.
(\/\, MOTOROLA M68KVOVER/D6

VERSAdos Overview

G LSRR .

SRISURIRERATES o i g A R S S A oo

QUALITY e PEOPLE e PERFORMANCE

M) moToroLA

M68KVOVER/D6
DECEMBER 1985

VERSAdos
OVERVIEW

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products
herein to improve reliability, function, or design. Motorola does not assume
any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights
or the rights of others.

EXORmacs, EXORterm, MACSbug, MDOS, RMS68K, SYMbug, TENbug, VERSAdos,
VERSAmodule, VMEmodule, and VME/10 are trademarks of Motorola Inc.

LARK is a trademark of Control Data Corporation.

Sixth Edition
Copyright 1985 by Motorola Inc.
Fifth Edition March 1985

MICROSYSTEMS

M) moToroLA

REVISION RECORD

M68KVOVER/D5 - March, 1985. Reflects the following software levels: VERSAdos

4.4, ASM 1.8, and LINK 1.8. Adds support of the MC68020, VMO4, MVME120,
MVME121, MVME122, and MVME123.

M68KVOVER/D6 -- November, 1985. Updated to include descriptions of a table-
driven task initiator for RMS68K, a resident run-time library for Pascal, and
a terminal-independent editor. Adds support for VMEmodules MVME117, MVME130,
and MVME131. Adds a keyword index.

MICROSYSTEMS

M) moToroLA

FORWARD

This manual is an overview or primer to the VERSAdos operating system. Brief
discussions pertaining to various programming languages are also included to
complete the system presentation.

Although this manual provides many details about the operating system, it
cannot possibly contain all operating information pertinent to all portions of
the system. Because of this, extensive references have been provided in this
manual to aid you in locating these details. If conflicts are found between
this manual and a specific reference manual, the information in the reference
manual should take precedence.

MICROSYSTEMS

M) moToroLA

CHAPTER

CHAPTER

[= B e I e S R T e e e e =
WO ~N-NOAAUINPAPERWWWNINN - TP W W W W W W WWWWWWWN —

RPN NN
e e e e e e e e e e e e e e
Ll e

N =

—

N

D PO bt bt bt e bt e e o et

_— N

—

N =t

OSSN GTH WA =

TABLE OF CONTENTS

VERSAdos OPERATING SYSTEM

INTRODUCTION .+ ovviieie i ieninsensenrnnsonsncananncssosns
OPERATING SYSTEM FEATURES AND FUNCTIONS
OPERATING SYSTEM ORGANIZATIONcoviuiennrrennnnaenannne
Real-Time Multitasking Executive Operation
Task Structurecoiviiiiiiiiienenenennvrosnsonen
Task State Control Managementc.ccciieien
Message Passing Managementcciiiiiinn,
Semaphore Managementcciiiiiiiiiiiiian,
Exceptions and Task Serverscooiennnenn
Interrupt Service Managementocvenen
Memory Allocation and Management Directives
Physical Input/Outputcoveiiiiiiieiiinnnns,

I/0 Subsystemviiiiinninniiieaienaneoarereseannns
File Management Systemcovveiiiuniiiiiennennn
User Session Managementcieiiieiiiiiiiiinas
SYSTEM GENERATION (SYSGEN) ...vviinniiiiiiinnenrvinnncnnnn
TABLE-DRIVEN TASK INITIATOR ...cvvriiniiieinineneenncnnns

SYSTEM SOFTWARE

GENERAL vvvvvtiienieetaneecunesnnionnesanonssossonacnnns
CRT TEXT EDITOR tvvviivnreeinnerinernascanasoosonnncnnsns
Minimum System Configuration for CRT Text Editor
CRT Text Editor Commandsccvvverieiininracnnnnnen
TERMINAL- INDEPENDENT EDITORovvvuiiinnninerennnnnnnnn
Page Editing ...oovvniriiiiinninnnennansieeeeenenuennes
Command EAitingcoveieiiniiiiiieineneneienrnnennns
STRUCTURED MACRO ASSEMBLERivvniiiiiiieeenannnnennns
Minimum System Configuration for Macro Assembler
Assembler Directivesvvieiiiiiiieneerennnnsrancnns
LINKAGE EDITOR tuvveinieniiierineernneononnenonassennnens
Minimum System Configuration for Linkage Editor
PASCAL COMPILER .\vviiriiriiieiiiertnseanannosoransennses
Minimum System Configuration for Pascal Compiler
FORTRAN COMPILER .ivvvereneneonerennronnnosnannasannoces
Minimum System Configuration for FORTRAN Compiler
9] 4T T [S R R R RS
Minimum System Configuration for DEbug
SYMBUG/A o ere i iiiiiesteerinraaecaacsoseotosssonaans
Minimum System Configuration for SYMbug
SYMbug Primitive Command Listovevivneennnn
VERSAdOS UTILITIES viivrinrenniunneronennoscnossnensnnns
SYSTEM TEST AND DIAGNOSTICS ...vvvrieriiiiinennnnenenennns
DRIVER SOFTWARE o .vvierreieineneiinrniiecnnonannsaosennns

WO SN PWWN

10

11
11
11
12
13
13
14
14

i MICROSYSTEMS

M) moToRroLA

FIGURE

—

W N e

TABLE OF CONTENTS (cont’d)

Page
LIST OF ILLUSTRATIONS
VERSAdOs Structurecciieuierinnrnrierennnenenenennns 3
Real-Time Executive (RMS68K) Functional Partitioning 5
Representation of Vector Chainsccciiveena.n, 12

ii

MICROSYSTEMS

@ MOTOROLA VERSAdos OPERATING SYSTEM

CHAPTER 1

VERSAdos OPERATING SYSTEM

1.1 INTRODUCTION

VERSAdos is a modular, multilayered operating system that provides a
convenient interface between the user and system hardware. It is oriented to
solving the general-purpose program generation requirements associated with
the development of microprocessor-based systems, as well as the execution
requirements of dedicated, real-time, multitasking/multi-user application
systems. The modular nature of the operating system permits configuration of
EXORmacs, VME/10, VMEmodule Monoboard Microprocessor-based systems (MVME1Ol,
MVME110, MVME117, MVME120/121, MVME122/123, and MVME130/131), and VERSAmodule
01, 02, 03, and 04 (VMO1, VMO2, VMO3, and VMO4) based systems that perform
well 1in the real-time control system environment and also, for EXORmacs, in
the multi-user environment. This flexibility reduces the costs and problems
normally encountered during system dintegration by permitting extensive
debugging to be performed on a compatible hardware/software configuration
prior to the integration process. Many times, this will eliminate last minute
software changes that are often required when the development system is not
functionally compatible with the target system.

To fulfill its role, VERSAdos is responsible for accepting, checking,
interpreting, and expediting user application requests. During execution of a
task, the operating system may request assistance from various operating
system support routines not directly accessible to the application program.
These support routines assist in operator control, memory management, task
segmentation, and input/output control for various hardware subsystems. This
permits execution of more than one task at a time, thereby allowing several
application programs to operate independently on the system. This also
relieves the application program from the necessary chore of direct
interaction with the system hardware. Instead, application programs
communicate their input/output requests to the system via the operating system
using a well-established and readily understood protocol.

The following paragraphs provide a detailed overview of the VERSAdos operating
system: jts features, structure, operation, and component parts. Explicit
operational details concerning VERSAdos may be found in the following
documentation.

M68000 Family VERSAdos System Facilities Reference Manual, M68KVSF

M68000 Family CRT Text Editor User’s Manual, M68KEDIT

M68000 Family Real-Time Multitasking Software User’s Manual, M68KRMS68K

VERSAdos Data Management Services and Program Loader User’s Manual,
RMS68KIO

1 MICROSYSTEMS

@ MOTOROLA VERSAdos OPERATING SYSTEM

System Generation Facility User’s Manual, M68KSYSGEN

VERSAdos to VME Hardware and Software Configuration User’s Manual,
MVMEVDOS

These manuals and others referenced throughout this document may be ordered
from Motorola’s Literature Distribution Center, 616 West 24th Street, Tempe,
Arizona 85252; telephone (602) 994-6561.

1.2 OPERATING SYSTEM FEATURES AND FUNCTIONS

The Tayered design of VERSAdos provides a degree of system flexibility, while
maintaining a straightforward structure that is easy to understand and use.
The Tlayered structure also provides the unique ability of combining the
normally diverse functions of time-sharing software development with real-time
system control or else tailoring an operating system to the user’s
requirements. The high degree of modularity inherent with the major programs
of VERSAdos permits each user to add specific functions for his individual
requirements with a minimum of time and effort. With the incorporation of
Intelligent Peripheral Controllers to optimize input/output (I/0) functions,
Central Processing Unit (CPU) overhead 1is significantly reduced, thereby
providing more computing power for each system user and permitting connection
of higher data rate I/0 devices. Several safeguards are provided to protect
the integrity of users and tasks from other users, undebugged programs, and/or
online control systems.

VERSAdos also offers system generation capabilities to permit various
operating system functions to be added or deleted from the operating system,
as required, during tailoring for various hardware configurations or special
applications. The operating system has been optimized for use with hard disk-
type storage devices. These and other features are available to each user.
Refer to the System Generation Facility User’s Manual.

Real-time I/0 processing capabilities are provided that allow directly
connected or processing-generated interrupts to be serviced. In addition,
multiprogramming of real-time tasks can be accommodated. A1l tasks can be
scheduled on a priority basis. Inter-task communications are included to pass
parameters and/or control between tasks and/or the operating system. A
special control, the semaphore, is used to provide task synchronization and to
coordinate the use of shared resources.

Operating system I/0 operations are device-independent; that is, they refer to
the logical properties of operation instead of the physical characteristics or
file formats. The File Management System (FMS) provides transfer control
between memory and logical devices or files. Contiguous, sequential, and
indexed sequential files are supported. For further information, refer to the
VERSAdos Data Management Services and Program Loader User’s Manual.

A powerful set of utility programs are provided in VERSAdos. The utilities

are briefly described here, and more fully described in the VERSAdos System
Facilities Reference Manual.

2 MICROSYSTEMS

@ MOTOROLA VERSAdos OPERATING SYSTEM

Session control commands to VERSAdos allow multiple users (on a multi-user
system) or a single user to operate in an interactive online (foreground)
mode, as well as in the batch (background) mode. Online mode allows entry of
commands from both the console and via chainfile processing. Batch mode
processing is made possible through a circular job queue. These functions are
also described in the VERSAdos System Facilities Reference Manual.

1.3 OPERATING SYSTEM ORGANIZATION

The operating system is divided into four major layers, with each layer
further subdivided into other layers. The four major layers are the Real-Time
Multitasking Executive (RMS68K) Tayer, the I/0 layer, the File Management
layer, and the Session Management layer. These layers are shown in Figure 1-1
and described in the following paragraphs.

User Tasks

Session Management
File Management

1/0 Subsystem

FIGURE 1-1. VERSAdos Structure

1.3.1 Real-Time Multitasking Executive Operation

RMS68K, the Executive, is the nucleus of the VERSAdos operating system and is
available in either of two forms: as part of the complete operating system
package or as a separate product -- RMS68K. RMS68K has responsibility for
servicing all hardware and software generated interrupts and dispatching the
interrupts to the proper tasks for processing. RMS68K also acts as the
arbiter to resolve conflicts that result when competing tasks vie for
processor time. Facilities that permit inter-task communications and task
synchronization are also supported. RMS68K protects user applications while
providing diagnostic feedback during error conditions.

MICROSYSTEMS

@ MOTOROLA VERSAdos OPERATING SYSTEM

RMS68K consists of an inner kernel (or nucleus) that supports the priority-
driven, multitasking environment, and eight resource managers; each resource
manager consists of data structures and about five to seven RMS68K directives,
each providing a specific service from the resource manager. These resource
managers are: Event Manager, Memory Manager, Task Manager, Time Manager,
Semaphore Manager, Trap Server Manager, Exception Monitor Manager, and
Exception Manager. (See Figure 1-2.)

RMS68K is structured in logical layers with each layer performing a particular
range of functions. The 1layers may be viewed as internal, external, and
channel management layers.

The functions provided by the internal layers are used by RMS68K to manage the
processor, tasks, and physical devices such as timers. In addition, the
internal layer performs work on behalf of requests from user tasks.

The functions provided by the external layer are directly available to user
tasks through the use of directives. A directive (or request) contains all
the information needed by RMS68K to perform the desired function.

The optional Channel Management Routines {CMRs) provide the channel-oriented
physical I/0 functions. Al1 device drivers supplied with RMS68K and VERSAdos
use the CMR mechanism for /0.

Full details on the Executive are provided in the M68000 Family Real-Time
Multitasking Software User’s Manual, M68KRMS68K.

1.3.1.1 Task Structure. RMS68K and VERSAdos operations are task oriented. A
task is a program, complete with its associated data area, that performs a
functional wunit of work. Application programs are performed as tasks and are
executed according to their priorities, scheduling requirements, and
availability of required resources.

Tasks fall into two general categories: user tasks and system tasks. Each
task type can exist in two domains in the system, real-time or non-real-time.
User tasks have the ability to control their own execution, resources, and
interaction with other tasks. A user task may also, under certain conditions,
control the execution and resources of another task. Through the use of
Executive directives, a user task may perform the following functions:

Allocate/deallocate and otherwise manage memory
Communicate with other tasks

Perform inter-task coordination

Handle task related special events (such as faults)
Interface directly with physical I/0 Channels

System tasks perform functions that provide services to user tasks. These
tasks have access to all resources and may perform all operations without
restriction. A11 tasks, whether user or system, are executed within the user
mode of the MC68000, MC68010, or MC68020 microprocessor.

A real-time task 1is one that executes in a domain specifically designed for
high performance; the real-time domain.

MICROSYSTEMS

—

M) moToRroLA

VERSAdos OPERATING SYSTEM

User
Level
I | I I I I
| Task | | Task | | Task |
| A | | B | | € |
| | I | I I
\ I /
\ I /
\ I /
\ I /
Supervisor \ | /
Level \ | /
\ | /
| I -
I I I | I I
| Event |__ | NUCLEUS | |Exception]
| Manager |] | | Manager |
I I I | I
/ I I \
/ | I \
/ | I \
-/ 1 R I
] | | | | Trap | |Exception]|
| Memory | | Time | | Server | | Monitor |
| Manager | | Manager | | Manager | | Manager |
I I I I I I [
I I I I
Task		Semaphore
Manager		Manager
FIGURE 1-2. Real-Time Executive (RMS68K) Functional Partitioning

5 MICROSYSTEMS

@ MOTOROLA VERSAdos OPERATING SYSTEM

One constraint placed upon this domain is that the entire address space
accessible by the task must be mapped, with the task’s logical address
identical to the system’s physical address.

Another constraint is that the real-time task must use a newly defined 8-byte
code, the task-ID, when referring to any other task within the system.

A non-real-time task is one that executes within the non-real-time domain.

This domain is not placed under the constraint that all logical task addresses
be mapped to be equal to the corresponding physical system address.

Also, a task executing within the non-real-time domain must refer to any other
task within the system via an 8-byte ASCII code representing the taskname and
session number of the target task. .

Both user and system tasks have names that identify the task, session numbers
that group related tasks and protect the system from accidental or intentional
tampering, and an internal 8-byte code generated by the Executive used as a
task interface for a real-time task. User tasks can affect only those tasks
having like session numbers, while system tasks can affect all tasks contained
within the system.

Most RMS68K directives require specification of the taskname and the session
number of the requesting task and/or target task. If these specifications are
omitted, RMS68K will default to the taskname and session number of the
requesting task.

The minimum task structure consists of a Task Control Block (TCB) and one
program code segment. A task can have as many as four program code or data
segments, each of which can be designated as a read only or read/write, plus
one Asynchronous Service Queue (ASQ). The task’s address space consists of
the task’s program code and data segments. A code segment may be restricted
to a single task or may be shared with other tasks on a global basis
(available to all tasks within the system) or on a local basis (available only
to other tasks having the same session number). A shared segment may be
marked as permanent to prevent deletion from the system when not being used by
any task.

Program code segments contain instructions used during execution and are
typically marked as read-only.

The main components of a program code segment are:
a. Main Code -- the basic element of a segment.

b. Trap Handling Code -- permits a task to respond to its own trap
///in§¥ructions.

MICROSYSTEMS

@ MOTOROLA VERSAdos OPERATING SYSTEM

c. Exception Handling Code -- permits a task to process its own trap
exceptions.

d. Interrupt Service Routines (ISRs) -- handles external interrupts.

e. Asynchronous Service Routine (ASR) Code -- permits the passing of
messages between tasks.

A task uses data segments for working storage, for passing bulk data to other
tasks, and for sharing a common data area among two or more tasks. One data
segment is usually allocated during task initiation, with additional segments
allocated as required. However, both code and data may occupy the same
segment if desired.

1.3.1.2 Task State Control Management. Directives are provided to control
task execution by moving the affected task through various states. A task can
control its own state transitions or those of another task. Functions
performed by these directives include:

. Creating tasks

. Starting/stopping tasks

. Terminating/aborting tasks

. Wait/wakeup servicing

. Relinquishing execution control
. Setting priorities

. Requesting periodic activation

. Establishing Togical connections
. Processing exception and trap instructions
. Delaying execution

. Changing ASQ/ASR status

Each task contains information about the task within a TCB. This TCB
information permits RMS68K to maintain control of the task’s execution,
account for resource allocation to the task, and ensure task protection. The
TCB remains associated with a task throughout the task’s existence.
Task control is achieved by moving tasks through various task states. A task
may make a transition from one state to another when any of the following
actions occur:

a. The task issues a task control directive when in the running state.

b. An exception occurs while the task is in the running state.

c. RMS68K initiates special function handling (e.g., time-outs,
semaphores, interrupts, requests of another task).

MICROSYSTEMS

@ MOTOROLA VERSAdos OPERATING SYSTEM

Since task execution is based on priority, with task priorities ranging from 0
to 255, a task receives an initial current priority and a limit priority when
created. The current priority can be subsequently changed to any value less
than or equal to the limit priority. The limit priority prevents one task
from affecting another task having a greater priority.

RMS68K executes tasks from the READY state, starting with the task having the
highest priority. If more than one task has the same priority, RMS68K selects
the task that has been in the READY state the longest period of time. RMS68K
enters the dispatch cycle to start execution whenever a task is removed from
the RUN state. Some events that remove a task from the RUN state are:

a. A task relinquishes execution.

b. A task requests a delay.

c. A task requests service from another task.

d. A task chooses to wait for an external event.
e. A task executes a semaphore wait operation.

f. Task execution time exceeds the maximum permitted slice time (if this
feature is instalied).

g. A task is terminated.

Unless an ABORT or TERM (terminate) directive is responsible for removal from
the RUN state, execution resumes immediately following the last instruction
executed prior to removal. Executions initiated by a START directive begin at
the task entry point.

Monitor and Sub-Tasks. A monitor task can be established that automatically
receives notification at the termination of another task (referred to as a
sub-task of the monitor task). A monitor task can monitor any number of sub-
tasks without requiring that the monitor task have the same session number as
its sub-task(s).

When a task is created or started, options specify which task, if any, is to
be its monitor. The monitor can be assigned as the task requesting the
creation or start, the requestor’s-monitor, or a third task. When a sub-task
terminates, RMS68K places an event in the monitor task’s ASQ, identifying the
sub-task, the task initiating the termination, and a normal or abnormal
termination indicator.

MICROSYSTEMS

@ MOTOROLA VERSAdos OPERATING SYSTEM

1.3.1.3 Message Passing Management. The ASQ holds events that are waiting
for processing by a task. When a request is made by a task to pass a message
to another task, or when a task needs to be notified of a particular
occurrence in the system, an event is placed in a task’s ASQ.

Task event control directives are provided to queue an event, to read an
event, and to return to the point of interruption upon completion of ASR
processing.

Task operation is affected by the occurrence of internally or externally
generated events. When such an event occurs, RMS68K dispatches an event
message to the task responsible for handling the event. An event can
originate within RMS68K, within another task, or within the task currently
executing. An event message contains the message length, an event code, and a
message.

Each task capable of processing events must have an associated ASQ. The ASQ
is a circular First In/First Out (FIFO) queue consisting of a queue control
block, an event storage area, and an optional default receive buffer. RMS68K
places an event into the ASQ when a message is sent to the task or when the
task requires notification of an event occurrence within the system. Each
incoming message to a task corresponds to one event entry in its ASQ. Entries
are moved from the ASQ to the default receive buffer before the tasks are
dispatched to the ASR, if the default receive buffer is enabled.

When a task wants to service an event, the task requests that the next event
in its ASQ be placed into its event receiving area where the task can examine
and process the event. A task can process events either synchronously or
asynchronously.

Synchronous processing allows a task to inform the system when it is ready to
process an event. If an event is not present, then the system puts the task
into a wait state until an event arrives. When an event arrives the task is
dispatched to the instruction after the Get-an-Event directive.

Asynchronous event processing consists of servicing events in an "interrupt-
driven" manner using an ASR that is part of the task’s program code and whose
entry point is specified when the ASQ is allocated. Control is transferred to
a task’s ASR whenever the task’s ASQ is not empty, the ASR is enabled, and the
task is currently executing or has been dispatched because of an event
occurrence. When an event "interrupt" occurs, the current system status is
saved on the MC68000, MC68010, or MC68020 user stack. This permits control to
be returned to the point of interruption upon completion of the ASR.

A task can also enable and disable the ASQ and ASR. RMS68K also disables the
ASR upon entry of the ASR task to prevent another "interrupt" from occurring
during the processing of the previous event. An ASR may also perform nested
processing of interrupts by reenabling itself upon entry. Normaily, the ASR
would not reenable itself until process completion. When an ASQ is disabled,
requests to queue events to the disabled ASQ are rejected. When an ASR is
disabled, RMS68K will not enter it even though there are events in the
associated ASQ. Although an ASR has one default entry point known to RMS68K,
a task may request an alternate entry point if a special protocol has been
previously established to define additional entry points.

MICROSYSTEMS

@ MOTOROLA VERSAdos OPERATING SYSTEM

1.3.1.4 Semaphore Management. Synchronization may be required to control
activities or coordinate the use of shared resources. Tasks can accomplish
synchronization and coordination by using a semaphore to indicate that a
certain event has occurred. Task synchronization directives are used to
control the semaphore, permit a task to create a semaphore, release all
semaphores to which a task is attached, request (and wait, if necessary) for
semaphore-controlled access or execution to be granted, and release a
semaphore-controllied resource. VERSAdos supports three types of semaphores,
with each applicable to a particular problem.

The Type 1 semaphore is used when several tasks require access to a single
resource. The Type 2 semaphore controls execution of a sequence of tasks when
a primary task must execute before dependent tasks. The Type 3 semaphore is
used whenever one task controls a resource that other tasks desire to use.

1.3.1.5 Exceptions and Task Servers. Special function task control
directives are also used to control server tasks and exception monitoring
tasks. These directives permit a task to establish itself as a server task,
acknowledge receipt or completion of a request, and initiate orderly shutdown
of services. Several types of special function tasks are described in the
following paragraphs.

Exception Monitoring. An exception monitor task may be implemented to
provide execution control over a target task and to provide emergency
processing when a task fails. Exception events that cause a target task to
stop execution and cause the target task’s exception monitor to be notified
are specified in an exception monitor mask associated with the target task.
An exception monitor task can also control the operation of a target task in a
trace mode of operation. Directives are available to permit a task to become
associated with an exception monitor task, to detach from an exception monitor
task, and to specify events of interest to an exception monitor task. In a
similar manner, directives permit an exception monitor task to control the
current state of one of its target tasks.

Server Task Control. A server task is capable of receiving and processing
requests from any task in the system. A trap instruction is executed by a
user task to issue a request to a server task for processing. Thus, the
server task appears to function as part of RMS68K.

Server tasks must have an ASQ to receive requests. Requests may then be
processed either synchronously or asynchronously. If the request is processed
asynchronously, the server must then include a processing start address. The
user request appears as an event in the server task’s ASQ.

A server may choose to serve any combination of trap instructions, and may
also choose to receive an event in the ASQ when any task in the system
terminates. Local processing of any trap instruction by a task overrides the
server task handling of that trap instruction.

10 MICROSYSTEMS

@ MOTOROLA VERSAdos OPERATING SYSTEM

1.3.1.6 Interrupt Service Management. One or more ISRs can be included in a
task. They are initiated by an external interrupt and execute at the priority
level of the interrupt itself in the M68000 family microprocessor user
hardware state. The ISR is useful, therefore, in creating I/0 device drivers.
ISRs can be configured by task directives to respond to a particular
exception, to simulate an exception, and to return from exception execution.

1.3.1.7 Memory Allocation and Management Directives. Memory allocation and
management directives are provided to allocate/deallocate segments, to share
segments, to transfer segments, to allocate/deallocate an ASQ, and to move
data from one task to another.

1.3.1.8 Physical Input/Output. CMR routines reside as part of the
Executive, RMS68K. CMR logically manages channels and provides the link
between memory mapped I/0 space, interrupt vectors, and device drivers. CMR
also provides the 1link between requestor commands and command service
routines.

A channel is defined as a single contiguous portion of memory mapped I/0 space
associated with one or more polled identity conditions of interrupt.

A channel has a corresponding hardware interrupt vector number, a hardware
priority level, and a software priority number. These three items are used to
link devices into polling chains, which are used by a polling routine to
determine which channel is associated with an incoming interrupt. When a
channel 4is allocated, the CMR handler creates for that channel a Channel
Control Block (CCB) that contains all of the information needed by the CMR
handier to manage that channel. The CCB is then placed into the appropriate
polling chain. There is a polling chain for every external interrupt vector.
The CCBs are chained according to the software priority number -- those with
higher software priority numbers are nearer to the head of the chain and thus
serviced more rapidly when an interrupt occurs. See Figure 1-3 for a
representation of polling chains.

When an interrupt occurs, control is passed through the first CCB (via a JSR)
to the CMR interrupt handler routine. The CMR handler performs a minimum
state save, resolves the CCB address, and calls the appropriate I/0 handler.
If the 1I/0 handler returns without claiming the interrupt, CMR will call the
handler of the next CCB chained for that vector. This continues until the
chain is exhausted.

A code which indicates channel type is defined for a channel when that channel
is allocated. Codes in the range of $10-$7F are reserved for standard
VERSAdos channels. Values in the range of $01-$0F indicate a non-standard
channel. Values in the range of $80-$8F indicate shared channels that can
initiate I/0 by more than one task. The value $FF indicates an interrupt only
channel. Currently, no distinction is made by the CMR handler as to the
particular value within the ranges.

11 MICROSYSTEMS

@ MOTOROLA VERSAdos OPERATING SYSTEM

AUTO VECTORS|USER VECTORS
(25-31) (64-255)
VECTOR VECTOR
{/” 25 64
L4 °
! . .
. .
S VECTOR VECTOR
31 255
L]
[]
[]
+ HIGHER W
SOF TWARE
PRIORITY
NUMBER
¥ ¢ Y T
*
CHANNEL °
‘) CONTROL
BLOCKS ;
[]
[]
[
| L |
LOWER
SOF TWARE
PRIORITY
NUMBER J

FIGURE 1-3. Representation of Vector Chains

1.3.2 1/0 Subsystem

1/0 operations within VERSAdos are essentially device-independent; i.e., they
are based on logical properties rather than on device characteristics or file
formats. Logical Unit Numbers (LUNs) are assigned to devices and files before
I/0 between programs and files/devices can occur.

In VERSAdos, all devices and files are treated as files. 1/0 is handled by
two modules, Input/Output Services (I0OS) and File Handling Services (FHS).
I0S handles all data transfers, referring to task or user identification and
LUN. FHS is called into service when creating disk files and their
attributes, associating a LUN with each device or file.

Refer to the VERSAdos Data Management Services and Program Loader User’s
Manual for further information.

12 MICROSYSTEMS

T

@ MOTOROLA VERSAdos OPERATING SYSTEM

1.3.3 File Management System

The FMS Module handles contiguous, sequential, and indexed sequential files
and respects the read/write access codes assigned to the files (refer to
paragraph 1.2.4).

Contiguous files are fixed length and consist of physically contiguous
records. Access may be random or sequential.

Sequential files and indexed sequential files may be fixed or variable-length
groups of records. Access may be random or sequential (next record, current
record, or prior record). Additionally, indexed sequential records may be
accessed by key values. Files typically will not be physically contiguous.
Disk space is allocated dynamically to contiguous blocks of records, called
sectors, and various sectors are treated logically as segments. Each
sequential or indexed sequential file has a File Access Block (FAB) describing
the segments of the file for access by FMS.

VERSAdos also provides a program loader function, which creates new tasks,
allocates memory segments, and reads the contents of each segment from the
file into the allocated space.

Refer to the VERSAdos Data Management Services and Program Loader User’s
Manual for further information.

1.3.4 User Session Management

VERSAdos users identify themselves as valid users by logging onto the system
with their user number, assigned by an individual referred to as the system
administrator (user 0). The administrator has control responsibilities as
well as certain privileges. The initial logon to the system is session 0001
and at this time defaults are established. Each subsequent logon by any user
is assigned a sequential session number.

The administrator and other users have three levels of security capability.
User sessions may operate in the interactive (keyboard or chainfile command
entry) or batch mode. Batch mode processing and "spooler" activity are under
the overall control of the system administrator.

Refer to the M68000 Family VERSAdos System Facilities Reference Manual for
additional information.

13 MICROSYSTEMS

@ MOTOROLA VERSAdos OPERATING SYSTEM

1.4 SYSTEM GENERATION (SYSGEN)

A System Generation (SYSGEN) capability is provided that permits users to
produce a version of the operating system customized to specific needs.
Relocatable and Tloadable modules of the user’s choice can be processed using
the SYSGEN command to produce an operating system file that reflects the
user’s system requirements. Some of the attributes of the operating system
file that can be changed are:

Type and number of I/0 devices
Number of users
Number of logical units per user

Amount of memory space allocated for the global segment table, trace
table, and device connection queue

Number of files

A system which includes the RMS68K kernel, user applications, and that portion
of VERSAdos functionality which allows device assignment and access can be put
into Read Only Memory (ROM) using SYSGEN.

To perform a SYSGEN, the system must contain 512Kb RAM for systems based on
VMEmodules or the VM04, or 384Kb RAM for all other systems.

VERSAdos includes chainfiles to perform the SYSGEN, tailored to specific
systems. For further information on SYSGEN, refer to the System Generation
Facility User’s Manual.

1.5 TABLE-DRIVEN TASK INITIATOR

Included in VERSAdos are two utilities, TTGEN and TDTIGEN1, and chainfiles
which can be used to create a Table-Driven Task Initiator (TDTI) system. A
TDTI system is an operating system which includes some user-written tasks and
some special code which is used to start the other tasks in the system in a
controiled way. A TDTI system provides the following capabilities: Gives the
user complete control over startup processing in the system; allows the user
to make modifications to the system without having to re-SYSGEN every time;
allows the user to define code to handle errors during startup processing; and
simplifies the task of putting the end product into ROM. RMS68K, TDTI,
VERSAdos 1/0 subsystem, drivers, and most VERSAdos components are directly
ROMable. The VERSAdos file management subsystem, session control, and the
loader are not.

1 MICROSYSTEMS

—

—

@ MOTOROLA SYSTEM SOFTWARE

CHAPTER 2
SYSTEM SOFTWARE

2.1 GENERAL

To complete the VERSAdos overview, the following paragraphs briefly describe
the various development system software that is available. Each of these
software packages, in addition to being compatible with VERSAdos, has been
designed to help users in rapidly producing efficient programs for their 32-
bit, 16-bit, and 8-bit microprocessor-based designs.

2.2 CRT TEXT EDITOR

The function of any editor is to facilitate entry, modification, or deletion
of ASCII text files. This paragraph provides insight into the capabilities of
the CRT Text Editor (E) and the minimum system configuration needed to support
its operation. Further details concerning the use of this editor can be found
in the M68000 Family CRT Text Editor User’s Manual.

Two different modes of operation have been provided. The CRT mode has been
designed to take full advantage of the functionality of the EXORterm 155 and
VME/10 consoles, while the line mode is intended for use with any other type
of TTY-compatible terminal. The line mode is also used for program editing
under direction of an executing chainfile.

Three different levels of control are provided for source program entry and
editing: page, command, and insert. The page and command levels are used
with the CRT mode of operation, while the command and insert levels are used
in the line mode.

Source program files produced with the editor and ASCII Tlisting files produced
by the various development system assemblers and compilers are in indexed
sequential ASCII or sequential ASCII form. Both of these file forms can be
edited by the CRT Text Editor. Files in sequential format are placed in a
temporary scratch file for editing and saved only when the QUIT command is
executed. However, indexed sequential files are edited directly, making it a
much faster editing method. Future editing time can often be saved by
choosing the indexed sequential format when producing new files and by
reformatting old files to this format.

2.2.1 Minimum System Configuration for CRT Text Editor

The minimum configuration required for using the text editor is:
. One of the systems Tisted on page 1
. CRT/keyboard terminal

. EXORdisk III, LARK, CMD, or Winchester drives
. 256Kb RAM

15 MICROSYSTEMS

@ MOTOROLA

SYSTEM SOFTWARE

2.2.2 CRT Text Editor Commands

This paragraph briefly describes each of the CRT Text Editor commands.

ADUP

AMOVE

CHANGE

COLM
DELETE

DOWN
DTAB
DUPLICATE

EXTEND

FIND

INSERT

LINE

LIST

Copies records from the file and places them in the XTRACT buffer,
appending them to any records already in the buffer. The records
also remain in the file.

Moves records from the file and places them in the XTRACT buffer,
appending them to any records already in the buffer. The records
moved are removed from the file.

Instructs the editor to search a portion of or an entire file for
a character string and change it to the desired form.

Displays a ruler of column spacings (line mode only).

Used to remove one or more lines (records) or portions of lines
from the file. Specifying a vertical range (number of lines)
permits a group of consecutive lines to be deleted from the file.
If a horizontal range is specified in conjunction with the
vertical range, the specified consecutive characters (rather than
the entire line) can be deleted from each line within the vertical
range.

Moves the record pointer downwards.
Deletes tab stops (1line mode only).

Used to copy a line or group of consecutive lines from the file
into the XTRACT buffer for later vretrieval using the XTRACT
command. Each use of the DUPLICATE command overwrites previous
data in the XTRACT buffer.

Used to append data to the end of a line or group of consecutive
lines within the file.

Used to position the editor file pointer to the start of the line
in which the specified character, character string, or line number
can be found. This command is very helpful in finding the exact
Tocation within the file to begin the edit session.

Used from the command Tlevel (line mode only) to insert a line
between two existing consecutive Tines and position the editor
file pointer at the start of the inserted line. Data may then be
entered starting at this position. May also be used to insert at
the top of a file and append at the end of a file.

Used to provide the 1line number corresponding to the current
editor file pointer position.

Enables wusers operating in the Tline mode to 1list all or a
specified portion of a file for display and inspection.

16 MICROSYSTEMS

M) moTroroLA

MERGE

MOVE

PRINT

QUIT

RANGE

SAVE

STAB
TAB

up
VERIFY

SYSTEM SOFTWARE

Used to retrieve all or a consecutive number of lines from a
specified file and insert them in the file being edited starting
at the current position of the editor file pointer.

Used in conjunction with the XTRACT command to relocate a line or
group of consecutive lines within the edit file. An XTRACT buffer
is established dinto which the specified 1ine(s) are transferred
for moving and later retrieval. The moved lines are then deleted
from the file. Each use of the MOVE command overwrites previous
data contained within the XTRACT buffer. The editor file pointer
is then repositioned to the line following the last line deleted
by the move operation .

Used from the command line to 1ist on the line printer any Tine or
consecutive lines within the file being edited. The PRINT command
does not alter the data being displayed on the screen.

Used to end the edit session and return to the VERSAdos level.
This command causes the file being edited to be closed in its then
current state. Conversely, if the A option is specified on the
command 1line for a sequential file, the original unedited contents
of the file will be saved.

Used to change the default vertical and horizontal range values of
the FIND, CHANGE, PRINT, and SAVE commands.

Used to create a new file having the name specified on the command
line into which all or specified portions of the file being edited
can be stored. This command proves very useful when editing to
ensure minimal data loss in the event of system failure.

Specifies tab stops (line mode only).

Used to set or change the tab stops. This command permits up to
20 (maximum) tab stops to be set. These tab stops can be
specified on a single command line or through multiple entries of
the TAB command. Stops are specified by their character position
within the line, separated by commas. By executing a TAB command
having no parameters, tabs can be reset to the default format of
every 10 characters or to the format corresponding to the option
specified on the editor call command line. Entered tab values are
sorted and saved in ascending order. Execution of the TAB command
does not alter the screen display.

Moves the record pointer upwards.

Permits users operating in the line mode to inspect changes to a
file as they are being made. Following execution of this command,
the editor outputs to the terminal any line affected by execution
of subsequent commands. The default condition of the VERIFY
command is off.

17 MICROSYSTEMS

@ MOTOROLA SYSTEM SOFTWARE

XTRACT Used to move data previously stored in the XTRACT buffer to the
file being edited starting at the point indicated by the editor
file pointer. The XTRACT command is used in conjunction with the
MOVE and DUPLICATE commands to relocate lines of the file. An
option 1is provided to permit the XTRACT buffer to be deallocated,
thus regaining full use of this memory space.

2.3 TERMINAL-INDEPENDENT EDITOR

In version 4.5 and subsequent, VERSAdos furnishes a second editor program
(TIE) that is terminal-independent. It has been designed to allow CRT mode
editing on virtually any non-Motorola terminals. Simple modifications must
first be made to one or more of the configuration files furnished, using the
CRT Text Editor (E), and then TIE can be used with full functionality for CRT
mode page and command level editing.

2.3.1 Page Editing

Page or display level allows editing directly on the screen by using the
cursor positioning keys, labeled keys, and function keys that are standard on
most keyboards. CTRL/key sequences can be used in place of function keys.
2.3.2 Command Editing

Command editing makes use of certain function keys or CTRL/key sequences that
allow or require arguments. Commands supported are:

CHANGE DUPE MERGE
DELETE FIND MOVE
DTABS JUMP RANGE

The functionality of these commands is similar to that of the same commands
listed in paragraph 2.2.1 for the E editor.

For further information on use of the TIE editor, refer to the VERSAdos
Terminal-Independent Editor (TIE) User’s Manual, M68KTIE.

18 MICROSYSTEMS

@ MOTOROLA SYSTEM SOFTWARE

2.4 STRUCTURED MACRO ASSEMBLER

The M68000 family macro assembler translates source programs written in
M68000/M68010/M68020 assembly language into machine language capable of being
executed by the MC68000, MC68010 or MC68020 microprocessor. The macro
assembler also supports the MC68881 floating-point co-processor. Assembly
language s a symbolic language consisting of a collection of mnemonics and
symbols representing machine-instruction operation codes (opcodes) and
directives (pseudo-ops, including macros), symbolic names (labels), operators,
and special symbols. Directives are used to specify auxiliary actions to be
performed by the macro assembler. This paragraph describes the macro
assembler. For a more detailed description, refer to the M68000 Family
Resident Structured Assembler Reference Manual, M68KMASM.

The macro assembler produces relocatable object code (code that is not affixed
to a specific location 1in memory at the time of assembly), assigns storage
locations to instructions and data, and performs auxiliary assembler actions
designated by the programmer. The relocatable object modules produced by the
assembler are compatible with the M68000 Family Linkage Editor which is used
to 1link various relocatable object modules together to form a single loadable
module that has absolute memory addresses assigned to the instructions and
data. The assembler includes macro and conditional assembly capabilities and
implements certain "structured" programming control constructs.

Assembly is a 2-pass pracess. During the first pass, the assembler develops a
symbol table, associating user-defined 1labels with values and addresses.
During the second pass, the translation from source language to machine
language 1is performed, using the symbol table developed during pass 1. In
pass 2, as each source line is processed in turn, the assembler genera'::s
appropriate object code and the assembly listing (if the Tist optiuvi is
specified on the command line).

2.4.1 Minimum System Configuration for Macro Assembler
The minimum configuration required for the macro assembler is:

. One of the systems Tisted on page 1

. CRT/keyboard terminal

. EXORdisk III, LARK, CMD, or Winchester drives
. 384Kb RAM

. VERSAdos

19 MICROSYSTEMS

@ MOTOROLA SYSTEM SOFTWARE

2.4.2 Assembler Directives

The following 1ist provides a brief description of the various assembler
directives.

COMLINE Identical to the DS.B (define storage in bytes) directive, except
that it is passed on to the linkage editor as the location of the
command line.

DC Define a constant in memory. The DC directive may have one
operand or multiple operands, each separated by a comma. The
operand field may contain the actual value in decimal,
hexadecimal, or ASCII. Alternatively, the operand may be a symbol
or expression which can be assigned a numeric value by the
assembler.

DCB Instruct the assembler to allocate a block of bytes, words, or
longwords, depending upon the size code specified.

DS Reserve memory locations. The contents of the memory reserved is
not initialized.

END Indicate to the assembler that the source file is finished.
Subsequent source statements are ignored. The END directive
encountered at the end of the first pass through the source
program causes the assembler to start the second pass.

EQU Assign the value of the expression in the operand field to the
symbol in the label field. The label and operand fields are both
required and the Tlabel cannot be defined anywhere else in the

program.

FAIL Issue a warning or error message which identifies a programmer-
generated error.

FEQU Assign permanent floating-point value (MC68881 only).

FOPT Assign floating-point options (MC68881 only).

FORMAT Format the source listing, including column alignment and
structured syntax indentation. This directive is selected by
default.

IDNT Specify an identification record to be passed to the linkage
editor,

INCLUDE Allow additional files to be included in the source input stream.

LIST Print the assembly listing on the output device. This option is
selected by default with the source text following the LIST
directive being printed until an END or NOLIST directive is
encountered.

20 MICROSYSTEMS

@ MOTOROLA

LLEN
MASK2

NOFORMAT

NOLIST

NOOBJ
NOPAGE
OFFSET

OPT

ORG

PAGE
REG

SECTION

SET

SPC

SYSTEM SOFTWARE

Specify the line length to be output to the printing device.

Indicate that the source program is to be assembled to run on the
MASK2 (R9M) chip. Specifying MASK2 causes the following changes
in assembler processing: DCNT instruction replaces DBcc; STOP
does not take an operand; and Bit operations are adjusted to the
R9M format.

Do not format the source listing. The source Tisting will have
the same format as the source input file.

Suppress the printing of the assembly Tisting until a LIST
directive is encountered.

Suppress the generation of object code.
Suppress paging to the output device.

Define a table of offsets via the Define Storage (DS) directive
without passing these storage definitions to the linkage editor
(in effect, creating a dummy section). Symbols defined in an
OFFSET table are maintained internally, but no code-producing
instructions or directives may appear. SET, EQU, REG, XDEF, and
XREF are allowed. ‘

Indicate the assembler output options desired. The options are
specified following the OPT directive.

Change the program counter to the value specified by the
expression in the operand field. Subsequent statements are
assigned absolute memory locations starting with the new program
counter value.

Advance printer paper to the top of the next page.

Assign a value to a symbol in the label field that can be
translated into the register 1ist mask format used in the MOVEM
instruction. The Tabel cannot be redefined anywhere else in the
program.

Restore the program counter to the address following the last
location allocated in the indicated section {or to zero if used
for the first time).

Assign the value of the expression in the operand field to the
symbol in the 1label field. Although the EQU and SET directives
appear to be the same, unlike the EQU directive, the SET directive
permits the symbol in the label field to be redefined by other SET
directives in the program. The label and operand fields are both
required.

Output the specified number of blank Tines on the assembly listing
(if none are specified, make one blank Tine).

2 MICROSYSTEMS

@ MOTOROLA SYSTEM SOFTWARE

TTL Print the title specified at the top of each of the following
pages. A title consists of up to 60 characters. The same title
will appear at the top of all successive pages until another TTL
directive 1is encountered or until the end of the source file is

reached.

XDEF Specify symbols in the current module which are to be passed on to
the 1linkage editor so that they may be referenced by other 1inked
modules.

XREF Specify symbols 1in the current module which are defined in other

modules for identification by the linkage editor.

2.5 LINKAGE EDITOR

Programs written for MC68000-, MC68010-, or MC68020-based systems are
processed by the various compilers or the assembler to create a relocatable
object module. This object module (or group of object modules) is then
relocated (and combined if more than one object module is specified) and
linked to specific memory.

Instead of creating a load module, the linkage editor may optionally create a
relocatable object module combining all of its input. Such a module may
combine a group of interrelated object modules that have been completely
debugged. Combining them all into a single module makes it easier for the
user, because the new module can thereafter be referenced by a single file
name. The 1linkage editor’s task is also made easier and faster because any
references between modules are resolved when the modules are combined.

A third type of Tinker output may optionally be selected. This is referred to
as an "S-record" module, and is formatted to facilitate transferring files
between computer systems.

The linkage editor requires two passes in order to create an output module.
During the first pass, it builds a table of externally defined symbols and
determines which sections are assigned (names, lengths, and starting
addresses). It also determines which modules from the library (if any) are
required, No attention is paid to the actual instructions and data in the
relocatable object module during pass one.

Following pass one, if an S-record module or an absolute load module is being
generated, the linkage editor assigns each section (e.g., program, data) to an
absolute memory address. This address 1is the actual address at which the
section will be 1loaded when the absolute Tload module is executed. This
allocation of memory is a highly complex task that can be left totally up to
the linkage editor or altered by various user commands.

If a relocatable object module is being produced, the linkage editor computes
the total size of each section in use, opens the output file, and outputs the
necessary information about each section and global symbol.

22 MICROSYSTEMS

—~—~

M mororoLa SYSTEM SOFTWARE

The 1linkage editor then proceeds to pass two, where the relocatable object
modules read during pass one are reread in the same order. This time,
however, the instructions and data in each module are relocated, Tinked (if
necessary), and then written to the output file. If a relocatable object
module is being produced, the input is not relocated, but any references
between input modules are resolved (1inked).

At the completion of pass two, the linkage editor outputs its final Tistings,
the contents of which are determined by the option(s) specified on the
invoking command line.

2.5.1 Minimum System Configuration for Linkage Editor
The minimum configuration required for the linkage editor is:

. One of the systems Tisted on page 1

. CRT/keyboard terminal

. EXORdisk III, LARK, CMD, or Winchester drives
. 384Kb RAM

. VERSAdos

2.6 PASCAL COMPILER

Pascal, first developed as a teaching tool, has gained wide acceptance as an
applications and system programming language. Its structured nature and ease
of maintenance have made it a favorable language in saving time and effort for
users in program development/support. In recognition of this acceptance,
Motorola has adopted Pascal as the high-level programming language for
VERSAdos. Pascal is not furnished with VERSAdos but is available separately.

Motorola’s Pascal is based on the language as defined in 1968 by Niklaus Wirth
at the Eidgenossiche Technisch Hochschule in Zurich, Switzerland, with
additions stimulated by Motorola’s participation in the University of
California at San Diego workshop and in the IEEE/ANSI standardization effort.

Pascal includes extensions for expressing certain embedded-control-type
operations, an important consideration to a large class of microprocessor
users. Other extensions are desirable to users who will implement business-
oriented systems. Some of these extensions are:

Address specification for variables
Alphanumeric labels

Exit statement

External procedure and function declarations
1-, 2-, and 4-byte integers

This release also offers Tlarge structures, fast floating-point, and code
optimization.

23 MICROSYSTEMS

@ MOTOROLA SYSTEM SOFTWARE

The Pascal compiler consists of three phases. Phase 1 processes a source
program and produces a source 1listing and error messages as well as an
intermediate code file. This intermediate code may optionally be input to
Phase 1.5 to optimize the code, resulting in a possible reduction in the size
of the code generated and increased execution speed. Either the output of
Phase 1 or the optimized output of Phase 1.5 may then be input to Phase 2 to
create a relocatable object file and its associated listing. The object file
is combined with needed routines from the system library by the linkage
editor, producing a load module that is ready to execute. Assembly language
subroutines may also be 1linked into the Toad module. VERSAdos includes a
resident run-time Tlibrary of useful routines which may also be linked with
Pascal programs.

For a more detailed description of Motorola’s Pascal, refer to the M68000
Family Resident Pascal User’s Manual, M68KPASC.

2.6.1 Minimum System Configuration for Pascal Compiler

. One of the systems listed on page 1

. CRT/keyboard terminal

. EXORdisk III, LARK, CMD, or Winchester drives
. 384Kb RAM

. VERSAdos

2.7 FORTRAN COMPILER

The FORTRAN compiler translates source programs into M68000 family machine
language (object programs). Source programs are written using the CRT Text
Editor or TIE editor. The object programs are relocatable, using the linkage
editor to assign memory locations to one or a group of object programs and
various routines contained in the FORTRAN library, and create executable load
modules. Assembly Tlanguage subroutines may also be Tinked into the load
module. FORTRAN is not furnished with VERSAdos but is available separately.

Motorola’s FORTRAN conforms to the ANSI FORTRAN 77 subset. Support for double
precision variables and bit operations is also provided.

For further information, refer to the M68000 Resident FORTRAN Compiler User’s
Manual, M68KFORTRN.

2.7.1 Minimum System Configuration for FORTRAN Compiler

. One of the systems listed on page 1

. CRT/keyboard terminal

. EXORdisk III, LARK, CMD, or Winchester drives
. 384Kb RAM

. VERSAdos

2 MICROSYSTEMS

—~

@ MOTOROLA SYSTEM SOFTWARE

2.8 DEbug

DEbug 1is a VERSAdos-resident monitor program used to debug other programs
whose source code is written in assembly language for execution on the
M68000/M68010. The language processor and the Tinkage editor supply
information to the DEbug monitor.

DEbug allows the user to examine, insert, and modify program elements such as
instructions, numeric values, and coded data.

Execution can be controlled by DEbug via the insertion of breakpoints into a
program.

DEbug uses an extensive set of primitive commands for manipulation and
examination of foreground tasks. A set of task-level commands may be used on
foreground or background tasks and are applicable to both the single and
multitasking modes of operation.

For complete details of DEbug functions, refer to the SYMbug/A and DEbug
Monitors Reference Manual, M68KSYMBG.

2.8.1 Minimum System Configuration for DEbug

. One of the systems listed in page 1

. CRT/keyboard terminal

. EXORdisk III, LARK, CMD, or Winchester drives
. VERSAdos

2.9 SYMbug/A

SYMbug/A, referred to here as SYMbug, is a VERSAdos-resident multitasking
utility that allows a user to debug application program(s) in terms close to
the actual program itself. Unlike other debuggers that allow only absolute
memory accesses, SYMbug generates information about the program that is
available to the user during debug. Information is accumulated concerning
assembler symbol names, module names, and section numbers. SYMbug
automatically evaluates this type of symbolic information to absolute
addresses. Now it is no longer necessary to reference a current link map to
debug a program. Instead, knowledge of module names and symbols is sufficient
to calculate relative offsets and debug the program by reference to an
assembler Tlisting. Without the overhead of user-responsible address
resolution, the task of debugging a program becomes faster and easier with a
reduction in the chance for error.

25 MICROSYSTEMS

@ MOTOROLA SYSTEM SOFTWARE

SYMbug is built around a multitasking kernel. It interfaces with the VERSAdos
operating system to provide complete debug control to the user. User
interface is via a powerful set of "primitive" commands. These commands allow
the user to:

a. Examine/modify registers and absolute and program relative memory
addresses specified in a number of ways:

. Directly
. In an expression
. As an effective address
. Symbolically
(also allows control of display/modification formats)

b. Control program execution by allowing the user to:

. Insert breakpoints into the program
. Trace program execution
. Monitor data changes

c¢. Direct multitasking functions by allowing the user to:

. Modify task scheduling/information handling
. Modify task attributes/status

d. Expand debugger functions through user generation of:

. User "macros" built of a series of primitive commands
. In Tline command/command block repeat functions
. Default input/output format modifications

e. Access information outside of SYMbug so that the user may save and
restore previously defined information:

. Save and load program(s) to and from disk

. Save and load symbolic information (macro names/local symbois) to
and from disk

. Generate debug session echo to printer

SYMbug is a self-documenting debugger. Errors are informative and precise and
the user may also utilize the SYMbug HELP command to display a brief command
syntax summary for all commands. This relieves the user of the trouble of
scanning a reference manual for SYMbug information.

2.9.1 Minimum System Configuration for SYMbug

. One of the systems listed on page 1

. CRT/keyboard terminal

. EXORdisk III, LARK, CMD, or Winchester drives
. 256Kb RAM

. VERSAdos

26 MICROSYSTEMS

@ MOTOROLA SYSTEM SOFTWARE

2.9.2 SYMbug Primitive Command List

The SYMbug commands are separated into the following five groups:

Group 1: Execution Group 4: Session Control
- Address Stop - Command Repeat
- BReakpoint - DEfaults
- GO (Execute) - DUmp Memory
- TRace - File Read
- File Save
Group 2: Modify - HELP
- MAcro Define
- Block Fill - QUIT Session
- Block Move - Symbol Define
- Memory Modify - MAcro Edit
- Memory Set
Group 5: Task Control
Group 3: Display - ATTAch task
- DETAch task
- Block Search - EVENt definition
- Define Constant - LOAD (task)
- Display Formatted Registers - MASK exception
- Memory Display - STARt task(s)

- STOP task(s)

- STATus definition
- TASK notify

- TERMinate task

- WAIT task

2.10 VERSAdos UTILITIES

VERSAdos utilities are 1listed alphabetically, with descriptions of their
usage, in the following paragraphs. Refer to the M68000 Family VERSAdos
System Facilities Reference Manual, M68KVSF, for further information on these
utilities and on various session control task commands.

ACCT -- The Account utility may be used by the system administrator to open a
password file and an accounting file, and then to monitor individual and
collective usage of the system. This utility probably will not be needed when
the computer is used as a single-user system.

21 MICROSYSTEMS

@ MOTOROLA SYSTEM SOFTWARE

BACKUP -- BACKUP provides two methods of transferring data from one disk to
another: track-by-track mode and file-by-file transfer mode. Because track-
by-track mode requires that the source and destination disks be of the same
type, the file transfer mode will be used for the standard configuration of
VME/10. EXORmacs users will find track-by-track mode to be faster. File
transfer mode must be specified with BACKUP options A or R. Options U, V, or
B select track-by-track mode. Sub-options allow several variations in
copying. Individual files or families of files can be selected for transfer.
File descriptor fields information can be specified on the destination disk.
Indexed sequential files can be packed to reclaim internal file space. Files
can be packed together to reclaim disk space. A starting point at which file
transfer should begin can be specified on the source disk. Files can be
selected by date range and/or file/family, or can be selected one at a time.
When source data exceeds capacity of the destination disk, the file transfer
mode permits insertion of additional destination disk(s). A1l destination
disks must have been initialized previously with the INIT utility.

BUILDS -- The BUILDS utility transforms a binary load module into a file of
ASCII-encoded information which may then be transported to another system for
further use. The format of the records in the file is Motorola S-record, so-
called because each record begins with a byte containing the code for an ASCII
"S" -- for start of record.

CONFIG -- The Configuration utility is a menu-driven program that enables the
user to reconfigure certain device parameters and attributes temporarily or
permanently without the necessity of reSYSGENing the operating system. Types
of devices - configurable are terminals, magnetic tape drives, and printers.
Parameters and attributes changed with CONFIG may be put into a chainfile to
be executed automatically at logon.

CONNECT -- The CONNECT utility allows the user of a VME/10 or other VERSAdos
system with appropriate configuration to communicate with a second computer
which 1is connected to a second port. It produces the same effect as

physically disconnecting the terminal from the VERSAdos system and connecting
it to the second computer without having to move any cables. When the L=n
option 1is specified, CONNECT performs the following functions on the terminal
from which it was invoked before connecting the terminal to the other port:

a. Resets the display screen.

b. Sets up the virtual screen (the area which scrolls while in CONNECT
mode) as lines 1 through 1-n.

c. Display the message indicating successful connection.

28 MICROSYSTEMS

@ MOTOROLA SYSTEM SOFTWARE

COPY -- The COPY utility copies a file onto the same volume under a new
filename, or onto another volume under the same or a new name. Options allow
a file to be appended to the end of an existing file, packing of data in an
indexed sequential file, character-by-character comparison of existing files
with display of byte differences within records, and character-by-character
comparison of a copied file and the original with display of byte differences
within records. Output can be sent to a printer if part of the system, or to

the display terminal for a quick look at the contents of a file.

CREF -- The Cross Reference utility searches through multiple files for

occurrences of specified symbols and displays messages as to where the symbols
are found. A cross-reference listing can be directed to an output file.

DEL -- The Delete utility removes a file name from a disk directory and frees
all space allocated to that file. Options allow a list of files or a "family"
of files with 1like parameters (e.g., same catalog or same extension) to be
deleted with one command, and/or to direct a list of files deleted (normally
displayed on the CRT) to an output file or to a printer.

DIR -- Each VERSAdos disk contains a Volume Identification Block (VID),
established when the disk was initialized. Information describing the disk
space allocation, location, and attributes of each file contained on the disk
is stored in this directory. Part or all of the information entered for each
file 1can be obtained by using the DIR utility. Options provide greater
detail.

DMT -- This utility, used in conjunction with the MT utility, enables non-IPC-
controller systems such as the VME/10 to handle disks of unlike formats. DMT
performs the complementary function of the MT utility. It forces VERSAdos to
release control of a mounted floppy disk and to reject input/output requests
to a new disk until the MT command has been reissued. Before using DMT the
floppy must be offline -- i.e., the floppy drive door must have been opened.

DISPATCH -- The use of this utility is privileged; i.e., only logon user 0 may
use it. It 1is wused in conjunction with BATCH job processing, to change
dynamically the number of batch jobs that are able to execute.

UMP -- DUMP is a utility that allows examination and/or modification of one
or more sectors of disk data. The basic command provides a display of the
contents of a disk, a file, or a portion of a file, in hexadecimal;
alternatively, the dump may be directed to a printer or into another file.
Specifying the interactive option allows certain sectors of the disk or file
to be read into a change buffer in memory; bytes may be individually examined,

changed, and read back to the disk to replace the original version.

29 MICROSYSTEMS

@ MOTOROLA SYSTEM SOFTWARE

DUMPANAL -- DUMPANAL is an interactive utility used to analyze the contents of
a system crash dump, if the data has been saved in a file by means of the
firmware-resident monitor’s DB command. DUMPANAL 1lists various system tables
and memory locations as they appear in the dump file.

EMFGEN -- This wutility allows the user to add error messages and/or alter
existing messages in the error message file, ERRORMSG.SY, which is used by
VERSAdos’ error message handler to issue most system messages.

FREE -- Knowledge of unallocated space on a disk is often needed for file
creation or editing, or before copying a file. The FREE utility determines
and displays the total number of available sectors and the size of the largest
available block of contiguous sectors in decimal and hexadecimal

representation for a specified volume.

INIT -- A1 blank diskettes or cartridge disks for use with VERSAdos must be
formatted and initialized with the INIT utility before their first use.
Formatting establishes a sector/track pattern on the diskette which is
compatible with the processor and VERSAdos. Initializing creates a VID on the
diskette which can be recognized by VERSAdos. The VID includes a user-
supplied volume I.D., description, and ownership. A disk file directory is
also created by INIT. If directed to do so, INIT will check the disk for bad
sectors; if any are found, INIT will write their locations into the Sector
Lockout Table (SLT) so data cannot be written to them.

Used diskettes can also be initialized with INIT to clear the file directory.
(Disks containing wanted files should not be initialized, as their directory
entries will be altered so as to be unrecognizable by VERSAdos, and new data
will overwrite their contents.) The formatting function need not be performed
when dinltia1izing a used VERSAdos disk. (NOTE: Formatting destroys all data
on a disk.)

Two options are permitted. One of these permits the user to add bad block
entries to the SLT while preserving the contents of the disk. The other
allows specification of the address of the bootstrap file. The furnished
VERSAdos bootstrap file is named SYS:0.<catalog>.IPL.SY, where <catalog>
identifies the system type. The required address varies according to system
type; these addresses are listed in the M68000 Family VERSAdos System
Facilities Reference Manual.

LIB -- The Library utility makes useful software routines available for use by
more than one program or more than once in a program. These routines, or
program modules, are created in assembly or high-level language; put into a
file wusing the editor; assembled or compiled; and combined into a "library"
file or files with the LIB utility. These user-created library files, along
with those supplied with the system and with optional high-level languages,
can then be 1linked and made accessible to application programs. LIB offers
several interactive commands to aid in manipulation of the modules while
creating library files.

30 MICROSYSTEMS

@ MOTOROLA SYSTEM SOFTWARE

LIST -- Using the LIST utility, all or part of an ASCII disk file can be
displayed, written to a separate file, or (if a printer is part of the system)
printed. Selectable options allow specification of beginning and/or ending
Tines; numbering of lines; prompt for wider or narrower line length and longer
or shorter page length specification; prompt for heading; and interactive
mode. In interactive mode, if the heading prompt option or nonstandard length
and width prompt option were specified, these parameters can be supplied.
Lines to be listed can also be specified while in interactive mode.

MBLM -- Object files which were assembled using the M68000 Family Cross Macro
Assembler are in S-record format. These files cannot be Tinked into Toad
modules, but can be transported to the system and then converted to loadable
and executable files by means of the MBLM utility.

MERGEQOS -- Allows merging new modules into an operating system without the
necessity of re-SYSGENing.

MIGR -- ASCII programs filed on MDOS-format diskettes can be converted to
VERSAdos format on 8-inch floppy diskettes with the MIGR utility. MDOS is the
resident operating system for Motorola’s EXORciser computer.

MI -- MT allows VERSAdos to access disks of differing media formats on a non-
IPC-controller system such as the VME/10. It must be used before performing
I/0 operations to a floppy diskette (except for the first diskette accessed
after power-up). In turn, the DMT utility must be used after the diskette has
been taken offline, to release the device. If the diskette is of VERSAdos
format (contains a VERSAdos VID), entering the MT command and the device
designation is all that is required. If the diskette is of foreign format,
however, it may be accessed after mounting when configuration data has been
supplied by the user during MT’s interactive dialog.

NOVALID -- If system security level 2 or 3 is in effect, and a user password
file exists, NOVALID is used to delete specified user number records from the
file.

PATCH -- Changes can be made to executable Toad module files with the PATCH

utility. Interactive subcommands allow the display and change of portions of

a file after it has been read into memory. This makes it possible to make .
changes to a program without having to change the source and reassemble it.

PATCH includes a one-line disassembler and one-line assembler.

PRTDMP -- The Print Dump utility, PRTDMP, allows dumping part or all of memory
to a file after an abort of a load module. The file or a portion of it can
then be displayed or routed to a printer for examination. To use this
utility, the load module must have been linked with the Tinker’s D option.
Interactive commands vary the type of output.

il MICROSYSTEMS

@ MOTOROLA SYSTEM SOFTWARE

RENAME -- This utility is used to change the name of a file and/or its catalog
name. The system administrator (logon user 0) may also change a file’s user
number. User 0 or the volume owner may change a file’s protection key.

REPAIR -- REPAIR is an interactive utility used to repair the various logical
structures of disks and files if they have become damaged. These structures
include:

VID Volume Identification Block

SAT Sector Allocation Table

CFGA Configuration Area (media format)

SDB Secondary Directory Block (catalog Tist)
SDE Secondary Directory Entry (catalog entry)
PDB Primary Directory Block (filename list)
PDE Primary Directory Entry (filename entry)
FAB File Access Block (1ist of Data Blocks)
D8 Data Block (1ist of sequential records)
HDR Header

SLT Sector Lockout Table

DTA Diagnostic Test Area

Empty structures can be deleted using REPAIR. Bad blocks can be handled via
SLT and alternate sector handling.

REPAIR can be wused to recover a deleted file, if the file’s DB and FAB have
not been reallocated.

SCRATCH -- This utility quickly erases the VID of a used diskette so that it
can be reused. Only the disk’s owner or logon user 0 can SCRATCH a disk. The
disk also may be reformatted with SCRATCH. After using this utility, the disk
must be reinitialized by INIT.

SESSIONS -- The SESSIONS wutility is used to determine the current online
sessions and the batch jobs in queue for execution. Information is displayed
by device number (terminal)} and sessions number for online sessions and by
user number and session number for batch jobs.

SNAPSHOT -- The SNAPSHOT utility, implemented only on the VME/10 or EXORterm
155, copies the display on the CRT screen to a file or to a printer.

3 MICROSYSTEMS

.

—

@ MOTOROLA SYSTEM SOFTWARE

SPL/SPOOL -- VERSAdos offers a spooling capability whereby a particular volume
can be designated as storage media for a queue of files awaiting time-
consuming background tasks such as batch and chain processing and printing.
This frees the system for foreground operations. The operating system must be
SYSGENed to add a printer or an auxiliary storage device. SPL must be
jnstalled in session 0001. SPOOL may then be accessed whenever needed in
subsequent sessions. SPOOL includes a list of subcommands for initiating,
monitoring, and cancelling spooling functions.

SRCCOM -- The Source Compare utility is used to compare two ASCII text files
and 1ist any differences.

SYSANAL -- SYSANAL is an interactive operating system debugging utility. It
provides a means of examining system tables in RMS68K, the nucleus of
VERSAdos, and at any part of memory while VERSAdos is running. Output is to
the display screen or to a printer if one is available.

TRANSFER -- The ASCII file transfer utility allows uploading or downloading of
files such as source code or S-records between the VERSAdos system and another
system. The systems may be connected directly between serial ports, or by
phone Tlines/modems. Both systems must be configured for the same baud rate
and character makeup. TRANSFER uses two associated Pascal programs, ULOAD and
DLOAD.

UPLOADS -- UPLOADS is used to migrate S-records from some external source to a
VERSAdos system. The S-records must be received through an MVME400 dual port
serial module or a Multi-Channel Communications Module (MCCM) I/O Channel
which is connected to the source system via a direct RS-232C hardware
configuration.

VALID -- VALID is used to control access to the system by user number. User
numbers and password records are entered into, maintained by, and deleted from
an "account" file, accessible only by the system administrator.

2.11 SYSTEM TEST AND DIAGNOSTICS

The self-test diagnostics packages consist of firmware routines (stored in
ROM) and disk-resident module diagnostic programs. Brief descriptions of the.
diagnostics packages for EXORmacs and VME/10 systems are given here; they are
more fully described in the following manuals:

EXORmacs Development System Maintenance Manual, M68KEMM
VME/10 Microcomputer System Diagnostics Manual, M68KVSDM.

33 MICROSYSTEMS

M mororoLa SYSTEM SOFTARE

EXORmacs

The power-up/restart test performs a brief test which exercises the EXORmacs
DEbug and MPU Modules, as well as polls the status of the Intelligent
Peripheral Controller (IPC) self-test. This test is always performed at
power-up and after a system reset occurs.

The system module test performs the same test as the power-up/restart test,
plus it exercises the memory modules and also initiates an extensive self-test
on each IPC. This test, which is initiated by pressing two pushbuttons on the
chassis front panel, verifies the minimum system requirements for MACSbug (the
firmware monitor) and VERSAdos, and ensures that all contiguous RAM has been
jnitialized. The test time duration is 5 to 40 seconds, depending upon memory
size.

The disk-resident module diagnostics represent a complete system test of the
EXORmacs system. FEach module 1is tested using a single program. These
programs are independently loaded and executed from MACSbug. Some of the
diagnostics require operator input. A1l routines display fault information to
the user via the display console CRT and/or the chassis STATUS display. This
fault information can be used to isolate a faulty module or to establish a
confidence level that the system is operational.

For further information on EXORmacs operation, refer to the EXORmacs
Development System Operations Manual, M68KMACS.

VME/10

The power-up/reset test should be the first test executed in the system
diagnostic package as it will verify that the basic functions of the system
are operational. The first level of the test checks the basic functionality
of the system, and the second level simulates the multitasked, asynchronous
environment required for the operating system. The power-up/reset test is
performed automatically at power-up, and can also be initiated at system
reset.

The disk-resident module diagnostics are a complete test package for the
VME/10 Microcomputer System. Each module is tested by a single program, which
is independently loaded and executed from TENbug, the firmware monitor.

For further information on VME/10 operation, refer to the VME/10 Microcomputer
System Overview Manual, M68KVSOM.

3 MICROSYSTEMS

(M) moToroLA

2.12 DRIVER SOFTWARE

SYSTEM SOFTWARE

The following driver software is furnished with VERSAdos and may be SYSGENed

into the system
configuration:

DRIVER SOFTWARE

if the applicable hardware 1is part of the system

ACIADRV
DRVLIB

EPCIDRV
IPCDRV

M300DRV
M315DRV
M320DRV
M420DRV
M435DRV
M600DRV
M605DRV
M610DRV
M615DRV
M625DRV
MFPDRV

MPCCDRV
MPSCDRV
PO50DRV
P117DRV
PIADRV

PVO1DRV
RADDRV

RIODRV

RWINDRV
SIODRV

TERMDRV
TERMLIB
VM22DRV
ZI0DRV

SYSTEM/MODULE

EXORmacs, MVME110
All

VMO1, MVME101

VM20, VM21, VM30
MVME300

MVME315

MVME320

MVME420

MVME435

MVME600

MVMEG605

MVME610

MVME615

MVME625

MVME120

MVMEO50

VMO2, VMO3, MVME400
MVMEOQ50

MVME117

EXORmacs, MVME101, MVME410
VMO1

RAD1

RIO1

WINI

VM04, MVME130, MVME131
VME/10

All

VM22

MVME117

Further information may be obtained by referring to the following manuals:

Guide to Writing Device Drivers for VERSAdos, M68KDRVGD

RAD1 Device Driver Software User’s Manual, M68KRADDRV

RIO1 Device Driver Software User’s Manual, M68KRIODRV

MVME300 (GPIB Controller with DMA) I/O Driver Reference Manual, MVME3SW
MVME435ADRV Magnetic Tape Driver User’s Manual, MVME435DRV

MVME605 Analog Output Module Driver User’s Manual, MVME605DRV
MVME610/620 AC/DC Input Module Driver User’s Manual, MVME610DRV
MVME615/MVME616 Driver Software User’s Manual, MVME615DRV

MVME625 Driver Software User’s Manual, MVME625DRV

Source code for the drivers is also furnished with VERSAdos. If a particular
driver 1is to be modified by the user, the source can be altered and

reassembled/compiled.

MICROSYSTEMS

M) moToroLA

THIS PAGE INTENTIONALLY LEFT BLANK.

36

SYSTEM SOFTWARE

MICROSYSTEMS

(M) moToroLA

ABORT directive

absolute load module

absolute memory address

ACCT

administrator, system (user 0)
allocation

application program(s)

ASQ

ASR

assembler

assembly language

assembly listing

Asynchronous Service Queue (ASQ)
Asynchronous Service Routine (ASR)

BACKUP

bad blocks/sectors
batch mode

baud rate
bootstrap
breakpoints

buffer

BUILDS

catalog

CCB

CFGA

chainfile(s)

channel(s)

Channel Control Block (CCB)
Channel Management Request (CMR)
CMR

code optimization

code segment

compiler

CONFIG

configuration

Configuration Area (CFGA)
CONNECT

contiguous files

COPY

CPU

CREF

CRT text editor

Data Block({s) (DB)
data segment(s)
data structures
data transfers

DB

37

INDEX

INDEX

8

22

22

27

13, 27, 29, 32

7, 11, 20, 22, 29, 32

1, 4, 25, 30

See Asynchronous Service Queue
See Asynchronous Service Routine
19-22, 25, 31

19, 24, 25

19-21

6, 8-11

7, 9

28

30, 32

3, 13, 33
33

30

25-27
16-18, 29
28

29, 30, 32

See Channel Control Block

See Configuration Area

3, 13-15, 33

4, 11, 33

11

4, 11

See Channel Management Request
23

6

23, 24

28

1, 2, 15, 18, 19, 23-26, 28, 31, 33, 35
32

28

2, 13

29

2

29

1, 15-18, 24

32

6, 7

4

12

See Data Block

MICROSYSTEMS

xXmQZ —

M) moToroLA

DEbug

debugging

default receive buffer
DEL

device driver(s)
Diagnostic Test Area (DTA)
diagnostics

DIR

directive(s)

DISPATCH

display screen

DLOAD

DMT

documentation
driver(s)

DTA

DUMP

DUMPANAL

editor

EMFGEN

event message
event storage area
exception monitor
executive (RMS68K)
EXORciser

EXORmacs

EXORterm
extension(s)

FAB

fast floating-point

FHS

File Access Block (FAB)

File Handling Services (FHS)
File Management layer

File Management System (FMS)
file transfer

firmware

floating-point

FMS

format

formatting

FORTRAN

FREE

HDR
Header

1/0

1/0 layer

indexed sequential files
INIT

INDEX

25, 34
1, 25, 26, 33, 34
9

4, 11, 35

4, 6-11, 19-22
29

28, 33, 34

33

29, 31

1

11, 14, 35

See Diagnostic Test Area
29

30

15-18, 24, 30
30

9

9

4, 10

3-12, 14, 33

31

1, 28, 33-35

15, 32

23, 29

See File Access Block

23

See File Handling Services
13, 32

12

3

2, 13

28, 33

30, 33, 34

19, 20, 23

See File Management System
15, 28, 30-32

22, 30

24

30

See Header
32

See Input/Output
3

2, 13, 15, 28, 29
28, 30, 32

38 MICROSYSTEMS

@ MOTOROLA INDEX

initializing 28-30, 32, 34
Input/Output (I/0) 1-4, 11, 12, 14, 26, 29, 31, 33, 35
Input/Output Services (1/0) 12

Intelligent Peripheral Controller(s) (IPC)
2, 29, 31, 34

inter-task coordination 4

Interrupt Service Routine(s) (ISR) 7, 11

interrupts 2, 3,7,9,11

10S See Input/Output Services

IPC See Intelligent Peripheral Controller
ISR See Interrupt Service Routine
kernel 4, 14, 26

LIB 30

Tibrary 22, 24, 30

link map 25

linkage editor (linker, LINK) 19-25, 31

LIST 31

load module(s) 22, 24, 28, 31

Logical Unit Number(s) (LUN) 12

Togon 13, 28

LUN See Logical Unit Number
machine Tanguage 19, 24

macro 19, 26

macro assembler 19

MACSbug 34

main code 6

MBLM 31

MCCM See Multi-Channel Communications Module
MDOS 31

memory management 1

MERGEOS 31

microprocessor(s) 1, 4, 11, 19, 23, 35

MIGR 31

migrate 31, 33

monitor 5, 8, 25-27, 30, 34

MT 29, 31

Multi-Channel Communications Module (MCCM)
33

multitasking 4, 25, 26
multi-user 1, 3
MVME400 33, 35 I
NOVALID 31 N
object code 19, 21 D
object programs 24
E
X
39

MICROSYSTEMS

M) mororoLa

Pascal

PATCH

PDB

PDE

polling chain

power-up

Primary Directory Block (PDB)
Primary Directory Entry (PDE)
primary task

priority

program loader

PRTDUMP

RAM

READY state

real-time

real-time multitasking
Real-Time Multitasking layer
register(s)

relocatable object module
RENAME

REPAIR

reset

resource managers

RMS68K (executive)

ROM

RUN state

run-time library

R9M

S-record(s)

SAT

SCRATCH

SDB

SDE

Secondary Directory Block (SDB)
Secondary Directory Entry (SDE)
Sector Allocation Table (SAT)
Sector Lockout Table (SLT)
sector(s)

security

self-test

semaphore(s)

sequential files

serial ports

server task

session control

session management

session number

SESSIONS

SLT

SNAPSHOT

INDEX

23, 24, 33

31

See Primary Directory Block
See Primary Directory Entry
11, 12

31, 34 '”*
32

32

10

2, 4, 8, 11

13, 14

31

14, 15, 19, 23, 24, 26, 34
8

1, 2, 4-6

1, 3, 4

3

21, 26, 27

22, 23

32

32

34

4

3-12, 14, 33

14, 33 o~
8

24

21

22, 28, 31, 33

See Sector Allocation Table
32

See Secondary Directory Block
See Secondary Directory Entry
32

32

32

30, 32

13, 29, 30

13, 31, 33

33, 34

2, 4, 5,7, 8, 10

2, 13, 15, 17

33

10 —
3, 27

3, 13

6, 8, 13, 32

32

See Sector Lockout Table

32

40 MICROSYSTEMS

M) moToroLa

source code
source languages
source listing
source program(s)
SPL

SPOOL

SRCCOM

START directive
sub-task

SYMbug

symbol table
SYSANAL

SYSGEN

system administrator (user 0)
system generation

Table-Driven Task Initiator (TDTI)
target system

Task Control Block (TCB)
task control directive
task execution

task synchronization
task-1D

task(s)

TCB

TOTI

TDTIGEN1

TENbug

TERM directive

trace mode

TRANSFER

trap handling code

trap instruction(s)
TTGEN

ULOAD
UPLOADS
user 0 (system administrator)

VALID

vector chains

VERSAdos structure

VERSAmodules

VID

VME/10

VMEmoduTes

Volume Identification Block (VID)

25, 33, 35
19-24

20, 21, 24
15, 19-24
33

33

33

8

8

25-27

19

33

14, 28

13, 27, 29, 32
2, 14

4

s 71

, 7, 8
3, 10

b

YN a1 O = —

1-14, 25-27
See Task Control Block

INDEX

See Table-Driven Task Initiator

14

34

8

10, 26
33

6

6, 7, 10
14

33
33
13, 27, 29, 32

33

11, 12

3

1, 14, 35

See Volume Identification Block

1, 15, 28, 29, 31-35
1, 14, 35
29-32

41

MICROSYSTEMS

XxXmOZ -

@ MOTOROLA

THIS PAGE INTENTIONALLY LEFT BLANK.

42

INDEX

MICROSYSTEMS

SUGGESTION/PROBLEM micro
REPORT]

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282
Attention: Publications Manager
Maildrop DW164

Product: Manual:

COMMENTS:

Please Print

Name Title

Company Division

Street MailDrop_____ Phone

City State Zip

For Additional Motorola Publications Four Phase/Motorola Customer Support, Tempe Operations
Literature Distribution Center (800) 528-1908

616 West 24th Street (602) 438-3100

Tempe, AZ 85282
(602) 994-6561
@ MOTOROLA

MOTOROLA Semiconductor Products Inc.

PO. BOX 20912 ® PHOENIX, ARIZONA 85036 ® A SUBSIDIARY OF MOTOROLA iINC.

19193 PRINTED IN USA (1/88) MESSENGER 3500

