

Debugging Package for
Motorola 68K CISC CPUs

User's Manual

(Part 2 of 2)

68KBUG2/D3

Notice

While reasonable efforts have been made to assure the accuracy of this document,
Motorola, Inc. assumes no liability resulting from any omissions in this document,
or from the use of the information obtained therein. Motorola reserves the right to
revise this document and to make changes from time to time in the content hereof
without obligation of Motorola to notify any person of such revision or changes.

No part of this material may be reproduced or copied in any tangible medium, or
stored in a retrieval system, or transmitted in any form, or by any means, radio,
electronic, mechanical, photocopying, recording or facsimile, or otherwise,
without the prior written permission of Motorola, Inc.

It is possible that this publication may contain reference to, or information about
Motorola products (machines and programs), programming, or services that are
not announced in your country. Such references or information must not be
construed to mean that Motorola intends to announce such Motorola products,
programming, or services in your country.

Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S.
Government, the following notice shall apply unless otherwise agreed to in
writing by Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Motorola, Inc.
Computer Group

2900 South Diablo Way
Tempe, Arizona 85282

Preface

The Debugging Package for Motorola 68K CISC CPUs User's Manual provides general
information for the onboard Þrmware package for all Motorola 68000 CISC CPU
and MPU VMEmodule boards.

This document is bound in two parts. Part 1 (68KBUG1/D3) contains the Table of
Contents and Chapters 1 through 3. Part 2 (68KBUG2/D3, this volume) contains
Chapters 4 and 5, Appendices A through I, and the Index.

This manual is intended for anyone who wants to design OEM systems, supply
additional capability to an existing compatible system, or work in a lab
environment for experimental purposes.

The following Þrmware packages and boards are covered in this manual:

The Þrmware packages are referred to as 16XBug in this manual. The boards are
referred to as MVME16X.

This manual describes the debugger, the debugger command set, the one-line
assembler/disassembler, and system calls. These functional elements are common
to all Þrmware packages.

Installation, start-up, diagnostics tests, and environmental parameters are
described in the diagnostic manuals for each of the Þrmware packages.

A basic knowledge of computers and digital logic is assumed.

Motorola and the Motorola symbol are registered trademarks of Motorola, Inc.

SYSTEM V/68 is a trademark of Motorola, Inc.

Timekeeper and Zeropower are trademarks of SGS-THOMSON Microelectronics.

MVME162 162Bug

MVME172 172Bug

MVME166 166Bug

MVME167 167Bug

MVME176 176Bug

MVME177 177Bug

Related Documentation

The following publications are applicable to Motorola 68K CISC CPU debugging
packages and may provide additional helpful information. If not shipped with this
product, they may be purchased by contacting your local Motorola sales ofÞce.
Non-Motorola documents may be obtained from the sources listed following the
table.

Document Title
Motorola

Publication Number

M68040 Microprocessors User's Manual M68040UM/AD

M68060 Microprocessors User's Manual M68060UM/AD

MVME050 System Controller Module User's Manual MVME050/D

MVME162 ProgrammerÕs Reference Guide MVME162PG/D

MVME162FX ProgrammerÕs Reference Guide MVME162LXPG/D

MVME162LX ProgrammerÕs Reference Guide V162FXA/PG

MVME172 ProgrammerÕs Reference Guide VME172A/PG

Single Board Computers Programmer's Reference Guide VMESBCA1/PG and
VMESBCA2/PG

162Bug Diagnostics UserÕs Manual V162DIAA/UM

167Bug Debugging Package UserÕs Manual MVME167BUG/D

172Bug Diagnostics UserÕs Manual V172DIAA/UM

177Bug Diagnostics User's Manual V177DIAA/UM

MVME320B VMEbus Disk Controller Module User's Manual MVME320B/D

MVME323 ESDI Disk Controller User's Manual MVME323/D

MVME327A VMEbus to SCSI Bus Adapter and
MVME717 Transition Module User's Manual

MVME327A/D

MVME327A Firmware User's Manual MVME327AFW/D

MVME328 VMEbus Dual SCSI Host Adapter User's Manual MVME328/D

MVME335 Serial and Parallel I/O Module User's Manual MVME335/D

MVME350 Streaming Tape Controller VMEmodule User's Manual MVME350/D

MVME350 IPC Firmware User's Guide MVME350FW/D

MVME374 Multi-Protocol Ethernet Interface Module User's Manual MVME374/D

MVME376 Ethernet Communication Controller User's Manual MVME376/D

Note Although not shown in the above list, each Motorola
Computer Group manual publication number is
suffixed with the revision level of the document, such
as Ò2Ó (the second revision of a manual); a supplement
bears the same number as a manual but has a suffix
such as "2A1" (the first supplement to the second
revision of the manual).

The following publications are available from the sources indicated.

ANSI Small Computer System Interface-2 (SCSI-2), Draft Document X3.131-198X,
Revision 10c; Global Engineering Documents, P.O. Box 19539, Irvine, CA 92714.

Versatile Backplane Bus: VMEbus, ANSI/IEEE Std. 1014-1987, The Institute of
Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, NY 10017
(VMEbus SpeciÞcation). This is also available as Microprocessor system bus for 1 to 4
byte data, IEC 821 BUS, Bureau Central de la Commission Electrotechnique
Internationale; 3, rue de Varemb�, Geneva, Switzerland.

Manual Terminology

Throughout this manual, a convention has been maintained whereby data and
address parameters are preceded by a character which speciÞes the numeric
format as follows:

Unless otherwise speciÞed, all address references are in hexadecimal throughout
this manual.

An asterisk (*) following the signal name for signals which are level signiÞcant
denotes that the signal is true or valid when the signal is low.

An asterisk (*) following the signal name for signals which are edge signiÞcant
denotes that the actions initiated by that signal occur on high to low transition.

$ hexadecimal character

% binary number

& decimal number

In this manual, assertion and negation are used to specify forcing a signal to a
particular state. In particular, assertion and assert refer to a signal that is active or
true; negation and negate indicate a signal that is inactive or false. These terms are
used independently of the voltage level (high or low) that they represent.

Data and address sizes are deÞned as follows:
❏ A byte is eight bits, numbered 0 through 7, with bit 0 being the

least significant.

❏ A word is 16 bits, numbered 0 through 15, with bit 0 being the
least significant.

❏ A longword is 32 bits, numbered 0 through 31, with bit 0 being
the least significant.

Conventions

The following conventions are used in this document:

bold is used for user input that you type just as it appears. Bold is also used
for commands, options and arguments to commands, and names of
programs, directories, and files.

italic is used for names of variables to which you assign values. Italic is also
used for comments in screen displays and examples.

courier is used for system output (e.g., screen displays, reports), examples, and
system prompts.

<RETURN> or <CR> represents the carriage return or Enter key.

CTRL or ^ represents the Control key. Execute control characters by pressing the
CTRL key and the letter simultaneously, e.g., CTRL-d.

Safety Summary
Safety Depends On You

The following general safety precautions must be observed during all phases of operation, service, and
repair of this equipment. Failure to comply with these precautions or with speciÞc warnings elsewhere in
this manual violates safety standards of design, manufacture, and intended use of the equipment.
Motorola, Inc. assumes no liability for the customer's failure to comply with these requirements.

The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You,
as the user of the product, should follow these warnings and all other safety precautions necessary for the
safe operation of the equipment in your operating environment.

Ground the Instrument.
To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground.
The equipment is supplied with a three-conductor ac power cable. The power cable must be plugged into
an approved three-contact electrical outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate in an Explosive Atmosphere.
Do not operate the equipment in the presence of ßammable gases or fumes. Operation of any electrical
equipment in such an environment constitutes a deÞnite safety hazard.

Keep Away From Live Circuits.
Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or
other qualiÞed maintenance personnel may remove equipment covers for internal subassembly or
component replacement or any internal adjustment. Do not replace components with power cable
connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To
avoid injuries, always disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone.
Do not attempt internal service or adjustment unless another person capable of rendering Þrst aid and
resuscitation is present.

Use Caution When Exposing or Handling the CRT.
Breakage of the Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion).
To prevent CRT implosion, avoid rough handling or jarring of the equipment. Handling of the CRT should
be done only by qualiÞed maintenance personnel using approved safety mask and gloves.

Do Not Substitute Parts or Modify Equipment.
Because of the danger of introducing additional hazards, do not install substitute parts or perform any
unauthorized modiÞcation of the equipment. Contact your local Motorola representative for service and
repair to ensure that safety features are maintained.

Dangerous Procedure Warnings.
Warnings, such as the example below, precede potentially dangerous procedures throughout this manual.
Instructions contained in the warnings must be followed. You should also employ all other safety
precautions which you deem necessary for the operation of the equipment in your operating environment.

!
WARNING

Dangerous voltages, capable of causing death, are
present in this equipment. Use extreme caution when
handling, testing, and adjusting.

The computer programs stored in the Read Only Memory of this device contain
material copyrighted by Motorola Inc., 1995, and may be used only under a license
such as those contained in MotorolaÕs software licenses.

The software described herein and the documentation appearing herein are
furnished under a license agreement and may be used and/or disclosed only in
accordance with the terms of the agreement.

The software and documentation are copyrighted materials. Making unauthorized
copies is prohibited by law. No part of the software or documentation may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means without the
prior written permission of Motorola, Inc.

Disclaimer of Warranty

Unless otherwise provided by written agreement with Motorola, Inc., the software
and the documentation are provided on an Òas isÓ basis and without warranty.
This disclaimer of warranty is in lieu of all warranties whether express, implied, or
statutory, including implied warranties of merchantability or Þtness for any
particular purpose.

!
WARNING This equipment generates, uses, and can radiate

electro-magnetic energy. It may cause or be susceptible
to electro-magnetic interference (EMI) if not installed
and used in a cabinet with adequate EMI protection.

©Copyright Motorola 1997
All Rights Reserved

Printed in the United States of America
June 1997

Contents

Related Documentation...4
Introduction ...4-1

MC68040 and MC68060 Assembly Language ...4-1
Machine-Instruction Operation Codes ..4-2
Directives ...4-2

Comparison with MC68040 and MC68060 Assemblers4-2
Source Program Coding ...4-3

Source Line Format..4-3
Operation Field ...4-4
Operand Field..4-5
Disassembled Source Line...4-6
Mnemonics and Delimiters ...4-6
Character Set..4-9

Addressing Modes...4-10
DC.W DeÞne Constant Directive...4-14
SYSCALL System Call Directive..4-15

Entering and Modifying Source Programs..4-15
Invoking the Assembler/Disassembler ..4-16
Entering a Source Line ..4-17
Entering Branch and Jump Addresses ..4-18
Assembler Output/Program Listings...4-18

Introduction ...5-1
Invoking System Calls through TRAP #15 ..5-1
String Formats for I/O ..5-2

System Call Routines ..5-3
.INCHR Function...5-6
.INSTAT Function ..5-7
.INLN Function..5-8
.READSTR Function..5-9
.READLN Function ...5-11
.CHKBRK Function ...5-12
.DSKRD, .DSKWR Functions ...5-13
.DSKCFIG Function...5-16
.DSKFMT Function..5-21
.DSKCTRL Function ..5-24
.NETRD, .NETWR Functions...5-26
.NETCFIG Function...5-29

.NETFOPN Function ... 5-35
.NETFRD Function.. 5-37
.NETCTRL Function.. 5-39
.OUTCHR Function .. 5-42
.OUTSTR, .OUTLN Functions... 5-43
.WRITE, .WRITELN Functions.. 5-44
.PCRLF Function ... 5-46
.ERASLN Function.. 5-47
.WRITD, .WRITDLN Functions .. 5-48
.SNDBRK Function ... 5-50
.DELAY Function... 5-51
.RTC_TM Function.. 5-52
.RTC_DT Function... 5-54
.RTC_DSP Function... 5-56
.RTC_RD Function .. 5-57
.REDIR Function.. 5-59
.REDIR_I, .REDIR_O Functions .. 5-61
.RETURN Function ... 5-62
.BINDEC Function .. 5-63
.CHANGEV Function ... 5-64
.STRCMP Function.. 5-66
.MULU32 Function.. 5-67
.DIVU32 Function.. 5-68
.CHK_SUM Function.. 5-69
.BRD_ID Function ... 5-71
.ENVIRON Function ... 5-75
.PFLASH Function .. 5-79
.DIAGFCN Function ... 5-82
.SIOPEPS Function .. 5-90
.IOINQ Function .. 5-92

Port Control Structure ... 5-93
I/O Control Structure .. 5-96

.IOINFORM Function ... 5-98

.IOCONFIG Function.. 5-99

.IODELETE Function .. 5-101

.SYMBOLTA Function ... 5-102

.SYMBOLTD Function .. 5-104

.ACFSTAT Function... 5-105
General Description...A-1
Service Menu Details...A-2

Continue System Start Up...A-2
Select Alternate Boot Device ...A-5

Go to System Debugger .. A-5
Initiate Service Call .. A-5

General Flow ... A-5
Manual Mode Connection... A-10
Terminal Mode Operation... A-12

Display System Test Errors ... A-12
Dump Memory to Tape... A-12

Debugger Messages ... B-1
Diagnostic Messages... B-2
Other Messages ... B-3

Introduction ..C-1
S-Record Content ...C-1
S-Record Types ...C-3
Creation of S-Records ..C-4
VID .. D-1
CFGA .. D-1
IOSATM and IOSEATM ... D-3
IOSPRM and IOSEPRM ... D-4
IOSATW and IOSEATW... D-4
Parameter Fields.. D-7
Disk/Tape Controller Modules Supported .. E-1
Disk/Tape Controller Default ConÞgurations... E-2
IOT Command Parameters for Supported Floppy Types E-6
Network Controller Modules Supported ...G-1
"C" Header File .. I-1
Assembly Interface Routines... I-7

List of Tables

Table 1-1. 16XBug Assembler Addressing Modes ..4-10
Table 2-1. 16XBug System Call Routines..5-3
xiii

xiv

1

1Using the One-Line
Assembler/Disassembler
Introduction
Included as part of the 16XBug firmware is an
assembler/disassembler function. The assembler is an interactive
assembler/editor in which the source program is not saved. Each
source line is translated into the proper MC68040 or MC68060
machine language code and is stored in memory on a line-by-line
basis at the time of entry. In order to display an instruction, the
machine code is disassembled, and the instruction mnemonic and
operands are displayed. All valid MC68040 and MC68060
instructions are translated.

The 16XBug assembler is effectively a subset of the MC68040 and
MC68060 resident structured assemblers. It has some limitations as
compared with the resident assembler, such as not allowing line
numbers and labels; however, it is a powerful tool for creating,
modifying, and debugging MC68040 or MC68060 code.

MC68040 and MC68060 Assembly Language

The symbolic language used to code source programs for
processing by the assembler is MC68040/MC68060 assembly
language. This language is a collection of mnemonics representing:

❏ Operations

-MC68040/MC68060 machine-instruction operation codes
-Directives (pseudo-ops)

❏ Operators

❏ Special symbols
1-1

Using the One-Line Assembler/Disassembler

1

Machine-Instruction Operation Codes

That part of the assembly language that provides the mnemonic
machine- instruction operation codes for the MPU machine
instructions is described in the appropriate microprocessor user's
manual. See the Related Documentation section in the Preface. Refer
to this manual for any question concerning operation codes.

Directives

Normally, assembly language can contain mnemonic directives
which specify auxiliary actions to be performed by the assembler.

The 16XBug assembler recognizes only two directives called define
constant (DC.W) and SYSCALL. These directives are used to define
data within the program, and to make calls on 16XBug utilities.
Refer to the sections on DC.W Define Constant Directive and on
SYSCALL System Call Directive, respectively, for further details.

Comparison with MC68040 and MC68060 Assemblers

There are several major differences between the 16XBug assembler
and the MC68040/MC68060 resident structured assembler. The
resident assembler is a two-pass assembler that processes an entire
program as a unit, while the 16XBug assembler processes each line
of a program as an individual unit. Due mainly to this basic
functional difference, the capabilities of the 16XBug assembler are
more restricted:

❏ Label and line numbers are not used. Labels are used to
reference other lines and locations in a program. The one-line
assembler has no knowledge of other lines and, therefore,
cannot make the required association between a label and the
label definition located on a separate line.

❏ Source lines are not saved. In order to read back a program
after it has been entered, the machine code is disassembled
and then displayed as mnemonic and operands.

❏ Only two directives (DC.W and SYSCALL) are accepted.
1-2

Source Program Coding

1

❏ No macro operation capability is included.

❏ No conditional assembly is used.

❏ Several symbols recognized by the resident assembler are not
included in the 16XBug assembler character set. These
symbols include > and <. Three other symbols have multiple
meanings to the resident assembler, depending on the
context (refer to the section on Addressing Modes). These are:

Asterisk (*)

Multiplication operator or current value of the program
counter.

Slash (/)

Division operator or delimiter in a register list.

Ampersand (&)

Logical operator AND or a decimal number preÞx.

Although functional differences exist between the two
assemblers, the one-line assembler is a true subset of the
resident assembler. The format and syntax used with the
16XBug assembler are acceptable to the resident assembler
except as described above.

Source Program Coding
A source program is a sequence of source statements arranged in a
logical way to perform a predetermined task. Each source
statement occupies a line and must be either an executable
instruction, a DC.W directive, or a SYSCALL assembler directive.
Each source statement follows a consistent source line format.

Source Line Format

Each source statement is a combination of operation and, as
required, operand fields. Line numbers, labels, and comments are
not used.
1-3

Using the One-Line Assembler/Disassembler

1

Operation Field

Because there is no label field, the operation field may begin in the
first available column. It may also follow one or more spaces.
Entries can consist of one of three categories:

1. Operation codes which correspond to the
MC68040/MC68060 instruction set.

2. Define Constant directive: DC.W is recognized to define a
constant in a word location.

3. System Call directive: SYSCALL is used to call 16XBug
system utilities.

The size of the data field affected by an instruction is determined by
the data size codes. Some instructions and directives can operate on
more than one data size. For these operations, the data size code
must be specified or a default size applicable to that instruction is
assumed. The size code need not be specified if only one data size
is permitted by the operation.

The data size code is specified by a period (.), appended to the
operation field, am followed by B, W, or L, where:

B = Byte (8-bit data)

W = Word (the usual default size; 16-bit data)

L = Longword (32-bit data).

The data size code is not permitted, however, when the instruction
or directive does not have a data size attribute.
1-4

Source Program Coding

1

Examples (legal):

Example (illegal):

Operand Field

If present, the operand field follows the operation field and is
separated from the operation field by at least one space. When two
or more operand subfields appear within a statement, they must be
separated by a comma.

In an instruction like ÒADD D1,D2Ó, the first subfield (D1) is called the
source effective address field, and the second subfield (D2) is called
the destination <EA> field. Thus, the contents on D1 are added to
the contents of D2 and the result is saved in register D2.

In the instruction ÒMOVE D1,D2Ó the first subfield (D1) is the sending
field and the second subfield (D2) is the receiving field.

In other words, for most two-operand instructions, the format
Òopcode source,destinationÓ applies.

LEA (A0),A1 Longword size is assumed (.b, .w not allowed);
this instruction loads the effective address of
the Þrst operand into A1.

ADD.B (A0),D0 This instruction adds the byte whose address is
(A0) to the lowest order byte in D0.

ADD D1,D2 This instruction adds the low order word of D1
to the low order word of D2. (w is the default
size code.)

ADD.L A3,D3 This instruction adds the entire 32-bit
(longword) contents of A3 to D3.

SUBA.B #5,A1 Illegal size speciÞcation (.b not allowed on
SUBA). This instruction would have subtracted
the value 5 from the low order byte of A1; byte
operations on address registers are not allowed.
1-5

Using the One-Line Assembler/Disassembler

1

Disassembled Source Line

The disassembled source line may not look identical to the source
line entered. The disassembler makes a decision on how it
interprets the numbers used. If the number is an offset from an
address register, it is treated as a signed hexadecimal offset.
Otherwise, it is treated as a straight unsigned hexadecimal.

For example,

MOVE.L #1234,5678
MOVE.L FFFFFFFC(A0),5678

disassembles to:

00003000 21FC0000 12345678 MOVE.L #$1234,($5678).W
00003008 21E8FFFC 5678 MOVE.L -$4(A0),($5678).W

Also, for some instructions, there are two valid mnemonics for the
same opcode, or there is more than one assembly language
equivalent. The disassembler may choose a form different from the
one originally entered. As examples:

1. BRA is returned for BT

2. DBF is returned for DBRA

Note The assembler recognizes two forms of mnemonics for
two branch instructions. The BT form (branch
conditionally true) has the same opcode as the BRA
instruction. Also, DBRA (decrement and branch
always) and DBF (never true, decrement, and branch)
mnemonics are different forms for the same
instruction. In each case, the assembler accepts both
forms.

Mnemonics and Delimiters

The assembler recognizes all MC68040/MC68060 instruction
mnemonics. Numbers are recognized as binary, octal, decimal, and
hexadecimal, with hexadecimal the default case.
1-6

Source Program Coding

1

❏ Decimal is a string of decimal digits (0 through 9) preceded by
an ampersand (&). For example:
&12334
-&987654321

❏ Hexadecimal is a string of hexadecimal digits (0 through 9, A
through F) preceded by an optional dollar sign ($). For
example:
$AFE5

One or more ASCII characters enclosed by apostrophes (' ')
constitute an ASCII string. ASCII strings are right-justified and
zero-filled (if necessary), whether stored or used as immediate
operands.

Example

00005000 21FC0000 12345668 MOVE.L #$1234,($5678).W
00005008 0053 DC.W 'S'
0000500A 223C41424344 MOVE.L #'ABCD',D1
00005010 3536 DC.W '56'

The following register mnemonics are recognized/referenced by
the assembler/ disassembler:

Pseudo-Registers

Main Processor Registers

R0-R7 User Offset Registers

PC Program Counter. Used only in forcing program
counter-relative addressing.

SR Status Register

CCR Condition Codes Register (Lower eight bits of SR)

USP User Stack Pointer
1-7

Using the One-Line Assembler/Disassembler

1

Floating Point Unit Registers

Instruction and Data Cache Registers

MSP Master Stack Pointer (MC68040 only)

ISP Interrupt Stack Pointer (MC68040 only)

SSP Supervisor Stack Pointer (MC68060 only)

VBR Vector Base Register

SFC Source Function Code Register

DFC Destination Function Code Register

D0-D7 Data Registers

A0-A7 Address Registers. For the MC68040, Address Register
A7 represents the active System Stack Pointer, that is,
one of USP, MSP, or ISP, as speciÞed by the M and S
bits of the Status Register (SR). For the MC68060,
Address Register A7 represents the active System
Stack Pointer, that is, either USP or SSP, as speciÞed by
the S bit in the Status Register.

FPCR Control Register

FPSR Status Register

FPIAR Instruction Address Register

FP0-FP7 Floating Point Data Registers

CACR Cache Control Register
1-8

Source Program Coding

1

Memory Management Unit Registers

Character Set

The character set recognized by the 16XBug assembler is a subset of
ASCII, and these are listed as follows:

❏ The letters A through Z (uppercase and lowercase)

❏ The integers 0 through 9

❏ Arithmetic operators: + - * / << >> ! & % ^

❏ Parentheses ()

❏ Characters used as special prefixes:
(pound sign) specifies the immediate form of addressing.
$ (dollar sign) specifies a hexadecimal number.
& (ampersand) specifies a decimal number.
@ (commercial at sign) specifies an octal number.
% (percent sign) specifies a binary number.
' (apostrophe) specifies an ASCII literal character string.

❏ Five separating characters:
Space
, (comma)
. (period)

MMUSR MMU Status Register (MC68040 only)

URP User Root Pointer

SRP Supervisor Root Pointer

TC Translation Control Register

DTT0 Data Transparent Translation Register 0

DTT1 Data Transparent Translation Register 1

ITT0 Instruction Transparent Translation Register 0

ITT1 Instruction Transparent Translation Register 1

BUSCR Bus Control Register (MC68060 only)
1-9

Using the One-Line Assembler/Disassembler

1

/ (slash)
- (dash)

❏ The character * (asterisk) indicates the current location.

Addressing Modes

Effective address modes, combined with operation codes, define
the particular function to be performed by a given instruction.
Effective addressing and data organization are described in detail
in the section on Data Organization and Addressing Capabilities, of the
appropriate microprocessor user's manual. See the Related
Documentation section in the Preface.

Table 4-1 summarizes the addressing modes of the MC68040 and
MC68060 which are accepted by the 16XBug one-line assembler.

Table 1-1. 16XBug Assembler Addressing Modes

Format Description

Dn Data register direct

An Address register direct

(An) Address register indirect

(An)+ Address register indirect with post-increment

-(An) Address register indirect with pre-decrement

d(An) Address register indirect with displacement

d(An,Xi) Address register indirect with index, 8-bit
displacement

(bd,An,Xi) Address register indirect with index, base
displacement.

([bd,An],Xi,od) Address register memory indirect post-
indexed

([bd,An,Xi],od) Address register memory indirect pre-indexed

address(PC) Program counter indirect with displacement
1-10

Source Program Coding

1

You may use an expression in any numeric field of these addressing
modes. The assembler has a built-in expression evaluator. It
supports the following operand types:

Allowed operators are:

address(PC,Xi) Program counter indirect with index, 8-bit
displacement

(address,PC,Xi) Program counter indirect with index, base
displacement

([address,PC],Xi,od) Program counter memory indirect post-
indexed

([address,PC,Xi],od) Program counter memory indirect pre-
indexed

(xxxx).W Absolute word address

(xxxx).L Absolute long address

#xxxx Immediate data

Binary numbers (%10)

Octal numbers (@765..0)

Decimal numbers (&987..0)

Hexadecimal numbers ($FED..0)

String literals ('CHAR')

Offset registers (R0 - R7)

Program counter (*)

Addition + (plus)

Subtraction - (minus)

Multiply * (asterisk)

Divide / (slash)

Table 1-1. 16XBug Assembler Addressing Modes

Format Description
1-11

Using the One-Line Assembler/Disassembler

1

The order of evaluation is strictly left to right with no precedence
granted to some operators over others. The only exception to this
is when you force the order of precedence through the use of
parentheses.

Possible points of confusion:

❏ Keep in mind that where a number is intended and it could
be confused with a register, it must be differentiated in some
way.

❏ With the use of " * " to represent both multiply and program
counter, how does the assembler know when to use which
definition?

For parsing algebraic expressions, the order of parsing is

operand operator operand operator ...

with a possible left or right parenthesis.

Given the above order, the assembler can distinguish by
placement which definition to use. For example:

*** Means PC * PC
+ Means PC + PC

Shift left << (left angle brackets)

Shift right >> (right angle brackets)

Bitwise OR ! (exclamation mark)

Bitwise AND & (ampersand)

Modulus % (percent)

Exponentiate ^ (circumßex)

One's Complement ~ (tilde)

CLR D0 This means CLR.W register D0.
CLR $D0

On the other hand, these all mean CLR.W
memory location $D0.

CLR 0D0

CLR +D0

CLR D0+0
1-12

Source Program Coding

1

2** Means 2 * PC
*&&16 Means PC AND &16

When specifying operands, you may skip or omit entries with the
following addressing modes.

❏ Address register indirect with index, base displacement.

❏ Address register memory indirect post-indexed.

❏ Address register memory indirect pre-indexed.

❏ Program counter indirect with index, base displacement.

❏ Program counter memory indirect post-indexed.

❏ Program counter memory indirect pre-indexed.

For modes address register/program counter indirect with index,
base displacement, the rules for omission/skipping are as follows:

❏ You may terminate the operand at any time by specifying ")".
For example:

CLR ()

or
CLR (,,)

is equivalent to:
CLR (0.N,ZA0,ZD0.W*1)

❏ You may skip a field by " stepping past" it with a comma. For
example:

CLR (D7)

is equivalent to:
CLR ($D7,ZA0,ZD0.W*1)

but
CLR (,,D7)

is equivalent to:
CLR (0.N,ZA0,D7.W*1)
1-13

Using the One-Line Assembler/Disassembler

1

❏ If you do not specify the base register, the default " ZA0" is
forced.

❏ If you do not specify the index register, the default "
ZD0.W*1" is forced.

❏ Any unspecified displacements are defaulted to " 0.N".

❏ The rules for parsing the memory indirect addressing modes
are the same as above with the following additions.

❏ The subfield that begins with "[" must be terminated with a
matching "]".

❏ If the text given is insufficient to distinguish between the
preindexed or postindexed addressing modes, the default is
the preindexed form.

DC.W Define Constant Directive

The format for the DC.W directive is:

DC.W operand

The function of this directive is to define a constant in memory. The
DC.W directive can have only one operand (16-bit value) which can
contain the actual value (decimal, hexadecimal, or ASCII).
Alternatively, the operand can be an expression which can be
assigned a numeric value by the assembler. The constant is aligned
on a word boundary as word .w is specified. An ASCII string is
recognized when characters are enclosed inside single quotes (' ').
Each character (seven bits) is assigned to a byte of memory, with the
eighth bit (MSB) always equal to zero. If only one byte is entered,
the byte is right justified. A maximum of two ASCII characters may
be entered for each DC.W directive.

Examples are:

00010022 04D2 DC.W &1234Ô Decimal number
00010024 AAFE DC.W AAFE Hexadecimal number
00010026 4142 DC.W 'AB' ASCII String
1-14

Entering and Modifying Source Programs

1

00010028 5443 DC.W 'TB'+1 Expression
0001002A 0043 DC.W 'C' ASCII character is
 right justified

SYSCALL System Call Directive

The function of this directive is to aid you in making the TRAP #15
calls to 16XBug functions as defined in Chapter 5. The format for
this directive is:

SYSCALL function-name

For example, the following two pieces of code produce identical
results.

TRAP #$F
DC.W 0

or

SYSCALL .INCHR

Refer to Chapter 5, System Calls, for a complete listing of all the
functions provided.

Entering and Modifying Source Programs
User programs are entered into the memory using the one-line
assembler/ disassembler. The program is entered in assembly
language statements on a line-by-line basis. The source code is not
saved as it is converted immediately to machine code upon entry.
This imposes several restrictions on the type of source line that can
be entered.

Symbols and labels, other than the defined instruction mnemonics,
are not allowed. The assembler has no means to store the
associated values of the symbols and labels in lookup tables. This
forces the programmer to use memory addresses and to enter data
directly rather than use labels.
1-15

Using the One-Line Assembler/Disassembler

1

Also, editing is accomplished by retyping the entire new source
line. Lines can be added or deleted by moving a block of memory
data to free up or delete the appropriate number of locations (refer
to the Block Move (BM) command).

Invoking the Assembler/Disassembler

The assembler/disassembler is invoked using the ;DI option of the
Memory Modify (MM) and Memory Display (MD) commands:

MM address ;DI

or

AS address

where <CR> sequences to next instruction
and .<CR> exits command

and

MD[S] address[:count | address];DI

or

DS address[:count | address]

The MM (;DI option), or interchangeably the AS command, is used
for program entry and modification. When this command is used,
the memory contents at the specified location are disassembled and
displayed. A new or modified line can be entered if desired. The
disassembled line can be an MPU instruction, a SYSCALL, or a
DC.W directive. If the disassembler recognizes a valid form of
some instruction, the instruction will be returned; if not (random
data occurs), the DC.W $XXXX (always hexadecimal) is returned.
Because the disassembler gives precedence to instructions, a word
of data that corresponds to a valid instruction will be returned as
the instruction.
1-16

Entering and Modifying Source Programs

1

Entering a Source Line

A new source line is entered immediately following the
disassembled line, using the format discussed in the section on
Source Line Format.

167-Bug>MM 10000;DI
00010000 2600 MOVE.L D0,D3 ? ADDQ.L #1,A3

When the carriage return is entered terminating the line, the old
source line is erased from the terminal screen, the new line is
assembled and displayed, and the next instruction in memory is
disassembled and displayed.

167Bug>MM 10000;DI
00010000 528B ADDQ.L #1,A3

00010002 4282 CLR.L D2 ?(CR)

If a hardcopy terminal is being used, port 0 should be reconfigured
for hardcopy mode for proper operation (refer to the PF command.)
In this case, the above example would look as follows:

167Bug>MM 10000;DI
00010000 2600 MOVE.L D0,D3 ? ADDQ.L #1,A3
00010000 528B ADDQ.L #1,A3

00010002 4282 CLR.L D2 ? <CR>

Another program line can now be entered. Program entry
continues in like manner until all lines have been entered. A period
is used to exit the MM or AS command.

If an error is encountered during assembly of the new line, the
assembler displays the line unassembled with a "^" under the field
suspected of causing the error and an error message is displayed.
The location being accessed is redisplayed.

167Bug>MM 10000;DI
00010000 528B ADDQ.L #1,A3 ? LEA.L 5(A0,D8),A4
00010000 LEA.L 5(A0,D8),A4

---^

*** Unknown Field ***

00010000 528B ADDQ.L #1,A3 ?(CR)
1-17

Using the One-Line Assembler/Disassembler

1

Entering Branch and Jump Addresses
When entering a source line containing a branch instruction (BRA,
BGT, BEQ, etc) do not enter the offset to the branch destination in
the operand field of the instruction. The offset is calculated by the
assembler. You must append the appropriate size extension to the
branch instruction.
To reference a current location in an operand expression, the
character "*" (asterisk) can be used. Examples are:

00030000 60004094 BRA *+$4096
00030000 60FE BRA.B *
00030000 4EF90003 0000 JMP *
00030000 4EF00130 00030000 JMP (*,A0,D0)

In the case of forward branches or jumps, the absolute address of
the destination may not be known as the program is being entered.
You may temporarily enter an " * " for branch-to-self in order to
reserve space. After the actual address is discovered, the line
containing the branch instruction can be re-entered using the
correct value.

Note Branch sizes must be entered as .b or .w as opposed to .s or .l.

Assembler Output/Program Listings
A listing of the program is obtained using the Memory Display
(MD) command with the ;DI option, or interchangeably the DS
command. The MD command requires both the starting address
and the line count to be entered in the command line. When the ;DI
option is invoked, the number of instructions disassembled and
displayed is equal to the line count. The DS command will also
operate with a starting address and an ending address.

To obtain a hardcopy listing of a program, use the Printer Attach
(PA) command to activate the printer port. An MD to the terminal
then causes a listing on the terminal and on the printer.

Note again, that the listing may not correspond exactly to the
program as entered. As discussed in the section on the Disassembled
Source Line, the disassembler displays in signed hexadecimal any
number it interprets as an offset from a register; all other numbers
are displayed in unsigned hexadecimal.
1-18

2
2System Calls
Introduction
This chapter describes the 16XBug TRAP #15 handler, which allows
system calls from user programs. The system calls can be used to
access selected functional routines contained within 16XBug,
including input and output routines. TRAP #15 may also be used
to transfer control to 16XBug at the end of a user program (refer to
the .RETURN function in this chapter).

In the descriptions of some input and output functions, reference is
made to the "default input port" or the "default output port". After
power-up or reset, the default input and output port is initialized to
be port 0 (the MVME16X debug port). The defaults may be
changed, however, using the .REDIR_I and .REDIR_O functions,
as described in this chapter.

Invoking System Calls through TRAP #15

To invoke a system call from a user program, simply insert a TRAP
#15 instruction into the source program. The code corresponding
to the particular system routine is specified in the word following
the TRAP opcode, as shown in the following example.

Format in your program:

TRAP #15 System call to 16XBug.
DC.W $xxxx Routine being requested (xxxx = code).

In some of the examples shown in the following descriptions, a
SYSCALL macro is used. This macro automatically assembles the
TRAP #15 call followed by the Define Constant for the function
code. For clarity, the SYSCALL macro is as follows:
2-1

System Calls

2

SYSCALL MACRO
TRAP #15
DC.W \1
ENDM

Using the SYSCALL macro, the system call would appear in your
program as follows:

SYSCALL routine name

It is, of course, necessary to create an equate file with the routine
names equated to their respective codes.

When using the 16XBug one-line assembler/disassembler, the
SYSCALL macro and the equates are predefined. Simply write in
SYSCALL followed by a space and the function, then carriage
return.

Example

167-Bug>M 03000;DI
00003000 00000000 ORI.B #$0,D0? SYSCALL .OUTLN
00003000 4E4F0022 SYSCALL .OUTLN

00003004 00000000 ORI.B #$0,D0? .
167Bug>

String Formats for I/O

Within the context of the TRAP #15 handler there are two formats
for strings:

A line is defined as a string followed by a carriage return and a line
feed: <CR><LF>.

Pointer/Pointer Format The string is deÞned by a pointer to the
Þrst character and a pointer to the last
character + 1.

Pointer/Count Format The string is deÞned by a pointer to a
count byte, which contains the count of
characters in the string, followed by the
string itself.
2-2

System Call Routines

2

System Call Routines
On entry to Firmware System Call routines, the machine state is
saved so that a subsequent ABORT or BREAK condition allows you
to resume if you wish.

The TRAP #15 functions are summarized in Table 5-1. Refer to the
write-ups on the utilities for specific use information.

Table 2-1. 16XBug System Call Routines

Code Name Description

$0000 .INCHR Input character

$0001 .INSTAT Input serial port status

$0002 .INLN Input line (pointer/pointer format)

$0003 .READSTR Input string (pointer/count format)

$0004 .READLN Input line (pointer/count format)

$0005 .CHKBRK Check for break

$0010 .DSKRD Disk read

$0011 .DSKWR Disk write

$0012 .DSKCFIG Disk conÞgure

$0014 .DSKFMT Disk format

$0015 .DSKCTRL Disk control

$0018 .NETRD Read/get Þles from host

$0019 .NETWR Write/send Þles to host

$001A .NETCFIG ConÞgure network parameters

$001B .NETFOPN Open Þle for reading

$001C .NETFRD Retrieve speciÞed Þle blocks

$001D .NETCTRL Implement special control characters

$0020 .OUTCHR Output character

$0021 .OUTSTR Output string (pointer/pointer format)
2-3

System Calls

2

$0022 .OUTLN Output line (pointer/pointer format)

$0023 .WRITE Output string (pointer/count format)

$0024 .WRITELN Output line (pointer/count format)

$0025 .WRITDLN Output line with data (pointer/count
format)

$0026 .PCRLF Output carriage return and line feed

$0027 .ERASLN Erase line

$0028 .WRITD Output string with data (pointer/count
format)

$0029 .SNDBRK Send break

$0043 .DELAY Timer delay function

$0050 .RTC_TM Time initialization for RTC

$0051 .RTC_DT Date initialization for RTC

$0052 .RTC_DSP Display RTC time and date

$0053 .RTC_RD Read the RTC Registers

$0060 .REDIR Redirect I/O of a TRAP #15 function

$0061 .REDIR_I Redirect input

$0062 .REDIR_O Redirect output

$0063 .RETURN Return to 16XBug

$0064 .BINDEC Convert binary to Binary Coded Decimal
(BCD)

$0067 .CHANGEV Parse value

$0068 .STRCMP Compare two strings (pointer/count
format)

$0069 .MULU32 Multiply two 32-bit unsigned integers

$006A .DIVU32 Divide two 32-bit unsigned integers

$006B .CHK_SUM Generate checksum

Table 2-1. 16XBug System Call Routines (Continued)

Code Name Description
2-4

System Call Routines

2

Note In most examples of commands and displays given in
this manual, 167Bug is used. However, the commands,
displays, and system calls apply to all 68K CISC
debugging packages, unless otherwise noted.

$0070 .BRD_ID Return pointer to board ID packet

$0071 .ENVIRON Read/write environment parameters

$0073 .PFLASH Program FLASH memory

$0074 .DIAGFCN Diagnostic function(s)

$0090 .SIOPEPS Retrieve SCSI pointers

$0120 .IOINQ Port Inquiry

$0124 .IOINFORM Port Inform

$0128 .IOCONFIG Port ConÞgure

$012C .IODELETE Port Delete

$0130 .SYMBOLTA Attach Symbol Table

$0131 .SYMBOLTD Detach Symbol Table

$0140 .ACFSTAT ACFAIL Status Inquiry

Table 2-1. 16XBug System Call Routines (Continued)

Code Name Description
2-5

System Calls

2

.INCHR Function

Name

INCHR - Input character routine

Code

$0000

Description

.INCHR reads a character from the default input port. The character
is returned in the stack.

Entry Conditions

Exit Conditions Different from Entry

Example

SUBQ.L #2,A7 Allocate space for result.
SYSCALL .INCHR Call .INCHR.
MOVE.B (A7)+,D0 Load character in D0.

SP ==> Space for character. byte

Word Þll. byte

SP ==> Character. byte

Word Þll. byte
2-6

System Call Routines

2

.INSTAT Function

Name

.INSTAT - Input serial port status

Code

$0001

Description

.INSTAT is used to see if there are characters in the default input
port buffer. The condition codes are set to indicate the result of the
operation.

Entry Conditions

No arguments or stack allocation required.

Exit Conditions Different from Entry

Z(ero) = 1 if the receiver buffer is empty.

Example

LOOP SYSCALL .INSTAT Any characters?
BEQ.S EMPTY No, branch.
SUBQ.L #2,A7 Yes, then read them in buffer.
SYSCALL .INCHR

MOVE.B (A7)+,(A0)+

BRA.S LOOP Check for more.
EMPTY
2-7

System Calls

2

.INLN Function

Name

 .INLN - Input line routine

Code

 $0002

Description

.INLN is used to read a line from the default input port. The buffer
size should be at least 256 bytes.

Entry Conditions

Exit Conditions Different from Entry

Example

If A0 contains the address where the string is to go;

SUBQ.L #4,A7 Allocate space for result.
PEA (A0) Push pointer to destination
TRAP #15 (May also invoke by SYSCALL
DC.W 2 macro SYSCALL .INLN.)
MOVE.L (A7)+,A1 Retrieve address of last character

 + 1.

Note A line is a string of characters terminated by <CR>. The
maximum allowed size is 254 characters. The
terminating <CR> is not considered part of the string,
but it is returned in the buffer, that is, the returned
pointer points to it. Control character processing as
described in the section on Terminal Input/Output
Control is in effect.

SP ==> Address of string buffer. longword

SP ==> Address of last character in the
string + 1.

longword
2-8

System Call Routines

2

.READSTR Function

Name

 .READSTR - Read string into variable-length buffer

Code

 $0003

Description

READSTR is used to read a string of characters from the default
input port into a buffer. On entry, the first byte in the buffer
indicates the maximum number of characters that can be placed in
the buffer. The buffer size should at least be equal to that
number+2. The maximum number of characters that can be placed
in a buffer is 254 characters. On exit, the count byte indicates the
number of characters in the buffer. Input terminates when a <CR>
is received. A null character appears in the buffer, although it is not
included in the string count. All printable characters are echoed to
the default output port. The <CR> is not echoed. Some control
character processing is done:

^G Bell Echoed.
^X Cancel line Line is erased.
^H Backspace Last character is erased.
 Same as backspace Last character is erased.
<LF> Line Feed Echoed.
<CR> Carriage Return Terminates input.

All other control characters are ignored.
2-9

System Calls

2

Entry Conditions

Exit Conditions Different from Entry

The count byte contains the number of bytes in the buffer.

Example

If A0 contains the string buffer address;

MOVE.B #75,(A0) Set maximum string size.
PEA (A0) Push buffer address.
TRAP #15 (May also invoke by SYSCALL
DC.W 3 macro SYSCALL .READSTR.)
MOVE.B (A0),D0 Read actual string size.

Note This routine allows the caller to dictate the maximum
length of input to be less than 254 characters. If more
characters are entered, then the buffer input is
truncated. Control character processing as described in
the section on Terminal Input/Output Control is in effect.

SP ==> Address of input buffer. longword

SP ==> Top of stack.
2-10

System Call Routines

2

.READLN Function

Name

 .READLN - Read line to fixed-length buffer

Code

 $0004

Description

.READLN is used to read a string of characters from the default
input port. Characters are echoed to the default output port. A
string consists of a count byte followed by the characters read from
the input. The count byte indicates the number of characters in the
input string, excluding <CR><LF>. A string may be up to 254
characters.

Entry Conditions

Exit Conditions Different from Entry

The first byte in the buffer indicates the string length.

Example

If A0 points to a 256 byte buffer.

PEA (A0) Long buffer address and read a
SYSCALL .READLN line from default input port.

Note The caller must allocate 256 bytes for a buffer. Input
may be up to 254 characters. <CR><LF> is sent to
default output following echo of input. Control
character processing as described in the section on
Terminal Input/Output Control is in effect.

SP ==> Address of input buffer. longword

SP ==> Top of stack.
2-11

System Calls

2

.CHKBRK Function

Name

 .CHKBRK - Check for break

Code

 $0005

Description

.CHKBRK returns "zero" status in the condition code register if
break status is detected at the default input port.

Entry Conditions

No arguments or stack allocation required.

Exit Conditions Different from Entry

Z flag set in CCR if break status is detected.

Example

SYSCALL .CHKBRK
BEQ BREAK
2-12

System Call Routines

2

.DSKRD, .DSKWR Functions

Name

.DSKRD - Disk read function
.DSKWR - Disk write function

Code

$0010
$0011

Description

These functions are used to read and write blocks of data from/to
the specified disk or tape device. Information about the data
transfer is passed in a command packet which has been built
somewhere in memory. (Your program must first manually
prepare the packet.) The address of the packet is passed as an
argument to the function. The same command packet format is
used for .DSKRD and .DSKWR. It is eight words in length and is
arranged as follows:

Field descriptions:

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 Status Word

$04
Memory Address

Most Significant Word

$06 Least Significant Word

$08 Block Number (Disk) Most Significant Word

or

$0A File Number (Tape) Least Significant Word

$0C Number of Blocks

$0E Flag Byte Address Modifier

Controller LUN Logical Unit Number (LUN) of controller to use.

Device LUN Logical Unit Number of device to use.
2-13

System Calls

2

Status Word This status word reßects the result of the operation.
It is zero if the command completed without errors.
Refer to Appendix F for meanings of returned error
codes.

Memory Address Address of buffer in memory. On a disk read, data is
written starting at this address. On a disk write, data
is read starting at this address.

Block Number For disk devices, this is the block number where the
transfer starts. On a disk read, data is read starting at
this block. On a disk write, data is written starting at
this block.

File Number For streaming tape devices, this is the Þle number
where the transfer starts. This Þeld is used if the IFN
bit in the Flag Byte is cleared (refer to the Flag Byte
description). On a disk read, data is read starting at
this Þle. On a disk write, data is written starting at
this Þle.

Number of Blocks This Þeld indicates the number of blocks to read
from the disk (.DSKRD) or to write to the disk
(.DSKWR). For streaming tape devices, the actual
number of blocks transferred is returned in this Þeld.

Flag Byte The ßag byte is used to specify variations of the same
command, and to receive special status information.
Bits 0 through 3 are used as command bits, and bits 4
through 7 are used as status bits. For disk devices,
this Þeld must be set to zero. For streaming tape
devices, the following bits are deÞned:

Bit 7 is the Filemark ßag:

1 A Þlemark was detected at the end of the
last operation.

Bit 1 is the Ignore File Number (IFN) ßag:

0 The Þle number Þeld is used to position the
tape before any reads or writes are done.

1 The Þle number Þeld is ignored, and reads or
writes start at the present tape position.

Bit 0 is the End of File ßag:
2-14

System Call Routines

2

Entry Conditions

Exit Conditions Different from Entry

Status word of command packet is updated.
Data is written into memory as a result of .DSKRD function.
Data is written to disk as a result of .DSKWR function.
Z(ero) = Set to 1 if no errors.

Example

If A0, A1 point to packets formatted as specified above.

PEA (A0)

SYSCALL .DSKRD Read from disk.
BNE ERROR Branch if error.
PEA (A1)

SYSCALL .DSKWR Write to disk.
BNE ERROR Branch if error.
.
.
.

ERROR xxxxx xxx Handle error.
xxxxx xxx

0 Reads or writes are done until the speciÞed
block count is exhausted.

1 Reads are done until the count is exhausted
or until a Þlemark is found. Writes are
terminated with a Þlemark.

Address ModiÞer VMEbus address modiÞer to use while transferring
data. If zero, a default value is selected by the bug. If
nonzero, the speciÞed value is used..

SP ==> Address of command packet. longword

SP ==> Top of stack.
2-15

System Calls

2

.DSKCFIG Function

Name

 .DSKCFIG - Disk configure function

Code

$0012

Description

This function allows you to change the configuration of the
specified device. It effectively performs an "IOT under program
control". All the required parameters are passed in a command
packet which has been built somewhere in memory. The address of
the packet is passed as an argument to the function. This function
is provided for use in special applications, because .DSKCFIG is
invoked automatically the first time that a device is accessed by
.DSKRD, .DSKWR, or .DSKFMT. The packet format is as follows:

Field descriptions:

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 Status Word

$04
Memory Address

Most Significant Word

$06 Least Significant Word

$08 0

$0A 0

$0C 0

$0E Flag Byte Address Modifier

Controller LUN Logical Unit Number (LUN) of controller to use.

Device LUN Logical Unit Number of device to use.

Status Word This status word reßects the result of the operation.
It is zero if the command completed without errors.
Refer to Appendix F for meanings of returned error
codes.
2-16

System Call Routines

2

The Device Descriptor Packet format is as follows:

Field descriptions:

Most of the fields in the Device Descriptor Packet are equivalent to
the fields defined in the CFGA Configuration Area block, as
described in Appendix D. In the field descriptions following,

Memory Address Contains a pointer to a Device Descriptor Packet that
contains the conÞguration information to be
changed.

Flag Byte This Þeld contains additional information.
Bit 0 is used to allow reading/writing the
conÞguration of the speciÞed device. It is
interpreted as follows:

0 You can change (write) the conÞguration.

1 You can view (read) the conÞguration.

Address ModiÞer VMEbus address modiÞer to use while transferring
data. If zero, a default value is selected by the bug. If
nonzero, the speciÞed value is used.

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 0

$04
Parameters Mask

Upper (Most Significant) Word

$06 Lower (Least Significant) Word

$08
Attributes Mask

Upper (Most Significant) Word

$0A Lower (Least Significant) Word

$0C
Attributes Flags

Upper (Most Significant) Word

$0E Lower (Least Significant) Word

$10

Parameters
2-17

System Calls

2

reference is made to the equivalent field in the CFGA whenever
possible. For additional information on these fields, refer to
Appendix D.

Controller LUN Same as in command packet.

Device LUN Same as in command packet.

Parameters Mask Equivalent to the IOSPRM and IOSEPRM Þelds, with
the lower word equivalent to IOSPRM, and the
upper word equivalent to IOSEPRM.

Attributes Mask Equivalent to the IOSATM and IOSEATM Þelds,
with the lower word equivalent to IOSATM, and the
upper word equivalent to IOSEATM.

Attributes Flags Equivalent to the IOSATW and IOSEATW Þelds,
with the lower word equivalent to IOSATW, and the
upper word equivalent to IOSEATW.

Parameters The parameters used for device reconÞguration are
speciÞed in this area. Most parameters have an exact
CFGA equivalent. The following list shows the field
name, offset from start of packet, length, equivalent
CFGA Þeld, and short description of each Þeld.
Those parameters that do not have an exact
equivalent are indicated with " * ", and are
explained after the list.

Field Name
Offset
(Bytes)

Length
(Bytes)

CFGA
Equivalent

Description

P_DDS* $10 1 - Device descriptor size

P_DSR $11 1 IOSSR Step rate

P_DSS* $12 1 IOSPSM Sector size (encoded)

P_DBS* $13 1 IOSREC Block size (encoded)

P_DST* $14 2 IOSSPT Sectors/track

P_DIF $16 1 IOSILV Interleave factor

P_DSO $17 1 IOSSOF Spiral offset
2-18

System Call Routines

2

List notes:

P_DSH* $18 1 IOSSHD Starting head

P_DNH $19 1 IOSHDS Number of heads

P_DNCYL $1A 2 IOSTRK Number of cylinders

P_DPCYL $1C 2 IOSPCOM Precompensation cylinder

P_DRWCYL $1E 2 IOSRWCC Reduced write current
cylinder

P_DECCB $20 2 IOSECC ECC data burst length

P_DGAP1 $22 1 IOSGPB1 Gap 1 size

P_DGAP2 $23 1 IOSGPB2 Gap 2 size

P_DGAP3 $24 1 IOSGPB3 Gap 3 size

P_DGAP4 $25 1 IOSGPB4 Gap 4 size

P_DSSC $26 1 IOSSSC Spare sectors count

P_DRUNIT $27 1 IOSRUNIT Reserved area units

P_DRCALT $28 2 IOSRSVC1 Reserved count for alternates

P_DRCCTR $2A 2 IOSRSVC2 Reserved count for controller

P_DDS This Þeld is for internal use only, and does not have
an equivalent CFGA Þeld. It should be set to 0.

P_DSS This is a one byte encoded Þeld, whereas the
IOSPSM Þeld is a two byte unencoded Þeld
containing the actual number of bytes per sector.
The P_DSS Þeld is encoded as follows:

$00 128 bytes

$01 256 bytes

$02 512 bytes

$03 1024 bytes

Field Name
Offset
(Bytes)

Length
(Bytes)

CFGA
Equivalent

Description
2-19

System Calls

2

Entry Conditions

Exit Conditions Different from Entry

Status word of command packet is updated.
The device configuration is changed.
Z(ero) = Set to 1 if no errors.

Example

If A0 points to packet formatted as specified above.:

PEA.L (A0) Load command packet.
SYSCALL .DSKCFIG Reconfigure device.
BNE ERROR Branch if error.
:

.

ERROR xxxxx xxx Handle error.
xxxxx xxx

P_DBS This is a one byte encoded field, whereas the IOSREC
field is a two byte unencoded field containing the
actual number of bytes per record (block). The
P_DBS field is encoded as follows

$00 128 bytes

$01 256 bytes

$02 512 bytes

$03 1024 bytes

$04 - $FF Reserved encodings

P_DST This is a two byte Þeld, whereas the IOSSPT Þeld is
one byte.

P_DSH This is a one byte Þeld, whereas the IOSSHD Þeld is
two bytes. This Þeld is equivalent to the lower byte of
IOSSHD.

SP ==> Address of command packet. longword

SP ==> Top of stack.
2-20

System Call Routines

2

.DSKFMT Function

Name

 .DSKFMT - Disk format function

Code

$0014

Description

This function allows you to send a format command to the specified
device. The parameters required for the command are passed in a
command packet which has been built somewhere in memory. The
address of the packet is passed as an argument to the function. The
packet format is as follows:

Field descriptions:

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 Status Half-Word

$04
Memory Address

Most Significant Word

$06 Least Significant Word

$08
Disk Block Number

Most Significant Word

$0A Least Significant Word

$0C 0

$0E Flag Byte Address Modifier

Controller LUN Logical Unit Number (LUN) of controller to use.

Device LUN Logical Unit Number of device to use.

Status Word This status word reßects the result of the
operation. It is zero if the command completed
without errors. Refer to Appendix F for
meanings of returned error codes.
2-21

System Calls

2

Memory Address Address of buffer in memory. On a disk read,
data is written starting at this address. On a
disk write, data is read starting at this address.

Block Number For disk devices, when doing a format track, the
track that contains this block number is
formatted. This Þeld is ignored for streaming
tape devices.

Flag Byte Contains additional information.
Bit 0 is interpreted as follows for disk devices:

0 Indicates a "Format Track" operation.
The track that contains the speciÞed
block is formatted.

 1 Indicates a "Format Disk" operation. All
the tracks on the disk are formatted.

Bit 0 is interpreted as follows for streaming
tapes:

0 Rewinds the tape to BOT, advances the
tape without interruptions to EOT, and
then rewinds it back to BOT. Tape
retension is recommended by cartridge
tape suppliers before writing or reading
data when a cartridge has been subjected
to a change in environment or a physical
shock, has been stored for a prolonged
period of time or at extreme
temperature, or has been previously
used in a start/stop mode.

1 Selects an "Erase Tape" operation. This
completely clears the tape of previous
data and at the same time retensions the
tape.

Bit 3 is interpreted as follows:

 0 The grown defect list is used when
formatting.
2-22

System Call Routines

2

Entry Conditions

Exit Conditions Different from Entry

Status word of command packet is updated.

Example

If A0 points to packet formatted as specified above.

PEA.L (A0) Load command packet.
SYSCALL .DSKFMT Format device.
BNE ERROR Branch if error.
.

.

.

ERROR xxxxx xxx Handle error.
xxxxx xxx

 1 The grown defect list is ignored when
formatting.

Note that the previous ßag byte operations are
still true; the operation settings are OR'd
together.

Address ModiÞer VMEbus address modiÞer to use while
transferring data. If zero, a default value is
selected by the bug. If nonzero, the speciÞed
value is used.

SP ==> Address of command packet. longword

SP ==> Top of stack.
2-23

System Calls

2

.DSKCTRL Function

Name

 .DSKCTRL - Disk control function

Code

 $0015

Description

This function is used to implement any special device control
functions that cannot be accommodated easily with any of the other
disk functions. At the present, the only defined function is SEND
packet, which allows you to send a packet in the specified format of
the controller. The required parameters are passed in a command
packet which has been built somewhere in memory. The address of
the packet is passed as an argument to the function. The packet
format is as follows:

Field descriptions:

F E D C B A 9 8 7 6 5 4 3 2 1 0
$00 Controller LUN Device LUN

$02 Status Word

$04
Memory Address

Most Significant Word

$06 Least Significant Word

$08 0

$0A 0

$0C 0

$0E 0 Address Modifier

Controller LUN Logical Unit Number (LUN) of controller to use.

Device LUN Logical Unit Number of device to use.

Status Word This status word reßects the result of the
operation. It is zero if the command completed
without errors. Refer to Appendix F for
meanings of returned error codes.
2-24

System Call Routines

2

Entry Conditions

Exit Conditions Different from Entry

Status word of command packet is updated.
Additional side effects depend on the packet sent to the controller.
Z(ero) = Set to 1 if no errors.

Example

If A1 points to a packet formatted as specified above;

PEA.L (A1) Load command packet.
SYSCALL .DSKCTRL Invoke control function.
BNE ERROR Branch if error.
.
.
.

ERROR xxxxx xxx Handle error.
xxxxx xxx

Memory Address Contains a pointer to the controller packet to
send. Note that the controller packet to send (as
opposed to the command packet) is controller
and device dependent. Information about this
packet should be found in the user's manual for
the controller and device being accessed.

Address ModiÞer VMEbus address modiÞer to use while
transferring data. If zero, a default value is
selected by the bug. If nonzero, the speciÞed
value is used.

SP ==> Address of command packet. longword

SP ==> Top of stack.
2-25

System Calls

2

.NETRD, .NETWR Functions

Name

.NETRD - Read/get from host

.NETWR - Write/send to host

Code

$0018/$0019

Description

These functions are used to get/send files from/to the destination
host over the specified network interface. Information about the file
transfer is passed in a command packet which has been built in
memory. (The user program must first manually prepare the
packet.) The address of the packet is passed as an argument to the
function. These functions basically behave the same as the NIOP
command, but under program control. All packets must be
longword aligned. The packet structure, NIOPCALL, is listed in
the "C" header file in Appendix I. Its format is shown below:

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 Status Word

$04
Data Transfer Address

Most Significant Word

$06 Least Significant Word

$08
Maximum Length of Transfer

Most Significant Word

$0A Least Significant Word

$0C
Byte Offset

Most Significant Word

$0E Least Significant Word

$10
Transfer Time in Seconds (Status)

Most Significant Word

$12 Least Significant Word

$14
Transfer Byte Count (Status)

Most Significant Word

$16 Least Significant Word

$18
Boot Filename String $40(&64) Bytes

$56
2-26

System Call Routines

2

Field descriptions:

Controller LUN Logical Unit Number (LUN) of controller to use.

Device LUN Logical Unit Number of device to use.

Status Word This status word reßects the result of the
operation. It is zero if the command completed
without errors. Refer to Appendix H for
meanings of returned error codes.

Data Transfer
Address

Address of buffer in memory. On a NET read,
data is read to (received to) starting at this
address. On a NET write, data is written (sent)
starting at this address.

Length of
Transfer

The length speciÞes the number of bytes from
the "data transfer address" to transfer. A length
of 0 speciÞes to transfer the entire Þle on a read.
On a write the length must be set to the number
of bytes to transfer.

Byte Offset The offset Þeld speciÞes the offset into the Þle
on a read. This permits users to wind into a Þle.

Transfer Time This Þeld is status only and will be updated
only on a successful data transfer. The transfer
time will be in the number of seconds that
elapsed for the period of the data transfer.

Transfer Byte
Count

This Þeld is status only and will be updated
only on a successful data transfer. If the length
Þeld above is set to a non-zero value on a read
and the desired Þle is smaller than the desired
length, the length will be written to the actual
number of bytes transferred, up to the desired
length.
2-27

System Calls

2
 Example

See Appendix I.

Boot Filename
String

This Þeld is the string of the name of the Þle to
load/store. On a write the Þle must exist on the
host system and also be writable (write
permission). The Þlename string must be null
terminated. The maximum length of the string
is 64 bytes inclusive of the null terminator.
2-28

System Call Routines

2

.NETCFIG Function

 Name

 .NETCFIG - Configure network parameters

Code

$001A

Description

This function allows you to change the configuration parameters of
the specified network interface. .NETCFIG effectively performs a
NIOT command under program control. All the required
parameters are passed in a command packet which has been built
in memory.

The address of the packet is passed as an argument to the function.
This packet contains the memory address (pointer) of the
configuration parameters to/with you wish to update/change.
The packet also contains a control flag field; this control flag
specifies the configuration operation: read, write, or write to
NVRAM. All packets must be longword aligned. The packet
structure, NIOTCALL, is listed in the "C" header file in Appendix I.
Its format is shown below:

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 Status Word

$04
Network Configuration Parameters Pointer

Most Significant Word

$06 Least Significant Word

$08
Device Configuration Parameters Pointer

Most Significant Word

$0A Least Significant Word

$0C
Control Flag

Most Significant Word

$0E Least Significant Word
2-29

System Calls

2

Field descriptions:

The Network Configuration Parameters structure has the following
format:

Controller LUN Logical Unit Number of controller to use.

Device LUN Logical Unit Number of device to use.

Status Word This status word reßects the result of the
operation. It is zero if the command completed
without errors. Refer to Appendix H for
meanings of returned error codes.

Network
ConÞguration
Parameters
Pointer

This pointer (address) speciÞes the location in
memory of the network conÞguration
parameters.

Device
ConÞguration
Parameters
Pointer

This pointer (address) speciÞes the location in
memory of the device conÞguration parameters.
To date no device conÞguration parameters are
used or needed.

Control Flag This Þeld speciÞes the conÞguration parameters
operation: read, write, or write to NVRAM. The
control ßag bit deÞnitions are as follows:

0 Read configuration parameters. Pointer
specifies destination.

1 Write (update) configuration parameters.
Pointer specifies source.

2 Write (update) configuration parameters in
NVRAM. Pointer specifies source.
2-30

System Call Routines

2

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00
Packet Version/Identifier

Most Significant Word

$02 Least Significant Word

$04
Node Control Memory Address

Most Significant Word

$06 Least Significant Word

$08
Boot File Load Address

Most Significant Word

$0A Least Significant Word

$0C
Boot File Execution Address

Most Significant Word

$0E Least Significant Word

$10
Boot File Execution Delay

Most Significant Word

$12 Least Significant Word

$14
Boot File Length

Most Significant Word

$16 Least Significant Word

$18
Boot File Byte Offset

Most Significant Word

$1A Least Significant Word

$1C
Trace Buffer Address (TXD/RXD)

Most Significant Word

$1E Least Significant Word

$20
Client IP Address

Most Significant Word

$22 Least Significant Word

$24
Server IP Address

Most Significant Word

$26 Least Significant Word

$28
Subnet IP Address Mask

Most Significant Word

$2A Least Significant Word

$2C
Broadcast IP Address Mask

Most Significant Word

$2E Least Significant Word

$30
Gateway IP Address

Most Significant Word

$32 Least Significant Word

$34 BOOTP/RARP Retry TFTP/ARP Retry

$36 BOOTP/RARP Control Update Control

$38

$76
Boot Filename String $40(&64) Bytes

$78

$B6
Argument Filename String $40(&64) Bytes
2-31

System Calls

2

Field descriptions:

Node Control
Memory
Address

This parameter speciÞes the starting address of
the necessary memory needed for the transmit
and receive buffers. Currently 65,536 bytes are
needed for the speciÞed Ethernet driver
(transmit/receive buffers).

Client IP
Address

The parameter speciÞes the IP address of the
client. The Þrmware is considered to be the
client.

Server IP
Address

The parameter speciÞes the IP address of the
server. The Þrmware is considered to be the
server.

Subnet IP
Address Mask

The parameter speciÞes the subnet IP address
mask. This mask is used to determine if the
server and client are resident on the same
network. If they are not, the gateway IP address
is used as the intermediate target (server).

Broadcast IP
Address

This parameter speciÞes the broadcast IP
address that the Þrmware utilizes when an IP
broadcast needs to be performed.

Gateway IP
Address

This parameter speciÞes the gateway IP
address. The gateway address would be
necessary if the server and the client do not
reside on the same network. The gateway IP
address would be used as the intermediate
target (server).

Boot File Name This parameter speciÞes the name of the boot
Þle to load. Once the Þle is loaded, control is
passed to the loaded Þle (program). To specify a
null Þlename, the string 'NULL' must be used.
This resets the Þlename buffer to a null
character string.

Argument File
Name

This parameter speciÞes the name of the
argument Þle. This Þle may be used by the
booted Þle (program) for an additional Þle load.
To specify a null Þlename, the string 'NULL'
must be used. This resets the Þlename buffer to
a null character string.
2-32

System Call Routines

2

Boot File Load
Address

This parameter speciÞes the load address of the
boot Þle.

Boot File
Execution
Address

This parameter speciÞes the execution address
of the boot Þle.

Boot File
Execution Delay

This parameter speciÞes a delay value in
seconds before control is passed to the loaded
Þle (program).

Boot File
Length/Offset

These parameters behave the same as the
"Length" and "Offset" parameters associated
with the NIOP command.

BOOTP/RARP
Request Retry

This parameter speciÞes the number of the
number of retries that should be attempted
prior to giving up. A retry value of zero
speciÞes always to retry (not give up).

TFTP/ARP
Request Retry

This parameter speciÞes the number of the
number of retries that should be attempted
prior to giving up. A retry value of zero
speciÞes always to retry (not give up).

Trace Character
Buffer Address

This parameter speciÞes the starting address of
memory in which to place the trace characters.
The receive/transmit packet tracing is disabled
by default (value of 0). Any non-zero value
enables tracing. Tracing would only be used in
a debug environment and normally should be
disabled. Care should be exercised when
enabling this feature; you should ensure
adequate memory exists. The following
characters are deÞned for tracing:
?
&
*
%
$
[
]
+
(

Unknown
Unsupported Ethernet type
Unsupported IP type
Unsupported UDP type
Unsupported BOOTP type
BOOTP request
BOOTP reply
Unsupported ARP type
ARP request
2-33

System Calls

2

Example

 See Appendix I.

)
-
{
}
^
\
/
<
>
|
,
:
;

ARP reply
Unsupported RARP type
RARP request
RARP reply
Unsuppported TFTPtype
TFTP read request
TFTP write request
TFTP acknowledgment
TFTP data
TFTP error
Unsupported ICMP type
ICMP echo request
ICMP echo reply

BOOTP/RARP
Request Control

This parameter speciÞes the BOOT/RARP
request control during the boot process. Control
can be set either to always (A) or to when
needed (W). When control is set to "always", the
BOOTP/RARP request is always sent, and the
accompanying reply always expected. When
control is set to "when needed", the
BOOTP/RARP request is sent if needed (i.e., IP
addresses of 0, null boot Þle name).

BOOTP/RARP
Replay Update
Control

This parameter speciÞes the updating of the
conÞguration parameters following a
BOOTP/RARP reply. Receipt of a
BOOTP/RARP reply would only be in lieu of a
request being sent.
2-34

2System Calls

0System Call Routines
2

System Call Routines
.NETFOPN Function

Name

 .NETFOPN - Open file for reading

Code

 $001B

Description

These function allows the user to open a file for reading. The
firmware basically transmits a TFTP Read Request for the specified
file and returns to the user. It is your responsibility to retrieve the
forthcoming file blocks; youwould use the .NETFRD system call to
do this. You must also perform the file block retrievals in a timely
fashion, else the TFTP server will time-out.

Information about the file open/request is passed in a command
packet which has been built in memory. (The user program must
first manually prepare the packet.) The address of the packet is
passed as an argument to the function. All packets must be
longword aligned.

The packet structure, NFILEOPEN, is listed in the "C" header file in
Appendix I. Its format is shown below:

Field descriptions:

F E D C B A 9 8 7 6 5 4 3 2 1 0
$00 Controller LUN Device LUN

$02 Status Word

$04

$42
Filename String $40(&64) Bytes

Controller LUN Logical Unit Number (LUN) of controller to use.

Device LUN Logical Unit Number of device to use.
2-35

System Calls

2

Example

See Appendix I.

Status Word This status word reßects the result of the
operation. It is zero if the command completed
without errors. Refer to Appendix H for
meanings of returned error codes.

Filename String This Þeld is the string of the name of the Þle to
load. The Þlename string must be null
terminated. The maximum length of the string
is 64 bytes, inclusive of the null terminator.
2-36

System Call Routines

2

.NETFRD Function

Name

 .NETFRD - Retrieve specified file blocks

Code

 $001C

Description

This function allows you to retrieve the specified file blocks. You
would use this function multiple times to retrieve the entire file.
Prior to using this function a .NETFOPN system call must have
been performed. For each file block retrieved the firmware will
transmit a TFTP ACK packet to acknowledge the receipt of data.
The end of data will be signified when the number o f bytes
transferred is smaller than the block size. The block size is set at 512
bytes (TFTP convention). For each .NETFRD system call
performed, you must update (increment by one) the block number
field of the command packet. Initially the block number is one.

Information about the file block is passed in a command packet
which has been built in memory. (The user program must first
manually prepare the packet.) The address of the packet is passed
as an argument to the function. All packets must be longword
aligned. The packet structure, NFILEREAD, is listed in the "C"
header file in Appendix I. Its format is shown below:

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 Status Word

$04
Data Transfer Address

Most Significant Word

$06 Least Significant Word

$08 Transfer Byte Count

$0A Block Number

$0C
Data Packet (File Block) Timeout

Most Significant Word

$0E Least Significant Word
2-37

System Calls

2

Field descriptions:

Example

See Appendix I.

Controller LUN Logical Unit Number (LUN) of controller to use.

Device LUN Logical Unit Number of device to use.

Status Word This status word reßects the result of the
operation. It is zero if the command completed
without errors. Refer to Appendix H for
meanings of returned error codes.

Data Transfer
Address

Address of buffer in memory to which to
transfer the Þle block.

Transfer Byte
Count

This Þeld is status only and will be updated
only on a successful data transfer. The size of
each Þle block is 512 bytes unless it is the last
block of the Þle (0 to 511 bytes).

Block Count This parameter speciÞes the next expected block
number to be received.

Data Packet
Timeout

This parameter speciÞes the number of seconds
to wait before giving up control to the caller.
2-38

System Call Routines

2

.NETCTRL Function

Name

 .NETCTRL - Implement special control functions

Code

 $001D

Description

This function is used to implement any special control functions
that cannot be accommodated easily with any of the other network
functions. At the present, the only defined packet is SEND packet,
which allows you to send a packet in the specified format to the
specified network interface driver. The required parameters are
passed in a command packet which has been built somewhere in
memory.

The address of the packet is passed as an argument to the function.
This function effectively performs an NIOC command, but under
program control. All packets must be longword aligned. The
packet structure, NIOCCALL, is listed in the "C" header file in
Appendix I. Its format is shown below:

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 Status Word

$04
Command Identifier

Most Significant Word

$06 Least Significant Word

$08
Memory Address (Data Transfers)

Most Significant Word

$0A Least Significant Word

$0C
Number of Bytes (Data Transfers)

Most Significant Word

$0E Least Significant Word

$10
Status/Control Flags

Most Significant Word

$12 Least Significant Word
2-39

System Calls

2

Field descriptions:

Controller LUN Logical Unit Number (LUN) of controller to use.

Device LUN Logical Unit Number of device to use.

Status Word This status word reßects the result of the
operation. It is zero if the command completed
without errors. Refer to Appendix H for
meanings of returned error codes.

Command
IdentiÞer

This parameter speciÞes the command
operation type. The command types
(identiÞers) are as follows:

0 Initialize device/channel/node

1 Get hardware (e.g., Ethernet) address
(network node)

2 Transmit (put) data packet

3 Receive (get) data packet

4 Flush receiver and receive buffers

5 Reset device/channel/node

Rules on commands:

The initialization (type 0) of the
device/channel/node must always be
performed Þrst. If you have booted or initiated
some other network I/O command, the
initialization would already have been done.

The ßush receiver and receive buffer (type 4)
would be used if, for example, the current
receive data is not longer needed, or to provide
a known buffer state prior to initiating data
transfers.
2-40

System Call Routines

2

Example

See Appendix I.

The reset device/channel/node (type 5) would
be used if another operating system (node
driver) needs to be in control of the
device/channel/node. Basically, put the
device/channel/node to a known state.

Memory Address This parameter speciÞes the memory address in
which the data transfer operation (types 1, 2,
and 3) would take place from/to.

Number of Bytes This parameter speciÞes the number of bytes of
the data transfer.

Status/Control
Flags

This parameter speciÞes control and status ßags
as needed by the operation types.

Bit #16 -- Receive data transferred to user's
memory.
2-41

System Calls

2

.OUTCHR Function

Name

.OUTCHR - Output character routine

Code

$0020

Description

This function outputs a character to the default output port.

Entry Conditions

Exit Conditions Different from Entry

Character is sent to the default I/O port.

Example

MOVE.B D0,-(A7) Send character in D0
SYSCALL .OUTCHR to default output port.

SP ==> Character. byte

Word fill (placed automatically by
MPU).

byte

SP ==> Top of stack.
2-42

System Call Routines

2

.OUTSTR, .OUTLN Functions

Name

.OUTSTR - Output string to default output port
.OUTLN - Output string along with <CR><LF>

Codes

$0021
$0022

Description

.OUTSTR outputs a string of characters to the default output port.

.OUTLN outputs a string of characters followed by a <CR><LF>
sequence.

Entry Conditions

Exit Conditions Different from Entry

Example

If A0 = start of string
If A1 = end of string+1

MOVEM.L A0/A1,-(A7) Load pointers to string
SYSCALL .OUTSTR and print it.

SP ==> Address of first character +4. longword

Address of last character + 1. longword

SP ==> Top of stack.
2-43

System Calls

2

.WRITE, .WRITELN Functions

Name

.WRITE - Output string with no <CR> or <LF>

.WRITELN - Output string with <CR> and <LF>

Code

$0023
$0024

Description

These output functions are designed to output strings formatted
with a count byte followed by the characters of the string. The user
passes the starting address of the string. The output goes to the
default output port.

Entry Conditions

Four bytes of parameter positioned in stack as follows:

Exit Conditions Different from Entry

Parameter stack will have been deallocated.

Example

The following section of code ...

MESSAGE1 DC.B 9,'MOTOROLA'

MESSAGE2 DC.B 9,'QUALITY!'

.

.

.
PEA MESSAGE1(PC) Push address of string.

SP ==> Address of string. longword

SP ==> Top of stack.
2-44

System Call Routines

2

SYSCALL .WRITE Use TRAP #15 macro.
PEA MESSAGE2(PC) Push address of other string.
SYSCALL .WRITE Invoke function again.

... would print out the following message:

MOTOROLA QUALITY!

Using function .WRITELN, however, instead of function .WRITE
would output the following message:

MOTOROLA
QUALITY!

Note The string must be formatted such that the first byte
(the byte pointed to by the passed address) contains the
count (in bytes) of the string. There is no special
character at the end of the string as a delimiter.
2-45

System Calls

2

.PCRLF Function

Name

 .PCRLF - Print <CR><LF> sequence

Code

 $0026

Description

.PCRLF sends a <CR><LF> sequence to the default output port.

Entry Conditions

No arguments or stack allocation required.

Exit Conditions Different from Entry

None.

Example

SYSCALL .PCRLF output <CR><LF>
2-46

System Call Routines

2

.ERASLN Function

Name

 .ERASLN - Erase Line

Code

$0027

Description

.ERASLN is used to erase the line at the present cursor position. If
the terminal type flag is set for hardcopy mode, a <CR><LF> is
issued instead.

Entry Conditions

No arguments required.

Exit Conditions Different from Entry

The cursor is positioned at the beginning of a blank line.

Example

SYSCALL .ERASLN>
2-47

System Calls

2

.WRITD, .WRITDLN Functions

Name

.WRITD - Output string with data
.WRITDLN - Output string with data and <CR><LF>

Code

$0028
$0025

Description

These trap functions take advantage of the monitor I/O routine
which outputs a user string containing embedded variable fields.
You pass the starting address of the string and the address of a data
stack containing the data which is inserted into the string. The
output goes to the default output port.

Entry Conditions

Eight bytes of parameter positioned in stack as follows:

A separate data stack or data list arranged as follows:

Exit Conditions Different from Entry

Parameter stack space will have been deallocated.

SP ==> Address of string. longword

Data list pointer. longword

Data list pointer => Data for first variable in string. longword

Data for next variable. longword

Data for next variable. longword

Etc.

SP ==> Top of stack.
2-48

System Call Routines

2

Example

The following section of code ...

ERRMESSG DC.B $14,'ERROR CODE = |10,8Z|'

:
.
MOVE.L #3,-(A5) Push error code on data stack.
PEA (A5) Push data stack location.
PEA ERRMESSG(PC) Push address of string.
SYSCALL .WRITDLN Invoke function.
TST.L (A5)+ Deallocate data from data stack.

... would print out the following message:

ERROR CODE = 3

Notes 1. The string must be formatted such that the first byte (the
byte pointed to by the passed address) contains the count
(in bytes) of the string (including the data field specifiers,
described in Note 2. following).

2. Any data fields within the string must be represented as
follows: "|radix,fieldwidth[Z]|Ó where radix is the base that
the data is to be displayed in (in hexadecimal, for example,
"A" is base 10, "10" is base 16, etc.) and fieldwidth is the
number of characters this data is to occupy in the output.
The data is right justified, and left-most characters are
removed to make the data fit.

The "Z" is included if you want to suppress leading zeros
in output. The vertical bars "|Ó are required characters.

3. All data is to be placed in the stack as 32-bit longwords.
Each time a data field is encountered in the user string, a
longword is read from the stack to be displayed.

4. The data stack is not destroyed by this routine. If it is
necessary that the space in the data stack be deallocated,
then this must be done by the calling routine, as shown in
the preceding example.
2-49

System Calls

2

.SNDBRK Function

Name

 .SNDBRK - Send break

Code

 $0029

Description

.SNDBRK is used to send a break to the default output port(s).

Entry Conditions

No arguments or stack allocation required.

Exit Conditions Different from Entry

Each serial port specified by current default output port list has sent
"break".

Example

SYSCALL .SNDBRK>
2-50

System Call Routines

2

.DELAY Function

Name

 .DELAY - Timer delay function

Code

 $0043

Description

This function is used to generate accurate timing delays that are
independent of the processor frequency and instruction execution
rate. This function uses the onboard timer for operation. You
specify the desired delay count in milliseconds. .DELAY returns to
the caller after the specified delay count is exhausted.

Entry Conditions

Exit Conditions Different from Entry

Example

PEA.L &15000 Load a 15 second delay.
SYSCALL .DELAY

.

.

.
PEA.L &50 Load a 50 millisecond delay.
SYSCALL .DELAY

SP ==> Delay time in milliseconds. longword

SP ==> Top of stack.
2-51

System Calls

2

.RTC_TM Function

Name

.RTC_TM - Time initialization for RTC

Code

 $0050

Description

.RTC_TM initializes the MK48Txx Real-Time Clock with the time
that is located in a user-specified buffer.

The data input format can be either ASCII or unpacked BCD. The
order of the data in the buffer is:

Entry Conditions

Exit Conditions Different from Entry

Parameter is deallocated from stack.

H H M M S S s c c

↑ ↑

begin buffer buffer + eight bytes

HH Hours
MM Minutes
SS Seconds
s Sign of calibration factor (+ or -)
cc Value of calibration factor

SP ==> Time initialization buffer. address

SP ==> Top of stack.
2-52

System Call Routines

2

Example

Time is to be initialized to 2:05:32 PM with a calibration factor of
-15 (s=sign, cc=value).

Data in BUFFER is 3134 3035 3332 2D 3135 or
 x1x4 x0x5 x3x2 2D x1x5. (x = don't care)

PEA.L BUFFER(PC) Put buffer address on stack.
SYSCALL .RTC_TM Initialize time and start clock.
2-53

System Calls

2

.RTC_DT Function

Name

 .RTC_DT - Date initialization

Code

$0051

Description

.RTC_DT initializes the MK48Txx Real-Time Clock with the date
that is located in a user-specified buffer.

The data input format can be either ASCII or unpacked BCD. The
order of the data in the buffer is:

Entry Conditions

Exit Conditions Different from Entry

Parameter is deallocated from stack.

Y Y M M D D d

↑ ↑

begin buffer buffer + six bytes

YY Year
MM Month
DD Day of month
d Day of week (1 = Sunday)

SP ==> Date initialization buffer. address

SP ==> Top of stack.
2-54

System Call Routines

2

Example

Date is to be initialized to Monday, Nov. 18, 1988 (d = day of week):

Data in BUFFER is 3838 3131 3138 32 or
 x8x8 x1x1 x1x8 x2. (x = don't care)

PEA.L BUFFER(PC) Put buffer address on stack.
SYSCALL .RTC_DT Initialize date and start clock.
2-55

2-56

2

System Calls
2System Calls

0System Call Routines
.RTC_DSP Function

Name

 .RTC_DSP - Display time from RTC

Code

$0052

Description

.RTC_DSP displays the date and time on the console from the
current cursor position. The format is as follows:

DAY MONTH DD, YYYY hh:mm:ss.s

Entry Conditions

No arguments or stack allocation required.

Exit Conditions Different from Entry

The cursor is left at the end of the string.

Example

SYSCALL .RTC_DSP Displays the day, date, and time
 on the screen.

System Call Routines

2

.RTC_RD Function

Name

.RTC_RD - Read the RTC registers

Code

$0053

Description

.RTC_RD is used to read the Real-Time Clock registers. The data
returned is in packed BCD.

The order of the data in the buffer is:

Y M D d H M S c

↑

begin buffer buffer + eight bytes

Y Year (2 nibbles packed BCD)
M Month (2 nibbles packed BCD)
D Day of month (2 nibbles packed BCD)
d Day of week (2 nibbles packed BCD)
H Hour of 24 hr clock (2 nibbles packed BCD)
M Minute (2 nibbles packed BCD)
S Seconds (2 nibbles packed BCD)
c Calibration factor (MS nibble = 0 negative, 1 positive), (LS

nibble = value)
2-57

System Calls

2

Entry Conditions

Exit Conditions Different from Entry

Buffer now contains date and time in BCD format.

Example

A date and time of Saturday, May 11, 1988 2:05:32 PM are to be
returned in the buffer (d = day of week, c = calibration value)

Data in buffer is 88 05 11 07 14 05 32 xx (xx = unknown)

PEA.L BUFFER(PC Put buffer address on stack.
SYSCALL .RTC_RD Read timer.

SP ==> Buffer address where RTC data is to
be returned.

longword

SP ==> Top of stack.
2-58

System Call Routines

2

.REDIR Function

Name

.REDIR - Redirect I/O function

Code

$0060

Description

.REDIR is used to select an I/O port and at the same time invoke a
particular I/O function. The invoked I/O function reads or writes
to the selected port.

Entry Conditions

Exit Conditions Different from Entry

To use .REDIR, you should:

1. Allocate space on the stack for the I/O function results (only
if required).

2. Push the parameters required for the I/O function on the
stack (only if required).

3. Push code for the desired I/O function on the stack.

4. Push the desired port number on the stack.

SP ==> Port. word

I/O function to call. word

Parameters of I/O function. size speciÞed by function
(if needed)

Space for results. size speciÞed by function
(if needed)

SP ==> Result. size speciÞed by function
(if needed)
2-59

System Calls

2

5. Call the .REDIR function.

6. Pop the results off the stack (only if required).

Example

Read a character from port 1 using .REDIR

CLR.B -(A7) Allocate space for results.
MOVE.W #$0000,-(A7) Load code for function .INCHR.
MOVE.W #1,-(A7) Load port number.
SYSCALL .REDIR Call redirect I/O function.
MOVE.B (A7)+,D0 Read character.

Example

Write a character to port 0 using .REDIR

MOVE.B #`A',-(A7) Push character to write.
MOVE.W #$0020,-(A7) Load code for function

 .OUTCHR.
MOVE.W #0,-(A7) Load port number.
SYSCALL .REDIR Call redirect I/O function.
2-60

System Call Routines

2

.REDIR_I, .REDIR_O Functions

Name

.REDIR_I - Redirect input

.REDIR_O - Redirect output

Codes

$0061
$0062

Description

The .REDIR_I and .REDIR_O functions are used to change the
default port number of the input and output ports, respectively.
This is a permanent change, that is, it remains in effect until a new
.REDIR command is issued.

Entry Conditions

Exit Conditions Different from Entry

Example

MOVE.W #1,-(A7) Load port number.
SYSCALL .REDIR_I Set it as new default (all inputs

 will now come from this port,
 output port remains unaffected).

SP ==> Port number. word

SP ==> Top of stack.

.SIO_IN Loaded with a new mask if .REDIR_I called.

.SIO_OUT Loaded with a new mask if .REFIR_O called.
2-61

System Calls

2

.RETURN Function

Name

 .RETURN - Return to 16XBug

Code

$0063

Description

.RETURN is used to return control to 16XBug from the target
program in an orderly manner. First, any breakpoints inserted in
the target code are removed. Then, the target state is saved in the
register image area. Finally, the routine returns to 16XBug.

Entry Conditions

No arguments required.

Exit Conditions Different from Entry

Control is returned to 16XBug.

Example

SYSCALL .RETURN Return to 16XBug .

Note .RETURN must be used only by code that was started
using 16XBug.
2-62

System Call Routines

2

.BINDEC Function

Name

.BINDEC - Used to calculate the Binary Coded Decimal (BCD)
 equivalent of the binary number specified

Code

$0064

Description

.BINDEC takes a 32-bit unsigned binary number and changes it to
an equivalent BCD number.

Entry Conditions

Exit Conditions Different from Entry

Example

SUBQ.L #8,A7 Allocate space for result.
MOVE.L D0,-(A7) Load hex number.
SYSCALL .BINDEC Call .BINDEC.
MOVE.L (A7)+,D1/D2 Load resul.

SP ==> Argument: Hexadecimal number. longword

Space for result 2. longword

SP ==> Decimal number.
 (two most significant DIGITS) longword

 (eight least significant DIGITS) longword
2-63

System Calls

2

.CHANGEV Function

Name

.CHANGEV - Parse value, assign to variable

Code

$0067

Description

Attempt to parse value in user-specified buffer. If user's buffer is
empty, prompt user for new value, otherwise update integer offset
into buffer to skip "value". Display new value and assign to
variable unless user's input is an empty string.

Entry Conditions

Exit Conditions Different from Entry

Example

PROMPTDC.B 14,'COUNT = |10,8|'

GETCOUNTPEA PROMPT(PC) Point to prompt string.
PEA COUNT Point to variable to change.
PEA BUFFER Point to buffer.
PEA POINT Point to offset into buffer.
SYSCALL .CHANGEV Make the system call.
RTS COUNT changed, return.

SP ==> Address of 32-bit offset into your buffer.
Address of your buffer (pointer/count format
string).
Address of 32-bit integer variable to "change".
Address of string to use in prompting and
displaying value.

SP ==> Top of stack.
2-64

System Call Routines

2

If the above code was called with BUFFER containing "1 3" in
pointer/count format and POINT containing 2 (longword),
COUNT would be assigned the value 3, and POINT would contain
4 (pointing to first character past "3"). Note that POINT is the offset
from the start address of the buffer (not the address of the first
character in the buffer!) to the next character to process. In this case,
a value of 2 in POINT indicates that the space between "1" and "3"
is the next character to be processed. After calling .CHANGEV, the
screen displays the following line:

COUNT = 3

If the above code was called again, nothing could be parsed from
BUFFER, so a prompt would be issued. For purpose of example,
the string "5" is entered in response to the prompt.

COUNT = 3? 5 (CR)
COUNT = 5

If in the previous example nothing had been entered at the prompt,
COUNT would retain its prior value.

COUNT = 3? (CR)
COUNT = 3
2-65

System Calls

2

.STRCMP Function

Name

 .STRCMP - Compare two strings (pointer/count)

Code

$0068

Description

Comparison for equality is made and a Boolean flag is returned to
caller. The flag is $00 if the strings are not identical; otherwise it is
$FF.

Entry Conditions

Exit Conditions Different from Entry

Example

If A1 and A2 contain addresses of the two strings;

SUBQ.L #4,A7 Allocate longword to receive result.
PEA (A1) Push address of one string.
PEA (A2) Push address of the other string.
SYSCALL .STRCMP Compare the strings.
MOVE.L (A7)+,D0 Pop boolean flag into data register.
TST.B D0 Check boolean flag.
BNE ARE_SAME Branch if strings are identical.

SP ==> Address of string 1.
Address of string 2.
Three bytes (unused).
Byte to receive string comparison result.

SP ==> Three bytes (unused).
Byte to receive string comparison result.
2-66

System Call Routines

2

.MULU32 Function

Name

 .MULU32 - Unsigned 32-bit x 32-bit multiply

Code

$0069

Description

Two 32-bit unsigned integers are multiplied and the product is
returned as a 32-bit unsigned integer. No overflow checking is
performed.

Entry Conditions

Exit Conditions Different from Entry

Example

Multiply D0 by D1; load result into D2.

SUBQ.L #4,A7 Allocate space for result.
MOVE.L D0,-(A7) Push multiplicand.
MOVE.L D1,-(A7) Push multiplier.
SYSCALL .MULU32 Multiply D0 by D1.
MOVE.L (A7)+,D2 Get product.

SP ==> 32-bit multiplier.
32-bit multiplicand.
32-bit space for result.

SP ==> 32-bit product (result from multiplication).
2-67

System Calls

2

.DIVU32 Function

Name

 .DIVU32 - Unsigned 32-bit x 32-bit divide

Code

$006A

Description

Unsigned division is performed on two 32-bit integers and the
quotient is returned as a 32-bit unsigned integer. The case of
division by zero is handled by returning the maximum unsigned
value $FFFFFFFF.

Entry Conditions

Exit Conditions Different from Entry

Example

Divide D0 by D1; load result into D2.

SUBQ.L #4,A7 Allocate space for result.
MOVE.L D0,-(A7) Push dividend.
MOVE.L D1,-(A7) Push divisor.
SYSCALL .DIVU32 Divide D0 by D1.
MOVE.L (A7)+,D2 Get quotient.

SP ==> 32-bit divisor (value to divide by).
32-bit dividend (value to divide).
32-bit space for result.

SP ==> 32-bit quotient (result from division).
2-68

System Call Routines

2

.CHK_SUM Function

Name

.CHK_SUM - Generate checksum for address range

Code

 $006B

Description

This function generates a checksum for an address range that is
passed in as arguments.

Entry Conditions

Exit Conditions Different from Entry

Example #1

Byte checksum:

CLR.L -(A7) Allocate space for "checksum".
MOVE.L #1,-(A7) Push scale of checksum.
PEA.L (A1) Push pointer to "ending address + 1".
PEA.L (A0) Push pointer to "starting address".
SYSCALL .CHK_SUM Invoke TRAP #15 system call.

SP ==> Beginning address. longword

+4 Ending address + 1. longword

+8 Scale of checksum. longword

0 = Default setting (longword)
1 = byte
2 = word
4 = longword

+C Space for checksum. longword

SP ==> Checksum. longword
2-69

System Calls

2

MOVE.L (A7)+,D0 Load checksum and deallocate
 space, bits 7 to 0 contain the byte
 checksum.

Example #2

Word hecksum:

CLR.L -(A7) Allocate space for "checksum".
MOVE.L #2,-(A7) Push scale of checksum.
PEA.L (A1) Push pointer to "ending address + 1".
PEA.L (A0) Push pointer to "starting address".
SYSCALL .CHK_SUM Invoke TRAP #15 system call.
MOVE.L (A7)+,D0 Load checksum and deallocate space,

 bits 15 to 0 contain the word
 checksum.

Example #3

Longword checksum:

CLR.L -(A7) Allocate space for "checksum".
MOVE.L #4,-(A7) Push scale of checksum.
PEA.L (A1) Push pointer to "ending address + 1".
PEA.L (A0) Push pointer to "starting address".
SYSCALL .CHK_SUM Invoke TRAP #15 system call.
MOVE.L (A7)+,D0 Load checksum and deallocate

 space,bits 31 to 0 contain the
 longword checksum.

Notes 1. If a Bus Error results from this routine, then the bug
bus error exception handler is invoked and the calling
routine is also aborted.

2. The calling routine must insure that the beginning
and ending addresses are on word boundaries or the
integrity of the checksum cannot be guaranteed.
2-70

System Call Routines

2

.BRD_ID Function

Name

 .BRD_ID - Return pointer to board ID packet

Code

$0070

Description

This routine returns a pointer on the stack to the "board
identification" packet. The packet is built at initialization time and
contains information about the board and peripherals it supports.

The format of the board identification packet is shown below:

Field descriptions:

31 24 23 16 15 8 7 0

$00 Eye Catcher

$04 Revision Month Day Year

$08 Packet Size Reserved

$0C Board Number Board Suffix

$10 Options (coprocessor, etc.) Family CPU

$14 Controller LUN Device LUN

$18 Device Type Device Number

$1C Option-2

Eye Catcher Longword containing ASCII string "BDID".

Revision Byte containing bug revision (in BCD).

Month, Day, Year Three Bytes contain date (in BCD) bug was
frozen.

Packet Size Word contains the size of the packet.

Reserved Reserved for future use.

Board Number Word contains the board number (in BCD).

Board SufÞx Word contains the ASCII board sufÞx (e.g. XT,
A, 20).
2-71

System Calls

2

Options:

Bits 0-3 Four bits contain CPU type:

CPU = 1 ; MC68010 present

CPU = 2 ; MC68020 present

CPU = 3 ; MC68030 present

CPU = 4 ; MC68040 present

CPU = 5 ; MC68060 present

CPU = 8 ; MC88100 present

CPU = 9 ; MC88110 present

Bits 4-6 Three bits contain the Family type:

Fam = 0 ; 68xxx family

Fam = 1 ; 88xxx family

Bits 7-31 The remaining bits deÞne various
board speciÞc options:

Bit 7 set = FPC present

Bit 8 set = MMU present

Bit 9 set = MMB present

Controller LUN The Logical Unit Number for the boot device
controller (refer to Appendices E and G).

Device LUN The Logical Unit Number for the boot device
(refer to Appendices E and G).

Device Type The device type of the boot device (refer to the
following table).

Device Number The number of the boot device on the controller
(refer to the following table).

Option-2 Reserved for future use (zero in this
implementation).
2-72

System Call Routines

2

Refer to Appendix G for data on supported network controllers.

Device
 Type

Controller Device Number

0 or 1 MVME320
ST506 Disk
Controller

0 = Winchester hard drive
1 = Winchester hard drive
2 = Floppy disk drive
3 = Floppy disk drive

2 or 3 MVME327A
SCSI Controller

00 = SCSI Common Command Set (CCS)
10 = SCSI Common Command Set (CCS)
20 = SCSI Common Command Set (CCS)
30 = SCSI Common Command Set (CCS)
40 = Archive Viper streaming tape
50 = Archive Viper streaming tape
60 = Exabyte Mini-disk
80 = Local ßoppy drive
81 = Local ßoppy drive

4 or 5 MVME350
Streaming Tape
Controller

0 = Streaming tape drive

6 or 7 MVME328
SCSI Controller

00 = SCSI Common Command Set (CCS), direct access
08 = SCSI Common Command Set (CCS), direct access
10 = SCSI Common Command Set (CCS), direct access
18 = SCSI Common Command Set (CCS), direct access
20 = SCSI Common Command Set (CCS), sequential access
28 = SCSI Common Command Set (CCS), sequential access
30 = Floppy disk drive
40 = SCSI Common Command Set (CCS), direct access
48 = SCSI Common Command Set (CCS), direct access
50 = SCSI Common Command Set (CCS), direct access
58 = SCSI Common Command Set (CCS), direct access
60 = SCSI Common Command Set (CCS), sequential access
68 = SCSI Common Command Set (CCS), sequential access
70 = Floppy disk drive

8 or 9 MVME323
ESDI Disk
Controller

0 = First drive
1 = Second drive
2 = Third drive
3 = Fourth drive
2-73

System Calls

2

Entry Conditions

Exit Conditions Different from Entry

Example

PEA.L (A0) Reserve space on stack for return value.
SYSCALL .BRD_ID Board ID trap call.
MOVE.L (A7)+,A0 Get pointer off stack.

SP ==> Result.

Allocate space for ID packet address.longword

SP ==> Address.

Starting address of ID packet. longword
2-74

2System Calls

0System Call Routines
2

System Call Routines
.ENVIRON Function

Name

 .ENVIRON - Read/write environment parameters

Code

$0071

Description

The purpose of the TRAP is to allow a user program access to
certain Debugger environmental parameters. These parameters
include default boot devices and startup configurations.

Entry Conditions

SP ==>
+4 ==>
+8 ==>

Parameter storage buffer.
Size of the storage buffer
Operation type:

0

1

2

Size in bytes of the information the debugger
will pass.
Update the Debugger's NVRAM with
environmental parameters passed.
The Debugger will update your parameter
storage buffer with environmental information
from the Debugger's NVRAM.
2-75

System Calls

2

Exit Conditions Different from Entry

Description of Parameter Packets

The data contained in the parameter storage area is organized as a
set of data packets. Each data packet has the following structure:

For operations 1 & 2,

Z(ero) = Set to 1 if no errors.

Z(ero) = Cleared if debugger has more data than the passed
buffer could hold.
Partial data transferred, or Checksum error
occurred during the write update (write only).

For operation 0,

The number of bytes required to store the debugger information
will be contained in register D0.

Identifier

Number of
bytes left
in packet

data

data

7 0
2-76

System Call Routines

2

Currently Supported Packets and Formats

0 End of the list. (End Record)

0

0

1 Debugger Start-Up Parameters

 1

 $6

 System or Bug mode ßag.

 Field service menu ßag.

 Remote start method ßag.

 Probe system for controllers ßag.

 Negate SYSFAIL always ßag.

 Reset local SCSI on board reset ßag.

2 Disk Auto Boot Information

 2

 $15

 Disk Auto Boot Enable

 Disk Auto Boot at power up only

 Disk Auto Boot Controller Logical Unit Number

 Disk Auto Boot Device Logical Unit Number

 Disk Auto Boot Abort Delay

 Disk Auto Boot String to be passed to load program
($10 bytes in length)

3 ROM Boot Information

 3

 0C

 ROM Boot Enable.
2-77

System Calls

2

For an explanation of each entry and definition of options, refer to
the ENV command in the Debugger manual.

The Debugger will return all parameter packets on a read. During
a write you may return only the packets that need to be updated;
however, the packet may not be returned out of order.

During an update, entries that have specific values will be verified.
If an entry is in error, that parameter will be unchanged.

 ROM Boot at power up only

 ROM Boot from VME bus

 ROM Boot Abort Delay

 ROM Boot Starting Address (4 bytes in length)

 ROM Boot Ending Address (4 bytes in length)

4 NETBoot Information

 4

 $9

 NETBoot Enable

 NETBoot at power up only

 NETBoot Controller Logical Unit Number

 NETBoot Device Logical Unit Number

 NETBoot Abort Delay

 NETBoot parameter pointer (4 bytes in length)

5 Memory Size Information

 5

 $9

 Memory Size Enable ($4E or $59)

 Memory Size Starting Address (4 bytes)

 Memory Size ending Address
2-78

System Call Routines

2

.PFLASH Function

Name

.PFLASH - Program FLASH memory

Code

$0073

Description

The purpose of this TRAP is to program FLASH memory under
program control. The address of the packet is passed as an
argument to the function. The address of the packet is passed in the
longword memory location pointed to by the current stack pointer.
The packet contains the necessary arguments/data to program the
FLASH memory.

Entry Conditions

Exit Conditions Different from Entry

None.

Format of flash memory control packet:

The FLASH Memory Control Packet must be longword/word (32
bit) aligned.

SP ==> Address: Starting address of control
packet.

longword

31 24 23 16 15 8 7 0

$00 Status Word Control Word

$04 Source Starting Address

$08 Number of Bytes to Program

$0C Destination Starting Address

$10 Instruction Execution Address
2-79

System Calls

2

Field descriptions:

Control/Status
Word

SpeciÞes control and status of the various
phases of the FLASH memory programming.
This parameter has two 16-bit parts: bits #31 to
#16 specify status and bits #15 to #0 specify
control.

Source Starting
Address

SpeciÞes the source starting address of the data
with which to program the FLASH memory.
Table 3-2 describes the address and range
alignment requirements for this parameter.

Number of Bytes
to Program

SpeciÞes the number of bytes of the source data
(or the number bytes to program the FLASH
memory with). Table 3-2 describes the address
and range alignment requirements for this
parameter.

Destination
Starting Starting
Address

SpeciÞes the starting address of the FLASH
memory to program the source data with. Table
3-2 describes the address and range alignment
requirements for this parameter.

Instruction
Execution
Address

SpeciÞes the instruction execution address to be
executed upon completion of the FLASH
memory programming. This parameter must
meet the syntax of the reset vector of the
applicable MPU architecture of the host
product. This parameter is qualiÞed with a
control bit in the control/status word; execution
will only occur when the control bit is set and no
errors occur during programming/veriÞcation.
This non-execution on error can be invalidated
by yet another control bit in the control/status
word.
2-80

System Call Routines

2

The next table describes the definitions of the control and status bits
in the Control/Status Word field.

Note When programming the FLASH device in which the
FLASH memory is executing, bit 4 will have no effect.
All programming operations that involve the FLASH
device in which the FLASH memory is executing will
be NON-VERBOSE.

Type
Bit
Position

DeÞnition

Control 0 Execution address valid.
Control 1 Execute address on error as well.
Control 2 Execute local reset.
Control 3 Execute local reset on error as well.
Control 4 Non-verbose, no display messages. (NOTE)
Control 5-15 Unused, Reserved
Status 16 Error of some type, see remaining status bits.
Status 17 Address/Range alignment error.
Status 18 FLASH Memory address range error.
Status 19 FLASH Memory erase error.
Status 20 FLASH Memory write error.
Status 21 VeriÞcation (read after write) error.
Status 22 Time-Out during erase operation.
Status 23 Time-Out during byte write operation.
Status 24 Unexpected manufacturer identiÞer read from

the device.
Status 25 Unexpected device identiÞer read from the

device.
Status 26 Unable to initialize the FLASH device to zero.
Status 27-29 Unused, Reserved
Status 30 FLASH Memory program control driver

downloaded.
Status 31 No return possible to caller.
2-81

System Calls

2

.DIAGFCN Function

Name

 .DIAGFCN - Diagnostic function(s)

Code

$0074

Description

.DIAGFCN is a system-call-like function, for the diagnostics. This

.DIAGFCN system call provides the debugger and external
software (operating systems) with a single-point-of-entry to
information maintained by the firmware diagnostics.

The .DIAGFCN system call requires a single argument, which is a
pointer to a diagfcn struct. This struct contains an Õunsigned intÕ
which is the number of the diagnostic function being requested,
and a pointer to arguments for the function to be executed:

unsigned int DIAGFCN number to execute.
char * Pointer to function arguments.

This system call implements the following diagnostic functions:

01: .CHKFCN (check function)

The purpose of this function is to determine whether a given
diagfcn is present in this revision of firmware. The argument
pointer in the diagfcn struct simply points to an unsigned int
variable, containing the diagfcn number to test for. If it exists, the
syscall will return zero.

02: .TESTSTAT (output test status report)

This diagcfn call allows access to selftest diagnostic results. The
calling function must supply the diagcfn call with a pointer to two
arguments (a structure containing two members):
2-82

System Call Routines

2

struct ts_bufps
{

unsigned int size;
void *bufptr;

}

ÔbufptrÕ points to a buffer in memory, where the first Ôsizeof(int)Õ
bytes are reserved for an integer ÔcountÕ variable, and the rest of the
buffer is reserved as a ÔcharÕ array for ASCII string data:

struct ts_bufs

{

unsigned int count;

unsigned char buf[1];

}

The calling function typically first makes a call with the ÔsizeÕ set to
Ôsizeof(int)Õ, and ÔbufptrÕ pointing to a section of R/W memory,
ÔsizeÕ bytes long. This causes the TESTSTAT function to calculate
how large a buffer will be required to contain the test status report.
The calculated value, plus Ôsizeof(int)Õ, will be returned in the
location pointed to by ÔbufptrÕ.

The caller will then typically allocate the number of bytes of
memory requested for the report, and call the TESTSTAT function
again. This time, the ÔsizeÕ passed in should be at least as large as the
count returned by the previous call to TESTSTAT. This function
will then recalculate the memory required, compare that to the

int ’size’

void *bufptr ---------------------> int count

 (char buf)

 B

 U

 F

 F

 E

 R
2-83

System Calls

2

amount of memory supplied, and either return an error if
insufficient buffer space has been allocated, or generate the report
and append it to the count at the location pointed to by ÔbufptrÕ.

The test result strings placed in the buffer will have the format:

<Dir_Name><Test_Name><Description><F|P|B|M|N|E><0>

Where is a unique delimiter char and <0> is a zero. The
<F|P|B|M|N|E> is a single character:

F if the test has ever failed since the last reset.
P if the test has executed to completion without failure.
B if the test has been bypassed since the last reset.
M if the test has been masked by the operator.
N if the test has not been executed since the last reset.
E if the test is an ÔevalÕ type, and is normally not executed.

If somehow, an invalid test index is generated internal to the
debugger, a status of ? will result. This should never occur.

The N and E status is stored for each test at diag init time (on reset),
depending on whether the test is of type ÔT_TESTÓ (a ÔregularÕ test)
or ÒT_EVALÓ (a test that is only run manually). This is the only time
these values will be stored for a test. All other status types
destructively overwrite this initial value.

The M status will be saved for a test, whenever the test is executed,
if masking has been enabled for this test. It will only overwrite an N
status (and not an E).

The B status indicates a test has decided not to run, due to some
configuration limitation (an example would be when the MCECC
tests report bypassed on a CPU that only contains parity-type
RAM). The B status will overwrite the M, N, and E status.

The P status will only ever be saved, if the previous status for the
test was B, M, N, or E. A P status will never overwrite an F status. If a
test is aborted before completion, the previous status will remain,
even if the test was passing up to the point of the abort.

The F (fail) status will overwrite all other values, and will never be
changed without a reset.
2-84

System Call Routines

2

These status strings are appended together in the buffer supplied
by the caller. The initial delimiter character of each test result string
should be read by the calling function, and used as the character to
search for, when looking for separation between ÔwordsÕ of the
result. Each single test result string could have a different delimiter.
The <0> following each result string indicates the start of the next
result.

A hex dump of report data might look like:

100 00000204 (‘count’)
104 5F 72 61 6D 5F 71 75 69 6B 5F 51 75 69 63 6B 20 _ram_quik_Quick
114 57 72 69 74 65 2F 52 65 61 64 5F 4E 00 5F 72 61 Write/Read_N._ra
124 6D 5F 61 6C 74 73 5F 41 6C 74 65 72 6E 61 74 69 m_alts_Alternati
134 6E 67 20 4F 6E 65 73 2F 5A 65 72 6F 65 73 5F 4E ng Ones/Zeroes_N
144 00 5F 72 61 6D 5F 70 61 74 73 5F 50 61 74 74 65 ._ram_pats_Patte
154 72 6E 73 5F 4E 00 5F 72 61 6D 5F 61 64 72 5F 41 rns_N._ram_adr_A
164 64 64 72 65 73 73 61 62 69 6C 69 74 79 5F 4E 00 ddressability_N.
174 5F 72 61 6D 5F 63 6F 64 65 5F 43 6F 64 65 20 45 _ram_code_Code E
. . .

This function will return an integer status. Zero is returned upon
success. A result of -1 is returned if an error in the system call
function occurred:

if (0 <= size < 4)
 return -1;

if (size == 4)
 write ‘count’ to ‘bufptr’ location in RAM
 return 0;

if (4 < size < count)
 write ‘count’ to ‘bufptr’ location in RAM
 return -1;

if (count <= size)
 write ‘count’ to ‘bufptr’ location in RAM
 write status report to ‘bufptr +

sizeof(int)’ in RAM
 return 0;

The return result is handled according to the processor family that
the code is being run on.

68K: returned on the stack in place of the supplied pointer.
2-85

System Calls

2

03: .MEMSTAT (memory status)

This function implements a report mechanism for main memory
diagnostics. This report is always of a fixed size, and can therefore
be called by higher level software that can not dynamically allocate
buffer space.

This function reports ÒcombinedÓ status for each of certain test
directories. This list includes ÒRAMÓ, ÒMCECCÓ, ÒMEMC1Ó,
ÒMEMC2Ó, ÒECCÓ, and possibly others as new hardware/software
is developed.

In the case of ÒRAMÓ tests, they cover a range of memory, and
typically contain nothing that is board-specific.

The ÒMCECCÓ and ÒECCÓ tests do contain board-specific code, and
will cover segments of memory, rather than a single range. In this
case, these tests will likely appear in the report multiple times, once
for each segment of memory.

Since the test is only ever run once, over all segments, the status
result will be identical for all reported instances. If one of the
segments covered does not contain an ECC type of memory board,
the results will contain a zero address range (beginning address =
ending address).

The ÒMEMC?Ó tests are on a per-board basis. These tests are
intended for the parity memory board, but contain one or more
tests that are also appropriate for the MCECC memory board. Each
test covers one segment of memory on the board under test. This
report may return ÒNÓ (for Ònot executedÓ), ÒBÓ (for ÒbypassedÓ),
ÒPÓ (for ÒpassedÓ), or ÒFÓ (for ÒfailedÓ).

1. Walk down through the diag directory, looking for test
groups that match our list.

2. When a match is found, walk down through the tests, ignore
any functions that are not of the type ÒT_TESTÓ, check the
status for each test (using the Òtest indexÓ to look in the
diagctl ÒteststatÓ array).
2-86

System Call Routines

2

3. Create an overall status for the test group. The status should
be a single char in the set: {P,F,N,B}, where:

P - PASSED
Only returned when all of the ÒT_TESTÓ type functions in the
test group have posted a ÔpassedÕ status. Any test in the group
posting other than ÔpassedÕ will cause a different result than
P to be returned.

F - FAILED
If any test of type ÒT_TESTÓ in the test group has posted a
ÔfailedÕ status, the result returned will be F.

N - NOT EXECUTED
If any test in the group, of type ÒT_TESTÓ was not executed,
this status should be returned, unless any of the tests posted
a ÔfailedÕ status, in which case an F should be returned.

B - BYPASSED
Returned if all of the ÒT_TYPEÓ functions in the test group
have posted a ÒbypassedÓ status.

The upper address bound and lower address bound passed back to
the caller, should be initialized to the values of ÒMemory Size
Ending AddressÓ and ÒMemory Size Starting AddressÓ from
NVRAM. These values to be returned should be overridden by any
test config parameters (CF params) that might exist for the
applicable test. A function will be inserted in each of the memory
test groups that can be called and will return the upper and lower
bounds.

The argument pointer in the diagfcn struct points to the report
buffer. This buffer is 452 bytes long, and has the structure:
2-87

System Calls

2

MEMSTAT will return a zero from the system call if there were no
errors.

04: .ST_NMLIST (selftest name list)

This function will walk through the selftest directory structure, and
generate a report consisting of test and group names that are
present.

The report contains test group name, as well as the specific test
name. Format of the list is the same as that for the Ò.TESTSTATÓ
diag syscall.

Each string in the list begins with the separator (unique delimiter
character) that is to be used in the current line. The Òtest group
nameÓ comes next, followed by a separator. Next is the Òtest nameÓ,
followed by a NULL (Õ\0Õ). For example: #ram#pats<0>

The caller must provide a pointer to a structure when calling this
function. The structure first contains an ÕintÕ (4 bytes) giving the size
of an available buffer to be used for output from this function. This
ÕintÕ is immediately followed by the address (4 bytes) of the start of
the buffer.

 unsigned int # valid entries
Entry 1 /unsigned int

|unsigned int
|unsigned int
\char[16]

upper addr bound
lower addr bound
combined test stat (P|F|N|B)
test group name (NULL terminated)

Entry 2 /unsigned int
|unsigned int
|unsigned int
\char[16]

upper addr bound
lower addr bound
combined test stat (P|F|N|B)
test group name (NULL terminated)

:
.

Entry 16 /unsigned int
|unsigned int
|unsigned int
\char[16]

upper addr bound
lower addr bound
combined test stat (P|F|N|B)
test group name (NULL terminated)
2-88

System Call Routines

2

If this function is called with the ÕsizeÕ set to Õsizeof(int)Õ (4), then
this function will return a single integer (4 bytes) in the buffer,
containing the size of buffer needed to contain the list and the size.
To get the list, the function needs to be called with a buffer ÕsizeÕ at
least as large as is reported in the first call. Anything smaller will
result in a non-zero return status, and the list will not be generated.

For 68K debuggers, the caller should place the structure pointer on
the stack. An integer result will be returned, in place of the pointer
passed in to this routine. A zero (0) result indicates success, non-
zero indicates failure.

Entry Conditions

Exit Conditions Different from Entry

An integer status to the higher level is returned on the stack in place
of the supplied pointer.

int ’size’

void *bufptr ---------------------> int count

 (char buf)

 B

 U

 F

 F

 E

 R

SP ==> Points to location containing the diagcfn struct
address.
2-89

System Calls

2

.SIOPEPS Function

Name

 .SIOPEPS - Retrieve SCSI pointers (167/187 only)

Code

$0090

Description

The purpose of this TRAP is to allow a user program toaccess the
SCSI I/O Processor package contained in the Debugger ROMs.
This TRAP returns a list of pointers and table sizes that the user
program uses to move the SCSI I/O Processor package from ROM
to RAM. The SIOP package cannot be executed by a user program
without being moved and edited. For instructions on how to move
and edit the SIOP package, refer to the SIOP user's manual.

Entry Conditions

None

Exit Conditions Different from Entry

Description of siop pointer and size table packet:

Format for packet containing SIOP pointers and table sizes. All
entries are 4 bytes in length.

SP ==> Pointer to the SIOP pointer and size table.

siop_init Initialization routine entry.

siop_cmd Command entry point entry.

siop_int Interrupt handler entry.

sdt_tinit SIOP debug trace initialization entry.

sdt_alloc SIOP debug trace memory allocation entry.

relocation Pointer to the relocation table for NCR scripts.
2-90

System Call Routines

2

script_ptr Pointer to the NCR scripts index pointer array.

script_ptr_sz Size of the NCR scripts index pointer array.

script_array_sz Size of the scripts array.
2-91

System Calls

2

.IOINQ Function

Name

 .IOINQ - Port Inquire

Code

$0120

Description

Writes the Port Control Structure at the user-specified address. The
Port Control Structure contains I/O Port Concurrent Mode and
Port Control information about the named port.

Entry Conditions

The Port Number, Board Name Pointer, and I/O Control Structure
Pointer members of the Port Control Structure must be USER
initialized before calling .IOINQ.

Exit Conditions Different from Entry

The Port Control Structure will be modified as described above.

SP ==> Pointer to Port Control Structure as defined below.

SP ==> Pointer to Port Control Structure as deÞned below,
or

SP ==> NULL (Port not recognized error).
2-92

System Call Routines

2

Port Control Structure

The Port Control Structure is of the form:

Field descriptions:

31 24 23 16 15 8 7 0

$00 Port Number

$04 Board Name Pointer

$08 Channel

$0C Device Address

$10 Concurrent Mode

$14 Modem ID

$18 I/O Control Structure Pointer

$1C Error Code

$20 Reserved

$24 Reserved

$28 Reserved

Port Number The Port Number as used here is analogous to
the port number as required by the 16XBug Port
Format (PF) command. Port Numbers are
assigned as follows:

$FFFFFFFE Concurrent Port

$FFFFFFFF System Console

$0 - $1F Other currently assigned port

Board Name
Pointer

A pointer to a null ($00) terminated ASCII string
which is the name of the board (module) that is
host to the target Device. The maximum length
of this string is 20 bytes. The Board Name as
used here is analogous to the board name as
required by the 16XBug Port Format (PF)
command. The following boards are currently
supported:

MVME050 System Controller Module
2-93

System Calls

2

MVME162 Embedded Controller
Module

MVME172 Embedded Controller
Module

MVME166 Single Board Computer

MVME167 Single Board Computer

MVME176 Single Board Computer

MVME177 Single Board Computer

MVME335 Serial and Parallel I/O
Module

Channel On multi-port devices, this value speciÞes
which port of the device is being referenced.
Zero inclusive port numbering is assumed, i.e.,
Port A is Channel Number 0.

Device Address Base address of the I/O Device.

Concurrent
Mode

Nonzero Value ßags concurrent mode operation
of this port. Zero ßags normal operation for this
port.

Modem ID Modem identiÞcation code for the modem
associated with this port. The Modem ID code is
ONLY valid if Concurrent Mode Operation is
true for this port. The following modems are
currently supported:

Modem ID Modem Type

1 Non-intelligent modem

2 Terminal Mode - Refer to
Appendix A, System Mode
Operation, the section on
Initiate Service Call.

3 UDS 2662

4 UDS 2980

5 UDS 3382
2-94

System Call Routines

2

I/O Control
Structure Pointer

A pointer to the port parameter/conÞguration
table. The I/O Control Structure is deÞned
below.

Error Code Contains error code if any. The following error
codes are currently deÞned:

 1. PF Error - Couldn't format the Port with the
user's parameters.

 2. Port Number not recognized, that is, the
16XBug does not have a deÞnition for the
given Port Number.

 3 Synchronization Error - can't turn on
Concurrent Mode (CM) (CM already on).

 4 16XBug has no deÞnition for the Port
Number speciÞed.

 5 Port Number not in range of -2 to $1F.

 6 No info available on CM port because CM
not active.

 7. All legal Port Numbers are currently in use.

 8. All device driver Control Structures are
currently in use. Can't deÞne any more Port
Numbers.

 9. Synchronization Error - can't turn off CM.
CM is already off.

10. Contradictory Request. CM port number
speciÞed but user's CM ßag is clear and no
16XBug port is currently operating in CM.

11. Illegal Port number for .IODELETE trap call.

12. Alias for Error #11.

13. IODELETE is not allowed to delete this port
(16XBug default port(s)).

14. Alias for Error #8.
2-95

System Calls

2

I/O Control Structure

The I/O Control Structure is of the form:

Field descriptions:

15. Alias for Error #7.

16. Unknown modem type. Returned Port
Number is valid, but CM is NOT set.

Reserved These locations are set to zero on return to the
caller.

31 24 23 16 15 8 7 0

$00 ctrlbits

$04 baud

$08 00 00 00 protocol

$0C 00 00 00 sync1

$10 00 00 00 sync2

$14 00 00 00 xonchar

$18 00 00 00 xoffchar

ctrlbits The bits of this 32-bit wide integer are deÞned as
high true ßags with the following meanings:

Bit 00 Odd parity

Bit 01 Even parity

Bit 02 8 bit character word

Bit 03 7 bit character word

Bit 04 6 bit character word

Bit 05 5 bit character word

Bit 06 2 stop bits

Bit 07 1 stop bit

Bit 08 Data terminal equipment

Bit 09 Data computer equipment
2-96

System Call Routines

2

Note Only the asynchronous protocol is supported by the
16XBug at this time.

Bit 10 cts control

Bit 11 rts control

Bit 12 xon/xoff control

Bit 13 hard copy ßag

baud Baud rate value for this port.

protocol A single ASCII character representing the
desired communications protocol. The
following characters are deÞned by the 16XBug.

A Async

M Mono

B Bisync

G Gen

S SDLC

H HDLC

sync1 8 bit value to be used as the sync1 character in
the synchronous communication protocols.

sync2 8 bit value to be used as the sync2 character in
the synchronous communication protocols.

xonchar Software ßow (on) control character.

xoffchar Software ßow (off) control character.
2-97

System Calls

2

.IOINFORM Function

Name

 .IOINFORM - Port Inform

Code

$0124

Description

This trap will inform the 16XBug about change in I/O Port
operation. The 16XBug updates its internal I/O control structures
and writes ERROR CODE and (possibly) PORT NUMBER in your
Port Control Structure.

If you wish to inform the 16XBug that you are "turning on"
Concurrent Mode (CM), you must set the Concurrent Mode field of
the Port Control Structure. It is permissible to use a Port number of
-2 when "turning on" CM. The 16XBug will return a valid Port
Number for your future reference. If you wish to inform the
16XBug that you are "turning off" CM operation, you must use a
PORT NUMBER that has been returned by the .IOINQ or
.IOINFORM system calls.

Entry Conditions

All members of the Port Control Structure, except ERROR CODE
and RESERVED, as well as the BOARD NAME STRING and I/O
CONTROL STRUCTURE must be USER initialized before calling
.IOINFORM.

Exit Conditions Different from Entry

The Port Control Structure will be modified as described above.

SP ==> Pointer to the Port Control Structure.

SP ==> Pointer to the Port Control Structure, or

SP ==> NULL (Port not recognized error).
2-98

System Call Routines

2

.IOCONFIG Function

Name

 .IOCONFIG - Port Configure

Code

$0128

Description

This trap will instruct the 16XBug to access the I/O device to
change port operation and to update its internal I/O Control
structures. The 16XBug writes ERROR CODE and (possibly) PORT
NUMBER in your Port Control Structure.

If you wish to inform the 16XBug that you are "turning on"
Concurrent Mode (CM), you must set the Concurrent Mode field of
the Port Control Structure. It is permissible to use a Port number of
-2 when "turning on" CM. The 16XBug will return a valid Port
Number for your future reference.

If you wish to inform the 16XBug that you are "turning off" CM
operation, you must use a PORT NUMBER that has been returned
by the .IOINQ or .IOINFORM system calls.

Entry Conditions

All members of the Port Control Structure, except ERROR CODE
and RESERVED, as well as the BOARD NAME STRING and I/O
CONTROL STRUCTURE must be USER initialized before calling
.IOCONFIG.

SP ==> Pointer to Port Control Structure as deÞned above.
2-99

System Calls

2

Exit Conditions Different from Entry

The Port Control Structure will be modified as described above.

SP ==> Pointer to Port Control Structure as deÞned above,
 or

SP ==> NULL (Port not recognized error).
2-100

System Call Routines

2

.IODELETE Function

Name

.IODELETE - Port Delete

Code

$012C

Description

Causes the 16XBug to delete the named I/O port from its internal
port list. The function of this call is analogous to the 16XBug NOPF
command. Note that .IODELETE cannot delete the Concurrent
port. You must first use the .IOINFORM trap and then you may
delete the port.

Entry Conditions

The Port Number member of the Port Control Structure must be
USER initialized before calling .IODELETE. The Board Name
Pointer, Channel, Device Address, Concurrent Flag, Modem ID,
and, I/O Control Pointer members of the Port Control Structure are
not used by this trap.

Exit Conditions Different from Entry

The Port Control Structure Error Code field will be written with an
error code if any errors occurred.

SP ==> Pointer to Port Control Structure as defined above.

SP ==> Pointer to Port Control Structure as deÞned above,
or

SP ==> NULL (Port not recognized error).
2-101

System Calls

2

.SYMBOLTA Function

Name

 .SYMBOLTA - Attach Symbol Table

Code

$0130

Description

This routine attaches a symbol table to the BUG. Once a symbol
table has been attached, all displays of physical addresses are first
looked up in the symbol table to see if the address is in range of any
of the symbols (symbol data). If the address is in range, it is
displayed with the corresponding symbol name and offset (if any)
from the symbol base address (symbol data). In addition to the
display, any command line input that supports an address as an
argument can now take a symbol name for the address argument.
The address argument is first looked up in the symbol table to see
if it matches any of the addresses (symbol data) before conversion
takes place. This command is analogous to the BUG command
SYM. Refer to Chapter 3 for the command description.

The format of the symbol table is shown below:

31 24 23 16 15 8 7 0

$00 Number of Entries in Symbol Table

$04 Symbol Data #0

$08 Symbol Name #0

$20 Symbol Data #1

$24 Symbol Name #1
2-102

System Call Routines

2

Field descriptions:

The symbol data fields must be ascending in value (sorted
numerically). Upon execution of the system call, the BUG performs
a sanity check on the symbol table with the above rules. The
symbol table is not attached if the check fails.

Entry Conditions

Exit Conditions Different from Entry

Number of
Entries in
Symbol Table

The number of entries in table.

Symbol Data 32-bit hexadecimal value.

Symbol Name A string of printable characters; may be null
($00) terminated.

SP ==> Address -- Starting address of
symbol table.

word

SP ==> Address -- Starting address of
symbol table

word

Z = 0 if errors (sanity check failed).

Z = 1 if not errors.
2-103

System Calls

2

.SYMBOLTD Function

Name

 .SYMBOLTD - Detach Symbol Table

Code

$0131

Description

This routine detaches a symbol table from the BUG. This command
is analogous to the BUG command NOSYM. Refer to Chapter 3 for
the command description.

Entry Conditions

None.

Exit Conditions Different from Entry

None.
2-104

System Call Routines

2

.ACFSTAT Function

Name

 .ACFSTAT - ACFAIL status inquiry

Code

$0140

Description

This routine will return status indicating whether or not this
powerup followed an ACFAIL shutdown. A pointer is returned
that points to the ACFAIL status packet.

The format of the ACFAIL status packet is shown below:

Field descriptions:

31 24 23 16 15 8 7 0

$00 STATUS MONTH DAY YEAR

$04 HOUR MINUTE SECOND RESERVED

STATUS 0 = ACFAIL condition false, 1 = true.

MONTH Month of ACFAIL condition (BCD format).

DAY Day of the Month of ACFAIL condition (BCD
format).

YEAR Year of ACFAIL condition (BCD format).

HOUR Hour of ACFAIL condition (BCD format).

MINUTE Minute of ACFAIL condition (BCD format).

SECOND Seconds of ACFAIL condition (BCD format).

RESERVED Reserved (alignment purposes).
2-105

System Calls

2

Entry Conditions

None.

Exit Conditions Different from Entry

SP ==> Address -- Starting address of
ACFAIL status packet.

word
2-106

A
A16XBug System Mode
Operation

General Description
To provide compatibility with the Motorola Delta Series systems,
the 16XBug has a special mode of operation that allows the
following features to be enabled:

❏ Extended confidence tests that are run automatically on
power-up or reset of the MVME16X.

❏ A menu that allows several system start up features to be
selected, such as:

Ð Continue System Start Up

Ð Select Alternate Boot Device

Ð Go to System Debugger

Ð Initiate Service Call

Ð Display System Test Errors

Ð Dump Memory to Tape

❏ Return to the menu upon system start up errors instead of
return to the debugger.

❏ Enabling of the Bug autoboot sequence.

The flow of system mode operation is shown in Figure A-1. Upon
either power up or system reset, the MVME16X first executes a
limited confidence test suite. This is the same test suite that the Bug
normally executes on power up when not in the system mode.
A-1

16XBug System Mode Operation
A

Upon successful completion of the limited confidence tests, a five
second period is allowed to interrupt the autoboot sequence. By
typing any character you can cause the module to display the
Service Menu permitting the selection of an alternate boot device,
entry to the debugger, etc., as described above.

Upon selection of "continue start up" the module conducts a more
extensive confidence test. Successful completion of the extended
confidence test initiates the autoboot sequence, with boot taking
place either from the default device (refer to Chapter 3 for
information on entering/changing the default boot device) or from
the selected boot device if an alternate device has been selected.

If the limited confidence test fails to complete correctly, it may
display an error message. Explanations of these error messages can
be found in Appendix B. Some error message explanations for the
extended confidence test are given in the 16XBug board-specific
debugger manual under the heading for the failed test.

Service Menu Details
The Service Menu lists these function choices:

1) Continue System Start Up
2) Select Alternate Boot Device
3) Go to System Debugger
4) Initiate Service Call
5) Display System Test Errors
6) Dump Memory to Tape

To select one of the functions, enter the number and press the
Return or Enter key. The following paragraphs give more detailed
descriptions of the menu selections.

Continue System Start Up

Enter 1 <CR> to select ÒContinue System Start UpÓ.
A-2

Service Menu Details
A

No other action is required from you. The system then continues
the start up process by initializing extended confidence testing
followed by a system boot.
A-3

16XBug System Mode Operation
A

Figure A-1. Flow Diagram of 16XBug System Operational Mode

OPERATING SYSTEM
OR

DIAGNOSTICS

DUMP MEMORY
TO TAPE

SELECT ALTERNATE
BOOT DEVELOPMENT

EXTENSIVE
SYSTEM SELF TEST

WAIT 5 SECONDS
FOR ANY CHARACTER

TO HALT

SYSTEM

DISPLAY SERVICE MENU

DISPLAY ERRORS

START CONVERSATION
MODE

EXIT CONCURRENT
MODE

SYSTEM DEBUGGER

SERVICE CALL

BOOTLOADER

CONTINUE START-UP

fc010 9211

ERROR

ERROR

NO ERRORS

NO ERRORS
A-4

Service Menu Details
A

Select Alternate Boot Device

Enter 2 <CR> to select ÒSelect Alternate Boot DeviceÓ.

You are prompted with:

"Enter Alternate Boot Device:
Controller:
Drive :
File :".

The selection of devices supported by the 16XBug is listed in
Appendix E. Entering a selected device followed by a <CR>
redisplays the menu for another selection, normally "Continue
System Start Up" at this point.

Go to System Debugger

Enter 3 <CR> to select ÒGo to System DebuggerÓ.

This places you in 16XBugÕs diagnostic mode, indicated by the
prompt 16X-Diag>. When you are in 16X-Diag mode, operation is
defined by sections of this manual dealing with the Bug and FAT
diagnostics.

If you wish to return to the Service Menu, type menu <CR>when
the Bug prompt appears.

Initiate Service Call

Enter 4 <CR> to select the ÒInitiate Service CallÓ function.

This function is described in the following paragraphs.

General Flow

The ÓInitiate Service CallÓ function is normally used to complete a
connection to a customer service organization (CSO) which can
then use the "dual console" mode of operation to assist a customer
with a problem. Interaction with the service call function proceeds
as follows:
A-5

16XBug System Mode Operation
A

First, the system asks

"Modem Type:
0) Terminal
1) Manual
2) UDS-2122662
3) UDS-2122980 (Hayes)
4) UDS-2123382 (Hayes)
Your Selection ()?".

Explanation:

Terminal mode is used to connect any ASCII terminal in place of a
modem, via a null modem, or equivalent cable. It is useful in certain
trouble- shooting applications for providing a slave terminal
without the necessity of dialing through a modem.

Manual mode connects directly to the modem in an ASCII terminal
mode, allowing any nonstandard protocol modem to be used.

UDS means that the modem is compatible with the UDS modem
protocol as used in internal Delta Series modems. The model
number of this modem is UDS 2122662.

Hayes means that the modem is compatible with a minimal subset
of the Hayes modem protocol. This minimum subset is chosen to
address the broadest spectrum of Hayes compatible modem
products. Note that the modem itself is not tested when Hayes
protocol is chosen, while the modem is tested with the UDS
protocol choice.

When a selection of one of the above options is made (option 0 in
this example), the system asks:

Do you want to change the baud rate from 1200 (Y/N)?

Note that any question requiring a Y or N answer defaults to the
response listed furthest to the right in the line (i.e., a question with
Y/N defaults to NO if only a carriage return is entered). If you
answer Y to the baud rate question, the system prompts:

Baud rate [300, 1200, 2400, 4800, 9600] 1200?
A-6

Service Menu Details
A

You should enter a selected baud rate, such as 300, and type a
return. A return only leaves the baud rate as previously set. The
system then asks:

Is the modem already connected to customer service (Y/N)?

When a connection has been made to Customer Service (or any
other remote device), hang up does not automatically occur; it is an
operation that you must initiate. If a system reset has occurred, for
instance, a hang up does not take place, and connection to CSO is
still in effect. In this case, it is not necessary or desirable to attempt
to reconnect on a connection that is already in effect.

When an answer is entered to the question, the system responds:

Enter System ID Number:

This number is one assigned to the user system by its affiliated
Customer Service Organization. The system itself does not care
what is entered here, but the Customer Service computer may do a
check to assure the validity of this number for login purposes. The
system responds with:

Wait for an incoming Call or Dial Out (W/D)?

You have the option of either waiting for the other computer to dial
in to complete the connection, or dialing out itself. If you selected
W, then skip the next two steps. If you selected D, the system asks:

Hayes Modem:

(T) = Tone Dialing (Default), (P) = Pulse Dialing
(,) = Pause and Search for a Dial Tone

UDS Modem:

(T) = Tone Dialing (Default), (P) = Pulse Dialing
(=) = Pause and Search for a Dial Tone
(,) = Wait 2 Seconds

Enter CSO phone number:

You must enter the number, including area code if required,
without any separators except for a comma (,) or equal sign (=) if
required to search for a dial tone (depending on which modem
A-7

16XBug System Mode Operation
A

protocol was selected), such as when dialing out of a location
having an internal switchboard. Additionally, the number must be
prefaced by one of the above dialing mode selections. The dialing
selection can also be changed within the number being dialed if
necessary if an internal dialing system takes a different dialing
mode than the external world switched network. When connection
has been made, the system reports:

Service Call in progress - Connected

The remote system can now send one of two unique commands to
the local system to request specific actions via the local firmware.

Message command. The command to send a message from the
CSO center to the console of the calling system is MESS, 4 bytes,
followed by a string of data no more than 80 bytes in length
terminated with a carriage return. The ROM code moves the
string to the console followed by a carriage return and a line
feed. This command can be used to send canned messages to
the operator, giving some indication of activity while various
processes are taking place at CSO. For example, "Please Stand
By". Many of these message commands may be sent while in the
command mode.

Request for Concurrent Console command. The Request for
Concurrent Console, or concurrent mode, command is RCC, 3
bytes only. You are prompted about the request. If you enter
ÒyÓ, a single character "y" is sent to CSO followed by the console
menu as displayed on the operators console. If you enter "n",
then the single character "f" is sent to CSO and the call is
terminated.

When concurrent mode is entered, all input from either port,
console or remote, is taken simultaneously. All output is sent to
both ports concurrently. Either the console or the remote console
may terminate the concurrent mode at any time by typing CTRL-A.
The phone line is hung up by the 16X ROM code and a message is
displayed indicating the end of the concurrent mode.
A-8

Service Menu Details
A

The most likely command sequence at this point is a message
command to indicate connection to the remote system, followed by
a request for concurrent mode operation. When these are received,
the user system asks:

Concurrent mode (Y/N)?

If you wish to enter concurrent mode you must select Y. The system
then presents the information:

Select Menu Item #8 to exit Concurrent Mode

The menu is redisplayed and concurrent mode is in effect. Any
normal system operation can now be initiated at either the local or
remote connected terminal, including system reboot.

1) Continue System Start Up
2) Select Alternate Boot Device
3) Go to System Debugger
4) Initiate Service Call
5) Display System Test Errors
6) Dump Memory to Tape
7) Start Conversation Mode
8) Exit Concurrent Mode

Note that seventh and eighth choices have been added to the menu.
These prompt lines are only displayed when the system is in
concurrent mode; although conversation mode actually can be
selected and used at any time, and there are other ways to terminate
the concurrent mode connection.

Selecting ÒStart Conversation ModeÓ allows either party to initiate
a direct conversation mode between the two terminals, the remote
system terminal and the local terminal. There are two ways to exit
conversation mode:

<CR>.<CR> Terminates conversation mode but remains in
concurrent mode The system then redisplays the
selection menu for further operator action.

CTRL-A Terminates conversation mode AND concurrent
mode, and hangs up the modem.
A-9

16XBug System Mode Operation
A

Choose 8) in the menu above (Exit concurrent mode), terminates
concurrent mode.

You can also terminate concurrent mode from the Service Menu,
while concurrent mode is in effect, by selecting menu entry 4
(Initiate Service Call) while a call is underway. The system asks:

Do you wish to disconnect the remote link (Y/N)?

If you answer N, the system gives the option of returning to (or
entering) the conversation mode:

Do you wish the conversation mode (Y/N)?

A Y response results in return to conversation mode, while an
N redisplays the menu.

If you answer Y to the disconnect remote link prompt, the system
responds with the following series of messages:

Wait for concurrent mode to terminate

Hanging up the Modem

Concurrent Mode Terminated

The last message is followed by the display of the Service Menu
without the seventh and eighth selections available. Normal system
operation is now possible.

Manual Mode Connection

As described briefly earlier, a manual modem connect mode is
available to allow use of modems that do not adhere to either of the
standard protocols supported, but have a defined ASCII command
set. If the manual mode is selected, a few differences must be taken
into account.

A new mode called "transparent mode" is entered when manual
modem control is attempted. This means that the user terminal is in
effect connected directly to the modem for control purposes. When
in transparent mode, you must take responsibility for modem
control, and informing the system of when connection has taken
A-10

Service Menu Details
A

place, etc. If "manual mode" selection is made from the "Is the modem
already connected to customer service --" prompt, the following
dialog takes place.

All prompts and expected responses through the "Enter System ID
Number:" takes place as above. However, in manual mode, after the
ID number has been entered, the system prompts:

Manually call CSO and when you are connected,
exit the transparent mode
Escape character: $01=^A

You should type CTRL-A when the connection is made, or if for
any reason a connection cannot be made. Because the system has no
knowledge of the status of the system when transparent mode is
exited, it asks:

Did you make the connection (Y/N)?

If you answer Y to the question, the system then continues with a
normal dialog with the remote system, which would be for the
remote system to send the "banner" message followed by a request
for concurrent mode operation. If you enter N, the system asks:

Terminate CSO conversation (Y/N)?

A positive response to this question causes the system to reenter
transparent mode and prompt:

Manually hang up the modem and when you are done,
exit the transparent mode
Escape character: $01 = ^A

The system is now in normal operation, and the menu is
redisplayed.

Note that in manual mode of operation, transparent mode refers to
the connection between the user terminal and the modem for
manual modem control, and concurrent mode refers to the
concurrent operation of a modem connected terminal and the
system console.
A-11

16XBug System Mode Operation
A

Terminal Mode Operation

Operation with the terminal mode selected from the prompt string
"Is the modem already connected to customer service --" is in most
ways identical to other connection modes, except that after the
prompt to allow change of baud rate, the system automatically
enters concurrent mode. Additionally, exiting concurrent mode
does not give prompts and messages referring to the hang up
sequence. All other system operation is the same as other modes of
connection.

Display System Test Errors

Enter 5 <CR> to select ÒDisplay System Test ErrorsÓ.

This selection displays any errors accumulated by the extended
confidence test suite when last run. This can be a useful field service
tool.

Dump Memory to Tape

Enter 6 <CR> to select ÒDump Memory to TapeÓ.

The purpose of tape dump is to save an image of memory on tape
for later analysis. The output of tape dump is two or more files on
the user-specified controller and device. The first file (File 0)
contains information about the Tape Dump Utility that created the
tape, certain hardware specific information, and, an array of Tape
Dump File Map Entries.

Other files (File 1 through n) written by the Tape Dump Utility are
simply image(s) of memory at the time the Tape Dump Utility was
invoked.

This implementation of the Tape Dump Utility allows you to define
multiple blocks of memory, each block written as a separate file on
the tape. The Tape Dump File Map Entries in File 0 describe the
address ranges of system memory that each tape file contains.

The File Zero Structure is of the form:
A-12

Service Menu Details
A

struct fil0 {
char magic[4];/* magic number */
char who_do[4];/* who made dump (Bug or Unix) */
int file0sz;/* File zero size */
int complete;/* tape dump completed flag */
int Trev;/* Revision of this structure */
struct brdid bd_info;/* Board Identification Packet */
struct tddir tdir[MAXFILES]/* Tape Dump File Map Entries */

};

The Board Identification/Information structure (brdid) is identical
to the Board ID packet returned by the System Call .BRD_ID.

The constant FZS_REV is the File Zero Structure revision in Binary
Coded Decimal (BCD) representation. FZS_REV is currently
defined as $110 (that is, rev. 1.10). Member Trev is set to FZS_REV.

The constant MAXFILES determines the maximum number of Tape
Dump File Map Entries in the File 0 Structure Template and,
congruently, the maximum number of memory blocks that you
could define and dump. MAXFILES is currently defined as 20.

The Tape Dump File Map Entry structure is of the form:

struct tddir {
unsigned int fileno;/* file number */
unsigned int saddr;/* memory starting address */
unsigned int eaddr;/* memory ending address */

};

The first member of the Tape Dump File Map Entry structure is File
Number (fileno). The normal range of values for fileno is from 1 to
MAXFILES. The value $FFFFFFFF in fileno flags an invalid and
unused File Map Entry.
A-13

16XBug System Mode Operation
A

Tape dump example:

1) Continue System Start Up
2) Select Alternate Boot Device

3) Go to System Debugger

4) Initiate Service Call

5) Display System Test Errors

6) Dump Memory to Tape

Enter Menu #: 6<CR>

Do you wish to dump memory (N/Y)? <CR>
Controller LUN = 04, Device LUN = 00.
Change DLUN and/or CLUN (Y/N)? <CR>
Define memory blocks to be dumped.
File Number:1
Starting Address = 00000000? <CR>
Ending Address + 1 = 01000000? 10000<CR>
Define another memory block (Y/N)? y<CR>
File Number:2
Starting Address = 80000 <CR>
Ending Address + 1 = 100000 <CR>
Define another memory block (Y/N)? <CR>

The following memory blocks have been defined:
File: 1 Start: 00000000 End: 00010000
File: 2 Start: 00080000 End: 00100000

Insert tape..Do you want to continue (N/Y)? <CR>
Rewind command executing

Erase Tape (Y/N)? <CR>

Retension Tape (Y/N)? <CR>
Writing file # 0

Writing file # 1

Writing file # 2

Dump finished. You may remove tape.

1) Continue System Start Up
2) Select Alternate Boot Device
3) Go to System Debugger
A-14

Service Menu Details
A

4) Initiate Service Call
5) Display System Test Errors
6) Dump Memory to Tape

Enter Menu #:

This completes the description of system mode operation of the
16XBug.
A-15

16XBug System Mode Operation
A

A-16

B
BDebugging Package Messages
Debugger Messages

Table B-1. Debugger Error Messages

Debugger Error Messages Meaning

Bad VID Block String "MOTOROLA" is not found during BO
command, and boot sequence aborts.

Concurrent Mode Already Active Error message when trying to activate an
active system in CM command.

Concurrent Mode Not Active Error message when trying to deactivate
an inactive system in NOCM command.

Concurrent Mode Setup Failure Error in establishing communications with
port/device in CM command.

Concurrent Mode Terminated With
Failure

Error, closing communications link in
NOCM command.

Error Status: XXXX Disk communication error status word
when IOP command, or .DSKRD or
.DSKWR TRAP #15 functions, are
unsuccessful. Refer to Appendix F for
details.

*** Illegal argument *** Improper argument in known command.

*** Illegal Option *** Improper option in MM command.

Invalid command Unknown command.

*** Invalid LUN *** Controller and device selected during IOP
or IOT command do not correspond to a
valid controller and device.

*** Invalid Range *** Range entered wrong in BC, BF, BI, BM,
BS, or DU commands.
B-1

Debugging Package Messages

B

Diagnostic Messages

*** Missing Argument *** Necessary Þeld of command was not
entered.

NON-EXISTENT MNEMONIC Entry error in MM command with ;DI
option.

NON-EXISTENT OPERAND Entry error in MM command with ;DI
option.

part of S-record data Printed out if non-hex character is
encountered in data Þeld in LO or VE
commands.

RAM FAIL AT $XXXXXXXX Parity is not correct at address
$XXXXXXXX during a BI command.

STRING POOL FULL, LAST LINE
DISCARDED

String pool size (511 characters) is
exceeded during MA command.

The following record(s) did not
verify

SNXXYYYYAAAA......ZZ........CS

Failure during the LO or VE commands.
ZZ is the non-matching byte and CS is the
non-matching checksum.

Verify passes Successful VE command.

Table B-2. Diagnostic Error Messages

Diagnostic Error Messages Meaning

(various error messages) Refer to the MVME16XBUG board-speciÞc
debugging manual for error messages
displayed during various diagnostic
and/or FAT test commands.

Table B-1. Debugger Error Messages (Continued)

Debugger Error Messages Meaning
B-2

Debugger Messages

B
Other Messages

Table B-3. Other Messages

Other Messages Meaning

16X-Bug> Debugger prompt.

16X-Diag> Diagnostic prompt.

At Breakpoint Indicates program has stopped at
breakpoint.

Autoboot in progress... To Abort
hit <BREAK>"

This message is displayed at Power-Up
informing user that Autoboot has begun.

--Break Detected-- BREAK key on console has stopped
operation.

COLD Start Vectors have been initialized.

Concurrent Mode Active The speciÞed port echoes the system
console terminal after CM command.

Data = $XX XX is truncated data cut to Þt data Þeld
size during BF or BV commands.

Effective address: XXXXXXXX Exact location of data during BC, BF, BI,
BM, BS, BV, and DU commands; or where
program was executed during GD, GN,
GO, and GT commands.

Effective count : &XXX Actual number of data patterns acted on
during BC, BF, BI, BS, or BV commands;
or the number of bytes moved during DU
command.

Enter Menu #: MENU command prompt.

Escape character: $HH=AA Exit code from transparent mode, in hex
(HH) and ASCII (AA) during TM
command.

Initial data = $XX, increment = $YY XX is starting data and YY is truncated
increment cut to Þt data Þeld size during
BF or BV commands.
B-3

Debugging Package Messages

B

-last match extends over range
boundary-

String found in BS command ends outside
speciÞed range.

Logical unit $XX unassigned Message that may be output during PA or
PF commands. $XX is a hex number
indicating the port involved.

M= Prompt for macro deÞnitions during MA
command.

NO MACROS DEFINED Trying to list macros by MA command
when there are none.

No printer attached Message that may be output during
NOPA command.

-not found- String not found in BS command.

OK to proceed (y/n)? "Interlock" prompt before writing macros
in the MAW command or before
conÞguring port in PF command.

Press "RETURN" to continue Message output during BS or HE
command when more than 24 lines of
output are available.

WARM Start Vectors have not been initialized.

WARNING: Error correction on ECC
memory board #n has been disabled
due to fatal errors during memory
initialization

The ECC memory board initialization
function was unable to get a proper
response from the indicated ECC board's
scrubber hardware, within an acceptable
time frame. It is likely that the speciÞed
memory board is broken in some way.
The error-correcting feature has been
disabled, and diagnostics should now be
run to determine the extent of the
disability.

Table B-3. Other Messages (Continued)

Other Messages Meaning
B-4

C
CS-Record Output Format
Introduction
The S-record format for output modules was devised for the
purpose of encoding programs or data files in a printable format for
transportation between computer systems. The transportation
process can thus be visually monitored and the S-records can be
more easily edited.

S-Record Content
When viewed by the user, S-records are essentially character
strings made of several fields which identify the record type, record
length, memory address, code/data, and checksum. Each byte of
binary data is encoded as a 2-character hexadecimal number: the
first character representing the high-order 4 bits, and the second the
low-order 4 bits of the byte.

The five fields which comprise an S-record are shown below:

type
record
length

address code / data checksum
C-1

S-Record Output Format

C

where the fields are composed as follows:

Each record may be terminated with a CR/LF/NULL.
Additionally, an S-record may have an initial field to accommodate
other data such as line numbers generated by some time-sharing
system.

Accuracy of transmission is ensured by the record length (byte
count) and checksum fields.

Field
Printable
Characters

Contents

type 2 S-record type -- S0, S1, etc.

record length 2 The count of the character pairs in the record,
excluding the type and record length.

address 4, 6, or 8 The 2-, 3-, or 4-byte address at which the data Þeld is to
be loaded into memory.

code / data 0-2n From 0 to n bytes of executable code, memory-loadable
data, or descriptive information. For compatibility
with teletypewriters, some programs may limit the
number of bytes to as few as 28 (56 printable characters
in the S-record).

checksum 2 The least signiÞcant byte of the one's complement of
the sum of the values represented by the pairs of
characters making up the record length, address, and
the code/data Þelds.
C-2

S-Record Types

C

S-Record Types
Eight types of S-records have been defined to accommodate the
several needs of the encoding, transportation, and decoding
functions. Various upload, download, and other record
transportation control programs, as well as cross assemblers,
linkers, and other file-creating or debugging programs, may utilize
only those S-records which serve the purpose of the program. For
specific information on which S-records are supported by a
particular program, the user's manual for that program must be
consulted.

An S-record-format module may contain S-records of the following
types:

S0 The header record for each block of S-records. The address Þeld
is normally zeroes. The code/data Þeld may contain any
descriptive information identifying the following block of
S-records.

S1 A record containing code/data and the 2-byte address at which
the code/data is to reside.

S2 A record containing code/data and the 3-byte address at which
the code/data is to reside.

S3 A record containing code/data and the 4-byte address at which
the code/data is to reside.

S5 A record containing the number of S1, S2, and S3 records
transmitted in a particular block. This count appears in the
address Þeld. There is no code/data Þeld.

S7 A termination record for a block of S3 records. The address
Þeld may optionally contain the 4-byte address of the
instruction to which control is to be passed. There is no
code/data Þeld.
C-3

S-Record Output Format

C

Only one termination record is used for each block of S-records. S7
and S8 records are usually used only when control is to be passed
to a 3- or 4-byte address. Normally, only one header record is used,
although it is possible for multiple header records to occur.

Creation of S-Records
S-record-format programs may be produced by dump utilities,
debuggers, linkage editors, cross assemblers, or cross linkers. Refer
to Chapter 3 for S-record handling utilities.

Example

Shown below is a typical S-record-format module, as printed or
displayed:

S00A00006765745F6373720E

S325FF801BDC4E56FFB4202E00084A806704700060027001486EFFB42F004EB9

FF839EE6202E4C

S30DFF801BFCFFB4508F4E5E4E755B

S705FF801BDC84

The module consists of one S0 record, two S3 records, and an S7
record.

S8 A termination record for a block of S2 records. The address
Þeld may optionally contain the 3-byte address of the
instruction to which control is to be passed. There is no
code/data Þeld.

S9 A termination record for a block of S1 records. The address
Þeld may optionally contain the 2-byte address of the
instruction to which control is to be passed. Under the
operating system, a resident linker command can be used to
specify this address. If not speciÞed, the Þrst entry point
speciÞcation encountered in the object module input will be
used. There is no code/data Þeld.
C-4

Creation of S-Records

C

The S0 record is comprised of the following character pairs:

The first S3 record is explained as follows:

The next 32 character pairs of the first S3 record are the ASCII bytes
of the actual program code/data. In this assembly language
example, the hexadecimal opcodes of the program are written in
sequence in the code/data fields of the S3 records:

S0 S-record type S0, indicating that it is a header
record.

0A Hexadecimal 0A (decimal 10), indicating that
10 character pairs (or ASCII bytes) follow.

0000 Four-character 2-byte address Þeld (zeros in
this header record).

6765745F 637372 ASCII "get_csr" (module name).

S3 S-record type S3, indicating that it is a
code/data record to be loaded/veriÞed at an
8-byte address.

25 Hexadecimal 25 (decimal 37), indicating that
37 character pairs, representing 37 bytes of
binary data, follow.

FF801BDC Eight-character 4-byte address Þeld;
hexadecimal address FF801BDC, where the
data which follows is to be loaded.

Address Opcode Instruction

FF801BDC 4E56FFB4 LINK.W A6,#$FFB4

FF801BE0 202E0008 MOVE.L $8(A6),D0

FF801BE4 4A80 TST.L D0

FF801BE6 6704 BEQ.B $FF801BEC
C-5

S-Record Output Format

C

The second S3 record contains $0D (13) character pairs and is ended
with checksum 5B.

The S7 record is explained as follows:

FF801BE8 7000 MOVEQ.L #$0,D0

FF801BEA 6002 BRA.B $FF801BEE

FF801BEC 7001 MOVEQ.L #$1,D0

FF801BEE 486EFFB4 PEA.L -$4C(A6)

FF801BF2 2F00 MOVE.L D0,-(A7)

FF801BF4 4EB9FF83 9EE6 JSR get_bscb

FF801BFA 202EFFB4 MOVE.L -$4C(A6),D0

:
.

(The balance of this code is continued in the code/data
Þelds of the remaining S3 record, and stored in memory
location FF801BFE, etc.)

4C The checksum of the Þrst S3 record.

S7 S-record type S7, indicating that it is a termination
record.

05 Hexadecimal 05, indicating that Þve character pairs (5
bytes) follow.

FF801BDC The address Þeld, indicating the address of the
instruction to which control may be passed (program
entry point).

84 The checksum of the S7 record.

Address Opcode Instruction
C-6

Creation of S-Records

C

Each printable character in an S-record is encoded in a hexadecimal
(ASCII in this example) representation of the binary bits which are
actually transmitted. For example, the first S3 record above is sent
as:

Type Length Address Code / Data
Check-

sum

S 3 2 5 F F 8 0 1 B D C 4 E 5 6 F ... 4 C

53 33 32 35 46 46 38 30 31 42 44 43 34 45 35 36 46 ... 34 43
C-7

S-Record Output Format

C

C-8

D
DInformation Used by BO and BH
Commands
VID

CFGA

Table D-1. Volume ID Block #0 (VID)

Label Offsets(&) Length
(Bytes)

Contents

VIDOSS $14 (20) 4 Starting block number of operating
system.

VIDOSL $18 (24) 2 Operating system length in blocks.

VIDOSA $1E (30) 4 Starting memory location to load
operating system.

VIDCAS $90 (144) 4 Media conÞguration area starting block.

VIDCAL $94 (148) 1 Media conÞguration area length in blocks.

VIDMOT $F8 (248) 8 Contains the string “MOTOROLA”.

Table D-2. Configuration Area Block #1 (CFGA)

Label Offsets(&) Length
(Bytes)

Contents

IOSATM $04 (4) 2 Attributes mask.

IOSPRM $06 (6) 2 Parameters mask.

IOSATW $08 (8) 2 Attributes word.

IOSREC $0A (10) 2 Record (block) size in bytes.

IOSSPT $18 (24) 1 Sectors/track.

IOSHDS $19 (25) 1 Number of heads on drive.
D-1

Information Used by BO and BH Commands

D

IOSTRK $1A (26) 2 Number of cylinders.

IOSILV $1C (28) 1 Interleave factor on media.

IOSSOF $1D (29) 1 Spiral offset.

IOSPSM $1E (30) 2 Physical sector size of media in bytes.

IOSSHD $20 (32) 2 Starting head number.

IOSPCOM $24 (36) 2 Precompensation cylinder.

IOSSR $27 (39) 1 Stepping rate code.

IOSRWCC $28 (40) 2 Reduced write current cylinder number.

IOSECC $2A (42) 2 ECC data burst length.

IOSEATM $2C (44) 2 Extended attributes mask.

IOSEPRM $2E (46) 2 Extended parameters mask.

IOSEATW $30 (48) 2 Extended attributes word.

IOSGPB1 $32 (50) 1 Gap byte 1.

IOSGPB2 $33 (51) 1 Gap byte 2.

IOSGPB3 $34 (52) 1 Gap byte 3.

IOSGPB4 $35 (53) 1 Gap byte 4.

IOSSSC $36 (54) 1 Spare sectors count.

IOSRUNIT $37 (55) 1 Reserved area units.

IOSRSVC1 $38 (56) 2 Reserved count 1.

IOSRSVC2 $3A (58) 2 Reserved count 2.

Table D-2. Configuration Area Block #1 (CFGA) (Continued)

Label Offsets(&) Length
(Bytes)

Contents
D-2

IOSATM and IOSEATM

D

IOSATM and IOSEATM
A Ò1Ó in a particular bit position indicates that the corresponding
attribute from the attributes (or extended attributes) word should
be used to update the configuration. A Ò0Ó in a bit position indicates
that the current attribute should be retained.

At the present, all IOSEATM bits are undefined and should be set
to 0.

Table D-3. IOSATM Attribute Mask Bit Definitions

Label Bit
Position

Description

IOADDEN 0 Data density.

IOATDEN 1 Track density.

IOADSIDE 2 Single/double sided.

IOAFRMT 3 Floppy disk format.

IOARDISC 4 Disk type.

IOADDEND 5 Drive data density.

IOATDEND 6 Drive track density.

IOARIBS 7 Embedded servo drive seek.

IOADPCOM 8 Post-read/pre-write precompensation.

IOASIZE 9 Floppy disk size.

IOATKZD 13 Track zero data density.
D-3

Information Used by BO and BH Commands

D

IOSPRM and IOSEPRM
A Ò1Ó in a particular bit position indicates that the corresponding
parameter from the configuration area (CFGA) should be used to
update the device configuration. A Ò0Ó in a bit position indicates
that the parameter value in the current configuration will be
retained.

IOSATW and IOSEATW
Contains various flags that specify characteristics of the media and
drive.

Table D-4. IOSPRM Parameter Mask Bit Definitions

Label Bit
Position

Description

IOSRECB 0 Operating system block size.

IOSSPTB 4 Sectors per track.

IOSHDSB 5 Number of heads.

IOSTRKB 6 Number of cylinders.

IOSILVB 7 Interleave factor.

IOSSOFB 8 Spiral offset.

IOSPSMB 9 Physical sector size.

IOSSHDB 10 Starting head number.

IOSPCOMB 12 Precompensation cylinder number.

IOSSRB 14 Step rate code.

IOSRWCCB 15 Reduced write current cylinder number
and ECC data burst length.
D-4

IOSATW and IOSEATW

D

Table D-5. IOSEPRM Parameter Mask Bit Definitions

Label Bit
Position

Description

IOAGPB1 0 Gap byte 1.

IOAGPB2 1 Gap byte 2.

IOAGPB3 2 Gap byte 3.

IOAGPB4 3 Gap byte 4.

IOASSC 4 Spare sector count.

IOARUNIT 5 Reserved area units.

IOARVC1 6 Reserved count 1.

IOARVC2 7 Reserved count 2.

Table D-6. IOSATW Bit Definitions

Bit
Number

Description

Bit 0 Data density 0 = Single density (FM encoding)

1 = Double density (MFM encoding)

Bit 1 Track density 0 = Single density (48 TPI)

1 = Double density (96 TPI)

Bit 2 Number of sides 0 = Single sided ßoppy

1 = Double sided ßoppy

Bit 3 Floppy disk format
(sector numbering)

0 = Motorola format
1 to N on side 0
N+1 to 2N on side 1

1 = Standard IBM format
1 to N on both sides

Bit 4 Disk type 0 = Floppy disk

1 = Hard disk
D-5

Information Used by BO and BH Commands

D

At the present, all IOSEATW bits are undefined and should be set
to 0.

Bit 5 Drive data density 0 = Single density (FM encoding)

1 = Double density (MFM encoding)

Bit 6 Drive track density 0 = Single density

1 = Double density

Bit 7 Embedded servo drive 0 = Do not seek on head switch

1 = Seek on head switch

Bit 8 Post-read/pre-write
precompensation:

0 = Pre-write

1 = Post-read

Bit 9 Floppy disk size: 0 = 5-1/4 inch ßoppy

1 = 8-inch ßoppy

Bit 13 Track zero density: 0 = Single density (FM encoding)

1 = Same as remaining tracks

Table D-6. IOSATW Bit Definitions (Continued)

Bit
Number

Description
D-6

Parameter Fields

D

Parameter Fields

Table D-7. Parameter Field Definitions

Parameter Description

Record (Block) size Number of bytes per record (block). Must be an integer
multiple of the physical sector size.

Sectors/track Number of sectors per track.

Number of heads Number of recording surfaces for the speciÞed device.

Number of cylinders Number of cylinders on the media.

Interleave factor This Þeld speciÞes how the sectors are formatted on a
track. Normally, consecutive sectors in a track are
numbered sequentially in increments of 1 (interleave factor
of 1). The interleave factor controls the physical separation
of logically sequential sectors. This physical separation
gives the host time to prepare to read the next logical sector
without requiring the loss of an entire disk revolution.

Physical sector size Actual number of bytes per sector on media.

Spiral offset Used to displace the logical start of a track from the
physical start of a track. The displacement is equal to the
spiral offset times the head number, assuming that the Þrst
head is 0. This displacement is used to give the controller
time for a head switch when crossing tracks.

Starting head number DeÞnes the Þrst head number for the device.

Precompensation cylinder DeÞnes the cylinder on which precompensation
begins.
D-7

Information Used by BO and BH Commands

D

Stepping rate code The step rate is an encoded Þeld used to specify the rate at
which the read/write heads can be moved when seeking a
track on the disk. The encoding is as follows:
Step Rate Winchester 5-1/4 Inch 8-Inch

Code Hard Disks Floppy Floppy
000 0 msec 12 msec 6 msec
001 6 msec 6 msec 3 msec
010 10 msec 12 msec 6 msec
011 15 msec 20 msec 10 msec
100 20 msec 30 msec 15 msec

Reduced write
current cycle

This Þeld speciÞes the cylinder number at which the write
current should be reduced when writing to the drive. This
parameter is normally speciÞed by the drive manufacturer.

ECC data burst length This Þeld deÞnes the number of bits to correct for an ECC
error when supported by the disk controller.

Gap byte 1 This Þeld contains the number of words of zeros that are
written before the header Þeld in each sector during
format.

Gap byte 2 This Þeld contains the number of words of zeros that are
written between the header and data Þelds during format
and write commands.

Gap byte 3 This Þeld contains the number of words of zeros that are
written after the data Þelds during format commands.

Gap byte 4 This Þeld contains the number of words of zeros that are
written after the last sector of a track and before the index
pulse.

Table D-7. Parameter Field Definitions (Continued)

Parameter Description
D-8

Parameter Fields

D

Spare sectors count This Þeld contains the number of sectors per track
allocated as spare sectors. These sectors are only used as
replacements for bad sectors on the disk.

Reserved area units This Þeld speciÞes the units used for the next two Þelds
(IOSRSVC1 and IOSRSVC2). If zero, the units are in tracks;
if 1, the units are in cylinders.

Reserved count 1 This Þeld speciÞes the number of tracks (IOSRUNIT = 0),
or the number of cylinders (IOSRUNIT = 1) reserved for
the alternate mapping area on the disk.

Reserved count 2 This Þeld speciÞes the number of tracks (IOSRUNIT = 0),
or the number of cylinders (IOSRUNIT = 1) reserved for
use by the controller.

Table D-7. Parameter Field Definitions (Continued)

Parameter Description
D-9

Information Used by BO and BH Commands

D

D-10

E
EDisk/Tape Controller Data
Disk/Tape Controller Modules Supported
The following VMEbus disk/tape controller modules are
supported by the 16XBug. However, not all modules listed in the
table are supported by every microprocessor VMEmodule.

The default address for each controller type is First Address and the
controller can be addressed by First CLUN during commands BH,
BO, or IOP, or during TRAP #15 calls .DSKRD or .DSKWR.

Note that if another controller of the same type is used, the second
one must have its address changed by its onboard jumpers and/or
switches, so that it matches Second Address and can be called up by
Second CLUN.

Table E-1. Disk/Tape Controller Data

Controller Type
First
CLUN

First Address
Second
CLUN

Second
Address

CISC Single Board Computer
(SBC)

$00
(Note 1)

-- -- --

MVME320 -
Winchester/Floppy Controller

$11
(Note 2)

$FFFFB000 $12
(Note 2)

$FFFFAC00

MVME323 -
ESDI Winchester Controller

$08 $FFFFA000 $09 $FFFFA200

MVME327A - SCSI Controller $02 $FFFFA600 $03 $FFFFA700

MVME328 - SCSI Controller $06 $FFFF9000 $07 $FFFF9800

MVME328 - SCSI Controller $16 $FFFF4800 $17 $FFFF5800

MVME328 - SCSI Controller $18 $FFFF7000 $19 $FFFF7800

MVME350 -
Streaming Tape Controller

$04 $FFFF5000 $05 $FFFF5100
E-1

Disk/Tape Controller Data

E

Disk/Tape Controller Default Configurations

Notes: 1. If the SBC (e.g., an MVME167) SCSI port is used, then the SBC module has
CLUN 0.

2. For SBCs, the Þrst MVME320 has CLUN $11, and the second MVME320 has
CLUN $12.

Note: SCSI Common Command Set (CCS) devices are only the ones tested by
Motorola Computer Group.

Table E-2. CISC Single Board Computers -- 7 Device

Controller Device

CLUN Address DLUN Type

0 $XXXXXXXX

00
10
20
30
40
50
60

SCSI Common Command Set
(CCS), which may be any of these:

- Fixed direct access
- Removable ßexible direct access

(TEAC style)
- CD-ROM
- Sequential access

80
Local ßoppy drive

81
E-2

Disk/Tape Controller Default Configurations

E

Table E-3. MVME320 -- 4 Devices

Controller Device

CLUN Address DLUN Type

11 $FFFFB000
0

Winchester hard drive
1

12 $FFFFAC00
2

5-1/4" DS/DD 96 TPI ßoppy drive
3

Table E-4. MVME323 -- 4 Devices

Controller Device

CLUN Address DLUN Type

8 $FFFFA000
0

ESDI Winchester hard drive
2

9 $FFFFA200
3

4

E-3

Disk/Tape Controller Data

E

Table E-5. MVME327A -- 9 Devices

Controller Device

CLUN Address DLUN Type

2 $FFFFA600
00

SCSI Common Command Set
(CCS), which may be any of these:

- Fixed direct access
- Removable ßexible direct access

(TEAC style)
- CD-ROM
- Sequential access

10

3 $FFFFA700

20

30

40

50

60

80
Local ßoppy drive

81
E-4

Disk/Tape Controller Default Configurations

E

Table E-6. MVME328 -- 14 Devices

Controller Device

CLUN Address DLUN Type

6 $FFFF9000
00

SCSI Common Command Set
(CCS), which may be any of these:

- Removable ßexible direct access
(TEAC style)

- CD-ROM
- Sequential access

08

7 $FFFF9800
10

18

16 $FFFF4800
20

28

17 $FFFF5800
30

40

Same as above, but these will only be
available if the daughter card for the
second SCSI channel is present

18 $FFFF7000
48

50

19 $FFFF7800

58

60

68

70

Table E-7. MVME350 -- 1 Device

Controller Device

CLUN Address DLUN Type

4 $FFFF5000
0

QIC-02 streaming tape drive

5 $FFFF5100
E-5

Disk/Tape Controller Data

E

IOT Command Parameters for Supported
Floppy Types

The following table lists the proper IOT command parameters for
floppies used with boards such as the MVME328, MVME167, and
MVME187.

Table E-8. IOT Command Parameters

IOT Parameter
Floppy Types and Formats

DSDD5 PCXT8 PCXT9 PCXT9_3 PCAT PS2 SHD
Sector Size
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 = 1 2 2 2 2 2 2
Block Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 = 1 1 1 1 1 1 1
Sectors/Track 10 8 9 9 F 12 24
Number of Heads = 2 2 2 2 2 2 2
Number of Cylinders = 50 28 28 50 50 50 50
Precomp. Cylinder = 50 28 28 50 50 50 50
Reduced Write
Current Cylinder = 50 28 28 50 50 50 50
Step Rate Code = 0 0 0 0 0 0 0
Single/Double DATA
Density = D D D D D D D
Single/Double
TRACK Density = D D D D D D D
Single/Equal_in_all
Track Zero Density = S E E E E E E
Slow/Fast Data Rate = S S S S F F F
Other Characteristics
Number of Physical
Sectors

0A00 0280 02D0 05A0 0960 0B40 1680

Number of Logical
Blocks (100 in size)

09F8 0500 05A0 0B40 12C0 1680 2D00

Number of Bytes in
Decimal

653312 327680 368460 737280 1228800 1474560 2949120

Media Size/Density 5.25/DD 5.25/DD 5.25/DD 3.5/DD 5.25/HD 3.5/HD 3.5/ED

Notes: 1. All numerical parameters are in hexadecimal unless otherwise noted.
2. The DSDD5 type ßoppy is the default setting for the debugger.
E-6

F
FDisk Communication Status
Codes
The status word returned by the disk TRAP #15 routines flags an
error condition if it is nonzero. The most significant byte of the
status word reflects controller-independent errors, and they are
generated by the disk trap routines. The least significant byte
reflects controller-dependent errors, and they are generated by the
controller. The status word is shown below:

Because of the nature of the MVME328 Dual SCSI Host Adapter,
additional status may be returned. The format of the additional
error status is as follows:

The SCSI Command is a byte that identifies the command that was
issued in which the Sense Key was returned. The Sense Key is a byte
that is returned in Request Sense Data buffer (byte number two).
Refer to the ANSI X3T9.2 SCSI Specification.

15 8 7 0

Controller-Independent Controller-Dependent

15 8 7 0

SCSI Command Sense Key

Table F-1. Controller-Independent Status Codes

Code Description

$00 No error detected.

$01 Invalid controller type.

$02 Controller descriptor not found.

$03 Device descriptor not found.

$04 Controller already attached.

$05 Descriptor table not found.

$06 Invalid command packet.
F-1

Disk Communication Status Codes

F

MVME167/MVME177 SCSI Firmware Status Codes

The following is a list of error codes returned by the MVME167/177
SCSI firmware that cause the error codes returned by the bug.

The bug returns a single word (16 bits) for an error code. The upper
byte is Controller-Independent, and is assigned by the bug, while
the lower byte is Controller-Dependent, and is formed from
selecting one of two bytes (SIOP Status or SCSI Bus Status) of error
information returned by the firmware. The precedence by which
one of the two bytes is selected by the bug is: if the SCSI Bus Status
byte returned by the firmware is non-zero, return this byte as the
Controller-Dependent code and throw away the SIOP Status byte;
else if the SCSI Bus Status is zero, return the SIOP Status byte.

Therefore, there is dual use of the Controller-Dependent error code
byte, for error code bytes $02, $04, $08, $10, $14, and $18. For
example, if the Controller-Dependent value returned by the bug is
a $02, then this code could have two possible meanings:

$02 SCSI Bus Status: Check condition.
$02 SIOP Status: Command aborted - SCSI bus reset.

$07 Invalid address for transfer.

$08 Block conversion error.

$09 Invalid parameter in conÞguration.

$0A Transfer data count mismatch error.

$0B Invalid status received in command packet.

$0C Command aborted via break.

Table F-1. Controller-Independent Status Codes (Continued)

Code Description
F-2

F

Below is a list of the error codes and a short description of each for
the SCSI Bus Status and the SIOP Status.

Table F-2. MVME167/MVME177 SCSI Firmware Status Codes

Code Description

SCSI Bus Status

$00 Good completion.

$02 Check condition.

$04 Condition met good.

$08 Busy.

$10 Intermediate good.

$14 Intermediate condition met good.

$18 Reservation conßict.

$22 Command terminated.

$28 Queue full.

SIOP Status

$00 Good status.

$01 No operation bits were set.

$02 Command aborted - SCSI bus reset.

$03 Command aborted - bus device reset message.

$04 Command aborted - abort message.

$05 Command aborted - abort tag message.

$06 Command aborted - clear queue message.

$07 Data overßow - too much data.

$08 Data underrun - not enough data.

$09 Clock faster than 75 MHz.

$0A Bad clock parameter - ASCII clock value Zero or non-ASCII.
F-3

Disk Communication Status Codes

F

$0B Queue depth too large (> 255).

$0C Selection time-out.

$0D Reselection time-out.

$0E Bus error during a data phase.

$0F Bus error during a non-data phase.

$10 Illegal NCR script instruction.

$11 Command aborted - unexpected disconnect.

$12 Command aborted - unexpected phase change.

$13 SCSI bus hung during command.

$14 Data phase not expected by user.

$15 Data phase was in wrong direction.

$16 Incorrect phase following select.

$17 Incorrect phase following message-out.

$18 Incorrect phase following data.

$19 Incorrect phase following command.

$1A Incorrect phase following status.

$1B Incorrect phase following rptr message.

$1C Incorrect phase following sdptr message.

$1D No identify message after re-selection.

$1E Siop failed during script patching.

$1F SIOP not attached to SCSI bus.

Table F-2. MVME167/MVME177 SCSI Firmware Status Codes
 (Continued)

Code Description
F-4

F

Table F-3. MVME320 Controller-Dependent Status Codes

Code Description

$00 Correct execution without error.

$01 Nonrecoverable error which cannot be completed (auto retries
were attempted).

$02 Drive not ready.

$03 Reserved.

$04 Sector address out of range.

$05 Throughput error (ßoppy data overrun).

$06 Command rejected (illegal command).

$07 Busy (controller busy).

$08 Drive not available (head out of range).

$09 DMA operation cannot be completed (VMEbus error).

$0A Command abort (reset busy).

$0B-
$FF

Not used.

Table F-4. MVME323 Controller-Dependent Status Codes

Code Description

$00 Correct execution without error.

$10 Disk not ready.

$11 Not used.

$12 Seek error.

$13 ECC code error-data Þeld.
F-5

Disk Communication Status Codes

F

$14 Invalid command code.

$15 Illegal fetch and execute command.

$16 Invalid sector in command.

$17 Illegal memory type.

$18 Bus time-out.

$19 Header checksum error.

$1A Disk write-protected.

$1B Unit not selected.

$1C Seek error time-out.

$1D Fault time-out.

$1E Drive faulted.

$1F Ready time-out.

$20 End of Medium.

$21 Translation Fault.

$22 Invalid Header Pad.

$23 Uncorrectable error.

$24 Translation error - cylinder.

$25 Translation error - head.

$26 Translation error - sector.

$27 Data overrun.

$28 No index pulse on format.

$29 Sector not found.

$2A ID Þeld error - wrong head.

$2B Invalid sync in data Þeld.

$2C No valid header found.

Table F-4. MVME323 Controller-Dependent Status Codes
 (Continued)

Code Description
F-6

F

$2D Seek time-out error.

$2E Busy time-out.

$2F Not on cylinder.

$30 RTZ time-out.

$31 Invalid sync in header.

$32-
3F

Not used.

$40 Unit not initialized.

$41 Not used.

$42 Gap speciÞcation error.

$43-
4A

Not used.

$4B Seek error.

$4C-
4F

Not used.

$50 Sectors-per-track error.

$51 Bytes-per-sector speciÞcation error.

$52 Interleave speciÞcation error.

$53 Invalid head address.

$54 Invalid cylinder address.

$55-
5C

Not used.

$5D Invalid DMA transfer count.

$5E-
5F

Not used.

$60 IOPB failed.

$61 DMA failed.

Table F-4. MVME323 Controller-Dependent Status Codes
 (Continued)

Code Description
F-7

Disk Communication Status Codes

F

$62 Illegal VME address.

$63-
69

Not used.

$6A Unrecognized header Þeld.

$6B Mapped header error.

$6C-
6E

Not used.

$6F No spare sector enabled.

$70-
76

Not used.

$77 Command aborted.

$78 ACFAIL detected.

$79-
EF

Not used.

$F0-
FE

Unforeseen error - call your Þeld service representative and tell
them the IOPB and UIB information that was available at the
time the error occurred.

$FF Command not implemented.

Table F-5. MVME327A Controller-Dependent Status Codes

Code Description

$00 Good.

$01-0F Command Parameter Errors

$01 Bad descriptor.

$02 Bad command.

Table F-4. MVME323 Controller-Dependent Status Codes
 (Continued)

Code Description
F-8

F

$03 Unimplemented command.

$04 Bad drive.

$05 Bad logical address.

$06 Bad scatter/gather table.

$07 Unimplemented device.

$08 Unit not initialized.

$10-1F Media Errors

$10 No ID found on track.

$11 Seek error.

$12 Relocated track error.

$13 Record not found, bad ID.

$14 Data sync fault.

$15 ECC error.

$16 Record not found.

$17 Media error.

$20-2F Drive Errors

$20 Drive fault.

$21 Write protected media.

$22 Motor not on.

$23 Door open.

$24 Drive not ready.

$25 Drive busy.

$30-3F VME DMA Errors

$30 VMEbus error.

$31 Bad address assignment.

Table F-5. MVME327A Controller-Dependent Status Codes
 (Continued)

Code Description
F-9

Disk Communication Status Codes

F

$32 Bus time-out.

$33 Invalid DMA transfer count.

$40-4F Disk Format Errors

$40 Not enough alternates.

$41 Format failed.

$42 Verify error.

$43 Bad format parameters.

$44 Cannot Þx bad spot.

$45 Too many defects.

$80-FF MVME327A SpeciÞc Errors

$80 SCSI error, additional status available.

$81 Indeterminate media error, no additional information.

$82 Indeterminate hardware error.

$83 Blank check (EOD or corrupted WORM).

$84 Incomplete extended message from target.

$85 Invalid reselection by an unthreaded target.

$86 No status returned from target.

$87 Message out not transferred to target.

$88 Message in not received from target.

$89 Incomplete data read to private buffer.

$8A Incomplete data write from private buffer.

$8B Incorrect CDB size was given.

$8C UndeÞned SCSI phase was requested.

$8D Time-out occurred during a select phase.

$8E Command terminated due to SCSI bus request.

Table F-5. MVME327A Controller-Dependent Status Codes
 (Continued)

Code Description
F-10

F

$8F Invalid message received.

$90 Command not received.

$91 Unexpected status phase.

$92 SCSI script mismatch.

$93 Unexpected disconnect caused command failure.

$94 Request sense command was not successful.

$95 No write descriptor for controller drive.

$96 Incomplete data transfer.

$97 Out of local resources for command processing.

$98 Local memory resources lost.

$99 Channel reserved for another VME host.

$9A Device reserved for another SCSI device.

$9B Already enabled, expecting target response.

$9C Target not enabled.

$9D Unsupported controller type.

$9E Unsupported peripheral device type.

$9F Block size mismatch.

$A0 Invalid cylinder number in format defect list.

$A1 Invalid head number in format defect list.

$A2 Block size mismatch--nonfatal.

$A3 Our SCSI ID was not changed by command.

$A4 Our SCSI ID has changed.

$A5 No target enable has been completed.

$A6 Cannot do longword transfers (Note).

$A7 Cannot do DMA transfers.

Table F-5. MVME327A Controller-Dependent Status Codes
 (Continued)

Code Description
F-11

Disk Communication Status Codes

F

$A8 Invalid logical block size.

$A9 Sectors per track mismatch.

$AA Number of heads mismatch.

$AB Number of cylinders mismatch.

$AC Invalid ßoppy parameter(s).

$AD Already reserved.

$AE Was not reserved.

$AF Invalid sector number.

$CC Self test failed.

Note: A ÒlongwordÓ in M68000 systems is the same size as a ÒwordÓ
in M88000 systems: four bytes.

Table F-6. MVME328 Controller-Dependent Status Codes

Code Description

MACSI/Controller Error Codes

$00 Good status.

$01 Queue full.

$02 Work queue initialization error.

$03 First command error.

$04 Command code error.

$05 Queue number error.

$06 Queue already initialized.

$07 Queue uninitialized.

Table F-5. MVME327A Controller-Dependent Status Codes
 (Continued)

Code Description
F-12

F

$08 Queue mode not ready.

$09 Command unavailable.

$0B Invalid burst count.

General Error Code Information

$10 Reserved Þeld error.

$11 Reset bus status.

$12 Secondary port unavailable.

$13 SCSI ID error.

$14 SCSI bus reset status.

$15 Command aborted by reset.

$16 Page size error.

$17 Invalid command tag.

$18 Busy command tag.

VMEbus Errors

$20 VMEbus bus error.

$21 VMEbus time-out.

$23 VMEbus illegal address.

$24 VMEbus illegal memory type.

$25 Illegal count speciÞed.

$26 VMEbus fetch error.

$27 VMEbus fetch time-out.

$28 VMEbus post error.

$29 VMEbus post time-out.

$2A VMEbus illegal fetch address.

$2B VMEbus illegal post address.

Table F-6. MVME328 Controller-Dependent Status Codes
 (Continued)

Code Description
F-13

Disk Communication Status Codes

F

$2C VMEbus scatter/gather fetch.

$2D VMEbus scatter/gather time-out.

$2E Invalid scatter/gather count.

SCSI Errors

$30 SCSI selection time-out error.

$31 SCSI disconnect time-out error.

$32 Abnormal SCSI sequence.

$33 SCSI disconnect error.

$34 SCSI transfer count exception.

$35 SCSI parity error.

Scatter/Gather Errors

$40 Illegal scatter/gather count.

$41 Illegal scatter/gather memory type.

$42 Illegal scatter/gather address.

Error Handling Codes

$50 Read/write buffer count error.

$51 Illegal read/write.

$80 Flush on error in progress.

$81 Flush work queue status.

$82 Missing command.

$83 Counter exhausted.

$84 Data direction error.

Printer Port Errors

$90 Printer status change.

$91 Printer count too short.

Table F-6. MVME328 Controller-Dependent Status Codes
 (Continued)

Code Description
F-14

F

$92 Bad data length Þeld.

$93 Printer unavailable.

$99 Scatter/gather selected for printer port.

Other Errors

$C0 Bad IOPB type.

$C1 IOPB time-out error.

Table F-7. MVME350 Controller-Dependent Status Codes

Code Description

$00 Correct execution without error.

$01 Block in error not located.

$02 Unrecoverable data error.

$03 End of media.

$04 Write protected.

$05 Drive ofßine.

$06 Cartridge not in place.

$0D No data detected.

$0E Illegal command.

$12 Tape reset did not occur.

$17 Time-out.

$18 Bad drive.

$1A Bad command.

$1E Fatal error.

Table F-6. MVME328 Controller-Dependent Status Codes
 (Continued)

Code Description
F-15

Disk Communication Status Codes

F

F-16

G
GNetwork Controller Data
Network Controller Modules Supported
The following VMEbus network controller modules are supported
by the debugger. The default address for each type and position is
showed to indicate where the controller must reside to be
supported by the debugger.

The controllers are accessed via the specified CLUN and DLUNs
listed here. The CLUN and DLUNs are used in conjunction with
the debugger commands NBH, NBO, NIOP, NIOC, NIOT,
NPING, and NAB, and also with the debugger system calls
.NETRD, .NETWR, .NETFOPN, .NETFRD, .NETCFIG, and
.NETCTRL.

Table G-1. Network Controller Data

Controller
Type

CLUN DLUN Address
Interface

Type

MVME162 $00 $00 $FFF46000 Ethernet

MVME167 $00 $00 $FFF46000 Ethernet

MVME177 $00 $00 $FFF46000 Ethernet

MVME376 $02 $00 $FFFF1200 Ethernet

MVME376 $03 $00 $FFFF1400 Ethernet

MVME376 $04 $00 $FFFF1600 Ethernet

MVME376 $05 $00 $FFFF5400 Ethernet

MVME376 $06 $00 $FFFF5600 Ethernet

MVME376 $07 $00 $FFFFA400 Ethernet

MVME374 $10 $00 $FF000000 Ethernet

MVME374 $11 $00 $FF100000 Ethernet
G-1

Network Controller Data

G

MVME374 $12 $00 $FF200000 Ethernet

MVME374 $13 $00 $FF300000 Ethernet

MVME374 $14 $00 $FF400000 Ethernet

MVME374 $15 $00 $FF500000 Ethernet

Table G-1. Network Controller Data (Continued)

Controller
Type

CLUN DLUN Address
Interface

Type
G-2

H
HNetwork Communication
Status Codes
The network communication error codes are classified in two types;
controller independent and controller dependent. The controller-
independent error codes are independent of the specified network
interface; these errors are normally some type of operator error. The
controller-dependent error codes relate directly to the specified
network interface; these errors occur at the driver level out to and
including the network.

The status word returned by the network TRAP #15 routines flags
an error condition if it is nonzero. The most significant byte of the
status word reflects controller-independent errors, and they are
generated by the network trap routines. The least significant byte
reflects controller dependent errors, and they are generated by the
controller. The status word is shown below:

15 8 7 0

Controller-Independent Controller-Dependent

Table H-1. Controller-Independent Status Codes

Code Description

$01 Invalid controller logical unit number.

$02 Invalid device logical unit number.

$03 Invalid command identiÞer.

$04 Clock (RTC) is not running.

$05 TFTP retry count exceeded.

$06 BOOTP retry count exceeded.

$07 NVRAM write failure.

$08 Illegal IPL load address.
H-1

Network Communication Status Codes

H

$09 User abort, break key depressed.

$0A Time-out expired.

$81 TFTP, File not found.

$82 TFTP, Access violation.

$83 TFTP, Disk full or allocation exceeded.

$84 TFTP, Illegal TFTP operation.

$85 TFTP, Unknown transfer ID.

$86 TFTP, File already exists.

$87 TFTP, No such user.

Table H-2. Controller-Dependent Status Codes

Code Description

 Intel 82596 - LAN Coprocessor

$01 64Kbyte buffer not 16 byte aligned.

$02 SCP block not 16 byte aligned.

$03 SCB read address failure.

$04 ConÞgure command completed with error.

$05 Command unit not idle.

$06 Command unit pending interrupt status.

$07 Individual address setup (IAS) command completed with
error.

$08 Transmit command completed with error.

$09 64Kbyte buffer limit exceeded (software).

$0A Receive unit not idle.

$0B Invalid data length, larger than Ethernet packet maximum.

Table H-1. Controller-Independent Status Codes

Code Description
H-2

H

MVME374 (AMD AM7990 - LANCE)

$01 256Kbyte buffer not 16 byte aligned.

$02 Shared memory buffer limit exceeded (software).

$03 Invalid data length, larger than Ethernet packet maximum.

$10 LANCE memory error.

$11 LANCE transmitter babble error.

$12 LANCE transmitter collision error.

$13 LANCE transmitter buffer error.

$14 LANCE transmitter underßow error.

$15 LANCE transmitter late collision error.

$16 LANCE transmitter loss of carrier error.

$17 LANCE transmitter retry error.

$18 LANCE receiver buffer error.

$19 LANCE receiver CRC error.

$1A LANCE receiver overßow error.

$1B LANCE receiver framing error.

$20 Board failure error.

$21 No response from server error.

MVME376 (AMD AM7990 - LANCE)

$01 256Kbyte buffer not 16 byte aligned.

$02 Shared memory buffer limit exceeded (software).

$03 Invalid data length, larger than Ethernet packet maximum.

$10 LANCE memory error.

$11 LANCE transmitter babble error.

$12 LANCE transmitter collision error.

Table H-2. Controller-Dependent Status Codes (Continued)

Code Description
H-3

Network Communication Status Codes

H

$13 LANCE transmitter buffer error.

$14 LANCE transmitter underßow error.

$15 LANCE transmitter late collision error.

$16 LANCE transmitter loss of carrier error.

$17 LANCE transmitter retry error.

$18 LANCE receiver buffer error.

$19 LANCE receiver CRC error.

$1A LANCE receiver overßow error.

$1B LANCE receiver framing error.

Table H-2. Controller-Dependent Status Codes (Continued)

Code Description
H-4

I
INetwork Header File and
Assembly Interface
"C" Header File
/**/
/* Source Code Control System ID header */
/**/
/* @(#)net.h 1.1 3/6/92 */
/**/
/*
 * Module name: net.h
 * Description:
 * Network I/O Definitions Header File
 * SCCS identification: 1.1
 * Branch: 0
 * Sequence: 0
 * Date newest applied delta was created (MM/DD/YY): 3/6/92
 * Time newest applied delta was created (HH:MM:SS): 12:46:22
 * SCCS file name /riscy/fwdb/BUGDB/src/src/include/s.net.h
 * Fully qualified SCCS file name:
 * /riscy/fwdb/BUGDB/src/src/include/s.net.h
 * Copyright:
 * (C) BRAND X, INC. 1992
 * ALL RIGHTS RESERVED
 * Notes:
 * 1. This file was created for the benefit of users. It
 * does not really exist in the debugger source data base;
 * however, various pieces were extracted from source files.
 * History:
 * Date Revision Who Comments
 * 01/29/92 1.00 John Doe Initial release.
 *
 */

/*
 * internet protocol (IP) address structure template
 */
#define IPA_LENGTH 4
typedef struct ip_address {
 UCHAR address[IPA_LENGTH];
} IP_ADDRESS;
I-1

Network Header File and Assembly Interface

I

/*
 * network configuration parameters structure template
 *
 * note:
 * when any changes are made to this structure template
 * the NET_MAGIC definition needs modification
 */

#define BFNAMESIZE 64 /* boot filename size */

#define NET_MAGIC 0x12301983 /* structure template magic number */

typedef struct netcnfgp {
 UINT magic; /* magic number of this template */
 UINT nodememory; /* node control memory address */
 UINT bfla; /* boot file load address */
 UINT bfea; /* boot file execution address */
 UINT bfed; /* boot file execution delay */
 UINT bfl; /* boot file length */
 UINT bfbo; /* boot file byte offset */
 UINT tbuffera; /* trace buffer address (txd/rxd packets) */
 IP_ADDRESS cipa; /* client IP address */
 IP_ADDRESS sipa; /* server IP address */
 IP_ADDRESS subnetmask; /* subnet IP address mask */
 IP_ADDRESS broadcast; /* broadcast IP address */
 IP_ADDRESS gipa; /* gateway IP address */
 UCHAR bootp_retrys; /* maximum number of retrys, BOOTP/RARP request */
 UCHAR tftp_retrys; /* maximum number of retrys, TFTP/ARP request */
 UCHAR bootp_ctl; /* BOOTP/RARP request control */
 UCHAR cnfgp_ctl; /* configuration parameters update control */
 UCHAR filename[BFNAMESIZE]; /* boot filename buffer string */
 UCHAR argfname[BFNAMESIZE]; /* argument filename buffer string */
} NETCNFGP;

/*
 * device configuration parameters structure template
 * (currently not used)
 */

typedef struct devicecp {
 UINT fill;
} DEVICECP;

/*
 * error status word structure template
 */

struct estatusw {
 UCHAR ci; /* controller independent */
 UCHAR cd; /* controller dependent */
};

/*
 * controller independent error codes
 */
I-2

"C" Header File

I

/
#define NIO_ERR_ICLUN 0x01 /* invalid controller logical unit number */
#define NIO_ERR_IDLUN 0x02 /* invalid device logical unit number */
#define NIO_ERR_ICID 0x03 /* invalid command identifier */
#define NIO_ERR_NOCLOCK 0x04 /* clock is not running */
#define NIO_ERR_TFTPRE 0x05 /* TFTP retry count exceeded */
#define NIO_ERR_BOOTPRE 0x06 /* BOOTP retry count exceeded */
#define NIO_ERR_NVRAMWF 0x07 /* NVRAM write failure */
#define NIO_ERR_IIPLLA 0x08 /* illegal IPL load address */
#define NIO_ERR_USRABRT 0x09 /* user abort, break key depressed */
#define NIO_ERR_TOEXPRD 0x0A /* timeout expired */

/*
 * MVME167/187 Error Codes
 *
 * error codes returned by driver, these codes will be placed in
 * the controller dependent field of the command packet status
 * word
 *
 * note: all error codes must be non-zero, an error code of 0x00
 * signifies no error
 */

#define V187_ERR_BNA 0x01 /* 64Kbyte buffer not 16 byte aligned */
#define V187_ERR_SCPNA 0x02 /* SCP block not 16 byte aligned */
#define V187_ERR_SCBRAF 0x03 /* SCB read address failure */
#define V187_ERR_CNFGCE 0x04 /* configure command completed with error *
#define V187_ERR_CUNIDLE 0x05 /* command unit not idle */
#define V187_ERR_CUPIS 0x06 /* command unit pending interrupt status */
#define V187_ERR_IASCE 0x07 /* individual address setup (IAS) command
completed with error */
#define V187_ERR_TXDCE 0x08 /* transmit command completed with error */
#define V187_ERR_BSIZ 0x09 /* 64Kbyte buffer limit exceeded (software)
*/
#define V187_ERR_RUNIDLE 0x0A /* receive unit not idle */
#define V187_ERR_IDLNGTH 0x0B /* invalid data length (MIN <= LNGTH <=
MAX) */

/*
 * MVME374 Error Codes
 *
 * error codes returned by driver, these codes will be placed in
 * the controller dependent field of the command packet status
 * word
 *
 * note: all error codes must be non-zero, an error code of 0x00
 * signifies no error
 */

#define V374_ERR_BNA 0x01 /* 256Kbyte buffer not 16 byte aligned */
#define V374_ERR_BSIZ 0x02 /* shared memory buffer limit exceeded
(software) */
#define V374_ERR_IDLNGTH 0x03 /* invalid data length (MIN <= LNGTH <=
MAX) */

#define V374_ERR_MERR 0x10 /* memory error */
#define V374_ERR_BABL 0x11 /* transmitter babble error */
#define V374_ERR_CERR 0x12 /* transmitter collision error */
I-3

Network Header File and Assembly Interface

I

#define V374_ERR_TBUFF 0x13 /* transmitter buffer error */
#define V374_ERR_UFLO 0x14 /* transmitter underflow error */
#define V374_ERR_LCOL 0x15 /* transmitter late collision error */
#define V374_ERR_LCAR 0x16 /* transmitter loss of carrier error */
#define V374_ERR_RTRY 0x17 /* transmitter retry error */
#define V374_ERR_RBUFF 0x18 /* receiver buffer error */
#define V374_ERR_CRC 0x19 /* receiver CRC error */
#define V374_ERR_OFLO 0x1A /* receiver overflow error */
#define V374_ERR_FRAM 0x1B /* receiver framing error */
#define V374_ERR_BFAIL 0x20 /* board failure error */
#define V374_ERR_SRVR 0x21 /* no response from server error */

/*
 * MVME376 Error Codes
 *
 * error codes returned by driver, these codes will be placed in
 * the controller dependent field of the command packet status
 * word
 *
 * note: all error codes must be non-zero, an error code of 0x00
 * signifies no error
 */
#define V376_ERR_BNA 0x01 /* 256Kbyte buffer not 16 byte aligned */
#define V376_ERR_BSIZ 0x02 /* shared memory buffer limit exceeded
(software) */
#define V376_ERR_IDLNGTH 0x03 /* invalid data length (MIN <= LNGTH <=
MAX) */

#define V376_ERR_MERR 0x10 /* memory error */
#define V376_ERR_BABL 0x11 /* transmitter babble error */
#define V376_ERR_CERR 0x12 /* transmitter collision error */
#define V376_ERR_TBUFF 0x13 /* transmitter buffer error */
#define V376_ERR_UFLO 0x14 /* transmitter underflow error */
#define V376_ERR_LCOL 0x15 /* transmitter late collision error */
#define V376_ERR_LCAR 0x16 /* transmitter loss of carrier error */
#define V376_ERR_RTRY 0x17 /* transmitter retry error */
#define V376_ERR_RBUFF 0x18 /* receiver buffer error */
#define V376_ERR_CRC 0x19 /* receiver CRC error */
#define V376_ERR_OFLO 0x1A /* receiver overflow error */
#define V376_ERR_FRAM 0x1B /* receiver framing error */

/*
 * status/control word definitions
 */

#define S_RXDATA (1<<16) /* status: receive data present */

/*
 * network drivers entry points (command identifiers)
 *
 * note:
 * these command identifiers are documented in user's manuals
 */
I-4

"C" Header File

I

#define NIO_CMD_INIT 0 /* initialize device/channel/node */
#define NIO_CMD_GHA 1 /* get hardware address (network node) */
#define NIO_CMD_TXD 2 /* transmit (put) data packet */
#define NIO_CMD_RXD 3 /* receive (get) data packet */
#define NIO_CMD_RFLSH 4 /* flush receiver and receive buffers */
#define NIO_CMD_RESET 5 /* reset device/channel/node */

/*
 * system call .NETRD/.NETWR packet template
 */

typedef struct niopcall {
 UCHAR clun; /* controller logical unit number */
 UCHAR dlun; /* device logical unit number */
 struct estatusw swrd; /* error status word */
 UINT x_address; /* data transfer address */
 UINT x_length; /* maximum length of transfer */
 UINT x_offset; /* byte offset */
 UINT x_time; /* transfer time in seconds (status) */
 UINT x_bytes; /* transfer byte count (status) */
 UCHAR filename[BFNAMESIZE]; /* boot filename buffer string */
} NIOPCALL;

/*
 * system call .NETCTRL packet template
 */

typedef struct nioccall {
 UCHAR clun; /* controller logical unit number */
 UCHAR dlun; /* device logical unit number */
 struct estatusw swrd; /* error status word */
 UINT cid; /* command identifier */
 UINT memaddr; /* memory address (data transfers) */
 UINT nbytes; /* number of bytes (data transfers) */
 UINT csword; /* status/control word */
} NIOCCALL;

/*
 * system call .NETCFIG packet template
 */

typedef struct niotcall {
 UCHAR clun; /* controller logical unit number */
 UCHAR dlun; /* device logical unit number */
 struct estatusw swrd; /* error status word */
 NETCNFGP *netcnfgp_p; /* network configuration parameters pointer */
 DEVICECP *devicecp_p; /* device configuration parameters pointer */
 UINT cntrlflg; /* control flag */
} NIOTCALL;

/*
 * system call .NETCFIG packet "cntrlflg" definitions
 */

#define NIOT_CTRL_READ (1<<0) /* read configuration parameters */
#define NIOT_CTRL_WRITE (1<<1) /* write configuration parameters */
#define NIOT_CTRL_NVRAM (1<<2) /* write configuration parameters to
NVRAM */
I-5

Network Header File and Assembly Interface

I

/*
 * system call .NETFOPN packet template
 */

typedef struct nfileopen {
 UCHAR clun; /* controller logical unit number */
 UCHAR dlun; /* device logical unit number */
 struct estatusw swrd; /* error status word */
 UCHAR filename[BFNAMESIZE]; /* filename buffer string */
} NFILEOPEN;

/*
 * system call .NETFRD packet template
 *
 * note:
 * maximum block size returned (x_bytes) is fixed at 512 bytes
 */

typedef struct nfileread {
 UCHAR clun; /* controller logical unit number */
 UCHAR dlun; /* device logical unit number */
 struct estatusw swrd; /* error status word */
 UINT x_address; /* data transfer address */
 USHORT x_bytes; /* transfer byte count (status) */
 USHORT x_blockno; /* block number */
 UINT x_timeout; /* number of seconds to wait for data packet */
} NFILEREAD;

/*
 * network boot information block structure template
 */

typedef struct netbootinfo {
 IP_ADDRESS cipa; /* client IP address */
 IP_ADDRESS sipa; /* server IP address */
 IP_ADDRESS gipa; /* gateway IP address */
 IP_ADDRESS subnetmask; /* subnet IP address mask */
 IP_ADDRESS broadcast; /* broadcast IP address */
} NETBOOTINFO;

/*
 * trace buffer character definitions
 */
#define TC_UNKNOWN `?' /* unknown */
#define TC_E_US `&' /* unsupported ETHERNET type */
#define TC_IP_US `*' /* unsupported IP type */
#define TC_UDP_US `%' /* unsupported UDP type */

#define TC_BOOTP_US `$' /* unsupported BOOTP type */
#define TC_BOOTP_REQUEST `[` /* BOOTP request */
#define TC_BOOTP_REPLY `]' /* BOOTP reply */

#define TC_ARP_US `+' /* unsupported ARP type */
#define TC_ARP_REQUEST `(` /* ARP request */
#define TC_ARP_REPLY `)' /* ARP reply */

#define TC_RARP_US `-' /* unsupported RARP type */
#define TC_RARP_REQUEST `{` /* RARP request */
#define TC_RARP_REPLY `}' /* RARP reply */
I-6

Assembly Interface Routines

I

#define TC_TFTP_US `^' /* unsupported TFTP type */
#define TC_TFTP_RRQ `\xab /* TFTP read request */
#define TC_TFTP_WRQ `/' /* TFTP write request */
#define TC_TFTP_ACK `<` /* TFTP acknowledgment */
#define TC_TFTP_DATA `>' /* TFTP data */
#define TC_TFTP_ERROR `|' /* TFTP error */

#define TC_ICMP_US `,' /* unsupported ICMP type */
#define TC_ICMP_ERQST `:' /* ICMP echo request */
#define TC_ICMP_ERPLY `;' /* ICMP echo reply */

Assembly Interface Routines
 file "io.s"
 text

abstract:
this module contains low levels routines to
perform the various needed debugger system calls
copyright:
(c) brand x inc., 1992
all rights reserved
history:
03/07/92 john doe initial release
#
 set SC_VECTOR,15 # system call vector number
system call identifiers
#
 set INCHR,0x0000 # input character
 set INSTAT,0x0001 # input serial port status
 set NETRD,0x0018 # network read, tftp read request
 set NETWR,0x0019 # network write, tftp write request
 set NETCFIG,0x001a # network configure
 set NETFOPN,0x001b # network file open (request)
 set NETFRD,0x001c # network file rea
 set NETCTRL,0x001d # network control, raw packets
 set OUTCHR,0x0020 # output character
 set RETURN,0x0063 # return to the bug

name: getstat
description:
perform the bug system call .INSTAT, .INSTAT retrieves
the status from current console port
this subroutine will execute a trap instruction
(vector number 15) which the bug will interpret as
a system call
call:
getstat()
no arguments
return:
%d0 = zero: no character, non-zero: character

I-7

Network Header File and Assembly Interface

I

 global getstat
getstat:
 trap &SC_VECTOR # launch system call, trap to bug
 short INSTAT # load system call identifier
 beq getstat_nc # if equal, no character, branch
 mov.l &1,%d0 # setup non-zero status
 rts # return to caller
getstat_nc:
 clr.l %d0 # setup zero status
 rts # return to caller

name: getchar
description:
perform the bug system call .INCHR, .INCHR retrieves
a character from current console port
this subroutine will execute a trap instruction
(vector number 15) which the bug will interpret as
a system call
call:
getchar()
no arguments
return:
%d0 = character read (get)

 global getchar
getchar:
 sub.l &2,%a7 # allocate space for character
 trap &SC_VECTOR # launch system call, trap to bug
 short INCHR # load system call identifier
 mov.b (%a7)+,%d0 # load character and deallocate
 rts # return to caller

name: putchar
description:
perform the bug system call .OUTCHR, .OUTCHR outputs
the specified character to current console port
this subroutine will execute a trap instruction
(vector number 15) which the bug will interpret as
a system call
call:
putchar(character-to-send)
7(%a7) = character to output (send)
return:
none

 global putchar
putchar:
 mov.b 7(%a7),-(%a7) # load character for call
 trap &SC_VECTOR # launch system call, trap to bug
 short OUTCHR # load system call identifier
 rts # return to caller

name: gobug
I-8

Assembly Interface Routines

I

description:
perform the bug system call .RETURN, .RETURN returns
instruction control back to the bug
this subroutine will execute a trap instruction
(vector number 15) which the bug will interpret as
a system call
call:
no arguments
return:
does not return to the caller

 global gobug
gobug:
 trap &SC_VECTOR # launch system call, trap to bug
 short RETURN # load system call identifier
 rts # return to caller

name: netrd
description:
perform the bug system call .NETRD, .NETRD is a TFTP
read request for a specified file, this subroutine
will execute a trap instruction (vector number 15)
which the bug will interpret as a system call
the command packet specifies the name of the file
and where to load it
this system call functions as the bug command "NIOP"
call:
netrd(pointer-to-command-packet)
4(%a7) = pointer to command packet
return:
%d0 = zero: okay, non-zero: error

 global netrd
netrd:
 mov.l 4(%a7),-(%a7) # load pointer to packet
 trap &SC_VECTOR # launch system call, trap to bug
 short NETRD # load system call identifier
 bne netrderr # if not equal, error, branch
 clr.l %d0 # setup zero status
 rts # return to caller
netrderr:
 mov.l &1,%d0 # setup non-zero status
 rts # return to caller

name: netwr
description:
perform the bug system call .NETWR, .NETWR is a TFTP
write request to a specified file, this subroutine
will execute a trap instruction (vector number 15)
which the bug will interpret as a system call
the command packet specifies the name of the file
and where to retrieve it
this system call functions as the bug command "NIOP"
I-9

Network Header File and Assembly Interface

I

call:
netwr(pointer-to-command-packet)
4(%a7) = pointer to command packet
return:
%d0 = zero: okay, non-zero: error

 global netwr
netwr:
 mov.l 4(%a7),-(%a7) # load pointer to packet
 trap &SC_VECTOR # launch system call, trap to bug
 short NETWR # load system call identifier
 bne netwrerr # if not equal, error, branch
 clr.l %d0 # setup zero status
 rts # return to caller
netwrerr:
 mov.l &1,%d0 # setup non-zero status
 rts # return to caller

name: netctrl
description:
perform the bug system call .NETCTRL, .NETCTRL
allows the user to control the specified network
interface directly, the control is specified in the
command packet, this subroutine will execute a trap
instruction (vector number 15) which the bug will
interpret as a system call
this system call functions as the bug command "NIOC"
call:
netctrl(pointer-to-command-packet)
4(%a7) = pointer to command packet
return:
%d0 = zero: okay, non-zero: error

 global netctrl
netctrl:
 mov.l 4(%a7),-(%a7) # load pointer to packet
 trap &SC_VECTOR # launch system call, trap to bug
 short NETCTRL # load system call identifier
 bne netctrlerr # if not equal, error, branch
 clr.l %d0 # setup zero status
 rts # return to caller
netctrlerr:
 mov.l &1,%d0 # setup non-zero status
 rts # return to caller

name: netcfig
description:
perform the bug system call .NETCFIG, .NETCFIG
allows the user to configure (read or write) the
parameters associated with the specified network
interface, this subroutine will execute a trap
instruction (vector number 15) which the bug will
interpret as a system call
I-10

Assembly Interface Routines

I

this system call functions as the bug command "NIOT"
call:
netcfig(pointer-to-command-packet)
4(%a7) = pointer to command packet
return:
%d0 = zero: okay, non-zero: error

 global netcfig
netcfig:
 mov.l 4(%a7),-(%a7) # load pointer to packet
 trap &SC_VECTOR # launch system call, trap to bug
 short NETCFIG # load system call identifier
 bne netcfigerr # if not equal, error, branch
 clr.l %d0 # setup zero status
 rts # return to caller
netcfigerr:
 mov.l &1,%d0 # setup non-zero status
 rts # return to caller

name: netfopn
description:
perform the bug system call .NETFOPN, .NETFOPN
allows the user to request the transfer of a file,
this subroutine will execute a trap instruction
(vector number 15) which the bug will interpret
as a system call
call:
netfopn(pointer-to-command-packet)
4(%a7) = pointer to command packet
return:
%d0 = zero: okay, non-zero: error

 global netfopn
netfopn:
 mov.l 4(%a7),-(%a7) # load pointer to packet
 trap &SC_VECTOR # launch system call, trap to bug
 short NETFOPN # load system call identifier
 bne netfopnerr # if not equal, error, branch
 clr.l %d0 # setup zero status
 rts # return to caller
netfopnerr:
 mov.l &1,%d0 # setup non-zero status
 rts # return to caller

name: netfrd
description:
perform the bug system call .NETFRD, .NETFRD
allows the user to retrieve the file data blocks,
this subroutine will execute a trap instruction
(vector number 15) which the bug will interpret
as a system call
call:
netfrd(pointer-to-command-packet)
I-11

Network Header File and Assembly Interface

I

4(%a7) = pointer to command packet
return:
%d0 = zero: okay, non-zero: error

 global netfrd
netfrd:
 mov.l 4(%a7),-(%a7) # load pointer to packet
 trap &SC_VECTOR # launch system call, trap to bug
 short NETFRD # load system call identifier
 bne netfrderr # if not equal, error, branch
 clr.l %d0 # setup zero status
 rts # return to caller
netfrderr:
 mov.l &1,%d0 # setup non-zero status
 rts # return to caller

 data
I-12

Index
Symbols
.ACFSTAT function 5-105
.BINDEC function 5-63
.BRD_ID function 5-71
.CHANGEV function 5-64
.CHK_SUM function 5-69
.CHKBRK function 5-12
.DELAY function 5-51
.DIAGFCN function 5-82
.DIVU32 function 5-68
.DSKCFIG function 5-16
.DSKCTRL function 5-24
.DSKFMT function 5-21
.DSKRD function 5-13
.DSKWR function 5-13
.ENVIRON function 5-75
.ERASLN function 5-47
.INCHR function 5-6
.INLN function 5-8
.INSTAT function 5-7
.IOCONFIG function 5-99
.IODELETE function 5-101
.IOINFORM function 5-98
.IOINQ function 5-92
.MULU32 function 5-67
.NETCFIG function 5-29
.NETCTRL function 5-39
.NETFOPN function 5-35
.NETFRD function 5-37
.NETRD function 5-26
.NETWR function 5-26
.OUTCHR function 5-42
.OUTLN function 5-43

.OUTSTR function 5-43

.PCRLF function 5-46

.PFLASH function 5-79

.READLN function 5-11

.READSTR function 5-9

.REDIR function 5-59

.REDIR_I function 5-61

.REDIR_O function 5-61

.RETURN function 5-62

.RTC_DSP function 5-55

.RTC_DT function 5-54

.RTC_RD function 5-57

.RTC_TM function 5-52

.SIOPEPS function 5-90

.SNDBRK function 5-50

.STRCMP function 5-66

.SYMBOLTA function 5-102

.SYMBOLTD function 5-104

.WRITD function 5-48

.WRITDLN function 5-48

.WRITE function 5-44

.WRITELN function 5-44

Numerics
16XBug

functions 5-1
system call routines 5-3

16XBug system mode operation A-1
16X-Bug> B-3
16X-Diag> A-5, B-3
5-1/4 DS/DD 96 TPI floppy drive E-3
IN-13

Index

I
N
D
E
X

A
AC failure (ACFAIL) 5-105
ACFAIL status inquiry 5-105
alternate boot device A-5
arithmetic operators 4-9
AS command 4-16
ASCII

terminal A-6
assembler

disassembler 4-1
invoking 4-16
one-line 4-1
resident 4-2

assembly
interface routines I-7
interface, network I-1
language 4-1
language statements 4-15

attach
symbol table 5-102

attribute mask D-3
attributes mask D-1
attributes word D-1, D-3

B
baud rate A-6
BCD 5-105

calculate 5-63
BH command (bootstrap and halt) D-1
Binary Coded Decimal (BCD) A-13
bitwise

AND 4-12
OR 4-12

block number D-1
blocks

retrieve 5-37
BO command (bootstrap operating sys-

tem) D-1
board

identification/information A-13
board ID packet 5-71
boot

device, select A-5
branch address, entering 4-18
break

check for 5-12
send 5-50

C
C programming language

header file I-1
Cache Control Register 4-8
CCS (SCSI Common Command Set) E-2
CFGA D-4
character

input 5-6
output 5-42
set 4-9

check for break 5-12
checksum

generate 5-69
CISC Single Board Computer (SBC) E-1,

E-2
clock

registers, read 5-57
CLUN G-1
CLUN (controller LUN) E-2
coding source program 4-3
command

parameter errors F-8
comments 4-3
communication status codes

network H-1
compare

strings 5-66
concurrent

console command A-8
mode 5-93, A-8

Condition Codes Register 4-7
configuration

area D-1
area block #1 (CFGA) D-1
default disk/tape controller E-2

configure
IN-14

I
N
D
E
X

disk 5-16
network parameters 5-29
port I/O 5-99

constants, define 4-14
continue system start up A-2
control

disk 5-24
functions, implement 5-39

Control Register 4-8
controller E-1

dependent errors F-1
independent errors F-1
independent status codes F-1

controller LUN (CLUN) E-2
controller-dependent

errors H-1
status codes H-2

controller-independent
errors H-1
status codes H-1

controllers
supported E-1

conversation mode A-9
CR/LF, print 5-46
CSO (see customer service organization

A-5
customer service A-7
customer service organization (CSO)

A-5, A-7
phone number A-7

D
data

density D-3
size code 4-4

Data Registers 4-8
Data Transparent Translation Registers

0,1 4-9
date

display 5-56
initialization 5-54

DC.W 4-2

DC.W, define constant directive 4-14
debugger

error messages B-1
go to A-5
prompt B-3

debugging package messages B-1
define constant directive 4-2
delay, timer 5-51
delete

I/O port 5-101
delimiters and mnemonics 4-6
Delta Series A-1
Destination Function Code Register 4-8
detach

symbol table 5-104
device LUN (DLUN) E-2
diagnostic

error messages B-2
mode A-5
prompt B-3

diagnostic function(s) 5-82
direct access device E-2, E-5
directives 4-1, 4-2
disassembled source line 4-6
disassembler 4-6
disk

communication status codes F-1
configure 5-16
control 5-24
controller

data E-1
default configuration E-2

format 5-21
format errors F-10
read 5-13
type D-3
write 5-13

disk/tape controller data E-1
disk/tape controller default configura-

tions E-2
IN-15

Index

I
N
D
E
X

disk/tape controller modules supported
E-1

display
system test errors A-12
time and date 5-56

divide unsigned integers 5-68
DLUN G-1
DLUN (device LUN) E-2
drive

data density D-3, D-5
errors F-9
track density D-3, D-5

drive characteristics D-4
DS command 4-16
dual console mode A-5
dump

memory to tape A-12

E
ECC

data burst length D-2
embedded servo drive D-3
enhanced small device interface (ESDI)

5-72
entering

and modifying source programs 4-15
branch and jump addresses 4-18
source line 4-17

environment
parameters, read/write 5-75

erase line 5-47
error

code
information, general F-12

codes F-1
codes, network H-1
handling codes F-14
messages B-1

errors
$01-0F command parameter F-8
$10-1F media F-9
$20-2F drive F-9

$30-3F VME DMA F-9
$40-4F disk format F-10
$80-FF MVME327A specific F-10
other F-15
system test A-12

ESDI Winchester hard drive E-3
Ethernet G-1
executable instruction 4-3
extended

attributes mask D-2
attributes word D-2
confidence tests A-1
parameters mask D-2

F
file

blocks, retrieve 5-37
number A-13
open for read 5-35
zero structure A-13

fixed-length buffer, read string into 5-11
FLASH memory

programming with .PFLASH func-
tion 5-79

flexible diskette E-2
floating point

unit registers 4-7
Floating Point Data Registers 4-8
floppy disk

format D-3
size D-3

floppy disk command parameters E-6
floppy diskette E-5
floppy drive E-3, E-4
flow diagram of 16XBug system opera-

tional mode A-4
format 4-3

disk 5-21
function(s)

diagnostic 5-82
functions, 16XBug 5-1
IN-16

I
N
D
E
X

G
gap byte D-2
general error code information F-13
generate checksum 5-69
get from host 5-26
go

to system debugger A-5

H
hard disk drive E-3
Hayes modem A-6
header

file, C I-1
host

read/write 5-26

I
I/O

control
structure 5-96

port
configure 5-99
delete 5-101
inform 5-98

redirect 5-59
string formats for 5-2

implement control functions 5-39
inform about ports 5-98
information used by BO and BH com-

mands D-1
initialize

real time clock 5-52
initialize real time clock 5-54
initiate service call A-5
input

character 5-6
line routine 5-8
redirect 5-61
serial port status 5-7

inquire
about ports 5-92

about status 5-105
instruction

and data cache registers 4-8
mnemonic 4-1
mnemonics 4-15

Instruction Address Register 4-8
Instruction Transparent Translation Reg-

isters 0,1 4-9
integers

divide unsigned 5-68
multiply unsigned 5-67

Intel 82596 - LAN coprocessor H-2
interleave factor D-2
Interrupt Stack Pointer (ISP) 4-8
invoke I/O function 5-59
invoking

system calls through TRAP #15 5-1
invoking assembler/disassembler 4-16
IOSATM

attribute mask bit definitions D-3
IOSATM and IOSEATM D-3
IOSATW

bit definitions D-5
IOSATW and IOSEATW D-4
IOSEPRM

parameter mask bit definitions D-5
IOSPRM

parameter mask bit definitions D-4
IOSPRM and IOSEPRM D-4
IOT command parameters for supported

floppy types E-6

J
jump address, entering 4-18

L
labels 4-1
limited confidence test suite A-1
line

count 4-18
data, output 5-48
erase 5-47
IN-17

Index

I
N
D
E
X

input 5-8
numbers 4-1
output 5-43, 5-44

listing 4-18
local floppy drive E-4
longword F-12

M
M= B-4
M68000, M88000 F-12
machine-instruction operation codes 4-2
macro definitions prompt B-4
MACSI/controller error codes F-12
main processor registers 4-7
manual

mode A-6
mode connection A-10

Master Stack Pointer 4-8
MC68040/MC68060

assembler 4-2
assembly language 4-1
instruction set 4-4
machine language code 4-1

media characteristics D-4
media errors F-8, F-9
memory

dump to tape A-12
location D-1
management unit registers 4-8

menu A-1
details A-5

messages
other B-3

MMU Status Register 4-9
mnemonics 4-1

and delimiters 4-6
modem

connection A-10
modems A-5
modes

addressing 4-10
modifying source programs 4-15

modulus 4-12
multiply unsigned integers 5-67
MVME320 E-3

controller-dependent status F-5
MVME320 - Winchester/Floppy Con-

troller E-1, E-3
MVME323 E-3

controller-dependent status F-5
MVME323 - ESDI Winchester Controller

E-1, E-3
MVME327A E-4

controller-dependent status F-8
specific errors F-10

MVME327A - SCSI Controller E-1, E-3
MVME328 E-5

controller-dependent status F-12
MVME328 - SCSI Controller E-1, E-5
MVME350 E-5

controller-dependent status F-15
MVME350 - Streaming Tape Controller

E-1, E-5
MVME374 (AMD AM7990 - LANCE)

H-3
MVME376 (AMD AM7990 - LANCE)

H-3

N
network

communication status codes H-1
control functions 5-39
controller data G-1
file open 5-35
file retrieve 5-37
header file and assembly interface I-1
parameters, configure 5-29
read/write 5-26

number of
cylinders D-2
heads D-1
sides D-5
IN-18

I
N
D
E
X

O
offset 4-6
oneÕs complement 4-12
one-line assembler/disassembler 4-1, 4-2
opcodes 4-2
open file for read 5-35
operand

field 4-5
operand types 4-11
operands 4-1
operating system D-1

block size D-4
operation

codes 4-2
field 4-4

operators 4-1
other messages B-3
output

character 5-42
redirect 5-61
string 5-43, 5-44
string/data 5-48

P
parameters

field definitions D-7
mask D-1, D-4

parse value in buffer 5-64
physical addresses 5-102
port

control structure 5-93
control structure, inquire 5-92
I/O

configure 5-99
delete 5-101
inform 5-98

status, input 5-7
post-read/pre-write precompensation

D-3
precompensation cylinder D-2
print CR/LF 5-46

printer
port errors F-14

program
line 4-17
listing, assembler 4-18

Program Counter 4-7
program FLASH memory 5-79
programming 5-79
pseudo-ops 4-1
pseudo-registers 4-7

Q
QIC-02 streaming tape drive E-5

R
read

clock registers 5-57
disk 5-13
environment parameters 5-75
from host 5-26
open file for 5-35
string into buffer 5-9, 5-11

real time clock (RTC)
initialize 5-52, 5-54

redirect input/output (I/O) 5-59, 5-61
reduced write current cylinder D-2
register 4-12
remote

system A-8
reserved

area units D-2
count D-2

resident assembler 4-2
retrieve

SCSI pointers 5-90
specified file blocks 5-37

return to 16XBug 5-62
ROM code A-8

S
scatter/gather errors F-14
SCSI
IN-19

Index

I
N
D
E
X

bus status F-3
command F-1
errors F-14
firmware status codes F-3
pointers, retrieve 5-90

SCSI Common Command Set E-5
SCSI Common Command Set (CCS) E-2,

E-4
sectors

size D-2
sectors/track D-1
select alternate boot device A-4
send

break 5-50
to host 5-26

sense key F-1
separating characters 4-9
sequential access device E-2, E-5
serial port status, input 5-7
service

call, initiate A-5
menu A-2

signed hexadecimal 4-6
single quotes 4-14
SIOP status F-3
Small Computer System Interface (SCSI)

5-72
source

code 4-15
line 4-1

disassembled 4-6
entering 4-17
format 4-3

program 4-1
coding 4-3

Source Function Code Register 4-8
source programs

entering/modifying 4-15
spare sectors count D-2
specifying operands 4-13
spiral offset D-2

S-records
create C-4
example C-4
format C-1
output format C-1
types C-3

starting head number D-2
startup

system A-2
status

codes F-1
network communication H-1
SCSI F-3

inquiry, ACFAIL 5-105
packet 5-105
word F-1, H-1

status codes
controller dependent H-1
controller independent H-1

Status Register 4-7, 4-8
stepping rate code D-2
streaming tape drive E-5
string

data, output 5-48
formats for I/O 5-2
output 5-43, 5-44
read into buffer 5-9, 5-11

strings
compare 5-66
literals 4-11

Supervisor Root Pointer 4-9
Supervisor Stack Pointer (SSP) 4-8
symbol base address 5-102
symbol table 5-102, 5-104

attach 5-102
detach 5-104

syntax 4-3
SYSCALL 4-2

system call directive 4-2
system

call directives 4-2
IN-20

I
N
D
E
X

call routines 5-3
ID number A-7
mode A-15
mode operation A-1
startup A-2

system test errors A-12

T
tape

controller data E-1
controller default configuration E-2
dump memory to A-12
dump utility A-12

tape dump A-12
file map entries A-12

terminal
mode A-6
mode operation A-12

termination record C-4
time

display 5-56
initialization 5-52

timer delay 5-51
track

density D-3
zero data density D-3

Translation Control Register 4-9
transparent mode A-10
TRAP #15 4-15, F-1, H-1
TRAP #15 handler 5-1
two-pass assembler 4-2

U
unsigned

hexadecimal 4-6
integers, divide 5-68
integers, multiply 5-67

User Offset Registers 4-7
User Root Pointer 4-9
User Stack Pointer 4-7
using

one-line assembler/disassembler 4-1

V
variable

assign value to 5-64
variable-length buffer, read string into

5-9
Vector Base Register 4-8
VME DMA errors F-9
VMEbus

errors F-13
Volume ID Block #0 (VID) D-1

W
Winchester hard drive E-3
word F-12
write

environment parameters 5-75
port control structure 5-92
string 5-44
string/data 5-48
to disk 5-13
to host 5-26
IN-21

	Debugging Package for Motorola 68K CISC CPUs User'...
	Notice
	Restricted Rights Legend
	Motorola, Inc. Computer Group 2900 South Diablo Wa...

	Preface
	Related Documentation
	Manual Terminology
	Conventions
	Safety Summary Safety Depends On You
	Ground the Instrument.
	Do Not Operate in an Explosive Atmosphere.
	Keep Away From Live Circuits.
	Do Not Service or Adjust Alone.
	Use Caution When Exposing or Handling the CRT.
	Do Not Substitute Parts or Modify Equipment.
	Dangerous Procedure Warnings.
	

	Disclaimer of Warranty
	 Copyright Motorola 1997 All Rights Reserved
	Printed in the United States of America June 1997
	Using the One-Line Assembler/Disassembler

	Introduction
	MC68040 and MC68060 Assembly Language
	Machine-Instruction Operation Codes
	Directives

	Comparison with MC68040 and MC68060 Assemblers

	Source Program Coding
	Source Line Format
	Operation Field
	1. Operation codes which correspond to the 1. MC68...
	2. Define Constant directive: DC.W is recognized t...
	3. System Call directive: SYSCALL is used to call ...
	Examples (legal):
	Example (illegal):

	Operand Field
	Disassembled Source Line
	1. BRA is returned for BT
	2. DBF is returned for DBRA

	Mnemonics and Delimiters
	Example

	Character Set

	Addressing Modes
	Table 1�1. 16XBug Assembler Addressing Modes

	DC.W Define Constant Directive
	SYSCALL System Call Directive

	Entering and Modifying Source Programs
	Invoking the Assembler/Disassembler
	Entering a Source Line
	Entering Branch and Jump Addresses
	Assembler Output/Program Listings
	System Calls

	Introduction

	Invoking System Calls through TRAP #15
	Example

	String Formats for I/O
	System Call Routines
	Table 2�1. 16XBug System Call Routines (Continued)...

	 .INCHR Function
	Name
	Code
	Description�
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .INSTAT Function
	Name
	Code
	Description�
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .INLN Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .READSTR Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .READLN Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .CHKBRK Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .DSKRD, .DSKWR Functions
	Name
	Code
	Description
	Controller LUN
	Status Word
	Memory Address
	Block Number (Disk)
	Most Significant Word
	or
	File Number (Tape)
	Least Significant Word
	Number of Blocks
	Flag Byte
	Address Modifier
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .DSKCFIG Function
	Name
	Code
	Description
	F
	E
	D
	C
	B
	A
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	Controller LUN
	Status Word
	Memory Address
	Most Significant Word
	Least Significant Word
	0
	0
	0
	Flag Byte
	Address Modifier
	F
	E
	D
	C
	B
	A
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	Controller LUN
	Device LUN
	0
	Parameters Mask
	Upper (Most Significant) Word
	Lower (Least Significant) Word
	Attributes Mask
	Upper (Most Significant) Word
	Lower (Least Significant) Word
	Attributes Flags
	Upper (Most Significant) Word
	Lower (Least Significant) Word
	Parameters
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .DSKFMT Function
	Name
	Code
	Description
	Controller LUN
	Device LUN
	Status Half-Word
	Memory Address
	Most Significant Word
	Least Significant Word
	 ��Disk Block Number
	Most Significant Word
	Least Significant Word
	0
	Flag Byte
	Address Modifier

	 .DSKCTRL Function
	Name
	Code
	Description
	F
	E
	D
	C
	B
	A
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	Controller LUN
	Device LUN
	Status Word
	Memory Address
	Most Significant Word
	Least Significant Word
	0
	0
	0
	0
	Address Modifier
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .NETRD, .NETWR Functions
	Name
	Code
	Description
	F
	E
	D
	C
	B
	A
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	Controller LUN
	Device LUN
	Status Word
	Data Transfer Address
	Most Significant Word
	Least Significant Word
	 ��Maximum Length of Transfer
	Most Significant Word
	Least Significant Word
	 ��Byte Offset
	Most Significant Word
	Least Significant Word
	 ��Transfer Time in Seconds (Status)
	Most Significant Word
	Least Significant Word
	 ��Transfer Byte Count (Status)
	Most Significant Word
	Least Significant Word
	
	Boot Filename String
	$40(&64) Bytes
	Example

	 .NETCFIG Function
	Name
	Code
	Description
	F
	E
	D
	C
	B
	A
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	Controller LUN
	Device LUN
	Status Word
	Network Configuration Parameters Pointer
	Most Significant Word
	Least Significant Word
	Device Configuration Parameters Pointer
	Most Significant Word
	Least Significant Word
	Control Flag
	Most Significant Word
	Least Significant Word
	F
	E
	D
	C
	B
	A
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	Packet Version/Identifier
	Most Significant Word
	Least Significant Word
	 ��Node Control Memory Address
	Most Significant Word
	Least Significant Word
	 ��Boot File Load Address
	Most Significant Word
	Least Significant Word
	 ��Boot File Execution Address
	Most Significant Word
	Least Significant Word
	 ��Boot File Execution Delay
	Most Significant Word
	Least Significant Word
	 ��Boot File Length
	Most Significant Word
	Least Significant Word
	 ��Boot File Byte Offset
	Most Significant Word
	Least Significant Word
	 ��Trace Buffer Address (TXD/RXD)
	Most Significant Word
	Least Significant Word
	 ��Client IP Address
	Most Significant Word
	Least Significant Word
	 ��Server IP Address
	Most Significant Word
	Least Significant Word
	 ��Subnet IP Address Mask
	Most Significant Word
	Least Significant Word
	 ��Broadcast IP Address Mask
	Most Significant Word
	Least Significant Word
	 ��Gateway IP Address
	Most Significant Word
	Least Significant Word
	BOOTP/RARP Retry
	TFTP/ARP Retry
	BOOTP/RARP Control
	Update Control
	Boot Filename String
	$40(&64) Bytes
	Argument Filename String
	$40(&64) Bytes
	Example
	 System Calls
	System Call Routines

	.NETFOPN Function
	Name
	Code
	Description
	F
	E
	D
	C
	B
	A
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	Controller LUN
	Device LUN
	Status Word
	Filename String
	$40(&64) Bytes
	Example

	 .NETFRD Function
	Name
	Code
	Description
	F
	E
	D
	C
	B
	A
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	Controller LUN
	Device LUN
	Status Word
	Data Transfer Address
	Most Significant Word
	Least Significant Word
	Transfer Byte Count
	Block Number
	 ��Data Packet (File Block) Timeout
	Most Significant Word
	Least Significant Word
	Example

	 .NETCTRL Function
	Name
	Code
	Description
	F
	E
	D
	C
	B
	A
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	Controller LUN
	Device LUN
	Status Word
	Command Identifier
	Most Significant Word
	Least Significant Word
	Memory Address (Data Transfers)
	Most Significant Word
	Least Significant Word
	Number of Bytes (Data Transfers)
	Most Significant Word
	Least Significant Word
	Status/Control Flags
	Most Significant Word
	Least Significant Word
	Example

	 .OUTCHR Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .OUTSTR, .OUTLN Functions
	Name
	Codes
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .WRITE, .WRITELN Functions
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .PCRLF Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .ERASLN Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .WRITD, .WRITDLN Functions
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .SNDBRK Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .DELAY Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .RTC_TM Function
	Name
	Code
	Description�
	H
	H
	M
	M
	S
	S
	s
	c
	c
	
	
	 buffer + eight bytes
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .RTC_DT Function
	Name
	Code
	Description�
	Y
	Y
	M
	M
	D
	D
	d
	
	
	 buffer + six bytes
	Entry Conditions
	Exit Conditions Different from Entry
	Example
	System Calls
	System Call Routines

	.RTC_DSP Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .RTC_RD Function
	Name
	Code
	Description
	Y
	M
	D
	d
	H
	M
	S
	c
	
	 buffer + eight bytes
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .REDIR Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	1. Allocate space on the stack for the I/O functio...
	2. Push the parameters required for the I/O functi...
	3. Push code for the desired I/O function on the s...
	4. Push the desired port number on the stack.
	5. Call the .REDIR function.
	6. Pop the results off the stack (only if required...

	Example
	Example

	 .REDIR_I, .REDIR_O Functions
	Name
	Codes
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .RETURN Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .BINDEC Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .CHANGEV Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .STRCMP Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .MULU32 Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .DIVU32 Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example

	 .CHK_SUM Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Example #1
	Example #2
	Example #3

	 .BRD_ID Function
	Name
	Code
	Description
	Eye Catcher
	Revision
	Month
	Day
	Year
	Packet Size
	Reserved
	Board Number
	Board Suffix
	Options (coprocessor, etc.)
	Family
	CPU
	Controller LUN
	Device LUN
	Device Type
	Device Number
	Option-2
	Entry Conditions
	Exit Conditions Different from Entry
	Example
	System Calls
	System Call Routines

	.ENVIRON Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Description of Parameter Packets
	Currently Supported Packets and Formats

	 .PFLASH Function
	Name
	Code
	Description
	Exit Conditions Different from Entry
	Status Word
	Control Word
	Source Starting Address
	Number of Bytes to Program
	Destination Starting Address
	Instruction Execution Address
	0
	1
	2
	3
	4
	5-15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27-29
	30
	31

	 .DIAGFCN Function
	Name
	Code
	Description
	1. Walk down through the diag directory, looking f...
	2. When a match is found, walk down through the te...
	3. Create an overall status for the test group. Th...

	Entry Conditions
	Exit Conditions Different from Entry

	 .SIOPEPS Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry

	.IOINQ Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry
	Port Control Structure
	Port Number
	Board Name Pointer
	Channel
	Device Address
	Concurrent Mode
	Modem ID
	I/O Control Structure Pointer
	Error Code
	Reserved
	Reserved
	Reserved
	Modem ID
	1
	2
	3
	4
	5
	I/O Control Structure

	ctrlbits
	baud
	00
	00
	00
	protocol
	00
	00
	00
	sync1
	00
	00
	00
	sync2
	00
	00
	00
	xonchar
	00
	00
	00
	xoffchar

	.IOINFORM Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry

	.IOCONFIG Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry

	.IODELETE Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry

	.SYMBOLTA Function
	Name
	Code
	Description
	Number of Entries in Symbol Table
	Symbol Data #0
	Symbol Name #0
	Symbol Data #1
	Symbol Name #1
	Entry Conditions
	Exit Conditions Different from Entry

	.SYMBOLTD Function
	Name
	Code
	Description
	Entry Conditions
	Exit Conditions Different from Entry

	.ACFSTAT Function
	Name
	Code
	Description
	31
	24
	23
	16
	15
	8
	7
	0
	$00
	STATUS
	MONTH
	DAY
	YEAR
	$04
	HOUR
	MINUTE
	SECOND
	RESERVED
	Entry Conditions
	Exit Conditions Different from Entry
	16XBug System Mode Operation

	General Description
	Service Menu Details
	Continue System Start Up
	Figure A�1. Flow Diagram of 16XBug System Operatio...

	Select Alternate Boot Device
	Go to System Debugger
	Initiate Service Call
	General Flow
	Manual Mode Connection
	Terminal Mode Operation

	Display System Test Errors
	Dump Memory to Tape
	Debugging Package Messages

	Debugger Messages
	Table B�1. Debugger Error Messages (Continued)
	Diagnostic Messages
	Table B�2. Diagnostic Error Messages

	Other Messages
	Table B�3. Other Messages (Continued)
	S-Record Output Format

	Introduction
	S-Record Content

	2
	2
	4, 6, or 8
	0-2n
	2
	S-Record Types
	Creation of S-Records
	Example

	 :
	.
	53
	33
	32
	35
	46
	46
	38
	30
	31
	42
	44
	43
	34
	45
	35
	36
	46
	...
	34
	43
	Information Used by BO and BH Commands
	VID
	Table D�1. Volume ID Block #0 (VID)

	4
	2
	4
	4
	1
	8
	CFGA
	Table D�2. Configuration Area Block #1 (CFGA) (Con...

	2
	2
	2
	2
	1
	1
	2
	1
	1
	2
	2
	2
	1
	2
	2
	2
	2
	2
	1
	1
	1
	1
	1
	1
	2
	2
	IOSATM and IOSEATM
	Table D�3. IOSATM Attribute Mask Bit Definitions

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	13
	IOSPRM and IOSEPRM
	Table D�4. IOSPRM Parameter Mask Bit Definitions�

	0
	4
	5
	6
	7
	8
	9
	10
	12
	14
	15
	Table D�5. IOSEPRM Parameter Mask Bit Definitions

	0
	1
	2
	3
	4
	5
	6
	7
	IOSATW and IOSEATW
	Table D�6. IOSATW Bit Definitions (Continued)

	Parameter Fields
	Table D�7. Parameter Field Definitions (Continued)...
	Disk/Tape Controller Data

	Disk/Tape Controller Modules Supported
	Table E�1. Disk/Tape Controller Data�

	Disk/Tape Controller Default Configurations
	Table E�2. CISC Single Board Computers -- 7 Device...
	Table E�3. MVME320 -- 4 Devices
	Table E�4. MVME323 -- 4 Devices
	Table E�5. MVME327A -- 9 Devices
	Table E�6. MVME328 -- 14 Devices
	Table E�7. MVME350 -- 1 Device

	IOT Command Parameters for Supported Floppy Types
	Table E�8. IOT Command Parameters
	Disk Communication Status Codes

	Controller-Independent
	Controller-Dependent
	SCSI Command
	 Sense Key��
	Table F�1. Controller-Independent Status Codes (Co...
	Table F�2. MVME167/MVME177 SCSI Firmware Status Co...

	SCSI Bus Status
	SIOP Status
	Table F�3. MVME320 Controller-Dependent Status Cod...
	Table F�4. MVME323 Controller-Dependent Status Cod...
	Table F�5. MVME327A Controller-Dependent Status Co...

	$01-0F Command Parameter Errors
	$10-1F Media Errors
	$20-2F Drive Errors
	$30-3F VME DMA Errors
	$40-4F Disk Format Errors
	$80-FF MVME327A Specific Errors
	Table F�6. MVME328 Controller-Dependent Status Cod...

	MACSI/Controller Error Codes
	General Error Code Information
	VMEbus Errors
	SCSI Errors
	Scatter/Gather Errors
	Error Handling Codes
	Printer Port Errors
	Other Errors
	Table F�7. MVME350 Controller-Dependent Status Cod...
	Network Controller Data
	Network Controller Modules Supported
	Table G�1. Network Controller Data (Continued)

	$00
	$00
	Ethernet
	$00
	$00
	Ethernet
	$00
	$00
	Ethernet
	$02
	$00
	Ethernet
	$03
	$00
	Ethernet
	$04
	$00
	Ethernet
	$05
	$00
	Ethernet
	$06
	$00
	Ethernet
	$07
	$00
	Ethernet
	$10
	$00
	Ethernet
	$11
	$00
	Ethernet
	$12
	$00
	Ethernet
	$13
	$00
	Ethernet
	$14
	$00
	Ethernet
	$15
	$00
	Ethernet
	Network Communication Status Codes
	Controller-Independent
	Controller-Dependent
	Table H�1. Controller-Independent Status Codes
	Table H�2. Controller-Dependent Status Codes (Cont...

	Intel 82596 - LAN Coprocessor
	MVME374 (AMD AM7990 - LANCE)
	MVME376 (AMD AM7990 - LANCE)
	Network Header File and Assembly Interface
	"C" Header File
	Assembly Interface Routines
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

