Needs for Small System Memories
- Access Time 250 to 450 nsec max
- Directly TTL Compatible All Inputs and Output
- Static MOS No Clocks or Refreshing Required
- Simple Memory Expansion Chip Enable Input
- Low Standby Power 36 mW typ.
- Low Cost Packaging 22 Pin Plastic Dual-In-Line Configuration
- Low Operating Power
- Three-State Output OR-Tie Capability
- Output Disable Provided for Ease of Use in Common Data Bus Systems

	PIN	NAMES	
DI1-DI4	DATA INPUT	CÈ2	CHIP ENABLE 2
A0-A7	ADDRESS INPUTS	, OD	OUTPUT DISABLE
R/W	READ/WRITE INPUT	D01-D04	DATA OUTPUT
CE 1	CHIP ENABLE 1	Vcc	POWER (+5V)

ſ		0		OUTPUT			
l	CE ₁	CE2	OD	CHIP	MODE		
Ī	0	1	0	C L L	Data Out		
	0	0 1		Selected	High		
	Others			No-Selected	Impedance		

DESCRIPTION


μ PD2101AL μ PD2101AL-2 μ PD2101AL-4

FEATURES

PIN CONFIGURATION

μ PD2101AL

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature	 -10°C to +70°,C
Storage Temperature	 -65°C to +125°C
All Output Voltages	
All Input Voltages	 -0.5 to +7 Volts
Supply Voltage VCC	 -0.5 to +7 Volts

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$$T_a = 25^{\circ}C$$

DC CHARACTERISTICS

 $T_a = -10^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = +5V \pm 5\%$

,			LIMITS	5		
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Input High Voltage	VIH	+2.0	1.1	Vcc	V ·	
Input Low Voltage	VIL	-0.5		+0.8	۲V	
Output High Voltage	∨он	+2.4			v	I _{OH} = -100 μA
Output Low Voltage	VOL			+0.4	v	I _{OL} = +2.1 mA
Input Leakage Current High	∣∟ін			+10	μA	VI = VCC
Input Leakage Current Low	LIL			-10	μA	V _I = 0V
Output Leakage Current High	LOH			+10	μA	$V_0 = +2.4V$ to V_{CC} $\overline{CE}_1 = +2.0V$
Output Leakage , Current Low	LOL			-10	μA	$V_0 = +0.4V$ $\overline{CE}_1 = +2.0V$
Power Supply Current	^I CC1			+60	mA	V _I = +5.25V I _O = 0 mA T _a = +25°C
Power Supply Current	ICC2			+70	mA	$V_{I} = +5.25V$ $I_{O} = 0 \text{ mA}$ $T_{a} = -10^{\circ}\text{C to } +70^{\circ}\text{C}$

59

儀

READ CYCLE

$T_a = -10^{\circ}C$ to +70°C, $V_{CC} = +5V \pm 5\%$

			LIMITS								
DADAMETED.	SYMBOL	2	101AL	-4	2	101AI	-	2	101AL	2	UNIT
PARAMETER SYMBOL		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNIT
Read Cycle Time	^t RC	450			350			250			ns
Access Time	tA			450			350			250	ns
Chip Enable to Output	tco			180			150			130	ns
Output Disable to Output	tod			150			130			120	ns
Data Output to High Z State	^t DF*	0		130	0		115	0		100	ns
Previous Read Data Valid After Change of Address	tон	40			40			40			ns

*tDF is with respect to the trailing edge of \overline{CE}_1 , CE₂, or OD, whichever occurs first.

$T_a = -10^{\circ}C$ to +70°C, $V_{CC} = +5V \pm 5\%$ WRITE CYCLE

· · · ·			LIMITS									
PARAMETER	SYMBOL	2101AL-4			2	101AI	L	2	UNIT			
PANAMETEN	STINBUL	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNIT	
Write Cycle Time	tWC	450			350			250			ns	
Write Delay	tAW	20			20			20			ns	
Chip Enable to Write	tCW	180			150			130			ns	
Data Setup Time	tDW	180			150			130			ns	
Data Hold Time	tDH.	0			0			0			ns	
Write Pulse Width	tWP	160			130			120			ns	
Write Recovery	tWR	0			0			0			ns	
Output Disable Setup	tDS	· 20			20			10			ns	

Note: OD is a logical 1 for common I/O and "don't care" for separate I/O operation.

$T_a = -10^\circ C$ to $+70^\circ C$

C. State State

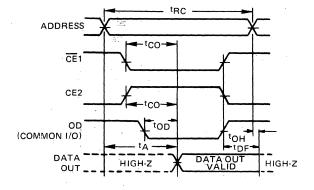
DADAMETER	01/11/201		LIMITS			
PARAMETER	SYMBOL	MIN.	түрФ	MAX.	UNIT	TEST CONDITIONS
V _{CC} in Standby	VPD	1.5			V	
		2.0			V	$2.0V \le V_{PD} \le 5.25V$
CE ₁ Bias in Standby	VCES	VPD			V.	1.5V ≤ V _{PD} < 2.0V
Standby Current Drain	IPD1		24	36	mA	All Inputs = VPD1 = 1.5V
Standby Current Drain	IPD2		30	45	mA	All Inputs = VPD2 = 2.0V
Chip Deselect to Standby Time	tCP.	0			ns	
Standby Recovery Time	tR	t _{RC} ®			ns	

STANDBY CHARACTERISTICS

Notes: **①** Typical values are for $T_a = 25^{\circ}C$ and nominal supply voltage. **②** $t_R = t_{RC}$ (Read Cycle Time).

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
PANAMETEN	STINIBUL	MIN.	TYP.	MAX.	UNT	TEST CONDITIONS
Input Capacitance	CIN			8	pf	V ₁ = 0V
Output Capacitance	COUT			12	pf	V _O = 0V

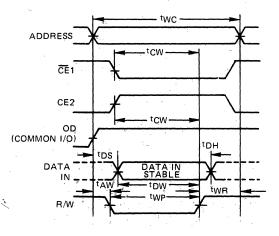
CAPACITANCE

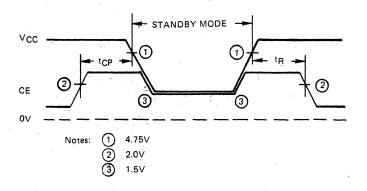

AC CHARACTERISTICS

μPD2101AL

μPD2101AL

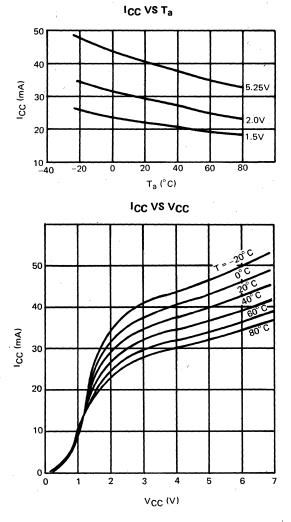
READ CYCLE

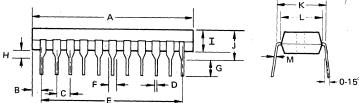

TIMING WAVEFORMS



OD should be tied low for separate I/O operation.R/W is high for read operation.

WRITE CYCLE


Note: OD is a logical 1 for common I/O and "don't care" for separate I/O operation.



STANDBY WAVEFORMS

AC CONDITIONS OF TEST

4																	
Input Pulse Levels									•		H	+0	,8	۷	to	+2.0	v .
Input Pulse Rise and Fall Times																20 n	S
Timing Measurement Reference Leve																	
Output Load	•••	•	 •	 •	 •	 •	·	 •	• •		1	1	Т	L	+	100 pl	F

ITEM	MILLIMETERS	. INCHES
A	28.0 MAX.	1.10 MAX.
8	1.4 MAX	0.025
Ċ	2.54	0.10
D	0.50	0.02
E	25.4	1.00
F	1.40	0.055
G	2.54 MIN.	0.10 MIN.
н	0.5 MIN.	0.02 MIN.
.I.	4.7 MAX.	0.18 MAX.
J	5.2 MAX.	0.20 MAX.
к	10.16	0.40
L,	8.5	0.33
м	0.25 +0.10	0.01 +0.004 0.002

TYPICAL OPERATING CHARACTERISTICS

PACKAGE OUTLINE µPD2101ALC

SP2101-8-77-GY-CAT

NEC MCCO

μPD2102AL μPD2102AL-2 μPD2102AL-4

1024 BIT FULLY DECODED STATIC MOS RANDOM ACCESS MEMORY

DESCRIPTION

The μ PD2102AL is a 1024 words by one bit static Random Access Memory requiring no clocks or refreshing. A family of devices with maximum access times ranging from 250 ns to 450 ns meet the requirements of microcomputer memory applications where speed, low cost and easy interfacing are prime design objectives.

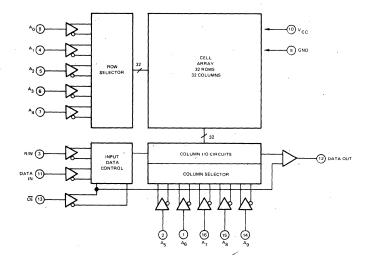
All μ PD2102AL inputs and outputs are TTL compatible. A single chip-enable (CE) pin is provided for selection of an individual device in systems with OR-tied outputs. Output data is the same polarity as input data and is nondestructively read out. Only a single +5 volt supply is required. In standby mode, with the supply lowered to 1.5 volts, power dissipation is reduced to 42 mW max.

The μ PD2102AL family is fabricated using NEC's N-channel MOS silicon gate process, providing excellent contamination protection. This process permits the use of a low cost plastic package (16 pin) and enables high performance, highly reliable MOS circuits to be produced.

FEATURES

- Access Time μPD2102AL-2 250 ns Max μPD2102AL – 350 ns Max
 - µPD2102AL-4 450 ns Max
- Single +5 Volts Supply Voltage
- Directly TTL Compatible All Inputs and Output
- Static MOS No Clocks or Refreshing Required
- Low Power Typically 150 mW
- Low Standby Power 42 mW max.
- Three-State Output OR-TIE Capability
- Simple Memory Expansion Chip Enable Input
- Fully Decoded On Chip Address Decode
- Inputs Protected All Inputs have Protection against Static Charge
- Low Cost Packaging 16 Pin Plastic Dual-In-Line Configuration

PIN CONFIGURATION


		·			
^A 6 □	1	16	\vdash	А ₇	
A ₅	2	15		A ₈	
R/W	3	14		А ₉	
A1 [4 μPD	13		CE	
A ₂	5 2102A	L12		DOUT	
A3	6	11	Þ	D _{IN}	
A4 🗖	7	10		v _{cc}	
^₀ □	8	9		GND	
	The second se		,		

PIN NAMES

A0 - A9	Address Inputs
R/W	Read/Write
ĈĒ	Chip Enable
Vcc	Power (+5V)

μPD2102AL

BLOCK DIAGRAM

Operating Temperature $\dots \dots \dots$	
Storage Temperature65°C to +125°C	
Voltage On Any Pin	

ABSOLUTE MAXIMUM

Note: 1) With Respect to Ground

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

 $T_a = 25^{\circ}C$

 $T_a = -10^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = 5V \pm 5\%$ unless otherwise specified.

			LIMITS			
PARAMETER	SYMBOL	MIN	түр 🛈	MAX	UNIT	TEST CONDITIONS
Input Leakage Current	111			±10	μA	V _{IN} = 0 to 5.25V
I/O Leakage Current	LOH			+5	μA	CE = 2.0V, VOUT =
						+2.4V to V _{CC}
I/O Leakage Current	LOL		•	-10	μA	CE = 2.0V, V _{OUT} = 0.4V
Power Supply	ICC1		30	70	mA	All Inputs = 5.25V, Data Out
Current						Open
Input "Low" Voltage	VIL	-0.5		+0.8	V	
Input "High" Voltage	∨ін	2.0		Vcc	V,	
Output "Low"	VOL			+0.4	V	I _{OL} = 2.1 mA
Voltage						
Output "High"	∨он	2.4			V	I _{OH} = -100 μA

Note: (1) Typical values are for $T_a = 25^{\circ}C$ and nominal supply voltage

$T_a = 25^{\circ}C; f = 1 MHz$

			LIMITS	;		
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Input Capacitance	CIN		3	5	pf [°]	V1N = 0V
Output Capacitance	COUT		7	10	pf	V _{OUT} = 0V

DC CHARACTERISTICS

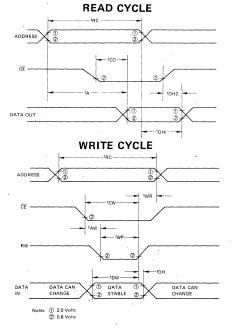
CAPACITANCE

μPD2102AL

AC CHARACTERISTICS

READ CYCLE

 $T_a = -10^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = +5V \pm 5\%$ unless otherwise noted

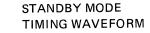

				LI	иітѕ			·	
PARAMETER	SYMBOL	210	2AL-4	210	2AL	2102	2AL-2	UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
Read Cycle	^t RC	450		350		250		ns	
Access Time	tA		450		350		250	ns	
Chip Enable to Output Time	^t CO		230		180		130	ns	t _T = t _r = t _f = 100 ns C ₁ = 100 pF
Previous Read Data Valid in Respect to Address	tOH1	40		40		40		ns	Load = 1 TTL Gate V _{ref} = 2.0 or 0.8V
Previous Read Data Valid in Respect to Chip Enable	tOH2	0		0	×	0		ns	

WRITE CYCLE

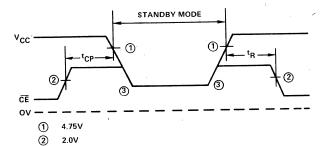
 $T_a = -10^{\circ}$ C to +70°C; $V_{CC} = +5V \pm 5\%$ unless otherwise noted

				LI	MITS				
PARAMETER	SYMBOL	2102	2AL-4	210	2AL	2102	2AL-2	UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
Write Cycle	tWC	450		350		250		ns	
Address to Write Setup Time	tAW	20		20		20		ns .	$t_{T} = t_{f} = t_{f} = 100 \text{ ns}$
Write Pulse Width	tWP	300		250		180		ns	$C_1 = 100 \text{pF}$
Write Recovery Time	tWR	0		0		0		ns	Load = 1 TTL Gate
Data Setup Time	tDW	300		250	1	180		ns	V _{ref} = 2.0 or 0.8V
Data Hold Time	tDH	0		0	•	0		ns	
Chip Enable to Write Setup Time	tCW	300		250		180		ns	

TIMING WAVEFORMS,

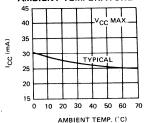

STANDBY CHARACTERISTICS

$T_a = 0$ to +70^c C

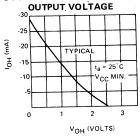

		LL	LIMITS			
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
V _{CC} in Standby	VPD	1.5			V	
CE Bias in Standby	VCES	20			V	+2.0V % VPD % +5.25V
		VPD			V	+1.5V % VPD < +2.0V
Standby Current Drain	PD1		14	28	mA	All Inputs, VpD1 = +1.5
Standby Current Drain	PD2		18	38	mA	All Inputs, VPD2 = +2.0V
Chip Deselect to Standby Time	^t CP	0			ns .	
Standby Recovery Time	^t R	tRC ①			ns	
0						

1 t_{RC} = Read Cycle Time

μPD2102AL

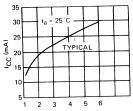


TYPICAL CHARACTERISTICS

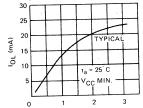


3 1.5V

POWER SUPPLY CURRENT VS AMBIENT TEMPERATURE

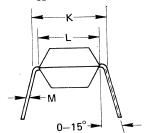

OUTPUT SOURCE CURRENT VS

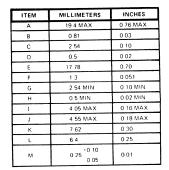
D


Е

POWER SUPPLY CURRENT VS SUPPLY VOLTAGE

VCC (VOLTS)


OUTPUT SINK CURRENT VS OUTPUT VOLTAGE


G

С

V_{OL} (VOLTS)

PACKAGE OUTLINE μPD2102ALC

SP2102-8-77-GY-CAT

NEC MICROnomputers, Inc.

μ PD2111AL μ PD2111AL-2 μ PD2111AL-4

1024 BIT (256 x 4) STATIC MOS RAM WITH COMMON I/O AND OUTPUT DISABLE

DESCRIPTION

The μ PD2111AL is a 256 words by 4 bits static random access memory fabricated with N-channel MOS technology. It uses fully static circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.

It is directly TTL compatible in all respects: inputs, outputs, and a single +5V supply. Separate chip enable (\overline{CE}) leads allow easy selection of an individual package when outputs are OR-tied.

All members in the μ PD2111AL family feature a low standby power mode with the supply voltage being reduced to +1.5V.

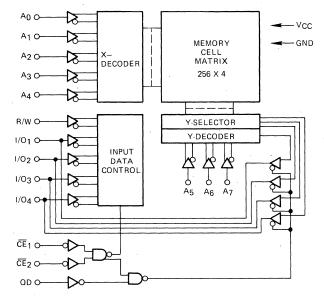
FEATURES

- 256 Words x 4 Bits Organization
- Common Data Input and Output
- Single +5V Supply Voltage
- Directly TTL Compatible All Inputs and Outputs
- Static MOS No Clocks or Refreshing Required
- Access Time 250 ns to 450 ns max.
- Simple Memory Expansion Chip Enable Inputs
- Fully Decoded On Chip Address Decode
- Inputs Protected All Inputs have Protection Against Static Charge
- Low Cost Packaging 18 Pin Plastic Dual-In-Line Configuration
- Three-State Output OR-Tie Capability
- Low Standby Power

PIN CONFIGURATION

A3 🗆	1	18	□ v _{cc}
A2 🗖	2	17	A4
A1 🗆	3	16	<u> </u>
^o ⊑	4	15	
A5 🗖	μρ 5 2111Δ	14	1/04
A6 □	6	13] I/O3
A7 🗆	7	12	□ 1/0 ₂
GND	8	11	1/01
ᅇ	9	10	

PIN NAMES


A0 · A7	Address Inputs
OD	Output Disable
R/W	Read/Write Input
CE ₁	Chip Enable 1
ČĒ2	Chip Enable 2
1/01 - 1/04	Data Input/Output

OPERATION MODES

CE1	CE2	OD	Chip Output Status			
0	0	0	Selected	Data Output		
0	0	1	Selected	High Z		
Others			Unselected	State		

μPD2111AL

BLOCK DIAGRAM

Operating Temperature	–10°C to +70°C
Storage Temperature	–65°C to +125°C
All Output Voltages	
All Input Voltages	
Supply Voltage V _{CC}	-0.5 to +7 Volts

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $T_a = 25^{\circ}C$

のないないではいい

 $T_a = -10 \text{ to } +70^{\circ} \text{ C}; \text{ V}_{CC} = +5 \text{ V} \pm 5\%$

ſ		LIMITS				TEST	
PARAMETER	PARAMETER			түр	MAX	UNIT	CONDITIONS
Input High Voltage		VIH	+2.0		v _{cc}	V	
Input Low Voltage		VIL	-0.5		+0.8	V	
Output High Voltage	2111AL-4	∨он	+2.4			V	I _{OH} =150 μA
	2111AL		+2.4			V	I _{OH} = -200 μA
	2111AL-2						
Output Low Voltage	Output Low Voltage				+0.4	V	I _{OL} = +2.1 mA
Input Leakage Current	High	LIH			+10	μA	VI = VCC
Input Leakage Current	Low	LIL			-10	μA	VJ = OV
Output Leakage Curren	nt High	LOH			+5	μA	$V_0 = +2.4V$ to V_{CC}
							<u>CE</u> = +2.0V
Output Leakage Curren	nt Low	LOL			-10	μA	V _O = +0.4V
							CE = +2.0V
Power Supply Current	2111AL-4	ICC1			50	mA	V ₁ = +5.25V
·	2111AL				55	mA	I _O = 0 mA
2111AL-2							T _a = +25° C
Power Supply Current 2111AL-4		ICC2			60	mA	V ₁ = +5.25V
	2111AL				65	mA	l _O = 0 mA
	2111AL-2						$T_a = -10 \text{ to } +70^{\circ}\text{C}$

RATINGS*

ABSOLUTE MAXIMUM

DC CHARACTERISTICS

μPD2111AL

AC CHARACTERISTICS

READ CYCLE

 $T_a = -10^{\circ}C$ to $+70^{\circ}C$, $V_{CC} + 5V \pm 5\%$

		LIMITS									
PARAMETER	SYMBOL	2 111AL-4			2111AL			2111AL-2			UNIŢ
		MIN	түр	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	
Read Cycle Time	tRC	450			350			250			ns
Access Time	t _A			450			350			250	ns
Chip Enable to Output	tCO			310			240			180	ns
Output Disable to Output	tOD			250			180			130	ns
Data Output to High Z State	tDF ①	0		200	. 0		150	0		130	ns
Previous Read Data Valid After Change of Address	tОН	40			40			40			ns

Note: $(1)t_{DF}$ is with respect to the trailing edge of \overline{CE}_1 , \overline{CE}_2 , or OD, whichever occurs first.

WRITE CYCLE

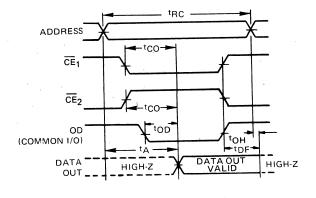
 $T_a = -10^{\circ}$ C to +70°C, $V_{CC} = +5V \pm 5\%$

		LIMITS									
PARAMETER	SYMBOL	2111AL-4			2111AL			2111AL-2			UNIT
		MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	
Write Cycle Time	tWC	270			220			170			ns
Write Delay	^t AW	20			20			20			ns
Chip Enable to Write	tCW	250			200			150			ns
Data Setup Time	tDW	250			200			150			ns
Data Hold Time	^t DH	0			0			0			. ns
Write Pulse Width	tWP	250			200			150			ns
Write Recovery	tWR	0			0			0			ns
Output Disable Setup	^t DS	20			20			20			ns

Note: OD is a logical 1 for common I/O and "don't care" for separate I/O operation.

AC CONDITIONS OF TEST

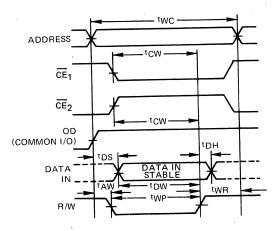
Input Pulse Levels
Input Pulse Rise and Fall Times
Timing Measurement Reference Level 1.5\
Output Load

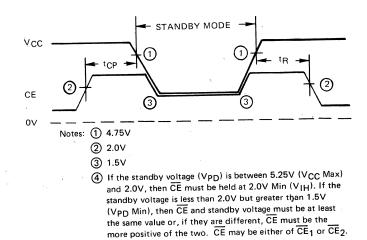

STANDBY $T_a = -10^{\circ}C \text{ to } +70^{\circ}C$ CHARACTERISTICS

PARAMETER		014000		LIMITS			TEAT CONDITIONS	
		SYMBOL	MIN	түр 🛈	MAX	UNIT	TEST CONDITIONS	
V _{CC} in Standb	y	V _{PD}	1.5			V		
CE ₁ Bias in Standby		VCES	2.0			v	2.0V ≤ V _{PD} ≤ 5.25V	
			VPD			V	1.5V ≤ V _{PD} < 2.0V	
Standby	2111AL-4	IPD1			36	mA	All Inputs = VPD ₁ = 1.5V	
Current Drain	2111AL/AL-2				38	mA		
Standby	2111AL-4	IPD2		×	45	mA	All Inputs = VPD ₂ = 2.0V	
Current Drain	2111AL/AL-2				48	MA	-	
Chip Deselect to		^t CP	0			ns		
Standby Time			- 1. C.					
Standby Recov	ery	^t R	trc2			ns		

Notes: (1) Typical values are for T_a = 25°C and nominal supply voltage (2) t_R = t_{RC} (Read Cycle Time)

TIMING WAVEFORMS

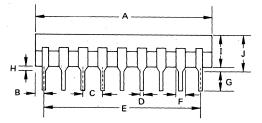

READ CYCLE

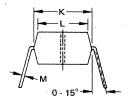

Notes:

OD should be tied low for separate I/O operation.
 R/W is high for read operation.

WRITE CYCLE

Note: OD is a logical 1 for common I/O and "don't care" for separate I/O operation.


STANDBY WAVEFORMS


μPD2111AL

CAPACITANCE T_a = 25°C; f = 1 MHz

PARAMETER	SYMBOL		LIMIT	S .	UNIT	TEST CONDITIONS	
FANAMETEN	STWDUL	MIN	ΤΥΡ́	MAX	UNIT		
Input Capacitance	CIN			8	, pf	Vi = 0V	
Output Capacitance	COUT			12	pf ·	V _O = 0V	

PACKAGE OUTLINE µPD2111ALC

ITEM	MILLIMETERS	INCHES
A	22.5 MAX.	0.89
В	1.09	0.04
С	2.54	0.10
D	0.50 ± 0.10	0.02
E	20.32	0.80
F	1.2 MIN.	0.05
G	2.54 MIN:	0.10 MIN.
н	0.5 MIN.	0.02 MIN.
Í	4.05 MAX.	0.16 MAX.
J	4.55 MAX.	0.18 MAX.
к	7.62	0.30
L	6.4	0.25
м	0.25 ^{+0.10} -0.05	0.01

1024 BIT (256x4) STATIC CMOS RAM

The μ PD5101-E is a very low power 1024 bit (256 words by 4 bits) static CMOS Random Access Memory. It meets the low power requirements of battery operated systems and can be used to ensure non-volatility of data in systems using battery backup power.

All inputs and outputs of the μ PD5101-E are TTL compatible. Two chip enables (\overline{CE}_1, CE_2) are provided, with the device being selected when \overline{CE}_1 is low and CE₂ is high. The μ PD5101-E can be placed in standby mode, drawing 15 μ A maximum, by driving \overline{CE}_1 high and inhibiting all address and control line transitions. The standby mode can also be selected unconditionally by driving CE₂ low.

The μ PD5101-E has separate input and output lines. It can be used in common I/O bus systems through the use of the OD (Output Disable) pin and OR-tying the input/output pins. Output data is the same polarity as input data and is non-destructively read out. Read mode is selected by placing a high on the R/W pin. The μ PD5101-E is guaranteed to retain data with the power supply voltage as low as 2.0 volts. Normal operation requires a single +5 volt supply.

The μ PD5101-E is fabricated using NEC's complementary MOS (CMOS) process and is packaged in a 22-pin dual-in-line package.

- Directly TTL Compatible All Inputs and Outputs
- Three-State Output
- Access Time 800 ns
- Single +5V Power Supply
- CE2 Controls Unconditional Standby Mode

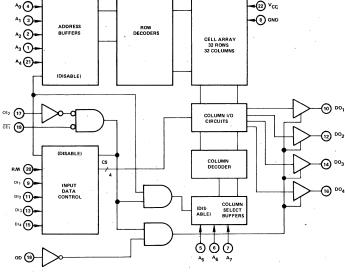
A_0 4 19 CE_1 A_5 5 μ PD 18 0D A_6 6 5101-E 17 CE_2 A_7 7 16 DO ₄ GND 8 15 DI ₄ DI_1 9 14 DO ₃ DO_1 10 13 DI ₃ DI_2 11 12 DO_2

PIN NAMES

DI1 - DI4	Data Input
$A_0 - A_7$	Address Inputs
R/W	Read/Write Input
CE1, CE2	Chip Enables
OD	Output Disable
DO1 - DO4	Data Output
Vcc	Power (+5V)

DESCRIPTION

μPD5101-E


н. Н

PIN CONFIGURATION

FEATURES

μPD5101-E

BLOCK DIAGRAM

ABSOLUTE MAXIMUM Operating Temperature RATINGS* Storage Temperature

DC CHARACTERISTICS

 0° C to $+70^{\circ}$ C -40°C to +125°C

3

Voltage On Any Pin With Respect to Ground -0.3 Volts to V_{CC} +0.3 Volts Power Supply Voltage -0.3 to +7.0 Volts COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. *T_a = 25°C

 $T_a = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = +5V \pm 5\%$, unless otherwise specified.

		LIMITS								
PARAMETER	SYMBOL	MIN	түр()	МАХ	UNIT	TEST CONDITIONS				
Input High Leakage	ILIH@			1	μA	VIN = VCC				
Input Low Leakage	LIL	1		-1	μA	V _{IN} = 0V				
Output High Leakage	ILOH(2)			1	μA	$\overline{CE_1}$ = 2.2V, V _{OUT} = V _{CC}				
Output Low Leakage	ILOL②			-1	μA	CE ₁ = 2.2V, V _{OUT} = 0.0V				
Operating Current	ICC1		9	22	mA	V _{IN} = V _{CC} Except CE1 ≼0.01V, Óutputs Open				
Operating Current	ICC2		13	27	mA	V _{IN} = 2.2V Except CE ₁ ≤0.65V, Outputs Open				
Standby Current	'ccl_@			15	μA	V _{IN} = 0 to 5.25V CE ₂ ≤ 0.2V				
Input Low Voltage	VIL	, -0.3		0.65	V					
Input High Voltage	VIН	2.2		Vcc	V					
Output Low Voltage	VOL			0.4	ĺν.	I _{OL} = 2.0 mA				
Output High Voltage	V _{OH1}	2.4			V.	I _{OH} = -1.0 mA				
Output High Voltage	VOH2	3.5			V	I _{OH} = -100 μA				

Notes: (1) Typical values at $T_a = 25^{\circ}C$ and nominal supply voltage.

2 Current through all inputs and outputs included in ICCL.

CAPACITANCE

		LIMITS				
PARAMETER	SYMBOL	М́IN	ТҮР	МАХ	UNIT	TEST CONDITIONS
Input Capacitance (All Input Pins)	CIN		4	8	pF	V _{IN} - 0V
Output Capacitance	COUT		12	2 <u>0</u>	pF	VOUT = 0V

READ CYCLE

 T_a = 0° C to 70° C, V_{CC} = 5V ±5%, unless otherwise specified.

		LIMITS				
PARAMETER	SYMBOL	MIN	ТҮР	МАХ	UNIT	TEST CONDITIONS
Read Cycle	^t RC	800			ns	Input pulse amplitude: 0.65 to 2.2 Volts
Access Time	^t A		415	800	ns	Input rise and fall
Chip Enable (CE1) to Output	^t CO1		400	800	ns	times: 20 ns Timing measurement
Chip Enable (CE ₂) to Output	^t CO2		440	- 850	ns	reference level: 1.5 Volt Output load: ITTL Gate and CL =
Output Disable to Output	tod		145	350	ns	
Data Output to High Z State	ţDF	0		200	ns	100 pF
Previous Read Data Valid with Respect to Address Change	^t OH1	0	100		'ns	
Previous Read Data Valid with Respect to Chip Enable	tOH2	0	250		ns	

WRITE CYCLE

 T_a = 0°C to 70°C, V_{CC} = 5V \pm 5%, unless otherwise specified.

		LIMITS				
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Write Cycle	tWC	800			ns	Input pulse amplitude:
Write Delay	^t AW	200	-120		ns	0.65 to 2.2 Volts
Chip Enable (CE ₁) to Write	tCW1	600	275		ns	Input rise and fall times: 20 ns Timing measurement reference level: 1.5 Volt
Chip Enable (CE ₂) to Write	^t CW2	600	295		ns	
Data Setup	^t DW ·	400			ns	Output load: ITTI
Data Hold	tDH	100	-160		ns	Gate and C ₁ =
Write Pulse	tWP	400	190		ns	100 pF
Write Recovery	tWR	50	-130		ns	
Output Disable Setup	^t D\$ [']	200			ns	

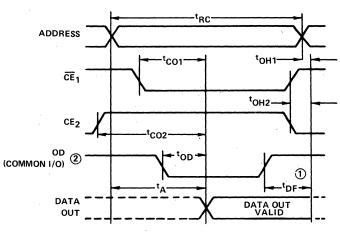
$T_a = 0^\circ C$ to $70^\circ C$

		LIMITS				
PARAMETER	SYMBOL	MIN	ТҮР	МАХ	UNIT	TEST CONDITIONS
V _{CC} for Data Retention	VCCDR	+2.0			v	CE ₂ ≤ +0.2V
Data Retention Current	ICCDR		1	+10	μA	V _{CCDR} = +2.0 to +3.0∀; CE ₂ ≤ +0.2V
Chip Deselect Setup Time	^t CDR	. 0			ns	
Chip Deselect Hold Time	^t R	trc①			ns	

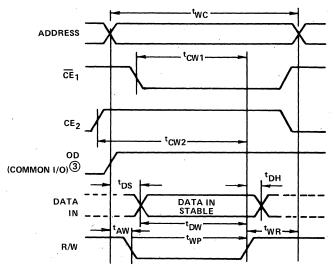
Note: 1 tRC = Read Cycle Time

AC CHARACTERISTICS

LOW VCC

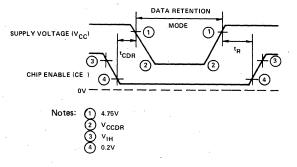

DATA RETENTION CHARACTERISTICS

μPD5101-E

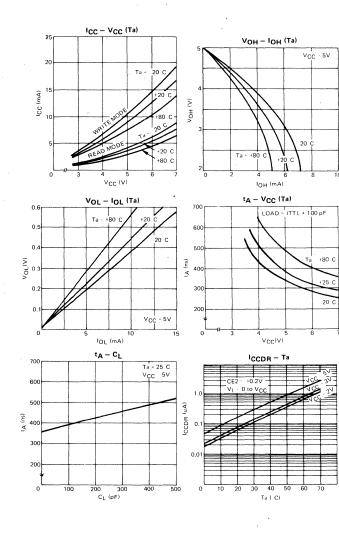

μPD5101-E

TIMING WAVEFORMS

READ CYCLE



WRITE CYCLE



Notes: 1 Typical values are for $T_a = 25^{\circ}C$ and nominal supply voltage. 2 OD may be tied low for separate I/O operation. 3 During the write cycle, OD is "high" for common I/O and During the write cycle, OD is "high" for common I/O and "don't care" for separate I/O operation.

LOW V_{CC} DATA RETENTION

μPD5101-E

ITEM	MILLIMETERS	INCHES				
А	28.0 Max.	1.10 Max.				
В	1.4 Max.	0.025 Max.				
С	2.54	0.10				
D	0.50 0.10	0.02 0.004				
E	25.4	1.0				
F	1.40	0.055				
G	2.54 Min.	0.10 Min.				
н	0.5 Min.	0.02 Min.				
1	4.7 Max.	0.18 Max.				
J	5.2 Max.	0.20 Max.				
к	10.16	0.40				
L	8.5	0.33				
м	0.25 +0.10 0.05	0.01 +0.004 0.002				

5

TYPICAL OPERATING CHARACTERISTICS

PACKAGE OUTLINE μPD5101C-E

SP5101-8-77-GY-CAT

NEC MCCORRECT OF

1024 BIT (256x4) STATIC CMOS RAM

DESCRIPTION

The μ PD5101L and μ PD5101L-1 are very low power 1024 bit (256 words by 4 bits) static CMOS Random Access Memories. They meet the low power requirements of battery operated systems and can be used to ensure non-volatility of data in systems using battery backup power.

All inputs and outputs of the μ PD5101L and μ PD5101L-1 are TTL compatible. Two chip enables $\overline{(CE_1, CE_2)}$ are provided, with the devices being selected when $\overline{CE_1}$ is low and CE₂ is high. The devices can be placed in standby mode, drawing 10 μ A maximum, by driving $\overline{CE_1}$ high and inhibiting all address and control line transitions. The standby mode can also be selected unconditionally by driving CE₂ low.

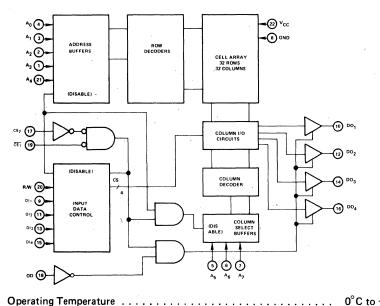
The μ PD5101L and μ PD5101L-1 have separate input and output lines. They can be used in common I/O bus systems through the use of the OD (Output Disable) pin and OR-tying the input/output pins. Output data is the same polarity as input data and is nondestructively read out. Read mode is selected by placing a high on the R/W pin. Either device is guaranteed to retain data with the power supply voltage as low as 2.0 volts. Normal operation requires a single +5 volt supply.

The μ PD5101L and μ PD5101L-1 are fabricated using NEC's silicon gate complementary MOS (CMOS) process.

FEATURES

- Directly TTL Compatible All Inputs and Outputs
- Three-State Output

•


- Access Time 650 ns (μPD5101L); 450 ns (μPD5101L-1)
- Single +5V Power Supply
- CE₂ Controls Unconditional Standby Mode
- Available in a 22-pin Dual-in-Line Package

PIN CONFIGURATION

~3	Ч		-	22	μ	vcc	
Α2	Ц	2		21	þ	Α4	
A1	Ц	3		20	þ	R/W	
А ₀	С	4		19	þ	CE1	
Α ₅	Ц	5	μPD	18	Þ	OD	
• A ₆		6	5101L	17	þ	CE2	
A ₇		7		16	þ	DO_4	
GND	Ċ	8		15	þ	DI4	
DI ₁		9		14	þ	DO_3	
DO1		10		13	þ	DI3	
DI2		11		12	þ	do2	
		L		******	J		

PIN NAMES

DI1 - DI4	Data Input
A0 - A7	Address Inputs
R/W	Read/Write Input
CE1, CE2	Chip Enables
OD .	Output Disable
DO1 - DO4	Data Output
VCC	Power (+5V)

ABSOLUTE MAXIMUM **RATINGS***

 0° C to +70 $^{\circ}$ C Storage Temperature-40°C to +125°C Voltage On Any Pin With Respect to Ground -0.3 Volts to V_{CC} +0.3 Volts COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

$I_a = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = +5V \pm 5\%$, unless otherwise specified.									
		LIMITS							
SYMBOL	MIN	түр ()	MAX	UNIT	TEST CONDITIONS				
ILIH (2)			1	μA	VIN = VCC				
LIL 2			-1	μA	V _{IN} = 0V				
ILOH (2)			1	μA	\overline{CE}_1 = 2.2V, V _{OUT} = V _{CC}				
			-1	μA	CE1 = 2.2V, VOUT = 0.0V				
ICC1			22	mA	V _{IN} = V _{CC} Except CE ₁ ≤0.65V, Outputs Open				
ICC2			27	mA	V _{IN} = 2.2∨ Except CE ₁ ≤0.65V, Outputs Open				
'cc∟②		5	10	μA	V _{IN} = 0 to 5.25V CE ₂ ≤ 0.2V				
VIL	-0.3		0.65	V					
VIH	2.2		Vcc	V					
VOL			0.4	V	IOL = 2.0 mA				
	2.4			V	IOH = -1.0 mA				
VOH2	3.5			V	l _{OH} = -100 μA				
	SYMBOL ILIH @ ILIL @ ILOH @ ILOL @ ICC1 ICC2 ICC2 ICC2 VIL VIL VOL VOH1	SYMBOL MIN ILIH ② ILIL ② ILOH ② ILOH ② ILOH ② ILOH ② ILOH ② ILOH ③ ILOL ② ILOH ③ ICC1 ICOL ③ ICC2 ICOL ③ ICCL ② ICOL ③ VIL -0.3 VIH 2.2 VOL ICOH ③	LIMIT SYMBOL MIN TYP(1) ILIH(2)	MIN TYP ① MAX ILIH ② 1 1 ILIH ② -1 -1 ILIH ② -1 1 ILIH ② -1 1 ILOH ② -1 1 ILOH ② -1 1 ILOH ② 22 -1 ICC1 I 22 ICC2 I 10 VIL -0.3 0.65 VIH 2.2 VCC VOL 0.4 0.4	LIMITS MAX SYMBOL MIN TYP① MAX UNIT ILIH② - 4 4 ILIH② - -1 4A ILIQ③ - -1 4A ILOH③ - -1 4A ILOH④ - -1 4A ILOH④ - 22 mA ILOL① - 22 mA ICC1 1 4 4 ICC2 1 10 4 VILC -0.3 0.65 V VIH 2.2 VCC V VOL 0.4 V V				

 $T = 0^{\circ}C + 2^{\circ}C + 2^{\circ}C + 2^{\circ}C + 5^{\circ}V + 5^{\circ}V$

Notes: (1) Typical values at $T_a = 25^{\circ}C$ and nominal supply voltage.

2 Current through all inputs and outputs included in I_{CCL}.

			LIMITS			
PARAMETER	SYMBOL	MIN	түр	МАХ	UNIT	TEST CONDITIONS
Input Capacitance (All Input Pins)	C _{IN}		<u>′</u> 4	8	pF	V _{IN} - 0V
Output Capacitance	с _{оит}		8	12	pF	VOUT OV

DC CHARACTERISTICS

CAPACITANCE

BLOCK DIAGRAM

μPD5101L

μPD5101L

AC CHARACTERISTICS

READ CYCLE

 T_a = 0° C to 70° C; V_CC = 5V±5%, unless otherwise specified

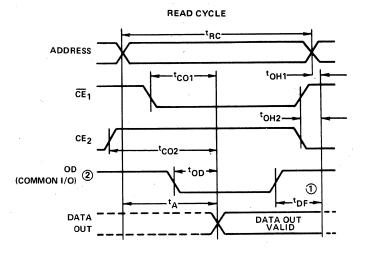
				LIP	MITS				TEST CONDITIONS	
PARAMETER	SYMBOL		51011	-	<u> </u>	5101L	1	UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX			
Read Cycle	^t RC	650			450		×	ns	Input pulse amplitude: 0.65 to 2.2 Volts	
Access Time	t A			6 50			450	ns	Input rise and fall	
Chip Enable (CE ₁) to Output	tCO1			600			400	ņs	times: 20 ns	
Chip Enable (CE ₂) to Output	tCO2	i		700			500	ns	Timing measurement reference level:	
Output Disable to Output	tod			350		Ì.	250	ns •	1.5 Volt Output load: ITTL	
Data Output to High Z State	^t DF	0		150	0		130	ns	Gate and $C_L = 100 pF$	
Previous Read Data	tOH1	0			0			ns		
Valid with Respect to Address Change										
Previous Read Data Valid with Respect to Chip Enable	tOH2	0			0			ns		

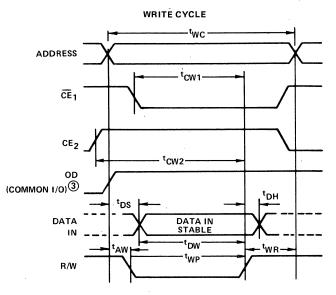
WRITE CYCLE

 $T_a = 0^{\circ}C$ to 70°C; $V_{CC} = 5V\pm5\%$, unless otherwise specified

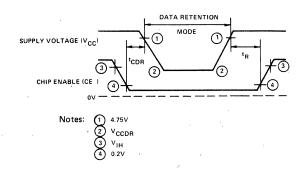
		LIMITS							
PARAMETER	SYMBOL	5101L			5101L-1			UNIT	TEST CONDITIONS
		MIN	TYP	MAX	MIN	TYP	MAX		(1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
Write Cycle	tWC	650		5	450			ns	Input pulse amplitude:
Write Delay	^t AW	150			130			ns	0.65 to 2.2 Volts
Chip Enable (CE ₁) to Write	^t CW1	550			350			ns	Input rise and fall times: 20 ns
Chip Enable (CE ₂) to Write	^t CW2	550			350			ns	Timing measurement reference level:
Data Setup	tDW	400			250			ns	1.5 Volt
Data Hold	^t DH	100			50			ns	Output load: ITTL
Write Pulse	tWP	400			250			ns	Gate and CL =
Write Recovery	tWR	50			50			ns	100 pF
Output Disable Setup	^t DS	150			130				

LOW V_{CC} DATA RETENTION CHARACTERISTICS

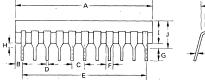

Ta =	$0^{\circ}C$	to	70°	C	
------	--------------	----	-----	---	--


			LIMITS	5		
PARAMETER	SYMBOL	MIN	түр	MAX	UNIT	TEST CONDITIONS
V _{CC} for Data Retention	VCCDR	+2.0			v	CE ₂ ≤ +0.2V
Data Retention Current	ICCDR			+10	μA	V _{CCDR} = +2.0V CE ₂ ≤ +0.2V
Chip Deselect Setup Time	^t CDR	0	-		ns	
Chip Deselect Hold Time	^t R	tRÇÛ			ns	

Note: 1 t_{RC} = Read Cycle Time


μPD5101L

TIMING WAVEFORMS


Notes: 1 Typical values are for $T_a = 25^{\circ}C$ and nominal supply voltage. OD may be tied low for separate I/O operation. 3 During the write cycle, OD is "high" for common I/O and During the write cycle, OD is "high" for common I/O and "don't care" for separate I/O operation.

LOW V_{CC} DATA RETENTION

μPD5101L

PACKAGE OUTLINE µPD5101LC

ITEM	MILLIMETERS	INCHES
A	28.0 Max.	1.10 Max.
В	1.4 Max.	0.025 Max.
С	2.54	0.10
D	0.50 · 0.10	0.02 · 0.004
E	25.4	1.0
F	1.40	0.055
G	2.54 Min.	0.10 Min.
н	0.5 Min.	0.02 Min.
I	4.7 Max.	0.18 Max.
J	5.2 Max.	0.20 Max.
К	10.16	0.40
L.	8.5	0.33
M	0.25 +0.10 0.05	0.01 +0.004 0.002

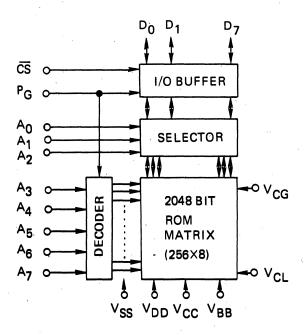
FULLY DECODED 2048 BIT ELECTRICALLY ERASABLE AND PROGRAMMABLE READ ONLY MEMORY

The μ PD454 EEPROM, a 256 Words x 8 Bits Read Only Memory, is designed for rapid development of microcomputer systems. The ability to electrically program, erase, and reprogram the μ PD454 provides a fast and convenient means of debugging both hardware and software designs.

The μ PD454 is pin for pin compatible with NEC's μ PD464 mask programmed ROM.

- Electrically Erasable and Programmable
- Fully Decoded, 256 Words x 8 Bits Organization
- Access Time 800 ns Max
- Low Power: 245 mW (Typ.) in Read Operation 670 mW (Typ.) in Programming Operation
- Fast Programming and Erasure Speed
- Low Power for Programming and Erasure
- Static, No Clock Required
- Input/Output TTL Compatible for Read and Programming Operation
- Three-State Output, OR-Tie Capability
- N-Channel MOS Fabrication
- Two Power Supplies, +12V and +5V for Read Operation
- 24 Pin Ceramic DIP

cs 🗖	1	$\overline{}$	24	
	2		23	
A1 🗆	3		22	D D1
A2 🗖	4		21	D D2
A3 🗆	5	μPD	20	D-D3
A4 🗆	6	454	19	D 04
A5 🗆	7		18	D D5
A6 □	8		17	
A7 🗖	9		16	
Pg 🗖	10		15	
VCL 🗆	11		14	
∨вв 🗖	12		13	□ v _{ss}
				1


DESCRIPTION

FEATURES

μPD454

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

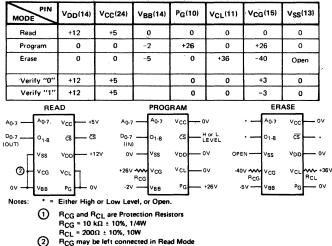
Operating Temperature $\dots \dots \dots$
Storage Temperature
All Output Voltages
All Input Voltages
Supply Voltage VDD
Supply Voltage V _{CC} 0.3 to +7 Volts
Supply Voltage VBB
Supply Voltage PG0.3 to +30 Volts 2
Supply Voltage VCI $\cdots \cdots \cdots$
Supply Voltage VCG

Notes: ① Relative to V_{BB}.

2 Data in the memory cell is not guaranteed to be preserved.

Specifies ratings which will not cause permanent damage to the device.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


CAPACITANCE

DADAMETED	CV/MDOI		LIMITS			TEST CONDITIONS	
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS	
Input Capacitance	CIN			10	pF	f = 1 MHz	
Output Capacitance	COUT			15	pF	f = 1 MHz	

	μI	PD454
PIN DEFINITION	J	

	, 8 fe	PIN	
NO.	SYMBOL	NAME	FUNCTION
1	CS	CHIP SELECT	Chip selection, active low
2-9	A0-A7	ADDRESS BUS	Memory address
10	PG	+26V (TYP) Power Supply	Power supply for programming operation
11	VCL	+36V (TYP) Power Supply	Power supply for erasing < operations
12	VBB	Substrate Power Supply	Power supply
13	VSS	GROUND	Ground Reference
14	VDD	+12V Power Supply	Power supply for read operations
15	Vcg	-44 to +30 Power Supply	Power supply for control of programming and erasure operations
16-23	D7-D0	Data Input/Output	Data In for programming operations. Data Output for read operations.
24	Vćc	+5V Power Supply	Power supply for read operations

Typical values. Unit - Voltage.

ITEM	MILLIMETERS	INCHES
А	32.5 MAX	1.28 MAX
в	2.28	0.09
c	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.20 MIN	0.047 MIN
G	3.2 MIN	0.126 MIN
н	1.0 MIN	0.04 MIN
1	4.2 MAX	0.165 MAX
J	5.2 MAX	0.205 MAX
к	15.24	0.6
L	13.9	0.55
м	0.30 ± 0.1	0.012 ± 0.004

0—15°-

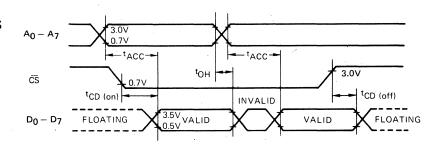
М

SUPPLY VOLTAGES

PACKAGE OUTLINE µPD454D

READ OPERATION DC CHARACTERISTICS

 $T_a = -10 \text{ to } +70^{\circ}\text{C}, V_{DD} = +12\text{V} \pm 5\%, V_{CC} = +5\text{V} \pm 5\%, V_{BB} = P_G = V_{CL} = V_{CG} = V_{SS} = 0\text{V}$


		LIMITS				TEST
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	CONDITIONS
Input High Voltage	VIH	3.0		Vcc	V	
Input Low Voltage	VIL	0		0.7	V	
Output High Voltage	Vон	3.5			V	I _{OH} = - 2.0 mA
Output Low Voltage	VOL			0.5	V	IOL = 1.7 mA
Input Leakage Current High	¹ LIH			+10	μA	V _I = +3.0V
Input Leakage Current Low	LIL	-		-10	μA	V ₁ = +0.7V
Output Leakage Current High	LOH			+100	μA	CS = "1" V _O = 3.5V
Output Leakage Current Low	LOL			-10	μA	$\overline{CS} = "1"$ $V_{O} = 0.4V$
V _{DD} Supplý Current	IDD		20		mA	
V _{CC} Supply Current	ICC			0.3	mA	with no load

AC CHARACTERISTICS

 $T_a = -10 \text{ to } +70^{\circ}\text{C}, \ V_{DD} = +12\text{V} \pm 5\%, \ V_{CC} = +5\text{V} \pm 5\%, \\ V_{BB} = P_G = V_{CL} = V_{CG} = V_{SS} = 0\text{V}$

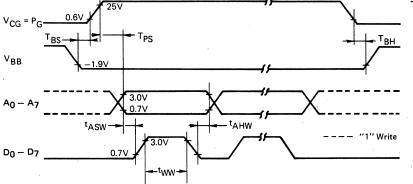
DADAMETED	SYMBOL	LIMITS			UNIT	TEST
PARAMETER	STINDUL	MIN	TYP	MAX		CONDITIONS
Access Time	^t ACC			800	ns	
CS to Output On Delay	^t CD(on)			200	ns	1 TTL + 100 pF
CS to Output Off Delay	^t CD(off)	0	5	200	ns	
Output Hold Time	^t OH	0			ns	

TIMING WAVEFORMS

Before the μ PD454 is programmed the device must be erased. All bit locations must contain a zero (0). The μ PD454 programming procedure is word by word one word at a time.

PROGRAMMING OPERATION

DC CHARACTERISTICS


$T_a = 25^{\circ}C \pm 2^{\circ}C$	C, V _{DD} = V _{CC} =	$V_{SS} = V_{CL} = 0V$. CS = Either	HIGH or LOW level.
------------------------------------	--	------------------------	---------------	--------------------

PARAMETER	SYMBOL		LIMITS	S	UNIT	TEST
FARAMETER	STIVIDUL	MIN	ТҮР	MAX		CONDITIONS
Input High Voltage	VIH	3.0		Vcc	· V	
Input Low Voltage	VIL	0		0.7	V	
Supply Voltage	V _{BB}	- 1.9	-2.0	-2.1	V	
Supply Voltage	PG	25	26	27	v	-
Supply Voltage	V _{CG}	25	26	27	V	through R _{CG}
Supply Current (V _{BB})	IBB		-8		mA	
Supply Current (P _G)	۱ _G		+25		mA	
Supply Current (V _{CG})	ICG			+10	μΑ	-

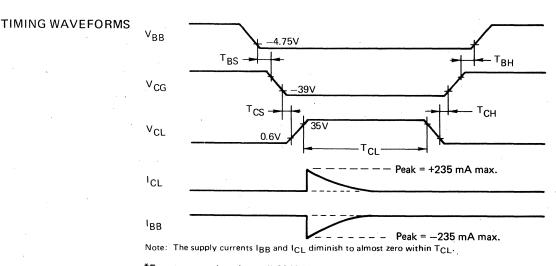
 $T_a = 25^{\circ}C \pm 2^{\circ}C$, $V_{DD} = V_{CC} = V_{SS} = V_{CL} = 0V$. $\overline{CS} = Either HIGH or LOW level.$

PARAMETER	SYMBOL		LIMITS		UNIT	TEST
FANAMETER	STIVIBUL	MIN	ТҮР	MAX	UNIT	CONDITIONS
Address Setup Time	^t ASW	10			μs	
Address Hold Time	^t AHW	10			μs	
Write Data Width	tww	20		100	ms	per one word
V_{BB} Setup Time	т _{вS}	1.0			μs	4
V _{BB} Hold Time	твн	1.0			μs	
P _G , V _{CG} Setup Time	TPS	10			μs	

TIMING WAVEFORMS

μPD454

ERASURE OPERATION* DC CHARACTERISTICS


 T_a = 25°C ± 2°C, V_{DD} = V_{CC} = P_G = 0V, V_{SS} = 0V \overline{CS} , A_0 – A_7 and D_0 – D_7 = Either HIGH or LOW level, or non-connected

PARAMETER	SYMBOL		LIMITS		UNIT	TEST
PARAMETER	STIVIDUL	MIN	ТҮР	MAX	UNIT	CONDITIONS
Supply Voltage	V _{BB}	-4.75	- 5.0	- 5.25	V	
Supply Voltage	V _{CL}	+35	+36	+37	V	through R _{CL}
Supply Voltage	V _{CG}	- 39	-40	-41	V	through R_{CG}
Supply Current (V _{BB})	^I BB	÷		-235	୍କ mA	Initial peak current. See
Supply Current (V _{CL})	^I CL			-235	mA	timing chart.
Supply Current (V _{CG})	ICG			-20	μA	

 $T_a = 25^{\circ}C \pm 2^{\circ}C$, $V_{DD} = V_{CC} = P_G = 0V$, $V_{SS} = 0V$ \overline{CS} , $A_0 - A_7$ and $D_0 - D_7 =$ Either HIGH or LOW level, or non-connected

AC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS			UNIT	TEST
PARAMETER	STINDUL	MIN	түр	MAX	UNIT	CONDITIONS
Clear Time	TCL			60	sec	
V _{BB} Setup Time	T _{BS}	0			μs	
V _{BB} Hold Time	Твн	0			μs	
V _{CG} Setup Time	T _{CS}	1.0			μs	
V _{CG} Hold Time	тсн	1.0			μs	

*Erasure operation clears all 2048 bits to Logic "0" simultaneously.

NEC Microcomputers, inc.

FULLY DECODED 8192 BIT ELECTRICALLY ERASABLE AND PROGRAMMABLE READ ONLY MEMORY

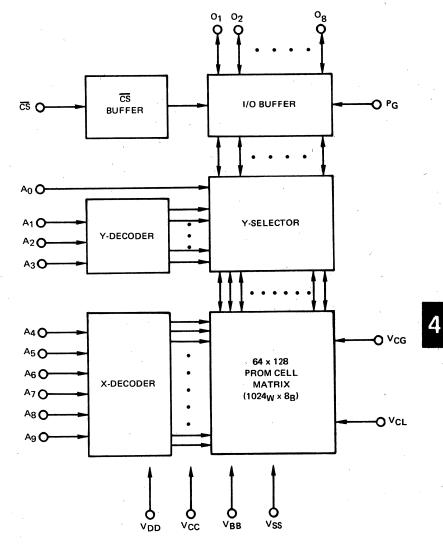
The µPD458 is an Electrically Erasable and Reprogrammable Read Only DESCRIPTION Memory (EEPROM), organized as 1024 words by 8 bits.

The μ PD458 is fabricated with N-channel MOS technology and is packaged in a 28 pin ceramic DIP.

- Electrically Erasable and Reprogrammable
- Fully Decoded, 1024 Words x 8 Bits Organization
- Access Time 450 ns max.
- Fast Programming and Erasure Speed
- Simple Worst-case Verification of Programmed Data and Erasure
- Static, No Clock Required
- Input/Output TTL Compatible for Read and Programming Operation
- Three-State Output, OR-Tie Capability
- N-Channel MOS
- Two Power Supplies, +12V and +5V for Read
- 28 Pin Ceramic DIP

A7 🗖	1		28	þ	vcc
A6 🗖	2		27	þ	A8
A5 🗖	3		26	Ь	Ag
A4 🗖	4		25	Ь	NC
A3 🖸	5		24	Ь	ĈŜ
A2 🗖	6		23	Ь	VDD
A1	7	μPD	22	Ь	NC
A0 🗖	8	458	21	Ь	08
01 C	9		20	Ь	07
°2 □	10		19	Ь	06
O3 □	11		18	Ь	05
vss 🗖	12		17	Ь	04
	13		16		VCL
ИВВ С	14		15	Ь	PG

NC: No Connection


FEATURES

PIN CONFIGURATION

µPD458

μPD458

BLOCK DIAGRAM

ABSOLUTE MAXIMUM of RATINGS* s

Operating Temperature
Storage Temperature
All Output Voltages
All Output Voltages
All Input Voltages
Supply Voltage VDD
Supply Voltage V _{CC}
Supply Voltage Vpp
Cutally Values Po
Cumply Voltage Vol
Supply Voltage VCC

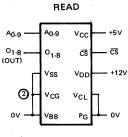
Notes: ① Relative to VBB.

2 Data in the memory cell is not guaranteed to be preserved.

Specifies ratings which will not cause permanent damage to the device.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

μPD458


CAPACITANCE

PARAMETER	SYMBOL	s	LIMITS		LINUT	TEST CONDITIONS
PARAMETER	STIVIBUL	MIN	TYP	MAX	UNT	TEST CONDITIONS
Input Capacitance	CIN			10	рF	f = 1 MHz
Output Capacitance	C _{OUT}			15	pF	f = 1 MHz

Typical values. Unit - Voltage.

PIN MODE	V _{DD} (23)	V _{CC} (28)	V _{BB} (14)	P _G (15)	V _{CL} (16)	V _{CG} (13)	V _{SS} (12)
Read	+12	+5	0	0	0	0	0
Program	0	Ö	-2	+26	0	+26	0
Erase	0	0	-5	0	+36	-40	0 or Open
Verify "0"	+12	+5		0	0	+3	0
Verify "1"	+12	+5		0	0		0

SUPPLY VOLTAGES

Vcc

ĊŚ

VDD

VCL

PG

οv

οv

- 0V

+26V

H or L LEVEL

A₀₋₉

0₁₋₈

VSS

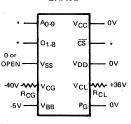
VcG

VBB

A0.9

01-8 -

(IN)


ov -

+26V ------

-2V -

RCG

ERASE

Notes:

な影響が認識

* = Either High or Low Level, or Open.

(1) R_{CG} and R_{CL} are Protection Resistors $R_{CG} = 10 \ k\Omega \pm 10\%, 1/4W$ $R_{CL} = 200\Omega \pm 10\%, 10W$

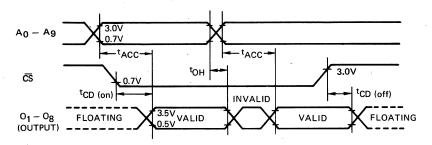
2 R_{CG} may be left connected in Read Mode.

	PIN	INPUT/	FUNCTION		
NO.	SYMBOL	OUTPUT	FUNCTION		
1 — 8, 26, 27	A ₀ – A ₉	Input	Address Input		
24	ĊŚ	Input	Chip Select Input (Active Low)		
9 - 11,	0.0.	Output	Data Out for Read Operation		
17 – 21	0 ₁ – 0 ₈	Input	Data Input for Programming Operation		
15	PG	Power Supply	Power Supply for Programming Operation		
16	V _{CL}	Power Supply	Power Supply for Erasure Operation		
13	V _{CG}	Power Supply	Power Supply for Control Gate for Programming and Erasure Operation		
14	V _{BB}	Power Supply	Power Supply for Substrate Bias		
23	V _{DD}	Power Supply	+12V Power Supply for Read Operation		
28	Vcc	Power Supply	+5V Power Supply for Read Operation		
12	V _{SS}	GND	Ground Reference		

PIN IDENTIFICATION

READ OPERATION DC CHARACTERISTICS

 $T_a = -10 \text{ to } +70^{\circ}\text{C}, V_{DD} = +12\text{V} \pm 5\%, V_{CC} = +5\text{V} \pm 5\%, V_{BB} = P_G = V_{CL} = V_{CG} = V_{SS} = 0\text{V}$


DADAMETED			LIMITS	;		TEST
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	CONDITIONS
Input High Voltage	V _{IH}	3.0		Vcc	V	×
Input Low Voltage	VIL	0		0.7	V .	
Output High Voltage	Vон	3.5			V	I _{OH} = -2.0 mA
Output Low Voltage	VOL			0.5	, V	IOL = 1.7 mA
Input Leakage Current High	¹ LIH .		×	+10	μA	V _I = +3.0V
Input Leakage Current Low	LIL			-10	μΑ	V _I = +0.7V
Output Leakage Current High	LOH			+20	μΑ	CS = "1" V _O = 3.5V
Output Leakage Current Low	ILOL			-10	μA	CS = "1" V _O = 0.4V
V _{DD} Supply Current	IDD		55	80	mA	
V _{CC} Supply Current	ICC		20	30	mA	with no load

AC CHARACTERISTICS

 $T_a = -10 \text{ to } +70^{\circ}\text{C}, \ V_{DD} = +12\text{V} \pm 5\%, \ V_{CC} = +5\text{V} \pm 5\%, \\ V_{BB} = P_G = V_{CL} = V_{CG} = V_{SS} = 0\text{V}$

			LIMITS	3		TEST
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS
Access Time	^t ACC	/		450	ns	
CS to Output On Delay	^t CD(on)			200	ns	1 TTL + 100 pF
CS to Output Off Delay	^t CD(off)	0		200	ns	
Output Hold Time	^t OH	• 0			ns	

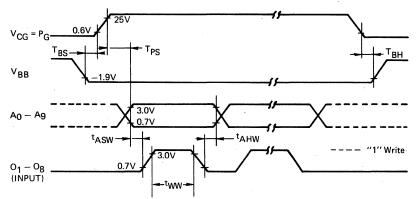
TIMING WAVEFORMS

Programming is performed word by word and one word at a time. Address and an 8 bit programming word for that address should be input at the same time. High level data "1" given through one of Data Input terminals $(O_1 - O_8)$ writes a high level data "1" into the memory cell specified with the address input and its bit position.

After erasure, all memory cells of the μ PD458 contain cleared data "0". By this programming operation, only the memory cells which contain data "0" are programmed to high level data "1" by high level input. Thus before normal programming operation, the μ PD458 should undergo erasure operation to clear all bits to "0".

BARANETER		LIMITS				TEST
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	CONDITIONS
Input High Voltage	VIH	3.0		5.25	V	
Input Low Voltage	VIL	0		0.7	V	
Supply Voltage	VBB	-1.9	-2.0	-2.1	V	
Supply Voltage	PG	25	26	27	V	
Supply Voltage	V _{CG}	25	26	27	V	through R _{CG}
Supply Current (V _{BB})	IBB		-8	- 15	mA	
Supply Current (P _G)	IG		+30	+50	mA	
Supply Current (V _{CG})	lcg			+20	μA	

 $T_a = 25^{\circ}C \pm 2^{\circ}C$, $V_{DD} = V_{CC} = V_{SS} \pm V_{CL} = 0V$. \overline{CS} = Either HIGH or LOW level.


DC CHARACTERISTICS

PROGRAMMING

OPERATION

°C, V _{DD} =	• VCC =	VSS =	VCL =	= 0V. CS =	Either	HIGH	or LOV	level.	

PARAMETER	SYMBOL		LIMITS		UNIT	TEST
TANAMETER	STIVIDUL	MIN	түр	MAX	UNIT	CONDITIONS
Address Setup Time	^t ASW	10			μs	
Address Hold Time	^t AHW	10			μs	
Write Data Width	tww	40		100	ms	per one word
V_{BB} Setup Time	T _{BS}	1.0			μs	
V _{BB} Hold Time	т _{вн}	1.0			μs	
P _G , V _{CG} Setup Time	T _{PS}	10			μs	

TIMING WAVEFORMS

AC CHARACTERISTICS

μPD458

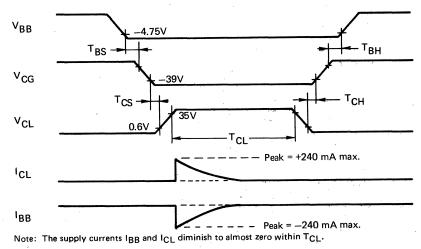
 $T_a = 25^{\circ} C \pm 2^{\circ}$

μPD458

ERASURE OPERATION*

DC CHARACTERISTICS

 T_a = 25°C ± 2°C, V_{DD} = V_{CC} = P_G = 0V, V_{SS} = 0V or Open \overline{CS} , $A_0 - A_9$ and $0_1 - 0_8$ = Either HIGH or LOW level, or non-connected


PARAMETER	CVMDOI	· · · ·	LIMITS		UNIT	TEST
PARAMETER	SYMBOL	MIN	ТҮР	MAX		CONDITIONS
Supply Voltage	V _{BB}	-4.75	- 5.0	-5.25	V	
Supply Voltage	V _{CL}	+35	+36	+37	V	through R _{CL}
Supply Voltage	V _{CG}	-39	-40	-41	V	through $R_{\mathbf{CG}}$
Supply Currênt (V _{BB})	IBB			-240	mA	Initial peak current. See
Supply Current (V _{CL})	ICL		-	+240	mA	timing chart.
Supply Current (V _{CG})	ICG			-20	μA	

AC CHARACTERISTICS

 $T_a = 25^{\circ}C \pm 2^{\circ}C$, $V_{DD} = V_{CC} = P_G = 0V$, $V_{SS} = 0V$ or Open \overline{CS} , $A_0 - A_9$ and $0_1 - 0_8 =$ Either HIGH or LOW level, or non-connected

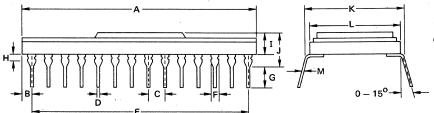
PARAMETER	SYMBOL		LIMITS			TEST
		MIN	ТҮР	MAX	UNIT	CONDITIONS
Clear Time	TCL		60		sec	
V _{BB} Setup Time	т _{вS}	0			μs	
V _{BB} Hold Time	т _{вн}	0			μs	
V_{CG} Setup Time	T _{CS}	1.0			μs	
V _{CG} Hold Time	тсн	1.0			μs	

TIMING WAVEFORMS

*Erasure operation clears all 8192 bits to Logic "0" simultaneously.

To insure integrity and retention of data programmed in the μ PD458, the following requirements are specified for the μ PD458 supply voltage and current levels. The PROM PROGRAMMER should be designed such that voltages provided to the PROM socket be within the range specified on any occasion including power on/off to the programmer, power on/off to the µPD458, and in READ, WRITE or ERASE operation. Surge or noise voltages beyond the specified range are to be avoided.

Setting V_{DD} = +12V \pm 5%, V_{CC} = +5V \pm 5% and V_{CG} = +3V \pm 0.1V after erasure and comparing data read from the µPD458 with zero effectively tests for proper erasure.


Setting V_{DD}= +12V \pm 5%, V_{CC} = +5V \pm 5% and V_{CG} = -3V \pm 0.1V after programming and comparing data read from the μ PD458 with the desired data coupled with erase verification, provides a simple test of worst-case temperature and long-term data retention.

Under normal Read Mode conditions, V_{CG} should either be grounded directly or held at 0V \pm 0.1V through RCG. RCG is required when any non-zero voltage is applied to VCG.

	LIMITS										
		READ		PR	OGRA	M		ERASE		UNIT	TEST
SYMBOL	MIN	TYP	MAX	MIN	TYP	MAX	MIN	түр	MAX	UNIT	CONDITIONS
VDD	+11.4	+12	+12.6	-0.3	0	+0.3	-0.3	0	+0.3	v	
Vcc	+4.75	+5	+5.25	-0.3	0	+0.3	-0.3	0	+0.3	V	
V _{CG}	-0,1	0	+0.1	+25	+26	+27	-39	-40	-41	V	
VBB	-0.1	0	+0.1	-1.9	-2	· 2.1	-4.75	-5	-5.25	v	
PG	-0.3	0	+0.3	+25	+26	+27	-0.3	0	+0.3	v	
Vc∟	-0.1	0	+0.1	-0.1	0	+0.1	+35	+36	+37	v	
lcc		+20	+30			-0.2			-0.2	mA	0
IDD		+55	+80			-0.2			-0.2	mA	1
ICG			+10 .			+20			-20	μA	1
IBB			-0.2		-8	-15			-240	mA	1
IPG			-0.2		+30	+50			-0.2	mA	1
ICL			-0.5			-10			+240	mA	1

(1) At typical supply voltage Notes:

(2) All voltages relative to VSS = 0V.

PACKAGE OUTLINE μPD458D

ITEM	MILLIMETERS	INCHES
A	36.0 MAX.	1.41 MAX.
В	1.5 MAX.	0.059 MAX
С	2.54	0.1
D	0.50 ± 0.1	0.02 ± 0.004
E	33.0	1.299
F	1.27	0.05
G	3.2 MIN,	0.126 MIN
н	1.0 MIN	0.04 MIN
I	3.3 MAX.	0.13 MAX.
J	5.2 MAX.	0.20 MAX.
к	15.3	0.60
L	13.9	0.55
м	0.30 ± 0.1	0.012 ± 0.004

μPD458

APPENDIX PROM PROGRAMMER DESIGN

μPD458

μPD458D (EEPROM) ①· ②-	+5V A8 A9 NC \overline{CS} +12V NC O8 O7 O6 O5 O4 \overrightarrow{OV} 28 27 26 25 24 23 22 21 20 19 18 17 16 15 VCC A8 A9 NC \overline{CS} VDD NC O8 O7 O6 O5 O4 VCL PG	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2708 (PROM ERASABLE WITH ULTRAVIOLET)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
μPD2308C/D — 2308 (MASK ROM)	+5V A8 A9 $-5V$ $\overline{CS_1}$ +12V CS_2 08 07 06 05 04 24 23 22 21 20 19 18 17 16 15 14 13 V _{CC} A8 A9 V _{BB} $\overline{CS_1}$ V _{DD} 08 07 06 05 04 $CS_2/\overline{CS_2}$	
	A7 A6 A5 A4 A3 A2 A1 A0 O1 O2 O3 VSS 1 2 3 4 5 6 7 8 9 10 11 12 A7 A6 A5 A4 A3 A2 A1 A0 O1 O2 O3 VSS A7 A6 A5 A4 A3 A2 A1 A0 O1 O2 O3 OV	
COMMON PIN CONFIGURATION	(NC) (NC) V _{CC} A8 A9 -5V C5 V _{DD} 0V 08 07 06 05 04 V _{CL} PROG 28 27 26 25 24 23 22 21 20 19 18 17 16 15	
	2308/ 2708 1 2 3 4 5 6 7 8 9 10 11 12 13 14	
	A7 A6 A5 A4 A3 A2 A1 A0 O1 O2 O3 V_{SS} VCG VBB Notes: (1) Names of signals. (2) Names of the terminal.	

1024-BIT BIPOLAR TTL PROGRAMMABLE READ ONLY MEMORY

The μ PB403 is a high speed electrically programmable fully decoded 1024 bit TTL read only memory. On-chip address decoding, two chip enable inputs and opencollector outputs allow easy expansion of memory capacity. The μ PB403 is fabricated with logic level zero (low); logic level one (high) can be electrically programmed into the selected bit locations. The same address inputs are used for both programming and reading.

- 256 Words x 4 Bits Organization (Fully Decoded)
- TTL Interface
- Fast Read Access Time: 30 ns TYP.
- Medium Power Consumption: 450 mW TYP.
- AIM (Avalanche Induced Migration) Technology
- Two Chip Enable Inputs for Memory Expansion
- Open-Collector Outputs
- Ceramic 16-Pin Dual-In-Line Package
- Fast Programming Time: 200 μs/bit TYP.
- Compatibility with: Intersil's IM5603A (both in programming and as a ROM), Harris HPROM1024A and Equivalent Devices (as a ROM)

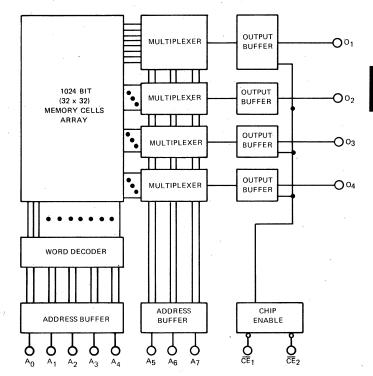
DESCRIPTION

∠PB403

FEATURES

PIN CONFIGURATION

A6	d	1	\sim	16	þ.	vcc
Α5	Ц	2		15	Þ	Α7
A4		3		14	Þ	\overline{CE}_2
A3		4	μPB	13	Þ	CE1
A ₀	q	5	403	12	Þ	01
A1	q	6		11	þ	0 ₂
A ₂	d	7		10	Þ	0 ₃
GND	q	8		9	þ	04


OPERATION Programming

A logic one can be permanently programmed into a selected bit location in accordance with the programming procedures specified. First, the desired word is selected by the eight TTL address inputs. Either or both of the two chip enable inputs should be at a logic one (high). Secondly, a train of high current programming pulses is applied to the desired output. After the sensed voltage indicates that the selected bit is in the logic one state, an additional pulse train is applied, and programming is complete.

Reading

To read the memory, both of the two chip enable inputs should be held at logic zero (low). The outputs then correspond to the data programmed in the selected words. When either or both of the two chip enable inputs are at logic one (high), all the outputs will be high (floating).

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature
Storage Temperature -65°C to +150°C
All Output Voltages
All Input Voltages0.5 to +5.5 Volts
Supply Voltage V _{CC} 0.5 to +7.0 Volts
Output Currents

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$$*T_{a} = 25^{\circ}C$$

μPB403

$T_a = 0^{\circ}C$ to +65°C, $V_{CC} = 4.75V$ to 5.25V

BARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
PARAMETER	STMBUL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Input High Voltage	v _{IH}	2.0			V	
Input Low Voltage	V _{IL}			0.8	v	
Input High Current	Чн			40	μA	V ₁ = 2.7V
Input Low Current	-IIL			1.0	mA	VI = 0.4V
Output Low Voltage	VOL			0.45	V	I _O = 16 mA
Output Leakage Current	^I OFF1			40	μA	V _O = 5.25V
Output Leakage Current	⁻¹ OFF2				μA	V _O = 0.4V
Input Clamp Voltage	-VIC	1		1.3	V	lj = -12 mA
Power Supply Current	¹ cc		90	130	mA	All Inputs Grounded

 $T_a = 25^{\circ}C, V_{CC} = 5.0V$

bag anstep	0/440.01	LIMITS				TEAT COMPLETIONS	
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS	
Address Access Time	tAA		30	60	ns	See Notes	
Chip Enable Access Time	^t ACE			30	ns .		
Chip Enable Disable Time	^t DCE			30	ns		

Notes: 1) Output Load: See Figure 1.

(2) Input Waveform: 0.0V for low level and 3.0V for high level, less than 10 ns for both rise and fall times.

③ Measurement References: 1.5V for both inputs and outputs.

(4) CL in Figure 1 includes jig and probe stray capacitances.

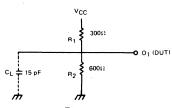
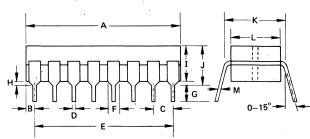



Figure 1

	ITEM	MILLIMETERS	INCHES
	A	19.9 MAX	0.784 MAX
	в	· 1.06	0.042
	с	2.54	0.10
	D	0.46 + 0.10	0.018 + 0.004
	E	17.78	0.70
-	F	1.5	0.059
	G	2.54 MIN	0.10 MIN
	н	0.5 MIN	0.019 MIN
	I	4.58 MAX	0.181 MAX
	J	5.08 MAX	0.20 MAX
	к	7.62	0.30
	L·	6.4	0.25
	м	0.25 + 0.10	0.0098 + 0.0039 - 0.0019

PACKAGE OUTLINE µPB403D

AC CHARACTERISTICS

DC CHARACTERISTICS

μPB403

PROGRAMMING SPECIFICATION

It is imperative that this specification be rigorously observed in order to correctly program the μ PB403. NEC will not accept responsibility for any device found to be defective if it were not programmed according to this specification.

A typical programming operation is performed by first sensing, then programming, then sensing again to see if the word to be programmed has reached the desired state.

Sensing is accomplished by forcing a 20 mA current into the selected location via the output. The μ PB403 is disabled by forcing 2 mA into one of the chip enables. The sense measurement is to ensure that the voltage required to force this 20 mA current is less than the reference voltage. If this condition is satisfied, then that bit location is in the logic "1" (high) state.

Programming is accomplished by forcing a 200 mA current into the selected bit via the output. This operation is also executed with 2 mA being forced into a chip enable. This current pulse is applied for 7.5 μ s and then the location is sensed before a second programming current pulse is applied. This process is continued until that location is altered to the "1" state. A bit is judged to be programmed when two successive sense readings 10 μ s apart with no intervening programming pulse, pass the limit. When this condition has been met, four additional pulses are applied and the pulse train, then the sense current is terminated.

CHARACTERISTIC	LIMIT	UNIT	NOTES
Ambient Temperature	25 ± 5	°C	
Programming Pulse			
Amplitude	200 ± 5%	mA	N
Clamp Voltage	28 + 0% - 2%	V	
Ramp Rate (both in Rise and in Fall) Pulse Width	70 MAX. 7.5 ± 5%	V/µs µs	15V point/
Duty Cycle	70% MIN.		150 Ω load.
Sense Current	· ·		
Amplitude	20 ± 0.5	mA	
Clamp Voltage	28 + 0% - 2%	V	
Ramp Rate	70 MAX.	V/µs	15V point/ 150Ω load.
Sense Current Interruption before and after address change	10 MIN.	μs	
Programming V _{CC}	5.0 + 5% - 0%	μ3 V	
	5.0 + 5% - 0%	· · ·	
Maximum Sensed Voltage for programmed ''1''	7.0 ± 0.1	v	
Delay from trailing edge of programming pulse before sensing output voltage	0.7 MIN.	μs	

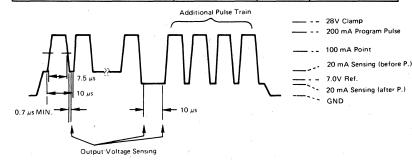


Figure 2. Typical Output Voltage Waveform

4096-BIT BIPOLAR TTL PROGRAMMABLE READ ONLY MEMORY

The μ PB405 and μ PB425 are high speed, electrically programmable, fully decoded 4096-bit TTL read only memories. On-chip address decoding, four chip enable inputs and open-collector outputs allow easy expansion of memory capacity. The μ PB405 and μ PB425 are fabricated with logic level zero (low); logic level one (high) can be electrically programmed into the selected bit locations. The same address inputs are used for both programming and reading.

512 WORDS X 8 BITS Organization (Fully Decoded)

FEATURES

PIN CONFIGURATION

DESCRIPTION

- TTL Interface
- Fast Read Access Time: 70 ns max. (µPB425)
- Medium Power Consumption: 600 mW TYP.
- Four Chip Enable Inputs for Memory Expansion
- Open-Collector Outputs (µPB405)/Three-State Outputs (µPB425)
- Ceramic 24-Lead Dual In-Line Package
- Fast Programming Time: 200 μs/bit TYP.
- Compatibility with: Intersil's IM5605/5625 (both in programming and as a ROM), Harris' HPROM HM-7640/7641 and Equivalent Devices (as a ROM).
- A.I.M. (Avalanche Induced Migration) Technology

<u>م م</u> 1	1		24	
A ₆ [2] A8
	3		22	D NC
A4 🗆	4		21	
A3 🗆	5	μPB	20	
A ₂ [6	405/	19	
Α1 🗆	7	425	18	
A ₀ [8		17	⊐ 0 ₈
0 ₁ 🗆	9		16	0 7
0 ₂ 🗆	10		15	D 0 ₆
0 ₃ [11		14	D 05
GND [12		13	

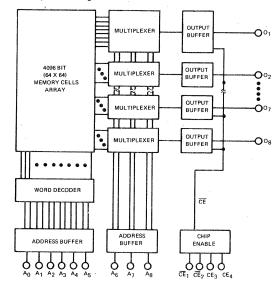
NC: No Connection

μPB405/425

OPERATION

Chip Enable logic is defined by:

CE1	CE2	CE3	CE4	CE'
0	0	1	1	0
All other	r combinatio	ons		1


Where: CE' = 0 denotes chip selected CE' = 1 denotes chip deselected

Programming

A logic one can be permanently programmed into a selected bit location in accordance with the programming procedures specified. First, the desired word is selected by the eight TTL address inputs. The four Chip Enable inputs must be set so that CE' is a logical one. Secondly, a train of high current programming pulses is applied to the desired output. After the sensed voltage indicates that the selected bit is in the logic one state, an additional pulse train is applied, and programming is complete.

Reading -

To read the memory, the four Chip Enable inputs must be set so that CE' is a logical zero. The outputs then correspond to the data programmed in the selected words. When the four Chip Enable inputs are set so that CE' becomes a logical one, all the outputs will be high (floating).

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature
Storage Temperature
All Output Voltages
All Input Voltages
Supply Voltage V _{CC} 0.5 to +7.0 Volts
Output Currents

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

μPB405/425

DC CHARACTERISTICS

AC CHARACTERISTICS

$\rm T_a$ = 0°C to +65°C, V_{CC} = 4.75V to 5.25V

PARAMETER	SYMBOL		LIMITS	5	UNIT	TEST CONDITIONS
FARAMETER	STMBUL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Input High Voltage	V _{IH}	2.0	,		V	
Input Low Voltage	V _{IL}		``	0.8	V	
Input High Current	, Чн			40	μA	VI = 2.7V
Input Low Current	-41			0.5	mA	V _I = 0.4V
Output Low Voltage	VOL			0.45	V	I _O = 16 mA
Output Leakage Current	I _{OFF1}			40	μA	V _O = 5.25V
Output Leakage Current	⁻¹ OFF2	40			μA	V _O = 0.4V
Input Clamp Voltage	-VIC			1.3	V	lj = -12 mA
Power Supply Current	'cc		120	160	mA	All Inputs Grounded
Output High Voltage	v _{он}	2.4			v	I _O = -2.4 mA
Output Short Circuit Current	-Isc	15		60	mA	V _O = 0V

NOTE: (1) Applicable to µPB425D only.

$$T_a = 25^{\circ}C, V_{CC} = 5.0V$$

			S 405-E	/425-E	LIP	AITS			TEST
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Address Access Time	t _{AA}			100		40	70	ns	
Chip Enable Access Time	tACE			70			35	ns	
Chip Enable Disable Time	^t DCE			70			35	ns	

Notes: 1 Output Load: See Figure 1.

Input Waveform: 0.0V for low level and 3.0V for high level, less than 10 ns for both rise and fall times.

③ Measurement References: 1.5V for both inputs and outputs.

(4) CL in Figure 1 includes jig and probe stray capacitances.

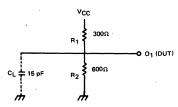
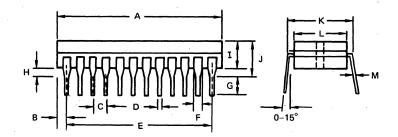



Figure 1

PACKAGE OUTLINE µPB405/425D

ITEM	MILLIMETERS	INCHES
A	33.5 MAX.	1.32 MAX.
8	2.78	0.11
c	2.54	0.1
D	0.46	0.018
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN.	0.1 MIN.
Н	0.5 MIN.	0.019 MIN.
I	4.58 MAX.	0.181 MAX.
J	5.08 MAX.	0.2 MAX.
к	15.24	0.6
L	13.5	0.53
м	0.25+0.10	0.01+0.004

μPB405/425

PROGRAMMING SPECIFICATION

It is imperative that this specification be rigorously observed in order to correctly program the μ PB405 and μ PB425. NEC will not accept responsibility for any device found to be defective if it were not programmed according to this specification.

A typical programming operation is performed by first sensing, then programming, then sensing again to see if the word to be programmed has reached the desired state.

Sensing is accomplished by forcing a 20 mA current into the selected location via the output. The μ PB405 and μ PB425 are disabled in accordance with the truth table on page 2. The sense measurement is to ensure that the voltage required to force this 20 mA current is less than the reference voltage. If this condition is satisfied, then that bit location is in the logic "1" (high) state.

Programming is accomplished by forcing a 200 mA current into the selected bit via the output. This current pulse is applied for 7.5 μ s and then the location is sensed before a second programming current pulse is applied. This process is continued until that location is altered to the "1" state. A bit is judged to be programmed when two successive sense readings 10 μ s apart with no intervening programming pulse, pass the limit. When this condition has been met, four additional pulses are applied and the pulse train, then the sense current is terminated.

CHARACTERISTIC	LIMIT	UNIT	NOTES
Ambient Temperature	25 ± 5	°c	
Programming Pulse			
Amplitude	200 ± 5%	mA	
Clamp Voltage	28 + 0% - 2%	Ý	
Ramp Rate (both in Rise and in Fall) Pulse Width	70 MAX. 7.5 ± 5%	V/µs µs	15V point/
Duty Cycle	70% MIN.		150Ω load.
Sense Current		1	1
Amplitude	20 ± 0.5	mA	
Clamp Voltage	28 + 0% - 2%	l v	
Ramp Rate	70 MAX.	V/µs	15V point/ 150Ω load.
Sense Current Interruption before and after address			
change	10 MIN.	μs	1
Programming V _{CC}	5.0 + 5% - 0%	v	
Maximum Sensed Voltage for programmed "1"	7.0 ± 0.1	v	
Delay from trailing edge of programming pulse before sensing output voltage	0.7 MIN.	μs	

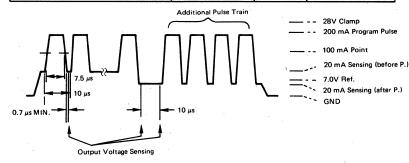


Figure 2. Typical Output Voltage Waveform

SP405/425-8-77-GY-CAT

μΡΒ406 μΡΒ406-Ε μΡΒ426 μΡΒ426-Ε

4096-BIT BIPOLAR TTL PROGRAMMABLE READ ONLY MEMORY

The μ PB406 and μ PB426 are high speed electrically programmable fully decoded 4096-bit TTL read only memories. On-chip address decoding, two chip enable inputs and open-collector/three-state outputs allow easy expansion of memory capacity. The μ PB406 and μ PB426 are fabricated with logic level zero (low); logic level one (high) can be electrically programmed into the selected bit locations. The same address inputs are used for both programming and reading.

- 1024 WORDS X 4 BITS Organization (Fully Decoded)
- TTL Interface
- Fast Read Access Time: 70 ns MAX. (406/426)
- Medium Power Consumption: 500 mW TYP.
- Two Chip Enable Inputs for Memory Expansion
- Open-Collector Output (μPB406, μPB406 E)/Three-State Outputs (μPB426, μPB426-E)
- Ceramic 18-Lead Dual In-Line Package
- Fast Programming Time: 200 µs/bit TYP.
- Compatibility with: Intersil's IM56S06/56S26 (both in programming and as a ROM), Harris' HPROM HM-7642/7643 and Equivalent Devices (as a ROM)
- A.I.M. (Avalanche Induced Migration) Technology

PIN CONFIGURATION

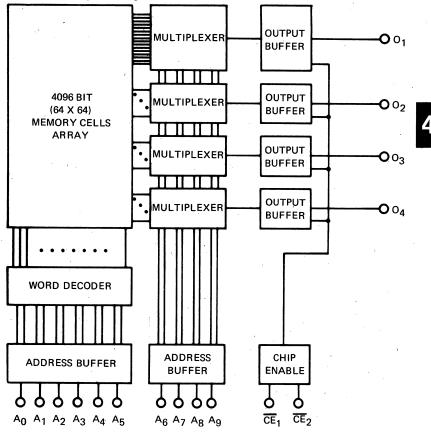
DESCRIPTION

FEATURES

^6 ⊈	1	18	⊐ ∨cc
A5	2	17	
A4	3	16	
^3□	4	μPB 15	A9 '
A0 C	5	406 / 14 426	
A1	6	13	
A2 🗆	7	12	
	8	11	D 04
GND	<i>,</i> 9	10	

μPB406/426

OPERATION


Programming

A logic one can be permanently programmed into a selected bit location by using special equipment (programmer). First, the desired word is selected by the ten address inputs in TTL levels. Either or both of the two chip enable inputs must be at a logic one (high). Secondly, a train of high current programming pulses is applied to the desired output. After the sensed voltage indicates that the selected bit is in the logic one state, an additional pulse train is applied, then is stopped.

Reading

To read the memory, both of the two chip enable inputs should be held at logic zero (low). The outputs then correspond to the data programmed in the selected words. When either or both of the two chip enable inputs are at logic one (high), all the outputs will be high (floating).

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature	-25° C to $+75^{\circ}$ C
Storage Temperature	-65° C to $+150^{\circ}$ C
All Output Voltages	-0.5 to +5.5 Volts
All Input Voltages	-0.5 to +5.5 Volts
Supply Voltage V _{CC}	-0.5 to +7.0 Volts
Output Currents	50 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$$T_a = 25^{\circ}C$$

μPB406/426

DC CHARACTERISTICS

$T_a = 0^{\circ}C$ to +65°C, $V_{CC} = 4.75V$ to 5.25V

PARAMETER	01/140.01		LIMIT	S	UNIT	TEST CONDITIONS
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	1231 CONDITIONS
Input High Voltage	V _{IH}	2.0			V	·
Input Low Voltage	VIL		~ ,	0.8	۷	
Input High Current	1 _{IL}			40	μA	V _I = 2.7V
Input Low Current	-1 _{1L}			0.5	mΑ	V ₁ = 0.4V
Output Low Voltage	VOL			0.45	V	IO = 16 mA
Output Leakage Current	I _{OFF1}			40 /	μA	V _O = 5.25V
Output Leakage Current	^{-I} OFF2	40			μA	V _O = 0.4V
Input Clamp Voltage	-VIC			1.3	v	lj = -12 mA
Power Supply Current	'cc		100	150	mA	All Inputs Grounded
Output High Voltage	v _{он}	2.4			v	l _O = -2.4 mA
Output Short Circuit Current	-Isc	15		60	mA	V ₀ = 0V

NOTE: 1 Applicable to #PB426D only.

 $T_a = 25^{\circ}C, V_{CC} = 5.0V$

		LIMIT	S 406-E	/426-E	LIM	ITS 406	/426		TEST
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Address Access Time	^t AA			100		40	70	ns	
Chip Enable Access Time	^t ACE			70			40	ns	
Chip Enable Disable Time	^t DCE			70			40	ns	

Notes:

 Output Load: See Figure 1.
 Input Waveform: 0.0V for log Input Waveform: 0.0V for low level and 3.0V for high level, less than 10 ns for both rise and fall times.

Measurement References: 1.5V for both inputs and outputs. 3

(4) CL in Figure 1 includes jig and probe stray capacitances.

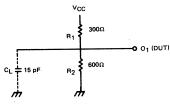
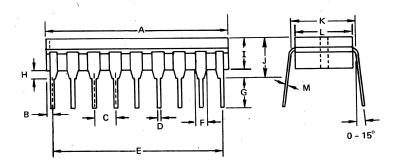



Figure 1

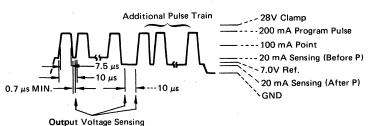
PACKAGE OUTLINE µPB406/426D

ITEM	MILLIMETERS	INCHES
А	23.2 MAX.	0.91 MAX.
В	1.44	0.055
с	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.05
G	2.5 MIN.	0.1 MIN.
н	0.5 MIN.	0.02 MIN.
I	4.6 MAX.	0.18 MAX.
J	5.1 MAX.	0.2 MAX.
к	7.62	0.3 ·
۴.	6.7	0.26
м	0.25	0.01

AC CHARACTERISTICS

μPB406/426

PROGRAMMING SPECIFICATION


It is imperative that this specification be rigorously observed in order to correctly program the μ PB406 and μ PB426. NEC will not accept responsibility for any device found to be defective if it were not programmed according to this specification.

A typical programming operation is performed by first sensing, then programming, then sensing again to see if the word to be programmed has reached the desired state. Either or both of the two chip enable inputs must be at a logic one (high).

Sensing is accomplished by forcing a 20 mA current into the selected location via the output. The sense measurement is to ensure that the voltage required to force this 20 mA current is less than the reference voltage. If this condition is satisfied, then that bit location is in the logic "1" (high) state.

Programming is accomplished by forcing a 200 mA current into the selected bit via the output. This current pulse is applied for 7.5 μ s and then the location is sensed before a second programming current pulse is applied. This process is continued until that location is altered to the "1" state. A bit is judged to be programmed when two successive sense readings 10 μ s apart with no intervening programming pulse, pass the limit. When this condition has been met, four additional pulses are applied and the pulse train, then the sense current is terminated.

CHARACTERISTIC	LIMIT	UNIT	NOTES
Ambient Temperature	25 ± 5	°c	
Programming Pulse			
Amplitude	200 ± 5%	mA	
Clamp Voltage	28 + 0% - 2%	v	
Ramp Rate (both in Rise and in Fall) Pulse Width	70 MAX. 7.5 ± 5%	V/μs μs	15V point/
Duty Cycle	70% MIN.		150Ω load.
Sense Current		,	
Amplitude	20 ± 0.5	mA	
Clamp Voltage	28 + 0% - 2%	v	
Ramp Rate	70 MAX.	V/µs	15V point/ 150Ω load.
Sense Current Interruption before and after address			8
change	10 MIN.	μs	
Programming V _{CC}	5.0 + 5% - 0%	V	
Maximum Sensed Voltage for programmed "1"	7.0 ± 0.1	v	
Delay from trailing edge of programming pulse before sensing output voltage	0.7 MIN.	μs	

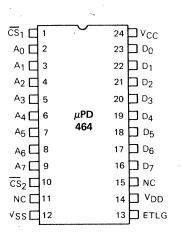
acpar i ontago conting

Figure 2 – Typical Output Voltage Waveform

SP406/426-8-77-GY-CAT

FULLY DECODED 2048 BIT MASK PROGRAMMABLE READ ONLY MEMORY

The μ PD464 is a 2048 bit (256 x 8) mask programmable Read Only Memory. It is pin-for-pin compatible with NEC's Electrically Eraseable Programmable ROM (EEPROM), the μ PD454. The μ PD464 features high speed operation, making it suitable for large volume microcomputer memory applications that used the μ PD464 for initial prototyping.


All inputs and outputs of the μ PD464 are TTL compatible. Two chip select pins $(\overline{CS}_1, \overline{CS}_2)$ are provided for selection of an individual device in systems with OR-tied outputs. Two power supplies, +12 volts and +5 volts, are required.

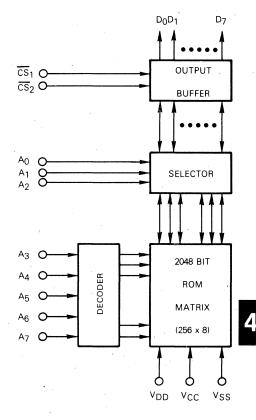
The μ PD464 is fabricated using NEC's N-channel MOS silicon gate process, providing excellent contamination protection. This process enables high performance, highly reliable MOS circuits to be produced. The μ PD464 is packaged in a 24-pin ceramic or plastic dual-in-line package.

- Fully Decoded, 256 Words x 8 Bits Organization
- Access Time 450 ns Max.
- Static, No Clock Required

MICRO

- Input/Output TTL Compatible
- Three-State Output, OR-Tie Capability
- N-Channel MOS Fabrication
- Two Power Supplies, +12V and +5V
- 24 Pin Ceramic or Plastic DIP

DESCRIPTION


µ PD464

FEATURES

PIN CONFIGURATION

μ PD464

BLOCK DIAGRAM

PIN IDENTIFICATION

ABSOLUTE MAXIMUM RATINGS*

PIN			
NO.	SYMBOL	NAME	FUNCTION
1	$\overline{cs}_1^{\text{(I)}}$	CHIP SELECT 1	Chip selection, active low
2–9	A ₀ -A ₇	ADDRESS BUS	Memory address
10	$\overline{cs}_2^{(1)}$	CHIP SELECT 2	Chip selection, active low
11	NC		No connection
12-13	V _{SS}	GROUND '	Ground Reference
14	V _{DD}	+12V Power Supply	Power Supply
15	NC		No connection
16-23	D7-D0	Data output	Data Output
24	v _{cc}	+5V Power Supply	Power Supply

Note: 1) Chip is selected only when both $\overline{\text{CS}}_1$ and $\overline{\text{CS}}_2$ are low.

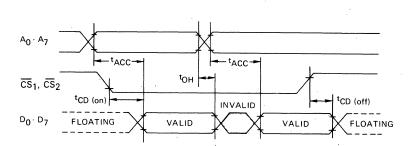
Operating Temperature
Storage Temperature
All Output Voltages0.3 to +7 Volts
All Input Voltages
Supply Voltage V _{DD} · · · · · · · · · · · · · · · · · ·
Supply Voltage V _{CC}

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

$T_a = -10^{\circ}C \text{ to } +70^{\circ}C; V_{DD} = +12V \pm 5\%; V_{CC} = +5V \pm 5\%; V_{SS} = 0V$

		ŀ	LIMITS			
PARAMETER	SYMBOL	MIN.	ΤYP.	MAX.	UNIT	TEST CONDITIONS
Input High Voltage	v _{iH}	+2.4		v _{cc}	v	
Input Low Voltage	VIL	-0.3		+ 0.7	v	
Output High Voltage	v _{он}	+3.5			v	I _{OH} = -1.0 mA
Output Low Voltage	VOL			0.5	v	l _{OL} = +1.7 mA
Input Leakage Current High	^I LIH	;		+10	μA	V ₁ = +2.4V
Input Leakage Current Low	^I LIL			- 10	μA	V ₁ = +0.7V
Output Leakage Current High	LOH			+10	μA	V _O = +3.5V
Output Leakage Current Low	LOL			-10	μA	V _O = +0.4V
V _{DD} Supply Current	^I DD	· ,	35	55	mA	
V _{CC} Supply Current	^I cc		20	30	mA	


CAPACITANCE

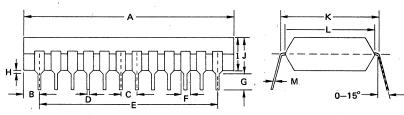
 $T_a = -10^{\circ}C$ to $+70^{\circ}C$; $V_{DD} = +12V \pm 5\%$; $V_{CC} = +5V \pm 5\%$; $V_{SS} = 0V$

PARAMETER	SYMBOL	LIMITS				TEST CONDITIONS		
(ANAME IEN	STWDOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS		
Input Capacitance	c _{IN}		6	15	pF	f = 1 MHz		
Output Capacitance	^С оит		8	15	pF	f = 1 MHz		

 $T_a = -10^{\circ}C$ to $+70^{\circ}C$; $V_{DD} = +12V \pm 5\%$; $V_{CC} = +5V \pm 5\%$; $V_{SS} = .0V$

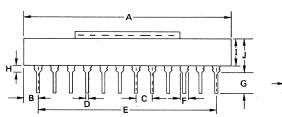
[LUMITO			· · · · · · · · · · · · · · · · · · ·
PARAMETER	SYMBOL		LIMITS		UNIT	TEST CONDITIONS
	, NIDOL	MIN.	TYP.	MAX.	- ONT	TEST CONDITIONS
Access Time	tACC			450	ns	,
CS to Output On Delay	t _{CD} (on)			250	ņs	1 TTL + 100 pF
CS to Output Off Delay	^t CD ^(off)	0		250	ns	-
Output Hold Time	^t OH	20			ns	

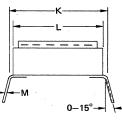
TIMING WAVEFORM


AC CHARACTERISTICS

110

には、大阪合い


μ PD464


PACKAGE OUTLINE µPD464C/D

μPD464C (Plastic)

ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
В	2.53	0.1
С	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
Ę	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
н	0.5 MIN	0.02 MIN
1	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
ĸ	15.24	0.6
. L	13.2	0.52
м	0.25 ^{+0.10} -0.05	0.01 ^{+0.004} -0.0019

μΡD464D (Ceramic)

ITEM	MILLIMETERS	INCHES
A	32.5 MAX	1.28 MAX
В	2.28	0.09
С	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.20 MIN	0.047 MIN
G	3.2 MIN	0.126 MIN
Н	1.0 MIN	0.04 MIN
I	4.2 MAX	0.165 MAX
.ì	5.2 MAX	0.205 MAX
к	15.24	0.6
L	13.9	0.55
м	0.30 ± 0.1	0.012 ± 0.004

SP464-8-77-GY-CAT

NEC MICROBINES, MA.

FULLY DECODED 8192 BIT MASK **PROGRAMMABLE READ ONLY MEMORY**

The NEC μ PD2308 is a high speed 8,192 bit mask programmable Read Only Memory organized as 1024 words by 8 bits. The µPD2308 is fabricated with N-channel MOS technology.

Two Chip Selects are provided $-\overline{CS}_1$ which is negative true, and CS_2/\overline{CS}_2 which may be programmed either negative or positive true at the mask level.

1024 Words by 8 bits Organization •

Fast Access - 450 ns max

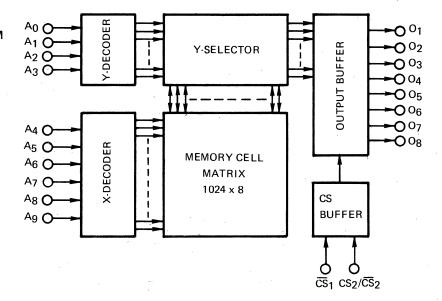
- Two Chip Select Inputs for Easy Memory Expansion
- TTL Compatible All Inputs and Outputs
- Three State Output OR-Tie Capability
- Fully Decoded
- Standard Power Supplies +12V, ±5V
- 24 Pin Plastic or Ceramic Dual-in-Line Package
- Pin Compatible with INTEL 8308

Α7	Ц	1		24	□vcc
A6	Ц	2		23	A8
Α5	d	3		22	D A9
Α4		4		21	
A3	d	5		20	
A ₂	Ц	6	μPD	19	
A1	Ц	7	2308	18	$\Box cs_2/\overline{cs}_2$
A ₀		8		17	08
01		9		16	07
02		10		15	□ °6
03	Ц	11		14	□ o ₅
v _{ss}	Ц	12		13	04
	•				

PIN NAMES

A0 - A9	Address Inputs
CS ₁	Chip Select 1
CS ₂ /CS ₂	Chip Select 2
01 - 08	Data Outputs

DESCRIPTION


FEATURES

PIN CONFIGURATION

μPD2308

μPD2308

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature
Storage Temperature
All Input Voltages
All Output Voltages
Supply Voltage V _{DD} -1 to +15 Volts ①
Supply Voltage V _{CC} $1 \text{ to } +7 \text{ Volts}$
Supply Voltage VBB2 to -8 Volts
Note: (1) $V_{BB} = -5.25$ Volts

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$$T_{a} = 25^{\circ}C$$

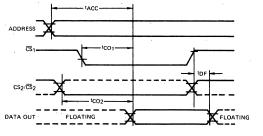
DC CHARACTERISTICS

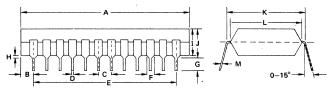
 $T_a = -10^{\circ}C$ to +70°C, $V_{DD} = +12V\pm5\%$, $V_{CC} = +5V\pm5\%$, $V_{BB} = -5V\pm5\%$, $V_{SS} = 0V$

DADAMETER			LIMITS			
PARAMETER	SYMBOL	MIN	түр	MAX	UNIT	TEST CONDITIONS
Input Leakage Current (All Input Pins)	111			· ±10	μA	V ₁ = 0 to 5.25V
Output Leakage Current	LO			±10	μA	V _O = 0-5.25V Chip Deselected
Input Low Voltage	VIL	V _{SS} 1		0.8	v	
Input High Voltage	ViH	2.4		V _{CC} + 1.0	v	
Output Low Voltage	VOL			0.45	v	I _{OL} = 2 mA
Output High Voltage	VOH1	2.4			v	I _{OH} = -4 mA
Output High Voltage	VOH2	3.7			v	IOH = -1 mA
Power Supply Current V _{CC}	'cc		14	30	mA	·
Power Supply Current VDD	IDD		15	30	mA	
Power Supply Current V _{BB}	IBB			-1	mA	
Power Dissipation	PD			545	mW	

Note: Typical values are for $T_a = 25^{\circ}C$ and nominal supply voltage.

CAPACITANCE

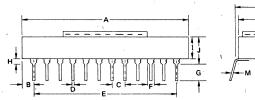

$T_a = 25^{\circ}C; V_{BB} = -5V; f = 1 MHz$							
			LIMITS				
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS	
Input Capacitance	CIN			6	pF	V _{DD} , V _{CC} and all other pins	
Output Capacitance	COUT			12	pF	tiếd to V _{SS}	


μPD2308

$T_a = -10^{\circ}$ C to +70°C, $V_{DD} = +12V\pm5\%$, $V_{CC} = +5V\pm5\%$, $V_{BB} = -5V\pm5\%$, $V_{SS} = 0V$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
PARAMETER	STMBOL	MIN	TYP	MAX	UNIT	JEST CONDITIONS
Address to Output Delay Time	^t ACC		250	450	. AS	tT = tR = tF = 20 ns VREF = 2.4V, 0.8V
Chip Select 1 to Output Delay Time	tCO1		125	200	ns	V _{IN} = 0.65V, 3.3V LOAD = 1 TTL GATE
Chip Select 2 to Output Delay Time	tCO2		140	220	ns	C _L = 100 pF
Chip Deselect to Output Float Time	^t DF		140	220	ns	х.

Note: Typical values are for $T_a = 25^{\circ}C$ and nominal supply voltage.



AC CHARACTERISTICS

TIMING WAVEFORMS

PACKAGE OUTLINE μPD2308C/D

μPD2308C (Plastic)							
ITEM	MILLIMETERS	INCHES					
Α	33 MAX	1.3 MAX					
в	2.53	0.1					
С	2.54	0.1					
D	0.5 ± 0.1	0.02 ± 0.004					
E	27.94	1.1					
F	1.5	0.059					
G	2.54 MIN	0.1 MIN					
н	0.5 MIN	0.02 MIN					
1	5.22 MAX	0.205 MAX					
J	5.72 MAX	0.225 MAX					
к	15.24	0.6					
. L	13.2	0.52					
м	0.25 +0.10 -0.05	0.01 +0.004 -0.0019					

0-15°--

µPD2308D (Ceramic)

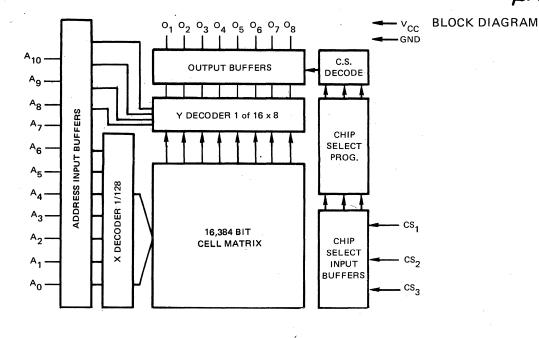
ITEM	MILLIMETERS	INCHES		
A	32.5 MAX	1.28 MAX		
Β.	2.28	0.09		
С	2.54	0.1 .		
D	0.5 ± 0.1	0.02 ± 0.004		
E	27.94	1.1		
F	1.20 MIN	0.047 MIN		
G	3.2 MIN	0.126 MIN		
н	1.0 MIN	. 0.04 MIN		
1	4.2 MAX	0.165 MAX		
J	5.2 MAX	0.205 MAX		
к	15.24	0.6		
L	13.9	0.55		
м	0.30 ± 0.1	0.012 ± 0.004		

FULLY DECODED 16,384 BIT MASK PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION

The NEC μ PD2316A is a high speed 16,384 bit mask programmable Read Only Memory organized as 2048 words by 8 bits. The μ PD2316A is fabricated with N-channel MOS technology.

The inputs and outputs are fully TTL compatible. The device operates with a single +5V power supply. The three chip select inputs are programmable. Any combination of active high or low level chip select inputs can be defined and desired chip select code is fixed during the masking process.


FEATURES

- Access Time 450 ns Max
- 2048 Words x 8 Bits Organization
- Single +5V Power Supply Voltage
- Directly TTL Compatible All Inputs and Outputs
- Three Programmable Chip Select Inputs for Easy Memory Expansion
- Three-State Output OR-Tie Capability
- On Chip Address Fully Decoded
- All Inputs Protected Against Static Charge
- Direct Replacement for Intel 2316A/8316A
- Available in 24-pin plastic or ceramic package.

PIN CONFIGURATION

A7	q	1	•	24		VCC
Α8	Ц	2		23		0 ₁
Ag	Ц	3		22	þ	02
A10	d	4		21		0 ₃
A ₀	Ц	5		20	Þ	04
A1	Ц	6	μPD	19	白	0 ₅
Α2		7	2316A	18	þ	0 ₆
Α3		8		17	þ	07
Α4		9		16	þ	0 ₈
Α5		10		15	þ	CS1
A6		11		14	þ	cs ₂
GND		12	-	13	þ	cs3

PIN NAMES				
A0 - A10	Address Inputs			
0 ₁ – 0 ₈	Data Outputs			
$CS_1 - CS_2$	Programmable Chip Select Inputs			

ABSOLUTE MAXIMUM RATINGS*

Note: ① With Respect to Ground.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

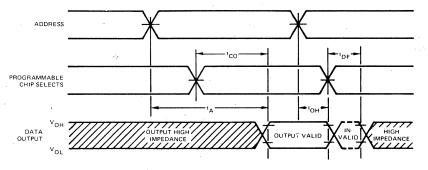
たがあるのない

$T_a = -10^{\circ}$	C to +70° C	; V _{CC} = +5 :	± 5% unless	otherwise no	ted.

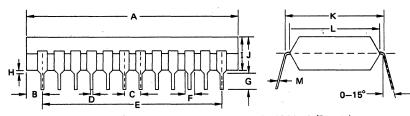
DADAMETER	ovinci	LIMITS				
PARAMETER	SYMBOL	MIN	ТҮР 🛈	MAX	UNIT	TEST CONDITIONS
Input Load Current (All Input Pins)	Π <u>ε</u> ί της		1	. 10	μA	V _{IN} = 0 to 5.25V
Output Leakage Current	LOH			10	μA	CS = 2.2V (Deselecțed) VOUT = VCC
Output Leakage Current	LOL			-10	μA	CS = 2.2V (Deselected) VOUT = 0V
Power Supply Current	ICC			104	mA	All inputs 5.25V Data Out Open
Input "Low" Voltage	VIL	-0.5		0.8	V	
Input "High" Voltage	⊻ін	2.0		V _{CC} +1.0V	V	
Output "Low" Voltage	VOL			0.45	v	i _{OL} = 2.0 mA
Output "High" Voltage	∨он	2.2			V	I _{OH} = 200µА

Note: (1) Typical values for $T_a = 25^{\circ}C$ and nominal supply voltage.

DC CHARACTERISTICS

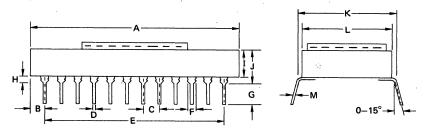

CAPACITANCE T_a = 25°C; f = 1 MHz

DADAMETED	OVMDOL	L	IMITS		UNIT	LIAUT			LIAUT										LIAUT	UNIT	LIAUT	LIAUT	TEST CONDITIONS
PARAMETER	STIVIDUL	MIN	ТҮР	MAX		TEST CONDITIONS																	
Input Capacitance	CIN			10	pf	All Pins Except Pin Under Test Tied to AC Ground																	
Output Capacitance	COUT	,		15	pf	All Pins Except Pin Under Test Tied to AC Ground																	


AC CHARACTERISTICS $T_a = -10^{\circ}$ C to $+70^{\circ}$ C; $V_{CC} = +5V \pm 5\%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			LIMITS		LIMITS		LIMITS		TEST CONDITIONS
PARAMETER	STINDUL	MIN	TYP	MAX	UNIT	TEST CONDITIONS					
Address to Output Delay Time	tΑ	,		450	ns	tT = t _r = t _f = 20 ns V _{ref in} = 1.5V					
Chip Select to Output Enable Delay Time	tCO			150	ns	V _{ref out} = .45, 2.2V Output LOAD = 1 TTL					
Chip Deselect to Out- put Data Float Delay Time	^t DF	0	-	150	ns	GATE C _L = 100 pf					
Output Hold Time	tон	20			ns						

TIMING WAVEFORMS



PACKAGE OUTLINE µPD2316AC/D

µPD2316AC (Plastic)

ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
В	2.53	0.1
С	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
н	0.5 MIN	0.02 MIN
1 -	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
к	15.24	0.6
L	13.2	0.52
м	0.25 ^{+0.10} -0.05	0.01 ^{+0.004} -0.0019

µPD2316AD (Ceramic)

ITEM	MILLIMETERS	INCHES
A	32.5 MAX	1.28 MAX
В	2.28	0.09 .
C	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.20 MIN	0.047 MIN
G	3.2 MIN	0.126 MIN
Н	1.0 MIN	0.04 MIN
1	4.2 MAX	0.165 MAX
J	5.2 MAX	0.205 MAX
к	15.24	0.6
Ĺ	13.9	0.55
м	0.30 ± 0.1	0.012 ± 0.004

SP2316A-8-77-GY-CAT

FULLY DECODED 32,768 BIT MASK PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION

The NEC μ PD2332 is a Fully Decoded 32,768 Bit Mask Programmable Read-Only Memory organized as 4,096 Words by 8 Bits. The μ PD2332 has two chip select inputs and the combination of "High"/"Low" levels of these inputs is mask-programmable.

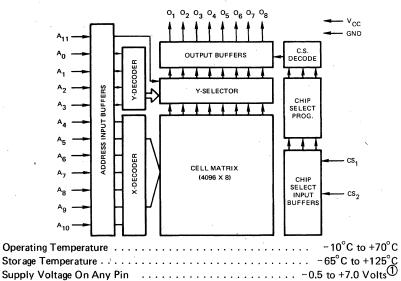
The μ PD2332 is fabricated with sophisticated N-channel MOS technology and features high speed and TTL compatibility for simple interface with bipolar circuits.

FEATURES

- 4096 Words x 8 Bits Organization
- Directly TTL Compatible All Inputs and Outputs
- Fully Static (No Clock or Refresh Required)
- Single +5V Power Supply
- High Speed Access Time 450 ns Max.
- Three-State Output OR-Tie Capability
- Two Programmable Chip Select Inputs for Easy Memory Expansion
- N-Channel MOS Technology
- Pin Compatible with TI TMS4732
- 24 Pin Plastic or Ceramic Dual-in-Line Package

PIN CONFIGURATION

I A ₇ [1	U	24	□v _{cc}
∧ ₆ [2		23	⊐ ^ ₈
۹ ₅ [3		22	□ ^ ₉
A ₄ [4		21	□ cs ₂
А ₃ [5		20	⊐ cs ₁
A ₂ [6	μPD	19	
A ₁ [7	2332	18	A11
∧ ₀ [8		17	□ ° ⁸
0 ₁ [9		16	
0 ₂ [10		15	
0 ₃ [11	,	14	□ o₅
' gnd [12		13	⊨∘₄
				-


PIN NAMES					
A ₀ – A ₁₁	Address Inputs				
0 ₁ -0 ₈	Data Outputs				
$CS_1 - CS_2$	Programmable Chip Select Inputs				

When ordering the $\mu\text{PD2332},$ specify a chip select combination of CS_1 and CS_2 from the following.

cs ₂	cs ₁
0	0
0	1
1	0
1	1
	·

μPD2332

ABSOLUTE MAXIMUM RATINGS*

Note: 1) With Respect to Ground

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

 $T_a = -10^{\circ}$ C to +70°C; $V_{CC} = +5V \pm 5\%$ unless otherwise specified

			LIMI		•	· ·
PARAMETER	SYMBOL	MIN.	түр.1	MAX.	UNIT	TEST CONDITIONS
Input Load Current (All Input Pins)	LI			10	μA	
Output Leakage Current	^{- I} LOH			+10	μA	CS = 2.2V (Deselected) $V_{OUT} = V_{CC}$
Output Leakage Current	LOL			- 10	μA	CS = 2.2V (Deselected) $V_{OUT} = OV$
Power Supply Current	^I cc		55	110	mA	All inputs 5.25V Data Out Open
Input "Low" Voltage	VIL	~0.5		0.8	v	
Input "High" Voltage	VIH	2.0		V _{CC} + 1.0V	v	
Output "Low" Voltage	V _{OL}			0.45	v	I _{OL} = 2.0 mA
Output "High" Voltage	v _{он}	2.2			V	^I OH ^{= -100} μA

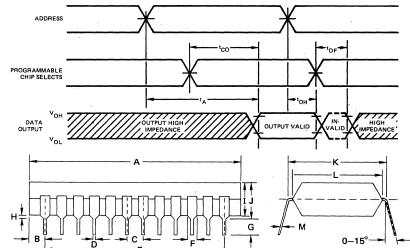
Note: ① Typical Values for $T_a = 25^{\circ}C$ and nominal supply voltages.

 $T_{a} = 25^{\circ}C; f = 1 MHz$

		LIMITS				
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Input Capacitance	c _{IN}	,		10	pF	All Pins Except Pin Under Test Tied to AC Ground
Output Capacitance	с _{оит}		T	15	pF	All Pins Except Pin Under Test Tied to AC Ground

 $T_a = -10^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = +5V \pm 5\%$ unless otherwise specified.

			LIMITS			
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Address to Output Delay Time	^t A	,	·	450	ns	t _T = t _r = t _f = 20 ns
Chip Select to Output Enable Delay Time	^t CO			150	ns	C _L = 100 pF
Chip Deselect to Output Data Float Delay Time	tDF	0		150	ns	Load = ITTL gate
Output Hold Time	tон	20			ns	V _{IN} = 0.8 to 2V
						V _{ref} Input = 1.5V
						V _{ref} Output = 0.45/2.2V

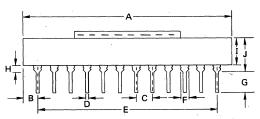

DC CHARACTERISTICS

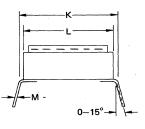
CAPACITANCE

AC CHARACTERISTICS

μPD2332

TIMING WAVEFORMS




PACKAGE OUTLINE µPD2332C/D

F

ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
С	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
Ε	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
н	0.5 MIN	0.02 MIN
1	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
к	15.24	0.6
Ļ	13.2	0.52
м	0.25 +0.10 -0.05	0.01 ^{+0.004} -0.0019

	μPD2332D (Ceramic)						
ITEM	MILLIMETERS	INCHES					
А	32.5 MAX	1.28 MAX					
В	2.28	0.09					
С	2.54	0.1					
D .	0.5 ± 0.1	0.02 ± 0.004					
E	27.94	1.1					
F	1.20 MIN	0.047 MIN					
G	3.2 MIN	0.126 MIN					
н	1.0 MIN	0.04 MIN					
1	4.2 MAX	0.165 MAX					
ſ	5.2 MAX	0.205 MAX					
к	15.24	0.6					
L	13.9	0.55					
м	0.30 ± 0.1	0.012 ± 0.004					

SP2332-8-77-GY-CAT 121

CUSTOM MASK ROM DEVICES

FLEXIBILITY ON MASK FORMAT

NEC Microcomputers, Inc. is able to accept mask patterns for its custom mask ROM devices in a variety of formats which suit different customer needs without any loss in turnaround time. Among the formats included are:

Sample ROMs

Prototype PROMs (2708's, 1702's, etc.)

- BNPF Paper Tapes
- HEX Paper Tapes
- Cassette Tapes
- Timesharing Files

SPEED OF COMPUTERIZED LINK WITH FACTORY

Earth satellites and the world-wide GE Mark III timesharing system provide the reliable and instant communication of ROM mask patterns to factory. Likewise, patterns may be returned for verification the same day. Customers who are GE-TSS users may entirely avoid format problems by transferring files directly.

RELIABILITY OF VERIFICATION PROCEDURES

Thoroughly tested verification procedures protect against unnecessary delays or costly mistakes. NEC Microcomputers, Inc. has the technical staff and facilities to return ROM mask patterns to the customer in the format most convenient to him. Sample devices may also be provided prior to full production delivery to assure that the device is entirely satisfactory before a production commitment.

NEC MICROCOMPUTORS, IIIC.

4K BIT DYNAMIC RAM

DESCRIPTION

The NEC μ PD414A is a 4096 words by 1 bit dynamic Random Access Memory fabricated with N-channel MOS technology. It features high performance, low power, and 16 pin packaging for high system bit density. The 12 bit address is multiplexed into the chip in two 6 bit halves. Flexible I/O control allows common or separate I/O data busses.

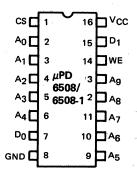
	PIN CONFIGURATION
FEATURES	
 Four speeds: 300 ns (μPD414A) 250 ns (μPD414A-1) 	
200 ns (μPD414A-1) 200 ns (μPD414A-2)	
150 ns (μPD414A-3) • ±10% Supply Tolerance	
Gated CAS Operation	$\begin{array}{c c} A_0 & 5 & 12 & A_3 \\ \hline A_1 & 6 & 11 & A_4 \end{array}$
Latched Output	
Three State Output Fully TTL Compatible	
Replacement for 4027 Type Devices	

NEC MICROcomputers, inc.

PRELIMINARY
μΡD6508 μPD6508-1

5

1K (1024x1) STATIC CMOS RAM


DESCRIPTION

The NEC μ PD6508/6508-1 are high speed, low power, silicon gate CMOS RAMs organized as 1024 words by 1 bit. It features extremely low power requirements and data retention to +3 volts V_{CC}.

FEATURES

- Extremely Low Power Operation
- High Speed 250 ns Max (µPD6508-1)
- TTL Compatible, All Inputs and Outputs
- Static Operation
- On Chip Register Address
- Replacement for 5608 Type Devices

PIN CONFIGURATION

4K (1024x4) STATIC RAM

DESCRIPTION

NEC MCCOOMPUTERS, INC.

The NEC μ PD2114 is a 4096 bit, fully static Random Access Memory, organized as 1024 words by 4 bits. It is fabricated with N-channel silicon gate technology and is housed in an 18 pin package for high system bit densities.

PIN CONFIGURATION

FEATURES	A6 [1 A5 [2 A4 [3	18 17 16] Vcc] A ₇] A8
 High Density 18 Pin Package Completely Static Directly TTL Compatible – All Inputs and Outputs 	A3 🗖 4	μ PD ¹⁵ 5 2114 14] A ₉] I/O ₁] I/O ₂
 Single +5V Supply Low Operating Power - 0.06 mW/Bit Typ Access Time - 250 ns Typical 		3 11] 1/0 ₃] 1/0 ₄] WE

NEC MCCOUNDERS, Mag.

PRELIMINARY

μPD2114

4096 BIT STATIC BIPOLAR RAM

DESCRIPTION

The NEC μ PB2400 and μ PB2401 are static, Random Access Memories organized as 4096 words by 1 bit. The devices feature operation from a single +5 volt supply, and are fully TTL compatible. Fast data out disable time allows a common I/O data bus structure.

FEATURES

- 4096 Words x 1 Bit Organization
- Fast Read and Write Cycle 75 ns Typ
- Low Power Operation 500 mW Typ
- Single +5 Volt Supply
- 18 Pin Cerdip Package
- Latched Data Outputs
- Three State (µPB2401) or Open Collector (µPB2400) Output
- Replacement for 74S400/401

PIN CONFIGURATION

			-	
_^0 □	1	. ~	18	□vcc
A1 🗖	2		17	A11
A2 □	3		16	A10
^3 □	4	μ ΡΒ 2400/	,15	A9
A4 □	5	2400/	14	A8
A5 🗖	6_		13	A7.
D0 🗖	7		12	
R/₩	8		11	D DI
	9		10	
	-		NOV DR	

4096 \times 1 STATIC NMOS RAM

DESCRIPTION

The NEC μ PD4104 is a high speed 4096 bit Static RAM organized as 4096 words by 1 bit. The use of static storage circuitry eliminates the need for refresh while the dynamic control circuitry provides substantially lower power dissipation than fully static types.

FEATURES

- Fast Access Time 200 ns
- High System Density 18 Pin Package
- Fully TTL Compatible All Inputs and Outputs
- Single +5V Supply

PIN CONFIGURATION

A0 🗖	1	~	18	
A1 🗖	2		17	A11
^4 □	3		16	A 10
A5	4	μPD	15	A9
^2 C	5	4104	14	
^3 □	6		13	
	7		12	□ ^6
	8		11	
∨ss 🗆	9		10	<u>] CE</u>

8192 BIT BIPOLAR TTL PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION

NEC MICROMOUTERS, Mc.

The NEC μ PB408 and μ PB428 are high speed, electrically programmable, 8192 bit, TTL, Read Only Memories. Three chip enable inputs and three state (μ PB428) or open collector (μ PB408) outputs allow OR-tying outputs for ease of memory expansion. The devices are fabricated with logic level zero (low); logic level one (high) can be electrically programmed into the desired bit locations.

PIN CONFIGURATION

	A7 1	24 🛛 Vcc
· · · · · ·	A6 🗖 2	23 🗖 A8
	A5 🗖 3	22 🗖 A9
FEATURES	A4 🗖 4	
• 1024 Words x 8 Bits Organization	A3□ 5 μPB	20 CE2
Fast Access Time - 85 ns Max	A2 6 408/	19 DCE3
 Three State (µPB428) or Open Collector 	• A1 🗖 7 428	18 🗍 CE4
(µPB408) Outputs	A0 🗖 8	17 🗖 08
 Replacement for 6380/6381 Type Devices 	01 🗖 9	16 07
	0 ₂ □10	15 06
	O ₃ 🗖 ¹¹	14 05
		13 04

NEC MICTOCOMPUTERS, INC.

⁰ 4	
PRELOMINABY	1
DR/27	,

8192 BIT BIPOLAR TTL PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION

ないたちにも

The NEC μ PB427 is a high speed, electrically programmable, 8192 bit, TTL, Read Only Memory. Three-state outputs and a chip enable input allow easy expansion of memory capacity. The μ PB427 is fabricated with logic level zero (low); logic level one (high) can be electrically programmed into the desired bit locations.

PIN CONFIGURATION

A7 □	1	~~~	24	□vcc
^6 □	2		23	A 8
A5 🗖	3		22	_ A9_
^4□	4		21	DNC
^3□	5		20	DCE
A2	6	μΡΒ	19	DINC
A1 🗖	7	427	18	PRG/GND
A0	8		17	08
01 □	9		16	07
⁰2□	10		15	D °6
03□	11		<u>1</u> 4	□ 05
GND 🗖	12		1.3	D 04

FEATURES

- 1024 Words x 8 Bits Organization
- Fast Read Access Time 120 ns Max
- Power Switching 750 mW Max Selected
 - 350 mW Max Unselected
- Three State Outputs
- Replacement for 2708 Type Devices as a ROM

PRELIMINARY µPD2716

16K ULTRAVIOLET ERASABLE PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION

The NEC μ PD2716 is a 16,384 bit ultraviolet erasable and electrically programmable Read Only Memory organized as 2048 words by 8 bits. Its 450 ns access time and single +5 volt supply make it ideal for microprocessor applications.

	PIN CONFIGU	RATION
	A8 1 A7 2	24 VCC 23 A8
FEATURES	A6 🗌 3 A5 🗖 4	22 A9
 Single +5 Volt Supply (Read Mode) Simple Programming 	A4 [] 5 A3 [] 6 μPD	20 CS 19 A10
 Inputs and Outputs TTL Compatible in Read and Program Mode 	A2 7 A1 8	18 PD/PGM
Low Power - 525 mW Max Active	0₀ ☐ 9 0₁ ☐ 10	16 0 ₆ 15 0 ₅
- 132 mW Max Standby		

NEC MICOUNNELS, and

PRELIMINARY µPD2316E

5

16K (2048x8) MASK PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION

The NEC μ PD2316E is a high speed 16,384 bit mask programmable Read Only Memory organized as 2148 words by 8 bits. All inputs and outputs are fully TTL compatible. These devices operate with a single +5V supply. The three chip select inputs are programmable; any combination of active high or low level chip select inputs can be defined and fixed during the masking process.

PIN CONFIGURATION

	A7 🗖 1	U.	24 🖵 Vcc	
	Á6□ 2		23 🗖 🗛	
FEATURES	A5 🖸 3		22 D A9	
Access Time - 450 ns Max	∧₄◘₄		21 CS3	
2048 Words x 8 Bits Organization	A3 🗆 5			
Single +5V Supply	A2 6	μPD 2316E	19 2 410	
Directly TTL Compatible	A1 🛛 7			
Three Programmable Chip Selects				
 Three State Outputs — OR-Tie Capabilities 			16 🛛 D ₆ 15 🗖 D ₅	
 Direct Replacement for 2316E Type Devices 				
. \				

.

NEC MICTOCOMPUTERS, INC.

MICROCOMPUTER INDEX

μ COM-4					٢																			
μCOM-4 Processors																						PĄ	١G	Е
μPD546	÷ .		 			•			•	 			• •						 •		• •	 .1	3	3
μPD547																								
µPD548			 																			 .1	3	3
µPD550			 						•	 											• •	 .1	3	4
µPD555	•		 						•	 								• •	 		• •	 .1	3	6
µPD556	• •		 						•	 												 .1	3	6

μCOM-8 Processors

ocessors	•	
μPD8080AF		37
uPD8080A		51
μΡΒ8228/8238		70

Peripherals

-	μPD371				• • •			.																	.175
	µPD372																								.182
																									.189
																									.196
																									.200
																									.205
	µPB8216/	8226	3																						.211
	µPD8251																								.215
	uPD8255																								.231
	μPD8257																								
	μΡΟ8257	• • •	• • • •	•••	•••	•	•••	•••	••	• •	•	• •	•••	• •	•	• •	•	•••	•	•••	•	•••	•	•••	.230
New	Products																								
																									.246
	μPD8255																								
	µPD8259	• • •	• • • •	•••	•••	••	•••	•••	•••	• •	•	• • •	•••	• •	•	•••	•	•••	•	•••	•	• •	•	• •	.247
Νοω	Families																								
INCV	μPD8085																	,							240
	μΡΟ8085			•••	•••	•••	•.• •	•••	•••	• •	•	••	•••	• •	•	•••	•	•••	•	• •	•	•••	•	•••	.240
	µPD8155	/815	6	•••	•••	•.•	•••	•••	• •	• ;	•	••	•••	• •	•	• •	·	• •	•	•••	•	•••	•	• •	.248
	µPD8355																								
	µPD8048																								
	μPB2900																								.251
	μPDZ-80																								
		• • • •			•••	•••	•••		•••	• •	•	•••	•••	• •	•	•••	•	•••	•	•••	•	•••	•	•••	

μ COM-8 MICROCOMPUTER SELECTION GUIDE

DEVICE	PRODUCT	SIZE	TECHNOLOGY	Ουτρυτ	CYCLE	SUPPLY VOLTAGES	PINS
			MICROPROCE	SSORS	۰	· • •	
μΡD8080A	Microprocessor (Enhanced)	8 bit	NMOS	3-state	2 MHz	+12, ±5	40
μPD8080AF	Microprocessor (Compatible)	8 bit	NMOS	3-state	2 MHz	+12, ±5	40
µPD8080AF-2	Microprocessor (Compatible)	8 bit	NMOS	3-state	2.5 MHz	+12, ±5	40
μPD8080AF-1	Microprocessor (Compatible)	8 bit	NMOS	3-state	3.0 MHz	+12, ±5	40
P			RAMs				
μPD410	Static RAM	4096 x 1	NMOS	3-state	100 ns – 200 ns	+12, ±5	22
μPD5101	Static RAM	256 x 4	CMOS	3-state	800 ns	+5	22
μΡD2101AĹ	Static RAM	256 x 4	NMOS	3-state	250 ns — 450 ns	+5	22
μPD2102AĹ	Static RAM	1024 x 1	NMOS	3-state	250 ns — 450 ns	+5	16
μPD2111AĹ	Static RAM	256 x 4	NMOS .	3-state	250 ns — 450 ns	+5	18
μPD2114(F)	Static RAM	1024 x 4	NMOS	3-state	200 ns — 450 ns	+5	18
μPD411A	Dynamic RAM	4096 x 1	NMOS	3-state	200 ns — 350 ns	+12, ±5	22
μPD411	Dynamic RAM	4096 x 1	NMOS	3-state	150 ns - 350 ns	+12, ±5	22
μ̈́ΡD414	Dynamic RAM	4096 x 1	NMOS	3-state	200 ns – 350 ns	+12, ±5	16
μPD416	Dynamic RAM	16K x 1	NMOS	3-state	150 ns – 350 ns	+12, ±5	16
μPD418	Dynamic RAM	4096 x 1	NMOS	3-state	200 ns – 300 ns	+12, -5	18
			ROMs				
μPD464	Mask ROM	256 x 8	NMOS	3-state	450 ns	+12, +5	24
μ̈́PD2308	Mask ROM	1024 x 8	NMOS	3-state	450 ns	+12, ±5	24
µPD2316A	Mask ROM	2048 × 8	NMOS	3-state	450 ns	+5	24
μPD2332	Mask ROM	4096 x 8	NMOS	3-state	450 ns	+5	24
· · ·			PROMs	,	•		
μPB405/25	Field Programmable ROM	512 x 8	Bipolar	Open Collec. 3-state	70 ns	+5	24
μPD454	Electrically Erasable Programmable ROM	256 x 8	NMOS	3-state	800 ns	+12, +5*	24
μPD458	Electrically Erasable Programmable ROM	1024 x 8	NMOS	3-state	450 ns	+12, +5*	28

(F) Future Product

* Read Mode

NEC MICOCOMPUTERS, INC.

μCOM-8 MICROCOMPUTER SELECTION GUIDE

DEVICE	PRODUCT	SIZE	TECHNOLOGY	OUTPUT	CYCLE	SUPPLY VOLTAGES	PINS
			SYSTEM SUP	PORT	r	1	
μPD371	Tape Cassette Controller	8 bit	NMOS	3-state	2 MHz	+12, ±5	42
μPD372	Floppy Disk Controller	8 bit	NMOS	3-state	2 MHz	+12, ±5	42
μPD379	Synchronous Receiver/ Transmitter	8 bit	NMOS	3-state	800K baud	+12, ±5	42
μPD758	Seiko Printer Controller (#EP-101)	4 bit	NMOS	3-state	1 MHz	+12, ±5	42
μPD764	Seiko Printer Controller (#CR-330)	4 bit	NMOS	3-state	1 MHz	+5	42
μPB8212	I/O Port	8 bit	Bipolar	3-state	: -	+5	24
µPB8214	Priority Interrupt Controller	3 bit	Bipolar	Open Collec.	3 MHz	+5	24
μPB8216	Bus Driver Non-Inverting	4 bit	Bipolar	3-state	-	+5	16
μPB8224	Clock Generator/ Driver		Bipolar	Hi-Level Clock	— .	+12, +5	16
μPB8226	Bus Driver Inverting	4 bit	Bipolar	3-state		+5	16
μPB8228	System Controller	8 bit	Bipolar	3-state	· .	+5	28
μPB8238	System Controller	8 bit	Bipolar	3-state	-	+5	28
μPD8251	Programmable Communication Interface (ASYNC/SYNC)	8 bit	NMOS	3-state	A9.6K baud S56K baud	+5	28
μPD8253(F)	Programmable Timer	8 bit	NMOS	3-state	2 MHz	+5 ,	24
μPD8255	Peripheral Interface	8 bit	NMOS	3-state	-	+5	40
μPD8257	Programmable DMA Controller	8 bit	NMOS	3-state	3 MHz	+5	40
μPD8259(F)	Programmable Interrupt Controller	8 bit	NMOS	3-state		+5	28

(F) Future Product

μCOM-4 MICROCOMPUTER SELECTION GUIDE

DEVIĆE	PRODUCT	ROM	RAM	I/O	INTERRUPT LEVELS	INSTRUCTIONS	CYCLE	SUPPLY VOLTAGES	PINS
				MICR	OPROCESSOR	S			
μPD548	μCOM-42 CPU	1920 x 10	96 x 4	35	2	72	- 10 μs	-10	42
μPD546	µCOM-43 CPU	2000 x 8	96 x 4	35	1	80	.10 μs	-10	42
μPD547	μCOM-44 CPU	1000 x 8	64 x 4	35	1	58	10 μs	-10	42
μPD550	μCOM-45 CPU	640 x 8	32 x 4	21 ·	1	58	10 μs	-10	28
μPD555	µCOM-42 Evachip	_	96 x 4	36	2	72	10 μs	-10	64
μPD556	µCOM-43 Evachip	-	⁹⁶ x 4	36	1	80	10 µ́s	-10	64

NEC MICOLOMPUTERS, INC.

MICROCOMPUTER ALTERNATE SOURCE GUIDE

MANUFACTURER	PART NUMBER	DESCRIPTION	NEC REPLACEMENT
AMD	AM8080A/9080A	Microprocessor (2.0 MHz)	4PD8080AF
	AM8080A-2/9080A-2	Microprocessor (2.5 MHz)	µPD8080AF-2
	AM8080A-1/9080A-1	Microprocessor (3.0 MHz)	µPD8080AF-1
	AM8085	Microprocessor	μPD8085
	AM8155	Programmable Peripheral Interface	μPD8155
		with 256 x 8 RAM	
	AM8212	I/O Port (8-Bit)	μPB8212
	AM8214	Priority Interrupt Controller	μPB8214
	AM8216	Bus Driver, Non-Inverting	µPB8216
	AM8224	Clock Generator/Driver	μPB8224
	AM8226	Bus Driver, Inverting	μPB8226
1. Sec. 1. Sec	AM8228	System Controller	μPB8228
	AM8238	System Controller	μPB8238
	AM8251	Programmable Communications I/F, (Async/Sync)	μPD8251
	AM8255	Programmable Peripheral I/F	μPD8255
	AM8257	Programmable DMA Controller	μPD8257
	AM8355	Programmable Peripheral Interface	μPD8257
		with 2K × 8 ROM	
Intel	8080A	Microprocessor (2.0 MHz)	µPD8080AF
	8080A-2	Microprocessor (2.5 MHz)	μPD8080AF-2
	8080A-1	Microprocessor (3.0 MHz)	μPD8080AF-1
÷	8035	Microprocessor	μPD8035
	8048	Microprocessor with ROM	μPD8048
	8085	Microprocessor	μPD8085
	8155	Programmable Peripheral Interface	μPD8155
		with 256 × 8 RAM	
	8212	I/O Port (8-Bit)	μPB8212
	8214	Priority Interrupt Controller	μPB8214
	8216	Bus Driver, Non-Inverting	μPB8216
	8224	Clock Generator/Driver	μPB8224
	8226	Bus Driver, Inverting	μPB8226
	8228	System Controller	μPB8228
	8238	System Controller	μPB8238
	8251	Programmable Communications I/F, (Async/Sync)	μPD8251
	8253	Programmable Timer	μPD8253
	8255	Programmable Peripheral Interface	μPD8255
	8255A	Programmable Peripheral Interface	μ PD8255A
	8257	Programmable DMA Controller	μPD8257
	8259	Programmable Interrupt Controller	μPD8259
	8355	Programmable Peripheral Interface with 2K × 8 ROM	μPD8355
	8748	Microprocessor with EPROM	μPD8748
	8755	Programmable Peripheral Interface	μPD8755
		with 2K x 8 EPROM	,
National	INS8080A	Microprocessor (2.0 MHz)	μPD8080AF
	INS8080A-2	Microprocessor (2.5 MHz)	μPD8080AF-2
	INS8080A-1	Microprocessor (3.0 MHz)	µPD8080AF-1
	8212	I/O Port (8-Bit)	μPB8212
	8214	Priority Interrupt Controller	μPB8214
	8216	Bus Driver, Non-Inverting	μPB8216
	8224	Clock Generator/Driver	μPB8224
	8226	Bus Driver, Inverting	μPB8226
	8228	System Controller	μPB8228
	8238	System Controller	μPB8238
	INS8251	Programmable Communications I/F, (Async/Sync)	μPD8251
	INS8255	Programmable Peripheral Interface	μPD8255
T.I.	TMS8080A	Microprocessor (2.0 MHz)	μPD8080AF
	TMS8080A-2	Microprocessor (2.5 MHz)	µPD8080AF-2
	TMS8080A-1	Microprocessor (3.0 MHz)	#PD8080AF-1
	SN74S412	I/O Port (8-Bit)	μPB8212
	SN74LS424	Clock Generator/Driver	μΡΒ8224
	SN745428	System Controller	μPB8228
	SN745428		μΡΒ8238
	000000	System Controller	με 002.30

NEC MICOCOMPUTERS, INC.

INTRODUCING THE μ COM-4 FAMILY — A LINE OF SINGLE CHIP 4-BIT MICROCOMPUTERS

In order to provide the power of microcomputers to the cost sensitive consumer/controller markets, NEC Microcomputers, Inc. offers a family of low cost, powerful 4-bit parallel single chip microcomputers. All of these devices contain on-chip read-only-memory (ROM) for program storage, data storage memory (RAM) and extensive input/output capability.

The family is divided into two applications areas. The μ COM-42 microcomputer's architecture and instruction set is designed to facilitate its use in Electronic Cash Register (ECR)/Scale products. The μ COM-43/44/45 microcomputers are designed for general purpose controller applications and are ideal devices for industrial controls, appliance controls, games, etc.

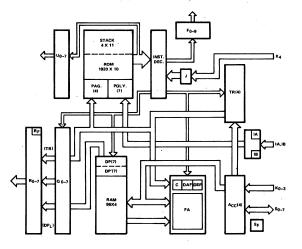
Both families are supported by NEC's high volume production capability, evaluation chips and evaluation kits, PDA-80 software development system and extensive documentation.

μCOM-42

DESCRIPTION

The μ COM-42 (Part No. μ PD548C) is a single chip microcomputer that is ideally suited for Electronic Cash Register (ECR), Point of Sale (POS) and Electronic Scale applications.

Containing a 4-bit Parallel ALU, ROM for program storage and RAM for data storage, the μ COM-42 provides an economical and simple solution to many Vending/Calculating requirements.


Because of its extensive instruction set and five input/output ports, the μ COM-42 is capable of controlling an 8 x 4 keyboard, an 8 digit display and low cost ECR-type printers.

Finally, the on-chip RAM space can be augmented by an external $\mu PD5101$ CMOS RAM (256 x 4 bits) for applications requiring low power data retention.

FEATURES

- Stand alone 4-bit microcomputer
- All 72 instructions are single byte
- 10 µsec instruction cycle
- 1920 x 10-bit program memory (ROM)
- 96 x 4-bit data memory (RAM)
- 4-level stack
- 2 Interrupt request lines
- I/O compatible with TTL
- 10 discrete output ports (F₀ F₉)
- Two 8-bit output ports (U₀ U₇, R₀ R₇)
- One 4-bit input port (K₀ K₃)
- One 4-bit input/output port (S₀ S₃)
- One single bit testable input port (K4)
- Single phase TTL level clock (200 KHz max.)
- Single supply, -10V PMOS technology
- 42 pin plastic dual-in-line package

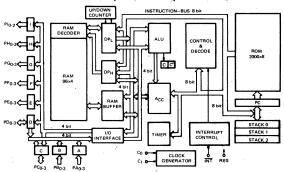
BLOCK DIAGRAM µCOM-42 (µPD548C)

μCOM-43

The μ COM-43 (Part No. μ PD546C) is a 4-bit parallel microcomputer that is especially suited for a wide range of low cost, sophisticated controller applications.

The μ PD546C contains all the functional blocks necessary to enable its use for both industrial and non-industrial controller applications. These blocks include: a 4-bit parallel ALU; 2K by 8-bit ROM for program storage; 96 x 4-bit RAM for data storage; 35 input/output lines; a programmable interval timer; interrupt capability; and on-board clock generator.

The 80 instructions of the μ COM-43 are designed to perform controller oriented functions and for efficient use of the program memory space. These 80 instructions include a number of multi-function instructions, powerful I/O instructions including single bit manipulation, and test-and-skip instructions for conditional processing.


Thus, the μ COM-43's large ROM memory, extensive I/O, and other hardware features in combination with its powerful instruction set opens up new areas for inexpensive yet sophisticated controllers.

FEATURES

DESCRIPTION

- Stand alone 4-bit microcomputer for control applications
- 80 powerful instructions capable of: binary addition; decimal addition and subtraction; and logical operations
- 10 µsec instruction cycle
 - 2000 x 8-bit program memory (ROM)
- 96 x 4-bit data memory (RAM)
- 35 input/output lines consisting of: two 4-bit input ports, two 4-bit input/output ports, four 4-bit output ports, one 3-bit output port. All capable of both single bit manipulation and 4-bit parallel processing
- 3-level stack
- Six 4-bit working registers
- Hardware interrupt including enable/disable capability
- On-chip programmable interval timer
- On-chip clock generator
- Open drain, TTL compatible outputs
- Single supply, -10V PMOS technology
- 42 pin plastic dual-in-line package

BLOCK DIAGRAM µCOM-43 (µPD546C)

μCOM-44

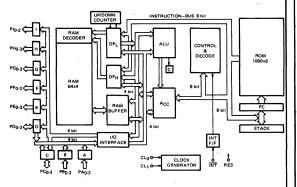
DESCRIPTION

The μ COM-44 (Part No. μ PD547C) is a 4-bit parallel microcomputer that is ideally suited for a wide range of low cost, general purpose controller applications.

The μ PD546C contains all the functional blocks needed for a low cost, stand alone, high volume controller. These blocks include: a 4-bit parallel ALU; 1K by 8-bit ROM for program storage; 64 by 4-bit RAM for data storage; 35 input/output lines; interrupt capability and an on-board clock generator.

The 58 instructions of the μ COM-44 are designed to perform controller oriented functions and for efficient use of the program memory space. These 58 instructions include a number of multifunctional instructions, powerful I/O instructions including single bit manipulation, and test-and-skip instructions for conditional processing.

The μ COM-44 is ideally suited for consumer/industrial controller functions because of its extensive I/O, on-board ROM/RAM space and its powerful instruction set.


FEATURES

- Stand alone 4-bit microcomputer for control applications
- 58 powerful instructions capable of: Binary addition; decimal addition and subtraction; and logical operations
 - 10 µsec instruction cycle
- 1000 x 8-bit program memory (ROM)
- 64 x 4-bit data memory (RAM)
- 35 Input/Output lines consisting of: Two 4-bit input ports Two 4-bit input/output ports Four 4-bit output ports One 3-bit output port

All capable of both single bit manipulation and 4-bit parallel processing

- Single level stack
- On-chip clock generator
- Open drain, TTL compatible outputs
- Single supply, -10V PMOS technology
- 42 pin plastic dual-in-line package

BLOCK DIAGRAM µCOM-44 (µPD547C)

μCOM-45

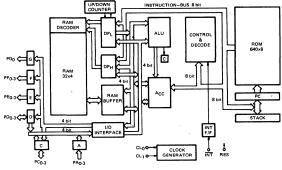
DESCRIPTION

The μ COM-45 (Part No. μ PD550C) is a single chip microcomputer designed for extremely low cost, general purpose controller/consumer/ appliance applications.

The μ PD550C contains all the system blocks necessary to build an inexpensive, yet fully functional controller. The blocks include: a 4-bit parallel ALU; 640 by 8-bit ROM for program storage; 32 by 4-bit RAM for data storage; 21 input/output lines; interrupt capability and an on-board clock generator.

The 58 instructions of the μ COM-45 are designed to perform controller oriented functions and for efficient use of the program memory space. These 58 instructions include a number of multifunctional instructions, powerful I/O instructions including single bit manipulation, and test-and-skip instructions for conditional processing.

The μ COM-45 opens up entire new areas of controller applications because of its extremely low cost and powerful functions.


FEATURES

- Stand alone 4-bit microcomputer for consumer/control applications
- 58 powerful instructions capable of: Binary addition; decimal addition and subtraction; and logical operations
- 10 µsec instruction cycle
- 640 x 8-bit program memory (ROM)
- 32 x 4-bit data memory (RAM)
- 21 Input/Output lines consisting of:
 - One 4-bit input port
 - Two 4-bit input/output ports
 - Two 4-bit output ports
 - One 1-bit output port

All capable of both single bit manipulation and 4-bit parallel processing

- Single level stack
- On-chip clock generator
- Open drain, TTL compatible outputs capable of -35V
- Single Supply, -10V PMOS technology
- 28 pin plastic dual-in-line package

BLOCK DIAGRAM µCOM-45 (µPD550C)

µCOM-43/44/45 PIN CONFIGURATIONS

DNS _{CL1} 1 PC0 2 PC1 3 PC2 4 PC3 5		42 CL0 41 VGG(-10V) 40 PB3 39 PB2 38 PB1
INT 6 RES 7 PD0 8 PD1 9 PD2 10 PD2 11	μPD546C/	37 PB0 36 PA3 35 PA2 34 PA1 33 PA0
PE0 [12 PE1 [13 PE2 [14 PE3 [15 PF0 [16	μΡ D547C	31 PI 30 PI 29 PH 28 PH 28 PH 27 PH PH 1
PF1 17 PF2 18 PF3 19 TEST 20 (0V) GND 21		26 PH0 25 PG3 24 PG2 23 PG1 22 PG0

٠.				
CL1	1	\sim	28	CLO
PC0	2		27	VGG{-10V
PC1	3		26	RES ·
PC2	4		25	INT
PC3	5		24	PA3
PD0□	6		23Þ	PA2
PD 1	7	μPD	22	PA1
PD2	8	550C	21	PAÓ
PD3	9 ·		20日	PGO
PÈ0	10		19	PF3
PE1	11		18	PF2
PE2	12		17	PF1
PE3 🗖	13		16	PFO
V _{SS} (0V)□	14		15	TEST

PIN NAMES

External Clock Source							
Input/Output Port C							
Interrupt Input							
Reset							
Input/Output Port D							
Output Port E							
Output Port F							
Input for Testing (Normally GND)							
Output Port G							
Output Port H							
Output Port I							
Input Port A							
Input Port B							

PIN NAMES

CL0-CL1	External Clock Source
PC0-PC3	Input/Output Port C
PD0-PD3	Input/Output Port D
PE0-PE3	Output Port E
PF0-PF3	Output Port F
PG ₀	Output Port G
PA0-PA3	Input Port A
INT	Interrupt Input
RES	Reset

μCOM-43/44/45 INSTRUCTION SETS

1	2	3	۹	5	1	2	3		6	1	2	3	4	5		
CLA	1	í	A _{CC} ⊷0					(A _{CC})⇔[(DP)]		тс	1	1/2-3	skip if (C)=1	(C)=1		
CMA	1	1	ACC+-(ACC)					DPL+(DPL)+1		<u> </u>	F.	425	skip if (INT F/F)=1			
CIA	1	1	ACC+-(ACC)+1		хı	1	1/2-3	skip if (DP))=0	(DPL)=0	тіт	1	1/2-3	INT F/F←0	(INT F/F)=1		
INC	1	1/2-3	A _{CC} ←(A _{CC})+1 skip if Carry	Carry				(A _{CC})=[(DP)]		JCP	1	1	PC5-0←P5-P0			
-			Acc←(Acc)-1		XMI	1	1/2-3	DPH⊷(DPH)∻0M1M0	(DP1)=0	JMP	2	2	PC←P10-P0			
DEC	1	1/2-3	skip if Borrow	Borrow			.,	DPL+-(DPL)+1	10. [/ 0	JPA	1	2	PC5-0-A3A2A1A000			
CLC	1	1	C+-0					skip if (DPL)=0		EI.	1	1	INTE F F+-1			
STC	1	1	C-1		LDI	2	2	DP←I6-I0			.1.	1.		<u> </u>		
XC	3	1	(C)⇒(C')	Sec.	LDZ	1	1	DPH←0		CZP	1	1	STACK-(PC) PC-00000P3P2P1P000			
RAR	.1		IAccn-1)-IAccn	1. 1. No. 1.				DPL←I3I2I1I0 DPL←(DPL)-1	· · · · · · ·				STACK-(PC)			
100	$1 \le 1$		C+-(ACCO), (ACC3)+-(C)		DED	1	1/2-3	skip if (DPL)=F	(DPL)=F	CAL	2	2	PC←P10-P0			
INM	1	1/2-3	[(DP)]+1	[(DP)]=0			,	DP1 ←(DP1)+1		RT	1	2	PC-(STACK)			
		4	skip if [(DP)]=0		IND	1	1/2-3	sk pif (DPL)=0	(DPL)=0		<u> </u>		PC-(STACK)			
DEM		1/2-3	[(DP)]+-[(DP)]+1	(DP)]=F	TAL	1	1	DPL+(ACC)		RTS	1	3-4	PC←(PC)+1,2	Unconditional		
		277	skip if [(DP)]=F		TLA	1	1	ACC+(DPL)			1		TM E E+0	1 1 1 1 N		
AD	1	1/2-3	ACC+(ACC)+[(DP)]	Carry	XHX	1.:	2	(X)===(DPH)		STM	2	2	TIMER+15-10	18 a - y - y - y		
			skip if Carry		XLY	1	, 2 .	(Y){DPL}	`. <i>'</i>	TTM	11	1/2-3	skip if (TM F/F)=1	(TM F/F)=1		
ADS	1	1/2-3	A _{CC} ,C+(A _{CC})+[(DP)]+(C)	Carry	THX	A_{i}	2	X+-(DPH)	1. 1. 1. S.	SEB	1	2	PORT E (B1B0)←1			
		1	skip if Carry		TLY	1	2	Y⊷(DPL)		REB	1	1	PORT E (B1B0)⊷0			
ADC	1		A _{CC} ,C+(A _{CC})+[(DP)]+(C)		XAZ	.1	2	{Z}=(ACC)		SPB	1	1	PORT (DPL,B1B0)←1			
DAA		1	Acc+-(Acc)+6		XAW	1	- 2	(W)=(Acc)	n 1 - 1	RPB	1	1	PORT (DPL,B1B0)⊷0			
DAS	1	1	Acc+(Acc)+10 Acc+(Acc)+((DP))		TAZ	<u>~ 1</u>	2	Z-(ACC)	1. J. J. J.	TPA	1	2/3-4	skip if (PORT A (B1B0))=1	(PORT A (B1B0)		
		1	Acc+13/2/11/0		TAW	.1	2	W+ Accl	State of the second		<u> </u>			= 1 (PORT (DPL,		
s	$\frac{1}{1}$	1	[(DP)] ←(A _{CC})		XHB	1	2	(R)≠(DP _H)	i	ТРВ	.1 1/2~/		TPB 1 1/2	1/2-3	skip if (PORT (DLL,B1B0))	-
L		1	ACC+-[(DP)]		XLS	1	2	(S)⇒(DPL)		OE	1	2	PORT E⊷(A _{CC})	B1B0))=1		
	-		Acc+[(DP)]		SMB	1	1	[(DP,B1B0)]←1	l	OP	1	1	PORT (DPL)-(ACC)			
LM	1	<u>,</u> 1	DPH+(DPH)+0M1M0		TMB	1	1	[(DP,B ₁ B ₀)]←0 skip if [(DP,B ₁ B ₀)]=1	[(DP,B1B0)]=1	OCD	2	2	PORT C,D+17-10			
x	1	1	(A _{CC})⇔[(DP)]		TAB	1	1/2-3	skip if (A _{CC} (B ₁ B ₀))=1	(A _{CC} (B ₁ B ₀))=1	IA	2	2	ACC+(PORT A)			
хм	1	1	(A _{CC})⇔[(DP)]		1/10	<u> </u>	42-3	skip if (A _{CC} (B ₁ B ₀))	(ACC(B1B0))	IP	1	1	ACC+(PORT (DPL))			
~ 11/1	Ľ.		DPH⊷(DPH)⊬0M1M0		СМВ	1	1/2-3	= [(DP,B ₁ B ₀)]	=[(DP,B ₁ B ₀)]	NOP	1	1	No Operation			
			(A _{CC})⇔[(DP)]		SFB	1	2	FLAG (8180)+1								
XD	1	1/2-3	DPL←(DPL)–1 skip if (DPL)=F	(DPL)=F	RFB	1	2	FLAG (8180)-0		Notes:	1	MNEMO	NIC			
			(A _{CC})⇔[(DP)]		FBT	1	2/3-4	skip if (FLAG (B1B0))=1	(FLAG(8180))=1			BYTES				
					FBF	1	2/3-4	skip if (FLAG (B1B0))=0	(FLAG(8180))=0			CYCLES	3			
XMD	1	1/2-3	DPL+(DPL)-1	(DPL)≍F	CM	1	1/2-3	skip if (A _{CC})=[(DP)]	(A _{CC}) = [(DP)]		ă	DESCRI				
			skip if (DP1)=F		CI ·	2	2/3-4	skip if (ACC)=13121110	(Acc)=13121110		6	CONDIT	ION FOR SKIP			
		نبحسما	Lakib ((Dr L)-r	LiJ	CLI	2	2/3-4	skip if (DPL)=13121110	(DPL)=13121110		ň	These In	structions Apply Only to the μ	COM-43.		

μCOM-42 PIN CONFIGURATION

$\begin{array}{c c} RES & 1 \\ K_0 & 2 \\ K_1 & 3 \\ K_2 & 4 \\ K_3 & 6 \\ FST & 6 \\ ST & 5 \\ FST & 6 \\ ST & 10 $	μPD 548C	42 φ 41 VGG(-10V 40 K4 39 R7 38 R6 37 R5 36 R4 35 R2 33 R1 32 R0 31 U7 30 U6 29 U5 26 U2 25 U1 24 U0 23 F9 22 F8
---	-------------	--

PIN NAMES

	`
RES	Reset
к ₀ –к ₃	Input Port K
TEST	Input for Testing (Normally V _{GG})
s ₀ -s ₃	Input/Output Port S
1A, 1B	Interrupt Input Ports
F0-F9	Output Port F
U0-U7	Output Port U
R0-R7	Output Port R
K4	Input Port for Condition Test
φ	Clock Input

μCOM-42 INSTRUCTION SET

1	2	3	4	1	2	3	4	1	2	3
СМА	1	A _{CC} ←(ACC)		XTA	1 -	(A _{CC})↔(TR)		OQR	1	R←(Q)
CIA	1	ACC←(ACC)+1		LTI	1	TR←l3l2l1l0		OTR	1	R7_4←(TR),R3_0←(DPL)
INA	1/2	ACC←(ACC)+1	Carry=1	QS1	1	Q _{n+1} ←Q _n ,Q ₀ ←1		SFS	1	S←(ACC)
DEA	1/2	ACC←(ACC)-1	Borrow≠1	QS0	1	Q _{n+1} ←Q _n ,Q ₀ ←0		RFS	1	S port Input Mode
RFC	1	C⊷0		SB	1	[DP,B ₁ ,B ₀]←1		IS	1	A _{CC} ←S
SFC	1	C←1		RB	1	[DP,B ₁ ,B ₀] ←0		IK	1	A _{CC} ←K
DSM	1	Decimal Subtract Mode		SBT	1/2	Skip if [DP,B1,B0]=1	B ₁ B ₀ =1	RF1	1	F1←0
DAM	1	Decimal Add Mode		SC	1/2	Skip if (C)=1	(C)=1	SF1	1	F1←1
AD	1/2	ACC-(ACC)+[DP]	Carry=1	SEM	1/2	Skip if (A _{CC})=[DP]	(A _{CC})=[DP]	RF2	1	F2↔0
ADC	1	A _{CC} ,C←(A _{CC})+[DP]+(C)		SEI	1/2		(ACC)	SF2	1	F2←1
ADI	1/2	ACC←(ACC)+13121110	Carry=1	351	1/2	Skip if (ACC)=13121110	=13121110	RF3	1	F3⊷0
		A _{CC} ←[DP]		SK4	1/2	Skip if K4=1	K4=1	SF3	1	F3←1
LM	, 1	DP _H ←(DP _H)∀M ₂ M ₁ M ₀		JPT	1	PC←(TR),P6-0		RF4	1	F4⊷0
хм	1	(A _{CC})↔[DP]		JPA	1	PC6-4←P6-4		SF4	1	F4←1
~~	'	DP _H ←(DP _H)∀M ₂ M ₁ M ₀		JFA	· ·	PC3_0←P3_0V(ACC)		RF5	1	F5↔0
		(A _{CC})↔[DP]	(DPL)=8	JCP	1	PC6-0 ^{←P} 6-0		SF5	1	F ₅ ←1
хмі	1/2	DP _H ←(DP _H)∀M ₂ M ₁ M ₀	or	CAL	1	[STACK]←(PC)		RF6	1	F6←0
. 1		DPL←(DPL)+1	(DPL)=0			PC←1000P6P5P4P3P2P1P0	· · · · · · · · · · · · · · · · · · ·	SF6	1.	F6←1
		(A _{CC})↔[DP]	(DPL)=F	RT	1	PC←[STACK]		RF7	1	F7⊷0
XMD	1/2	DP _H ←(DP _H)∀M ₂ M ₁ M ₀	or	RTS	2	PC←[STACK]		SF7	1	F7←1
1	1	DPL←(DPL)–1	(DPL)=7	113	2	PC←(PC)+1		RF8	1	F8⊷0
LI	1	Acc←l3121110		EIA	1	Enable IA port		SF8	1	F8←1
LDI	1	DP←I6-I0		DIA	1	Disable IA port		RF9	1	Fg⊷0
IND	1/2	DPI ←(DP1)+1	(DPL)=8 or	EIB ·	1	Enable IB port		SF9	1	Fg←1
IND	'' ²		(DPL)=0	DIB	1	Disable IB port		RF0	1	F0+-0
DED	1/2	DPI ←(DPI)-1	(DPL)≖For	οiu	1	U7 _0 ←I7 _ 0		SF0	1	F ₀ ←1
020	''Z		(DPL)=7		'	R ₇₋₀ ←(Q ₇₋₀)		NOP	1	No Operation
XDP	1	(DP)↔(DP')		ERO	1	Enable R port		Notes:	1) MN	EMONIC
ZAG	1	000DP1 ←(DP)		DRO	1	Disable R port			2) CY	

(4) CONDITION FOR SKIP

DEVELOPMENT TOOLS

The μ COM-4 microcomputer family is fully supported with all the necessary hardware and software development tools. These tools include assemblers, evaluation chips and evaluation kits.

For software development, cross-assemblers that run on our 8080A-based PDA-80 are available along with support documentation. The PDA-80 allows the user to program PROMs directly without having to use a paper tape medium.

For hardware and software development, evaluation kits and evaluation chips are available. The EVACHIPS (μ PD555D for the μ COM-42 and μ PD556D for the μ COM-43/44/45) have all the functional capabilities of their production equivalents, except they do not contain on-chip ROM. Instead they have the ability to address external memory. In addition, they give the designer the ability to single step through his program in order to ease debugging.

The evaluation kits (EVAKIT-42 and EVAKIT-43), using the appropriate EVACHIP, provide the designer with a single pc board containing: LED's for display of internal registers and instruction code; switches for setting breakpoints; on-board PROM sockets; and reset and single-step capability. The combination of EVAKIT and EVACHIP give the μ COM-4 system designer all the tools needed for initial design/debugging and prototype fabrication.

For further information, contact: NKC MCCOCREDITER, IL.

μPD8080AF 8-BIT N-CHANNEL MICROPROCESSOR FAMILY

DESCRIPTION

The μ PD8080AF is a complete 8-bit parallel processor for use in general purpose digital computer systems. It is fabricated on a single LSI chip using N-channel silicon gate MOS process, which offers much higher performance than conventional micro-processors (1.28 μ s minimum instruction cycle). A complete microcomputer system is formed when the μ PD8080AF is interfaced with I/O ports (up to 256 input and 256 output ports) and any type or speed of semiconductor memory. It is available in a 40 pin ceramic or plastic package.

FEATURES

- 78 Powerful Instructions
- Three Devices Three Clock Frequencies μPD8080AF – 2.0 MHz μPD8080AF-2 – 2.5 MHz μPD8080AF-1 – 3.0 MHz
- Direct Access to 64K Bytes of Memory with 16-Bit Program Counter
- 256 8-Bit Input Ports and 256 8-Bit Output Ports
- Double Length Operations Including Addition
- Automatic Stack Memory Operation with 16-Bit Stack Pointer
- TTL Compatible (Except Clocks)
- Multi-byte Interrupt Capability
- Fully Compatible with Industry Standard 8080A
- Available in either Plastic or Ceramic Package

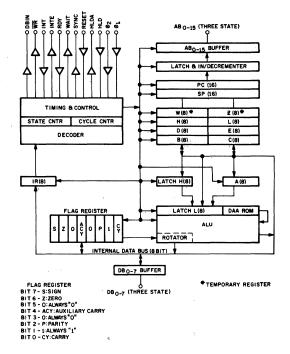
PIN CONFIGURATION

A10 VSS D4 D5 D6 D7	1 2 3 4 5 6	40 39 38 37 36 35	A11 A14 A13 A12 A15 A9
D3 [- D2 [D1 [8 9 pp	33 32	A8 A7 A6
	$_{10}$ μ PD	31 6	A5
	11 8080AF	30	A4
RESET	12	29	A ₃
HOLD	13	28	VDD
INT 🗖	14	27	A2
φ ₂ [15	26	A1
	16	25	A0
	17	24 🛛	WAIT
WR	18	23	READY
SYNC	19	22	^φ 1
Vcc ⊏	20	21	HLDA

The μ PD8080AF contains six 8-bit data registers, an 8-bit accumulator, four testable flag bits, and an 8-bit parallel binary arithmetic unit. The μ PD8080AF also provides decimal arithmetic capability and it includes 16-bit arithmetic and immediate operators which greatly simplify memory address calculations, and high speed arithmetic operations.

The μ PD8080AF utilizes a 16-bit address bus to directly address 64K bytes of memory, is fully TTL compatible (1.9 mA), and utilizes the following addressing modes: Direct; Register; Register Indirect; and Immediate.

The μ PD8080AF has a stack architecture wherein any portion of the external memory can be used as a last in/first out (LIFO) stack to store/retrieve the contents of the accumulator, the flags, or any of the data registers.


The μ PD8080AF also contains a 16-bit stack pointer to control the addressing of this external stack. One of the major advantages of the stack is that multiple level interrupts can easily be handled since complete system status can be saved when an interrupt occurs and then restored after the interrupt is complete. Another major advantage is that almost unlimited subroutine nesting is possible.

This processor is designed to greatly simplify system design. Separate 16-line address and 8-line bidirectional data busses are employed to allow direct interface to memories and I/O ports. Control signals, requiring no decoding, are provided directly by the processor. All busses, including the control bus, are TTL compatible.

Communication on both the address lines and the data lines can be interlocked by using the HOLD input. When the Hold Acknowledge (HLDA) signal is issued by the processor, its operation is suspended and the address and data lines are forced to be in the FLOATING state. This permits other devices, such as direct memory access channels (DMA), to be connected to the address and data busses.

The μ PD8080AF has the capability to accept a multiple byte instruction upon an interrupt. This means that a CALL instruction can be inserted so that any address in the memory can be the starting location for an interrupt program. This allows the assignment of a separate location for each interrupt operation, and as a result no polling is required to determine which operation is to be performed.

NEC offers three versions of the μ PD8080AF. These processors have all the features of the μ PD8080AF except the clock frequency ranges from 2.0 MHz to 3.0 MHz. These units meet the performance requirements of a variety of systems while maintaining software and hardware compatibility with other 8080A devices.

FUNCTIONAL DESCRIPTION

BLOCK DIAGRAM

PIN IDENTIFICATION

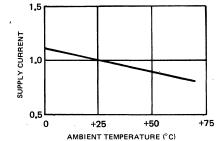
		PIN	•
NO.	SYMBOL	NAME	FUNCTION
1, 25 - 27, 29-40	A15 - A0	Address Bus (output three- state)	The address bus is used to address memory $\leftlup to 64K 8-bit word or specify the I/O device number (up to 256 input and 256 output devices). AO is the least significant bit.$
2	VSS	Ground (input)	Ground
3-10	D ₇ – D ₀	Data Bus (input/ output three-state)	The bidirectional data bus communicates between the processor, memory, and I/O devices for instructions and data transfers. Dur- ing each sync time, the data bus contains a status word that describes the current machine cycle. Do is the least significant bit.
11	VBB	VBB Supply Voltage (input)	-5V ± 5%
12	RESET	Reset (input)	If the RESET signal is activated, the program counter is cleared. After RESET, the program starts at location 0 in memory. The INTE and HLDA flip-flops are also reset. The flags, accumulator, stack pointer, and registers are not cleared. (Note: External syn- chronization is not required for the RESET input signal which must be active for a minimum of 3 clock periods.)
13	HOLD	Hold (input)	 HOLD requests the processor to enter the HOLD state. The HOLD state allows an external device to gain control of the µPD8080AF address and data buses as soon as the µPD8080AF has completed its use of these buses for the current machine cycle. It is recognized under the following conditions: The processor is in the HALT state. The processor is in the T2 or TW stage and the READY signal is active. As a result of entering the HOLD state, the ADDRESS BUS (A15 – A0) and DATA BUS (D7 – D0) are in their high impedance state. The processor indicates its state on the HOLD ACKNOWLEDGE (HLDA) pin.
14	INT	Interrupt Request (input)	The μ PD8080AF recognizes an interrupt request on this line at the end of the current instruction or while halted. If the μ PD8080AF is in the HOLD state, or if the Interrupt Enable flip-flop is reset, it will not honor the request.
15	<i>φ</i> 2	Phase Two (input)	Phase two of processor clock.
16	INTE (1)	Interrupt Enable (output)	INTE indicates the content of the internal interrupt enable flip- flop. This flip-flop is set by the Enable (EI) or reset by the Disable (DI) interrupt instructions and inhibits interrupts from being accepted by the processor when it is reset. INTE is auto- matically reset (disabling further interrupts) during T ₁ of the instruction fetch cycle (M ₁) when an interrupt is accepted and is also reset by the RESET signal.
17	DBIN	Data Bus In (output)	DBIN indicates that the data bus is in the input mode. This signal is used to enable the gating of data onto the µPD8080AF data bus from memory or input ports.
18	WR	Write (output)	\overline{WR} is used for memory WRITE or I/O output control. The data on the data bus is valid while the \overline{WR} signal is active (\overline{WR} = 0).
19	SYNC	Synchronizing Signal (output)	The SYNC signal indicates the beginning of each machine cycle.
20	Vcc	VCC Supply Voltage (input)	+5V ± 5%
21	HLDA	Hold Acknowledge (output)	 HLDA is in response to the HOLD signal and indicates that the data and address bus will go to the high impedance state. The HLDA signal begins at: T3 for READ memory or input operations. The clock period following T3 for WRITE memory or OUTPUT operations. In either case, the HLDA appears after the rising edge of \$\phi_1\$ and high impedance occurs after the rising edge of \$\phi_2\$.
22	<i>φ</i> 1	Phase One (input)	Phase one of processor clock.
23	READY	Ready (input)	The READY signal indicates to the µPD8080AF that valid mem- ory or input data is available on the µPD8080AF data bus. READY is used to synchronize the processor with slower memory or I/O devices. If after sending an address out, the µPD8080AF does not receive a high on the READY pin, the µPD8080AF enter: a WAIT state for as long as the READY pin is low. (READY can also be used to single step the processor.)
24	WAIT	Wait (output)	The WAIT signal indicates that the processor is in a WAIT state.
28	VDD	VDD Supply Voltage (input)	+12V ± 5%

Note: ① After the El instruction, the μPD8080AF accepts interrupts on the second instruction following the El. This allows proper execution of the RET instruction if an interrupt operation is pending after the service routine.

139

Operating Temperature	0°C to + 70°C
Storage Temperature (Ceramic Package)	65°C to +150°C
Storage Temperature (Plastic Package)	40°C to + 125°C
All Output Voltages ①	0.3 to +20 Volts
All Input Voltages ①	0.3 to +20 Volts
Supply Voltages VCC, VDD and VSS ①	0.3 to +20 Volts
Power Dissipation	
Note: Relative to Vop	

Note: (1) Relative to VBB.


COMMENT; Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

 $T_a = 0^\circ C \text{ to } +70^\circ C, V_{DD} = +12V \pm 5\%, V_{CC} = +5V \pm 5\%, V_{BB} = -5V \pm 5\%, V_{SS} = OV,$ unless otherwise specified.

		LIMITS				-
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Clock Input Low Voltage	VILC	VSS - 1		V _{SS} + 0.8	v	
Clock Input High Voltage	∨інс	9.0		V _{DD} + 1	v	
Input Low Voltage	VIL	V _{SS} - 1		VSS + 0.8	v	
Input High Voltage	VIH	3.3		VCC + 1	v	
Output Low Voltage	VOL			0.45	v	IOL = 1.9 mA on all outputs
Output High Voltage	Voн	3.7			v	I _{OH} = -150 μA ②
Avg. Power Supply Current (VDD)	IDD(AV)		40	70	mA	
Avg. Power Supply Current (VCC)	ICC(AV)		60	80	mA	tCY min
Avg, Power Supply Current (VBB)	IBB(AV)		0.01	1	mA	
Input Leakage	hι			±10	μA	$V_{SS} \leq V_{IN} \leq V_{CC}$
Clock Leakage	ICL .			±10 (2)	μA	V _{SS} ≤ V _{CLOCK} ≤ V _{DD}
Data Bus Leakage in Input Mode	'dl ①			- ⁻¹⁰⁰ ②	μA mA	$ \begin{array}{l} V_{SS} \leqslant V_{IN} \leqslant V_{SS} + 0.8V \\ V_{SS} + 0.8V \leqslant V_{IN} \leqslant V_{CC} \end{array} $
Address and Data Bus Leakage During HOLD	IFL			+10 -100 ②	μA	VADDR/DATA = VCC VADDR/DATA = VSS + 0.45V

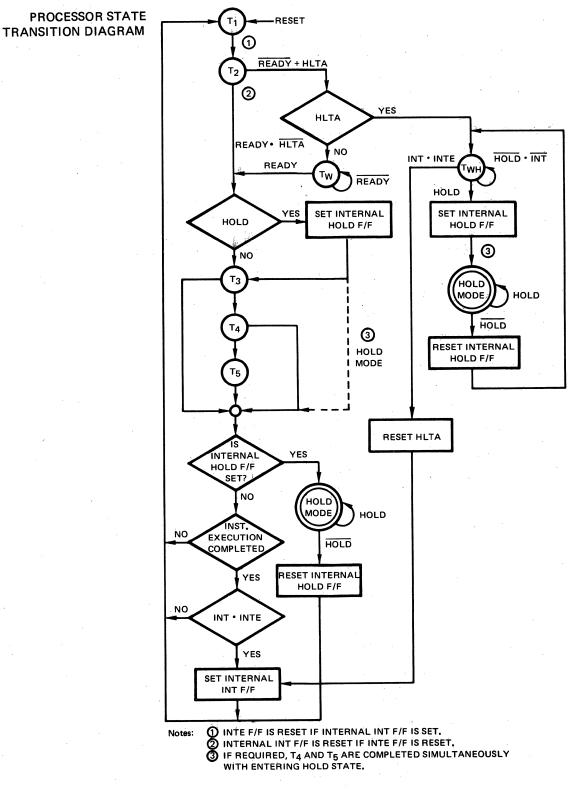
TYPICAL SUPPLY CURRENT VS. TEMPERATURE, NORMALIZED (3)

Notes: (1) When DBIN is high and $V_{IN} > V_{IH}$ internal active pull-up resistors will be switched onto the data bus.

② Minus (--) designates current flow out of the device.

3 ΔI supply/ $\Delta T_a = -0.45\%/^{\circ}C_{\circ}$

 $T_a = 25^{\circ}C, V_{CC} = V_{DD} = V_{SS} = 0V, V_{BB} = -5V.$


		LIMITS						
PARAMETER	SYMBOL	MIN	түр	MAX	UNIT	TEST CONDITIONS		
Clock Capacitance	Cφ		17	25	pF	f _c = 1 MHz		
Input Capacitance	CIN		6	10	pF	Unmeasured Pins		
Output Capacitance	COUT		10	20	pF	Returned to VSS		

DC CHARACTERISTICS

CAPACITANCE

μPD8080AF

ABSOLUTE MAXIMUM RATINGS*

 $T_a = 0^{\circ}$ C to +70°C, V_{DD} = +12V ± 5%, V_{CC} = +5V ± 5%, V_{BB} = -5V ± 5%, V_{SS} = 0V, unless otherwise specified.

$T_a = 0^{\circ}C$ to +70°C, $V_{DD} = +12V \pm$ specified.	AC CHARACTERISTICS						
		LIMITS					μPD8080AF
PARAMETER	SYMBOL	MIN	түр	MAX	UNIT	TEST CONDITIONS	
Clock Period	tCY 3	0.48		2,0	μsec		
Clock Rise and Fall Time	t _r , t _f	0		50	nsec		
φ1 Pulse Width	tø1	60			nsec		1
φ2 Pulse Width	t _{¢2}	220			nsec		
Delay ø1 to ø2	tD1	0			nsec		·
Delay ϕ 2 to ϕ 1	tD2	70			nsec		
Delay ϕ 1 to ϕ 2 Leading Edges	^t D3	80			nsec		1
Address Output Delay From $\phi 2$	tda 2			200	nsec	C ₁ = 100 pF	1
Data Output Delay From $\phi 2$	t _{DD} ②			220	nsec	CL = 100 pr	
Signal Output Delay From ϕ 1,							
or $\phi 2$ (SYNC, \overline{WR} , WAIT,						C1 = 50 pF	
HLDA)				120	nsec		
DBIN Delay From ¢2	tdf 2	25		140	nsec		
Delay for Input Bus to Enter							
Input Mode	tol ()			^t DF	nsec		
Data Setup Time During ¢1 and DBIN	the	30			nsec		
Data Setup Time to ¢2 During	^t DS1	30			11360		4
DBIN	tDS2	150			nsec		
Data Hold Time From ¢2 During	002						· · · ·
DBIN	^т рн (1)	1			nsec		
INTE Output Delay From ϕ 2	tie 2			200	nsec	CL = 50 pF	1
READY Setup Time During ¢2	tRS	120			nsec		
HOLD Setup Time to $\phi 2$	tHS	140			nsec		
INT Setup Time During $\phi 2$					1		1
(During ¢1 in Halt Mode)	tis	120			nsec]
Hold Time from ϕ^2 (READY,							

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

CL = 100 pF: Address,

HLDA, DBIN

Data

 $C_L = 50 \text{ pF}: \overline{WR},$

120

Notes: (1) Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured. tDH = 50 ns or tDF, whichever is less.

0

6

6

0

0

8

9

-20

tн

tFD taw 2

tDW @

twd ②

twa 🕗

the ②

twf 2

<u>тан</u> @

2 Load Circuit,

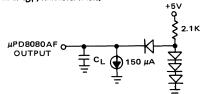
INT, HOLD)

Delay to Float During Hold (Address and Data Bus)

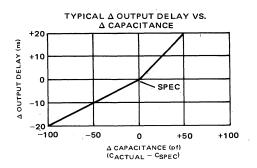
Address Stable Prior to WR

Output Data Stable Prior to WR

Output Data Stable From WR


Address Hold Time after DBIN

Address Stable from WR


HLDA to Float Delay

WR to Float Delay

during HLDA

(3) Actual $t_{CY} = t_{D3} + t_{r\phi2} + t_{\phi2} + t_{f\phi2} + t_{D2} + t_{r\phi1} > t_{CY}$ Min.

AC CHARACTERISTICS μPD8080AF-2

$T_a = 0^{\circ}$ C to +70°C, V _{DD} = +12V ± 5%, V _{CC} = +5V ± 5%, V _{BB} = -5V ± 5%, V _{SS} = 0V, unit	ass otherwise
specified.	

·		LIMITS				
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Clock Period	tcy 3	0,38		2.0	μsec	
Clock Rise and Fall Time	tr, tf	0		50	nsec	
φ1 Pulse Width	tø1	60			nsec	
φ2 Pulse Width	tø2	175			nsec	
Delay of to o2	^t D1	0			nsec	
Delay ϕ 2 to ϕ 1	tD2	70			nsec	
Delay ϕ 1 to ϕ 2 Leading Edges	tD3	70			nsec	
Address Output Delay From $\phi 2$	tDA ②			175	nsec	a
Data Output Delay From $\phi 2$	tDD 2			200	nsec	CL = 100 pF
Signal Output Delay From ϕ 1, or ϕ 2 (SYNC, WR, WAIT,						
HLDA)	tDC ②			120	nsec	CL = 50 pF
DBIN Delay From $\phi 2$	^t DF ②	25		140	nsec	
Delay for Input Bus to Enter Input Mode	tol (1)			^t DF	nsec	
Data Setup Time During ¢1 and DBIN	tDS1	20			nsec	· · · · · · · · · · · · · · · · · · ·
Data Setup Time to ϕ 2 During	1051					
DBIN	tDS2	130			nsec	
Data Hold Time From ¢2 During DBIN	тон ①	1			nsec	
INTE Output Delay From ¢2	tie ②		· .	200	nsec	CL = 50 pF
READY Setup Time During $\phi 2$	tRS	90			nsec	5
HOLD Setup Time to $\phi 2$	tHS	120			risec	
INT Setup Time During ¢2 (for all modes)	tis	100			nsec	
Hold Time from ¢2 (READY, INT, HOLD)	tH	0		· · · ·	nsec	· · · · · ·
Delay to Float During Hold (Address and Data Bus)	tFD			120	nsec	
Address Stable Prior to WR	taw ②	6			nsec	· · · · · · · · · · · · · · · · · · ·
Output Data Stable Prior to WR	t _{DW} ②	6			nsec	
Output Data Stable From WR		ő			nsec	C ₁ = 100 pF: Address
Address Stable from WR	twa ②	ð.			nséc	Data
HI DA to Elect Deleu	the 2	8			nsec	C1 = 50 pF: WR,
WR to Float Delay	twr @	0			nsec	HLDA, DBIN
Address Hold Time after DBIN during HLDA	тан @	-20			nsec	

Notes Continued:

(4) The following are relevant when interfacing the μ PD8080AF to devices having V_{IH} = 3.3V.

a. Maximum output rise time from 0.8V to 3.3V = 100 ns at CL = SPEC. b. Output delay when measured to 3.0V = SPEC +60 ns at CL = SPEC.

c. If CL \neq SPEC, add 0.6 ns/pF if CL > CSPEC, subtract 0.3 ns/pF (from modified delay) if CL < CSPEC.

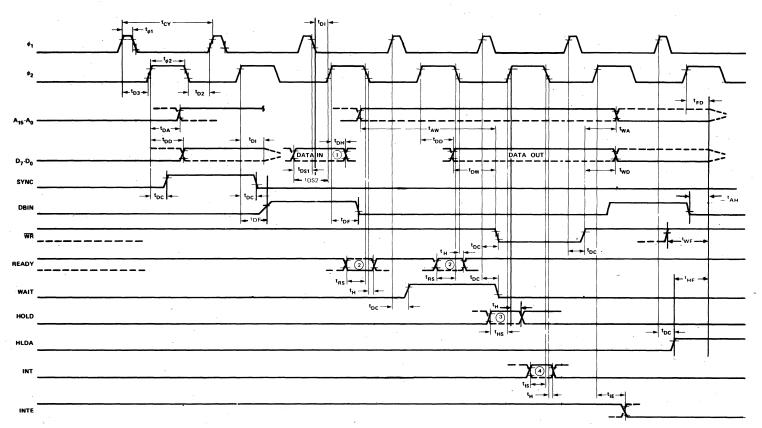
AC CHARACTERISTICS

μPD8080AF-1

T_a = 0° C to +70° C, V_{DD} = +12V \pm 5%, V_{CC} = +5V \pm 5%, V_{BB} = -5V \pm 5%, V_{SS} = 0V, unless otherwise specified.

			LIMITS			
PARAMETER	SYMBOL	MIŅ	TYP	MAX	UNIT	TEST CONDITIONS
Clock Period	tcy 3	0,32		2.0	μsec	
Clock Rise and Fall Time	t _r , t _f	0		25	nsec	
φ1 Pulse Width	^t ø1	50			nsec	
φ2 Pulse Width	tφ2	145			nsec	
Delay ø1 to ø2	^t D1	0			nsec	
Delay ø2 to ø1	^t D2	60			nsec	
Delay ϕ 1 to ϕ 2 Leading Edges	^t D3	60			nsec	
Address Output Delay From $\phi 2$	tda 🛛			150	nsec	C1 = 50 pF
Data Output Delay From ¢2	t _{DD} ②			180	nsec	CL - 50 pF
Signal Output Delay From φ1, or φ2 (SYNC, ₩R, WAIT, HLDA)	tDC ②		*	110	nsec	С _L = 50 pF
DBIN Delay From ϕ 2	tdf 2	25		130	nsec	
Delay for Input Bus to Enter Input Mode	10 נוסי			^t DF	nsec	
Data Setup Time During <i>p</i> 1 and DBIN	^t DS1	10		×	nsec	
Data Setup Time to ϕ 2 During DBIN	tDS2	120			nsec	
Data Hold Time From ¢2 During DBIN	тон ①	1			nsec	
INTE Output Delay From $\phi 2$	tie ②			200	nsec	CL = 50 pF
READY Setup Time During $\phi 2$	tRS	90			nsec	
HOLD Setup Time to $\phi 2$	tHS	120			nsec	
INT Setup Time During ¢2 (for all modes)	tis	100			nsec	
Hold Time from ¢2 (READY, INT, HOLD)	tн	0			nsec	4
Delay to Float During Hold (Address and Data Bus)	tFD			120	nsec	
Address Stable Prior to WR	taw 2	6			nsec	
Output Data Stable Prior to WR	tow 2	6			nsec	ъ.
Output Data Stable From WR	twp ②	0			nsec	CL = 50 pF: Address,
Address Stable from WR	twa 🕐	0			nsec	Data
HLDA to Float Delay	the 2	8			nsec	CL = 50 pF: WR,
WR to Float Delay	twf 2	9			nsec	HLDA, DBIN
Address Hold Time after DBIN during HLDA	¹ ан (2)	-20	-		nsec	

Notes Continued: (5)


いたのないのである

Device	'AW
µPD8080AF	2 t _{CY} - t _{D3} - t _{rø2} - 140
µPD8080AF-2	$2 t_{CY} - t_{D3} - t_{r\phi 2} - 130$
µPD8080AF-1	$2 t_{CY} - t_{D3} - t_{r\phi 2} - 110$

6	Device	tDW
	µPD8080AF	t _{CY} – t _{D3} – t _{rφ2} – 170
	µPD8080AF-2	$t_{CY} - t_{D3} - t_{r\phi 2} - 170$
	µPD8080AF-1	$t_{CY} - t_{D3} - t_{r\phi 2} - 150$

(9) $t_{WF} = t_{D3} + t_{r\phi 2} - 10$ ns.

TIMING WAVEFORMS 6 6

Notes: 1) Data in must be stable for this period during DBIN • T3. Both tDS1 and tDS2 must be satisfied.

(2) Ready signal must be stable for this period during T₂ or T_W. (Must be externally synchronized.)

- ③ Hold signal must be stable for this period during T₂ or T_W when entering hold mode, and during T₃, T₄, T₅ and T_{WH} when in hold mode. (External synchronization is not required.)
- Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be recognized in the following instruction, (External synchronization is not required.)

(5) This timing diagram shows timing relationships only; it does not represent any specific machine cycle.

 $\boldsymbol{\omega}$

(6) Timing measurements are made at the following reference voltages: CLOCK "1" = 8.0V, "0" = 1.0V; INPUTS "1" = 3.3V; "0" = 0.8V; OUTPUTS "1" = 2.0V, "0" = 0.8V.

µPD8080AF

The instruction set includes arithmetic and logical operators with direct, register, indirect, and immediate addressing modes.

Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, register, indirect, and immediate addressing modes.

The ability to branch to different portions of the program is provided with direct, conditional, or computed jumps. Also the ability to call and return from subroutines is provided both conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for interrupt vector operation.

Conditional jumps, calls and returns execute based on the state of the four testable flags (Sign, Zero, Parity and Carry). The state of each flag is determined by the result of the last instruction executed that affected flags. (See Instruction Set Table.)

The Sign flag is set (High) if bit 7 of the result is a "1"; otherwise it is reset (Low). The Zero flag is set if the result is "0"; otherwise it is reset. The Parity flag is set if the modulo 2 sum of the bits of the result is "0" (Even Parity); otherwise (Odd Parity) it is reset. The Carry flag is set if the last instruction resulted in a carry or a borrow out of the most significant bit (bit 7) of the result; otherwise it is reset.

In addition to the four testable flags, the μ PD8080AF has another flag (ACY) that is not directly testable. It is used for multiple precision arithmetic operations with the DAA instruction. The Auxiliary Carry flag is set if the last instruction resulted in a carry or a borrow from bit 3 into bit 4: otherwise it is reset.

Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the µPD8080AF. The ability to increment and decrement memory, the six general registers and the accumulator are provided as well as extended increment and decrement instructions to operate on the register pairs and stack pointer. Further capability is provided by the ability to rotate the accumulator left or right through or around the carry bit.

Input and output may be accomplished using memory addresses as I/O ports or the directly addressed I/O provided for in the µPD8080AF instruction set.

The special instruction group completes the µPD8080AF instruction set: NOP, HALT stop processor execution; DAA provides decimal arithmetic capability; STC sets the carry flag; CMC complements it; CMA complements the contents of the accumulator; and XCHG exchanges the contents of two 16-bit register pairs directly.

Data in the µPD8080AF is stored as 8-bit binary integers. All data/instruction transfers to the system data bus are in the following format:

D7	D6	D5	D4	D3	D ₂	D1	Do	
MSB		D	ATA	WOF	20		1 SB	Ì

Instructions are one, two, or three bytes long. Multiple byte instructions must be stored in successive locations of program memory. The address of the first byte is used as the address of the instruction.

	Byte							
D7	D6	D5	D4	D3	D ₂	D1	D ₀	OP CODE

TYPICAL INSTRUCTIONS

Register to register, memory reference, arithmetic or logical, rotate, return, push, pop, enable, or disable interrupt instructions

OP CODE Immediate mode or I/O instructions D7 D6 D5 D4 D3 D2 D1 D0 OPERAND

Thre	e Byt	e Ins	trucț	ions				
D7	D6	D5	D4,	D3	D ₂	D1	DO	0
D ₇	D6	D5	D4	D3	D ₂	D1	D ₀	L
D7	De	Ds	DA	Da	Do	D1	Do	н

D7 D6 D5 D4 D3 D2 D1 D0

Two Byte Instructions

Jump, call or direct load and P CODE store instructions OW ADDRESS OR OPERAND 1

IGH ADDRESS OR OPERAND 2

INSTRUCTION SET

DATA AND INSTRUCTION FORMATS

INSTRUCTION SET TABLE

				NST	RUC	тіс	N C	ODE	2			z	FL/	≻		. 1		,		INST	RUC	TION	cor	DE ²			z		ves' L
MNEMONIC ¹	DESCRIPTION	D7	D ₆								Clock Cycles3	SIGN	ZERO	PAP	CARRY	MNEMONIC ¹	DESCRIPTION	D7							Do	Clock Cycles ³	SIGN	ZERO	PARITY
			M	юv	E													LOA	DR	GIST	rer f	PAIR			•		•		
MOV d,s MOV M,s	Move register to register	0	1	d	d	d		5		s	5 7					LXI B.D16	Load immediate register	•				•	•						ì
MOV d,M	Move register to memory Move memory to register	0	1	1 d	1 d	d		1		s O	7		Υ			LXI D,D16	pair BC Load immediate register	0	0	0	0	0	0	0	1	10			
MVI d,D8 MVI M,D8	Move immediate to register Move immediate to memory	0 0	0 0	.d	d 1	d C		1		0 0	7 10					LXI H,D16	pair DE Load immediate register	0	0	0	1	0	0	0	1	10			
	II	ICRE	MEN	T/D	ECRE	EME	NT									LXI SP,D16	pair HL Load immediate Stack	0	0	1	0	0	0	0	1	10			
INR d	Increment register	0	0	d	d	c				0	5	•	•	•		L	Pointer	0	0	1	1	0	0	0	1	10			
DCR d INR M	Decrement register Increment memory	0	0 0	d 1	d 1	c C				1 0	5 10	:	:	:						PUSH	1								
DCR M	Decrement memory	0	0	1	1	C) ()	1	10	•	•	•		PUSH B	Push register pair BC on stack	1	1	0	0	0	1	0	· 1	11			
	ALU – F	REGI	STER	то	ACC	UM	ULA	TOR								PUSH D	Push register pair DE on stack	1	1	0	1	0	1	0	1	11			
ADD s ADC s	Add register to A Add register to A with	1	0	0	0	C	•		8	\$	4	•	•	•	•	PUSH H	Push register pair HL	1			0	0		0					
SUB s	carry Subtract register from A	1 1	0	0	0 1	1				s s	4	:	:	:	•	PUSH PSW	on stack Push A and flags on stack	i	1	1	1	ŏ	1	ő	1	11 11			
SBB s	Subtract register from A											Ĭ	Ĩ	Ĩ						POP									
ANA s	with borrow AND register with A	1	. 0 0	0 1	1 0	0				s s	4	:	:	:		POP B	Pop register pair BC off												
XRA s	Exclusive OR Register with A	1	0	1	0	1	,			s	4	•	•		0	POP D	stack Pop register pair DE off	1	1	0	0	0	0	0	1	10			
ORA s CMP s	OR register with A Compare register with A	1	0	1	1	0				s s	4 4	:	:	:	0	POP H	stack Pop register pair HL off	1	1	0	1	0	0	0	1	10			
	ALU –	-			-									-		POP PSW	stack Pop A and flags off stack	1	1	1 1	0	0	0	0	1	10 10			
ADD M	Add memory to A	1	0	0	0	0				0	7	•	•	•	•		p in and nage on stack			JBLE				÷					-
ADC M	Add memory to A with carry	1	0	0	0	1					7					DAD B	Add BC to HL	0	0	0	0	1	0	0	1	10			
SUB M SBB M	Subtract memory from A	1	Ő	ŏ	1	0				ō	7	•	•	•	•	DAD D	Add DE to HL	0	0	0	1	1	0	Ō	1	10			
	Subtract memory from A with borrow	1	0	0	1	1				0	7	٠	•	•	•	DAD H DAD SP	Add HL to HL Add Stack Pointer to HL	0 0	0	1 1	0 1	1 1	0	0	1	10 10			
ANA M XRA M	AND memory with A Exclusive OR memory	1	0	1	0	0					7	•	•	•	0		IN	CREN	IENT	REC	SISTE	R PA	IR						
ORA M	with A OR memory with A	1	0	1	0	1				0	7	:	:	:	0	INX B	Increment BC	0	0	0	`o	0	0	1	1	5			
CMP M	Compare memory with A	1	0	1	1	. 1				0	7	•	•	•	•	INX D INX H	Increment DE Increment HL	0	0 0	0 1	1	0 0	0	1	1.	5 5			
	ALU II	MME	DIAT	ΕТ	D AC	CUN	IUL.	ATO	٩							INX SP	Increment Stack Pointer	0	0	1	1	0	0	1	1	5			
ADI D8 ACI D8	Add immediate to A Add immediate to A with	1	1	0	0	0		1		0	7	•	•	•	. •			ECREN			GIST	ER P/							`
SUI D8	carry Subtract immediate from A	1	1	0	0 1	1				0	7 7	•	•	•	•	DCX B DCX D	Decrement BC Decrement DE	0 0	0 0	0	0	1	0	1	1	5 5			
SBI D8	Subtract immediate from A										<i>'</i>	•	•	•	•	DCX H DCX SP	Decrement HL Decrement Stack Pointer	0	0	1	0	1	0	1 1	1	5 5			
ANI D8	with borrow AND immediate with A	1	1	0 1	1 0	1				-	7	:	:	:	ō					ERIN			-						
XRI D8	Exclusive OR immediate with A	1	1	1	0	1	1			0	7	•			0	STAX B	Store A at ADDR in BC	0	0	0	0	0	0	1	0	7			
ORI D8 CPI D8	OR immediate with A Compare immediate with A	1	1	1	1	0				0 D	777	:	:	:		STAX D LDAX B	Store A at ADDR in DE Load A at ADDR in BC	0	0 0	0 0	1 0	0 1	0.	1	0	7			
		A	LU –	RO	TAT	E										LDAX D	Load A at ADDR in DE	ō	ō	ō	1	1	ō	1	ő	, 7			-
RLC	Rotate A left, MSB to																		D	IREC	т								
RRC	carry (8-bit) Rotate A right, LSB to	0	0	0	0	0	1	1		1	4				•	STA ADDR LDA ADDR	Store A direct Load A direct	0	0 0	1	1	0 1	0	1	0	13 13			
RAL	carry (8-bit)	o	0	0	0	1	1	1		1	4					SHLD ADDR	Store HL direct	0	0	1	0	0	0	1	0	16			
,	Rotate A left through carry (9-bit)	0	0	0	1	0	1	1		1	4		·		•	LHLD ADDR	Load HL direct	0 /	0	1	0	1	0	1	0	16			
RAR	Rotate A right through carry (9-bit)	0	0	0	1	1	1	1		1	4				•			MO	VER	EGIS	TER	PAIR				,			
			JL	JMP												XCHG	Exchange DE and HL register pairs	1	1	1	0	1	0	1	1	4			
JMP ADDR	Jump unconditional	1	1	0	ò	0	Ċ	1			10					XTHL	Exchange top of stack and HL	1	1	1	0	0	0	1	1	18			
JNZ ADDR JZ ADDR	Jump on not zero Jump on zero	1	1	0 0	0 0	0	0	1	0		10 10					SPHL PCHL	HL to Stack Pointer HL to Program Counter	1	1	1	1	1	0	0	1	5 5			
JNC ADDR JC ADDR	Jump on no carry Jump on carry	1	1	0 0	1	0	0	1	0	-	10 10							iN	VPUT	r/ou ⁻	TPUT								
JPO ADDR JPE ADDR	Jump on parity odd Jump on parity even	1	1	1	0	0	0	1	0		10 10					IN A	Input	1	1	0	1	1	0	1	1	10			
JP ADDR JM ADDR	Jump on positive Jump on minus	1	1	1	1	0	c		Ċ		10 10					OUT A	Output Enable interrupts	1	1	0	1 1	0 1	0	1	1 1	10 4			
				ALL												DI RST A	Disable interrupts Restart	1	1	1 A	1 A	0 A	0	1	1	- 4 11			
CALL ADDR	Call unconditional	1	-	0	0	1	1		-		17												<u> </u>		·				
CNZ ADDR CZ ADDR	Call on not zero Call on zero	1	1	0	0	0	1) 1	1/17					СМА	Complement A	0	0	1	0	- 1	1	1	,	A			
CNC ADDR	Call on no carry	i	1	0	.1	Ó	. 1	Ö) 1	1/17		`			STC	Set carry	0 0	0 0	1	1	0	į	i	1	4			1
CC ADDR CPO ADDR	Call on carry Call on parity odd	1	1 1	0 1	1 0	1 0	1	0	Ċ) 1	1/17 1/17					DAA	Complement carry Decimal adjust A	ō	ō	1	1	1	1	1	1	4	•	•	•
CPE ADDR CP ADDR	Call on parity even Call on positive	1	1	1	0	1	1				1/17					NOP 、 HLT	No operation Halt	0	0 1	0 1	0	0	0	0	0	4			
CM ADDR	Call on minus	1	1	1	1	1	1				1/17					Notes:													
			RET	UR	N											¹ Operand Sym										10 D - 01	1 E - 1	00 H	-
RET RNZ	Return Return on not zero	1	1	0	0	1	0	0			10 5/11					s = so	bit address or expression urce register			101L									
RZ	Return on zero	1	1	0	0	1	Ō	0	0) !	5/11						stination register ocessor Status Word		31 i	rwo p nstrui	ossib ction	le cyc cycle	le tir s den	mes (! bende	5/11) nt on	indicate condition			
RNC RC	Return on no carry Return on carry	1	1	0	1 1	0	0	0	Ċ		5/11 5/11					SP = Sta	ack Pointer bit data quantity, expression, o	~		lags.		,	201						
RPO RPE	Return on parity odd Return on parity even	1	1 1	1	0	0	0	0) !	5/11 5/11					co	nstant, always B2 of instruction	n	4.	• = fla				,					
RP	Return on positive	1	1	1	1	0	0	0	c) (5/11					co	-bit data quantity, expression, nstant, always B3B2 of instruc	tion	c) = fla	a res	affec at	ted						
	Return on minus	1	1	1	1	1	0	0	C	, ,	5/11					ADDR = 16	bit Memory address expressio	'n	1	= fla	ag set								

INSTRUCTION CYCLE

TIMES

One to five machine cycles $(M_1 - M_5)$ are required to execute an instruction. Each machine cycle involves the transfer of an instruction or data byte into the processor or a transfer of a data byte out of the processor (the sole exception being the double add instruction). The first one, two or three machine cycles obtain the instruction from the memory or an interrupting I/O controller. The remaining cycles are used to execute the instruction. Each machine cycle requires from three to five clock times $(T_1 - T_5)$. During $\phi_1 \circ$ SYNC of each machine cycle, a status word that identifies the type of machine cycle is available on the data bus.

Execution times and machine cycles used for each type of instruction are shown below.

INSTRUCTION	MACHINE CYCLES EXECUTED	CLOCK TIMES (MIN/MAX)
RST X and PUSH RP	PCR5 (1) SPW3 (5) SPW3 (5)	11
All CALL Instructions	PCR5 (1) PCR3 (2) PCR3 (2) SPW3 (5) SPW3 (5)	11/17
All Conditional RETURN Instructions	PCR5 (1) SPR3 (4) SPR3 (4)	5/11
RET Instructions	PCR4 () SPR3 () SPR3 ()	10
XTHL	PCR4 (1) \$PR3 (4) SPR3 (4) SPW3 (5) SPW5 (5)	18
DAD RP	PCR4 1 PCX3 (X) PCX3 (X)	10
INR R; INX RP, DCR R; DCX RP; PCHL; MOV R, R; SPHL	PCR5 (1)	5
All JUMP Instructions and LXI RP	PCR4 (1) PCR3 (2) PCR3 (2)	10
POP RP	PCR4 (1) SPR3 (4) SPR3 (4)	10
LDA	PCR4 (1) PCR3 (2) PCR3 (2) BBR3 (2)	13
STA	PCR4 (1) PCR3 (2) PCR3 (2) BBW3 (3)	13
LHLD	PCR4 (1) PCR3 (2) PCR3 (2) BBR3 (2) BBR3 (2)	16
SHLD	PCR4 (1) PCR3 (2) PCR3 (2) BBW3 (3) BBW3 (3)	16
STAX B	PCR4 (1) BCW3 (3)	. 7
STAX D	PCR4 (1) DEW3 (3)	7
LDAX B	PCR4 (1) BCR3 (2)	7
LDAX D	PCR4 1 DER3 2	7
MOV R, M; ADD M; ADC M; SUB M; SB B M; ANA M; XRA M; ORA M; CMP M	PCR4 () HLR3 (2)	7
INR M and DCR M	PCR4 (1) HLR3 (2) HLW3 (3)	10
MVIŇ	PCR4 1) PCR3 2) HLW3 3	10
MVI R; ADI; ACI; SUI; SBI; ANI; XRI; ORI; CPI	PCR4 () PCR3 (2)	7
MOV M, R	PCR4 () HLW3 (3)	7
EI; DI ADD R; ADC R; SUB R; SBB R; ANA R; XRA R; ORA R; CMP R; RLC; RRC; RAL; RAR; DAA; CMA; STC; CMC; NOP; XCHG	PCR4 ①	4
оυт	РСП4 (1) РСП3 (2) АВW3 (7)	10
IN	PCR4 (1) PCR3 (2) ABR3 (6)	10
HLT	PCR4 (1) PCX3 (9)	7

Machine Cycle Symbol Definition

xx

Ť	ŤŽ₩►	Status word defining type of machine cycle (See Status Word Chart) Number of clocks for this machine cycle
		R = Read cycle - data into processor
		W = Write cycle - data out of processor
		X = No data transfer
		PC = Program Counter used as address

HL = Registers H and L used as address BC = Registers B and C used as address DE = Registers D and E used as address SP = Stack Pointer used as address BB = Byte 2 and 3 used as address AB = Byte 2 used as address

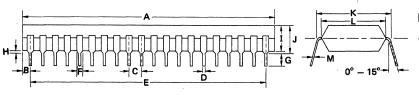
Underlined (XXYZ(N)) indicates machine cycle is executed if condition is True.

μ PD8080AF

STATUS INFORMATION DEFINITION

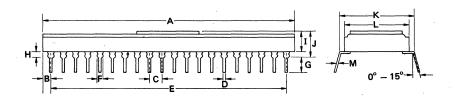
SYMBOLS	DATA BUS BIT	DEFINITION
INTA ①	D	Acknowledge signal for INTERRUPT request. Signal should be used to gate a restart or CALL instruction onto the data bus when DBIN is active.
wo	D1	Indicates that the operation in the current machine cycle will be a WRITE memory or OUTPUT function (WO = 0). Otherwise, a READ memory or INPUT operation will be executed.
STACK	D ₂	Indicates that the address bus holds the pushdown stack address from the Stack Pointer.
HLTA	D3	Acknowledge signal for HALT instruction.
OUT	D4	Indicates that the address bus contains the address of an output device and the data bus will contain the output data when WR is active.
M ₁	D5	Provides a signal to indicate that the CPU is in the fetch cycle for the first byte of an instruction.
INP ①	D ₆	Indicates that the address bus contains the address of an input device and the input data should be placed on the data bus when DBIN is active.
MEMR ①	D ₇	Designates that the data bus will be used for memory read data.

Note: ① These three status bits can be used to control the flow of data onto the μPD8080AF data bus,


							TYP	EOFN	ACHI	NE CY	CLE	
		/	/ ,			/ /	/ /	/ /	/ /			
	/		/					/			/	NULLOSE NULLOSE NON-EOSE HEI NON-EOSE NON-EOSE NON-EOSE NON-EOSE NON-EOSE NON-EOSE NON-EOSE NON-EOSE NOSE NOSE NOSE NOSE NOSE NOSE NOSE
	A BUS BIT	/	TION		× /		/	/		/		NERO PORTATION
		/ 4	MA	ON FETC		/ the	/ ,		/ /	he i	CKNO	N ED EN
	15 ^{BT}	INFO.	15	04 4	Er Ja	RI LE	2/181	«/s	9 (m	st/st	A. A.	NO WHIT
	ABUS BIT	5	TRUE	ON FEILEN	EAD NORTH	ACT REA	SCI WRIT	RE REP.	STRUT WE	ERAD	5°	ACT.
_ 0P	\$	14	3 M	C M	<u>/</u> \$	1/5	14	× / 0	14	\mathbb{Z}^{\ast}	<u>* *</u>	N STATUS WORD
		1	2	3	(4)	5	6	\bigcirc	8	9	10	N STATUS WORD
Do	INTA	0	Ö	· 0	0	· 0	0	Ó	1	0	1	
D1	WO	1	1	0	1	0	1	0	1	1	1	
D ₂	STACK	0	0	0	1	1	0	0	0	0	0	
D3	HLTA	0	0	0	0	0	0	0	• 0	1	. 1	
D4	OUT	0	0	Ö	0	0	0	1	0	0	0	
D5	M1	1	0	0	0	0	0	0	1	0	1	
D ₆	INP	0	0	0	0	0	1	0	0	0	0	1
D7	MEMR	1	1	0	1	.0	0	0	0	1	0	1

STATUS WORD CHART

1


149

PACKAGE OUTLINE µPD8080AFC/D

μ**ΡD8080AFC** (Plastic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
В	1.62	0.064
С	2.54	0.10
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
н	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
·J	5.72 MAX	0.225 MAX
к	15.24	0.600
L	13.2	0.520
м	0.25+0.1 - 0.05	0.010 ^{+0.004} - 0.002

μ**PD8080AFD** (Ceramic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
В	1.62	0.064
С	2.54	0.100
D	0.50 ± 0.1	0.0197 ± 0.004
E	48.26 ± 0.2	1.900 ± 0.008
F	1.27	0.050
G	3.2 MIN	0.126 MIN
н	1.0 MIN	0.04 MIN
I	4.2 MAX	0.17 MAX
J	5.2 MAX	0.205 MAX
ĸ	15.24	0.6
L	13.5	0.531
М	0.30 ± 0.1	0,012 ± 0.004

NEC **micro**computers, inc.

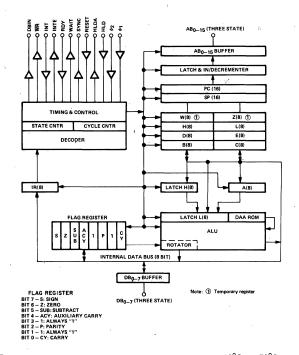
8-BIT N-CHANNEL MICROPROCESSOR

DESCRIPTION

The μ PD8080A is a complete 8-bit parallel processor for use in general purpose digital computer systems, which offers higher performance than conventional 8080A micro-processors. It is fabricated on a single LSI chip using N-channel silicon gate MOS process.

This processor is designed to greatly simplify system design. Separate 16-line address and 8-line bidirectional data busses are employed to allow direct interface to memories and I/O ports. Control signals, requiring no decoding, are provided directly by the processor. All busses, including the control bus, are TTL and CMOS compatible.

The μ PD8080A has the capability to accept a multiple byte instruction upon an interrupt. This means that a CALL instruction can be inserted so that any address in the memory can be the starting location for an interrupt program. This can be accomplished without auxilliary circuit because INTA is active for all three bytes of the CALL instruction. Another important feature is that the decimal adjust accumulator instruction operates correctly after subtraction as well as after addition; thus BCD subtraction can be performed at the same speed as BCD addition.


FEATURES

- Software and Pin Compatible with Industry Standard 8080A
- Clock Frequency 2.0 MHz
- Equivalent to the µPD8080AF with Enhancements
- Direct BCD Subtraction as well as Addition
- MOV r, r Executes in 4 Clock Cycles
- Interrupt Acknowledge is Active for 3 Byte Instructions such as CALL
- Available in a 40-pin Ceramic Package

PIN CONFIGURATION

A10	1	\bigcirc	40	
GND 🗖	2		39	A14
D4 🗖	3		38	
D5 🗖	4		37	
D6 🗖	5		36	
D7 🗖	6		35	
D3 🗖	7		34	
P2	8		33	
D1	9		32	
	10	μPD	31	
-5V 🗖	11	8080A	30	
RESET	12		29	
HOLD	13		28	+12V
	14		27	
¢2 🗖	15		26	
INTE 🗖	16		25	
DBIN 🗖	17		24	TIAW
	18		23	READY
SYNC 🗖	19		22	$\Box \phi_1$
+5V 🗖	20		21	

μPD8080Å

Operating Temperature. -10°C to +70°C Storage Temperature. -65°C to +150°C All Input or Output Voltages -0.3 to +20 Volts ① VCC, VDD and VSS -0.3 to +20 Volts ① Power Dissipation 1.5W

ABSOLUTE MAXIMUM RATINGS*

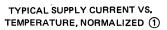
BLOCK DIAGRAM

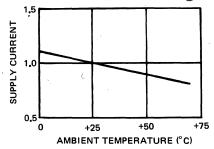
Note: 1 Relative to VBB

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

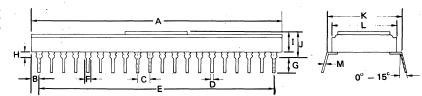
*T_a = 25°C

 T_a = -10°C to 70°C, VDD = +12V ± 5%, V_{CC} = +5V ± 5%, V_{BB} = -5V ± 5%, V_{SS} = GND, unless otherwise specified.


DA DAMETER	0/140001		LIMITS			TEST CONDITIONS		
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS		
Clock Input Low Voltage	VILC	V _{SS} - 1		V _{SS} + 0.8	v			
Clock Input High Voltage	ЧНС	9.0		V _{DD} + 1	v			
Input Low Voltage	ViL	Vss - 1		VSS + 0.8	v			
Input High Voltage	νін	3.0		Vcc + 1	v			
Output Low Voltage	VOL			0.45	v	IOL = 1.9 mA on all outputs		
Output High Voltage	∨он	3.7 3.5			v v	I _{OH} = -150 μA ② I _{OH} = -1.0 mA		
Avg. Power Supply Current (VDD)	IDD(AV)		55	75	mA			
Avg. Power Supply Current (VCC)	ICC(AV)		50	70	mA	tCY min		
Avg. Power Supply Current (VBB)	IBB(AV)		0.01	1	mA			
Input Leakage	μL			±10 ②	μA	V _{SS} < V _{IN} < V _{CC}		
Clock Leakage	ICL			±10 ②	μA	V _{SS} ≤ V _{CLOCK} ≤ V _{DD}		
Data Bus Leakage in Input Mode	'dl ①			+10 -10 ②	μ Α μΑ	VIN = VCC VIN = VSS + 0.45V		
Address and Data Bus Leakage During HOLD	IFL	-	-	+10 -10 ②	μA	VADDR/DATA = VCC VADDR/DATA = VSS + 0.45		


Notes: (1) There are no internal pull-up resistors on the inputs. (2) Minus (-) designates current flow out of the device.

DC CHARACTERISTICS

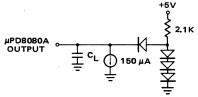

CAPACITANCE $T_a = 25^{\circ}C$; $V_{CC} = V_{DD} = 0V$; $V_{BB} = -5V$

			LIMIT	s		
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Clock Capacitance	Сφ		17	25	pF	f _c = 1 MHz
Input Capacitance	CIN		6	10	pF	Unmeasured Pins
Output Capacitance	COUT		10	20	pF	Returned to VSS

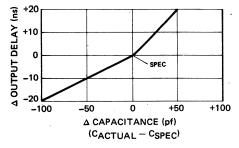
Note: 1 ΔI supply/ $\Delta T_a = -0.45\%$ °C.

ITEM	MILLIMETERS	INCHES
А	51.5 MAX	2.028 MAX
В	1.62	0.064
С	2.54 ± 0.1	0.100 ± 0.004
D	0.50 ± 0.1	0.0197 ± 0.004
E	48.26 ± 0.2	1.900 ± 0.008
F	. 1.27	0.050
G	3.2 MIN	0.126 MIN
н	1.0 MIN	0.04 MIN
I	4.2 MAX	. 0.17 MAX
J	5.2 MAX	0.205 MAX
к	15.24 ± 0.1	0.6 ± 0.004
L	13.5 ^{+0.2} - 0.25	0.531 ^{+ 0.008} - 0.010
м	0.30 ± 0.1	0.012 ± 0.004

PACKAGE OUTLINE µPD8080AD


AC CHARACTERISTICS

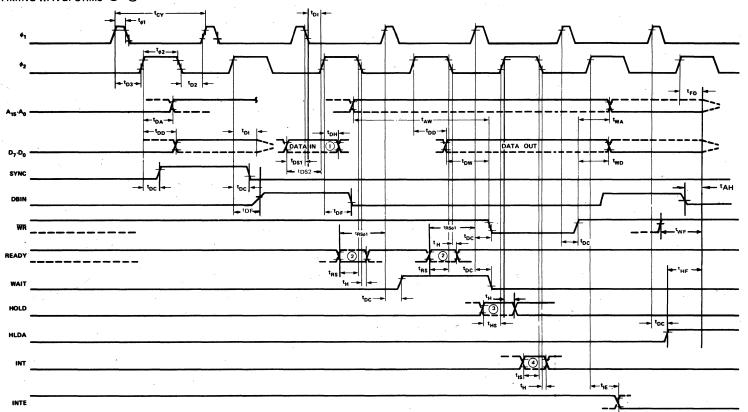
 $T_a = -10^{\circ}$ C to 70° C; $V_{DD} = +12V \pm 5\%$; $V_{CC} = +5V \pm 5\%$; $V_{BB} = -5V \pm 5\%$; $V_{SS} = 0V$, unless otherwise specified


			LIMITS				
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS	
Clock Period	tcy 3	0.48		2.0	μs		
Clock Rise and Fall Time	t _r , t _f	0		50	ns		
φ1 Pulse Width	tø1	60			ns		
φ2 Pulse Width	tø2	220			ns		
Delay ¢1 to ¢2	^t D1	0			ns		
Delay ¢2 to ¢1	tD2	70			ns		
Delay ¢1 to ¢2 Leading Edges	tD3	80			ns		
Address Output Delay From ¢2	tDA V2			200	ns	0 - 400 -4	
Data Output Delay From	tidd 🛛			220	ns	C _L = 100 pf	
Signal Output Delay From ¢1, or ¢2 (SYNC, WR, WAIT, HLDA)	tdc ②			120	ns	C _L = 50 pf	
DBIN Delay From ¢2	tdf @	25		140	ns		
Delay for Input Bus to Enter Input Mode	tDI ①			tDF	ns		
Data Setup Time During ¢1 and DBIN	^t DS1	30			ns		
·	tDS2	6					
Data Hold Time From ¢2 During DBIN	тон ①	50			ns		
INTE Output Delay From ¢2	tie ②			200	. ns	CL = 50 pf	
READY Setup Time During ¢2	tRS	120			ns		
READY Setup Time to ¢1 High	tRSø1	240			ns		
HOLD Setup Time to ¢2	tHS	140			ns		
INT Setup Time During ¢2 (for all modes)	tis	120			ns		
Hold Time From \$\$ (READY, INT, HOLD)	tH.	0			ns		
Delay to Float During Hold (Address and Data Bus)	tFD ·			120	ns		
Address Stable Prior to WR	taw 2	6			ns		
Output Data Stable Prior to WR	tow 2	\bigcirc			ns]	
Output Data Stable From WR	twp ②	8			ns	C _L = 100 pf: Address, Data	
Address Stable From WR	twa ②	8			ns	C ₁ = 50 pf: WR,	
HLDA to Float Delay	the 2	9			ns	HLDA, DBIN	
WR to Float Delay	twf 2	0			ns	1	
Address Hold Time After DBIN During HLDA	tAH 2	-20			ns	1	

Notes: (1) Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured. t_{DH} = 50 ns or t_{DF}, whichever is less.

(2) Load Circuit

(3) Actual $t_{CY} = t_{D3} + t_{r\phi2} + t_{\phi2} + t_{f\phi2} + t_{D2} + t_{r\phi1} > t_{CY}$ Min. TYPICAL \triangle OUTPUT DELAY VS. \triangle CAPACITANCE



- (4) The following are relevant when interfacing the μ PD8080A to devices having VIH = 3.3V.
 - a. Maximum output rise time from 0.8V to 3.3V = 100 ns at C_L = SPEC.
 - b. Output delay when measured to 3.0V = SPEC + 60 ns at $C_L = SPEC$.
 - c. If CL \neq SPEC, add 0.6 ns/pF if CL > CSPEC, subtract 0.3 ns/pF (from modified delay) if CL < CSPEC.

(6) $t_{AW} = 2 t_{CY} - t_{D3} - t_{r\phi 2} - 140$

- (7) $t_{DW} = t_{CY} t_{D3} t_{r\phi 2} 170$
- (8) If not HLDA, $t_{WD} = t_{WA} = t_{D3} + t_{r\phi2} + 10$ ns. If HLDA, $t_{WD} = t_{WA} = t_{WF}$.
- (9) $t_{HF} = t_{D3} + t_{r\phi 2} 50$ ns.
- 0 twF = tD3 + tro2 10 ns.

TIMING WAVEFORMS 5 6

408080A

① Data in must be stable for this period during DBIN T₃. t_{DS1} must be satisfied.

 $\boldsymbol{\omega}$

- (2) Ready signal must be stable for this period during T₂. (Must be externally synchronized.)
- (3) Hold signal must be stable for this period during T_2 when entering hold mode, and during T_3 , T_4 and T_5 when in hold mode. (External synchronization is not required.)
- (4) Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be recognized on the following instruction. (External synchronization is not required.)

an a shekara a sa a sa

- (5) This timing diagram shows timing relationships only; it does not represent any specific machine cycle.
- (6) Timing measurements are made at the following reference voltages: CLOCK "1" = 8.0V, "0" = 1.0V; INPUTS "1" = 3.0V; "0" = 0.8V; OUTPUTS "1" = 2.0V, "0" = 0.8V.

155

INST	RI	ICT	ΊΩΝ	SFT	ŤΑ	BIF

																HN.	<u> </u>				1	U I	1N	SEI		AI	
			•									AGS ≻														LAG	
MNEMONIC ¹	DESCRIPTION		INS	TRI	лсті	ON	COD	E,	Cloc Cycle	k 0	ZERO	PARITY	CARRY	MNEMONIC'	DESCRIPTION		INS	TRU	ст	ION	co	DE3		Clock Cycles ³	SIGN	ZERO	CARR
		D7	D6	D5	D4	Ď3	D2	D1 [0							D7 1	D6	D5	D4	D3	D2	D1	D ₀				
		м	OVE												LOAD	REG	IST	ER P	AIF	3							
MOV d,s MOV M,s	Move register to register Move register to memory	0		d 1				s 5	s 4					LXI B,D16	Load immediate register pair BC	0	٥	0	0	0	0	0	1	10			
MOV d,M	Move memory to register	0	1	d	d	d	1	1 (5 7					LXI D,D16	Load immediate register												
	Move immediate to register Move immediate to memory			d 1				1 0						LXI H,D16	pair DE Load immediate register			0					1	10			
	INCREM	AEN.	T/DE	CR	ME	NT								LXI SP,D16	pair HL Load immediate Stack	0	0	1	0	0	0	0	1	10			
INR d	Increment register	0	0	d	d	d	1	0) 5		•	•			Pointer	0	0	1	1	0	0	0	1	10			
	Decrement register Increment memory	0	0	d	d	d	1	0	15	•	•	:				PU	SH						`				
DCR M	Decrement memory	ŏ		i				0			•	•		PUSH B	Push register pair BC									11			
	ALU – REGIS	TER	то	ACC	UMU	JLA	TOR							PUSH D	on stack Push register pair DE							0					,
ADD s	Add register to A	1	0	0	0	0	s	s	s 4	•	•	•	•	PUSH H	on stack Push register pair HL							0	1	11			
ADC s	Add register to A with carry	1	0	0	0	1	5	\$	5 4					PUSH PSW	on stack Push A and flags on stack	1 1		1					1	11 11			
SUB s SSB s	Subtract register from A Subtract register from A	1	0	Ō	1			\$	5 4	•	•	٠	٠				OP				_						
	with borrow	1						s :		•	•	:	•	POP B													
ANA s XRA s	AND register with A Exclusive OR register	1						\$		•	•	-	0		Pop register pair BC off stack	1	1	0	0	0	0	0	1	10			
ORA s	with A OR register with A	1		1			s s	s :				:	0 0	POP D	Pop register pair DE off stack	1	1	0	1	0	0	0	1	10			
CMP s	Compare register with A	1	0	1	1			\$	5 4	•	•	•	•	POP H	Pop register pair HL off stack			1					1	10			
	ALU - MEMO	DRY	TO A	CC	UMU		OR							POP PSW		i								10	•	••	•
	Add memory to A	1	0	0	0	0	1	1 () 7	•	٠	•	•	[D	OUB	LE	ADD									
ADC M	Add memory to A with carry	1			0			1 (•	•	•	•	DAD B	Add BC to HL		0	0	0	1	0	0	1	11			• *
	Subtract memory from A Subtract memory from A	1	0	0	1	0	1	1 (7	•	•	•	•	DAD D DAD H	Add DE to HL Add HL to HL				1 0	1 1	0 0	0 0	1 1	11 11			:
	with borrow AND memory with A	1	0 0	0	1 0	1		1 0		:	•	:	•	DAD SP	Add Stack Pointer to HL	0	0	1	1	1	0	0	1	11			•
	Exclusive OR memory with A					-					Ĩ	Ţ			INCREME	NTR	EG	ISTE	RF	PAIF	3						
	OR memory with A	1	ō	1		0	1	1 () 7	:		:	0 0	INX B	Increment BC					0		1		5			
CMP M	Compare memory with A	1	0	1	1	1	1	1 () 7	•	•	•	•	INX D INX H	Increment DE Increment HL				1 0	0	0	1	1	5 5			
	ALU – IMMED	IATE	то	AC	CUM		TOP	1						INX SP	Increment Stack Pointer	0	0	1	1	0	0	1	1	5			
	Add immediate to A Add immediate to A with	1	1	0	0	0	1	1 (7 (•	•	٠	•		DECREME	NT F	EG	ISTE	RF	PAIF	1						
	carry Subtract immediate from A		1	0 0				1 (:	:	:	:	DCX B DCX D	Decrement BC Decrement DE				0 1	1 1	0 0	1	1	5 5			
	Subtract immediate from									•	•	ľ	•	DCX H	Decrement HL	0	0	1	0	1	0	1	1	5			
	A with borrow AND immediate with A				1 0			1 (:	:	:	•	DCX SP	Decrement Stack Pointer		0			1	0	1	1	5			
XRI D8	Exclusive OR immediate with A	1	1	1	0	1	1	1 () 7		•		0		REGI	STER		DIR	ECT	Г							
ORI D8 CPI D8	OR immediate with A Compare immediate with A	1	1	1	1	0		1 () 7		-	:	•	STAX B STAX D	Store A at ADDR in B Store A at ADDR in D				0 1	0 0	0 0	1	0	777			
		LU –												LDAX B	Load A at ADDR in B Load A at ADDR in D	0	0	Ó	0	1	0	1	0	7			
RLC	Rotate A left, MSB to															DIF			-								
	carry (8-bit)	0	0	0	0	0	1	1	4				٠			-	-	_									
	Rotate A right, LSB to carry (8-bit)	0	0	0	0	1	1	1	4				•	STA ADDR LDA ADDR	Store A direct Load A direct				1		0	1	0	13 13			
RAL	Rotate A left through carry (9-bit)	0	0	0	1	0	1	1	4				•	SHLD ADDR	Store HL direct Load HL direct				0	0 1	0	1	0	16 16			
RAR	Rotate A right through carry (9-bit)	0	0	0	1	1	1	1	ı 4						MOVE												
			UMP	-			<u> </u>	<u> </u>								REG	1911										
														XCHG	Exchange DE and HL register pairs	1	1	1	0	1	0	1	1	4 .			
JNZ ADDR	Jump unconditional Jump on not zero	1	1	0	0	0	0	1 0	0 10					XTHL	Exchange top of stack and HL			1				1	1	17			
	Jump on zero Jump on no carry	1						1 (SPHL PCHL	HL to Stack Pointer HL to Program			1			0	0	1	4			
JC ADDR	Jump on carry Jump on parity odd	1	1	0	1	1	0		0 10						Counter	1	1	1	0	1	0	0	1	5			
JPE ADDR	Jump on parity even	1	1	1	0	1	0	1 0	0 10					1	IN	PUT/	οu	TPU	т								
	Jump on positive Jump on minus	1					0) 10) 10					INA	Input				1	1	0	1	1	10			
		CA	LL											OUT A El	Output Enable interrupts		1 1		1 1	0 1	0 0	1	1	10 4			
	Call unconditional			0	0	1	1	0	17					DI RST A	Disable interrupts Restart	1	1	1	1	0	Ó	1	1	× 4 11			
CNZ ADDR	Call on not zero Call on zero	1		0	ō	0	1	ō	0 11/17											^	<u> </u>		<u> </u>				
CNC ADDR	Call on no carry	1		0			1		0 11/17	,						CEL											
CPO ADDR	Call on carry Call on parity odd	1		0				0						CMA STC	Complement A Set carry			1	0 1	1	1	1	1 1	4			1
CPE ADDR	Cell on parity even Cell on positive	1	1	1					0 11/17 0 11/17					CMC	Complement carry Decimal adjust A		0	1	1	1	1	1	1	4		• •	Cy
	Call on minus	i	•	1	1			ŏ.						NOP	No-operation	ō	Ō	0	0	0	0	0	0	4	-		-
		RE	TURI	N										HLT	Halt	0	1	1	1	0	1	1	0	7			
				0	0	1		0						NOTES: 'Operand Symi			² c	dd r	or ss	s I	000	в —	001	C – 010	D	011	E
	Return	1	1												address or expression												
RNZ	Return Return on not zero Return on zero	1 1 1	1	0	0			0	D 5/11 D 5/11					s = sour	ce register									nory - 1			
RNZ RZ RNC	Return on not zero Return on zero Return on no carry	1 1 1 1 1	1	0 0 0	0 0 1	1 0	0 0	0	0 5/11 0 5/11					s = sour d = desti PSW = Proc	ce register nation register essor Status Word		۲° ii	wo i stru	Doss	ible	cyc	le tir	nes (nory — 1 5/11) in nt on co	dicate	,	
RNZ RZ RNC RC RPO	Return on not zero Return on zero Return on no carry Return on carry Return on parity odd	1	1 1 1 1	00000	0 0 1 1 0	1 0 1 0	0 0 0 0	0	0 5/11 0 5/11 0 5/11 0 5/11					s = soun d = desti PSW = Proc SP = Stacl D8 = 8-bit	ce register nation register essor Status Word k Pointer data quantity, expression, or		۲ د ii f	wo j nstru lags.	oosa	ible on cy	cyc /cles	le tir	nes (5/11) in	dicate	,	
RNZ RZ RNC RC RPO RPE RP	Return on not zero Return on zero Return on no carry Return on carry	1 1 1	1 1 1 1 1	0000	0 0 1 1 0	1 0 1 0 1	00000	0	D 5/11 D 5/11 D 5/11 D 5/11 D 5/11 D 5/11					s = sourd d = desti PSW = Proc SP = Stac D8 = 8-bit cons D16 = 16-b	ce register nation register essor Status Word k Pointer) Dr	۲ د ii f	wo i stru	ooss ictic ag a ag n	ffec	cyc /cles ted	le tir dep	nes (5/11) in	dicate	,	

INSTRUCTION SET

The instruction set includes arithmetic and logical operators with direct, register, indirect, and immediate addressing modes. These instructions operate exactly like the µPD8080AF except as noted.

In addition to the four testable flags, the µPD8080A has two more flags (ACY, SUB) that are not directly testable. They are used for multiple precision arithmetic operations, particularly with the DAA instruction. The Auxiliary Carry flag is set if the last instruction resulted in a carry or a borrow from bit 3 into bit 4; otherwise it is reset. The Subtract flag is set if the last instruction resulted in a subtract operation being performed; it is reset if an add operation was performed. Also, arithmetic flags are not affected by logical instructions.

DATA AND INSTRUCTION FORMATS

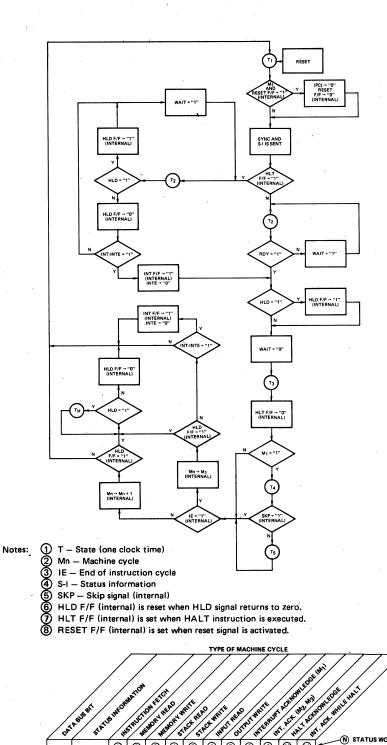
Data in the µPD8080A is stored as 8-bit binary integers. All data/instruction transfers to the system data bus are in the following format:

D7	D ₆	D5	D4	D3	D2	D1	D ₀
MSB		D	ATA	WOF	D		LSB

Instructions are one, two, or three bytes long. Multiple byte instructions must be stored in successive locations of program memory. The address of the first byte is used as the address of the instruction.

One	Byte								TYPICA
D7	D6	D5	D4	D3	D2	D1	DO	OP CODE	Register
Two	Byte	Inst	ructio	ons					referenc rotate, r
D7	D6	D5	D4	D ₃	D ₂	D1	DO	OP CODE	or disab
D7	D6	D5	D4	D3.	D ₂	D1	D ₀	OPERAND	Immedia tions
Thre	e Byt	e Ins	trucț	ions		,			Jump, c
D7	D6	D5	D4,	D3	D ₂	D ₁	DO	OP CODE	storems
D7	D ₆	D5	D4	D3	D ₂	D1	DO	LOW ADDF	ESS OR
D7	D6	D_5	D4	D3	D ₂	D1	DO	HIGH ADD	RESS OR

AL INSTRUCTIONS er to register, memory ce, arithmetic or logical return, push, pop, enable, ble interrupt instructions ate mode or I/O instrucall or direct load and structions


OPERAND 1 **OPERAND 2**

INSTRUCTION CYCLE TIMES

One to five machine cycles (M1 - M5) are required to execute an instruction. Each machine cycle involves the transfer of an instruction or data byte into the processor or a transfer of a data byte out of the processor (the sole exception being the double add instruction). The first one, two or three machine cycles obtain the instruction from the memory or an interrupting I/O controller. The remaining cycles are used to execute the instruction. Each machine cycle requires from three to five clock times (T₁ - T₅). During ϕ_1 SYNC of each machine cycle, a status word that identifies the type of machine cycle is available on the data bus.

Execution times and machine cycles used for each type of instruction are shown below.

INSTRUCTION	MACHINE CYCLES EXECUTED	CLOCK TIMES (MIN/MAX)	
RST X and PUSH RP	PCR5 (1) SPW3 (5) SPW3 (5)	11	
All CALL Instructions	PCR5 1 PCR3 2 PCR3 2 SPW3 5 SPW3 5	11/17	
All RET Instructions	PCR5 () SPR3 () SPR3 ()	5/11	
XTHL	PCR5 () SPR3 () SPW3 () SPR3 () SPW3 ()	17	
DAD RP	PCR5 D PCX3 PCX3	11	
INR R; INX RP, DCR R; DCX RP; PCHL	PCR5	5	
All JUMP Instructions and LXI RP	PCR4 (1) PCR3 (2) PCR3 (2)	10 .	
POP RP	PCR4 (1) SPR3 (4) SPR3 (4)	10	
LDA	PCR4 () PCR3 (2) PCR3 (2) BBR3 (2)	13	
STA	PCR4 (1) PCR3 (2) PCR3 (2) BBW3 (3)	13	
LHLD	PCR4 (1) PCR3 (2) PCR3 (2) BBR3 (2) BBR3 (2)	16	
SHLD	PCR4 (1) PCR3 (2) PCR3 (2) BBW3 (3) BBW3 (3)	16	Machine Cycle Symbol Definition
STAX B	PCR4 (1) BCW3 (3)	7	
STAX D	PCR4 1 DEW3 3	7	XX Y Z N Status word defining type of machine XX HL = Registers H and L used and C used
LDAX B	PCR4 1) BCR3 2	7	R = Read cycle – data into processor SP = Stack Pointer used as add
LDAX D	PCR4 (1) DER3 (2)	7	W = Write cycle - data out of processor BB = Byte 2 and 3 used as add
MOV R, M; ADD M; ADC M; SUB M; SB B M; ANA M; XRA M; ORA M; CMP M	PCR4 () HLR3 ()	7	X = No data transfer AB = Byte 2 used as address → PC = Program Counter used as address Underlined (XXYZ()) indicates machine cycle is executed if condition is True.
INR M and DCR M	PCR4 () HLR3 () HLW3 ()	10	
MVI M	PCR4 1 PCR3 2 HLW3 3	10	1
MVI R; ADI; ACI; SUI; SBI; ANI; XRI; ORI; CPI	PCR4 (1) PCR3 (2)	. 7	
MOV M, R	PCR4 1 HLW3 3	7]
MOV R.R, EI; DI ADD R; ADC R; SUB R; SBB R; ANA R; XRA R; ORA R; CMP R; RLC; RRC; RAL; RAR; DAA; CMA; STC; CMC; NOP; XCHG, SPHL		4	
ООТ	PCR4 1 PCR3 2 ABW3 7	10	
IN	PCR4 1 PCR3 2 ABR3 6	10	
HLT	PCR4 (1) PCX3 (1)	7	

0 0

Do

D1

D₂

D3

D4

D5 M1

D6

D7

INTA

STACK

HLTA

OUT

INP

MEMR

wo

PROCESSOR STATE TRANSITION DIAGRAM

SP8080A-8-77-GN-CAT

STATUS WORD CHART

N STATUS WORD

NEC MICTOCOMPUTERS, INC.

PRIORITY INTERRUPT CONTROLLER

DESCRIPTION

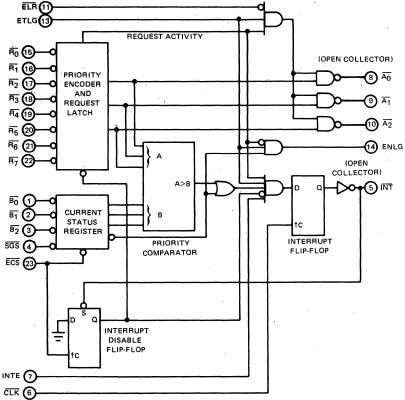
The μ PB8214 is an eight-level priority interrupt controller. Designed to simplify interrupt driven microcomputer systems, the μ PB8214 requires a single +5V power supply and is packaged in a 24 pin plastic Dual-in-line package.

The μ PB8214 accepts up to eight interrupts, determines which has the highest priority and then compares that priority with a software created current status register. If the incoming request is of a higher priority than the interrupt currently being serviced, an interrupt request to the processor is generated. Vector information that identifies the interrupting device is also generated.

The interrupt structure of the microcomputer system can be expanded beyond eight interrupt levels by cascading μ PB8214s. The μ PB8214's interrupt and vector information outputs are open collector and control signals are provided to simplify expansion of the interrupt structure.

FEATURES

- Eight Priority Levels
- Current Status Register and Priority Comparator
- Easily Expanded Interrupt Structure
- Single +5 Volt Supply


PIN CONFIGURATION

$B_0 \square 1$ 24 $\square V_{CC}$	
	i

PIN NAMES

Inputs:									
$\overline{R_0} - \overline{R_7}$	Request Levels (R7 Hi	ghest Priority)							
$\overline{B_0} - \overline{B_2}$	B0-B2 Current Status								
SGS	SGS Status Group Select								
ECS	Enable Current Status								
INTE	Interrupt Enable								
CLK	Clock (INT F-F)								
ELR	Enable Level Read								
ETLG	Enable This Level Gro	up							
Outputs:									
$\overline{A_0} - \overline{A_2}$	Request Levels	Open							
INT	Interrupt (Act. Low)	Collector							
ENLG	ENLG Enable Next Level Group								

BLOCK DIAGRAM

General

The μ PB8214 is an LSI device designed to simplify the circuitry required to implement an interrupt driven microcomputer system. Up to eight interrupting devices can be connected to a μ PB8214, which will assign priority to incoming interrupt requests and accept the highest. It will also compare the priority of the highest incoming request with the priority of the interrupt being serviced. If the serviced interrupt has a higher priority, the incoming request will not be accepted.

A system with more than eight interrupting devices can be implemented by interconnecting additional μ PB8214s. In order to facilitate this expansion, control signals are provided for cascading the controllers so that there is a priority established among the controllers. In addition, the interrupt and vector information outputs are open collector.

Priority Encoder and Request Latch

The priority encoder portion of the μ PB8214 accepts up to eight active low interrupt requests ($\overline{R_0}-\overline{R_7}$). The circuit assigns priority to the incoming requests, with $\overline{R_7}$ having the highest priority and $\overline{R_0}$ the lowest. If two or more requests occur simultaneously, the μ PB8214 accepts the one having the highest priority. Once an incoming interrupt request is accepted, it is stored by the request latch and a three-bit code is output. As shown in the following table, the outputs, ($\overline{A_0}-\overline{A_2}$) are the complement of the request level (modulo 8) and directly correspond to the bit pattern required to generate the one byte RESTART (RST) instructions recognized by an 8080A. Simultaneously with the $\overline{A_0}-\overline{A_2}$ outputs, a system interrupt request that are *not* accepted are not latched and must remain as an input to the μ PB8214 in order to be serviced.

FUNCTIONAL DESCRIPTION

μPB8214

FUNCTIONAL DESCRIPTION (CONT.)

		RE	START	GENE	RATIC	N TAB	LE			
			D7	D ₆	D5	D ₄	D ₃	D ₂	D ₁	D ₀
PRIORIT REQUES		RST	1	1	$\overline{A_2}$	$\overline{A_1}$	$\overline{A_0}$	1	1	1
LOWEST	R ₀	7	1	1	1	1	1	1	1	1
	R ₁	6	1	1	1	1	0	1	1	1
	R ₂	5	1	1	1	0	1	1	1	1
	R ₃	4	1	1	1	0	0	1	1	1
	R ₄	3	1	1	0	1	1	1	1	1
	R_5	2	1	1	0	1	0	1	1	1
	R ₆	1	1	1	0.	0	1	1	1	1
HIGHEST	R ₇	0*	1	1	0	0	0	1	1	1

*CAUTION: RST 0 will vector the program counter to location 0 (zero) and invoke the same routine as the "RESET" input to 8080A.

Current Status Register

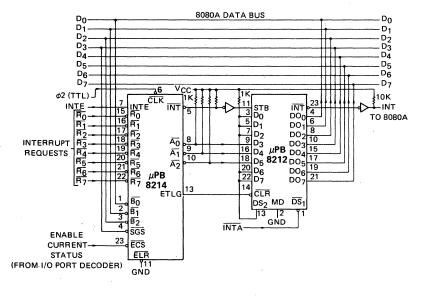
The current status register is designed to prevent an incoming interrupt request from overriding the servicing of an interrupt with higher priority. Via software, the priority level of the interrupt being serviced by the microprocessor is written into the current status register on $\overline{B_0}-\overline{B_2}$. The bit pattern written should be the complement of the interrupt level.

The interrupt level currently being serviced is written into the current status register by driving $\overline{\text{ECS}}$ (Enable Current Status) low. The μ PB8214 will only accept interrupts with a higher priority than the value contained by the current status register. Note that the programmer is free to use the current status register for other than as above. Other levels may be written into it. The comparison may be completely disabled by driving $\overline{\text{SGS}}$ (Status Group Select) low when $\overline{\text{ECS}}$ is driven low. This will cause the μ PB8214 to accept incoming interrupts only on the basis of their priority to each other.

Priority Comparator

The priority comparator circuitry compares the level of the interrupt accepted by the priority encoder and request latch with the contents of the current status register. If the incoming request has a priority level higher than that of the current status register, the \overline{INT} output is enabled. Note that this comparison can be disabled by loading the current status register with $\overline{SGS}=0$.

Expansion Control Signals


A microcomputer design may often require more than eight different interrupts. The μ PB8214 is designed so that interrupt system expansion is easily performed via the use of three signals: ETLG (Enable This Level Group); ENLG (Enable Next Level Group); and ELR (Enable Level Read). A high input to ETLG indicates that the μ PB8214 may accept an interrupt. In a typical system, the ENLG output from one μ PB8214 is connected to the ETLG input of another μ PB8214, etc. The ETLG of the μ PB8214 with the highest priority is tied high. This configuration sets up priority among the cascaded μ PB8214's. The ENLG output will be high for any device that does not have an interrupt pending, thereby allowing a device with lower priority to accept interrupts. The ELR input is basically a chip enable and allows hardware or software to selectively disable/enable individual μ PB8214's. A low on the ELR input enables the device.

Interrupt Control Circuitry

The µPB8214 contains two flip-flops and several gates which determine whether an accepted interrupt request to the μ PB8214 will generate a system interrupt to the 8080A. A condition gate drives the D input of the interrupt flip-flop whenever an interrupt request has been completely accepted. This requires that: the ETLG (Enable This Level Group) and INTE (Interrupt Enable) inputs to the µPB8214 are high; the ELR input is low; the incoming request must be of a higher priority than the contents of the current status register; and the μ PB8214 must have been enabled to accept interrupt requests by the clearing of the interrupt disable flip-flop.

Once the condition gate drives the D input of the interrupt flip-flop high, a system interrupt (INT) to the 8080A is generated on the next rising edge of the CLK input to the μ PB8214. This \overline{CLK} input is typically connected to the ϕ 2 (TTL) output of an 8224 so that 8080A set-up time specifications are met. When INT is generated, it sets the interrupt disable flip-flop so that no additional system interrupts will be generated until it is reset. It is reset by driving ECS (Enable Current Status) low thereby writing into the current status register.

It should be noted that the open collector \overline{INT} output from the μ PB8214 is active for only one clock period and thus must be externally latched for inputting to the 8080A. Also, because the \overline{INT} output is open collector, when $\mu PB8214$'s are cascaded, an INT output from any one will set all of the interrupt disable flipflops in the array. Each μ PB8214's interrupt disable flip-flop must then be cleared individually in order to generate subsequent system interrupts.

FUNCTIONAL DESCRIPTION (CONT.)

TYPICAL µPB8214 CIRCUITRY

RATINGS*

.....-1.0 to +5.5 Volts All Input Voltages Output Currents 100 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

μPB8214

DC CHARACTERISTICS $T_a = 0^{\circ}C$ to +70°C, $V_{CC} = 5V \pm 5\%$

PARAMETER	SYMBOL		LIMITS			
	STMBUL	MIN.	TYP.①	MAX.	UNIT	TEST CONDITIONS
Input Clamp Voltage (all inputs)	Vc			- 1.0	V	IC=-5mA
Input Forward Current: ETLG input	IF		<u></u> -`.15	-0.5	mA	VF=0.45V
all other inputs			08	-0.25	mA	
Input Reverse Current: ETLG input	IR			80	μA	VR=5.25V
all other inputs				40	μA	-
Input LOW Voltage: all inputs	VIL			0.8	V	V _{CC} =5.0V
Input HIGH Voltage: all inputs	VIH /	2.0			V	V _{CC} =5.0V
Power Supply Current	ICC		90	130	mA	2
Output LOW Voltage: all outputs	VOL		.3	.45	V ·	IOL=10mA
Output HIGH Voltage: ENLG output	∨он	2.4	3.0		V	IOH=-1mA
Short Circuit Output Current: ENLG output	los	~ 20	-35	- 55	mA	VOS=0V, VCC=5.0V
Output Leakage Current: \overline{INT} and $\overline{A_0} - \overline{A_2}$	ICEX			100	μA	VCEX=5.25V

CAPACITANCE $3 T_a = 25^{\circ}C$

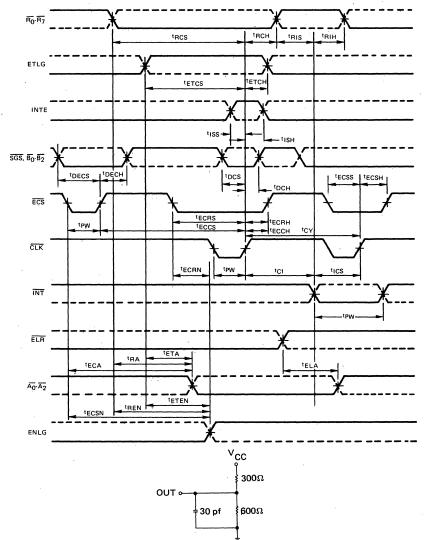
DADAMETED	evino		LIMITS			
PARAMETER	SYMBOL	MIN.	TYP.①	MAX.	UNIT	TEST CONDITIONS
Input Capacitance	CIN		5	10	pF	VBIAS=2.5V
Output Capacitance	COUT		. 7	12	рF	V _{CC} =5V f=1mHz

AC CHARACTERISTICS $T_a = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = +5V \pm 5\%$

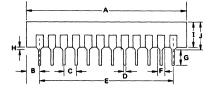
	01/1100		LIMITS			TEAT CONDUCTONS
PARAMETER	SYMBOL	MIN.	TYP.①	MAX.	UNIT	TEST CONDITIONS
CLK Cycle Time	tCY	80	50		ns	Input pulse
CLK, ECS, INT Pulse Width	tPW	25	15		ns	amplitude: 2.5 Volts
INTE Setup Time to CLK	tISS	16	12		ns	
INTE Hold Time after CLK	tISH	20	10		ns	-
ETLG Setup Time to CLK	tetcs	25	12		ns	Input rise and fall
ETLG Hold Time After CLK	tETCH	20	10		ns	times: 5 ns between
ECS Setup Time to CLK	tECCS @	80	50	,	ns	1 and 2 Volts
ECS Hold Time After CLK	tECCH (5)	0			ns	
ECS Setup Time to CLK	tECRS 5	110	70		ns	
ECS Hold Time After CLK	tecrh 6	0				Output loading of
ECS Setup Time to CLK	tecss@	75	70		ns	15 mA and 30 pF.
ECS Hold Time After CLK	tecsh ④	0			ns	
SGS and B0-B2 Setup Time to CLK	tDCS	70	50		ns	
SGS and B0-B2 Hold Time After CLK	tDCH ④	0			ns	Speed measurements
R0-R7 Setup Time to CLK	trcs 6	90	55		ns	taken at the 1.5 Volts
R0-R7 Hold Time After CLK	trch 6	0			ns	levels.
INT Setup Time to CLK	tICS	55	- 35		ns	
CLK to INT Propagation Delay	ťCI		15	25	ns	
R0-R7 Setup Time to INT	tris 6	10	0		ns	
R0-R7 Hold Time After INT	trin@	35	20		ns	
R0-R7 to A0-A2 Propagation Delay	^t RA		80	100	ns	
ELR to $\overline{A_0} - \overline{A_2}$ Propagation Delay	`tELA		40	55	ns	
ECS to A0-A2 Propagation Delay	^t ECA		. 100	.120	ns	
ETLG to A0-A2 Propagation Delay	^t ETA		35	70	ns	
SGS and B0-B2 Setup Time to ECS	tDECS 6	15	10		ns	
SGS and B0-B2 Hold Time After ECS	tDECH 6	15	10		ns	
R0-R7 to ENLG Propagation Delay	tREN		45	70	ns	*
ELTG to ENLG Propagation Delay	tETEN		20	25	ns	
ECS to ENLG Propagation Delay	tECRN		85	90	. ns	$\chi \rightarrow$
ECS to ENLG Propagation Delay	tECSN		35	55	ns	

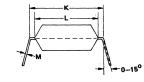
Notes:

Typical values are for $T_a=25^{\circ}C$, $V_{CC}=5.0V$ BO-B2, SGS, CLK, RO-R4 grounded, all other inputs and all outputs 1 2 open.


This parameter is periodically sampled and not 100% tested.

Required for proper operation if INTE is enabled during next clock pulse.


3 4 5 These times are not required for proper operation but for desired change in interrupt flip-flop.


6 Required for new request or status to be properly loaded.

PACKAGE OUTLINE µPB8214C

ITEM	MILLIMETERS	INCHES
Α ·	33 MAX.	1.28
8	2.53	0.1
C	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.5	0.059
G	3.2 MIN.	0.125 MIN.
н	0.5 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
-]	5.72 MAX.	0.225 MAX.
ĸ	15.24	0.6
L	13.2	0.52
M	0.25 ± 0.1	0.01 ± 0.004

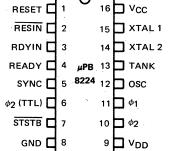
SP8214-2-77-GN-CAT

NEC MICROsmputers, Inc.

CLOCK GENERATOR AND DRIVER FOR 8080A PROCESSORS

DESCRIPTION

The μ PB8224 is a single chip clock generator and driver for 8080A processors. The clock frequency is determined by a user specified crystal and is capable of meeting the timing requirements of the entire 8080A family of processors. MOS and TTL level clock outputs are generated.


Additional logic circuitry of the μ PB8224 provides signals for power-up reset, an advance status strobe and properly synchronizes the ready signal to the processor. This greatly reduces the number of chips needed for 8080A systems.

The μ PB8224 is fabricated using NEC's Schottky bipolar process.

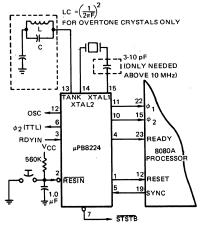
FEATURES

- Crystal Controlled Clocks
- Oscillator Output for External Timing
- MOS Level Clocks for 8080A Processor
- TTL Level Clock for DMA Activities
- Power-up Reset for 8080A Processor
- Ready Synchronization
- Advanced Status Strobe
- Reduces System Package Count
- Available in 16-pin Cerdip and Plastic Packages

PIN CONFIGURATION

RESIN	Reset Input
RESET	Reset Output
RDYIN	Ready Input
READY	Ready Output
SYNC	Sync Input
STSTB	Status STB
51518	Output
φ1	Processor
φ2	Clocks
XTAL 1	Crystal
XTAL 2	Connections
	Used With
TANK	Overtone
1	Crystal
	Oscillator
OSC	Output
	¢2 CLK
ϕ_2 (TTL)	(TTL Level)
Vcc	+5V
VDD	+12V
GND	0V

PIN NAMES


Clock Generator

The clock generator circuitry consists of a crystal controlled oscillator and a divide-by-nine counter. The crystal frequency is a function of the 8080A processor speed and is basically nine times the processor frequency, i.e.:

Crystal frequency = $\frac{9}{t_{CY}}$

where t_{CY} is the 8080A processor clock period.

A series resonant fundamental mode crystal is normally used and is connected across input pins XTAL1 and XTAL2. If an overtone mode crystal is used, an additional LC network, AC coupled to ground, must be connected to the TANK input of the μ PB8224 as shown in the following figure.

The formula for the LC network is:

LC = $\left(\frac{1}{2\pi F}\right)^2$

where F is the desired frequency of oscillation.

The output of the oscillator is input to the divide-by-nine counter. It is also buffered and brought out on the OSC pin, allowing this stable, crystal controlled source to be used for derivation of other system timing signals. The divide-bynine counter generates the two non-overlapping processor clocks, ϕ_1 and ϕ_2 , which are buffered and at MOS levels, a TTL level ϕ_2 and internal timing signals.

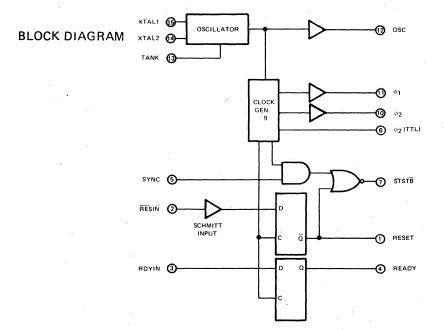
The ϕ_1 and ϕ_2 high level outputs are generated in a 2-5-2 digital pattern, with ϕ_1 being high for two oscillator periods, ϕ_2 being high for five oscillator periods, and then neither being high for two oscillator periods. The TTL level ϕ_2, ϕ_2 (TTL), is normally used for DMA activities by gating the external device onto the 8080A bus once a Hold Acknowledge (HLDA) has been issued.

Additional Logic

In addition to the clock generator circuitry, the μ PB8224 contains additional logic to aid the system designer in the proper timing of several interface signals.

The STSTB signal indicates, at the earliest possible moment, when the status signals output from the 8080A processor are stable on the data bus. $\overline{\text{STSTB}}$ is designed to connect directly to the μ PB8228 System Controller and automatically resets the μ PB8228 during power-on Reset.

The RESIN input to the μ PB8224 is used to automatically generate a RESET signal to the 8080A during power initialization. The slow rise of the power supply voltage in an external RC network is sensed by an internal Schmitt Trigger. The output of the Schmitt Trigger is gated to generate an 8080A compatible RESET. An active low manual switch may also be attached to the RC circuit for manual system reset.


The RDYIN input to the μ PB8224 accepts an asynchronous "wait request" and generates a READY output to the 8080A that is fully synchronized to meet the 8080A timing requirements.

166

μPB8224

FUNCTIONAL DESCRIPTION

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

Operating Temperature
Storage Temperature
All Output Voltages (TTL)
All Output Voltages (MOS)
All Input Voltages
Supply Voltage V _{CC}
Supply Voltage VDD
Output Currents

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

$T_a = 0^{\circ}C$ to +70°C; $V_{CC} = +5V \pm 5\%$; $V_{DD} = +12V \pm 5\%$

PARAMETER	SYMBOL		LIMITS	-	UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Current Loading	١F			-0.25	mA	V _F = 0.45V
Input Leakage Current	IR.			10	μA	V _R = 5.25V
Input Forward Clamp Voltage	٧c			-1.0	v	I _C = -5 mA
Input "Low" Voltage	ViL			0.8	v	V _{CC} = 5.0V
Input "High" Voltage	νн	2.6			v	Reset Input
		2.0				All Other Inputs
RESIN Input Hysteresis	VIH·VIL	0.25			v	V _{CC} = 5.0V
Output "Low" Voltage	VOL			0.45	v	(ϕ_1, ϕ_2) , Ready, Reset, STSTB
						IOL = 2.5 mA
				0.45	v	All Other Inputs
2						IOL = 15 mA
Output "High" Voltage	VOH					
¢1. ¢2		9.4			v	i _{OH} = −100 µA
READY, RESET		3.6			v	l _{OH} = -100 μA
All Other Dutpúts		2.4			v	IOH = -1 mA
Output Short Circuit Current	I _{SC} O	-10		-60	mA	V _O = 0V
(Áll Low Voltage Outputs Only)						V _{CC} = 5.0V
Power Supply Current	1cc			115	mA	
Power Supply Current	IDD			15	mA	

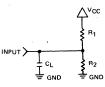
Note: 1 Caution, ϕ_1 and ϕ_2 output drivers do not have short circuit protection

$T_a = 25^{\circ}C$; f = 1 MHz; $V_{CC} = 5V$; $V_{DD} = 12V$; $V_{BIAS} = 2.5V$

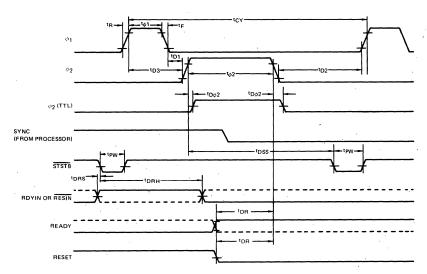
CAPACITANCE①

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			8	ρF	

Note: (1) This parameter is periodically sampled and not 100% tested.


μΡΒ8224

AC CHARACTERISTICS

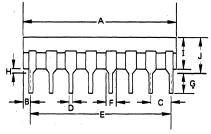

$T_a = 0^{\circ}C$ to +70°C; $V_{CC} = +5V \pm 5\%$; $V_{DD} = +12V \pm 5\%$

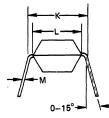
PARAMETER	SYMBOL	LIN	AITS (1)	UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
ϕ_1 Pulse Width	^t ø1	$\frac{2t_{CY}}{9}$ -20 ns				
ϕ_2 Pulse Width	tø2	$\frac{5tCY}{9}$ -35 ns				
φ ₁ to φ ₂ Delay	tD1	0			ns	
ϕ_2 to ϕ_1 Delay	^t D2	$\frac{2t_{CY}}{9}$ -14 ns				C _L = 20 pF to 50 pF
φ ₁ to φ ₂ Delay	^t D3	$\frac{2t_{CY}}{9}$		$\frac{2t_{CY}}{9}$ +20 ns		•
ϕ_1 and ϕ_2 Rise Time	^t R			20		
ϕ_1 and ϕ_2 Fall Time	tF			20		
ϕ_2 to ϕ_2 (TTL) Delay	^t Dφ2	-5		+15	ns	ϕ_2 TTL, CL = 30 pF
						R ₁ = 300Ω
						R ₂ = 600Ω
ϕ_2 to STSTB Delay	tDSS	$\frac{6t_{CY}}{9}$ -30 ns		$\frac{6t_{CY}}{9}$	ns	
STSTB Pulse Width	tpw	t <u>CY</u> 9 −15 ns				STSTB, CL = 15 pF
RDYIN Setup Time	^t DRS	50 ns - $\frac{4t_{CY}}{9}$			ns	R ₁ = 2K R ₂ = 4K
RDYIN Hold Time After STSB	^t DRH	$\frac{4t_{CY}}{9}$				'
READY or RESET to ϕ_2 Delay	^t DR	$\frac{4t_{CY}}{9}$ -25 ns			ns	Ready and Reset CL = 10 pF R ₁ = 2K R ₂ = 4K
Crystal Frequency	fCLK		9 tCY		MHz	
Maximum Oscillating Frequency	^f MAX			27	MHz	

Note: (1) t_{CY} represents the processor clock period

Voltage Measurement Points: ϕ_1 , ϕ_2 Logic "0" = 1.0V, Logic "1" = 8.0V. All other signals measured at 1.5V.

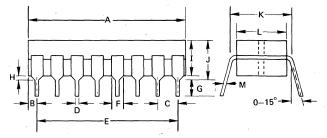
TIMING WAVEFORMS


μPB8224


CRYSTAL REQUIREMENTS

Tolerance
Resonance
Load Capacitance
Equivalent Resistance
Power Dissipation (Min)

Note: 1) With tank circuit use 3rd overtone mode.


PACKAGE OUTLINE µPB8224C/D

µPB8224C (Plastic)

ITEM	MILLIMETERS	INCHES
A	19.4 MAX.	0.76 MAX.
в	0.81	0.03
С	2.54	0.10
D	0.5	0.02
E	17.78	0.70
F	1.3	0.051
G	2.54 MIN.	0.10 MIN.
н	0.5 MIN.	0.02 MIN.
I	4.05 MAX.	0.16 MAX.
J	4.55 MAX.	0.18 MAX.
к	7.62	0.30
L	6.4	0.25
м	0.25 +0.10 0.05	0.01

μPB8224D (Cerdip)

ITEM	MILLIMETERS	INCHES
A	19.9 MAX	0.784 MAX
В	1.06	0.042
С	2.54	0.10
D	0.46 + 0.10	0.018 + 0.004
E	17.78	0.70
F	1.5	0.059
G	2.54 MIN	0.10 MIN
н	0.5 MIN	0.019 MIN
I	4.58 MAX	0.181 MAX
J	5.08 MAX	0.20 MAX
к	7.62	0.30
Ĺ	6.4	0.25
м	0.25 + 0.10	0.0098 + 0.0039 0.0019

SP8224-8-77-GN-CAT 169

NEC MCCOMPUTES, MG.

8080A SYSTEM CONTROLLER AND BUS DRIVER

The μ PB8228/8238D is a single chip controller and bus driver for 8080A based systems. All the required interface signals necessary to connect RAM, ROM and I/O components to a μ PD8080A are generated.

The μ PB8228/8238D provides a bi-directional three-state bus driver for high TTL fan-out and isolation of the processor data bus from the system data bus for increased noise immunity.

The system controller portion of the μ PB8228/8238D consists of a status latch for definition of processor machine cycles and a gating array to decode this information for direct interface to system components. The controller can enable gating of a multi-byte interrupt onto the data bus or can automatically insert a RESTART 7 onto the data bus without any additional components.

Two devices are provided. The μ PB8228D for small systems without tight write timing constraints and the μ PB8238D for larger systems.

- System Controller for 8080A Systems
- Bi-Directional Data Bus for Processor Isolation
- 3.60V Output High Voltage for Direct Interface to 8080A Processor
- Three State Outputs on System Data Bus
- Enables Use of Multi-Byte Interrupt Instructions
- Generates RST 7 Interrupt Instruction
- µPB8228 for Small Memory Systems
- µPB8238 for Large Memory Systems
- Reduces System Package Count
- Schottky Bipolar Technology

STSTB 1 28 🗖 Vcc HLDA 2 27 **1** 1/0W 26 🗖 MEMW 3 25 h 1/08 DBIN 14 24 MEMR DB4 🗖 5 D4 🗖 6 23 **1** INTA μPB 22 BUSEN 7 DB7 🗖 8228/ 8238 21 🗖 D6 D7 🗖 8 DB3 🗖 9 20 🗖 DB6 D3 🗖 10 19 **1** D5 18 **1** DB5 DB2 🗖 11 17 🗖 D1 D2 12 DB0 🗖 13 16 🗖 DB1 14 15 D0 GND C NC: No Connection

PIN NAMES

D7-D0	Data Bus (Processor Side)
DB7-DB0	Dața Bus (System Side)
I/OR	I/O Read
i/OW	I/O Write
MEMR	Memory Read
MEMW	Memory Write
DBIN	DBIN (From Processor)
INTA	Interrupt Acknowledge
HĻDA	HLDA (From Processor)
WR	WR (From Processor)
BUSEN	Bus Enable Input
STSTB	Status Strobe (From µPB8224)
Vcc	+5V
GND	0 Volts

DESCRIPTION

FEATURES

PIN CONFIGURATION

μPB8228/8238

FUNCTIONAL DESCRIPTION

Bi-Directional Bus Driver

The eight bit, bi-directional bus driver provides buffering between the processor data bus and the system data bus. On the processor side, the μ PB8228/8238D exceeds the minimum input voltage requirements (3.0V) of the μ PD8080A. On the system side, the driver is capable of adequate drive current (10 mA) for connection of a large number of memory and I/O devices to the bus. Signal flow in the bus driver is controlled by the gating array and its outputs can be forced into a high impedance state by use of the BUSEN input.

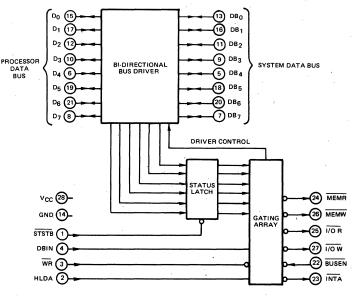
Status Latch

The Status Latch in the μ PB8228/8238D stores the status information placed on the data bus by the 8080A at the beginning of each machine cycle. The information is latched when STSTB goes low and is then decoded by the gating array for the generation of control signals.

Gating Array

The Gating Array generates "active low" control signals for direct interfacing to system components by gating the contents of the status latch with control signals from the 8080A.

MEM/R, I/OR and INTA are generated by gating the DBIN signal from the processor with the contents of the status latch. I/OR is used to enable an I/O input onto the system data bus. MEM/R is used to enable a memory input.


INTA is normally used to gate an interrupt instruction onto the system data bus. When used with the μ PD8080A processor, the μ PB8228/8238D will decode an interrupt acknowledge status word during all three machine cycles for a multi-byte interrupt instruction. For 8080A type processors that do not generate an interrupt acknowledge status word during the second and third machine cycles of a multi-byte interrupt instruction, the μ PB8228/8238 will internally generate an INTA pulse for those machine cycles.

The μ PB8228/8238D also provides the designer the ability to place a single interrupt instruction onto the bus without adding additional components. By connecting the +12 volt supply to the INTA output (pin 23) of the μ PB8228/8238D through a 1K ohm series resistor, RESTART 7 will be gated onto the processor data bus when DBIN is active during an interrupt acknowledge machine cycle.

 $\overline{\text{MEM/W}}$ and $\overline{\text{I/OW}}$ are generated by gating the $\overline{\text{WR}}$ signal from the processor with the contents of the status latch. $\overline{\text{I/OW}}$ indicates that an output port write is about to occur. $\overline{\text{MEM/W}}$ indicates that a memory write will occur.

The data bus output buffers and control signal buffers can be asynchronously forced into a high impedance state by placing a high on the BUSEN pin of the μ PB8228/8238. Normal operation is performed with BUSEN low.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature	; to +70°C
Storage Temperature65°C	to +150°C
All Output or Supply Voltages0.5 t	o +7 Volts
All Input Voltages1.5 to	5.5 Volts
Output Currents	. 100 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $T_a = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 5\%$

		LIMITS				
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Input Clamp Voltage, All Inputs	Vc ·			-1.0	v	V _{CC} = 4.75V; I _{CC} = -5 mA
Input Load Current, STSTB	IF			500	μA	
D ₂ and D ₆				750	μA	V _{CC} = 5.25V
D ₀ , D ₁ , D ₄ , D ₅ , and D ₇]			250	μA	V _F = 0.45V
All Other Inputs	1			250	μA	
Input Leakage Current, STSTB	IR.			100	μA	
DB ₀ through DB ₇				20	μA	V _{CC} = 5.25V
All Other Inputs				100	μÀ	V _R = 5,0V
Input Threshold Voltage, All Inputs	VTH	0.8		2.0	v	V _{CC} = 5V
Power Supply Current	ICC			190	mA	V _{CC} = 5.25V
Output Low Voltage, Do through D7	VOL			0.45	v	V _{CC} = 4.75V; I _{OL} = 2 mA
All Other Outputs	1			0.48	v	I _{OL} = 10 mA
Output High Voltage, D0 through D7	Voн	3.6			v	V _{CC} = 4.75V; I _{OH} = -10 μA
All Other Outputs	1	2.4			v	^I OH = -1 mA
Short Circuit Current, All Outputs	los	15		90	mΑ	V _{CC} = 5V
Off State Output Current,	IO(off)			100	μA	V _{CC} = 5.25V; V _O = 5.0V
All Control Outputs				-100	μA	V _O = 0.45∨
INTA Current	UNT			5	mA	(See Figure below)

+12V 1 KΩ ± 10%

INTA TEST CIRCUIT

			LIMITS			TEST
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Input Capacitance	CIN			12	pF	VBIAS = 2.5V
Output Capacitance Control Signals	соит			15	pF	V _{CC} = 5.0V,
I/O Capacitance (D or DB)	C _{I/O}			15	pF	f = 1 MHz

NOTE: This parameter is periodically sampled and not 100% tested.

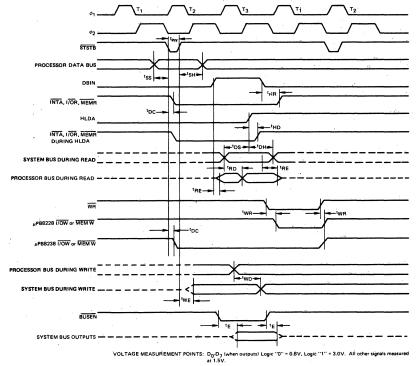
DC CHARACTERISTICS

CAPACITANCE

AC CHARACTERISTICS

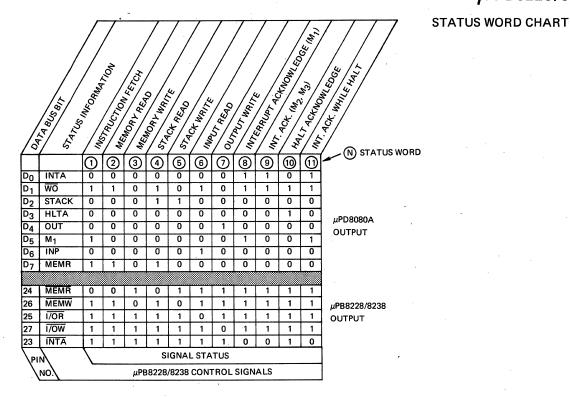
$T_a = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 5\%$

· · · · · · · · · · · · · · · · · · ·			IMITS	3		TEST
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Width of Status Strobe	tPW	22			ns	
Setup Time, Status Inputs D ₀ -D ₇	tss	8			ns	
Hold Time, Status Inputs D0-D7	tSH	5			ns	
Delay from STSTB to any Control Signal	^t DC	20		60	'ns	С _L = 100 рF
Delay from DBIN to Control Outputs	^t RR			30	ns	CL = 100 pF
Delay from DBIN to Enable/ Disable 8080A Bus	tRE			45	ns	CL = 25 pF
Delay from System Bus to 8080A Bus during Read	^t RD			30	ns	CL = 25 pF
Delây from WR to Control Outputs	twR	5		45	ns	C _L = 100 pF
Delay to Enable System Bus DB0-DB7 after STSTB	tŴE		· ·	30	ns	C _L = 100 pF
Délay from 8080A Bus D ₀ -D ₇ to System Bus DB ₀ -DB ₇ during Write	ŧwD	5		40	'ns	С _L = 100 рF
Delay from System Bus Enable to System Bus DB0-DB7	tE			30	ns	CL = 100 pF
HLDA to Read Status Outputs	tHD			25	ns	
Setup Time, System Bus Inputs to HLDA	tDS	10			ns	
Hold Time, System Bus Inputs to HLDA	tDH	20			ns	CL = 100 pF


OUTPUT PIN

For D₀-D₇: $\vec{R}_1 = 4 \text{ K}\Omega$, $R_2 = \infty \Omega$, C_L = 25 pF. For all other outputs:

 $R_1 = 500\Omega$, $R_2 = 1 K\Omega$, $C_L = 100 pF$.



TEST CIRCUIT

TIMING WAVEFORMS

173

PACKAGE OUTLINE µPB8228/8238D

ITEM	MILLIMETERS	INCHES
Α	36.0 MAX.	1.42 MAX.
В	1.5 MAX.	0.59 MAX.
с	2.54	0.1
D	0.50 ± 0.1	0.02 ± 0.004
E	33.0	1,30
F	1.27	0.05
G	3.2 MIN.	0.13 MIN.
н	1.9	0.07
I	3.3 MAX.	0.13 MAX.
لہ	5.2 MAX.	0.20 MAX.
ĸ	15.3	0.60
L	13.9	0.55
м	0.30 ± 0.1	0.012 ± 0.004

MAGNETIC TAPE CASSETTE/ CARTRIDGE CONTROLLER

DESCRIPTION

NEC MICROcomputers, inc.

The NEC μ PD371 is a high performance N-Channel LSI tape cassette/cartridge controller designed to interface between most cassette or cartridge tape drives and most microprocessors or minicomputers.

The μ PD371 converts 8-bit parallel data into serial phase encoded data to be written on tape and converts phase encoded data read from tape into 8-bit parallel data, calculates the CRC during write operations, verifies the CRC during read operations, informs the processor program when to send data bytes during write operations and when to read bytes during read operations, converts tape drive status signals into register bit levels which may be read by the processor program and converts software commands into signals which may be understood by the tape drive(s).

The μ PD371 read and write data paths are completely separate to allow read-after-write data verification.

The μ PD371 places no limitation on the selection of tape speed since the μ PD371 maximum data transfer rate is considerably faster than that of the fastest cassette or cartridge drive.

FEATURES

- Compatible with ANSI, ECMA and ISO standard
- Also compatible with most other standards
- Hardware CRC generation and verification
- Read-after-write capability
- High speed file search
- Multiple drive capability
- May read or write on one drive while rewinding or file searching on another
- Maximum Data Transfer rate of 375K bits/sec equivalent to 468 IPS at 800 BPI

PIN CONFIGURATION

мвн 🗖	1	\bigcirc	42	🗖 AWL
VDD 🗖	2		41	
DB7 🗖	3		40	RST
DB6 🗖	4		39	🗀 wск
DB5 🗖	5		38	
DB4 🗖	6		37	
DB3 🗖	7		36	
	8		35	GAP
	9		34	🗖 sg
DB0 🗖	10	μPD	33	RD(-)
W/R	11	371	32	RD(+)
DS 🗖	12		31	МК1
	13		30	МК0
RS1	14		29	□ s ₁
RS2	15		28	□ c ₃
от 🗖	16		27	□ c ₂
UA 🗖	17		26	$\square s_2$
RW1	18		25	🗖 s ₃
RW ₀	19		24	REQ
φ1 🗖	20		23	$\square \phi^2$
∨ввЦ	21		22	₽ v _{ss}

Operating Temperature	
Storage Temperature	RATINGS*
All Output Voltages	
All Input Voltages	
Clock Voltages	
Supply Voltage VDD	
Supply Voltage V _{CC}	
Supply Voltage VBB	

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

Note: (1) $V_{BB} = -5V \pm 5\%$. All voltages measured with respect to GND.

DADAMETED	0141001		LIMIT	S		TEAT CONDUTIONS
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS
Input High Voltage	V _{IH}	+3.0		Vcc	v	
Input Low Voltage	VIL	0		+0.8	· V	
Output High Voltage	∨он	+3.5			V	I _{OH} = −1 mA
Output Low Voltage	VOL			+0.4	V	I _{OL} = +1.7 mA
Clock Input High Voltage	VOH	+9		V _{DD}	V	
Clock Input Low Voltage	VOL	0		+0.65	V	
Input Leakage Current	LIH			+10	μA	V ₁ = +3.0V
Input DB0 – DB7	LIL 1			-10	μA	V ₁ = +0.8V
Leak age All Except DB ₀ - Current DB ₇ (~25K Internal Pull-ups)	ILIL 2			-1.0	mA	V _I = +0.4V
Clock Input Leakage Current	LOH			+20	μA	V _O = +9.0V
Clock Input Leakage Current				-20	μA	V _O = +0.65V
Output Leakage Current	LOH			+10	μA	V _O = +3.5V
Output Leakage Current	LOL			-10	μA	$V_0 = +0.4V$
Power Supply Current (VDD)			+20		mA	,
Power Supply Current (V _{CC})	1cc		+30		mA	
Power Supply Current (V _{BB})	IBB			-2	mA	

 $T_a = 0 - 70^{\circ}C V_{DD} = +12V \pm 5\% V_{CC} = +5V \pm 5\% V_{BB} = -5V \pm 5\% V_{SS} = 0V$

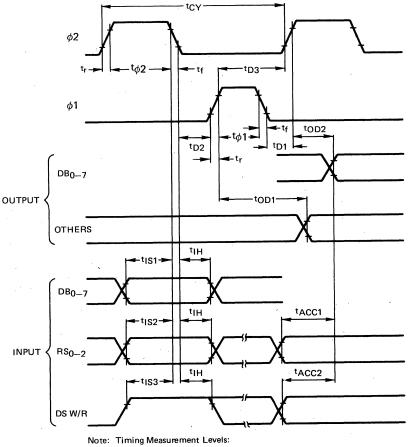
 $T_a = 25^{\circ}C, V_{DD} = V_{CC} = V_{SS} = 0V, V_{BB} = -5V$

PARAMETER	CVMDO1		LIMITS				
PARAMETER	SYMBOL	MIN	түр	MAX	UNIT	TEST CONDITIONS	
Clock Capacitance	C _O			35	рF	fc = 1 MHz. All pins	
Input Capacitance	C _{IN}			10	рF	except measuring pin	
Output Capacitance	с _{оит}			20	рF	are grounded.	

CAPACITANCE

176

DC CHARACTERISTICS


μPD371

AC CHARACTERISTICS

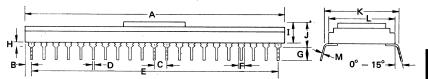
 $T_a = 0 - 70^{\circ}$ C, $V_{DD} = +12V \pm 5$ %, $V_{CC} = +5V \pm 5$ %, $V_{BB} = -5V \pm 5$ %, V_{SS} = CU

PARAMETER	SYMBOL		LIMITS	5	UNIT	TEAT CONDITIONS
FARAIVIETER	STIVIBUL	MIN	ТҮР	MAX		TEST CONDITIONS
Clock Period	t _{cy}	480		5000	ns	
Clock Rise and Fall Times	t _r , t _f	0		50	ns	
¢1 Pulse Width	tø1	60			ns	
¢2 Pulse Width	tφ2	220			ns	
φ1 to φ2 Delay	^t D1	0			ns	
φ2 to φ1 Delay	^t D2	70			ns	
Delay ϕ 1 to ϕ 2 Lead Edges	^t D3	80			ns	
Data Out Delay from ϕ 1	^t OD1			480	ns	1TTL & CL = 30 pF
Data Out Delay from ϕ 1	^t OD2			260	ns	1TTL & CL = 30 pF
RS ₀ – RS ₂ to Output Delay	^t ACC1			300	ns	1TTL & CL = 30 pF
DS, W/R to Output Delay	^t ACC2			200	ns	1TTL & CL = 30 pF
$DB_0 - DB_7$ to $\phi 2$ Setup						
Time	^t IS1	250			ns	
$RS_0 - RS_2$ to ϕ 2 Setup		× .				
Time	^t IS2	350			ns	
DS, W/R to ϕ 2 Setup Time	t _{IS3}	150			ns	
Input Hold Time from $\phi 2$	tIН	30			ns	

TIMING WAVEFORMS

Clock High/Low Voltage = 9.0V/0.65V Input High/Low Voltage = 3.0V/0.8V Output High/Low Voltage = 2.0V/0.8V 8

μPD371


,	PIN		FUNCTION
NO.	SYMBOL	NAME	
	RESET		
40	RST	Reset	A logic one at this pin causes a general reset of the µPD371.
REGI	STER SELECT AND DATA E		· ·
11	W/R		W/R, DS and RS ₀ – RS ₂ control Data Bus transfers between the μ PD371 and
12	DS		the processor as follows: Writing into a μPD371 register:
13 15	$RS_0 - RS_2$		When W/R is a logic one, information the processor places on DB ₀ – DB ₇
3 – 10	DB ₀ – DB ₇	Data Bus	is written into the μ PD371 WRITE REGISTER selected by RS ₀ – RS ₂ . The information is strobed into the register by a logic one at DS.
			Reading from a μ PD371 register: When W/R is a logic zero, information from the μ PD371 READ REGISTER selected by R50 – R52 is placed on D80 – D87 to be read by the processor. The information remains on D80 – D87 as long as DS is a logic one.
IN	TERRUPT RE	QUEST	
24	REQ.		The µPD371 may be operated with either interrupt or polling techniques. If the interrupt technique is chosen, REQ should be connected to the interrupt request input of the processor. There are three sources of interrupt: READ BUFFER FULL, WRITE BUFFER EMPTY and GAP DETECTION.
	TIMING		The user must provide four timing signals to the μ PD371 – one for write operations and three for read operations. Each is defined in terms of T, where T is the period between successive data transitions in the phase encoded data written onto or read from tape.
39	WCK		WCK determines the WRITE DATA (WD, pin 36) transfer rate. WCK should
16	DT		have a period of 0.5T.
34	SG		DT is a pulse provided by the μ PD371 to be used in the generation of the three read timing signals – SG, DO, and GAP. DT occurs at each data transition in
38	DO		the data read from tape.
35	GAP		The internal read data sample gate is closed following each data transition and
20	φ1		is reopened by a positive transition at SG 0.75T µsec after each DT pulse. A positive transition should be made at DO whenever a DT pulse stream ceases
23	φ2		for a period of 1.5T μ sec. A positive transition should be made at GAP when-
			ever a DT pulse stream ceases for a period of 4T μ sec. $\phi 1$ and $\phi 2$ are MOS level (12V) clock pulses. The timing of $\phi 1$ and $\phi 2$ is shown in the Timing Diagram.
	WRITE DAT	ГА	
36	WD	· /	Phase encoded data to be written on tape leaves the µPD371 at pin 36.
ТА	PE DRIVE CO		
37	C ₁		C1, C2 and C3 are general purpose tape drive commands.
27	C ₂		C1, C2 and C3 are set and reset by the software manipulation of bits 5, 6 and 7, respectively, in Write Register 3. Since C1, C2 and C3 are defined by software,
28	C ₃		they may be configured for any purpose. Typical uses for C1, C2 and C3 are
	e.		WRITE ENABLE, FORWARD and REVERSE.
29	S1		S ₁ , S ₂ and S ₃ are general purpose tape drive status inputs. Their logic levels are indicated by bits 3, 4 and 7 of Read Register 1, respectively. Typical tape
26	S2		drive status signals are WRITE PERMIT, CASSETTE IN PLACE and SIDE.
25	\$ ₃		The µPD371 can adapt to any tape drive status signal set with a slight change in software.
	L TAPE DRIV		
17	UA	Unit Address	Selects Drive 0 when low and Drive 1 when high.
19	RWO	Rewind 0	Rewind Command for Drive 0.
18	RW1	Rewind 1	Rewind Command for Drive 1.
30	MK0	Marker 0	EOT/BOT status from Drive 0.
31	MK1	Marker 1	EOT/BOT status from Drive 1.
	READ DAT	1 1	
32	RD(+)	Read Data (+)	A positive pulse from the tape drive at each positive transition in the read data.
33	RD(-)	Read Data ()	A positive pulse from the tape drive at each negative transition in the read data.
	MISCELLANE	OUS	
1	MBH		MBH must be tied to the V _{CC} (+5V) supply.
42			AWL is a logic low output under all normal operating conditions of the #PD371.
	VER SUPPLY V	ULIAGES	1101
2	VDD		+12V
41	V _{CC}	+	+5V
22	, V _{SS}	ļ	Ground
21	VBB		I5V

Note: 1 Refer to diagram on following page.

μPD371

PACKAGE OUTLINE µPD371

ITEM	MILLIMETERS	INCHES
А	53.5 MAX	2.1 MAX
В	1.35	0.05
- C	2.54	0.10
D	50.80	2.0
F	1.27	0.05
G	2.54 MAX	0.10 MIN
н	1.0 MIN	0.04 MIN
1	4.2 MAX	0.17 MAX
J	5.2 MAX	0.21 MAX
к	15.24	0.60
L	13.50	0.53
М	0.3	0.012

From the point of view of the processor program, the μ PD371 makes the tape drive (or multiple drive system) appear as ten addressable registers. The program controls the drive(s) and transmits data to be written on tape by manipulating bits in the six μ PD371 Write Registers. The program senses the status of the drive(s) and reads data stored on tape by reading bits from the four μ PD371 Read Registers.

ADDRESSABLE INTERNAL REGISTERS

REC	REGISTER ADDRESS			RÉGIŠTER								
W/R	RS ₂	RS ₁	RS ₀	NAME	7	6	5	4	3	2 、	1	0 ,

WRITE REGISTERS

0	0	WR ₀	RST	MBL	SRS	WME	WCR	×	ŴŴD	ĠŃŦ
				1						,
Ò	1	WR ₁	WRR	RRR	×	RRE	RRD	GRE	GRD	×
1	. 0	WR ₂	WD7	WD ₆	WD5	WD4	WD3	WD2	WD1	wdo
							`			
1	1	WR3	C3	С ₂	C1	RRI	RW	×	x	x

WR5	×	x	x	RME	RMD	x	x	x
WR6	x	x	x	X	x	×	x	UA

READ REGISTERS

RR0	AWH	AWL	C2	, C3	RDF	GRQ	WRQ	RRQ
RR ₁	S3	МК	MKF	\$ ₂	S ₁	RW	C1	UA
	7							
RR2	RD7	RD6	RD5	RD4	RD3	₽D2	RD1	RD0
RR3	WD	GPF	REC	CRE	DOE	COR	NBR	NAR
				-				

X = NOT USED

1

1

1

0

0

0

0

0

0

n

n

0

0

0

0

'n

0

0

Ó

ADDRESSABLE INTERNAL REGISTER BIT IDENTIFICATION

віт	SYMBOL	NAME						
	WRITE REGISTER 0							
0	GNT	Gap Noise Tolerance						
1	WMD	Write Mode Disable						
2		Not used						
3	WCR	Write CRC						
4	WME	Write Mode Enable						
5	SRS	Status Reset						
6	MBL	Must Be Low						
7	RST	Reset						
	WRITE	REGISTER 1						
0	_	Not used						
1	GRD	Gap Request Disable						
2	GRE	Gap Request Enable						
3	RRD	Read Request Disable						
4	RRE	Read Request Enable						
5		Not used						
6	RRR	Read Request Reset						
7	WRR	Write Request Reset						
	WRITE REGISTER 2							
0 — 7	WD ₀ – WD7	Write Buffer Register						
WRITE REGISTER 3								
0	-	Not used						
1	-	Not used						
2		Not used						
3	RŴ	Rewind						
4	RRI	Rewind Reset Inhibit						
5	C1	Command One						
6	C2	Command Two						
7	C3	Command Three						
	WRITE	REGISTER 4						
· _	-	Not used						
	WRITE	REGISTER 5						
0		Not used						
1		Not used						
2		Not used						
3	RMD	Read Mode Disable						
4	RME	Read Mode Enable						
5		Not used						
6	-	Not used						
7		Not used						

		· · · · · · · · · · · · · · · · · · ·				
віт	SYMBOL	NAME				
WRITE REGISTER 6						
0	UA	Unit Address				
1 – 7	-	Not used				
	READ	REGISTER 0				
0	RRQ	Read Request				
1	WRQ	Write Request				
2	GRQ	Gap Request				
3	RDF	Read Flag				
4	C3	Command 3				
5	C ₂	Command 2				
6	AWL	Always Low				
7	AWH	Always High				
	READ	REGISTER 1				
0	UA	Unit Address				
1	C1	Command 1				
2	RW	Rewind				
3	S1	Status 1				
4	\$2	Status 2				
5	MKF	Marker Flag				
6 ·	мк	Marker				
7	S3	Status 3				
	READ	REGISTER 2				
0 – 7	RD0	ĸ				
	RD7	Read Buffer Register				
	READ	REGISTER 3				
0	NAR	Noise After Record				
1	NBR	Noise Before Record				
2	COR	Command Overrun				
3	DOE	Drop Out Error				
4	CRE	CRC Error				
5	REC	Record Detection				
6	GPF	Gap Flag				
7	WD	Write Data				

NEC MICROcomputers, Inc.

FLOPPY DISK CONTROLLER

The μ PD372D is a single LSI floppy disk controller chip which contains the circuitry to read, write, track seek, load and unload the head, generate and detect CRC characters, and perform all other floppy disk operations. It is completely compatible with the IBM, Minifloppy^{*TM}, hard sector, and other formats and controls up to 4 floppy disk drives. The μ PD372D may be interfaced directly to a host processor; or to a controller processor first, which in turn is interfaced to the host. These processors do not necessarily have to be of the 8080A type.

Data transfers to and from the μ PD372D are done through addressable internal registers. These internal registers allow a large variety of system architectures to be configured; they provide status information on the drive, as well as perform data transfers between the drive and the processor.

The μ PD372D issues interrupts to the processor upon detection of an address mark and then when each subsequent data byte is available during either reading or writing. An 8-bit bi-directional data bus and 5 register select lines provide access to the 9 internal registers' contents. An internal interval timer is provided which facilitates performing such drive timing functions as: stepping rate, head settling time, track settling time, etc.

*TMShugart Associates.

- Compatible with IBM 3740 format
- Also compatible with other formats including Minifloppy and hard sector
- Controls up to four floppy disk drives
- Can perform overlap seeks
- Input and output TTL compatible (except for ϕ 1 and ϕ 2)
- Interfaces to most microprocessors including 8080A
- Standard power supplies (+12V, +5V and -5V)
- Controls most floppy disk drives including:
- CALCOMP 140, 142
 ORBIS 74, 76/77

 CDC BR803
 PERSCI 70, 75

 INNOVEX 210, 410
 REMEX RFS 7400

 PERTEC FD400
 SHUGART SA400 (Minifloppy)

 POTTER DD4740
 WANGCO 82 (Minifloppy)

 SHUGART SA900, SA800
 GSI MDD50 (Minifloppy)

RST	1	\sim	42 02
W/R 🗖	2	•	41 5 01
DS 🗖	3		40 🗗 V D D
RS ₂	4		39 🗗 V CC
RS1	5		38 🗖 DB7
RS ₀	6		37 D DB6
IDX 🗖	7		36 🗖 DB5
WFT	8		35 🗖 DB4
700 🗖	9		34 🗖 DB3
RCK 🗖	10		33 D DB2
RD 🗖	11	μPD	32 D DB1
RYA 🗖	12	372	31 D DB0
wск 🗖	13	•••	30 🗖 UA0
RYB	14		29 UA1
скѕ 🗖	15		28 🗖 UB0
AWL	16		27 🗖 UB1
REQ	17		26 🗖 SOS
wpロ	18		25 🗖 SID
HLD	19		24 🗖 WE
∨ _{ss} □	20		23 🛛 WFR
VBB	21		22 🗖 LCT

DESCRIPTION

FEATURES

PIN CONFIGURATION

μPD372

ABSOLUTE MAXIMUM **RATINGS***

Temperature Under Bias
Storage Temperature
All Output Voltages
All Input Voltages
Clock Voltage 1.0 to +16 Volts ^①
Supply Voltage V _{DD} 1.0 to +16 Volts ⁽¹⁾
Supply Voltage V _{CC}
Supply Voltage VBB

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $T_a = 25^{\circ}C$

Note: (1) $V_{BB} = -5V \pm 5\%$

DC CHARACTERISTICS

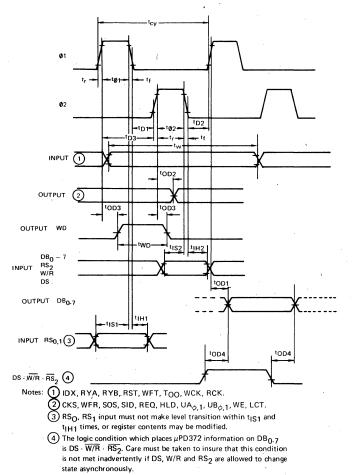
 $T_a = -70^{\circ}$ C, $V_{DD} = +12V \pm 5\%$, $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, $V_{SS} = 0V$

			LIMITS			TEST	
PARAMETER	SYMBO'L	MIN	ТҮР	MAX	UNIT	CONDITIONS	
High Level Input Voltage	v _{IH}	+3.0		V _{CC}	V	· · · · · · · · · · · · · · · · · · ·	
Low Level Input Voltage	V _{IL}	0		+0.8	v		
High Level Output Voltage	v _{он}	+3.5			V	^I OH ^{= -1.0} mA	
Low Level Output	V _{OL1} ®	,		+0.5	. V	l _{OL} = +1.7 mA	
Voltage	VOL2®			+0.5	v	I _{OL} = +3.3 mA	
High Level Clock Voltage	$v_{\phi H}$	+9	-	V _{DD}	>	"	
Low Level Clock Voltage	ν _{φL}	0		+0.8	V		
High Level Input Leakage Current	^I LIH			+10	μΑ	V _I = +3.0V	
Low Level Input Leakage Current	¹ LIL			-10	μA	V _I = +0.8V	
High Level Clock Leakage Current	ι _{LφΗ}			+10	μA	V _{\$\phi\$} = +9.0V	
Low Level Clock Leakage Current	Ι _{LφL}			-10	μÁ	V_{ϕ} = +0.8V	
High Level Output Leakage Current	LOH			+10	μA	V ₀ = +3.5V	
Low Level Output Leakage Current	LOL			-10	μA	V _O = +0.5V	
Power Supply Current (V _{DD})	^I DD		+20		mA	-	
Power Supply Current (V _{CC})	'cc		+23		mA	'	
Power Supply Current (V _{BB} ,	I _{BB}			-2	mA		

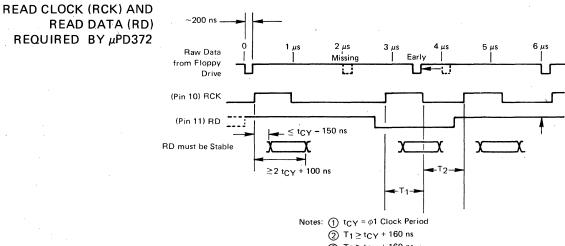
Notes: (1) CKS, REQ, UA₀, UA₁, UB₀, UB₁, DB₀-DB₇.

(2) WD, HLD, LCT, WE, WFR, SOS, SID.

AC CHARACTERISTICS


$T_a = 0.70^{\circ}$ C, $V_{DD} = +12V \pm 5\%$, $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, $V_{SS} = 0V$

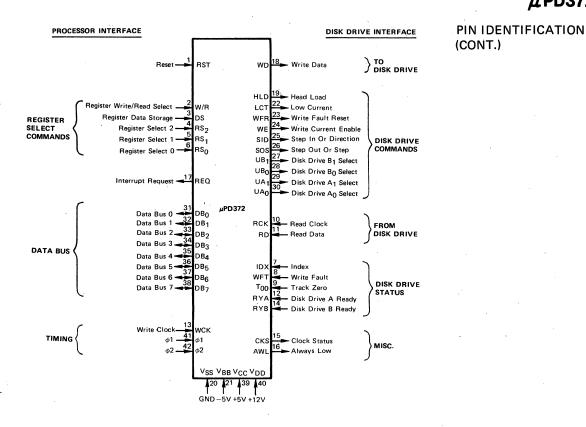
				LIMIT	S		
PARAMETER				ТҮР	MAX	UNIT	TEST CONDITIONS
Clock Period	t _{cy}	480		2000	ns		
Clock Rise and Fall Tir	nes	t _r , t _f	0		50	ns	
\$\phi_1\$ Pulse Width		^t ¢1	60			ns	
\$\phi_2\$ Pulse Width		t _{¢2}	90			ns	
ϕ ₁ to ϕ ₂ Delay		^t D ₁	0			ns	
¢2 to ¢1 Delay		^t D ₂	70			ns	
Delay ϕ_1 to ϕ_2 Leading	g Edges	^t D ₃	100		-	ns	
Data Out Delay from ϕ	'1	TOD1			90	ns	1 TTL and C _i = 30 pF
Data Out Delay	0	tOD2			200	' ns	1 TTL and C _i = 30 pF
from ϕ_2	2				200	ns	2 TTL and C _i = 50 pF
WD Delay Time		tOD3			120	ns	2 TTL and $C_i = 50 \text{ pF}$
Data Out Delay from DS · W/R · RS ₂		^t OD ₄			200	ns	<u></u>
Data Setup Time to ϕ_1		tIS1	150			ns	
Data Setup Time to ϕ_2		tIS2	_ 120			ns	
Data Hold Time from ϕ_1		^t IH ₁	10			ns	L.
Data Hold Time from ϕ_2		tiH2	10			ns	
WD pulse width		tWD	tD3-40	^t D3		ns	
Input pulse width	3	tw	t _{CY} +150			ns	


Notes: (1) CKS, AWL, REQ, UA_0 , UA_1 , UB_0 , UB_1 .

(2) HLD, LCT, WFR, WE, SOS, SID.

() IDX, RYA, RYB, RST, WFT, T₀₀, WCK, RCK.

TIMING WAVEFORMS

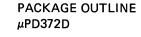


③ T₂≥t_{CY} + 160 ns

PIN IDENTIFICATION

PIN			INPUT/				
NO.	SYMBOL	NAME -	OUTPUT	CONNECTION	FUNCTION		
1	RST	Reset			Initializes internal registers, counters and F/F's		
2	W/R	Register Write/ Read Select			W/R = 1 implies DB ₀₋₇ data written into μ PD372 registers		
3	DS	Data Strobe		Processor	DB ₀₋₇ Write and read strobe		
4-6	RS _Ø RS ₁ RS ₂	Register Select			Internal Register Select		
7	IDX	Index	Input		Pulse Signal that indicates start of Disk track		
8	WFT	Write Fault			Write Fault Signal		
9	T ₀₀	Track 00	r.	FDD	Indicates that Head is positioned on Track 00		
10	RCK	Read Clock					
11.	RD	Read Data					
12	RYA	Ready A	÷.,		Indicates that FDD A is Ready		
13	wcк	Write Clock		Processor			
14	RYB	Ready B		FDD	Indicates that FDD B is Ready		
15	скѕ	Clock States					
16	AWL	Always Low			Always a logic zero		
17	REQ	Request		Processor	Interrupt Request		
18	WD	Write Data			Serial Write Data (Clock & Data Bits)		
19	HLD	Head Load			Command which causes R/W head to contact disk		
22	LCŢ	Low Current	Output		Command to lower write current for inner tracks		
23	WFR	Write Fault Reset		FDD	Signal to reset write fault latch		
24	WE	Write Enable					
25	SID	Step In or Direction	2 S 1	,	R/W head step control		
26	SOS	Step Out or Step			R/W head step control		
27-30	UA ₀ , UA ₁ UB ₀ , UB ₁	FDD Select		1 a	FDD Unit Select		
31-38	DB ₀₋₇	Data Bus	Input/ Output	Processor	Bi-directional data bus		

8



IJ

С

G

^M 0° – 15°

ITEM	MILLIMETERS	INCHES
A .	53.5 MAX	2.1 MAX
В	1.35	0.05
С	2.54	0.10
D	50.80	2.0
F	1.27	0.05
G	2.54 MAX	0.10 MIN
н	1.0 MIN	0.04 MIN
1	4.2 MAX	0.17 MAX
J	5.2 MAX	0.21 MAX
к	15.24	0.60
L	13.50	0.53
м	0.3	0.012

D

186

¥.

B⊣

E

INTERNAL REGISTER IDENTIFICATION

ВІТ	SYMBOL	NAME	FUNCTION
		WRITE REGIS	TER 0
0		Not Used	
1	WFR	Write Fault Reset	Resets Pin 23 to Zero
2	LCT	Low Current	Sets Pin 22, Should be Zero for TRKS > 43
3	HLD	Head Load	Sets Pin 19, Loading FDD Head
4		Not Used	·
5		Not Used	L
6	MBL	Must Be Low	
7	RST	Reset	Software Reset, Same Effect as Pin 1
		WRITE REGIS	
0	UAO	Unit Ag Select	Device Select Pin 30
1	UA1	Unit A1 Select	Device Select Pin 29
2	UAS	Unit A Strobe	Strobe for Enabling UA0 and OA1 to be Loaded
3	CB3	Clock Bit 3	Enables Clock Pulse #3 to be Written
4	CB4	Clock Bit 4	Enables Clock Pulse #4 to be Written
5	CB5	Clock Bit 5	Enables Clock Pulse #5 to be Written
6	000	Not Used	Enchine Clock Pite to be Londer
7	CBS	Clock Bit Strobe	Enables Clock Bits to be Loaded
		WRITE REGIS	TER 2
0	WD ₀	Write Data Bit 0	
1	WD 1	Write Data Bit 1	· · · · · · · · · · · · · · · · · · ·
2	WD2	Write Data Bit 2	
3	WD3	Write Data Bit 3	· · · · · · · · · · · · · · · · · · ·
4	WD4	Write Data Bit 4	
5	WD ₅	Write Data Bit 5	
6	WD ₆	Write Data Bit 6	
7	WD7	Write Data Bit 7	
<u> </u>		WRITE REGIS	المعمدان والمراجع المراجع والمترج والمترج والمترجع والمترجع والمتحد والمترج والمحد والمراجع وال
0	CCW	Cyclic Check Words	One During R/W, Zero for CRC Reset
1	CCG	Cyclic Check Generator Start	Starts CRC Generator in Write Mode Resets Pin 24 to Zero
2.	WER IXS	Write Enable Reset	Enable Index Hole Detection
3	WES	Write Enable Set	Sets Pin 24 to One
- 4	STT	Start	Enables Read and Write Operations to Occur
6	WCS	Write Clock Set	Write Clock Selected
7	RCS	Read Clock Set	Read Clock Selected
<u> </u>		WRITE REGIS	
	LID -		Device Select Pin 28
0	UBO	Unit Bo Select	Device Select Pin 28 Device Select Pin 27
2	UB1 UBS	Unit B1 Select Unit B Strobe	Strobe for Enabling UB0, UB1 to be Loaded
3	085	Not Used	
4		Not Used	· ·
5	SOS	Step Out or Step	Sets Pin 26 to One
6	SID	Step In or Direction	Sets Pin 25 to One
7	STS	Step Strobe	Enables SOS and SID to be Loaded
<u> </u>		WRITE REGIS	
0-7		This Register Not Used	Γ
		WRITE REGIS	L TER 6
0	DRR	Data Register Reset	Resets DRQ (RR0 Bit 0)
1	IRR	Index Request Reset	Resets IRQ (RR0 Bit 1)
2	TRR	Timer Request Reset	Resets TRQ (RR0 Bit 2)
3	100	Not Used	
4		Not Used	
5		Not Used	
6		Not Used	· · · · · · · · · · · · · · · · · · ·
7		Not Used	
<u> </u>			L

INTERNAL REGISTER IDENTIFICATION (CONT.)

BIT	SYMBOL	NAME	FUNCTION				
UIT	UTIMBOL .						
READ REGISTER 0							
0	DRQ	Data Request	Read Data Byte from RR2 or Write Data Byte into WR2				
1	IRQ	Index Request	Set by Physical Index Pulse				
2	TRQ	Timer Request	Set by Every 512th Write CLK Pulse				
3	ERR	Error	Logical OR of WFT + RYA + COR				
4	UBO	Drive Bo Selected					
5	UB1	Drive B1 Selected					
6	RYB	Drive B Ready	Ready Signal from Pin 14				
• 7	ALH	Always High	Always Contains a Logical One				
		READ REG	SISTER 1				
0	UA0	Drive Ao Selected					
1	UA1	Drive A1 Selected					
2	WFT	Write Fault	Indicates Status of Pin 8				
3	RYA	Drive A Ready	Indicates Status of Pin 12				
4	COR	Command Overrun	Processor Did Not Respond in Time to a DRQ				
5	DER	Data Error	CRC Error During Read				
6	T00	Track Zero	Indicates Status of Pin 9				
7	WRT	Write Mode	Indicates which Clock WCK or RCK has been Selected				
		READ REG	ISTER 2				
0	RD ₀	Read Data Bit 0	· · · · · · · · · · · · · · · · · · ·				
1	RD1	Read Data Bit 1	· · · · ·				
2	RD2	Read Data Bit 2	×				
3	RD3	Read Data Bit 3					
4	RD4	Read Data Bit 4	· · · · · · · · · · · · · · · · · · ·				
5	RD5	Read Data Bit 5					
6	RD6	Read Data Bit 6					
7	RD7	Read Data Bit 7	•				

Data is transferred to the μ PD372's internal addressable registers by signals W/R (Write=1, Read=0), DS (Data Strobe) and RS0-RS2 (Register Select 0, 1 and 2). Timing constraints for these signals are shown in the Timing Diagram. Diagram below shows register allocations and functional content.

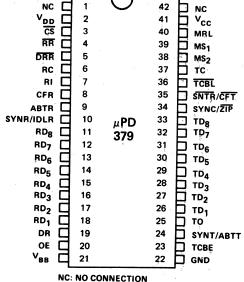
ADDRESSABLE INTERNAL REGISTERS

REGI	STER	ADD	RESS	BIT NUMBERS								
W/R	RS2	RS1	RS ₀	NAME	7	6	5	4	3	2	1	0
<u>WRITE REGISTERS</u>												
1	0	0	0	WR ₀	RST	MBL	×	X	HLD	LCT	WFR	X
1	0	0	1	WR1	CBS	x	CB5	CB4	CB3	UAS	UA1	UA0
1	0	1	0	WR ₂	WD7	WD6	WD5	WD4	WD3	WD2	WD1	WDO
1	0	1	1	WR3	RCS	wcs	STT	WES	TXS	WER	CCG	ccw
1	1	0	0	WR4	STS	SID	SOS	x	x	UBS	UB1	UBO
1	1	1	0	WR6	x	x	x	×	x	TRR	IRR	DRR
						READ R	EGISTE	RS				
0	0	0	0	RR0	ALH	RYB	UB1	UB0	ERR	TRQ	IRQ	DRQ
0	0	0	1	RR1	WRT	T00	DER	COR	RYA	WFT	UA1	UA0
0	0	1	0	RR ₂	RD7	RD6	RD5	RD4	RD3	RD ₂	RD1	RD ₀

SP372-8-77-GN-CAT

NEC MICROcomputers, Inc.

SYNCHRONOUS RECEIVER/TRANSMITTER


DESCRIPTION

The μ PD379 Synchronous Receiver/Transmitter is an MOS LSI monolithic circuit that performs all the receiving and transmitting functions associated with Basic and High Level Data Link Control Procedures. This circuit is fabricated using N-channel AL-Gate MOS technology, allowing all inputs and outputs to be directly TTL compatible. The operation mode, baud rate and synchronous character are changeable through the use of external control. The μ PD379 is packaged in a 42 pin Dual-in-line ceramic package.

FEATURES

- Suitable for Synchronous Basic and High Level Data Link Control Procedures (BiSync or SDLC)
- Full or Half Duplex Operation
- Fully Double Buffered Transmit and Receive
- Directly TTL Compatible
- Three-State Data Outputs
- Programmable Sync Word
- Detection/Rejection of Flag, Abort and Idle Patterns
- Zero Insertion and Rejection
- Indication of Overrun and Underrun Errors
- 800K Bits/Sec Operating Speed

PIN CONFIGURATION

Basic Sync Mode Transmission

The Sync character may be 16 in hexadecimal or it may be set to any other pattern in the Closed Mode. When the mode control register is loaded with MS_1 = high and MS_2 = low, the μ PD379 enters the Basic Sync mode from the Closed Mode. The Sync character is continuously transmitted until a transmission data character is loaded. After a data character is loaded, it is serialized and transmitted out from the TO (Transmitter Output) line. If an underrun occurs, Sync character(s) are again transmitted automatically until the next data character is loaded. Transmission data is sent out from LSB (TD₁) first to MSB (TD₃) last on the TO line.

Basic Sync Mode Receive

The RI (Receiver Input) line first searches for Sync characters. Once an 8-bit Sync character has been detected, the following received bits are treated as data characters and outputted on lines $RD_1 - RD_8$ in parallel.

When device operation is started, the receiver section should be first brought into Closed mode or should be reset in order to ensure synchronization.

SDLC Mode Transmission

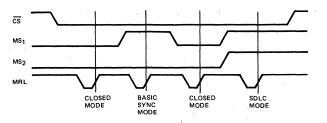
Until a data character is loaded, the Flag pattern (7E in hexadecimal) is automatically transmitted continuously. After a data character is loaded, it is serialized and transmitted out from LSB (TD₁) to MSB (TD₈) on the TO line. In transmitting data characters, a dummy bit 0 is automatically inserted immediately following five (5) successive 1's. This is called Zero-Insertion and is performed in order to maintain synchronization with the receiver and to avoid duplication of Flag pattern in data characters. (Zero-Insertion may be prohibited optionally with the \overline{ZIP} command, if necessary.) If an underrun occurs while data characters are being transmitted, an Abort pattern (FF in hexadecimal) and then a Flag pattern are automatically transmitted. After that, the Flag pattern is again automatically transmitted until the next data character is loaded.

If a low level is placed on the \overline{CFT} (Closing Flag Transmit) line while a data character is being transmitted, a Closing Flag will be transmitted immediately following transmission of the current data character.

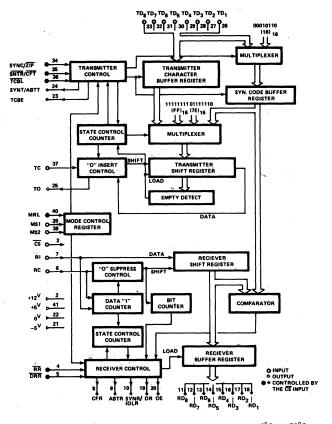
SDLC Mode Receive

First, the Flag pattern is searched for on the RI line. Once a Flag pattern is detected, inserted zero's are rejected from all the following characters except Flag, Abort (7 to 14 successive 1's) and Idle (15 successive 1's) patterns, and then deserialized and output on the RD₁ - RD₈ lines in parallel.

If an overrun occurs, all the following data inputs are neglected and the μ PD379 goes back to the first stage to search for the next Flag pattern.


Closed Mode

When there is a change of mode, it must pass through the closed mode. In the closed mode, the following input signals may be used:


CS, SYNC, TCBL, MS1, MS2, MRL, TD1 - TD8

After leaving the closed mode, Sync characters are transmitted synchronously with the rising edge of TC. The receiver operates synchronously with the falling edge of RC, after $\overline{RR} = 1$.

The following timing diagram shows how mode changes may be accomplished.

FUNCTIONAL DESCRIPTION

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias 0°C to +70°C
Storage Temperature
All Output Voltages
All Input Voltages
Supply Voltage V _{CC}
Supply Voltage VDD
Supply Voltage VBB

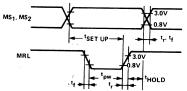
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $T_a = 0^{\circ}C$ to $+70^{\circ}C$. Vnn = 12V ± 5%. Vnc = 5V ± 5%. VBB = -5V ± 5%

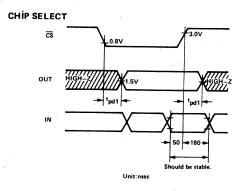
Note: ① VBB = - 5 ± 5%

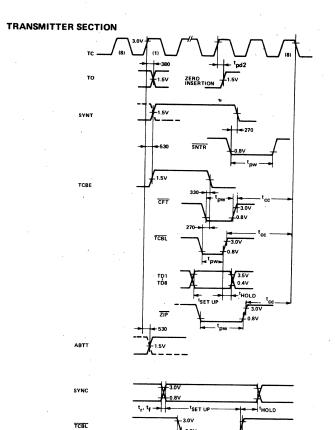
AC CHARACTERISTICS

DADAMETED	01///	;	LIMIT	Ś		TRAT CONDUTION	
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS	
Clock Frequency	fc	DC		800	KHz	TC, RC	
						TC, RC	
		250			ns	MRL	
		250	`		nis	TCBL	
Pulse Width	tPW	250			ns	SNTR/CFT	
	÷.,	250			ns	ZIP	
		400			ns	RR	
		250			ns	DRR	
Setup Time	tSET UP	250			ns	7 N	
Hold Time	tHOLD	150			ns		
Rise Time	tr			150	ns		
Fall Time	tf			150	ns		
Pulse Interval	t _{cc}	100			ns		
Output Delay	^t pd1		180	270	ns	CL = 20 pf	
Time	^t pd2		410	600	ns	1 TTL Load	
Fan Out	N			1		Standard TTL Load	


*50% Duty Cycle

F	PIN	FUNCTION							
NO.	SYMBÓL	BASIC SYNC MODE	SDLC MODE						
1	NC	No Con	nection						
2	VDD	+12V Pow							
3	CS	Chip Select – When "1", the following inputs are disabled and the outputs are put into the high impedance state: (Input Disabled) RR, DRR, SYNC/ZIP, SNTR/CFT, TCBL, MRL; (Output-High							
4	RR	Impedance) CFR, ABTR, SYNR/IDLR, RD1 - RD8, DR, OE, TCBE, CYNT/ABTT Receiver Reset - Receiver portion is reset with a "0" and operation is stopped							
		RD ₁ - RD ₈ "1" CFR, ABTR, SYNR/IDLR, AR, OE "0"							
5	DRR	Data Received Reset - Resets DR flag to "0"							
6	RC	Receiver Clock — Receiver clock input. Trailing edge bits (RI).	of clock is located in the center of receiver input						
7	RI	Receiver Input - Received data serial input	· · · · · · · · · · · · · · · · · · ·						
8	CFR	(Normally "0")	Closing Flag Received – Goes high whenever a Flag has been received during data reception. Goes low on the rising edge of DR or OE commands						
9	ABTR	("0" Constant)	Abort Received Becomes "1" when 7 14 con- tinuous "1"s are received, after receiving the flag.						
10	SYNR	Sync Character Received - Goes high when syn-	Goes low on the rising edge of DR or OE commands. Idle Pattern Received – Becomes "1" (Idle) when						
10	IDLR	Sync Character necever – Goes nigh when syn- chronization has occurred, or whenever the con- tents of the Sync Character Buffer and the contents of the Receiver Character Buffer coincide. Goes low when DR goes high and the RD1 – RDg out- puts are different from the Sync Character.	Idle rattern Received - Becomes I (idle) when it receives 15 consecutive "I"s. Goes low on the rising edge of DR or OE outputs.						
1 – 18	RD8 - RD1	Receiver Data Outputs - Received character output	terminal (RD1:LSB RD8:MSB)						
19	DR	Data Received - Goes high when the received charac	ter has been transferred from the Receiver Shift						
		Register to the Receiver Buffer Register							
		DR does not go high for the first Sync Character input. It is reset when DRR is driven low.	DR does not go high for Flag. Abort or Idle Pat- terns. It is reset when (1) $\overline{DRR} = "0"$, (2) On the rising edge of OE, (3) Seven (7) successive "1"s have been received.						
20	OE	Overrun Error – OE = "1" shows that DR was still h receiving shift register to the receiving buffer register							
		OE is reset if DR is low when the received character is transferred from the Receiver Shift Register to	It is reset on the rising edge of DR						
		the Receiver Buffer Register							
21	V _{BB}		ower Supply						
22	VSS		ound						
23	TCBE	Transmitter Character Buffer Register Empty – TCB empty.	E = "1" when the transmitter character butter is						
		TCBE is reset when TCBL is driven low	It is reset when: (1) TCBL = "0", (2) When CFT = "0" in the data transmission mode, (3) One-half bit before ABTT goes high.						
24	SYNT ABTT	SYNC Character Transmit – SYNT = "1" when a synchronous character is being transmitted. It is reset when: (1) $SNTR$ = "0", (2) when transmis-	Abort Pattern Transmit – ABTT = "1" when an Abort Pattern is being transmitted						
		sion of data commences	<u> </u>						
25	TO	Transmitter Output - Transmitter data output. TO =							
26 - 33	TD1 - TD8	Transmitter Data Inputs – Transmitter character inp							
34	SYNC ZIP	SYNC Character – In the Closed Mode, the SYNC line is used to select a SYNC character to be loaded into the SYNC Character Buffer. The selected SYNC character is loaded into the buffer on the rising edge of TCBL and is selected as follows: (1) When SYNC = "0", the character placed on the TO1 – TO8 inputs is loaded, (2) When SYNC =	Zero Insertion Prohibit – When ZIP is driven Iow, zero-insertion will be prohibited for all subse- Jouent data characters until a Closing Flag or an Abort Pattern is transmitted.						
35	SNTR	"1", 16 Hexadecimal is loaded. SYNC Character Transmit Reset – When SNTR is	Closing Flag Transmit – During transmission, CFT						
	CFT .	driven low, SYNT is reset to "0". (1) TCBE Output is reset to "0", (2) The Clos Flag will be transmitted after the end of trans-							
36	TCBL	Transmitter Character Buffer Load - (1) In the close	of the current data character. Ind Mode: the SYNC Character Buffer is loaded on the						
			uffer is loaded with the data on the $TD_1 - TD_8$ inputs; (2) In the Basic SYNC or SDLC Modes: When TCBL ta character on the $TD_1 - TD_8$ inputs is loaded into						
37	TC	Transmitter Clock - Clock input for transmission.							
38	MS ₂	Mode Select 2							
39	MS1	Mode Select 1 Used to select one of three modes. MS1 MS2 L Closed Mode L H Closed Mode H L Basic Synchronous Mode H H SDLC Synchronous Mode In the closed mode TO and RD1 – RDg are high, all other outputs are low.							
40	MRL	Mode Control Register Load – When MRL is low, th of MS1 and MS2. When MRL goes high, the operatio and MS2.	e operational mode is selected by the current status						
41	Vcc		er Supply						
42	NC		and the second secon						
	·	No Connection							


PIN IDENTIFICATION


. μPD379

TIMING WAVEFORMS MODE SELECT

MODE	MS ₁	MS ₂	MRL
Closed	0	0 or 1	Lr
Basic Sync	1	1	15
SDLC	1	1	LF

8

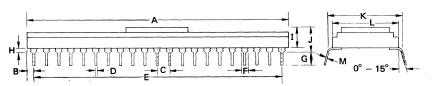
Unit: nsec

RECEIVER SECTION

TIMING WAVEFORMS (CONT.)

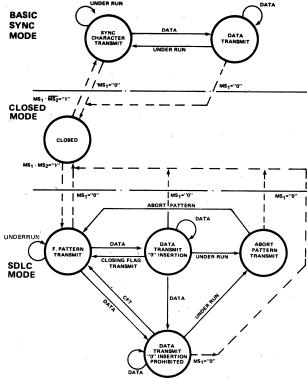
 $T_a = 0^{9}C$ to +70⁹C, $V_{DD} = 12V + 5\%$, $V_{CC} = 5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$

		Limits				
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input High Voltage	VIH	3.0		V _{DD}	v	With Built-in
Input Low Voltage	VIL			0.8	V	pull-up resistors
Output Leakage Current	IOL	-20		20	μA	V _o = 0.4 to 3.5V
						(CS)= 3.5∨
Output High Voltage	VOH	3.5			٧	I _{OH} =100μA
Output Low Voltage	VOL			0.4	V	I _{OL} = 1.6mA
Input Low Current	կլ			-1.4	mA	V _{IL} = 0.4V
V _{DD} Supply Current	IDD		15	20	mΑ	
V _{CC} Supply Current	Icc :		40	65	mΑ	
V _{BB} Supply Current	IBB		-0.2	-2.0	mΑ	
Fan-out	N			1		Standard TTL Load

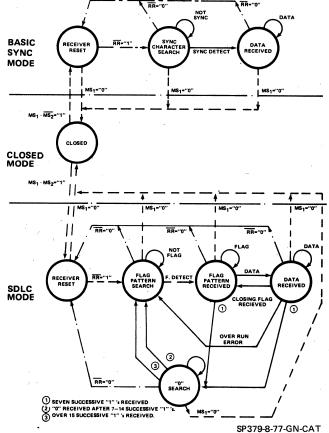

		Limits				
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input Capacitance	CIN			20	pf	f = 1 MHz
Output Capacitance	COUT			20	pf	f = 1 MHz

DC CHARACTERISTICS

PACKAGE OUTLINE


μPD379D

CAPACITANCE



ITEM	MILLIMETERS	INCHES
A	53.5 MAX	2.1 MAX
В	1.35	0.05
С	2.54	0.10
D	50.80	2.0
F	1.27	0.05
G	2.54 MAX	0.10 MIN
н	1.0 MIN	0.04 MIN
1	4.2 MAX	0.17 MAX
J	5.2 MAX	0.21 MAX
к	15.24	0.60
L	13.50	0.53
м	0.3	0.012

TRANSMITTER STATE DIAGRAM

RECEIVER STATE DIAGRAM

RR-"0"

NEC MCCOMMINS, MC

PRINTER CONTROLLER

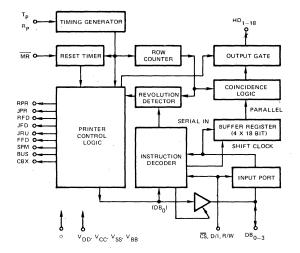
The μ PD758 is a digital LSI device designed to control SEIKO 101 Series drum-type impact printers. It can be used with either single or double printer systems. The μ PD758, ideally suited for low-cost Electronic Cash Register (ECR) systems, frees the processor from direct control of the printer and simplifies the peripheral circuitry.

Using a few of the possible 18 instructions, the controlling processor need only load the μ PD758 with the characters to be printed, and issue the appropriate print instruction. The μ PD758 then assumes control of the printer, keeping track of the printer drum position and generating hammer drive signals at the approproate time. The μ PD758 also has separate output drives that are under software control. These are typically used to drive the STAMP input to the printer and to provide discrete drives for BUZZER and CASH BOX functions of the ECR system.

Usable with SEIKO 101 Series Printers (CR101T[d], EP101S) and equivalents

- ECR Printer and Line Feed Control Capability
- 18 Powerful Instructions
- Controls up to 18 columns
- Controls up to 16 characters
- Input/Output TTL Compatible
- N-Ch MOS
- 42 Pin Plastic DIP
- Power Supplies, +12V, +5V and -5V

	\sim	42 φ
$DB_2 \square 2$		41 🔓 V _{DD} (+12V)
		40 🗖 V _{CC} (+5V)
DB ₀ 2 4		39 🗗 HD1
MR 5		38 🗖 HD2
D/I 🗖 6		37 🗖 HD3
R/W 🗖 7		36 🗖 HD4
CS 🗖 8		35 🗖 HD5
Rp 🖸 9		34 🗖 HD6
тр 🗖 10		33 🗖 HD7
JRU 🗖 11	μPD	32 🗖 HD8
FFD 🗖 12	758	31 🗖 HD9
JFD 🗖 13		30 🏳 HD ₁₀
RFD 🗖 14		29 🗖 HD ₁₁
RPR 🗖 15		28 🗖 HD ₁₂
JPR 🗖 16		27 🗖 HD ₁₃
SMP 🗖 17		26 🗖 HD ₁₄
BUZ 🗖 18		25 🗖 HD ₁₅
СВХ 🗖 19		24 🖸 HD 16
(0V) VSS 220		23 🖸 HD ₁₇
-5V) V _{BB} 🗖 21		22 🗖 HD ₁₈


DESCRIPTION

μPD758

FEATURES

PIN CONFIGURATION

BLOCK DIAGRAM

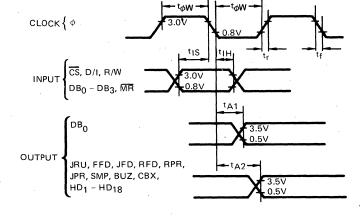
ABSOLUTE MAXIMUM RATINGS*

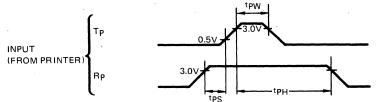
Operating Temperature -10° C to $+70^{\circ}$ C
Storage Temperature -40° C to $+125^{\circ}$ C
All Input and Output Voltages
Clock Voltage · · · · · · · · · · · · · · · · · · ·
Supply Voltage V _{DD} · · · · · · · · · · · · · · · · · ·
Supply Voltage V_{00} · · · · · · · · · · · · · · · · · · ·
Supply Voltage V_{BB} · · · · · · · · · · · · · · · · · · ·
Note: ① Relative to V _{BB} .

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$*T_{a} = 25^{\circ}C$

DC CHARACTERISTICS


 $T_a = -10$ to $+70^{\circ}$ C, $V_{DD} = +12V \pm 5\%$, $V_{CC} = +5V \pm 5\%$, $V_{SS} = 0V$, $V_{BB} = -5V \pm 5\%$

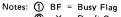

PARAMETER	SYMBOL		LIMIT	S	UNIT	TEST
PARAMETER	SYMBOL	MIN.	TYP.	MAX.		CONDITIONS
Input High Voltage	VIH	+3.0		Vcc	v	-
Input Low Voltage	VIL	-0.5		+0.8	v	
Output High Voltage	Vон	+3.5			V	!ОН = -1.0 mA
Output Low Voltage	VOL			+0.5	V	IOL = +1.7 mA
High Level Clock Voltage	V _{ØH}	+3.0		Vcc	v	
Low Level Clock Voltage	V _{ØL}	-0.5		+0.8	v	
High Level Input Leakage Current	ГСІН			+10	μĄ	V ₁ = +3.0V
Low Level Input Leakage Current	LIL			-10	μA	V _I = +0.8V
High Level Output Leakage Current	ILOH			+10	μA	V _O = +3.5V
Low Level Output Leakage Current	LOL			-10	μA	V _O = +0.5V
Supply Current	IBB			-300	μA	V _{BB} = -5.25V
Supply Current	^I DD		17		mA	
Supply Current	'cc		27		mA	

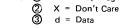
 $T_{a} = -10 \text{ to } +70^{\circ}\text{C}, \text{V}_{\text{DD}} = +12\text{V} \pm 5\%, \text{V}_{\text{CC}} = +5\text{V} \pm 5\%, \text{V}_{\text{SS}} = 0\text{V}, \text{V}_{\text{BB}} = -5\text{V} \pm 5\%$

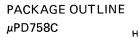
CAPACITANCE

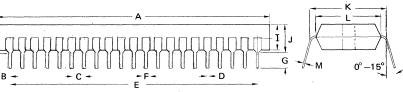
PARAMETER	SYMBOL		LIMITS	S	UNIT	TEST
FANAMETEN	STWBUL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Input Capacitance	с _{IN}	5 B		10	pF	f = 1 MHz
Output Capacitance	с _{оит}			10	pF	f = 1 MHz

 T_a = -10 to +70° C, V_{DD} = +12V \pm 5%, V_{CC} = +5V \pm 5%, V_{SS} = 0V, V_{BB} = -5V \pm 5%


TIMING WAVEFORMS


AC	CHAR	ACTE	RICT	2017
AC	UNAL	AUIE	וכוח	103


PARAMETER	0)///		LIMITS			TEST
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Clock Rise and Fall Time	t _r , t _f			50	ns	
Clock Pulse Width	tφW	0.45		2.0	μs	
Output Delay Time	^t A1			430	ns	1T ² L & C _L = 100 pF
Output Delay Time	^t A2			700	ns .	1T ² L & C _L = 100 pF
Input Setup Time	tis	400			ns	,
Input Hold Time	ŧн	40			ns	х.
Pulse Width for Tp Input	tPW	2			clock period	
Rp Input Setup Time	tps	0			clock period	2
Rp Input Hold Time	^t PH	3			clock period	

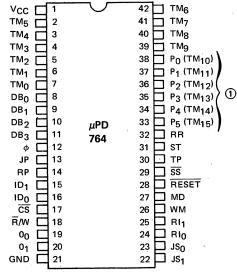

INSTRUCTION TABLE

INST.	OPERATION BUSY		D/I	R/W	DB			
NO.	or Engrion				3	2	1	Ö
1	CHECK DB0 FOR BUSY FLAG STATUS	вгФ	xØ	0	x	х	ź	BF
2	STORE DATA (dddd) INTÓ BUFFER REGISTER	0	0	1	d3	d	d	d
3a 3b 3c 3d	NO OPERATION	1 1 1 0	0 1 1 1	1 1 1	X 0 1 0	X X 1 0	X X X 0	X X X 0
4	PRINT BUFFER REGISTER CONTENTS TO JOURNAL	0	1	1	0	0	0	1
5	PRINT BUFFER REGISTER CONTENTS TO RECEIPT	0	1	1	0	0	1	0
6	PRINT BUFFER REGISTER CONTENTS TO JOURNAL AND RECEIPT	0	1	1	ò	0	1	1
7	FAST FEED AND STAMP RECEIPT	0	1	1	0	1	0	0
8	PRINT STORED DATA ONTO JOURNAL AND FEED ONE LINE	0	1	1	0	1	0	1
9	PRINT STORED DATA ONTO RECEIPT AND FEED ONE LINE	0	1	1	0	1	1	0
10	PRINT STORED DATA ONTO RECEIPT AND JOURNAL AND FEED BOTH ONE LINE	0	1		ò	1	1	1
Ť1'	DRIVE CASH BOX OUTPUT	X	.1	1	1	0	0	0
12	DRIVE BUZZER OUTPUT FOR FOUR CHARACTER PERIODS	x	1	1	1	ö	0	1
13	RESET BUZZER OUTPUT	X	1	1	1	0	1	0
14	DRIVE BUZZER OUTPUT UNTIL RESET	x	1	1	1	0	1	1
15	DRIVE STAMP OUTPUT	0	1	1	1	1	0	0
16	FEED JOURNAL ONE LINE	. 0	1	1	1	1	0	1
17	FEED RECEIPT ONE LINE	0	1	1	1	1	1	0
18	FEED BOTH RECEIPT AND JOURNAL ONE LINE	0	1	1	1	1	1	1

ITEM	MILLIMETERS	INCHES
А	56.0 MAX	2.2 MAX
В	2,6 MAX	0.1 MAX
С.	2.54	0.1
Ď	0.5 ± 0.1	0.02 ± 0.004
E	50.8	2.0
F	1.5	0.059
G	3.2 MIN	0.126 MIN
н	0.5 MIN	0.02 MIN
I	5.22 MAX	0.20 MAX
J	5.72 MAX	0.22 MAX
к	15.24	0.6
L	13.2	0.52
м	0.3 ± 0.1	0.01 ± 0.004

8

SP758-8-77-GN-CAT 199


NEC MICO

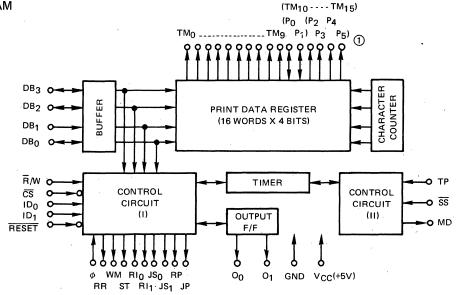
PRINTER CONTROLLER

The μ PD764 is a digital LSI device designed to control SEIKO CR-330 or M-310 rolling contact printers. The μ PD764, which is ideally suited for low-cost Electronic Cash Register (ECR) systems, frees the processor from direct control of the printer and simplifies the peripheral circuitry.

The processor need only load the μ PD764 with the characters to be printed and issue the appropriate print command. The μ PD764 then assumes control of the printer — positioning the print wheels, initiating the rolling contact print process, feeding paper and feeding ribbon automatically without further processor intervention.

- Compatible with SEIKO CR-330 and M-310 Printers.
- Simple Interface to 4-Bit, 8-Bit and 16-Bit Microprocessors.
- 23 Powerful Instructions.
- 4-Bit Data Bus for Print Data and Instruction Inputs.
- 16 Digit Data Buffer.
- 16 Trigger Magnet Drive Outputs for the M-310 and 10 for the CR-330.
- Single Phase Clock Input. 300, 400 or 500 kHz Selectable.
- Input/Output and Clock TTL Compatible.
- N-Channel MOS.
- Single +5V Power Supply.

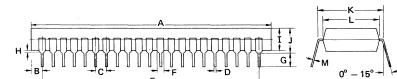
Note: 1 $P_0 - P_{15}$ for CR-330 Printer TM₁₀ - TM₁₅ for M-310 Printer DESCRIPTION


μPD764

FEATURES

PIN IDENTIFICATION

·	PIN	INPUT/	FUNCTION
NO.	SYMBOL	OUTPUT	FUNCTION
7 - 2 42 - 39	тм ₀ – тм ₉	0	Trigger Magnet Drive
8, 10, 11 9	DB ₀ , DB ₂ , DB ₃ DB ₁	1/0 1	Data Bus
12	φ	1	Single Phase Clock (TTL Level)
13	JP	0	Journal Print Drive
14	RP	0	Receipt Print Drive
16, 15	$ID_0 - ID_1$	1	Instruction/Data Selector
17	CS		Chip Select (Active Low)
18	₹/W	l l	Read/Write Control - "0" = Read, "1" = Write
19, 20	0 ₀ ; 0 ₁	0	Output F/F
23	JSO	0	Journal Stop Plunger Drive
22	JS ₁	0	Journal Stop Plunger Hold Current Control
24	RI ₀	0	Receipt Issue Plunger Drive
25	RI ₁	0	Receipt Issue Plunger Hold Current Control
26	WM .	0	Journal Wind Motor Drive
27	MD	0	Motor Drive
28	RESET	1	Reset Input (Active Low) O_0 , O_1 : Reset to "0". ϕ : Set to 300 kHz Mode $DB_0 - DB_3$: Set to Hi-Z State Instruction Register: cleared Busy Flag: cleared Character Counter: Set to F in Hexidecimal $P_0 - P_1$: Set as Input Port $P_2 - P_5$: Set as Output Port (Output all "0")
29	SS	I	Stop Signal from Printer
30	TP	I	Timing Pulse from Printer
31	ST	0	Stamp Plunger Drive
32	RR .	0	Red Ribbon Select Control
36 - 33	P ₂ P ₅	0	4-Bit Parallel Output Port when reset or specified with an instruction.
	or TM ₁₂ – TM ₁₅	о	Trigger Magnet Drive (for M-310 Printer) when specified with an instruction.
38, 37	$P_0 - P_1$	· 1	2-Bit Parallel Input Port when reset or specified with an instruction.
	TM ₁₀ – TM ₁₁	о	Trigger Magnet Drive (for M-310 Printer) when specified with an instruction.


BLOCK DIAGRAM

Note: (1) $P_0 - P_{15}$ for CR-330 Printer TM₁₀ - TM₁₅ for M-310 Printer 8

INSTRUCTION SET

NO.	MNEMONIC			D	В		ID		
		FONCTION		2	1	0	1	0	
1	RS	Receipt — Stamp	0	0	0	1	1	1	
2	RFF	Receipt — Fast Feed	0	0	1	0	1	`1	
3	RFPS	Receipt — Fast Feed, Print and Stamp	0	0	1	1	1	1	
4	JPF -	Journal — Print and Paper Feed	0	1	0	0	1	1	
5	ĴР	Journal — Print	0	1	0	1	1	1	
6	JF	Journal – Feed	0	1	1	0	1	1	
7	RPF	Receipt — Print and Feed	1	0	0	0	1	1	
8	RP	Receipt — Print	1	0	0	1	1	1	
9	RF	Receipt - Feed	1	0	1	0	1	1	
10	JRPF	Journal and Receipt — Print and Feed	1	1	0	0	1	1	
11	JRP	Journal and Receipt — Print	1	1	0	1	1	1	
12	JRF	Journal and Receipt – Feed	1	1	1	´ 0	1	1	
13	RR	Set Red Ribbon	Ó	0	0	1	0	1	
14	RTM	Set P ₀ — P ₁ as Input Port and P ₂ — P ₅ as Output Port	0	0	1	0	0	1	
15	STM	Set P ₀ — P ₅ as TM ₁₀ — TM ₁₅	0	0	1	1	ò	1	
16	SFM	Set to ϕ = 400 kHz Operation Mode	0	1	0	0	0	1	
17	SFH	Set to ϕ = 500 kHz Operation Mode	0	1	0	. 1	0	1	
18	RSO	Reset Output F/F 0 (O ₀)	0	1	1	0	0	1	
19	STO	Set Output F/F 0 (O ₀)	0	1	1	1	0	1	
20	RS1	Reset Output F/F 1 (O1)	1	0	1	0	0	1	
21	ST1	Set Output F/F 1 (O ₁)	1	0	1	1	0	1	
22	RSB	Reset Output F/Fs 0 and 1 $(O_0 \text{ and } O_1)$	1	1	1	0	0	1	
23	STB	Set Output F/Fs 0 and 1 (O ₀ and O ₁)	1	1	1	1	0	1	

PACKAGE OUTLINE µPD764C

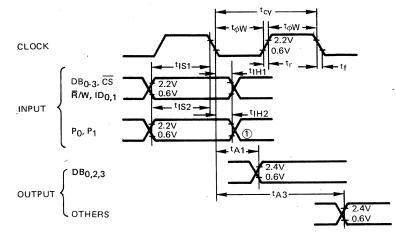
ITEM	MILLIMETERS	INCHES
А	56.0 MAX	2.2 MAX
В	2.6 MAX	0.1 MAX
Ċ	2.54	0.1
D .	0.5 ± 0.1	0.02 ± 0.004
E	50.8	2.0
F	1.5	0.059
G	3.2 MIN	0.126 MIN
н	0.5 MIN	0.02 MIN
I	5.22 MAX	0.20 MAX
J	5.72 MAX	0.22 MAX
к	15.24	0.6
L	13.2	0.52
М	0.3 ± 0.1	0.01 ± 0.004

ABSOLUTE MAXIMUM RATINGS*

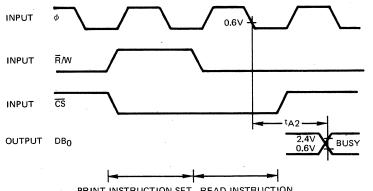
Operating Temperature
Storage Temperature
All Inputs and Outputs
V _{CC} 0.5 to +7 Volts

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

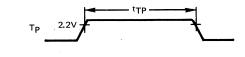

$T_a = -10 \text{ to } +70^{\circ} \text{C}$

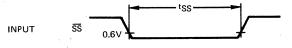
PARAMETER	SYMBOL	L	IMITS		UNIT	TEST CONDITIONS	
PARAMETER	STIMBUL	MIN	түр	MAX	UNIT		
Input High Voltage	V _{IH}	+2.2			v .		
Input Low Voltage	VIL			+0.6	V		
Output High Voltage	Vон	V _{CC} 2.45			V	I _{OH} = -100 μA	
Output Low Voltage	VOL1			0.4	V	I _{OL} = +1.1 mA	
Output Low Voltage	VOL2			0.6	V	I _{OL} = +1.7 mA	
High Level Input Leakage Current	^I LIH			+10	μA	V ₁ = +2.2V	
Low Level Input Leakage Current	LIL			-10	μA	V _I = +0.6V	
High Level Output Leakage Current	ILOH	*/		+10	μA	V _O = V _{CC} -2.45V	
Low Level Output Leakage Current	^I LOL			-10	μA	V _O = +0.4V	
Supply Current	Icc		45		mA	· .	

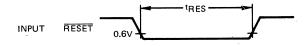

AC CHARACTERISTICS

T _a = -10 to +70°C						
PARAMETER	SYMBOL	LIMITS			UNIT	TEST
FARAINETER	STINBUL	MIN	ТҮР	MAX		CONDITIONS
Clock Cycle Time	tCY	2		5	μs	
Clock Rise and Fall Time	t _r , tf			70	ns	
Clock Pulse Width	tφW	0.45			μs	
	^t A1			430	ns	
Output Delay Time	tA2			800	ns	1T ² L & C _L = 100 pF
	tA3			2.0	μs	
Input Setup Time	^t IS1	400			ns	
input cotup Time	^t IS ₂	400			ns	
Input Hold Time	^t IH ₁	40	,		ns	
	^t IH ₂	100			ns	
Pulsè Width for Tp Input	tтр	5			tCY	
SS Input Pulse Width	tiss	5			tCY	
RESET Input Pulse Width	^t RES	5			tCY	

TIMING WAVEFORMS




Note: 1 If a Read instruction is performed just following an instruction that sets Busy Flag, the output delay of DB_0 (Busy) is t_{A2} as follows.



PRINT INSTRUCTION SET READ INSTRUCTION

INPUT

SP764-8-77-GN-CAT

NEC MICROWING, AND

EIGHT-BIT INPUT/OUTPUT PORT

DESCRIPTION

The μ PB8212 input/output port consists of an 8-bit latch with three-state output buffers along with control and device selection logic. Also included is a service request flip-flop for the control and generation of interrupts to the microprocessor.

The device is multimode in nature and can be used to implement latches, gated buffers or multiplexers. Thus, all of the principal peripheral and input/output functions of a microcomputer system can be implemented with this device.

FEATURES

- Fully Parallel 8-Bit Data Register and Buffer
 - Service Request Flip-Flop for Interrupt Generation
 - Low Input Load Current 0.25 mA Max.
 - Three State Outputs
 - Outputs Sink 15 mA
 - 3.65V Output High Voltage for Direct Interface to 8080A Processor
 - Asynchronous Register Clear
 - Replaces Buffers, Latches and Multiplexers in Microcomputer Systems
 - Reduces System Package Count
 - Available in 24-pin Plastic and Cerdip Packages

PIN CONFIGURATION

DS ₁	1	U	24	
мр 🗖	2		23	
Dļ1 🗖	3	1 - A	22	D DÍ8
	4		21	D DO8
. DI2	5		20	דום 🗖
D02	6	μPB	19	D 007
D13 🗖	7	8212	18	
DO3 🗖	8		17	
	9		16	
	10		15	
sтв 🗖	11		14	
GND	12		13	

PIN NAMES					
DI ₁ – DI ₈	Data In				
DO ₁ - DO ₈	Data Out				
DS ₁ , DS ₂	Device Select				
MD	Mode				
STB	Strobe				
ÎNT	Interrupt (Active Low)				
CLR	Clear (Active Low)				

Data Latch

The 8 flip-flops that compose the data latch are of a "D" type design. The output (Q) of the flip-flop follows the data input (D) while the clock input (C) is high. Latching occurs when the clock (C) returns low.

The data latch is cleared by an asynchronous reset input (CLR). (Note: Clock (C) Overrides Reset (CLR).)

Output Buffer

The output of the data latch (Ω) are connected to three-state, non-inverting output buffers. These buffers have a common control line (EN); enabling the buffer to transmit the data from the outputs of the data latch (Ω) or disabling the buffer, forcing the output into a high impedance state (three-state).

This high-impedance state allows the designer to connect the μ PB8212 directly to the microprocessor bi-directional data bus.

Control Logic

The μ PB8212 has four control inputs: \overline{DS}_1 , DS₂, MD and STB. These inputs are employed to control device selection, data latching, output buffer state and the service request flip-flop.

DS1, DS2 (Device Select)

These two inputs are employed for device selection. When \overline{DS}_1 is low and DS_2 is high $(\overline{DS}_1 \cdot DS_2)$ the device is selected. In the selected state the output buffer is enabled and the service request flip-flop (SR) is asynchronously set.

Service Request Flip-Flop (SR)

The (SR) flip-flop is employed to generate and control interrupts in microcomputer systems. It is asynchronously set by the $\overline{\text{CLR}}$ input (active low). When the (SR) flip-flop is set it is in the non-interrupting state.

The output (Q) of the (SR) flip-flop is connected to an inverting input of a "NOR" gate. The other input of the "NOR" gate is non-inverting and is connected to the device selection logic ($\overline{DS}_1 \cdot DS_2$). The output of the "NOR" gate (\overline{INT}) is active low (interrupting state) for connection to active low input priority generating circuits.

MD (Mode)

This input is employed to control the state of the output buffer and to determine the source of the clock input (C) to the data latch.

When MD is in the output mode (high) the output buffers are enabled and the source of clock (C) to the data latch is from the device selection logic ($\overline{DS}_1 \cdot DS_2$).

When MD is in the input mode (low) the output buffer state is determined by the device selection logic ($\overline{DS}_1 \cdot DS_2$) and the source of clock (C) to the data latch is the STB (Strobe) input.

STB (Strobe)

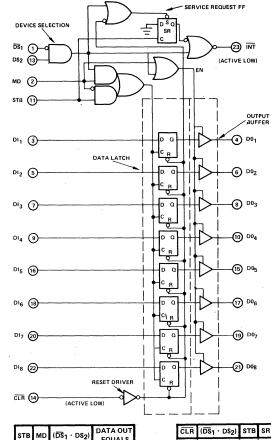
STB is employed as the clock (C) to the data latch for the input mode (MD = 0) and to synchronously reset the service request flip-flop (SR).

Note that the SR flip-flop triggers on the negative edge of STB which overrides CLR.

Operating Temperature
Storage Temperature
All Output or Supply Voltages
All Input Voltages
Output Currents

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C


μPB8212

FUNCTIONAL DESCRIPTION

ABSOLUTE MAXIMUM

RATINGS*

μPB8212

STB	MD	$(\overline{\text{DS}}_1 \cdot \text{DS}_2)$	EQUALS
0	0	0	Three-State
1	0	0	Three-State
0	1	0	Data Latch
1	1	0	Data Latch
0	0	1	Data Latch
1	0	1	Data In
0	1	1	Data In
1	1	1	Data In

ĈLR	$(\overline{\text{DS}}_1 \cdot \text{DS}_2)$	STB	SR (2)	INT
0	0	0	1	1
0	1	0	1	0
1.	0	0	3	3
1		0	1	1
1	0.	$\overline{\ }$	0	0
1	1	0	- 1	0
1	• 1	$\overline{\}$	0	0

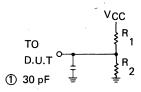
Notes: ① CLR resets data latch sets SR flip-flop. (No effect on output buffer)

② Internal SR flip-flop

③ Previous data remains

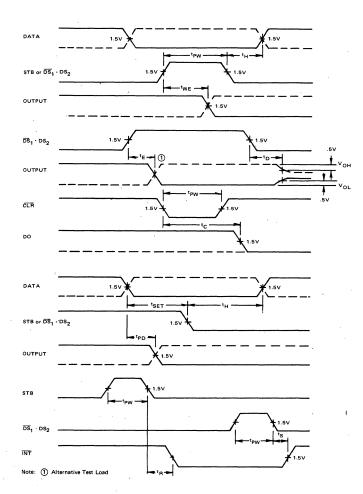
DC CHARACTERISTICS.

BLOCK DIAGRAM


 $T_a = 0^{\circ}C$ to $70^{\circ}C$; VCC = +5V ± 5% LIMITS TEST CONDITIONS PARAMETER SYMBOL UNIT MIN TYP MAX Input Load Current ACK, DS2, ١F -0.14 -0.25 VF = 0.45V mΑ CR, DI1 - DI8 Inputs Input Load Current MD Input ١F -0.25 -0.75 mΑ VF = 0.45V VF = 0.45V Input Load Current DS1 Input ١F -0.26 -1.0 mΑ Input Leakage Current ACK, IR 10 μA VR = 5.25V DS, CR, DI₁ - DIg Inputs V_R = 5.25V 30 Input Leakage Current MD ١R μA Input Input Leakage Current DS1 40 VR = 5.25V IR μA Input Input Forward Voltage Clamp $I_C = -5 mA$ -0.85 ٧c -1.3 v Input "Low" Voltage 0.85 v VIL Input "High" Voltage VIH 2.0 v Output "Low" Voltage 0.45 v IOL = 15 mA Voi 0.26 IOH = -1 mA Output "High" Voltage ٧он 3.65 4.0 v Isc V0'= 0A Short Circuit Output Current -15 -38 -75 mΑ Vo = 0.45V/5.25V μA Output Leakage Current High 20 10 Impedance State Power Supply Current 103 130 mΑ Icc

 $T_a = 0^{\circ}C$ to +70°C; $V_{CC} = +5V \pm 5\%$

DADAMETED	CV/MDOL	LIMITS				TEAT CONDITIONS		
PARAMETER	ŞYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS		
Pulse Width	tpw	30			ns	Inp	ut Pulse	
Data To Output Delay	^t pd		20	30	ns	Am	plitude = 2.5V	
Write Enable To Output Delay	twe			40	ns	Input Rise and Fall Times = 5 ns Between 1V and 2V Measurement made at 1.5V with 15 mA		
Data Setup Time	tset	15			ns			
Data Hold Time	th	20			ņs			
Reset to Output Delay	t _r			40	ns			
Set To Output Delay	ts			30	ns			
Output Enable/Disable Time	t _e /t _d			45	ns	1	and 30 pF Test Load	
Clear To Output Delay	tć			55	ns	2		


Notes: (1) $R_1 = 300\Omega/10K\Omega$; $R_2 = 600\Omega/1K\Omega$

② $R_1 = 300\Omega; R_2 = 600\Omega$

TEST CIRCUIT

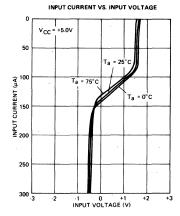
Note: ① Including Jig and Probe Capacitance

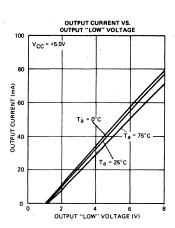
TIMING WAVEFORMS

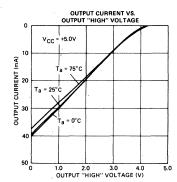
μPB8212

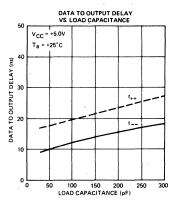
AC CHARACTERISTICS

μPB8212

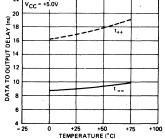

CAPACITANCE ①

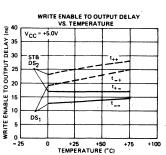

 $T_a = 25^{\circ}C; V_{CC} = +5V; V_{BIAS} = 2.5V; f = 1 MHz$


		LIMITS			1	
PARAMETER	SYMBOL	MIN	түр	MAX	UNIT	TEST CONDITIONS
Input Capacitance	CIN		7	12	pF	DS ₁ , MD
Input Capacitance	CIN		4	9	pF	DS2, CLR, STB, DI1 - DI8
Output Capacitance	COUT		6	12	pF	DO ₁ – DO ₈

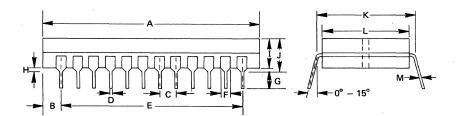

1 This parameter is periodically sampled and not 100% tested Note:


TYPICAL CHARACTERISTICS





22



µPB8212C (Plastic)

ITEM	MILLIMETERS	INCHES		
A ·	33 MAX	1.3 MAX		
В	2.53	0.1		
С	2.54	0.1		
D	0.5 ± 0.1	0.02 ± 0.004		
E	27.94	1.1		
F	1.5	0.059		
G	2.54 MIN	0.1 MIN		
н	0.5 MIN	0.02 MIN		
I.	5.22 MAX	0.205 MAX		
J	5.72 MAX	0.225 MAX		
к	15.24	0.6		
L	13.2	0.52		
м	0.25+0.10 -0.05	0.01 +0.004 -0.0019		

ITEM	MILLIMETERS	INCHES
A	33.5 MAX.	1.32 MAX.
в	2.78	0.11
С	2.54	0.1
D	0.46	0.018
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN.	0.1 MIN.
н	. 0.5 MIN.	0.019 MIN.
I	4.58 MAX.	0.181 MAX.
J	5.08 MAX.	0.2 MAX.
к	15.24	0.6
L	13.5	0.53
м	0.25 ^{+0.10} -0.05	0.01 ^{+0.004} -0.002

μPB8212D (Cerdip)

SP8212-8-77-GN-CAT

4 BIT PARALLEL BIDIRECTIONAL BUS DRIVER

DESCRIPTION

All inputs are low power TTL compatible. For driving MOS, the DO outputs provide a high 3.65V (VOH), and for high capacitance terminated bus structures, the DB outputs provide a high 55 mA (IOL) capability.

- FEATURES Data Bus Buffer Driver for µCOM-8 Microprocessor Family
 - Low Input Load Current 0.25 mA Maximum
 - High Output Drive Capability for Driving System Data Bus
 - 3.65V Output High Voltage for Direct Interface to µCOM-8 Microprocessor Family
 - Three State Outputs
 - Reduces System Package Count
 - Available in 16 pin packages: Cerdip and Plastic

PIN CONFIGURATION

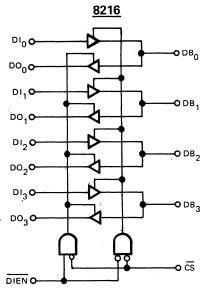
	-			-
cs E	1	\sim	16	□v _{cc}
do ₀ [2		15	
DВ ₀ □	3		14	
DI ₀ [4	μΡΒ 8216/	13	
DO	5	8226	12	
^d В₁	6		11	
	7		10	Осв,
GND	8		9	ם 2 ^{ום}

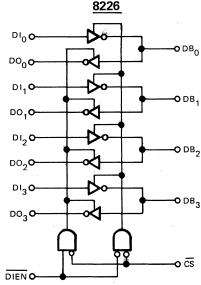
PIN NAMES						
DB0 DB3	Data Bus Bi Directional					
DIO DI3	Data Input					
DO ₀ - DO ₃	Data Output					
DIEN	Data in Enable Direction Control					
ĊŞ	Chip Select					

Microprocessors like the 8080A are MOS devices and are generally capable of driving a single TTL load. This also applies to MOS memory devices. This type of drive is sufficient for small systems with a few components, but often it is necessary to buffer the microprocessor and memories when adding components or expanding to a multi-board system.

The μ PD8216/8226 is a four bit bi-directional bus driver specifically designed to buffer microcomputer system components.

Bi-Directional Driver


Each buffered line of the four bit driver consists of two separate buffers. They are three state in nature to achieve direct bus interface and bi-directional capability. On one side of the driver the output of one buffer and the input of another are tied together (DB), this is used to interface to the system side components such as memories, I/O, etc. Its interface is directly TTL compatible and it has high drive (55 mA). For maximum flexibility on the other side of the driver the inputs and outputs are separate. They can be tied together so that the driver can be used to buffer a true bi-directional bus such as the 8080A Data Bus. The DO outputs on this side of the driver have a special high voltage output drive capability (3.65V) so that direct interface to the 8080A processor is achieved with an adequate amount of noise immunity (650 mV worst case).


Control Gating CS, DIEN

The \overline{CS} input is used for device selection. When \overline{CS} is "high" the output drivers are all forced to their high-impedance state. When it is "low" the device is selected (enabled) and the data flow direction is determined by the \overline{DIEN} input.

The DIEN input controls the data flow direction (see Block Diagrams for complete truth table). This directional control is accomplished by forcing one of the pair of buffers to its high impedance state. This allows the other to transmit its data. This is accomplished by a simple two gate circuit.

The μ PB8216/8226 is a device that will reduce component count in microcomputer systems and at the same time enhance noise immunity to assure reliable, high performance operation.

FUNCTIONAL DESCRIPTION

DIEN	C S	RESULT
0	0	DI →DĮĘ
1	0	DB → DO
0	1	
1	1	High Impedance

BLOCK DIAGRAMS

μPB8216/8226

ABSOLUTE MAXIMUM **RATINGS***

Operating Temperature
Storage Temperature (Cerdip) $\dots \dots \dots$
(Plastic)
All Output and Supply Voltages
All Input Voltages
Output Currents

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

DC CHARACTERISTICS

$T_a = 0^{\circ}C$ to +70°C, $V_{CC} = +5V\pm5\%$

	PARAMETER			LIMITS		UNIT	TEST CONDITIONS
PARAMETER			MIN	ТҮР 🕦	MAX		
Input Load Current DIEN, CS		IF1			-0.5	mA	VF = 0.45
 Input Load Current All Other Inputs 		IF2			-0.25*	mA	VF = 0.45
Input Leakage Current DIEN, CS		IR1			20	μA	V _R = 5.25V
Input Leakage Current DI Inputs		IR2			10 .	μA	V _R = 5.25V
Input Forward Voltage Clamp		VC			1.3	V	IC = -5 mA
Input "Low" Voltage		VIL			0.95	V	
Input "High" Voltage		∨ін	2.0			V	·
Output Leakage Current (3-State)	DO DB	1 <u>0</u> 10			20	μA	V _O = 0.45/5.25V
Power Supply Current	8216	ICC.			130	mA	
rower Suppry Current	8226	1cc			120	mA	
Output "Low" Voltage		VOL1			0.45	V	DO Outputs IOL = 15 mA DB Outputs IOL = 25 mA
Output "Low" Voltage	8216	VOL2			0.6	V	DB Outputs IOL = 55 mA
Output Low Voltage	8226	VOL2			0.6	V	DB Outputs IOH = 50 mA
Output "High" Voltage		VOH1	3.65			V	DO Outputs IOH =1 mA
Output "High" Voltage		VOH2	2.4			V	DB Outputs IOH = -10 mA
Output Short Circuit Current		los	-15 30		65 120	mA mA	DO Outputs V _O = 0V DB Outputs V _{CC} = 5.0V

Note: ① Typical values are for $T_a = 25^{\circ}C$, $V_{CC} = 5.0V$.

CAPACITANCE ①

PARAMETER	SYMBOL		LIMITS		UNIT	TEST
	STIVIBUL	MIN	TYP	MAX	UNTI	CONDITIONS
Input Capacitance	CIN			8	рF	VBIAS = 2.5V
Output Capacitance	COUT1			10 ②	рF	V _{CC} = 5V
Output Capacitance	COUT2	-		18 ③	рF	$T_a = 25^{\circ}C$ f = 1 MHz

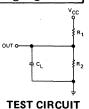
Notes: 1) This parameter is periodically sampled and not 100% tested.

2 DO Output.

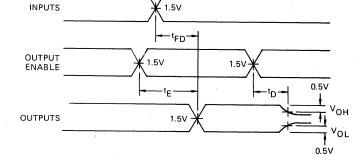
③ DB Output.

μPB8216/8226

AC CHARACTERISTICS

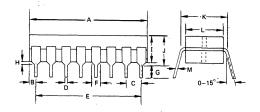

$T_a = 0^{\circ}C$ to +70°C; $V_{CC} = +5V\pm5\%$

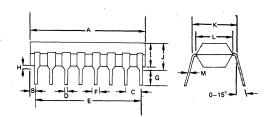
		SYMBOL		LIMITS		LINUT	TEST CONDITIONS
PARAMETER		STMBUL	MIN	TYP ①	MAX	UNIT	TEST CONDITIONS
Input to Output Delay DO Outputs		^{tPD1}		- -	25	ns	$C_L = 30 \text{ pF}, R_1 = 300\Omega, R_2 = 600\Omega$
Input to Output Delay	8216	tPD2 🔨			30	ns	CL = 300 pF, R ₁ = 90Ω,
DB Outputs	8226	tPD2			25	ns	$R_2 = 180\Omega 4$
Output Enable Time	8216	tΕ			65	ns	24
	8226	tE.			54	ns	
Output Disable Time		tD		1	35	ns	34


Notes: ① Typical values are for $T_a = 25^{\circ}C$, $V_{CC} = 5.0V$

- ② DO Outputs, $C_L = 30 \text{ pF}$, $R_1 = 300/10 \text{ K}\Omega$, $R_2 = 600/1 \text{ K}\Omega$, DB Outputs, CL = 300 pF, R1 = 90/10 K\Omega, R2 = 180/1 K\Omega.
- (3) DO Outputs, CL = 5 pF, R₁ = 300/10 K Ω , R₂ = 600/1 K Ω , DB Outputs, $C_L = 5 \text{ pF}$, $R_1 = 90/10 \text{ K}\Omega$, $R_2 = 180/1 \text{ K}\Omega$. 4 Input pulse amplitude: 2.5V

Input rise and fall times of 5 ns between 1 and 2 volts. Output loading is 5 mA and 10 pF. Speed measurements are made at 1.5 volt levels.




TIMING WAVEFORMS

PACKAGE OUTLINE

μPB8216C/D µPB8226C/D

uPB8216/8226D (Cerdip)

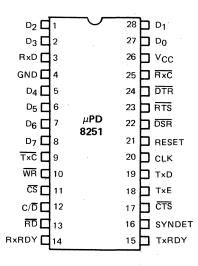
ITEM	MILLIMETERS	INCHES		
Α	19.9 MAX	0.784 MAX		
в	1.06	0.042		
c	2.54	0.10		
D	0.46 ' 0.10	0.018 · 0.004		
E	17.78	0.70		
F	1.5	0.059		
G	2.54 MIN	0.10 MIN		
н	0.5 MIN	0.019 MIN		
1	4.58 MAX	0.181 MAX		
J	5.08 MAX	0.20 MAX		
к	7.62	0.30		
ι.	6.4	0.25		
м	0.25 + 0.10	0.0098 + 0.0039 0.0019		

µPB8216/8226C (Plastic)

ITEM	MILLIMETERS	INCHES
A	19 4 MAX	0 76 MAX
8	0.81	0 0 3
с	2.54	0.10
D	0.5	0.02
E	17.78	0.70
F	13	0 051
G	2 54 MIN.	0.10 MIN
н	0.5 MIN.	0.02 MIN.
I	4.05 MAX.	0.16 MAX
J	4.55 MAX.	0.18 MAX
к	7.62	0.30
L	6.4	0.25
м	0.25	0.01

NEC MICPOLINIANS.

PROGRAMMABLE COMMUNICATION INTERFACE


DESCRIPTION

The μ PD8251 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) is designed for microcomputer systems data communications. The USART is used as a peripheral and is programmed by the μ PD8080 or other processor to communicate in commonly used serial data transmission techniques including IBM Bi-Sync. The USART receives serial data streams and converts them into parallel data characters for the processor. While receiving serial data, the USART will also accept data characters from the processor in parallel format, convert them to serial format and transmit. The USART will signal the processor when it has completely received or transmitted a character and requires service. Complete USART STATUS including data format errors and control signals such as TxE and SYNDET is available to the processor at any time.

FEATURES

- Asynchronous or Synchronous Operation
 - Asynchronous:
 - 5-8 Bit Characters
 - Clock Rate 1, 16 or 64 x Baud Rate
 - Break Character Generation
 - Select 1, 1-1/2, or 2 Stop Bits
 - False Start Bit Detector
 - Synchronous:
 - 5-8 Bit Characters Internal or External Character Synchronization
 - Automatic Sync Insertion
 - Single or Double Sync Characters
 - Baud Rate Synchronous DC to 56K Baud
 - Asynchronous DC to 9.6K Baud
- Full Duplex, Double Buffered Transmitter and Receiver
- Parity, Overrun and Framing Flags
- Fully Compatible with 8080
- All Inputs and Outputs are TTL Compatible
- Single +5 Volt Supply
- Separate Device, Receive and Transmit TTL Clocks
- 28 Pin Plastic DIP Package
 - N-Channel MOS Technology

PIN CONFIGURATION

PIN NAMES

D7-D0	Data Bus (8 bits)
C/D	Control or Data is to be Written or Read
RD	Read Data Command
WR	Write Data or Control Command
CS	Chip Enable
CĽK	Clock Pulse (TTL)
RESET	Reset
TxC	Transmitter Clock (TTL)
TxD	Transmitter Data
RxC	Receiver Clock (TTL)
RxD	Receiver Data
RxRDY	Receiver Ready (has character for 8080)
TxRDY	Transmitter Ready (ready for char. from 8080)
DSR	Data Set Ready
DTR	Data Terminal Ready
SYNDET	Sync Detect
RTS	Request to Send Data
CTS	Clear to Send Data
TxE	Transmitter Empty
Vcc	+5 Volt Supply
GND	Ground

The μ PD8251 Universal Synchronous/Asynchronous Receiver/Transmitter is designed specifically for 8080 microcomputer systems but works with most 8-bit processors. Operation of the 8251, like other I/O devices in the 8080 family, is programmed by system software for maximum flexibility.

In the receive mode, a communication interface device must convert incoming serial format data into parallel data and make certain format checks on the data. And in the transmit mode, the device must format data into serial data. The device must also supply or remove characters or bits that are unique to the communication format in use. By performing conversion and formatting services automatically, the USART appears to the processor as a simple or "transparent" input or output of byte-oriented parallel data.

FUNCTIONAL DESCRIPTION

BLOCK DIAGRAM

ΠΑΤΑ TRANSMIT TxD BUS BUFFER BUFFER (P→S) RESET TXBDY CLK READ/WRITE TRANSMIT C/D CONTROL ТхE CONTROL RD TxC WB cs DSR DTR RECEIVE MODEM BUFFER RxD CONTROL CTS (S→P) RTS **B**×**B**DY RECEIVE RVC INTERNAL DATA BUS - SYNDET

C/D	RD	WR	CS	
0	0	1	· 0	8251 → Data Bus
0	1	0	0	Data Bus → 8251
1	0	1	0	Status → Data Bus
1	1	0	0	Data Bus → Control
X	X	Х	1	Data Bus → 3-State
X	1	1	0	

Operating Temperature

BASIC OPERATION

ABSOLUTE MAXIMUM RATINGS*

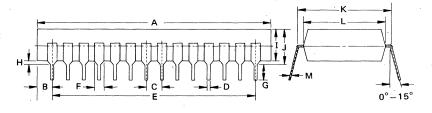
- 0°C to +70°C

 All Output Voltages
 -0.5 to +7 Volts

 All Input Voltages
 -0.5 to +7 Volts

*T_a = 25°C

DC CHARACTERISTICS


$T_a = 0^\circ C$ to	70°C; V _{CC}	= 5.0V ±	5%; GND = 0V
----------------------	-----------------------	----------	--------------

			LIMITS	S		
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS
Input Low Voltage	VIL	GND5		0.8	v	
Input High Voltage	VIH	2.0		Vcc	· v	
Output Low Voltage	VOL			0.45	v	I _{OL} = 1.7 mA
Output High Voltage	∨он	2.4			v	l _{OH} = -100 μA
Data Bus Leakage	IDL			-50	μΑ	V _{OUT} = 0.45V
				10	, " ~	VOUT = VCC
Input Load Current	հլ			10	μA	@5.5V
Power Supply Current			4 5	80	mA	

CAPACITANCE $T_a = 25^{\circ}C; V_{CC} = GND = 0V$

		LIMITS				
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Input Capacitance	CIN			10	рF	fc = 1 MHz
I/O Capacitance	CI/O			20	pF	Unmeasured pins returned to GND

PACKAGE OUTLINE µPD8251C

ITEM	MILLIMETERS	INCHES
А	38.0 MAX.	1.496 MAX.
В	2.49	0.098
с	2.54	0.10
D	0.5 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN.	0.10 MIN.
н	0.5 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0.225 MAX.
к	15.24	0.6
L	13.2	0.52
м	0.25 + 0.10 - 0.05	0.01 + 0.004 - 0.002

BUS PARAMETERS: 1

 $T_a = 0^{\circ}C$ to 70°C; $V_{CC} = 5.0V \pm 5\%$; GND = 0V

PARAMETER	SYMBOL		LIMITS	UNIT	TEST CONDITIONS	
FARAMETER		MIN	ŢYP	MAX	UNIT	TEST CONDITIONS
		READ				
Address Stable before READ, (CS, C/D)	tAR	50			ns	
Address Hold Time for READ, (CS, CD)	^t RA	5			ns	
READ Pulse Width	IRR	430			ns	
Data Delay from READ	^t RD			350	ris	C _L = 100 pF
READ to Data Floating	^t DF			200	ns	C _L = 100 pF
		25				CL = 15 pF
Recovery Time Between WRITES ②	tŔv	6			tCY	
· · · · · · · · · · · · · · · · · · ·		WRITE		- L		
Address Stable before WRITE	taw	20			ns	
Address Hold Time for WRITE	twa	20		11	ns	
WRITE Pulse Width	tww	400		11	ns	
Data Set-Up Time for WRITE	tów	200		1	ns	
Data Hold Time for WRITE	tWD	40		1	ns	
×	1	OTHER TIM	ING	J		1
Clock Period (3)	τCY	.420		1.35	μs	T
Clock Pulse Width	tow	220		0.7tCY	ns	
Clock Rise and Fall Time	tR,tF	0		50	ns	<u> </u>
TxD Delay from Falling Edge of TxC	^t DTx			1	μs	CL = 100 pF
R× Data Set-Up Time to Sampling Pulse	^t SRx	2			μs	CL = 100 pF
Rx Data Hold Time to Sampling Pulse	^t HBx	2			μs	CL = 100 pF
Transmitter Input Clock Frequency	fTx	1				
1X Baud Rate		DC	1	56	KHz	
16X and 64X Baud Rate		DC		520	KHz	
Transmitter Input Clock Pulse Width 1X Baud Rate	^t TPW	12			tCY	
16X and 64X Baud Rate		1	1		TCY	
Transmitter Input Clock Pulse Delay	^t TPD					
1X Baud Rate		15			^t CY	
16X and 64X Baud Rate		3			tCA	
Receiver Input Clock Frequency 1X Baud Rate	fRx	DC		56	KHz	
16X and 64X Baud Rate		DC		520	KHz	
Receiver Input Clock Pulse Width	TRPW	1		-		
1X Baud Räte		12			tCY	
16X and 64X Baud Rate		1			tCY	
Receiver Input Clock Pulse Delay	TRPD	1				
1X Baud Rate 16X and 64X Baud Rate		15			tCY TCY	
TxRDY Delay from Center of Data Bit	t _{Tx}	+	t	16	tCY	C1 = 50 pF
RxRDY Delay from Center of Data Bit	. tRx	+		20	tCY	
Internal Syndet Delay from Center of	+	+	t			
Data Bit	tis	1		25	tCY	
External Syndet Set-Up Time before						
Falling Edge of RxC	tES	16		16	tCY	· · · · · · · · · · · · · · · · · · ·
TxEMPTY Delay from Center of Data Bit	[†] T×E	_		16	^t CY	CL = 50 pF
Control Delay from Rising Edge of WRITE (TxE, DTR, RTS)	twc				tCY	
Control to READ Set-Up Time (DSR, CTS)	^t CR	16	1		tCY	1

ΰ AC timings measured at VOH = 2.0, VOL = 0.8, and with load circuit of Figure 1.

õ This recovery time is for initialization only, when MODE, SYNC1, SYNC2, COMMAND and first DATA BYTES are written into the USART. Subsequent writing of both COMMAND and DATA are only allowed when TXRDY = 1. 3

The TxC and RxC frequencies have the following limitations with respect to CLK. For 1X Baud Rate, fT_x or fR_x \leq 1/(30 t_CY) For 16X and 64X Baud Rate, fT_x or fR_x \leq 1/(4.5 t_CY)

4 Reset Pulse Width = 6 tCY minimum.

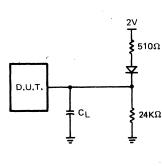
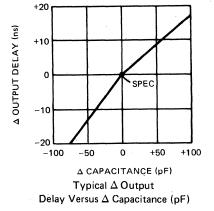
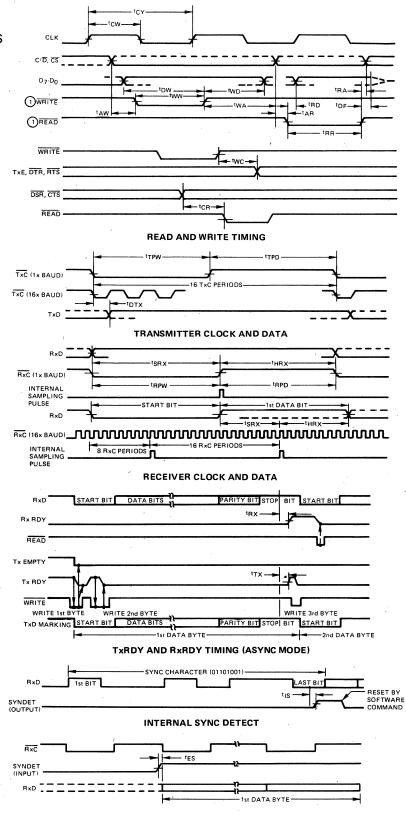



Figure 1.



AC CHARACTERISTICS

TEST LOAD CIRCUIT

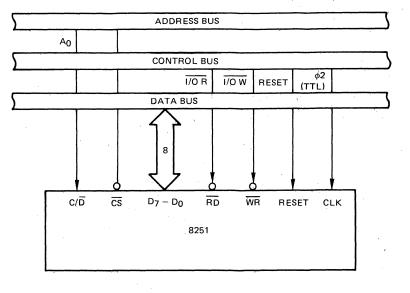
Notes:

TIMING WAVEFORMS

EXTERNAL SYNC DETECT Note: (1) Write and Read pulses have no timing limitation with respect to CLK.

219

PIN IDENTIFICATION


	P	YIN	
NO.	SYMBOL	NAME	FUNCTION
1, 2, 27, 28 5 — 8	D ₇ D ₀	Data Bus Buffer	An 8-bit, 3-state bi-directional buffer used to interface the 8251 to the processor data bus. Data is transmitted or received by the buffer in response to input/output or Read/Write instruc- tions from the processor. The Data Bus Buffer also transfers Control words, Command words, and Status.
26	Vcc	V _{CC} Supply Voltage	+5 volt supply
4	GND	Ground	Ground
	Read/Write	e Control Logic	This logic block accepts inputs from the pro- cessor Control Bus and generates control signals for overall USART operation. The Mode Instruction and Command Instruction registers that store the control formats for device func- tional definition are located in the Read/ Write Control Logic.
21	RESET	Reset	A "one" on this input forces the USART into the "Idle" mode where it will remain until reinitialized with a new set of control words. Minimum RESET pulse width is t_{CY*}
20	CLK	Clock Pulse	The CLK input provides for internal device tim- ing and is usually connected to the Phase 2 (TTL) output of the µPB8224 Clock Generator, External inputs and outputs are not referenced to CLK, but the CLK frequency must be 30 times the Receiver or Transmitter clocks in the synchronous mode and 4.5 times for the asynchronous mode.
10	WR	Write Data	A "zero" on this input instructs the μ PD8251 to accept the data or control word which the processor is writing out to the USART via the data bus.
13	RD ,	Read Data	A "zero" on this input instructs the μ PD8251 to place the data or status information onto the Data Bus for the processor to read.
[.] 12	C/D	Control/Data	The Control/Data input, in conjunction with the \overline{WR} and \overline{RD} inputs, informs USART to accept or provide either a data character, control word or status information via the Data Bus. 0 = Data; 1 = Control.
11	ĈŜ	Chip Select	A "zero" on this input enables the USART for reading and writing to the processor.
	Mode	m Control	The µPD8251 has a set of control inputs and outputs which may be used to simplify the interface to a Modem.
22	DSR	Data Set Ready	The Data Set Ready input can be tested by the processor via Status information. The DSR input is normally used to test Modem Data Set Ready condition.
24	DTR	Data Terminal Ready	The Data Terminal Ready output can be con- trolled via the Command word. The DTR output is normally used to drive Modem Data Terminal Ready or Rate Select lines.
23	RTS	Request to Send	The Request to Send output can be controlled via the Command word. The RTS output is normally used to drive the Modem Request to Send line.
17	CTS	Clear to Send	A "zero" on the Clear to Send input enables the USART to transmit serial data if the TxEN bit in the Command Instruction register is enabled (one).

TRANSMIT BUFFER/ CONVERTER

The Transmit Buffer/Converter receives parallel data from the Data Bus Buffer via the internal data bus, converts parallel to serial data, inserts the necessary characters or bits needed for the programmed communication format and outputs composite serial data on the TxD output.

PIN IDENTIFICATION			PIN			
(CONT.)	NO.	SYMBOL	NAME	FUNCTION		
		Transmi	t Control Logic	The Transmit Control Logic accepts and outputs all external and internal signals necessary for serial data transmission.		
	15	TxRDY	Transmitter Ready	Transmitter Ready signals the processor that the transmitter is ready to accept a data character. TxRDY can be used as an interrupt or may be tested through the Status information for Polled operation. Loading a character from the processor automatically resets TxRDY.		
· · · ·	18	Τ×Ε	Transmitter Empty	The Transmitter Empty output signals the processor that the USART has no further char- acters to transmit. TXE is automatically reset upon receiving a data character from the pro- cessor. In half-duplex, TXE can be used to signal end of a transmission and request the processor to "turn the line around." The TXEn bit in the command instruction does not effect TXE. In the Synchronous mode, a "one" on this out- put indicates that a Sync character or charac- ters are about to be automatically transmitted as "fillers" because the next data character has not been loaded.		
	9	TxC	Transmitter Clock	The Transmitter Clock controls the serial charac- ter transmission rate. In the Asynchronous mode, the TxC frequency is a multiple of the actual Baud Rate. Two bits of the Mode Instruc- tion select the multiple to be 1x, 16x, or 64x the Baud Rate. In the Synchronous mode, the TxC frequency is automatically selected to equal the actual Baud Rate. Note that for both Synchronous and Asynchro- nous modes, serial data is shifted out of the USART by the falling edge of TxC.		
	19	TxD	Transmitter Data	The Transmit Control Logic outputs the composite serial data stream on this pin.		

8251 INTERFACE TO 8080 STANDARD SYSTEM BUS

The Receiver Buffer accepts serial data input at the \overline{RxD} pin and converts the data from serial to parallel format. Bits or characters required for the specific communication technique in use are checked and then an eight-bit "assembled" character is readied for the processor. For communication techniques which require less than eight bits, the μ PD8251 sets the extra bits to "zero."

RECEIVER BUFFER

				PIN IDENTIFICATION		
NO.	SYMBOL	NAME	FUNCTION	(CONT.)		
	Receiver C	ontrol Logic	This block manages all activities related to incoming data.			
14	R×RDY	Receiver Ready	The Receiver Ready output indicates that the Receiver Buffer is ready with an "assembled" character for input to the processor. For Polled operation, the processor can check RxRDY using a Status Read or RxRDY can be con- nected to the processor interrupt structure. Note that reading the character to the pro- cessor automatically resets RxRDY.	,		
25	RxC	Receiver Clock	The Receiver Clock is the rate at which the incoming character is received. In the Asynchro- nous mode, the \overline{RxC} frequency may be 1,16 or 64 times the actual Baud Rate but in the Synchronous mode the \overline{RxC} frequency must equal the Baud Rate. Two bits in the mode instruction select Asynchronous at 1x, 16x or 64x or Synchronous operation at 1x the Baud Rate. Unlike \overline{TxC} , data is sampled by the μ PD8251 on the rising edge of \overline{RxC} . (1)			
3	RxD	Receiver Data	A composite serial data stream is received by the Receiver Control Logic on this pin.			
16	SYNDET	Sync Detect	The SYNC Detect pin is only used in the Synchronous mode. The μ PD8251 may be pro- grammed through the Mode Instruction to operate in either the internal or external Sync mode and SYNDET then functions as an output or input respectively. In the internal Sync mode, the SYNDET output will go to a "one" when the μ PD8251 has located the SYNC character in the Receive mode. If double SYNC character (bi-sync) operation has been pro- grammed, SYNDET will go to "one" in the middle of the last bit of the second SYNC character. SYNDET is automatically reset to "zero" upon a Status Read or RESET. In the external SYNC mode, a "zero" to "one" transi- tion on the SYNDET input will cause the μ PD8251 to start assembling data character on the next falling edge of RxC. The length of the SYNDET input should be at least one RxC period, but may be removed once the μ PD8251 is in SYNC.			

Note: 1

Since the μ PD8251 will frequently be handling both the reception and transmission for a given link, the Receive and Transmit Baud Rates will be same. RxC and TxC then require the same frequency and may be tied together and connected to a single clock source or Baud Rate Generator.

Examples: If the Baud Rate equals 110 (Async): RxC or TxC equals 110 Hz (1x) RxC or TxC equals 1.76 KHz (16x) RxC or TxC equals 7.04 KHz (64x)

If the Baud Rate equals 300:

 \overline{RxC} or \overline{TxC} equals 300 Hz (1x) A or S \overline{RxC} or \overline{TxC} equals 4800 Hz (16x) A only RxC or TxC equals 19.2 KHz (64x) A only

OPERATIONAL DESCRIPTION

A set of control words must be sent to the μ PD8251 to define the desired mode and communications format. The control words will specify the BAUD RATE FACTOR (1x, 16x, 64x), CHARACTER LENGTH (5 to 8), NUMBER OF STOP BITS (1, 1-1/2, 2), ASYNCHRONOUS or SYNCHRONOUS MODE, SYNDET (IN or OUT), PARITY, etc.

After receiving the control words, the μ PD8251 is ready to communicate. TxRDY is raised to signal the processor that the USART is ready to receive a character for transmission. When the processor writes a character to the USART, TxRDY is automatically reset.

Concurrently, the μ PD8251 may receive serial data; and after receiving an entire character, the RxRDY output is raised to indicate a completed character is ready for the processor. The processor fetch will automatically reset RxRDY.

Note: The μPD8251 may provide faulty RxRDY for the first read after power-on or for the first read after receive is re-enabled by a command instruction (RxE). A dummy read is recommended to clear faulty RxRDY. But this is not the case for the first read after hardware or software reset after the device operation has once been established.

The μ PD8251 cannot transmit until the TxEN (Transmitter Enable) bit has been set by a Command Instruction and until the CTS (Clear to Send) input is a "zero". TxD is held in the "marking" state after Reset awaiting new Command Words.

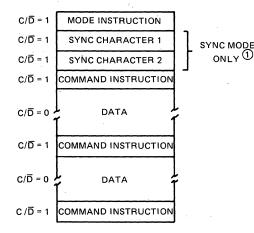
μPD8251 PROGRAMMING

The USART must be loaded with a group of two to four control words provided by the processor before data reception and transmission can begin. A Reset (internal or external) must immediately proceed the control words which are used to program the complete operational description of the communications interface. If an external RESET is not available, three successive 00 Hex or two successive 80 Hex command instructions ($C/\overline{D} = 1$) followed by a software reset command instruction (40 Hex) can be used to initialize the 8251.

There are two control word formats:

1. Mode Instruction

2. Command Instruction


MODE INSTRUCTION

This control word specifies the general characteristics of the interface regarding the SYNCHRONOUS or ASYNCHRONOUS MODE, BAUD RATE FACTOR, CHARACTER LENGTH, PARITY, and NUMBER OF STOP BITS. Once the Mode Instruction has been received, SYNC characters or Command Instructions may be inserted depending on the Mode Instruction content.

COMMAND INSTRUCTION

This control word will be interpreted as a SYNC character definition if immediately preceded by a Mode Instruction which specified a Synchronous format. After the SYNC character(s) are specified or after an Asynchronous Mode Instruction, all subsequent control words will be interpreted as an update to the Command Instruction. Command Instruction updates may occur at any time during the data block. To modify the Mode Instruction, a bit may be set in the Command Instruction which causes an internal Reset which allows a new Mode Instruction to be accepted.

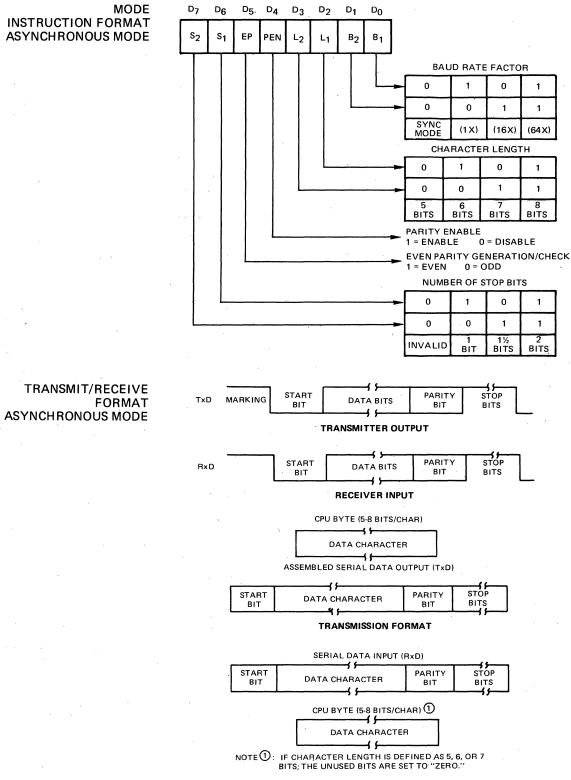
TYPICAL DATA BLOCK

NOTE ①

The second SYNC character is skipped if MODE instruction has programmed the 8251 to single character Internal SYNC Mode. Both SYNC characters are skipped if MODE instruction has programmed the 8251 to ASYNC mode.

The μ PD8251 can operate in either Asynchronous or Synchronous communication modes. Understanding how the Mode Instruction controls the functional operation of the USART is easiest when the device is considered to be two separate components, one asynchronous and the other synchronous, which share the same support circuits and package. Although the format definition can be changed at will or "on the fly", the two modes will be explained separately for clarity.

When a data character is written into the μ PD8251, the USART automatically adds a START bit (low level or "space") and the number of STOP bits (high level or "mark") specified by the Mode Instruction. If Parity has been enabled, an odd or even Parity bit is inserted just before the STOP bits(s), as specified by the Mode Instruction. Then, depending on CTS and TxEN, the character may be transmitted as a serial data stream at the TxD output. Data is shifted out by the falling edge of TxC at TxC, TxC/16 or TxC/64, as defined by the Mode Instruction.


If no data characters have been loaded into the µPD8251, or if all available characters have been transmitted, the TxD output remains "high" (marking) in preparation for sending the START bit of the next character provided by the processor. TxD may be forced to send a BREAK (continuously low) by setting the correct bit in the Command Instruction.

The RxD input line is normally held "high" (marking) by the transmitting device. A falling edge at RxD signals the possible beginning of a START bit and a new character. The START bit is checked by testing for a "low" at its nominal center as specified by the BAUD RATE. If a "low" is detected again, it is considered valid, and the bit assembling counter starts counting. The bit counter locates the approximate center of the data, parity (if specified), and STOP bits. The parity error flag (PE) is set, if a parity error occurs. Input bits are sampled at the RxD pin with the rising edge of RxC. If a high is not detected for the STOP bit, which normally signals the end of an input character, a framing error (FE) will be set. After a valid STOP bit, the input character is loaded into the parallel Data Bus Buffer of the µPD8251 and the RxRDY signal is raised to indicate to the processor that a character is ready to be fetched. If the processor has failed to fetch the previous character, the new character replaces the old and the overrun flag (OE) is set. All the error flags can be reset by setting a bit in the Command Instruction. Error flag conditions will not stop subsequent USART operation.

MODE INSTRUCTION DEFINITION

ASYNCHRONOUS TRANSMISSION

ASYNCHRONOUS RECEIVE

RECEIVE FORMAT

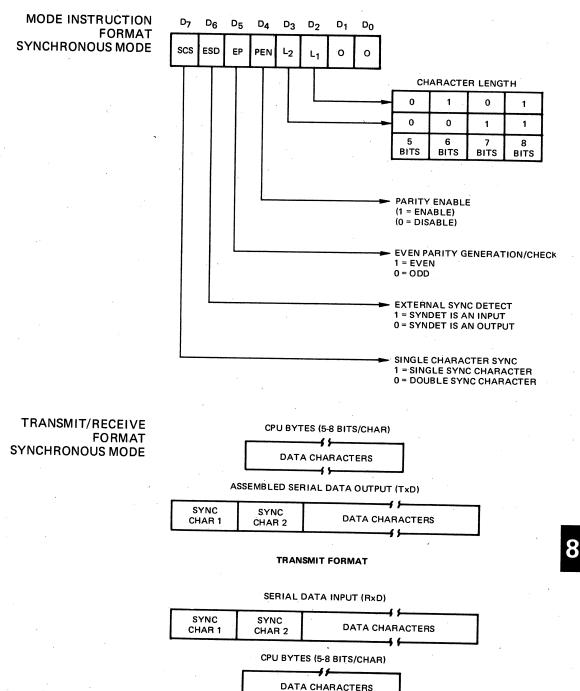
As in Asynchronous transmission, the TxD output remains "high" (marking) until the μ PD8251 receives the first character from the processor which is usually a SYNC character. After a Command Instruction has set TxEN and after Clear to Send (CTS) goes low, the first character is serially transmitted. Data is shifted out on the falling edge of TxC and the same rate as TxC.

Once transmission has started, Synchronous Mode format requires that the serial data stream at TxD continue at the \overline{TxC} rate or SYNC will be lost. If a data character is not provided by the processor before the μ PD8251 Transmitter Buffer becomes empty, the SYNC character(s) loaded directly following the Mode Instruction will be automatically inserted in the TxD data stream. The SYNC character(s) are inserted to fill the line and maintain synchronization until new data characters are available for transmission. If the μ PD8251 becomes empty, and must send the SYNC character(s), the TxEMPTY output is raised to signal the processor that the Transmitter Buffer is empty and SYNC characters are being transmitted. TxEMPTY is automatically reset by the next character from the processor.

TxEMPTY go high at the middle of the last data bit when the Transmit Register is EMPTY. TxEMPTY goes low again as sync characters are transmitted. See figure below.

In Synchronous Receive, character synchronization can be either external or internal. If the internal SYNC mode has been selected, and the Enter HUNT (EH) bit has been set by a Command Instruction, the receiver goes into the HUNT mode.

Incoming data on the RxD input is sampled on the rising edge of $\overline{\text{RxC}}$, and the Receiver Buffer is compared with the first SYNC character after each bit has been loaded until a match is found. If two SYNC characters have been programmed, the next received character is also compared. When the SYNC character(s) programmed have been detected, the μ PD8251 leaves the HUNT mode and is in character synchronization. At this time, the SYNDET (output) is set high. SYNDET is automatically reset by a STATUS READ.


If external SYNC has been specified in the Mode Instruction, a "one" applied to the SYNDET (input) for at least one \overline{RxC} cycle will synchronize the USART.

Parity and Overrun Errors are treated the same in the Synchronous as in the Asynchronous Mode. Framing errors do not apply in the Synchronous format.

The processor may command the receiver to enter the HUNT mode with a Command Instruction which sets Enter HUNT (EH) if synchronization is lost.

SYNCHRONOUS TRANSMISSION

SYNCHRONOUS RECEIVE

RECEIVE FORMAT

After the functional definition of the μ PD8251 has been specified by the Mode Instruction and the SYNC character(s) have been entered, if in SYNC mode, the USART is ready to receive Command Instructions and begin communication. A Command Instruction is used to control the specific operation of the format selected by the Mode Instruction. Enable Transmit, Enable Receive, Error Reset and Modem Controls are controlled by the Command Instruction.

After the Mode Instruction and the SYNC character(s), as needed, are loaded, all subsequent "control writes" ($C/\overline{D} = 1$) will load or overwrite the Command Instruction register. A Reset operation (internal via CMD IR or external via the RESET input) will cause the μ PD8251 to interpret the next "control write", which must immediately follow the reset, as a Mode Instruction.

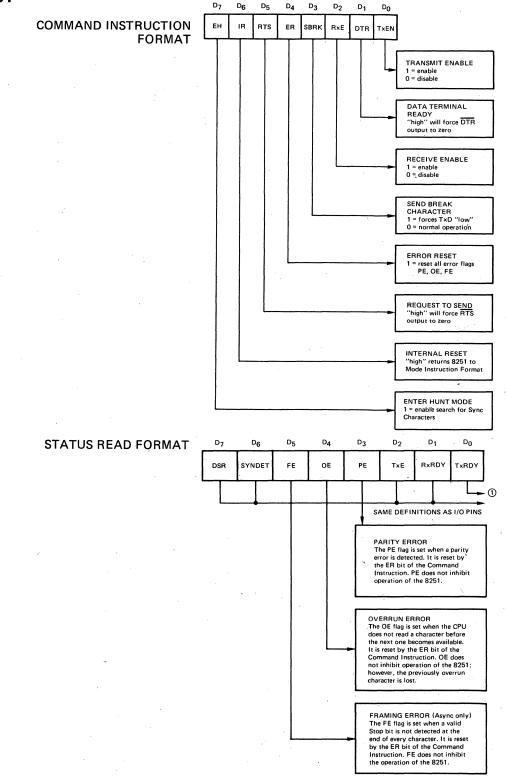
It is frequently necessary for the processor to examine the "status" of an active interface device to determine if errors have occurred or to notice other conditions which require a response from the processor. The μ PD8251 has features which allow the processor to "read" the device status at any time. A data fetch is issued by the processor while holding the C/D input "high" to obtain device Status Information. Many of the bits in the status register are copies of external pins. This dual status arrangement allows the μ PD8251 to be used in both Polled and interrupt driven environments. Status update can have a maximum delay of a 16 clock period.

When a parity error is detected, the PE flag is set, and is cleared by setting the ER bit in a subsequent Command Instruction. PE being set does not inhibit USART operation.

If the processor fails to read a data character before the one following is available, the OE flag is set, and is cleared by setting the ER bit in a subsequent Command Instruction. Although OE being set does not inhibit USART operation, the previously received character is overwritten and lost.

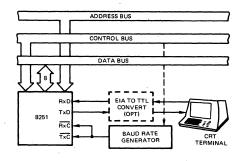
If a valid STOP bit is not detected at the end of a character, the FE flag is set, and is cleared by setting the ER bit in a subsequent Command Instruction. FE being set does not inhibit USART operation.

Note: 1 ASYNC mode only.

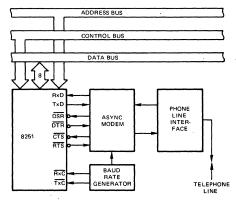

COMMAND INSTRUCTION FORMAT

STATUS READ FORMAT

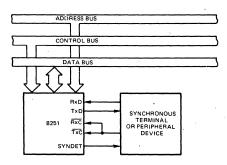
PARITY ERROR

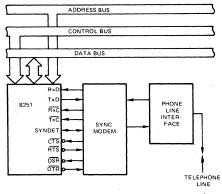

OVERRUN ERROR

FRAMING ERROR $^{\textcircled{1}}$



Note: 1 TxRDY status bit is not totally equivalent to the TxRDY output pin, the relationship is as follows:


TxRDY status bit = DB Buffer Empty TxRDY (pin 15) = DB Buffer Empty • CTS • TxEn


ASYNCHRONOUS SERIAL INTERFACE TO CRT TERMINAL, DC to 9600 BAUD

ASYNCHRONOUS INTERFACE TO TELEPHONE LINES

SYNCHRONOUS INTERFACE TO TERMINAL OR PERIPHERAL DEVICE

SYNCHRONOUS INTERFACE TO TELEPHONE LINES

APPLICATION OF THE µPD8251

SP8251-5-77-GN-CAT

NEC MICTOCOMPUTERS, IIIC.

PROGRAMMABLE PERIPHERAL INTERFACE

DESCRIPTION

The μ PD8255 is a general purpose programmable INPUT/OUTPUT device designed for use with the 8080A microprocessor. Twenty-four (24) I/O lines may be programmed in two groups of twelve (group I and group II) and used in three major modes of operation. In the Basic mode, (MODE 0), each group of twelve I/O pins may be programmed in a set of 8 and a set of 4 to be input or output. In the Strobed mode, (MODE 1), each group may be programmed to have 8 lines of input or output. Three of the remaining four pins in each group are used for handshaking strobes and interrupt control signals. The Bidirectional Bus mode, (MODE 2), uses the 8 lines of Port A for a bidirectional bus, and five lines from Port C for bus control signals. The μ PD8255 is packaged in a 40 pin plastic DIP.

FEATURES

- Fully Compatible with the 8080A Microprocessor Family
- All Inputs and Outputs TTL Compatible
- 24 Programmable I/O Pins
- Direct Bit SET/RESET Eases Control Application Interfaces
- 8 2 mA Darlington Drive Outputs for Printers and Displays
- LSI Drastically Reduces System Package Count
- Standard 40 Pin Dual-In-Line Plastic Package

PIN CONFIGURATION		` 		
FINCONFIGURATION	PA3		\mathbf{O}	40 🗖 PA4
	PA2			39 🗖 PA5
	PA1	d 3		38 🗖 PA6
	PAO			37 🗖 PA7
· ·	RD	D 5		36 🗖 🐺
	CS	d 6		35 RESET
	GND	d 7		34 互 D ₀
	A1			33 D D1
	A0	d 9		32 D D2
	PC7	10	μPD	31 D D3
	PC6		8255	30 5 D ₄
	PC5	d 12		29 D D5
	PC4	13		28 D D6
	PC0 I	14		27 D D ₇
	PC1 I	15		26 2 v _{cc}
	PC ₂	16		25 D PB7
	PC ₃	17		24 D PB6
	PB0	18		23 D PB5
	PB1	19		22 PB4
	PB ₂	20		21 PB 3
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

PIN NAMES

D7-D0	Data Bus (Bi-Directional)
RESET	Reset Input
<u>cs</u>	Chip Select
RD	Read Input
WR	Write Input
A0, A1	Port Address
PA7-PA0	Port A (Bit)
PB7-PB0	Port B (Bit)
PC7-PC0	Port C (Bit)
Vcc	+5 Volts
GND	0 Volts

General

The μ PD8255 Programmable Peripheral Interface (PPI) is designed for use in 8080A microprocessor systems. Peripheral equipment can be effectively and efficiently interfaced to the 8080A data and control busses with the μ PD8255. The μ PD8255 is functionally configured to be programmed by system software to avoid external logic for peripheral interfaces.

Data Bus Buffer

The 3-state, bidirectional, eight bit Data Bus Buffer (D₀-D₇) of the μ PD8255 can be directly interfaced to the 8080A system Data Bus (D₀-D₇). The Data Bus Buffer is controlled by execution of IN and OUT instructions by the 8080A. Control Words and Status information are also transmitted via the Data Bus Buffer.

Read/Write and Control Logic

This block manages all of the internal and external transfers of Data, Control and Status. Through this block, the processor Address and Control busses can control the peripheral interfaces.

Chip Select, CS, pin 6

A Logic Low, VIL, on this input enables the μ PD8255 for communication with the 8080A.

Read, RD, pin 5

A Logic Low, VIL, on this input enables the μ PD8255 to send Data or Status to the processor via the Data Bus Buffer.

Write, WR, pin 36

A Logic Low, VIL, on this input enables the Data Bus Buffer to receive Data or Control Words from the processor.

Port Select 0, A₀, pin 9

Port Select 1, A1, pin 8

These two inputs are used in conjunction with \overrightarrow{CS} , \overrightarrow{RD} , and \overrightarrow{WR} to control the selection of one of three ports on the Control Word Register. At and A₁ are usually connected to A₀ and A₁ of the processor Address Bus.

Reset, pin 35

A Logic High, VIH, on this input clears the Control Register and sets ports A, B, and C to the input mode, The input latches in ports A, B, and C are not cleared.

Group I and Group II Controls

Through an OUT instruction in System Software from the processor, a control word is transmitted to the μ PD8255. Information such as "MODE," "Bit SET," and "Bit RESET" is used to initialize the functional configuration of each I/O port.

Each group (I and II) accepts "commands" from the Read/Write Control Logic and "control words" from the internal data bus and in turn controls its associated I/O ports.

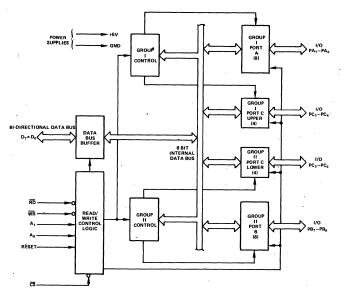
Group I - Port A and upper Port C (PC7-PC4)

Group II - Port B and lower Port C (PC3-PC0)

While the Control Word Register can be written into, the contents can not be read back to the processor.

Ports A, B, and C

The three 8-bit I/O ports (A, B, and C) in the μ PD8255 can all be configured to meet a wide variety of functional requirements through system software. The effectiveness and flexibility of the μ PD8255 is further enhanced by special features unique to each of the ports.


Port A = An 8-bit data output latch/buffer and data input latch.

- Port B = An 8-bit data input/output latch/buffer and an 8-bit data input buffer.
- Port C = An 8-bit output latch/buffer and a data input buffer (input not latched).

Port C may be divided into two independent 4 bit control and status ports for use with Ports A & B.

FUNCTIONAL DESCRIPTION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

Operating Temperature	0°C to +70°C
Storage Temperature	'C to +125°C
All Output Voltages ①0.	5 to +7 Volts
All Input Voltages ①0.	5 to +7 Volts
Supply Voltages ①0.	5 to +7 Volts

Note: 1) With respect to VSS

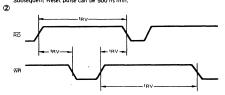
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

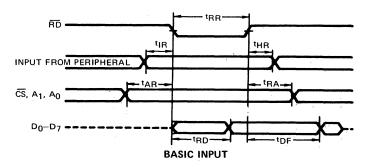
$T_a = 0^{\circ}C$ to +70°C, $V_{CC} = +5V \pm 5\%$; $V_{SS} = 0V$

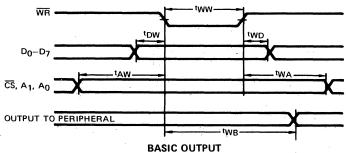
		1	LIMITS				
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS	
Input Low Voltage	VIL	V _{SS} 5		0.8	v		
Input High Voltage	VIH	2		Vcc	V		
Output Low Voltage	Vol	,		0.4	v	IOL = 1.7 mA	
Output High Voltage	Voн	2.4			v	IOH = 50 µA (- 100 µA for D. B. Port)	
Darlington Drive Current	юн Ф	1	2	4	mA	VOH = 1.5V, REXT = 750Ω	
Power Supply Current	ICC		40	120	mA	V _{CC} = +5V, Output Open	
Input Leakage Current	LIH	,		10	μA	VIN = VCC	
Input Leakage Current	LIL			- 10	μA	V _{IN} = 0.4V	
Output Leakage Current	LOH			10	μA	$V_{OUT} = V_{CC}; \overline{CS} = 2.0V$	
Output Leakage Current	LOL			- 10	μA	VOUT = 0.4V, CS = 2.0V	

Note: (1) Any set of eight (8) outputs from either Port A, B, or C can source 2 mA into 1.5 volts.

CAPACITANCE

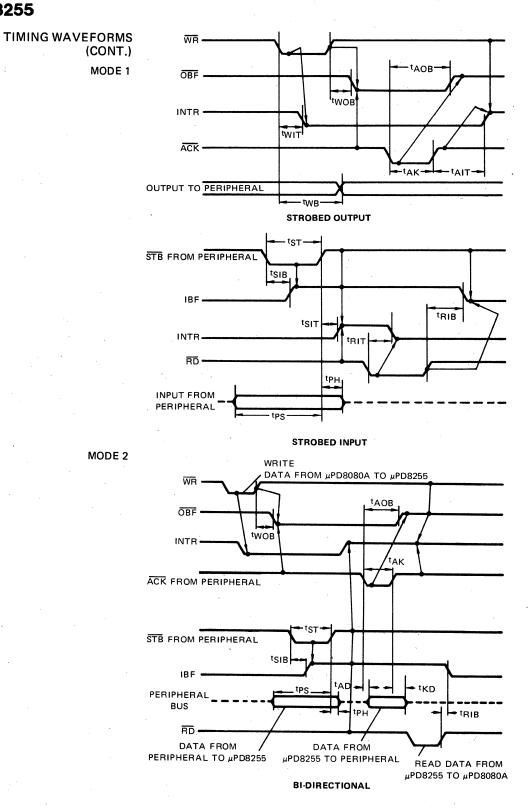

$T_a = 25^{-}C;$	VCC =	VSS = 0V
------------------	-------	----------


			LIMITS					
PARAMETER	SYMBOL	MIN	түр	MAX	UNIT	TEST CONDITIONS		
Input Capacitance	CIN			10	pF	f _c = 1 MHz		
I/O Capacitance	· CI/O			20	pF	Unmeasured pins returned to VSS		


8080 BUS PARAMETERS: $T_a = 0^{\circ}C \text{ to } +70^{\circ}C; V_{CC} = +5V \pm 5\%, V_{SS} = 0V$

		LIMITS				TEST	
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS	
	REA	D					
Address Stable Before READ	tAR	50			ns		
Address Stable After READ	tRA	0			ns		
READ Pulse Width	tRR	405			ns		
Data Valid From READ	tRD			295	ns	CL = 100 pF	
Data Float After READ	tDF			150	ns	CL = 100 pF	
		.10		`	ns	CL = 15 pF	
Time Between READS and/or WRITES	t RV	850			ns	2	
	WRI	re					
Address Stable Before WRITE	taw	20			ns		
Address Stable After WRITE	twA	20			ns		
WRITE Pulse Width	tww	400			ns		
Data Valid To WRITE (L.E.)	tow	10			ns		
Data Valid After WRITE	tWD	35			ns		
	OTHER T	IMING					
WR = 0 To Output	tWB			500	ns	CL = 50 pF	
Peripheral Data Before RD	ti R	0			ns		
Peripheral Data After RD	THR	50			ns		
ACK Pulse Width	tAK	500			ns		
STB Pulse Width	tST	350			ns		
Per. Data Before T.E. Of STB	tPS	60			ns		
Per. Data After T.E. Of STB	TPH	150			ns		
ACK = 0 To Output	†AD			400	ns	CL = 50 pF	
ACK = 0 To Output Float	tKD			300	ns	CL = 50 pF	
		20				CL = 15 pF	
WR = 1 To OBF = 0	twop			300	ns	CL = 50 pF	
ACK = 0 To OBF = 1	TAOB			450	ns	CL = 50 pF	
STB = 0 To IBF = 1	tSIB			450	ris	CL = 50 pF	
RD = 1 To IBF = 0	TRIB			360	ns	CL = 50 pF	
RD = 0 To INTR = 0	TRIT			450	ns	CL = 50 pF	
STB = 1 To INTR = 1	tSIT	1		400	ns	CL = 50 pF	
ACK = 1 To INTR = 1	TIAT		·	400	ns	CL = 50 pF	
WR = 0 To INTR = 0	TWIT	1		850	ns	CL = 50 pF	

Notes: ① Period of Reset pulse must be at least 50 μ s during or after power on. Subsequent Reset pulse can be 500 ns min.



AC CHARACTERISTICS

μPD8255

TIMING WAVEFORMS MODE 0

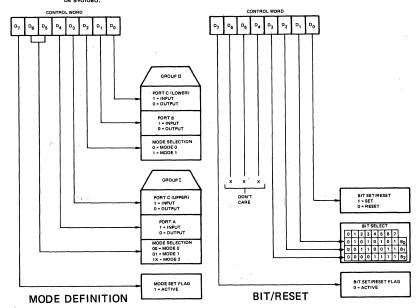
Note: Any sequence where \overline{WR} occurs before \overline{ACK} and \overline{STB} occurs before \overline{RD} is permissible. (INTR = IBF $\cdot \overline{MASK} \cdot \overline{STB} \cdot \overline{RD} + \overline{OBF} \cdot \overline{MASK} \cdot \overline{ACK} \cdot \overline{WR}$)

The μ PD8255 can be operated in modes (0, 1 or 2) which are selected by appropriate control words and are detailed below.

MODE 0 provides for basic Input and Output operations through each of the ports • A, B, and C. Output data is latched and input data follows the peripheral. No "handshaking" strobes are needed.

- 16 different configurations in MODE 0
- Two 8-bit ports and two 4-bit ports
- Inputs are not latched
- Outputs are latched
- MODE 1 provides for Strobed Input and Output operations with data transferred MODE 1 through Port A or B and handshaking through Port C.
- Two I/O Groups (I and II)
- Both groups contain an 8-bit data port and a 4-bit control/data port
- Both 8-bit data ports can be either Latched Input or Latched Output
- MODE 2 provides for Strobed bidirectional operation using PA0.7 as the bidirectional latched data bus. PC3.7 is used for interrupts and "handshaking" bus flow controls similar to Mode 1. Note that PB0-7 and PC0-2 may be defined as Mode 0 or 1, input or output in conjunction with Port A in Mode 2.
- An 8-bit latched bidirectional bus port (PA0.7) and a 5-bit control port (PC3.7)
- Both inputs and outputs are latched
- An additional 8-bit input or output port with a 3-bit control port

	INPUT OPERATION (READ)									
A1	Ao	RD	WR	<u>CS</u>						
0	0	0	1	0	PORT A					
0	1	0	1	0	PORT B					
1	0	0	1	0	PORT C DATA BUS					


OUTPUT OPERATION (WRITE)										
A1	Ao	RD	WR	ĈŜ						
0	0	1	0	0	DATA BUS					
0	1	1	0	0	DATA BUS-PORT B					
1	0	1	0	0	DATA BUS					
1	1	1	0	0	DATA BUS					

DISABLE FUNCTION							
A1	A ₀	RD	WR	CS			
x	x	Y	x x		X 1		DATA BUS
^	^	^	^		HIGH Z STATE		
~	v	1		0	DATA BUS		
^	^		1	0	HIGH Z STATE		

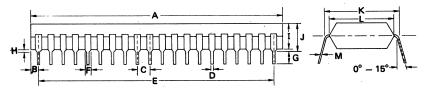
NOTES: 1 X means "DO NOT CARE."

0

All conditions not listed are illegal and should be avoided.

MODES

MODE 0


MODE 2

BASIC OPERATION

FORMATS

μ PD8255

PACKAGE OUTLINE µPB8255C

μ**PD8255C** (Plastic)

		-
ITEM	MILLIMETERS	INCHES
Α	51.5 MAX	2.028 MAX
В	1.62	0.064
С	2.54 ± 0.1	0.10
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.5 MIN	0.06 MIN
G	2.54 MIN	0.10 MIN
н	0.5 MIN	0.019 MIN
.1	5.22 MAX	0,206 MAX
J	5.72 MAX	0.225 MAX
к	15.24	0.600
Ĺ	13.2	0.520
м	0.25 ^{+0.1} - 0.05	0.010 ^{+0.004} - 0.002

NEC **micro**computers, Inc.

PROGRAMMABLE DMA CONTROLLER

The µPD8257 is a programmable four-channel Direct Memory Access (DMA) controller. DESCRIPTION It is designed to simplify high speed transfers between peripheral devices and memories. Upon a peripheral request, the 8257 generates a sequential memory address, thus allowing the peripheral to read or write data directly to or from memory. Peripheral requests are prioritized within the 8257 so that the system bus may be acquired by the generation of a single HOLD command to the 8080. DMA cycle counts are maintained for each of the four channels, and a control signal notifies the peripheral when the preprogrammed member of DMA cycles has occurred. Output control signals are also provided which allow simplified sectored data transfers and expansion to other 8257 devices for systems requiring more than four DMA channels.

- Four Channel DMA Controller ٠
- Priority DMA Request Logic
- Channel Inhibit Logic
- Terminal Count and Modulo 128 Outputs
- Automatic Load Mode
- Single TTL Clock
- Single +5V Supply
- Expandable
- 40 Pin Plastic Dual-In-Line Package

			-	L
I/OR C	- 1	$\mathbf{\nabla}$	40	
1/OW C	2		39	
MEMR C	3		38	
MEMW C	4		37	
MARK			36	Бтс
READY	6		35	
HLDA C	7		34	5 A ₂
ADDSTB	8		33	
AEN C	9		32	
HRQ 🕻	10	μPD	31	
टड 🕻	111	8257	30	
	112		29	
RESET C	13		28	
DACK ₂	14		27	
DACK3	15		26	
DRQ3	16		25	DACK0
	17		24	DACK1
	18		23	
	19		22	
GND	20		21	
				•

D ₇ -D ₀	Data Bus
A7-A0	Address Bus
I/OR	I/O Read
ī/OW	I/O Write
MEMR	Memory Read
MEMW	Memory Write
CLK	Clock Input
RESET	Reset Input
READY	Ready
HRQ	Hold Request (to 8080A)
, HLDA	Hold Acknowledge (from 8080A)
AEN	Address Enable
ADSTB	Address Strobe
TC	Terminal Count
MARK	Modulo 128 Mark
DRQ3-DRQ0	DMA Request Input
DACK3-DACK0	DMA Acknowledge Out
CS	Chip Select
V _{CC}	+5 Volts
GND	Ground

PIN NAMES

FEATURES

PIN CONFIGURATION

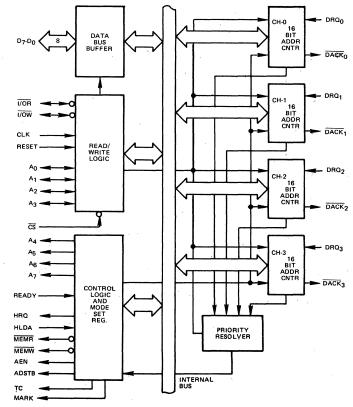
FUNCTIONAL DESCRIPTION

The 8257 is a programmable, Direct Memory Access (DMA) device and when used with an 8212 I/O port device, it provides a complete four-channel DMA controller for use in 8080 based systems. Once initialized by an 8080 CPU, the 8257 will block transfer up to 16,364 bytes of data between memory and a peripheral device without any attention from the CPU, and it will do this on all 4-DMA channels. After receiving a DMA transfer request from a peripheral, the following sequence of events occur within the 8257.

- It acquires control of the system bus (placing 8080 in hold mode).
- Resolves priority conflicts if multiple DMA requests are made.
- A 16 bit memory address word is generated with the aid of an 8212 in the following manner:
 - The 8257 outputs the least significant eight bits (A_0-A_7) which go directly onto the address bus.

The 8257 outputs the most significant eight bits (A_8-A_{15}) onto the data bus where they are latched into an 8212 and then sent to the high order bits on the address bus.

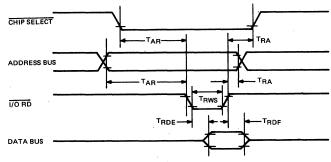
 The appropriate memory and I/O read/write control signals are generated allowing the peripheral to receive or deposit a data byte directly from or to the appropriate memory location.


Block transfer of data (e.g., a sector of data on a floppy disk) either to or from a peripheral may be accomplished as long as the peripheral maintains its DMA Request (DRQ_n) . The 8257 retains control of the system bus as long as DRQ_n remains high or until the Terminal Count (TC) is reached. When the Terminal Count occurs, TC goes high, informing the CPU that the operation is complete.

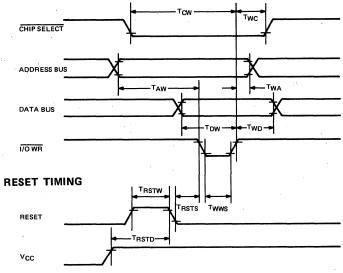
There are three different modes of operation:

- DMA read; which causes data to be transferred from memory to a peripheral;
- DMA write; which causes data to be transferred from a peripheral to memory; and
- DMA verify; which does not actually involve the transfer of data.

The DMA read and write modes are the normal operating conditions for the 8257. The DMA verify mode responds in the same manner as read/write except no memory or I/O read/write control signals are generated, thus preventing the transfer of data. The peripheral gains control of the system bus and obtains DMA Acknowledgements for its requests, thus allowing it to access each byte of a data block for check purposes or accumulation of a CRC (Cyclic Redundancy Code) checkword. In some applications it is necessary for a block of DMA read or write cycles to be followed by a block of DMA verify cycles to allow the peripheral to verify its newly acquired data.


BUS PARAMETERS

$T_a = 0^{\circ}C$ to 70°C; $V_{CC} = 5V \pm 5\%$; GND = 0V (1)


		1.1	LIMIT	S	UNIT	TEST		
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS		
READ								
Adr or $\overline{CS}\downarrow$ Setup to $\overline{Rd}\downarrow$	TAR	50			ns			
Adr or CSt Hold from Rdt	TRA	0			ns			
Data Access from Rd↓	TRDE	0		300	ns	CL = 100pF		
DB→Float Delay from Rd↑	TRDF			150	ns	C _L = 100pF		
		20		-,	ńs	CL = 15pF		
Rd Width	TRW	300			ns			
	WRIT	E .						
CS↓ Setup to Wr↓	TCW	300			ns			
CS† Hold from Wrt	тус	20			ns			
Adr Setup to Wr↓	TAW	20			ns			
Adr Hold from Wrt	TWA	20			ns			
Data Setup to Wr↓	TDW	200			ns			
Data Hold from Wr↑	TWD	35			ns			
Wr Width	Twws	200			ns			
	OTHER TI	MING						
Reset Pulse Width	TRSTW	300			ns			
Power Supply↑(V _{CC}) Setup to Reset↓	TRSTD	500			μs			
Signal Rise Time	т _r			20	ns			
Signal Fall Time	Тf			20	ns			
Reset to First IOWR	TRSTS	2			tCY			

Note: 1 All timing measurements are made at the following reference voltages unless specified otherwise: Input "1" at 2.0V, "0" at 0.8V, Output "1" at 2.0V, "0" at 0.8V.

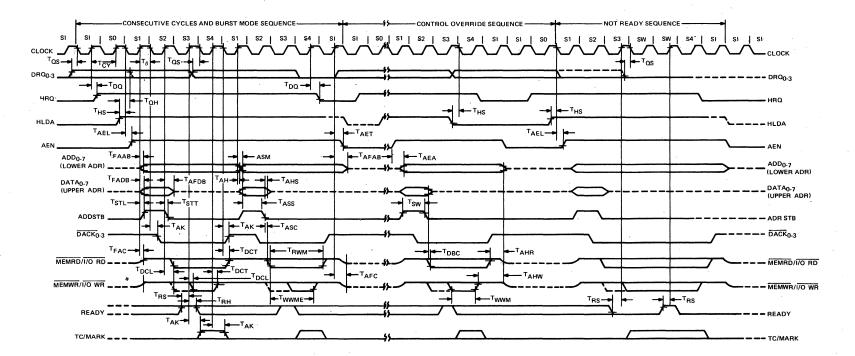
READ TIMING

WRITE TIMING

AC CHARACTERISTICS PERIPHERAL (SLAVE) MODE

μPD8257

TIMING WAVEFORMS PERIPHERAL (SLAVE) MODE


AC CHARACTERISTICS DMA (MASTER) MODE

T _a ·	= 0° C	to	70° (); N	/cc	=	+5V	±5%;	GND	= 0V
------------------	--------	----	-------	------	-----	---	-----	------	-----	------

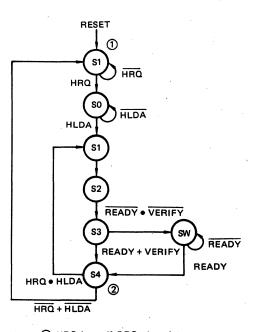
	Laure	L	IMITS		TEST	
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS
Cycle Time (Period)	TCY	0.330		4	μš	
Clock Active (High)	Τ _θ	150		.8TCY	ns	
DRQ [↑] Setup to $\theta \downarrow$ (SI, S4)	TOS	120		4		-
DRQ↓ Hold from HLDA↑	тан	0				4
HRQ \uparrow or \downarrow Delay from $\theta\uparrow$ (SI, S4) (measured at 2.0V)	TDQ			160	ns	1
HRQ \uparrow or \downarrow Delay from $\theta\uparrow$ (SI, S4) (measured at 3.3V)	TDQ1			250	nš	3
HLDA [↑] or \downarrow Setup to $\theta \downarrow$ (SI, S4)	THS	100			ns	
AEN† Delay from $\theta \downarrow$ (S1)	TAEL			300	ńs	1
AEN↓ Delay from θ↑ (SI)	TAET			200	ns	1
Adr (AB) (Active) Delay from AEN† (S1)	TAEA	20			ns	4
Adr (AB) (Active) Delay from θ↑ (S1)	TFAAB			25Ô	ns	2
Adr (AB) (Float) Delay from θ↑ (SI)	TAFAB			150	ns	2
Adr (AB) (Stable) Delay from <i>θ</i> ↑ (S1)	TASM			250	ns	2
Adr (AB) (Stable) Hold from θ (S1)	ТАН	TASM-50				2
Adr (AB) (Valid) Hold from Rd↑ (S1,SI)	TAHR	60			'ns	4
Adr (AB) (Valid) Hold from Wrt (S1, SI)	TAHW	300			ns	4
Adr (DB) (Active) Delay from ∂↑ (S1)	TFADB			300	ns	2
Adr (DB) (Float) Delay from of (S2)	TAFDB	TSTT+20		250	ns	2
Adr (DB) Setup to Adr Stb↓ (S1-S2)	TASS	100			ns	4
Adr (DB) (Valid) Hold from Adr Stb1 (S2)	TAHS	50			ns	(4)
Adr Stb↑ Delay from θ↑ (S1)	TSTL			200	ns.	1
Adr Stb↓ Delay from θ↑ (S2)	тстт			140	ns	1
Adr Stb Width (S1-S2)	TSW	T _{CY} -100			ns	(4)
Rd↓ or Wr (Ext)↓ Delay from Adr Stb↓ (S2)	TASC	70	1		ns	4
Rd↓ or Wr (Ext)↓ Delay from Adr (DB) (Float) (S2)	товс	20	,		ns	4
DACK↑ or ↓Delay from θ↓ (S2, S1) and TC/Mark↑ Delay from θ↑ (S3) and TC/Mark↓ Delay from θ↑ (S4)	Так			250	ns	15
$\overline{Rd}\downarrow$ or \overline{Wr} (Ext) \downarrow Delay from $\theta\uparrow$ (S2) and $\overline{Wr}\downarrow$ Delay from $\theta\uparrow$ (S3)	TDCL			200	ns	26
$\frac{\overline{Rd}}{Wr}$ Delay from $\theta \downarrow$ (S1, SI) and Wr Delay from $\theta \uparrow$ (S4)	тост			200	ns	27
Rd or Wr (Active) from $\theta \uparrow$ (S1)	TFAC			300	ns	2
Rd or Wr (Float) from 01 (SI)	TAFC			150	ns	2
Rd Width (S2-S1 or SI)	TRWM	2Τ _{CY} + Τ _θ 50			ns	4
Wr Width (S3-S4)	түүүү	T _{CY} -50			ns	.4
Wr (Ext) Width (S2-S4)	TWWME	2TCY-50			ńs	<u>(4)</u>
READY Set Up Time to 01 (S3, Sw)	TRS	30			ns	××
READY Hold Time from θ^{\uparrow} (S3, Sw)	твн	20			ns	

Notes:

TIMING WAVEFORMS DMA (MASTER) MODE

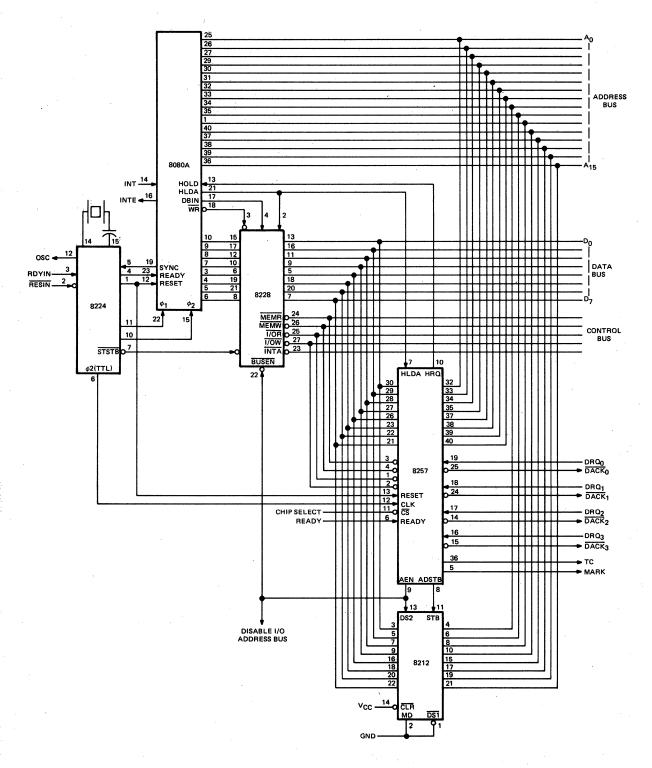
µPD8257

DMA OPERATION


Internally the 8257 contains six different states (S0, S1, S2, S3, S4 and SW), the duration of each state is determined by the input clock. In the idle state, (S1), no DMA operation is being executed. A DMA cycle is started upon receipt of one or more DMA Requests (DRQ_n), then the 8257 enters the S0 state. During state S0 a Hold Request (HRQ) is sent to the 8080 and the 8257 waits in S0 until the 8080 issues a Hold Acknowledge (HLDA) back. During S0, DMA Requests are sampled and DMA priority is resolved (based upon either the fixed or priority scheme). After receipt of HLDA, the DMA Acknowledge line ($\overline{DACK_n}$) with the highest priority is driven low selecting that particular peripheral for the DMA cycle. The DMA Request line (DRQ_n) must remain high until either a DMA Acknowledge ($\overline{DACK_n}$) or both $\overline{DACK_n}$ and TC (Terminal Count) occur, indicating the end of a block or sector transfer (burst mode).

The DMA cycle consists of four internal states; S1, S2, S3 and S4. If the access time of the memory or I/O device is not fast enough to return a Ready command to the 8257 after it reaches state S3, then a Wait state is initiated (SW). One or more than one Wait state occurs until a Ready signal is received, and the 8257 is allowed to go into state S4. Either the extended write option or the DMA Verify mode may eliminate any Wait state.

If the 8257 should lose control of the system bus (i.e., HLDA goes low) then the current DMA cycle is completed, the device goes into the S1 state, and no more DMA cycles occur until the bus is reacquired. Ready setup time (t_{RS}), write setup time (t_{DW}), read data access time (t_{RD}) and HLDA setup time (t_{QS}) should all be carefully observed during the handshaking mode between the 8257 and the 8080.


During DMA write cycles, the I/O Read ($\overline{I/O R}$) output is generated at the beginning of state S2 and the Memory Write (\overline{MEMW}) output is generated at the beginning of S3. During DMA read cycles, the Memory Read (\overline{MEMR}) output is generated at the beginning of state S2 and the I/O Write ($\overline{I/O W}$) goes low at the beginning of state S3. No Read or Write control signals are generated during DMA verify cycles.

DMA OPERATION STATE DIAGRAM

Notes: (1) HRQ is set if DRQ_n is active. (2) HRQ is reset if DRQ_n is not active.

TYPICAL 8257 SYSTEM INTERFACE SCHEMATIC

ABSOLUTE MAXIMUM	Operating Temperature
RATINGS*	Storage Temperature65°C to +150°C
	Voltage on Any Pin
	Power Dissipation 1 Watt

Note: ① With Respect to Ground

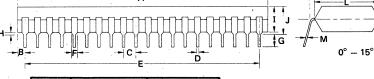
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

DC CHARACTERISTICS

 $T_a = 0^{\circ}C \text{ to } +70^{\circ}C; V_{CC} = +5V \pm 5\%; \text{ GND} = 0V$

PARAMETER	SYMBOL	LIMITS				TEST CONDITIONS
PARAMETER	STMBOL	MIN.	TYP.	MAX.	UNIT	TESTICONDITIONS
Input Low Voltage	V _{IL}	0.5		0.8	Volts	
Input High Voltage	v _{iH}	2.0		V _{CC} + 0.5	Volts	
Output Low Voltage	VOL			0.45	Volts	I _{OL} = 1.6 mA
Output High Voltage	v _{он}	2.4		V _{CC}	Volts	$I_{OH} = -150 \ \mu A$ for AB, DB and AEN $I_{OH} = -80 \ \mu A$ for others
HRQ Output High Voltage	v _{нн}	3.3		Vcc	Volts	I _{OH} = -80 μA
V _{CC} Current Drain	^I cc			120	mA	
Input Leakage	IIL III			10	μA	V _{IN} = V _{CC}
Output Leakage During Float	OFL			10	μA	v _{out} ®


Note: $\bigcirc V_{CC} > V_{OUT} > GND + 0.45V$

CAPACITANCE

$T_a = 25^{\circ}C; V_{CC} = GND = 0V$

DADAMETED			LIMITS			TEST CONDITIONS
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Input Capacitance	c _{IN}			10	pF	f _c = 1 MHz
I/O Capacitance	c _{I/O}			20	pF	Unmeasured pins returned to GND

PACKAGE OUTLINE

ITEM	MILLIMETERS	INCHES
А	51.5 MAX	2,028 MAX
В	1.62	0.064
С	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
н	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
ĸ	15.24	0.600
L	13.2	0.520
м	0.25 ⁺ 0.1 - 0.05	0.010 ^{+ 0.004} - 0.002

NEC **micro**computers, inc.

PROGRAMMABLE INTERVAL TIMER

DESCRIPTION

The NEC μPD8253 is a fully programmable, multi-mode, 16-bit counter/timer. It is designed as a general purpose device capable of interfacing directly to an 8080 microprocessor system as an array of I/O ports. The µPD8253 can generate accurate time delays under the control of system software. It contains three independent 16-bit counters which can be clocked at rates from DC to 2 MHz.

GATE

FEATURES

- Three Independent 16-Bit Counters
- DC to 2 MHz
- **Programmable Counter Modes**
- Count Binary or BCD
- Single +5V Supply
- 24 Pin Dual-In-Line Package
- +5V NMOS Technology

PIN CONFIGURATION

	1	0-	24	
^{- D} 6 🗖	2		23	
D5 🗆	3		22	
D4 🗖	4		21	
D3 🗖	5		20	
D2 🗖	6	μPD	19	
⊳ 1 ⊂	7	8253	18	
	8		17	0UT 2
CLK O	9		16	GATE 2
ουτ ο 🗖	10		15	
GATE 0	11		14	GATE 1
GND	12		13	
	•			•

NEC NICROCOMPUTERS, INC.

PROGRAMMABLE PERIPHERAL INTERFACE

DESCRIPTION

The NEC µPD8255A is a programmable peripheral interface device having 24 programmable I/O pins. It is directly compatible with the 8080 microprocessor system, and normally no extra logic is required to interface to the 8080A. The system software can individually program each of the 24 I/O pins into two groups of twelve for the three major modes of operation.

FEATURES

- Completely TTL Compatible
- Fully Compatible with NEC μ P Families
- Direct Bit Set/Reset Capabilities Easing Control Application Interface
- 40 Pin Dual-In-Line Package
- **Reduces System Package Count**
- Capabilities to Drive Darlington Pairs

PIN CONFIGURATION

PA3	d	1	\neg	40	Þ	PA4
PA ₂	q	2		39		PA5
PA1		3		38	Þ	PAG
PA ₀		4.		37	Ь	PA7
RD		5		36	Þ	ŴŔ
ĈŜ		6		35	Ь	RESET
GND	d	7		34	b	DO
A1		8		33	Ь	D1
A ₀		9		32		D ₂
PC7		10	μPD	31		D3
PC6		11	8255A	30		D4
		12		29		D5
PC4		13		28		D ₆
		14		27	۵	D7
PC1	d	15		26		Vcc
PC ₂		16		25		PB7
		17		24	6	PB6
		18		23		PB5
PB1		19		22	5	PB4
PB2		20		21	6	PB3

PROGRAMMABLE INTERRUPT CONTROLLER

DESCRIPTION

The NEC μ PD8259 is a programmable interrupt controller which can handle up to eight vectored priority interrupts in an 8080 microprocessor system. It can be cascaded to extend the vectored priority interrupt capability to 64 without extra circuitry. It is system software programmable with a selection of priority algorithms available which can be dynamically changed at any time.

FEATURES

- Eight Level Priority Controller
- Expandable to 64 Levels
- Programmable Interrupt Algorithms
- Individual Request Mask Capability
- Single +5V Supply
- Static Circuitry (No Clock)

28 🗖 Vcc 27 🗖 A0 26 **INTA** D7 🗖 25 🗖 IR7 4 5 24 🗋 IR6 23 I IR5 6 μPD 22 🗖 IR4 8259 21 🗍 IR3 D3 28 20 🗍 IR2 D2 🖸 9 D1 10 19 🗖 IR1 18 **1** IR0 17 INT CAS 0 🗖 12 16 🗖 SP CAS 1 113 GND 14 15 CAS 2

PIN CONFIGURATION

PRELOMONARY

μPD8259

NEC MICROCOMPUTERS, INC.

SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

DESCRIPTION

The NEC μ PD8085 is the next generation single chip 8-bit microprocessor. It provides full software compatibility with the 8080A but with an improved, higher system speed. The μ PD8085's higher level of system integration allows the functions of the μ PD8224 (clock generator) and the μ PD8228 (system controller) to be incorporated into its design. Together with the μ PD8155/8156 (2K RAM) and the μ PD8355/8755 (16K ROM/EPROM) a minimum system can be configured using just three IC's. The DATA BUS of the μ PD8085 multiplexes the 8-bit address bus and the 8-bit data bus to achieve greater system throughput. The μ PD8155/8156 and the μ PD8355/8755 memory products have on-chip address latches which provide direct interfacing to the μ PD8085.

FEATURES

- Single +5V Supply
- 1.3 μs Instruction Cycle
- On-Chip System Controller
- 100% Software Compatibility with the µCOM-8 Family
- On-Chip Clock Generator (with External Crystal or RC Network)
- Four Vectored Interrupts (One is Non-Maskable)
- Serial In/Serial Out Port
- Decimal, Binary and Double Precision Arithmetic
- Direct Addressing Capability to 64K Bytes of Memory

NEC MCComputers, inc.

В чесь 39 RESET OUT d 3 38 HLDA CLK (OUT) 37 RESET IN 36 SID C 35 READY ⊟ 10/™ ⊟ s, 34 BST 7.5 C RST 6.5 33 8 32 5 RD 31 5 WR q μPD 10 8085 11 30 12 29 28 13 AD Б _{Аі́4} 14 27 AD' 15 26 16 25 17 24 AD₆ 23 18 AD7 19 22 v_{ss} **F**120 21

PIN CONFIGURATION

PRELIMINARY

μPD8085

μPD8155 μPD8156

2048 BIT STATIC MOS RAM WITH I/O PORTS AND TIMER

DESCRIPTION

The NEC μ PD8155 and μ PD8156 2048-bit Static Random Access Memories are organized as 256 x 8 and are fully compatible with the μ PD8085 microprocessor system. Three I/O pins allow programmable status and handshaking capabilities with the processor. The on-chip 14 bit counter timer is fully programmable by the system software.

FEATURES

- 256 Words x 8 Bits Organization
- 400 ns Access Time (No Wait States Required)
- Multiplexed Address and Data Bus
- Programmable 14 Bit Binary Counter/Timer
- 1 Programmable 6 Bit I/O Port
- 2 Programmable 8 Bit I/O Ports

PIN CONFIGURATION

	\sim	40	Ъv _{сс}
PC4 C 2		39	<u>ل PC</u> 2
TIMER IN 🗖 3		38	b PC₁
RESET 🗖 4		37	D PC
PC_ 🗖 5		36	Б РВ 7
		35	БРВ ,
IO/M 🗖 7		34	
		33	
RD 🗖 9	μPD	32	□ PB ₃
WR 🗖 10	8155/	31	
ALE 🗖 11	8156	30	D PB
AD0 12	0100	29	Þ PBo
AD 13		28	
AD2 14		27	¢^•¢
AD3 15		26	
AD4 16		25	⊿¤¤∡
AD5 17		24	
AD ₆ 18		23	
AD, 🗖 19		22	
V ss 20		21	

NEC MICROSHITTERS, MARK

PRELIMINARY μPD8355 μPD8755

16,384 BIT ROM WITH I/O/16,384 BIT EPROM WITH I/O

DESCRIPTION

The NEC μ PD8355 is a 16,384 bit Read Only Memory with I/O organized as 2048 words x 8 bits. The μ PD8755 is a 16,384 bit erasable and electrically programmable Read Only Memory. Access time for both devices is 400 ns so no wait state are required in the processor. There are two separately programmable, 8 bit wide I/O ports for interfacing to the processor.

FEATURES

- 2048 Words x 8 Bits
- Single +5V Power Supply
- Internal Address Latch
- 2 General Purpose 8 Bit I/O Ports
- Multiplexed Address and Data Bus
- Direct Compatibility with μPD8085 and μPD8048

PIN CONFIGURATIONS

NEC MICOCOMPUTERS, IRG.

PRELIMINARY μPD8048 μPD8748 μPD8035

SINGLE COMPONENT 8-BIT MICROCOMPUTER

DESCRIPTION

The NEC μ PD8048/8748/8035 are complete, single-chip, NMOS microcomputers requiring only a single +5V power supply. There are three interchangeable microcomputers in this family to allow the user maximum freedom in systems implementation. In addition, if system expansion is necessary, the μ PD8048/8748/8035 are fully compatible with NEC's family of 8080A peripherals including memory devices.

The on-chip features of the μ PD8048 include 1K x 8 bits of Read Only Memory for firm program storage, 64 x 8 bits of Random Access Memory which can be used as a scratch pad, 27 I/O lines, an 8-bit counter/timer and clock, oscillator and clock driver circuitry requiring only an off-the-chip crystal.

The μ PD8035 is functionally and pin-for-pin compatible with the μ PD8048 but without the 1K x 8 bit ROM, which is intended for use with external memory.

The μ PD8748 is also fully compatible with both the μ PD8048 and μ PD8035. In this device the 1K x 8 bit ROM has been replaced with a 1K x 8 bit erasable, electrically programmable ROM to provide the user with the flexibility of changing the program memory contents.

FEATURES

•	8 Bit Parallel Processor, ROM, RAM, I/O in Single Package		1	\sim	40 V _{CC}
٠	Interchangeable ROM and EPROM Versions	XTAL 1	2 3		39 T T1 38 P P27
٠	Single +5V Supply		4 5		37 P26 36 P25
۲	2.5 μ sec and 5.0 μ sec Cycle Versions All Instructions 1 or 2 Cycles		6 7 8		35 P24 34 P17 33 P16
٠	Over 90 Instructions: 70% Single Byte None Over Two Bytes			μΡD 8048/ 8748/	32 P15 31 P14 30 P13
•	1K x 8 ROM/EPROM, 64 x 8 RAM, 27 I/O Lines		12 13	8035	29 P12 28 P11 27 P10
٠	Programmable Counter/Timer	DB_3 🗖	15		
٠	Easily Expandable Memory and I/O	4 -	16 17		25 D PROG 24 D P23
٠	Single Level Interrupt				23 P22 22 P21
٠	Compatible with μ COM-8 Series Peripherals	∨ _{ss} ′ⴋ			21 P20

PIN CONFIGURATION

NEC MICOCOMPUTORS, INC.

μ PB2901 4-BIT MICROPROCESSOR SLICE

DESCRIPTION

The NEC μ PB2901 is a four-bit microprocessor slice, with an expandable bus structure extending interface capabilities to all other members of the μ PB2900 series family. The internal functions of the μ PB2901 include an eight-function ALU, sixteen addressable registers using separate read and read/write address busses, an auxiliary register and shifting logic.

Other members of the μ PB2900 series family are:

μPB2902 4-Bit Carry Look-Ahead
μPB2909 4-Bit Microprogram Sequencer
μPB2911 4-Bit Microprogram Sequencer
μPB2905 OC Bus Transceiver with Tri-State Receiver
μPB2906 OC Bus Transceiver with Parity
μΡΒ2907 OC Bus Transceiver with Parity and Tri-State Receiver
µPB2915 Tri-State Bus Transceiver with Tri-State Receiver
μPB2916 Tri-State Transceiver with Parity
μ PB2917 Tri-State Bus Receiver with Parity and Tri-State Receiver
μ PB29184-Bit D-Register with Standard and Tri-State Output

FEATURES

• 4-Bit CPU Slice

- 8 Function ALU
- Standard 40 Pin Dual-In-Line Package
- 16 Working Registers
 Auxiliary Register
- Register-to-Register, Read/Modify/Write Time of 150 ns (Worst Case)
- Shifting Logic

NEC MICROcomputers, inc.

SINGLE CHIP 8-BIT MICROPROCESSOR

DESCRIPTION

The NEC μ PDZ-80 is a third generation, N-Channel microprocessor providing many advancements over second generation microprocessors. The μ PDZ-80 processor offers a savings in systems throughput and reduced memory requirements through its expanded 158 software instruction set, while maintaining software compatibility with the 8080A. The expanded instruction set allows for a higher level of system operation by providing for memory-to-memory block transfers, bit manipulation and sampling in any register or memory location, enhanced 16-bit and BCD arithmetic, new I/O features such as I/O block transfers and expanded addressing modes (indexed and relative).

The μ PDZ-80 provides all the control and refresh control signals for interfacing with most 4K static or dynamic memories. Only an external address decoder is needed for the static memories' chip selects. In addition, seventeen registers and 208 bits of programmer usable Read/Write memory on-chip all contribute to the power and versatility of this device.

FEATURES

- 158 Instructions (Including all 78 Instructions of the 8080A)
- 17 Internal Register
- Three Modes of Fast Interrupt Response and a Non-Maskable Interrupt
- Direct Interface with Standard Speed Dynamic or Static Memories
- 1.6 µs Instruction Execution Time
- Single +5V Supply
- Single-Phase TTL Clock
- TTL Compatible Tri-State Address and Data Busses

PIN CONFIGURATION

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	μPD Z-80	40 A10 39 A9 38 A8 37 A7 36 A6 35 A5 34 A4 33 A4 33 A3 32 A2 31 A1 30 A0 29 GND 29 GND 29 GND 20 GND 27 MI 27 MI 27 MI
+5V 11 D ₂ 12 D ₇ 13 D ₀ 14		30 A0 29 GND 28 RFSH 27 M1

NEC MICROCOMPUTERS, INC.

U.S. REPRESENTATIVES Alabama 20th Century Marketing, Inc. Huntsville AL 35806 205/772-9237 Arizona Summit Sales Scottsdale AZ 85251 602/994-4587 Arkansas W. Pat Fralia Co. Fort Worth TX 76116 817/640-9101 817/649-8981 California CERCO San Diego CA 92111 714/560-9143 Electronic Component Marketing Fullerton CA 92613 714/879-9460 Trident Associates Sunnyvale CA 94086 408/734-5900 Colorado D/Z Associates, Inc. Denver CO 80204 303/534-3649 Connecticut Contact Sales, Inc. Burlington MA 01803 617/273-1520 ROME Melville NY 11746 516/249-0011 Trionic Associates, Inc. Great Neck NY 11021 516/466-2300 Delaware C & D Sales Baltimore MD 21234 301/661-4306 **District of Columbia** C & D Sales Baltimore MD 21234 301/661-4306 Florida Perrott Associates, Inc. Ft. Lauderdale FL 33318 305/792-2211 Perrott Associates, Inc. Clearwater FL 33518 813/585-3327 Perrott Associates, Inc. Orlando FL 33807 305/275-1132 Georgia 20th Century Marketing, Inc. Huntsville AL 35806 205/772-9237 Idaho Tri-Tronix N.W. Mercer Island WA 98040 206/232-4993 Illinois K-MAR Engineering & Sales Grandview MO 64030 816/763-5385 Technology Sales, Inc. Palatine IL 60067 312/991-6600 Indiana Technology Sales, Inc. Palatine IL 60067 312/991-6600 lowa Electronic Innovators, Inc. Minneapolis MN 55420 612/884-7471 Kansa K-MAR Engineering & Sales Grandview MO 64030 816/763-5385 Kentucky Imtech, Inc. Davton OH 45414 513/278-6507 Louisiana W. Pat Fralia Co. Fort Worth TX 76116 817/640-9101 817/649-8981

SALES REPRESENTATIVES

Maina Contact Sales, Inc. Burlington MA 01803 617/273-1520 Maryland C & D Sales Baltimore MD 21234 301/661-4306 Massachusetts Contact Sales, Inc. Burlington MA 01803 617/273-1520 Michigan R.C. Nordstrom & Co. Lathrup Village MI 48076 313/559-7373 R.C. Nordstrom & Co. Benton Harbor MI 49022 616/429-8560 Minnesota Electronic Innovators, Inc. Minneapolis MN 55420 612/884-7471 Mississippi 20th Century Marketing, Inc. Corinth MS 38834 601/287-2493 Missouri K-MAR Engineering & Sales Grandview MO 64030 816/763-5385 Montana Tri-Tronix N.W. Mercer Island WA 98040 206/232-4993 Nebraska K-MAR Engineering & Sales Grandview MO 64030 816/763-5385 Nevada Electronic Component Marketing Fullerton CA 92613 714/879-9460 Trident Associates Sunnyvale CA 94086 408/734-5900 New Hampshire Contact Sales, Inc Burlington MA 01803 617/273-1520 New Jersey Harry Nash Associates Willow Grove PA 19090 215/657-2213 Trionic Associates, Inc. Great Neck NY 11021 516/466-2300 New Mexico Tri-Tronix Albuquerque NM 87110 505/265-8409 New York Tech-Mark, Inc. Endicott NY 13760 607/748-7473 Tech-Mark, Inc. Clay NY 13041 315/699-2261 Tech-Mark, Inc. Liverpool NY 13088 315/652-6229 Trionic Associates, Inc. Great Neck NY 11021 516/466-2300 North Carolina Wolffs Sales Service Co. Raleigh NC 27609 919/851-2800 North Dakota Electronic Innovators, Inc. Minneapolis MN 55420 612/884-7471 Ohio Imtech, Inc. Cleveland OH 44130 216/826-3400 Imtech, Inc. Dayton OH 45414 513/278-6507 Oklahoma W. Pat Fralia Co. Fort Worth TX 76116 817/640-9101 817/649-8981

Oregon Tri-Tronix N.W. Mercer Island WA 98040 206/232-4993 Pennsylvania Harry Nash Associates Willow Grove PA 19090 215/657-2213 Imtech, Inc. Cleveland OH 44130 216/826-3400 **Rhode** Island Contact Sales, Inc. Burlington MA 01803 617/273-1520 South Carolina Wolffs Sales Service Co. Raleigh NC 27609 919/851-2800 South Dakota Electronic Innovators, Inc. Minneapolis MN 55420 612/884-7471 Tennessee 20th Century Marketing, Inc. Greenville TN 37743 615/628-4021 Texas W. Pat Fralia Co. Fort Worth TX 76116 817/640-9101 817/649-8981 W. Pat Fralia Co. Houston TX 77081 713/772-1572 Tri-Tronix Albuquerque NM 87110 505/265-8409 Utah D/Z Associates, Inc. Denver CO 80204 303/534-3649 Vermont Contact Sales, Inc. Burlington MA 01803 617/273-1520 Virginia C & D Sales Baltimore MD 21234 301/661-4306 Washington Tri-Tronix N.W. Mercer Island WA 98040 206/232-4993 West Virginia Imtech, Inc. Dayton OH 45414 513/278-6507 Wisconsin Electronic Innovators, Inc. Minneapolis MN 55420 612/884-7471 Wvoming D/Z Associates, Inc. Denver CO 80204 303/534-3649 CANADIAN REPRESENTATIVES **British Columbia** Tri-Tronix N.W. Mercer Island, WA 98040 206/232-4993 Ontario R.F.Q. Limited Etobicoke, Ontario M9C 1E7 416/626-1445 Quebec R.F.Q. Limited

Dollard Des Ormeaux, Quebec 514/626-8324 New Brunswick Neve Scotia Prince Edward Island R.F.Q. Limited Ontario: 416/626-1445 Quebec: 514/626-8324

NEC MCCGumputers, Inc.

U.S. DISTRIBUTORS

Arizona Mirco Electronic Distributors Phoenix AZ 85029 602/997-5931 Sterling Electronics Phoenix AZ 85034 602/258-4531 California Intermark Electronics Santa Ana CA 92704 714/540-1322 213/436-5275 Intermark Electronics San Diego CA 92121 714/279-5200 714/543-9005 Intermark Electronics Sunnyvale CA 94086 408/738-1111 Diplomat/Westland, Inc. Sunnyvale CA 94086 408/734-1900 G.S. Marshall Sunnyvale CA 94086 408/732-1100 Semicomp, Inc. Costa Mesa CA 92626 714/549-8600 213/971-5253 Semiconductor Specialists, Inc. Irvine CA 92714 714/549-5215 Sterling Electronics Los Angeles CA 91352 213/767-5030 Sterling Electronics San Diego CA 92111 714/565-2441 Western Microtechnology Sales Sunnyvale CA 94086 408/737-1660 Colorado Century Electronics Wheatridge CO 80033 303/424-1985 Connecticut Harvey Electronics Norwalk CT 06851 203/853-1515 Florida Diplomat/Southland, Inc. Clearwater FL 33515 813/443-4514 Illinois Semiconductor Specialists, Inc. Chicago IL 60666 312/279-1000 Diplomat/Lakeland, Inc. Elk Grove Village IL 60007 312/595-1000 Indiana Semiconductor Specialists, Inc. Indianapolis IN 46241 317/243-8271 Louisiana Sterling Electronics New Orleans LA 70806 504/926-9407 Mary land A.S.I. Electronics Baltimore MD 21207 301/265-5100 Technico, Inc. Columbia MD 21045 301/461-2200

DISTRIBUTORS

Massachusetts Harvey Electronics Lexington MA 02173 617/861-9200 Sterling Electronics Watertown MA 02172 617/926-9720 Semiconductor Specialists, Inc. Burlington MA 01803 617/272-1610 Diplomat/I.P.C. of Mass. Chicopee Falls MA 01020 413/592-9441 Michigan R-M Electronics Company Kentwood MI 49508 616/531-9300 R-M Electronics Co. Madison Hgts. MI 48071 313/689-8300 Semiconductor Specialists, Inc. Farmington MI 48024 313/478-2700 Diplomat/Northland, Inc. Farmington MI 48024 313/477-3200 Minnesota Semiconductor Specialists, Inc. Minneapolis MN 55420 612/854-8841 Diplomat/Electro-Com Corp. Minneapolis MN 55421 612/788-8601 Missouri Semiconductor Specialists, Inc. Hazelwood MO 63042 314/731-2400 Semiconductor Specialists, Inc. Kansas City MO 64116 816/452-3900 Diplomat/St. Louis, Inc. St. Louis MO 63144 314/645-8550

New Jersey Harvey Electronics Fairfield NJ 07006 201/227-1262 Diplomat/IPC Corp. Totowa NJ 07512 201/785-1830 Diplomat/IPC Corp. Mount Laurel NJ 08054 609/234-8080

New Mexico.

Century Electronics Albuquerque NM 87123 505/292-2700 Sterling Electronics Albuquerque NM 87107 505/345-6601

New York Harvey Electronics Woodbury NY 11797 516/921-8700 Diplomat Electronics Corp. Woodbury NY 11797 516/921-9373 Summit Distributors, Inc. Buffalo NY 14202 716/804-3450 Summit Elec. of Rochester, Inc. Rochester NY 14623 716/442-3494 Zeus Components Elmsford NY 10523 914/592-4120 North Carolina Resco/Raleigh Raleigh NC 27068 919/832-2077

Ohio Semiconductor Specialists, Inc. Dayton OH 45414 513/278-9455

Pennsylvania

Almo Electronics Corp. Philadelphia PA 19114 215/698-4000 Semiconductor Specialists, Inc. Pittsburgh PA 15238 412/781-8120

Texas

Semiconductor Specialists, Inc. Dallas TX 75220 214/358-5211 Sterling Electronics Dallas TX 75229 214/357-9131 Sterling Electronics Houston TX 77027 713/623-6600

Utah

Century Electronics Salt Lake City UT 84119 801/972-6969 Diplomat/Alta-Land, Inc. Salt Lake City UT 84115 801/486-7227

and the

「

Virginia Technico, Inc. Roanoke VA 24019 703/563-4975

Washington

Bell Industries Bellevue WA 98005 206/747-1515 Sterling Electronics Seattle WA 98108 206/762-9100

Wisconsin Semiconductor Specialists, Inc. Milwaukee WI 53226 414/257-1330

CANADIAN DISTRIBUTORS

Ontario Semiconductor Specialists, Inc. Malton, Ontario 416/678-1444 Futura Electronics Corp. Ottawa, Ontario K1P 5G4 613/232-7757 Future Electronics Corp. Rexdale, Ontario 416/677-7820

Quebec Future Electronics Corp. Montreal, Quebec H4P 2K5 514/735-5775

NEC MICROCOMputers, Inc.

THE µCOM-8 MICROCOMPUTER PROGRAM CARD

This program card provides a concise summary of the information necessary for programming and operating a µCOM-8 microcomputer system. The full set of 78 instructions is explained in terms of:

- Source/Destination Operations
- Assembly Language Mnemonics Effect on Status Flags
- Instruction Machine Codes Program Counter Control Instructions
- Increment/Decrement Instructions
- Shift Instructions
- **Restart Instructions**
- Special Instructions
- Assembly Language Format

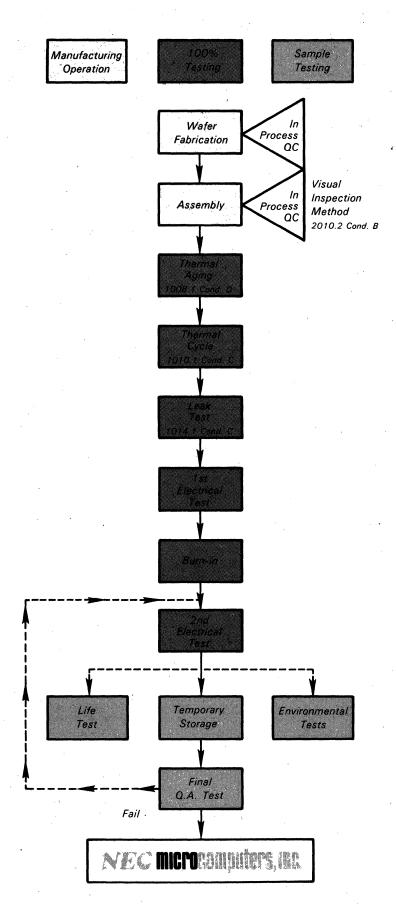
The operator of a µCOM-8 can readily determine not only what the µCOM-8 does, but all possible sources and destinations of data, the assembly language mnemonics, the machine codes which implement the instructions, simply by noting the matrix intersection entries. For example, the intersection of source "[HL]" and destination "s \rightarrow LReg" in the upper matrix incorporates the mnemonics MOV d,M. This means that the contents of the memory addressed by the HL register pair can be moved to the L Reg (the d in the mnemonic represents any of the possible destinations-in this case the L register). Similarly, the same intersection in the lower matrix contains the entry "6E," the machine code for implementing this instruction.

The only mnemonics and machine codes not actually in the matrices are those for Jump. Call, and Return. These entries are listed in separate tables to the right of the matrices.

Several abbreviations and symbols are used on this card as defined below.

- s = source of data for instruction (vertical)
- d = destination of data for instruction (horizontal)
- B_2 = second byte of instruction
- B_3B_2 = second and third bytes of instruction, B_2 is least significant byte
 - () = contents of register, or register pair as designated by item(s) in parenthesis
- [] = contents of memory as addressed by items in brackets
- PSW = Program Status Word
- SP = Stack Pointer

PC = Program Counter


- Cy = Carry Flag
- EXPX = Expression with value limited to the number of bits indicated by X
- D8 = 8-bit data quantity, expression, or constant, always B2 of instruction
- D16 = 16-bit data quantity, expression, or constant, always B_3B_2 of instruction

ADDR. = 16-bit memory address *µCOM is a trademark of NEC.

102 STAX B 2 STAX B 32 STAX SP SA MOV H, B 93 SUB E C2 JUZ ADDR F2 DDR F3 DDR F3 <t< th=""><th></th><th></th><th></th><th></th><th>NUME</th><th>RICAL</th><th>. L</th><th>ISTIN</th><th>GOF</th><th>μC</th><th>OM-8</th><th>MACH</th><th>INE</th><th>COL</th><th>DES</th><th><i>.</i></th><th></th><th></th></t<>					NUME	RICAL	. L	ISTIN	GOF	μC	OM-8	MACH	INE	COL	DES	<i>.</i>		
10 LXI SP.DTF 61 MOV LC 91 SUB C C C C D PP PP PP 20 NIX B 33 STA ADDR E3 MOV HL 93 SUB C C D PP PD PS 33 STA SP	00	NOP	·	30			60	моу	H,B ·	90	SUB	в	· CO	RNZ		FO	RP	
03 NIX 9 NIX NIX NIX NIX 03 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>H,C</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>PSW</td></th<>									H,C									PSW
disk ink bit bit bit Cit CN2 ADDR F5 PUSS H P0S 05 DCR Bit Bit Cit CN2 ADDR F5 PUSS H P0S 06 MVI Bit Bit Cit Cit <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ADDR</td></t<>																		ADDR
05 DCR 8.0 8.0 M.U. 9.5 SUB L CS AUXH 8.6 FG OUN H.M. 97 SUB A. C7 RST 0.7 FG FG OUN H.M. 97 SUB A. C7 RST 0.7 FRT 0.8 FT FRT 6 FG OUN H.A 97 SUB A. C7 RST 0.8 FT FRT 6 FR FRT 7 FR																		ADDR
07 RLC 37 STC 67 MOV H.A. 97 SUB A C7 RST 0. FF RNT 6 08 DAD 8 39 DAD SP 66 MOV LC 98 SBB C CR PT FF RNT 6 00 DDAR 8 39 DAD ADDR AMOV LC 98 SBB C CA JZ A STA MOV LC 98 SBB C CA JZ ADDR	05	DCR	8			M				95	SUB	L	C5	PUSH	в	F5	PUSH	PSW
08 38 36 MOV LC 98 S88 C C R R M M 0A LDAX B 33 LDA ADD SP 66 MOV LC 99 S88 C C3 R L ADD ADD F8 E1 ADD F8 E1 ADD F9 SF1 C ADD F7 F7 T ADD F7 F7 T C C C F7 T T ADD T ADD ADD <td< td=""><td></td><td></td><td>8,D8</td><td></td><td></td><td>M,D8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>D8</td></td<>			8,D8			M,D8												D8
00 DAD B 30 DAD SP 30 MOV LC 99 SBB C C C A C A A A A A SBB C C A C A A A B B B SBB C C C A D B B C C C A D B B C C C A D B B C C C A D B B C C C A D C A D C C A D C C A D C C D		RLC			STC										0 ;			6
DA DAX B 3A LDA ADDA SP 6K MOV LD 9A SBB D CA IZ FA M ADD 06 DCR C 3D CR AA 6C MOV LL 9G SBB LA CC CZ ADDR FF FI AD 05 MOV CA 6D MOV LL 9G SBB HA CC CA DD FF FI T AD 06 MOV BA SF MOV MA AA ANA C DI PDP D T T AD ANA AA ANA LD DS DUT DD AD AD ANA ANA ANA ANA ANA AD AD AA AAA AA AAA AA AAA AA AAA AA AAA AA AAA AD AD AD		DAD	8		DAD	SP												
CC NR C SC NR A SC MOV LL BC SSB L CC C2 ADDR FC CM 0E MVI C,DB 3E MVI ADB SE MOV LM BE SSB M CC C2 ALL ADDR FF CP FB CC CALL ADDR FF CP FB FF CF FF	0A	LDAX		3A							SBB	D	CA			FA	JM	ADDR
DD DCR C DD CR A DD NOV LL SD SB L CD CL ADB FE CPI DE 0F RRC DB SF CMC ADB FF MOV LA 9F SBB A CF RST 1 CE ACI ADB RAC CF RST 1 CE ACI ADB RAC C RST T MOV MA AAA AAA ADD ADD </td <td></td>																		
DE MVI C.DB SE MVI A.DB GE MOV LM 9F SBB M CE A.CI DB FE CPI DB 10 40 MOV B.B 70 MOV ML ANA B D0 RNC T 11 LXI D,D16 41 MOV B.D 72 MOV ML ANA D D2 JNC ADDR 12 STAX D 42 MOV B.D 73 MOV ML ANA ANA D D2 JNC ADDR 13 INX D AD ANA ANA D DA D DA DA MOV BA 77 MOV AA ANA D DA DA DA DA DA DA DA DA AA DA DA DA DA DA AA DA DA DA																		ADDR
OF RRC JF CMC SF MOV LA OF SSB A CF RST I 11 LXI D.D16 41 MOV B.E 71 MOV M.C A1 ANA CF RST 1 FF RST 1 FF RST 1 FF RST 1 FST 7 MOV A2 AA																FE		D8
11 LXI D,D16 11 MOV B,C 71 MOV M,C A1 ANA C D1 POP D 13 INX D 43 MOV B,E 73 MOV M,L A3 ANA E D3 OUT D8 13 INX D 44 MOV B,L 75 MOV M,L A3 ANA E D3 OUT D8 14 INR D 44 MOV B,L 75 MOV M,L A5 ANA L D5 PUSH D D 16 MUI D8 46 MOV A2 ANA AD DA D A3 AA D DR D AB AA AA AA AA AA DF AA AA AA AA AA AA AA DF AA AA AA DF AA		RRC						MOV	L,A						1	FF	RST	7
12 STAX D 42 MOV B,D 72 MOV M,D A ANA D D2 JNC ADDR 14 INR D 44 MOV B,H 74 MOV M,H A4 ANA H D2 JNC ADDR 16 MVI D,D 45 MOV B,H 74 MOV M,H A4 ANA H D4 CNC ADDR 16 MVI D,D 46 MOV S,R 76 MOV A,Z ANA ANA D7 RST 2 18 48 MOV C,C 74 MOV A,Z ANA AN D DC A MOV C,C A MOV A,Z ANA AN D D D A MOV A,Z ANA ANA ANA D D D A MOV A,Z ANA ANA ANA D D D A ANA ANA ANA ANA D															´ _			
13 INX D 43 MOV E 73 MOV ME A4 ANA E D3 OUT D8 15 DCR D 45 MOV BL 75 MOV MU A4 ANA L D5 PUSH D 16 MVI DD8 46 MOV BL 75 MOV MU A3 ANA A D7 AND DA D AS NA DA DA D4 MOV CC 77 MOV A2 A3 XA D DA C ADD AA AA DA DA DA DA DA DA DA C DA MOV ADD AA XA DA AA AA DA DA DA DA DA AA DA DA AA AA DA DA AA AA AA AA AA AA AA																		
15 DCR D 45 MOV BL 75 MOV ML A5 ANA L D5 PUSH D D 17 RAL DB 45 MOV BA 77 MOV MA A7 ANA A D7 RST 2 19 DAD D 49 MOV C.C 79 MOV AA ARA D D ADD AB NRA ADD A																1		
16 MVI D.DB 46 MOV BA 76 HLT MA A																1		
17 RAL 47 MOV BA 77 MOV MA A7 ANA A D7 RST 2 19 DAD D 49 MOV C.C 79 MOV A.B AS RAR B DS RST 2 19 DAD D 44 MOV C.C 79 MOV AA ARA DA DA AC ADD AA MOV ADD AA MOV ADD AA AA <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>M,L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									M,L									
18 48 MOV C.S. 78 MOV A.S. A.S. X.A. B DB DC RC DB RC DB RC DB RC A DA JC A DDA JC A DC			0,08						MA									
A LDAX D 4A MOV C,D 7A MOV A,D A XRA D DA JC A DDR 18 DCX D 4A MOV C,E 7A MOV A,A A XRA P D DA JC ADDR 10 INR E 4C MOV C,L 7C MOV A,A A XRA L D D C C ADDR B BO AA A															-			
B DCX D 48 MOV CE 78 MOV AC XRA E DB IN DB 1D DCR E 4C MOV CH TO MOV AL AD XRA H DC CC ADDR 1D DCR E 4D MOV CL TO MOV AL AD XRA H DD CC ADDR 1E MXI ES ROV CA TF MOV AA AE XRA A DF RST ADD SD MOV AD BS ADA DE SSI ADD AD CL AD																1		
10 DCR E 4C MOV CL TC MOV AL AL XRA H DC CC CC ADDR 10 DCR E 4D MOV CL TO MOV AL AD RAA L DD TD DB BL DD TD DC TD DD TD DC TD DD TD DC TD DD TD DC TD DC TD DC TD DC ADD AD XRA A TXRA AD DR DD BD DRA DE ES DRA DE DD BD DRA DC DR DR DD BD DRA DC DR DR<																		
D DCR E 4D MOV CL DD MOV AL AD XRA L DD 1E MAI EXRA A AX																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1D		E	4D	MOV	C,L	7D	MOV	A,L									
20			E,D8															
11 XXI H,D16 51 MOV D,C 51 ADD C B1 ORA C E1 POP H 23 SHLD ADDR 52 ADD D B2 ORA D E2 PO ADDR 23 INX H 53 MOV D,E B3 ADD E B3 ORA C E3 XTH E3 XTH ADD ADD B3 ORA H E4 CPO ADDR ADD ADD B3 ORA H E4 CPO ADDR ADD ADD B3 ORA H E4 CPO ADDR ADD ADD <td< td=""><td></td><td>HAH</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td><td></td></td<>		HAH													3			
22 SHLD ADDR 52 MOV D,D 82 ADD D 82 ORA D E2 JPO ADDR 23 INX H 53 MOV D,E 83 ADD E B3 ORA E E3 YTHL 24 INR H 54 MOV D,H B4 ADD H B4 ORA H E4 CPO ADDR 25 DCR H 55 MOV D,A B5 ADD H B6 ORA L E5 PUSH H 26 MVI H,DB 56 MOV D,A B5 ADC B B6 ORA A E7 NA DA TA TA DA ADD B5 MOV E,B B6 ADC B BCMP C E5 MOV E,B BA ADC D BA C C C PC HD ADD ADD ADD ADD ADD ADD ADD ADD		LXI	H.D16												н	1		
34 INR H 34 MOV OL B4 ADD H B4 ORA H E4 CPC ADDR 25 DCR H 55 MOV DL B5 ADD H B5 ORA L E5 PUSH H 26 MVI H,08 55 MOV DA B5 ADD M B6 ORA A E7 RST 4 27 DAA 57 MOV DA B5 MOV EA B7 ADR A A F7 RST 4 28 DCX H B6 MOV EC B9 ADC D BA CMP C B9 PCHL DC EA ADC D BA CMP EA BC ADC B BCMP E EX ADDR EA ADD To ADD EA ADC B CMP A <td></td> <td></td> <td></td> <td>52</td> <td>MOV</td> <td>D,D</td> <td>82</td> <td>ADD</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ADDR</td> <td></td> <td></td> <td></td>				52	MOV	D,D	82	ADD							ADDR			
25 DCR H 65 Mov D.L 85 ADD L 85 ORA L E5 PCR+H H 27 DAA 55 MOV D.A 87 ADD A B7 ORA A E7 RST 4 27 DAA 55 MOV D.A 87 ADD A B7 ORA A E7 RST 4 29 DAD H 59 MOV E.C B8 ADC D B8 CMP D E3 APPE ADDR 28 DCX H 56 MOV E.E B8 ADC D B8 CMP D E5 APPE ADDR 20 DCR L 50 MOV E.L B0 ADC L B9 CMP E E5 XRI D8 27 CRA L 50 MOV E.L B0 ADC L B0 CMP L E5 XRI D8 MOV																		
36 MOV H,DB 56 MOV DA BF ADD M B6 ORA A E6 ANI DB 27 DAA 57 MOV DA B7 ADD A B7 PAA A F7 RST 4 28 DAD H 59 MOV E.B B8 ADC B B7 ORA A F7 RST 4 29 DAD H 59 MOV E.B B8 CMP C B9 PCHL E ADDR B7 MA AD F8 MOV E.B BA CMP C B5 PCHL ADDR B7 MOV E.B BA CMP E E ADDR B7 MOV E.B BA CMP E E ADDR B7 MOV EA B7 BA AD B7 ADDR B7 BA B7 ADD B7 BA B7 ADD B7 B7 B7 B7 B7 B7 B																1		
28															D8			
39 DAD H 59 MOV EC B8 ADC C B9 CMP C E8 ADC C B8 CMP C E8 ADC D BA APC APC D BA CMP E BA APC		DAA				D,A	87								4			
2A LHLD ADDR 5A MOV E,D BA ADC D BA CMP, D EA ADCR 2B DCX H 5B MOV E,E BB CMP, D EA ADCR 2C INR L 5C MOV E,H BC ADC H BB CMP, H EC ADCR 2C INR L 5C MOV E,H BC ADC H BC CMP, H EC CC CFE ADDR 2C INR L 5C MOV E,H BC ADC H BC CMP, H EC CFE ADDR 2E MVI L,DS 5F MOV E,L BE ADC A BF CMP H EE XRI DB EE XRI DB EE XRI DB EE XRI DB EE TD DC TD D TD D TD D TD D TD D TD D TD																1		
28 DCX H 56 MOV E,E BB CADC E BB CMP E EB XCH ADD 20 DCR L 50 MOV E,L BD ADC L BC CMP H EC CPE ADDR 20 DCR L S0 MOV E,L BD ADC L BC CMP L ED CPE ADDR 27 CMA L.DS SE MOV E,L BD ADC L BE CMP M EE XRI DB CMP L ED TM BE CMP M EE XRI DB TM START DR BE CMP A BF RMD D T D T D T D T D T D T D T D T D T D T D T D T D T D T D T D T	29										CMP -	D D		JPE	ADDR			
2D DCR L BO MOV EL BD DADC L BD CMP L ED L 2F CMA LOB SF MOV EL BD ADC L BD CMP L ED L DD 2F CMA SF MOV EL BF ADC A BE CMP A EF RST DD 4 DL SF MOV EL BF ADC A BF CMP A EF RST DD 4 DL SF MOV EL SF ADC A BF CMP A EF RST D 4 DL START TEXT DC [†] 1 1 1 A Q a Q To form a code 5 END TRANS DC [†] 1 1 1 A Q a Q To form a code for any charact for any charact </td <td>2B</td> <td>DCX</td> <td></td> <td>5B</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>BB</td> <td>CMP</td> <td></td> <td>EB</td> <td>XCHG</td> <td></td> <td>Ľ</td> <td></td> <td></td>	2B	DCX		5B						BB	CMP		EB	XCHG		Ľ		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-												ADDR			
2F CMA CMA SF MOV E,A BF ADC A BF CMP A EF RST S 1 1 1 2 3 4 5 6 7 0 NULL DL*ESCAPE SP 0 @ P ' p 1 START HDG DC [†] 1 1 1 A Q a q 2 START TEXT DC [†] 2 '' 2 B R b r 3 END TEXT DC [†] 3 # 3 C S c s 4 END TRANS DC [†] 4 (STOP) \$ 4 D T d t on the chart, ft 5 ENQUIRY NEG ACK % 5 E U e u locate the chara 6 ACK SYNC IDLE & 6 F V f v The most signif <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>08</td><td></td><td></td><td></td></t<>															08			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			2,00															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							ľ.											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IEX-	ASCII	TABL	.E			L			L								
1 START HDG DC [†] 1 I I A Q a q 2 START TEXT DC [†] 2 " 2 B R b r 3 END TEXT DC [†] 3 # 3 C S c s 4 END TRANS DC [†] 4 (STOP) \$ 4 D T d on the chart, fir 5 ENQUIRY NEG ACK % 5 E U u u locate the chart 6 ACK SYNC IDLE & 6 F V f v The most signif 7 BELL END TRANS BLK ' 7 G W g w is the column on the chart, fir 8 BACKSPACE CANCEL (% 8 H X h w ber at the top, it 9 HORIZ TAB END TRANS BLK ' 7 G W g w is the column on the chart, fir 9 HORIZ TAB END TRANS BLK ' 7 G W g w is the column on the chart, fir 9 HORIZ TAB END TRANS BLK ' 7 G W g <			0	Т		1		2	3		4	5	6		7			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	NULL			DL* ES	CAPE		SP	0	1	@	Р	1 '		р			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	STAR	T HDG		DC [†] 1			1	1		A	۵	a		q			
3END TEXTDC * 3#3CScsffname4END TRANSDC * 4 (STOP)\$4DTdton the chart, fit5ENQUIRYNEG ACK%5EUeulocate the chart, fit6ACKSYNC IDLE&6FVfvThe most signif7BELLEND TRANS BLK'7GWgwis the column n8BACKSPACECANCEL(8HXhber at the top, i9HORIZ TABEND MEDIUMJ9IYivthe least signifALINE FEEDSUBSTITUTE*:JZjzdigit is the row number at the 1CFORM FEEDFILE SEP,<		STAR	т техт	۲ 				"	2		в	R	ь		r	T. 4		ada
5 ENQUIRY NEG ACK % 5 E U e u Ion the matrix signif 6 ACK SYNC IDLE & 6 F V f v The most signif 7 BELL END TRANS BLK ' 7 G W g w is the digit of the chars 8 BACKSPACE CANCEL (8 H X h ber at the top, at the lost signif 9 HORIZ TAB END MEDIUM J 9 I Y i y the least signif A LINE FEED SUBSTITUTE * : J Z j z digit is the row number at the 1 8 VERT TAB ESCAPE + : K [k { Example: 8 VERT TAB ESCAPE + : K [k { Example: number at the 1 Example: D The code for A M m									r i				6	:	s			
6 ACK SYNC IDLE & 6 F V f v The most signif 7 BELL END TRANS BLK 7 G W g w is the column of the colu													1			on t	he char	t, first
7 BELL BACKSPACE CANCEL 1 0 1 </td <td></td> <td></td> <td>IRY</td> <td></td>			IRY															
8 BACKSPACE CANCEL (8 H X h x hs the column n 9 HORIZ TAB END MEDIUM) 9 1 Y i y the least signific 4 LINE FEED SUBSTITUTE • : J Z j z digit is the row number at the log. 8 VERT TAB ESCAPE + : K [k [the least signific C FORM FEED FILE SEP , <								84										
9 HORIZ TAB END MEDIUM j 9 1 Y i y the least significant for a low option A LINE FEED SUBSTITUTE • : J Z j z digit is the row number at the l B VERT TAB ESCAPE + : K [k { digit is the row number at the l C FORM FEED FILE SEP , <							LK	, I			-		1 *					
A LINE FEED SUBSTITUTE • : J Z j z digit is the row number at the l B VERT TAB ESCAPE + : K [k { C FORM FEED FILE SEP . <						-		1	-									
B VERT TAB ESCAPE + : K [k { number at the l C FORM FEED FILE SEP , <	-							1.								digit	t is the	ow
C FORM FEED FILE SEP , L I Example: D RETURN GROUP SEP = M J m J The code for A E SHIFT OUT RECORD SEP > N n ~ The code for A								l +			•					num	ber at 1	he left.
D RETURN GROUP SEP = M] m } The code for A E SHIFT OUT RECORD SEP . > N - n ~	-								1 .			-				Exa	mple:	
E SHIFT OUT RECORD SEP > N ~ n ~								1					1					or A = 4
	E			ľ					>			-	1		~	i i		* = 2
	F	SHIFT	IN		UNIT S	EP		1	2		0	<u> </u>	0	D	ELETE			

DATA LINK, TOEVICE CONTROL

N	Ē	C	1	1	Ċ	0)]]	n	.8	3	ſ	n	ſ	ÌĆ	21	T	10)	Ω	1(CS	5	6	8	2	Í	n	a	Ć	h	u	Í	Ċ	; (C	DÒ	le	s		
CARR	Y FLAG	3	BIT	0	\Box	\square	1	T	•		•	•	0	0	0	-	T	T	T	Γ	П		•	Ī	T	T	•						•						Statu	is Flag
ZERO	Y FLAC	3	BIT					+	•	+	•	•		-	-	•	+-	+	+-	_	\vdash	-	•		+	┢	$\left \right $	•	+	+		+	•	!		fected				
SIGN F		· · · · · · · · · · · · · · · · · · ·	BIT	_	\vdash		-+	+-	•	•	•	•	-+			•	+	+	+	╀─	+		•	+	+-	┢	++	•	+	+	+	+	-	$\mathbf{b}^{\mathbf{I}}$		ot Affe eared.	ected	Ι,		
	CHU	Т	T	ŕ			DE	sti	NA								R	INS	STR	ΰc	TIO			+	+	\mathbf{t}	t t	-	œ ;	5 7	7 8	10	1	<u>ت</u>		careu.				
Bold F		→ •	< ∝	10	٥	w	Ŧ	┙╕	E							6	• c	2			ပ္စု		MSd	<u>ہ</u> د	≖ ב	8		MORY	PAIR		(STC)	(CMC)	DAA	NOTI	E					۰,
Letters Actual	are									4		∢				2					t	STACK	•					MEN	Ë											Langua
Mnemo	onics			_				_		b	∢	b b	<		٩ :	2			-		S	5					Ŧ	OR I	ISIS I	HIGH	2 A B	CARRY	ULATC							ns. B ₂ = Th
Used for		-	Red	Reg	Reg	Reg	Reg		11	λ)+C	t,	- s +	† ₹		† ₹				512		STA	퓡	шÌ,		1			Ë	E B	B				Byte of	of l	ristruc	tion,	[XX]	= Co	ontent
nstruc	tion		₹ œ † †	C ↑ C	D ↑ S	ш ↑ s	T ↑ S	S + C Re	(¥) + s	E	Ē	- (Y)	s / (/	× <					s → [B ₂ B ₂	s → PC	PC → STACK, s → PC	HSU4 + s	S ↓ AF		Z + F	ds ↑	Ē	IST	ŝ		58	; Ne	S							= {HL Pair, Λ
		-	~ v	5	s	s	ŝ	0 U	° v	+	-	-	-	-	-	+	-	-	+-			÷.	ŝ	-	- 10	ţ	÷.	REGISTER	DEC (DCX) REGISTER	RUIAIE ACCUMULAIUH LEFI (RLC)		COMPLEMENT	AC							Exclus
		B2	• •	М	VI	i, B;	2		Ā	ĀCI	SU	SBI	Ā	XR	5 8	5		1	巾	UŢ	B ₂							5	ы Ш	Ξt		Me da	JST .	OR.						
•	(A R	-						Т	Г	Γ			Т	Т	Т	T	-	Ι		E	s s	TA	B ₃ B	, L				DEC (DCR)	8	1	5	ö	ADJUST		o	THEF	RM	NEM	ONIC	s
8	(B R															F	45	TA	Хd	+-	++	-+	+	-	+	+-	Н	ដ្ឋ	x i	5 3	5		IAL'A	NOP	= 1	NO OP	ERA	TION		
,)	(CR (DR	- 1		м	ov	de		١ž		١.,			~	"		⊦ا	+	+	+	+-	++		-	+	+	╋	Н	5	NC (INX)	5	RUIAIE ACCAND		2	EI	= E	ENABL	LE IN	NTER	RUPT	
	(E R							NOM	ADD	ADC	SUB	SBB s	Ϋ́,	XHA	OHA S		+	+	+			+	+	+	+	+	H	INC (INR) OR	ž	Š 8	ŝ		DEC	DI		DISAB	LEI	NTER	RUPT	
i -	(H R	-						12	•		S.	ŝ	٩	۲ľ		ſ	\uparrow	+	+	\mathbf{T}				1	1	\uparrow	Н	E.		Ş,	₹ ⊔		-	HLT				E (TO	POFS	TACK
	(Ĺ R	eg)														Ľ	Τ	Ι	T						T			S	1	<u> </u>	Z					VITH (F OF 3	ACK
1		띠	-	M	ov	d,M			Ľ				_			1	-	1										-		₹ 8	Ş			RST >					- 7	
		BC]	+	4)A)	(5		+	4_	Ł	-		-	-	+	+	+				OPE					F	⊢			P				СМА	= (COMPL	LEMI	ENTA	ссим	ULAI
		B2			B2	Ч		+	+	╉	+-	$\left \right $	+	+	+	+	+	÷	2-BY	TE	OPE	RA	_	_	D B	Ļ	H			PC	: R	EG	ISTI	R CO	DNT	ROL	. MP	NEMO	NICS	;
	(B36	· -	F			B ₃ B	2	+	+	+	┢	Η	1	+	+	+	+	╀	+-	f	+	-		Ť		T	Н	Ū	4	=	JNC	ON	DITI	ONAL	JUI	MP (JN	AP)			
	B3	_	-	+			-	+	+-	+	1	\square	-	+	+	+	+	t	+	\mathbf{v}	27			_	d,B ₃	B ₂	H		4					ONAL						
P	OP STA		1					1		t			1	1	\uparrow	1	1	t		37				OP		Ť	H		4				_	ONAL					_	
w	(AF R	eg)	`					T		Γ								1						1	T				4	and the second second		_		AL JM						
	(BC R	· •	_	-				_	1	1	ļ		_	_	_	\downarrow	+	_¦s	HLC			ъ	xc	HG	the state	\bot		-	or of	<u>C</u> .		Ť	0	PARI	<u>+</u>	0	ZER		SIG	
	(DE R	-	+-		ŀ	\vdash		+-	+	┢				+	+	-	+		3B2			PUSH		-	4	┢	ĝ	_	, x		ċ	+	NC	PE	+	PO	- <u>'</u>	NZ	M	_
P	(HL R	eg) SP)	╉	+		\vdash		+	+-	┢	╞	\vdash	-+	+	+	+	+	1	4	PC	П	-	-	SPI	_	-	à	_	_	L =	_	,→		EGIST	_	_				
	-	_	Elo	IOE	16	16	26 2	EB	6 Ce	5 Ci	D6	DB	E6	ĒE	6	E	+	+	+	1 ^{rc}		-	-	T	1-	F	H	SP	EC	À		NST	RU	стю	NS					
	(A R						67 6										21	20	3 32	-	\mathbf{H}			+	+	╋	\mathbf{H}	NC		0			HLT		-	STC		37		
	(BR	eg) 7	8 4	48	50	58	60 6	8 7	0 80	88	90	98	ÁÖ	48	30E	8	Т	Τ	T	1	T			T	T	T		EI		F	в		DAA	27		CMC	С	3F		
	(CR			49			61 6	_	_			99					Τ	Ι										ĎΙ	· ,	F			CMA			XTF		E3		
	(DR						626										\perp		1	1	\square		_	_	_		Ц				_	-		TER	_					
	(ER) (HR)						636					9B					+	+	+-		++	\rightarrow	-	-+	+	╀	+	JM			3		CAL			REI		C9 C0		T O (
	(LR)						64 6 65 6			_	-	9C 9D	_	-	_	_	+	+	+-	+	+	-	-	+	+-	╀	+	JN		C C	A		CNZ CZ	C4 CC		RN2 RZ		C8		Г 1 (Г 2 (
	(H	· 6					66 6					9E					+	+	+	+	+	-	-+	+	+	+	Н	JN			2		CNC			RNO		DO	RS	
	(B	- · F	A		1			-	1	1					-		+	+	1.8	TE		PER	AT	ONS	;†	+	Н	JC		-	A		cc	DC	· 1	RC		D8	RS	
	(D	E) [A							T	T					T	T	Ţ	2 B	ŤĒ		ER	AT	ons	1	Ť	11	JP		E			CPO	E4	- 1	RPC		EO	RST	
			в					T									1	Ţ						_				JP JP	E		A 2		CPE CP	EC F4	- 1	RPE RP		E8 F0		Г 6 Т 7
	(B ₃ B		<u> </u>	1		Ц		+	+	+	ļ		_	_	-		+	+	+-		-		_	+	2/			JM			Ā		CM	FC		RM		F8	PCH	
Dr	B3 DP STA	-	+	+	┝	Н		+	+	+		\square	-	-+	+	+	+	+	+-	RV I	2				1 21 01 E			IN	CR	EM	EN	T/C	DEC	REME	ENT	8 Sł	HIFT	T INS	TRUC	стіо
w	(AF R		+	+	┝	Н	+	+-	+-	+	┢	\square	-	+	+	+	+	÷	+	1	┞┼	F5		-		4	Н			A 3				A 3D		INX	В	03	RL	
	(BC R		+	\mathbf{t}				+	+-	+	+		-	+	+	+	+	+	+	+	++	C5	+	+	+	+	09			B 0				B 05	-		D		RR	
	(DE R	eg)						T		T	T					T	T	+				D5			E	3	19			C 0 D 1				C 0D D 15			(Н (SP		RA RA	
	(HL R		_		L			T					_			_	1	T	22	E9		Ė5	_	E	в	FS	29			E 1				E 10			×в			
, 	(8	SP)			L				1	L		Ц	·		_		1	1				1					39	IN	R	+ 2	4		DCR	H 25		DC)	хD	1B		
							ASS					-	0				MA	<u>T</u>												L 2		1		L 2D	- 1		кн			
								P	SEU	DC	1	151	н	CT	10															N 3		1		M 35	-		X SP		1	
	L MNE	along the second	_		_	XP												_	VTS									-	-	TAP	ITS		-	STAN					PERAT	TORS
tional				XP 1 XP 1					Sets																				BDI 1AI	•	Hex			A B	SE		- 1	() • /	MOD,	SHI
tional Juirec				хР 1 ХР 1															untei o ''S		BOI	" er	pecif	ied I	by us	er								в С	SE			*,/, +, -	-10D, 3	UNL,
uirec Juirec				XP 1									-												by us by us				1051 10	- 2	Dec	ima		D	SE		- 1	NOT		
tional						XP 8	3,			-			-									- 2			/ loca		ns							E	SE		3	AND		
		N	E	XP 1	6, I	EXP	16,			-	-														rylo				720		Oct	al		н	SE	ET 4	4	OR,	XOR	
tional	I IF		F	XP 1	6	,			A	mhi		ater	nen	ts b	etw	een	IF a	nd	ENF) F -			e				<u> </u>		120	.,			1	L	SE	ET E	- 1			
	1 16		-	~ '	•				- 330												wner	n va	iue c	DT E.	XP 1	0 *	۲			- 1							, I			
tional tional tional	I EN	NDIF	-					•	Tern	nina	tes	con	ditio	onal	IF	ass	emb	ly											011	•	Bina	ariy		м	SE	ET 6	5			
tional	I EN d M/		-			,		,	Tern	nina gns	ites state	con eme	ditio nt bo	onal etwe	IF en l	ass MAG	emb CRO	ly							speci			00	011 110 EST	3)	Bina	ariy			se Se		6 6			

NEC Quality Assurance Procedures

One of the important factors contributing to the final quality of our memory and microcomputer components is the attention given to the parts during the manufacturing process. All Production Operations in NEC follow the procedures of MIL Standard 883A. Of particular importance to the reliability program are three areas that demonstrate NEC's commitment to the production of components of the highest quality.

I. Burn-In — All memory and microcomputer products are dynamically burned in at an ambient temperature sufficient to bring the junction to a temperature of 150 °C. The duration of the burn-in is periodically adjusted to reflect the production history and experience of NEC with each product. 100% of all NEC memory and microcomputer products receive an operational burn-in stress.

II. Electrical Test - Memory and microcomputer testing at NEC is not considered a statistical game where the device is subjected to a series of pseudo random address and data patterns. Not only is this unnecessarily time consuming, but it does not effectively eliminate weak or defective parts. NEC's test procedures are based on the internal physical and electrical organization of each device and are designed to provide the maximum electrical margin for solid board operation. For further information on NEC's testing procedures see your local NEC representative.

III. After completion of all 100% test operations, production lots are held in storage until completion of two groups of extended sample testing: an operating life test and a series of environmental tests. Upon successful completion of these tests, the parts are released from storage and sent to final Q.A. testing.

NEC micro computers, inc.

-1

Five Militia Drive Lexington, Massachusetts 02173 Telephone 617/862-6410 Telex 92-3434 TWX 710-326-6520

Compliments of: