M68000 Family
Resident Structured Assembler
Reference Manual

QUALITY e PEOPLE ¢ PERFORMANCE




M68KMASM/D7
JULY 1983

M68000 FAMILY
RESIDENT STRUCTURED ASSEMBLER

REFERENCE MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or
the rights of others.

EXORmacs, SYMbug, VERSAdos, VERSAmodule, VMC 68/2, VME/10 and VMEmodule are
trademarks of Motorola Inc.

This edition incorporates the information in any addendums to previous releases
of this manual.

Seventh KEdition
Copyright 1983 by Motorola Inc.
Sixth Edition June 1983




TABLE OF CONTENTS
Page

CHAPTER 1 GENERAL INFORMATION

SCOPE eeceosesccocsascsssosossscscassossssssscsscssnassese 1=l
INTRODUCTION cececececccoccossosscsssoscssssssssssssssssses 1=l
M68000 FAMILY ASSEMBLY LANGUAGE tcceccscccosscccscncasesse 1-1
.1 Machine-instruction Operation CodeS ceeeecessssccsssasaes 1-2
o2 DirecCtiVeS seceecsesscccevsasssccrssesscescsnsasacscsnscsse 1=2
M68000 FAMILY RESIDENT STRUCTURED ASSEMBLER secececsvences 1-2
1 Assembler PUXPOSES seeeccvssscccccssccscsssssscnssssssns 1=2
.2 Assembler ProcCeSSiNg eeeescssscesssscccssssscssessccssses 1-2
3 MiCroprocesSSOr TYPES seseccsscesesessccesscscsccsssccsse 1=3
RELOCATION AND LINKAGE cesosccscccscsccccscoscscscsesssasasaces 1-3
LINKER RESTRICTIONS cecececsccccscsssssccssssnsssscssssases 1-4
NOTATION eceeesccsccacssscscceccscsscsvosscsssassasnsassasnnsece 1—4
RELATED PUBLICATIONS ceececcccccssscsssssscsccsccsssssssssce 1—4

o e e e
[ ] * [ ] L ] [ ]

O~ U B W W W
L]

CHAPTER 2 SOURCE PROGRAM CODING

|
BB WWNNDN -

INTRODUCTION cacecoscoccosvscosossscsonscssccscsscscoscsnsncsccse
COMMENTS ceceovececccsccsccsscnsasssscsscscsssscscnnsscncscsosse
EXBECUTABLE INSTRUCTION FORMAT .cccccccosccccscscscccasssne
SOURCE LINE FORMAT .sceecccccccoccscscsscccocsoscssssccocsose
Label Fi€ld seveccesccsccsessssccesassscesssscscccssssces
Operation Field eeececceccosccscosvsncsorsscscssssscnnsacs
Operand Field .eeeecesccccecaccscssesssccsasssccsssssscccs
Comment Fi€ld seesecccccsscscscssssscssassssssssasssscncse
INSTRUCTION MNEMONICS ceeeocevscecccccccacscccscsssscsccsnse
Arithmetic OperationS ceeececesceccsccsscessscsssonccsosse
MOVE INStruCtiOn seeesecessccsscessccssanasscscsscssscnnas
Compare and Check InStruCtiOnNS eeeeeececessssccccscscscccs
Logical OperatiOnS ceeescecssccccsccsccsscssccssscosncns
Shift OperationS eeeesecccccccccccsscccsssccsnsensnsnsns
Bit OperationS seeeecesccccccescccscscccsssscscccsscencs
Conditional OperatioOnS ceeecsescsscecsssccscsnssascsssesse
Branch OperationS .cecececesssscccsescscescsscssssacssscccnse
JUMP OPEYatiONS seeeccessossscsssscssensssscsssssssccnsasne
DBCC INStrUCEION seeeessesscccscocscssscssscsosccsssones
Load/Store Multiple REJIStErS sessececcsscscsccsscsccses
Load Effective AJAreSS eceeeescesccccscscasscssccsssssscse
Move to/from Control RegiSter eeeesecesscecsccscscesscees 2-10
Move to/from AQJressS SPACE ececcesscscsscsscccsssssccses 2-10
SYMBOLS AND EXPRESSIONS scceceocscncsscsascsassascscssncecces 2—11
SYMDOLS seseeecoscccssssscccsssssoesosassscssasssssasssss 2—11
Symbol Definition ClasSSeS eceeeesecccscscsssscncsssssssse 2-12
User-Defined LabelS seeecesecccccscccescossscsscssascansss 2-12
EXPresSSiONS seeescececscressscccescssscssssscsassssnsssse 2-13
Operator PreCedencCe seeeecccecsscsscccncsssasssssscsssaes 2-14
REGISTERS ceceecorcccsscscscssscsssnanssssscsscssosnansassceseces 2—15
VARIANTS ON INSTRUCTION TYPES sceeevesccoscccccccsscssnssss 216
ADDRESSING MODES ceeeececcccccscsscscscscssssassnancsassesscee 2—18
1 Register Direct MOJES sececescccccsscscsscssccssascenses 2-21
o2 MemOoYY AAAYESS seeececscccesssscsssscscscscsscsnssnnscssass 2—21
2.1 Address Register INAireCt .eeecececcesscesccccsscccsse 2-21

L]
WOWOWWYWOIAAAAAA UL VIVUTUI U UG UT B D D D W N -
L]
UL

.

L]
> W N
t?)fl\)NNNNNN

L]
HHEHEMHEEOOIU & WN

WO

NNNNNI?)NNNNNN

1
WOOWo~IAO U U

.
.
[\
i

o o o o o o
. .
U WN -~

NNNONNNDNDNODNONNNNODNODODNNNONNODNONNODNNNNNNONNNMMNNNNNNNMONNDNDNDND




TABLE OF CONTENTS (cont'd)

Address Register Indirect with Postincrement ..eceeese
Address Register Indirect with Predecrement secececsee
Address Register Indirect with Displacement ceecececses
Address Register Indirect with Index sccececscccceecse
Special AJAress MOAES seeecccccescsscccssccccscsncscsnnne
Absolute Short AJAreSS ececececccescssscscsossssccscoses
Absolute Long AJAreSS cecececccscscccesssssscscesssscssoce
Program Counter with Displacement cecceccecccesccsscese
Program Counter with INdeX cceccececceccocccscoscosccne
Immediate DAtA eeceeccccccsoccsecsccscccoccccsnsscoscscs
NOTES ON ADDRESSING OPTIONS seesccccoccssccecscscscccssscrse

e o o o
e o o o
Db WK

.
e o o
U W N -

NNNNNE\)NNNNN
= O WO WWWWYWWOWYWLYY

O

WWWWWWwNDNNDN

CHAPTER 3 ASSEMBLER DIRECTIVES

INTRODUCTION eccececoccsvsccssosssccscsceccsccnscencsssoccscsosn
ASSEMBLY CONTROL sceecveccescescsccscscsssscsccscsscsccssscssscce
1 ORG -~ Absolute Origin .eeeececsceccccsscccecsscscccscccse
2 SECTION - Relocatable Program Section ceeescecscscccceee
3 END — Program End ceeeeecescessscsccesssscscsscccscscasccss
.4 OFFSET - Define OffSetS .ceeeeccccccscccsveccssssccanccse
5 MASK2 -~ Assemble for MASK2 (MC68000 ONly) eeescccscoccces
6 INCLUDE - Include Secondary File .eccececoccccccccoscecee
SYMBOL DEFINITION sceeocosccccscccccsccscovoscsccsscsssssacs
.1 EQU - Equate Symbol Value eeeeeccccosccssccccsscccsscnne
o2 SET — Set Symbol VAlue .ceeeeccscessccsccsscsccccsscccscsns
.3 REG — Define Register LiSt scececccesccccccccccccccecess
DATA DEFINITION/STORAGE ALLOCATION .scsecccccscscsccccccce
1 DC - Define Constant .cececsccccscsscscccccrssscsccncocs
1.1 Examples of ASCII StringsS ceecececcecesccssssccccccccee
1.2 Examples of Numeric ConstantsS seececcesccccesccccccccs
2 DS — Define StOrage ceeseccessccceosscccscscsscccccccccses
3
4

DCB — Define Constant BlOCK ceceseccscssscsscscecsscccce
CmLINE - Colnmar]d Line 0 000 0000000006000 060006000060000000100
LISTING CONTROL ceeeoecccccccscesscscscsosssccsscscsscsccsoscce
PAGE — TOP Of PAJE seecceccscsoccvesccscsccssscccccssscce
Listing Output OptionS .eececcsceccescscssccsccacccscocs
LIST — List The ASSEmblYy sccccccccssscccossscccsscocsss
NOLIST - ]b I\bt LiSt The ASSanly R EEE R EREE N NN NN NN X ]
FORMAT - Format The Source Listing eccecececccccceccess
NOFORMAT - Do Not Format The Source Listing eeccecesse

SPC - Space Between Source LiNeS cceeeccscesccccccccee
NOPAGE - Do Not Page Source OULPUL .eesceccccccccccecss
LLEN - Line I.ength 0 0 0 00 0000000000000 060 0000000000

TTL - Title 0 0000 00000000 08060060000608000600000600¢000000s000
NOOB] - NO ObjeCt 00 000 0CCEEGONCEOPNRCOOE00RACCCOEOEOCOIOEOINOGOLITPLDS

0 OPI‘ - ASSembler Ol-ltput Options R R X E R E NN NN RN N XN )
FAIL - PROGRAMMER GENERATED ERROR scscecevcscccvccccscccne
LINKAGE EDITOR CONTROL cesecscccccscssccccsccscsscscecssnnsce
.1 IDNT - Relocatable Identification Record .cececcecceccss
02 XDEF - External Syfnml mfinition 000000600000 000000OCSS
«3 XREF - External Symbol Reference eeeeccesccccccccccsscse

WWWWWwWwwWwwblwwWwwWwwwwwwwwbwwwuwuwwwwwwwuwwwww
*
NNt d DS BEB B WWWWRNDNNDNDNDNDND
L

°
POV WNH-

ii

Page

2-21
2-22
2-22
2-22
2-23
2-23
2-23
2-23
2-24
2-24
2-24

3-4

3-11
3-11
3-11
3-11
3-11

SN




§
X
(S5}

(SN GRS S N MO NS, RO R Y]
L] e ® .
WWwwiNhNhMhMNDNDNDNDND

§
X
o)

(o)W e) o) We ) Wer i o) We Wer W e We)We W e ) Wo ) We W ) Wo ) We W)
L]
SN UL UTE BB BB WWWWWN -

§
o .
~J

N~
o o e
wN -

« o & o s
W~JO U W+

L]
N

.
W N

N =

> W N

N~

TABLE OF CONTENTS (cont'd)

INVOKING THE ASSEMBLER

COMMAND LINE FORMAT ..eceveeeccccncccccscnscocscccsoccncons
Symbol Table Size Option .eeeeececcececccccccencssecccne .
Microprocessor Type Option ceeeceecccscccsscoccccccscacces

ASSEMBLER OUTPUT .ecscecccsanacess cecessccsscssscorsssrons

ASSEMBLER RUNTIME ERRORS .eseeecscccscccscaccsns sesccccscs

MACRO OPERATIONS AND CONDITIONAL ASSEMBLY

INTRODUCTION .scecceccscesovscscsscccsscacasacscaasssssasasscas
MACRO OPERATIONS .. ccscccsvccscscssscssacssscssnssnsssnons
Macro Definition s.eeeescecssiosscesscvosscocsssccsssense
Macro INvocation eeeeesceeeeseccnnccnscasacccsccssssacnea
Macro Parameter Definition and Use ..eeeeeccreccccececne
Labels within MacroS c.cceeeecececsesccscssaacecscsssonsna
The MEXIT Directive +.......
NARG SYMDOL seeccooccsscsoosososossoscccsccsocssscsasccsscsss
Implementation of Macro Definition eescecescecsasccnasas
Implementation of Macro EXpanSion .eceeeceecececcccccess
CONDITIONAL ASSEMBLY ceeecessescscosssssscsossasasssasasasns
Conditional Assembly StIrUCtUre ec.esecececcccscosccccccces
Example of Macro and Conditional Assembly Usage «.......

STRUCTURED CONTROL STATEMENTS

INTRODUCTION ccocececccscscccocnccocoassssocscnssoscancces
KEYWORD SYMBOLS ..cceconsccconcscosonscsssssssccsascsasassaas
SYNTAX .vceeececcscscocsacectocasacesosasaacscsassancasass
IF Statement ........ cececcscssessesesasesasscsssescssens
FOR Statement cceeeecsccccsceccsccsscscssscscsasascncsse
REPEAT Statement ..ccececscocvoccasccsccssssscacsssannes
WHILE Statement ceceececccececececoasocsscecscscsscccosssnns
SIMPLE AND COMPOUND EXPRESSIONS seecceescsssccssansssccens
Simple EXPreSSionS ceceecesscescccccscesscocsssosssssoscnns
Condition Code EXPresSSionS eeeessscccccccssscscssccnss
Operand Comparison EXpressions .....ccceceececcesccnes
Compound EXPresSSioNS cecesceessscsssccessassscscssasosasass
SOURCE LINE FORMATTING .cccoceccssacsssaconcsssoasnsasssnns
Class 1 Symbol USAQe ececececccccccscccosscscnscsnscsccnes
Limited Free-Formatting ececeeececcecceccccceaccccnacens
Nesting of Structured Statements ..c.cceeceececccecceees
Assembly Listing FOrmat eeececececececccoceccscoccccccss
EFFECTS ON THE USER'S ENVIRONMENT ..veeecsccccssasscsccascs

GENERATING POSITION INDEPENDENT CODE

FORCING POSITION INDEPENDENCE .cecoceooccccccccscccscnssces

BASE-DISPLACEMENT ADDRESSING ececcscccccccesoosscsscaccsncss

BASE-DISPLACEMENT IN CONJUNCTION WITH FORCED POSITION
INDEPENDENCE .ccceoocsscsccccoscssccccssscaccossssccnnsse

iii

Page

R R
OB WNNDN -

[ L IC:\?\O\?\O‘\O\O\O\O\
WOWOORONAUOUVSAEDWWE -

O\O\O\O\(I)\O\O\O\O\




APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E

TABLE 2-1,
2“20

2-3.

2-4a.
2-4b.
2-4c.

2-44.
2-4e,
3-1.
4-1.
6-1.

TABLE OF CONTENTS (cont'd)

INSTRUCTION SET SUMMARY cccessscasccaccsscccssssnsocssasecs
CHARACTER SET esccesssvsccccccscscsensacsssccsscsscoscscssssse
SAMPLE ASSEMBLER OUTPUT esecceccccccscocscsccccsccsscscscsve
EXAMPLE OF LINKED ASSEMBLY-LANGUAGE PROGRAMS ¢¢ceeccecsecee
ASSEMBLY ERROR CODES scssesessesccscssssssssssssssssccscne

LIST OF TABLES

Address MOAES ceceeeecsecscccoscsscsccscsccccscnasonscsoncscacsce
Cross-Reference: Effective Addressing Mode, Given Operand

Format and <eXPr> TYPE ecececscescccssscscccsccscssccsscssce
Operand ReSOlUtiON seeescccecccsssccssccssessscccccccnncns
Known Location of Operand & Instruction Follows SECTION ..
Known Location of Operand & Instruction Follows ORG ceesse
Unknown Location of Operand & Instruction Follows

SECTION OY ORG ceeesccecscsscscscscssssscascscscacsscccsossse
External Reference & Instruction Follows SECTION ececcvess
External Reference & Instruction FOllowsS ORG ceeccesccssee
M68000 Family Assembler DIirectivesS eeceeceeccccsscccccsaccee
Standard Listing FOImMat ceeeessecccccscccsccccccsccccsccnne
Effective Addressing Modes for Compare Instructions ......

iv

Page

A-1
B-1
C-1
D-1
E-1

2-18

2-20
2-26
2-26
2-27

2-27
2-28
2-29
3-1
4-3
6-6




CHAPTER 1
GENERAL INFORMATION

1.1 SCOPE

The intent of this publication is to provide sufficient information to develop
M68000 Family assembly language programs, which may be run on MC68000- or
MC68010-based systems. The information herein pertains to the elements of the
assembler. Detailed information pertaining to the MC68000 microprocessor is
provided in the MC68000 1l6-Bit Microprocessor User's Manual. Refer to the
MC68010 16-Bit Virtual Memory Microprocessor product specification handbook for
details on the MC68010. It is assumed that the designer has a complete
understanding of the microprocessor architecture before attempting software
development.

Chapters 1 through 4 contain the basic features of the assembler needed by the
beginning assembly language programmer. Chapter 4 also provides instructions to
invoke the assembler. Advanced topics, such as macro operations, conditional
assembly, and structured syntax, are described in Chapters 5 through 8.

1.2 INTRODUCTION

The M68000 Family Resident Structured Assembler (referred to as the "assembler"
throughout this manual) is used to translate M68000 family assembler source
programs into MC68000/MC68010 machine language. The assembler executes under
VERSAdos on the EXORmacs Development System, the VERSAmodule 01 or 02 Monoboard
Microcomputer, the VMC 68/2 Microcomputer System, the VME/10 Microcomputer
Development System, or VMEmodule Monoboard Microcomputer (MVMEL1O0).

The assembler includes the following features:

. Absolute/relocatable code generation
Complex expressions

Symbol table listing

Macros

Conditional assembly

Structured syntax

Cross-reference

1.3 M68000 FAMILY ASSEMBLY LANGUAGE

The symbolic language used to code source programs for processing by the
assembler is called assembly language. This language is composed of the
following symbolic elements:

a. Symbolic names or labels, which represent instruction, directive, and
register mnemonics, as well as user-defined memory labels and macros.

b. Numbers, which may be represented in binary, octal, decimal, or
hexadecimal notation.

Cc. Arithmetic amd 1logical operators, which are employed in camplex
expressions.

d. Special-purpose characters, which are used to denote certain operand
syntax rules, macro functions, source line fields, and numeric bases.

1-1




1.3.1 Machine-Instruction Operation Codes

Appendix A summarizes that part of the assembly language that provides mnemonic
machine-instruction operation codes for the MC68000 and MC68010 machine
instructions.

1.3.2 Directives

The assembly language contains mnemonic directives which specify auxiliary
actions to be performed by the assembler. Directives are not always translated
to machine language.

Assembler directives assist the programmer in controlling the assembler output,
in defining data and symbols, and in allocating storage.

1.4 M68000 FAMILY RESIDENT STRUCTURED ASSEMBLER

The assembler translates source statements written in the assembly language into
relocatable object code, assigns storage locations to instructions and data, and
performs auxiliary assembler actions designated by the programmer. Object
modules produced by the assembler are compatible with the M68000 family linkage
editor, referred to as the "linkage editor" or "linker".

The assembler includes macro and conditional assembly capabilities, and
implements certain "structured" programming control constructs. The assembler
generates relocatable code which may then be linked into a memory image format.

1.4.1 Assembler Purposes
The two basic purposes of the assembler are to:

. Provide the programmer with the means to translate source statements into
relocatable object code -~ that is, to the format required by the linkage
editor. :

. Provide a printed listing containing the source language input, assembler
object code, and additional information (such as error codes, if any)
useful to the programmer.

1.4.2 Assembler Processing

Assembly is a two-pass process. During the first pass, the assembler develops a
symbol table, associating user-defined labels with values and addresses. During
the second pass, the translation from source language to machine language takes
place, using the symbol table developed during pass l. In pass 2, as each
source line is processed in turn, the assembler generates appropriate object
code ard the assembly listing.

1-2




1.4.3 Microprocessor Types

The assembler is designed for use with both MC68000 and MC68010 microprocessors.
Its operation is functionally the same for either processor.

In addition to supporting the MC68010's 28-bit addressing capability, the
assembler provides three additional instruction mnemonics for use with the
MC68010. To enable these additional mnemonics, however, the assembler must be
so directed. This may be done either when the "command line" that invokes the
assembler is entered, or in the first directive used in the source program.
(Refer to paragraphs 4.1.2 amd 3.5.2.10, respectively.)

1.5 RELOCATION AND LINKAGE

"Relocation" refers to the process of binding a program to a set of memory
locations at a time other than during the assembly process. For example, if
subroutine "ABC" is to be used by many different programs, it is desirable to
allow the subroutine to reside in any area of memory. One way of repositioning
the subroutine in memory is to change the "ORG" directive operand field at the
beginning of the subroutine, amd then to re-assemble the routine. A
disadvantage of this method is the expense of re-assembling ABC. An alternative
to multiple assemblies is to assemble ABC once, producing an object module which
contains enough information so that another program (the linkage editor) can
easily assign a new set of memory locations to the module. This scheme offers
the advantages that re-assembly is not required, the object module is
substantially smaller than the source program, relocation is faster than
re-assembly, and relocation can be handled by the linkage editor (rather than
editing the source program and changing the ORG directive).

In addition to program relocation, the linkage editor must also resolve inter-
program references. For example, the other programs that are to use subroutine
ABC must contain a jump-to-subroutine instruction to ABC. However, since ABC is
not assembled at the same time as the calling program, the assembler cannot put
the address of the subroutine into the operand field of the subroutine call.
The linkage editor, however, will know where the calling program resides and,
therefore, can resolve the reference to the call to ABC. This process of
resolving inter-program references is called "linking". An example of linking
two object modules is shown in Appendix D.

Program sections provide the basis of the relocation and linking scheme. Each
of these sections may also have a variable number of named common sections
associated with it, with each common section having a unique name. These
relocatable sections are passed on to the linkage editor, which concatenates all
sections with the same number in the different modules to be linked. Each of
the 16 relocatable sections may contain data and/or code; in addition, named
common sections may be defined within any relocatable section.

Absolute sections are unnumbered (amd, therefore, unlimited in number); they are
specified by the ORG directive.




1.6 LINKER RESTRICTIONS

Before developing relocatable assembly language modules, the user should
familiarize himself with the capabilities and restrictions of the linkage
process, as outlined in the M68000 Family Linkage BEditor User's Manual. It is
important to keep in mind that the relocation features of the assembler are
directly attributable to capabilities of the linkage editor, and that linkage
environment can be controlled through assembler directives. If the assembly
language object program is to be linked with a Pascal object program, the user
should be aware of Pascal's requirements before allocation.

The assembler will produce an object module compatible with the linkage editor.
XDEF and XREF must be used to define entry points into the various modules and
external symbols appearing in the module.

1.7 NOTATION

Commands and other input/output (I/0) are presented in this manual in a modified
Backus-Naur Form (BNF) syntax. Certain symbols in the syntax, where noted, are
used in the real I/0; however, others are meta-symbols whose usage is restricted
to the syntactic structure. These meta-symbols and their meanings are as
follows:

<> The angular brackets enclose a symbol, known as a syntactic
variable, that is replaced in a command line by one of a class of
symbols it represents.

| This symbol indicates that a choice is to be made. One of several
symbols, separated by this symbol, should be selected.

[] Square brackets enclose a symbol that is optional. The enclosed
symbol may occur zero or one time.

[ 1ees Square brackets followed by periods enclose a symbol that is
optional/repetitive. The symbol may appear zero or more times.

Operator entries are to be followed by a carriage return.

1.8 RELATED PUBLICATIONS
The user should be familiar with the following Motorola publications:

EXORmacs Development System Operatibns Manual (M68KMACS)
MC68000 16-Bit Microprocessor User's Manual (MC68000UM)

MC68010 16-Bit Virtual Memory Microprocessor
Product Specification Handbook (ADI-942)

M68000 Family Linkage Bditor User's Manual (M68S8KLINK)
M68000 Family Resident Pascal User's Manual (M68KPASC)
VERSAdos Messages Reference Manual (M68KVMSG)

VERSAdos System Facilities Reference Manual (M68KVSF)

1-4




CHAPTER 2

SOURCE PROGRAM CODING

2.1 INTRODUCTION

A source program is a sequence of source statements arranged in a logical way to
perform a predetermined task. Each source statement occupies a line of
printable text, where each line may be one of the following:

a. Comment
b. Executable instruction

c. Assembler directive

d. Macro invocation

2.2 COMMENTS

Comments are strings, composed of any ASCII characters (refer to Appendix B),
which are inserted into a program to identify or clarify the individual
statements or program flow. Comments are included in the assembly listing but,
otherwise, are ignored by the assembler.

A comment may be inserted in one of two ways:

a. At the beginning of a line, starting in column one, where an asterisk (*)
is the first character in the line. The entire line is a comment, and an
instruction or directive would not be recognized.

b. Following the operation and operand fields of an assembler instruction or
directive, where it is preceded by at least one space (see paragraph
2.4.4).

Examples:
* THIS ENTIRE LINE IS A COMMENT.

BRA LAB2 ., THIS COMMENT FOLLOWS AN INSTRUCTION.

2.3 EXECUTABLE INSTRUCTION FORMAT

Assembly language programs are translated by the assembler into relocatable
object code. This object code may contain executable instructions, data
structures, and relocation information. This translation process begins with
symbolic assembly language source code, which employs reserved mnemonics,
special symbols, and user-defined labels. M68000 family assembly language is
line-oriented.




2.4 SOURCE LINE FORMAT

Each source statement has an overall format that is some combination of the
following four fields:

a. label

b. operation
Cc. operand
d. camment

The statement lines in the source file must not be numbered. The assembler will
prefix each line with a sequential number, up to four decimal digits.

The format of each line of source code is described in the following paragraphs.

2.4.1 Label Field

The label field is the first field in the source line. A label which begins in
the first column of the line may be terminated by either a space or a colon. A
label may be preceded by one or more spaces, provided it is then temrminated by a
colon. In neither case is the colon a part of the label.

Labels are allowed on all instructions and assembler directives which define
data structures. For such operations, the label is defined with a value equal
to the 1location counter for the instruction or directive, including a
designation for the program section in which the definition appears.

Labels are required on the assembler directives which define symbol values (SET,
EQU, REG). For these directives, the label is defined with a value (and for SET
and EQU, a program section designation) corresponding to the expression in the
operand field.

Labels on MACRO definitions are saved as the mnemonic by which that macro is
subsequently invoked. No memory address is associated with such labels. A
label is also required on the IDNT directive. This label is passed on to the
relocatable object module; it has no associated internal value.

No other directives allow labels.

Labels which are the only field in the source line will be defined equal to the
current location counter value and program section.

2.4.2 Operation Field

The operation field follows the label field and is separated from it by at least
one space. Entries in the field would fall under one of the following

categories:

a. Instruction mnemonics - which corresponrd to the MC68000/MC68010
instruction set.

b. Directive mnemonics - pseudo-operation codes for controlling the assembly
process.

c. Macro calls - invocations of previously-described macros.

2-2




The size of the data field affected by an instruction is determined by the data
size code. Some instructions and directives can operate on more than one data
size. For these operations, the data size code must be specified or a default
size of word (lé6-bit data) will be assumed. The size code need not be specified
if only one data size is permitted by the operation. The data size code is
specified by appending a period (.) to the operation field, followed by B, W, or
L, where:

Byte (8-bit data)
Word (the default size; 16-bit data)
Long word (32-bit data)

rEw
nouou

The data size code is not permitted, however, when the instruction or directive
does not have a data size attribute.

Examples (legal):

LEA 2(A0) ,Al Long word size is assumed (.B, .W not allowed); this
instruction loads effective address of first operand
into Al.

ADD.B ADDR, DO This instruction adds byte whose address is ADDR to
low order byte in DO.

ADD D1,D2 This instruction adds low order word of D1 to low order
word of D2. (W is the default size code.)

ADD.L A3,D3 This instruction adds entire 32-bit (long woxd)

contents of A3 to D3.
Example (illegal):

SUBA.B  #5,A1 Illegal size specification (.B not allowed on SUBA).
This instruction would have attempted to subtract the
value 5 from the low order byte of Al; byte operations
on address registers are not allowed.

2.4.3 Operand Field

If present, the operand field follows the operation field and is separated from
the operation field by at least one space. When two or more operand subfields
appear within a statement, they must be separated by a comma but may not contain
embedded spaces; e.g., D1, D2 is illegal. In an instruction like ' ADD D1,D2'
the first subfield (D1) is generally applied to the second subfield (D2) and the
results placed in the second subfield. Thus, the contents of D1 are added to
the contents of D2 and the result is saved in register D2. 1In the instruction
' MOVE D1,D2' the first subfield (Dl) is the sending field and the second
subfield (D2) is the receiving field. In other words, for most two-operand
instructions, the general format ' opcode source,destination' applies.

2.4.4 Coment Field

The last field of a source statement is an optional comment field. This field
is ignored by the assembler except for being included in the listing. The
comment field is separated from the operand field (or the operation field, if
there is no operand) by one or more spaces, and may consist of any ASCII
characters. This field is important in documenting the operation of a program.

2-3




2.5 INSTRUCTION MNEMONICS

The instruction operations described in paragraphs 2.5.1 through 2.5.12 are used
by the assembler for both MC68000 and MC68010. Paragraphs 2.5.13 and 2.5.14,
however, describe instructions which are valid only for the MC68010
microprocessor.,

2.5.1 Arithmetic Operations

The MC68000/MC68010 instruction set includes the operations of add, subtract,
multiply, and divide. BAdd and subtract are available for all data operand
sizes. Multiply and divide may be signed or unsigned. Operations on decimal
data (BCD) include add, subtract, and negate. The general form is:

<operationd>.<size> <source>,<destination>
Examples:
ADD.W D1,D2 Adds low order word of D1 to low order word of D2,

SUB.B  #5,(Al) Subtracts value 5 from byte whose address is contained in
Al.
2.5.2 MOVE Instruction

The MOVE instruction is used to move data between registers and/or memory. The
general form is:

MOVE.<size> <source> ,<destination>

Examples:
MOVE D1,D2 Moves low order word of D1 into low order word of D2.
MOVE.L. XYZ,DEF Moves long word addressed by XYZ into long word

addressed by DEF.

MOVE.W #'A',ABC Moves word with value of $4100 into word addressed by
ABC.

MOVE ADDR,A3 Moves word addressed by ADDR into low order word of A3.

2.5.3 Compare and Check Instructions
The general formats of the compare and check instructions are:
CMP.<size> <operandj>,<operandy>

CHK <bounds>,<register>

2-4

—_—




where operand] is compared to operands by the subtraction of operand; from
operand, without altering operand; or operandj.

Condition codes resulting from the execution of the compare instruction are set
so that a "less than" condition means that operandy is less than operand),
and "greater than" means that operand; is greater than operandj.

The CHK instruction will cause a system trap if the register contents are less
than zero or greater than the value specified by "bounds".

Examples:
cMP.L ADDR,D1 Compares long word at location ADDR with contents of
D1, setting condition codes accordingly.
CHK (A0) ,D3 Compares word whose address is in A0 with low order
word of D3; if check fails (see text), a system trap is
initiated.

2.5.4 Logical Operations

Logical operations include AND, OR, EXCLUSIVE OR, NOT, and two logical test
operations. These functions may be done between registers, between registers
and memory, or with immediate source operands. The general form is:

<operation>.<size> <source>,<destination>

Example:

AND D1,D2 Low order word of D2 receives logical 'and' of low
order words in D1 and D2.

The destination may also be the status register (SR).

2.5.5 Shift Operations

Shift operations include arithmetic and logical shifts, as well as rotate and
rotate with extend. All shift operations may be either fixed with the shift
count in an immediate field or variable with the count in a register. Shifts in
memory of a single bit position left or right may also be done. The general
form is:

<operation>.<size> <count)>,<operand>

Examples:

LSL.W #5,D3 Performs a left, logical shift of low order word of D3
by 5 bits; W is optional (default).

ASR (A2) Performs a right, arithmetic shift of word whose
address is contained in A2; since this is a memory
operand, the shift is only 1 bit.

ROXL.B  D3,D2 Performs a left rotation with extend bit of low order

byte of D2; shift count is contained in D3.

2-5




2.5.6 Bit Operations

Bit operations allow test and modify combinations for single bits in either an
8-bit operand for memory destinations or a 32-bit operand for data reglster
destinations. The bit number may be fixed or variable. The general form is:

<operation> <bitno>,<operand>
Examples:

BCLR  #3,XYZ(A3) Clears bit number 3 in byte whose address is given by
address in A3 plus displacement of XYZ.

BCHG D1,D2 Tests a bit in D2, reflects its value in condition code
Z, and then changes value of that bit; bit number is
specified in D1.

Under Mask3 of the MC68000 chip, the instructions BCLR, BSET, and BTST have
8-bit memory operands; under Mask2 they had 16-bit memory operands. To enable
users who wrote programs under Mask2 —— using BCLR, BSET, and BTST instructions
— to reassemble these programs under Mask3, the replacement instructions BCLRW,
BSETW, and BTSTW are provided. These instructions align the destination operand
at the next higher byte when bits 0-7 are accessed (thus functioning under Mask3
exactly as BCLR, BSET, and BTST functioned under Mask2) In making the change,
replace only the instruction mnemonic; no change is required to the operand
field.

2.5.7 Conditional. Operations
Condition codes can be~used tQ set and clear data bytes. The general form is:

Scc <location>

where "cc" may be one of the following condition codes:

CCor HS GE LS PL
CS or LO GT LT T
EQ HI MI vC
F LE NE VS
Example:
SNE (A5)+ If condition code "NE" (not equal) is true, then set

byte whose address is in A5 to 1l's; otherwise, set that
byte to 0's; increment A5 by 1.
2.5.8 Branch Operations

Branch operations include an unconditional branch, a branch to subroutine, and
14 conditional branch instructions. The general form is:

<operation>.<extent> <location>
Examples:
BRA TAG Unconditional branch to the address TAG.

2-6




BSR SUBDO Branch to subroutine SUBDO.

Bce.S NEXT Short branch to NEXT on condition "cc", which may be
one of the following condition codes (note that T and F
are not valid condition codes for conditional branch):

CC or HS GT LT vC
CS or LO HI MI VS
EQ LE NE
GE LS PL

All corditional branch instructions are PC-relative addressing only, and may be
either one- or two-word instructions. The corresponding displacement ranges
are:

one-word -128...+127 bytes (8-bit displacement)
two-word -32768...+32767 bytes {16-bit displacement)

Forward references in branch instructions will use the longer format by default
(OPT BRL). The default may be changed to the shorter format by specifying OPT

BRS. The default extent may be overridden for a single branch operation by
apperding an "S" or "L" extent code to the instruction -- for example:

BRA.L LAB
A branch instruction with a byte displacement must not reference the statement
which immediately follows it. This would result in an 8-bit displacement value
of 0, which is recognized by the assembler as an error condition.

Example (illegal):

BEQ.S LAB1 LABl is the next memory word and, thus, generates
LABl MOVE #1,D0 an error.

2.5.9 Jump Operations

Jump operations include a jump to subroutine and an unconditional jump. The
general form is:

<operation>.<extent> <location>
Examples:
JMP 4 (A7) Unconditional jump to the location 4 bytes beyond
the address in A7.
JMP.L NEXT Long (absolute) jump to the address NEXT.
JSR SUBDO Jump to subroutine SUBDO.

Porward references to a label will use the long absolute address format by
default (OPT FRL). The default may be changed to the shorter format by
specifying OPT FRS. The default extent may be overridden on a single Jjump
operation to a label by appending "S" or "L" as an extent code for the
instruction.




2.5.10 DBcc Instruction

This instruction is a looping primitive of three parameters: condition, data
register, and label. The instruction first tests the condition to determine if
the termination condition for the loop has been met and, if so, no operation is
performed. If the termination condition is not true, the data register is
decremented by one. If the result is -1, execution continues with the next
instruction. If the result is not equal to -1, execution continues at the
imdicated location. [Label must be within 16-bit displacement. The general
format of the instruction is:

DBcc <data register>,<label>

where "cc" may be one of the following condition codes:

CC or HS GE LS PL

CS or LO GT LT T

EQ HI MI vC

F LE NE VS
Examples:

LAB1 NOP

DBGT DO,LABl

DBLE DI1,LAB2

DBT D2,LAB1

DBF b3,LAB2
LABZ NOP

2.5.11 Load/Store Multiple Registers

This instruction allows the loading and storing of multiple registers. Its
general format is:

MOVEM.<size> <registersd>,<location> (register to memory)
MOVEM.<size> <locationd>,<registers> (memory to register)

where size may be either W (default) or L.

The <registers> operand may assume any combination of the following:
R1/R2/R3, etc., means Rl and R2 and R3
R1-R3, etc., means Rl through R3

When specifying a register range, A and D registers cannot be mixed; e.g., AO-A5
is legal, but A0-DO is not.

The order in which the reglsters are processed is independent of the order in
which they are specified in the source line; rather, the order of register
processing is fixed by the instruction format. For further details, see the
MOVEM instruction in Appendix B of the MC68000 16-Bit Microprocessor User's
Manual, or in Table 3-8 of the MC68010 16-Bit Virtual Memory Microprocessor
product specification handbook.




Examples:

MOVEM (A6)+,D1/D5/D7 load registers D1, D5, and D7 from three
consecutive (sign-extended) words in memory,
the first of which is given by the address in
A6; A6 is incremented by 2 after each
transfer.

MOVEM.L A2-A6,-(A7) Store registers A2 through A6 in five consec-
utive long words in memory; A7 is decremented
by 4 (because of .L); A6 is stored at the
address in A7; A7 is decremented by 4; A5 is
stored at the address in A7, etc.

MOVEM (A7)+,Al1-A3/D1-D3 Loads registers D1, D2, D3, Al, A2, A3 in
order from the six consecutive (sign-
extended) words in memory, starting with
address in A7 and incrementing A7 by 2 at
each step.

MOVEM.L Al/A2/A3,REGSAVE Store registers Al, A2, A3 in three consecu-
tive long words starting with the location

labeled REGSAVE.

2.5.12 Ioad Effective Address

This instruction allows computation and loading of the effective address into an
address register. The general format is:

LEA <operand>,<register>
Example:
LEA  XYZ(A2,D5),Al Load Al with effective address specified by
first operand; see later explanation of

addressing mode "address register indirect
with index" (paragraph 2.9.2.5).

2-9




2.5.13 Move to/from Control Register

(MC68010 only.) With this instruction, the specified control register is copied
to the specified general register, or the specified general register is copied
to the specified control register. This is always a 32-bit transfer, even
though the control register may be implemented with fewer bits. Unimplemented
bits read as zeros. The general format is:

MOVEC <control register>,<register>
MOVEC <register>,<control register>

Examples:

MOVEC VBR,AQ Copies contents of vector base register to
register AO.

MOVEC D7,SFC Copies contents of register D7 to the source
function code register (3 bits).

MOVEC  DFC,DO Copies contents of destination function code
register to register DO (3 bits; zero filled).

MOVEC.L USP,D7 Copies user stack pointer to register D7.

2.5.14 Move to/from Address Space

(MC68010 only.) Moves a byte, word, or long word from the specified general
register to a location within the address space determined by the DFC register,
or moves a byte, word, or long word from a location within the address space
determined by the SFC register to the specified general register. Note that
with a byte operation size specified, the address register direct mode is not
allowed. General format:

MOVES <ea>,<register>
MOVES <register>,<ea>

Examples:
MOVES.W (A2)+,D2 Moves a word at the address contained in
register A2 to register D2 and then increments
A2 by 2.
MOVES A4,LABEL Moves the lower word of register A4 to the
address of LABEL.
MOVES 2222,A2 Moves one word of data beginning at address

2222 to register A2.

2-10




2.6 SYMBOLS AND EXPRESSIONS

2.6.1 Symbols

Symbols recognized by the assembler consist of one or more valid characters (see
Appendix B), the first eight of which are significant. The first character must
be an uppercase letter (A-Z) or a period (.). Each remaining character may be
an uppercase letter, a digit (0-9), a dollar sign ($), a period (.), or an
underscore ().

Numbers recognized by the assembler include decimal, hexadecimal, octal, and
binary values. Decimal numbers are specified by a string of decimal digits
(0-9); hexadecimal numbers are specified by a dollar sign ($) followed by a
string of hexadecimal digits (0-9, A-F); octal numbers are specified by an "at"
sign (@) followed by a string of octal digits (0-7); binary numbers are
specified by a percent sign (%) followed by a string of binary digits (0-1).

Examples:
Octal - An "at" sign followed by a string of octal digits
Example: @12345
Binary - A percent sign followed by a string of binary digits
Example: $10111
Decimal - A string of decimal digits

Example: 12345
Hexadecimal - A dollar sign ($) followed by a string of hexadecimal digits

Example: $12345

One or more ASCII characters enclosed by apostrophes (') constitute an ASCII
string. ASCII strings are left-justified and zero-filled (if necessary),
whether stored or used as immediate operands. This left justification will be
to a word boundary if one or two characters are specified, or to a long word
boundary if the string contains more than two characters. (In order to specify
an apostrophe within a literal or string, two successive apostrophes must appear
where the single apostrophe is intended to appear.)

Examples: DC.L 'ABCD!

DC.L 111790
DC.L T

2-11




2.6.2 Symbol Definition Classes

Symbols may be differentiated by usage into two general classes. Class 1
symbols are used in the operation field of the instruction (see paragraph 2.4
for field definitions); Class 2 symbols occur in the label and operand fields
of the instruction. Assembler directives, instruction mnemonics, and macro
names comprise Class 1 symbols; user-defined labels and register mnemonics are
included in Class 2 symbols.

A Class 1 symbol may be redefined and used independently as a Class 2 symbol,
and vice versa. As long as each symbol is used correctly, no conflict will
result from the existence of two symbols of different classes with the same
name. For example, the following is a legal instruction sequence:

ADD D1,ADD

ADD DS 2

By its usage as a Class 1 symbol, the first "ADD" is recognized as an
instruction mnemonic; likewise, the second ADD is recognized as a Class 2 symbol
identifying a reserved storage area. The assembler differentiates a Class 1
symbol from a Class 2 symbol with the same name, thereby allowing two symbol
table entries with the same name but different class.

Macro labels are a special case because the same symbol will appear as the label
(Class 2) in the MACRO definition and, subsequently, as an operation code
mnemonic (Class 1) in invocation of that same macro. Macro labels are defined
to be Class 1 symbols; their presence in the label field of a MACRO directive is
ignored as a Class 2 symbol. Therefore, macro names may be redefined as Class 2
symbols without conflict.

A symbol may not be redefined within the same class. For example, ADD (reserved
Class 1 symbol) may not be redefined as a macro label (also Class 1), nor may
"A5" (reserved Class 2 symbol) be redefined as a statement or storage location
label (also Class 2). A reserved symbol may be used only within its own class.

2.6.3 User-Defined Labels

Labels are defined by the user to identify memory locations in program or data
areas of the assembly module. \Each label has two attributes: the program
section in which the memory location resides, and the offset from the beginning
of that program section.

Labels may be defined to have an absolute or relocatable value, depending upon
the program section in which the labeled memory location is found. If the
memory location is within a relocatable section (defined through the SECTION
directive), then the label has a relocatable value relative to that program
section. If the memory location is not contained within a relocatable section
(e.g., the location follows an ORG directive), then the label has an absolute
value.

Labels may be defined in the label field of an executable instruction or a data
definition directive source line. It is also possible to SET or EQU a label to
either an absolute or a relocatable value.

2-12




2.6.4 Expressions

Expressions are composed of one or more symbols, which may be combined with
unary or binary operations. Legal symbols in expressions include:

a. User—defined labels and their associated absolute or relocatable values.

b. Numbers and their absolute values.

c. The special symbol "*" always identifies the value of the program counter
at the beginning of the DC directive, even when multiple arguments are
specified (e.g., DC.B 1,2,3,*-3). The program counter may be either
absolute or relocatable.

Subexpressions which involve relocatable symbols may employ only the "+" and "-"
operators. It is possible for a subexpression involving the difference between
two relocatable symbols to evaluate to an absolute value. For example, let Rl
represent a memory location at OFFSET1 bytes beyond the start of section Sl, and
let R2 represent a memory location at OFFSET2 bytes beyond the start of section
S2 -- that is,

Rl
R2

OFFSET1 + <start of Sl>
OFFSET2 + <start of S2>

The difference between Rl and R2 may then be
R1-R2 = OFFSET1-OFFSET2 + <start of S1> - <start of S2>

If sections Sl and S2 are the same, then
R1~-R2 = OFFSET1-OFFSET2

which is a constant, absolute (non-relocatable) value. Of course, if sections
Sl and S2 are distinct, the expression remains a complex, relocatable
expression.

When an expression has been fully evaluated by the assembler, it may be
categorized as one of three types of expressions:

a. Absolute expression - The expression has reduced to an absolute value
which is independent of the start address of any relocatable section.

b. Simple relocatable expression — The expression has reduced to an absolute
offset from the start of a single relocatable section.

c. Complex relocatable expression - The expression has reduced to a
constant, absolute offset in conjunction with either of the following
relocatable terms:

1. A single, negated start address of a relocatable section.

2. References to the start addresses of two or more relocatable
sections; these references may be additions to or subtractions
from the constant offset value.

NOTE

Complex relocatable expressions, such as an absolute
symbol minus a relocatable symbol, are illegal in ORG,
OFFSET, EQU, DCB, DS, COMLINE, and SET directives.

By themselves, all user—defined labels on memory locations are either absolute
or simple relocatable expressions. This includes XREF labels, which are assumed
to be absolute symbols unless their program section is specified. Complex
relocatable expressions may arise only from the addition or subtraction of two
relocatable expressions. Following are examples of each type of expression.

2-13




ORG $1000

ARRAY DS $20 “"ARRAY" is absolute

ENDARRAY EQU *-2 "ENDARRAY" is absolute
SECTION 1

Rl CLR.L D2 "R1" is simple relocatable
ADD D1,D3

R2 MOVE D3, (A0) "R2" is simple relocatable
SECTION 2

R3 EQU * "R3" is simple relocatable
MOVE ARRAY+10,D7 absolute source operand
MOVE R1+10,D7 simple relocatable source operand
MOVE R2-R1,D7 absolute source operand
MOVE R1+R2,D7 complex relocatable source operand
MOVE R3-R2 complex relocatable source operand

2.6.5 Operator Precedence
Operators recognized by the assembler include the following:

a. Arithmetic operators:

addition (+)
subtraction (=)

multiplication (*)

division (/) —- produces a truncated integer result
unary minus (=)

b. Shift operators (binary):

shift right >> — the left operand is shifted to the right
(and zero-filled) by the number of bits
specified by the right operand

shift left (<) - analogous to >>
c. Logical operators (binary):

and &
or (1)

Expressions are evaluated with the following operator precedence:

1. parenthetical expression (innermost first)
2. unary minus

3. shift

4. and, or

5. multiplication, division

6. addition, subtraction

Operators of the same precedence are evaluated left to right. All results
(including intermediate) of expression evaluation are 32-bit, truncated
integers. Valid operands include numeric constants, ASCII literals, absolute
symbols, and relocatable symbols (with "+" and "-" only).

2-14

S




2.7 REGISTERS

The MC68000 has sixteen 32-bit registers (D0-D7, A0-A7) in addition to a 24-bit
program counter and 16-bit status register.

Registers DO-D7 are used as data registers for byte, word, and long word
operations. Registers AQ-A7 are used as software stack pointers and base
address registers; they may also be used for word and long word data operations.
All 16 registers may be used as index registers.

Register A7 is used as the system stack pointer. (The MPU actually provides two
hardware stack pointers, depending upon whether the instruction is executing in
the supervisor or user state. Stack pointers and the supervisor/user states are
explained in paragraph 2.12, "Stacks and Queues," and paragraph 5.2, "Privilege
States," in the MC68000 16-Bit Microprocessor User's Manual.)

The MC68010 has an additional 32-bit register and two 3-bit registers. The
contents of the 32-bit register are added to the previously-calculated vector
offset, during exception processing, to produce the actual vector location. The
3-bit registers allow supervisor access to other address spaces via MOVES,
supplying function codes for the read cycle(s) from the effective address
location, or supplying function codes for the write cycle(s) to the effective
address location, respectively.

The following register mnemonics are recognized by the assembler:

DO-D7 Data registers.
AQ-A7 Address registers.
A7, SP Either mnemonic represents the system stack pointer of the active

system state.

USP User stack pointer.

CCR Condition code register (low 8 bits of SR).

SR Status register. All 16 bits may be modified in the supervisor
state. Only low 8 bits (CCR) may be modified in user state.

PC Program counter. Used only in forcing program counter-relative
addressing (see paragraphs 2.9.3.3 and 2.9.3.4).

VBR Vector base register (MC68010 only). Supports multiple vector
table areas during exception processing. Accessed by the MOVEC
instruction.

SFC Alternate function code source register (MC68010 only). Accessed

by the MOVEC instruction.

DFC Alternate function code destination register (MC68010 only).
Accessed by the MOVEC instruction.

2-15




2.8 VARIANTS ON INSTRUCTION TYPES

Certain instructions allow a "quick" and/or an "immediate" form when immediate
data within a restricted size range appears as an operand. These abbreviated
forms are normally chosen by the assembler, when appropriate. However, it is
possible for the programmer to "force" such a form by appending a "Q" or "I" to
the mnemonic opcode (to indicate "quick" or "immediate", respectively) on
instructions for which such forms exist. If the specified quick or immediate
form does not exist, or if the immediate data does not conform to the size
requirements of the abbreviated form, an error will be generated.

Some instructions also have "address" variant forms (which refer to address
registers as destinations); these variants append an "A" to the instruction
mnemonic (e.g., ADDA, CMPA). This variant will be chosen by the assembler
without programmer specification, when appropriate to do so; the programmer need
specify only the general instruction mnemonic. However, the programmer may
"force" or specify such a variant form by appending the "A". If the specified
variant does not exist or is not appropriate with the given operands, an error
will be generated.

The CMP instruction also has a memory variant form (CMPM) in which both operands
are a special class of memory references. The CMPM instruction requires

postincrement addressing of both operands. The CMPM instruction will be
selected by the assembler, or it may be specified by the programmer.

The variations —— A, Q, I, and M — must conform to the following restrictions:

A Must specify an address register as a destination, and canrnot specify
a byte size code (.B).

Q Requires immediate operand be in a certain size range. MOVEQ also
requires longword data size.

I The size of immediate data is adjusted to match size code of
opera.’on.

M Both operands must be postincrement addresses.
For example, the instruction
ADDQ  #9,D0 Attempts to add value 9 to DO

will cause an assembly error, because the immediate operand is not in the valid
size range (1 through 8).

2-16




Although the assembler will choose the appropriate opcode variation — A, Q, I,
or M — when the suffix is not specified, the explicit encoding of the suffix
with the basic opcode is recommended for the following purposes:

de.

b.

For documentation, to make clear in the source language the instruction
form that was assembled.

To force a format other than that which the assembler would choose. For
example, the assembler would choose the quick (Q) form for the
instruction

ADD #1,D4 Adds the value 1 to D4 via an ADDQ (2-byte)
instruction.

If the immediate (I) form was desired, the programmer would need to
declare it explicitly, as follows:

ADDI  #1,D4 Adds the value 1 to D4 via an ADDI (4-byte)
instruction.

To generate invariant code when using variant immediate data (separate
assemblies).

2-17




2.9 ADDRESSING MODES

Effective address modes, combined with operation codes, define the particular
function to be performed by a given instruction. Effective addresses and data
organization are described in detail in Chapter 2, "Data Organization and
Addressing Capabilities", of the MC68000 16-Bit Microprocessor User's Manual, or
see Figure 2-2 and Table 2-1 of the MC68010 Virtual Memory Microprocessor
product specification handbook.

References to data addresses may be odd only if a byte is referenced. Data
references involving words or long words must be even. Likewise, instructions
must begin on an even byte boundary.

Individual bits within a byte (operand for memory destinations) or long words
(operands for D register destinations) may be addressed with the bit
manipulation instructions (paragraph 2.5.6). Bits for a byte are numbered 7 to
0, with 7 being the most significant bit position and 0 the least significant.
Bits for a word are numbered 15 to 0, with 15 being the most significant bit and
0 the least significant. Bits for a long word are numbered from 31 to 0, with
31 being the most significant bit position and 0 the least significant bit
position.

Table 2-1 summarizes the addressing modes defined for the MC68000, their
invocations, and significant constraints.

TABLE 2-1. Address Modes

MODE INVOCATION COMMENTS
1) Register direct An
Dn

2) Memory address

a) Simple indirect (An)

b) Predecrement -(An)

c) Postincrement (An) +

d) Indirect with <absolute> (An)
displacement (l6-bit) <complex> (An)

e) Indirect with index <absolute> (An,Ri)

(16- or 32-bit) plus
displacement (8-bit)

2-18




TABLE 2-1. Address Modes (cont'd)
MODE INVOCATION COMMENTS
3) Special address
a) PC with <simple> Expression is an address

displacement (16-bit)

<absolute) (PC)

(not a deplacement)
which must be backward,
within current relocat-
able section.

Forced PC-relative. Must

<simple> (PC) fit within 16-bit signed
<complex> (PC) field; resolved at
assembly or link time.
b) PC with irdex <simple> (Ri) Expression is an address
(16- or 32-bit) plus which must be backward,
displacement (8-bit) within current relocat-
able section.
<absolute)> (PC,Ri) Forced PC-relative;
<simple> (PC,Ri) expression must be
within current
program section.
c) Absolute <absolute> Expression must be
(16~ or 32-bit) <complex> forward reference or
<simple> not in current program
section.
d) Immediate (8-, 16-, #<absolute>
or 32-bit) #<simple>
#<camplex>

4) Implicit PC
reference

Invoked by conditional
branch (Bcc) or DBcc
instruction; the effec-
tive address is a dis-
placement from the PC;
the displacement is
either 8 or 16 bits,
depending on OPT BRS,
OPT BRL, and whether
these options are over-
ridden on the current
instruction (see para-
graph 2.10).

Table 2-2 provides a cross reference of operand formats and addressing modes.
Given an operator of the format shown in the first column, the other columns
show which addressing mode is indicated, depending on whether the expression is
absolute, simple relocatable, or complex relocatable.

2-19




TABLE 2-2., Cross-Reference: Effective Addressing Mode, Given
Operand Format and <expr> Type
EFFECTIVE ADDRESSING MODE
ABSOLUTE SIMPLE RELOCATABLE COMPLEX RELOCATABLE
OPERAND FORMAT <{expr> <expr> <expr>
<expr> (An) d(An) d(PC,An) d(An)
<expr> (Dn) invalid d(pC,Dn) * invalid
<expr>(An,Ri) d(An,Ri) invalid invalid
<expr> absolute (W,L) d(PC)* or absolute (W,L)
absolute (W,L)

<expr> (PC) d(pC) d(PC) d (PC)
<expr> (PC,R1i) d(pPC,Ri) * d(PC,Ri) * invalid
#<expr> immediate(B,W,L) immediate (W,L) immediate (W,L)

* Must be within current program section.

Listed below are definitions of the symbols used in Tables 2-1 and 2-2, and
throughout the remainder of this section:

An Address register number "n" (0-7).

Dn Data register number "n" (0-7).

Ri | Index register number "i"; may be any address (An) or data (Dn)
register with optional ".W" or ".L" size designation (16 vs 32
bits).

B,W,L Byte, word, long word data sizes.

d(An) Address register indirect with displacement (d).

d(An,Ri) Address register indirect with index (Ri) plus displacement (d).

d (PC) Program counter with displacement (d).

d(PC,Ri) Program counter with index (Ri) plus displacement (d).

<absolute> Absolute expression.

<simple> Simple relocatable expression.

<complex> Complex relocatable expression.

2-20




2.9.1 Register Direct Modes

These effective addressing modes specify that the operand is in one of the 16
multifunction registers (eight data and eight address registers). The operation
is performed directly on the actual contents of the register.

Notations: An where n is between 0 and 7

Dn
Examples: CLR.L Dl Clear all 32 bits of Dl.
ADD Al,A2 Add low order word of Al to low order

word of A2,

2.9.2 Memory Address

The following effective addressing modes specify that the operand is in memory
and provide the specific address of the operand.

2.9.2.1 Address Register Indirect - The address of the operand is in the
address register specified by the register field.

Notation: (An)
Examples: MOVE #5, (A5) Move value 5 to word whose address is
contained in AS.
SUB.L (Al) ,DO Subtract from DO the wvalue in the 1long

word whose address is contained in Al.

2.9.2.2 Address Register Indirect with Postincrement - The address of the
operand is in the address register specified by the register field. After the
operand address is used, it is incremented by one, two, or four, depending upon
whether the size of the operand is byte (.B), word (.W), or long (.L).

Notation: (An) +

Examples: MOVE.B (A2)+,D2 Move byte whose address is in A2 to low
order byte of D2; increment A2 by l.

MOVE.L  (A4)+,D3 Move long word whose address is in A4 to
D3; increment A4 by 4.

2-21




2.9.2.3 Address Register Indirect with Predecrement - The address of the
operand is"in the address register specified by the register field. Before the
operand address is used, it is decremented by one, two, or four, depending upon
whether the operand size is byte (.B), word (.W), or long (.L).

Notation: —(An)
Examples: CLR -(A2) Subtract 2 from A2; clear word whose
address is now in A2.
MP.L -(A0) ,DO Subtract 4 from AO0; compare long word
whose address is now in A0 with contents
of DO.

2.9.2.4 Address Register Indirect with Displacement - The address of the
operand is the sum of the address in the address register and the sign-extended
displacement.

Notation: d(An)

Examples: AVAL EQU 5 AVAL is equated to 5 (for use in next
instruction) .

CLR.B  AVAL(AQ0) Clear byte whose address is given by
adding value of AVAL (=5) to contents
of AO0.

MOVE #2,10(A2) Move value 2 to word whose address is

given by adding 10 to contents of A2.

2.9.2.5 Address Register Indirect with Index - The address of the operand is
the sum of the address in the address register, the sign-extended displacement,
and the contents of the index (A or D) register.

Notations: d(An,Ri) } Specifies low order word of index register.
d(An,Ri.W)
d(An,Ri.L) Specifies entire contents of index register.

Examples: ADD AVAL(Al,D2),D5 Add to low order word of D5 the word
whose address is given by addition of
contents of Al, the low order word of
index register (D2), and the displacement
(AVAL) .

MOVE.L D5,$20(A2,A3.L) Move entire contents of D5 to long word
whose address is given by addition of
contents of A2, contents of entire index
register (A3), and the displacement

(820) .

2-22




2.9.3 Special Address Modes

Special address modes use the effective address register field to specify the
special addressing mode instead of a register number. The following table
provides the ranges for absolute short and long addresses.

32-bit address 16-bit representation of 32-bit address
00000000 0000
. . Absolute short
00067FFF 7FéF
00008000

(No representation in 16 bits;
must be absolute long)

FFFF7FFF
FFFF8000 8000

. . Absolute short
FFFFFFFF FFFF

2.9.3.1 Absolute Short Address ~ The 16-bit address of the operand is sign
extended before it is used. Therefore, the useful address range is 0 through
$7FFF and SFFFF8000 through SFFFFFFFF.

Notation: XXX

Example: JMP $400 Jump to hex address 400

2.9.3.2 Absolute Long Address - The address of the operand is the 32-bit value
specified.

Notation: XXX

Example: JMP $12000 Jump to hex address 12000

2.9.3.3 Program Counter with Displacement — The address of the operand is the
sum of the address in the program counter and the sign-extended displacement
integer. The assembler calculates this sign-extended displacement by subtracting
the address of displacement word from the value of the operand field.

Notation: <expression> (PC) " Forced program counter-relative. Note
that <expression> is interpreted as a
programm address rather than a
displacement.

Example: JMP TAG (PC) Force the evaluation of 'TAG' to be
program counter-relative.

2-23




2.9.3.4 Program Counter with Index - The address is the sum of the address in
the program counter, the sign-extended displacement value, and the contents of
the index (A or D) register.

Notations: <expression>(Ri.W) Specifies low order word of index
register. .W is optional (default).

<expression>(Ri.L) Specifies entire contents of index
register.
<expression>(PC,Ri) Forced program counter-relative. Ri.W

or Ri.L legal. NOTE: <expression> is
interpreted as a program address rather
than a displacement.

Examples: MOVE T(D2) ,TABLE Moves word at location (T plus contents
of D2) to word location defined by TABLE.
T must be a relocatable symbol.

JMP TABLE (A2.W) Transfers control to location defined by
TABLE plus the lower 16-bit content of A2
with sign extension. TABLE must be a
relocatable symbol.

JMP TAG(PC,A2.W) Forces evaluation of 'TAG' to be program
counter-relative with index.

2.9.3.5 Immediate Data — An absolute number may be specified as an operand by
immediately preceding a number or expression with a '#' character. The
immediate character (#) is used to designate an absolute number other than a
displacement or an absolute address.

Notation: FXXX
Examples: MOVE #1,D0 Move value 1 to low order word of DO.

SUB.L #1,D0 Subtract value 1 from the entire
contents of DO.

2.10 NOTES ON ADDRESSING OPTIONS

By default, the assembler will resolve all forward references by using the
longer form of the effective address in the operand reference. The programmer
may override this default by specifying OPT FRS, which designates that forward
absolute references should be short, or OPT BRS, designating that forward
relative branches should use the shorter (8-bit) displacement format.

On an instruction which does not allow a size code, the current forward
reference default format may be overridden (for that instruction only) by
appending .S (short) or .L (long) to the instruction mnemonic. A similar
override may be performed in the structured syntax control directives via the
extent codes (see paragraph 6.3 for further explanation). No override is
possible on instructions with size code specification. Notably, this override
procedure is possible on branch and jump instructions.

2-24




The shorter form of the effective address for relative branch instructions is an
8-bit displacement; the longer format is a 16-bit displacement. For absolute
jumps, the shorter effective address is the 16-bit absolute short; the longer
format is the 32-bit absolute long mode. In the case of forward references in
either relative branches or absolute jumps, if the shorter format is directed
and the longer format is later found necessary when the reference is resolved,
an error will occur.

References to symbols already defined, whether absolute or relative, are
resolved hy the assembler into the appropriate effective address, unless .S or
.L is forced on the instruction.

A short form may be forced by following the instruction mnemonic with .S.

Example:

BEQ.S  LOOP1 If condition code 'EQ' (equal) is true, then branch to
LOOP1 (using the short form of the instruction).

In this case, the instruction size is forced to one word. An error will be
printed if the operand field is not in the range of an 8-bit displacement.

Since 8-bit value fields are not relocated, a Bcc.S instruction which branches
to an XREF or other expression-required location is not allowed. Such an
instruction format will result in an assembler error. A relative branch to a
symbol known to be an XREF, or in a different section than the instruction, will
employ the longer (lA-bit) displacement, with resolution by the linkage editor.

Default actions of the assembler have been chosen to minimize two common address
mode errors:

a. Displacement range violations

Relative branch instructions (Bcc, BRA, BSR) allow either 8-bit or 16-bit
displacements from the PC. On forward references in such instructions,
the default action is to assume the 16-bit displacement (OPT BRL), which
also allows resolution by the linkage editor, should that prove
necessary. ‘

b. Inappropriate absolute short address

Absolute addresses may be short (16-bit) or long (32-bit). On forward
references with absolute effective address, the default action is to
assume the long format (OPT FRL). The long form is also assumed on
references to another section (unless it is a SECTION.S), so that
resolution by the linkage editor is assured. v

Default conditions have been chosen to prevent errors by using addressing
formats which ensure address resolution in the broadest range of conditions, at
the expense of code efficiency. Each default may be overridden to improve
efficiency or to create position independent code. Also, the current address
size defaults (options BRL, BRS, FRL, FRS) may be overridden in certain cases on
specific instructions which do not allow size codes by appending .S or .L, as in
Bcc.S and JMP.L (Bcc, BSR, JMP, JSR only).

The resolution of operands into effective address modes (ignoring base register
addressing) is summarized in the following tables.

2~25




TABLE

2_30

Operand Resolution

OPERAND TYPE

INSTRUCTION FOLLOWS

SECTION

ORG

Known location
(backward in pass 1)

Unknown location
(forward)

External reference

See Table 2-4a

See Table 2-4c

See Table 2-4d

See Table 2-4b

See Table 2-4c

See Table 2-4e

TABLE 2-4a. Known* Location of Operand & Instruction Follows SECTION
OPTION IN
EFFECT WHEN
OPERAND INSTRUCTION
REFERENCE OCCURRED EFFECTIVE ADDRESS MODE
PC relative
(resolved by linkage editor
PCS if operand & instructions are
in different SECTIONSs)
IF displacement > 16-bit
THEN error
Simple
relocation
IF operand and instruction
in same SECTION and
NOPCS displacement <= 16-bit
(default) THEN PC relative
ELSE IF operand defined
in SECTION.S
THEN absolute short
ELSE absolute long
(resolved by linkage editor)
Complex
relocation (Any) Absolute long
Absolute Absolute short or
(ORG) (Any) absolute long depending
on the value of the operand

* Label defined before instruction which references it (in pass 1).

2-26




TABLE 2-4b. Known* Location of Operand & Instruction Follows ORG
OPTION IN
EFFECT WHEN
OPERAND INSTRUCTION
REFERENCE OCCURRED EFFECTIVE ADDRESS MODE
IF operand defined
Simple (Any) in SECTION.S
relocation THEN absolute short
ELSE absolute long
(resolved by linkage editor)
Complex
relocation (Any) Absolute long
IF displacement <= 16-bit
Absolute THEN PC relative
(ORG) PCO ELSE absolute short
or absolute long
depending on value of
operand
Absolute short or
NOPCO absolute long depending
(default) on the value of the operand

* Label defined before instruction which references it (in pass 1).

TABLE 2-4c. Unknown** Location of Operand & Instruction Follows SECTION or ORG

OPTION IN
EFFECT WHEN
OPERAND INSTRUCTION
REFERENCE OCCURRED EFFECTIVE ADDRESS MODE
(All) FRS Absolute short
(resolved by linkage editor)
FRL Absolute long
(default) (resolved by linkage editor)

**% Label undefined at time of reference (error at pass 2).

2-27




TABLE 2-4d. External Reference & Instruction Follows SECTION
OPTION IN
EFFECT WHEN
OPERAND INSTRUCTION
REFERENCE OCCURRED EFFECTIVE ADDRESS MODE
XREF with
SECTION PCS PC relative
designa- ‘ (resolved by linkage editor)
tion
Example: IF operand defined in
XREF 2:L1 NOPCS SECTION.S or XREF.S
(default) THEN absolute short
ELSE absolute long
(resolved by linkage editor)
XREF without IF operand defined with
SECTION XREF,S
designa- (Any) THEN absolute short
tion ELSE (see below)
(resolved by linkage editor)
Example:
XREF L1 FRS Absolute short
(resolved by linkage editor)
FRL Absolute long
(default) (resolved by linkage editor)

2-28




TABLE 2-4e. External Reference & Instruction Follows ORG

OPTION IN

EFFECT WHEN
OPERAND INSTRUCTION
REFERENCE OCCURRED EFFECTIVE ADDRESS MODE

IF operand defined in
XREF with SECTION.S or XREF.S
SECTION (Any) THEN absolute short
designa- ELSE absolute long
tion (resolved by linkage editor)
Example:
XREF 2:L1
XREF without IF operand defined with
SECTION XREF.S
designa- (Any) THEN absolute short
tion ELSE (see below)
(resolved by linkage editor)
Example:
XREF L1 FRS Absolute short
(resolved by linkage editor)
FRL Absolute long
(default) (resolved by linkage editor)

2-29/2-30







CHAPTER 3

ASSFMBLER DIRECTIVES

3.1 INTRODUCTION

All assembler directives (pseudo-ops), with the exception of "DC" and "DCB", are
instructions to the assembler rather than instructions to be translated into
object code. This chapter contains descriptions and examples of the basic forms
of the most frequently used assembler directives. Directives controlling the
macro and corditional assembly capabilities are described in Chapter 5.
Directives used in structured syntax are described in Chapter 6. The most
commonly used directives supported by the assembler are grouped by function in
Table 3-1.

TABLE 3-1. M68000 Family Assembler Directives

DIRECTIVE FUNCTION

ASSEMBLY CONTROL

ORG Absolute origin

INCLUDE Include second file
SHCTION Relocatable program section
OFFSET Define offsets

MASK2 Assemble for Mask2 (R9M)
END Program end

SYMBOL DEFINITION

EQU* Assign permanent value
SET* Assign temporary value
. REG* Define register list

DATA DEFINITION/
STORAGE ALLOCATION

COMLINE** Command line

DC** Define constants

DS** Define storage

DCB* * Define constant block

3-1




TABLE 3-1. M68000 Family Assembler Directives (cont'd)
DIRECTIVE FUNCTION
LISTING CONTROL
AND OPTIONS
PAGE Top of page
LIST Enable the listing

NOLIST or NOL
FORMAT
NOFORMAT

SPC n

NOPAGE

Disable the listing

Enable the automatic formatting
Disable the automatic formatting
Skip n lines

Disable paging

LLEN
TTL

NOOBJ

OoPT
FAIL

n Set line lengths 72< n <132
Up to 60 characters of title
Disable object output
Assembler options
Programmer-generated ERROR

LINKAGE EDITOR CONTROL

IDNT* Relocatable identification record
XDEF External symbol definition
XREF External symbol reference

* Labels required.

** Label optional.

3.2 ASSEMBLY

CONTROL

FORMAT:

DESCRIPTION:

" the new program counter value.

ORG[.<qualifier>] <expression> [<comments>]

The ORG directive changes the program counter to the value
specified by the expression in its operand field. Subsequent
statements are assigned absolute memory locations starting with
<expression> must be absolute and

may not contain any forward, undefined, or external references.

Qualifier may be either "S" or "L". "ORG.S" is interpreted as
both "ORG" and "OPT FRS" (Forward Reference Short Option).
“ORG.L" is interpreted as both "ORG" and "OPT FRL" (Forward
Reference Long Option). Regardless of the forward reference
option, references to previously-defined absolute symbols will
always generate the appropriate short or long addressing form,
based upon the size of a symbol's absolute address.




3.2.2 SECTION - Relocatable Program Section

FORMAT:

DESCRIPTION:

[<name>] SECTION[ .S] <number>

This directive causes the program counter to be restored to the
address following the last location allocated in the indicated
section (or to zero if used for the first time).

<named indicates a named common area within the indicated section.
No unnamed common section is allowed. <name> is associated with
the section and may be reused in other sections.

".S" indicates the section should be placed in low address memory
so that direct addressing may be implemented through the absolute
short mode. This information is passed on to the linkage editor
and affects the choice of address modes in certain situations
where the assembler must choose between absolute short and
absolute long.

<number> must be in the range 0..15. No section numbers are
reserved in any way. (See the M68000 Family Linkage Editor User's
Manual for a discussion of default assignment of sections to
segments.) By default, the assembler will begin with section 0.

3.2.3 END - Program End

FORMAT:

DESCRIPTION:

3.2.4 OFFSET

FORMAT:

DESCRIPTION:

END [<start address>]

END directive indicates to the assembler that the source is
finished. Subsequent source statements are ignored. The END
directive encountered at the end of the first pass through the
source program causes the assembler to start the second pass. The
start address should be specified unless it is external to the
module. If no start address is specified, it is still possible to
include a comment field, provided the comment field is set off by
an exclamation point (!). This syntax indicates to the assembler
that the operand field is null, but that a comment field follows.

- Define Offsets
OFFSET <expression>

The OFFSET directive is used to define a table of offsets via the
Define Storage (DS) directive without passing these storage
definitions on to the linkage editor, in effect creating a dummy
section. Symbols defined in an OFFSET table are kept internally,
but no code-producing instructions or directives may appear. SET,
EQU, REG, XDEF, and XREF directives are allowed.

<expression> is the value at which the offset table is to begin.
The expression must be absolute and may not contain forward,
undefined, or external references.

OFFSET is terminated by an ORG, OFFSET, SECTION, or END directive.

3-3




3.2.5 MASK2 - Assemble for MASK2 (MC68000 only)
FORMAT: MASK2

DESCRIPTION: The MASK2 directive indicates that the source program is to be
assembled to run on the Mask2 (R9M) chip. Specifying MASK2
implements the following changes in assembler processing:

(a) DCNT instruction replaces DBcc
(b) STOP does not take an operand
(c) Bit operations are adjusted to the R9M format

3.2.6 INCLUDE - Include Secondary File
FORMAT: INCLUDE <file spec>

DESCRIPTION: This directive is inserted in the source program at any point
where a secondary file is to be included in the source input
stream.

3.3 SYMBOL DEFINITION

Symbol definition directives EQU, REG, and SET provide the only method by which
a symbol appearing in the label field may be assigned a 'value' other than that
correspording to the current location counter.

3.3.1 EQU - Equate Symbol Value
FORMAT: <label> EQU <expression> [<comments>]

DESCRIPTION: EQU directive assigns the value of the expression in the operamd
field to the symbol in the label field. The label and expression
follow the rules given in Chapter 2. The label and operand fields
are both required and the label cannot be defined anywhere else in
the program. '

The expression in the operand field of an EQU cannot include a
symbol that is undefined or not yet defined (no forward references
are allowed). Also, it cannot be a complex relocatable expression.

3.3.2 SET - Set Symbol Value
FORMAT: <label> SET <expression) [Kcomments> ]

DESCRIPTION: SET directive assigns the value of the expression in the operand
field to the symbol in the label field., Thus, the SET directive
is similar to the EQU directive. However, the SET directive
allows the symbol in the label field to be redefined by other SET
directives in the program. The label and operand fields are both
required.

The expression in the operand field of a SET cannot include a
symbol that is undefined or not yet defined (no forward references
are allowed), nor can it be a complex relocatable expression,

3-4




3.3.3 REG - Define Register List

FORMAT:

<label> REG <reg list> [<comment>]

DESCRIPTION: -REG directive assigns a value to <label> that can be translated

into the register list mask format used in the MOVEM instruction.
The label cannot be redefined as a Class 2 symbol anywhere else in
the program. <reg list> is of the form:

Example: Al-A5/D0/D2-D4/D7

3.4 DATA DEFINITION/STORAGE ALLOCATION

The directives in this section provide the only means by which object code may

begin or end

on odd byte boundaries. All instructions and all word or long

word-sized data must begin and end on even byte boundaries. 0dd byte alignment
is allowed only for the DC.B, DS.B, DCB.B, and COMLINE directives. All other
operations which generate relocatable object code will be preceded by a zero
fill byte if word boundary alignment is required.

3.4.1 DC - Define Constant

FORMAT:

DESCRIPTION:

[<label>] DC.B <operand(s)> Define constant in bytes
DC.W <operand(s)> Define constant in words (default)
DC.L <operand(s)> Define constant in long words

The function of the DC directive is to define a constant in
memory. The DC directive may have one operand, or multiple
operands which are separated by commas. The operand field may
contain the actual value (decimal, hexadecimal, or ASCII).
Alternatively, the operand may be a symbol or expression which can
be assigned a numeric value by the assembler. The constant is
aligned on a word boundary if word (.W) or long word (.L) is
specified, or a byte boundary if byte (.B) is specified. Only
word (.W) and long word (.L) constants may be relocated.

The following rules apply to size specifications on DC directives
with ASCII strings as operands:

DC.B One byte is allocated per ASCII character.

DC.W The string will begin on a word boundary. If the string
address contains an odd number of characters, a zero fill
byte will follow the last character.

DC.LL The string will begin on a word boundary. If the string
length is not a multiple of four bytes, the last long word
will be zero filled.

Unless option CEX is in effect, a maximum of six bytes of
constants will be displayed on the assembly listing.




3.4.1.1 Examples of ASCII Strings

DC.B 'ABCDEFGHI'

lEl
IJI

L d
ww

IEI
IEI

lxl

% B BB REY
S w

.
[

112345

Memory would have nine contiguous bytes with the ASCII
characters A through I.

Memory will have characters "EJ" ($454A) in contiguous
bytes.

Memory will have $45004500 in contiguous bytes, the first
zero byte being an odd byte fill as outlined above.

Memory will have $5800 in contiguous bytes.

Memory will have $3132333435000000 in contiguous bytes.

3.4.1.2 Examples of Numeric Constants

pc.B 10,5,7
DC.w 10,5,7
pc.L. 10,5,7

DC  LABEL+1

DC  S$FF,$10,SAE

Memory would have three contiguous bytes with the decimal
values 10, 5, and 7 in their respective bytes.

Each operand is contained in a word. The value 10 is
contained in the first word, right justified. The value 5
is in the second word, and the value 7 is in the third
word.

Each operand is contained in a long word. The value 10 is
contained in the first 1long word (4 bytes) right
justified. The value 5 is in the second long word, and
the value 7 is in the third long word.

The generated value will be the address of LABEL plus 1 in
a word size operard.

Rules for hexadecimal are same as decimal.

If the resulting value in an operand expression exceeds the size of the operand,
an error is generated. For example,

DC.B SFFF

DC  SFFF6F

This will cause an error because SFFF cannot be repre-
sented in 8 bits.

This will cause an error because SFFF6F cannot be
represented in 16 bits.




3.4.2 DS - Define Storage

FORMAT : [<label>] DS.B <operand> Define storage in bytes
DS.W <operand> Define storage in words (default)
DS.L <operand> Define storage in long words

DESCRIPTION: DS directive is used to reserve memory locations. The contents of
the memory reserved is not initialized in any way.

Examples:
Ds.B 10 Define 10 contiguous bytes in memory
DS 10 Define 10 contiguous words in memory
PT1 DS $10 Define 16 contiguous words in memory
PT2 DS.L 100 Define 100 contiguous long words in memory

The label will reference the lowest address of the defined storage area. If
word or long-word mode is specified, the storage area is aligned on a word
boundary. If it is desired to force alignment on a word boundary, the directive
DS 0 may be used.

Example: DS.B 1 RESERVE ONE BYTE

DS
DS.W
DS.L

SET LOCATION COUNTER TO EVEN BOUNDARY

(el o )

The operand must be absolute and may not contain forward, undefined, or external
references.

3.4.3 DCB - Define Constant Block
FORMAT : [<label>] DCB[.<size code>] <length>,<value> {<comment>]

DESCRIPTION: DCB directive causes the assembler to allocate a block of bytes,
words, or long words, depending upon the <size code> specified.
If <size code> is omitted, word (.W) is the default size. The
block length is specified by the absolute expression <length>,
which may not contain undefined, forward, or external references.
The initial value of each storage unit allocated will be the
sign-extended expression <value>, which may contain forward
references. <length> must be greater than zero. <value> may be
relocatable unless byte size (.B) is specified.

3.4.4 COMLINE - Command Line
FORMAT: [<label>] COMLINE <expression>

DESCRIPTION: Identical to DS.B (define storage in bytes), except that it is
passed on to the linkage editor as the location of the command
line. <expression> is the number of bytes to reserve (>0). It
must be absolute and may not contain forward, undefined, or
external references.




3.5 LISTING CONTROL

3.5.1 PAGE - Top Of Page

FORMAT': PAGE

DESCRIPTION: Advance the paper to the top of the next page. The PAGE directive

does not appear on the program listing. No label or operand is
used, and no machine code results.

3.5.2 Listing Output Options

3.5.2.1 LIST - List The Assembly

FORMAT': LIST
DESCRIPTION: Print the assembly listing on the output device. This option is

selected by default. The source text following the LIST directive
is printed until an END or NOLIST directive is encountered.

3.5.2.2 NOLIST - Do Not List The Assembly

FORMAT: NOLIST or NOL

DESCRIPTION: Suppress the printing of the assembly listing until a LIST
directive is encountered.

3.5.2.3 FORMAT - Format The Source Listing

FORMAT: FORMAT
DESCRIPTION: Format the source listing, including column alignment (see Table

4-1) and structured syntax indentation (see paragraph 6.5.4).
This option is selected by default.

3.5.2.4 NOFORMAT - Do Not Format The Source Listing

FORMAT: NOFORMAT

DESCRIPTION: The source listing will have the same format as the source input
file.

3.5.2.5 SPC - Space Between Source Lines

FORMAT': SPC n

DESCRIPTION: Output n blank lines on the assembly listing. This has the same
effect as inputting n blank lines in the assembly source. A blank
line is defined by the assembler to be a line with only a carriage
return,

3-8




3.5.2.6 NOPAGE — Do Not Page Source Output

FORMAT: NOPAGE

DESCRIPTION: Suppress paging to the output device. Output lines are printed
continuously with no page headings or top and bottom margins.

3.5.2.7 LLEN - Line Length

FORMAT: LLEN n

DESCRIPTION: Set the number of columns to be output to n. The minimum value of
n is 72 and the maximum 132. The default value for n is 132
columns.

FORMAT: TTL <title string>

DESCRIPTION: Print the <title string> at the top of each page. A title
consists of up to 60 characters. The same title will appear at
the top of all successive pages until another TTL directive is
encountered. In order to print a title on the first listing page,
the TTL directive must precede the first source line which will
appear on the listing.

3.5.2.9 NOOBJ - No Object

FORMAT: NOOBJ

DESCRIPTION: Suppress the generation of object code.

3.5.2.10 OPT - Assembler Output Options

FORMAT: OPT <option>[,<option>]... [<comment>]

DESCRIPTION: Follows the command format,

OPTIONS: A Absolute address. All non-indexed operands which reference
either labels or the current assembler location counter (¥*)
will be resolved as absolute addresses.

NOA Disable A (default).

BRL Forward branch 1long (default). Forward references in
relative branch instructions (Bcc, BRA, BSR) will assume
the longer form (l16-bit displacement, yielding a 4-byte
instruction).

BRS Forward branch short. As with BRL, but using the shorter
form (8-bit displacement, yielding a 2-byte instruction).

CEX Print DC expansions.

3-9




NOCEX
CL
NOCL

CRE

FRL

FRS

NOMC

NOMD
MEX
NOMEX

NOO

PCO

NOPCO

PCS

NOPCS

P=<type>

Opposite of CEX (default).
Print conditional assembly directives (default).

Opposite of CL.

Print cross-reference table at end of source listing. This
option must precede first symbol in source program. 1f
this option is not in effect, only the symbol table will be
printed.

Debug option (output symbol table to file with the same
name as the object code file, but with an extension of
".RS").

Forward reference long (default). Forward references in
the absolute format will assume absolute long. mode
(32-bit).

Forward reference short. Forward references 1in the
absolute format will assume absolute short mode (16-bit).

Print macro calls (default).
Opposite of MC.

Print macro definitions (default).
Opposite of MD.

Print macro expansions.

Opposite of MEX (default).

Create output module (default).
Opposite of O.

PC relative addressing within ORG. Employ relative
addressing when possible on backward references occurring
in an ORG section.

Disable PCO (default).

Force PC relative addressing within SECTION. Forces PC
relative addressing (whenever such an addressing mode is
legal) in an instruction which occurs within a relocatable
SECTION and references an operand in a relocatable SECTION
(need not be the same SECTION as the instruction). Failure
to resolve such a reference into a 16~bit displacement from
the PC will result in an error. This option may be used to
force position independent code (see Chapter 7); however,
this option does not force PC relative addressing of
absolute operands (defined in ORG section) or unknown
forward references.

Disable PCS (default).

Select microprocessor type; <type> may be 68000 or 68010.
Default is 68000. If P=68010, it must appear before any of
the special MC68010 instructions are used (or it may be
specified on the command line; see Chapter 4).

3-10




3.6 FAIL - PROGRAMMER GENERATED ERROR

FORMAT:

DESCRIPTION:

FAIL <expression>

The FAIL directive will cause an error or warning message to be
printed by the assembler. The total error count or warning count
will be incremented as with any other error or warning. The FAIL
directive is nommally used in conjunction with conditional
assembly directives for exceptional condition checking. The
assembly proceeds normally after the error has been printed. The
<expression> is evaluated and printed as the error or warning
nunber on the assembly listing. Errors are numbered 0-499;
warnings are numbered 500 and above.

3.7 LINKAGE EDITOR CONTROL

3.7.1 IDNT -
FORMAT':

DESCRIPTION:

3-7.2 )(DEF -
FORMAT:

DESCRIPTION:

3.703 XRE:E‘ band
FORMAT:

DESCRIPTION:

Relocatable Identification Record
<module name> IDNT <version)> ,<revision> [<descr>]

Every relocatable object module must contain an identification
record as a means of identifying the module at link time. The
module name is specified in the label field of the IDNT directive,
while the version and revision numbers are specified as the first
and second operands, respectively. The comment field of the IDNT
directive is also passed on to the linkage editor as a description
of the module.

External Symbol Definition
XDEF <symbol>[,<symbol>]... [<comment>]

This directive specifies symbols defined in the current module
that are to be passed on to the linkage editor as symbols which
may be referenced by other modules linked to the current module.

External Symbol Reference

XREF[.S] [<section>:]}<symbol> [,<symbol>]...
[, [<section>:]<symbol> [,<symbol>]..e]s.s

This directive specifies symbols referenced in the current module
but defined in other modules. This list is passed on to the
linkage editor. Each symbol is associated with the specified
<section> number which it follows. (Symbols may occur in any
section, including an absolute ORG section, if no <section>
designation is specified; see following example.)

", S" indicates the XREF symbols will be linked into low address
memory so that direct addressing of these symbols may be
accomplished through absolute short mode.

EXAMPLE: XREF AA,2:A2,3:A3,B3,C3

The symbol AA

can be in any section; A2 will be in section 2; and A3, B3, and C3

will be in section 3.

3-11/3-12







CHAPTER 4

INVOKING THE ASSEMBLER

4.1 COMMAND LINE FORMAT

The command line format for the assembler is:

ASM <source file>[,[<object file>][,<listing file>]] [;<options>]

Only the <source file> is required. The default extension on the <source file>

is SA.

If the <object file> and/or <listing file> are not specified, they will

default to the same file name as the <source file>, but with extensions of RO
and LS, respectively. The following command lines are equivalent:

ASM  TEXT
ASM  TEXT,TEXT,TEXT
ASM  TEXT.SA,TEXT.RO,TEXT.LS

NOTES

1. The source file should exist on a device which supports
VERSAdos Block I/0O. For example, the source file cannot
be the user's console (#).

2. #NULL is not allowed as an object file. Users who wish
to inhibit the generation of an object file should
specify the command line option -C.

Default extensions are assumed for <object file> and <listing file>, if not
specified. Multiple source files may be assembled by separating these input
files with a slash (/). In the case of multiple source files, the first file
name is used for the default object and listing file names. The listing may be
output to the CRT or the printer during assembly by specifying the appropriate
mnemonic in place of the listing file; e.g., the command ASM TEXT,,#PR will
print the listing.

The assembler recognizes the following options on the command line:

C Produce object code (default).

~-C Inhibit production of object code.

D Produce symbolic debug symbol table file.
-D Inhibit production of debug file (default).
L Produce listing (default).
-L Inhibit listing.

M List macro expansions.
-M Inhibit listing of macro expansions.

P=68000 Accept MC68000 instruction set (default).
P=68010 Accept MC68010 instruction set.

R Produce cross-reference.
-R Inhibit production of cross-reference (default).
S List structured control expansions.
-S Inhibit listing of structured control expansions (default).
W Enable warning messages during assembly (default).
W Disable warning messages during assembly.

Z=<size> Increase data area size (default is 37K).

4-1




Multiple options are typed without separation -- e.g., ;LM-CP=68000. Refer also
to paragraph 3.5.2.10 for assembler options which may be included in the source
code with the OPT directive. Where there is a conflict between an option
specified on the command line and one specified with the OPT directive, the
command line option overrides.

4,1.1 Symbol Table Size Option
The symbol table size may be increased by specifying the Z option:
Z=<size>

where <size> is the number of Kbytes to be used in the data (stack + heap) area
of the assembler. <size> is in K (1024) bytes. For example,

ASM  TEST,,#PR;RZ=40

will assemble the source program in TEST.SA, put the relocatable code in
TEST.RO, and send the listing, including cross-references, to the printer rather
than to a listing file. The data area will be 40K bytes (default is 37K).

4.1.2 Microprocessor Type Option

The microprocessor type can be specified with the P=<type> option on the command
line, where <type> may be 68000 or 68010. If omitted, default is P=68000.

4.2 ASSEMBLER OUTPUT

Assembler outputs include an assenbly listing, a symbol table, a symbolic debug
symbol table file, and an object program file.

The assembly listing includes the source program, as well as additional
information generated by the assembler. Most lines in the listing correspond
directly to a source statement. Lines which do not correspond directly to a
source line include:

. Page header and title
. Error and warning lines ‘
. Expansion lines for instructions over three words in length

The assembly listing format is shown in Table 4-1. The label, operation, and
operand fields may be exterded if the source field does not fit into the
designated output field.

The last page of the assembly listing is the symbol table. Symbols are listed
in alphabetical order, along with their values and an indication of the
relocatable section in which they occur (if any). Symbols that are XDEF, XREF,
REG, in named common, or multiply defined are flagged. If option CRE has been
specified in the program, the cross-reference listing will identify the source
lines on which the symbol was defined or referenced (definitions appear first,
flagged with a "-").

An example of assembler output is provided in Appendix C.




TABLE 4-1. Standard Listing Format

COLUMNS CONTENTS EXPLANATION
1-4 Source line number 4-digit decimal counter
6 Section number 1-digit hex section number

(blank indicates location counter
is absolute)

8-15 Location counter value In hex
17-20 Operation word In hex
21-24 First extension word In hex
25-28 Second extension word In hex; any additional extension

words appear on the next line

30-37 Label field
39-46 Operation field
48-67 Operard field
70-N Comment field

If the option "D" was specified either in the source program or on the command
line, the symbolic debug symbol table will be output to a file given the same
name as the relocatable object file, with an extension of ".RS". Linking (with
the 1linker's "D" option) then makes this information available for easy
debugging with the SYMbug program. Refer to the M68000 Family Linkage Editor
User's Manual, Apperdix D, for .RS file formats.

4.3 ASSEMBLER RUNTIME ERRORS

During runtime, the assembler may generate its own error messages. These are
listed in Appendix E. However, since the assembler is a Pascal program and
operates in the VERSAdos operating system enviromnment, runtime errors may occur
fram these sources as well. Refer to the VERSAdos Messages Reference Manual for
applicable runtime error messages.

Any assembly instruction which may generate six or more bytes of code, and that
is found to have an operard error, will generate six bytes of object code. The
code for the instruction, however, will be $4AFB, which is an illegal opcode,
ard the extension word(s) will be $4E71, which is a NOP. These six bytes allow
more instructions to be patched in place, or a jump to be inserted to a patch
area anywhere in the address space.

Instructions which generate only two or four bytes will continue to generate a
2- or 4-byte length instruction, respectively, whenever an operand is in error.
The instruction word, however, will be illegal and the extension will be a NOP.

Undefined operations will generate six bytes of code with an illegal opcode and
NOP extensions.

4-3/4-4







CHAPTER 5

MACRO OPERATIONS AND CONDITIONAL ASSEMBLY

5.1 INTRODUCTION

This chapter describes the macro (paragraph 5.2) and the conditional assembly
(paragraph 5.3) capabilities of the assembler. These features can be used in

any program.

5.2 MACRO OPERATIONS

Programming applications frequently involve the coding of a repeated pattern of
instructions that within themselves contain variable entries at each iteration
of the pattern, or basic coding patterns subject to conditional assembly at each
occurrence. In either case, macros provide a shorthand notation for handling
these patterns. Having determined the iterated pattern, the programmer can,
within the macro, designate fields of any statement as variable. Thereafter, by
invoking a macro, the programmer can use the entire pattern as many times as
needed, substituting different parameters for the designated variable portions
of the statements.

Macro usage can be divided into two basic parts — definition and expansion.

When the pattern is defined, it is given a name. This name becomes the mnemonic
by which the macro is subsequently invoked (called). The name of a macro
definition should not be the same as an existing instruction mnemonic, or an
assembler directive.

Expansion occurs when the previously defined macro is called (invoked). The
macro call causes source statements to be generated. The generated statements
may contain substitutable arguments. The statements that may be generated by a
macro call are relatively unrestricted as to type. They can be any processor
instruction, almost any assembler directive, or any previously defined macro.
Source statements generated by a macro call are subject to the same conditions
and restrictions to which programmer generated statements are subject.

To invoke a macro, the macro name must appear in the operation field of a source
statement. Most arguments are placed in the operand field. By suitably
selecting the arguments in relation to their use as indicated by the macro
definition, the programmer causes the assembler to produce in-line coding
variations of the macro definition.

The effect of a macro call is the same as an open subroutine in that it produces
in-line code to perform a predefined function. The in-line code is inserted in
the normal flow of the program so that the generated instructions are executed
in-line with the rest of the program each time the macro is called.

5-1




5.2.1 Macro Definition
The definition of a macro consists of three parts:
a. The header: label MACRO

The label of the MACRO statement is the "name" by which the macro is
later invoked. This name must be a unique class 1 symbol. A macro
name may not have a period (.) as any character other than the first.

b. The body

The body of a macro is a sequence of standard source statements. Macro
parameters are defined by the appearance of argument designators within
these source statements. Legal macro-generated statements include the
set of MC68000 and MC68010 assembly language instructions, assembler
directives, structured syntax statements, and calls to other,
previously defined macros. However, macro definitions may not be
nested. When macro text lines are saved for later expansion, all
spaces in the source line are compressed. This space compression will
be noticed only if the listing is unformatted, or if the macro text
includes literal strings with multiple spaces (which would not expand
correctly). Macro expansion lines which contain more than 80
characters are truncated at 80 characters, which is the maximum length
of an assembler input line.

c. The terminator: ENDM

5.2.2 Macro Invocation
The form of a macro call is: [label] name[.qualifier] [parameter list]

Although a macro may be referenced by another macro prior to its definition in
the source module, the macro must be defined before its first in-line expansion.
The name of the called macro must appear in the operation field of the source
Statement; parameters may appear as a qualifier to the macro name and/or in the
operand field of the source statement, separated by commas. -

The macro call produces in-line code at the location of the invocation,
according to the macro definition and the parameters specified in the macro
call. The source statements so generated are then assembled, subject to the
same conditions and restrictions affecting any source statement. Nested macro
calls are also expanded at this time.

5.2.3 Macro Parameter Definition and Use

Up to thirty-six different, substitutable arguments may appear in the source
statements which constitute the body of a macro. These arguments are replaced
by the corresponding parameters in a subsequent call to that macro.

Arguments are designated by a backslash character (\), followed by a digit (0O
through 9) or an upper case letter (A through Z). Argument designator \0 refers
to the qualifier appended to the macro name; parameters in the operand field of
the macro call refer to argument designations \1 through \9 and \A through \Z,
in that order.

5-2

N




e

The parameter list (operand field) of a macro call may be extended onto
additional lines if necessary. The line to be extended must end with a comma
separating two parameters, and the subsequent extension line must begin with an
ampersand (&) in column 1., The extension of the parameter list will begin with
the first non-blank characters following the ampersand. No other source lines
may occur within an extended parameter call, and no comment field may occur
except after the last parameter on the last extension line.

Argument substitution at the time of a macro call is handled as a literal
(string) substitution. The string corresponding to a given parameter is
substituted literally wherever that argument designator occurs in a source
statement as the macro is expanded. Each statement generated in this expansion
is assembled in-line. (Note that argument \0 begins with the first character
following the period which separates the qualifier from the macro name, if a
qualifier is present.)

It is possible to specify a null argument in a macro call by an empty string
(not a blank); it must still be separated from other parameters by a comma
(except for \0). In the case of a null argument referenced as a size code, the
default size code (W) is implied; when a null argument itself is passed as an
argument in a nested macro call, a null argument is passed. All parameters have
a default value of null at the time of a macro call.

If an argument has multiple parts or contains commas or blanks, the entire
argument must be enclosed within angle brackets (< and >). Such arguments must
still be separated from other arguments by commas. A bracketed argument with no
intervening character (<>) will be treated as a null argument. Embedded
brackets must occur in pairs. Parameter \0 may not be bracketed and, hence, may
not contain blanks (although commas are legal). Note that a macro argument may
not contain the characters "<" or ">" unless they occur as part of the argument
bracketing.

5.2.4 Labels Within Macros

To avoid the problem of multiply defined labels resulting from multiple calls to
a macro which employs labels in its source statements, the programmer may direct
the assembler to generate unique labels on each call to a macro.

Assembler-generated labels include a string of the form .nnn, where nnn is a
three~digit decimal number. The programmer may request an assembler-generated
label by specifying \@ in a label field within a macro body. Each successive
label definition which specifies a \@ directive will generate successive values
of .nnn, thereby creating unique labels on repeated macro calls. Note that \@
may be preceded or succeeded by additional characters for additional clarity and
to prevent ambiguity (more than four preceding characters may introduce a
problem with non-uniqueness of symbols).

References to an assembler-generated label always refer to the label of the
given form defined in the current level of macro expansion. Such a label is
referenced -as an operand by specifying the same character string as that which
defines the label.




5.2.5 The MEXIT Directive

The MEXIT directive terminates the macro source statement generation during
expansion. It may be used within a conditional assembly structure (see
paragraph 5.3) to skip any remaining source lines up to the ENDM directive. All
conditional assembly structures pending within the macro currently being
expanded are also terminated by the MEXIT directive.

Example:
SAV2 MACRO

MOVE.L \1,SAVET SAVE 1ST ARGUMENT
MOVE.L \2,SAVET+4 SAVE 2ND ARGUMENT
IFEQ "\3',"! IS THERE A 3RD ARGUMENT?
FAIL 1000 DID ASSEMBLER GO THRU HERE?
MEXIT NO, EXIT FROM MACRO
ENDC
MOVE.L \3,SAVET+8 SAVE 3RD ARGUMENT
ENDM

5.2.6 NARG Symbol

The symbol NARG is a special symbol when referenced within a macro expansion.
The value assigned to NARG is the index of the last argument passed to the
macros in the parameter list (even if nulls). NARG is undefined outside of
macro expansion, and may be referenced as a Class 1 or 2 user-defined symbol
outside of a macro expansion.

5-4




5.2.7

Implementation of Macro Definition

When the sequence of source statements:

*

MAC1 MACRO

stmtl
stmt2

stmtn
ENDM

is encountered in a source program, the following actions are performed:

Ae.

b.

The symbol table is checked for a Class 1 symbol entry of 'MACL'. If
such an entry is already present, a redefined symbol error (231) is
generated; if no such entry exists, an entry is placed in the symbol
table, identifying MAC1 as a macro.

Starting with the line following the MACRO directive, each line of the
macro body is saved in a character sequence identified with MACl. 1In the
example, stmtl through stmtn are saved in this manner. No object code is
produced at this time. A check is made for missing parameter references

in the macro text (e.g., parameters \1l, \2, and \4 are referenced, but \3
is not).

c. Normal processing resumes with the line following the ENDM directive.

5-5




5.2.8

Implementation of Macro Expansion

When the statement:

MACl.qualifier paraml,param2, ...,paramn

is encountered in a source program calling the previously defined macro MACI
(above) , the following actions are performed:

a.

Since the label field is blank, the string 'MACl' is recognized as the
operation code of the instruction. The symbol table is consulted for a
Class 1 symbol entry with this name. If no such entry exists, an
undefined symbol error (238) is generated. In this case, the entry
indicates that the symbol identifies a macro.

The rest of the line is scanned for parameters which are saved as
literals or null values, one such value in each of the thirty-six
parameter record fields. If the source line ends with a comma, the next
line is checked for an extension of the parameter list. A cross-check is
made with the macro definition for the number of parameters in the call.
No object code is produced.

Macro expansion consists of the retrieval of the source lines which
comprise the macro body. Each line is retrieved in turn, with special
character pairs replaced by parameter strings or assembler-generated
label strings.

If a backslash character (\) is followed by either a digit (0 through 9)
or an uppercase letter (A through Z), the two characters are replaced by
the literal string which corresponds to that parameter on the macro
invocation line(s).

A character sequence which includes "™\@" is replaced by an
assembler—-generated label, as defined in paragraph 5.2.4. An
assembler—generated label is uniquely identified by the characters
preceding and/or appended to the "\@" sequence and the macro invocation
in which the reference occurs. Such labels may appear anywhere in the
source line and will always refer to the current macro expansion.

NOTE

Space compression is automatically done within macros. For
example, the instruction DC.B ' ' becomes DC.B ' '.

When a line has been completely expanded, the line is assembled as any
other source input line. At this time, any errors in the syntax of the
expanded assembly code are found. Expanded lines longer than 80
characters are truncated and an error code is generated.

If a nested macro call is encountered, the nested macro expansion takes

place recursively. There is no set limit to the depth of macro call
nesting.

5-6




5.3 CONDITIONAL ASSEMBLY

Conditional assembly allows the programmer to write a comprehensive source
program that can cover many conditions. Assembly conditions may be specified
through the use of arguments in the case of macros, and through definition of
symbols via the SET and EQU directives. Variations of parameters can then cause
assembly of only those parts necessary for the specified conditions.

The I/0 section of a program, for example, will vary, depending on whether the
program is used in a disk enviromment or in a paper tape environment.
Corditional assembly directives can include or exclude an I/0 section, based on
a flag set at the beginning of the assembly.

5.3.1 Conditional Assembly Structure
The conditional assembly structure consists of three parts:

a. The header

There are two conditional clauses recognized by the assembler. The first
form compares the equality of two strings:

IFxx 'stringl', 'string2’'

"xx" specifies either the string compare (C) condition or the string not
compare (NC) condition, representing string equality and inequality,
respectively. The result of the string comparison, along with the 'xx'
cordition, determines whether the body of the conditional structure will
be assembled. Either string may contain embedded commas or spaces. An
apostrophe that occurs within a string must be specified by double
apostrophes.

The second form of the conditional clause compares an expression against
zero:

IFxx expression

"yx" specifies a conditional relation between the expression and the
value zero. The result of this comparison at assembly time determines
whether the body of the conditional structure will be assembled. Valid
conditional relation codes include:

EQ : expression = 0
NE : expression < 0
LT : expression < 0
LE : expression <=0
GT : expression > O
GE : expression >= 0

Because of the nature of this comparison, the expression must be
absolute. No forward references are allowed.

5-7




b. The body

The body of the conditional assembly structure consists of a sequence of
standard source statements. There is no set limit to the depth of
conditional assembly nesting; if such nesting occurs, a terminator must
be specified for each structure.

¢. The terminator: ENDC

When an IFxx directive is encountered, the specified condition is evaluated. If
the condition is true, the statements constituting the body of the conditional
assembly structure are each assembled in turn. If the relation is false, the
entire conditional assembly structure is ignored; the ignored lines are not
included in the assembly listing. By specifying the OPT NOCL option (paragraph
3.5.2.10), the header and terminator lines will be ignored for listing purposes.

IFxx and ENDC directives may not be labeled.

Testing for null parameters may be done via the string compare form of the
conditional assembly. To assemble conditionally if parameter 1 is null, either
of the following directives would be correct:

IFxx '','\1'
or

IFxx '\1',"'

To assemble conditionally if a parameter is present would use either of the IFNC
formats analogous to the above two.

A conditional assembly structure is also terminated by a MEXIT directive, as
explained in paragraph 5.2.5. All conditional assembly structures which
originate in a macro are terminated at the exit from that macro (if not before).
Only conditional assembly structures which originated within a given macro may
be terminated within that macro. These two rules are necessary for the
consistent implementation of conditional assembly.

5.3.2 Example of Macro and Conditional Assembly Usage

The following example illustrates most of the features of macros and conditional
assembly structures. The assembly code is shown as it would appear without line
numbers or object code.

MACO MACRO
MOVE.\O \1
CLR.L \2
ENDM

5-8




MAC1

LAB\@

\@END

LAB.001

.002END

LAB.003

«004END

MACRO
MOVE.\0
IF\3
ADD.\0
IF\3
ADD.\0
ENDC
ENDC
CLR.L
MOVE.\O
B\3
BRA
\5.\0
IFLE
MACO.\0
ENDC
ENDM

OPT
MAC1.L
MOVE.L
ADD.L
ADD. L
CLR.L
MOVE.L
BGT
BRA
ADD.L

MAC1
MOVE.
CLR.L
MOVE.
BNE
BRA
SuB.
MACO.
MOVE.
CLR.L

#\1,D\2

\1 CONDITIONAL

#1,D\2

\1-5 NESTED CONDITIONAL

$#2,D\2 \4
END NESTED CONDITIONAL
END CONDITIONAL

D1

D\2, (A0)+

\@END

LAB\@

#1,D\2

A\l

<D\2, (A0)>,A\2 NESTED MACRO CALL

MEX,NOCL

7,3,GT,<TEST PASSES>,ADD

#7,D3

#1,D3

#2,D3 TEST PASSES
D1

D3, (A0)+

+002END

LAB.001

#1,D3

0,6,NE,<ERROR HERE>,SUB

#0,D6

D1

D6, (A0)+

.004END

LAB.003

#1,D6

<D6, (A0) >,A6 NESTED MACRO CALL
D6, (A0)

A6

5-9/5-10







CHAPTER 6

STRUCTURED CONTROL STATEMENTS

6.1 INTRODUCTION

An assembly language provides an instruction set for performing certain
rudimentary operations. These operations, in turn, may be combined into control
structures -- such as loops (for, repeat, while) or conditional branches
(if-then, if-then-else). The assembler, however, accepts formal, high-level
directives that specify these control structures, generating, in turn, the
appropriate assenbly language instructions for their efficient implementation.
This use of structured control statement directives improves the readability of
assembly language programs, without compromising the desirable aspects of
programming in an assembly language.

6.2 KEYWORD SYMBOLS

The following Class 1 symbols, used in the structured syntax, are reserved
keywords (directives):

ELSE ENDW REPEAT
ENDF FOR UNTIL
ENDI IF WHILE

The following symbols are required in the structured syntax, but are nonreserved
keywords:

AND DOWNTO TO
BY OR
DO THEN

Note that AND and OR are reserved instruction mnemonics, however.

6.3 SYNTAX

The formats for the IF, FOR, REPEAT, and WHILE statements are found in
paragraphs 6.3.1 through 6.3.4. They are spaced to show the line separations
required for Class 1 symbol usage (paragraph 6.5.1). Syntactic variables used
in the formats are as follows:

<expression> A simple or compound expression (paragraph 6.4).

<stmtlist> Zero or more assembler directives, structured control
statements, or executable instructions.

Note that an assembler directive (Chapter 3) occurring within
a structured control statement is examined exactly once - at
assembly time. Thus, the presence of a directive within a
FOR, REPEAT, or WHILE statement does not imply repeated
occurrence of an assembler directive; nor does the presence
of a directive within an IF-THEN-ELSE statement imply a
conditional assembly structure (Chapter 5).

6-1




<size>

<extent>

<opl>

<op2>

<op3>

<op4>

The value B, W, or L, indicating a data size of byte, word,
or longword, respectively. With the keyword FOR, <size> is a
single code applying to <opl>, <op2>, <op3>, and <op4>. With
the keywords IF, UNTIL, and WHILE, <size> indicates the size
of the operand comparison in the subsequent simple expression
(see paragraph 6.4.2 for a compound expression). Note that
structured syntax statements rely on the underlying opcodes
and the restrictions these opcodes place on arguments to the
statements. For example, the structured syntax statement

FOR.B D7 = #0 to #255 DO

generates code without warning but does not execute as
expected. This is because the comparison opcode CMP does a
signed comparison and hence deals with numbers in the range
-128...127 instead of 0...255.

The value S or L, indicating that the branch extent is short
or long, respectively. This is appended to the Kkeywords
THEN, ELSE, and DO, to force the appropriate extent of the
forward branch over the subsequent <stmtlist>. The default
extent is determined by the option directive (OPT BRS or OPT
BRL) currently in effect.

A user—defined operand whose memory/register location will
hold the FOR-counter. The effective address must be an
alterable mode.

The initial value of the FOR-counter. The effective address
may be any mode.

The terminating value for the FOR-counter. The effective
address may be any mode.

The step (increment/decrement) for the FOR-counter each time
through the loop. If not specified, it defaults to a value
of #1. The effective address may be any mode.




6.3.1 1IF Statement

SYNTAX:

FUNCTION:

NOTES:

IF[.<size>] <expression> THEN[.<extent>]
<stmtlist>
ENDI

or

IF[.<size>] <expression> THEN{.<extent>]
<stmtlist>

ELSE[ .<extent>]
<stmtlist>

ENDI

If <expression> is true, execute the <stmtlist> following THEN;
if <expression> is false, execute the <stmtlist> following ELSE,
if present, or advance to next instruction.

a. If an operand comparison <expression> is specified, the
condition codes are set and tested before execution of the
<stmtlist>.

b. In the case of nested IF-THEN-ELSE statements, each ELSE will
refer to the closest IF-THEN.

6.3.2 FOR Statement

SYNTAX:

FUNCTION:

NOTES:

FOR[.<size>] <opl> = <op2> TO <op3> [BY <op4>] DO[.<extent>]
<stmtlist>

ENDF
or

FOR[.<size>] <opl>
<stmtlist>
ENDF

<op2> DOWNTO <op3> [BY <op4>] DO[.extent>]

These counting loops utilize a user-defined operand, <opl>, for the
loop counter. FOR-TO allows counting upward, while FOR-DOWNTO
allows counting downward. In both loops, the user may specify the
step size, <op4>, or elect the default step size of #l. The FOR-TO
loop is not executed if <op2> is greater than <op3> upon entry.
Similarly, the FOR-DOWNTO loop is not executed if <op2> is less
than <op3>.

a. The condition codes are set and tested before each execution of
the <stmtlist>. This happens even if <stmtlist> is not
executed.

b. A step size of #l1 may not be meaningful if the counter, <opl>,
is used to index through word or longword-sized data.

c. Each immediate operand must be preceded by a "#" sign. For
example, the following would loop ten times by steps of four.

FOR COUNT = #4 TO #40 BY #4 DO ...
d. The FOR structure generates a move, a compare and either an add
or subtract. Therefore, if any of the four operands is an A

register, <size> may not be B (byte).

6-3




6.3.3 REPEAT Statement

SYNTAX:

FUNCTION:

NOTES:

REPEAT
<stmtlist>
UNTIL[ .<size>] <expression>

<stmtlist)> is executed repeatedly until <expression> is true.

a. The <stmtlist> is executed at least once, even if <expression>
is true upon entry.

b. If an operand comparison <expression> is specified, the
condition codes are set and tested following each execution of
the <stmtlist>.

6.3.4 WHILE Statement

SYNTAX:

FUNCTION:

NOTES:

WHILE[.<size>] <expression> DO[.<extent>]
<stmtlist>
ENDW

The <expression> is tested before execution of the <stmtlist>.
While the <expression> 1is true, the <stmtlist> is executed
repeatedly.

a. If the <expression> is false upon entry, <stmtlist> is not
executed.

b. If an operand comparison <expression> is specified, the
condition codes are set and tested before each execution of the
<stmtlist>. The condition codes are set and tested even if the
<stmtlist> is not executed.

6-4




-6.4 SIMPLE AND COMPOUND EXPRESSIONS

Expressions are an integral part of IF, REPEAT, and WHILE statements. An
expression may be simple or compound. A compound expression consists of no more
than two simple expressions joined by AND or OR.

6.4.1 Simple Expressions

Simple expressions are concerned with the bits of the Condition Code Register
(CCR) . These expressions are of two types. The first type merely tests
conditions currently specified by the contents of the CCR (paragraph 6.4.1.1).
The second type sets up a comparison of two operands to set the condition codes,
and afterwards tests the codes (paragraph 6.4.1.2).

6.4.1.1 Condition Code Expressions. Fourteen tests (identical to those in the
Bee instruction) may be performed, based on the CCR condition codes. The
condition codes, in this case, are preset by either a user-generated instruction
or a structured operand-comparison expression (paragraph 6.4.1.2). Each test is
expressed in the structured control statement by a mnemonic enclosed in angle
brackets (< >), as follows:

<CC> M
<Cs>
<EQ>
<GE>
<G>
<HI> For an explanation of each test, see Table A-2,
<LE> "Conditional Tests", in the MC68000 16-Bit
<LS> Microprocessor User's Manual.

<LT>
<MI>
<NE>
<PL>
<VC>
Vs>

For example:

IF <EQ> THEN
CIR.L D2
ENDI

REPEAT
SUB D4,D3
UNTIL  <LT




6.4.1.2 Operand Comparison Expressions. Two operands may be compared in a
simple expression, with subsequent transfer of control based on that comparison.
Such a comparison takes the form:

<opl> <cc> <op2>

where <cc> is a condition mnemonic enclosed in angle brackets (as described in
paragraph 6.4.1.1), specifying the relation to be tested between <opl> and
<op2>. When processed by the assembler, this expression translates to a compare
instruction - for example:

cMp <opl>,<op2>
followed by a branch instruction (Bcc) which tests the relation specified.
<opl> is normally, but not necessarily assigned to the first (leftmost) operand
and <op2> to the second (rightmost) operand of the compare instruction.

NOTE

A blank (#' ") should not be used for as value of <opl> or <op2>.

A size may be specified for the comparison by appending a data size code (B, W,
or L) to the directive, with W being the default. The only restriction is that
a byte size code (B) may not be used in conjunction with an address register
direct operand.

Compare instructions require certain effective addressing modes for their oper-
ands. These modes are listed in Table 6-1. However, if the operands, <opl> anmd
<op2>, are not listed in an order that generates a legal compare instruction
(Table 6-1), but that will generate a legal compare if the operand order is re-
versed, the assembler will reverse the operands when expanding the expression.
To maintain the nature of the relation specified, the condition operator will
also be adjusted, if necessary. For example, "D2 <GT> #5" would be adjusted by
the assembler to the equivalent of "#5 <LT> D2"; likewise, "A2 <EQ> (A5)" would
be adjusted to the equivalent of "(A5) <EQ> A2". This processing allows the
user the flexibility of specifying the more meaningful operand order in the ex-
pression. ’

TABLE 6-1. Effective Addressing Modes for Compare Instructions

FFFECTIVE ADDRESSING MODES FOR:
COMPARE
INSTRUCTIONS FIRST OPERAND SECOND OPERAND
avp (All) Data register direct
QMPA (All) Address register direct
CMPI Immediate (Data alterable)
MPM Postincrement register Postincrement register
indirect indirect

6~6




If the operands, either as stated or reversed, do not yield a legal compare
instruction, an error will result. For example, the statement

IF (Al) <NE> (A2) THEN
would result in an "ERROR 213" message = 1illegal address mode - during

expansion, To avoid this error, a MOVE would be required to effect a legal
operand, such as:

MOVE (A2) ,D2
IF (Al) <NE> D2 THEN
Examples:

WHILE.B (A3) <NE> D2 DO THIS EXPRESSION IS LEGAL AS STATED.
MOVE.B (A5)+,D2

ENDW

IF D7 <LT> #10 THEN THIS EXPRESSION WILL BE REVERSED.
BSR SUBR1

ELSE
MULS #2,D7

ENDI

6.4.2 Compound Expressions

A compound expression consists of two simple expressions (paragraph 6.4.1)
joined by a logical operator. The Boolean value of the compound expression is
determined by the Boolean values of the simple expressions and the nature of the
logical operator (AND or OR).

The two simple expressions are evaluated in the order in which they are given.
However, if an AND separates the expressions and the first expression is false,
the second expression will not be evaluated. Likewise, if an OR separates the
expressions and the first expression is true, the second expression will not be
evaluated. In these cases, the compound expression is either false or true,
respectively, and the condition codes reflect the result of only the first
simple expression.

A size may be specified for each operand comparison expression. The size of the
comparison for the first expression may be appended to the directive, while the
size of the comparison for the second expression may be appended to the keyword
AND or OR. For example, in the statement

IF.L D3 <GT> (A0) OR.B #'Q' <EQ> BUFFER1

the first comparison is a longword comparison, and the second is a byte
comparison.




6.5 SOURCE LINE FORMATTING
6.5.1 Class 1 Symbol Usage

Class 1 symbols, as described in paragraphs 2.6.2 and 6.2, are the assembler
directives (including macro names), instruction mnemonics, and the structured
control directives. Only one of these is recognized on each source line. Thus,
each directive (reserved keyword) of a structured control statement and each
executable instruction generated by the programmer must be written on a separate
source line. The following source line, for example, is in error:

REPEAT MOVE -(A5) ,D2 UNTIL <EQ>
because the MOVE and UNTIL symbols and their operands are not recognized, but
are treated as part of the comment field of the REPEAT directive. Likewise, the

following lines are in error:

IF <VS> THEN JSR OVERFLOW
ELSE JMP (A3) ENDI

because the JSR, JMP, and ENDI symbols and their operands are not recognized.
The correct format for these lines would be as follows:

REPEAT
MOVE -(A5) ,D2
UNTIL <EQ>
and
IF <VS> THEN
JSR OVERFLOW
ELSE
JMp (A3)
ENDI

6.5.2 Limited Free-Formatting
To improve readability, limited free-formatting allows the operand field of the
IF, UNTIL, WHILE, and FOR directives to be extended onto additional consecutive
lines.
For example:

IF #15 <LT> D7

AND
(A3) <NE> D3 THEN

UNTIL (A7)+ <EQ> D2 OR

<VS>
FOR Dl = #1 TO #5
BY #1 DO




6.5.3 Nesting of Structured Statements

Structured statements may be nested as desired to create multi-level control
structures. An example of such nesting is the following:

IF <EQ> THEN

REPEAT
MOVE DO, (A5)+
ADDQ #4,D0
MOVE.L A4,(A4)+
UNTIL.L A5 <LE> A4

ELSE.L
FOR D2 = $10 TO #20 BY #2 DO

WHILE D4 <LT> D2 AND D4 <LT> #100 DO
MOVE.L  10(A3,D4.W),(A5)+
ADDQ #2,D4

ENDW

ENDF
ENDI

6.5.4 Assembly Listing Format

By default (FORMAT directive), the assembly listings are formatted according to
Table 4-1. In addition, the operation and operand fields of source lines in
structured syntax are indented two columns for each nested level of operation.
This automatic formatting may be turned off by using the NOFORMAT directive.

The assembly language code generated for the structured syntax is included in
the listing when the S option is specified in the ASM command line.

6.6 EFFECTS ON THE USER'S ENVIRONMENT

If the S option is specified in the ASM command line (paragraph 4.1), the
generated code of the structured control expansions is listed. There may be
three items found in this code that will affect the user's environment:

a. During assembly, local labels beginning with "Z L" are generated. These
labels use the same increment counter (.nnn) as local labels in macros
(see paragraph 5.2.4). They are stored in the symbol table and should
not be duplicated in user-defined labels.

b. In the FOR loop, <opl> is a user-defined symbol. When exiting the loop,
the memory/register assigned to this symbol contains the value which
caused the exit from the loop.

c. Compare instructions (see Table 6-1) are generated by the assembler
whenever two operands are tested relationally in a structured statement.
During runtime, however, these assembler—generated instructions set the
condition codes of the CCR (in the case of a loop, the condition codes
are set repeatedly). BAny user-written code, therefore, either within or
following a structured statement, that references the CCR should be
attentive to the effect of these instructions.

6-9/6-10







CHAPTER 7

GENERATING POSITION INDEPENDENT CODE

7.1 FORCING POSITION INDEPENDENCE

When creating a relocatable program module, it is often desirable to ensure that
all references to operands in relocatable sections are position independent
effective addresses -- i.e., that no absolute addresses occur as effective
addresses for such references. To avoid absolute effective address formats, it
is necessary to ensure that all memory operand references are resolved by the
assembler (or by the linkage editor at the assembler's direction) into one of
the program counter relative or address register indirect addressing modes.
Avoiding ORG directives is not sufficient to ensure position independence, since
it is possible for the assembler to produce absolute effective address formats
even when no absolute symbols have been defined.

For example, if an instruction references a symbol that is not yet defined, or
is defined either in another section or as an XREF in an unspecified section,
the default action of the assembler is to direct the linkage editor to resolve
the reference by supplying the absolute address of the symbol. By specifying
OPT PCS, all references known to be in a relocatable section will be resolved as
a Program Counter (PC) relative address, However, this does not solve the
problem of forward references, which would still default to absolute format. To
override an absolute address mode when resolving the effective address format of
an operand, the following formats may be used to force program counter relative
addressing:

a. Forcing program counter with displacement
An operand of the form: LABEL (PC)

will be resolved as a PC with displacement effective address, either by
the assembler or by the linkage editor (at the assembler's direction).
If LABEL cannot be resolved into a 16-bit displacement from the program
counter, an error will be generated.

b. Forcing PC with index plus displacement
An operand of the form: LABEL (PC,Rn)

will be resolved as a PC with index plus displacement effective address
by the assembler. Since the displacement in this mode is 8 bits, the
reference must be resolvable by the assembler, If LABEL cannot be
resolved by the assembler into an 8-bit displacement from the program
counter, an error will be generated.

7.2 BASE-DISPLACEMENT ADDRESSING

Although PC relative addresses have the advantage of position independence, such
address formats are often not the most meaningful to the programmer when
debugging an assembled module. There are many times when a programmer would

prefer to see an address relative to a specified base - i.e., in a base-
displacement format. This is especially true when addressing tables, arrays,

7-1




and other data structures. Base-displacement references to a given location are
"hase relative" and, therefore, fixed with respect to a given base address; PC
relative references to that same location are different in each instruction.

Base-displacement addressing must be handled explicitly by the programmer. For
example, if the following data area is declared:

TEMP DS $40
CONST DpC $10
ARRAY1 Ds.L $10
ARRAY?2 DS.L $10
RESULT DS.L $10

the programmer may choose to load A6 with the address of TEMP and make
references to the other data locations as displacements from this base address.
For example, to move the first element of ARRAYl to DI, the programmer may
specify:

MOVE.L ARRAY1-TEMP (A6) ,D1
Indexing with the low order contents of DO may be added (as the array index):

MOVE.L ARRAY1-TEMP (A6,D0) ,D1

7.3 BASE-DISPLACEMENT IN CONJUNCTION WITH FORCED POSITION INDEPENDENCE

Complete code position independence can be achieved by using base-displacement
addressing in conjunction with the PCS option and the forced PC relative
addressing scheme outlined in par. 7-1. Although these techniques can be used
to avoid all undesired absolute address formats, there are significant
limitations of PC relative addressing in a position independent program, as
noted below:

a. PC with displacement

PC with displacement effective addresses are only restricted by the
16-bit displacement field. A displacement greater than- 32K bytes from

the current PC cannot be resolved in this format.

b. PC with index plus displacement
The displacement field here is restricted to 8 bits, limiting the range
of this format to a 128-byte displacement from the current PC. This
8-bit displacement is not relocatable. Therefore, only symbols with a
known displacement from the program counter may be resolved in a PC with
index plus displacement format.

c. Operands in the alterable addressing category
Neither PC relative mode is allowed as an alterable operand. This is a
significant limitation in instructions which require an alterable
operand, such as the destination operand in a MOVE instruction.

By appropriate use of base registers, these limitations can be overcome.

7-2

S




APPENDIX A
INSTRUCTION SET SUMMARY
This appendix provides a summary of the MC68000/MC68010 instruction set. For
detailed information, refer to the MC68000 16-Bit Microprocessor User's Manual,

or Section 7 of the MC68010 16-Bit Virtual Memory Microprocessor product
specification handbook.

INSTRUCTION SET SUMMARY

COND. CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX X N Z v C

ABCD Add Decimal With Exterd ABCD Dy,Dx * U * U *
ABCD - (Ay) ,-(Ax)

ADD Add Binary ADD <ea>,Dn * ok Kk ok %

(See NOTE 1.) ADD Dn,<ea>

ADDA Add Address ADDA <ea>,An - - - - -

ADDI Add Immediate ADDI #<data>,<ea> * Kk ok Xk %

ADDQ Add Quick ADDQ #<data),<ead * ok ok kX

ADDX Add Exterded ADDX Dy,Dx R A
ADDX -(Ay) ,- (Ax)

AND AND Logical AND <ea>,Dn - * * 0 0
AND Dn,<ea>

ANDI AND Immediate ANDI #<data>,<ea> - * * 0 0

ASL, ASR | Arithmetic Shift ASd Dx,Dy * * * k%

ASd $<data>,Dy
ASd <ea>

Bce Branch Conditionally Bce <label> - - - - -

BCHG Test a Bit and Change BCHG Dn,<ea> - - * - -
BCHG #<data>,<ea>

BCLR Test a Bit and Clear BCLR Dn,<ea> - - * - -
BCLR #<data>,<ea>

BRA Branch Always BRA <label> - - - - -

BSET Test a Bit and Set BSET Dn,<ea> - -k o -
BSET #<data>,<ea>

BSR Branch to Subroutine BSR <label> - - = = =

BTST Test a Bit BTST Dn,<ea> - = * - -
BTST #<data>,<ea>

A-1




INSTRUCTION SET SUMMARY (cont'd)

COND. CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX X N Z v C
CHK Check Register Against CHK <ea>,Dn - * U U U
Bounds
CLR Clear an Operand CLR <ea> - 01 0 O
Q1P Arithmetic Compare QP <ea>,Dn - * *k Kk %
CMPA Arithmetic Compare CMPA <ea>,An - * % % %
Address
CMPI Compare Immediate CMPI #<data>,<ea> - * k % %
CMPM Compare Memory CMPM (Ay)+, (Ax)+ - *k Kk * %
DBcc Test Condition and DBcc Dn,<label> - - - - -
Decrement and Branch
(See NOTE 2.)
DIVS Signed Divide DIVS <ea>,Dn - * * % 0
DIVU Unsigned Divide DIVU <ea>,Dn - * *x % 0
EOR Exclusive OR Logical EOR Dn,<ea> - % %
EORI Exclusive OR Immediate EORI #<datad>,<ea> - * * 0
EXG Exchange Registers EXG Rx,Ry - - - - -
EXT Sign Extend EXT Dn - * * 0 0
JMP Jump JMP <ea> - - - - -
JSR Jump to Subroutine JSR <ead> - - - - -
LEA Load Effective Address LEA <ea>,An - = - - -
LINK Link and Allocate LINK An,#<displacement> - - - - -
LSR, LSR Logical Shift Lsd Dx,Dy * k % 0 *
ILSd #<data>,Dy
LSd <ea>
MOVE Move Data from Source MOVE <ea>,<ea> - % % 0 0
to Destination
MOVE Move to the Status MOVE <ea>,SR * Kk Kk Kk X
to SR Register
MOVE Move from the Status MOVE SR,<ea> - - - - -
from SR Register
MOVE Move to Condition Codes | MOVE <ea>,CCR * k Kk % %
to CC
MOVE Move from Condition MOVE CCR,<ea> - - - = -
from CC Codes (M68010)

A-2




INSTRUCTION SET SUMMARY (cont'd)

COND. CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX X N Z v C
MOVE USP | Move User Stack Pointer { MOVE USP,An - - = - -
MOVE An,USP
MOVEA Move Address MOVEA <ea>,An - - = - -
MOVEC Move to/from Control MOVEC Rc,Rn - - - - -
Register (M68010) MOVEC Rn,Rc
(See NOTE 3.)
MOVEM Move Multiple Registers| MOVEM <register list>,<ea>| - - - - -
(See NOTE 4.) MOVEM <ea>,<register list>
MOVEP Move Peripheral Data MOVEP Dx,d (Ay) - - - = -
MOVEP d(Ay) ,Dx
MOVEQ Move Quick MOVEQ #<data>,Dn - * * 0 0
MOVES Move to/from Address MOVES <ea>,Rn - - - - =
(M68010) MOVES Rn,<ea>
MULS Signed Multiply MULS <ea>,Dn - * * 0 0
MULU Unsigned Multiply MULU <ea>,Dn - % % 0 0
NBCD Negate Decimal with NBCD <ea> * U * Uy *
Extend
NEG Two's Complement NEG <ea> * k x Xk X
Negation
NEGX Negate with Extend NEGX <ea> * k k k&
NOP No Operation NOP - - - -
NOT Logical Complement NOT <ea> - * * 0 0
OR Inclusive OR Logical OR <ea>,Dn - % % 0 0
OR Dn,<ea>
ORI Inclusive OR Immediate | ORI #<data>,<ea> - * * 0 0
PEA Push Effective Address | PEA <ea> - - - - =
RESET Reset External Devices | RESET - - - - -
ROL,ROR Rotate without Extend RO4d Dx,Dy - * % (0 *
ROd #<data>,Dy
RO4 <ea>
ROXL,ROXR | Rotate with Extend ROXd Dx,Dy * * *  *
ROXd #<data>,Dy
ROX4 <ea>

A-3




INSTRUCTION SET SUMMARY (cont'd)

extended to 32 bits before adding to the stack pointer.

COND. CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX X N zZ v C
RTD Return from Subroutine with RTD #<disp> (NOTE 5) |- - - - -
Displacement (M68010)
RTE Return from Exception RTE x * % * %
RTR Return and Restore RTR * k ok X %
Condition Codes
RTS Return from Subroutine RTS - - - - -
SBCD Subtract Decimal with SBCD Dy,Dx * Uy * U *
Extend SBCD - (Ay) ,~ (Ax)
Scc Set According to Condition Scc <ea> - - - - =
STOP Stop Program Execution STOP #<data> - - - - -
SUB Subtract Binary SUB <ea>,Dn * &k x X %
SUB Dn,<ea>
SUBA Subtract Address SUBA <ea>,An - - - - -
SUBI Subtract Immediate SUBI #<data>,<ea> * ok kX %
SUBQ Subtract Quick SUBQ #<data>,<ea> * x kK %
SUBX Subtract with Extend SUBX Dy,Dx * k kK %
SUBX ~(Ay) ,—(Ax)
SWAP Swap Register Halves SWAP Dn - * * 0 0
TAS Test and Set an Operand TAS <ea> - % * 0 0
TRAP Trap TRAP #<vector> -—-— - -
TRAPV Trap on Overflow TRAPV - - - - -
TST Test an Operand TST <ea> - % * 0 0
UNLK Unlink UNLK An - - - - -
NOTES: 1. <ea> specifies effective address.
2. The assembler accepts DBRA for the F (never true) condition.
3. Rc specifies control register.
4. <register list> specifies the registers selected for transfer
to or from memory. <register list> may be:
Rn - a single register.
Rn-Rm - a range of consecutive registers with m being
greater than n.
Any combination of the above, separated by a slash.
5. <disp> is a 2's complement integer, 16 bits in size, which is sign




APPENDIX B

CHARACTER SET

The character set recognized by the Motorola M68000 Family Resident Structured
Assembler is a subset of ASCII (American Standard Code for Information
Interchange, 1968). The characters 1listed below are recognized by the
assembler, and the ASCII code is shown on the following pages.
1. The uppercase letters A through Z
2. The integers 0 through 9
3. Four arithmetic operators: + - * /
4. The logical operators: >> << & !
5. Parentheses used in expressions ()
6. Characters used as special prefixes:
# (pound sign) specifies the immediate mode of addressing
$ (dollar sign) specifies a hexadecimal number
@ (commercial "at") specifies an octal number
% (percent) specifies a binary number
' (apostrophe) specifies an ASCII literal character
7. The special characters used in macros: < > \ @
8. Three separating characters:
SPACE
s (comma)

. (period)

9. A comment in a source statement may include any characters with ASCII
hexadecimal values from 20 (SP) through 7E (7).

10. Character used as a special suffix:

: (colon) specifies the end of a label

B-1




ASCII Character Set

CHARACTER COMMENTS HEX VALUE
NUL Null or tape feed 00
SOH Start of Heading 01
STX Start of Text 02
ETX End of Text 03
EOT End of Transmission 04
ENQ Enquire (who are you, WRU) 05
ACK Acknowledge 06
BEL Bell 07
BS Backspace 08
HT Horizontal Tab 09
LF Line Feed 0A
VT Vertical Tab 0B
FF Form Feed oC

RETURN Carriage return oD
18] shift Out (to red ribbon) OE
SI shift In (to black ribbon) OF
DLE Data Link Escape 10
DC1 Device Control 1 11
DC2 Device Control 2 12
DC3 Device Control 3 13
DC4 Device Control 4 14
NAK Negative Acknowledge 15
SYN Synchronous idle 16
ETB End of Transmission Block 17
CAN Cancel 18
EM End of Medium 19
SUB Substitute 1A
ESC Escape, prefix 1B
FS File Separator 1C
GS Group Separator 1D
RS Record Separator 1E
us Unit Separator 1F

B=-2




ASCII Character Set (cont'd)

CHARACTER COMMENTS HEX VALUE
sp Space or blank 20
! Exclamation point 21
" Quotation marks (dieresis) 22
# Number sign 23
$ Dollar sign 24
% Percent sign 25
& Ampersand 26
' Apostrophe (acute accent, 27
closing single quote)

Opening parenthesis 28

) Closing parenthesis 29
* Asterisk 2
+ Plus sign 2B
' Comma (cedilla) 2C
- Hyphen (minus) 2D
. Period (decimal point) 2E
/ Slant 2F
0 Digit 0 30
1 Digit 1 31
2 Digit 2 32
3 Digit 3 33
4 Digit 4 34
5 Digit 5 35
6 Digit 6 36
7 Digit 7 37
8 Digit 8 38
9 Digit 9 39
: Colon 3A
H Semicolon : 3B
< Less than 3
= Equals 3D
> Greater than 3E
? Question mark 3F

B-3




ASCII Character Set (cont'd)

CHARACTER COMMENTS HEX VALUE
@ Commercial at 40
A Uppercase letter A 41
B Uppercase letter B 42
C Uppercase letter C 43
D Uppercase letter D 44
E Uppercase letter E 45
F Uppercase letter F 46
G Uppercase letter G 47
H Uppercase letter H 48
I Uppercase letter I 49
J Uppercase letter J 4A
K Uppercase letter K 4B
L Uppercase letter L 4C
M Uppercase letter M 4AD
N Uppercase letter N 4E
0 Uppercase letter O 4F
P Uppercase letter P 50
Q Uppercase letter Q 51
R Uppercase letter R 52
S Uppercase letter S 53
T Uppercase letter T 54
u Uppercase letter U 55
\' Uppercase letter V 56
W Uppercase letter W 57
X Uppercase letter X 58
Y Uppercase letter Y 59
YA Uppercase letter Z 5A
[ Opening bracket 5B
\ Reverse slant 5C
] Closing bracket 5D
- Circumflex 5E
_ Underline . SF

B-4




ASCII Character Set (cont'd)

CHARACTER COMMENTS HEX VALUE
' Quotation mark 60
a Lowercase letter a 61
b Lowercase letter b 62
c Lowercase letter c 63
d Lowercase letter 4 64
e Lowercase letter e 65
£ Lowercase letter £ 66
g Lowercase letter g 67
h Lowercase letter h 68
i Lowercase letter i 69
3 Lowercase letter j 6A
k Lowercase letter k 6B
1 Lowercase letter 1 6C
m Lowercase letter m 6D
n Lowercase letter n 6E
o Lowercase letter o 6F
P Lowercase letter p 70
q Lowercase letter g 71
r Lowercase letter r 72
s Lowercase letter s 73
t Lowercase letter t 74
u Lowercase letter u 75
\ Lowercase letter v 76
w Lowercase letter w 77
X Lowercase letter x 78
y Lowercase letter y 79
z Lowercase letter z /N
{ Opening brace 7B
[ Vertical line 7C
} Closing brace 7D
~ Equivalent 7E

DEL Delete TF

B-5/B-6







MOTOROLA M68000 ASM

[y
WNHFOWOJAU S WN

14

53
54

55

@ @ o ® @ o™ [+ ]

@ W ™ @ ™

00000000
00000002
00000004
00000006
00000008

00000000
00000002

00000008
0000000C
00000010
00000012

00000014
00000014
00000018
0000001E

00000022
00000022
00000026
0000002C

FIX

00000002
00000002
00000002
00000002
00000002

00000008
00000000

5346
33C600000000

4FF80000
41F80000
4241
4280

103C0000
4EB900000000
D2280001

103C0002
4EBS00000000
D2280003

APPENDIX C

SAMPLE ASSEMBLER OUTPUT

: 108.DEMO  .MAIN  .SA
. .
MAIN IDNT 2,3 Demonstration Program
*
* This program counts occurrences of vowels (A,E,I,0,U)
* in the command line and outputs an error if fewer than 10
* vowels are found in the command line, aside from the vowels
* in the program name 'TSTPROG'.
* It is written in a contrived fashion to illustrate several
* features of the M68000 assembler.
*
OPT CRE 1 Create a cross-reference listing
OPT MEX ! Enable macro expansions
*
XREF.S  15:VOWEL ! Array containing vowel count info
XREF.S  15:STACK | Scratch stack space
XREF FINDV ! Routine that does the counting
XREF CMDLEN ! Length of the command line
*
* These are offsets into the vowel array contained in module FINDV.
* Each entry in this array contains 1 byte for the vowel's name
* and one byte for the count of occurrences of the vowel.
*
OFFSET 0
A DS.W 1
E DS.W 1
I DS.W 1
0 DS.W 1
u DS.W 1
%*
* This macro calls FINDV to count occurrences of the vowel
* contained in argument 1. It then adds that subtotal into
* the running total contained in Dl.
*
CHKVOWEL MACRO
MOVE.B  #\1,D0 1 Store current vowel offset into VOWEL
JSR FINDV ! Find all occurrences of it
ADD,.B \1+1(A0) ,D1 ! Add this to the total vowel count
ENDM :
*
SECTION 8
START EQU *
SUB.W $1,D6 ! Index command line from offset 0 and not 1
MOVE.W D6,CMDLEN ! Save the command line len
* ! as passed by VERSAdos
LEA STACK,A7 ! Initialize the stack area
LEA VOWEL ,A0 1 Start of the vowel table
CLR.W D1 ! Current total vowel count
CLR.L DO 1 Will hold offset to current char later
CHKVOWEL A
MOVE.B  #A,DO 1 Store current vowel offset into VOWEL
JSR FINDV ! Find all occurrences of it
ADD.B A+1(A0) ,D1 ! Add this to the total vowel count
CHKVOWEL E
MOVE.B  #E,DO ! Store current vowel offset into VOWEL
JSR FINDV ! FPind all occurrences of it
ADD.B E+1(A0) ,D1 ! Add this to the total vowel count

C-1




57
58

59
60

6l
62
63
64
65
66
67
68
69
70
71
72

o 00 ™

@ o ® ™ o0 oo ®

8

kkhkk
E2 22213

SYMBOL

00000030
00000030
00000034
0000003A

0000003E
0000003E
00000042
00000048

0000004C
0000004C
00000050
00000056

00000060
00000062
00000064
00000066

00000068
0000006A

103C0004
4EB900000000
D2280005

103C0006
4EB900000000
D2280007

103C0008
4EB900000000
D2280009

3041
700E
4E41
0000

700F
4E41

00000000

TOTAL ERRORS

TOTAL WARNINGS

TABLE LISTING

SYMBOL. NAME

A
CHKVOWEL

CMDLEN

E

FINDV

I
(o]

STACK
START

U

VOWEL
Z L1.000

MACR
XREF
XREF

XREF

XREF

SECT

@ 0 m

0—
0—

VALUE

00000000

00000000
00000002
00000000
00000004
00000006
00000000
00000000
00000008
00000000
00000068

CHKVOWEL
MOVE.B
JSR
ADD.B

CHKVOWEL
MOVE.B
JSR
ADD.B

CHKVOWEL
MOVE.B
JSR
ADD.B

IF.B
MOVE.W
MOVE.L
TRAP
DC.W

ENDI

MOVE.L
TRAP

END

I

#1,D0
FINDV
I+1(A0) ,D1

)

$0,D0
FINDV
0+1(A0) ,D1

U

#U,DO0
FINDV
U+1(A0) ,D1

#10 <GT> D1 THEN.S
D1,A0
#14,D0
$1
0

#15,D0
$1

START

CROSS-REF ( LINENUMBERS)

-24
-34
-17
-25
-16
~26
=27
-15
~-42
-28
~-14
-67

52
11
45
54
52
56
58
47
72
60
48
62

52 54 56

54 56

C-2

-

-

-

Store current vowel offset into VOWEL
Find all occurrences of it
Add this to the total vowel count

Store current vowel offset into VOWEL
Find all occurrences of it
Add this to the total vowel count

Store current vowel offset into VOWEL
Find all occurrences of it

Add this to the total vowel count

Not enough vowels

generate error showing # of vowels found

Exit gracefully if all is OK

58 60

60




MOTOROLA M68000 ASM FIX : 108.DEMO .FINDV  .SA
1 * .
2 FINDV IDNT 1,1 Routine subordinate to MAIN
3 *
4 * This routine counts occurrences of a given vowel. The vowel
5 * is identified by an offset into the vowel table. This offset
6 * is stored in DO.
7 * This routine is written in a contrived fashion to illustrate several
8 * features of the M68000 assembler.
9 *
10 OPT CRE | Create a cross-reference listing
11 OPT CEX | Print DC expansions
12 *
13 XDEF VOWEL , FINDV, STACK,,CMDLEN, CMDSTR
14 *
15 0000000F SECTION.S 15
16 *
17 * Register save area
18 *
19 F 00000000 00000040 RSAVE DS.L 8*2
20 *
21 * Stack area for the program
22 F 00000040 00000050 DS.L 20
23 F 00000090 00000004 STACK Ds.L 1
24 *
25 * Following is the vowel array VOWEL.
26 * Each entry in this array contains 1 byte for the vowel's name
27 * and one byte for the count of occurrences of the vowel.
28 *
29 F 00000094 4100 VOWEL DC.B 'A',0
30 F 00000096 4500 DC.B 'E',0
31 F 00000098 4900 DC.B '1',0
32 F 0000009A 4F00 DC.B 'o',0
33 F 0000009C 5500 DC.B 'u,0
34 *
35 * Next is the area which holds the command line length and string.
36 *
37 F 0000009E 0000 CMDLEN DC.W 0
38 F 000000AC 000000A0 CMDSTR COMLINE 160
39 *
40
41 00000008 SECTION 8
42 *
43 * On entry to this routine, DO contains the offset to the start
44 * of the current entry in the vowel table.
45 * This routine then tallies occurrences of the given vowel and
46 * stores that value in the table.
47 *
48 SAVEREG REG DO-D3/A0-A2
49 *
50 8 00000000 FINDV EQU *
51 8 00000000 48F8070F0000 MOVEM.L SAVEREG,RSAVE ! Save all registers we are using
52
53 8 00000006 41F80094 LEA VOWEL, AO
54 8 0000000A 12300000 MOVE.B 0(A0,D0.W),D1 ! Value of this vowel
55 8 0000000E 41F00001 LEA 1(A0,D0.W) ,A0 { Addr of counter for this vowel
56 8 00000012 43F800A0 LEA CMDSTR,Al ! Addr of command line string
57
58 FOR D3 = #0 TO CMDLEN BY #1 DO

8 0000001A 6000000E BRA, Z L2.000

*hkkxk WARNING 550-~
59 8 0000001E 14313000 MOVE.B (Al,D3.W) ,D2 1 Current char is now in D2
60
61 IF.B D1 <EQ> D2 THEN.S
62 8 00000026 5210 ADDQ.B  #1,(A0) ! Tally matching chars
63 ENDL

C-3




64

65

66

67 8 00000030 4CF8070F0000
68 8 00000036 4E75

69

70
#**kx¥% TOTAL ERRORS 0— 58
*&kkkk TOTAL WARNINGS 1-— 58
SYMBOL TABLE LISTING
SYMBOL NAME SECT  VALUE
CMDLEN XDEF F  0000009E
CMDSTR XDEF F  000000AQ
FINDV XDEF 8 00000000
RSAVE F 00000000
SAVEREG REG *
STACK XDEF F 00000090
VOWEL XDEF F 00000094
Z L1.001 8 0000001E
Z L1.002 8 00000028
Z 12,000 8 0000002A

CROSS-REF (LINENUMBERS)

=37
-38
-50
-19
-48
=23
-29
-58
-63
-65

ENDF

MOVEM.L RSAVE,SAVEREG

-13
-13
-13
51
51
-13
-13
65
61
58

65
56

67
67

53

C-4

! Restore

registers we used




APPENDIX D

EXAMPLE OF LINKED ASSEMBLY~LANGUAGE PROGRAMS

Motorola M68000 Linkage Editor

Command Line:

LINK 108.DEMO.MAIN/108.DEMO.FINDV,TSTPROG,TSTPROG; HIMUX

Options in Effect: -A,-B,-D,H,I,-L,M,0,P,-Q,-R,-S,-U,-W,X

User Commands: None

Object Module Header Information:
Module Ver Rev Language Date Time Creation File Name

MAIN 2 3 Assembly 09/13/82 13:12:27 FIX:108.DEMO.MAIN.SA
Demonstration Program

FINDV 1 1 Assembly 09/13/82 13:12:54 FIX:108.DEMO.FINDV.SA
Routine subordinate to MAIN

Load Map:

Segment SEG1(R): 00000000 00000QFF 8,9,10,11,12,13,14

Module S T Start End Externally Defined Symbols
MAIN 8 00000000 00000068
FINDV 8 0000006C 000000A3 FINDV 0000006C

Segment SEG2: 00000100 000002FF 15

Module S T Start End Externally Defined Symbols
FINDV 15 S 00000100 0000023F CMDLEN 0000019E CMDSTR 000001A0
VOWEL 00000194 STACK 00000190

Table of Externally Defined Symbols:

Name Address Module Displ Sect Seq Library Input

CMDLEN 0000019E FINDV 0000009E 15 SEG2 FINDV  .RO
CMDSTR 000001A0 FINDV 000000A0 15 SEG2 FINDV  .RO
FINDV 0000006C FINDV 00000000 8 SEG1 FINDV  .RO
STACK 00000190 FINDV 00000090 15 SEG2 FINDV  .RO
VOWEL 00000194 FINDV 00000094 15 SBEG2 FINDV  .RO

Unresolved References: None

Multiply Defined Symbols: None

Lengths (in bytes):

Segment Hex Decimal
SEG1 00000100 256
SEG2 00000200 512
Total Length 00000300 768

D-1




No Errors
No Warnings

Load module has been created.

D-2




APPENDIX E

ASSEMBLY ERROR CODES

Error messages generated during an assembly may originate from the assembler or
from Pascal or the operating system environment. Assembler-generated messages

may be

1.

of two forms:
**k*%%* FRROR XXX —— hnnn

where xxx 1is the number of the error (defined in the list in this
appendix), and nnnn is the number of the line where the previous error
occurred.

Errors indicate that the assembler is unable to interpret or implement
the intent of a source line.

**kkkk* WARNING XXX —-- nnnn

where xxx is the number of the error (defined in the list in this
appendix), and nnnn is the number of the line where the previous error
occurred,

Warnings may indicate possible recoverable errors in the source code, or
that a more optimal instruction format is possible.

ERROR CODE MEANING OF ERROR

200
201
202
203
204
205
206

207

210
211
212
213
214
215
216
217
218
219
220
221

SYNTACTIC ERRORS

ILLEGAL CHARACTER (IN CONTEXT)

SIZE CODE/EXTENSION IS INVALID

SYNTAX ERROR

SIZE CODE/EXTENSION NOT ALLOWED

LABEL REQUIRED

END DIRECTIVE MISSING

REGISTER RANGES FOR THE MOVEM INSTRUCTION MUST BE SPECIFIED IN
INCREASING ORDER

A AND D REGISTERS CAN'T BE INTERMIXED IN A MOVEM REGISTER RANGE

OPERAND/ADDRESS MODE ERRORS

MISSING OPERAND(S)

TOO MANY OPERANDS FOR THIS INSTRUCTION
IMPROPER TERMINATION OF OPERAND FIELD
ILLEGAL ADDRESS MODE FOR THIS OPERAND
ILLEGAL FORWARD REFERENCE
SYMBOL/EXPRESSION MUST BE ABSOLUTE
IMMEDIATE SOURCE OPERAND REQUIRED
ILLEGAL REGISTER FOR THIS INSTRUCTION
ILLEGAL OPERATION ON A RELATIVE SYMBOL
MEMORY SHIFTS MAY ONLY BE SINGLE BIT
INVALID SHIFT COUNT

INVALID SECTION NUMBER

E-1




ERROR CODE

230
231
232
233
234
235
236
237
238
239

250
251
252
253
254
255

260
261
262
263
264
265
266
267

270
271

280
281
282
283
284
285

286
287
288
289
290
291
292

MEANING OF ERROR

SYMBOL DEFINITION

ATTEMPT TO REDEFINE A RESERVED SYMBOL

ATTEMPT TO REDEFINE A MACRO; NEW DEFINITION IGNORED
ATTEMPT TO REDEFINE THE COMMAND LINE LOCATION
COMMAND LINE LENGTH MUST BE > 0; IGNORED

REDEFINED SYMBOL

UNDEFINED SYMBOL

PHASING ERROR ON PASS2

START ADDRESS MUST BE IN THIS MODULE, IF SPECIFIED
UNDEFINED OPERATION (OPCODE)

NAMED COMMON SYMBOL MAY NOT BE XDEF

DATA SIZE RESTRICTIONS

DISPLACEMENT SIZE ERROR

VALUE TOO LARGE

ADDRESS TOO LARGE FOR FORCED ABSOLUTE SHORT
BYTE MODE NOT ALLOWED FOR THIS OPCODE
MULTIPLICATION OVERFLOW

DIVISION BY ZERO

MACRO ERRORS

MISPLACED MACRO, MEXIT, OR ENDM DIRECTIVE

MACRO DEFINITIONS MAY NOT BE NESTED

ILLEGAL PARAMETER DESIGNATION

A PERIOD MAY OCCUR ONLY AS THE FIRST CHARACTER IN A MACRO NAME
MISSING PARAMETER REFERENCE

TOO MANY PARAMETERS IN THIS MACRO CALL

REFERENCE PRECEDES MACRO DEFINITION

OVERFLOW OF INPUT BUFFER DURING MACRO TEXT EXPANSION

CONDITIONAL ASSEMBLY ERRORS

UNEXPECTED 'ENDC'
BAD ENDING TO CONDITIONAL ASSEMBLY STRUCTURE (ENDC EXPECTED)

STRUCTURED SYNTAX ERRORS

MISPLACED STRUCTURED CONTROL DIRECTIVE (IGNORED)

MISSING "ENDI"

MISSING "ENDF"

MISSING "ENDW"

MISSING "UNTIL"

UNRESOLVED SYNTAX ERROR IN THE PRECEDING PARAMETERIZED
STRUCTURED CONTROL DIRECTIVE; RECOVERY ATTEMPTED WITH THE
CURRENT LINE

"=" EXPECTED; CHARACTERS UP TO "=" IGNORED

"¢" EXPECTED; CHARACTERS UP TO "<" IGNORED

">" EXPECTED; CHARACTERS UP TO ">" IGNORED

"DO" EXPECTED; REMAINDER OF LINE IGNORED

"THEN" EXPECTED; REMAINDER OF LINE IGNORED

"T0" OR "DOWNTO" EXPECTED; "TO" ASSUMED

ILLEGAL CONDITION CODE SPECIFIED

E-2




ERROR CODE

300
301

302
303
304
305
310
311
312

313

400

499

500
501
502
503

504

550
551

MEANING OF ERROR

MISCELLANEOUS

IMPLEMENTATION RESTRICTION
TOO MANY RELOCATABLE SYMBOLS REFERENCED
<LINKAGE EDITOR RESTRICTED>
RELOCATION OF BYTE FIELD ATTEMPTED
ABSOLUTE SECTION OF LENGTH ZERO DEFINED (LINK ERROR)
NESTED "INCLUDE" FILES NOT ALLOWED; IGNORED
FILE NAME REQUIRED IN OPERAND FIELD
ILLEGAL SYNTAX FOR "P=nnnnn' OPTION - OPTION IGNORED
ILLEGAL PROCESSOR NUMBER FOR 'P=nnnnn' OPTION - OPTION IGNORED
PROCESSOR OPTION DOES NOT AGREE WITH COMMAND LINE OPTION —
OPTION IGNORED
THE MASK2 DIRECTIVE IS LEGAL ONLY WHEN THE PROCESSOR IS AN
MC68000

INTERNAL ERRORS

SOURCE CODE NOT OPTIMAL OR RECOVERABLE ERRORS

THIS BYTE WILL BE SIGN-EXTENDED TO 32 BITS

MISSING PARAMETER REFERENCE IN MACRO SOURCE

TOO MANY PARAMETERS IN THIS MACRO CALL

WARNING - PROCESSOR TYPE SHOULD NOT BE CHANGED AFTER ANY
EXECUTABLE CODE IS GENERATED

WARNING ~ PROCESSOR TYPE SHOULD NOT BE CHANGED AFTER THE USER

ONCE SETS IT
THIS BRANCH COULD BE SHORT
THIS ABSOLUTE ADDRESS COULD BE SHORT

NOTE

If more than 10 errors occur in one line, the message

**%** too many errors on this line

will be generated.

E-3/E-4




SUGGESTION/PROBLEM
REPORT

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282
Attention: Publications Manager
Maildrop DW164

Product: Manual:

COMMENTS:

Please Print

Name Title

Company Division

Street Mail Drop Phone

City State Zip

For Additional Motorola Publications Four Phase/Motorola Customer Support, Tempe Operations
Literature Distribution Center (800) 528-1908

616 West 24th Street (602) 438-3100

Tempe, AZ 85282
(602) 994-6561

@ MOTOROLA




