M6B8KTENBG/D2

TENbug Debugging Package
User’s Manual

[———————

QUALITY e PEOPLE ¢ PERFORMANCE

M68KTENBG/D2

MAY 1984

TENbug DEBUGGING PACKAGE

USER'S MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or
the rights of others.

I/Omodule, SYSTEM V/68, TENbug, VERSAdos, and VME/10 are trademarks of Motorola
Inc.

The computer programs stored in the Read Only Memories of this device contain
material copyrighted by Motorola Inc., first published 1983, and may be used
only under a license such as the License for Computer Programs (Article 14)
contained in Motorola's Terms and Conditions of Sale, Rev. 1/79.

Second Edition
Copyright 1984 by Motorola Inc.
First Edition September 1983

TABLE OF CONTENTS

Page
CHAPTER 1 GENERAL INFORMATION

INTRODUCTION cecococsvcccscccccscccscaccssscsasscsosscsssacocscoss 1—1
DEFINITION OF TENDUG eeeeececccecccecccscecscscsccconnnssnss 1-1
TENbug INTERNAL STRUCTURE .eceececccsccncsscccccccsssosascnsses 1—1
MoMOYY MAD eesecsscescsscscscssscscsssscsscscscsccssscssssssssssce 1—1
Vectors and EXYOYS seeeececcesccccsccssecssccccssosssscrnse 1-2
Resetting Vector Base RegiSter eeceecessecsscsscscassessss 1-3
DiSK I/O eseeeeccsceccoasscscccosvscsscsesscsocscsssscssasssae 1-4
TENbUG WITH SYSTEM V/68 eecevecccccscoscoscsssscascsassssses 1-4
1 Operational COMMANAS eeeesccccsescsccscscoscssassccccscsce 1-4
2 Debugging CommAndS eeceeessesssccccsscssscssssssssccsssssss 1=5
3 Non-Applicable ComMANAS seseessescssscsscssscssssssassssse 1=5
REFERENCE MANUALS cececccccsscscsccscosscscssscsccsscsscsscsncasease L—D

[] . L] L] L] L] L o
VDB LWWWWWN
* [] * L]
WNN -
[]
'_l

HHERFRRPHRFHEHRH P

CHAPTER 2 TENbug OPERATING PROCEDURE

INTRODUCTION ecececocecsscsscsssscsoscacecsascscccsscsssasscsscsscnce
CHASSIS CONTROL SWITCHES «eovecoscsccscoscacscsssscsscsassscs
TERMINAL CONTROL CHARACTERS ccccsccsccesccccnccceascssccscosse
HEADER J2 cecsescccasccscassccscsscscasssscscscssssasscsscscsassss
ENTERING TENbug DURING SYSTEM POWER-UP (COLD START) seceoses

Cold Start without MVME400 MOAULE eeeeccccccssccsscncsosnes

Cold Start with MVME400 MOAUIE seeeeeccccsnccccccscscnnnns
ENTERING TENbug VIA SIMULATED COLD START scececsccccccccccsce
ENTERING TENbug WITHOUT DESTROYING MEMORY CONTENTS

(WARM START) cececccccccoccccscsscascscssscscsascssscsosscscscnsce
TENbug COMMAND OPERATION ceeeccccvosccccosescosscsscsccssnsoce
WHEN TENbug PROMPT FAILS TO APPEAR cesecescssccccssscsccsnccss
ROMBOOT FACILITY cecccccccccccccccscsesscssccsssssssssossccsnce
OFFLINE KEYBOARD COMMAND ceoeccocsoscccscsoscssossscsssocsce 2—12

NNN[?)NNN[\.)
QNN

o
N -

NN
~NoutoodbdwN

e 0
PYY
()W) WE,}

L] L]
- O
N
|
o

NN NN
L]
= WO o

CHAPTER 3 COMMAND LINE FORMAT

INTRODUCTION eeeccececcsccesccsoccsoccscssoscscssasscssessoscsescsss 3—L
TENbug COMMAND LINE FORMAT seeesssescscssscccsssonsccscosssase 3—2
Expression as a Parameter seeceeescscescscsssccesssssscnss 3=2
Adress as a Parametel ceesecescesccccsscsscccccssssccsnsce 3—2

1 Address FOIMAtS seesecescccococsscecsscssscssssossvsecscsas 3—3
2 Offset RegiSterS sececeesceessccsassoscscascsosassssssss 3-3
COMMAND VERIFICATION ceceeccecocosscosccsssccsocsssscscessosse 3—4

CHAPTER 4 COMMAND SET

INTRODUCTION coesveoccsocsansscscscssssencssoscccscscsssssassnses 4—1
TENDUG COMMANDS «eeoecssovocassssssccccsassccccsassosccoscsce A=2
.1 Display/Set Register (.<regiSter>) seseecceecsscsssccssscses 43
2 Draw Graphics Bars Test Pattern (BARS and NOBARS) eececees 4-4
03 BlOCk Fill (BF) © 00 0000000000000 000000000000000000008000000 4 5
4 Bootstrap Halt (BH) seceececcecsccccccscscsscscnccsscsncsse 4-6

TABLE OF CONTENTS (cont'd)

Page :

Block Initialize (BI)eececsscssssccccssccsoscscvscsccssseses 4=7
Block MOVE (BM) ceeececececccacccccccascnsncccscocsccvsncs 48
BOOtStrap Operating Systan (Bo) 000600000000 00c000000000000 4‘9
Breakpoint Set and Remove (BR and NOBR) seeesoseeccccssses 4=12
Block of Memory Search (BS) R R R R R R R N R A I 4‘14
BlOCk of Manory Test (BT) © 0000000000000 00000000000000000s 4"16
Character RAMDiSplay (CH) 00000 eecercsrrererrnccresooos e 4-17
CRT Control Register Modification (CRT) seceesesescscscsss 4-18
Checksum (CS) © 0000 000000000000 000000000000000000006000000° 4"19
Data Conversion (DC) 0 0000000000000 0000000000000000000000 4-22
Display Formatted RegisStersS (DF) eeessesccccescssssscssces 4-23
Dump Memory (S-RecordS) (DU) e00sc00ss0000000000000000s000 e 4‘25
Go Direct Execute Program (GD) eeessscccscsccssccsscssscse 4=27
Go Execute PrOgram (GO) L N N N AN Y 4“28
Graphics RAM Display (GR and NOGR) eeccssesssssecccssscsns 4-30
Go Until Breakpoint (GT) eeceeccccccccoscssssscscscssscsses 4=31
I‘Elp (HE) ooooo-oo-o-oo‘ooocoq'oooooco.oooooooooo-o'o'oooo‘ 4-32
I/O Command for DiSk (IOC) R I 4—33
I/O Physical fOlf Disk (IOP) 0000000000000 000000000000000 0 4"‘36
I/0 Teach for a DiSK (IOT) cececcscccvrccosssssoccscsnssees 4=38
Load (S-Records) (LO) eeeecececcescscssccercssesccncsccsnss 4—41
Memory Display (MD) 00000000000 00000000000000000000000000 4—44
Memory MOdify (MM) eeeeccccscscccccsoscssccscccccccscccccnsee 4=47
MemOl’.'y Set (MS) 000 0000000000000 000 0000060000000 0000000000 4"50
Display Offsets (OF) ® 0 00O OO OO O OPOOOOPOOOOPSECIOEPOEOOESEOEPSEISITPOSNS 4-52
Printer Attach and Detach (PA and NOPA) cesccccescsssssese 4=53
POrt Fomat (PF) © 00 0000000000000 0000000000000000000000000 4"'54
Transparent Mode (TM) eseeeececccseccccssscsscscssescsscsssss 4—61
'I‘race (TR) 9000000000000 000000000000000000000000000000000 4""63
Trace to Temporary Breakpoint (TT) seecececcsccscsccceccessses 4-65
Verify (S—Records) (VE) esesesscccccsccscssssscsssssssscescss 4=66
VideO Map (W) 0 0000000000000 00000000000000000000 0000000 4-68
COmAND SUMRY P 000000 00O OO OO0 OLPOPOCONOEORPONSIOSEPOSIOSIEOSIEONEOSIESIEDIPIOSETPOSES 4-69

. L[] L[] . *
L] L L] L] .

.
e o e o o o o

L] . L[]] . * L] . L]
.

L]
* e o o

L] - L] o L] .

L] ® L]

WWWWWWWRNNNDNDNDNDNDONDHEEHEEHEHEEHEHEHEEREEEOOOIONO

AU WNHOWONOTUMIBWNHFHFOWONOAUTIEdWNEHO

. L] L] L] . L] . L] - * L] L] L L] L]
L] L] L) L]

WD

CHAPTER 5 USING THE ASSEMBLER/DISASSEMBLER

INTRODUCTION ® 0000000000000 000000000000900000000000000s0000 5"1
M68010 Asse[nbly Language R XN R R IR W WA S A AN I A AT AP A 5-1
Machine-Instruction Operation COdeS secessescccssssesse H-1
Directives O 0 000 0P P POOOPOPNOOPPPOOINNIENINOONSEOINIOPIOEOSNENPLNOESIEOPINOIPOCIOTEDS 5_1
Comparison with MC68000 Resident Structured Assembler ... 5-2
SOURCE PROGRAM CODING seeecocesccsccoscescecsosseossssocsnncces 5‘2
Source Line FOIMAt ceseeeccccesssssscsssscossossssncrsssse 5-3
Operation Field ©0 0000000000000 000000000000000000000OCTS 5"3
Operand Fi€ld eesecccccessssescsocscsssssososcesccnsosse 5-4
Disassembled Source Line e 0ccescsssssesssecsnscssnsee 5-4
Mnemonics and Delimiters eceeeececcccscoccscsccccccscss 5-4
Character %t 0 00O PO DOOOPOOODPOEOOOPOOOOOSPIOIOLEIBPOEOSEISIOEDILIPIOLEDS 5—6
Instruction Summary te0sescs0s0c0ssrs00ssssess0c0ssst e 5-6

. L) L[]

NN
L]

.
N -

L]
L]
o

*
L]

L] L]
SR RSN IR S ol =k
(] L]

*« o
e o
Ul W

vttt

L] * L] [] - L] L]

ii

L] .

[0 O IC, I, JC, R0, O, 0, IO, IV, I, IE

CHAPTER 6

A Oy O
*« o o
wWnN -

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

FIGURE 2-1.
2-2.
5-1.
5-2.
5-3 L4
5-4.
5-5.
5_6 .
5-7.
5-8.

4—2 [

[PV

TABLE OF CONTENTS (cont'd)

ENTERING AND MODIFYING SOURCE PROGRAMS ccscccccccscsoccccanes
Invoking the Assembler/DisassembleYr cceceecccscssccsscsces
Entering a SOUrce LiNE .eecescecsccccscccccscosccscscsocsns
Program Entry/Branch and Jump AJAreSSES ceeeseseccssssccces

Entering Absolute AJJYeSSES eceveccccccscsssssccsssscacss
Desired Instruction FOIM cceeesccccscccccscscssnscscsases
Current LOCAtiON eeecececcseccscoscsssccscscsscasscccsne
Assembler Output/Program LiStingS eeeeececsccsccccsscsaces
Error Conditions and MESSAJES sesssecscssccsossosccssccocs
EXYOY TIAGPS cecesccccscssscscscsscsscoccsccssscsssosssccs
Improper CharaCter eeeeececcccscsssscssssscssssssscsssasss
Number TOO LAYGE eececccccsscsescscsccsscsscscsscssasscccns
ASSEMbly EXYOLS ceeeccccsscocscscacscssssssescsssassccanes

TENbug ROUTINES AVAILABLE TO THE USER

INTRODUC’I‘ION ©® 000800000060 0000000600000600000000000G000OCGILIIOSOIOSIDIIDS
USER I/O THROUGH TRAP #15 © 0000000000000 000000000000000000s0
TENbug SUBROUTINES ® 60 000 0000000000000 0000000000000600000000

SOFTWARE ABORT «cccccceccccscossosescccsossascscssssssssscnsss
TENbUg MESSAGES ccecococcsscccososssssoscescsassssosnasscssce
CONEFIGURATION AREA cececsccsccccccsosssssccccscossscosscnssscse
S—RECORD OUTPUT FORMAT ceeecccecscsccscscscosscscsascssscssscs

LIST OF ILLUSTRATIONS

Flow Diagram of VME/10 COld Start eeececsccecsssceccccssscsses
Flow Diagram of TENbug Operational MOde eeesscecescssescccsnos
Sample Program to Convert ASCII Digit to Hexadecimal Value

ASCII Character Set eeeeecsecesccesscescssssessssscsssscnsses
Sample Program as Entered into VME/10 ceeececcscccccssccscns

Sample P]’.'Ogram Listing #0000 000000 0000000000000 0000RGLREGELIOGITOON

Examples Of ErrOr TrapS ececsssccsscccsssecccscsccccscscscssnne
Examples of Improper CharaCterS eceeecscccccccccssescscsscssscs
Example of a Number Which IS TOO LAYJE sececcoccccscccscsescs
Examples Of ASsSembly EXYOYS ceeesccccccenssccsssccscscccscse

LIST OF TABLES

TENk)ug Comlands byqum ® 800000000080 OPO OO0 PP OTOLOSONEIESESSLEOEGE
TENbug Command and Option SUNMMALY eeececsccccsccsssscsssscsces

iii/iv

Page

5-7

5-9

5-9

5-10
5-10
5-11
5-11
5-12
5-13
5-13
5-14
5-15
5-15

S
W

A-1
B-1
C-1
D-1

Page

2-3
2-7
5-7
5-8
5~10
5-12
5-13
5-14
5-15
5-16

CHAPTER 1

GENERAL, INFORMATION

1.1 INTRODUCTION

This manual describes the debugging monitor TENbug as it is used in the VME/10
Microcomputer System, hereafter referred to as the VME/10.

1.2 DEFINITION OF TENbug

TENbug is the resident firmware debugging package for the VME/10. The 32K-byte
firmware (stored in ROM or EPROM devices) provides a self-contained programming
and operating environment. TENbug interacts with the user through predefined
commands that are entered via the terminal. The commands fall into five general
categories:

a. Commands which allow the user to display or modify memory.

b. Commands which allow the user to display or modify the various internal
registers of the MC68010.

c. Commands which allow the user to execute a program under various levels
of control.

d. Commands which control access to the various input/output resources on
the board.

e, Commands which allow the user to select and test video features and
graphics resolution.

An additional function called the TRAP #15 I/O handler allows the user program
to utilize various routines within TENbug. The TRAP #15 handler is discussed in
Chapter 6.

The operational mode of TENbug is described in Chapter 2.

1.3 TENbug INTERNAL STRUCTURE
1.3.1 Memory Map

The following abbreviated memory map for the VME/10 highlights addresses that
might be of particular interest to TENbug users. Refer to the WVME/10
Microcomputer System Reference Manual for a complete description of the memory
maps for both high- and low-resolution graphics modes.

Note that addresses are assumed to be hexadecimal throughout this manual. In
text, numbers may be preceded with a dollar sign ($) for identification as
hexadecimal.

RAM LOCATION FUNCTION

0-3FF Vectors
400-AFF Work area and stack for TENbug

SPECIAL LOCATIONS FUNCTION

F00000-F00007 Area containing initial wvalues for supervisor stack
pointer, program counter, and vector base register after
cold start

F14000-F14FFF Area used to define programmable "soft" character set

I/0 LOCATION FUNCTION

F1C1C9 Serial port 2 (host), serial I/0 card (optional)

F1CI1CB Serial port 3 (host), serial I/0 card (optional)

F1Cl1El Parallel port 1 (printer), parallel 1I/0 card (optional)

F1C1E9 Parallel port 2 (printer), parallel I/O card (optional)

F1COD1 Base address of RWIN1 Disk Controller

l.3.2 Vectors and Errors

TENbug shares resources with the target program under test -- that is, each
affected resource can be used only by TENbug or the target program at any given
time.

Exception vectors are memory locations from which the processor fetches the
address of a routine which will handle the exception. These vectors are
initialized by TENbug in default memory locations 0 through $3FF during a cold-
or warm-start sequence (see Chapter 2). If the target program uses any of these
locations, the user values must be rewritten following each cold or warm start.
If the target program uses any of the following locations, the associated
function will be lost to TENbug.

MEMORY LOCATION TENbug FUNCTION

10-13 Breakpoints (illegal instructions)

24-27 Trace '

BC-BF TRAP #15 user calls to TENbug

138-13B ABORT pushbutton switch on VME/10 operator panel

(refer to Appendix A)

The vectors with default memory locations of $80 through S3FF cause a ???? ERROR
TRAP message to be displayed on the console terminal. In addition, several of
the vectors cause display of appropriate information. (Refer to Appendix B for
a list of error messages.) BUS and ADDR error traps also cause display of the
exception status from the stack, in hexadecimal characters, as shown in the
following example.

____ Status Register
____ Program Counter Address
____ Frame Format and Vector Offset

___Special Status Word

Fault Address

27&9 00F0533A 8008 l3$5 00F1C030 0000 0020 0000 20FF OOFO0 2007 067A
5338 0000 OOF1 2007 C030 OOF0 533C FFEl 0000 0394 1E14 0000 0004 1E14 0003

BUS ERROR TRAP

For additional information on this display, refer to the bus error, address
error, and the reference classification descriptions in the exception processing
chapter of the M68000 16/32-Bit Microprocessor Programmer's Reference Manual.

1.3.2.1 Resetting Vector Base Register. The MC68010 processor upon which the
VME/10 is based features a Vector Base Register (VBR) which contains the base
(starting) address for the VME/10 exception vectors. Exception vectors are
located in memory addresses 0 through $3FF relative to the VBR. Upon reset
(cold or warm start) of the MC68010, the value of the VBR is set to zero.

TENbug must have control of the exception vectors to function properly. If the
user sets the VBR to a value other than its default value of zero, he must also
establish a new set of exception vector memory locations for the VBR value. In
other words, the user must copy all existing vector memory locations to the same
relative location in the new VBR table.

In the following example, the VBR value is changed from 0 to 10F00. Exception
vector memory locations must also be copied to this new location. Note that the

content of each vector memory location (i.e., the appropriate routine address)
remains the same.

VBR = 0 VBR = 10F00
0 10F00
00000444 00000444
4 10F04
0000044C 0000044C
8 10F08
00000454 00000454
C 10F0C
/ %
J/ /) / /
/ / /
/
3FC 112FC
000008a4 000008A4

1-3

1.3.3 Disk 1/0

TENbug provides limited support of disk I/0 through a Winchester Disk
Controller. The commands supported are BH, BO, IOC, IOP, and IOT. Each of
these commands does a read of the volume ID found on sector 0 of a disk.

NOTE

A sector is 256 bytes. The disk controller maps
physical sectors on various disks into virtual
256~byte sectors at the controller interface.

The first 256 bytes of the media are the volume ID. Bytes $F8-SFF of the volume
ID must contain either the ASCII character string "EXORMACS" or "MOTOROLA";
otherwise, an error message will result. For more information on interpreting
the data displayed, see the Winchester Disk Controller User's Manual.

The other information used from the volume ID is:

BYTES USED FOR

$14-517 Starting sector address of program to be loaded (via BH, BO).

$18-519 Number of 256-byte sectors to be loaded.

S1E-S21 Load address (first destination memory byte).

$90-593 Sector address of media configuration parameters (refer to
Appendix C).

$94 Length of configuration area (usually one 256-byte sector).

1.4 TENbug WITH SYSTEM V/68

The following paragraphs list information specific to the use of TENbug with
SYSTEM V/68.

l.4.1 Operational Commands

In the following list, commands given in parentheses indicate the key that is to
be pressed. Commands not given in parentheses are to be typed as shown.

BH Boots the operating system from the fixed disk and halts.

BO Boots the operating system from the fixed disk and gives
control to the program loaded.

(BREAK) Aborts command.

(DEL) Deletes character.

(CTRL-D) Redisplays line.

(CTRL-H) Deletes character.

(CTRL-W) Suspends output; any character continues output.

(CTRL-X) Cancels command line,

1-4

1.4.2 Debugging Commands

The following commands may be useful for debugging, but should be used only in
single-user mode after sync has executed. Use of these commands may result in
the need for system reboot.

«AQ-.A7 BARS, NOBARS * HE
.D0-.D7 BE 10C
.DFC BM I0pP
.PC BR, NOBR I0T
-R0-.R6 BS MD
«SFC CH, NOCH MM
SR CRT MS
.SSP Cs OF
.USP DC PA, NOPA
.VBR DF TR

GD TT

GO

GR, NOGR

GT

* This command modifies graphics memory and should be used only with an
operating system configured to support graphics.

1.4.3 Non-Applicable Commands

The following commands should be used in a stand-alone mode; they should not be
used with SYSTEM V/68.

BI PF
BT ™
DU VE
LO

1.5 REFERENCE MANUALS

Refer to the following documents for more information on the enviromments in
which TENbug is used.

VME/10 Microcomputer System Overview Manual, M6SKVSOM

VME/10 Microcomputer System Diagnostics Manual, M68KVSDM

VME/10 Microcomputer System Reference Manual, M68KVSREF

VERSAdos to VME Hardware and Software Configuration User's Manual, MVMEDOS
Winchester Disk Controller User's Manual, M6SRWINL

MVME400 Dual RS-232C Serial Port Module User's Manual, MVME400

MVME410 Dual 16-Bit Parallel Port Module User's Manual, MVME410

M68000 16/32-Bit Microprocessor Programmer's Reference Manual, M68000UM

1-5/1-6

CHAPTER 2

TENbug OPERATING PROCEDURE

2.1 INTRODUCTION

The following procedures enable the user to enter TENbug. For information on
system installation, self-test diagnostic programs, and operating system
initialization, refer to the VME/10 Microcomputer System Overview and
Diagnostics manuals.

2.2 CHASSIS CONTROL SWITCHES

Before attempting to initiate TENbug, the user should be familiar with the
operator panel located at the bottom left corner on the front of the VME/10
chassis. This panel contains the following control switches which are supported
by TENbug. Use of these switches is described in paragraphs 2.5 through 2.7.

a. - The amber-colored power on/off rocker<arm switch is used to
turn on power to the VME/10 and initiate the power-up/reset self-test
(PWRT) . When the 0 side is pressed, power is off; when the 1 side is
pressed, power is on.

b. KYBD LOCK - The KYBD LOCK key switch controls a bit in a register which
is monitored by TENbug. When the key switch is in the locked (vertical)
position, VME/10 performs an automatic BO command from device 0 (this
usually starts the operating system). When the key switch is in the
unlocked (horizontal) position, VME/10 enters TENbug. Also, when the key
switch is in the locked position, the front panel pushbutton switches
RESET and ABORT, as well as the keyboard, are inoperative. This feature
provides protection from inadvertent panel interrupts during system
usage.

C. RESET - When this momentary-action pushbutton switch is pressed, it
resets the VME/10 logic circuits. If the VME/10 is in the operating
system, TENbug is entered by pressing RESET (provided the KYBD LOCK key
switch is in the unlocked position). Because pressing RESET can cause
indeterminate results, read the warm start description in paragraph 2.7
before using this switch.

d. ABORT - When this momentary-action pushbutton switch is pressed (provided
the KYBD LOCK switch is in the unlocked position), the VME/10 enters
TENbug, but the VME/10 logic circuits are not reset. After an abort, the
user can enter the character G to continue execution of the current
program prior to the abort. Appendix A describes what occurs when the
ABORT switch is pressed.

e. RESET and ABORT - These buttons may be used in combination to accomplish
the same thing as the on/off switch (item a.) without cycling power.
This simulated cold-start sequence is described in paragraph 2.6.

2.3 TERMINAL CONTROL CHARACTERS

Several keys are used as command line edit and control functions. The user
should be familiar with these functions before using TENbug. The functions
include:

a. DEL key or CTRL H - will delete the last character entered on terminal.
b. CTRL X - will cancel the entire line.
c. CTRL D - will redisplay the entire line.

d. <--| (carriage return) - will enter the command line and cause
processing to begin.

e, CTRL W - will suspend system output to the terminal. To resume output to
the terminal, any character can be entered.

f. BREAK - will abort commands that do any console I/0 and return to the
input routine.

For characters requiring the control key (CTRL), the CTRL should be pressed and
held down, and then the other key (H, X, D, or W) should be pressed.

2.4 HEADER J2

The configuration of pins 5 and 6 on header J2, located inside the VME/10
chassis, determines whether the power-up reset (PWRT) self-test is performed
upon system initialization. It also allows generation or suppression of the
"Booting from ROM: xxxx" message at the close of the ROMBOOT procedure (refer to
paragraph 2.10). When a jumper is placed on pins 5 and 6 of J2, as in initial
VME/10 factory configuration, the PWRT self-test is performed during the
cold-start and warm-start sequences described in the following paragraphs. This
jumper also allows display of the ROMBOOT message when control is passed to
TENbug. When the jumper is removed from pins 5 and 6 of J2, no PWRT self-test
is performed and the ROMBOOT message is suppressed.

2.5 ENTERING TENbug DURING SYSTEM POWER-UP (COLD START)

Invoking TENbug using the cold-start technique causes the contents of all memory
to be destroyed. It also causes the VME/10 system to place the contents of
addresses SF00000-SF00003 into the supervisor stack, and the contents of
SF00004-$F00007 into the program counter. These addresses are located in system
ROM. Figure 2-1 illustrates a flow diagram of the VME/10 cold-start procedure.
The following paragraphs assume that a jumper is present on pins 5 and 6 of J2.

2-2

PWRT \
SELF-TEST \

IS KYBD LOCK
LOCKED?

NO
INITIALIZE
TENbug

— —— — — — — — — —— —— — — — —

FIGURE 2-1.

BOOT
PROGRAM
(USUALLY

OPERATING
SYSTEM)

Flow Diagram of VME/10 Cold Start

2.5.1 Cold Start without MVME400 Module

This method allows the user to enter TENbug during system power up when no
MVME400 (Dual RS-232C Serial Port) module is present in the VME card cage.

a. Set the KYBD LOCK key switch on the operator panel to the unlocked
position.

b. Apply power to chassis. When power is applied, the PWRT self-test is
initiated.

c. If PWRT self-test indicates no errors, the TENbug prompt and version
nunber will appear on the screen:

TENbug 2.x >

2.5.2 Cold Start with MVME400 Module

This method allows the user to enter TENbug during system power up when an
MVME400 module is present in the VME card cage.

a. Set the KYBD LOCK key switch on the operator panel to the unlocked
position.

b. Apply power to chassis. When power is applied, the PWRT self-test is
initiated.

c. If PWRT self-test indicates no errors, the firmware displays a prompt
without a version number.

TENbug >

It then awaits input from the first device to be used, which will be the
console terminal.

d. Select the terminal to serve as the console keyboard. This device will
remain the console device until the VME/10 is restarted with a warm- or
cold-start procedure.

e. Press the carriage return key on the chosen keyboard to obtain the
complete TENbug prompt with version number.

TENbug 2.x >

2-4

2.6 ENTERING TENbug VIA SIMULATED COLD START

A cold-start sequence (the equivalent of turning the power off and on) can be
simulated when the KYBD LOCK switch is set to the unlocked position. Use the
RESET and ABORT buttons as follows:

a. Press and hold RESET button.
b. Press and release ABORT button.
c. Release RESET button,

d. When an MVME400 module is not present in the VME card cage, go to step c.
of paragraph 2.5.1.

e. When an MVME400 module is present in the VME card cage, go to step c. of
paragraph 2.5.2.

Like the true cold-start sequence, this method will erase all memory contents
and will execute the PWRT self-test. It will also place the contents of ROM
addresses S$F00000-SF00003 into the supervisor stack, and the contents of
SF00004-$F00007 into the program counter. In other words, it translates the ROM
at SF00000 to location $000000, so that the RAM at location 0 is mapped out of
the system.

2.7 ENTERING TENbug WITHOUT DESTROYING MEMORY CONTENTS (WARM START)

This method allows the user to enter TENbug without destroying the contents of
the VME/10 memory. However, using the warm-start sequence (pressing RESET only)
causes the VME/10 to place the contents of RAM addresses $0 through $3 into the
supervisor stack, and the contents of $4 through $7 into the program counter.
It also sets the processor to supervisor state.

CAUTION
BECAUSE THESE ADDRESSES ARE LOCATED IN RAM,
THE USER CAN OVERLAY ANY DATA OR ADDRESS
INTO THESE REGISTERS, IN WHICH CASE RESULTS
ARE INDETERMINATE,
a. Set the KYBD LOCK key switch to the unlocked position.
b. Press the RESET button on the operator panel.

c. When an MVME400 module is not present in the VME card cage, go to step c.
of paragraph 2.5.1.

d. When an MVME400 module is present in the VME card cage, go to step c. of
paragraph 2.5.2.

2.8 TENbug COMMAND OPERATION

After TENbug initialization, the computer waits for a command line input from
the console terminal. A standard input routine controls the system while the
user types a line of input. Command processing begins only after the line has
been entered, followed by a carriage return. When a proper command is entered,
the operation continues in one of two basic modes. If the command causes
execution of a user program, the TENbug firmware may or may not be reentered,
depending on the discretion of the user. For the alternate case, the command
will be executed under control of the TENbug condition. During command
‘execution, additional user input may be required, depending on the command
function.

Figure 2-2 illustrates the VME/10 operational mode.

NOTE

If a command causes the system to access an unused address
(i.e., no memory or peripheral devices are located at that
address), a bus trap error will occur. Unless default
vectors have been overwritten, the terminal displays a trap
error message and the contents of all MC68010 registers.
Control is then returned to the TENbug monitor. A bus trap
error also occurs if the system attempts to write to ROM.

2.9 WHEN TENbug PROMPT FAILS TO APPEAR

Refer to Chapter 2 of the VME/10 Microcomputer System Diagnostics Manual for
instructions if the PWRT sequence fails and/or no TENbug prompt appears during
one of the procedures listed in this chapter.

2.10 ROMBOOT FACILITY

When the VME/10 completes its preliminary initialization, pins 5 and 6 of header
J2 are checked to determine whether the PWRT self-test should be executed. If
not, TENbug receives control immediately; if so, it receives control after
execution of the self-test. After control is passed to TENbug, a routine in ROM
can be executed (if the ROM meets the format requirements). This feature, which
provides the ability to transfer control to an external ROM routine at power up
or cold start, is named ROMBOOT.

A module requiring the use of ROMBOOT linkage must meet the following three
requirements:

a. The routine must be located in the VME/10 memory map between addresses
$180000 to SFFE000.

b. The ASCII string "BOOT", followed by some linkage convention information,
must be located on an 8K boundary within the memory range.

c. The routine must pass a checksum test applied from the first to the last
byte of the module.

2-6

INITIALIZE

COMMAND
LINE INPUT

NO

FROM
TERMINAL

EXECUTE
COMMAND
FUNCTION

YES

DOES
COMMAND LINE

NO CAUSE USER PROGRAM

EXECUTION?

FIGURE 2-2.

YES

BEGIN
EXECUTION
OF USER
PROGRAM

Flow Diagram of TENbug Operational Mode

NOTE

There is no requirement that the routine reside
in ROM; it can be loaded into a RAM module and
then invoked by a cold start.

To prepare a module for ROMBOOT, the CS command must be used. When the module
is ready it can be loaded into RAM, and the checksum generated, installed, and
verified with the CS command. (Refer to the Checksum command description and
examples.)

The format of the beginning of the routine is as follows:

MODULE OFFSET LENGTH CONTENTS DESCRIPTION
$00 4 BOOT ASCII string indicating possible
routine; checksum must be zero,
too.
504 4 Entry address Longword offset from 8K boundary.
$08 4 Routine Length Longword, includes "BOOT to end".
$0C ? Routine name ASCII string containing routine

name (only four bytes displayed).

By convention within Motorola, the last three bytes of ROM contain the firmware
version number, checksum, and socket number. In this environment, the length
would contain the ASCII string "BOOT" (that was on the 8K boundary), through and
including the socket number; however, the user wishing to make use of ROMBOOT
does not have to fill a complete ROM. Any partial amount will be accepted, as
long as the length reflects where the checksum will be correct.

The sequence used to validate a routine for execution begins at the high limit
of memory first and checks for the "BOOT" indicator. Three events are of
interest for any location being tested.

a. If there is no memory at that location, a bus error is generated. The
ROMBOOT routine is required to move on to the next 8K boundary.

b. If memory is present, but the first four bytes do not contain BOOT, the
ROMBOOT routine is required to move on to the next 8K boundary.

c. If the ASCII string "BOOT" is located on an 8K boundary, we are not
assured that the routine is really one meant to gain control at power up
or cold start. To verify that this is the case, the bytes starting from
the 8K boundary through the end of the routine (as defined by the 8K
boundary + 4-byte length at offset $8) are run through the self-test
checksum routine. If both the even and odd bytes are zero, chances are
very good that the routine was meant to be used for ROMBOOT.

2-8

The bus error routine address is replaced at location $8 before control is
passed to the routine at the point specified within the header (8K boundary +
contents of offset $4). A JSR instruction which loads the address of the next
instruction within the ROMBOOT routine on the stack allows the routine to return
control to TENbug following some temporary task such as initialization.

In most cases, right before control is actually given to the ROM routine, a
message displaying the first four bytes of the routine name (8K boundary +
contents of $C) is placed on the temminal in the following form:

Booting from ROM: xxxxX
where xxxx are the first four bytes of the name.
If pins 5 and 6 of header J2 are not jumpered, the message is suppressed and the
PWRT self-test programs are not run. This might be desirable if, for example,
no CRT or disk was present on a system.
The following example returns control to TENbug 2.x after placing a test pattern

in a portion of RAM. Notice the use of the CS command to calculate and verify
the checksum.

0T-¢

SAMPLE ROMBOOT ROUTINE - Procedure for preparing checksum

TENbug 2.x > MD 0+R3 4
000000+R3 42 4F 4F 54
000010+R3 41 F9 00 01
000020+R3 FF FC 4E 75
000030+R3 FF FF FF FF FF FF FF FF

TENbug 2.x > M 10+R3;DI

000010+R3 41F90001F000 LEA.L
000016+R3 203CO0OOEFFF MOVE.L
00001C+R3 1100 MOVE.B
00001E+R3 51C8FFFC DBF.L
000022+R3 4E75 RTS
000024+R3 0101 BTST
000026+R3 0000 DC.W

000028+R3 1008 DC.W
00002A+R3 FFFF DC.W
00002C+R3 FFFF DC.W
00002E+R3 FFFF DC.W
000030+R3 FFFF DC.W

TENbug 2.x > CS 0+R3 2A+R3
PHYSICAL ADDRESS=00020000 0002002A
(EVEN ODD)=4B34

TENbug 2.x > M 26+R3;W
000026+R3 0000 ? 4B34.

TENbug 2.x > CS
PHYSICAL ADDRESS=00020000 0002002A
(EVEN ODD)=0000

0

00 00 00 14 00
FO 00 20 3C 00
01 01 00 00 10

$0001F000,A0 ? (CR)
#61439,D0 ? (CR)
DO,-(R0) ? (CR)
D0,$02001C? (CR)

? (CR) —
D0,DI ? (CR)

$0000 ? (CR)

$1008
SFFFF
SFFEF
SFFFF
SFFFF

(CR)
(CR)
(CR)
(CR)

o)) W) N W)

BOOT.......&TeSt
Ay.opo <000000QH
olNUooo-ocoo.-o.

seo0es0ss00000000

Load ROMBOOT routine in RAM to
generate checksum,

Display (in hex) contents of RAM
containing the routine.

Display same memory using
disassembler/assembler. This small
routine loads a test pattern into
RAM and returns to TENbug 2.x.

0101 is revision number of routine.
0000 is value to be replaced by
checksum.

1008 are socket ID's Ul6é and Ul08.

NOTE: The socket ID's are the last
two bytes of the routine.

Calculate checksum from byte 0 to
byte 2A (end of routine +1). Note
that location where checksum is to
be placed must be $0000 to produce
correct checksum bytes.

Enter calculated checksums with MM
command .

Issue CS command to verify zeros
are produced. Notice the operands
from the previous CS command are
retained for verification.

T1-¢

SAMPLE ROMBOOT ROUTINE - Procedure for preparing checksum (cont'd)

TENbug 2.x > MD 0+R3 40

000000+R3 42 4F 4F 54 00 00 00 14
000010+R3 41 F9 00 01 FO 00 20 3C
000020+R3 FF FC 4E 75 01 0
000030+R3 FF FF FF FF FF FF FF FF

TENbug 2.x >

mowm
AAES
EREREIN

1 4B 34

333%
49
';E'TJOO\

BOOT.......&'IESt
Ay. -po <ooOo ooQH

.|Nu..K4........

0000000000000

Display memory one more time with

checksum in place.

2.11 OFFLINE KEYBOARD COMMAND

Pressing the SEL key places the VME/10 keyboard and local CRT display into local
mode (offline to TENbug commands). Then uppercase, lowercase, and special
characters are displayed on the local VME/10 CRT display when they are entered
on the keyboard. To exit local mode, press the SEL key again; TENbug will
resume control of the keyboard and CRT display.

Five function keys provide support for the character attributes as follows:

Fl1 Character blink

F2 Character underline

F3 Character inverse video
F4 Character protect

F5 Character color

Functions controlled by keys Fl1 through F4 are enabled by pressing the
appropriate function key, whereas pressing SHIFT and the same function key
disables the function. The character-color function increments through eight
colors or shades of green each time the F5 key is pressed.

The offline feature is particularly useful in bulldlng sample screens for
applications under development.

2-12

CHAPTER 3

COMMAND LINE FORMAT

3.1 INTRODUCTION

Commands are entered in buffer-organized fashion. A standard input routine
controls the system while the user types a line of input. Processing begins
only after the carriage return has been entered.

Many primitive commands can be altered by the options field. This provides the
user several extensions to the primitive commands.

Several commands are set and reset pairs; i.e., rather than having two primitive
cammards, the form NO is added as the first two characters of the command. For
example, the set breakpoint command is BR, and the reset breakpoint command is
NOBR.

Command line formats are presented in a modified Backus-Naur Form (BNF).
Certain symbols in the syntax may be used, where noted, in the real 1/0. Others
are metasymbols, which are used for definition only and are not entered by the
user., These metasymbols and their meanings are as follows:

< > Angular brackets enclose a symbol, known as a syntactic variable,
that is replaced in a command line by one of a class of symbols it
represents.

| This symbol indicates that a choice is to be made. One of several
symbols, separated by this symbol, should be selected.

[1 Square brackets enclose a symbol that is optional. The enclosed
symbol may occur zero or one time.

[1... Square brackets followed by periods enclose a symbol that is
optional/repetitive. The symbol may appear zero or more times.

In the examples given in the following paragraphs, operator entries are shown
urderscored for clarity only -- i.e., the underscore is not to be typed.
Operator entries are followed by a carriage return unless otherwise specified.
The carriage return is not shown in examples except where it is the only entry,
in which case it is shown as (CR).

3-1

3.2 TENbug COMMAND LINE FORMAT
The format of the TENbug command line is:

TENbug 2.x > [NO]<command> [<port number>] [<parameters>] [;<options>]
where:

TENBUG 2.x > Is the basic TENbug prompt. For prompt variations, see
appropriate command descriptions.

NO Is the negative form (opposite) of primitive command.
command Is the primitive command.
port number Specifies the applicable device port.

parameters Can be of the form <expression> or <address> and are usually
separated by spaces.

options Specifies applicable options; multiple options may be
selected.

The basic command form consists of the primitive command field and the
parameters field, although some primitives do not require parameters. Some
primitive commands allow specification of alternate device ports. The
additional command negation and options field can modify the primitive command.

If an option exists for a command, a semicolon (;) plus <options> field(s) are
added to the command. Thus, several extensions can be provided to the user.

3.2.1 Expression as a Parameter

An <expression> can be one or more numeric values separated by the arithmetic
operators plus (+) or minus (-). Numbers are assumed hexadecimal except for
those preceded by an ampersand (&), which are decimal. In the assembler,
numbers are assumed decimal unless preceded by a dollar sign ($).

3.2.2 Address as a Parameter

Many commands use <address> as a parameter. The syntax accepted by TENbug is
the same as that accepted by the assembler, plus a memory indirect mode. Also,
contained within TENbug are eight offset registers designated RO through R7.
These registers are software registers only, and are provided for easier
debugging of relocatable code.

3.2.2.1 Address Formats.

FORMAT EXAMPLE DESCRIPTON

expression 140 Absolute address (offset register =zero is
addeq) .

expression+offset 130+R5 Absolute address plus offset register five (not
an assembler-accepted syntax) .

expression+offset 1504R7 Absolute address (offset register seven is
always zZero; not an assembler-accepted
syntax) .

(2Q) (A5) Address register indirect.

(a@,DQ) (A6,D4) Address register indirect with index.

(AQ,AQ)

expression (AQ) 120(A3) Register indirect with displacement.

expression(AQ,DQ) 110(A2,D1) Address register indirect with index plus dis-

expression(A@,AQ) placement.

[expression] [100] Memory indirect (not an assembler-accepted
syntax) .

3.2.2.2 Offset Registers. Eight software registers (not actually hardware
configured) are used to modify addresses contained in TENbug commands. The
first seven registers (.R0-.R6) are used as general-purpose offsets, while .R7
(the eighth register) is always zero. The contents of the registers can be
displayed by the offset command (OF), paragraph 4.2.29, and modified by the
.{register> command, paragraph 4.2.1l.

The offset registers are always reset to zero at power up. Thus, if their
contents are not changed, the registers will have no effect on the entered
address.

Unless another offset is entered, each command that expects an address parameter
automatically adds offset RO to the entered address -- that is, if RO = 1000,
the following commands are the same:

BR 10 (10 + 1000) RO is added by default
BR 10+R0O (10 + 1000)
BR 1010+R7 (1010 + 0) R7 is always zero

The physical address for each of these commands is 1010.

Offset RO is automatically added to the offset registers any time they are
modified. The only exception to this is when another offset register is
specifically added. Offset registers may be set to zero by adding R7 (always
zero) to zero.

EXAMPLE:
.RO 0+R7 (RO=0+0=0) RO set to zero
.RL 8 (RL=8+0=298) Offset RO is zero, Rl is set to 8
.RO 100 (RO = 100 + 0 = 100) Offset RO added
.RO 200 (RO = 200 + 100 = 300) Offset RO added
.R3 100+R1 (R3 = 100 + 8 = 108) Offset RO not added
+RO O0+R7 (RO=0+0=0) RO set to zero

3.3 COMMAND VERIFICATION

As an aid to the user, TENbug displays for most commands its interpretation of
the values entered as expression and address parameters. The results are
displayed in either physical or logical format, depending upon the command
entered.

EXAMPLES:

TENbug x.y > .RO 1000

TENbug x.y > .PC 0

Logical Format Example

TENbug x.y > MD 0
000000+R0O 4E 71 4E 71 4E 71 4E 71 4E 71 00 00 OF 90 00 00 NONGNGNONJe oo oo

Physical Format Example

TENbug x.y > GT 8
PHYSICAL ADDRESS=00001008
PHYSICAL ADDRESS=00001000

AT BREAKPOINT

PC=00001008 SR=2700=.57..... USP=00012C5C SSP=0000085E VBR=00000000 SFC=1 DFC=0
DO-7 00304E71 00001000 4E711000 00000000 00004E71 0000002C 00001008 00000000

A0-7 000004DA 00000000 00001000 0000053A 00001002 00000551 00000551 0000085E
PC=000008+R0 4E71 NOP

Commands entered are also checked for validity. For example, specifying an
address parameter which would result in an error may cause the message INVALID
ADDRESS=xxxxxxxX to be displayed on the console terminal. A table of TENbug
error messages is provided in Appendix B.

CHAPTER 4

COMMAND SET

4.1 INTRODUCTION

Chapter 4 describes the command line syntax and provides one or more examples
for each command in the TENbug command set. Table 4-1 lists TENbug command
mnemonics by type. For SYSTEM V/68-specific information about TENbug commands,
refer to paragraph 1l.4.

TABLE 4-1. TENbug Commands by Type

COMMAND

MNEMONIC DESCRIPTION

MD Memory display/disassembly

MM Memory modify/disassembly/assembly
MS Memory set

+A0-.A7 Display/set address register

.DO-.D7 Display/set data register

.DFC Display/set destination function code
.PC Display/set program counter

.SEC Display/set source function code

«SR Display/set status register

.SSP Display/set supervisor stack pointer
.US Display/set user stack pointer

«VBR Display/set vector base register

DF Display formatted registers

BF Block of memory fill

BI Block initialize

BM Block of memory move

BS Block of memory search

BT Block of memory test

DC Data conversion

.R0O-.R6 Display/set relative offset register
OF Display offsets

TABLE 4-1. TENbug Commands by Type (cont'd)

COMMAND

MNEMONIC DESCRIPTION

BR Breakpoint set

NOBR Remove breakpoint

GO Execute program

GT Go until breakpoint

GD Go direct execute program

TR Trace

TT Trace to temporary breakpoint
PA Printer attach

'NOPA Detach printer

BARS Draw graphics bars test pattern
NOBARS Clear graphics bars test pattern
CH Display character data

NOCH Remove character data from screen
CRT Modify CRT control registers
Cs Checksum

GR Display graphics RAM

NOGR Remove graphics RAM from screen
PF Port format

™ Transparent mode

M Video map

HE Help

DU Dump memory (S-records)

LO Load (S-records)

VE Verify (S-records)

BH Bootstrap halt

BO Bootstrap operating system

I0C 1/0 command for disk

1op I/0 physical for disk

10T I/0 teach for disk

4.2 TENbug COMMANDS

A complete description of each TENbug command is provided in the following
paragraphs. Messages resulting from error conditions during command execution

are described in Appendix B.

4-2

4.2.1 Display/Set Register (.<register>) .{register>

.{register> [<expression>]

The .<{register> commands allow the user to display or modify individual
registers. Commands with a leading period and the registers displayed/altered
by these commands are:

+A0-.A7 address register

.D0-.D7 data register

.DFC destination function code (used with MC68010 MOVES instruction)
.PC program counter

.RO-.R6 relative offset register (software register)

(refer to OF command)

.SFC source function code (used with MC68010 MOVES instruction)
«SR status register (in the MC68010)
.SSP supervisor stack pointer
.USP user stack pointer
.VBR vector base register
EXAMPLE COMMENT
TENbug 2.x > .PC Display program counter.
«PC=00000A00
TENbug 2.x > .A7 FOO Set address register 7 to SF00.
TENbug 2.x > Rl AOO Set relative offset register 1 to $A00.

TENbug 2.x > OF
RO-7 00000000 00000A00 00000000 00000000 00000000 00000000 00000000 00000000

Display all relative offset registers.

TENbug 2.x > DF

PC=00000A00 SR=2700=.S7..... USP=FFFFFFFF SSP=00000F00 VBR=00000000 SFC=2 DFC=7

DO-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000F00
PC=000000+R1 41F81000 LEA.L $00001000,A0

Display all formatted CPU registers.

4.2.2 Draw Graphics Bars Test Pattern (BARS and NOBARS) BARS
NOBARS

BARS
NOBARS

The BARS command provides a graphics test pattern that can be used to
familiarize the user with a few of the graphics facilities. BARS will create a
color or green scale consisting of eight horizontal and eight vertical bars.
Each bar in a given axis is a different color or shade of green. Where a
horizontal bar intersects a vertical bar, the result is the Exclusive-OR of the
two colors or shades.

For more detailed information about the control registers and graphics RaM,
refer to the VME/10 Microcomputer System Reference Manual.

If NOBARS is entered, the graphics RAM is cleared. If BARS is entered following
a previous BARS command, the system automatically clears graphics RAM before
redrawing the test pattern. If graphics RAM has been enabled (using the GR
commard) , the test pattern can be seen while it is being drawn.

This diagnostic command will support high- or low-resolution mode, with the only
observable difference being that the low-resolution version can be drawn in less
time due to the reduced amount of RAM involved. For more information about
changing from high- to low-resolution mode refer to the description of the VM
command .

See also: [NO]JCH, CRT, [NO]JGR, VM

EXAMPLE COMMENT
TENbug 2.x > GR Display the contents of graphics RAM.
TENbug 2.x > BARS Execute the graphics test pattern command. Notice
both graphics and character data are displayed.
TENbug 2.x > VM Change from high- to low-resolution mode.
TENbug 2.x m> GR Enable graphics again.
TENbug 2.x m> NOCH ‘ Disable the character RAM.
NOTE

Te following commands will not be visible on the
CRT display after execution of the NOCH command.

TENbug 2.x m> BARS Draw test pattern, a little quicker this time.

TENbug 2.x m> GR 2 Allow only the color controlled by bit 2 in control
register 1.

TENbug 2.x m> NOBARS Clear graphics RAM.

TENbug 2.x m> CH Restore the character display.

TENbug 2.x m> VM Change from low- to high-resolution mode.

4-4

4,2.3 Block Fill (BF) BF

BF <addressl> <address2> <pattern>

The BF caamand fills a specified block of memory with a specified binary pattern
of word size. A word boundary (even address) must be given for the starting
<addressl> anmd ending <address2> of the block. The pattern word may be
expressed in hexadecimal (default), decimal, octal, or binary format. Refer to
the DC canmard for symbols used to denote numeric type. If a pattern of less
than word size is entered, the data is right-justified and leading zeros are
inserted by TENbug.

EXAMPLE

TENbug 2.x > MD 900
000900 FF FF 00 00 FF FF 00 00 FF FF 00 04 FF FF 00 00 .ccccecccosccccce

TENbug 2.x > BF 900 90E 4E75
PHYSICAL ADDRESS=00000900 0000090E

TENbug 2.x > MD 900
000900 4E 75 4E 75 4E 75 4E 75 4E 75 4E 75 4E 75 4E 75 NUNUNUNUNUNUNUNU

TENbug 2.x >

4.2.4 Bootstrap Halt (BH) BH

BH [<device>] [,<controller>]

where:
device Is a single hexadecimal digit (0-3) specifying the device to
be used (default = 0).
controller Is a single hexadecimal Adigit (0) specifying the controller

to which the device is connected (default = 0).

The BH command causes data from disk to be loaded into memory and program
control to be given to TENbug. If device and/or controller are not specified,
device 0 and controller 0 are used.

This command works the same as BO, except that control is transferred to TENbug.

See also: BO

EXAMPLE COMMENT
TENbug 2.x > BH Boot Halt from default drive 0, default controller 0.
Booting from: SYS (Message appears only if first four bytes of volume

ID are not null.)

PC=00001694 SR=2700=.S7..... USP=FFFFFFFF SSP=00040E00 VBR=00000000 SFC=2 DFC=7
DO-7 00000000 00000000 00000048 4D453455 4D505500 A987EDCB 00000000 OOO7FFFE
AO0-7 OOF1COD1 00001694 0000067A OOFQ1E2C 00F01350 00000550 00000550 00040E00

PC=001694 46FC2700 MOVE.W #9984,SR
TENbug 2.x >
TENbug 2.x > BH 2 Boot Halt from drive 2, default controller 0.
Booting from: TEN (Message appears only if first four bytes of volume

ID are not null.)
PC=000025D8 SR=2700=.S7..... USP=FFFFFFFF SSP=000014D8 VBR=00000000 SFC=2 DFC=7
DO-7 00000002 00000000 000000AC 4D453455 00000000 00000010 00000000 OOO7FFFE
A0-7 OQF1COD1 000025D8 00000682 O00F01E2C 00F01350 00000552 00000552 000014D8
PC=0025D8 41F814D8 LEA.L $000014D8,A0

TENbug 2.x >

NOTE

To use the BH command, a valid stack value must
be in locations $0-83 of the file being loaded.

4-6

4.2.5 Block Initialize (BI) BI

BI <addressl> <address2>

The BI command initializes word parity in a specified block of memory consisting
of <addressl> through <address2>. No data in any word is changed if parity in
the word is correct. If parity in a word is incorrect, the characters "m?"
($6D3F) are written in that word to force correct parity. If the parity cannot
be set in one or more words, the message BUS TRAP ERROR is displayed on the
console, The BT (Block Test) cammand may be used to isolate the failure(s).

NOTE

Both addresses must be on word boundaries.

See also: BT

EXAMPLE

TENbug 2.x > BI 44000 4FFFE
PHYSICAL ADDRESS=00044000 OOO4FFFE

TENbug 2.x >

4-7

4.2.6 Block Move (BM) BM

BM <addressl> <address2> <address3>
where:
<addressl> Is the starting address of the source memoty block.
<address2> Is the ending address of the source memory block.
<address3> Is the starting address of the destination memory block.

The BM command is used to move (duplicate) blocks of memory from one area to
another,

EXAMPLE

TENbug 2.x > MD BOO A;DI

000B00 1018 MOVE.B (A0)+,D0
000B02 0C000000 CMP.B #0,DO
000B06 67F8 BEQ.S $000B0OO
000B08 4E75 RTS

TENbug 2.x > MD A00 A;DI

000A00 FFFF DC.W SFFFF
000A02 0000FFFF OR.B #-1,D0
000206 0020FFFF OR.B #-1,~(A0)

TENbug 2.x > BM BO0 B09 A00
PHYSICAL ADDRESS=00000B00 00000B09
PHYSICAL ADDRESS=00000A00

TENbug 2.x > MD AOO A;DI

000A00 1018 MOVE.B (A0)+,D0
000a02 0C000000 CMP.B #0,D0
000A06 67F8 BEQ.S $000A00
000708 4E75 RTS

TENbug 2.x >

4-8

4,2.,7 Bootstrap Operating System (BO) BO

BO [<device>] [,<controller>] [,<string>]

where:

device Is a single hexadecimal digit (0-3) specifying the device to
be used (default = 0).

controller Is a single hexadecimal digit (0) specifying the controller
to which the device is connected (default = 0).

string Is an optional ASCII character string that is passed to the
program being loaded from the specified device and
controller,

The function of the BO command is to access a program on disk, transfer it into
memory space, and give control to that program. Where to find the program and
where in memory to store the program is contained in sector 0 of the disk
corresponding to the specified device and controller. If the device and
controller are not specified, the default value zero is used for each.

The following sequence occurs when the BO command is executed:

a. Starting at sector 0 (the volume ID), 256 bytes are read and transferred
into TENbug workspace RAM.

b. If the volume ID (locations $0 through $3) is not null, these four ASCII
bytes will be displayed as follows:

Booting from: SYS
Where SYS is the volume ID. If null, the display is suppressed.

c. Motorola ID locations S$F8-SFF are read to ensure that they contain either
"EXORMACS" or "MOTOROLA".

d. The location of the program to be loaded and its destination in memory
are identified by examining the first sector at the following locations.

LOCATIONS CONTENTS

$14-317 First 256-byte sector to transfer
$18-$19 Number of sectors to transfer
S1E-$21 Address of first destination byte (first memory address)

e. The location of the disk configuration area is identified by examining
volume ID locations as shown:

LOCATIONS CONTENTS

$90-$93 Sector address of the media configuration parameters
(normally sector 1)

$94 Length of the configuration area (normally one 256-byte
sector)

4-9

BO

If there is no media configuration area specified, default media
configuration values are used to read the disk. If there is a media
configuration area specified, then that VERSAdos sector is read into the
TENbug workspace, and these values are used to read the disk. Refer to
Appendix C for additional information.

f. The program is read and transferred to its memory destination.

g. The status register is updated to reflect supervisor mode and interrupt
level 7.

h. The stack pointer is loaded from locations $0-$3 relative to the
destination memory.

i. The program counter is loaded from locations $4-$7 relative to the
destination memory.

The registers are set up as defined below, and the program loaded by the BO
command now has control of execution.

DO...DRIVE NUMBER
D1...IPC NUMBER
D2...DISK CONFIGURATION CODE
D3...FLAG FOR IPL; 'ME4U' = USE BUGS' DISK READ ROUTINE
A0...ADDRESS OF DISK CONTROLLER BOARD
Al...ADDRESS OF PROGRAM JUST LOADED
A2...ADDRESS OF DISK CONFIGURATION DATA
A3...ADDRESS OF BUGS' DISK READ ROUTINE
" Ad...ADDRESS OF ‘THE DEBUGGER ENTRY POINT ('"MACSBUG")
AS5...START OF TEXT
A6...END OF TEXT+1 (WHERE THE NEXT CHARACTER WOULD GO)
A7...STACK OF PROGRAM JUST LOADED
SR. . .SUPERVISOR MODE AND LEVEL SEVEN

These registers can be used by IPL to load the file identified by the string
field. If a string field is specified on the BO command line, registers A5 and
A6 point to the first and last plus one characters of the string. If no string
is specified, register A5 = A6. The file name may be followed by a semicolon
and either or both of the options L[=$<address> or H. Specifying H causes
control to be returned to TENbug, rather than to the specified program.

Refer to the discussion of the bootload file, IPL.SY, in the M68000 Family
VERSAdos System Facilities Reference Manual.

4-10

BO

The devices and controllers currently supported by TENbug are assigned as

follows:

DEVICE #

WO

CONTROLLER #

0

EXAMPLE

TENbug 2.x > BO
Booting from: SYS

TENbug 2.x > BO 2
Booting from: TEN

TENbug 2.x > BO ,,0.VME10.KBD.SY

Booting from: SYS

DESCRIPTION

Winchester hard disk
Winchester hard disk
5 1/4" Winchester floppy disk
5 1/4" Winchester floppy disk

DESCRIPTION

RWIN1 disk controller

COMMENT

Boot from the default drive and controller,
(drive is 0, controller is 0).
Note: The volume ID is SY¥S.

Boot from drive 2 (first floppy) on the
default controller (RNIN1 number 0).
Note: The volume ID is TEN,

Boot from default device 0 on the RWINL
(default controller 0) and pass the ASCII
string that will request the program named
KBD.SY under catalog VME10, account number 0,
to be loaded by the IPL program. (IPL was
the program booted into memory with the BO
cammard.)

Note: The volume ID is SYS.

4-11

4.2.8 Breakpoint Set and Remove (BR and NOBR) BR
NOBR

BR (display only)
BR [<address>[;<count>]] [Kaddress>[;<count>]]...
NOBR [<address>[<address>] ...]

When encountered, a breakpoint causes target program execution to stop and
control to be transferred to TENbug. The BR command may be used without
parameters to cause display of current breakpoint addresses. The BR <address>
command sets one or more addresses into the breakpoint address table. This
table can hold up to eight breakpoint addresses. Multiple breakpoints (up to
eight) may be specified with one call of the Breakpoint command. Addresses
should be on even word boundaries. The range of <count> is a 32-bit integer.

The breakpoints are inserted into the target program when execution is called
via a GO or GT command. The illegal instruction S4AFB is inserted at the
addresses specified by the table. During execution of the program, a breakpoint
occurs whenever this instruction is encountered. If program control is lost,
control may be regained via the RESET or the ABORT button. ABORT is preferred
because use of the RESET function may leave breakpoints (S4AFB) in the user
program, whereas ABORT will recover properly (refer to Appendix A).

While executing a Trace commard, the breakpomt addresses are momtored (i.e.,
the illegal instruction S$4AFB is not placed in memory).

After stopping at a breakpoint, execution may be continued by typing the GO
commard .

The NOBR command removes one or more breakpoints fram the internal breakpoint
table. The NOBR command without parameters eliminates all breakpoints.

BR COMMAND fORMAT DESCRIPTION

TENbug 2.x > BR Display all breakpoints.

TENbug 2.x > BR <address> Set a breakpoint.

TENbug 2.xX > BR <address>;<count> Set a breakpoint with a count. Count is

decremented each time the breakpoint is
encountered until <count> = 0. Execution
stops as soon as count is decremented to
zero. Thereafter, execution will stop
each time the breakpoint is reached.

NOBR COMMAND FORMAT DESCRIPTION
TENbug 2.x > NOBR Clear all breakpoints.
TENbug 2.x > NOBR <address> Clear a specific breakpoint.

See also: GT, TT

4-12

BR
NOBR

EXAMPLE
TENbug 2.x > .R4 4000

TENbug 2.x > BR 1010 2000;5 2040 4000

BREAKPOINTS
001010 001010
002000 002000;5
002040 002040
000000+R4 004000

TENbug 2.x > NOBR 1010 2040

BREAKPOINTS
002000 00200035
000000+R4 004000
TENbug 2.x > NOBR
BREAKPOINTS

TENbug 2.x >

4-13

4,2.9 Block of Memory Search (BS) BS

BS <addressl> <address2> ‘'<literal string>’'
BS <addressl> <address2> <data> [<mask>] [;<option>]

The BS command has two modes: literal string search and data search. Both modes
scan memory beginning at <addressl> through <address2>, looking for a match.

The literal string mode is initiated if a single quote (') follows <address2>.
The ASCII literal string can include lowercase letters. If a single quote does
not follow <address2>, data search mode is assumed. In the data search mode,
the optional mask (if used) is ANDed to data. The default mask is all ones.
The options supported are:

;B byte
sW word
;L longword

The default is byte.

In both modes of the BS command, if the search finds matching data, the data and
the address(es) are displayed. If the search is in data search mode with a
mask, and data is found that matches the data after the mask is ANDed, the data
from memory before applying the AND mask is displayed.

EXAMPLE COMMENT
TENbug 2.x > MD 41FF0 15

O001FF0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF cceccccccccccoses
002000 43 43 45 45 00 00 00 00 00 00 00 00 00 00 00 00 CCEE¢scecssccsss

TENbug 2.x > BS 41FF0 4200F 'CC' Successful search for literal string
PHYSICAL ADDRESS=00001FF0 0000200F 'cc'.

002000 ‘'cc!

TENbug 2.x > BS 41FF0 4200F 34 ;W Unsuccessful search for word-length data
PHYSICAL ADDRESS=00001FF0 0000200F (with default mask).

TENbug 2.x > BS 41FF0 4200F 03 OF Successful search for byte-length data,
PHYSICAL ADDRESS=00001FF0 0000200 with four most significant bits masked.
002000 43 : (3

002001 43

TENbug 2.x > BS 41000 47FFE 4AFB;W Successful search for "leftover"
PHYSICAL ADDRESS=00001000 O0007FFE breakpoints.
001000 4AFB

TENbug 2.x > md 10000 30

010000 54 68 69 73 20 69 73 20 61 20 6D 65 73 73 61 67 This is a messag
010010 65 20 66 6F 72 20 74 68 65 20 42 53 20 63 6F 6D e for the BS com
010020 6D 61 6E 64 2E 20 20 20 20 20 20 20 20 20 20 20 mand.

Display of memory that will be searched
for lowercase letters.

4-14

TENbug 2.x > bs 10000 20000 ‘'is’
PHYSICAL ADDRESS=00010000 00020000
010002 'is’

010005 'is"

TENbux 2.x >

Block Search the address range for ASCII
'is',

Successful search finding two occurrences.

4-15

4.2.10 Block of Memory Test (BT) BT

BT <addressl> <address2>

/

The BT command provides a destructive test of a block of memory. A word
boundary (even address) must be given for the starting <addressl> and ending
<address2> of the block. If the test runs to completion without detecting an
error, all memory tested will have been set to zeros.

Execution of this command may take several seconds for large blocks of memory.

When a problem is found in a memory location, the address, the data stored, and
the data read are displayed. Control is then returned to TENbug.

See also: . BI)

EXAMPLE COMMENT

TENbug 2.x > BT 44000 47FFE Successful memory test; no errors
PHYSICAL ADDRESS=00044000 00047FFE found.

TENbug 2.x > BT 44000 4FFFE Unsuccessful memory test; error
PHYSICAL ADDRESS=00044000 O004FFFE data is listed.

FAILED AT 0480FE WROTE=FFFF READ=0000

TENbug 2.x >

4-16

4.2.11 Character RAM Display (CH) CH
NOCH

CH [<bits>]
NOCH

The Character Display (CH) command provides access to specific bits within
VME/10 control register 0 (SF19F05). These bits determine whether the character
RAM is displayed upon the CRT built into the VME/10. They are called the
character disable bits, and must be off to allow the color or shade of green
being used to draw the characters on the display.

For more detailed information about the control registers, refer to the VME/10
Microcomputer System Reference Manual.

An optional <bits> parameter, 0-7, can be provided to replace the current
configuration of bits 7, 6, and 5 of VME/10 control register 0. Default is 0
(or all bits off), allowing the character display to appear on the CRT.

If NOCH is entered, the current values of bits 7, 6, and 5 within control
register 0 are first saved, and then replaced by 7 (all bits on). This removes
any character data appearing on the screen. The data still resides in display
RAM, unchanged; only the control register has been modified.

To again display character data within display RAM, the CH command can be
entered. The value saved when NOCH was last executed is restored. If the
optional <bits> parameter is provided, however, the new value is used in place
of the bit pattern previously saved.

See also: [NO]BARS, CRT, [NO]JGR, M

EXAMPLE COMMENTS

TENbug 2.x > NOCH Remove any character data being displayed upon the
built-in terminal.
NOTE

The keyboard is still operational; however,
the data entered will not be displayed.

TENbug 2.x > CH When CH is entered, all previous data that was on
the screen (minus any lines that scrolled off the
top) will be seen again.

4-17

4.2.12 CRT Control Register Modification (CRT) CRT
CRT

The CRT command provides an easy way to access the VME/10 control registers that
affect the CRT display. Entering the CRT command begins a sequence of prompts
that displays the current result of a particular control register bit(s). The
user is able to continue without changing the register, or to walk through a
preselected set of parameters available for that bit within the register.

For more detailed information about the control registers, see the VME/10
Microcomputer System Reference Manual.

The first prompt presented is the video amplifier duty cycle. Bit 3 within
control register 0 is toggled on and off, selecting 50% or 100% duty cycle.
Parameters can be toggled by pressing any character on the keyboard; the value
continues to alternate with each press of a key. When the desired option is
selected, pressing ENTER (or carriage return) moves on to the next parameter.

The second prompt selects a cursor. In the same manner as before, three
selections are presented: one for each character entered. When the cursor
selection is complete, press ENTER (or carriage return) to proceed. Cursor
selection is controlled by bits 5 and 6 within control register 1.

The third prompt selects an optional blinking cursor. Blinking alternates with
a steady cursor for each character entered. Bit 4 within control register 0
controls cursor blink. After carriage control is entered the next prompt is
displayed.
The fourth and last option selected is inverse video. Bit 2 within control
register 0 is alternately set or cleared to select inverse or normal video.
When the selection is made, press ENTER and the following message will be
displayed on the built-in terminal:

Video Set
TENbug 2.x >

See also: [NO]JBARS, [NOJCH, [NO]JGR, WM

4-18

4.2.13 Checksum (CS) Cs
CS [<addressl>] [<address2>]

The Checksum command provides access to the same checksum routine used by the
power-up/reset (PWRT) self-test firmware. This routine is used in two ways
within TENbug.

a. At power up, if pins 5 and 6 of jumper J2 are connected, the self-test is
executed. One of the many items verified is the checksum contained in
TENbug ROM. If for any reason the contents of ROM were to change from
the factory version, the checksum test is designed to detect the change
and inform the user of the failure.

b. Following a valid self-test, TENbug 2.x examines the VME address space
for code that needs to be executed. This feature (ROMBOOT) makes use of
the checksum routine to verify that a routine in memory is really there
to be executed at power up. For more information refer to paragraph
2.10, which describes the format of the routine to be executed and the
interface provided upon entry. :

This command is provided as an aid in preparing routines for the ROMBOOT
feature. Since ROMBOOT does checksum validation as part of its screening
process, the user needs access to the same routine in the preparation of
EPROM/ROM routines.

The [<address>] parameters can be provided in two forms:

a. An absoute address (24-bit maximum).
b. An expression using a displacement + relative offset register.

Any previous addresses are saved as default addresses for CS commands invoked
later. This is convenient since users typically enter the address range to
calculate the checksum and then enter the results into memory (into bytes that
were $0000 while the checksum was calculated). When the CS command is used to
verify the content and location of the new checksum, the operands need not be
entered since the command retains the addresses used to calculate the previous
checksum. The even and odd byte result should be 0000, verifying that the
checksum bytes were calculated correctly and placed in the proper locations.

The default operands at power up are the starting/ending addresses of the TENbug
2.x firmware., The results for even and odd bytes should be 0000.

The algorithm used to calculate the checksum is as follows:

a. SFF is placed in each of two bytes within a register. These bytes
represent the even and odd bytes as the checksum is calculated.

b. Starting with the first address, the even and odd bytes are extracted
from memory and XORed with the bytes in the register.

c. This process is repeated, word by word, until the ending address is
reached. Note that the last word addressed is NOT included in the
checksum. This technique allows use of even ending addresses ($D40000 as
opposed to SD3FFFE).

4-19

0c-%

EXAMPLE COMMENT
TENbug 2.x > CS CS command entered without operands right after power
PHYSICAL ADDRESS=00F00000 00F08000 up (addresses are TENbug firmware limits by default).

(EVEN ODD)=0000

TENbug 2.x > MD 20000 3F Display routine requiring a checksum. Start at
$20000; last byte is at $20029. Checksum will
be placed in bytes at $20026 and $20027, so they
are zero while calculating the checksum.

020000 42 4F 4F 54 00 00 00 14 00 00 00 A6 54 65 73 74 BOOT.ees...&Test

020010 41 F9 00 01 FO 00 20 3C 00 00 EF FF 11 00 51 C8 AY..Pe <eeO.e.QH

020020 FF FC 4E 75 01 01 00 00 10 08 FF FF FF FF FF FF . «tNUsceocsscocsss

020030 FF FF FF FF FF FF FF FF. FF FF FF FF FF FF FF FF ccccsccvccccccns

TENbug 2.x > M 20010;DI Display executable code plus revision number,
020010 41F90001F000 LEA.L. $0001F000,A0 ?(CR) checksum, socket ID, and a few unused bytes following
020016 203CO000EFEF MOVE.L #61439,D0 ?(CR) the routine:

02001C 1100 MOVE.B DO,-(A0) ?(CR)

02001E 51C8FFEC DBF.L. D0,$02001C ?(CR)

020022 4E75 RTS ?(CR) T

020024 0101 ; BTST DO,D1 ?(CR) 0101 is revision.

020026 0000 DC.W $0000 ?(CR) 0000 is where checksum is to be placed.
020028 1008 DC.W 81008 ?(CR) 1008 are socket locations Ulé and UO0S8.
02002A FFFF DC.W SFFFF 2 (CR) FFFF is unused memory.

02002C FFFF DC.W SFFFF ? (CR) FFFF is unused memory.

02002E FFFF DC.W SFFFF ?(CR) FFFF is unused memory.

020030 FFFF DC.W SFFFF ?.(CR) FFFF is unused memory.

SO

Tc-v

TENbug 2.x > CS 20000 2002A
PHYSICAL ADDRESS=00020000 00020022
(EVEN ODD)=4B34

TENbug 2.x > M 20026;W
020026 0000 24B34.

TENbug 2.x > CS
PHYSICAL ADDRESS=00020000 00020027
(EVEN ODD)=0000

TENbug 2.x > .R3 2000
TENbug 2.x > CS 0+R3 2A+R3

PHYSICAL ADDRESS=00020000 0002002A
(EVEN ODD)=4B34

TENbug 2.x > M 26+R3;W
000026+R3 0000 ?4B34.

TENbug 2.x > CS
PHYSICAL ADDRESS=00020000 0002002A
(EVEN ODD)=0000

TENbug 2. >

Request checksum of area using absolute addresses.

Checksum of even bytes is $4B.
Checksum of odd bytes is $34.

Place these bytes in zeroed area used while
calculating checksum.

Verify checksum (no operands needed if same as
previous entries).

Result is 0000, good checksum.

Define value of relative offset register 3.

Request checksum of area using relative ofset.

Checksum of even bytes is $4B.
Checksum of odd bytes is $34.

Place these bytes in zeroed area used while
checksum was calculated.

Verify checksum (no operands needed if same as
previous entries).

SO

4.2.14 Data Conversion (DC)

DC <expression>

The DC command is used to convert an expression into hexadecimal and decimal.
The expression may be entered in hexadecimal, decimal, or mixed format; output
will be shown both ways. Default input format is hexadecimal. Octal and binary
values may also be converted to decimal and hexadecimal values.

The following symbols are used:

precedes decimal value
precedes octal value
precedes binary value

o0 R

precedes hexadecimal value (default; may be omitted)

Except for .RO, offset registers may not be used with the DC command.

This command is useful in calculating displacements such as destination of
relative branch instructions or program counter relative addressing modes.

COMMAND FORMAT

TENbug 2.x > DC $<data>

TENbug 2.x > DC &<data>

EXAMPLE

TENbug 2.x > DC &120
000078 =$78=&120

TENbug 2.x > DC &15+$4-$13
000000 =$0=80

TENbug 2.x > DC -1000
FFF000 =SFFFFF000=-$1000=-54096

TENbug 2.x > DC &15-$9+@14-%1100

000006 =$6=&6

TENbug 2.x >

DESCRIPTION

Convert hexadecimal data into hexadecimal
and decimal.

Convert decimal data into hexadecimal and
decimal.

4-22

4.2.15 Display Formatted Registers (DF) DF
DF

The DF command is used to display the MC68010 registers. The registers display
is also provided whenever TENbug gains control of the program execution (i.e.,
at breakpoints and when tracing).

Note that any single register can be displayed with the .A0-.A7, .D0-.D7, and
similar commands. Refer to the descriptions of the Display/Set Register command
(.<register>) and the OF command.

EXAMPLE COMMENTS

TENbug 2.x > DF Display formatted registers. Notice that the
— values of register A7 and the user stack pointer
are the same because the status register

indicates user mode.

PC=00000000 SR=0000=..0..... USP=FFFFFFFF SSP=00000000 VBR=00000000 SFC=2 DFC=7

DO0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 FFFFFFFF
PC=000000 0000 DC.W $0000

TENbug 2.x > A7 1100

TENbug 2.x > DF Once again the values of A7 and the user stack
pointer are the same. The latter was changed by
altering A7 in the user mode.

PC=00000000 SR=0000=..0..... USP=00001100 SSP=00000000 VBR=00000000 SFC=2 DFC=7
DO-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00001100

PC=000000 0000 DC.W $0000

TENbug 2.x > .SS B00 Set supervisor stack pointer.

TENbug 2.x > .SR 2700 Set supervisor state and interrupt level 7.
TENbug 2.x > .R3 A0Q Set relative offset register 3 to $A00.

TENbug 2.x > .PC 0+R3 Set program counter to start of area using the

relative offset register.

4-23

TENbug 2.x > DF

DF

Display formatted registers again. Notice that
the supervisor mode in the status register
results in the supervisor stack pointer being
displayed both as the SSP and A7. Other changes
include the program counter now being displayed
in two ways: on the first line as an absolute
address, and on the fourth line relative to the
closest offset register equal to or below the
absolute address. Notice also that the current
location of the program counter is displayed in
both hexadecimal and disassembled M68010 source
statements.

PC=00000A00 SR=2700=¢S7..... USP=00001100 SSP=00000B00 VBR=00000000 SFC=2 DFC=7
DO-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000BOO

PC=000000+R3 41F81000

TENbug 2.x >

LEA.L $00001000,A0

4-24

4.2.16 Dump Memory (S-Records) (DU) DU

DU[<port number>] <addressl> <address2> [<text>]

The DU command formats memory data in S-record form and sends it to a specified
port. The default port number is port 1, the VME/10 built-in CRT
terminal /keyboard. The first record output is an S0 record, which will contain
the characters entered in the text field on the command line, if any. The last
record output is an S7, S8, or S9 terminator. See Appendix D for information on
S-records.

To dump to a peripheral using the DU command, a dual serial I/Omodule, MVME400,
or a dual parallel I/Omodule, MVME410, must be available on the I1/0 Channel.
Note that serial ports 1 and 2 on the MVME400 correspond to TENbug ports 3 and
2, respectively, and that parallel ports 1 and 2 on the MVME4l0 correspond to
TENbug ports 4 and 5, respectively.

Default destination is the console terminal. Specifying DU<port number> allows
the output to be directed to another port.

valid port numbers for this command are:

PORT NUMBER DESCRIPTION
none Defaults to TENbug port 1 (VME/10 built-in terminal/keyboard) .
1 Specifies TENbug port 1 (VME/10 built-in terminal/keyboard).

2 Specifies TENbug port 2 (MVME400 port 2 - 7201/B).
3 Specifies TENbug port 3 (MVME400 port 1 - 7201/3).
4 Specifies TENbug port 4 (MVME410 port 1 - PIA/A).
5 Specifies TENbug port 5 (MVME410 port 2 - PIA/B).

This command does not send con£r01 characters to start or stop peripheral
devices.

See also: LO, PF, VE

NOTE

Offset RO is added to ﬁhe address field in each S-record.

EXAMPLE COMMENT
TENbug 2.x > MD AQ0 30 Display memory where routine to be transferred
exists.

000200 41 F8 10 00 20 3C 00 00 02 FF 11 00 51 C8 FF FC AXe. <eeeosoQH.:
000A10 60 EE 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 'nNqNgNaNaNgNaNg
00020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 eeeeeeeeccscsone

4-25

TENbug 2.x > MD A0Q 7;DI

000A00
000A04
000A0A
000A0C
000A10
000Al2
000A14

41F81000
203CO000002FF
1100
51C8FFFC
60EE

4E71

4E71

Display memory using the disassembler.

LEA.L
MOVE.L
MOVE.B
DBF.L
BRA.S
NOP
NOP

$00001000,A0
#767,D0
DO,~(A0)

DO, SO00A0A
$000A00

TENbug 2.x > DU A0O Al5 TENBUG 2.X Test

PHYSICAL ADDRESS=00000A00 00000Al5
S012000054454E42554720322E582054455354F0
S1130A0041F81000203C000002FF110051C8FFFC17
S1090A1060EE4E714E7110
S9030000FC

TENbug 2.x >

Dump memory to default port,
through Al5, and place title within SO record.

Note:

4-26

starting at $A00

This appears on the default
CRT display.

4.2.17 Go Direct Execute Program (GD)

GD [<address>]

The GD command is similar to the GO command,

breakpoints, nor does it start by tracing one instruction.
starts the target program at the location given as <address> without changing
any of the exception vectors (default locations 0 through $3FF).
is not specified, the GD command starts the target program at the address in the

program counter,

See also: GO, GT

EXAMPLE

(Listing of program in memory at location 001900)

001900 1018
001902 0C000000
001906 66F8
001908 4E75

TENbug 2.x > BR 1900 1908

BREAKPOINTS
001900 001900
001908 001908

TENbug 2.x > G 1900
PHYSICAL ADDRESS=00001900

AT BREAKPOINT

PC=00001900 SR=2704=.S7..Z.. USP=0000C19E SSP=00000C00 VBR=00000000 SFC=2 DFC=2
DO-7 00000000 00000000 00003048 4D453455 00000000 00000020 00000000 0007FFFE
A0-7 00001002 00001694 0000065C 00F01D72 00F0120C 00000538 00000538 00000C00

PC=001900

TENbug 2.x > GD 1900
PHYSICAL ADDRESS=00001900

MOVE.B (A0)+,D0
CcMP.B #0,D0
BNE.S $001900
RTS

4-27

except that GD does not set
The GD command

If <address>

4.2.18 Go Execute Program (GO)

©8

GO [<address>]
G [<address>]

The Go (G or GO) command causes the target registers (previously saved in RAM)
to be placed into the actual MC68010 hardware registers, and any breakpoints
previously requested to be placed into RAM. When this is completed, control is
given to the target program by one of two methods. If no operands are provided
with the G (or GO) command, the current value of the program counter is used.
If an address is provided, this address will be placed into the program counter
and then used to give control to the target code. The program starts by first
tracing one instruction and then free running until one of the following events
interrupts the program execution.

a. The target program encounters a breakpoint.

b. An abnormal program sequence causes exception processing (e.g., divide by
Zero) .

c. The operator intervenes through use of the RESET or ABORT pushbuttons on
the VME/10 operator panel.

NOTE

The execution will be in REAL TIME unless
any breakpoints with <count> are encountered.
The [<address>] parameter can be provided in several formats:
a. An absolute address (24-bit maximum) .
b. An expression using a displacement + relative offset register.

c. Address indirect, using the contents of RAM (or ROM) to acquire the new
program counter contents.

d. Register indirect, using the contents of address registers 0 through 7 to
acquire the new program counter contents.

4-28

6C-¥

EXAMPLE
TENbug 2.x > .PC A0O

TENbug 2.x > G

PHYSICAL ADDRESS=00000A00
AT BREAKPOINT

PC=000A0A 1100

TENbug 2.x > G A00
PHYSICAL ADDRESS=00000A00
AT BREAKPOINT

PC=000A0A 1100

TENbug 2.x > M 20000;L
020000 00000000 2A00.

TENbug 2.x > GO [20000]
PHYSICAL ADDRESS=00000A00
AT BREAKPOINT

PC=000A0A 1100

TENbug 2.x > Al A0O

TENbug 2.x > G (Al)
PHYSICAL ADDRESS=00000A00
AT BREAKPOINT

PC=00020A 1100

TENbug 2.x > .R2 AQQ
TENbug 2.X > GO 0+R2
PHYSICAL ADDRESS=00000A00
AT BREAKPOINT
PC=00000A+R2 1100

TENbug 2.x >

Notice the physical address used in each example, though provided

in a different way in each case, is identical.

MOVE.B DO,-(A0)

MOVE.B DO,~(A0)

MOVE.B DO,~-(A0)

a8

COMMENT
Set program counter to desired address.

Enter Go command using existing PC.

Enter Go command with absolute address provided.

Set RAM location to contain an execution address.

Enter Go command providing indirect address in RAM.

Set address register to contain an execution address.

Enter Go command providing indirect addressing in Al.

Set relative offset register to contain start of module.

Enter Go command providing a displacement and offset register.

a8

4.2.19 Graphics RAM Display (GR and NOGR) GR
NOGR

GR [<bits>]
NOGR

The Graphics Display (GR) command provides access to specific bits within VME/10
control register 1 (SF19F07). These bits determine whether the graphics RAM is
displayed upon the CRT built into the VME/10. These bits are called the
graphics enable bits and must be on to allow the respective colors, or shades of
green, that they control to be displayed upon the screen.

For more detailed information about the control registers, see the VME/10
Microcomputer System Reference Manual.

An optional <bits> parameter, 0-7, can be provided to replace the current
configuration of bits 3, 2, and 1 of VME/10 control register 1. Default is 7
(all bits on), allowing the character display to appear on the CRT.

If NOGR is entered, the current values of bits 3, 2, and 1 within control
register 0 are first saved, and then replaced by zero (all bits off). This
removes any dgraphics data appearing on the screen. The data still resides in
display RAM; only the control register has been modified.

To once again display graphics data the GR command can be entered. The value
saved when NOGR was last executed will be restored. If the optional <bits>
parameter is provided, the new value is used in place of the bit pattern
previously saved.

See also: [NO]BARS, [NO]JCH, CRT, WM

EXAMPLE COMMENT
TENbug 2.x > GR Display the contents of graphics RAM.
TENbug 2.x > BARS Execute the graphics test pattern command. Notice

both graphics and character data are displayed.

TENbug 2.x > NOCH Remove all character data from the screen.

Remember the following CANNOT
be seen but is shown as a guide:

TENbug 2.x > GR 4 Enable only the <color, or shade of green,
controlled by bit 2 of control register 1.

TENbug 2.x > NOGR When the carriage return is pressed, all graphics
and character data are gone.

TENbug 2.x > GR The last value previously used in the graphics
control register bits is restored (4 in this
example) .

TENbug 2.x > CH Restore the character display.

Now the entire character screen
is shown as well as graphics RaM.

TENbug 2.x > NOGR Remove the graphics display.

TENbug 2.x >
4-30

4.2.20 Go Until Breakpoint (GT) GT

GT <temporary breakpoint address>

The GT command performs the following:
a. Sets the temporary breakpoint specified on the command line.
b. Sets breakpoints entered by the BR command.
Cc. Sets target program registers as displayed by the DF command.

d. Causes the target program to execute from the PC address (free run in
real time).

When any breakpoint is encountered, the temporary breakpoint is reset.

See also: BR, DF, GD, GO, TR, TT

EXAMPLE

(Listing of program in memory at location 001900)
001900 1018 MOVE.B (a0)+,D0
001902 0C000000 CMP.B #0,D0
001906 66F8 BNE.S $001900
001908 4E75 RTS

TENbug 2.x > BR 1900 1908

BREAKPOINTS
001900 001900
001908 001908

TENbug 2.x > .PC 1900

TENbug 2.x > GT 1906
PHYSICAL ADDRESS=00001906
PHYSICAL ADDRESS=00001900

AT BREAKPOINT

PC=00001906 SR=2700=eS7.+... USP=0000C19E SSP=00000BEF8 VBR=00000000 SEFC=2 DFC=2

DO-7 00000020 00000000 00003048 4D453455 00000000 00000020 00000000 OOO7FFFE

A0-7 0000160E 00001694 0000065C O0OF01D72 00F0120C 00000538 00000538 00000BE8
PC=001906

TENbug 2.x > BR
BREAKPOINTS

001900 001900
001908 001908

TENbug 2.xX >

4-31

4.2.21 Help (HE) HE
HE

The HE command displays a list of available commards.

EXAMPLE

TENbug 2.x > HE

.PC .SR. .US .SS .VBR .DFC .SFC

.DO thru .D7

.A0 thru .A7

.RO thru .R7

CRT CH NOCH GR NOGR (Control Registers)

BARS NOBARS (Test Graphics RAM)
IOC I0P IOT (Physical Disk I/0)
Cs BF BH BI BM BO BR NOBR

BS BT DC DF DU G GD GO

GT HE LO M MD MM MS OF

PA NOPA PF T ™ TR TT VE

VM

TENbug 2.x >

4-32

4,2,22 1/0 Command for Disk (IOC) I0C

10C

The IOC command allows the user to issue commands directly to the RWINL
controller.

When invoked, this command prompts for the drive and controller required. An
address where the current RWIN1 command is located and hex display of that
command are shown, followed by an "ARE YOU SURE?" prompt.

The command is used primarily as a debugging tool to issue commands to the RWIN1
controller to locate problems with either drives, media, or the controller
itself. The RWIN1 commands are as follows:

0/0 Check drive status

0/1 Recalibrate

0/4 Format drive

0/6 Format track (refer to example)
0/7 Format default/alternate track
0/8 Read sectors (use IOP command)
0/9 Scan sectors

0/A Write sectors (use IOP command)
0/B Seek

0/C Read track (Winchester only)
0/D Read ECC (Winchester only)

0/E Write ECC (Winchester only)

6/0 Configure drive

NOTE: For more information see the Winchester Disk Controller User's Manual.

The default values are the parameters left over from any previous controller
request, An IOP command or, if an operating system has been booted and the
debugger was reentered with the use of the ABORT button, the drive, controller
and the last command (08 read sectors) issued by boot to the RWIN1 controller
are the current default values.

while answering the prompts, there are four actions that can be taken following
the question mark prompt:

? (CR) - Entering a carriage return indicates that the existing value for
the current parameter is acceptable; go on to the next
parameter.

? . - Entering a period indicates that this execution of the IOC
command must be terminated now, without asking for more
parameters.

?° - Entering a caret symbol indicates that a previous parameter

requires a change and will logically back up one parameter each
time it is entered (until the first entry is reached, where it
will remain until one of the other responses is received).

)

<data> - Entering the appropriate data requested (followed by a carriage
return or ENTER). Often the parameters are checked for valid
options (i.e., Yor N).

4-33

ve-v

EXAMPLE

TENbug 2.x > IOP

" READ OR WRITE (R/W)=cceeeeee.R 2 W
MEMORY ADDRESS FOR DISK I/0=.$00001000 2 2000
DRIVE NUMBER (0&1=FIXED,2&3=FLOPPY)=c......500 ? 2
CONTROLLER NUMBER=.......$00 ? (CR)
FIRST BLOCK NUMBER=.$00000000 ? 100
NUMBER OF (256 BYTE) BLOCKS=.....$0001 ? (CR)

ARE YOUR SURE (Y/N) ? Y

DISK ERROR: STATUS=06 4D 00 08 09 01 40 01 00 09

I0C
COMMENT

Invoke the physical disk I/0 command.
Specify a write operation.

Write to memory location $2000.
Write to drive 2 (floppy).

Write to RWIN1 controller.

Write to block number $100.

Write one 256-byte block.

Last chance ... Sure? Yes

For this example an unformatted floppy disk was
placed into drive 2. As expected an "06" indicates
that the ID HEADER NOT FOUND message from the
Winchester Disk Controller User's Manual is the
correct description of the situation.

PC=00F04EBC SR=2700=.S7..... USP=FFFFFFFF SSP=000008CC VBR=00000000 SFC=2 DFC=7
D0-7 00000001 000000AC 00002100 00000109 00000000 00000010 00000028 00042700
A0-7 OOF1COD1 00002100 00000682 OOF1COD9 00001010 0000054E 0000054E 000008CC

PC=F04EBC 4BFAFDCO LEA.L

TENbug 2.x > IOC
CONTROLLER NUMBER=¢.4404.500 ? (CR)
DISK COMMAND AT $00000634 = $O0A 40 01 08 01 AC

ARE YOU SURE (Y/N) ? N

SO0F04C7E(PC) ,AS

The IOC command will be used to write the ID header
for a specific track. To start, the RWIN1 command
must be located. This is done by entering an IOC
command. The RWIN1 command last used is then
displayed along with its address. In this case,
the last request was "0A" for the write that was
attempted in the IOP.

0I

Se-v

10C

TENbug 2.x > M 634 ‘ Modify memory at the specified address ($634 in this
000634 0A ? 06 example) and change the write ($0A) operation to a
T format track ($06) operation (Chapter 4 in the
Winchester Controller User's Manual).

TENbug 2.x > IOC Invoke the IOC command and, after verifying the
DRIVE NUMBER (0&1=FIXED,2&3-FLOPPY)=502 ? (CR) correct drive and controller and that the RWIN1
CONTROLLER NUMBER=500 ? (CR) command is proper, reply Y in response to the
ARE YOU SURE? prompt.
DISK COMMAND AT $00000634 = $0A 40 01 08 01 AC
ARE YOU SURE (Y/N) ? 4
TENbug 2.x > IOP With the return of the TENbug prompt the command is
READ OR WRITE (R/W)=e¢eeveeessW 2 (CR) complete. Note that a total format will require
MEMORY ADDRESS FOR DISK I/0=.500002000 ? (CR) longer than the "dead man" timer provides; the TENbug
DRIVE NUMBER (0&1=FIXED,2&3=FLOPPY)=.......502 ? (CR) program will time out and send an error message, but
CONTROLLER NUMBER=...+...500 2 (CR) the RWIN1 controller will proceed with the command
FIRST BLOCK NUMBER=.$00001000 2 (CR) until complete.
NUMBER OF (256 BYTE) BLOCKS=.....50001 ? (_C_R)
ARE YOU SURE (Y/N) ? Y
"W" COMPLETE In this example the write can now be completed, as

long as the one track that was formatted is all that
is specified.

TENbug 2.X >

201

4,2.23 1/0 Physical for Disk (IOP) 0P
I0P

The IOP command allows the user to do physical reads or writes to the disk.
When invoked, this command prompts for the information required to perform the
. Input/Output operation. The initial values for drive and controller are zeros,
(haxrd disk 0 on the RWINl1 controller). However, once a parameter has been
changed the new value will became the new default.

Notice that this command can only perform reads and writes through the RWIN1
controller. If for some reason any of the other RWINl commands are required,
the IOC cammard can be used.

While answering the prampts, there are four actions that can be taken following
the question mark prampt:

? (CR) - Entering a carriage return indicates that the existing value for
the current parameter 1is acceptable; go on to the next
parameter.

? . - Entering a period indicates that this execution of the I0C
canmand must be terminated now, without asking for more
parameters.

? " -~ Entering a caret symbol indicates that a previous parameter

requires a change and will logically back up one parameter each
time it is generated (until the first entry is reached, where it
will remain until one of the other responses is received).

? <data>

Entering the appropriate data requested (followed by a carriage
return or ENTER). Often the parameters are checked for wvalid
options (i.e, Y or N).

NOTE
Care should be taken when using this diagnostic tool.

Portions of the operating system could be destroyed if
an incorrect area of a disk were modified.

4-36

LE-F

EXAMPLE

TENbug 2.x > IOP

READ OR WRITE (R/W)=eeeeeesesR ?
MEMORY ADDRESS FOR DISK I/0=.$00000000 ?
DRIVE NUMBER (0&1=FIXE)' 2& 3=FLOPPY) T eesvee -SOO ?
MEMORY ADDRESS FOR DISK I/0=.$00001000 ?
DRIVE NUMBER (0&1=FIXED,2&3=FLOPPY)=.¢c....500 ?
CONTROLLER NUMBER=.......500 ?
FIRST BLOCK NUMBER=,S$00000000 ?
NUMBER OF (256 BYTE) BLOCKS=.....$0000 ?
ARE YOU SURE? (¥/N) 2 ¥
"R" COMPLETE
TENbug 2.x > MD AQQ 30
00A00 41 F8 10 00 20 3C 00 00 02 FF 11 00 51
000A10 60 EE 4E 71 4E 71 4E 71 4E 71 4E 71 4E
000A20 00 00 00 00 00

00 00 00 00 00 00 00 00

TENbug 2.x > M Al2;L

000A12 4E714E71 ? -1
000A16 4E714E71 ? -1
000Al1A 4E714E71 ? -1
000ALE 4E710000 ? =1
000A22 00000000 ? -

TENbug 2.x > IOP
READ OR WRITE (R/W)=ueeessessR
MEMORY ADDRESS FOR DISK I/0=.$00000A00
DRIVE NUMBER (0&1=FIXED,2&3=FLOPPY)=440s0s00.502
CONTROLLER NUMBER=...44..500
FIRST BLOCK NUMBER=.$00000500
NUMBER OF (256 BYTE) BLOCKS=.....50001

ARE YOU SURE (Y/N) ? Y
"W" COMPLETE

TENbug 2.x >

C8 FF FC

) M) W))) ey

71 4E 71
00 00 00

(CR)
(CR)
(CR)
(CR)
(CR)

I0P
COMMENT

Request physical disk I/0 to read a routine.
Use default of read.

Change $0 default to $1000.

That isn't correct; back up one parameter.
Change $1000 to $A00.

Change default drive 0 to drive 2.

Use controller 0.

Change block number to $500.

Read one 256-byte block.

Last change? Yes, all is ready.

The read is complete.

Display data read from disk (only first $30 bytes).

AX.. <eeeeeoQHL:
' nNGNQNGNGNQNGNG

0000000 OSOGSEBSIIOIOSES

Make change to RAM where routine was loaded.

Request physical disk I/0 to write to a disk.
Change to W for write.

Use previous address.

Drive is fine; no change.

No change.

No change.

No change.

Last chance; are you sure? Yes, all is ready.

do1

Write is complete.

4.2,24 1/0 Teach for a Disk (IOT) 1oT

I0oT

The IOT command allows the user to change the configuration of the RWINL
controller. When invoked, this command prompts for the information required to
perform the configuration command.

Depending on the type of drive there are varying parameters required.

WINCHESTER HARD DISK 5.25-INCH FLOPPY DISK
Drive number Drive number

Controller number Controller number

Sector size Sector size

Number of heads Number of heads

Number of cylinders Number of cylinders

Number of sectors per track Number of sectors per track

Motorola/IBM format

Single- or double-sided media
Single- or double-track density
Single- or double-data density

The IOT command will present the appropriate questions based upon which drive
has been specified. There are four actions that can be taken following a
question mark prompt:

~)

(CR) -

-~
>
I

-

<data> -~

Entering a carriage return indicates that the existing value for
the current parameter is acceptable; go on to the next
parameter.

Entering a period indicates that this execution of the IOC
command must be terminated now, without asking for more
parameters.,

Entering a caret symbol indicates that a previous parameter
requires a change and will logically back up one parameter each
time it is entered (until the first entry is reached, where it
will remain until one of the other responses is received).

Entering the appropriate data requested (followed by a carriage
return or ENTER). Often the parameters are checked for valid
options (i.e, Y or N).

Appropriate configuration information for specific disk types is listed in the

"Mass Storage"

chapter of the VERSAdos to VME Hardware and Software

Configuration User's Manual,

4-38

6e-¥

EXAMPLE

TENbug 2.x > IOT
DRIVE NUMBER (0&1=FIXED,2&3=FLOPPY)=.ccees.502
CONTROLLER NUMBER=,4.44..3500
SECTOR SIZE (0=128,1=256,2-512,3-1024)=ccceccessl

TENbug 2.x > IOT
DRIVE NUMBER (0&1=FIXED,2&3=FLOPPY)=«.c....$00
CONTROLLER NUMBER=.......$00
SECTOR SIZE (0=128,1=256,2-512,3-1024)=cccceees.l
NUMBER OF HEADS, (ON THIS DRIVE)=.0¢ee...502
NUMBER OF CYLINDERS, (ON THIS DRIVE)=.....$0050
SECTORS PER TRACK=4esee0+510
MOTOROLA/IBM FORMAT (M/I)=eceveesessl
SINGLE/DOUBLE SIDED MEDIA (S/D)=eesecesssD
SINGLE/DOUBLE TRACK DENSITY (S/D)=e¢eceeseesD
SINGLE/DOUBLE DATA DENSITY (S/D)=ecececcessD

LAV LIV
IO ~O
o

))) e 0)))))

8

(CR)
(CR)
(CR)
(CR)

(CR)
(CR)
(CR)

IoT
COMMENT

Teach RWIN1 controller a new configuration.
Select drive 0.

Use default controller 0.

Change of heart ... start over again.

Invoke the IOT command again.
Configure drive 2 (first floppy).
No change.

No change.

No change.

No change.

Change from 16 sectors/track to 8.
No change.

No change.

No change.

Change to single-data density.

LOI

0v-v

TENoug 2.x > IOT

DRIVE NUMBER (0&1=FIXED,2&3=FLOPPY)=.ccs.s.502
CONTROLLER NUMBER=..¢+..+500

SECTOR SIZE(0=128,1=256,2=512,3=1024)=ccsccesesl
NUMBER OF HEADS, (ON THIS DRIVE)=.seee..501
NUMBER OF CYLINDERS, (ON THIS DRIVE)=«....50001
NUMBER OF HEADS, (ON THIS DRIVE)=«sceeee501
NUMBER OF CYLINDERS, (ON THIS DRIVE)=.....$0001
SECTORS PER TRACK=.ss¢044500

TENoug 2.x >

W) W))) ey W)))

(CR)
(CR)
(CR)

I0T

Invoke IOT to change configuration of hard disk to
allow use as a 5-megabyte hard disk.

Oops, passed the number of heads parameter; back up.
Change to 2 heads.

Change to $132 cylinders.

And $20 (32) sectors/track.

NOTE:

These parameters are specifically for the
5-megabyte Winchester hard disk. To find out
what a particular Winchester hard disk
requires for configuration, boot the operating
system and, while "inactive" (not updating
critical files), press the ABORT button. Then
enter an IOT command to see how the boot
device is configured. If all is well, enter
GO and continue with operating system control.

re)s

4.2,25 ILoad (S-Records) (LO) LO

LO[<port number>] [;<options>] =<text>

The LO command prepares the VME/10 to receive S-records from the designated
<port number> and then transmits the <text> following the = sign to the system
connected to the <port number> indicated. As the S-records are received, the
checksuns are verified and the data placed into memory. If the automatic
relative offset register, RO, contains a nonzero value, this offset is added to
the address contained within the S-record before the data is moved into memory.

The following options are supported:
:=C Ignore validation of the checksum on each S-record while loading.

X Echo the S-records read to the VME/10 built-in terminal. Different
environments may dictate that the ;X option not be used. If
printer attach is in effect, the data cannot be displayed upon the
screen (and then printed on the printer) before the next record
arrives. Thus data can be missed.

This command requires that a dual serial I/Omodule (MVME400) be available on the
I1/0 Channel. Note that serial ports 2 and 1 on the MVME400 correspond to TENbug
ports 2 and 3, respectively.

Default source is the TENbug port 2. Specifying LO<port number> allows the
input to be received from other ports.

Valid port numbers for this command are:

PORT NUMBER DESCRIPTION
none Defaults to TENbug port 2 (MVME400 port 2 - 7201/B).
1 Specifies TENbug port 1 (VME/10 built-in terminal/keyboard).
2 Specifies TENbug port 2 (MVME400 port 2 - 7201/B).
3 Specifies TENbug port 3 (MVME400 port 1 - 7201/RA).

4-41

EXAMPLE

TENbug 2.x > BF A00 FOO 2020
PHYSICAL ADDRESS=00000A00 00000F00

TENbug 2.x > MD B0O

000B00

20 20 20 20 20 20 20 20 20

TENbug 2.X > RO 100

TENbug 2.X > LO =DU AQ0 A80

DU A00

A80

TENbug 2.x > RO 0+R7

TENbug 2.x > .RO
-RO=00000000

TENbug 2.x > MD AQ0

000A00

TENbug

000B00
000B10
000B20
000B30
000B40
000B50
000B60

000B70

20 20 20 20 20 20

7F

2.x > MD BOO

00
10
20
30
40
50
60
70

01
11
21
31
41
51
61
71

02
12
22
32
42
52
62
72

03
13
23
33
43
53
63
73

TENbug 2.x > BF AQO

PHYSICAL ADDRESS=00000A00 00000B00

TENbug 2.x > MD AQO

000A00

04 05
14 15
24 25
34 35
44 45
54 55
64 65
74 75

20

FF
16
26
36
46
56
66
76

B0OO 4161

20

FF
17
27
37
47
57
67
77

20

08
18
28
38
48
58
68
78

COMMENT

Fill RAM with spaces.

Display RAM.
20 20 20 20 20 20 20

Set automatic relative offset register to
$10 to reposition S-records to be loaded by
+ $100.

Load S-records from $A00 to $A80 (into $BOO
to $B8O) .

Reset automatic relative offset register to
Zero.

Display memory at SA00 to verify S-records
not loaded here.

20 20 20 20 20 20 20

Display memory at offset $100 from source
location.

09 OA OB OC OD OE OF cecosccsscccocss
19 1A 1B IC ID 1E 1F cecccvescocsccss
29 2A 2B 2C 2D 2E 2F 14838 () *+,-./
39 3A 3B 3C 3D 3E 3F 0123456789:;<=>?
49 4A 4B 4C 4D 4E 4F Q@ABCDEFGHIJKLMNO
59 5A 5B 5C 5D 5E 5F PQRSTUVWXYZ[\]ﬁ_
69 6A 6B 6C 6D 6E 6F 'abcdefghijklmno
79 7A 7B 7C 7D 7E 7F pqrstuvwxyz{]}".

Fill RAM with pattern.

Display destination memory.

41 61 41 61 41 61 41 61 41 61 41 61 41 61 41 61 AaAaAaAaAaAaAada

4-42

TENbug 2.x > LO ;X=DU A00 A80

DU AOO A80
PHYSICAL ADDRESS=00000A00 00000A80

S0030000FC
S1130A00000102030405FFFF08090A0BOCODOEQF79
S1130A10101112131415161718191A1B1C1D1E1F5A
S1130A20202122232425262728292A2B2C2D2E2F4A
S1130A30303132333435363738393A3B3C3D3E3F3A
S1130A40404142434445464748494A4B4ACADAE4F2A
S1130A50505152535455565758595A5B5C5D5ESF 1A
S1130A60606162636465666768696A6B6C6D6E6FOA
S1130A70707172737475767778797A7B7CTD7ETFFA
S1040A8080F1
S90300000FC

TENbug 2.x > MD A00 80

000A00
000A10
000A20
000A30
000A40
000A50
000460
000A70

00
10
20
30
40
50
60
70

01
11
21
31
41
51
61
71

was

02
12
22
32
42
52
62
72

03
13
23
33
43
53
63
73

04
14
24
34
44
54
64
74

05
15
25
35
45
55
65
75

FF
16
26
36
46
56
66
76

FF
17
27
37
47
57
67
77

08
18
28
38
48
58
68
78

LO

Enter Load command specifying ;X option
(echo S-records to CRT as memory is being
loaded).

Notice S0, S1, and S9 records are displayed
upon screen. (Refer to warning in command
description about timing restrictions with
the ;X option.)

Display memory containing downloaded data.

09 OA OB OC OD OE OF cecescccccccncscs
19 JAIBIC IDIE IF cececccsscccccns
29 2A 2B 2C 2D 2E 2F IVES%8 (Y *+,-./
39 3A 3B 3C 3D 3E 3F 0123456789:;<=>?
49 4A 4B 4AC 4D 4E 4F QABCDEFGHIJKLMNO
59 5A 5B 5C 5D 5E 5F PQRSTUVWXYZ[\]i_
69 6A 6B 6C 6D 6E 6F 'abcdefghijklmno
79 7A 7B 7C 7D 7E 7F pqrstuvwxyz{[}“.

NOTE

host system used to create and transmit the S-records
an MC68000 Educational Computer Board (MEX68KECB) .

4-43

4.2.26

Memory Display (MD) MD

MD[<port number>] <address> [<count>][;<options>]

The MD command displays a portion of memory which begins at <address> and
extends for the number of bytes or lines given as <count>. There are two
formats that can be requested with the MD command.

a.

The dump format begins each line with the starting or next hexadecimal
memory address followed by 16 hex bytes per line with the ASCII
equivalent shown to the right. The number of lines varies with the
<count> entered (or default). There are no partial lines. If the byte
count ends in the middle of a line, the complete line is displayed.
(Default byte <count> is $10.)

The disassembler format provides:
1. The starting or next hexadecimal memory address.
2. The object code displayed in hexadecimal.

3. The M68010 source statement that will assemble into the object code
as described in 2. above.

If the operation code is not valid, a "Define Constant" is constructed
for one word. Notice that <count> for the disassembler mode is a number
of source lines to be disassembled and displayed, not the number of
bytes. (Default line <count> is $10.)

Default destination is the console terminal. Specifying MD<{port number> allows
the output to be directed to another port.

Valid port numbers for this command are:

PORT NUMBER DESCRIPTION

none Defaults to TENbug port 1 (VME/10 built-in terminal/keyboard).
1 Specifies TENbug port 1 (VME/10 built-in terminal/keyboard) .
2 Specifies TENbug port 3 (MVME400 port 1 - 7201/3).
3 Specifies TENbug port 2 (MVME400 port 2 - 7201/B).
4 Specifies TENbug port 4 (MVME410 port 1 - PIA/A).
5 Specifies TENbug port 5 (MVME410 port 1 - PIA/B).

Options supported are the disassembler and the screen option.

;DI Requests the disassembler option. The <count>, if provided, is a

S

line count (default is $10).

Requests the display of a full screen of memory (16 lines of
display in either Qump or disassembler format). Notice that the
default for disassembly is $10 (or 16 decimal) anyway. If the
<count> and ;S option are both entered within the same MD command,
the ;S option has priority.

All combinations are valid (e.g., ;DIS, ;SDI, ;S DI, ;DI S).

4-44

MD

The MD command has a quick scroll facility that lets the terminal operator press
CR repeatedly following the initial MD command. In the past, all but the first
display were automatically 16 lines long. To enable control blocks to be

examined conveniently,

the <count> (either bytes or lines) is used for each

iteration.

EXAMPLE COMMENT

TENbug 2.x > MD 10000 30 Display memory of a small routine in dump
format.

010000 41 F8 10 00 20 3C 00 00 02 FF 11 00 51 C8 FF FC AXee <asooesQH,:

010010 60 EE FF FF FF FF FF FF FF FF FF FF FF FF FF FF 'Neccccccosccocsce

010020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF cececccccccccoccce

TENbug 2.x > MD 10000 7;DI Display memory of the same routine in
disassembler format.

010000 41F81000 LEA.L $00001000,20

010004 203CO00002FF MOVE.L #767,D0

01000a 1100 MOVE.B DO,-(A0)

01000C 51C8FFFC DBF.L D0,$01000A

010010 60EE BRA.S $010000

010012 FFFF DC.W SFFFF

010014 FFEF DC.W SFFFF

TENbug 2.x > MD A0Q Display memory without a <count>.

000A00 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF +ceecceocccscccce

TENbug 2.x > (CR) Enter a carriage return; the next <count>
bytes are displayed (default is $10).

000A10 10 11 12 13 14 1516 17 00 01 02 03 04 05 06 07 ccececcosssssccce

4-45

TENbug 2.x > MD A00;S

000A00 00 O1 02 03 04
000A10 10 11 12 13 14
000A20 08 09 0OA OB OC
000A30 00 01 02 03 04
000A40 10 11 12 13 14
000A50 08 09 0A OB OC
000A60 00 01 02 03 04
000A70 10 11 12 13 14
000A80 08 09 0OA OB OC
000AS0 00 01 02 03 04
000AA0 10 11 12 13 14
000ABO. 08 09 0A OB OC
000ACO 18 00 00 00 0O
000ADO 00 00 00 00 00
000AE0O 00 00 00 00 00
000AFO 00 00 00 00 00

TENbug 2.x > MD A00 18

000A00
000A10

00 01 02 03 04
10 11 12 13 14

TENbug 2.x > (CR)

000A18
000A28

00 01 02 03 04
10 11 12 13 14

TENbug 2.x > (CR)

000A30 00 01 02 03 04
000240 10 11 12 13 14
TENbug 2.x >

05
15
0D
05
15
0D
05
15
0D
05
15
0D
00
00
00
00

05
15

05
15

05
15

Display

06
16
OE
06
16
OE
06
16
OE
06
16
OE
00
00
00
00

07
17
OF
07
17
OF
07
17
OF
07
17
OF
00
00
00
00

08
00
10
08
00
10
08
00
10
08
00
10
00
00
00
00

a

09
01
11
09
0l
11
09
01
11
09
01
11
00
00
00
00

0):
02
12
oA
02
12
0A
02

12

0A
02
12
00
00
00
00

full

0B
03
13
OB
03
13
0B
03
13
0B
03
13
00
00
00
00

oc
04
14
0C
04
14
0C
04
14
0C
04
14
00
00
00
00

Display memory with

06 07 08
l6 17 00

Enter a

if in the middle of the line).

09 0A OB OC
01 02 03 04

screen

0D
05
15
0b
05
15
0D
05
15
oD
05
15
00
00
00
00

a <count>

OE
06
16
OE
06
16
OE
06
16
OE
06
16
00
00
00
00

OF
07
17
OF
07
17
OF
07
17
OF
07
17
00
00
00
00

0D OE OF
05 06 07

of hexadecimal

0 0000000000000
000000 s0000000 0
® 000000 OOSOIOCOINOEOSNOTSIDS
0 0000000000000
®ee000s000000000
0000 0asBNOOOSONONDOS
® 00000 OOIOGEOESIOOSPOPODS
®00 0000080000000
e 000000t te 00
920000000 O OO0 NSNS
®Sevsessevssccsoe
®0 0000000000000
® 0000000000 0e P00
Sosvsevssevtos e
® 9900000000000

of $18.

e 0000000000000

MD

data.

carriage return to display the next <count>
bytes (starting where the last request ended, even

06 07 08 09 OA OB OC.0D OE OF
16 17 00 01 02 03 04 05 06 07

06 07 08 09 OA OB OC OD OE OF
16 17 00 01 02 03 04 05 06 07

4-46

0000000000000

0000000000000

®0 00 0OOCEOEOSISINOEOENESODS

®esc000000000000

4,2,27 Memory Modify (MM)

x 2

M[M] <address> [;<options>]

The function of the Memory Modify (M or MM) command is to change data in memory.
An address and options are specified on the initial command line.

For convenient viewing and changing of object data, four variations of data
updating capability are offered. These are enhanced by five options: the data
size options, word and longword (the default size is byte); odd or even address
access options (byte-size only); and a nonverification option for write-only
operations. Action provided by an option specified on the initial command line
is utilized in all four data updating submodes and remains in force until the M
command is exited.

The five memory change mode options are:

sW Set size to word (i.e., two bytes).

;L Set size to longword (i.e., four bytes).

;0 Set size to byte; access only odd addresses.
;V Set size to byte; access only even addresses.

;N No verification. Do not read data after updating. If used, ;N must be
preceded by one of the above options (the semicolon (;) is required
between multiple options).

When the memory change mode is entered on execution of the initial command line,
object data in the specified locations is displayed in hexadecimal format, and
the M command prompt (?) is presented at the right of the data. The data can
then be changed using any of the subcommands described below. If desired, the
action of the subcommand can be obtained without entering new data. For
example, the contents of the preceding location(s) can be viewed by typing
"S(CR)" alone after the ? prompt, or the M command can be exited by typing
".(CR) "

[<data>] (CR) Update location and sequence forward.
[<data>] " (CR) Update location and sequence backward.
[<data>]=(CR) Update location and reopen same location.
[<data>] . (CR) Update location and terminate.

Disassemble/Assemble Mode (the ;DI option)

On execution of an initial M command line with the ;DI option selected, the
disassemble/assemble mode is entered. Starting from the specified location,
data is disassembled into a source instruction line, and both object data (in
hexadecimal) and the source line are displayed. The M command prompt (?) is
displayed to the right of the disassembled source line. If desired, a new
source instruction may be typed and assembled to replace the existing
instruction (the first character must be a space, which is recognized as the
label field delimiter by the TENbug one-line assembler). Assembly is initiated
by typing a carriage return. After assembly and updating, data in the following
locations is disassembled and the next source line displayed. Note that the
update and sequence backward ("(CR)) and the update and reopen the same location
(=(CR)) features are not available in the disassemble/assemble mode. Typing
".(CR)" while in this mode provides exit from the M command.

4-47

EXAMPLE

TENbug 2.x > M 10000;L

010000
010004

TENbug

010008
01000A
01000C
01000E
010010
01000E

010010
TENbug
020001
020001
020001
020001

020001

00000200 ? (CR)
FFFFEFFFF ? -5.

2.x > MM 10008;W;N

LVEUSEUV LV)

ul
(8]
[§;]
w

J

VLV VY

)

H
-
| ol
-

N
N
N
N

w
w
w
w

|

o
[N
[1-N
18

6666 .

> M 20001;N;0

1=
8=
1=

=

z 3

COMMENT

Memory modify location $10000 a longword at a
time.

No change to this longword.

Change this longword to $-5 (or SFFFFFFFB) and
stop.

Modify memory location $10008 a word at a time; do
not read data after updating.

Place a word of 1's into this location.

Place a word of 2's into this location.

Place a word of 3's into this location.

Place a word of 4%s into this location.

Back up one word.

Place a word of 5's over the 4's in this location.

Place a word of 6's into 'this location.

Place a byte into the odd locations only, without
reading the data.

Place a 1 into this memory location and remain at
the same location. This technique is very useful
for debugging I/0 devices.

Place a 7 at this memory location and remain at the
same location.

Exit the MM command.

4-48

TENbug

049528
04952E
049532
049536

049536
049536
04953A
04953C

TENbug

2.x > M 49528;DI

48B800010406
40F80406
48E7FFFE
4AFF8095A

4AFF8095A
4FF8095A
1600

04444281

2. >

MM
M

Modify memory starting at $49528 using the
disassembler.

MOVEM.W D0,$0406 ? (CR)

MOVE.W SR,$0406 2 (CR)

MOVEM.L D0-D7/A0-26,-(A7) ? (CR)
LEA.L $0953,A7 ? MOVE.B

X? (CR) (response to incomplete,
LEA.L $905A,A7 ? (CR) incorrect entry)
MOVE.B DO,D3 ? (CR)

SUB.W #17025,D4 ? .

NOTE

Refer to Chapter 5 for more information
about the assembler/disassembler.

4-49

4.2.28 Memory Set (MS) ; MS
MS <address> <data>

The Memory Set (MS) command changes the contents of memory. The data entered is
placed at the location specified by <address>. If the data entered requires
word alignment and <address> is not even, the byte at <address> is bypassed and
the data is placed in the next even address.

Memory Set allows both hexadecimal and ASCII string data within the same line.
The length of hexadecimal values can also vary. A space is used to delimit each
field, and an apostrophe must be used to enclose each ASCII string.

Notice that lowercase is supported within the ASCII string. TENbug's command
and parameter parser automatically converts all lowercase input into uppercase.
The only exceptions are the ASCII strings within apostrophes and the data
entered while in transparent mode. This provides support for users wishing to
use the terminal in lowercase. The commands and operands will work because they
are converted to uppercase, and, where lowercase is specifically needed, it is
supported (BS, MS, and ™).

The maximum number of bytes that can be entered with one MS <address> <data>
command is limited to the size of the command line buffer, or 128 bytes. When
the character in the last position of the first line is entered, an automatic
CR/LF is sent to the display allowing the user to continue and still read the
input characters entered.

EXAMPLE COMMENT
TENbug 2.x > MD AQO 30 Display memory at start before the MS command.
000A00 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

000A10 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
000A20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

TENbug 2.x > MS A0l 'MS Test' 41 61 42434445 20313233 'End of Data'

Enter ASCII string, two bytes, two longwords, and
another string. (Notice lowercase input.)

TENbug 2.x > md a00 30 Now display results with the MD command. Notice
command was entered in lowercase.

000A00 20 4D 53 20 54 65 73 74 20 41 61 42 43 44 45 20 MS Test AaBCDE

000A10 31 32 33 45 6E 64 20 6F 66 20 44 61 74 61 2E 20 123End of Data.
000A20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

TENbug 2.x > BF AQ0 B0OO 4161

Fill memory with Aa so changes will stand out.

PHYSICAL ADDRESS=00000A00 00000B00

4-50

MS

TENbug 2.x > MD A70 Display memory near end of what a full buffer can
change.

000A70 41 61 41 61 41 61 41 61 41 61 41 61 41 61 41 61

TENbug 2.x > MS A00 'This example shows that the MS command allows more than one
line of data in the buffer at a time. Note the CR/LF sent'.

Enter long ASCII string.

TENbux 2.x > md a00 80 Display a full 128 bytes.

000R00 54 68 69 73 20 65 78 61 6D 70 6C 65 20 73 68 6F This example sho
000A10 77 73 20 74 68 61 74 20 74 68 65 20 4D 53 20 63 ws that the MS c
000A20 6F 6D 6D 61 6E 64 20 61 6C 6C 6F 77 73 20 6D 6F ommand allows mo
000A30 72 65 20 74 68 61 6E 20 6F 6E 65 20 6C 69 6E 65 re than one line
000RA40 20 6F 66 20 64 61 74 61 20 69 6E 20 74 68 65 20 of data in the
000A50 62 75 66 66 65 72 20 61 74 20 61 20 74 69 6D 65 buffer at a time
000A60 2E 20 4E 6F 74 65 20 74 68 65 20 43 52 2F 4C 46 . Note the CR/LF
000A70 20 73 65 6E 74 61 41 61 41 61 41 61 41 61 41 61 sentaPAaAaRaAada

TENbug 2.x >

4-51

4,2.29 Display Offsets (OF) ' - OF
OF

The OF command displays the offsets used to assist with relocatability and
position-independent code.

Linked segments of code will each have a different load address or offset. For
user convenience, seven general purpose offsets (.R0-.R6) are provided. Offset
.R7 is always =zero, which provides a convenient technique for entering an
address without an offset. If no value is assigned to one of the general
purpose offsets, it will have the default value of zero.

Unless another offset is entered, each command that expects an address parameter
automatically adds offset RO to the entered address -- that is, if RO = 1000,
the following commands are the same:

BR 10 (10 + 1000) Offset RO added by default.
BR 10+R0O (10 + 1000)
BR 1010+R7 (1010 + 0) R7 is always zero.

The physical address for each of these commands is 1010.

EXAMPLE COMMENT
TENbug 2.x > .R1 1000 Set offset RI1.
TENbug 2.x. > .R3 33000

TENbug 2.x > .R4 440000

TENbug 2.x > R5 0 Reset offset RS5.

TENbug 2.x > .R6 ~1
TENbug 2.x > OF Display offsets.

R0=00000000 R1=00001000 R2=00000000 R3=00033000
R4=00440000 R5=00000000 R6=FFFFFFFEF R7=00000000

TENbug 2.x > .RO 1200 Set offset RO.

TENbug 2.x > MM 10

000010+R0 61 ? . Offset RO is added to the address.

TENbug 2.x > MM 10+R7 R7 is always 0 and, when entered, overrides
000010 00 ? . RO.

TENbug 2.x >

To set RO to 0 after it has been set to a
non-zero value, use the command ".RO O+R7".
The command ".R0O 0" will not alter RO.

4-52

4.2.30 Printer Attach and Detach (PA and NOPA) PA
NOPA

PA[<port number>]
NOPA

The PA cammand allows the user to attach the line printer so that information
sent to the console terminal will also be printed. (The printer is connected to
a port on a dual 1l6-bit parallel port I/Omodule, MVME410, attached to a printer
board which communicates with the VME/10 system via the I/O Channel. Refer to
the initial setup instructions in the VME/10 Microcomputer System Diagnostics
Manual.) The board has two PIA's. TENbug takes the lower addressed PIA as port
4 and the higher as port 5. Default is always port 4.

valid port numbers for this command are:

PORT NUMBER DESCRIPTION
none Defaults to TENbug port 4 (MVME41l0 port 1 - PIA/A).
4 Specifies TENbug port 4 (MVME41l0 port 1 - PIA/A).
5 Specifies TENbug port 5 (MVME410 port 2 - PIA/B).

The printer can also be called by the Memory Display (MD4 or MD5) cammarnd.

If the printer is deselected or not ready, the message PRINTER NOT READY will be
sent to the console terminal. TENbug will wait until the printer is ready or
the BREAK key is pushed.

NOTES

1. Execution of this command when no dual 1l6-bit parallel port
module is connected to the I/0 Channel may require pressing
the RESET pushbutton in order to return control to TENbug.

2. Only one printer port can be attached at a time.

The NOPA command allows the user to detach the line printer at port 4 or port 5
fram the console temrminal. Output will then be displayed on the console
terminal only; it will not be printed.

See also: MD

EXAMPLE COMMENT
TENbug 2.x > PA5
TENbug 2.x > MD 800 90

FF?F 30 04 FFFFOO 00 ..$.......0.....

000800 FF FF 24 18 FF 7F 0C 00
1 Ol FF FF FF 26 FF FF 7F 22 FF FE .liceceee&ess"s”

000810 FF 31 FF FF FF
: Output is displayed on console terminal and printed
. at port 5.
TENbug 2.x > NOPA Future output will be displayed on console temminal
TENbug 2.x > oy

4-53

4.2,31. Port Format (PF) PF

PF[<port number>]

The Port Format (PF) command displays or changes the automatic null insertion
for each character and for each carriage return. Two additional pieces of
information are displayed:

a. The address of RAM used to initialize the two 7201 serial ports when the
optional MVME400 module is installed.

b. The address of the TENbug option bytes in RAM (affecting transparent mode
parameters and the environment while tracing).

There are two responses when the Port Format (PF) command is entered. If the
optional MVME400 module is installed, the character null count and the carriage
return null count are displayed. If the dual serial port is not installed, a
message notifying the user is displayed. In either event, the RAM locations for
7201 initialization and the TENbug options are then displayed.

‘TENbug 2.x > PF TENbug 2.x > PF
OPTIONAL MVME400 NOT INSTALLED PORT2 PORT3
CHAR NULL= 00 00
7201 RAM @ XXXXXX C/R NULL = 00 00
OPTIONS @ YYYYYY
7201 RAM @ xXXXXXX
OPTIONS @ YYYYYY

NOTE

TENbug port 2 corresponds to MVME400 port 2, (7201/B).
TENbug port 3 corresponds to MVME400 port 1, (7201/A).

If either PF2 or PF3 is entered, the CHAR NULL count (number of nulls to be
. inserted after each character) is displayed followed by a ? prampt. The user
may then enter a new count or enter a carriage return to move on to the next
field without change to this parameter. C/R NULL (or the number of nulls to be
inserted after each carriage return) is the second and last parameter displayed
for the user to accept or modify as desired.

If the configuration of either or both of the 7201 serial ports requires
modification (e.g., number of stop bits, parity), the PF command cannot directly
make the changes. Instead, the address where RAM 1is located for the
initialization of the ports is displayed on the general display. A Memory
Modify cammand can be used to alter these hex locations. After a change has
been made, the serial ports must be forced to reinitialize by entering a PF
<port number> commard., This will place the new RAM data into the 7201
registers. The contents of the 7201 RAM area at power up or cold start are as
follows.

4-54

PF

RELATIVE PORT2 PORT3 DESCRIPTION
OFFSET (7201/B) (7201/A) OF MOVE FUNCTION
0000 18 18 $18 to ctl reg 0 Issue channel reset
0002 02 02 $S02 to ctl reg 0 Set up R2 for a read
0004 00 00 $00 to ctl reg 2 Disable DMA & interrupt vector
0006 14 14 $14 to ctl reg 0 Set up R4 for a read & reset
0008 44 44 $44 to ctl reg 4 # stop bits & parity
000A 01 0l $01 to ctl reg O Set up Rl for a read
000C 00 00 $00 to ctl reg 1 Disable interrupts
000E 05 05 $05 to ctl reg 0 Set up R5 for a read
0010 EA FA SEA to ctl reg 0 Set bits/character (write)
0012 03 03 $03 to ctl reg 0 Set up R3 for a read
0014 El El SE1l to ctl reg 3 Set bits/character (read) AUTO
” ENABLE

See the examples following this discussion for 7201 reconfiguration,

Three-wire interfaces (TXD, RXD, GND) and other interfaces that do not provide
full modem flow control (DSR, RTS, CTS, DCD, DTR) can be supported by disabling
the AUTO ENABLE feature within the 7201 serial controller (register 3, bit 5).
In this mode of operation there will not be any flow control in either direction
with the modem control lines.

If flow control is desired, for transmission of S-records to and from an
EXORmacs through an MCCM for example, the AUTO ENABLE feature can be enabled.
In addition there are specific jumpers that must be in place to support this
configuration. For more information on the serial port jumper configuration
refer to the paragraph in the MVME400 user's manual entitled "CTS Control
Headers".

The following Jjumper configurations provide flow control with modem control
lines:

TENbug PORT 2 TENbug PORT 3
MVME400 PORT 2 MVME400 PORT 1
EZ ‘ Jle6
1-3, 2-4 1-3, 2-4
MVME400 J9 IS JUMPERED MVME400 J15 IS JUMPERED
(TO TERMINAL) (TO TERMINAL)

EXORmacs EXORmacs
MCCM (TO MODEM) MCCM (TO MODEM)

4-55

PF

For compatibility, the format of the "options" RAM area is the same as that used
in the Educational Computer Board (ECB) firmware TUTOR l.x. Several items are
not supported within TENbug, but those that are reside in the same offsets. The
XON/XOFF characters and auto line feed control are not supported within TENbug
2.x; as a result the first three bytes in the "options" area are unused.

Offset $3 within the "options" RAM, a non-$00 byte will inhibit the register
display at breakpoints and traces.

Offset $4 contains the Transparent Mode (TM) "trailing" character (the character
transmitted through port 2 to inform a host system that any characters that
might be left over from this port are to be flushed). If this character is $00
or NUL, there will not be any transmission of a character upon termination of
transparent mode.

Offset $5 contains the character that when entered will terminate transparent
mode and return control to TENbug.

See also: T™

4-56

LS-¥

EXAMPLE

TENbug 2.x > PF
PORT2 PORT3

CHAR NULL= 00 00

C/R NULL = 00 00

7201 RAM @ 001314
OPTIONS @ 001152

TENbug 2.x > M 1314;W

001314 1818
001316 0202
001318 0000
00131A 1414 ? (CR)
00131C 4444 ? 4724

? (CR)
?
?
?
?
00131E 0101 ? (CR)
?
?
?
?
?

(CR)
(CR)

001320 0000 ? (CR)
001322 0505 ? (CR)

001324 EAEA ? AAFA
001326 0303 ? (CR)
001328 ElEl ? 61El.
TENbug 2.x > PF
CHAR NULL= 00 ? (CR)
C/R NULL = 00 ? (CR)
TENbug ——

PF
COMMENT
Reconfigure for 7 bits/character with even parity.

Display the address of the 7201 initialization RAM.

(For this example, the address of RAM is $1314.
This address will vary by TENbug version).

Modify areas affecting transmitted/received
bits/character, number of stop bits, and parity.

NOTE

Only the first byte is modified within each
pair of bytes. In this example, only TENbug
port 2 (MVME400 port 2 7201/B) is being
changed.

After the RAM has been changed, the 7201 must be
forced to initialize. PF2 or PF3 will issue serial
port initialization after accepting the two optional
variables.

dd

8G6-¥

PF

In the example below, the AUTO ENABLE bit in control register 3 is turned on for ports 2 and 3 to provide modem

control line flow control.

TENbug 2.x >

001314 1818
001316 0202
001318 0000
00131A 1414
00131C 4144
00131E 0101
001320 0000
001322 0505
001324 AAEA
001326 0303
001328 6lEl
TENbug 2.x >
CHAR NULL= 00
C/R NULL = 00
TENbug

1314;W

(CR)
(CR)
(CR)
(CR)
4444

SIS VRN IS I I IR IR SR J

SEEEEE

Reconfigure both ports to support a 3-wire interface
(TXD, RXD, and ground only).

NOTE

In this example both the first and second
bytes are modified (contents of control
register 3), disabling the port 2 and port 3
AUTO ENABLE feature.

Reinitialize the serial ports using the modified RAM.

The following are examples both with and without régister information within trace and breakpoints.

TENbug 2.x > BR AlQ

BREAKPOINTS
000A10

000A10

TENbug 2.x > .PC AQQ

TENbug 2.x > T

PHYSICAL ADDRESS=00000A00

Use the "options" bytes displayed by PF.

Set breakpoint at end of a routine.

Set program counter at start of routine.

Trace one instruction. (Note: Complete register
display for each trace and breakpoint.)

PC=00000A04 SR=2704=.S7..Z.. USP=FFFFFFFF SSP=00000B00 VBR=00000000 SFC=2 DFC=7

D0-7 OOOOFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A0-7 00001000 00000000 00000000 00000000 00000000 00000000 00000000 00000BOO
PC=000A04

203C000002FF

MOVE.L $767,D0

dd

6S-¥

TENbug 2.x :> (CR) Assume Trace (CR after previous trace).
PHYSICAL ADDRESS=00000A04 ;

PC=00000A0A SR=2700=.S7..... USP=FFFFFFFF SSP=00000B00 VBR=00000000 SFC=2 DFC=7

D0-7 000002FF 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A0-7 00001000 00000000 00000000 00000000 00000000 00000000 00000000 00000BOO

PC=000A0A 1100 MOVE.B DO0,-(A0)
TENbug 2.x :> GO Allow free running of routine to be stopped by
PHYSICAL ADDRESS=000000A0A breakpoint.
AT BREAKPOINT Once again, full register display.

PC=00000A10 SR=2704=.S7..Z.. USP=FFFFFFFF SSP=00000B00 VBR=00000000 SFC=2 DFC=7

DO-7 OOOOFFFEF 00000000 00000000 00000000 00000000 00000000 00000000 00000000

AQ-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000BOO
PC=000A10 60EE BRA.S $000A00

TENbug 2.x > PF Request "options" RAM location with the PF command.
PORT2 PORT3

CHAR NULL= 00 00

C/R NULL= 00 00

7201 RAM @ 001314

OPTIONS @ 001152 Note: Address will vary from example.

TENbug 2.x > M 1152 Use address to display, then modify, the fourth byte
001152 00 ? (CR) (offset $3) from zero to nonzero to suppress complete
001153 00 ? (CR) register display.

001154 00 ? (CR)

001155 00 2 1.

dd

09-v

TENbug 2.x > .PC A0O

TENbug 2.x > T
PHYSICAL ADDRESS=00000A00
PC=000A04 203CO00002FF

TENbug 2.x :> (CR)
PHYSICAL ADDRESS=00000A04
PC=000A0A 1100

TENbug 2.x :> (CR)
PHYSICAL ADDRESS=00000A0A
PC=000A0C 51C8FFFC

TENbug 2.x > GO

PHYSICAL ADDRESS=00000A0C

AT BREAKPOINT
PC=000A10 60EE

TENbug 2.x >

MOVE.L #767,D0

MOVE.B DO,~(A0)

DBF.L DO,S$000A0A

BRA.S $000A00

PF

Restart routine again.

Trace one instruction.

Trace assumed when previous trace followed with a
carriage return.

Note: Only physical address where execution begins;
the relative displacement and offset (if used) for
the PC; the hex value of the instruction; followed by
the disassembled instruction.

Breakpoint displays the same abbreviated information.

dd

4.2.32 Transparent Mode (TM) ™
TM [<exit character> [<trailing character>]]

-The T command, together with an MVME400 dual RS-232C serial port I/Omodule,
provides terminal support in a dumb terminal fashion until the exit character is
received.

Multiple baud rates are supported, however, because the processor supports the
CRT display in a polling fashion; each time the screen requires scrolling there
is a delay that can result in lost characters. Baud rates down through 4800
baud can miss characters on the display.

The <exit character> is entered right after the ™ command itself, though an
optional space is permitted, Note that CTRL-X, CTRL-D, CTRL-H, CTRL-J, and
CTRL-M cannot be specified as exit or trailing characters from the ™ command.
These characters provide control for the temminal (e.g., line delete, redisplay
the line, backspace) and will not be passed to the ™ command from the temminal
hardler. All other characters, both CTRL and non-CTRL, can be entered.
(Default <exit character> is CTRL-A.)

The <trailing character> is transmitted to the host port upon receipt of the
<exit character>. With systems using VERSAdos the standard trailing character
is a CTRL-X, which cancels anything that might have made it to an input buffer.
By default CTRL-X is specified as the trailing character so there is no problem
using it (though if another trailing character were selected, CTRL-X could not
be entered to reinstate it).

There is an alternate way of setting the exit and trailing characters. Since
they are stored in RAM, any user knowing the location of these characters could
use a Memory Modify (MM) cammand to alter those values. By issuing a Port
Format (PF) command the address of the TENbug option bytes is displayed at the
end of the display.

Trailing character is located at offset $4
Exit character is located at offset $5

In systems where no data at all must be sent upon exit of transparent mode, the
trailing character can be changed to $00 using Memory Modify within the option
bytes. With the trailing character as NUL, there is no data sent at exit time.

Only TENbug port 2 (MVME400 port 2, 7201/B) is supported as the transparent

port. Even though the other ports may have output directed to them (e.g., MD3,
DU3), they are not supported for transparent mode.

4-61

29-¥

EXAMPLE
TENbug 2.x > T

TRANSPARENT EXIT=$01 = CTL A

TENbug 2.x > TM (CTRL-S)
TRANSPARENT EXIT=$13 = CTL S
TENbug 2.x > PF

PORT2 PORT3
CHAR NULL~= 00 00
C/R NULL = 00 00

7201 RAM @ 001314
OPTIONS @ 001152

TENbug 2.x > M 1152;W
001152 0000 ? (CR)
001154 0000 2 (CR)
001156 1813 ? 001C.

TENoug 2.x > TM
TRANSPARENT EXIT=S1C = CTL \

TENbug 2.x > M 1156;W
001156 001C ? 1801.

TENbug 2.x > ™

TRANSPARENT EXIT =$01 = CTL A

TENbug 2.x >

COMMENT

Request default exit and trailing character by
entering only TM.

TENbug responds with both hex and CTRL display of exit
character.

Specify CTRL-S as exit character with TM (hold down
the CTRL key and press the S key). TENbug responds
with hex 13 and CTL-S, verifying what was entered.

Use PF command to show where the TENbug option
variables are located within RAM,

Use Memory Modify command to display the trailing
character ($18) and the current exit character ($13).
Then change the trailing character to prevent
transmission of any data upon exit (refer to the
discussion of null trailing characters) and change
exit character to a CTRL-\ (control backslash).

Enter a TM command without any operands and the
previous values will be used, as changed by Memory
Modify.

Change trailing character back to CTRL-X and exit
character to CTRL-A.

Enter T™ without operands and the CTRL-A exit
character is verified.

4,2.33 Trace (TR)

ey

TIR] [<count>]

The Trace (T or TR) cammand executes instructions one at a time, beginning at
the location pointed to by the program counter. After execution of each
instruction, the MC68010 registers are displayed.

When the trace mode is entered, the prompt includes a colon (i.e.,
TENbug 2.x :>). While in this mode, typing only a carriage return will cause
one instruction to be traced.

Breakpoints and breakpoint counts are in effect during trace.

Trace cannot be used to step through interrupts or exceptions (e.g., TRAP).

COMMAND FORMAT DESCRIPTION
TENbug 2.x > T Trace one instruction.
TENbug 2.x :> TR <count> Trace <count> instructions.
TENbug 2.x :> (CR) Carriage return (CR) executes next instiuction.
TENbug 2.x :> MD 1000 Typing the next command exits trace mode.
NOTE

If the program counter contains an address that falls between
the starting and ending addresses of the TENbug program,
the warning message .PC within "DEBUGGER" will be returned.
Processing will continue with unexpected results if stack
pointers and/or registers are not handled properly.

See also: DF, GO, GT, TT

4-63

EXAMPLE:
TENbug 2.x > .PC 2000

TENbug x.y > TR

PHYSICAL ADDRESS=00002000

PC=00002002 SR=2700=.S7..... USP=FFFFFFFF SSP=00000800 VBR=00000000

D0-7 00304E71 00002000 CO5E2000 00000000 1796AF30 00000020 00000000

A0-7 00F021CA 00000000 00002000 00000458 00000410 00000551 00000551
PC=002002

TENbug x.y :> (gg)
PHYSICAL ADDRESS=00002002
PC=00002004
DO-7 00304E71 00002000 CO5E2000 00000000 1796AF30 00000020 00000000
A0-7 00F021CA 00000000 00002000 00000458 00000410 00000551 00000551
PC=002004

TENbug x.y > T 2

PHYSICAL ADDRESS=00002004

PC=00002006 SR=2700=.S7..... USP=FFFFFFFF SSP=00000800 VBR=00000000

D0-7 00304E71 00002000 COS5E2000 00000000 1796AF30 00000020 00000000

A0-7 00F021CA 00000000 00002000 00000458 00000410 00000551 00000551
PC=002006

PC=00002008 SR=2700=.S7..... USP=FFFFFFFF SSP=00000800 VBR=00000000

D0-7 00304E71 00002000 COS5E2000 00000000 1796AF30 00000020 00000000

A0-7 O00F021CA 00000000 00002000 00000458 00000410 00000551 00000551
PC=002008

TENbug 2.x :>

4-64

SFC=2 DFC=2
00000000
00000800

00000000
00000800

SFC=2 DFC=2
00000000
00000800

SFC=2 DFC=2
00000000
00000800

4,2.34 Trace to Temporary Breakpoint (TT)

TT <breakpoint address>

The TT command performs the following:
a. Sets a temporary breakpoint at the address specified.

b. Starts program execution in the trace mode.

c. Traces until any breakpoint with a zero count is encountered.

d. Resets the temporary breakpoint.
The temporary breakpoint is not displayed by the BR command.
See also: DF, GO, GT', TR

EXAMPLE
TENbug 2.x > .PC 2000

TENbug 2.x > TT 2006

PHYSICAL ADDRESS=00002006

PHYSICAL ADDRESS=00002000

PC=00002002 SR=2700=.S57..... USP=FFFFFFFF SSP=00000800 VBR=00000000

DO-7 00304E71 00002000 CO5E2000 00000000 1796AF30 00000020 00000000

A0-7 00F021CA 00000000 00002000 00000458 00000410 00000551 00000551
PC=002002

PC=00002004 SR=2700=.S7..... USP=FFFFFFFF SSP=00000800 VBR=00000000

b0~-7 00304E71 00002000 CO5E2000 00000000 1796AF30 00000020 00000000

A0-7 00F021CA 00000000 00002000 00000458 00000410 00000551 00000551
PC=002004

AT BREAKPOINT

PC=00002006 SR=2700=,S7..... USP=FFFFFFFF SSP=00000800 VBR=00000000

DO-7 00304E71 00002000 CO5E2000 00000000 1796AF30 00000020 00000000

A0-7 O00OF021CA 00000000 00002000 00000458 00000410 00000551 00000551
PC=002006

TENbug 2.x :>

4-65

TT

SFC=2 DFC=2
00000000
00000800

SFC=2 DFC=2
00000000
00000800

SFC=2 DFC=2
00000000
00000800

4.2.35 Verify (S-Records) (VE) VE
VE[<port number>] [;<options>] =<text>

The VE cammand prepares the VME/10 to receive S-records fram the designated
<port number> and then transmits the <text> following the = sign to the system
connected to the <port number> indicated. As the S-records are received, the
bytes are compared one by one with the contents of memory. If all bytes are
correct, the TENbug prompt is returned. However, if any data does not compare,
a message in the following format is displayed:

SlLLaaaa.—.—.—.-.-.—.—.-.-.-DD.-.-.-.—.—
or
SZLLaaaaaa.-.-.-.-.-.-.—.-.-.—DD.—.—.-.—.-

where:
Sl or S2 Is the S-record type (note size of address).
LL Is the length of the data contained within the checksum,
aaaa or aaaaaa Is the address that this S-record verifies.
e=e=om | Are characters that verify correctly.
DD. Represents the contents of the S-record where data was
found to be different.

Refer to Appendix D for a discussion of S-record content.

The following options are supported:
;-C Ignore validation of the checksum on each S-record while loading.
X Echo the S-records read to the VME/10 built-in terminal.
The VE cammand requires that a dual serial I/Omodule (MVME400) be available on
the I/0 Channel. Note that serial ports 2 and 1 on the MVME400 correspond to
TENbug ports 2 and 3, respectively.

Default source is the TENbug port 2, Specifying VE<portnumber> allows the input
to be received from other ports.

Valid port numbers for this command are:

PORT NUMBER DESCRIPTION

none Defaults to TENbug port 2 (MVME400 port 2 - 7201/B).

1 Specifies TENbug port 1 (VME/10 built-in terminal/keyboard).
2 Specifies TENbug port 2 (MVME400 port 2 - 7201/B).

3 Specifies TENbug port 3 (MVME400 port 1 - 7201/3).

4-66

EXAMPLE

TENbug 2.x > BF D00 EO00 4161

PHYSICAL ADDRESS=00000D00 00000E0O

TENbug 2.x > MD DOO
000D00

TENbug 2.x > LO =DU D00

D80

D00 D80

TENbug 2.X > MD DOO 8F

05
15
25
35
45
55
65
75
61

D80

000DO0 00 01 02 03 04
000D10 10 11 12 13 14
000D20 20 21 22 23 24
000D30 30 31 32 33 34
000D40 40 41 42 43 44
000D50 50 51 52 53 54
000D60 60 61 62 63 64
000D70 70 71 72 73 74
000D80 80 61 41 61 41
TENbug 2.x > M D78
000D78 78 ? 88.
TENbug 2.x > M D1A
000D1A 1A ? OA.
TENbug 2.x > VE =DU D00
DU DOO D80
S1130D10.=e=e=e=e=em=o=o—

TENbug 2.x > M Dl1A

000D1A

TENbug 2.x > M D78

000D78

OA 7 IA.

88 ? 78.

TENbug 2.x > VE =DU D00

TENbug 2.x >

D80

FF
16
26
36
46
56
66
76
41

41 61 41 61 41 61 41 61

17
27
37
47
57
67
77
61

COMMENT

Initialize RAM to known pattern.

41 61 41 61 41 61 41 61 AaAaAaAaAaAaRaAa

Display memory.

Enter LO command which contains a Dump
(DU) canmand for an Educational
Camputer Board (ECB).

Display RAM to see if data was

transferred,

08 09
18 19
28 29
38 39
48 49
58 59
68 69
78 79
41 61

oA
1A
2A
3A
4A
5A
6A
7A
41

0B
1B
2B
3B
4B
5B
6B
7B
61

oc
1C
2C
3C
4c
5C
6C
7c
41

0D
1D
2D
3D
4D
5D
6D
7D
61

OE
1E
2E
3E
4E
5E
6E
7E
41

OF
1F
2F
3F
4F
5F
6F
yia
61

I"48%8" () *+,-./
01234567893 ; <=>?
@ABCDEFGH IJKLMNO
PQRSTUVWXYZ [\] ~_
'abcdefghijklmno
parstuvwxyz{|}".
.aAaAaAahaAaAala

Alter two bytes with Memory Modify to
if Verify can detect incorrect bytes.

see

Enter the Verify cammand requesting the
same S-records be transmitted.

Two errors are detected.

Use Memory Modify to change the two bytes
back to the correct values.

Invoke the Verify cammand again;
errors are detected this time.

4-67

no

4.2.36 Video Map (VM) ™

VM

The VM command toggles the high-resolution bit (bit 4 of control register 1),
causing VME/10 RAM to ‘be remapped. This enables use of both low- (800 x
300-pixel matrix) amd high- (800 x 600-pixel matrix) resolution graphics display
mode,

WARNING
WHEN THE VM COMMAND IS USED, ALL VME/10
RAM IS REARRANGED AND MUST BE RELOADED.
The user enters TENbug in the high-resolution mode (bit set to 1), with memory
mapped accordingly. The basic TENbug prampt appears:
TENbug 2.x >
When the VM command is entered (bit changed to 0), the memory map is reorganized
for low resolution mode and a modified prompt appears which signifies that low
mode is in effect:
TENbug 2.x m>
However, the actual display matrix does not change. By remapping VME/10 memory,
RAM space is provided for the user to modify the display by reprogramming the
CRT controller device (MC6845) that defines the video screen.
Entering the VM command again will remap RAM for high-resolution mode.
Descriptions and memory maps for both low- and high-resolution modes appear in
the VME/10 Microcamputer System Reference Manual.
EXAMPLE COMMENT

TENbug 2.x > WM While in high-resolution mode, use VM
canmarnd to enter low-resolution mode.

TENbug 2.x m> VM New prampt indicates low-resolution mode.
Enter VM command again to return to
high-resolution mode.

TENbug 2.x >

4-68

69-%

4.3 COMMAND SUMMARY

The commands and options available to TENbug 2.Xx users are summarized in Table 4-2,

TABLE 4-2. TENbug Command and Option Summary

COMMAND DESCRIPTION
[NO]BARS Draw graphics test pattern.
BF <addressl> <address2> <pattern> Block fill.
BH [<device>] [,<controller>] Boot and halt.
BI <addressl> <address2> Block initialize.
BM <addressl> <address2> <address3> Block move.
BO [<device>] [,<controller>][,<string>] Boot operating system.
[NOIBR [<address>[;<count>]]... Set and remove breakpoints.
BS <addressl> <address2> '<literal string>' Block search; options ;B ;W ;L.

BT
[NO]CH
CRT
Cs
DC

DF

<addressl> <address2> <data>[<mask>] [;<option>]
<addressl> <address2>

[<bits>]

[<addressl>] [<address2>]

<expression>

DU[<port number>] <addressl> <address2> [<text>]

GD

[<address>]

Block test.

Alter character display map.
Alter CRT control registers.
Checksum.

Data conversion/evaluation.
Display formatted registers.
Dump memory (S-records).

Go direct.

0L-¥%

TABLE 4-2. TENbug Command and Option Summary (cont'd)

COMMAND

DESCRIPTION

G[0] [<address>]

[NOJGR [<bits>]

GT <temporary breakpoint address>

HE

I0C

I0P

IOT

LO[<port number>] [;<options>] =<text>

MD[<port number>] <address> [<count>][;<options>]
M[M] <address> [;<options>]

MS <address> <data>

OF

[NO]PA[<port number>]

PF [<port number>]

™ [<exit character> [<trailing character>]]
T[R] [<count>]

TT <breakpoint address>

VE[<port number>] [;<options>] =<text>

VM

Install breakpoints and go.
Alter graphics display map.
Go until address.

Display commands/registers.
Issué RWIN1 command.

Issue physical read/write.
Teach RWIN1l a configuration.
Load (S-records) .

Memory display; options ;DI ;S.

Memory modify; options ;W ;L ;0 ;V ;N ;DI.

Memory set (also ASCII).
Offset register display.
Printer attach/detach.
Port format.

Transparent mode.

Trace.

Trace until address.
Verify (S-records).

Toggle video map.

TABLE 4-2. TENbug Command and Option Summary (cont'd)

COMMAND DESCRIPTION

TL=¥/TL-¥

(See description of .<register> commands)

.A0 - .A7 [<expression>] Display/set address register.

D0 - .D7 [<expression>] Display/set data register.

.DFC [<expression>] Display/set destination function code.
.PC [<expression>] Display/set program counter,

.R0O - .R6 [<expression>] Display/set relative offset register.
«SFC [<expression>] Display/set source function code.

.SR [Kexpression>] Display/set status register.

.SSP [Kexpression>] Display/set supervisor stack pointer.
.USP [<expression>] Display/set user stack pointer.

.VBR [<expression>] Display/set vector base register.

Key Functions:

(BREAK) Abort command or process.

(DEL) Delete character.

(CTRL-D) Redisplay line.

(CTRL~H) Delete character.

(CTRL-W) Suspend output; any character continues.
(CTRL-X) Cancel command line.

(<-—J) Process current/previous command line.

CHAPTER 5

USING THE ASSEMBLER/DISASSEMBLER

5.1 INTRODUCTION

Included as part of the VME/10 TENbug 2.x fimmware is an assembler/disassembler
function. The assembler/disassembler is an interactive assembler/editor in
which the source program is not saved. Each source line is translated into the
proper MC68010 machine language code and is stored in memory on a line-by-line
basis at the time of entry. In order to display an instruction, the machine
code is disassembled, and the instruction mnemonic and operands are displayed.
All valid MC68010 instructions are translated.

The VME/10 assembler is effectively a subset of the MC68010 Resident Structured
Assembler. It has more limitations than the resident assembler, such as not
allowing line numbers amd labels; however, it is a powerful tool for creating,
modifying, and debugging MC68010 code.

5.1.1 M68010 Assembly Language

The symbolic language used to code source programs for processing by the
assembler is called M68010 assembly language. This language is a collection of
mnemonics representing:

. Operations
- MC68010 machine-instruction operation codes
- Directive (pseudo-op)

. Operators

. Special symbols

5.1.1.1 Machine-Instruction Operation Codes. That part of the assembly
language that provides mnemonic machine-instruction operation codes for the
MC68010 machine instructions is described in the M68000 16/32-Bit Microprocessor
Programmer's Reference Manual. The user should refer to this manual.

5.1.1.2 Directives. The assembly language can contain mnemonic directives
which specify auxiliary actions to be performed by the assembler. Directives
are not always translated to machine language.

Assembler directives assist the programmer:
. In controlling the assembler output
. In defining data and symbols
. In allocating storage
The VME/10 assembler recognizes only one directive called define constant

(DC.W). This directive is used to define data within the program. Refer to
paragraph 5.2.4 for a description of this directive.

5-1

5.1.2 Comparison with MC68000 Resident Structured Assembler

There are several major differences between the VME/10 assembler and the MC68000
Resident Structured Assembler. The resident assembler is a two-pass assembler
that processes an entire program as a unit, while the VME/10 assembler processes
each line of a program as an individual unit. Due mainly to this basic
functional difference, the capabilities of the TENbug 2.x assembler are more
restricted:

a. Label and line numbers are not used. Labels are used to reference other
lines amd locations in a program, The one-line assembler has no
knowledge of other program lines and, therefore, cannot make the required
association between a label and the label definition located on a
separate line.

b. Source lines are not saved. In order to read back a program after it has
been entered, the machine code is disassembled and then displayed as
mnemonic and operands.

c. Limited error indication. The one-line assembler will show a question
mark (?) under the portion of the source statement where an error
probably occurred, or will display the word "ERROR" or another short
message. In contrast, the resident assembler generates specific error
messages for over 60 different types of errors.

d. Only one directive (DC.W) is accepted.
e. No macro operation capability is included.
f. No conditional assembly is used.

g. Several symbols recognized by the resident assembler are not included in
the VME/10 assembler character set. These symbols include !, >, and <.
Two other symbols, * and /, each have multiple meanings to the resident
assembler, depending on the context, but only one meaning to the VME/10
assembler. Finally, the ampersand character (&) specifies a decimal
number when used with the TENbug 2.x assembler (although numbers with no
prefix are assumed to be decimal), while this symbol represents a logical
AND function to the resident assembler. Paragraph 5.2.1.5 describes the
VME/10 assembler character set.

Although functional differences exist between the two assemblers, the one-line
assembler is a true subset of the resident assembler. The format and syntax
used with the TENbug 2.x assembler are acceptable to the resident assembler
except as described in g. above.

5.2 SOURCE PROGRAM CODING

A source program is a sequence of source statements arranged in a logical way to
perform a predetermined task. Each source statement occupies a line and must be
either an executable instruction or a DC.W assembler directive. Each source
statement follows a consistent source line format.

5=2

5.2.1 Source Line Fomat

Each source statement is a cambination of operation and, as required, operand
fields; line numbers, labels, and comments are not used. The general format is:

<sp> <operation field> [<operand field>]

The space (<sp>) must be the first character of each line. This is to be
consistent with the resident assembler, which expects the first field of each
line to be either a space or a label. Because the TENbug 2.x assembler never
allows a label, the first character must always be a space.

5.2.1.1 Operation Field. The operation field must follow at least one space
(more can be used) amd entries can consist of one of two categories:

a. Operation codes which correspond to the MC68010 instruction set.

b. Define constant directive (DC.W) which is recognized to define a
constant in a word location. This is the only directive recognized by
the assembler.

The size of the data field affected by an instruction is detemmined by the data
size code. Some instructions and directives can operate on more than one data
size. For these operations, the data size code must be specified or a default
size applicable to that instruction will be assumed. The size code need not be
specified if only one data size is pemmitted by the operation. The data size
code is specified by a period (.), appended to the operation field, and followed
by B, W, or L, where:

B = Byte (8-bit data).
W = Word (the usual default size; l6-bit data).
L. = Longword (32-bit data).

The data size code is not permitted, however, when the instruction or directive
does not have a data size attribute.

Examples (legal):

LEA 2(A0) ,Al Longword size is assumed (.B,.W not allowed); this
instruction loads effective address of first operand
into Al.

ADD.B (20) ,DO This instruction adds the byte whose address is (AQ0) to
lowest order byte in DO.

ADD D1,D2 This instruction adds low order word of D1 to low order
word of D2. (W is the default size code.)

ADD,L A3,D3 This instruction adds entire 32-bit (longword) contents
of A3 to D3.

Example (illegal):

SUBA.B #5,Al Illegal size specification (.B not allowed on SUBA).
This instruction would have subtracted the value 5 from
the low order byte of Al; byte operations on address
registers are not allowed.

5-3

5.2.1.2 Operand Field, 1If present, the operand field follows the operation
field and is separated from the operation field by at least one space. When two
or more operard subfields appear within a statement, they must be separated by a
comma. In an instruction like ' ADD D1,D2' the first subfield (Dl) is generally
applied to the secord subfield (D2) and the results placed in the second
subfield. Thus, the contents of D1 are added to the contents of D2 and the
result is saved in register D2. In the instruction ' MOVE D1,D2' the first
subfield (Dl) is the sending field and the second subfield (D2) is the receiving
field. In other words, for most two-operand instructions, the general
format '<opcode> <source>,<{destination>' applies. '

5.2.1.3 Disassembled Source Line. The disassembled source line may not look
identical to the source line entered. The disassembler makes a decision on how
to represent a numerical value based on how it interprets the number's use. If
the number is determined to be an address or a "would-be" address, it is
displayed in hexadecimal; everything else is decimal., For example,

MOVE.L #$1234, $5678
disassembles to
005000 21FC000012345678 MOVE.L #4660,500005678
Also, for some instructions, there are two valid mnemonics for the same opcode,
or there is more than one assembly language equivalent. The disassembler may

choose a form different from the one originally entered. As examples:

a. BRA is returnad for BT
b. DBF is returned for DBRA

NOTE

The assembler recognizes two forms of mnemonics for two
branch instructions. The BT form (branch conditionally
true) has the same opcode as the BRA instruction. Also,
DBRA (decrement ard branch always) and DBF (never true,
decrement, and branch) mnemonics are different forms for
the same instruction. In each case, the assembler will
accept both fomms.

5.2.1.4 Mnemonics and Delimiters. The assembler recognizes all MC68000
instruction mnemonics except ILLEGAL. Numbers are recognized as both decimal
and hexadecimal, with decimal the default case (note that this is reverse to the
TENbug 2.x commands) :

a. Decimal is a string of decimal digits (0-9) without a prefix (default) or
preceded by an optional ampersand (&). Examples are:

1234
&1234

b. Hexadecimal is a string of hexadecimal digits (0-9, A-F) preceded by a
dollar sign ($). An example is:

SAFES

5-4

One or more ASCII characters enclosed by apostrophes (') constitute an ASCII

string.

ASCII strings are left-justified and zero-filled (if necessary),

whether stored or used as immediate operands. This left justification will be
to a word boundary if one or two characters are specified, or to a longword
boundary if the string contains more than two characters.

005000 5300 DC.W 's!
005002 223C41424344 MOVE.L #'ABCD',Dl1
005008 3536 DC.W '56'

NOTE

The MC68000 has seventeen 32-bit registers (D0-D7, AO-A6, SSP, USP)

in addition to a 32-bit program counter (24 bits available) and a 16-
bit status register. Registers D0-D7 are used as data registers for
byte, word, and longword operations. Registers A0-A6 and SSP and USP

are used as software stack pointers and base address registers; they
may also be used for word and longword data operations. All 17
registers may be used as index registers. Register A7 is a pseudo

register,

used as the system stack pointer corresponding to either

SSP or USP, depending on the operating state.

The following register mnemonics are recognized by the assembler:

DO-D7 Data registers.

AQ-A7 Address registers.

Ssp Address register 7 represents the supervisor stack pointer of the
active system state.

UsP User stack pointer. Used only in privileged instructions which
are restricted to supervisory state.

CCR Condition code register (low 8 bits of SR).

SR Status register. All 16 bits may be modified in the supervisor
state. Only low 8 bits (CCR) may be modified in user state.

PC Program counter. Used only in forcing program counter-relative
addressing.

VBR Vector base register, contains the 32-bit absolute address of the
beginning of the exception vector.

SFC Source function code.

DFC Destination function code.

5.2.1.5 Character Set. The character set recognized by the TENbug 2.x
assembler is a subset of ASCII, and these are listed below:

a. The uppercase letters A through Z
b. The integers 0 through 9

C. Arithmetic operators: + -

d. Parentheses ()

e. Characters used as special prefixes:

(pound sign) specifies the immediate form of addressing
$ (dollar sign) specifies a hexadecimal number

& (ampersand) specifies a decimal number

@ (commercial at sign) specifies an octal number

% (percent sign) specifies a binary number

' (apostrophe) specifies an ASCII literal character

f. Five separating characters:

Space

¢ (comma)
. (period)
/ (slash)
- (dash)

g. The character * (asterisk) indicates current location.

5.2.2 Instruction Summary

Refer to the M68000 16/32-Bit Microprocessor Programmer's Reference Manual for
descriptions of the MC68000 instructions and addressing modes.

5.3 ENTERING AND MODIFYING SOURCE PROGRAMS

User programs are entered into the VME/10 RAM using the one-line assembler/
disassembler. The program is entered in assembly language statements on a
line-by-line basis. The source code is not saved as it is converted immediately
to machine code upon entry. This imposes several restrictions on the type of
source line that can be entered.

Symbols and labels, other than the defined instruction mnemonics, are not
allowed. The assembler has no means to store the associated values of the
symbols and labels in lookup tables. This forces the programmer to use memory
addresses and to enter data directly rather than use labels.

Also, editing is accomplished by retyping the entire new source line. Lines can
be added or deleted by moving a block of memory data to free up or delete the
appropriate number of locations.

In order to describe more clearly the procedures used to enter, modify, and
execute a program, a specific example will be described. Figure 5-1 lists a
program that converts an ASCII coded number into its hexadecimal equivalent. An
ASCII character is in the lowest 8 bits of register DO when the program is
entered. Upon exiting, DO contains the equivalent hexadecimal digit (0 to F),
or an FF if the ASCII character does not correspond to a proper hex number.

GETHEX CMP.B #530,D0 IS HEX NO. < 0?
BLT.S ERROR NOT A HEX NO.
CMP.B #5$39,D0 IS HEX NO. > 9?
BGT.S GTHX2
GTHX1 AND.L #SF,D0 SAVE ONLY LOWER 4 BITS
EXIT BRA * END OF ROUTINE
GTHX2 CMP.B #$41,D0 IS HEX NO., < 'A'?
BLT.S ERROR NOT A HEX NO.
CcMP.B #546,D0 IS HEX NO. > 'F'?
BGT.S ERROR NOT A HEX NO.
SUB.B #7,D0 MAKE IT SMALLER -- A=10
BRA GTHX1
ERROR MOVE.L #SFF,DO ERROR CODE
JMP EXIT

NOTE: Converts ASCII digit in lowest 8-bit of register DO into
hex value. Returns equivalent 0-F or FF on error in DO.

FIGURE 5-1. Sample Program to Convert ASCII Digit to Hexadecimal Value

For clarity, Figure 5-1 contains comments and labels. The program as it appears
after entry into the VME/10 is shown in Figure 5-3. Figure 5-2 shows the ASCII
character set for better understanding of the program.

DEL

[()

e

SP

DLE
DOC1
DC2
DC3
DC4
NAK
SYN

ETB
CAN
EM
sus

£SC
FS

GS

RS
US

NUL
SOH

STX
ETX
EOT

ENQ

ACK

BEL
BS

HT

LF
VT

FF
CR

SO
Si

b7

5

10

12
13
14
15

ASCII Character Set

FIGURE 5-2.

5.3.1 Invoking the Assembler/Disassembler

The assembler/disassembler is invoked using the ;DI option of the Memory Modify
(MM) and Memory Display (MD) commands:

MM <address> ;DI

where (CR) sequences to next instruction
(.CR) exits command

and
MD[<port number>] <address> [<count>j;DI

The Memory Modify (;DI option) is used for program entry and modification. When
this command is used, the memory contents at the specified 1location are
disassembled and displayed, followed by a "?". A new or modified line can be
entered if desired.

The disassembled line can be an MC68000 instruction or a DC.W directive. If the
disassembler recognizes a valid form of some instruction, the instruction will
be returned; if not, the DC.W Sxxxx (always hex) is returned. Because the
disassembler gives precedence to instructions, a word of data that corresponds
to a valid instruction will be returned as the instruction.

For the given example, the program will be entered starting at location $1000:
TENbug 2.x > MM 1000;DI

001000 1005 MOVE.B D5,D0 ?

5.3.2 Entering a Source Line

A new source line is entered immediately following the "?", using the format
discussed in paragraph 5.2.1:

TENbug 2.x > MM 1000;DI
001000 1005 MOVE.B D5,D0 ? CMP.B #$30,D0

When the carriage return is entered terminating the line, the o0ld source line is
erased from the terminal screen, the new line is assembled and displayed, and
the next instruction in memory is disassembled and displayed:

TENbug 2.x > MM 1000;DI

001000 0C000030 CMP.B #$30,D0
001004 FFFF DC.W SFFFF ?
NOTE

If a terminal with a printer only (no CRT) is used, such as a TI 700
series device, the printer will overwrite the previous line. There-
fore, a clear printout of the new entry will not be made. This also
happens if the printer on port 3 is attached via the PA command.

5-9

Another program line can now be entered. Program entry continues in like manner
until all lines have been entered. A period is used to exit the MM command.

If an error is encountered during assembly of the new line, the assembler will
display the line unassembled with an "X" under the field suspected of causing a
problem, or an error message will be displayed. Errors are discussed in
paragraph 5.3.5.

5.3.3 Program Entry/Branch and Jump Addresses

Figure 5-3 shows the sample program as it is input to the VME/10 one-line
assembler. Notice that the comments and labels used in Figure 5-1 are not
allowed; absolute addresses must be used for BRA and JMP instructions.

CMP.B #$30,D0 CMP.B #$30,D0
BLT * BLT $1022
CMP.B #$39,D0 CMP.B #$39,D0
BGT * BGT $1014
AND.L #SF,DO AND.L #SF,D0
BRA * BRA *

CMP.B #$41,D0 CMP.B #$41,D0
BLT * BLT $1022
BGT * BGT $1022
SUB.B #7,D0 SUB.B #7,D0
BRA $100C BRA $100C
MOVE.L #SFF,D0 MOVE.L #SFF,D0
JMP $1012 JMP $1012

a) First entry b) With correct branch addresses

FIGURE 5-3. Sample Program as Entered into VME/10

5.3.3.1 Entering Absolute Addresses. The absolute addresses are probably not
known as the program is being entered. For example, when the second line is
entered (BLT.S ERROR in Figure 5-1), the user does not know that the branch
address (ERROR MOVE.B #SFF,D0) will be $1022. However, the user can instead
enter an "*" for branch to self. After the correct address ($1022) is
discovered, the second line can be reentered using the correct value. This
technique can be used for forward branches and jumps. It is not required for
backward branches and jumps, such as the last line of the example, because the
required address is already known. If the absolute address is not within the
range of a short address, a long address must be specified by appending .L to
the mnemonic (BGT.L *).

5-10

5.3.3.2 Desired Instruction Form. Care must be taken when entering source
lines to ensure that the desired instruction form is entered. If the quick form
of the instruction is wanted, it must be specified. For example:

005780 203C00000003 MOVE.L #3,D0 Assembles to the 6-byte instruction.
whereas

005780 7003 MOVEQ.L #3,D0 Assembles to the 2-byte instruction.
If the PC-relative addressing mode is desired, it must be specified. For
example:

001000 41F803F0 LEA S3F0,A0 Assembles $3F0 as an absolute address.
whereas

001000 41FAF3EE LEA $3F0(PC) ,A0 Assembles $3F0 as a PC-relative address.

5.3.3.3 Current Location. To reference a current location in an operand
expression, the character "*" (asterisk) can be used. Examples are:

007000 6022 BRA *+524
007000 6000FFFE BRA.L *
007000 60FE BRA *

5-11

5.3.4 Assembler Output/Program Listings

A listing of the program is obtained using the Memory Display (MD) command with
the ;DI option. The MD command requires both the starting address and the
instruction count to be entered in the command line.

Two techniques can be used to obtain a hard copy of the program using the MD
command .

a. The Printer Attach (PA) command is first used to activate the port 4 or 5
printer. A Memory Display (MD) to the terminal will then cause a listing
on the terminal and on the printer.

b. An MD4 or MD5 (Memory Display to port 4 or 5) command using the ;DI
option will cause a listing on the printer only.
Figure 5-4 shows a listing of the sample program. Note in this example that $D
lines are specified in the MD command.
Note also that the listing does not correspond exactly to that of Figure 5-3.

As discussed in paragraph 5.2.1.3, the disassembler displays in hexadecimal any
nunber it interprets as an address; all other numbers are displayed in decimal.

TENbug 2.x > MD 1000 D;DI

001000 0C000030 CMP.B #48,D0
001004 6D1C BLT.S $001022
001006 0C000039 CMP.B #57,D0
001002 6E08 BGT.S $001014
001o00C 02800000000F AND.L #15,D0
001012 60FE BRA.S $001012
001014 0C000041 CMP.B #65,D0
001018 6D08 BLT.S $001022
001012 6E06 BGT.S $001022
0olo01C 04000007 SUB.B #7,D0
001020 60EA BRA,S $00100C
001022 203CO00000FF MOVE.L #255,D0
001028 4EF81012 JMP $1012
TENbug 2.x >

FIGURE 5-4. Sample Program Listing

5-12

5.3.5 Error Conditions and Messages

There are five different conditions that can result in error messages while
using the assembler/disassembler. The response to the error condition can be to
abort the command (and thus the assembler), or to cause the assembler to ask for
a corrected input line. The error conditions are discussed in the following
paragraphs and include bus and address error traps, improper characters, numbers
which are too large, and assembly errors.

5.3.5.1 Error Traps. Two types of errors are trapped. One form, which
produces a bus error trap, may be encountered if a location is accessed where
there is no memory. Included in this error type are write cycles to ROM. The
second form produces an address error trap. Instructions must always begin on
an even address; if not, an address error trap will result. Figure 5-5 shows
examples of these conditions.

TENbug 2.x > M A00000;DI

2700 0000768A 8008 1105 00A00000 0000 7682 0000 FFFF 0000 6100 0557
1158 0000 00AO 0008 0000 OOAO 0002 FFE1l 0006 038F 4CD4 0100 0000 4CD4 0000

BUS ERROR TRAP

PC=0000768A SR=2700=.S7..... USP=FFFFFFFF SSP=0000149A VBR=00000000 SFC=2 DFC=7

DO-7 00A00044 01964D20 FFF24D20 00000008 0000B432 00000000 00000000 00000000

A0-7 000016EA 00004EDA 000014D1 0000115C 00A00000 00001158 00001158 0000149A
PC=00768A E51C ROL.B #2,D4

TENbug 2.x > MM F00000;DI

2700 000076E8 8008 0205 OOF00000 0000 8C67 0000 1419 0000 1419 051A
8C67 1280 0000 14DC 14DO OOFO 0001 FFE1l 0000 0380 1419 0000 0001 1280 0001

BUS ERROR TRAP

PC=000076E8 SR=2700=.S7..... USP=FFFFFFFF SSP=0000149A VBR=00000000 SFC=2 DFC=7

DO-7 671E8C67 00000001 00000253 00000000 0000001E 0000001E 00000002 00000000

A0-7 00001517 OOF00000 000014D1 00001537 OOF00000 0000153A 0000153A 0000149A
PC=0076E8 B400 CMP.B DO,D2

TENbug 2.x > M 10001;DI

2700 0000768A 800C 1105 00010001 0000 7682 0000 FEFFEF 0000 6100 0557
1158 0000 0001 0008 0001 0001 0003 FFE1l 0006 038F 4CD4 0100 0000 4CD4 0000

BUS ERROR TRAP

PC=0000768A SR=2700=¢S7...++ USP=FFFFFFFF SSP=0000149A VBR=00000000 SFC=2 DFC=7

D0-7 00010044 01964D20 FFF24D20 00000008 0000B432 00000000 00000000 00000000

A0-7 000016EA 00004EDA 000014D1 0000115C 00010001 00001158 00001158 0000149A
PC=00768A E51C ROL.B #2,D4

FIGURE 5-5. Examples of Error Traps

5-13

Also note that bus and address errors also cause display of the exception status
from the stack, in hexadecimal characters.

For details on this display, refer to the bus error and address error
descriptions in the M68000 16/32-Bit Microprocessor Programmer's Reference
Manual.

5.3.5.2 Improper Character. If a character appears in the operand field that
does not belong to the class of characters specified or expected, an "X" will be
printed beneath the character string suspected of containing the improper
character, followed by a "?" to prompt reentry of the line. For example, if a %
(percent sign) is used to -specify the binary class of characters, only the
digits 0 and 1 will be accepted.

TENbug 2.x > MM 6000;DI S is not a decimal digit
006000 FFFF DC.W SFFFF ? MOVE.W #S',D0
006000 MOVE.W #S',DO

X?
TENbug 2.x > MM 6000;DI 9 is not an octal digit
006000 FFFF DC.W SFFFF ? ADDA.L #@974,76
006000 ADDA.L #@974,A6

X?
TENbug 2.x > MM 6000;DI P is not a decimal digit
006000 FFFF DC.W SFFFF ? JMP $4000+PC
006000 JMP $4000+PC

X?

FIGURE 5-6. Examples of Improper Characters

5-14

5.3.5.3 Number Too Large. Another error type involves numbers which are too
large for the MC68000 to handle. Again, an "X" is printed under the number
suspected of containing the error, followed by a "?". Figure 5-7 gives an
example.

TENbug 2.x > MM 4000;DI Value is larger than 32 bits
004000 FFFF DC.W SFFFF ? LEA.L $937402110,A7
004000 LEA.L $937402110,A7

X?

FIGURE 5-7. Example of a Number Which Is Too Large

5.3.5.4 Assembly Errors. An assembly error can occur due to an invalid opcode,
an illegal addressing mode for a particular instruction, a format which is in
error (leading space omitted as an example), or a source line which is incorrect
in some other way. When the entry as written is not a valid MC68000
instruction, the assembler echoes the source line up to and including the field
in which the error probably occurred. It also prints an "X" under the field
suspected of containing an error, followed by a "?" to prompt reentry of the
line,

The entire line must be reentered in its correct form. If the error has not
been corrected or another is encountered, the error indicator will be returned.
After all errors have been corrected and the source line represents a valid
MC68000 instruction, the line will be assembled. The memory address, machine
code, and source code will be displayed and the next line will be disassembled.
A period (.) is used to exit the command. Examples of typical errors are shown
in Figure 5-8.

5-15

Example 1

006700

006700

Example 2

001100

001100

Example 3

005300

005300

Example 4

007200

007200
Example 5

001500

001500

Examples 6

004900

004900

004800

004800

Invalid Opcode

FFFF DC.W SFFFF ? BEQU.S $6754
BEQU.S
X? BEQ.S $6754
6752 BEQ.S 56754
Missing Leading Space
FFFF DC.W SFFFF ?0R.B D5, (A6)
X? OR.B D5, (A6)
8B16 OR.B D5, (A6)
Unrecognizable Opcode
FFFF DC.W SFEFF ? MULSW 52,D3
MULSW
X? MULS.W 52,D3
C7F80034 MULS.W 52,D3
Invalid Size Extension
FFFF DC.W SFEFF ? MOVEQ.B #2,D1
MOVEQ.B #2,D1
X? MOVEQ.L #2,Dl
7202 MOVEQ.L #2,D1
Invalid Addressing Mode
FFFF DC.W SFFFF ? ADDQ.B #7,A0
ADDQ.B #7,A0
X? ADDQ.B #7,(A0)
5E10 ADDQ.B #7,(A0)
and 7 Branch Address Too Large
FFFF DC.W SFFFF ? BRA $10000
BRA $10000
X? BRA $8000
600036FE BRA $8000
FFFF DC.W SFFFF ? BRA.S $7000
BRA.S $7000
X? BRA.S $4902
BRA.S $4902
X? BRA.S $4860
605E BRA.S $4860
FIGURE 5-8. Examples of Assembly Errors

5-16

CHAPTER 6

TENbug ROUTINES AVAILABLE TO THE USER

6.1 INTRODUCTION

This chapter describes the TENbug TRAP #15 I/O handler, which allows system
calls from user programs.
functional routines contained within the TENbug firmware, including input and

output routines.
without performing initialization.

6.2 USER I/0 THROUGH TRAP #15

Format in user program:

TRAP #15
DC.W $000x

The system calls can be used to access selected

TRAP #15 may also be used to transfer control to TENbug

Call to TENbug trap handler

Function being requested (x = function)

Valid Functions (refer to paragraph 4.2.26 for port number definitions):

FUNCTION DESTINATION

0 TENbug

1 Console (port 1)
2 Console (port 1)
3 Host (port 2)

4 Host (port 2)

5 Printer (port 4)
6 Console (port 1)

DESCRIPTION

Display format (see DF); then go to TENbug.

Input line

Input parameters: Point A5.L and A6.L both to
the start of buffer.

Exit conditions: A5.L points to the start of
buffer; A6.L points to the
end + 1.

Output line (with CR, LF)

Input parameters: Point AS.L to start of
string and A6.L to end of
string + 1.

Exit conditions: None.

Read line (no echo)
Input parameters: Same as Function 1.
Exit conditions: Same as Function 1.

Output line (with CR, LF)
Input parameters: Same as Function 2.

Output line (with CR, LF)
Input parameters: Same as Function 2.
Exit conditions: Same as Function 2.

Output line (no CR, LF)

Input parameters: Same as Function 2.
Exit conditions: Same as Function 2.

6-1

Host (port 2)

Printer (port 4)

Host (port 3)

Host (port 3)

Host (port 3)

Printer (port 5)

Printer (port 5)

EXAMPLE PROGRAM:

002000
002006
00200C

00200E
002010

002012
002014

002016
002018
00201A

00201C

*

00002000
2E7C00004000 START
2A7C0000201C

2C4D

4E4F
0001

4E4F
0002

4E4F
0000
60E4

0200

BUFFER

Output line (no CR, LF)
Input parameters: Same as Function 2,
Exit conditions: Same as Function 2.

Print line (no CR, LF)
Input parameters: Same as Function 2.
Exit conditions: Same as Function 2.

Read line (no echo)
Input parameters: Same as Function 1.
Exit conditions: Same as Function 1.

Output line (with CR, LF)
Input parameters: Same as Function 2,
Exit conditions: Same as Function 2.

Output line (no CF, LF)
Input parameters: Same as Function 2,
Exit conditions: Same as Function 2.

Print line (with CR, LF)
Input parameters: Same as Function 2.
Exit conditions: Same as Function 2.

Print line (no CF, LF)
Input parameters: Same as Function 2.
Exit conditions: Same as Function 2.

ORG $2000

MOVE.L #$4000,A7
MOVE.L #BUFFER,A5

MOVE.L A5

TRAP #15
DC.W 1

TRAP #15
DC.W 2

TRAP #15
m.w 0

DS.L 128

A6

TEST OF TRAP #15 USER I/0

PROGRAM STARTS HERE
INITIALIZE STACK
FIX UP A5 & A6 for I1/0

INPUT BUFFER FROM CONSOLE

PRINT BUFFER TO CONSOLE

STOP HERE LIKE BREAKPOINT

THIS IS THE I/0 BUFFER

6.3 TENbug SUBROUTINES

A branch table is located at the beginning of ROM to allow use of TENbug
subroutines under various operating systems. Note, however, that TRAP #15
support is the standard interface between the user and 1/0 routines. Use of the
branch table should be based upon a complete understanding of the TENbug 2.x
source release.

The branch table allows a calling routine to access any of the supported
subroutines with a BSR to a long branch located at the start of EPROM. The user
will always be able to access these subrouties despite future changes in their
locations because the table offset will not change (even though the actual
subroutine addresses might) .

In most cases, the following subroutines can be entered with a BSR to the
address shown for each entry.

$FO0000C TRACE - Trace one instruction

No registers are required for linkage except the stack for the RTS.

SFO00010 BOCMD - Disk boot entry point

No registers are required for linkage; control is returned to TENbug.

SF00014 ABORTB - Software abort routine

No registers are required for linkage; control is returned to TENbug.

SF00018 CHKBP - Illegal instruction vector

No registers are required for linkage; control is returned to TENbug.

SF0001C CHECKSUM - Calculate or verify checksum

A0 Start of memory
Al End of memory
CCR Condition code returned:
Z (BEQ) Indicates valid checksum

SF00020 DISKR - Disk read routine

A0 Address of hardware (controller/drive)
DO Number of 256-byte blocks

D1 Winchester byte 5

D2 Memory address

D3 Block address

IPCNUM RAM variable containing l-byte controller number
DRVNUM RAM variable containing l-byte drive number

6-3

SF00024 DISKW - Disk write routine

A0 Address of hardware (controller/drive)
DO Number of 256-byte blocks

D1 Winchester byte 5

D2 Memory address

D3 Block address

IPCNUM RAM variable containing l-byte controller number
DRVNUM RAM variable containing l-byte drive number

SF00028 INITVECT - Initialize miscellaneous vectors (#4-#11 and #24-#48)

'$F0002C INITHRAM - Initialize specific vectors (bus and address error)

$F00030 INCHS - Input a character from the keyboard

DO Converted value for key pressed
CCR Condition codes returned:
Z (BEQ) Character is displayable
X (BMI) BREAK entered
C (BCS) Character is not displayable (i.e., $0-$1F, $80-SFE)

$F00034 OUTCHS - Output a character to the display

DO must contain the character to be output.

SF00038 POINTRAM - Get RAM pointer

A0 will contain the address of the following RAM variables:

DS.L 1 Starting address of RAM

bS.L 1 Ending address of RAM
DS.L 1 Address of the disk configuration table
DS.L 1 Address of the disk controller/drive variable

$F0003C N/A - Reserved for future use

SF00040 HOTSTART - User request to restart TENbug

No registers are required for linkage; control is returned to TENbug.

SF00044 N/A - Reserved for future use

SF00048 N/A - Reserved for future use

APPENDIX A

SOFTWARE ABORT

If a target program must be stopped with the stack data preserved, the user may
press the ABORT pushbutton on the VME/10 chassis operator panel. This will
generate a level seven interrupt vector which will interrupt the target program
ard load the contents of ROM location $138 into the program counter. If the
default vector locations have not been overwritten, the console will display
SOFTWARE ABORT and the following data will be saved: address registers, data
registers, program counter, status register, supervisor stack pointer, user
stack pointer, vector base register, destination function code, and source
function code.

Remember that TENbug shares resources with the target program under test (refer
to paragraph l.3.2). Therefore, if the target program changes the contents of
location $138, this abort feature is lost.

In contrast to the abort feature, the contents of the target supervisor stack
pointer, program counter, and status register are lost when the RESET pushbutton
is pressed. The RESET feature sets the processor to supervisor state, loads the
supervisor stack pointer with the contents of RAM locations 0-$3, and loads the
program counter with the contents of RAM locations $4-$7. It also saves the
contents of the target registers for display by the Display Format (DF) command.

A-1/A-2

@ MOTOROLA

M6SKTENBG/AL
AUGUST 1984

ADDENDUM
TO
TENbug DEBUGGING PACKAGE

USER'S MANUAL

This addendum transmits replacement pages for the TENbug Debugging Package
User's Manual. Replacement pages have been marked with vertical change bars to
indicate revised or new material.

Insert the changed pages attached to this addendum into your M68KTENBG/D2
manual, Make certain that the page you are replacing is removed from your
manual. This page of the addendum should be placed after the title page and
used as a record page of the changes made to the manual.

Replacement pages provided by this addendum are:

1-1 through 1-6
4-13 through 4-16
4-37 through 4-40

4-43, 4-44, 4-69, 4-70

CHAPTER 1

GENERAL INFORMATION

-

1.1 INTRODUCTION

This manual describes the debugging monitor TENbug as it is used in the VME/10
Microcamputer System, hereafter referred to as the VME/10.

1.2 DEFINITION CF TENbug

TENbug is the resident firmware debugging package for the VME/10. The 32K-byte
firmware (stored in ROM or EPROM devices) provides a self-contained programming
and operating environment. TENbug interacts with the user through predefined
camands that are entered via the temminal. The camands fall into five general
categories:

a. Commands which allow the user to display or modify memory.

b. Commands which allow the user to display or modify the various internal
registers of the MC68010.

c. Camands which allow the user to execute a program under various levels
of control.

d. Commands which control access to the various input/output r&sourcés on
the board.

e, Camarnds which allow the user to select and test video features and
graphics resolution.

An additional function called the TRAP #15 I/0 handler allows the user program
to utilize various routines within TENbug. The TRAP #15 handler is discussed in
Chapter 6.

The operational mode of TENbug is described in Chapter 2.

1.3 TENbug INTERNAL STRUCTURE
1l.3.1 Memory Map

The following abbreviated memory map for the VME/10 highlights addresses that
might be of particular interest to TENbug users. Refer to the VME/10
Microcamputer System Reference Manual for a camplete description of the memory
maps for both high- and low-resolution graphics modes.

Note that addresses are assumed to be hexadecimal throughout this manual. In

text, numbers may be preceded with a dollar sign ($) for identification as
hexadecimal. ’

1-1

RAM LOCATION FUNCTION

0-3FF Vectors
400-AFF Work area and stack for TENbug

SPECIAL LOCATIONS FUNCTION

F00000-F00007 Area containing initial values for supervisor stack
pointer, program counter, and vector base register after
cold start '

F14000-F14FFF Area used to define programmable "soft" character set

I1/0 LOCATION FUNCTION

F1C1C9 Serial port 2 (host), serial 1/0 card (optional)

F1CI1CB Serial port 3 (host), serial 1/0 card (optional)

FIC1El Parallel port 1 (printer), parallel I/O card (optional)

FI1C1E9 Parallel port 2 (printer), parallel I/0 card (optional)

Fi1CODl1 Base address of RWIN1 Disk Controller

l.3.2 Vectors and Errors

TENbug shares resources with the target program under test -- that is ¢ €ach
affected resource can be used only by TENbug or the target program at any given
tim. :

Exception ‘vectors are memory locations fram which the processor fetches the
address of a routine which will handle the exception. These vectors are
initialized by TENbug in default memory locations 0 through $3FF during a cold-
or warm=start sequence (see Chapter 2). If the target program uses any of these
" locations, the user values must be rewritten following each cold or wamm start,
If the target program uses any of the following locations, the associated
function will be lost to TENbug.

MEMORY LOCATION TENbug FUNCTION

- 10-13 Breakpoints (illegal instructions)
24-27 Trace ‘
BC-BF TRAP #15 user calls to TENbug
- 138-13B ABORT pushbutton switch on VME/10 operator panel

(refer to Apperdix A)

When uninitialized vectors are given control because of exception processing,
the console temminal will display a general message indicating the vector offset
that was used: Offset Vector $xxx Error Trap. In addition, several of the
vectors cause display of appropriate infommation. (Refer to Appendix B for a
list of error messages.) BUS and ADDR error traps also cause display of the
exception status fram the stack, in hexadecimal characters, as shown in the
following example.

1-2

___ Status Register

___ Program Counter Address

___ Frame Format and Vector Offset
Special Status Word

Fault 2ddress

2709 00F0533A 8&08 1305 0OF1C030 0000 0020 0000 20FF OOF0 2007 067A
5338 0000 OOF1 2007 C030 OOFO 533C FFEl 0000 0394 1E14 0000 0004 1E14 0003

BUS ERROR TRAP

For additional information on this display, refer to the bus error, address
error, and the reference classification descriptions in the exception processing
chapter of the M68000 16/32-Bit Microprocessor Programmer's Reference Manual.

1.3.2.1 Resetting Vector Base Reg_ster. The MC68010 processor upon which the -
VME/10 is based features a vector Base Register (VBR) which contains the base
(starting) address for the VME/10 exception vectors. [Exception vectors are
located in memory addresses 0 through $3FF relative to the VBR. Upon reset
(cold or warm start) of the MC68010, the value of the VBR is set to zero.

TENbug must have control of the exception vectors to function properly. If the
user sets the VBR to 'a value other than its default value of zero, he must also
establish a new set of exception vector memory locations for the VBR value. In
other words, the user must copy all existing vector memory locations to the same
relative location in the new VBR table.

In the following example, the VBR value is changed fram 0 to 10F00. Exception
vector memory locations must also be copied to this new location. Note that the
content of each vector memory location (i.e., the appropriate routine address)
remains the same.

VER = 0 VBR = 10F00
0 10F00
00000444 00000444
4 10F04
0000044C 0000044C
8 10F08
00000454 00000454
c 10F0C
/ / / /
/ / / /
3FC) 112rC
000008A4 00000824

1-3

1.3.3 Disk 1/0

TENbug provides limited support of disk I/O through a Winchester Disk
Controller. The cammands supported are BH, BO, IOC, IOP, and IOT. BH, BO, and
optionally, IOT read the volume ID found in sector 0 of each disk. Pointers to
the configufation data located in sector 0 are used to read the configuration
sector. The configuration sector contains the data that allows the RWIN1
controller to issue reads to the specific types of drives.

NOTE

A sector is 256 bytes. The disk controller maps
physical sectors on various disks into virtual
256-byte sectors at the controller interface.

If a disk read to a Winchester drive fails, the read will be retried twice
before generating an error message. The RWIN1 controller will make corrections,
if possible, and the disk transfer will continue on from the next sector.

NOTE

ERROR CORRECTION and RETRY were first provided in TENbug 2.1.

The first 256 bytes of the media are the volume ID. Bytes $F8-$FF of the volume
ID must contain either the ASCII character string "EXO " or "MOTOROLA";
otherwise, an error message will result. For more infommation on interpreting
the data displayed, see the Winchester Disk Controller User's Manual.

The other information used fram the volume ID is:

BYTES USED _FOR

$14-817 Starting sector address. of program to be loaded (via BH, BO).

$18-S19 Number of 256-byte sectors to be loaded.

$1E-$21 Load address (first destination memory byte).

$90-893 Sector address of media configuration parameters (refer to
Appendix C) .

$94 Length of configuration area (usually one 256-byte sector).

1.4 TENbug WITH SYSTEM V/68

The following paragraphs list information specific to the use of TENbug with
SYSTEM V/68.

1-4

l.4.1 Operational Commands

In the following list, cammands given in parentheses indicate the key that is to
be pressed. Cammands not given in parentheses are to be typed as shown.

BH - Boots the operating system from the fixed disk and halts.

BO Boots the operating system from the fixed disk and gives
control to the program loaded.

(BREAK) Aborts cammand.

(DEL) Deletes character.

(CTRL~D) mdisplays line,

(CTRL=H) Deletes character.

(CTRL~W) Suspends output; any character continues output.

(CTRL=X) Cancels cammard line.

l.4.2 Debugging Cammands

The following cammands may be useful for debugging, but should be used only in
single-user mode after sync has executed. Use of these commands may result in
the need for system reboot.)

«AQ=-.A7 : BARS, NOBARS * HE
«D0=,D7 BF IoC
«DFC BM IOP
«PC BR, NOBR 10T
[} RO- L) R6 BS MD
«SFC CH, NOCH MM
+«SR CRT MS
«SSP cs CF
.USsP DC PA, NOPA
«VBR DF TR

GD TT

ce)

GR, NOGR

GT

* This command modifies graphics memory and should be used only with an
operating system configured to support graphics.

1-5

1.4.3 Non-Applicable Commands

The following cammands should be used in a stand-alone mode; they should not be
used with SYSTEM V/68. '

BI - PF
BT ™
DU VE
Lo

1.5 REFERENCE MANUALS

Refer to the following documents for more infommation on the enviromments in
which TENbug is used.

VME/10 Microcamputer System Overview Manual, M68KVSOM

VME/10 Microcamputer System Diagnostics Manual, M68KVSDM

VME/10 Micrgccmputer System Reference Manual, MGBKVSREF

VERSAdos to VME Hardware and Software Configuration User's Manual, MVMEDOS
Winchester Disk Controller User's Manual, M6SRWINL

MVME400 Dual RS-232C Serial Port Module User's Manual, MVME400

MVME410 Dual 16-Bit Parallel Port Module User's Manual, MVME410

M68000 16/32-Bit Microprocessor 'Programner's Reference Manual, M68000UM

1-6

EXAMPLE

-

TENbug 2.x > R4 4000
TENbug 2.x > BR 1010 2000;5 2040 4000

BREAKPOINTS
001010 001010
002000 002000;5
002040 002040
000000+R4 004000

TENbug 2.x > NOBR 1010 2040

BREAKPOINTS
002000 002000;5
~ 000000+R4 004000
TENbug 2.X > NOBR
BREAKPOINTS

TENbug 2.x >

4-13

BR
NOBR

4.2.9 Block of Memory Search (BS) BS

BS <addressl> <address2> '<11tera1 strmg>'
BS <addressl> <addressZ) <data> [<mask>] [1<optxons>]

The BS cammand has two modes: 1literal string search and hex data search. Both
modes can search memory beginning at <addressl> through <address2>, looking for
a match. Alternatively, a user can specify that a data search report back only
locations that do not match the input data. This alternative search for a
mismatch can be particularly useful when searching for suspected faulty memory.
For example, a known pattern can be placed into suspect RAM locations, and a BS
camand with an option to search for a mismatch will display any bad RaM
locations.

The literal string mode is initiated if a single quote (') follows <address2>.
The ASCII literal string may contain both uppercase and lowercase letters. If a
single quote does not follow <address2>, data search mode is assumed. If the
optional mask is supplied with a data search, the mask is ANDed to the data
found at each address. The data located in the memory is not changed. The
masked data is then examined for a match. (The default mask is all 1's.)

Available options for a data search enable a user to specify the data fommat and
whether to search for a match or a mismatch. The options to specify data format
are the letters B, W, ard L. To specify a mismatch, a minus sign is placed
before or after the data fommat indicator. If there is no minus sign in the
options field, a matching search is assumed.

Data format is a byte; search for a match.

Data format is a byte; search for a mismatch.
Data formmat is a word; search for a match.

Data format is a word; search for a mismatch.
Data format is a longword; search for a match.
Data fomat is a longword; search for a mismatch.

\'0 ‘r“" \é".a
LRAE

The default value for a data search is ;:B.

When a search is canpleted, each address containing data that meets the
specified requirements is dlsplayed on the temminal, along with the data located
at that address.

To illustrate the searching cammand, the following examples are provided:

EXAMPLE COMMENT

TENbug 2.x > MD 10000 40 Show memory to be searched.

010000 AS SA A5 S5A A5 5A AS 5A AS SA AS SA A5 5A AS 5A $232%2%2%2%232%2
010010 41 61 20 41 42 61 62 20 41 42 43 61 62 63 20 20 Aa ABab ABCabc
010020 AS SA AS 5A A5 5A AS SA AS 5A A5 S5A A5 SA AS 5A $2%2%2%Z2%2%Z%2%2
010030 A5 5A A5 5A AS 5A AS 52 A5 52 A5 52 A5 5A AS 5A $Z3Z3Z3RIRIRIZEZ
TENbug 2.x > BS 10000 10040 ‘ab‘’ Successful search for literal string
Physical Address=00010000 00010040 ‘ab'.

010015 'ab’

- 01001B ‘ab’

4-14

TENbug 2.x > BS 10000 10040 43 DF;B Successful data search using a

Physical address=00010000 00010040 mask allowing both lowercase and
01001A 43 ~ . uppercase ASCII C.

01001D 64 ' :

TENbug 2.x > BS 10020 10040 A55A;-W Search for any words NOT matching
Physical address=00010020 00010040 - the test pattern.

010036 AS552

010038 A552

01003A A552

4-15

4.,2.10 Block of Memory Test (BT) . . BT

BT <addressl> <address2>

The BT cammand provides a destructive test of a block of memory. A word
boundary (even address) must be given for the starting <addressl> and ending
<address2> of the block. If the test runs to completion without detecting an
error, all memory tested will have been set to zerocs.

Execution of this camand may take several seconds for large blocks of memory.
When a problem is found in a memory location, the address, the data stored, and
the data read are displayed. Control is then returned to TENbug.

See also: BI

EXAMPLE | COMMENT

TENbug 2.x > BT 44000 47FFE Successful memory test; no errors
PHYSICAL ADDRESS=00044000 0004 7FFE found.

TENbug 2.x > BT 44000 4FFFE Unsuccessful memory test; error
PHYSICAL ADDRESS=00044000 0Q04FFFE data is listed. :

FAILED AT 0480FE WROTE=FFFF READ=0000
TENbug 2.x > '

4-16

LE-V

EXAMPLE

TENbug 2.x > IOP

READ OR WRITE (R/W)=000000000R ? (_C_B)
MEMORY ADDRESS FOR DISK I/0=.$00000000 ? 1000

DRIVE NUMBER (0&1=FIXED,2&3=FLOPPY)=¢ccee0s500 ?
MEMORY ADDRESS FOR DISK 1/0=.$00001000 ? A00

DRIVE NUMBER (0&1=FIXED,2&3=FLOPPY)=ccc0e0+500 ? 2
CONTROLLER NUMBER=«......$00 ? (CR)
FIRST BLOCK NUMBER=.$00000000 ? 500

NUMBER OF (256 BYTE) BLOCKS=.....$0000 ? 1

ARE YOU SURE? (Y/N) ? ¥

“R" COMPLETE

TENbug 2.x > MD A00 30

00200 41 F8 10 00 20 3C 00 00 02 FF 11 00 51 C8 FF
000A10 60 EE 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E
000A20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
TENbug 2.x > M Al2;L
000A12 4E714E71 ? -1 -
000A16 4E714E71 ? -1
000AlA 4E714E71 ? -1
000A1E 4E710000 ? -1
000A22 00000000 ? .
TENbug 2.x > IOP
" READ OR WRITE (RW)=eeceeeeeeR 2?2 W
MEMORY ADDRESS FOR DISK I/0=.$00000A00 ? (CR)
DRIVE NUMBER (0&1=FIXED,2&3=FLOPPY)=.......502 ? (CR)
CONTROLLER NUMBER=.¢.c.c...$00 ? (CR)
FIRST BLOCK NUMBER=.$00000500 ? (CR)
NUMBER OF (256 BYTE) BLOCKS=.....$0001 ? (CR)

ARE YOU SURE (Y/N) ? Y
"W COMPLETE

TENbug 2.x >

e=a

I0P
COMMENT

Request physical disk 1/0 to read a routine.
Use default of read.

Change $0 default to $1000.

That isn't correct; back up one parameter.
Change $1000 to $A00. ¢
Change default drive 0 to drive 2,

Use controller 0.

Change block number to $500.

Read one 256-byte block.

Last change? Yes, all is ready.

The read is camplete.

Display data read fram disk (only first $30 bytes).

AXOQ <ooooooQHo:
' nNGNGNGNGNQNGNG

Make change to RAM where routine was loaded.

Request physical disk I/0 to write to a disk.
Change to W for write,

Use previous address.

Drive is fine; no change.

No change.

No change.

No change.

Last chance; are you sure? Yes, all is ready.

Write is camplete.

4.2.24 I/0 Teach for a Disk (IOT) I0T

| 10T [<device>] [<controller>]
‘where:

device Is a single hexadecimal digit, 0 through 3, specifying the
disk to be read. Default value is 0.

controller Is a single hexadecimal digit, 0 or 1, specifying the RWIN1
controller through which the disk is connected. Default value
is 0. ’

The IOT cammand allows the user to change the configuration of the RWIN1L
controller. If the IOT cammand is invoked without specifying <device> or
<controller>, the cammand will prampt for required information. If the <device>
and/or <controller> are specified in the IOT camand line, the current
configuration is overwritten with the configuration data located on the disk,
without the user having to know and manually enter the parameter informmation
required. The parameters required for correct configuration when the options
are not specified depend upon the type of drive, as shown below:

WINCHESTER HARD DISK 5.25-INCH FLOPPY DISK
Drive number Drive number

Controller number Controller number

Sector size . Sector size.

Number of heads Number of heads

Number of cylinders : Number of cylinders

Number of sectors per track Number of sectors per track

Motorola/IBM format

. Single- or double-sided media
Single- or double-track density
Single- or double-data density

The IOT cammand will present the appropriate questions based upon which drive
has been specified. There are four actions that can be taken following a
question mark prampt: _

? (CR) - Entering a carriage return indicates that the existing value for
: the current parameter is acceptable; go on to the next
mralneter . :

? . - Entering a period indicates that this execution of the IOC
canmmand must be terminated now, without asking for more
parameters. ’

?2° - Entering a caret symbol indicates that a previous parameter

requires a change and will logically back up one parameter each
time it is entered (until the first entry is reached, where it
will remain until one of the other responses is received).

? <data> - Entering the appropriate data requested (followed by a carriage
return or ENTER). Often the parameters are checked for valid
options (i.e, Yor N).

Appropriate configuration information for specific disk types is listed in the
"Mass Storage" chapter of the VERSAdos to VME Hardware and Software
Configuration User's Manual.

4-38

(3% 4

EXAMPLE

TENbug 2.x > 10T
DRIVE NUMBER (0&1=FIXED, 2&3=FLOPPY) Zesoccce .$02
CONTROLLER NUMBER=. . .+« . +§00
SECTOR SIZE (0'—'128'1'-'256' 2-512, 3"1024) Zeseccsscsl

TENbug 2.x > IOT
DRIVE NUMBER (0&1=FIXED,2&3=FLOPPY)=cceeee+300
, CONTROLLER NUMBER=.4 4040500
SECTOR SIZE (0=128,1=256, 2-512, 3"1024) Zeeessccssl
NUMBER OF HEADS, (ON THIS DRIVE)=.cecee.502
NUMBER OF CYLINDERS, (ON THIS DRIVE)=,,...50050
SECTORS PER TRACK=000QQOQ$10
MO'I’OROWIBM FORMAT (M/I)=ooooo.oool
SINGLE/MJBLE SIDED MEDIA (S/D)=.-.......D
SII\ELE/DGIB[E TRACK DENSITY (S/D)=oooooooouD
SINGLE/DOUBLE DATA DENSITY (S/D)=oooooooooD

TENbug 2.x > IOT
DRIVE NUMBER (0&1=FIXED' 2&3=FLOPPY) Zeeccoee $00
CONTROLLER NUMBER=4¢¢0¢0..500
SECTOR SIZE (0=128'1=256,2"512'3"1024)=o XXX XX -l
NUMBER OF HEADS, (ON THIS DRIVE)=.cc0eee.S01
NUMBER OF CYLINDERS, (ON THIS DRIVE)=,....50001
SHCTORS PER TRACK=44eeee0+.500

TENbug 2.x > 10T 0O
DRIVE NUMBER (0&1=FIXED,2&3=F[DPPY) Zeeecee .$00
CONTROLLER NUMBER=, ¢4+ «$00
SECTOR SIZE (0=128,1=256, 2-512, 3"’1024) Zesscessssl
NUMBER OF HEADS, (ON THIS DRIVE)"'....Q. n$06
NUMBER OF CYLINDERS, (ON THIS DRIVE)=.....50132
SECTORS PER TRACK=.see0ee+520

INICVRS UK N NN IR IR X R

NV RN

10T

COMMENT

Teach RWIN1 controller a new configuration,
Select drive 0. .

Use default controller 0. .
Change of heart ... start over again.

Invoke the IOT cammand again.
Configure drive 2 (first floppy).
No change.

No change.

No Change.

No change. .

- Change from 16 sectors/track to 8.

No Cha[geo
No change.
No change.
Change to single-data density.

10T cammand showing default parameters
for hard disk #0. TENbug initializes
the RWIN1. No parameters were entered
from the menu.

I0T cammand requesting the configuration
data fram the disk and initializing the
RWINl1. No parameters were entered from
the menu. ‘

ov=v

TENbug 2.x > IOT

DRIVE NUMBER (0&1=FIXED,2&3=FLOPPY) =oooo.oo$02 ? 2
CONTROLLER NUMBER=. ¢« e s04+$00 ? (CR)
SHCTOR SIZE(0=128,1=256,2=512,3=1024)=ccecceesel ? (CR)
NUMBER OF HEA[B, (ON THIS DRIVE)=0000000$01 ? (gR;)
NUMBER OF CYLINDERS, (ON THIS DRIVE)=.....$0001 ? *
NUMBER OF HEADS, (ON THIS DRIVE)=.ceeees$S01 ? 2

NUMBER OF CYLINDERS, (ON THIS DRIVE)=.....$0001 ? 132

SECTORS PER TRACK=ceeeee+500 ? 20

TENbug 2.x >

1or

Invoke IOT to change configuration of hard disk to
allow use as a 5-megabyte hard disk.

Oops, passed the number of heads parameter; back up.
Change to 2 heads.

Change te $132 cylinders.

And $20 (32) sectors/track.

NOTE: These parameters are specifically for the

S-megabyte Winchester hard disk. To find out
what a particular Winchester hard disk
requires for configuration, boot the operating
system and, while “inactive" (not updating
critical files), press the ABORT button. Then
enter an IOT command to see how the boot
device is configured. If all is well, enter
GO and continue with operating system control.

TENbug 2.x > LO ;X=DU AOO A80

DU AOO A80

PHYSICAL ADDRESS=00000A00 00000A80

S0030000FC
S1130A0000010203040SFFFF08090A0BOCODOEQF79
S1130A10101112131415161718191A1B1C1D1E1FSA
S1130A20202122232425262728292A2B2C2D2E2F4A
S1130A30303132333435363738393A3B3C3D3E3F3A
S1130A40404142434445464748494A4B4C4D4EAF2A
S1130A50505152535455565758595A5BSC5DSESE1A
S1130A60606162636465666768696A6B6C6DE6EGE0A
S1130A70707172737475767778797ATB7CTDTETFFA
S1040A8080F1
S90300000FC

TENbug 2.x > MD AOO 80

000A00

* 000A10

000A20
000A30
000A40
000AS0
000260
000A70

00 01 02 03
10 11 1213
20 21 22 23
30 31 32 33
40 41 42 43
50 51 52 S3
60 61 62 63
70 71 72 73

05 FF FF
15 16 17
25 26 27
35 36 37
45 46 47
55 56 57
65 66 67
75 76 77

Lo

Enter Load cammand specifying ;X option
(echo S-records to CRT as memory is being
loaded) .

Notice S0, S1, and S9 records are displayed
upon screen. (Refer to warning in cammand
description about timing restrictions with
the ;X option.)

Display memory containing downloaded data.

09 OA OB w OD OE OF 9000000 OQGFGOIOIOSIOIIITIES
19 lA]B lC lD lE lF [RN R R RN NN NN NN N
29 2A 2B 2C 2D 2E 2F 14836 () *+,=./
39 3A 3B 3C 3D 3E 3F 0123456789:;<=>?
49 4A 4B 4C 4D 4E 4F QRABCDEFGHIJKLMNO
59 SA 5B 5C SD SE SF PQRSTUVWXYZ[\]f_
69 6A 6B 6C 6D 6E 6F 'abcdefghijklmno
79 7A 7B 7C 7D 7E 7F pqrstuvwxyz{|}".
NOTE

The host system used to create and transmit the S-records
was an MC68000 Educational Computer Board (MEX68KECB).

4-43

4.2.26 Memory Display (MD) MD
MD[<port number>] <address> [<count>] [;<options>]

The MD camiand displays a portion of menbry which begins at <address> ard
extends for the number of bytes or lines given as <count>. There are two
formats that can be requested with the MD command.

a. The dump format begins each line with the starting or next hexadecimal
memory address followed by 16 hex bytes per line with the ASCII

~ equivalent shown to the right. The number of lines varies with the
<count> entered (or default). There are no partial lines. If the byte
count ends in the middle of a line, the camplete line is displayed.
(Default byte <count> is $10.)

b. The disassembler format provides:
1. The starting or next hexadecimal memory address.
2. The object code displayed in hexadecimal.

3. The M68010 source statement that will assemble into the object code
as described in 2. above.

If the operation code is not valid, a "Define Constant" is constructed
for one word. Notice that <count> for the disassembler mode is a number
of source lines to be disassembled and displayed, not the number of
bytes. (Default line <count> is $10.)

Default destination is the console terminal. Specifying MD<port number> allows
the output to be directed to another port.

Valid port numbers for this cammand are:
PORT NUMBER DESCRIPTION

none Defaults to TENbug port 1 (VME/10 built-in temminal/keyboard).
1 Specifies TENbug port 1 (VME/10 built-in terminal/keyboard) .
2 Specifies TENbug port 2 (MVME400 port 2 - 7201/B).

3 Specifies TENbug port 3 (MVME400 port 1 - 7201/3).

4 Specifies TENbug port 4 (MVME410 port 1 - PIA/A).

5 Specifies TENbug port 5 (MVME410 port 2 - PIA/B).

Options supported are the disassembler and the screen option.

;DI Requests the disassembler option. The <count>, if provided, is a
line count (default is $10). .

HS Requests the display of a full screen of memory (16 lines of
display in either dump or disassembler format). Notice that the
default for disassembly is $10 (or 16 decimal) anyway. If the
<count> and- ;S option are both entered within the same MD cammand,
the ;S option has priority.

All cambinations are valid (e.g., ;DIS, ;SDI, ;S DI, ;DI S).

4-44

4.3 COMMAND SUMMARY

The canmands and options available to TENbug 2.x users are summarized in Table 4-2.

TABLE 4-2., TENbug Command and Option Summary

COMMAND

DESCRIPTION A

[NO]BARS
BF <addressl> <address2> <pattern>
BH [<device>][,<controller>]
BI <addressl> <address2>
BM <addressl> <address2> <address3>
BO [<device>]{,<controller>][,<string>]

[NO]JBR [<address>[;<count>}]...

69-¥

BS <addressl> <address2> ‘'<literal string>'
<addressl> <address2> <data>[<mask>] [;<option>]

BT <addressl> <address2>
{NOJCH [<bits>]
CR‘I‘_
CS [<addressl>] [<address2>]
DC <expression>
DF
DU[<port number>] <addressl> <address2> [<text)>]

GD [<address>]

Draw graphics test pattern.
Block fill,

Boot and halt.

Block initialize.

Block move,

Boot operating system,

Set and remove breakpoints.

Block search; options ;B ;W ;L ;-B ;-W ;-L.

Block test.

Alter character display map.
Alter CRT control registers,
Checksum.

Data conversion/evaluation.

Display formatted registers.
Dump memory (S-records).

Go direct.

0L-¥

TABLE 4-2. TENbug Commaiu and Option Summary (cont'd)

COMMAND

DESCRIPTION

G[0] [<address>]

[NOJGR [<bits>]

GT <temporary breakpoint address>

HE

I0C

Iop

IOT [<deviced>] [<controller>]

LO[<port number>] [;<options>] =<text>

MD[<port number>] <5ddt$s> [<count>] [;<options>]
M[M] <address) [;<options>]

MS <address> <data>

OF

[NO]PA[<port number>]

PF[<port number>)

™ [<exit character> [<trailing character>]} '
T[R] [<count>]

TT <breakpoint address>

VE[<port number>] [;<options>] =<text>

M

Install breakpoints and go.
Alter graphics display map.
Go until address.

Display camands/registers.
Issue RWIN1 command.

Issue physical read/write.
Teach RWIN1 a configuration.
Load (S-records).

Memory display; options ;DI ;S.

Memory modify; options ;W ;L ;0 ;V ;N ;DI.

Memory set (also ASCII).
Offset register display.
Printer attach/detach.
Port format.
Transparent mode.

Trace.

Trace until address.
Verify (S-records).

Toggle video map.

ERROR MESSAGE

PRINTER NOT READY

Error
ILLEGAL INSTRUCTION

esss BError Trap

Offset Vector $xxx Error Trap
Invalid Option...

valid options are... ;DI or ;S
IS NOT A HEX DIGIT

DATA DID NOT STORE

Invalid Address

What?

NOT HEX

DISK ERROR: Status=xx XX XX XX XX

DISK ERROR: Status=Busy

APPENDIX B

TENbug MESSAGES

MEANING

Printer is not properly connected or cannot
receive output.

Error (prefix).
Instruction used an illegal opcode.

See Traps in M68000 16/32-Bit Microprocessor
Programmer's Reference Manual.

Indicates uninitialized vector.

Memory Display command response to invalid
option.

Improper character entered in a field that
requires a hexadecimal digit.

Data did not go where intended
attempting to write to ROM).

(such as
Address too big (1 in bits 24 - 31) or odd for
Wor .L (1 in bit 0).

Program does not recognize user's entry.

Same as IS NOT A HEX DIGIT.,

XX XX XX XX XX

Refer to the Winchester Disk Controller User's

Manual for explanation of the ten status
bytes.

B-1

OTHER MESSAGE

TENbug 2.X >
Software Abort
Break

At Breakpoint

Physical Address

.PC within "DEBUGGER"

Booting from: xxxx

Booting from ROM: xxxXx

MEANING

TENbug 2.x prompt.

Displayed when ABORT button is used.

BREAK key has been used.

Indicates program has stopped at breakpoint.

Actual address calculated using parameters and
relative offsets.

Displayed by trace commands indicating care
must be taken while "TESTING" within TENbug
(e.9., with breakpoints and STACK).

Indicates the volume ID of the disk being
booted. Message is suppressed if volume ID is
null.

Indicates the name of the routine in ROM that

is receiving control during the ROMBOOT
procedure.

B-2

APPENDIX C

CONFIGURATION AREA

Disks initialized using some systems contain a Volume Identification Block and a
Disk Configuration Block in sectors 0 and 1, respectively. TENbug looks for
either "EXORMACS" or "MOTOROLA" in locations S$F8-SFF of sector 0 to validate the
disk. Refer to paragraph 1.3.3 for more information used from the volume 1ID.
TENbug then uses the following parameters from the Disk Configuration Block to
access the disk:

Attributes word

Physical sectors per track on media

Number of heads on drive

Number of cylinders on media

Physical sector size of media

Precompensation cylinder number

The complete Disk Configuration Block is shown below:

256-BYTE = LENGTH

SFECTOR 1 IN PARAMETER
OFFSET BYTES DESCRIPTION

DEVICE STATUS

OR

0 1 CONFIGURATION ERROR CODE
1 1 CHANNEL TYPE
2 1 DEVICE TYPE
3 1 DRIVER CODE
4 2 ATTRIBUTES MASK
6 2 PARAMETERS MASK
8 2 ATTRIBUTES WORD
10($R) 2 SECTOR SIZE
12($C) 4 TOTAL SECTORS
16 ($10) 4 WRITE TIMEOUT (UNUSED)
20 ($14) 4 READ TIMEOUT (UNUSED)
24($18) 1 PHYSICAL SECTORS PER TRACK ON MEDIA
25($19) 1 NO. OF HEADS ON DRIVE
26 ($1A) 2 NO. OF CYLINDERS ON MEDIA
28 ($1C) 1 INTERLEAVE FACTOR ON MEDIA
29 ($1D) 1 SPIRAL OFFSET ON MEDIA
30 (S1E) 2 PHYSICAL SECTOR SIZE OF MEDIA
32($20) 2 PHYSICAL SECTOR SIZE OF DRIVE
34($22) 2 NUMBER OF CYLINDERS ON DRIVE
36($24) 2 PRECOMPENSATION CYLINDER # (usually .5 total cyl)
38($26) 1 PHYSICAL SECTORS PER TRACK ON DRIVE
39($27) 7 RESERVED
40($28) 60($D8) UNUSED

Disks initialized on some systems may not contain the Volume Identification
Block or the Disk Configuration Block. These disks cannot be accessed by TENbug
until the locations $F8-SFF of sector 0 are modified to contain either
"EXORMACS" or "MOTOROLA". TENbug then uses the following default values to
access the disk. These default values will allow access of track 0 for all
configurations.

RWIN1

FLOPPY HARD
PARAMETER DESCRIPTION DISK DISK
Attributes word SOF $10
Physical sectors per track on media 10 N/A
Number of heads on drive 2 1
Number of cylinders on media 50 1
Physical sector size of media N/A N/A
Precompensation cylinder number N/A 0

The attributes word is defined as:

Bit 7 Bit 6 Bit 5 Bit 4 Bit3 Bit2 Bit1l Bit 0
/o0 / 0 / 0O / M / SN /, DS / MF / T™ /

MT - Media Type
0 = Floppy disk
1 = Hard disk

Motorola format
IBM format

SN* - Sector Numbering
0
1

DS* - Diskette Sides
0 = Single sided
1 = Double sided

MF* - Recording Method
0 = Single data density (FM)
1 = Double data density (MFM)

TD* -~ Track Density
0 = Single track density (48 TPI)
1

Double track density (96 TPI)

* Floppy disk attribute only.

APPENDIX D
S-RECORD OUTPUT FORMAT
The S-record format for output modules was devised for the purpose of encoding
programs or data files in a printable format for transportation between computer

systems. The transportation process can thus be visually monitored and the
S-records can be more easily edited.

S—-RECORD CONTENT

When viewed by the user, S-records are essentially character strings made of
several fields which identify the record type, record length, memory address,
code/data, and checksum. Each byte of binary data is encoded as a 2-character
hexadecimal number: the first character representing the high-order four bits,
and the second the low-order four bits of the byte.

The five fields which comprise an S-record are shown below:

| type | record length | address | code/data | checksum |
where the fields are composed as follows:
PRINTABLE
FIELD CHARACTERS CONTENTS
type 2 S-record type -- S0, Sl, etc.
record length 2 The count of the character pairs in the record,
excluding the type and record length.
address 4, 6, or 8 The 2-, 3-, or 4-byte address at which the data
field is to be loaded into memory.
code/data 0-2n From 0 to n bytes of executable code, memory-
loadable data, or descriptive information. For
compatibility with teletypewriters, some programs
may limit the number of bytes to as few as 28 (56
printable characters in the S-record).
checksum 2 The least significant byte of the one's complement

of the sum of the values represented by the pairs
of characters making up the record length, address,
and the code/data fields.

When downloading S-records to TENbug, each record must be temminated with a CR.
Additionally, an S-record may have an initial field to accammodate other data
such as line numbers generated by some time-sharing systems.

Accuracy Of transmission is ensured by the record length (byte count) and
checksum fields.

D-1

S—-RECORD TYPES

Eight types of S-records have been defined to accommodate the several needs of
the encoding, transportation, and decoding functions. The various Motorola
upload, download, and other record transportation control programs, as well as
cross assemblers, linkers, and other file-creating or debugging programs,
utilize only those S-records which serve the purpose of the program. For
specific information on which S-records are supported by a particular program,
the user's manual for that program must be consulted.

An S-record-format module may contain S-records of the following types:

SO0 The header record for each block of S-records. The code/data field may
contain any descriptive information identifying the following block of
S-records. Under VERSAdos, the resident linker's IDENT command can be
used to designate module name, version number, revision number, and
description information which will make up the header record. The
address field is normally zeros.

S1 A record containing code/data and the 2-byte address at which the
code/data is to reside.

S2 A record containing code/data and the 3-byte address at which the
code/data is to reside.

S3 A record containing code/data and the 4-byte address at which the
code/data is to reside.

S5 A record containing the number of S1, S2, and S3 records transmitted in
a particular block. This count appears in the address field. There is
no code/data field.

S7 A termination record for a block of S3 records. The address field may
optionally contain the 4-byte address of the instruction to which
control is to be passed. There is no code/data field.

S8 A termination record for a block of S2 records. The address field may
optionally contain the 3-byte address of the instruction to which
control is to be passed. There is no code/data field.

S9 A termination record for a block of S1 records. The address field may
optionally contain the 2-byte address of the instruction to which
control is to be passed. Under VERSAdos, the resident linker's ENTRY
command can be used to specify this address. If not specified, the
first entry point specification encountered in the object module input
will be used. There is no code/data field.

Only one termination record is used for each block of S-records. S7 and S8
records are usually used only when control is to be passed to a 3- or 4-byte
address. Otherwise, an S9 record is used for termination. Normally, only one
header record is used, although it is possible for multiple header records to
occur,

D-2

CREATION OF S~RECORDS

S-record-format programs may be produced by several dump utilities, debuggers,

the VERSAdos resident 1linkage editor,
linkers.

or several cross assemblers or cross

On VERSAdos systems, the Build Load Module (MBLM) utility allows an
executable load module to be built from S-records, and has a counterpart utility
in BUILDS, which allows an S-record file to be created from a load module.

Programs are available for downloading or uploading a file in S-record format
from a host system to an 8-bit microprocessor-based or a 16-bit microprocessor-
based system.

EXAMPLE

Shown below is a typical S-record-format module, as printed or displayed:

S500600004844521B
S1130000285F245F2212226A000424290008237C2A
S11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S107003000144ED492

S9030000FC

The module consists of one SO record, four S1 records, and an S9 record.

The SO record is comprised of the following character pairs:

SO
06
00
00
48
44
52

1B

S-record type S0, indicating that it is a header record.

Hexadecimal 06 (decimal 6), indicating that six character pairs
ASCII bytes) follow.

A 4-character, 2-byte address field; zeros in this example.

ASCII H, D, arﬂ R - “HDR“.

The checksum.

The first S1 record is explained as follows:

Si

13

00
00

(ox

S-record type S1, indicating that it is a code/data record to be

loaded/verified at a 2-byte address.

Hexadecimal 13 (decimal 19), indicating that 19 character pairs,

representing 19 bytes of binary data, follow.

A 4-character, 2-byte address field; hexadecimal address 0000; where

the data which follows is to be loaded.

D=3

The next 16 character pairs of the first Sl record are the ASCII bytes of the
actual program code/data. In this assembly language example, the hexadecimal
opcodes of the program are written in sequence in the code/data fields of the Sl
records:

OPCODE INSTRUCTION

285F MOVE.L (A7) +,A4

245F MOVE.L (A7) +,A2

2212 MOVE.L (a2),D1

2260004 MOVE. L 4(a2) ,Al

24290008 MOVE.L FUNCTION (Al) ,D2

237C MOVE.L #FORCEFUNC,FUNCTION (Al)

. (The balance of this code is continued in the
. code/data fields of the remaining Sl records,
. and stored in memory location 0010, etc.)
2A The checksum of the first S1 record.
The second and third S1 records each also contain $13 (19) character pairs and
are ended with checksums 13 anmd 52, respectively. The fourth S1 record contains
07 character pairs and has a checksum of 92,
The S9 record is explained as follows:
S9 S-record type S9, indicating that it is a termination record.
03 Hexadecimal 03, indicating that three character pairs (3 bytes) follow.

88 The address field, zeros.

FC The checksum of the S9 record.

Each printable character in an S-record is encoded in hexadecimal (ASCII in this
example) representation of the binary bits which are actually transmitted. For
example, the first Sl record above is sent as:

0101

0011 [QO11 {0001 10011 {0001 {0011 {0011 {0011 |G000 jooll 10000 joOlX j00OO (0011 }00CO {0011 J0OL0 0011 |1000 j001) |0101 | 0100 |O110 | ... {0011 [0OlO |0100 |0OOL

D-4

SUGGESTION/PROBLEM

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282
Attention: Publications Manager
Maildrop DW164

Product: Manual:

COMMENTS:

Please Print

Name Title

Company Division

Street MailDrop_______ Phone
City State Zip
For Additional Motorola Publications Four Phase/Motorola Customer Support, Tempe Operations
Literature Distribution Center (800) 528-1908

616 West 24th Street (602) 438-3100

Tempe, AZ 85282

(602) 994-6561

@ MOTOROLA

MOTOROLA Semiconductor Products Inc.

PO. BOX 20912 * PHOENIX, ARIZONA 85036 ® A SUBSIDIARY OF MOTOROLA INC.

17622 PRINTED IN USA (6/84) MPS 4M

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	6-01
	6-02
	6-03
	6-04
	A-01
	A-02
	A_001
	A_1-01
	A_1-02
	A_1-03
	A_1-04
	A_1-05
	A_1-06
	A_4-13
	A_4-14
	A_4-15
	A_4-16
	A_4-37
	A_4-38
	A_4-39
	A_4-40
	A_4-43
	A_4-44
	A_4-69
	A_4-70
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	reply
	xBack

