REFERENCE

MANUAL

PROGRAMMING
HANDBOOK

NCR 315

INPUT

BUFFERED BUFFERED

OPTICAL MAGNETIC P FUNCHED

CHARACTER CHARACTER READER READER

READERS READERS

Up to 4, any combination
Y Y Y

MAGNETIC - REAL-TIME
TAPE 315 OPERATION

Y

HANDLERS ™%

pet CENTRAL v 10 1

BUFFERS FOR
~¢——»| INTERROGATION

PROCESSOR AND ON-LINE

CarD PROCESSING
R ANDOM

A CCESs und COHSOIG

-
Memory

UNITS
Up to 16

Y
Up to 4, any combination v
BUFFERED or BUFFERED PAPER
UNBUFFERED (ARD TAPE
PRINTERS PUNCHES PUNCH

OUTPUT

315
PROGRAMMING HANDBOOK

THE NATIONAL CASH REGISTER COMPANY
DAYTON 9, OHIO, U.S.A.

TABLE OF CONTENTS

INTERNAL OPERATIONS
Memory, Storage of Information...........
Accumulatoro
Index Registers.................................
Addressing methods.
Jump Registers. ...
Instruction formats
Flags. .
Dlsplay of regnsters
Using the registers.
Special functions of some registers........... ...
Flow chart, execution of an instruction.
Flow chart, jumps and interrupts. . .
Flow chart, effect of a new Demand upon DLR
Naming of literals. o
Effective length of the Accumulator
Definitions. e
Descrlptlons of mtemal operations .
INPUT, OUPTUT, FILE OPERATIONS

Introduction.

Peripheral Units:
Console Typewriter................... ..

Card Readers.........

Paper Tape Reader . . .
Buffered Line Printers.

Card Punches.

Paper Tape Punch.. e

Magnetic Tape Handlers

Card Random Access Memory (CRAM)
Unbuffered Printers and Buffered Numerlc Llsters

MICR Readers, Optical Character Readers, Remote Input Output. e

Ready Status and Demand Interrupt. .

Descriptions of Input, Output,FlleOperatlons,.............,...................

APPENDIX
Processor Format of Commands.

Paper Tape Input and Output.

Paper Tape Codes. . : .

Programming the Bulfered Prmter

Correspondence between NCR 315 and IBM BCD Magnetlc Tape Codes
Punched Card Code. .
Addition-Subtraction Tables. e

Execution Times of Internal Operations................

38

38
38
38
38
39
39
39
43
45
45
45
48

68
70
71
75
78
79
80
82

INTERNAL OPERATIONS

*ADD
*ADD

AUG

AUG
*BADD:
*CLRF:
*CLRF:
*CNT
*COMP:

*DIV

**DLR
EDIT:

JUMP:
JUMP:

JUMP:

LDAD:

**MLRA :
MOVE:
MEVE :
MOVE:
MEVE:
MGVE :
MOVE:
*MULT :

PAST:
PAST:
PAST:
SAUG:
SAUG:

SCNA:
SCNA:
SCNA:
SCNA:

SCNA:
SCNA:
SCNA:
SCNA:

SCNA:
SCNA:
SCNA:
SCNA:

SCND:
SCND:
SCND:
SCND:

SCND:

SCND:

SCND:
SCND:

M
oJ
'R

LH
RH

Add to Accumulator. 19
Add to Memory. 20
Augment J-regISters. 30
Augment R-registers.o 30
Binary Add to Accumulator.o 22
Clear Left-hand Memory flag. 24
Clear Right-hand Memory flag. 24
COUNL. « o o o 28
COMPALe. 20
Divide Accumulator. 21
Demand Link Return. e 27
Edit. 22
Unconditional jump. 26
Unconditional jump, indirect address. 26
Unconditional jump, indirect address, keep previous link........ 26
Load Accumulator.o 18
Load J-registers............ ... 29
Load R-registers . :...... 29
Load alpha-to-digit All characters............................ 35
Load alpha-to-digit Except LH character of memory word. 35
Load alpha-to-digit Except RH character of memory word.... .. 35
Load alpha-to-digit Exceptboth.............................. 35
Main Link Return and augment control register. 27
Move Memory, start at beginning of data..................... ... 31
Move Memory, startatend of data........... 31
Move J'SsInt0 J'S. . ..ot 31
Move J’'sinto R's. 31
Move R's into J's. 31
Move R’s into RS, ... s 31
Multiply Accumulator.o 21
Partial alpha store Except LH position of memory word. 34
Partial alpha store Except RH position of memory word. 34
Partial alpha store Exceptboth.............................. 34
Spread-augment J-registers. 30
Spread-augment R-registers. 30
Scan alphas for equal, all positions. (Same as E3)................ 32
l Selective Scans

Scan alphas for greater, all positions. (Same as G3). oo 32
é Selective Scans

Scan alphas for less, all positions. (Same as L3)................. 32
Z Selective Scans

Scan digits for equal, all positions. (Same as | i) J I 32

Selective Scans

*These instructions permit a “lireral’” to be pamed as A" if desired.
**These instructions requzre a “literal” to be named as A",

SCND:
SCND:
SCND:
SCND:
SCND:
SCND:
SCND:
SCND:

SCND:
SCND:
SCND:
SCND:
SCND:
SCND:
SCND:
SCND:

**SETF :
**SETF :
**SETF:
**SETF :
**SETF:

*SETF :

*SETF:

*SHF'T :
*SHFT:
*SHFT:
*SHFT:;
*SHF'T :
*SHE'T ;
*SHFT:

**SKIP:
SLD :
SLD :

**SPRD :

**SPRD:

*TEST:

HCQaQO T

G

Nwv YN L
ERECTT

Scan digits for greater, all positions. (Same as G7).............. 32

Selective Scans

Scan digits for less, all positions. (Same as L7)...... 32

Selective Scans

Set Sign flag minus............. 24
SetSignflag plus. 24
Set Demand Permit flag................. . . . 0 24
Set Overflow flag. 24
Set Tracer Permit flag.......... T 24
Set Left-hand Memory flag................. 24
Set Right-hand Memory flag. 0 24
Shiftalphasleft.................... 28
Shift alphas right. 28
Shift digies left............. 28
Shift digits right........... ... 28
Shift digits right and roundoff.............. ... 28
Shift digits left circular... 28
Shift digits right circular. w 28
Skip within the program................ 26
Spread-load J-registers............. 29
Spread-load R-registers. 29
Spread a literal in Memory, start at beginning of area...... 31
Spread a literal in Memory, start at end of area. 31
Store Accumulator. ... 18
Store J-registers. 29
Store R-registers....... e 29
Store digit-to-alpha ~ All characters....... ... 36
Subtract from Accumulator... T 19
Suppress. ... 24
Test Sign flag negative................... 25
Test Demand Permit flag.............. ...~~~ 25
Test Overflow flag.o 25
Test Tracer Permit flag. 25
Test Greater flag.............. 25
TestLessflag.................o 25
Test Equal flag................. o 25
Test Left-hand Memory flag. 25
Test Right-hand Memory flag......... 25
Did Scan stop on left digit or alpha?. 25
Did Scan stop on middle digit?.. ... 25
Did Scan stop on right digit or alpha?. 25
Test Console Option switch. 7 25

*These instructions permit a “literal” to be named as “'A”" if desired.
**These instructions require a literal”” to be named as “A”".

INPUT, OUTPUT, FILE OPERATIONS

BACK:

*CLRU:
*CLRU:
*CLRU:
*CLRU:

HALT:
HALT:

PNCH:
PPT :
PPT :
PRNT:

RCC :
RCOL:

O OoWUTQ

n

RCOL:F

RCOL:T
RCOL:TF

RMT :
RPT :C
RPT :CX
RPT :S

SELC:DP
SELC:DN
*SELC: T
*SELC:R
*SELP:
*SELS:
*SELQ:

*SETU :
*SETU :
*SETU :
*SETU :

TYPE:
TYPE:
TYPE:D

WIND:
WIND:L

WCC :
WMT

= OWnua

P

Backup Magnetic Tape

Clear Unit Demand in CRAM.
Clear Unit Demand in Printer or Card Punch
Clear Unit Demand in Sorter-Reader
Clear Unit Demand in Inquiry buffer

Halt and accept Alpha input from Console
Halt and accept Digit input from Console

Punch acard.
Punch Paper Tape, Character Mode
Punch Paper Tape, Slab Mode
Print, Buffered Printer

Read CRAM Card.
Read Columns of a Punched Card, 400 CPM Reader.............
Read Columns of a Punched Card, 2000 CPM Reader...........
Feed a Card, Read Columns, 400 CPM Reader................ ...
Feed a Card, Read Columns, 2000 CPM Reader
Read Columns, with translation by Reader.
Feed a Card, Read Columns with translation

Read Magnetic Tape. ...
Read Paper Tape, Character Mode..............................
Read Paper Tape, Character Mode, Extra variation
Read Paper Tape, Slab Mode

Select a CRAM, Drop a card, use Present card next
Select a CRAM, Drop a card, use Next card next
Select a CRAM, Test for Ready................................ ...
Select a CRAM, Release present card
Select a Printer or Card Punch
Select a Sorter-Reader........
Select an Inquiry buffer

Set Unit Demand in CRAM i
Set Unit Demand in Printer or Card Punch
Set Unit Demand in Sorter-Reader
Set Unit Demand in Inquiry buffer

Type Alphason Console.,
Type Alphas on Console, Programmed format
Type Digits on Console

Rewind Magnetic Tape.
Rewind Magnetic Tape with Use Lockout

Write CRAM Card
Write Magnetic Tape

*These instructions permit a “'literal”’ to be named as "'A"" if desired.

MEMORY, STORAGE OF INFORMATION:

A fundamental characteristic of any Electronic
Data Processor is its information-
storage, or memory, in which it is able to store
both that part of the data which is being oper-
ated on at the moment, and also the program
for processing that data. National’s 315 Data
Processor is available with memories of 2 000,
5 000, 10 000, 15 000, 20 000 or 40 000 per-
manently-numbered storage locations, which con-
tain stored information. The number assigned
to each location is its address. The range of
addresses is:

internal

MEMORY

SIZE ADDRESSES

2 000 00 000 thru 01 999

5 000 00 000 thru 04 999
10 000 00 000 thru 09 999
15 000 00 000 thru 14 999
20 000 00 000 thru 19 999
40 000 00 000 thru 39 999

Memory references are cyclic modulo memory-
size, That is, if an address is used which is beyond
the memory, the memory-size is automatically
subtracted from this address again and again,
until a new address is obtained which is within
the memory. However, with 15 000-slab memory:
15 000 thru 19 999

20 000 thru 34 999
35 000 thru 39 999

10 000 thru 14 999
00 000 thru 14 999
10 000 thru 14 999

interpreted as
interpreted as

interpreted as

Information is stored in memory by means of
magnetic cores, which are tiny rings of ferrite
material, strung on a lattice of wires. Fach core
may be selectively magnetized in either of two
states which, for convenience, are designated 0
and 1. These symbols are not numbers; they are
merely convenient marks used to distinguish the
two states of a single magnetic core, and any
other pair of conventional symbols would serve
as well. The marks 0 and 1, corresponding to the
two possible magnetized states of a core, are
called bits and therefore a single core may store
either a 0-bit or a 1-bit.

Information may be either numeric or alpha-
numeric. Numeric information (spoken of as
"Digits”) comprises the 10 decimal digits and
the six symbols (the non-decimal digits) shown
in the first row of the Language Code Table.
Alphanumeric information (spoken of as
“Alphas’™) comprises the entire set of 64 charac-
ters shown in the four rows of the table.

A Digit is represented by a combination of
four bits, stored in four magnetic cores, whereas
an Alpha is represented by a combination of six
bits, stored in six magnetic cores. Of these six
bits, the right-hand four are called numeric bits
and the left-hand two are called zone bits.

It will be evident that the sixteen characters
which appear in the first row of the table may be
represented within the processor memory as
either 4-bit Digits or 6-bit Alphas, and in practice
they are stored in both forms at different times.
All input-output communication with paper tape,
punched cards, and printer is performed in terms
of Alphas; all arithmetic operations are per-
formed in terms of Digits; at other times, the
convenience of the programmer will determine
the form in which numeric information is stored.
Special operations are included in the processor
to condense and expand information from one
form to the other.

The information stored in a single memory
location is called a s/ebh, and consists of 12 bits.
Since these 12 bits may be divided into two
groups of 6, or into three groups of 4, a slab may
store either two Alphas or three Digits:

B R|3 A

Alpha slabs

2 4 6|e 4 9

Digit slabs

The term slab is a contraction of “syllable”;
part of a word.

LANGUAGE TABLE

ZONE

BITS

0000 o001 0010 o011 0100 0101 0110

NUMERIC BITS

0t11

1000 1001 1010 o1 1100 1101 1110 un

00 0 1 2 3 4 5 6

o1 ! A B C D E F

10 + J K L M N @

11 * # S T U VvV w

X

8 9 @ , P

Y I < > ' [7 \

The symbol [Z] is conventionally used to represent space.

6

The basic unit of information for processing is
the word, which contains a single item of infor-
mation, such as Account Number, Name, Gross
Pay Year-to-Date, Quantity on Hand, etc. A word
may be up to 8 slabs long, and will usually con-
tain all Digit, or all Alpha, information.

The algebraic sign of a Digit-word is deter-
mined by its extreme LH (left-hand) digit. If the
LH digit is the character hyphen, then the word is
negative; if the LH digit is anything else, then the
word is positive. Thus the number +-7968 would
be stored in a 2-slab word as:

007|968

and in a 3-slab word as:

000007|968

whereas the number -7968 would be stored in a

2-slab word as:

and in a 3-slab word as:

-00l007[968

Therefore the longest negative number that can
be stored in a given word is one digit shorter
than the longest positive number that can be
stored in the same word.

A word is referred to by naming the address of
its LH slab, and by specifying its length (1 to 8
slabs). There are no markers within the infor-
mation to designate the beginning and end of a
word, and therefore the programmer may, at his
convenience, regard a sequence of slabs some-
times as a single word, and at other times as
several words.

Suppose the following three words are in mem-
ory, describing an item in the inventory file:

00101 00 102 00103 00104

]
1
|
STOCK NUMBER SIZE

COLOR

The programmer may, if he chooses, compare
the 4-slab word starting at location 00 101 with a
similar 4-slab word elsewhere in memory (con-
taining the same information about an item re-
ceived) to see if they are the same. Then, for some
succeeding operation, he may again regard this
information as comprising three different words.

ACCUMULATOR:

In addition to the numbered locations of mem-
ory, the processor contains an 8-slab storage
called the Accumulator, and referred to as @. Ivis
implicitly involved in almost every operation per-
formed by the processor, although it is never
named explicitly. The capacity of the Accumulator
is 16 Alphas, or 24 Digits. Since the sign of the
Accumulator is held in the Sign flag (described
later) rather than in the Accumulator itself, the
intermediate results of a computation may range
up to 24 digits, positive or negative. However,
the final result which is to be stored in memory
may not exceed 24 digits positive, or 23 digits
negative, unless double-precision techniques are
used.

Consider the problem of adding the contents
of two Digit-words, and storing their sum in a
third word. Suppose the initial contents of the
three words, and of the Accumulator are:

02 347

02 344 02 345 02 346

16 999 17 000 17 001 17 002 17 003

000|001

12210 1221 12212 12213 12214

3 20|83

§2408469250862436799

e First LOAD the Accumulator with the contents
of the 2-slab word starting at location 02 345.
The Accumulator now contains:

{0000000000000477523

e Then ADD to the Accumulator the contents of
the 3-slab word starting at location 17 000.
The Accumulator now contains:

0|00 0|0 0OO0O|00CO0|00S5|47 7|52 4

e Now STORE the contents of the Accumulator
in the 3-slab word starting at location 12 211.
The three words and the Accumulator now
contain:

02 345 02 346

347

16 999 17 000 17 001 17 002 17 003

000

@

@

@

12210 12211 12212 12213 12214

7 2 6/0 0547 7|52 4(438

¥

000000000000 S5(477|5024

This illustrates several important character-
istics of the processor:

® The processor selects the desired words within
memory, without being concerned about the
information on either side of a word.

* “Reading” or copying information from a
word, or from any register, does not alter the
information inthat word or register.

* Placing information into a word or a register
completely replaces the information previously
there, and the previous information is then lost.

® All transfers of information within the pro-
cessor are right-justified. That is, the right-hand
end of the information-source is always lined
up with the right-hand end of the information-
destination.

® If the destination is longer than the source, the
destination is always filled out to the left with
zeros.

INDEX REGISTERS (R-registers):

An instruction of the type just illustrated
names an Operation, an Address in memory, and
aWord Length. The instruction also names one of
32 Index Registers which are always used by the
processor in executing any instruction. An index

register holds an address—a positive number up
to 39 999.

In order to determine the actual address in
memory to which the instruction refers, the
processor automatically adds the address named
in the instruction, plus the address stored in the
index register.

Suppose that index registers 16, 17, 18 con-
tained:

16 02005
17 16900

18 12200

Then the three instructions just illustrated could
have been written:

LOAD 2 slabs from (R16) 340. [from 02 345]
ADD 3 slabs from (R17) 100. {from 17 000]
STORE 3 slabs in (R18) 011. [in 12 211]

ADDRESSING METHODS:

An instruction names a positive 3-digit number
in the address column, specifying the position of a
word within an item of data. The index register
names the base of the item—the address of the
first slab of the item.

Suppose a series of transactions in memory
which are to be posted by a Commercial Bank to
its checking-account file. Each transaction com-
prises four words, occupying nine slabs of mem-
ory, and the first transaction starts in location
04 996:

Address | L |Pos. D/A 0 1 2 3 4 5 6 7 Remarks

< 1049963 {0|D Account number

§ 04 99914 |3 | D Amount of trans.
; 05 003|1 |7(D Transaction code
g 05 004|118 D Batch number

=] 0500513 [0|D Account number
g 05 008|4 |3 | D Amount of trans.
2105 012|1 |7 D Transaction code
) 05 013|1 {8 D Batch number

. |05014[3]0|D | || Account number
€05 017(4 |3 D | [4mount of trans.
% 05 0211 |7|D e & ;;u - ||Transaction code
"los 022/1 | 8] D || 'saten numper
£(05023(3|0]|D 1 | [laccount number
; |05 02Ala 1= “‘*J--J-___l_, ;;_Jﬂ—;_J' £ _trang.

In the program for posting these transactions,
every instruction referring to Account Number
will contain 000 as its address reference; every
instruction referring to Amount will contain
003; every instruction referring to Transaction
Code will contain 007; etc.

Before starting to post, an index register will
be preset to contain 04 996. Every instruction
will then refer to the appropriate word in the first
transaction. When that transaction is completely
posted, the index register will be augmented by
9, and will then contain 05 005 (the address of
the first slab of the second transaction) where-
upon each instruction will refer to the appro-
priate word in the second transaction. And so on.

In general, one Index Register will be used to
control each data stream.

JUMP REGISTERS (J-registers):

A total of 32 jump registers are also provided
in the processor. Each of these holds an address—
a positive number up to 39 999.

Many instructions provide for alternate exits,
depending on conditions encountered while the
instruction is being executed. If such a condition
is found, then the processor will not proceed
to the next instruction in sequence when the
instruction is completed, but will instead jump
to an instruction whose address is stored in one
of the J-registers.

Such an instruction will name a J-register as
being the first register in the jump table for that
instruction. The jump table contains as many
J-registers as there are possible exits from that
particular instruction. Suppose, for example,
that some instruction has three possible exits,
corresponding to conditions "A”, “B”, “C”; and
in writing the instruction the programmer speci-
fies J23 as the beginning of the jump table. Then
if the instruction finds condition ““A”, the proces-
sor will jump to the address stored in J23 after
this instruction is complete; if condition “B”, it
will jump to the address stored in J24; if condi-
tion “C”, it will jump to the address stored in
J25. If none of these conditions exist, the pro-
cessor will execute the next instruction in the
normal program sequence.

Certain of the R-registers and J-registers per-
form special functions, and are not normally used
in the fashion just described. A detailed discus-
sion of the characteristics of those registers is
given later.

SINGLE STAGE INSTRUCTIONS:

A single stage instruction is written in the
following format:

Op v L] x | A

1 1 1 | 1 1 i

Op and V name the operation to be performed,
and the variation if any. L indicates the length of
the word (up to 8 slabs), X the index register to
be used, and A the address reference. The pro-
cessor obtains the actual address by adding A
to the contents of the index register.

When this instruction is actually stored in the
processor memory, as part of a program to be
executed, it occupies two slabs of memory. The
first slab contains Op, V, L and X, all condensed
into 12 bits; the second slab contains A.

DOUBLE STAGE INSTRUCTIONS:

A double stage instruction is written in the
following format:

Op v oL oxyy A/B

1 i | | 1 1 |

| 1 | 1 | 1 |

Note that the instruction requires two lines, and
that the L column is not used. A is the address
reference; B specifies other information as re-
quired by each instruction. X usually specifies an
R-register, and Y usually specifies a J-register, but
not invariably. Therefore in the description of
each instruction, an R-register will be called RX
if it is specified by X, and RY if it is specified by
Y; a J-register will be called JX if it is specified
by X, and JY if it is specified by Y.

When this instruction is stored in memory, it
occupies four slabs. Op, V, X and Y are con-
densed into the 24 bits of the first and third
slabs; the second and fourth slabs contain A
and B respectively.

FLAGS:

A number of flags are provided in the pro-
cessor. These may be turned on and off by the
program at will, and perform certain automatic
functions, as well as storing conditions which
the program may test at a later time. The terms
onfoff, set/cleared are used interchangeably to
describe the two states of a flag.

SIGN FLAG:

This flag is associated with the Accumulator;
it automatically indicates the algebraic sign of
the Accumulator contents, and governs all arith-
metic operations accordingly. However, for
special purposes, it may be set positive or negative
by the program, independently of the Accumu-
lator contents.

Testing the Sign flag does not change its setting.

OVERFLOW FLAG:

Whenever an attempt is made to store more in-
formation into a word than that word can hold,
putaway stops at the LH (left hand) end of the
word, and the remaining information is not
stored. When this occurs, or when certain other
conditions arise, the processor usually sets the
Overflow flag. The precise circumstances under
which each operation might set Overflow are
described specifically for the individual opera-
tions.

The Overflow flag may also be set for special
purposes by the program, independently of other
operations.

Once Overflow has been set, the flag remains
set until the program tests it, at which time it is
automatically cleared.

GREATER, LESS, EQUAL FLAGS:

These flags are set automatically, to indicate
the result of a COMPARE or a COUNT in-
struction, and also to record detailed information
about the execution of a SUPPRESS or a SCAN

instruction.

The G, L and E flags are not independent; only
one of them may be on at a time. However, they
may all be off at the same time.

Testing these flags does not changetheirsetting.

MEMORY FLAGS:

It is often convenient for the programmer to
designate flags of his own, to record information
for later use. For example, it may take many tests
to determine if an individual employee should
receive overtime pay, and this yes or no answer
may be required at two or more widely separated
points in the payroll program. Rather than repeat
the entire series of tests each time this answer is
needed, the program obtains the answer the first
time, and records it in a memory flag. Thereafter
it is only necessary to test this flag each subse-
quent time the answer is needed.

Any slab in memory may be designated as
containing a pair of flags, corresponding to the
two Alphas which the slab can store. These
then become the LH (left hand) and RH (right
hand) flags in that slab. If a flag contains the
Alpha character zero it is off; if it contains any
other Alpha character it is on. These flags may
be set, cleared, and tested independently of each
other. Since any slab of memory may contain a
pair of flags, the number of such flags available
to the programmer is practically unlimited.

Testing a memory flag does not change its
setting.

DEMAND PERMIT FLAG:

Many of the peripheral units have the ability
to interrupt the main program (fo demand pro-
cessor attention) when they have completed an
operation previously assigned to them. In this
fashion, the relatively slow input-output units
may be kept running at maximum rate, while the
processor is performing some other job; oc-
casionally the main program will be interrupted
for a brief interval to attend to one of the input-
output units, and then immediately resume, while
the slow unit continues to operate independently
at its own speed.

The programmer will wish to permit Demand
interruption during certain portions of his pro-
gram, and to forbid it during other portions.
The Demand Permit flag gives him this facility.

While the Demand Permit flag is on, any pe-
ripheral unit whose Unit Demand flag (see
below) is on, will exercise Demand whenever it
is ready to receive information from the proces-
sor, or to deliver information to the processor.

When Demand is exercised, the processor
always completes the current instruction in the
main program, then jumps to the demand pro-
gram. The programmer may specify different
demand programs for different portions of the
main program, if he wishes. There is a single
entry-point to any demand program, regardless
of which among several possible peripheral.units
may have interrupted, and no indication is fur-
nished to show which unit actually did exercise
Demand. This gives the programmer complete
flexibility in assigning priorities among com-
petitively demanding units. The demand program
merely attempts to SELECT each unit in turn,
until it finds one which is in the ready state, and
then gives attention to that unit. The assigning of
prioritiesamongunitsis performed inthe simplest

10

possible fashion—by specifying the sequence in
which the units are tested.

Entering a demand program turns off the
Demand Permit flag, since normally it is not
desirable to have the demand program itself
interrupted. However, the programmer may
permit this if he chooses, merely by having the
demand program turn the Demand Permit flag
back on. Just before this, he will probably have
specified a different demand program to be used
for the time being.

The instructions TEST:D, TEST: T, TEST: SW,
SETF:D, SETF: T, SETU, CLRU, SELect are pro-
tected against Demand; the processor never
permits interrupt after completion of one of
these instructions.

The program may set and test the Demand
Permit flag. It is turned off automatically either
when tested, or when Demand interrupt occurs.

UNIT DEMAND FLAGS:

The following peripheral units are capable of
exercising Demand: Printers, Card Readers, Card
Punches, CRAMs (Card Random Access Mem-
ories), Magnetic Character Readers, Inquiry
Stations. Each of these units has within it a Unit
Demand flag, which may be set and cleared by
the program.

The programmer will often wish to permit
some of the peripheral units, but to forbid others,
to exercise Demand during a particular part of
the program. He then has the program turn the
Unit Demand flags in the permitted units on, and
those in the forbidden units off. Any device whose

Unit Demand is off may still be used by the pro-
cessor at any time; but it must await the pro-
gram’'s convenience, rather than being able to
demand attention at its own convenience.

TRACER PERMIT FLAG:

To facilitate code-checking, it is customary to
use supplemental tracing or automonitoring pro-
grams which permit the operator to follow the
execution of the program being checked. In
order to provide communication between the
main program (the one being checked) and the
tracing program, a Tracer interrupt facility is
provided, controlled by the Tracer Permit flag.

When this flag is on, @nd the appropriate Con-
sole switch is also on, then at the conclusion of
the execution of each instruction in the main
program the processor automatically jumps to
the tracing program.

The instructions TEST:D, TEST: T, SETF:D,
SETF:T, DLR are protected against tracing; the
processor never permits Tracer interrupt after
completion of one of these five instructions.

The program may set and test the Tracer Per-
mit flag. Itis turned off automatically either when
tested, or when Tracer interrupt occurs.

REGISTERS:

The 32 R-registers and 32 J-registers may be
thought of as existing in the following array,
which indicates the special functions assigned to
some of the registers:

RELATIVE ADDRESS

JUMP
(INDEX)
0 16 0 STEP uses Registers]] 6 MICR Sorter-Reader uses
00 through 05 ‘ Registers 16 through 19
1 1 1 1 ' t . j 1 0 1 ' _
1 17 1 {17
1, 1 1 i ' 1 i 1 1]
2 18 2 18
%
!
. _ 1 1] i i i ! 1 I I ! _
3 19 3 9
S R | 1 1 1 1 i + 1 |] 1 .
Inqui stem uses
4 20 4 ‘20 Recg‘isv;rys QSOY 7:1rough 2e2
| 1 1 1 1 I 1 L 1 1 ! 1
5 5 21
|
L 1 1 1 1 1 i ; 1] 1 1 a
6 22 6 PACE uses Registers 22
06 through 11
! ' 1 ' 1 1] ' ' v
23 7 23
S ! 1]] 1 1 I
24 8 ‘24
! LI A | 1] | 1 1 1 1
25 9 125
I S S 1 L 1] 1 i 1 1 ' |
10 26 10 26
|
R S T | 0 b ' 1 1 “ [1]]
1 27 n 27
|
|
L v S R ‘
12

S
.
i

e

11

12

USING THE REGISTERS:
LOADING THE REGISTERS:

An address is loaded into a register from a
memory pair—a 2-slab word of memory. In this
loading operation only the RH 18 bits (4%
digits) of the pair are placed into the register.

This is equivalent to saying that, if an attempt
is made to load a negative number into a register,
the negative sign is ignored, and the number is
loaded as positive. If an attempt is made to load
a number greater than 39 999, the processor
automatically subtracts 40 000 from that number
again and again until the resultis less than 40 000.

STORING THE REGISTERS:

An address is stored from a register into the
RH 18 bits of a memory pair. The LH 6 bits
(114 digits) of the pair are automatically set
to zero.

ADDING AND SUBTRACTING IN THE REGISTERS:

Any addition and subtraction performed in
the registers is modulo 40 000.

This is equivalent to saying that, if a number
is added to the contents of a register and the sum
is greater than 39 999, the processor automatic-
ally subtracts 40 000 again and again until the
result is less than 40 000. If a number is sub-
tracted from the contents of a register, and the
result is negative, the processor automatically
adds 40 000 again and again until the result is
positive (or zero).

NOTE: The contents of a register is always a
positive number from 00 000 thru 39 999, since
each of the registers contains 18 bit-positions.
In loading a register, only the RH 18 bits of the
memory pair are loaded, with the LH 6 bits
ignored. In storing a register, the RH 18 bits
of the pair are stored, and the LH 6 bits set to
zero. In adding and subtracting in a register, the
augmenter is in a memory pair, and only the RH
18 bits of the augmenter are used; except that if
the LH 4 bits of the augmenter form the Digit
hyphen then the augmenter is treated as negative.
The result of the addition or subtraction is stored
in the register modulo 40 000 as a positive
number.

However, once the processor is given an
address to lookup in memory, that address is
interpreted modulo memory-size in memories of
less than 40 000 slabs, except for the special rule
for 15 000-slab memory, stated on page 5.

SPECIAL FUNCTIONS OF SOME REGISTERS:

In order to obtain cross-references within the
program, the first 10 index registers (ROO thru
RO9) always contain the addresses 00 000,
01 000, 09 000 respectively. Thus a jump
to the instruction in location 06 785 would be
written:

Op v | L] X A
J U M P 0o 617 8 5

1 i] 1 1 1 1

R-30 When the processor performs certain
operations whose scope is variable, it automati-
cally stores an address in R30 to indicate where
the operation terminated. Therefore R30 will not
normally be used by the programmer for routine
address-modification. There is a comment in
the description of each instruction which stores
information in R30.

R15 and R31 may never be used for address-
modification.

R31 is used by the processor as its Sequence-
Control Register; each time a new instruction is
to be executed, the processor finds the address of
that instruction in R3 1, and immediately replaces
that address with the address of the next instruc-
tion in the normal sequence. If an instruction
requires a branch or jump out of the normal
program sequence, the processor saves the new
contents of R31 as a link back to the normal
sequence, and then plants the jump address
into R31.

R15 is used as the Link Register for program-
decision jumps, and is called the main link.
When the jump is the result of a program decision
(such as TEST FLAG or Unconditional Jump)
the contents of R31 are saved in R15 before the
jump address is placed into R31. There are only
three branching instructions (JUMP:IP; TEST.D;
TEST:T) which do not link.

The programmer may at any time impose a
jump on the program (without the use of a
branching instruction) by changing or replacing
the contents of R31. Since these are operations on
one of the registers, they are not classified as
jumps, and do not link. Similarly, the pro-
grammer is free to change or replace the con-
tents of any of the link registers.

This process can best be illustrated by a flow
chart which shows the detailed steps performed
by the processor in executing an instruction. The
notation (R31) means the contents of R31,

TO EXECUTE NEXT INSTRUCTION

START

[Read the two slabs of memory starting at the location whose address is in R31.

Add (R31) 4 "2"~——R31.

DOUBLE

SINGLE
{)—
\J

AP Add (R31) 4+ “2"——R31.

CE Execute the instruction.

Jump instruction.

YES

Tracer, Demand).

Link as required.

J30 and J31 hold the Demand program and
Tracer program jump addresses, respectively.
The programmer stores the appropriate ad-
dresses in these registers at the beginning of the
program, and of course he has the privilege of
changing them at any time during the program
if he sees fit to do so.

When either Demand interrupt or Tracer in-
terrupt occurs, the contents of R31 are preserved
in J15; then the contents of J30 or J31, as ap-
propriate, are planted into R31, imposing a jump
to the Demand or to the Tracer program.

J15 holds the link—the address of the next
instruction in the interrupted program—for
either Demand or Tracer interrupt.

J14 holds the link if any instruction takes a
jump table exit. The contents of R31 are saved
in J14; then the contents of the designated one of
the J-registers are planted into R31.

"o Check for any kind of jump ——
L_Jf (Program-decision, Jump-Table,

Jump address— R31, _

Is this a single stage or double stage instruction?

Read two more slabs of memory starting at the location whose address is 0w in R31.

Note that the instruction may operate on the registers, and in particular may change
the contents of R31. This will cause a jump in the program, but is not classified as a

}This is shown in detail on the next chart.

It occasionally happens that the programmer
does not care whether an exit condition occurs
or not during execution of an instruction. He can
then suppress the exit by naming J14 as the jump
register for that instruction. The sequence of
events within the processor after detection of the
exit condition then is:

® Plant the contents of R31 (the address of the
next instruction in sequence) into J14.

* Plant the contents of the designated J-register
(which is J14, and which now has the same
contents as R31) into R31.

e The contents of R31 thus remain unchanged,
and the processor takes the next instruction
in sequence.

All these processes are illustrated on the fol-
lowing flow chart (an expansion of one section
of the previous chart) which also shows the
result if two, or all three, of these jumps are re-
quired simultaneously.

14

TO EXECUTE NEXT INSTRUCTION

YES

Execute the instruction.

Is this a program-decision?

Does it cause a Jump-Table exit?

(R31)—>J14.

Does the decision call for a jump?
NO
YES

(R31)}—>R15.
This step is omitted in JUMP: IP3
TEST:Dy TEST:T.

)

J ~———R31.

YES

Check for Demand interrupt.

Turn off Tracer Permit.

(R31)=—>J15.
This may be a branch address, planted
by step A or step B above.

{J31)—R31.

To Tracer program, whose address is in J31.

Return to the main program is by SETF:T then DLR.
Since these are both protected against tracing, interrupt
does not recur until after the next instruction in the main
program has been executed.

If (R31) is a previously-stored branch address, then DLR
“returns’ to the branch program.

In case Demand is also operating, the first instruction in the
Tracer program is TEST : D so that it will not suffer Demand
interrupt. The Tracer program ends with SETF:D (if the
original test said yes) then SETF : T then DLR. For the effect
of Demand upon DLR see the next chart.

Turn off Demand Permit.

(R31)=—>J15.
This may be a branch address, planted
by step A or step B above.

(J30)—>-R31.

To Demand program, whose address is in J30.

Return to the main program (or branch program) is by
SETF : D then DLR. For the effect of a new Demand upon
DLR see the next chart.

STRUCTION
(IN THE MAIN PROGRAM)

» TO THE NEXT IN

-

It is not immediately obvious that a Demand
interrupt occurring at the conclusion of a DLR
instruction will work correctly. It will, however,
because DLR is an operation on the contents of
R31 (thus imposing a jump) but is not a Jump
instruction. The following flow chart of part of
the DLR instruction shows how it works:

(p Execute the instruction.,
DLR plants (J15)—R31.

DLR is not a program-decision.

DLR does not cause a Jump-Table exit.

Does not check for Tracer interrupt, since DLR
is protected against Tracing.

Check for Demand interrupt.

Turn off Demand Permit.

(R31}=——>J15.
This leaves (J15) unchanged, and it
still links to the main program.

{J30) ——=R31.

BACK TO THE DEMAND PROGRAM.

15

16

NAMING OF LITERALS:

Certain of the instructions permit naming
index registers R15 and R31 as though they were
to be used for address-modification, but when
this is done, the processor accepts it as an indi-
cation to perform a special function.

Whenever R15 or R31 is named in the X col-
umn (in those instructions which permit it) then
the processor interprets the contents of the A
column not as the address of the data, but as the
data itself. The L column is then not used.

Thus suppose it is desired to multiply the Ac-
cumulator contents by 17, and then to add 125
to the result. The instructions would be:

Op A L X A
T 1 5,0 1 7
i 1 | | | | 1
A D D 1 5|1 2 5
1 L 1 1 1 1 1

If one were writing programs in machine
language, and wanted an Alpha literal, it would
be necessary to write its Digit equivalent. How-
ever, the NEAT Assembly and the NEAT Com-
piler permit the programmer to designate a
literal as either Digit or Alpha, and the Digit
equivalent of an Alpha literal is produced auto-
matically.

Those instructions, and variations, which per-
mit naming a literal in this fashion are marked
throughout this manual with an *.

THE “EFFECTIVE LENGTH” OF THE
ACCUMULATOR:

Although the actual length of the Accumulator
is, and always remains, 8 slabs, the concept of
its “effective length” is a useful one when dis-
cussing overflow conditions, and in the formulas
for the execution times of the instructions.

The effective length of the Accumulator is
simply the number of slabs, counting from the
RH end, which contain all the non-zero informa-
tion in the Accumulator. However, the effective
length is never zero, so a cleared Accumulator
has an effective length of one slab.

EFFECTIVE

ACCUMULATOR CONTENTS LENGTH

fooo0fooofoo1]ooolooofooolst slooas

—

A BIC D|E F|G H|I J|K M[N &P Qs

[0 o[o 0o 0oJo ofo ofo =[N C[R =]s3

[ooolooo[ooo]oooiooo[ooo{oooiooﬂl

LH

RH

(@)
Op:V

(A)

A-word

RX
RY
JX

JY

Alpha

Digit

slab

word

pair

* %k

17
DEFINITIONS

Left-hand.

Right-hand.

The Accumulator.

The contents of the Accumulator.
Operation and variation.

The A-address named in an instruction. May range from 000 thru 999.
May not be negative.

The contents of the A-word.

The length of the word referred to in an instruction.

The word referred to by the address A.

The address of the LH slab of the word is obtained by adding
A + contents of an index register.

The length of the word is L slabs.

The R-register specified by X.

The R-register specified by Y.

The J-register specified by X.

The J-register specified by Y.

An augmenter named in an instruction. May range from —99 thru 999.
A 6-bit character.

A 4-bit character.

The information stored in a single memory location.
A slab comprises 2 Alphas or 3 Digits.
The term “slab” is a contraction of “syllable”: part of a word.

A single unit of information, consisting of 1 to 8 slabs. A few operations
permit longer words than this.

A 2-slab word containing an address or an augmenter in its' RH 18 bit-
positions. If the pair contains an augmenter, then it may be positive or
negative.

The number of times a sub-unit of an operation is to be performed.
(ie- Load N registers; Move N slabs; etc.)

Jump address named in an instruction.
Indicates an instruction which permits naming of a “literal” if desired.

Indicates an instruction which requires naming of a “literal”.

18

*LOAD Accumulator

* STORE Accumulator

Op Vv L X

Op A L X

L D L

1 1 1 1

(A) replaces (@)
or "A’ replaces (@)

This operation may be performed on either
Digit or Alpha information.

The A-word is transcribed into the Accumula-
tor, right-justified, and the Accumulator is filled
out with zeros to the left.

SIGN FLAG: The processor does not "know"
whether the programmer re-
gards the A-word as made up of
Digits or of Alphas. Therefore,
if the left-hand four bits of the
A-word are all 1-bits, the pro-
cessor assumes a negative digit-
word, sets the Sign flag negative,
and replaces those four 1-bits in

the Accumulator with four 0-bits.

Otherwise the Sign flag will be
set positive.

OVERFLOW: Cannot occur.

(@) replaces (A)
or (@) replaces "A”

This operation may be performed on either Digit
or Alpha information.

The Accumulator is transcribed into the A-word
right-justified. If the A-word is shorter than the
effective length of the Accumulator, overflow
occurs.

SIGN FLAG: If the Sign flag was previously
set negative, and if the LH digit
of the stored A-word is zerp, then

that digit is replaced by hyphen.

If the LH digit of the stored
A-word is not zers, then there
is no room for the negative sign,
and overflow will occur.

In case of data overflow, the LH
digit of the stored A-word might
accidentally be zero; in this case
a negative sign is not stored.

Setting of the Sign flag remains
unchanged.

ACCUMULATOR: Remains unchanged.

OVERFLOW: 1. The A-word is shorter than
the effective length of the Ac-

cumulator.

2. Signflagis negative, and there
is not room to store the sign
in the A-word, even though
there is room for all the digits.

* ADD to Accumulator

* SUBTRACT from Accumulator

Op \' L

Op \ L X

S U B L X

1 1 1 1 1 | !

(@) + (A) replaces (@)
or (@) + “A” replaces (@)

This operation may be performed only on Digit
information.

If the LH digit of the A-word is hyphen then the
wordis considered negative and thatdigit isadded
as though it were a zero; otherwise the word is
considered positive. The setting of the Sign flag
designates the algebraic sign of the Accumulator.

The addition is performed according to the
algebraic law of signs, and the sign of the result
causes a new setting of the Sign flag.

NOTE: If any ADD operation yields a
result of “zero”, then the Sign
flag remains unchanged.

SIGN FLAG: Designates the sign of the Ac-

cumulator;

Then is set by the sign of the
result.

ACCUMULATOR: Holds the result of the operation.

OVERFLOW: If the result contains more than

24 digits.
The Accumulator will then hold
the RH 24 digits of the result,

and the Sign flag will be set
correctly.

(@) — (A) replaces (@)
or (@) — “A” replaces (@)

This operation may be performed only on Digit
information.

If the LH digit of the A-word is hyphen then the
word is considered negative and that digit is
subtracted as though it were a zero; otherwise
the word is considered positive. The setting of
the Sign flag designates the algebraic sign of
the Accumulator.

The Subtraction is performed according to the
algebraic law of signs, and the sign of the result
causes a new setting of the Sign flag.

NOTE: If any SUB operation yields a
result of “zero”, then the Sign
flag remains unchanged.

SIGN FLAG: Designates the sign of the Ac-

cumulator;

Then is set by the sign of the
result.

ACCUMULATOR: Holds the result of the operation.
OVERFLOW:

If the result contains more than
24 digits.

The Accumulator will then hold
the RH 24 digits of the result,
and the Sign flag will be set
correctly.

19

* ADD to Memory * COMPARE
Op v L] x A Op v L] X A
A D D M L X A c 6 M P L X A
1 L 1 1 1 1 | L 1 1 i i 1 |

(@) + (A) replaces (A)
or (@) + "A” replaces "A”

This operation may be performed only on Digit
information.

If the LH digit of the A-word is hyphen then the
word is considered negative and that digit is
added as though it were zero; otherwise the word
is considered positive. The setting of the Sign
flag designates the algebraic sign of the Accumu-
lator.

The addition is performed according to the
algebraic law of signs, and the sign of the result
is stored in the A-word with the result itself.
However, the Sign flag is not changed by the
result.

NOTE: If this operation yields a result
of zero the original sign of the
A-word remains unchanged.

SIGN FLAG: Designates the sign of the Ac-

cumulator;

Remains unchanged.

ACCUMULATOR: Remains unchanged.

OVERFLOW: 1. If the result contains more
significant digits than the A-

word can hold.

2. If the sign of the result is
negative, and there is no room
(see STORE) for the sign in
the A-word. The sign is not
stored.

(@) is compared with (A)l and G, L, E flag is
or (@) is compared with “"A”) set accordingly.

This operation may be performed on either Digit
or Alpha information.

The G-flag is set if (@) is Greater;

The L-flag is set if (@) is Less;

The E-flag is set if (@) is Equal.

With Digit information:

If the LH digit of the A-word is byphen then the
word is considered negative and that digit is
compared as though it were a zero; otherwise
the word is considered positive. The setting of
the Sign flag designates the algebraic sign of

the Accumulator.

The comparison is performed according to
the algebraic law of signs, whereby any nega-
tive number is smaller than any positive num-
ber; and of two negative numbers, the larger
magnitude is the smaller number.

If any non-decimal digits are present, the
result can be predicted by giving the digits
their binary values.

With Alpha information:

Since the operation does not distinguish be-
tween Digit and Alpha information (the actual
comparison is bit-by bit) it is essential that the
Sign flag be set positive before this operation
is performed. In dealing with Alpha informa-
tion, this will usually be the case anyway.
However, note that if the LH character of the
A-word is apostrophe, left bracket, right bracket,
reverse slant, then the A-word will be con-
sidered negative.

NOTE: If the two numbers being com-
pared are “positive zero” and
“negative zero” then this opera-
tion sets the E-flag.

SIGN FLAG: Designates the sign of the Ac-

cumulator.

Remains unchanged.
ACCUMULATOR: Remains unchanged.

OVERFLOW: Cannot occur,

*DIVIDE Accumulator
Op \" L X A

(@) replaces LH (

=l @)

(A) P Remainder re-
1

‘((%) replaces LH (@) places RH (@)

or

This operation may be performed only on Digit
information.

The quotient appears, right-justified, in the LH
4 slabs of the Accumulator. The remainder ap-
pears, right-justified, in the RH 4 slabs of the
Accumulator.

If the LH digit of the A-word is hyphen then the
word is considered negative and the digit is
treated as though it were a zero; otherwise the
word is considered positive. The setting of the
Sign flag designates the algebraic sign of the
Accumulator.

The division is performed according to the alge-
braic law of signs, and the sign of the result
Causes a new setting of the Sign flag.

No sign is explicitly associated with the re-
mainder; it is understood that the remainder has
the same sign as the dividend (#nstial setting of
the Sign flag).

After storing the result of the division, the
quotient and remainder should thereafter be
treated as separate words. The remainder word
will appear to be positive, and the programmer
must keep track of what its sign ought to be.

If for any reason the remainder alone is to be
stored, observe the comments under STORE,
with regard to overflow and storage of the Sign
flag. Particular care must be taken at this point
if there is a possibility that the quotient may be
either zero or minus-zero.

SIGN FLAG: Designates the sign of the Ac-

cumulator;

Then is set by the sign of the
Quotient.

ACCUMULATOR: Holds the dividend (numerator);
Then receives the result of the
operation.

*MULTIPLY ACCUMULATOR
Op \ L X A
M UL T L| X A

(@) x (A) replaces (@)
or (@) X “A” replaces (@)

This operation may be performed only on Digit
information.

If the LH digit of the A-word is hyphen then the
word is considered negative and that digit is
multiplied as though it were a zero; otherwise
the word is considered positive. The setting of
the Sign flag designates the algebraic sign of the
Accumulator.

The multiplication is performed according to
the algebraic law of signs, and the sign of the
result causes a new setting of the Sign flag.
SIGN FLAG: Designates the sign of the Ac-
cumulator;

Then is set by the sign of the
result.

ACCUMULATOR: Holds the result of the operation.

If the sum of:
Length of the A-word and
Effective length of the
Accumulator.
is more than 8 slabs.

OVERFLOW:

No multiplication will be per-
formed, and the contents of the
Accumulator will be unchanged.

OVERFLOW: No division is performed, and
overflow occurs, in the follow-

ing cases:
1. The A-word contains zero,

2. The A-word is more than 4
slabs long.

3. The effective length of the
Accumulator is more than
4 slabs, unless the A-word
containsanumber of greater
magnitude than the number
in the LH 4 slabs of the
actual Accumulator. This is
the criterion for obtaining a
quotient more than 4 slabs
long, which is forbidden.

21

22

* BINARY ADD to Accumulator EDIT
Op v [L] x A Op v |1
B A D D L X E D I T L X
1 1 1 1 ! | 1 1 1 1 1)| i 1

(@)+ (A) replaces (@) Addition is Mod-64

with no carry between

Alpha positions.

or (@)+ "A” replaces (@) Addition is normal,

SIGN FLAG:

ACCUMULATOR:

OVERFLOW:

with full carries.

Ignored. Both operands con-
sidered positive.

Remains unchanged.
Holds result of the operation.

When adding (A), overflow can-
not occur.

When adding “A”, overflow will
occur if the result exceeds the
96-bit capacity of the Accumula-
tor, but this is unlikely.

ADDITION TABLE
FOR BINARY ADD

0 1
0 0 1
1 cO

“¢'" means carry

Edit (A) into @ according to format-control
previously in @.

This operation may be performed only on Alpha
information.

The characters of the A-word are transcribed,
one by one, from right to left, into the Accumula-
tor, replacing certain of the characters previously
in the Accumulator.

In order to do this, the characters in the Ac-
cumulator are scanned from right to left, until
either question or comma is found.

Replace the guestion by the next
(initially the rightmost) charac-
ter of the A-word, and continue
to scan the Accumulator.

If question

If the next character of the A-
word is anything other than
asterisk or space then leave the
comma unchanged and continue
to scan the Accumulator.

If comma

If the next character of the A-
word is either asterisk or space
then replace the comma with that
character, but do not advance to
the next character of the A-word.

The operation terminates when either the A-
word or the Accumulator is exhausted.

SIGN FLAG: Remains unchanged.

ACCUMULATOR: Holds the format-control pat-
tern;

Then holds the edited A-word.

OVERFLOW: Cannot occur.

EDIT

Example 1:

A-word
SPsP SP sP * Accumulator initially
sp sp|F splsp se[$ 1|5 914 7] 92 =« Accumulator finally
Example 2:
A-word
SP sP SP sP Same Accumulator initially

sp sp [W sp|sp sp|$ x|x 4(2 9. 1

N
*

Accumulator finally

SUPPRESS SET and CLEAR Processor Flags
Op \ L X A
S . U 1 P . P . L)I(' A . FORMAT A: All but Memory Flags

Leading zeros in the A-word are replaced with
spaces.

This operation may be performed only on Alpha
information.

The A-word is scanned from left to right. If the
first character is a zero it is replaced by a space and
the scanning proceeds to the next character; and
so on,

The operation terminates when either:

1. Thescanning process encountersany charac-
ter other than zero.

2. The A-word has been exhausted, and now
contains all spaces.

After the operation terminates:

The Accumulator contains the number of
slabs in which suppression has occurred.

If an odd number of zeros were suppressed,
the G-flag is turned on.

SIGN FLAG: Always set positive.

ACCUMULATOR: Holds tally of number of slabs
now containing spaces.

G-FLAG: ON if odd number of spaces.

OFF if even number of spaces.
L-FLAG; E-FLAG: Always turned OFF.

OVERFLOW: Cannot occur.

**SETF :

Op A L X A

s E T F| ()

FORMAT B: Memory Flags

Op \ L X A
s ETF 2 X [A
Op \ L
¢Cc L R F| (V) X
L1 ' ! L
*#SETF:4 Set Sign flag plus.

Set Sign flag minus.

**SETF: 0 Set Overflow flag on.

-
**SETF:D Set Demand Permit flag on. ‘ £
-
#*#SETF:T Set Tracer Permit flag on. ‘ E
*SETF:LH Set LH Memory flag on, 3
in 1-slab A-word. §.27
£33
*SETF:RH Set RH Memory flag on, | o %g
in 1-slab A-word. '[_‘C"
*CLRF:LH Set LH Memory flag off, §
in 1-slab A-word. § K —g
£3%
*CLRF:RH Set RH Memory flag off, | o X &
in 1-slab A-word. =

SIGN FLAG: Remains unchanged, except by

SETF: 4 and SETF- —.
ACCUMULATOR: Remains unchanged.

OVERFLOW: Cannot occur, except as result of

SETF:6

Protected

TEST (single-stage)

Op

\' L

T E S T

1) |

V) X J

Each of these may cause a jump to the instruction
whose address is: ‘)" + (contents of RX)

TEST:G Jump if G-flag is on.

TEST:

TEST:

TEST:

TEST:

TEST:

TEST:

SIGN FLAG:

Set Link in R15

Jump if L-flag is on.
Set Link in R15

Jump if E-flag is on.
Set Link in R15

Jump if Sign flag negative.
Set Link in R15

Jump if Overflow flag is on.
Set Link in R15

Jumpif Demand Permitflagis on.
Does not link.

Jump if Tracer Permit flag is on.
Does not link.

The programmer will use TEST : D
and TEST:T, with jumps sup-
pressed, to turn off the Demand
and Tracer flags. Aside from
that, these instructions are used
only for housekeeping purposes
in the “canned” portions of the
Tracer and Demand programs.

Remains unchanged.

ACCUMULATOR: Remains unchanged.

OVERFLOW:

NOTE:

TEST:SL Did SCAN stop on left digit or alpha?
Same command as TEST:E

TEST:SM Did SCAN stop on middle digit?
Same command as TEST: L

TEST:SR Did SCAN stop on right digit oralpha?
Same command as TEST: G

Cannot occur.

When testing the G, L, E flags after
SCAN, it is more convenient to use
the following alternative mnemonics.

Flag not disturbed

Flag turned off

* TEST (double-

FORMAT A:
Test Memory flags.

stage)

Jump to address named in instruction.

Link in R15.
Op VoL x)y A/B
T E S T| (V) X A
I 1
l I I ‘ JUMP ADDRESS l
(ALL 5 DIGITS)
L 1] 1 1 1 1 1
FORMAT B:
Test Console Switches.
Jump to address)" + (contents of RY).
Link in R15.
Op v (] xpy A/B
T 1 E 1 S 1 T S 1 W % L A 1
Y J |
1 1 | 1 1 | 1

*TEST:LH Jump if LH flag in 1-slab A-word is
on (not equal to zero).

*TEST:RH Jump if RH flag in 1-slab A-word is
on (not equal to zero).

*TEST:SW Jump

number (A) or “A” is on.
Switch number may be 000-007. (

SIGN FLAG:

ACCUMULATOR:

OVERFLOW:

LH, RH FLAGS:

SWITCHES:

if Console Option Switch\‘

Protected

Remains unchanged.
Remains unchanged.
Cannot occur.
Remain unchanged.

Remain unchanged. They are set
by the console operator.

against
Demand

25

26

JUMP
JUMP INDIRECT
JUMP INDIRECT, keep PREVIOUS Link

Op \' L X A
J U M P X J
1 1 H 1 1 1 1
Op \' L X
J U M P|I X A
1 1 1 1 1 1 i
Op v L X A
J U M P|I P X A
1 1 1 1 1 L 1

JUMP: Unconditional jump to address *J”
+ (contents of RX). Link in RI15.
(R31) replaces (R15). Then Jump
address replaces (R31).

JUMP:I Unconditional jump to address stored
in 2-slab A-word. Link in R15. (R31)

replaces (R15). Then A-word replaces
(R31).

JUMP:IP Unconditional jump to address stored
in 2-slab A-word. Does not link.
A-word replaces (R31).

SIGN FLAG Remains unchanged.
ACCUMULATOR: Remains unchanged.

OVERFLOW Cannot occur.

**SKIP within the program
Op A L X A
S K I P G

1 1 i 1 | L !

This instruction causes an unconditional jump
to a point up to 999 slabs after, or up to 99 slabs
before, the next instruction in the normal se-
quence,.

(R31) + “G” replaces (R31).
G may range to 999 or to —99.

This is an operation upon (R31), and is not a
jump instruction. Therefore it does not set any
link.

SIGN FLAG: Remains unchanged.
ACCUMULATOR: Remains unchanged.

OVERFLOW . Cannot occur.

27

**DEMAND LINK RETURN **MAIN LINK RETURN,

Op \' L X A

This instruction causes a return to the Demand
Link.
(J15) replaces (R31).

This is an operation upon (R31), and is not a

jump instruction. Therefore it does not set any
link.

SIGN FLAG: Remains unchanged.

ACCUMULATOR: Remains unchanged.

OVERFLOW: Cannot occur.

NOTE: This instruction is protected
against Tracing. It is not pro-
tected against Demand.

and AUGMENT Control Register
Op v L] x A
M L R A G

1 1 1 1 1 1 1

This instruction causes an unconditional jump
back to the Main Link, with the option of skip-
ping instead to a point up to 999 slabs after the
link, or up to 99 slabs before the link.

(R15) + “G” replaces (R31).
G may range to 999 or —99.

This is an operation upon (R31), and is not a

Jump instruction. Therefore it does not set any
link.

SIGN FLAG: Remains unchanged.
ACCUMULATOR: Remains unchanged.

OVERFLOW: Cannot occur.

28

This operation may be performed on either Digit
or Alpha information, as specified by the Varia-
tion.

The contents of the Accumulator are shifted
N places. N is equal to: The contents of the
A-word (always one slab long); or "A” itself.

Except for SHFT:LC and SHFT:RC all shifts are
linear, ie- “‘off the end”.

*SHFT:DL Shift digits left,
enter zeros at the right.

*SHFT:DR Shift digits right,
enter zeros at the left.

* SHFT:RR Shift digits right and roundoff,
enter zeros at the left.

Before the shift, 5 is lined up with the Nth
character from the right, and added to the Ac-
cumulator contents.

*SHFT:LC Shift digits left circular. T

*SHFT:RC Shift digits right circular.

The two circular shifts operate within the effecrive
length of the Accumulator. They leave the effective
length unchanged even though the circulation
may bring zeros into the leftmost positions.

* SHFT : AL Shift alphas left,
enter spaces at the right.

If, before the shift, cthere were zeros at the RH end
of the Accumulator, these are shifted unchanged
just like any other characters; they are not repluced
by spaces.

* SHFT: AR Shift alphas right,
enter zeros at the left.

NOTE: During an Alpha shift, all zeros within the previous
effective length of the Accumulator remain significant to the
new effective length.

Before a left or right Alpha shift of an odd number of
positions, a slab containing 0 SP is inserted in the Accu-
mulator. just to the left of the previous effective length.

After an Alpha Right shift equal to or more than the
previous effective length, the Accumulator will contain the
single stab SP SP. .

SIGN FLAG: Remains unchanged.

OVERFLOW: Cannot occur.

If N = 0, these operations do nothing.

* SHIFT Accumulator * COUNT
Op vV L] X A Op v oL XY A/B
S H F T (V) C i N 1 T 1 1 }l(1 A 1
1 1 1 1 1 Y G
1 1 { | 1 1 1

This instruction performs two distinct opera-
tions.

1. First ADD: (RY) + “G”
replaces (RY)

G ranges to 999 or —99.

2. Then COMPARE: (RY) vs (A) completely
or (RY) vs “A” mod 1000
and set G, L, E flag.

If the LH digit of “G" is the character hyphen
then “G” is considered negative; otherwise "G”
is considered positive. The contents of an Index
Register are always positive.

If an A-word in Memory is named, it is always
a “pair’: a 2-slab word containing a number no
greater than 39 999.

If “A” itself is used for the comparison, then
only the RH 3 digits of the Index Register are
used in the comparison.

SIGN FLAG: Remains unchanged.
G-FLAG: ON if (RY) is greater.
L-FLAG: ON if (RY) is less.
E-FLAG: ON if (RY) is equal.

ACCUMULATOR: Remains unchanged.

OVERFLOW: Cannot occur.

NOTE: Addition is always performed
modulo 40 000 regardless of the
memory size of the Processor.

+Circular Shift and the Accumulator Length

If the effective length of the Accumulator is more than one
slab. a circular shift that brings one or more slabs of zeros to
the left will leave the Accumulator length “unstable.” This
means that, if the Accumulator is stored and then reloaded,
its effective length will have been decreased by the number
of zero slabs on the left, and another circular shift will not
now behave the way it would have behaved if the Accumu-
lator had been undisturbed.

The only significance of this condition is the possible effect
upon a circular shift following a circular shift.

The Demand macros, Trace, etc.,, do not check for this
condition. If Demand interrupt might occur while the Accu-
mulator length is unstable, or if Tracing is to be performed,
the program should be protected against Demand or Tracer
while the condition exists. Since the condition is a rare one,
it will not be mentioned in any published discussions of De-
mand, Trace, or service routines, and this present discussion
will serve as notice to anyone using circular shift,

LOAD Registers
SPREAD-LOAD Registers

Op \ L} X/Y A/B

L D W))l(A
4 1 1 1 | 1

Y N
It 1 1 1 1 | 1
Op v L] X/Y A/lB

S L D V) X A
1 1 1 1 1 1

Y N
! 1 | | 1 | |
LD :R ‘Transcribe N successive Memory

pairs (A), (A+2), etc.
into N successive R-registers
starting with RY.
LD :J ‘Transcribe N successive Memory
pairs (A), (A+2), etc.
into N successive J-registers
starting with JY.

SLD :R Transcribe one Memory pair (A)
into each of N successive

R-registers starting with RY.

SLD :J Transcribe one Memory pair (A)
into each of N successive

J-registers starting with JY.

If any of these operations remains incomplete
after referring to R31 or J31, there will be an
error halt.

If any of these operations carries past the end of
memory, it will cycle back to location 00 000
and continue,

STORE Registers

Op v L | X/Y A/B
S T W) X A
1 1 1 1 1 I 1
Y N
1 1 1 1 1]
ST:R Transcribe N successive R-registers
starting with RY
into N successive Memory
pairs (A), (A+2,) etc.
ST:J Transcribe N successive J-registers

starting with JY
into N successive Memory
pairs (A), (A+2), etc.

If either of these operations remains incomplete
after referring to R31 or J31, there will be an
error halt.

If either of these operations carries past the end
of memory, it will cycle back to location 00 000
and continue,

NOTE: The contents of a register are
stored as the RH 18 bits (414
digits) of the Memory pair. The
LH 6 bits of the pair are set to

zero.
SIGN FLAG: Remains unchanged.
ACCUMULATOR: Remains unchanged.
OVERFLOW:

Cannot occur.

If N = 0, these operations do nothing,

NOTE: Only the RH 18 bits (414 digits)
of each pair are loaded. The LH
6 bits (114 digits) are irrelevant.
SIGN FLAG: Remains unchanged.
ACCUMULATOR: Remains unchanged.
OVERFLOW: Cannot occur.

If N = 0, these operations do nothing.

30

AUGMENT Registers
SPREAD-AUGMENT Registers

Op v L] x/Y A/B

A U G W) X A
1 1 1 Il 1 1 1

Y N
1 1 1 1 1 i 1
Op v oL x/Y A/B

S A U G| (V) X A
1 1 1 1 { 1 1

Y N
1 1 1 1 | 1 1

AUG :R The contents of each of N successive
R-registers starting with RY is aug-
mented by the contents of the corre-
sponding one of N successive Memory
pairs (A), (A+2), etc.

AUG :J The contents of each of N successive
J-registers starting with JY is aug-
mented by the contents of the corre-
sponding one of N successive Memory
pairs (A), (A+2), etc.

SAUG:R The contents of each of N successive
R-registers starting with RY is aug-
mented by the contents of Memory

pair (A).

SAUG:J The contents of each of N successive
J-registers starting with JY is aug-
mented by the contents of Memory

Only the RH bits (41 digits) of a Memory pair

are used in augmenting a register.

If the LH digit of any Memory pair is hyphen,
then the contents of that pair is a negative number
and the contents of the register are diminished.
The contents of the register are always positive.

Addition is performed modulo 40 000 regard-
less of memory size.

If any of these operations remains incomplete
after referring to R31 or J31, there will be an
error halt.

If any of these operations carries past the end
of memory, it will cycle back to location 00 000
and continue.

SIGN FLAG: Remains unchanged.

ACCUMULATOR: Remains unchanged.

OVERFLOW: Cannot occur.

pair (A). If N = 0, these operations do nothing.
Examples

RESULT OF RESULT OF

REGISTERS EMORY PARS AUG |R | [01{711 SAUG|R | |01|711
INITIALLY

13|006 13|006
R13 |000 47 01711 000',100 RI3 |00 147 RI3 |00 147
RI4 |27 635 01713 |0 00,200 RI4 27835 R4 |27735
RIS 39999 01715 —oo:ooz RI5 {39997 RI5 |00099
RI6 15000 01717 030:000 RI6 |05000 R16 15100
R17 04296 01719 000:001 R17 04297 R17 0439%6
RIS {02500 01721 —70Eooo Rig |12500 R1I8 |0 2600

MOVE information between Registers MOVE memory | Start at Beginning | oha°
Move from Y to X ** SPREAD memory | | Start at End { stabs
Op vV oL xgy A/B Op v oL x/y A/B
M & V E| (V) X M & V E[(V) X A
1 1 L 1 | 1 I J 1 1 | | | |
Y N B
I R I L L Lo 1 ! L
MOVE:RR Transcribe N successive R-registers Y specifies Index Register RY, modifying address B.
starting with RY
into N successive R-registers
starting with RX. Op \'% L X/Y A/B
MOVE:JR Transcribe N successive J-registers S . P . R | D (Y) | . A .
starting with JY Y B
into N successive R-registers L L L L

starting with RX.

MOVE:RJ Transcribe N successive R-registers
starting with RY

into N successive J-registers
starting with JX.

MBVE:JJ Transcribe N successive J-registers
starting with JY

into N successive J-registers
starting with JX,

If any of these operations remains incomplete

after referring to R31 or J31, there will be an
error halt.

SIGN FLAG: Remains unchanged.
ACCUMULATOR: Remains unchanged.
OVERFLOW:

Cannot occur.

If N = 0, these operations do nothing.

Y specifies Index Register RY, modifying address B.

These operations may by performed on either
Digit or Alpha information.

MOVE transcribes N (up to 999) consecutive
slabs from an A-area to a B-area in
Memory.

Nis in the RH slab of the Accumulator.

MOVE:B Start at the beginning of each area:
(A) replaces (B)
then (A41) replaces (B+1) etc.

MOVE:E Start at the end of each area:
(A) replaces (B)
then (A—1) replaces (B—1) etc.

SPREAD transcribes “A” itself into each slab
of an N-slab B-area in Memory.

**SPRD:B “A” replaces (B)
then “A” replaces (B-+1) etc.
**SPRD:E “A” replaces (B)

then “A” replaces (B—1) etc.

If any of these operations carries past the end of
Memory, it will cycle back to location 00 000
and continue.

SIGN FLAG:

ACCUMULATOR: RH slab holds N: the number
of slabs to be transcribed (up
to 999).

Remains unchanged.

Remains unchanged.
OVERFLOW: : Cannot occur.

If N = 0, these operations do nothing.

31

32

SCAN
Op v L]oxgy A/B
S C N D| W X A
R

L is length of A-word: up to 999
Y specifies Jump Register JY

Op VoL XY A/B
S C N A| W X A
L

L is length of A-word: up to 999
Y specifies Jump Register JY

SCND: Scan Digits.
SCNA: Scan Alphas.

This operation may be performed on either
Digit or Alpha information, as specified by the
Variation.

Consider the Accumulator as being of the same
length as the A-word, which in this operation
may be up to 999 slabs long. Consider that
every slab in the Accumulator exactly duplicates
the RH slab.

The Accumulator and the A-word are then si-
multaneously scanned, from left to right, and
compared Digit by Digit, or Alpha by Alpha,
until one character in the A-word is found which
bears the specified relationship to the corre-
sponding character in the Accumulator. The
relationship may be specified as Greater than,
Less than, or Equal to, the corresponding charac-
ter in the Accumulator.

The LH character of the Variation specifies
whether the SCAN shall seek a character in the
A-word which is:

G: greater than

L: less than

E: equal to

the corresponding character in the Accumulator.

The operation terminates when either:

1. A character in the A-word meets the test.
R30 then contains the address of the slab
in which this character appears.

Flags are set to indicate the position of this
character in that slab.

RH Digit or RH Alpha G-flag set
Middle Digit L-flag set
LH Digit or LH Alpha E-flag set

The Processor proceeds to the next in-
struction in normal sequence.

NOTE: It may be inconvenient to remember the
correspondence of G, L, E flags to right, middle,
left positions within the slab. Therefore three
alternative mnemonics are provided.

TEST:SL Did SCAN stop on left digit or alpha?
Same command as TEST:E

TEST:SM Did SCAN stop on middle digit?
Same command as TEST:L
TEST: SR Did SCAN stop on right digit or alpha?
Same command as TEST: G
2. No character in the A-word meets the test.
R30 remains unchanged.
G, L, E flags are all turned off.
The Processor takes its next instruction
from the address in JY. Link in J14.

If L = 0 the Processor immediately takes ter-

‘mination 2.

SIGN FLAG: Remains unchanged.

ACCUMULATOR: RH slab contains the Scan Key,
which is considered to be duplicated in every
slab of the Accumulator.

The entire Accumulator remains unchanged by
the SCAN operation.

R30: After termination 1, R30 holds address of
slab containing the successful character of the
A-word. After termination 2, R30 remains
unchanged.

G, L, E FLAGS: After termination 1, these indi-
cate the position of the successful character
within its own slab. After termination 2, all
these flags are off.

JY: After termination 2, Processor jumps to
address stored in JY.

OVERFLOW: Cannot occur.

SELECTIVE SCANNING: For example—

As the characters in memory are compared
with the characters in the RH slab of the Ac- amining only the RH and middle
cumulator, it is not necessary that «// the Digits digits of each slab (ignoring the
or Alphas of each slab be examined. In order LH digit).

to specify which positions are actually to be
scanned, the positions in a slab are given “scan-
values™:

SCND:G3 means Scan Digits for Greater, ex-

SCND:E6 means Scan Digits for Equal, examin-
ing only the LH and middle digits of
each slab (ignoring the RH digit).

Digits 4 2 1 SCNA:L2 means Scan Alphas for Less, examin-

ing only the LH alpha of each slab
(ignoring the RH alpha).

Alphas | 2 1

A “blank” as the RH character of the variation
In the RH character of the variation, the pro- means that all characters are significant. Thus:

grammer writes the sum of the scan-values of] _
those positions which he wishes the SCAN to SCND:G means the same as SCND: G7

examine. SCNA:E means the same as SCNA:E3
As an example, consider the instruction: When the Accumulator contains:
Op v L] XY A/B

123456 75@

S C N D|L 3 0 2/9 9 1
1 2.0 4 7

1 1 1 !

The Processor behaves (for the duration of this instruction) as though the Ac-
cumulator were 47 slabs long, corresponding to the 47-slab length of the memory
word to be scanned.

02 991 02 992 02 993 03 031 03 032 03 033 03 034 03 035 03 036 03 037

Memory xxx!xxxxxxlg §xxx(xxxxxxxxxxxxxxxxxx

ﬁl | , !

A4

Y LA
75@75@75@§ ﬂ75@75@75@75@75@75@75@

Accumulator
acts like

If the memory word contains—
a digit from 0-4 in the middle position of any slab, or
a digit from 0-9 in the right-hand position of any slab,

the Scan will indicate the position of the first such digit, in R30 and in the Scan-
middle or the Scan-right flag. The Processor will then execute the next instruction
in the normal sequence.

If the memory word contains no such digit in either of these positions, the Pro-
cessor will clear the G, L, E flags, leave (R30) unchanged, and take its next
instruction from the address stored in J12.

In either case, the original 3-slab Accumulator contents remain unchanged.

3

PARTIAL ALPHA STORE

Op v oL x/y A/B

P A S T| (V) X A
1 1 i 1 1 1 1

L
| 1 1 | { i l

L is length of A-word: up to 8 (or 9)

This operation may be performed only on Alpha information.

The Accumulator is stored, right-justified, in a part of the A-word.

If L =0, this operation does nothing.
PAST:XL Except the LH character of the A-word.
PAST:XR Except the RH character of the A-word.

PAST:XB Except both.
SIGN FLAG: Remains unchanged. The Sign flag is not stored in the A-word.
ACCUMULATOR: Remains unchanged.

OVERFLOW: XL: L greater than 8; 16 characters stored in A-word.

XR: L greater than 8; 16 characters, plus a zero, stored in A-word.

XB: L greater than 9; 16 characters, plus a zero, stored in A-word.

Examples: Shaded areas are unchanged.

§O l 00] A B I C D I E F l Contents of Accumulator

3-slab A-word after

5-slab A-word after

3-slab A-word after

5-slab A-word after

3-slab A-word after

5-slab A-word after

PAST:

PAST:

PAST:

PAST

PAST:

PAST:

XL

XL

XR

:XR

XB

XB

LOAD ALPHA-TO-DIGIT

Op v L] Xy A/B

L DA D[(V) X A
1 1 1 1 1 |]

Y L
1 1 1 1 1 1 1

L is length of A-word: up to 12 (or 13)
Y specifies Jump Register JY

This operation may be performed only on Alpha
information in Memory, which then becomes
Digits in the Accumulator.

The A-word is Loaded into the Accumulator,
right-justified, with its Alphas transformed into
Digits.

The Alphas of the A-word are transcribed, from
right to left, into the Accumulator. As each
character is transcribed, it is stripped of its zone
bits, and stored in the Accumulator as a 4-bit
Digit.

The operation terminates when either:

1. The A-word is exhausted; the Accumulator
is filled out to the left with zeros.

2. The Accumulator is filled, and the A-word is
not exhausted. Overflow then occurs.

Example 1:

If any of the discarded zone bits of the A-word are
1-bits, the operation still proceeds to completion;
then the Processor takes its next instruction from
the address in JY, and sets link in J14. Otherwise
the Processor proceeds in sequence.

If L = 0, this operation clears the Accumulator.
LDAD: Load and condense the entire A-word.
LDAD: XL Exceptthe LH character of the A-word.
LDAD:XR Exceptthe RH characterofthe A-word.

LDAD:XB Except both. L may be equal to 13.

SIGN FLAG: Set positive by this operation.

ACCUMULATOR: Contains the condensed A-word.

JY: Processor jumps to address
stored in JY if any 1-bits in
zones. If desired, this jump can
be suppressed by naming J14
as JY.

OVERFLOW:: If the A-word is too long.

A-word

35

Example 2:

1 23 4|5 F

P X|

0000]012|345|67ﬂ

3 4]5 6|7 8]

oooo|o12

34 5|67 8

§0_L000|oo2

34567 3

%0lo o 0[0 0 1]2 3 4[5 6 7|

io_[ooo|ooo]234]567|

Accumulator after LDAD
Processor jumps to address in JY.

A-word

Accumulator after LDAD

Accumulator after LDAD ;XL

Accumulator after LDAD:XR

Accumulator after LDAD:XB

36

STORE DIGIT-TO-ALPHA

Op Vo L] X/Y A/B
S T D A X A
1 1 1 | 1 1 i
L
i 1 1 1 i | 1

L is length of A-word: up to 12

This operation may be performed only on Digit
information in the Accumulator, which then be-
comes Alphas in Memory.

The Accumulator is stored in the A-word, right-
justified, with its Digits transformed into Alphas.

The digits of the Accumulator are transcribed,
from right to left, into the A-word. As each digit
is transcribed, a pair of 0-bit zone bits are at-
tached to it, and it is stored in the A-word as a
6-bit Alpha.

The operation terminates when either:

1. The A-word is filled. If any non-zero digits
of the Accumulator cannot fit into the
A-word, overflow occurs.

2. The A-word has received 24 characters. If
the A-word is more than 12 slabs long,
overflow occurs.

If L = 0, this operation does nothing.

SIGN FLAG: Remains unchanged.

The Sign flag is not stored in the
A-word.

ACCUMULATOR: Remains unchanged.

OVERFLOW: 1. If the A-word is too small for
all the non-zero characters in
the Accumulator.

2. If the A-word is more than 12
slabs long.

INPUT, OUTPUT, FILE DEVICES

37

38

Remember

INPUT, OUTPUT, FILE DEVICES

INTRODUCTION

Processor communication with the “outside
world” is performed in Alpha form (6 bits per
character, 2 characters per slab) except for the
Console Typewriter which accepts either Alphas
or Digits for input-output. File information is
recorded on magnetic tape and CRAM in “"image
alpha” form, whether it is actually Alpha or Digit.

Except as specifically noted, none of these
operations change the Sign flag, the Overflow
flag, or the contents of the Accumulator.

The operations for Inquiry Units and for
Magnetic Character Sorter-Readers are the sub-
ject of another publication, and are not discussed
here.

PERIPHERAL UNITS
CONSOLE TYPEWRITER:

The Console includes an electric typewriter
which permits modest amounts of information
to be typed out by the program, ot to be entered
by the operator, in either Digit or Alpha form.

During normal operations the Console Type-
writer will be used to create a Log of operations,
and for occasional input of information such as
Today’s Date, etc.

CARD READER:

Two models of Card Reader are available, one
operating at 400 cards per minute, the other at
2000 cards per minute. Both are serial readers,
reading one card column at a time photo-
electrically.

The 400 cpm reader stores an image of each
column as a pattern of 12 bits in one slab of
memory. There is sufficient time between
columns for the processor program to translate
the column images into the actual characters.
Any kind of non-standard punching or binary
punching may be read, by storing appropriate
tables in memory.

The 2000 cpm reader has automatic transla-
tion circuitry within it, and stores the actual
characters in memory after checking for invalid
configurations. The automatic translation may
be by-passed if desired, to read non-standard or
binary punching with programmed translation;
the reader can switch from translate to non-
translate and back any number of times within
a card.

Both readers leave the processor free between
columns. during the unread portion of each card
(if less than the entire card is read), and between
cards. They both exercise Demand as each new
card reaches the reading station,

PAPER TAPE READER:

The Paper Tape Reader operates at 1000
characters per second, and will stop between
characters at any time, under control of the proc-
essor program. It stores an image of each row
of punching as a binary configuration in memory,
and there is sufficient time between characters
for the program to translate these images into
the actual characters, and to do validity-checking.

Any code system whatever, up to 8 channels,
will be accepted by the reader, and can be trans-
lated by program, with appropriate tables.

BUFFERED LINE PRINTERS:

The processor can operate up to four printers
or card punches, in any combination. Each
printer is completely buffered, and performs all
printing and paper movement under its own
control, with automatic end-of-page detection,
It has a 56-character font, and prints a 120-
character line.

The printer has a 2-speed switch for printing
at 680 alphanumeric (940 numeric) lines per
minute, or at 380 alphanumeric (470 numeric)
lines per minute. The lower speed provides
superior print quality for photo-offset repro-
duction. The higher printing rates (at both
speeds) for numeric information arise auto-
matically out of the characteristics of the printer
itself, and are obtained whenever numeric
lines are printed; no special programming or
special adjustment of the printer is required.

When printing at either speed, paper move-
ment over blank lines is at the rate of 15 inches
per second (5400 lines per minute) regardless
of the number of blank lines.

After each line has been printed, the printer
is READY and can exercise Demand, so that the
processor program may immediately transmit
the information for another line.

CARD PUNCHES:

The processor can operate up to four card
punches or printers, in any combination. The
punches may be: IBM 523-1 or 523-2 (100 cards
per minute); or IBM 7550 (250 cards per
minute). Each punch is completely buffered,
and performs all punching, and all plugboard-
programmed editing and checking, under its
own control.

Each Card Punch Buffer automatically trans-
lates the characters from the processor memory
into standard card code for punching. There is a
switch on the buffer, permitting the translation
to be by-passed, in which case each column of
the card is punched as an image of the bit-
configuration in one slab of memory. This fea-
ture permits the output of cards with any kind
of non-standard or binary punching.

When each card is completely punched, the
punch is READY and can exercise Demand, so
that the processor program may immediately
transmit the information for another card.

PAPER TAPE PUNCH:

The paper tape punch operates at 110 charac-
ters per second, and can punch any code system
whatever, up to 8 channels. The time between
characters is available to the processor program
for translation of the characters into the required
hole-configurations, and for any other process-
ing work.

MAGNETIC TAPE HANDLERS:

The processor may accommodate up to 8
handlers, each holding a reel of tape. The tape
moves at 120 inches per second, and three
recording densities are available:

200 alphanumeric characters per inch
24,000 characters per second (24 kc)
Compatible with IBM tapes.

333 alphanumeric characters per inch
40,000 characters per second (40 kc)
60,000 digits per second

500 alphanumeric characters per inch
60,000 characters per second (60 kc)
90,000 digits per second

The Standard Handler can read and write tape
at 24 and 40 kc. The High Speed Handler can
read and write at all three speeds. Each handler
has a switch to determine the density of writing;
while reading, this switch must correspond to
the density at which the tape was recorded.

Information is recorded on magnetic tape in
“image alpha” form. Images of the left-hand

and right-hand six bits of each slab are recorded
as alpha characters on the tape. If the slab con-
tains alpha information, these will be the actual
characters; if the slab contains digit information,
these will be pseudo-characters, each comprising
1Y/, digits, which will recreate the image of the
slab in memory when the tape is read. Therefore
three digits take the same amount of tape, and
the same read-write time, as two alphas, so that
information transfer rates for numeric informa-
tion are 1Y/, times those for alpha-numeric infor-
mation.

An information block on tape may contain
1 to 7,999 slabs (2 to 15,998 alphanumeric
characters, 3 to 23,997 digits or any propor-
tional mixture). Between blocks there is a three-
quarter-inch gap (length of blank tape). It is
clearly advantageous to block records—to put as
many accounts as possible into a single block—
to minimize the number of gaps. The large
number of index registers in the NCR 315, and
their flexibility in use, make this procedure ex-
tremely convenient, whether the blocks are fixed
or variable in length.

As the tape is being written, the processor
automatically adds a parity-bit to each character,
and records 7 bit-channels on the tape. Even-
parity is established for 24-kc tapes, odd-parity
for 40-kc and 60-kc tapes. At the end of the
block, the processor automatically adds a parity-
character to the block, establishing lengthwise
parity along each channel. A reading head on
the handler, immediately behind the writing
head, automatically reads back the informa-
tion just written, and checks the 2-dimensional
parities; if there has been any error in writing
the block, there is an automatic branch in the
processor program, so that the tape may be
backed up, and the block re-written. This
branch actually goes into a master program
called STEP (Standard Tape Executive Pro-
gram), which makes several attempts to write
the block, and if still unsuccessful, lays down a
unique sk7p block and then writes the desired
block on the tape. When the tape is later read,
this skip block will cause another automatic
branch into STEP, which will discard it and
proceed with the processing.

STEP is an extremely sophisticated program,
which is held in memory at all times when
magnetic tapes are used, and which handles
automatically «// housekeeping chores connected
with tapes. These chores include label-checking,
error-correction, block counts and check sums,
end-of-tape alternation of handlers, end-of-file
detection, run-to-run supervisor, etc.

39

40

o
\"d}

&

LEADER/TRAILER SENSING STATION

~

MAGNETIC TAPE TRANSPORT

When a tape is mounted on a handler, it
follows the path shown in the diagram. The
loops at the sides are vacuum chambers, and the
grey area represents a cover which should be
removed only by maintenance personnel. A
leader is permanently fastened to the take-up
reel, and when the tape is completely rewound,
the tape-to-leader splice is between the tape
clamp and the supply reel, with the leader
threaded through the mechanism. In order to
change tapes, the operator opens the door, closes
the tape clamp, and disconnects the mechanical
splice. He changes the reel, connects the splice,
releases the clamp, and closes the door. Elec-
tronic interlocks prevent any use of the handler
until the clamp is released and the door closed.

After the tape has been loaded, the first Read
or Write instruction addressed to the handler
causes the take-up reel to wind the leader, and
the tape, until the Beginning-of-Information
Marker (BIM) is detected at the BIM/DWM
Sensing Station “B” and then reading or writing
begins. When a Rewind instruction is addressed
to the handler, the mechanism is reversed and
the supply reel winds the tape until the BIM is
detected at “B”. The tape is now ready to be
re-read, or re-written, if desired.

When recording tape, station “"B” is alert for
Destination Warning Marker (DWM) and upon
detecting it, signals the processor that the physi-
cal end of the tape is approaching. The processor
program should now write an end-of-tape
Control Mark. The BIM and DWM are reflective

spots on the back of the tape, 10 feet and 18 feet
from the beginning and end, respectively, and
station "B” detects them photo-electrically.

The leader and the trailer (“trailing leader™)
are made of electrically-conductive material, and
are detected at the Leader-Trailer sensing station
“A”. If writing continues too long after the
DWM, or if an attempt is made to read past the
end of the recorded information, station “A”
will detect the trailer before any physical damage
can result, and the handler will go out of the
“operate” status.

When a reel of tape is to be changed, after
being rewound to the BIM, the operator presses
the manual Rewind button on the handler, caus-
ing additional rewind until the leader reaches
station “A” and passes a few inches beyond, in
position to be clamped conveniently.

The forward speed of the tape while reading
and writing is 120 inches per second. Rewind
speed is 240 inches per second. The lower Tape
Packing Arm detects the point at which the tape
is almost completely rewound, and reduces the
rewind speed to 120 inches per second for the
last few feet of tape.

The Standard Handler (24/40 kc) may use
either 1 mil tape (3600-foot reels) or 11 mil
tape (2400-foot reels). The High Speed Handler
(24/40/60 kc) requires 1Y, mil tape. All tapes
recorded for IBM-compatibility must be 114
mil. All 1% mil tape must be “hard binder,”
rather than “sandwich.”

TAPE-TO-LEADER SPLICE
One-Half Size

LEADER PERMANENTLY FASTENED

TO TAKE-UP REEL

=

MAGNETIC TAPE

UNFASTENED

Ml <

FASTENED

41

42

‘SRODS

PANEL

SHELF

256 CARDS

N340 34V0

1378
A JIRM
-t € ‘I °d

A Aviy

CARD RANDOM ACCESS MEMORY (CRAM):

A CRAM unit holds a deck of 256 magnetic
cards. When the processor program calls for a
particular card, that card drops out of the cham-
ber and wraps around a rotating drum, where it
is held by air suction. The card now has the
properties of a magnetic drum memory, in which
the recording occupies 2/;3 of the drum circum-
ference. One-third of each drum-revolution is free
for updating the information so that it is ready
for re-recording during the next revolution.

When the program has finished with this card
the exit gate opens, the card is released from the
drum, and it goes up through a chute back to the
chamber. When the leading edge of the card
reaches a photo-electric cell (P.E. 1 in the dia-
gram opposite) the panel retracts, and the card
drops into the chamber. It is slowed by a braking
mechanism (not shown), and is stopped by the
shelf. Then the panel comes forward to put the
card into the chamber, where it fits on the rods.

Each card has eight notches across the top,
cut in a pattern which is unique to that card, and
the cards hang in the chamber from a row of
eight selection rods. The diagram below shows
the principle of card selection. When the pro-
cessor calls for a particular card, the rods rotate
into the combination of positions corresponding
to that card. A pair of gating rods, which fit into
notches at the sides of the cards, support the
entire deck while the rods are coming into
position; then they swing back, and the selected
card drops out of the chamber.

This achieves a true random selection of cards,
as each card is chosen by the selection rods
regardless of its position within the deck. In
fact, the physical sequence of the cards is itself
random, since the last-used card is always re-
placed at the back of the deck.

PRINCIPLE OF CARD SELECTION

THIS CARD DROPS

THIS CARD CANNOT DROP

43

44

O
(A
O

One-half
— actual size

R 7 1 R

3.2

- INFORMATION* TRACKS -

3% e

EACH TRACK CONTAINS UP TO 1550 SLABS
CAPACITY OF 1 CARD: OVER 32,500 DIGITS
CAPACITY OF 1 CARTRIDGE: OVER 8,300,000 DIGITS

While the card is on the drum it may be written
or read in any of seven information-tracks. No
switching time is involved in changing from one
track to another, as the CRAM is provided with
individual read-write heads for each track. The
pattern of tracks on the card is shown in the
diagram. Each information-track holds one block
of information which may contain 1 to 1,550
slabs (2 to 3,100 alphanumeric characters, 3 to
4,650 digits or any proportional mixture).
Recording is performed in “image alpha” form,
in seven bit-channels per track, with character-
parity and block-parity, as on magnetic tape.
And as with magnetic tape, each track has a
read head immediately behind the wtite head,
so that all recording is automatically checked
while it is being performed. Information transfer
rate is 100 kc (100,000 alphanumeric charac-
ters or 150,000 digits per second).

A Read or Write operation always starts at the
beginning of a track, and terminates as soon as
information transfer is complete, even if the
block is less than 1,550 slabs long. The CRAM
also has the ability to execute a partial-read,
which terminates at any desired point within the
block. Termination of the operation at end of
information, rather than at the end of the track,
allows a greater portion of the drum-revolution
to be shared with other processor operations.

A master program called PACE (PAckaged
CRAM Executive), which is analagous to STEP,
performs all housekeeping chores for CRAM. The
scope of PACE is similiar to that of STEP.

When the processor calls for a CRAM to drop
a particular card, the selection rods release that
card and it starts to drop. From the moment the
processor calls for the card to the moment the
leading edge of the card reaches photo-electric
cell P.E. 2 (see diagram on page 42) the CRAM is
in a DROPPING status, and is inhibited from
accepting a command to drop another card.

As soon as the leading edge of the card reaches
P.E.2 the DROPPING signal is turned off, and
the LOADED signal goes on, indicating that a
card is loaded on the drum. Only a portion of
the card is actually in contact with the drum at
this point, but reading or writing may now begin.

When a card is released from the drum, the
CRAM is no longer LOADED, and it will not
accept a Read or Write instruction.

The CRAM will accept 2 Read or Write instruc-
tion at any time a card is LOADED, but the in-
struction will be executed with minimum delay
only while the leading edge of the card is be-
tween P.E. 2 and P.E. 3. Once the leading edge
has passed P.E. 3, it is too late to read or write
during this revolution, since the beginning of the
track has passed the write head; and until the
leading edge reaches P.E. 2, it is too early to
read or write during the next revolution. When
the leading edge is between the two P.E. cells,
the card is in minimum-access position and can
exercise Demand so that the processor program
may immediately read or write.

A good deal of time-sharing is possible with
the CRAM. As soon as a card is no longer DROP-
PING, the unit may be instructed to drop the
next card, and then to read or write the card
which has just been loaded (the present card).
In this case, the unit is both DROPPING and
LOADED at the same time. This situation will
remain for one revolution of the card, and then
the present card will automatically be released
from the drum, and return to the chamber.

When processing CRAM files, the program will
determine when it is about to perform the last
Read or Write on a Card, and will call for the
next card before performing that last operation
on the present card. There will be a significant
interval between completion of that operation
and the moment when the CRAM is LOADED
with the next card; the processor will utilize that
interval to perform other work, and as soon as
the next card reaches P.E.2 (the CRAM is
LOADED) it will exercise Demand.

If an interval of 750 milli-seconds passes with-
out any command being addressed to a CRAM,
the card on the drum is released and returned
to the chamber.

UNBUFFERED PRINTERS:
BUFFERED NUMERIC LISTERS:

Any or all of the Line Printers connected to an
NCR 315 system may optionally be unbuffered.
In the absence of the buffer, the Processor is tied
to the Printer during the print cycle, but is free
for other work while the paper is moving.

The unbuffered Printer operates at 600 alpha-
numeric lines per minute, 790 numeric lines per
minute, intermixed in any fashion.

The same Printer may be optionally ordered
with a type line consisting of 96 alphanumeric
positions, and 24 numeric-only positions.

Under program control, the Printer with the
optional type line may operate in an unbuffered
mode, printing the full 120-position line (with
the RH 24 positions limited, of course, to nu-
meric information) or as a BUFFERED numeric
lister, using only the RH 24 print positions,
operating at the rate of 1750 lines per minute.

MAGNETIC CHARACTER READERS:
OPTICAL CHARACTER READERS:
REMOTE INPUT-OUTPUT SYSTEM:

These devices are discussed in separate

pamphlets.

READY STATUS
AND DEMAND INTERRUPT

As a general principal, if a peripheral unit is
READY, and if its Unit Demand flag is set, it
will transmit a demand signal to the processor;
if the processor’s Demand Permit flag is set,
Demand interrupt will occur.

When interrupt occurs, the demand program
must determine which of several peripheral units
caused the interrupt. This is done by attempting
to select each unit in turn, since the Select oper-
ation includes a test for READY. However, each
unit has ijts individual characteristics, which
are summarized in the table on the next page.

Note that the card reader does not have a
Unit Demand flag. When reading cards there
will usually be no occasion to have any other
units demanding, since the timing of the card
reader will govern other peripheral operations.

Priorities among competitively-demanding
units are determined simply by the sequence of
the SELECT commands in the program.

45

46

READY STATUS AND DEMAND INTERRUPT

READY

DEMAND SIGNAL

Exercise Demand if
Demand Permit flag on

O N OFF O N OFF

Finished PRNT instruction READY on READY off
BUFFERED printing a line loads the buffer and Unit Demand on | or Unit Demand off
PRINTER unless instruction

took JY + 1

Finished PNCH instruction READY on READY off

punching a card loads the buffer and Unit Demand on | or Unit Demand off
CARD PUNCH |or

Could not PNCH instruction

punch a card

takes branch

Card leading edge Card column 1 READY on READY off
CARD READER reaches reading reaches reading

station station

Card in minimum WCC or RCC instruction READY on SELC instruction

access position or card passed P.E. 3 (includes or READY off

CRAM

AND Unit Demand on;
unless present card

after SELC:DN

or Unit Demand off

Unit Demand on)

INPUT, OUTPUT, FILE OPERATIONS

47

48

SELECT a CRAM

OP v |t | x/y A/B

S E L C| (v) X A
! ' ! i '] !

J
! ! I ! t ! !

Jump is to the instruction whose address
is "'J'" -+ (contents of RY).

Link in R135.

SELC:DP

Select a CRAM, drop a card.

The next Read or Write is intended
for the present card.

Jump if a card is now DROPPING

on this unit.

The present card remains available
for one more Read or Write be-
fore it is released from the drum.

This unit will become READY (if
its Unit Demand flag is set) next
time the present card reaches
minimum-access position.

If the next Read or Write is issued
too late for the present card, that
operation will take the “wrong
card” jump.

Selecting a CRAM has no effect on its Unit De-

mand flag.

Selecting a CRAM turns off the Demand signal
in that CRAM.

NOTE: All SELect commands are protected
against Demand.

Processor hangs up if:
Two or more units assigned same number;
No unit assigned this number;
Power turned off in this unit.

SELC:DN

*SELC: T

*SELC:R

Select a CRAM, drop a card.

The next Read or Write is intended
for the next card.

Jump if a card is now DROPPING
on this unit.

If the next Read or Write is issued
too soon for the next card, that

operation will take the
loaded” jump.

not

As soon as this instruction is given,
the LOADED status is termi-
nated, and the present card be-
comes inaccessible. The CRAM
will become LOADED again only
when the next card reaches the
drum and, if the Unit Demand
flag is on, it will become READY
at the same time,

. .| crRam | card
(A)is a 2-slab word: No. No.
CRAM numbers: 0- 7

10-17
only RH 5 bits are used
Card numbers: 000-255

expressed as an 8-bit
binary number. A
standard subroutine is
provided for the
decimal-to-binary con-
version.

Select a CRAM and test for READY
(card in minimum-access posi-
tion, and Unit Demand set).

Jump if unit is READY.
(A) or “A” is CRAM number.

Select a CRAM and release present
card after one more opportunity
to Read or Write.

Jump if unit is not LOADED (no
card on drum, or present card
after SELC:DN).

(A) or “A” is CRAM number.

*SELECT other input-output devices

*SET and CLEAR Unit Demand Flags

Jump is to the instruction whose address
is “J" + (contents of RY).

Link in R15,
*SELP: Select a Printer or Card Punch.
(A)or“A”is unit number: 0-3
Only RH 2 bits are used.
Jump if unit is READY.
*SELS: Select a Sorter.
(A) or A’ is unit number: 0-3
Only RH 2 bits are used.
Jump if unit is READY.
*SELQ: Select an Inquiry buffer.

(A)or “A’ is unit number.
Jump if unit is READY.

Selecting a-unit has no effect on its Unit Demand
flag.

These instructions do not turn off the Demand
signal in the peripheral unit; the instructions
which operate the units do turn it off.

NOTE: All SELect commands are protected
against Demand.

Processor hangs up if:
Two or more units assigned same number;
No unit assigned this number;
Power turned off in this unit.

Op v [] xpy A/B Op v o] xypy A/B
S E L P X A S E T U| (V) X A
] 1] 1 ! 1 1] ! I]] I
I J 0 O
Op v] xyy A/B Op v || xpy A/B
S E L S A C L R U}l (V) X A
1 1 1] 1 1 ! I 1 1 1 1 1 1
J 0 0
1 1 1 1] ! ! 1 1 ! I 1 1 1
The second line of the instruction format is not used. It is suggested
Op Vv L X/Y A/B that zeros be entered in the Y column to indicate on a coding sheet
that this is a double-stage instruction.
S E L Q A
1] 1 I 1 1 I
J *SETU:C Set . .
Do . , e *CLRU: C Clear} Unit Demand in CRAM.

(A) or “A” isunit number: 0-7
10-17
Only RH 5 bits are used.

*SETU: P Set Unit Demand in Printer
*CLRU:P Clear or Card Punch.
(A)or“A” isunitnumber: 0-3
Only RH 2 bits are used.

*SETU: S Set
*CLRU:S Clear

(A) or “A” isunit number: 0-3
Only RH 2 bits are used.

} Unit Demand in Sorter.

*SETU: Q Set Unit Demand in Inquiry
*CLRU:Q Clear buffer.

(A) or “A” is unit number.
B is used to specify R-Demand
andf/or W-Demand.

Setting or clearing Unit Demand has no effect
upon Selection of units.

NOTE: All modes of SETU and CLRU are pro-
tected against Demand.

Processor hangs up if:
Two or more units assigned same number;
No unit assigned this number;
Power turned off in this unit.

49

50

PUNCH PAPER TAPE:

Op v oL | x/Y A/B
P P T (V) X A
N

Punch N rows of paper tape from memory, starting with the LH end
of the A-area.

N may be 000-999.

In each mode, an image of the bit-configuration
in memory is punched into the tape, with holes
corresponding to 1-bits. Channel 1 on the tape
(see illustration below) corresponds to the RH
bit of the character or the slab. Before punching,
the program must translate each character into
the bit-configuration used for that character in the
paper tape code. Standard subroutines and macro-
instructions are furnished for this purpose.

It is customary to translate and punch one
character at a time, since there is sufficient time
between characters to perform the table-lookup
while the Punch is operating at its full speed of
110 characters per second.

When punching tape for communication be-
tween Processors, the Character mode is used
and no translation is required, as the instruction
will punch an exact image of the bit-configura-
tions stored in memory. In that situation, N may
be made as large as convenient.

PPT :C Each alpha character is punched into
the RH 6 channels of a row on the
tape. The Processor automatically
punches hole or no-hole into the
seventh channel to establish odd-
parity (an odd number of holes in
each row).

Thus the two slabs m

would be punched as:

8|7 |6|5]|4|«|3]2]1
o| (o]ef: H (o1 1000
° o ® 9 (00 1001)
ofe| (| |o S (1000
. | |e|el L (oo
NAINASANNANINN

The punching corresponds to QRST
in tape-to-card conversion code (odd-
parity). Before punching, the trans-
lation subroutine for this output code
will have translated QRST into H9SL.

PPT :S TheRH 8 bits of each slab are punched
into the 8 channels of a row on the
tape.

Thus the four slabs
[o A]o n]o cJo F]

would be punched as:

41| 31211
A
ol-lejele| O T ooo0co0 ol 111D)
NE OH (0woo00 o1 1000)
«| lefe] O C (000000 o1 0011)
0 OF (oo o1 o110

The punching corresponds to letter-
shift, ABC in 5-channel telegraph code
(no parity). Before punching, the
translation subroutine for this output
code will have translated ABC into
0AOHOCOF, and the translation would
have included insertion of the re-
quired letter-shift.

NOTE: If, for any reason, the program issues
a PPT too late to maintain full punch-
ing speed, the Punch will stop and
wait. The only time lost is the waiting
time.

If N=0, these operations do nothing.

TAPE FEED:

When the Tape Feed button on the Punch is
depressed, the Punch will continuously emit the
following configuration until the button is
released:

8|7 |6|5]|4]e|3|2]}1

ojojej|ojo|e
NANNANINAN
When punching in any given code, the program
will initially punch a foot or two of the run-in
configuration defined for that particular code,
as a leader; and again at the end, as a trailer.
After the tape has been punched, the operator
may tear off the ends of the tape which contain
the tape feeds.

When punching without translation, for com-
munication between Processors, the tape feed
itself will be used as the run-in configuration.

Special facilities have been provided in the Read
Paper Tape instruction to accommodate the fact
that this is an even-parity configuration.

Processor hangs up 6 inches from end of tape,
if no tape, if tape breaks, or if power off in Punch.

READ PAPER TAPE

Op \% L x/v A/B
R P T W) X A
N

Two-way jump table starts in JY.
Link in J14,

Start the Reader (unless it is already running)
and read N rows of paper tape into memory,
starting at the LH end of the A-area.

N may be 000-999.

If the program issues another RPT instruction
soon enough, the tape will continue moving at
full speed. If the program does not issue another
RPT instruction by the time the Reader reaches
the next character, the tape will stop in position
to read that character; this will cost an accelera-
tion time when the tape is restarted.

In each mode, an image of the row is stored as
a bit-configuration in memory, with 1-bits cor-
responding to holes. Channel 1 on the tape (see
illustration under PPT) corresponds to the RH
bit of the character or the slab. After reading,
the program must translate each bit-configura-
tion into the actual character. Standard sub-
routines and macro-instructions are furnished
for this purpose.

Itis customary to read and translate one character
at a time, since there is sufficient time between
characters to perform the table-lookup while the
Reader is operating at its full speed of 1000
characters per second.

When tape has been punched without transla-
tion, for communication between Processors,
the tape contains an image of the bit-patterns
which were in memory at the time of punching;
reading is done in the Character mode and no
translation is required. In that situation, N may
be made as large as convenient.

If N=0, these operations do nothing.

JY: Parity error branch for RPT:C and
RPT:CX.
JY+1: Tape feed branch for RPT:CXif N=1.

Processor hangs up if no tape, broken tape, end
of tape, or if power off in Reader.

RPT :C
RPT :CX
RPT :S

The RH 6 channels of successive rows
are read into successive character-
positions in memory. Channel 7 is
used by the Processor to verify odd-
parity (an odd number of holes in
each row) and is not stored in mem-
ory. Channel 8 is ignored.

Complete slabs are always stored. If
N is an odd number, then a zero will
be stored as the RH character of the
last slab.

If any row on the tape contains an
even number of holes, the Processor
will store the character x in memory
for that row. After all N rows have
been read, the Processor will then
take its next instruction from the
address named in JY (parity error
branch).

Tape feed (see PPT) will be ignored if
it precedes data during any execution
of the instruction. That is, tape feeds
will be passed over without reading,
and without counting, until some other
configuration is found on the tape.

Tape feed is treated as a parity error
if it occurs within the data.

This is an extra variation of the
character mode, permitting use of tape
feed as an end-of-item code. This
special variation is identical with the
Character mode, except when N=1.

If N=1, and if the first row on the
tape is a zape feed, only that character
is passed on the tape. Nothing is
stored in memory, and the Processor
takes its next instruction from the
address named in (JY41).

The 8 channels of each row on the
tape are read into the RH 8 bit-
positions of a slab, with the LH 4 bits
of the slab set to 0 bits.

Tape feed is just another 8-bit con-
figuration in this mode.

Y is not used, as this variation does
not branch.

51

FEED a Punched Card and READ Columns
READ Columns from a Punched Card

400 card per minute reader

Op VoL XY A/B

R C & L|F X A
' ' L | ' ' i

N
] ' i ' ' i I
Op VoL XY A/B

R C ¢ L X A
1 ! I ! 1 ' 1

N
' ! 1 1 ! 1]

Jump is to address in JY.
Link in J14,

Punched cards are read serially, column by
column, beginning with card-column 1. N col-
umns of a card are read into memory, starting
at the LH end of the A-area. If columns 81 and
82 have been punched, they are ignored.

N may be 000-159.

The image of each card column is stored as a
bit-configuration in one slab of memory, with
1-bits corresponding to holes in the card. Card
row 9 is stored as the RH bit of the slab; card
row 12 is stored as the LH bit of the slab (see
illustration on the opposite page). After reading,
the program must translate each bit-configura-
tion into the actual character. Standard sub-
routines and macro-instructions are furnished
for this purpose.

It is customary to read and translate one column
at a time, since there is sufficient time between
card columns to perform the table-lookup while
the card is passing.

When cards have been punched in the Direct
mode, for communication between Processors,
each card column contains an image of the bit-
patterns which were in memory at the time of
punching, and no translation is required when
reading. In that situation, N may be made as
large as convenient.

When the leading edge of each card reaches the
reading station, the Card Reader will exercise
Demand if the Processor’s Demand Permit flag
is on. Note that there is no Unit Demand flag in
the Card Reader, and when reading cards, all
other Unit Demand flags will usually be turned
off.

Processor hangs up if input stacker empty, if a
card is mis-fed, if power off in Reader, or if the
instruction calls for reading columns from a
card that has not been fed.

RCOL:F

Feed a card, read N columns.

If N=0, feed only; do not test for
previous missed colummn.

If a FEED is issued after column 1
and before column 25 of the present
card, then the Reader will remain in
continuous feed and the next card will
be fed with minimum interval be-
tween cards.

A FEED issued before column 1 can
apply only to the present card. If this
card has already been fed, the new
FEED does nothing.

RCOL: Read N columns.

If N=0, this instruction does nothing.

JY:

Missed-column jump. Branch without execution.
One or more columns of the present card have
passed the reading station without being cap-
tured by an RCOL or RCOL:F instruction. The
current instruction will not be executed, but will
branch instead to the address named in JY.

Only the instruction RCOL:F with N=0 may be
executed when the missed-column condition
exists. This instruction will not branch; it wil/
set the feed signal for the next card.

The missed-column condition is automatically
reset when the trailing edge of the card passes
the reading station. Thus reading may terminate
when the desired portion of a card has been read,
and resume with the next card without encoun-
tering the JY branch.

HOW TO USE THESE OPERATIONS:

The feeding and reading functions are, to some
extent, independent of each other. When the
Card Reader is at rest a FEED will, of course,
cause a card to be fed past the reading station.
However, once column 1 of this card has been
read, the Reader will accept and store a signal to
feed the next card as soon as this card has passed.

Thus, purely as an illustrative example, the
following sequence would cause the entire con-
tents of two cards to be read.

FEED and READ 1 column.

A card is fed; the Processor waits for col-
uma 1, reads it, and terminates the instruc-
tion.

The card continues to move past the read-
ing station.

FEED and READ 159 columns.

The Reader accepts and stores the feed
signal for the second card.

The Processor waits for column 2 of the
first card, reads it, waits for column 3, reads
it; and so on through column 80.

The Reader feeds the next card immedi-
ately.

The Processor waits for column 1, reads
it; and so on through column 80. Then the
instruction terminates.

However, this would be a very inefficient way
to use the Processor, since all the time between
columns, and between cards, would be wasted
in waiting. A more efficient procedure, and the
one actually used, is outlined:

o Feed and Read zero columns.
e Set Demand Permit flag.

A e Begin to execute some other program until
the leading edge of the card reaches the
reading station. The Reader will then ex-
ercise Demand.

o Feed and read 1 column into working stor-
age.

o Translate that column into a character, and
store it in memory.

e Repeat the previous two operations 79
more times to complete the card. In the
operation that reads column 2, the Feed is
significant; all the other Feeds are redundant.

o Set Demand Permit flag.

e Demand Link Return. Resume execution of
the other program (point A in this outline).

And so on for as many cards as will fit into the
input area that the programmer has assigned.
The last card is read with the READ mode in
order to terminate feeding of cards.

Further time-sharing may be achieved if the input
requires only the early columns of each card.
The program stops the column-by-column read-
ing after the last wanted column, and proceeds
to other work.

The missed-column condition is set when the
first unwanted column passes the reading station
without being read. But the program never en-
counters this condition since there is no further
attempt to read the current card, and the con-
dition is automatically reset by the trailing edge
of that card.

The leading edge of the next card causes the
Reader to exercise Demand, informing the pro-
gram that it is time to begin reading the columns
of the next card.

The formation of the card-column image in
memory is illustrated in the following example:

ooooo000000000

P23 s a sz

IERERERRRRRERES

/(2222222222222212

D3333333333003
Il FRRRT] EXRRRRT]
5sB55555555555
666M6666666665
IRRR] RARI RRRRRE)
ssesslsdlssllse

99999309399999
Tr14seTeamuann

=

CardRows 12110 1 2 3 4 5 6 7 8 9
ooooo01'000000| 1
000000100000| 2
000000010000 3

E 000000001000 4

£ [0o0o0o0o00000100 5

f 000000000010 6 2

© fooooo 050 cooo1| 7 E

5 00000 Uil coo10 83

w [0000000 001 10l 9 'g

g 000000000000 10Y

§ 10000 oEo 00000 1

“ 100001000010 12
ooi1oo01'00001 0| 13
010000000000| 14
besroaoaoepel 18

Bit-patterns in memory

53

54

FEED a Punched Card and READ Columns
READ columns from a Punched Card

2000 card per minute reader
without translation by the reader

FEED a Punched Card and READ Columns
READ Columns from a Punched Card

2000 card per minute reader
with translation by the reader

Op vV oL x/y A/B Op v o L] X/ A/B
R C & L|F X A R C & L|T F X A
N R EEE) I R)

Op v oL ox/y A/B Op v oL x/y A/B
R C & L X A R C ¢ L|T X A
IR] . - o ; ! . . .
S ; . L L ; . P

Jump is to address in JY.
Link in J14.

These two instructions work for the 2000 cpm
reader exactly as they do for the 400 cpm reader,
except that at the higher reading speed there is
not time to perform any significant amount of
processor work between columns.

Jump is to address in JY,
Link in J14.

When these two instructions are used with the
2000 cpm reader, they work just like RCOL:F
and RCOL except:

e The reader translates each card column into a
character.

e N is the number of slabs to be stored, two
characters (two columns) to a slab.

If the reader detects a configuration in any col-
umn which does not correspond to one of the
64 characters it can translate, it will store the
character x in the processor and set the Overflow
flag.
The program may switch from translate to non-
translate and back as many times as desired
within a card, if the card fields make it appro-
priate to do so. However, if an odd number of
untranslated columns have been read before
switching, the last untranslated column will
appear a second time as a character.

Suppose the first half-dozen columns of a card contained

ABCDEF, and that threec columns were read un-

translated, then two slabs with translation. Five slabs

of memory would receive information; the first three

would contain A B € as images of the columns, and the
next two would contain €D EF as translated characters.

If these instructions are addressed to the 400
cpm reader, they will work just like RCOL : F and
RCOL.

OVERFLOW: If, during the execution of either
of these instructions, the reader
found an unallowable configura-

tion and substituted x for it,

Processor hangs up if input stacker empty, if a
card is mis-fed, if power off in Reader, or if the
instruction calls for reading columns from a
card that has not been fed.

PUNCH a card
Op v L] xsy A/B
P N C H X A

1 1 I 1 1 ! i

S controls use of Selectors on punch plugboard.
Jump is to address in JY, Link in J14.

The instruction automatically addresses itself to
whichever Punch was last selected by SELP. If
a Printer was selected last, this instruction will
be interpreted as PRNT and will operate the
selected Printer.

The 40-slab or 80-slab A-area, containing the
edited information to be punched, is transmitted
to the selected Card Punch Buffer, together with
the Selector control. This terminates the in-
struction within the Processor, and the program
immediately resumes.

Under its own independent control, the Card
Punch Buffer operates the Punch and punches
one card. When it has finished this task, it reports
READY.

The control panel on the Card Punch Buffer in-
cludes a 2-position switch, labelled TRANS-
LATE and DIRECT.

When the switch is in the T position, the Pro-
cessor transmits 40 slabs (80 characters) and
the card is punched in the Character mode, one
alpha to a column, with each alpha automatically
translated into conventional card-code. The
translation is performed by an encoding matrix
in the Card Punch Buffer, and does not affect the
timing of the operation in any way.

When the switch is in the D position, the Pro-
cessor transmits 80 slabs (160 characters) and
the card is punched in the slzb mode, one slab
to a column, with each column punched as an
exact image of the bit-pattern in the slab: holes
correspond to 1-bits. The correspondence be-
tween bit-positions in memory, and rows in the
card column, is the same as in RCOL; subsequent
reading of the card without translation will
duplicate memory as it was when the card was
punched.

SELECTOR CONTROL:

Optional with the Model 523 punch, and stand-
ard with the Model 7550 punch, are three pairs
of selector hubs on the plugboard, marked 1,
2, 3. The 3 RH bits of S are regarded as corre-
spondingly numbered:

Bits of S

x321

and each bit-position controls the correspond-
ingly-marked pair of selector hubs. Thus up to

8 different combinations may be programmed,
corresponding to 8 plugboard operations.

JY:

This instruction will abort if the previous card
on this Punch could not be punched. The infor-
mation for that previous card remains in the
buffer. Instead of executing this instruction, the
Processor will take its next instruction from the
address named in JY.

The following conditions will prevent punching of a

card. Each of them causes the Punch to become READY,
even though the card has not been punched.

o Power has gone off in this Punch.

The next card cannot be punched, and the PNCH in-
struction after that will abort.

o Card misfeed or card jam.

A misfed card cannot be punched at all; a jammed card
cannot be punched completely. The next PNCH in-
struction will abort.

o Input hopper empty or output stacker full.

The next card cannot be punched, and the PNCH in-
struction after that will abort.

e Plugboard programmed halt, such as detection of
double-punch or blank-column.

Card "1’ contains a punching error;

Card ‘2" is being punched while 1" is being checked.
After ©'2"" is completely punched, the Punch halts be-
cause of the error in 17",

Card 3" cannot be punched.)

The PNCH instruction for card *'4’" will abort.

The error-card 1" will be the last in the output

stacker, Card "'2"" will be in the read-check station.

When a PNCH instruction aborts and takes the JY
branch, the Punch becomes NOT READY, and
remains in that state until the condition is cor-
rected by the operator. He must clear the buffer,
usually by punching its contents into a card;
operator controls are provided for this purpose.

READY:

A Punch is READY when it has completed the
punching of a card, or when it has failed to punch
a card and has set the branch indicator.

It is NOT READY while it is punching a card,
or after the Processor detects a branch condition
and resets the branch indicator.

Ordinarily the program will test the READY

state by means of SELP before issuing PNCH.

However, if PNCH is issued to a Punch which is
NOT READY, the Processor will wait until the
Punch becomes READY.

DEMAND INTERRUPT:

Whenever a Punch is READY, it will exercise
Demand if its own Unit Demand flag, and the
Processor’s Demand Permit flag, are both on.

Processor error-halts if no Punch has been
selected; hangs up if Punch is not ready, or if
power off.

55

56

HALT and accept Console input

PRINT (buffered printer)

Op VoL ox/y A/B Op vl oxyy A/B
H A L T| (V) X A P R N T X A
— | o o] — | ' v
The second line of the instruction format is not used. It is suggested M is Mode of Format Control. t This digit

that zeros be entered in the Y column to indicate on a coding sheet
that this is o double-stage instruction.

Execution of the program is halted, and the
operator is free to perform any Console opera-
tion he chooses. Any information entered on the
Console Keyboard will be stored in memory,
starting at the LH end of the A-area. However,
the operator may change the putaway address
at his option. As many slabs as the operator
desires may be entered.

HALT:D Store input in memory as Digits.
If a non-digit character is entered, the
Processor will ignore that character,
and error-halt.

HALT:A Store input in memory as Alphas.

Before entering any information, or after press-
ing REST after some information has been en-
tered, the operator may press the ALPHA or
DIGIT button to change the mode of input, if
desired.

Keyboard entries are held in a 1-slab input
register, which is automatically putaway into
successive slabs of memory each time it is filled
with 2 Alphas or 3 Digits.

Execution of the program may be resumed by
pressing the COMPUTE button on the keyboard.
However, this button is inoperative unless the
input register is empty. Pressing the REST
button will clear the input register without
putaway, and will permit use of the COMPUTE
button, or any other Console operation.

ERROR HALT: If a non-Digit character is typed
while in HALT :D. The character

is not entered.

F is Vertical Format Control. always zero

JY is beginning of 2-way Jump Table.
Link is J14.

The instruction automatically addresses itself to
whichever Printer was last selected by SELP. If
a Card Punch was selected last, this instruction
will be interpreted as PNCH and will operate the
selected Card Punch.

The 60-slab A-area, containing the edited infor-
mation to be printed, is transmitted to the selected
Printer’s Buffer together with the Mode and the
Vertical Format Control. This terminates the
instruction within the processor, and the pro-
gram immediately resumes.

Under its own independent control, the Printer
moves the paper as specified by M and F, then
prints the line. When it has finished this task, it
reports READY.

MODE:
OUT-OF-PAPER JUMP
(Jy+41)
Print Do not print

this line this line
Fis
number of lines M=o0 M=2
Fis B
recognition code M=1 M=3

If M is 0 or 2, then F is the actual number of lines
of paper to be moved before printing this line.
If F is a non-decimal digit, then:

F means

@ 10

’ 11
space 12

& 13

. 14

- 15

F=0 means do not move paper at all; this will
cause this line to be overprinted on the previous-
ly printed line.

If M is 1 or 3, paper is moved until a punched
configuration on the VFU Tape (see below)
exactly matches the bit-configuration of F, where
holes in the tape correspond to 1-bits of F. This
line is then printed at the point on the paper
opposite that configuration on the tape. Do not
use period as a recognition code, as this is re-
served for possible special function in future
model printers.

If F=0 the paper will stop at the first unpunched
position on the VFU Tape.

If there is no VFU configuration which matches
F, the Printer moves paper until the VFU
“special” code (4 holes) is reached the second
time. Paper movement then stops, and the Printer
error-halts.

NON-PRINTING CHARACTERS:

There are 8 “non-printing” characters which are
merely convenient marks for their respective
binary configurations, and which will not appear
in data. However, in producing program list-
ings, the Printer will be called upon to print
them.

A non-printing character will appear on the
printed page as a capital letter, overprinted with
a plus sign:

?

?

1JY {end of page):

If paper movement for any PRNT command
reached or passed a “‘special” code (all 4 holes)
on the VFU Tape, the JY indicator is set in the
Printer. The next PRNT command will take the
JY branch instead of being executed, the JY
indicator is cleared, and the Printer remains in
the READY state.

TQRZX
/l——l:_|—
x £ <c

{See flow chart on next page for detail operation
of PRNT and the jumps.

See Appendix for discussion of VFU conventions
and programming techniques for using PRNT.

TJY+1 (out of paper):

At the time the JY indicator is set, the Printer
also checks whether it is printing on the last
page of the continuous-form paper. If so, the
JY+1 indicator is also set in the Printer. The
next PRNT command will take the JY branch and
turn off the JY indicator in the Printer.

The next PRNT command after that will detect
the JY+1 indicator, turn it off, and take the
JY+1 branch. The line will be printed or not,
depending on the Mode of the command, but
the branch is always taken. The Printer becomes
NOT READY, and remains in that state until
the operator loads more paper.

VERTICAL FORMAT UNIT (VFU):

This unit, which is part of the Printer, holds a
loop of paper tape into which 15 different code-
configurations can be punched. The loop is the
same length as the form being printed, and the
punched codes exactly correspond to the lines
which they designate.

As the paper moves vertically, the VFU, and its
tape loop, move witk it so that all paper move-
ment is controlled by the VFU tape as specified
by M and F in the instruction.

READY:

A Printer is READY when it has advanced the
paper and completed the printing of a line
unless an “out of paper” condition exists.

Ordinarily the program will test the READY
state by means of SELP before issuing PRNT.
However, if PRNT is issued to a Printer which is
NOT READY, the Processor will wait until
the Printer becomes READY,

DEMAND INTERRUPT:

Whenever a Printer is READY, it will exercise
Demand if its own Unit Demand flag, and the
Processor’'s Demand Permit flag, are both on.

Processor error-halts if no Printer has been
selected; hangs up if Printer not ready, or if
power off.

57

DETAIL OPERATION OF PRINT COMMAND

PROCESSOR

Was JY indicator
set in printer by

previous command?
NO

(Buffered Printer)

YES

O
\J

Load the printer
buffer

q Was JY+1 indicator
set in printer by

next-to-last print command?

YES

Release the printer

Execute next command
in the program

PRINTER

When buffer loaded,
printer becomes NOT
READY

Move paper according
to slew control

Special code on VFU
NO reached or passed?

YES

Q Set JY indicator
in printer

Out of paper?

YES

Set JY41 indicator
in printer

N

Print contents of
buffer

Printer becomes READY

Turn off JY+1
indicator in printer

Release the printer

i
1
1
]
]

]
PRINTER

When buffer loaded,
printer becomes NOT

READY
o2x What is slew control?
03X
oox
01X

Move paper according
to slew control

> Print contents of buffer

)

d) Printer remains NOT READY

Jump to address in JY41

Turn off JY indicator
in printer

Release the printer

Jump to address in JY

PRINTER

é Printer remains READY

STUDENT’S NOTES ON PRINT COMMAND

59

60

TYPE on Console Typewriter

READ MAGNETIC TAPE

Op Vv L | x/Y A/B Op v L] x/Y A/B
T Y P E| (V) X A R M T A
N I

1] 1 lJ ! ! ! I ! I Il ! ! 1

Type N slabs from memory, starting with the
LH end of the A-area. N may be 000-999.

TYPE:D

TYPE:A

TYPE: AP

Type digits.

Type alphas.

There is no format control in these
modes, and the Console Typewriter
is not provided with an automatic
carriage-return.

Type alphas with programmed format.

Whenever the characters] and \
appear in the A-word, the Processor
automatically substitutes the format-
control operations “tab” and “car-
riage return” respectively.

] becomes Tab

\ becomes Carriage Return

If N=0, these operations do nothing.

JY is the beginning of a é-way Jump Table used for all Tape
operations on a given file. RMT uses only four of the jumps.
Link in J14.

All or part of one block on magnetic tape is read
into the A-area of memory. The information is
automatically checked for 2-dimensional parity
while the reading is being performed. Checking
is for odd-parity at 60 kc and 40 kc, and for
even-parity at 24 kc.

If the block contains an odd number of charac-
ters (as can occur with IBM-recorded tapes) a
zero is automatically stored in memory to com-
plete the last slab of the block.

I: Actual address (000-999) in memory
of 3-slab Information Table, con-
taining Handler-number and number
of slabs to be read from the block.

I I+1 I1+2
Ha I'N

] ' ' ' 1 1 '

Ha: Handler-number: 0-7
only RH 3 bits are used

N: Number of slabs: 0000-7999
only RH 15 bits are used

Since the Handler-number is referenced in the
instruction, there is no explicit operation to
select the Handler.

If the block is more than N slabs long, the first
N slabs of the block are stored in memory, while
the rest of the block is used only for checking
but is not stored in memory. The entire block is
always checked, and therefore the time to per-
form a partial read is the same as to perform a
complete read.

If the block is N slabs long, or less, the entire
block is stored in memory.

If N=0, the tape does not move; the instruction
merely tests for BUSY and USE LOCKOUT.

INDEX:

Indexing a tape forward is accomplished by
Reading with N=1.

CM:
Control Mark. Any 1-slab record serves as a CM.

Conventions have been established for a number
of CMs, as listed. The first three are used by
STEP, and the programmer need be aware of
them only to be sure that he never uses one of
them for a CM which he may record himself.

<= Skip Block follows
CC Rescue Dump follows
TT End of Tape
FF End of File
HH Hash-totals follow

BRANCHES:
READ WRITE BACK | WIND
Jy Read Error
JY+1 Write Error
JY+2 CM
JY+3 DWM
JY+4 Busy Rewinding
IY+5 Write gr)cllJ(so:tLL\‘/:‘I/(EL'l;E only)

The complete Jump Table is shown, since the
same table will normally be used for all opera-
tions on the same file.

Priority of branches:
Use Lockout
Busy
Write Lockout
Read or Write Error
CM or DWM (Destination Warning Marker)

If two branch conditions arise simultaneously,
the Overflow flag is set.

Processor hangs up if there is a Handler mal-
function.

Since all error-detection, end-of-tape alternation,
etc., are handled by STEP (Standard Tape Exec-
utive Program), and a single Magnetic Tape
Jump Table for the entire program is con-
structed by NEAT (National’s Electronic Auto-
coding Technique), the programmer normally
remains unaware of the branch conditions. He
provides only for end-of-file CM and for any
special purposes for which he may choose to
use CMs.

READ ERROR:

When the Processor detects a read-error, it still
reads the full N slabs or the entire block, which-
ever is less, into memory.

LOCKOUT:

One of the modes of REWIND will place a Use
Lockout on the Handler. The Processor may not
use this Handler again until the Use Lockout has
been cleared by the operator, usually when he
changes reels of tape.

R30: When the operation is complete,
R30 contains the address of the
first memory slab following the
information read.

If N=0, or if unable to read be-
cause of Busy or Use Lockout,
(R30) remains unchanged.

OVERFLOW: If the Overflow flag is on, this
instruction turns it off before the

operation begins.

If the operation encounters a
Read Error and a CM simul-
taneously, it takes the Read
Error branch and sets Overflow.

ERROR HALT: Attempting to execute a READ
after a WRITE on the same tape.

No tape movement.

Attempting to READ the Trailer
(ie- past the physical end of the
tape). No tape movement.

Attempting to READ blank tape.
Tape runs to the Trailer, then
error halts.

61

62

WRITE MAGNETIC TAPE

Op v oL ox/y A/B
W M T X A
I

JY is the beginning of a 6-way Jump Table used for all Tape
operations on a given file. WMT uses only four of the jumps.
Link in J14.

One block is written on magnetic tape from the
A-area of memory. The information has 2-
dimensional parity automatically added to it,
then it is immediately read back from the tape,
and the parities checked. The operation uses
odd-parity at 60 kc and 40 kc, and even-parity
at 24 kc.

I: Actual address (000-999) in memory
of 3-slab Information Table, contain-
ing Handler-number and number of
slabs to be written as a block.

1 I+1 1+2

Ha r'N |
1 1 ' 1 | 1 '

Ha: Handler-number: 0-7
only RH 3 bits are used

N: Number of slabs: 0000-7999
only RH 15 bits are used

Since the Handler-number is referenced in the
instruction, there is no explicit operation to
select the Handler.

If N=0, the tape does not move; the instruction
merely tests for BUSY and LOCKOUT.

CM:
If N=1, the resulting record is a CM. See
definitions and discussion under RMT.

DWM:

Destination Warning Marker. Approximately
18 feet from the physical end of the tape (the
Trailer) the Handler will encounter the DWM,
indicating that the end of the tape is approach-
ing; it is safe to finish the current block, and to
record (if desired) a few more blocks of control
information, but no more file information should
be written on this reel.

Once the tape passes the DWM, subsequent WMT
instructions will not take this branch. If the
programmer does any writing beyond the DWM,
it is his responsibility not to write so much that
he reaches the trailer.

The DWM is significant only when writing; it
is ignored when reading.

BRANCHES:

(JY+1) Write Error.
(JY+3) DWM.
(JY+4) Handler busy rewinding.
(JY+5) Handler in Use Lockout
or Write Lockout.
See complete table, and discussion, under RMT,

LOCKOUT:

One of the modes of REWIND will place a Use
Lockout on the Handler. The Processor may not
use this Handler again until the Use Lockout has
been cleared by the operator, usually when he
changes reels of tape.

Each Handler is normally in a Write Lockout
state, making it impossible to destroy informa-
tion on a tape by accidently recording over it.
When it is determined that a given reel is to be
recorded, the operator releases the Lockout on
that Handler; as soon as the reel is recorded,
rewound and changed, the Lockout is automati-
cally established again.

OVERFLOW: If the Overflow flag is on, this
instruction turns it off before

the operation begins.

If the operation encounters a
Write Error and a DWM simul-
taneously, it takes the Write
Error branch and sets Overflow.

ERROR HALT: Attempting to WRITE when
positioned on the Trailer, No

tape movement.

Processor hangs up if there is a Handler mal-
function.

BACKUP Magnetic Tape one Block

REWIND Magnetic Tape

Op v oL | x/Y A/B

Op

v oL | xpy A/B

B A C K
| . | 1 1 1

W I N D

)

1 1 1

Y I

1 1 1 1 1 1 1

Y I

1 1 1 L

JY is the beginning of a é-way Jump Table used for all Tape
operations on a given file. BACK uses only two of the jumps.
Link in J14.

The designated magnetic tape is moved back-
ward one block, so that it is now positioned to
re-read or re-write the last block which was read
or written,

I: Actual address (000-999) in memory
of 1-slab Information Table (first slab
of 3-slab table used for RMT or WMT)
containing Handler-number.

I

Ha

Ha:

T

Handler-number:

0-7

JY is the beginning of a é-way Jump Table used for all Tape
operations on a given file, WIND uses only two of the jumps.

Link in J14,

WIND: Rewind the designated magnetic
tape to the Beginning-of-Infor-
mation Marker (BIM).

WIND:L Rewind, and set Use Lockout in
the Handler.

I. Actual address (000-999) in

memory of 1-slab Information
Table (first slab of 3-slab table
used for RMT or WMT) containing
Handler-number.

I

Ha

only RH 3 bits are used

Since the Handler-number is referenced in the
instruction, there is no explicit operation to
select the Handler.

BRANCHES:

(JY44) Handler busy rewinding.

(JY+5) Handler is in Use Lockout.

See complete table, and discussion, under RMT.

OVERFLOW: If the Overflow flag is on, this
instruction turns it off before

the operation begins.

This instruction never sets
Overflow.

ERROR HALT: Tape positioned on Trailer,
Leader, or BIM (Beginning of

Information Marker).

Processor hangs up if there is a Handler mal-
function.

Ha: Handler-number: 0-7
only RH 3 bits are used
Since the Handler-number is referenced in the
instruction, there is no explicit operation to
select the Handler.

BRANCHES:

(JY+4) Handler already busy rewinding.
(JY+5) Handler already in Use Lockout.
See complete table, and discussion, under RMT.

NOTE: If tape is already positioned on
Leader or BIM, the operation
does nothing.

OVERFLOW: If the Overflow flag is on, this

instruction turns it off before
the operation begins.

Processor hangs up if there is a Handler mal-
function.

63

64

READ CRAM CARD
Op VoL | X/ A/B

1 I I 1 I ! 1

] 1 1 I 1 L] 1

JY is the beginning of o 6-way Jump Table used for both Reading
and Writing. RCC uses 4 of the jumps.
Link in J14.

The instruction automatically addresses itself to
whichever CRAM was last selected by SELC, and
reads one block from the card which is already
on the drum.

Information is recorded on the card with one
block in each of 7 tracks. Block length may be
1 to 1550 slabs.

All or part of one block on the card is read into
the A-area of memory. The information is auto-
matically checked for 2-dimensional parity while
the reading is being performed.

I: Actual address (000-999) in memory
of 3-slab Information Table contain-
ing track-number and number of slabs
to be read from the block.

I I+1 142
Tr € [N R

1 1 1 1 i 1 1

Tr: Track-number: 0-6
only RH 3 bits are used

N: Number of slabs: 0000-1550
only RH 15 bits are used

If the block is more than N slabs long, the first
N slabs of the block are stored in memory,
while the rest of the block is discarded. See
comments under PARTIAL READ.

If the block is N slabs long, or less, the entire
block is read.

If Tr=7, or if N=0, the instruction does
nothing.

If N is greater than 1550, the Processor error-
halts.

CM:
Control Mark. Any 1-slab block serves as a CM.

BRANCHES:

READ WRITE
JY Read Error
JY+1 Write Error
JY+2 CM
JY+3 Not Loaded
JY+4 Wrong Card

Write

JY+5 Lockout

The complete Jump Table is shown, since the
same table will be used for reading and writing.

Attempting to read a blank track (one which
has never before been recorded) will cause the
Processor to take the “wrong card” branch.

Priority of branches:
Write Lockout
Wrong Card
Not Loaded
Read or Write Error
CM

If two branch conditions arise simultaneously,
the Overflow flag is set.

Since all error-detection and housekeeping are
handled by PACE (PAckaged CRAM Executive),
and a single CRAM Jump Table for the entire
program is constructed by NEAT (National's
Electronic Autocoding Technique), the pro-
grammer normally remains unaware of the
branch conditions. He provides only for end-of-
file CM, and even that only when using CRAM
Cards as a serial file.

PARTIAL READ:

If the block is more than N slabs long, reading
terminates with the Nth slab, and the Proc-
essor immediately proceeds with the program
without waiting for the rest of the block. In this
case, while each character read into memory is
checked for its parity bit, the block-parity
character is not verified.

When writing a block which is expected to be
subject to a Partial Read, it is customary to place
an additional slab in the block at the point
where the partial reading will terminate. This
slab contains a programmed check-sum of that
part of the block which precedes it, and the
check-sum is verified after the partial read.
Standard subroutines are provided for creating
and verifying this check-sum.

READ ERROR:

When the Processor detects a read-error, it still
reads the full N slabs or the entire block, which-
ever is less, into memory.

R30: When the operation is complete,
R30 contains the address of the
first memory slab following the
information read.

If Tr=7, or N=0, or if unable
to read because of NOT
LOADED or WRONG CARD,
(R30) remains unchanged.

OVERFLOW: If the Overflow flag is on, this
instruction turns it off before
the operation begins.

If the operation encounters a
Read Error and a CM simul-
taneously, it takes the Read Error
branch and sets Overflow.

Processor error-halts if no CRAM has been
selected; hangs up if CRAM not ready, or if power
off.

See next page for
WRITE CRAM CARD

65

66

WRITE CRAM CARD

Op v oL X/ A/B
W Cc C X A
I

JY is the beginning of a 6-way Jump Table used for both Reading
and Writing. WC C uses 4 of the jumps.
Link in J14.

The instruction automatically addresses itself to
whichever CRAM was last selected by SELC, and
writes one block on the card which is already
on the drum.

Information is recorded on the card with one
block in each of 7 tracks. Block length may be
1 to 1550 slabs.

One block is written in the designated track
from the A-area of memory. The information has
2-dimensional parity automatically added to it,
and is immediately read back from the card, and
the parities checked.

I: Actual address (000-999) in memory
of 3-slab Information Table contain-
ing track-number and number of slabs
to be written as the record.

I I+4+1 1+2
Tr I'N

! 1 ! 1 1 1 -

Tr: Track-number 0-6
only RH 3 bits are used

N: Number of slabs: 0000-1550
only RH 15 bits are used

After the block has been written, and the block-
parity character recorded and checked, the
Processor terminates the operation, and pro-
ceeds to the next instruction in the program.
The CRAM, under its own independent control,
then erases the rest of the track.

If Tr=7, or if N=0, the instruction does
nothing.

If N is greater then 1550, the Processor error-
halts.

CM:
If N=1, the resulting block is a CM.

BRANCHES:

(JY+1) Write Error

(JY+3) Not Loaded

(JY+4) Wrong Card

(JY+5) Write Lockout

See complete table, and discussion, under RCC.

LOCKOUT:

Each CRAM is normally in a Write Lockout state,
making it impossible to destroy information on
a card by accidently recording over it. When
it is determined that a deck of cards is permitted
to have new information recorded on it, the
operator releases the Lockout on that CRAM; as
soon as the deck is removed, and a new deck
is placed in the CRAM, the Lockout is auto-
matically established again.

OVERFLOW: If the Overflow flag is on, this
instruction turns it off before

the operation begins.

This instruction never sets Over-
flow.

Processor error-halts if no CRAM has been
selected; hangs up if CRAM not ready, or if power
off,

APPENDIX

67

68

PROCESSOR FORMAT OF COMMANDS

When a program has been translated by the
NEAT Assembly or by the NEAT Compiler into
actual processor code, eachsingle-stage command
occupies 2 slabs of memory, and each double-
stage command occupies 4 slabs of memory.

The command format in the NCR 315 has been
made very “tight” in order to make most eco-
nomical use of memory space for programs. For
this reason, all the bits of the command have
been used as much as possible, and a given set
of bits within the command format may have
different significance in different commands.

The formats of processor commands may be
represented as:

;
Single Stage X x; F | C A
X |xiF | C A
Double Stage : : :
Y yiQ|G B
|

The A and B fields in the commands are identical
to A and B as described in this manual for each
command, and need not be discussed further.

In a single-stage command, C represents the
Operation Code (eg- ADD, SUB, etc) and F often
represents the Field Length (reduced by 1).
However, in those commands (such as TEST)
where no field length is appropriate, F is used to
specify additional variations of the operation.

In some cases also, where it is not appropriate
to permit the designation of a “literal” operand,
the designation of index register R15 (or op-
tionally R31) is used to distinguish a whole new
set of variations.

In a double-stage command, C is always either
zero or hyphen, and F is the actual operation code.
Q and G are used to specify variations.

Referring to the diagram of R-registers and J-
registers on page 11, it will be seen that the 32
registers of each type, which are there numbered
from O through 31, could just as well have been
numbered—

0 through 15, left column,
0 through 15, right column.

They are actually so numbered in the processor
format of a command. The symbols X and Y in
the processor command format stand for “‘hexa-
decimal” configurations whose values are:

CHARACTER VALUE
0-9 0-9

@ 10

, 11

A 12

& 13

. 14

- 15

In the single bit-positions marked x and vy,
left-column is indicated by a 0-bit and right-
column by a 1-bit.

Recalling that the Operation Code for ADD is 3,
and that F contains L-1, the following command:

\'

X

1

o7

would appear in processor format as:

@5 3|7 89

If the command has called for R26 (register 10,
right-column) it would have appeared as:

@& 3|7 89

The following is the complete list of commands
in the 315 vocabulary, showing the entries for
F, C, Q, G. Wherever there is no entry for F, it
is L-1. Wherever there is no entry for Q or G,
the corresponding bit-positions in the command
are irrelevant to its execution. But wherever
values for F, Q, or G are shown, then any value
other than those listed will cause the processor
to halt on “programmer error.” A double aster-
isk indicates that this is an R15 variation, in
which F has an entirely different significance
than if some other index register is named. As
elsewhere, an asterisk preceding the command
indicates that a literal operand is permitted by
naming R15.

69

goE Fcag CE EcoQs coE EcogE goE Fcacg
*LD 1 *SETF :LH 2 @ SCND:EV 4 O v 4 PPT :C 1 — 4
*ST 2 *SETF :RH 3 SCNA:GZ 4 O m 9 PPT :$ 1 - s
*ADD 3 “CLRF:LH 4 8 SCNA:LZ 4 O m @ TYPE :AP 1 — 7
*suB 4 ° SCLRF:RH S (B SCNA:EZ 4 O m B RPT :§ 2 - 1
*MULT s 4 JumP :1 6 ¢ LDAD 5 00 RPT :C 2 - 2
*COMP 6 & JUMP:IP 7 @ LDAD:XR S5 0 1 RPT :¢X 2 — 3
TEST : G o 7 Kl s*MLRA e LDAD :XL s 0 2 RCOL :F 2 - 4
TEST:SR 0 7 £ essxip 7 0 LDAD:XB S 0 3 RCOL 2 -5
TEST : L 17 L EDIT & STDA 6 00 RCOL:TF 2 — 6
TEST :SM 1 7 { SUPP o PAST:XR 6 0 1 RCOL :T 2 - 7
TEST :E 2 7 *TEST:LH O @ PAST:XL 6 0 2 STRT :§ 3 -0
TEST :SL 2 7 *TEST:RH 1 @4 PAST:XB 6 0 3 RCK 3 -1
TEST :~ 3 7 *CNT 10 SELC:DN 7 0 0 © PKT 3 = 2
TEST : 0 4 7 g (1)) :R 2 0 0 O SELC :DP 7 0 0 1 STOP :S 3 - 3
Jump 5 7 2 €. I 2001 *SELC :R 7 00 2 PRNT 3 — 4
TEST:D 6 7 ‘: SLD :R 2 00 2 *SELC :T 7 00 3 PNCH 3 -4
TEST : T 7 7 3 SLD :J 2 00 3 *TEST:SW 7 0 1 O RMT 4 —o0 g
**DLR o 7 3 MOVE:RR 2 0 0 4 *SELP 7 01 1 wMT 4 -1 g
**SETF : 4 1 7 a MOVE:JR 2 0 0 5 *SELS 7 01 2 BACK 4 — 2 g
**SETF :0 2 7 MOVE:RJ 2 0 O 6 *SELQ 7 013 WIND 4 — 3 g
S4SETF :— 3 7 MOVE:JJ 2 0 0 7 *CLRU :C 7020 WIND :L 4 — 4 g
**SETF :D 6 7 ST R 2 008 *CLRU :P 7 02 1 RcC s —0 g
**SETF :T 7 7 ST 2 0009 *CLRU :S 70 2 2 wce s -1 g
*SHFT :AR 0 8 AUG :R 2010 *CLRU :Q 7 02 3 RQ 6 — 0
*SHFT :DR 1 8 AUG 9 2011 *SETU :C 7030 waQ 6 — 1
*SHFT :RR 2 8 SAUG :R 2 01 2 *SETU :P 7 03 1
*SHFT :DL 3 8 SAUG :J 2 01 3 *SETU :S 70 3 2
* . H * :
T e o 8 movE:E 3 o 4 MALTID 1= 0
: : ; *R = 15 or # 18
*SHFT :AL 7 8 **SPRD :B 3 00 HALT :A 1 -1 +eR = 18
*ADD :M 9 **SPRD :E 3 01 TYPE :D 1 - 2 V= 1.7
e Mon liii TR TR | e
’ ° £/ *'Thousands’’ digit for I
OVERPRINTED WITH A ‘4 SYMBOL
ABSOLUTE| X F C A PRINTER REPRESENTATION [T
X M N O | P u W | X
| | | OF
FORMAT | Y yQ G B “NON-PRINTING” CHARACTERS ? : - 4 ' [J \
| | i 1
xFor yQ XorY|O[1 2|3 /4|5/6|7 89 @|, |¢|&, -
23/4|5|6 REGISTER | OO 01 02‘103 04 /05/06107 08,09 1011 (12|13 14 |15
8 9 7 = NUMBER 116 (17 /181920 212223 24125 2627 28129 [30 |31

70

PAPER TAPE INPUT

Paper tape for input of programs to the NCR 315
must be punched in NCR General-Purpose Code,
illustrated on the next page. All the facilities of
NEAT (Assembler, Compiler, COBOL, Libra-
rian, etc) expect the source program to be
punched in this code.

Paper tape for input of data may be punched in
any code whatever, and read by a macro-instruc-
tion that translates the character-images on the
tape into 315 internal configurations. Certain
codes have been designated as standard, and
translators have been written for them; these are
provided as macros in the NEAT Compiler, and
as subroutines for the NEAT Assembler. These
standard codes are shown on the succeeding
pages.

The macros operate by reading and translating
one character at a time, for as many characters
as the programmer has specified. They utilize
the sharable time between the characters, and
perform their functions while the Reader oper-
ates at full speed.

Programmers sometimes wish to specify that
data be punched in 315 binary-image code,
which needs no translation, in order to use the
time between characters for other processing.

This advantage is illusory, since when reading
one character ar a time for this purpose, a
subroutine is still needed to store successive
characters alternately LH and RH in successive
memory slabs. As a result, the units of time
available between characters for other process-
ing are too small to be of practical use.

When fields, or items, or batches, are of varying
lengths the programmer may save himself some
effort by specifying the use of control configura-
tions as data markers. When he specifies a
number-of-characters to the macro, this is really
a maximum size for the “gulp,” since the macro
will terminate the gulp if a control configuration
is found before the specified number of charac-
ters have been read. Thus each field, or each
record, would be read in isolation regardless of
its length, and would always start at the same
position in memory.

The macros set program indicators, which may
be tested by the main program, to show: whether
the gulp ran to the specified maximum length or
was terminated by a control configuration, how
many characters the gulp contained, and whether
any parity error or undefined configuration was
found in the tape.

PAPER TAPE OUTPUT

A similar group of macros is available for
punching information in any of the standard
codes. These also operate on a character-for-
character basis.

Because there is quite a substantial amount of
free time between characters when punching,
the macros return control to the main program
after each character. Further computation may
be performed during free time, and the main
program permits the macro to resume for each
additional character to be punched.

On occasion, information will be punched by

the Processor, for the sole purpose of returning
that information to the Processor at a later time.
(For example: for transfer of low-volume data
from one Processor to another, paper tape is
more economical to use and to ship than punched
cards.) For this purpose, the programmer may
punch the tape in 315 binary-image, using the
Processor instruction PPT:C, with any con-
venient N in the instruction. When this tape is
later read, the Processor instruction RPT:C,
with any convenient N, would be used. In neither
of these cases would translation be required, and
no macro need be used.

PAPER TAPE INPUT-OUTPUT
NCR GENERAL-PURPOSE CODE

(Odd-Parity)

TYPEWRITER CHARACTER CHANNELS TYPEWRITER CHARACTER CHANNELS
LOWER UPPER IMAGE LOWER UPPER IMAGE
SHIFT SHIFT 8(7(6/5/4]e 201 IN 315 SHIFT SHIFT 8/7/6/5/4/¢ 3 1 IN 315
0 0 ° ° . 0 G U !) .
1 = o |olo|s| |o]e " Y [eloje| o0 w
2 # ole . ole P ? w] ° ol o
3 1 ° o| |o|e® 3 E X \ 1:0 K <
4 $. . ° E L Y 3 'é o e« %
5 % ole . ° J 5 z @ fi" . . K
Ie) & 0 e . 30 = 4] SPACE SPACE ' o 8
7 " ° o sojoe - 8 COHMP C?IMP IR I 0
8 (ol R a | CLEAr cgi“ elel |+ olele X
9) ele |) # 6 Pk” ® Pk" @ o .) ,
A A ° . . 6 5 PD;SC ® PD}sc @] ole] 5
B B 0 o |® H 9 ST;)P@ STQOP(D ojlejeio|.|0 !
C C ool ? 5| carer CARET N o |e '
D < o lol o] |eo B R o TAB B . o 1
E E e 2 | u;s - ugs . e 4
F F elelsl |o ; R RUNIN@ RUNIN ® o lololel.lolele :::;
G G o ol | DELE@ DEI.E@ ololelel«lole e \
H * oo |0 Q S,E,Pn SLJ:;T eieie|c|e]
1 . . N sp _DSOH‘I’:TN D&Y:TN ojlojoicle| |0 [
J + ° . ° F
K _ o lelelelole - SEPARATE CODES
FOR NUMERIC KEYBOARDS
L i *° : M CHANNELS
M ? e|oo . Y g s|7]6|s5[a]e[3]2]n N 315
N . ° K H 0 ' oo olc |0 ° (
[4 -« oloo . * 1 ojlo0 | ° >
P A o |eo $ 2 . . . C
Q Q oo (o +|0le) 3 o elo|cje |o :
R R o |o o D 4 cjojole 7
S > . o« |o @ 5 o |o sjojo|e /
T /] . + ()] . (] L
7 oo . . 1
8 [} o!o o . .
NOTE: This code is compatible with 9 A

Addressograph-Graphotype.

(1) STOP. Terminates the RPT Macro.
(2) SKIP. ignored by the RPT Macro.

72

PAPER TAPE INPUT-OUTPUT

I.B. M. 046-047 8-CHANNEL CODE

(Odd-Parity)

CHANNELS CHANNELS
CHARACTERS ner[s 7 6 5 4 3 [IMAGE CHARACTERS Ner[eT776 s 4 ¢ 302 o IMAGE
046-047 315 emleL x o v 8 ¢ 4 21 IN 315 046-047 315 BMlEL X 0 8 ¢ 4 21 IN 315
0 0 . . o+ X X T o 0 0 oX
1 1 | .] pO]% B 7Y Y o oo . R VOVY)
2 2 « el || o2 1 |z o Je o] or
A'Ti 3 . 7‘—:* .) Oicﬁ . . ‘oo oA. o o 1=
4 4 T e 04 o . " e e elel oo | 0>
5 5 ‘ o‘ e . wo;" S;ACE SPACE | . . Wo! |
6 6 ol oo OF - - 2. . 10
7 7 " elele 07 & & ele o . 1%
8 8 ol os @ @ e o|c|0 0?
9 9 .Jjﬁ ol | oI H ; o o0 o el 1!
A A oo E | [of | 14 % % o olcle 0$
B B ol T T] k| $ $ ol eelsl el ||
C C elole 1+ lele 17 /) i'i \o o#
D D oo Y ™ * * . oo | 15
E E R Y . 1V # # J .. o e 0
F F cole| |-l w P11 ® C ee. o 0,
G G PR e ele 1P P12 o o o . o 1@
H H oo |0 1Q PI3 O] . 0‘ -[0%
| | o oloje o . 12 PI4) %ooo‘-o le o[
J J e o |l 1a P15 ® ele o0 o] ¢
K K o o . . 1B P16 0] oi;l .L. .« o @ 1:
L L . | « ele 13 P17 ® I T. o o 0s&
M M o« o .o 1D EC ® T e e 0.
N N *« c o le 15 EC2 O] | ‘1. T.‘. . .v. o/
© IV . o. 16 SP1 @ ioooo‘- . 1<
P P . . v e 00 16 SP2 0! ho o+ 0 0 1)
Q Q o oo . 1H ENDLI O . T o 20
R | R . olv [el] 10 ERROR ® « e eee |-
S S o“o 1-‘ |® os SKIP e e 0 00 7014
T T o M oL RUNIN & s o0 00 1\
U U olef [+ o ou CORR v ll“”'l'i' ol | ot
Y} \Y; O .io . ON CARET ® . I.g.‘!.i.l.i 1<
w w . el oe

@ STOP. Terminates the RPT Macro.

{(2) SKiP.

Ignored by the RPT Macro.

PAPER TAPE INPUT-OUTPUT

5-CHANNEL TELEGRAPH CODE

(Non-Parity)

CHARACTERS CHARACTERS CHANNELS CHARACTERS CHARACTERS CHANNELS

o s | [T ws |RRERER] e R - R B B ea s B
A A - - o H Q Q 1] olo |0 °
B B ? Mo o| |o]e c R R 4 4 o|+| |o @
C C + ole|o|0 . S S BELL @7 o |e|e D
D D $ s | e B T T 5 5 JTe]
E E 3 . ! V] U 7 7 ole|e|o ?
F F ! T <|o|e F v Vv ; ; o <|ojole -
G G & & o|s| |ol® s w w ;2”777 27”% oo .
H H = # e |o 5 X X _._/ / o |c]|oje|e G
| | 8 8 o|s |0 space Y Y 6 6 . cle| |e@ E
J J ' * o . ; z z " " o | ° A
K K ((o |00 -« SPACE SPACE SPACE SPACE olo
L | ¢ y |) SEEILIE o I - T R AR RN I
M| M . el [7 s | e | [s] [efel ool
N N . . e @@ 6 RUNIN ® RUNIN @ . 0
o (v} Q . o0 3 LINE 0) LINE ©) oo 8
P P o0 ° & CARET 0) CARET ® . ° 2

() STOP. Terminates the RPT Macro.

(@ sKkip.

Ignored by the RPT Macro.

€L

PAPER TAPE INPUT-OUTPUT

NCR 304 TYPEWRITER CODE
(Odd-Parity)

TYPEWRITER KEY CHANNELS TYPEWRITER KEY
o I N cearsearscnesa QLT Eral I I reanre ar e I
0) . * . ° (« Q Q . o o . Q
1 1 o ‘. . 1 7 R 1 R N o ol . I R |
2 ' (=) . ‘ . 2 S s (>) 7 o o . . S]
3 ° . o o 3 T T o o o . e o T
4 $: . ® 4 U u(") oo ole i u |
5 A ot Pe o; . 5 \Y v({:) e el ol @ . v
6 / o" . o'o 6 W wiD o‘o‘io c|lo @ w
7 & B c o 00 7 X X (\) Too R S) X
8 * | e . 8 Y Y o 0 o o | Y
Q (To ; o . [} 9 y4 Z o o 0 o T o z
A A « e o e oA @ + o +
B B ° 1o . ° B ¢ D(3) ‘ e o 0 . *
C C . . o0 C - A . . !
D d () o o LN] D . y e ¢« 0o @ .
E E e e . E SPACE SPACE . o .. 0 space
G G o (o |cle 00 G CO>MP® ST:CI’P @ 0' o o .0l |0 (
H H (] o 0 . H agk@ agx@ . o ol0 @ -
! ! b * ! SHIFT et o (oo e "
J J . 0} . . J DS?!I\:TN DS%‘;"YN Lo o o ° :
K K oo | |e K DRHE | DEE e e o e cioee \
L L i L . oo L RUNIN 5| RUNIN) . o
M m(?) oo oo M CARET (| CARET 7, o e clojoie 0
N ne:) L s 0 e N ™ pf TAR o |elefci0le -«
(¢4 o) . cjele (-4 BACKSPACE DOES NOT PUNCH
P p(T) ‘oio clojole P

(1) STOP. Terminates the RPT Macro.
@ SKIP. Ignored by the RPT Macro.

PROGRAMMING THE BUFFERED PRINTER

The following conventions have been adopted
for punching the VFU (Vertical Format Unit)
control tape on the Printer, assuming a page
11 inches high.

1. A punch in the P-column on VFU line 27.
After loading paper in the Printer’s rear tractors, the operator
presses the SET LOOP button, advancing the paper into the
front tractors and moving the VFU tape to the P-Punch.
Then he moves the paper so that the page-perforation is
aligned with the Printer’s perforation guide. The paper is
now aligned with the VFU tape, so thart line 1 on the tape
corresponds to the first printing line on the page.

2. Punch configurations 2, 4, 6, 8 on VFU lines
2, 4, 6, 8 respectively.

3. Punch “special” (4 holes) on VFU line 61.
4. Punch configuration 1 on VFU line 65.

The requirements of specific printed forms, or
the use of a page longer or shorter than 11 inches
(66 lines), may indicate the placing of “special”
and “1” at somewhat different positions; any
other configurations may be punched elsewhere
on the tape to provide additional format control.
These changes will still permit the VFU loop to
be used for Compiler listings and other service
routine printouts.

However, the loop may not be used as standard
for these purposes if any of the specified configu-
rations is repeated elsewhere on the VFU tape.

Do not use period as a value for F, as this is re-
served for possible special function in future
model Printers.

The first printed line on each page uses slew
control 032, 034, 036, 038 as appropriate.
Succeeding lines use 03x or 02x, depending on
whether x is a recognition code or a number
of lines.

The last normal line on the page will correspond
to “special,” while a line of Totals (for example)
will correspond to the line punched 1.

NOTE: The programmer must use caution in
calling for a paper slew from above “special,”
direct to the next page. If the Printer is out of
paper, this condition will not be known to the
program until the attempt to print the second
line on the non-existent next page. The pro-
grammer must, therefore, arrange to save the
first line of each page, and return to the command
that prints it when resuming after the paper has
been replenished.

As an alternative, the programmer may wish to
print a blank line (all spaces) with slew control

031 at the bottom of each page. Then the first
line on the next page will discover an out-of-paper
condition. The programmer must determine, for
each printing job, whether the additional print-
ing time for this blank line on every page is
warranted by the modest programming con-
venience.

Consider the printing of invoices, department
store bills, bank statements, or similar forms
with variable number of line-items. (See the
accompanying flow chart.)

A. One of the line-items (not the last on the bill)
falls opposite “‘special”. The print command
for the next line-item takes JY branch without
printing or moving paper.

Print page subtotals if desired, slew control
011. If out of paper, this command takes
JY +1 after execution.

Print first line of abbreviated heading on
next page, using 032. If out of paper and
subtotals not printed, this command takes
JY+1 branch without execution. Print any
additional lines of heading; then repeat the
aborted line-item using appropriate slew con-
trol to place it properly on the page; then
resume printing line-items.

B. Last line-item of the bill is in the middle of
the page. Print totals (if desired) using 011.
This command will not branch in this cir-
cumstance; mode ““1” slew is used because
of case C.

Then print the next bill using 032 (or 034,
etc) for the firstline. If totals were printed, this
command will take JY branch (since previous
line passed “special”) and is programmed to
repeat the command. If previous page was
the last sheet, and Printer is now out of paper,
this command will take JY+ 1 the second time
it is executed.

If totals were not printed, then the command
to print the first line on this next bill will not
branch, but the command to print the second
line will branch. Observe that if the printer
is out of paper, the first line for this next bill
will have been “lost,” since the out-of-paper
condition is not known to the program till
it attempts to print the second line. Therefore
the programmer must save the first line in
memory, so that it can be printed when paper
has been reloaded.

75

76

C. Last line-item of the bill falls opposite
“special.” Procedure is same as case B, but
note that now the print command for totals
will take JY branch and be repeated: and if
out of paper, it will take JY 4 1 the second time
it is executed. The print command for first
line of next heading will not branch in this

case,.

If totals are not printed, then the print com-
mand for first line of next heading will take
JY and be repeated, then take JY+1.

Some of the print commands on the accompany-
ing flow chart show the possibility of both JY
and JY+1 exits. In each of these cases, the JY
branch repeats the command, and JY+1 is
therefore possible when the command is ex-
ecuted the second time.

Remember that no print command can take
JY+1 unless the previously-executed print com-
mand has taken JY.

NOTE: Slew controls 00x and 01x should be used
with the utmost caution. They are appropriate
only when the programmer knows that a print
command may take JY+1, and he specifically
wants the line printed anyway.

These slew controls should never be used when
the programmer is “'sure” JY+1 cannot happen,
since programmers have been known to be mis-
taken in such matters.

The following flow chart indicates the logic for
the above example. Headings begin on line 2,
single-spaced; line-items begin on line 8, double-
spaced. A branch line swinging upward on the
chart indicates that the branch is taken without
executing the command.

STANDARD PUNCHING for VERTICAL FORMAT TAPE

—
o
~ o [7a)
[N v © N Y ©
[9 o [ot
g g g g & =]
R L = & =
g 8 g g g 5 g
B : 2 2 2 o N
Ny P 2 & »n =
3 6 9 12 15 18 21 24 27 % 57 60 63 66
\
T \ T
L
\
\\\
3 s 9 12 15 18 21 24 7 I) o3

Jy

JY + %

avt

/)éint 1st line of head (032)

JY + 1 CAN ONLY HAPPEN IF TOTALS NOT PRINTED
-

ﬁt each succeeding

line of head (021)

) Print 1st line-item

(038)

h

Y

A

JY + 1

!

-~

~

) Was that the last

for this bill?

JY

Print next line-item

(022)

D Print totals (011)

if desired

avi

Type & Halt

Print subtotals (011)
if desired

abbreviated head
(032)

) Print the aborted
line-item (038)

CAN ONLY HAPPEN IF SUBTOTALS NOT\PRINTED

Cﬁr 1st line of

) Print each succeeding line
of abbreviated head (021)

Type & Halt

TIF TOTALS WERE PRINTED, THIS BRANCH CAN ONLY
HAPPEN IF PREVIOUSLY OUT OF PAPER.

iCAN ONLY HAPPEN IF PREVIOUSLY OUT OF PAFER.

77

(34

60£

504

S0/

YL

CORRESPONDENCE BETWEEN NCR 315 CODES and IBM BCD CODES ON MAGNETIC TAPE

060 AR
080/ AN
0£0£ AN
tort AN
IO.IOI.O.IO.IO.II.O.IOOOI.I.I.IOOO.IO.IOO.IO.IO >
N[— — O O O — 0O —~ O O 0O 0O O O — rm rm rm — — OOO.I.IO‘O.Inv..nm,nv..-/
“ ONf ONJ N o~
&4]]000000‘00]0]0]]]]] O O O —m O m —m — — — — NINININ
mﬁOO.I\:O.IO.I'IO‘I.I‘I.IO.I.I.I.I‘l.l.l.l.lo]]]]]]
]
€| - - - - - ~ OO0 O~ 00—~ —0 00000 00 — —
a|l O O 0O O — — — — ~— OO0 0000 ~0—~—0——~—~00000O0 — — — —
°
@
_— ++ "
& 0w s 9 »
- — — a ey
9} = X o oy co T e 2
iz BXxxNe e xS Rw@ENETIIATT S 3
s @ e oG z 5 S
() W.m...\.w ﬁw @
- O -4 s
o
—
w 8
HGFGHI*>+=$An>»o|v_\A.l/<%.»..0& @()[]
°3 3
3872
og?g
FEEE |y e F Vo
90
o v
IO.IO.IO‘O.IO.I.IO]O.IO.IO.I.IO‘IO.IO‘IO.IO.IO‘
T~ 00~ - 000~ ~—~—00~ 0000000~ —-00
3
w4OOOO]]lIOOOOO.|.|.|.|OOOOO.|.|.|.|OOOO.|.|
msIOOOOOOO]]OOOOOOO].IOOOOOOO.l.lOOOO
[--]
YPOOO0OO0ODO0OO0O0O0OO -~ —r 0000006 OO0 — — — —
@21 O O O OO0 OO O OO = — = = — = e e e e o O o o
o
=
S
mu © - N ®m TV ON®®OLOUOWU O -—o¥% s35ZDadawvwer>D>
“a
p 4
()
w
w Q
.um@123456789#STUVWXYZJKLMNGPQRBCDE

PUNCHED CARD CODE

0123456789ABCDEFGHI JKLMNOPQRSTUVWXYZ&- 3—$“‘/'%#@§+n!=()<>2 4[]\

(L R
B000000000000000000000000000 NENENANOC000OgRROCOROOFOREROCO0000O

| RRRERERRI ARRRERER] ERRRRRERRRRRRRERRERRREY IRRERERRRRRRRY IRRRRRE
2202222222202222222202222222J2222222222222222222222222222J22222
33303333333303333333303333333333333333P33P3P333333 34333333333
IOy FYYYRRYY] FRYRYERY! FRYYRYYY FYRYRNRY FRY FEY [Y ERREYY EXRREY IXERY
5555505555555505555555505555555055555555555555555[5QB555505550510
666666066666666M66666666[66666666666666666666666666666666666666
IRRRREE] RRRRRRRR] RRRRRRREI RRERRREI RERERRRRRRRRERER] YRRRRI | A 1 KA K
REEEEEE] EEXEREEE] EERXERXE] EERREER] ERT IR T EX NN ERR I T R R 11])
99999999909999999909999999909999999099999999999999999909999994994

CARD IMAGE CARD CARD IMAGE CARD IMAGE CARD IMAGE CARD
CHARACTER| IN 315 CHARACTER CHARACTER IN 315 | CHARACTER IN 315 | CHARACTER] | IN 315 | CHARACTER
0 80 F $ 00 sp 86] BO K
1 40 G (01 9 88 w DO J
2 20 H) 02 8 8! v HO +
3 10 | +1 / 04 7 8B = +0 &
4 0+ 3 +K * ! 06 1 8 + u +1 i
5 0! " oB # 12 08 6 8 K % + 2 H
6 08 ? 6 4 S @o 0! 5 90 T + 4 G
7 04 : 0D T 90 0B " 92 s +6 0
8 02 -« 2 + v 8 + oD : @0 S + 8 F
9 01 0 +6 v 8! 0+ 4 PO / + i E
@ 0K + HO w 88 0K @ 10 - +B \
’ 92 J DO X 8 4 10 3 1 R + + D
P 00 K BO Y 8 2 12 # 12 Q + K 3
& +0 L AO z 81 1 % (1 4 P Jo C
.)2 M !+ < R 1 20 2 16 1 12 .
- 10 N tt > Qo 2 + -« 18 o KO B
1 06 4 18 ! 16 40 1 (] N MO A
A MO P ' 4 [i) 6 4 ? 1B [Qo >
B KO Q 12] 8 6 80 0 '+ M Q2)
C Jo R 1 \ + 8 81 z 1K * R1 <
D + + % 8 K 8 2 Y AO L
E + ! = 8B 8 4 X A2 $

80

Digits from Accumulator or Register

Digits from Accumulator or Register

NOTE
for Addition and Subtraction

If the memory word is longer
than the effective length of the
Accumulator, switch Memory
and Accumulator for the excess
memory slabs.

NO CARRY FROM PREVIOUS DIGIT-POSITION

ADDITION

Digits from Memory

Use this table for:

Add like signs

Subtract unlike signs

Add to Memory, like signs
Augment, add positive number
Count, add positive number

1 2 3 4 5 6 7 8 9 @ s shac & . -
0 (] 1 2 3 4 5 6 7 8 9 @ ” g & . -
1 1 2 3 4 5 & 7 8 9 © s £ & - - o
2 2 3 4 5 6 7 8 9 © a4 X & - - 0 1
3 3 4 5 6 7 8 9 0 -l c2 & . - o 1 2
4 4 5 6 7 8 9 0 a1 c2 3 . - (o) 1 2 3
5 5 6 7 8 9 0 cl c2 3 4 - 0] 1 2 3 4
6 6 7 8 9 © 2 3 4 c5 o 1 2 3 4 5
7 7 8 9 0 cl c2 3 4 c5 6 1 2 3 4 5 6
8 8 9 0 cl c2 3 4 5 6 7 2 3 4 5 6 7
9 9 0 1 2 3 c4 5 6 7 8 3 4 5 6 7 8
@ 0 cl c2 c3 4 5 6 7 8 9 4 5 6 7 8 9
D) a1 c2 3 4 c5 c6 7 8 9 c@ 5 6 7 8 9 0
SPACE 2 3 c4 c5 173 7 8 9 @ co 6 7 8 9 0 cl
& 3 A S5 6 T B 9 @ s E 7 8 9 © a
. c4 5 6 7 8 9 @ s c E & 8 9 0 cl c2 3
- 5 6 T B 9 @ <5 E & ¢+ 9 © A 2 3 4
G
CARRY FROM PREVIOUS DIGIT-POSITION
Digits from Memory
o 1 2 3 4 5 6 7 8 9 @ o sPAcE & . -
0 1 2 3 4 5 6 7 9 © s g & . - o
1 2 3 4 5 6 7 8 9 © a § & - - o 1
2 3 4 5 6 7 8 9 0 2 & . - o 1 2
3 4 5 6 7 8 9 0 el 2 3 . - 0 1 2 3
4 5 6 7 8 9 0 1 c2 3 c4 - 0 1 2 3 4
5 6 7 8 9 0 cl c2 3 4 c5 0 1 2 3 4 5
6 7 8 9 0 cl c2 3 4 5 6 1 2 3 4 5 6
7 8 9 0 1 c2 3 c4 5 6 7 2 3 4 5 6 7
8 9 0 1 2 3 c4 5 6 7 8 3 4 5 6 7 8
9 0 cl c2 3 4 c5 7} 7 8 9 4 5 6 7 8 9
@ cl c2 3 4 5 6 7 8 9 c@ 5 6 7 8 9 0
) c2 3 c4 5 c6 7 8 9 @ co 6 7 8 9 0 cl
SAE | 3 4 5 6 7 B 9 @ o F 7 8 9 © A 2
& c4 5 6 7 8 9 c@ co cg c& 8 9 0 l c2 3
. S 6 T B 9 @ <5 £ & ¢+ 9 © A 2 3 4
- 6 24 8 9 @ co Cg c& ce Cm 0 1 c2 3 4 c5

G

Digits from Accumvlator or Register

Digits from Accumulator or Register

Use this table for:

Add unlike signs

Subtract like signs

Add to Memory, unlike signs
but interchange Accumulator
and Memory for entry to the
table

Augment, add negative number

Count, add negative number

SUBTRACTION

NO BORROW BY PREVICUS DIGIT-POSITION

Digits from Memory

If the Subtraction Table indi-
cates that the result of an oper-
ation ends with a borrow (for
example b823) the result is auto-
matically complemented and
appears in the processor as
negative (-177).

0 1 2 3 4 5 6 7 8 9 @ s SPACE & . -
o O 9 48 7 46 b5 b4 B3 42 B W0 b= b b BE b
1 10 9 B8 7 b6 b5 b4 B3 2 B 0 b b & bE
2 2 1 0 49 k8 67T b6 b5 b4 B3 B2 K B0 b= b b&
3 3 2 1 0 9 8 k7 b6 b5 b4 43 b2 Bl 6O b= be
4 4 3 2 1 0 b9 48 67 b6 b5 b4 43 42 B O -
5 5 4 3 2 1 0 9 8 k7 6 5 b4 B3 b2 bl 40
6 6 5 4 3 2 1 O 9 48 47 b6 K5 b4 B3 b2 B
7 7 6 5 4 3 2 1 O 49 8 BT b6 45 b4 B3 b2
8 8 7 6 5 4 3 2 1 0 9 8 7 b6 b5 4 43
9 9 8 7 6 5 4 3 2 1 0 9 8 7 b6 b5 14
@ @ 9 8 7 6 5 4 3 2 1 0 19 8 7 b6 45
) s @ 9 8 7 6 5 4 3 2 1 0 9 8 7 b6
SPACE g . @ 9 8 7 6 5 4 3 2 1 0 9 8 47
& & £) e 9 8 7 6 5 4 3 2 1 0 49 8
. . & , @ 9 8 7 6 5 4 3)
- - . &+ ¥ . e 9 8 7 6 5 a4 2 1 o
G
BORROW BY PREVIOUS DIGIT-POSITION
Digits from Memory
0 1 2 3 4 5 6 7 8 9 @ o SPAGE & . -
O |t 8 7 46 b5 b4 B3 b2 K1 0 b= b b& BE b bE
1 O b9 18 47 46 U5 b4 B3 B2 0 0 b= b b& bE b
2 10 49 b8 7 b6 b5 b4 3 02 N 0 b b b& b
3 2 1 0O 9 8 7T 66 45 b4 3 b2 K 40 b= be b&
4 3 2 1 0 49 8 k7T b6 65 b4 K3 62 Bl B0 b= be
5 4 3 2 1 0 9 8 7T b6 b5 b4 43 b2 B O b
6 5 4 3 2 1 0 9 8 7T b6 5 b4 b3 b2 b1 40
7 6 5 4 3 2 1 0 9 8 b7 b6 5 b4 43 52 B
8 7 6 5 4 3 2 1 0 9 8 67T b6 b5 4 3 b2
9 8 7 6 5 4 3 2 1 0 9 8 b6 b5 b4 43
@ 9 8 7 6 5 4 3 2 1 0 9 8 i 6 b5 4
’ @ 9 8 7 6 5 4 3 2 1 0 9 8 7 b6 45
SPACE ’ @ 9 8 7 6 5 4 3 2 1 (] b9 48 b7 b6
& S . e 9 8 7 6 5 4 3 2 1 o 9 s 47
. & ¥ 5, e 9 8 7 6 5 4 3 2 1 0 9 8
- . & £ 5, e 9 8 7 6 5 a 2 1 o

81

82

EXECUTION TIMES OF 315 INTERNAL COMMANDS

Times are stated as number of blocks of 6 #sec (0.000 006 seconds).

To obtain total processing time in minutes, add up total blocks and move

decimal point 7 places to the left.

Unless otherwise specified, time for R15 is time for L=1, less 1 block.

L

®

»w Z ™~

ADD

ADD:M
signs alike

signs unlike

AUG:R,J

BADD R#15
R=15

CLRF:LH,RH
CLRU

CNT

cemp

DIV
DLR
EDIT

JUMP
JUMP: I
JUMP:IP
LD
LD:R,J
LDAD
MLRA

MEVE Memory
MOVE Registers

MULT

PAST
SAUG:R,J
SCND, SCNA

SELC:DN,DP
SELC:R
SELC:T
SELect other
SETF:LH,RH
SETF:6,D,T
SETF :4,—
SETU

means length of the memory word (number of slabs)

means length of the Accumulator (number of slabs)

means the longer of

@
|L-1

means the “N” of the command (number of slabs, characters, registers)

means the sum of the quotient digits

6+ £
7421

64 L
o+
Y74
loyar

9+4N
5+ L
5+ £,
8
13
10

6
6+ L

if no sign change
if sign change

+1 if negative

if no sign change

if sign change to plus
if sign change to minus

if signs unlike
if signs alike

1164+37L—(@ +S(L+1)

7
5+43@

8

10

9

6+ L
942N
M4+2—@
9

942N
742N

9+ L
10+42N
9

15
16
13
14

13

+2 if interrupted

+1 for each LH character
of memory slab into
a RH position of an
Accumulator slab.

+1for each comma in
format.

+8if JY exit

Sce Table, next page

+1 per Digit or Alpha
actually scanned

+7if JY exit

+1 if jump

+1if jump

+3 if jump

+3 if jump

SHFT:

SHFT

SHFT:

SHFT:

SHFT:

SHFT
SHFT
SKIP

AL

:AR

DL

DR

LC
:RC
:RR

SLD:R,J
SPRD Memory 104+ N

ST
ST:R
STDA
SUB

SUPP

TEST:

TEST
TEST

TEST:
TEST:
TEST:

J

D,T
:G,L.E
:LH,RH

See notes and tables, next page.

5+ N(@+2)
6+ N(@+2)

9
11+ N

64 L
8+3N
94+ L
6+ 1,
742L
7

o

Same as SHFT:DR

+1 if sign negative

if no sign change
if sign change

+1 foreach slabin which
suppression occurs

41 if jump
+2 if jump
+5 if jump
+3 if jump
42 if jump
42 if jump

MULTIPLICATION TIMES NOTES ON SHIFT TIMES

Alpha For shifts of 4 or more positions, it is faster

L @y 2 3 4 5 6 7 to store and reload, plus (if necessary) shift
1 position.

1 46 77 117 166 224 291 367 . , S
2 63 97 140 192 253 323 Digit For shlft of exactly 3 positions, it is faster
3 86 123 169 224 288 to shift 2 Alphas.
4 115 155 204 262 For shifts of 6 or more positions, it is faster
5 150 193 245 to store and reload, plus (if necessary) shift
6 191 237 1 or 2 positions.
7 238 Round When shifting exactly 6 places, or more

than 8 places, it is faster to add, store,

The shorter number should be in the Accumulator and reload, plus (if necessary) shift 1 or 2

to obtain the best execution time.

positions.
SHFT: AL SHFT: AR
@ 1 2 3 4 5 6 7 8 @ 1 2 3 4 5 6 7 8
N N
1 7 8 9 10 11 12 13 14 1 8 9 10 11 12 13 14 15
2 [11 13 15 17 19 21 23 23 2 13 15 17 19 21 23 25
3 |14 17 20 23 26 29 32 32 3 15 18 21 24 27 30 33
4 (19 23 27 31 35 39 41 41 4 22 26 30 34 38 42
5 |23 28 33 38 43 48 50 50 5 24 29 34 39 44 49
6 |29 35 41 47 53 57 59 59 6 33 39 45 51 57
7 |34 41 48 55 62 66 68 68 7 35 42 49 56 63
8 |41 49 57 65 71 75 77 77 8 46 54 62 70
9 |47 56 65 74 80 84 86 86 9 48 57 66 75
10 |55 65 75 83 89 93 95 95 10 59 71 81
11 |42 73 84 92 98 102 104 104 n 61 74 85
12 {71 83 93 101 107 111 113 113 12 76 90
13 |79 92 102 110 116 120 122 122 13 78 93
14 |89 101 111 119 125 129 131 131 14 95
15 |98 110 120 128 134 138 140 140 15 97
SHFT :DL SHFT : DR
@ 1 2 3 4 5 6 7 8 @ 1 2 3 4 5 6 7 8
N N

1 8 9 10 11 12 13 14 14 1 9 10 11 12 13 14 15 16
2 (11 13 15 17 19 21 23 24 2 |11 13 15 17 19 21 23 25
3 |15 18 21 24 27 30 33 34 3 17 20 23 26 29 32 35
4 |20 24 28 32 36 40 43 44 4 19 23 27 31 35 39 43
5 |24 29 34 39 44 49 53 54 5 21 26 31 36 41 46 51
6 |29 35 41 47 53 59 63 64 6 30 36 42 48 54 60
7 |35 42 49 56 63 69 73 74 7 32 39 46 53 60 67
8 |40 48 56 64 72 79 83 84 8 34 42 50 58 66 74
9 |46 55 64 73 82 89 93 94 9 46 55 64 73 82
10 [53 63 73 83 92 99 103 104 10 48 58 68 78 88
11 |59 70 81 92 102 109 113 114 11 50 61 72 83 94
12 |66 78 90 102 112 119 123 124 12 65 77 89 101
13 |74 87 100 112 122 129 133 134 13 67 80 93 106
14 | 81 95 109 122 132 139 143 144 14 69 83 97 111
15 | 89 104 119 132 142 149 153 154 15 87 102 117
16 | 98 114 129 142 152 159 163 164 16 89 105 121

An Educational Publication
Marketing Services Department

THE NATIONAL CASH REGISTER COMPANY — DAYTON 9, OHIO

PRINTE,

Wi SP—1125 ESTTT

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	xBack

