

o
<
@
<.
@
=

Programming Model

Instruction and Data Cache Operation
Exceptions

Memory Management

Instruction Timing

Signal Descriptions

System Interface Operation

Power Management

PowerPC Instruction Set Listings

Instructions Not Implemented

PowerPC 603 Processor System Design
and Programming Considerations

Glossary

Index

{0 oo -~ ® & - e \J

Overview

Programming Model

Instruction and Data Cache Operation
Exceptions

Memory Management

Instruction Timing

Signal Descriptions

System Interface Operation

Power Management

PowerPC Instruction Set Listings

Instructions Not Implemented

PowerPC 603 Processor System Design

and Programming Considerations

Glossary

Index

MPC603EUM/AD
11/97
REV. 1

MPC603e & EC603e

RISC Microprocessors User's Manual
with Supplement for PowerPC 603™ Microprocessor

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.
Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express or
implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in this
document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do
vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical
experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other
application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmiess against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent
regarding the design or manufacture of the part.

Motorola and @ are registered trademarks and EC603e is a trademark of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action
Employer.

The PowerPC name, the PowerPC logotype, and PowerPC 603 are trademarks of International Business Machines Corporation used by Motorola under
license from International Business Machines Corporation.

© Motorola Inc. 1997. All rights reserved.
Portions hereof © International Business Machines Corp. 1991-1997. All rights reserved.

CONTENTS

Paragraph . Page
Num%er Title Numbger
About This Book

AUGICIICE ...ttt ettt ettt b e bbb st ettt XXixX

OTZANIZALION......ceveventenieiieiieiietete ettt sttt s e besee ettt e besnessenaens XXix

Suggested REAAING.......ccveveeierieriiieiiierieeenesteete ettt se e XXX

CONVENLIONS ..euvirienieriieiieniienteerteetestesaeestesseesesstestasseesesseessessesseesstasseasseessesnsn XXXiii

Acronyms and ADDreviationsceceeiereeierirnienenieiescete et XXX1V

Terminology CONVENTIONScocueriiriierieriieniiereeteiesieeitesreseeesestesaeesseesseeanes XXXVii

Chapter 1
Overview

1.1 OVEIVIBW ...tiniitieiiieteeteteetee e et asteesseesaesatesseenseestansessesseessensaestenstenssensteseansasneans 1-1
1.1.1 FRALUTES ...ttt st eaa e b s 1-2
1.1.2 System Design and Programming Considerations.............cccccceueeverenveinuennnune. 1-7
1.1.2.1 Hardware FEaturescocevieriienienieeieie ettt ettt 1-7
1.1.2.1.1 Replacement of XATS Signal by CSE1 Signal.......ccccccceeevieneniccnnenne. 1-7
1.1.2.1.2 Addition of Half-Clock Bus Multipliers.........cccececevuecrueeeeneeencncnnennnnes 1-7
1.1.2.2 SOftWAre FEAtUIEScovtiiiieriieiieiieieeeeetee ettt 1-8
1.1.2.2.1 16-Kbyte Instruction and Data Caches..........cceceveeieneescniieniieneenieneene 1-8
1.1.2.22 Clock Configuration Available in HID1 Registerccccccccevcveucnnnene. 1-8
1.1.2.2.3 Performance Enhancements..............ccecueevirnieneesieneenienieenieeieeieeeesaeeneeen 1-8
1.1.3 INSrUCHON UNIE..cuiiiieieeieiieieeice ettt e st sae e esaeas 1-9
1.1.3.1 Instruction Queue and Dispatch Unitccoceoiiiniiiininininiiies 1-9
1.1.3.2 Branch Processing Unit (BPU).......ccooiiviiiiiiiiniiieceeeceereeteseeeeeeee 1-9
1.14 Independent Execution UnitS..........ccceeeerierienenienieninieneeieeeesieesreeseeeenes 1-10
1.14.1 Integer Unit (TU) ..cccooeeiieiiiieeieeieeeee ettt e 1-10
1.14.2 Floating-Point Unit (FPU)cccoiviiiniiiniirenencneteeeecteiesieneesaeeienne 1-10
1.1.4.3 Load/Store Unit (LSU) ..cocuiiiiiiiieeiee et 1-11
1.144 System Register Unit (SRU)...cc.coeeirininiiiniiieieccercceeeeeeeeeee 1-11
1.14.5 ComPIEtion Utc.ceeeierienienierieeieeeesersteeniesteteeeestessesseeseeeessesessensens 1-11
1.1.5 Memory SubsyStem SUPPOTt.........ccvereerierirrieeieiereeteneenre e eereeseeeseesseenaeeas 1-12
1.1.5.1 Memory Management Units (MMUS).......cocoovereeenerienieneeneeneneneeenenene 1-12
1.1.5.2 CaChE UNILS...ceeeeieieeiteetee ettt et et ae et eaeenee 1-13
1.1.6 Processor Bus INtErfacecccoocceviiierienienieicieiriereeeteeeeere e sesaeaene 1-14
MOTOROLA Contents iii

CONTENTS

Paragraph . Page
Number Title Number
1.1.7 System Support FUNCHONSc.coveveiviviiiinirieiecnieiceieiereiccrececse e 1-14
1.1.7.1 Power Management
1.1.7.2 Time Base/DECIEMENLETccrureerreuerreirrenienireiintenteseesseseseeseseneseseesennes 1-15
1.1.7.3 IEEE 1149.1 JTAG)/COP Test Interface.........cccccevveeeveecrrevreeereeeeeeveennnn. 1-16
1.1.7.4 CIOCK MUILIPHET ..ottt st ssestesee s sae e nes 1-16
1.2 PowerPC Architecture Implementation...........coueeeeierrieiereneneneneneeeeesrenneneenns 1-16
13 - Implementation-Specific Informationccccceevviinniiniiiiie 1-16
1.3.1 Programming MoOdel.............cccveeiiiiniienininiieiniceieiieeenie e 1-17
1.3.1.1 Processor Version Register (PVR)ccc.ccevnniiiiniiniii 1-18
1.3,1.2 Hardware Implementation Register O (HIDO).............ccoovvevreerverieenrienanns 1-18
1.3.1.3 Run_N Counter Register (Run_N)
1.3.14 General-Purpose Registers (GPRS)ccooeveivienincniecnicnccecceiceeen 1-19
1.3.1.5 Floating-Point Registers (FPRS).......cccoerererenierenioereneneinnereierenieienen 1-19
1.3.1.6 Condition Register (CR)......c.cccevvveuiriieinieerieeeienieesieenieeieeerevereeeeeseenes 1-19
1.3.1.7 Floating-Point Status and Control Register (FPSCR)cc.cccoviininnn 1-19
1.3.1.8 Machine State Register (MSR)
1.3.1.9 Segment Registers (SRS)c.ooiirciicnincniccinenne.
1.3.1.10 Special-Purpose Registers (SPRS)......c.ccecuevieviniiniiiiniiinicincniiiciinee 1-20
1.3.1.10.1 USEr-Level SPRS ..ottt 1-20
1.3.1.10.2 Supervisor-Level SPRSccccovreririniinienenienrereeneneeseeeeeeieeeeeees 1-20
1.3.2 Instruction Set and Addressing MOdEs........c.coecvveiiuiiiiniininiicniiniininens 1-23
1.3.2.1 PowerPC Instruction Set and Addressing Modes...........c.ccoeecininnnnnincnnes 1-23
1.3.2.1.1 PowerPC Instruction Set
1.3.2.1.2 Calculating Effective Addressesccccoevviininiiiniicnniinieiinne, 1-24
1.3.2.2 Implementation-Specific Instruction Set.........cc.coeeerervenerenerienerenencenes 1-25
1.3.3 Cache Implementation
1.3.3.1 PowerPC Cache CharacCteristiCscoeeueverueerremreuerenuenieenierenereeseseeenens 1-25
1.33.2 Implementation-Specific Cache Implementation.............cccccceeeviiininnene. 1-26
1.34 Exception Model
1.3.4.1 PowerPC Exception Modelc.cccoccciviniiniiiiiiniicccicnne, 1-27
1.34.2 Implementation-Specific Exception Model........cc.cocoverevenienienienineneeenne. 1-29
1.3.5 Memory Management
1.3.5.1 PowerPC Memory Managementc.coccceeeveeriecnueneerereneenennencnsneneeenes 1-32
1352 Implementation-Specific Memory Management............c.coceceveriiirurunncnnee 1-32
1.3.6 Instruction Timing
1.3.7 SYStEM INLETTACEeveneereriieieieceiet ettt sr e ereee e
1.3.7.1 MEINOTY ACCESSES...cuveruererrenireierenteereriensessessessessesstesessaesesseesessessestesesseseennes 1-36
1.3.7.2 SIZNALS .. 1-36
1.3.7.3 Signal Configurationccceciiiiiiniiciinine s 1-38
iv MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

CONTENTS

Paragraph . Page
Numger Title Number
Chapter 2
Programming Model

2.1 REZISIET SO ...ttt sttt ettt a et bbbt a e ese s
2.1.1 PowerPC Register Setccceeueeee.
2.1.2 Implementation-Specific Registers....
2.1.2.1 Hardware Implementation Registers (HIDO and HID1)c.ccccecenviienencne 2-7
2.1.2.2 Data and Instruction TLB Miss Address Registers

(DMISS and IMISS) ..ociiieiiicinicineieececteereeee e 2-9
2.1.2.3 Data and Instruction TLB Compare Registers

(DCMP and ICMP)c.couiruiiiiiiinierieieeitee ettt sttt 2-9
2.1.24 Primary and Secondary Hash Address Registers

(HASH1 and HASH2)ccvoviiiriniinieieese ettt 2-10
2.1.2.5 Required Physical Address Register (RPA)........ccccceiiinieiieeniinieieieiee 2-11
2.1.2.6 Instruction Address Breakpoint Register (IABR)cccoovieiiincncnenne. 2-11
2.1.2.7 Run_N Counter Register (Run_N).......cccoooiuiieiiiiiiiiiiiecieeceeeeieecieees 2-12
2.2 Operand CONVENLIONScc.eeirririeriererieiesietetentestetestestesreseesessasssesessesseessessens 2-12
2.2.1 Floating-Point Execution Models—UISAcccccoioiniiniiininnncnceene 2-12
222 Data Organization in Memory and Data Transfers..........cccccceccoevcencennee. 2-13
223 Alignment and Misaligned ACCESSEScceeeiriiiruiiicinieinieirceeeceeeenenne 2-13
2.2.4 Floating-Point Operand............cccoceeieienieiienienieerenteseeie et 2-14
2.2.5 Effect of Operand Placement on Performance........c..ccoceceveiniiincnennencnnne. 2-14
2.3 InStruction Set SUMMATYc.coiiirieriiriieieiieiteee ettt e 2-15
2.3.1 Classes Of INStIUCHIONS......cc.ccerieueirieueriereietiieere ettt ee 2-16
2.3.1.1 Definition of Boundedly Undefinedccccccveveniiniinnnnncnincinenens 2-16
2.3.1.2 Defined InStruction Class.........ccocveeieieuieiieieieirteteeeese et e 2-16
23.13 Illegal InStruction CIaSSc.coceveuerieuerieirieinieierceieteceeie e 2-17
2.3.14 Reserved Instruction ClIass........c..ccceeverveeireecnencnenienesetesieseeeeeiese s 2-18
232 AdAressing MOAES.....c..c.ueuveieiieiiniiieienenentcreesie ettt sttt se s saeaenes 2-18
2.3.2.1 Memory AdAIesSiNg........cceevieeerireririenienienenenenrentesteseeseesseessessessesteeene 2-18
2322 MeMmOTry OPErands...........ccvvceeienierieerieeieiieeieereesteeseeeteesreeesaeeseensaessseenns 2-18
2323 Effective Address Calculationcccoeveieeeenenieineeeeereeecereeeeee s 2-19
2324 SYNCATONIZALIONoueuriiiniiietiieiecteetert ettt sttt enas 2-19
2.3.24.1 Context SyNChroniZation..........coccvveeueriererereneneneriesieeesieseesesesreneeeene 2-20
23242 Execution Synchronizationcc.ceeeeverveeenienenenienieensecereeeneeeenean 2-20
23243 Instruction-Related EXCEPLionsccvevueeiieniiiiiinieniinee e 2-20
233 InStruction Set OVEIVIEW.......c.ccucuevirueirieiiriiieietcenieieeietree et ee 2-21
234 PoWerPC UISA INSIUCHONScuevvrueuinreeietenieieeeiententeietseeiceeeieeieneeeseeeseneee 2-21
2.34.1 Integer INSIUCHIONSco.eeiveieeiiriieteienieieteeie ettt e nes 2-21
2.34.1.1 Integer Arithmetic INStrUCtIONSccvevverierieneiniiierieriesieeeieeeeeie e 2-22
2.34.1.2 Integer Compare INStruCtions..........ccveveruereerieienienierieiee et 2-22
2.34.13 Integer Logical INStruCtiONS «....cc.evveeuereeririereneneneriesieieieseee e 2-23
2.34.14 Integer Rotate and Shift INStructionsc..ceeeeverenenieiienncnenenennne 2-24

MOTOROLA Contents \

CONTENTS

Paragraph . Page

Number Title Number

2342 Floating-Point INStIUCHONSc..eoveteiirieirieniereteesertenrerenesreseeaessessesenns 2-25
23.4.2.1 Floating-Point Arithmetic InStructions..........ccoccceeeeuenieenieenieseneneenennnen 2-26
23422 Floating-Point Multiply-Add InStructions........c.c.ce.ceveeerueerrirrenieccnnnens 2-26
23423 Floating-Point Rounding and Conversion Instructions..........c..coecceeneee 2-27
23424 Floating-Point Compare INStructionsceceeuveruerecnnecvereerereeennnnene 2-27
23425 Floating-Point Status and Control Register Instructions.............cecvevvene 2-27
23.4.2.6 Floating-Point Move InStructions...........cccvverirrererrerieerrssensesnnsenereennnns 2-28
2343 Load and Store INStruCtiONS........ccceeeeruerteierieeriririesiniseerieiesiereteneseeseeseensens 2-28
23.43.1 Self-Modifying Code........ccoeruereruererneririeirieieesteenieesteree et eevenessens 2-29
23432 Integer Load and Store Address Generationeceeeeecrererececnnene 2-29
23433 Register Indirect Integer Load InStructions...........c.ceceeeeveecveencnecnnnnene 2-29
23434 Integer Store INSIUCHIONSccoveuiriererreiririeineercireeeee e eneerennene 2-30
23435 Integer Load and Store with Byte-Reverse Instructionsc.ecceeeee 2-31
23.43.6 Integer Load and Store Multiple Instructions............ccceeueciecincnnncninnne 2-32
23437 Integer Load and Store String InStructions...........cco.eeeeeeiveevreriecreeennnn 2-33
23438 Floating-Point Load and Store Address Generation...........c.cccceveeeeveuene. 2-34
23439 Floating-Point Load INStructions..........cccoeueverieuercnrenieenneenieesienceiennns 2-34
2.3.43.10 Floating-Point Store INStructionscccevervevveceriertrsenierireseeieeereenenns 2-34
2344 Branch and Flow Control InStructionsco.ccceeeerenerrecnrercecnrecneenenes 2-35
2.3.44.1 Branch Instruction Address Calculation...........ceceveeruereevereeirnerncenenennn. 2-36
23442 Branch INStruCtoNScc.eoverieiierienieirincretetecct et 2-36
23443 Condition Register Logical INStructionsccceueueeerereverenereerercneneneens 2-36
2.3.4.5 Trap INStIUCHIONS. c.cveueiiieieteiieeerte ettt ettt ebe e snens 2-37
23.4.6 Processor Control INStructionsc.ceceeveeeverenieieninineeneneneeseecseeieeenaens 2-37
2.3.4.6.1 Move to/from Condition Register Instructionsco.eeceveeeveeververvennnnse. 2-38
23.4.7 Memory Synchronization Instructions—UISA...........coccccomecerinenncnnene 2-38
235 POWETrPC VEA INStIUCHONScovveeeeirieneetienicenteieirieicreetceeeesaeve e neeveseeienenes 2-39
23.5.1 Processor Control INStruCtionscceveeeeueeeieineerecneereniccnnecereeereseeneeene 2-39
2352 Memory Synchronization Instructions—VEAc.cccccveeviennenncnnnnene 2-40
2353 Memory Control Instructions—VEAccccovmeirveirrireeceeeseeeeaens 2-41
2354 External Control INStructionscoceeveeueeererinieienininerrieeneeert e ceeeseeveennens 2-42
23.6 PowerPC OEA INStIUCHONScvevteriereeterieirenienteniesterestesiesienteseesvesaessesseeeneas 2-42
2.3.6.1 System Linkage INnStructionscccccceciiiniiniiiinienncniiiecesneeeene 2-42
2.3.6.2 Processor Control Instructions—OEAc.ccoeirmeiienneeneneeneenenens 2-42
2.3.6.2.1 Move to/from Machine State Register Instructionscoceceveveeeneneee 2-43
2.3.6.2.2 Move to/from Special-Purpose Register Instructionsccccevevennene. 2-43
23.6.3 Memory Control Instructions—OEAccovevreenirneinrcenenecneenes 2-44
23.6.3.1 Supervisor-Level Cache Management Instruction............ccccocecvveucnnaee 2-44
2.3.6.3.2 Segment Register Manipulation Instructionsc.cececeeeeccnneecrrenennennen 2-45
2.3.63.3 Translation Lookaside Buffer Management Instructions..........c.cccec...... 2-45
23.7 Recommended Simplified MNEMONICScccoveveriereneriemeneeireinecrienieeseeenene 2-46
23.8 Implementation-Specific INStrUCiONSc.ccceeverreerveriereirnereicerieeccenenaene 2-46
vi MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

CONTENTS

Paragraph] Page
Numgl,::erp Title Numb%r
Chapter 3
Instruction and Data Cache Operation
3.1 Instruction Cache Organization and Control.............ccccccvunieniiiinininiinininicnn 3-3
3.11 Instruction Cache Organization...........ccoceevueiiiniiiniiniiiceeennns 3-3
3.1.2 Instruction Cache Fill Operationsc.coeeeeriererreentintenieseceeneereereseeseeneens 3-4
3.13 Instruction Cache CONLIOLcoeeueverirrererircnrirerentntiecresetee et 3-4
3.13.1 Instruction Cache Invalidationc.ceceeeveireririnieineeenicinnicscnieniieeenens 3-4
3.132 Instruction Cache DiSabling.........cceeuevveveereerienienteneeninieeerteenreneeseeeseeennens 3-4

3.133 Instruction Cache Locking

32 Data Cache Organization and COntrolc.ceceeririerierieinieesinientesieseseeseesvenenes 3-5
3.2.1 Data Cache Organizationcec.eeceveeeeeninmiinieceieniissenesniseinnenesseessesesisens 3-5
322 Data Cache Fill Operationsccceivevievinieininiiiniiiniiiinceessssesneiienens 3-5
323 Data Cache CONtrol.......c.coeieieeerenueneeinteteeeteeeseeeeteeee et enesseseeneans 3-6
323.1 Data Cache Invalidation............ceceovevuevuenenienieneninriniinenneniincnesessesenenees 3-6
3232 Data Cache Disabling...........ccccccociiiiiiiiiiiiiiiiiiiinie e 3-6
3233 Data Cache LOCKING......cceeverirrieiererienenenienenenenesseniestesseseesessessesseneeneneene 3-6
3234 Data Cache Operations and Address Broadcasts............coccovveniiicniiinnianns 3-7
324 Data Cache Touch Load Support

33 Basic Data Cache Operations.............ccccuevvenininincninininsicinsesesseens
3.3.1 Data Cache Fill..........ccccoceveneannne.

3.32 Data Cache Cast-Out Operation

333 Cache Block Push Operation

34 Data Cache Transactions on Bus.........

34.1 Single-Beat Transactions

342 BUrst TranSactions.......ccce.ceueeveterirueeieeterieeeereestestesseseesteseesessesseioesseeeseenessennenne
343 Access to Direct-Store Segments

35 Memory Management/Cache Access Mode Bits—W, I, M, and G................... 3-10
3.5.1 Write-Through Attribute (W).....cocoveeiiienienieiieeseeeeececcnieeceeneenene
352 Caching-Inhibited Attribute (I)cccceoerirerereneinereeeeeneeeeieereeeisreeenene
353 Memory Coherency Attribute (M) ..

354 Guarded ArDULE (G) ..c.covrveueerrireeieeeereeeneeriereeeeteeteseee st esesesssaeseenens
355 W, I, and M Bit Combinationscccceceveeveirrinereceeinieenieninnieisnessisscsienns
355.1 Out-of-Order Execution and Guarded Memory

3552 Effects of Out-of-Order Data ACCESSESccccevererreereneeneeruenirinrcnreriiiennns
3553 Effects of Out-of-Order Instruction Fetchescc.coceeeecniireinnnicniincnnnns

3.6 Cache Coherency—MEI Protocol

3.6.1 MEI State Definitionscocervverueereeerienineenienenenieesieeseestssesesessesssnssssseneas
3.6.2 MEI State DIa@ramcccceeveeveriririerenrineresesesessesessessessessenessessessessesseneenes
3.6.3 MEI Hardware Considerations

3.64 Coherency PreCautions.cceeevuerieereereeniersseeseenierssessesuesseessessesssessessesssessens
3.64.1 Coherency in Single-Processor SYStems.........ecueveeeereneesirreneesessenresresseneens
3.6.5 Load and Store Coherency SUmMmaryc.coeeveviiniiinenniiesncnneeennes
MOTOROLA Contents vii

Paragraph

CONTENTS

Number Title
3.6.6 Atomic Memory References.........coveevuereenrenriniirenieneneninnessenneseeesessessasenses
3.6.7 Cache Reaction to Specific Bus Operations
3.6.8 Operations Causing ARTRY ASSEItiONcccceeverrerrereeirereesvenersessensessensennas
3.6.9 Enveloped High-Priority Cache Block Push Operation
3.7 Cache Control INStructionsccceeeeerueererverveneerrereerensenereeseeseesereens
3.7.1 Data Cache Block Invalidate (dcbi) InStructionooueeeeevveeenneeeineeeernnneens
372 Data Cache Block Touch (debt) InStructionc.eeveeveevveeneeveeneeeenneeneenn
373 Data Cache Block Touch for Store (debtst) Instructionc.coeveervenenneene. 3-24
374 Data Cache Block Clear to Zero (dcbz) Instruction
375 Data Cache Block Store (dcbst) Instructionccccceveeveevvenneee.
3.7.6 Data Cache Block Flush (dcbf) Instruction...........cccoeveevveereeennennes
3.7.7 Enforce In-Order Execution of I/O Instruction (ei€io)..............cccceeeveeveennnns 3-25
3.7.8 Instruction Cache Block Invalidate (icbi) Instruction............cccceveeveveerveennnen. 3-25
3.7.9 Instruction Synchronize (isync) Instruction..........cc.cccevevveenee
3.8 Bus Operations Caused by Cache Control Instructions
39 Bus INLETfaCE......c.eeireeieiricereree ettt ettt e
3.10 MET State TranSactionsecceceeveereereeresseriesesiesseseeseesessessessessessessesessessseseeses
Chapter 4

Exceptions
4.1 EXCEPHON CLASSESc.veeuenrenerenirieiiriereeeeneeseeeaeseeesseseneesetesaseseestssesesessestenesseseesenes 4-2
4.1.1 EXCeption PriOLItIEsccceveerueiiieireinrieeceeecreeeseenceeeesaeseessese st seesenes 4-7
4.1.2 Summary of Front-End Exception Handling............cccocevveveeniinnvcnvceercenccnnennes 4-9
42 EXCeption ProCesSing.........ccccueuemruiriiirienineeinicreneeieceneeneecseenesnesesenennesessesenes 4-10
4.2.1 Enabling and Disabling EXCEPHONS........c.coeeererrereeriniirierieninrenteneetereeeneenes 4-14
422 Steps for EXception ProCessingcoceeeeeerenieneneeneninertenientnceneneeeeeeeas 4-15
423 Setting MSRIRIJ....c.coiieririieiiieiiteesieetetererteaetreeest et ste st se e se e ssesessassenas 4-15
4.24 Returning from an Exception Handlercccooeeeeevinieineennncnincniecnnnnne 4-16
43 Process SWItChing........c.cccvviviuiiiniiiiiiicieccctrccetee e 4-16
44 EXCeption LatenCies........ccvveruireinuenieeieninieteieteteeeteteresseteeeee s sresse s v 4-17
4.5 Exception Definitionscccoeiruerieeieinincneinecreeereneereresteeneeeseeseseeeenenes 4-17
4.5.1 Reset Exceptions (0X00100).......c.cocurireneerenienienenensiineeeesessensessessessessensenee 4-18
45.1.1 Hard Reset and Power-On ReSetc..coevvevuereeiriineeenensreninieeneseeneene 4-19
45.12 SOFt RESEL ...ttt ettt sttt b sttt et 4-20
452 Machine Check Exception (0X00200)ccceruerirnuenenienreneeenerienneenieeeennees 4-21
4521 Machine Check Exception Enabled (MSR[ME] = 1) .ccccoeruiienirvciniennennns 4-22
4522 Checkstop State (MSR[ME] = 0) ...cc.ccevenireneenineniniecneescrieesieeneeeeeeseenas 4-22
453 DSI Exception (0X00300)........cccooceiniimmmininreeniininiiceiteieseessiesesenseenenes 4-23
454 IST Exception (0X00400)ccceceerirerrirririrrierietereeesensessenessestsessessesesesseens 4-25
4.5.5 External Interrupt (0X00500)cocvrrerieirrirerirtereneienreseeretsresieesesesssseens 4-25
4.5.6 Alignment Exception (0X00600)ccevuereiuemrenienueninenenteneniessesionsensensansens 4-26
viii MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

CONTENTS

Paragraph . Page
Num?)erp Title Numbger
4.5.6.1 Integer Alignment EXCEPLIONScccooverieriieniiiinciiinieicieeiceeeeeceeeaae 4-27
4.5.6.1.1 Page Address Translation ACCESScc.ceveeerrerueruenuenienieerenenseneenennenens 4-28
45.6.2 Floating-Point Alignment EXCEptions.........cccccevveirerinenieniiniinencrienennenne 4-28
4.5.7 Program Exception (0X00700)ccoeeereerrerereninenieneeieneeceeseeseeseeneenneeens 4-29
45.7.1 IEEE Floating-Point Exception Program Exceptionsccccocccevvinnenns 4-30
4572 Illegal, Reserved, and Unimplemented Instructions

Program EXCEPLiONScccevueruirieriiniieiinicseeiesee ettt cneeane 4-30
45.8 Floating-Point Unavailable Exception (0x00800)cccceceevervevrenernenecenenne 4-31
459 Decrementer Exception (0X00900)cc.coerereninenenencneninieenenesienenenns 4-31
4.5.10 System Call Exception (0X00C00).........ccceeruerereimieenereneieiiieiereeerenesnenens 4-31
4.5.11 Trace Exception (0XO00D00).........ccueeiiiieieeieitenieeieieeiieeeeeee e eaeas 4-32
4.5.11.1 Single-Step Instruction Trace Modecocueveeeevirciineniiiinininiricneenenne 4-33
45.11.2 Branch Trace MOdE.......c.coeerueueriruenieenieiniiieieieicienereieese e ennes 4-33
4.5.12 Instruction TLB Miss Exception (0X01000)cceoveveeverereieencnrenienenceeenenne 4-33
4.5.13 Data TLB Miss on Load Exception (0X01100)........ccoceveeiniiinieicinccinennns 4-34
4.5.14 Data TLB Miss on Store Exception (0x01200).........ccccooiiiiiiiiniiiniiiciiiens 4-35
45.15 Instruction Address Breakpoint Exception (0x01300)........cccccoveiviiiiinnnnnnns 4-35
4.5.16 System Management Interrupt (0X01400)c.ccccevviiviivnininiiniiiiicinne 4-37

Chapter 5
Memory Management

5.1 MMU FEALULESecvemeiimeiereiireieiercieiieresesteteretesestesesaesessesesessesessestsnesessesesnens 5-2
5.1.1 MemOry AdAreSSing......c.coveeeerrirerierierieientestenieniesiesresteseestesessesseseseeseseeseesens 5-3
5.1.2 MMU OrganiZation........ce.eevereeriereerierieeereeieteseetesteteeeseesessessessesseeesessessessens 5-3
5.1.3 Address Translation MechaniSmsceceeeeviineneenienienenennieneenieneneeneene 5-8
5.14 Memory Protection Faciliti€s..........ccecuevurieeevienienienieieeeincnenieresieeee e 5-10
5.1.5 Page History Information...........c.coccceveiniiininiiinniniiiciiicicicccicinns 5-11
5.1.6 General Flow of MMU Address Translationccceeveeivininienienineeennnns 5-11
5.1.6.1 Real Addressing Mode and Block Address Translation Selection............. 5-11
5.1.6.2 Page Address Translation Selection..........cccceveeienieeierienreeneeeennenensneneens 5-12
5.1.7 MMU EXCeptions SUMMATYcccceveueuemeuiruisiemeniemereresseneisnsissesssssessesns 5-14
5.1.8 MMU Instructions and Register Summaryccccceeecevcniniinneccniccnennnes 5-17
52 Real Addressing MOdEc.covceverierieieienieeeieieienieieieeesieseeressesressesseseeeseens 5-20
53 Block Address Translationc.cocceeeereecereenenieinieeneesseeeeseeesesesseseenesnene 5-20
5.4 Memory Segment MOdel.......cocovuiiieiieienieiienieneeneesiesesseee ettt esses e 5-21
54.1 Page HiStory ReCOTAINgccoveeveeieieieieieierienienientensetereeecereseessesaeseeeeneenees 5-21
54.1.1 Referenced Bit......ccoecinieiiiicnieiniciirciicicenceeeieceect s 5-22
54.12 Changed Bit......co.coevieieieiriienteecet ettt 5-23
54.13 Scenarios for Referenced and Changed Bit Recording...........ccocceunncnnie 5-23
54.2 Page Memory Protection.......cc.coceveevienieniininninieceeienscnicnnesieeeevessenieenns 5-25
543 TLB DESCIIPHON.......cuiuiiiiiiiiiieiireniteiere ettt sse b 5-25

MOTOROLA Contents ix

CONTENTS

Paragraph . Page
Numgerp Title Numbger
54.3.1 TLB Organization.........c.ccecueveereeeereereeseereesuesiesessessesseseesessessessessessessessessanee 5-25
5432 TLB Entry Invalidationc.cccvieveuieeinineircniniiniieiccccnneenecesseneneaes 5-27
544 Page Address Translation SUMMALYccceceeverveerenenieienieneneesrereeseeseeseessenns 5-28
55 Page Table Search OPErationccceceeceeruerierreriereereresesieneesessessessessessessessesses 5-30
5.5.1 Page Table Search Operation—Conceptual FIowccccecevvevvenevenreruenncnne 5-30
552 Implementation-Specific Table Search Operationccccceveeevereevueriverennne 5-33
55.2.1 Resources for Table Search Operationscccceeeveveeerereenreruesueseeseennenne 5-34
55.2.1.1 Data and Instruction TLB Miss Address Registers

(DMISS and IMISS).....cvuiirieineerieinieenienereesenteresiesesessesesasessssesseseesesses 5-36
5521.2 Data and Instruction TLB Compare Registers (DCMP and ICMP)....... 5-37
55213 Primary and Secondary Hash Address Registers

(HASH1 and HASH2)......c.couiirieieinenecriecicieiereesteseseeeseeseneeeseeas 5-37
55214 Required Physical Address Register (RPA).......ccccocevvvvvecvcvcnininiicnnennne 5-38
5522 Software Table Search Operation............cc.coceeviveiniiicirneneessinesiiisennens 5-38
55.2.2.1 Flow for Example Exception Handlerscocccoviiiiniinnnnnnnnn. 5-39
55222 Code for Example Exception Handlers..........cccccocevevuevenenincrenenenene 5-44
553 Page Table Updates............coooeeveiiiiiiiiiiiiiiccinicincencnse s 5-50
55.4 Segment Register UPdates.........ccouvveueeiniiueininrinicnciinisiicsenecisssscceneneaens 5-50

Chapter 6
Instruction Timing

6.1 Terminology and CONVENLIONSccceereuieenirmerrerenrecnnnreinresienssestesesssessesessesens 6-1
6.2 Instruction Timing OVEIVIEWccecceveerirerrieueniererenrereeteeesessesseseesesseessesessenns 6-3
6.3 Timing CONSIAETAONSc..eveevvrrverireeeereienretentesteteteeesesreteseesessessessessessesseenens 6-5
6.3.1 General Instruction FIOWccccooiiieniiiininiiniiicnenieeccenecccerene e 6-6
6.3.2 Instruction Fetch Timingc.ccveiiviniiiniiiicniiiiciniciccerceeeicsesenens 6-9
6.3.2.1 Cache AIDItIAtiONc.coveeueriirerririeeiirieteeeteeete ettt et sae e sesseanes 6-9
6.3.2.2 Cache Hit......
6.3.2.3 Cache Miss
6.3.3 Instruction Dispatch and Completion Considerations.............cccceevevinenncnnand 6-11
6.3.3.1 Rename Register OPeration.........c..cceveeeeueruerenreecnieueinnecninuesneressseeesesseness 6-12
6.3.3.2 Instruction SerialiZationccceccvueieveeenereeniiicniniecereeceeeirecereseeeenes 6-13
6.3.3.3 Execution Unit Considerations...........ceueeeverereeeruerenirneresissensssesesseseeessenens 6-14
6.4 Execution Unit Timings.........ccocceeuiiniiniiinininniricniiiiincnccscssssessee e 6-14
64.1 Branch Processing Unit Execution Timingccccceeeeievveneneenenienncnneennnd 6-14
6.4.1.1 Branch FOIdIngc.covueeueeeeiiiiiiiiiiiniieciictnccseec e 6-14
6.4.1.2 Static Branch Prediction.........co.eceveveeucreecnienincrneecnecneeeeeescsieseseeeneenes 6-16
6.4.1.2.1 Predicted Branch Timing Examples.........cccccceceeoereenneencnnecnneecnnennd 6-16
6.4.2 Integer Unit Execution Timing..........coceeeveveeereienecninueninnercneecnieeenescssesnenens 6-18
643 Floating-Point Unit Execution Timing.........cc.ccececevereiieeencnenenenneennnennens 6-18
6.4.4 Load/Store Unit Execution Timingcccceeeveeeiueeueninsiieneneneeiescseeesenneene 6-18
X MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

CONTENTS

Paragraph " Page

Num?:»erp Title Number
6.4.5 System Register Unit Execution Timing........ccccceeevvriivenvencncninnnnncnenecnne. 6-18
6.5 Memory Performance Considerations...............ceueeerecereciueneseecnisenineeseesescenenes 6-18
6.5.1 Copy-Back Mode

6.5.2 Write-Through Modec..ccoireiirieiniinieeeeneie ettt eseeeaee 6-19
6.5.3 Cache-Inhibited ACCESSEScoererrretereeerereniineeeeeetseteret sttt seses 6-20
6.6 Instruction Scheduling GUIdelinesc.cevuerveereernieneereenieneneerieseeneeseeeseeseeeane 6-20
6.6.1 Branch, Dispatch, and Completion Unit Resource Requirements.................. 6-21
6.6.1.1 Branch Resolution Resource Requirements

6.6.1.2 Dispatch Unit Resource Requirementsc..coeeveveruvenerunenes

6.6.1.3 Completion Unit Resource Requirements...........cccocoveevvueivuiicincnieiinnennee

6.7 Instruction Latency SUMMATYccceceerierirrienienrinneneenenresseenstsesseessesasesaeens

Chapter 7
Signal Descriptions

7.1 Signal CoNfIGUIAtIONc.eveueuieriieirieirieinieneeeeeestesestereseaeaessesesseseeesesessesessesees 7-3
72 Signal DESCIIPHONSccooveiriiuiiiiieiriiiiiieenrecreesreteet et cssssessesesaesesaessenes 7-4
7.2.1 Address Bus Arbitration Signals..........c.ccveviiinineniniiincnnincnen 7-4
7.2.1.1 Bus Request (BR)—OULPUL..........covveerverierrrenriennsssnssassesssssssanssssssssnesssnssons 7-4
7212 Bus Grant (BG)—Input

7213 Address Bus BUSY (ABB) ...cccoeeeriiiinenierenenintereneeeeressestestesessessessessessens 7-5
7.2.1.3.1 Address Bus Busy (ABB)—OuUtpULcveeeverreereereesrnreeessesseerenees 7-5
7.2.13.2 Address Bus Busy (ABB)—Input
7.2.2 Address Transfer Start Signals..........cocecveevevirnienirienerneesnrineneseetereseeeseeseesaes
7221 TLANSTET STALE (TS vvvvreeevrereeeeeeeeereeceseeseseesesaseeseseesoessssesseesseesesessesessesssenns
7.2.2.1.1 Transfer Start (TS)—Output
72212 Transfer Start (TS)—INPUL...........c..coverveeeuerrrrensresseseseesessaessessessessessensens
7.2.3 Address Transfer Signals
7.23.1 Address Bus (A[0-31])
7.23.1.1 Address Bus (A[0-311)—Output........cccceeueerererurerenerencrrnieeneeneeseneseneans
7.23.1.2 Address Bus (A[0-311D)—INPut........cccceevteverreeninrenenrenecnneeecreseeeneeneeas
7232 Address Bus Parity (AP[0-3]) ...ccccovvrvererrrrrerrereeeeeene
7.2.3.2.1 Address Bus Parity (AP[0-3])—Outputc.cccceueverrererrercreeniererrenennene 7-8
7.23.2.2 Address Bus Parity (AP[0-3])—Input........cccocovuevenerererercnereerseerccnennes 7-8
7.23.3 Address Parity Error (APE)—Output
7.2.4 Address Transfer Attribute Signals.........cccoceeveveeverrenecernnennnenenieneeneeteeenees
7.24.1 Transfer TYPe (TTIO—4]) c.cceevrririririririrerineseseeeriestee et eesessessessassenees
7.24.1.1 Transfer Type (TT[0—4])—Output
724.1.2 Transfer Type (TT[0—4])—INputcccoeverrerrerrenineereenieereeeneeenee
7242 Transfer Size (TSIZ[0-2])—OUtPutccccceeuererererrenrerereneeeeieereereenesesennes
7243 Transfer Burst (TBST)ccccevvevevninircccnnninccnnnen
7.2.4.3.1 Transfer Burst (TBST)—Output
MOTOROLA Contents Xi

CONTENTS

Paragraph . Page

Numsl’:verp Title Number

72432 Transfer Burst (TBST)—Inputc.cocoeriinieiinnecnieccrcccneeceeenes 7-13
7.2.4.4 Transfer Code (TC[O—1])—Outputccceeverererrerenenreirenieeereeeeeeeeneenne 7-14
7.24.5 Cache Inhibit ('C_I)—Output ... 7-14
7.2.4.6 Write-Through (WT)—OUtPUL............covvereerrerreresenesesssesssssessssssssssssnns 7-14
7.24.7 GLODAI (GBL)......oourureeemrmreemmicreiiesemieseeescssiases s cessee e 7-15
7.24.7.1 Global (GBL)—OUPULooorvevieeeieerieieeeeeieeeee s 7-15
72472 G10bal (GBL)—INPUL......voreeereresieeeariesee st sses s ssaneens 7-15
7248 Cache Set Entry (CSE[0—1])—Outputcccovevveriererenereenireereereneeneenaenne 7-15
7.2.5 Address Transfer Termination Signals.........cocceceeverevrerenrenienennenresieneeeneens 7-15
7.2.5.1 Address Acknowledge (AACK)—Input.......ccccoeueiivnnvinniccnniennnn 7-16
7252 Address Retry (ARTRY)......cceeurirurieieieieieieieieieieiee e 7-16
72521 Address Retry (ARTRY)—Output........cccoeueiininiviiieiiiniiciinnes 7-16
72522 Address Retry (ARTRY)—INputc.ccvueueveecnnnmnierenececennieneeneneenes 7-17
7.2.6 Data Bus Arbitration Signals............ccccccevviiininiiinnniincieen 7-17
7.2.6.1 Data Bus Grant (DBG)—INPULtcccceveirinieenineeniecenieeieeiecnaeeenens 7-17
7.2.6.2 Data Bus Write Only (DBWO)—Inputcccocoiiiiiiiniiiiiiices 7-18
7263 Data Bus Busy (DBB)c.oouiviieieeieeeeeeeee e 7-18
7.2.63.1 Data Bus Busy (DBB)—OQUtputcc.evveerverereerereiesresiesiessserseenes 7-18
7.2.6.3.2 Data Bus Busy (DBB)—InpUL..........ccc.ovvvrierrrnienissirssesieseessssenenns 7-18
7.2.7 Data Transfer Signalscccoveuereinerereninieieinieccereiieeee e 7-19
7.27.1 Data Bus (DH[0-31], DLI0-311) ccovevvrerrerrrererirereeeciieieiceeisseceeas 7-19
7.27.1.1 Data Bus (DH[0-31], DL[0-31])—Outputc.cceccvrrrururrrereeeereerercnnes 7-19
7.2.7.1.2 Data Bus (DH[0-31], DL[0-31])—INput......c.cceerrururrerererecrerremerercrnnen 7-20
7.2.7.2 Data Bus Parity (DP[0=7])cccceveetemieieienienieieteieeniesrerertneeseesnesnesne e 7-20
72721 Data Bus Parity (DP[0=7])—OUtputc.ccoeveveerererreererereeeennerereneneenes 7-20
72722 Data Bus Parity (DP[0—7])—Input.......cccceceeerrererinseneninenenceceenneene 7-20
7.2.7.3 Data Parity Error (DPE)—OULPUL...........cc..coververiecresiesesseseessssses e 7-21
7274 Data Bus Disable (DBDIS)—Input..........ccccovverireninieenneinnecereeneennenen 7-21
7.2.8 Data Transfer Termination Signalscccccocviininiinnniii 7-21
7.2.8.1 Transfer Acknowledge (TA)—INPUL...........c..ooveerrveerreseeesnriaeesienssrnsiaens 7-22
7.2.8.2 Data Retry (DRTRY)—INPUL.......ccoeruecreieieiereeieenrieretereeveiesvesieniennens 7-22
7.2.8.3 Transfer Error Acknowledge (TEA)—INPUL.........covverveerreerreeiesnnenrensiannes 7-23
729 System Status SiZNalS........coccvveeriiiniiiiiiiiiiiii e 7-23
7.29.1 Interrupt (INT)—INPUL....vuervrrrrrereresieeriseseessesseessesese s snes e ssessaees 7-23
7.29.2 System Management Interrupt (SMI)—INpUt............cooverrrrrrrrrrreenieerinnns 7-24
7293 Machine Check Interrupt (MCP)—Input..............cccoouevverreerrerrrreereneennns 7-24
7294 Checkstop Input (CKSTP_IN)—INputcceverereriniecrreinieeneenecnnenees 7-24
7.29.5 Checkstop Output (CKSTP_OUT)—Output........ccrererecreremreemrerirunrenenennns 7-25
7.29.6 Reset Signalscccoviviiiiiiniiiiii 7-25
7.2.9.6.1 Hard Reset (HRESET)—Input.........c.cccovrueeininneniieriniceeninienceeennes 7-25
7.2.9.6.2 Soft Reset (SRESET)—INPULcoeorrererirmererererernmnneeneereneeneeeeeaes 7-26
7.29.7 Processor Status Signals............cccvvieiniiiiiiinininiii 7-26
7.29.7.1 Quiescent Request (QREQ)cccovvviiiirienninecneiicniccenciecrecne 7-26
xii MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

CONTENTS

Paragraph . Page
Num%er Title Number
7.29.7.2 Quiescent Acknowledge (QACK).......ccocevieviereeieririineneentetseseseesrenseas
7.29.7.3 Reservation (RSRV)—OUtPutcccceceeverirerinreeeerinieeisesenseeessesessenes
7.29.7.4 Time Base Enable (TBEN)—Input
7.29.7.5 TLBI Sync (TLBISYNCQC) ...ttt ees
7.2.10 COP/Scan INEIfaCecoccevereeiriririenesertere ettt et sesesveste st seeseseene
7.2.11 Pipeline Tracking Support
7.2.12 CLOCK SIZNAIS ..ottt ettt es e e sas e snene
7.2.12.1 System Clock (SYSCLK)—Input
7.2.12.2 Test Clock (CLK_OUT)—Output
7.2.12.3 PLL Configuration (PLL_CFG[0-3])—Inputcccecvrevervrerrrererrererrennen 7-30
7.2.13 Power and Ground Signals.........ccoceverieenerneniienienieneeeeeseeeceeeesreessenaeens 7-32
Chapter 8

System Interface Operation
8.1 OVEIVIEW ...ueniiiieniree sttt et e te st ae e e st bt esenesstsaesenessestsesensesessenessenen
8.1.1 Operation of the Instruction and Data Caches
8.1.2 Operation of the System Interface..........c..cccoccvivvenivinininicniniiiccniinicnenne
8.1.2.1 Optional 32-Bit Data Bus MOdecoceceeenierenircreriieeineeenieeseeneeveeesenes
8.13 Direct-Store Accesses
8.2 Memory AcCess ProtoCOLcoeucveueieininenenenieieeireteesesereteeeeeeesesaesenene
8.2.1 ATDItration SIZNALScccceveruerieiiiiririeieene et ste st e se st ebeeene
8.2.2 Address Pipelining and Split-Bus Transactions
8.3 AdAress Bus TENUTEcccceeerierierieiieeieieeeeseeieeeesessesressesssseeesvasseseessessansens
8.3.1 Address Bus Arbitration.........cceeeeeeereeenereseeiesiesiessessesesesessesassessesessessanses
8.3.2 Address Transfer
8.3.2.1 Address BUus Parityccceceievereereniirinencnenesesessnieseeseesesesseseneenessens
83.2.2 Address Transfer Attribute Signals..........cccoeiviiiviinnncnniiinccniiiniienns
8.3.2.2.1 Transfer Type (TT[0-4]) Signals
8.3.2.2.2 Transfer Size (TSIZ[0-2]) Signals........ccceevereeereriinenienenenenrenreseenrennes
8.3.2.3 Burst Ordering During Data Transfers....
8.324 Effect of Alignment in Data Transfers (64-Bit Bus)........c.ccceocervceruecuencnes 8-15
8.3.2.5 Effect of Alignment in Data Transfers (32-Bit Bus).......cccccceeverervereereennne 8-17
8.3.2.5.1 Alignment of External Control InStructions..........c.ccceeceveveerereveercrrisennene 8-19
8.3.2.6 Transfer Code (TC[0-1]) Signals
8.33 Address Transfer TErminationc.cecceceeveereeneenineeeenneneseerneseeseseseenes
8.4 Data BUS TENUIE.....cc.ceciriririerienieieietertertesteteeestessesesesseessssessessessesssssssssssesenns
8.4.1 Data Bus Arbitration
8.4.1.1 Using the DBB Signalcccoeevevininieniciniicrniceinnieeieeeceeeseseeeenenes
8.4.2 Data Bus Wit Onlycccooeeeeueiinienireieieteeneieiiteeeeetteeseseesesaesenesseneesennes
8.43 Data Transfer.......cccccoveeveeverveennenne
8.44 Data Transfer Termination............coceeveeververrerreereenierisseenieresessessersesssssosessesens

MOTOROLA Contents xiii

CONTENTS

Paragraph . Page
Numsl’:verp Title Number
8.4.4.1 Normal Single-Beat Terminationccccevvevievvininineneneniinienieceneenceneens 8-26
8.4.4.2 Data Transfer Termination Due to a Bus Error ..o 8-29
8.4.5 Memory Coherency—MEI Protocol........c..cocoveveeienieinininicnnininincnccene, 8-30
8.5 Timing EXAmMPIES.....c.eevevveirieriiriinienienteiesiestestee ettt sttt esn ettt naenes 8-32
8.6 Optional Bus Configurations...........cceceeveeeriivenieinueiniiieiiiecseeeceec s 8-38
8.6.1 32-Bit Data Bus MOde........ccc.vivieiriieniieiinenienteieee et seeeiesntesneesneenne 8-38
8.6.2 NO-DRTRY MOGEcecveviieniiieieiienienieerrecnteesieeeere st seese et eenesesaenene 8-40
8.6.3 Reduced-Pinout Modec.coeerveerinininieiineniciceeececiceceveneveeee 8-40
8.7 Interrupt, Checkstop, and Reset Signals.........ccecveviinenineniiiincniinciene, 8-41
8.7.1 External INEITUPLSc..ccveviiiiiiiiiiiiiiieitcicee e 8-41
8.7.2 CRECKSIOPS ...ttt ettt ea e ena e e sas e 8-41
8.7.3 RESEL INPULS ..ottt ettt s s 8-41
8.74 System Quiesce Control Signalsc..ceceecvereriienennienenienieneneeneceenee e 8-42
8.8 Processor State SigNalS.........ccevireeeririenenenirienieiee ettt s 8-42
8.8.1 Support for the Iwarx/stwex. Instruction Pair.........cooceeevenennienncnceenne. 8-42
8.8.2 TLBISYNC INPUL ...ttt et e vesneeenense s s 8-42
89 IEEE 1149.1-Compliant Interface ..., 8-43
8.9.1 IEEE 1149.1 Interface DesCTiption.........cccoveeueeverieiineeininenieirieesieceienns 8-43
8.10 Using Data Bus WIite OnlY.....cccooeverieriinirenenienieieeeieeseseseeeeneeneeeseesieeveene 8-43
Chapter 9
Power Management
9.1 Dynamic Power Management
9.2 Programmable POWer MOdES.........ccvevererirerenieniiniinienenietee sttt
9.2.1 Power Management Modes
9.2.1.1 Full-Power Mode with DPM Disabled.........ccccoceeuviveninienniinniinininccnne 9-3
9.2.1.2 Full-Power Mode with DPM Enabled...........c.cocoeiicinnninincininiccnnee, 9-3
9213 DOZE MO ...ttt s 9-4
92.14 NAP MOGE ...t 9-4
9.2.1.5 Sleep MOdE.....ccuoviiiiiiiiiiiiii 9-5
9.2.2 Power Management Software Considerations............. et e 9-6
Appendix A
PowerPC Instruction Set Listings
Al Instructions Sorted by MNEMONIC........ccceeviiiiiiiiiiiniiiiiiii e A-1
A2 Instructions Sorted by OpCodecoueerrcrmeeniennieinieinrecreeerte e A-9
A3 Instructions Grouped by Functional Categoriesccccccveiviiiiinininiiininns A-17
A4 Instructions Sorted by Form
A5 Instruction Set Legend.........ccocuviviiiiiiiiiiiiiiiiiie e

Xiv MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Paragraph

Number

CONTENTS

Title Page

Number

Appendix B
Instructions Not Implemented

Appendix C

PowerPC 603 Processor System Design and Programming Considerations

C.1 PowerPC 603 Microprocessor Hardware Considerations.............ccceeceeccnuennnne. C-1
C.1.1 Hardware Support for Direct-Store ACCESSESceurvuruiiereiciiiriiiiiecneens C-1
C.1.1.1 Extended Address Transfer Start (XATS) ..oovvvovieeiieiieceeceeeeeeeeeeene C-2
C.1.1.1.1 Extended Address Transfer Start (XATS)—Outputccveerveeveeenvnnnene C-2
C.1l.1.1.2 Extended Address Transfer Start (XATS)—Input.......ccceceeveevreecrvenenene. C-2
C.12 Direct-Store Protocol Operation

C.l121 Direct-Store Transactionscc.ceeevervenee.

C.1.2.1.1 StOT€ OPETALIONS.cuveeuieeieriieieeiieienteetestete st et e e e tesesaessesaeeseseesaes
C.12.1.2 Load OPerations..........coceerieereereeneeiiereeseieteseeneesiesneesseseesseessesseessesnsenne
C.122 Direct-Store Transaction Protocol Detailscc.ccoeceviieiiccceinninieccnnne. C-6
C.1.2.2.1 PACKEE 0.ttt ettt ettt
C.1.22.2 PaCKEE 1.ttt sttt
C.123 I/O Reply Operationsc.ecervereerrenensen

C.l24 Direct-Store Operation Timing..................

C.13 CSE SIZNAL ..ottt ettt et ettt ettt
C.14 PowerPC 603 Processor Bus Clock Multiplier Configuration...................... C-12
C.15 PowerPC 603 Processor Cache Organizationccccccvveinciicniiinicnne.
C.1.5.1 Instruction Cache Organizationceeceeeeeerieriereriisesieneenenesessessenenee
C.152 Data Cache Organizationceoueveevierieeenieeneniesienieneereeeentesseseeseeseenes
C.1.6 PLL Configuration (PLL_CFG[0-3])—Input........ccccveverereereerienenrerieeennne
C.1.7 Address Pipelining and Split-Bus Transactions

C.1.8 Data Bus Arbitrationc.ceceeueeerieiririnieeeeeineeieietecee et

C2 PowerPC 603 Processor Software Considerations

C.2.1 Direct-Store Interface Address Translationc.ccccoecevreccrecinnnccnncnennns
C21.1 Direct-Store Segment Translation Summary Flowcccccecniincnne. C-17
C2.12 Direct-Store Interface ACCESSESc.evuevirrirrvererirririeireteierercee e C-18
C213 Direct-Store Segment ProteCtionce.coceeverevenieneentennnieneeneeneeneenienne C-18
C2.14 Instructions Not Supported in Direct-Store Segments............c.cccccruennenee C-19
C2.15 Instructions with No Effect in Direct-Store Segments.............cccccueuenune. C-19
C2.2 Store Instruction Latencycccoccuivevieiniciiinniiiiceciniciecceeeees C-19
C23 Instruction Execution by System Register Unit........cccoovevverieveenenienencniennens C-20
C24 Machine Check Exception (0X00200).........ccervereererrerenerenenrerienienenenennens C-21
C25 Instruction Address Breakpoint Exception (0x01400)..........cccocevvricerinnnncns C-21
C2.6 Cache Control INStrUCtIONS.......cc.ceteveriereereieienieteteeseereesresresee st saens C-21
MOTOROLA Contents XV

CONTENTS

Paragraph . Page
Number Title Number

Glossary of Terms and Abbreviations

Index

XVi MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

ILLUSTRATIONS

Figure . Page
Nt?mber Title Numb?ar
1-1 BIOCK DIZIamcoveiiieiiiiiiiiiiesieee ettt s 1-6
1-2 Programming Model—RegiStersccoouiiiiiiviiiiiniiiiiiiiiciiec 1-22
1-3 Data Cache OrganizZationcccceceveeueruemeteinienenienieietereeeecesesacssessesnennes 1-27
1-4 Exception ClassifiCations...........ccceevuerrerieieieieinierieietetetetere e esesseseeseesieneas 1-29
1-5 Exceptions and CONAItIONScccueveerieriinieneninitenceieeeeienee et 1-29
1-6 SyStem INEEIfaCe.......ccoeveiruirieiiiiiiiteictc e e 1-35
1-7 S1ZNAL GIOUPS......iiiiiiiiiieieictie e 1-38
2-1 Programming Model—REZISErScccevirieniiiiiiienieeieeieeeeeeeeece e 2-3
2-2 Hardware Implementation Register 0 (HIDO)coccovveeiiiiiniiiiiicieceeicenieene 2-7
2-3 Hardware Implementation Register 1 (HID1)ccooeeiieiiiieniiniiiiceieciceene 2-9
2-4 DMISS and IMISS REZISIETSccueuiiiiiiiiieiiiieiiieiiiicecteneere s 2-9
2-5 DCMP and ICMP REZISLEIS.......ceeerirrertinreieiieiiniieeeteietetetet et eae v vennen 2-10
2-6 HASH1 and HASH2 RegISterscoccuiviiuiiiiiiniiiiiiiicecccncences 2-10
2-7 Required Physical Address Register (RPA)c..ccoocviviiviniiniiiiiniiiiiicicc. 2-11
2-8 Instruction Address Breakpoint Register (IABR)......ccccooeviiviniiincnncncnienenne 2-11
3-1 Instruction Cache OrganizZationcocoeeveveieeriniiniininieieeeneeecne e 3-3
3-2 Data Cache Organizationcc.cceuciiicuiininineiiiiecneieeces s 3-5
3-3 Double-Word Address Ordering—Critical Double Word First........cccoccoveneucee 3-9
3-4 MEI Cache Coherency Protocol—State Diagram (WIM = 001).......ccccccvueunee. 3-16
3-5 Bus Interface Address BUffers..........cccoeeevenieieiniinininininiicicnciciccceee 3-28
4-1 Exceptions and COonditionscc.ceeeeveviiieieineniniiniiniineieeereesesescsee e 4-4
4-2 Machine Status Save/Restore Register Occocieiiiiciiiciininiciicicene 4-10
4-3 Machine Status Save/Restore Register 1coccoceveeruevenenneincnencnnniecneenenn 4-10
4-4 Machine State Register (MSR)cc.covevieiririnenierieteieieeeeeceteeeieee e 4-12
5-1 MMU Conceptual Block Diagram—32-Bit Implementations...........ccccceceueueee 5-5
5-2 IMMU BIOCK DiIa@ram......c..coueieuieuireeriniinieieiitnienieneesecsretere et enenes 5-6
5-3 DMMU BIOCK DIagramcoceuerieueieuininieenieinieieeeretescteseeeseeeseeesesesseseesenenes 5-7
5-4 Address Translation TYPEScceeeeveerieiieeieriiniieeereeienee e 5-9
5-5 General Flow of Address Translation (Real Addressing Mode and Block) 5-12
5-6 General Flow of Page and Direct-Store Interface Address Translation 5-13
5-7 Segment Register and TLB Organizationc.ceceeeveeeenieneesierseeneciuenneennens 5-26
5-8 Page Address Translation Flow for 32-Bit Implementations—TLB Hit.......... 5-29
5-9 Primary Page Table Search—Conceptual FIOWccccoceeeiniiiencincinenennenns 5-32
5-10 Secondary Page Table Search Flow—Conceptual Flowccccocoeeinin. 5-33
5-11 Derivation of Key Bit for SRRcccoeiiiiinininiiiiiiiciciceereiccieieenen 5-36
5-12 DMISS and IMISS REZISEISceeeuiruiriiriiieieieieieeieeieeieeiesiestesieeiesve e eneennne 5-36
5-13 DCMP and ICMP REGISIEIS.......coucuiiuiiiiiireiinieieiiiciccieicieiesee s 5-37
MOTOROLA lllustrations xvii

ILLUSTRATIONS

Figure . Page
Nt?mber Title Numb%r
5-14 HASH1 and HASH2 REZISLEISc..cuerveuiririeieieeireieieiereeceecreeeneetesenaesenenes 5-37
5-15 Required Physical Address (RPA) RegiStercoeeeviueinuiiniicininiccnieicnnee 5-38
5-16 Flow for Example Software Table Search Operation............c.ccccceevueucvrunnenenee. 5-40
5-17 Check and Set R and C Bit Flow
5-18 Page Fault Setup FIOWcc.coceeveveeneinnnencnienene.
5-19 Setup for Protection Violation EXCEPtionscccoueevereinreinreicineccniencnenee 5-43
6-1 Pipelined EXecution Unitc.ccccevirirenenennineniecriieeeeeeeeeeressestesaesseesessenenes
6-2 Instruction Flow Diagram
6-3 Instruction Timing—Cache Hitccevevenieieineniniienienreteeeeneer e
6-4 Instruction Timing—Cache MISS........ccceceeererrenierienininenieneenienreseetenreseeeeeenes
6-5 Branch Instruction Timing............cccoeveevvreennnne
7-1 SIZNAL GIOUPS......coveuiiiiiiiirciiciicctrc e
7-2 IEEE 1149.1-Compliant Boundary Scan Interface............ccceceeerveevennienennene 7-28
8-1 BIOCK DiIagIam....c.coueieieieieieieiieieiieieseetetecesesesae sttt et eseesessesessessessessesene 8-3
8-2 Timing Diagram Legend.........cc.ccourivniiriniciiniiiiniincinecnecnceneeeseseeseenene 8-5
8-3 Overlapping Tenures on the Bus for a Single-Beat Transfer..........c.cccoccceuccueucn. 8-6
8-4 Address Bus Arbitrationce.ceceeeeerenierineerinietenientneeesresresseseessessessessessenes 8-10
8-5 Address Bus Arbitration Showing Bus Parking.........cccceceveriienceveniincnnennn. 8-11
8-6 Address Bus Transfer........c.cooeviiirennieiniecniiie e
8-7 Snooped Address Cycle with ARTRY
8-8 Data Bus Arbitration.........ccouecevevueruenuenienierineniinieieieeeeeiesresrcevesvene e ssesesnenis
8-9 Normal Single-Beat Read Termination
8-10 Normal Single-Beat Write Termination
8-11 Normal Burst TTansaction...........ccueveeeeerenierteineienenteneeeeeeieeeesseeseesessessenss
8-12 Termination with DRTRYccooeuiiiiiiniiiicinieccetccencentceeeieiee e
8-13 Read Burst with TA Wait States and DRTRYcv.vveeverirrensenssesssenseessneons 8-29
8-14 MEI Cache Coherency Protocol—State Diagram (WIM = 001)..........ccoeueee. 8-31
8-15 Fastest Single-Beat Reads...........ccccocevieiiiiiniiiiiiininicicciiciicccceees 8-32
8-16 Fastest Single-Beat WIIteS.......couevuivirrirerirenieiiciiecniesectctetesreree e 8-33
8-17 Single-Beat Reads Showing Data-Delay Controlscccceceeeurcemrcnercnuenenee 8-34
8-18 Single-Beat Writes Showing Data Delay Controls.........c.cceccevvevicineennecenaes 8-35
8-19 Burst Transfers with Data Delay Controls...........coceererienieienieneeneeneeneeieeenenne 8-36
8-20 Use of Transfer Error Acknowledge (TEA)c.ccoeuveevieevereerernerseenenaesensesanns 8-37
8-21 32-Bit Data Bus Transfer (Eight-Beat BUrst)ccccocvevveeeeeierencenenienenreneenes 8-39
8-22 32-Bit Data Bus Transfer (Two-Beat Burst with DRTRY)c..coovveeviivveennnns 8-39
8-23 Data Bus Write Only Transaction...........ccecueveerereervenieneeeeeereereeseeesseesesresensens 8-44
C-1 Direct-Store TENUIEScc.cccovrueriererieeniereinieeieie ettt aeesnanes C-4
C-2 Direct-Store Operation—Packet Oc.cccoooviiiiieinincininniiiicccecad C-7
C-3 Direct-Store Operation—Packet 1ccocevveviririiniinenienieienenreeesteseeeeeeeerenns C-8
C-4 I/O Reply OPErationc.cccecvivueuenieuenieneiniciiieie st sessesessenenes C-9
C-5 Direct-Store Interface Load Access Exampleccccoeiiiiiiniiinicncnicnnn C-11
C-6 Direct-Store Interface Store Access EXamplecccccccceveeeccnnienncnninnenenenes C-12
C-7 Instruction Cache Organizationc.ccccevererererueerecnerenerennereeeneeeseeeseenes C-14
Xviii MPC603e & EC603e RISC Microprocessors User’s Manual MOTOROLA

ILLUSTRATIONS

Figure . Page

Number Title Number
C-8 Data Cache Organizationceceeceevueeeeerienenrenenieneeneeseeseeeeseesesessessesseseenses C-15
C-9 Direct-Store Segment Translation FIOWc..cocccevenievnninnnienncnieneneecneneennne C-17

MOTOROLA lllustrations XixX

ILLUSTRATIONS

Figure Title

Number

Page
Number

XX MPC603e & EC603e RISC Microprocessors User’s Manual MOTOROLA

TABLES

Table . Page
Number Title Number
i Acronyms and Abbreviated TeImscccceveeevverenerenninrenenenerereneseeeenennen XXXiv
ii Terminology CONVENTIONScoeeieeueerierieienieriieteienreree e sresseesesreesesaeens XXXVii
iii Instruction Field Conventions............c.coceeeerriinencnienineneeeniiieeeerenecieeas XXXViii
1-1 CSE[0—1] SIZNAIS.....vcveurtririereieiniriereetntrie et eieneeatste et saesesesesaesesesesesssene 1-7
1-2 Generated SRR1 [Key] Bitcccoceireriniinineieireiecceierceteeeeeeiteteenene 1-8
1-3 Additional/Changed HIDO Bits........c.cccoceivrieinierinienieienenieniniercsteresenenieseseenenes 1-18
2-1 MSR[POW] and MSR[TGPR] Bits......cccececemeirmirnireecerinenieinreiieeeeecnreeeeneene 2-5
2-2 HIDO Bit SEHNES....cvecveuiriieririeieeeienienresieniestestestesteeesessessessesseeestesseseeeessessesens 2-8
2-3 HIDT Bit SEHNZS...ccuveevieienrieiertenreeeeseeterseneesstetesseesteeseeeessessesnseessessesseesnsesses 29
2-4 DCMP and ICMP Bit SEttNgScccovevereererierenirrenieenirieenieeseereseereieseneeseseeneenes 2-10
2-5 HASHI1 and HASH2 Bit SEttingsccceeerueereererieinieierrerenireerenrenesseesseseseesennes 2-10
2-6 RPA Bit SEHNES ..c.coveurereninieeireeirietrieeniesieseeseesteieiessesesaesesassesessesseseseenesssseseses 2-11
2-7 Instruction Address Breakpoint Register Bit Settingscoccccevvevievievireeeennnne. 2-12
2-8 MeEMOTY OPETANASeeeverrirrireinieeieieeterteereeereeesreete et st esse et esteesessessesseeneens 2-13
2-9 Integer Arithmetic INSITUCLIONSco.ceveeuerrenrenieieieieceeeerte et 2-22
2-10 Integer Compare INStrUCHONS.........cccoouiviiiiiiiiiiincic s 2-23
2-11 Integer Logical INStIUCHONScccoveuirieucruemieierenieeteeeicteicreieereeiceree et eenes 2-23
2-12 Integer Rotate INStrUCIONSe.ceuiruerierierierienientetenretetere ettt ree e eeeene 2-24
2-13 Integer Shift INSLIUCHIONS.ceoeeviirieieeieienteceete ettt 2-25
2-14 Floating-Point Arithmetic INStruCtiONScoeevevveriereerieiirenenereeseereresee e 2-26
2-15 Floating-Point Multiply-Add INStructionscccoeeeviriircereceniciinecncnnieneenene. 2-26
2-16 Floating-Point Rounding and Conversion Instructions.............ccocevverieveeneenvenene 2-27
2-17 Floating-Point Compare INStrUCONS........cceveevereeriereerieieeneneestenrerieseeseeseesseneens 2-27
2-18 Floating-Point Status and Control Register Instructionscc.ccecveveeeeeeueneen. 2-28
2-19 Floating-Point Move INStruCtiONSccccveeueruerueruenueereeeneniennenseresresnenneneeneens 2-28
2-20 Integer Load INSIrUCHONScc.covtvuevierrerrinienicreiereteceeere e 2-30
2-21 Integer Store INSIIUCHONS .. .oveeeeeeirerienreerertertestete st eeerestesiesee et ebesseseeeesaeneene 2-31
2-22 Integer Load and Store with Byte-Reverse Instructions............ccccoeeeiiinicncne. 2-31
2-23 Integer Load and Store Multiple INStruCtionscoccevvveviniiinninnieniieieinene 2-32
2-24 Integer Load and Store String InStructionscocceeeeeeeeenenenienienenennenneniennens 2-33
2-25 Floating-Point Load INSIUCHIONScc.ceererererveruenierieerenesrenteneesresieseesresueneens 2-34
2-26 Floating-Point Store INStructionscoccovieriinniecniiinneeiincinensicseenenenns 2-35
2-27 Branch INSIUCHIONScoeeuieeriririniineninenenerterieseetetseeesrenesnesbessessesnesaennens 2-36
2-28 Condition Register Logical INStructionscccueciiiiiiniiinniinniiiinieienns 2-37
2-29 Trap INSHIUCHONScoveuiieiirieeeieieienteteteete ettt ettt et neeeseneneas 2-37
2-30 Move to/from Condition Register INStructionscccceeevververeeneerienreceenennennens 2-38
MOTOROLA Tables XXi

TABLES

Table . Page
Number Title Number

2-31 Memory Synchronization Instructions—UISAccoccovevinnniininininiinncnnene 2-39

2-32 Move from Time Base INStruCtion............c.ocevureveeeniiinnnineiniscnriesisieieesenn

2-33 Memory Synchronization Instructions—VEA

2-34 User-Level Cache INStrUCHONS.ccceueeerrerirucsieerieeereenieerreststeeenesseesseessene

2-35 External Control INStIUCtIONScceueverueueriiierinenieentcinienenetesesenseecsseseereesses

2-36 System Linkage Instructions

2-37 Move to/from Machine State Register Instructions.........cc.cecceceeveeeeveererererennens

2-38 Move to/from Special-Purpose Register Instructions.............ceceeeeersceecuerverennene

2-39 Implementation-specific SPR Encodings (fSpr)cccccceuvvvmiuivccnenninnrenennenee

2-40 Supervisor-Level Cache Management Instruction.......

2-41 Segment Register Manipulation InStructions............ceeeevevuercruenirueeeisiisiesenuene

2-42 Translation Lookaside Buffer Management Instructions

3-1 Combinations of W, I, and M BitS..........ccivvuvieviieiiinririnniiecierecenreenseeessressnens

32 MEI State Definitionsc.cceceeeeveeereeneneencsenreneerennene

3-3 CSE[0-1] Signal ENCOINGc.cocerrerurrerrereeserrenersreeeseeseeseeseeesessessssessesessessens

3-4 Memory Coherency Actions on Load Operationsc..ceccevvuevuesenrenvereenereennes

3-5 Memory Coherency Actions on Store Operations...........ceceeveeeeverreneerervereerennens

3-6 Response to Bus Transactionscc.cu....

3-7 Bus Operations Caused by Cache Control Instructions (WIM = 001) 3-26

3-8 MEI State Transitionsc.ccoceeeeriniieieniniinineninisiesicnescsneisssisessssessssssssses

4-1 Exception Classifications

4-2 Exception Priorities.........coceoererercruenenc.

4-3 SRR1 Bit Settings for Machine Check EXCEpHions.........cc.ceeueeveueirnuirerueuerennens

4-4 SRR1 Bit Settings for Software Table Search Operations....

4-5 MSR Bit SELNGScorirveremieniirieieiiiierie ittt sesesesssesssssssssseses

4-6 IEEE Floating-Point Exception Mode Bits.........c..coccoiniiiiiiniinnininiiininnininae

4-7 MSR Setting Due to Exception

4-8 Settings Caused by Hard Reset

4-9 Soft Reset Exception—Register Settings........c.coveeveeererrecrenreseesennenernnesenenneene

4-10 Machine Check Exception—Register Settings

4-11 DSI Exception—Register Settings... .

4-12 External Interrupt—Register SEttings........cccoeueveeererrvrininiinccsininninnseinsneeneeens

4-13 Alignment Interrupt—Register Settingscc.cocciveeveererrcreencnne.

4-14 Access TYPES ..o

4-15 Trace Exception—Register Settings.............ccoevviviiiniiiniiiiniiniiiniiiiienes

4-16 Instruction and Data TLB Miss Exceptions—Register Settings

4-17 Instruction Address Breakpoint Exception—Register Settings...........c.coeveueene.

4-18 Breakpoint Action for Multiple Modes Enabled for the Same Address............ 4-36

4-19 System Management Interrupt—Register Settings..........cocevcevrceerercerevereseruenens 4-37

5-1 MMU Features SUIMIMATYcc.ecvereeererrenrersersersessessessessessessessessesseseseseosesseseenes 5-2

5-2 Access Protection Options for Pagescoceveeveeeeininencniniicerninieneeenas 5-10

5-3 Translation Exception Conditions.............cccceveiicrniniincniinniniiiiiinnennes 5-15

5-4 Other MMU Exception Conditions...........coevvirenrevcnieniiniiiennscsinnins 5-16
xxii MPC603e & EC603e RISC Microprocessors User’s Manual MOTOROLA

Table
Number

5-5
5-6
5-7
5-8
59
5-10
5-11
5-12
5-13
6-1
6-2
6-3
6-4
6-5
6-6
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
9-1
A-1
A-2
A-3
A-4
A-5
A-6
A-7

TABLES

Page
Title Number

Instruction Summary—MMU COntrolcccoeueveverinineeeninineercrinneeneeesesenenenns 5-18
MMU REZISLETS........ceeuiireiiiirireictieiereesreettsesiese e s enesese e ssasassesesesenseeees 5-18
Table Search Operations to Update History Bits—TLB Hit Case 5-22
Model for Guaranteed R and C Bit Settingscccccvvviiueneininiininccrsennecenenes 5-24
Implementation-Specific Resources for Table Search Operations.................... 5-34
Implementation-Specific SRR Bits.......c.ccccceuienreneenennencrecninicerecenes 5-36
DCMP and ICMP Bit Settings........c.ceceververeneerererrenreneeeeeneeceessessessesseseeesses 5-37
HASH1 and HASH2 Bit SEttingscccccceviiernunrercninineeineerenenintsieneeesesenenenns 5-38
RPA Bit SEHNESccveuiiieiereneeriierenieiteeetneeetereeebestes et sesaeseeseseeseseseneeesensenes 5-38
Branch INStUCHONScoeviriiiiieiiiirtiietreetecereee et esee s 6-23
System Register INStrUCONS.cocoveueueueuiirenintrinieiccrt ettt seeaens 6-23
Condition Register Logical InStructions............ccocueceevrerrienirencerennnsessseensnnnns 6-24
INteger INSIUCHONSc.ovvrueuieiirieierietreieteeerescetenee ettt sese e en 6-24
Floating-Point INStrUCHONS..........cccoveririeeririeiieieieiesteeste et 6-26
Load and Store INStIUCHIONSccceveeuerereruereninreririeiinieesenceieeereseeesteseeeseessenes 6-28
Transfer Encoding for the Bus Master..........ccooceceiviniiiinininiinininineeenecinineenennns 7-9
SNOOP Hit RESPONSE......cccovmminiieiiieeenteieteieeretstete et tee st e ebeseaeaen 7-11
Implementation-Specific Transfer Encoding..........coceeccevnecnineneecncncnnennnnen 7-12
CLK_OUT Signal Configuration............coeceeveveerrmeeriererernrenisreseeensssesessessnsenes 7-12
Data Transfer SIzZe..........ocvviniiuiucvenininiinicccintiecert et seeenene 7-13
Encodings for TC[0—1] Signalsc.cccccevveerermrrrmeieenieeenieeerecntsnniereneseeseseneene 7-14
Data Bus Lane ASSIZNMENLSc.c.oovevureeerieerinieeeieenientererieenteseesesessesessesessnsenes
DP[0-7] Signal Assignments

Pipeline Tracking OULPULSc.coceurerieererenermererenietneereeceeeseetsanseeesesessesssens
PLL CONfiUIALIONcovetemieeenineeieeirieesteretsiesensesestestesessssessesessessssesensesessnsenes
Transfer Size Signal Encodingscccoccvveeuenierinniniinncnienninenieeeseeeseseesesssene 8-14
Burst Ordering——064-Bit BUS.......c.cccooeuieiininininieicrineceeieccenneeieeseneeenees 8-14
Burst Ordering—32-Bit BUS.......c.cccecvrerireerineinieneeeneeneeceieseeestseesessesesenas 8-15
Aligned Data Transfers (64-Bit Bus)..........ccccecvvevirvenecineninienieirereseereesensenns 8-15
Misaligned Data Transfers (Four-Byte Examples)..........ccccccoveeneneecreeiencncncncncs 8-17
Aligned Data Transfers (32-Bit Bus Mode).......c.ccoceeervenenueniineneneneneeeseneenns 8-18
Misaligned 32-Bit Data Bus Transfer (Four-Byte Examples)...........ccc.ccecenune... 8-19
Transfer Code ENCOAINgcccouevievivinieeninieineieieeniecnieeseeere et sneas 8-20
CSE[0—1] SINAIS...c..coieiriiiiieieiertnenrenretneeseseestessesteseassessessessessessassessesessenes 8-31
IEEE Interface Pin DeSCIPHONSccovevveivrerenienenenienrenienesresessessesseseesnssenes 8-43
Programmable POWEr MOAES.........c..ccceuimeereeieniiuenieeienninreceiecenisaescseeneeeneseneenene 9-3
Complete Instruction List Sorted by Mnemonic............cccceeeveeeineeruererercnnecrennns A-1
Complete Instruction List Sorted by Opcode..........ccooceveuiivnuecininenrnncrcrincnnnnns A-9
Integer Arithmetic INStIUCHONSc.coveveeeriererrierieriecnreeec ettt saeaene A-17
Integer Compare INSrUCLIONS.c..oueeveuiirueeeieirerienieenieeneeeeereeereeeeseereseeseneas A-18
Integer Logical INSERUCHIONSccouevimiuimieencreiricreiintineetee e esteneeeseesineaes A-18
Integer Rotate INSrUCHIONScceeveuiemiinieicinreieeeneccerecnieeee et seeieesreseeaeaene A-18
Integer Shift INStIUCHIONS........c.coueuiiruireernerinine ettt seaen A-19

MOTOROLA

Tables xxiii

Table
Number

A-8

A-9

A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24
A-25
A-26
A-27
A-28
A-29
A-30
A-31
A-32
A-33
A-34
A-35
A-36
A-37
A-38
A-39
A-40
A-41
A-42
A-43
A-44
A-45
A-46
B-1

B-2

B-3

B-4

TABLES

Title

Floating-Point Arithmetic INStructionsc.c.cecvevueueccrernneuencnneneeeerineenenenene
Floating-Point Multiply-Add Instructions
Floating-Point Rounding and Conversion Instructions...........c.cccceceevveenvenennne
Floating-Point Compare INStrUCtiONSc.ccoerererieuereererenrenereninesieneeseeeesenenens
Floating-Point Status and Control Register Instructions
Integer Load INSLIUCTIONSccceuirueruerrerienteeeeereniertestesretetesteeesaesessesressessensenes
Integer Store INSrUCIONSco.evvevuieeerierieeeesententeie et ee et eee e sesestassesaeseens
Integer Load and Store with Byte-Reverse Instructions
Integer Load and Store Multiple INStructionsceceevevvevenerneeenerenesennenns
Integer Load and Store String INStructionsc.ceceeceveeivvenierenieenneninenievenenn
Memory Synchronization Instructions
Floating-Point Load Instructions

Floating-Point Store Instructions

Floating-Point Move Instructions
Branch INSIrUCHONSc.cviuivuiiiriiiiiiiciteeetcceece ettt sae e saenene
Condition Register Logical INStructionsccce.coveueeverenueeneeeneeeneneneeennenene
System Linkage Instructions
Trap INStIUCHIONSc.veviveeieiieietei ettt sttt saesasnene
Processor Control INSLIUCHIONS......c..cceveueirrerinuerinieieeietnietneeeeeseeaeseeeeseesenaenens
Cache Management Instructions
Segment Register Manipulation Instructions
Lookaside Buffer Management INStruCtions.............cccoveverveerurrenueesesesseeruenens
External Control Instructions

PowerPC Instruction Set Legend...........cocuvivenenieierreeneeenieieieeceseseesvessennene

32-Bit Instructions Not Implemented by the PowerPC 603e..........c.ccceeereunnnee B-1
64-Bit Instructions Not Implementedcocceevreveereerienienreneerienieeneeeseseneeneens B-1
Floating-Point Instructions Not Supported by the EC603e Microprocessor B-3
64-Bit SPR Encoding Not Implemented............ccocoeveveeueeneenerinenenneeeenenrenenens B-5

XXiv

MPC603e & EC603e RISC Microprocessors User’s Manual MOTOROLA

TABLES

Table . Page

Number Title Number
C-1 Direct-Store Bus Operations............coceueeeiiiniiincneneninenenniiiieenesseseseseenns C-4
C-2 Address Bits for I/O Reply Operations............ccccueeveeeiiucniniiieecinneeneccsnecenenes C-9
C-3 CSE Signal ENCOING.....c.cc.eeeuiuiriiiieiiieieiriecrietseteiesteeteeeseeseseeseessesesaessenes C-12
C-4 PowerPC 603 Microprocessor PLL Configuration............ccceeceeveevuenivieennennnes C-13
C-5 Store INStruction TiMINGccceeverrireeieirerreneneniesiesieeeste e seesesaessesaessesaenees C-19
C-6 System Register INStIUCIONS.cccuevueriierieeiiiiiieniteieeeesceeesreeee e eee s e saeens C-20

MOTOROLA Tables XXV

XXVi

MPC603e & EC603e RISC Microprocessors User’s Manual

MOTOROLA

About This Book

The primary objective of this user’s manual is to define the functionality of the PowerPC
603™ and PowerPC 603e™ microprocessors for use by software and hardware developers.
Although the emphasis of this manual is upon the 603e, all of the information within
applies to both the 603 and 603e, except for those differences noted in Appendix C,
“PowerPC 603 Processor System Design and Programming Considerations.” Those readers
who are primarily interested in the 603 should begin with Appendix C.

In addition, this book describes the EC603e™ microprocessor. The EC603e
microprocessor for embedded systems is functionally equivalent to the 603e with the
exception of the floating-point unit which is not supported on the EC603e microprocessor;
therefore, the term ‘EC603e’ is used only when it is necessary to distinguish functional
differences with the EC603e microprocessor.

The 603e is built upon the low-power dissipation, low-cost and high-performance attributes
of the 603 while providing the system designer additional capabilities through higher
processor clock speeds, increases in cache size (16-Kbyte instruction and data caches) and
set-associativity (4-way), and greater system clock flexibility. The 603e only implements
the 32-bit portion of the PowerPC™ architecture.

The 603e and EC603e microprocessors are implemented in both a 2.5-volt version (PID
0007v 603e microprocessor, abbreviated as PID7v-603e) and a 3.3-volt version (PID 0006
603e microprocessor, abbreviated as PID6-603¢).

In this document, the term ‘603e’ is used as an abbreviation for ‘PowerPC 603e
microprocessor’ and the term ‘603’ is an abbreviation for ‘PowerPC 603 microprocessor’.
The PowerPC 603e microprocessors are available from Motorola as MPC603e. The
EC603e microprocessors are available from Motorola as MPE603e.

It is important to note that this book is intended as a companion to the PowerPC
Microprocessor Family: The Programming Environments, referred to as The Programming
Environments Manual; contact your local sales representative to obtain a copy. Because the
PowerPC architecture is designed to be flexible to support a broad range of processors, The
Programming Environments Manual provides a general description of features that are
common to PowerPC processors and indicates those features that are optional or that may
be implemented differently in the design of each processor.

MOTOROLA AboutThis Book Xxvii

This document summarizes features of the 603e that are not defined by the architecture.
This document and The Programming Environments Manual distinguish between the three
levels, or programming environments, of the PowerPC architecture, which are as follows:

* PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

* PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices can
access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory accesses and for managing resources in
an environment in which other processors and other devices can access external
memory.

* PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that cause a floating-
point exception are defined by the UISA, while the exception mechanism itself is defined
by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

For ease in reference, this book has arranged topics described by the architecture into topics
that build upon one another, beginning with a description and complete summary of 603e-
specific registers and progressing to more specialized topics such as 603e-specific details
regarding the cache, exception, and memory management models. As such, chapters may
include information from multiple levels of the architecture. (For example, the discussion
of the cache model uses information from both the VEA and the OEA.)

The PowerPC Architecture: A Specification for a New Family of RISC Processors defines
the architecture from the perspective of the three programming environments and remains
the defining document for the PowerPC architecture.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the

Xxviii MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

readers’ responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative.

Audience

This manual is intended for system software and hardware developers and applications
programmers who want to develop products using the 603e microprocessors. It is assumed
that the reader understands operating systems, microprocessor system design, the basic
principles of RISC processing, and details of the PowerPC architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

e Chapter 1, “Overview,” is useful for readers who want a general understanding of
the features and functions of the PowerPC architecture and the 603e. This chapter
describes the flexible nature of the PowerPC architecture definition, and provides an
overview of how the PowerPC architecture defines the register set, operand
conventions, addressing modes, instruction set, cache model, exception model, and
memory management model.

* Chapter 2, “Programming Model,” provides a brief synopsis of the registers
implemented in the 603e, operand conventions, an overview of the PowerPC
addressing modes, and a list of the instructions implemented by the 603e.
Instructions are organized by function.

e Chapter 3, “Instruction and Data Cache Operation,” provides a discussion of the
cache and memory model as implemented on the 603e.

* Chapter 4, “Exceptions,” describes the exception model defined in the PowerPC
OEA and the specific exception model implemented on the 603e.

e Chapter 5, “Memory Management,” describes the 603e’s implementation of the
memory management unit specifications provided by the PowerPC OEA for
PowerPC processors. '

* Chapter 6, “Instruction Timing,” provides information about latencies, interlocks,
special situations, and various conditions to help make programming more efficient.
This chapter is of special interest to software engineers and system designers.

» Chapter 7, “Signal Descriptions,” provides descriptions of individual signals of the
603e.

¢ Chapter 8, “System Interface Operation,” describes signal timings for various
operations. It also provides information for interfacing to the 603e.

e Chapter 9, “Power Management,” provides information about power saving modes
for the 603e. t

MOTOROLA AboutThis Book XXiX

Appendix A, “PowerPC Instruction Set Listings,” lists all the PowerPC instructions
while indicating those instructions that are not implemented by the 603e; it also
includes the instructions that are specific to the 603e. Instructions are grouped
according to mnemonic, opcode, function, and form. Also included is a quick
reference table that contains general information, such as the architecture level,
privilege level, and form, and indicates if the instruction is 64-bit and optional.

Appendix B, “Instructions Not Implemented,” provides a list of PowerPC
instructions not implemented by the 603e.

Appendix C,r “PowerPC 603 Processor System Design and Programming
Considerations,” provides a discussion of the hardware and software differences
between the 603 and 603e.

This manual also includes a glossary and an index.

Suggested Reading

This section lists additional reading that provides background for the information in this
manual as well as general information about the PowerPC architecture.

General Information

The following documentation provides useful information about the PowerPC architecture
and computer architecture in general:

The following books are available from the Morgan-Kaufmann Publishers, 340
Pine Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A.),
(415) 392-2665 (International); internet address: mkp @mkp.com.

— The PowerPC Architecture: A Specification for a New Family of RISC
Processors, Second Edition, by International Business Machines, Inc.

Updates to the architecture specification are accessible via the world-wide web
at http://www.austin.ibm.com/tech/ppc-chg.html.

— PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Computer, Inc., International Business Machines, Inc.,
and Motorola, Inc.

— Macintosh Technology in the Common Hardware Reference Platform, by Apple
Computer, Inc.

— Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson

Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.),
(800) 637-0029 (Canada), (716) 871-6555 (International).

PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404,
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

XXX

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

PowerPC Documentation

The PowerPC documentation is available from the sources listed on the back cover of this
manual; the document order numbers are included in parentheses for ease in ordering:

User’s manuals—These books provide details about individual PowerPC
implementations and are intended to be used in conjunction with The Programming
Environments Manual. These include the following:

— PowerPC 604™ RISC Microprocessor User’s Manual:
MPC604UM/AD (Motorola order #)

— MPC750 RISC Microprocessor User’s Manual:
MPC750UM/AD (Motorola order #)

— PowerPC 620™ RISC Microprocessor User’s Manual:
MPC620UM/AD (Motorola order #)

Programming environments manuals—These books provide information about
resources defined by the PowerPC architecture that are common to PowerPC
processors. There are two versions, one that describes the functionality of the
combined 32- and 64-bit architecture models and one that describes only the 32-bit
model.

— PowerPC Microprocessor Family: The Programming Environments, Rev 1:
MPCFPE/AD (Motorola order #)

— PowerPC Microprocessor Family: The Programming Environments for 32-Bit
Microprocessors, Rev. 1: MPCFPE32B/AD (Motorola order #)

Implementation Variances Relative to Rev. 1 of The Programming Environments
Manual is available via the world-wide web at http://www.motorola.com/PowerPC/.

Addenda/errata to user’s manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and changes to
functionality of the follow-on part. These addenda are intended for use with the
corresponding user’s manuals. These include the following:

— Addendum to PowerPC 604 RISC Microprocessor User’s Manual: PowerPC
604e™ Microprocessor Supplement and User’s Manual Errata:
MPC604UMAD/AD (Motorola order #)

Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations for each PowerPC implementation. These include the
following:

— PowerPC 603 RISC Microprocessor Hardware Specifications:
MPC603EC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware
Specifications:
MPC603EEC/D (Motorola order #)

MOTOROLA AboutThis Book XXXi

— PowerPC 603e RISC Microprocessor Family: PID7v-603e Hardware
Specifications:
MPC603E7VEC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID7t-603e Hardware
Specifications:
MPC603E7TEC/D (Motorola order #)

— PowerPC 604 RISC Microprocessor Hardware Specifications:
MPC604EC/D (Motorola order #)

— PowerPC 604e RISC Microprocessor Family: PID9v-604e Hardware
Specifications:
MPC604E9VEC/D (Motorola order #)

— PowerPC 604e RISC Microprocessor Family: PID9q-604¢ Hardware
Specifications:
MPC604E9QEC/D (Motorola order #)

— MPC750 RISC Microprocessor Hardware Specifications
MPC750EC/D (Motorola order #)

— EC603e Embedded RISC Microprocessor (PID6) Hardware Specifications:
MPEG603EEC/D (Motorola order #)

— EC603e Embedded RISC Microprocessor (PID7v) Hardware Specifications:
MPEG603E7VEC/D (Motorola order #)

Technical Summaries—Each PowerPC implementation has a technical summary
that provides an overview of its features. This document is roughly the equivalent to
the overview (Chapter 1) of an implementation’s user’s manual. Technical
summaries are available for the 601, 603, 603e, 604, 604e, and EC603e
microprocessors which can be ordered as follows:

— EC603e Embedded RISC Microprocessor Technical Summary:
MPEG603E/D (Motorola order #)

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors:
MPCBUSIF/AD (Motorola order #) provides a detailed functional description of the
60x bus interface, as implemented on the 601, 603, and 604 family of PowerPC
microprocessors. This document is intended to help system and chipset developers
by providing a centralized reference source to identify the bus interface presented by
the 60x family of PowerPC microprocessors.

PowerPC Microprocessor Family: The Programmer’s Reference Guide:
MPCPRG/D (Motorola order #) is a concise reference that includes the register
summary, memory control model, exception vectors, and the PowerPC instruction
set.

PowerPC Microprocessor Family: The Programmer’s Pocket Reference Guide:
MPCPRGREF/D (Motorola order #)

This foldout card provides an overview of the PowerPC registers, instructions, and
exceptions for 32-bit implementations.

XXXii

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

* Application notes—These short documents contain useful information about
specific design issues useful to programmers and engineers working with PowerPC

processors.

¢ Documentation for support chips—These include the following:

— MPCI105 PCI Bridge/Memory Controller User’s Manual:
MPC105UM/AD (Motorola order #)

— MPC106 PCI Bridge/Memory Controller User’s Manual:
MPC106UM/AD (Motorola order #)

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.mot.com/SPS/PowerPC/.

Conventions

This document uses the following notational conventions:

mnemonics

italics

0x0

0b0

rA, rB

rAlQ

rD

frA, frB, frC
frD
REGI[FIELD]

Instruction mnemonics are shown in lowercase bold.

Italics indicate variable command parameters, for example, beetrx.
Book titles in text are set in italics.

Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source GPR
The contents of a specified GPR or the value 0.
Instruction syntax used to identify a destination GPR
Instruction syntax used to identify a source FPR
Instruction syntax used to identify a destination FPR

Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets. For example,
MSRILE] refers to the little-endian mode enable bit in the machine
state register.

In certain contexts, such as a signal encoding, this indicates a don’t
care.

Used to express an undefined numerical value
NOT logical operator

AND logical operator

OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits
may be written to as either ones or zeros, they are always read as
ZETOsS.

MOTOROLA

AboutThis Book XXXiii

Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning
ALU Arithmetic logic unit
ATE Automatic test equipment
ASR Address space register
BAT Block address translation
BIST Built-in self test
BIU Bus interface unit
BPU Branch processing unit
BUC Bus unit controller
BUID Bus unit ID
CAR Cache address register
CIA Current instruction address
CMOS Complementary metal-oxide semiconductor
corP Common on-chip processor
CR Condition register
CRTRY Cache retry queue
CTR Count register
DAR Data address register
DBAT Data BAT
DCMP Data TLB compare
DEC Decrementer register
DMISS Data TLB miss address
DSISR Register used for determining the source of a DSI exception
DTLB Data translation lookaside buffer
EA Effective address
EAR External access register
ECC Error checking and correction
FIFO First-in-first-out
FPR Floating-point register (Note that the EC603e microprocessor does not support the floating-
point unit.)
FPSCR Floating-point status and control register (Note that the EC603e microprocessor does not
support the floating-point unit.)
XXXiV MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
FPU Floa;ing-point unit (Note that the EC603e microprocessor does not support the floating-point
unit.
GPR General-purpose register
HASH1 Primary hash address
HASH2 Secondary hash address
IABR Instruction address breakpoint register
IBAT Instruction BAT
ICMP Instruction TLB compare
|IEEE Institute for Electrical and Electronics Engineers
IMISS Instruction TLB miss address
Q Instruction queue
ITLB Instruction translation lookaside buffer
U Integer unit
L2 Secondary cache
LIFO Last-in-first-out
LR Link register
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
Lsu Load/store unit
MEI Modified/exclusive/invalid
MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMU Memory management unit
MQ MQ register
MSB Most-significant byte
msb Most-significant bit
MSR Machine state register
NaN Not a number
No-op No operation
OEA Operating environment architecture
PID Processor identification tag
PIR Processor identification register
PLL Phase-locked loop

MOTOROLA

AboutThis Book

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
POWER Performance Optimized with Enhanced RISC architecture
PTE Page table entry
PTEG Page table entry group
PVR Processor version register
RAW Read-after-write
RISC Reduced instruction set computing
RPA Required physical address
RTL Register transfer language
RWITM Read with intent to modify
SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SLB Segment lookaside buffer
SPR Special-purpose register
SR Segment register
SRRO Machine status save/restore register 0
SRR1 Machine status save/restore register 1
SRU System register unit
TAP Test access port
B Time base facility
TBL Time base lower register
TBU Time base upper register
TLB Translation lookaside buffer
TTL Transistor-to-transistor logic
UIMM Unsigned immediate value
UISA User instruction set architecture
UTLB Unified translation lookaside buffer
uuTt Unit under test
VEA Virtual environment architecture
WAR Write-after-read
WAW Write-after-write
WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded bits
XATC Extended address transfer code
XER Register used for indicating conditions such as carries and overflows for integer operations

XXXVi MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Terminology Conventions

Table ii describes terminology conventions used in this manual.

Table ii. Terminology Conventions

The Architecture Specification

This Manual

Data storage interrupt (DSI)

DSl exception

Extended mnemonics

Simplified mnemonics

Fixed-point unit (FXU)

Integer unit (IU)

Instruction storage interrupt (ISI)

IS| exception

Interrupt

Exception

Privileged mode (or privileged state)

Supervisor-level privilege

Problem mode (or problem state)

User-level privilege

Real address

Physical address

Relocation Translation
Storage (locations) Memory
Storage (the act of) Access

Store in Write back
Store through Write through

MOTOROLA AboutThis Book

XXXVii

Table iii describes instruction field notation used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification

Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA crfD, crfS (respectively)

D d

Ds ds

FLM FM

FRA, FRB, FRC, FRT, FRS

frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)
Sl SIMM

u IMM

ul uiMM

1,100 0...0 (shaded)

XXXViii

MPC603e & EC603e RISC Microprocessors User's Manual

MOTOROLA

Chapter 1
Overview

This chapter provides an overview of features of the PowerPC 603e™ microprocessor and
the PowerPC™ architecture, and information about how the 603e implementation complies
with the architectural definitions. In addition, this book describes the EC603e
microprocessor. Note that the 603e and EC603e microprocessors are implemented in both
a 2.5-volt version (PID 0007v 603e microprocessor, abbreviated as PID7v-603e) and a
3.3-volt version (PID 0006 603e microprocessor, abbreviated as PID6-603e).

1.1 Overview

This section describes the details of the 603e, provides a block diagram showing the major
functional units, and describes briefly how those units interact. Any differences between the
PID6-603e, PID7v-603e, and EC603e implementations are noted.

The 603e is a low-power implementation of the PowerPC microprocessor family of reduced
instruction set computing (RISC) microprocessors. The 603e implements the 32-bit portion
of the PowerPC architecture, which provides 32-bit effective addresses, integer data types
of 8, 16, and 32 bits, and floating-point data types of 32 and 64 bits.

The 603e is a superscalar processor that can issue and retire as many as three instructions
per clock. Instructions can execute out of order for increased performance; however, the
603e makes completion appear sequential.

The 603e integrates five execution units—an integer unit (IU), a floating-point unit (FPU)
(not supported on the EC603e microprocessor), a branch processing unit (BPU), a
load/store unit (LSU), and a system register unit (SRU). The ability to execute five
instructions in parallel and the use of simple instructions with rapid execution times yield
high efficiency and throughput for 603e-based systems. Most integer instructions execute
in one clock cycle. On the 603e, the FPU is pipelined so a single-precision multiply-add
instruction can be issued and completed every clock cycle. (Note that the EC603e
microprocessor does not support the floating-point unit.)

The 603e provides independent on-chip, 16-Kbyte, four-way set-associative, physically
addressed caches for instructions and data and on-chip instruction and data memory
management units (MMUSs). The MMUs contain 64-entry, two-way set-associative, data
and instruction translation lookaside buffers (DTLB and ITLB) that provide support for

MOTOROLA Chapter 1. Overview 11

demand-paged virtual memory address translation and variable-sized block translation. The
TLBs and caches use a least recently used (LRU) replacement algorithm. The 603e also
supports block address translation through the use of two independent instruction and data
block address translation (IBAT and DBAT) arrays of four entries each. Effective addresses
are compared simultaneously with all four entries in the BAT array during block translation.
In accordance with the PowerPC architecture, if an effective address hits in both the TLB
and BAT array, the BAT translation takes priority.

The 603e has a selectable 32- or 64-bit data bus and a 32-bit address bus. The 603e interface
protocol allows multiple masters to compete for system resources through a central external
arbiter. The 603e provides a three-state coherency protocol that supports the exclusive,
modified, and invalid cache states. This protocol is a compatible subset of the MESI
(modified/exclusive/shared/invalid) four-state protocol and operates coherently in systems
that contain four-state caches. The 603e supports single-beat and burst data transfers for
memory accesses, and supports memory-mapped 1/O operations.

The 603e is fabricated using an advanced CMOS process technology and is fully
compatible with TTL devices.

1.1.1 Features
This section describes the major features of the 603e noting where the PID6-603e,
PID7v-603e, and EC603e implementations differ:
¢ High-performance, superscalar microprocessor
— As many as three instructions issued and retired per clock
— As many as five instructions in execution per clock
— Single-cycle execution for most instructions

— Pipelined FPU for all single-precision and most double-precision operations
(The EC603e microprocessor does not support the floating-point unit.)

* Five independent execution units and two register files
— BPU featuring static branch prediction
— A 32-bit[U

— Fully IEEE 754-compliant FPU for both single- and double-precision operations
(The EC603e microprocessor does not support the floating-point unit.)

— LSU for data transfer between data cache and GPRs and FPRs
(The EC603e microprocessor does not support the floating-point unit.)

— SRU that executes condition register (CR), special-purpose register (SPR), and
integer add/compare instructions

— Thirty-two GPRs for integer operands

1-2 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

— Thirty-two FPRs for single- or double-precision operands
(The EC603e microprocessor does not support the floating-point unit.)

* High instruction and data throughput

— Zero-cycle branch capability (branch folding)
— Programmable static branch prediction on unresolved conditional branches

— Instruction fetch unit capable of fetching two instructions per clock from the
instruction cache

— A six-entry instruction queue that provides lookahead capability

— Independent pipelines with feed-forwarding that reduces data dependencies in
hardware

— 16-Kbyte data cache—four-way set-associative, physically addressed; LRU
replacement algorithm

— 16-Kbyte instruction cache—four-way set-associative, physically addressed;
LRU replacement algorithm

— Cache write-back or write-through operation programmable on a per page or per
block basis

— BPU that performs CR lookahead operations

— Address translation facilities for 4-Kbyte page size, variable block size, and
256-Mbyte segment size

— A 64-entry, two-way set-associative ITLB
— A 64-entry, two-way set-associative DTLB

— Four-entry data and instruction BAT arrays providing 128-Kbyte to 256-Mbyte
blocks

— Software table search operations and updates supported through fast trap
mechanism

— 52-bit virtual address; 32-bit physical address
* Facilities for enhanced system performance
— A 32- or 64-bit split-transaction external data bus with burst transfers
— Support for one-level address pipelining and out-of-order bus transactions

— Hardware support for misaligned little-endian accesses (PID7v-603¢)

MOTOROLA Chapter 1. Overview 1-3

¢ Integrated power management

— Low-power 2.5-volt and 3.3-volt designs
— Internal processot/bus clock multiplier ratios as follows:
- 1/1,1.5/1,2/1,2.5/1, 3/1, 3.5/1, and 4/1 (PID6-603e)
- 2/1,2.5/1,3/1,3.5/1,4/1, 4.5/1, 5/1, 5.5/1, and 6/1 (PID7v-603e)
— Three power-saving modes: doze; nap, and sleep
— Automatic dynamic power reduction when internal functional units are idle
¢ In-system testability and debugging features through JTAG boundary-scan
capability
Features specific to the PID7v-603e follow:
¢ Enhancements to the register set
— The PID7v-603e adds two new bits to the HIDO register:

— The address bus enable (ABE) bit, bit 28, gives the PID7v-603e
microprocessor the ability to broadcast dcbf, dcbi, and dcbst onto the 60x
bus.

— The instruction fetch enable M (IFEM) bit, bit 24, allows the PID7v-603e to
reflect the value of the M-bit onto the 60x bus during instruction translation.

— The Run_N counter register (Run_N) has been extended from 16 to 32 bits.

* Enhancements to cache implementation

— The instruction cache is blocked only until the critical load completes (hit under
reloads allowed).

— The critical double word is simultaneously written to the cache and forwarded to
the requesting unit, thus minimizing stalls due to load delays.

— Provides for an optional data cache operation broadcast feature (enabled by the
HIDO[ABE] bit) that allows for correct system management utilizing an external
copyback L2 cache.

— All of the cache control instructions (icbi, dcbi, dcbf, and dcbst, excluding
dcbz) require that the HIDO[ABE] configuration bit be enabled in order to
execute.

» Exceptions

— The PID7v-603e now offers hardware support for misaligned little-endian
accesses. Little-endian load/store accesses that are not on a word boundary, with
the exception of strings and multiples, generate exceptions under the same
circumstances as big-endian accesses.

— The PID7v-603e removed misalignment support for eciwx and ecowx graphics
instructions.These instructions cause an alignment exception if the access is not
on a word boundary.

1-4 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

* Bus clock—New bus multipliers of 4.5x, 5x, 5.5x, and 6x that are selected by the
unused encodings of the PLL,_CFG[0-3]. Bus multipliers of 1x and 1.5x are not
supported by PID7v-603e.

* Power management—Internal voltage supply changed from 3.3 volts to 2.5 volts.
The core logic of the chip now uses a 2.5-volt supply.

* Signals—The Run_N counter, which affects the JTAG/COP, has been extended from
16 bits to 32 bits.

* Instruction timing

— The integer divide instructions divwu[o][.] and divw[o][.] execute in 20 clock
cycles; execution of these instructions in the PID6-603e requires 37 clock cycles.

— Support for single-cycle store

— An adder/comparator added to system register unit that allows dispatch and
execution of multiple integer add and compare instructions on each cycle.

Figure 1-1 provides a block diagram of the 603e that illustrates how the execution
units—IU, FPU (not supported by the EC603e microprocessor), BPU, LSU, and
SRU—operate independently and in parallel. Note that this is a conceptual diagram and
does not attempt to show how these features are physically implemented on the chip. For
more information on the execution units, refer to PowerPC 603e RISC Microprocessor
Technical Summary.

The 603e provides address translation and protection facilities, including an ITLB, DTLB,
and instruction and data BAT arrays. Instruction fetching and issuing is handled in the
instruction unit. Translation of addresses for cache or external memory accesses are
handled by the MMUSs. Both units are discussed in more detail in Sections 1.1.3,
“Instruction Unit,” and 1.1.5.1, “Memory Management Units (MMUs).”

MOTOROLA Chapter 1. Overview 1-5

64 Bit

\
| SEQUENTIAL | 64 Bit BRANCH
| FETCHER > PROCESSING
‘ 64 BR UNIT
CIR
INSTRUCTION ES
QUEUE
SYSTEM)
REGISTER 64 Bit
UNIT B Dispatch Unit
INSTRUCTION UNIT
A 64 Bit
. e |
y 64Bit 64 Bitl 64 Bit x|
nTeGer | | [GPrFie | .. . [LOADISTORE] . [FrrFie | .. [FLOATING- |
UNIT 'GPRenam R UNIT [y YT POINT UNITII
- ename
Registers If' Registers |
XER 3 EPSCR] |l
[| |
| | } f L] RS S [
32 Bit
COMPLETION !
UNIT Y Y
B D MMU | MMU
SPs | 1peaT|| Y 64Bit SRs | | igaT
oTLg| | A [ms] |
Power Time Base
Dissipation Counter/
Control Decrementer
T 16-Kbyte T 16-Kbyte | |
JTAG/ICOP | Clock 3% | b cache [© 898 | | Cache
Interface Multiplier \ Y
Touch Load Buffer PROCESSOR BUS
Copyback Buffer INTERFACE

- 32-BIT ADDRESS BUS

- 32-/64-BIT DATA BUS

* Note that the EC603e microprocessor does not support the floating-point unit or the floating-point register file.

Figure 1-1. Block Diagram

1-6 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

1.1.2 System Design and Programming Considerations

The 603e is built upon the low power dissipation, low cost and high performance attributes
of the 603 while providing the system designer additional capabilities through higher
processor clock speeds (to 100 MHz), increases in cache size (16-Kbyte instruction and
data caches) and set associativity (four-way), and greater system clock flexibility. The
following subsections describe the differences between the 603 and the 603e that affect the
system designer and programmer already familiar with the operation of the 603.

The design enhancements to the 603e are described in the following sections as changes
that can require a modification to the hardware or software configuration of a system
designed for the 603.

1.1.2.1 Hardware Features

The following hardware features of the 603e may require system designers to modify
systems designed for the 603.

1.1.2.1.1 Replacement of XATS Signal by CSE1 Signal

The 603e employs four-way set associativity for both the instruction and data caches, in
place of the two-way set associativity used in the 603. This change requires the use of an
additional cache set entry (CSE1) signal to indicate which member of the cache set is being
loaded during a cache line fill. The CSEL1 signal on the 603e is in the same pin location as
the XATS signal on the 603. Note that the XATS signal is no longer needed by the 603e
because support for access to direct-store segments has been removed.

Table 1-1 shows the CSE[0-1] signal encoding indicating the cache set element selected
during a cache load operation.

Table 1-1. CSE[0-1] Signals

CSE[0-1] Cache Set Eiement
00 Set 0
01 Set 1
10 Set 2
11 Set 3

1.1.2.1.2 Addition of Half-Clock Bus Multipliers

Some of the reserved clock configuration signal settings of the 603 are redefined to allow
more flexible selection of higher internal and bus clock frequencies. The 603e provides
programmable internal processor clock rates of 1x, 1.5x, 2x, 2.5x, 3x, 3.5x, and 4x
multiples of the externally supplied clock frequency. For additional information, refer to the
appropriate device-specific hardware specifications.

MOTOROLA Chapter 1. Overview 1-7

1.1.2.2 Software Features

The features of the 603e described in the folloWing sections affect software originally
written for the 603.

1.1.2.2.1 16-Kbyte Instruction and Data Caches

The instruction and data caches of the 603e are 16 Kbytes in size, compared to the 8-Kbyte
instruction and data caches of the 603. The increase in cache size may require modification
of cache flush routines. The increase in cache size is also reflected in four-way set
associativity of the instruction and data caches in place of the two-way set associativity in
the 603.

1.1.2.2.2 Clock Configuration Available in HID1 Register
Bits 0-3 in the new HID1 register (SPR 1009) provides software read-only access to the
configuration of the PLL_CFG signals. The HID1 register is not implemented in the 603.

1.1.2.2.3 Performance Enhancements

The following enhancements provide improved performance without any required changes
to software (other than compiler optimization) or hardware designed for the 603:

* Support for single-cycle store.

* Addition of adder/comparator in system register unit allows dispatch and execution
of multiple integer add and compare instructions on each cycle.

* Addition of a key bit (bit 12) to SRR1 to provide information about memory
protection violations prior to page table search operations. This key bit is set when
the combination of the settings in the appropriate Kx bit in the segment register and
the MSR[PR] bit indicates that when the PP bits in the PTE are set to either 00 or
01, a protection violation exists; if this is the case for a data write operation with a
DTLB miss, the changed (C) bit in the page tables should not be updated (see
Table 1-2). This reduces the time required to execute the page table search routine
since the software no longer has to explicitly read both the Kx and MSR[PR] bits to
determine whether a protection violation exists before updating the C bit.

Table 1-2. Generated SRR1 [Key] Bit

SearertRegster | rpry | STy Conerates
0x 0 0
x0 1 0
1x 0 1
x1 1 1

Note that this key bit indicates a protection violation if the
PTE[pp] bits are either 00 or 01.

1-8 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

1.1.3 Instruction Unit

As shown in Figure 1-1, the 603e instruction unit, which contains a fetch unit, instruction
queue, dispatch unit, and BPU, provides centralized control of instruction flow to the
execution units. The instruction unit determines the address of the next instruction to be
fetched based on information from the sequential fetcher and from the BPU.

The instruction unit fetches the instructions from the instruction cache into the instruction
queue. The BPU extracts branch instructions from the fetcher and uses static branch
prediction on unresolved conditional branches to allow the instruction unit to fetch
instructions from a predicted target instruction stream while a conditional branch is
evaluated. The BPU folds out branch instructions for unconditional branches or conditional
branches unaffected by instructions in progress in the execution pipeline.

Instructions issued beyond a predicted branch do not complete execution until the branch
is resolved, preserving the programming model of sequential execution. If any of these
instructions are to be executed in the BPU, they are decoded but not issued. Instructions to
be executed by the FPU, IU, LSU, and SRU are issued and allowed to complete up to the
register write-back stage. (Note that the FPU is not supported on the EC603e
microprocessor.) Write-back is allowed when a correctly predicted branch is resolved, and
instruction execution continues without interruption along the predicted path.

If branch prediction is incorrect, the instruction unit flushes all predicted path instructions,
and instructions are issued from the correct path.

1.1.3.1 Instruction Queue and Dispatch Unit

The instruction queue (IQ), shown in Figure 1-1, holds as many as six instructions and
loads up to two instructions from the instruction unit during a single cycle. The instruction
fetch unit continuously loads as many instructions as space in the 1Q allows. Instructions
are dispatched to their respective execution units from the dispatch unit at a maximum rate
of two instructions per cycle. Dispatching is facilitated to the IU, FPU (not supported on
the EC603e microprocessor), LSU, and SRU by the provision of a reservation station at
each unit. The dispatch unit performs source and destination register dependency checking,
determines dispatch serializations, and inhibits subsequent instruction dispatching as
required.

For a more detailed overview of instruction dispatch, see Section 1.3.6, “Instruction
Timing.”

1.1.3.2 Branch Processing Unit (BPU)

The BPU receives branch instructions from the fetch unit and performs CR lookahead
operations on conditional branches to resolve them early, achieving the effect of a
zero-cycle branch in many cases.

The BPU uses a bit in the instruction encoding to predict the direction of the conditional
branch. Therefore, when an unresolved conditional branch instruction is encountered, the

MOTOROLA Chapter 1. Overview 1-9

603e fetches instructions from the predicted target stream until the conditional branch is
resolved.

The BPU contains an adder to compute branch target addresses and three user-control
registers—the link register (LR), the count register (CTR), and the CR. The BPU calculates
the return pointer for subroutine calls and saves it into the LR for certain types of branch
instructions. The LR also contains the branch target address for the Branch Conditional to
Link Register (bclrx) instruction. The CTR contains the branch target address for the
Branch Conditional to Count Register (beetrx) instruction. The contents of the LR and
CTR can be copied to or from any GPR. Because the BPU uses dedicated registers rather
than GPRs or FPRs, execution of branch instructions is largely independent from execution
of integer and floating-point instructions.

1.1.4 Independent Execution Units

The PowerPC architecture’s support for independent execution units allows
implementation of processors with out-of-order instruction execution. For example,
because branch instructions do not depend on GPRs or FPRs, branches can often be
resolved early, eliminating stalls caused by taken branches.

In addition to the BPU, the 603e provides four other execution units and a completion unit,
which are described in the following sections.

1.1.4.1 Integer Unit (1U)

The IU executes all integer instructions. The IU executes one integer instruction at a time,
performing computations with its arithmetic logic unit (ALU), multiplier, divider, and XER
register. Most integer instructions are single-cycle instructions. Thirty-two general-purpose
registers are provided to support integer operations. Stalls due to contention for GPRs are
minimized by the automatic allocation of rename registers. The 603e writes the contents of
the rename registers to the appropriate GPR when integer instructions are retired by the
completion unit.

1.1.4.2 Floating-Point Unit (FPU)

The FPU (not supported by the EC603e microprocessor) contains a single-precision
multiply-add array and the floating-point status and control register (FPSCR). The
multiply-add array allows the 603e to efficiently implement multiply and multiply-add
operations. The FPU is pipelined so that single-precision instructions and double-precision
instructions can be issued back-to-back. Thirty-two floating-point registers are provided to
support floating-point operations. Stalls due to contention for FPRs are minimized by the
automatic allocation of rename registers. The 603e writes the contents of the rename
registers to the appropriate FPR when floating-point instructions are retired by the
completion unit.

The 603e supports all IEEE 754 floating-point data types (normalized, denormalized, NaN,
zero, and infinity) in hardware, eliminating the latency incurred by software exception

1-10 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

routines. (The term, ‘exception’ is also referred to as ‘interrupt’ in the architecture
specification.)

1.1.4.3 Load/Store Unit (LSU)

The LSU executes all load and store instructions and provides the data transfer interface
between the GPRs, FPRs, and the cache/memory subsystem. The LSU calculates effective
addresses, performs data alignment, and provides sequencing for load/store string and
multiple instructions. (Note that the EC603e microprocessor does not support the
floating-point register file.)

Load and store instructions are issued and translated in program order; however, the actual
memory accesses can occur out of order. Synchronizing instructions are provided to
enforce strict ordering.

Cacheable loads, when free of data dependencies, execute in an out-of-order manner with
a maximum throughput of one per cycle and a two-cycle total latency. Data returned from
the cache is held in a rename register until the completion logic commits the value to a GPR
or FPR (not supported by the EC603e microprocessor). Stores cannot be executed in a
predicted manner and are held in the store queue until the completion logic signals that the
store operation is to be completed to memory. The 603e executes store instructions with a
maximum throughput of one per cycle and a three-cycle total latency. The time required to
perform the actual load or store operation varies depending on whether the operation
involves the cache, system memory, or an I/O device.

1.1.4.4 System Register Unit (SRU)

The SRU executes various system-level instructions, including condition register logical
operations and move to/from special-purpose register instructions, and also executes
integer add/compare instructions. In order to maintain system state, most instructions
executed by the SRU are completion-serialized; that is, the instruction is held for execution
in the SRU until all prior instructions issued have completed. Results from
completion-serialized instructions executed by the SRU are not available or forwarded for
subsequent instructions until the instruction completes.

1.1.4.5 Completion Unit

The completion unit tracks instructions from dispatch through execution, and then retires,
or “completes” them in program order. Completing an instruction commits the 603e to any
architectural register changes caused by that instruction. In-order completion ensures the
correct architectural state when the 603e must recover from a mispredicted branch or any
exception.

Instruction state and other information required for completion is kept in a first-in-first-out
(FIFO) queue of five completion buffers. A single completion buffer is allocated for each
instruction once it enters the dispatch unit. An available completion buffer is a required
resource for instruction dispatch; if no completion buffers are available, instruction

MOTOROLA Chapter 1. Overview 1-11

dispatch stalls. A maximum of two instructions per cycle are completed in order from the
queue.

1.1.5 Memory Subsystem Support

The 603e provides support for cache and memory management through dual instruction
and data memory management units. The 603e also provides dual 16-Kbyte instruction and
data caches, and an efficient processor bus interface to facilitate access to main memory and
other bus subsystems. The memory subsystem support functions are described in the
following subsections.

1.1.5.1 Memory Management Units (MMUs)

The 603e’s MMUs support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes (232)
of physical memory (referred to as real memory in the architecture specification) for
instruction and data. The MMUs also control access privileges for these spaces on block
and page granularities. Referenced and changed status is maintained by the processor for
each page to assist implementation of a demand-paged virtual memory system. A key bit is
implemented to provide information about memory protection violations prior to page table
search operations.

The LSU calculates effective addresses for data loads and stores, performs data alignment
to and from cache memory, and provides the sequencing for load and store string and
multiple word instructions. The instruction unit calculates the effective addresses for
instruction fetching.

After an address is generated, the higher-order bits of the effective address are translated by
the appropriate MMU into physical address bits. Simultaneously, the lower-order address
bits (that are untranslated and therefore, considered both logical and physical), are directed
to the on-chip caches where they form the index into the four-way set-associative tag array.
After translating the address, the MMU passes the higher-order bits of the physical address
to the cache, and the cache lookup completes. For caching-inhibited accesses or accesses
that miss in the cache, the untranslated lower-order address bits are concatenated with the
translated higher-order address bits; the resulting 32-bit physical address is then used by the
memory unit and the system interface, which accesses external memory.

The MMU also directs the address translation and enforces the protection hierarchy
programmed by the operating system in relation to the supervisor/user privilege level of the
access and in relation to whether the access is a load or store.

For instruction accesses, the MMU performs an address lookup in both the 64 entries of the
ITLB, and in the IBAT array. If an effective address hits in both the ITLB and the IBAT
array, the IBAT array translation takes priority. Data accesses cause a lookup in the DTLB
and DBAT array for the physical address translation. In most cases, the physical address
translation resides in one of the TLBs and the physical address bits are readily available to
the on-chip cache.

1-12 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

When the physical address translation misses in the TLBs, the 603e provides hardware
assistance for software to perform a search of the translation tables in memory. The
hardware assist consists of the following features:

* Automatic storage of the missed effective address in the IMISS and DMISS registers

¢ Automatic generation of the primary and secondary hashed real address of the page
table entry group (PTEG), which are readable from the HASH1 and HASH2 register
locations.

The HASH data is generated from the contents of the IMISS or DMISS register.
Which register is selected depends on which miss (instruction or data) was last
acknowledged.

* Automatic generation of the first word of the page table entry (PTE) for which the
tables are being searched

* Areal page address (RPA) register that matches the format of the lower word of the
PTE

¢ Two TLB access instructions (tlbli and tlbld) that are used to load an address
translation into the instruction or data TLBs

» Shadow registers for GPRs 0-3 that allow miss code to execute without corrupting
the state of any of the existing GPRs.

These shadow registers are only used for servicing a TLB miss.

See Section 1.3.5.2, “Implementation-Specific Memory Management,” for more
information about memory management for the 603e.

1.1.5.2 Cache Units

The 603e provides independent 16-Kbyte, four-way set-associative instruction and data
caches. The cache line size is 32 bytes in length. The caches are designed to adhere to a
write-back policy, but the 603e allows control of cacheability, write policy, and memory
coherency at the page and block levels. The caches use a least recently used (LRU)
replacement policy.

As shown in Figure 1-1, the caches provide a 64-bit interface to the instruction fetch unit
and load/store unit. The surrounding logic selects, organizes, and forwards the requested
information to the requesting unit. Write operations to the cache can be performed on a byte
basis, and a complete read-modify-write operation to the cache can occur in each cycle.

The load/store and instruction fetch units provide the caches with the address of the data or
instruction to be fetched. In the case of a cache hit, the cache returns two words to the
requesting unit.

Since the 603e data cache tags are single ported, simultaneous load or store and snoop
accesses cause resource contention. Snoop accesses have the highest priority and are given
first access to the tags, unless the snoop access coincides with a tag write, in which case the

MOTOROLA Chapter 1. Overview 1-13

snoop is retried and must re-arbitrate for access to the cache. Loads or stores that are
deferred due to snoop accesses are executed on the clock cycle following the snoop.

1.1.6 Processor Bus Interface

Because the caches on the 603e are on-chip, write-back caches, the predominant type of
transaction for most applications is burst-read memory operations, followed by burst-write
memory operations, and single-beat (noncacheable or write-through) memory read and
write operations. Additionally, there can be address-only operations, variants of the burst
and single-beat operations, (for example, global memory operations that are snooped and
atomic memory operations), and address retry activity (for example, when a snooped read
access hits a modified line in the cache).

Memory accesses can occur in single-beat (1-8 bytes) and four-beat burst (32 bytes) data
transfers when the bus is configured as 64 bits, and in single-beat (1-4 bytes), two-beat (8
bytes), and eight-beat (32 bytes) data transfers when the bus is configured as 32 bits. The
address and data buses operate independently to support pipelining and split transactions
during memory accesses. The 603e can pipeline its own transactions to a depth of one level.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the 603e to be integrated into systems that implement various fairness and bus
parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered—sequences of operations, including
load/store string and multiple instructions, do not necessarily complete in the order they
begin—maximizing the efficiency of the bus without sacrificing coherency of the data. The
603e allows read operations to precede store operations (except when a dependency exists,
or in cases where a non-cacheable access is performed), and provides support for a write
operation to proceed a previously queued read data tenure (for example, allowing a snoop
push to be enveloped by the address and data tenures of a read operation). Because the
processor can dynamically optimize run-time ordering of load/store traffic, overall
performance is improved.

1.1.7 System Support Functions

The 603e implements several support functions that include power management, time
base/decrementer registers for system timing tasks, an IEEE 1149.1(JTAG)/common
on-chip processor (COP) test interface, and a phase-locked loop (PLL) clock multiplier.
These system support functions are described in the following subsections.

1-14 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

1.1.7.1 Power Management

The 603e provides four power modes selectable by setting the appropriate control bits in
the machine state register (MSR) and hardware implementation register 0 (HIDO) registers.
The four power modes are as follows:

e Full-power-This is the default power state of the 603e. The 603e is fully powered
and the internal functional units are operating at the full processor clock speed. If the
dynamic power management mode is enabled, functional units that are idle will
automatically enter a low-power state without affecting performance, software
execution, or external hardware.

* Doze-All the functional units of the 603e are disabled except for the time
base/decrementer registers and the bus snooping logic. When the processor is in
doze mode, an external asynchronous interrupt, a system management interrupt, a
decrementer exception, a hard or soft reset, or machine check brings the 603e into
the full-power state. The 603e in doze mode maintains the PLL in a fully powered
state and locked to the system external clock input (SYSCLK) so a transition to the
full-power state takes only a few processor clock cycles.

* Nap-The nap mode further reduces power consumption by disabling bus snooping,
leaving only the time base register and the PLL in a powered state. The 603e returns
to the full-power state upon receipt of an external asynchronous interrupt, a system
management interrupt, a decrementer exception, a hard or soft reset, or a machine
check input (MCP) signal. A return to full-power state from a nap state takes only a
few processor clock cycles.

* Sleep—Sleep mode reduces power consumption to a minimum by disabling all
internal functional units, after which external system logic may disable the PLL and
SYSCLK. Returning the 603e to the full-power state requires the enabling of the
PLL and SYSCLK, followed by the assertion of an external asynchronous interrupt,
a system management interrupt, a hard or soft reset, or a machine check input (MCP)
signal after the time required to relock the PLL.

The PID7v-603e implementation offers the following enhancements to the 603e family:

¢ Lower-power design
e 2.5-volt core and 3.3-volt I/O

1.1.7.2 Time Base/Decrementer

The time base is a 64-bit register (accessed as two 32-bit registers) that is incremented once
every four bus clock cycles; external control of the time base is provided through the time
base enable (TBEN) signal. The decrementer is a 32-bit register that generates a
decrementer interrupt exception after a programmable delay. The contents of the
decrementer register are decremented once every four bus clock cycles, and the
decrementer exception is generated as the count passes through zero.

MOTOROLA Chapter 1. Overview 1-15

1.1.7.3 IEEE 1149.1 (JTAG)/COP Test Interface

The 603e provides IEEE 1149.1 and COP functions for facilitating board testing and chip
debug. The IEEE 1149.1 test interface provides a means for boundary-scan testing the 603e
and the board to which it is attached. The COP function shares the IEEE 1149.1 test port,
provides a means for executing test routines, and facilitates chip and software debugging.

1.1.7.4 Clock Multiplier

The internal clocking of the 603e is generated from and synchronized to the external clock
signal, SYSCLK, by means of a voltage-controlled oscillator-based PLL. The PLL
provides programmable internal processor clock rates of 1x, 1.5x, 2x, 2.5%, 3x, 3.5x, and
4x multiples of the externally supplied clock frequency. The bus clock is the same
frequency and is synchronous with SYSCLK. The configuration of the PLL can be read by
software from the hardware implementation register 1 (HID1).

1.2 PowerPC Architecture Implementation

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be measured in terms of which of the following levels of the architecture
is implemented:

¢ PowerPC user instruction set architecture (UISA)—Defines the base user-level
instruction set, user-level registers, data types, floating-point exception model,
memory models for a uniprocessor environment, and programming model for a
uniprocessor environment.

¢ PowerPC virtual environment architecture (VEA)—Describes the memory model
for a multiprocessor environment, defines cache control instructions, and describes
other aspects of virtual environments. Implementations that conform to the VEA
also adhere to the UISA, but may not necessarily adhere to the OEA.

* PowerPC operating environment architecture (OEA)—Defines the memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. Implementations that conform to the OEA also adhere to the
UISA and the VEA.

The PowerPC architecture allows a wide range of designs for such features as cache and
system interface implementations.

1.3 Implementation-Specific Information

The PowerPC architecture is derived from the IBM POWER architecture (Performance
Optimized with Enhanced RISC architecture). The PowerPC architecture shares the
benefits. of the POWER architecture optimized for single-chip implementations. The
PowerPC architecture design facilitates parallel instruction execution and is scalable to take
advantage of future technological gains.

1-16 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

This section describes the PowerPC architecture in general, and specific details about the
implementation of the 603e as a low-power, 32-bit member of the PowerPC processor
family. The main topics addressed are as follows:

* Section 1.3.1, “Programming Model,” describes the registers for the operating
environment architecture common among PowerPC processors and describes the
programming model. It also describes the additional registers that are unique to the
603e.

e Section 1.3.2, “Instruction Set and Addressing Modes,” describes the PowerPC
instruction set and addressing modes for the PowerPC operating environment
architecture, and defines and describes the PowerPC instructions implemented in the
603e.

e Section 1.3.3, “Cache Implementation,” describes the cache model that is defined
generally for PowerPC processors by the virtual environment architecture. It also
provides specific details about the 603¢ cache implementation.

» Section 1.3.4, “Exception Model,” describes the exception model of the PowerPC
operating environment architecture and the differences in the 603e exception model.

¢ Section 1.3.5, “Memory Management,” describes generally the conventions for
memory management among the PowerPC processors. This section also describes

the 603e’s implementation of the 32-bit PowerPC memory management
specification.

¢ Section 1.3.6, “Instruction Timing,” provides a general description of the instruction
timing provided by the superscalar, parallel execution supported by the PowerPC
architecture and the 603e.

* Section 1.3.7, “System Interface,” describes the signals implemented on the 603e.

The 603e is a high-performance, superscalar PowerPC microprocessor. The PowerPC
architecture allows optimizing compilers to schedule instructions to maximize performance
through efficient use of the PowerPC instruction set and register model. The multiple,
independent execution units allow compilers to optimize instruction throughput. Compilers
that take advantage of the flexibility of the PowerPC architecture can additionally optimize
system performance of the PowerPC processors.

The following sections summarize the features of the 603e, including both those that are
defined by the architecture and those that are unique to the various 603e implementations.

Specific features of the 603e are listed in Section 1.1.1, “Features.”

1.3.1 Programming Model

The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format allows specification of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

MOTOROLA Chapter 1. Overview 1-17

PowerPC processors have two levels of privilege—supervisor mode of operation (typically
used by the operating system) and user mode of operation (used by the application
software). The programming models incorporate 32 GPRs, 32 FPRs (not supported by the
EC603e microprocessor), special-purpose registers (SPRs), and several miscellaneous
registers. Each PowerPC microprocessor also has its own unique set of hardware
implementation (HID) registers.

Having access to privileged instructions, registers, and other resources allows the operating
system to control the application environment (providing virtual memory and protecting
operating-system and critical machine resources). Instructions that control the state of the
processor, the address translation mechanism, and supervisor registers can be executed only
when the processor is operating in supervisor mode.

Figure 1-2 shows all the 603e registers available at the user and supervisor level. The
numbers to the right of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

The following subsections describe the PID7v-603e implementation-specific features as
they apply to registers.

1.3.1.1 Processor Version Register (PVR)

The processor version number is 6 for the PID6-603e and 7 for the PID7v-603e. The
processor revision level starts at 0x0100 and changes for each chip revision. The revision
level is updated on all silicon revisions.

1.3.1.2 Hardware Implementation Register 0 (HIDO)

PID7v-603e (designated by PVR level 0x0200) defines additional bits in the hardware
implementation register 0 (HIDO), a supervisor-level register that provides the means for
enabling the 603e’s checkstops and features, and allows software to read the configuration
of the PLL configuration signals.

The HIDO bits with changed bit assignments are shown in Table 1-3. The HIDO bits that are
not shown here are implemented as they are in Section 2.1.2.1, “Hardware Implementation
Registers (HIDO and HID1).”

Table 1-3. Additional/Changed HIDO Bits

Bit(s) Description

24 Instruction fetch enable M (IFEM) bit—Enables the M bit on the bus. Used for instruction fetches.

25-26 Reserved

28 Address broadcast enable (ABE)—This configuration bit allows for the broadcast of debf, debi, and
dcbst on the bus. Note that these cache control instruction broadcasts are not snooped by the
PID7v-603e. Refer to Section 1.3.3, “Cache Implementation,” for more information.

29-30 Reserved

1-18 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

1.3.1.3 Run_N Counter Register (Run_N)

The 33-bit Run_N counter register is unique to the PID7v-603e. The Run_N counter is used
by the COP to control the number of processor cycles that the processor runs before halting.
The most-significant 32 bits form a 32-bit counter. The function of the least-significant bit
remains unchanged.

1.3.1.4 General-Purpose Registers (GPRs)

The PowerPC architecture defines 32 user-level, general-purpose registers (GPRs). These
registers are either 32 bits wide in 32-bit PowerPC microprocessors and 64 bits wide in
64-bit PowerPC microprocessors. The GPRs serve as the data source or destination for all
integer instructions.

1.3.1.5 Floating-Point Registers (FPRs)

The PowerPC architecture also defines 32 user-level, 64-bit floating-point registers (FPRs)
(not supported by the EC603e microprocessor). The FPRs serve as the data source or
destination for floating-point instructions. These registers can contain data objects of either
single- or double-precision floating-point formats.

1.3.1.6 Condition Register (CR)

The CR is a 32-bit user-level register that consists of eight four-bit fields that reflect the
results of certain operations, such as move, integer and floating-point compare, arithmetic,
and logical instructions, and provide a mechanism for testing and branching.

1.3.1.7 Floating-Point Status and Control Register (FPSCR)

The floating-point status and control register (FPSCR) is a user-level register that contains
all exception signal bits, exception summary bits, exception enable bits, and rounding
control bits needed for compliance with the IEEE 754 standard. (Note that this is not
supported by the EC603e microprocessor.)

1.3.1.8 Machine State Register (MSR)

The machine state register (MSR) is a supervisor-level register that defines the state of the
processor. The contents of this register are saved when an exception is taken and restored
when the exception handling completes. The 603e implements the MSR as a 32-bit register;
64-bit PowerPC processors implement a 64-bit MSR. To ensure proper operation of the
EC603e microprocessor, the MSR[FP] bit should remain cleared to zero.

1.3.1.9 Segment Registers (SRs)

For memory management, 32-bit PowerPC microprocessors implement sixteen 32-bit
segment registers (SRs). To speed access, the 603e implements the segment registers as two
arrays; a main array (for data memory accesses) and a shadow array (for instruction
memory accesses). Loading a segment entry with the Move to Segment Register (mtsr)
instruction loads both arrays.

MOTOROLA Chapter 1. Overview 1-19

1.3.1.10 Special-Purpose Registers (SPRs)

The PowerPC operating environment architecture defines numerous special-purpose
registers that serve a variety of functions, such as providing controls, indicating status,
configuring the processor, and performing special operations. During normal execution, a
program can access the registers, shown in Figure 2-1, depending on the program’s access
privilege (supervisor or user, determined by the privilege-level (PR) bit in the MSR). Note
that registers cuch as the GPRs and FPRs (not supported by the EC603e microprocessor)
are accessed through operands that are part of the instructions. Access to registers can be
explicit (that is, through the use of specific instructions for that purpose such as Move to
Special-Purpose Register (mtspr) and Move from Special-Purpose Register (mfspr)
instructions) or implicit, as the part of the execution of an instruction. Some registers are
accessed both explicitly and implicitly

In the 603e, all SPRs are 32 bits wide.

1.3.1.10.1 User-Level SPRs
The following 603e SPRs are accessible by user-level software:

* Link register (LR)—The link register can be used to provide the branch target
address and to hold the return address after branch and link instructions. The LR is
32 bits wide in 32-bit implementations.

¢ Count register (CTR)—The CTR is decremented and tested automatically as a result
of branch-and-count instructions. The CTR is 32 bits wide in 32-bit
implementations.

* XER register—The 32-bit XER contains the summary overflow bit, integer carry bit,
overflow bit, and a field specifying the number of bytes to be transferred by a Load
String Word Indexed (Iswx) or Store String Word Indexed (stswx) instruction.

1.3.1.10.2 Supervisor-Level SPRs

The 603e also contains SPRs that can be accessed only by supervisor-level software. These
registers consist of the following:

* The 32-bit DSISR defines the cause of data access and alignment exceptions.

* The data address register (DAR) is a 32-bit register that holds the address of an
access after an alignment or DSI exception.

* Decrementer register (DEC) is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay.

* The 32-bit SDR1 specifies the page table format used in virtual-to-physical address
translation for pages. (Note that physical address is referred to as real address in the
architecture specification.)

* The machine status save/restore register 0 (SRRO) is a 32-bit register that is used by
- the 603e for saving the address of the instruction that caused the exception, and the
address to return to when a Return from Interrupt (rfi) instruction is executed.

1-20 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The machine status save/restore register 1 (SRR1) is a 32-bit register used to save
machine status on exceptions and to restore machine status when an rfi instruction
is executed.

The 32-bit SPRGO-SPRG3 registers are provided for operating system use.

The external access register (EAR) is a 32-bit register that controls access to the
external control facility through the External Control In Word Indexed (eciwx) and
External Control Out Word Indexed (ecowx) instructions.

The time base register (TB) is a 64-bit register that maintains the time of day and
operates interval timers. The TB consists of two 32-bit fields—time base upper
(TBU) and time base lower (TBL).

The processor version register (PVR) is a 32-bit, read-only register that identifies the
version (model) and revision level of the PowerPC processor.

Block address translation (BAT) arrays—The PowerPC architecture defines 16 BAT
registers, divided into four pairs of data BATs (DBATS) and four pairs of instruction
BATs (IBATs). See Figure 2-1 for a list of the SPR numbers for the BAT arrays.

The following supervisor-level SPRs are implementation-specific to the 603e:

The DMISS and IMISS registers are read-only registers that are loaded
automatically upon an instruction or data TLB miss.

The HASH1 and HASH2 registers contain the physical addresses of the primary and
secondary page table entry groups (PTEGS).

The ICMP and DCMP registers contain a duplicate of the first word in the page table
entry (PTE) for which the table search is looking.

The required physical address (RPA) register is loaded by the processor with the
second word of the correct PTE during a page table search.

The hardware implementation (HIDO and HID1) registers provide the means for
enabling the 603e’s checkstops and features, and allows software to read the
configuration of the PLL configuration signals.

The instruction address breakpoint register (IABR) is loaded with an instruction
address that is compared to instruction addresses in the dispatch queue. When an
address match occuis, an instruction address breakpoint exception is generated.

Figure 2-1 shows all the 603e registers available at the user and supervisor level. The
numbers to the right of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

MOTOROLA Chapter 1. Overview 1-21

K SUPERVISOR MODEL ' \

/ Configuration Registers
USER MODEL I':[;‘I‘;vn?;ﬁtation Machine State Processor Version
Registers’ Register Register
General-Purpose
Registers HIDO | SPR 1008 MSR SPR 287
GPRO HID1 SPR 1009
GPR1 Memory Management Registers
. Instruction BAT Software Table
S Registers Data BAT Registers Search Registers1
GPR31 IBATOU | SPR 528 DBATOU | SPR 536 DMISS | SPR 976
IBATOL | SPR529 DBATOL | SPR537 DCMP | SPR977
. . IBAT1U | SPR 530 DBAT1U | SPR538 HASH1 | SPR978
Regioa ™ IBATIL | SPR 531 DBATIL | SPR539 HASH2 | SPR979
RO IBAT2U | SPR532 DBAT2U | SPR 540 IMISS | SPR 980
PRI IBAT2L | SPR533 DBAT2L | SPR541 ICMP | SPR 981
IBAT3U | SPR534 DBAT3U | SPR542 RPA | SPR982
H IBAT3L | SPR535 DBAT3L | SPR543 .
Segment Registers
FPR31 SDR1 SRO
SPR 25 SR1
Condition Register :
Floating-Point Status Exception Handling Registers
and Control Register® .
Data Address Register DSISR
SPR 19 SPR 18
XER SPRGs Save and Restore
SPR 1 SPRGO | SPR272 SRRO | SPR26
SPRG1 | SPR273 SRR1 SPR 27
Link Register SPRG2 | SPR274
SPR 8 SPRG3 | SPR275
Count Register Miscellaneous Registers
Time Base Facilit
SPR9 (Fg"’ Writizg) Y Decrementer
Time Base Facility TBL SPR 284 SPR22
(For Reading) TBU SPR 285
TBL TBR 268 Instruction Address External Address
TR0 TBR 269 / Breakpoint Register’ Register (Optional)

\ IABR SPR 1010 EAR SPR 282 /

Notes: 'These registers are 603e—specific (PID6-603e and PID7v-603e) registers.
They may not be supported by other PowerPC processors.

2Not supported on the EC603e microprocessor.

Figure 1-2. Programming Model—Registers

1-22 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

1.3.2 Instruction Set and Addressing Modes

The following subsections describe the PowerPC instruction set and addressing modes in
general.

1.3.2.1 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly simplifies
instruction pipelining.

1.3.2.1.1 PowerPC Instruction Set
The PowerPC instructions are divided into the following categories:

* Integer instructions—These include computational and logical instructions.
— Integer arithmetic instructions
— Integer compare instructions
— Integer logical instructions
— Integer rotate and shift instructions
* Floating-point instructions—These include floating-point computational
instructions, as well as instructions that affect the FPSCR. (Note that these
instructions are not implemented on the EC603e microprocessor.)
— Floating-point arithmetic instructions
— Floating-point multiply/add instructions
— Floating-point rounding and conversion instructions
— Floating-point compare instructions
— Floating-point status and control instructions
* Load/store instructions—These include integer and floating-point load and store
instructions.
— Integer load and store instructions
— Integer load and store multiple instructions
— Floating-point load and store (not implemented on the EC603e microprocessor)

— Primitives used to construct atomic memory operations (Iwarx and stwcx.
instructions)

* Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— Branch and trap instructions
— Condition register logical instructions

MOTOROLA Chapter 1. Overview 1-23

* Processor control instructions—These instructions are used for synchronizing
memory accesses and management of caches, TLBs, and the segment registers.
— Move to/from SPR instructions
— Move to/from MSR
— Synchronize
— Instruction synchronize
* Memory control instructions—These instructions provide control of caches, TLBs,
and segment registers.
— Supervisor-level cache management instructions
— User-level cache instructions
— Segment register manipulation instructions
— Translation lookaside buffer management instructions

Note that this grouping of the instructions does not indicate which execution unit executes
a particular instruction or group of instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision (one word) and double-precision (one double
word) floating-point operands. The PowerPC architecture uses instructions that are four
bytes long and word-aligned. It provides for byte, half-word, and word operand loads and
stores between memory and a set of 32 GPRs. It also provides for word and double-word
operand loads and stores between memory and a set of 32 floating-point registers (FPRs).

Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
distinct instructions.

PowerPC processors follow the program flow when they are in the normal execution state.
However, the flow of instructions can be interrupted directly by the execution of an
instruction or by an asynchronous event. Either kind of exception may cause one of several
components of the system software to be invoked.

1.3.2.1.2 Calculating Effective Addresses

The effective address (EA) is the 32-bit address computed by the processor when executing
a memory access or branch instruction or when fetching the next sequential instruction.

The PowerPC architecture supports two simple memory addressing modes:
* EA = (rAl0) + offset (including offset = 0) (register indirect with immediate index)
* EA =(rAl0) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.
Calculation of the effective address for aligned transfers occurs in a single clock cycle.

1-24 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

For a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address to effective address 0.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O is ignored in 32-bit implementations.

1.3.2.2 Implementation-Specific Instruction Set
The 603e instruction set is defined as follows:
* The 603e provides hardware support for all 32-bit PowerPC instructions.

* The 603e provides two implementation-specific instructions used for software table
search operations following TLB misses:

— Load Data TLB Entry (tlbld)
— Load Instruction TLB Entry (tlbli)

* The 603e implements the following instructions which are defined as optional by the
PowerPC architecture:

— External Control In Word Indexed (eciwx)
— External Control Out Word Indexed (ecowx)

— Floating Select (fsel)
(Not supported by the EC603e microprocessor)

— Floating Reciprocal Estimate Single-Precision (fres)
(Not supported by the EC603e microprocessor)

— Floating Reciprocal Square Root Estimate (frsqrte)
(Not supported by the EC603e microprocessor)

— Store Floating-Point as Integer Word (stfiwx)
(Not supported by the EC603e microprocessor)

1.3.3 Cache Implementation

The following subsections describe the general cache characteristics as implemented in the
PowerPC architecture, and the 603e implementation, specifically. PID7v-603e specific
information is noted where applicable.

1.3.3.1 PowerPC Cache Characteristics

The PowerPC architecture does not define hardware aspects of cache implementations. For
example, some PowerPC processors, including the 603e, have separate instruction and data
caches (Harvard architecture), while others, such as the PowerPC 601® microprocessor,
implement a unified cache.

MOTOROLA Chapter 1. Overview 1-25

PowerPC microprocessors control the following memory access modes on a page or block
basis:

* Write-back/write-through mode
¢ Caching-inhibited mode
* Memory coherency

Note that in the 603e, a cache block is defined as eight words. The VEA defines cache
management instructions that provide a means by which the application programmer can
affect the cache contents.

1.3.3.2 Implementation-Specific Cache Implementation

The 603e has two 16-Kbyte, four-way set-associative (instruction and data) caches. The
caches are physically addressed, and the data cache can operate in either write-back or
write-through mode as specified by the PowerPC architecture.

The data cache is configured as 128 sets of four blocks each. Each block consists of 32
bytes, two state bits, and an address tag. The two state bits implement the three-state MEI
(modified/exclusive/invalid) protocol. Each block contains eight 32-bit words. Note that the
PowerPC architecture defines the term ‘block’ as the cacheable unit. For the 603e, the block
size is equivalent to a cache line. A block diagram of the data cache organization is shown
in Figure 1-3.

The instruction cache also consists of 128 sets of four blocks, and each block consists of 32
bytes, an address tag, and a valid bit. The instruction cache may not be written to except
through a block fill operation. In the PID7v-603e, the instruction cache is blocked only until
the critical load completes. The PID7v-603e supports instruction fetching from other
instruction cache lines following the forwarding of the critical first double word of a cache
line load operation. Successive instruction fetches from the cache line being loaded are
forwarded, and accesses to other instruction cache lines can proceed during the cache line
load operation. The instruction cache is not snooped, and cache coherency must be
maintained by software. A fast hardware invalidation capability is provided to support
cache maintenance. The organization of the instruction cache is very similar to the data
cache shown in Figure 1-3.

Each cache block contains eight contiguous words from memory that are loaded from an
8-word boundary (that is, bits A27-A31 of the effective addresses are zero); thus, a cache
block never crosses a page boundary. Misaligned accesses across a page boundary can incur
a performance penalty.

The 603e’s cache blocks are loaded in four beats of 64 bits each when the 603e is
configured with a 64-bit data bus; when the 603e is configured with a 32-bit bus, cache
block loads are performed with eight beats of 32 bits each. The burst load is performed as
critical double word first. The data cache is blocked to internal accesses until the load
completes; the instruction cache allows sequential fetching during a cache block load. In

1-26 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

the PID7v-603e, the critical double word is simultaneously written to the cache and
forwarded to the requesting unit, thus minimizing stalls due to load delays.

To ensure coherency among caches in a multiprocessor (or multiple caching-device)
implementation, the 603e implements the MEI protocol. These three states, modified,
exclusive, and invalid, indicate the state of the cache block as follows:

* Modified—The cache block is modified with respect to system memory; that is, data
for this address is valid only in the cache and not in system memory.

* Exclusive—This cache block holds valid data that is identical to the data at this
address in system memory. No other cache has this data.

¢ Invalid—This cache block does not hold valid data.

Cache coherency is enforced by on-chip bus snooping logic. Since the 603¢’s data cache
tags are single-ported, a simultaneous load or store and snoop access represent a resource
contention. The snoop access is given first access to the tags. The load or store then occurs
on the clock following the snoop.

T T T 1 T T T
128 Sets hd . N LN L .
v T 1 il 1 T T 1
L :
[) |
L I L T T T T T T T
Block 0f Address Tag 0 —{State Words 0-7
t —+— t t t +—
Block 1| Address Tag 1 —State Words 0-7
+—— +— = t -
Block 2| Address Tag 2 State Words 0-7
L) ; S
Block 3| Address Tag 3 State ' ' I Wordls 0-7 I I

f«——— 8Words/Block ———»|

Figure 1-3. Data Cache Organization

1.3.4 Exception Model

This section describes the PowerPC exception model and the 603e implementation,
specifically. PID7v-603e—specific information is noted where applicable.

1.3.4.1 PowerPC Exception Model

The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions, and differ from the arithmetic exceptions defined by the IEEE for
floating-point operations. When exceptions occur, information about the state of the
processor is saved to certain registers and the processor begins execution at an address

MOTOROLA Chapter 1. Overview 1-27

(exception vector) predetermined for each exception. Processing of exceptions occurs in
supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the FPSCR. Additionally, some exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are presented strictly in order. When an instruction-caused exception is recognized, any
unexecuted instructions that appear earlier in the instruction stream, including any that have
not yet entered the execute stage, are required to complete before the exception is taken.
Any exceptions caused by those instructions are handled first. Likewise, exceptions that are
asynchronous and precise are recognized when they occur, but are not handled until the
instruction currently in the completion stage successfully completes execution or generates
an exception, and the completed store queue is emptied.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are handled sequentially. After the exception handler
handles an exception, the instruction execution continues until the next exception condition
is encountered. However, in many cases there is no attempt to re-execute the instruction.
This method of recognizing and handling exception conditions sequentially guarantees that
exceptions are recoverable.

Exception handlers should save the information stored in SRRO and SRR1 early to prevent
the program state from being lost due to a system reset or machine check exception or to
an instruction-caused exception in the exception handler, and before enabling external
interrupts.

The PowerPC architecture supports four types of exceptions:

* Synchronous, precise—These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored. This means that (excluding the trap
and system call exceptions) the address of the faulting instruction is provided to the
exception handler and that neither the faulting instruction nor subsequent
instructions in the code stream will complete execution before the exception is
taken. Once the exception is processed, execution resumes at the address of the
faulting instruction (or at an alternate address provided by the exception handler).
When an exception is taken due to a trap or system call instruction, execution
resumes at an address provided by the handler.

¢ Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. Even though the
603e provides a means to enable the imprecise modes, it implements these modes

1-28 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

identically to the precise mode (that is, all enabled floating-point enabled exceptions
are always precise on the 603e). (Note that the EC603e microprocessor does not
support floating-point operations.)

* Asynchronous, maskable—The external, system management interrupt (SMI), and
decrementer interrupts are maskable asynchronous exceptions. When these
exceptions occur, their handling is postponed until the next instruction, and any
exceptions associated with that instruction, completes execution. If there are no
instructions in the execution units, the exception is taken immediately upon
determination of the correct restart address (for loading SRRO).

* Asynchronous, nonmaskable—There are two nonmaskable asynchronous
exceptions: system reset and the machine check exception. These exceptions may
not be recoverable, or may provide a limited degree of recoverability. All exceptions
report recoverability through the MSR[RI] bit.

1.3.4.2 Implementation-Specific Exception Model
As specified by the PowerPC architecture, all 603e exceptions can be described as either
precise or imprecise and either synchronous or asynchronous. Asynchronous exceptions
(some of which are maskable) are caused by events external to the processor’s execution;
synchronous exceptions, which are all handled precisely by the 603e, are caused by
instructions. The 603e exception classes are shown in Figure 1-4.

Figure 1-4. Exception Classifications

Synchronous/Asynchronous Precise/lmprecise Exception Type
Asynchronous, nonmaskable Imprecise Machine check

System reset
Asynchronous, maskable Precise External interrupt

Decrementer

System management interrupt

Synchronous Precise Instruction-caused exceptions

Although exceptions have other characteristics as well, such as whether they are maskable
or nonmaskable, the distinctions shown in Figure 1-4 define categories of exceptions that
the 603e handles uniquely. Note that Figure 1-4 includes no synchronous imprecise
instructions. While the PowerPC architecture supports imprecise handling of floating-point
exceptions, the 603e, with the exception of the EC603e microprocessor, implements
floating-point exception modes as precise exceptions.

The 603e’s exceptions, and conditions that cause them, are listed in Figure 1-5.
Figure 1-5. Exceptions and Conditions

Exception Vector Offset

Type (hex) Causing Conditions

Reserved 00000 —

MOTOROLA Chapter 1. Overview 1-29

Figure 1-5. Exceptions and Conditions (Continued)

Exception

Type

Vector Offset
(hex)

Causing Conditions

System reset

00100

A system reset is caused by the assertion of either SRESET or HRESET.

Machine
check

00200

A machine check is caused by the assertion of the TEA signal during a data bus
transaction, assertion of MCP, or an address or data parity error.

DSI

00300

The cause of a DSI exception can be determined by the bit settings in the DSISR,
listed as follows:
1 Set if the translation of an attempted access is not found in the primary hash

table entry group (HTEG), or in the rehashed secondary HTEG, or in the range
of a DBAT register; otherwise cleared.

Set if a memory access is not permitted by the page or DBAT protection
mechanism; otherwise cleared.

Set by an eciwx or ecowx instruction if the access is to an address that is
marked as write-through, or execution of a load/store instruction that accesses
a direct-store segment.

6 Set for a store operation and cleared for a load operation.
11 Set if eciwx or ecowx is used and EARI[E] is cleared.

ISl

00400

An ISl exception is caused when an instruction fetch cannot be performed for any
of the following reasons:

The effective (logical) address cannot be translated. That is, there is a page
fault for this portion of the translation, so an ISl exception must be taken to load
the PTE (and possibly the page) into memory.

The fetch access is to a direct-store segment (indicated by SRR1[3] set).

The fetch access violates memory protection (indicated by SRR1[4] set). If the
key bits (Ks and Kp) in the segment register and the PP bits in the PTE are set
to prohibit read access, instructions cannot be fetched from this location.

External
interrupt

00500

An external interrupt is caused when MSR[EE] = 1 and the INT signal is asserted.

Alignment

00600

An alignment exception is caused when the 603e cannot perform a memory
access for any of the reasons described below:

The operand of a floating-point load or store instruction is not word-aligned.
The operand of Imw, stmw, Iwarx, and stwcx. instructions are not aligned.
The operand of a single-register load or store operation is not aligned, and the
603e is in little-endian mode (P1D6-603e only).

The execution of a floating-point load or store instruction to a direct-store
segment.

The operand of a load, store, load multiple, store multiple, load string, or store
string instruction crosses a segment boundary into a direct-store segment, or
crosses a protection boundary.

Execution of a misaligned eciwx or ecowx instruction (PID7v-603e only).

The instruction is Imw, stmw, Iswi, Iswx, stswi, stswx and the 603e is in little-
endian mode.

The operand of debz is in memory that is write-through-required or caching-
inhibited.

1-30

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Figure 1-5. Exceptions and Conditions (Continued)

Exception Vector Offset . -
Type (hex) Causing Conditions
Program 00700 A program exception is caused by one of the following exception conditions, which
correspond to bit settings in SRR1 and arise during execution of an instruction:

* Floating-point enabled exception—A floating-point enabled exception condition

is generated when the following condition is met:
(MSR[FEO] | MSR[FE1]) & FPSCRI[FEX] is 1.

(Not supported by the EC603e microprocessor.)

FPSCRIFEX] is set by the execution of a floating-point instruction that causes
an enabled exception or by the execution of one of the “move to FPSCR”
instructions that results in both an exception condition bit and its corresponding
enable bit being set in the FPSCR. (Not supported by the EC603e
microprocessor.)

* lllegal instruction—An illegal instruction program exception is generated when
execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields (including PowerPC
instructions not implemented in the 603e), or when execution of an optional
instruction not provided in the 603e is attempted (these do not include those
optional instructions that are treated as no-ops).

* Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR], is set. In the 603e, this exception is
generated for mtspr or mfspr with an invalid SPR field if SPR[0] = 1 and
MSRIPR] = 1. This may not be true for all PowerPC processors.

* Trap—A trap type program exception is generated when any of the conditions
specified in a trap instruction is met.

Floating-point | 00800 A floating-point unavailable exception is caused by an attempt to execute a
unavailable floating-point instruction (including floating-point load, store, and move

instructions) when the floating-point available bit is disabled (MSR[FP] = 0).

Note that the EC603e microprocessor takes a floating-point unavailable exception

when execution of a floating-point instruction is attempted.

Decrementer | 00900 The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1. Must also be enabled with the

MSRIEE] bit.

Reserved 00A00-00BFF | —
System call 00C00 A system call exception occurs when a System Call (sc) instruction is executed.
Trace 00D00 A trace exception is taken when MSR[SE] =1 or when the currently completing
instruction is a branch and MSR[BE] =1.
Reserved 00EOO0 The 603e does not generate an exception to this vector. Other PowerPC
processors may use this vector for floating-point assist exceptions.
Reserved 00E10-00FFF | —
Instruction 01000 An instruction translation miss exception is caused when an effective address for
translation an instruction fetch cannot be translated by the ITLB.
miss
Data load 01100 A data load translation miss exception is caused when an effective address for a
translation data load operation cannot be transiated by the DTLB.
miss
MOTOROLA Chapter 1. Overview 1-31

Figure 1-5. Exceptions and Conditions (Continued)

Exception Vector Offset Causing Conditions
Type (hex)

Data store 01200 A data store translation miss exception is caused when an effective address for a
translation data store operation cannot be translated by the DTLB, or where a DTLB hit
miss occurs, and the change bit in the PTE must be set due to a data store operation.
Instruction 01300 An instruction address breakpoint exception occurs when the address (bits 0-29)
address in the IABR matches the next instruction to complete in the completion unit, and
breakpoint the IABR enable bit (bit 30) is set.
System 01400 A system management interrupt is caused when MSRIEE] = 1 and the SMI input
management signal is asserted.
interrupt
Reserved 01500-02FFF | —

1.3.5 Memory Management

The following subsections describe the memory management features of the PowerPC
architecture, and the 603e implementation, respectively.

1.3.5.1 PowerPC Memory Management

The primary functions of the MMU are to translate logical (effective) addresses to physical
addresses for memory accesses, and to provide access protection on blocks and pages of
memory.

There are two types of accesses generated by the 603e that require address translation—
instruction accesses, and data accesses to memory generated by load and store instructions.

The PowerPC MMU and exception model support demand-paged virtual memory. Virtual
memory management permits execution of programs larger than the size of physical
memory; demand-paged implies that individual pages are loaded into physical memory
from system memory only when they are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, and
its starting address is a multiple of its size.

The page table contains a number of page table entry groups (PTEGs). A PTEG contains
eight page table entries (PTEs) of eight bytes each; therefore, each PTEG is 64 bytes long.
PTEG addresses are entry points for table search operations.

Address translations are enabled by setting bits in the MSR—MSR[IR] enables instruction
address translations and MSR[DR] enables data address translations.

1.3.5.2 Implementation-Specific Memory Management

The instruction and data memory management units in the 603e provide 4 Gbytes of logical
address space accessible to supervisor and user programs with a 4-Kbyte page size and

1-32 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

256-Mbyte segment size. Block sizes range from 128 Kbyte to 256 Mbyte and are software
selectable. In addition, the 603e uses an interim 52-bit virtual address and hashed page
tables for generating 32-bit physical addresses. The MMUs in the 603e rely on the
exception processing mechanism for the implementation of the paged virtual memory
environment and for enforcing protection of designated memory areas.

Instruction and data TLBs provide address translation in parallel with the on-chip cache
access, incurring no additional time penalty in the event of a TLB hit. A TLB is a cache of
the most recently used page table entries. Software is responsible for maintaining the
consistency of the TLB with memory. The 603e’s TLBs are 64-entry, two-way
set-associative caches that contain instruction and data address translations. The 603e
provides hardware assist for software table search operations through the hashed page table
on TLB misses. Supervisor software can invalidate TLB entries selectively.

The 603e also provides independent four-entry BAT arrays for instructions and data that
maintain address translations for blocks of memory. These entries define blocks that can
vary from 128 Kbytes to 256 Mbytes. The BAT arrays are maintained by system software.

As specified by the PowerPC architecture, the hashed page table is a variable-sized data
structure that defines the mapping between virtual page numbers and physical page
numbers. The page table size is a power of 2, and its starting address is a multiple of its size.

Also as specified by the PowerPC architecture, the page table contains a number of page
table entry groups (PTEGs). A PTEG contains eight page table entries (PTEs; of eight bytes
each; therefore, each PTEG is 64 bytes long. PTEG addresses are entry points for table
search operations.

1.3.6 Instruction Timing

The 603e is a pipelined superscalar processor. A pipelined processor is one in which the
processing of an instruction is reduced into discrete stages. Because the processing of an
instruction is broken into a series of stages, an instruction does not require the entire
resources of an execution unit. For example, after an instruction completes the decode
stage, it can pass on to the next stage, while the subsequent instruction can advance into the
decode stage. This improves the throughput of the instruction flow. For example, it may
take three cycles for a floating-point instruction to complete, but if there are no stalls in the
floating-point pipeline, a series of floating-point instructions can have a throughput of one
instruction per cycle.

MOTOROLA Chapter 1. Overview 1-33

The instruction pipeline in the 603e has four major pipeline stages, described as follows:

The fetch pipeline stage primarily involves retrieving instructions from the memory
system and determining the location of the next instruction fetch. Additionally, the
BPU decodes branches during the fetch stage and folds out branch instructions
before the dispatch stage if possible.

The dispatch pipeline stage is responsible for decoding the instructions supplied by
the instruction fetch stage, and determining which of the instructions are eligible to
be dispatched in the current cycle. In addition, the source operands of the
instructions are read from the appropriate register file and dispatched with the
instruction to the execute pipeline stage. At the end of the dispatch pipeline stage,
the dispatched instructions and their operands are latched by the appropriate
execution unit.

During the execute pipeline stage each execution unit that has an executable
instruction executes the selected instruction (perhaps over multiple cycles), writes
the instruction's result into the appropriate rename register, and notifies the
completion stage that the instruction has finished execution. In the case of an internal
exception, the execution unit reports the exception to the completion/writeback
pipeline stage and discontinues instruction execution until the exception is handled.
The exception is not signaled until that instruction is the next to be completed.
Execution of most floating-point instructions is pipelined within the FPU allowing
up to three instructions to be executing in the FPU concurrently. The pipeline stages
for the floating-point unit are multiply, add, and round-convert. Execution of most
load/store instructions is also pipelined. The load/store unit has two pipeline stages.
The first stage is for effective address calculation and MMU translation and the
second stage is for accessing the data in the cache. (Note that the EC603e
microprocessor does not support the floating-point unit.)

The complete/writeback pipeline stage maintains the correct architectural machine
state and transfers the contents of the rename registers to the GPRs and FPRs as
instructions are retired. If the completion logic detects an instruction causing an
exception, all following instructions are cancelled, their execution results in rename
registers are discarded, and instructions are fetched from the correct instruction
stream.

A superscalar processor is one that issues multiple independent instructions into multiple
pipelines allowing instructions to execute in parallel. The 603e has five independent
execution units, one each for integer instructions, floating-point instructions (floating-point
instructions are trapped by the floating-point unavailable exception on the EC603e
microprocessor), branch instructions, load/store instructions, and system register
instructions. The IU and the FPU each have dedicated register files for maintaining
operands (GPRs and FPRs, respectively), allowing integer calculations and floating-point
calculations to occur simultaneously without interference. Integer division performance of
the PID7v-603e has been improved, with the divwux and divwx instructions executing in
20 clock cycles, instead of the 37 cycles required in the PID6-603e.

1-34

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The 603e provides support for single-cycle store and it provides an adder/comparator in the
system register unit that allows the dispatch and execution of multiple integer add and
compare instructions on each cycle. Refer to Chapter 6, “Instruction Timing,” for more
information.

Because the PowerPC architecture can be applied to such a wide variety of
implementations, instruction timing among various PowerPC processors varies
accordingly.

1.3.7 System Interface
The system interface is specific for each PowerPC microprocessor implementation.

The 603e provides a versatile system interface that allows for a wide range of
implementations. The interface includes a 32-bit address bus, a 32- or 64-bit data bus, and
56 control and information signals (see Figure 1-6). The system interface allows for
address-only transactions as well as address and data transactions. The 603e control and
information signals include the address arbitration, address start, address transfer, transfer
attribute, address termination, data arbitration, data transfer, data termination, and
processor state signals. Test and control signals provide diagnostics for selected internal
circuits.

ADDRESS <——> [e— DATA
ADDRESS ARBITRATION <«——» |«—— DATA ARBITRATION
ADDRESS START «—»| l«——» DATA TRANSFER

ADDRESS TRANSFER <«———» 603e l«——» DATA TERMINATION
TRANSFER ATTRIBUTE <«——» |«——» PROCESSOR STATE
ADDRESS TERMINATION <«———» |«—— TEST AND CONTROL
CLOCKS <«—»|

T =
+3.3V ~

Figure 1-6. System Interface

The system interface supports bus pipelining, which allows the address tenure of one
transaction to overlap the data tenure of another. The extent of the pipelining depends on
external arbitration and control circuitry. Similarly, the 603e supports split-bus transactions
for systems with multiple potential bus masters—one device can have mastership of the
address bus while another has mastership of the data bus. Allowing multiple bus
transactions to occur simultaneously increases the available bus bandwidth for other
activity and as a result, improves performance.

The 603e supports multiple masters through a bus arbitration scheme that allows various
devices to compete for the shared bus resource. The arbitration logic can implement priority
protocols, such as fairness, and can park masters to avoid arbitration overhead. The MEI

MOTOROLA Chapter 1. Overview 1-35

protocol ensures coherency among multiple devices and system memory. Also, the 603e's
on-chip caches and TLBs and optional second-level caches can be controlled externally.

The 603e’s clocking structure allows the bus to operate at integer multiples of the processor
cycle time.

The following sections describe the 603e bus support for memory operations. Note that
some signals perform different functions depending upon the addressing protocol used.

1.3.7.1 Memory Accesses

The 603e’s data bus is configured at power-up to either a 32- or 64-bit width. When the 603e
is configured with a 32-bit data bus, memory accesses allow transfer sizes of 8, 16, 24, or
32 bits in one bus clock cycle. Data transfers occur in either single-beat transactions, or
two-beat or eight-beat burst transactions, with a single-beat transaction transferring as
many as 32 bits. Single- or double-beat transactions are caused by noncached accesses that
access memory directly (that is, reads and writes when caching is disabled,
caching-inhibited accesses, and stores in write-through mode). Eight-beat burst
transactions, which always transfer an entire cache line (32 bytes), are initiated when a line
is read from or written to memory.

When the 603e is configured with a 64-bit data bus, memory accesses allow transfer sizes
of 8, 16, 24, 32, 40, 48, 56, or 64 bits in one bus clock cycle. Data transfers occur in either
single-beat transactions or four-beat burst transactions. Single-beat transactions are caused
by noncached accesses that access memory directly (that is, reads and writes when caching
is disabled, caching-inhibited accesses, and stores in write-through mode). Four-beat burst
transactions, which always transfer an entire cache line (32 bytes), are initiated when a line
is read from or written to memory.

1.3.7.2 Signals

The 603e signals are grouped as follows:

* Address arbitration signals—The 603e uses these signals to arbitrate for address bus
mastership.

* Address transfer start signals—These signals indicate that a bus master has begun a
transaction on the address bus.

* Address transfer signals—These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

» Transfer attribute signals—These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted,
write-through, or caching-inhibited.

* Address transfer termination signals—These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

1-36 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

» Data arbitration signals—The 603e uses these signals to arbitrate for data bus
mastership.

» Data transfer signals—These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.

* Data transfer termination signals—Data termination signals are required after each
data beat in a data transfer. In a single-beat transaction, the data termination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the final
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

» System status signals—These signals include the interrupt signal, checkstop signals,
and both soft- and hard-reset signals. These signals are used to interrupt and, under
various conditions, to reset the processor.

* Processor state signals—These signals indicate the state of the reservation
coherency bit, enable the time base, provide machine quiesce control, and cause a
machine halt on execution of a tlbsync instruction.

» 1EEE 1149.1(JTAG)/COP interface signals—The IEEE 1149.1 test unit and the
common on-chip processor (COP) unit are accessed through a shared set of input,
output, and clocking signals. The IEEE 1149.1/COP interface provides a means for
boundary scan testing and internal debugging of the 603e.

e Test interface signals—These signals are used for production testing.

* Clock signals—These signals determine the system clock frequency. These signals
can also be used to synchronize multiprocessor systems.

NOTE

A bar over a signal name indicates that the signal is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active low, such as AP[0-3] (address bus parity signals)
and TT[0-4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.

MOTOROLA Chapter 1. Overview 1-37

1.3.7.3 Signal Configuration
Figure 1-7 illustrates the 603e's logical pin configuration, showing how the signals are

grouped.
[< ER 1 T|e DBG 7]
ADDRESS | — BG P 1 le DBWO | DATA
ARBITRATION | ABB 4 = 588 — [ARBITRATION
ADDRESS [TS > 1 -
START 64| e DHO-311DLO-31]
8 DP[0-7) DATA
P Al0-31]) 32 1 DPE ~ [TRANSFER
- DBDIS o
ADDRESS BUS— _ AP[0-3] o 1= =
; APE 1 1 | TA =]
- 1 | DRIRY DATA
— TT[0-4] 5 = TEA TERMINATION
- TBST b =
D TSIZ[0-2] "~ 3 > | NT, SWI —
TRANSFER |<«———@ 17 B i1l MCP INTERRUPTS
ATTRIBUTE | < cl 1 Gd 2 |« CKSTP_IN,CKSTP OUT [~ CHECKSTOPS
wT D o HRESET, SRESET
< 1 2 < RESET
= CSE[0-1] 5
< TC[0-1] 2 1 RSAV iy
- 2 |« QREQ, QACK > | PROCESSOR
1 | TBEN ™ STATUS
1 l< TLBISYNC
ADDRESS AACK ; -
TERMINATION{ ARTRY adp
5 |« TBST.TCK, TMS, TDI, TDo] JTAG/COP
INTERFACE
SYSCLK o 4
CLK_OUT = TEST
CLOCKS 1 3 | LSSD TEST
‘l: PLL_CFG[0-3] a4 CONTROL
| L
+3.3V
Figure 1-7. Signal Groups
1-38 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Chapter 2 | 2
Programming Model

This chapter describes the PowerPC programming model with respect to the PowerPC 603e
microprocessor. It consists of three major sections that describe the following:

* Registers implemented in the 603e
* Operand conventions
* The 603e instruction set

2.1 Register Set

This section describes the register organization in the 603e as defined by the three levels of
the PowerPC architecture—the user instruction set architecture (UISA), the virtual
environment architecture (VEA), and the operating environment architecture (OEA), as
well as the 603e implementation-specific registers. Full descriptions of the basic register set
defined by the PowerPC architecture are provided in Chapter 2, “PowerPC Register Set,”
in The Programming Environments Manual.

The PowerPC architecture defines register-to-register operations for all computational
instructions. Source data for these instructions is accessed from the on-chip registers or is
provided as an immediate value embedded in the opcode. The three-register instruction
format allows specification of a target register distinct from the two source registers, thus
preserving the original data for use by other instructions and reducing the number of
instructions required for certain operations. Data is transferred between memory and
registers with explicit load and store instructions only.

Note that there may be registers common to other PowerPC processors that are not
implemented in the 603e. When the 603e detects special-purpose register (SPR) encodings
other than those defined in this document, it either takes an exception or it treats the
instruction as a no-op. (Note that exceptions are referred to as interrupts in the architecture
specification.) Conversely, some SPRs in the 603e may not be implemented in other
PowerPC processors, or may not be implemented in the same way in other PowerPC
processors.

2.1.1 PowerPC Register Set

The PowerPC UISA registers, shown in Figure 2-1, can be accessed by either user- or
supervisor-level instructions (the architecture specification refers to user- and supervisor-

MOTOROLA Chapter 2. Programming Model 2-1

level as problem state and privileged state, respectively). The general-purpose registers
(GPRs) and floating-point registers (FPRs) are accessed through instruction operands.
(Note that the EC603e microprocessor does not support the floating-point register file; an
attempt to access the floating-point register file will result in a floating-point unavailable
exception.) Access to registers can be explicit (that is, through the use of specific
instructions for that purpose such as the mtspr and mfspr instructions) or implicit as part
of the execution (or side effect) of an instruction. Some registers are accessed both
explicitly and implicitly.

The number to the right of the register name indicates the number that is used in the syntax
of the instruction operands to access the register (for example, the number used to access
the XER is SPR1).

For more information on the PowerPC register set, refer to Chapter 2, “PowerPC Register
Set,” in The Programming Environments Manual.

2-2 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

/ SUPERVISOR MODEL ﬁ

/ \ Configuration Registers
USER MODEL Hardware . .
Implementatlon Machine State Processor Version
Registers’ Register Register
General-Purpose
Registers HIDO | SPR1008 MSR SPR 287
GPRO HID1 SPR 1009
GPR1 Memory Management Registers
. Instruction BAT . Software Table
H Registers Data BAT Registers Search Registers’
GPR31 IBATOU | SPR528 DBATOU | SPR536 DMISS | SPR976
IBATOL | SPR 529 DBATOL | SPR537 DCMP | SPR977
ina-Poi IBAT1U | SPR 530 DBAT1U | SPR538 HASH1 SPR 978
Regita IBATIL | SPR531 DBATIL | SPR539 HASH2 | SPR979
IBAT2U | SPR532 DBAT2U | SPR 540 IMISS SPR 980
FPRO
FPR1 IBAT2L | SPR533 DBAT2L | SPR 541 ICMP SPR 981
IBAT3U | SPR 534 DBAT3U | SPR542 RPA SPR 982
E IBAT3L | SPR535 DBAT3L | SPR543)
Segment Registers
FPR31 SDR1 SRO
SPR 25 SR1
Condition Register :
SR15
Floating-Point Status Exception Handling Registers
and Control Register? i
Data Address Register DSISR
FPSCR
SPR19 DSISR | SPR18
XER SPRGs Save and Restore
SPR 1 SPRGO | SPR272 SRRO | SPR26
SPRG1 | SPR273 SRR1 SPR 27
Link Register SPRG2 |SPR274
SPR 8 SPRG3 | SPR 275
Count Register Miscellaneous Registers
CTR SPR 9 Time Base Facility
(For Writing) Decrementer
Time Base Facility TBL SPR 284 DEC SPR 22
(For Reading) TBU SPR 285
TBL TBR 268 Instruction Add!'ess1 External Address
T80 TBR 269 Breakpoint Register Register (Optional)

Notes: 'These registers are 603e—specific (PID6-603e and PID7v-603e) registers.
They may not be supported by other PowerPC processors.

2Not supported on the EC603e microprocessor.

Figure 2-1. Programming Model—Registers

MOTOROLA Chapter 2. Programming Model 2-3

The 603e’s user-level registers are described as follows:

User-level registers (UISA)—The user-level registers can be accessed by all
software with either user or supervisor privileges. The user-level register set
includes the following:

— General-purpose registers (GPRs). The general-purpose register file consists of
thirty-two 32-bit GPRs designated as GPRO-GPR31. This register file serves as
the data source or destination for all integer instructions and provides data for
generating addresses.

— Floating-point registers (FPRs). The floating-point register file consists of thirty-
two 64-bit FPRs designated as FPRO-FPR31, which serves as the data source or
destination for all floating-point instructions. These registers can contain data
objects of either single- or double-precision floating-point format. (The floating-
point register file is not supported on the EC603e microprocessor; an attempt to
access the floating-point register file will result in a floating-point unavailable
exception.)

— Condition register (CR). The CR is a 32-bit register, divided into eight 4-bit
fields, CRO-CR?7, that reflects the results of certain arithmetic operations and
provides a mechanism for testing and branching.

— Floating-point status and control register (FPSCR). The FPSCR is a user-control
register that contains all floating-point exception signal bits, exception summary
bits, exception enable bits, and rounding control bits needed for compliance with
the IEEE 754 standard. (The FPU is not supported on the EC603e
microprocessor; an attempt to access the floating-point register file will result in
a floating-point unavailable exception.)

The remaining user-level registers are SPRs. Note that the PowerPC architecture
provides a separate mechanism for accessing SPRs (the mtspr and mfspr
instructions). These instructions are commonly used to explicitly access certain
registers, while other SPRs may be more typically accessed as the side effect of
executing other instructions.

— XER register (XER). The XER 1is a 32-bit register that indicates overflow and
carries for integer operations. It is set implicitly by many instructions.

— Link register (LR). The 32-bit link register provides the branch target address for
the Branch Conditional to Link Register (bclrx) instruction, and can optionally
be used to hold the logical address (referred to as the effective address in the
architecture specification) of the instruction that follows a branch and link
instruction, typically used for linking to subroutines.

— Count register (CTR). The CTR is a 32-bit register for holding a loop count that
can be decremented during execution of appropriately coded branch instructions.
The CTR can also provide the branch target address for the Branch Conditional
to Count Register (beetrx) instruction.

2-4

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The 603¢’s supervisor-level registers are described as follows: n

User-level registers (VEA)—The PowerPC VEA introduces the time base facility
(TB) for reading. The TB is a 64-bit register pair whose contents are incremented
once every four bus clock cycles. The TB consists of two 32-bit registers—time base
upper (TBU) and time base lower (TBL). Note that the time base registers are read-
only when in user state.

Supervisor-level registers (OEA)—The OEA defines the registers that are used
typically by an operating system for such operations as memory management,
configuration, and exception handling. The supervisor-level registers defined by the
PowerPC architecture for 32-bit implementations are described as follows:

— Configuration registers

— Machine state register (MSR). The MSR defines the state of the processor.
The MSR can be modified by the Move to Machine State Register (mtmsr),
System Call (sc), and Return from Exception (rfi) instructions. It can be read
by the Move from Machine State Register (mfmsr) instruction.

Implementation Note—The 603e defines MSR[13] as the power
management enable (POW) bit and MSR[14] as the temporary GPR
remapping (TGPR) bit. These additional bits are described in Table 2-1.

Table 2-1. MSR[POW] and MSR[TGPR] Bits

Bit

Name Description

13

POW Power management enable (603e-specific)
0 Disables programmable power modes (normal operation mode).
1 Enables programmable power modes (nap, doze, or sleep mode).

This bit controls the programmable power modes only, it has no effect on dynamic power
management (DPM). MSR[POW] may be altered with an mtmsr instruction only. Also, when
altering the POW bit, software may alter only this bit in the MSR and no others. The mtmsr
instruction must be followed by a context-synchronizing instruction.

See Chapter 9, “Power Management,” for more information on power management.

14

TGPR Temporary GPR remapping (603e-specific)

0 Normal operation

1 TGPR mode. GPRO-GPRS are remapped to TGPRO-TGPRS3 for use by TLB miss
routines.

The contents of GPRO-GPR3 remain unchanged while MSR[TGPR] = 1. Attempts to use

GPR4-GPR31 with MSR[TGPR] = 1 yield undefined results. Overlays TGPRO-TGPR3 over

GPRO-GPR3 for use by TLB miss routines. When this bit is set, all instruction accesses to

GPRO0-GPR3 are mapped to TGPRO-TGPRS, respectively. The contents of GPRO-GPR3 are

unchanged as long as this bit remains set. Attempts to use GPR4-GPR31 when this bit is set

yields undefined results.The TGPR bit is set when either an instruction TLB miss, data read

miss, or data write miss exception is taken. The TGPR bit is cleared by an rfi instruction.

MOTOROLA Chapter 2. Programming Model 2-5

— Processor version register (PVR). This register is a read-only register that
identifies the version (model) and revision level of the PowerPC processor.

Implementation Note—The processor version number is 6 for the PID6-
603e and 7 for the PID7v-603e. The processor revision level starts at 0x0100
and changes for each chip revision. The revision level is updated on all silicon
revisions.

m — Memory management registers

— Block-address translation (BAT) registers. The 603e includes eight block-
address translation registers (BATs), consisting of four pairs of instruction
BATs (IBATOU-IBAT3U and IBATOL-IBAT3L) and four pairs of data BAT's
(DBATOU-DBAT3U and DBATOL-DBAT3L). See Figure 2-1 for alist of the
SPR numbers for the BAT registers.

— SDRI. The SDR1 register specifies the page table base address used in virtual-
to-physical address translation. (Note that physical address is referred to as
real address in the architecture specification.)

— Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SRO-SR15). Note that SRs are implemented on 32-bit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit 0.

— Exception handling registers

— Data address register (DAR). After a data access or an alignment exception,
the DAR is set to the effective address generated by the faulting instruction.

— SPRGO-SPRG3. The SPRGO-SPRG3 registers are provided for operating
system use.

— DSISR. The DSISR defines the cause of data access and alignment
exceptions.

— Machine status save/restore register 0 (SRR0). The SRRO is used to save
machine status on exceptions and to restore machine status when an rfi
instruction is executed.

— Machine status save/restore register 1 (SRR1). The SRR1 is used to save
machine status on exceptions and to restore machine status when an rfi
instruction is executed.

Implementation Note—The 603e implements the Key bit (bit 12) in the
SRR1 register in order to simplify the table search software. For more
information refer to Chapter 5, “Memory Management.”

— Miscellaneous registers

— The time base facility (TB) for writing. The TB is a 64-bit register pair that
can be used to provide time of day or interval timing. It consists of two 32-bit
registers—time base upper (TBU) and time base lower (TBL). The TB is
incremented once every four clock cycles.

2-6 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

— Decrementer (DEC). The DEC register is a 32-bit decrementing counter that
provides a mechanism for causing a decrementer exception after a
programmable delay. The DEC is decremented once every four bus clock
cycles.

— External access register (EAR). The EAR is a 32-bit register used in
conjunction with the eciwx and ecowx instructions. While the PowerPC
architecture specifies that the low-order six bits of the EAR (bits 26-31) are
used to select a device, the 603e only implements the low-order 4 bits (bits
28-31). Note that the EAR register and the eciwx and ecowx instructions are
optional in the PowerPC architecture and may not be supported in all
PowerPC processors that implement the OEA.

2.1.2 Implementation-Specific Registers

The 603e includes several implementation-specific SPRs that are not defined by the
PowerPC architecture. They are the DMISS, IMISS, DCMP, ICMP, HASH1, HASH?2,
RPA, HIDO, HID1, and IABR registers. These registers can be accessed by supervisor-level
instructions only. Any attempt to access these SPRs with user-level instructions results in a
supervisor-level exception. The SPR numbers for these registers are shown in Figure 2-1.

The DMISS, IMISS, DCMP, ICMP, HASH1, HASH2, and RPA registers are used for
software table search operations and should only be accessed when address translation is
disabled (that is, MSR[IR] = 0 and MSR[DR] = 0). For a complete discussion of software
table search operations, refer to Section 5.5.2, “Implementation-Specific Table Search
Operation.”

2.1.2.1 Hardware Implementation Registers (HIDO and HID1)

The HIDO and HID1 registers, shown in Figure 2-2 and Figure 2-3 respectively, define
enable bits for various 603e-specific features.

[7] Reserved
EICE DLOCK
EMCP SECLKl ECLK DOZE SLEEP RISEG ILOCK l FBIOB NOOPTI
I Q |EBAIEBD| | I lF’AR| INAPI |DF’M| ‘ 00 lNHR‘KZEIDCEl | |ICFI|DCF|[00000]’ l 000 l |
01 23 456 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 26 27 28 30 31

Figure 2-2. Hardware Implementation Register 0 (HIDO)

MOTOROLA Chapter 2. Programming Model 2-7

Table 2-2 shows the bit definitions for HIDO.
Table 2-2. HIDO Bit Settings

Bit(s) Name Description
0 EMCP Enable machine check pin
1 — Reserved
2 EBA Enable bus address parity checking
3 EBD Enable bus data parity checking
4 SBCLK Select bus clock for test clock pin
5 EICE Enable ICE outputs—pipeline tracking support
6 ECLK Enable external test clock pin
7 PAR Disable precharge of ARTRY and shared signals
8 DOZE Doze mode—PLL, time base, and snooping active'
9 NAP Nap mode—PLL and time base active’
10 SLEEP Sleep mode—no external clock required’
11 DPM Enable dynamic power management!
12 RISEG Reserved for test
13-14 — Reserved
15 NHR Reserved
16 ICE Instruction cache enable®
17 DCE Data cache enable?
18 ILOCK Instruction cache LOCK?
19 DLOCK Data cache LOCK?
20 ICFI Instruction cache flash invalidate®
21 DCFI Data cache flash invalidate?
22-23 — Reserved
24 IFEM Instruction fetch enable M (PID7v-603e only)
25-26 — Reserved
27 FBIOB Force branch indirect on bus
28 ABE Address broadcast enable? (PID7v-603e only)
29-30 — Reserved
31 NOOPTI No-op touch instructions
Notes:

1. See Chapter 9, “Power Management,” for more information.

2. See Chapter 3, “Instruction and Data Cache Operation,” for more information.

2-8 MPC603e & EC603e RISC Microprocessors User's Manual

MOTOROLA

[7] Reserved

|PCO PC1{PC2

Pcal 0000000000000000000000000000

01 2 3 4

Figure 2-3. Hardware Implementation Register 1 (HID1)

Table 2-3 shows the bit definitions for HID1.
Table 2-3. HID1 Bit Settings

Bit(s) Name Description
0 PCO PLL configuration bit 0 (read-only)
1 PC1 PLL configuration bit 1 (read-only)
2 PC2 PLL configuration bit 2 (read-only)
3 PC3 PLL configuration bit 3 (read-only)
4-31 — Reserved

Note: The clock configuration bits reflect the state of the PLL_CFG[0-3] signals.

2.1.2.2 Data and Instruction TLB Miss Address Registers
(DMISS and IMISS)

The DMISS and IMISS registers have the same format as shown in Figure 2-4. They are
loaded automatically upon a data or instruction TLB miss. The DMISS and IMISS contain
the effective page address of the access that caused the TLB miss exception. The contents
are used by the 603e when calculating the values of HASH1 and HASH2, and by the tlbld
and tlbli instructions when loading a new TLB entry. Note that the 603e always loads the
DMISS register with a big-endian address, even when MSR[LE] is set. These registers are
read and write to the software.

[Effective Page Address

Figure 2-4. DMISS and IMISS Registers

2.1.2.3 Data and Instruction TLB Compare Registers
(DCMP and ICMP)

The DCMP and ICMP registers are shown in Figure 2-5. These registers contain the first
word in the required PTE. The contents are constructed automatically from the contents of
the segment registers and the effective address (DMISS or IMISS) when a TLB miss
exception occurs. Each PTE read from the tables during the table search process should be
compared with this value to determine whether or not the PTE is a match. Upon execution
of a tlbld or tIbli instruction the upper 25 bits of the DCMP or ICMP register and 11 bits

MOTOROLA Chapter 2. Programming Model 2-9

of the effective address operand are loaded into the first word of the selected TLB entry.
These registers are read and write to the software.

Reserved
|\d VSID L?I API T
01 24 25 26 31
Figure 2-5. DCMP and ICMP Registers
Table 2-4 describes the bit settings for the DCMP and ICMP registers.
Table 2-4. DCMP and ICMP Bit Settings
Bits Name Description
0 \ Valid bit. Set by the processor on a TLB miss exception.
1-24 VSID Virtual segment ID. Copied from VSID field of corresponding
segment register.
25 — Reserved
26-31 API Abbreviated page index. Copied from API of effective address.

2.1.2.4 Primary and Secondary Hash Address Registers
(HASH1 and HASH2)

The HASH1 and HASH2 registers contain the physical addresses of the primary and
secondary PTEGs for the access that caused the TLB miss exception. For convenience, the
603e automatically constructs the full physical address by routing bits 0—6 of SDR1 into
HASH1 and HASH2 and clearing the lower 6 bits. These registers are read-only and are
constructed from the contents of the DMISS or IMISS register (the register choice is
determined by which miss was last acknowledged). The format for the HASH1 and HASH2
registers is shown in Figure 2-6.

[HTABORG[0-6] Hashed Page Address 000000 —l

0 6 7 25 26 31

Figure 2-6. HASH1 and HASH2 Registers

Table 2-5 describes the bit settings of the HASH1 and HASH?2 registers.
Table 2-5. HASH1 and HASH2 Bit Settings

Bits Name Description
0-6 HTABORG[0-6] Copy of the upper 7 bits of the HTABORG field from SDR1
7-25 Hashed page address | Address bits 7-25 of the PTEG to be searched
26-31 — Reserved

2-10 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.1.2.5 Required Physical Address Register (RPA)

The RPA register is shown in Figure 2-7. During a page table search operation, the software
must load the RPA with the second word of the correct PTE. When the tlbld or tIbli
instruction is executed, the contents of the RPA register and the DMISS or IMISS register
are merged and loaded into the selected TLB entry. The referenced (R) bit is ignored when
the write occurs (no location exists in the TLB entry for this bit). The RPA register is read
and write to the software.

[] Reserved

RPN

0 19 20 22 23 24 25 28 29 30 31
Figure 2-7. Required Physical Address Register (RPA)

Table 2-6 describes the bit settings of the RPA register.
Table 2-6. RPA Bit Settings

Bits Name Description
0-19 RPN Physical page number from PTE
20-22 — Reserved
23 R Referenced bit from PTE
24 C Changed bit from PTE
25-28 WIMG Memory/cache access attribute bits
29 — Reserved
30-31 PP Page protection bits from PTE

2.1.2.6 Instruction Address Breakpoint Register (IABR)

The IABR, shown in Figure 2-8, controls the instruction address breakpoint exception.
IABR[CEA] holds an effective address to which each instruction is compared. The
exception is enabled by setting bit 30 of IABR. The exception is taken when there is an
instruction address breakpoint match on the next instruction to complete. The instruction
tagged with the match will not be completed before the breakpoint exception is taken.

Reserved

CEA]lE o

0 29 30 3

Figure 2-8. Instruction Address Breakpoint Register (IABR)

MOTOROLA Chapter 2. Programming Model 2-11

The bits in the IABR are defined as shown in Table 2-7.
Table 2-7. Instruction Address Breakpoint Register Bit Settings

Bit Description
0-29 Word address to be compared
30 IABR enabled. Setting this bit indicates that the IABR exception is enabled.
31 Reserved

2.1.2.7 Run_N Counter Register (Run_N)

The 33-bit Run_N counter register is unique to the PID7v-603e. The Run_N counter is used
by the COP to control the number of processor cycles that the processor runs before halting.
The most-significant 32 bits form a 32-bit counter. The function of the least-significant bit
remains unchanged.

2.2 Operand Conventions

This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture. It also provides detailed descriptions of conventions used for storing
values in registers and memory, accessing the 603e’s registers, and representation of data
in these registers.

2.2.1 Floating-Point Execution Models—UISA

Note that the floating-point execution models are not supported on the EC603e
MiCroprocessor.

The IEEE 754 standard includes 64- and 32-bit arithmetic. The standard requires that
single-precision arithmetic be provided for single-precision operands. The standard permits
double-precision arithmetic instructions to have either (or both) single-precision or double-
precision operands, but states that single-precision arithmetic instructions should not accept
double-precision operands.

The PowerPC UISA follows these guidelines:

* Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

* Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversions from double- to single-precision must be done
explicitly by software, while conversions from single- to double-precision are done
implicitly.

All PowerPC implementations provide the equivalent of the following execution models to
ensure that identical results are obtained. The definition of the arithmetic instructions for

2-12 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

infinities, denormalized numbers, and NaNs follow conventions described in the following
sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is 1:

* Underflow during multiplication using a denormalized factor
* Opverflow during division using a denormalized divisor

2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and move assist instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

2.2.3 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 2-8. (Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands.)

Table 2-8. Memory Operands

Operand Length Altfkl‘\rlﬁzgsn;?]
Byte 8 bits XXXX
Half word 2 bytes xxx0
Word 4 bytes xx00
Double word 8 bytes x000
Quad word 16 bytes 0000

Note: An “x” in an address bit position indicates that the bit can
be 0 or 1 independent of the state of other bits in the
address.

MOTOROLA Chapter 2. Programming Model 2-13

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Implementation Notes—The following describes how the 603e handles alignment and
misaligned accesses:

* The 603e provides hardware support for some misaligned memory accesses.
However, misaligned accesses will suffer a performance degradation compared to
aligned accesses of the same type.

» The 603e does not provide hardware support for floating-point load/store operations
that are not word-aligned. In such a case, the 603e will invoke an alignment
exception and the exception handler must break up the misaligned access. For this
reason, floating-point single- and double-word accesses should always be word-
aligned. Note that a floating-point double-word access on a word-aligned boundary
requires an extra cycle to complete. (Floating-point operations are not supported on
the EC603e microprocessor.)

Any memory access that crosses an alignment boundary must be broken into multiple
discrete accesses. This includes half-word, word, double-word, and string references. For
the case of string accesses, the hardware makes no attempt to get aligned in an effort to
reduce the number of discrete accesses. (Multiword accesses are architecturally required to
be aligned.) The resulting performance degradation depends upon how well each individual
access behaves with respect to the memory hierarchy. At a minimum, additional cache
access cycles are required. More dramatically, for the case of access to a noncacheable
page, each discrete access involves an individual bus operation which will reduce the
effective bandwidth of the bus.

The frequent use of misaligned accesses is discouraged since they can compromise the
overall performance of the processor.

2.2.4 Floating-Point Operand

The 603e provides hardware support for all single- and double-precision floating-point
operations (not supported on the EC603e microprocessor) for most value representations
and all rounding modes. The PowerPC architecture provides for hardware to implement a
floating-point system as defined in ANSIV/IEEE standard 754-1985, IEEE Standard for
Binary Floating Point Arithmetic. For detailed information about the floating-point
execution model refer to Chapter 3, “Operand Conventions,” in The Programming
Environments Manual.

2.2.5 Effect of Operand Placement on Performance

The VEA states that the placement (location and alignment) of operands in memory affect
the relative performance of memory accesses. The best performance is guaranteed if
memory operands are aligned on natural boundaries. To obtain the best performance from
the 603e, the programmer should assume the performance model described in Chapter 3,
“Operand Conventions,” in The Programming Environments Manual.

2-14 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.3 Instruction Set Summary

This section describes instructions and addressing modes defined for the 603e. These
instructions are divided into the following functional categories:

» Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, “Integer Instructions.”

* Floating-point instructions—These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, “Floating-Point Instructions.” (Note that
floating-point operations are not supported on the EC603e microprocessor)

* Load and store instructions—These include integer and floating-point load and store
instructions. For more information, see Section 2.3.4.3, “Load and Store
Instructions.”

* Flow control instructions—These include branching instructions, condition register
logical instructions, and other instructions that affect the instruction flow. For more
information, see Section 2.3.4.4, “Branch and Flow Control Instructions.”

» Trap instructions—These instructions are used to test for a specified set of
conditions; see Section 2.3.4.5, “Trap Instructions,” for more information.

¢ Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For more
information, see Sections 2.3.4.6,2.3.5.1, and 2.3.6.2.

¢ Memory synchronization instructions—These instructions are used for memory
synchronizing. See Sections 2.3.4.7 and Section 2.3.5.2 for more information.

¢ Memory control instructions—These instructions provide control of caches, TLBs,
and segment registers. For more information, see Sections 2.3.5.3 and 2.3.6.3.

¢ System linkage instructions—For more information, see Section 2.3.6.1, “System
Linkage Instructions.”

» External control instructions—These include instructions for use with special input/
output devices. For more information, see Section 2.3.5.4, “External Control
Instructions.”

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. This information, which is useful
in taking full advantage of the 603e’s superscalar parallel instruction execution, is provided
in Chapter 8, “Instruction Set,” in The Programming Environments Manual.

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
uses instructions that are four bytes long and word-aligned. It provides for byte, half-word,
and word operand loads and stores between memory and a set of 32 general-purpose
registers (GPRs). It also provides for word and double-word operand loads and stores
between memory and a set of 32 floating-point registers (FPRs).

MOTOROLA Chapter 2. Programming Model 2-15

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics (extended
mnemonics in the architecture specification) and symbols is provided for some of the
frequently-used instructions; see Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonic examples.

2.3.1 Classes of Instructions
The 603e instructions belong to one of the following three classes:

¢ Defined
o Illegal
¢ Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, an instruction that
is specific to 64-bit implementations is considered defined for 64-bit implementations but
illegal for 32-bit implementations such as the 603e.

The class is determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

In future versions of the PowerPC architecture, instruction codings that are now illegal may
become assigned to instructions in the architecture, or may be reserved by being assigned
to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in all PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, “Instruction Set,” in The
Programming Environments Manual. The 603e provides hardware support for all

2-16 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

instructions defined for 32-bit implementations (the EC603e microprocessor supports all
32-bit instructions with the exception of those defined for floating-point operations).

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required.

A defined instruction can have invalid forms, as described in the following subsection.

2.3.1.3 lllegal Instruction Class
Illegal instructions can be grouped into the following categories:

» Instructions that are not implemented in the PowerPC architecture. These opcodes
are available for future extensions of the PowerPC architecture; that is, future
versions of the PowerPC architecture may define any of these instructions to
perform new functions.

The following primary opcodes are defined as illegal but may be used in future
extensions to the architecture:

1,4,5,6,9, 22,56, 57, 60, 61

* Instructions that are implemented in the PowerPC architecture but are not
implemented in a specific PowerPC implementation. For example, instructions that
can be executed on 64-bit PowerPC processors are considered illegal by 32-bit
processors.

The following primary opcodes are defined for 64-bit implementations only and are
illegal on the 603e:

2, 30, 58, 62

* All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, “Instructions Sorted by Opcode,” and
Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended opcodes for
instructions that are defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa.

The following primary opcodes have unused extended opcodes.

17, 19, 31, 59, 63 (primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes)

* Aninstruction consisting entirely of zeros is guaranteed to be an illegal instruction.
This increases the probability that an attempt to execute data or uninitialized
memory invokes the system illegal instruction error handler (a program exception).
Note that if only the primary opcode consists of all zeros, the instruction is
considered a reserved instruction. This is further described in Section 2.3.1.4,
“Reserved Instruction Class.”

MOTOROLA Chapter 2. Programming Model 2-17

An attempt to execute an illegal instruction invokes the illegal instruction error handler (a
program exception) but has no other effect. See Section 4.5.7, “Program Exception
(0x00700),” for additional information about illegal and invalid instruction exceptions.

With the exception of the instruction consisting entirely of binary zeros, the illegal
instructions are available for further additions to the PowerPC architecture.

2.3.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
Section 4.5.7, “Program Exception (0x00700),” for additional information about illegal and
invalid instruction exceptions.

The following types of instructions are included in this class:

* Implementation-specific instructions (for example, Load Data TLB Entry (tIbld)
and Load Instruction TLB Entry (tlbli) instructions)

* Optional instructions defined by the PowerPC architecture but not implemented by
the 603e (for example, Floating Square Root (fsqrt) and Floating Square Root
Single (fsqrts) instructions)

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 32-bit
implementations. For more detailed information, see “Conventions,” in Chapter 4,
“Addressing Modes and Instruction Set Summary,” of The Programming Environments
Manual.

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

2.3.2.2 Memory Operands

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian.
See “Byte Ordering” in Chapter 3, “Operand Conventions,” in The Programming

2-18 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Environments Manual for more information about big-endian and little-endian byte
ordering.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Chapter 3, “Operand Conventions,” in The Programming
Environments Manual.

2.3.2.3 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective- address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

Load and store operations have three categories of effective address generation:

* Register indirect with immediate index mode
* Register indirect with index mode
* Register indirect mode

Refer to Section 2.3.4.3.2, “Integer Load and Store Address Generation,” for further
discussion of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

* Immediate
* Link register indirect
* Count register indirect

Refer to Section 2.3.4.4.1, “Branch Instruction Address Calculation,” for further discussion
of branch instruction effective address generation.

2.3.2.4 Synchronization
The sychronization described in this section refers to the state of the processor that is
performing the sychronization.

MOTOROLA Chapter 2. Programming Model 2-19

2.3.2.4.1 Context Synchronization

The System Call (sc) and Return from Interrupt (rfi) instructions perform context
synchronization by allowing previously issued instructions to complete before performing
a change in context. Execution of one of these instructions ensures the following:

* No higher priority exception exists (sc).

* All previous instructions have completed to a point where they can no longer cause
an exception. If a prior memory access instruction causes direct-store error
exceptions, the results are guaranteed to be determined before this instruction is
executed.

* Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

» The instructions following the sc or rfi instruction execute in the context established
by these instructions.

2.3.2.4.2 Execution Synchronization

An instruction is execution synchronizing if all previously initiated instructions appear to
have completed before the instruction is initiated or, in the case of the Synchronize (sync)
and Instruction Synchronize (isync) instructions, before the instruction completes. For
example, the Move to Machine State Register (mtmsr) instruction is execution
synchronizing. It ensures that all preceding instructions have completed execution and will
not cause an exception before the instruction executes, but does not ensure subsequent
instructions execute in the newly established environment. For example, if the mtmsr sets
the MSR[PR] bit, unless an isync immediately follows the mtmsr instruction, a privileged
instruction could be executed or privileged access could be performed without causing an
exception even though the MSR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions

There are two kinds of exceptions in the 603e—those caused directly by the execution of
an instruction and those caused by an asynchronous event. Either may cause components
of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

* An attempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by a user-level program to execute the
supervisor-level instructions listed below causes the privileged instruction (program
exception) handler to be invoked. The 603e provides the following supervisor-level
instructions: dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi,
tlbie, tlbsync, tlbld, and tlbli. Note that the privilege level of the mfspr and mtspr
instructions depends on the SPR encoding.

* An attempt to access memory that is not available (page fault) causes the ISI
exception handler to be invoked.

* An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

2-20 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

» The execution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.

* The execution of a trap instruction invokes the program exception trap handler.

* The execution of a floating-point instruction when floating-point instructions are
disabled or unavailable invokes the floating-point unavailable exception handler.

» The execution of an instruction that causes a floating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.

Exceptions caused by asynchronous events are described in Chapter 4, “Exceptions.”

2.3.3 Instruction Set Overview

This section provides a brief overview of the PowerPC instructions implemented in the
603e and highlights any special information with respect to how the 603e implements a
particular instruction. Note that the categories used in this section correspond to those used
in Chapter 4, “Addressing Modes and Instruction Set Summary,” in The Programming
Environments Manual. These categorizations are somewhat arbitrary and are provided for
the convenience of the programmer and do not necessarily reflect the PowerPC architecture
specification.

Note that some of the instructions have the following optional features:

* CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.
* Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding a few user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

* Integer arithmetic instructions

* Integer compare instructions

* Integer logical instructions

* Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the XER, and into condition register (CR) fields.

MOTOROLA Chapter 2. Programming Model 2-21

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-9 lists the integer arithmetic instructions for the 603e.

Table 2-9. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax

Add Immediate addi rD,rA,SIMM
Add Immediate Shifted addis rD,rA,SIMM
Add add (add. addo addo.) rD,rA,rB
Subtract From subf (subf. subfo subfo.) rD,rA,rB
Add Immediate Carrying addic rD,rA,SIMM
Add Immediate Carrying and Record addic. rD,rA,SIMM
Subtract from Immediate Carrying subfic rD,rA,SIMM
Add Carrying addc (addc. addco addco.) rD,rA,rB
Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB
Add Extended adde (adde. addeo addeo.) rD,rA,rB
Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB
Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA
Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA
Negate neg (neg. nego nego.) rD,rA
Multiply Low Immediate mulli rD,rA,SIMM
Multiply Low muliw (mullw. muliwo mullwo.) rD,rA,rB
Multiply High Word mulhw (mulhw.) rD,rA,rB
Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB
Divide Word divw (divw. divwo divwo.) rD,rA,rB
Divide Word Unsigned divwu (divwu. divwuo divwuo.) rD,rA,rB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (rA) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for examples.

2.3.4.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of rA with
either the UIMM operand, the SIMM operand, or the contents of rB. The comparison is

2-22 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

signed for the cmpi and cmp instructions, and unsigned for the cmpli and cmpl
instructions. Table 2-10 lists the integer compare instructions.

Table 2-10. Integer Compare Instructions

Name Mnemonic Operand Syntax
Compare Immediate cmpi crfD,L,rA,SIMM
Compare cmp crfD,L,rA,rB
Compare Logical Immediate cmpli crfD,L,rA,UIMM
Compare Logical cmpl crfD,L,rA,rB

The crfD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruction erfD field.

For more information refer to Appendix F, “Simplified Mnemonics,” in The Programming
Environments Manual.

2.3.4.1.3 Integer Logical Instructions

The logical instructions shown in Table 2-11 perform bit-parallel operations. Logical
instructions with the CR update enabled and instructions andi. and andis. set CR field CRO
to characterize the result of the logical operation. These fields are set as if the sign-extended
low-order 32 bits of the result were algebraically compared to zero. Logical instructions
without CR update and the remaining logical instructions do not modify the CR. Logical
instructions do not affect the XER[SO], XER[OV], and XER[CA] bits.

For simplified mnemonics examples for the integer logical operations see Appendix F,
“Simplified Mnemonics,” in The Programming Environments Manual.

Table 2-11. Integer Logical Instructions

Name Mnemonic Operand Syntax
AND Immediate andi. rA,rS,UIMM
AND Immediate Shifted andis. rA,rS,UIMM
OR Immediate ori rA,rS,UIMM
OR Immediate Shifted oris rA,rS,UuIMM
XOR Immediate xori rA,rS,UIMM
XOR Immediate Shifted xoris rA,rS,UIMM
AND and (and.) rA,rS,rB
OR or (or.) rA,rS,rB
XOR xor (xor.) rA,rS,rB
NAND nand (nand.) rA,rS,rB
NOR nor (nor.) rA,rS,rB

MOTOROLA Chapter 2. Programming Model 2-23

Table 2-11. Integer Logical Instructions (Continued)

Name Mnemonic Operand Syntax
Equivalent eqv (eqv.) rA,rS,rB
AND with Complement andc (andc.) rA,rS,rB
OR with Complement orc (orc.) rA,rS,rB
Extend Sign Byte extsb (extsb.) rA,rS
Extend Sign Half Word extsh (extsh.) rA,rS
Count Leading Zeros Word cntlzw (cntlzw.) rA,rS

2.3.4.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost

bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is O the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

The integer rotate instructions are listed in Table 2-12.

Table 2-12. Integer Rotate Instructions

Name Mnemonic Operand Syntax

Rotate Left Word Immediate then AND with Mask

riwinm (rlwinm.)

rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask

riwnm (rlwnm.)

rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert

riwimi (rlwimi.)

rA,rS,SH,MB,ME

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics are provided to make coding of such shifts
simpler and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts,” in The Programming Environments Manual.

2-24 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The integer shift instructions are listed in Table 2-13.

Table 2-13. Integer Shift Instructions

Name Mnemonic Operand Syntax
Shift Left Word slw (slw.) rA,rS,rB
Shift Right Word Srw (srw.) rA,rS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH
Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

* Floating-point arithmetic instructions

* Floating-point multiply-add instructions

* Floating-point rounding and conversion instructions
* Floating-point compare instructions

* Floating-point status and control register instructions

* Floating-point move instructions

The EC603e microprocessor provides hardware support for all 32-bit PowerPC instructions
with the exception of floating-point instructions, which, when implemented on the EC603e
microprocessor, take a floating-point unavailable exception.

See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but requires software support to conform with that standard. All floating-point
operations conform to the IEEE 754 standard, except if software sets the non-IEEE mode
bit (NI) in the FPSCR; the 603e is in the nondenormalized mode when the NI bit is set in
the FPSCR. If a denormalized result is produced, a default result of zero is generated. The
generated zero has the same sign as the denormalized number. The 603e performs single-
and double-precision floating-point operations compliant with the IEEE-754 floating-point
standard.

Implementation Note—Single-precision denormalized results require two additional
processor clock cycles to round. When loading or storing a single-precision denormalized
number, the load/store unit may take up to 24 processor clock cycles to convert between the
internal double-precision format and the external single-precision format.

MOTOROLA Chapter 2. Programming Model 2-25

2.3.4.2.1 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are listed in Table 2-14. (Floating-point

instructions are not supported on the EC603e microprocessor.)

Table 2-14. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax
Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB
Floating Add Single fadds (fadds.) frD,frA,frB
Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB
Floating Subtract Single fsubs (fsubs.) frD,frA,frB
Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC
Floating Multiply Single fmuls (fmuls.) frD,frAfrC
Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB
Floating Divide Single fdivs (fdivs.) frD,frA,frB
Floating Reciprocal Estimate Single fres (fres.) frD,frB
Floating Reciprocal Square Root Estimate frsqrte (frsqrte.) frD,frB
Floating Select fsel (fsel.) frD,frA,frC,frB

2.3.4.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding
operation. The fractional part of the intermediate product is 106 bits wide, and all 106 bits
take part in the add/subtract portion of the instruction.

The floating-point multiply-add instructions are listed in Table 2-15. (Floating-point
instructions are not supported on the EC603e microprocessor.)

Table 2-15. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax

Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frAfrC,frB
Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB
Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB
Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB
Floating Negative Multiply-Add (Double-Precision) | fnmadd (fnmadd.) frD,frA,frC,frB
Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB
Floating Negative Multiply-Subtract (Double- fnmsub (fnmsub.) frD,frA,frC,frB
Precision)

Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs). frD,frAfrC,frB

2-26

MPC603e & EC603e RISC Microprocessors User's Manual

MOTOROLA

Implementation Note—Single-precision multiply-type instructions operate faster than
their double-precision equivalents. See Chapter 6, “Instruction Timing,” for more
information.

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The floating-
point conversion instructions convert a 64-bit double-precision floating-point number to a
32-bit signed integer number.

The PowerPC architecture defines bits 0-31 of floating-point register frD as undefined
when executing the Floating Convert to Integer Word (fctiw) and Floating Convert to
Integer Word with Round toward Zero (fctiwz) instructions.

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models,” in The Programming Environments Manual. The
floating-point rounding instructions are shown in Table 2-16. (Floating-point instructions
are not supported on the EC603e microprocessor.)

Table 2-16. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax
Floating Round to Single-Precision frsp (frsp.) frD,frB
Floating Convert to Integer Word fetiw (fctiw.) frD,frB
Floating Convert to Integer Word with Round toward Zero fetiwz (fctiwz.) frD,frB

2.3.4.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +0 = —0). The floating-point compare
instructions are listed in Table 2-17. (Floating-point instructions are not supported on the
EC603e microprocessor.)

Table 2-17. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax
Floating Compare Unordered fempu crfD,frA,frB
Floating Compare Ordered fcmpo crfD,frA,frB

2.3.4.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has

MOTOROLA Chapter 2. Programming Model 2-27

completed. The FPSCR instructions are listed in Table 2-18. (Floating-point instructions
are not supported on the EC603e microprocessor.)

Table 2-18. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax
Move from FPSCR mfifs (mffs.) frD
Move to Condition Register from FPSCR mcerfs crfD,crfS
Move to FPSCR Field Immediate mitfsfi (mtfsfi.) crfD,IMM
Move to FPSCR Fields mtfsf (mtfsf.) FM,frB
Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) crbD
Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) crbD

Implementation Note—The architecture notes that, in some implementations, the Move
to FPSCR Fields (mtfsfx) instruction may perform more slowly when only a portion of the
fields are updated as opposed to all of the fields. This is not the case in the 603e.

2.3.4.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one floating-point register to another. The
floating-point move instructions do not modify the FPSCR. The CR update option in these
instructions controls the placing of result status into CR1. Floating-point move instructions
are listed in Table 2-18. (Floating-point instructions are not supported on the EC603e
MiCroprocessor.)

Table 2-19. Floating-Point Move Instructions

Name Mnemonic Operand Syntax
Floating Move Register fmr (fmr.) frD,frB
Floating Negate fneg (fneg.) frD,frB
Floating Absolute Value fabs (fabs.) frD,frB
Floating Negative Absolute Value fnabs (fnabs.) frD,frB

2.3.4.3 Load and Store Instructions
Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions of the 603e, which consist
of the following:

* Integer load instructions

* Integer store instructions

» Integer load and store with byte-reverse instructions

* Integer load and store multiple instructions

2-28 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

» Integer load and store string instructions
* Floating-point load instructions
* Floating-point store instructions

2.3.4.3.1 Self-Modifying Code

When a processor modifies a memory location that may be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by the following instruction sequence:

dcbst lupdate memory

sync Iwait for update

icbi Iremove (invalidate) copy in instruction cache
isync Iremove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since
instruction fetching bypasses the data cache, changes to items in the data cache may not be
reflected in memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining
cache coherency that are provided in the VEA, and discussed in Chapter 5, “Cache Model
and Memory Coherency,” in The Programming Environments Manual. Because the 603e
does not broadcast the M bit for instruction fetches, external caches are subject to
coherency paradoxes.

2.3.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, “Effective Address Calculation,” for information about calculating
effective addresses. Note that the 603e is optimized for load and store operations that are
aligned on natural boundaries, and operations that are not naturally aligned may suffer
performance degradation. Refer to Section 4.5.6.1, “Integer Alignment Exceptions,” for
additional information about load and store address alignment exceptions.

2.3.4.3.3 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the
EA is loaded into rD. Many integer load instructions have an update form, in which rA is
updated with the generated effective address. For these forms, the EA is placed into rA and
the memory element (byte, half word, word, or double word) addressed by EA is loaded
into rD.

Implementation Note—In some implementations of the PowerPC architecture, the load
half word algebraic instructions (lha and lhax) and the load with update (Ibzu, lbzux, lhzu,
lhzux, lhau, lhaux, lwu, and lwux) instructions may execute with greater latency than
other types of load instructions. In the 603e, these instructions operate with the same
latency as other load instructions.

MOTOROLA Chapter 2. Programming Model 2-29

Table 2-20 lists the integer load instructions.

Table 2-20. Integer Load Instructions

Name Mnemonic | Operand Syntax
Load Byte and Zero Ibz rD,d(rA)
Load Byte and Zero Indexed Ibzx rD,rA,rB
Load Byte and Zero with Update Ibzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux rD,rA,rB
Load Half Word and Zero Ihz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rA,rB
Load Half Word and Zero with Update Ihzu rD,d(rA)
Load Half Word and Zero with Update Indexed lhzux rD,rA,rB
Load Half Word Algebraic lha rD,d(rA)
Load Half Word Algebraic Indexed Ihax rD,rA,rB
Load Half Word Algebraic with Update lhau rD,d(rA)
Load Half Word Algebraic with Update Indexed lhaux rD,rA,rB
Load Word and Zero lwz rD,d(rA)
Load Word and Zero Indexed Iwzx rD,rA,rB
Load Word and Zero with Update Iwzu rD,d(rA)
Load Word and Zero with Update Indexed Iwzux rD,rA,rB

2.3.4.3.4 Integer Store Instructions

For integer store instructions, the contents of rS are stored into the byte, half word, word,
or double word in memory addressed by the effective address (EA). Many store instructions
have an update form, in which rA is updated with the EA. For these forms, the following
rules apply:

* IfrA #0, the EA is placed into rA.
e IfrS =rA, the contents of rS are copied to the target memory element, then the
generated EA is placed into rA (rS).

The 603e defines store with update instructions with rA = 0 and integer store instructions
with the CR update option enabled (Rc field, bit 31, in the instruction encoding = 1) to be
invalid forms. Table 2-21 provides a list of the integer store instructions for the 603e.

2-30 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 2-21. Integer Store Instructions

Name Mnemonic Operand Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx rS,rA,rB
Store Byte with Update stbu rS,d(rA)
Store Byte with Update Indexed stbux rS,rA,rB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rS,rA,rB
Store Half Word with Update sthu rS,d(rA)
Store Half Word with Update Indexed sthux rS,rA,rB
Store Word stw rS,d(rA)
Store Word Indexed stwx rS,rA,rB
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux rS,rA,rB

2.3.4.3.5 Integer Load and Store with Byte-Reverse Instructions

Table 2-22 describes integer load and store with byte-reverse instructions. When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing data in big-endian order. For more information about big-endian and
little-endian byte ordering, see “Byte Ordering” in Chapter 3, “Operand Conventions,” in
The Programming Environments Manual.

Implementation Note—In some PowerPC implementations, load byte-reverse
instructions (lhbrx and lwbrx) may have greater latency than other load instructions;
however, these instructions operate with the same latency as other load instructions in the
603e.

Table 2-22. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Operand Syntax
Load Half Word Byte-Reverse Indexed Ihbrx rD,rA,rB
Load Word Byte-Reverse indexed Iwbrx rD,rA,rB
Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB
Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

MOTOROLA Chapter 2. Programming Model 2-31

2.3.4.3.6 Integer Load and Store Multiple Instructions

The integer load/store multiple instructions are used to move blocks of data to and from the
GPRs. In some implementations, these instructions are likely to have greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

Implementation Notes—The following describes the 603e implementation of the load/
store multiple instruction:

The load multiple and store multiple instructions may have operands that require
memory accesses crossing a 4-Kbyte page boundary. As a result, these instructions
may be interrupted by a DSI exception associated with the address translation of the
second page. In this case, the 603e performs some or all of the memory references
from the first page, and none of the memory references from the second page before
taking the exception. On return from the DSI exception, the load or store multiple
instruction will re-execute from the beginning. For additional information, refer to
“DSI Exception (0x00300)” in Chapter 6, “Exceptions,” in The Programming
Environments Manual.

The PowerPC architecture defines the load multiple word (Imw) instruction with rA
in the range of registers to be loaded as an invalid form. It defines the load multiple
and store multiple instructions with misaligned operands (that is, the EA is not a
multiple of 4) to cause an alignment exception. The 603e defines the load multiple
word (Imw) instruction with rA in the range of registers to be loaded as an invalid
form.

The PowerPC architecture describes some preferred instruction forms for the integer
load and store multiple instructions that may perform better than other forms in
some implementations. None of these preferred forms have an effect on instruction
performance in the 603e.

When the 603e is operating with little-endian byte order, execution of a load or store
multiple instruction causes the system alignment error handler to be invoked; see “Byte
Ordering” in Chapter 3, “Operand Conventions,” in The Programming Environments
Manual for more information. Table 2-23 lists the integer load and store multiple

instructions for the 603e.
Table 2-23. Integer Load and Store Multiple Instructions
Name Mnemonic Operand Syntax
Load Multiple Word Imw rD,d(rA)
Store Multiple Word stmw rS,d(rA)

2-32

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.3.4.3.7 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields.

When the 603e is operating with little-endian byte order, execution of a load or store string
instruction causes the system alignment error handler to be invoked; see “Byte Ordering”
in Chapter 3, “Operand Conventions,” in The Programming Environments Manual for more
information.

Table 2-24 lists the integer load and store string instructions.

Table 2-24. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax
Load String Word Immediate Iswi rD,rA,NB
Load String Word Indexed Iswx rD,rA,rB
Store String Word Immediate stswi rS,rA,NB
Store String Word Indexed stswx rS,rA,rB

Load string and store string instructions may involve operands that are not word-aligned.
As described in “Alignment Exception (0x00600)” in Chapter 6, “Exceptions,” in The
Programming Environments Manual, a misaligned string operation suffers a performance
penalty compared to a word-aligned operation of the same type.

When a string operation crosses a 4-Kbyte boundary, the instruction may be interrupted by
a DSI exception associated with the address translation of the second page. In this case, the
603e performs some or all memory references from the first page and none from the second
before taking the exception. On return from the DSI exception, the load or store string
instruction will re-execute from the beginning. For more information, refer to “DSI
Exception (0x00300)” in Chapter 6, “Exceptions,” in The Programming Environments
Manual.

Implementation Note—If rA is in the range of registers to be loaded for a Load String
Word Immediate (Iswi) instruction or if either rA or rB is in the range of registers to be
loaded for a Load String Word Indexed (Iswx) instruction, the PowerPC architecture defines
the instruction to be of an invalid form. In addition, the Iswx and stswx instructions that
specify a string length of zero are defined to be invalid by the PowerPC architecture.
However, neither of these cases holds true for the 603e which treats these cases as valid
forms.

MOTOROLA Chapter 2. Programming Model 2-33

2.3.4.3.8 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode, the details of which are described below. Floating-point loads and stores are not
supported for direct-store accesses. The use of the floating-point load and store operations
for direct-store accesses will result in a DSI exception. (Note that floating-point instructions
are not supported on the EC603e microprocessor.)

2.3.4.3.9 Floating-Point Load Instructions

There are two forms of the floating-point load instruction—single-precision and double-
precision operand formats. Because the FPRs support only the floating-point double-
precision format, single-precision floating-point load instructions convert single-precision
data to double-precision format before loading the operands into the target FPR. This
conversion is described fully in “Floating-Point Load Instructions” in Appendix D,
“Floating-Point Models,” in The Programming Environments Manual.

Implementation Note—The PowerPC architecture defines load with update instructions
with rA = 0 as an invalid form; however, the 603e treats this case as a valid form.

On the EC603e microprocessor, floating-point instructions are trapped by the floating-point
unavailable exception vector and can be emulated in software.

Table 2-25 provides a list of the floating-point load instructions. (Floating-point
instructions are not supported on the EC603e microprocessor.)

Table 2-25. Floating-Point Load Instructions

Name Mnemonic Operand Syntax
Load Floating-Point Single ifs 1D,a(rA)
Load Floating-Point Single Indexed Ifsx frD,rA,rB
Load Floating-Point Single with Update Ifsu frD,d(rA)
Load Floating-Point Single with Update Indexed Ifsux frD,rA,rB
Load Floating-Point Double Ifd frD,d(rA)
Load Floating-Point Double Indexed Ifdx frD,rA,rB
Load Floating-Point Double with Update Ifdu frD,d(rA)
Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB

2.3.4.3.10 Floating-Point Store Instructions

There are three basic forms of the store instruction—single-precision, double-precision,
and integer. The integer form is supported by the optional stfiwx instruction. Because the
FPRs support only floating-point, double-precision format for floating-point data single-
precision floating-point store instructions convert double-precision data to single-precision
format before storing the operands. The conversion steps are described fully in “Floating-

2-34 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Point Store Instructions” in Appendix D, “Floating-Point Models,” in The Programming
Environments Manual.

Implementation Note—The PowerPC architecture defines store with update instructions
with rA = 0 as an invalid form; however, the 603e treats this case as valid.

On the EC603e microprocessor, floating-point instructions are trapped by the floating-point
unavailable exception vector and can be emulated in software.

Table 2-26 provides a list of the floating-point store instructions. (Floating-point
instructions are not supported on the EC603e microprocessor.)

Table 2-26. Floating-Point Store Instructions

Name Mnemonic | Operand Syntax
Store Floating-Point Single stfs frS,d(rA)
Store Floating-Point Single Indexed stfsx frS,rA,rB
Store Floating-Point Single with Update stfsu frS,d(rA)
Store Floating-Point Single with Update Indexed stfsux frS,rA,rB
Store Floating-Point Double stfd frS,d(rA)
Store Floating-Point Double Indexed stfdx frS,rA,rB
Store Floating-Point Double with Update stfdu frS,d(rA)
Store Floating-Point Double with Update Indexed stfdux frS,rA,rB
Store Floating-Point as Integer Word Indexed stfiwx frS,rA,rB

2.3.4.4 Branch and Flow Control Instructions

Branch instructions are executed by the branch processing unit (BPU). The BPU receives
branch instructions from the fetch unit and performs condition register (CR) look-ahead
operations on conditional branches to resolve them early, achieving the effect of a zero-
cycle branch in many cases.

Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the branch processor encounters one of these instructions, it
scans the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

If an interlock is detected, the branch is considered unresolved and the direction of the
branch is predicted using static branch prediction as described in “Conditional Branch
Control” in Chapter 4, “Addressing Modes and Instruction Set Summary,” in The
Programming Environments Manual. The interlock is monitored while instructions are
fetched for the predicted branch. When the interlock is cleared, the branch processor
determines whether the prediction was correct based on the value of the CR bit. If the
prediction is correct, the branch is considered completed and instruction fetching continues.

MOTOROLA Chapter 2. Programming Model 2-35

If the prediction is incorrect, the fetched instructions are purged, and instruction fetching
continues along the alternate path. See Chapter 8, “Instruction Timing,” in The
Programming Environments Manual for more information about how branches are
executed.

2.3.4.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the processor ignores the two low-order bits of the
generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

* Branch relative

¢ Branch conditional to relative address

e Branch to absolute address

e Branch conditional to absolute address

* Branch conditional to link register

¢ Branch conditional to count register

2.3.4.4.2 Branch Instructions

Table 2-27 lists the branch instructions provided by the PowerPC processors. To simplify
assembly language programming, a set of simplified mnemonics and symbols is provided
for the most frequently used forms of branch conditional, compare, trap, rotate and shift,
and certain other instructions. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a list of simplified mnemonic examples.

Table 2-27. Branch Instructions

Name Mnemonic Operand Syntax
Branch b(ba bl bla) target_addr
Branch Conditional be (bca bcl bcla) BO,Bl,target_addr
Branch Conditional to Link Register belr (belrl) BO,BI
Branch Conditional to Count Register beetr (bectrl) BO,BI

2.3.4.4.3 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 2-28, and the Move Condition
Register Field (merf) instruction are also defined as flow control instructions, although they
are executed by the system register unit (SRU). Most instructions executed by the SRU are

2-36 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

completion-serialized to maintain system state; that is, the instruction is held for execution

in the SRU until all prior instructions issued have completed.

Table 2-28. Condition Register Logical Instructions

Name Mnemonic Operand Syntax

Condition Register AND crand crbD,crbA,crbB
Condition Register OR cror crbD,crbA,crbB
Condition Register XOR crxor crbD,crbA,crbB
Condition Register NAND crnand crbD,crbA,crbB
Condition Register NOR crnor crbD,crbA,crbB
Condition Register Equivalent creqv crbD,crbA,crbB
Condition Register AND with Complement | crandc crbD,crbA,crbB
Condition Register OR with Complement crorc crbD,crbA,crbB
Move Condition Register Field merf crfD,crfS

Note that if the LR update option is enabled for any of these instructions, these forms of the
instructions are invalid in the 603e.

2.3.4.5 Trap Instructions

The trap instructions shown in Table 2-29 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally.

Table 2-29. Trap Instructions

Name Mnemonic Operand Syntax
Trap Word Immediate twi TO,rA,SIMM
Trap Word tw TO,rA,rB

See Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
a complete set of simplified mnemonics.

2.3.4.6 Processor Control Instructions
Processor control instructions are used to read from and write to the condition register

(CR), machine state register (MSR), and special-purpose registers (SPRs), and to read from
the time base register (TBU or TBL).

MOTOROLA Chapter 2. Programming Model 2-37

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-37 lists the instructions provided by the 603e for reading from or writing to the CR.

Table 2-30. Move to/from Condition Register Instructions

Name Mnemonic Operand Syntax
Move to Condition Register Fields mterf CRM,rS
Move to Condition Register from XER merxr crfD
Move from Condition Register mfer rD

2.3.4.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Instruction
and Data Cache Operation,” for additional information about these instructions and about
related aspects of memory synchronization.

The sync instruction delays execution of subsequent instructions until previous instructions
have completed to the point that they can no longer cause an exception and until all previous
memory accesses are performed globally; the sync operation is not broadcast onto the 603e
bus interface. Additionally all load and store cache/bus activities initiated by prior
instructions are completed. Touch load operations (debt and dcbtst) are required to
complete at least through address translation, but not required to complete on the bus.

The functions performed by the sync instruction normally take a significant amount of time
to complete; as a result, frequent use of this instruction may adversely affect performance.
In addition, the number of cycles required to complete a sync instruction depends on
system parameters and on the processor's state when the instruction is issued.

The proper paired use of the Iwarx and stwex. instructions allows programmers to emulate
common semaphore operations such as “test and set,” “compare and swap,” “exchange
memory,” and “fetch and add.” Examples of these semaphore operations can be found in
Appendix E, “Synchronization Programming Examples,” in The Programming
Environments Manual. The lwarx instruction must be paired with an stwex. instruction
with the same effective address used for both instructions of the pair. Note that the

reservation granularity is 32 bytes.

The concept behind the use of the lwarx and stwcx. instructions is that a processor may
load a semaphore from memory, compute a result based on the value of the semaphore, and
conditionally store it back to the same location (only if that location has not been modified
since it was first read), and determine if the store was successful. The conditional store is
performed based upon the existence of a reservation established by the preceding Iwarx
instruction. If the reservation exists when the store is executed, the store is performed and
a bit is set in the CR. If the reservation does not exist when the store is executed, the target
memory location is not modified and a bit is cleared in the CR.

2-38 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

If the store was successful, the sequence of instructions from the read of the semaphore to
the store that updated the semaphore appear to have been executed atomically (that is, no
other processor or mechanism modified the semaphore location between the read and the
update), thus providing the equivalent of a real atomic operation. However, in reality, other
processors may have read from the location during this operation. In the 603e, the
reservations are made on behalf of aligned 32-byte sections of the memory address space.

The Iwarx and stwex. instructions require the EA to be aligned. Exception handling
software should not attempt to emulate a misaligned Iwarx or stwex. instruction, because
there is no correct way to define the address associated with the reservation.

In general, the Iwarx and stwcex. instructions should be used only in system programs,
which can be invoked by application programs as needed.

At most, one reservation exists simultaneously on any processor. The address associated
with the reservation can be changed by a subsequent lwarx instruction. The conditional
store is performed based upon the existence of a reservation established by the preceding
Iwarx regardless of whether the address generated by the Iwarx matches that generated by
the stwex. instruction. A reservation held by the processor is cleared by one of the
following:

* Executing an stwcx. instruction to any address

* Attempt by some other device to modify a location in the reservation granularity
(32 bytes)

The Iwarx and stwcex. instructions in write-through access mode do not cause a DSI
exception.

Table 2-31 lists the UISA memory synchronization instructions for the 603e.

Table 2-31. Memory Synchronization Instructions—UISA

Name Mnemonic | Operand Syntax
Load Word and Reserve Indexed Iwarx rD,rA,rB
Store Word Conditional Indexed stwex. rS,rA,rB
Synchronize sync —

2.3.5 PowerPC VEA Instructions

The PowerPC VEA describes the semantics of the memory model that can be assumed by
software processes, and includes descriptions of the cache model, cache-control
instructions, address aliasing, and other related issues.

2.3.5.1 Processor Control Instructions

In addition to the move to condition register instructions specified by the UISA, the VEA
defines the Move from Time Base (mftb) instruction for reading the contents of the time
base register. The mftb is a user-level instruction, it is shown in Table 2-32.

MOTOROLA Chapter 2. Programming Model 2-39

Simplified mnemonics are provided for the mftb instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. The
mftb instruction serves as both a basic and simplified mnemonic. Assemblers recognize an
mfthb mnemonic with two operands as the basic form, and an mftb mnemonic with one
operand as the simplified form. Simplified mnemonics are also provided for Move from
Time Base Upper (mftbu), which is a variant of the mftb instruction rather than of mfspr.
The 603e ignores the extended opcode differences between mftb and mfspr by ignoring bit
25 of both instructions and treating them both identically. For more information refer to
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual.

Table 2-32. Move from Time Base Instruction

Name Mnemonic | Operand Syntax

Move from Time Base mftb rD, TBR

2.3.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Instruction
and Data Cache Operation,” for additional information about these instructions and about
related aspects of memory synchronization.

Implementation Notes—The following describes how the 603e handles memory
synchronization in the VEA.

» The Instruction Synchronize (isync) instruction causes the 603e to discard all
prefetched instructions, wait for any preceding ins tructlons to complete, and then
branch to the next sequential instruction (which has the effect of clearing the
pipeline behind the isync instruction).

¢ The Enforce In-Order Execution of I/O (eieio) instruction is used to ensure memory
reordering of noncacheable memory access. Since the 603e does not reorder
noncacheable memory accesses, the eieio instruction is treated as a no-op.

Table 2-31 lists the VEA memory synchronization instructions for the 603e.

Table 2-33. Memory Synchronization Instructions—VEA

Name Mnemonic | Operand Syntax
Enforce In-Order Execution of 1/0 eieio —_
Instruction Synchronize isync —

2-40 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.3.5.3 Memory Control Instructions—VEA
Memory control instructions include the following types:

¢ Cache management instructions

¢ Segment register manipulation instructions

» Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA. m
See Section 2.3.6.3, “Memory Control Instructions—OEA,” for information about
supervisor-level cache, segment register manipulation, and translation lookaside buffer
management instructions.

The instructions listed in Table 2-34 provide user-level programs the ability to manage on-
chip caches when they exist.

As with other memory-related instructions, the effect of the cache management instructions
on memory are weakly ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, a sync instruction must be placed in the program following those instructions.

Note that when data address translation is disabled (MSR[DR] = 0), the Data Cache Block
Set to Zero (dcbz) instruction allocates a cache block in the cache and may not verify that
the physical address is valid. If a cache block is created for an invalid physical address, a
machine check condition may result when an attempt is made to write that cache block back
to memory. The cache block could be written back as a result of the execution of an
instruction that causes a cache miss and the invalid addressed cache block is the target for
replacement or a Data Cache Block Store (dcbst) instruction.

Note that any cache control instruction that generates an effective address that corresponds
to a direct-store segment (SR[T] = 1) is treated as a no-op.

Table 2-34 lists the cache instructions that are accessible to user-level programs.

Table 2-34. User-Level Cache Instructions

Name Mnemonic Operand Syntax
Data Cache Block Touch dcbt rA,rB
Data Cache Block Touch for Store dcbtst rA,rB
Data Cache Block Set to Zero dcbz rA,rB
Data Cache Block Store dcbst rA,rB
Data Cache Block Flush dcbf rA,rB
Instruction Cache Block Invalidate icbi rA,rB

MOTOROLA Chapter 2. Programming Model 2-41

2.3.5.4 External Control Instructions

The external control instructions allow a user-level program to communicate with a special-
purpose device. The MMU translation of the EA is not used to select the special-purpose
device, as it is used in most instructions such as loads and stores. The EA is used instead as
an address operand that is passed to the device over the address bus. Four other signals (the
burst and size signals on the 60x bus) are used to select the device; these four signals output
the 4-bit resource ID (RID) field that is located in the EAR register. Executing these
instructions when MSR[DR] = 0 causes a programming error, and the physical address on
the bus is undefined. Executing these instructions to a direct-store segment causes a DSI
exception. The external control instructions are listed in Table 2-35.

Table 2-35. External Control Instructions

Name Mnemonic | Operand Syntax
External Control In Word Indexed eciwx rD,rA,rB
External Control Out Word Indexed ecowx rS,rA,rB

2.3.6 PowerPC OEA Instructions

The PowerPC OEA includes the structure of the memory management model, supervisor-
level registers, and the exception model.

2.3.6.1 System Linkage Instructions

This section describes the system linkage instructions (see Table 2-36). The sc instruction
is a user-level instruction that permits a user program to call on the system to perform a
service and causes ihe processor to take an exception. The Return from Interrupt (rfi)
instruction is a supervisor-level instruction that is useful for returning from an exception
handler,

$183 (o})

Table 2-36. System Linkage Instructions

Name Mnemonic | Operand Syntax
System Call sc —_
Return from Interrupt rfi —_

2.3.6.2 Processor Control Instructions—OEA
Processor control instructions are used to read from and write to the condition register

(CR), machine state register (MSR), and special-purpose registers (SPRs), and to read from
the time base register (TBU or TBL).

2-42 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.3.6.2.1 Move to/from Machine State Register Instructions

Table 2-37 lists the instructions provided by the 603e for reading from or writing to the
MSR.

Table 2-37. Move to/from Machine State Register Instructions

Name Mnemonic | Operand Syntax
Move to Machine State Register mtmsr rS
Move from Machine State Register mfmsr D

2.3.6.2.2 Move to/from Special-Purpose Register Instructions

Simplified mnemonics are provided for the mtspr and mfspr instructions so they can be
coded with the SPR name as part of the mnemonic rather than as a numeric operand. See
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for

simplified mnemonic examples. The mtspr and mfspr instructions are shown in
Table 2-38.

Table 2-38. Move to/from Special-Purpose Register Instructions

Name Mnemonic | Operand Syntax
Move to Special-Purpose Register mtspr SPR,rS
Move from Special-Purpose Register mfspr rD,SPR

For mtspr and mfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into
two 5-bit halves that are reversed in the instruction encoding, with the high-order 5 bits
appearing in bits 16-20 of the instruction encoding and the low-order 5 bits in bits 11-15.

If the SPR field contains any value other than one of the values shown in Table 2-39, either
the program exception handler is invoked or the results are boundedly undefined.

Table 2-39. Implementation-specific SPR Encodings (mfspr)

SPR*
Register Name
Decimal spr{5-9] spr[0-4]
976 11110 10000 DMISS
977 11110 10001 DCMP
978 11110 10010 HASH1
979 11110 10011 HASH2
980 11110 10100 IMISS
981 11110 10101 ICMP

MOTOROLA Chapter 2. Programming Model 2-43

Table 2-39. Implementation-specific SPR Encodings (mfspr) (Continued)

SPR*
Register Name
Decimal spr[5-9] spr[0-4]
982 11110 10110 RPA
1008 11111 10000 HIDO
1009 11111 10001 HID1
1010 11111 10010 I1ABR

* Note that the order of the two 5-bit halves of the SPR number is
reversed compared with actual instruction coding.

For mtspr and mfspr instructions, the SPR number coded in
assembly language does not appear directly as a 10-bit binary
number in the instruction. The number coded is split into two 5-bit
halves that are reversed in the instruction, with the high-order 5 bits
appearing in bits 16-20 of the instruction and the low-order 5 bits in
bits 11-15.

Implementation Note—The 603e ignores the extended opcode differences between mftb
and mfspr by ignoring TB[25] and treating both instructions identically.

2.3.6.3 Memory Control Instructions—OEA
This section describes memory control instructions, which include the following types:

* Cache management instructions
* Segment register manipulation instructions
* Translation lookaside buffer management instructions

2.3.6.3.1 Supervisor-Level Cache Management Instruction

Table 2-40 lists the only supervisor-level cache management instruction. See
Section 2.3.5.3, “Memory Control Instructions—VEA,” for a description of cache
instructions that provide user-level programs the ability to manage the on-chip caches. If
the effective address references a direct-store segment, the instruction is treated as a no-op.

When data translation is disabled, MSR[DR] = 0, the dcbz instruction establishes a block
in the cache and may not verify that the physical address is valid. If a block is created for
an invalid real address, a machine check exception may result when an attempt is made to
write that block back to memory. The block could be written back as the result of the
execution of an instruction that causes a cache miss and the invalid address block is the
target for replacement or as the result of a dcbst instruction.

Table 2-40. Supervisor-Level Cache Management Instruction

Name Mnemonic Operand Syntax

Data Cache Block Invalidate- dcbi rA,rB

2-44 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.3.6.3.2 Segment Register Manipulation Instructions

The instructions listed in Table 2-41 provide access to the segment registers for the 603e.
These instructions operate completely independently of the MSR[IR] and MSR[DR] bit
settings. Refer to “Synchronization Requirements for Special Registers and TLBs” in
Chapter 2, “Register Set,” in The Programming Environments Manual for serialization
requirements and other recommended precautions to observe when manipulating the
segment registers.

Table 2-41. Segment Register Manipulation Instructions

Name Mnemonic | Operand Syntax
Move to Segment Register mtsr SR,rS
Move to Segment Register Indirect mtsrin rS,rB
Move from Segment Register mfsr rD,SR
Move from Segment Register Indirect mfsrin rD,rB

2.3.6.3.3 Translation Lookaside Buffer Management Instructions

The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTEs) used by PowerPC processors to locate the effective-to-physical address
mapping for a particular access. The PTEs reside in page tables in memory. As defined for
32-bit implementations by the PowerPC architecture, segment descriptors reside in 16 on-
chip segment registers.

Implementation Note—The 603e provides the ability to invalidate a TLB entry. The TLB
Invalidate Entry (tlbie) instruction invalidates the TLB entry indexed by the EA, and
operates on both the instruction and data TLBs simultaneously invalidating four TLB
entries (both sets in each TLB). The index corresponds to bits 15-19 of the EA. To
invalidate all entries within both TLBs, 32 tlbie instructions should be issued, incrementing
this field by one each time.

The 603e provides two implementation-specific instructions (tlbld and tlbli) that are used
by software table search operations following TLB misses to load TLB entries on-chip.

For more information on tlbld and tlbli refer to Section 2.3.8, “Implementation-Specific
Instructions.”

Note that the tlbia instruction is not implemented on the 603e.

MOTOROLA Chapter 2. Programming Model 2-45

Refer to Chapter 5, “Memory Management” for more information about the TLB
operations for the 603e. Table 2-42 lists the TLB instructions.

Table 2-42. Translation Lookaside Buffer Management Instructions

Name Mnemonic | Operand Syntax
T LB Invalidate Entry tibie B
TLB Synchronize tibsync —
Load Data TLB Entry tibid rB
Load Instruction TLB Entry tibli rB

Because the presence and exact semantics of the translation lookaside buffer management
instructions is implementation-dependent, system software should incorporate uses of the
instructions into subroutines to maximize compatibility with programs written for other
processors.

For more information on the PowerPC instruction set, refer to Chapter 4, “Addressing
Modes and Instruction Set Summary,” and Chapter 8, “Instruction Set,” in The
Programming Environments Manual.

2.3.7 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provided for
some of the most frequently used operations (such as no-op, load immediate, load address,
move register, and complement register). PowerPC compliant assemblers provide the
simplified mnemonics listed in “Recommended Simplified Mnemonics” in Appendix F,
“Simplified Mnemonics,” in The Programming Environments Manual and listed with
some of the instruction descriptions in this chapter. Programs written to be portable across

AL AAL LAAALD WAL utll.\/L e A\J&j.ulllo Yyiiwlvil wWw v lJUl. LQULV awviuvud
the various assemblers for the PowerPC architecture should not assume the existence of
mnemonics not described in this document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics,” in
The Programming Environments Manual.

2.3.8 Implementation-Specific Instructions

This section provides a detailed look at the two 603e implementation-specific
instructions—tlbld and tlbli.

2-46 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

tibid tibid

Load Data TLB Entry Integer Unit
tibld rB
[C] Reserved
[31 J 00000 00000 B 978 I‘o,l
0 56 10 11 15 16 20 21 30 31
EA « (rB)

TLB entry created from DCMP and RPA

DTLB entry selected by EA[15-19] and SRR1[WAY] « created TLB entry
The EA is the contents of rB. The tlbld instruction loads the contents of the data PTE
compare (DCMP) and required physical address (RPA) registers into the first word of the
selected data TLB entry. The specific DTLB entry to be loaded is selected by the EA and
the SRR1[WAY] bit.

The tlbld instruction should only be executed when address translation is disabled
(MSR[IR] = 0 and MSR[DR] = 0).

Note that it is possible to execute the tlbld instruction when address translation is enabled;
however, extreme caution should be used in doing so. If data address translation is set
(MSR[DR] = 1) tIbld must be preceded by a sync instruction and succeeded by a context
synchronizing instruction.

Note also that care should be taken to avoid modification of the instruction TLB entries that
translate current instruction prefetch addresses.

This is a supervisor-level instruction; it is also a 603e-specific instruction, and not part of
the PowerPC instruction set.

Other registers altered:

e None

MOTOROLA Chapter 2. Programming Model 2-47

tibli tibli

Load Instruction TLB Entry Integer Unit

tibld rB

- | Reserved

B 1010
0 56 10 11 15 16 20 21 30 31

EA « (rB)

TLB entry created from ICMP and RPA

ITLB entry selected by EA[15-19] and SRRI1[WAY] « created TLB entry
The EA is the contents of rB. The tlbli instruction loads the contents of the instruction PTE
compare (ICMP) and required physical address (RPA) registers into the first word of the
selected instruction TLB entry. The specific ITLB entry to be loaded is selected by the EA
and the SRR1[WAY] bit.

The tlbli instruction should only be executed when address translation is disabled
(MSRJIR] = 0 and MSR[DR] = 0).

Note that it is possible to execute the tlbld instruction when address translation is enabled;
however, extreme caution should be used in doing so. If instruction address translation is
set (MSR[IR] = 1), tIbli must be followed by a context synchronizing instruction such as
isync or rfi.

Note also that care should be taken to avoid modification of the instruction TLB entries that
translate current instruction prefetch addresses.

This is a supervisor-level instruction; it is also a 603e-specific instruction, and not part of
the PowerPC instruction set.

Other registers altered:

e None

2-48 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Chapter 3
Instruction and Data Cache Operation

The PowerPC 603e microprocessor provides two 16-Kbyte, four-way set associative caches
to allow the registers and execution units rapid access to instructions and data. Both the
instruction and data caches are tightly coupled to the 603e’s bus interface unit (BIU) to
allow efficient access to the system memory controller and other bus masters. The 603e’s
load/store unit (LSU) is also directly coupled to the data cache to allow the efficient
movement of data to and from the general-purpose and floating-point registers. (The
floating-point register file is not supported on the EC603e microprocessor.)

Both the instruction and data caches have a block size of 32 bytes, and the data cache blocks
can be snooped, or cast-out when the cache block is reloaded. The data cache is designed
to adhere to a write-back policy, but the 603e allows control of cacheability, write-back
policy, and memory coherency at the page and block level. Both caches use a least recently
used (LRU) replacement policy. Burst fill operations to the caches result from cache misses,
or in the case of the data cache, cache block write-back operations to memory. Note that in
the PowerPC architecture, the term ‘cache block’, or simply ‘block’ when used in the
context of cache implementations, refers to the unit of memory at which coherency is
maintained. For the 603e, the block size is equivalent to the eight-word cache line. This
value may be different for other PowerPC implementations.

The data cache is configured as 128 sets of four blocks. Each block consists of 32 bytes,
two state bits, and an address tag. The two state bits implement the three-state MEI
(modified/exclusive/invalid) protocol, a coherent subset of the standard four-state MESI
protocol. Cache coherency is enforced by on-chip bus snooping logic. Since the 603¢’s data
cache tags are single-ported, a simultaneous load or store and snoop access represent a
resource contention. The snoop access is given first access to the tags. Load or store
operations can be performed to the cache on the clock cycle immediately following a snoop
access if the snoop misses; snoop hits may block the data cache for two or more cycles,
depending on whether a copyback to main memory is required.

The instruction cache also consists of 128 sets of four blocks, and each block consists of 32
bytes, an address tag, and a valid bit. The instruction cache is only written as a result of a
block fill operation on a cache miss. In the PID7v-603e, the instruction cache is blocked
only until the critical load completes. The PID7v-603e supports instruction fetching from
other instruction cache lines following the forwarding of the critical first double word of a
cache line load operation. Successive instruction fetches from the cache line being loaded

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-1

are forwarded, and accesses to other instruction cache lines can proceed during the cache
line load operation. The instruction cache is not snooped, and cache coherency must be
maintained by software. A fast hardware invalidation capability is provided to support
cache maintenance.

The load/store unit provides the data transfer interface between the data cache and the
GPRs and the FPRs (not supported by the EC603e microprocessor). The load/store unit
provides all logic required to calculate effective addresses, handle data alignment to and
from the data cache, and provides sequencing for load and store string and multiple
operations. As shown in Figure 1-1, the caches provide a 64-bit interface to the instruction
fetcher and load/store unit. Write operations to the data cache can be performed on a byte,
half-word, word, or double-word basis.

The 603e’s bus interface unit receives requests for bus operations from the instruction and
data caches, and executes the operations according to the 603e bus protocol. The BIU
provides address queues, prioritization and bus control logic. The BIU also captures snoop
addresses for data cache, address queue, and memory reservation (Iwarx and stwcx.
instruction) operations. The BIU also contains a touch load address buffer used for address
compares during load or store operations. All the data for the corresponding address queues
(load and store data queues) is located in the data cache. The data queues are considered
temporary storage for the cache and not part of the BIU.

On a cache miss, the 603e’s cache blocks are loaded in four beats of 64 bits each when the
603e is configured with a 64-bit data bus; when the 603e is configured with a 32-bit bus,
cache block loads are performed with eight beats of 32 bits each. The burst load is
performed as critical double word first. The data cache is blocked to internal accesses until
the load completes; the instruction cache allows sequential fetching during a cache block
load. In the PID7v-603e, the critical double word is simultaneously written to the cache and
forwarded to the requesting unit, thus minimizing stalls due to load delays. Note that the
cache being filled cannot be accessed internally until the fill completes.

When address translation is enabled, the memory access is performed under the control of
the page table entry used to translate the effective address. Each page table entry contains
four mode control bits, W, I, M, and G, that specify the storage mode for all accesses
translated using that particular page table entry. The W (write-through) and I (caching-
inhibited) bits control how the processor executing the access uses its own cache. The M
(memory coherence) bit specifies whether the processor executing the access must use the
MEI (modified, exclusive, or invalid) cache coherence protocol to ensure all copies of the
addressed memory location are kept consistent. The G (guarded memory) bit controls
whether out-of-order data and instruction fetching is permitted.

The 603e maintains data cache coherency in hardware by coordinating activity between the
data cache, the memory system, and the bus interface logic. As bus operations are
performed on the bus by other bus masters, the 603e bus snooping logic monitors the
addresses that are referenced. These addresses are compared with the addresses resident in
the data cache. If there is a snoop hit, the 603e’s bus snooping logic responds to the bus

3-2 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

interface with the appropriate snoop status (for example, an ARTRY). Additional snoop
action may be forwarded to the cache as a result of a snoop hit in some cases (a cache push
of modified data, or a cache block invalidation).

The 603e supports a fully-coherent 4-Gbyte physical memory address space. Bus snooping
is used to drive the MEI three-state cache-coherency protocol that ensures the coherency of
global memory with respect to the processor’s cache. The MEI protocol is described in
Section 3.6.1, “MEI State Definitions.”

This chapter describes the organization of the 603e’s on-chip instruction and data caches,
the MEI cache coherency protocol, cache control instructions, various cache operations,
and the interaction between the cache, load/store unit, and the bus interface unit. PID7v-
603e specific information is noted where applicable.

3.1 Instruction Cache Organization and Control

The instruction fetcher accesses the instruction cache frequently in order to sustain the high
throughput provided by the six-entry instruction dispatch queue.

3.1.1 Instruction Cache Organization

The organization of the instruction cache is shown in Figure 3-1. Each cache block contains
eight contiguous words from memory that are loaded from an 8-word boundary (that is, bits
A27-A31 of the effective addresses are zero); thus, a cache block never crosses a page
boundary. Misaligned accesses across a page boundary can incur a performance penalty

Note that address bits A20—A26 provide an index to select a set. Bits A27—-A31 select a byte
within a block. The tags consists of bits PAO-PA19. Address translation occurs in parallel,
such that higher-order bits (the tag bits in the cache) are physical. Note that the replacement
algorithm is strictly an LRU algorithm; that is, the least recently used block is filled with
new instructions on a cache miss.

T T T T T T T
128 Sets d |) ® , , B
. T T 4 T T T T
[] (]
1 — [
L I L T T T T T T T
Block 0| Address Tag 0 —State Words 0-7
t } + —+ + + +
Block 1| Address Tag 1] State Words 0-7
+ + F—— } +
Block 2| Address Tag 2 State Words 0-7
-+ +— f } ; f
Block 3| Address Tag 3 State ' I Words 0-7

— L 1 1
j«——————— 8Words/Block ———————»]

Figure 3-1. Instruction Cache Organization

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-3

3.1.2 Instruction Cache Fill Operations

The 603¢e’s instruction cache blocks are loaded in four beats of 64 bits each, with the critical
double word loaded first. The instruction cache allows sequential fetching during a cache
block load. On a cache miss, the critical and following double words read from memory are
simultaneously written to the instruction cache and forwarded to the dispatch queue, thus
minimizing stalls due to cache fill latency. There is no snooping of the instruction cache. In
the PID7v-603e, the critical double word is simultaneously written to the cache and
forwarded to the requesting unit, thus minimizing stalls due to load delays.

3.1.3 Instruction Cache Control

In addition to instruction cache control instructions, the 603e provides several control bits
in the HIDO register for the control of invalidating, disabling, and locking the instruction
cache. In addition, the WIMG bits in the page tables also affect the cacheability of pages
and whether or not the pages are considered guarded.

3.1.3.1 Instruction Cache Invalidation

While the 603e’s instruction cache is automatically invalidated during a power-on or hard
reset, assertion of the soft reset signal does not cause instruction cache invalidation.
Software may invalidate the contents of the instruction cache using the instruction cache
flash invalidate (ICFI) control bit in the HIDO register. Flash invalidation of the instruction
cache is accomplished by setting and clearing the ICFI bit with two consecutive move to
SPR operations to the HIDO register.

3.1.3.2 Instruction Cache Disabling

The instruction cache may be disabled through the use of the instruction cache enable (ICE)
control bit in the HIDO register. When the instruction cache is in the disabled state, the
cache tag state bits are ignored, and all accesses are propagated to the bus as single-beat
transactions. The ICE bit is cleared during a power-on reset, causing the instruction cache
to be disabled. The setting of the ICE bit must be preceded by an isync instruction to

prevent the cache from being enabled or disabled while an instruction access is in progress.

3.1.3.3 Instruction Cache Locking

The contents of instruction cache may be locked through the use of the ILOCK control bit
in the HIDO register. A locked instruction cache supplies instructions normally on a cache
hit, but cache misses are treated as cache-inhibited accesses. The cache inhibited (CI) signal
is asserted if a cache access misses into a locked cache. The setting of the ILOCK bit in
HIDO must be preceded by an isync instruction to prevent the instruction cache from being
locked during an instruction access.

3-4 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

3.2 Data Cache Organization and Control

The data cache supplies data to the GPRs and FPRs (not supported on the EC603e
microprocessor) by means of the load/store unit, and provides buffers for load and store bus
oper<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>