
@M TOROLA M68KMASM/D8

M68000 Family
Resident Structured Assembler

Reference Manual

QUALITY PEOPLE • PERFORMANCE

M68000 FAMILY

RESIDENT STRUCTURED ASSEMBLER

REFERENCE MANUAL

M68I<MASM/D8

JULY 1984

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or
the rights of others.

EXORmacs, SYMbug, SYSTEM V/68, VERSAdos, VERS.Amodule, VMC 68/2, VMEnodule, and
VME/10 are trademarks of Motorola Inc.

This edition incorporates the information in any addendums to previous releases
of this manual.

Eighth Edition

Copyright 1984 by Motorola Inc.

Seventh Edition July 1983

CHAPTER 1

1.1
1.2
1.3
1.3.1
1.3.2
1.4
1.4.1
1.4.2
1.4.3
1.5
1.6
1.7
1.8

CHAPTER 2

2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.5
2.5.1
2.5.2
2.5.2.1
2.5.2.2
2.5.2.3
2.5.2.4
2.5.2.5
2.5.2.6

2.5.2.7

2.5.2.8

2.5.3
2.5.3.1
2.5.3.2
2.5.3.3
2.5.3.4
2.5.3.5

2.5.3.6

2.5.3.7

2.5.3.8
2.6
2.6.1

TABLE OF CONTENTS

GENERAL INFORMATION

SCOPE ••
INTRODOCTION ••••••••••••••••••••••••••••••••••••.•••••••••
M68000 FAMILY ASSEMBLY LANGUAGE

Machine-instruction Operation Codes ••••••••••••••••••••
Directives •••

M68000 FAMILY RESIDENT STRUCTURED ASS:ENBLER ••••••••••••••
Assembler Purposes •••••••••••••••••••••••••••••••••••••
Assembler Processing •••••••••••••••••••••••••••••••••••
Microprocessor Types •••••••••••••••••••••••••••••••••••

RELCX:::ATION AND LINKAGE•••••••••••••••••••••••••••••••••••
LINKER RESTRICTIONS ••••••••••••••••••••••••••••••••••••••
NOTATION •••
RELATED PUBLICATIONS •••••••••••••••••••••••••••••••••••••

SOURCE PROGRAM CODING

INTRODUCTION•••
C0~1r1ENT S •
EXECurABLE INSTRUCTION FORMAT••••••••••••••••••••••••••••
SOURCE LINE FORMAT •••••••••••••••••••••••••••••••••••••••

Label Field ••
Operation Field ···········~·•••••••••••••••••••••••••••
O.[)erarrl Fi_eld ••
Corrunent Field ••

ADDRESSING MODES •••
Register Direct Modes ••••••••••••••••••••••••••••••••••
Memory Address •••

Address Register Indirect ••••••••••••••••••••••••••••
Address Register Indirect with Postincrement •••••••••
Address Register Indirect with Predecrement ••••••••••
Address Register Indirect with Displacement ••••••••••
Address Register Indirect with Irrlex •••••••••••••••••
Address Register Indirect with Preindexing Plus

Base and Outer Displacement (MC68020 only) •••••••••
Address Register Indirect with Postindexing Plus

Base and Outer Displacements (MC68020 only) ••••••••
Address Register Direct with Indexing Plus Base

Displacement (MC68020 only) ••••••••••••••••••••••••
Special Address Modes ••••••••••••••••••••••••••••••••••

Absolute Short Address •••••••••••••••••••••••••••••••
Absolute Long Address ••••••••••••••••••••••••••••••••
Program Counter with Displacement ••••••••••••••••••••
Program Counter with Index •••••••••••••••••••••••••••
Program Counter with Preindexing Plus Base and

Outer Displacements ••••••••••••••••••••••••••••••••
Program Counter with Postindexing Plus Base and

Outer Displacements (MC68020 only) •••••••••••••••••
Program Counter Direct with Indexing Plus Base

Displacement (MC68020 only) ••••••••••••••••••••••••
Irnrnooiate I:>ata •••••••••••••••••••••••••••••••••••••••

NOTES ON MC68020 ADDRESSING MODES ••••••••••••••••••••••••
.Address Register .Addressing Modes ••••••••••••••••••••••

i

1-1
1-1
1-2
1-2
1-2
1-2
1-3
1-3
1-3
1-3
1-4
1-4
1-5

2-1
2-1
2-1
2-2
2-2
2-2
2-4
2-4
2-4
2-9
2-9
2-9
2-9
2-10
2-10
2-10

2-11

2-12

2-13
2-14
2-14
2-14
2-15
2-15

2-16

2-17

2-18
2-18
2-19
2-19

2.6.2
2.6.3

TABLE OF CONTENTS (cont'd)

Program Counter Relative Addressing Modes •••••••••••••
Using Suppressed Registers to Force Redundant

2.6.4
2.7
2.8
2.8.l
2.8.2
2.8.3
2.8.4
2.8.5

Addressing Modes ••••••••••••••••••••••••••••••••••••
Addressing Surrmary ••••••••••••••••••••••••••••••••••••

NOTES ON ADDRESSING OPTIONS •••••••••••••••••••••••••••••
SYMBOLS AND EXPRESSIONS •••••••••••••••••••••••••••••••••

Symbols•••..•••....•...•...•.•...•..•...•.• · • · · . · ·
Symbol Definition Classes •••••••••••••••••••••••••••••
User-Defined Labels •••••••••••••••••••••••••••••••••••
Integer Expressions •••••••••••••••••••••••••••••••••••
Q?erator Precedence •••••••••••••••••••••••••••••••••••

2.9 REGISTERS •••
2.10
2.10.1
2.10.2
2.10.3
2.10.4
2.10.5
2.10.6
2.10.7
2.10.8
2.10.9
2.10.10
2.10.11
2.10.12
2.10.13
2.10.14
2.10.15
2.10.15.1
2.10.15.2
2.10.16
2.10.16.1
2.10.16.2
2.10.17
2.10.17.1
2.10.17.2
2.10.18
2.10.18.l
2.10.18.2
2.10.19
2.10.19.1
2.10.19.2
2.10.20
2.10.20.1
2.10.20.2
2.10.21
2.10.22
2.10.23
2.10.24
2.10.24.1
2.10.24.2
2.10.24.3
2.10.24.4
2.10.24.5

INSTRUCTION MNEMONICS•••••••••••••••••••••••••••••••••••
Arithmetic Operations •••••••••••••••••••••••••••••••••
MOvE Instruction ••••••••••••••••••••••••••••••••••••••
Compare and Check Instructions ••••••••••••••••••••••••
Logical Operations ••••••••••••••••••••••••••••••••••••
Shift Operations ••••••••••••••••••••••••••••••••••••••
Bit Operations ••
Conditional O:perations ••••••••••••••••••••••••••••••••
Branch Operations •••••••••••••••••••••••••••••••••••••
Jump Operations •••••••••••••••••••••••••••••••••••••••
DBcc Instruction ••••••••••••••••••••••••••••••••••••••
Load/Store Multiple Registers •••••••••••••••••••••••••
Load Effective Address ••••••••••••••••••••••••••••••••
Move to/from Control Register •••••••••••••••••••••••••
Move to/from Address Space ••••••••••••••••••••••••••••
Bit Fields and Instructions (MC68020 only) ••••••••••••

Single Operand Bit Field Instruction ••••••••••••••••
Double Operand Bit Field Instruction ••••••••••••••••

Check Instructions (MC68020 only) ················~····
Check Register Against Boards •••••••••••••••••••••••
Compare Register Against Boards •••••••••••••••••••••

Truncated Divide Instructions (MC68020 only) ••••••••••
Truncated Signed Divide •••••••••••••••••••••••••••••
Truncated Unsigned Divide •••••••••••••••••••••••••••

Sign Extend Instructions (MC68020 only) •••••••••••••••
Sign Extend Byte ••••••••••••••••••••••••••••••••••••
Sign Extend Word ••••••••••••••••••••••••••••••••••••

BCD Instructions (MC68020 only) •••••••••••••••••••••••
Pack BCD ••

Unpack BCD••
Module Instructions (MC68020 only)

Call Module •••
Return from Module ••••••••••••••••••••.••••••••••••••

Trap on Condition Code (MC68020 only) •••••••••••••••••
Compare and Swap with Operand (MC68020 only) ••••••••••
Breakpoint (MC68020 only) •••••••••••••••••••••••••••••
The MC68881 Co-Processor Instruction (MC68881 only) •••

Co-Processor Branch Conditionally •••••••••••••••••••
Decrement and Branch on Condition •••••••••••••••••••
Set on Condition ••••••••••••••••••••••••••••••••••••
Trap on Condition, with or without a Parameter ••••••
Co-Processor Save Function ••••••••••••••••••••••••••

ii

2-20

2-20
2-21
2-22
2-28
2-28
2-29
2-30
2-30
2-32
2-33
2-35
2-35
2-36
2-37
2-37
2-38
2-38
2-39
2-40
2-4i
2-41
2-42
2-43

·2-43
2-44
2-44
2-45
2-47
2-49
2-49
2-49
2-50
2-50
2-50
2-51
2-51
2-51
2-52
2-52
2-52
2-53
2-53
2-53
2-53
2-54
2-54
2-56
2-56
2-56
2-56
2-57
2-57

2.10.24.6
2.10.24.7

2.10.24.8

TABLE OF CONTENTS (cont'd)

Restore Internal State of Co-Processor •••••••••••••
Move to Floating-Point Register from Memory or fran

Another Floating-Point Register Instruction ••••••
Move from Floating-Point Register to

2.10.26.9
2.10.26.10
2.10.26.11
2.10.26.12

Memory Instructions ••••••••••••••••••••••••••••••
Floating-Point Functions •••••••••••••••••••••••••••
Floating-Point Arithmetic Operations •••••••••••••••
Floating-Point NO-OP •••••••••••••••••••••••••••••••
Floating-Point Test of an Operarrl ••••••••••••••••••

2.11

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.3
3.3.1
3.3.2

3.3.3
3.3.4
3.4
3.4.1
3.4.2
3.4.2.1
3.4.2.2
3.4.3
3.4.4
3.5
3.5.1
3.5.2

3.5.3
3.5.4
3.5.5
3.5.6
3.5.7
3.5.8
3.5.9
3.5.10
3.5.11
3.5.12
3.5.13
3.6
3.6.1
3.6.2
3.6.3

VARIANTS ON INSTRUCTION TYPES ••••••••••••••••••••••••••

ASSEMBLER DIREcrIVES

INTRODUCTION•••

ASSEMBLY CONTROL•••••••••••••••••••••••••••••••••••••••
END - Program Errl ••••••••••••••••••••••••••••••••••••
INCLUDE - Include Secorrlary File •••••••••••••••••••••
MASK2 - Assemble for MASK2 (MC68000 only) ••••••••••••
OFFSET - ~fine Offsets ••••••••••••••••••••••••••••••
ORG - Absolute Origin ••••••••••••••••••••••••••••••••
SECTION - Relocatable Program Section ••••••••••••••••

SYMBOL DEFINITION••••••••••••••••••••••••••••••••••••••
EQU - Equate Symbol Value ••••••••••••••••••••••••••••
FEQU - F.quate Floating-Point Symbol Value

(MC68881 only)
REX; - Define Register List •••••••••••••••••••••••••••
SET - Set Symbol Value •••••••••••••••••••••••••••••••

DATA DEFINITION/STORAGE ALL~ATION •••••••••••••••••••••
COMLINE - Comman:1 Line •••••••••••••••••••••••••••••••
DC - Define Constant •••••••••••••••••••••••••••••••••

Examples of ASCII Strings ••••••••••••••••••••••••••
Examples of Numeric Constants ••••••••••••••••••••••

IX:B - Define Constant Block ••••••••••••••••••••••••••
DS - Define Storage ••••••••••••••••••••••••••••••••••

LISTING CONTROL AND OUTPUT OPTIONS •••••••••••••••••••••
FAIL - Programmer Generated Error ••••••••••••••••••••
FOPT - Floating-Point Assembler Options

MC68020/MC68881 only) ••••••••••••••••••••••••••••••
FORMAT - Format '!he Source Listing •••••••••••••••••
NOFORMAT - Do Not Format the Source Listing ••••••••
LIST The Assembly ••••••••••••••••••••••••••••••••••
NOLIST - Do Not List The Assembly ••••••••••••••••••
LLEN - Line Lergth •••••••••••••••••••••••••••••••••
NOOBJ - No Object ••••••••••••••••••••••••••••••••••
OPT - Assembler Output Options •••••••••••••••••••••
PAGE - Top Of Page •••••••••••••••••••••••••••••••••
NOPAGE - Do Not Page Source Output •••••••••••••••••
SPC - Space Between Source Liness ••••••••••••••••••
TTL - Title ••

LINKAGE EDITOR CONTROL •••••••••••••••••••••••••••••••••
IDNT Relocatable Identification Record •••••••••••••
XDEF External Symbol Definition ••••••••••••••••••••
XREF External Symbol Reference •••••••••••••••••••••

iii

2-57

2-58

2-59
2-60
2-61
2-62
2-63
2-63

3-1
3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-4
3-5

3-5
3-5
3-5
3-6
3-6
3-6
3-7
3-7
3-8
3-8
3-9
3-9

3-9
3-10
3-10
3-10
3-10
3-11
3-11
3-11
3-13
3-13
3-13
3-13
3-14
3-14
3-14
3-14

CHAPTER 4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.l
4.4
4.5

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.3
5.3.1
5.3.2

CHAPTER 6

6.1
6.2
6.3
6.3.l
6.3.2
6.3.3
6.3.4
6.3.5

6.4
6.4.1
6.4.1.1
6.4.1.2
6.4.2
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.6

TABLE OF CONTENTS (cont'd)

INVOKING THE ASSEMBLER

INTRODUCTION •••
VERSAdos ENVIRONMENT •••••••••••••••••••••••••••••••••••••

Canmand Line Format •••••••••••••••••••••••••••••••••••••
Symbol Table Size Option •••••••••••••••••••••••••••••••
Microprocessor Type Option •••••••••••••••••••••••••••••

SYSTEM V/68 ENVIRONMENT••••••••••••••••••••••••••••••••••
Comnand Line Format ••••••••••••••••••••••••••••••••••••

ASSEivlBLER OUTPUT •••
ASSEMBLER RUNTIME ERRORS •••••••••••••••••••••••••••••••••

MACRO OPERATIONS AND CONDITIONAL ASSEivlBLY

INTRODUCTION•••
MACRO OPERATIONS •••

Macro Definition •••••••••••••••••••••••••••••••••••••••
Macro Invocation •••••••••••••••••••••••••••••••••••••••
Macro Parameter Definition and Use •••••••••••••••••••••
Labels within Macros •••••••••••••••••••••••••••••••••••
'Ihe MEXIT Directive ••••••••••••••••••••••••••••••••••••
NARG Symbol ••
Implementation of Macro Definition •••••••••••••••••••••
Implanentation of Macro Expansion ••••••••••••••••••••••

CONDITIONAL ASSEMBLY •••••••••••••••••••••••••••••••••••••
Conditional Assembly Structure •••••••••••••••••••••••••
Example of Macro and Con:litional Assembly Usage ••••••••

STRUCTURED CONTROL STATEMENTS

INTRODUCTION•••
KE'YW'ORD SYMBOLS ••
SYNTAX •••

IF Statement •••
FOR Statanent ••
REPEAT Statement •••••••••••••••••••••••••••••••••••••••
WHILE Statanent ••••••••••••••••••i•••••••••••••••••••••
(MC68020/MC68881 only) Floating-Point Structure1

Assembler Syntax •••••••••••••••••••••••••••••••••••••
SIMPLE AND COMPOUND EXPRESSIONS ••••••••••••••••••••••••••

Simple Expressions •••••••••••••••••••••••••••••••••••••
Corrlition Code Expressions •••••••••••••••••••••••••••
Operan:l Canparison Expressions •••••••••••••••••••••••

Compound Expressions •••••••••••••••••••••••••••••••••••
SOURCE LINE FORMATTING •••••••••••••••••••••••••••••••••••

Class 1 Symbol Usage •••••••••••••••••••••••••••••••••••
Limite1 Free-Formatting ••••••••••••••••••••••••••••••••
Nesting of StructurErl Statements •••••••••••••••••••••••
Assembly Listing Format ••••••••••••••••••••••••••••••••

EFFECTS ON THE USER'S ENVIRONMENT••••••••••••••••••••••••

iv

4-1
4-1
4-1
4-2
4-3
4-3
4-3
4-4
4-4

5-1
5-1
5-2
5-2
5-2
5-3
5-4
5-4
5-5
5-6
5-7
5-7
5-8

6-1
6-1
6-1
6-3
6-3
6-4
6-4

6-5
6-6
6-6
6-6
6-7
6-8
6-9
6-9
6-9
6-10
6-10
6-10

·rABLE OF CONTENTS (cont Id)

CHAPTER 7 GENERATING POSITION INDEPENDENT CODE

7.1 FORCING POSITION INDEPENDENCE •••••••••••••••••••••••••••• 7-1
7.2 BASE-DISPLACEMENT ADDRESSING ••••••••••••••••••••••••••••• 7-1
7.3 BASE-DISPLACEMENT IN CONJUNCTION WITH FORCED POSITION

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

APPENDIX E

TABLE 2-1.
2-2.

2-3.
2-4.
2-5.
2-6.
2-7.
2-8.

2-9.
2-10.
2-11.
3-1.
4-1.
6-1.

INDEPENDENCE ••• 7-2

INSTRUCTION SET SUMMARY •••••••••••••••••••••••••••••••••• A-1
CHARACTER SET •• B-1
SAMPLE ASSEMBLER OUTPUT •••••••••••••••••••••••••••••••••• C-1
EXAMPLE OF LINKED ASSEMBLY-LANGUAGE PROGRAMS

UNDER VERS.Ados ••• D-1
ASSEMBLY ERROR CODES ••••••••••••••••••••••••••••••••••••• E-1

LIST OF TABLES

Address Modes ••
Cross-Reference: Effective Addressing Mode, Given Operand

Format and <expr> Type •••••••••••••••••••••••••••••••••
Special Address Ranges •••••••••••••••••••••••••••••••••••
Addressing Surru:nary •••••••••••••••••••••••••••••••••••••••
Operand Resolution •••••••••••••••••••••••••••••••••••••••
Known Location of Operand & Instruction Follows SECTION ••
Known Location of Operand & Instruction Follows ORG ••••••
Unknown Location of Operand & Instruction Follows

SECTION or ORG •••
External Reference & Instruction Follows SECTION •••••••••
External Reference & Instruction Follows ORG •••••••••••••
MC68881 Specific Floating-Point Condition Codes (fpcc) •••
M68000 Family Assembler Directives •••••••••••••••••••••••
Standard Listing Format ••••••••••••••••••••••••••••••••••
Effective Addressing Modes for Compare Instructions ••••••

v/vi

2-6

2-8
2-14
2-21
2-23
2-24
2-25

2-25
2-26
2-27
2-56
3-1
4-5
6-7

CHAPTER 1

GENERAL INFORMATION

1.1 SCOPE

The intent of this publication is to provide sufficient information to develop
M68000 family assembly language programs, which may be run on MC68000-,
MC68010-, or tvt::68020-based systems. The information herein pertains to the
elements of the assembler. Detailed information pertaining to the f'1C68000
family of microprocessors is provided in the M68000 16/32-bi t Microprocessor
Programner's Reference Manual. It is assumed that the designer has a complete
understanding of the microprocessor architecture before attempting software
developnent.

Chapters 1 through 4 contain the basic features of the assembler needed by the
beginning assembly language programmer. Chapter 4 also provides instructions to
invoke the assembler. .Advanced topics, such as macro operations, conditional
assembly, and structured syntax, are described in Chapters 5 through 8.

1.2 INTRODUCTION

The M68000 Family Resident Structured Assembler (referred to as the "assembler"
throughout this manual) is used to translate M68000 family assembler source
programs into MC68000/f'1C68010/MC68020 machine language. The assembler executes
under VERSAdos on the EXORmacs Developnent System, the VERSAmodule 01, 02, or 03
Monoboard Microcomputer, the VM:: 68/2 Microcomputer System, the VME/10
Microcomputer System, VMElnodule Monoboard Microcomputer (MVMElOl or MVMEllO) , or
under SYSTEM V/68 on the EXORmacs Developnent System or the VME/10 Microcomputer
System.

The assembler includes the following features:

• Absolute/relocatable code generation

• Complex expressions

• Symbol table listing

• Macros

• Conditional assembly

• Structured syntax

• Cross-reference

• IEEE Standard floating-point data types (MC68881 only)

1-1

1.3 M68000 FAMILY ASSEMBLY LANGUAGE

The symbolic language used to code source programs for processing by the
assembler is called assembly language. This language is composed of the
following symbolic elements:

a. Symbolic names or labels, which represent instruction, directive, and
register mnemonics, as well as user-defined memory labels and macros.

b. Numbers, which may be represented in binary, octal, decimal,
standard floating-point (MC68881 only) , or Binary Coded Decimal
notation.

IEEE
(BCD)

c. Arithmetic and logical operators, which are employed in complex
expressions.

d. Special-purpose characters, which are used to denote certain operand
syntax rules, macro functions, source line fields, and numeric bases.

1.3.l Machine-Instruction Operation Codes

Appendix A st.nnmarizes that part of the assembly language that provides mnemonic
machine-instruction operation codes for the MC68000, MC68010, MC68020, and
MC68881 machine instructions.

1.3.2 Directives

The assembly language contains mnemonics for directives which specify auxiliary
actions to be performed by the assembler. Directives are not always translated
to machine language.

Assembler directives assist the programner in controlling the assembler output,
in defining data and symbols, and in allocating storage.

1.4 M68000 FAMILY RESIDENT STRUCTURED .ASSEMBLER

The assembler translates source statements written in the assembly language into
relocatable or absolute object code, assigns storage locations to instructions
and data, and performs auxiliary assembler actions designated by the programner.
Object modules produced by the assembler are compatible with the M68000 family
Linkage Editor or the SYSTEM V/68 PAL Linkage Editor, both also referred to as
the "linkage editor" or "linker".

The assembler includes macro and conditional assembly capabilities, and
implements certain "structured" programning control constructs. The assembler
generates object code which may then be linked into a memory image format.

1-2

1.4.l Assembler Purposes

The two basic purposes of the assembler are to:

• Provide the prograTu~er with the means to translate source statements into
object code -- that is, to the format required by the linkage editor •

• Provide a printed listing containing the source language input, assembler
object code, arrl additional information (such as error cooes, if any)
useful to the prograrrmer.

1.4.2 Assembler Processing

Assembly is a two-pass process. During the first pass, the assembler develops a
symbol table, associating user-defined labels with values and addresses. During
the second pass, the translation from source language to machine language takes
place, using the symbol table developed during pass 1. In pass 2, as each
source line is processed in turn, the assembler generates appropriate object
code and the assembly listing.

1.4.3 Microprocessor Types

The assembler in its default ;node provides assembly of instructions for the
MC68000 processor. However, the assembly of MC68010, MC68020, and MC68881
instructions can be enabled either as a directive in the source text which
precedes instruction mnemonics or from the command line (refer to paragraphs
3.5.2.10 arrl 4.2.1, respectively).

1.5 RELO:ATION AND LINKAGE

"Relocation" refers to the process of binding a program to a set of memory
locations at a ti!ne other than during the assembly process. For exa~ple, if
subroutine 11 ABC" is to be used by many different programs, it is desirable to
allow the subroutine to reside in any area of memory. One way of repositioning
the subroutine in memory is to change the "ORG" directive operand field at the
beginning of the subroutine, arrl then to reasse"Tlble the routine. A disadvantage
of this method is the expense of reassambling ABC. An alternative to multiple
assenililies is to assemble ABC once. Prcrluced is an object mooule, which
contains enough information, so that another program (the linkage editor) can
easily assign a new set of memory locations to the module. This scheme offers
these advantages: reassembly is not required; the object module is
substantially smaller than the source program; relocation is faster than
reassembly, and relocation can be hanqled by the linkage editor (rather than by
editing the source program an.1 changing the ORG directive).

In addition to progr~n relocation, the linkage editor must also resolve inter
prograrn references. For exa~ple, the other programs that are to use subroutine
ABC must contain a jump-to-subroutine instruction to ABC. However, since ABC is
not assembled at the same time as the calling program, the assembler cannot put
the address of the subroutine into the operand field of the subroutine call.
The linkage editor, however, will know where the calling program resides and,
therefore, can resolve the reference to the call to ABC. This process of
resolving inter-program references is called "linking". An example of linking
two object modules is shown in Appendix D.

1-3

Program sections provide the basis of the relocation and linking scheme. Each
of these sections may also have a variable number of named common sections
associated with it, with each common section having a unique name. These
relocatable sections are passoo on to the linkage editor. From the different
modules that are to be linked, the linkage Erlitor collects all sections with the
same number. Each of the 16 relocatable sections may contain data and/or code;
in addition, named canmon sections may be defined within any relocatable
section.

Absolute sections are unnumberErl (and, therefore, unlimited in number); they are
specified by the ORG directive.

1.6 LINKER RESTRicrIONS

Before developing relocatable assembly language modules, the user should become
familiar with the capabilities arrl restrictions of the linkage process, as
outlined in the M68000 Family Linkage F.ditor User's Manual or the SYSTEM V/68
PAL Linkage F.di tor User's Manual. It is important to keep in mirrl that the
relocation features of the assembler are directly attributable to capabilities
of the linkage editor, am that the linkage environment can be controlled
through assembler directives. If the assembly language object program is to be
linked with a Pascal object program, the user should be aware of Pascal's
requirements before allocation.

The assembler will produce an object module canpatible with the linkage editor.
XDEF arrl XREF must be used to define entry points into the various modules and
external symbols appearing in the module.

1.7 NOTATION

Corrmarrls arrl other input/output (I/O) are presented in this manual in a modified
Backus-Naur Form (BNF) syntax. Certain symbols in the syntax, where note], are
used in the real I/O; however, others are meta-symbols whose usage is restricted
to the syntactic structure. These meta-symbols and their meanings are as
follows:

< > The angular brackets enclose a symbol, known as a syntactic
variable, that is replaced in a comnand line by one of a class of
symbols it represents. In some cases, where noted, angular
brackets are required characters.

[]

[] ...

This symbol indicates that a choice is to be made. One of several
symbols, separated by this symbol, should be selectErl.

Square brackets enclose a symbol that is optional. The enclosed
symbol may occur zero or one time. In some cases, where note],
square brackets are requirErl characters.

Square brackets followed by periods enclose a symbol that is
optional/repetitive. The symbol may appear zero or more times.

Operator entries are to be followed by a carriage return.

1-4

1.8 RELATED PUBLICATIONS

The user should be familiar with the following Motorola publications, as
appropriate to system type.

EXORnacs Developnent System Operations Manual (M68KMACS)

\1ME/10 Microcomputer System Overview Manual (M68KVSOM)

VMC 68/2 Series Microcomputer System Manual (MVM::SM)

VERSAdos to VME Hardware and Software Configuration User's Manual (MVMEVDOS)

VERSAdos to VMEinodules Hardware and Software Configuration Manual (MVMECNFGl)

M68000 16/32-Bit Microprocessor Programmer's Reference Manual (M68000UM)

M68000 Family Linkage Editor User's Manual (M68KLINK)

M68000 Family Resident Pascal User's Manual (M68KPASC)

VERSAdos Messages Reference Manual (M68KVMSG)

VERSAdos System Facilities Reference Manual (M68KVSF)

SYSTEM V/68 Error Message Manual (M68KUNMSG)

SYSTEM V/68 PAL Linkage Editor User's Manual (M68KUNLNK)

SYSTEM V/68 Pascal Compiler User's Manual (M68KUNPAS)

SYSTEM V/68 User's Manual (M68KUNUM)

1-5/1-6

CHAPTER 2

SOURCE PROGRAM CODING

2.1 INTRODOcrION

A source program is a sequence of source statements arranged in a logical way to
perform a predetermined task. Each source statement occupies a line of
printable text, where each line may be one of the following:

a. Conment
b. Executable instruction
c. Assembler directive
a. Macro invocation

NOTE

The MC68020 assemblers running under VERSAdos or SYSTEM V/68
and the t-e68000/MC68010 assembler running under SYSTEM V/68
are case-insensitive to source input except as noted under
the H~LUDE directive or for ASCII strings. All instruction
examples in this manual are in uppercase letters, excluding
explanations.

2.2 COMMENTS

Conments are strings, composed of any ASCII characters (refer to Appendix B),
which are inserted into a program to identify or clarify the individual
statements or program flow. Comments are included in the assembly listing but
are ignored by the assembler.

A cOlllment may be insertErl in one of two ways:

a. At the beginning of a line, starting in column one, where an asterisk (*)
is the first character in the line. The entire line is a comment, and an
instruction or directive in this line will not be recognized.

b. Following the operation and operand fields of an assembler instruction or
directive, where it is preceded by at least one space (refer to paragraph
2.4.4}.

Examples:

* THIS ENT IRE LI NE IS A COMMENT.

BRA LAB2 THIS COMMENT FOLLOWS AN INSTRUCTION.

2.3 EXOCUTABLE INSTRUCTION FORMAT

Asse..-rnbly language progra~s are translated by the assembler into object code that
may contain executable instructions, data structures, and relocation
infonnation. This translation process be<Jins with symbolic assembly language
source code, which employs reserved mnemonics, special symbols, and user-defined
labels. M68000 family assembly language is line-oriented.

2-1

2.4 SOURCE LINE FORMAT

Each source statement has an overall format that is some combination of the
following four fields:

a. label
b. operation
c. operand
a. comment

The statement lines in the source file must not be numbered. The assembler,
however, prefixes each line in the listing file with a sequential number, up to
four decimal digits.

The format of each line of source code is described in the following paragraphs.

2.4.1 Label Field

The label field is the first field in the source line. A label which begins in
the first column of the line may be terminated by either a space or a colon. A
label may be preceded by one or more spaces, provided it is then terminated by a
colon. In either case, the colon is not a part of the label.

Labels are allowed on all instructions and assembler directives which define
data structures. For such operations, the label is defined with a value equal
to the location counter for the instruction or directive, including a
designation for the program section in which the definition appears.

Labels are required on the assembler directives which define symbol values (SET,
EQU, REX;). For these directives, the label is defined with a value (and for SET
and EQU, a progra~ section designation) corresponding to the expression in the
operand field.

Labels on MACRO definitions are saved as the mnemonic by which that macro is
subsequently invoked. No memory address is associated with such labels. A
label is also required on the IDNT directive. This label is passed on to the
relocatable object module; it has no associated internal value.

No other directives allow labels.

Labels which are the only field in the source line, are defined equal to the
current location counter value and program section.

2.4.2 Operation Field

The operation field follows the label field and is separated from it by at least
one space. Entries in the field fall under one of the following catec:3ories:

a. Instruction mnemonics - which correspond to the M68000 fa~ily processor
instruction set.

b. Directive mnemonics - pseudo-operation codes for controlling the assembly
process.

c. Macro calls - invocations of previously-described macros.

2-2

The size of the data field affected by an instruction is determined by the data
size code. Sane instructions and directives can operate on more than one data
size. For these operations, the data size code must be specified or a default
size is assl.Ulled. The size code need not be specified if only one data size is
permitted by the operation. The data size code is specified by appending a
period (.) to the operation field, followed by B, W, L, s, D, X, or P where:

B = Byte (8-bit data)

W =Word (16-bit data)

L = Longword (32-bit data)

S = Byte (8-bit offset for certain branch instructions)

S = Single precision binary real (IEEE Standard, 32-bit: 8-bit exponent,
23-bit mantissa, 1-bit sign) (~68881 only)

D = Double precision binary real (IEEE Standard, 64-bit: 11-bit exponent,
52-bit mantissa, 1-bit sign) (MC68881 only)

X = Extended precision binary real (96-bit: 15-bit exponent, 64-bit
mantissa, 1-bit sign) (MC68881 only), (16-bits are reserved)

P = Packed Binary Coded Decimal (BCD) real string (96-bit: 3-decimal digit
exponent and 17-decimal digit mantissa) (MC68881 only)

The data size code is not permitted, however, when the instruction or directive
does not have a data size attribute.

Examples (legal):

LEA 2(AO),Al

ADD.B ADDR,DO

ADD Dl,D2

ADD.L A3,D3

Example (illegal):

SUBA.B #5,Al

Longword size is assumed (.B, .w not allowed); this
instruction loads effective address pointed to by AO,
+2 into Al.

This instruction adds byte whose address is ADDR to low
order byte in DO.

This instruction adds low order word of Dl to low order
word of D2. (W is the default size code.)

This instruction adds entire 32-bit (longword) contents
of A3 to D3.

Illegal size specification (.B not allowed on SUBA).
This instruction attempts to subtract the value 5 from
the low order byte of Al; byte operations on address
registers are not allowed.

2-3

2.4.3 Operarrl Field

If present, the operand field follows the operation field and is separated from
the operation field by at least one space. When two or more operand subfields
appear within a statement, they must be separated by a comma but may not contain
embedded spaces; e.g., Dl, D2 is illegal. In an instruction like 'ADD Dl,02',
the first subfield (Dl) is generally applied to the second subfield (D2) and the
results placed in the second subfield. Thus, the contents of Dl are added to
the contents of D2; the result is saved in register D2. In the instruction
'MOVE Dl,D2', the first subfield (Dl) is the sending field; the second subfield
(D2) is the receiving field. In other words, for most two-operand
instructions, the general format 'opcode source,destination' applies.

2.4.4 Comment Field

The last field of a source statement is an optional comment field. This field
is ignored by the assembler except for being included in the listing. The
ccxnment field is separated from the operand field (or the operation field, if
there is no operand) by one or more spaces and may consist of any ASCII
characters. This field is important in documenting the operation of a program.

2.5 ADDRESSING MODES

Effective address modes, combinErl with operation codes, define the particular
function to be performed by a given instruction. Effective addresses and data
organization are described in detail in Section 2, "Data Organization and
Addressing Capabilities", of the M68000 16/32-Bi t Microprocessor Programmer's
Reference Manual.

References to data addresses may be odd only if a byte is referenced. Data
references involving words or longwords must be even. Likewise, instructions
must begin on an even byte boundary.

Individual bi ts within a byte (operand for memory destinations) or longwords
(operarrls for Data register destinations) may be addressed with the bit

manipulation instructions (paragraph 2.10.6). Bits for a byte are numbered 7 to
O, with 7 being the most significant bit position and 0 the least significant.
Bits for a word are numbered 15 to O, with 15 being the most significant bit and
0 the least significant. Bits for a longword are numbered from 31 to O, with 31
being the most significant bit position and 0 the least significant bit
position.

The code generated in the listing file for some addresses may be the same as the
code generated for different expressions whenever externally referenced symbols
are involved. The object file contains the correctly resolved addresses.

Following are definitions of the symbols used in Tables 2-1 and 2-2 and
throughout the remainder of this section:

An

ZAn

Dn

Ri

Address register number "n" (0-7).

(MC68020 only) Suppressed address register number "n" (0-7)
whose value is taken to be zero. Can be used in place of An if
suppression is desired.

Data register number "n" (0-7).

(MC68020 only) Index register number "i "; may be any address
(An) or data (Dn) register with optional ".W'' or ".L" size
designation (16 vs 32 bits). Scaling factor "scl" may also
exist.

2-4

ZRi

scl

PC

ZPC

(MC68020 only) Suppressed index register number "i" (0-7) whose
value is taken to be zero. can be used in place of Ri if
suppression is desired.

(MC68020 only)
indexing modes.

Scaling factor of 1, 2, 4, 8 optionally used in
The default is 1.

Program counter.

(MC68020 only)
to be zero.
desired.

Suppressed program counter whose value is taken
Can be used in place of PC if suppression is

B,W,L Byte, word, longword data sizes.

d(An) Address register indirect with displacement (d).

d(An,Ri) Address register indirect with index (Ri) plus displacement (d).

d(PC) Program counter with displacement (d).

d(PC,Ri) Program counter with index (Ri) plus displacement (d).

<absolute> Absolute expression.

<simple> Simple relocatable expression.

<complex> Complex relocatable expression.

bd

od

<ea>

<iea>

null

Quitted
values

Grouping
characters

Order

(MC68020 only) Base displacement that is added before
indirection occurs.

(MC68020 only) Outer displacement that is added after
indirection occurs. Displacement size may be either word or
longword.

Effective address expression.

Indirect effective address expression.

(MC68020 only) Null displacements imply that no extension word
is present in the instruction for displacement.

(MC68020 only) Qnitted registers take on suppressed register
values (taken to be zero) •

Quitted displacements take on null values (taken to be zero).

(MC68020 only)
[] enclose an indirect expression and are required
characters.

() enclose the entire <ea> expression and are required
characters.

(MC68020 only) Addressing arguments ·may occur in any order
within the grouping characters. When two registers appear in an
<ea> expression, if the leftmost could be either An or Ri, then
a base register An is assumed for the leftmost, and the second
is taken as an index register Ri.

2-5

Table 2-1 summarizes the addressing modes defined for the M68000 family, their
invocations, and significant constraints.

TABLE 2-1. Address Modes

MODE

1) Register direct

2) Memory address

a) Simple indirect

b) Predecrement

c) Post increment

d) Indirect with
displacement (16-bit)

e) Indirect with index
(16- or 32-bit) plus
displacement (8-bit)

f) Indirect with
preindexing plus base
and outer displacements
(MC68020 only)

g) Indirect with
postindexing plus base
and outer displacements
(MC68020 only)

h) Direct with indexing
plus base displacement
(MC68020 only)

3) Special address

a) PC with
displacement (16-bi t)

INVOCATION

An
Dn

(An)

-(An)

(An)+

<absolute>(An)
<complex>(An)

<absolute>(An,Ri)

([bd,An,Ri{*scl}] ,od)

([bd,An] ,Ri{*scl} ,od)

(bd ,An,Ri {*scl})

<simple>

<absolute> (PC)
<simple> (PC)
<complex>(PC)

2-6

COMMENTS

Due to linker con
straints, any odd
addressed labels, used
with externally defined
labels, will generate a
"break to odd address"
error.

Expression is an address
(not a displacement)
which must be backward,
within current relocat
able section.

Forced PC-relative. Must
fit within 16-bit signed
field; resolved at
assembly or link time.

TABLE 2-1. Address Modes (cont'd)

MODE

b) PC with index
(16- or 32-bit) plus
displacement (8-bit)

c) PC with preindexing
plus oose and
outer displacements
(MC68020 only)

d) PC with postindexing
plus base arrl outer
displacements
(MC68020 only)

e) PC direct with
indexing plus base
(MC68020 only)

f) Absolute
(16- or 32-bi t)

g) Imnediate (8-, 16-,
or 32-bi t)

INVOCATION

<absolute>(PC)
<simple> (PC)
<complex>(OC)

<simple> (Ri)

<absolute>(PC,Ri)
<simple> (PC, Ri)

([bd,OC,Ri{*scl}],od)

([bd,PC),Ri{*scl}] ,od)

(bd,PC, Ri {*scl})

<absolute>
<complex>
<simple>

#<absolute>
#<simple>
#<complex>

2-7

COMMENTS

Forced PC-relative. Must
fit within 16-bit signed
field; resolved at
assembly or link time.

Expression is an address
which must be backward,
within current relocat
able section. Also, due
to linker constraints,
any odd-addressed
labels, used with exter
nally defined labels,
wi 11 generate a "break
to odd address" error.

Forced PC-relative;
expression must be
within current
program section.

Expression must be
forward reference or
not in current program
section.

Due to linker con
straints, any odd
addressed labels, used
with externally defined
labels, will generate a
"break to odd address"
error.

MODE

4) Implicit PC
reference

TABLE 2-1. .Address Modes (cont'd)

INVOCATION COMMENTS

Invoked by conditional
branch (Bee) or DBcc
instruction; the effec
tive address is a dis
placeuent fran the PC;
the displacement is
either 8, 16, or 32 bits
(32 on ~68020 only),
depending on OPT BRS,
OPT BRB, OPT BJ:M, and
OPT BRL, arrl whether
these options are over
ridden on the current
instruction (see para
graph 2.6). Also, due
to linker constraints,
any odd-addressed
labels, used with exter
nally defined labels,
will generate a "break
to odd address" error.

Table 2-2 provides a cross reference of operand formats and addressing modes.
Given an op:rand of the format shown in the first column, the other columns show
which addressing mode is indicated, depending on whether the expression is
absolute, simple relocatable, or complex relocatable.

TABLE 2-2. Cross-Reference: Effective Addressing Mode, Given
Operand Format and <expr> Type

EFFECTIVE ADDRESSING MODE

ABSOLUTE SIMPLE RELcx::ATABLE COMPLEX RELOCATABLE
OPERAND FORMAT <expr> <expr> <expr>

<expr>(An) d(An) d (An) d (An)

<expr> (Dn) invalid d (PC,Dn) * invalid

<expr> (An,Ri) d(An,Ri) invalid invalid

<expr> absolute (W,L) d (PC) or absolute (W,L)
absolute (W,L)

<expr> (PC) d (PC) d (PC) d (PC)

<expr> (PC, Ri) d (PC, Ri) * d (PC, Ri) * invalid

#<expr> immediate (B,W, L) immediate (W, L) immediate (W,L)

* Must be within current program section.

2-8

2.5.l Register Direct Modes

These effective addressing modes specify that the operand is in one of the 16
multifunction registers (eight data and eight address registers) • The operation
is performed directly on the actual contents of the register.

Notations: An
On where n is between 0 and 7

Examples: CLR.L

ADD

2.5.2 Memory Address

Dl

Al,A2

Clear all 32 bits of Dl.

Add low order word of Al to low order
word of A2.

The following effective addressing modes specify that the operand is in memory
and provide the specific address of the operand.

2.5.2.l Address Register Indirect. The address of the operand is in the
address register specified by the register field.

Notation: (An)

Examples: MOVE

SUB.L

#5,(A5)

(Al) ,DO

Move value 5 to word whose address is
contained in A5.

subtract from DO the value in the long
word whose address is contained in Al.

2.5.2.2 Address Register Indirect with Postincrement. The address of the
operand is in the address register speci:Eied by the register field. After the
operand address is used, it is incremented by one, two, or four, depending upon
whether the size of the operand is byte (.B), word (.W), or long (.L).

Notation: (An)+

Examples: MOVE.B

MOVE.L

(A2)+,D2

(A4)+,D3

Move byte whose address is in A2 to low
order byte of 02; increment A2 by 1.

Move longword whose address is in A4 to
D3; increment A4 by 4.

2-9

2.5.2.3 Address Register Indirect with Predecrement. The address of the
operand is in the address register specified by the register field. Before the
operand address is used, it is decremented by one, two, or four, depending upon
whether the operand size is byte (.B), word (.W), or long (.L).

Notation: -(An)

Examples: CLR

CMP.L

-(A2)

-(AO) ,DO

Subtract 2 from A2; clear word whose
address is now in A2.

Subtract 4 fran AO; compare longword
whose address is now in AO with contents
of DO.

2.5.2.4 Address Register Indirect with Displacement. The address of the
operand is the sum of the address in the address register and the sign-extended
displacement.

Notation: d(An)

Examples: AVAL EQU 5

CLR.B AVAL(AO)

MOVE #2,10(A2)

AVAL is equated to 5 (for use in next
instruction) •

Clear byte whose address is given by
adding value of AVAL (=5) to contents
of AO.

Move value 2 to word whose address is
given by adding 10 to contents of A2.

2.5.2.5 Address Register Indirect with Index. The address of the operand is
the sum of the address in the address register, the sign-extended displacement,
arrl the contents of the index (A or D) register.

Notations: d(An,Ri) Specifies low order word of index register.

Examples:

d (An,Ri.W)
d(An,Ri.L) Specifies entire contents of index register.

ADD AVAL (Al,02) ,OS

MOVE.L D5,$20(A2,A3.L)

Add to low order word of 05 the word
whose address is given by addition of
contents of Al, the low order word of
index register (D2) , and the displacement
(AVAL) •

Move entire contents of D5 to longword
whose address is given by addition of
contents of A2, contents of entire index
register (A3) , and the displacement
($20) •

2-10

2.5.2.6 Address Register Indirect with Preindexing Plus Base and Outer
Displacements. (MC68020 only) The address of the operand is the sum of the
<iea> and a sign-extended outer displacement value od. <iea> is the sum of the
contents of the address register An (or ZAn), the base displacanent bd, and the
contents of the index register Ri (or ZRi) • Therefore,

Notation:

bd + (An) + Ri
(<iea>) + od

---> <iea>
---> <operand>

([bd,An,Ri{*scl}] ,od) or
([bd,An,Ri.W{*scl}] ,od)

([bd,An,Ri.L{*scl}] ,od)

Specifies low-order word of index
register Ri.

Specifies entire contents of index
register Ri.

Examples: ADD ([BASE,Al,D2] ,AVAL) ,DS The sum of the value of BASE,
the contents of base register
Al, and the contents of the
low-order word of index
register D2 points to <iea>.
The contents of the resultant
address <iea> added to the
value of AVAL give the <ea> of
the operand to be added to the
contents of DS.

ADD ([2,Al,A2] ,4) ,DS

2-11

In this example, the assembler
selects the leftmost A register
(Al) to be the base register.

2.5.2.7 Address Register Indirect with Postindexing Plus Base and Outer
Displacements. (MC68020 only) The address of the operand 1s the sum of the
<iea>, the contents of the irrlex register Ri (or ZRi), arrl the outer
displacement value od. <iea> is the sum of the base displacement bd and the
contents of the base register An (or ZAn). Therefore,

Notation:

bd + (An)
(<iea>) + od + Ri

--->
--->

([bd,An] ,od,Ri{*scl}) or
([bd,An] ,od,Ri.W{*scl})

([bd,An] ,od,Ri.L{*scl})

<iea>
<operand>

Specifies low-order word of index
register Ri.

Specifies entire contents of index
register Ri.

Example: ADD ([BASE,Al] ,AVAL,D2) ,DS The sum of the value of BASE
and the contents of base
register Al points to <iea>.
The contents of the resultant
address <iea> added to the
value of AVAL and the
low-order word of index
register D2 points to the
address of the operand to be
added to the contents of D5.

2-12

2.5.2.8 Address Register Direct with Indexing Plus Base Displacement.
(M:::::68020 only) The address of the operand is the sum of the 8-bit base
displacement bd, the contents of the base register An, arrl the contents of the
index register Ri. Therefore,

bd + (An) + (Ri) ---> <operand>

Notation: (bd,An,Ri{*scl}) or
(bd,An,Ri.W{*scl})

(bd,An,Ri.L{*scl})

Example: ADD (BASE,Al,D2) ,D5

ADD (BASE,Al,A2) ,05

Specifies low-order word of irrlex
register Ri.

Specifies entire contents of index
register Ri.

The sum of the value of BASE,
the contents of base register
Al, and the low-order word of
index register D2 points to the
address of the operand to be
added to the contents of D5.

In this example, Al is the base
register because it is the
leftmost candidate for base
register. A2 is interpreted as
being an index register.

2-13

2.5.3 Special Address Modes

Special address modes use the effective address register field to specify the
special addressing m~1e instead of a register number. Table 2-3 provides the
ranges for absolute short and long addresses.

TABLE 2-3. Special Address Ranges

32-BIT ADDRESS 16-BIT REPRESENTATION OF 32-BIT ADDRESS

00000000 0000

00007FFF

00008000

FFFF7FFF

FFFF8000

FFFFFFFF

Absolute short

7FFF

(No representation in 16 bits;
must be absolute long)

8000

7llisolute short
FFFF

2.5.3.1 Absolute Short Address. The 16-bit address of the operand is sign
extended before it is used. Therefore, the useful address range is 0 through
$7FFF and $FFFF8000 through $FFFFPFFF.

Notation: XXX

Example: ,JMp $400 Jump to hex address 400

(M268020 only) An absolute short address can be forced by using the notation:

(XXX) .W

2.5.3.2 Absolute Long Address - The address of the operand is the 32-bit value
specified.

Notation: XXX

Example: JMP $12000 Jump to hex address 12000

(MC68020 only) An absolute long address can be forced by using the notation:

(XXX) .L

2-14

2.5.3.3 Program Counter with Displacement. The address of the operand is the
sum of the address in the program counter and the sign-extended displacement
integer. The assembler calculates this sign-extended displacement by subtracting
the address of displacement word "from the value of the operand field.

Notation:

Example:

<expression>(~)

JMP TAG(PC)

Forced program counter-relative. Note
that <expression> is interpreted as
a program address rather than a dis
placement.

Force the jump to address TAG to be
program counter-relative.

2.5.3.4 Program Counter with Index. The address is the sum of the addr·2ss in
the program counter, the sign-extended displacement value, and the contents of
the irrlex (A or D) register.

Notations: <expression>(Ri.rN)

<expression>(Ri.L)

<expression>(PC,Ri)

Examples: MOVE T(D2) ,TABLE

JMP TABLE (A2. W)

,JMp TAG(P2,A2. W)

Specifies
register.

low order word of index
.W is optional (default).

Specifies entire contents of index
register.

Forced program counter-relative. Ri .w
or Ri. L legal. NOTE: <expression> is
interpreted as a program address rather
than a displacement.

Moves word at location (T plus contents
of D2) to word location defined by TABLE.
T must be a relocatable symbol.

Transfers control to location defined by
TABLE plus the lower 16-bit content of A2
with sign extension. TABLE must be a
relocatable symbol.

Forces evaluation of TAG to be program
counter-relative with index.

2-15

2.5.3.5 Program Counter with Preindexing Plus Base and Outer Displacements.
(MC68020 only) The address of the operand is the sum of the <iea> and a sign
exterrled outer displacement value od. <iea> is the sum of the contents of the
Program Counter PC (or ZPC), the base displacement l:rl, and the contents of the
irrlex register Ri (or ZRi) • Therefore

bd + (PC) + Ri --->
(<iea>) + od --->

<iea>
<operand>

NOTE

Whenever ZPC is usErl, l:rl is not offset by the cur
rent PC value. od is never offset by the PC value.

Notation: ([bd,PC,Ri{*scl}] ,od) or
([bd,PC,Ri.W{*scl}],od)

([bd,PC,Ri .L{*scl}] ,od)

Specifies low-order word of index
register Ri.

Specifies entire contents of index
register Ri.

Examples: ADD ([BASE,PC,A2] ,AVAL),05 The sum of the value of
BASE, the contents of the
program counter PC, and the
contents of the low-order
word of index register 2
points to <iea>. The
contents of the resultant
address <iea> added ,to the
value of AVAL give the <ea>
of the operand to be added
to the contents of DS.

ADD ([A2,PC,BASE],AVAL),D5

2-16

This example is equivalent
to the example above because
ordering of operands is not
required.

2.5.3.6 Program Counter with Postindexing Plus Base and Outer Displacements.
(MC68020 only) The address of the operand is the sum of the <iea>, the contents
of the irrlex register Ri (or ZRi), arrl the outer displacement value od. <iea> is
the sum of the base displacement bd. and the contents of the program counter PC
(or ZPC). Therefore,

Notation:

bd. + (PC)
(<iea>) + od + Ri

---> <iea>
---> (operand>

Notes: Whenever ZPC is userl, bd. is not offset by the current
PC value. od is never offset by the PC value.

([bd.,PC] ,od,Ri{*scl}) or
([bd, PC) 1 od, Ri • W { * sc l})

([bd,PC],od,Ri.L{*scl})

Specifies low-order word of index
register Ri.

Specifies entire contents of the
index register Ri.

Example: ADD ([BASE,PC],AVAL,D2),D5 The sum of the value of BASE
and the contents of program
counter PC points to <iea>.

2-17

The contents of the
resultant address <iea>
added to the value of AVAL
and the low-order word of
index register D2 points to
the address of the operand
to be added to the contents
of DS.

2.5.3.7 Program Counter Direct with Indexing Plus Base Displacanent. (MC68020
only) The address of the operand is the sum of the sign-extended 8-bi t base
displacement bd, the contents of the program counter PC, and the contents of the
index register Ri. Therefore,

bd + (PC) + (Ri) ---> <operand>

Notation: (bd,PC,Ri{*scl}) or
(bd,PC,Ri.W{*scl})

(bd,PC,Ri.L{*scl})

Specifies low-order word of index
register Ri.

Specifies entire contents of the
index register Ri.

Example: ADD (BASE,PC,D2),D5 The sum of the value of BASE,
the contents of program
counter PC, arrl the contents
of the low-order word of D2
points to the address of the
operand to be added to the
contents of DS.

2.5.3.8 Imme:Hate Data. An absolute number may be specified as an operand by
irrrnediately preceding a number or expression with an immediate character. The
immerliate character (#) is used to designate an absolute number other than a
displacement or an absolute address.

Notation: #XXX

Examples: MOVE

SUB.L

#1,DO

#1,DO

Move value 1 to low order word of DO.

Subtract value 1 from the entire
contents of DO.

2-18

2.6 NOTES ON MC68020 ADDRESSING MODES

There are new features in the MC68020 addressing modes. These features are
discussed in the following paragraphs and are sumnarized in Table 2-4.

2.6.1 .Address Register .Addressing Modes

One of the main changes to the addressing modes in the MC68020 is in the mode 6
<ea> expressions. Some source code variations of the new mode 6 <ea>
expressions are redundant with the MC68000 modes 2 and 5 (i.e., the final
effective address is the same). When a redundant mode occurs, the mode 2 and 5
forms are selected by the assembler because they are more efficient. For
example, when the assembler sees the following form:

(An)

it will generate a mode 2 addressing mode. Furthermore, the assembler will
generate a mode 5 address when seeing the following two forms:

bd (An)
(bd,An)

or the new syntax form
when bd fits in 16 bits or less

The programmer can generate the redundant mode 6 instructions by using the
suppressed registers. In the bd (An) form, bd must fit in 16 bits or less or an
error (250) is generated. The (bd, An) form supports a bd up to 32 bits.

It is important to note that the assembler still recognizes the current 68000
syntax for mode 6 addresses. These two forms are:

(An, Ri)
bd(An,Ri) or the new notation (bd,An,Ri)

They generate mode 6 addresses. However, the object code for the form written
in new notation is different if a scaling factor other than one is present or bd
cannot be represented in 8 bits or less.

Where new addressing modes are redundant with old addressing modes or with other
new addressing modes, the assembler defaults to the more efficient addressing
mode. However, less efficient forms can still be generated.

In general, old addressing modes are more efficient than the new modes. Within
the new modes, pre-indexed indirect is more efficient than post-indexed
indirect, and use of the index register is more efficient than use of the base
address register for indirect modes.

Efficiency as used in this document refers to execution time.
the fastest variation is also the shortest one.

In most cases,

In the variation (bd,Ai*scl), the form (bd,Ai) is accepted. However, if the
base displacement is less than or equal to 16 bits, the assembler automatically
selects mode 5.

2-19

2.6.2 Program Counter Relative l\Cldressing Modes

Another major change to the addressing modes in the MC68020 is in the mode 73
forms. Some of the new mode 73 addressing modes are redundant with the MC68000
mode 72. When a redundant mode occurs, the mode 72 form is used since it is more
efficient. For example, when the assembler sees

bd (PC) or the new syntax form

(bd,PC) when bd fits in 16 bits or less

it generates a mode 72 address. The programmer can generate the redundant mode
73 instructions by using suppressed registers.

It is also important to note that the assembler recognizes the current 68000
syntax for mode 73 addresses. These forms are

(PC,Ri) or (PC) or bd(PC,Ri)

All mode 73 <ea> expressions require 'PC' or 'ZPC' as part of the expression to
distinguish them from their address register counterparts. (All mode 72 and 73
references are to program space and all mode 2, 5, and 6 references are to data
space.)

Where new addressing modes are re::Iundant with old addressing modes or with
other new addressing modes, the asse.rubler defaults to the more efficient
addressing mode. However, less efficient forms can still be generated.

TNhen the program counter is suppressed (ZPC) , the displacement is assu11ed to be
absolute and hence is not offset from the current PC value.

2.6.3 Using Suppressed Registers to Force Redundant Addressing Modes

Register mnemonics ZPC, ZAO-ZA7 and ZDO-ZD7 imply registers whose values are
always taken to be zero. These symbols may be used to specify any allowable
register while at the same time suppressing that register during <ea>
calculations. These symbols are included for diagnostic purposes so that every
field of the object code instruction can be specified. It also indicates
whether PC or An is being suppressed, an<l this determines whether the <ea> is in
instruction space or data space. By default, An is taken to be the suppressed
register if no register is specified. 'ZPC' must appear in the <ea> expression
to force PC-relative addressing with PC suppressed.

Wnere an <ea> expression would normally default to a current 68000 addressing
mode, the equivalent <ea> may be forced in mode 6 or 73 by including 'ZRi'
within the <ea> expression. This is because the assembler always selects the
most efficient addressing mode unless another equivalent mode is forced.

'ZRi' following the closing square bracket (i.e., ' ([<ea>] ,ZRi)') forces
P9St-indexed indirect modes where the index register has been suppressed.

Registers can be suppressed only in the address register indirect and the
Program Counter indirect modes.

2-20

2.6.4 kJ.dressing Su11ffiary

Table 2-4 summarizes much of the information presented in the preceding
paragraphs:

TABLE 2-4. kldressing Summary

FUNCTIONALLY EQUIVALENT
DEFAULT ADDRESSING MODE FORCED ADDRESSING MODES

SYNTAX

0
0
0
bd
(An)
bd (An)
none
none
none
none
([])
([])
([])
([])

MODE

Mode 70
Mode 70
Mode 70
Mode 70
Mode 2n
Mode 5n

Mode 6n w/null bj

Mode 6n w/null bd
Mode 6n w/pre-ind.
Mode 6n w/supp. An

SYNTAX

(ZRi)
((0) .W,ZRi)
((0) • L, ZRi)
(bd,ZRi)
(An,ZRi)
(b:3 ,An ,ZRi)
(ZPC)
((0) .W,ZPC)
((0) .L,ZPC)
(oo, ZPC)
([(0) • W])
([(0).L])
([] ,ZRi)
([ZPC])

MODE

Mode 6n w/null bd
Mode 6n w/16-bit bd=O
Mode 6n w/32-bit bd=O
Mode 6n
Mode 6n
Mode 6n
Mode 73 w/null bd
Mode 73 w/16-bit lrl=O
Mode 73 w/32-bit bd=O
Mode 73
Mode 6n w/16-bit bd=O
Mode 6n w/32-bit bd=O
Mode 6n w/post-ind.
Mode 73 w/supp. P2

NOTE: "n" mode numbers refer to the base address register.

2-21

2.7 NOTES ON ADDRESSING OPTIONS

By default, the assembler resolves all forward references by using the longer
form of the effective address in the operand reference. The programner may
override this default by specifying OPT FRS, which designates that forward
absolute references should be short, or OPT BRB (or BRS), designating that
forward relative branches should use the shorter (8-bi t) displacement format.
For the MC68020, OPT BRW can be used to force 16-bi t (rather than 32-bi t)
displacements on forward branches.

On an instruction which does not allow a size code, the current forward
reference default format may be overridden (for that instruction only) by
appending .s (short) or .L (long) to the instruction mnemonic. A similar
override may be performed in the structured syntax control directives via the
extent codes (see paragraph 6. 3 for further explanation) • No override is
possible on instructions with size code specification. Notably, this override
procedure is possible on the JMP and JSR instructions.

The shorter form of the effective address for relative branch instructions is an
8-bit displacement; the longer format is a 16-bit displacement. For absolute
jumps, the shorter effective address is the 16-bit absolute short; the longer
format is the 32-bit absolute long mode. In the case of forward references in
either relative branches or absolute jumps, if the shorter format is directed
and the longer format is later found necessary when the reference is resolved,
an error will occur.

References to symbols already defined, whether absolute or relative, are
resolved by the assembler into the appropriate effective address, unless .s or
.L is forced on the instruction.

A short form may be forced by following the instruction mnemonic with .s.

Exa!lple:

BEQ.S LOO Pl If condition code 'EQ' (equal) is true, then branch to
LOOPl (using the short form of the instruction) •

In this case, the instruction size is forced to one word. An error will be
printErl if the operand field is not in the range of an 8-bit displacement.

Since 8-bit value fields are not relocated, a Bcc.S instruction, which branches
to an XREF or other expression-required location, is not allowed. Such an
instruction format results in an assembler error. A relative branch to a symbol
known to be an XREF, or in a different section than the instruction, employs the
longer (16-bit) displacement, with resolution done by the linkage editor.

2-22

Default actions of the assernbler have been chosen to minimize two common address
mode errors:

a. Displacement range violations

Relative branch instructions (Bee, BRA, BSR) allow either 8-bit or 16-bit
displacements fran the PC. On forward references in such instructions,
the default action is to assume the 16-bit displacement (OPT BRW), which
also allows resolution by the linkage Erlitor, should that prove
necessary.

b. Inappropriate absolute short address

Absolute addresses may be short (16-bit) or long (32-bit}. On forward
references with absolute effective address, the default action is to
assume the long format (OPT FRL). The long form is also assumed on
references to another section (unless it is a SECTION.S}, so that
resolution by the linkage editor is assured.

Default conditions have been chosen to prevent errors by using addressing
formats which ensure address resolution in the broadest range of conditions, at
the expense of code efficiency. Each default may be overridden to improve
efficiency or to create position independent code. Also, the current address
size defaults (options FRL and FRS) may be overridden in certain cases on
S?=cific instructions which do not allow size codes by appending .s or .L, as in
JMP.S and JMP.L (JMP and JSR only).

The previous discussion assumed relative branches could not be 32 bits. This is
not the case when using the t-e68020.

The resolution of operands into effective address modes (ignoring base register
addressing) is summarized in the Tables 2-5 through 2-10.

TABLE 2-5. Operand Resolution

INSTRUCTION FOLLOWS

OPERAND TYPE

Known location
(backward in pass 1)

Unknown location
(forward}

External reference

SECTION

See Table 2-6

See Table 2-8

See Table 2-9

2-23

ORG

See Table 2-7

See Table 2-8

See Table 2-10

TABLE 2-6. Known* Location of Operand & Instruction Follows SECTION

OPTION IN
EFFECT WHEN

OPERAND INSTRUCTION
REFERENCE OCCURRED EFFECTIVE ADDRESS MODE

PC relative
(resolved by linkage editor

PCS if operand & instructions are
in different SECTIONS)

IF displacement > 16-bit
THEN error

Simple
relocation

IF operand and instruction
in same SECTION and

NO PCS displacement <= 16-bit
(default) THEN PC relative

ELSE IF operand defined
in SECTION.S

THEN absolute short
ELSE absolute long

(resolved by linkage editor)

Complex
relocation (Any) Absolute long

Absolute Absolute short or absolute
(ORG) (Any) long depending on the value

of the operand

* Label defined before instruction which references it (in pass 1).

2-24

TABLE 2-7. Known* Location of Operand & Instruction Follows ORG

OPERAND
REFERENCE

Simple
relocation

Complex
relocation

Absolute
(ORG)

OPTION IN
EFFECT WHEN
INSTRUCTION
OCCURRED

(Any)

(Any)

PCO

NOPCO
(default)

EFFECTIVE ADDRESS MODE

IF operand defined
in SECTION. S

THEN absolute short
ELSE absolute long

(resolved by linkage editor)

Absolute long

IF displacement <= 16-bit
THEN PC relative
ELSE absolute short

or absolute long
depending on value of
operand

Absolute short or
absolute long depending
on the value of the operand

* Label defined before instruction which references it (in pass 1).

TABLE 2-8. Unknown** Location of Operand & Instruction Follows SECTION or ORG

OPERAND
REFERENCE

(All)

OPTION IN
EFFECT WHEN
INSTRUCTION
OCCURRED

FRS

FRL
(default)

EFFECTIVE ADDRESS MODE

Absolute short
(resolved by linkage editor)

Absolute long
(resolved by linkage editor)

** Label undefined at time of reference (error at pass 2) •

2-25

TABLE 2-9. External Reference & Instruction Follows SECTION

OPERAND
REFERENCE

XREF with
SECTION
designa
tion

Example:
XREF 2:Ll

XREF without
SECTION
designa
tion

Example:
XREF Ll

OPTION IN
EFFECT WHEN
INSTRUCTION
OCCURRED

PCS

NO PCS
(default)

(Any)

FRS

FRL
(default)

2-26

EFFECTIVE ADDRESS MODE

PC relative
(resolved by linkage editor)

IF operand defined in
SECTION.S or XREF.S

THEN absolute short
ELSE absolute long

(resolved by linkage editor)

IF operand defined with
XREF.S

THEN absolute short
ELSE (see below)

(resolved by linkage editor)

Absolute short
(resolved by linkage editor)

Absolute long
(resolved by linkage editor)

TABLE 2-10. External Reference & Instruction Follows ORG

OPERAND
REFERENCE

XREF with
SECTION
designa
tion

Example:
XREF 2:Ll

XREF without
SECTION
designa
tion

Example:
XREF Ll

OPTION IN
EFFECT WHEN
INSTRUCT ION
OCCURRED

(Any)

(Any)

FRS

FRL
(default)

2-27

EFFECTIVE ADDRESS MODE

IF operand defined in
SECTION.S or XREF.S

THEN absolute short
ELSE absolute long

(resolved by linkage editor)

IF operand defined with
XREF.S

THEN absolute short
ELSE (see below)

(resolved by linkage editor)

Absolute short
(resolved by linkage editor)

Absolute long
(resolved by linkage editor)

2.8 SYMBOLS AND EXPRESSIONS

2.8.1 Symbols

Symbols recognized by the assembler consist of one or more valid characters
(refer to Appendix B) , of which the first eight are significant. The first
character must be an uppercase letter (A-Z) or a period (.) • Each remaining
character may be an uppercase letter, a digit (0-9), a dollar sign ($), a period
(.), or an underscore () • Lowercase letters can also be used at times (refer
to note in paragraph 2.1).

Numbers recognized by the assembler include decimal, hexadecimal, octal, and
binary values. Decimal numbers (the default) are specified by a string of
decimal digits (0-9); hexadecimal numbers are specified by a dollar sign ($)
followed by a string of hexadecimal digits (0-9, A-F); octal numbers are
specified by the commercial "at" sign (@) followed by a string of octal digits
(0-7); binary numbers are specified by a percent sign (%) followed by a string
of binary digits (0-1).

Examples:

Decimal - A string of decimal digits

Example: 12345

Hexadecimal - A dollar sign ($) followed by a string of hexadecimal digits

Example: $12345

Octal

Binary

- An "at" sign (@) followed by a string of octal digits

Example: @12345

- A percent sign (%) followed by a string of binary digits

Example: %10111

(MC68881 only) IEEE standard floating-point numbers can be specified by an
optionally signed, fraction string of up to 17 decimal digits (0-9) containing a
required decimal point, the constant "E", an optional sign (+ or -) , and an
exponent up to 3 decimal digits. The exponent section "E<sign>yyy" is optional;
underscores can occur for readability.

Floating-point numbers can also be specified explicitly as a series of
hexadecimal digits preceded by a colon (:). This floating-point hex format can
be used to exactly represent the mantissa, exponent, and sign bit for a given
floating-point number.

Examples:

Floating- - sx.xxxxxxxxxxxxxxxxEsyyy (maximum size)
point

where: s is an optional sign;
x and y are decimal digits

Exa~ple: 1234.56E-33

Floating- - :xxxxx •••
point hex

where: xxxxx ••• is a sequence of hex digits
(up to 8 digits for .s precision, up to 16 for .D,
and up to 24 for .X or .P)

2-28

One or more ASCII characters enclosed by apostrophes (') constitute an ASCII
string. ASCII strings are left-justified and zero-filled (if necessary),
whether stored or used as imnediate operands. This left justification will be
to a word boundary if one or two characters are specified, or to a longword
boundary if the string contains more than two characters. (In order to specify
an apostrophe within a literal or string, two successive apostrophes must appear
where the single apostrophe is intended to appear.)

Examples: DC.L
OC.L
oc.w
OC.L

'ABCD'
" '79'
'*'
'I"M'

2.8.2 Symbol Definition Classes

Symbols may be differentiated by usage into two general classes. Class 1
symbols are used in the operation field of the instruction (refer to paragraph
2.4 for field definitions); Class 2 symbols occur in the label and operand
fields of the instruction. Assembler directives, instruction mnemonics, and
macro names comprise Class 1 symbols; user-defined labels and register mnemonics
are included in Class 2 symbols.

A Class 1 symbol may be redefined and used independently as a Class 2 symbol,
arrl vice versa. As long as each symbol is used correctly, no conflict will
result from the existence of two symbols of different classes with the same
name. For exa~ple, the following is a legal instruction sequence:

ADD Dl,ADD

ADD OS 2

By its usage as a Class 1 symbol, the first "ADD" is recognized as an
instruction mnemonic; likewise, the second ADD is recognized as a Class 2 symbol
identifying a reserved storage area. The assembler differentiates a Class 1
symbol from a Class 2 symbol with the same name, thereby allowing two symbol
table entries with the same name but different class.

Macro labels are a special case because the same symbol will appear as the label
(Class 2) in the MACRO definition and, subsequently, as an operation code
mnemonic (Class 1) in invocation of that same macro. Macro labels are defined
to be Class 1 symbols; their presence in the label field of a MACRO directive is
ignored as a Class 2 symbol. Therefore, macro names may be redefined as Class 2
symbol~ without conflict.

A symbol may not be redefined within the same class. For example, ADD (reserved
Class 1 symbol) may not be redefined as a macro label (also Class 1), nor may
"AS" (reserved Class 2 symbol) be redefined as a statement or storage location
label (also Class 2). A reserved symbol may be used only within its own class.

2-29

2.8.3 User-Defined Labels

Labels are defined by the user to identify memory locations in program or data
areas of the assembly module. Each label has two attributes: the program
section in which the manory location resides, and the offset from the beginning
of that program section.

Labels may be defined to have an absolute or relocatable value, depending upon
the progra.11 section in which the label<~ memory location is found. If the
memory location is within a relocatable section (defined through the SECTION
directive) , then the label has a relocatable value relative to that program
section. If the menory location is not contained within a relocatable section
(for exa11ple, the location follows an ORG directive), then the label has an
absolute value.

Labels may be defined in the label field of an executable instruction or a data
definition directive source line. It is also possible to SET or EQU a label to
either an absolute or a relocatable value.

2.8.4 Integer Expressions

Expressions are canposed of one or more symbols, which may be combined with
unary or binary operations. Legal symbols in expressions include:

a. User-defined labels and their associated absolute or relocatable values.

b. Numbers and their absolute values.

c. The special symbol "*" always identifies the value of the program counter
at the beginning of the DC directive, even when multiple arguments are
specified (e.g., OC.B 1,2,3,*-3). The program counter may be either
absolute or relocatable.

Subexpressions which involve relocatable symbols may employ only the "+" and "-"
operators. It is possible for a subexpression involving the difference between
two relocatable symbols to evaluate to an absolute value. For example, let Rl
represent a memory location at OFFSETl bytes beyond the start of section Sl, and
let R2 represent a memory location at OFFSET2 bytes beyond the start of section
S2 -- that is,

Rl = OFFSET! + <start of Sl>
R2 = OFFSET2 + <start of 82>

The difference between Rl and R2 may then be

Rl-R2 = OFFSET1-0FFSET2 + <start of Sl> - <start of 82>

If sections Sl and 82 are the same, then

Rl-R2 = OFFSET1-0FFSET2

which is a constant, absolute {non-relocatable) value. Of course, if sections
Sl and 82 are distinct, the expression remains a complex, relocatable
expression.

2-30

When an expression has been fully evaluated by the assembler, it may be
categorized as one of three types of expressions:

a. Absolute expression - The expression has reduced to an absolute value
which is independent of the start address of any relocatable section.

b. Simple relocatable expression - The expression has reduced to an absolute
offset from the start of a single relocatable section.

c. Complex relocatable expression The expression has reduced to a
constant, absolute offset in conjunction with either of the following
relocatable terms:

1. A single, negated start address of a relocatable section.

2. References to the start addresses of two or more relocatable
sections; these references may be additions to or subtractions
from the constant offset value.

NOTE

Complex relocatable expressions, such as an absolute
symbol minus a relocatable symbol, are illegal in ORG,
OFFSET, EQU, ~B, OS, COMLINE, and SET directives.

By themselves, all user-defined labels on memory locations are either absolute
or simple relocatable expressions. This includes XREF labels, which are assumed
to be absolute symbols unless their program section is specified. Complex
relocatable expressions may arise only from the addition or subtraction of two
relocatable expressions.

The following are examples of each type of expression.

ARRAY
END ARRAY

Rl

R2

R3

ORG
DS
EQU
SECTION
CLR.L
ADD
MOVE
SECTION
EQU

MOVE
MOVE
MOVE
MOVE
MOVE

$1000
$20
*-2
1
02
Dl,03
03, (AO)
2

*
ARRAY+l0,07
Rl+l0,07
R2-Rl,D7
Rl+R2,D7
R3-R2

"ARRAY" is absolute
"ENDARRAY" is absolute

"Rl" is simple relocatable

"R2" is simple relocatable

"R3" is simple relocatable

absolute source operand
simple relocatable source operand
absolute source operand
complex relocatable source operand
complex relocatable source operand

2-31

2.8.5 Operator Precedence

Operators recognized by the assembler include the following:

a. Arithmetic operators:

addition
subtraction
multiplication
division
unary minus

(+)
(-)
(*)
(/)
(-)

b. Shift operators (binary) :

shift right (>>)

shift left («)

c. Logical operators (binary):

and
or

(&)
(!)

-- produces a truncated integer result

the left operand is shifted to the right
(and zero-filled) by the number of bits
specified by the right operand

analogous to >>

Expressions are evaluated with the following operator precedence:

1. parenthetical expression (innermost first)
2. unary minus
3. shift
4. and, or
5. multiplication, division
6. addition, subtraction

Operators of the sa.'1le precedence are evaluatoo left to right. All results
(including intermediate) of expression evaluation are 32-bit, truncated
integers. Valid operands include nurneric constants, ASCII literals, absolute
symbols, and relocatable symbols (with "+" and "-" only).

2-32

2.9 REGISTERS

The MC68000 has sixteen 32-bit registers (D0-07, AO-A7) in addition to a 24-bit
program counter and 16-bit status register.

Registers D0-07 are used as data registers for byte, word, and longword
operations. Registers AO-A7 are used as software stack pointers and base
address registers; they may also be used for word and longword data operations.
All 16 registers may be used as index registers.

Register A7 is used as the system stack pointer. (The MPU actually provides two
hardware stack pointers, depending upon whether the instruction is executing in
the supervisor or user state. Stack pointers and the supervisor/user states are
explained under "Stacks and Queues" and "Privilege States" in the M68000
16/32-Bit Microprocessor Programmer's Reference Manual.)

(MC68010 only) The MC68010 has an additional 32-bit register (VBR) and two 3-bit
registers (SFCR and DFCR) • The contents of the VBR are added to the
previously-calculated vector offset, during exception processing, to produce the
actual vector location. The 3-bi t registers allow supervisor access to other
address spaces via MOVES, supplying function codes in the SFCR for the read
cycle(s) from the effective address location, or supplying function codes in the
DFCR for the write cycle(s) to the effective address location, respectively.

(MC68020 only) The MC68020 has four additional 32-bit registers. Two of these
registers are used as stack pointers (MSP and ISP) • The other two are used as
cache registers (CACR and CAAR). MSP (master stack pointer) is active whenever
both the "S" and "M" bi ts of the status register are set (supervisor state).
ISP (interrupt stack pointer) is active whenever the "S" bit is set but not the
"M" bit (interrupt state). USP (user stack pointer) is active whenever the "S"
bit is 0 (user state) • The cache registers support the onboard instruction
cache of the MC68020 and can be accessed only in the supervisor state.

(MC68020 only) The assembler also provides 17 pseudo register names for the
MC68020. These are the suppressed address registers used in various MC68020
addressing modes. Each register represents a content value of zero:

ZAO-ZA7
ZDO-ZD7
ZPC

Suppressed address registers
Suppressed data registers
Suppressed program counter

(MC68881 only) The MC68881 floating-point co-processor provides eight 80-bi t
registers and three 32-bi t registers. The 80-bi t registers are the floating
point data registers, FP0-FP7, that serve as destinations for most floating
point operations. The 32-bit registers are the system registers STATUS,
CONTROL, and IADDR.

The following register mnemonics are recognized by the assembler:

00-07

ZDO-ZD7

AO-A7

ZAO-ZA7

A7, SP

Data registers.

Suppressed data registers (refer to paragraph 2.6.3 (MC68020
only))

Address registers.

Suppressed address registers (refer to paragraph 2.6.3 (MC68020
only))

Either mnemonic represents the system stack pointer of the active
system state.

2-33

USP User stack pointer (for user state on the 11268020).

MSP Master stack pointer (for supervisor state on M:!68020 only) •

ISP Interrupt stack pointer (for interrupt state on 11268020 only) •

CCR Corrlition code register (low 8 bits of SR).

SR Status register. All 16 bits may be modified in the supervisor
state. Only low 8 bits (CCR) may be modified in user state.

ZPC

VBR

SFC or
SFCR

DFC or
DFCR

CACR

CMR

FPO-FP7

CONTROL

STATUS

IADDR

Program counter. Used only in forcing program counter-relative
addressing (refer to paragraphs 2.5.3.3 and 2.5.3.4).

Suppressed program counter (refer to paragraph 2.6.3 (MC68020
only)).

Vector base register (MC68010 or newer only). Supports multiple
vector table areas during exception processing. Accessed by the
MO\!El':: instruction.

Alternate function code source register (MC68010 or newer only).
Accessed by the MOvrx:= instruction.

Alternate function code destination register (MC68010 or newer
only) • Accessed by the MOV~ instruction.

Cache control register.
arrl status access to
only).

This provides supervisor state control
the onboard instruction cache (MC68020

Cache address register. This holds the address of the cache
control functions requiring an address (MC68020 only).

Floating-point data registers (MC68881 only) •

Floating-point control register. Contains four bytes. The third
is the exception enable byte to enable/disable traps for each
class of floating-point exception. The fourth byte is a mode
byte to set the user selectable modes. The remaining bytes are
reserved (MC68881 only) •

Floating-point status register contains four bytes. The first
byte is a floating-point condition code byte, containing five
corrlition codes that are set by all move and arithmetic
floating-point instructions except FMOVEM. The third byte is a
floating-point exception byte. The fourth byte is a
floating-point accrued exception byte containing the logical
inclusive OR of all floating-point exceptions that have occurred
since this byte was last cleared by the user. The ranaining
bytes are reserved (MC68881 only) •

Floating-point instruction crldress register. Contains the
logical address in the main processor manory of the of fendifl9
instruction that generated a floating-point exception trap ..
(MC68881 only) •

2-34

2.10 INSTRUCTION MNEMONICS

The instruction operations described in paragraphs 2 .10.1 through 2 .10.12 are
used by the assembler for MC68000, MC68010, arrl MC68020. Paragraphs 2.10.13 and
2.10.14 however, describe instructions which are valid only for the MC68010 and
MC68020 microprocessors. Paragraphs 2.10.15 through 2.10.24 describe
instructions which are valid only for the MC68020 microprocessor. Paragraphs
2.10.25 through 2.10.25.12 describe instructions which are valid only for the
MC68881 floating-point co-processor.

NOTE

The M68000 Family Resident Structured Assembler has been implemented
using the instructions described in this section. Differences found
in the MC68020 32-Bit Virtual Memory Microprocessor Reference Manual
or the MC68020 32-Bit Virtual Memory Microprocessor User's Manual
will be resolved in the next revision.

2.10.1 Arithmetic Operations

The MC68000/MC68010/MC68020 instruction set includes the operations of add,
subtract, multiply, arrl divide. Md and subtract are available for all data
operand sizes. Multiply and divide may be signed or unsigned~ Operations on
decimal data (BCD) include add, subtract, and negate. The general form is:

[label:]

Examples:

ADD.W

SUB.B

<operation>.<size> <source>,<destination>

Dl,D2

#5 I (Al)

Adds low order word of Dl to low order word of D2.

Subtracts value 5 from byte whose address is contained
in Al.

On the MC68020, the signed and unsigned multi ply instructions can support a
32-bit multiplier arrl a 64-bit product using an alternate operand syntax. This
is achieved by using two data registers. One data register, Dj, holds the
multiplier before multiplication arrl the low-order longword of the product after
multiplication. Another data register, Di, holds the high-order longword of the
product after multiplication (Di must be different from Dj). The general
formats are:

MUIS.L
MULU.L

<ea>, [Di:]Dj
<ea>, [Di :] Dj

(signed multiply)
{unsigned multiply)

where : is a required delimiter.

The signed and unsigned divide instructions on the MC68020 have been similarly
expanded to support a 64-bit dividend, a 32-bit quotient, and a 32-bit
renainder. This is achieved by using two data registers to hold the dividend
before division arrl to separately hold the quotient and remainder after
division. Data register Di thus holds the high-order longword of the dividend
before division and the remairrler after division. Data register Dj holds the
low-order longword of the dividend before division and the quotient after
division. If a single data register Dj is specified or Di equals Dj, it is to
be used as both the high-order and low-order 32 bits of the dividend for the
divide, arrl the 32-bit quotient of the division is returned in it. No remainder
is returned in this case. The general formats are:

DIVS.L
DIVU.L

<ea>, [Di :] Dj
<ea>, [Di:]Dj

{signed division)
{unsigned division)

2-35

2.10.2 MOVE Instruction

The MOVE instruction is used to move data between registers and/or memory. The
general form is:

MOVE.<size> <source>,<destination>

where:

<size> = B, W, or L

Examples:

MOVE Dl,02

MOVE.L XYZ,DEF

MOVE.W #'A' ,ABC

MOVE ADDR,A3

Moves low order word of Dl into low order word of D2.

Moves longword addressed by XYZ into longword addressed
by DEF.

Moves word with value of $4100 into word addressed by
ABC.

Moves word addressed by ADDR into low order word of A3.

2-36

2.10.3 Compare and Check Instructions

The general formats of the compare and check instructions are:

CMP.<size>

CHK <bounds>,<register>

where operand1 is compared to operand2 by the subtraction of operandi from
operand2 without altering operandi or operand2.

The MC68020 allows the check instruction to have a longword size:

CHK.<size> <ea>,Dn

where:

<size> = W (default) or L

On the MC68020, the CMPI instruction allows any data addressing mode other than
irrmediate for the specified effective address location.

Condition codes resulting from the execution of the compare instruction are set
so that a "less than" condition means that operand2 is less than operandi,
and "greater than" means that operand2 is greater than operandi.

The CHK instruction will cause a system trap if the register contents are less
than zero or greater than the value specified by "bounds".

Examples:

CMP.L ADDR,Dl

CHK (AO) ,03

Compares longword at location ADDR with contents of oi,
setting condition codes accordingly.

Compares word whose address is in AO with low order
word of D3; if check fails (see text) , a system trap is
initiated.

2.10.4 Logical Operations

Logical operations include AND, OR, EXCLUSIVE OR, NOT, and two logical test
operations. These functions may be done between registers, between registers
and memory, or with immediate source operands. The general form is:

<operation>.<size>

where:

<size> = B, w, or L

Example:

AND oi,02

<source>,<destination>

Low order word of D2 receives logical 'and' of low
order words in Dl and 02.

The destination may also be the status register (SR) or the condition code
register (CCR) in the case of the ANDI instruction.

2-37

2.10.5 Shift Operations

Shift operations include arithmetic and logical shifts, as well as rotate and
rotate with extend. All shift operations may be either fixed with the shift
count in an immediate field or variable with the count in a register. Shifts in
memory of a single-bit position left or right may also be done. The general
form is:

<operation>.<size>

where:

<size> = B, W, or L

Examples:

LSL.W #5,03

ASR (A2)

ROXL.B 03,02

2.10.6 Bit Operations

<count>,<operand>

Performs a left, logical shift of low order word of 03
by 5 bits; .w is optional (default).

Performs a right, arithmetic shift of word whose
address is contained in A2; because this is a memory
operand, the shift is only 1 bit.

Performs a left rotation with extend bit of low order
byte of D2; shift count is contained in 03.

Bit operations allow test and modify combinations for single bits in either an
8-bi t operand for memory destinations or a 32-bi t operand for data register
destinations. The bit number may be fixed or variable. The general form is:

<operation> <bitno>,<operand>

where:

<size> = B or L

Examples:

BCLR #3,XYZ(A3) Clears bit number 3 in byte whose address is given by
address in A3 plus displacement of XYZ.

BCHG Ol,02 Tests a bit in 02, reflects its value in condition code
Z, and then changes value of that bit; bit number is
specified in 01.

Under Mask3 of the MC68000 chip, the instructions BCLR, BSET, and BTST have
8-bit memory operands; under Mask2 they had 16-bit memory operands. To enable
users who wrote programs under Mask2 -- using BCHG, BCLR, BSET, and BTST
instructions -- and to reassemble these programs under Mask3, the replacement
instructions BCHGW, BCLRW, BSETW, and BTSTW are provided. These instructions
align the destination operand at the next higher byte when bits 0-7 are accessed
(thus functioning under Mask3 exactly as BCHG, BCLR, BSET, and BTST functioned
under Mask2). In making the change, replace only the instruction mnemonic; no
change is required to the operand field.

2-38

2.10.7 Conditional Operations

Condition codes can be used to set and clear data bytes. The general form is:

Sec <location>

where "cc" may be one of the following condition codes:

CC or HS GE
CS or LO GT
EQ HI
F LE

Example:

SNE (AS)+

r.s
LT
MI
NE

PL
T
vc
vs

If condition code NE (not equal) is true, then set byte
whose address is in AS to l's; otherwise, set that byte
to O's; increment A5 by 1.

2-39

2.10.8 Branch Operations

Branch operations include an unconditional branch, a branch to subroutine, and
14 conditional branch instructions. The general form is:

<operation>.<extent> <location>

Examples:

BRA
BSR

Bcc.S

TAG
SUB DO

NEXT

Unconditional branch to the address TAG.
Branch to subroutine SUBDO.

Short branch to NEXT on condition "cc", which may be
one of the following condition codes (note that T and F
are not valid condition codes for conditional branch):

CC or HS Gr
cs or LO HI
EQ LE
GE LS

LT
MI
NE
PL

vc
vs

All conditional branch instructions use PC-relative addressing only and may be
either one-word or two-word instructions. The corresponding displacement ranges
are:

one-word
two-word

-128 ••• +127 bytes
-32768 ••• +32767 bytes

(8-bit displacement)
(16-bit displacement)

Forward references in branch instructions use the longer format by default (OPT
BRW) • The default may be changed to the shorter format by specifying OPT BRS or
OPT BRB. The default extent may be overridden for a single branch operation by
appending appropriate extent codes to the instruction -- for example:

BRA.S LAB

A branch instruction with a byte displacement must not reference the statement
which irrmediately follows it. This would result in an 8-bit displacement value
of O, which is recognized by the assembler as an error condition.

Example (illegal) :

BEQ.S
LABl MOVE

LABl
#1,DO

LABl is the next memory word and, thus, generates
an error.

The MC68020 allows three sizes of offsets: byte (.B or .S) , word (.W), and
longword (. L) • These provide byte, 2-byte, and 4-byte offsets, respectively.
Compatibility with the old word (.L) sizes is available by using the new
OPT OLD directive (refer to paragraph 3.5.2.10). The default offset size is
still word (two bytes). Branch sizes can also be forced with several new force
branch size directives: BRB or BRS (generates 8-bit defaults), BRW (generates
16-bi t defaults) , BRW (generates 16-bi t defaults), and BRL (generates 32-bi t
defaults) (refer to paragraph 3.5.2.10). These new branching sizes allow the
following:

Bee. <size>
BRA. <size>
BSR. <size>

where:

<label>
<label>
<label>

<size> = B (or S), W, or L

2-40

2.10.9 Jump Operations

Jump operations include a jump to subroutine and an unconditional jump. The
general form is:

<operation>.<extent> <ea>

Examples:

JMP

JMP.L

JSR

4 (A7)

NEXT

SUB DO

Unconditional jump to the location 4 bytes beyond
the address in A7.

Long (absolute) jump to the address NEXT.

Jump to subroutine SUBDO.

Forward references to a label will use the long absolute address format by
default (OPT FRL). The default may be changed to the shorter format by
specifying OPT FRS. The default extent may be overridden on a single jump
operation to a label by appending S or L as an extent code for the instruction.

2.10.10 DBcc Instruction

This instruction is a looping primitive of three parameters: condition, data
register, and label. The instruction first tests the condition to determine if
the termination condition for the loop has been met and, if so, no operation is
performed. If the tennination condition is not true, the data register is
decremented by one. If the result is -1, execution continues with the next
instruction. If the result is not equal to -1, execution continues at the
location indicated by label. Label must be within a 16-bit displacement. The
general fonnat of the instruction is:

DBcc <data register>,<label>

where:

"cc" may be one of the following condition codes:

CC or HS GE
CS or LO Gr
EQ HI
F LE

Examples:

LABl NOP
DBGT
DBLE
DBT
DBF

LAB2 NOP

LS
LT
MI
NE

DO,LABl
Dl,LAB2
02,LABl
D3,LAB2

PL
T
vc
vs

2-41

2.10.11 Load/Store Multiple Registers

This instruction allows the loading and storing of multiple registers. Its
general format is:

MOVEM.<size> <registers>,<location> (register to memory)

MOVEM.<size> <location>,<registers> (memory to register)

where:

<size> may be either W (default) or L.

The <registers> operand may assume any combination of the following:

Rl/R2/R3, etc. , means Rl arrl R2 arrl R3

Rl-R3, etc., means Rl through R3

When specifying a register range, A and D registers cannot be mixed; e.g., AO-AS
is legal, but AO-DO is not.

The order in which the registers are processed is independent of the order in
which they are specified in the source line; rather, the order of register
processing is fixed by the instruction format. For further details, refer to
the MOVEM instruction in the MC68000 16/32-Bit Microprocessor Prograrrrner's
Reference Manual.

Examples:

MOVEM (A6)+,Dl/D5/D7

MOVEM.L A2-A6,-(A7)

MOVEM (A7)+,Al-A3/Dl-D3

MOVEM.L Al/A2/A3,REGSAVE

Load registers Dl, DS, and D7 from three
consecutive (sign-extended) words in memory,
the first of which is given by the address in
A6; A6 is incremented by 2 after each
transfer.

Store registers A2 through A6
consecutive longwords in memory;
decremented by 4 (because of .L) ;

in five
A7 is
A6 is
A7 is

address
stored at the address in A7;
decremented by 4; AS is stored at the
in A7, etc.

Loads registers Dl, 02, D3, Al, A2, A3 in
order from the six consecutive
(sign-extended) words in memory, starting
with the address in A7 and incrementing A7 by
2 at each step.

Store registers Al, A2, A3 in three consecu
tive longwords starting with the location
labeled REGSAVE.

2-42

2.10.12 Load Effective Address

This instruction allows computation and loading of the effective address into an
address register. The general format is:

LEA <operand>,<register>

Example:

LEA XYZ(A2,D5) ,Al Load Al with effective address specified by
the first operand. Refer to paragraph
2.5.2.5 for an explanation of addressing mode
"Address Register Indirect With Index".

2.10.13 Move to/from Control Register

(MC68010 or newer only) With this instruction, the specified control register
is copie:l to the speci fiea general register, or the specified general register
is copied to the specifiea control register. This is always a 32-bit transfer,
even though the control register may be implemented with fewer bits.
Unimplanented bits read as zeros. The general format is:

MOVEC
MOVOC

Examples:

MOVOC

MOVEC

MOVOC

<control register>,<register>
<register>,<control register>

VBR,AO

D7 ,SFC

DFC,DO

Copies contents of vector base register to
register AO.

Copies contents of register D7 to the source
function code register (3 bits).

Copies contents of destination function code
register to register DO (3 bits; zero filled).

MOVEC.L USP,D7 Copies user stack pointer to register D7.

(MC68020 only) Four additional <control register> values are recognized for the
MC68020:

CACR:
CAAR:
MSP:
ISP:

Cache control register
Cache address register
Master stack pointer
Interrupt stack pointer

NOTE

If the instruction is usErl without setting the processor
type in this carunarrl line or in the OPT P=68XXX, then an
error is generated.

2-43

2.10.14 Move to/from Address Space

(MC68010 or newer only.) Moves a byte, word, or longword from the specified
general register to a location within the address space determined by the DFC
register, or moves a byte, word, or longword from a location within the address
space determined by the SFC register to the specified general register. Note
that with a byte operation size specified, the address register direct mode is
not allowed.

General format:

MOVES <ea>,<register>
MOVES <register>,<ea>

Examples:

MOVES.W (A2)+,D2

MOVES A4,LABEL

MOVES 2222,A2

Moves a word at the address contained in
register A2 to register 02 and then increments
A2 by 2.

Moves the lower word of register A4 to the
address of LABEL.

Moves one word of data beginning at address
2222 to register A2.

NOTE

If the instruction is used without setting the processor
type in the canmarrl line or in the OPT P=68XXX, then an
error is generated.

2.10.15 Bit Fields arrl Instructions (MC68020 only)

NOTE

The instructions in paragraphs 2.10.15 through 2.10.24 require
that the processor type be set to 68020 in the command line or
in the OPT P=68XXX directive. otherwise, an error is generated.

A bit field is a string of consecutive bits in a bit array. The address of the
bit array is determined by the address of the byte containing bit 0 (the base
address). Bit fields exteo:l in both directions from bit O and are assigned bit
field numbers from 0 (the leftmost and most significant bit) to 7 (the rightmost
arrl least significant bit). By this notation a preceding byte's least
significant bit has a bit field number of 8. Instructions reference bit fields
using two parameters: a bit field offset and a bit field width. A bit field
offset is the bit field number of the leftmost bit in the field; its range is
-2**31 to (2**31) - 1. The bit field width is the number of bits in the bit
field; its range is 1 to 32.

2-44

2.10.15.1 , Single Operand Bit Field Instructions.

This section explains the following single operand bit fields:
clear, set and test.

Complement Bit Field

complement,

Complements a bit field at the specified effective address location. Condition
code fields are modified, depending on the value in the bit field before the
complement. A bit field is selected by the bit field offset (the starting bit)
and the bit field width (the number of bits included).

General format:

BFCHG <ea>{<offset>:<width>}

where:

{, : , and } are required delimiters; <offset> and <width> may be an
immediate value or a data register DO-D7.

Example:

BFCHG LABEL{O:Dl} Complements the bit field at address LABEL from bit
O to bit n - 1 where n is the value in Dl.

Clear Bit Field

Clears a bit field at a specified effective address location. Condition code
fields are modified, depending on the value in the bit field before the clear.
A bit field is selected by the bit field offset (the starting bit) and the bit
field width (the number of bits included).

General format:

BFCLR <ea>{<offset>:<width>}

where:

{, . , and } are required delimiters; <offset> and <width> may be an
immediate value or a data register D0-07.

Example:

BFCLR LABEL{Dl:8} Clears the bit field at address LABEL starting at the
bit specified in Dl for 8 bits.

2-45

Set Bit Field

Sets all bits of a bit field at a specified effective address location.
Condition code fields are modified, depending on the value in the bit field
before the set. A bit field is selected by the bit field offset (the starting
bit) and the bit field width (the number of bits included).

General format:

BFSET <ea>{<offset>:<width>}

where:

{, : , and } are required delimiters; <offset> and <width> may be an
immediate value or a data register D0-07.

Example:

BFSET 2222{0:8} Sets one byte at address 2222 to all l's.

Test Bit Field

Sets condition codes according to the value in the bit field at the specified
effective address location. A bit field is selected by the bit field offset
(the starting bit) and the bit field width (the number of bits included).
General format:

BFTST <ea>{<offset>:<width>}

where:

{, :, and } are required delimiters; <offset> and <width> may be an
irrrnediate value or a data register D0-07.

Example:

BFTST (A2) {Dl:D2} Clears condition codes V and C; sets N and Z
according to the bits of the bit field.

2-46

2.10.15.2 Double Operand Bit Field Instructions.

This section explains the following double operand bit fields: extract signed,
extract unsigned, find first one, and insert.

Extract Bit Field Signed

The bit field at the specified effective address location is sign-extended to 32
bi ts and loaded into a data register. Condition code fields are modified,
depending on the value in the bit field before the sign extension. A bit field
is selectErl by the bit field offset (the starting bit) and the bit field width
(the number of bits included).

General format:

BFEXTS <ea>{<offset>:<width>},Dn

where:

{, : , and } are required delimiters; <offset> and <width> may be an
immediate value or a data register 00-07.

Example:

BFEXTS LABEL{0:8},Dl

Extract Bit Field Unsigned

The value of the byte at LABEL is sign-extended
and then loaded into Ol.

The bit field at the specified effective address location is zero extended to 32
bits and loaded into a data register. Condition code fields are modified,
depending on the value in the bit field before the zero extension. A bit field
is selected by the bit field offset (the starting bit) and the bit field width
(the number of bits included).

General format:

BFEXTU <ea>{<offset>:<width>},Dn

where:

{, : , and } are required delimiters; <offset> and <width> may be an
imnediate value or a data register 00-07.

Example:

BFEXTU LABEL{0:8},Dl The value of the byte at LABEL is zero-extended
and then loaded into Ol.

2-47

Find First One in Bit Field

The bit field at the specified effective address location is examined for the
most significant bit position that is set. If a set bit exists, the bit offset
for that bit is loaded into a data register. If no bit is set, a value is
loaded in a data register equal to the offset plus the width of the bit field.
Condition code fields are modified, depending on the value in the bit field
before the examination. A bit field is selected by the bit field offset (the
starting bit) and the bit field width (the number of bits included).

General format:

BFFFO <ea>{<offset>:<width>},Dn

where:

{, : , and } are required delimiters; <offset> and <width> may be an
irrmediate value or a data register D0-07.

Example:

BFFFO LABEL{O:l},Dl

Insert Bit Field

If bit 0 is set, then 0 is loaded into Dl, else 1
is loaded into Dl.

Move a bit field from the low-order bits of the data register to the bit field
at the specified effective address location. Condition code fields are
modified, depending on the value in the bit field before the insertion. A bit
field is selected by the bit field offset (the starting bit) and the bit field
width (the number of bits included).

General format:

BFINS Dn,<ea>{<offset>:<width>}

where:

{, : , and } are required delimiters; <offset> and <width> may be an
inmediate value or a data register D0-07.

Example:

BFINS Dl,LABEL{0:8} Move the low-order byte of Dl to the 8-bit field at
address LABEL.

2-48

2.10.16 Check Instructions (MC68020 only)

Check arrl compare register instructions are discussed in the following
paragraphs.

2.10.16.l Check Register Against Bounds. Check the value in register Rn
against the lower- and upper-bound pair at the address of the specified
effective ·address location. \Nhen signed comparisons . are made, the
arithmetically smaller value should be taken as the lower bound. For unsigned
comparisons, the logically smaller value should be taken as the lower bound. If
the instruction size is byte (.B) or word (.W), only the low-order byte or word
of a data register, respectively, is used for the comparison. When Rn is an
address register, an instruction size of byte or word results in a sign
extension of the bound operands before the comparison. If the register is out
of bounds, exception processing is initiated and a vector number that references
the CHK instruction exception vector is generated. Only control addressing
modes are allowed.

General format:

CHK2.<size> <ea>,Rn

where:

<size> = B, W, or L

Example:

CHK2.B LABEL,Dl The instruction following this instruction is executed
provided the value of the low-order byte of Dl is
greater than the contents of LABEL and less than the
contents of LABEL + 1.

2.10.16.2 Canpare Register Against Bounds. This has exactly the same
functionality as CHK2, except that no exception processing will occur if the
value in Rn is not within bounds.

General format:

CMP2 <ea>,Rn

2-49

2.10.17 Truncated Divide Instructions (MC68020 only)

TruncatErl divide instructions use signed or unsigned arithmetic.

2.10.17.1 Truncated Signed Divide. Using signed arithmetic, divide the 32-bit
value in data register Dj by the value at the specified effective address
location. After division, Dj contains the signerl 32-bit quotient, and Di
optionally contains the 32-bit renainder, provided Di is not equal to Dj. When
Di arrl Dj are the same, no remainder is generated.

General format:

TDIVS.<size> <ea>,[Di:]Dj

where:

<size> = L

2.10.17.2 Truncated Unsigned Divide. Using unsigned arithmetic, divide the
32-bit value in data register Dj by the value at the specified effective address
location. After division, Dj contains the unsigned 32-bit quotient and data
register, arrl Di optionally contains the 32-bit remainder, provided Di is not
equal to Dj. When Di and Dj are the same, no renainder is generated.

General fonnat:

TDIVU.<size> <ea>,[Di:]Dj

where:

<size> = L

2-50

2.10.18 Sign Extend Instructions (MC68020 only)

Instructions are given for both byte and word.

2.10.18.1 Sign Extend Byte. Extend bit 7 to bits 31 through 8 of data register
Dn if <size> is-fong, or else extend bit 7 to bits 15 through 8.

General fonnat:

EXTB.<size> Dn

where:

<size> = W (default) or L

Example:

EXTB.L Dl Copies the value of bit 7 to bits 31 through 8 of Dl.

NOTE

EXTB.W is the same as the instruction
EXT.W for the MC68000 and MC68010.

2 .10 .18. 2 Sign Extend Word. Extend bit 15 to bi ts 31 through 16 of data
register Dn.

General fonnat:

EXTW.<size> On

where:

<size> = W (default) or L

NOTE

EXTB.W is the same as the instruction
EXT.W for the MC68000 and MC68010.

2-51

2.10.19 BCD Instructions (MC68020 only)

Instructions include both pack and unpack for BCD.

2.5.19.l Pack BCD. Pack the low four bits of each of two bytes into one byte.
When a prerlecrement addressing mode is specifiErl, bits 3 through O of the two
fetched consecutive source bytes are concatenated to form a packed byte, which
is written to the destination. When both operands are data registers, bits 11
through 8 and bits 3 through 0 of the source register are concatenated to form
the low-order packerl byte of the destination data register.

General format:

PACK -(Ay) ,-(Ax)
PACK Dy,Dx

where:

Ay and Ax are address registers; Dy and ox are data registers

2.10.19.2 Unpack BCD. Two BCD digits in the source byte are stored in two
consecutive bytes at the destination. When predecrement addressing is used, two
BCD digits in the source byte are separately written to two consecutive bytes,
and destination bits 7 through 4 are set to zero. When data registers are used,
bits 7 through 4 and bits 3 through 0 of the source register are placed in bits
11 through 8 and bits 3 through O, respectively, of the destination register.
All other bits of the destination register are set to zero.

General format:

UNPK -(Ay) ,-(Ax)
UNPK Dy,Dx

where:

Ay and Ax are address registers; Dy and Dx are data registers.

2-52

2.10.20 Module Instructions (MC68020 only)

Both call and return are module instructions.

2.5.20.l Call Module. An external module descriptor resides at the specified
effective address location. This module descriptor contains control
information for entry into the associated module. A module frame, containing
the current module state, is created on the top of the stack. The new module
state is then loaded frcrn the external module descriptor. No condition codes
are affected by this instruction. Only control-alterable addressing is allowed.

General format:

CALLM #ddd,<ea>

where:

ddd is the 8-bit number of bytes of arguments passed to the called module.

2.10.20.2 Return from Module. A previously saved module state, from a CALLM
instruction, is reloaded from the top of the stack. A register Rn is used as
the module data area pointer. If the module state includes a saved module data
area pointer, register Rn is restored; else Rn is unchanged. No condition codes
are affected.

General format:

RTM Rn

2.10.21 Trap on Condition Code (MC68020 only)

If the specified condition code is true, exception processing occurs. The vector
number generated references the TRAPcc exception vector. The stacked program
counter points to the next instruction. If the specified condition code is
false, control passes to the next instruction in sequence. Any of the 16
condition codes may be referenced. Condition codes are not affected by this
instruction. The #xxx parameter in the TPcc form allows a 16- or 32-bit value
to be embedded within the instruction for reference in exception processing.

General format:

Tee
TPcc.<size> #xxx

where:

<size> = W (default) or L

2-53

2.10.22 Compare and Swap with Operand (MC68020 only)

In the CAS instruction the specified effective address location is canpared to
data register Dw. If operands match, the update operand in data register Dy is
written to the specified effective address location. If operands do not match,
Dw is loade1 with the contents at the specified effective address location.

In the CAS2 instruction, both Dwl and Dw2 must match the values in memory
pointe1 to by ra_jisters Rzl and Rz2, respectively, in order that these memory
values be updated by the contents of registers Dyl and Dy2. If both operands do
not match, then Owl and Dw2 are loaded with the contents of memory pointed to by
registers Rzl an:1 Rz2, respectively.

General formats:

CAS.<size> Dw,Dy,<ea>

CAS2.<size> Dwl:Dw2,Dyl:Dy2,(Rzl): (Rz2)

where:

<size> = B, W, or L

2.10.23 Breakpoint (MC68020 only)

The operation of this instruction is implementation-dependent. The processor
will ask for the operation word which the breakpoint has replaced. If the
operation word is furnished, the processor will execute that instruction and
continue. If the operation word is not furnished, the processor will take an
illegal instruction exception.

General format:

BKPT #<vector>

where:

#<vector> specifies the breakpoint for which the processor is to request
the corresponding operation word. Value = 0 through 7.

2-54

2.10.24 The MC68881 Co-Processor Instructions (MC68881 only)

NOTE

The instructions in paragraphs 2.10.25.l and 2.10.25.2 require
that the processor ty}?e be set to 68881 in the OPT directive
or fran the canmarrl line. Otherwise, an error is generated.

At present, the assembler supports only the MC68881 co-processor. The assembler
syntax that follows refers to opcodes for the MC68881, even though the MC68020
can support other co-processors which follow MC68881 protocols. Floating-point
condition codes used in opcodes for the MC68881 are listed in Table 2-11.

TABLE 2-11. ~68881-SJ?ecific Floating-Point Condition Codes (fpcc)

TRAP ON UNORDERED

Gr Greater than

GE Greater than or equal

LT Less than

GL Greater or less than

LE Less than or equal

GLE Greater or less than

SEQ Equal

ST Always

NO TRAP ON UNORDERED

(X;T Greater than

OGE Greater than or equal

OLT Less than

OGL Greater or less than

OLE Less than or equal

OR OrderErl

EQ Equal

T Always

or equal

INVERSE

NGr Not greater than

NGE Not greater than or equal

NLT Not less than

NGL Not greater or less than

NLE Not less than or equal

NGLE Not greater or less than or equal

SNEQ Not equal

SF Never

INVERSE

ULE Not greater than
(Unordered or less or equal)

ULT Not greater than or equal
(Unordered or less than)

UGE Not less than
(Unordered or greater or equal)

UEQ Not greater or less than
(Unordered or equal)

ua.r Not less than or equal
(Unordered or greater than)

UN UnorderErl

NEQ Not equal
(UnorderErl or greater or less)

F Never

2-55

2.10.24.1 Co-Processor Branch Conditionally. If the specified floating-point
condition code is met, progra~ execution continues at address <label>. Condition
codes are not affectEd by this instruction.

General format:

FBfpcc <label>

where:

fpcc is defined in paragraph 2.10.24.

2.10.24.2 Decrement and Branch on Condition. If the specified floating-point
condition code is met, execution continues with the next instruction.
Otherwise, the low-order word in the specified data register On is decremented
by one. If the result is equal to -1, execution continues with the next
instruction, else execution continues at address <label>. Condition codes are
not affected by this instruction.

General format:

FDBfpcc Dn,<label>

where:

fpcc is defined in paragraph 2.10.25.

2.10.24.3 Set on Condition. The specified floating-point condition code is
tested. If the condition is true, the byte at the specified address location is
set to TRUE (all l' s) ; otherwise that byte is set to FALSE (all 0 ' s) • No
condition codes are affected by this instruction. CXlly data-alterable
addressing modes are allowed.

General format:

FSfpcc <ea>

where:

fpcc is defined in paragraph 2.10.25.

2-56

2 .10. 24. 4 Trap on Condition, with or without a parameter. If the selected
floating-point condition code is true, then the processor initiates exception
processing. The vector number generated references the TRAPcc exception vector.
The stacked Program Counter then points to the next instruction. If the
selected floating-point condition code is not true, then no operation is
performed and execution continues with the next instruction in sequence.
Condition codes are not affected by this instruction.

General formats:

FTf pcc
FTpfpcc.<size> #xxx

where:

fpcc is defined in paragraph 2.10.25.
<size> = W or L

#xxx is a 16- or 32-bit parameter used to uniquely identify a particular
FTPfpcc instruction.

2.10.24.5 Co-processoi:.__ Sav~~~<::tion. This instruction saves the internal
state for the context switch at the specified effective address location.
Corrl i tion codes are not affected by this instruction. Only postdecrement or
alterable control addressing modes are allowed. This is a privileged
instruction.

General format:

FSAVE <ea>

2.10.24.6 Restore Internal State of Co-Processor. This instruction restores
the internal state for the context switch from the specified effective address
location. Condition codes are not affected by this instruction. Only
postincrement or control addressing modes are allowed. Th is is a privileged
instruction.

General format:

FRESTORE <ea>

2-57

2.10.24.7 Move to Floating-Point Register from Memory or from Another
Floating-Point Register Instruction.

FMOVE.<size> <ea>,FPn

where:

<size> = B, W (default), L, S, D, X, or P; FPn is a floating-point register

FMOVE.<size>
FMOVEM.<size>
FMOVEM.<size>
FMOVOCR.<size>

where:

FPm,FPn
<ea>,<fp_reg_list>
<ea>,Dn

#ccc,FPn
(See note below.)

<size> = X (default); FPm, FPn are different floating-point registers;
<fp reg list> is of the form FP1/FP2/FP3 ••• and/or FP1-FP3 ••• ; Dn is a data
regTster; ccc is a group of frequently used floating-point constants:
(These are tentative.)

ccc value

00 Pi = 3.14159 •••
OB LoglO (2)
OC e = 2.71828 •••
OD Log2 (e)
OE LoglO (e)
OF 0.0
10 Logn (2)
11 Logn (10)
12 10**0 (1.0)
13 10**1
14 10**2
15 10**4
16 10**8
17 10**16
18 10**32
19 10**64
lA 10**128
lB 10**256
lC 10**512
lD 10**1024
lE 10**2048
lF 10**4096

NOTE: Dn indicates that the FMOVEM bit mask is in a MC68020 data register.

FMOVEM.<size>
FMOVE.<size>

where:

<ea>,CONTROL/STATUS/IADDR
<ea>,CONTROLISTATUSIIADDR

(See note below.)

<size>= L (default); CONTROL, STATUS, and IADDR are floating-point system
registers.

NOTE: From 1 to 3 of these registers can be specified, each separated from one
another by a slash in FMOVEM. The vertical lines of FMOVE represent
selection choices.

2-58

2.10.24.8 Move from Floating-Point Register to Memory Instructions.

FMOVE.<size> FPn,<ea>

where:

<size> = B, W (default), L, s, D, X, or P; FPn is a floating-point register.

FMOVE.P FPn,<ea>{#k}

where:

FPn is a floating-point register; { and } are required delimiters; #k has a
default value of imnediate data -16.

FMOVE.P FPn,<ea> {Dn}

where:

FPn is a floating-point register; { and } are required delimiters; Dn is a
data register holding a dynamic k value.

EMOVEM.<size>
FMOVEM.<size>

where:

<fp reg list>,<ea>
Dn,7.ea>- (See note below.)

<size> = X (default); <fp reg list> is of the form FP1/FP2/FP3 ••• and/or
FP1-FP3 ••• ; Dn is a data register.

NOTE: Dn irrlicates that the EMOVEM bit mask is in a MC68020 data register.

FMOVEM.<size>
FMOVE.<size>

where:

CONTROL/STATUS/IADDR,<ea>
CONTROLjSTATUSjIADDR,<ea>

(See note below.)

<size> = L (default); CONTROL, STATUS, and IADDR are floating-point systen
registers.

NOTE: From 1 to 3 of these registers can be specified, each separated from one
another by a slash. The vertical lines of FMOVE represent selection
choices.

2-59

2.10.24.9 Floating-Point Functions.

a. Source Operand in Memory

F<op>.<size> <ea>,FPn

where:

<size> = B, W (default), L, s, D, X, or P; <op> is defined below in
paragraph c.; FPn is a floating-point register

b. Source Operand in Floating-Point Register

F<op>.<size> FPm,FPn

where:

<size> = B, W (default) , L, s, D, X, or P; <op> is defined below in
paragraph c.; FPm and FPn are floating-point registers

c. Source Operand and Destination in Same Floating-Point Register

F<op>.<size> FPn

where:

<size>= X (default); FPn is a floating-point register; <op> is:

ABS
ACOS
ASIN
ATAN
ATANH
cos
COSH
ETOX
ETOXMl
GETMAN
GETEXP
INT
LOGN
LOGNPl
LOGlO
LOG2
NEG
SIN
SINH
SQRT
TAN
TANH
TENTOX
'IWOTOX

absolute value
arccosine
arcsine
arctangent
hyperbolic arctangent
cosine
hyperbolic cosine
e**x ; powers of e (Euler's constant)
e**(x-1) ; Euler's constant to the x-1 power
get the mantissa
get the exponent
integer part
natural lCXJ; base e log
natural log (x+l)
canmon log; base 10 lCXJ
binary log; base 2 log
negate
sine
hyperbolic sine
square root
tangent
hyperbolic tangent
lO**x ; powers of 10
2**x; powers of 2

2-60

d. Sine/Cosine Function

FSINCOS.<size> <ea>,FPm:FPn (FPm=sin,FPn=cos)

where:

<size> ~ B, W, L, S , o, X, or P
FPm is the floating-point register holding the sine result.
FPn is the floating-point register holding the cosine result.

2.10.24.10 Floating-Point Arithmetic Operations.

a. One Source Operand is in Memory

F<op>.<size> <ea>,FPn

where:

<size> = B, W (default), L, s, o, X, or P (except D or X not allowed
for <size> of SGLDIV or SGLMUL); FPn is a floating-point register;
<op> is defined below in paragraph b.

b. Both Source Operands in Floating-Point Registers

F<op>.<size> FPm,FPn

where:

<size> = X (default) (except only S allowed for <size> of SGLDIV or
SGLMUL); FPm and FPn are floating-point registers; <op> is:

ADD
CMP
DIV
MOD
MUL
REM
SCALE
SGLDIV
SGLMUL
SUB
YTOX

add
compare
divide
modulo
multiply
remainder
scale exponent
single-precision divide
single-precision multiply
subtract
y**x (powers of y)

2-61

2.10.24.11 Floating-Point NO-OP. This instruction is supplied for
synchronization with the floating-point co-processor.

General format:

FNOP

2.10.24.12 Floating-Point Test of an Operand. The operand at the specified
effective address location is compared with zero. Floating-point condition
codes as specified in paragraph 2.10.25 are set according to the result of the
test.

General format:

FTEST.<size> <ea>

where:

<size> = B, W, L, s, D, X, or P

2-62

2.11 VARIANTS ON INSTRUCTION TYPES

Certain instructions allow a "quick" arrl/or an "immediate" form when immediate
data within a restricted size range appear as an operand. These abbreviated
forms are normally chosen by the assembler, when appropriate. However, it is
possible for the programner to "force" such a form by appending a Q or I to the
mnemonic opcode (to indicate "quick" or "immediate", respectively) on
instructions for which such forms exist. If the specified quick or imnediate
form does not exist, or if the irrunediate data does not conform to the size
requirements of the abbreviated form, an error is generated.

Some instructions also have "address" variant forms (which refer to address
registers as destinations) ; these variants append an A to the instruction
mnemonic (for example, ADDA, CMPA). This variant is chosen by the assembler
without programmer specification, when appropriate to do so; the programmer need
specify only the general instruction mnemonic. However, the programner may
"force" or specify such a variant form by appending the A. If the specified
variant does not exist or is not appropriate with the given operands, an error
is generated.

The CMP instruction also has a memory variant form (CMPM) in which both operands
are a special class of memory references. The CMPM instruction requires
postincrement addressing of both operands. The CMPM instruction will be
selected by the assembler, or it may be specified by the prograi."lll\er.

The variations -- A, Q, I, and M -- must conform to the following restrictions:

A Must specify an address register as a destination, and cannot specify
a byte size code (.B).

Q Requires immediate operand be in a certain size range. MOVEQ also
requires longword data size.

I The size of irrmediate data is adjusted to match size code of
operation.

M Both operands must be postincrement addresses.

For example, the instruction

ADDQ #9,DO Attempts to add value 9 to DO

causes an assembly error, because the immediate operand is not in the valid size
range (1 through 8).

2-63

Although the assembler selects the appropriate opcode variation -- A, Q, I, or M
-- when the suffix is not specifia], the explicit encoding of the suffix with
the basic opcode is recommen:la] for the following purposes:

a. For documentation, to make clear in the source language the instruction
form that was assemble].

b. To force a format other than that which the assembler selects. For
example, the assembler selects the quick (Q) form for the instruction

ADD #l,D4 Adds the value 1 to D4 via an ADDQ (2-byte)
instruction.

If the irrma]iate (I) form is desire], the prograrrmer must declare it
explicitly, as follows:

ADDI #1,04 A:lds the value 1 to D4 via an ADDI (4-byte)
instruction.

c. To generate invariant code when using variant irrmediate data (separate
assemblies) •

2-64

CHAPTER 3

ASSEMBLER DIRECTIVES

3.1 INTRODUCTION

All assembler directives (pseudo-ops), with the exception of "OC" and "OCB", are
instructions to the assembler rather than instructions to be translated into
object code. This chapter contains descriptions and examples of the basic forms
of the most frequently used assembler directives. Directives controlling the
macro arrl conditional assembly capabilities are described in Chapter 5.
Directives used in structured syntax are described in Chapter 6. The most
commonly used directives supported by the assembler are grouped, by function, in
Table 3-1.

TABLE 3-1. M68000 Family Assembler Directives

DIRECTIVE

ASSEMBLY CONTROL

END
INCLUDE
MASK2
OFFSET
ORG
SECTION

SYMBOL DEFINITION

EQU*
FEQU*

REG*
SET*

DATA DEFINITION/
STORAGE ALLOCATION

COMLINE**
DC**
DCB**
DS**

FUNCTION

Program end
Include second file
Assemble for Mask2 (R9M)
Define offsets
Absolute origin
Relocatable program section

Assign permanent value
Assign permanent floating-point value

(MC68881 only)
Define register list
Assign temporary value

Command line
Define constants
Define constant block
Define storage

3-1

TABLE 3-1. M68000 Family Assembler Directives (cont'd)

DIRECTIVE

LISTING CONTROL
AND OUTPUT OPTIONS

FAIL
FOPT

FORMAT
NOFORMAT

LIST
NOLIST or NOL

LLEN n
NOOBJ
OPT
PAGE

NO PAGE
SPC n
TTL

LINKAGE EDITOR CONTROL

IDNT*
XDEF
XREF

* Labels required.
** Label optional.

3.2 ASSEMBLY CONTROL

3.2.1 END - Program End

FORMAT: END [<start address>]

FUNCTION

Programmer-generated error
Assigns floating-point options

(MC68881 only)
Enable the automatic formatting
Disable the automatic formatting
Enable the listing
Disable the listing
Set line lengths 72 < n < 132
Disable object output
Assembler options
Top of page
Disable paging
Skip n lines
Up to 60 characters of title

Relocatable identification record
External symbol definition
External symbol reference

----~------

DESCRIPTION: END directive indicates to the assembler that the source is
finished. Subsequent source statements are ignored. The END
directive encountered at the end of the first pass through the
source program causes the assembler to start the second pass. The
start address should be specified unless it is external to the
module. If no start address is specified, it is still possible to
include a corrment field, provided the conment field is set off by
an exclamation point (!). This syntax indicates to the assembler
that the operand field is null and that a comnent field follows.

3-2

3.2.2 INCLUDE - Include Secondary File

FORMAT: INCLUDE <file spec>

DESCRIPTION: This directive is inserted in the source program at any point
where a secondary file is to be included in the source input
stream.

NOTE

<file spec> is case-sensitive
in the SYSTEM V/68 environment.

3.2.3 MASK2 - Assemble for MASK2 (MC68000 only)

FORMAT: MASK2

DESCRIPTION: The MASK2 directive indicates that the source program is to be
assembled to run on the Mask2 (R9M) chip. Specifying MASK2
implements the following changes in assembler processing:

(a) DCNT instruction replaces DBcc
(b) STOP does not take an operand
(c) Bit operations are adjusted to the R9M format

3.2.4 OFFSET - Define Offsets

FORMAT: OFFSET <expression>

DESCRIPTION: The OFFSET directive is used to define a table of offsets via the
Define Storage (DS) directive without passing these storage
definitions on to the linkage editor, in effect creating a dumny
section. Symbols defined in an OFFSET table are kept internally,
but no code-producing instructions or directives may appear. SET,
EQU, REG, XDEF, and XREF directives are allowed.

<expression> is the value at which the offset table is to begin.
The expression must be absolute and may not contain forward,
undefined, or external references.

OFFSET must be terminated by an ORG or SECTION directive before
further code-producing instructions are generated. If not, the
assembler produces an error message.

3-3

3.2.5 ORG - Absolute Origin

FORMAT: ORG[.<qualifier>] <expression> [<comments>]

DESCRIPTION: The ORG directive changes the program counter to the value
specified by the expression in its operand field. Subsequent
statements are assigned absolute memory locations starting with
the new program counter value. <expression> must be absolute and
may not contain any forward, undefined, or external references.

Qualifier may be either "S" or "L". "ORG.S" is interpreted as
both "ORG" and "OPT FRS" (Forward Reference Short Option) •
"ORG. L" is interpreted as both "ORG" and "OPT FRL" (Forward
Reference Long Option) • Regardless of the forward reference
option, references to previously-defined absolute symbols will
always generate the appropriate short or long addressing form,
based upon the size of a symbol's absolute address.

3.2.6 SEX:TION - Relocatable Program Section

FORMAT: [<name>] SECTION[.S] <number>

DESCRIPTION: This directive causes the program counter to be restored to the
address following the last location allocated in the indicated
section (or to zero if used for the first time) •

<name> indicates a named common area within the indicated section.
No unnamed common section is allowed. <name> is associated with
the section and may be reused in other sections.

".S" indicates the section should be placed in low address memory,
so that direct addressing may be implemented through the absolute
short mode. This information is passed on to the linkage editor.
It affects the choice of address modes in certain situations where
the assembler must choose between absolute short and absolute
long.

<number> must be in the range 0 •• 15. No section numbers are
reserved in any way. (refer to the M68000 Family Linkage Editor
User's Manual or the SYSTEM V/68 Linkage Editor User's Manual for
a discussion of default assignment of sections to segments.) By
default, the assembler begins with section 0.

3.3 SYMBOL DEFINITION

Symbol definition directives EQU, REG, SET , and FEQU provide the only method by
which a symbol appearing in the label field may be assigned a 'value' other than
that corresponding to the current location counter.

3-4

3.3.1 EQU - F.quate Symbol Value

FORMAT: <label> EQU <expression> [<comments>]

DESCRIPTION: EQU directive assigns the value of the expression in the operand
field to the symbol in the label field. The label and expression
follow the rules given in Chapter 2. The label and operand fields
are both required, arrl the label cannot be defined anywhere else
in the program.

The expression in the operand field of an EQU cannot include a
symbol that is undefined or not yet defined (no forward references
are allowed). Also, it cannot be a complex relocatable expression.

3.3.2 FEQU - Equate Floating Point Symbol Value (MC68881 only)

FORMAT: <label> FEQU.<size> <value> [<comments>]

where <size> = s, D, X, or P

DEOCRIPTION: FEQU directive assigns the floating-point value in the operand
field to the symbol in the label field. The label and value
follow the rules given in Chapter 2. The operand fields are both
required, and the label cannot be defined anywhere else in the
program. Note that <value> is stored as a string and converted
only to its binary format when it is used in instructions.
<value> may be a floating-point decimal string or a floating point
hexadecimal value as defined in paragraph 2. 8 .1. A warning is
generated whenever the number of bi ts required to represent the
specified precision is exceeded. The subsequent <label> must not
be used as an address.

3.3.3 REG - Define Register List

FORMAT: <label> REG <reg list> [<comment>]

DEOCRIPTION: REG directive assigns a value to <label> that can be translated
into the register list mask format used in the MOVEM instruction.
The label cannot be redefined as a Class 2 symbol anywhere else in
the program. <reg list> is of the form:

Rl [-R2] [/R3 [-R4]] •••

Example: Al-A5/DO/D2-D4/D7

3.3.4 SET - Set Symbol Value

FORMAT: <label> SET <expression> [<comments>]

DESCRIPTION: SET directive assigns the value of the expression in the operand
field to the symbol in the label field. Thus, the SET directive
is similar to the EQU directive. However, the SET directive
allows the symbol in the label field to be redefined by other SET
directives in the program. The label and operand fields are both
required.

The expression in the operand field of a SE'r cannot include a
symbol that is undefined or not yet defined (no forward references
are allowed), nor can it be a complex relocatable expression.

3-5

3.4 DATA DEFINITION/STORAGE ALLCX:ATION

The directives in this section provide the only means by which object code may
begin or end on odd byte boundaries. All instructions and all word or long
word-sized data must begin and end on even byte boundaries. CX1d byte alignment
is allowed only for the DC.B, DS.B, DCB.B, and COMLINE directives. All other
operations which generate object code are preceded by a zero fill byte if word
boundary alignment is required.

3.4.1 COMLINE - Comrnan:l Line

FORMAT: [<label>] COMLINE <expression>

DESCRIPTION: Identical to DS.B (define storage in bytes) , except that it is
passed on to the linkage editor as the location of the comnand
line. <expression> is the number of bytes to reserve (>O). It
must be absolute and may not contain forward, undefined, or
external references. An example of use would be to pass a
filename for the program to access.

3.4.2 DC - Define Constant

FORMAT: [<label>]

[<label>]

[<label>]

[<label>]

[<label>]

[<label>]

[<label>]

DC.B <operand(s)> Define constant in bytes

DC.W <operand(s)> Define constant in words (default)

DC.L <operand(s)> Define constant in long words

DC.S <operand(s)> Define constant in single
precision floating-point
(MC68881 only)

DC.D <operand(s)> Define constant in double
precision floating-point
(MC68881 only)

DC.X <operand(s)> Define constant in extended
precision floating-point
(MC68881 only)

DC.P <operand(s)> Define constant in packed binary
coded decimal (MC68881 only)

DESCRIPTION: The function of the OC directive is to define a constant in
memory. The OC directive may have one or more operands, which are
separated by commas. The operand field may contain the actual
value (decimal, hexadecimal, or ASCII). Alternatively, the
operand may be a symbol or expression which can be evaluated
either by the assembler or the linker. The constant is aligned on
a word boundary if word (.W), longword (.L), single precision
(.S), double precision (.D) , extended precision floating-point
(.X), or packed BCD (.P) is specified. Alignment is on a byte
boundary if byte (.B) is specified. Only byte (.B) constants may
not be relocated by the linker.

3-6

The following rules apply to size specifications on DC directives
with ASCII strings as operands:

DC.B One byte is allocated per ASCII character.

DC.W The string begins on a word boundary. If the string
address contains an odd number of characters, a zero fill
byte follows the last character.

DC.L The string begins on a word boundary. If the string length
is not a multiple of four bytes, the last longword is zero
filled.

Unless option CEX is in effect, a maximum of six bytes of
constants is displayed on the assembly listing.

3.4.2.1 Examples of ASCII Strings

DC.B 'ABCDEFGHI' Memory has nine contiguous bytes with the ASCII characters
A through I.

DC.B
DC.B

DC.B
DC.W

DC

DC.L

'E'
'J'

'E'
'E'

'X'

'12345'

Memory has characters "EJ" ($454A) in contiguous bytes.

Memory has $45004500 in contiguous bytes, the first zero
byte being an odd byte fill as outlined above.

Memory has $5800 in contiguous bytes.

Memory has $3132333435000000 in contiguous bytes.

3.4.2.2 Examples of Numeric Constants

DC.B 10,5,7

oc.w 10,5,7

Memory has three contiguous bytes with the decimal values
10, 5, and 7 in their respective bytes.

Each operand is contained in a word. The value 10 is
contained in the first word, right justified. The value 5
is in the second word, and the value 7 is in the third
word.

OC.L 10,5,7 Each operand is contained in a longword. The value 10 is
contained in the first longword (4 bytes) right justified.
The value 5 is in the second longword, and the value 7 is
in the third longword.

DC LABEL+ 1 The generated value is the address of LABEL plus 1 in a
word size operand.

DC $FF,$10,$AE Rules for hexadecimal are same as decimal.

DC.S 3.1415 A single precision floating-point value is created.

DC.D 2.54 A double precision floating-point value is created.

3-7

oc.x 6.0224E23 An extended precision floating-point value is created.

DC.X :BABElO An extended precision floating-point hex value is created.
NOTE: "E" here can be only a hex digit, not an exponent
designator.

DC.P 3.00E9 A packed BCD value is created.

If the resulting value in an operand expression exceeds the size of the operand,
an error is generated. For example,

OC.B $FFF This causes an error because $FFF cannot be repre
sented in 8 bits.

OC $FFF6F This causes an error because $FFF6F cannot be represented
in 16 bits.

3.4.3 DCB - Define Constant Block

FORMAT: [<label>] DCB[.<size>] <length>,<value> [<corrment>J

where:

<size> = B, W, L, S, D, X, or P (S, D, X, P for MC68020/MC68881 only)

<value> = <binary,decirnal>
<hexadecimal>,
<floating-point hex>

(Floating-point only when S, D, X,
or P used)

DESCRIPTION: DCB directive causes the assembler to allocate a block of bytes,
words, or long words, quad words (. D) , or hex words (.x or • P)
depending upon the <size> specified. If <size> is omitted, word

3.4.4 DS -

FORMAT:

(.W) is the default size. The block length is specified by the
absolute expression <length>, which may not contain undefined,
forward, or external references. The initial value of each
storage unit allocated will be the sign-extended expression
<value>, which may contain forward references. <length> must be
greater than zero. <value> may be relocatable unless byte size
(.B) is specified.

Define Storage

[<label>] DS.B <operand> Define storage in bytes
[<label>] os.w <operand> Define storage in words (default)
[<label>] DS.L <operand> Define storage in long words
[<label>] os.s <operand> Define storage in long words

(MC68881 only)
[<label>] DS.D <operand> Define storage in quad words

(MC68881 only)
[<label>] DS.X <operand> Define storage in hex words

(MC68881 only)
[<label>] DS.P <operand> Define storage in hex words

(MC68881 only)

3-8

DESCRIPTION: DS directive is used to reserve memory locations. The contents of
the memory reserved are not initialized in any way.

Examples:

DS.B 10 Define 10 contiguous bytes in memory
DS 10 Define 10 contiguous words in memory

PTl OS $10 Define 16 contiguous words in memory
PT2 DS.L 100 Define 100 contiguous long words in memory

DX.X 10 Define 10 contiguous hex words in memory

The label will reference the lowest address of the defined storage area. If
word, longword, single, double, extended precision, or packed BCD mode is
specified, the storage area is aligned on a word boundary.

Example: DS.B

OS
DS.W
DS.L

1

0
0
0

RESERVE ONE BYTE

SET LCX:ATION COUNTER TO EVEN BOUNDARY

The operand must be absolute and may not contain forward, undefined, or external
references.

3.5 LISTING CONTROL AND OUTPUT OPTIONS

3.5.l FAIL - Programmer Generated Error

FORMAT: FAIL <expression>

DESCRIPTION: The FAIL directive causes an error or warning message to be
printed by the assembler. The total error count or warning count
is incremented as with any other error or warning. The FAIL
directive is normally used in conjunction with conditional
assembly directives for exceptional condition checking. The
assembly proceeds normally after the error has been printed. The
<expression> is evaluated and printed as the error or warning
number on the assembly listing. Errors are numbered 0-499;
warnings are numbered 500 and above.

3.5.2 FOPT - Floating-Point Assembler Options (MC68020/MC68881 only)

FORMAT: (option>[,<option>] ••• [<comment>]

DESCRIPTION: Follows the commarrl format.

OPTIONS: ID = Co-processor identification. Allows more than one MC68881 in
a system. New instructions can be defined using existing macro
capabilities. An example would be creating two differrent macros:

F2ADD.S
F3ADD.S

where the macro definition of F2ADD.S begins with "FOPT ID=2"
while F3ADD.S begins with "FOPT ID=3".

The default value for ID is 1.

3-9

ROUND=<type> Select IEEE rounding type. Values for <type> are:

N Round to nearest representation (the even value when two
numbers exist).

P Round toward plus infinity.

M Round toward minus infinity.

Z Round toward zero; positive numbers are rounded down and
negative numbers are rounded up.

PREC=<type> Select IEEE precision type. Values for <type> are:

X Extended precision (default)

D Double precision

S Single precision

3.5.3 FORMAT - Format The Source Listing

FORMAT: FORMAT

DESCRIPTION: Format the source listing, including column alignment (refer to
Table 4-1) and structured syntax indentation (refer to paragraph
6.5.4). This option is selected by default.

3.5.4 NOFORMAT - Do Not Format The Source Listing

FORMAT: NOFORMAT

DESCRIPTION: The source listing has the same format as the source input file.

3.5.5 LIST - List The Assembly

FORMAT: LIST

DESCRIPTION: Print the assembly listing on the output device. This option is
selected by default. The source text following the LIST directive
is printed until an END or NOLIST directive is encountered.

3.5.6 NOLIST - Do Not List The Assembly

FORMAT: NOLIST or NOL

DESCRIPTION: Suppress the printing of the assembly listing until a LIST
directive is encountered.

3-10

3.5.7 LLEN - Line Length

FORMAT: LLEN n

DESCRIPTION: Set the number of columns to be output to n. The minimum value of
n is 72 and the maximum 132. The default value for n is 132
columns.

3.5.8 NOOBJ - No Object

FORMAT: NOOBJ

DESCRIPTION: Suppress the generation of object code.

3.5.9 OPT - Assembler Options

FORMAT: OPT <option>[,<option>] ••• [<cormnent>]

DESCRIP'rION: Follows the command format.

OPTIONS: A Absolute address. All non-indexed operands which reference
either labels or the current assembler location counter (*)
is resolved as absolute addresses.

NOA Disable A (default).

BRL Forward branch long (default). Forward references in
relative branch instructions (Bee, BRA, BSR) will assume
the longer form (16-bi t displacement, y~elding a 4-byte
instruction) •

A 32-bi t displacement is assumed unless the directive
"OPT OLD" is in effect (MC68020 only) •

BRS Forward branch short. As with BRL, but using the shorter
or form (8-bit displacement, yielding a 2-byte instruction).
BRB

BRW Generate default branch size of 16 bits.

CEX Print DC expansions.

NOCEX Opposite of CEX (default).

CL Print conditional assembly directives (default).

NOCL <:pposite of CL.

CRE Print cross-reference table at end of source listing. This
option must precede first symbol in source program. If
this option is not in ef feet, only the symbol table is
printed.

3-11

o Debug option (output symbol table to file with the same
name as the object code file, but with an extension of
".RS") •

EQU Retain equates not used by the program in the symbol table
and debug file.

NOEQU Remove unuserl equates (default).

FRL Forward reference long (default) • Forward references in
the absolute format assumes absolute long mode (32-bit).

FRS Forward reference short. Forward references in the
absolute format assumes absolute short mode (16-bit).

MC Print macro calls (default).

Na1C Opposite of MC.

MD Print macro definitions (default).

NG1D Opposite of MD.

MEX Print macro expansions.

NOMEX Opposite of MEX (default).

O Create output mo::Iule (default).

NOO Opposite of o.

OLD Interpret the branch size code .Las being a 16-bit branch.
Also interpret future uses of "OPT BRL" as referring to
forward 16-bit branches.

N(X)LD Change back to new branch size meanings for size .L
(MC68020 only) •

FCO PC relative addressing within ORG. Employ relative
addressing, when possible, on backward references occurring
in an ORG section.

NOPCO Disable PCO (default) •

OCS Force PC relative addressing within SOCTION. Forces PC
relative addressing (whenever such an addressing mode is
legal) in an instruction which occurs within a relocatable
SECTION and references an operand in a relocatable SECTION
(need not be the same SOCTION as the instruction) • Failure
to resolve such a reference into a 16-bit displacanent from
the PC results in an error. This option may be used to
force position independent code (refer to Chapter 7);
however, this option does not force PC relative addressing
of absolute operands (definerl in ORG section) or unknown
forward references.

3-12

NOPC:'.S Disable PCS (default).

P=<type> Select microprocessor type; <type> may be 68000, 68010,
68020, or 68881. Default is 68000. Note that P=68881 can
be in effect concurrently with P=68000, P=68010, or
P=68020. This can be written on a single line, for example
by saying OPT P=68010/68881. If P=68010, 68020, or 68881,
it must appear before any of the special MC68010, MC68020,
or f'C68881 instructions, respectively (or it may be
specified on the comnand line; refer to Chapter 4).

3.5.10 PAGE - Top Of Page

FORMAT: PAGE

DESCRIPTION: Mvance the paper to the top of the next page. The PAGE directive
does not appear on the program listing. No label or operand is
used, arrl no machine code results.

3.5.11 NOPAGE - Do Not Page Source Output

FORMAT: NOPAGE

DESCRIPTION: Suppress paging to the output device. Output lines are printed
continuously with no page headings or top and bottom margins.

3.5.12 SPC - Space Between Source Lines

FORMAT: SPC n

DESCRIPTION: Output n blank lines on the assembly listing. This has the same
effect as inputting n blank lines in the assembly source. A blank
line is defined by the assembler to be a line with only a carriage
return.

3.5.13 TTL - Title

FORMAT: TTL <title string>

DESCRIPTION: Print the <title string> at the top of each page. A title
consists of up to 60 characters. The same title will appear at
the top of all successive pages until another TTL directive is
encountered. In order to print a title on the first listing page,
the TTL directive must precede the first source line which will
appear on the listing.

3-13

3.6 LINKAGE EDITOR CONTROL

3.6.1 IDNT - Relocatable Identification Record

FORMAT: <module name> IDNT <version>,<revision> [<descr>]

DESCRIPTION: Every relocatable object module must con.tain an identification
record as a means of identifying the module at link time. The
module name is specified in the label field of the IDNT directive,
while the version and revision numbers are specified as the first
and second operands, respectively. The comnent field of the IDNT
directive is also passed on to the linkage editor as a description
of the module.

3.6.2 XDEF - External Symbol Definition

FORMAT: XDEF <symbol>[,<symbol>] ••• [<corrunent>]

DESCRIPTION: This directive specifies symbols defined in the current module
that are to be passed on to the linkage editor as symbols which
may be referenced by other modules linked to the current module.

3.6.3 XREF - External Symbol Reference

FORMAT: XREF [.S] [<section>:]<symbol> [,<symbol>] •••
[,[<section>:]<symbol> [,<symbol>] •••] •••

DESCRIPTION: This directive specifies symbols referenced in the current module
but defined in other modules. This list is passed on to the
linkage editor. Each symbol is associated with the specified
<section> number which it follows. (Symbols may occur in any
section, including an absolute ORG section, if no <section>
designation is specified; see following example.)

".s" indicates the XREF symbols will be linked into low address
memory so that direct addressing of these symbols may be
accomplished through absolute short mode.

EXAMPLE: XREF AA,2:E2,3:E3,B3,C3

The symbol AA can be in any se~tion; E2 is in section 2; and E3, B3, and C3 are
in section 3.

3-14

CHAPTER 4

INVOKING THE ASSEMBLER

4.1 INTRODUCTION

The flexible, multitask environment of the VERSAdos and the SYSTEM V/68
Operating Systems are similar in Command Line Format, notably in the options
supported, and the assembly output file areas. Both systems are discussed
below.

4.2 VERSAdos ENVIRONMENT

4.2.1 Corrmand Line Format

The conmand line format for the assembler running under VERS.Ados is:

ASM <source file>[,[<object file>] [,<listing file>]] [;<options>]

Only the <source file> is required. The default extension on the <source file>
is SA. If the <object file> and/or <listing file> are not specified, they will
default to the same filename as the <source file>, but with extensions of RO and
LS, respectively. The following command lines are equivalent:

ASM TEXT
ASM TEXT,TEXT,TEXT
ASM TEXT.SA,TEXT.RO,TEXT.LS

NOTES

1. The source file exists on a device which supports
VERSAdos Block I/O. For example, the source file cannot
be the user's console (#).

2. #NULL is not allowed as an object file. Users who wish
to inhibit the generation of an object file should
specify the command line option -C.

Default extensions are assumed for <object file> and <listing file>, if not
specified. Multiple source files may be assembled by separating these input
files with a slash (/). In the case of multiple source files, the first file
name is used for the default object and listing filenames. The listing may be
output to the CRT or the printer during assembly by specifying the appropriate
mnemonic in place of the listing file; e.g., the corrmand ASM TEXT ,,#PR prints
the listing.

4-1

The assembler recognizes the following options on the command line:

c
-C

D
-D

F

-F

L
-L

M

-M
0

-0

P=68000
P=68010
P=68020
P=68xxx/68881

R
-R
s

-S

w
-W

Z=<size>

Produce object code (default).
Inhibit production of object code.
Produce symbolic debug symbol table file.
Inhibit production of debug file (default).
Enable floating-point warning messages during assembly

(default) (MC68881 only).
Disable floating-point warning messages during assembly

(MC68881 only) •
Produce listing (default).
Inhibit listing.
List macro expansions.
Inhibit listing of macro expansions.
Branch size code extensions are the same as in previous

M68000 assemblers.
Offers same functionality as directive "OPT NOOLD"

(MC68020 only) •
Accept MC68000 instruction set (default).
Accept MC68010 instruction set.
Accept MC68020/MC68881 instruction set.
Accept MC68881 instruction set, where xxx is 000, 010 or
020.
Produce cross-reference.
Inhibit production of cross-reference (default).
List structured control expansions.
Inhibit listing of structured control expansions
(default) •
Enable warning messages during assembly (default).
Disable warning messages during assembly.
Increase data area size (default is 37K).

Multiple options are typed without separation -- e.g., ;LM-CP=68000. Refer also
to paragraph 3.5.2.10 for assembler options which may be included in the source
code with the OPT directive. When there is a conflict between an option
specified on the command line and one specified with the OPT directive, the
comnand line option overrides.

4.2.2 Symbol Table Size Option

The symbol table size may be increased by specifying the Z option:

Z=<size>

where:

<size> is the number of Kbytes to be used in the data (stack + heap) area of
the assembler. <size> is in K (1024) bytes.

For exa'Tlple:

ASM TEST,,#PR;RZ=40

will assemble the source program in TEST.SA, put the relocatable code in
TEST.RO, arrl send the listing, including cross-references, to the printer rather
than to a listing file. The data area will be 40K bytes.

4-2

4.2.3 Microprocessor Type Option

The microprocessor type can be specified with the P=<type> option on the command
line, where <type> may be 68000, 68010, 68020, or 68881. If omitted, default is
P=68000.

NOTE

The MC68881 floating-point co-processor can be specified
with any of the previous values by separating the two
values with a slash (/) --e.g., P=68020/68881.

4. 3 SYSTEM V /6 8 ENVIRONMENT

4.3.l Command Line Format

The command line format for the assembler running under SYSTEM V/68 is:

asm [<sep><option>] <sep><source file>

where:

asm is the SYSTEM V/68 conmand that invokes the assembler.

<sep> is a field separator consisting of one or more spaces.

<source file> is the single input file for the assembler (file lists are
not supported for SYSTEM V/68) •

<option> is any option that may be accepted by the assembler. More
than one option may be specified. Options may be specified
after <source file> as well as before it.

The syntax of <option> is:

+I- option char>[<option param>]

where:

+ is option enable (required, unlike VERSAdos)

is option disable

<option char> is a one character option identifier in equivalent upper or
lowercase characters defined exactly the sa~e as in the
VERSAdos environment.

<option param> is any required/allowed parameter which immediately follows
the option character, e.g., = 68010 or = <size>.

4-3

The SYSTEM V/68 options supported are the sa"tle as the options for a VERB.Ados
environment with the exception of the c (or C), 1 (or L) and d (or D) options.
The +c option allows an option parameter. This option parameter specifies the
filename of the object code file. 'When +c appears without an option parameter,
a default filename based on the <source file> name is generated. Similarly, the
+l and +d option allows an option parameter that specifies the filename of the
listing file and symbol table file, respectively. The +l and +d options provide
for a similar default file naming convention.

As in the VERS.Ados environment, the user may allow the assembler output file
name to be defaulted. If a listing file or an output file is generated and the
user has not specified the name of the listing or output file, the filename is
based on the <source file> name. If the <source file> name is a pathname, the
pathname is stripped from the filename, so that the listing file or output file
name resides in the current working directory.

A suffix is expected for all files (source, listing, and output). The suffix is
defined as a "." followed by zero or more characters. 'When no suffix exists, a
default suffix is appended by the assembler.

The default suffixes (even for uppercase filenames) are:

.sa source file

.ls listing file

.ro object code file

.rs symbol table file

If the +l option appears without an option parameter, the listing filename is
the source filename with its suffix replaced by ".ls". If the +l option appears
without a suffixed option parameter, the ".ls" suffix is added. Similar
defaulting occurs for the +c and +d options.

Due to difficulties with syntax, the file list supported in the VERB.Ados
environment is not supported in the SYSTEM V/68 environment. Only one input
file can be named on the command line of the assembler. To add some relief to
this restriction, INCLUDE directive files may be nested one level.

4.4 ASSEMBLER OUTPUT

Assembler output includes an assembly listing, a symbol table, a symbolic debug
symbol table file, and an object program file.

The assembly listing includes the source program, as well as additional
information generated by the assembler. Most lines in the listing correspond
directly to a source statement. Lines which do not correspond directly to a
source line include:

• Page header and title
• Error and warning lines
• Expansion lines for instructions over three words in length

The assembly listing format is shown in Table 4-1. The label, operation, and
operand fields may be extended if the source field does not fit into the
designated output field.

4-4

The last page of the assembly listing is the symbol table. Symbols are listed
in alphabetical order, along with their values and an indication of the
relocatable section in which they occur (if any). Symbols that are XDEF, XREF,
REG, in named common, or multiply defined are flagged. If option CRE has been
specified in the program, the cross-reference listing will identify the source
lines on which the symbol was defined or referenced (definitions appear first,
flagged with a "-").

An example of assembler output is provided in Appendix c.

If the option "D" was specified either in the source program or on the command
line, the symbolic debug symbol table is output to a file given the same name as
the relocatable object file, with an extension of ".RS". Linking (with the
linker's "D" option) makes this information available for easy debugging with
the SYMbug program. Refer to the MC68000 Family Linkage Editor User's Manual,
Appendix D, for .RS file formats or the SYSTEM V/68 PAL Linkage Editor User's
Manual, Appendix E.

COLUMNS

1-4

6

8-15

17-20

21-24

25-28

30-37

39-46

48-67

70-N

TABLE 4-1. Standard Listing Format

CONTENTS

Source line number

Section number

Location counter value

Q?eration word

First extension word

Second extension word

Label field

Operation field

Operand field

Comment field

4-5

EXPLANATION

4-digit decimal counter

1-digit hex section number
(blank indicates location counter
is absolute)

In hex

In hex

In hex

In hex; any additional extension
words appear on the next line

4.5 ASSEMBLER RUNTIME ERRORS

During runtime, the assembler may generate its own error messages. These are
listed in Appendix E. However, since the assembler is a Pascal program and
operates in the VERS.Ados operating system environment or the SYSTEM V/68
environment, runtime errors may occur from these sources as well. Refer to the
VERS.Ados Messages Reference Manual ·or the SYS'rEM V/68 Pascal Compiler User's
Manual for applicable runtime error messages.

Any asssnbly instruction generating six or more bytes of code, which is found to
have an operand error, can generate six bytes of object code. The code for the
instruction is $4AFB, which is an illegal opcode; the extension word (s) is
$4E71, which is a NOP. These six bytes allow more instructions to be patched in
place or a jump to be inserted to a patch area anywhere in the address space.

Instructions which generate only two or four bytes continue to generate a 2- or
4-byte length instruction, respectively, whenever an operand is in error. The
instruction word, however, is illegal, and the extension is a NOP.

Undefined operations generate six bytes of code with an illegal opcode and NOP
extensions.

4-6

CHAPTER 5

MACRO OPERATIONS AND CONDITIONAL ASSEMBLY

5.1 INTRODUCTION

This chapter describes the macro {paragraph 5. 2) and the conditional assembly
(paragraph 5.3) capabilities of the assembler. These features can be used in
any program.

5.2 MACRO OPERATIONS

Programming applications frequently involve the coding of a repeated pattern of
instructions that, within themselves, contain variable entries at each iteration
of the pattern, or basic coding patterns subject to conditional assembly at each
occurrence. In either case, macros provide a shorthand notation for handling
these patterns. Having determined the iterated pattern, the programner can,
within the macro, designate fields of any statement as variable. Thereafter, by
invoking a macro, the programner can use the entire pattern as many times as
needed, substituting different parameters for the designated variable portions
of the statements.

Macro usage can be divided into two basic parts -- definition and expansion.

When the pattern is defined, it is given a name. This name becomes the mnemonic
by which the macro is subsequently invoked (called). The name of a macro
definition should not be the same as an existing instruction mnemonic or an
assembler directive.

Expansion occurs when the previously defined macro is called (invoked). The
macro call causes source statements to be generated. The generated statements
may contain substitutable arguments. The statements that may be generated by a
macro call are relatively unrestricted as to type. They can be any processor
instruction, almost any assembler directive, or any previously-defined macro.
Source statements generated by a macro call are subject to the same conditions
and restrictions to which programmer-generated statements are subject.

The invocation of a macro requires that the macro name appear in the operation
field of a source statament. Most arguments are placed in the operand field.
Appropriate arguments selected according to the macro definition cause the
assembler to produce in-line coding variations of the macro definition.

The effect of a macro call is the same as an open subroutine in that it produces
in-line code to perform a predefined function. The in-line code is inserted in
the normal flow of the program so that the generated instructions are executed
in-line with the rest of the program each time the macro is called.

5-1

5.2.1 Macro Definition

The definition of a macro consists of three parts:

a. The header: <label> MACRO

The <label> of the MACRO statement is the "name" by which the macro is
later invoked. This name must be a unique class 1 symbol. A macro name
may not have a period (.) as any character other than the first.

b. The body

The body of a macro is a sequence of standard source statements. Macro
parameters are defined by the appearance of argument designators within
these source statements. Legal macro-generated statements include the
set of MC68000, MC68010, MC68020, and MC68881 assembly language
instructions, assembler directives, structured syntax statements, and
calls to other, previously defined macros. However, macro definitions
may not be nested. When macro text lines are saved for later expansion,
al 1 spaces in the source 1 i ne are compressed • This space compression
will be noticed only if the listing is unformatted or if the macro text
includes literal strings with multiple spaces (which would not expand
correctly). Macro expansion lines which contain more than 80 characters
are truncated at 80 characters, which is the maximum length of an
assembler input line.

c. The terminator: ENDM

5.2.2 Macro Invocation

The form of a macro call is: [<label>] <name>[.<qualifier>] [<parameter list>]

Although a macro may be referenced by another macro prior to its definition in
the source module, the macro must be defined before its first in-line expansion.
The name of the called macro must appear in the operation field of the source
statement; parameters may appear as qualifiers to the macro name and/or in the
operand field of the source statement, separated by corrmas.

The macro call produces in-line code at the location of the invocation,
according to the macro definition and the parameters specified in the macro
call. The source statements so generated are then assembled, subject to the
same conditions and restrictions affecting any source statement. Nested macro
calls are also expanded at this time.

5.2.3 Macro Parameter Definition and Use

Up to 36 different, substitutable arguments may appear in the source statements
which constitute the body of a macro. These arguments are replaced by the
corresponding parameters in a subsequent call to that macro.

Arguments are designated by a backslash character (\), followed by a digit (0
through 9) or an uppercase letter (A through Z) • Argument designator \0 refers
to the qualifier appended to the macro na~e; parameters in the operand field of
the macro call refer to argument designations \1 through \9 and \A through \Z,
in that order.

5-2

The parameter list {operarrl field) of a macro cal 1 may be exterrled onto
additional lines if necessary. The line to be extende:l must end with a comna
separating two parameters, arrl the subsequent extension line must begin with an
ampersand (&) in column 1. The extension of the parameter list will begin with
the first non-blank characters following the ampersand. No other source lines
may occur within an extended parameter call, and. no comment field may occur
except after the last parameter on the last extension line.

Argument substitution at the time of a macro call is handled as a literal
(string) substitution. The string corresponding to a given parameter is
substi tutoo literally wherever that argument designator occurs in a source
statement as the macro is expanded. Each statement generated in this expansion
is assembled in-line. (Note that, if a qualifier is present, argument \0 begins
with the first character following the period which separates the qualifier from
the macro name.)

It is possible to specify a null argument in a macro call by an empty string
(not a blank) ; except for \0, it must still be separated from other parameters
by a canma. In the case of a null argument referenced as a size code, the
default size code (W) is implied; when a null argument itself is passed as an
argument in a nesta:l macro call, a null argument is passed. All parameters have
a default value of null at the time of a macro call.

If an argument has multiple parts or contains commas or blanks, the entire
argument must be enclosed within anJ le brackets (< and. >) as requi rerl
characters. Such arguments must still be separated from other argwnents by
canmas. A bracketa) argwuent with no intervening character is treated as a null
argument. Embedded brackets must occur in pairs. Parameter \0 may not be
bracketErl arrl, hence, may not contain blanks (although canmas are legal). Note
that a macro argument may not contain the characters "<" or ">" unless they
occur as part of the argument bracketing.

5.2.4 Labels Within Macros

To avoid the problem of multiply definErl labels resulting from multiple calls to
a macro which employs labels in its source statements, the prograrrmer may direct
the assembler to generate unique labels on each call to a macro.

Assembler-generated labels include a string of the form • nnn, where nnn is a
3-digi t value. The programmer may request an assembler-generated label by
specifying \@ in a label field within a macro body. Each successive label
definition which specifies a \@ directive will generate successive values of
.nnn, thereby creating unique labels on repeated macro calls. Note that \@ may
be preceded or succeooed by additional characters for clarity and to prevent
ambiguity (more than four preceding characters may introduce a problem with
non-uniqueness of symbols) •

References to an assembler-generate-] label always refer to the label of the
given form defined in the current level of macro expansion. Such a label is
referenced as an operarrl by specifying the same character string as that which
defines the label.

5-3

5.2.5 The MEXIT Directive

The MEXI'r directive terminates the macro source statement generation during
expansion. It may be used within a conditional assembly structure (refer to
paragraph 5.3) to skip any remaining source lines up to the ENDM directive. All
conditional asse..mbly structures pending within the macro currently being
expande.-J are also terminated by the MEXI'r directive.

Example:

SAV2

5.2.6 NARG Symbol

MACRO
MOVE.L
MOVE.L
IFC
FAIL
MEX IT
ENDC
MOVE.L
ENDM

\l,SAVET
\2, SAVErr+4
I \3 I I I I

1000

\3,SAVET+8

SAVE lST ARGUMENT
SAVE 2ND ARGUMENT
IS THERE A 3RD ARGUMENT?
DID ASSEMBLER GO THRU HERE?
NO, EXIT FROM MACRO

SAVE 3RD ARGUMENT

The symbol NARG is a special symbol when referenced within a macro expansion.
The value assigned to NARG is the index of the last ar9ument passed to the
macros in the parameter list (even if nulls) • NARG is undefined outside of
macro expansion and may be r,eferenced as a Class 1 or 2 user-defined symbol
outside of a macro expansion.

5-4

5.2.7 Implementation of Macro Definition

When the sequence of source statements

MACl MACRO
<stmtl>
<stmt2>

<stmtn>
ENDM

is encountered in a source program, the following actions are performed:

a. The symbol table is checked for a Class 1 symbol entry of 'MACl'. If
such an entry is already present, a redefined symbol error (231) is
generated; if no such entry exists, an entry is placed in the symbol
table, identifying MACl as a macro.

b. Starting with the line following the MACRO directive, each line of the
macro body is saved in a character sequence identified with MACl. In the
example, sbntl through SG~tn are saved in this manner. No object code is
produced at this time. A check is made for missing parameter references
in the macro text (e.g., parameters \1, \2, arrl \4 are referenced, but \3
is not).

c. Normal processing resumes with the line following the ENDM directive.

5-5

5.2.8 Implementation of Macro Expansion

When the statement:

MACl.<qualif ier> <paraml>,<param2>, ••• ,<paramn>

is encountered in a source program calling the previously defined macro MAC!
(above), the following actions are performed:

a. Because the label field is blank, the string MAC! is recognized as the
operation code of the instruction. The symbol table is consulted for a
Class 1 symbol entry with this name. If no such entry exists, an
undefined symbol error (238) is generated. In this case, the entry
indicates that the symbol identifies a macro.

b. The rest of the line is scanned for parameters which are saved as
literals or null values, one such value in each of the 36 parameter
record fields. If the source line ends with a comma, the next line is
checked for an extension of the parameter list. A cross-check is made
with the macro definition for the number of para~eters in the call. No
object code is produced.

c. Macro expansion consists of the retrieval of the source lines which
comprise the macro body. Each line is retrieved in turn, with special
character pairs replaced by parameter strings or assembler-generated
label strings.

If a backslash character (\) is followed by either a digi {' (0 through 9)
or an uppercase letter (A through Z), the two characters are replaced by
the literal string which corresponds to that parameter on the macro
invocation line(s).

A character sequence which includes \@ is replaced by an
assembler-generated label, as defined in paragraph 5.2.4. An
assembler-generated label is uniquely identified by the characters
preceding and/or appended to the \@ sequence and the macro invocation in
which the reference occurs. Such labels may appear anywhere in the
source line and always refer to the current macro expansion.

NOTE

Space compression is automatically done within macros. For
example, the instruction DC.B ' ' becomes DC.B ' '

d. When a line has been completely expanded, it is assembled as any other
source input line. At this time, any errors in the syntax of the
expanded assembly code are found. Expanded lines longer than 80
characters are truncated, am an error code is generated.

If a nested macro call is encountered, the nested macro expansion takes
place recursively. There is no set limit to the depth of macro call
nesting.

5-6

5.3 CONDITIONAL ASSEMBLY

Conditional assembly allows the programmer to write a comprehensive source
program that can cover many conditions. Assembly conditions may be specified
through the use of arguments in the case of macros and through definition of
symbols via the SET and EQU directives. Variations of parameters can then cause
assembly of only those parts necessary for the specified conditions.

The I/O section of a program, for example, will vary, depending on whether the
program is used in a disk environment or in a paper tape environment.
Conditional assembly directives can include or exclude an I/O section, based on
a flag set at the beginning of the assembly.

5.3.1 Conditional Assembly Structure

The conditional assembly structure consists of three parts:

a. The header

There are two conditional clauses recognized by the assembler. The first
form compares the equality of two strings:

IFxx <stringl>,<string2>

"xx" specifies either the string compare (C) condition or the string not
compare (NC) condition, representing string equality and inequality,
respectively. The result of the string comparison, along with the "xx"
condition, determines whether the body of the conditional structure will
be assembled. Either string may contain embedded corrmas or spaces. An
apostrophe that occurs within a string must be specified by double
apostrophes.

The second form of the conditional clause compares an expression against
zero:

IFxx <expression>

"xx" specifies a conditional relation between the expression and the
value zero. The result of this comparison at assembly time determines
whether the body of the conditional structure will be assembled. Valid
conditional relation codes include:

EQ: expression = 0
NE: expression <> 0
LT: expression < 0
LE: expression <= 0
GT: expression > 0
GE: expression >= 0

Because of the nature of this comparison, the expression must be
absolute. No forward references are allowed.

5-7

b. The body

The body of the conditional assembly structure consists of a sequence of
standard source statements. There is no set limit to the depth of
conditional assembly nesting; if such nesting occurs, a terminator must
be specified for each structure.

c. The terminator: ENIX:

When an IFxx directive is encountered, the specified condition is evaluated. If
the condition is true, the statements constituting the body of the conditional
assembly structure are each assembled in turn. If the relation is false, the
entire conditional assembly structure is ignored; the ignored lines are not
included in the assembly listing. By specifying the OPT NOCL option (paragraph
3.5.2.10), the header and terminator lines are ignored for listing purposes.

IFxx and ENDC directives may not be labeled.

Testing for null parameters may be done via the string compare form of the
conditional assembly. To assemble conditionally if parameter 1 is null, either
of the following directives is correct:

IFxx '','\l'
or

IFxx '\l',''

where:

xx = C or NC

To assemble conditionally if a parameter is present, use either of the IFNC
formats analogous to the above two.

A conditional assembly structure is also terminated by a MEXIT directive, as
explained in paragraph 5. 2. 5. .All conditional assembly structures which
originate in a macro are terminated at the exit from that macro (if not before).
Only corrlitional assembly structures which originated within a given macro may
be terminated within that macro. These two rules are necessary for the
consistent implementation of conditional assembly.

5.3.2 Example of Macro and Conditional Assembly usage

The following example illustrates most of the features of macros and conditional
assembly structures. The assembly code is shown as it appears, without line
numbers or object code. Note that angle brackets (< >) shown in exarnples are
required characters.

MACO MACRO
MOVE.\O
CLR.L
ENDM

\1
\2

5-8

MA Cl

IAB\@

\@END

MACRO
MOVE.\O
IF\3
AOD.\0
IF\3
ADD.\0
ENDC
ENDC
CLR.L
MOVE.\0
B\3
BRA
\5.\0
IFLE
MA.CO.\O
ENDC
ENDM

OPT
MACl.L
MOVE.L
ADD.L
ADD.L

LAB.001 CLR.L
MOVE.L
BGT
BRA

.002END ADD.L

MA Cl
MOVE.

LAB.003 CLR.L
MOVE.
BNE
BRA

.004END SUB.
MACO.
MOVE.
CLR.L

#\1,D\2
\1 CONDITIONAL
#1,D\2
\1-5 NESTED CONDITIONAL
#2,D\2 \4

END NESTED CONDITIONAL
END CONDITIONAL

Dl
D\2, (AO)+
\@END
LAB\@
#1,D\2
\1
<D\2, (AO)> ,A\2 NESTED MACRO CALL

MEX,NOCL
7,3,GT,<TEST PASSES>,ADD
#7 ,D3
#1,03
#2,D3 TEST PASSES
Dl
D3,(AO)+
.002END
LAB.001
#1,03

0,6,NE,<ERROR HERE>,SUB
#0,06
Dl
06,(AO)+
.004END
LAB.003
#l,D6
<D6,(AO)>,A6 NESTED MACRO CALL
D6, (AO)
A6

5-9/5-10

CHAPTER 6

STRUcrURED CONTROL STATEMENTS

6.1 INTRODUCTION

An assembly language provides an instruction set for performing certain
rudimentary operations. These operations, in turn, may be combined into control
structures -- such as loops (for, repeat, while) or corrli tional branches
(if-then, if-then-else). The assembler, however, accepts formal, high-level
directives that specify these control structures, generating, in turn, the
appropriate assembly language instructions for their efficient implementation.
This use of structured control statement directives improves the readability of
assembly language programs, without canpranising the desirable aspects of
programmi~ in an assembly language.

6.2 KEYWORD SYMBOLS

The following Class 1 symbols, used in the structured syntax, are reserved
keywords (directives) :

Ef..SE
ENDF
END!

ENDW
FOR
IF

REPEAT
UNTIL
WHILE

The following syrrbols are required in the structured syntax, but are nonreserved
keywords:

AND
BY
DO

DOWNTO
OR
THEN

TO

Note that AND and OR are reserved instruction mnemonics, however.

6.3 SYNTAX

The formats for the IF, FOR, REPEAT, and WHILE statements are found in
p:iragraphs 6.3.l through 6.3.4. They are spaced to show the line separations
required for Class 1 symbol usage (paragraph 6.5.1). Syntactic variables used
in the formats are as follows:

<expression> A simple or canpound expression (paragraph 6.4).

<stmtlist> Zero or more assembler directives, structured control
statements, or executable instructions.

Note that an assembler directive (Chapter 3) occurring
within a structured control statement is examined exactly
once - at assembly time. Thus, the presence of a directive
within a FOR, REPEAT, or WHILE statement does not imply
repeated occurrence of an assembler directive; nor does the
presence of a directive within an IF-THEN-ELSE statement
imply a conc1itional assembly structure (Chapter 5).

For correct recognition, the statements in <stmtlist> must
not appear on the same line as the structured syntax symbols.

6-1

<size>

<extent>

<opl>

<op2>

<op3>

<op4>

The value B, W, or L, indicating a data size of byte, word,
or longword, respectively. With the keyword FOR, <size> is a
single code applying to <opl>, <op2>, <op3>, and <op4>. With
the keywords IF, UNTIL, an::1 WHILE, <size> indicates the size
of the operand canparison in the subsequent simple expression
(refer to paragraph 6. 4. 2 for a canpound expression). Note
that structured syntax statements rely on the underlying
opcodes and the restrictions these opcodes place on arguments
to the statements. For example, the structured syntax
statement

FOR.B D7 = #0 to #255 DO

generates code without warning but does not execute as
expected. This is because the canparison opcode 01P does a
signed canparison and hence deals with numbers in the range
-128 ••• 127 instead of o ••• 255. (MC68881 only: only IF is now
implemented with floating-point ranges.)

The value S or L, indicating that the branch extent is short
or long, respectively. This is appended to the keywords
THEN, ELSE, and DO, to force the appropriate extent of the
forward branch over the subsequent <stmtlist>. The default
extent for the MC68020 is determined by the option directive
(OPT, BRS, OPT BRB, OPT B~, or OPI' BRL) currently in effect.

A user-defined operand whose memory/register location holds
the FOR-counter. The effective address must be an alterable
mode.

The initial value of the FOR-counter. The effective address
may be any mode.

The terminating value for the FOR-counter.
address may be any mode.

The ef feet i ve

The step (increment/decrement) for the FOR-counter each time
through the loop. If not specified, it defaults to a value
of #:1. The effective address may be any mode.

6-2

6.3.1 IF Statement

SYNTAX:

FUNCTION:

NOTES:

IF[.<size>] <expression> THEN[.<extent>]
<stmtlist>

ENDI

or

IF[.<size>] <expression> THEN[.<extent>]
<stmtlist>

ELSE [.<extent>]
<stmtlist>

ENDI

If <expression> is true, execute <stmtlist> following THEN;
if <expression> is false, execute <stmtlist> following ELSE,
if present, or a:ivance to next instruction.

a. If an operarrl canparison <expression> is specified, the
condition codes are set and tested before execution of
<stmtlist>.

b. In the case of nested IF-THEN-ELSE statements, each ELSE
refers to the closest IF-THEN.

6.3.2 FOR Statement

SYNTAX:

FUNCTION:

NOTES:

FOR [.<size>] <opl> = <op2> TO <op3> [BY <op4>] 00 [.<extent>]
<stmtlist>

ENDF

or

FOR [.<size>] <opl> = <op2> OOWNTO <op3> [BY <op4>] DO [.extent>]
<stmtlist>

ENDF

These counting loops utilize a user-defined operarrl, <opl>, for the
loop counter. FOR-TO allows counting upward, while FOR-IXMNTO
allows counting downward. In both loops, the user may specify the
step size, <op4>, or elect the default step size of #1. The FOR-TO
loop is not executErl if <op2> is greater than <op3> upon entry.
Similarly, the FOR-OOWNTO loop is not executed if <op2> is less
than <op3>.

a. The corrlition codes are set arrl tested before each execution
of <stmtlist>. This happens even if <stmtlist> is not
executErl.

b. A step size of #1 may not be meaningful if the counter,
<opl>, is used to index through word or longword-sized data.

c. Each irrmediate operarrl must be preceded by a # sign. For
example, the followin:J would loop ten times by steps of
four.

FOR muNT = #4 TO #40 BY #4 DO

d. The FOR structure generates a move, a canpare, am either an
add or subtract. Therefore, if any of the four operarrls is
an A register, <size> may not be B (byte).

6-3

6.3.3 REPEAT Statement

SYNTAX:

FUNCTION:

NOTES:

REPEAT
<strntlist>

UNTIL[.<size>] <expression>

<stmtlist> is executerl repeaterlly until <expression> is true.

a. The <strntlist> is executerl at least once, even if <expression>
is true upon entry.

b. If an operarrl ccmparison <expression> is specifierl, the
corrlition cedes are set arrl testerl following each execution of
<strntlist>.

6.3.4 WHILE Statement

SYNTAX:

FUNCTION:

NOTES:

WHILE[.<size>] <expression> DO[.<extent>]
<stmtlist>

ENDW

The <expression> is testErl before execution of <stmtlist>. While
<expression> is true, <strntlist> is executerl repeatedly.

a. If <expression> is false upon entry, <strntlist> is not
executerl.

b. If an operarrl canparison <expression> is specified, the
condition codes are set and tested before each execution of
<strntlist>. The corrlition codes are set arrl tested even if
<stmtlist> is not executed.

6-4

6.3.5 (MC68020/MC68881 only.) Floating-Point Structured Assembler Syntax

IF FPn <Ff pcc> <ea> THEN

IF <ea> <Ff pcc> FPn THEN ...
IF FPn <Ffpcc> FPm THEN

IF <Ffpcc> THEN

where:

FPm, FPn are floating point registers; Ffpcc is a floating-point condition
code, defined in 2.10.25; F is a required constant.

When the assembler expands the structure) IF statement with a floating-point
condition code, fpcc, it must choose the true IEEE inverse of cc. For example,
the code for

IF.X FP3 <FGT> #3.3 THEN

would be

FCMP.X #3.3,FP3
FBNGT ELSECLAUSE

BRA PAST
ELSECLAUSE

PAST

(where GT is one value of fpcc and F is
a required constant value)

main clause code

else clause code

NOTE: The branch following the FCMP is a FBNGT rather than a FBLE. FBNGT is
the IEEE inverse of FBGT.

6-5

6.4 SIMPLE AND COMPOUND EXPRESSIONS

Expressions are an integral part of IF, REPEAT, and WHILE statements. Af1
expression may be simple or ccmpound. A compound expression consists of no more
than two simple expressions joined by AND or OR.

6.4.1 Simple Expressions

Simple expressions are concerned with the bi ts of the Condition Code Register
(CCR) • These expressions are of two types. The first type merely tests
conditions currently specified by the contents of the CCR {paragraph 6.4.1.1).
The second type sets up a comparison of two operands to set the condition codes,
and afterwards tests the codes {paragraph 6.4.1.2).

6.4.1.1 Condition Code Expressions. Fourteen tests (identical to those in the
Bee instruction) may be performed, based on the CCR condition codes. The
condition cooes, in this case, are preset by either a user-generated instruction
or a structured operand-comparison expression (paragraph 6.4.1.2). Each test is
expressed in the structured control statement by a mnemonic enclosed in angle
brackets (< >) as required characters, as follows:

For example:

IF
CLR.L

ENDI

REPEAT
SUB

UNTIL

<CC>
<CS>
<EQ>
<GE>
<GT>
<HI> For an explanation of each test, see Table A-2,
<LE> "Conditional Tests", in the MC68000 16-Bit
<LS> Microprocessor User's Manual.
<LT>
<MI>
<NE>
<PL>
<VC>
<VS>

<EQ>
02

'rHEN

04,03
<LT>

6-6

6.4.1.2 Operand Comparison Expressions. Two operands may be compared in a
simple expression, with subsequent transfer of control based on that comparison.
Such a comparison takes the form:

<opl> <cc> <op2>

where:

<cc> is a condition mnemonic enclosed in angle brackets (as described in
paragraph 6.4.1.1), specifying the relation to be tested between <opl> and
<op2>. When processed by the assembler, this expression translates to a compare
instruction.

For example:

CMP <opl>,<op2>

followed by a branch instruction (Bee) which tests the relation specified.
<opl> is normally, but not necessarily assigned to the first (leftmost) operand
and <op2> to the second (rightmost) operand of the compare instruction.

NOTE

A blank (#' ') should not be used
for the value of <opl> or <op2>.

A size may be specified for the comparison by appending a data size code (B, w,
or L) to the directive, with W being the default. The only restriction is that
a byte-size code (B) may not be used in conjunction with an address register
direct operand.

Compare instructions require certain effective addressing modes for their
operands. These modes are listed in Table 6-1. However, if the operands, <opl>
and <op2>, are not listed in an order that generates a legal compare instruction
(Table 6-1), but generates a legal compare if the operand order is reversed, the
assembler reverses the operands when expanding the expression. To maintain the
nature of the relation specified, the condition operator is adjusted, if
necessary. For example, "D2 <GT> #5" is adjusted by the assembler to the
equivalent of "#5 <L'r> D2"; likewise, "A2 <EQ> (A5)" is adjusted to the
equivalent of "(AS) <EQ> A2". This processing allows the user the flexibility
of specifying the more meaningful operand order in the expression.

TABLE 6-1. Effective Addressing Modes for Compare Instructions

COMPARE
INSTRUCTIONS

CMP

CMPA

CMPI

CMPM

EFFECTIVE ADDRESSING MODES FOR:

FIRST OPERAND

(All)

(All)

Immediate

Postincrement register
indirect

6-7

SECOND OPERAND

Data register direct

Address register direct

(Data alterable)

Postincrement register
indirect

If the operarrls, either as statErl or reversErl, do not yield a legal canpare
instruction, an error will result. For example, the statement

IF (Al) <NE> (A2) THEN

results in an ERROR 213 message (illegal address mode) during expansion. To
avoid this error, a MOVE is require:] to accanplish a legal operand, such as:

MOVE (A2) ,02
IF (Al) <NE> 02 THEN

Examples:

WHILE.B (A3) <NE> 02 00 THIS EXPRESSION IS LEGAL AS STATED.
MOVE.B (A5)+,D2

ENDW

IF 07 <LT> #10 THEN THIS EXPRESSION IS/REVERSED.
B.SR SUBRl

EISE
MUlS #2,D7

END!

6.4.2 Compound Expressions

A canpound expression consists of two simple expressions (paragraph 6.4.1)
joinErl by a logical operator. The Boolean value of the canpound expression is
determine:] by the Boolean values of the simple expressions and the nature of the
logical operator (AND or OR).

The two simple expressions are evaluated in the order in which they are given.
However, if an AND separates the expressions arrl the first expression is false,
the secorrl expression is not evaluated. Likewise, if an OR separates the
expressions arrl the first expression is true, the secorrl expression is not
evaluated. In these cases, the canpourrl expression is either false or true,
respectively, arrl the corrli tion codes reflect the result of only the first
simple expression.

A size may be specified for each operand canparison expression. The size of the
canparison for the first expression may be apperrled to the directive, while the
size of the comparison for the second expression may be appended to the keyword
AND or OR. For example, in the statement

IF.L 03 <GT> (AO) OR.B #'Q' <EQ> BUFFER!

the first canparison is a lorgword comparison, and the second is a byte
comparison.

6-8

6.5 SOURCE LINE FORMATTING

The format of structured source statements is more restricted than the format of
basic statements. The following paragraphs discuss the formatting requirements
of structured statements as well as their appearance in the assembly listing.

6.5.l Class 1 Symbol Usage

Class 1 symbols, as described in paragraphs 2.8.2 and 6.2, are the assembler
directives (including macro names), instruction mnemonics, and the structured
control directives. Only one of these is recognized on each source line. Thus,
each directive (reserved keyword) of a structured control statement and each
executable instruction generated by the programmer must be written on a separate
source line. The following source line, for example, is in error:

REPEAT MOVE -(A5) ,02 UNTIL <EQ>

because the MOVE and UNTIL symbols and their operands are not recognized, but
are treated as part of the comment field of the REPEAT directive. Likewise, the
following lines are in error:

IF <VS> THEN JSR OVERFLOW
ELSE JMP (A3) END!

because the JSR, JMP, and END! symbols and their operands are not recognized.
The correct format for these lines is as follows:

REPEAT
MOVE -(AS) ,02

UNTIL <EQ>

and

IF <VS> THEN
JSR OVERFLOW

ELSE
JMP (A3)

END!

6.5.2 Limited Free-Formatting

To improve readability, limited free-formatting allows the operand field of the
IF, UNTIL, WHILE, and FOR directives to be extended onto additional consecutive
lines.

For example:

IF #15 <LT> 07
AND

(A3) <NE> 03 THEN

UNTIL (A7)+ <EQ> 02 OR
<VS>

FOR Dl = #1 TO #5
BY #1 DO

6-9

6.5.3 Nesting of Structured Statements

Structured statements may be nested as desired to create multilevel control
structures. An example of such nesting is the following:

IF <EQ> THEN

REPEAT
MOVE DO, (AS)+
ADDQ #4,DO
MOVE.L A4,(A4)+

UNTIL.L AS <LE> A4

ELSE.L

FOR D2 = #10 TO #20 BY #2 DO

WHILE
MOVE.L
ADDQ

ENDW

ENDF

ENDI

D4 <LT> D2 AND D4 <LT> #100
10 (A3 , 04. W) , (AS) +
#2,04

6.S.4 Assembly Listing Format

DO

By default (FORMAT directive), the assembly listings are formatted according to
Table 4-1. In addition, the operation and operand fields of source lines in
structured syntax are indented two columns for each nested level of operation.
This automatic formatting may be turned off by using the NOFORMAT directive.

The assembly language code generated for the structured syntax is included in
the listing when the S (or s) option is specified in the ASM (or asm) comnand
line.

6.6 EFFECTS ON THE USER'S ENVIRONMENT

If the S (or s) option is specified in the ASM corrmand line (paragraph 4.2.1),
the generated code of the structured control expansions is listed. There may be
three items found in this code that will affect the user's environment:

a. During assembly, local labels beginning with "Z L" are generated. These
labels use the same increment counter (.nnn) as local labels in macros
(paragraph 5.2.4). They are stored in the symbol table and should not be
duplicated in user-defined labels.

b. In the FOR loop, <opl> is a user-defined symbol. When exiting the loop,
the memory/register assigned to this symbol contains the value which
caused the exit from the loop.

c. Compare instructions (Table 6-1) are generated by the assembler whenever
two operands are tested relationally in a structured statement. During
runtime, however, these assembler-generated instructions set the
condition codes of the CCR (in the case of a loop, the condition codes
are set repeatedly). Any user-written code, either within or following a
structured statement, that references the CCR should be attentive to the
effect of these instructions.

6-10

CHAPTER 7

GENERATING POSITION INDEPENDENT CODE

7.1 FORCING POSITION INDEPENDEOCE

When creating a relocatable pr03ram module, it is often desirable to ensure that
all references to operands in relocatable sections are position-independent ef
fective addresses -- i.e., no absolute addresses occur as effective addresses
for such references. To avoid absolute effective address formats, it is neces
sary to ensure that all memory operand references are resolved by the assembler
(or by the linkage editor at the assembler's direction) into one of the program
counter relative or address register indirect addressing modes. Avoiding ORG
directives is not sufficient to ensure position independence, because it is pos
sible for the assembler to produce absolute effective address formats even when
no absolute symbols have been defined.

For example, if an instruction references a symbol that is not yet defined, or
is defined either in another section or as an XREF in an unspecified section,
the default action of the assembler is to direct the linkage editor to resolve
the reference by supplying the absolute address of the symbol. By specifying
OP'r PCSr all references known to be in a relocatable section are resolved as a
Program Counter (PC) relative address. However, this does not solve the problem
of forward references, which would still default to absolute format. To over
ride an absolute address mode when resolving the effective address format of an
operand, the following formats may be used to force program counter relative ad
dressing:

a. Forcing program counter with displacement

An operand of the form: LABEL(PC)

is resolved as a PC with displacement effective address, either by the
assembler or by the linkage editor (at the assembler's direction). If
LABEL cannot be resolved into a 16-bi t displacement fro:n the program
counter, an error is generated.

b. Forcing PC with index plus displacement

An operand of the form: LABEL (PC,Rn)

is resolved as a PC with index plus displacement effective address by the
assembler. Because the displacement in this mode is eight bits, the re
ference must be resolvable by the assembler. If LABEL cannot be resolved
by the assembler into an 8-bit displacement from the program counter, an
error is generated.

7.2 BASE-DISPLACEMENT ADDRESSING

Although PC relative addresses have the advantage of position-independence, such
address formats often are not the most meaningful to the programner when debug
ging an assembled module. There are many times when a programner would prefer
to see an address relative to a specified base i.e., in a base
displacement format. This is especially true when addressing tables, arrays,

7-1

and other data structures. Base-displacement references to a given location are
"base re la ti ve" and, therefore, fixed with respect to a given base address; PC
relative references to that same location are different in each instruction.

Base-displacement addressing must be handled explicitly by the programmer. For
example, if the following data area is declared

TEMP
CONST
ARRAY!
ARRAY2
RESULT

DS
DC
DS.L
DS.L
DS.L

$40
$10
$10
$10
$10

the prograrrmer may choose to load A6 with the address of TEMP and make
references to the other data locations as displacements from this base address.
For example, to move the first element of ARRAYl to Dl, the programner may
specify:

MOVE.L ARRAY1-TEMP(A6) ,Dl

Indexing with the low order contents of DO may be added (as the array index):

MOVE.L ARRAY1-TEMP(A6,D0) ,Dl

7.3 BASE-DISPLACEMENT IN CONJUNCTION WITH FORCED POSITION INDEPENDENCE

Complete code-position independence can be achieved by using base-displacement
addressing in conjunction with the PCS option and the forced PC relative
addressing scheme outlined in paragraph 7-1. Although these techniques can be
used to avoid all undesired absolute address formats, there are significant
limitations of PC relative addressing in a position independent program, as
noted below:

a. PC with displacement

PC with displacement effective addresses are restricted only by the
16-bit displacement field. A displacement greater than 32K bytes from
the current PC cannot be resolved in this format.

b. PC with index plus displacement

The displacement field here is restricted to eight bi ts, limiting the
range of this format to a 128-byte displacement from the current PC.
This 8-bit displacement is not relocatable. Therefore, only symbols with
a known displacement from the program counter may be resolved in a PC
with index plus displacement format.

c. Operands in the alterable addressing category

Neither PC relative mode is allowed as an alterable operand.
significant limitation in instructions which require an
operand, such as the destination operand in a MOVE instruction.

This is a
alterable

By appropriate use of base registers, these limitations can be overcome.

7-2

APPENDIX A

INSTRUCTION SET SUMMARY

This appendix provides a summary of the
instruction set. For detailed information,
Microprocessor Programmer's Reference Manual.

l\C68000/MC68010/MC68020/MC68881
refer to the M68000 16/32-bit

For the r.c68881 only, the affected condition ccrles N Z I NAN are, respectively,
bits 31, 30, 29, and 28 of the floating-point status register, rather than bits
4, 3, 2, 1, arrl 0 of the status MC68000/MC68010/MC68020 register. Thus, the
four condition codes listed for MC68881 instructions refer to N Z I NAN,
respectively.

Following are two instruction set summary tables -- one for the MC68000/MC68010/
MC68020 and one for the MC68881.

A-1 ·

MNEMONIC

ABCD

ADD

ADDA

ADDI

ADDQ

ADDX

:r AND N

ANDI

ASL, ASR

Bee

BCHG

BCLR

BFCHG

BFCLR

INSTRUcrION SET SUMMARY - MC68000/MC68010/MC68020

OPERATION ASSEMBLER SYNTAX

Add decimal with exterrl ABCD Dy,Dx
ABCD -(Ay) ,-(Ax)

Add binary (NOTE 1) ADD <ea>,Dn
ADD Dn<ea>

Add address ADDA <ea>,An

Add irnnediate ADDI #<data>,<ea>

Add quick ADDQ #<data>,<ea>

Add extended ADDX Dy,Dx
ADDX -(Ay) ,-(Ax)

AND logical AND <ea>,Dn
AND Dn,<ea>

AND immediate ANDI #<data>,<ea>

Arithmetic shift ASd Dx,Dy
ASd #<data>,Dy
ASd <ea>

Branch conditionally Bee <label>

Test a bit arrl change BCH3 Dn,<ea>
BCHG #<data>,<ea>

Test a bit arrl clear BCLR Dn,<ea>
BCLR #<data>,<ea>

Complement bit field (MC68020) BFCHG <ea>{<offset>:<width>}

Clear bit field (MC68020) BFCLR <ea>{<offset>:<width>}

CONDITION CODES
X N Z V C

* u * u *

* * * * *

* * * * *

* * * * *

* * * * *

* * 0 0

* * 0 0

* * * * *

*

- - * - -

* * 0 0

* * 0 0

MNEMONIC

BFEXTS

BFEXTU

BFFFO

BF INS

BFSET

BFTST

:r BKPT w

BRA

BSET

BSR

BTST

CALLM

CAS

CAS2

CHK

CHK2

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

OPERATION

Extract bit field signed (MC68020)

Extract bit field unsignoo
(MC68020)

Firrl first one in bit field
(MC68020)

Insert bit field (MC68020)

Set bit field (MC68020)

Test bit field (MC68020)

Breakpoint (MC68020)

Branch always

Test a bit and set

Branch to subroutine

Test a bit

Call module (MC68020)

Canpare and swap with operarrl
(MC68020)

Compare arrl swap with operand
(MC68020)

Check register against bourrls

Check register against bounds
(MC68020)

ASSEMBLER SYNTAX
CONDITION CODES

X N Z V C

BFEXTS <ea>{<offset>:<width>},Dn - * * 0 0

BFEXTU <ea>{<offset>:<width>},Dn - * * 0 0

BFFFO <ea>{<offset>:<width>},Dn

BFINS rb,<ea>{<offset>:<width>}

BFSET <ea>{<offset>:<width>},Dn

BFTST <ea>{<offset>:<width>}

BKPr #<vector>

BRA <label>

BSET Dn,<ea>
BSET #<data>,<ea>

BSR <label>

BTST Dn,<ea>
BTST #<data>,<ea>

CALLM #ddd,<ea>

CAS Dw,Do,<ea>

CAS2 Dwl:Dw2,Dol:Do2,(Rzl):(Rz2)

CHK <ea>,Dn

CHK2 <ea>,Rn

*

- *

*

*

- -

- -
- *

- *

*

- u

* 0 0

* 0 0

* 0 0

* 0 0

- - -
-
*

*

-

* * *

* * *

u u u

* u *

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

CONDITION CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX x N z v c

CLR Clear an operand CLR <ea> 0 1 0 0

CMP Arithmetic compare CMP <ea>,Dn * * * *
CMPA Arithmetic compare address CMPA <ea>,An * * * *
CMPI Compare immediate CMPI #<data>,<ea> * * * *
CMPM Compare memory CMPM (Ay)+,(Ax)+ * * * *
CMP2 Compare register against bounds CMP2 <ea>,Rn - u * u *

(MC68020)

DBcc Test condition and decrement DBcc Dn,<label> - - -
=r and branch (NOTE 2)
~

DIVS Signed divide DIVS <ea>,Dn * * * 0

DIVU Unsigned divide DIVU <ea>,Dn * * * 0
--
EOR Exclusive OR logical EOR Dn,<ea> * * 0 0

EORI Exclusive OR immediate EORI #<data>,<ea> * * 0 0

EXG Exchange registers EXG Rx,Ry

EXT Sign extend EXT Dn * * 0 0

EXTB Sign extend byte (MC68020) EXTB Dn * * 0 0

EXTW Sign extend word (MC68020) EX'IW Dn * * 0 0
(Part of EXT instruction)

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

MNEMONIC

JMP

JSR

LEA

LINK

LSL, LSR

MOVE

MOVE to SR

OPERATION

Jump

Jump to subroutine

Load effective address

Link and allocate
(NCYrE 5)

Logical shift

Move data from source to
destination

Move to the status register

~OVE fran SR Move fran the status register

MOVE to CC M.Jve to condition codes

MOVE from CC Move fr on condition codes
(MC68010 or newer)

MOVE USP Move user stack pointer

MOVEA Move address

MOVEC Move to/from control register
(MC68010 or newer) (NOTE 3)

ASSEMBLER SYNTAX

JMP <ea>

JSR <ea>

LEA <ea>,An

LINK An,#<disp>

LSd Dx,Dy
LSd #<data>,Dy
LSd <ea>

MOVE <ea>,<ea>

MOVE <ea>,SR

MOVE SR,<ea>

MOVE <ea>,CCR

MOVE CCR,<ea>

MOVE USP,An
MOVE An,USP

MCVEA <ea> ,An

MOVEC Rc,Rn
MOVEC Rn,Rc

CONDITION CODES
X N Z V C

* * * 0 *

* * 0 0

* * * * *

* * * * *

MNEMONIC

MOVEM

MOVEP

MOVEQ

MOVES

MULS

MULU

NBCD

NEG

NEGX

NOP

NOT

OR

ORI

PACK

PE..Z\

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

OPERATION

Move multiple re<3isters (NOTE 4)

.M:>ve peripheral data

Move quick

Move to/from address
(MC68010 or newer)

Signed multiply

Unsigned multiply

Negate decimal with extend

2's complement negation

Ne<Jate with extend

No operation

Logical complement

Inclusive OR logical

Inclusive OR i:mmErliate

Pack BCD (MC68020)

Push effective address

ASSEMBLER SYNTAX

MOVEM <register list>,<ea>
MOVEM <ea>,<register list>

MOVEP Dx,d(Ay)
MOVEP d (Ay) ,Dx

MOVEQ #<data>,Dn

MOVES <ea>,Rn
MOVES Rn,<ea>

MULS <ea>,Dn

MULU <ea>,Dn

NBCD <ea>

NEG <ea>

NEGX <ea>

NOP

NOT <ea>

OR <ea>,Dn
OR Dn,<ea>

ORI #<data>,<ea>

PACK -(Ay) ,-(Ax)
PACK Dy,Dx

PEA <ea>

CONDITION CODES
X N Z V C

* * 0 0

* * 0 0

* * 0 0

* u * u *

* * * * *

* * * * *
- - - -

* * 0 0

- * * 0 0

- * * 0 0

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

CONDITION CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX x N z v c

RESET Reset external devices RESET

ROL, ROR Rotate without extend RO:] Dx,Dy * * 0 *
RO:] #<data>,Dy
RO:] <ea>

ROXL, ROXR Rotate with extend ROXd Dx,Dy * * * 0 *
ROXd #<data>,Dy
ROXd <ea>

RTD Return frcm subroutine with RTD #<disp>
displacement (MC68010 or newer)
(NOTE 5)

RTE Return from exception RTE * * * * * ~
-...J

RTM Return from module (MC68020) RTM Rn

RTR Return and restore RTR * * * * *
condition codes

RTS Return frcm subroutine RTS

SCD subtract decimal with extend SBCD Dy,Dx * u * u *

SBCD -(Ay),-(Ax)

Sec Set according to condition Sec <ea>

STOP Stop program execution STOP #<data>

SUB Subtract binary SUB <ea>,Dn * * * * *
SUB Dn,<ea>

SUBA Subtract address SUBA <ea>,An

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

CONDITION CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX x N z v c

SUB! Subtract immerliate SUB! #<data>,<ea> * * * * *
SUBQ Subtract quick SUBQ #<data>,<ea> * * * * *
SUBX Subtract with extend SUBX Dy,Dx * * * * *

SUBX -(Ay) ,-(Ax)

SWAP Swap register halves SWAP Dn - * * 0 0

TAS Test and set an operand TAS <ea> * * 0 0

Tee Trap on condition code (MC68020) Tee - - -
f TD IVS Truncated signed (MC68020) TD IVS <ea>, {Di: }Dj * * * 0 (X)

TDIVU Truncated unsigned divide (MC68020) TDIVU <ea>,{Di: }Dj * * * 0

TPcc Trap on condition code (MC68020) TPCC #xxx - - -

TRAP Trap TRAP #<vector> - - -

TRAPV Trap on overflow TRAPV - - -

TST Test an operand TST <ea> * * 0 0

INSTRUcrION SET SUMMARY - MC68000/MC68010/MC68020 {cont'd)

CONDITION CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX x N z v c

UNLK Unlink UNLK An - - - - -

UNPK Unpack BCD {MC68020) UNPK -{Ay) ,- {Ax) - - -
UNPK Dy,Dx - - -

NOTES: 1. <ea> specifies effective address.

2. The assembler accepts DBRA for the F {never true) condition.

3. Re specifies control register.

4. <register list> specifies the registers selected for transfer to or from memory.
<register list> may be:

Rn - a single register.

Rn-Rm - a range of consecutive registers with m being greater than n.

"Any canbination of the above, separated by a slash.

5. <disp> is a 2's complement integer, 16 bits in size, which is sign exterrled to
32 bits before adding to the stack pointer.

INSTRUcrION SET SUMMARY - MC68881

CONDITION CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX N z I NAN

FABS Absolute value function FABS <ea>,FPn * * * *
FABS FPrn,FPn
FABS FPn

FA COS Arccosine function FACOS <ea>,FPn * * * *
FAffiS FPM,FPn
FACOS FPn

FADD Floating point add FADD <ea>,FPn * * * *
FADD FPm,FPn

FASIN Arcsine function FAS! N <ea> ,FPn * * * *
FASIN FPm,FPn

r FASIN FPn
I-'
0

FATAN ArctarxJent function FATAN <ea>,FPn * * * *
FATAN FPm,FPn

FATANH Hyperbolic arctangent function FATANH <ea>,FPn * * * *
FATANH FPm,FPn
FATANH FPn

FBfpcc Co-processor branch conditionally FBfpcc <label>
(MC68881)

FCMP FloatinJ point canpare FCMP <ea>,FPn * * * *
FQ1P FPm,FPn

FCOS Cosine function Fms <ea>,FPn * * * *
FCOS FPm,FPn
FCOS FPn

FCOSH Hyperbolic cosine function FCOSH <ea>,FPN * * * *
FCOSH FPm,FPn
FCOSH FPn

INSTRUcrION SET SUMMARY - MC68881 (cont'd)

CONDITION CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX N z I NAN

FDBfpcc Decrement arrl branch on condition FDBfpcc DN,<label> - - -
(MC68881)

FDIV Floating point divide FDIV <ea>,F~ * * * *
FDIV FPm,FPn

FETOX e**x function FETOX <ea>,FPn * * * *
FETOX FPm,FPn
FETOX FPn

FETOXMl e**x (x-1) function FETOXMl <ea>,FPn * * * *
FETOXMl FPm,FPn
FETOXMl FPn

~
I FGETEXP Get the exponent function FGETEXP <ea>,FPn * * * *

....... FGETEXP FPm,FPn
FGETEXP FPn

FGETMAN Get the Mantissa function FGETMAN <ea>,FPn * * * *
FGETMAN FPm,FPn
FGETMAN FPn

FINT Integer part function FINT <ea>,FPn * * * *
FINT FPm,FPn
FINT FPn

FLOG2 Binary log function FLOG2 <ea>,FPn * * * *
FL<X;2 FPm,FPn
FLOG2 FPn

FLOGlO Common log function FLOGlO <ea>,FPn * * * *
FL<X;lO FPm,FPn
FLOGlO FPn

INSTRUCTION SET SUMMARY - MC68881 {cont'd)

CONDITION CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX N z I, NAN

FLOGN Natural log function FLOGN <ea>,FPn * * * *
FL<X;N FPm,FPn
FLOGN FPn

FLOGNPl Natural log {x+l) function FLOGNPl <ea>,FPn * * * *
FL(X;NPl FPm,FPn
FLOGNPl FPn

FMOD Floating point module FMOD <ea>,FPn * * * *
FMOD FPm,FPn

FMOVE Move to floating point register FMOVE <ea>,FPn * * * *
fran memory or another floating FMOVE FPm,FPn
floating point register

=r Move fran floating point register FMOVE FPN,<ea>
...... to memory FMOVE.P FPn,<ea>{#k} N

FMOVE.P FPn,<ea>{Dn}

Move to/from memory from/to FMOVE <ea>,CONTROLISTATUSIIADDR
special register

FMOVE CONTROLISTATUSIIADDR,<ea>

FMOVECR Move a ROM-stored to a floating FMOVECR #ccc ,FPn * * * *
point register

INSTRUcrION SET SUMMARY - MC68881 (cont'd)

CONDITION CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX N z I NAN

FMOVEM Move to multiple floating point FMOVEM <ea>,<fp_reg_ list> * * * *
registers

Move to a data register or FMOVEM <ea>,Dn
special register FMOVEM <ea>,CONTROL/STATUS/IADDR

Move from multiple floating FMOVEM <fp_reg_list>,<ea>
point registers to memory

Move fran data register or FMOVEM Dn,<ea>
special register to memory FMOVEM CUNTROL/STATUS/IADDR,<ea>

FMUL Floating point multiply FMUL <ea>,FPn * * * *
~ FMUL FPm,FPn
I-'
w FNEG Negate function FN:&; <ea>,FPn * * * *

FNEG FPm,FPn
FNEX; FPn

FNOP Floating point NO-OP FNOP * * * *
FREM Floating point remainder FREM <ea>,FPn * * * *

FREM FPM,FPn
FRESTORE Restore internal state of FRESTORE <ea> - - -

co-processor (MC68881)

FSAVE Co-processor save (MC68881) FSAVE <ea> - - -

FSCALE Floatinj point scale exponent FSCALE <ea>,FPn * * * *
FSCALE FPm,FPn

FSfpcc Set on condition (MC68881) FSfpcc <ea> - - -

INSTRUcrION SET SUMMARY - MC68881 (cont'd)

CONDITION CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX N z I NAN

FI'f pcc Trap on condition without a FI'f pcc - - -
parameter (MC68881)

FTPf pcc Trap on corrlition with a FI'Pf pcc #xxx - - -
parameter (MC68881)

FSGLDIV Floating point single precision FSGLD IV <ea> ,FPn * * * *
divide FSGLDIV FPm,FPn

FSGLMUL Floating point single precision FSGLMUL <ea>,FPn * * * *
multiply FSGLMUL FPm,FPn

FSIN Sine function FSIN <ea>,FPn * * * *
FSIN FPm,FPn

r FSIN FPn
......
.i:i. FSINCOS Sine/cosine function FSINCOS <ea>,FPm:FPn * * * *

FSINH Hyperbolic sine function FSINH <ea>,FPn * * * *
FSINH FPm,FPn
FSINH FPn

FSQRT Square root function FSQRT <ea>,FPn * * * *
FSQRT FPm,FPn
FSQRT FPn

FSUB Floating point subtract FSUB <ea> ,FPn * * * *
FSUB FPm,FPn

FI'AN Tangent function FrAN <ea>,FPn * * * *
ETAN FPm,FPn
FTAN FPn

INSTRUCTION SET SUMMARY - MC68881 (cont'd)

CONDITION CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX N z I NAN

FTANH Hyperbolic tangent function FTANH <ea>,FPn * * * *
FTANH FPm,FPn
FTA.i.~H FPn

FTENTOX lO**x function FTENTOX <ea>,FPn * * * *
J~'TENTOX FPm,FPn
FTENTOX FPn

FT EST Floating point test an operand FTEST <ea> * * * *
F'IWOTOX 2**x function FTWOTOX <ea>,FPn * * * *

FTWOTOX FPm,FPn
:r FTWOTOX FPn
I-'
Ul
"'-.. FYTOX Floating point y**x FYTOX <ea>,FPn * * * * :r
I-' FYTOX FPm,FPn
°'

APPENDIX B

QiARACTER SET

The character set recognized by the Motorola M68000 Family Resident Structured
Assembler is a subset of ASCII (American Standard Code for Information
Intercharge, 1968). The characters listed below are recognized by the
assembler, and the ASCII code is shown on the following pages.

1. The uppercase letters A through Z

2. The lowercase letters a through z (MC68020 assemblers or SYSTEM V /68
only)

3. The integers 0 through 9

4. Four arithmetic operators: + - * /

5. The logical operators: >> << &

6. Parentheses used in expressions ()

7. Characters used as special prefixes:

(pound sign) specifies the immErliate mode of addressing
$ (dollar sign) specifies a hexadecimal number
@ (ccmmercial "at") specifies an octal number
% (percent) specifies a binary number
' (apostrophe) specifies an ASCII literal character

8. The special characters used in macros: < > \ @

9. Four separating characters:

(space)
(tab) (M68020 assemblers or SYSTEM V/68 only)

, (canma)
• (period)

10. A comnent in a source statement may include any characters with ASCII
hexadecimal values fran 20 (SP} through 7E (-).

11. Character used as a special suffix:

: (colon) specifies the errl of a label

B-1

CHARACTER

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

RE'IURN

so
SI

OLE

OCl

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

us

ASCII Character Set

COMMENTS

Null or tape feed

Start of Heading

Start of Text

End of Text

Errl of Transmission

Enquire (who are you, WRU)

Acknowledge

Bell

Backspace

Horizontal Tab

Line Feed

Vertical Tab

Form Feed

Carriage Return

Shift Out (to red ribbon)

Shift In (to black ribbon)

Data Link Escape

Device Control 1

Device Control 2

Device Control 3

Device Control 4

Negative Acknowledge

Synchronous idle

End of Transmission Block

Cancel

End of Merli um

Substitute

Escape, prefix

File Separator

Group Separator

Record Separator

Unit Separator

B-2

HEX VALUE

00

01

02

03

04

05

06

07

08

09

OA

OB

oc
OD

OE

OF

10

11

12

13

14

15

16

17

18

19

lA

lB

lC

lD

lE

lF

ASCII Character Set (cont'd)

CHARACTER ·COMMENTS HEX VALUE

SP Space or blank 20

Exclamation point 21

" Quotation marks (dieresis) 22

Number sign 23

$ Dollar sign 24

% Percent sign 25

& Ampersand 26

Apostrophe (acute accent, 27
closing single quote)

Opening parenthesis 28

Closing parenthesis 29

* Asterisk 2A

+ Plus sign 2B

, Comma (cErlilla) 2C

Hyphen (minus) 2D

Period (decimal point) 2E

I Slant 2F

0 Digit 0 30

1 Digit 1 31

2 Digit 2 32

3 Digit 3 33

4 Digit 4 34

5 Digit 5 35

6 Digit 6 36

7 Digit 7 37

8 Digit 8 38

9 Digit 9 39

Colon 3A

; Semicolon 3B

< Less than 3C

= Equals 3D

> Greater than 3E

? Question mark 3F

B-3

ASCII Character Set (cont'd)

CHARACTER COMMENTS HEX VALUE

@ Conmercial at 40

A Upp:rcase letter A 41

B Uppercase letter B 42

c Upp:rcase letter C 43

D Uppercase letter D 44

E Upp:rcase letter E 4S

F Uppercase letter F 46

G Uppercase letter G 47

H Uppercase letter H 48

I Uppercase letter I 49

J Uppercase letter J 4A

K Upp:rcase letter K 4B

L Uppercase letter L 4C

M Upp:rcase letter M 40

N Uppercase letter N 4E

0 Uppercase letter 0 4F
p Uppercase letter p 50

Q Upp:rcase letter Q Sl

R Uppercase letter R 52

s Uppercase letter s 53

T Uppercase letter T S4

u Upp:rcase letter U 55

v Uppercase letter V 56

w Uppercase letter W S7

x Uppercase letter X S8
y Uppercase letter Y 59

z Uppercase letter z SA

[Opening bracket SB

\ Reverse slant SC

Closing bracket SD

Circumflex SE

Underline SF

B-4

ASCII Character Set (cont'd)

CHARACTER COMMENTS HEX VALUE

Quotation mark 60

a Lowercase letter a 61

b Lowercase letter b 62

c Lowercase letter c 63

d Lowercase letter d 64

e Lowercase letter e 65

f Lowercase letter f 66

g Lowercase letter g 67

h Lowercase letter h 68

i Lowercase letter i 69

j Lowercase letter j 6A

k Lowercase letter k 6B

1 Lowercase letter 1 6C

m Lowercase letter m 60

n Lowercase letter n 6E

0 Lowercase letter o 6F

p Lowercase letter p 70

q Lowercase letter q 71

r Lowercase letter r 72

s Lowercase letter s 73

t Lowercase letter t 74

u Lowercase letter u 75

v Lowercase letter v 76

w Lowercase letter w 77

x Lowercase letter x 78

y Lowercase letter y 79

z Lowercase letter z 7A

{ Opening brace 7B

I Vertical line 7C

} Closing brace 70

Equivalent 7E

DEL Delete 7F

B-5/B-6

APPENDIX C

SAMPLE ASSEMBLER OUTPUT

MOTOROLA M68000 A.SM FIX 108.DEMO .MAIN .SA

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 8
43

00000000 00000002
00000002 00000002
00000004 00000002
00000006 00000002
00000008 00000002

00000008
00000000

44 8 00000000 5346
45 8 00000002 33C600000000

*
MAIN
*

IDNT 2,3 Demonstration Program

*
*
*
*
*
*
*

'lllis program counts occurrences of vowels (A,E,I,O,U)
in the conmand line and outputs an error if fewer than 10
vowels are found in the conmand line, aside from the vowels
in the program name 'TSTPRCXi'.
It is written in a contrived fashion to illustrate several
features of the M68000 assembler.

*

OPT
OPT

XREF.S
XREF.S
XREF
XREF

CRE
MEX

15:VCWEL
15:STACK
FINDV
CMDLEN

Create a cross-reference listing
Enable macro expansions

Array containing vowel count info
Scratch stack space
Routine that does the counting
Length of the corcmand line

*
*
*
*
*

'lbese are offsets into the vowel array contained in module FINDV.
Each entry in this array contains 1 byte for the vowel's name
and one byte for the count of occurrences of the vowel.

OFFSET 0
A DS.W 1
E DS.W 1
I OS.W 1
0 DS.W 1
U DS.W 1
* * 'Ibis macro calls FINDV to count occurrences of the vowel
* contained in argument 1. It then adds that subtotal into
* the running total contained in 01.
*
CHKVCJ-JEL MACRO

MOVE.B
JSR
ADO.B
ENDM

*

#\1,DO
FINDV
\l+ 1 (AO) ,Dl

START
SECTION 8
EQU *
SUB.W
MOVE.W

U,D6
D6,CMDLEN

Store current vowel offset into VOdEL
Find all occurrences of it
Add this to the total vowel count

Index corcmand line from offset 0 and not 1
Save the comnand line len

46 * as passed by VERSAdos
47 8 00000008 4FF80000
48 8 OOOOOOOC 41F80000
49 8 00000010 4241
50 8 00000012 4280
51
52 8 00000014

53

8 00000014 103COOOO
8 00000018 4EB900000000
8 OOOOOOlE 02280001

54 8 00000022

55

8 00000022 103C0002
8 00000026 4EB900000000
8 0000002C 02280003

LEA
LEA
CLR.W
CLR.L

STACK,A7
VOIJEL,AO
01
DO

CHKVCWEL A
MOVE.B #A,DO
JSR FINDV
ADO.B A+l(AO),Dl

CHKVOIIBL E
MOVE.B #E,DO
JSR FINDV
ADD.B E+l(AO) ,Dl

C-1

Initialize the stack area
Start of the vowel table
current total vowel count
Will hold offset to current char later

Store current vowel offset into VCWEL
Find all occurrences of it
Add this to the total vowel count

Store current vowel offset into VCWEL
Find all occurrences of it
Add this to the total vowel count

56 8 00000030

57

8 00000030 103C0004
8 00000034 4EB900000000
8 0000003A 02280005

58 8 0000003E

59

8 0000003E 103C0006
8 00000042 4EB900000000
8 00000048 02280007

60 8 0000004C

61
62

8 0000004C 103C0008
8 00000050 4EB900000000
8 00000056 02280009

63 8 00000060 3041
64 8 00000062 700E
65 8 00000064 4E41
66 8 00000066 0000
67
68
69 8 00000068 700F
70 8 0000006A 4E41
71
72 8 00000000

****** TCJrAL ERRORS O~
****** TO'I'AL WARNINJS 0--

SYMBOL TABLE LISTINJ

SYMBOL NAME SECT VALUE

A 00000000
CHKVG/EL MACR *
CMDLEN XREF * 00000000
E 00000002
FINOV XREF * 00000000
I 00000004
0 00000006
STACK XREF F 00000000
START 8 00000000
u 00000008
VONEL XREF F 00000000
Z Ll.000 8 00000068

CHKVClllEL I
MOVE.B #I,00
JSR FINDV
ADO.B I+l(AO) ,Dl

CHKVCJflEL 0
MOVE.B #0,DO
JSR FINDV
ADO.B o+l(AO) ,Dl

CHKVClllEL U
MOVE.B #U,00
JSR FINDV
ADD.B U+l(AO) ,Dl

IF .B #10 <GT> 01 THEN.S
MOVE.W Dl,AO
MOVE.L #14,00
TRAP #1
oc.w 0

ENDI

MOVE.L #15,00
TRAP #1

END START

CROSS-REF (LINENUMBERS)

-24 52
-34 11 52 54 56
-17 45
-25 54
-16 52 54 56 58
-26 56
-27 58
-15 47
-42 72
-28 60
-14 48
-67 62

C-2

Store current vowel offset into VCl\'EL
Find all occurrences of it
Add this to the total vowel count

Store current vowel offset into V(ltlEL
Find all occurrences of it
Add this to the total vowel count

Store current vowel offset into VCl\'EL
Find all occurrences of it
Add this to the total vowel count

Not enough vowels

generate error showing # of vowels found

Exit gracefully if all is OK

58 60

60

MOTOROLA M68000 ASM FIX 108.0EMO .FINDV .SA

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15 OOOOOOOF
16
17
18
19 F 00000000 00000040
20
21
22 F 00000040 00000050
23 F 00000090 00000004
24
25
26
27
28
29 F 00000094 4100
30 F 00000096 4500
31 F 00000098 4900
32 F 0000009A 4FOO
33 F 0000009C 5500
34
35
36
37 F 0000009E 0000
38 F OOOOOOAO OOOOOOAO
39
40
41 00000008
42
43
44
45
46
47
48
49
50 8 00000000
51 8 00000000 48F8070FOOOO
52
53 8 00000006 41F80094
54 8 OOOOOOOA 12300000
55 8 OOOOOOOE 41F00001
56 8 00000012 43F800AO
57
58

8 OOOOOOlA 6000000E
****** WARNil'Ki 550--

59 8 OOOOOOlE 14313000
60
61
62 8 00000026 5210
63

*
FINDV IDNT 1,1 Routine subordinate to MAIN
* * 'Ihis routine counts occurrences of a given vowel. The vowel
* is identified by an offset into the vowel table. 'Ihis offset
* is stored in DO.
* 'Ihis routine is written in a contrived fashion to illustrate several
* features of the M68000 assembler.
*

*

OPT
OPT

CRE
CEX

Create a cross-reference listing
Print DC expansions

XDEF V~L,FINDV,STACK,CMDLEN,CMDSTR

*
SECTIOO.S 15

* * Register save area
*
RSAVE
*
*
STACK

*

DS.L 8*2

Stack area for the program
DS.L 20
OS.L 1

* Following is the vowel array VCJNEL.
* Each entry in this array contains 1 byte for the vowel's name
* and one byte for the count of occurrences of the vo'Wel.
*
VCMEL

*

DC.B
DC.B
DC.B
DC.B
DC.B

'A' ,O
IE' ,o
I I' ,o
'0' ,o
'U' 1 0

* Next is the area which holds the corrmand line length and string.
*
CMDLEN DC.W 0
CMDSTR COMLINE 160

*
SECTION 8

* * On entry to this routine, DO contains the offset to the start
* of the current entry in the vowel table.
* This routine then tallies occurrences of the given vowel and
* stores that value in the table.
*
SAVEREG REG D0-03/AO-A2
*
FINDV EQU *

MOVEM.L SAVEREG,RSAVE

LEA
MOVE.B
LEA
LEA

VCJNEL,AO
O(AO,DO.W),01
l(AO,DO.W) ,AO
CMDSTR,Al

Save all registers we are using

Value of this vowel
Addr of counter for this vowel
Addr of corrrnand line string

FOR 03 = #0 TO CMDLEN BY U DO
BRA. Z L2.000

MOVE.B (Al,D3.W),D2 Current char is now in D2

IF.B Dl <EQ> 02 THEN.S
AD))'J.B U, (AO) Tally matching chars

ENDI

C-3

64
65 ENDF
66
67 8 00000030 4CF8070FOOOO MOVEM.L RSAVE,SAVEREG Restore registers we used
68 8 00000036 4E75 Rl'S
69
70 END

****** TOTAL ERRORS 0-- 58
****** TOI'AL WARNI~S 1- 58

SYMBOL TABLE LISTING

SYMBOL NAME SECT VALUE CROSS-REF { LINENUMBERS)

CMDLEN XDEF F 0000009E -37 -13 65
CMDSTR XDEF F OOOOOOAO -38 -13 56
FINDV XDEF 8 00000000 -50 -13
RSAVE F 00000000 -19 51 67
SAVEREG REG * -48 51 67
STACK XDEF F 00000090 -23 -13
VCl<JEL XDEF F 00000094 -29 -13 53
Z Ll.001 8 OOOOOOlE -58 65
Z-Ll.002 8 00000028 -63 61
Z-L2.000 8 0000002A -65 58

C-4

APPENDIX D

EXAMPLE OF LINKED ASSEMBLY-LANGUAGE PROGRAMS UNDER VERSAdos

Motorola M68000 Linkage Editor

Corrmand Line:

LINK 108.DEMO.MAIN/108.DEMO.FINDV,TSTPR(Xj,TSTPR(Xj;HIMUX

Options in Effect: -A,-B,-D,H,I,-L,M,O,P,-Q,-R,-S,-U,-W,X

User Comnands: None

Object Module Header Information:

Module Ver Rev Language Date Time Creation File Name

MAIN 2 3 Assembly 09/13/82 13:12:27 FIX:l08.DEMO.MAIN.SA
Demonstration Program

FINDV 1 1 Assembly 09/13/82 13:12:54 FIX:l08.DEMO.FINDV.SA
Routine subordinate to MAIN

Load Map:

Segment SEX.il(R}: 00000000 OOOOOOFF 8,9,10,11,12,13,14
r-t>dule S T Start End Externally Defined Symbols

MAIN
FINDV

8
8

00000000 00000068
0000006C OOOOOOA3 FINDV

Segment SEG2: 00000100 000002FF 15

0000006C

l'-t>dule S T Start End Externally Defined Symbols

FINDV 15 S 00000100 0000023F CMDLEN
VOi/EL

Table of Externally Defined Symbols:

0000019E CMDSTR
00000194 STACK

Name Address Module Displ Sect Seg Library

CMDLEN 0000019E FINDV 0000009E 15
CMDSTR OOOOOlAO FINDV OOOOOOAO 15
FINDV 0000006C FINDV 00000000 8
STACK 00000190 r'INDV 00000090 15
VOtlEL 00000194 FINDV 00000094 15

Unresolved References: None

Multiply Defined Symbols: None

Lengths (in bytes}:

Segment Hex

SEGl 00000100
SEG2 00000200

Total Length 00000300

Decimal

256
512
768

D-1

SEG2
SEG2
SEGl
SEG2
SEG2

OOOOOlAO
00000190

Input

FINDV .RO
FINDV .RO
FINDV .RO
FINDV .RO
FINDV .RO

No Errors
No warnings

Load module has been created.

D-2

APPENDIX E

ASSEMBLY ERROR CODES

Error messages generated during an assembly may originate from the assembler or
from Pascal or the operating system environment. Assembler-generated messages
may be of two forms:

1. ****** ERROR xxx -- nnnn

where xxx is the number of the error (defined in the list in this
appendix), and nnnn is the number of the line where the previous error
occurred.

Errors indicate that the assembler is unable to interpret or implement
the intent of a source line.

2. ****** WARNING xxx -- nnnn

where xxx is the number of the error (defined in the list in this
appendix), and nnnn is the number of the line where the previous error
occurred.

Warnings may indicate possible recoverable errors in the source code, or
that a more optimal instruction format is possible.

ERROR CODE

200

201

202

203

204

205

206

207

208

MEANING OF ERROR

SYNTACTIC ERRORS

Illegal character (in context)

Size code/extension is invalid

Syntax error

Size code/extension not allowed

Label required

End directive missing

Register ranges must be specified in increasing order
(e.g., Al-A3, 00-07, FP2-FP6)

A and D registers can't be intermixed in a MOVEM register range

In the register pair Di:Dj, Di must be distinct from Dj.

E-1

ERROR CODE

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

230

231

232

233

234

235

236

237

238

239

MEANING OF ERROR

OPERAND/ADDRESS MODE ERRORS

Missing operand(s)

Too many operands for this instruction

Improper termination of operand field

Illegal address mode for this operand

Illegal forward reference

Symbol/expression must be absolute

Immediate source operand required

Illegal register for this instruction

Illegal operation on a relative symbol

Met~ory shifts may be only single bit

Invalid shift count

Invalid section number

"{o:w}" or "{k}" expression not allowed here

Too many registers found in an M68020 addressing mode form

Too many expressions found in an M68020 addressing mode form

More than one pair of []s found in an M68020 addressing mode

form

"{o:w}" expression expected in this instruction

SYMBOL DEFINITION

Attempt to redefine a reserved symbol

Attempt to redefine a macro; new definition ignored

Attempt to redefine the comnand line location

Commarrl line length must be > O; ignored

Redefined symbol

Undefined symbol

Phasing error on PASS2

Start address must be in this module, if specified

Undefined operation (opcode)

Named common symbol may not be XDEF

E-2

ERROR CODE

250

251

252

253

254

255

256

257

260

261

262

263

264

265

266

267

270

271

MEANING OF ERROR

DATA SIZE RESTRICTIONS

Displacement size error

Value too large

Address too large for forced absolute short

Byte mode not allowed for this opcode

Multiplication overflow

Division by zero

Value out of range

Branch to odd address detected

MACRO ERRORS

Misplaced MACRO, MEXI'r, or ENDM directive

Macro definitions may not be nested

Illegal parameter designation

A period may occur only as the first character in a macro name

Missing parameter reference

Too many parameters in this macro call

Reference precedes macro definition

overflow of input buffer during macro text expansion

CONDITIONAL ASSEMBLY ERRORS

Unexpected 'ENOC'

Bad ending to conditional assembly structure (ENDC expected)

E-3

ERROR CODE

280

281

282

283

284

285

286

287

288

289

290

291

292

300

301

302

303

304

305

310

311

312

313

314

.. ~· . -. ' .

MEANING OF ERROR

STRUCTURED SYNTAX ERRORS

Misplaced structured control directive (ignored)

Missing "END!"

Missing "ENDF"

Missing "ENDW''

Missing "UNTIL"

Unresolved syntax
structured control

error in
directive;

the precejing para11eterized
recovery attempted with the

current line

"=" Expected; characters up to "=" ignored

"<" Expected; characters up to "<" ignored
")II Expected; characters up to ">" ignored

"DO" expected; r1:rna i nder of line ignored

"THEN" expectoo; remainder of line ignored

"TO" or "OOWNTO" expected; "TO" assu.11ed

Illegal condition cod.e specified

MISCELLANEOUS

Implementation restriction

Too many relocatable symbols referenced
<linkage editor restricted>

Relocation of byte field attempted

Absolute section of length zero defined (link error)

Nested "INCLUDE" files not allowed; ignored

File na~e required in operand field

Ille1al syntax for "P=nnnnn' option - option ignored

Illegal processor number for 'P=nnnnn' option - option ignored

Processor option does not agree with command line option -
option ignored

~1is directive is not valid for the processor that is currently
specified.

An "O.FFSET11 block must be followed by an "ORG" or "SECTION"
before more code is generated.

E-4

ERROR CODE

330

331

332

333

334

400

499

500

501

502

503

504

550

551

552

553

MEANING OF ERROR

FLOATING POINT ERRORS

Type (size) incompatibility exists between an operand and the
opcode size.

Exponent string is too long. Will be truncated on the right
which will almost certainly return the wrong value.

A non-decimal character was found in the decimal string. The
haracter will be ignored and the conversion will continue
although the results should be highly suspect.

The input decimal string is too big to be represented in the
specified size. Infinity or the largest positive or negative
number will be returned depending on the sign and current
rounding mode.

The input decimal string is too small to be represented in the
specified size. It was denormalized or reduced to zero.

INTERNAL ERRORS

SOURCE CODE NOT OPTIMAL OR RECOVERABLE ERRORS

This byte will be sign-extended to 32 bits

Missing parameter reference in macro source

Too many parameters in this macro call

Warning - processor type should not be changed after any
executable code is generated

Warning - processor type should not be changed after the user
once sets it

This branch can also allow a word extension

This absolute address could be short

This expression/displacement could be represented in 16 bi ts

rather than 32 bits.

Warning - this instruction may cause a branch to an odd address

E-5

ERROR CODE

700

701

702

703

MEANING OF ERROR

FLOATING POINT WARNINGS

Mantissa string is too long.
digits.

It will be truncated after 17

Decimal strings can be guaranteed to be accurate only to double
precision in the worst case. In the best case, they are
accurate to extended precision.

The decimal string to fp conversion was inexact (some rounding
error occurred). This may or may not be important to the user.

Use of the L, D, x, and P extensions in the FSGLDIV and FSGLMUL
instructions may result in a loss of accuracy.

NOTE

If more than 10 errors occur in one line, the message

***** too many errors on this line

will be generated.

E-6

SUGGESTION/PROBLEM
REPORT

MS
OUM.ITV • PEOPLE • PERFORMANCE

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282

Attention: Publications Manager
Maildrop DW164

Product:---------------

Please Print

Name _______________ _

Company ______ ~,------~

Street----------------

City----------------

Manual:----------------

Title----------------

Division---------------

Mail Drop _____ Phone-------

State _________ Zip ____ _

For Addttlonal Motorola Publlcatlons
Literature Distribution Center

Four Phue/Motorola Customer Support, Tempe Operations
(800) 528-1908

616 West 24th Street (602) 438-3100
Tempe, AZ. 85282
(602) 994-6561

®MOTOROLA

16867 PRINTED IN USA (6/84) MESSENGER 5M

