

Debugging Package for
Motorola 68K CISC CPUs

User's Manual

(Part 1 of 2)

68KBUG1/D3

Notice

While reasonable efforts have been made to assure the accuracy of this document,
Motorola, Inc. assumes no liability resulting from any omissions in this document,
or from the use of the information obtained therein. Motorola reserves the right to
revise this document and to make changes from time to time in the content hereof
without obligation of Motorola to notify any person of such revision or changes.

No part of this material may be reproduced or copied in any tangible medium, or
stored in a retrieval system, or transmitted in any form, or by any means, radio,
electronic, mechanical, photocopying, recording or facsimile, or otherwise,
without the prior written permission of Motorola, Inc.

It is possible that this publication may contain reference to, or information about
Motorola products (machines and programs), programming, or services that are
not announced in your country. Such references or information must not be
construed to mean that Motorola intends to announce such Motorola products,
programming, or services in your country.

Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S.
Government, the following notice shall apply unless otherwise agreed to in
writing by Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Motorola, Inc.
Computer Group

2900 South Diablo Way
Tempe, Arizona 85282

Preface

The Debugging Package for Motorola 68K CISC CPUs User's Manual provides general
information for the onboard Þrmware package for all Motorola 68000 CISC CPU
and MPU VMEmodule boards.

This document is bound in two parts. Part 1 (68KBUG1/D3, this volume) contains
the Table of Contents and Chapters 1 through 3. Part 2 (68KBUG2/D3) contains
Chapters 4 and 5, Appendices A through I, and the Index.

This manual is intended for anyone who wants to design OEM systems, supply
additional capability to an existing compatible system, or work in a lab
environment for experimental purposes.

The following Þrmware packages and boards are covered in this manual:

The Þrmware packages are referred to as 16XBug in this manual. The boards are
referred to as MVME16X.

This manual describes the debugger, the debugger command set, the one-line
assembler/disassembler, and system calls. These functional elements are common
to all Þrmware packages.

Installation, start-up, diagnostics tests, and environmental parameters are
described in the diagnostic manuals for each of the Þrmware packages.

A basic knowledge of computers and digital logic is assumed.

Motorola and the Motorola symbol are registered trademarks of Motorola, Inc.

SYSTEM V/68 is a trademark of Motorola, Inc.

Timekeeper and Zeropower are trademarks of SGS-THOMSON Microelectronics.

MVME162 162Bug

MVME172 172Bug

MVME166 166Bug

MVME167 167Bug

MVME176 176Bug

MVME177 177Bug

Related Documentation

The following publications are applicable to Motorola 68K CISC CPU debugging
packages and may provide additional helpful information. If not shipped with this
product, they may be purchased by contacting your local Motorola sales ofÞce.
Non-Motorola documents may be obtained from the sources listed following the
table.

Document Title
Motorola

Publication Number

M68040 Microprocessors User's Manual M68040UM/AD

M68060 Microprocessors User's Manual M68060UM/AD

MVME050 System Controller Module User's Manual MVME050/D

MVME162 ProgrammerÕs Reference Guide MVME162PG/D

MVME162FX ProgrammerÕs Reference Guide MVME162LXPG/D

MVME162LX ProgrammerÕs Reference Guide V162FXA/PG

MVME172 ProgrammerÕs Reference Guide VME172A/PG

Single Board Computers Programmer's Reference Guide VMESBCA1/PG and
VMESBCA2/PG

162BugDiagnostics UserÕs Manual V162DIAA/UM

167Bug Debugging Package UserÕs Manual MVME167BUG/D

172Bug Diagnostics UserÕs Manual V172DIAA/UM

177Bug Diagnostics User's Manual V177DIAA/UM

MVME320B VMEbus Disk Controller Module User's Manual MVME320B/D

MVME323 ESDI Disk Controller User's Manual MVME323/D

MVME327A VMEbus to SCSI Bus Adapter and
MVME717 Transition Module User's Manual

MVME327A/D

MVME327A Firmware User's Manual MVME327AFW/D

MVME328 VMEbus Dual SCSI Host Adapter User's Manual MVME328/D

MVME335 Serial and Parallel I/O Module User's Manual MVME335/D

MVME350 Streaming Tape Controller VMEmodule User's Manual MVME350/D

MVME350 IPC Firmware User's Guide MVME350FW/D

MVME374 Multi-Protocol Ethernet Interface Module User's Manual MVME374/D

MVME376 Ethernet Communication Controller User's Manual MVME376/D

Note Although not shown in the above list, each Motorola
Computer Group manual publication number is
suffixed with the revision level of the document, such
as Ò2Ó (the second revision of a manual); a supplement
bears the same number as a manual but has a suffix
such as "2A1" (the first supplement to the second
revision of the manual).

The following publications are available from the sources indicated.

ANSI Small Computer System Interface-2 (SCSI-2), Draft Document X3.131-198X,
Revision 10c; Global Engineering Documents, P.O. Box 19539, Irvine, CA 92714.

Versatile Backplane Bus: VMEbus, ANSI/IEEE Std. 1014-1987, The Institute of
Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, NY 10017
(VMEbus SpeciÞcation). This is also available as Microprocessor system bus for 1 to 4
byte data, IEC 821 BUS, Bureau Central de la Commission Electrotechnique
Internationale; 3, rue de Varemb�, Geneva, Switzerland.

Manual Terminology

Throughout this manual, a convention has been maintained whereby data and
address parameters are preceded by a character which speciÞes the numeric
format as follows:

Unless otherwise speciÞed, all address references are in hexadecimal throughout
this manual.

An asterisk (*) following the signal name for signals which are level signiÞcant
denotes that the signal is true or valid when the signal is low.

An asterisk (*) following the signal name for signals which are edge signiÞcant
denotes that the actions initiated by that signal occur on high to low transition.

$ hexadecimal character

% binary number

& decimal number

In this manual, assertion and negation are used to specify forcing a signal to a
particular state. In particular, assertion and assert refer to a signal that is active or
true; negation and negate indicate a signal that is inactive or false. These terms are
used independently of the voltage level (high or low) that they represent.

Data and address sizes are deÞned as follows:
❏ A byte is eight bits, numbered 0 through 7, with bit 0 being the

least significant.

❏ A word is 16 bits, numbered 0 through 15, with bit 0 being the
least significant.

❏ A longword is 32 bits, numbered 0 through 31, with bit 0 being
the least significant.

Conventions

The following conventions are used in this document:

bold is used for user input that you type just as it appears. Bold is also used
for commands, options and arguments to commands, and names of
programs, directories, and files.

italic is used for names of variables to which you assign values. Italic is also
used for comments in screen displays and examples.

courier is used for system output (e.g., screen displays, reports), examples, and
system prompts.

<RETURN> or <CR> represents the carriage return or Enter key.

CTRL or ^ represents the Control key. Execute control characters by pressing the
CTRL key and the letter simultaneously, e.g., CTRL-d.

Safety Summary
Safety Depends On You

The following general safety precautions must be observed during all phases of operation, service, and
repair of this equipment. Failure to comply with these precautions or with speciÞc warnings elsewhere in
this manual violates safety standards of design, manufacture, and intended use of the equipment.
Motorola, Inc. assumes no liability for the customer's failure to comply with these requirements.

The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You,
as the user of the product, should follow these warnings and all other safety precautions necessary for the
safe operation of the equipment in your operating environment.

Ground the Instrument.
To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground.
The equipment is supplied with a three-conductor ac power cable. The power cable must be plugged into
an approved three-contact electrical outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate in an Explosive Atmosphere.
Do not operate the equipment in the presence of ßammable gases or fumes. Operation of any electrical
equipment in such an environment constitutes a deÞnite safety hazard.

Keep Away From Live Circuits.
Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or
other qualiÞed maintenance personnel may remove equipment covers for internal subassembly or
component replacement or any internal adjustment. Do not replace components with power cable
connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To
avoid injuries, always disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone.
Do not attempt internal service or adjustment unless another person capable of rendering Þrst aid and
resuscitation is present.

Use Caution When Exposing or Handling the CRT.
Breakage of the Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion).
To prevent CRT implosion, avoid rough handling or jarring of the equipment. Handling of the CRT should
be done only by qualiÞed maintenance personnel using approved safety mask and gloves.

Do Not Substitute Parts or Modify Equipment.
Because of the danger of introducing additional hazards, do not install substitute parts or perform any
unauthorized modiÞcation of the equipment. Contact your local Motorola representative for service and
repair to ensure that safety features are maintained.

Dangerous Procedure Warnings.
Warnings, such as the example below, precede potentially dangerous procedures throughout this manual.
Instructions contained in the warnings must be followed. You should also employ all other safety
precautions which you deem necessary for the operation of the equipment in your operating environment.

!
WARNING

Dangerous voltages, capable of causing death, are
present in this equipment. Use extreme caution when
handling, testing, and adjusting.

The computer programs stored in the Read Only Memory of this device contain
material copyrighted by Motorola Inc., 1995, and may be used only under a license
such as those contained in MotorolaÕs software licenses.

The software described herein and the documentation appearing herein are
furnished under a license agreement and may be used and/or disclosed only in
accordance with the terms of the agreement.

The software and documentation are copyrighted materials. Making unauthorized
copies is prohibited by law. No part of the software or documentation may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means without the
prior written permission of Motorola, Inc.

Disclaimer of Warranty

Unless otherwise provided by written agreement with Motorola, Inc., the software
and the documentation are provided on an Òas isÓ basis and without warranty.
This disclaimer of warranty is in lieu of all warranties whether express, implied, or
statutory, including implied warranties of merchantability or Þtness for any
particular purpose.

!
WARNING This equipment generates, uses, and can radiate

electro-magnetic energy. It may cause or be susceptible
to electro-magnetic interference (EMI) if not installed
and used in a cabinet with adequate EMI protection.

©Copyright Motorola 1997
All Rights Reserved

Printed in the United States of America
June 1997

Contents

Related Documentation 4
Introduction 1-1
Overview of M68000 Firmware 1-1
16XBug Implementation 1-3
General Installation and Start-up 1-3
Autoboot 1-5
ROMboot 1-7
Network Boot 1-11
Restarting the System 1-11

Reset 1-12
Abort 1-12
Break 1-13
SYSFAIL* Assertion/Negation 1-13
MPU Clock Speed Calculation 1-14

Memory Requirements 1-14
Terminal Input/Output Control 1-15
Disk I/O Support 1-16

Blocks Versus Sectors 1-16
Device Probe Function 1-17
Disk I/O via 16XBug Commands 1-17

IOI (Input/Output Inquiry) 1-17
IOP (Physical I/O to Disk) 1-18
IOT (I/O Teach) 1-18
IOC (I/O Control) 1-18
BO (Bootstrap Operating System) 1-18
BH (Bootstrap and Halt) 1-18

Disk I/O via 16XBug System Calls 1-18
Default 16XBug Controller and Device Parameters 1-20
Disk I/O Error Codes 1-20

Network I/O Support 1-21
Intel 82596 LAN Coprocessor Ethernet Driver 1-21
UDP/IP Protocol Modules 1-23
RARP/ARP Protocol Modules 1-23
BOOTP Protocol Module 1-23
TFTP Protocol Module 1-23
Network Boot Control Module 1-24

Network I/O Error Codes 1-24
Multiprocessor Support 1-24

Multiprocessor Control Register (MPCR) Method 1-24
GCSR Method 1-27

Diagnostic Facilities 1-27
Entering Debugger Command Lines 2-1

The Command Line 2-1
Command Arguments 2-2

exp - Expression as a Parameter 2-3
address - Address as a Parameter 2-4
Offset Registers 2-6

Port Numbers 2-8
Entering and Debugging Programs 2-8
Calling System Utilities from User Programs 2-9
Preserving the Debugger Operating Environment 2-9

16XBug Vector Table and Workspace 2-10
Hardware Functions 2-10
Exception Vectors Used by 16XBug 2-11

Using the 16XBug Target Vector Table 2-12
Creating a New Vector Table 2-13

Floating Point Support 2-15
Single Precision Real 2-16
Double Precision Real 2-16
 ScientiÞc Notation 2-17

Introduction 3-1
AB/NOAB - Automatic Bootstrap Operating System/No Autoboot 3-5
AS - One Line Assembler 3-6
BC - Block of Memory Compare 3-7
BF - Block of Memory Fill 3-9
BH - Bootstrap Operating System and Halt 3-12
BI - Block of Memory Initialize 3-14
BM - Block of Memory Move 3-16
BO - Bootstrap Operating System 3-19
BR - Breakpoint Insert/Delete 3-23
BS - Block of Memory Search 3-25
BV - Block of Memory Verify 3-30
CM - Concurrent Mode 3-33
NOCM - No Concurrent Mode 3-36
CNFG - ConÞgure Board Information Block 3-37
CS - Checksum 3-40

DC - Data Conversion 3-42
DMA - DMA Block of Memory Move 3-44
DS - One Line Disassembler 3-50
DU - Dump S-Records 3-51
ECHO - Echo String 3-54
ENV - Set Environment to Bug/Operating System 3-56

Programming the VMEbus to Local Bus Map Decoders 3-57
ConÞguring ENV Parameters 3-58

Go Direct (Ignore Breakpoints) 3-59
GN - Go to Next Instruction 3-61
GO - Go Execute User Program 3-63
GO - Go to Temporary Breakpoint 3-66
HE - Help 3-69
IOC - I/O Control for Disk 3-72
IOI - I/O Inquiry 3-74
IOP - I/O Physical (Direct Disk Access) 3-76
IOT - I/O Teach for ConÞguring Disk Controller 3-82
IRQM - Interrupt Request Mask 3-91
LO - Load S-Records from Host 3-92
MA/NOMA - Macro DeÞne/Display/Delete 3-97
MAE - Macro Edit 3-100
MAL/NOMAL - Enable/Disable Macro Expansion Listing 3-102
MAW/MAR - Save/Load Macros 3-103
MD, MDS - Memory Display 3-106
MENU - System Menu 3-109
MM - Memory Modify 3-110
MMD - Memory Map Diagnostic 3-114
MS - Memory Set 3-116
MW - Memory Write 3-117
NAB - Automatic Network Boot Operating System 3-119
NBH - Network Boot Operating System and Halt 3-120
NBO - Network Boot Operating System 3-122
NIOC - Network I/O Control 3-126
NIOP - Network I/O Physical 3-131
NIOT - Network I/O Teach (ConÞguration) 3-133
NPING - Network Ping 3-139
OF - Offset Registers Display/Modify 3-141
PA/NOPA - Printer Attach/Detach 3-144
PF/NOPF - Port Format/Detach 3-146

Listing Current Port Assignments 3-147
ConÞguring a Port 3-147
Parameters ConÞgurable by Port Format 3-150
Assigning a New Port 3-151
NOPF Port Detach 3-152

PFLASH - Program FLASH Memory 3-153
PS - Put RTC into Power Save Mode for Storage 3-157
RB/NORB - ROMboot Enable/Disable 3-158
RD - Register Display 3-160

Ordering Sequence of MPU, DEF, FPC, and MMU Registers 3-162
Ordering Sequence of CPU Registers 3-163

MVME166/167/176/177 Registers 3-163
MVME162/MVME172 Registers 3-164

MMIEN, PIEN, and PIST Registers 3-164
MVME166/167/176/177 Registers 3-164
MVME162/MVME172 Registers 3-165

REMOTE - Connect Remote Modem to CSO 3-172
RESET - Cold/Warm Reset 3-173
RL - Read Loop 3-175
RM - Register Modify 3-176
RS - Register Set 3-179
SD - Switch Directories 3-180
SET - Set Time and Date 3-181
SFLASH - Switch FLASH 3-183
SYM - Symbol Table Attach 3-184
NOSYM - Symbol Table Detach 3-187
SYMS - Symbol Table Display/Search 3-188
T - Trace 3-190
TA - Terminal Attach 3-193
TC - Trace on Change of Control Flow 3-195
TIME - Display Time and Date 3-197
TM - Transparent Mode 3-199
TT - Trace to Temporary Breakpoint 3-201
VE - Verify S-Records Against Memory 3-204
VER - Revision/Version Display 3-208
WL - Write Loop 3-209

List of Figures

Network Boot Support Modules 1-22

List of Tables

Debugger Address Parameter Formats 2-5
Exception Vectors Used by 16XBug 2-11
Debugger Commands 3-1
FLASH Memory Address and Range Alignment 3-154
xv

xvi

1

1General Information
Introduction
16XBug is a powerful evaluation and debugging tool for systems
built around the MVME16X CISC-based single-board computer
and embedded controller modules. Facilities are available for
loading and executing user programs under complete operator
control for system evaluation.

16XBug includes commands for display and modification of
memory, breakpoint and tracing capabilities, a powerful
assembler/disassembler useful for patching programs, and a self-
test at power-up feature which verifies the integrity of the system.
Various 16XBug routines that handle I/O, data conversion, and
string functions are available to user programs through the TRAP
#15 system calls.

Note 167Bug is used in most examples of commands and
displays given in this manual. However, the
commands and displays apply to all 68K CISC
debugging packages, unless otherwise noted.

Overview of M68000 Firmware
The firmware packages for the M68000-based (68K) series of boards
and systems have a common genealogy. They achieve good
portability and comprehensibility by being written entirely in the
"C" programming language, except where forced to utilize
assembler functions.
1-1

General Information
1

16XBug consists of three parts:

1. A command-driven user-interactive software debugger,
described in Chapter 2 and hereafter referred to as "the
debugger" or "16XBug".

2. A command-driven diagnostic package for the specific CPU
board hardware, described in a separate board-specific
debugger manual and hereafter referred to as "the
diagnostics".

3. A user interface that accepts commands from the system
console terminal.

When using 16XBug, you will operate out of either the debugger
directory or the diagnostic directory.

❏ If you are in the debugger directory, the debugger prompt
"16X-Bug>" is displayed and you have all of the debugger
commands at your disposal.

❏ If you are in the diagnostic directory, the diagnostic prompt
"16X-Diag>" is displayed and you have all of the diagnostic
commands at your disposal as well as all of the debugger
commands.

You may switch between directories by using the Switch
Directories (SD) command (refer to Chapter 3), or may examine the
commands in the particular directory that you are currently in by
using the Help (HE) command (refer to Chapter 3).

Because 16XBug is command-driven, it performs its various
operations in response to user commands entered at the keyboard.
The flow of control in 16XBug is shown in the individual board-
specific debugger manuals. When you enter a command, 16XBug
executes the command and the prompt reappears. However, if you
enter a command that causes execution of user target code (e.g.,
"GO"), then control may or may not return to 16XBug, depending
on the outcome of the user program.
1-2

16XBug Implementation
1

If you have used one or more of Motorola's other debugging
packages, you will find the CISC 16XBug very similar. Some effort
has also been made to make the interactive commands more
consistent. For example, delimiters between commands and
arguments may now be commas or spaces interchangeably.

16XBug Implementation
16XBug is written largely in the "C" programming language,
providing benefits of portability and maintainability. Where
necessary, assembler has been used in the form of separately
compiled modules containing only assembler code - no mixed
language modules are used.

16XBug is contained on EPROM, PROM, or FLASH devices,
depending on which board is used. These memory devices provide
either 512KB or 1MB of storage. The memory provided is larger
than the space is occupied by the firmware because of the 32-bit
longword-oriented MC68040 and MC68060 memory bus
architecture. The executable code is checksummed at every power-
on or reset firmware entry, and the result (which includes a pre-
calculated checksum contained in the EPROM, PROM, and FLASH
devices), is tested for an expected zero.

Note Do not modify the EPROM, PROM, and FLASH
devices unless re-checksum precautions are taken.

General Installation and Start-up
Even though the 16XBug memory devices are installed on the
MVME16X module, for 16XBug to operate properly with the
MVME16X, follow this general set-up procedure and the details
given in the board-specific debugger manual.
1-3

General Information
1

!
Caution

Inserting or removing modules while power is applied could
damage module components.

1. Turn all equipment power OFF. Refer to the individual board
installation manual and install/remove jumpers on headers
and/or set configuration switches as required for your
particular application.

2. Refer to the board installation manual and configure the
jumper or switch that enables/disables the system controller
function of the MVME16X.

3. Be sure that the 16XBug memory devices are installed in
proper sockets on the MVME16X module. Refer to the board-
specific debugger manual for details.

4. Refer to the set-up procedure for your particular chassis or
system for details concerning the installation of the
MVME16X.

5. Connect the terminal which is to be used as the 16XBug
system console to the default debug EIA-232-D port at the
proper location described in the MVME16X installation
manual or the 16XBug board-specific debugger manual. Set
up the terminal as follows:

Ð Eight bits per character

Ð One stop bit per character

Ð Parity disabled (no parity)

Ð Baud rate 9600 baud (default baud rate of MVME16X ports
at power-up)

After power-up, the baud rate of the debug port can be
reconfigured by using the Port Format (PF) command of the
16XBug debugger.

Note In order for high-baud rate serial communication
between 16XBug and the terminal to work, the terminal
must do some form of handshaking. If the terminal
1-4

Autoboot
1

being used does not do hardware handshaking via the
CTS line, then it must do XON/XOFF handshaking. If
you get garbled messages and missing characters, then
you should check the terminal to make sure
XON/XOFF handshaking is enabled.

6. If you want to connect devices (such as a host computer
system and/or a serial printer) to the other EIA-232-D port(s),
connect the appropriate cables and configure the port(s) as
detailed in step 5 above. After power-up, this (these) port(s)
can be reconfigured by programming the MVME16X serial
interface chip, or by using the 16XBug PF command.

Note that some MVME16X modules contain parallel ports. To
use a parallel device, such as a printer, with such an
MVME16X module, connect it to the appropriate parallel port
per the installation manual for the MVME16X module.
However, with any MVME16X, you could add a module such
as the MVME335 to the system.

7. Power up the system. 16XBug executes some self-checks and
displays the debugger prompt "16X-Bug>" (if 16XBug is in
Board Mode). However, if the ENV command has put
16XBug in System Mode, the system performs a selftest and
tries to autoboot. Refer to the ENV and MENU commands in
Chapter 3, and to system operation in Appendix A.

If the confidence test fails, the test is aborted when the first
fault is encountered. If possible, an appropriate message is
displayed, and control then returns to the menu.

Autoboot
Autoboot is a software routine that is contained in the 16XBug
EPROM, PROM, or FLASH devices to provide an independent
mechanism for booting an operating system. This Autoboot routine
automatically scans for controllers and devices in a specified
sequence until a valid bootable device containing a boot media is
1-5

General Information
1

found or the list is exhausted. If a valid bootable device is found, a
boot from that device is started. The controller scanning sequence
goes from the lowest controller Logical Unit Number (LUN)
detected to the highest LUN detected. (Refer to Appendix E for
default LUNs.)

At power-up, Autoboot is enabled, and providing the drive and
controller numbers encountered are valid, the following message is
displayed upon the system console:

"Autoboot in progress... To abort hit <BREAK>"

Following this message there is a delay to allow you an opportunity
to abort the Autoboot process if you wish. Then the actual I/O is
begun: the program pointed to within the volume ID of the media
specified is loaded into RAM and control passed to it. If, however,
during this time you want to gain control without Autoboot, you
can press the <BREAK> key or the software ABORT or RESET
switches.

Autoboot is controlled by parameters contained in the ENV
command. These parameters allow the selection of specific boot
devices and files, and allow programming of the Boot delay. Refer
to the ENV command in Chapter 3 for more details.

!
Caution

Although streaming tape can be used to autoboot, the
same power supply must be connected to the streaming
tape drive, controller, and the MVME16X. At power-up,
the tape controller will position the streaming tape to
load point where the volume ID can correctly be read
and used.

If, however, the MVME16X loses power but the
controller does not, and the tape happens to be at load
point, the sequences of commands required (attach and
rewind) cannot be given to the controller and Autoboot
will not be successful.
1-6

ROMboot
1

ROMboot
This function is configured/enabled by the Environment (ENV)
command and executed at power-up (optionally also at reset) or by
the RB command assuming there is valid code in the EPROM,
PROM, or FLASH devices (or optionally elsewhere on the module
or VMEbus) to support it. If ROMboot code is installed, a user-
written routine is given control (if the routine meets the format
requirements). One use of ROMboot might be resetting SYSFAIL*
on an unintelligent controller module. The NORB command
disables the function.

For a user's ROMboot module to gain control through the
ROMboot linkage, four requirements must be met:

1. Power must have just been applied (but the ENV command
can change this to also respond to any reset).

2. Your routine must be located within the MVME16X ROM
memory map (but the ENV command can change this to any
other portion of the onboard memory, or even offboard
VMEbus memory).

3. The ASCII string "BOOT" must be located within the
specified memory range.

4. Your routine must pass a checksum test, which ensures that
this routine was really intended to receive control at power-
up.

To prepare a module for ROMboot, the Checksum (CS) command
must be used. When the module is ready it can be loaded into RAM,
and the checksum generated, installed, and verified with the CS
command. (Refer to the CS command description and examples in
Chapter 3.)

The format of the beginning of the routine is as follows:
1-7

General Information
1

When you wish to make use of ROMboot, you do not have to fill a
complete memory device. Any partial amount is acceptable, as long
as:

1. The identifier string "BOOT" starts on a longword (EPROM
and Direct spaces) or 8KB (local RAM and VMEbus spaces)
boundary.

2. The ROMboot module size (in bytes) is evenly divisible by 2.

3. The length parameter (offset $8) reflects where the checksum
is, and the checksum is correct.

ROMboot searches predefined areas of the memory map for
possible routines and checks for the "BOOT" indicator. Two events
are of interest for any location being tested:

1. The map is searched for the ASCII string "BOOT".

2. If the ASCII string "BOOT" is found, it is still undetermined
whether the routine is meant to gain control at power-up or
reset. To verify that this is the case, the bytes starting from
"BOOT" through the end of the routine, excluding the two
byte checksum, are run through the Bug checksum algorithm.
If the result of the checksum is equal to the final two bytes of
the ROMboot module (the checksum), it is established that
the routine was meant to be used for ROMboot.

Module
Offset Length Contents Description

$00 4 bytes BOOT ASCII string indicating
possible routine; checksum
must be zero, too.

$04 4 bytes Entry Address Longword offset from "BOOT".
$08 4 bytes Routine

Length
Longword, includes length
from "BOOT" to and including
checksum.

$0C ? Routine name ASCII string containing
routine name.
1-8

ROMboot
1

Under control of the ENV command, the sequence of searches is as
follows:

1. Search direct address for "BOOT".

2. Search complete ROM map.

3. Search local RAM, at all 8K byte boundaries starting at the
beginning of local RAM.

4. Search the VMEbus map (if so selected by the ENV
command) on all 8K byte boundaries starting at the end of the
onboard RAM. VMEbus address space is searched both
below (if the start address of local RAM is not located at 0)
and above local RAM up to the beginning of EPROM, PROM,
or FLASH memory space.

The example below performs the following:

1. Outputs a <CR><LF> sequence to the default output port.

2. Displays the date and time from the current cursor position.

3. Outputs two more <CR><LF> sequences to the default
output port.

4. Returns control to 167Bug.

Sample ROMboot Routine

Module preparation including calculation of checksum:

The target code is first assembled and linked, leaving $00 in the
even and odd locations destined to contain the checksum.

Load the routine into RAM (with S-records via the LO command,
or from magnetic media using IOP).

Display the entire module (checksum bytes are at $00010024 and
$00010025).

167-Bug>md 10000 :c;l
1-9

General Information
1

00010000 424F4F54 00000010 00000026 54455354 BOOT.......&TEST
00010010 4E4F0026 4E4F0052 4E4F0026 4E4F0026 N0.&NO.RNO.&NO.&
00010020 4E4F0063 00000000 00000000 00000000 NO.c............

167-Bug>md 10010:5;di Disassemble
00010010 4E4F0026 SYSCALL .PCRLF executable
00010014 4E4F0052 SYSCALL .RTC_DSP instructions.
00010018 4E4F0026 SYSCALL .PCRLF

0001001C 4E4F0026 SYSCALL .PCRLF

00010020 4E4F0063 SYSCALL .RETURN

167-Bug>cs 10000:26/2;w Perform checksum on
 Effective address: 00010000 locations $10000 through
 $10025 (refer to the CS
 command).
Effective count : &38

Checksum: C226

167-Bug>m 10024;w Insert checksum into bytes $10024, $10025.
00010024 0000? c226.

Again display the entire module (now with checksums).

167-Bug>md 10000 :c;l

00010000 424F4F54 00000010 00000026 54455354 BOOT.......&TEST
00010010 4E4F0026 4E4F0052 4E4F0026 4E4F0026 NO.&NO.RNO.&NO.&
00010020 4E4F0063 C2260000 00000000 00000000 NO.c.&..........

Verify the functionality of your ROMboot module by executing the
RB command. (The "VERBOSE" option reports the progress of the
search.)

167-Bug>rb;v

ROMboot in progress... To abort hit <BREAK>
Direct Adr: FFC00000 FFC00000: Searching for ROMboot Module at: FFC00000
ROM : FFC00000 FFC7FFFC: Searching for ROMboot Module at: FFC7E000
Local RAM : 00000000 00FFFFFC: Searching for ROMboot Module at: 00010000
Executing ROMboot Module "TEST" at 00010000

FRI SEP 15 11:50:21.00 1989

167-Bug> The ROMboot module is now ready for use.
1-10

Network Boot
1

Network Boot
Network Auto Boot is a software routine contained in the 16XBug
EPROM, PROM, or FLASH devices that provides a mechanism for
booting an operating system using a network (local Ethernet
interface) as the boot device. The Network Auto Boot routine
automatically scans for controllers and devices in a specified
sequence until a valid bootable device containing a boot media is
found or the list is exhausted. If a valid bootable device is found, a
boot from that device is started. The controller scanning sequence
goes from the lowest controller Logical Unit Number (LUN)
detected to the highest LUN detected. (Refer to Appendix G for
default LUNs.)

At power-up, Network Boot is enabled, and providing the drive
and controller numbers encountered are valid, the following
message is displayed upon the system console:

"Network Boot in progress... To abort hit <BREAK>"

Following this message there is a delay to allow you to abort the
Auto Boot process if you wish. Then the actual I/O is begun: the
program pointed to within the volume ID of the media specified is
loaded into RAM and control passed to it. If, however, during this
time you want to gain control without Network Boot, you can press
the <BREAK> key or the software ABORT or RESET switches.

Network Auto Boot is controlled by parameters contained in the
NIOT and ENV commands. These parameters allow the selection
of specific boot devices, systems, and files, and allow programming
of the Boot delay. Refer to the NIOT and ENV commands in
Chapter 3 for more details.

Restarting the System
You can initialize the system to a known state in three different
ways: reset, abort, and break. Each has characteristics which make
it more appropriate than the others in certain situations.
1-11

General Information
1

The debugger has a special feature upon a reset condition. This
feature is activated by depressing the RESET and ABORT switches
at the same time. This feature instructs the debugger to use the
default setup/operation parameters in ROM versus your
setup/operation parameters in NVRAM. This feature can be used
in the event your setup/operation parameters are corrupted or do
not meet a sanity check. Refer to the ENV command for the ROM
defaults.

Reset

Pressing and releasing the MVME16X front panel RESET switch
initiates a system reset. COLD and WARM reset modes are
available. By default, 16XBug is in COLD mode (refer to the RESET
command description in Chapter 3). During COLD reset, a total
system initialization takes place, as if the MVME16X had just been
powered up. All static variables (including disk device and
controller parameters) are restored to their default states. The
breakpoint table and offset registers are cleared. The target registers
are invalidated. Input and output character queues are cleared.
Onboard devices (timer, serial ports, etc.) are reset, and the first two
serial ports are reconfigured to their default state.

During WARM reset, the 16XBug variables and tables are
preserved, as well as the target state registers and breakpoints.

Reset must be used if the processor ever halts, or if the 16XBug
environment is ever lost (vector table is destroyed, stack corrupted,
etc.).

Abort

Pressing and releasing the ABORT switch on the MVME16X front
panel generates a local board condition which interrupts the
processor, if enabled. Whenever abort is invoked while executing a
user program (running target code), a ÒsnapshotÓ of the processor
state is captured and stored in the target registers. The contents of
the registers are displayed on the screen. Any breakpoints installed
1-12

Restarting the System
1

in your code are removed and the breakpoint table remains intact.
Control is returned to the debugger. Use the debuggerÕs RD; e
command to display the contents of the target registers after
pressing ABORT when not executing a user program.

Abort is most appropriate when terminating a user program that is
being debugged. Abort should be used to regain control if the
program gets caught in a loop, etc. The target PC, register contents,
etc., reflecting the machine state at the time the ABORT switch was
pressed, help to pinpoint the malfunction.

Break
A ÒBreakÓ is generated by pressing and releasing the BREAK key
on the terminal keyboard. Break does not generate an interrupt. The
only time break is recognized is when characters are sent or
received by the console port. Break removes any breakpoints in
your code and keeps the breakpoint table intact. Break also takes a
snapshot of the machine state if the function was entered using
SYSCALL. This machine state is then accessible to you for
diagnostic purposes.

Many times it may be desirable to terminate a debugger command
prior to its completion; for example, during the display of a large
block of memory. Break allows you to terminate the command.

SYSFAIL* Assertion/Negation
Upon a reset/powerup condition the debugger asserts the VMEbus
SYSFAIL* line (refer to the VMEbus specification). SYSFAIL* stays
asserted if any of the following has occurred:

❏ Confidence test failure

❏ NVRAM checksum error

❏ NVRAM low battery condition

❏ Local memory configuration status

❏ Self test (if system mode) has completed with error

❏ MPU clock speed calculation failure
1-13

General Information
1

After debugger initialization is done and none of the above
situations have occurred, the SYSFAIL* line is negated. This
indicates to the user or VMEbus masters the state of the debugger.
In a multi-computer configuration, other VMEbus masters could
view the pertinent control and status registers to determine which
CPU is asserting SYSFAIL*. SYSFAIL* assertion/negation is also
affected by the ENV command. Refer to Chapter 3.

MPU Clock Speed Calculation

The clock speed of the microprocessor is calculated and checked
against a user definable parameter housed in NVRAM (refer to the
CNFG command). If the check fails, a warning message is
displayed. The calculated clock speed is also checked against
known clock speeds and tolerances.

Memory Requirements
The program portion of 16XBug is several hundred KB of code,
consisting of download, debugger, and diagnostic packages and
contained entirely in the EPROM, PROM, or FLASH devices. The
exact size of this code and mapped starting location of the memory
devices on the MVME16X are board-dependent and are given in the
board-specific debugger manuals for each particular board series.

16XBug requires a minimum of 64KB of contiguous read/write
memory to operate.

The ENV command controls where this block of memory is located.
Regardless of where the onboard RAM is located, the first 64KB is
used for 16XBug stack and static variable space and the rest is
reserved as user space. Whenever the MVME16X is reset, the target
PC is initialized to the address corresponding to the beginning of
the user space, and the target stack pointers are initialized to
addresses within the user space, with the target Interrupt Stack
Pointer (ISP) set to the top of the user space.
1-14

Terminal Input/Output Control
1

Terminal Input/Output Control
When entering a command at the prompt, the following control
codes may be entered for limited command line editing.

Note The presence of the caret (^) before a character
indicates that the Control (CTRL) key must be held
down while striking the character key.

When observing output from any 16XBug command, the XON and
XOFF characters which are in effect for the terminal port may be
entered to control the output, if the XON/XOFF protocol is enabled

^X Cancel line The cursor is backspaced to the beginning
of the line. If the terminal port is conÞgured
with the hardcopy or TTY option (refer to
PF command), then a carriage return and
line feed is issued along with another
prompt.

^H Backspace The cursor is moved back one position. The
character at the new cursor position is
erased. If the hardcopy option is selected, a
"/" character is typed along with the deleted
character.

 Delete or
rubout

Performs the same function as ^H.

^D Redisplay The entire command line as entered so far
is redisplayed on the following line.

^A Repeat Repeats the previous line. This happens
only at the command line. The last line
entered is redisplayed but not executed.
The cursor is positioned at the end of the
line. You may enter the line as is or you can
add more characters to it. You can edit the
line by backspacing and typing over old
characters.
1-15

General Information
1

(default). These characters are initialized to ̂ S and ̂ Q respectively
by 16XBug, but you may change them with the PF command. In the
initialized (default) mode, operation is as follows:

Disk I/O Support
16XBug can initiate disk input/output by communicating with
intelligent disk controller modules over the VMEbus. Disk support
facilities built into 16XBug consist of command-level disk
operations, disk I/O system calls (only via one of the TRAP #15
instructions - refer to Chapter 5) for use by user programs, and
defined data structures for disk parameters.

Parameters such as the address where the module is mapped and
the type and number of devices attached to the controller module
are kept in tables by 16XBug. Default values for these parameters
are assigned at power-up and cold-start reset, but may be altered as
described in the section on default parameters, later in this chapter.

Appendix E contains a list of the controllers presently supported, as
well as a list of the default configurations for each controller.

Blocks Versus Sectors

The logical block defines the unit of information for disk devices. A
disk is viewed by 16XBug as a storage area divided into logical
blocks. By default, the logical block size is set to 256 bytes for every
block device in the system. The block size can be changed on a per
device basis with the IOT command.

The sector defines the unit of information for the media itself, as
viewed by the controller. The sector size varies for different
controllers, and the value for a specific device can be displayed and
changed with the IOT command.

^S Wait Console output is halted.
^Q Resume Console output is resumed.
1-16

Disk I/O Support
1

When a disk transfer is requested, the start and size of the transfer
is specified in blocks. 16XBug translates this into an equivalent
sector specification, which is then passed on to the controller to
initiate the transfer. If the conversion from blocks to sectors yields
a fractional sector count, an error is returned and no data is
transferred.

Device Probe Function

A device probe with entry into the device descriptor table is done
whenever a specified device is accessed; i.e., when system calls
.DSKRD, .DSKWR, .DSKCFIG, .DSKFMT, and .DSKCTRL, and
debugger commands BH, BO, IOC, IOP, IOT, MAR, and MAW
are used.

The device probe mechanism utilizes the SCSI commands "Inquiry"
and "Mode Sense". If the specified controller is non-SCSI, the probe
simply returns a status of "device present and unknown". The
device probe makes an entry into the device descriptor table with
the pertinent data. After an entry has been made, the next time a
probe is done it simply returns with "device present" status (pointer
to the device descriptor).

Disk I/O via 16XBug Commands

These following 16XBug commands are provided for disk I/O.
Detailed instructions for their use are found in Chapter 3. When a
command is issued to a particular Controller Logical Unit Number
(CLUN) and Device Logical Unit Number (DLUN), these LUNs are
remembered by 16XBug so that the next disk command defaults to
use the same controller and device.

IOI (Input/Output Inquiry)

This command is used to probe the system for all possible
CLUN/DLUN combinations and display inquiry data for devices
which support it. The device descriptor table only has space for 16
device descriptors; with the IOI command, you can view the table
and clear it if necessary.
1-17

General Information
1

IOP (Physical I/O to Disk)

IOP allows you to read or write blocks of data, or to format the
specified device in a certain way. IOP creates a command packet
from the arguments you have specified, and then invokes the
proper system call function to carry out the operation.

IOT (I/O Teach)

IOT allows you to change any configurable parameters and
attributes of the device. In addition, it allows you to see the
controllers available in the system.

IOC (I/O Control)

IOC allows you to send command packets as defined by the
particular controller directly. IOC can also be used to look at the
resultant device packet after using the IOP command.

BO (Bootstrap Operating System)

BO reads an operating system or control program from the
specified device into memory, and then transfers control to it.

BH (Bootstrap and Halt)

BH reads an operating system or control program from a specified
device into memory, and then returns control to 16XBug. It is used
as a debugging tool.

Disk I/O via 16XBug System Calls

All operations that actually access the disk are done directly or
indirectly by 16XBug TRAP #15 system calls. (The command-level
disk operations provide a convenient way of using these system
calls without writing and executing a program.)

The following system calls are provided to allow user programs to
do disk I/O:
1-18

Disk I/O Support
1

Refer to Chapter 5 for information on using these and other system
calls.

To perform a disk operation, 16XBug must eventually present a
particular disk controller module with a controller command
packet which has been especially prepared for that type of
controller module. (This is accomplished in the respective
controller driver module.) A command packet for one type of
controller module usually does not have the same format as a
command packet for a different type of module. The system call
facilities which do disk I/O accept a generalized (controller-
independent) packet format as an argument, and translate it into a
controller-specific packet, which is then sent to the specified device.

Refer to the system call descriptions in Chapter 5 for details on the
format and construction of these standardized ÒuserÓ packets.

The packets which a controller module expects to be given vary
from controller to controller. The disk driver module for the
particular hardware module (board) must take the standardized
packet given to a trap function and create a new packet which is
specifically tailored for the disk drive controller it is sent to. Refer
to documentation on the particular controller module for the
format of its packets, and for using the IOC command.

.DSKRD Disk read. System call to read blocks from a disk into
memory.

.DSKWR Disk write. System call to write blocks from memory
onto a disk.

.DSKCFIG Disk conÞgure. This function allows you to change the
conÞguration of the speciÞed device.

.DSKFMT Disk format. This function allows you to send a format
command to the speciÞed device.

.DSKCTRL Disk control. This function is used to implement any
special device control functions that cannot be
accommodated easily with any of the other disk
functions.
1-19

General Information
1

Default 16XBug Controller and Device Parameters

16XBug initializes the parameter tables for a default configuration
of controllers and devices (refer to Appendix E). If the system needs
to be configured differently than this default configuration (for
example, to use a 70MB Winchester drive where the default is a
40MB Winchester drive), then these tables must be changed.

There are three ways to change the parameter tables:

❏ Use BO or BH. When you invoke one of these commands, the
configuration area of the disk is read and the parameters
corresponding to that device are rewritten according to the
parameter information contained in the configuration area.
(Appendix D has more information on the disk configuration
area.) This is a temporary change. If a cold-start reset occurs,
then the default parameter information is written back into
the tables.

❏ Use IOT. You can use this command to reconfigure the
parameter table manually for any controller and/or device
that is different from the default. This is also a temporary
change and is overwritten if a cold-start reset occurs.

❏ Obtain the source. You can then change the configuration
files and rebuild 16XBug so that it has different defaults.
Changes made to the defaults are permanent until changed
again.

Disk I/O Error Codes

16XBug returns an error code if an attempted disk operation is
unsuccessful. Refer to Appendix F for an explanation of disk I/O
error codes.
1-20

Network I/O Support
1

Network I/O Support
The Network Boot Firmware provides the capability to boot the
CPU through the ROM debugger using a network (local Ethernet
interface) as the boot device.

The booting process is executed in two distinct phases.

❏ The first phase allows the diskless remote node to discover its
network identify and the name of the file to be booted.

❏ The second phase has the diskless remote node reading the
boot file across the network into its memory.

Figure 1-1 depicts the various modules (capabilities) and the
dependencies of these modules that support the overall network
boot function. They are described in the following paragraphs.

Intel 82596 LAN Coprocessor Ethernet Driver

This driver manages/surrounds the Intel 82596 LAN Coprocessor.
Management is in the scope of the reception of packets, the
transmission of packets, receive buffer flushing, and interface
initialization.

This module ensures that the packaging and unpackaging of
Ethernet packets is done correctly in the Boot PROM.
1-21

General Information
1

Figure 1-1. Network Boot Support Modules

Boot Control Module
(Two phases)

Trivial File Transfer
Protocol (TFTP)

RFC 783

Bootstrap Protocol
(BOOTP)
RFC 951

User Datagram
Protocol (UDP)

RFC 768

Internet Protocol
(IP)

RFC 791

Reverse Address
Resolution Protocol
(RARP) - RFC 903

Address Resolution
Protocol (ARP)

RFC 826

Ethernet Driver
Intel 82596

1259 9312
1-22

Network I/O Support
1

UDP/IP Protocol Modules

The Internet Protocol (IP) is designed for use in interconnected
systems of packet-switched computer communication networks.
The Internet protocol provides for transmitting of blocks of data
called datagrams (hence User Datagram Protocol, or UDP) from
sources to destinations, where sources and destinations are hosts
identified by fixed length addresses.

The UDP/IP protocols are necessary for the TFTP and BOOTP
protocols; TFTP and BOOTP require a UDP/IP connection.

RARP/ARP Protocol Modules

The Reverse Address Resolution Protocol (RARP) basically consists
of an identity-less node broadcasting a "whoami" packet onto the
Ethernet, and waiting for an answer. The RARP server fills an
Ethernet reply packet up with the target's Internet Address and
sends it.

The Address Resolution Protocol (ARP) basically provides a
method of converting protocol addresses (e.g., IP addresses) to
local area network addresses (e.g., Ethernet addresses). The RARP
protocol module supports systems which do not support the
BOOTP protocol (next paragraph).

BOOTP Protocol Module

The Bootstrap Protocol (BOOTP) basically allows a diskless client
machine to discover its own IP address, the address of a server host,
and the name of a file to be loaded into memory and executed.

TFTP Protocol Module

The Trivial File Transfer Protocol (TFTP) is a simple protocol to
transfer files. It is implemented on top of the Internet User
Datagram Protocol (UDP or Datagram) so it may be used to move
1-23

General Information
1

files between machines on different networks implementing UDP.
The only thing it can do is read and write files from/to a remote
server.

Network Boot Control Module

The "control" capability of the Network Boot Control Module ties
together all the modules (capabilities) and determines the booting
sequence. The booting sequence has two phases: the first, labeled
"address determination and bootfile selection", uses RARP/BOOTP
and the second, labeled "file transfer", uses TFTP.

Network I/O Error Codes

16XBug returns an error code if an attempted network operation is
unsuccessful. Refer to Appendix H for an explanation of network
I/O error codes.

Multiprocessor Support
The MVME16X dual-port RAM feature makes the shared RAM
available to remote processors as well as to the local processor. You
can access it by either the MPCR or GCSR method, which are
described in the next subsections. Either method can be enabled or
disabled by the ENV command as its Remote Start Switch Method.

Multiprocessor Control Register (MPCR) Method

A remote processor can initiate program execution in the local
MVME16X dual-port RAM by issuing a remote GO command
using the Multiprocessor Control Register (MPCR). The MPCR,
located at shared RAM location of $800 offset from the base address
1-24

Multiprocessor Support
1

the debugger loads it at, contains one of two longwords used to
control communication between processors. Organization of the
MPCR contents is:

The status codes stored in the MPCR are of two types:

❏ Status returned (from the monitor)

❏ Status set (by the bus master)

The status codes that may be returned from the monitor are:

You can only program FLASH memory by the MPCR method. See
the .PFLASH system call for a description of the FLASH memory
program control packet structure.

The status codes that may be set by the bus master are:

The Multiprocessor Address Register (MPAR), located in shared
RAM location of $804 offset from the base address the debugger
loads it at, contains the second of two longwords used to control

$800 * N/A N/A N/A (MPCR)

Hex 0 (Hex 00) Wait. Initialization not yet complete.
ASCII E (Hex 45) Code pointed to by the MPAR address

is executing.
ASCII P (Hex 50) Program FLASH Memory. The MPAR

is set to the address of the FLASH
memory program control packet.

ASCII R (Hex 52) Ready. The Þrmware monitor is
watching for a change.

ASCII G (Hex 47) Use Go Direct (GD) logic specifying
the MPAR address.

ASCII B (Hex 42) Install breakpoints using the Go (G)
logic.
1-25

General Information
1

communication between processors. The MPAR contents specify
the address at which execution for the remote processor is to begin
if the MPCR contains a G or B. The MPAR is organized as follows:

At power-up, the debug monitor self-test routines initialize RAM,
including the memory locations used for multi-processor support
($800 through $807).

The MPCR contains $00 at power-up, indicating that initialization
is not yet complete. As the initialization proceeds, the execution
path comes to the "prompt" routine. Before sending the prompt,
this routine places an R in the MPCR to indicate that initialization
is complete. Then the prompt is sent.

If no terminal is connected to the port, the MPCR is still polled to
see whether an external processor requires control to be passed to
the dual-port RAM. If a terminal does respond, the MPCR is polled
for the same purpose while the serial port is being polled for user
input.

An ASCII G placed in the MPCR by a remote processor requests a
Go Direct type of transfer; an ASCII B indicates that breakpoints are
to be armed before control is transferred (like the GO command).

In either sequence, an E is placed in the MPCR to indicate that
execution is underway just before control is passed to RAM. (Any
remote processor could examine the MPCR contents.)

If the code being executed in dual-port RAM is to reenter the debug
monitor, a TRAP #15 call using function $0063 (SYSCALL
.RETURN) returns control to the monitor with a new display
prompt. Note that every time the debug monitor returns to the
prompt, an R is moved into the MPCR to indicate that control can
be transferred once again to a specified RAM location.

$804 * * * * (MPAR)
1-26

Diagnostic Facilities
1

GCSR Method

A remote processor can initiate program execution in the local
MVME16X dual-port RAM by issuing a remote GO command
using the VMEchip2 Global Control and Status Registers (GCSR).
The remote processor places the MVME16X execution address in
general purpose registers 0 and 1 (GPCSR0 and GPCSR1). The
remote processor then sets bit 8 (SIG0) of the VMEchip2 LM/SIG
register. This causes the MVME16X to install breakpoints and begin
execution. The result is identical to the MPCR method (with status
code B) described in the previous section.

The GCSR registers are accessed in the VMEbus short I/O space.
Each general purpose register is two bytes wide, occurring at an
even address. The general purpose register number 0 is at an offset
of $8 (local bus) or $4 (VMEbus) from the start of the GCSR
registers. The local bus base address for the GCSR is $FFF40100. The
VMEbus base address for the GCSR depends on the group select
value and the board select value programmed in the Local Control
and Status Registers (LCSR) of the MVME16X. The execution
address is formed by reading the GCSR general purpose registers
in the following manner:

The address appears as:

Diagnostic Facilities
Included in the 16XBug package is a complete set of hardware
diagnostics intended for testing and troubleshooting of the
MVME16X. These diagnostics are completely described in each
board-specific debugger or diagnostics manual (refer to the Related
Documentation section located in the Preface).

GPCSR0 Used as the upper 16 bits of the address
GPCSR1 Used as the lower 16 bits of the address

GPCSR0 GPCSR1
1-27

General Information
1

In order to use the diagnostics, you must switch directories to the
diagnostic directory. If you are in the debugger directory, you can
switch to the diagnostic directory by entering the debugger
command Switch Directories (SD). The diagnostic prompt ("16X-
Diag>") should appear. Refer to the board-specific debugger manual
for complete descriptions of the diagnostic routines available and
instructions on how to invoke them.

Note that some diagnostics depend on restart defaults that are set
up only in a particular restart mode. Refer to the documentation on
a particular diagnostic for the correct mode.
1-28

2
2Using the 16XBug Debugger
Entering Debugger Command Lines
16XBug is command-driven and performs its various operations in
response to user commands entered at the keyboard. When the
debugger prompt (16X-Bug>) appears on the terminal screen, then
the debugger is ready to accept commands.

As the command line is entered, it is stored in an internal buffer.
Execution begins only after the carriage return is entered, so that
you can correct entry errors, if necessary, using the control
characters described in Chapter 1.

When a command is entered, the debugger executes the command
and the prompt reappears. However, if the command entered
causes execution of user target code, for example GO, then control
may or may not return to the debugger, depending on what the
user program does. For example, if a breakpoint has been specified,
then control returns to the debugger when the breakpoint is
encountered during execution of the user program. Alternately, the
user program could return to the debugger by means of the TRAP
#15 function ".RETURN" (described in Chapter 5). For more about
this, refer to the descriptions in Chapter 3 for the GD, GT, and GO
commands.

The Command Line

In general, a debugger command is made up of the following parts:

❏ The command identifier (e.g., MD or md for the Memory
Display command). Note that either upper- or lowercase is
allowed.

❏ A port number, if the command is set up to work with more
than one port.

❏ At least one intervening space before the first argument.
2-1

Using the 16XBug Debugger

2
 ❏ Any required arguments, as specified by the command.

❏ An option field, set off by a semicolon (;), to specify
conditions other than the default conditions of the command.

The commands are shown using a modified Backus-Naur form
syntax. The metasymbols used are:

Command Arguments

The following command arguments are encountered in the
command descriptions which follow. Additional command
arguments may be used and are defined in the particular command
description in which they occur.

A delimiter is required between arguments. This may be either a
space or a comma. To use the default value for an argument before
specifying a subsequent argument, you must insert commas as
delimiters.

boldface strings A boldface string is a literal such as a command or a
program name, and is to be typed just as it appears.

italic strings An italic string is a "syntactic variableÓ and is to be
replaced by one of a class of items it represents.

| A vertical bar separating two or more items
indicates that a choice is to be made; only one of the
items separated by this symbol should be selected.

[] Square brackets enclose an item that is optional. The
item may appear zero or one time.

{ } Braces enclose an optional symbol that may occur
zero or more times.

exp Expression (described in detail in a following section).
address Address (described in detail in a following section).
count Count; the syntax is the same as for exp.
range A range of memory addresses which may be speciÞed

either by address address or by address : count.
text An ASCII string of up to 255 characters, delimited at

each end by the single quote mark (').
2-2

Entering Debugger Command Lines

2
exp - Expression as a Parameter

An expression (exp) can be one or more numeric values separated
by the arithmetic operators: plus (+), minus (-), multiplied by (*),
divided by (/), logical AND (&), shift left (<<), or shift right (>>).

Numeric values may be expressed in either hexadecimal, decimal,
octal, or binary by immediately preceding them with the proper
base identifier.

If no base identifier is specified, then the numeric value is assumed
to be hexadecimal.

A numeric value may also be expressed as a string literal of up to
four characters. The string literal must begin and end with the
single quote mark ('). The numeric value is interpreted as the
concatenation of the ASCII values of the characters. This value is
right-justified, as any other numeric value would be.

Evaluation of an expression is always from left to right unless
parentheses are used to group part of the expression. There is no
operator precedence. Subexpressions within parentheses are
evaluated first. Nested parenthetical subexpressions are evaluated
from the inside out.

Data Type Base IdentiÞer Examples

Integer Hexadecimal $ $FFFFFFFF

Integer Decimal & &1974, &10-&4

Integer Octal @ @456

Integer Binary % %1000110

String Literal
Numeric Value
(In Hexadecimal)

'A' 41

'ABC' 414243

'TEST' 54455354
2-3

Using the 16XBug Debugger

2
 Valid expression examples:

The total value of the expression must be between 0 and
$FFFFFFFF.

address - Address as a Parameter

Many commands use address as a parameter. The syntax accepted
by 16XBug is similar to the one accepted by the MC68040/MC68040
one-line assembler. All control addressing modes are allowed. An
"address + offset register" mode is also provided.

Table 2-1 summarizes the address formats which are acceptable for
address parameters in debugger command lines.

Expression
Result
(In Hexadecimal)

Notes

FF0011 FF0011

45+99 DE

&45+&99 90

@35+@67+@10 5C

%10011110+%100
1

A7

88<<4 880 shift left

AA&F0 A0 logical
AND
2-4

Entering Debugger Command Lines

2
Table 2-1. Debugger Address Parameter Formats

Format Example Description

N 140 Absolute address+contents of
automatic offset register.

N+Rn 130+R5 Absolute address+contents of
the speciÞed offset register (not
an assembler-accepted syntax).

(An) (A1) Address register indirect (also
post-increment, predecrement)

(d,An)
or
d(An)

(120,A1)
120(A1)

Address register indirect with
dis- placement (two formats
accepted).

(d,An,Xn)
or
d(An,Xn)

(&120,A1,D2)
&120(A1,D2)

Address register indirect with
index and displacement (two
formats accepted).

([bd,An,Xn],od) ([C,A2,A3],&100) Memory indirect preindexed.

([bd,An],Xn,od) ([12,A3],D2,&10) Memory indirect postindexed.

For the memory indirect modes, Þelds can be omitted.
For example, three of many permutations are as follows:

([,An],od) ([,A1],4)

([bd]) ([FC1E])

([bd,,Xn]) ([8,,D2])

Notes N Ñ Absolute address (any valid expression).
An Ñ Address register n.
Xn Ñ Index register n (An or Dn).
d Ñ Displacement (any valid expression).
bd Ñ Base displacement (any valid expression).
od Ñ Outer displacement (any valid expression).
n Ñ Register number (0 to 7).
Rn Ñ Offset register n.
2-5

Using the 16XBug Debugger

2
 Note In commands with range specified as address address,
and with size option W or L chosen, data at the second
(ending) address is acted on only if the second address
is a proper boundary for a word or longword,
respectively.

Offset Registers

Eight pseudo-registers (R0 through R7) called offset registers are
used to simplify the debugging of relocatable and position-
independent modules. The listing files in these types of programs
usually start at an address (normally 0) that is not the one at which
they are loaded, so it is harder to correlate addresses in the listing
with addresses in the loaded program. The offset registers solve
this problem by taking into account this difference and forcing the
display of addresses in a relative address+offset format. Offset
registers have adjustable ranges and may even have overlapping
ranges. The range for each offset register is set by two addresses:
base and top. Specifying the base and top addresses for an offset
register sets its range. In the event that an address falls in two or
more offset registers' ranges, the one that yields the least offset is
chosen.

Note Relative addresses are limited to 1MB (5 digits),
regardless of the range of the closest offset register.

Example

A portion of the listing file of an assembled, relocatable module is
shown below:
2-6

Entering Debugger Command Lines

2
 1
 2 *
 3 * MOVE STRING SUBROUTINE
 4 *
 5 0 00000000 48E78080 MOVESTR MOVEM.L D0/A0,—(A7)
 6 0 00000004 4280 CLR.L D0
 7 0 00000006 1018 MOVE.B (A0)+,D0
 8 0 00000008 5340 SUBQ.W #1,D0
 9 0 0000000A 12D8 LOOP MOVE.B (A0)+,(A1)+
 10 0 0000000C 51C8FFFC MOVS DBRA D0,LOOP
 11 0 00000010 4CDF0101 MOVEM.L (A7)+,D0/A0
 12 0 00000014 4E75 RTS
 13
 14 END
 ****** TOTAL ERRORS 0——
 ****** TOTAL WARNINGS 0——

The above program was loaded at address $0001327C.

The disassembled code is shown next:

167Bug>MD 1327C;DI

0001327C 48E78080 MOVEM.L D0/A0,—(A7)
00013280 4280 CLR.L D0
00013282 1018 MOVE.B (A0)+,D0
00013284 5340 SUBQ.W #1,D0
00013286 12D8 MOVE.B (A0)+,(A1)+
00013288 51C8FFFC DBF D0,$13286
0001328C 4CDF0101 MOVEM.L (A7)+,D0/A0
00013290 4E75 RTS
167Bug>

By using one of the offset registers, the disassembled code
addresses can be made to match the listing file addresses as follows:
2-7

Using the 16XBug Debugger

2
 167Bug>OF R0
R0 =00000000 00000000? 1327C. <CR>
167Bug>MD 0+R0;DI <CR>
00000+R0 48E78080 MOVEM.L D0/A0,—(A7)
00004+R0 4280 CLR.L D0
00006+R0 1018 MOVE.B (A0)+,D0
00008+R0 5340 SUBQ.W #1,D0
0000A+R0 12D8 MOVE.B (A0)+,(A1)+
0000C+R0 51C8FFFC DBF D0,$A+R0
00010+R0 4CDF0101 MOVEM.L (A7)+,D0/A0
00014+R0 4E75 RTS
167Bug>

For additional information about the offset registers, refer to the OF
command description.

Port Numbers

Some 16XBug commands give you the option to choose the port to
be used to input or output. Refer to the board installation manual
for port information.

Entering and Debugging Programs
There are various ways to enter a user program into system
memory for execution. One way is to create the program using the
Memory Modify (MM) command with the assembler/
disassembler option. You enter the program one source line at a
time. After each source line is entered, it is assembled and the object
code is loaded to memory. Refer to Chapter 4 for complete details
of the 16XBug Assembler/Disassembler.

Another way to enter a program is to download an object file from
a host system. The program must be in S-record format (described
in Appendix C) and may have been assembled or compiled on the
host system. Alternately, the program may have been previously
created using the 16XBug MM command as outlined above and
stored to the host using the Dump (DU) command. A
communication link must exist between the host system and the
2-8

Calling System Utilities from User Programs

2
MVME16X port 1. (Hardware configuration details are in the
section on Installation and Startup in Chapter 1.) The file is
downloaded from the host to MVME16X memory by the Load (LO)
command.

Another way is by reading in the program from disk, using one of
the disk commands (BO, BH, IOP). Once the object code has been
loaded into memory, you can set breakpoints if desired and run the
code or trace through it.

Yet another way is via the network, using one of the network disk
commands (NBO, NBH, NIOP).

Calling System Utilities from User Programs
A convenient way of doing character input/output and many other
useful operations has been provided so that you do not have to
write these routines into the target code. You can access various
16XBug routines via one of the MC68040 and MC68060 TRAP
instructions, using vector #15. Refer to Chapter 5 for details on the
various TRAP #15 utilities available and how to invoke them from
within a user program.

Preserving the Debugger Operating
Environment

This section explains how to avoid contaminating the operating
environment of the debugger. 16XBug uses certain of the
MVME16X onboard resources and also offboard system memory to
contain temporary variables, exception vectors, etc. If you disturb
resources upon which 16XBug depends, then the debugger may
function unreliably or not at all.

If your application enables translation through the Memory
Management Units (MMUs), and utilizes resources of the debugger
(e.g., system calls), your application must create the necessary
2-9

Using the 16XBug Debugger

2
 translation tables for the debugger to have access to its various
resources. The debugger honors the enabling of the MMUs; it does
not disable translation.

16XBug Vector Table and Workspace

As described in the Memory Requirements section in Chapter 1,
16XBug needs 64KB of read/write memory to operate. The 16XBug
reserves a 1024-byte area for a user program vector table area and
then allocates another 1024-byte area and builds an exception
vector table for the debugger itself to use. Next, 16XBug reserves
space for static variables and initializes these static variables to
predefined default values. After the static variables, 16XBug
allocates space for the system stack, then initializes the system stack
pointer to the top of this area.

With the exception of the first 1024-byte vector table area, you must
be extremely careful not to use the above-mentioned memory areas
for other purposes. You should refer to the Memory Requirements
section in Chapter 1 and to Appendix A to determine how to dictate
the location of the reserved memory areas. If, for example, your
program inadvertently wrote over the static variable area
containing the serial communication parameters, these parameters
would be lost, resulting in a loss of communication with the system
console terminal. If your program corrupts the system stack, then
an incorrect value may be loaded into the processor Program
Counter (PC), causing a system crash.

Hardware Functions

The only hardware resources used by the debugger are the EIA-
232-D ports, which are initialized to interface to the debug terminal.
If these ports are reprogrammed, the terminal characteristics must
be modified to suit, or the ports should be restored to the debugger-
set characteristics prior to reinvoking the debugger.
2-10

Preserving the Debugger Operating Environment

2
Exception Vectors Used by 16XBug

The exception vectors used by the debugger are listed below. These
vectors must reside at the specified offsets in the target program's
vector table for the associated debugger facilities (breakpoints,
trace mode, etc) to operate.

When the debugger handles any exception, the target stack pointer
is left pointing past the bottom of the exception stack frame created;
that is, it reflects the system stack pointer values just before the
exception occurred. In this way, the operation of the debugger
facility (through an exception) is transparent to users.

Table 2-2. Exception Vectors Used by 16XBug

Vector
Offset

Exception 16XBug Facility

$10 Illegal instruction Breakpoints (used by GO, GN,
GT)

$24 Trace Trace operations (such as T, TC,
TT)

$80-$B8 TRAP #0 - #14 Used internally

$BC TRAP #15 System calls (refer to Chapter 5)

$NOTE Level 7 interrupt ABORT pushbutton

$NOTE Level 7 interrupt AC Fail

$DC FP Unimplemented
Data Type

Software emulation and data type
conversion of ßoating point data.

Note This depends on what the Vector Base Register (VBR) is set to in
the MCchip.
For the MVME162, the ABORT pushbutton vector offset
depends on what the contents of the Vector Base Register (VBR)
is set to in the MCchip. The AC Fail vector offset depends on
what the contents of the Vector Base Register is set to in the
VMEchip2.
2-11

Using the 16XBug Debugger

2
 Example

Trace one instruction using debugger.

167Bug>RD
PC =00010000 SR =2700=TR:OFF_S._7_..... VBR =00000000
USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0
DFC =0=F0 CACR =0=........
D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC
00010000 203C0000 0001 MOVE.L #$1,D0
167Bug>T
PC =00010006 SR =2700=TR:OFF_S._7_..... VBR =00000000
USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0
DFC =0=F0 CACR =0=........
D0 =00000001 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC
00010006 D280 ADD.L D0,D1
167Bug>

Notice that the value of the target stack pointer register (A7) has not
changed even though a trace exception has taken place. Your
program may either use the exception vector table provided by
16XBug or it may create a separate exception vector table of its own.
The two following sections detail these two methods.

Using the 16XBug Target Vector Table

The 16XBug initializes and maintains a vector table area for target
programs. A target program is any program started by the bug,
either manually with GO or TR type commands or automatically
with the BO command. The start address of this target vector table
area is the base address of the debugger memory. This address is
loaded into the target-state VBR at power up and cold-start reset
and can be observed by using the RD command to display the
target-state registers immediately after power up.
2-12

Preserving the Debugger Operating Environment

2
The 16XBug initializes the target vector table with the debugger
vectors listed in Table 2-2 and fills the other vector locations with
the address of a generalized exception handler. The target program
may take over as many vectors as desired by simply writing its own
exception vectors into the table. If the vector locations listed in
Table 2-2 are overwritten then the accompanying debugger
functions are lost.

The 16XBug maintains a separate vector table for its own use. In
general, you do not have to be aware of the existence of the
debugger vector table. It is completely transparent and you should
never make any modifications to the vectors contained in it.

Creating a New Vector Table

Your program may create a separate vector table in memory to
contain its exception vectors. If this is done, the program must
change the value of the VBR to point at the new vector table. In
order to use the debugger facilities you can copy the proper vectors
from the 16XBug vector table into the corresponding vector
locations in your program vector table.

The vector for the 16XBug generalized exception handler may be
copied from offset $08 (bus error vector) in the target vector table to
all locations in your program vector table where a separate
exception handler is not used. This provides diagnostic support in
the event that your program is stopped by an unexpected
exception. The generalized exception handler gives a formatted
display of the target registers and identifies the type of the
exception.

The following is an example of a routine which builds a separate
vector table and then moves the VBR to point at it:
2-13

Using the 16XBug Debugger

2
 *
*** BUILDX - Build exception vector table ****
*
BUILDX MOVEC.L VBR,A0 Get copy of VBR.
 LEA $10000,A1 New vectors at $10000.
 MOVE.L $80(A0),D0 Get generalized exception vector.
 MOVE.W $3FC,D1 Load count (all vectors).
LOOP MOVE.L D0,(A1,D1) Store generalized exception vector.
 SUBQ.W #4,D1
 BNE.B LOOP Initialize entire vector table.
 MOVE.L $10(A0),$10(A1) Copy breakpoints vector.
 MOVE.L $24(A0),$24(A1) Copy trace vector.
 MOVE.L $BC(A0),$BC(A1) Copy system call vector.
 LEA.L COPROCC(PC),A2 Get your exception vector.
 MOVE.L A2,$2C(A1) Install as F-Line handler.
 MOVEC.L A1,VBR Change VBR to new table.
 RTS
 END

It may turn out that your program uses one or more of the exception
vectors that are required for debugger operation. Debugger
facilities may still be used, however, if your exception handler can
determine when to handle the exception itself and when to pass the
exception to the debugger.

When an exception occurs which you want to pass on to the
debugger; i.e., ABORT, your exception handler must read the
vector offset from the format word of the exception stack frame.
This offset is added to the address of the 16XBug target program
vector table (which your program saved), yielding the address of
the 16XBug exception vector. The program then jumps to the
address stored at this vector location, which is the address of the
16XBug exception handler.

Your program must make sure that there is an exception stack
frame in the stack and that it is exactly the same as the processor
would have created for the particular exception before jumping to
the address of the exception handler.

The following is an example of an exception handler which can pass
an exception along to the debugger:
2-14

Floating Point Support

2
*
*** EXCEPT - Exception handler ****
*
EXCEPT SUBQ.L #4,A7 Save space in stack for a PC value.
 LINK A6,#0 Frame pointer for accessing PC space.
 MOVEM.L A0-A5/D0-D7,-(SP) Save registers.
 :
 : decide here if your code handles exception, if so, branch...
 :
 MOVE.L BUFVBR,A0 Pass exception to debugger; Get saved VBR.
 MOVE.W 14(A6),D0 Get the vector offset from stack frame.
 AND.W #$0FFF,D0 Mask off the format information.
 MOVE.L (A0,D0.W),4(A6) Store address of debugger exc handler.
 MOVEM.L (SP)+,A0-A5/D0-D7 Restore registers.
 UNLK A6
 RTS Put addr of exc handler into PC and go.

Floating Point Support
The floating point unit (FPU) of the MC68040 and MC68060
microprocessors is supported in 16XBug. The MD, MM, RM, and
RS commands allow display and modification of floating point
data in registers and in memory. Floating point instructions can be
assembled/disassembled with the DI option of the MD and MM
commands.

Valid data types that can be used when modifying a floating point
data register or a floating point memory location:

Integer Data Types

12 Byte
1234 Word
12345678 Longword

Floating Point Data Types

1_FF_7FFFFF Single Precision Real Format
1_7FF_FFFFFFFFFFFFF Double Precision Real Format
-3.12345678901234501_E+123 ScientiÞc Notation Format

(decimal)
2-15

Using the 16XBug Debugger

2
 When entering data in single or double precision format, the
following rules must be observed:

1. The sign field is the first field and is a binary field.

2. The exponent field is the second field and is a hexadecimal
field.

3. The mantissa field is the last field and is a hexadecimal field.

4. The sign field, the exponent field, and at least the first digit of
the mantissa field must be present (any unspecified digits in
the mantissa field are set to zero).

5. Each field must be separated from adjacent fields by an
underscore.

6. All the digit positions in the sign and exponent fields must be
present.

Single Precision Real

This format would appear in memory as:

A single precision number takes 4 bytes in memory.

Double Precision Real

This format would appear in memory as:

A double precision number takes 8 bytes in memory.

1-bit sign Þeld (1 binary digit)
8-bit biased exponent Þeld (2 hex digits. Bias = $7F)

23-bit fraction Þeld (6 hex digits)

1-bit sign Þeld (1 binary digit)
11-bit biased exponent Þeld (3 hex digits. Bias = $3FF)
52-bit fraction Þeld (13 hex digits)
2-16

Floating Point Support

2
Notes 1. The single and double precision formats have an
implied integer bit (always 1).

2. The 68K debuggers do NOT support extended (X)
display options such as extended precision format (;X)
or packed decimal format (;P). If you attempt to use
these formats, the debugger will return an **** Illegal
Option **** error message.

 Scientific Notation

This format provides a convenient way to enter and display a
floating point decimal number. Internally, the number is assembled
into a packed decimal number and then converted into a number of
the specified data type.

Entering data in this format requires the following fields:

❏ A sign bit (+ or -); if omitted, default is +.

❏ One decimal digit followed by a decimal point.

❏ Up to 17 decimal digits (at least one must be entered).

❏ An optional Exponent field that consists of:

Ð An optional underscore.

Ð The Exponent field identifier, letter "E".

Ð An optional Exponent sign (+, -).

Ð From 1 to 3 decimal digits.

For more information about the floating point unit of the MC68040
and MC68060 microprocessors, refer to the appropriate
microprocessor user's manual (see the Related Documentation
section in the Preface).
2-17

Using the 16XBug Debugger

2

2-18

3
3Debugger Commands
Introduction
This chapter contains descriptions of each debugger command,
with one or more examples of each. The 16XBug debugger
commands are summarized in Table 3-1.

Table 3-1. Debugger Commands

Command
Mnemonic

Title

AB/NOAB Automatic Bootstrap Operating System/No Autoboot

AS One Line Assembler

BC Block of Memory Compare (Note 2)

BF Block of Memory Fill (Note 2)

BH Bootstrap Operating System and Halt

BI Block of Memory Initialize

BM Block of Memory Move (Note 2)

BO Bootstrap Operating System

BR/NOBR Breakpoint Insert/Delete

BS Block of Memory Search (Note 2)

BV Block of Memory Verify (Note 2)

CM/NOCM Concurrent Mode/No Concurrent Mode

CNFG ConÞgure Board Information Block

CS Checksum (Note 2)

DC Data Conversion (Note 2)

DMA DMA Block of Memory Move

DS One Line Disassembler
3-1

Debugger Commands

3

DU Dump S-Records

ECHO Echo String

ENV Set Environment to Bug/Operating System

GD Go Direct (Ignore Breakpoints)

GN Go to Next Instruction

GO Go Execute User Program

GT Go to Temporary Breakpoint

HE Help (NOTE 2)

IOC I/O Control for Disk

IOI I/O Inquiry

IOP I/O Physical (Direct Disk Access) (Note 2)

IOT I/O Teach for ConÞguring Disk Controller (Note 2)

IRQM Interrupt Request Mask

LO Load S-Records from Host (Note 2)

MA/NOMA Macro DeÞne/Display/Delete

MAE Macro Edit

MAL/NOMAL Enable/Disable Macro Expansion Listing

MAR Load Macros

MAW Save Macros

MD Memory Display (Note 2)

MENU System Menu

MM Memory Modify (Note 2)

MMD Memory Map Diagnostic

MS Memory Set (Note 2)

MW Memory Write

Table 3-1. Debugger Commands (Continued)

Command
Mnemonic

Title
3-2

Introduction

3

NAB Automatic Network Boot Operating System

NBH Network Boot Operating System and Halt

NBO Network Boot Operating System

NIOC Network I/O Control

NIOP Network I/O Physical (Note 2)

NIOT Network I/O Teach (Note 2)

NPING Network Ping

OF Offset Registers Display/Modify

PA/NOPA Printer Attach/Detach

PF/NOPF Port Format/Detach (Note 2)

PFLASH Program FLASH Memory (Note 2)

PS Put RTC into Power Save Mode for Storage

RB/NORB ROMboot Enable/Disable

RD Register Display

REMOTE Connect Remote Modem to CSO

RESET Cold/Warm Reset

RL Read Loop

RM Register Modify

RS Register Set

SD Switch Directories

SET Set Time and Date (Note 2)

SYM/NOSYM Symbol Table Attach/Detach

SYMS Symbol Table Display/Search

T Trace

TA Terminal Attach

Table 3-1. Debugger Commands (Continued)

Command
Mnemonic

Title
3-3

Debugger Commands

3

Each of the individual commands is described in the following
pages. The command syntax is shown using the symbols explained
in Chapter 2.

In the examples shown, the symbol <CR> represents the carriage
Return or Enter key on your terminal keyboard. Whenever this
symbol appears, it means that you should enter a carriage return.

TC Trace on Change of Control Flow

TIME Display Time and Date (Note 2)

TM Transparent Mode (Note 2)

TT Trace to Temporary Breakpoint

VE Verify S-Records Against Memory (Note 2)

VER Revision/Version Display

WL Write Loop

Notes 1. In most examples of commands and displays given in this manual,
167Bug is used. However, the commands, displays, and system calls
apply to all 68K CISC debugging packages, unless otherwise noted.

2. These commands are also part of the reduced command set
contained in the BootBug PROM for boards that have a BootBug
function.

Table 3-1. Debugger Commands (Continued)

Command
Mnemonic

Title
3-4

AB/NOAB - Automatic Bootstrap Operating System/No Autoboot

3

AB/NOAB - Automatic Bootstrap Operating
System/No Autoboot

Command Input

AB [;V]
NOAB

Description

The AB command re-invokes the autoboot sequence.

The option field V (verbose) enables the autoboot sequence to
display the controller and device numbers while it is scanning as
well as the returned packet status.

The NOAB command disables the automatic boot function.

Examples

167-Bug>AB Enables the autoboot function.

167-Bug>NOAB Disables the autoboot function but
 does not change the parameters.
3-5

Debugger Commands

3

AS - One Line Assembler
Command Input

AS address

Description

This is synonymous with the MM address;DI command. (Refer to it
for details.) It provides access to the one-line assembler described in
Chapter 4. Accordingly, it is not described further here.
3-6

BC - Block of Memory Compare

3

BC - Block of Memory Compare
Command Input

BC range address [; B|W|L]

Options

B Byte
W Word (default)
L Longword

Description

The BC command compares the contents of memory defined by
range with another place in memory, beginning at address.

The option field B, W, or L (upper- or lowercase) defines the size of
data compared, and also, if range is specified using a count, defines
the size of data element to which the count refers. For example, a
count of 4 with an option of L would mean to compare 4 longwords
(16 bytes).

If the range beginning address is greater than or equal to the end
address, an error message is displayed and no comparison takes
place.

For the following examples, assume that memory blocks 20000-
20020 and 21000-21020 contain identical data.

Example 1: Memory compare, nothing printed.

167-Bug>BC 20000 2001F 21000
Effective address: 00020000

Effective address: 0002001F

Effective address: 00021000

167-Bug>
3-7

Debugger Commands

3

Example 2: Memory compare, nothing printed.

167-Bug>BC 20000:20 21000;B
Effective address: 00020000

Effective count : &32

Effective address: 00021000

167-Bug>

Example 3: Create a mismatch.

167-Bug>MM 2100F;B
0002100F 21? 0.
167-Bug>

167-Bug>BC 20000:20 21000;B
Effective address: 00020000

Effective count : &32

Effective address: 00021000

0002000F|21 0002100F|00

167-Bug> Mismatches are printed out.
3-8

BF - Block of Memory Fill

3

BF - Block of Memory Fill
Command Input

BF range data [increment] [; B|W|L]

Arguments

data and increment are both expression parameters.

Options

B Byte
W Word (default)
L Longword

Description

The BF command fills the specified range of memory with a data
pattern. If an increment is specified, then data is incremented by
this value following each write, otherwise data remains a constant
value. A decrementing pattern may be accomplished by entering a
negative increment. The data that you enter is right-justified in
either a byte, word, or longword field (as specified by the option
selected).

If the user-entered data does not fit into the data field size, then
leading bits are truncated to make it fit. If truncation occurs, then a
message is printed stating the data pattern which was actually
written (or initially written if an increment was specified).

If the user-entered increment does not fit into the data field size,
then leading bits are truncated to make it fit. If truncation occurs,
then a message is printed stating the increment which was actually
used.

If the upper address of the range is not on the correct boundary for
an integer multiple of the data to be stored, then data is stored to the
last boundary before the upper address. No address outside of the
3-9

Debugger Commands

3

specified range is ever disturbed in any case. The "Effective
address" messages displayed by the command show exactly where
data was stored.

Example 1

Assume memory from $20000 through $2002F is clear.

167-Bug>BF 20000,2001F 4E71 <CR>
Effective address: 00020000

Effective address: 0002001F

167-Bug>MD 20000:18;W <CR>
00020000 4E71 4E71 4E71 4E71 4E71 4E71 4E71

4E71 NqNqNqNqNqNqNqNq

00020010 4E71 4E71 4E71 4E71 4E71 4E71 4E71

4E71 NqNqNqNqNqNqNqNq

00020020 0000 0000 0000 0000 0000 0000 0000

0000

Because no option was specified, the length of the data field
defaulted to word.

Example 2

Assume memory from $20000 through $2002F is clear.

167-Bug>BF 20000:10 4E71 ;B <CR>
Effective address: 00020000

Effective count : &16

Data = $71
167-Bug>MD 20000:18 <CR>
00020000 7171 7171 7171 7171 7171 7171 7171

7171 qqqqqqqqqqqqqqqq

00020010 0000 0000 0000 0000 0000 0000 0000

0000

00020020 0000 0000 0000 0000 0000 0000 0000

0000

The specified data did not fit into the specified data field size. The
data was truncated and the "Data = " message was output.
3-10

BF - Block of Memory Fill

3

Example 3

Assume memory from $20000 through $2002F is clear.

167-Bug>BF 20000,20006 12345678 ;L <CR>
Effective address: 00020000

Effective address: 00020003

167-Bug>MD 20000:18 <CR>
00020000 1234 5678 0000 0000 0000 0000 0000

0000 .4Vx............

00020010 0000 0000 0000 0000 0000 0000 0000

0000

00020020 0000 0000 0000 0000 0000 0000 0000

0000

The longword pattern would not fit evenly in the given range. Only
one longword was written and the "Effective address" messages
reflect the fact that data was not written all the way up to the
specified address.

Example 4

Assume memory from $20000 through $2002F is clear.

167-Bug>BF 20000:18 0 1 ;W<CR>
Effective address: 00020000

Effective count : &48

167-Bug>MD 20000:18 <CR>
00020000 0000 0001 0002 0003 0004 0005 0006

0007

00020010 0008 0009 000A 000B 000C 000D 000E

000F

00020020 0010 0011 0012 0013 0014 0015 0016

0017
3-11

Debugger Commands

3

BH - Bootstrap Operating System and Halt
Command Input

BH [controllerLUN] [deviceLUN] [string]

Arguments

controllerLUN is the Logical Unit Number (LUN) of the
controller to which the following device is
attached. Defaults to LUN 0.

deviceLUN is the LUN of the device from which to boot.
Defaults to LUN 0.

string is a string that is passed to the operating
system or control program loaded. Its syntax
and use is completely defined by the loaded
program.

Description

BH is used to load an operating system or control program from
disk into memory. This command works in exactly the same way
as the BO command, except that control is not given to the loaded
program. After the registers are initialized, control is returned to
the 16XBug debugger and the prompt reappears on the terminal
screen. Because control is retained by 16XBug, all the 16XBug
facilities are available for debugging the loaded program if
necessary.

A device probe with entry into the device descriptor table is done
whenever a specified device is accessed via BH.

The device probe mechanism utilizes the SCSI commands "Inquiry"
and "Mode Sense". If the specified controller is non-SCSI, the probe
simply returns a status of "device present and unknown". The
device probe makes an entry into the device descriptor table with
the pertinent data. After an entry has been made, the next time a
probe is done it simply returns with "device present" status (pointer
to the device descriptor).
3-12

BH - Bootstrap Operating System and Halt

3

Example 1:

167-Bug>bh 4,1 <CR> Boot and halt from Controller LUN 4,
Device LUN 0.

Booting from: VME350, Controller 4, Drive 0
Loading: Operating System

Volume: V/68

IPL loaded at: $00010000
167-Bug>

Example 2

167-Bug>bh 4,0,test167 <CR> Boot and halt from Controller LUN
4, Device LUN 0, and pass the string
"test167" to the loaded program.

Booting from: VME350, Controller 4, Drive 0
Loading: test167

Volume: V/68

IPL loaded at: $00010000
167-Bug>

Refer to the BO command description for more detailed
information about what happens during bootstrap loading.
3-13

Debugger Commands

3

BI - Block of Memory Initialize
Command Input

BI range [;B|W|L]

Options

B Byte
W Word (default)
L Longword

Description

The BI command may be used to initialize parity for a block of
memory. The BI command is non-destructive; if the parity is
correct for a memory location, then the contents of that memory
location are not altered.

The limits of the block of memory to be initialized may be specified
using a range. The option field specifies the data size in which
memory is initialized if range is specified using a count. The option
also specifies the size of data element to which the count refers. The
length option is valid only when a count is entered.

BI works through the memory block by reading from locations and
checking parity. If the parity is not correct, then the data read is
written back to the memory location in an attempt to correct the
parity. If the parity is not correct after the write, then the message
"RAM FAIL" is output and the address is given.

This command may take several seconds to initialize a large block
of memory.

Example 1

167-Bug>BI 0 : 10000 ;B <CR>
Effective address: 00000000

Effective count : &65536

167-Bug>
3-14

BI - Block of Memory Initialize

3

Example 2

Assume system memory from $0 to $000FFFFF.

167-Bug>BI 0,1FFFFF <CR>
Effective address: 00000000

Effective address: 001FFFFF

RAM FAIL AT $00100000

167-Bug>
3-15

Debugger Commands

3

BM - Block of Memory Move
Command Input

BM range address [; B|W|L]

Options

B Byte
W Word (default)
L Longword

Description

The BM command copies the contents of the memory addresses
defined by range to another place in memory, beginning at address.

The option field is only allowed when range is specified using a
count. In this case, the B, W, or L defines the size of data that the
count is referring to. For example, a count of 4 with an option of W
would mean to move 4 words (or 8 bytes) to the new location. If an
option field is specified without a count in the range, an error results.

Example 1

Assume memory from 20000 to 2000F is clear.

167-Bug>MD 21000:10 <CR>
00021000 5448 4953 2049 5320 4120 5445 5354 2121 THIS IS A TEST!!

00021010 0000 0000 0000 0000 0000 0000 0000 0000

167-Bug>BM 21000 2100F 20000 <CR>
Effective address: 00021000

Effective address: 0002100F

Effective address: 00020000

167-Bug>MD 20000:10 <CR>
00020000 5448 4953 2049 5320 4120 5445 5354 2121 THIS IS A TEST!!

00020010 0000 0000 0000 0000 0000 0000 0000 0000

167-Bug>
3-16

BM - Block of Memory Move

3

Example 2

This utility is very useful for patching assembly code in memory.
Suppose you had a short program in memory at address $20000.

167-Bug>MD 20000 2000A;DI
00020000 D480 ADD.L D0,D2

00020002 E2A2 ASR.L D1,D2

00020004 2602 MOVE.L D2,D3

00020006 4E4F0021 SYSCALL .OUTSTR

0002000A 4E71 NOP

167-Bug>

Now suppose you would like to insert a NOP between the ADD.L
instruction and the ASR.L instruction. You could Block Move the
object code down two bytes to make room for the NOP.

167-Bug>BM 20002 2000B 20004
Effective address: 00020002

Effective address: 0002000B

Effective address: 00020004
167-Bug>MD 20000 2000C;DI
00020000 D480 ADD.L D0,D2

00020002 E2A2 ASR.L D1,D2

00020004 E2A2 ASR.L D1,D2

00020006 2602 MOVE.L D2,D3

00020008 4E4F0021 SYSCALL .OUTSTR

0002000C 4E71 NOP

167-Bug>

Now you simply need to enter the NOP at address $20002.

167-Bug>MM 20002;DI
00020002 E2A2 ASR.L D1,D2 ? NOP
00020002 4E71 NOP

00020004 E2A2 ASR.L D1,D2 ? .
167-Bug>

167-Bug>MD 20000 2000C;DI
00020000 D480 ADD.L D0,D2

00020002 4E71 NOP
3-17

Debugger Commands

3

00020004 E2A2 ASR.L D1,D2

00020006 2602 MOVE.L D2,D3

00020008 4E4F0021 SYSCALL .OUTSTR

0002000C 4E71 NOP

167-Bug>
3-18

BO - Bootstrap Operating System

3

BO - Bootstrap Operating System
Command Input

BO [controllerLUN] [deviceLUN] [string]

Arguments

controllerLUN is the Logical Unit Number (LUN) of the
controller to which the following device is
attached. Defaults to LUN 0.

deviceLUN is the LUN of the device from which to boot.
Defaults to LUN 0.

string is a string that is passed to the operating
system or control program loaded. Its syntax
and use is completely defined by the loaded
program.

Description

BO is used to load an operating system or control program from
disk into memory and give control to it. Where to find the program
and where in memory to load it is contained in block 0 of the Device
LUN specified. (Refer to Appendix D.) The device configuration
information is located in block 1 (Appendix D). The device and
controller configurations used when BO is initiated can be
examined and changed via the I/O Teach (IOT) command.

Upon the retrieval of the device configuration information (located
in block #1 of the device), the boot process will examine the ENV
flag parameter "Ignore CFGA Block on a Hard Disk Boot".
Depending on the state of the flag, the boot process will either
reconfigure the device or not. If the flag is set to "Y", the
reconfiguration process will not be done .

In older devices (e.g., ESDI, ST506, Winchester), the reconfiguration
of the hard disk drive was necessary. With all the Motorola-tested
SCSI hard disk drives, this reconfiguration is not necessary.
3-19

Debugger Commands

3

A device probe with entry into the device descriptor table is done
whenever a specified device is accessed via BO.

The device probe mechanism utilizes the SCSI commands "Inquiry"
and "Mode Sense". If the specified controller is non-SCSI, the probe
simply returns a status of "device present and unknown". The
device probe makes an entry into the device descriptor table with
the pertinent data.

After an entry has been made, the next time a probe is done it
simply returns with "device present" status (pointer to the device
descriptor).

The following sequence of events occurs when BO is invoked:

1. Block 0 of the Controller LUN and Device LUN specified is
read into memory.

2. Locations $F8 (248) through $FF (255) of block 0 are checked
to contain the string "MOTOROLA". If it is not found, the
boot sequence aborts and displays an error message: Bad
VID Block.

3. The following information is extracted from block 0:

$90 (144) - $93 (147): Configuration area starting block.
$94 (148) : Configuration area length in blocks.

If any of the above two fields is zero, the present controller
configuration is retained; otherwise the first block of the
configuration area is read and the controller reconfigured.

4. The program is read from disk into memory. The following
locations from block 0 contain the necessary information to
initiate this transfer:

$14 (20) - $17 (23) : Block number of first sector to load from
disk.
$18 (24) - $19 (25) : Number of blocks to load from disk.
$1E (30) - $21 (33) : Starting memory location to load.

5. The first eight locations of the loaded program must contain
a "pseudo reset vector", which is loaded into the target
registers:
3-20

BO - Bootstrap Operating System

3

0-3: Initial value for target system stack pointer.
4-7: Initial value for target PC. If less than load address+8,
then it represents a displacement that, when added to the
starting load address, yields the initial value for the target PC.

6. Other target registers are initialized with certain arguments.
The resultant target state is shown below:

PC = Entry point of loaded program (loaded from "pseudo
reset vector").
SR = $2700.
D0 = Device LUN.
D1 = Controller LUN.
D4 = 'IPLx', with x = $0C ($49504C0C)

The ASCII string 'IPL' indicates that this is the Initial
Program Load sequence; the code $0C indicates TRAP #15
support with stack parameter passing and TRAP #15 disk
support.
A0 = Address of Disk Controller.
A1 = Entry point of loaded program.
A2 = Address of Media Configuration Block. Zero if no
configuration loaded.
A5 = Start of string (after command parameters).
A6 = End of string + 1 (if no string was entered A5=A6).
A7 = Initial stack pointer (loaded from "pseudo reset vector").

7. Control is given to the loaded program. Note that the
arguments passed to the target program, as for example, the
string pointers, may be used or ignored by the target
program.

Examples

167-Bug>BO <CR> Boot from Controller LUN 0, Device
LUN 0.

167-Bug>BO 3 <CR Boot from Controller LUN 3, Device
LUN 0.

167-Bug>BO , 3 <CR> Boot from Controller LUN 0, Device
LUN 3.
3-21

Debugger Commands

3

167-Bug>BO 8 0,test <CR> Boot from Controller LUN 8, Device
LUN 0, and pass the string "test" to
the booted program.
3-22

BR - Breakpoint Insert/Delete

3

BR - Breakpoint Insert/Delete
Command Input

BR [address[:count]]
NOBR [address]

Description

The BR command allows you to set a target code instruction
address as a "breakpoint address" for debugging purposes. If,
during target code execution, a breakpoint with 0 count is found,
the target code state is saved in the target registers and control is
returned back to 16XBug. This allows you to see the actual state of
the processor at selected instructions in the code.

Up to eight breakpoints can be defined. The breakpoints are kept
in a table which is displayed each time either BR or NOBR is used.
If an address is specified with the BR command, that address is
added to the breakpoint table. The count field specifies how many
times the instruction at the breakpoint address must be fetched
before a breakpoint is taken. The count, if greater than zero, is
decremented with each fetch. Every time that a breakpoint with
zero count is found, a breakpoint handler routine prints the CPU
state on the screen and control is returned to 16XBug.

NOBR is used for deleting breakpoints from the breakpoint table.
If an address is specified, then that address is removed from the
breakpoint table. If NOBR <CR> is entered, then all entries are
deleted from the breakpoint table and the empty table is displayed.

Example

167-Bug>BR 14000,14200 14700:&12 <CR>Set some breakpoints.

BREAKPOINTS
00014000 00014200
00014700:C

167-Bug>NOBR 14200 <CR> Delete one breakpoint.

BREAKPOINTS
00014000 00014700:C
3-23

Debugger Commands

3

167-Bug>NOBR <CR> Delete all breakpoints.

BREAKPOINTS
167-Bug>
3-24

BS - Block of Memory Search

3

BS - Block of Memory Search
Command Input

BS range text [;B|W|L]

or

BS range data [mask] [;B|W|L [,N][,V]]

Arguments

text An ASCII text string that is matched against a range of
memory.

data A data pattern that is matched against a range of memory.

mask A string that indicates which bit positions in data to
compare to memory (a 1 is compared, a 0 is not). The default
is all 1s.

Options

B Byte
W Word
L Longword
N Non-aligned
V Verify

Description

The block search command searches the specified range of memory
for a match with a user-entered data pattern. This command has
three modes, as described below.

Mode 1 - LITERAL STRING SEARCH -- In this mode, a search is
carried out for the ASCII equivalent of the literal string you entered.
This mode is assumed if the single quote (') indicating the
beginning of a text field is encountered following range. The size as
specified in the option field tells whether the count field of range
3-25

Debugger Commands

3

refers to bytes, words, or longwords. If range is not specified using
a count, then no options are allowed. If a match is found, then the
address of the first byte of the match is output.

Mode 2 - DATA SEARCH -- In this mode, you enter a data pattern
as part of the command line, and you either enter a size in the
option field or it is assumed (the assumption is word). The size
entered in the option field also dictates whether the count field in
range refers to bytes, words, or longwords. The following actions
occur during a data search:

1. The user-entered data pattern is right-justified and leading
bits are truncated or leading zeros are added as necessary to
make the data pattern the specified size.

2. A compare is made with successive bytes, words, or
longwords (depending on the size in effect) within the range
for a match with the user-entered data. Comparison is made
only on those bits at bit positions corresponding to a "1" in the
mask. If no mask is specified, then a default mask of all ones
is used (all bits are compared). The size of the mask is taken
to be the same size as the data. The default data size is word.

3. If the "N" (non-aligned) option has been selected, then the
data is searched for on a byte-by-byte basis, rather than by
words or longwords, regardless of the size of data. This is
useful if a word (or longword) pattern is being searched for,
but is not expected to lie on a word (or longword) boundary.

4. If a match is found, then the address of the first byte of the
match is output along with the memory contents. If a mask
was in use, then the actual data at the memory location is
displayed, rather than the data with the mask applied.

Mode 3 - DATA VERIFICATION -- If the "V" (verify) option has
been selected, then displaying of addresses and data is done only
when the memory contents do NOT match the user-specified
pattern. Otherwise this mode is identical to Mode 2.
3-26

BS - Block of Memory Search

3

For all three modes, information on matches is output to the screen
in a four-column format. If more than 24 lines of matches are found,
then output is inhibited to prevent the first match from rolling off
the screen. A message is printed at the bottom of the screen
indicating that there is more to display. To resume output, you
should simply press any character key. To cancel the output and
exit the command, you should press the BREAK key.

If a match is found (or, in the case of Mode 3, a mismatch) with a
series of bytes of memory whose beginning is within the range but
whose end is outside of the range, then that match is output and a
message is output stating that the last match does not lie entirely
within the range. You may search non-contiguous memory with
this command without causing a Bus Error.

Examples

Assume the following data is in memory.

00030000 0000 0045 7272 6F72 2053 7461 7475 733D ...Error Status=
00030010 3446 2F2F 436F 6E66 6967 5461 626C 6553 4F//ConfigTableS
00030020 7461 7274 3A00 0000 0000 0000 0000 0000 tart:...........

Mode 1: the string is not found, so a message is output.

167-Bug>BS 30000 3002F 'Task Status' <CR>
Effective address: 00030000

Effective address: 0003002F

-not found-

Mode 1: the string is found, and the address of its first byte is
output.

167-Bug>BS 30000 3002F 'Error Status' <CR>
Effective address: 00030000

Effective address: 0003002F

00030003

Mode 1: the string is found, but it ends outside of the range, so the
address of its first byte and a message are output.
3-27

Debugger Commands

3

167-Bug>BS 30000 3001F 'ConfigTableStart' <CR>
Effective address: 00030000

Effective address: 0003001F

00030014

-last match extends over range boundary-

Mode 1, using range with count and size option: count is displayed in
decimal, and the address of each occurrence of the string is output.

167-Bug>BS 30000:30 't' ; B <CR>
Effective address: 00030000

Effective count: &48

0003000A 0003000C 00030020 00030023

Mode 2, using range with count: count is displayed in decimal bytes,
and the data pattern is found & displayed.

167-Bug>BS 30000:18,2F2F <CR>
Effective address: 00030000

Effective count : &48

00030012|2F2F

Mode 2: The default size is word and the data pattern is not found,
so a message is output.

167-Bug>bs 30000,3002F 3d34 <CR>
Effective address: 00030000

Effective address: 0003002F

-not found-

Mode 2: Default size is word and non-aligned option is used, so the
data pattern is found and displayed.

167-Bug>bs 30000,3002F 3d34 ;n <CR>
Effective address: 00030000

Effective address: 0003002F

0003000F|3D34

Mode 2, using range with count, mask option, and size option: count
is displayed in decimal, and the actual unmasked data patterns
found are displayed.
3-28

BS - Block of Memory Search

3

167-Bug>BS 30000:30 60,F0 ;B <CR>
Effective address: 00030000

Effective count : &48

00030006|6F 0003000B|61 00030015|6F 00030016|6E

00030017|66 00030018|69 00030019|67 0003001B|61

0003001C|62 0003001D|6C 0003001E|65 00030021|61

Mode 3, on a different block of memory, mask option, scan for
words with low nibble non-0: two locations failed to verify.

167-Bug>BS 3000 1FFFF 0000 000F;V <CR>
Effective address: 00003000

Effective address: 0001FFFF

0000C000|E501 0001E224|A30E
3-29

Debugger Commands

3

BV - Block of Memory Verify
Command Input

BV range data [increment] [;B|W|L]

Arguments

data and increment are both expression parameters

Options

B Byte
W Word (default)
L Longword

Description

The BV command compares the specified range of memory against
a data pattern. If an increment is specified, then data is incremented
by this value following each comparison, otherwise data remains a
constant value. You may accomplish a decrementing pattern by
entering a negative increment. The data you enter is right-justified
in either a byte, word, or longword field (as specified by the option
selected).

If the user-entered data or increment (if specified) does not fit into
the data field size, then leading bits are truncated to make them fit.
If truncation occurs, then a message is printed stating the data
pattern and, if applicable, the increment value actually used.

If the range is specified using a count, then the count is assumed to
be in terms of the data size.

If the upper address of the range is not on the correct boundary for
an integer multiple of the data to be stored, then data is stored to the
last boundary before the upper address. No address outside of the
specified range is read from in any case. The "Effective address"
messages displayed by the command show exactly the extent of the
area read from.
3-30

BV - Block of Memory Verify

3

Example 1

Assume memory from $20000 to $2002F is as indicated.

167-Bug>MD 20000:18 <CR>

00020000 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 NqNqNqNqNqNqNqNq
00020010 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 NqNqNqNqNqNqNqNq
00020020 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 NqNqNqNqNqNqNqNq

167-Bug>BV 20000 2001F 4E71 <CR> Default size is word.
Effective address: 00020000

Effective address: 0002001F

167-Bug Verify successful, nothing printed.

Example 2

Assume memory from $20000 to $2002F is as indicated.

167-Bug>MD 20000:18 <CR>

00020000 0000 0000 0000 0000 0000 0000 0000 0000
00020010 0000 0000 0000 0000 0000 0000 0000 0000
00020020 0000 0000 0000 0000 0000 4AFB 4AFB 4AFBJ{J{J{

167-Bug>BV 20000:30 0;B <CR>

Effective address: 00020000

Effective count : &48 Mismatches are printed out.

0002002A|4A 0002002B|FB 0002002C|4A 0002002D|FB 0002002E|4A 0002002F|FB

167-Bug>

Example 3

Assume memory from $20000 to $2002F is as indicated.

167-Bug>MD 20000:18 <CR>

00020000 0000 0001 0002 0003 0004 0005 0006 0007
00020010 0008 FFFF 000A 000B 000C 000D 000E 000F
00020020 0010 0011 0012 0013 0014 0015 0016 0017

167-Bug>BV 20000:18 0 1 <CR> Default size is word.
3-31

Debugger Commands

3

Effective address: 00020000 word)
Effective count : &48

00020012|FFFF Mismatches are printed out.
167-Bug
3-32

CM - Concurrent Mode

3

CM - Concurrent Mode
Command Input

CM [[port] [id-string] [baud] [phone-number]]|[;A]|[;H]

Arguments

port Everyting output to the system console is also
echoed to this port.

id-string The device (i.e. modem) with which
communications is established before the
concurrent mode session is activated. If no identifier
string is specified, CM will use an identifier string of
"DUMB" by default.

The identifier string must be one that is supported,
by using the choices displayed. If the identifier
string is not found in the supported list, CM
displays an error message.

baud The baud rate specified must be one of those
supported by the bug. (Refer to the PF command.)
The baud rate also must be supported by the device
specified (identifier string). If no rate is specified,
CM uses the default baud rate associated with the
device. This is also displayed along with the
supported devices. If the baud rate is not supported,
CM displays an error message.

phone number This field is a string of any alphanumeric characters.
This string is passed directly to the device driver if
needed. In the case of modems, this string is added
to the dial recognition string. If the phone number
field is not specified, a dial-in condition is assumed
(wait for call).

When specifying arguments, if there is any previous argument field
which is not specified, it must be separated using delimiters.
3-33

Debugger Commands

3

Options

A Lists all supported devices.

H Displays whether concurrent mode is active or not, and if it
is, what secondary port number is being used by it.

Description

This command activates a mode in which everything that appears
on the system console terminal is also echoed to the specified port
as specified by the command line argument (port field). The
specified port is also checked for inbound characters as well. These
are also echoed to the system console terminal. If no port is
specified, CM uses port 1 by default.

If the port number specified is not currently assigned, CM displays
an error message.

The port in which concurrency is to take place must already be
configured. The baud rate need not be specified because the port is
reconfigured prior to activation. The preconfiguration of the port is
done by using the PF (Port Format) command.

Examples

To list all supported devices (id-string field) by the bug, do the
following:

167-Bug>cm;a
Concurrent Devices Supported

Device Name (ID-STRING) Default Baud

DUMB 9600

UDS2662 1200

UDS2980 1200

UDS3382 1200

167-Bug>cm
Concurrent Mode Active
3-34

CM - Concurrent Mode

3

(port = 1, default)
(id-string = DUMB, default)
(baud = 9600, default for "DUMB")
(phone-number = null)

167-Bug>cm,,uds2662,,16024383020
Concurrent Mode Active

(port = 1, default because of null
 argument)

(id-string = uds2662 modem)
(baud = 1200, default for "uds2662")
(phone-number = 16024383020)

167-Bug>cm,,uds2662,,16024383020
Concurrent Mode Active

167-Bug>cm,,uds2662,,16024383020
Concurrent Mode Already Active

167-Bug>

(Error, concurrent mode already active)

167-Bug>cm 2 uds2980 1200 18007777777

(port = 2)
(id-string = uds2980 modem)
(baud = 1200)
(phone-number = 18007777777)

167-Bug>cm 2,,dumb
Concurrent Mode Setup Failure

167-Bug>

(Error in establishing communications with port/device)

For any reason you may abort the concurrent mode setup by
pressing the BREAK key. This may be necessary if the modem is
not responding to commands from the bug.
3-35

Debugger Commands

3

NOCM - No Concurrent Mode
Command Input

NOCM

Description

This command terminates concurrent mode which was activated
by the Concurrent Mode (CM) command. Depending on the device
and the port specified with the CM command, the communication
link is appropriately closed.

Examples

167-Bug>nocm
Concurrent Mode Terminated

167-Bug>

167-Bug>nocm
Concurrent Mode Not Active

167-Bug>

(Error, concurrent mode was not active)

167-Bug>nocm
Concurrent Mode Terminated With Failure

167-Bug>

(Error, closing communications link)
3-36

CNFG - Configure Board Information Block

3

CNFG - Configure Board Information Block
Command Input

CNFG [;[I][M]]

Options

I Initialize the unused area of the board information block
to 0.

M Modify the board information block.

Description

This command is used to display and configure the board
information block. This block is resident within the Non-Volatile
RAM (NVRAM). The board information block contains various
elements detailing specific operation pa- rameters of the hardware.
The CNFG command does not describe the elements and their use.
The board information block contents are checksummed for
validation purposes. This checksum is the last element of the block.

Refer to the board-specific MVME16X hardware manual for the
actual location of the board information block. The MVME16X
hardware manual may also describe the elements within the board
information block, and list the size and logical offset of each
element. Refer to the board-specific MVME16X debugger manual
for the actual data structure for the CNFG command.

Example

Display the current contents of the board information block:

167-Bug>cnfg
Board (PWA) Serial Number = "000000061050"

Board Identifier = "MVME167-03 "

Artwork (PWA) Identifier = "01-W3826B03A "

MPU Clock Speed = "2500"
3-37

Debugger Commands

3

Ethernet Address = 08003E20A867

Local SCSI Identifier = "07"

167-Bug>

Note that the parameters that are quoted are left-justified character
(ASCII) strings padded with space characters, and the quotes (") are
displayed to indicate the size of the string. Parameters that are not
quoted are considered data strings, and data strings are right-
justified. The data strings are padded with zeroes if the length is
not met.

In the event of corruption of the board information block, the
command displays a question mark "?" for nondisplayable
characters. A warning message is also displayed in the event of a
checksum failure.

Example

167-Bug>cnfg
WARNING: Board Information Block Checksum Error

Board (PWA) Serial Number = "????????????"

Board Identifier = "????????????????"

Artwork (PWA) Identifier = "????????????????"

MPU Clock Speed = "????"

Ethernet Address = 000000000000

Local SCSI Identifier = "??"

167-Bug>

Modification is permitted by using the M option of the command.

Example

167-Bug>cnfg;m

WARNING: Board Information Block Checksum Error

Board (PWA) Serial Number = "????????????"? 000000061050
Board Identifier = "????????????????"? MVME167-03
Artwork (PWA) Identifier = "????????????????"? 01-W3826B03A

MPU Clock Speed = "????"? 2500
Ethernet Address = 000000000000? 08003E20A867
Local SCSI Identifier = "??"? 07
3-38

CNFG - Configure Board Information Block

3

Update Non-Volatile RAM (Y/N)? y
167-Bug>

At the end of the modification session, you are prompted for the
update to Non-Volatile RAM (NVRAM). A Y response must be
made for the update to occur; any other response terminates the
update (disregards all changes). The update also recalculates the
checksum.

!
Caution

Be cautious when modifying parameters. Some of these
parameters are set up by the factory, and correct board
operation relies upon these parameters.

Once modification/update is complete, you can now display the
current contents as described earlier.

Example

167-Bug>cnfg
Board (PWA) Serial Number = "000000061050"

Board Identifier = "MVME167-03 "

Artwork (PWA) Identifier = "01-W3826B03A "

MPU Clock Speed = "2500"

Ethernet Address = 08003E20A867

Local SCSI Identifier = "07"

167-Bug>
3-39

Debugger Commands

3

CS - Checksum
Command Input

CS range [;B|W|L]

Options

B Byte
W Word (default)
L Longword

The option field serves both as a data size identifier and scale factor
if a count is specified as part of the range.

Description

The Checksum command provides access to the same checksum
routine used by the powerup self-test firmware. This routine is
used in two ways within the firmware monitor.

1. At powerup, the power-up confidence test is executed. One
of the items verified is the checksum contained in the
firmware monitor EPROM. If for any reason the contents of
the EPROM were to change from the factory version, the
checksum test is designed to detect the change and inform
you of the failure.

2. Following a valid power-up test, 16XBug examines the ROM
map space for code that needs to be executed. This feature
(ROMboot) makes use of the checksum routine to verify that
a routine in memory is really there to be executed at
powerup. For more information, refer to the ROMboot section
in Chapter 1, which describes the format of the routine to be
executed and the interface provided upon entry.

This command is provided as an aid in preparing routines for the
ROMboot feature. Because ROMboot does checksum validation as
part of its screening process, you need access to the same routine in
the preparation of EPROM/ROM routines.
3-40

CS - Checksum

3

The addresses used in the range parameters can be provided in two
forms:

❏ An absolute address (32-bit maximum).

❏ An expression using a displacement + relative offset register.

The CS command is used to calculate/verify the contents of a block
of memory.

The algorithm used to calculate the checksum is as follows:

1. The checksum variable is set to zero.

2. Each data element is added to the checksum; if a carry is
generated, a one is added to the checksum variable.

3. This process is repeated for each data element until the
ending address is reached.

Examples

167-Bug>cs 1000 2000 <CR> Default size is word.
Effective address: 00001000

Effective address: 00001FFF

Checksum: 3E87

167-Bug>cs 1000 2000;l <CR> Size is set to longword.
Effective address: 00001000

Effective address: 00001FFF

Checksum: A79B3E15

167-Bug>cs FF800000:400;b <CR> Size is set to byte.
Effective address: FF800000 count is in hexadecimal.
Effective count: &1024

Checksum: A8

167-Bug>cs FF800000:400 <CR> Default size is word,
Effective address: FF800000 count is in hexadecimal.
Effective count: &2048

Checksum: CE57
3-41

Debugger Commands

3

DC - Data Conversion
Command Input

DC exp | addess [;[B][O][A]]

Options

B Displays the output in binary.

O Displays the output in octal.

A Displays the ASCII character equal to the value. (If the
value is greater than $7F, the A option displays "NA".)

Description

The DC command is used to simplify an expression into a single
numeric value. This equivalent value is displayed in its
hexadecimal and decimal representation. If the numeric value
could be interpreted as a signed negative number (i.e., if the most
significant bit of the 32-bit internal representation of the number is
set), then both the signed and unsigned interpretations are
displayed.

Examples

167-Bug>DC 10 <CR>
00000010 = $10 = &16

167-Bug>DC &10-&20 <CR>
SIGNED : FFFFFFF6 = -$A = -&10

UNSIGNED: FFFFFFF6 = $FFFFFFF6 = &4294967286

167-Bug>DC 123+&345+@67+%1100001 <CR>
00000314 = $314 = &788

167-Bug>DC (2*3*8) /4 <CR>
0000000C = $C = &12

167-Bug>DC 55&F <CR>
00000005 = $5 = &5
3-42

DC - Data Conversion

3

167-Bug>DC 55>>1 <CR>
0000002A = $2A = &42

167-Bug>dc 1+2;b
DATA BIR: 33222222222211111111110000000000

NUMBER>>: 10987654321098765432109876543210

BINARY : 00000000000000000000000000000011

167-Bug>dc 1+2;bo
DATA BIR: 33222222222211111111110000000000

NUMBER>>: 10987654321098765432109876543210

BINARY : 00000000000000000000000000000011

OCTAL : 00000000003

167-Bug>dc 1+2;boa
DATA BIR: 33222222222211111111110000000000

NUMBER>>: 10987654321098765432109876543210

BINARY : 00000000000000000000000000000011

OCTAL : 00000000003

ASCII : ETX

The subsequent examples assume A0=00030000 and the following
data resides in memory:

00030000 1111 1111 2222 2222 3333 3333 4444 4444 """"3333DDDD

167-Bug>DC (A0) <CR>
00030000 = $30000 = &196608

167-Bug>

167-Bug>DC ([,A0]) <CR>
11111111 = $11111111 = &286331153

167-Bug>

167-Bug>DC (4,A0) <CR>
00030004 = $30004 = &196612

167-Bug>

167-Bug>DC ([4,A0]) <CR>
22222222 = $22222222 = &572662306

167-Bug>
3-43

Debugger Commands

3

DMA - DMA Block of Memory Move
Command Input

DMA range address vdir am block [;B|W|L] .

Description

This command utilizes the hardware capability of Direct Memory
Access (DMA). This command is used to move blocks of data from
the local bus to the VMEbus, or from the VMEbus to the local bus.
Refer to the board-specific MVME16X hardware manual for a
detailed description of this hardware feature. You can not DMA
from the local bus to the local bus, or from the VMEbus to the
VMEbus.

The DMA command copies (DMAs) the contents of the memory
addresses defined by range to another place in memory, beginning
at address.

Arguments

vdir Specifies the direction of the transfer. When vdir equals
zero, the transfer occurs from the local bus to the
VMEbus; when vdir equals one, the transfer occurs from
the VMEbus to the local bus.

am Specifies the VMEbus address modifier of the transfer.
Refer to the VMEbus specification (listed in Chapter 1)
for the complete list of address modifiers. The VMEbus
transfer address must also support transfers with the
selected address modifier. Refer to the applicable
hardware manuals for the target boards.

block Specifies the block transfer mode of the transfer. This
argument can have the values of zero to three, described
as follows:
3-44

DMA - DMA Block of Memory Move

3

Refer to the VMEbus specification for the complete description of
block transfer mode. The VMEbus transfer address must also
support block transfers if enabled, refer to the applicable hardware
manuals.

Options

B Byte
W Word (default)
L Longword

The option field is only allowed when range is specified using a
count. In this case, the B, W, or L defines the size of the data that the
count is referring to. For example, a count of four with an option of
L means to move four longwords (or 16 bytes) to the new location.
If an option field is specified without a count in the range, an error
results.

Example 1

The following local memory block has the contents of:

167-Bug>md 10000:40;l

Value Description

0 Block transfers disabled.
1 The DMA controller executes D32 block transfer cycles

on the VMEbus. In the block transfer mode, the DMA
controller may execute byte and two-byte cycles at the
beginning and ending of a transfer in non-block transfer
mode.

2 Block transfers disabled.
3 The DMA controller executes D64 block transfer cycles

on the VMEbus. In the block transfer mode, the DMA
controller may execute byte, two-byte, and four-byte
cycles at the beginning and ending of a transfer in non-
block transfer mode.
3-45

Debugger Commands

3

00010000 00000001 00020003 00040005 00060007
00010010 00080009 000A000B 000C000D 000E000F
00010020 00100011 00120013 00140015 00160017
00010030 00180019 001A001B 001C001D 001E001F
00010040 00200021 00220023 00240025 00260027 . .!.".#.$.%.&.'
00010050 00280029 002A002B 002C002D 002E002F .(.).*.+.,.-.../
00010060 00300031 00320033 00340035 00360037 .0.1.2.3.4.5.6.7
00010070 00380039 003A003B 003C003D 003E003F .8.9.:.;.<.=.>.?
00010080 00400041 00420043 00440045 00460047 .@.A.B.C.D.E.F.G
00010090 00480049 004A004B 004C004D 004E004F .H.I.J.K.L.M.N.O
000100A0 00500051 00520053 00540055 00560057 .P.Q.R.S.T.U.V.W
000100B0 00580059 005A005B 005C005D 005E005F .X.Y.Z.[..].^._
000100C0 00600061 00620063 00640065 00660067 .`.a.b.c.d.e.f.g
000100D0 00680069 006A006B 006C006D 006E006F .h.i.j.k.l.m.n.o
000100E0 00700071 00720073 00740075 00760077 .p.q.r.s.t.u.v.w
000100F0 00780079 007A007B 007C007D 007E007F .x.y.z.{.|.}.~..
167-Bug>

167-Bug>dma 10000:40 3000000 0 d 0;l
Effective address: 00010000

Effective count : &256

Effective address: 03000000

DMA Completion Status =00000001

167-Bug>

In this example, the DMA command was requested to move (DMA)
256 bytes of data from local address $10000 to the VMEbus address
$3000000, the address modifier was $D (Extended Supervisory
Data Access), and the block transfer was disabled.

At the end of the transfer, the DMA command displays the
completion status of the transfer. A completion status of $1 is a
successful transfer. Any other completion status means that the
transfer was not successful. This status comes directly from the
hardware status from the DMA controller.

The destination memory (VMEbus) now looks like this:

167-Bug>md 3000000:40;l
3-46

DMA - DMA Block of Memory Move

3

03000000 00000001 00020003 00040005 00060007
03000010 00080009 000A000B 000C000D 000E000F
03000020 00100011 00120013 00140015 00160017
03000030 00180019 001A001B 001C001D 001E001F
03000040 00200021 00220023 00240025 00260027 . .!.".#.$.%.&.'
03000050 00280029 002A002B 002C002D 002E002F .(.).*.+.,.-.../
03000060 00300031 00320033 00340035 00360037 .0.1.2.3.4.5.6.7
03000070 00380039 003A003B 003C003D 003E003F .8.9.:.;.<.=.>.?
03000080 00400041 00420043 00440045 00460047 .@.A.B.C.D.E.F.G
03000090 00480049 004A004B 004C004D 004E004F .H.I.J.K.L.M.N.O
030000A0 00500051 00520053 00540055 00560057 .P.Q.R.S.T.U.V.W
030000B0 00580059 005A005B 005C005D 005E005F .X.Y.Z.[..].^._
030000C0 00600061 00620063 00640065 00660067 .`.a.b.c.d.e.f.g
030000D0 00680069 006A006B 006C006D 006E006F .h.i.j.k.l.m.n.o
030000E0 00700071 00720073 00740075 00760077 .p.q.r.s.t.u.v.w
030000F0 00780079 007A007B 007C007D 007E007F .x.y.z.{.|.}.~..
167-Bug>

Example 2

The following VMEbus memory block has the contents of:

167-Bug>md 3000000:40;l

03000000 FFFFFFFE FFFDFFFC FFFBFFFA FFF9FFF8

03000010 FFF7FFF6 FFF5FFF4 FFF3FFF2 FFF1FFF0

03000020 FFEFFFEE FFEDFFEC FFEBFFEA FFE9FFE8

03000030 FFE7FFE6 FFE5FFE4 FFE3FFE2 FFE1FFE0

03000040 FFDFFFDE FFDDFFDC FFDBFFDA FFD9FFD8

03000050 FFD7FFD6 FFD5FFD4 FFD3FFD2 FFD1FFD0

03000060 FFCFFFCE FFCDFFCC FFCBFFCA FFC9FFC8

03000070 FFC7FFC6 FFC5FFC4 FFC3FFC2 FFC1FFC0

03000080 FFBFFFBE FFBDFFBC FFBBFFBA FFB9FFB8

03000090 FFB7FFB6 FFB5FFB4 FFB3FFB2 FFB1FFB0

030000A0 FFAFFFAE FFADFFAC FFABFFAA FFA9FFA8

030000B0 FFA7FFA6 FFA5FFA4 FFA3FFA2 FFA1FFA0

030000C0 FF9FFF9E FF9DFF9C FF9BFF9A FF99FF98

030000D0 FF97FF96 FF95FF94 FF93FF92 FF91FF90

030000E0 FF8FFF8E FF8DFF8C FF8BFF8A FF89FF88

030000F0 FF87FF86 FF85FF84 FF83FF82 FF81FF80

167-Bug>
3-47

Debugger Commands

3

167-Bug>dma 3000000 3000100 10000 1 e 0
Effective address: 03000000

Effective address: 030000FF

Effective address: 00010000

DMA Completion Status =00000001

167-Bug>

In this example, the DMA command was requested to move (DMA)
256 bytes of data from VMEbus address $3000000 to the local
address $10000, the address modifier was $E (Extended
Supervisory Program Access), and the block transfer was disabled.

The destination memory (local) now looks like this:

167-Bug>md 10000:40;l

00010000 FFFFFFFE FFFDFFFC FFFBFFFA FFF9FFF8
00010010 FFF7FFF6 FFF5FFF4 FFF3FFF2 FFF1FFF0
00010020 FFEFFFEE FFEDFFEC FFEBFFEA FFE9FFE8
00010030 FFE7FFE6 FFE5FFE4 FFE3FFE2 FFE1FFE0
00010040 FFDFFFDE FFDDFFDC FFDBFFDA FFD9FFD8
00010050 FFD7FFD6 FFD5FFD4 FFD3FFD2 FFD1FFD0
00010060 FFCFFFCE FFCDFFCC FFCBFFCA FFC9FFC8
00010070 FFC7FFC6 FFC5FFC4 FFC3FFC2 FFC1FFC0
00010080 FFBFFFBE FFBDFFBC FFBBFFBA FFB9FFB8
00010090 FFB7FFB6 FFB5FFB4 FFB3FFB2 FFB1FFB0
000100A0 FFAFFFAE FFADFFAC FFABFFAA FFA9FFA8
000100B0 FFA7FFA6 FFA5FFA4 FFA3FFA2 FFA1FFA0
000100C0 FF9FFF9E FF9DFF9C FF9BFF9A FF99FF98
000100D0 FF97FF96 FF95FF94 FF93FF92 FF91FF90
000100E0 FF8FFF8E FF8DFF8C FF8BFF8A FF89FF88
000100F0 FF87FF86 FF85FF84 FF83FF82 FF81FF80
167-Bug>

Example 3

In the following example, an attempt was made to DMA to non-
existent VMEbus memory. The command displays the DMA
controller status register and the DMA controller counter registers.
Refer to the MVME166/MVME167/MVME187 Single Board
Computers Programmer's Reference Guide for the description of these
registers.
3-48

DMA - DMA Block of Memory Move

3

167-Bug>dma 0:1000 4000000 0 d 0;b
Effective address: 00000000

Effective count : &4096

Effective address: 04000000

DMA Completion Status =00000002

DMA Byte Counter =00000FC0

DMA Local Bus Address Counter =00000040

DMA VMEbus Address Counter =04000004

167-Bug>
3-49

Debugger Commands

3

DS - One Line Disassembler
Command Input

DS address [:count | address]

Description

This is synonymous with the MD address;DI command (refer to it),
and provides access to the disassembler. Accordingly, it is not
described further here.
3-50

DU - Dump S-Records

3

DU - Dump S-Records
Command Input

DU [port] range [text] [address] [offset] [;B|W|L]

Description

The DU command outputs data from memory in the form of
Motorola S-records to a port you specify. If you do not specify port,
the S-records are sent to the host port, and the missing port number
must be delimited by two commas.

Arguments

port The port to which the S-records are sent.

text Text that will be incorporated into the header (S0)
record of the block of records that will be dumped.

address Entry address for code contained in the block of records.
This address is incorporated into the address field of the
block termination record. If no entry address is entered,
then the address field of the termination record will
consist of zeros. The termination record will be an S7,
S8, or S9 record, depending on the address entered.
Appendix C has additional information on S-records.

offset The offset value is added to the addresses of the
memory locations being dumped, to come up with the
address which is written to the address field of the S-
records. This allows you to create an S-record file which
will load back into memory at a different location than
the location from which it was dumped. The default
offset is zero.

!
Caution

If an offset is to be specified but no entry address is to be
specified, then two commas (indicating a missing field)
must precede the offset to keep it from being interpreted
as an entry address.
3-51

Debugger Commands

3

Options

B Byte (default)

W Word

L Longword

The option field is allowed only if a count was entered as part of the
range, and defines the units of the count (bytes, words, or
longwords).

Example 1

Dump memory from $20000 to $2002F to port 1.

167-Bug>DU ,,20000 2002F <CR>
Effective address: 00020000

Effective address: 0002002F

167-Bug>

Example 2

Dump 10 bytes of memory beginning at $30000 to the terminal
screen (port 0).

167-Bug>DU 0 30000:&10 <CR>
Effective address: 00030000

Effective count : &10

S0030000FC

S20E03000026025445535466084E4F7B

S9030000FC

167-Bug>

Example 3

Dump memory from $20000 to $2002F to host (port 1). Specify a
file name of "TEST" in the header record and specify an entry point
of $2000A.
3-52

DU - Dump S-Records

3

167-Bug>DU ,,20000 2002F 'TEST' 2000A <CR>
Effective address: 00020000

Effective address: 0002002F

167-Bug>
3-53

Debugger Commands

3

ECHO - Echo String
Command Input

ECHO [port] {hexadecimal_number} {'string'}

Arguments

port Port where string will be echoed.

hexadecimal_number The hexadecimal_number allows printing of
new lines, carriage returns, etcetera. It must
have two digits before it is displayed.

string ASCII strings can be entered by enclosing
them in single quotes ('). To include a quote
as part of a string, two consecutive quotes
should be entered.

Note that one or more hexadecimal numbers and ASCII strings may
be entered in the same command.

Description

The ECHO command allows you to display strings to any
configured port.

Example 1

167-Bug>echo ,,'quick brown fox jumps over the lazy dog' 0a
quick brown fox jumps over the lazy dog

167-Bug>

In this example, the ASCII string was displayed to the current
console port. The port number was separated by delimiters, but
was not specified. This directs the ECHO command to use the
current console port.

Example 2

167-Bug>echo 1 'this is a test' 07
3-54

ECHO - Echo String

3

167-Bug>

In this example, the ASCII string and a BELL character were sent to
port #1.

Example 3

167-Bug>echo 2 'this will not work'
Logical unit $02 unassigned

167-Bug>

An error message results because, in this example, the selected port
is not configured.

Example 4

167-Bug>echo ,, 'This is "167BUG"'
This is '167BUG'

167-Bug>

This example handles a string with quotes.
3-55

Debugger Commands

3

ENV - Set Environment to Bug/Operating
System

Command Input

ENV [;[D]]

Option

D Load ROM defaults into NVRAM.

Description

The ENV command allows you to view and/or configure
interactively all Bug operational parameters that are kept in Battery
Backed Up RAM (BBRAM), also known as Non-Volatile RAM
(NVRAM). The operational parameters are saved in NVRAM and
used whenever power is lost.

Any time the Bug uses a parameter from NVRAM, the NVRAM
contents are first tested by checksum to ensure the integrity of the
NVRAM contents. In the instance of BBRAM checksum failure,
certain default values are assumed. Refer to your board-specific
debugger manual for examples of the parameters and their default
values.

The bug operational parameters (which are kept in NVRAM) are
not initialized automatically on power up/warm reset. It is up to
the Bug user to invoke the ENV command. Once the ENV
command is invoked and executed without error, Bug default
and/or user parameters are loaded into NVRAM along with
checksum data. If any of the operational parameters have been
modified, these new parameters will not be in effect until a
reset/powerup condition.

If the ENV command is invoked with no options on the command
line, you are prompted to configure all operational parameters. If
the ENV command is invoked with the option D, ROM defaults
will be loaded into NVRAM.
3-56

ENV - Set Environment to Bug/Operating System

3

Programming the VMEbus to Local Bus Map Decoders

The VMEbus slave map decoders allow a VMEbus master to view
a block of the local bus (usually memory) through a VMEbus
window. The following procedure can be used with the ENV
command to configure the VMEbus to Local Bus (slave) map
decoders. This is not the only procedure that can be used to
program the map decoders.

1. Determine the local base address (for onboard DRAM
memory this is the Base Address of Local Memory) and size
of the memory block to be viewed through the VMEbus
window. The following restrictions must be considered
when defining the local bus address of the block and the
block size.

The map decoder logic performs address translation by
replacing a portion of the VMEbus address with an address
from the address translation register. Therefore, translation
is performed in increments of the block size and the block size
must be a power of 2 and located on a power of 2 boundary.
For example, a 32MB block cannot be addressed on a 4MB
boundary. However, any 4MB block of the 32MB memory
can be addressed on any 4MB boundary.

Also note that if the block size is not a power of 2, then
rounding up to a power of 2 boundary is necessary. For
example, a 12MB block must be accessed at 0, 16MB, 32MB,
etc.

2. Set the Slave Address Translation Address Register
parameter with the LOCAL base address of the block.

3. Set the Slave Address Translation Select Register parameter
with the 2's complement of the block size.

4. Set the Slave Starting Address Register parameter with the
starting address of the VMEbus window.

5. Set the Slave Ending Address Register parameter with the
ending address of the VMEbus window.
3-57

Debugger Commands

3

Note The VMEbus window size may be any number of 64KB
blocks up to the block size.

6. If the VMEbus window is entirely below the 16MB boundary,
enable A24 and/or A32 addressing. If the VMEbus window
is entirely above the 16MB boundary, enable only A32
addressing. If the VMEbus window spans the 16MB
boundary, enable A32 addressing. If access is required to the
portion below the 16MB boundary using A24 addressing, the
second map decoder should be programmed to provide A24
access to the portion of the VMEbus window below the 16MB
boundary.

Set the Slave Control parameter to $01EF to enable A32
addressing, $01DF to enable A24 addressing, and to $01FF to
enable both A32 and A24 addressing.

Configuring ENV Parameters

The parameters that can be configured with ENV are listed and
described in your board-specific debugger manual.
3-58

Go Direct (Ignore Breakpoints)

3

Go Direct (Ignore Breakpoints)
Command Input

GD [address]

Description

GD is used to start target code execution. If an address is specified,
it is placed in the target PC. Execution starts at the target PC
address. As opposed to GO, breakpoints are not inserted.

Once execution of the target code has begun, control may be
returned to 16XBug by various conditions:

1. User pressed the ABORT or RESET switches on the
MVME16X front panel.

2. An unexpected exception occurred.

3. By execution of the .RETURN TRAP #15 function.

Example

The following program resides at $10000.

167-Bug>md 10000:4;di
00010000 2200 MOVE.L D0,D1
00010002 2401 MOVE.L D1,D2
00010004 2601 MOVE.L D1,D3
00010006 60F8 BRA.B $10000

Set breakpoint at $10004:

167-Bug>br 10004 <CR>
BREAKPOINTS

00010004

Initialize D0 and start target program:

167-Bug>rm D0 <CR>
D0 =00000000? 52a9c. <CR>
3-59

Debugger Commands

3

167-Bug>gd 10000
Effective address: 00010000

To exit target code, press ABORT pushbutton.
Note that the breakpoint was not taken.

Exception: Abort

PC =00010004 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =00010000 MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........

D0 =00052A9C D1 =00052A9C D2 =00052A9C D3 =00052A9C

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

00010004 2601 MOVE.L D1,D3

167-Bug>
3-60

GN - Go to Next Instruction

3

GN - Go to Next Instruction
Command Input

GN

Description

GN sets a temporary breakpoint at the address of the next
instruction, that is, the one following the current instruction, and
then starts target code execution. After setting the temporary
breakpoint, the sequence of events is similar to that of the GO
command.

GN is especially helpful when debugging modular code because it
allows you to "trace" through a subroutine call as if it were a single
instruction.

Example

The following section of code resides at address $10000.

167-Bug>md 10000:5;di <CR>
00010000 4280 CLR.L D0

00010002 2200 MOVE.L D0,D1

00010004 61FF0000 FFFA BSR.L $20000

0001000A 2602 MOVE.L D2,D3

0001000C 4E4F0063 SYSCALL .RETURN

The following simple routine resides at address $20000.

167-Bug>md 20000:2;di <CR>
00020000 2401 MOVE.L D1,D2

00020002 5242 ADDQ.W #$1,D2

00020004 4E75 RTS

Execute up to the BSR instruction.

167-Bug>rm pc <CR>
PC = 00010010? 10000. <CR>
167-Bug>gt 10004 <CR>
Effective address: 00010004
3-61

Debugger Commands

3

Effective address: 00010000

At breakpoint

PC =00010004 SR =2704=TR:OFF_S._7_..Z.. VBR =00000000

USP =00010000 MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........

D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

00010004 61FF0000 FFFA BSR.L $20000

167-Bug>

Use the GN command to "trace" through the subroutine call and
display the results.

167-Bug>gn <CR>
Effective address: 0001000A

Effective address: 00010004

At breakpoint

PC =0001000A SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =00010000 MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=D........

D0 =00000004 D1 =00000000 D2 =00000001 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

0001000A 2602 MOVE.L D2,D3

167-Bug>
3-62

GO - Go Execute User Program

3

GO - Go Execute User Program
Command Input

GO [address]

Description

The GO command (alternate form "G") is used to initiate target
code execution. All previously set breakpoints are enabled. If an
address is specified, it is placed in the target PC. Execution starts at
the target PC address.

The sequence of events is as follows:

1. First, if an address is specified, it is loaded in the target PC.

2. Then, if a breakpoint is set at the target PC address, the
instruction at the target PC is traced (executed in trace mode).

3. Next, all breakpoints are inserted in the target code.

4. Finally, target code execution resumes at the target PC
address.

At this point control may be returned to 16XBug by various
conditions:

1. A breakpoint with 0 count was found.

2. User pressed the ABORT or RESET switches on the
MVME16X front panel.

3. An unexpected exception occurred.

4. By execution of the .RETURN TRAP #15 function.

Example

The following program resides at $10000.
3-63

Debugger Commands

3

167-Bug>md 10000;di
00010000 2200 MOVE.L D0,D1
00010002 4282 CLR.L D2
00010004 D401 ADD.B D1,D2
00010006 E289 LSR.L #$1,D1
00010008 66FA BNE.B $10004
0001000A E20A LSR.B #$1,D2
0001000C 55C2 SCS.B D2
0001000E 60FE BRA.B $1000E
167-Bug>

Initialize D0, set breakpoints, and start target program:

167-Bug>rm D0 <CR>
D0 =00000000? 52a9c. <CR>
167-Bug>br 10000 1000E
BREAKPOINTS

00010000 0001000E

167-Bug>go 10000
Effective address: 00010000

At breakpoint

PC =0001000E SR =2711=TR:OFF_S._7_X...C VBR =00000000

USP =00010000 MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........

D0 =00052A9C D1 =00000000 D2 =000000FF D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

0001000E 60FE BRA.B $1000E

167-Bug>

Note that in this case breakpoints are inserted after tracing the first
instruction, therefore the first breakpoint is not taken.

Continue target program execution.

167-Bug>g <CR>
Effective address: 0001000E

At breakpoint

PC =0001000E SR =2711=TR:OFF_S._7_X...C VBR =00000000

USP =00010000 MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........
3-64

GO - Go Execute User Program

3

D0 =00052A9C D1 =00000000 D2 =000000FF D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

0001000E 60FE BRA.B $1000E

167-Bug>

Remove breakpoints and restart the target code.

167-Bug>nobr
BREAKPOINTS

167-Bug>go 10000
Effective address: 00010000

To exit target code, press the ABORT pushbutton.

Exception: Abort
PC =0001000E SR =2711=TR:OFF_S._7_X...C VBR =00000000
USP =00010000 MSP =0000EFFC ISP* =0000FFFC SFC =0=F0
DFC =0=F0 CACR =0=........
D0 =00052A9C D1 =00000000 D2 =000000FF D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC
0001000E 60FE BRA.B $1000E
167-Bug>
3-65

Debugger Commands

3

GO - Go to Temporary Breakpoint
Command Input

GT address

Description

GT allows you to set a temporary breakpoint and then start target
code execution. A count may be specified with the temporary
breakpoint. Control is given at the target PC address. All
previously set breakpoints are enabled. The temporary breakpoint
is removed when any breakpoint with 0 count is encountered.

After setting the temporary breakpoint, the sequence of events is
similar to that of the GO command. At this point control may be
returned to 16XBug by various conditions:

1. A breakpoint with count 0 was found.

2. User pressed the ABORT or RESET switches on the
MVME16X front panel.

3. An unexpected exception occurred.

4. By execution of the .RETURN TRAP #15 function.

Example

The following program resides at $10000.

167-Bug>MD 00010000;DI
00010000 2200 MOVE.L D0,D1
00010002 4282 CLR.L D2
00010004 D401 ADD.B D1,D2
00010006 E289 LSR.L #$1,D1
00010008 66FA BNE.B $10004
0001000A E20A LSR.B #$1,D2
0001000C 55C2 SCS.B D2
0001000E 60FE BRA.B $1000E
167-Bug>

Initialize D0 and set a breakpoint:
3-66

GO - Go to Temporary Breakpoint

3

167-Bug>rm D0 <CR>
D0 =00000000? 52a9c. <CR>
167-Bug>BR 1000E
BREAKPOINTS

0001000E

167-Bug>

Set PC to start of program, set temporary breakpoint, and start
target code:

167-Bug>rm pc <CR>
PC =00010010? 10000. <CR>
167-Bug>GT 1000c
Effective address: 0001000C

Effective address: 00010000

At breakpoint

PC =0001000C SR =2708=TR:OFF_S._7_.N... VBR =00000000

USP =00010000 MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........

D0 =00052A9C D1 =00052A9C D2 =00000017 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

0001000C 55C2 SCS.B D2

167-Bug>

Set another temporary breakpoint at $10004 and continue the target
program execution:

167-Bug>GT 10004
Effective address: 00010004

Effective address: 0001000C

At breakpoint

PC =0001000E SR =2711=TR:OFF_S._7_X...C VBR =00000000

USP =00010000 MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........

D0 =00052A9C D1 =00000029 D2 =000000FF D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
3-67

Debugger Commands

3

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

0001000E 60FE BRA.B $1000E

167-Bug>

Note that a breakpoint from the breakpoint table was encountered
before the temporary breakpoint.
3-68

3Debugger Commands
3

HE - Help
HE - Help
Command Input

HE [command]

Description

HE is the 16XBug help facility. HE <CR> displays the command
names of all available commands along with their appropriate
titles. HE command displays the command name, syntax and title for
only that particular command. The syntax displayed may include
the word indicating required delimiters.

Examples

167-Bug>he
AB Automatic Bootstrap Operating System
AS Assembler
BC Block of Memory Compare
BF Block of Memory Fill
BH Bootstrap Operating System and Halt
BI Block of Memory Initialize
BM Block of Memory Move
BO Bootstrap Operating System
BS Block of Memory Search
BR Breakpoint Insert
BV Block of Memory Verify
CM Concurrent Mode
CNFG Configure Board Information Block
CS Checksum a Block of Data
DC Data Conversion and Expression Evaluation
DMA DMA Block of Memory Move
DS Disassembler
DU Dump S-Records
ECHO Echo String
ENV Set Environment to Bug/Operating System
G "Alias" for "GO" Command
GD Go Direct (Ignore Breakpoints)
Press "RETURN" to continue
3-69

Debugger Commands

3

GN Go to Next Instruction
GO Go Execute User Program
GT Go to Temporary Breakpoint
HE Help on Command(s)
IOC I/O Control for Disk
IOI I/O Inquiry
IOP I/O Physical to Disk
IOT I/O "Teach" for Configuring Disk Controller
IRQM Interrupt Request Mask
LO Load S-Records from Host
M "Alias" for "MM" Command
MA Macro Define/Display
MAE Macro Edit
MAL Enable Macro Expansion Listing
MAR Macro Load
MAW Macro Save
MD Memory Display
MDS Memory Display
MENU System Menu
MM Memory Modify
MMD Memory Map Diagnostic
MS Memory Set
Press "RETURN" to continue

MW Memory Write
NAB Network Automatic Bootstrap Operating System
NBH Network Bootstrap Operating System and Halt
NBO Network Bootstrap Operating System
NIOC Network I/O Control
NIOP Network I/O Physical
NIOT I/O "Teach" for Configuring Network Controller
NOAB No Auto Boot NOBR Breakpoint Delete
NOCM No Concurrent Mode
NOMA Macro Delete
NOMAL Disable Macro Expansion Listing
NOPA Printer Detach
NOPF Port Detach
NORB No ROM Boot
NOSYM Detach Symbol Table
NPING Network Ping
OF Offset Registers Display/Modify
PA Printer Attach
PF Port Format
PFLASH Program FLASH Memory
PS Put RTC Into Power Save Mode for Storage
RB ROM Bootstrap Operating System
Press "RETURN" to continue
3-70

HE - Help

3

RD Register Display
REMOTE Connect the Remote Modem to CSO
RESET Cold/Warm Reset
RL Read Loop
RM Register Modify
RS Register Set
SD Switch Directories
SET Set Time and Date
SFLASH Swap FLASH Memory
SYM Attach Symbol Table
SYMS Display Symbol Table
T Trace
TA Terminal Attach
TC Trace on Change of Flow Control
TIME Display Time and Date
TM Transparent Mode
TT Trace to Temporary Breakpoint
VE Verify S-Records Against Memory
VER Revision/Version Display
RWL Write Loop
167-Bug>

167-Bug>HE TT
Trace to Temporary Breakpoint:
TT <ADDR>
167-Bug>
3-71

Debugger Commands

3

IOC - I/O Control for Disk
Command Input

IOC

Description

The IOC command allows you to send command packets directly
to a disk controller. The packet to be sent must already reside in
memory and must follow the packet protocol of the particular disk
controller. This packet protocol is outlined in the user's manual for
the disk controller module. (Refer to the Related Documentation
section in Chapter 1.)

This command may be used as a debugging tool to issue commands
to the disk controller to locate problems with either drives, media,
or the controller itself.

When invoked, this command prompts for the controller and drive
required. The default Controller LUN (CLUN) and Device LUN
(DLUN) when IOC is invoked are those most recently specified for
IOP, IOT, or a previous invocation of IOC. An address where the
controller command is located is also prompted for.

The same special characters used by the Memory Modify (MM)
command to access the next successive memory location (v or V), a
previous field (^), reopen the same location (=), or exit (.), can be
used with IOC.

The power-up default for the packet address is the area which is
also used by the BO and IOP commands for building packets. IOC
displays the command packet and, if you so instruct it, sends the
packet to the disk controller, following the proper protocol
required by the particular controller.

A device probe with entry into the device descriptor table is done
whenever a specified device is accessed via IOC.
3-72

IOC - I/O Control for Disk

3

The device probe mechanism utilizes the SCSI commands "Inquiry"
and "Mode Sense". If the specified controller is non-SCSI, the probe
simply returns a status of "device present and unknown". The
device probe makes an entry into the device descriptor table with
the pertinent data. After an entry has been made, the next time a
probe is done it simply returns with "device present" status (pointer
to the device descriptor).

Example

Send the packet at $10000 to an MVME320 controller module
configured as CLUN #0. Specify an operation to the hard disk
which is at DLUN #1.

167-Bug>IOC <CR>
Controller LUN =00? <CR>
Device LUN =00? 1 <CR>
Packet address =000012BC? 10000 <CR>

00010000 0219 1500 1001 0002 0100 3D00 3000 0000=.0...
00010010 0000 0000 0300 0000 0000 0200 03

Send Packet (Y/N)? Y <CR>
167-Bug>
3-73

Debugger Commands

3

IOI - I/O Inquiry
Command Input

IOI [;[C|L]]

Options

C Specifies to clear the Device Descriptor Table.

L Specifies to list the Device Descriptor Table.

Description

IOI is used to inquire for all of the possible attached devices. This
command (no options specified) will probe the system for all
possible CLUN/DLUN combinations. Both the CLUN and DLUN
parameters have the range of 0 to 255 (decimal).

If the probed device supports an "inquiry" operation (SCSI type
devices), the command will display the inquiry data along with the
CLUN, DLUN, controller type, device address, device type, and the
removable media attribute. If a device does not support "inquiry"
data the message of "<None>" will be displayed.

The probe ordering starts with a CLUN of zero and a DLUN of zero.
Once the probe is done, the DLUN is incremented by one and the
probe is executed again, the incrementing of the DLUN and the
probing continues until the DLUN reaches 256. At this point the
CLUN is incremented by one and the DLUN is set to zero, the
probing of DLUNs from zero to 255 is performed. The probing
continues until the CLUN reaches 256.

With the variable number of devices that can now be attached to a
given system, the memory requirements to house the pertinent
device descriptors cannot be met. The debugger reserves space for
16 device descriptors. The device descriptor table (16 entries) can be
viewed or cleared by this command with the L and C options,
respectively.
3-74

IOI - I/O Inquiry

3

s

Example 1

Probe for all possible devices. As a device is found (probe was
successful) it is displayed to the console with the associative inquiry
data.

167-Bug>IOI

I/O Inquiry Status:
CLUN DLUN CNTRL-TYPE DADDR DTYPE RM Inquiry-Data
0 30 VME167 3 $00 N MICROP 1578-15MB1036511 AS0C
2 10 VME327 1 $00 N MAXTOR LXT-340S 6.57
2 30 VME327 3 $01 Y ARCHIVE Python 25501-XXX 3.43
2 50 VME327 5 $01 Y EXABYTE EXB-8200 4.25
2 60 VME327 6 $00 Y TEAC FC-1 JHF 01 RV E
2 80 VME327 0 $00 Y <None>
2 81 VME327 1 $00 Y <None>
167-Bug>

Example 2

List (view) the current device descriptors as found in the device
descriptor table.

167-Bug>IOI;L

I/O Inquiry Device Descriptor Table Status:
CLUN DLUN CNTRL-TYPE CNTRL-Address RM Device-Type
0 30 VME167 $FFF47000 N $00/Direct-Access
2 30 VME327 $FFFFA600 Y $01/Sequential-Acces
167-Bug>

Example 3

:Clear the device descriptor table.

167-Bug>IOI;C

167-Bug>

This option is useful in the event the table becomes full and a device
that has not been accessed is accessed.
3-75

Debugger Commands

3

IOP - I/O Physical (Direct Disk Access)
Command Input

IOP

Description

The IOP command allows you to read, write, or format any of the
supported disk or tape devices. When invoked, this command goes
into an interactive mode, prompting you for all the parameters
necessary to carry out the command. You may change the
displayed value by typing a new value followed by a carriage
return <CR>; or may simply enter <CR>, which leaves the field
unchanged.

The same special characters used by the Memory Modify (MM)
command to access the next successive memory location (v or V),
previous field (^), reopen the same location (=), or exit (.), can be
used with IOP.

After IOP has prompted you for the last parameter, the selected
function is executed. The disk SYSCALL functions (trap routines),
as described in Chapter 5, are used by IOP to access the specified
disk or tape.

A device probe with entry into the device descriptor table is done
whenever a specified device is accessed via IOP.

The device probe mechanism utilizes the SCSI commands "Inquiry"
and "Mode Sense". If the specified controller is non-SCSI, the probe
simply returns a status of "device present and unknown". The
device probe makes an entry into the device descriptor table with
the pertinent data. After an entry has been made, the next time a
probe is done it simply returns with "device present" status (pointer
to the device descriptor).

Initially (after a cold reset), all the parameters used by IOP are set
to certain default values. However, any new values entered are
saved and are displayed the next time that the IOP command is
invoked.
3-76

IOP - I/O Physical (Direct Disk Access)

3

The information that you are prompted for is as follows:

Controller LUN =00?

The Logical Unit Number (LUN) of the controller to access is
specified in this field.

Device LUN =00?

The LUN of the device to access is specified in this field.

Read/Write/Format =R?

In this field, you specify the desired function by entering a one-
character mnemonic as follows:

1. R for read. This reads blocks of data from the selected device
into memory.

2. W for write. This writes blocks of data from memory to the
selected device.

3. F for format. This formats the selected device. For disk
devices, either a track or the whole disk can be selected by a
subsequent field. This option only applies to SCSI Direct
Access devices (type $00). When the format operation is
selected, the Flag Byte prompt is displayed. A flag byte of $08
specifies to ignore the grown defect list when formatting. A
flag byte of $00 specifies not to ignore the grown defect list
when formatting.

Memory Address =00003000?

This field selects the starting address for the block to be accessed.
For disk read operations, data is written starting at this location. For
disk write operations, data is read starting at this location.

Starting Block =00000000?

This parameter specifies the starting disk block number to access.
For disk read operations, data is read starting at this block. For disk
write operations, data is written starting at this block. For disk track
format operations, the track that contains this block is formatted.

Number of Blocks =0002?
3-77

Debugger Commands

3

This field specifies the number of data blocks to be transferred on a
read or write operation.

Address Modifier =00?

This field contains the VMEbus address modifier to use for Direct
Memory Access (DMA) data transfers by the selected controller. If
zero is specified, a valid default value is selected by the driver. If a
nonzero value is specified, then it is used by the driver for data
transfers.

Track/Disk =T (T/D)?

This field specifies whether a disk track or the entire disk is
formatted when the format operation is selected.

!
Caution

68KBug does NOT support formatting on SCSI drives; if
T is selected on SCSI drives, the entire disk would be
formatted.

File Number =0000?

For streaming tape devices, this field specifies the starting file
number to access.

Flag Byte =00?

The flag byte is used to specify variations of the same command,
and to receive special status information. Bits 0 through 3 are used
as command bits; bits 4 through 7 are used as status bits. At the
present, only streaming tape devices use this field. The following
bits are defined for streaming tape read and write operations:

Bit 7 Filemark flag. If 1, a filemark was detected at the end of
the last operation.

Bit 3 This bit is used for disk formatting. It is ignored on tape
operations.

Bit 2 Reset Controller Flag. If 1, a controller reset will take
place if possible before the requested operation takes
place.
3-78

IOP - I/O Physical (Direct Disk Access)

3

Bit 1 Ignore File Number (IFN) flag. If 0, the file number field
is used to position the tape before any reads or writes
are done. If 1, the file number field is ignored, and reads
or writes start at the present tape position.

Bit 0 End of File flag. If 0, reads or writes are done until the
specified block count is exhausted. If 1, reads are done
until the count is exhausted or until a filemark is found.
If 1, writes are terminated with a filemark.

Refer also to the Read/Write/Format prompt.

Retension/Erase =R (R/E)?

For streaming tape devices, this field indicates whether a retension
of the tape or an erase should be done when a format operation is
scheduled.

Retension: This rewinds the tape to BOT, advances the tape without
interruptions to EOT, and then rewinds it back to BOT.
Tape retension is recommended by cartridge tape
suppliers before writing or reading data when a
cartridge has been subjected to a change in environment
or a physical shock, has been stored for a prolonged
period of time or at extreme temperature, or has been
previously used in a start/stop mode.

Erase This completely clears the tape of previous data and at
the same time retensions the tape.

After all the required parameters are entered, the disk access is
initiated. If an error occurs, an error status word is displayed. Refer
to Appendix F for an explanation of returned error status codes.

Example

Read 25 blocks starting at block 370 from device 2 of controller 0
into memory beginning at address $50000.

167-Bug>IOP <CR>
Controller LUN =00? <CR>
Device LUN =00? 2 <CR>
3-79

Debugger Commands

3

Read/Write/Format=R? <CR>
Memory Address =00003000? 50000 <CR>
Starting Block =00000000? &370 <CR>
Number of Blocks =0002? &25 <CR>
Address Modifier =00? <CR>
167-Bug>

Example 2

Write 14 blocks starting at memory location $7000 to file 6 of device
0, controller 4. Append a filemark at the end of the file.

167-Bug>IOP <CR>
Controller LUN =00? 4 <CR>
Device LUN =02? 0 <CR>
Read/Write/Format=R? W <CR>
Memory Address =00050000? 7000 <CR>
File Number =00000172? 6 <CR>
Number of Blocks =0019? e <CR>
Flag Byte =00? %01 <CR>
Address Modifier =00? <CR>
167-Bug>

Example 3

Format the specified device with the option not to ignore the grown
defect list.

167-Bug>IOP
Controller LUN =00?

Device LUN =00?

Read/Write/Format =f
Starting Block =00000000?

Track/Disk (T/D) =D?

Flag Byte =00?

Address Modifier =00?

167-Diag>
3-80

IOP - I/O Physical (Direct Disk Access)

3

Example 4

Format the specified device with the option to ignore the grown
defect list.

167-Bug>IOP
Controller LUN =00?

Device LUN =00?

Read/Write/Format =f
Starting Block =00000000?

Track/Disk (T/D) =D?

Flag Byte =00? 8
Address Modifier =00?

167-Diag>
3-81

Debugger Commands

3

IOT - I/O Teach for Configuring Disk Controller
Command Input

IOT [;[A][F][H][T]]

Options

A (All) instructs IOT to list all the disk controllers which are
currently supported in 16XBug. SCSI-type controllers are
identified with an asterisk (*).

F (Force) allows you to force a device descriptor into the
device descriptor table. This option makes it easier to debug
a particular device, in the event the device probe for the
specified device fails.

H (Help) instructs IOT to list all the disk controllers which are
currently available to the system. SCSI-type controllers are
identified by an asterisk (*). For example,

167-Bug>IOT;H <CR>
Disk Controllers Available

Lun Type Address # dev
0 VME320 $FFFFB000 4
4 VME350 $FFFF5000 1
167-Bug>

T (Teach) probes the system for I/O controllers. This option
basically invokes the IOI command with no options.

Description

The IOT command allows you to "teach" a new disk configuration
to 16XBug for use by the TRAP #15 disk functions. IOT lets you
modify the controller and device descriptor tables used by the
TRAP #15 functions for disk access. Note that because the 16XBug
commands that access the disk use the TRAP #15 disk functions,
changes in the descriptor tables affect all those commands. These
commands include IOP, BO, BH, and also any user program that
uses the TRAP #15 disk functions.
3-82

IOT - I/O Teach for Configuring Disk Controller

3

Before attempting to access the disks with the IOP command, you
should verify the parameters and, if necessary, modify them for the
specific media and drives used in the system.

Note that during a boot, the configuration sector is normally read
from the disk, and the device descriptor table for the LUN used is
modified accordingly. If you wish to read/write using IOP from a
disk that has been booted, IOT will not be required, unless the
system is reset.

A device probe with entry into the device descriptor table is done
whenever a specified device is accessed via IOT.

The device probe mechanism utilizes the SCSI commands "Inquiry"
and "Mode Sense". If the specified controller is non-SCSI, the probe
simply returns a status of "device present and unknown". The
device probe makes an entry into the device descriptor table with
the pertinent data. After an entry has been made, the next time a
probe is done it simply returns with "device present" status (pointer
to the device descriptor).

When invoked without options, the IOT command enters an
interactive subcommand mode where the descriptor table values
currently in effect are displayed one-at-a-time on the console for
you to examine. You may change the displayed value by entering a
new value or may leave it unchanged by typing only a carriage
return.

The same special characters used by the Memory Modify (MM)
command to access the next successive memory location (v or V), a
previous field (^), reopen the same location (=), or exit (.), can be
used with IOT. All numerical values are interpreted as
hexadecimal numbers. Decimal values may be entered by
preceding the number with an "&".

The first two items of information for which you are prompted are
the Controller LUN and Device LUN (LUN = Logical Unit
Number). These two LUNs specify one particular drive out of many
that may be present in the system.
3-83

Debugger Commands

3

If the Controller LUN and Device LUN selected do not correspond
to a valid controller and device, then IOT outputs the message
"Invalid LUN" and you are prompted for the two LUNs again.

Next you are prompted for Device Type and asked whether you
have Removable Media. Device type codes may be any of the
following, although currently only the $00, $01, and $05 are
supported by the I/O controller drivers:

After these first prompts have been displayed, IOT begins
displaying the values in the attribute fields, allowing you to enter
changes if you wish.

The parameters and attributes that are associated with a particular
device are determined by a parameter and an attribute mask that is
a part of the device definition.

The device that has been selected may have any combination of the
following parameters and attributes. You are prompted as follows:

Sector Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 =01 (0-5)?

$00 Direct-access (e.g., magnetic disk)
$01 Sequential-access (e.g., magnetic tape)
$02 Printer
$03 Processor
$04 Write-once (e.g., some optical disks)
$05 CD-ROM
$06 Scanner
$07 Optical Memory (e.g., some optical

disks)
$08 Medium Changer (e.g., jukeboxes)
$09 Communications
$0A-$0B Graphic Arts Pre-Press
$0C-$1E Reserved
$0F Unknown or no device type
3-84

IOT - I/O Teach for Configuring Disk Controller

3

The physical sector size specifies the number of data bytes per
sector.

Block Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 =01 (0-5)?

The block size defines the units in which a transfer count is
specified when doing a disk/tape block transfer. The block size can
be smaller, equal to, or greater than the physical sector size, as long
as the following relationship holds true:

(block size)*(number of blocks)/(physical sector size) must be an integer.

Sectors/Track =0020?

This field specifies the number of data sectors per track, and is a
function of the device being accessed and the sector size specified.

Starting Head =10?

This field specifies the starting head number for the device. It is
normally zero for Winchester and floppy drives. It is nonzero for
dual volume SMD drives.

Number of Heads =05?

This field specifies the number of heads on the drive.

Number of Cylinders =0337?

This field specifies the number of cylinders on the device. For
floppy disks, the number of cylinders depends on the media size
and the track density. General values for 5-1/4 inch floppy disks are
shown below:

48 TPI - 40 cylinders
96 TPI - 80 cylinders

Precomp. Cylinder =0000?

This field specifies the cylinder number at which precompensation
should occur for this drive. This parameter is normally specified by
the drive manufacturer.
3-85

Debugger Commands

3

Reduced Write Current Cylinder =0000?

This field specifies the cylinder number at which the write current
should be reduced when writing to the drive. This parameter is
normally specified by the drive manufacturer.

Interleave Factor =00?

This field specifies how the sectors are formatted on a track.
Normally, consecutive sectors in a track are numbered sequentially
in increments of 1 (interleave factor of 1). The interleave factor
controls the physical separation of logically sequential sectors. This
physical separation gives the host time to prepare to read the next
logical sector without requiring the loss of an entire disk revolution.

Spiral Offset =00?

The spiral offset controls the number of sectors that the first sector
of each track is offset from the index pulse. This is used to reduce
latency when crossing track boundaries.

ECC Data Burst Length =0000?

This field defines the number of bits to correct for an ECC error
when supported by the disk controller.

Step Rate Code =00?

The step rate is an encoded field used to specify the rate at which
the read/write heads can be moved when seeking a track on the
disk.

The encoding is as follows:

Step Rate Code
(Hexadecimal)

Winchester
Hard Disks

5-1/4 Inch
Floppy

8-Inch
Floppy

00 0 msec 12 msec 6 msec

01 6 msec 6 msec 3 msec

02 10 msec 12 msec 6 msec

03 15 msec 20 msec 10 msec

04 20 msec 30 msec 15 msec
3-86

IOT - I/O Teach for Configuring Disk Controller

3

Single/Double DATA Density =D (S/D)?

Single (FM) or double (MFM) data density should be specified by
typing S or D, respectively.

Single/Double TRACK Density =D (S/D)?

Used to define the density across a recording surface. This usually
relates to the number of tracks per inch as follows:

48 TPI = Single Track Density
96 TPI = Double Track Density

Single/Equal_in_all Track zero density =S (S/E)?

This flag specifies whether the data density of track 0 is a single
density or equal to the density of the remaining tracks. For the
"Equal_in_all" case, the Single/Double data density flag indicates
the density of track 0.

Slow/Fast Data Rate =S (S/F)?

This flag selects the data rate for floppy disk devices as follows:

S = 250 kHz data rate
F = 500 kHz data rate

Gap 1 =07?

This field contains the number of words of zeros that are written
before the header field in each sector during format.

Gap 2 =08?

This field contains the number of words of zeros that are written
between the header and data fields during format and write
commands.

Gap 3 =00?

This field contains the number of words of zeros that are written
after the data fields during format commands.

Gap 4 =00?

This field contains the number of words of zeros that are written
after the last sector of a track and before the index pulse.
3-87

Debugger Commands

3

Spare Sectors Count =00?

This field contains the number of sectors per track allocated as
spare sectors. These sectors are only used as replacements for bad
sectors on the disk.

Example 1

Examine the default parameters of a 5-1/4 inch floppy disk.

167-Bug>IOT <CR>
Controller LUN =00? <CR>
Device LUN =00? 2 <CR>
Device Type [00-1F] =00? <CR>
Removable Media =Y (Y/N)? <CR>
Sector Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 =01 (0-5)? <CR>
Block Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 =01 (0-5)? <CR>
Sectors/track =0010? <CR>
Number of heads =02? <CR>
Number of cylinders =0050? <CR>
Precomp. Cylinder =0028? <CR>
Step Rate Code =00? <CR>
Single/Double TRACK density=D (S/D)? <CR>
Single/Double DATA density =D (S/D)? <CR>
Single/Equal_in_all Track zero density =S (S/E)? <CR>
Slow/Fast Data Rate =S (S/F)? <CR>
167-Bug>

Example 2

Change from a 40MB Winchester to a 70MB Winchester. Note that
reconfiguration such as this is only necessary when you wish to
read or write a disk which is different than the default using the
IOP command. Reconfiguration is normally done automatically by
the BO or BH command when booting from a disk which is
different from the default.)
3-88

IOT - I/O Teach for Configuring Disk Controller

3

167-Bug>IOT <CR>
Controller LUN =00? <CR>
Device LUN =00? 1 <CR>
Device Type [00-1F] =00? <CR>
Removable Media =N (Y/N)? <CR>
Sector Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 =01 (0-5)? <CR>
Block Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 =01 (0-5)? <CR>
Sectors/track =0020? <CR>
Starting head =00? <CR>
Number of heads =06? 8 <CR>
Number of cylinders =033E? 400 <CR>
Precomp. Cylinder =0000? 401 <CR>
Reduced Write Current Cylinder=0000? <CR>
Interleave factor =01? 0B <CR>
Spiral Offset =00? <CR>
ECC Data Burst Length=0000? 000B <CR>
167-Bug>

Example 3

Change from a WREN IV drive to a WREN III drive.

167-Bug>IOT
Controller LUN =02?
Device LUN =00? 20
Device Type [00-1F] =00? <CR>
Removable Media =N (Y/N)? <CR>
Sector Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 =02 (0-5)?
Block Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 =01 (0-5)?
Sectors/Track =002E? 23
Starting Head =00?
Number of Heads =09?
Number of Cylinders =0584? 3c7
3-89

Debugger Commands

3

Precomp. Cylinder =0000?
Reduced Write Current Cylinder=0000?
Interleave Factor =00?
Spiral Offset =00?
ECC Data Burst Length=0000?
Step Rate Code =00?
Spare Sectors Count =00?
Reserved Area Units:Tracks/Cylinders =T (T/C)?
Tracks Reserved for Alternates =0000?
167-Bug>
3-90

IRQM - Interrupt Request Mask

3

IRQM - Interrupt Request Mask
Command Input

IRQM [mask]

Description

This command displays the current value stored in the MVME16X
Interrupt Enable Register, when the mask portion of the command
is not present.

To change the current value in the Interrupt Enable Register,
include the new 32-bit mask value in the command string. This
value is installed, and is only in effect until the next system reset
occurs, at which time the value reverts back to that value saved
with the ENV command (Debugger Interrupt Request Mask).
3-91

Debugger Commands

3

LO - Load S-Records from Host
Command Input

LO [port] [address] [;X|C|T] [=text]

Arguments

port The optional port number allows you to specify which
port is to be used for the downloading. If the port
number is not specified but the address option is
specified, LO must be separated from address by two
commas. If this number is omitted, port 1 is assumed.

address The optional address field allows you to enter an offset
address which is to be added to the address contained
in the address field of each record. This causes the
records to be stored to memory at different locations
than would normally occur. The contents of the
automatic offset register are not added to the S-record
addresses.

Options

More than one option may be used.

C Ignore checksum. A checksum for the data contained within
an S-record is calculated as the S-record is read in at the port.
Normally, this calculated checksum is compared to the
checksum contained within the S-record and if the compare
fails, an error message is sent to the screen on completion of
the download. If this option is selected, then the comparison
is not made.

X Echo. This option echoes the S-records to your terminal as
they are read in at the host port.
3-92

LO - Load S-Records from Host

3

=text The optional text field, entered after the equals sign (=),
is sent to the host before 16XBug begins to look for S-
records at the host port. This allows you to send a
command to the host device to initiate the download.
This text should NOT be delimited by any kind of quote
marks. Text is understood to begin immediately
following the equals sign and terminate with the
carriage return. If the host is operating full duplex, the
string is also echoed back to the host port by the host
and appears on your terminal screen.

Description

This command is used when data in the form of a file of Motorola
S-records is to be downloaded from a host system to the
MVME16X. The LO command accepts serial data from the host and
loads it into memory.

Note Downloading of S-records can be at any baud rate
supported by both the bug and the host system. If the X
option is specified, take care that the baud rate of the
host system is less than or equal to the baud rate of the
console. If there are any problems loading S-records,
reduce the baud rate of the host.

In order to accommodate host systems that echo all received
characters, the above-mentioned text string is sent to the host one
character at a time and characters received from the host are read

T TRAP #15 code. This option causes LO to set the target
register D4 ='LO 'x, with x =$01 ($4C4F2001). The ASCII
string 'LO ' indicates that this is the LO command; the code
$01 indicates TRAP #15 support with stack parameter/result
passing and TRAP #15 disk support. This code can be used
by the downloaded program to select the appropriate calling
convention when invoking debugger functions, because
some Motorola debuggers use conventions different from
16XBug, and they set a different code in D4.
3-93

Debugger Commands

3

one at a time. After the entire command has been sent to the host,
LO keeps looking for a <LF> character from the host, signifying the
end of the echoed command. No data records are processed until
this <LF> is received. If the host system does not echo
characters, LO still keeps looking for a <LF> character before
data records are processed. For this reason, it is required in
situations where the host system does not echo characters, that the
first record transferred by the host system be a header record. The
header record is not used but the <LF> after the header record
serves to break LO out of the loop so that data records are
processed.

The S-record format (refer to Appendix C) allows for an entry point
to be specified in the address field of the termination record of an S-
record block. The contents of the address field of the termination
record (plus the offset address, if any) are put into the target PC.
Thus, after a download, you need only enter G or GO instead of G
address or GO address to execute the code that was downloaded.

If a non-hex character is encountered within the data field of a data
record, then the part of the record which had been received up to
that time is printed to the screen and the 16XBug error handler is
invoked to point to the faulty character.

As mentioned, if the embedded checksum of a record does not agree
with the checksum calculated by 16XBug AND if the checksum
comparison has not been disabled via the C option, then an error
condition exists. A message is output stating the address of the
record (as obtained from the address field of the record), the
calculated checksum, and the checksum read with the record. A
copy of the record is also output. This is a fatal error and causes the
command to abort.

When a load is in progress, each data byte is written to memory and
then the contents of this memory location are compared to the data
to determine if the data stored properly. If for some reason the
compare fails, then a message is output stating the address where
the data was to be stored, the data written, and the data read back
during the compare. This is also a fatal error and causes the
command to abort.
3-94

LO - Load S-Records from Host

3

Because processing of the S-records is done character-by-character,
any data that was deemed good will have already been stored to
memory if the command aborts due to an error.

Examples

Suppose a host system was used to create this program:

disptime.s - display time and date
msg: byte 5,'T,'i,'m,'e,'=
 text
disptime:
 pea msg
 trap &15
 short 0x23 # syscall .write
 trap &15
 short 0x52 # syscall .rtc_dsp
 trap &15
 short 0x26 # syscall .pcrlf
 trap &15
 short 0x63 # syscall .return

Assume that the program has been compiled and linked to start at
address $10000. Then this program was converted into an S-record
file named Disptime.mx as follows:

S00B00004469737074696D65B5
S21C0100004879000100184E4F00234E4F00524E4F00264E4F00634E71D7
S20C0100180554696D653D000009
S9030000FC

Load this file into MVME16X module memory for execution at
address $40000 as follows:

167-Bug>TM Go into transparent mode to establish
Escape character: $01= ^A communication with the host.

’’

<CR> Press Return or Enter key to get login
 ’’ prompt.
(login) You must log onto the host and enter

’’ the proper directory to access the file
’’ Disptime.mx.

= <^A> Enter escape character (CTRL A) to
return to the 16XBug prompt.
3-95

Debugger Commands

3

167-Bug>LO,,30000 ;X=cat Disptime.mx <CR>
cat Disptime.mx

S00B00004469737074696D65B5

S21C0100004879000100184E4F00234E4F00524E4F00264E4F00634E71D7

S20C0100180554696D653D000009

S9030000FC

167-Bug>

The S-records are echoed to the terminal because of the X option.

The offset address of 30000 was added to the addresses of the
records in Disptime.mx and caused the program to be loaded to
memory starting at $40000. The text cat Disptime.mx is a SYSTEM
V/68 command line that caused the file to be copied by SYSTEM
V/68 to the port which is connected with the MVME167 host port.

167-Bug>DS 40000,40016 <CR>
00040000 4E790001 0018 PEA.L ($10018).L
00040006 4E4F0023 SYSCALL .WRITE
0004000A 4E4F0052 SYSCALL .RTC_DSP
0004000E 4E4F0026 SYSCALL .PCRLF
00040012 4E4F0063 SYSCALL .RETURN
167-Bug>MD 40018;b <CR>
00040018 05 54 69 6D 65 3D 00 00 .Time=..
3-96

MA/NOMA - Macro Define/Display/Delete

3

MA/NOMA - Macro Define/Display/Delete
Command Input

MA [name ; L]
NOMA [name]

Argument

name A currently defined macro; can be any combination of 1-8
alphanumeric characters.

When MA is invoked with the name of a currently defined
macro, that macro definition is displayed. Entering MA
without specifying a macro name causes the debugger to list
all currently defined macros and their definitions.

Option

L The ;L option toggles the loop continuous macro mode. In
this mode, once a macro is invoked, it is automatically re-
invoked for continuous operation.

Description

The MA command allows you to define a complex command
consisting of any number of debugger primitive commands with
optional parameter specifications.

The NOMA command is used to delete either a single macro or all
macros.

Line numbers are shown when displaying macro definitions to
facilitate editing via the MAE command. If MA is invoked with a
valid name that does not currently have a definition, then the
debugger enters the macro definition mode. In response to each
macro definition prompt "M=", enter a debugger command,
including a carriage return. Commands entered are not checked for
syntax until the macro is invoked. To exit the macro definition
mode, enter only a carriage return (null line) in response to the
prompt. If the macro contains errors, it can either be deleted and
3-97

Debugger Commands

3

redefined or it can be edited with the MAE command. A macro
containing no primitive debugger commands (i.e., no definition) is
not accepted.

Macro definitions are stored in a string pool of fixed size. If the
string pool becomes full while in the definition mode, the offending
string is discarded, a message STRING POOL FULL, LAST LINE
DISCARDED is printed and you are returned to the debugger
command prompt. This also happens if the string entered would
cause the string pool to overflow. The string pool has a capacity of
511 characters. The only way to add or expand macros when the
string pool is full is either to delete or edit macro(s).

Debugger commands contained in macros may reference
arguments supplied at invocation time. Arguments are denoted in
macro definitions by embedding a back slash "\" followed by a
numeral. Up to ten arguments are permitted. A definition
containing a back slash followed by a zero would cause the first
argument to that macro to be inserted in place of the "\0"
characters. Similarly, the second argument would be used
whenever the sequence "\1" occurred.

Thus, entering ARGUE 3000 1 ;B on the debugger command line
would invoke the macro named ARGUE with the text strings 3000,
1, and ;B replacing "\0", "\1", and "\2" respectively, within the
body of the macro.

To delete a macro, invoke NOMA followed by the name of the
macro. Invoking NOMA without specifying a valid macro name
deletes all macros. If NOMA is invoked with a valid macro name
that does not have a definition, an error message is printed.

Examples

167-Bug> MA ABC Define macro ABC.
M=MD 3000
M=GO \0
M= <CR>
167-Bug>
3-98

MA/NOMA - Macro Define/Display/Delete

3

167-Bug> MA DIS Define macro DIS.
M=MD \0:17;DI
M= <CR>
167-Bug>

167-Bug> MA List macro definitions.
MACRO ABC
010 MD 3000
020 GO \0
MACRO DIS
010 MD \0:17;DI
167-Bug>

167-Bug> MA ABC List definition of macro ABC.
MACRO ABC
010 MD 3000
020 GO \0
167-Bug>

167-Bug> NOMA DIS Delete macro DIS.
167-Bug>

167-Bug> MA ASM Define macro ASM.
M=MM \0;DI
M= <CR>
167-Bug>

167-Bug> MA List all macros.
MACRO ABC
010 MD 3000
020 GO \0
MACRO ASM
010 MM \0;DI
167-Bug>

167-Bug> NOMA Delete all macros.
167-Bug>

167-Bug> MA List all macros.
NO MACROS DEFINED
167-Bug>
3-99

Debugger Commands

3

MAE - Macro Edit
Command Input

MAE name line# [string]

Arguments

The MAE command permits modification of the macro named in
the command line. MAE is line oriented and supports the following
actions: insertion, deletion, and replacement.

To insert a line, specify a line number between the numbers of the
lines that the new line is to be inserted between. The text of the new
line to be inserted must also be specified on the command line
following the line number.

To replace a line, specify its line number and enter the replacement
text after the line number on the command line.

A line is deleted if its line number is specified and the replacement
line is omitted.

Attempting to delete a nonexistent line results in an error message
being displayed. MAE does not permit deletion of a line if the
macro consists only of that line. NOMA must be used to remove
a macro. To define new macros, use MA; the MAE command
operates only on previously defined macros.

Line numbers serve one purpose: specifying the location within a
macro definition to perform the editing function. After the editing
is complete, the macro definition is displayed with a new set of line
numbers.

name Any combination of 1-8 alphanumeric
characters.

line# Line number in range 1-999.
string Replacement line to be inserted.
3-100

MAE - Macro Edit

3

Examples

167-Bug> MA ABC List deÞnition of macro ABC.
MACRO ABC
010 MD 3000
020 GO \0
167-Bug>

167-Bug> MAE ABC 15 RD Add a line to macro ABC.
MACRO ABC

010 MD 3000

020 RD This line was inserted.
030 GO \0

167-Bug>

167-Bug> MAE ABC 10 MD 10+R0 Replace line 10.
MACRO ABC

010 MD 10+R0 This line was overwritten.
020 RD

030 GO \0

167-Bug>

167-Bug> MAE ABC 30 Delete line 30.
MACRO ABC

010 MD 10+R0

020 RD

167-Bug>
3-101

Debugger Commands

3

MAL/NOMAL - Enable/Disable Macro
Expansion Listing

Command Input

MAL
NOMAL

Description

The MAL command allows you to view expanded macro lines as
they are executed. This is especially useful when errors result, as
the line that caused the error appears on the display.

The NOMAL command is used to suppress the listing of the macro
lines during execution.

The use of MAL and NOMAL is a convenience for you and in no
way interacts with the function of the macros.
3-102

MAW/MAR - Save/Load Macros

3

MAW/MAR - Save/Load Macros
Command Input

MAW [controllerLUN] [[deviceLUN] [block#]]
MAR [controllerLUN] [[deviceLUN [block#]]

Arguments

The MAW command allows you to save the currently defined
macros to disk/tape. A message is printed listing the block number,
Controller LUN, and Device LUN before any writes are made. This
message is followed by a prompt (OK to proceed (y/n)?). You may
then decline to save the macros by typing the letter N (uppercase or
lowercase). Typing the letter Y (uppercase or lowercase) permits
MAW to proceed to write the macros out to disk/tape. The list is
saved as a series of strings and may take up to three blocks. If no
macros are currently defined, no writes are done to disk/tape and
NO MACRO DEFINED is displayed.

The MAR command allows you to load macros that have
previously been saved by MAW. Care should be taken to avoid
attempting to load macros from a location on the disk/tape other
than that written to by the MAW command. While MAR checks
for invalid macro names and other anomalies, the results of such a
mistake are unpredictable.

Note MAR discards all currently defined macros before
loading from disk/tape.

controllerLUN is the logical unit number of the controller to which
the following device is attached. Initially defaults to
LUN 0.

deviceLUN is the logical unit number of the device to
save/load macros to/from. Initially defaults to
LUN 0.

block# is the number of the block on the above device that
is the Þrst block of the macro list. Initially defaults
to block 2.
3-103

Debugger Commands

3

Defaults change each time MAR and MAW are invoked. When
either has been used, the default controller, device, and block
numbers are set to those used for that command. If macros were
loaded from controller 0, device 2, block 8 via command MAR, the
defaults for a later invocation of MAW or MAR would be controller
0, device 2, and block 8.

Errors encountered during I/O are reported along with the 16-bit
status word returned by the I/O routines.

Examples

Assume that controller 0, device 2 is accessible.

167-Bug> MAR 0,2,3 Load macros from block 3.
167-Bug>

167-Bug> MA List macros.
MACRO ABC

010 MD 3000

020 GO \0

167-Bug>

167-Bug> MA ASM Define macro ASM.
M=MM \0;DI
M= <CR>
167-Bug>

167-Bug> MA List all macros.
MACRO ABC

010 MD 3000

020 GO \0

MACRO ASM

010 M=MM \0;DI

167-Bug>

167-Bug> MAW ,,8 Save macros to block 8, previous
device.
3-104

MAW/MAR - Save/Load Macros

3

Saving to: VME320, Controller 0, Drive 2, Block/File Number 8

Number of Logical Blocks = 2

OK to proceed (y/N)? Y <CR>
167-Bug>
3-105

Debugger Commands

3

MD, MDS - Memory Display
Command Input

MD[S] address [:count | address][; [B|W|L|S|D|DI]]

Arguments

count The number of data items to be displayed (or the
number of disassembled instructions to display if the
disassembly option is selected), defaulting to 8 if none is
entered. The default count is changed to 128 if the S
(sector) modifier is used.

Options

DI Enables the resident MC68040 and MC68060 one-line
disassembler, and is identical to the DS command. No other
option is allowed if DI is selected.

Description

This command is used to display the contents of multiple memory
locations all at once. MD accepts Integer and Floating Point data
types. For the integer data types, the data is always displayed in
hexadecimal along with its ASCII representation.

To re-execute the command, enter only <CR> at the prompt
immediately after the command has completed. The command
displays an equal number of data items or lines beginning at the
next address.

Example 1

167-Bug>md 12000 <CR>

Integer Data Types Floating Point Data Types

B Byte S Single Precision

W Word (default) D Double Precision

L Longword
3-106

MD, MDS - Memory Display

3

00012000 2800 1942 2900 1942 2800 1842 2900 2846 (..B)..B(..B).(F
167-Bug> <CR>
00012010 FC20 0050 ED07 9F61 FF00 000A E860 F060 | .Pm..a....h'p'

Example 2

Assume the following processor state: A2=00013500 and
D5=53F00127.

167-Bug>md (A2,D5):&19;b <CR>

00013627 4F 82 00 C5 9B 10 33 7A DF 01 6C 3D 4B 50 0F 0F O..E..3z_.l=KP..
00013637 31 AB 80 1+.
167-Bug>

Example 3

Disassemble eight instructions, starting at $10000.

167-Bug>MD 10000;di
00010000 F2104C00 FMOVE.P (A0),FP0
00010004 5440 ADDQ.W #$2,D0
00010006 4850 PEA.L (A0)
00010008 00D00000 CMP2.B (A0),D0
0001000C 4299 CLR.L (A1)+
0001000E 28330160 00D2 MOVE.L ($D2.W,A3,ZD0.W*1),D4
00010014 BA84 CMP.L D4,D5
00010016 6710 BEQ.B $10028
167-Bug>

Example 4

To display eight double precision floating point numbers at
location $20000, enter the following command line:

167-Bug>MD 20000;d
00020000 0_3F6_44C1D0F047FC2= 2.4777000000000002_E-0003
00020008 0_423_DAEFF04800000= 1.2749000000000000_E+0011
00020010 0_000_0000000000000= 0.0000000000000000_E+0000
00020018 0_403_0000000000000= 1.6000000000000000_E+0001
00020020 0_3FF_0000000000000= 1.0000000000000000_E+0000
00020028 0_000_00000FFFFFFFF= 2.1219957904712067_E+0314
00020030 0_44D_FDE9F10A8D361= 6.0200000000000000_E+0023
00020038 0_3C0_79CA10C924223= 1.5999999999999999_E+0019
167-Bug>
3-107

Debugger Commands

3

Example 5

167-Bug>md 10000;s
00010000 0_A4_194155= 1.6455652147200000_E+0011
00010004 0_27_3BFC7C= 4.7454405384196168_E-0027
00010008 1_E8_005800=-4.0673757930760459_E+0031
0001000C 1_80_00D2A5=-2.0128567218780518_E+0000
00010010 0_56_3BFF25= 6.6789829960070541_E-0013
00010014 1_70_031E80=-3.1261239200830460_E-0005
00010018 0_8F_497EC3= 1.0316552343750000_E+0005
0001001C 0_80_22A8D5= 2.5415546894073486_E+0000
167-Bug>
3-108

MENU - System Menu

3

MENU - System Menu
Command Input

MENU

Description

When 16XBug is in "system" mode, you can toggle back and forth
between the menu and Bug by typing a 3 response to the Enter
Menu #: prompt when the menu is displayed. Entering the Bug and
then typing MENU in response to the 16X-Bug (or 16X-Diag)
prompt returns you to the system menu.

For details on use of the menu features, refer to Appendix A, System
Mode Operation.

Example

The following is an example of command line entries and their
definitions.

167-Bug>MENU

1 Continue System Start Up

2 Select Alternate Boot Device

3 Go to System Debugger

4 Initiate Service Call

5 Display System Test Errors

6 Dump Memory to Tape

Enter Menu #:
3-109

Debugger Commands

3

MM - Memory Modify
Command Input

MM address[;[[B|W|L|S|D][A][N]]|[DI]]

Options

Description

This command is used to examine and change memory locations.
MM accepts Integer and Floating Point data types:

The MM command (alternate form M) reads and displays the
contents of memory at the specified address and prompts you with
a question mark ("?").

You may enter new data for the memory location, followed by
<CR>, or simply enter <CR>, which leaves the contents unaltered.
That memory location is closed and the next location is opened.

You may also enter one of several special characters, either at the
prompt or after writing new data, which change what happens
when the carriage return is entered. These special characters are as
follows:

Integer Data Types Floating Point Data Types

B Byte S Single Precision

W Word (default) D Double Precision

L Longword

Other Options

N Disable the read portion of the command.

A Force alternate locations only.

DI Enable the one-line assembler/disassembler. All other options
are invalid if this option is selected.
3-110

MM - Memory Modify

3

When the one-line assembler/disassembler is enabled, the contents
of the specified memory location are disassembled and displayed
and you are prompted with a question mark ("?") for input. At this
point, you have three options:

1. Enter <CR>. This closes the present location and continues
with disassembly of next instruction.

2. Enter a new source instruction followed by <CR>. This
invokes the assembler, which assembles the instruction and
generates a "listing file" of one instruction.

3. Enter .<CR>. This closes the present location and exits the
MM command.

If a new source line is entered (choice 2 above), the present line is
erased and replaced by the new source line entered. In the
hardcopy mode, a line feed is done instead of erasing the line.

If an error is found during assembly, an error message such as "NON-
EXISTENT OPERAND" or "NON-EXISTENT MNEMONIC" appears. The location
being accessed is redisplayed.

For additional information about the assembler, refer to Chapter 4.

Example 1

167-Bug>mm 10000 <CR> Access location 10000.
00010000 1234? <CR>
00010002 5678? 4321 <CR> Modify memory.

V or v The next successive memory location is opened. (This is
the default. It is in effect whenever MM is invoked and
remains in effect until changed by entering one of the
other special characters.)

^ MM backs up and opens the previous memory location.
= MM re-opens the same memory location (this is useful

for examining I/O registers or memory locations that
are changing over time).

. Terminates MM command. Control returns to 16XBug.
3-111

Debugger Commands

3

00010004 9ABC? 8765^ <CR> Modify memory and backup.
00010002 4321? <CR>
00010000 1234? abcd. <CR> Modify memory and exit.

Example 2

167-Bug>mm 10004;la <CR> Longword access to location 10004.
00010004 CD432187? <CR> Alternate location accesses).
0001000C 00068030? 68030+10= <CR> Modify and reopen location.
0001000C 00068040? <CR>
0001000C 00068040? . <CR> Exit MM.

Example 3

Assemble a new source line.

167-Bug>MM 1000C;DI
0001000C 46FC2400 MOVE.W $2400,SR ? divs.w -(A2),D2
0001000C 85E2 DIVS.W -(A2),D2

0001000E 2400 MOVE.L D0,D2 ? <CR>

167-Bug>

Example 4

New source line with error.

00010008 4E7AD801 MOVEC.L VBR,A5 ? bchg #$12,9(A5,D6))
00010008 BCHG #$12,9(A5,D6))

---^

*** Unknown Field ***

00010008 4E7AD801 MOVEC.L VBR, A5 ? <CR>

167-Bug>

Example 5

Step to next location and exit MM.

167-Bug>M 1000C;di
FFE1000C 000000FF OR.B #255,D0 ? <CR>

FFE10010 20C9 MOVE.L A1,(A0)+ ? .
167-Bug>
3-112

MM - Memory Modify

3

Example 6

Double precision floating point numbers.

167-Bug> mm 10000;d
00010000 3.140000000000001_E+87? 1.2
00010008 -5.8508426708663386_E+250? 2
00010010 1.9999900000000014_E-100? 4.357e+10
00010018 6.7777778899999985_E+37? 2.765e-99
00010020 9.8762300000000015_E+10? -4.876e-34
00010028 1.00008764231_E-2? -1.023e101
00010030 4.5789000000000044_E-99? 1_7ff_fffffffffffff.
167-Bug>md 10000:7;d
00010000 0_3FF_3333333333333= 1.2000000000000000_E+0000

00010008 0_400_0000000000000= 2.0000000000000000_E+0000

00010010 0_422_449F2E0FFFFFF= 4.3569999999999992_E+0010

00010018 0_2B7_830E4EB15EA1B= 2.7650000000000032_E-0099

00010020 1_390_4410D74F66DA5=-4.8760000000000030_E-0034

00010028 1_54E_762B1924BFDD5=-1.0230000000000001_E+0101

00010030 1_7FF_FFFFFFFFFFFFF=-0.FFFFFFFFFFFFF000_E-0FFF

167-Bug>
3-113

Debugger Commands

3

MMD - Memory Map Diagnostic
Command Input

MMD range increment [;B|W|L]

Options

B Byte
W Word (default)
L Longword

Description

This command is used to find and display ranges of addresses that
are readable. This is done by reading memory locations within the
range. If a successful transaction to a location is completed, that
address is included in a found range, else in a not-found range. The
transaction (a read) is done with the data type specified on the
command line.

After the transaction is complete, increment is added to the old
transaction address to form the next transaction address. The
increment will be scaled by the data type, i.e., 1x for byte, 2x for
word, and 4x for longword.

Example 1

Looks for any memory between $0 and $10000000 with an
increment of $10000 by bytes. It reports that only $1000000 (16MB)
of memory was found.

167-Bug>mmd 0 10000000 10000;b
Effective address: 00000000

Effective address: 10000000

$00000000-$00FF0000 PRESENT

$01000000-$0FFF0000 NOT-PRESENT

Example 2

Looks for any memory between $FFFF0000 and $FFFFFFFF with an
increment of $1 by half-words.
3-114

MMD - Memory Map Diagnostic

3

167-Bug>mmd ffff0000 ffffffff 1
Effective address: FFFF0000

Effective address: FFFFFFFF

$FFFF0000-$FFFF07FE NOT-PRESENT

$FFFF0800-$FFFF09FE PRESENT

$FFFF0A00-$FFFF0FFE NOT-PRESENT

$FFFF1000-$FFFF117E PRESENT

$FFFF1180-$FFFF2FFE NOT-PRESENT

$FFFF3000-$FFFF30FE PRESENT

$FFFF3100-$FFFF35FE NOT-PRESENT

$FFFF3600-$FFFF36FE PRESENT

$FFFF3700-$FFFF37FE NOT-PRESENT

$FFFF3800-$FFFF38FE PRESENT

$FFFF3900-$FFFF4FFE NOT-PRESENT

$FFFF5000-$FFFF501E PRESENT

$FFFF5020-$FFFF9FFE NOT-PRESENT

$FFFFA000-$FFFFA1FE PRESENT

$FFFFA200-$FFFFA80E NOT-PRESENT

$FFFFA810-$FFFFA81E PRESENT

$FFFFA820-$FFFFAA0E NOT-PRESENT

$FFFFAA10-$FFFFAA1E PRESENT

$FFFFAA20-$FFFFBE0E NOT-PRESENT

$FFFFBE10 PRESENT

$FFFFBE12-$FFFFFFFE NOT-PRESENT
3-115

Debugger Commands

3

MS - Memory Set
Command Input

MS address {hexadecimal_number} {'string'}

Arguments

hexadecimal_number Hexadecimal value to be written to memory.
Hexadecimal numbers are not assumed to be
of a particular size, so they can contain any
number of digits (as allowed by command
line buffer size). If an odd number of digits
are entered, the least significant nibble of the
last byte accessed will be unchanged.

string An ASCII string to be written to memory.
ASCII strings can be entered by enclosing
them in single quotes ('). To include a quote
as part of a string, two consecutive quotes
should be entered.

Description

Memory Set is used to write data to memory starting at the
specified address.

Note that one or more hexadecimal numbers and ASCII strings may
be entered in the same command.

Example

Assume that memory is initially cleared:

167-Bug>ms 25000 0123456789abcDEF 'This is "167Bug"' 23456 <CR>
167-Bug>md 25000:20;b <CR>

00025000 0123 4567 89AB CDEF 5468 6973 2069 7320 #Eg.+MoThis is
00025010 2731 3637 4275 6727 2345 6000 0000 0000 '167Bug'#E`.....

167-Bug>
3-116

MW - Memory Write

3

MW - Memory Write
MW address data [;B|W|L]

Options

B Byte

W Word (default)

L Longword

Description

The MW command allows you to write a specific data pattern to a
specific location. No verify (read) is performed. You also can
specify the data width.

Example 1

167-Bug>mw e000 55aa55aa;l
Effective address: 0000E000

Effective data : 55AA55AA

167-Bug>md e000;l

0000E000 55AA55AA 00000000 00000000 00000000 U.U.............
0000E010 00000000 00000000 00000000 00000000
167-Bug>

Example 2

167-Bug>mw e000 77;b
Effective address: 0000E000

Effective data : 77

167-Bug>md e000;l

0000E000 77AA55AA 00000000 00000000 00000000 w.U.............
0000E010 00000000 00000000 00000000 00000000
167-Bug>
3-117

Debugger Commands

3

Example 3

167-Bug>mw e002 33cc
Effective address: 0000E002

Effective data : 33CC

167-Bug>md e000;l

0000E000 77AA33CC 00000000 00000000 00000000 w.3.............
0000E010 00000000 00000000 00000000 00000000
167-Bug>
3-118

3Debugger Commands
3

NAB - Automatic Network Boot Operating System
NAB - Automatic Network Boot Operating
System

Command Input

NAB

Description

The NAB command re-invokes the network automatic boot feature.
This command simply invokes the NBO command with the
specified parameters saved in NVRAM for the specified network
interface. This invocation occurs at system startup and can be
specified at either power-up or at any reset condition.
3-119

Debugger Commands

3

NBH - Network Boot Operating System and
Halt

Command Input

NBH [controllerLUN] [deviceLUN] [clientIPaddress] [serverIPaddress]
[string]

Arguments

Description

NBH is used to load an operating system or control program from
the server into memory and halt (no control is given to it). This
command functions in exactly the same way as the NBO command,
except that control is not given to the loaded program. After the
registers are initialized, control is returned to the debugger monitor
and the prompt reappears on the terminal screen. Because control
is retained by the debugger, all of the debugger's facilities are
available for debugging the loaded program if necessary.

controllerLUN This is the Logical Unit Number (LUN) of the controller
to which the following device is attached. It defaults to
LUN 0.

deviceLUN This is the LUN of the device to boot from. It defaults to
LUN 0.

clientIPaddress This is the Internet Protocol Address of the client,
basically my/source IP address. It defaults to an IP
address of 0 (see the NIOT command).

serverIPaddress This is the Internet Protocol Address of the server,
basically the destination IP address. It defaults to an IP
address of 0 (see the NIOT command).

string This is a string of characters. Up to 2 strings may be
speciÞed, usually the name of the Þle to boot and an
optional string (string #2). String #2, if speciÞed, is
passed to the booted Þle. To specify string #2, a
delimiter must be used to differentiate from string #1
(boot Þlename). Both character strings default to a null
character string (see the NIOT command).
3-120

NBH - Network Boot Operating System and Halt

3

The device and controller configuration parameters used when
NBH is initiated can be examined via the Network I/O Teach
(NIOT) command.

Note that certain arguments will be passed (through MPU
registers) to the loaded program. See the NBO command
description for examples and further explanation.
3-121

Debugger Commands

3

NBO - Network Boot Operating System
Command Input

NBO [controllerLUN][deviceLUN] [clientIPaddress] [serverIPaddress]
[string]

Arguments

Description

NBO is used to load an operating system or control program from
the server into memory and give control to it (execute). The load
and execution address of the file is specified via the configuration
parameters. The device and controller configuration parameters
used when NBO is initiated can be examined via the Network I/O
Teach (NIOT) command.

NBO uses primarily the BOOTP, RARP, and TFTP protocols to load
the boot file. Refer to the DARPA Internet Request for Comments
RFC-951, RFC-903, and RFC-783, respectively, for the description of

controllerLUN This is the Logical Unit Number (LUN) of the controller
to which the following device is attached. It defaults to
LUN 0.

deviceLUN This is the LUN of the device from which to boot. It
defaults to LUN 0.

clientIPaddress This is the Internet Protocol Address of the client,
basically my/source IP address. It defaults to an IP
address of 0 (see the NIOT command).

serverIPaddress This is the Internet Protocol Address of the server,
basically the destination IP address. It defaults to an IP
address of 0 (see the NIOT command).

string This is a string of characters. Up to 2 strings may be
speciÞed, usually the name of the Þle to boot and a
optional string (string #2). String #2, if speciÞed, is
passed to the booted Þle. To specify string #2 a delimiter
must be used to differentiate from string #1 (boot
Þlename). Both character strings default to a null
character string (see the NIOT command).
3-122

NBO - Network Boot Operating System

3

these protocols. You may skip the BOOTP phase (address
determination and bootfile selection) by specifying the IP addresses
(server and client) and the boot filename; the booting process
would then start with the TFTP phase (file transfer) of the boot
sequence.

IP addresses of "0" are special in that these addresses always force
a BOOTP/RARP phase to occur first. If all (client and server) of the
IP addresses are known/specified, the TFTP phase occurs first. If
this phase fails in loading the boot file, the BOOTP/RARP phase is
initiated prior to subsequent TFTP phase. If the filename is not
specified, this also forces a BOOTP/RARP phase to occur first. Note
that the defaults specified by the command always initiates a
BOOTP/RARP phase. In any case the booting (server) IP address is
displayed as well as that of any failing IP address.

Once the IP addresses are obtained from the BOOTP server (or the
configuration parameters, if specified), the IP addresses are
checked to see if the server and the client are resident on the same
network. If they are not, the gateway IP address is used as the
intermediate server to perform the TFTP phase with.

If the server has only RARP capability, you need to specify the
name of the boot file, either by the command line or the
configuration parameters (see the NIOT command).

Prior to the TFTP phase an ARP request is transmitted for the
hardware address (Ethernet) of the server.

At selected times (when prompted or a time-out condition exists),
the booting process can be aborted by pressing the <BREAK> key
on the console keyboard or by pressing the <ABORT> switch on the
front panel.

Note that certain arguments are passed (through MPU registers) to
the loaded program; the following is a list of the MPU registers and
their contents:

MC68000.A0 = Base Address of Controller/Device
MC68000.A1 = Entry Point of Loaded Program
MC68000.A2 = Boot Information Packet (IP Addresses) Pointer
3-123

Debugger Commands

3

MC68000.A3 = String Pointer to Optional Argument Start
MC68000.A4 = String Pointer to Optional Argument End
MC68000.A5 = String Pointer to Loaded Filename Start
MC68000.A6 = String Pointer to Loaded Filename End
MC68000.D0 = Device LUN
MC68000.D1 = Controller LUN
MC68000.D2 = Automatic Booting: Bit #0 = 1, else Bit #0 = 0

Note that the Controller LUN and Device LUN for the network
interface are 0 and 0 on the MVME166, MVME167, MVME176 and
MVME177 boards. See the NIOT;H command invocation.

Example 1

Boot from controller LUN 0, device LUN 0, with default client
address of 144.191.17.34, server IP address of 144.191.17.21, and
bootfile /tftpboot/load167:

167-Bug>NBO 0 0 144.191.17.34 144.191.17.21 /tftpboot/load167
...

Example 2

Boot from controller LUN 0, device LUN 0, with default client
IP address, server IP address 144.191.17.21, and the default
bootfile:

167-Bug>NBO 0 0,,144.191.17.21
 ...

NBO uses primarily the BOOTP and TFTP protocols to load the
boot file. Refer to the DARPA Internet Request for Comments RFC-
951 and RFC-783, respectively, for the description of these
protocols. You may skip the BOOTP phase (address determination
and bootfile selection) by specifying the IP addresses (server and
client) and the boot filename; the booting process would then start
with the TFTP phase (file transfer) of the boot sequence.
3-124

NBO - Network Boot Operating System

3

Example 3

Invoke NBO with no arguments:

167-Bug>NBO
Network Booting from: VME167, Controller 0, Device 0

Loading: Operating System

Client IP Address = 144.191.24.10

Server IP Address = 144.191.11.81

Gateway IP Address = 144.191.24.254

Subnet IP Address Mask = 144.191.24.254

Boot File Name =

/riscy/fwdb/NETLOADER/nbldexp/M68K/nbld.out

Argument File Name =

Network Boot File load in progress... To abort hit <BREAK>

Bytes Received =&8912, Bytes Loaded =&8912
Bytes/Second =&2970, Elapsed Time =3 Second(s)
 ...

In this example no arguments were specified. Depending on the
interface's configuration parameters, the display of various IP
addresses and the boot file name signifies that the BOOTP phase
was successful. The booting process now halts and waits about 5
seconds for you to abort. If you do not abort, a carriage return and
line feed are printed to signify the entrance into the TFTP phase of
the boot process. Once this phase is started, you cannot abort (by
pressing the <BREAK> key) unless a time-out condition arises.
When the boot

file is loaded into the user memory, the statistics of the TFTP phase
(file transfer) are displayed. The boot process continues with
loading of the MPU registers and execution of the loaded file.

Whenever an error occurs, the booting process is terminated and
the error code is displayed. The error codes are listed in Appendix
H.
3-125

Debugger Commands

3

NIOC - Network I/O Control
Command Input

NIOC

Description

The NIOC command allows you to send command packets directly
to the network (initially only Ethernet) interface driver. The packet
to be sent must already reside in memory and must follow the
packet protocol of the interface. This command facilitates in the
transmission and reception of raw packets (command identifiers 2
and 3, see below), as well as some control (command identifiers 0,
1, 4, and 5, see below).

The command packet specifies the network interface
(CLUN/DLUN), command type (identifier), the starting memory
address (data transfers), and the number of bytes to transfer (data
transfers). The packet structure is defined in the "C" header file
listed in Appendix I. The command types are listed in this header
file as well.

The command types (identifiers) are as follows:

The initialization (type 0) of the device/channel/node must always
be performed first. If you have booted or initiated some other
network I/O command, the initialization would already have been
done.

0 Initialize device/channel/node
1 Get hardware (e.g., Ethernet) address (network

node)
2 Transmit (put) data packet
3 Receive (get) data packet
4 Flush receiver and receive buffers
5 Reset device/channel/node
3-126

NIOC - Network I/O Control

3

The flush receiver and receive buffer (type 4) would be used if, for
example, the current receive data is no longer needed, or to provide
a known buffer state prior to initiating data transfers.

The reset device/channel/node (type 5) would be used if another
operating system (node driver) needs to be control of the
device/channel/node. Basically, put the device/channel/ node to
a known state.

Whenever an error occurs, the initiated I/O control process is
terminated and the appropriate error code is displayed. The error
codes are listed in Appendix H.

Example 1

Initialize (type 0) the device/channel/node.

167-Bug>NIOC
Controller LUN =00?

Device LUN =00?

Packet Address =00006454?

00006454 0000 0000 0000 0000 0000 0000 0000 0000

................

00006464 0000 0000

Send Packet (Y/N) =N? y
167-Bug>

Example 2

Retrieve the hardware address of the specified network interface
(type 1). Note that the transfer byte count is set to zero; this specifies
all possible data associated with the address retrieval. This also
holds true for the reception of data packets.

167-Bug>NIOC

Controller LUN =00?
Device LUN =00?
Packet Address =00006454?
00006454 0000 0000 0000 0001 0000 E000 0000 0000
00006464 0000 0000
3-127

Debugger Commands

3

Send Packet (Y/N) =N? y
167-Bug>

 (View the address data retrieval.)

167-Bug>MD E000:6;B
0000E000 08 00 3E 21 0F CC ..>!..

167-Bug>

Example 3

View the packet to transmit, ARP Request.

167-Bug>MD E000:&21

0000E000 FFFF FFFF FFFF 0800 3E21 0FCC 0806 0001 >!......
0000E010 0800 0604 0001 0800 3E21 0FCC 90BF 0B2C >!.....,
0000E020 FFFF FFFF FFFF 8610 1112
167-Bug>

167-Bug>NIOC

Controller LUN =00?
Device LUN =00?
Packet Address =00006454?
00006454 0000 0000 0000 0002 0000 E000 0000 002A
00006464 0000 0000

Send Packet (Y/N) =N? y
167-Bug>

The above example illustrates the transmission (type 2) of a packet
(ARP Request). The transfer byte count specifies how many bytes
are to be transmitted. If the transfer byte count is below the
minimum transmit byte count for the specified interface, the driver
rounds to the minimum and places it into your packet. However,
the specified network interface driver does not round down to the
maximum if the transfer byte count exceeds the maximum. You
must ensure packet integrity (e.g., source and destination
addresses) for the specified network interface; the driver does not
insert any data.

Example 4

167-Bug>NIOC
3-128

NIOC - Network I/O Control

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Controller LUN =00?
Device LUN =00?
Packet Address =00006454?
00006454 0000 0000 0000 0003 0000 E000 0000 0000
00006464 0000 0000

Send Packet (Y/N) =N? y
167-Bug>

 (View packet status.)

167-Bug>NIOC

Controller LUN =00?
Device LUN =00?
Packet Address =00006454?
00006454 0000 0000 0000 0003 0000 E000 0000 0222
00006464 0001 0000

Send Packet (Y/N) =N? n 167-Bug>

 (View the receive packet.)

167-Bug>MD E000:222;B

0000E000 FF FF FF FF FF FF 08 00 3E 20 C8 0A 08 00 45 00 >E.
0000E010 02 14 00 00 00 00 40 11 25 5E 90 BF 18 FE 90 BF @.%^.....
0000E020 18 FF 02 08 02 08 02 00 55 34 02 01 00 00 00 02 U4.....
0000E030 00 00 C0 13 01 00 00 00 00 00 00 00 00 00 00 00
0000E040 00 03 00 02 00 00 90 BF 82 00 00 00 00 00 00 00
0000E050 00 00 00 00 00 03 00 02 00 00 C0 13 02 00 00 00
0000E060 00 00 00 00 00 00 00 00 00 04 00 02 00 00 90 BF
0000E070 63 00 00 00 00 00 00 00 00 00 00 00 00 02 00 02 c..............
0000E080 00 00 90 BF 83 00 00 00 00 00 00 00 00 00 00 00
0000E090 00 04 00 02 00 00 90 BF 03 00 00 00 00 00 00 00
0000E0A0 00 00 00 00 00 03 00 02 00 00 90 BF 84 00 00 00
0000E0B0 00 00 00 00 00 00 00 00 00 04 00 02 00 00 90 BF
0000E0C0 04 00 00 00 00 00 00 00 00 00 00 00 00 03 00 02
0000E0D0 00 00 90 BF 85 00 00 00 00 00 00 00 00 00 00 00
0000E0E0 00 04 00 02 00 00 90 BF 06 00 00 00 00 00 00 00
0000E0F0 00 00 00 00 00 03 00 02 00 00 90 BF 86 00 00 00
0000E100 00 00 00 00 00 00 00 00 00 04 00 02 00 00 90 BF
0000E110 E6 00 00 00 00 00 00 00 00 00 00 00 00 02 00 02
0000E120 00 00 90 BF 87 00 00 00 00 00 00 00 00 00 00 00
0000E130 00 04 00 02 00 00 90 BF C7 00 00 00 00 00 00 00
0000E140 00 00 00 00 00 02 00 02 00 00 90 BF 88 00 00 00
0000E150 00 00 00 00 00 00 00 00 00 04 00 02 00 00 90 BF
0000E160 28 00 00 00 00 00 00 00 00 00 00 00 00 02 00 02 (..............
0000E170 00 00 DE 01 08 00 00 00 00 00 00 00 00 00 00 00
0000E180 00 02 00 02 00 00 90 BF 08 00 00 00 00 00 00 00
3-129

Debugger Commands

3

.

.

.

.

.

.

.

.

.

0000E190 00 00 00 00 00 04 00 02 00 00 90 BF E8 00 00 00
0000E1A0 00 00 00 00 00 00 00 00 00 02 00 02 00 00 90 BF
0000E1B0 89 00 00 00 00 00 00 00 00 00 00 00 00 04 00 02
0000E1C0 00 00 90 BF 29 00 00 00 00 00 00 00 00 00 00 00 )..........
0000E1D0 00 04 00 02 00 00 90 BF AA 00 00 00 00 00 00 00
0000E1E0 00 00 00 00 00 04 00 02 00 00 90 BF 8A 00 00 00
0000E1F0 00 00 00 00 00 00 00 00 00 04 00 02 00 00 90 BF
0000E200 0A 00 00 00 00 00 00 00 00 00 00 00 00 03 00 02
0000E210 00 00 90 BF AB 00 00 00 00 00 00 00 00 00 00 00
0000E220 00 04 ..

The above example illustrates the reception of data (type 3). The
driver does not block (waits for incoming data). The control/status
word field signifies whether or not data has been received.
Currently only one status bit is specified, bit 16, the receipt of data.
This bit is cleared if no data is present. It is set if receive data is
present. The transfer byte count is also set to the number of bytes
associated with this receive data packet. This field is only valid
when bit 16 is set.

Example 5

Flush the receiver and receive buffers (type 4).

167-Bug>NIOC

Controller LUN =00?
Device LUN =00?
Packet Address =00006454?
00006454 0000 0000 0000 0004 0000 0000 0000 0000
00006464 0000 0000

Send Packet (Y/N) =N? y
167-Bug>

This entry point is useful when the interface has not been accessed
for some time and you do not want receive data. The Network I/O
commands (i.e., NAB, NBH, NBO, NIOP, and NPING) use this
feature prior to any Network I/O transactions.
3-130

NIOP - Network I/O Physical

3

NIOP - Network I/O Physical
Command Input

NIOP

Description

The NIOP command allows you to get/put files from/to the
supported network (initially only Ethernet) interfaces. When
invoked, this command goes into an interactive mode, prompting
you for all parameters necessary to carry out the command. This
command basically uses the TFTP protocol to perform the file
transfer.

The IP addresses for the TFTP session are obtained from the
configuration parameters. The IP addresses are checked to see if the
server and the client are resident on the same network. If they are
not, the gateway IP address is used as the intermediate server to
perform the TFTP session with. The filename character string has a
maximum length of 64 bytes.

Whenever an error occurs, the TFTP session is terminated and the
error code is displayed. The error codes are listed in Appendix H.

Example 1

Read a file into memory.

167-Bug>NIOP
Controller LUN =00?

Device LUN =00?

Get/Put =G?

File Name =? /riscy/fwdb/NETLOADER/nbldexp/M68K/nbld.out
Memory Address =0000E000? 10000

Length =00000000?

Byte Offset =00000000?

Bytes Received =&8912, Bytes Loaded =&8912

Bytes/Second =&8912, Elapsed Time =1 Second(s)

167-Bug>
3-131

Debugger Commands

3

The above example illustrates the reading (or getting) of the file
/riscy/fwdb/NETLOADER/nbldexp/M68K/nbld.out from the
specified server (see the NIOT command) into memory at address
00010000. The length field of 0 signifies to load the entire file. The
load (get) of a file can be truncated to a desired length by specifying
the desired length (non-zero). The byte offset field can be used to
wind (index) into a file (only used on file reads, gets).

Upon successful transfer of the specified file, the command
displays the TFTP session statistics.

The NIOP command utilizes the necessary configuration
parameters (see the NIOT command) to perform the TFTP file
transfer.

Note that winding (indexing) into a file is possible on a read (get),
there is a drawback in this feature due to the nature of TFTP, the
entire file is transferred across the network. But only the desired
section of the file is written to the user memory.

Refer to the DARPA Internet Request for Comments RFC-783 for
the description of the TFTP protocol.

Prior to the TFTP session an ARP request is transmitted for the
hardware address (Ethernet) of the server.

At time-out conditions the file transfer process can be aborted by
pressing the <BREAK> key on the console keyboard or by pressing
the <ABORT> switch on the front panel.
3-132

NIOT - Network I/O Teach (Configuration)

3

NIOT - Network I/O Teach (Configuration)
Command Input

NIOT [;[H]|[A]]

Options

A Displays the Network Controllers/Nodes that are
supported by this version of the firmware.

H Displays all Network Controllers/Nodes that are present in
the system. The display also includes the Protocol (Internet)
and Hardware (Ethernet) addresses.

Description

The NIOT command allows you to "teach" a new network
configuration to the debugger for use by the .NETxxx system calls.
NIOT lets you modify the controller and device descriptor tables
used by the .NETxxx system calls for network access. Note that
because the debugger commands that access the network use the
same interface as the system calls, changes in the descriptor tables
affect all those commands. These commands include NIOP, NBO,
NBH, and also any user program that uses the .NETxxx system
calls.

As stated in the description of the IOT command, each
controller/device LUN combination has its own descriptor table;
this table houses configuration and run-time parameters. If the
specified network interface has been specified to Network
Automatic Boot, then any changes made by this command is saved
in NVRAM (you are prompted).

The following is a list of the prompts for the parameters that are
accessible via the NIOT command. A retry value of "0" is
interpreted as no maximum, always retry.

Node Control Memory Address=FFE10000?
3-133

Debugger Commands

3

This parameter specifies the starting address of the necessary
memory needed for the transmit and receive buffers. Currently
65,536 bytes are needed for the MVME166/167/176/177 Ethernet
driver (transmit/receive buffers).

Client IP Address =144.191.24.10?

This parameter specifies the IP address of the client. The firmware
is considered the client.

Server IP Address =144.191.11.81?

This parameter specifies the IP address of the server. The server is
the host system from which the specified file is retrieved.

Subnet IP Address Mask =255.255.255.0?

This parameter specifies the subnet IP address mask. This mask is
used to determine if the server and client are resident on the same
network. If they are not, the gateway IP address is used as the
intermediate target (server).

Broadcast IP Address =255.255.255.255?

This parameter specifies the broadcast IP address that the firmware
utilizes when a IP broadcast needs to be performed.

Gateway IP Address =144.191.24.254?

This parameter specifies the gateway IP address. The gateway IP
address would be necessary if the server and the client do not reside
on the same network. The gateway IP address would be used as the
intermediate target (server).

Boot File Name ("NULL" for None) =?

This parameter specifies the name of the boot file to load. Once the
file is loaded, control is passed to the loaded file (program). To
specify a null filename, the string "NULL" must be used; this resets
the filename buffer to a null character string.

Argument File Name ("NULL" for None) =?
3-134

NIOT - Network I/O Teach (Configuration)

3

This parameter specifies the name of the argument file. This file
may be used by the booted file (program) for an additional file load.
To specify a null filename, the string "NULL" must be used; this
resets the filename buffer to a null character string.

Boot File Load Address =001F0000?
Boot File Execution Address=001F0000

These parameters specify the load and execution addresses of the
boot file.

Boot File Execution Delay =00000000?

This parameter specifies a delay value in seconds before control is
passed to the loaded file (program).

Boot File Length =00000000?
Boot File Byte Offset =00000000?

These parameters behave the same as the "Length" and "Offset"
parameters associated with the NIOP command.

BOOTP/RARP Request Retry =00?
TFTP/ARP Request Retry =00?

These parameters specify the number of retries that should be
attempted prior to giving up. A retry value of zero specifies always
to retry (not give up).

Trace Character Buffer Address=00000000?

This parameter specifies the starting address of memory in which
to place the trace characters. The receive/transmit packet tracing
are disabled by default (value of 0). Any non-zero value enables
tracing. Tracing would only be used in a debug environment and
normally should be disabled. Care should be exercised when
enabling this feature; you need to ensure that adequate memory
exists. The following characters are defined for tracing:

? Unknown

& Unsupported ETHERNET Type

* Unsupported IP Type

% Unsupported UDP Type

$ Unsupported BOOTP Type
3-135

Debugger Commands

3

BOOTP/RARP Request Control: Always/When-Needed (A/W) =W

This parameter specifies the BOOTP/RARP request control during
the boot process. Control can be set either to "always" (A) or to
"when needed " (W). When control is set to "always", the
BOOTP/RARP request is always sent, and the accompanying reply
expected. When control is set to "when needed", the BOOTP/RARP
request is sent if needed (i.e., IP addresses of 0, null boot file name).

BOOTP/RARP Reply Update Control: Yes/No (Y/N) =Y

This parameter specifies the updating of the configuration
parameters following a BOOTP/RARP reply. Receipt of a
BOOTP/RARP reply would only be in lieu of a request being sent.

Example 1

Invoke NIOT with no options. This shows the interactive session
for the various configuration parameters.

[BOOTP Request

] BOOTP Reply

+ Unsupported ARP Type

(ARP Request

) ARP Reply

- Unsupported RARP Type

{ RARP Request

} RARP Reply

^ Unsupported TFTP Type

\ TFTP Read Request

/ TFTP Write Request

< TFTP Acknowledgment

> TFTP Data

| TFTP Error

, Unsupported ICMP Type

: ICMP Echo Request

; ICMP Echo Reply
3-136

NIOT - Network I/O Teach (Configuration)

3

167-Bug>NIOT
Controller LUN =00?

Device LUN =00?

Node Control Memory Address =FFE10000?

Client IP Address =144.191.24.10?

Server IP Address =144.191.11.81?

Subnet IP Address Mask =255.255.255.0?

Broadcast IP Address =255.255.255.255?

Gateway IP Address =144.191.24.254?

Boot File Name ("NULL" for None) =?

Argument File Name ("NULL" for None) =?

Boot File Load Address =001F0000?

Boot File Execution Address =001F0000?

Boot File Execution Delay =00000000?

Boot File Length =00000000?

Boot File Byte Offset =00000000?

BOOTP/RARP Request Retry =00?

TFTP/ARP Request Retry =00?

Trace Character Buffer Address =00000000?

BOOTP/RARP Request Control: Always/When-Needed (A/W) =W?

BOOTP/RARP Reply Update Control: Yes/No (Y/N) =Y?

167-Bug>

Example 2

Display the Network Controllers/Nodes that are present in the
system.

167-Bug>NIOT;H
Network Controllers/Nodes Available

CLUN DLUN Name Address P-Address/H-Address

0 0 VME167 $FFF46000 44.191.24.10/08003E210FCC

167-Bug>

Example 3

Display the Network Controllers/Nodes that are supported by this
version of the firmware.
3-137

Debugger Commands

3

167-Bug>NIOT;A
Network Controllers/Nodes Supported

CLUN DLUN Name Address

0 0 VME167 $FFF46000

2 0 VME376 $FFFF1200

3 0 VME376 $FFFF1400

4 0 VME376 $FFFF1600

5 0 VME376 $FFFF5400

6 0 VME376 $FFFF5600

7 0 VME376 $FFFFA400

167-Bug>

!
Caution

If you use the NIOT debugger command, the network
interface configuration parameters need to be
saved/retained in the NVRAM (Non-volatile RAM),
also known as Battery Backed-Up RAM (BBRAM),
somewhere in the address range $FFFC0000 through
$FFFC0FFF (for 68K boards). The NIOT parameters do
not exceed 128 bytes in size.

The location for these parameters is determined by a
setting of the ENV (Set Environment to Bug/Operating
System) debugger command. For a 68K board (such as
the MVME167), change the Network Auto Boot
Configuration Parameters Pointer (NVRAM) from its
default of 00000000. If you have used the exact same
space for your own program information or commands,
they will be overwritten and lost.
3-138

NPING - Network Ping

3

NPING - Network Ping
Command Input

 NPING controllerLUN deviceLUN sourceIP destinationIP [N-packets]

 Arguments

Description

The NPING command allows you to probe the network; this
probing facilitates the testing, measurement, and management of
the network. NPING utilizes the ICMP protocol's mandatory
ECHO_REQUEST datagram to elicit an ICMP ECHO_RESPONSE
from a host or gateway.

The packet size has a fixed length of 128 bytes.

At any time an error occurs, the PING session is terminated and the
appropriate error code is displayed. The error codes are listed in
Appendix H. The receive packet is checked for checksum and data
integrity.

Prior to the PING session an ARP request is transmitted for the
hardware address (Ethernet) of the destination. The source and
destination IP addresses must always be specified. No gateway IP
address is used.

Refer to the DARPA Internet Request for Comments RFC-792 for
the description of the ICMP protocol.

controllerLUN This is the Logical Unit Number (LUN) of the controller
to which the following device is attached.

deviceLUN This is the LUN of the device.
sourceIP This is the Internet Protocol Address of the Source

(initiator, ECHO_REQUEST).
destinationIP This is the Internet Protocol Address of the Destination

(target, ECHO_RESPONSE).
N-packets This is the number of packets to send. It defaults to

inÞnity.
3-139

Debugger Commands

3

Example 1

Transmit/receive 0x10 (16) ping packets. Once the ping session is
complete, the command displays the statisticsof the session.

167-Bug>NPING 0 0 144.191.24.10 144.191.24.254 10
Source IP Address = 144.191.24.10

Destination IP Address = 144.191.24.254

Number of Packets Transmitted =16, Packets Lost =0, Packet Size

=128

167-Bug>

If the destination does not respond within 10 seconds, the
command continues on with the next transmission. Between each
successful transmit/receive packet there is a one second delay; this
is done so as not to inundate the network.

If the number of packets is not specified on the command line, the
command will indefinitely transmit/receive packets. You must
press the <BREAK> key to abort the session.

Example 2

This example illustrates the indefinite transmission/reception of
packets.

167-Bug>NPING 0 0 144.191.24.10 144.191.24.254
Source IP Address = 144.191.24.10

Destination IP Address = 144.191.24.254

(<BREAK> key pressed)

Number of Packets Transmitted =1955, Packets Lost =0, Packet Size

=128

167-Bug>
3-140

OF - Offset Registers Display/Modify

3

OF - Offset Registers Display/Modify
Command Input

OF [Rn[;A]]

Description

OF allows you to access and change pseudo-registers called offset
registers. These registers are used to simplify the debugging of
relocatable and position-independent modules.

There are eight offset registers R0-R7, but only R0-R6 can be
changed. R7 always has both base and top addresses set to 0. This
allows the automatic register function to be effectively disabled by
setting R7 as the automatic register.

Each offset register has two values: base and top. The base is the
absolute least address that is used for the range declared by the
offset register. The top address is the absolute greatest address that
is used. When entering the base and top, you may use either an
address/address format or an address/count format. If a count is
specified, it refers to bytes. If the top address is omitted from the
range, then a count of 1MB is assumed. The top address must equal
or exceed the base address. Wrap-around is not permitted.

Command Usage

OF To display all offset registers. An asterisk indicates
which register is the automatic register.

OF Rn To display/modify Rn. You can scroll through the
register in a way similar to that used by the MM
command.

OF Rn;A To display/modify Rn and set it as the automatic
register. The automatic register is one that is
automatically added to each absolute address argument
of every command except if an offset register is
explicitly added. An asterisk indicates which register is
the automatic register.
3-141

Debugger Commands

3

Offset Register Rules

1. At power-up and cold start reset, R7 is the automatic register.

2. At power-up and cold start reset, all offset registers have both
base and top addresses preset to 0. This effectively disables
them.

3. R7 always has both base and top addresses set to 0; it cannot
be changed.

4. Any offset register can be set as the automatic register.

5. The automatic register is always added to every absolute
address argument of every 16XBug command where there is
not an offset register explicitly called out.

6. There is always an automatic register. A convenient way to
disable the effect of the automatic register is by setting R7 as
the automatic register. Note that this is the default condition.

Examples

Display offset registers.

167-Bug>OF <CR>
R0 =00000000 00000000 R1 = 00000000 00000000

R2 =00000000 00000000 R3 = 00000000 00000000

R4 =00000000 00000000 R5 = 00000000 00000000

R6 =00000000 00000000 R7*= 00000000 00000000

Range entry Ranges may be entered in three formats: base address
alone, base and top as a pair of addresses, and base
address followed by byte count. Control characters Ò^Ó,
ÒvÓ, ÒVÓ, Ò=Ó, and Ò.Ó may be used. Their function is
identical to that in Register Modify (RM) and Memory
Modify (MM) commands.

Range syntax [base address [top address]] [^|v|=|.]
or
[base address [':' byte count]] [^|v|=|.]
3-142

OF - Offset Registers Display/Modify

3

Modify some offset registers.

167-Bug>OF R0 <CR>
R0 =00000000 00000000? 20000 200FF <CR>
R1 =00000000 00000000? 25000:200^
R0 =00020000 000200FF? . <CR>

Look at location $20000.

167-Bug>M 20000;DI <CR>
00000+R0 00000000 ORI.B #$0,D0? . <CR>
167-Bug>M R0;DI <CR>
00000+R0 00000000 ORI.B #$0,D0? . <CR>
167-Bug>

Set R0 as the automatic register.

167-Bug>OF R0;A <CR>
R0*=00020000 000200FF? . <CR>

To look at location $20000.

167-Bug>M 0;DI <CR>
00000+R0 00000000 ORI.B #$0,D0? . <CR>
167-Bug>

To look at location 0, override the automatic offset.

167-Bug>M 0+R7;DI <CR>
00000000 FF80 DC.W $FF80? . <CR>
167-Bug>
3-143

Debugger Commands

3

PA/NOPA - Printer Attach/Detach
Command Input

PA [port]
NOPA [port]

Description

These two commands "attach" or "detach" a printer to the user-
specified port. Multiple printers may be attached. When the printer
is attached, everything that appears on the system console terminal
is also echoed to the "attached" port. PA is used to attach, NOPA is
used to detach. If no port is specified, PA does not attach any port,
but NOPA detaches all attached ports.

If the port number specified is not currently assigned, PA displays
an unassigned message. If NOPA is attempted on a port that is not
currently attached, an unassigned message is displayed.

The port being attached must already be configured. This is done
using the Port Format (PF) command. This is done by executing the
following sequence prior to "PA port".

167-Bug>PF 3 <CR>
Logical unit $03 unassigned

Name of board? VME167 <CR>
Name of port? PTR <CR>
Port base address = $FFF45000? <CR>
OK to proceed (y/n)? Y <CR>
167-Bug>

For further details, refer to the PF command.

Examples

Console Display Printer Output

167-Bug>PA 7 <CR>

(Attaching port 7) (Printer now attached)
3-144

PA/NOPA - Printer Attach/Detach

3

167-Bug>HE NOPA <CR> 167-Bug>HE NOPA

NOPA Printer detach NOPA Printer detach

167-Bug>NOPA <CR> 167-Bug>NOPA

(Detach all attached printers) (Printer now detached)

167-Bug>NOPA <CR>
No printer attached

167-Bug>
3-145

Debugger Commands

3

PF/NOPF - Port Format/Detach
Command Input

PF [port]
NOPF [port]

Description

Port Format (PF) allows you to examine and change the serial
input/output environment. PF may be used to display a list of the
current port assignments, configure a port that is already assigned,
or assign and configure a new port. Configuration is done
interactively, much like modifying registers or memory (RM and
MM commands). An interlock is provided prior to configuring the
hardware -- you must explicitly direct PF to proceed.

The serial ports that are labeled "DEBUG" (LUN 0), "HOST" (LUN
1), and "Console" (LUN dependent, "DEBUG" LUN by default) by
the debugger are special in that the configuration parameters of
these ports are saved/retained in Battery Backed Up RAM
(BBRAM), also known as Non-Volatile RAM (NVRAM). These
configuration parameters remain in effect through power-up or any
reset. The "DEBUG" and "HOST" LUNs are local serial ports, 0 and
1 respectively. If the "Console" port of the debugger is moved (refer
to the TA command) from the default "Console" port ("DEBUG"
LUN) to some other port, the retention of the "DEBUG" port
configuration parameters are lost and the "Console" port
configuration parameters take its place in NVRAM.

Note The Reset and Abort options sets the serial ports that
are labeled "DEBUG" (LUN 0, port 0) and "HOST"
(LUN 1, port 1) by the debugger to the default
parameters. (Refer to the Installation and Startup section
in Chapter 1 for details on terminal setup.)
3-146

PF/NOPF - Port Format/Detach

3

Any time the "DEBUG" (LUN 0), "HOST" (LUN 1), or "Console"
(LUN dependent) ports are addressed and an input/change has
been made, you are prompted to update (save the changes) the
configuration parameters (for the specified port) in NVRAM.

Note On any MVME16X module, only nine ports may be
assigned at any given time. Port numbers must be in
the range 0 to $1F.

Listing Current Port Assignments

Port Format lists the names of the module (board) and port for each
assigned port number (LUN) when the command is invoked with
the port number omitted.

Example

167-Bug>pf
Current port assignments: (Port #: Board name, Port name)

[00: VME167- "DEBUG"] [01: VME167- "HOST"]

Console = [00: VME167- "DEBUG"]

167-Bug>

Configuring a Port

The primary use of Port Format is changing baud rates, stop bits,
etc. This may be accomplished for assigned ports by invoking the
command with the desired port number. Assigning and
configuring may be accomplished consecutively. Refer to the
section on Assigning a New Port.

Note If you configure channels for baud rates greater than
and equal to 19,200 baud, note that the debugger can
not sustain input and/or output at these speeds.
3-147

Debugger Commands

3

When Port Format is invoked with the number of a previously
assigned port, the interactive mode is entered immediately. To exit
from the interactive mode, enter a period by itself or following a
new value/setting. While in the interactive mode, the following
rules apply:

Example 1

167-Bug>PF 1 <CR>

Baud rate [110,300,600,1200,2400,4800,9600,19200,38400] = 9600? <CR>

Only listed values are accepted when a list is shown.
The sole exception is that upper- or lowercase may be
interchangeably used when a list is shown. Case takes
on meaning when the letter itself is used, such as XON
character value.

^ Control characters are accepted by hexadecimal value
or by a letter preceded by a caret (i.e., Control-A (CTRL
A) would be "^A").
The caret, when entered by itself or following a value,
causes Port Format to issue the previous prompt after
each entry.

v
or
V

Either uppercase or lowercase "v" causes Port Format to
resume prompting in the original order (i.e., Baud Rate,
then Parity Type, etc.).

= Entering an equal sign by itself or when following a
value causes PF to issue the same prompt again. This is
supported to be consistent with the operation of other
debugger commands. To resume prompting in either
normal or reverse order, enter the letter "v" or a caret "^"
respectively.

. Entering a period by itself or following a value causes
Port Format to exit from the interactive mode and issue
the "OK to proceed (y/n)?" prompt.

<CR> Pressing return without entering a value preserves the
current value and causes the next prompt to be
displayed.
3-148

PF/NOPF - Port Format/Detach

3

Even, Odd, or No Parity [E,O,N] = N? <CR>
Character width [5,6,7,8] = 8? <CR>
Stop Bits [1,2] = 1? 2 <CR> New value entered.

The next response is to demonstrate reversing the order of
prompting.

Auto Xmit enable on CTS* [Y,N] = N? ^ <CR>
Stop Bits [1,2] = 2? . <CR> Value acceptable, exit
 interactive mode.
OK to proceed (y/n)? Y <CR> A carriage return is required.

Update Non-Volatile RAM (Y/N)? y
167-Bug>

Example 2

167-Bug>pf 1

Baud Rate [110,300,600,1200,2400,4800,9600,19200,38400] = 1200? .

OK to proceed (y/n)? y

Update Non-Volatile RAM (Y/N)? y
167-Bug>

Example 3

You may not want to save the changes permanently (NVRAM
update), but make a temporary change:

167-Bug>pf 1

Baud Rate [110,300,600,1200,2400,4800,9600,19200,38400] = 1200? .

OK to proceed (y/n)? y

Update Non-Volatile RAM (Y/N)? n
WARNING: No Update(s) made to Non-Volatile RAM

167-Bug>
3-149

Debugger Commands

3

Parameters Configurable by Port Format

Port base address:

Upon assigning a port, the option is provided to set the base
address. This is useful for support of modules with adjustable base
addressing. Entering no value selects the default base address
shown.

Baud rate:

You may choose from the following:

Note If a number base is not specified, the default is decimal,
not hexadecimal.

Parity type:

Parity may be on of the following

Even (choice E)
Odd (choice O)
None (disabled) (choice N)

Character width:

You may select 5-, 6-, 7-, or 8-bit characters.

Number of stop bits:

Only 1 and 2 stop bits are supported.

Automatic software handshake:

Current drivers have the capability of responding to
XON/XOFF characters sent to the debugger ports. Receiving an
XOFF causes a driver to cease transmission until an XON
character is received.

110 300 600

1200 2400 4800

9600 19200 38400
3-150

PF/NOPF - Port Format/Detach

3

Software handshake character values:

The values used by a port for XON and XOFF may be redeÞned
to be any 8-bit value. ASCII control characters or hexadecimal
values are accepted.

Assigning a New Port

Port Format supports a set of drivers for a number of different
modules and the ports on each. To assign one of these to a
previously unassigned port number, invoke the command with
that number. A message is then printed to indicate that the port is
unassigned and a prompt is issued to request the name of the
module (such as VME16X, VME050, etc.). Pressing the RETURN
key on the console at this point causes PF to list the currently
supported modules and ports. Once the name of the module
(board) has been entered, a prompt is issued for the name of the
port. After the port name has been entered, Port Format attempts to
supply a default configuration for the new port.

Once a valid port has been specified, default parameters are
supplied. The base address of this new port is one of these default
parameters. Before entering the interactive configuration mode,
you are allowed to change the port base address. Pressing the
RETURN key on the console retains the base address shown.

If the configuration of the new port is not fixed, then the interactive
configuration mode is entered. Refer to the section above regarding
configuring assigned ports. If the new port does have a fixed
configuration, then Port Format issues the "OK to proceed (y/n)?"
prompt immediately.

Port Format does not initialize any hardware until you have
responded with the letter "Y" to prompt "OK to proceed (y/n)?".
Pressing the BREAK key on the console any time prior to this step
or responding with the letter "N" at the prompt leaves the port
unassigned. This is only true of ports not previously assigned.
3-151

Debugger Commands

3

Example

Assigning port 3 to the MVME335 printer port.

167-Bug>PF 3 <CR>
Logical unit $03 unassigned

Name of board? <CR> Cause PF to list supported modules
 (boards), ports.
Boards and ports supported:

VME167: DEBUG,HOST,HOST1,HOST2,PTR

VME050: 1,2,PTR

VME335: 1,2,3,4,PTR

Name of board? VME335 <CR>Uppercase or lowercase accepted.
Name of port? PTR <CR>
Port base address = $FFFF3600? <CR>

(Interactive mode not entered because hardware has fixed configuration).

OK to proceed (y/n)? Y <CR>
167-Bug>

NOPF Port Detach

The NOPF command, "NOPF port", unassigns the port whose
number is "port". Only one port may be unassigned at a time.
Invoking the command without a port number, "NOPF", does not
unassign any ports.
3-152

PFLASH - Program FLASH Memory

3

PFLASH - Program FLASH Memory
Command Input

PFLASH ssaddr seaddr dsaddr [ieaddr] [; [A|R] [X]]

or

PFLASH ssaddr:count dsaddr [ieaddr] [; [B|W|L] [A|R] [X]]

Arguments

ssaddr Source starting address of the binary image to program
the FLASH memory with.

seaddr Source ending address of the binary image to program
the FLASH memory with.

dsaddr Destination starting address of the FLASH memory to
program the binary image to. On the MVME176/177,
this may be relative offset into the FLASH memory
array or the physical address that will apply when the
entire FLASH is mapped.

count The number of elements to program. The element size is
dependent on the size option (i.e., B|W|L). The default
element size is Byte.

ieaddr Instruction execution address (i.e., PC/IP). This address
points to a reset vector for MC68000 architectures.

Options

B|W|L These size options, Byte, Word, and Longword, can only
be used when the count argument is specified, that is,
with the ":" operator.

R|A These options allow the automatic reset (local) of the
hardware if the hardware supports it upon completion
of programming. The R option specifies resetting only
3-153

Debugger Commands

3

when the programming of the FLASH Memory is
completed error free. The A option specifies always
resetting upon completion of the programming.

X This option directs the FLASH Memory driver to always
execute the passed execution address, even on error.
This option is valid only when you specify the
instruction execution address.

The PFLASH command is available on 162Bug, 166Bug, 176Bug,
and 177Bug. The PFLASH command is used to program (load) the
FLASH memory with the desired application or program. The
given command line arguments are checked; for example, does the
destination range lie completely within the FLASH memory, are
there overlapping address spaces, are the address arguments
aligned. If an argument does not pass, an appropriate error
message is displayed and control is passed back to the monitor with
the FLASH memory contents undisturbed.

The next table lists the address and range alignment requirements
for 68K products that support FLASH memory.

If the programming agent is the debugger and it is resident in the
FLASH memory, it automatically relocates the FLASH memory
driver to RAM. The downloaded driver uses the board's system fail
LED and NVRAM to communicate programming errors. This
hardware notification of a FLASH memory programming error is

Table 3-2. FLASH Memory Address and Range Alignment

Product Alignment

MVME162 1-byte multiple

MVME172 1-byte multiple

MVME166 4-byte multiple

MVME176 4-byte multiple

MVME177 4-byte multiple
3-154

PFLASH - Program FLASH Memory

3

only necessary if you are reprogramming the programming agent's
text and data space. Otherwise, errors are communicated by means
of the programming terminal (serial I/O).

Upon error free completion of the FLASH memory programming,
control is passed back to the monitor. If the instruction execution
address argument is specified, control will be passed to this
address. If the programming agent is reprogrammed and the
instruction execution address argument is not specified, control
remains within the FLASH memory driver (do nothing, wait for
reset).

PFLASH reports the current physical address and the absolute
block number for each operation in progress: erasing,
programming, and verifying. On 176Bug and 177Bug, the messages
displayed may not appear to be based on the same destination
starting address that was entered. This happens because the
PFLASH command needs to switch the portion of the FLASH that
is visible in order to program it. If switching is required, the map
will be restored to the condition that existed before PFLASH was
entered.

The PFLASH command also resides in the MVME166 BootBug
product. The FLASH memory driver does not have to be
downloaded to the BootBug product, and all errors are displayed
on the programming terminal (serial I/O).

If the FLASH memory driver was downloaded, messages are not
displayed on the terminal. If return from the downloaded driver is
not possible, and the instruction execution or the local reset option
is not specified, upon successful completion, the driver blinks the
FAIL LED at the rate of once per 1/2 second. Upon any error the
driver illuminates the FAIL LED (no blinking).

If the FLASH memory driver was not downloaded, one or more of
the following messages may be displayed on the terminal:
3-155

Debugger Commands

3

FLASH Memory PreProgramming Error: Address-Alignment
FLASH Memory PreProgramming Error: Address-Range
FLASH Memory Programming Complete
FLASH Memory Programming Error: Zero-Phase
FLASH Memory Programming Error: Erase-Phase
FLASH Memory Programming Error: Write-Phase
FLASH Memory Programming Error: Erase-Phase_Time-Out
FLASH Memory Programming Error: Write-Phase_Time-Out
FLASH Memory Programming Error: Verify-Phase

Example

This example illustrates programming FLASH memory that is
outside the range (application area) of the product debugger. It
gives you a last chance prompt to make sure this is what you want
to do.

162-Bug>PFLASH 10000:80000 FF880000
Source Starting/Ending Addresses =00010000/0008FFFF

Destination Starting/Ending Addresses =FF880000/FF8FFFFF

Number of Effective Bytes =00080000 (&524288)

Program FLASH Memory (Y/N)? Y
FLASH Memory Programming Complete

162-Bug>
3-156

PS - Put RTC into Power Save Mode for Storage

3

PS - Put RTC into Power Save Mode for Storage
Command Input

PS

Description

The PS command is used to turn off the oscillator in the RTC chip,
MK48Txx. The MVME16X module is shipped with the RTC
oscillator stopped to minimize current drain from the onchip
battery. Normal cold-start of the MVME16X with the 16XBug
EPROMs installed gives the RTC a "kick start" to begin oscillation.
To disable the RTC, you must enter "PS".

The SET command restarts the clock. Refer to the SET command
for further information.

Example

167-Bug>PS
(Clock is in Battery Save Mode)
167-Bug>
3-157

Debugger Commands

3

RB/NORB - ROMboot Enable/Disable
Command Input

RB[;V]
NORB

Option

V Enables verbose mode operation as shown in the example
below.

Description

The RB command invokes the search for and booting from a
routine nominally encoded in on-board memory devices on the
MVME16X. However, the routine can be in other memory
locations, as detailed in the ENV command description elsewhere
in this manual. Refer also to the ROMboot function description and
example in Chapter 1.

NORB disables the search for a ROMboot routine, but does not
change the options chosen.

The default condition is with the ROMboot function disabled.

Examples

The following two examples assume the existence of a valid
ROMboot module at $10000.

167-Bug>rb

ROMboot in progress... To abort hit <BREAK>
FRI SEP 15 11:50:21.00 1989
167-Bug>

167-Bug>rb;v

ROMboot in progress... To abort hit <BREAK>

Direct Adr: FFC00000 FFC00000: Searching for ROMboot Module at: FFC00000
ROM : FFC00000 FFC7FFFC: Searching for ROMboot Module at: FFC7E000
Local RAM : 00000000 00FFFFFC: Searching for ROMboot Module at: 00010000
Executing ROMboot Module "TEST" at 00010000
3-158

RB/NORB - ROMboot Enable/Disable

3

FRI SEP 15 11:50:21.00 1989
167-Bug>

NORB disables the ROMboot function but does not change any
options chosen under RB.

Example

167-Bug> NORB
ROM boot disabled

167-Bug>
3-159

Debugger Commands

3

RD - Register Display
Command Input

RD {[+|-|=][dname][/]} {[+|-|=][reg1[-reg2]][/]} [;E]

Arguments

+ is a qualiÞer indicating that a device or register range is to be
added.

- is a qualiÞer indicating that a device or register range is to be
removed, except when used between two register names. In
this case, it indicates a register range.

= is a qualiÞer indicating that a device or register range is to be
set. This character followed by DEF restores the register mask
to select those registers originally displayed.

dname is a device name, or DEF. This is used to quickly enable or
disable all the registers of a device, or a functional grouping.
The available device/functional-group names are:

MPU Microprocessor Unit
DEF Default RD List
FPC Floating Point Unit
MMU Memory Management Unit
CPU Board Registers

/ is a required delimiter between device names and register
ranges.

reg1 is the Þrst register in a range of registers.
reg2 is the last register in a range of registers.
E selects an internal bank of registers that is updated upon every

exception, regardless of whether the exception occurred while
executing target code or the debugger itself. This option allows
you to get a glimpse of what was happening when a 167Bug
command caused an exception. These registers are not
accessible using other debugger commands.
3-160

RD - Register Display

3

Description

The RD command is used to display the target state, that is, the
register state associated with the target program (refer to the GO
command). The instruction pointed to by the target PC is
disassembled and displayed also. Internally, a register mask
specifies which registers are displayed when RD <CR> is executed.
At reset time, this mask is set to display the MPU registers only.
This register mask can be changed with the RD command.

The optional arguments allow you to enable or disable the display
of any register or group of registers. This is useful for showing only
the registers of interest, minimizing unnecessary data on the screen;
and also in saving screen space, which is reduced particularly when
registers of the Floating Point Unit (FPC) or Memory Management
Unit (MMU) are displayed.

Observe the following notes when specifying any arguments in the
command line:

1. The qualifier is applied to the next register range only.

2. If no qualifier is specified, a + qualifier is assumed, even for
DEF.

3. All device names should appear before any register names.

4. The command line arguments are parsed from left to right,
with each field
being processed after parsing; thus the sequence in which
qualifiers and registers are organized has an impact on the
resultant register mask.

5. When specifying a register range, REG1 and REG2 do not
have to be of the
same class.

6. The register mask used by RD is also used by all exception
handler routines, including the trace and breakpoint
exception handlers.
3-161

Debugger Commands

3

Ordering Sequence of MPU, DEF, FPC, and MMU Registers

MPU Registers

MC68040: The MPU registers in ordering sequence are:

Number and Type Mnemonic

 9 System Registers PC, SR, USP, MSP, ISP, VBR,
SFC, DFC, CACR

 8 Data Registers D0 - D7
 8 Address Registers A0 - A7

Total: 25 Registers.

MC68060: The MPU registers in ordering sequence are:

Number and Type Mnemonic

10 System Registers PC, SR, VBR, SSP, USP, SFC,
 DFC, CACR, PCR, BUSCR
 8 Data Registers D0 - D7
 8 Address Registers A0 - A7

Total: 26 Registers.

DEF Registers

MC68040, MC68060: The DEF registers in ordering sequence are:

Number and Type Mnemonic

10 System Registers PC, SR, VBR, SSP, USP, SFC,
 DFC, CACR, PCR, BUSCR
 8 Data Registers D0 - D7
 8 Address Registers A0 - A7

Total: 26 Registers.

FPC Registers

MC68040, MC68060: The FPC registers in ordering sequence are:
3-162

RD - Register Display

3

Number and Type Mnemonic

 3 System Registers FPCR, FPSR, FPIAR
 8 Data Registers FP0 - FP7

Total: 11 Registers.

MMU Registers

MC68040: The MMU registers in ordering sequence are:

Number and Type Mnemonic

 7 Address Translation Control URP, SRP, TC, DTT0, DTT1,
 ITT0, TT1
 1 Control/Status MMUSR

Total: 8 Registers.

MC68060: The MMU registers in ordering sequence are:

Number and Type Mnemonic

 7 Address Translation Control URP, SRP, TC, DTT0, DTT1,
 ITT0, TT
Total: 7 Registers.

Ordering Sequence of CPU Registers

The next subsections provide system-specific information about the
ordering sequence of CPU registers.

MVME166/167/176/177 Registers

For the MVME166/167/176/177, the CPU registers in ordering
sequence are:

Mnemonic Name of Register

IPL Interrupt Priority Level Register
IMLR Interrupt Mask Level Register
MMIEN Master Masters Interrupt Enable Register
VIEN VME2 Chip Interrupt Enable Register
3-163

Debugger Commands

3

VIST VME2 Chip Interrupt Status Register
PIEN PCC2 Chip Interrupt Enable Register
PIST PCC2 Chip Interrupt Status Register

Total: 7 Registers.

MVME162/MVME172 Registers

For the MVME162 and MVME172, the CPU registers in ordering
sequence are:

Mnemonic Name of Register

IPLR Interrupt Priority Level Register (MVME172
 only)
MMIEN Master Masters Interrupt Enable Register
VIEN VME2 Chip Interrupt Enable Register
VIST VME2 Chip Interrupt Status Register
PIEN Peripheral/Memory Controller Chip (MCC)

Interrupt Enable Register
PIST Peripheral/Memory Controller Chip (MCC)

Interrupt Status Register

Total: 5 Registers.

MMIEN, PIEN, and PIST Registers

The MMIEN, PIEN, and PIST registers are composite registers.
Their contents comprise bits from more than one register. The next
subsections provide system-specific information about the
MMIEN, PIEN and PIST registers.

MVME166/167/176/177 Registers

The MMIEN register comprises all of the master interrupt enables
on the CPU.

Bit #0 VME2 Chip Master Interrupt Enable
Bit #1 PCC2 Chip Master Interrupt Enable
3-164

RD - Register Display

3

The PIEN register comprises all of the interrupt enable bits within
the PCC2 chip.

Bit #0 Printer Port-BSY Interrupt Enable Bit
Bit #1 Printer Port-PE Interrupt Enable Bit
Bit #2 Printer Port-SELECT Interrupt Enable Bit
Bit #3 Printer Port-FAULT Interrupt Enable Bit
Bit #4 Printer Port-ACK Interrupt Enable Bit
Bit #5 SCSI Interrupt Enable Bit
Bit #6 LANC Error Interrupt Enable Bit
Bit #7 LANC Interrupt Enable Bit
Bit #8 Tick Timer #2 Interrupt Enable Bit
Bit #9 Tick Timer #1 Interrupt Enable Bit
Bit #10 GPIO Interrupt Enable Bit
Bit #11 Serial Modem Interrupt Enable Bit
Bit #12 Serial Receive Interrupt Enable Bit
Bit #13 Serial Transmit Interrupt Enable Bit

The PIST register comprises all of the interrupt status bits within
the PCC2 chip. This software register is read only.

Bit #0 Printer Port-BSY Status Bit
Bit #1 Printer Port-PE Status Bit
Bit #2 Printer Port-SELECT Status Bit
Bit #3 Printer Port-FAULT Status Bit
Bit #4 Printer Port-ACK Status Bit
Bit #5 SCSI Status Bit
Bit #6 LANC Error Status Bit
Bit #7 LANC Status Bit
Bit #8 Tick Timer #2 Status Bit
Bit #9 Tick Timer #1 Status Bit
Bit #10 GPIO Status Bit
Bit #11 Serial Modem Status Bit
Bit #12 Serial Receive Status Bit
Bit #13 Serial Transmit Status Bit

MVME162/MVME172 Registers

The MMIEN register comprises all of the master interrupt enables
on the CPU.
3-165

Debugger Commands

3

Bit #0 VME2 Chip Master Interrupt Enable
Bit #1 MC Chip Master Interrupt Enable

The PIEN register comprises all of the interrupt source enable bits
within the MCC and the IPIC chips. This register is 32 bits wide and
all bits that are not defined here are reserved and unused.

Bit #3 MCC, Tick Timer #4
Bit #4 MCC, Tick Timer #3
Bit #5 MCC, SCSI
Bit #6 MCC, LANC Error
Bit #7 MCC, LANC Normal
Bit #8 MCC, Tick Timer #2
Bit #9 MCC, Tick Timer #1
Bit #11 MCC, Parity Error
Bit #13 MCC, SCC
Bit #14 MCC, ABORT Switch
Bit #16 IPIC, Industry Pack A Interrupt 0
Bit #17 IPIC, Industry Pack A Interrupt 1
Bit #18 IPIC, Industry Pack B Interrupt 0
Bit #19 IPIC, Industry Pack B Interrupt 1

The PIST register comprises all of the interrupt status bits within
the PCC2 chip. This software register is read only.

Bit #0 Printer Port-BSY Status Bit
Bit #1 Printer Port-PE Status Bit
Bit #2 Printer Port-SELECT Status Bit
Bit #3 Printer Port-FAULT Status Bit
Bit #4 Printer Port-ACK Status Bit
Bit #5 SCSI Status Bit
Bit #6 LANC Error Status Bit
Bit #7 LANC Status Bit
Bit #8 Tick Timer #2 Status Bit
Bit #9 Tick Timer #1 Status Bit
Bit #10 GPIO Status Bit
Bit #11 Serial Modem Status Bit
Bit #12 Serial Receive Status Bit
Bit #13 Serial Transmit Status Bit
3-166

RD - Register Display

3

Example 1

Default display - MPU registers only:

167-Bug>RD
PC =00008000 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =0000DFFC MSP =0000EFFC ISP*=0000FFFC SFC =0=F0

DFC =0=F0 CACR=0=........

D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000

00008000 00000000 ORI.B #$0,D0

167-Bug>

Notes 1. An asterisk (*) following a stack pointer name
indicates that it is the active stack pointer.

2. The status register includes a mnemonic portion to
help in reading it:

 3. The source and destination function code registers (SFC,
DFC) include a two character mnemonic:

Trace Bits: 0 0 TR:OFF Trace off
0 1 TR:CHG Trace on change of ßow
1 0 TR:ALL Trace all states
1 1 TR:INV Invalid mode

S, M Bits: The bit name appears (S,M) if the
respective bit is set, otherwise a "."
indicates that it is cleared.

Interrupt Mask: A number from 0 to 7 indicates the
current processor priority level.

Condition Codes: The bit name appears (X,N,Z,V,C) if the
respective bit is set, otherwise a "."
indicates that it it cleared.
3-167

Debugger Commands

3

4. The Cache Control Register (CACR) shows
mnemonics for two bits: enable and freeze. The bit
name (E, F) appears if the respective bit is set, otherwise
a "." indicates that it is cleared.

Example 2

Set the display to D6 and A3 only.

167-Bug>RD =D6/A3 <CR>
D6 =00000000 A3 =00000000

00003000 4AFC ILLEGAL

167-Bug>

This sequence sets the display to D6 only, then adds register A3 to
the display.

Example 3

Restore all the MPU registers.

167-Bug>RD +MPU
PC =00008000 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =0000DFFC MSP =0000EFFC ISP*=0000FFFC SFC =0=F0

DFC =0=F0 CACR=0=........

D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

Function Code Mnemonic Description

0 F0 Undefined

1 UD User Data

2 UP User Program

3 F3 Undefined

4 F4 Undefined

5 SD Supervisor Data

6 SP Supervisor Program

7 CS CPU Space
3-168

RD - Register Display

3

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

00008000 00000000 ORI.B #$0,D0

167-Bug>

Note that an equivalent command would have been RD PC-A7 or
RD=DEF.

Example 4

Add all the FPC registers.

167-Bug>RD +FPC
PC =00008000 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =0000DFFC MSP =0000EFFC ISP*=0000FFFC SFC =0=F0

DFC =0=F0 CACR=0=........

D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

FPCR=00000000 FPSR=00000000-(CC=....) FPIAR=00000000

FP0 =0_0000_0000000000000000= 0.0000000000000000_E+0000

FP1 =0_0000_0000000000000000= 0.0000000000000000_E+0000

FP2 =0_0000_0000000000000000= 0.0000000000000000_E+0000

FP3 =0_0000_0000000000000000= 0.0000000000000000_E+0000

FP4 =0_0000_0000000000000000= 0.0000000000000000_E+0000

FP5 =0_0000_0000000000000000= 0.0000000000000000_E+0000

FP6 =0_0000_0000000000000000= 0.0000000000000000_E+0000

FP7 =0_0000_0000000000000000= 0.0000000000000000_E+0000

00008000 00000000 ORI.B #$0,D0

167-Bug>

The floating point data registers are always displayed in extended
precision and in scientific notation format. The floating point status
register display includes a mnemonic portion for the condition
codes. The bit name appears (N, X, I, NAN) if the respective bit is
set, otherwise a "." indicates that it is cleared.

Example 5

Display only the MMU registers.
3-169

Debugger Commands

3

167-Bug>RD =MMU
URP =00000000 SRP =00000000 TC =00000000 DTT0 =00000000

DTT1 =00000000 ITT0 =00000000 ITT1 =00000000

MMUSR=00000000=CW.....

00008000 00000000 ORI.B #$0,D0

167-Bug>

The MMUSR register above includes a mnemonic portion. The bits
are:

Example 6

Remove D3 through D5 and A2, and add FPSR and FP0, starting
with the default display.

167-Bug>RD -D3-D5/-A2/FP0/FPSR <CR>
PC =00008000 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =0000DFFC MSP =0000EFFC ISP*=0000FFFC SFC =0=F0

DFC =0=F0 CACR=0=........

D0 =00000000 D1 =00000000 D2 =00000000 D6 =00000000

D7 =00000000 A0 =00000000 A1 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

FPSR=00000000-(CC=....)

FP0 =0_0000_0000000000000000= 0.0000000000000000_E+0000

00008000 00000000 ORI.B #$0,D0

167-Bug>

B Bus Error
G Global
U1 User Page Attribute 1
U0 User Page Attribute 0
S Supervisor Only
CM Cache Mode (2 bits) CW,CC,IN or IS
M ModiÞed
W Write Protected
T Transparent Translation Register

Hit
R Resident
3-170

RD - Register Display

3

Note that if the current register display had differed from the
default, the same results could be acquired by entering:

 RD=DEF/-D3-D5/-A2/FP0/FPSR <CR>
3-171

Debugger Commands

3

REMOTE - Connect Remote Modem to CSO
Command Input

REMOTE

Description

The REMOTE command duplicates the remote operation modem
functions available from the "system" mode menu command, entry
number 4 (see Initiate Service Call in Appendix A). It is only
accessible when the 16XBug is in "system" mode. Refer to the
MENU command and to Appendix A for details on remote
operation.
3-172

RESET - Cold/Warm Reset

3

RESET - Cold/Warm Reset
Command Input

RESET

Description

The RESET command allows you to specify the level of reset
operation that will be in effect when a RESET exception is detected
by the processor. A reset exception can be generated by pressing the
RESET switch on the MVME16X front panel.

Two RESET levels are available:

Note If the MVME16X is the system controller, pressing the
RESET switch resets all the modules in the system,
including disk controllers like the MVME320 or
MVME327A. This may cause the disk controller
configuration to be out of phase with respect to the
disk configuration tables in memory.

Example

167-Bug> RESET <CR>
Cold/Warm Reset [C,W] = C? W <CR> Set to warm start.
167-Bug>

Press the RESET switch, actually forcing a warm start.

COLD This is the standard level of operation, and is the
one defaulted to on power-up. In this mode, all the
static variables are initialized every time a reset is
done.

WARM In this mode, all the static variables are preserved
when a reset exception occurs. This is convenient
for keeping breakpoints, offset register values, the
target register state, and any other static variables
in the system.
3-173

Debugger Commands

3

Copyright Motorola Inc. 1990, 1991, All Rights Reserved

MVME167 Debugger/Diagnostics Release Version 2.8 04/04/91

WARM Start

If the board is in system mode (refer to Appendix A), the
diagnostics run a short self-test, then the system menu comes up.
You can select the debugger. Then the 167-Diag> prompt comes up.
Using the Switch Directories (SD) command gets you to the
debugger itself.

167-Bug>
3-174

RL - Read Loop

3

RL - Read Loop
Command Input

RL address [;[B|W|L]]

Options

B Byte

W Word (default)

L Longword

RL establishes an infinite loop consisting of a processor load
instruction targeted to the given address and of the given length,
followed by a branch instruction back to the load. Hence the
address is accessed repeatedly in rapid succession.

The read loop can only be terminated by an external occurrence,
such as an interrupt (usually an ABORT), a RESET from the RESET
switch, or power cycle.
3-175

Debugger Commands

3

RM - Register Modify
Command Input

RM [reg]

Arguments

reg is the mnemonic for the particular register, the same as is
displayed. If reg is not used, all the registers are displayed in
sequence.

Description

RM allows you to display and change the target registers. It works
in essentially the same way as the MM command, and the same
special characters are used to control the display/change session
(refer to the MM command).

Example 1

167-Bug>RM D5
D5 =12345678? ABCDEF^ Modify register and back up.
D4 =00000000? 3000. Modify register and exit.
167-Bug>

Example 2

167-Bug>RM SFC

SFC =7=CS ? 1= Modify register and reopen.
SFC =1=UD ? . Exit.
167-Bug>

The RM command is also used to modify the registers of the
floating point unit.

Example 3

167-Bug>RM FPSR
FPSR =00000000-(CC=....) ? F000000
FPIAR=00000000 ? <CR>
3-176

RM - Register Modify

3

FP0 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF?0_1234_5
FP1 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF?1.25E3
FP2 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF?1_7F_3FF
FP3 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF?1100_9261_3
FP4 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF?&564
FP5 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF?0_5FF_F0AB
FP6 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF?3.1415
FP7 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF?-2.74638369E-36.

167-Bug>

167-Bug>RD +FPC

PC =00008000 SR =2700=TR:OFF_S._7_..... VBR =00000000
USP =0000DFFC MSP =0000EFFC ISP*=0000FFFC SFC =0=F0
DFC =0=F0 CACR=0=........
D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
FPCR =00000000 FPSR =0F000000-(CC=NZI[NAN]) FPIAR=00000000
FP0 =0_1234_5000000000000000= 6.6258385370745493_E-3530
FP1 =0_4009_9C40000000000000= 1.2500000000000000_E+0003
FP2 =1_3FFF_BFF0000000000000=-1.4995117187500000_E+0000
FP3 =1_3C9D_BCEECF12D061BED9=-3.0000000000000000_E-0261
FP4 =0_4008_8D00000000000000= 5.6400000000000000_E+0002
FP5 =0_41FF_F855800000000000= 2.6012612226385672_E+0154
FP6 =0_4000_C90E5604189374BC= 3.1415000000000000_E+0000
FP7 =1_3F88_E9A2F0B8D678C318=-2.7463836900000000_E-0036
00008000 00000000 ORI.B #$0,D0
167-Bug>

The RM command is also used to modify the memory management
unit registers.

Example 4

167-Bug>RM URP
URP =00000000?<CR>
SRP =00000000?<CR>
TC =00000000?87654321
DTT0 =00000000?<CR>
DTT1 =00000000?<CR>
3-177

Debugger Commands

3

ITT0 =00000000?<CR>
ITT1 =00000000?<CR>

MMUSR=00000000=CW.....? .

167-Bug>RD +MMU
PC =00008000 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =0000DFFC MSP =0000EFFC ISP*=0000FFFC SFC =0=F0

DFC =0=F0 CACR=0=........

D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

URP =00000000 SRP =00000000 TC =87654321 DTT0 =00000000

DTT1 =00000000 ITT0 =00000000 ITT1 =00000000

MMUSR=00000000=CW.....

00008000 00000000 ORI.B #$0,D0

167-Bug>
3-178

RS - Register Set

3

RS - Register Set
Command Input

RS reg [exp|address]

Argument

reg The mnemonic for the particular register.

Description

The RS command allows you to change the data in the specified
target register. It works in essentially the same way as the RM
command.

Example 1

167-Bug>RS D0 12345678 Change D0.
D0 =12345678

167-Bug>

Example 2

167-Bug>RS D0 Examine D0.
D0 =12345678

167-Bug>

Example 3

The RS command is also used to change the data in the floating
point unit registers.

167-Bug>rs fp0 3.89e10;d

FP0 =0_422_21D3DCA000000= 3.8900000000000000_E+0010

167-Bug>
3-179

Debugger Commands

3

SD - Switch Directories
Command Input

SD

Description

This command is used to change from the debugger directory to the
diagnostic directory or from the diagnostic directory to the
debugger directory.

The commands in the current directory (the directory that you are
in at the particular time) may be listed using the Help (HE)
command.

The way the directories are structured, the debugger commands are
available from either directory but the diagnostic commands are
only available from the diagnostic directory.

Example 1

167-Bug>SD <CR>
167-Diag> You have changed from the debugger
 directory to the diagnostic directory,
 as can be seen by the "167-Diag>" prompt.

Example

167-Diag>SD <CR>
167-Bug> You are now back in the debugger
 directory.
3-180

SET - Set Time and Date

3

SET - Set Time and Date
Command Input

SET mmddyyhhmm

or

SET n;C

Option

C Calibrate (not available on all CPUs).

Description

The SET command accepts a composite inter parameter formatted
as 2 digits each of month, day, year, hour, and minutes. Hours
should be in Military (24-hr.) form. The parameter is validated to
ensure that it corresponds to a legal date and time, and if valid, the
time-of-day clock is updated to correspond, and a formatted date
and time message is displayed as a check. If still incorrect, the SET
command may be repeated.

To display the current date and time of day, refer to the TIME
command.

The option C allows expert users to calibrate the Real Time of Day
Clock on CPU products that support calibration. The following
products use the MK48Txx family of Real Time Clocks. These
clocks can be adjusted with a value of +/-31.

MVME162
MVME172
MVME166
MVME167
MVME176
MVME177

Refer to the appropriate MK48Txx manual for timing and
adjustment information.
3-181

Debugger Commands

3

Example 1

Set a date and time of May 11, 1995 2:05 PM.

167-Bug>SET 0511951405<CR>
MON MAY 11 14:05:00.00 1995

167-Bug>

Example 2

Set "no calibration".

167-Bug>set 0;c
Current Calibration = 0

167-Bug>

Example 3

Set calibration to +25.

167-Bug>set 25;c
Current Calibration = 25

167-Bug>

Example 4

Set calibration to -25.

167-Bug>set -25;c
Current Calibration = -25

167-Bug>
3-182

SFLASH - Switch FLASH

3

SFLASH - Switch FLASH
Command Input

SFLASH ;[L|U]

Options

The L and U options specify which half of FL.ASH appears:

If no option is entered, SFLASH changes from the current half to
the other half. A message is displayed to indicate the change.

Description

The SFLASH command is available on 176Bug and 177Bug only.
SFLASH switches the half of the FLASH array that appears in the
visible address space. This command assists the user in accessing
the 4MB FLASH memory array. The SFLASH command is valid
only when jumper J8 (MVME177) or jumper J3 (MVME176) is
installed.

L Switch to the lower half of FLASH.

U Switch to the upper half of FLASH.
3-183

Debugger Commands

3

SYM - Symbol Table Attach
Command Input

SYM [address]

Argument

address This argument tells the bug where the symbol table
begins in memory.

Description

The SYM command allows you to attach a symbol table to the bug.
Once a symbol table has been attached, all displays of physical
addresses are first looked up in the symbol table to see if th+e
address is in range of any of the symbols (symbol data). If the
address is in range, it is displayed with the corresponding symbol
name and offset (if any) from the symbol's base address (symbol
data). In addition to the display, any command line input that
supports an address as an argument can now take a symbol name
for the address argument. The address argument is first looked up
in the symbol table to see if it matches any of the addresses (symbol
data) before conversion takes place.

It is your responsibility to load the symbol table into memory. This
command is analogous to the system call .SYMBOLTA. Refer to
Chapter 5 for the description of the system call.

The default address of the symbol table is your default program
counter. The symbol table must be word-aligned. The format of the
symbol table is shown on the following page:.

The Number of Entries in Symbol Table field governs the size of the
symbol table. The Symbol Data field must be longword-aligned and
the Symbol Name field must consist only of printable characters
(ASCII codes $21 through $7E). The symbol name may be
terminated with a null ($00) character. The symbol data fields must
be ascending in value (sorted numerically).
3-184

SYM - Symbol Table Attach

3

Upon execution of the command, the bug performs a sanity check
on the symbol table with the above rules. The symbol table is not
attached if the check fails.

Example 1

167-Bug>sym e000 Attach symbol table at address $0000E000.
167-Bug>

Example 2

167-Bug>md 0 ;l

_ldchar+$0000 00010203 04050607 08090A0B 0C0D0E0F
_ldchar+$0010 10111213 14151617 18191A1B 1C1D1E1F
167-Bug>

Example 3

167-Bug>md _ldchar ;l

BITS 31 24 23 16 15 8 7 0

$00 Number of Entries in Symbol Table
$04 Symbol Data #0
$08 Symbol Name #0

$20 Symbol Data #1
$24 Symbol Name #1
3-185

Debugger Commands

3

_ldchar+$0000 00010203 04050607 08090A0B 0C0D0E0F
_ldchar+$0010 10111213 14151617 18191A1B 1C1D1E1F
167-Bug>

Example 4

167-Bug>md _ldchar+4 ;l

_ldchar+$0004 04050607 08090A0B 0C0D0E0F 10111213
_ldchar+$0014 14151617 18191A1B 1C1D1E1F 20212223 !"#
167-Bug>

Example 5

167-Bug>bf _ldchar:8 0 ;l
Effective address: _ldchar+$0000

Effective count : &32

167-Bug>md _ldchar ;l

_ldchar+$0000 00000000 00000000 00000000 00000000
_ldchar+$0010 00000000 00000000 00000000 00000000
167-Bug>
3-186

NOSYM - Symbol Table Detach

3

NOSYM - Symbol Table Detach
Command Input

NOSYM

Description

The NOSYM command allows you to detach a symbol table from
the bug.

This command is analogous to the System Call .SYMBOLTD. Refer
to Chapter 5 for the description of the System Call.

Example

167-Bug>nosymDetach symbol table.
167-Bug>
3-187

Debugger Commands

3

SYMS - Symbol Table Display/Search
Command Input

SYMS [symbol-name]|[;S]

Description

The SYMS command allows you to display the attached symbol
table, search the attached symbol table for a particular symbol-
name, search the attached symbol table for a set of symbols , or
display the attached symbol table in lexicographic (ascending
ASCII) order (by using the S option). A symbol table must be
attached for this command to execute. Refer to the SYM command
description.

Example 1

167-Bug>syms Display attached symbol table.
_stchar 00001020

_ldchar 000028A0

_sizmemory 00004930

167-Bug>

Example 2:

167-Bug>syms _ldchar Search attached symbol table for
_ldchar 000028A0 symbol.
167-Bug>

Example 3

167-Bug>syms _s Search attached symbol table for
_stchar 00001020 set of symbols.
_sizmemory 00004930

167-Bug>
3-188

SYMS - Symbol Table Display/Search

3

Example 4

167-Bug>syms;s Display attached symbol in
_ldchar 000028A0 lexicographic order.
_sizmemory 00004930

_stchar 00001020

167-Bug>
3-189

Debugger Commands

3

T - Trace
Command Input

T [count]

Description

The T command allows execution of one instruction at a time,
displaying the target state after execution. T starts tracing at the
address in the target PC. The optional count field (which defaults to
1 if none entered) specifies the number of instructions to be traced
before returning control to 16XBug.

Breakpoints are monitored (but not inserted) during tracing for all
trace commands. Instruction memory must be writable. In all cases,
if a breakpoint with 0 count is encountered, control is returned to
16XBug.

The trace functions are implemented with the trace bits (T0, T1) in
the MC68040 status register, and in the T-bit in the MC68060 status
register. These bits should not be modified while using the trace
commands.

Example

The following program resides at location $10000.

167-Bug>MD 10000;DI
00010000 2200 MOVE.L D0,D1

00010002 4282 CLR.L D2

00010004 D401 ADD.B D1,D2

00010006 E289 LSR.L #$1,D1

00010008 66FA BNE.B $10004

0001000A E20A LSR.B #$1,D2

0001000C 55C2 SCS.B D2

0001000E 60FE BRA.B $1000E

167-Bug>

Initialize PC and D0:
3-190

T - Trace

3

167-Bug>rm pc <CR>
PC =00008000 ? 10000. <CR>
167-Bug>rm D0 <CR>
D0 =00000000 ? 8F41C. <CR>
167-Bug>

Display target registers and trace one instruction:

167-Bug>RD
PC =00010000 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........

D0 =0008F41C D1 =00000000 D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

00010000 2200 MOVE.L D0,D1

167-Bug>

167-Bug>T
PC =00010002 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........

D0 =0008F41C D1 =0008F41C D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

00010002 4282 CLR.L D2

167-Bug>

Trace next instruction:

167-Bug><CR>
PC =00010004 SR =2704=TR:OFF_S._7_..Z.. VBR =00000000

USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........

D0 =0008F41C D1 =0008F41C D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
3-191

Debugger Commands

3

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

00010004 4D01 ADD.B D1,D2

167-Bug>

Trace the next two instructions:

167-Bug>T2
PC =00010006 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........

D0 =0008F41C D1 =0008F41C D2 =0000001C D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

00010006 E289 LSR.L #$1,D1

PC =00010008 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........

D0 =0008F41C D1 =00047A0E D2 =0000001C D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

00010008 66FA BNE.B $10004

167-Bug>
3-192

TA - Terminal Attach

3

TA - Terminal Attach
Command Input

TA [port]

Description

Terminal Attach allows you to assign any serial port to be the
console. The port specified must already be assigned (refer to the
Port Format (PF) command).

Any serial port selected as the console port is saved/retained in
Battery Backed Up RAM (BBRAM), also known as Non-Volatile
RAM (NVRAM). This console remains in effect through power-up
or any reset.

Note The Reset and Abort option returns the console port to
the default port ("DEBUG" port, LUN 0).

Any time the console port is moved, you are prompted to update
the NVRAM with the new port configuration parameters.

Example 1

Select port 2 (logical unit #02) as console.

167-Bug>TA 2 <CR> Console changes to port 2 and
Console = [02: VME167- "HOST1"] no prompt appears, unless
 port 2 was already the
 Non-Volatile RAM (Y/N)? y console. All key-Update
 board exchanges and displays are
 now made through port 2. This
 remains in effect (through power-up
 or reset)until either another TA
 command has been issued or the
 reset and abort option has been

invoked.
3-193

Debugger Commands

3

Example 2

Restore console to port selected at power-up.

167-Bug>TA <CR> Prompt now appears at
Console = [00: VME167- "DEBUG"] terminal connected to port 0.

Update Non-Volatile RAM (Y/N)? y

Example 3

167-Bug>ta 1
Console = [01: VME167- "HOST"]

Update Non-Volatile RAM (Y/N)? y

Example 4

You may not want to save/retain the console change permanently
(NVRAM update), but make a temporary change:

167-Bug>ta 1
Console = [01: VME167- "HOST"]

Update Non-Volatile RAM (Y/N)? n
3-194

TC - Trace on Change of Control Flow

3

TC - Trace on Change of Control Flow
Command Input

TC [count]

Description

The TC command starts execution at the address in the target PC
and begins tracing upon the detection of an instruction that causes
a change of control flow, such as JSR, BSR, RTS, etc. This means that
execution is in real time until a change of flow instruction is
encountered. The optional count field (which defaults to 1 if none
entered) specifies the number of change of flow instructions to be
traced before returning control to 16XBug.

Breakpoints are monitored (but not inserted) during tracing for all
trace commands, which allows the use of breakpoints in ROM or
write protected memory. Note that the TC command recognizes a
breakpoint only if it is at a change of flow instruction. In all cases, if
a breakpoint with 0 count is encountered, control is returned to
16XBug.

The trace functions are implemented with the trace bits (T0, T1) in
the MC68040 status register, and in the T-bit in the MC68060 status
register. These bits should not be modified while using the trace
commands.

Example

The following program resides at location $10000.

167-Bug>MD 10000;DI
00010000 2200 MOVE.L D0,D1

00010002 4282 CLR.L D2

00010004 D401 ADD.B D1,D2

00010006 E289 LSR.L #$1,D1

00010008 66FA BNE.B $10004

0001000A E20A LSR.B #$1,D2
3-195

Debugger Commands

3

0001000C 55C2 SCS.B D2

0001000E 60FE BRA.B $1000E

167-Bug>

Initialize PC and D0:

167-Bug>rm pc <CR>
PC =00008000 ? 10000. <CR>
167-Bug>rm D0 <CR>
D0 =00000000 ? 8F41C. <CR>
167-Bug>

Trace on change of flow:

167-Bug>TC
00010008 66FA BNE.B $10004

PC =00010004 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........

D0 =0008F41C D1 =00047A0E D2 =0000001C D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

00010004 4D01 ADD.B D1,D2

167-Bug>

Note that the above display also shows the change of flow
instruction.
3-196

TIME - Display Time and Date

3

TIME - Display Time and Date
Command Input

TIME [;[C|L|O]]

Options

All the following options are exclusive:

C Displays the current calibration settings of the Real Time of
Day Clock on CPU products that support calibration (refer
to the SET command).

L Recalls the command. The data and time is displayed on the
same line, continuously updated. An abort or break returns
you back to the monitor.

O Puts the real-time clock into an on-shelf mode (clock not
running).

Description

This command presents the date and time in ASCII characters to the
console.

To initialize the time-of-day clock, refer to the SET command.

Example 1

A date and time of May 11, 1985 2:05:32.7 would be displayed as:

167-Bug>TIME <CR>
MON MAY 11 14:05:32.70 1985

167-Bug>

Example 2

No calibration is set.

167-Bug>time;c
Current Calibration = 0

167-Bug>
3-197

Debugger Commands

3

Example 3

Calibration is set to +25.

167-Bug>time;c
Current Calibration = 25

167-Bug>

Example 4

Calibration is set to -25.

167-Bug>time;c
Current Calibration = -25

167-Bug>
3-198

TM - Transparent Mode

3

TM - Transparent Mode
Command Input

TM [port] [escape]

Arguments

port The optional port number allows you to specify which
port is the "host" port. If omitted, port 1 is assumed.

escape The optional escape argument allows you to specify the
character to be used as the exit character. This can be
entered in three different formats:

Description

TM essentially connects the current console serial port and the port
specified in the command (default is the host port) together,
allowing you to communicate with a host computer. A message
displayed by TM shows the current escape character, i.e., the
character used to exit the transparent mode. The two ports remain
"connected" until the escape character is received by the console
port. The escape character is not transmitted to the host, and at
power-up or reset it is initialized to $01=^A.

The ports do not have to be at the same baud rate, but the console
port baud rate should be equal to or greater than the host port baud
rate for reliable operation. To change the baud rate use the Port
Format (PF) command.

If the port number is omitted and the escape argument is entered as
a numeric value, precede the escape argument with a comma to
distinguish it from a port number.

ASCII code : $03 Set escape character to ^C
control character : ^C Set escape character to ^C
ASCII character : 'c Set escape character to c
3-199

Debugger Commands

3

Example 1

167-Bug>TM <CR> Enter TM.
Escape character: $01=^A Exit code is always displayed.
<^A>

Example 2:

167-Bug>TM ^g <CR> Enter TM and set the escape
Escape character: $07=^G character to ^G (CTRL G).
<^G>
167-Bug>
3-200

TT - Trace to Temporary Breakpoint

3

TT - Trace to Temporary Breakpoint
Command Input

TT address

Description

TT sets a temporary breakpoint at the specified address and traces
until a breakpoint with 0 count is encountered. The temporary
breakpoint is then removed (TT is analogous to the GT command)
and control is returned to 16XBug. Tracing starts at the target PC
address.

Breakpoints are monitored (but not inserted) during tracing for all
trace commands. Instruction memory must be writable. If a
breakpoint with 0 count is encountered, control is returned to
16XBug.

The trace functions are implemented with the trace bits (T0, T1) in
the MC68040 status register, and in the T-bit in the MC68060 status
register. These bits should not be modified while using the trace
commands.

Example

The following program resides at location $10000.

167-Bug>MD 10000;DI
00010000 2200 MOVE.L D0,D1

00010002 4282 CLR.L D2

00010004 D401 ADD.B D1,D2

00010006 E289 LSR.L #$1,D1

00010008 66FA BNE.B $10004

0001000A E20A LSR.B #$1,D2

0001000C 55C2 SCS.B D2

0001000E 60FE BRA.B $1000E

167-Bug>

Initialize PC and D0:
3-201

Debugger Commands

3

167-Bug>rm pc <CR>
PC =00008000 ? 10000. <CR>
167-Bug>rm D0 <CR>
D0 =00000000 ? 8F41C. <CR>
167-Bug>

Display target registers and trace to temporary breakpoint:

167-Bug>rd
PC =00010000 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........

D0 =0008F41C D1 =00000000 D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

00010000 2200 MOVE.L D0,D1

167-Bug>

167-Bug>tt 10008
PC =00010002 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........

D0 =0008F41C D1 =0008F41C D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

00010002 4282 CLR.L D2

PC =00010004 SR =2704=TR:OFF_S._7_..Z.. VBR =00000000

USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........

D0 =0008F41C D1 =0008F41C D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

00010004 D401 ADD.B D1,D2

PC =00010006 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........

D0 =0008F41C D1 =0008F41C D2 =0000001C D3 =00000000
3-202

TT - Trace to Temporary Breakpoint

3

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

00010006 E289 LSR.L #$1,D1

At Breakpoint

PC =00010008 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0

DFC =0=F0 CACR =0=........

D0 =0008F41C D1 =0008F41C D2 =0000001C D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC

00010008 66FA BNE.B $10004

167-Bug>
3-203

Debugger Commands

3

VE - Verify S-Records Against Memory
Command Input

VE [port] [address] [;[X][C]] [= text]

Arguments

port The optional port number "port" allows you to specify
which port is to be used for the downloading. If the port
number is not specified but the address option is
specified, VE must be separated from address by two
commas. If this number is omitted, port 1 is assumed.

address The optional address field allows you to enter an offset
address which is to be added to the address contained in
the address field of each record. This causes the records
to be compared to memory at different locations than
would normally occur. The contents of the automatic
offset register are not added to the S-record addresses.
(For information on S-records, refer to Appendix C.)

text The optional text field, entered after the equals sign (=),
is sent to the host before 16XBug begins to look for S-
records at the host port. This allows you to send a
command to the host device to initiate the download.
This text should NOT be delimited by any kind of quote
marks. Text is understood to begin immediately
following the equals sign and terminate with the
carriage return. If the host is operating full duplex, the
string is also echoed back to the host port by the host
and appears on your terminal screen.

Options

 More than one may be used:
3-204

VE - Verify S-Records Against Memory

3

Description

This command is identical to the LO command with the exception
that data is not stored to memory but merely compared to the
contents of memory.

The VE command accepts serial data from a host system in the form
of a file of Motorola S-records and compares it to data already in the
MVME16X memory. If the data does not compare, then you are
alerted via information sent to the terminal screen.

In order to accommodate host systems that echo all received
characters, the above-mentioned text string is sent to the host one
character at a time and characters received from the host are read
one at a time. After the entire command has been sent to the host,
VE keeps looking for an <LF> character from the host, signifying
the end of the echoed command. No data records are processed
until this <LF> is received. If the host system does not echo
characters, VE still keeps looking for an <LF> character before data
records are processed. For this reason, in situations where the host
system does not echo characters, it is required that the first record
transferred by the host system be a header record. The header
record is not used, but the <LF> after the header record serves to
break VE out of the loop so that data records are processed.

During a verify operation, data from an S-record is compared to
memory beginning with the address contained in the S-record
address field (plus the offset address, if it was specified). If the
verification fails, then the non-comparing record is set aside until

C Ignore checksum. A checksum for the data contained within an
S-Record is calculated as the S-record is read in at the port.
Normally, this calculated checksum is compared to the
checksum contained within the S-Record and if the compare
fails an error message is sent to the screen on completion of the
download. If this option is selected, then the comparison is not
made.

X Echo. Echoes the S-records to your terminal as they are read in
at the host port.
3-205

Debugger Commands

3

the verify is complete and then it is printed out to the screen. If three
non-comparing records are encountered in the course of a verify
operation, then the command is aborted.

If a non-hex character is encountered within the data field of a data
record, then the part of the record which had been received up to
that time is printed to the screen and the 16XBug error handler is
invoked to point to the faulty character.

As mentioned, if the embedded checksum of a record does not
agree with the checksum calculated by 16XBug AND if the
checksum comparison has not been disabled via the C option, then
an error condition exists. A message is output stating the address of
the record (as obtained from the address field of the record), the
calculated checksum, and the checksum read with the record. A
copy of the record is also output. This is a fatal error and causes the
command to abort.

Examples

This short program was developed on a host system.

1 * Test Program.
2 *
3 65040000 ORG $65040000
4
5 65040000 7001 MOVEQ.L #1,D0
6 65040002 D088 ADD.L A0,D0
7 65040004 4A00 TST.B D0
8 65040006 4E75 RTS
9 END
****** TOTAL ERRORS 0--
****** TOTAL WARNINGS 0--

Then this program was compiled and converted into an S-Record
file named TEST.MX as follows:

S00F00005445535453335337202001015E
S30D650400007001D0884A004E75B3
S7056504000091

This file was downloaded into memory at address $40000. The
program may be examined in memory using the MD command.
3-206

VE - Verify S-Records Against Memory

3

167-Bug>MD 40000:4;DI
00040000 7001 MOVEQ.L #1,D0

00040002 D088 ADD.L A0,D0

00040004 4A00 TST.B D0

00040006 4E75 RTS

167-Bug>

Suppose you want to make sure that the program has not been
destroyed in memory. The VE command is used to perform a
verification.

167-Bug>VE -65000000 ;x=copy TEST.MX,#
S00F00005445535453335337202001015E

S30D650400007001D0884A004E75B3

S7056504000091

Verify passes.

167-Bug>

The verification passes. The program stored in memory was the
same as that in the S-record file that had been downloaded.

Now change the program in memory and perform the verification
again.

167-Bug>M 40002
00040002 D088 ? D089 .
167-Bug>VE -65000000 ;x=copy TEST.MX,#
S00F00005445535453335337202001015E

S30D650400007001D0884A004E75B3

S7056504000091

The following record(s) did not verify

S30D65040000------88--------B3
167-Bug>

The byte which was changed in memory does not compare with the
corresponding byte in the S-record.
3-207

Debugger Commands

3

VER - Revision/Version Display
Command Input

VER [;[E]]

Option

E Used for components/subsystems that may have lengthy
data arrays associated with the identification of it. The data
array would be displayed as a memory dump (see the MD
command).

Description

This command is used to display the various revisions and versions
of the host's hardware subsystems. The minimal display will
always display the revision and date of the Debugger/Diagnostics
firmware package. The various subsystems can be viewed as
components that are interrogative in nature.

The appropriate hardware/data manual would need to be
consulted to translate the physical revision/version to its logical
revision/version.

Example

167-Bug>VER
Debugger/Diagnostics Type/Revision..................=MVME167/1.5
Debugger/Diagnostics Revision Date..................=08/24/92 (IR01
MicroProcessor Type/Speed.........................=MC68040/25Mhz
Memory Controller #1 ID/Revision....................=80/01
Memory Configuration #1.............................=00
Memory Controller #2 ID/Revision....................=Not-Present
Peripheral Controller ID/Revision...................=20/00
VMEbus Controller ID/Revision.......................=10/00
LAN Coprocessor I82596 ROM Signature................=6C335394
SCSI Coprocessor NCR53C710 Revision.................=00
Serial Coprocessor CL-CD2401 Revision...............=07
167-Bug>
3-208

WL - Write Loop

3

WL - Write Loop
Input Command

WL address:data;[B|W|L]

Options

B Byte

W Word

L Longword

Description

WL establishes an infinite loop consisting of a processor store
instruction targeted to the given address and of the given length,
followed by a branch instruction back to the store. The defined data
is therefore stored repeatedly into the defined location in rapid
succession.

The write loop can only be terminated by an external occurrence,
such as an interrupt (usually an ABORT), a RESET from the RESET
switch, or power cycle.
3-209

Debugger Commands

3

3-210

Index
Numerics
16XBug

command set 3-1
generalized exception handler 2-15
implementation 1-3
vector table and workspace 2-10

16X-Bug> 2-1

A
AB command 3-5
abort 1-12
address 2-2
address formats 2-4
Address Resolution Protocol (ARP) 1-23
arguments 2-2
arithmetic operators 2-3
ARP (see Address Resolution Protocol)

1-23
AS command 3-6
ASCII

string 2-2, 3-54
assembler

disassembler 2-8
assembler, one-line 3-6
assertion

SYSFAIL* 1-13
assigning new port 3-151
attach

printer 3-144
symbol table 3-184
terminal 3-193

auto boot, network 1-11
auto Xmit enable 3-149

autoboot 1-5, 3-5
automatic bootstrap operating sys-

tem/no autoboot 3-5

B
Backus-Naur 2-2
base

and top addresses 2-6
identifier 2-3

battery 3-157
Battery Backed Up RAM (BBRAM) 3-56
baud rate 3-34, 3-147
BC command 3-7
BF command 3-9
BH command (bootstrap and halt) 1-18,

3-12
BI command 3-14
binary number 2-3
block of memory

compare 3-7
fill 3-9
initialize 3-14
move 3-16
search 3-25
verify 3-30

blocks
versus sectors 1-16

BM command 3-16
BO command (bootstrap operating sys-

tem) 1-18, 3-19
board

information block, configure 3-37
boldface strings 2-2
IN-211

Index

I
N
D
E
X

boot
automatic 3-5
BOOTP protocol module 1-23
device, select alternate 3-109
from on-board memory devices

3-158
halt, network 3-120
network 3-122

boot control module, network 1-24
BOOTP Protocol Module 1-23
bootstrap

operating system 3-19
operating system and halt 3-12
protocol (BOOTP) 1-23

BR command 3-23
braces 2-2
break 1-13
BREAK key 1-13
breakpoint

go to temporary 3-66
insert/delete 3-23
trace to temporary 3-201

breakpoints, ignore 3-59
BS command 3-25
BV command 3-30

C
C programming language 1-3
calling system utilities from user pro-

grams 2-9
checksum 3-40, 3-56

CS command 1-7
Clear To Send (CTS) 1-5
clock

power save mode 3-157
set time of day 3-181
speed calculation 1-14

CM command 3-33
CNFG command 3-37
cold/warm reset 3-173
command

identifier 2-1

line 2-1
lines, entering 2-1

commands, debugger 3-1
communicate between ports 3-199
compare block of memory 3-7
concurrent

mode 3-33
configurable parameters 3-150
configuration, network 3-133
configure

board information block 3-37
disk controller 3-82

configure Bug parameters 3-56
configuring

ENV parameters 3-58
port 3-147

connect remote modem to CSO 3-172
continue system start up 3-109
controller

parameters, default 1-20
conversion of data 3-42
count 2-2
creating

new vector table 2-13
CS command 3-40
CSO 3-109
CSO, connect modem to 3-172
customer service organization (CSO)

connect modem to 3-172

D
D option 3-176, 3-179
data

conversion 3-42
date

display 3-197
set 3-181

DC command 3-42
debugger

address parameter formats 2-5
command set 3-1
go to 3-109
IN-212

I
N
D
E
X

prompt 2-1
debugger, go to 3-109
decimal number 2-3
default

16XBug controller and device pa-
rameters 1-20

baud rate 1-4
define/display/delete macro 3-97
delete breakpoints 3-23
description of 16XBug 1-1
detach

I/O port 3-146
printer 3-144

detach symbol table 3-187
device

parameters, default 1-20
probe 3-74

Device Descriptor Table 3-74, 3-82
device probe function 1-17
diagnostic

memory map 3-114
Direct Memory Access (DMA) 3-44
directories, switch 3-180
disable ROMboot 3-158
disassembler

one-line 3-50
disk

access, physical I/O 3-76
I/O

control 3-72
error codes 1-20
support 1-16
via 16XBug commands 1-17
via 16XBug system calls 1-18

display
offset registers 3-141
symbol table 3-188
system test errors 3-109
time and date 3-197

display memory 3-106
display registers 3-160

display, revision 3-208
display, version 3-208
DMA block of memory move 3-44
DMA command 3-44
double precision 3-106, 3-110, 3-176,

3-179
real 2-16

download 2-8
DS command 3-50
DU command 3-51
dump

memory to tape 3-109
S-Records 3-51

E
ECHO command 3-54
edit macro 3-100
EIA-232-D ports 1-5, 2-10
enable ROMboot 3-158
enable/disable macro expansion listing

3-102
entering

and debugging programs 2-8
debugger command lines 2-1

ENV
parameters, configuring 3-58

ENV command 3-56
environment

ENV command 1-8
EPROM devices 1-3
error

codes, disk I/O 1-20
codes, network I/O 1-24

errors
display system test 3-109

Ethernet
driver 1-21

exception vectors used by 16XBug 2-11
execute

instructions in real time 3-195
instructions singly 3-190

execute user program 3-63
IN-213

Index

I
N
D
E
X

exponent field 2-16
expression 2-2

as a parameter 2-3
extended

precision real 2-17

F
fill block of memory 3-9
FLASH devices 1-3
FLASH memory 3-183

programming with PFLASH com-
mand 3-153

floating point
data 3-106, 3-110, 3-176, 3-179
instructions 2-15
support 2-15
unit (FPU) 2-15, 2-17

format I/O port 3-146

G
G command 3-63
GCSR (see Global Control and Status

Registers) 1-27
GD command 3-59
general information 1-1
Global Control and Status Registers (GC-

SR) 1-27
method 1-27

GN command 3-61
go

direct (ignore breakpoints) 3-59
execute user program 3-63
to next instruction 3-61
to system debugger 3-109
to temporary breakpoint 3-66

GO command 3-63
GT command 3-66

H
handshaking 1-4
hardware functions 2-10
HE command 3-69

Help 3-69
hexadecimal

number 2-3, 3-54
host

system 2-8

I
I/O

control 3-72
for disk 3-72
IOC command (I/O control)

1-18
network 3-126

control, terminal 1-15
disk 1-17
error codes, network 1-24
inquiry 1-17, 3-74
physical

(direct disk access) 3-76
network 3-131

port format/detach 3-146
support, disk 1-16
support, network 1-21
teach 1-18

configuration, network 3-133
for configuring disk controller

3-82
I/O, disk 1-17, 1-18
ignore breakpoints 3-59
implementation of 16XBug 1-3
initialize

memory block 3-14
initiate service call 3-109, 3-172
input/output

control 3-72
inquiry 3-74
physical to disk 3-76
teach 3-82

inquiry 1-17
I/O 3-74
IN-214

I
N
D
E
X

insert breakpoints 3-23
installation, general 1-3
instruction

go to next 3-61
instructions

execute singly 3-190
Intel 82596 LAN Coprocessor

Ethernet Driver 1-21
Internet Protocol (IP) 1-23
Interrupt Enable Register 3-91
interrupt request mask 3-91
Interrupt Stack Pointer (ISP) 1-14
IOC command (I/O control) 3-72
IOI command (input/output inquiry)

1-17, 3-74
IOP command (physical I/O to disk)

1-18, 3-76
IOT command (I/O teach) 1-18, 3-82
IRQM command 3-91
italic strings 2-2

J
JSR/BSR/RTS 3-195

L
LAN coprocessor 1-21
lexicographic order 3-188
listing

current port assignments 3-147
LO command 3-92
load

S-Records from host 3-92
load/save macros 3-103
local

bus map decoders 3-57
loop

read 3-175
write 3-209

M
M command 3-110
MA command 3-97

macro
define/display/delete 3-97
edit 3-100
expansion list, enable/disable 3-102
save/load 3-103

MAE command 3-100
MAL command 3-102
mantissa field 2-16
map decoder logic 3-57
MAR command 3-103
MASK, interrupt request 3-91
master

VMEbus 3-57
MAW command 3-103
MC68040

TRAP instructions 2-9
MD command 3-106
memory

block
compare 3-7
DMA, move 3-44
fill 3-9
initialize 3-14
move 3-16
search 3-25
verify 3-30

display 3-106
dump to tape 3-109
map diagnostic 3-114
modify 3-110
set 3-116
write 3-117

memory devices, booting from 3-158
memory requirements 1-14
menu 3-109

system 3-109
MENU command 3-109
metasymbols 2-2
MM command 3-110
MMD command 3-114
mode
IN-215

Index

I
N
D
E
X

concurrent 3-33, 3-36
sense 1-17

modem
connect to CSO 3-172

modify
memory 3-110
offset registers 3-141
registers 3-176

move
DMA memory block 3-44
memory block 3-16

MPAR (see Multiprocessor Address Reg-
ister) 1-25

MPCR (see Multiprocessor Control Reg-
ister) 1-24

MPU clock speed calculation 1-14
MS command 3-116
Multiprocessor Address Register

(MPAR) 1-25
organization of 1-26

Multiprocessor Control Register (MPCR)
1-24

contents of 1-25
status codes in 1-25

multiprocessor support 1-24
MW command 3-117

N
NAB command 3-119
NBH command 3-120
NBO command 3-122
negation

SYSFAIL* 1-13
network

boot 1-11, 1-22
automatic 3-119
control module 1-24
operating system 3-122
operating system and halt

3-120
support modules 1-22

I/O
control 3-126
error codes 1-24
physical 3-131
support 1-21
teach (configuration) 3-133

ping 3-139
next instruction, go to 3-61
NIOC command 3-126
NIOP command 3-131
NIOT command 3-133
no concurrent mode 3-36
NOAB command 3-5
NOBR command 3-23
NOCM command 3-36
NOMA command 3-97
NOMAL command 3-102
non-volatile RAM (NVRAM) 3-56
NOPA command 3-144
NOPF command (port detach) 3-146,

3-152
NORB command 3-158
NOSYM command 3-187
NPING command 3-139
numeric value 2-3
NVRAM 3-56

O
object

code 2-9
octal number 2-3
OF command 3-141
Offset Registers 2-6
offset registers

display/modify 3-141
on-board memory devices, booting from

3-158
one-line assembler/disassembler 3-6,

3-50
operating environment 2-9
operating system
IN-216

I
N
D
E
X

auto boot 3-5
auto network boot 3-119
boot 1-18, 3-19
boot and halt 1-18, 3-12
network boot 3-122
network boot and halt 3-120

operational parameters 3-56
option field 2-2
overview of M68000 firmware 1-1

P
PA command 3-144
parameters

configurable by port format 3-150
parity 3-147
PF command 3-146
PFLASH command 3-153
phone number 3-33
physical addresses 3-184
port

assignments, listing 3-147
attach 3-193
configuring 3-147
detach 3-152
format/detach 3-146
I/O

numbers 2-1
power save mode, RTC 3-157
preserving debugger operating environ-

ment 2-9
printer

attach/detach 3-144
Program Counter 3-184
programming

FLASH memory 3-153
VMEbus to local bus map decoder

3-57
PROM devices 1-3
protocol module

BOOTP 1-23
TFTP 1-23

protocol modules

RARP/ARP 1-23
UDP/IP 1-23

PS command 3-157
pseudo-registers 2-6

R
RAM, shared 1-24
range 2-2
RARP (see Reverse Address Resolution

Protocol) 1-23
RB command 3-158
RD command 3-160
read

loop 3-175
real time clock (RTC) 3-157
register

modify 3-176
offset 3-141
set 3-179

relative address+offset 2-6
remote 3-172

modem connection 3-172
REMOTE command 3-172
reset 1-12, 3-173
RESET command 3-173
restarting system 1-11
Reverse Address Resolution Protocol

(RARP) 1-23
RL command 3-175
RM command 3-176
ROMboot 1-7

disable 3-158
enable 3-158
function 3-158

RS command 3-179
RTC 3-157

S
S option 3-176, 3-179, 3-188
sample ROMboot routine 1-9
sanity check 3-185
save/load macros 3-103
IN-217

Index

I
N
D
E
X

scientific notation 2-17
SD command 3-180
search

memory block 3-25
symbol table 3-188

sectors/blocks 1-16
select alternate boot device 3-109
serial ports

attach 3-193
service

call, initiate 3-109, 3-172
set

environment to bug/operating sys-
tem 3-56

memory 3-116
registers 3-179

SET command 3-181
SFLASH command 3-183
shared RAM 1-24
sign field 2-16
single precision 3-106, 3-110, 3-176, 3-179

real 2-16
slave, VMEbus 3-57
square brackets 2-2
S-records

dump 3-51
format 2-8
load 3-92
verify 3-204

startup
general 1-3
system, continue 3-109

static variable space 1-14
status codes in MPCR 1-25
stop bit 3-147
strings

echo 3-54
literals 2-3

Switch FLASH 3-183
SYM command 3-184
symbol table 3-184, 3-187, 3-188

attach 3-184

detach 3-187
display/search 3-188

SYMS command 3-188
syntactic variables 2-2
SYSFAIL* assertion/negation 1-13
system

calls 1-18
console 1-4
fail (SYSFAIL*) 1-7
menu 3-106
test errors, display 3-109

system controller function 1-4

T
T command 3-190
TA command 3-193
tape, dump memory to 3-109
target register 3-179
target vector table 2-12
TC command 3-195
temporary breakpoint, go to 3-66
terminal

attach 3-193
terminal input/output control 1-1
TFTP (see Trivial File Transfer Protocol)

1-23
TFTP Protocol Module 1-23
time

display 3-197
set 3-181

TIME command 3-197
TM command 3-199
trace 3-190

on change of control flow 3-195
to temporary breakpoint 3-201

transparent mode 3-199
TRAP #15 2-9
Trivial File Transfer Protocol (TFTP) 1-23

protocol module 1-23
TT command 3-201
IN-218

I
N
D
E
X

U
UDP/IP Protocol Modules 1-23
user program, go execute 3-63
using

16XBug target vector table 2-12
debugger 2-1

V
V option 3-5, 3-158
variables

syntactic 2-2
VE command 3-204
vector table 2-10
VER command 3-208
verbose mode 3-158
verify

memory block 3-30
S-records against memory 3-204

vertical bar 2-2
view Bug parameters 3-56
VMEbus

programming 3-57

W
warm or cold reset 3-173
WL command 3-209
write

loop 3-209
memory 3-117

X
XON/XOFF 1-5
IN-219

	Debugging Package for Motorola 68K CISC CPUs User'...
	Notice
	Restricted Rights Legend
	Motorola, Inc. Computer Group 2900 South Diablo Wa...

	Preface
	Related Documentation
	Manual Terminology
	Conventions
	Safety Summary Safety Depends On You
	Ground the Instrument.
	Do Not Operate in an Explosive Atmosphere.
	Keep Away From Live Circuits.
	Do Not Service or Adjust Alone.
	Use Caution When Exposing or Handling the CRT.
	Do Not Substitute Parts or Modify Equipment.
	Dangerous Procedure Warnings.
	

	Disclaimer of Warranty
	 Copyright Motorola 1997 All Rights Reserved
	Printed in the United States of America June 1997
	General Information

	Introduction
	Overview of M68000 Firmware
	1. A command-driven user-interactive software debu...
	2. A command-driven diagnostic package for the spe...
	3. A user interface that accepts commands from the...

	16XBug Implementation
	General Installation and Start-up
	1. Turn all equipment power OFF. Refer to the indi...
	2. Refer to the board installation manual and conf...
	3. Be sure that the 16XBug memory devices are inst...
	4. Refer to the set-up procedure for your particul...
	5. Connect the terminal which is to be used as the...
	6. If you want to connect devices (such as a host ...
	7. Power up the system. 16XBug executes some self-...

	Autoboot
	ROMboot
	1. Power must have just been applied (but the ENV ...
	2. Your routine must be located within the MVME16X...
	3. The ASCII string "BOOT" must be located within ...
	4. Your routine must pass a checksum test, which e...

	$00
	4 bytes
	$04
	4 bytes
	$08
	4 bytes
	$0C
	?
	1. The identifier string "BOOT" starts on a longwo...
	2. The ROMboot module size (in bytes) is evenly di...
	3. The length parameter (offset $8) reflects where...
	1. The map is searched for the ASCII string "BOOT"...
	2. If the ASCII string "BOOT" is found, it is stil...
	1. Search direct address for "BOOT".
	2. Search complete ROM map.
	3. Search local RAM, at all 8K byte boundaries sta...
	4. Search the VMEbus map (if so selected by the EN...
	1. Outputs a <CR><LF> sequence to the default outp...
	2. Displays the date and time from the current cur...
	3. Outputs two more <CR><LF> sequences to the defa...
	4. Returns control to 167Bug.
	Sample ROMboot Routine
	Network Boot
	Restarting the System
	Reset
	Abort
	Break
	SYSFAIL* Assertion/Negation
	MPU Clock Speed Calculation

	Memory Requirements
	Terminal Input/Output Control
	Disk I/O Support
	Blocks Versus Sectors
	Device Probe Function
	Disk I/O via 16XBug Commands
	IOI (Input/Output Inquiry)
	IOP (Physical I/O to Disk)
	IOT (I/O Teach)
	IOC (I/O Control)
	BO (Bootstrap Operating System)
	BH (Bootstrap and Halt)

	Disk I/O via 16XBug System Calls
	Default 16XBug Controller and Device Parameters
	Disk I/O Error Codes

	Network I/O Support
	Intel 82596 LAN Coprocessor Ethernet Driver
	Figure 1�1. Network Boot Support Modules

	UDP/IP Protocol Modules
	RARP/ARP Protocol Modules
	BOOTP Protocol Module
	TFTP Protocol Module
	Network Boot Control Module
	Network I/O Error Codes

	Multiprocessor Support
	Multiprocessor Control Register (MPCR) Method

	$800
	*
	N/A
	N/A
	(MPCR)
	$804
	*
	*
	*
	*
	GCSR Method

	GPCSR0
	GPCSR1
	Diagnostic Facilities
	Using the 16XBug Debugger

	Entering Debugger Command Lines
	The Command Line
	Command Arguments
	exp - Expression as a Parameter

	$
	&
	@
	%
	address - Address as a Parameter
	Table 2�1. Debugger Address Parameter Formats

	Offset Registers
	Example

	Port Numbers
	Entering and Debugging Programs
	Calling System Utilities from User Programs
	Preserving the Debugger Operating Environment
	16XBug Vector Table and Workspace
	Hardware Functions
	Exception Vectors Used by 16XBug
	Table 2�2. Exception Vectors Used by 16XBug
	Example
	Using the 16XBug Target Vector Table
	Creating a New Vector Table

	Floating Point Support
	1. The sign field is the first field and is a bina...
	2. The exponent field is the second field and is a...
	3. The mantissa field is the last field and is a h...
	4. The sign field, the exponent field, and at leas...
	5. Each field must be separated from adjacent fiel...
	6. All the digit positions in the sign and exponen...
	Single Precision Real
	Double Precision Real
	Scientific Notation
	Debugger Commands

	Introduction
	Table 3�1. Debugger Commands (Continued)

	AB/NOAB - Automatic Bootstrap Operating System/No ...
	Command Input
	Description
	Examples

	AS - One Line Assembler
	Command Input
	Description

	BC - Block of Memory Compare
	Command Input
	Options
	Description
	Example 1: Memory compare, nothing printed.
	Example 2: Memory compare, nothing printed.
	Example 3: Create a mismatch.

	BF - Block of Memory Fill
	Command Input
	Arguments
	Options
	Description
	Example 1
	Example 2
	Example 3
	Example 4

	BH - Bootstrap Operating System and Halt
	Command Input
	Arguments
	Description
	Example 2

	BI - Block of Memory Initialize
	Command Input
	Options
	Description
	Example 1
	Example 2

	BM - Block of Memory Move
	Command Input
	Options
	Description
	Example 1
	Example 2

	BO - Bootstrap Operating System
	Command Input
	Arguments
	Description
	1. Block 0 of the Controller LUN and Device LUN sp...
	2. Locations $F8 (248) through $FF (255) of block ...
	3. The following information is extracted from blo...
	4. The program is read from disk into memory. The ...
	5. The first eight locations of the loaded program...
	6. Other target registers are initialized with cer...
	7. Control is given to the loaded program. Note th...

	Examples

	BR - Breakpoint Insert/Delete
	Command Input
	Description
	Example

	BS - Block of Memory Search
	Command Input
	Arguments
	Options
	Description
	1. The user-entered data pattern is right-justifie...
	2. A compare is made with successive bytes, words,...
	3. If the "N" (non-aligned) option has been select...
	4. If a match is found, then the address of the fi...

	Examples

	BV - Block of Memory Verify
	Command Input
	Arguments
	Options
	Description
	Example 1
	Example 2
	Example 3

	CM - Concurrent Mode
	Command Input
	Arguments
	Options
	Description
	Examples

	NOCM - No Concurrent Mode
	Command Input
	Description
	Examples

	CNFG - Configure Board Information Block
	Command Input
	Options
	Description
	Example
	Example
	Example
	Example

	CS - Checksum
	Command Input
	Options
	Description
	1. At powerup, the power-up confidence test is exe...
	2. Following a valid power-up test, 16XBug examine...
	1. The checksum variable is set to zero.
	2. Each data element is added to the checksum; if ...
	3. This process is repeated for each data element ...

	Examples

	DC - Data Conversion
	Command Input
	Options
	Description
	Examples

	DMA - DMA Block of Memory Move
	Command Input
	Description
	Arguments
	Options
	Example 1
	Example 2
	Example 3

	DS - One Line Disassembler
	Command Input
	Description

	DU - Dump S-Records
	Command Input
	Description
	Arguments
	Options
	Example 1
	Example 2
	Example 3

	ECHO - Echo String
	Command Input
	Arguments
	Description
	Example 1
	Example 2
	Example 3
	Example 4

	ENV - Set Environment to Bug/Operating System
	Command Input
	Option
	Description
	Programming the VMEbus to Local Bus Map Decoders
	1. Determine the local base address (for onboard D...
	2. Set the Slave Address Translation Address Regis...
	3. Set the Slave Address Translation Select Regist...
	4. Set the Slave Starting Address Register paramet...
	5. Set the Slave Ending Address Register parameter...
	6. If the VMEbus window is entirely below the 16MB...

	Configuring ENV Parameters

	Go Direct (Ignore Breakpoints)
	Command Input
	Description
	1. User pressed the ABORT or RESET switches on the...
	2. An unexpected exception occurred.
	3. By execution of the .RETURN TRAP #15 function.

	Example

	GN - Go to Next Instruction
	Command Input
	Description
	Example

	GO - Go Execute User Program
	Command Input
	Description
	1. First, if an address is specified, it is loaded...
	2. Then, if a breakpoint is set at the target PC a...
	3. Next, all breakpoints are inserted in the targe...
	4. Finally, target code execution resumes at the t...
	1. A breakpoint with 0 count was found.
	2. User pressed the ABORT or RESET switches on the...
	3. An unexpected exception occurred.
	4. By execution of the .RETURN TRAP #15 function.

	Example

	GO - Go to Temporary Breakpoint
	Command Input
	Description
	1. A breakpoint with count 0 was found.
	2. User pressed the ABORT or RESET switches on the...
	3. An unexpected exception occurred.
	4. By execution of the .RETURN TRAP #15 function.

	Example
	Debugger Commands

	HE - Help
	Command Input
	Description
	Examples

	IOC - I/O Control for Disk
	Command Input
	Description
	Example

	IOI - I/O Inquiry
	Command Input
	Options
	Description
	Example 1
	Example 2
	Example 3

	IOP - I/O Physical (Direct Disk Access)
	Command Input
	Description
	1. R for read. This reads blocks of data from the ...
	2. W for write. This writes blocks of data from me...
	3. F for format. This formats the selected device....

	Example
	Example 2
	Example 3
	Example 4

	IOT - I/O Teach for Configuring Disk Controller
	Command Input
	Options
	Description
	00
	01
	02
	03
	04
	Example 1
	Example 2
	Example 3

	IRQM - Interrupt Request Mask
	Command Input
	Description

	LO - Load S-Records from Host
	Command Input
	Arguments
	Options
	Description
	Examples

	MA/NOMA - Macro Define/Display/Delete
	Command Input
	Argument
	Option
	Description
	Examples

	MAE - Macro Edit
	Command Input
	Arguments
	Examples

	MAL/NOMAL - Enable/Disable Macro Expansion Listing...
	Command Input
	Description

	MAW/MAR - Save/Load Macros
	Command Input
	Arguments
	Examples

	MD, MDS - Memory Display
	Command Input
	Arguments
	Options
	Description
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	MENU - System Menu
	Command Input
	Description
	Example

	MM - Memory Modify
	Command Input
	Options
	Description
	1. Enter <CR>. This closes the present location an...
	2. Enter a new source instruction followed by <CR>...
	3. Enter .<CR>. This closes the present location a...

	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	MMD - Memory Map Diagnostic
	Command Input
	Options
	Description
	Example 1
	Example 2

	MS - Memory Set
	Command Input
	Arguments
	Description
	Example

	MW - Memory Write
	Options
	Description
	Example 1
	Example 2
	Example 3
	Debugger Commands

	NAB - Automatic Network Boot Operating System
	Command Input
	Description

	NBH - Network Boot Operating System and Halt
	Command Input
	Arguments
	Description

	NBO - Network Boot Operating System
	Command Input
	Arguments
	Description
	Example 1
	Example 2
	Example 3

	NIOC - Network I/O Control
	Command Input
	Description
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	NIOP - Network I/O Physical
	Command Input
	Description
	Example 1

	NIOT - Network I/O Teach (Configuration)
	Command Input
	Options
	Description
	Example 1
	Example 2
	Example 3

	NPING - Network Ping
	Command Input
	Arguments
	Description
	Example 1
	Example 2

	OF - Offset Registers Display/Modify
	Command Input
	Description
	Command Usage
	Offset Register Rules
	1. At power-up and cold start reset, R7 is the aut...
	2. At power-up and cold start reset, all offset re...
	3. R7 always has both base and top addresses set t...
	4. Any offset register can be set as the automatic...
	5. The automatic register is always added to every...
	6. There is always an automatic register. A conven...

	Examples

	PA/NOPA - Printer Attach/Detach
	Command Input
	Description
	Examples

	PF/NOPF - Port Format/Detach
	Command Input
	Description
	Listing Current Port Assignments
	Example

	Configuring a Port
	Example 1
	Example 2
	Example 3

	Parameters Configurable by Port Format
	Assigning a New Port
	Example

	NOPF Port Detach

	PFLASH - Program FLASH Memory
	Command Input
	Arguments
	Options
	Table 3�2. FLASH Memory Address and Range Alignmen...

	Example

	PS - Put RTC into Power Save Mode for Storage
	Command Input
	Description
	Example

	RB/NORB - ROMboot Enable/Disable
	Command Input
	Option
	Description
	Examples
	Example

	RD - Register Display
	Command Input
	Arguments
	Description
	1. The qualifier is applied to the next register r...
	2. If no qualifier is specified, a + qualifier is ...
	3. All device names should appear before any regis...
	4. The command line arguments are parsed from left...
	5. When specifying a register range, REG1 and REG2...
	6. The register mask used by RD is also used by al...

	Ordering Sequence of MPU, DEF, FPC, and MMU Regist...
	MPU Registers
	DEF Registers
	FPC Registers
	MMU Registers

	Ordering Sequence of CPU Registers
	MVME166/167/176/177 Registers
	MVME162/MVME172 Registers

	MMIEN, PIEN, and PIST Registers
	MVME166/167/176/177 Registers
	MVME162/MVME172 Registers
	Example 1

	0
	F0
	1
	UD
	2
	UP
	3
	F3
	4
	F4
	5
	SD
	6
	SP
	7
	CS
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	REMOTE - Connect Remote Modem to CSO
	Command Input
	Description

	RESET - Cold/Warm Reset
	Command Input
	Description
	Example

	RL - Read Loop
	Command Input
	Options

	RM - Register Modify
	Command Input
	Arguments
	Description
	Example 1
	Example 2
	Example 3
	Example 4

	RS - Register Set
	Command Input
	Argument
	Description
	Example 1
	Example 2
	Example 3

	SD - Switch Directories
	Command Input
	Description
	Example 1
	Example

	SET - Set Time and Date
	Command Input
	Option
	Description
	Example 1
	Example 2
	Example 3
	Example 4

	SFLASH - Switch FLASH
	Command Input
	Options
	Description

	SYM - Symbol Table Attach
	Command Input
	Argument
	Description
	Number of Entries in Symbol Table
	Symbol Data #0
	Symbol Name #0
	 Symbol Data #1
	 Symbol Name #1
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	NOSYM - Symbol Table Detach
	Command Input
	Description
	Example

	SYMS - Symbol Table Display/Search
	Command Input
	Description
	Example 1
	Example 2:
	Example 3
	Example 4

	T - Trace
	Command Input
	Description
	Example

	TA - Terminal Attach
	Command Input
	Description
	Example 1
	Example 2
	Example 3
	Example 4

	TC - Trace on Change of Control Flow
	Command Input
	Description
	Example

	TIME - Display Time and Date
	Command Input
	Options
	Description
	Example 1
	Example 2
	Example 3
	Example 4

	TM - Transparent Mode
	Command Input
	Arguments
	Description
	Example 1

	TT - Trace to Temporary Breakpoint
	Command Input
	Description
	Example

	VE - Verify S-Records Against Memory
	Command Input
	Arguments
	Options
	Description
	Examples

	VER - Revision/Version Display
	Command Input
	Option
	Description
	Example

	WL - Write Loop
	Input Command
	Options
	Description
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

