MPC603EUM/AD

(M) moTroroLa REV. 1

ECGOE’)e ”
% VT s |

MPC603EUM/AD
11/97
REV. 1

- MPC603e & EC603e”

RISC Microprocessors User's Manual
with Supplement for PowerPC 603™ Microprocessor

@ MOTOROLA

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.
Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express or
implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in this
document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do
vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical
experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or autherized
for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other
application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent
regarding the design or manufacture of the part.

Motorola and @ are registered trademarks and EC603e is a trademark of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action
Employer.

The PowerPC name, the PowerPC logotype, and PowerPC 603 are trademarks of International Business Machines Corporation used by Motorola under
license from International Business Machines Corporation.

Motorola Inc. 1997. All rights reserved.
Portions hereof © International Business Machines Corp. 1991-1997. All rights reserved.

CONTENTS

Paragraph - Page
Number Title Number
About This Book

AUGIEICE ..ot ittt ieeterestere b et steneseebe e st stss s tesesassnsanse st osese saeseass XXiX

OFZaANIZALION. ...ttt et e s eeenes XXix

Suggested REAAING.......ccovvrviriririneriricrciiccsicne e ittt et seesmesas XXX

CONVENLIONS ...evvevveueenernienierieriesiereseessassesseseessestensestensessessessessesestssasssessessessssnsens XXXili

Acronyms and ADDIEVIAtioNScceeriecrececieniinentenienereee e s tesees et esrenees XXXiv

Terminology CONVENHIONSccceveeeicemeniiiniciiriinretseeiueieresseeressesaoneeuenee XXXVii

Chapter 1
Overview

1.1 OVEIVIEBW ..ottt ettt ettt ne e b et et e e ss e e b assasnesae e sessenessen 1-1
1.1.1 FRATUIES ...ttt s e ettt e a e st e s 1-2
1.1.2 System Design and Programming Considerations............ceccevueerereeerenerernene 1-7
1.1.2.1 Hardware FEaturescccoieivirerieioinenicnereesee st eis e sinseee e seessessanees 1-7
1.1.2.1.1 Replacement of XATS Signal by CSE1 Signal........ccococoeveveeerenennnnnnne 1-7
1.1.2.1.2 Addition of Half-Clock Bus MUltipliers..........ccecveerieemenenercerenerannennns 1-7
1.1.2.2 SOftware FEAtUIEscocvevviriiverenieeiiiiiticieircctnntee et st 1-8
1.1.2.2.1 16-Kbyte Instruction and Data Caches..........covvveercnioeniniccrincneieneenn 1-8
1.1.22.2 Clock Configuration Available in HID1 Registercccoeeveneennnnnens 1-8
1.1.2.2.3 Performance Enhancements..............cocovcivenueninrencneieieesecrseresuneeeeenees 1-8
1.1.3 INStIUCHON UNC..coutiitierenierieeiereeiiee ettt ste e e e et e e e es e ansnaesees 1-9
1.1.3.1 Instruction Queue and Dispatch Unitcc.oocceeeeveivnnennneinecenrecieeceeeneeenees 1-9
1.1.3.2 Branch Processing Unit (BPU)...................... e s 1-9
1.14 Independent EXecution URIES.........iiveeueereerercnreesieneenseseieinensseeesesseseensens 1-10
1.14.1 Integer Unit (TU) ..cc.ooeeriieeieteeecee ettt ssee e 1-10
1.14.2 Floating-Point Unit (FPU)c.c.coeiiiviiniivienienieneininentetee st ieseeeereseesennaens 1-10
1.1.4.3 Load/Store Unit (LSU)coouvieeeeiieieieeeeeere ettt e e e 1-11
1.144 System Register Unit (SRU)......c.cccoiviiiimiiiniiiienecninciineeneieeeeneeeneees 1-11
1.1.4.5 Completion Unit
1.1.5 MeEmOTY SUBSYSIEM SUPPOTL.....vevevereerereereernereeeaseassseasssessesseessnsesssesssssnssnsens 1-12
1.1.5.1 Memory Management Units (MMUS)cocceeeevrrinrecenieneneniesnesenennnnt 1-12
1.1.5.2 CACKE UNIES.c.utieeiiriieieeiiente sttt st e et e e st e st stt e e s m e eseeeseesanaesaaas 1-13
1.1.6 Processor Bus INTEIfacecoccoceevieveciiiiniccnininene et esee e 1-14
MOTOROLA Contents : iii

Paragraph
Number

1.1.7
1.1.7.1
1.1.7.2
1.1.73
1.1.74
12
1.3
1.3.1
1.3.1.1
1.3.12
1.3.13
1.3.14
1.3.15
1.3.16
1.3.17
13.18
1.3.1.9

1.3.1:10
1.3.1.10.1
1.3:1.102
132

1.3.21

T13211

”113212

1322
- 133

1331

1332

134
1341

1342
135
1351

" Signal Configuration

CONTENTS

. Page
Title Number
System Support FUNCHONSccccoeiiiiiiiieeiciccercne i 1-14
Power Management..........eceeeereererrierrireieceesieeseeneeesreensesesseesseessesssesseeees 1-15
Time Base/DECTEMENLETcevevreeeererresesesrssesesesesesssssssesessssnsssssnssnss 1-15
IEEE 1149.1 JTAG)/COP Test Interface........ccoeeveernrecvccrincnrerccucrcennenes 1-16
CLOCK MUIEIPIETcovveeeeiieneerieiciecertnt ettt e 1-16
PowerPC Architecture Implementation.............c..coceviiniininincniniinnns 1-16
Implementation-Specific Informationccccooecevniiininiiniiin, 1-16
Programming Model...........cccooviiininininniiiiniee 1-17
Processor Version Register (PVR) ...cc.ooveivririeieiiieneniee et 1-18
Hardware Implementation Register O (HIDO).......c..cooccvviiininirncecininninn 1-18
Run_N Counter Register (RUN_N)occvvererinrereriernreceinenernrinseseseesense 1-19
General-Purpose Registers (GPRS) ..o, 1-19
Floating-Point Registers (FPRS)......cc.ccovevievinereernirceniniencrcrereccnnenee 1-19
Condition ReiSter (CR)........cvurververreeereeeneaesssssessesssesssesssessanssasessssesson 1-19
Floating-Point Status and Control Register (FPSCR)cccocvvvvcrvininnenn 1-19
Machine State Register (MSR)....ccoccriirininerinerinrceren e 1-19
Segment RegisSters (SRS)cevieriereeeeerninreniineneereeeneeteeseeeereseeseeseeseonens 1-19
- Special-Purpose Registers (SPRS).......c.cccueninuciiiniiininict s 1-20
USEr-Level SPRS ..ottt 1-20
Supervisor-Level SPRScccveeuenimriiniisinnisnisscssenise s 1-20
Instruction Set and Addressing MOES.............ccoverueeeevevereionreiserensesenseneenns 1-23
PowerPC Instruction Set and Addressmg Modes.....covceniiviiiiiiecncnenne. 1-23
* POWETPC INSIUCHON S€E <...vvvvovrevirianrieienissesisenssisessesssesesisrsseseseessessanss
Calcu]atmg Effective Addresses
- Implementation-Specific Instruction Set
Cache Implementation..........cvovuieimiiieiin i
PowerPC Cache Characteristicsccvcceivcivenenresieneninencnrieceseeeereni
, Implementatlon-Spemflc Cache Implementation...........cccoeeincvennnnnae. 1-26
Exception MOdelcccioreruiunccivniiiecianin.)
_ POWErPC EXCEPON MOGELccucveriveimrmnrieisivnesiseeensereesaesesssaseasssesenesenees
Implementation-Specific Exception Model
Memory Managementic.eecuisiueieieiiuiiie e
PowerPC Memory Management................ seishaieermenentreses bt s be et Senaereneas
‘ Irnplementatlon -Specific Memory Management .. 1-32
" Instruction Timing ,
5 SYSEM INELTACE ..ottt ea s ebenssae e se et st anseseseraestes
~Memory Accesses...
Signals ..., ieeres

_MII?.C'603e’ & EC603e RISC lﬁicroprocessbis User's Manual - MOTOROLA

CONTENTS

Paragraph . Page
Numsl;)erp Title Numb%r
Chapter 2
Programming Model
2.1 REGISTEL SEL ..ottt 2-1
2.1.1 POWEIPC REZISIEI SEL....ecviieiiiiieiienieeeteeete ettt et s eaaes 2-1
212 Implementation-Specific REZIStersccoevineciiiiiiicicccccnees 2-7
2.1.2.1 Hardware Implementation Registers (HIDO and HID1)cc.cccocceeveienes 2-7

2.1.2.2 Data and Instruction TLB Miss Address Registers

(DMISS and IMISS)couiiirnmiiinerieeetensseneeese s ieseeasse st siesesssenne 2-9
2.1.2.3 Data and Instruction TLB Compare Registers

(DCMP and ICMP)c.coviiiiiiieiirieiceietcreeictie et e neeeenen 2-9
2124 Primary and Secondary Hash Address Registers

(HASH1 and HASH2)ooveieiiiieieiiniiceeeicecicceeeeeic e 2-10
2125 : Required Physical Address Register (RPA).......cccocooicininnnicicciicneenes 2-11
2.1.2.6 Instruction Address Breakpoint Register (IABR).....ccccceecviriievenerenennens 2-11
2.1.2.7 Run_N Counter Register (RUn_N).........cccocoiiiiiiinnccee 2-12
22 Operand CONVENLIONScoueeiererrererrerierentestestenesresientessessersssesseeessessessessessessans 2-12
2.2.1 Floating-Point Execution Models—UISAcccccoooinimmineenieinc s 2-12
22.2 Data Organization in Memory and Data Transfersc.coccocceervevienericrennnnn. 2-13
223 Alignment and Misaligned ACCESSESccvuererirreriierererreererierriiestreseniesiesiesenens 2-13
224 Floating-Point Operand.............cccoiiirioiiiiiieciiec et 2-14
225 Effect of Operand Placement on Performance...........ccccccecevvvercrecvenervenennnne 2-14
2.3 Instruction Set SUMMALYcccociuiiruerieiiiie et sr et saene 2-15
2.3.1 Classes Of INSIIUCHONS. ...c.ueveeeiieeeieneeeeter ettt see e ere b eeeeeeste s snenen 2-16
23.1.1 Definition of Boundedly Undefinedc..ccoceerneienenninneincenineeeinieenens 2-16
2312 Defined InStruction Class.........c.ceeeieiiiriininenienieniinecieicieieeceveese e s 2-16
2.3.1.3 Tllegal INStrUCtioN CIASSc.eevereeriierereeieeereriereieeeeetsrestsresaaeseesseeeseessenen 2-17
2314 Reserved Instruction Class..........ccceivieveniininiiiiiinince e 2-18
232 Addressing MOAES.........coueiiiiiiincieieiiiiietse ettt ssaeresnene 2-18
2321 Memory AddreSsing.........ooo.iierrntivniiiici ettt 2-18
2322 MEMOTY OPETANS........cveverrereereeriveraessessseesssssssessssessesesssssssarsesnsasessasassnsesens 2-18
2323 Effective Address Calculationcecveveviereeiieiniisivneneeneneereeseeneeneeas 2-19
2324 SYNCATOMIZALION ...ttt eree e ne e b saene 2-19
23.24.1 Context Synchronization...........c.coceeeeerreresineccencsinesereseeseeereescevesnenes 2-20
23242 Execution SYNchronizationce.coioverereereereresineenineeseesseneeseessennens 2-20
23243 Instruction-Related EXCEPLIONS s.....c..coereevveniriieenmineinieinnienreeneeeeseeneeeens 2-20
233 InStruction Set OVEIVIEW......coeviivivirerienieieieenieeee e ceeie st e e snens 2-21
234 PowerPC UISA INSIIUCHIONS ..coeveueereenreriinieicrinieicintieee e st cresaeeeneneseseensene 2-21
2341 Integer INSIUCHIONSoceeceieiiriiiiieiee ettt se e ees 2-21
2.34.1.1 Integer Arithmetic INSIrUCIONScoevverrenrerienieneereiirerrreeesereeenteseenes 2-22
23412 Integer Compare INStruCtions.........ceerveeuerienreiercrcnrereeereeeie e see e 2-22
23413 Integer Logical INSIIUCHONSceereerrereerieininiioreerierieerassessesseeseeseensensens 2-23
23414 Integer Rotate and Shift InStructionsccoovieieicincnvnincicnncnencn 2-24

MOTOROLA Contents : v

CONTENTS

Paragraph . Page
Number Title Number
2342 Floating-Point InStrucCtionscccovevverieeeerisiineniiienni et eseensoneses 2-25
2.34.2.1 Floating-Point Arithmetic InStructions.........coeeueerurisnicreriisnsenrencsnenes 2-26
23422 Floating-Point Multiply-Add InStructions.......c..c.ceeeevirerisricnesenrcrnenenn 2-26
23423 Floating-Point Rounding and Conversion Instructions..........ccceevervenenn 2-27
23424 Floating-Point Compare INStIUCHIONS ...ve.veveueereerireririrereeereeserseressencereons 2-27
23425 Floating-Point Status and Control Register Instructions.........cceccecnvenian. 2-27
2.3.42.6 Floating-Point Move INStruCtioNS.ouvververeereerearisieeresierersereesseseesesseesees 2-28
2343 Load and Store InStructions.........coeeereeereneeirininienninintsciiiersreesssissesan 2-28
2343.1 Self-Modifying Code........ccvvrrmininiciiicisessens 2-29
23432 Integer Load and Store Address Generatione.ecceeeneeverveneeneeneeenns 2-29
23433 Register Indirect Integer Load InStructions........cccceeveveeicrininscenuecnnnnnnens 2-29
23434 Integer Store INSIIUCLIONS ...vevvecereeerierrerneriensenenesiesieeieeere e seese e seene 2-30
2.34.3.5 Integer Load and Store with Byte-Reverse Instructionsccoccecvveeene. 2-31
2.3.4.3.6 Integer Load and Store Multiple Instructions.......c...coeeeevverenrercricinnenenes 2-32
2.34.3.7 Integer Load and Store String Instructions...........ecoceviiiiiiinininninene, 2-33
23438 Floating-Point Load and Store Address Generation.........ccoccovveeveeeerrenns 2-34
2.34.3.9 Floating-Point Load InStructions.........cceeveerieriervesiesinsieeneenereeseeseersennens 2-34
2.3.4.3.10 Floating-Point Store INStructionsceceeeeeeviervenieresierenenerenesseneneens 2-34
2344 Branch and Flow Control INStrucCtionsc.cccceviveeeeeneneiinicieneeneeicnienns 2-35
2.344.1 Branch Instruction Address Calculation..........coeceveeeeereresnrsinreeeereenens 2-36
23442 Branch INStructionso.eeeveevecervnnieeenvenieeiicneneeicrrcteereeeseeeenns 2-36
23443 Condition Register Logical InStructionsccoceeevveeriveviinnnecsineniene 2-36
2345 TTaP INSLIUCHIONS .. evevirecrieieiecenieceteeetet ettt se e senes e e e eneen 2-37
2.3.4.6 Processor Control INSIIUCHONSc.cveuirvveereerceririiieeerennieciiirieneeeesiesene 2-37
2.3.4.6.1 Move to/from Condition Register Instructionsce.ceeceveeverersereeneenee 2-38
2.3.4.7 Memory Synchronization Instructions—UISAc.cocveveniivniinninnneenene 2-38
235 PowerPC VEA INSHUCHONSc.coveriiiiieeiereriniicsieereineesicsene e v 2-39
2.3.5.1 Processor Control INStIUCHONS ...c..eeverireerieriieieninieceeeeeere e sseeieeneesae 2-39
2352 Memory Synchronization Instructions—VEAccccoovviviinnevinnninns 2-40
2353 Memory Control Instructions—VEAcccooeveienniniinceineenineeseeeeene 2-41
2.3.54 External Control INStructionscccueeecreceeniniiieineieciniiciirineceneseenennas 2-42
23.6 PowerPC OEA INSIUCHONScovevemrveieriiniecereeecicreseenesecececenenesseneesesseannsns 2-42
23.6.1 System Linkage INSIrUCIONSc.ccveeruereereesieniniiineeeriinieisieeeeeseiseisaens 2-42
2.3.6.2 Processor Control Instructions—OEAccccceviiveienenninnininenenninenens 2-42
2.3.6.2.1 Move to/from Machine State Register Instructionsccoevevennnns 2-43
2.3.6.2.2 Move to/from Special-Purpose Register Instructionsccccvuevvvenene. 2-43
23.63 Memory Control Instructions—OEA ... 2-44
2.3.6.3.1 Supervisor-Level Cache Management Instruction..........ccoeeeevveevcinienns 2-44
2.3.6.3.2 Segment Register Manipulation InStructionscoeeeeevccerenverennccnnas 2-45
2.3.6.3.3 Translation Lookaside Buffer Management Instructions..........c.coeeeenee. 2-45
2.3.7 Recommended Simplified MDEMONICSccoveveervviveieririnmerenereniciereensesenaeniens 2-46
2.3.8 Implementation-Specific INStructionsc.coeviviieenecmiiiniiiiinie s 2-46
vi MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

CONTENTS

Paragraph . Page
Number Title Number
Chapter 3
Instruction and Data Cache Operation
3.1 Instruction Cache Organization and CONtrol...........cceeetrveruervrmeereeneeseeseeseeseensees 33

3.1.1 Instruction Cache Organization.............coeeeeeeeeeiivernneencercrsenseesioescssersessessenseeae
312 Instruction Cache Fill Operations

3.13 Instruction Cache COntrolccccevvvvreeeneeiesinirinerenrsesie st et sneseeeneas
3.1.3.1 Instruction Cache Invalidation

3.1.3.2 Instruction Cache Disabling

3133 Instruction Cache LocKingccceevveriiivinvinninninncnninnicicsivniccenecsncesseseens
32 Data Cache Organization and Controlccoiviininnniinivninniiiie 3-5
321 Data Cache Organization

322 Data Cache Fill Operationsceueeveereeeirvererseereesiesessesessessersasessessesscsesserss .3-5
323 Data Cache CONLIOL........iceeivieierrrreeee ittt st rsesseserte et sesstesteseesacas
323.1 Data Cache Invalidation

3232 Data Cache Disabling.........c.cccccviveiinmniniiiniiiciccine s
3233 Data Cache LOCKING......ccocevrreceenreniecrnniiniinierecinnestsiiiessenecsnesnseesessessaesian
3234 Data Cache Operations and Address Broadcasts

324 Data Cache Touch Load SUPPOLt.......cccceeveievieircinierinereereeiieeneeeeneeseeneeseesaces
33 Basic Data Cache Operations..........cceveeeercercreeeresreransressersessesssemiessasscesesseesessneseens
331 Data Cache Fill

332 Data Cache Cast-Out OPeration...........ccovreerereerreernerersecreneeseeressesessescsessesseaserse
333 Cache Block Push Operation ...
34 Data Cache Transactions on Bus

34.1 Single-Beat Transactionsceeeerveeiereerersinsessiesestestsnrensssssessessessessessesseseras
342 Burst TTanSactions........c.cocvevuiivienniinienncniiieniivienieneinisse s ssesssossssssssesssess
343 Access to Direct-Store SEZMENtSc.coveruercerereenrerrircceenenersessesesisseencseeens
35 Memory Management/Cache Access Mode Bits—W, I, M, and G................... 3-10
3.5.1 Write-Through Attribute (W)......cccovveveeee Ceeereeresraesaase sttt s et sr et et e neneseanes
352 Caching-Inhibited Attribute (I)

353 Memory Coherency Attribute (M)c..cocivcerieerinneeniinrinenniecieenneennineeeens 3-12
354 Guarded AHDULE (G) ...cuevreueeeeereeirriereereeseeeeeieseesesiere st saesseesessessesssseseenenee
3.55 W, I, and M Bit Combinations

355.1 Out-of-Order Execution and Guarded Memory..........cococvmevniniiiiiiccnn. 3-13
3552 Effects of Out-0f-Order Data ACCESSESrvurvreererrriersimssesesssssssssesseses
3553 Effects of Out-of-Order Instruction Fetches

3.6 Cache Coherency—MEI Protocol..........ccciiiinmninnnmiinniinienn,
3.6.1 METI State Definitionsccccvereeeiriiietinceimrmerienesesssaiessssesessesesssessenes
3.62 MEI State Diagram

3.63 MEI Hardware COnSiderations.................evurvemsensvarsssnssssssessersassssssssssssssans
364 Coherency Precautions............ccccocrceoiniiiniiniicnciinesasesssiesscr e eseessenns
3.64.1 Coherency in Single-Processor Systems oos

3.65 Load and Store Coherency SUmMmaryccoceconmeinieieniiiniienniinioninninns
MOTOROLA Contents N vii

CONTENTS

Paragraph . Page

Number Title Number

3.6.6 Atomic Memory References..........oovviriiiiiinicnneniciicicsienereecessens 3-19
3.6.7 Cache Reaction to Specific Bus Operations............. et et sastsaeaes 3-19
3.6.8 Operations Causing ARTRY ASSEItioNcoceciviiirencencniecresivsinrerenereereneen: 3-21
3.6.9 Enveloped High-Priority Cache Block Push Operationccoceevuevevrerereens 3-21
3.7 Cache Control INStIUCHIONSc.cvvveeereeitiserreriseensseeressentsesieseressesmecsrasessesassesesns 3-22
371 Data Cache Block Invalidate (dcbi) InStructioneoeviveeeiecinieceieeineeenne, 3-23
3.7.2 Data Cache Block Touch (dcbt) INStruCtionc.eevvevveevereeerreereriinersaveerenne 3-23
373 Data Cache Block Touch for Store (debtst) Instructioncoeeeeveeeeevenennnens 3-24
374 Data Cache Block Clear to Zero (dcbz) Instruction.........coceveeeveennceisenreneenns 3-24
375 Data Cache Block Store (dcbst) INSIIUCHIONcovevveeveeinreeecieieeeeeereveeneens 3-24
3.7.6 Data Cache Block Flush (dcbf) InStrucCtion........eeevveviveiiciiiirenieveienseresnieennns 3-24
3.7.7 Enforce In-Order Execution of I/O Instruction (eieio)............cceceeereerecerennne 3-25
378 Instruction Cache Block Invalidate (ichi) Instruction...........coecvevevinivvenenneens 3-25
3.7.9 Instruction Synchronize (iSync) InsStructioncccceeveveerernereevercarivnesnneennene 3-25
3.8 Bus Operations Caused by Cache Control Instructions..........ccoeouervevecnennee 3-25
39 BUS INTEITACE. ..ottt sre e raste s esa s e sas s srabasaasassesaone 3-27
3.10 MEI State TTanSaCtionsc.ceceeeueeerererureeeresisiessestssesssestsisessesesessasesssessesssenens 3-28

Chapter 4
Exceptions

4.1 EXCEPHON CIASSES....cvemeeriiiiiieieeriesieiitineesees e cbeteee et ese st e ssenasesesnessnsens 4-2
4.1.1 EXCEPtiON PLIOTILESvovevvuiitrirenreieniieseecrieserenetieetsieesse st s eesssee s 4-7
4.12 Summary of Front-End Exception Handling............ccceeeveeinneiicnnennncencncnnes 4-9
42 EXCeption Processing........oocciiiiiiiniiiniciiiiiiiiiecncsieie s e 4-10
4.2.1 Enabling and Disabling EXCEPLONS.......coccevererrerererrerrcrcnrenenierserenressernennens 4-14
422 Steps for EXception ProCessingccveeeeeevcreeireieenteserineeeerereseieineeaenenas 4-15
423 Setting MSRIRIT.....o.ooiiiiiiriiinretciteneerestereneeeeecnestetere e ssna e seesenesvene 4-15
424 Returning from an Exception Handler ... 4-16
4.3 Process SWItCHING.....c.ccevivreriiiiieinirieseeentintestesestesiesaessessssessesssatssasesesnsssassanes 4-16
44 EXception Latencies..........couviveireniciiiiicnececnisiietise e es i e cseenescsenes 4-17
4.5 Exception Definitionscovviierenereeerieninininrerenerenenieenneeesee s sessensoseseesense 4-17
4.5.1 Reset Exceptions (0X00100)........ccccoveenirrinrreereriorenrenitecneseesecreresemanseseesensene 4-18
4.5.1.1 Hard Reset and POWer-On Reset........coceveeereceeriniiieniienneeienianeesesseneenees 4-19
45.1.2 SOft RESEL ..ottt nes 4-20
452 Machine Check Exception (0X00200).......c.cccoermriinieninmeninereieneeneneeneneneenas 4-21
4.5.2.1 Machine Check Exception Enabled (MSR[IME] = 1) ...ccccovvccveiriercrneninenn 4-22
4522 Checkstop State (MSR[ME] =0)ccccocerenenencneneienn et 4-22
453 DSI Exception (0X00300).......cccceievtirmienineninencininiienirisiesesssesiseresessesesessses 4-23
454 IST Exception (0X00400)cccveereererrieienrenrenieneentesieionieseessssessasssesassessesseene 4-25
45.5 External Interrupt (0X00500)c.ccieeviniimeniicinniiniiniineenenetnee e seeseeneeesnens 4-25
45.6 - Alignment Exception (0X00600)cccoceniiriiviniiniircnininiieennineeeseienees 4-26
viii MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

CONTENTS

Paragraph . Page
Numsl’)er Title Numbger
45.6.1 Integer Alignment EXCEPLONS ..c..c.cverrerererierienensentermmieneressessesseessessensens 4-27
4.5.6.1.1 Page Address Translation ACCESScccceveerervirnierenririeeeeeniesesereneeseenees 4-28
4.5.6.2 Floating-Point Alignment EXCEPtions.........ccceevevererriniccreceenieriercnenennens 4-28
4.5.7 Program Exception (0X00700)ccccvvireierrcrrenrenienressinenrentnessseeseeseessesseseess 4-29
4.5.7.1 IEEE Floating-Point Exception Program EXceptionscocoveverenvennnes 4-30
4572 Illegal, Reserved, and Unimplemented Instructions
Program EXCEPLIONSc.ccuevieveruieiririrceienteiesirecseosenie et eseeseesesonesns 4-30

458 Floating-Point Unavailable Exception (0X00800)ccccceovrmurverrerccenienernenn 4-31
459 Decrementer Exception (0X00900)c.ccevververierreensesussniiessesenssseessersesnens 4-31
4.5.10 System Call Exception (0x00C00)

4.5.11 Trace Exception (0X00D00)cceeirirerresiionmenienenenescentsesesseeseeeessenseseens
45.11.1 Single-Step Instruction Trace Modecoviviinveviiiiieienenineans 4-33
45.11.2 Branch Trace Mode.........c.coveurnirnirninnceeeneieineeitec st esseseeseessesaeenees 4-33
45.12 Instruction TLB Miss Exception (0X01000)cccccecererrevvevennnenneecrereeerenennen. 4-33
45.13 Data TLB Miss on Load Exception (0X01100)........ccccvevermerrerereeescrereerens 4-34
4.5.14 Data TLB Miss on Store Exception (0X01200).........cccvvuerenvenenieinnncreneenens 4-35
45.15 Instruction Address Breakpoint Exception (0x01300).......ccccecceuvurveieuneenencne 4-35
4.5.16 System Management Interrupt (0X01400)cccooviiiiiininiiiiiiicnns 4-37

Chapter 5
Memory Management

5.1 MMU Featuresccoceeeeevnreccnecenenenees et e et b s 5-2
5.1.1 MemOry AdAresSing......coceeeeeererienieeieinneiiieneesieeenieneetesessesssesssssessessesseeseesees 5-3
512 MMU OFANIZAtONoovvceeceererieiseeraesieesaessesses e seesses s sassssessesssseesaessessessens 53 -
513 Address Translation MechanisSmscuivivmiiiinnincinneinens 5-8
5.14 Memory Protection FaCilities........ccocuvvercereriererineninieseneieeieteceneeseneesesnens 5-10
5.1.5 Page History INfOormation...........cocoueerievieiiennnsisininenenieeneereeseceneenenas 5-11
5.1.6 General Flow of MMU Address Translationcccoeeevecvrerencnncnnnenn e 5-11
5.1.6.1 Real Addressing Mode and Block Address Translation Selection 5-11
5.1.6.2 Page Address Translation Selection........covevuvernriininniriniineecrnionieneieenes 5-12
5.1.7 MMU EXceptions SUMMATYccceoevieriniiiiienieceneiiisiscecieeessssesssesesseeneas 5-14
5.1.8 MMU Instructions and Register SUMMATYc.coceeveerverereereeinreecececenecrennen 5-17
52 Real Addressing Mode............civiiiininiiniiiiiciiiis s 5-20
53 Block Address Translationivcececcveeeeiicevinnenieeneiseiiseseseeeessssesseseeseseesnene 5-20
54 Memory Segment Model..........cccoirriivrneninnsiisineeinie i brereisesescereeneens 5-21
54.1 Page HiStory RECOTAINGcoveveeeueririencitiiniecenireeentetisiee e neeeeerectseesnencsaenees 5-21
54.1.1 - Referenced Bil.......ocoeeeiiiniciniciiiciiit e 5-22
5412 Changed Bit.......cccoceeeiiueuencne ettt ettt et e et saet et et n et be e entetan 5-23
54.1.3 Scenarios for Referenced and Changed Bit Recording..............cccovevunen s 5-23
542 Page Memory Protection............cccccociinic i et 5-25
543 TLB Description................. T SO OO SO OO TOO RPN 5-25

MOTOROLA -+ Contents - - ix

CONTENTS

Paragraph Page
Number Title Number
54.3.1 TLB Organization.......c.ceoceeverueruereeseereasessssessossessersessssessossessessessesssssessessese 5-25
54.32 TLB Entry Invalidationcccccvevinurirncinininniinieneeinicceresessenesnesesene 5-27
544 Page Address Translation SUMMALYcccceveeveriinieniiieenniisenenienieresseseenes 5-28
55 Page Table Search Operationceceeerrerrerererrsresenresmsuesessesessossssesessasissssesseses 5-30
55.1 Page Table Search Operation—Conceptual Flowcccevniencennnecnnee 5-30
55.2 Implementation-Specific Table Search Operationcocccvevevenererecrecionnne 5-33
5521 Resources for Table Search Operationseeeeccieniinicieceeniscreneanne 5-34
55.2.1.1 Data and Instruction TLB Miss Address Registers

(DMISS and IMISS)......cconmmiiirieinieninenineeerenttsseeesesessseeiesesesessesesessnens 5-36
55212 Data and Instruction TLB Compare Registers (DCMP and ICMP).......5-37
55213 Primary and Secondary Hash Address Registers

(HASHI and HASHY)......c.ocoiriniiticinccntniniteeecsineeeessieneeseeassessenes 5-37
55214 Required Physical Address Register (RPA).........ccccccvvereririnercrunsecrcnnenns 5-38
55.22 Software Table Search Operation..............ccourveriicrcecscriererencnsencrueresecruenen 5-38
55221 Flow for Example Exception Handlerscoceevveevsnierceninnecreriesenne 5-39
55222 Code for Example Exception Handlers...........ccceoceevievrnveereicnnccencnnnen 5-44
553 Page Table UPAaAtesc.cvvvveerirerrereereireerinisieressereressssessesesseressesenssessessssoseses 5-50
554 Segment Register Updates...........coeivimiecnenceiiiiniiieeencsiniiieereenessssessnes 5-50

Chapter 6
Instruction Timing

6.1 Terminology and CONVENLIONSccccoeeueerireirereereneererrsueeseessesesesnenssessacseseesennd 6-1
6.2 Instruction Timing OVEIVIEWc.coccivireicieeireiinninnesssesesiresssssesssssesesracssonsd 6-3
6.3 Timing Considerationsc.eerrciverviirireneiicnniniieseeresesisesssiseesesescsessssseses 6-5
6.3.1 General INSrUCHON FLOWcvveeeueeoeeeecoeesesseeseseesssseesssssssesssssssssnsnens 6-6
6.3.2 Instruction Fetch Timingcccoccoevvveiiiinnenencninecnecneneneeesesesesessesnesesennd 6-9
6.3.2.1 Cache AIDItIAtIONc.ccovevieieriereiecceteteteee ettt s e eee s seessaesesnees 6-9
6.3.2.2 CACKE Hi...eovenieeirtecceeieieiieete et stereee e oot se et sesessesessssssesaesenees 6-9
6.3.23 CACKE MISS ...ttt esre et et e csessesaesasaestsassssusstsessesseneas 6-10
6.3.3 Instruction Dispatch and Completion Considerations............c.ceceeeereeverreenencs 6-11
6.3.3.1 Rename Register Operation............. ettt e e s n et e e e e s e e e 6-12
6.3.32 Instruction SerialiZationcoccceiirieereneneiisieeneecreeeceeseceeereneneeneenes 6-13
6.3.33 Execution Unit Considerations..........ccceveververeerereircrnecnnnuesirmereseseseseesesens 6-14
6.4 Execution Unit TImings.........cccecceviiniiiiiiincnenininiiicninsissssciseeensccssssseeses 6-14
6.4.1 Branch Processing Unit Execution Timingccocececveveeereriencernneensnenenneas 6-14
6.4.1.1 Branch FOIAINgcoviiiieniieriiiieccc ettt 6-14
6.4.1.2 Static Branch Prediction.........c.covueeivcnecccnncininincncninnceincneeeieeenenenes 6-16
64.12.1 Predicted Branch Timing Examples..........cccoevcveururiricnininnenecinennncncens 6-16
6.4.2 Integer Unit Execution Timing......ccoccecrceuererueinecteierteienenreereieteeneeseraesns 6-18
6.4.3 Floating-Point Unit EXecution Titing.........ccceveerereereruerasverarersescarassoserssenene 6-18
6.4.4 Load/Store Unit EXecution Timiingcceccevevverereererieereereseesteseessessesseseeseenes 6-18
X MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

CONTENTS

Paragraph . Page
Num?:erp Title Numbger
6.4.5 System Register Unit Execution Timing..........ccccovuevieercenicncrrcsniecinenenine 6-18
6.5 Memory Performance Considerations...........cccivveeiviniiicnncnuinncisneneoesnenns 6-18
6.5.1 Copy-Back Mode...........
6.5.2 Write-Through Mode
6.5.3 Cache-Inhibited ACCESSEScovcoerrrerrrinirrererentrnseseneessessessssssensssonsesssnssnsnsen 6-20
6.6 Instruction Scheduling GUIdEHNESccoveeruiiumreeniieciiisivnicnnesircsessessineeensnns 6-20
6.6.1 Branch, Dispatch, and Completion Unit Resource Requirements................. 6-21
6.6.1.1 Branch Resolution Resource Requirements...........ccceceerereereeseeneseeceereenenne 6-21
6.6.1.2 Dispatch Unit Resource ReqUIrementsccociveveneineiecesecnssceoeinenes 6-21
6.6.1.3 Completion Unit Resource Requirements.............coicevecrrescreerercensescnnnns 6-22
6.7 Instruction Latency SUMIMATYc..c.cceererriinerrieresstinnsiinreorenseseesseesssseeseesessecsasenes 6-22
Chapter 7
Signal Descriptions
7.1 Signal Configurationccceiivieiniieeiiiiiecntse e eseseesereessesssesssssosessenes 7-3
7.2 Signal DESCIIPLIONScovvuiririiinirintiesie ettt ee et sr e s e sseo e ereenes 7-4
7.2.1 Address Bus Arbitration SignalS.........c.ceceereereeeeruevereereeresreereresressessesseesessoesens 7-4
7.2.1.1 Bus Request (BR)—OULPUL..............coevveerrresreersssesssenessenssssrsssessassessssessssns 7-4
7212 Bus Grant (BG)—INpUL.........c..corveervererenerenereesiessaesssessesssseessessssssssasssessens 7-5
7213 Address Bus Busy (ABB)ccoouoovuuriuereemsiessiesiseesseessssssessesssessessnesasssnes 7-5
7.2.1.3.1 Address Bus Busy (ABB)—OULPULccoervvivrenreesmienisensiessessesssensenns 7-5
7.2.1.32 Address Bus Busy (ABB)—INpUL........c.ccoouurrurerrerrriesenssensenssansesessesaesens 7-6
7.22 Address Transfer Start Signals...........coo.evverveerenes ettt bbb 7-6
7.22.1 TrANSTEr STAt (TS) ...oovvoviverereeeieraessseesesessessssessssesssssssssssssssesssssnssssssssassaes 7-6
7.22.1.1 Transfer Start (TS)—OULPULc.vveveeverrsrecssesrsessesssssessssssesssssssssssns 7-6
72212 Transfer Start (TS)—INPUL..........oovevverrererrreersrereseenn. ettt 7-7
7.2.3 Address Transfer SIZNAlSccccoevirierecicieniinnnerernerineestsseeeseesasseeesesensssenes 7-7
7.2.3.1 Address Bus (A0=31]) cvccrueeereerrieerreeiecrrieeeeeerieseeesseessssseesssnessssessssessnsens 77
7.2.3.1.1 Address Bus (A[0-311)—OUtPUL......ccccerveimrrrrerrerrreenrennnerreeserereesessenseenes 7-7
7.2.3.1.2 Address Bus (A[0-31])—Input..........cccu..... ettt st 7-7
7232 Address Bus Parity (AP[0-3]) ..cccecevrunerniinieinnienecreinenessesseessssessessenes 7-8
723.2.1 Address Bus Parity (AP[0—3])—OUtputcccceeruererrrerrurcrenrrreesrecserseens 7-8
72322 Address Bus Parity (AP[0--3])—Input........ccceceeerruecerrercerreenreceeerecseesennas 7-8
7.2.3.3 Address Parity Error (APE)—OULPUL........c.cooevvereeerrenraereneesessensaesessensaseenee 7-8
724 Address Transfer Attribute Signals.........occvvcrerevreciirenenienecneesenesseereesessnns 7-9
7.24.1 Transfer Type (TTI0—4])..cccceveeeernerinieneivninerseireseenenens st sresaet e seenes 7-9
7.24.1.1 Transfer Type (TT[0—4])—OUtput.........cccvrveerenrrreeneeieesernersessessesseens 7-9
724.1.2 Transfer Type (TT[0-4])—INPULcccrmrreeeiivmneereeereesceereseneessesessennens 7-9
7242 Transfer Size (TSIZ[0-2])—Outputccoveverirrienriieninieirsnsiseesieresses 7-12
7.24.3 Transfer BUrst (TBST)ccvevuieeveecrerrieerercereecsicverecrseesrsenseessecsssessssesennes 7-13
7.2.4.3.1 Transfer Burst (IBST)—Outputc.ccevevrveivreeerereernurmrerreeressessesennaes ..7-13
MOTOROLA Contents - xi

CONTENTS

Paragraph . Page
v Nyum%ei'p Title Numb%r

72432 P Transfer Burst (TBST)—INputc.cccovccerrmirnininenmreererrecniieeeeecnens 7-13
7244 Transfer Code (TC[O—11)—OutPut «......coeceiruereerierenrcniereeenceeeceeneeieiene 7-14
7.2.4.5 Cache Inhibit (CT)—OULPULcovverveereereireeiiesiee e ssssssssse s enssens 7-14
7246 Write-Through (WT)—OUtPUL.........o..ovveeieeiirecreeseeseesees s 7-14
7241 GIODEL (GBL).....oovvuurecrvvenesiamsissesseeassanensscsssessasmasssesesssssssssssssasesessssssons 7-15
7.2.4.7.1 Global (GBL)—OUtPULveeveeeivreeneieerevre e seeseseeesseesesasees e 7-15
7.2.47.2 Global (GBL)—INPULvvvrrvrrreerireessiiesssssisensssessises s sssssensenns 7-15
7248 Cache Set Entry (CSE[0—1])—OUtPULc.ccocevverererreerinrenrinreirneenrereeneesens 7-15
725 Address Transfer Termination Signals........ccoceoveverivricnniennienerineneneenenns 7-15
7251 Address Acknowledge (AACK)—INput.......cceveeeiverevnrinreiicrninnereneinne 7-16
7252 Address Retry (ARTRY)........ e ettt ettt ettt eaan 7-16
7.2.52.1 Address Retry (ARTRY)—Output.......ccccoeverieieenconnicrcrneeccneenenen 7-16
7.2.5.2.2 Address Retry (ARTRY)—Inputccoeeeeeiinereinineenercnneeneereneenn 7-17
7.2.6 Data Bus Arbitration Signals........c.ceeeeveeererieerienecnieienecineenereseeneesene 7-17
7.2.6.1 Data Bus Grant (DBG)—INpPUtc.ooveeueireeeerreecireesees oo 7-17
7.2.62 Data Bus Write Only (DBWO)—INputccccoveeeeevenieireniereereeieneenns 7-18
7.2.6.3 Data Bus Busy (DBB)cccovvevuivieimeeeieeseeeseese e sssses s 7-18
7.2.63.1 Data Bus Busy (DBB)—OUtPULc..vververrerreacieessiesssesssssesssssensens 7-18
7.2.6.3.2 * Data Bus Busy (DBB)—Input.........c.ccooevvirreeerermieeiereessesssesiessessissionees 7-18
7.2.7 Data Transfer SigNalsc..cevieieriviieicreeeieenieees et snsnseseses 7-19
7271 Data Bus (DH[0-31], DLI0=31]) .cccvtetemrieuecieeereireeieceicneereeeieee e 7-19
72711 Data Bus (DH[0-31], DL[O-31])—Ou{put.....c.cccecerererrererrenerreccrrererrenens 7-19
72712 Data Bus (DH[0-31], DLIO-311)—Input......c.ccccecvrecrmrivcnnrnrircrenes 7-20
7.2.72 Data Bus Parity (DP[0=71) c...c.eeemurmmerienieiirieireneeeneitesesescsetee s 7-20
72721 Data Bus Parity (DP[0—7])—OUtput.......ccceeeirereniiriicienenrcieniennne 7-20
72722 Data Bus Parity (DP[0-7])—TInPUl...ccceoiriiiriieirrieiesicsresevereesesenenns 7-20
7.2.13 Data Parity Error (DPE)—OUtPUL...........c.ovvveveerrreeeessreereeseeesseesseesins 7-21
7274 Data Bus Disable (DBDIS)—Input........c.cccceevememriecicenneeiecneineeceene 7-21
72.8 Data Transfer Termination Signalsccccccemevevcnieiinniicenineeisierenae 7-21
7.2.8.1 Transfer Acknowledge (TA)—INPUL..........covvveerriremrieemrriersersssisensssensenens 7-22
7.2.82 Data Retry (DRTRY)—Input.......c.cocceceiininnnnnnnnne. e 7-22
7.2.8.3 Transfer Error Acknowledge (TEA)—INPUL.........ccooveeivemreerrrreeerererrnnenss 7-23
7.2.9 System Status Signals...... .o 7-23
7291 Interrupt (INT)—INPUL.....viverireerierrieeeeeeiereeesssessssesssse s ssses s sessens 7-23
7292 System Management Interrupt (SMT)—Input............cooooeerveerrveerrunrrenrnenn. 7-24
7.2.9.3 Machine Check Interrupt (m)—lnput ... 7-24
7.2.9.4 Checkstop Input (CKSTP_IN)—INputc.ccccervverrrueeicnirneircnciererccenne 7-24
7.2.9.5 Checkstop Output (CKSTP_OUT)—Output........ocrvieeenieriveeriereniennen. 7-25
7.2.9.6 ReESEt SIZNALS ...oveieicccicciec et 7-25
7.2.9.6.1 Hard Reset (HRESET)—INput.......ccccceuninereeceieernenennirenisiineeninenees 7-25
7.2.9.6.2 Soft Reset (SRESET)—InPULcoeuirmrvenicriercreccniiteerencereeeenrereenens 7-26
7.2.9.7 Processor Status Signals..........cocoeieveinmiiiieniiiiieie 7-26
7.29.7.1 Quiescent Request (QREQ)cvevienireeeienieienrieirieteree st 7-26
xii MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

CONTENTS

Paragraph " Page
Number Title Number
7.29.7.2 Quiescent Acknowledge (QACK)......ccoririiinnennecniieieeseeere e 7-26
7.29.7.3 Reservation (RSRV)—OUtPULccccvveerrenrerenierereeeeieisienssressessesessessesens 7-27
7.29.7.4 Time Base Enable (TBEN)—INput.........ccccooecireiveneineenieceeneeseenreesecneas 7-27
7.29.7.5 TLBI Sync (TLBISYNC)
7.2.10 COP/Scan INEIfaCecoueveverieieieieieie st sesinesereesassesssessessasansasens
7.2.11 Pipeline Tracking SUPPOTIt.......cceveeerueirenirireseniestsesesteeeresssesenesesessasassassens
7.2.12 Clock Signals
7.2.12.1 System Clock (SYSCLK)—Input
7.2.12.2 Test Clock (CLK_OUT)—OUtPULocevueerrerrnrermrercrrareressenesaesessasessasss 7-30
7.2.12.3 PLL Configuration (PLL_CFG[0-3])—Inputcccecveveveuerccenenenencrueenens 7-30
7.2.13 Power and Ground Signals..........cccccceiirerieriineneneniineneneeeceeereseeseseesaesesaenes 7-32
Chapter 8

System Interface Operation
8.1 OVETVIEW ..ottt ceentes et ettt a et be e e eseesesaes st e senesesestasessasaenessessans 8-1
8.1.1 Operation of the Instruction and Data Cachescccoceveriecrerennnrenresenneeennn. 8-2
8.1.2 Operation of the System INtErface...........ccccevvveerericreieeiccnenicenrneesieneeessenenns 8-4
8.1.2.1 Optional 32-Bit Data Bus MOdeccoevmriininininrircreniniecnneeeeceeensecsenns 8-5
8.13 Direct-Store Accesses
8.2 Memory Access Protocol
8.2.1 ATDITation SIZNALScoueereeivenurrieireeresrsrerrrsesteessoresssrasaesasssassesassessasassassessnns
822 Address Pipelining and Split-Bus Transactions..........ccceveeverercerseseerervesvereenns 8-8
83 Address Bus Tenureccovueeervveeeveereeennas L rseserestssnssai st rs s se s st n s n e bRt e b b e R 08 8-9
8.3.1 Address Bus ArbItration.......c.ceeeercruieuceeerierenristinueserseestesesstssissstesessesssssssaessens 8-9
83.2 Address Transfer
83.2.1 Address Bus Parity
8.3.2.2 Address Transfer Attribute Signals.........cccceeereerereerereeresrsnneesisessessernesenes 8-13
8.3.2.2.1 Transfer Type (TT[0—4]) Signals......c..cceeereenervriescrcrenennernrcsneens 8-13
83.2.22 Transfer Size (TSIZ[0-2]) Signals......ccccoevureerercreceniereneenesenrneenssnerionees 8-13
8.3.2.3 Burst Ordering During Data Transfers.........ccoceeeeveeirceerncoennecrnennancsnenens 8-14
8.3.24 Effect of Alignment in Data Transfers (64-Bit Bus)........cccccceveernrereverannes 8-15
8.3.2.5 Effect of Alignment in Data Transfers (32-Bit Bus).........cccocecvevvrereeernenen. 8-17
8.3.25.1 Alignment of External Control INStruCtions............cececeerevecerrrceerareerearene 8-19
8.3.2.6 Transfer Code (TC[0—1]) Signalsccoceveeverrcrvinininrnieriereerentaseeseseesens 8-20
8.3.3 Address Transfer TErMINAtioncoeevveernevirenriennneseseeesssesnesessosesaeses 8-20
8.4 Data Bus TENUTIE.....co.coieuiiriieiesireeeeeteeeenrtece ettt snesesseesassossessesansnes 8-22
8.4.1 Data Bus Arbitrationcoceerevuererieiriesiineeetenessesessesnesssissenmsnssessssssessnseseses 8-22
8.4.1.1 Using the DBB Signalcoo.euvvvrverrreereeerssessessseesssssesesssssssssssssssssens 8-23
84.2 Data Bus WIIte OnNlYcoccuvvivininreiirinieiicininenenceisenieseseesssesesesseesssssesensas 8-24
843 Data TTaANSTET ...cccivevrueieteirtietereree ettt esaee et e e e ese et esesesseseesnasens 8-24
844 Data Transfer TEerminationccceceeeeirccrueerininsiesesenesseseesenenessesessessesessenees 8-25

MOTOROLA Contents i Xiii

CONTENTS

Paragraph . Page

Numsgerp Title Number

8.4.4.1 Normal Single-Beat Terminationc..c.eeeeveverreneruererieresenieneeseeicnneenene 8-26
8.4.4.2 Data Transfer Termination Due to a Bus Error........c.ccoeonvniciinnnne. 8-29
8.4.5 Memory Coherency—MEIL Protocolcoecvveeeienecrnercerenneeniecnieniene 8-30
8.5 Timing EXamples........cccoviiiiiiiiiciici e 8-32
8.6 Optional Bus Configurationsccceeueirinieneinninnnienininineneeininesseneeneseeneie 8-38
8.6.1 32-Bit Data Bus MOdE......c.ccoieuiriinrinieienieierenetetetctecere st ettt 8-38
8.6.2 NO-DRTRY MOGE......ocuceiiiriieiciiiicciiseeeet ettt 8-40
8.6.3 Reduced-Pinout MOdEco.ooiieriniinieieieiesieiertcteeeeercsiee et e 8-40
8.7 Interrupt, Checkstop, and Reset Signals........cccceeveerenvcinneeneccrnennernrenennnnns 8-41
8.7.1 External INeITUPScocouieemiiiiieieetecrei et 8-41
872 Checkstops.......ovvvennnins reteriaber et r e st st s bt s s bR s s Rs bbb e sa st sa st eneene 8-41
873 RESELINPULS ..ottt 8-41
8.7.4 System Quiesce Control SIgNalsc.cveeeevererereeirinirrieinieereerrer s e 8-42
8.8 Processor State SIgnals..........ccoeioiririiieiieiecciene e 8-42
8.8.1 Support for the Iwarx/stwex. Instruction Pair.........ceeoeeivnncicicnniecnnne. 8-42
8.8.2 TLBISYNC INPUL ..ottt sttt 8-42
8.9 IEEE 1149.1-Compliant INte1facec.cocecevvreereneerineinnieineccrieennerceeniennen 8-43
8.9.1 IEEE 1149.1 Interface DesCription...........ccccvevirinienicieicniecreirenreeeresiennnene 8-43
8.10 Using Data Bus Write Only........cccoeveivinieiiiiiieieiniicncrcieeeierecseseenee 8-43

Chapter 9
Power Management
9.1 Dynamic Power Managementoeueiirenmereeieiniereninonisenseeenseseesseesssessenes 9-1
9.2 Programmable POwer MOdes........cccccoeccrmiiiinicinncineiecnceseeseeeeesieaeens 9-1
9.2.1 Power Management MOGEScoccoveierivieinieininenierennecn s eeeeseseesereniens 9-3
9.2.1.1 Full-Power Mode with DPM Disabled..........ccccoeeinininnncnieninienienencnennens 9-3
9212 Full-Power Mode with DPM Enabled...........cocoveeciiinnieicnnineienceeneenen. 9-3
9.2.13 DOZE MOME ...oineiieiiitit ettt ettt ste et sae bbb e b eseobasrens 9-4
92.14 NAP MOGE ...ttt ettt e s s se s ssaneas 9-4
9.2.15 S1EEP MOME ..ottt st st 9-5
922 Power Management Software Considerations.........ccccecveeverreerirrnerrneseriereeens 9-6
Appendix A
PowerPC Instruction Set Listings

Al Instructions Sorted by MNEMONIC.......ccoveeerireineririeeneeeereseeresenenaeseeieseseereees A-1
A2 Instructions SOrted by Opcodeccccovevierinirinreciereeeiere e A-9
A3 Instructions Grouped by Functional Categoriescovvverveecrnircrnecreenenen. A-17
A4 Instructions Sorted by FOrm ... A-28
A5 Instruction Set Legend.........ccccoeviinnniinminiecccre et A-39
xiv MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

CONTENTS

Paragraph : Page
Number Title Number

Appendix B
Instructions Not Implemented

Appendix C
PowerPC 603 Processor System Design and Programming Considerations

C.1 PowerPC 603 Microprocessor Hardware Considerations..........cc.coceeerueeveceuccnne C-1
C1l1 Hardware Support for Direct-Store ACCESSESocvvveerrireciineesuenisreneesenseees C-1
C.1.1.1 Extended Address Transfer Start (XATS) ...ocovveveeeerenennrereeieeereseeaeens C-2
C.1.1.1.1 Extended Address Transfer Start (XATS)—Outputccoeveeveecrennnne C-2
C.1.1.1.2 Extended Address Transfer Start (XATS)—Input.......cccccevevrervereeneenne. Cc-2
C.12 Direct-Store Protocol Operationcoceecvveriiiniciennininincnncnienenneennens
C.1.2.1 Direct-Store TTanSactionscecceeeervereenrereeiereeseeensesiniseeseessessieseosesseesnes
C.1.2.1.1 StOr€ OPETALIONS.ceeeveererieeeniiieiiic ettt er e
Cl121.2 Load Operations...........c.ccecvuiiniiiivininiennas

C.1.22 Direct-Store Transaction Protocol Details

C.1221 Packet O....oeeveiiieiieieeceienceeeeniecrercieneeeneene et ettt eaes
C.1222 Packet 1.

C.1.23 I/0 Reply OPEIationsc.covvvviicieniininmiriniiriiensinsiesississiesessse s eneons
C.l124 Direct-Store Operation Timingcvecerveeerireerierenenireeseeeseeeeeeceeeas
C.13 CSE SIZNAL....eciiiieieiiiietereee ettt et seass e oo sebesre s saseobeses
Cl4 PowerPC 603 Processor Bus Clock Multiplier Configuration...................... C-12
C.15 PowerPC 603 Processor Cache Organization

C.15.1 Instruction Cache Organizationc.ecocvvveeeecrinivueucnnnes

C.152 Data Cache Organizationcceeeerererenineieioeneeseneresseesseseessesessene
C.1.6 PLL Configuration (PLL_CFG[0-3])—INput......c.cccoeceerremrereencesienerrernnne
C.1.7 Address Pipelining and Split-Bus Transactions

C.1.8 Data Bus Arbitrationc..o.ceeeveeeeereuiereireieceeieesieieeecraescesseseesessrsesenaeas

C.2 PowerPC 603 Processor Software Considerations..............cceveeeericrerierecueennes C-16
C2.1 Direct-Store Interface Address Translation

Cz2.1.1 Direct-Store Segment Translation Summary FIowccccocvecieiinininnnne C-17
C212 Direct-Store Interface ACCESSES.......evververriiineierieiecetscreeeeeesetseesrienene
C213 Direct-Store Segment Protection

C2.14 Instructions Not Supported in Direct-Store Segments...........ccccccveveeveeenne C-19
C2.15 Instructions with No Effect in Direct-Store Segments..........cc.cceeereveeueeee C-19
C.22 Store Instruction Latency

Cc23 Instruction Execution by System Register Unit........ccocevveeeevncnerrcnnceneenenn C-20
C24 Machine Check Exception (0X00200)........cccoreerireemmrmrruesierenereeeensesnenninnone C-21
C25 Instruction Address Breakpoint Exception (0x01400).............ccocovnniinnnnene. C-21
C.2.6 Cache Control INSrUCHONS.covcevverercinieirenineeereiitee e et ressenenes C-21

MOTOROLA Contents XV

CONTENTS

Title Page

Number

" Paragraph .
- Number © -
SRS+ Glossary of Terms and Abbreviations

Index

XVi ' MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Figure
Number

1-1
12
1-3
1-4
1-5
1-6
1-7
2-1
2-2
2-3
2-4
25
2-6
2-7
2-8
3-1
32
3-3
3-4
35
4-1
4-2
4-3
44
5-1
5-2
5-3
54
5-5
56
5-7
58
5-9
5-10
5-11
5-12
5-13

ILLUSTRATIONS

. Page
Title Number
BIOCK DIaZIamm.c..c.ceuiviiieeirerienteieietet ettt e saesaes e e st asraas e saessa e s erseasesanes 1-6
Programming Model—ReZISLETScccevererenrerenieriereeireeenteee st st eeeaaeies 1-22
Data Cache Organizationccoceeveeveruenrenerenienienrenieniresentesiseseesesesesseessens 1-27
Exception ClassifiCations..........occecueeeerernerieeieieieesteereeie et eieiee e sse e esene s 1-29
Exceptions and COonditionsccccceveeeeerrenenirrenucnsenensneeninssereesensensersenns 1-29
SyStem INLErTace. ... c.covueieieirieiriceirceeeeiete ettt eae st 1-35
SIGNAL GIOUPS....oovieirieirreririeiiriiiree ettt e e et se s et rere e s s e eseseenes 1-38
Programming Model—RegISterscccoiimeiiiiiiineccinceeceeereneeesieneene 2-3
Hardware Implementation Register O (HIDO)ccccceevvevinennninieieiennneenne 2-7
Hardware Implementation Register 1 (HID1)cccccoociiiiiiininciiinciciicennene 2-9
DMISS and IMISS REZISIELS .ccveuverrirerreirrenienreierteieraeasressesieseosessaeesiessessessessaes 2-9
DCMP and ICMP REZISTETS.......c.coiimeierieieiiienicceieiinrececcaeriees v sneeeseenennens 2-10
HASH]1 and HASH?2 REZISIEISovvueueiiiiiiiiiiiciiietereiccsiee et 2-10
Required Physical Address Register (RPA)ccoccoviioineieeniineeceenceenenrenne 2-11
Instruction Address Breakpoint Register (IABR)......cccovverernneninnnicnrinicene 2-11
Instruction Cache Organizationc...c..eueieriuesrerseessreesisesssssassssssessssessenses 3-3
Data Cache OrganiZationcc.eceverienienieniercrirenesieniereesteseseeessessesseseseen .. 3-5
Double-Word Address Ordering—Ceritical Double Word First............cc....... v 3-9
MEI Cache Coherency Protocol—State Diagram (WIM = 001) 3-16
Bus Interface Address BUffers.......ccoceveeeecrcnenenieneicieies vt

Exceptions and CONdItiONScoceevereerrerenenrerienteienieeereseseeieseseesanereeneeseonsess
Machine Status Save/Restore Register 0
Machine Status Save/Restore Register 1

Machine State Register (IMSR)co.vovreivieriiirieiersetseee et e e eaeseseens
MMU Conceptual Block Diagram—32-Bit Implementations...........ccccecervennenne. 5-5
IMMU Block DIagram......c.coceuecieeermeeeenreneerenseeninereerereesecenanes

DMMU BIOCK DHaGIAMeouieiiieeeerieetenrteieseeieeceieetesaeesaestesenbaeseseeaesseseeenas
Address Translation Types

General Flow of Address Translation (Real Addressing Mode and Block)...... 5-12
General Flow of Page and Direct-Store Interface Address Translation 5-13
Segment Register and TLB Organization...........c.ccecceeeicciiinineeecincicesennen. 5-26
Page Address Translation Flow for 32-Bit Implementations—TLB Hit.......... 5-29
Primary Page Table Search—Conceptual FIowccccooociiniinininninne. 5-32
Secondary Page Table Search Flow—Conceptual FIowcccococeveccnennenne. 5-33
Derivation of Key Bit for SRRccooouviriiiiiririieiristeeeeeeetst et et 5-36
DMISS and IMISS Registers

DCMP and ICMP REGISIEIS......ccceveuemiirieieienieiinieieeeeerteceerentere e sesseesenne

MOTOROLA

Ilflustrations xvii

ILLUSTRATIONS

Figure . Page

Nt?mber Title Number
5-14 HASHI1 and HASH?2 REEISIETSvevveeeirieiieniecreieeceie ettt tee e sseeevans 5-37
5-15 Required Physical Address (RPA) REIStErcoccvverereeenieciirieriienecerenn 5-38
5-16 Flow for Example Software Table Search Operation............ccoooeevvviiinnninnns 5-40
5-17 Check and Set R and C Bit Flow
5-18 Page Fault Setup FIOWcooooiiiiiiiiiicniccicicccnecni s
5-19 Setup for Protection Violation EXCEPHONSco.eeevverericierinienieriiceneceeeecnens 5-43
6-1 Pipelined EXecUtion Uteeovererrerenienerieenreniieeiieesienesessecinestesesuessoncononnas 6-4
6-2 Instruction FIOwW Diagramc.cocvveeriiinmercniiinienineeinneinicineinneescesasscnnne 6-8
6-3 Instruction Timing—Cache Hitcccoeiiiiriiininiiienese e 6-10
6-4 Instruction Timing—Cache MiSS.......coceveverirercrieniinieienierieeeee e 6-11
6-5 Branch Instruction TIMingG.......ccceceeveeeeeerrererriseneneenieseeeecsseteseesteaesereesseerene 6-17
7-1 SigNal GIOUPS. ...t s 7-3
7-2 IEEE 1149.1-Compliant Boundary Scan Interface............cocociniiniiniinnnen, 7-28
8-1 BIOCK DIaZIam......ccvieieieiirinieieineeesieneeesieeetnressesbessesiesteseeesresresaeabeseesnesresnes 8-3
8-2 Timing Diagram Legend..........cccoocveiriinivconieieinee oo seenenas 8-5
8-3 Overlapping Tenures on the Bus for a Single-Beat Transfer..........cc.cocecovvneeeneee. 8-6
8-4 Address Bus Arbitrationcecvecceeeeeriririenenenereerereeieeenceseetetee e ssesseenees 8-10
8-5 Address Bus Arbitration Showing Bus Parking.......cccceceeevnericiiininicorinennncnne. 8-11
8-6 Address Bus Transfer.......cccovovecrireriiniencreceneceereeieeseeesee e e 8-12
8-7 Snooped Address Cycle with ARTRYccccvvviniinviicniniiiece 8-22
8-8 Data Bus ArDitrationc.cecvviveecieceeieeiininceienencnenieeseseeseseneeesessessecrasesessens 8-23
8-9 Normal Single-Beat Read Terminationcc.ceceecereereenecenrecresrenreniesreneneesees 8-26
8-10 Normal Single-Beat Write Termination.........eceveevevrrmrenieneenerineeiniereeneenens 8-27
8-11 Normal Burst TranSaction........c.c.eeeeeieeierimreeniereeeenescseeeeneeeestenessaeesneesnes 8-27
8-12 Termination with DRTRYccoooiiiiiiiniiiiciniciciciecc s 8-28
8-13 Read Burst with TA Wait States and DRTRYcc.covevueruriverreieesvenieseiecneenienns 8-29
8-14 MEI Cache Coherency Protocol—State Diagram (WIM = 001).......c..ccceeneee 8-31
8-15 Fastest Single-Beat Reads........c.ceoeieiineiininineniceicceniecinie e 8-32
8-16 Fastest Single-Beat WIies......cocuverieeierinerentencrieereeeneene e eeenenesneesnenene 8-33
8-17 Single-Beat Reads Showing Data-Delay Controlsccccvceiniiiniincninnan, 8-34
8-18 Single-Beat Writes Showing Data Delay Controls........cccoceevieneverenniecerennnneene 8-35
8-19 Burst Transfers with Data Delay Controls........occeceeveciierenienieesiennenicnne e 8-36
8-20 Use of Transfer Error Acknowledge (TEA)cocovvrviemeeierieseereeesereessenens 8-37
8-21 32-Bit Data Bus Transfer (Eight-Beat Burst)cccocevviciinieininicniiccnene 8-39
8-22 32-Bit Data Bus Transfer (T'wo-Beat Burst with DRTRY) ...c.occvvecivvcvieennnnnes 8-39
8-23 Data Bus Write Only Transaction..........couecceeeeeceeecereecnieinniinercncse e ssneseenens 8-44
C-1 Direct-Store TENUIEScccoveiieiriniiriieriiisecrc et s s C-4
C-2 Direct-Store Operation—Packet 0cccocoeveriiineninniiincnieecenceerenns C-7
C3 Direct-Store Operation—Packet 1ccccccveveevirieinrininirinrieneereceneesecsesninens C-8
C-4 I/O Reply OPeration ...t eeseess s s ssensssens C-9
C-5 Direct-Store Interface Load Access Examplecccccceveeeveeveeneennrccrencnenneneene. C-11
C-6 Direct-Store Interface Store Access EXamplecoccoceveioneincniinnicceineiniciniens C-12
C-7 Instruction Cache Organizationccceiieiinicriciniinncriiinee e C-14

xviii MPC603e & EC603e RISC Microprocessors User’s Manual MOTOROLA

ILLUSTRATIONS

Figure . Page

Number Title Number
C-8 Data Cache Organizationccccevvecinirmimiiinininiicsiieninsisssesssiosessssessaned C-15
C-9 Direct-Store Segment Translation FIOW ... C-17

MOTOROLA : . llustrations L XiX

ILLUSTRATIONS

Figure . Page
Number Title Number
XX MPC603e & EC603e RISC Microprocessors User’s Manual MOTOROLA

Table
Number

i
ii
iii
1-1
1-2
1-3
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19 -
2-20-
2-21
2-22
2-23
2-24
2-25
2-26
2-27
© 2-28
2-29
2-30

TABLES

. Page

Title Number
Acronyms and Abbreviated TEITNSccceveveeierrerereeniiotieeeseesiaesseessessessessees XXXiV
Terminology CONVENLIONSc.covviiiiiriinirieinieciicnseesseseestieesiessesesaeeeenens XXXVil
Instruction Field CONVENtioNns.........co.cceviinveenreneeinersienieenserassesserensersssesnns XXXviii
CSE[0-1] SIZNAIS....coiviriiriiiiiiieiieiiietets ittt teeseenesseseaesesesesaesenens 1-7
Generated SRR [Key] Bitcocoiouiieininieiiniiineinecnieecnieeninieseenesesssaeseesaseenne 1-8
Additional/Changed HIDQ Bits..........cccoceeeierrereeirereiinieeieessreeesenenereaesenens 1-18
MSR[POW] and MSRITGPR] BitS......c.ccceueueccenrreereiecninrieieninieseeieesseeeesnneenas 2-5
HIDO Bit Settings
HID1 Bit Settings
DCMP and ICMP Bit SEHHNEScoereueeurerrereieteeerieneneereesenaeeieeeseeseenreenesnenes 2-10
HASH1 and HASH2 Bit SEtNES ...c.ccceveveriivreerereneninireenineeereeiseeiesesesesssanens 2-10
RPA Bit Settings :
Instruction Address Breakpoint Register Bit Settmgs 2-12
Memory OPerandsc.ccouiciiiniiiiiicniiiiisie et ieee s e ve e aenent

Integer Arithmetic Instructions

Integer Compare INStruCHiONS.coccieviuiiiiiceiitceteeree e eareenene
Integer Logical INStIUCHONSc.ccceeeeiveieirenieriiinieniereseesesinsesienssenasenessessesessessess
Integer Rotate Instructions

Integer Shift INSTIUCHONS.coviveuiveriinirieeiierini ettt st s esesesnene
Floating-Point Arithmetic Instructions..................... et 2-26
Floating-Point Multiply-Add INStrUCHIONScccovrvvrrreeirreieeiriicnieeereeeeneesaeens 2-26
Floating-Point Rounding and Conversion Instructions.............ccceevevveeerreruneens 2-27
Floating-Point Compare INStructions..........ccceoeveeuereriererennenneesicenenseesenesnnens 2-27
Floating-Point Status and Control Register InStructionsccccceveveeverereerenes 2-28
Floating-Point MOVe INSIUCHIONSc.coiverireeiereeerierieiuenieneiniereninetensessassessansones 2-28
Integer L.oad INStIUCIONScccvirerrnrerenienenientrinenieiinsesssreseesensseenseessesesssssesnnsones 2-30
Integer Store INSIUCHONSo.eoveriiriieeiieieieceiee ettt sreseebesseeaene 2-31
Integer Load and Store with Byte—Reverse INStructionsccevveervereeververeenenes 2-31
Integer Load and Store Multiple INStruCtionscc.ceeeevcreencreneecensennenncnnae e 2-32
Integer Load and Store String INSrUCHONScceveeeverreieeienriieensieensreneerereesennns 2-33
Floating-Point Load INStIUCHONSccceeueirueninieireeinreiesiceeeieerres e saencenanees 2-34
Floating-Point Store INStIUCHIONScc.ieeueireesierenreriiriesinieeniassesesreesesesaesennnes 2-35
Branch INStIUCHONScccoverieveecrrercereeeeeientsienresane e tesesresesresassrasbeseesesnessesesnesenee 2-36
Condition Register Logical INStruCtionsicceevevvervenreneivenrenieesrereeeresenanes 2-37
Trap INSIIUCHONScveuiiiiiiiciiti e ittt vea e 2-37
Move to/from Condition Register Instructions........c...cececesueeninne. Sreesreseesesnsaes 2-38

MOTOROLA

Tables . Xxi

TABLES

Table - Page
Number Title Number

2-31 Memory Synchronization Instructions—UISA
2-32 Move from Time Base InStruction.......cc.cceeeveeevreenneennecccreennennnceneene
2-33 Memory Synchronization Instructions—VEA
2-34 User-Level Cache INStructions.........veeveeveeverieseneesininecissenineeeeresssssssssessessesses
2-35 External Control INStructions.........ceeeuieiiniincniinniininieenreseseeeesinsesiene
2-36 System Linkage INSITUCHONS.......c.ccvevenenveeintreertnrncnriceec et srese e ecvesene
2-37 Move to/from Machine State Register InStructions.........ccceeevveevvcererenrecerseenane
2-38 Move to/from Special-Purpose Register Instructions
2-39 Implementation-specific SPR Encodings (INfSPr)cecevvvveririevenenievenenressnnans
2-40 Supervisor-Level Cache Management InStruCtion........c.cocceeeererenincnereseceenenene
2-41 Segment Register Manipulation InStructions.............ceeeeeececrnenrenernennerneececsene
2-42 Translation Lookaside Buffer Management Instructionsc.ceceevecveeveriennnne 2-46
3-1 Combinations of W, I, and M Bits
3-2 MEI State Definitionsc.coeevererrcrerrersonencnes
3-3 CSE[0-1] Signal ENCOGING....c.ccvvevererrarerrriertsresreressrssensessssesariesessssessessesesseseens
3-4 Memory Coherency Actions on Load Operations
3-5 Memory Coherency Actions on Store Operations
3-6 Response t0 Bus TTanSaCtionsc..eeueeerveererresinencinecssesessescossessossesessassssassnns
3-7 Bus Operations Caused by Cache Control Instructions (WIM = 001) 3-26
3-8 MEI State Transitionsccccevveviieiniiniiniensieisecesnsssesisessessesessae
4-1 Exception ClassifiCations........ccoeerieereiieensieneenienneniienionessencseisseeessesscreessesosenns
4-2 EXCEPion PriOTItIES.covveeericririircriereteineesteneesieesessessssesessarassossenissssesesassasses
4-3 SRR1 Bit Settings for Machine Check Exceptions
4-4 SRR1 Bit Settings for Software Table Search Operations...........ccecueverrervereenne. 4-11
4-5 MSR Bit SEHINZS «...ccrvrvrrirecinereeeieteeeecetstesesesesteesesaeessseetessassesesseneaesssseensns
4-6 IEEE Floating-Point Exception Mode Bits
4-7 MSR Setting Due to EXCEPLON......ccciiiiiiimiiicir e
4-8 Settings Caused by Hard Reset ..o
4-9 Soft Reset Exception—Register SEttings.........covceureereeerirerreerrercreerccsseeseesenens
4-10 Machine Check Exception—Register Settings.........cevevviccninncientsiennncnnincnnenes 4-22
4-11 DSI Exception—Register Settings...........covuuueeuiviiicniiiniienciieieeeisescresieennene
4-12 External Interrupt—Register Settings
4-13 Alignment Interrupt—Register SEttingsc.cocereerreeerenercrieenencnteeseseeeeneenns 4-27
4-14 ACCESS TYPES vttt teasteesas et esaesesnssesasesssssesessassssesessane 4-28
4-15 Trace Exception—Register SEtNEScoeevercvurcnirneereninrienieeeeeccsenercsanenene 4-32
4-16 Instruction and Data TLB Miss Exceptions—Register Settings..........c.cccoeueu.. 4-34
4-17 Instruction Address Breakpoint Exception—Register Settings..........cccececnuens 4-35
4-18 Breakpoint Action for Multiple Modes Enabled for the Same Address............ 4-36
4-19 System Management Interrupt—Register Settings..........ccocceveiieviiuennnnienncne. 4-37
5-1 MMU Features SUMMALYc.cocoiiriiirimiiiicinssss i sesssssssesessossssessns
52 Access Protection Options for Pages
5-3 Translation Exception Conditions............ccceeeererennns.
5-4 Other MMU Exception Conditions..........ccoereveererenncivenicrnesenieeeesscssencsssnseenens

xxii MPC603e & EC603e RISC Microprocessors User’s Manual MOTOROLA

Table
Number

5-5
5-6
5-7
5-8
59
5-10
5-11
5-12
5-13
6-1
6-2
6-3
6-4
6-5
6-6
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
9-1
A-1
A-2
A-3
A-4
A-5
A-6
A-7

TABLES

. Page

Title Number
Instruction Summary—MMU Control ... 5-18
MMU REGISIELS......cuverirremiirrerireresiesinertsneseesieesessstsscessessesesmsesnssessesessessensosens 5-18
Table Search Operations to Update History Bits—TLB Hit Case 5-22
Model for Guaranteed R and C Bit Settingscocceveoeerereerivnrereriesrereneneenenenes 5-24
Implementation-Specific Resources for Table Search Operations.................... 5-34
Implementation-Specific SRR Bits.......cccuciiiiniiiiiniiiiiniiciencciiinans 5-36
DCMP and ICMP Bit Settings
HASH1 and HASH2 Bit SEthRESccccvuirivviiiiaricriiniiecriieiessiessesisrensensenne 5-38
RPA Bit SEHINGSccovviviiiireerieecrietntieesie ettt eesseressessseseseessene
Branch Instructions..................
System Register Instructions
Condition Register Logical INStructionscceceeerveerernuieuireeacresenenienieerenne 6-24
Integer INSIIUCHONScocuerierevireriinerrereereertesieeetete st st ereessieseseestasnesassnessaseans 6-24
Floating-Point INStIUCLIONS........cccocruiueueuioeintereeeeerrereestnienesereetee s seeeseneeseenenens 6-26
Load and Store INStruCtionscoieviinniiiciniiiiicniessscnesieressoesesenns 6-28
Transfer Encoding for the Bus Master............ccoeoiviiceiicinnnnninicnnicincteeseenens 7-9
SNOOP Hit RESPONSEevmriiriieiriiirtciieri ettt sesesesassesene 7-11
Implementation-Specific Transfer Encoding...........coccoeeievivciincneconecnncenne 7-12
CLK_OUT Signal ConfigUration...........cc.ceceeruererrerserrensesessessesesessrisseesassassassonse 7-12
Data Transfer Size........c.cecverereiicrneninesiererinsnecsitssenessesseresesst FETN 7-13
Encodings for TC[0—1] Signalsccccveruemmerenieirenieerereneenisensesrecseerassassasionss 7-14
Data Bus Lane ASSIZNMENLSc..cceeurcreeieneermrerrensenistenerseraesemsesessesessessensesesesses 7-19
DP[0-7] Signal ASSIZNMENLS......c.ccevererinuirerierierecrenerresiereseesesmnseesseseestesenseraneeses 7-20
Pipeline Tracking OULPULScoeveveiiveerveesenesimrereessissensssessesssssessesessssessessesenes 7-29
PLL Configuration..........cccoioruieieiimnnesiosinesieesentinsiessesesssssesiessnessesessessescsnene 7-31
Transfer Size Signal ENCOAINGSccevevvererirnienircreniereenrenrreenircesesssessessessensens 8-14
Burst Ordering——64-Bit BUS.......c..ccccoiiiiiiiiiiiiiiicicicieccecictieene 8-14
Burst Ordering—32-Bit BUScccccuvvueineinenineeeieientnienseeecresesstssenessesessenes 8-15
Aligned Data Transfers (64-Bit BUS).......c.ccoeeveerivierienieneniinieciriieseeeeeeneseesenraees 8-15
Misaligned Data Transfers (Four-Byte EXamples).........c.cceccrverenirienenineeenencns 8-17
Aligned Data Transfers (32-Bit Bus Mode).........c.cc.cccceiivneiicneenscnnrcrencnnene. 8-18
Misaligned 32-Bit Data Bus Transfer (Four-Byte Examples)cccoceeevcernuenene 8-19
Transfer Code ENCOINGccvevureererineiereeeesinnerieiesieneessesaeseeseressnessesessessesensenes 8-20
CSE[0—1] SigNalS....coocvueuieieeeeininiereerenieeteeeete sttt eceesesesneesessessesesseneenen 8-31
IEEE Interface Pin DeSCIPHONScovcvereeeeieireersireneresseneseenisessecssasnssaosenss 8-43
Programmable POWEr MOdES.........c.cevieeeriienirieeneeiiieienirestecesineeseeeesseesnioncens 93
Complete Instruction List Sorted by Mnemonic..........c.cocouvereverinueccnennerencreennes A-1
Complete Instruction List Sorted by Opcode..........ccocoeveiviiiniiiniesnineinincnennn. A-9
Integer Arithmetic INSEIUCHONScc.oovvueevrieerrrcrineiriresrensresteresnsessesesessecnsenne A-17
Integer Compare INStIUCHONS.c.ceueeiimiererreiinieieiitreeetecreeeeeeeseeneseneenees A-18
Integer Logical INStIUCHONSlveveeeirrreereniecriereereininseseeeesesenemeesessesesseosonees A-18
Integer Rotate INSIUCHIONScviveuieucrcrietiieectrentecteeneeetee st ereeeseeneasesennenens A-18
Integer Shift INSIUCLIONS.occeeveiireeniereerieeeieeneeeeereseereererenessesieesesseesacses A-19

MOTOROLA

Tables xXiii

TABLES

Table . Page
Number Title Number

A-8 Floating-Point Arithmetic INSIUCtioNScoccvcvivinnicisivieiinc e A-19
A-9 Floating-Point Multiply-Add INStrUCHONSc.ccovvveeverireeenrerirmrernnreseencrernncnnsens A-20
A-10 Floating-Point Rounding and Conversion Instructlons..‘ A-20
A-11 Floating-Point Compare InStructions............cccoivveeevneinneae et seens A-20
A-12 Floating-Point Status and Control Register INStructionsc.ceeevicerrerveevenene A-20
A-13 Integer Load INStrUCIONScvveiereeiiiiieinieie ittt saeenae A-21
A-14 Integer Store INSTIUCHONSc.couvrmeevncririrtieer et A-22
A-15 Integer Load and Store with Byte-Reverse Instructions........c.coccceevenierenernnnee A-22
A-16 Integer Load and Store Multiple INStruCtionscoccoveinverivieinneseneeresnnenes A-22
A-17 Integer Load and Store String INStructionscccviveevcciniiininicncnineciniiin A-23
A-18 Memory Synchronization InStructions............ceccvueenvncesivinnnnene e A-23
A-19 Floating-Point Load INStructionsccccccviiiiiinininiiiniiiiecncn s A-23
A-20 Floating-Point Store INStruCtionscvvievimveniiicrieiiseeeeennes A-24
A-21 Floating-Point Move INStrUuCtionscccevevvereerenienmennrenieneeee it et A-24
A-22 Branch Instructions.........cccvvevneirecninene et e e et be saebes A-24
A-23 Condition Register Logical INStructionsc.coouvcieiniiiincinincenccccena A-24
A-24 System Linkage INSruCtiONScocceveveererierresiesrerininineiseeneiseisesesessessesnessens A-25
A-25 TTaP INSLIUCHONS 1.euvevveieriiirrieeeeriseseeterieressereeseresresseshebatest et et eeressensessessessenas A-25
A-26 Processor Control INStructions ..o s A-25
A-27 Cache Management InStructions........ccovvuvieeevereeeninnineecinieenineieeeersensenenns A-26
A-28 Segment Register Manipulation InStructions...........cooueevmiriiieneierciciiesecenene A-26
A-29 Lookaside Buffer Management InsStructions.........c.ccceeeeeevcnrreccnrecceenncencn. A-26
A-30 External Control INStructions.........ccueerieceireereeinrnienineesennecsinesseseosnescssensenens A-27
A-31
A-32
A-33
A-34
A-35
A-36
A-37
A-38
A-39
A-40
A-41
A-42
A-43.
A-44
A-45 - MDS-Form......cccceevveemervienineciine,
A-46 PowerPC Instruction Set Legend
B-1 32-Bit Instructions Not Implemented by the PowerPC 603e..........ccconururcnnine B-1
B-2 64-Bit Instructions Not Implemented ettt b et e s st st e aenabene B-1
B-3 Floating-Point Instructions Not Supported by the EC603e Microprocessor B-3
B-4 64-Bit SPR Encoding Not Implemented.........ccccceouervininiimicniicionnninieenenns B-5

XXiv MPC603e & EC603e RISC Microprocessors User’s Manual MOTOROLA

TABLES

Table . Page

Number Title Number
C-1 Direct-Store Bus OPETations..........ccccveeerienrerienrereerueresissseseesesereeeesssssesesseesesees C4
C-2 Address Bits for I/O Reply Operations...........co.ceeeeereeresricreneinesreseessessessseensseenes C-9
C-3 CSE Signal ENCOGING.......ccceceriruirmeniireeniereeeneeesieresieseseesessssseseseesssessessessansens C-12
C-4 PowerPC 603 Microprocessor PLL Configuration............c.eccvecevereeevrececneenncnd C-13
C-5 Store Instruction TIMING ..ottt C-19
C-6 System Register INSIUCHONS.coveeuirieueiereeeeneeiseestsnersserersesesssnsseessesisens C-20

MOTOROLA Tables XXV

XXvi MPC603e & EC603e RISC Microprocessors User’s Manual MOTOROLA

About This Book

The primary objective of this user’s manual is to define the functionality of the PowerPC
603™ and PowerPC 603e™ microprocessors for use by software and hardware developers.
Although the emphasis of this manual is upon the 603e, all of the information within
applies to both the 603 and 603e, except for those differences noted in Appendix C,
“PowerPC 603 Processor System Design and Programming Considerations.” Those readers
who are primarily interested in the 603 should begin with Appendix C.

In addition, this book describes the EC603e™ microprocessor. The EC603e
microprocessor for embedded systems is functionally equivalent to the 603e with the
exception of the floating-point unit which is not supported on the EC603e microprocessor;
therefore, the term ‘EC603e’ is used only when it is necessary to distinguish functional
differences with the EC603e microprocessor.

The 603e is built upon the low-power dissipation, low-cost and high-performance attributes
of the 603 while providing the system designer additional capabilities through higher
processor clock speeds, increases in cache size (16-Kbyte instruction and data caches) and
set-associativity (4-way), and greater system clock flexibility. The 603e only implements
the 32-bit portion of the PowerPC™ architecture.

The 603e and EC603e microprocessors are implemented in both a 2.5-volt version (PID
0007v 603e microprocessor, abbreviated as PID7v-603e) and a 3.3-volt version (PID 0006
603e microprocessor, abbreviated as PID6-603e).

In this document, the term ‘603e’ is used as an abbreviation for ‘PowerPC 603e
microprocessor’ and the term ‘603’ is an abbreviation for ‘PowerPC 603 microprocessor’.
The PowerPC 603e microprocessors are available from Motorola as MPC603e. The
EC603e microprocessors are available from Motorola as MPE603e.

It is important to note that this book is intended as a companion to the PowerPC
Microprocessor Family: The Programming Environments, referred to as The Programming
Environments Manual; contact your local sales representative to obtain a copy. Because the
PowerPC architecture is designed to be flexible to support a broad range of processors, The
Programming Environments Manual provides a general description of features that are
common to PowerPC processors and indicates those features that are optional or that may
be implemented differently in the design of each processor.

MOTOROLA AboutThis Book XXVii

This document summarizes features of the 603e that are not defined by the architecture.
This document and The Programming Environments Manual distinguish between the three
levels, or programming environments, of the PowerPC architecture, which are as follows:

* PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

* PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices can
access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory accesses and for managing resources in
an environment in which other processors and other devices can access external
memory.

* PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that cause a floating-
point exception are defined by the UISA, while the exception mechanism itself is defined
by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

For ease in reference, this book has arranged topics described by the architecture into topics
that build upon one another, beginning with a description and complete summary of 603e-
specific registers and progressing to more specialized topics such as 603e-specific details
regarding the cache, exception, and memory management models. As such, chapters may
include information from multiple levels of the architecture. (For example, the discussion
of the cache model uses information from both the VEA and the OEA.)

The PowerPC Architecture: A Specification for a New Family of RISC Processors defines
the architecture from the perspective of the three programming environments and remains
the defining document for the PowerPC architecture.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the

xxviii MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

readers’ responsibility to be sure they are using the most. recent- version. of the
documentation. For more information, contact your sales representatwe

Audience

This manual is intended for system software and hardware developers ahd éipplicatiOns

programmers who want to develop products using the 603e mlcroprocessors It is assumed .

that the reader understands operating systems, microprocessor system- desrgn the basrc
principles of RISC processing, and details of the PowerPC archltecture ' i

Organization ,
Following is a summary and a brief description of the major sections of this manual

» Chapter 1, “Overview,” is useful for readers who want a general understandmg of
the features and functions of the PowerPC architecture and the 603e. This chapter
describes the flexible nature of the PowerPC architecture definition, and provides an
overview of how the PowerPC architecture defines the register set, operand
conventions, addressing modes, instruction set, cache model, exceptlon model and
memory management model.

» Chapter 2, “Programming Model,” provides a brief synopsis of the registers
implemented in the 603e, operand conventions, an overview of the PowerPC
addressing modes, and a list of the instructions implemented by the 603e.
Instructions are organized by function.

» Chapter 3, “Instruction and Data Cache Operation,” provides a d1scuss10n of the
cache and memory model as implemented on the 603e.

. Chapter 4, “Exceptions,” describes the exception model defined in the PowerPC
OEA and the specific exception model implemented on the 603e.

¢ Chapter 5, “Memory Management,” describes the 603e’s implementation of the
memory management unit specifications provided by the PowerPC OEA for
PowerPC processors.

¢ Chapter 6, “Instruction Timing,” provides information about latencies, interlocks,
special situations, and various conditions to help make programming more efficient.
This chapter is of special interest to software engineers and system designers.

¢ Chapter 7, “Signal Descriptions,” provides descriptions of individual signals of the
603e.

* Chapter 8, “System Interface Operation,” describes signal timings for various
operations. It also provides information for interfacing to the 603e.

¢ Chapter 9, “Power Management,” provides information about power saving modes :
for the 603e. - :

MOTOROLA AboutThis Book XXiX

Appendix A, “PowerPC Instruction Set Listings,” lists all the PowerPC instructions
while indicating those instructions that are not implemented by the 603e; it also
includes the instructions that are specific to the 603e. Instructions are grouped
according to mnemonic, opcode, function, and form. Also included is a quick
reference table that contains general information, such as the architecture level,
privilege level, and form, and indicates if the instruction is 64-bit and optional.

Appendix B, “Instructions Not Implemented,” provides a list of PowerPC
instructions not implemented by the 603e.

Appendix C, “PowerPC 603 Processor System Design and Programming
Considerations,” provides a discussion of the hardware and software differences
between the 603 and 603e.

This manual also includes a glossary and an index.

Suggested Reading

This section lists additional reading that provides background for the information in this
manual as well as general information about the PowerPC architecture.

General Information

The following documentation provides useful information about the PowerPC architecture
and computer architecture in general:

The following books are available from the Morgan-Kaufmann Publishers, 340
Pine Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A)),
(415) 392-2665 (International); internet address: mkp @mkp.com.

— The PowerPC Architecture: A Specification for a New Family of RISC
Processors, Second Edition, by International Business Machines, Inc.

Updates to the architecture specification are accessible via the world-wide web
at http://www.austin.ibm.com/tech/ppc-chg.html.

— PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Computer, Inc., International Business Machines, Inc.,
and Motorola, Inc.

— Macintosh Technology in the Common Hardware Reference Platform, by Apple
Computer, Inc.

— Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson

Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.),
(800) 637-0029 (Canada), (716) 871-6555 (International).

PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404;
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

XXX

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

PowerPC Documentation

The PowerPC documentation is available from the sources listed on the back cover of this
manual; the document order numbers are included in parentheses for ease in ordering:

* User’s manuals—These books provide details about individual PowerPC
implementations and are intended to be used in conjunction with The Programming
Environments Manual. These include the following:

— PowerPC 604™ RISC Microprocessor User’s Manual:
MPC604UM/AD (Motorola order #)

-— MPC750 RISC Microprocessor User’s Manual:
MPC750UM/AD (Motorola order #)

— PowerPC 620™ RISC Microprocessor User’s Manual:
MPC620UM/AD (Motorola order #)

* Programming environments manuals—These books provide information about
resources defined by the PowerPC architecture that are common to PowerPC
processors. There are two versions, one that describes the functionality of the
combined 32- and 64-bit architecture models and one that describes only the 32-bit
model.

— PowerPC Microprocessor Family: The Programming Environments, Rev 1:
MPCFPE/AD (Motorola order #)

— PowerPC Microprocessor Family: The Programming Environments for 32-Bit
Microprocessors, Rev. 1: MPCFPE32B/AD (Motorola order #)

» Implementation Variances Relative to Rev. 1 of The Programming Environments
Manual is available via the world-wide web at http://www.motorola.com/PowerPC/.

* Addenda/errata to user’s manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and changes to
functionality of the follow-on part. These addenda are intended for use with the
corresponding user’s manuals. These include the following:

— Addendum to PowerPC 604 RISC Microprocessor User’s Manual. PowerPC
604e™ Microprocessor Supplement and User’s Manual Errata:
MPC604UMAD/AD (Motorola order #)

* Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations for each PowerPC implementation. These include the
following:

— PowerPC 603 RISC Microprocessor Hardware Specifications:
MPC603EC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware
Specifications:
MPC603EEC/D (Motorola order #)

MOTOROLA AboutThis Book XXXi

— PowerPC 603e RISC Microprocessor Family: PID7v-603e Hardware
Specifications:
MPC603E7VEC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID7t-603e Hardware
Specifications:
MPC603E7TEC/D (Motorola order #)

— PowerPC 604 RISC Microprocessor Hardware Specifications:
MPC604EC/D (Motorola order #)

— PowerPC 604e RISC Microprocessor Family: PID9v-604e Hardware
Specifications:
MPC604E9VEC/D (Motorola order #)

— PowerPC 604e RISC Microprocessor Family: PID9q-604e Hardware
Specifications:
MPC604E9QEC/D (Motorola order #)

— MPC?750 RISC Microprocessor Hardware Specifications
MPC750EC/D (Motorola order #)

— EC603e Embedded RISC Microprocessor (PID6) Hardware Specifications:
MPEG603EEC/D (Motorola order #)

— EC603e Embedded RISC Microprocessor (PID7v) Hardware Speczﬁcatwns
MPEG603E7VEC/D (Motorola order #)

Technical Summaries—Each PowerPC implementation has a technical summary
that provides an overview of its features. This document is roughly the equivalent to
the overview (Chapter 1) of an implementation’s user’s manual. Technical
summaries are available for the 601, 603, 603e, 604, 604e, and EC603e
microprocessors which can be ordered as follows:

— EC603e Embedded RISC Microprocessor Technical Summary:
MPEG603E/D (Motorola order #)

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors:
MPCBUSIF/AD (Motorola order #) provides a detailed functional description of the
60x bus interface, as implemented on the 601, 603, and 604 family of PowerPC
microprocessors. This document is intended to help system and chipset developers
by providing a centralized reference source to identify the bus interface presented by
the 60x family of PowerPC microprocessors.

PowerPC Microprocessor Family: The Programmer’s Reference Guide:
MPCPRG/D (Motorola order #) is a concise reference that includes the register
summary, memory control model, exception vectors, and the PowerPC instruction
set.

PowerPC Microprocessor Family: The Programmer’s Pocket Reference Guide:
MPCPRGREF/D (Motorola order #)

This foldout card provides an overview of the PowerPC registers, instructions, and
exceptions for 32-bit implementations.

XXXii

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

¢ Application notes—These short documents contain useful information about
specific design issues useful to programmers and engineers working with PowerPC

Processors.

* Documentation for support chips—These include the following:

— MPC105 PCI Bridge/Memory Controller User’s Manual:
MPC105UM/AD (Motorola order #)

— MPCI106 PCI Bridge/Memory Controller User’s Manual:
MPC106UM/AD (Motorola order #)

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.mot.com/SPS/PowerPC/.

Conventions

This document uses the following notational conventions:

mnemonics

italics

0x0

0b0

rA, rB

rAl0

rD

frA, frB, frC
frD
REGIFIELD]

Instruction mnemonics are shown in lowercase bold.

Italics indicate variable command parameters, for example, beetrx.
Book titles in text are set in italics.

Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source GPR
The contents of a specified GPR or the value 0.
Instruction syntax used to identify a destination GPR
Instruction syntax used to identify a source FPR
Instruction syntax used to identify a destination FPR

Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets. For example,
MSRI[LE] refers to the little-endian mode enable bit in the machine
state register. ~

In certain contexts, such as a signal encoding, this indicates a don’t
care.

Used to express an undefined numerical value
NOT logical operator

AND logical operator

OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits
may be written to as either ones or zeros, they are always read as
ZEeros. ’

MOTOROLA

AboutThis Book XXXiii

Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning
ALU Arithmetic logic unit
ATE Automatic test equipment
ASR Address space register
BAT Block address translation
BIST Built-in self test
BlU Bus interface unit
BPU Branch processing unit
BUC Bus unit controiler
BUID Bus unit ID
CAR Cache address register
CIA Current instruction address
CMOS Complementary metal-oxide semiconductor
COoP Common on-chip processor
CR Condition register
CRTRY Cache retry queue
CTR Count register
DAR Data address register
DBAT Data BAT
DCMP Data TLB compare
DEC Decrementer register
DMISS Data TLB miss address
DSISR Register used for determining the source of a DSI exception
DTLB Data translation lookaside buffer
EA Effective address
EAR External access register
ECC Error checking and correction
FIFO First-in-first-out
FPR Floating-point register (Note that the EC603e microprocessor does not support the floating-
i point unit.)
FPSCR Floatirig-point status and control register (Note that the EC603e microprocessor does not
support the floating-point unit.)
XXXiv MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
FPU Floa;ing-point unit (Note that the EC603e microprocessor does not support the floating-point
unit.
GPR General-purpose register
HASH1 Primary hash address
HASH2 Secondary hash address
|IABR Instruction address breakpoint register
IBAT Instruction BAT
ICMP Instruction TLB compare
|EEE Institute for Electrical and Electronics Engineers
IMISS Instruction TLB miss address
Q Instruction queue
ITLB Instruction translation lookaside buffer
U Integer unit
L2 Secondary cache
LIFO Last-in-first-out
LR Link register
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
LSuU Load/store unit
MEI Modified/exclusive/invalid
MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMU Memory management unit
MQ MQ register
MSB Most-significant byte
msb Most-significant bit
MSR Machine state register
NaN Not a number
No-op No operation
OEA Operating environment architecture
PID Processor identification tag
PIR Processor identification register
PLL Phase-locked loop

MOTOROLA

AboutThis Book

XXXV

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
POWER Performance Optimized with Enhanced RISC architecture
PTE Page table entry
PTEG Page table entry group
PVR Processor version register
RAW Read-after-write
RISC Reduced instruction set computing
RPA Required physical address
RTL Register transfer language
RWITM Read with intent to modify
SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SLB Segment lookaside buffer
SPR Special-purpose register
SR Segment register
SRR0O Machine status save/restore register 0
SRR1 Machine status save/restore register 1
SRU . System register unit

| Tap Test access port
TB Time base facility
TBL Time base lower register
TBU Time base upper register
TLB Translation lookaside buffer
TTL Transistor-to-transistor logic
UIMM Unsigned immediate value
UISA User instruction set architecture
UTLB Unified translation lookaside buffer
uut Unit under test
VEA Virtual environment architecture
WAR Write-after-read
WAW Write-after-write
WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded bits
XATC Extended address transfer code
XER Register used for indicating conditions such as carries and overflows for integer operations

XXXVi MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Terminology Conventions

Table ii describes terminology conventions used in this manual.

Table ii. Terminology Conventions

The Architecture Specification

This Manual

Data storage interrupt (DSI)

DSI exception

Extended mnemonics

Simplified mnemonics

Fixed-point unit (FXU) Integer unit (1U)
Instruction storage interrupt (IS}) IS| exception
Interrupt Exception

Privileged mode (or privileged state)

Supervisor-level privilege

Problem mode (or problem state)

User-level privilege

Real address

Physical address

Relocation Translation
Storage (locations) Memory
Storage (the act of) Access

Store in Write back
Store through Write through

MOTOROLA AboutThis Book

XXXVii

Table iii describes instruction field notation used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification

Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS

frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)
Sl SIMM

U MM

ul UiMm

NN 0...0 (shaded)

XXXViil

MPC603e & EC603e RISC Microprocessors User's Manual

MOTOROLA

Chapter 1
Overview

This chapter provides an overview of features of the PowerPC 603e™ microprocessor and
the PowerPC™ architecture, and information about how the 603e implementation complies
with the architectural definitions. In addition, this book describes the EC603e
microprocessor. Note that the 603e and EC603e microprocessors are implemented in both
a 2.5-volt version (PID 0007v 603e microprocessor, abbreviated as PID7v-603¢) and a
3.3-volt version (PID 0006 603e microprocessor, abbreviated as PID6-603¢).

1.1 Overview

This section describes the details of the 603e, provides a block diagram showing the major
functional units, and describes briefly how those units interact. Any differences between the
PID6-603¢, PID7v-603e, and EC603e implementations are noted.

The 603e is a low-power implementation of the PowerPC microprocessor family of reduced
instruction set computing (RISC) microprocessors. The 603e implements the 32-bit portion
of the PowerPC architecture, which provides 32-bit effective addresses, integer data types
of 8, 16, and 32 bits, and floating-point data types of 32 and 64 bits.

The 603e is a superscalar processor that can issue and retire as many as three instructions
per clock. Instructions can execute out of order for increased performance; however, the
603e makes completion appear sequential.

The 603e integrates five execution units—an integer unit (IU), a floating-point unit (FPU)
(not supported on the EC603e microprocessor), a branch processing unit (BPU), a
load/store unit (LSU), and a system register unit (SRU). The ability to execute five
instructions-in parallel and the use of simple instructions with rapid execution times yield
high efficiency and throughput for 603e-based systems. Most integer instructions execute
in one clock cycle. On the 603e, the FPU is pipelined so a single-precision multiply-add
instruction can be issued and completed every clock cycle. (Note that the EC603e
microprocessor does not support the floating-point unit.)

The 603e provides independent on-chip, 16-Kbyte, four-way set-associative, physically
addressed caches for instructions and data and on-chip instruction and data memory
management units (MMUs). The MMU s contain 64-entry, two-way set-associative, data
and instruction translation lookaside buffers (DTLB and ITLB) that provide support for

MOTOROLA Chapter 1. Overview 1-1

demand-paged virtual memory address translation and variable-sized block translation. The
TLBs and caches use a least recently used (LRU) replacement algorithm. The 603e also
supports block address translation through the use of two independent instruction and data
block address translation (IBAT and DBAT) arrays of four entries each. Effective addresses
are compared simultaneously with all four entries in the BAT array during block translation.
In accordance with the PowerPC architecture, if an effective address hits in both the TLB
and BAT array, the BAT translation takes priority.

The 603e has a selectable 32- or 64-bit data bus and a 32-bit address bus. The 603e interface
protocol allows multiple masters to compete for system resources through a central external
arbiter. The 603e provides a three-state coherency protocol that supports the exclusive,
modified, and invalid cache states. This protocol is a compatible subset of the MESI
(modified/exclusive/shared/invalid) four-state protocol and operates coherently in systems
that contain four-state caches. The 603e supports single-beat and burst data transfers for
memory accesses, and supports memory-mapped I/O operations.

The 603e is fabricated using an advanced CMOS process technology and is fully
compatible with TTL devices.

1.1.1 Features
This section describes the major features of the 603e noting where the PID6-603e,
PID7v-603e, and EC603e implementations differ:
* High-performance, superscalar microprocessor
— As many as three instructions issued and retired per clock
— As many as five instructions in execution per clock
— Single-cycle execution for most instructions

— Pipelined FPU for all single-precision and most double-precision operations
(The EC603e microprocessor does not support the floating-point unit.)

» Five independent execution units and two register files
— BPU featuring static branch prediction
— A 32-bitIU

— Fully IEEE 754-compliant FPU for both single- and double-precision operations
{The EC603e microprocessor does not support the floating-point unit.)

— LSU for data transfer between data cache and GPRs and FPRs
(The EC603e microprocessor does not support the floating-point unit.)

— SRU that executes condition register (CR), spec1al purpose register (SPR), and
- integer add/compare instructions

— Thlrty—two GPRs for integer operands

1-2 MPC603e & EC603¢e RISC Microprocessors User's Manual MOTOROLA

— Thirty-two FPRs for single- or double-precision operands
(The EC603e microprocessor does not support the floating-point unit.)

* High instruction and data throughput
— Zero-cycle branch capability (branch folding)

— Programmable static branch prediction on unresolved conditional branches:

— Instruction fetch unit capable of fetching two instructions per clock from the
instruction cache

— A six-entry instruction queue that provides lookahead capability

— Independent pipelines with feed-forwarding that reduces data dependencres in
hardware

— 16-Kbyte data cache—four-way set—assoaatlve phys1cally addressed LRU .
replacement algorithm

— 16-Kbyte instruction cache—four—way set—assocratrve phys1cally addressed w2
LRU replacement algorrthm T ; : o

— Cache write-back or wrrte through operatlon programmable on a per page or per
block basis :

— BPU that performs CR lookahead operatrons :

— Address translatron facilities for 4-Kbyte page size, Varrable b ock131 e a.nd
256-Mbyte segment size : v Yo :

— A 64-entry, two-way set-associative ITLB

— A 64-entry, two-way set-associative DTLB

— Four-entry data and 1nstruct10n BAT arrays provrdmg 128- Kbyte to 256-Mbyte - .
blocks :

— Software table search operations and updates supported through fast trap
mechanism : B

— 52-bit virtual address; 32-bit physical address -
* Facilities for enhanced system performance

— A 32- or 64-bit spht—transactlon external data bus w1th burst transfers
— Support for one-level address pipelining and out-of-order bus’ transactrorrs .

— Hardware support for misaligned little-endian accesses (PID7 v-6t)3e))

MOTOROLA ' Chapter1.Overview . 130

* Integrated power management

— Low-power 2.5-volt and 3.3-volt designs
— Internal processor/bus clock multiplier ratios as follows:
- 1/1,1.5/1, 2/1, 2.5/1, 3/1, 3.5/1, and 4/1 (PID6-603e)
- 2/1,2.5/1,3/1,3.5/1,4/1,4.5/1, 5/1, 5.5/1, and 6/1 (PID7v-603e)
— Three power-saving modes: doze, nap, and sleep
— Automatic dynamic power reduction when internal functional units are idle
* In-system testability and debugging features through JTAG boundary-scan
capability
Features specific to the PID7v-603e follow:
* Enhancements to the register set

— The PID7v-603e adds two new bits to the HIDO register:

— The address bus enable (ABE) bit, bit 28, gives the PID7v-603e
‘microprocessor the ability to broadcast dcbf, dcbi, and dcbst onto the 60x
bus.

— The instruction fetch enable M (IFEM) bit, bit 24, allows the PID7v-603e to
reflect the value of the M-bit onto the 60x bus during instruction translation.

— The Run_N counter register (Run_N) has been extended from 16 to 32 bits.
¢ Enhancements to cache implementation

— The instruction cache is blocked only until the critical load completes (hit under
reloads allowed).

— The critical double word is simultaneously written to the cache and forwarded to
the requesting unit, thus minimizing stalls due to load delays.

— Provides for an optional data cache operation broadcast feature (enabled by the
HIDO{ABE] bit) that allows for correct system management utilizing an external
copyback L2 cache.

— All of the cache control instructions (icbi, debi, dcbf, and dcbst, excluding
dcbz) require that the HIDO[ABE] configuration bit be enabled in order to
execute,

* Exceptions

— The PID7v-603e now offers hardware support for misaligned little-endian
accesses. Little-endian load/store accesses that are not on a word boundary, with
the exception of strings and multiples, generate exceptions under the same
circumstances as big-endian accesses.

— The PID7v-603e removed misalignment support for eciwx and ecowx graphics
instructions.These instructions cause an alignment exception if the access is not
on a word boundary.

1-4 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

¢ Bus clock—New bus multipliers of 4.5x, 5x, 5.5x, and 6x that are selected by the
unused encodings of the PLL_CFG[0-3]. Bus multipliers of 1x and 1.5x are not
supported by PID7v-603e.

» Power management—Internal voltage supply changed from 3.3 volts to 2.5 volts.
The core logic of the chip now uses a 2.5-volt supply.

* Signals—The Run_N counter, which affects the JTAG/COP, has been extended from
16 bits to 32 bits.

¢ Instruction timing

— The integer divide instructions divwu([o][.] and divw[o][.] execute in 20 clock
cycles; execution of these instructions in the PID6-603e requires 37 clock cycles.

— Support for single-cycle store

— An adder/comparator added to system register unit that allows dispatch and
execution of multiple integer add and compare instructions on each cycle.

Figure 1-1 provides a block diagram of the 603e that illustrates how the execution
units—IU, FPU (not supported by the EC603e microprocessor), BPU, LSU, and
SRU—operate independently and in parallel. Note that this is a conceptual diagram and
does not attempt to show how these features are physically implemented on the chip. For
more information on the execution units, refer to PowerPC 603e RISC Microprocessor
Technical Summary.

The 603e provides address translation and protection facilities, including an ITLB, DTLB,
and instruction and data BAT arrays. Instruction fetching and issuing is handled in the
instruction unit. Translation of addresses for cache or external memory accesses are
handled by the MMUs. Both units are discussed in more detail in Sections 1.1.3,
“Instruction Unit,” and 1.1.5.1, “Memory Management Units (MMUSs).”

MOTOROLA Chapter 1. Overview 1-5

64 Bit
N
(
SEQUENTIAL | 64 Bit BRANCH
| FETCHER ——» PROCESSING
64 Bt UNIT
CIR
INSTRUCTION e
QUEUE
L
SYSTEM .
REGISTER 164 Bit
UNIT | [Dispatch Unit |«—
INSTRUCTION UNIT
1 64 Bit
v 64 Bit
iNTEGER | _ | .| PR File | . . | LOAD/STORE
UNIT ['GPR o UNIT
- enam
Registers
XER
L | t
N 32 Bt
COMPLETION {
UNIT Y
B D MMU 1 MMU
SRs | |pBaT T 4Bt SPs | | AT
DTLB Array [_I'FIF] Array
Power Time Base
Dissipation Counter/
Control Decrementer
16-Kbyte 16-Kbyte
T L]
JTAG/COP | Clock 395 | 5 Caong [Ta0s | | Cache
Interface Multiplier
A A y
|
Touch Load Buffer PROCESSOR BUS
Copyback Buffer INTERFACE
A 4\

- 32-BIT ADDRESS BUS \
32-/64-BIT DATA BUS

<

* Note that the EC603e microprocessor does not support the floating-point unit or the floating-point register file.

Figure 1-1. Block Diagram

1-6 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

1.1.2 System Design and Programming Considerations

The 603e is built upon the low power dissipation, low cost and high performance attributes
of the 603 while providing the system designer additional capabilities through higher
processor clock speeds (to 100 MHz), increases in cache size (16-Kbyte instruction and
data caches) and set associativity (four-way), and greater system clock flexibility. The
following subsections describe the differences between the 603 and the 603e that affect the
system designer and programmer already familiar with the operation of the 603.

The design enhancements to the 603e are described in the following sections as changes
that can require a modification to the hardware or software configuration of a system
designed for the 603.

1.1.2.1 Hardware Features

The following hardware features of the 603e may require system des1gners to modify
systems designed for the 603.

1.1.2.1.1 Replacement of XATS Signal by CSE1 Signal

The 603e employs four-way set associativity for both the instruction and data caches, in
place of the two-way set associativity used in the 603. This change requires the use of an
additional cache set entry (CSE1) signal to indicate which member of the cache set is being
loaded during a cache line fill. The CSEI signal on the 603e is in the same pin location as
the XATS signal on the 603. Note that the XATS signal is no longer needed by the 603¢
because support for access to direct-store segments has been removed. |

Table 1-1 shows the CSE[0-1] signal encoding indicating the cache set element selected
during a cache load operation.

Table 1-1. CSE[0-1] Signals

CSE[0-1] Cache Set Element
00 Set0
01 Set 1
10 Set2
11 Set 3

1.1.2.1.2 Addition of Half-Clock Bus Multipliers

Some of the reserved clock configuration signal settings of the 603 are redefined to allow
more flexible selection of higher internal and bus clock frequencies. The 603e provides
programmable internal processor clock rates of 1x, 1.5x, 2x, 2.5x, 3x, 3.5x, and 4x
multiples of the externally supplied clock frequency. For additional information, refer to the
appropriate device-specific hardware specifications.

MOTOROLA Chapter 1. Overview : 1-7

1.1.2.2 Software Features
The features. of the 603e described in the following sections affect software originally
written for the 603.

1.1.2.2.1 16-Kbyte Instruction and Data Caches

The instruction and data caches of the 603e are 16 Kbytes in size, compared to the 8-Kbyte
instruction and data caches of the 603. The increase in cache size may require modification
of cache flush routines. The increase in cache size is also reflected in four-way set
associativity of the instruction and data caches in place of the two-way set associativity in
the 603. -

1.1.2.2.2 Clock Configuration Available in HID1 Register

Bits 0-3 in the new HID1 register (SPR 1009) provides software read-only access to the
configuration of the PLL_CFG signals. The HID1 register is not implemented in the 603.

1.1.2.2.3 Performance Enhancements

The following enhancements provide improved performance without any required changes
to software (other than compiler optimization) or hardware designed for the 603:

» Support for single-cycle store.

¢ Addition of adder/comparator in system register unit allows dispatch and execution
of multiple integer add and compare instructions on each cycle.

¢ Addition of a key bit (bit 12) to SRR1 to provide information about memory
protection violations prior to page table search operations. This key bit is set when
the combination of the settings in the appropriate Kx bit in the segment register and
the MSR[PR] bit indicates that when the PP bits in the PTE are set to either 00 or
01, a protection violation exists; if this is the case for a data write operation with a
DTLB miss, the changed (C) bit in the page tables should not be updated (see
Table 1-2). This reduces the time required to execute the page table search routine
since the software no longer has to explicitly read both the Kx and MSR[PR] bits to
determine whether a protection violation exists before updating the C bit.

Table 1-2. Generated SRR1 [Key] Bit

SRR1[Key] Generated

Segment Register

[Ks, Kp] MSRPR on DTLB Misses
ox 0 0
x0 1 0
1x : 0. 1

x1 1 1

Note that this key bit indicates a protection violation if the
PTEIpp] bits are either 00 or 01.

1-8 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

1.1.3 Instruction Unit

As shown in Figure 1-1, the 603e instruction unit, which contains a fetch unit, instruction
queue, dispatch unit, and BPU, provides centralized control of instruction flow to the
execution units. The instruction unit determines the address of the next instruction to be
fetched based on information from the sequential fetcher and from the BPU.

The instruction unit fetches the instructions from the instruction cache into the instruction
queue. The BPU extracts branch instructions from the fetcher and uses static branch
prediction on unresolved conditional branches to allow the instruction unit to fetch
instructions from a predicted target instruction stream while a conditional branch is
evaluated. The BPU folds out branch instructions for unconditional branches or conditional
branches unaffected by instructions in progress in the execution pipeline.

Instructions issued beyond a predicted branch do not complete execution until the branch
is resolved, preserving the programming model of sequential execution. If any of these
instructions are to be executed in the BPU, they are decoded but not issued. Instructions to
be executed by the FPU, IU, LSU, and SRU are issued and allowed to complete up to the
register write-back stage. (Note that the FPU is not supported on the EC603e
microprocessor.) Write-back is allowed when a correctly predicted branch is resolved, and
instruction execution continues without interruption along the predicted path.

If branch prediction is incorrect, the instruction unit flushes all predicted path instructions,
and instructions are issued from the correct path.

1.1.3.1 Instruction Queue and Dispatch Unit

The instruction queue (I1Q), shown in Figure 1-1, holds as many as six instructions and
loads up to two instructions from the instruction unit during a single cycle. The instruction
fetch unit continuously loads as many instructions as space in the IQ allows. Instructions
are dispatched to their respective execution units from the dispatch unit at a maximum rate
of two instructions per cycle. Dispatching is facilitated to the IU, FPU (not supported on
the EC603e microprocessor), LSU, and SRU by the provision of a reservation station at
each unit. The dispatch unit performs source and destination register dependency checking,
determines dispatch serializations, and inhibits subsequent instruction dispatching as
required.

For a more detailed overview of instruction dispatch, see Section 1.3.6, “Instruction
Timing.”

1.1.3.2 Branch Processing Unit (BPU)

The BPU receives branch instructions from the fetch unit and performs CR lookahead
operations on conditional branches to resolve them early, achieving the effect of a
zero-cycle branch in many cases.

The BPU uses a bit in the instruction encoding to predict the direction of the conditional
branch. Therefore, when an unresolved conditional branch instruction is encountered, the

MOTOROLA Chapter 1. Overview 1-9

603e fetches instructions from the predicted target stream until the conditional branch is
resolved.

The BPU contains an adder to compute branch target addresses and three user-control
registers—the link register (LR), the count register (CTR), and the CR. The BPU calculates
the return pointer for subroutine calls and saves it into the LR for certain types of branch
instructions. The LR also contains the branch target address for the Branch Conditional to
Link Register (belrx) instruction. The CTR contains the branch target address for the
Branch Conditional to Count Register (beetrx) instruction. The contents of the LR and
CTR can be copied to or from any GPR. Because the BPU uses dedicated registers rather
than GPRs or FPRs, execution of branch instructions is largely independent from execution
of integer and floating-point instructions.

1.1.4 Independent Execution Units

The PowerPC architecture’s support for independent execution units allows
implementation of processors with out-of-order instruction execution. For example,
because branch instructions do not depend on GPRs or FPRs, branches can often be
resolved early, eliminating stalls caused by taken branches.

In addition to the BPU, the 603e provides four other execution units and a completion unit,

‘which are described in the following sections.

1.1.4.1 Integer Unit (1U)

The IU executes all integer instructions. The IU executes one integer instruction at a time,
performing computations with its arithmetic logic unit (ALU), multiplier, divider, and XER
register. Most integer instructions are single-cycle instructions. Thirty-two general-purpose
registers are provided to support integer operations. Stalls due to contention for GPRs are
minimized by the automatic allocation of rename registers. The 603e writes the contents of
the rename registers to the appropriate GPR when integer instructions are retired by the
completion unit.

1.1.4.2 Floating-Point Unit (FPU)

The FPU (not supported by the EC603e microprocessor) contains a single-precision
multiply-add array and the floating-point status and control register (FPSCR). The
multiply-add array allows the 603e to efficiently implement multiply and multiply-add
operations. The FPU is pipelined so that single-precision instructions and double-precision
instructions can be issued back-to-back. Thirty-two floating-point registers are provided to
support floating-point operations. Stalls due to contention for FPRs are minimized by the
automatic allocation of rename registers. The 603e writes the contents of the rename
registers to the appropriate FPR when floating-point instructions are retired by the
completion unit.

The 603e supports all IEEE 754 floating-point data types (normalized, denormalized, NaN,
zero, and infinity) in hardware, eliminating the latency incurred by software exception

1-10 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

routines. (The term, ‘exception’ is also referred to as ‘interrupt’ in the architecture
specification.)

1.1.4.3 Load/Store Unit (LSU)

The LSU executes all load and store instructions and provides the data transfer interface
between the GPRs, FPRs, and the cache/memory subsystem. The 1.SU calculates effective
addresses, performs data alignment, and provides sequencing for load/store string and
multiple instructions. (Note that the EC603e microprocessor does not support the
floating-point register file.)

Load and store instructions are issued and translated in program order; however, the actual
memory accesses can occur out of order. Synchronizing instructions are provided to
enforce strict ordering.

Cacheable loads, when free of data dependencies, execute in an out-of-order manner with
a maximum throughput of one per cycle and a two-cycle total latency. Data returned from
the cache is held in a rename register until the completion logic commits the value to a GPR
or FPR (not supported by the EC603e microprocessor). Stores cannot be executed in a
predicted manner and are held in the store queue until the completion logic signals that the
store operation is to be completed to memory. The 603e executes store instructions with a
maximum throughput of one per cycle and a three-cycle total latency. The time required to
perform the actual load or store operation varies depending on whether the operation
involves the cache, system memory, or an I/O device.

1.1.4.4 System Register Unit (SRU)

The SRU executes various system-level instructions, including condition register logical
operations and move to/from special-purpose register instructions, and also executes
integer add/compare instructions. In order to maintain system state, most instructions
executed by the SRU are completion-serialized; that is, the instruction is held for execution
in the SRU until all prior instructions issued have completed. Results from
completion-serialized instructions executed by the SRU are not available or forwarded for
subsequent instructions until the instruction completes.

1.1.4.5 Completion Unit

The completion unit tracks instructions from dispatch through execution, and then retires,
or “completes” them in program order. Completing an instruction commits the 603e to any
architectural register changes caused by that instruction. In-order completion ensures the
correct architectural state when the 603e must recover from a mispredicted branch or any
exception.

Instruction state and other information required for completion is kept in a first-in-first-out
(FIFO) queue of five completion buffers. A single completion buffer is allocated for each
instruction once it enters the dispatch unit. An available completion buffer is a required
resource for instruction dispatch; if no completion buffers are available, instruction

MOTOROLA Chapter 1. Overview 1-11

dispatch stalls. A maximum of two instructions per cycle are completed in order from the
queue.

1.1.5 Memory Subsystem Support

The 603e provides support for cache and memory management through dual instruction
and data memory management units. The 603e also provides dual 16-Kbyte instruction and
data caches, and an efficient processor bus interface to facilitate access to main memory and
other bus subsystems. The memory subsystem support functions are described in the
following subsections.

1.1.5.1 Memory Management Units (MMUs)

The 603e’s MMUs support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes (232)
of physical memory (referred to as real memory in the architecture specification) for
instruction and data. The MMUSs also control access privileges for these spaces on block
and page granularities. Referenced and changed status is maintained by the processor for
each page to assist implementation of a demand-paged virtual memory system. A key bit is
implemented to provide information about memory protection violations prior to page table
search operations.

The LSU calculates effective addresses for data loads and stores, performs data alignment
to and from cache memory, and provides the sequencing for load and store string and
multiple word instructions. The instruction unit calculates the effective addresses for
instruction fetching.

After an address is generated, the higher-order bits of the effective address are translated by
the appropriate MMU into physical address bits. Simultaneously, the lower-order address
bits (that are untranslated and therefore, considered both logical and physical), are directed
to the on-chip caches where they form the index into the four-way set-associative tag array.
After translating the address, the MMU passes the higher-order bits of the physical address
to the cache, and the cache lookup completes. For caching-inhibited accesses or accesses
that miss in the cache, the untranslated lower-order address bits are concatenated with the
translated higher-order address bits; the resulting 32-bit physical address is then used by the
memory unit and the system interface, which accesses external memory.

The MMU also directs the address translation and enforces the protection hierarchy
programmed by the operating system in relation to the supervisor/user privilege level of the
access and in relation to whether the access is a load or store.

For instruction accesses, the MMU performs an address lookup in both the 64 entries of the
ITLB, and in the IBAT array. If an effective address hits in both the ITLB and the IBAT
array, the IBAT array translation takes priority. Data accesses cause a lookup in the DTLB
and DBAT array for the physical address translation. In most cases, the physical address
translation resides in one of the TLBs and the physical address bits are readily available to
the on-chip cache.

1-12 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

When the physical address translation misses in the TLBs, the 603e provides hardware
assistance for software to perform a search of the translation tables in memory. The
hardware assist consists of the following features:

» Automatic storage of the missed effective address in the IMISS and DMISS registers

* Automatic generation of the primary and secondary hashed real address of the page
table entry group (PTEG), which are readable from the HASH1 and HASH?2 register
locations.

The HASH data is generated from the contents of the IMISS or DMISS register.
Which register is selected depends on which miss (instruction or data) was last
acknowledged.

¢ Automatic generation of the first word of the page table entry (PTE) for which the
tables are being searched

» Areal page address (RPA) register that matches the format of the lower word of the
PTE

¢ Two TLB access instructions (tlbli and tlbld) that are used to load an address
translation into the instruction or data TLBs

¢ Shadow registers for GPRs 0-3 that allow miss code to execute without corrupting
the state of any of the existing GPRs.

These shadow registers are only used for servicing a TLB miss.

See Section 1.3.5.2, “Implementation-Specific Memory Management,” for more
information about memory management for the 603e.

1.1.5.2 Cache Units

The 603e provides independent 16-Kbyte, four-way set-associative instruction and data
caches. The cache line size is 32 bytes in length. The caches are designed to adhere to a
write-back policy, but the 603e allows control of cacheability, write policy, and memory
coherency at the page and block levels. The caches use a least recently used (LRU)
replacement policy.

As shown in Figure 1-1, the caches provide a 64-bit interface to the instruction fetch unit
and load/store unit. The surrounding logic selects, organizes, and forwards the requested
information to the requesting unit. Write operations to the cache can be performed on a byte
basis, and a complete read-modify-write operation to the cache can occur in each cycle.

The load/store and instruction fetch units provide the caches with the address of the data or
instruction to be fetched. In the case of a cache hit, the cache returns two words to the
requesting unit.

Since the 603e data cache tags are single ported, simultaneous load or store and snoop
accesses cause resource contention. Snoop accesses have the highest priority and are given
first access to the tags, unless the snoop access coincides with a tag write, in which case the

MOTOROLA Chapter 1. Overview 1-13

snoop is retried and must re-arbitrate for access to the cache. Loads or stores that are
deferred due to snoop accesses are executed on the clock cycle following the snoop.

1.1.6 Processor Bus Interface

Because the caches on the 603e are on-chip, write-back caches, the predominant type of
transaction for most applications is burst-read memory operations, followed by burst-write
memory operations, and single-beat (noncacheable or write-through) memory read and
write operations. Additionally, there can be address-only operations, variants of the burst
and single-beat operations, (for example, global memory operations that are snooped and
atomic memory operations), and address retry activity (for example, when a snooped read
access hits a modified line in the cache).

Memory accesses can occur in single-beat (1-8 bytes) and four-beat burst (32 bytes) data
transfers when the bus is configured as 64 bits, and in single-beat (1-4 bytes), two-beat (8
bytes), and eight-beat (32 bytes) data transfers when the bus is configured as 32 bits. The
address and data buses operate independently to support pipelining and split transactions
during memory accesses. The 603e can pipeline its own transactions to a depth of one level.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the 603e to be integrated into systems that implement various fairness and bus
parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered—sequences of operations, including
load/store string and multiple instructions, do not necessarily complete in the order they
begin—maximizing the efficiency of the bus without sacrificing coherency of the data. The
603e allows read operations to precede store operations (except when a dependency exists,
or in cases where a non-cacheable access is performed), and provides support for a write
operation to proceed a previously queued read data tenure (for example, allowing a snoop
push to be enveloped by the address and data tenures of a read operation). Because the
processor can dynamically optimize run-time ordering of load/store traffic, overall
performance is improved.

1.1.7 System Support Functions

The 603e implements several support functions that include power management, time
base/decrementer registers for system timing tasks, an IEEE 1149.1(JTAG)/common
on-chip processor (COP) test interface, and a phase-locked loop (PLL) clock multiplier.
These system support functions are described in the following subsections.

1-14 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

1.1.7.1 Power Management

The 603e provides four power modes selectable by setting the appropriate control bits in
the machine state register (MSR) and hardware implementation register 0 (HIDO) registers.
The four power modes are as follows:

e Full-power-This is the default power state of the 603e. The 603e is fully powered
and the internal functional units are operating at the full processor clock speed. If the
dynamic power management mode is enabled, functional units that are idle will
automatically enter a low-power state without affecting performance, software
execution, or external hardware.

¢ Doze—-All the functional units of the 603e are disabled except for the time
base/decrementer registers and the bus snooping logic. When the processor is in
doze mode, an external asynchronous interrupt, a system management interrupt, a
decrementer exception, a hard or soft reset, or machine check brings the 603e into
the full-power state. The 603¢ in doze mode maintains the PLL in a fully powered
state and locked to the system external clock input (SYSCLK) so a transition to the
full-power state takes only a few processor clock cycles.

* Nap-The nap mode further reduces power consumption by disabling bus snooping,
leaving only the time base register and the PLL in a powered state. The 603e returns
to the full-power state upon receipt of an external asynchronous interrupt, a system
management interrupt, a decrementer exception, a hard or soft reset, or a machine
check input (MCP) signal. A return to full-power state from a nap state takes only a
few processor clock cycles.

* Sleep-Sleep mode reduces power consumption to a minimum by disabling all
internal functional units, after which external system logic may disable the PLL and
SYSCLK. Returning the 603e to the full-power state requires the enabling of the
PLL and SYSCLK, followed by the assertion of an external asynchronous interrupt,
a system management interrupt, a hard or soft reset, or a machine check input (MCP)
signal after the time required to relock the PLL.

The PID7v-603e implementation offers the following enhancements to the 603e family:

* Lower-power design
* 2.5-volt core and 3.3-volt I/O

1.1.7.2 Time Base/Decrementer

The time base is a 64-bit register (accessed as two 32-bit registers) that is incremented once
every four bus clock cycles; external control of the time base is provided through the time
base enable (TBEN) signal. The decrementer is a 32-bit register that generates a
decrementer interrupt exception after a programmable delay. The contents of the
decrementer register are decremented once every four bus clock cycles, and the
decrementer exception is generated as the count passes through zero.

MOTOROLA) Chapter 1. Overview 1-15

1.1.7.3 IEEE 1149.1 (JTAG)/COP Test Interface

The 603e provides IEEE 1149.1 and COP functions for facilitating board testing and chip
debug. The IEEE 1149.1 test interface provides a means for boundary-scan testing the 603e
and the board to which it is attached. The COP function shares the IEEE 1149.1 test port,
provides a means for executing test routines, and facilitates chip and software debugging.

1.1.7.4 Clock Multiplier

The internal clocking of the 603e is generated from and synchronized to the external clock
signal, SYSCLK, by means of a voltage-controlled oscillator-based PLL. The PLL
provides programmable internal processor clock rates of 1x, 1.5x, 2x, 2.5x, 3x, 3.5x, and
4x multiples of the externally supplied clock frequency. The bus clock is the same
frequency and is synchronous with SYSCLK. The configuration of the PLL can be read by
software from the hardware implementation register 1 (HID1).

1.2 PowerPC Architecture Implementation

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be measured in terms of which of the following levels of the architecture
is implemented:

* PowerPC user instruction set architecture (UISA)—Defines the base user-level
instruction set, user-level registers, data types, floating-point exception model,
memory models for a uniprocessor environment, and programming model for a
uniprocessor environment.

* PowerPC virtual environment architecture (VEA)—Describes the memory model
for a multiprocessor environment, defines cache control instructions, and describes
other aspects of virtual environments. Implementations that conform to the VEA
also adhere to the UISA, but may not necessarily adhere to the OEA.

* PowerPC operating environment architecture (OEA)—Defines the memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. Implementations that conform to the OEA also adhere to the
UISA and the VEA.

The PowerPC architecture allows a wide range of designs for such features as cache and
system interface implementations.

1.3 Implementation-Specific Information

The PowerPC architecture is derived from the IBM POWER architecture (Performance
Optimized with Enhanced RISC architecture). The PowerPC architecture shares the
benefits of the POWER architecture optimized for single-chip implementations. The
PowerPC architecture design facilitates parallel instruction execution and is scalable to take
advantage of future technological gains.

1-16 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

This section describes the PowerPC architecture in general, and specific details about the
implementation of the 603e as a low-power, 32-bit member of the PowerPC processor
family. The main topics addressed are as follows:

» Section 1.3.1, “Programming Model,” describes the registers for the operating
environment architecture common among PowerPC processors and describes the
programming model. It also describes the additional registers that are unique to the
603e.

* Section 1.3.2, “Instruction Set and Addressing Modes,” describes the PowerPC
instruction set and addressing modes for the PowerPC operating environment

architecture, and defines and describes the PowerPC instructions implemented in the
603e. :

* Section 1.3.3, “Cache Implementation,” describes the cache model that is defined
generally for PowerPC processors by the virtual environment architecture. It also
provides specific details about the 603e cache implementation.

* Section 1.3.4, “Exception Model,” describes the exception model of the PowerPC
operating environment architecture and the differences in the 603e exception model.

* Section 1.3.5, “Memory Management,” describes generally the conventions for
memory management among the PowerPC processors. This section also describes

the 603e’s implementation of the 32-bit PowerPC memory management
specification.

* Section 1.3.6, “Instruction Timing,” provides a general description of the instruction
timing provided by the superscalar, parallel execution supported by the PowerPC
architecture and the 603e.

* Section 1.3.7, “System Interface,” describes the signals implemented on the 603e.

The 603e is a high-performance, superscalar PowerPC microprocessor. The PowerPC
architecture allows optimizing compilers to schedule instructions to maximize performance
through efficient use of the PowerPC instruction set and register model. The multiple,
independent execution units allow compilers to optimize instruction throughput. Compilers
that take advantage of the flexibility of the PowerPC architecture can additionally optimize
system performance of the PowerPC processors.

The following sections summarize the features of the 603e, including both those that are
defined by the architecture and those that are unique to the various 603e implementations.

&
Specific features of the 603e are listed in Section 1.1.1, “Features.”

1.3.1 Programming Model

The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format allows specification of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

MOTOROLA . Chapter 1. Overview 1-17

PowerPC processors have two levels of privilege—supervisor mode of operation (typically
used by the operating system) and user mode of operation (used by the application
software). The programming models incorporate 32 GPRs, 32 FPRs (not supported by the
EC603e microprocessor), special-purpose registers (SPRs), and several miscellaneous
registers. Each PowerPC microprocessor also has its own unique set of hardware
implementation (HID) registers.

Having access to privileged instructions, registers, and other resources allows the operating
system to control the application environment (providing virtual memory and protecting
operating-system and critical machine resources). Instructions that control the state of the
processor, the address translation mechanism, and supervisor registers can be executed only
when the processor is operating in supervisor mode.

Figure 1-2 shows all the 603e registers available at the user and supervisor level. The
numbers to the right of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

The following subsections describe the PID7v-603e implementation-specific features as
they apply to registers.

1.3.1.1 Processor Version Register (PVR)

The processor version number is 6 for the PID6-603e and 7 for the PID7v-603e. The
processor revision level starts at 0x0100 and changes for each chip revision. The revision
level is updated on all silicon revisions.

1.3.1.2 Hardware Implementation Register 0 (HIDO)

PID7v-603e (designated by PVR level 0x0200) defines additional bits in the hardware
implementation register 0 (HIDO), a supervisor-level register that provides the means for
enabling the 603e’s checkstops and features, and allows software to read the configuration
of the PLL configuration signals.

The HIDO bits with changed bit assignments are shown in Table 1-3. The HIDO bits that are
not shown here are implemented as they are in Section 2.1.2.1, “Hardware Implementation
Registers (HIDO and HID1).”

Table 1-3. Additional/Changed HIDO Bits

Bit(s) : Description

24 " Instruction fetch enable M (IFEM) bit—Enables the M bit on the bus. Used for instruction fetches.
25-26 Reserved

28 Address broadcast enable (ABE)—This configuration bit allows for the broadcast of debf, debi, and
dcbst on the bus. Note that these cache control instruction broadcasts are not snooped by the
PID7v-603e. Refer to Section 1.3.3, “Cache Implementation,” for more information.

29-30 Reserved

1-18 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

1.3.1.3 Run_N Counter Register (Run_N)

The 33-bit Run_N counter register is unique to the PID7v-603e. The Run_N counter is used
by the COP to control the number of processor cycles that the processor runs before halting.
The most-significant 32 bits form a 32-bit counter. The function of the least-significant bit
remains unchanged.

1.3.1.4 General-Purpose Registers (GPRs)

The PowerPC architecture defines 32 user-level, general-purpose registers (GPRs). These
registers are either 32 bits wide in 32-bit PowerPC microprocessors and 64 bits wide in
64-bit PowerPC microprocessors. The GPRs serve as the data source or destination for all
integer instructions.

1.3.1.5 Floating-Point Registers (FPRs)

The PowerPC architecture also defines 32 user-level, 64-bit floating-point registers (FPRs)
(not supported by the EC603e microprocessor). The FPRs serve as the data source or
destination for floating-point instructions. These registers can contain data objects of either
single- or double-precision floating-point formats.

1.3.1.6 Condition Register (CR)

The CR is a 32-bit user-level register that consists of eight four-bit fields that reflect the
results of certain operations, such as move, integer and floating-point compare, arithmetic,
and logical instructions, and provide a mechanism for testing and branching.

1.3.1.7 Floating-Point Status and Control Register (FPSCR)

The floating-point status and control register (FPSCR) is a user-level register that contains
all exception signal bits, exception summary bits, exception enable bits, and rounding
control bits needed for compliance with the IEEE 754 standard. (Note that this is not
supported by the EC603e microprocessor.)

1.3.1.8 Machine State Register (MSR)

The machine state register (MSR) is a supervisor-level register that defines the state of the
processor. The contents of this register are saved when an exception is taken and restored
when the exception handling completes. The 603e implements the MSR as a 32-bit register;
64-bit PowerPC processors implement a 64-bit MSR. To ensure proper operation of the
EC603e microprocessor, the MSR[FP] bit should remain cleared to zero.

1.3.1.9 Segment Registers (SRs)

For memory management, 32-bit PowerPC microprocessors implement sixteen 32-bit
segment registers (SRs). To speed access, the 603e implements the segment registers as two
arrays; a main array (for data memory accesses) and a shadow array (for instruction
memory accesses). Loading a segment entry with the Move to Segment Register (mtsr)
instruction loads both arrays.

MOTOROLA Chapter 1. Overview) 1-19

1.3.1.10 Special-Purpose Registers (SPRs)

The PowerPC operating environment architecture defines numerous special-purpose
registers that serve a variety of functions, such as providing controls, indicating status,
configuring the processor, and performing special operations. During normal execution, a
program can access the registers, shown in Figure 2-1, depending on the program’s access
privilege (supervisor or user, determined by the privilege-level (PR) bit in the MSR). Note
that registers such as the GPRs and FPRs (not supported by the EC603e microprocessor)
are accessed through operands that are part of the instructions. Access to registers can be
explicit (that is, through the use of specific instructions for that purpose such as Move to
Special-Purpose Register (mtspr) and Move from Special-Purpose Register (mfspr)
instructions) or implicit, as the part of the execution of an instruction. Some registers are
accessed both explicitly and implicitly

In the 603e, all SPRs are 32 bits wide.

1.3.1.10.1 User-Level SPRs
The following 603e SPRs are accessible by user-level software:

» Link register (LR)—The link register can be used to provide the branch target
address and to hold the return address after branch and link instructions. The LR is
32 bits wide in 32-bit implementations.

* Countregister (CTR)—The CTR is decremented and tested automatically as a result
of branch-and-count instructions. The CTR is 32 bits wide in 32-bit
implementations.

* XER register—The 32-bit XER contains the summary overflow bit, integer carry bit,

overflow bit, and a field specifying the number of bytes to be transferred by a Load
String Word Indexed (Iswx) or Store String Word Indexed (stswx) instruction.

1.3.1.10.2 Supervisor-Level SPRs

The 603e also contains SPRs that can be accessed only by supervisor-level software. These
registers consist of the following:

» The 32-bit DSISR defines the cause of data access and alignment exceptions.

¢ The data address register (DAR) is a 32-bit register that holds the address of an
access after an alignment or DSI exception.

¢ Decrementer register (DEC) is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay.

* The 32-bit SDR1 specifies the page table format used in virtual-to-physical address
translation for pages. (Note that physical address is referred to as real address in the
architecture specification.)

* The machine status save/restore register 0 (SRRO) is a 32-bit register that is used by
the 603e for saving the address of the instruction that caused the exception, and the
address to return to when a Return from Interrupt (rfi) instruction is executed.

1-20 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The machine status save/restore register 1 (SRR1) is a 32-bit register used to save
machine status on exceptions and to restore machine status when an rfi instruction
is executed. :

The 32-bit SPRGO-SPRG3 registers are provided for operating system use.

The external access register (EAR) is a 32-bit register that controls access to the
external control facility through the External Control In Word Indexed (eciwx) and
External Control Out Word Indexed (ecowx) instructions.

The time base register (TB) is a 64-bit register that maintains the time of day and
operates interval timers. The TB consists of two 32-bit fields—time base upper
(TBU) and time base lower (TBL).

The processor version register (PVR) is a 32-bit, read-only register that identifies the
version (model) and revision level of the PowerPC processor.

Block address translation (BAT) arrays—The PowerPC architecture defines 16 BAT
registers, divided into four pairs of data BATs (DBATSs) and four pairs of instruction
BATSs (IBATs). See Figure 2-1 for a list of the SPR numbers for the BAT arrays.

The following supervisor-level SPRs are implementation-specific to the 603e:

The DMISS and IMISS registers are read-only registers that are loaded
automatically upon an instruction or data TL.B miss.

The HASH1 and HASH2 registers contain the physical addresses of the primary and
secondary page table entry groups (PTEGs).

The ICMP and DCMP registers contain a duplicate of the first word in the page table
entry (PTE) for which the table search is looking.

The required physical address (RPA) register is loaded by the processor with the
second word of the correct PTE during a page table search.

The hardware implementation (HIDO and HID1) registers provide the means for
enabling the 603¢’s checkstops and features, and allows software to read the
configuration of the PLL configuration signals.

The instruction address breakpoint register (IABR) is loaded with an instruction
address that is compared to instruction addresses in the dispatch queue. When an
address match occurs, an instruction address breakpoint exception is generated.

Figure 2-1 shows all the 603e registers available at the user and supervisor level. The
numbers to the right of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

MOTOROLA Chapter 1. Overview 1-21

SUPERVISOR MODEL \

(\ Configuration Registers

USER MODEL m;?:ln?;ﬁtation Machine State Processor Version
Registers’ Register Register
General-Purpose
Registers HIDO SPR 1008 MSR PVR |[SPR287
GPRO HID1 SPR 1009
GPR1 Memory Management Registers
. Instruction BAT Software Table
H Registers Data BAT Registers Search Registers'
GPR31 IBATOU | SPR 528 DBATOU | SPR536 DMISS | SPR 976
IBATOL | SPR 529 DBATOL | SPR537 DCMP | SPR977
.) IBAT1U | SPR530 DBATiU | SPR538 HASH1 | SPR978
Reama IBATIL | SPR531 DBATIL | SPR539 HASHZ | SPR 979
FPRO IBAT2U | SPR532 DBAT2U | SPR 540 IMISS SPR 980
PR IBAT2L | SPR533 DBAT2L | SPR541 ICMP | SPR 981
IBAT3U | SPR534 DBAT3U | SPR542 RPA | SPR 982
H IBAT3L | SPR535 DBAT3L | SPR543 .
Segment Registers
FPR31 SDR1 SRO
SPR 25 SR1
Condition Register :
Floating-Point Status Exception Handling Registers
and Control Register® .
Data Address Register DSISR
DAR | SPR19 SPR 18
XER SPRGs Save and Restore
SPR 1 SPRGO | SPR272 SRRO | SPR26
SPRG1 | SPR273 SRR1 SPR 27
Link Register SPRG2 | SPR274
SPR 8 SPRG3 | SPR 275
Count Register Miscellaneous Registers
CTR |sPR9 Time Base Facility
(For Writing) Decrementer
Time Base Facility TBL |SPR284 DEC | SPR22
(For Reading) TBU SPR 285
TBL TBR 268 Instruction Address External Address
Breakpoint Register’ Register (Optional)

- K\ TBU | TBR269 j SPR1010 s Ry /

Notes: 'These registers are 603e—specific (PID6-603e and PID7v-603e) registers.
They may not be supported by other PowerPC processors.

2Not supported on the EC603e microprocessor.

Figure 1-2. Programming Model—Registers

1-22 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

1.3.2 Instruction Set and Addressing Modes

The following subsections describe the PowerPC instruction set and addressing modes in
general.

1.3.2.1 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly simplifies
instruction pipelining.

1.3.2.1.1 PowerPC Instruction Set
The PowerPC instructions are divided into the following categories:

Integer instructions—These include computational and logical instructions.

— Integer arithmetic instructions

— Integer compare instructions

— Integer logical instructions

— Integer rotate and shift instructions

Floating-point instructions—These include floating-point computational
instructions, as well as instructions that affect the FPSCR. (Note that these
instructions are not implemented on the EC603e microprocessor.)

— Floating-point arithmetic instructions

— Floating-point multiply/add instructions

— Floating-point rounding and conversion instructions

— Floating-point compare instructions

— Floating-point status and control instructions

Load/store instructions—These include integer and floating-point load and store
instructions.

— Integer load and store instructions

— Integer load and store multiple instructions

— Floating-point load and store (not implemented on the EC603¢ microprocessor)

— Primitives used to construct atomic memory operations (Iwarx and stwcex.
instructions)

Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— Branch and trap instructions

— Condition register logical instructions

MOTOROLA Chapter 1. Overview 1-23

* Processor control instructions—These instructions are used for synchronizing
memory accesses and management of caches, TLBs, and the segment registers.
— Move to/from SPR instructions
— Move to/from MSR
— Synchronize
— Instruction synchronize

* Memory control instructions—These instructions provide control of caches, TLBs,
and segment registers.

— Supervisor-level cache management instructions

— User-leve] cache instructions

— Segment register manipulation instructions

— Translation lookaside buffer management instructions

Note that this grouping of the instructions does not indicate which execution unit executes
a particular instruction or group of instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision (one word) and double-precision (one double
word) floating-point operands. The PowerPC architecture uses instructions that are four
bytes long and word-aligned. It provides for byte, half-word, and word operand loads and
stores between memory and a set of 32 GPRs. It also provides for word and double-word
operand loads and stores between memory and a set of 32 floating-point registers (FPRs).

Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
distinct instructions.

PowerPC processors follow the program flow when they are in the normal execution state.
However, the flow of instructions can be interrupted directly by the execution of an
instruction or by an asynchronous event. Either kind of exception may cause one of several
components of the system software to be invoked.

1.3.2.1.2 Calculating Effective Addresses

The effective address (EA) is the 32-bit address computed by the processor when executing
a memory access or branch instruction or when fetching the next sequential instruction.

The PowerPC architecture supports two simple memory addressing modes:
* EA = (rAl0) + offset (including offset = 0) (register indirect with immediate index)
e EA = (rAl0) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.
Calculation of the effective address for aligned transfers occurs in a single clock cycle.

1-24 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

For a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address to effective address 0.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored in 32-bit implementations.

1.3.2.2 Implementation-Specific Instruction Set
The 603e instruction set is defined as follows:
* The 603e provides hardware support for all 32-bit PowerPC instructions.

» The 603e provides two implementation-specific instructions used for software table
search operations following TLB misses:

— Load Data TLB Entry (tlbld)
— Load Instruction TLB Entry (tIbli)

» The 603e implements the following instructions which are defined as optional by the
PowerPC architecture:

— External Control In Word Indexed (eciwx)
— External Control Out Word Indexed (ecowx)

— Floating Select (fsel)
(Not supported by the EC603e microprocessor)

— Floating Reciprocal Estimate Single-Precision (fres)
(Not supported by the EC603e microprocessor)

— Floating Reciprocal Square Root Estimate (frsqrte)
(Not supported by the EC603¢e microprocessor)

— Store Floating-Point as Integer Word (stfiwx)
(Not supported by the EC603e microprocessor)

1.3.3 Cache Implementation

The following subsections describe the general cache characteristics as implemented in the
PowerPC architecture, and the 603e implementation, specifically. PID7v-603e specific
information is noted where applicable.

1.3.3.1 PowerPC Cache Characteristics

The PowerPC architecture does not define hardware aspects of cache implementations. For
example, some PowerPC processors, including the 603e, have separate instruction and data
caches (Harvard architecture), while others, such as the PowerPC 601® microprocessor,
implement a unified cache.

MOTOROLA Chapter 1. Overview 1-25

PowerPC microprocessors control the following memory access modes on a page or block
basis:

* Write-back/write-through mode
* Caching-inhibited mode
* Memory coherency

Note that in the 603e, a cache block is defined as eight words. The VEA defines cache
management instructions that provide a means by which the application programmer can
affect the cache contents.

1.3.3.2 Implementation-Specific Cache Implementation

The 603e has two 16-Kbyte, four-way set-associative (instruction and data) caches. The
caches are physically addressed, and the data cache can operate in either write-back or
write-through mode as specified by the PowerPC architecture.

The data cache is configured as 128 sets of four blocks each. Each block consists of 32
bytes, two state bits, and an address tag. The two state bits implement the three-state MEI
(modified/exclusive/invalid) protocol. Each block contains eight 32-bit words. Note that the
PowerPC architecture defines the term ‘block’ as the cacheable unit. For the 603e, the block
size is equivalent to a cache line. A block diagram of the data cache organization is shown
in Figure 1-3.

The instruction cache also consists of 128 sets of four blocks, and each block consists of 32
bytes, an address tag, and a valid bit. The instruction cache may not be written to except
through a block fill operation. In the PID7v-603e, the instruction cache is blocked only until
the critical load completes. The PID7v-603e supports instruction fetching from other
instruction cache lines following the forwarding of the critical first double word of a cache
line load operation. Successive instruction fetches from the cache line being loaded are
forwarded, and accesses to other instruction cache lines can proceed during the cache line
load operation. The instruction cache is not snooped, and cache coherency must be
maintained by software. A fast hardware invalidation capability is provided to support
cache maintenance. The organization of the instruction cache is very similar to the data
cache shown in Figure 1-3.

Each cache block contains eight contiguous words from memory that are loaded from an
8-word boundary (that is, bits A27-A31 of the effective addresses are zero); thus, a cache
block never crosses a page boundary. Misaligned accesses across a page boundary can incur
a performance penalty.

The 603e’s cache blocks are loaded in four beats of 64 bits each when the 603e is
configured with a 64-bit data bus; when the 603e is configured with a 32-bit bus, cache
block loads are performed with eight beats of 32 bits each. The burst load is performed as
critical double word first. The data cache is blocked to internal accesses until the load
completes; the instruction cache allows sequential fetching during a cache block load. In

1-26 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

the PID7v-603e, the critical double word is simultaneously written to the cache and
forwarded to the requesting unit, thus minimizing stalls due to load delays.

To ensure coherency among caches in a multiprocessor (or multiple caching-device)
implementation, the 603e implements the MEI protocol. These three states, modified,
exclusive, and invalid, indicate the state of the cache block as follows:

* Modified—The cache block is modified with respect to system memory; that is, data
for this address is valid only in the cache and not in system memory.

¢ Exclusive—This cache block holds valid data that is identical to the data at this
address in system memory. No other cache has this data.

¢ Invalid—This cache block does not hold valid data.

Cache coherency is enforced by on-chip bus snooping logic. Since the 603¢’s data cache
tags are single-ported, a simultaneous load or store and snoop access represent a resource
contention. The snoop access is given first access to the tags. The load or store then occurs
on the clock following the snoop.

T T T T T 1 T
128 Sets hd N N A , L, L .
L4 T 1 LI T T T T
[[)
r ——{[; 1
1 T T T T T T
Block 0f Address Tag 0 —State Words 0-7
t t —+ - t } +
Block 1| Address Tag 1 State Words 0-7
} t + — —+ +—
Block 2| Address Tag 2 State Words 0-7
—t +— t t t t t
Block 3{ Address Tag 3 State Words 0-7
L 1] N 1

1 -
f«———— 8 Words/Block ——————»]

Figure 1-3. Data Cache Organization

1.3.4 Exception Model

This section describes the PowerPC exception model and the 603e implementation,
specifically. PID7v-603e—specific information is noted where applicable.

1.3.4.1 PowerPC Exception Model

The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions, .and differ from the arithmetic exceptions defined by the IEEE for
floating-point operations. When exceptions occur, information about the state of the
processor is saved to certain registers and the processor begins execution at an address

MOTOROLA Chapter 1. Overview 1-27

(exception vector) predetermined for each exception. Processing of exceptions occurs in
supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the FPSCR. Additionally, some exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are presented strictly in order. When an instruction-caused exception is recognized, any
unexecuted instructions that appear earlier in the instruction stream, including any that have
not yet entered the execute stage, are required to complete before the exception is taken.
Any exceptions caused by those instructions are handled first. Likewise, exceptions that are
asynchronous and precise are recognized when they occur, but are not handled until the
instruction currently in the completion stage successfully completes execution or generates
an exception, and the completed store queue is emptied.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are handled sequentially. After the exception handler
handles an exception, the instruction execution continues until the next exception condition
is encountered. However, in many cases there is no attempt to re-execute the instruction.
This method of recognizing and handling exception conditions sequentially guarantees that
exceptions are recoverable.

Exception handlers should save the information stored in SRRO and SRR1 early to prevent
the program state from being lost due to a system reset or machine check exception or to
an instruction-caused exception in the exception handler, and before enabling external
interrupts.

The PowerPC architecture supports four types of exceptions:

* Synchronous, precise—These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored. This means that (excluding the trap
and system call exceptions) the address of the faulting instruction is provided to the
exception handler and that neither the faulting instruction nor subsequent
instructions in the code stream will complete execution before the exception is
taken. Once the exception is processed, execution resumes at the address of the
faulting instruction (or at an alternate address provided by the exception handler).
‘When an exception is taken due to a trap or system call instruction, execution
resumes at an address provided by the handler.

¢ Synchronous, imprecise—The PowerPC architecture defines two imprecise
- floating-point exception modes, recoverable and nonrecoverable. Even though the
603¢ provides a means to enable the imprecise modes, it implements these modes

1-28 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

identically to the precise mode (that is, all enabled floating-point enabled exceptions
are always precise on the 603e). (Note that the EC603e microprocessor does not
support floating-point operations.)

¢ Asynchronous, maskable—The external, system management interrupt (SMI), and
decrementer interrupts are maskable asynchronous exceptions. When these
exceptions occur, their handling is postponed until the next instruction, and any
exceptions associated with that instruction, completes execution. If there are no
instructions in the execution units, the exception is taken immediately upon
determination of the correct restart address (for loading SRRO).

* Asynchronous, nonmaskable—There are two nonmaskable asynchronous
exceptions: system reset and the machine check exception. These exceptions may
not be recoverable, or may provide a limited degree of recoverability. All exceptions
report recoverability through the MSR[RI] bit.

1.3.4.2 Implementation-Specific Exception Model
As specified by the PowerPC architecture, all 603e exceptions can be described as either
precise or imprecise and either synchronous or asynchronous. Asynchronous exceptions
(some of which are maskable) are caused by events external to the processor’s execution;
synchronous exceptions, which are all handled precisely by the 603e, are caused by
instructions. The 603e exception classes are shown in Figure 1-4.

Figure 1-4. Exception Classifications

Synchronous/Asynchronous Precise/Imprecise : Exception Type
Asynchronous, honmaskable Imprecise Machine check

System reset
Asynchronous, maskable Precise External interrupt

Decrementer

System management interrupt

Synchronous Precise Instruction-caused exceptions

Although exceptions have other characteristics as well, such as whether they are maskable
or nonmaskable, the distinctions shown in Figure 1-4 define categories of exceptions that
the 603e handles uniquely. Note that Figure 1-4 includes no synchronous imprecise
instructions. While the PowerPC architecture supports imprecise handling of floating-point
exceptions, the 603e, with the exception of the EC603e microprocessor, implements
floating-point exception modes as precise exceptions.

The 603e’s exceptions, and conditions that cause them, are listed in Figure 1-5.
Figure 1-5. Exceptions and Conditions

Exception Vector Offset

Type (hex) Causing Conditions

Reserved 00000 —

MOTOROLA Chapter 1. Overview 1-29

Figure 1-5. Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

System reset

00100

A system reset is caused by the assertion of either SRESET or HRESET.

Machine
check

00200

A machine check is caused by the assertion of the TEA signal during a data bus
transaction, assertion of MCP, or an address or data parity error.

DSi

00300

The cause of a DSI exception can be determined by the bit settings in the DSISR,
listed as follows:
1 Set if the translation of an attempted access is not found in the primary hash

table entry group (HTEG), or in the rehashed secondary HTEG, or in the range
of a DBAT register; otherwise cleared.

Set if a memory access is not permitted by the page or DBAT protection
mechanism; otherwise cleared.

Set by an eciwx or ecowx instruction if the access is to an address that is
marked as write-through, or execution of a load/store instruction that accesses
a direct-store segment.

6 Set for a store operation and cleared for a load operation.
11 Set if eciwx or ecowx is used and EARIE] is cleared.

ISt

00400

An IS| exception is caused when an instruction fetch cannot be performed for any
of the following reasons:

The effective (logical) address cannot be translated. That is, there is a page
fault for this portion of the translation, so an ISI exception must be taken to load
the PTE (and possibly the page) into memory.

The fetch access is to a direct-store segment (indicated by SRR1[3] set).

The fetch access violates memory protection (indicated by SRR1[4] set). If the
key bits (Ks and Kp) in the segment register and the PP bits in the PTE are set
to prohibit read access, instructions cannot be fetched from this location.

External
interrupt

00500

An external interrupt is caused when MSR[EE] = 1 and the INT signal is asserted.

Alignment

00600

An alignment exception is caused when the 603e cannot perform a memory
access for any of the reasons described below:

.

The operand of a floating-point load or store instruction is not word-aligned.
The operand of Imw, stmw, lwarx, and stwex. instructions are not aligned.
The operand of a single-register load or store operation is not aligned, and the
603e is in little-endian mode (PID6-603e only).

The execution of a floating-point load or store instruction to a direct-store
segment.

The operand of a load, store, load muiltiple, store multiple, load string, or store
string instruction crosses a segment boundary into a direct-store segment, or
crosses a protection boundary.

Execution of a misaligned eciwx or ecowx instruction (PID7v-603e only).

The instruction is Imw, stmw, Iswi, Iswx, stswi, stswx and the 603e is in littie-
endian mode.

The operand of dcbz is in memory that is write-through-required or caching-
inhibited.

1-30

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Figure 1-5. Exceptions and Conditions (Continued)

Exception Vector Offset Causing Conditions :
Type (hex)
Program. 00700 A program exception is caused by one of the following exception conditions, which
correspond to bit settings in SRR1 and arise during execution of an instruction:

* Floating-point enabled exception—A floating-point enabled exception condition

is generated when the following condition is met:
(MSR[FEOQ] | MSR[FE1]) & FPSCR[FEX] is 1.

(Not supported by the EC603e microprocessor.)

FPSCR[FEX] is set by the execution of a floating-point instruction that causes
an enabled exception or by the execution of one of the “move to FPSCR”
instructions that results in both an exception condition bit and its corresponding
enable bit being set in the FPSCR. (Not supported by the EC603e
microprocessor.)

* lllegal instruction—An illegal instruction program exception is generated when
execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields (including PowerPC
instructions not implemented in the 603e), or when execution of an optional
instruction not provided in the 603e is attempted (these do not include those
optional instructions that are treated as no-ops).

* Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR], is set. In the 603e, this exception is
generated for mtspr or mfspr with an invalid SPR field if SPR[0] = 1 and
MSRIPR] = 1. This may not be true for all PowerPC processors.

* Trap—A trap type program exception is generated when any of the conditions
specified in a trap instruction is met.

Floating-point | 00800 A floating-point unavailable exception is caused by an attempt to execute a
unavailable floating-point instruction (including fioating-point load, store, and move

instructions) when the floating-point available bit is disabled (MSR[FP] = 0).

Note that the EC603e microprocessor takes a floating-point unavailable exception

when execution of a floating-point instruction is attempted.

Decrementer | 00900 The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1. Must also be enabled with the

MSR[EE] bit.

Reserved 00AQ0-00BFF | —

System call 00C00 A system call exception occurs when a System Call (sc) instruction is executed.

Trace 00D00 A trace exception is taken when MSR[SE] =1 or when the currently completing
instruction is a branch and MSR[BE] =1.

Reserved 00EOO0 The 603e does not generate an exception to this vector. Other PowerPC
processors may use this vector for floating-point assist exceptions.

Reserved 00E10-00FFF | —

Instruction 01000 An instruction translation miss exception is caused when an effective address for

translation an instruction fetch cannot be translated by the ITLB.

miss

Data load 01100 | A data load translation miss exception is caused when an effective address for a

translation data load operation cannot be translated by the DTLB.

miss

MOTOROLA Chapter 1. Overview 1-31

Figure 1-5. Exceptions and Conditions (Continued)

Exception Vector Offset Causing Conditions
Type (hex)

Data store 01200 " | A data store translation miss exception is caused when an effective address for a
translation data store operation cannot be translated by the DTLB, or where a DTLB hit
miss occurs, and the change bit in the PTE must be set due to a data store operation.
Instruction 01300 An instruction address breakpoint exception occurs when the address (bits 0-29)
address in the IABR matches the next instruction to complete in the completion unit, and
breakpoint the IABR enable bit (bit 30) is set.
System 01400 A system management interrupt is caused when MSR[EE] = 1 and the SMT input
management signal is asserted.
interrupt
Reserved 01500-02FFF | —

1.3.5 Memory Management

The following subsections describe the memory management features of the PowerPC
architecture, and the 603e implementation, respectively.

1.3.5.1 PowerPC Memory Management

The primary functions of the MMU are to translate logical (effective) addresses to physical
addresses for memory accesses, and to provide access protection on blocks and pages of
memory.

There are two types of accesses generated by the 603e that require address translation—
instruction accesses, and data accesses to memory generated by load and store instructions.

The PowerPC MMU and exception model support demand-paged virtual memory. Virtual
memory management permits execution of programs larger than the size of physical
memory; demand-paged implies that individual pages are loaded into physical memory
from system memory only when they are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, and
its starting address is a multiple of its size.

The page table contains a number of page table entry groups (PTEGs). A PTEG contains
eight page table entries (PTEs) of eight bytes each; therefore, each PTEG is 64 bytes long.
PTEG addresses are entry points for table search operations.

Address translations are enabled by setting bits in the MSR—MSR[IR] enables instruction
address translations and MSR[DR] enables data address translations.

1.3.5.2 Implementation-Specific Memory Management

The instruction and data memory management units in the 603e provide 4 Gbytes of logical
address space accessible to supervisor and user programs with a 4-Kbyte page size and

1-32 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

256-Mbyte segment size. Block sizes range from 128 Kbyte to 256 Mbyte and are software
selectable. In addition, the 603e uses an interim 52-bit virtual address and hashed page
tables for generating 32-bit physical addresses. The MMUs in the 603e rely on the
exception processing mechanism for the implementation of the paged virtual memory
environment and for enforcing protection of designated memory areas.

Instruction and data TLBs provide address translation in parallel with the on-chip cache
access, incurring no additional time penalty in the event of a TLB hit. A TLB is a cache of
the most recently used page table entries. Software is responsible for maintaining the
consistency of the TLB with memory. The 603e’s TLBs are 64-entry, two-way
set-associative caches that contain instruction and data address translations. The 603e
provides hardware assist for software table search operations through the hashed page table
on TLB misses. Supervisor software can invalidate TLB entries selectively.

The 603e also provides independent four-entry BAT arrays for instructions and data that
maintain address translations for blocks of memory. These entries define blocks that can
vary from 128 Kbytes to 256 Mbytes. The BAT arrays are maintained by system software.

As specified by the PowerPC architecture, the hashed page table is a variable-sized data
structure that defines the mapping between virtual page numbers and physical page
numbers. The page table size is a power of 2, and its starting address is a multiple of its size.

Also as specified by the PowerPC architecture, the page table contains a number of page
table entry groups (PTEGs). A PTEG contains eight page table entries (PTEs; of eight bytes
each; therefore, each PTEG is 64 bytes long. PTEG addresses are entry points for table
search operations.

1.3.6 Instruction Timing

The 603e is a pipelined superscalar processor. A pipelined processor is one in which the
processing of an instruction is reduced into discrete stages. Because the processing of an
instruction is broken into a series of stages, an instruction does not require the entire
resources of an execution unit. For example, after an instruction completes the decode
stage, it can pass on to the next stage, while the subsequent instruction can advance into the
decode stage. This improves the throughput of the instruction flow. For example, it may
take three cycles for a floating-point instruction to complete, but if there are no stalls in the
floating-point pipeline, a series of floating-point instructions can have a throughput of one
instruction per cycle.

MOTOROLA Chapter 1. Overview 1-33

The instruction pipeline in the 603e has four major pipeline stages, described as follows:

» The fetch pipeline stage primarily involves retrieving instructions from the memory
system and determining the location of the next instruction fetch. Additionally, the
BPU decodes branches during the fetch stage and folds out branch instructions
before the dispatch stage if possible. ’

* The dispatch pipeline stage is responsible for decoding the instructions supplied by
the instruction fetch stage, and determining which of the instructions are eligible to
be dispatched in the current cycle. In addition, the source operands. of the
instructions are read from the appropriate register file and dispatched with the
instruction to the execute pipeline stage. At the end of the dispatch pipeline stage,
the dispatched instructions and their operands are latched by the appropriate
execution unit. ‘

¢ During the execute pipeline stage each execution unit that has an executable
instruction executes the selected instruction (perhaps over multiple cycles), writes
the instruction's result into the appropriate rename register, and notifies the
completion stage that the instruction has finished execution. In the case of an internal
exception, the execution unit reports the exception to the completion/writeback
pipeline stage and discontinues instruction execution until the exception is handled.
The exception is not signaled until that instruction is the next to be completed.
Execution of most floating-point instructions is pipelined within the FPU allowing
up to three instructions to be executing in the FPU concurrently. The pipeline stages
for the floating-point unit are multiply, add, and round-convert. Execution of most
load/store instructions is also pipelined. The load/store unit has two pipeline stages.
The first stage is for effective address calculation and MMU translation and the
second stage is for accessing the data in the cache. (Note that the EC603e
microprocessor does not support the floating-point unit.)

* The complete/writeback pipeline stage maintains the correct architectural machine
state and transfers the contents of the rename registers to the GPRs and FPRs as
instructions are retired. If the completion logic detects an instruction causing an
exception, all following instructions are cancelled, their execution results in rename
registers are discarded, and instructions are fetched from the correct instruction
stream.

A superscalar processor is one that issues multiple independent instructions into multiple
pipelines allowing instructions to execute in parallel. The 603e has five independent
execution units, one each for integer instructions, floating-point instructions (floating-point
instructions are trapped by the floating-point unavailable exception on the EC603e
microprocessor), branch instructions, load/store instructions, and system register
instructions. The IU and the FPU each have dedicated register files for maintaining
operands (GPRs and FPRs, respectively), allowing integer calculations and floating-point
calculations to occur simultaneously without interference. Integer division performance of
the PID7v-603e has been improved, with the divwux and divwx instructions executing in
20 clock cycles, instead of the 37 cycles required in the PID6-603e.

1-34 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The 603e provides support for single-cycle store and it provides an adder/comparator in the
system register unit that allows the dispatch and execution of multiple integer add and
compare instructions on each cycle. Refer to Chapter 6, “Instruction Timing,” for more
information.

Because the PowerPC architecture can be applied to such a wide variety of
implementations, instruction timing among various PowerPC processors varies
accordingly.

1.3.7 System Interface
The system interface is specific for each PowerPC microprocessor implementation.

The 603e provides a versatile system interface that allows for a wide range of
implementations. The interface includes a 32-bit address bus, a 32- or 64-bit data bus, and
56 control and information signals (see Figure 1-6). The system interface allows for
address-only transactions as well as address and data transactions. The 603e control and
information signals include the address arbitration, address start, address transfer, transfer
attribute, address termination, data arbitration, data transfer, data termination, and
processor state signals. Test and control signals provide diagnostics for selected internal
circuits.

ADDRESS <——» |——>»DATA
ADDRESS ARBITRATION ~<— e » DATA ARBITRATION
ADDRESS START <« | | «—— DATA TRANSFER
ADDRESS TRANSFER <——» 603e | «————» DATA TERMINATION
TRANSFER ATTRIBUTE <——> {«——» PROCESSOR STATE
ADDRESS TERMINATION <——» l«——»TEST AND CONTROL
CLOCKS <——»|

T =
+3.3V ~

Figure 1-6. System Interface

The system interface supports bus pipelining, which allows the address tenure of one
transaction to overlap the data tenure of another. The extent of the pipelining depends on
external arbitration and control circuitry. Similarly, the 603e supports split-bus transactions
for systems with multiple potential bus masters—one device can have mastership of the
address bus while another has mastership of the data bus. Allowing multiple bus
transactions to occur simultaneously increases the available bus bandwidth for other
activity and as a result, improves performance.

The 603e supports multiple masters through a bus arbitration scheme that allows various
devices to compete for the shared bus resource. The arbitration logic can implement priority
protocols, such as fairness, and can park masters to avoid arbitration overhead. The MEI

MOTOROLA Chapter 1. Overview 1-35

protocol ensures coherency among multiple devices and system memory. Also, the 603e's
on-chip caches and TLBs and optional second-level caches can be controlled externally.

The 603¢’s clocking structure allows the bus to operate at integer multiples of the processor
cycle time.

The following sections describe the 603e bus support for memory operations. Note that
some signals perform different functions depending upon the addressing protocol used.

1.3.7.1 Memory Accesses

The 603e’s data bus is configured at power-up to either a 32- or 64-bit width. When the 603e
is configured with a 32-bit data bus, memory accesses allow transfer sizes of 8, 16, 24, or
32 bits in one bus clock cycle. Data transfers occur in either single-beat transactions, or
two-beat or eight-beat burst transactions, with a single-beat transaction transferring as
many as 32 bits. Single- or double-beat transactions are caused by noncached accesses that
access memory directly (that is, reads and writes when caching is disabled,
caching-inhibited accesses, and stores in write-through mode). Eight-beat burst
transactions, which always transfer an entire cache line (32 bytes), are initiated when a line
is read from or written to memory.

When the 603e is configured with a 64-bit data bus, memory accesses allow transfer sizes
of 8, 16, 24, 32, 40, 48, 56, or 64 bits in one bus clock cycle. Data transfers occur in either
single-beat transactions or four-beat burst transactions. Single-beat transactions are caused
by noncached accesses that access memory directly (that is, reads and writes when caching
is disabled, caching-inhibited accesses, and stores in write-through mode). Four-beat burst
transactions, which always transfer an entire cache line (32 bytes), are initiated when a line
is read from or written to memory.

1.3.7.2 Signals

The 603e signals are grouped as follows:

¢ Address arbitration signals—The 603e uses these signals to arbitrate for address bus
mastership.

» Address transfer start signals—These signals indicate that a bus master has begun a
transaction on the address bus.

* Address transfer signals—These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity ‘of the transfer.

* Transfer attribute signals—These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted,
write-through, or caching-inhibited.

» Address transfer termination signals—These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

1-36 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

« Data arbitration signals—The 603¢ uses these signals to arbitrate for data bus
mastership.

» Data transfer signals—These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.

» Data transfer termination signals—Data termination signals are required after each
data beat in a data transfer. In a single-beat transaction, the data termination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the final
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

» System status signals—These signals include the interrupt signal, checkstop signals,
and both soft- and hard-reset signals. These signals are used to interrupt and, under
various conditions, to reset the processor.

* Processor state signals—These signals indicate the state of the reservation
coherency bit, enable the time base, provide machine quiesce control, and cause a
machine halt on execution of a tlbsync instruction.

+ IEEE 1149.1(JTAG)/COP interface signals—The IEEE 1149.1 test unit and the
common on-chip processor (COP) unit are accessed through a shared set of input,
output, and clocking signals. The IEEE 1149.1/COP interface provides a means for
boundary scan testing and internal debugging of the 603e.

» Test interface signals—These signals are used for production testing.

* Clock signals—These signals determine the system clock frequency. These signals
can also be used to synchronize multiprocessor systems.

NOTE

A bar over a signal name indicates that the signal is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active low, such as AP[0-3] (address bus parity signals)
and TT[0-4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.

MOTOROLA Chapter 1. Overview 1-37

1.3.7.3 Signal Configuration
Figure 1-7 illustrates the 603e's logical pin configuration, showing how the signals are

grouped.
BR ” T < DBG
ADDRESS BG o 1 1 DBWO DATA
ARBITRATION ABB]) -~ DBB [ARBITRATION
s By = > DH[0-31], DL[0-31]
START 64 | e >| pata
— 8 <——————[——]————>
" AJ0-31] |30 1 DPE TRANSFER
h - 1le DBDIS
ADDRESS BUSH AP[0-3] >4 <
« APE p 1 | TA
- 1 l< DRTRY DATA
_ TTjo-4] o5 e TEA TERMINATION
P TBST g y
TSIZ[0~2] 3 o 2l INT, SMi —
GBL _ MCP INTERRUPTS
TRANSFER | «——GBL |4 1
ATTRIBUTE | < S 1 8 o | CKSTP_IN,CKSTP_OUT [~ CHECKSTOPS
- Wi 1 ® | HRESET, SRESET RESET
D CSE[0-1] o |
- TC[0-1] 5 1 SRY Ry
- 2 GHEQ, QACK PROCESSOR
1 | TBEN ™ STATUS
1 le TIBISYNC.
ADDRESS AACK o 1 |
TERMINATION‘[A ARTRY qp
5 |« TEST. TCK, TMS, TDI, TDO JTAG/COP
- > " INTERFACE
SYSCLK o1
CLK_OUT o TEST
CLOCKS— -<a— = 1 3 le .
c { PLL_CFG[0-3] 4 < > Ié%?\IDT;‘ICE)?T
[L
+3.3V
Figure 1-7. Signal Groups
1-38 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Chapter 2 | 2
Programming Model

This chapter describes the PowerPC programming model with respect to the PowerPC 603e
microprocessor. It consists of three major sections that describe the following:

* Registers implemented in the 603e
* Operand conventions
» The 603e instruction set

2.1 Register Set

This section describes the register organization in the 603e as defined by the three levels of
the PowerPC architecture—the user instruction set architecture (UISA), the virtual
environment architecture (VEA), and the operating environment architecture (OEA), as
well as the 603e implementation-specific registers. Full descriptions of the basic register set
defined by the PowerPC architecture are provided in Chapter 2, “PowerPC Register Set,”
in The Programming Environments Manual.

The PowerPC architecture defines register-to-register operations for all computational
instructions. Source data for these instructions is accessed from the on-chip registers or is
provided as an immediate value embedded in the opcode. The three-register instruction
format allows specification of a target register distinct from the two source registers, thus
preserving the original data for use by other instructions and reducing the number of
instructions required for certain operations. Data is transferred between memory and
registers with explicit load and store instructions only.

Note that there may be registers common to other PowerPC processors that are not
implemented in the 603e. When the 603e detects special-purpose register (SPR) encodings
other than those defined in this document, it either takes an exception or it treats the
instruction as a no-op. (Note that exceptions are referred to as interrupts in the architecture
specification.) Conversely, some SPRs in the 603e may not be implemented in other
PowerPC processors, or may not be implemented in the same way in other PowerPC
processors.

2.1.1 PowerPC Register Set

The PowerPC UISA registers, shown in Figure 2-1, can be accessed by either user- or
supervisor-level instructions (the architecture specification refers to user- and supervisor-

MOTOROLA Chapter 2. Programming Model 2-1

level as problem state and privileged state, respectively). The general-purpose registers
(GPRs) and floating-point registers (FPRs) are accessed through instruction operands.
(Note that the EC603e microprocessor does not support the floating-point register file; an
attempt to access the floating-point register file will result in a floating-point unavailable
exception.) Access to registers can be explicit (that is, through the use of specific
instructions for that purpose such as the mtspr and mfspr instructions) or implicit as part
of the execution (or side effect) of an instruction. Some registers are accessed both
explicitly and implicitly.

The number to the right of the register name indicates the number that is used in the syntax
of the instruction operands to access the register (for example, the number used to access
the XER is SPR1).

For more information on the PowerPC register set, refer to Chapter 2, “PowerPC Register
Set,” in The Programming Environments Manual.

2-2 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

™)

USER MODEL
General-Purpose
Registers
GPRO
GPR1

GPR31

Floating-Point
Registers

FPRoO
FPR1

*
°
.

FPR31

Condition Register
C

H

Floating-Point Status
and Control Register?

FPSCR

XER SPR 1

x
m
IwI

Link Register
LR SPR 8

Count Register
CTR SPR9

Time Base Facility
(For Reading)

TBL TBR 268

TBU TBR 269
\\ /

SUPERVISOR MODEL

Configuration Registers

Hardware
Implementation Machine State
Registers’ Register
HIDO SPR 1008 MSR
HID1 SPR 1009
Memory Management Registers
Instruction BAT
Registers Data BAT Registers
IBATOU | SPR 528 DBATOU | SPR 536
IBATOL | SPR 529 DBATOL | SPR537
IBAT1U | SPR 530 DBAT1U | SPR 538
IBATIL | SPR 531 DBATIL | SPR539
IBAT2U | SPR 532 DBAT2U | SPR 540
IBAT2L | SPR 533 DBAT2L | SPR 541
IBAT3U | SPR534 DBAT3U | SPR 542
IBAT3L | SPR 535 DBAT3L | SPR 543
SDR1

Exception Handling Registers

Data Address Register
DAR SPR 19
SPRGs
SPRGO | SPR 272
SPRG1 | SPR273
SPRG2 | SPR274
SPRG3 | SPR275

Miscellaneous Registers

Time Base Facility
(For Writing)

TBL SPR 284
TBU SPR 285

Instruction Address
Breakpoint Register’

SPR 1010

~

Processor Version
Register

SPR 287

Software Table
Search Registers’

DMISS | SPR976

DCMP | SPR977
HASH1 | SPR978
HASH2 | SPR 979
IMISS SPR 980
ICMP SPR 981
RPA SPR 982

Segment Registers
SRO
SR1

L1123

SR15

DSISR
Save and Restore

SRRO SPR 26
SRR1 SPR 27

Decrementer

External Address
Register (Optional)

SPR 282 /

Notes: 'These registers are 603e—specific (PID6-603¢ and PID7v-603¢) registers.
They may not be supported by other PowerPC processors.

2Not supported on the EC603e microprocessor.

Figure 2-1. Programming Model—Registers

MOTOROLA

Chapter 2. Programming Model

2-3

The 603e’s user-level registers are described as follows:

User-Jevel registers (UISA)—The user-level registers can be accessed by all
software with either user or supervisor privileges. The user-level register set
includes the following:

— General-purpose registers (GPRs). The general-purpose register file consists of
thirty-two 32-bit GPRs designated as GPRO-GPR31. This register file serves as
the data source or destination for all integer instructions and provides data for
generating addresses.

— Floating-point registers (FPRs). The floating-point register file consists of thirty-
two 64-bit FPRs designated as FPRO-FPR31, which serves as the data source or
destination for all floating-point instructions. These registers can contain data
objects of either single- or double-precision floating-point format. (The floating-
point register file is not supported on the EC603e microprocessor; an attempt to
access the floating-point register file will result in a floating-point unavailable
exception.)

— Condition register (CR). The CR is a 32-bit register, divided into eight 4-bit
fields, CRO—CR7, that reflects the results of certain arithmetic operations and
provides a mechanism for testing and branching.

—— Floating-point status and control register (FPSCR). The FPSCR is a user-control
register that contains all floating-point exception signal bits, exception summary
bits, exception enable bits, and rounding control bits needed for compliance with
the IEEE 754 standard. (The FPU is not supported on the EC603e
microprocessor; an attempt to access the floating-point register file will result in
a floating-point unavailable exception.)

The remaining user-level registers are SPRs. Note that the PowerPC architecture
provides a separate mechanism for accessing SPRs (the mtspr and mfspr
instructions). These instructions are commonly used to explicitly access certain
registers, while other SPRs may be more typically accessed as the side effect of
executing other instructions.

— XER register (XER). The XER 1is a 32-bit register that indicates overflow and
carries for integer operations. It is set implicitly by many instructions.

— Link register (LR). The 32-bit link register provides the branch target address for
the Branch Conditional to Link Register (bclrx) instruction, and can optionally
be used to hold the logical address (referred to as the effective address in the
architecture specification) of the instruction that follows a branch and link
instruction, typically used for linking to subroutines.

— Count register (CTR). The CTR is a 32-bit register for holding a loop count that
can be decremented during execution of appropriately coded branch instructions.
The CTR can also provide the branch target address for the Branch Conditional
to Count Register (bcetrx) instruction.

2-4

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

User-level registers (VEA)—The PowerPC VEA introduces the time base facility
(TB) for reading. The TB is a 64-bit register pair whose contents are incremented
once every four bus clock cycles. The TB consists of two 32-bit registers—time base
upper (TBU) and time base lower (TBL). Note that the time base registers are read-
only when in user state.

The 603e’s supervisor-level registers are described as follows:

Supervisor-level registers (OEA)—The OEA defines the registers that are used
typically by an operating system for such operations as memory management,
configuration, and exception handling. The supervisor-level registers defined by the
PowerPC architecture for 32-bit implementations are described as follows:

— Configuration registers

— Machine state register (MSR). The MSR defines the state of the processor.
The MSR can be modified by the Move to Machine State Register (imtmsr),
System Call (sc), and Return from Exception (rfi) instructions. It can be read
by the Move from Machine State Register (mfmsr) instruction.

Implementation Note—The 603e defines MSR[13] as the power
management enable (POW) bit and MSR[14] as the temporary GPR
remapping (TGPR) bit. These additional bits are described in Table 2-1.

Table 2-1. MSR[POW] and MSR[TGPR] Bits

Bit

Name Description

13

POW Power management enable (603e-specific)
0 Disables programmable power modes (normal operation mode).
1 Enables programmable power modes (hap, doze, or sleep mode).

This bit controis the programmable power modes only, it has no effect on dynamic power
management (DPM). MSR[POW] may be altered with an mtmsr instruction only. Also, when
altering the POW bit, software may alter only this bit in the MSR and no others. The mtmsr
instruction must be followed by a context-synchronizing instruction.

See Chapter 9, “Power Management,” for more information on power management.

14

TGPR Temporary GPR remapping (603e-specific)

0 Normal operation

1 TGPR mode. GPRO-GPR3 are remapped to TGPRO-TGPRS for use by TLB miss
routines.

The contents of GPRO-GPR3 remain unchanged while MSR[TGPR] = 1. Attempts to use

GPR4-GPR31 with MSR[TGPR] = 1 yield undefined results. Overlays TGPRO-TGPR3 over

GPRO-GPRS3 for use by TLB miss routines. When this bit is set, all instruction accesses to

GPR0-GPRS3 are mapped to TGPRO-TGPRS, respectively. The contents of GPRO-GPR3 are

unchanged as long as this bit remains set. Attempts to use GPR4-GPR31 when this bit is set

yields undefined results.The TGPR bit is set when either an instruction TLB miss, data read

miss, or data write miss exception is taken. The TGPR bit is cleared by an i instruction.

MOTOROLA Chapter 2. Programming Model 2-5

!

-

Processor version register (PVR). This register is a read-only register that
identifies the version (model) and revision level of the PowerPC processor.

Implementation Note—The processor version number is 6 for the PID6-
603e and 7 for the PID7v-603e. The processor revision level starts at 0x0100
and changes for each chip revision. The revision level is updated on all silicon
revisions.

— Memory management registers

Block-address translation (BAT) registers. The 603e includes eight block-
address translation registers (BAT'), consisting of four pairs of instruction
BATs IBATOU-IBAT3U and IBATOL-IBAT3L) and four pairs of data BAT'S
(DBATOU-DBAT3U and DBATOL-DBAT3L). See Figure 2-1 for a list of the
SPR numbers for the BAT registers.

SDR1. The SDR1 register specifies the page table base address used in virtual-
to-physical address translation. (Note that physical address is referred to as
real address in the architecture specification.)

Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SRO-SR15). Note that SRs are implemented on 32-bit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit 0.

— Exception handling registers

Data address register (DAR). After a data access or an alignment exception,
the DAR is set to the effective address generated by the faulting instruction.

SPRGO-SPRG3. The SPRGO-SPRG3 registers are provided for operating
system use.

DSISR. The DSISR defines the cause of data access and alignment
exceptions.

Machine status save/restore register 0 (SRR0). The SRRO is used to save
machine status on exceptions and to restore machine status when an rfi
instruction is executed.

Machine status save/restore register 1 (SRR1). The SRR1 is used to save
machine status on exceptions and to restore machine status when an rfi
instruction is executed.

Implementation Note—The 603e implements the Key bit (bit 12) in the
SRR1 register in order to simplify the table search software. For more
information refer to Chapter 5, “Memory Management.”

— Miscellaneous registers

The time base facility (TB) for writing. The TB is a 64-bit register pair that
can be used to provide time of day or interval timing. It consists of two 32-bit
registers—time base upper (TBU) and time base lower (TBL). The TB is
incremented once every four clock cycles.

2-6

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

— Decrementer (DEC). The DEC register is a 32-bit decrementing counter that
provides a mechanism for causing a decrementer exception after a
programmable delay. The DEC is decremented once every four bus clock
cycles.

— External access register (EAR). The EAR is a 32-bit register used in
conjunction with the eciwx and ecowx instructions. While the PowerPC
architecture specifies that the low-order six bits of the EAR (bits 26-31) are
used to select a device, the 603e only implements the low-order 4 bits (bits
28-31). Note that the EAR register and the eciwx and ecowx instructions are
optional in the PowerPC architecture and may not be supported in all
PowerPC processors that implement the OEA.

2.1.2 Implementation-Specific Registers

The 603e includes several implementation-specific SPRs that are not defined by the
PowerPC architecture. They are the DMISS, IMISS, DCMP, ICMP, HASH1, HASH?2,
RPA, HIDO, HID1, and IABR registers. These registers can be accessed by supervisor-level
instructions only. Any attempt to access these SPRs with user-level instructions results in a
supervisor-level exception. The SPR numbers for these registers are shown in Figure 2-1.

The DMISS, IMISS, DCMP, ICMP, HASH1, HASH2, and RPA registers are used for
software table search operations and should only be accessed when address translation is
disabled (that is, MSR[IR] = 0 and MSR[DR] = 0). For a complete discussion of software
table search operations, refer to Section 5.5.2, “Implementation-Specific Table Search
Operation.”

2.1.2.1 Hardware Implementation Registers (HID0 and HID1)

The HIDO and HIDI1 registers, shown in Figure 2-2 and Figure 2-3 respectively, define
enable bits for various 603e-specific features.

| Reserved
EICE DLOCK
EMCP SBCLK ECLK DOZE SLEEP RISEG ILOCK FBIOB NOOPTI
Y EBAJEB{] —L lPARJ INAP JDPM illCElDCEI L ‘ICFI DCF|
01 23 456 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 26 27 28 30 31

Figure 2-2. Hardware Implementation Register 0 (HIDO)

MOTOROLA Chapter 2. Programming Model 2-7

Table 2-2 shows the bit definitions for HIDO.

Table 2-2. HIDO Bit Settings

Bit(s) Name Description
0 EMCP Enable machine check pin
1 — Reserved
2 EBA Enable bus address parity checking
3 EBD Enable bus data parity checking
4 SBCLK Select bus clock for test clock pin
5 EICE Enable ICE outputs—pipeline tracking support
6 ECLK Enable external test clock pin
7 PAR Disable precharge of ARTRY and shared signals
8 DOZE Doze mode—PLL, time base, and snooping active'
9 NAP Nap mode—PLL and time base active'
10 SLEEP Sleep mode—no external clock required’
11 DPM Enable dynamic power management!
12 RISEG Reserved for test
13-14 — Reserved
15 NHR Reserved
16 ICE Instruction cache enable®
17 DCE Data cache enable®
18 ILOCK Instruction cache LOCK?
19 DLOCK Data cache LOCK?
20 ICFI Instruction cache flash invalidate?
21 DCFI Data cache flash invalidate?
22-23 — Reserved
24 IFEM Instruction fetch enable M (PID7v-603e only)
25-26 — Reserved
27 FBIOB Force branch indirect on bus
28 ABE Address broadcast enable? (PID7v-603e only)
29-30 — Reserved
31 NOOPTI No-op touch instructions
Notes:

1. See Chapter 9, “Power Management,” for more information.

2. See Chapter 3, “Instruction and Data Cache Operation,” for more information.

MPC603e & EC603e RISC Microprocessors User's Manual

MOTOROLA

| Reserved

Figure 2-3. Hardware Implementation Register 1 (HID1)

Table 2-3 shows the bit definitions for HID1.
Table 2-3. HID1 Bit Settings

Bit(s) Name Description
0 PCO PLL configuration bit 0 (read-only)
1 PC1 PLL configuration bit 1 (read-only)
2 PC2 . PLL configuration bit 2 (read-only)
3 PC3 PLL configuration bit 3 (read-only)
4-31 - Reserved

Note: The clock configuration bits reflect the state of the PLL_CFG[0-3] signals.

2.1.2.2 Data and Instruction TLB Miss Address Registers
(DMISS and IMISS)

The DMISS and IMISS registers have the same format as shown in Figure 2-4. They are
loaded automatically upon a data or instruction TLB miss. The DMISS and IMISS contain
the effective page address of the access that caused the TLB miss exception. The contents
are used by the 603e when calculating the values of HASH1 and HASH2, and by the tlbld
and tIbli instructions when loading a new TLB entry. Note that the 603e always loads the
DMISS register with a big-endian address, even when MSR[LE] is set. These registers are
read and write to the software.

[Effective Page Address |

Figure 2-4. DMISS and IMISS Registers

2.1.2.3 Data and Instruction TLB Compare Registers
(DCMP and ICMP)

The DCMP and ICMP registers are shown in Figure 2-5. These registers contain the first
word in the required PTE. The contents are constructed automatically from the contents of
the segment registers and the effective address (DMISS or IMISS) when a TLB miss
exception occurs. Each PTE read from the tables during the table search process should be
compared with this value to determine whether or not the PTE is a match. Upon execution
of a tlbld or tIbli instruction the upper 25 bits of the DCMP or ICMP register and 11 bits

MOTOROLA Chapter 2. Programming Model 2-9

of the effective address operand are loaded into the first word of the selected TLB entry.
These registers are read and write to the software.

ll[VSID

01 24 25 26

Figure 2-5. DCMP and ICMP Registers

Table 2-4 describes the bit settings for the DCMP and ICMP registers.
Table 2-4. DCMP and ICMP Bit Settings

Bits Name Description
0 \ Valid bit. Set by the processor on a TLB miss exception.
1-24 VSID Virtual segment ID. Copied from VSID field of corresponding
segment register.
25 — Reserved
26—-31 API Abbreviated page index. Copied from API of effective address.

2.1.2.4 Primary and Secondary Hash Address Registers
(HASH1 and HASH2)

The HASH1 and HASH? registers contain the physical addresses of the primary and
secondary PTEGs for the access that caused the TLB miss exception. For convenience, the
603¢ automatically constructs the full physical address by routing bits 0-6 of SDR1 into
HASH1 and HASH? and clearing the lower 6 bits. These registers are read-only and are
constructed from the contents of the DMISS or IMISS register (the register choice is
determined by which miss was last acknowledged). The format for the HASH1 and HASH2
registers is shown in Figure 2-6.

HTABORG[0-6] Hashed Page Address 000000

0 6 7 25 26 31
Figure 2-6. HASH1 and HASH2 Registers

Table 2-5 describes the bit settings of the HASH1 and HASH?2 registers.
Table 2-5. HASH1 and HASH2 Bit Settings

Bits Name Description
0-6 ‘HTABORG[O—G] Copy of the upper 7 bits of the HTABORG field from SDR1
7-25 Hashed page address | Address bits 7-25 of the PTEG to be searched
26-31 — ' Reserved

2-10 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.1.2.5 Required Physical Address Register (RPA)

The RPA register is shown in Figure 2-7. During a page table search operation, the software
must load the RPA with the second word of the correct PTE. When the tibld or tlbli
instruction is executed, the contents of the RPA register and the DMISS or IMISS register
are merged and loaded into the selected TLB entry. The referenced (R) bit is ignored when
the write occurs (no location exists in the TLB entry for this bit). The RPA register is read
and write to the software.

Reserved

RPN

0 19 20 22 23 24 25 28 29 30 31

Figure 2-7. Required Physical Address Register (RPA)

Table 2-6 describes the bit settings of the RPA register.
Table 2-6. RPA Bit Settings

Bits ~ Name Description
0-19 RPN Physical page number from PTE
20-22 — Reserved
23 R Referenced bit from PTE
24 C Changed bit from PTE
25-28 WIMG Memory/cache access attribute bits
29 — Reserved
30-31 | PP Page protection bits from PTE

2.1.2.6 Instruction Address Breakpoint Register (IABR)

The TIABR, shown in Figure 2-8, controls the instruction address breakpoint exception.
TABR[CEA] holds an effective address to which each instruction is compared. The
exception is enabled by setting bit 30 of IABR. The exception is taken when there is an
instruction address breakpoint match on the next instruction to complete. The instruction
tagged with the match will not be completed before the breakpoint exception is taken.

F] Reserved

[CEA

Figure 2-8. Instruction Address Breakpoint Register (IABR)

MOTOROLA Chapter 2. Programming Model 2-11

The bits in the JABR are defined as shown in Table 2-7.
Table 2-7. Instruction Address Breakpoint Register Bit Settings

Bit Description
0-29 ' Word address to be compared
30 IABR enabled. Setting this bit indicates that the IABR exception is enabled.
31 Reserved

2.1.2.7 Run_N Counter Register (Run_N)

The 33-bit Run_N counter register is unique to the PID7v-603e. The Run_N counter is used
by the COP to control the number of processor cycles that the processor runs before halting.
The most-significant 32 bits form a 32-bit counter. The function of the least-significant bit
remains unchanged.

2.2 Operand Conventions

This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture. It also provides detailed descriptions of conventions used for storing
values in registers and memory, accessing the 603e’s registers, and representation of data
in these registers.

2.2.1 Floating-Point Execution Models—UISA

Note that the floating-point execution models are not supported on the EC603e
Microprocessor.

The IEEE 754 standard includes 64- and 32-bit arithmetic. The standard requires that
single-precision arithmetic be provided for single-precision operands. The standard permits
double-precision arithmetic instructions to have either (or both) single-precision or double-
precision operands, but states that single-precision arithmetic instructions should not accept
double-precision operands.

The PowerPC UISA follows these guidelines:

* Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

* Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversions from double- to single-precision must be done
explicitly by software, while conversions from single- to double-precision are done
implicitly.

All PowerPC implementations provide the equivalent of the following execution models to
ensure that identical results are obtained. The definition of the arithmetic instructions for

2-12 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

infinities, denormalized numbers, and NaNs follow conventions described in the following
sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is 1:

¢ Underflow during multiplication using a denormalized factor
* Overflow during division using a denormalized divisor

2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and move assist instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

2.2.3 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 2-8. (Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands.)

Table 2-8. Memory Operands

Operand Length A:: %[Iz?‘;?]
Byte 8 bits XXXX
Half word 2 bytes xxx0
Word 4 bytes xx00
Double word 8 bytes X000
Quad word 16 bytes 0000

Note: An “X” in an address bit position indicates that the bit can
be 0 or 1 independent of the state of other bits in the
address.

MOTOROLA Chapter 2. Programming Model 2-13

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Implementation Notes—The following describes how the 603e handles alignment and
misaligned accesses:

+ The 603e provides hardware support for some misaligned memory accesses.
However, misaligned accesses will suffer a performance degradation compared to
aligned accesses of the same type.

* The 603e does not provide hardware support for floating-point load/store operations
that are not word-aligned. In such a case, the 603e will invoke an alignment
exception and the exception handler must break up the misaligned access. For this
reason, floating-point single- and double-word accesses should always be word-
aligned. Note that a floating-point double-word access on a word-aligned boundary
requires an extra cycle to complete. (Floating-point operations are not supported on
the EC603e microprocessor.)

Any memory access that crosses an alignment boundary must be broken into multiple
discrete accesses. This includes half-word, word, double-word, and string references. For
the case of string accesses, the hardware makes no attempt to get aligned in an effort to
reduce the number of discrete accesses. (Multiword accesses are architecturally required to
be aligned.) The resulting performance degradation depends upon how well each individual
access behaves with respect to the memory hierarchy. At a minimum, additional cache
access cycles are required. More dramatically, for the case of access to a noncacheable
page, each discrete access involves an individual bus operation which will reduce the
effective bandwidth of the bus.

The frequent use of misaligned accesses is discouraged since they can compromise the
overall performance of the processor.

2.2.4 Floating-Point Operand

The 603e provides hardware support for all single- and double-precision floating-point
operations (not supported on the EC603e microprocessor) for most value representations
and all rounding modes. The PowerPC architecture provides for hardware to implement a
floating-point system as defined in ANSI/IEEE standard 754-1985, IEEE Standard for
Binary Floating Point Arithmetic. For detailed information about the floating-point
execution model refer to Chapter 3, “Operand Conventions,” in The Programming
Environments Manual.

2.2.5 Effect of Operand Placement on Performance

The VEA states that the placement (location and alignment) of operands in memory affect
the relative performance of memory accesses. The best performance is guaranteed if
memory operands are aligned on natural boundaries. To obtain the best performance from
the 603e, the programmer should assume the performance model described in Chapter 3,
“Operand Conventions,” in The Programming Environments Manual.

2-14 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.3 Instruction Set Summary

This section describes instructions and addressing modes defined for the 603e. These
instructions are divided into the following functional categories:

¢ Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, “Integer Instructions.”

* Floating-point instructions—These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, “Floating-Point Instructions.” (Note that
floating-point operations are not supported on the EC603e microprocessor)

¢ Load and store instructions—These include integer and floating-point load and store
instructions. For more information, see Section 2.3.4.3, “Load and Store
Instructions.” :

* Flow control instructions—These include branching instructions, condition register
logical instructions, and other instructions that affect the instruction flow. For more
information, see Section 2.3.4.4, “Branch and Flow Control Instructions.”

» Trap instructions—These instructions are used to test for a specified set of
conditions; see Section 2.3.4.5, “Trap Instructions,” for more information.

¢ Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For more
information, see Sections 2.3.4.6, 2.3.5.1, and 2.3.6.2.

¢ Memory synchronization instructions—These instructions are used for memory
synchronizing. See Sections 2.3.4.7 and Section 2.3.5.2 for more information.

¢ Memory control instructions—These instructions provide control of caches, TLBs,
and segment registers. For more information, see Sections 2.3.5.3 and 2.3.6.3.

¢ System linkage instructions—For more information, see Section 2.3.6.1, “System
Linkage Instructions.”

» External control instructions—These include instructions for use with special input/
output devices. For more information, see Section 2.3.5.4, “External Control
Instructions.”

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. This information, which is useful
in taking full advantage of the 603e¢’s superscalar parallel instruction execution, is provided
in Chapter 8, “Instruction Set,” in The Programming Environments Manual.

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
uses instructions that are four bytes long and word-aligned. It provides for byte, half-word,
and word operand loads and stores between memory and a set of 32 general-purpose
registers (GPRs). It also provides for word and double-word operand loads and stores
between memory and a set of 32 floating-point registers (FPRs).

MOTOROLA Chapter 2. Programming Model 2-15

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics (extended
mnemonics in the architecture specification) and symbols is provided for some of the
frequently-used instructions; see Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonic examples.

2.3.1 Classes of Instructions
The 603e instructions belong to one of the following three classes:

* Defined
* Iliegal
¢ Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, an instruction that
is specific to 64-bit implementations is considered defined for 64-bit implementations but
illegal for 32-bit implementations such as the 603e.

The class is determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

In future versions of the PowerPC architecture, instruction codings that are now illegal may
become assigned to instructions in the architecture, or may be reserved by being assigned
to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in all PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, “Instruction Set,” in The
Programming Environments Manual. The 603e provides hardware support for all

2-16 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

instructions defined for 32-bit implementations (the EC603e microprocessor supports all
32-bit instructions with the exception of those defined for floating-point operations).

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required.

A defined instruction can have invalid forms, as described in the following subsection.

2.3.1.3 lllegal Instruction Class
Illegal instructions can be grouped into the following categories:

¢ Instructions that are not implemented in the PowerPC architecture. These opcodes
are available for future extensions of the PowerPC architecture; that is, future
versions of the PowerPC architecture may define any of these instructions to
perform new functions.

The following primary opcodes are defined as illegal but may be used in future
extensions to the architecture:

1,4,5,6,9,22,56,57, 60, 61

» Instructions that are implemented in the PowerPC architecture but are not
implemented in a specific PowerPC implementation. For example, instructions that
can be executed on 64-bit PowerPC processors are considered illegal by 32-bit
processors.

The following primary opcodes are defined for 64-bit implementations only and are
illegal on the 603e:

2,30, 58, 62

» All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, “Instructions Sorted by Opcode,” and
Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended opcodes for
instructions that are defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa.

The following primary opcodes have unused extended opcodes.

17, 19, 31, 59, 63 (primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes)

* Aninstruction consisting entirely of zeros is guaranteed to be an illegal instruction.
This increases the probability that an attempt to execute data or uninitialized
memory invokes the system illegal instruction error handler (a program exception).
Note that if only the primary opcode consists of all zeros, the instruction is
considered a reserved instruction. This is further described in Section 2.3.1.4,
“Reserved Instruction Class.”

MOTOROLA .. Chapter 2. Programming Model 2-17

An attempt to execute an illegal instruction invokes the illegal instruction error handler (a
program exception) but has no other effect. See Section 4.5.7, “Program Exception
(0x00700),” for additional information about illegal and invalid instruction exceptions.

With the exception of the instruction consisting entirely of binary zeros, the illegal
instructions are available for further additions to the PowerPC architecture.

2.3.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
Section 4.5.7, “Program Exception (0x00700),” for additional information about illegal and
invalid instruction exceptions.

The following types of instructions are included in this class:

* Implementation-specific instructions (for example, Load Data TLB Entry (tlbld)
and Load Instruction TLB Entry (tlbli) instructions)

* Optional instructions defined by the PowerPC architecture but not implemented by
the 603e (for example, Floating Square Root (fsqrt) and Floating Square Root
Single (fsqrts) instructions)

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 32-bit
implementations. For more detailed information, see ‘“Conventions,” in Chapter 4,

- “Addressing Modes and Instruction Set Summary,” of The Programming Environments

Manual.

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

2.3.2.2 Memory Operands

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian.
See “Byte Ordering” in Chapter 3, “Operand Conventions,” in The Programming

2-18 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Environments Manual for more information about big-endian and little-endian byte
ordering.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Chapter 3, “Operand Conventions,” in The Programming
Environments Manual.

2.3.2.3 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address O, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O is ignored.

Load and store operations have three categories of effective address generation:

* Register indirect with immediate index mode
» Register indirect with index mode
» Register indirect mode

Refer to Section 2.3.4.3.2, “Integer Load and Store Address Generation,” for further
discussion of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

* Immediate
* Link register indirect
* Count register indirect

Refer to Section 2.3.4.4.1, “Branch Instruction Address Calculation,” for further discussion
of branch instruction effective address generation.

2.3.2.4 Synchronization

The sychronization described in this section refers to the state of the processor that is
performing the sychronization.

MOTOROLA Chapter 2. Programming Model 2-19

l

2.3.2.4.1 Context Synchronization

The System Call (sc) and Return from Interrupt (rfi) instructions perform context
synchronization by allowing previously issued instructions to complete before performing
a change in context. Execution of one of these instructions ensures the following:

* * No higher priority exception exists (sc).
» All previous instructions have completed to a point where they can no longer cause
an exception. If a prior memory access instruction causes direct-store error

exceptions, the results are guaranteed to be determined before this instruction is
executed.

* Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

* The instructions following the sc or rfi instruction execute in the context established
by these instructions.

2.3.2.4.2 Execution Synchronization

An instruction is execution synchronizing if all previously initiated instructions appear to
have completed before the instruction is initiated or, in the case of the Synchronize (sync)
and Instruction Synchronize (isyne) instructions, before the instruction completes. For
example, the Move to Machine State Register (mtmsr) instruction is execution
synchronizing. It ensures that all preceding instructions have completed execution and will
not cause an exception before the instruction executes, but does not ensure subsequent
instructions execute in the newly established environment. For example, if the mtmsr sets
the MSR[PR] bit, unless an isync immediately follows the mtmsr instruction, a privileged
instruction could be executed or privileged access could be performed without causing an
exception even though the MSR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions

There are two kinds of exceptions in the 603e—those caused directly by the execution of
an instruction and those caused by an asynchronous event. Either may cause components
of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

* An attempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by a user-level program to execute the
supervisor-level instructions listed below causes the privileged instruction (program
exception) handler to be invoked. The 603e provides the following supervisor-level
instructions: debi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi,
tlbie, tlbsync, tlbld, and tlbli. Note that the privilege level of the mfspr and mtspr
instructions depends on the SPR encoding.

* An attempt to access memory that is not available (page fault) causes the ISI
exception handler to be invoked.

* An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

2-20 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

* The execution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.

* The execution of a trap instruction invokes the program exception trap handler.

* The execution of a floating-point instruction when floating-point instructions are
disabled or unavailable invokes the floating-point unavailable exception handler.

» The execution of an instruction that causes a floating-point exception while
. . . . P
exceptions are enabled in the MSR invokes the program exception handler.

Exceptions caused by asynchronous events are described in Chapter 4, “Exceptions.”

2.3.3 Instruction Set Overview

This section provides a brief overview of the PowerPC instructions implemented in the
603e and highlights any special information with respect to how the 603e implements a
particular instruction. Note that the categories used in this section correspond to those used
in Chapter 4, “Addressing Modes and Instruction Set Summary,” in The Programming
Environments Manual. These categorizations are somewhat arbitrary and are provided for
the convenience of the programmer and do not necessarily reflect the PowerPC architecture
specification.

Note that some of the instructions have the following optional features:

* CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.
¢ Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding a few user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

¢ Integer arithmetic instructions

* Integer compare instructions

» Integer logical instructions

* Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the XER, and into condition register (CR) fields.

MOTOROLA Chapter 2. Programming Model 2-21

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-9 lists the integer arithmetic instructions for the 603e.

Table 2-9. Integer Arithmetic Instructions

Name ‘Mnemonic Operand Syntax

Add Immediate addi rD,rA,SIMM
Add Immediate Shifted addis rD,rA,SIMM
Add add (add. addo addo.) rD,rA,rB
Subtract From subf (subf. subfo subfo.) rD,rA,rB
Add Immediate Carrying addic rD,rA,SIMM
Add Immediate Carrying and Record addic. rD,rA,SIMM
Subtract from Immediate Carrying subfic rD,rA,SIMM
Add Carrying addc (addc. addco addco.) rD,rA,rB
Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB
Add Extended adde (adde. addeo addeo.) rD,rA,rB
Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB
Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA
Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) ID,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) D,rA
Negate neg (neg. nego nego.) rD,rA
Multiply Low Immediate muili rD,rA,SIMM
Multiply Low mullw (mullw. mullwo muliwo.) rD,rA,rB
Multiply High Word mulhw (mulhw.) D,rA,rB
Multiply High Word Unsigned mulhwu (mulhwu.) D,rA,rB
Divide Word divw (divw. divwo divwo.) tD,rA,rB
Divide Word Unsigned divwu (divwu. divwuo divwuo.) tD,rA,rB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (rA) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for examples.

2.3.4.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of rA with
either the UIMM operand, the SIMM operand, or the contents of rB. The comparison is

2-22 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

signed for the cmpi and cmp instructions, and unsigned for the cmpli and cmpl
instructions. Table 2-10 lists the integer compare instructions.

Table 2-10. Integer Compare Instructions

Name Mnemonic Operand Syntax
Compare Immediate cmpi crfD,L,rA,SIMM
Compare cmp crfD,L,rA,rB
Compare Logical iInmediate cmpli crfD,L,rA,UIMM
Compare Logical cmpl crfD,L,rA,rB

The crfD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruction crfD field.

For more information refer to Appendix F, “Simplified Mnemonics,” in The Programming
Environments Manual.

2.3.4.1.3 Integer Logical Instructions

The logical instructions shown in Table 2-11 perform bit-parallel operations. Logical
instructions with the CR update enabled and instructions andi. and andis. set CR field CRO
to characterize the result of the logical operation. These fields are set as if the sign-extended
low-order 32 bits of the result were algebraically compared to zero. Logical instructions
without CR update and the remaining logical instructions do not modify the CR. Logical
instructions do not affect the XER[SO], XER[OV], and XER[CA] bits.

For simplified mnemonics examples for the integer logical operations see Appendix F,
“Simplified Mnemonics,” in The Programming Environments Manual.

Table 2-11. Integer Logical Instructions

Name Mnemonic Operand Syntax
AND Immediate andi. rA,rS,UiMM
AND Immediate Shifted andis. rA,rS,UIMM
OR Immediate ori rA,rS,UIMM
OR Immediate Shifted oris) rA,rS,UuiMM
XOR Immediate Xxori rA,rS,UIMM
XOR Immediate Shifted xoris rA,rS,UIMM
AND and (and.) rA,rS,rB
OR or (or.) rA,rS,rB
XOR » xor (xor.) rA,rS,rB
NAND nand (nand.) rA,rS,rB
NOR nor (nor.) rA,rS,rB

MOTOROLA Chapter 2. Programming Model 2-23

Table 2-11. Integer Logical Instructions (Continued)

Name Mnemonic Operand Syntax
Equivalent eqv (eqv.) rA,rS,rB
AND with Complement andc (andc.) rA,rS,rB
OR with Complement orc (orc.) rA,rS,rB
Extend Sign Byte extsb (extsb.) rA,rS
Extend Sign Half Word extsh (extsh.) rA,rS
Count Leading Zeros Word cntlzw (cntlzw.) rA,rS

2.3.4.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

The integer rotate instructions are listed in Table 2-12.

Table 2-12. Integer Rotate Instructions

Name Mnemonic Operand Syntax

Rotate Left Word Immediate then AND with Mask

riwinm (rlwinm.)

rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask

riwnm (rlwnm.)

rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert

riwimi (riwimi.)

rA,rS,SH,MB,ME

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics are provided to make coding of such shifts
simpler and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts,” in The Programming Environments Manual.

2-24 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The integer shift instructions are listed in Table 2-13.

Table 2-13. Integer Shift Instructions

Name Mnemonic Operand Syntax
Shift Left Word siw (siw.) rA,rS,rB
Shift Right Word SIw (srw.) rA,rS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH
Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

* Floating-point arithmetic instructions

* Floating-point multiply-add instructions

¢ Floating-point rounding and conversion instructions
* Floating-point compare instructions

* Floating-point status and control register instructions
¢ Floating-point move instructions

The EC603e microprocessor provides hardware support for all 32-bit PowerPC instructions
with the exception of floating-point instructions, which, when implemented on the EC603e
microprocessor, take a floating-point unavailable exception.

See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but requires software support to conform with that standard. All floating-point
operations conform to the IEEE 754 standard, except if software sets the non-IEEE mode
bit (NI) in the FPSCR; the 603e is in the nondenormalized mode when the NI bit is set in
the FPSCR. If a denormalized result is produced, a default result of zero is generated. The
generated zero has the same sign as the denormalized number. The 603e performs single-
and double-precision floating-point operations compliant with the IEEE-754 floating-point
standard.

Implementation Note—Single-precision denormalized results require two additional
processor clock cycles to round. When loading or storing a single-precision denormalized
number, the load/store unit may take up to 24 processor clock cycles to convert between the
internal double-precision format and the external single-precision format.

MOTOROLA Chapter 2. Programming Model 2-25

2.3.4.2.1 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are listed in Table 2-14. (Floating-point

instructions are not supported on the EC603e microprocessor.)

Table 2-14. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax

Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB
Floating Add Single fadds (fadds.) frD,frA,frB
Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB
Floating Subtract Single fsubs (fsubs.) frD,frA,frB
Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC
Floating Multiply Single fmuls (fmuls.) frD,frA,frC
Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB
Floating Divide Single fdivs (fdivs.) frD,frAfrB
Floating Reciprocal Estimate Single fres (fres.) frD,frB
Floating Reciprocal Square Root Estimate frsqrte (frsqrte.) frD,frB
Floating Select fsel (fsel.) frD,frAfrC,frB

2.34.2.2 FIoating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding
operation. The fractional part of the intermediate product is 106 bits wide, and all 106 bits
take part in the add/subtract portion of the instruction.

The floating-point multiply-add instructions are listed in Table 2-15. (Floating-point
instructions are not supported on the EC603e microprocessor.)

Table 2-15. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax

Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frDfrA,frC,frB
Floating Multiply-Add Single fmadds (fmadds.) frD,frAfrC,frB
Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB
Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frAfrC,frB
Floating Negative Multiply-Add (Double-Precision) | fnmadd (fnmadd.) frD,frA,frC,frB
Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frAfrC,frB
Floating Negative Multiply-Subtract (Double- fnmsub (fnmsub.) frD,frA,frC,frB
Precision)

Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs). frD,frAfrC,frB

2-26

MPC603e & EC603e RISC Microprocessors User's Manual

MOTOROLA

Implementation Note—Single-precision multiply-type instructions operate faster than
their double-precision equivalents. See Chapter 6, “Instruction Timing,” for more
information.

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The floating-
point conversion instructions convert a 64-bit double-precision floating-point number to a
32-bit signed integer number.

The PowerPC architecture defines bits 0-31 of floating-point register frD as undefined
when executing the Floating Convert to Integer Word (fctiw) and Floating Convert to
Integer Word with Round toward Zero (fctiwz) instructions.

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models,” in The Programming Environments Manual. The
floating-point rounding instructions are shown in Table 2-16. (Floating-point instructions
are not supported on the EC603e microprocessor.)

Table 2-16. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax
Floating Round to Single-Precision frsp (frsp.) frD,frB
Floating Convert to Integer Word fetiw (fetiw.) frD,frB
Floating Convert to Integer Word with Round toward Zero fetiwz (fetiwz.) rD,frB

2.3.4.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +O = —0). The floating-point compare
instructions are listed in Table 2-17. (Floating-point instructions are not supported on the
EC603e microprocessor.)

Table 2-17. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax
Floating Compare Unordered fcmpu criD,frA,frB
Floating Compare Ordered fcmpo crfD,frA,frB

2.3.4.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has

MOTOROLA Chapter 2. Programming Model 2-27

l

.

completed. The FPSCR instructions are listed in Table 2-18. (Floating-point instructions
are not supported on the EC603e microprocessor.)

Table 2-18. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax
Move from FPSCR mffs (mffs.) frD
Move to Condition Register from FPSCR merfs criD,erfS
Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crfD,IMM
Move to FPSCR Fields mtfsf (mtfsf.) FM,frB
Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) crbD
Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) crbD

Implementation Note—The architecture notes that, in some implementations, the Move
to FPSCR Fields (mtfsfx) instruction may perform more slowly when only a portion of the
fields are updated as opposed to all of the fields. This is not the case in the 603e.

2.3.4.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one floating-point register to another. The
floating-point move instructions do not modify the FPSCR. The CR update option in these
instructions controls the placing of result status into CR1. Floating-point move instructions
are listed in Table 2-18. (Floating-point instructions are not supported on the EC603e
microprocessor.)

Table 2-19. Floating-Point Move Instructions

Name Mnemonic Operand Syntax
Floating Move Register fmr (fmr.) frD,frB
Floating Negate fneg (fneg.) frD,frB
Floating Absolute Value fabs (fabs.) frD,frB
Floating Negative Absolute Value fnabs (fnabs.) frD,frB

2.3.4.3 Load and Store Instructions
Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions of the 603e, which consist
of the following: -

* Integer load instructions

* Integer store instructions :

* Integer load and store with byte-reverse instructions

» Integer load and store multiple instructions

2-28 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

* Integer load and store string instructions
» Floating-point load instructions
» Floating-point store instructions

2.3.4.3.1 Self-Modifying Code

When a processor modifies a memory location that may be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by the following instruction sequence:

dchbst lupdate memory

sync Iwait for update

icbi Iremove (invalidate) copy in instruction cache
isync Iremove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since
instruction fetching bypasses the data cache, changes to items in the data cache may not be
reflected in memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining
cache coherency that are provided in the VEA, and discussed in Chapter 5, “Cache Model
and Memory Coherency,” in The Programming Environments Manual. Because the 603e
does not broadcast the M bit for instruction fetches, external caches are subject to
coherency paradoxes.

2.3.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, “Effective Address Calculation,” for information about calculating
effective addresses. Note that the 603e is optimized for load and store operations that are
aligned on natural boundaries, and operations that are not naturally aligned may suffer
performance degradation. Refer to Section 4.5.6.1, “Integer Alignment Exceptions,” for
additional information about load and store address alignment exceptions.

2.3.4.3.3 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the
EA is loaded into rD. Many integer load instructions have an update form, in which rA is
updated with the generated effective address. For these forms, the EA is placed into rA and
the memory element (byte, half word, word, or double word) addressed by EA is loaded
into rD.

Implementation Note—In some implementations of the PowerPC architecture, the load
half word algebraic instructions (Iha and Ihax) and the load with update (Ibzu, Ibzux, lhzu,
Ihzux, lhau, lhaux, Iwu, and Iwux) instructions may execute with greater latency than
other types of load instructions. In the 603e, these instructions operate with the same
latency as other load instructions.

MOTOROLA ' Chapter 2. Programming Model 2-29

Table 2-20 lists the integer load instructions.

Table 2-20. Integer Load Instructions

Name Mnemonic | Operand Syntax
Load Byte and Zero Ibz rD,d(rA)
Load Byte and Zero Indexed Ibzx rD,rA,rB
Load Byte and Zero with Update lbzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux rD,rA,rB
Load Half Word and Zero Ihz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rA,rB
Load Half Word and Zero with Update lhzu rD,d(rA)
Load Half Word and Zero with Update Indexed ' lhzux rD,rA,rB
Load Half Word Algebraic lha rD,d(rA)
Load Half Word Algebraic Indexed lhax rD,rA,rB
Load Half Word Algebraic with Update lhau rD,d(rA)
Load Half Word Algebraic with Update Indexed " | Ihaux rD,rA,rB
Load Word and Zero lwz rD,d(rA)
Load Word and Zero Indexed Iwzx rD,rA,rB
Load Word and Zero with Update lwzu rD,d(rA)
Load Word and Zero with Update Indexed lwzux rD,rA,rB

2.3.4.3.4 Integer Store Instructions
For integer store instructions, the contents of rS are stored into the byte, half word, word,
or double word in memory addressed by the effective address (EA). Many store instructions
have an update form, in which rA is updated with the EA. For these forms, the following

rules apply:
If rA #0, the EA is placed into rA.

If rS =rA, the contents of rS are copied to the target memory element, then the
generated EA is placed into rA (rS).

The 603¢ defines store with update instructions with rA = 0 and integer store instructions
with the CR update option enabled (Rc field, bit 31, in the instruction encoding = 1) to be
invalid forms. Table 2-21 provides a list of the integer store instructions for the 603e.

2-30

MPC603e & EC603e RISC Microprocessors User's Manual

MOTOROLA

Table 2-21. Integer Store Instructions

Name Mnemonic Oberand Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx rS,rA,rB
Store Byte with Update stbu rS,d(rA)
Store Byte with Update Indexed stbux rS,rA,rB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rS,rA,rB
Store Half Word with Update sthu rS,d(rA)
Store Half Word with Update Indexed sthux rS,rA,rB
Store Word stw rS,d(rA)
Store Word Indexed stwx rS,rA,rB
Store Word with Update ' stwu rS,d(rA)
Store Word with Update indexed stwux rS,rA,rB

2.3.4.3.5 Integer Load and Store with Byte-Reverse Instructions

Table 2-22 describes integer load and store with byte-reverse instructions. When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing data in big-endian order. For more information about big-endian and
little-endian byte ordering, see “Byte Ordering™ in Chapter 3, “Operand Conventions,” in
The Programming Environments Manual.

Implementation Note—In some PowerPC implementations, load byte-reverse
instructions (Ihbrx and lwbrx) may have greater latency than other load instructions;
however, these instructions operate with the same latency as other load instructions in the
603e.

Table 2-22. Integer Load and Store with Byte-Reverse Instructions

Name . Mnemonic Or;serand Syntax
Load Half Word Byte-Reverse Indexed lhbrx rD,rA,r8
Load Word Byte-Reverse Indexed v Iwbrx , rD,rArB
Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB
Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

MOTOROLA Chapter 2. Programming Model 2-31

2.3.4.3.6 Integer Load and Store Multiple Instructions

The integer load/store multiple instructions are used to move blocks of data to and from the
GPRs: In some implementations, these instructions are likely to have greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

Implementation Notes—The following describes the 603’e implementation of the load/
store multiple instruction:

The load multiple and store multiple instructions may have operands that require
memory accesses crossing a 4-Kbyte page boundary. As a result, these instructions
may be interrupted by a DSI exception associated with the address translation of the
second page. In this case, the 603e performs some or all of the memory references
from the first page, and none of the memory references from the second page before
taking the exception. On return from the DSI exception, the load or store multiple
instruction will re-execute from the beginning. For additional information, refer to
“DSI Exception (0x00300)” in Chapter 6, “Exceptions,” in The Programming
Environments Manual.

The PowerPC architecture defines the load multiple word (Imw) instruction withrA
in the range of registers to be loaded as an invalid form. It defines the load multiple
and store multiple instructions with misaligned operands (that is, the EA is not a
multiple of 4) to cause an alignment exception. The 603e defines the load multiple
word (Imw) instruction with rA in the range of registers to be loaded as an invalid
form.

The PowerPC architecture describes some preferred instruction forms for the integer
load and store multiple instructions that may perform better than other forms in
some implementations. None of these preferred forms have an effect on instruction
performance in the 603e.

When the 603e is operating with little-endian byte order, execution of a load or store
multiple instruction causes the system alignment error handler to be invoked; see “Byte
Ordering” in Chapter 3, “Operand Conventions,” in The Programming Environments
Manual for more information. Table 2-23 lists the integer load and store multiple
instructions for the 603e.

Table 2-23. Integer Load and Store Multiple Instructions |

Name Mnemonic Operand Syntax
Load Multiple Word ’ Imw rD,d(rA)
Store Multiple Word stmw S,d(rA)

2-32

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.3.4.3.7 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields.

When the 603e is operating with little-endian byte order, execution of a load or store string
instruction causes the system alignment error handler to be invoked; see “Byte Ordering”
in Chapter 3, “Operand Conventions,” in The Programming Environments Manual for more
information.

Table 2-24 lists the integer load and store string instructions.

Table 2-24. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax
Load String Word Immediate Iswi rD,rA,NB
Load String Word Indexed Iswx rD,rA,rB
Store String Word iImmediate stswi rS,rA,NB
Store String Word Indexed stswx rS,rA,rB

Load string and store string instructions may involve operands that are not word-aligned.
As described in “Alignment Exception (0x00600)” in Chapter 6, “Exceptions,” in The
Programming Environments Manual, a misaligned string operation suffers a performance
penalty compared to a word-aligned operation of the same type.

When a string operation crosses a 4-Kbyte boundary, the instruction may be interrupted by
a DSI exception associated with the address translation of the second page. In this case, the
603e performs some or all memory references from the first page and none from the second
before taking the exception. On return from the DSI exception, the load or store string
instruction will re-execute from the beginning. For more information, refer to “DSI
Exception (0x00300)” in Chapter 6, “Exceptions,” in The Programming Environments
Manual.

Implementation Note—If rA is in the range of registers to be loaded for a Load String
Word Immediate (Iswi) instruction or if either rA or rB is in the range of registers to be
loaded for a Load String Word Indexed (Iswx) instruction, the PowerPC architecture defines
the instruction to be of an invalid form. In addition, the Iswx and stswx instructions that
specify a string length of zero are defined to be invalid by the PowerPC architecture.
However, neither of these cases holds true for the 603e which treats these cases as valid
forms.

MOTOROLA Chapter 2. Programming Model 2-33

2.3.4.3.8 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode, the details of which are described below. Floating-point loads and stores are not
supported for direct-store accesses. The use of the floating-point load and store operations
for direct-store accesses will result in a DSI exception. (Note that floating-point instructions
are not supported on the EC603e microprocessor.)

2.3.4.3.9 Floating-Point Load Instructions

There are two forms of the floating-point load instruction—single-precision and double-
precision operand formats. Because the FPRs support only the floating-point double-
precision format, single-precision floating-point load instructions convert single-precision
data to double-precision format before loading the operands into the target FPR. This
conversion is described fully in “Floating-Point Load Instructions” in Appendix D,
“Floating-Point Models,” in The Programming Environments Manual.

Implementation Note—The PowerPC architecture defines load with update instructions
with rA = 0 as an invalid form; however, the 603e treats this case as a valid form.

On the EC603e microprocessor, floating-point instructions are trapped by the floating-point
unavailable exception vector and can be emulated in software.

Table 2-25 provides a list of the floating-point load instructions. (Floating-point
instructions are not supported on the EC603e microprocessor.)

Table 2-25. Floating-Point Load Instructions

Name Mnemonic | Operand Syntax
Load Floating-Point Single Ifs frD,d(rA)
Load Floating-Point Single Indexed Ifsx frD,rA,rB
Load Floating-Point Single with Update Ifsu frD,d(rA)
Load Floating-Point Single with Update indexed Ifsux frD,rA,rB
Load Floating-Point Double Ifd frD,d(rA)
Load Floating-Point Double Indexed Ifdx frD,rA,rB
Load Floating-Point Double with Update Ifdu frD,d(rA)
Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB

2.3.4.3.10 Floating-Point Store Instructions

There are three basic forms of the store instruction—single-precision, double-precision,
and integer. The integer form is supported by the optional stfiwx instruction. Because the
FPRs support only floating-point, double-precision format for floating-point data single-
precision floating-point store instructions convert double-precision data to single-precision
format before storing the operands. The conversion steps are described fully in “Floating-

2-34 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Point Store Instructions” in Appendix D, “Floating-Point Models,” in The Programming
Environments Manual. :

Implementation Note—The PowerPC architecture defines store with update instructions
with rA =0 as an invalid form; however, the 603e treats this case as valid.

On the EC603e microprocessor, floating-point instructions are trapped by the floating-point
unavailable exception vector and can be emulated in software.

Table 2-26 provides a list of the floating-point store instructions. (Floating-point
instructions are not supported on the EC603e microprocessor.)

Table 2-26. Floating-Point Store Instructions

Name Mnemonic | Operand Syntax
Store Floating-Point Single stfs frS,d(rA)
Store Floating-Point Single Indexed stfsx frS,rA,rB
Store Floating-Point Single with Update stfsu frS,d(rA)
Store Floating-Point Single with Update Indexed stfsux frS,rA,rB
Store Floating-Point Double stfd rS,d(rA)
Store Floating-Point Double Indexed stfdx frS,rA,rB
Store Floating-Point Double with Update | stfdu frS,d(rA)
Store Floating-Point Double with Update Indexed stfdux frS,rA,rB
Store Floating-Point as Integer Word Indexed stfiwx frS,rA,rB

2.3.4.4 Branch and Flow Control Instructions

Branch instructions are executed by the branch processing unit (BPU). The BPU receives
branch instructions from the fetch unit and performs condition register (CR) look-ahead
operations on conditional branches to resolve them early, achieving the effect of a zero-
cycle branch in many cases. '

Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the branch processor encounters one of these instructions, it
scans the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

If an interlock is detected, the branch is considered unresolved and the direction of the
branch is predicted using static branch prediction as described in “Conditional Branch
Control” in Chapter 4, “Addressing Modes and Instruction Set Summary,” in The
Programming Environments Manual. The interlock is monitored while instructions are
fetched for the predicted branch. When the interlock is cleared, the branch processor
determines whether the prediction was correct based on the value of the CR bit. If the
prediction is correct, the branch is considered completed and instruction fetching continues.

MOTOROLA Chapter 2. Programming Model 2-35

If the prediction is incorrect, the fetched instructions are purged, and instruction fetching
continues along the alternate path. See Chapter 8, “Instruction Timing” in The
Programming Environments Manual for more information about how branches are
executed. ‘

2.3.4.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the processor ignores the two low-order bits of the
generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

* Branch relative

» Branch conditional to relative address

* Branch to absolute address

* Branch conditional to absolute address

* Branch conditional to link register

* Branch conditional to count register

2.3.4.4.2 Branch Instructions

Table 2-27 lists the branch instructions provided by the PowerPC processors. To simplify
assembly language programming, a set of simplified mnemonics and symbols is provided
for the most frequently used forms of branch conditional, compare, trap, rotate and shift,
and certain other instructions. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a list of simplified mnemonic examples.

Table 2-27. Branch Instructions

Name Mnemonic Operand Syntax
Branch b(ba bl bla) target_addr
Branch Conditional be (bca bcl bcela) BO,Bl,target_addr
Branch Conditional to Link Register belir (belrl) BO,BI
Branch Conditional to Count Register becetr (becetrl) BO,BI

2.3.4.4.3 Condition Register Logical Instructions _

Condition register logical instructions, shown in Table 2-28, and the Move Condition
Register Field (merf) instruction are also defined as flow control instructions, although they
are executed by the system register unit (SRU). Most instructions executed by the SRU are

2-36 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

completion-serialized to maintain system state; that is, the instruction is held for execution

in the SRU until all prior instructions issued have completed.

Table 2-28. Condition Register Logical Instructions

Name Mnemonic Operand Syntax

Condition Register AND crand crbD,crbA,crbB
Condition Register OR cror crbD,crbA,crbB
Condition Register XOR crxor crbD,crbA,crbB
Condition Register NAND crnand crbD,crbA,crbB
Condition Register NOR crnor crbD,crbA,crbB
Condition Register Equivalent creqv crbD,crbA,crbB
Condition Register AND with Complement | crandc crbD,crbA,crbB
Condition Register OR with Complement crorc crbD,crbA,crbB
Move Condition Register Field mcrf crfD,crfS

Note that if the LR update option is enabled for any of these instructions, these forms of the

instructions are invalid in the 603e.

2.3.4.5 Trap Instructions

The trap instructions shown in Table 2-29 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally.

Table 2-29. Trap Instructions

Name Mnemonic Operand Syntax
Trap Word Immediate twi TO,rA,SIMM
Trap Word tw TO,rA,rB

See Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
a complete set of simplified mnemonics.

2.3.4.6 Processor Control Instructions

Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs), and to read from
the time base register (TBU or TBL).

MOTOROLA Chapter 2. Programming Model 2-37

.

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-37 lists the instructions provided by the 603e for reading from or writing to the CR.

Table 2-30. Move to/from Condition Register Instructions

Name Mnemonic | Operand Syntax
Move to-Condition Register Fields mterf CRM,rS
Move to Condition Register from XER merxr crfD
Move from Condition Register mfcr D

2.3.4.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Instruction
and Data Cache Operation,” for additional information about these instructions and about
related aspects of memory synchronization.

The sync instruction delays execution of subsequent instructions until previous instructions
have completed to the point that they can no longer cause an exception and until all previous
memory accesses are performed globally; the sync operation is not broadcast onto the 603e
bus interface. Additionally all load and store cache/bus activities initiated by prior
instructions are completed. Touch load operations (dcbt and dcbtst) are required to
complete at least through address translation, but not required to complete on the bus.

The functions performed by the sync instruction normally take a significant amount of time
to complete; as a result, frequent use of this instruction may adversely affect performance.
In addition, the number of cycles required to complete a sync instruction depends on
system parameters and on the processor's state when the instruction is issued.

The proper paired use of the Iwarx and stwcx. instructions allows programmers to emulate
common semaphore operations such as “test and set,” “compare and swap,” “exchange
memory,” and “fetch and add.” Examples of these semaphore operations can be found in
Appendix E, “Synchronization Programming Examples,” in The Programming
Environments Manual. The lwarx instruction must be paired with an stwex. instruction
with the same effective address used for both instructions of the pair. Note that the

reservation granularity is 32 bytes.

The concept behind the use of the Iwarx and stwcx. instructions is that a processor may
load a semaphore from memory, compute a result based on the value of the semaphore, and
conditionally store it back to the same location (only if that location has not been modified
since it was first read), and determine if the store was successful. The conditional store is
performed based upon the existence of a reservation established by the preceding lwarx
instruction. If the reservation exists when the store is executed, the store is performed and
a bit is set in the CR. If the reservation does not exist when the store is executed, the target
memory location is not modified and a bit is cleared in the CR.

2-38 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

If the store was successful, the sequence of instructions from the read of the semaphore to
the store that updated the semaphore appear to have been executed atomically (that is, no
other processor or mechanism modified the semaphore location between the read and the
update), thus providing the equivalent of a real atomic operation. However, in reality, other
processors may have read from the location during this operation. In the 603e, the
reservations are made on behalf of aligned 32-byte sections of the memory address space.

The Iwarx and stwex. instructions require the EA to be aligned. Exception handling
software should not attempt to emulate a misaligned Iwarx or stwex. instruction, because
there is no correct way to define the address associated with the reservation.

In general, the Iwarx and stwex. instructions should be used only in system programs,
which can be invoked by application programs as needed.

At most, one reservation exists simultaneously on any processor. The address associated
with the reservation can be changed by a subsequent Iwarx instruction. The conditional
store is performed based upon the existence of a reservation established by the preceding
Iwarx regardless of whether the address generated by the lwarx matches that generated by
the stwex. instruction. A reservation held by the processor is cleared by one of the
following:

* Executing an stwcx. instruction to any address

» Attempt by some other device to modify a location in the reservation granularity
(32 bytes)

The Iwarx and stwcx. instructions in write-through access mode do not cause a DSI
exception.

Table 2-31 lists the UISA memory synchronization instructions for the 603e.

Table 2-31. Memory Synchronization Instructions—UISA

Name Mnemonic | Operand Syntax
Load Word and Reserve Indexed lwarx rD,rA,rB
Store Word Conditional Indexed stwex. rS,rA,rB
Synchronize sync —

2.3.5 PowerPC VEA Instructions

The PowerPC VEA describes the semantics of the memory model that can be assumed by
software processes, and includes descriptions of the cache model, cache-control
instructions, address aliasing, and other related issues.

2.3.5.1 Processor Control Instructions

In addition to the move to condition register instructions specified by the UISA, the VEA
defines the Move from Time Base (mftb) instruction for reading the contents of the time
base register. The mftb is a user-level instruction, it is shown in Table 2-32.

MOTOROLA Chapter 2. Programming Model 2-39

l

Simplified mnemonics are provided for the mftb instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. The
mftb instruction serves as both a basic and simplified mnemonic. Assemblers recognize an
mfth mnemonic with two operands as the basic form, and an mftb mnemonic with one
operand as the simplified form. Simplified mnemonics are also provided for Move from
Time Base Upper (mftbu), which is a variant of the mftb instruction rather than of mfspr.
The 603e ignores the extended opcode differences between mftb and mfspr by ignoring bit
25 of both instructions and treating them both identically. For more information refer to
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual.

Table 2-32. Move from Time Base Instruction

Name Mnemonic | Operand Syntax

Move from Time Base mftb rD, TBR

2.3.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Instruction
and Data Cache Operation,” for additional information about these instructions and about
related aspects of memory synchronization.

Implementation Notes—The following describes how the 603e handles memory
synchronization in the VEA.

+ The Instruction Synchronize (isync) instruction causes the 603e to discard all
prefetched instructions, wait for any preceding instructions to complete, and then
branch to the next sequential instruction (which has the effect of clearing the
pipeline behind the isynec instruction).

¢ The Enforce In-Order Execution of I/O (eieio) instruction is used to ensure memory
reordering of noncacheable memory access. Since the 603e does not reorder
noncacheable memory accesses, the eieio instruction is treated as a no-op.

Table 2-31 lists the VEA memory synchronization instructions for the 603e.

Table 2-33. Memory Synchronization Instructions—VEA

Name Mnemonic | Operand Syntax
Enforce In-Order Execution of I/O eieio —
Instruction Synchronize isync —

2-40 ' MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.3.5.3 Memory Control Instructions—VEA
Memory control instructions include the following types:

* Cache management instructions
* Segment register manipulation instructions
* Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA. .
See Section 2.3.6.3, “Memory Control Instructions—OEA,” for information about
supervisor-level cache, segment register manipulation, and translation lookaside buffer
management instructions.

The instructions listed in Table 2-34 provide user-level programs the ability to manage on-
chip caches when they exist.

As with other memory-related instructions, the effect of the cache management instructions
on memory are weakly ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, a sync instruction must be placed in the program following those instructions.

Note that when data address translation is disabled (MSR[DR] = 0), the Data Cache Block
Set to Zero (dcbz) instruction allocates a cache block in the cache and may not verify that
the physical address is valid. If a cache block is created for an invalid physical address, a
machine check condition may result when an attempt is made to write that cache block back
to memory. The cache block could be written back as a result of the execution of an
instruction that causes a cache miss and the invalid addressed cache block is the target for
replacement or a Data Cache Block Store (dcbst) instruction.

Note that any cache control instruction that generates an effective address that corresponds
to a direct-store segment (SR[T] = 1) is treated as a no-op.

Table 2-34 lists the cache instructions that are accessible to user-level programs.

Table 2-34. User-Level Cache Instructions

Name Mnemonic Operand Syntax
Data Cache Block Touch dcbt rA,rB
Data Cache Block Touch for Store dcbtst rA,rB
Data Cache Block Set to Zero dcbz - rA,rB
‘Data Cache Block Store dcbst rA,rB
Data Cache Block Flush dcbf rA,rB
Instruction Cache Block Invalidate icbi rA,rB

MOTOROLA Chapter 2. Programming Model 2-41

2.3.5.4 External Control Instructions

The external control instructions allow a user-level program to communicate with a special-
purpose device. The MMU translation of the EA is not used to select the special-purpose
device, as it is used in most instructions such as loads and stores. The EA is used instead as
an address operand that is passed to the device over the address bus. Four other signals (the
burst and size signals on the 60x bus) are used to select the device; these four signals output
the 4-bit resource ID (RID) field that is located in the EAR register. Executing these
instructions when MSR[DR] = 0 causes a programming error, and the physical address on
the bus is undefined. Executing these instructions to a direct-store segment causes a DSI
exception. The external control instructions are listed in Table 2-35.

Table 2-35. External Control Instructions

Name Mnemonic | Operand Syntax
External Control In Word Indexed eciwx rD,rA,rB
External Control Out Word Indexed ecowx rS,rA,rB

2.3.6 PowerPC OEA Instructions

The PowerPC OEA includes the structure of the memory management model, supervisor-
level registers, and the exception model.

2.3.6.1 System Linkage Instructions

This section describes the system linkage instructions (see Table 2-36). The sc instruction
is a user-level instruction that permits a user program to call on the system to perform a
service and causes the processor to take an exception. The Return from Interrupt (rfi)
instruction is a supervisor-level instruction that is useful for returning from an exception
handler.

Table 2-36; System Linkage Instructions

Name Mnemonic | Operand Syntax
System Call sc —
Return from Interrupt rfi —

2.3.6.2 Processor Control Instructions—OEA
Processor control instructions are used to read from and write to the condition register

(CR), machine state register (MSR), and special-purpose registers (SPRs), and to read from
the time base register (TBU or TBL).

2-42 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.3.6.2.1 Move to/from Machine State Register Instructions

Table 2-37 lists the instructions provided by the 603e for reading from or writing to the
MSR.

Table 2-37. Move to/from Machine State Register Instructions

Name Mnemonic | Operand Syntax
Move to Machine State Register mtmsr rS
Move from Machine State Register mfmsr rD

2.3.6.2.2 Move to/from Special-Purpose Register instructions

Simplified mnemonics are provided for the mtspr and mfspr instructions so they can be
coded with the SPR name as part of the mnemonic rather than as a numeric operand. See
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for

simplified mnemonic examples. The mtspr and mfspr instructions are shown in
Table 2-38.

Table 2-38. Move to/from Special-Purpose Register Instructions

Name Mnemonic | Operand Syntax
Move to Special-Purpose Register mtspr SPR,rS
Move from Special-Purpose Register mfspr rD,SPR

For mtspr and mfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into
two 5-bit halves that are reversed in the instruction encoding, with the high-order 5 bits
appearing in bits 16-20 of the instruction encoding and the low-order 5 bits in bits 11-15.

If the SPR field contains any value other than one of the values shown in Table 2-39, either
the program exception handler is invoked or the results are boundedly undefined.

Table 2-39. Implementation-specific SPR Encodings (mfspr)

SPR*
Register Name
Decimal spr[5-9] spr[0-4]
976 11110 10000 DMISS
977 11110 10001 DCMP
978 11110 10010 HASH1
979 11110 10011 HASH2
980 11110 10100 IMISS
981 11110 10101 ICMP

MOTOROLA Chapter 2. Programming Model 2-43

Table 2-39. implementation-specific SPR Encodings (mfspr) (Continued)

SPR*
Register Name
Decimal spr[5-9] spr{0-4]
982 11110 10110 RPA
1008 11111 10000 HIDO
1009 11111 10001 HID1
1010 11111 10010 IABR

* Note that the order of the two 5-bit halves of the SPR number is
reversed compared with actual instruction coding.

For mtspr and mfspr instructions, the SPR number coded in
assembly language does not appear directly as a 10-bit binary
numbet in the instruction. The number coded is split into two 5-bit
halves that are reversed in the instruction, with the high-order 5 bits
appearing in bits 16—20 of the instruction and the low-order 5 bits in
bits 11-15.

Implementation Note—The 603e ignores the extended opcode differences between mftb
and mfspr by ignoring TB[25] and treating both instructions identically.

2.3.6.3 Memory Control Instructions—OEA
This section describes memory control instructions, which include the following types:

e Cache management instructions
» Segment register manipulation instructions
* Translation lookaside buffer management instructions

2.3.6.3.1 Supervisor-Level Cache Management Instruction

Table 2-40 lists the only supervisor-level cache management instruction. See
Section 2.3.5.3, “Memory Control Instructions—VEA,” for a description of cache
instructions that provide user-level programs the ability to manage the on-chip caches. If
the effective address references a direct-store segment, the instruction is treated as a no-op.

When data translation is disabled, MSR[DR] = 0, the dcbz instruction establishes a block
in the cache and may not verify that the physical address is valid. If a block is created for
an invalid real address, a machine check exception may result when an attempt is made to
write that block back to memory. The block could be written back as the result of the
execution of an instruction that causes a cache miss and the invalid address block is the
target for replacement or as the result of a dcbst instruction.

Table 2-40. Supervisor-Level Cache Management Instruction

Name Mnemonic | Operand Syntax

Data Cache Block Invalidate dcbi rA,rB

2-44 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.3.6.3.2 Segment Register Manipuiation Instructions

The instructions listed in Table 2-41 provide access to the segment registers for the 603e.
These instructions operate completely independently of the MSR[IR] and MSR[DR] bit
settings. Refer to “Synchronization Requirements for Special Registers and TLBs” in
Chapter 2, “Register Set,” in The Programming Environments Manual for serialization
requirements and other recommended precautions to observe when manipulating the
segment registers.

Table 2-41. Segment Register Manipulation Instructions

Name Mnemonic | Operand Syntax
Move to Segment Register mtsr SR,rS
Move to Segment Register Indirect mtsrin rS,rB
Move from Segment Register mfsr rD,SR
Move from Segment Register Indirect mfsrin rD,rB

2.3.6.3.3 Translation Lookaside Buffer Management Instructions

The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTEs) used by PowerPC processors to locate the effective-to-physical address
mapping for a particular access. The PTEs reside in page tables in memory. As defined for
32-bit implementations by the PowerPC architecture, segment descriptors reside in 16 on-
chip segment registers.

Implementation Note—The 603e provides the ability to invalidate a TLB entry. The TLB
Invalidate Entry (tlbie) instruction invalidates the TLB entry indexed by the EA, and
operates on both the instruction and data TLBs simultaneously invalidating four TLB
entries (both sets in each TLB). The index corresponds to bits 15-19 of the EA. To
invalidate all entries within both TLBs, 32 tlbie instructions should be issued, incrementing
this field by one each time.

The 603e provides two implementation-specific instructions (tlbld and tIbli) that are used
by software tabie search operations following TLB misses to load TLB entries on-chip.

For more information on tlbld and tlbli refer to Section 2.3.8, “Implementation-Specific
Instructions.”

Note that the tlbia instruction is not implemented on the 603e.

MOTOROLA Chapter 2. Programming Model. 2-45

Refer to Chapter 5, “Memory Management” for more information about the TLB
operations for the 603e. Table 2-42 lists the TLB instructions.

Table 2-42. Translation Lookaside Buffer Management Instructions

Name Mnemonic Operand Syntax
T LB Invalidate Entry tibie B
TLB Synchronize tibsync —
Load Data TLB Entry tibld B
Load Instruction TLB Entry tibli B

Because the presence and exact semantics of the translation lookaside buffer management
instructions is implementation-dependent, system software should incorporate uses of the
instructions into subroutines to maximize compatibility with programs written for other
Pprocessors.

For more information on the PowerPC instruction set, refer to Chapter 4, “Addressing
Modes and Instruction Set Summary,” and Chapter 8, “Instruction Set,” in The
Programming Environments Manual.

2.3.7 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provided for
some of the most frequently used operations (such as no-op, load immediate, load address,
move register, and complement register). PowerPC compliant assemblers provide the
simplified mnemonics listed in “Recommended Simplified Mnemonics” in Appendix F,
“Simplified Mnemonics,” in The Programming Environments Manual and listed with
some of the instruction descriptions in this chapter. Programs written to be portable across
the various assemblers for the PowerPC architecture should not assume the existence of
mnemonics not described in this document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics,” in
The Programming Environments Manual.

2.3.8 Implementation-Specific Instructions

This section provides a detailed look at the two 603e implementation-specific
instructions—tlbld and tlbli.

2-46 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

tibld tibid

Load Data TLB Entry Integer Unit
tibld rB

_ | Reserved

B L 978

20 21 30 31

EA < (rB)
TLB entry created from DCMP and RPA
DTLB entry selected by EA[15-19] and SRR1{WAY] « created TLB entry

The EA is the contents of rB. The tlbld instruction loads the contents of the data PTE
compare (DCMP) and required physical address (RPA) registers into the first word of the
selected data TLB entry. The specific DTLB entry to be loaded is selected by the EA and
the SRRI1[WAY] bit.

The tlbld instruction should only be executed when address translation is disabled
(MSRJIR] = 0 and MSR[DR] = 0).

Note that it is possible to execute the tlbld instruction when address translation is enabled;
however, extreme caution should be used in doing so. If data address translation is set
(MSR[DR] = 1) tIbld must be preceded by a sync instruction and succeeded by a context
synchronizing instruction.

Note also that care should be taken to avoid modification of the instruction TLB entries that
translate current instruction prefetch addresses.

This is a supervisor-level instruction; it is also a 603e-specific instruction, and not part of
the PowerPC instruction set.

Other registers altered:

¢ None

MOTOROLA Chapter 2. Programming Model 2-47

tibli tibli

Load Instruction TLB Entry integer Unit

tibld rB

" | Reserved

B L 1010

0 56 10 11 15 16 20 21 30 31

EA « (rB)

TLB entry created from ICMP and RPA

ITLB entry selected by EA[15-19] and SRR1[WAY] « created TLB entry
The EA is the contents of rB. The tlbli instruction loads the contents of the instruction PTE
compare (ICMP) and required physical address (RPA) registers into the first word of the
selected instruction TLB entry. The specific ITLB entry to be loaded is selected by the EA
and the SRR1[WAYT] bit.

The tlbli instruction should only be executed when address translation is disabled
(MSR[IR] = 0 and MSR[DR] = 0).

Note that it is possible to execute the tlbld instruction when address translation is enabled;
however, extreme caution should be used in doing so. If instruction address translation is
set (MSR[IR] = 1), tIbli must be followed by a context synchronizing instruction such as
isync or rfi.

Note also that care should be taken to avoid modification of the instruction TLB entries that
translate current instruction prefetch addresses.

This is a supervisor-level instruction; it is also a 603e-specific instruction, and not part of
the PowerPC instruction set.

Other registers altered:

* None

2-48 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Chapter 3
Instruction and Data Cache Operation

The PowerPC 603e microprocessor provides two 16-Kbyte, four-way set associative caches
to allow the registers and execution units rapid access to instructions and data. Both the
instruction and data caches are tightly coupled to the 603e’s bus interface unit (BIU) to
allow efficient access to the system memory controller and other bus masters. The 603¢’s
load/store unit (LSU) is also directly coupled to the data cache to allow the efficient
movement of data to and from the general-purpose and floating-point registers. (The
floating-point register file is not supported on the EC603e microprocessor.)

Both the instruction and data caches have a block size of 32 bytes, and the data cache blocks
can be snooped, or cast-out when the cache block is reloaded. The data cache is designed
to adhere to a write-back policy, but the 603¢ allows control of cacheability, write-back
policy, and memory coherency at the page and block level. Both caches use a least recently
used (LRU) replacement policy. Burst fill operations to the caches result from cache misses,
or in the case of the data cache, cache block write-back operations to memory. Note that in
the PowerPC architecture, the term ‘cache block’, or simply ‘block’ when used in the
context of cache implementations, refers to the unit of memory at which coherency is
maintained. For the 603e, the block size is equivalent to the eight-word cache line. This
value may be different for other PowerPC implementations.

The data cache is configured as 128 sets of four blocks. Each block consists of 32 bytes,
two state bits, and an address tag. The two state bits implement the three-state MEI
(modified/exclusive/invalid) protocol, a coherent subset of the standard four-state MESI
protocol. Cache coherency is enforced by on-chip bus snooping logic. Since the 603¢’s data
cache tags are single-ported, a simultaneous load or store and snoop access represent a
resource contention. The snoop access is given first access to the tags. Load or store
operations can be performed to the cache on the clock cycle immediately following a snoop
access if the snoop misses; snoop-hits may block the data cache for two or more cycles,
depending on whether a copyback to main memory is required.

The instruction cache also consists of 128 sets of four blocks, and each block consists of 32
bytes, an address tag, and a valid bit. The instruction cache is only written as a result of a
block fill operation on a cache miss. In the PID7v-603e, the instruction cache is blocked
only until the critical load completes. The PID7v-603e supports instruction fetching from
other instruction cache lines following the forwarding of the critical first double word of a
cache line load operation. Successive instruction fetches from the cache line being loaded

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-1

are forwarded, and accesses to other instruction cache lines can proceed during the cache
line load operation. The instruction cache is not snooped, and cache coherency must be
maintained by software. A fast hardware invalidation capability is provided to support
cache maintenance.

The load/store unit provides the data transfer interface between the data cache and the
GPRs and the FPRs (not supported by the EC603e microprocessor). The load/store unit
provides all logic required to calculate effective addresses, handle data alignment to and
from the data cache, and provides sequencing for load and store string and multiple
operations. As shown in Figure 1-1, the caches provide a 64-bit interface to the instruction
fetcher and load/store unit. Write operations to the data cache can be performed on a byte,
half-word, word, or double-word basis.

The 603e’s bus interface unit receives requests for bus operations from the instruction and
data caches, and executes the operations according to the 603e bus protocol. The BIU
provides address queues, prioritization and bus control logic. The BIU also captures snoop
addresses for data cache, address queue, and memory reservation (lwarx and stwex.
instruction) operations. The BIU also contains a touch load address buffer used for address
compares during load or store operations. All the data for the corresponding address queues
(load and store data queues) is located in the data cache. The data queues are considered
temporary storage for the cache and not part of the BIU.

On a cache miss, the 603e’s cache blocks are loaded in four beats of 64 bits each when the
603e is configured with a 64-bit data bus; when the 603e is configured with a 32-bit bus,
cache block loads are performed with eight beats of 32 bits each. The burst load is
performed as critical double word first. The data cache is blocked to internal accesses until
the load completes; the instruction cache allows sequential fetching during a cache block
load. In the PID7v-603e, the critical double word is simultaneously written to the cache and
forwarded to the requesting unit, thus minimizing stalls due to load delays. Note that the
cache being filled cannot be accessed internally until the fill completes.

‘When address translation is enabled, the memory access is performed under the control of
the page table entry used to translate the effective address. Each page table entry contains
four mode control bits, W, I, M, and G, that specify the storage mode for all accesses
translated using that particular page table entry. The W (write-through) and I (caching-
inhibited) bits control how the processor executing the access uses its own cache. The M
(memory coherence) bit specifies whether the processor executing the access must use the
MEI (modified, exclusive, or invalid) cache coherence protocol to ensure all copies of the
addressed memory location are kept consistent. The G (guarded memory) bit controls
whether out-of-order data and instruction fetching is permitted.

The 603e maintains data cache coherency in hardware by coordinating activity between the
data cache, the memory system, and the bus interface logic. As bus operations are
performed on the bus by other bus masters, the 603e bus snooping logic monitors the
addresses that are referenced. These addresses are compared with the addresses resident in
the data cache. If there is a snoop hit, the 603e’s bus snooping logic responds to the bus

3-2 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

interface with the appropriate snoop status (for example, an ARTRY). Additional snoop
action may be forwarded to the cache as a result of a snoop hit in some cases (a cache push
of modified data, or a cache block invalidation).

The 603e supports a fully-coherent 4-Gbyte physical memory address space. Bus snooping
is used to drive the MEI three-state cache-coherency protocol that ensures the coherency of
global memory with respect to the processor’s cache. The MEI protocol is described in
Section 3.6.1, “MEI State Definitions.”

This chapter describes the organization of the 603e’s on-chip instruction and data caches,
the MEI cache coherency protocol, cache control instructions, various cache operations,
and the interaction between the cache, load/store unit, and the bus interface unit. PID7v-
603e specific information is noted where applicable.

3.1 Instruction Cache Organization and Control

The instruction fetcher accesses the instruction cache frequently in order to sustain the high
throughput provided by the six-entry instruction dispatch queue.

3.1.1 Instruction Cache Organization

The organization of the instruction cache is shown in Figure 3-1. Each cache block contains
eight contiguous words from memory that are loaded from an 8-word boundary (that is, bits
A27-A31 of the effective addresses are zero); thus, a cache block never crosses a page
boundary. Misaligned accesses across a page boundary can incur a performance penalty

Note that address bits A20-A26 provide an index to select a set. Bits A27-A31 select abyte
within a block. The tags consists of bits PAO-PA19. Address translation occurs in parallel,
such that higher-order bits (the tag bits in the cache) are physical. Note that the replacement
algorithm is strictly an LRU algorithm; that is, the least recently used block is filled with
new instructions on a cache miss.

) T T T T T T T
128 Sets hd . S
. T T vl T 1 T T
® []
I e T
, I T
T T T L T T T
Block 0| =~ Address Tag 0 [—1State Words 0-7
L] —t—t—t—t—t—
Block 1| Address Tag 1 State Words 0-7
1 1 1 1 E I 1
I T T I T I 1
Block 2| Address Tag 2 State Words 0-7
t H——r —+— t ;
Block 3| Address Tag 3 State Words 0-7
f«————— 8 Words/Block ————»|
Figure 3-1. Instruction Cache Organization
MOTOROLA Chapter 3. Instruction and Data Cache Operation - 3-3

3.1.2 Instruction Cache Fill Operations

The 603e’s instruction cache blocks are loaded in four beats of 64 bits each, with the critical
double word loaded first. The instruction cache allows sequential fetching during a cache
block load. On a cache miss, the critical and following double words read from memory are
simultaneously written to the instruction cache and forwarded to the dispatch queue, thus
minimizing stalls due to cache fill latency. There is no snooping of the instruction cache. In
the PID7v-603e, the critical double word is simultaneously written to the cache and
forwarded to the requesting unit, thus minimizing stalls due to load delays.

3.1.3 Instruction Cache Control

In addition to instruction cache control instructions, the 603e provides several control bits
in the HIDO register for the control of invalidating, disabling, and locking the instruction
cache. In addition, the WIMG bits in the page tables also affect the cacheability of pages
and whether or not the pages are considered guarded.

3.1.3.1 Instruction Cache Invalidation

While the 603e’s instruction cache is automatically invalidated during a power-on or hard
reset, assertion of the soft reset signal does not cause instruction cache invalidation.
Software may invalidate the contents of the instruction cache using the instruction cache
flash invalidate (ICFI) control bit in the HIDO register. Flash invalidation of the instruction
cache is accomplished by setting and clearing the ICFI bit with two consecutive move to
SPR operations to the HIDO register.

3.1.3.2 Instruction Cache Disabling

The instruction cache may be disabled through the use of the instruction cache enable (ICE)
control bit in the HIDO register. When the instruction cache is in the disabled state, the
cache tag state bits are ignored, and all accesses are propagated to the bus as single-beat
transactions. The ICE bit is cleared during a power-on reset, causing the instruction cache
to be disabled. The setting of the ICE bit must be preceded by an isync instruction to
prevent the cache from being enabled or disabled while an instruction access is in progress.

3.1.3.3 Instruction Cache Locking

The contents of instruction cache may be locked through the use of the ILOCK control bit
in the HIDO register. A locked instruction cache supplies instructions normally on a cache
hit, but cache misses are treated as cache-inhibited accesses. The cache inhibited (CI) signal
is asserted if a cache access misses into a locked cache. The setting of the ILOCK bit in
HIDO must be preceded by an isync instruction to prevent the instruction cache from being
locked during an instruction access.

3-4 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

3.2 Data Cache Organization and Control

The data cache supplies data to the GPRs and FPRs (not supported on the EC603e
microprocessor) by means of the load/store unit, and provides buffers for load and store bus
operations. The data cache also provides storage for the cache tags required for memory
coherency and performs the cache block replacement LRU function.

3.2.1 Data Cache Organization

The organization of the data cache is shown in Figure 3-2. Each cache block contains eight
contiguous words from memory that are loaded from an 8-word boundary (that is, bits
A27-A31 of the effective addresses are zero); thus, a cache block never crosses a page
boundary. Misaligned accesses across a page boundary can incur a performance penalty.

Note that address bits A20—A26 provide an index to select a set. Bits A27-A31 select a byte
within a block. The tags consists of bits PAO—PA19. Address translation occurs in parallel,
such that higher-order bits (the tag bits in the cache) are physical. Note that the replacement
algorithm is strictly an LRU algorithm; that is, the least recently used block is filled with
new data on a cache miss.

T L T 1 J T T
128 Sets b . L. , . ,
L4 T T L4 L LI T -1
[] []
f] I
L I 1 T T 1 I 1 I
Block 0| Address Tag 0 State Words 0-7
+—— t +— +—
Block 1| Address Tag 1 State Words 0-7
T I | T 1 T
Block 2| Address Tag 2 State Words 0—7
Block 3] Address Tag 3 State I Words 0—7 '

|<— & Words/Block ————>|

Figure 3-2. Data Cache Organization

3.2.2 Data Cache Fill Operations

The 603e’s cache blocks are loaded in four beats of 64 bits each when the 603e is
configured with a 64-bit data bus; when the 603e is configured with a 32-bit bus, cache
block loads are performed with eight beats of 32 bits each. The burst load is performed as
critical double word first. The data cache is blocked to internal accesses until the load
completes. In the PID7v-603e, the critical double word is simultaneously written to the
cache and forwarded to the requesting unit, thus minimizing stalls due to load delays.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-5

3.2.3 Data Cache Control

The 603e provides several means of data cache control through the use of the WIMG bits
in the page tables, control bits in the HIDO register, and user- and supervisor-level cache
control instructions. While memory page level cache control is provided by the WIMG bits,
the on-chip data cache can be invalidated, disabled, locked, or broadcast by the control bits
in the HIDO register described in this section. (Note that, user- and supervisor-level are
referred to as problem and privileged state, respectively, in the architecture specification.)

3.2.3.1 Data Cache Invalidation

While the data cache is automatically invalidated when the 603e is powered up and during
a hard reset, assertion of the soft reset signal does not cause data cache invalidation.
Software may invalidate the contents of the data cache using the data cache flash invalidate
(DCFI) control bit in the HIDO register. Flash invalidation of the data cache is accomplished
by setting and clearing the DCFI bit in two consecutive store operations.

3.2.3.2 Data Cache Disabling

The data cache may be disabled through the use of the data cache enable (DCE) control bit
in the HIDO register. When the data cache is in the disabled state, the cache tag state bits
are ignored, and all accesses are propagated to the bus as single-beat transactions. The DCE
bit is cleared on power-up, causing the data cache to be disabled. The setting of the DCE
bit must be preceded by a sync instruction to prevent the cache from being enabled or
disabled in the middle of a data access.

Note that while snooping is not performed when the data cache is disabled, cache
operations (caused by the dcbz, dcbf, dcbst, and dcbi instructions) are not affected by
disabling the cache, causing potential coherency errors. An example of this would be a dcbf
instruction that hits a modified cache block in the disabled cache, causing a copyback to
memory of potentially stale data.

Regardless of the state of HIDO[DCE], load and store operations are assumed to be weakly
ordered. Thus the LSU can perform load operations that occur later in the program ahead
of store operations, even when the data cache is disabled. However, strongly ordered load
and store operations can be enforced through the setting of the I bit (of the page WIMG bits)
when address translation is enabled. Note that when address translation is disabled, the
default WIMG bits cause the I bit to be cleared (accesses are assumed to be cacheable), and
thus the accesses are weakly ordered. Refer to Section 3.5.2, “Caching-Inhibited Attribute
(I),” for a description of the operation of the I bit and Section 5.2, “Real Addressing Mode,”
for a description of the WIMG bits when address translation is disabled.

3.2.3.3 Data Cache Locking

The contents of the data cache may be locked through the use of the DLOCK control bit in
the HIDO register. A locked data cache supplies data normally on a cache hit, but cache
misses are treated as cache-inhibited accesses. The cache inhibited (CI) signal is asserted if

3-6 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

a cache access misses into a locked cache. The setting of the DLOCK bit in HIDO must be
preceded by a sync instruction to prevent the data cache from being locked during a data
access.

3.2.3.4 Data Cache Operations and Address Broadcasts

The execution of a dcbz instruction results in an address-only broadcast on the bus.
Additionally, if the HIDO[ABE] bit is set on a PID7v-603e processor, the execution of the
dcbf, dcbi, and dcbst instructions will also cause an address-only broadcast. The ability of
the PID7v-603e to optionally perform address-only broadcasts when executing the dcbi,
dcbf, and the dcbst instructions allows the coherency management of an external copyback
L2 cache. Note that these cache control instruction broadcasts are not snooped by the
PID7v-603e.

3.2.4 Data Cache Touch Load Support

Touch load operations allow an instruction stream to prefetch data from memory prior to a
cache miss. The 603e supports touch load operations through a temporary cache block
buffer located between the BIU and the data cache. The cache block buffer is essentially a
floating cache block that is loaded by the BIU on a touch load operation, and is then read
by a load instruction that requests that data. After a touch load completes on the bus, the
BIU continues to compare the touch load address with subsequent load requests from the
data cache. If the load address matches the touch load address in the BIU, the data is
forwarded to the data cache from the touch load buffer, the read from memory is canceled,
and the touch load address buffer is invalidated.

To avoid the storage of stale data in the touch load buffer, touch load requests that are
mapped as write-through or caching-inhibited by the MMU are treated as no-ops by the
BIU. Also, subsequent load instructions after a touch load that are mapped as write-through
or caching-inhibited do not hit in the touch load buffer, and cause the touch load buffer to
be invalidated on a matching address.

While the 603e provides only a single cache block buffer, other PowerPC microprocessor
implementations may provide buffering for more than one cache block. Programs written
for other implementations may issue several dcbt or dcbtst instructions sequentially,
reducing the performance if executed on the 603e. To improve performance in these
situations, the NOOPTI bit (bit 31) in the HIDO register may be set. This causes the dcbt
and dcbtst instructions to be treated as no-ops, cause no bus activity, and incur only one
processor clock cycle of execution latency. The default state of the NOOPTI bit is cleared
after a power-on reset operation, enabling the use of the debt and dcbtst instructions.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-7

3.3 Basic Data Cache Operations

This section describes the three types of operations that can occur to the data cache, and
how these operations are implemented in the 603e.

3.3.1 Data Cache Fill

A cache block is filled after a read miss or write miss (read-with-intent-to-modify) occurs
in the cache. The cache block that corresponds to the missed address is updated by a burst
transfer of the data from system memory. Note that if a read miss occurs in a system with
multiple bus masters, and the data is modified in another cache, the modified data is first
written to external memory before the cache fill occurs.

3.3.2 Data Cache Cast-Out Operation

The 603e uses an LRU replacement algorithm to determine which of the four possible
cache locations should be used for a cache update on a cache miss. Adding a new block to
the cache causes any modified data associated with the least recently used element to be
written back, or cast out, to system memory to maintain memory coherence.

3.3.3 Cache Block Push Operation

When a cache block in the 603e is snooped and hit by another bus master and the data is
modified, the cache block must be written to memory and made available to the snooping
device. The cache block that is hit is said to be pushed out onto the bus. The 603¢e supports
two kinds of push operations—normal push operations and enveloped high-priority push
operations, which are described in Section 3.6.9, “Enveloped High-Priority Cache Block
Push Operation.”

3.4 Data Cache Transactions on Bus

The 603e transfers data to and from the data cache in single-beat transactions of two words,
or in four-beat transactions of eight words which fill a cache block.

3.4.1 Single-Beat Transactions

Single-beat bus transactions can transfer from one to eight bytes to or from the 603e.
Single-beat transactions can be caused by cache write-through accesses, caching-inhibited
accesses (I bit of the WIMG bits for the page is set), or accesses when the cache is disabled
(HIDO[DCE] bit is cleared), and can be misaligned.

3.4.2 Burst Transactions

Burst transactions on the 603e always transfer eight words of data at a time, and are aligned
to a double-word boundary. The 603e transfer burst (TBST) output signal indicates to the
system whether the current transaction is a single-beat transaction or four-beat burst
transfer. Burst transactions have an assumed address order. For cacheable read operations

3-8 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

or cacheable, non-write-through write operations that miss the cache, the 603e presents the
double-word aligned address associated with the load or store instruction that initiated the
transaction.

As shown in Figure 3-3, this quad word contains the address of the load or store that missed
the cache. This minimizes latency by allowing the critical code or data to be forwarded to
the processor before the rest of the block is filled. For all other burst operations, however,
the entire block is transferred in order (oct-word aligned). Critical-double-word-first
fetching on a cache miss applies to both the data and instruction cache.

3.4.3 Access to Direct-Store Segments

The 603e does not provide support for access to direct-store segments. Operations
attempting to access a direct-store segment will invoke a DSI exception. For additional
information about DSI exceptions, refer to Section 4.5.3, "DSI Exception (0x00300).”

603e Cache Address
Bits (27...28)
00 01 10 11
A B C D

If the address requested is in double word A, the address placed on the bus is that of double-
word A, and the four data beats are ordered in the following manner:

Beat
0 1 2 3

L s | c [° |

If the address requested is in double word C, the address placed on the bus will be that of
double-word C, and the four data beats are ordered in the following manner:

Beat
0 1 2 3

1 o | S

Figure 3-3. Double-Word Address Ordering—Critical Double Word First

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-9

3.5 Memory Management/Cache Access Mode Bits—
W,I,M,and G

Some memory characteristics can be set on either a block or page basis by using the WIMG
bits in the BAT registers or page table entry (PTE) respectively. The WIMG attributes
control the following functionality:

¢ Write-through (W bit)

* Caching-inhibited (I bit)

* Memory coherency (M bit)
+ Guarded memory (G bit)

These bits allow both uniprocessor and multiprocessor system designs to exploit numerous
system-level performance optimizations.

Careless specification and use of these bits may create situations where coherency
paradoxes are observed by the processor. In particular, this can happen when the state of
these bits is changed without appropriate precautions being taken (for example, when
flushing the pages that correspond to the changed bits from the caches of all processors in
the system is required, or when the address translations of aliased physical addresses
(referred to as real addresses in the architecture specification) specify different values for
any of the WIM bits). The 603e considers either of these cases to be a programming error
which may compromise the coherency of memory. These paradoxes can occur within a
single processor or across several devices, as described in Section 3.6.4.1, “Coherency in
Single-Processor Systems.”

The WIMG attributes are programmed by the operating system for each page and block.
The W and I attributes control how the processor performing an access uses its own cache.
The M attribute ensures that coherency is maintained for all copies of the addressed
memory location. The G attribute prevents out-of-order loading and prefetching from the
addressed memory location.

When an access requires coherency, the processor performing the access must inform the
coherency mechanisms throughout the system that the access requires memory coherency.
The M attribute determines the kind of access performed on the bus (global or local).

The WIMG attributes occupy four bits in the BAT registers for block address translation
and in the PTEs for page address translation. The WIMG bits are programmed as follows:

» The operating system uses the mtspr instruction to program the WIMG bits in the
BAT registers for block address translation. The IBAT register pairs do not have a
G bit and all accesses that use the IBAT register pairs are considered not guarded.

» The operating system writes the WIMG bits for each page into the PTEs in system
memory as it sets up the page tables.

3-10 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Note that for accesses performed with direct address translation (MSR[IR] = 0 or
MSR[DR] = 0 for instruction or data access, respectively), the WIMG bits are automatically
generated as 0b0011 (the data is write-back, caching is enabled, memory coherency is
enforced, and memory is guarded).

3.5.1 Write-Through Attribute (W)

When an access is designated as write-through (W = 1), if the data is in the cache, a store
operation updates the cached copy of the data. In addition, the update is written to the
external memory location (as described below).

While the PowerPC architecture permits multiple store instructions to be combined for
write-through accesses except when the store instructions are separated by a sync or eieio
instruction, the 603e does not implement this “combined store” capability. Note that a store
operation that uses the write-through attribute may cause any part of valid data in the cache
to be written back to main memory.

The definition of the external memory location to be written to in addition to the on-chip
cache depends on the implementation of the memory system but can be illustrated by the
following examples:

* RAM-—The store is sent to the RAM controller to be written into the target RAM.

* /O device—The store is sent to the memory-mapped 1/O control hardware to be
written to the target register or memory location. '

In systems with multilevel caching, the store must be written to at least a depth in the
memory hierarchy that is seen by all processors and devices.

Accesses that correspond to W = 0 are considered write-back. For this case, although the
store operation is performed to the cache, it is only made to external memory when a copy-
back operation is required. Use of the write-back mode (W = 0) can improve overall
performance for areas of the memory space that are seldom referenced by other masters in
the system.

3.5.2 Caching-Inhibited Attribute ()

If I = 1, the memory access is completed by referencing the location in main memory,
bypassing the on-chip cache. During the access, the addressed location is not loaded into
the cache nor is the location allocated in the cache. It is considered a programming error if
a copy of the target location of an access to caching-inhibited memory is resident in the
cache. Software must ensure that the location has not been previously loaded into the cache,
or, if it has, that it has been flushed from the cache.

The PowerPC architecture permits data accesses from more than one instruction to be
combined for cache-inhibited operations, except when the accesses are separated by a sync
instruction, or by an eieio instruction when the page or block is also designated as guarded.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-11

This “combined access” capability is not implemented on the 603e. Note that the eieio is
treated as a no-op by the 603e.

The caching-inhibited (I) bit in the 603e controls whether load and store operations are
strongly or weakly ordered. If an I/O device requires load and store accesses to occur in
program order, then the I bit for the page must be set.

3.56.3 Memory Coherency Attribute (M)

This attribute is provided to allow improved performance in systems where hardware-
enforced coherency is relatively slow, and software is able to enforce the required
coherency. When M = 0, the processor does not enforce data coherency. When M = 1, the
processor enforces data coherency and the corresponding access is considered to be a
global access.

When the M attribute is set, and the access is performed, the global signal is asserted to
indicate that the access is global. Snooping devices affected by the access must then
respond to this global access if their data is modified by asserting ARTRY, and updating the
memory location.

Because instruction memory does not have to be consistent with data memory, the 603e
ignores the M attribute for instruction accesses.

3.5.4 Guarded Attribute (G)

When the guarded bit is set, the memory area (block or page) is designated as guarded,
meaning that the processor will perform out-of-order accesses to this area of memory, only
as follows:

¢ Out-of-order load operations from guarded memory areas are performed only if the
corresponding data is resident in the cache.

* The processor prefetches from guarded areas, but only when required, and only
within the memory boundary dictated by the cache block. That is, if an instruction
is certain to be required for execution by the program, it is fetched and the remaining
instructions in the block may be prefetched, even if the area is guarded.

This setting can be used to protect certain memory areas from read accesses made by the
processor that are not dictated directly by the program. If there are areas of memory that are
not fully populated (in other words, there are holes in the memory map within this area),
this setting can protect the system from undesired accesses caused by out-of-order load
operations or instruction prefetches that could lead to the generation of the machine check
exception. Also, the guarded bit can be used to prevent out-of-order load operations or
prefetches from occurring to certain peripheral devices that produce undesired results when
accessed in this way.

3-12 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

3.5.5 W, |, and M Bit Combinations

Table 3-1 summarizes the six combinations of the WIM bits. Note that either a zero or one
setting for the G bit is allowed for each of these WIM bit combinations.

Table 3-1. Combinations of W, I, and M Bits

WIM Setting Meaning

000 Data may be cached.
Loads or stores whose target hits in the cache use that entry in the cache.
Memory coherency is not enforced by hardware.

001 Data may be cached.
Loads or stores whose target hits in the cache use that entry in the cache.
Memory coherency is enforced by hardware.

010 Caching is inhibited.)
The access is performed to external memory, completely bypassing the cache.
Memory coherency is not enforced by hardware.

011 Caching is inhibited.

The access is performed to external memory, completely bypassing the cache. -

Memory coherency must be enforced by external hardware (processor provides hardware
indication that access is global).

100 Data may be cached.

Load operations whose target hits in the cache use that entry in the cache.

Stores are written to external memory. The target location of the store may be cached and is
updated on a hit.

Memory coherency is not enforced by hardware.

101 Data may be cached.

Load operations whose target hits in the cache use that entry in the cache.

Stores are written to external memory. The target location of the store may be cached and is
updated on a hit.

Memory coherency is enforced by hardware.

3.5.5.1 Out-of-Order Execution and Guarded Memory

Out-of-order execution occurs when the 603e performs operations in advance in case the
result is needed. Typically, these operations are performed by otherwise idle resources; thus
if a result is not required, it is ignored and the out-of-order operation 1ncurs no time penalty
(typically).

Supervisor-level programs designate memory as guarded on a block or page level. Memory
is designated as guarded if it may not be “well-behaved” with respect to out-of-order
operations.

For example, the memory area that contains a memory-mapped I/O device may be
designated as guarded if an out-of-order load or instruction fetch performed to such a
device might cause the device to perform unexpected or incorrect operations. Another
example of memory that should be designated as guarded is the area that corresponds to the
device that resides at the highest implemented physical address (as it has no successor and
out-of-order sequential operations such as instruction prefetching may result in a machine

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-13

i

check exception). In addition, areas that contain holes in the physical memory space may
be designated as guarded.

3.5.5.2 Effects of Out-of-Order Data Accesses

Most data operations may be performed out-of-order, as long as the machine appears to
follow a simple sequential model. However, the following out-of-order operations do not

occur:

* Out-of-order loading from guarded memory (G = 1) does not occur. However, when
a load or store operation is required by the program, the entire cache block(s)
containing the referenced data may be loaded into the cache.

* Out-of-order store operations that alter the state of the target location do not occur.

» No errors except machine check exceptions are reported due to the out-of-order
execution of an instruction until it is known that execution of the instruction is
required.

Machine check exceptions resulting solely from out-of-order execution (from nonguarded
memory) may be reported. When an out-of-order instruction's result is abandoned, only one
side effect (other than a possible machine check) may occur—the referenced bit (R) in the
corresponding page table entry (and TLB entry) can be set due to an out-of-order load
operation. See Chapter 4, “Exceptions,” for more information on the machine check
exception.

Thus an out-of-order load or store instruction will not access guarded memory unless one
of the following conditions exist:

* The target memory item is resident in an on-chip cache. In this case, the location
may be accessed from the cache or main memory.

e The target memory item is cacheable (I=0) and it is guaranteed that the load or store
is in the execution path (assuming there are no intervening exceptions). In this case,
the entire cache block containing the target may be loaded into the cache.

* The target memory is cache-inhibited (I = 1), the load or store instruction is in the
execution path, and it is guaranteed that no prior instructions can cause an exception.

3.5.5.3 Effects of Qut-of-Order Instruction Fetches

To avoid instruction fetch delay, the processor typically fetches instructions ahead of those
currently being executed. Such instruction prefetching is said to be out-of-order in that
prefetched instructions may not be executed due to intervening branches or exceptions.

During instruction prefetching, no errors except machine check exceptions are reported due
to the out-of-order fetching of an instruction until it is known that execution of the
instruction is required.

Machine check exceptions resulting solely from out-of-order execution (from nonguarded
memory) may be reported. When an out-of-order instruction's result is abandoned, only one
side effect (other than a possible machine check) may occur—the referenced bit (R) in the

3-14 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

corresponding page table entry (and TLB entry) can be set due to an out-of-order load
operation. See Chapter 4, “Exceptions,” for more information on the machine check
exception.

Instruction fetching from guarded memory is not permitted.

3.6 Cache Coherency—MEI Protocol

The primary objective of a coherent memory system is to provide the same image of
memory to all devices using the system. Coherency allows synchronization and cooperative
use of shared resources. Otherwise, multiple copies of a memory location, some containing
stale values, could exist in a system resulting in errors when the stale values are used. Each
potential bus master must follow rules for managing the state of its cache.

The 603e cache coherency protocol is a coherent subset of the standard MESI four-state
cache protocol that omits the shared state. Since data cannot be shared, the 603e signals all
cache block fills as if they were write misses (read-with-intent-to-modify), which flushes
the corresponding copies of the data in all caches external to the 603e prior to the 603¢’s
cache block fill operation. Following the cache block load, the 603e¢ is the exclusive owner
of the data and may write to it without a bus broadcast transaction.

To maintain this coherency, all global reads observed on the bus by the 603e are snooped
as if they were writes, causing the 603e to write a modified cache block back to memory
and invalidate the cache block, or simply invalidate the cache block if it is unmodified. The
exception to this rule occurs when a snooped transaction is a caching-inhibited read (either
burst or single-beat, where TT[0—4] = X1010; see Table 7-1 for clarification), in which case
the 603e does not invalidate the snooped cache block. If the cache block is modified, the
block is written back to memory, and the cache block is marked exclusive unmodified. If
the cache block is marked exclusive unmodified when snooped, no bus action is taken, and
the cache block remains in the exclusive unmodified state. This treatment of caching-
inhibited reads decreases the possibility of data thrashing by allowing noncaching devices
to read data without invalidating the entry from the 603e’s data cache.

3.6.1 MEI State Definitions

The 603e’s data cache characterizes each 32-byte block it contains as being in one of three
METI states. Addresses presented to the cache are indexed into the cache directory with bits
A20-A26, and the upper-order 20 bits from the physical address translation (PA0-PA19)
are compared against the indexed cache directory tags. If neither of the indexed tags
matches, the result is a cache miss. If a tag matches, a cache hit occurred and the directory
indicates the state of the cache block through two state bits kept with the tag. The three
possible states for a cache block in the cache are the modified state (M), the exclusive state
(E), and the invalid state (I). The three MEI states are defined in Table 3-2.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-15

Table 3-2. MEI State Definitions

MEI State Definition

Modified (M) | The addressed cache block is valid in the cache and only in the cache. The cache block is modified

with respect to system memory—that is, the modified data in the cache block has not been written
back to memory.

Exclusive (E) } The addressed block is in this cache only. The data in this cache block is consistent with system

memory.

Invalid (1) This state indicates that the addressed cache block is not resident in the cache.

3.6.2 MEI State Diagram

The 603e provides dedicated hardware to provide memory coherency by snooping bus
transactions. The address retry capability of the 603e enforces the MEI protocol, as shown
in Figure 3-4. Figure 3-4 assumes that the WIM bits for the page or block are set to 001;
that is, write-back, caching-not-inhibited, and memory coherency enforced.

Section 3.10, “MEI State Transactions,” provides a detailed list of MEI transitions for
various operations and WIM bit settings.

W

SH/CIR
BUS TRANSACTIONS
SH = Snoop Hit
RH = Read Hit
RM = Read Miss
WH = Write Hit

WM = Write Miss
SH/CRW = Snoop Hit, Cacheable Read/Write
SH/CIR = Snoop Hit, Cache Inhibited Read

Figure 3-4. MEI Cache Coherency Protocol—State Diagram (WIM = 001)

3-16 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

3.6.3 MEI Hardware Considerations

While the 603e provides the hardware required to monitor bus traffic for coherency, the
603e data cache tags are single ported, and a simultaneous load or store and snoop access
represent a resource conflict. In general, the snoop access has highest priority and is given
first access to the tags. The load or store access will then occur on the clock following the
snoop. The snoop is not given priority into the tags when the snoop coincides with a tag
write (for example, validation after a cache block load). In these situations, the snoop is
retried and must re-arbitrate before the lookup is possible.

Occasionally, cache snoops cannot be serviced and must be retried. These retries occur if
the cache is busy with a burst read or write when the snoop operation takes place.

Note that it is possible for a snoop to hit a modified cache block that is already in the process
of being written to the copyback buffer for replacement purposes. If this happens, the 603e
retries the snoop, and raises the priority of the cast-out operation to allow it to go to the bus
before the cache block fill.

The global (GBL) signal, asserted as part of the address attribute field during a bus
transaction, enables the snooping hardware of the 603e. Address bus masters assert GBL to
indicate that the current transaction is a global access (that is, an access to memory shared
by more than one device). If GBL is not asserted for the transaction, that transaction is not
snooped by the 603e. Note that the GBL signal is not asserted for instruction fetches, and
that GBL is asserted for all data read or write operations when using direct address
translation. (Note that direct address translation is referred to as the real addressing mode,
not the direct-store segment, in the architecture specification.)

Normally, GBL reflects the M-bit value specified for the memory reference in the
corresponding translation descriptor(s). Care must be taken to minimize the number of
pages marked as global, because the retry protocol enforces coherency and can use
considerable bus bandwidth if much data is shared. Therefore, available bus bandwidth can
decrease as more traffic is marked global.

The 603e snoops a transaction if the transfer start (TS) and GBL signals are asserted
together in the same bus clock (this is a qualified snooping condition). No snoop update to
the 603e cache occurs if the snooped transaction is not marked global. Also, because cache
block cast-outs and snoop pushes do not require snooping, the GBL signal is not asserted
for these operations.

When the 603e detects a qualified snoop condition, the address associated with the TS
signal is compared with the cache tags. Snooping finishes if no hit is detected. If, however,
the address hits in the cache, the 603e reacts according to the MEI protocol shown in
Figure 3-4.

To facilitate external monitoring of the internal cache tags, the cache set entry signals
(CSEJ[0-1]) represent in binary the cache set being replaced on read operations (including
read-with-intent-to-modify operations). The CSE[0-1] signals do not apply for write

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-17

'

operations to memory, or during non-cacheable or touch load operations. Note that these
signals are valid only for 603e burst operations. Table 3-3 shows the CSE[0-1] (cache set
entry) encodings. ‘

Table 3-3. CSE[0-1] Signal Encoding

CSE[0-1] Cache Set Element
00 Set0
01 Set 1
10 Set2
1 Set 3

3.6.4 Coherency Precautions

The 603e supports a three-state coherency protocol that supports the modified, exclusive,
and invalid (MEI) cache states. This protocol is a compatible subset of the MESI four-state
protocol and operates coherently in systems that contain four-state caches. In addition, the
603e does not broadcast cache operations caused by cache instructions. They are intended
for the management of the local cache but not for other caches in the system.

3.6.4.1 Coherency in Single-Processor Systems
The following situations concerning coherency can be encountered within a single-
processor system:

* Load or store to a caching-inhibited page (WIM = 0bX1X) and a cache hit occurs

Caching is inhibited for this page (I = 1)—Load or store operations to a caching-
inhibited page that hit in the cache cause boundedly undefined results.

¢ Store to a page marked write-through (WIM = 0b10X) and a cache read hit to a
modified cache block

This page is marked as write-through (W = 1)—The 603e pushes the modified cache
block to memory and the block remains marked modified (M).

Note that when WIM bits are changed, it is critical that the cache contents should reflect the
new WIM bit settings. For example, if a block or page that had allowed caching becomes
caching-inhibited, software should ensure that the appropriate cache blocks are flushed to
memory and invalidated.

3.6.5 Load and Store Coherency Summary

Table 3-4 provides a summary of memory coherency actions performed by the 603e on load
operations. Noncacheable cases are not part of this table.

3-18 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 3-4. Memory Coherency Actions on Load Operations

Cache State | Bus Operation ARTRY Action
M None Don't care Read from cache
E None Don't care Read from cache
| Read Negated Load data and mark E
[Read Asserted Retry read operation

Table 3-5 provides an overview of memory coherency actions on store operations. This
table does not include noncacheable or write-through cases. The read-with-intent-to-
modify (RWITM) examples involve selecting a replacement class and casting-out modified
data that may have resided in that replacement class.

Table 3-5. Memory Coherency Actions on Store Operations

Cache State | Bus Operation ARTRY Action
M None Don't care Modify cache
E None Don't care Modify cache, mark M
| RWITM Negated Load data, modify it, mark M
1 RWITM Asserted Retry the RWITM

3.6.6 Atomic Memory References

The Load Word and Reserve Indexed (Iwarx) and Store Word Conditional Indexed (stwcex.)
instructions provide an atomic update function for a single, aligned word of memory. While
an Iwarx instruction will normally be paired with an stwcx. instruction with the same
effective address, an stwcx. instruction to any address will cancel the reservation. For
detailed information on these instructions, refer to Chapter 2, “Programming Model,” in
this book and Chapter 8, “Instruction Set,” in The Programming Environments Manual.

3.6.7 Cache Reaction to Specific Bus Operations

There are several bus transaction types defined for the 603e bus. The 603e must snoop these
transactions and perform the appropriate action to maintain memory coherency as shown
in Table 3-6. A processor may assert ARTRY for any bus transaction due to internal
conflicts that prevent the appropriate snooping. The transactions in Table 3-6 correspond to
the transfer type signals TT[0—4], which are described in Section 7.2.4.1, “Transfer Type
(TT[0-4]).”

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-19

Table 3-6. Response to Bus Transactions

Snooped Transaction

603e Response

Write-with-flush-atomic

» Clean block No action is taken.
Flush block No action is taken.
Write-with-flush Write-with-flush and write-with-flush-atomic operations occur after the processor issues

a store or stwex. instruction, respectively.

« If the addressed block is in the exclusive state, the address snoop forces the state of
the addressed block to invalid.

« If the addressed block is in the modified state, the address snoop causes ARTRY to
be asserted and initiates a push of the modified block out of the cache and changes
the state of the block to invalid.

* The execution of an stwex. instruction cancels the reservation associated with any
address.

Kill block

The kill block operation is an address-only bus transaction initiated when a dcbz
instruction is executed; when snooped by the 603e, the addressed cache block is
invalidated if in the E state, or flushed to memory and invalidated if in the M state, and
any associated reservation is canceled.

Write-with-kill

In a write-with-kill operation, the processor snoops the cache for a copy of the
addressed block. If one is found, an additional snoop action is initiated internally and the
cache block is forced to the | state, killing modified data that may have been in the block.
Any reservation associated with the block is also canceled.

Read
Read-atomic

The read operation is used by most single-beat and burst read operations on the bus. All
burst reads observed on the bus are snooped as if they were writes, causing the
addressed cache block to be flushed. A read on the bus with the GBL signal asserted
causes the following responses:

« If the addressed block in the cache is invalid, the 603e takes no action.

« If the addressed block in the cache is in the exclusive state, the block is invalidated.

« If the addressed block in the cache is in the modified state, the block is flushed to
memory and the block is invalidated.

« If the snooped transaction is a caching-inhibited read, and the block in the cache is in
the exclusive state, the snoop causes no bus activity and the block remains in the
exclusive state. If the block is in the cache in the modified state, the 603e initiates a
push of the modified block out to memory and marks the cache block as exclusive.

Read atomic operations appear on the bus in response to lwarx instructions and
generate the same snooping responses as read operations.

Read-with-intént-to-
modify (RWITM)
RWITM-atomic

A RWITM operation is issued to acquire exclusive use of a memory location for the

purpose of modifying it.

 |If the addressed block is invalid, the 603e takes no action.

¢ If the addressed block in the cache is in the exclusive state, the 603e initiates an
additional snoop action to change the state of the cache block to invalid.

« If the addressed block in the cache is in the modified state, the block is flushed to
memory and the block is invalidated.

The RWITM atomic operations appear on the bus in response to stwex. instructions

and are snooped like RWITM instructions.

sync

No action is taken.

TLB invalidate

“No action is taken.

3-20

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

3.6.8 Operations Causing ARTRY Assertion
The following scenarios cause the 603e to assert the ARTRY signal:
¢ Snoop hits to a block in the M state (flush or clean)

This case is a normal snoop hit and will result in ARTRY being asserted if the
snooped transaction was a “flush” or “clean” request. If the snooped transaction was
a “kill” request, ARTRY will not be asserted.

 Snoop attempt during the last TA of a cache line fill

In no-DRTRY mode, during the cycle that the last TA is asserted to the 603¢ on a
cache line fill, the tag is being written to its new state by the 603e and is not
accessible. This will result in a collision being signaled by asserting ARTRY. With
DRTRY enabled, the cache tags are inaccessible to a snoop operation one cycle after
the last TA.

* Snoop hit after the first TA of a burst load operation

After the first TA of a burst load operation, the data tags are committed to being
written; snoop operations cannot be serviced until the load completes, thereby
causing the assertion of ARTRY.

* Snoop hits to line in the cast-out buffer

The 603e¢'s cast-out buffer is kept coherent with main memory, and snoop operations
that hit in the cast-out buffer will cause the assertion of ARTRY.

* Snoop attempt during cycles that dcbz instruction or load or store operation is
updating the tag

During the execution of a debz instruction or during a load or store operation that
requires a cache line cast-out, the cache tags will be inaccessible during the first and
last cycle of the operation.

* Snoop attempt during the cycle that a debf or dcbst instruction is updating the tag

If the EA of a dcbf or dcbst instruction hits in the cache, the tag will be changed to
its new state. During that clock, the tag is not accessible and snoop transactions
during that cycle will cause the assertion of ARTRY.

3.6.9 Enveloped High-Priority Cache Block Push Operation

In cases where the 603e has completed the address tenure of a read operation, and then
detects a snoop hit to a modified cache block by another bus master, the 603e provides a
high-priority push operation. If the address snooped is the same as the address of the data
to be returned by the read operation, ARTRY is asserted one or more times until the data
tenure of the read operation is completed. The cache block push transaction can be
enveloped within the address and data tenures of a read operation. This feature prevents
deadlocks in system organizations that support multiple memory-mapped buses.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-21

More specifically, the 603e internally detects the scenario where a load request is
outstanding and the processor has pipelined a write operation on top of the load. Normally,
when the data bus is granted to the 603e, the resulting data bus tenure is used for the load
operation. The enveloped high-priority cache block push feature defines a bus signal, the
data bus write only qualifier (DBWO), which, when asserted with a qualified data bus grant,
indicates that the resulting data tenure should be used for the store operation instead. This
signal is described in Section 8.10, “Using Data Bus Write Only.” Note that the enveloped
copyback operation is an internally pipelined bus operation.

3.7 Cache Control Instructions

Software must use the appropriate cache management instructions to ensure that caches are
kept consistent when data is modified by the processor. When a processor alters a memory
location that may be contained in an instruction cache, software must ensure that updates
to memory are visible to the instruction fetching mechanism. Although the instructions to
enforce coherency vary among implementations and hence operating systems should
provide a system service for this function, the following sequence is typical:

1. dcbst (update memory)

2. sync (wait for update)

3. icbi (invalidate copy in cache)

4. isync (invalidate copy in own instruction buffer)

These operations are necessary because the processor does not maintain instruction
memory coherent with data memory. Software is responsible for enforcing coherency of
instruction caches and data memory. Since instruction fetching may bypass the data cache,
changes made to items in the data cache may not be reflected in memory until after the
instruction fetch completes.

The PowerPC architecture defines instructions for controlling both the instruction and data
caches when they exist. The 603e interprets the cache control instructions (icbi, debi, debt,
dcbz, dcbst) as if they pertain only to the 603e’s caches. They are not intended for use in
managing other caches in the system.

The dcbz instruction causes an address-only broadcast on the bus if the contents of the
block are from a page marked global through the WIMG bits. This broadcast is performed
for coherency reasons; the dcbz instruction is the only cache control instruction that can
allocate and take new ownership of a line. Note that if the HIDO[ABE] bit is set on a PID7v-
603e processor, the execution of the debf, dcbi, and debst instructions will also cause an
address-only broadcast. The dcbz instruction is also the only cache operation that is
snooped by the 603e. The cache instructions are intended primarily for the management of
the on-chip cache, and do not perform address-only broadcasts for the maintenance of other
caches in the system. The ability of the PID7v-603e to optionally perform address-only
broadcasts when executing the dcbi, debf, and the dcbst instructions allows the coherency
management of an external copyback L2 cache.

3-22 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The other instructions do not broadcast either for the purpose of invalidating or flushing
other caches in the system or for managing system resources. Any bus activity caused by
these instructions is the direct result of performing the operation in the 603e cache. Note
that a data access exception is generated if the effective address of a dcbi, dcbst, debf, or
dcbz instruction cannot be translated due to the lack of a TLB entry. (Note that exceptions
are referred to as interrupts in the architecture specification.)

Note that in the PowerPC architecture, the term ‘cache block’, or simply ‘block’ when used
in the context of cache implementations, refers to the unit of memory at which coherency
is maintained. For the 603e this is the eight-word cache line. This value may be different
for other PowerPC implementations. In-depth descriptions of coding these instructions is
provided in Chapter 3, “Addressing Modes and Instruction Set Summary,” and Chapter 10,
“Instruction Set,” in The Programming Environments Manual.

3.7.1 Data Cache Block Invalidate (dcbi) Instruction

If the block containing the byte addressed by the EA is in the data cache, the cache block
is invalidated regardless whether the block is in the exclusive or modified state. If
HIDO[ABE] is set on a PID7v-603e when a dcbi instruction is executed, the PID7v-603¢e
will perform an address-only bus transaction. The dcbi instruction can only be executed
when the 603e is in the supervisor state.

3.7.2 Data Cache Block Touch (dcbt) Instruction

This instruction provides a method for improving performance through the use of software-
initiated prefetch hints. The 603e performs the fetch for the cases when the address hits in
the TLB or the BAT registers, and when it is a permitted load access from the addressed
page. The operation is treated similarly to a byte load operation with respect to coherency.

If the address translation does not hit in the TLB or BAT mechanism, or if it does not have
load access permission, the instruction is treated as a no-op.

If the cache is locked or disabled, or if the access is to a page that is marked as guarded, the
dcbt instruction is treated as a no-op.

If the access is directed to a write-through or caching-inhibited page, the instruction is
treated as a no-op.

The dcbt instruction never affects the referenced or changed bits in the hashed page table.

A successful debt instruction affects the state of the TLB and cache LRU bits as defined
by the LRU algorithm.

The touch load buffer will be marked invalid if the contents of the touch buffer have been
moved to the cache, if any data cache management instruction has been executed, if a dchz
instruction is executed that matches the address of the cache block in the touch buffer, or if
another dcbt instruction is executed.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-23

3.7.3 Data Cache Block Touch for Store (dcbtst) Instruction

The dcbtst instruction, like the data cache block touch instruction (dcbt), allows software
to prefetch a cache block in anticipation of a store operation (read with intent to modify).

3.7.4 Data Cache Block Clear to Zero (dcbz) Instruction

If the block containing the byte addressed by the EA is in the data cache, all bytes are
cleared.

If the block containing the byte addressed by the EA is not in the data cache and the
corresponding page is caching-allowed, the block is established in the data cache without
fetching the block from main memory, and all bytes of the block are cleared. If the contents
of the cache block are from a page marked global through the WIM bits, an address-only
bus transaction is run.

If the page containing the byte addressed by the EA is caching-inhibited or write-through,
then the system alignment exception handler is invoked.

The dcbz instruction is treated as a store to the addressed byte with respect to address
translation and protection.

3.7.5 Data Cache Block Store (dcbst) Instruction

If the block containing the byte addressed by the EA is in coherency-required mode, and a
block containing the byte addressed by the EA is in the data cache of any processor and has
been modified, the writing of it to main memory is initiated. On a PID7v-603e, if the cache
block is unmodified, HIDO[ABE] is set, and if the contents of the cache block are from a
page marked global through the WIM bits, an address-only bus transaction is run.

The function of this instruction is independent of the write-through and caching-
inhibited/caching-allowed modes of the block containing the byte addressed by the EA.

This instruction is treated as a load to the addressed byte with respect to address translation
and protection.

3.7.6 Data Cache Block Flush (dcbf) Instruction

The action taken depends on the memory mode associated with the target, and on the state
of the cache block. The list below describes the action taken for the various cases. The
actions described are executed regardless of whether the page containing the addressed byte
is in caching-inhibited or caching-allowed mode. The following actions occur in both
coherency-required mode (WIM = 0bXX1) and coherency-not-required mode (WIM =
0bXXO0).

3-24 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The dcbf instruction causes the following cache activity:

¢ Unmodified block—Invalidates the block in the processor’s cache.
* Modified block—Copies the block to memory and invalidates data cache block.
¢ Absent block—Does nothing.

The 603e treats this instruction as a load to the addressed byte with respect to address
translation and protection.

3.7.7 Enforce In-Order Execution of I/O Instruction (eieio)

As defined by the PowerPC architecture, the eieio instruction provides an ordering function
for the effects of load and store instructions executed by a given processor. Executing eieio
ensures that all memory accesses previously initiated by the given processor are completed
with respect to main memory before any memory accesses subsequently initiated by the
processor access main memory. The eieio instruction orders loads and stores to caching-
inhibited memory only.

The eieio instruction is intended for use only in performing memory-mapped 1/O
operations. It enforces “strong” ordering of cache-inhibited memory accesses during I/O
operations between the processor and I/O devices. -

When executed by the 603e, the eieio instruction is treated as a no-op; caching-inhibited
load and store operations (inhibited by the WIMG bits for the page) are performed in strict
program order.

3.7.8 Instruction Cache Block Invalidate (icbi) Instruction

The execution of an ichbi instruction causes all four cache sets indexed by the EA to be
marked invalid. No cache hit is required, and no MMU translation is performed.

3.7.9 Instruction Synchronize (isync) Instruction

The isync instruction waits for all previous instructions to complete and then discards any
previously fetched instructions, causing subsequent instructions to be fetched (or refetched)
from memory and to execute in the context established by the previous instructions. This
instruction has no effect on other processors or on their caches.

3.8 Bus Operations Caused by Cache Control
Instructions '

Table 3-7 provides an overview of the bus operations initiated by cache control instructions.
The cache control, TLB management, and synchronization instructions supported by the
603e may affect or be affected by the operation of the bus. None of the instructions will
actively broadcast through address-only transactions on the bus (except for debz), and no
broadcasts by other masters are snooped by the 603e (except for kills). The operation of the

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-25

instructions, however, may indirectly cause bus transactions to be performed, or their
completion may be linked to the bus. Table 3-7 summarizes how these instructions may
operate with respect to the bus.

Note that Table 3-7 assumes that the WIM bits are set to 001; that is, since the cache is
operating in write-back mode, caching is permitted and coherency is enforced.

Table 3-7. Bus Operations Caused by Cache Control Instructions (WIM = 001)

Operation Cache State Next Cache State Bus Operations Comment

sync Don’t care No change None Waits for memory queues
to complete bus activity

icbi Don’t care | None —_

dcbi Don’t care | None —_

dcbf LE | None —

dcbf M | Write with kill Block is pushed

dcbst LE No change None —

dcbst M E Write Block is pushed

dcbz | M Write with kill —

debz E,M M Kill block Writes over modified data

debt I No change Read Fetched cache block is
stored in touch load queue

dcbt E,M No change None —

dcbtst | No change Read-with-intent- Fetched cache block is

to-modify stored in touch load queue
dcbtst E.M No change None —

Table 3-7 does not include noncacheable or write-through cases, nor does it completely
describe the mechanisms for the operations described. For more information, see
Section 3.10, “MEI State Transactions.”

For detailed information on the cache control instructions, refer to Chapter 2,
“Programming Model,” in this book and Chapter 8, “Instruction Set,” in The Programming
Environments Manual. The 603e contains snooping logic to monitor the bus for these
commands and the control logic required to keep the cache and the memory queues
coherent. For additional details about the specific bus operations performed by the 603e,
see Chapter 8, “System Interface Operation.”

3-26 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

3.9 Bus Interface

The bus interface buffers bus requests from the instruction and data caches, and executes
the requests per the 603e bus protocol. It includes address register queues, prioritization
logic, and bus control logic. The bus interface also captures snoop addresses for snooping
in the cache and in the address register queues, snoops for reservations, and holds the touch
load address for the cache. All data storage for the address register buffers (load and store
data buffers) are located in the cache section. The data buffers are considered temporary
storage for the cache and not part of the bus interface.

The general functions and features of the bus interface are as follows:
* Seven address register buffers that include the following:
— Instruction cache load address buffer
— Data cache load address buffer

— Data cache touch load address buffer (associated data block buffer located in
cache)

— Data cache castout/store address buffer (associated data line buffer located in
cache)

— Data cache snoop copyback address buffer (associated data line buffer located in
cache)
— Reservation address buffer for snoop monitoring
« Pipeline collision detection for data cache buffers
¢ Reservation address snooping for Iwarx/stwex. instructions
¢ One-level address pipelining
¢ Load ahead of store capability

A conceptual block diagram of the bus interface is shown in Figure 3-5. The address
register queues hold transaction requests that the bus interface may issue on the bus
independently of the other requests. The bus interface may have up to two transactions
operating on the bus at any given time through the use of address pipelining.

MOTOROLA Chapter 3. Instruction and Data Cache Operation - 3-27

|-Cache

A

D-Cache

Y * * t Y
BIU | I|-Cache D-Cache D-Cache D-Cache D-Cache
Control | | LD Addr LD Addr TLD Addr CST/ST Addr SNP Addr
A
Y Y Y
Snoop
Y \ ? JV JV
Control Addr Addr Data
System Bus

Figure 3-5. Bus Interface Address Buffers

For additional information about the 603e bus interface and the bus protocols, refer to
Chapter 8, “System Interface Operation.”

3.10 MEI State Transactions

Table 3-8 shows MEI state transitions for various operations. Bus operations are described

in Table 3-6.
Table 3-8. ME! State Transitions
Cache Bus Current | Next . Bus
Operation Operation | sync wiMm State State Cache Actions Operation
Load Read No x0x 1 Same | 1 Cast out of modified Write-with-kill
(T=0) block (as required)
2 Pass four-beat read Read
to memory queue
Load Read No Xx0x EM Same | Read data from cache —
(T=0)
Load (T =0) Read No X1x | Same | Pass single-beat read Read
to memory queue
Load (T = 0) Read No x1x E | CRTRY read —
Load (T = 0) Read No x1x M ! CRTRY read (push Write-with-kill
sector to write queue)
Iwarx Read Acts like other reads but bus operation uses special encoding
3-28 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 3-8. MEI State Transitions (Continued)

. Cache Bus Current Next . Bus
Operation Operation | sync wim State State Cache Actions Operation
Store Write No 00x | Same [1 Cast out of modified | Write-with-kill
(T=0) block (if necessary)

2 Pass RWITM to RWITM
memory queue
Store Write No 00x EM M Write data to cache —
(T=0)
Store # stwex. | Write No 10x | Same | Pass single-beat write Write-with-
(T=0) to memory queue flush
Store = stwex. | Write No 10x E Same | 1 Write data to cache —
T=0
() 2 Pass single-beat Write-with-
write to memory flush
queue
Store = stwex. | Write No 10x M Same | 1 CRTRY write —
T=0
() 2 Push block to write Write-with-kill
queue
Store (T = 0) Write No x1x | Same | Pass single-beat write Write-with-
or stwex. to memory queue flush
(WIM = 10x)
Store (T =0) Write No x1x E | CRTRY write —
or stwex.
(WIM = 10x)
Store (T =0) Write No x1x M I 1 CRTRY write —_
or stwcex.]
(WIM = 10x) 2 Push block to write Write-with-kill
queue
stwex. Conditional | If the reserved bit i$ set, this operation is like other writes except the bus operation
write uses a special encoding.
dcbf Datacache | No XXX LE Same | 1 CRTRY dcbf s
block flush
2 Pass flush Flush
Same I 3 State change only —
dcbf Datacache | No XXX M I Push block to write Write-with-kill
block flush queue
dcbst Datacache | No XXX LE Same | 1 CRTRY dcbst —
block store
2 Pass clean Clean
Same Same | 3 No action —
dcbst Datacache | No XXX M E Push block to write Write-with-kill
block store queue
dcbz Datacache | No x1x X X Alignment trap —
block set to
zero

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-29

Table 3-8. MEI State Transitions (Continued)

. Cache Bus Current | Next . Bus
Operation Operation | sync Wi State State Cache Actions Operation
dcbz Datacache | No 10x X X Alignment trap —

block set to
zero
dcbz Datacache | Yes 00x | Same | 1 CRTRY dcbz —
block setto — —
zero 2 Cast out of modified | Write-with-kill
block
3 Pass kill Kill
Same M 4 Clear block —
dcbz Datacache | No 00x EM Clear block —_
block setto
zero
debt Datacache | No x1x | Same | Pass single-beat read Read
block touch to memory queue
dcht Datacache | No x1x E | CRTRY read —
block touch
dcbt Datacache | No Xx1x M | 1 CRTRY read —
block touch
2 Push block to write Write-with-kill
queue
dcbt Datacache | No x0x | Same | 1 Cast out of modified Write-with-kill
block touch block (as required)
2 Pass four-beat read Read
to memory queue
dcbt Datacache | No x0x EM Same | No action —
block touch
Single-beat Reload No XXX | Same | Forward data_in —
read dump 1
Four-beat read | Reload No XXX 1 E Write data_in to cache —_—
(double-word- dump
aligned)
Four-beat write | Reload No XXX 1 M Write data_in to cache —
(double-word- dump '
aligned)
E—I Snoop No XXX E | State change only —
write or kill {committed)
M—>I Snoop No XXX M | State change only —
kill (committed)
Push Snoop No xxx |M | Conditionally push 1 Write-with-kill
M- fiush
Push Snoop No XXX M E Conditionally push Write-with-kill
M—E clean
3-30 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 3-8. MEI State Transitions (Continued)

zation

. Cache Bus Current | Next . Bus
Operation Operation | sync WiM State State Cache Actions Operation
tibie TLB No XXX X X 1 CRTRY TLBI —

invalidate
2 Pass TLBI —
3 No action —
sync Synchroni- | No XXX X X 1 CRTRY sync —

2 Pass sync

3 No action

Note that single-beat writes are not snooped in the write queue.

MOTOROLA

Chapter 3. Instruction and Data Cache Operation

3-31

3-32

MPC603e & EC603e RISC Microprocessors User's Manual

MOTOROLA

Chapter 4
Exceptions

The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions, and differ from the arithmetic exceptions defined by the IEEE for floating-
point operations. When exceptions (referred to as interrupts in the architecture
specification) occur, information about the state of the processor is saved to certain registers
and the processor begins execution at an address (exception vector) predetermined for each
exception. Processing of exceptions occurs in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR or the FPSCR. Additionally, certain exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction-
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. Any exceptions caused by those instructions are
handled first. Likewise, exceptions that are asynchronous and precise are recognized when
they occur, but are not handled until the instruction currently in the completion stage
successfully completes execution or generates an exception, and the completed store queue
is emptied. An instruction is said to have “completed” when the results of that instruction’s
execution have been committed to the registers defined by the architecture (for example, the
GPRs or FPRs, rather than rename buffers). If a single instruction encounters multiple
exception conditions, those exceptions are taken and handled sequentially. Likewise,
exceptions that are asynchronous are recognized when they occur, but are not handled until
the next instruction to complete in program order successfully completes. Throughout this
chapter, the term ‘next instruction’ implies the next instruction to complete in program
order.

Note that exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested. It is up to the exception handler to save the states
to allow control to ultimately return to the original excepting program.

MOTOROLA Chapter 4. Exceptions 4-1

.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are handled sequentially. After the exception handler
handles an exception, the instruction execution continues until the next exception condition
is encountered. However, in many cases there is no attempt to re-execute the instruction.
This method of recognizing and handling exception conditions sequentially guarantees that
exceptions are recoverable.

Exception handlers should save the information stored in SRRO and SRR1 early to prevent
the program state from being lost due to a system reset or machine check exception or to
an instruction-caused exception in the exception handler, and before enabling external
interrupts.

In this chapter, the following terminology is used to describe the various stages of exception
processing:

Recognition Exception recognition occurs when the condition that can cause an
exception is identified by the processor.

Taken An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routing is executed in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is performed at
supervisor-level.

4.1 Exception Classes
The PowerPC architecture supports four types of exceptions:

» Synchronous, precise—These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored. This means that (excluding the trap
and system call exceptions) the address of the faulting instruction is provided to the
exception handler and that neither the faulting instruction nor subsequent
instructions in the code stream will complete execution before the exception is
taken. Once the exception is processed, execution resumes at the address of the
faulting instruction (or at an alternate address provided by the exception handler).
When an exception is taken due to a trap or system call instruction, execution
resumes at an address provided by the handler.

4-2 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

» Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. Even though the
PowerPC 603e provides a means to enable the imprecise modes, it implements these
modes identically to the precise mode (that is, all enabled floating-point enabled
exceptions are always precise on the 603e). (The EC603e microprocessor does not
support floating-point operations.)

* Asynchronous, maskable—The external, system management interrupt (SMI), and
decrementer exceptions are maskable asynchronous exceptions. When these
exceptions occur, their handling is postponed until the next instruction, and any
exceptions associated with that instruction, completes execution. If there are no
instructions in the execution units, the exception is taken immediately upon
determination of the correct restart address (for loading SRRO).

* Asynchronous, nonmaskable—There are two nonmaskable asynchronous
exceptions: system reset and the machine check exception. These exceptions may
not be recoverable, or may provide a limited degree of recoverability. All exceptions
report recoverability through the MSR[RI] bit.

The 603e exception classes are shown in Table 4-1.
Table 4-1. Exception Classifications

Synchronous/Asynchronous Precise/lmprecise Exception Type

Asynchronous, nonmaskable Imprecise Machine check
System reset

Asynchronous, maskable Precise External interrupt
Decrementer
System management interrupt

Synchronous Precise Instruction-caused exceptions

Although exceptions have other characteristics as well, such as whether they are maskable
or nonmaskable, the distinctions shown in Table 4-1 define categories of exceptions that the
603e handles uniquely. Note that Table 4-1 includes no synchronous imprecise exceptions.
While the PowerPC architecture supports imprecise handling of floating-point exceptions,
the 603e, with the exception of the EC603e microprocessor, implements floating-point
exception modes as precise exceptions. (The EC603e microprocessor does not support
floating-point operations.)

Although the PowerPC architecture specifies that the recognition of the machine check
exception is nonmaskable, on the 603e the stimuli that cause this exception are maskable.
For example, the machine check exception is caused by the assertion of TEA, APE, DPE,
or MCP. However, the MCP, APE, and DPE signals can be disabled by bits 0, 2, and 3
respectively in HIDO. Therefore, the machine check caused by TEA is the only truly
nonmaskable machine check exception.

MOTOROLA Chapter 4. Exceptions 4-3

The 603e’s exceptions, and conditions that cause them, are listed in Figure 4-1. Exceptions
that are specific to either the PID6-603e or PID7v-603e, or that are handled differently on
the EC603e microprocessor, are indicated.

Figure 4-1. Exceptions and Conditions

Exception
Type

Vector Offset
(hex)

Causing Conditions

Reserved

00000

System reset

00100

A system reset is caused by the assertion of either SRESET or HRESET.

Machine
check

00200

A machine check is caused by the assertion of the TEA signal during a data bus
transaction, assertion of MCP, or an address or data parity error.

DSl

00300

The cause of a DSI exception can be determined by the bit settings in the DSISR,

listed as follows:

1 Set if the translation of an attempted access is not found in the primary hash
table entry group (HTEG), or in the rehashed secondary HTEG, or in the range
of a DBAT regjister; otherwise cleared.

4 Set if a memory access is not permitted by the page or DBAT protection
mechanism; otherwise cleared.

5 Set by an eciwx or ecowx instruction if the access is to an address that is
marked as write-through, or execution of a load/store instruction that accesses
a direct-store segment.

6 Set for a store operation and cleared for a load operation.

11 Set if eciwx or ecowx is used and EAR[E] is cleared.

1SI

00400

An 1S exception is caused when an instruction fetch cannot be performed for any

of the following reasons:

* The effective (logical) address cannot be translated. That is, there is a page
fault for this portion of the translation, so an ISI exception must be taken to load
the PTE (and possibly the page) into memory.

¢ The fetch access is to a direct-store segment (indicated by SRR1[3] set).

¢ The fetch access violates memory protection (indicated by SRR1[4] set). If the
key bits (Ks and Kp) in the segment register and the PP bits in the PTE are set
to prohibit read access, instructions cannot be fetched from this location.

External
interrupt

00500

An external interrupt is caused when MSRIEE] = 1 and the INT signal is asserted.

Alignment

00600

An alignment exception is caused when the 603e cannot perform a memory
access for any of the reasons described below:

* The operand of a floating-point load or store instruction is not word-aligned.
¢ The operand of Imw, stmw, Iwarx, and stwex. instructions are not aligned.

* The operand of a single-register load or store operation is not aligned, and the

603e is in little-endian mode (PID6-603e only).

¢ The execution of a floating-point load or store instruction to a direct-store
segment.

* The operand of a load, store, load multiple, store multiple, load string; or store
string instruction crosses a segment boundary into a direct-store segment, or
crosses a protection boundary.

« Execution of a misaligned eciwx or ecowx instruction (PID7v-603e onty).

¢ The instruction is Imw, stmw, Iswi, Iswx, stswi, stswx and the 603e is in little-
endian mode.

* The operand of debz is in memory that is write-through-required or caching-
inhibited.

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Figure 4-1. Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

Program

00700

A program exception is caused by one of the following exception conditions, which
correspond to bit settings in SRR1 and arise during execution of an instruction:
¢ Floating-point enabled exception—A floating-point enabled exception condition
is generated when the following condition is met:
(MSRI[FEOQ] | MSR[FE1]) & FPSCR[FEX]is 1.

(Not supported by the EC603e microprocessor.)

FPSCRIFEX] is set by the execution of a floating-point instruction that causes
an enabled exception or by the execution of one of the “move to FPSCR”
instructions that results in both an exception condition bit and its corresponding
enable bit being set in the FPSCR. (Not supported by the EC603e
microprocessor.)

* Hlegal instruction—An illegal instruction program exception is generated when
execution of an instruction is attempted with an illegal opcode or illegat
combination of opcode and extended opcode fields (including PowerPC
instructions not implemented in the 603e), or when execution of an optional
instruction not provided in the 603e is attempted (these do not include those
optional instructions that are treated as no-ops).

* Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR], is set. In the 603e, this exception is
generated for mtspr or mfspr with an invalid SPR field if SPR[0] = 1 and
MSR[PR] = 1. This may not be true for all PowerPC processors.

« Trap—A trap type program exception is generated when any of the conditions
specified in a trap instruction is met.

Floating-
point
unavailable

00800

A floating-point unavailable exception is caused by an attempt to execute a
floating-point instruction (including floating-point load, store, and move
instructions) when the floating-point available bit is disabled (MSR[FP] = 0).

Note that the EC603e microprocessor takes a floating-point unavailable exception
when execution of a floating-point instruction is attempted.

Decrementer

00800

The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1. Must also be enabled with the
MSRIEE] bit.

Reserved

00A00—
00BFF

System call

00C00

A system call exception occurs when a System Call (s¢) instruction is executed.

Trace

00D00

A trace exception is taken when MSR[SE] =1 or when the currently completing
instruction is a branch and MSR[BE] =1.

Reserved

00EO00

The 603e does not generate an exception to this vector. Other PowerPC
processors may use this vector for floating-point assist exceptions.

Reserved

00E10-00FFF

Instruction
translation
miss

01000

An instruction transtation miss exception is caused when an effective address for
an instruction fetch cannot be translated by the ITLB.

MOTOROLA

Chapter 4. Exceptions 4-5

Figure 4-1. Exceptions and Conditions (Continued)

Exception Vector Offset -
Type (hex) Causing Conditions

Data load 01100 A data load translation miss exception is caused when an effective address for a
translation data load operation cannot be translated by the DTLB.
miss :
Data store 01200 A data store translation miss exception is caused when an effective address for a
translation data store operation cannot be translated by the DTLB, or where a DTLB hit
miss occurs, and the change bit in the PTE must be set due to a data store operation.
Instruction 01300 An instruction address breakpoint exception occurs when the address (bits 0-29)
address in the IABR matches the next instruction to complete in the completion unit, and
breakpoint the IABR enable bit (bit 30) is set.
System 01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI input
management signal is asserted.
interrupt
Reserved 01500-02FFF | —

Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions—
system reset and machine check exceptions (although the machine check exception
condition can be disabled so the condition causes the processor to go directly into
the checkstop state). These exceptions cannot be delayed, and do not wait for the
completion of any precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

3. Maskable asynchronous exceptions (external interrupt and decrementer exceptions)
are delayed until higher priority exceptions are taken.

System reset and machine check exceptions may occur at any time and are not delayed even
if an exception is being handled. As a result, state information for the interrupted exception
may be lost; therefore, these exceptions are typically nonrecoverable.

All other exceptions have lower priority than system reset and machine check exceptions,
and the exception may not be taken immediately when it is recognized.

4-6

MPC603e & EC603e RISC Microprocessors User's Manual

MOTOROLA

4.1.1 Exception Priorities
The exceptions are listed in Table 4-2 in order of highest to lowest priority.

Table 4-2. Exception Priorities

Exception - N
Category Priority Exception Cause
Asynchronous 0 System reset HRESET or power-on reset
1 Machine check TEA, MCP, APE, or DPE
2 System reset SRESET
3 System SMi
management
interrupt
4 External interrupt | INT
5 Decrementer Decrementer passed through 0x00000000
exception
Instruction 0 ITLB miss Instruction TLB miss
fetch
1 Instruction Instruction access exception
access

MOTOROLA Chapter 4. Exceptions 4-7

Table 4-2. Exception Priorities (Continued)

Exception . "
Category Priority Exception Cause
Instruction 0 IABR Instruction address breakpoint exception
dispatch/ - A
execution 1 Program Program exception due to the following:
e |llegal instruction
¢ Privileged instruction
e Trap
2 System call System call exception
3 Floating-point Floating-point unavailable exception due to the following:
unavailable * 603e microprocessor—Floating-point unavailable
exception.
¢« EC603e microprocessor—Execution of a floating-point
instruction.
4 Program Program exception due to a floating-point enabled exception
5 Alignment Alignment exception due to the following:
* Floating-point not word-aligned (not applicable to the
EC603e microprocessor)
¢ Imw, stmw, lwarx, or stwex. not word-aligned
s Little-endian access is misaligned
e Multiple or string access with little-endian bit set
6 Data access Data access exception due to a BAT page protection violation
7 Data access Data access exception due to the following:
¢ eciwx, ecowx, lwarx, or stwex. to direct-store segment
(bit 5 of DSISR)
¢ Crossing from memory segment to direct-store segment
(bit 0 of DSISR)
e Crossing from direct-store segment to memory segment
* Any access to direct-store, SR[T] = 1
e eciwx or ecowx with EAR[E] = O (bit 11 of DSISR)
8 DTLB miss Data TLB miss exception due to:
* Store miss
¢ Load miss
9 Alignment Alignment exception due to a debz to a write-through or
caching-inhibited page
10 Data access Data access exception due to TLB page protection violation
11 DTLB miss Data TLB miss exception due to a change bit not set on a store
operation
Post- 0 Trace Trace exception due to the following:
instruction ¢ MSR[SE]=1
execution ¢ MSR[BE] = 1 for branches

Exception priorities are described in detail in “Exception Priorities,” in Chapter 6,
“Exceptions,” in The Programming Environments Manual.

4-8 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.1.2 Summary of Front-End Exception Handling

The following list of interrupt categories describes how the 603e handles exceptions up to
the point of signaling the appropriate exception to occur. Note that a recoverable state is
reached if the completed store queue is empty (drained, not canceled) and any instruction
that is next in program order and has been signaled to complete has completed. If MSR[RI]
is clear, the 603e is in a nonrecoverable state by default. Also, completion of an instruction
is defined as performing all architectural register writes associated with that instruction, and
then removing that instruction from the completion buffer queue.

Asynchronous nonmaskable nonrecoverable—(System reset caused by the assertion
of either HRESET or internally during power-on reset (POR)). These exceptions
have highest priority and are taken immediately regardless of other pending
exceptions or recoverability. A nonpredicted address is guaranteed.

Asynchronous maskable nonrecoverable—(Machine check). A machine check
exception takes priority over any other pending exception except a nonrecoverable
system reset caused by the assertion of either HRESET or internally during POR. A
machine check exception is taken immediately regardless of recoverability. A
machine check exception can occur only if the machine check enable bit, MSR[ME],
is set. If MSR[ME] is cleared, the processor goes directly into checkstop state when
a machine check exception condition occurs. A nonpredicted address is guaranteed.

Asynchronous nonmaskable recoverable—(System reset caused by the assertion of
SRESET). This interrupt takes priority over any other pending exceptions except
nonrecoverable exceptions listed above. This exception is taken immediately when
arecoverable state is reached.

Asynchronous maskable recoverable—(System management interrupt, external
interrupt, decrementer exception). Before handling this type of exception, the next
instruction in program order must complete or except. If this action causes another
type of exception, that exception is taken and the asynchronous maskable
recoverable exception remains pending. Once an instruction can complete without
causing an exception, further instruction completion is halted while the exception
not taken remains pending. The exception is taken when a recoverable state is
reached.

Instruction fetch—(ITLB, ISI). When this type of exception is detected, dispatch is
halted and the current instruction stream is allowed to drain. If completing any
instructions in this stream causes an exception, that exception is taken and the
instruction fetch exception is forgotten. Otherwise, as soon as the machine is empty
and a recoverable state is reached, the instruction fetch exception is taken.

MOTOROLA Chapter 4. Exceptions 4-9

+ Instruction dispatch/execution—(Program, DSI, alignment, emulation trap, system
call, DTLB miss on load or store, IABR). This type of exception is determined at
dispatch or execution of an instruction. The exception remains pending until all
instructions in program order before the exception-causing instruction are
completed. The exception is then taken without completing the exception-causing
instruction. If any other exception condition is created in completing these previous
instructions in the machine, that exception takes priority over the pending
instruction dispatch/execution exception, which will then be forgotten.

+ Post-—instruction execution—(Trace). This type of exception is generated following
execution and completion of an instruction while a trace mode is enabled. If
executing the instruction produces conditions for another type of interrupt, that
exception is taken and the post-instruction execution exception is forgotten for that
instruction.

4.2 Exception Processing

When an exception is taken, the processor uses the save/restore registers, SRR0O and SRR1,
to save the contents of the machine state register for user-level mode (referred to as problem
mode in the architecture specification) and to identify where instruction execution should
resume after the exception is handled.

When an exception occurs, SRRO is set to point to the instruction at which instruction
processing should resume when the exception handler returns control to the interrupted
process. All instructions in the program flow preceding this one will have completed and
no subsequent instruction will have completed. This may be the address of the instruction
that caused the exception or the next one (as in the case of a system call exception). The
instruction addressed can be determined from the exception type and status bits. This
address is used to resume instruction processing in the interrupted process, typically when
an rfi instruction is executed. The SRRO register is shown in Figure 4-2.

l_ SRRO (holds EA for resuming program execution) j
0 31

Figure 4-2. Machine Status Save/Restore Register 0

The save/restore register 1 (SRR1) is used to save machine status (the contents of the MSR)
on exceptions and to restore those values when rfi is executed. SRR1 is shown in
Figure 4-3.

L Exception-specific information and MSR bit values j
0 31

Figure 4-3. Machine Status Save/Restore Register 1

4-10 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Typically, when an exception occurs, bits 0—15 of SRR1 are loaded with exception-specific
information and bits 16-31 of MSR are placed into the corresponding bit positions of
SRR1. The 603e loads SRR1 with specific bits for handling machine check exceptions, as
shown in Table 4-3.

Table 4-3. SRR1 Bit Settings for Machine Check Exceptions

Bits Name Description
0 MSRI0] Copy of MSR bit 0
14 —_ Reserved
59 MSR[5-9] Copy of MSR bits 5-9
10-11 - Reserved
12 MCP Machine check
13 TEA TEA error
14 DPE Data parity error
15 APE Address parity error
16-31 MSR[16-31] Copy of MSR bits16-31

The 603e loads SRR1 with specific bits for handling the three TLB miss exceptions, as
shown in Table 4-4.

Table 4-4. SRR1 Bit Settings for Software Table Search Operations

Bits Name Description
0-3 CRF0O Copy of condition register field 0 (CR0)
4 = Reserved
5-9 MSR[5-9] Copy of MSR bits 5-9
10-11 — Reserved
12 KEY TLB miss protection key
13 /D Instruction/data TLB miss

0 DTLB miss
1 ITLB miss
14 WAY Bit 14 indicates which TLB associativity set should be replaced
0 SetO
1 Set 1
15 S/L Store/load protection instruction
0 Load miss
1 Store miss
16-31 MSR[16-31] Copy of MSR bits 16-31

MOTOROLA Chapter 4. Exceptions 4-11

i

Note that in some implementations, every instruction fetch when MSR[IR] = 1 and every
instruction execution requiring address translation when MSR[DR] = 1 may modify SRR1.

The MSR is shown in Figure 4-4. When an exception occurs, MSR bits, as described in
Table 4-5, are altered as determined by the exception.

TGPR
POW

R

0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

I |ILE| EEIPHIFP|ME|FEO| SE|BE|FE1

IP|IR|DR

Figure 4-4. Machine State Register (MSR)

Table 4-5 shows the bit definitions for the MSR. Full function reserved bits are saved in
SRR1 when an exception occurs; partial function reserved bits are not saved.

Table 4-5. MSR Bit Settings

Bit(s) | Name ' Description
0 — Reserved. Full function.
14 _— Reserved. Partial function.
5-9 — Reserved. Full function.
10-12 | — Reserved. Partial function.
13 POW Power management enable (603e-specific)

0 Disables programmable power modes (normal operation mode).

1 Enables programmable power modes (nap, doze, or sleep mode).

This bit controls the programmable power modes only; it has no effect on dynamic power
management (DPM). MSR[POW] may be altered with an mtmsr instruction only. Also, when
altering the POW bit, software may alter only this bit in the MSR and no others. The mtmsr
instruction must be followed by a context-synchronizing instruction.

See Chapter 9, “Power Management,” for more information.

14 TGPR | Temporary GPR remapping (603e-specific)

0 Normal operation

1 TGPR mode. GPRO-GPRS3 are remapped to TGPRO-TGPRS3 for use by TLB miss
routines.

The contents of GPRO-GPR3 remain unchanged while MSR[TGPR] = 1. Attempts to use

GPR4-GPR31 with MSR[TGPR] = 1 yield undefined results. Temporarily replacesTGPRO-

TGPR3 with GPRO-GPRS for use by TLB miss routines. When this bit is set, all instruction

accesses to GPR0O-GPR3 are mapped to TGPRO-TGPRS3, respectively. The TGPR bit is set

when either an instruction TLB miss, data read miss, or data write miss exception is taken. The

TGPR bit is cleared by an rfi instruction.

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to
select the endian mode for the context established by the exception.

16 EE External interrupt enable

0 The processor ignores external interrupts, system management interrupts, and
decrementer interrupts.

1 The processor is enabled to take an external interrupt, system management interrupt, or
decrementer interrupt.

4-12 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 4-5. MSR Bit Settings (Continued)

Bit(s) | Name Description
17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.
18 FP Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point
loads, stores, and moves, default state for the EC603e microprocessor.
1 The processor can execute floating-point instructions, and can take flioating-point
enabled exception type program exceptions.
19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.
20 FEO Floating-point exception mode 0 (see Table 4-6) (Not supported on the EC603e
microprocessor)
21 SE Single-step trace enable
0 The processor executes instructions normally.
1 The processor generates a trace exception upon the successful completion of the next
instruction.
22 BE Branch trace enable
0 The processor executes branch instructions normally.
1 The processor generates a trace exception upon the successful completion of a branch
instruction.
23 FE1 Floating-point exception mode 1 (see Table 4-6) (Not supported on the EC603e
microprocessor)
24 — Reserved. Full function.
25 IP Exception prefix. The setting of this bit specifies whether an exception vector offset is
prepended with Fs or Os. In the following description, nnnnn is the offset of the exception. See
Figure 4-1. .
0 Exceptions are vectored to the physical address 0x000n_nnnn.
1 Exceptions are vectored to the physical address 0xFFFn_nnnn.
26 IR Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information see Chapter 5, “Memory Management.”
27 DR Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information see Chapter 5, “Memory Management.”
28-29 | — Reserved. Full function.
30 RI Recoverable exception (for system reset and machine check exceptions)
0 Exception is not recoverable.
1 Exception is recoverable.
31 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.
MOTOROLA Chapter 4. Exceptions 4-13

i

The IEEE floating-point exception mode bits (FEQ and FE1) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at
all. (Note that FEO and FE1 are not supported on the EC603e microprocessor.) The possible
settings and default conditions for the 603e are shown in Table 4-6. For further details, see
Chapter 6, “Exceptions,” of The Programming Environments Manual.

Table 4-6. IEEE Floating-Point Exception Mode Bits

FEO | FE1 Mode
0 0 Floating-point exceptions disabled
0 1 Floating-point imprecise nonrecoverable* '
1 0 Floating-point imprecise recoverable*
1 1 Floating-point precise mode

* Not implemented in the 603e

MSR bits are guaranteed to be written to SRR1 when the first instruction of the exception
handler is encountered.

4.2.1 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition.

» _IEEE floating-point enabled exceptions (a type of program exception) are ignored
when both MSR[FEO] and MSR[FE1] are cleared. If either of these bits are set, all
IEEE enabled floating-point exceptions are taken and cause a program exception.
(Not supported on the EC603e microprocessor.)

¢ Asynchronous, maskable exceptions (that is, the external, system management, and
decrementer interrupts) are enabled by setting the MSR[EE] bit. When MSR[EE] =
0, recognition of these exception conditions is delayed. MSR[EE] is cleared
automatically when an exception is taken, to delay recognition of conditions causing
those exceptions.

¢ A machine check exception can occur only if the machine check enable bit,
MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into checkstop
state when a machine check exception condition occurs. Individual machine check
exceptions can be enabled and disabled through bits in the HIDO register, which is
described in Table 2-2. '

* System reset exceptions cannot be masked.

4-14 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.2.2 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any instruction-
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1.

The machine status save/restore register O (SRRO) is loaded with an instruction
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.

Bits 1-4 and 10-15 of SRR1 are loaded with information specific to the exception
type.

Bits 5-9 and 1631 of SRR1 are loaded with a copy of the corresponding bits of the
MSR.

The MSR is set as described in Table 4-5. The new values take effect beginning with
the fetching of the first instruction of the exception-handler routine located at the
exception vector address.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by adding the exception's
vector (see Figure 4-1) to the base address determined by MSR[IP]. If IP is cleared,
exceptions are vectored to the physical address 0x000n_nnnn. If IP is set, exceptions
are vectored to the physical address O0xFFFn_nnnn. For a machine check exception
that occurs when MSR[ME] = 0 (machine check exceptions are disabled), the
processor enters the checkstop state (the machine stops executing instructions). See
Section 4.5.2, “Machine Check Exception (0x00200).”

4.2.3 Setting MSRI[RI]
The operating system should handle MSR[RI] as follows:

In the machine check and system reset exceptions—If SRR1[RI] is cleared, the
exception is not recoverable. If it is set, the exception is recoverable with respect to
the processor.

In each exception handler—When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSRIRI].

In each exception handler—Clear MSR[RI], set the SRRO and SRR1 registers
appropriately, and then execute rfi.

Note that the RI bit being set indicates that, with respect to the processor, enough
processor state data is valid for the processor to continue, but it does not guarantee
that the interrupted process can resume.

MOTOROLA Chapter 4. Exceptions 4-15

4.2.4 Returning from an Exception Handler

The Return from Interrupt (rfi) instruction performs context synchronization by allowing
previously issued instructions to complete before returning to the interrupted process. In
general, execution of the rfi instruction ensures the following:

L Z

All previous instructions have completed to a point where they can no longer cause
an exception. If a previous instruction causes a direct-store interface error exception,
the results must be determined before this instruction is executed.

Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

The rfi instruction copies SRR1 bits back into the MSR.

The instructions following this instruction execute in the context established by this
instruction.

For a complete description of context synchronization, refer to Chapter 6, “Exceptions,” of
The Programming Environments Manual.

4.3 Process Switching

The operating system should execute one of the following when processes are switched:

The sync instruction, which orders the effects of instruction execution. All
instructions previously initiated appear to have completed before the sync
instruction completes, and no subsequent instructions appear to be initiated until the
sync instruction completes. For an example showing use of the sync instruction, see
Chapter 2, “PowerPC Register Set,” of The Programming Environments Manual.

The isync instruction, which waits for all previous instructions to complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation,
protection, etc.) established by the previous instructions.

The stwex. instruction, to clear any outstanding reservations, which ensures that an
Iwarx instruction in the old process is not paired with an stwex. instruction in the
new process.

The oberating system should set the MSR[RI] bit as described in Section 4.2.3, “Setting
MSR[RI}.”

4-16

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.4 Exception Latencies

Latencies for taking various exceptions depend on the state of the machine when the
exception conditions occur. This latency may be as short as one cycle, in which case an
exception is signaled in the cycle following the appearance of the exception condition. The
latencies are as follows:

¢ Hard reset and machine check—In most cases, a hard reset or machine check
exception will have a single-cycle latency. A two-to-three-cycle delay may occur
only when a predicted instruction is next to complete, and the branch guess that
forced this instruction to be predicted was resolved to be incorrect.

» Soft reset—The latency of a soft reset exception is affected by recoverability. The
time to reach a recoverable state may depend on the time needed to complete or
except an instruction at the point of completion, the time needed to drain the
completed store queue, and the time waiting for a correct empty state so that a valid
MSR[IP] may be saved. For lower-priority externally-generated interrupts, a delay
may be incurred waiting for another interrupt, generated while reaching a
recoverable state, to be serviced.

Further delays are possible for other types of exceptions depending on the number and type
of instructions that must be completed before those exceptions may be serviced. See
Section 4.1.2, “Summary of Front-End Exception Handling,” to determine possible
maximum latencies for different exceptions.

4.5 Exception Definitions

Table 4-7 shows all the types of exceptions that can occur with the 603e and the MSR bit
settings when the processor transitions to supervisor mode. The state of these bits prior to
the exception is typically stored in SRR1.

Table 4-7. MSR Setting Due to Exception

Exception MSR Bit

Type pow | TaPR | Ie | EE | PR | FP' | ME | FEO? | sE | BE | FE1®2| P | IR | DR | RI | LE
System reset 0 0 — 10 o] 0 — 0 V] 0 0 — | 0 0 0 | ILE
Machine 0 o |—=lololofo|lofo]oflo|—=]o]o]o]|uE
check
DSI 0 o [—]ololo|l=]lofo]ofo]|—=]o|lo]|o|ue
ISl 0 o |—lololo|[—=]ofo]oflo]|—=]o]lo]|o]|ue
External 0 o f—|loflolol—lofojlo]lo|l—=]olo]ol]ue
Alignment 0 o |[—lolo|lo|—=]ofo]ofo]|—=]o]o]|o]|uE
Program 0 o [—=]o]olo|l=]ofo]oflo]|—=]o|lo]o]|uE
Floating- 0 o [=lolofol=lofo]lo]of|—=]ofolo{re
point
unavailable®

MOTOROLAF Chapter 4. Exceptions 4-17

Table 4-7. MSR Setting Due to Exception (Continued)

Exception MSR Bit

Type pow | TaPR | ILE | EE | PR [FP' | ME | FEO2 | SE [BE | FEX2| P | IR [DR | RI | LE
Decrementer 0 0 —_ 0 0 0 — 0] 0 0 0 — 10 0 0 | ILE
System call 0 0 — 10 0 0| — 0 0 0 0 — |0 0 0 | ILE
Trace 0 0 —_ 0 0 0 — 0 0 0 0 —_ 0 0 0 ILE
exception
ITLB miss 0 1 _ 0 0 0 —_ 0 0 0 0 — 0 0 0 ILE
DTLB miss 0 1 —_ 0 0 0 — 0 0 0 0 s 0 0 0 ILE
on load
DTLB miss 0 1 — 10 0 0| — 0 0 0 0 — 10 0 0 | ILE
on store
Instruction 0 0 s 0 0 0 — 0 0 0 0 —_—] 0 0 ILE
address
breakpoint
System 0 0 —_ 0 0 0 — 0 0 0 0 — 0 4] 0 ILE
management
interrupt

0 Bit is cleared

1 Bit is set

ILE Bitis copied from the ILE bit in the MSR.
— Bit is not altered
Reserved bits are read as if written as 0.

Notes:
1. The floating-point available bit is always set to 0 on the EC603e microprocessor.
2. FEO and FE1 are not supported on the EC603e microprocessor.

3. On the EC603e microprocessor, the floating-point unavailable exception is caused by the execution of a
floating-point instruction.

4.5.1 Reset Exceptions (0x00100)

The system reset exception is a nonmaskable, asynchronous exception signaled to the 603e
either through the assertion of the reset signals (SRESET or HRESET) or internally during
the power-on reset (POR) process. The assertion of the soft reset signal, SRESET, as
described in Section 7.2.9.6.2, “Soft Reset (SRESET)—Input” causes the soft reset
exception to be taken and the physical base address of the handler is determined by the
MSR[IP] bit. The assertion -of - the hard reset signal, HRESET, as described in
Section 7.2.9.6.1, “Hard Reset (HRESET)—Input” causes the hard reset exception to be
taken and the physical address of the handler is always 0xFFF0_0100.

4-18 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.5.1.1 Hard Reset and Power-On Reset

As described in 4.1.2, “Summary of Front-End Exception Handling,” the hard reset
exception is a nonrecoverable, nonmaskable asynchronous exception (maskable interrupt).
When HRESET is asserted or at power-on reset (POR), the 603e immediately branches to
0xFFF0_0100 without attempting to reach a recoverable state. A hard reset has the highest
priority of any exception. It is always nonrecoverable. Table 4-8 shows the state of the
machine just before it fetches the first instruction of the system reset handler after a hard
reset.

The HRESET signal can be asserted for the following reasons:

» System power-on reset

» System reset from a panel switch .
* An action required by the ESP utility

For information on the HRESET signal, see Section 7.2.9.6.1, “Hard Reset (HRESET)—
Input.”

Table 4-8. Settings Caused by Hard Reset

Register Setting Register Setting
GPRs | unknown PVR 00030000
FPRs* Unknown HIDO 00000000
FPSCR* 00000000 HID1 00000000
CR All 0s DMISS and IMISS | All 0s
SRs Unknown DCMP and ICMP All Os
MSR 00000040 RPA All 0s
XER ‘ 00000000 IABR All 0s
TBU 00000000 DSISR 00000000
TBL 00000000 DAR 00000000
LR 00000000 DEC FFFFFFFF
CTR 00000000 HASH1 00000000
SDR1 00000000 HASH2 00000000
SRRO 00000000 TLBs Unknown
SRR1 00000000 Cache All cache blocks invalidated
SPRGs 00000000 BATs Unknown
Tag directory All 0s. (However, LRU bits are
initialized so each side of the
cache has a unique LRU
value.)

Note: Not supported on the EC603e microprocessor.

MOTOROLA Chapter 4. Exceptions 4-19

The following is also true after a hard reset operation:

¢ External checkstops are enabled.

* The on-chip test interface has given control of the I/Os to the rest of the chip for
functional use.

¢ Since the reset exception has data and instruction translation disabled (MSR[DR]
and MSR[IR] both cleared), the chip operates in real addressing mode as described
in Section 5.2, “Real Addressing Mode.”

4.5.1.2 Soft Reset

As described in Section 4.1.2, “Summary of Front-End Exception Handling,” the soft reset
exception is a type of system reset exception that is recoverable, nonmaskable, and
asynchronous. When SRESET is asserted, the processor attempts to reach a recoverable
state by allowing the next instruction to either complete or cause an exception, blocking the
completion of subsequent instructions, and allowing the completed store queue to drain.

Unlike a hard reset, the latches are not initialized and the instruction cache is disabled. The
SRESET signal must be asserted for at least two bus clock cycles. After the SRESET signal
is negated, the 603e vectors to the system reset routine at 0x0000_0100 if MSR[IP] is
cleared or OxFFF0O_0100 if MSR[IP] is set. A soft reset is recoverable provided that
attaining the recoverable state does not cause a machine check exception. This interrupt
case is third in priority, following hard reset and machine check.

When a soft reset occurs, registers are set as shown in Table 4-9.

Table 4-9. Soft Reset Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to complete
next if no exception conditions were present.

SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR. Note that if the processor state is corrupted to the extent

that execution cannot be reliably restarted, SRR1[30] is cleared.

MSR | POW 0 EE 0 FEO? 0 R 0
TGPRO PR 0 SE © DR 0
ILE — FP' 0 BE 0 Rl 0
P — ME — FE12 0 LE Setto value of ILE

Notes:

1. The floating-point available bit is always set to 0 on the EC603e microprocessor.
2. FEO and FE1 are not supported on the EC603e microprocessor.

4-20

MPC603e & EC603e RISC Microprocessors User's Manual

MOTOROLA

4.5.2 Machine Check Exception (0x00200)

The 603e conditionally initiates a machine check exception after detecting the assertion of
the TEA or MCP signals on the 603¢ bus (assuming the machine check is enabled,
MSR[ME] = 1). The assertion of one of these signals indicates that a bus error occurred and
the system terminates the current transaction. One clock cycle after the signal is asserted,
the data bus signals go to the high-impedance state; however, data entering the GPR or the
cache is not invalidated. Note that if HIDO[EMCP] is cleared, the processor ignores the
assertion of the MCP signal.

Note that the 603e makes no attempt to force recoverability; however, it does guarantee the
machine check exception is always taken immediately upon request, with a nonpredicted
address saved in SRRO, regardless of the current machine state. Any pending stores in the
completed store queue are canceled when the exception is taken. Software can use the
machine check exception in a recoverable mode for checking bus configuration. For this
case, a sync, load, sync instruction sequence is used. A subsequent machine check
exception at the load address indicates a bus configuration problem and the processor is in
a recoverable state.

If the MSR[ME] bit is set, the exception is recognized and handled; otherwise, the 603e
attempts to enter an internal checkstop. Note that the resulting machine check exception has
priority over any exceptions caused by the instruction that generated the bus operation.

Machine check exceptions are only enabled when MSR[ME] = 1; this is described in
Section 4.5.2.1, “Machine Check Exception Enabled (MSR[ME] = 1) If MSR[ME] =0
and a machine check occurs, the processor enters the checkstop state. Checkstop state is
described in 4.5.2.2, “Checkstop State (MSR[ME] = 0).”

MOTOROLA Chapter 4. Exceptions PR : S 4-21',;4_

i

4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)

When a machine check exception is taken, registers are updated as shown in Table 4-10.

Table 4-10. Machine Check Exception—Register Settings

Register Setting Déscription

SRR0O Set to the address of the next instruction that would have been completed in the interrupted
instruction stream. Neither this instruction nor any others beyond it will have been completed. All
preceding instructions will have been completed.

SRR1 0-11 Cleared

12 MCP—Machine check signal caused exception

13 TEA—Transfer error acknowledge signal caused exception
14 DPE—Data parity error signal caused exception

15 APE—Address parity error signal caused exception

16-31 Loaded from MSR[16-31].

MSR POW 0 EE 0 FEO? 0 IR 0
TGPRO PR © SE 0 DR 0
LE — FP' o0 BE 0 RI 0
P — ME — FE12 0 LE Setto value of ILE

Note that when a machine check exception is taken, the exception handler should set MSR[ME] as
soon as it is practical to handle another TEA assertion. Otherwise, subsequent TEA assertions
cause the processor to automatically enter the checkstop state.

Notes:
1. The floating-point available bit is always cleared to 0 on the EC603e microprocessor.
2. FEO and FE1 are not supported on the EC603e microprocessor.

When a machine check exception is taken, instruction execution for the handler begins at
offset 0x00200 from the physical base address indicated by MSR[IP].

In order to return to the main program, the exception handler should do the following:

1. SRRO and SRR1 should be given the values to be used by the rfi instruction.
2. Execute rfi.

4.5.2.2 Checkstop State (MSR[ME] = 0)
When the 603e enters the checkstop state, it asserts the checkstop output signal,
CKSTP_OUT. The following events will cause the 603e to enter the checkstop state:

* Machine check exception occurs with MSR[ME] cleared.

 External checkstop input, CKSTP_IN, is asserted.

* An extended transfer protocol error occurs.

When a processor is in the checkstop state, instruction processing is suspended and
generally cannot be restarted without resetting the processor. The contents of all latches are
frozen within two cycles upon entering the checkstop state so that the state of the processor
can be analyzed as an aid in problem determination.

4-22 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Note that not all PowerPC processors provide the same level of error checking. The reasons
a processor can enter checkstop state are implementation-dependent.

4.5.3 DSI Exception (0x00300)

A DSI exception occurs when no higher priority exception exists and a data memory access
cannot be performed. The condition that caused the DSI exception can be determined by
reading the DSISR register, a supervisor-level SPR (SPR18) that can be read by using the
mfspr instruction. Bit settings are provided in Table 4-11. Table 4-11 also indicates which
memory element is saved to the DAR. DSI exceptions can occur for any of the following
reasons:

¢ The instruction is not supported for the type of memory addressed.
¢ Any access to a direct-store segment (SR[T] = 1).
» The access violates memory protection. Access is not permitted by the key (Ks and

Kp) and PP bits, which are set in the segment register and PTE for page protection
and in the BATs for block protection.

Note that the OEA specifies an additional case that may cause a DSI exception—when an
effective address for a load, store, or cache operation cannot be translated by the TLBs. On
the 603e, this condition causes a TLB miss exception instead.

These scenarios are common among all PowerPC processors. The following additional
scenarios can cause a DSI exception in the 603e:

* A bus error indicates crossing from a direct-store segment to a memory segment.
* The execution of any load/store instruction to a direct-store segment, SR[T] = 1.

* A data access crosses from a memory segment (SR[T] = 0) into a direct-store
segment (SR[T] = 1).

DSI exceptions can be generated by load/store instructions, and the cache control
instructions (dcbi, dcbz, dcbst, and dcbf).

The 603e supports the crossing of page boundaries. However, if the second page has a
translation error or protection violation associated with it, the 603e will take the DSI
exception in the middle of the instruction. In this case, the data address register (DAR)
always points to a byte address in the first word of the offending page.

If an stwex. instruction has an effective address for which a normal store operation would
cause a DSI exception, the 603e will take the DSI exception without checking for the
reservation.

If the XER indicates that the byte count for an Iswi or stswi instruction is zero, a DSI
exception does not occur, regardless of the effective address.

The condition that caused the exception is defined in the DSISR. These conditions also use
the data address register (DAR) as shown in Table 4-11.

MOTOROLA Chapter 4. Exceptions 4-23

Table 4-11. DSI Exception—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction that caused the exception.
SRR1 0-15 Cleared
16-31 Loaded with bits 16—31 of the MSR
MSR POW 0 EE © FEO? 0 IR 0
TGPRO PR 0 SE 0 DR 0
ILE — FP' 0 BE © RI 0
P — " ME — FE12 0 LE Setto value of ILE
DSISR 0 Set if a load or store instruction results in a direct-store error exception.
1 Set by the data TLB miss exception handler if the translation of an attempted access is not

found in the primary hash table entry group (HTEG), or in the rehashed secondary HTEG, or in
the range of a DBAT register; otherwise cleared.

2-3 Cleared
4 Set if a memory access is not permitted by the page or BAT protection mechanism; otherwise
cleared.
5 Set if the Iwarx or stwex. instruction is attempted to direct-store space.
6 Set for a store operation and cleared for a load operation.
7-31 Cleared
DAR Set to the effective address of a memory element as described in the following list:

* Abyte in the first word accessed in the page that caused the DSI exception, for a byte, half word, or
word memory access.

* Abyte in the first word accessed in the BAT area that caused the DSI exception for a byte, half
word, or word access to a BAT area.

¢ A byte in the block that caused the exception for icbi, dcbz, dcbst, debf, or debi instructions.

¢ Any EA in the memory range addressed (for direct-store exceptions).

Notes:
1. The floating-point available bit is always cleared to 0 on the EC603e microprocessor.
2.FEO and FE1 are not supported on the EC603e microprocessor.

When a DSI exception is taken, instruction execution for the handler begins at offset
0x00300 from the physical base address indicated by MSR[IP].

The architecture permits certain instructions to be partially executed when they cause a DSI
exception. These are as follows:

¢ Load multiple or load string instructions—Some registers in the range of registers to
be loaded may have been loaded.

* Store multiple or store string instructions—Some bytes of memory in the range
addressed may have been updated. '

In these cases, the number of registers and amount of memory altered are instruction- and
boundary-dependent. However, memory protection is not violated. Furthermore, if some of
the data accessed is in direct-store space (SR[T] = 1) and the instruction is not supported
for direct-store accesses, the locations in direct-store space are not accessed.

For update forms, the update register (rA) is not altered.

4-24 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.5.4 IS| Exception (0x00400)

The ISI exception is implemented as it is defined by the PowerPC architecture. An ISI
exception occurs when no higher priority exception exists and an attempt to fetch the next
instruction fails for any of the following reasons:

* If an instruction TLB miss fails to find the desired PTE, then a page fault is
synthesized. The ITLB miss handler branches to the IST exception handler to retrieve
the translation from a storage device.

* An attempt is made to fetch an instruction from a direct-store segment while
instruction translation is enabled (MSR[IR] = 1).

* An attempt is made to fetch an instruction from no-execute memory.

* An attempt is made to fetch an instruction from guarded memory when MSR[IR] =
L.

» The fetch access violates memory protection.

Register settings for this exception are described in Chapter 6, “Exceptions,” in The
Programming Environments Manual.

When an ISI exception is taken, instruction execution for the handler begins at offset
0x00400 from the physical base address indicated by MSR[IP].

4.5.5 External Interrupt (0x00500)

An external interrupt is signaled to the 603e by the assertion of the INT signal as described
in Section 7.2.9.1, “Interrupt (INT)—Input.” The interrupt may not be recognized if a
higher priority exception occurs simultaneously or if the MSR[EE] bit is cleared when INT
is asserted.

After the INT is detected (and provided that MSR[EE] is set), the 603e generates a
recoverable halt to instruction completion. The 603e requires the next instruction in
program order to complete or except, block completion of any following instructions, and
allow the completed store queue to drain. If any other exceptions are encountered in this
process, they are taken first and the external interrupt is delayed until a recoverable halt is
achieved. At this time the 603e saves the state information and takes the external interrupt
as defined in the PowerPC architecture.

MOTOROLA Chapter 4. Exceptions 4-25

The register settings for the external interrupt are shown in Table 4-12.

Table 4-12. External Interrupt—Register Settings

Register Setting

SRR0O Set to the effective address of the instruction that the processor would have attempted to execute
next if no interrupt conditions were present.

SRR1 0-15 Cleared
16-31 Loaded from bits 16—-31 of the MSR

MSR POW 0 EE 0 FEO® 0 IR 0
TGPRO PR 0 SE 0 DR 0
ILE — FP 0 BE 0 Rl 0
P — ME — FE12 0 LE Setto value of ILE

Notes:

1. The floating-point available bit is always cleared to 0 on the EC603e microprocessor.
2. FEO and FE1 are not supported on the EC603e microprocessor.

When an external interrupt is taken, instruction execution for the handler begins at offset
0x00500 from the physical base address indicated by MSR[IP].

The 603e only recognizes the interrupt condition (INT asserted) if the MSR[EE] bit is set;
it ignores the interrupt condition if the MSR[EE] bit is cleared. To guarantee that the
external interrupt is taken, the INT signal must be held active until the 603e takes the
interrupt. If the INT signal is negated before the interrupt is taken, the 603e is not
guaranteed to take an external interrupt. The interrupt handler must send a command to the
device that asserted INT, acknowledging the interrupt and instructing the device to negate
INT.

4.5.6 Alignment Exception (0x00600)

This section describes conditions that can cause alignment exceptions in the 603e. Similar
to DSI exceptions, alignment exceptions use the SRRO and SRR1 to save the machine state
and the DSISR to determine the source of the exception. The 603e will initiate an alignment
exception when it detects any of the following conditions:

* The operand of a floating-point load or store operation is not word-aligned. (Not
supported on the EC603e microprocessor.)

¢ The operand of an Imw, stmw, Iwarx, or stwcx. instruction is not word-aligned.

* Alittle-endian access (MSR[LE] = 1) is misaligned.

¢ . A multiple or string access is attempted with the MSR[LE] bit set.

¢ The operand of a debz instruction is in a page that is write-through or caching-
inhibited.

4-26 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The register settings for alignment exceptions are shown in Table 4-12.

Table 4-13. Alignment Interrupt—Register Settings

Register Setting
SRRO Set to the effective address of the instruction that caused the exception.
SRR1 0-15 Cleared
16-31 Loaded from bits 16—31 of the MSR
MSR POW 0 EE 0 FEO? 0 IR 0
TGPRO PR 0 SE O DR O
LE — FP' 0 BE 0 Rl 0
P — ME — FE12 0 LE Setto value of ILE
DSISR 0-11 Cleared

12-13 Cleared. (Note that these bits can be set by several 64-bit PowerPC instructions that are
not supported in the 603e.)

14 Cleared
15-16 For instructions that use register indirect with index addressing—set to bits 29-30 of the
instruction.

For instructions that use register indirect with immediate index addressing—cleared.

17 For instructions that use register indirect with index addressing—set to bit 25 of the
instruction.
For instructions that use register indirect with immediate index addressing— Set to bit 5 of
the instruction

18-21 For instructions that use register indirect with index addressing—set to bits 21-24 of the
instruction.
For instructions that use register indirect with immediate index addressing—set to bits 1—4
of the instruction. -

22-26 Set to bits 6-10 (identifying either the source or destination) of the instruction. Undefined
for debz.

27-31 Set to bits 11~15 of the instruction (rA)
Set to either bits 11-15 of the instruction or to any register number not in the range of
registers loaded by a valid form instruction, for Imw, Iswi, and Iswx instructions. Otherwise
undefined.

DAR Set to the EA of the data access as computed by the instruction causing the alignment exception.

Notes:
1. The floating-point available bit is always cleared to 0 on the EC603e microprocessor.
2. FEO and FE1 are not supported on the EC603e microprocessor.

The architecture does not support the use of an unaligned EA by lwarx or stwex.
instructions. If one of these instructions specifies an unaligned EA, the exception handler
should not emulate the instruction, but should treat the occurrence as a programming error.

4.5.6.1 Integer Alignment Exceptions

The 603e is optimized for load and store operations that are aligned on natural boundaries.
Operations that are not naturally aligned may suffer performance degradation, depending
on the type of operation, the boundaries crossed, and the mode that the processor is in
during execution. More specifically, these operations may either cause an alignment
exception or they may cause the processor to break the memory access into multiple,
smaller accesses with respect to the cache and the memory subsystem.

MOTOROLA Chapter 4. Exceptions 4-27

The 603e can initiate an alignment exception for the access shown in Table 4-14. In this
case, the appropriate range check is performed before the instruction begins execution. As
aresult, if an alignment exception is taken, it is guaranteed that no portion of the instruction
has been executed.

Table 4-14. Access Types

MSRIDR] SR[T] Access Type

1 0 Page-address translation access

4.5.6.1.1 Page Address Translation Access

A page-address translation access occurs when MSR[DR] is set, SR[T] is cleared and there
is not a match in the BAT. Note the following points:

* The following is true for all loads and stores except strings/multiples:
— Byte operands never cause an alignment exception.
— Half-word operands can cause an alignment exception if the EA ends in OxFFE.
— Word operands can cause an alignment exception if the EA ends in OXFFD-FFF.

— Double-word operands cause an alignment exception if the EA ends in
0xFF9-FFF.

* The dcbz instruction causes an alignment exception if the access is to a page or
block with the W (write-through) or I (cache-inhibit) bit set in the TLB or BAT,
respectively.

A misaligned memory access that does not cause an alighment exception will not perform
as well as an aligned access of the same type. The resulting performance degradation due
to misaligned accesses depends on how well each individual access behaves with respect to
the memory hierarchy. At a minimum, additional cache access cycles are required that can
delay other processor resources from using the cache. More dramatically, for an access to
anoncacheable page, each discrete access involves individual processor bus operations that
reduce the effective bandwidth of that bus.

Finally, note that when the 603e is in page address translation mode, there is no special
handling for accesses that fall into BAT regions.

4.5.6.2 Floating-Point Alignment Exceptions

The 603e implements the alignment exception as it is defined in the PowerPC architecture.
For information on bit settings and how exception conditions are detected, refer to The
Programming Environments Manual.

4-28 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Note that the PowerPC architecture allows individual processors to determine whether an
exception is required to handle various alignment conditions. The 603e initiates an
alignment exception when it detects any of the following conditions:

The operand of a floating-point load or store operation is not word-aligned.

The operand of a dcbz instruction is in a page that is write-through or caching-
inhibited for a virtual mode access.

The operand of an Imw, stmw, lwarx, or stwcx. instruction is not word-aligned.
Note that unlike other alignment exceptions, which store the address as computed
by the instruction in the DAR, alignment exceptions for load or store multiple
instructions store that address value + 4 into the DAR.

A little-endian access is misaligned.
A multiple access is attempted while the little-endian, MSR[LE], bit is set.

4.5.7 Program Exception (0x00700)

The 603e implements the program exception as it is defined by the PowerPC architecture
(OEA). A program exception occurs when no higher priority exception exists and one or
more of the exception conditions defined in the OEA occur.

When a program exception is taken, instruction execution for the handler begins at offset
0x00700 from the physical base address indicated by MSR[IP]. The exception conditions
are as follows:

L

Floating-point enabled exception—These exceptions correspond to IEEE-defined
exception conditions, such as overflows, and divide by zeros that may occur during
the execution of a floating-point arithmetic instruction. As a group, these exceptions
are enabled by the FEO and FE1 bits in the in the MSR. Individual conditions are
enabled by specific bits in the FPSCR. For general information about this exception,
see The Programming Environments Manual. For more information about how these
exceptions are implemented in the 603e, see Section 4.5.7.1, “IEEE Floating-Point
Exception Program Exceptions.”

Note: The floating-point enabled exception is not supported on the EC603e
MiCroprocessor.

Tllegal instruction—An illegal instruction program exception is generated when
execution of an instruction is attempted with an illegal opcode or illegal combination
of opcode and extended opcode fields (including PowerPC instructions not
implemented in the 603e). These do not include those optional instructions treated
as no-ops.

Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the MSR
register user privilege bit, MSR[PR], is set. In the 603e, this exception is generated
for mtspr or mfspr with an invalid SPR field if SPR[0] = 1 and MSR[PR] = 1. This
may not be true for all PowerPC processors.

MOTOROLA Chapter 4. Exceptions 4-29

i

» Trap—A trap type program exception is generated when any of the conditions
specified in a trap instruction is met.

4.5.7.1 IEEE Floating-Point Exception Program Exceptions

Floating-point exceptions (not supported on the EC603e microprocessor) are signaled by
condition bits set in the floating-point status and control register (FPSCR). They can cause
the system floating-point enabled exception handler to be invoked. The 603e handles all
floating-point exceptions precisely. The 603e implements the FPSCR as it is defined by the
PowerPC architecture; for more information about the FPSCR, see The Programming
Environments Manual. :

Floating-point operations that change exception sticky bits in the FPSCR may suffer a
performance penalty. When an exception is disabled in the FPSCR and MSR[FE] = 0,
updates to the FPSCR exception sticky bits are serialized at the completion stage. This
serialization may result in a one- or two-cycle execution delay. The penalty is incurred only
when the exception bit is changed and not on subsequent operations with the same
exception. See Chapter 6, “Instruction Timing,” for a full description of completion
serialization.

When an exception is enabled in the FPSCR, the instruction traps to the emulation trap
exception vector without updating the FPSCR or the target FPR. The emulation trap
exception handler is required to complete the instruction. The emulation trap exception
handler is invoked regardless of the FE setting in the MSR.

The two IEEE floating-point imprecise modes, defined by the PowerPC architecture when
MSR[FEQ] # MSRI[FEL1], are treated as precise exceptions (that is, MSR[FEO] =
MSR(FE1] = 1). This is regardless of the setting of MSR[NI].

For the highest and most predictable floating-point performance, all exceptions should be
disabled in the FPSCR and MSR. For more information about the program exception, see
The Programming Environments Manual.

4.5.7.2 lllegal, Reserved, and Unimplemented Instructions

Program Exceptions
In accordance with the PowerPC architecture, the 603e considers all instructions defined
for 64-bit implementations and unimplemented optional instructions, such as fsqrt, eciwx,
and ecowx as illegal and takes a program exception when one of these instructions is
encountered. Likewise, if a supervisor-level instruction is encountered when the processor
is in user-level mode, a privileged instruction-type program exception is taken.

The 603e implements some instructions, such as double-precision floating-point and
load/store string instructions in software. These instructions take the 603e-specific
emulation trap exception (0x01600) rather than a program exception.

4-30 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.5.8 Floating-Point Unavailable Exception (0x00800)

A floating-point unavailable exception occurs when no higher priority exception exists, an
attempt is made to execute a floating-point instruction (including floating-point load, store,
and move instructions), and the floating-point available bit in the MSR is disabled
(MSR[FP] = 0); note that on the EC603e microprocessor, the MSR[FP] is always cleared
to 0. Register settings for this exception are described in Chapter 6, “Exceptions,” in The
Programming Environments Manual

When a floating-point unavailable exception is taken, instruction execution for the handler
begins at offset 0x00800 from the physical base address indicated by MSR[IP].

4.5.9 Decrementer Exception (0x00900)

The 603e implements the decrementer interrupt exception as it is defined in the PowerPC
architecture. A decrementer exception request is made when the decrementer counts down
through zero. The request is held until there are no higher priority exceptions and
MSRI[EE] = 1. At this point the decrementer exception is taken. If multiple decrementer
exception requests are received before the first can be reported, only one exception is
reported. The occurrence of a decrementer exception cancels the request. Register settings
for this exception are described in Chapter 6, “Exceptions,” in The Programming
Environments Manual.

When a decrementer exception is taken, instruction execution for the handler begins at
offset 0x00900 from the physical base address indicated by MSR[IP].

4.5.10 System Call Exception (0x00C00)

The 603e implements the system call exception as it is defined by the PowerPC
architecture. A system call exception request is made when a system call (sc) instruction is
completed. If no higher priority exception exists, the system call exception is taken, with
SRRO being set to the EA of the instruction following the sc instruction. Register settings
for this exception are described in Chapter 6, “Exceptions,” in The Programming
Environments Manual.

When a system call exception is taken, instruction execution for the handler begins at offset
0x00C00 from the physical base address indicated by MSR[IP].

MOTOROLA Chapter 4. Exceptions 4-31

4.5.11 Trace Exception (0x00D00)
The trace exception is taken under one of the following conditions:

* When MSRJ[SE] is set, a single-step instruction trace exception is taken when no
higher priority exception exists and any instruction (other than rfi or isync) is
successfully completed. Note that other PowerPC processors will take the trace
exception on isync instructions (when MSR[SE] is set); the 603e does not take the
trace exception on isync instructions. Single-step instruction trace mode is described
in Section 4.5.11.1, “Single-Step Instruction Trace Mode.”

¢ When MSR[BE] is set, the branch trace exception is taken after each branch
instruction is completed.

» The 603e deviates from the architecture by not taking trace exceptions on isync
instructions. Single-step instruction trace mode is described in Section 4.5.11.2,
“Branch Trace Mode.”

Successful completion implies that the instruction caused no other exceptions. A trace
exception is never taken for an se instruction or for a trap instruction that takes a trap
exception.

MSR[SE] and MSR[BE] are cleared when the trace exception is taken. In the normal use
of this function, MSR[SE] and MSR[BE] are restored when the exception handler returns
to the interrupted program using an rfi instruction.

Register settings for the trace mode are described in Table 4-15.
Table 4-15. Trace Exception—Register Settings

Register Setting Description
SRRO Set to the address of the instruction following the one for which the trace exception was generated.
SRR1 0-15 Cleared
16-31 Loaded from bits 16—31 of the MSR
MSR POW 0 EE © FEO® 0 IR 0
TGPRO PR 0 SE 0 DR 0
ILE — FP' o0 BE 0 RI 0
| — ME — FE12 0 LE Setto value of ILE
Notes:

1. The floating-point available bit is always cleared to 0 on the EC603e microprocessor.
2. FEO and FE1 are not supported on the EC603e microprocessor.

Note that a trace or instruction address breakpoint exception condition generates a soft stop
instead of an exception if soft stop has been enabled by the JTAG/COP logic. If trace and
breakpoint conditions occur simultaneously, the breakpoint conditions receive higher
priority.

When a trace exception is taken, instruction execution for the handler begins as offset
0x00D00 from the base address indicated by MSR[IP].

4-32 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.5.11.1 Single-Step Instruction Trace Mode

The single-step instruction trace mode is enabled by setting MSR[SE]. Encountering the

single-step breakpoint causes one of the following actions:

* Trap to address vector 0x00D0O
* Soft stop (wait for quiescence)

The default single-step trace action traps after an instruction execution and completion. The
soft stop option, in which the 603e stops in a restartable state after an instruction execution
and completion, can be enabled only through the COP function. The ESP, which interfaces
to the COP, can restart the 603e after a soft stop. Refer to the section on JTAG/COP and
Section 8.9, “IEEE 1149.1-Compliant Interface,” for more information.

4.5.11.2 Branch Trace Mode
The branch trace mode is enabled by setting MSR[BE]. Encountering the branch trace
breakpoint causes one of the following actions:

* Trap to interrupt vector 0x00D00

* Soft stop

» Hard stop

The default branch trace action is to trap after the completion of any branch instmctibn
whenever MSR[BE] is set. However, if soft stop is enabled through the COP interface, the
603e stops in a restartable state. If hard stop is enabled through the COP interface, the 603e

stops immediately without waiting to reach a restartable state. Therefore, the 603e_is not
guaranteed to be restartable after a hard stop. For more 1nfonnat10n see Sectlon 8.9, “IEEE ’

1149.1-Compliant Interface.”

4.5.12 Instruction TLB Miss Exception (0x01 000)

When the effective address for an instruction load, store, or cache operatlon Cannot be;
translated by the ITLBs, an instruction TLB miss exception is generated. Register settings

for the instruction and data TLB miss exceptions are described in Table 4-16.

MOTOROLA Chapter 4. Exceptions 4-33

Table 4-16. Instruction and Data TLB Miss Exceptions—Register Settings

Register Setting Description
SRRO Set to the address of the next instruction to be executed in the program for which the TLB miss
exception was generated.
SRR1 0-3 Loaded from Condition register CRO field
4-12 Cleared

13 0 = data TLB miss
1 = instruction TL.B miss

14 0 = replace TLB associativity set 0
1 = replace TLB associativity set 1

15 0 = data TLB miss on store (or C = 0)
1 = data TLB miss on load

16-31 Loaded from bits 16-31 of the MSR

MSR POW 0 EE 0 FEO2 0 R 0
TGPR1 PR © SE 0 DR 0
LE — FP' 0 BE 0 Rl 0
| J— ME — FE12 0 LE Setto value of ILE
Notes:

1. The floating-point available bit is always cleared to 0 on the EC603e microprocessor.
2. FEO and FE1 are not supported on the EC603e microprocessor.

If the instruction TLB miss exception handler fails to find the desired PTE, then a page fault
must be synthesized. The handler must restore the machine state and turn oft the GPRs
before invoking the ISI exception (0x00400).

Software table search operations are discussed in Chapter 5, “Memory Management.”

When an instruction TLB miss exception is taken, instruction execution for the handler
begins at offset 0x01000 from the physical base address indicated by MSR[IP].

4.5.13 Data TLB Miss on Load Exception (0x01100)

When the effective address for a data load or cache operation cannot be translated by the
DTLBs, a data TLB miss on load exception is generated. Register settings for the
instruction and data TLB miss exceptions are described in Table 4-16.

If a data TLB miss exception handler fails to find the desired PTE, then a page fault must
be synthesized. The handler must restore the machine state and turn off MSR[TGPR]
before invoking the DSI exception (0x00300).

Software table search operations are discussed in Chapter 5, “Memory Management.”

When a data TLB miss on load exception is taken, instruction execution for the handler
begins at offset 0x01100 from the physical base address indicated by MSR[IP].

4-34 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.5.14 Data TLB Miss on Store Exception (0x01200)

When the effective address for a data store or cache operation cannot be translated by the
DTLBs, a data TLB miss on store exception is generated. The data TLB miss on store
exception is also taken when the changed bit (C = 0) for a DTLB entry needs to be updated
for a store operation. Register settings for the instruction and data TLB miss exceptions are
described in Table 4-16.

If a data TLB miss exception handler fails to find the desired PTE, then a page fault must
be synthesized. The handler must restore the machine state and turn off the TGPRs before
invoking a DSI exception (0x00300).

Software table search operations are discussed in Chapter 5, “Memory Management.”

When a data TLB miss on store exception is taken, instruction execution for the handler n

begins at offset 0x01200 from the physical base address indicated by MSR[IP].

4.5.15 Instruction Address Breakpoint Exception (0x01300)

The instruction address breakpoint is controlled by the IABR special purpose register.
IABR[0-29] holds an effective address to which each instruction is compared. The
exception is enabled by setting IABR[30]. Note that the 603¢ ignores the translation enable
bit (IABR[31}). The exception is taken when an instruction breakpoint address matches on
the next instruction to complete. The instruction tagged with the match is not completed
before the instruction address breakpoint exception is taken.

The breakpoint action can be one of the following:

» Trap to interrupt vector 0x01300 (default)
* Soft stop

The bit settings for when an instruction address breakpoint exception is taken are shown in
Table 4-17.

Table 4-17. Instruction Address Breakpoint Exception—Register Settings

Register Setting Description

SRRO Set to the address of the next instruction to be executed in the program for which the TLB miss
exception was generated.

SRR1 0-15 Cleared
16-31 Loaded from bits 16—31 of the MSR

MSR POW 0 EE 0 FEO? 0 R o0
TGPRO PR © SE 0 DR 0
ILE — FPT 0 BE 0 Rl 0 ‘
P — ME — FE1Z 0 LE Setto value of ILE

Notes:

1. The floating-point available bit is always cleared to 0 on the EC603e microprocessor.
2. FEO and FE1 are not supported on the EC603e microprocessor.

MOTOROLA Chapter 4. Exceptions 4-35

The default breakpoint action is to trap before the execution of the matching instruction.

The soft stop feature can be enabled only through the COP interface. With soft stop enabled,
the 603e stops in a restartable state, while with hard stop enabled, the 603e stops
immediately without attempting to reach a restartable state. Upon restarting from a soft
stop, the matching instructions are executed and completed unless it generates an
exception. For soft stops, the next ten instructions that could have passed the IABR check
can be monitored only by single-stepping the processor. When soft stops are used, the
address compare must be separated by at least 10 instructions.

If soft stop is enabled, only one soft stop is generated before completion of an instruction
with an IABR match, regardless of whether a soft stop is generated before that instruction
for any other reason, such as trace mode on for the preceding instruction or a COP soft stop
request.

Table 4-18 shows the priority of actions taken when more than one mode is enabled for the
same instruction.

Table 4-18. Breakpoint Action for Multiple Modes Enabled for the Same Address

IABR[IE] | MSR[BE] | MSR[SE] | First Action | Next Action Comments

1 1 0 Instruction Trace Enabling both modes is useful only if both
address (branch) trace and address breakpoint interrupts

are needed.

1 0 1 Instruction Trace (single- { Enabling both modes is useful only if
address step) different breakpoint actions are required.
breakpoint

0 1 1 Trace None The action for branch trace and single-step
(branch) trace is the same. Enabling both trace

modes is redundant except for hard stop
on branches.

1 1 1 Instruction Trace Enabling all modes is redundant. This
address entry is for clarification only.
breakpoint

Note that a trace or instruction address breakpoint exception condition generates a soft stop
instead of an exception if soft stop has been enabled by the JTAG/COP logic. If trace and
breakpoint conditions occur simultaneously, the breakpoint conditions receive higher
priority.

The 603e requires that an mtspr instruction that updates the TABR be followed by a
context-synchronizing instruction. If the mtspr instruction enables the instruction address
breakpoint exception, the context-synchronizing instruction cannot generate a breakpoint
response. The 603e also cannot block a breakpoint response on the context-synchronizing
instruction if the breakpoint was disabled by the mtspr instruction. See “Synchronization
Requirements for Special Registers and TLBs” in Chapter 2, “Register Set,” in The
Programming Environments Manual” for more information on this requirement.

4-36 MPCSO3e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.5.16 System Management Interrupt (0x01400)

The system management interrupt behaves like an external interrupt except for the signal
asserted and the vector taken. A system management interrupt is signaled to the 603e by the
assertion of the SMI signal. The interrupt may not be recognized if a higher priority
exception occurs simultaneously or if the MSR[EE] bit is cleared when SMI is asserted.
Note that SMI takes priority over INT if they are recognized simultaneously.

After the SMI is detected (and provided that MSR[EE] is set), the 603e generates a
recoverable halt to instruction completion. The 603e requires the next instruction in
program order to complete or except, block completion of any following instructions, and
allow the completed store queue to drain. If any higher priority exceptions are encountered
in this process, they are taken first and the system management interrupt is delayed until a
recoverable halt is achieved. At this time the 603e saves state information and takes the
system management interrupt.

The register settings for the external interrupt exception are shown in Table 4-19.

Table 4-19. System Management Interrupt—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to complete
next if no interrupt conditions were present.

SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR

MSR POW 0 EE © FEO? 0 IR 0
TGPRO PR 0 SE 0 DR ©0
ILE — FP! o BE 0 RI 0
P — ME — FE12 0 LE Setto value of ILE

Notes:

1. The floating-point available bit is always cleared to 0 on the EC603e microprocessor.
2. FEO and FE1 are not supported on the EC603e microprocessor.

When a system management interrupt is taken, instruction execution for the handler begins
at offset 0x01400 from the physical base address indicated by MSR[IP].

The 603e recognizes the interrupt condition (SMI asserted) only if the MSR[EE] bit is set;
and ignores the interrupt condition otherwise. To guarantee that the external interrupt is
taken, the SMI signal must be held active until the 603e takes the interrupt. If the SMI signal
is negated before the interrupt is taken, the 603e is not guaranteed to take a system
management interrupt. The interrupt handler must send a command to the device that
asserted SMI, acknowledging the interrupt and instructing the device to negate SML.

MOTOROLA ' Chapter 4. Exceptions 4-37

4-38 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Chapter 5 |
Memory Management

This chapter describes the PowerPC 603e microprocessor’s implementation of the memory
management unit (MMU) specifications provided by the PowerPC operating environment
architecture (OEA) for PowerPC processors. The 603e MMU implementation is very
similar to that of the PowerPC 603 microprocessor except that the 603e implements an
extra key bit in the SRR1 register that simplifies the table search software. In addition,
because the 603e does not support direct-store bus accesses, it causes a DSI exception when
a direct-store segment is encountered. Refer to Appendix C, “PowerPC 603 Processor
System Design and Programming Considerations,” for a complete description of the
differences applicable to the PowerPC 603 microprocessor.

The primary function of the MMU in a PowerPC processor is the translation of logical
(effective) addresses to physical addresses (referred to as real addresses in the architecture
specification) for memory accesses, and I/O accesses (I/O accesses are assumed to be
memory-mapped). In addition, the MMU provides access protection on a segment, block,
or page basis. This chapter describes the specific hardware used to implement the MMU
model of the OEA in the 603e. Refer to Chapter 7, “Memory Management,” in The
Programming Environments Manual for a complete description of the conceptual model.

Two general types of accesses generated by PowerPC processors require address
translation—instruction accesses, and data accesses to memory generated by load and store
instructions. Generally, the address translation mechanism is defined in terms of segment
descriptors and page tables used by PowerPC processors to locate the effective-to-physical
address mapping for instruction and data accesses. The segment information translates the
effective address to an interim virtual address, and the page table information translates the
virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as on-
chip segment registers on 32-bit implementations (such as the 603e). In addition, two
translation lookaside buffers (TLBs) are implemented on the 603e to keep recently-used
page address translations on-chip. Although the PowerPC OEA describes one MMU
(conceptually), the 603e hardware maintains separate TLBs and table search resources for
instruction and data accesses that can be accessed independently (and simultaneously).
Therefore, the 603e is described as having two MMUs, one for instruction accesses
(IMMU) and one for data accesses (DMMU).

MOTOROLA Chapter 5. Memory Management 51

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as pairs
of BAT registers that are accessible as supervisor-level special-purpose registers (SPRs).
There are separate instruction and data BAT mechanisms, and in the 603e, they reside in
the instruction and data MMU s respectively.

The MMUs, together with the exception processing mechanism, provide the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 4, “Exceptions.” Section 4.2, “Exception Processing,” describes the MSR, which
controls some of the critical functionality of the MMUs.

5.1 MMU Features

The 603e implements the memory management specification of the PowerPC OEA for 32-
bit implementations. Thus, it provides 4 Gbytes of effective address space accessible to
supervisor and user programs with a 4-Kbyte page size and 256-Mbyte segment size. In
addition, the MMUss of 32-bit PowerPC processors use an interim virtual address (52 bits)
and hashed page tables in the generation of 32-bit physical addresses. PowerPC processors
also have a block address translation (BAT) mechanism for mapping large blocks of
memory. Block sizes range from 128 Kbyte to 256 Mbyte and are software-programmable.

The 603e completely implements all features required by the MMU specifications of the
PowerPC architecture (OEA) for 32-bit implementations. Table 5-1 summarizes all 603¢
MMU features including the architectural features of PowerPC MMUs (defined by the
OEA) for 32-bit processors and the implementation-specific features provided by the 603e.

Table 5-1. MMU Features Summary

Architecturally Defined/

Feature Category 603e-Specific

Feature

Address ranges Architecturally defined 2%2 pytes of effective address

252 pytes of virtual address

232 pytes of physical address

Page size Architecturally defined 4 Kbytes

Segment size Architecturally defined 256 Mbytes

Block address Architecturally defined Range of 128 Kbyte—256 Mbytes sizes
translation .

Implemented with IBAT and DBAT registers in BAT array

Memory protection Architecturally defined Segments selectable as no-execute

Pages selectable as user/supervisor and read-only

Blocks selectable as user/supervisor and read-only

Page history Architecturally defined Referenced and changed bits defined and maintained

52 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 5-1. MMU Features Summary (Continued)

Architecturally Defined/

Feature Category 603e-Specific Feature

Page address Architecturally defined Translations stored as PTEs in hashed page tables in memory

translation - - - -
Page table size determined by mask in SDR1 register

TLBs Architecturally defined Instructions for maintaining optional TLBs (tlbie instruction in
603e)

603e-specific 64-entry, two-way set associative ITLB

64-entry, two-way set associative DTLB

Segment descriptors | Architecturally defined Stored as segment registers on-chip

Page table search 603e-specific Three MMU exceptions defined: ITLB miss exception, DTLB

support miss on load exception, and DTLB miss on store (or C = 0)

exception; MMU-related bits set in SRR1 for these exceptions

IMISS and DMISS registers (missed effective address)
HASH1 and HASH2 registers (PTEG addr)

ICMP and DCMP registers (for comparing PTES)

RPA register (for loading TLBs)

tibli rB instruction for loading ITLB entries
tibld rB instruction for loading DTLB entries

Shadow registers for GPRO-GPR3 (can use r0-r3 in table
search handler without corruption of r0-r3 in context that was
previously executing)

5.1.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, or cache instruction, and when it fetches the next
instruction. The effective address is translated to a physical address according to the
procedures described in Chapter 7, “Memory Management,” in The Programming
Environments Manual, augmented with information in this chapter. The memory
subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, “Effective
Address Calculation.”

5.1.2 MMU Organization

Figure 5-1 shows the conceptual organization of a PowerPC MMU in a 32-bit
implementation; note that it does not describe the specific hardware used to implement the
memory management function for a particular processor. Processors may optionally
implement on-chip TLBs and may optionally support the automatic search of the page
tables for PTEs. In addition, other hardware features (invisible to the system software) not
depicted in the figure may be implemented.

MOTOROLA Chapter 5. Memory Management 5-3

Figure 5-2 and Figure 5-3 show the conceptual organization of the 603e instruction and
data MMUs, respectively. The instruction addresses shown in Figure 5-2 are generated by
the processor for sequential instruction fetches and addresses that correspond to a change
of program flow. Data addresses shown in Figure 5-3 are generated by load and store
instructions and by cache instructions.

As shown in the figures, after an address is generated, the higher-order bits of the effective
address, EAO-EA19 (or a smaller set of address bits, EAO-EAn, in the cases of blocks), are
translated into physical address bits PAO-PA19. The lower-order address bits, A20-A31 are
untranslated and therefore identical for both effective and physical addresses. After
translating the address, the MMUs s pass the resulting 32-bit physical address to the memory
subsystem.

In addition to the higher-order address bits, the MMUSs automatically keep an indicator of
whether each access was generated as an instruction or data access and a supervisor/user
indicator that reflects the state of the PR bit of the MSR when the effective address was
generated. In addition, for data accesses, there is an indicator of whether the access is for a
load or a store operation. This information is then used by the MMUs to appropriately direct
the address translation and to enforce the protection hierarchy programmed by the
operating system. Section 4.2, “Exception Processing,” describes the MSR, which controls
some of the critical functionality of the MMUs.

The figures show the way in which the A20-A26 address bits index into the on-chip
instruction and data caches to select a cache set. The remaining physical address bits are
then compared with the tag fields (comprised of bits PAO-PA19) of the four selected cache
blocks to determine if a cache hit has occurred. In the case of a cache miss, the instruction
or data access is then forwarded to the bus interface unit which then initiates an external
memory access.

5-4 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Data
Accesses

EAO-EA19

Instruction
Accesses

TIBAT3U _

IBAT3L

o

G

&5
<
d
QA
<
ﬁ%&@gﬂ
_ PAO-PA31
:- _ ! Optional
Figure 5-1. MMU Conceptual Block Diagram—32-Bit Implementations
MOTOROLA Chapter 5. Memory Management 5-5

Instruction
Unit A20-A31

BPU

IBATOL

IBAT3U

| Cache

0 TAGS

Select
A20-A26 |
127 |PAO-PA19

IMISS

ICMP » Compare
| Cache
Hit/Miss

PAO-PA31

Figure 5-2. IMMU Block Diagram

5-6 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Load/Store
Unit A20-A31

DBATOL

DBAT3U

D Cache

0] TAGS

Select
A20-A26
127 | PAO—PA19

Compare

l

D Cache
Hit/Miss

\

PAO-PA31
Figure 5-3. DMMU Block Diagram

MOTOROLA - Chapter 5. Memory Management 5-7

5.1.3 Address Translation Mechanisms
PowerPC processors support the following four types of address translation:

» Page address translation—translates the page frame address for a 4-Kbyte page size

* Block address translation—translates the block number for blocks that range in size
from 128 Kbyte to 256 Mbyte

» Direct-store interface address translation—used to generate direct-store interface
accesses on the external bus; not implemented in the 603e.

* Real addressing mode translation—when address translation is disabled, the
physical address is identical to the effective address.

Figure 5-4 shows the three implemented address translation mechanisms provided by the
603¢e MMUs. The segment descriptors shown in the figure control the page address
translation mechanism. When an access uses page address translation, the appropriate
segment descriptor is required. In 32-bit implementations, one of the 16 on-chip segment
registers (which contain segment descriptors) is selected by the four highest-<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>