
® ItIIOTOROLA MPC603EUM/AD
REV. 1

EC603e™
Rise Microprocessors

Overview

Programming Model

Instruction and Data Cache Operation

Exceptions

Memory Management

Instruction Timing

Signal Descriptions

System Interface Operation

Power Management

PowerPC Instruction Set Listings ~

Instructions Not Implemented .:D
PowerPC 603 Processor System Design ~

and Programming Considerations

Glossary ril!i

Index lIm]

Overview

Programming Model

Instruction and Data Cache Operation

Exceptions

Memory Management

Instruction Timing

Signal Descriptions

System Interface Operation

Power Management

PowerPC Instruction Set Listings

Instructions Not Implemented

PowerPC 603 Processor System Design
and Programming Considerations

Glossary

mDI Index

MPC603EUM/AD
11/97

REV. 1

MPC603e & EC603e'"
Rise Microprocessors User's Manual

with Supplement for PowerPC 603™ Microprocessor

® MOTOROLA

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.
Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express or
implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in this
document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do
vary in different applications. All operating parameters, including ''Typicals'' must be validated for each customer application by customer's technical
experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other
application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent
regarding the design or manufacture of the part.

Motorola and @ are registered trademarks and EC603e is a trademark of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action
Employer.

The PowerPC name, the PowerPC logotype, and PowerPC 603 are trademarks of International Business Machines Corporation used by Motorola under
license from International Business Machines Corporation.

© Motorola Inc. 1997. All rights reserved.
Portions hereof © International Business Machines Corp. 1991-1997. All rights reserved.

Paragraph
Number

1.1
1.1.1
1.1.2
1.1.2.1
1.1.2.1.1
1.1.2.1.2
1.1.2.2
1.1.2.2.1
1.1.2.2.2
1.1.2.2.3
1.1.3
1.1.3.1
1.1.3.2
1.1.4
1.1.4.1
1.1.4.2
1.1.4.3
1.1.4.4
1.1.4.5
1.1.5
1.1.5.1
1.1.5.2
1.1.6

MOTOROLA

CONTENTS

Title

About This Book

Page
Number

Audience .. xxix
Organization ... xxix
Suggested Reading ... xxx
Conventions ... xxxiii
Acronyms and Abbreviations .. xxxiv
Terminology Conventions .. xxxvii

Chapter 1
Overview

Overview .. 1-1
Features .. 1-2
System Design and Programming Considerations ... 1-7

Hardware Features ... 1-7
Replacement of XATS Signal by CSE1 Signal 1-7
Addition of Half-Clock Bus Multipliers .. 1-7

Software Features .. 1-8
16-Kbyte Instruction and Data Caches .. 1-8
Clock Configuration Available in HID 1 Register 1-8
Performance Enhancements ... 1-8

Instruction Unit .. 1-9
Instruction Queue and Dispatch Unit .. 1-9
Branch Processing Unit (BPU) .. 1-9

Independent Execution Units ... 1-10
Integer Unit (IU) .. 1-10
Floating-Point Unit (FPU) ... 1-10
Load/Store Unit (LSU) .. 1-11
System Register Unit (SRU) .. 1-11
Completion Unit .. 1-11

Memory Subsystem Support. ... 1-12
Memory Management Units (MMUs) ... 1-12
Cache Units .. 1-13

Processor Bus Interface ... 1-14

Contents iii

Paragraph
Number

1.1.7
1.1.7.1
1.1.7.2
1.1.7.3
1.1.7.4
1.2
1.3
1.3.1
1.3.1.1
1.3.1.2
1.3.1.3
1.3.l.4
1.3.1.5
1.3.1.6
1.3.1.7
1.3.1.8
1.3.1.9
1.3.1.10
1.3.1.10.1
1.3.1.10.2
1.3.2
1.3.2.1
1.3.2.1.1
1.3.2.1.2
1.3.2.2
1.3.3
1.3.3.1
1.3.3.2
1.3.4
1.3.4.1
1.3.4.2
1.3.5
1.3.5.1
1.3.5.2
1.3.6
1.3.7
1.3.7.1
1.3.7.2
1.3.7.3

iv

CONTENTS

Title
Page

Number

System Support Functions .. 1-14
Power Management .. 1-15
Time Base/Decrementer ... 1-15
IEEE 1149.1 (JTAG)/COP Test Interface .. 1-16
Clock Multiplier ... 1-16

PowerPC Architecture Implementation .. 1-16
Implementation-Specific Information .. 1-16

Programming Model. .. 1-17
Processor Version Register (PVR) ... 1-18
Hardware Implementation Register 0 (HIDO) .. 1-18
Run_N Counter Register (Run_N) ... 1-19
General-Purpose Registers (GPRs) .. 1-19
Floating-Point Registers (FPRs) ... 1-19
Condition Register (CR) ... 1-19
Floating-Point Status and Control Register (FPSCR) 1-19
Machine State Register (MSR) ... 1-19
Segment Registers (SRs) .. 1-19
Special-Purpose Registers (SPRs) .. 1-20

User-Level SPRs .. 1-20
Supervisor-Level SPRs .. 1-20

Instruction Set and Addressing Modes ... 1-23
PowerPC Instruction Set and Addressing Modes 1-23

PowerPC Instruction Set .. 1-23
Calculating Effective Addresses .. 1-24

Implementation-Specific Instruction Set .. 1-25
Cache Implementation .. 1-25

PowerPC Cache Characteristics ... 1-25
Implementation-Specific Cache Implementation 1-26

Exception Model .. 1-27
PowerPC Exception Model .. 1-27
Implementation-Specific Exception Model.. .. 1-29

Memory Management .. 1-32
PowerPC Memory Management .. 1-32
Implementation-Specific Memory Management... 1-32

Instruction Timing .. 1-33
System Interface ... 1-35

Memory Accesses ... 1-36
Signals .. 1-36
Signal Configuration .. 1-38

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Paragraph
Number

2.1
2.1.1
2.1.2
2.1.2.1
2.1.2.2

2.1.2.3

2.1.2.4

2.1.2.5
2.1.2.6
2.l.2.7
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.3
2.3.1
2.3.1.1
2.3.1.2
2.3.1.3
2.3.1.4
2.3.2
2.3.2.1
2.3.2.2
2.3.2.3
2.3.2.4
2.3.2.4.1
2.3.2.4.2
2.3.2.4.3
2.3.3
2.3.4
2.3.4.1
2.3.4.1.1
2.3.4.1.2
2.3.4.l.3
2.3.4.1.4

MOTOROLA

CONTENTS

Title

Chapter 2
Programming Model

Page
Number

Register Set .. 2-1
PowerPC Register Set .. 2-1
Implementation-Specific Registers .. 2-7

Hardware Implementation Registers (HIDO and HID1) 2-7
Data and Instruction TLB Miss Address Registers

(DMISS and IMISS) .. 2-9
Data and Instruction TLB Compare Registers

(DCMP and ICMP) .. 2-9
Primary and Secondary Hash Address Registers

(HASHl and HASH2) ... 2-10
Required Physical Address Register (RPA) ... 2-11
Instruction Address Breakpoint Register (IABR) 2-11
Run_N Counter Register (Run_N) ... 2-12

Operand Conventions ... 2-12
Floating-Point Execution Models-urSA ... 2-12
Data Organization in Memory and Data Transfers .. 2-13
Alignment and Misaligned Accesses ... 2-13
Floating-Point Operand .. 2-14
Effect of Operand Placement on Performance ... 2-14

Instruction Set Summary .. 2-15
Classes of Instructions .. 2-16

Definition of Boundedly Undefined .. 2-16
Defined Instruction Class ... 2-16
Illegal Instruction Class ... 2-17
Reserved Instruction Class ... 2-18

Addressing Modes .. 2-18
Memory Addressing ... 2-18
Memory Operands .. 2-18
Effective Address Calculation ... 2-19
Synchronization ... 2-19

Context Synchronization .. 2-20
Execution Synchronization .. 2-20
Instruction-Related Exceptions .. 2-20

Instruction Set Overview .. 2-21
PowerPC UISA Instructions .. 2-21

Integer Instructions .. 2-21
Integer Arithmetic Instructions .. 2-22
Integer Compare Instructions ... 2-22
Integer Logical Instructions ... 2-23
Integer Rotate and Shift Instructions ... 2-24

Contents v

Paragraph
Number

2.3.4.2
2.3.4.2.1
2.3.4.2.2
2.3.4.2.3
2.3.4.2.4
2.3.4.2.5
2.3.4.2.6
2.3.4.3
2.3.4.3.1
2.3.4.3.2
2.3.4.3.3
2.3.4.3.4
2.3.4.3.5
2.3.4.3.6
2.3.4.3.7
2.3.4.3.8
2.3.4.3.9
2.3.4.3.10
2.3.4.4
2.3.4.4.1
2.3.4.4.2
2.3.4.4.3
2.3.4.5
2.3.4.6
2.3.4.6.1
2.3.4.7
2.3.5
2.3.5.1
2.3.5.2
2.3.5.3
2.3.5.4
2.3.6
2.3.6.1
2.3.6.2
2.3.6.2.1
2.3.6.2.2
2.3.6.3
2.3.6.3.1
2.3.6.3.2
2.3.6.3.3
2.3.7
2.3.8

vi

CONTENTS

Title Page
Number

Floating-Point Instructions ... 2-25
Floating-Point Arithmetic Instructions ... 2-26
Floating-Point Multiply-Add Instructions .. 2-26
Floating-Point Rounding and Conversion Instructions 2-27
Floating-Point Compare Instructions ... 2-27
Floating-Point Status and Control Register Instructions 2-27
Floating-Point Move Instructions ... 2-28

Load and Store Instructions .. 2-28
Self-Modifying Code .. 2-29
Integer Load and Store Address Generation .. 2-29
Register Indirect Integer Load Instructions .. 2-29
Integer Store Instructions ... 2-30
Integer Load and Store with Byte-Reverse Instructions 2-31
Integer Load and Store Multiple Instructions ... 2-32
Integer Load and Store String Instructions ... 2-33
Floating-Point Load and Store Address Generation 2-34
Floating-Point Load Instructions .. 2-34
Floating-Point Store Instructions ... 2-34

Branch and Flow Control Instructions ... 2-35
Branch Instruction Address Calculation ... 2-36
Branch Instructions .. 2-36
Condition Register Logical Instructions .. 2-36

Trap Instructions ... 2-37
Processor Control Instructions ... 2-37

Move to/from Condition Register Instructions 2-38
Memory Synchronization Instructions-UISA .. 2-38

PowerPC VEA Instructions .. 2-39
Processor Control Instructions ... 2-39
Memory Synchronization Instructions-VEA ... 2-40
Memory Control Instructions-VEA ... 2-41
External Control Instructions ... 2-42

PowerPC OEA Instructions .. 2-42
System Linkage Instructions .. 2-42
Processor Control Instructions-OEA ... 2-42

Move to/from Machine State Register Instructions 2-43
Move to/from Special-Purpose Register Instructions 2-43

Memory Control Instructions-OEA ... 2-44
Supervisor-Level Cache Management Instruction 2-44
Segment Register Manipulation Instructions ... 2-45
Translation Lookaside Buffer Management Instructions 2-45

Recommended Simplified Mnemonics .. 2-46
Implementation-Specific Instructions .. 2-46

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Paragraph
Number

3.1
3.1.1
3.1.2
3.1.3
3.1.3.1
3.1.3.2
3.1.3.3
3.2
3.2.1
3.2.2
3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
3.2.3.4
3.2.4
3.3
3.3.1
3.3.2
3.3.3
3.4
3.4.1
3.4.2
3.4.3
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.5.1
3.5.5.2
3.5.5.3
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.4.1
3.6.5

MOTOROLA

CONTENTS

Title

Chapter 3
Instruction and Data Cache Operation

Page
Number

Instruction Cache Organization and ControL ... 3-3
Instruction Cache Organization .. 3-3
Instruction Cache Fill Operations .. 3-4
Instruction Cache Control .. 3-4

Instruction Cache Invalidation ... 3-4
Instruction Cache Disabling ... 3-4
Instruction Cache Locking ... 3-4

Data Cache Organization and Control ... 3-5
Data Cache Organization ... 3-5
Data Cache Fill Operations .. 3-5
Data Cache Control .. 3-6

Data Cache Invalidation ... 3-6
Data Cache Disabling ... 3-6
Data Cache Locking ... 3-6
Data Cache Operations and Address Broadcasts ... 3-7

Data Cache Touch Load Support ... 3-7
Basic Data Cache Operations ... 3-8

Data Cache Fill ... 3-8
Data Cache Cast-Out Operation ... 3-8
Cache Block Push Operation ... 3-8

Data Cache Transactions on Bus .. 3-8
Single-Beat Transactions ... 3-8
Burst Transactions .. 3-8
Access to Direct-Store Segments ... 3-9

Memory Management/Cache Access Mode Bits-W, I, M, and G 3-10
Write-Through Attribute (W) ... 3-11
Caching-Inhibited Attribute (I) .. 3-11
Memory Coherency Attribute (M) ... 3-12
Guarded Attribute (G) .. 3-12
W, I, and M Bit Combinations ... 3-13

Out -of-Order Execution and Guarded Memory ... 3-13
Effects of Out-of-Order Data Accesses ... 3-14
Effects of Out -of-Order Instruction Fetches .. 3-14

Cache Coherency-MEl Protocol .. 3-15
MEl State Definitions .. 3-15
MEl State Diagram .. 3-16
MEl Hardware Considerations ... 3-17
Coherency Precautions ... 3-18

Coherency in Single-Processor Systems .. 3-18
Load and Store Coherency Summary .. 3-18

Contents vii

Paragraph
Number

CONTENTS

Title Page
Number

3.6.6 Atomic Memory References .. .3-19
3.6.7 Cache Reaction to Specific Bus Operations ... 3-19
3.6.8 Operations Causing ARTRY Assertion3-21
3.6.9 Enveloped High-Priority Cache Block Push Operation3-21
3.7 Cache Control Instructions ... 3-22
3.7.1 Data Cache Block Invalidate (dcbi) Instruction .. .3-23
3.7.2 Data Cache Block Touch (debt) Instruction3-23
3.7.3 Data Cache Block Touch for Store (debtst) Instruction 3-24
3.7.4 Data Cache Block Clear to Zero (debz) Instruction 3-24
3.7.5 Data Cache Block Store (debst) Instruction3-24
3.7.6 Data Cache Block Flush (debf) Instruction3-24
3.7.7 Enforce In-Order Execution of 110 Instruction (eieio)3-25
3.7.8 Instruction Cache Block Invalidate (iebi) Instruction3-25
3.7.9 Instruction Synchronize (isyne) Instruction ... 3-25
3.8 Bus Operations Caused by Cache Control Instructions3-25
3.9 Bus Interface .. .3-27
3.10 MEl State Transactions .. 3-28

4.1
4.1.1
4.1.2
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.3
4.4
4.5
4.5.1
4.5.1.1
4.5.1.2
4.5.2
4.5.2.1
4.5.2.2
4.5.3
4.5.4
4.5.5
4.5.6

viii

Chapter 4
Exceptions

Exception Classes .. .4-2
Exception Priorities4-7
Summary of Front-End Exception Handling4-9

Exception Processing4-1 0
Enabling and Disabling Exceptions4-14
Steps for Exception Processing4-15
Setting MSR[RI] .. .4-15
Returning from an Exception Handler4-16

Process Switching .. .4-16
Exception Latencies4-17
Exception Definitions .. .4-17

Reset Exceptions (OxOO 1 00)4-18
Hard Reset and Power-On Reset4-19
Soft Reset .. .4-20

Machine Check Exception (Ox00200)4-21
Machine Check Exception Enabled (MSR[ME] = 1)4-22
Checkstop State (MSR[ME] = 0) .. .4-22

DSI Exception (Ox00300) .. .4-23
lSI Exception (Ox00400)4-25
External Interrupt (Ox00500)4-25
Alignment Exception (Ox00600)4-26

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Paragraph
Number

4.5.6.1
4.5.6.1.1
4.5.6.2
4.5.7
4.5.7.1
4.5.7.2

4.5.8
4.5.9
4.5.10
4.5.11
4.5.11.1
4.5.11.2
4.5.12
4.5.13
4.5.14
4.5.15
4.5.16

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.6.1
5.1.6.2
5.1.7
5.1.8
5.2
5.3
5.4
5.4.1
5.4.1.1
5.4.1.2
5.4.1.3
5.4.2
5.4.3

MOTOROLA

CONTENTS

Title Page
Number

Integer Alignment Exceptions ... 4-27
Page Address Translation Access .. 4-28

Floating-Point Alignment Exceptions .. 4-28
Program Exception (Ox00700) ... 4-29

IEEE Floating-Point Exception Program Exceptions 4-30
Illegal, Reserved, and Unimplemented Instructions

Program Exceptions ... 4-30
Floating-Point Unavailable Exception (Ox00800) .. .4-31
Decrementer Exception (Ox00900) .. 4-31
System Call Exception (OxOOCOO) ... 4-31
Trace Exception (OxOODOO) ... 4-32

Single-Step Instruction Trace Mode .. 4-33
Branch Trace Mode .. 4-33

Instruction TLB Miss Exception (OxOlOOO) .. 4-33
Data TLB Miss on Load Exception (OxOil 00) .. 4-34
Data TLB Miss on Store Exception (Ox0l200)4-35
Instruction Address Breakpoint Exception (Ox01300) 4-35
System Management Interrupt (OxOI400) .. .4-37

Chapter 5
Memory Management

MMU Features ... 5-2
Memory Addressing ... 5-3
MMU Organization .. 5-3
Address Translation Mechanisms .. 5-8
Memory Protection Facilities ... 5-1 0
Page History Information ... 5-11
General Flow of MMU Address Translation ... 5-11

Real Addressing Mode and Block Address Translation Selection 5-11
Page Address Translation Selection ... 5-12

MMU Exceptions Summary .. 5-14
MMU Instructions and Register Summary .. 5-17

Real Addressing Mode ... 5-20
Block Address Translation ... 5-20
Memory Segment Model .. 5-21

Page History Recording ... 5-21
Referenced BiL ... 5-22
Changed BiL ... 5-23
Scenarios for Referenced and Changed Bit Recording 5-23

Page Memory Protection .. 5-25
TLB Description ... 5-25

Contents ix

Paragraph
Number

5.4.3.1
5.4.3.2
5.4.4
5.5
5.5.1
5.5.2
5.5.2.1
5.5.2.1.1

5.5.2.1.2
5.5.2.1.3

5.5.2.1.4
5.5.2.2
5.5.2.2.1
5.5.2.2.2
5.5.3
5.5.4

6.1
6.2
6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.3
6.3.3.1
6.3.3.2
6.3.3.3
6.4
6.4.1
6.4.1.1
6.4.1.2
6.4.1.2.1
6.4.2
6.4.3
6.4.4

x

CONTENTS

Title Page
Number

TLB Organization ... 5-25
TLB Entry Invalidation .. 5-27

Page Address Translation Summary .. 5-28
Page Table Search Operation .. .5-30

Page Table Search Operation-Conceptual Flow5-30
Implementation-Specific Table Search Operation ... 5-33

Resources for Table Search Operations ... 5-34
Data and Instruction TLB Miss Address Registers
(DMISS and IMISS) ... 5-36
Data and Instruction TLB Compare Registers (DCMP and ICMP) 5-37
Primary and Secondary Hash Address Registers
(HASH 1 and HASH2) .. 5-37
Required Physical Address Register (RPA) ... 5-38

Software Table Search Operation ... 5-38
Flow for Example Exception Handlers .. 5-39
Code for Example Exception Handlers .. 5-44

Page Table Updates .. 5-50
Segment Register Updates .. 5-50

Chapter 6
Instruction Timing

Terminology and Conventions ... 6-1
Instruction Timing Overview ... 6-3
Timing Considerations ... 6-5

General Instruction Flow .. 6-6
Instruction Fetch Timing .. 6-9

Cache Arbitration ... 6-9
Cache Hit .. 6-9
Cache Miss ... 6-1 0

Instruction Dispatch and Completion Considerations 6-11
Rename Register Operation .. 6-12
Instruction Serialization ... 6-13
Execution Unit Considerations ... 6-14

Execution Unit Timings .. 6-14
Branch Processing Unit Execution Timing .. 6-14

Branch Folding ... 6-14
Static Branch Prediction ... 6-16

Predicted Branch Timing Examples ... 6-16
Integer Unit Execution Timing ... 6-18
Floating-Point Unit Execution Timing ... 6-18
Load/Store Unit Execution Timing .. 6-18

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Paragraph
Number

6.4.5
6.5
6.5.1
6.5.2
6.5.3
6.6
6.6.1
6.6.1.1
6.6.1.2
6.6.1.3
6.7

7.1
7.2
7.2.1
7.2.1.1
7.2.1.2
7.2.1.3
7.2.1.3.1
7.2.1.3.2
7.2.2
7.2.2.1
7.2.2.1.1
7.2.2.1.2
7.2.3
7.2.3.1
7.2.3.1.1
7.2.3.1.2
7.2.3.2
7.2.3.2.1
7.2.3.2.2
7.2.3.3
7.2.4
7.2.4.1
7.2.4.1.1
7.2.4.1.2
7.2.4.2
7.2.4.3
7.2.4.3.1

MOTOROLA

CONTENTS

Title Page
Number

System Register Unit Execution Timing .. 6-18
Memory Performance Considerations .. 6-18

Copy-Back Mode ... 6-19
Write-Through Mode ... 6-19
Cache-Inhibited Accesses .. 6-20

Instruction Scheduling Guidelines ... 6-20
Branch, Dispatch, and Completion Unit Resource Requirements 6-21

Branch Resolution Resource Requirements ... 6-21
Dispatch Unit Resource Requirements .. 6-21
Completion Unit Resource Requirements .. 6-22

Instruction Latency Summary .. 6-22

Chapter 7
Signal Descriptions

Signal Configuration .. 7-3
Signal Descriptions .. 7-4

Address Bus Arbitration Signals .. 7-4
Bus Request (BR)-Output. ... 7-4
Bus Grant (BG)-Input .. 7-5
Address Bus Busy (ABB) .. 7-5

Address Bus Busy (ABB)-Output ... 7-5
Address Bus Busy (ABB)-Input.. .. 7-6

Address Transfer Start Signals ... 7-6
Transfer Start (TS) ... 7-6

Transfer Start (TS)-Output .. 7-6
Transfer Start (TS)-Input ... 7-7

Address Transfer Signals ... 7-7
Address Bus (A[0-31]) .. 7-7

Address Bus (A[0-31])-Output ... 7-7
Address Bus (A[0-31])-Input.. .. 7-7

Address Bus Parity (AP[0-3]) ... 7-8
Address Bus Parity (AP[0--3])-Output .. 7-8
Address Bus Parity (AP[0--3])-Input.. ... 7-8

Address Parity Error (APE)-Output.. .. 7-8
Address Transfer Attribute Signals .. 7-9

Transfer Type (TT[O-4]) .. 7-9
Transfer Type (TT[O-4])-Output.. ... 7-9
Transfer Type (TT[O-4])-Input ... 7-9

Transfer Size (TSIZ[0--2])-Output .. 7 -12
Transfer Burst (TBST) ... 7-13

Transfer Burst (TBST)-Output .. 7-13

Contents xi

Paragraph
Number

7.2.4.3.2
7.2.4.4
7.2.4.5
7.2.4.6
7.2.4.7
7.2.4.7.1
7.2.4.7.2
7.2..4.8
7.2.5
7.2.5.1
7.2.5.2
7.2.5.2.1
7.2.5.2.2
7.2.6
7.2.6.1
7.2.6.2
7.2.6.3
7.2.6.3.1
7.2.6.3.2
7.2.7
7.2.7.1
7.2.7.1.1
7.2.7.1.2
7.2.7.2
7.2.7.2.1
7.2.7.2.2
7.2.7.3
7.2.7.4
7.2.8
7.2.8.1
7.2.8.2
7.2.8.3
7.2.9
7.2.9.1
7.2.9.2
7.2.9.3
7.2.9.4
7.2.9.5
7.2.9.6
7.2.9.6.1
7.2.9.6.2
7.2.9.7
7.2.9.7.1

xii

CONTENTS

Title
Page

Number

Transfer Burst (TBST)-Input ... 7 -13
Transfer Code (TC[O-I])-Output .. 7-14
Cache Inhibit (CI)-Output ... 7-14
Write-Through (WT)-Output... .. 7-14
Global (GBL) .. 7-15

Global (GBL)-Output .. 7-15
Global (GBL)-Input ... 7-15

Cache Set Entry (CSE[O-I])-Output ... 7-15
Address Transfer Termination Signals ... 7-15

Address Acknowledge (AACK)-Input.. , 7-16
Address Retry (ARTRY) .. 7-16

Address Retry (ARTRY)-Output. .. 7 -16
Address Retry (ARTRY)-Input ... 7 -17

Data Bus Arbitration Signals .. 7-17
Data Bus Grant (DBG)-Input .. 7-17
Data Bus Write Only (DBWO)-Input ... 7-18
Data Bus Busy (DBB) .. 7-18

Data Bus Busy (DBB)-Output ... 7-18
Data Bus Busy (DBB)-Input .. 7-18

Data Transfer Signals ... 7 -19
Data Bus (DH[0-31], DL[0-31]) ... 7-19

Data Bus (DH[0-31], DL[0-31])-Output.. .. 7-19
Data Bus (DH[0-31], DL[0-31])-Input.. ... 7-20

Data Bus Parity (DP[0-7]) ... 7-20
Data Bus Parity (DP[0-7])-Output .. 7-20
Data Bus Parity (DP[0-7])-Input ... 7-20

Data Parity Error (DPE)-Output.. .. 7-21
Data Bus Disable (DBDIS)-Input .. 7-21

Data Transfer Termination Signals .. 7-21
Transfer Acknowledge (TA)-Input. ... 7-22
Data Retry (DRTRY)-Input ... 7-22
Transfer Error Acknowledge (TEA)-Input.. ... ;7-23

System Status Signals ... 7-23
Interrupt (INT)-Input ... 7-23
System Management Interrupt (SMI)-Input .. 7-24
Machine Check Interrupt (MCP)-Input.. ... 7-24
Checkstop Input (CKSTP _IN)-Input .. 7-24
Checkstop Output (CKSTP _OUT)-Output.. ... 7-25
Reset Signals .. 7-25

Hard Reset (HRESET)-Input. .. 7-25
Soft Reset (SRESET)-Input ... 7 -26

Processor Status Signals ... 7-26
Quiescent Request (QREQ) ... 7-26

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Paragraph
Number

7.2.9.7.2
7.2.9.7.3
7.2.9.7.4
7.2.9.7.5
7.2.10
7.2.11
7.2.12
7.2.12.1
7.2.12.2
7.2.12.3
7.2.13

8.1
8.1.1
8.1.2
8.1.2.1
8.1.3
8.2
8.2.1
8.2.2
8.3
8.3.1
8.3.2
8.3.2.1
8.3.2.2
8.3.2.2.1
8.3.2.2.2
8.3.2.3
8.3.2.4
8.3.2.5
8.3.2.5.1
8.3.2.6
8.3.3
8.4
8.4.1
8.4.1.1
8.4.2
8.4.3
8.4.4

MOTOROLA

CONTENTS
Page

Number Title

Quiescent Acknowledge (QACK) ... 7-26
Reservation (RSRV)-Output ... 7-27
Time Base Enable (TBEN)-Input... ... 7-27
TLBI Sync (TLBISYNC) .. 7-27

COP/Scan Interface .. 7-28
Pipeline Tracking Support. ... 7-28
Clock Signals ... 7-29

System Clock (SYSCLK)-Input .. 7-30
Test Clock (CLK_OUT)-Output ... 7-30
PLL Configuration (PLL_CFG[0-3])-Input ... 7-30

Power and Ground Signals ... 7-32

Chapter 8
System Interface Operation

Overview .. 8-1
Operation of the Instruction and Data Caches ... 8-2
Operation of the System Interface .. 8-4

Optional 32-Bit Data Bus Mode .. 8-5
Direct-Store Accesses .. 8-6

Memory Access Protocol ... 8-6
Arbitration Signals ... 8-7
Address Pipelining and Split-Bus Transactions ... 8-8

Address Bus Tenure ... 8-9
Address Bus Arbitration ... 8-9
Address Transfer .. 8-11

Address Bus Parity ... 8-13
Address Transfer Attribute Signals .. 8-13

Transfer Type (TT[0-4]) Signals ... 8-13
Transfer Size (TSIZ[0-2]) Signals ... 8-13

Burst Ordering During Data Transfers ... 8-14
Effect of Alignment in Data Transfers (64-Bit Bus) 8-15
Effect of Alignment in Data Transfers (32-Bit Bus) 8-17

Alignment of External Control Instructions ... 8-19
Transfer Code (TC[O-l]) Signals .. 8-20

Address Transfer Termination .. 8-20
Data Bus Tenure ... 8-22

Data Bus Arbitration .. 8-22
Using the DBB Signal .. 8-23

Data Bus Write Only .. 8-24
Data Transfer .. 8-24
Data Transfer Termination ... 8-25

Contents xiii

Paragraph
Number

8.4.4.1
8.4.4.2
8.4.S
8.S
8.6
8.6.1
8.6.2
8.6.3
8.7
8.7.1
8.7.2
8.7.3
8.7.4
8.8
8.8.1
8.8.2
8.9
8.9.1
8.10

9.1
9.2
9.2.1
9.2.1.1
9.2.1.2
9.2.1.3
9.2.1.4
9.2.1.S
9.2.2

CONTENTS

Title
Page

Number

Nonnal Single-Beat Tennination ... 8-26
Data Transfer Tennination Due to a Bus Error .. 8-29

Memory Coherency-MEl Protocol .. 8-30
Timing Examples .. 8-32
Optional Bus.Configurations .. 8-38

32-Bit Data Bus Mode .. 8-38
No-ORTRY Mode .. 8-40
Reduced-Pinout Mode .. 8-40

Interrupt, Checkstop, and Reset Signals ... 8-41
External Interrupts .. 8-41
Checkstops .. 8-41
Reset Inputs .. 8-41
System Quiesce Control Signals .. 8-42

Processor State Signals ... 8-42
Support for the lwarxlstwcx. Instruction Pair.. .. 8-42
TLBISYNC Input ... 8-42

IEEE 1149 . I-Compliant Interface .. 8-43
IEEE 1149.1 Interface Description ... 8-43

Using Data Bus Write Only .. 8-43

Chapter 9
Power Management

Dynamic Power Management .. 9-1
Programmable Power Modes .. 9-1

Power Management Modes .. 9-3
Full-Power Mode with DPM Disabled ... 9-3
Full-Power Mode with DPM Enabled .. 9-3
Doze Mode ... 9-4
Nap Mode ... 9-4
Sleep Mode ... 9-S

Power Management Software Considerations .. 9-6

Appendix A
PowerPC Instruction Set Listings

A.l Instructions Sorted by Mnemonic .. A-l
A.2 Instructions Sorted by Opcode .. A-9
A.3 Instructions Grouped by Functional Categories .. A-17
AA Instructions Sorted by Form .. A-28
A.S Instruction Set Legend ... A-39

xiv MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Paragraph
Number

CONTENTS

Title

Appendix B
Instructions Not Implemented

Appendix C

Page
Number

PowerPC 603 Processor System Design and Programming Considerations

C.I
C.I.I
C.l.l.1
c.l.l.l.l
C.1.l.l.2
C.1.2
C.l.2.l
C.l.2.1.1
C. 1.2. l.2
C.l.2.2
C.I.2.2.1
C.1.2.2.2
C.l.2.3
C.I.2.4
C.1.3
C.1.4
C.I.S
C.I.S.1
C.l.S.2
C.l.6
C.1.7
C.1.S
C.2
C.2.1
C.2.1.1
C.2.1.2
C.2.1.3
C.2.1.4
C.2.I.S
C.2.2
C.2.3
C.2.4
C.2.S
C.2.6

MOTOROLA

PowerPC 603 Microprocessor Hardware Considerations C-l
Hardware Support for Direct-Store Accesses ... C-I

Extended Address Transfer Start (XATS) .. C-2
Extended Address Transfer Start (XATS)-Output C-2
Extended Address Transfer Start (XATS)-Input.. C-2

Direct-Store Protocol Operation ... C-2
Direct-Store Transactions ... C-4

Store Operations .. C-S
Load Operations .. C-S

Direct-Store Transaction Protocol Details .. C-6
Packet 0 ... C-7
Packet I ... C-S

I/O Reply Operations .. C-S
Direct-Store Operation Timing ... C-IO

CSE Signal .. C-12
PowerPC 603 Processor Bus Clock Multiplier Configuration C-12
PowerPC 603 Processor Cache Organization ... C-13

Instruction Cache Organization .. C-14
Data Cache Organization .. C-14

PLL Configuration (PLL_CFG[O-3])-Input.. ... C-IS
Address Pipelining and Split-Bus Transactions .. C-IS
Data Bus Arbitration ... C-16

PowerPC 603 Processor Software Considerations .. C-16
Direct-Store Interface Address Translation .. C-16

Direct-Store Segment Translation Summary Flow C-17
Direct-Store Interface Accesses .. C-IS
Direct-Store Segment Protection .. C-IS
Instructions Not Supported in Direct-Store Segments C-19
Instructions with No Effect in Direct-Store Segments C-19

Store Instruction Latency .. C-19
Instruction Execution by System Register Unit.. .. C-20
Machine Check Exception (Ox00200) ... C-21
Instruction Address Breakpoint Exception (Ox01400) C-21
Cache Control Instructions .. C-21

Contents xv

Paragraph
Number

xvi

CONTENTS

Title

Glossary of Terms and Abbreviations

Index

MPC603e & EC603e RISC Microprocessors User's Manual

Page
Number

MOTOROLA

Figure
Number

I LLUSTRA TIONS

Title
Page

Number

1-1 Block Diagram 1-6
1-2 Programming Model-Registers .. 1-22
1-3 Data Cache Organization .. 1-27
1-4 Exception Classifications......... 1-29
1-5 Exceptions and Conditions ... 1-29
1-6 System Interface.. 1-35
1-7 Signal Groups .. 1-38
2-1 Programming Model-Registers .. 2-3
2-2 Hardware Implementation Register 0 (HIDO) .. 2-7
2-3 Hardware Implementation Register 1 (HIDl) .. 2-9
2-4 DMISS and IMISS Registers .. 2-9
2-5 DCMP and ICMP Registers..... 2-\ 0
2-6 HASHI and HASH2 Registers ... 2-10
2-7 Required Physical Address Register (RPA) ... 2-11
2-8 Instruction Address Breakpoint Register (IABR) ... 2-11
3-1 Instruction Cache Organization .. 3-3
3-2 Data Cache Organization .. 3-5
3-3 Double-Word Address Ordering-Critical Double Word First... 3-9
3-4 MEl Cache Coherency Protocol-State Diagram (WIM = 001) 3-16
3-5 Bus Interface Address Buffers .. 3-28
4-1 Exceptions and Conditions ... 4-4
4-2 Machine Status SavelRestore Register 0 .. 4-10
4-3 Machine Status SavelRestore Register 1 .. 4-10
4-4 Machine State Register (MSR) ... 4-12
5-1 MMU Conceptual Block Diagram-32-Bit Implementations 5-5
5-2 IMMU Block Diagram .. 5-6
5-3 DMMU Block Diagram .. 5-7
5-4 Address Translation Types ... 5-9
5-5 General Flow of Address Translation (Real Addressing Mode and Block) 5-12
5-6 General Flow of Page and Direct-Store Interface Address Translation 5-13
5-7 Segment Register and TLB Organization ... 5-26
5-8 Page Address Translation Flow for 32-Bit Implementations-TLB Hit... 5-29
5-9 Primary Page Table Search-Conceptual Flow ... 5-32
5-lO Secondary Page Table Search Flow-Conceptual Flow 5-33
5-11 Derivation of Key Bit for SRR 1 ... 5-36
5-12 DMISS and IMISS Registers .. 5-36
5-l3 DCMP and ICMP Registers .. 5-37

MOTOROLA Illustrations xvii

Figure
Number

5-14
5-15
5-16
5-17
5-18
5-19
6-1
6-2
6-3
6-4
6-5
7-1
7-2
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
C-J
C-2
C-3
C-4
C-5
C-6
C-7

xviii

ILLUSTRATIONS

Title
Page

Number
HASHI and HASH2 Registers ... 5-37
Required Physical Address (RPA) Register ... 5-38
Flow for Example Software Table Search Operation 5-40
Check and Set Rand C Bit Flow.............. 5-41
Page Fault Setup Flow.................. 5-42
Setup for Protection Violation Exceptions ... 5-43
Pipelined Execution Unit .. 6-4
Instruction Flow Diagram... 6-8
Instruction Timing-Cache Hit .. 6-10
Instruction Timing-Cache Miss .. 6-11
Branch Instruction Timing 6-17
Signal Groups .. 7-3
IEEE 1149.1-Compliant Boundary Scan Interface ... 7-28
Block Diagram .. 8-3
Timing Diagram Legend ... 8-5
Overlapping Tenures on the Bus for a Single-Beat Transfer 8-6
Address Bus Arbitration ... 8-10
Address Bus Arbitration Showing Bus Parking .. 8-11
Address Bus Transfer .. 8-12
Snooped Address Cycle with ARTRY ... 8-22
Data Bus Arbitration ... 8-23
Normal Single-Beat Read Termination .. 8-26
Normal Single-Beat Write Termination .. 8-27
Normal Burst Transaction ... 8-27
Termination with DRTRY .. 8-28
Read Burst with TA Wait States and DRTRY .. 8-29
MEl Cache Coherency Protocol-State Diagram (WIM = 001) 8-31
Fastest Single-Beat Reads ... 8-32
Fastest Single-Beat Writes .. 8-33
Single-Beat Reads Showing Data-Delay Controls ... 8-34
Single-Beat Writes Showing Data Delay Controls ... 8-35
Burst Transfers with Data Delay Controls .. 8-36
Use of Transfer Error Acknowledge (TEA) ... 8-37
32-Bit Data Bus Transfer (Eight-Beat Burst) ... 8-39
32-Bit Data Bus Transfer (Two-Beat Burst with DRTRY) 8-39
Data Bus Write Only Transaction ... 8-44
Direct-Store Tenures ... C-4
Direct-Store Operation-Packet 0 .. C-7
Direct-Store Operation-Packet 1 .. C-8
I/O Reply Operation .. C-9
Direct-Store Interface Load Access Example ... C-ll
Direct-Store Interface Store Access Example ... C-12
Instruction Cache Organization ... C-14

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Figure
Number

ILLUSTRATIONS

Title
Page

Number

C-8 Data Cache Organization .. C-lS
C-9 Direct-Store Segment Translation Flow .. C-17

MOTOROLA Illustrations xix

Figure
Number

xx

ILLUSTRATIONS

Title

MPC603e & EC603e RISC Microprocessors User's Manual

Page
Number

MOTOROLA

Table
Number

TABLES

Title
Page

Number

Acronyms and Abbreviated Terms .. xxxiv
ii Terminology Conventions .. xxxvii
iii Instruction Field Conventions .. xxxviii
1-1 CSE[O-I] Signals ... 1-7
1-2 Generated SRRI [Key] Bit .. 1-8
1-3 Additional/Changed HIDO Bits .. 1-18
2-1 MSR[POW] and MSR[TGPR] Bits ... 2-5
2-2 HIDO Bit Settings ... 2-8
2-3 HIDI Bit Settings ... 2-9
2-4 DCMP and ICMP Bit Settings ... 2-10
2-5 HASH 1 and HASH2 Bit Settings .. 2-10
2-6 RP A Bit Settings .. 2-11
2-7 Instruction Address Breakpoint Register Bit Settings 2-12
2-8 Memory Operands ... 2-13
2-9 Integer Arithmetic Instructions .. 2-22
2-10 Integer Compare Instructions ... 2-23
2-11 Integer Logical Instructions ... 2-23
2-12 Integer Rotate Instructions ... 2-24
2-13 Integer Shift Instructions .. 2-25
2-14 Floating-Point Arithmetic Instructions .. 2-26
2-15 Floating-Point Multiply-Add Instructions ... 2-26
2-16 Floating-Point Rounding and Conversion Instructions 2-27
2-17 Floating-Point Compare Instructions ... 2-27
2-18 Floating-Point Status and Control Register Instructions 2-28
2-19 Floating-Point Move Instructions .. 2-28
2-20 Integer Load Instructions ... 2-30
2-21 Integer Store Instructions ... 2-31
2-22 Integer Load and Store with Byte-Reverse Instructions 2-31
2-23 Integer Load and Store Multiple Instructions .. 2-32
2-24 Integer Load and Store String Instructions .. 2-33
2-25 Floating-Point Load Instructions ... 2-34
2-26 Floating-Point Store Instructions ... 2-35
2-27 Branch Instructions .. 2-36
2-28 Condition Register Logical Instructions .. 2-37
2-29 Trap Instructions .. 2-37
2-30 Move to/from Condition Register Instructions .. 2-38

MOTOROLA Tables xxi

Table
Number

TABLES

Title
Page

Number

2-31 Memory Synchronization Instructions-UISA ... 2-39
2-32 Move from Time Base Instruction ... 2-40
2-33 Memory Synchronization Instructions-VEA .. 2-40
2-34 User-Level Cache Instructions ... 2-41
2-35 External Control Instructions ... 2-42
2-36 System Linkage Instructions .. 2-42
2-37 Move to/from Machine State Register Instructions ... 2-43
2-38 Move to/from Special-Purpose Register Instructions .. 2-43
2-39 Implementation-specific SPR Encodings (mfspr) ... 2-43
2-40 Supervisor-Level Cache Management Instruction ... 2-44
2-41 Segment Register Manipulation Instructions ... 2-45
2-42 Translation Lookaside Buffer Management Instructions 2-46
3-1 Combinations ofW, I, and M Bits ... 3-13
3-2 MEl State Definitions .. 3-16
3-3 CSE[O-I] Signal Encoding .. 3-18
3-4 Memory Coherency Actions on Load Operations ... 3-19
3-5 Memory Coherency Actions on Store Operations ... 3-19
3-6 Response to Bus Transactions ... 3-20
3-7 Bus Operations Caused by Cache Control Instructions (WIM = 001) 3-26
3-8 MEl State Transitions ...•.................. 3-28
4-1 Exception Classifications ... 4-3
4-2 Exception Priorities .. 4-7
4-3 SRRI Bit Settings for Machine Check Exceptions .. 4-11
4-4 SRR1 Bit Settings for Software Table Search Operations 4-11
4-5 MSR Bit Settings ... 4-12
4-6 IEEE Floating-Point Exception Mode Bits .. 4-14
4-7 MSR Setting Due to Exception .. 4-17
4-8 Settings Caused by Hard Reset .. 4-19
4-9 Soft Reset Exception-Register Settings ... 4-20
4-10 Machine Check Exception-Register Settings .. 4-22
4-11 DSI Exception-Register Settings ... 4-24
4-12 External Interrupt-Register Settings .. 4-26
4-13 Alignment Interrupt-Register Settings .. 4-27
4-14 Access Types ... 4-28
4-15 Trace Exception-Register Settings .. 4-32
4-16 Instruction and Data TLB Miss Exceptions-Register Settings4-34
4-17 Instruction Address Breakpoint Exception-Register Settings 4-35
4-18 Breakpoint Action for Multiple Modes Enabled for the Same Address 4-36
4-19 System Management Interrupt-Register Settings .. 4-37
5-1 MMU Features Summary .. 5-2
5-2 Access Protection Options for Pages ... 5-10
5-3 Translation Exception Conditions .. 5-15
5-4 Other MMU Exception Conditions .. 5-16

xxii MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table
Number

TABLES

Title
Page

Number

5-5 Instruction Summary-MMU Control .. 5-18
5-6 MMURegisters .. 5-18
5-7 Table Search Operations to Update History Bits-TLB Hit Case 5-22
5-8 Model for Guaranteed Rand C Bit Settings .. 5-24
5-9 Implementation-Specific Resources for Table Search Operations 5-34
5-10 Implementation-Specific SRRI Bits .. 5-36
5-11 DCMP and ICMP Bit Settings ... 5-37
5-12 HASHI and HASH2 Bit Settings .. 5-38
5-13 RPA Bit Settings .. 5-38
6-1 Branch Instructions .. 6-23
6-2 System Register Instructions .. 6-23
6-3 Condition Register Logical Instructions .. 6-24
6-4 Integer Instructions .. 6-24
6-5 Floating-Point Instructions ... 6-26
6-6 Load and Store Instructions ... 6-28
7-1 Transfer Encoding for the Bus Master. .. 7-9
7-2 Snoop Hit Response ... 7-11
7 -3 Implementation-Specific Transfer Encoding ... 7-12
7-4 CLK_OUT Signal Configuration ... 7-12
7-5 Data Transfer Size ... 7-13
7-6 Encodings for TC[O-I] Signals ... 7-14
7-7 Data Bus Lane Assignments .. 7-19
7-8 DP[0-7] Signal Assignments ... 7-20
7-9 Pipeline Tracking Outputs ... 7-29
7 -10 PLL Configuration ... 7-31
8-1 Transfer Size Signal Encodings ... 8-14
8-2 Burst Ordering-64-Bit Bus .. 8-14
8-3 Burst Ordering-32-Bit Bus .. 8-15
8-4 Aligned Data Transfers (64-Bit Bus) ... 8-15
8-5 Misaligned Data Transfers (Four-Byte Examples) .. 8-17
8-6 Aligned Data Transfers (32-Bit Bus Mode) ... 8-18
8-7 Misaligned 32-Bit Data Bus Transfer (Four-Byte Examples) 8-19
8-8 Transfer Code Encoding .. 8-20
8-9 CSE[O-I] Signals ... 8-31
8-10 IEEE Interface Pin Descriptions .. 8-43
9-1 Programmable Power Modes ... 9-3
A-I Complete Instruction List Sorted by Mnemonic ... A-I
A-2 Complete Instruction List Sorted by Opcode .. A-9
A-3 Integer Arithmetic Instructions ... A-17
A-4 Integer Compare Instructions .. A-18
A -5 Integer Logical Instructions .. A -18
A -6 Integer Rotate Instructions .. A -18
A-7 Integer Shift Instructions ... A-I9

MOTOROLA Tables xxiii

Table
Number

TABLES

Title
Page

Number

A -8 Floating-Point Arithmetic Instructions ... A -19
A-9 Floating-Point Multiply-Add Instructions .. A-20
A-lO Floating-Point Rounding and Conversion Instructions A-20
A-II Floating-Point Compare Instructions .. A -20
A-12 Floating-Point Status and Control Register Instructions A-20
A-13 Integer Load Instructions .. A-21
A-14 Integer Store Instructions .. A-22
A-15 Integer Load and Store with Byte-Reverse Instructions A-22
A-16 Integer Load and Store Multiple Instructions ... A-22
A-17 Integer Load and Store String Instructions ... A-23
A-18 Memory Synchronization Instructions .. A-23
A-19 Floating-Point Load Instructions .. A-23
A-20 Floating-Point Store Instructions .. A-24
A-21 Floating-Point Move Instructions ... A-24
A-22 Branch Instructions ... A-24
A-23 Condition Register Logical Instructions ... A-24
A-24 System Linkage Instructions ... A-25
A-25 Trap Instructions ... A-25
A-26 Processor Control Instructions .. A-25
A-27 Cache Management Instructions ... A-26
A-28 Segment Register Manipulation Instructions .. A-26
A-29 Lookaside Buffer Management Instructions ... A-26
A-30 External Control Instructions .. A-27
A-31 I-Form ... A-28
A-32 B-Form .. A-28
A-33 SC-Form .. A-28
A-34 D-Form .. A-28
A-35 DS-Form ... A-30
A-36 X-Form .. A-30
A-37 XL-Form ... A-34
A-38 XFX-Form ... A-35
A-39 XFL-Form ... A-35
A-40 XS-Form ... A-35
A-41 XO-Form ... A-35
A-42 A-Form .. A-36
A-43 M-Form ... A-37
A-44 MD-Form .. A-37
A-45 MDS-Form .. A-38
A-46 PowerPC Instruction Set Legend .. A-39
B-1 32-Bit Instructions Not Implemented by the PowerPC 603e B-l
B-2 64-Bit Instructions Not Implemented .. B-l
B-3 Floating-Point Instructions Not Supported by the EC603e Microprocessor B-3
B-4 64-Bit SPR Encoding Not Implemented .. B-5

xxiv MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table
Number

TABLES

Title
Page

Number

C-l Direct -S tore Bus Operations .. C-4
C-2 Address Bits for 1/0 Reply Operations .. C-9
C-3 CSE Signal Encoding ... C-12
C-4 PowerPC 603 Microprocessor PLL Configuration .. C-13
C-5 Store Instruction Timing .. C-I9
C-6 System Register Instructions .. C-20

MOTOROLA Tables xxv

xxvi MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

About This Book
The primary objective of this user's manual is to define the functionality of the PowerPC
603TM and PowerPC 603e™ microprocessors for use by software and hardware developers.
Although the emphasis of this manual is upon the 603e, all of the information within
applies to both the 603 and 603e, except for those differences noted in Appendix C,
"PowerPC 603 Processor System Design and Programming Considerations." Those readers
who are primarily interested in the 603 should begin with Appendix C.

In addition, this book describes the EC603e™ microprocessor. The EC603e
microprocessor for embedded systems is functionally equivalent to the 603e with the
exception of the floating-point unit which is not supported on the EC603e microprocessor;
therefore, the term 'EC603e' is used only when it is necessary to distinguish functional
differences with the EC603e microprocessor.

The 603e is built upon the low-power dissipation, low-cost and high-performance attributes
of the 603 while providing the system designer additional capabilities through higher
processor clock speeds, increases in cache size (16-Kbyte instruction and data caches) and
set-associativity (4-way), and greater system clock flexibility. The 603e only implements
the 32-bit portion of the PowerPCTM architecture.

The 603e and EC603e microprocessors are implemented in both a 2.5-volt version (PID
0007v 603e microprocessor, abbreviated as PID7v-603e) and a 3.3-volt version (PID 0006
603e microprocessor, abbreviated as PID6-603e).

In this document, the term '603e' is used as an abbreviation for 'PowerPC 603e
microprocessor' and the term '603' is an abbreviation for 'PowerPC 603 microprocessor'.
The PowerPC 603e microprocessors are available from Motorola as MPC603e. The
EC603e microprocessors are available from Motorola as MPE603e.

It is important to note that this book is intended as a companion to the PowerPC
Microprocessor Family: The Programming Environments, referred to as The Programming
Environments Manual; contact your local sales representative to obtain a copy. Because the
PowerPC architecture is designed to be flexible to support a broad range of processors, The
Programming Environments Manual provides a general description of features that are
common to PowerPC processors and indicates those features that are optional or that may
be implemented differently in the design of each processor.

MOTOROLA AboutThis Book xxvii

This document summarizes features of the 603e that are not defined by the architecture.
This document and The Programming Environments Manual distinguish between the three
levels, or programming environments, of the PowerPC architecture, which are as follows:

PowerPC user instruction set architecture (UISA)-The UISA defines the level of
the architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

PowerPC virtual environment architecture (VEA)-The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices can
access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory accesses and for managing resources in
an environment in which other processors and other devices can access external
memory.

PowerPC operating environment architecture (OEA)-The OEA defines supervisor­
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
urSA and VEA.

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that cause a ftoating­
point exception are defined by the UISA, while the exception mechanism itself is defined
by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

For ease in reference, this book has arranged topics described by the architecture into topics
that build upon one another, beginning with a description and complete summary of 603e­
specific registers and progressing to more specialized topics such as 603e-specific details
regarding the cache, exception, and memory management models. As such, chapters may
include information from multiple levels of the architecture. (For example, the discussion
of the cache model uses information from both the VEA and the OEA.)

The PowerPC Architecture: A Specification for a New Family of RISC Processors defines
the architecture from the perspective of the three programming environments and remains
the defining document for the PowerPC architecture.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the

xxviii MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

readers' responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative.

Audience
This manual is intended for system software and hardware developers and applications
programmers who want to develop products using the 603e microprocessors. It is assumed
that the reader understands operating systems, microprocessor system design, the basic
principles of RISC processing, and details of the PowerPC architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

•

•

•

•

•

•

Chapter 1, "Overview," is useful for readers who want a general understanding of
the features and functions of the PowerPC architecture and the 603e. This chapter
describes the flexible nature of the PowerPC architecture definition, and provides an
overview of how the PowerPC architecture defines the register set, operand
conventions, addressing modes, instruction set, cache model, exception model, and
memory management model.

Chapter 2, "Programming Model," provides a brief synopsis of the registers
implemented in the 603e, operand conventions, an overview of the PowerPC
addressing modes, and a list of the instructions implemented by the 603e.
Instructions are organized by function.

Chapter 3, "Instruction and Data Cache Operation," provides a discussion of the
cache and memory model as implemented on the 603e.

Chapter 4, "Exceptions," describes the exception model defined in the PowerPC
OEA and the specific exception model implemented on the 603e.

Chapter 5, "Memory Management," describes the 603e's implementation ofthe
memory management unit specifications provided by the PowerPC OEA for
PowerPC processors.

Chapter 6, "Instruction Timing," provides information about latencies, interlocks,
special situations, and various conditions to help make programming more efficient.
This chapter is of special interest to software engineers and system designers.

Chapter 7, "Signal Descriptions," provides descriptions of individual signals of the
603e.

Chapter 8, "System Interface Operation," describes signal timings for various
operations. It also provides information for interfacing to the 603e.

• Chapter 9, "Power Management," provides information about power saving modes
for the 603e.

MOTOROLA AboutThis Book xxix

• Appendix A, "PowerPC Instruction Set Listings," lists all the PowerPC instructions
while indicating those instructions that are not implemented by the 603e; it also
includes the instructions that are specific to the 603e. Instructions are grouped
according to mnemonic, opcode, function, and form. Also included is a quick
reference table that contains general information, such as the architecture level,
privilege level, and form, and indicates if the instruction is 64-bit and optional.

• Appendix B, "Instructions Not Implemented," provides a list of PowerPC
instructions not implemented by the 603e.

• Appendix C, "PowerPC 603 Processor System Design and Programming
Considerations," provides a discussion of the hardware and software differences
between the 603 and 603e.

• This manual also includes a glossary and an index.

Suggested Reading
This section lists additional reading that provides background for the information in this
manual as well as general information about the PowerPC architecture.

General Information
The following documentation provides useful information about the PowerPC architecture
and computer architecture in general:

xxx

• The following books are available from the Morgan-Kaufmann Publishers, 340
Pine Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A.),
(415) 392-2665 (Intemational); intemet address: mkp@mkp.com.

- The PowerPC Architecture: A Specification for a New Family of RISC
Processors, Second Edition, by Intemational Business Machines, Inc.

Updates to the architecture specification are accessible via the world-wide web
at http://www.austin.ibm.comltechlppc-chg.html.

- PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Computer, Inc., Intemational Business Machines, Inc.,
and Motorola, Inc.

- Macintosh Technology in the Common Hardware Reference Platform, by Apple
Computer, Inc.

- Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson

• Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.),
(800) 637-0029 (Canada), (716) 871-6555 (Intemational).

• PowerPC Programming for Intel Programmers, by Kip McClanahan; lOG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404;
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (Intemational).

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

PowerPC Documentation
The PowerPC documentation is available from the sources listed on the back cover of this
manual; the document order numbers are included in parentheses for ease in ordering:

User's manuals-These books provide details about individual PowerPC
implementations and are intended to be used in conjunction with The Programming
Environments Manual. These include the following:

- PowerPC 604™ RISC Microprocessor User's Manual:
MPC604UMI AD (Motorola order #)

- MPC750 RISC Microprocessor User's Manual:
MPC750UM/AD (Motorola order #)

- PowerPC 620™ RISC Microprocessor User's Manual:
MPC620UMI AD (Motorola order #)

• Programming environments manuals-These books provide information about
resources defined by the PowerPC architecture that are common to PowerPC
processors. There are two versions, one that describes the functionality of the
combined 32- and 64-bit architecture models and one that describes only the 32-bit
model.

- PowerPC Microprocessor Family: The Programming Environments, Rev 1:
MPCFPE/AD (Motorola order #)

- PowerPC Microprocessor Family: The Programming Environments for 32-Bit
Microprocessors, Rev. 1: MPCFPE32B/AD (Motorola order #)

• Implementation Variances Relative to Rev. 1 of The Programming Environments
Manual is available via the world-wide web at http://www.motorola.com/PowerPC/.

• Addenda/errata to user's manuals-Because some processors have follow-on parts
an addendum is provided that describes the additional features and changes to
functionality of the follow-on part. These addenda are intended for use with the
corresponding user's manuals. These include the following:

- Addendum to PowerPC 604 RISC Microprocessor User's Manual: PowerPC
604e™ Microprocessor Supplement and User's Manual Errata:
MPC604UMADI AD (Motorola order #)

• Hardware specifications-Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations for each PowerPC implementation. These include the
following:

- PowerPC 603 RISC Microprocessor Hardware Specifications:
MPC603ECID (Motorola order #)

- PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware
Specifications:
MPC603EEC/D (Motorola order #)

MOTOROLA AboutThis Book xxxi

- PowerPC 603e RISC Microprocessor Family: PID7v-603e Hardware
Specifications:
MPC603E7VECID (Motorola order #)

- PowerPC 603e RISC Microprocessor Family: PID7t-603e Hardware
Specifications:
MPC603E7TECID (Motorola order #)

- PowerPC 604 RISC Microprocessor Hardware Specifications:
MPC604ECID (Motorola order #)

- PowerPC 604e RISC Microprocessor Family: PID9v-604e Hardware
Specifications:
MPC604E9VECID (Motorola order #)

- PowerPC 604e RISC Microprocessor Family: PID9q-604e Hardware
Specifications:
MPC604E9QECID (Motorola order #)

- MPC750 RISC Microprocessor Hardware Specifications
MPC750ECID (Motorola order #)

- EC603e Embedded RISC Microprocessor (PID6) Hardware Specifications:
MPE603EECID (Motorola order #)

- EC603e Embedded RISC Microprocessor (PID7v) Hardware Specifications:
MPE603E7VECID (Motorola order #)

• Technical Summaries-Each PowerPC implementation has a technical summary
that provides an overview of its features. This document is roughly the equivalent to
the overview (Chapter 1) of an implementation's user's manual. Technical
summaries are available for the 601, 603, 603e, 604, 604e, and EC603e
microprocessors which can be ordered as follows:

- EC603e Embedded RISC Microprocessor Technical Summary:
MPE603EID (Motorola order #)

• PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors:
MPCBUSIFI AD (Motorola order #) provides a detailed functional description of the
60x bus interface, as implemented on the 601, 603, and 604 family of Power PC
microprocessors. This document is intended to help system and chipset developers
by providing a centralized reference source to identify the bus interface presented by
the 60x family of PowerPC microprocessors.

• PowerPC Microprocessor Family: The Programmer's Reference Guide:
MPCPRGID (Motorola order #) is a concise reference that includes the register
summary, memory control model, exception vectors, and the PowerPC instruction
set.

• PowerPC Microprocessor Family: The Programmer's Pocket Reference Guide:

xxxii

MPCPRGREFID (Motorola order #)
This foldout card provides an overview of the PowerPC registers, instructions, and
exceptions for 32-bit implementations.

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

• Application notes-These short documents contain useful information about
specific design issues useful to programmers and engineers working with PowerPC
processors.

• Documentation for support chips-These include the following:

- MPC105 PCI Bridge/Memory Controller User's Manual:
MPCI05UMlAD (Motorola order #)

- MPC106 PCI Bridge/Memory Controller User's Manual:
MPCI06UMlAD (Motorola order #)

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.mot.comlSPS/PowerPC/.

Conventions
This document uses the following notational conventions:

mnemonics

italics

OxO
ObO
rA,rB

rAIO

rD

frA, frB, frC

frD

REG[FlELD]

x

n
-,

&

MOTOROLA

Instruction mnemonics are shown in lowercase bold.

Italics indicate variable command parameters, for example, bcctrx.

Book titles in text are set in italics.

Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source GPR

The contents of a specified GPR or the value O.

Instruction syntax used to identify a destination GPR

Instruction syntax used to identify a source FPR

Instruction syntax used to identify a destination FPR

Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refers to the little-endian mode enable bit in the machine
state register.

In certain contexts, such as a signal encoding, this indicates a don't
care.

Used to express an undefined numerical value

NOT logical operator

AND logical operator

OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits
may be written to as either ones or zeros, they are always read as
zeros.

AboutThis Book xxxiii

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning

ALU Arithmetic logic unit

ATE Automatic test equipment

ASR Address space register

BAT Block address translation

BIST Built-in self test

BIU Bus interface unit

BPU Branch processing unit

BUC Bus unit controller

BUID Bus unit 10

CAR Cache address register

CIA Current instruction address

CMOS Complementary metal-oxide semiconductor

COP Common on-chip processor

CR Condition register

CRTRY Cache retry queue

CTR Count register

OAR Oata address register

OBAT Data BAT

OCMP Data TLB compare

DEC Decrementer register

OMISS Data TLB miss address

DSISR Register used for determining the source of a OSI exception

OTLB Data translation lookaside buffer

EA Effective address

EAR External access register

ECC Error checking and correction

FIFO First-in-first-out

FPR Floating-point register (Note that the EC603e microprocessor does not support the floating-
point unit.)

FPSCR Floating-point status and control register (Note that the EC603e microprocessor does not
support the floating-point unit.)

xxxiv MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

FPU Floating-point unit (Note that the EC603e microprocessor does not support the floating-point
unit.)

GPR General-purpose register

HASH1 Primary hash address

HASH2 Secondary hash address

IABR Instruction address breakpoint register

I BAT I nstruction BAT

ICMP Instruction TLB compare

IEEE Institute for Electrical and Electronics Engineers

IMISS Instruction TLB miss address

10 I nstruction queue

ITLB Instruction translation lookaside buffer

IU Integer unit

L2 Secondary cache

LIFO Last-in-first-out

LR Link register

LRU Least recently used

LSB Least-significant byte

Isb Least-significant bit

LSU Load/store unit

MEl Modifiedlexclusive/invalid

MESI Modified/exclusive/sharedlinvalid-cache coherency protocol

MMU Memory management unit

MO MO register

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NaN Not a number

No-op No operation

OEA Operating environment architecture

PID Processor identification tag

PIR Processor identification register

PLL Phase-locked loop

MOTOROLA AboutThis Book xxxv

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

POWER Performance Optimized with Enhanced RISC architecture

PTE Page table entry

PTEG Page table entry group

PVR Processor version register

RAW Read-alter-write

RISC Reduced instruction set computing

RPA Required physical address

RTl Register transfer language

RWITM Read with intent to modify

SDR1 Register that specifies the page table base address for virtual-to-physical address translation

SlB Segment lookaside buffer

SPR Special-purpose register

SR Segment register

SRRO Machine status save/restore register 0

SRR1 Machine status save/restore register 1

SRU System register unit

TAP Test access port

TB Time base facility

TBl Time base lower register

TBU Time base upper register

TlB Translation lookaside buffer

TTL Transistor-to-transistor logic

UIMM Unsigned immediate value

UISA User instruction set architecture

UTlB Unified translation lookaside buffer

UUT Unit under test

VEA Virtual environment architecture

WAR Write-alter-read

WAW Write-alter-write

WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded bits

XATC Extended address transfer code

XER Register used for indicating conditions such as carries and overflows for integer operations

xxxvi MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Terminology Conventions
Table ii describes terminology conventions used in this manual.

Table ii. Terminology Conventions

The Architecture Specification This Manual

Data storage interrupt (DSI) DSI exception

Extended mnemonics Simplified mnemonics

Fixed-point unit (FXU) Integer unit (IU)

Instruction storage interrupt (lSI) lSI exception

Interrupt Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

Store in Write back

Store through Write through

MOTOROLA AboutThis Book xxxvii

Table iii describes instruction field notation used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:

SA,SS,ST crbA, crbS, crbD (respectively)

SF, SFA crfD, crfS (respectively)

0 d

OS ds

FLM FM

FRA,FRS,FRC,FR~FRS frA, frS, frC, frO, frS (respectively)

FXM CRM

RA, RS, RT, RS rA, rS, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

I, II, III 0 ... 0 (shaded)

xxxviii MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Chapter 1
Overview

This chapter provides an overview of features of the PowerPC 603e ™ microprocessor and
the PowerPCTM architecture, and information about how the 603e implementation complies
with the architectural definitions. In addition, this book describes the EC603e
microprocessor. Note that the 603e and EC603e microprocessors are implemented in both
a 2.S-volt version (PID 0007v 603e microprocessor, abbreviated as PID7v-603e) and a
3.3-volt version (PID 0006 603e microprocessor, abbreviated as PID6-603e).

1.1 Overview
This section describes the details of the 603e, provides a block diagram showing the major
functional units, and describes briefly how those units interact. Any differences between the
PID6-603e, PID7v-603e, and EC603e implementations are noted.

The 603e is a low-power implementation of the PowerPC microprocessor family of reduced
instruction set computing (RISC) microprocessors. The 603e implements the 32-bit portion
of the PowerPC architecture, which provides 32-bit effective addresses, integer data types
of 8, 16, and 32 bits, and floating-point data types of 32 and 64 bits.

The 603e is a superscalar processor that can issue and retire as many as three instructions
per clock. Instructions can execute out of order for increased performance; however, the
603e makes completion appear sequential.

The 603e integrates five execution units-an integer unit (IU), a floating-point unit (FPU)
(not supported on the EC603e microprocessor), a branch processing unit (BPU), a
load/store unit (LSU), and a system register unit (SRU). The ability to execute five
instructions in parallel and the use of simple instructions with rapid execution times yield
high efficiency and throughput for 603e-based systems. Most integer instructions execute
in one clock cycle. On the 603e, the FPU is pipelined so a single-precision multiply-add
instruction can be issued and completed every clock cycle. (Note that the EC603e
microprocessor does not support the floating-point unit.)

The 603e provides independent on-chip, 16-Kbyte, four-way set-associative, physically
addressed caches for instructions and data and on-chip instruction and data memory
management units (MMUs). The MMUs contain 64-entry, two-way set-associative, data
and instruction translation lookaside buffers (DTLB and ITLB) that provide support for

MOTOROLA Chapter 1. Overview 1-1

demand-paged virtual memory address translation and variable-sized block translation. The
TLBs and caches use a least recently used (LRU) replacement algorithm. The 603e also
supports block address translation through the use of two independent instruction and data
block address translation (!BAT and DBAT) arrays of four entries each. Effective addresses
are compared simultaneously with all four entries in the BAT array during block translation.
In accordance with the PowerPC architecture, if an effective address hits in both the TLB
and BAT array, the BAT translation takes priority.

The 603e has a selectable 32- or 64-bit data bus and a 32-bit address bus. The 603e interface
protocol allows multiple masters to compete for system resources through a central external
arbiter. The 603e provides a three-state coherency protocol that supports the exclusive,
modified, and invalid cache states. This protocol is a compatible subset of the MESI
(modified/exclusive/shared/invalid) four-state protocol and operates coherently in systems
that contain four-state caches. The 603e supports single-beat and burst data transfers for
memory accesses, and supports memory-mapped I/O operations.

The 603e is fabricated using an advanced CMOS process technology and is fully
compatible with TTL devices.

1.1.1 Features
This section describes the major features of the 603e noting where the PID6-603e,
PID7v-603e, and EC603e implementations differ:

1-2

• High-performance, superscalar microprocessor

- As many as three instructions issued and retired per clock

- As many as five instructions in execution per clock

- Single-cycle execution for most instructions

- Pipelined FPU for all single-precision and most double-precision operations
(The EC603e microprocessor does not support the floating-point unit.)

• Five independent execution units and two register files

- BPU featuring static branch prediction

- A 32-bit IU

- Fully IEEE 754-compliant FPU for both single- and double-precision operations
(The EC603e microprocessor does not support the floating-point unit.)

- LSU for data transfer between data cache and GPRs and FPRs
(The EC603e microprocessor does not support the floating-point unit.)

- SRU that executes condition register (CR), special-purpose register (SPR), and
integer add/compare instructions

- Thirty-two GPRs for integer operands

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

- Thirty-two FPRs for single- or double-precision operands
(The EC603e microprocessor does not support the floating-point unit.)

• High instruction and data throughput

- Zero-cycle branch capability (branch folding)

- Programmable static branch prediction on unresolved conditional branches

- Instruction fetch unit capable of fetching two instructions per clock from the
instruction cache

- A six-entry instruction queue that provides lookahead capability

- Independent pipelines with feed-forwarding that reduces data dependencies in
hardware

- l6-Kbyte data cache-four-way set-associative, physically addressed; LRU
replacement algorithm

- l6-Kbyte instruction cache-four-way set-associative, physically addressed;
LRU replacement algorithm

- Cache write-back or write-through operation programmable on a per page or per
block basis

- BPU that performs CR lookahead operations

- Address translation facilities for 4-Kbyte page size, variable block size, and
256-Mbyte segment size

- A 64-entry, two-way set-associative ITLB

- A 64-entry, two-way set-associative DTLB

- Four-entry data and instruction BAT arrays providing l28-Kbyte to 256-Mbyte
blocks

- Software table search operations and updates supported through fast trap
mechanism

- 52-bit virtual address; 32-bit physical address

• Facilities for enhanced system performance

- A 32- or 64-bit split-transaction external data bus with burst transfers

- Support for one-level address pipelining and out-of-order bus transactions

- Hardware support for misaligned little-endian accesses (PID7v-603e)

MOTOROLA Chapter 1. Overview 1-3

• Integrated power management

- Low-power 2.5-volt and 3.3-volt designs

- Internal processor/bus clock multiplier ratios as follows:

- 111, 1.5/1,2/1,2.511,3/1, 3.5/1, and 4/1 (PID6-603e)

- 211,2.5/1,3/1,3.5/1,4/1,4.5/1,5/1,5.5/1, and 6/1 (PID7v-603e)

- Three power-saving modes: doze, nap, and sleep

- Automatic dynamic power reduction when internal functional units are idle

• In-system testability and debugging features through JTAG boundary-scan
capability

Features specific to the PID7v-603e follow:

1-4

• Enhancements to the register set

- The PID7v-603e adds two new bits to the HIDO register:

- The address bus enable (ABE) bit, bit 28, gives the PID7v-603e
microprocessor the ability to broadcast debf, debi, and debst onto the 60x
bus.

- The instruction fetch enable M (IFEM) bit, bit 24, allows the PID7v-603e to
reflect the value of the M-bit onto the 60x bus during instruction translation.

- The Run_N counter register (Run_N) has been extended from 16 to 32 bits.

• Enhancements to cache implementation

- The instruction cache is blocked only until the critical load completes (hit under
reloads allowed).

- The critical double word is simultaneously written to the cache and forwarded to
the requesting unit, thus minimizing stalls due to load delays.

- Provides for an optional data cache operation broadcast feature (enabled by the
HIDO[ABE] bit) that allows for correct system management utilizing an external
copyback L2 cache.

- All of the cache control instructions (iebi, debi, debf, and debst, excluding
debz) require that the HIDO[ABE] configuration bit be enabled in order to
execute.

• Exceptions

- The PID7v-603e now offers hardware support for misaligned little-endian
accesses. Little-endian load/store accesses that are not on a word boundary, with
the exception of strings and multiples, generate exceptions under the same
circumstances as big-endian accesses.

- The PID7v-603e removed misalignment support for eciwx and eeowx graphics
instructions. These instructions cause an alignment exception if the access is not
on a word boundary.

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

• Bus clock-New bus multipliers of 4.5x, 5x, 5.5x, and 6x that are selected by the
unused encodings of the PLL_CFG[0-3]. Bus multipliers of Ix and 1.5x are not
supported by PID7v-603e.

• Power management-Internal voltage supply changed from 3.3 volts to 2.5 volts.
The core logic of the chip now uses a 2.5-volt supply.

• Signals-The Run_N counter, which affects the JTAG/COP, has been extended from
16 bits to 32 bits.

• Instruction timing

- The integer divide instructions divwu[o][.] and divw[o][.] execute in 20 clock
cycles; execution of these instructions in the PID6-603e requires 37 clock cycles.

- Support for single-cycle store

- An adder/comparator added to system register unit that allows dispatch and
execution of multiple integer add and compare instructions on each cycle.

Figure 1-1 provides a block diagram of the 603e that illustrates how the execution
units-IU, FPU (not supported by the EC603e microprocessor), BPU, LSU, and
SRU-operate independently and in parallel. Note that this is a conceptual diagram and
does not attempt to show how these features are physically implemented on the chip. For
more information on the execution units, refer to PowerPC 603e RISC Microprocessor
Technical Summary.

The 603e provides address translation and protection facilities, including an ITLB, DTLB,
and instruction and data BAT arrays. Instruction fetching and issuing is handled in the
instruction unit. Translation of addresses for cache or external memory accesses are
handled by the MMUs. Both units are discussed in more detail in Sections 1.1.3,
"Instruction Unit," and 1.1.5.1, "Memory Management Units (MMUs)."

MOTOROLA Chapter 1. Overview 1-5

64 Bit

I "'
t

.-----------+--1 SEQUENTIAL I 64 Bit
FETCHER

BRANCH
PROCESSING

UNIT

SYSTEM
REGISTER

UNIT

G
I-

INSTRUCTION
QUEUE EI3

.---___ --...J {64 Bit

Dispatch Unit "}---l
INSTRUCTION UNIT

64 Bit
r- -- -_--,

~ 64 Bit l 64 Bid r 64 BitJ. I
INTEGER 1+ _ GPR File ~ LOAD/STORE ~ FPR File ~ FLOATI~G. I

I 7U~I: I G'p R~namE UNIT I FPRename ~()Nr'!1rr :
Registers G . Registers • .. .

rnBJ 1 .-J J ~l
l I II

-'-.CJ

32 Bit
COMPLETION

UNIT
DMMU IMMU

§ I SRs I
-

I SRs I
-

DBAT 64 Bit IBAT

IDTLBI
Array

1mB I
Array

'--- '---

Power Time Base I Dissipation Counter/
Control Decremente

Tags I 16·Kbyte 1- 16·Kbyte ~
JTAG/COP Clock D Cache

Tags
I Cache

Interface Multiplier

t t
Touch Load Buffer I
Copyback Buffer I

32·BIT ADDRESS BUS

3U64·BIT DATA BUS

PROCESSOR BUS
INTERFACE

l
* Note that the EC603e microprocessor does not support the floating-point unit or the floating-point register file.

Figure 1-1. Block Diagram

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

1.1.2 System Design and Programming Considerations
The 603e is built upon the low power dissipation, low cost and high performance attributes
of the 603 while providing the system designer additional capabilities through higher
processor clock speeds (to 100 MHz), increases in cache size (16-Kbyte instruction and
data caches) and set associativity (four-way), and greater system clock flexibility. The
following subsections describe the differences between the 603 and the 603e that affect the
system designer and programmer already familiar with the operation of the 603.

The design enhancements to the 603e are described in the following sections as changes
that can require a modification to the hardware or software configuration of a system
designed for the 603.

1.1.2.1 Hardware Features
The following hardware features of the 603e may require system designers to modify
systems designed for the 603.

1.1.2.1.1 Replacement of XATS Signal by CSE1 Signal
The 603e employs four-way set associativity for both the instruction and data caches, in
place of the two-way set associativity used in the 603. This change requires the use of an
additional cache set entry (CSE I) signal to indicate which member of the cache set is being
loaded during a cache line fill. The CSEI signal on the 603e is in the same pin location as
the XATS signal on the 603. Note that the XATS signal is no longer needed by the 603e
because support for access to direct-store segments has been removed.

Table 1-1 shows the CSE[O-l] signal encoding indicating the cache set element selected
during a cache load operation.

Table 1-1. CSE[0-1] Signals

CSE[0-1] Cache Set Element

00 Set 0

01 Set 1

10 Set 2

11 Set 3

1.1.2.1.2 Addition of Half-Clock Bus Multipliers
Some of the reserved clock configuration signal settings of the 603 are redefined to allow
more flexible selection of higher internal and bus clock frequencies. The 603e provides
programmable internal processor clock rates of lx, 1.5x, 2x, 2.5x, 3x, 3.5x, and 4x
multiples of the externally supplied clock frequency. For additional information, refer to the
appropriate device-specific hardware specifications.

MOTOROLA Chapter 1. Overview 1-7

1.1.2.2 Software Featu.res
The features of the 603e described in the following sections affect software originally
written for the 603.

1.1.2.2.1 16-Kbyte Instruction and Data Caches
The instruction and data caches of the 603e are 16 Kbytes in size, compared to the 8-Kbyte
instruction and data caches of the 603. The increase in cache size may require modification
of cache flush routines. The increase in cache size is also reflected in four-way set
associativity of the instruction and data caches in place of the two-way set associativity in
the 603.

1.1.2.2.2 Clock Configuration Available in HID1 Register
Bits 0-3 in the new HIDI register (SPR 1009) provides software read-only access to the
configuration of the PLL_ CFG signals. The HID 1 register is not implemented in the 603.

1.1.2.2.3 Performance Enhancements
The following enhancements provide improved performance without any required changes
to software (other than compiler optimization) or hardware designed for the 603:

1-8

• Support for single-cycle store.

• Addition of adder/comparator in system register unit allows dispatch and execution
of multiple integer add and compare instructions on each cycle.

• Addition of a key bit (bit 12) to SRRI to provide information about memory
protection violations prior to page table search operations. This key bit is set when
the combination of the settings in the appropriate Kx bit in the segment register and
the MSR[PR] bit indicates that when the PP bits in the PTE are set to either 00 or
01, a protection violation exists; if this is the case for a data write operation with a
DTLB miss, the changed (C) bit in the page tables should not be updated (see
Table 1-2). This reduces the time required to execute the page table search routine
since the software no longer has to explicitly read both the Kx and MSR[PR] bits to
determine whether a protection violation exists before updating the C bit.

Table 1-2. Generated SRR1 [Key] Bit

Segment Register
MSR[PR]

SRR1 [Key] Generated
[Ks, Kp] on OTLB Misses

Ox 0 0

xO 1 0

1x 0 1

x1 1 1

Note that this key bit indicates a protection violation if the
PTE[pp 1 bits are either 00 or 01.

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

1.1.3 Instruction Unit
As shown in Figure 1-1, the 603e instruction unit, which contains a fetch unit, instruction
queue, dispatch unit, and BPU, provides centralized control of instruction flow to the
execution units. The instruction unit determines the address of the next instruction to be
fetched based on information from the sequential fetcher and from the BPU.

The instruction unit fetches the instructions from the instruction cache into the instruction
queue. The BPU extracts branch instructions from the fetcher and uses static branch
prediction on unresolved conditional branches to allow the instruction unit to fetch
instructions from a predicted target instruction stream while a conditional branch is
evaluated. The BPU folds out branch instructions for unconditional branches or conditional
branches unaffected by instructions in progress in the execution pipeline.

Instructions issued beyond a predicted branch do not complete execution until the branch
is resolved, preserving the programming model of sequential execution. If any of these
instructions are to be executed in the BPU, they are decoded but not issued. Instructions to
be executed by the FPU, IU, LSU, and SRU are issued and allowed to complete up to the
register write-back stage. (Note that the FPU is not supported on the EC603e
microprocessor.) Write-back is allowed when a correctly predicted branch is resolved, and
instruction execution continues without interruption along the predicted path.

If branch prediction is incorrect, the instruction unit flushes all predicted path instructions,
and instructions are issued from the correct path.

1.1.3.1 Instruction Queue and Dispatch Unit
The instruction queue (IQ), shown in Figure 1-1, holds as many as six instructions and
loads up to two instructions from the instruction unit during a single cycle. The instruction
fetch unit continuously loads as many instructions as space in the IQ allows. Instructions
are dispatched to their respective execution units from the dispatch unit at a maximum rate
of two instructions per cycle. Dispatching is facilitated to the IU, FPU (not supported on
the EC603e microprocessor), LSU, and SRU by the provision of a reservation station at
each unit. The dispatch unit performs source and destination register dependency checking,
determines dispatch serializations, and inhibits subsequent instruction dispatching as
required.

For a more detailed overview of instruction dispatch, see Section 1.3.6, "Instruction
Timing."

1.1.3.2 Branch Processing Unit (BPU)
The BPU receives branch instructions from the fetch unit and performs CR lookahead
operations on conditional branches to resolve them early, achieving the effect of a
zero-cycle branch in many cases.

The BPU uses a bit in the instruction encoding to predict the direction of the conditional
branch. Therefore, when an unresolved conditional branch instruction is encountered, the

MOTOROLA Chapter 1. Overview 1-9

603e fetches instructions from the predicted target stream until the conditional branch is
resolved.

The BPU contains an adder to compute branch target addresses and three user-control
registers-the link register (LR), the count register (CTR), and the CR. The BPU calculates
the return pointer for subroutine calls and saves it into the LR for certain types of branch
instructions. The LRalso contains the branch target address for the Branch Conditional to
Link Register (bclrx) instruction. The CTR contains the branch target address for the
Branch Conditional to Count Register (bcctrx) instruction. The contents of the LR and
CTR can be copied to or from any GPR. Because the BPU uses dedicated registers rather
than GPRs or FPRs, execution of branch instructions is largely independent from execution
of integer and floating-point instructions.

1.1.4 Independent Execution Units
The PowerPC architecture's support for independent execution units allows
implementation of processors with out-of-order instruction execution. For example,
because branch instructions do not depend on GPRs or FPRs, branches can often be
resolved early, eliminating stalls caused by taken branches.

In addition to the BPU, the 603e provides four other execution units and a completion unit,
which are described in the following sections.

1.1.4.1 Integer Unit (IU)
The IU executes all integer instructions. The IU executes one integer instruction at a time,
performing computations with its arithmetic logic unit (ALU), multiplier, divider, and XER
register. Most integer instructions are single-cycle instructions. Thirty-two general-purpose
registers are provided to support integer operations. Stalls due to contention for GPRs are
minimized by the automatic allocation of rename registers. The 603e writes the contents of
the rename registers to the appropriate GPR when integer instructions are retired by the
completion unit.

1.1.4.2 Floating-Point Unit (FPU)
The FPU (not supported by the EC603e microprocessor) contains a single-precision
mUltiply-add array and the floating-point status and control register (FPSCR). The
multiply-add array allows the 603e to efficiently implement multiply and multiply-add
operations. The FPU is pipelined so that single-precision instructions and double-precision
instructions can be issued back-to-back. Thirty-two floating-point registers are provided to
support floating-point operations. Stalls due to contention for FPRs are minimized by the
automatic allocation of rename registers. The 603e writes the contents of the rename
registers to the appropriate FPR when floating-point instructions are retired by the
completion unit.

The 603e supports all IEEE 754 floating-point data types (normalized, denormalized, NaN,
zero, and infinity) in hardware, eliminating the latency incurred by software exception

1-10 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

routines. (The term, 'exception' is also referred to as 'interrupt' in the architecture
specification.)

1.1.4.3 Load/Store Unit (LSU)
The LSU executes all load and store instructions and provides the data transfer interface
between the GPRs, FPRs, and the cache/memory subsystem. The LSU calculates effective
addresses, performs data alignment, and provides sequencing for load/store string and
multiple instructions. (Note that the EC603e microprocessor does not support the
floating-point register file.)

Load and store instructions are issued and translated in program order; however, the actual
memory accesses can occur out of order. Synchronizing instructions are provided to
enforce strict ordering.

Cacheable loads, when free of data dependencies, execute in an out-of-order manner with
a maximum throughput of one per cycle and a two-cycle total latency. Data returned from
the cache is held in a rename register until the completion logic commits the value to a GPR
or FPR (not supported by the EC603e microprocessor). Stores cannot be executed in a
predicted manner and are held in the store queue until the completion logic signals that the
store operation is to be completed to memory. The 603e executes store instructions with a
maximum throughput of one per cycle and a three-cycle total latency. The time required to
perform the actual load or store operation varies depending on whether the operation
involves the cache, system memory, or an 110 device.

1.1.4.4 System Register Unit (SRU)
The SRU executes various system-level instructions, including condition register logical
operations and move to/from special-purpose register instructions, and also executes
integer add/compare instructions. In order to maintain system state, most instructions
executed by the SRU are completion-serialized; that is, the instruction is held for execution
in the SRU until all prior instructions issued have completed. Results from
completion-serialized instructions executed by the SRU are not available or forwarded for
subsequent instructions until the instruction completes.

1.1.4.5 Completion Unit
The completion unit tracks instructions from dispatch through execution, and then retires,
or "completes" them in program order. Completing an instruction commits the 603e to any
architectural register changes caused by that instruction. In-order completion ensures the
correct architectural state when the 603e must recover from a mispredicted branch or any
exception.

Instruction state and other information required for completion is kept in a first-in-first-out
(FIFO) queue of five completion buffers. A single completion buffer is allocated for each
instruction once it enters the dispatch unit. An available completion buffer is a required
resource for instruction dispatch; if no completion buffers are available, instruction

MOTOROLA Chapter 1. Overview 1-11

dispatch stalls. A maximum of two instructions per cycle are completed in order from the
queue.

1.1.5 Memory Subsystem Support
The 603e provides support for cache and memory management through dual instruction
and data memory management units. The 603e also provides dual 16-Kbyte instruction and
data caches, and an efficient processor bus interface to facilitate access to main memory and
other bus subsystems. The memory subsystem support functions are described in the
following subsections.

1.1.5.1 Memory Management Units (MMUs)
The 603e' s MMU s support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes (232)

of physical memory (referred to as real memory in the architecture specification) for
instruction and data. The MMUs also control access privileges for these spaces on block
and page granularities. Referenced and changed status is maintained by the processor for
each page to assist implementation of a demand-paged virtual memory system. A key bit is
implemented to provide information about memory protection violations prior to page table
search operations.

The LSU calculates effective addresses for data loads and stores, performs data alignment
to and from cache memory, and provides the sequencing for load and store string and
multiple word instructions. The instruction unit calculates the effective addresses for
instruction fetching.

After an address is generated, the higher-order bits of the effective address are translated by
the appropriate MMU into physical address bits. Simultaneously, the lower-order address
bits (that are untranslated and therefore, considered both logical and physical), are directed
to the on-chip caches where they form the index into the four-way set-associative tag array.
After translating the address, the MMU passes the higher-order bits of the physical address
to the cache, and the cache lookup completes. For caching-inhibited accesses or accesses
that miss in the cache, the untranslated lower-order address bits are concatenated with the
translated higher-order address bits; the resulting 32-bit physical address is then used by the
memory unit and the system interface, which accesses external memory.

The MMU also directs the address translation and enforces the protection hierarchy
programmed by the operating system in relation to the supervisor/user privilege level of the
access and in relation to whether the access is a load or store.

For instruction accesses, the MMU performs an address lookup in both the 64 entries of the
ITLB, and in the IBAT array. If an effective address hits in both the ITLB and the IBAT
array, the IBAT array translation takes priority. Data accesses cause a lookup in the DTLB
and DBAT array for the physical address translation. In most cases, the physical address
translation resides in one of the TLBs and the physical address bits are readily available to
the on-chip cache.

1-12 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

When the physical address translation misses in the TLBs, the 603e provides hardware
assistance for software to perform a search of the translation tables in memory. The
hardware assist consists of the following features:

• Automatic storage of the missed effective address in the IMISS and DMISS registers

• Automatic generation of the primary and secondary hashed real address of the page
table entry group (PTEG), which are readable from the HASH1 and HASH2 register
locations.

The HASH data is generated from the contents of the IMISS or DMISS register.
Which register is selected depends on which miss (instruction or data) was last
acknowledged.

• Automatic generation of the first word of the page table entry (PTE) for which the
tables are being searched

• A real page address (RPA) register that matches the format of the lower word of the
PTE

• Two TLB access instructions (tlbli and tlbld) that are used to load an address
translation into the instruction or data TLBs

• Shadow registers for GPRs 0-3 that allow miss code to execute without corrupting
the state of any of the existing GPRs.

These shadow registers are only used for servicing a TLB miss.

See Section 1.3.5.2, "Implementation-Specific Memory Management," for more
information about memory management for the 603e.

1.1.5.2 Cache Units
The 603e provides independent 16-Kbyte, four-way set-associative instruction and data
caches. The cache line size is 32 bytes in length. The caches are designed to adhere to a
write-back policy, but the 603e allows control of cacheability, write policy, and memory
coherency at the page and block levels. The caches use a least recently used (LRU)
replacement policy.

As shown in Figure 1-1, the caches provide a 64-bit interface to the instruction fetch unit
and load/store unit. The surrounding logic selects, organizes, and forwards the requested
information to the requesting unit. Write operations to the cache can be performed on a byte
basis, and a complete read-modify-write operation to the cache can occur in each cycle.

The load/store and instruction fetch units provide the caches with the address of the data or
instruction to be fetched. In the case of a cache hit, the cache returns two words to the
requesting unit.

Since the 603e data cache tags are single ported, simultaneous load or store and snoop
accesses cause resource contention. Snoop accesses have the highest priority and are given
first access to the tags, unless the snoop access coincides with a tag write, in which case the

MOTOROLA Chapter 1. Overview 1-13

snoop is retried and must re-arbitrate for access to the cache. Loads or stores that are
deferred due to snoop accesses are executed on the clock cycle following the snoop.

1.1.6 Processor Bus Interface
Because the caches on the 603e are on-chip, write-back caches, the predominant type of
transaction for most applications is burst-read memory operations, followed by burst-write
memory operations, and single-beat (noncacheable or write-through) memory read and
write operations. Additionally, there can be address-only operations, variants of the burst
and single-beat operations, (for example, global memory operations that are snooped and
atomic memory operations), and address retry activity (for example, when a snooped read
access hits a modified line in the cache).

Memory accesses can occur in single-beat (1-8 bytes) and four-beat burst (32 bytes) data
transfers when the bus is configured as 64 bits, and in single-beat (1-4 bytes), two-beat (8
bytes), and eight-beat (32 bytes) data transfers when the bus is configured as 32 bits. The
address and data buses operate independently to support pipelining and split transactions
during memory accesses. The 603e can pipeline its own transactions to a depth of one level.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the 603e to be integrated into systems that implement various fairness and bus
parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered-sequences of operations, including
load/store string and multiple instructions, do not necessarily complete in the order they
begin-maximizing the efficiency of the bus without sacrificing coherency of the data. The
603e allows read operations to precede store operations (except when a dependency exists,
or in cases where a non-cacheable access is performed), and provides support for a write
operation to proceed a previously queued read data tenure (for example, allowing a snoop
push to be enveloped by the address and data tenures of a read operation). Because the
processor can dynamically optimize run-time ordering of load/store traffic, overall
performance is improved.

1.1.7 System Support Functions
The 603e implements several support functions that include power management, time
base/decrementer registers for system timing tasks, an IEEE 1149.1(JTAG)/common
on-chip processor (COP) test interface, and a phase-locked loop (PLL) clock multiplier.
These system support functions are described in the following subsections.

1-14 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

1.1.7.1 Power Management
The 603e provides four power modes selectable by setting the appropriate control bits in
the machine state register (MSR) and hardware implementation register 0 (HIDO) registers.
The four power modes are as follows:

• Full-power-This is the default power state of the 603e. The 603e is fully powered
and the internal functional units are operating at the full processor clock speed. If the
dynamic power management mode is enabled, functional units that are idle will
automatically enter a low-power state without affecting performance, software
execution, or external hardware.

• Doze-All the functional units of the 603e are disabled except for the time
base/decrementer registers and the bus snooping logic. When the processor is in
doze mode, an external asynchronous interrupt, a system management interrupt, a
decrementer exception, a hard or soft reset, or machine check brings the 603e into
the full-power state. The 603e in doze mode maintains the PLL in a fully powered
state and locked to the system external clock input (SYSCLK) so a transition to the
full-power state takes only a few processor clock cycles.

• Nap-The nap mode further reduces power consumption by disabling bus snooping,
leaving only the time base register and the PLL in a powered state. The 603e returns
to the full-power state upon receipt of an external asynchronous interrupt, a system
management interrupt, a decrementer exception, a hard or soft reset, or a machine
check input (MCP) signal. A return to full-power state from a nap state takes only a
few processor clock cycles.

• Sleep-Sleep mode reduces power consumption to a minimum by disabling all
internal functional units, after which external system logic may disable the PLL and
SYSCLK. Returning the 603e to the full-power state requires the enabling of the
PLL and SYSCLK, followed by the assertion of an external asynchronous interrupt,
a system management interrupt, a hard or soft reset, or a machine check input (MCP)
signal after the time required to relock the PLL.

The PID7v-603e implementation offers the following enhancements to the 603e family:

• Lower-power design

• 2.S-volt core and 3.3-volt I/O

1.1.7.2 Time Base/Decrementer
The time base is a 64-bit register (accessed as two 32-bit registers) that is incremented once
every four bus clock cycles; external control of the time base is provided through the time
base enable (TBEN) signal. The decrementer is a 32-bit register that generates a
decrementer interrupt exception after a programmable delay. The contents of the
decrementer register are decremented once every four bus clock cycles, and the
decrementer exception is generated as the count passes through zero.

MOTOROLA Chapter 1. Overview 1-15

1.1.7.3 IEEE 1149.1 (JTAG)/COPTest Interface
The 603e provides IEEE 1149.1 and COP functions for facilitating board testing and chip
debug. The IEEE 1149.1 test interface provides a means for boundary-scan testing the 603e
and the board to which it is attached. The COP function shares the IEEE 1149.1 test port,
provides a means for executing test routines, and facilitates chip and software debugging.

1.1.7.4 Clock Multiplier
The internal clocking of the 603e is generated from and synchronized to the external clock
signal, SYSCLK, by means of a voltage-controlled oscillator-based PLL. The PLL
provides programmable internal processor clock rates of lx, 1.5x, 2x, 2.5x, 3x, 3.5x, and
4x multiples of the externally supplied clock frequency. The bus clock is the same
frequency and is synchronous with SYSCLK. The configuration of the PLL can be read by
software from the hardware implementation register 1 (HIDl).

1.2 PowerPC Architecture Implementation
The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be measured in terms of which of the following levels of the architecture
is implemented:

• PowerPC user instruction set architecture (VISA)-Defines the base user-level
instruction set, user-level registers, data types, floating-point exception model,
memory models for a uniprocessor environment, and programming model for a
uniprocessor environment.

• PowerPC virtual environment architecture (VEA)-Describes the memory model
for a multiprocessor environment, defines cache control instructions, and describes
other aspects of virtual environments. Implementations that conform to the VEA
also adhere to the VISA, but may not necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)-Defines the memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. Implementations that conform to the OEA also adhere to the
VISA and the VEA.

The PowerPC architecture allows a wide range of designs for such features as cache and
system interface implementations.

1.3 Implementation-Specific Information
The PowerPC architecture is derived from the mM POWER architecture (Performance
Optimized with Enhanced RISC architecture). The PowerPC architecture shares the
benefits of the POWER architecture optimized for single-chip implementations. The
PowerPC architecture design facilitates parallel instruction execution and is scalable to take
advantage of future technological gains.

1-16 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

This section describes the PowerPC architecture in general, and specific details about the
implementation of the 603e as a low-power, 32-bit member of the PowerPC processor
family. The main topics addressed are as follows:

• Section 1.3.1, "Programming Model," describes the registers for the operating
environment architecture common among PowerPC processors and describes the
programming model. It also describes the additional registers that are unique to the
603e.

• Section 1.3.2, "Instruction Set and Addressing Modes," describes the PowerPC
instruction set and addressing modes for the PowerPC operating environment
architecture, and defines and describes the PowerPC instructions implemented in the
603e.

• Section 1.3.3, "Cache Implementation," describes the cache model that is defined
generally for PowerPC processors by the virtual environment architecture. It also
provides specific details about the 603e cache implementation.

• Section 1.3.4, "Exception Model," describes the exception model of the PowerPC
operating environment architecture and the differences in the 603e exception model.

• Section 1.3.5, "Memory Management," describes generally the conventions for
memory management among the PowerPC processors. This section also describes
the 603e's implementation of the 32-bit PowerPC memory management
specification.

• Section 1.3.6, "Instruction Timing," provides a general description of the instruction
timing provided by the superscalar, parallel execution supported by the PowerPC
architecture and the 603e.

• Section 1.3.7, "System Interface," describes the signals implemented on the 603e.

The 603e is a high-performance, superscalar PowerPC microprocessor. The PowerPC
architecture allows optimizing compilers to schedule instructions to maximize performance
through efficient use of the PowerPC instruction set and register model. The multiple,
independent execution units allow compilers to optimize instruction throughput. Compilers
that take advantage of the flexibility of the PowerPC architecture can additionally optimize
system performance of the PowerPC processors.

The following sections summarize the features of the 603e, including both those that are
defined by the architecture and those that are unique to the various 603e implementations.

Specific features ofthe 603e are listed in Section 1.1.1, "Features."

1.3.1 Programming Model
The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format allows specification of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

MOTOROLA Chapter 1. Overview 1-17

PowerPC processors have two levels of privilege-supervisor mode of operation (typically
used by the operating system) and user mode of operation (used by the application
software). The programming models incorporate 32 GPRs, 32 FPRs (not supported by the
EC603e microprocessor), special-purpose registers (SPRs), and several miscellaneous
registers. Each PowerPC microprocessor also has its own unique set of hardware
implementation (HID) registers.

Having access to privileged instructions, registers, and other resources allows the operating
system to control the application environment (providing virtual memory and protecting
operating-system and critical machine resources). Instructions that control the state of the
processor, the address translation mechanism, and supervisor registers can be executed only
when the processor is operating in supervisor mode.

Figure 1-2 shows all the 603e registers available at the user and supervisor level. The
numbers to the right of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

The following subsections describe the PID7v-603e implementation-specific features as
they apply to registers.

1.3.1.1 Processor Version Register (PVR)
The processor version number is 6 for the PID6-603e and 7 for the PID7v-603e. The
processor revision level starts at OxOlOO and changes for each chip revision. The revision
level is updated on all silicon revisions.

1.3.1.2 Hardware Implementation Register 0 (HIDO)
PID7v-603e (designated by PVR level Ox0200) defines additional bits in the hardware
implementation register 0 (HIDO), a supervisor-level register that provides the means for
enabling the 603e's checkstops and features, and allows software to read the configuration
of the PLL configuration signals.

The HIDO bits with changed bit assignments are shown in Table 1-3. The HIDO bits that are
not shown here are implemented as they are in Section 2.1.2.1, "Hardware Implementation
Registers (HIDO and HID1)."

Table 1-3. Additional/Changed HIDO Bits

Bit(s) Description

24 Instruction fetch enable M (IFEM) bit-Enables the M bit on the bus. Used for instruction fetches.

25-26 Reserved

28 Address broadcast enable (ABE)-This configuration bit allows for the broadcast of debt, debi, and
debst on the bus. Note that these cache control instruction broadcasts are not snooped by the
PID7v-603e. Refer to Section 1.3.3, "Cache Implementation:' for more information.

29-30 Reserved

1-18 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

1.3.1.3 Run_N Counter Register (Run_N)
The 33-bit Run_N counter register is unique to the PID7v-603e. The Run_N counter is used
by the COP to control the number of processor cycles that the processor runs before halting.
The most-significant 32 bits form a 32-bit counter. The function of the least-significant bit
remains unchanged.

1.3.1.4 General-Purpose Registers (GPRs)
The PowerPC architecture defines 32 user-level, general-purpose registers (GPRs). These
registers are either 32 bits wide in 32-bit PowerPC microprocessors and 64 bits wide in
64-bit PowerPC microprocessors. The GPRs serve as the data source or destination for all
integer instructions.

1.3.1.5 Floating-Point Registers (FPRs)
The PowerPC architecture also defines 32 user-level, 64-bit floating-point registers (FPRs)
(not supported by the EC603e microprocessor). The FPRs serve as the data source or
destination for floating-point instructions. These registers can contain data objects of either
single- or double-precision floating-point formats.

1.3.1.6 Condition Register (CR)
The CR is a 32-bit user-level register that consists of eight four-bit fields that reflect the
results of certain operations, such as move, integer and floating-point compare, arithmetic,
and logical instructions, and provide a mechanism for testing and branching.

1.3.1.7 Floating-Point Status and Control Register (FPSCR)
The floating-point status and control register (FPSCR) is a user-level register that contains
all exception signal bits, exception summary bits, exception enable bits, and rounding
control bits needed for compliance with the IEEE 754 standard. (Note that this is not
supported by the EC603e microprocessor.)

1.3.1.8 Machine State Register (MSR)
The machine state register (MSR) is a supervisor-level register that defines the state of the
processor. The contents of this register are saved when an exception is taken and restored
when the exception handling completes. The 603e implements the MSR as a 32-bit register;
64-bit PowerPC processors implement a 64-bit MSR. To ensure proper operation of the
EC603e microprocessor, the MSR[FP] bit should remain cleared to zero.

1.3.1.9 Segment Registers (SRs)
For memory management, 32-bit PowerPC microprocessors implement sixteen 32-bit
segment registers (SRs). To speed access, the 603e implements the segment registers as two
arrays; a main array (for data memory accesses) and a shadow array (for instruction
memory accesses). Loading a segment entry with the Move to Segment Register (mtsr)
instruction loads both arrays.

MOTOROLA Chapter 1. Overview 1-19

1.3.1.10 Special-Purpose Registers (SPRs)
The PowerPC operating environment architecture defines numerous special-purpose
registers that serve a variety of functions, such as providing controls, indicating status,
configuring the processor, and performing special operations. During normal execution, a
program can access the registers, shown in Figure 2-1, depending on the program's access
privilege (supervisor or user, determined by the privilege-level (PR) bit in the MSR). Note
that registers ~uch as the GPRs and FPRs (not supported by the EC603e microprocessor)
are accessed through operands that are part of the instructions. Access to registers can be
explicit (that is, through the use of specific instructions for that purpose such as Move to
Special-Purpose Register (mtspr) and Move from Special-Purpose Register (mfspr)
instructions) or implicit, as the part of the execution of an instruction. Some registers are
accessed both explicitly and implicitly

In the 603e, all SPRs are 32 bits wide.

1.3.1.10.1 User-Level SPRs
The following 603e SPRs are accessible by user-level software:

• Link register (LR)-The link register can be used to provide the branch target
address and to hold the return address after branch and link instructions. The LR is
32 bits wide in 32-bit implementations.

Count register (CTR)-The CTR is decremented and tested automatically as a result
of branch-and-count instructions. The CTR is 32 bits wide in 32-bit
implementations.

• XER register-The 32-bit XER contains the summary overflow bit, integer carry bit,
overflow bit, and a field specifying the number of bytes to be transferred by a Load
String Word Indexed (lswx) or Store String Word Indexed (stswx) instruction.

1.3.1.10.2 Supervisor-Level SPRs
The 603e also contains SPRs that can be accessed only by supervisor-level software. These
registers consist of the following:

• The 32-bit DSISR defines the cause of data access and alignment exceptions.

• The data address register (DAR) is a 32-bit register that holds the address of an
access after an alignment or DSI exception.

• Decrementer register (DEC) is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay.

• The 32-bit SDR1 specifies the page table format used in virtual-to-physical address
translation for pages. (Note that physical address is referred to as real address in the
architecture specification.)

• The machine status save/restore register 0 (SRRO) is a 32-bit register that is used by
the 603e for saving the address of the instruction that caused the exception, and the
address to return to when a Return from Interrupt (rfi) instruction is executed.

1-20 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

• The machine status save/restore register 1 (SRR1) is a 32-bit register used to save
machine status on exceptions and to restore machine status when an rfi instruction
is executed.

• The 32-bit SPRGO-SPRG3 registers are provided for operating system use.

• The external access register (EAR) is a 32-bit register that controls access to the
external control facility through the External Control In Word Indexed (eciwx) and
External Control Out Word Indexed (ecowx) instructions.

• The time base register (TB) is a 64-bit register that maintains the time of day and
operates interval timers. The TB consists of two 32-bit fields-time base upper
(TBU) and time base lower (TBL).

• The processor version register (PVR) is a 32-bit, read-only register that identifies the
version (model) and revision level of the PowerPC processor.

• Block address translation (BAT) arrays-The PowerPC architecture defines 16 BAT
registers, divided into four pairs of data BATs (DBATs) and four pairs of instruction
BATs (!BATs). See Figure 2-1 for a list of the SPR numbers for the BAT arrays.

The following supervisor-level SPRs are implementation-specific to the 603e:

• The DMISS and IMISS registers are read-only registers that are loaded
automatically upon an instruction or data TLB miss.

• The HASH1 and HASH2 registers contain the physical addresses of the primary and
secondary page table entry groups (PTEGs).

• The ICMP and DCMP registers contain a duplicate of the first word in the page table
entry (PTE) for which the table search is looking.

• The required physical address (RPA) register is loaded by the processor with the
second word of the correct PTE during a page table search.

• The hardware implementation (HIDO and HID 1) registers provide the means for
enabling the 603e's checkstops and features, and allows software to read the
configuration of the PLL configuration signals.

• The instruction address breakpoint register (lABR) is loaded with an instruction
address that is compared to instruction addresses in the dispatch queue. When an
address match occurs, an instruction address breakpoint exception is generated.

Figure 2-1 shows all the 603e registers available at the user and supervisor level. The
numbers to the right of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

MOTOROLA Chapter 1. Overview 1-21

USER MODEL

General-Purpose
Registers

GPRO

GPRl

• • ·
GPR31

Floating-Point
Reglsters2

FPRO

FPRl

• • ·
FPR31

Condition Register

CR

Floating-Point Status
and Control Reglster2

I FPSCR

XER

XER I SPR 1

Link Register

LR ISPRS

Count Register

CTR I SPR9

Time Base Facility
(For Reading)

~TBR26S
~TBR269

SUPERVISOR MODEL
Configuration Registers

Hardware
Implemenlation
Registers

~ SPR1008

~ SPR1009

Machine State
Register

MSR

Processor Version
Register

,--_p_v_R---,1 SPR 287

Memory Management Registers
Instruction BAT
Registers

IBATOU

IBATOL

IBAT1U

IBAT1L

IBAT2U

IBAT2L

IBAT3U

IBAT3L

SDR1

SPR528

SPR529

SPR 530

SPR531

SPR532

SPR533

SPR534

SPR535

I SDRl I SPR 25

Data BAT Registers

DBATOU

DBATOL

DBAT1U

DBAT1L

DBAT2U

DBAT2L

DBAT3U

DBAT3L

SPR 536

SPR 537

SPR538

SPR539

SPR 540

SPR 541

SPR 542

SPR 543

Software Table
Search Registers 1

DMISS

DCMP

HASHl

HASH2

IMISS

ICMP

RPA

SPR 976

SPR977

SPR978

SPR 979

SPR 980

SPR981

SPR 982

Segment Registers

SRO

SRl

• • ·
SR15

Exception Handling Registers
Data Address Register

DAR I SPR 19

SPRGs

SPRGO SPR 272

SPRGl SPR 273

SPRG2 SPR 274

SPRG3 SPR 275

Miscellaneous Registers
Time Base Facility
(For Writing)

~SPR284
~SPR285
Instruction Address
Breakpoint Register 1

IABR I SPR 1010

DSISR

I DSISR I SPR 18

Save and Restore

~SPR26
~SPR27

Decrementer

DEC I SPR22

External Address
Register (Optional)

I EAR I SPR 282

Notes: lThese registers are 603e-specific (PID6-603e and PID7v-603e) registers.

1-22

They may not be supported by other PowerPC processors.
2Not supported on the EC603e microprocessor.

Figure 1-2. Programming Model-Registers

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

1.3.2 Instruction Set and Addressing Modes
The following subsections describe the PowerPC instruction set and addressing modes in
general.

1.3.2.1 PowerPC Instruction Set and Addressing Modes
All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly simplifies
instruction pipelining.

1.3.2.1.1 PowerPC Instruction Set
The PowerPC instructions are divided into the following categories:

• Integer instructions-These include computational and logical instructions.

- Integer arithmetic instructions

- Integer compare instructions

- Integer logical instructions

- Integer rotate and shift instructions
• Floating-point instructions-These include floating-point computational

instructions, as well as instructions that affect the FPSCR. (Note that these
instructions are not implemented on the EC603e microprocessor.)

- Floating-point arithmetic instructions

- Floating-point multiply/add instructions

- Floating-point rounding and conversion instructions

- Floating-point compare instructions

- Floating-point status and control instructions

• Load/store instructions-These include integer and floating-point load and store
instructions.

- Integer load and store instructions

- Integer load and store multiple instructions

- Floating-point load and store (not implemented on the EC603e microprocessor)

- Primitives used to construct atomic memory operations (lwarx and stwcx.
instructions)

• Flow control instructions-These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

- Branch and trap instructions

- Condition register logical instructions

MOTOROLA Chapter 1. Overview 1-23

• Processor control instructions-These instructions are used for synchronizing
memory accesses and management of caches, TLBs, and the segment registers.

- Move to/from SPR instructions
- Move to/from MSR
- Synchronize
- Instruction synchronize

• Memory control instructions-These instructions provide control of caches, TLBs,
and segment registers.

- Supervisor-level cache management instructions
- User-level cache instructions

- Segment register manipulation instructions
- Translation lookaside buffer management instructions

Note that this grouping of the instructions does not indicate which execution unit executes
a particular instruction or group of instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision (one word) and double-precision (one double
word) floating-point operands. The PowerPC architecture uses instructions that are four
bytes long and word-aligned. It provides for byte, half-word, and word operand loads and
stores between memory and a set of 32 GPRs. It also provides for word and double-word
operand loads and stores between memory and a set of 32 floating-point registers (FPRs).

Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
distinct instructions.

PowerPC processors follow the program flow when they are in the normal execution state.
However, the flow of instructions can be interrupted directly by the execution of an
instruction or by an asynchronous event. Either kind of exception may cause one of several
components of the system software to be invoked.

1.3.2.1.2 Calculating Effective Addresses
The effective address (EA) is the 32-bit address computed by the processor when executing
a memory access or branch instruction or when fetching the next sequential instruction.

The PowerPC architecture supports two simple memory addressing modes:

• EA = (rAIO) + offset (including offset = 0) (register indirect with immediate index)

• EA = (rAIO) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.
Calculation of the effective address for aligned transfers occurs in a single clock cycle.

1-24 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

For a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address to effective address O.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored in 32-bit implementations.

1.3.2.2 Implementation-Specific Instruction Set
The 603e instruction set is defined as follows:

• The 603e provides hardware support for all 32-bit PowerPC instructions.

• The 603e provides two implementation-specific instructions used for software table
search operations following TLB misses:

- Load Data TLB Entry (tlbld)

- Load Instruction TLB Entry (tlbli)

• The 603e implements the following instructions which are defined as optional by the
PowerPC architecture:

- External Control In Word Indexed (eciwx)

- External Control Out Word Indexed (ecowx)

- Floating Select (fsel)
(Not supported by the EC603e microprocessor)

- Floating Reciprocal Estimate Single-Precision (fres)
(Not supported by the EC603e microprocessor)

- Floating Reciprocal Square Root Estimate (frsqrte)
(Not supported by the EC603e microprocessor)

- Store Floating-Point as Integer Word (stfiwx)
(Not supported by the EC603e microprocessor)

1.3.3 Cache Implementation
The following subsections describe the general cache characteristics as implemented in the
PowerPC architecture, and the 603e implementation, specifically. PID7v-603e specific
information is noted where applicable.

1.3.3.1 PowerPC Cache Characteristics
The PowerPC architecture does not define hardware aspects of cache implementations. For
example, some PowerPC processors, including the 603e, have separate instruction and data
caches (Harvard architecture), while others, such as the PowerPC 601® microprocessor,
implement a unified cache.

MOTOROLA Chapter 1. Overview 1-25

PowerPC microprocessors control the following memory access modes on a page or block
basis:

• Write-backlwrite-through mode

• Caching-inhibited mode

• Memory coherency

Note that in the 603e, a cache block is defined as eight words. The VEA defines cache
management instructions that provide a means by which the application programmer can
affect the cache contents.

1.3.3.2 Implementation-Specific Cache Implementation
The 603e has two 16-Kbyte, four-way set-associative (instruction and data) caches. The
caches are physically addressed, and the data cache can operate in either write-back or
write-through mode as specified by the PowerPC architecture.

The data cache is configured as 128 sets of four blocks each. Each block consists of 32
bytes, two state bits, and an address tag. The two state bits implement the three-state MEl
(modified/exclusive/invalid) protocol. Each block contains eight 32-bit words. Note that the
PowerPC architecture defines the term 'block' as the cacheable unit. For the 603e, the block
size is equivalent to a cache line. A block diagram of the data cache organization is shown
in Figure 1-3.

The instruction cache also consists of 128 sets of four blocks, and each block consists of 32
bytes, an address tag, and a valid bit. The instruction cache may not be written to except
through a block fill operation. In the PID7v-603e, the instruction cache is blocked only until
the critical load completes. The PID7v-603e supports instruction fetching from other
instruction cache lines following the forwarding of the critical first double word of a cache
line load operation. Successive instruction fetches from the cache line being loaded are
forwarded, and accesses to other instruction cache lines can proceed during the cache line
load operation. The instruction cache is not snooped, and cache coherency must be
maintained by software. A fast hardware invalidation capability is provided to support
cache maintenance. The organization of the instruction cache is very similar to the data
cache shown in Figure 1-3.

Each cache block contains eight contiguous words from memory that are loaded from an
8-word boundary (that is, bits A27-A31 of the effective addresses are zero); thus, a cache
block never crosses a page boundary. Misaligned accesses across a page boundary can incur
a performance penalty.

The 603e's cache blocks are loaded in four beats of 64 bits each when the 603e is
configured with a 64-bit data bus; when the 603e is configured with a 32-bit bus, cache
block loads are performed with eight beats of 32 bits each. The burst load is performed as
critical double word first. The data cache is blocked to internal accesses until the load
completes; the instruction cache allows sequential fetching during a cache block load. In

1-26 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

the PID7v-603e, the critical double word is simultaneously written to the cache and
forwarded to the requesting unit, thus minimizing stalls due to load delays.

To ensure coherency among caches in a multiprocessor (or mUltiple caching-device)
implementation, the 603e implements the MEl protocol. These three states, modified,
exclusive, and invalid, indicate the state of the cache block as follows:

• Modified-The cache block is modified with respect to system memory; that is, data
for this address is valid only in the cache and not in system memory.

• Exclusive-This cache block holds valid data that is identical to the data at this
address in system memory. No other cache has this data.

• Invalid-This cache block does not hold valid data.

Cache coherency is enforced by on-chip bus snooping logic. Since the 603e's data cache
tags are single-ported, a simultaneous load or store and snoop access represent a resource
contention. The snoop access is given first access to the tags. The load or store then occurs
on the clock following the snoop.

Block 0

Block 1

Block 2

Block 3

128 Sets I

~ I •
Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

• •
•

-----j

- State Words 0-7

- State Words 0-7

State Words 0-7

State Words 0-7

8 Words/Block

Figure 1-3. Data Cache Organization

1.3.4 Exception Model

r-

r---

This section describes the PowerPC exception model and the 603e implementation,
specifically. PID7v-603e-specific information is noted where applicable.

1.3.4.1 PowerPC Exception Model
The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions, and differ from the arithmetic exceptions defined by the IEEE for
floating-point operations. When exceptions occur, information about the state of the
processor is saved to certain registers and the processor begins execution at an address

MOTOROLA Chapter 1. Overview 1-27

(exception vector) predetennined for each exception. Processing of exceptions occurs in
supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception-for example, the DSISR and the FPSCR. Additionally, some exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are presented strictly in order. When an instruction-caused exception is recognized, any
unexecuted instructions that appear earlier in the instruction stream, including any that have
not yet entered the execute stage, are required to complete before the exception is taken.
Any exceptions caused by those instructions are handled first. Likewise, exceptions that are
asynchronous and precise are recognized when they occur, but are not handled until the
instruction currently in the completion stage successfully completes execution or generates
an exception, and the completed store queue is emptied.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are handled sequentially. After the exception handler
handles an exception, the instruction execution continues until the next exception condition
is encountered. However, in many cases there is no attempt to re-execute the instruction.
This method of recognizing and handling exception conditions sequentially guarantees that
exceptions are recoverable.

Exception handlers should save the information stored in SRRO and SRRI early to prevent
the program state from being lost due to a system reset or machine check exception or to
an instruction-caused exception in the exception handler, and before enabling external
interrupts.

The PowerPC architecture supports four types of exceptions:

• Synchronous, precise-These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored. This means that (excluding the trap
and system call exceptions) the address of the faulting instruction is provided to the
exception handler and that neither the faulting instruction nor subsequent
instructions in the code stream will complete execution before the exception is
taken. Once the exception is processed, execution resumes at the address of the
faulting instruction (or at an alternate address provided by the exception handler).
When an exception is taken due to a trap or system call instruction, execution
resumes at an address provided by the handler.

• Synchronous, imprecise-The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. Even though the
603e provides a means to enable the imprecise modes, it implements these modes

1-28 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

identically to the precise mode (that is, all enabled floating-point enabled exceptions
are always precise on the 603e). (Note that the EC603e microprocessor does not
support floating-point operations.)

• Asynchronous, maskable-The external, system management interrupt (SMI), and
decrementer interrupts are maskable asynchronous exceptions. When these
exceptions occur, their handling is postponed until the next instruction, and any
exceptions associated with that instruction, completes execution. If there are no
instructions in the execution units, the exception is taken immediately upon
determination of the correct restart address (for loading SRRO).

Asynchronous, nonmaskable-There are two nonmaskable asynchronous
exceptions: system reset and the machine check exception. These exceptions may
not be recoverable, or may provide a limited degree of recoverability. All exceptions
report recoverability through the MSR[RI] bit.

1.3.4.2 Implementation-Specific Exception Model
As specified by the PowerPC architecture, all 603e exceptions can be described as either
precise or imprecise and either synchronous or asynchronous. Asynchronous exceptions
(some of which are maskable) are caused by events external to the processor's execution;
synchronous exceptions, which are all handled precisely by the 603e, are caused by
instructions. The 603e exception classes are shown in Figure 1-4.

Figure 1-4. Exception Classifications

Synchronous/Asynchronous Precise/Imprecise Exception Type

Asynchronous, nonmaskable Imprecise Machine check
System reset

Asynchronous, maskable Precise External interrupt
Decrementer
System management interrupt

Synchronous Precise Instruction-caused exceptions

Although exceptions have other characteristics as well, such as whether they are maskable
or nonmaskable, the distinctions shown in Figure 1-4 define categories of exceptions that
the 603e handles uniquely. Note that Figure 1-4 includes no synchronous imprecise
instructions. While the PowerPC architecture supports imprecise handling of floating-point
exceptions, the 603e, with the exception of the EC603e microprocessor, implements
floating-point exception modes as precise exceptions.

The 603e's exceptions, and conditions that cause them, are listed in Figure 1-5.

Figure 1-5. Exceptions and Conditions

Exception Vector Offset
Causing Conditions

Type (hex)

Reserved 00000 -

MOTOROLA Chapter 1. Overview 1-29

Figure 1-5. Exceptions and Conditions (Continued)

Exception Vector Offset
Causing Conditions

Type (hex)

System reset 00100 A system reset is caused by the assertion of either SRESET or HRESET.

Machine 00200 A machine check is caused by the assertion of the TEA signal during a data bus
check transaction, assertion of MCP, or an address or data parity error.

OSI 00300 The cause of a OSI exception can be determined by the bit settings in the DSISR,
listed as follows:
1 Set if the translation of an attempted access is not found in the primary hash

table entry group (HTEG), or in the rehashed secondary HTEG, or in the range
of a OBAT register; otherwise cleared.

4 Set if a memory access is not permitted by the page or OBAT protection
mechanism; otherwise cleared.

5 Set by an eciwx or ecowx instruction if the access is to an address that is
marked as write-through, or execution of a load/store instruction that accesses
a direct-store segment.

6 Set for a store operation and cleared for a load operation.
11 Set if eciwx or ecowx is used and EAR[E) is cleared.

lSI 00400 An lSI exception is caused when an instruction fetch cannot be performed for any
of the following reasons:

· The effective (logical) address cannot be translated. That is, there is a page
fault for this portion of the translation, so an lSI exception must be taken to load
the PTE (and possibly the page) into memory.

· The fetch access is to a direct-store segment (indicated by SRR1 [3) set).

· The fetch access violates memory protection (indicated by SRR1 [4) set). If the
key bits (Ks and Kp) in the segment register and the PP bits in the PTE are set
to prohibit read access, instructions cannot be fetched from this location.

External 00500 An external interrupt is caused when MSR[EE) = 1 and the INT signal is asserted.
interrupt

Alignment 00600 An alignment exception is caused when the 603e cannot perform a memory
access for any of the reasons described below:

· The operand of a floating-point load or store instruction is not word-aligned.

· The operand of Imw, stmw, Iwarx, and stwcx. instructions are not aligned.

· The operand of a single-register load or store operation is not aligned, and the
603e is in little-end ian mode (PI06-603e only).

· The execution of a floating-point load or store instruction to a direct-store
segment.

· The operand of a load, store, load multiple, store multiple, load string, or store
string instruction crosses a segment boundary into a direct-store segment, or
crosses a protection boundary.

· Execution of a misaligned eciwx or ecowx instruction (PI07v-603e only).

· The instruction is Imw, stmw, Iswi, Iswx, stswi, stswx and the 603e is in little-
end ian mode.

· The operand of dcbz is in memory that is write-through-required or caching-
inhibited.

1-30 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Figure 1-5. Exceptions and Conditions (Continued)

Exception Vector Offset
Causing Conditions

Type (hex)

Program 00700 A program exception is caused by one of the following exception conditions, which
correspond to bit settings in SRR1 and arise during execution of an instruction:

· Floating-point enabled exception-A floating-point enabled exception condition
is generated when the following condition is met:

(MSR[FEO]I MSR[FE1]) & FPSCR[FEX] is 1.

(Not supported by the EC603e microprocessor.)

FPSCR[FEX] is set by the execution of a floating-point instruction that causes
an enabled exception or by the execution of one of the "move to FPSCR"
instructions that results in both an exception condition bit and its corresponding
enable bit being set in the FPSCR. (Not supported by the EC603e
microprocessor.)

· Illegal instruction-An illegal instruction program exception is generated when
execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields (including PowerPC
instructions not implemented in the 603e), or when execution of an optional
instruction not provided in the 603e is attempted (these do not include those
optional instructions that are treated as no-ops).

· Privileged instruction-A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR], is set. In the 603e, this exception is
generated for mtspr or mfspr with an invalid SPR field if SPR[O] = 1 and
MSR[PR] = 1. This may not be true for all PowerPC processors.

· Trap-A trap type program exception is generated when any of the conditions
specified in a trap instruction is met.

Floating-point 00800 A floating-point unavailable exception is caused by an attempt to execute a
unavailable floating-point instruction (including floating-point load, store, and move

instructions) when the floating-point available bit is disabled (MSR[FP] = 0).

Note that the EC603e microprocessor takes a floating-point unavailable exception
when execution of a floating-point instruction is attempted.

Decrementer 00900 The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1. Must also be enabled with the
MSR[EE] bit.

Reserved OOAOO-OOBFF -

System call OOCOO A system call exception occurs when a System Call (sc) instruction is executed.

Trace OODOO A trace exception is taken when MSR[SE] =1 or when the currently completing
instruction is a branch and MSR[BE] =1.

Reserved OOEOO The 603e does not generate an exception to this vector. Other PowerPC
processors may use this vector for floating-point assist exceptions.

Reserved 00E1D-00FFF -

Instruction 01000 An instruction translation miss exception is caused when an effective address for
translation an instruction fetch cannot be translated by the ITLB.
miss

Data load 01100 A data load translation miss exception is caused when an effective address for a
translation data load operation cannot be translated by the DTLB.
miss

MOTOROLA Chapter 1. Overview 1-31

Figure 1-5. Exceptions and Conditions (Continued)

Exception Vector Offset
Causing Conditions

Type (hex)

Data store 01200 A data store translation miss exception is caused when an effective address for a
translation data store operation cannot be translated by the DTLB, or where a DTLB hit
miss occurs, and the change bit in the PTE must be set due to a data store operation.

Instruction 01300 An instruction address breakpoint exception occurs when the address (bits 0-29)
address in the IABR matches the next instruction to complete in the completion unit, and
breakpoint the IABR enable bit (bit 30) is set.

System 01400 A system management interrupt is caused when MSR[EE] = 1 and the Sfiifi input
management signal is asserted.
interrupt

Reserved 01500-02FFF -

1.3.5 Memory Management
The following subsections describe the memory management features of the PowerPC
architecture, and the 603e implementation, respectively.

1.3.5.1 PowerPC Memory Management
The primary functions of the MMU are to translate logical (effective) addresses to physical
addresses for memory accesses, and to provide access protection on blocks and pages of
memory.

There are two types of accesses generated by the 603e that require address translation­
instruction accesses, and data accesses to memory generated by load and store instructions.

The PowerPC MMU and exception model support demand-paged virtual memory. Virtual
memory management permits execution of programs larger than the size of physical
memory; demand-paged implies that individual pages are loaded into physical memory
from system memory only when they are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, and
its starting address is a multiple of its size.

The page table contains a number of page table entry groups (PTEGs). A PTEG contains
eight page table entries (PTEs) of eight bytes each; therefore, each PTEG is 64 bytes long.
PTEG addresses are entry points for table search operations.

Address translations are enabled by setting bits in the MSR-MSR[IR] enables instruction
address translations and MSR[DR] enables data address translations.

1.3.5.2 Implementation-Specific Memory Management
The instruction and data memory management units in the 603e provide 4 Gbytes of logical
address space accessible to supervisor and user programs with a 4-Kbyte page size and

1-32 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

256-Mbyte segment size. Block sizes range from 128 Kbyte to 256 Mbyte and are software
selectable. In addition, the 603e uses an interim 52-bit virtual address and hashed page
tables for generating 32-bit physical addresses. The MMUs in the 603e rely on the
exception processing mechanism for the implementation of the paged virtual memory
environment and for enforcing protection of designated memory areas.

Instruction and data TLBs provide address translation in parallel with the on-chip cache
access, incurring no additional time penalty in the event of a TLB hit. A TLB is a cache of
the most recently used page table entries. Software is responsible for maintaining the
consistency of the TLB with memory. The 603e's TLBs are 64-entry, two-way
set-associative caches that contain instruction and data address translations. The 603e
provides hardware assist for software table search operations through the hashed page table
on TLB misses. Supervisor software can invalidate TLB entries selectively.

The 603e also provides independent four-entry BAT arrays for instructions and data that
maintain address translations for blocks of memory. These entries define blocks that can
vary from 128 Kbytes to 256 Mbytes. The BAT arrays are maintained by system software.

As specified by the PowerPC architecture, the hashed page table is a variable-sized data
structure that defines the mapping between virtual page numbers and physical page
numbers. The page table size is a power of 2, and its starting address is a multiple of its size.

Also as specified by the PowerPC architecture, the page table contains a number of page
table entry groups (PTEGs). A PTEG contains eight page table entries (PTEs j of eight bytes
each; therefore, each PTEG is 64 bytes long. PTEG addresses are entry points for table
search operations.

1.3.6 Instruction Timing
The 603e is a pipelined superscalar processor. A pipelined processor is one in which the
processing of an instruction is reduced into discrete stages. Because the processing of an
instruction is broken into a series of stages, an instruction does not require the entire
resources of an execution unit. For example, after an instruction completes the decode
stage, it can pass on to the next stage, while the subsequent instruction can advance into the
decode stage. This improves the throughput of the instruction flow. For example, it may
take three cycles for a floating-point instruction to complete, but if there are no stalls in the
floating-point pipeline, a series of floating-point instructions can have a throughput of one
instruction per cycle.

MOTOROLA Chapter 1. Overview 1-33

The instruction pipeline in the 603e has four major pipeline stages, described as follows:

• The fetch pipeline stage primarily involves retrieving instructions from the memory
system and determining the location of the next instruction fetch. Additionally, the
BPU decodes branches during the fetch stage and folds out branch instructions
before the dispatch stage if possible.

• The dispatch pipeline stage is responsible for decoding the instructions supplied by
the instruction fetch stage, and determining which of the instructions are eligible to
be dispatched in the current cycle. In addition, the source operands of the
instructions are read from the appropriate register file and dispatched with the
instruction to the execute pipeline stage. At the end of the dispatch pipeline stage,
the dispatched instructions and their operands are latched by the appropriate
execution unit.

• During the execute pipeline stage each execution unit that has an executable
instruction executes the selected instruction (perhaps over multiple cycles), writes
the instruction's result into the appropriate rename register, and notifies the
completion stage that the instruction has finished execution. In the case of an internal
exception, the execution unit reports the exception to the completionlwriteback
pipeline stage and discontinues instruction execution until the exception is handled.
The exception is not signaled until that instruction is the next to be completed.
Execution of most floating-point instructions is pipelined within the FPU allowing
up to three instructions to be executing in the FPU concurrently. The pipeline stages
for the floating-point unit are multiply, add, and round-convert. Execution of most
load/store instructions is also pipelined. The load/store unit has two pipeline stages.
The first stage is for effective address calculation and MMU translation and the
second stage is for accessing the data in the cache. (Note that the EC603e
microprocessor does not support the floating-point unit.)

• The complete/writeback pipeline stage maintains the correct architectural machine
state and transfers the contents of the rename registers to the GPRs and FPRs as
instructions are retired. If the completion logic detects an instruction causing an
exception, all following instructions are cancelled, their execution results in rename
registers are discarded, and instructions are fetched from the correct instruction
stream.

A superscalar processor is one that issues multiple independent instructions into multiple
pipelines allowing instructions to execute in parallel. The 603e has five independent
execution units, one each for integer instructions, floating-point instructions (floating-point
instructions are trapped by the floating-point unavailable exception on the EC603e
microprocessor), branch instructions, load/store instructions, and system register
instructions. The IU and the FPU each have dedicated register files for maintaining
operands (GPRs and FPRs, respectively), allowing integer calculations and floating~point
calculations to occur simultaneously without interference. Integer division performance of
the PID7v-603e has been improved, with the divwux and divwx instructions executing in
20 clock cycles, instead of the 37 cycles required in the PID6-603e.

1-34 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The 603e provides support for single-cycle store and it provides an adder/comparator in the
system register unit that allows the dispatch and execution of multiple integer add and
compare instructions on each cycle. Refer to Chapter 6, "Instruction Timing," for more
information.

Because the PowerPC architecture can be applied to such a wide variety of
implementations, instruction timing among various PowerPC processors varies
accordingly.

1.3.7 System Interface
The system interface is specific for each PowerPC microprocessor implementation.

The 603e provides a versatile system interface that allows for a wide range of
implementations. The interface includes a 32-bit address bus, a 32- or 64-bit data bus, and
56 control and information signals (see Figure 1-6). The system interface allows for
address-only transactions as well as address and data transactions. The 603e control and
information signals include the address arbitration, address start, address transfer, transfer
attribute, address termination, data arbitration, data transfer, data termination, and
processor state signals. Test and control signals provide diagnostics for selected internal
circuits.

ADDRESS

ADDRESS ARBITRATION

ADDRESS START

ADDRESS TRANSFER

TRANSFER ATTRIBUTE

ADDRESS TERMINATION

CLOCKS

603e

I -= +3.3V -

Figure 1-6. System Interface

DATA

DATA ARBITRATION

DATA TRANSFER

DATA TERMINATION

PROCESSOR STATE

TEST AND CONTROL

The system interface supports bus pipelining, which allows the address tenure of one
transaction to overlap the data tenure of another. The extent of the pipelining depends on
external arbitration and control circuitry. Similarly, the 603e supports split-bus transactions
for systems with multiple potential bus masters-one device can have mastership of the
address bus while another has mastership of the data bus. Allowing multiple bus
transactions to occur simultaneously increases the available bus bandwidth for other
activity and as a result, improves performance.

The 603e supports multiple masters through a bus arbitration scheme that allows various
devices to compete for the shared bus resource. The arbitration logic can implement priority
protocols, such as fairness, and can park masters to avoid arbitration overhead. The MEl

MOTOROLA Chapter 1. Overview 1-35

protocol ensures coherency among multiple devices and system memory. Also, the 603e's
on-chip caches and TLBs and optional second-level caches can be controlled externally.

The 603e's clocking structure allows the bus to operate at integer multiples of the processor
cycle time.

The following sections describe the 603e bus support for memory operations. Note that
some signals perform different functions depending upon the addressing protocol used.

1.3.7.1 Memory Accesses
The 603e's data bus is configured at power-up to either a 32- or 64-bit width. When the 603e
is configured with a 32-bit data bus, memory accesses allow transfer sizes of 8, 16,24, or
32 bits in one bus clock cycle. Data transfers occur in either single-beat transactions, or
two-beat or eight-beat burst transactions, with a single-beat transaction transferring as
many as 32 bits. Single- or double-beat transactions are caused by noncached accesses that
access memory directly (that is, reads and writes when caching is disabled,
caching-inhibited accesses, and stores in write-through mode). Eight-beat burst
transactions,which always transfer an entire cache line (32 bytes), are initiated when a line
is read from or written to memory.

When the 603e is configured with a 64-bit data bus, memory accesses allow transfer sizes
of 8, 16,24,32,40,48,56, or 64 bits in one bus clock cycle. Data transfers occur in either
single-beat transactions or four-beat burst transactions. Single-beat transactions are caused
by noncached accesses that access memory directly (that is, reads and writes when caching
is disabled, caching-inhibited accesses, and stores in write-through mode). Four-beat burst
transactions, which always transfer an entire cache line (32 bytes), are initiated when a line
is read from or written to memory.

1.3.7.2 Signals
The 603e signals are grouped as follows:

• Address arbitration signals-The 603e uses these signals to arbitrate for address bus
mastership.

• Address transfer start signals-These signals indicate that a bus master has begun a
transaction on the address bus.

• Address transfer signals-These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

• Transfer attribute signals-These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted,
write-through, or caching-inhibited.

• Address transfer termination signals-These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

1-36 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

• Data arbitration signals-The 603e uses these signals to arbitrate for data bus
mastership.

• Data transfer signals-These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.

• Data transfer termination signals-Data termination signals are required after each
data beat in a data transfer. In a single-beat transaction, the data termination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the final
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

• System status signals-These signals include the interrupt signal, checkstop signals,
and both soft- and hard-reset signals. These signals are used to interrupt and, under
various conditions, to reset the processor.

• Processor state signals-These signals indicate the state of the reservation
coherency bit, enable the time base, provide machine quiesce control, and cause a
machine halt on execution of a tlbsync instruction.

• IEEE 1149. 1 (JTAG)/COP interface signals-The IEEE 1149.1 test unit and the
common on-chip processor (COP) unit are accessed through a shared set of input,
output, and clocking signals. The IEEE 1149 .1/COP interface provides a means for
boundary scan testing and internal debugging of the 603e.

• Test interface signals-These signals are used for production testing.

• Clock signals-These signals determine the system clock frequency. These signals
can also be used to synchronize multiprocessor systems.

MOTOROLA

NOTE

A bar over a signal name indicates that the signal is active
low-for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active low, such as AP[0-3] (address bus parity signals)
and TT[0-4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.

Chapter 1. Overview 1-37

1.3.7.3 Signal Configuration
Figure 1-7 illustrates the 603e's logical pin configuration, showing how the signals are
grouped.

ADDRESS
ARBITRATION t~

-[~ ADDRESS
START

ADDRESS BUS { ~
TRANSFER
ATTRIBUTE

ADDRESS
TERMINATION

CLOCKS

1-38

r-

~

~
-

'-

{ ..

t

BR
1 1 DBG

BG .. 1 1 DBWO
AEiB DBB .. 1 1

TS .. 1
DH[0-31], Dl[0-31]

64
DPr0-71 8

A[0-31] • 32 1 OPE

1
DBl)fS

AP[0-3] .. 4
APE 1 1 TA

1 DRTRY
TI[D-4]

5 1 TEA
TBST • 1

TSIZ[0-2]
3 2 INT SMI

GaL en MCJ5 .. 1 0 1
CT

1 W 2 i:::KSTi' IN CKsip OUT
Wi

1 CD 2 HRESET SRESET
CSE[0-1]

2
Tcr0-11 2 1 RSRV

2
0Rr0 OA(;I(

1 TBEN

1 T[Bls'i'f'lC
AACK .. 1

ARfRY .. 1
'rnSi. TCK TMS, TDI, TOO 5

SYSClK .. 1
ClK OUT 1 3 TEST

Pll CFG[0-3]
.. 4

I.J..
+3.3 V

Figure 1-7. Signal Groups

MPC603e & EC603e RISC Microprocessors User's Manual

1 DATA J ARBITRATION

1 DATA J TRANSFER

=t DATA :.r TERMINATION

~ INTERRUPTS
CHECKSTOPS
RESET

=1 PROCESSOR J STATUS

~ JTAG/COP
:..r INTERFACE

l LSSDTEST
S CONTROL

MOTOROLA

Chapter 2
Programming Model
This chapter describes the PowerPC programming model with respect to the PowerPC 603e
microprocessor. It consists of three major sections that describe the following:

• Registers implemented in the 603e

• Operand conventions
• The 603e instruction set

2.1 Register Set
This section describes the register organization in the 603e as defined by the three levels of
the PowerPC architecture-the user instruction set architecture (UISA), the virtual
environment architecture (VEA), and the operating environment architecture (OEA), as
well as the 603e implementation-specific registers. Full descriptions of the basic register set
defined by the PowerPC architecture are provided in Chapter 2, "PowerPC Register Set,"
in The Programming Environments Manual.

The PowerPC architecture defines register-to-register operations for all computational
instructions. Source data for these instructions is accessed from the on-chip registers or is
provided as an immediate value embedded in the opcode. The three-register instruction
format allows specification of a target register distinct from the two source registers, thus
preserving the original data for use by other instructions and reducing the number of
instructions required for certain operations. Data is transferred between memory and
registers with explicit load and store instructions only.

Note that there may be registers common to other PowerPC processors that are not
implemented in the 603e. When the 603e detects special-purpose register (SPR) encodings
other than those defined in this document, it either takes an exception or it treats the
instruction as a no-op. (Note that exceptions are referred to as interrupts in the architecture
specification.) Conversely, some SPRs in the 603e may not be implemented in other
PowerPC processors, or may not be implemented in the same way in other PowerPC
processors.

2.1.1 PowerPC Register Set
The PowerPC UISA registers, shown in Figure 2-1, can be accessed by either user- or
supervisor-level instructions (the architecture specification refers to user- and supervisor-

MOTOROLA Chapter 2. Programming Model 2-1

level as problem state and privileged state, respectively). The general-purpose registers
(GPRs) and floating-point registers (FPRs) are accessed through instruction operands.
(Note that the EC603e microprocessor does not support the floating-point register file; an
attempt to access the floating-point register file will result in a floating-point unavailable
exception.) Access to registers can be explicit (that is, through the use of specific
instructions for that purpose such as the mtspr and mfspr instructions) or implicit as part
of the execution (or side effect) of an instruction. Some registers are accessed both
explicitly and implicitly.

The number to the right of the register name indicates the number that is used in the syntax
of the instruction operands to access the register (for example, the number used to access
the XER is SPRl).

For more information on the PowerPC register set, refer to Chapter 2, "PowerPC Register
Set," in The Programming Environments Manual.

2-2 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

USER MODEL

General-Purpose
Registers

GPRO

GPR1

· · ·
GPR31

Floating-Point
Registers2

FPRO

FPR1

FPR31

Condition Register

CR

Floating-Point Status
and Control Register2

I FPSCR

XER

XER I SPR 1

Link Register

L-_LR_--,I SPR 8

Count Register

CTA I SPR9

Time Base Facility
(For Reading)

~TBR268
~TBR269

SUPERVISOR MODEL
Configuration Registers

Hardware
Implementation
Registers1

~ SPR1008

~ SPR1009

Machine State
Register

MSR

Processor Version
Register

I SPR 287
'--------'

PVR

Memory Management Registers
Instruction BAT
Registers

IBATOU

IBATOL

IBAT1U

IBAT1L

IBAT2U

IBAT2L

IBAT3U

IBAT3L

SDR1

SPR 528

SPR 529

SPR 530

SPR 531

SPR 532

SPR 533

SPR 534

SPR535

SDR1 I SPR 25

Data BAT Registers

DBATOU

DBATOL

DBAT1U

DBAT1L

DBAT2U

DBAT2L

DBAT3U

DBAT3L

SPR 536

SPR 537

SPR 538

SPR 539

SPR 540

SPR 541

SPR 542

SPR543

Software Table
Search Registers1

DMISS

DCMP

HASH1

HASH2

IMISS

ICMP

RPA

SPR 976

SPR 977

SPR 978

SPR 979

SPR 980

SPR 981

SPR 982

Segment Registers

SRO

SR1

· · ·
SR15

Exception Handling Registers

Data Address Register

DAR I SPR 19

SPRGs

SPRGO SPR 272

SPRG1 SPR 273

SPRG2 SPR 274

SPRG3 SPR 275

Miscellaneous Registers
Time Base Facility
(For Writing)

~SPR284
~SPR285
Instruction Address
Breakpoint Register1

IABR I SPR 1010

DSISR

DSISR SPR18

Save and Restore

~SPR26
~SPR27

Decrementer

DEC I SPR22

External Address
Register (Optional)

I EAR I SPR 282

Notes: 1These registers are 603e-specific (PID6-603e and PID7v-603e) registers.
They may not be supported by other PowerPC processors.

2Not supported on the EC603e microprocessor.

Figure 2-1. Programming Model-Registers

MOTOROLA Chapter 2. Programming Model 2-3

The 603e's user-level registers are described as follows:

2-4

• User-level registers (UISA)-The user-level registers can be accessed by all
software with either user or supervisor privileges. The user-level register set
includes the following:

- General-purpose registers (GPRs). The general-purpose register file consists of
thirty-two 32-bit GPRs designated as GPRO-GPR31. This register file serves as
the data source or destination for all integer instructions and provides data for
generating addresses.

- Floating-point registers (FPRs). The floating-point register file consists of thirty­
two 64-bit FPRs designated as FPRO-FPR31, which serves as the data source or
destination for all floating-point instructions. These registers can contain data
objects of either single- or double-precision floating-point format. (The floating­
point register file is not supported on the EC603e microprocessor; an attempt to
access the floating-point register file will result in a floating-point unavailable
exception.)

- Condition register (CR). The CR is a 32-bit register, divided into eight 4-bit
fields, CRO--CR7, that reflects the results of certain arithmetic operations and
provides a mechanism for testing and branching.

- Floating-point status and control register (FPSCR). The FPSCR is a user-control
register that contains all floating-point exception signal bits, exception summary
bits, exception enable bits, and rounding control bits needed for compliance with
the IEEE 754 standard. (The FPU is not supported on the EC603e
microprocessor; an attempt to access the floating-point register file will result in
a floating-point unavailable exception.)

The remaining user-level registers are SPRs. Note that the PowerPC architecture
provides a separate mechanism for accessing SPRs (the mtspr and mfspr
instructions). These instructions are commonly used to explicitly access certain
registers, while other SPRs may be more typically accessed as the side effect of
executing other instructions.

- XER register (XER). The XER is a 32-bit register that indicates overflow and
carries for integer operations. It is set implicitly by many instructions.

- Link register (LR). The 32-bit link register provides the branch target address for
the Branch Conditional to Link Register (bclrx) instruction, and can optionally
be used to hold the logical address (referred to as the effective address in the
architecture specification) of the instruction that follows a branch and link
instruction, typically used for linking to subroutines.

- Count register (CTR). The CTR is a 32-bit register for holding a loop count that
can be decremented during execution of appropriately coded branch instructions.
The CTR can also provide the branch target address for the Branch Conditional
to Count Register (bcctrx) instruction.

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

• User-level registers (VEA)-The PowerPC VEA introduces the time base facility
(TB) for reading. The TB is a 64-bit register pair whose contents are incremented
once every four bus clock cycles. The TB consists of two 32-bit registers-time base
upper (TBU) and time base lower (TBL). Note that the time base registers are read­
only when in user state.

The 603e's supervisor-level registers are described as follows:

• Supervisor-level registers (OEA)-The OEA defines the registers that are used
typically by an operating system for such operations as memory management,
configuration, and exception handling. The supervisor-level registers defined by the
PowerPC architecture for 32-bit implementations are described as follows:

- Configuration registers

Machine state register (MSR). The MSR defines the state of the processor.
The MSR can be modified by the Move to Machine State Register (mtmsr),
System Call (sc), and Return from Exception (rfi) instructions. It can be read
by the Move from Machine State Register (mfmsr) instruction.

Implementation Note-The 603e defines MSR[l3] as the power
management enable (POW) bit and MSR[14] as the temporary GPR
remapping (TGPR) bit. These additional bits are described in Table 2-1.

Table 2-1. MSR[POW] and MSR[TGPR] Bits

Bit Name Description

13 POW Power management enable (603e-specific)
a Disables programmable power modes (normal operation mode).
1 Enables programmable power modes (nap, doze, or sleep mode).

This bit controls the programmable power modes only, it has no effect on dynamic power
management (DPM). MSR[POW] may be altered with an mtmsr instruction only. Also, when
altering the POW bit, software may alter only this bit in the MSR and no others. The mtmsr
instruction must be followed by a context-synchronizing instruction.
See Chapter 9, "Power Management," for more information on power management.

14 TGPR Temporary GPR remapping (603e-specific)
0 Normal operation
1 TGPR mode. GPRo-GPR3 are remapped to TGPRQ-TGPR3 for use by TLB miss

routines.
The contents of GPRO-GPR3 remain unchanged while MSR[TGPR] = 1. Attempts to use
GPR4-GPR31 with MSR[TGPR] = 1 yield undefined results. Overlays TGPRO-TGPR3 over
GPRD-GPR3 for use by TLB miss routines. When this bit is set, all instruction accesses to
GPRo-GPR3 are mapped to TGPRO-TGPR3, respectively. The contents of GPRo-GPR3 are
unchanged as long as this bit remains set. Attempts to use GPR4-GPR31 when this bit is set
yields undefined results.The TGPR bit is set when either an instruction TLB miss, data read
miss, or data write miss exception is taken. The TGPR bit is cleared by an rfi instruction.

MOTOROLA Chapter 2. Programming Model 2-5

2-6

- Processor version register (PVR). This register is a read-only register that
identifies the version (model) and revision level of the PowerPC processor.

Implementation Note-The processor version number is 6 for the PID6-
603e and 7 for the PID7v-603e. The processor revision level starts at OxOlOO
and changes for each chip revision. The revision level is updated on all silicon
revisions.

- Memory management registers

- Block-address translation (BAT) registers. The 603e includes eight block-
address translation registers (BATs), consisting of four pairs of instruction
BATs (IBATOU-IBAT3U and IBATOL-IBAT3L) and four pairs of data BATs
(DBATOU-DBAT3U and DBATOL-DBAT3L). See Figure 2-1 for a list of the
SPR numbers for the BAT registers.

SDRI. The SDRI register specifies the page table base address used in virtual­
to-physical address translation. (Note that physical address is referred to as
real address in the architecture specification.)

Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SRO-SRI5). Note that SRs are implemented on 32-bit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit O.

- Exception handling registers

- Data address register (DAR). After a data access or an alignment exception,
the DAR is set to the effective address generated by the faulting instruction.

- SPRGO-SPRG3. The SPRGO-SPRG3 registers are provided for operating
system use.

- DSISR. The DSISR defines the cause of data access and alignment
exceptions.

- Machine status save/restore register 0 (SRRO). The SRRO is used to save
machine status on exceptions and to restore machine status when an rfi
instruction is executed.

- Machine status save/restore register 1 (SRRl). The SRRI is used to save
machine status on exceptions and to restore machine status when an rfi
instruction is executed.

Implementation Note-The 603e implements the Key bit (bit 12) in the
SRRI register in order to simplify the table search software. For more
information refer to Chapter 5, "Memory Management."

- Miscellaneous registers

- The time base facility (TB) for writing. The TB is a 64-bit register pair that
can be used to provide time of day or interval timing. It consists oftwo 32-bit
registers-time base upper (TBU) and time base lower (TBL). The TB is
incremented once every four clock cycles.

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

- Decrementer (DEC). The DEC register is a 32-bit decrementing counter that
provides a mechanism for causing a decrementer exception after a
programmable delay. The DEC is decremented once every four bus clock
cycles.

- External access register (EAR). The EAR is a 32-bit register used in
conjunction with the eciwx and ecowx instructions. While the PowerPC
architecture specifies that the low-order six bits of the EAR (bits 26-31) are
used to select a device, the 603e only implements the low-order 4 bits (bits
28-31). Note that the EAR register and the eciwx and ecowx instructions are
optional in the PowerPC architecture and may not be supported in all
PowerPC processors that implement the OEA.

2.1.2 Implementation-Specific Registers
The 603e includes several implementation-specific SPRs that are not defined by the
PowerPC architecture. They are the DMISS, IMISS, DCMP, ICMP, HASH1, HASH2,
RPA, HIDO, HID1, and IABR registers. These registers can be accessed by supervisor-level
instructions only. Any attempt to access these SPRs with user-level instructions results in a
supervisor-level exception. The SPR numbers for these registers are shown in Figure 2-1.

The DMISS, !MISS, DCMP, ICMP, HASH1, HASH2, and RPA registers are used for
software table search operations and should only be accessed when address translation is
disabled (that is, MSR[IR] = 0 and MSR[DR] = 0). For a complete discussion of software
table search operations, refer to Section 5.5.2, "Implementation-Specific Table Search
Operation."

2.1.2.1 Hardware Implementation Registers (HIDO and HID1)
The HIDO and HIDI registers, shown in Figure 2-2 and Figure 2-3 respectively, define
enable bits for various 603e-specific features.

[J Reserved
EICE DLOCK

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 26 27 28 30 31

Figure 2-2. Hardware Implementation Register 0 (HI DO)

MOTOROLA Chapter 2. Programming Model 2-7

Table 2-2 shows the bit definitions for HIDO.

Table 2-2. HIDO Bit Settings

Bit(s) Name Description

0 EMCP Enable machine check pin

1 - Reserved

2 EBA Enable bus address parity checking

3 EBD Enable bus data parity checking

4 SBCLK Select bus clock for test clock pin

5 EICE Enable ICE outputs-pipeline tracking support

6 ECLK Enable external test clock pin

7 PAR Disable precharge of ARTRY and shared signals

8 DOZE Doze mode-PLL, time base, and snooping active 1

9 NAP Nap mode-PLL and time base active 1

10 SLEEP Sleep mode-no external clock required1

11 DPM Enable dynamic power management1

12 RISEG Reserved for test

13-14 - Reserved

15 NHR Reserved

16 ICE Instruction cache enable2

17 DCE Data cache enable2

18 ILOCK Instruction cache LOCK2

19 DLOCK Data cache LOCK2

20 ICFI Instruction cache flash invalidate2

21 DCFI Data cache flash invalidate2

22-23 - Reserved

24 IFEM Instruction fetch enable M (PID7v-603e only)

25-26 - Reserved

27 FBIOB Force branch indirect on bus

28 ABE Address broadcast enable2 (PID7v-603e only)

29-30 - Reserved

31 NOOPTI No-op touch instructions

Notes:
1. See Chapter 9, "Power Management;' for more information.
2. See Chapter 3, "Instruction and Data Cache Operation;' for more information.

2-8 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

D Reserved

o 1 2 3 4 31

Figure 2-3. Hardware Implementation Register 1 (HID1)

Table 2-3 shows the bit definitions for HIDl.

Table 2-3. HID1 Bit Settings

Bit(s) Name Description

0 PCO PLL configuration bit 0 (read-only)

1 PCl PLL configuration bit 1 (read-only)

2 PC2 PLL configuration bit 2 (read-only)

3 PC3 PLL configuration bit 3 (read-only)

4-31 - Reserved

Note: The clock configuration bits reflect the state of the PLL_CFG[O-3] signals.

2.1.2.2 Data and Instruction TLB Miss Address Registers
(DMISS and IMISS)

The DMISS and IMISS registers have the same format as shown in Figure 2-4. They are
loaded automatically upon a data or instruction TLB miss. The DMISS and IMISS contain
the effective page address of the access that caused the TLB miss exception. The contents
are used by the 603e when calculating the values of HASHI and HASH2, and by the tlbld
and tIbli instructions when loading a new TLB entry. Note that the 603e always loads the
DMISS register with a big-endian address, even when MSR[LE] is set. These registers are
read and write to the software.

Effective Page Address

o 31

Figure 2-4. DMISS and IMISS Registers

2.1.2.3 Data and Instruction TLB Compare Registers
(DCMP and ICMP)

The DCMP and ICMP registers are shown in Figure 2-5. These registers contain the first
word in the required PTE. The contents are constructed automatically from the contents of
the segment registers and the effective address (DMISS or IMISS) when a TLB miss
exception occurs. Each PTE read from the tables during the table search process should be
compared with this value to determine whether or not the PTE is a match. Upon execution
of a tIbld or tlbli instruction the upper 25 bits of the DCMP or ICMP register and 11 bits

MOTOROLA Chapter 2. Programming Model 2-9

of the effective address operand are loaded into the first word of the selected TLB entry.
These registers are read and write to the software.

liD Reserved

VSID API

o 1 24 25 26 31

Figure 2-5. DCMP and ICMP Registers

Table 2-4 describes the bit settings for the DCMP and ICMP registers.

Table 2-4. DCMP and ICMP Bit Settings

Bits Name Description

0 V Valid bit. Set by the processor on a TLB miss exception.

1-24 VSID Virtual segment ID. Copied from VSID field of corresponding
segment register.

25 - Reserved

26-31 API Abbreviated page index. Copied from API of effective address.

2.1.2.4 Primary and Secondary Hash Address Registers
(HASH1 and HASH2)

The HASH! and HASH2 registers contain the physical addresses of the primary and
secondary PTEGs for the access that caused the TLB miss exception. For convenience, the
603e automatically constructs the full physical address by routing bits 0-6 of SDR! into
HASH! and HASH2 and clearing the lower 6 bits. These registers are read-only and are
constructed from the contents of the DMISS or IMISS register (the register choice is
determined by which miss was last acknowledged). The format for the HASH! and HASH2
registers is shown in Figure 2-6.

HTABORG[0-6] Hashed Page Address 000000

o 6 7 25 26 31

Figure 2-6. HASH1 and HASH2 Registers

Table 2-5 describes the bit settings of the HASH! and HASH2 registers.

Table 2-5. HASH1 and HASH2 Bit Settings

Bits Name Description

0-6 HTABORG[0-6] Copy of the upper 7 bits of the HTABORG field from SDR1

7-25 Hashed page address Address bits 7-25 of the PTEG to be searched

26-31 - Reserved

2-10 MPC603e & EC603e RiSe Microprocessors User's Manual MOTOROLA

2.1.2.5 Required Physical Address Register (RPA)
The RPA register is shown in Figure 2-7. During a page table search operation, the software
must load the RPA with the second word of the correct PTE. When the tlbld or tlbli
instruction is executed, the contents of the RPA register and the DMISS or IMISS register
are merged and loaded into the selected TLB entry. The referenced (R) bit is ignored when
the write occurs (no location exists in the TLB entry for this bit). The RPA register is read
and write to the software.

CJ Reserved

RPN 0001 R I C I WIMG I<el PP I
o 19 20 22 23 24 25 28 29 30 31

Figure 2-7. Required Physical Address Register (RPA)

Table 2-6 describes the bit settings of the RPA register.

Table 2-6. RPA Bit Settings

Bits Name Description

0-19 RPN Physical page number from PTE

20-22 - Reserved

23 R Referenced bit from PTE

24 C Changed bit from PTE

25-28 WIMG Memory/cache access attribute bits

29 - Reserved

30-31 PP Page protection bits from PTE

2.1.2.6 Instruction Address Breakpoint Register (IABR)
The IABR, shown in Figure 2-8, controls the instruction address breakpoint exception.
IABR[CEA] holds an effective address to which each instruction is compared. The
exception is enabled by setting bit 30 of IABR. The exception is taken when there is an
instruction address breakpoint match on the next instruction to complete. The instruction
tagged with the match will not be completed before the breakpoint exception is taken.

CJ Reserved

CEA IIEI~LI
o 29 30 31

Figure 2-8. Instruction Address Breakpoint Register (IABR)

MOTOROLA Chapter 2. Programming Model 2-11

The bits in the IABR are defined as shown in Table 2-7.

Table 2-7. Instruction Address Breakpoint Register Bit Settings

Bit Description

0-29 Word address to be compared

30 IABR enabled. Setting this bit indicates that the IABR exception is enabled.

31 Reserved

2.1.2.7 Run_N Counter Register (Run_N)
The 33-bit Run_N counter register is unique to the PID7v-603e. The Run_N counter is used
by the COP to control the number of processor cycles that the processor runs before halting.
The most-significant 32 bits form a 32-bit counter. The function of the least-significant bit
remains unchanged.

2.2 Operand Conventions
This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture. It also provides detailed descriptions of conventions used for storing
values in registers and memory, accessing the 603e's registers, and representation of data
in these registers.

2.2.1 Floating-Point Execution Models-UISA
Note that the floating-point execution models are not supported on the EC603e
microprocessor.

The IEEE 754 standard includes 64- and 32-bit arithmetic. The standard requires that
single-precision arithmetic be provided for single-precision operands. The standard permits
double-precision arithmetic instructions to have either (or both) single-precision or double­
precision operands, but states that single-precision arithmetic instructions should not accept
double-precision operands.

The PowerPC VISA follows these guidelines:

• Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

• Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversions from double- to single-precision must be done
explicitly by software, while conversions from single- to double-precision are done
implicitly.

All PowerPC implementations provide the equivalent of the following execution models to
ensure that identical results are obtained. The definition of the arithmetic instructions for

2-12 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

infinities, denormalized numbers, and NaNs follow conventions described in the following
sections.

Although the double-precision format specifies an II-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is 1:

Underflow during multiplication using a denormalized factor

• Overflow during division using a denormalized divisor

2.2.2 Data Organization in Memory and Data Transfers
Bytes in memory are numbered consecutively starting with O. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and move assist instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

2.2.3 Alignment and Misaligned Accesses
The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the "natural" address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 2-8. (Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands.)

MOTOROLA

Table 2-8. Memory Operands

Operand Length
Addr[28-31]

If Aligned

Byte 8 bits xxxx

Hallward 2 bytes xxxO

Word 4 bytes xxOO

Double word 8 bytes xOOO

Quad word 16 bytes 0000

Note: An "x" in an address bit position indicates that the bit can
be 0 or 1 independent 01 the state 01 other bits in the
address.

Chapter 2. Programming Model 2-13

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Implementation Notes-The following describes how the 603e handles alignment and
misaligned accesses:

• The 603e provides hardware support for some misaligned memory accesses.
However, misaligned accesses will suffer a performance degradation compared to
aligned accesses of the same type.

• The 603e does not provide hardware support for floating-point load/store operations
that are not word-aligned. In such a case, the 603e will invoke an alignment
exception and the exception handler must break up the misaligned access. For this
reason, floating-point single- and double-word accesses should always be word­
aligned. Note that a floating-point double-word access on a word-aligned boundary
requires an extra cycle to complete. (Floating-point operations are not supported on
the EC603e microprocessor.)

Any memory access that crosses an alignment boundary must be broken into multiple
discrete accesses. This includes half-word, word, double-word, and string references. For
the case of string accesses, the hardware makes no attempt to get aligned in an effort to
reduce the number of discrete accesses. (Multi word accesses are architecturally required to
be aligned.) The resulting performance degradation depends upon how well each individual
access behaves with respect to the memory hierarchy. At a minimum, additional cache
access cycles are required. More dramatically, for the case of access to a noncacheable
page, each discrete access involves an individual bus operation which will reduce the
effective bandwidth of the bus.

The frequent use of misaligned accesses is discouraged since they can compromise the
overall performance of the processor.

2.2.4 Floating-Point Operand
The 603e provides hardware support for all single- and double-precision floating-point
operations (not supported on the EC603e microprocessor) for most value representations
and all rounding modes. The PowerPC architecture provides for hardware to implement a
floating-point system as defined in ANSIIIEEE standard 754-1985, IEEE Standard for
Binary Floating Point Arithmetic. For detailed information about the floating-point
execution model refer to Chapter 3, "Operand Conventions," in The Programming
Environments Manual.

2.2.5 Effect of Operand Placement on Performance
The VEA states that the placement (location and alignment) of operands in memory affect
the relative performance of memory accesses. The best performance is guaranteed if
memory operands are aligned on natural boundaries. To obtain the best performance from
the 603e, the programmer should assume the performance model described in Chapter 3,
"Operand Conventions," in The Programming Environments Manual.

2-14 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.3 Instruction Set Summary
This section describes instructions and addressing modes defined for the 603e. These
instructions are divided into the following functional categories:

• Integer instructions-These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, "Integer Instructions."

• Floating-point instructions-These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, "Floating-Point Instructions." (Note that
floating-point operations are not supported on the EC603e microprocessor)

• Load and store instructions-These include integer and floating-point load and store
instructions. For more information, see Section 2.3.4.3, "Load and Store
Instructions."

Flow control instructions-These include branching instructions, condition register
logical instructions, and other instructions that affect the instruction flow. For more
information, see Section 2.3.4.4, "Branch and Flow Control Instructions."

• Trap instructions-These instructions are used to test for a specified set of
conditions; see Section 2.3.4.5, "Trap Instructions," for more information.

• Processor control instructions-These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For more
information, see Sections 2.3.4.6, 2.3.5.1, and 2.3.6.2.

Memory synchronization instructions-These instructions are used for memory
synchronizing. See Sections 2.3.4.7 and Section 2.3.5.2 for more information.

• Memory control instructions-These instructions provide control of caches, TLBs,
and segment registers. For more information, see Sections 2.3.5.3 and 2.3.6.3.

• System linkage instructions-For more information, see Section 2.3.6.1, "System
Linkage Instructions."

External control instructions-These include instructions for use with special input!
output devices. For more information, see Section 2.3.5.4, "External Control
Instructions."

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. This information, which is useful
in taking full advantage of the 603e's superscalar parallel instruction execution, is provided
in Chapter 8, "Instruction Set," in The Programming Environments Manual.

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
uses instructions that are four bytes long and word-aligned. It provides for byte, half-word,
and word operand loads and stores between memory and a set of 32 general-purpose
registers (GPRs). It also provides for word and double-word operand loads and stores
between memory and a set of 32 floating-point registers (FPRs).

MOTOROLA Chapter 2. Programming Model 2-15

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics (extended
mnemonics in the architecture specification) and symbols is provided for some of the
frequently-used instructions; see Appendix F, "Simplified Mnemonics," in The
Programming Environments Manual for a complete list of simplified mnemonic examples.

2.3.1 Classes of Instructions
The 603e instructions belong to one of the following three classes:

• Defined
• Illegal
• Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, an instruction that
is specific to 64-bit implementations is considered defined for 64-bit implementations but
illegal for 32-bit implementations such as the 603e.

The class is determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

In future versions of the PowerPC architecture, instruction codings that are now illegal may
become assigned to instructions in the architecture, or may be reserved by being assigned
to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined
If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class
Defined instructions are guaranteed to be supported in all PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, "Instruction Set," in The
Programming Environments Manual. The 603e provides hardware support for all

2-16 MPC603e & EC603e RiSe Microprocessors User's Manual MOTOROLA

instructions defined for 32-bit implementations (the EC603e microprocessor supports all
32-bit instructions with the exception of those defined for floating-point operations).

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required.

A defined instruction can have invalid forms, as described in the following subsection.

2.3.1.3 Illegal Instruction Class
Illegal instructions can be grouped into the following categories:

• Instructions that are not implemented in the PowerPC architecture. These opcodes
are available for future extensions of the PowerPC architecture; that is, future
versions of the PowerPC architecture may define any of these instructions to
perform new functions.

The following primary opcodes are defined as illegal but may be used in future
extensions to the architecture:

1,4,5,6,9,22,56,57,60,61

• Instructions that are implemented in the PowerPC architecture but are not
implemented in a specific PowerPC implementation. For example, instructions that
can be executed on 64-bit PowerPC processors are considered illegal by 32-bit
processors.

The following primary opcodes are defined for 64-bit implementations only and are
illegal on the 603e:

2,30,58,62

All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, "Instructions Sorted by Opcode," and
Section 2.3.1.4, "Reserved Instruction Class." Notice that extended opcodes for
instructions that are defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa.

The following primary opcodes have unused extended opcodes.

17, 19, 31, 59, 63 (primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes)

• An instruction consisting entirely of zeros is guaranteed to be an illegal instruction.
This increases the probability that an attempt to execute data or uninitialized
memory invokes the system illegal instruction error handler (a program exception).
Note that if only the primary opcode consists of all zeros, the instruction is
considered a reserved instruction. This is further described in Section 2.3.1.4,
"Reserved Instruction Class."

MOTOROLA Chapter 2. Programming Model 2-17

An attempt to execute an illegal instruction invokes the illegal instruction error handler (a
program exception) but has no other effect. See Section 4.5.7, "Program Exception
(Ox00700)," for additional information about illegal and invalid instruction exceptions.

With the exception of the instruction consisting entirely of binary zeros, the illegal
instructions are available for further additions to the PowerPC architecture.

2.3.1.4 Reserved Instruction Class
Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
Section 4.5.7, "Program Exception (Ox00700)," for additional information about illegal and
invalid instruction exceptions.

The following types of instructions are included in this class:

• Implementation-specific instructions (for example, Load Data TLB Entry (tlbld)
and Load Instruction TLB Entry (tlhli) instructions)

• Optional instructions defined by the PowerPC architecture but not implemented by
the 603e (for example, Floating Square Root (fsqrt) and Floating Square Root
Single (fsqrts) instructions)

2.3.2 Addressing Modes
This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 32-bit
implementations. For more detailed information, see "Conventions," in Chapter 4,
"Addressing Modes and Instruction Set Summary," of The Programming Environments
Manual.

2.3.2.1 Memory Addressing
A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

2.3.2.2 Memory Operands
Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian.
See "Byte Ordering" in Chapter 3, "Operand Conventions," in The Programming

2-18 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Environments Manual for more information about big-endian and little-endian byte
ordering.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the "natural" address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Chapter 3, "Operand Conventions," in The Programming
Environments Manual.

2.3.2.3 Effective Address Calculation
An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective- address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

Load and store operations have three categories of effective address generation:

• Register indirect with immediate index mode

• Register indirect with index mode

• Register indirect mode

Refer to Section 2.3.4.3.2, "Integer Load and Store Address Generation," for further
discussion of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

• Immediate
• Link register indirect

• Count register indirect

Refer to Section 2.3 .4.4.1, "Branch Instruction Address Calculation," for further discussion
of branch instruction effective address generation.

2.3.2.4 Synchronization
The sychronization described in this section refers to the state of the processor that is
performing the sychronization.

MOTOROLA Chapter 2. Programming Model 2-19

2.3.2.4.1 Context Synchronization
The System Call (sc) and Return from Interrupt (rfi) instructions perform context
synchronization by allowing previously issued instructions to complete before performing
a change in context. Execution of one of these instructions ensures the following:

• No higher priority exception exists (sc).

• All previous instructions have completed to a point where they can no longer cause
an exception. If a prior memory access instruction causes direct-store error
exceptions, the results are guaranteed to be determined before this instruction is
executed.

• . Previous instructions complete execution in the context (privilege, protection, and
. address translation) under which they were issued.

• The instructions following the sc or rfi instruction execute in the context established
by these instructions.

2.3.2.4.2 Execution Synchronization
An instruction is execution synchronizing if all previously initiated instructions appear to
have completed before the instruction is initiated or, in the case of the Synchronize (sync)
and Instruction Synchronize (isync) instructions, before the instruction completes. For
example, the Move to Machine State Register (mtmsr) instruction is execution
synchronizing. It ensures that all preceding instructions have completed execution and will
not cause an exception before the instruction executes, but does not ensure subsequent
instructions execute in the newly established environment. For example, if the mtmsr sets
the MSR[PR] bit, unless an isync immediately follows the mtmsr instruction, a privileged
instruction could be executed or privileged access could be performed without causing an
exception even though the MSR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions
There are two kinds of exceptions in the 603e-those caused directly by the execution of
an instruction and those caused by an asynchronous event. Either may cause components
of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as. follows:

• An attempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by a user-level program to execute the
supervisor-level instructions listed below causes the privileged instruction (program
exception) handler to be invoked. The 603e provides the following supervisor-level
instructions: dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi,
tlbie, tlbsync, tlbld, and tlbli. Note that the privilege level of the mfspr and mtspr
instructions depends on the SPR encoding.

• An attempt to access memory that is not available (page fault) causes the lSI
exception handler to be invoked.

• An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

2-20 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

• The execution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.

• The execution of a trap instruction invokes the program exception trap handler.

• The execution of a floating-point instruction when floating-point instructions are
disabled or unavailable invokes the floating-point unavailable exception handler.

• The execution of an instruction that causes a floating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.

Exceptions caused by asynchronous events are described in Chapter 4, "Exceptions."

2.3.3 Instruction Set Overview
This section provides a brief overview of the PowerPC instructions implemented in the
603e and highlights any special information with respect to how the 603e implements a
particular instruction. Note that the categories used in this section correspond to those used
in Chapter 4, "Addressing Modes and Instruction Set Summary," in The Programming
Environments Manual. These categorizations are somewhat arbitrary and are provided for
the convenience of the programmer and do not necessarily reflect the PowerPC architecture
specification.

Note that some of the instructions have the following optional features:

• CR Update-The dot (.) suffix on the mnemonic enables the update ofthe CR.
• Overflow option-The 0 suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions
The PowerPC UISA includes the base user-level instruction set (excluding a few user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the VISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

• Integer arithmetic instructions

• Integer compare instructions
• Integer logical instructions

• Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the XER, and into condition register (CR) fields.

MOTOROLA Chapter 2. Programming Model 2-21

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-9 lists the integer arithmetic instructions for the 603e.

Table 2-9. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax

Add Immediate addi rD,rA,SIMM

Add Immediate Shifted addis rD,rA,SIMM

Add add (add. addo addo.) rD,rA,rB

Subtract From subf (subt. subfo subfo.) rD,rA,rB

Add Immediate Carrying addie rD,rA,SIMM

Add Immediate Carrying and Record addie. rD,rA,SIMM

Subtract from Immediate Carrying subfie rD,rA,SIMM

Add Carrying adde (adde. addeo addeo.) rD,rA,rB

Subtract from Carrying subfe (subfe. subfeo subfeo.) rD,rA,rB

Add Extended adde (adde. addeo addeo.) rD,rA,rB

Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB

Add to Minus One Extended addme (add me. addmeo addmeo.) rD,rA

Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA

Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA

Negate neg (neg. nego nego.) rD,rA

Multiply Low Immediate mulli rD,rA,SIMM

Multiply Low mullw(mullw. mullwo mUllwo.) rD,rA,rB

Multiply High Word mulhw (mulhw.) rD,rA,rB

Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB

Divide Word divw(divw. divwo divwo.) rD,rA,rB

Divide Word Unsigned divwu (divwu. divwuo divwuo.) rD,rA,rB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (r A) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, "Simplified Mnemonics," in The
Programming Environments Manual for examples.

2.3.4.1.2 Integer Compare Instructions
The integer compare instructions algebraically or logically compare the contents ofrA with
either the UIMM operand, the SIMM operand, or the contents of rB. The comparison is

2-22 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

signed for the cmpi and cmp instructions, and unsigned for the cmpli and cmpl
instructions. Table 2-10 lists the integer compare instructions.

Table 2-10. Integer Compare Instructions

Name Mnemonic Operand Syntax

Compare Immediate cmpi crfD,L,rA,SIMM

Compare cmp crfD,L,rA,rB

Compare Logical Immediate cmpli crfD,L,rA,UIMM

Compare Logical cmpl crfD,L,rA,rB

The crfD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruction crfD field.

For more information refer to Appendix F, "Simplified Mnemonics," in The Programming
Environments Manual.

2.3.4.1.3 Integer Logical Instructions
The logical instructions shown in Table 2-11 perform bit-parallel operations. Logical
instructions with the CR update enabled and instructions andi. and andis. set CR field CRO
to characterize the result of the logical operation. These fields are set as if the sign-extended
low-order 32 bits of the result were algebraically compared to zero. Logical instructions
without CR update and the remaining logical instructions do not modify the CR. Logical
instructions do not affect the XER[SO], XER[OV], and XER[CA] bits.

For simplified mnemonics examples for the integer logical operations see Appendix F,
"Simplified Mnemonics," in The Programming Environments Manual.

Table 2-11. Integer Logical Instructions

Name Mnemonic Operand Syntax

AND Immediate andi. rA,rS,UIMM

AND Immediate Shifted andis. rA,rS,UIMM

OR Immediate ori rA,rS,UIMM

OR Immediate Shifted oris rA,rS,UIMM

XOR Immediate xori rA,rS,UIMM

XOR Immediate Shifted xoris rA,rS,UIMM

AND and (and.) rA,rS,rB

OR or (or.) rA,rS,rB

XOR xor (xor.) rA,rS,rB

NAND nand (nand.) rA,rS,rB

NOR nor (nor.) rA,rS,rB

MOTOROLA Chapter 2. Programming Model 2-23

Table 2-11. Integer Logical Instructions (Continued)

Name Mnemonic Operand Syntax

Equivalent eqv (eqv.) rA,rS,rB

AND with Complement andc (andc:) rA,rS,rB

OR with Complement orc (orc.) rA,rS,rB

Extend Sign Byte extsb (extsb.) rA,rS

Extend Sign Half Word extsh (extsh.) rA,rS

Count Leading Zeros Word cntlzw (cntlzw.) rA,rS

2.3.4.1.4 Integer Rotate and Shift Instructions
Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, "Simplified Mnemonics," in The
Programming Environments Manual for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

The integer rotate instructions are listed in Table 2-12.

Table 2-12. Integer Rotate Instructions

Name Mnemonic Operand Syntax

Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics are provided to make coding of such shifts
simpler and easier to understand,

Multiple-precision shifts can be programmed as shown in Appendix C, "Multiple-Precision
Shifts," in The PrdgrammingEnvironment~ Manual.

2-24 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The integer shift instructions are listed in Table 2-13.

Table 2-13. Integer Shift Instructions

Name Mnemonic Operand Syntax

Shift Left Word slw (slw.) rA,rS,rB

Shift Right Word srw (srw.) rA,rS,rB

Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH

Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

• Floating-point arithmetic instructions
• Floating-point multiply-add instructions

• Floating-point rounding and conversion instructions
• Floating-point compare instructions
• Floating-point status and control register instructions

• Floating-point move instructions

The EC603e microprocessor provides hardware support for all 32-bit PowerPC instructions
with the exception of floating-point instructions, which, when implemented on the EC603e
microprocessor, take a floating-point unavailable exception.

See Section 2.3.4.3, "Load and Store Instructions," for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but requires software support to conform with that standard. All floating-point
operations conform to the IEEE 754 standard, except if software sets the non-IEEE mode
bit (NI) in the FPSCR; the 603e is in the nondenormalized mode when the NI bit is set in
the FPSCR. If a denormalized result is produced, a default result of zero is generated. The
generated zero has the same sign as the denormalized number. The 603e performs single­
and double-precision floating-point operations compliant with the IEEE-754 floating-point
standard.

Implementation Note-Single-precision denormalized results require two additional
processor clock cycles to round. When loading or storing a single-precision denormalized
number, the load/store unit may take up to 24 processor clock cycles to convert between the
internal double-precision format and the external single-precision format.

MOTOROLA Chapter 2. Programming Model 2-25

2.3.4.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are listed in Table 2-14. (Floating-point
instructions are not supported on the EC603e microprocessor.)

Table 2-14. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax

Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB

Floating Add Single fadds (fadds.) frD,frA,frB

Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB

Floating Subtract Single fsubs (fsubs.) frD,frA,frB

Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC

Floating Multiply Single fmuls (fmuls.) frD,frA,frC

Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB

Floating Divide Single fdivs (fdivs.) frO, fr A, frB

Floating Reciprocal Estimate Single fres (fres.) frD,frB

Floating Reciprocal Square Root Estimate frsqrte (frsqrte.) frD,frB

Floating Select fsel (fsel.) frD,frA,frC,frB

2.3.4.2.2 Floating-Point Multiply-Add Instructions
These instructions combine multiply and add operations without an intermediate rounding
operation. The fractional part of the intermediate product is 106 bits wide, and all 106 bits
take part in the add/subtract portion of the instruction.

The floating-point multiply-add instructions are listed in Table 2-15. (Floating-point
instructions are not supported on the EC603e microprocessor.)

Table 2-15. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax

Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB

Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB

Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB

Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB

Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB

Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB

Floating Negative Multiply-Subtract (Double- fnmsub (fnmsub.) frD,frA,frC,frB
Precision)

Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs). frD,frA,frC,frB

2-26 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Implementation Note-Single-precision multiply-type instructions operate faster than
their double-precision equivalents. See Chapter 6, "Instruction Timing," for more
information.

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions
The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The floating­
point conversion instructions convert a 64-bit double-precision floating-point number to a
32-bit signed integer number.

The PowerPC architecture defines bits 0-31 of floating-point register frD as undefined
when executing the Floating Convert to Integer Word (fctiw) and Floating Convert to
Integer Word with Round toward Zero (fctiwz) instructions.

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, "Floating-Point Models," in The Programming Environments Manual. The
floating-point rounding instructions are shown in Table 2-16. (Floating-point instructions
are not supported on the EC603e microprocessor.)

Table 2-16. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax

Floating Round to Single-Precision frsp (frsp.) frD,frB

Floating Convert to Integer Word fctiw (fctiw.) frD,frB

Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz.) frD,frB

2.3.4.2.4 Floating-Point Compare Instructions
Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +0 = -0). The floating-point compare
instructions are listed in Table 2-17. (Floating -point instructions are not supported on the
EC603e microprocessor.)

Table 2-17. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax

Floating Compare Unordered tcmpu crtD,frA,frB

Floating Compare Ordered tcmpo crtD,frA,frB

2.3.4.2.5 Floating-Point Status and Control Register Instructions
Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has

MOTOROLA Chapter 2. Programming Model 2-27

completed. The FPSCR instructions are listed in Table 2-18. (Floating-point instructions
are not supported on the EC603e microprocessor.)

Table 2-18. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax

Move from FPSCR mtfs (mtfs.) trD

Move to Condition Register from FPSCR mcrfs crfD,crfS

Move to FPSCR Field Immediate mtfstl (mtfstl.) crfD,IMM

Move to FPSCR Fields mtfst (mtfst.) FM,trB

Move to FPSCR Bit 0 mtfsbO (mtfsbO.) crbD

Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) crbD

Implementation Note-The architecture notes that, in some implementations, the Move
to FPSCR Fields (mtfsfx) instruction may perform more slowly when only a portion of the
fields are updated as opposed to all of the fields. This is not the case in the 603e.

2.3.4.2.6 Floating-Point Move Instructions
Floating-point move instructions copy data from one floating-point register to another. The
floating-point move instructions do not modify the FPSCR. The CR update option in these
instructions controls the placing of result status into CRl. Floating-point move instructions
are listed in Table 2-18. (Floating-point instructions are not supported on the EC603e
microprocessor.)

Table 2-19. Floating-Point Move Instructions

Name Mnemonic I Operand Syntax

Floating Move Register tmr (tmr.) frD,trB

Floating Negate tneg (tneg.) trD,trB

Floating Absolute Value tabs (tabs.) trD,frB

Floating Negative Absolute Value tnabs (fnabs.) frD,trB

2.3.4.3 Load and Store Instructions
Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions of the 603e, which consist
of the following:

• Integer load instructions
• Integer store instructions
• Integer load and store with byte-reverse instructions

• Integer load and store multiple instructions

2-28 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

• Integer load and store string instructions
• Floating-point load instructions
• Floating-point store instructions

2.3.4.3.1 Self-Modifying Code
When a processor modifies a memory location that may be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by the following instruction sequence:

dcbst lupdate memory
sync Iwait for update
icbi lremove (invalidate) copy in instruction cache
isync Iremove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since
instruction fetching bypasses the data cache, changes to items in the data cache may not be
reflected in memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining
cache coherency that are provided in the VEA, and discussed in Chapter 5, "Cache Model
and Memory Coherency," in The Programming Environments Manual. Because the 603e
does not broadcast the M bit for instruction fetches, external caches are subject to
coherency paradoxes.

2.3.4.3.2 Integer Load and Store Address Generation
Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, "Effective Address Calculation," for information about calculating
effective addresses. Note that the 603e is optimized for load and store operations that are
aligned on natural boundaries, and operations that are not naturally aligned may suffer
performance degradation. Refer to Section 4.5.6.1, "Integer Alignment Exceptions," for
additional information about load and store address alignment exceptions.

2.3.4.3.3 Register Indirect Integer Load Instructions
For integer load instructions, the byte, half word, word, or double word addressed by the
EA is loaded into rD. Many integer load instructions have an update form, in which rA is
updated with the generated effective address. For these forms, the EA is placed into rA and
the memory element (byte, half word, word, or double word) addressed by EA is loaded
into rD.

Implementation Note-In some implementations of the PowerPC architecture, the load
half word algebraic instructions (Iha and Ihax) and the load with update (Ibzu, Ibzux, Ihzu,
Ihzux, Ihau, Ihaux, lwu, and Iwux) instructions may execute with greater latency than
other types of load instructions. In the 603e, these instructions operate with the same
latency as other load instructions.

MOTOROLA Chapter 2. Programming Model 2-29

Table 2-20 lists the integer load instructions.

Table 2-20. Integer Load Instructions

Name Mnemonic Operand Syntax

Load Byte and Zero Ibz rD,d(rA)

Load Byte and Zero Indexed Ibzx rD,rA,rB

Load Byte and Zero with Update Ibzu rD,d(rA)

Load Byte and Zero with Update Indexed Ibzux rD,rA,rB

Load Half Word and Zero 1hz rD,d(rA)

Load Half Word and Zero Indexed Ihzx rD,rA,rB

Load Half Word and Zero with Update Ihzu rD,d(rA)

Load Half Word and Zero with Update Indexed Ihzux rD,rA,rB

Load Half Word Algebraic Iha rD,d(rA)

Load Half Word Algebraic Indexed Ihax rD,rA,rB

Load Half Word Algebraic with Update Ihau rD,d(rA)

Load Half Word Algebraic with Update Indexed Ihaux rD,rA,rB

Load Word and Zero Iwz rD,d(rA)

Load Word and Zero Indexed Iwzx rD,rA,rB

Load Word and Zero with Update Iwzu rD,d(rA)

Load Word and Zero with Update Indexed Iwzux rD,rA,rB

2.3.4.3.4 Integer Store Instructions
For integer store instructions, Lite contents of rS are stored into the byte, half word, word,
or double word in memory addressed by the effective address (EA). Many store instructions
have an update fonn, in which r A is updated with the EA. For these fonns, the following
rules apply:

• If rA '" 0, the EA is placed into rA.

• If rS = r A, the contents of rS are copied to the target memory element, then the
generated EA is placed into rA (rS).

The 603e defines store with update instructions with rA = 0 and integer store instructions
with the CR update option enabled (Rc field, bit 31, in the instruction encoding = 1) to be
invalid fonns. Table 2-21 provides a list of the integer store instructions for the 603e.

2-30 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 2-21. Integer Store Instructions

Name Mnemonic Operand Syntax

Store Byte stb rS,d(rA)

Store Byte Indexed stbx rS,rA,rB

Store Byte with Update stbu rS,d(rA)

Store Byte with Update Indexed stbux rS,rA,rB

Store Half Word sth rS,d(rA)

Store Half Word Indexed sthx rS,rA,rB

Store Half Word with Update sthu rS,d(rA)

Store Half Word with Update Indexed sthux rS,rA,rB

Store Word stw rS,d(rA)

Store Word Indexed stwx rS,rA,rB

Store Word with Update stwu rS,d(rA)

Store Word with Update Indexed stwux rS,rA,rB

2.3.4.3.5 Integer Load and Store with Byte-Reverse Instructions
Table 2-22 describes integer load and store with byte-reverse instructions; When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing data in big -endian order. For more information about big-endian and
little-endian byte ordering, see "Byte Ordering" in Chapter 3, "Operand Conventions," in
The Programming Environments Manual.

Implementation Note-In some PowerPC implementations, load byte-reverse
instructions (lhbrx and lwbrx) may have greater latency than other load instructions;
however, these instructions operate with the same latency as other load instructions in the
603e.

Table 2-22. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Operand Syntax

Load Half Word Byte-Reverse Indexed Ihbrx rD,rA,rB

Load Word Byte-Reverse Indexed Iwbrx rD,rA,rB

Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB

Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

MOTOROLA Chapter 2. Programming Model 2-31

2.3.4.3.6 Integer Load and Store Multiple Instructions
The integer load!store multiple instructions are used to move blocks of data to and from the
GPRs. In some implementations, these instructions are likely to have greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

Implementation Notes-The following describes the 603e implementation of the load!
store multiple instruction:

• The load multiple and store multiple instructions may have operands that require
memory accesses crossing a 4-Kbyte page boundary. As a result, these instructions
may be interrupted by a DSI exception associated with the address translation of the
second page. In this case, the 603e performs some or all of the memory references
from the first page, and none of the memory references from the second page before
taking the exception. On return from the DSI exception, the load or store multiple
instruction will re-execute from the beginning. For additional information, refer to
"DSI Exception (OxOO300)" in Chapter 6, "Exceptions," in The Programming
Environments Manual.

• The PowerPC architecture defines the load multiple word (lmw) instruction with rA
in the range of registers to be loaded as an invalid form. It defines the load multiple
and store multiple instructions with misaligned operands (that is, the EA is not a
multiple of 4) to cause an alignment exception. The 603e defines the load multiple
word (lmw) instruction with rA in the range of registers to be loaded as an invalid
form.

• The PowerPC architecture describes some preferred instruction forms for the integer
load and store multiple instructions that may perform better than other forms in
some implementations. None of these preferred forms have an effect on instruction
performance in the 603e.

When the 603e is operating with little-endian byte order, execution of a load or store
multiple instruction causes the system alignment error handler to be invoked; see "Byte
Ordering" in Chapter 3, "Operand Conventions," in The Programming Environments
Manual for more information. Table 2-23 lists the integer load and store multiple
instructions for the 603e.

Table 2-23. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax

Load Multiple Word Imw rD,d(rA)

Store Multiple Word stmw rS,d(rA)

2-32 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.3.4.3.7 Integer Load and Store String Instructions
The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields.

When the 603e is operating with little-endian byte order, execution of a load or store string
instruction causes the system alignment error handler to be invoked; see "Byte Ordering"
in Chapter 3, "Operand Conventions," in The Programming Environments Manual for more
information.

Table 2-24 lists the integer load and store string instructions.

Table 2-24. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax

Load String Word Immediate Iswi rD,rA,NB

Load String Word Indexed Iswx rD,rA,rB

Store String Word Immediate stswi rS,rA,NB

Store String Word Indexed stswx rS,rA,rB

Load string and store string instructions may involve operands that are not word-aligned.
As described in "Alignment Exception (Ox00600)" in Chapter 6, "Exceptions," in The
Programming Environments Manual, a misaligned string operation suffers a performance
penalty compared to a word-aligned operation of the same type.

When a string operation crosses a 4-Kbyte boundary, the instruction may be interrupted by
a DSI exception associated with the address translation of the second page. In this case, the
603e performs some or all memory references from the first page and none from the second
before taking the exception. On return from the DSI exception, the load or store string
instruction will re-execute from the beginning. For more information, refer to "DSI
Exception (Ox00300)" in Chapter 6, "Exceptions," in The Programming Environments
Manual.

Implementation Note-If rA is in the range of registers to be loaded for a Load String
Word Immediate (lswi) instruction or if either rA or rB is in the range of registers to be
loaded for a Load String Word Indexed (lswx) instruction, the PowerPC architecture defines
the instruction to be of an invalid form. In addition, the lswx and stswx instructions that
specify a string length of zero are defined to be invalid by the PowerPC architecture.
However, neither of these cases holds true for the 603e which treats these cases as valid
forms.

MOTOROLA Chapter 2. Programming Model 2-33

2.3.4.3.8 Floating-Point Load and Store Address Generation
Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode, the details of which are described below. Floating-point loads and stores are not
supported for direct-store accesses. The use of the floating-point load and store operations
for direct-store accesses will result in a DSI exception. (Note that floating-point instructions
are not supported on the EC603e microprocessor.)

2.3.4.3.9 Floating-Point Load Instructions
There are two forms of the floating-point load instruction-single-precision and double­
precision operand formats. Because the FPRs support only the floating-point double­
precision format, single-precision floating-point load instructions convert single-precision
data to double-precision format before loading the operands into the target FPR. This
conversion is described fully in "Floating-Point Load Instructions" in Appendix D,
"Floating-Point Models," in The Programming Environments Manual.

Implementation Note-The PowerPC architecture defines load with update instructions
with rA = 0 as an invalid form; however, the 603e treats this case as a valid form.

On the EC603e microprocessor, floating-point instructions are trapped by the floating-point
unavailable exception vector and can be emulated in software.

Table 2-25 provides a list of the floating-point load instructions. (Floating-point
instructions are not supported on the EC603e microprocessor.)

Table 2-25. Floating-Point Load Instructions

Name Mnemonic Operand Syntax

Load F!oating"Point Single Ifs fiD,d(rA)

Load Floating-Point Single Indexed Ifsx frD,rA,rB

Load Floating-Point Single with Update Ifsu frD,d(rA)

Load Floating-Point Single with Update Indexed Ifsux frD,rA,rB

Load Floating-Point Double Ifd frD,d(rA)

Load Floating-Point Double Indexed Ifdx frD,rA,rB

Load Floating-Point Double with Update Ifdu frD,d(rA)

Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB

2.3.4.3.10 Floating-Point Store Instructions
There are three basic forms of the store instruction-single-precision, double-precision,
and integer. The integer form is supported by the optional stfiwx instruction. Because the
FPRs support only floating-point, double-precision format for floating-point data single­
precision floating-point store instructions convert double-precision data to single-precision
format before storing the operands. The conversion steps are described fully in "Floating-

2-34 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Point Store Instructions" in Appendix D, "Floating-Point Models," in The Programming
Environments Manual.

Implementation Note-The PowerPC architecture defines store with update instructions
with r A = 0 as an invalid form; however, the 603e treats this case as valid.

On the EC603e microprocessor, floating-point instructions are trapped by the floating-point
unavailable exception vector and can be emulated in software.

Table 2-26 provides a list of the floating-point store instructions. (Floating-point
instructions are not supported on the EC603e microprocessor.)

Table 2-26. Floating-Point Store Instructions

Name Mnemonic Operand Syntax

Store Floating-Point Single stfs frS,d(rA)

Store Floating-Point Single Indexed stfsx frS,rA,rB

Store Floating-Point Single with Update stfsu frS,d(rA)

Store Floating-Point Single with Update Indexed stfsux frS,rA,rB

Store Floating-Point Double stfd frS,d(rA)

Store Floating-Point Double Indexed stfdx frS,rA,rB

Store Floating-Point Double with Update stfdu frS,d(rA)

Store Floating-Point Double with Update Indexed stfdux frS,rA,rB

Store Floating-Point as Integer Word Indexed stfiwx frS,rA,rB

2.3.4.4 Branch and Flow Control Instructions
Branch instructions are executed by the branch processing unit (BPU). The BPU receives
branch instructions from the fetch unit and performs condition register (CR) look-ahead
operations on conditional branches to resolve them early, achieving the effect of a zero­
cycle branch in many cases.

Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the branch processor encounters one of these instructions, it
scans the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

If an interlock is detected, the branch is considered unresolved and the direction of the
branch is predicted using static branch prediction as described in "Conditional Branch
Control" in Chapter 4, "Addressing Modes and Instruction Set Summary," in The
Programming Environments Manual. The interlock is monitored while instructions are
fetched for the predicted branch. When the interlock is cleared, the branch processor
determines whether the prediction was correct based on the value of the CR bit. If the
prediction is correct, the branch is considered completed and instruction fetching continues.

MOTOROLA Chapter 2. Programming Model 2-35

If the prediction is incorrect, the fetched instructions are purged, and instruction fetching
continues along the alternate path. See Chapter 8, "Instruction Timing," in The
Programming Environments Manual for more information about how branches are
executed.

2.3.4.4.1 Branch Instruction Address Calculation
Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the processor ignores the two low-order bits of the
generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

• Branch relative
• Branch conditional to relative address
• Branch to absolute address
• Branch conditional to absolute address
• Branch conditional to link register

• Branch conditional to count register

2.3.4.4.2 Branch Instructions
Table 2-27 lists the branch instructions provided by the PowerPC processors. To simplify
assembly language programming, a set of simplified mnemonics and symbols is provided
for the most frequently used forms of branch conditional, compare, trap, rotate and shift,
and certain other instructions. See Appendix F, "Simplified Mnemonics," in The
Programming Environments Manual for a list of simplified mnemonic examples.

Table 2-27. Branch Instructions

Name Mnemonic Operand Syntax

Branch b(ba bl bla) targeCaddr

Branch Conditional be (bea bel bela) BO,BI,targecaddr

Branch Conditional to Link Register belr (bclrl) BO,BI

Branch Conditional to Count Register bcctr (bcctrl) BO,BI

2.3.4.4.3 Condition Register Logical Instructions
Condition register logical instructions, shown in Table 2-28, and the Move Condition
Register Field (mcrt) instruction are also defined as flow control instructions, although they
are executed by the system register unit (SRU). Most instructions executed by the SRU are

2-36 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

completion-serialized to maintain system state; that is, the instruction is held for execution
in the SRU until all prior instructions issued have completed.

Table 2-28. Condition Register Logical Instructions

Name Mnemonic Operand Syntax

Condition Register AND crand crbD,crbA,crbB

Condition Register OR cror crbD,crbA,crbB

Condition Register XOR crxor crbD,crbA,crbB

Condition Register NAND crnand crbD,crbA,crbB

Condition Register NOR crnor crbD,crbA,crbB

Condition Register Equivalent creqv crbD,crbA,crbB

Condition Register AND with Complement crandc crbD,crbA,crbB

Condition Register OR with Complement crorc crbD,crbA,crbB

Move Condition Register Field mcrf crfD,crfS

Note that if the LR update option is enabled for any of these instructions, these forms of the
instructions are invalid in the 603e.

2.3.4.5 Trap Instructions
The trap instructions shown in Table 2-29 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally.

Table 2-29. Trap Instructions

Name Mnemonic Operand Syntax

Trap Word Immediate twi TO,rA,SIMM

Trap Word tw TO,rA,rB

See Appendix F, "Simplified Mnemonics," in The Programming Environments Manual for
a complete set of simplified mnemonics.

2.3.4.6 Processor Control Instructions
Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs), and to read from
the time base register (TBU or TBL).

MOTOROLA Chapter 2. Programming Model 2-37

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-37 lists the instructions provided by the 603e for reading from or writing to the CR.

Table 2-30. Move to/from Condition Register Instructions

Name Mnemonic Operand Syntax

Move to Condition Register Fields mtcrf CRM,rS

Move to Condition Register from XER mcrxr crfD

Move from Condition Register mfcr rD

2.3.4.7 Memory Synchronization Instructions-UISA
Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, "Instruction
and Data Cache Operation," for additional information about these instructions and about
related aspects of memory synchronization.

The sync instruction delays execution of subsequent instructions until previous instructions
have completed to the point that they can no longer cause an exception and until all previous
memory accesses are performed globally; the sync operation is not broadcast onto the 603e
bus interface. Additionally all load and store cachelbus activities initiated by prior
instructions are completed. Touch load operations (debt and debtst) are required to
complete at least through address translation, but not required to complete on the bus.

The functions performed by the sync instruction normally take a significant amount of time
to complete; as a result, frequent use of this instruction may adversely affect performance.
In addition, the number of cycles required to complete a sync instruction depends on
system parameters and on the processor's state when the instruction is issued.

The proper paired use of the lwarx and stwcx. instructions allows programmers to emulate
common semaphore operations such as "test and set," "compare and swap," "exchange
memory," and "fetch and add." Examples of these semaphore operations can be found in
Appendix E, "Synchronization Programming Examples," in The Programming
Environments Manual. The Iwarx instruction must be paired with an stwcx. instruction
with the same effective address used for both instructions of the pair. Note that the
reservation granularity is 32 bytes.

The concept behind the use of the Iwarx and stwcx. instructions is that a processor may
load a semaphore from memory, compute a result based on the value of the semaphore, and
conditionally store it back to the same location (only if that location has not been modified
since it was first read), and determine if the store was successful. The conditional store is
performed based upon the existence of a reservation established by the preceding Iwarx
instruction. If the reservation exists when the store is executed, the store is performed and
a bit is set in the CR. If the reservation does not exist when the store is executed, the target
memory location is not modified and a bit is cleared in the CR.

2-38 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

If the store was successful, the sequence of instructions from the read of the semaphore to
the store that updated the semaphore appear to have been executed atomically (that is, no
other processor or mechanism modified the semaphore location between the read and the
update), thus providing the equivalent of a real atomic operation. However, in reality, other
processors may have read from the location during this operation. In the 603e, the
reservations are made on behalf of aligned 32-byte sections of the memory address space.

The lwarx and stwcx. instructions require the EA to be aligned. Exception handling
software should not attempt to emulate a misaligned lwarx or stwcx. instruction, because
there is no correct way to define the address associated with the reservation.

In general, the lwarx and stwcx. instructions should be used only in system programs,
which can be invoked by application programs as needed.

At most, one reservation exists simultaneously on any processor. The address associated
with the reservation can be changed by a subsequent lwarx instruction. The conditional
store is performed based upon the existence of a reservation established by the preceding
lwarx regardless of whether the address generated by the lwarx matches that generated by
the stwcx. instruction. A reservation held by the processor is cleared by one of the
following:

• Executing an stwcx. instruction to any address

• Attempt by some other device to modify a location in the reservation granularity
(32 bytes)

The lwarx and stwcx. instructions in write-through access mode do not cause a DSI
exception.

Table 2-31 lists the UISA memory synchronization instructions for the 603e.

Table 2-31. Memory Synchronization Instructions-UISA

Name Mnemonic Operand Syntax

Load Word and Reserve Indexed Iwarx rD,rA,rB

Store Word Conditional Indexed stwcx. rS,rA,rB

Synchronize sync -

2.3.5 PowerPC VEA Instructions
The PowerPC VEA describes the semantics of the memory model that can be assumed by
software processes, and includes descriptions of the cache model, cache-control
instructions, address aliasing, and other related issues.

2.3.5.1 Processor Control Instructions
In addition to the move to condition register instructions specified by the UISA, the VEA
defines the Move from Time Base (mftb) instruction for reading the contents of the time
base register. The mftb is a user-level instruction, it is shown in Table 2-32.

MOTOROLA Chapter 2. Programming Model 2-39

Simplified mnemonics are provided for the mfth instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. The
mfth instruction serves as both a basic and simplified mnemonic. Assemblers recognize an
mfth mnemonic with two operands as the basic form, and an mfth mnemonic with one
operand as the simplified form. Simplified mnemonics are also provided for Move from
Time Base Upper (mfthu), which is a variant of the mfth instruction rather than of mfspr.
The 603e ignores the extended opcode differences between mfth and mfspr by ignoring bit
25 of both instructions and treating them both identically. For more information refer to
Appendix F, "Simplified Mnemonics," in The Programming Environments Manual.

Table 2-32. Move from Time Base Instruction

Name Mnemonic Operand Syntax

Move from Time Base mftb rD, TBR

2.3.5.2 Memory Synchronization Instructions-VEA
Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, "Instruction
and Data Cache Operation," for additional information about these instructions and about
related aspects of memory synchronization.

Implementation Notes-The following describes how the 603e handles memory
synchronization in the VEA.

• The Instruction Synchronize (isync) instruction causes the 603e to discard all
prefetched instructions, wait for any preceding instructions to complete, and then
branch to the next sequential instruction (which has the effect of clelhring the
pipeline behind the isync instruction).

• The Enforce In-Order Execution of 1/0 (eieio) instruction is used to ensure memory
reordering of noncacheable memory access. Since the 603e does not reorder
noncacheable memory accesses, the eieio instruction is treated as a no-op.

Table 2-31 lists the VEA memory synchronization instructions for the 603e.

Table 2-33. Memory Synchronization Instructions-VEA

Name Mnemonic Operand Syntax

Enforce In-Order Execution of I/O eieio -

Instruction Synchronize isync -

2-40 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.3.5.3 Memory Control Instructions-VEA
Memory control instructions include the following types:

• Cache management instructions
• Segment register manipulation instructions
• Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA.
See Section 2.3.6.3, "Memory Control Instructions-DEA," for information about
supervisor-level cache, segment register manipulation, and translation lookaside buffer
management instructions.

The instructions listed in Table 2-34 provide user-level programs the ability to manage on­
chip caches when they exist.

As with other memory-related instructions, the effect of the cache management instructions
on memory are weakly ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, a syne instruction must be placed in the program following those instructions.

Note that when data address translation is disabled (MSR[DR] = 0), the Data Cache Block
Set to Zero (debz) instruction allocates a cache block in the cache and may not verify that
the physical address is valid. If a cache block is created for an invalid physical address, a
machine check condition may result when an attempt is made to write that cache block back
to memory. The cache block could be written back as a result of the execution of an
instruction that causes a cache miss and the invalid addressed cache block is the target for
replacement or a Data Cache Block Store (debst) instruction.

Note that any cache control instruction that generates an effective address that corresponds
to a direct-store segment (SR[T] = 1) is treated as a no-op.

Table 2-34 lists the cache instructions that are accessible to user-level programs.

Table 2-34. User-Level Cache Instructions

Name Mnemonic Operand Syntax

Data Cache Block Touch dcbt rA,rB

Data Cache Block Touch for Store dcbtst rA,rB

Data Cache Block Set to Zero dcbz rA,rB

Data Cache Block Store dcbst rA,rB

Data Cache Block Flush dcbt rA,rB

Instruction Cache Block Invalidate icbi rA,rB

MOTOROLA Chapter 2. Programming Model 2-41

2.3.5.4 External Control Instructions
The external control instructions allow a user-level program to communicate with a special­
purpose device. The MMU translation of the EA is not used to select the special-purpose
device, as it is used in most instructions such as loads and stores. The EA is used instead as
an address operand that is passed to the device over the address bus. Four other signals (the
burst and size signals on the 60x bus) are used to select the device; these four signals output
the 4-bit resource ID (RID) field that is located in the EAR register. Executing these
instructions when MSR[DR] = 0 causes a programming error,. and the physical address on
the bus is undefined. Executing these instructions to a direct-store segment causes a OS!
exception. The external control instructions are listed in Table 2-35.

Table 2-35. External Control Instructions

Name Mnemonic Operand Syntax

External Control In Word Indexed eclwx rD,rA,rB

External Control Out Word Indexed ecowx rS,rA,rB

2.3.6 PowerPC OEA Instructions
The PowerPC OEA includes the structure of the memory management model, supervisor­
level registers, and the exception model.

2.3.6.1 System Linkage Instructions
This section describes the system linkage instructions (see Table 2-36). The sc instruction
is a user-level instruction that permits a user program to calIon the system to perform a
service and causes the processor to take an exception. The Return from Interrupt (rfi)
instruction is a supervisor-level instruction that is useful for returning from an exception
hal1dler.

Table 2-36. System Linkage Instructions

Name Mnemonic Operand Syntax

System Call sc -
Return from Interrupt rfl -

2.3.6.2 Processor Control Instructions-OEA
Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs), and to read from
the time base register (TBU or TBL).

2-42 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.3.6.2.1 Move to/from Machine State Register Instructions
Table 2-37 lists the instructions provided by the 603e for reading from or writing to the
MSR.

Table 2-37. Move to/from Machine State Register Instructions

Name Mnemonic Operand Syntax

Move to Machine State Register mtmsr rS

Move from Machine State Register mfmsr rD

2.3.6.2.2 Move to/from Special-Purpose Register Instructions
Simplified mnemonics are provided for the mtspr and mfspr instructions so they can be
coded with the SPR name as part of the mnemonic rather than as a numeric operand. See
Appendix F, "Simplified Mnemonics," in The Programming Environments Manual for
simplified mnemonic examples. The mtspr and mfspr instructions are shown in
Table 2-38.

Table 2-38. Move to/from Special-Purpose Register Instructions

Name Mnemonic Operand Syntax

Move to Special-Purpose Register mtspr SPR,rS

Move from Special-Purpose Register mfspr rD,SPR

For mtspr and mfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into
two 5-bit halves that are reversed in the instruction encoding, with the high-order 5 bits
appearing in bits 16-20 of the instruction encoding and the low-order 5 bits in bits 11-15.

If the SPR field contains any value other than one of the values shown in Table 2-39, either
the program exception handler is invoked or the results are boundedly undefined.

Table 2-39. Implementation-specific SPR Encodings (mfspr)

SPR*
Register Name

Decimal spr[5-9] spr[0-4]

976 11110 10000 DMISS

977 11110 10001 DCMP

978 11110 10010 HASH1

979 11110 10011 HASH2

980 11110 10100 IMISS

981 11110 10101 ICMP

MOTOROLA Chapter 2. Programming Model 2-43

Table 2-39. Implementation-specific SPR Encodings (mfspr) (Continued)

SPR'
Register Name

Decimal spr[5-9] spr[O-4]

982 11110 10110 RPA

1008 11111 10000 HIDO

1009 11111 10001 HID1

1010 11111 10010 IABR

* Note that the order of the two 5-bit halves of the SPR number is
reversed compared with actual instruction coding.

For mtspr and mfspr instructions, the SPR number coded in
assembly language does not appear directly as a 1 O-bit binary
number in the instruction. The number coded is split into two 5-bit
halves that are reversed in the instruction, with the high-order 5 bits
appearing in bits 16-20 of the instruction and the low-order 5 bits in
bits 11-15.

Implementation Note-The 603e ignores the extended opcode differences between mftb
and mfspr by ignoring TB [25] and treating both instructions identically.

2.3.6.3 Memory Control Instructions-OEA
This section describes memory control instructions, which include the following types:

• Cache management instructions
Segment register manipulation instructions

• Translation lookaside buffer management instructions

2.3.6.3.1 Supervisor-Level Cache Management Instruction
Table 2-40 lists the only supervisor-level cache management instruction. See
Section 2.3.5.3, "Memory Control Instructions-VEA," for a description of cache
instructions that provide user-level programs the ability to manage the on-chip caches. If
the effective address references a direct-store segment, the instruction is treated as a no-op.

When data translation is disabled, MSR[DR] = 0, the debz instruction establishes a block
in the cache and may not verify that the physical address is valid. If a block is created for
an invalid real address, a machine check exception may result when an attempt is made to
write that block back to memory. The block could be written back as the result of the
execution of an instruction that causes a cache miss and the invalid address block is the
target for replacement or as the result of a debst instruction.

Table 2-40. Supervisor-Level Cache Management Instruction

Name Mnemonic Operand Syntax

Data Cache Block Invalidate dcbi rA,rB

2-44 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

2.3.6.3.2 Segment Register Manipulation Instructions
The instructions listed in Table 2-41 provide access to the segment registers for the 603e.
These instructions operate completely independently of the MSR[IR] and MSR[DR] bit
settings. Refer to "Synchronization Requirements for Special Registers and TLBs" in
Chapter 2, "Register Set," in The Programming Environments Manual for serialization
requirements and other recommended precautions to observe when manipulating the
segment registers.

Table 2-41. Segment Register Manipulation Instructions

Name Mnemonic Operand Syntax

Move to Segment Register mtsr SR,rS

Move to Segment Register Indirect mtsrin rS,rB

Move from Segment Register mfsr rD,SR

Move from Segment Register Indirect mfsrin rD,rB

2.3.6.3.3 Translation Lookaside Buffer Management Instructions
The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTEs) used by PowerPC processors to locate the effective-to-physical address
mapping for a particular access. The PTEs reside in page tables in memory. As defined for
32-bit implementations by the PowerPC architecture, segment descriptors reside in 16 on­
chip segment registers.

Implementation Note-The 603e provides the ability to invalidate a TLB entry. TheTLB
Invalidate Entry (tlbie) instruction invalidates the TLB entry indexed by the EA, and
operates on both the instruction and data TLBs simultaneously invalidating four TLB
entries (both sets in each TLB). The index corresponds to bits 15-19 of the EA. To
invalidate all entries within both TLBs, 32 tlbie instructions should be issued, incrementing
this field by one each time.

The 603e provides two implementation-specific instructions (tlbld and tlbli) that are used
by software table search operations following TLB misses to load TLB entries on-chip.

For more information on tlbld and tlbli refer to Section 2.3.8, "Implementation-Specific
Instructions."

Note that the tibia instruction is not implemented on the 603e.

MOTOROLA Chapter 2. Programming Model 2-45

Refer to Chapter 5, "Memory Management" for more information about the TLB
operations for the 603e. Table 2-42 lists the TLB instructions.

Table 2-42. Translation Lookaside Buffer Management Instructions

Name Mnemonic Operand Syntax

T LB Invalidate Entry tlbie rB

TLB Synchronize tlbsync -

Load Data TLB Entry tlbld rB

Load Instruction TLB Entry tlbli rB

Because the presence and exact semantics of the translation lookaside buffer management
instructions is implementation-dependent, system software should incorporate uses of the
instructions into subroutines to maximize compatibility with programs written for other
processors.

For more information on the PowerPC instruction set, refer to Chapter 4, "Addressing
Modes and Instruction Set Summary," and Chapter 8, "Instruction Set," in The
Programming Environments Manual.

2.3.7 Recommended Simplified Mnemonics
To simplify assembly language programs, a set of simplified mnemonics is provided for
some of the most frequently used operations (such as no-op, load immediate, load address,
move register, and complement register). PowerPC compliant assemblers provide the
simplified mnemonics listed in "Recommended Simplified Mnemonics" in Appendix F,
"Simplified Mnemonics," in The Programming Environments Manual and listed with
some of the instrtlction descriptions in this chapter. Progr~'t)1s 'vvritten to be portable across
the various assemblers for the PowerPC architecture should not assume the existence of
mnemonics not described in this document.

For a complete list of simplified mnemonics, see Appendix F, "Simplified Mnemonics," in
The Programming Environments Manual.

2.3.8 Implementation-Specific Instructions
This section provides a detailed look at the two 603e implementation-specific
instructions-tlbld and tlbli.

2-46 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

tlbld tlbld
Load Data TLB Entry Integer Unit

tlbld rB

GFJ Reserved

31 B 978

o 5 6 10 11 15 16 2021 30 31

EA f-- (rB)
TLB entry created from DCMP and RPA
DTLB entry selected by EA[15-19] and SRRl[WAY] f-- created TLB entry

The EA is the contents of rB. The tlbld instruction loads the contents of the data PTE
compare (DCMP) and required physical address (RPA) registers into the first word of the
selected data TLB entry. The specific DTLB entry to be loaded is selected by the EA and
the SRRI[WAY] bit.

The tlbld instruction should only be executed when address translation is disabled
(MSR[IR] = 0 and MSR[DR] = 0).

Note that it is possible to execute the tlbld instruction when address translation is enabled;
however, extreme caution should be used in doing so. If data address translation is set
(MSR[DR] = 1) tlbld must be preceded by a sync instruction and succeeded by a context
synchronizing instruction.

Note also that care should be taken to avoid modification of the instruction TLB entries that
translate current instruction prefetch addresses.

This is a supervisor-level instruction; it is also a 603e-specific instruction, and not part of
the PowerPC instruction set.

Other registers altered:

• None

MOTOROLA Chapter 2. Programming Model 2-47

tlbli tlbli
Load Instruction TLB Entry Integer Unit

tlbld rB

II Reserved

31 B 1010

o 5 6 10 11 15 16 2021 3031

EAf- (rB)
TLB entry created from ICMP and RPA
ITLB entry selected by EA[15-l9] and SRRl[WAY] f- created TLB entry

The EA is the contents of rB. The tlbli instruction loads the contents of the instruction PTE
compare (ICMP) and required physical address (RPA) registers into the first word of the
selected instruction TLB entry. The specific ITLB entry to be loaded is selected by the EA
and the SRRI[WAY] bit.

The tlbli instruction should only be executed when address translation is disabled
(MSR[IR] = 0 and MSR[DR] = 0).

Note that it is possible to execute the tlbld instruction when address translation is enabled;
however, extreme caution should be used in doing so. If instruction address translation is
set (MSR[IR] = 1), tlbli must be followed by a context synchronizing instruction such as
isync or rfi.

Note also that care should be taken to avoid modification of the instruction TLB entries that
translate current instruction prefetch addresses.

This is a supervisor-level instruction; it is also a 603e-specific instruction, and not part of
the PowerPC instruction set.

Other registers altered:

• None

2-48 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Chapter 3
Instruction and Data Cache Operation
The PowerPC 603e microprocessor provides two l6-Kbyte, four-way set associative caches
to allow the registers and execution units rapid access to instructions and data. Both the
instruction and data caches are tightly coupled to the 603e's bus interface unit (BIU) to
allow efficient access to the system memory controller and other bus masters. The 603e's
load/store unit (LSU) is also directly coupled to the data cache to allow the efficient
movement of data to and from the general-purpose and floating-point registers. (The
floating-point register file is not supported on the EC603e microprocessor.)

Both the instruction and data caches have a block size of 32 bytes, and the data cache blocks
can be snooped, or cast-out when the cache block is reloaded. The data cache is designed
to adhere to a write-back policy, but the 603e allows control of cacheability, write-back
policy, and memory coherency at the page and block level. Both caches use a least recently
used (LRU) replacement policy. Burst fill operations to the caches result from cache misses,
or in the case of the data cache, cache block write-back operations to memory. Note that in
the PowerPC architecture, the term 'cache block', or simply 'block' when used in the
context of cache implementations, refers to the unit of memory at which coherency is
maintained. For the 603e, the block size is equivalent to the eight-word cache line. This
value may be different for other PowerPC implementations.

The data cache is configured as 128 sets of four blocks. Each block consists of 32 bytes,
two state bits, and an address tag. The two state bits implement the three-state MEl
(modified/exclusive/invalid) protocol, a coherent subset of the standard four-state MESI
protocol. Cache coherency is enforced by on-chip bus snooping logic. Since the 603e's data
cache tags are single-ported, a simultaneous load or store and snoop access represent a
resource contention. The snoop access is given first access to the tags. Load or store
operations can be performed to the cache on the clock cycle immediately following a snoop
access if the snoop misses; snoop hits may block the data cache for two or more cycles,
depending on whether a copyback to main memory is required.

The instruction cache also consists of 128 sets of four blocks, and each block consists of 32
bytes, an address tag, and a valid bit. The instruction cache is only written as a result of a
block fill operation on a cache miss. In the PID7v-603e, the instruction cache is blocked
only until the critical load completes. The PID7v-603e supports instruction fetching from
other instruction cache lines following the forwarding of the critical first double word of a
cache line load operation. Successive instruction fetches from the cache line being loaded

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-1

are forwarded, and accesses to other instruction cache lines can proceed during the cache
line load operation. The instruction cache is not snooped, and cache coherency must be
maintained by software. A fast hardware invalidation capability is provided to support
cache maintenance.

The load/store unit provides the data transfer interface between the data cache and the
GPRs and the FPRs (not supported by the EC603e microprocessor). The load/store unit
provides all logic required to calculate effective addresses, handle data alignment to and
from the data cache, and provides sequencing for load and store string and multiple
operations. As shown in Figure 1-1, the caches provide a 64cbit interface to the instruction
fetcher and load/store unit. Write operations to the data cache can be performed on a byte,
half-word, word, or double-word basis.

The 603e's bus interface unit receives requests for bus operations from the instruction and
data caches, and executes the operations according to the 603e bus protocol. The BIU
provides address queues, prioritization and bus control logic. The BIU also captures snoop
addresses for data cache, address queue, and memory reservation (lwarx and stwcx.
instruction) operations. The BIU also contains a touch load address buffer used for address
compares during load or store operations. All the data for the corresponding address queues
(load and store data queues) is located in the data cache. The data queues are considered
temporary storage for the cache and not part of the BIU.

On a cache miss, the 603e's cache blocks are loaded in four beats of 64 bits each when the
603e is configured with a 64-bit data bus; when the 603e is configured with a 32-bit bus,
cache block loads are performed with eight beats of 32 bits each. The burst load is
performed as critical double word first. The data cache is blocked to internal accesses until
the load completes; the instruction cache allows sequential fetching during a cache block
load. In the PID7v-603e, the critical double word is simultaneously written to the cache and
forwarded to the requesting unit, thus minimizing stalls due to load delays. Note that the
cache being filled cannot be accessed internally until the fill completes.

When address translation is enabled, the memory access is performed under the control of
the page table entry used to translate the effective address. Each page table entry contains
four mode control bits, W, I, M, and G, that specify the storage mode for all accesses
translated using that particular page table entry. The W (write-through) and I (caching­
inhibited) bits control how the processor executing the access uses its own cache. The M
(memory coherence) bit specifies whether the processor executing the access must use the
MEl (modified, exclusive, or invalid) cache coherence protocol to ensure all copies of the
addressed memory location are kept consistent. The G (guarded memory) bit controls
whether out-of-order data and instruction fetching is permitted.

The 603e maintains data cache coherency in hardware by coordinating activity between the
data cache, the memory system, and the bus interface logic. As bus operations are
performed on the bus by other bus masters, the 603e bus snooping logic monitors the
addresses that are referenced. These addresses are compared with the addresses resident in
the data cache. If there is a snoop hit, the 603e's bus snooping logic responds to the bus

3-2 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

interface with the appropriate snoop status (for example, an ARTRY). Additional snoop
action may be forwarded to the cache as a result of a snoop hit in some cases (a cache push
of modified data, or a cache block invalidation).

The 603e supports a fully-coherent 4-Gbyte physical memory address space. Bus snooping
is used to drive the MEl three-state cache-coherency protocol that ensures the coherency of
global memory with respect to the processor's cache. The MEl protocol is described in
Section 3.6.1, "MEl State Definitions."

This chapter describes the organization of the 603e's on-chip instruction and data caches,
the MEl cache coherency protocol, cache control instructions, various cache operations,
and the interaction between the cache, load/store unit, and the bus interface unit. PID7v-
603e specific information is noted where applicable.

3.1 Instruction Cache Organization and Control
The instruction fetcher accesses the instruction cache frequently in order to sustain the high
throughput provided by the six-entry instruction dispatch queue.

3.1.1 Instruction Cache Organization
The organization of the instruction cache is shown in Figure 3-1. Each cache block contains
eight contiguous words from memory that are loaded from an 8-word boundary (that is, bits
A27-A31 of the effective addresses are zero); thus, a cache block never crosses a page
boundary. Misaligned accesses across a page boundary can incur a performance penalty

Note that address bits A20-A26 provide an index to select a set. Bits A27-A31 select a byte
within a block. The tags consists of bits PAO-PA19. Address translation occurs in parallel,
such that higher-order bits (the tag bits in the cache) are physical. Note that the replacement
algorithm is strictly an LRU algorithm; that is, the least recently used block is filled with
new instructions on a cache miss.

128 Sets l • •

~I - -.
• •

r--

Block 0 Address Tag 0 I-- State Words 0-7 r--

Block 1 Address Tag 1 I-- State Words 0-7 -

Block 2 Address Tag 2 State Words 0-7

Block 3 Address Tag 3 State Words 0-7

8 Words/Block

Figure 3-1. Instruction Cache Organization

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-3

3.1.2 Instruction Cache Fill Operations
The 603e's instruction cache blocks are loaded in four beats of 64 bits each, with the critical
double word loaded first. The instruction cache allows sequential fetching during a cache
block load. On a cache miss, the critical and following double words read from memory are
simultaneously written to the instruction cache and forwarded to the dispatch queue, thus
minimizing stalls due to cache fill latency. There is no snooping of the instruction cache. In
the PID7v-603e, the critical double word is simultaneously written to the cache and
forwarded to the requesting unit, thus minimizing stalls due to load delays.

3.1.3 Instruction Cache Control
In addition to instruction cache control instructions, the 603e provides several control bits
in the HIDO register for the control of invalidating, disabling, and locking the instruction
cache. In addition, the WIMG bits in the page tables also affect the cacheability of pages
and whether or not the pages are considered guarded.

3.1.3.1 Instruction Cache Invalidation
While the 603e's instruction cache is automatically invalidated during a power-on or hard
reset, assertion of the soft reset signal does not cause instruction cache invalidation.
Software may invalidate the contents of the instruction cache using the instruction cache
flash invalidate (ICFI) control bit in the HIDO register. Flash invalidation of the instruction
cache is accomplished by setting and clearing the ICFI bit with two consecutive move to
SPR operations to the HIDO register.

3.1.3.2 Instruction Cache Disabling
The instruction cache may be disabled through the use of the instruction cache enable (ICE)
control bit in the HIDO register. When the instruction cache is in the disabled state, the
cache tag state bits are ignored, and all accesses are propagated to the bus as single-beat
transactions. The ICE bit is cleared during a power-on reset, causing the instruction cache
to be disabled. The setting of the ICE bit must be preceded by an isync instruction to
prevent the cache from being enabled or disabled while an instruction access is in progress.

3.1.3.3 Instruction Cache Locking
The contents of instruction cache may be locked through the use of the ILOCK control bit
in the HIDO register. A locked instruction cache supplies instructions normally on a cache
hit, but cache misses are treated as cache-inhibited accesses. The cache inhibited (CI) signal
is asserted if a cache access misses into a locked cache. The setting of the ILOCK bit in
HIDO must be preceded by an isync instruction to prevent the instruction cache from being
locked during an instruction access.

3-4 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

3.2 Data Cache Organization and Control
The data cache supplies data to the GPRs and FPRs (not supported on the EC603e
microprocessor) by means ofthe load/store unit, and provides buffers for load and store bus
operations. The data cache also provides storage for the cache tags required for memory
coherency and performs the cache block replacement LRU function.

3.2.1 Data Cache Organization
The organization of the data cache is shown in Figure 3-2. Each cache block contains eight
contiguous words from memory that are loaded from an 8-word boundary (that is, bits
A27-A3l of the effective addresses are zero); thus, a cache block never crosses a page
boundary. Misaligned accesses across a page boundary can incur a performance penalty.

Note that address bitsA20-A26 provide an index to select a set. BitsA27-A31 select a byte
within a block. The tags consists of bits PAO-PA19. Address translation occurs in parallel,
such that higher -order bits (the tag bits in the cache) are physical. Note that the replacement
algorithm is strictly an LRU algorithm; that is, the least recently used block is filled with
new data on a cache miss.

128 Sets I • •

~ I
. .,

• •

Block 0 Address Tag 0 - State Words 0-7 r--

Block 1 Address Tag 1 - State Words 0-7 -

Block 2 Address Tag 2 State Words 0-7

Block 3 Address Tag 3 State Words 0-7

8 Words/Block

Figure 3-2. Data Cache Organization

3.2.2 Data Cache Fill Operations
The 603e's cache blocks are loaded in four beats of 64 bits each when the 603e is
configured with a 64-bit data bus; when the 603e is configured with a 32-bit bus, cache
block loads are performed with eight beats of 32 bits each. The burst load is performed as
critical double word first. The data cache is blocked to internal accesses until the load
completes. In the PID7v-603e, the critical double word is simultaneously written to the
cache and forwarded to the requesting unit, thus minimizing stalls due to load delays.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-5

3.2.3 Data Cache Control
The 603e provides several means of data cache control through the use of the WIMG bits
in the page tables, control bits in the HIDO register, and user- and supervisor-level cache
control instructions. While memory page level cache control is provided by the WIMG bits,
the on-chip data cache can be invalidated, disabled, locked, or broadcast by the control bits
in the HIDO register described in this section. (Note that, user- and supervisor-level are
referred to as problem and privileged state, respectively, in the architecture specification.)

3.2.3.1 Data Cache Invalidation
While the data cache is automatically invalidated when the 603e is powered up and during
a hard reset, assertion of the soft reset signal does not cause data cache invalidation.
Software may invalidate the contents of the data cache using the data cache flash invalidate
(DCFI) control bit in the HIDO register. Flash invalidation of the data cache is accomplished
by setting and clearing the DCFI bit in two consecutive store operations.

3.2.3.2 Data Cache Disabling
The data cache may be disabled through the use of the data cache enable (DCE) control bit
in the HIDO register. When the data cache is in the disabled state, the cache tag state bits
are ignored, and all accesses are propagated to the bus as single-beat transactions. The DCE
bit is cleared on power-up, causing the data cache to be disabled. The setting of the DCE
bit must be preceded by a syne instruction to prevent the cache from being enabled or
disabled in the middle of a data access.

Note that while snooping is not performed when the data cache is disabled, cache
operations (caused by the debz. debf. debst. and debi instructions) are not affected by
disabling the cache, causing potential coherency errors. An example of this would be a debf
instruction that hits a modified cache block in the disabled cache, causing a copyback to
memory of potentially stale data.

Regardless of the state of HIDO[DCE] , load and store operations are assumed to be weakly
ordered. Thus the LSU can perform load operations that occur later in the program ahead
of store operations, even when the data cache is disabled. However, strongly ordered load
and store operations can be enforced through the setting of the I bit (of the page WIMG bits)
when address translation is enabled. Note that when address translation is disabled, the
default WIMG bits cause the I bit to be cleared (accesses are assumed to be cacheable), and
thus the accesses are weakly ordered. Refer to Section 3.5.2, "Caching-Inhibited Attribute
(I)," for a description of the operation of the I bit and Section 5.2, "Real Addressing Mode,"
for a description of theWIMG bits when address translation is disabled.

3.2.3.3 Data Cache Locking
The contents of the data cache may be locked through the use of the DLOCK control bit in
the HIDO register. A locked data cache supplies data normally on a cache hit, but cache
misses are treated as cache-inhibited accesses. The cache inhibited (CI) signal is asserted if

3-6 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

a cache access misses into a locked cache. The setting of the DLOCK bit in HIDO must be
preceded by a syne instruction to prevent the data cache from being locked during a data
access.

3.2.3.4 Data Cache Operations and Address Broadcasts
The execution of a debz instruction results in an address-only broadcast on the bus.
Additionally, if the HIDO[ABE] bit is set on a PID7v-603e processor, the execution of the
debf, debi, and debst instructions will also cause an address-only broadcast. The ability of
the PID7v-603e to optionally perform address-only broadcasts when executing the debi,
debf, and the debst instructions allows the coherency management of an external copyback
L2 cache. Note that these cache control instruction broadcasts are not snooped by the
PID7v-603e.

3.2.4 Data Cache Touch Load Support
Touch load operations allow an instruction stream to prefetch data from memory prior to a
cache miss. The 603e supports touch load operations through a temporary cache block
buffer located between the BIU and the data cache. The cache block buffer is essentially a
floating cache block that is loaded by the BIU on a touch load operation, and is then read
by a load instruction that requests that data. After a touch load completes on the bus, the
BIU continues to compare the touch load address with subsequent load requests from the
data cache. If the load address matches the touch load address in the BIU, the data is
forwarded to the data cache from the touch load buffer, the read from memory is canceled,
and the touch load address buffer is invalidated.

To avoid the storage of stale data in the touch load buffer, touch load requests that are
mapped as write-through or caching-inhibited by the MMU are treated as no-ops by the
BIU. Also, subsequent load instructions after a touch load that are mapped as write-through
or caching-inhibited do not hit in the touch load buffer, and cause the touch load buffer to
be invalidated on a matching address.

While the 603e provides only a single cache block buffer, other PowerPC microprocessor
implementations may provide buffering for more than one cache block. Programs written
for other implementations may issue several debt or debtst instructions sequentially,
reducing the performance if executed on the 603e. To improve performance in these
situations, the NOOPTI bit (bit 31) in the HIDO register may be set. This causes the debt
and debtst instructions to be treated as no-ops, cause no bus activity, and incur only one
processor clock cycle of execution latency. The default state of the NOOPTI bit is cleared
after a power-on reset operation, enabling the use of the debt and debtst instructions.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-7

3.3 Basic Data Cache Operations
This section describes the three types of operations that can occur to the data cache, and
how these operations are implemented in the 603e.

3.3.1 Data Cache Fill
A cache block is filled after a read miss or write miss (read-with-intent-to-modify) occurs
in the cache. The cache block that corresponds to the missed address is updated by a burst
transfer of the data from system memory. Note that if a read miss occurs in a system with
multiple bus masters, and the data is modified in another cache, the modified data is first
written to external memory before the cache fill occurs.

3.3.2 Data Cache Cast-Out Operation
The 603e uses an LRU replacement algorithm to determine which of the four possible
cache locations should be used for a cache update on a cache miss. Adding a new block to
the cache causes any modified data associated with the least recently used element to be
written back, or cast out, to system memory to maintain memory coherence.

3.3.3 Cache Block Push Operation
When a cache block in the 603e is snooped and hit by another bus master and the data is
modified, the cache block must be written to memory and made available to the snooping
device. The cache block that is hit is said to be pushed out onto the bus. The 603e supports
two kinds of push operations-normal push operations and enveloped high-priority push
operations, which are described in Section 3.6.9, "Enveloped High-Priority Cache Block
Push Operation."

3.4 Data Cache Transactions on Bus
The 603e transfers data to and from the data cache in single-beat transactions of two words,
or in four-beat transactions of eight words which fill a cache block.

3.4.1 Single-Beat Transactions
Single-beat bus transactions can transfer from one to eight bytes to or from the 603e.
Single-beat transactions can be caused by cache write-through accesses, caching-inhibited
accesses (I bit of the WIMG bits for the page is set), or accesses when the cache is disabled
(IDDO[DCE] bit is cleared), and can be misaligned.

3.4.2 Burst Transactions
Burst transactions on the 603e always transfer eight words of data at a time, and are aligned
to a double-word boundary. The 603e transfer burst (TBST) output signal indicates to the
system whether the current transaction is a single-beat transaction or four-beat burst
transfer. Burst transactions have an assumed address order. For cacheable read operations

3-8 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

or cacheable, non-write-through write operations that miss the cache, the 603e presents the
double-word aligned address associated with the load or store instruction that initiated the
transaction.

As shown in Figure 3-3, this quad word contains the address of the load or store that missed
the cache. This minimizes latency by allowing the critical code or data to be forwarded to
the processor before the rest of the block is filled. For all other burst operations, however,
the entire block is transferred in order (oct-word aligned). Critical-double-word-first
fetching on a cache miss applies to both the data and instruction cache.

3.4.3 Access to Direct-Store Segments
The 603e does not provide support for access to direct-store segments. Operations
attempting to access a direct-store segment will invoke a DSI exception. For additional
information about DSI exceptions, refer to Section 4.5.3, "DSI Exception (Ox00300)."

603e Cache Address
Bits (27 ... 28)

00

A

01

B

1 0 1 1

C o

If the address requested is in double word A, the address placed on the bus is that of double­
word A, and the four data beats are ordered in the following manner:

Beat

o 2 3

A B C o

If the address requested is in double word C, the address placed on the bus will be that of
double-word C, and the four data beats are ordered in the following manner:

Beat

o 2 3

C o A B

Figure 3-3. Double-Word Address Ordering-Critical Double Word First

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-9

3.5 Memory Management/Cache Access Mode Bits-
W, I, M, and G

Some memory characteristics can be set on either a block or page basis by using the WIMG
bits in the BAT registers or page table entry (PTE) respectively. The WIMG attributes
control the following functionality:

• Write-through (W bit)
• Caching-inhibited (I bit)
• Memory coherency (M bit)
• Guarded memory (G bit)

These bits allow both uniprocessor and multiprocessor system designs to exploit numerous
system-level performance optimizations.

Careless specification and use of these bits may create situations where coherency
paradoxes are observed by the processor. In particular, this can happen when the state of
these bits is changed without appropriate precautions being taken (for example, when
flushing the pages that correspond to the changed bits from the caches of all processors in
the system is required, or when the address translations of aliased physical addresses
(referred to as real addresses in the architecture specification) specify different values for
any of the WIM bits). The 603e considers either of these cases to be a programming error
which may compromise the coherency of memory. These paradoxes can occur within a
single processor or across several devices, as described in Section 3.6.4.1, "Coherency in
Single-Processor Systems."

The WIMG attributes are programmed by the operating system for each page and block.
The W and 1 attributes control how the processor performing an access uses its own cache.
The M attribute ensures that coherency is maintained fur ali copies of the addressed
memory location. The G attribute prevents out-of-order loading and prefetching from the
addressed memory location.

When an access requires coherency, the processor performing the access must inform the
coherency mechanisms throughout the system that the access requires memory coherency.
The M attribute determines the kind of access performed on the bus (global or local).

The WIMG attributes occupy four bits in the BAT registers for block address translation
and in the PTEs for page address translation. The WIMG bits are programmed as follows:

• The operating system uses the mtspr instruction to program the WIMG bits in the
BAT registers for block address translation. The IBAT register pairs do not have a
G bit and all accesses that use the IBAT register pairs are considered not guarded.

• The operating system writes the WIMG bits for each page into the PTEs in system
memory as it sets up the page tables.

3-10 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Note that for accesses performed with direct address translation (MSR[IR] = 0 or
MSR[DR] = 0 for instruction or data access, respectively), the WIMG bits are automatically
generated as ObOOll (the data is write-back, caching is enabled, memory coherency is
enforced, and memory is guarded).

3.5.1 Write-Through Attribute (W)
When an access is designated as write-through (W = 1), if the data is in the cache, a store
operation updates the cached copy of the data. In addition, the update is written to the
external memory location (as described below).

While the PowerPC architecture permits multiple store instructions to be combined for
write-through accesses except when the store instructions are separated by a sync or eieio
instruction, the 603e does not implement this "combined store" capability. Note that a store
operation that uses the write-through attribute may cause any part of valid data in the cache
to be written back to main memory.

The definition of the external memory location to be written to in addition to the on-chip
cache depends on the implementation of the memory system but can be illustrated by the
following examples:

• RAM-The store is sent to the RAM controller to be written into the target RAM.

• 1/0 device-The store is sent to the memory-mapped I/O control hardware to be
written to the target register or memory location.

In systems with multilevel caching, the store must be written to at least a depth in the
memory hierarchy that is seen by all processors and devices.

Accesses that correspond to W = 0 are considered write-back. For this case, although the
store operation is performed to the cache, it is only made to external memory when a copy­
back operation is required. Use of the write-back mode (W = 0) can improve overall
performance for areas of the memory space that are seldom referenced by other masters in
the system.

3.5.2 Caching-Inhibited Attribute (I)
If I = 1, the memory access is completed by referencing the location in main memory,
bypassing the on-chip cache. During the access, the addressed location is not loaded into
the cache nor is the location allocated in the cache. It is considered a programming error if
a copy of the target location of an access to caching-inhibited memory is resident in the
cache. Software must ensure that the location has not been previously loaded into the cache,
or, if it has, that it has been flushed from the cache.

The PowerPC architecture permits data accesses from more than one instruction to be
combined for cache-inhibited operations, except when the accesses are separated by a sync
instruction, or by an eieio instruction when the page or block is also designated as guarded.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-11

This "combined access" capability is not implemented on the 603e. Note that the eieio is
treated as a no-op by the 603e.

The caching-inhibited (I) bit in the 603e controls whether load and store operations are
strongly or weakly ordered. If an 110 device requires load and store accesses to occur in
program order, then the I bit for the page must be set.

3.5.3 Memory Coherency Attribute (M)
This attribute is provided to allow improved performance in systems where hardware­
enforced coherency is relatively slow, and software is able to enforce the required
coherency. When M = 0, the processor does not enforce data coherency. When M = 1, the
processor enforces data coherency and the corresponding access is considered to be a
global access.

When the M attribute is set, and the access is performed, the global signal is asserted to
indicate that the access is global. Snooping devices affected by the access must then
respond to this global access if their data is modified by asserting ARTRY, and updating the
memory location.

Because instruction memory does not have to be consistent with data memory, the 603e
ignores the M attribute for instruction accesses.

3.5.4 Guarded Attribute (G)
When the guarded bit is set, the memory area (block or page) is designated as guarded,
meaning that the processor will perform out-of-order accesses to this area of memory, only
as follows:

• Out-of-order load operations from guarded memory areas are performed only if the
corresponding data is resident in the cache.

• The processor prefetches from guarded areas, but only when required, and only
within the memory boundary dictated by the cache block. That is, if an instruction
is certain to be required for execution by the program, it is fetched and the remaining
instructions in the block may be prefetched, even if the area is guarded.

This setting can be used to protect certain memory areas from read accesses made by the
processor that are not dictated directly by the program. If there are areas of memory that are
not fully populated (in other words, there are holes in the memory map within this area),
this setting can protect the system from undesired accesses caused by out-of-order load
operations or instruction prefetches that could lead to the generation of the machine check
exception. Also, the guarded bit can be used to prevent out-of-order load operations or
prefetches from occurring to certain peripheral devices that produce undesired results when
accessed in this way.

3-12 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

3.5.5 W, I, and M Bit Combinations
Table 3-1 summarizes the six combinations of the WIM bits. Note that either a zero or one
setting for the G bit is allowed for each of these WIM bit combinations.

Table 3-1. Combinations of W, I, and M Bits

WIMSeHing Meaning

000 Data may be cached.
Loads or stores whose target hits in the cache use that entry in the cache.
Memory coherency is not enforced by hardware.

001 Data may be cached.
Loads or stores whose target hits in the cache use that entry in the cache.
Memory coherency is enforced by hardware.

010 Caching is inhibited.
The access is performed to external memory, completely bypassing the cache.
Memory coherency is not enforced by hardware.

011 Caching is inhibited.
The access is performed to external memory, completely bypassing the cache.
Memory coherency must be enforced by external hardware (processor provides hardware
indication that access is global).

100 Data may be cached.
Load operations whose target hits in the cache use that entry in the cache.
Stores are written to external memory. The target location of the store may be cached and is
updated on a hit.
Memory coherency is not enforced by hardware.

101 Data may be cached.
Load operations whose target hits in the cache use that entry in the cache.
Stores are written to external memory. The target location of the store may be cached and is
updated on a hit.
Memory coherency is enforced by hardware.

3.5.5.1 Out-of-Order Execution and Guarded Memory
Out-of-order execution occurs when the 603e performs operations in advance in case the
result is needed. Typically, these operations are performed by otherwise idle resources; thus
if a result is not required, it is ignored and the out-of-order operation incurs no time penalty
(typically).

Supervisor-level programs designate memory as guarded on a block or page level. Memory
is designated as guarded if it may not be "well-behaved" with respect to out-of-order
operations.

For example, the memory area that contains a memory-mapped 110 device may be
designated as guarded if an out-of-order load or instruction fetch performed to such a
device might cause the device to perform unexpected or incorrect operations. Another
example of memory that should be designated as guarded is the area that corresponds to the
device that resides at the highest implemented physical address (as it has no successor and
out-of-order sequential operations such as instruction prefetching may result in a machine

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-13

check exception). In addition, areas that contain holes in the physical memory space may
be designated as guarded.

3.5.5.2 Effects of Out-of-Order Data Accesses
Most data operations may be performed out-of-order, as long as the machine appears to
follow a simple sequential model. However, the following out-of-order operations do not
occur:

• Out-of-order loading from guarded memory (G = 1) does not occur. However, when
a load or store operation is required by the program, the entire cache block(s)
containing the referenced data may be loaded into the cache.

• Out-of-order store operations that alter the state of the target location do not occur.

• No errors except machine check exceptions are reported due to the out-of-order
execution of an instruction until it is known that execution of the instruction is
required.

Machine check exceptions resulting solely from out-of-order execution (from nonguarded
memory) may be reported. When an out-of-order instruction's result is abandoned, only one
side effect (other than a possible machine check) may occur-the referenced bit (R) in the
corresponding page table entry (and TLB entry) can be set due to an out-of-order load
operation. See Chapter 4, "Exceptions," for more information on the machine check
exception.

Thus an out-of-order load or store instruction will not access guarded memory unless one
of the following conditions exist:

• The target memory item is resident in an on-chip cache. In this case, the location
may be accessed from the cache or main memory.

• The target memory item is cacheable (I = 0) and it is guaranteed that the load or store
is in the execution path (assuming there are no intervening exceptions). In this case,
the entire cache block containing the target may be loaded into the cache.

• The target memory is cache-inhibited (I = 1), the load or store instruction is in the
execution path, and it is guaranteed that no prior instructions can cause an exception.

3.5.5.3 Effects of Out-of-Order Instruction Fetches
To avoid instruction fetch delay, the processor typically fetches instructions ahead of those
currently being executed. Such instruction prefetching is said to be out-of-order in that
prefetched instructions may not be executed due to intervening branches or exceptions.

During instruction prefetching, no errors except machine check exceptions are reported due
to the out-of-order fetching of an instruction until it is known that execution of the
instruction is required.

Machine check exceptions resulting solely from out-of-order execution (from nonguarded
memory) may be reported. When an out-of-order instruction's result is abandoned, only one
side effect (other than a possible machine check) may occur-the referenced bit (R) in the

3-14 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

corresponding page table entry (and TLB entry) can be set due to an out-of-order load
operation. See Chapter 4, "Exceptions," for more information on the machine check
exception.

Instruction fetching from guarded memory is not permitted.

3.6 Cache COherency-MEl Protocol
The primary objective of a coherent memory system is to provide the same image of
memory to all devices using the system. Coherency allows synchronization and cooperative
use of shared resources. Otherwise, multiple copies of a memory location, some containing
stale values, could exist in a system resulting in errors when the stale values are used. Each
potential bus master must follow rules for managing the state of its cache.

The 603e cache coherency protocol is a coherent subset of the standard MESI four-state
cache protocol that omits the shared state. Since data cannot be shared, the 603e signals all
cache block fills as if they were write misses (read-with-intent-to-modify), which flushes
the corresponding copies of the data in all caches external to the 603e prior to the 603e's
cache block fill operation. Following the cache block load, the 603e is the exclusive owner
of the data and may write to it without a bus broadcast transaction.

To maintain this coherency, all global reads observed on the bus by the 603e are snooped
as if they were writes, causing the 603e to write a modified cache block back to memory
and invalidate the cache block, or simply invalidate the cache block if it is unmodified. The
exception to this rule occurs when a snooped transaction is a caching-inhibited read (either
burst or single-beat, where TT[0-4] = XlOlO; see Table 7-1 for clarification), in which case
the 603e does not invalidate the snooped cache block. If the cache block is modified, the
block is written back to memory, and the cache block is marked exclusive unmodified. If
the cache block is marked exclusive unmodified when snooped, no bus action is taken, and
the cache block remains in the exclusive unmodified state. This treatment of caching­
inhibited reads decreases the possibility of data thrashing by allowing noncaching devices
to read data without invalidating the entry from the 603e's data cache.

3.6.1 MEl State Definitions
The 603e's data cache characterizes each 32-byte block it contains as being in one of three
MEl states. Addresses presented to the cache are indexed into the cache directory with bits
A20-A26, and the upper-order 20 bits from the physical address translation (PAO-PA19)
are compared against the indexed cache directory tags. If neither of the indexed tags
matches, the result is a cache miss. If a tag matches, a cache hit occurred and the directory
indicates the state of the cache block through two state bits kept with the tag. The three
possible states for a cache block in the cache are the modified state (M), the exclusive state
(E), and the invalid state (1). The three MEl states are defined in Table 3-2.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-15

Table 3-2. MEl State Definitions

MEl State Definition

Modified (M) The addressed cache block is valid in the cache and only in the cache. The cache block is modified
with respect to system memory-that is, the modified data in the cache block has not been written
back to memory.

Exclusive (E) The addressed block is in this cache only. The data in this cache block is consistent with system
memory.

Invalid (I) This state indicates that the addressed cache block is not resident in the cache.

3.6.2 MEl State Diagram
The 603e provides dedicated hardware to provide memory coherency by snooping bus
transactions. The address retry capability of the 603e enforces the MEl protocol, as shown
in Figure 3-4. Figure 3-4 assumes that the WIM bits for the page or block are set to 001;
that is, write-back, caching-not-inhibited, and memory coherency enforced.

Section 3.10, "MEl State Transactions," provides a detailed list of MEl transitions for
various operations and WIM bit settings.

3-16

SH = Snoop Hit
RH = Read Hit
RM = Read Miss
WH = Write Hit
WM = Write Miss

BUS TRANSACTIONS

SH/CRW = Snoop Hit, Cacheable ReadlWrite
SH/CIR = Snoop Hit, Cache Inhibited Read

Figure 3-4. MEl Cache Coherency Protocol-State Diagram (WIM = 001)

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

3.6.3 MEl Hardware Considerations
While the 603e provides the hardware required to monitor bus traffic for coherency, the
603e data cache tags are single ported, and a simultaneous load or store and snoop access
represent a resource conflict. In general, the snoop access has highest priority and is given
first access to the tags. The load or store access will then occur on the clock following the
snoop. The snoop is not given priority into the tags when the snoop coincides with a tag
write (for example, validation after a cache block load). In these situations, the snoop is
retried and must re-arbitrate before the lookup is possible.

Occasionally, cache snoops cannot be serviced and must be retried. These retries occur if
the cache is busy with a burst read or write when the snoop operation takes place.

Note that it is possible for a snoop to hit a modified cache block that is already in the process
of being written to the copyback buffer for replacement purposes. If this happens, the 603e
retries the snoop, and raises the priority of the cast-out operation to allow it to go to the bus
before the cache block fill.

The global (GBL) signal, asserted as part of the address attribute field during a bus
transaction, enables the snooping hardware of the 603e. Address bus masters assert GBL to
indicate that the current transaction is a global access (that is, an access to memory shared
by more than one device). If GBL is not asserted for the transaction, that transaction is not
snooped by the 603e. Note that the GBL signal is not asserted for instruction fetches, and
that GBL is asserted for all data read or write operations when using direct address
translation. (Note that direct address translation is referred to as the real addressing mode,
not the direct-store segment, in the architecture specification.)

Normally, GBL reflects the M-bit value specified for the memory reference in the
corresponding translation descriptor(s). Care must be taken to minimize the number of
pages marked as global, because the retry protocol enforces coherency and can use
considerable bus bandwidth if much data is shared. Therefore, available bus bandwidth can
decrease as more traffic is marked global.

The 603e snoops a transaction if the transfer start (TS) and GBL signals are asserted
together in the same bus clock (this is a qualified snooping condition). No snoop update to
the 603e cache occurs if the snooped transaction is not marked global. Also, because cache
block cast-outs and snoop pushes do not require snooping, the GBL signal is not asserted
for these operations.

When the 603e detects a qualified snoop condition, the address associated with the TS
signal is compared with the cache tags. Snooping finishes if no hit is detected. If, however,
the address hits in the cache, the 603e reacts according to the MEl protocol shown in
Figure 3-4.

To facilitate external monitoring of the internal cache tags, the cache set entry signals
(CSE[O-l]) represent in binary the cache set being replaced on read operations (including
read-with-intent-to-modify operations). The CSE[O-l] signals do not apply for write

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-17

operations to memory, or during non-cacheable or touch load operations. Note that these
signals are valid only for 603e burst operations. Table 3-3 shows the CSE[O-1] (cache set
entry) encodings.

Table 3-3. CSE[O-1] Signal Encoding

CSE[0-1] Cache Set Element

00 Set 0

01 Set 1

10 Set 2

11 Set 3

3.6.4 Coherency Precautions
The 603e supports a three-state coherency protocol that supports the modified, exclusive,
and invalid (MEl) cache states. This protocol is a compatible subset of the MESI four-state
protocol and operates coherently in systems that contain four-state caches. In addition, the
603e does not broadcast cache operations caused by cache instructions. They are intended
for the management of the local cache but not for other caches in the system.

3.6.4.1 Coherency in Single-Processor Systems
The following situations concerning coherency can be encountered within a single­
processor system:

• Load or store to a caching-inhibited page (WIM = ObX1X) and a cache hit occurs

Caching is inhibited for this page (I = l)-Load or store operations to a caching­
inhibited page that hit in the cache cause boundedly undefined results.

.. Store to a page marked write-through (WIM = OblOX) and a cache read hit to a
modified cache block

This page is marked as write-through (W = 1)-The 603e pushes the modified cache
block to memory and the block remains marked modified (M).

Note that when WIM bits are changed, it is critical that the cache contents should reflect the
new WIM bit settings. For example, if a block or page that had allowed caching becomes
caching-inhibited, software should ensure that the appropriate cache blocks are flushed to
memory and invalidated.

3.6.5 Load and Store Coherency Summary
Table 3-4 provides a summary of memory coherency actions performed by the 603e on load
operations. Noncacheable cases are not part of this table.

3-18 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 3-4. Memory Coherency Actions on Load Operations

Cache State Bus Operation ARTRY Action

M None Don't care Read from cache

E None Don't care Read from cache

I Read Negated Load data and mark E

I Read Asserted Retry read operation

Table 3-5 provides an overview of memory coherency actions on store operations. This
table does not include noncacheable or write-through cases. The read-with-intent-to­
modify (RWITM) examples involve selecting a replacement class and casting-out modified
data that may have resided in that replacement class.

Table 3-5. Memory Coherency Actions on Store Operations

Cache State Bus Operation ARTRY Action

M None Don't care Modify cache

E None Don't care Modify cache, mark M

I RWITM Negated Load data, modify it, mark M

I RWITM Asserted Retry the RWITM

3.6.6 Atomic Memory References
The Load Word and Reserve Indexed (lwarx) and Store Word Conditional Indexed (stwcx.)
instructions provide an atomic update function for a single, aligned word of memory. While
an lwarx instruction will normally be paired with an stwcx. instruction with the same
effective address, an stwcx. instruction to any address will cancel the reservation. For
detailed information on these instructions, refer to Chapter 2, "Programming Model," in
this book and Chapter 8, "Instruction Set," in The Programming Environments Manual.

3.6.7 Cache Reaction to Specific Bus Operations
There are several bus transaction types defined for the 603e bus. The 603e must snoop these
transactions and perform the appropriate action to maintain memory coherency as shown
in Table 3-6. A processor may assert ARTRY for any bus transaction due to internal
conflicts that prevent the appropriate snooping. The transactions in Table 3-6 correspond to
the transfer type signals TT[0-4], which are described in Section 7.2.4.1, "Transfer Type
(TT[0-4])."

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-19

Snooped Transaction

-Clean block

Flush block

Write-with-flush
Write-with-flush-atomic

Kill block

Write-with-kill

Read
Read-atomic

Read-with-intent-to-
modify (RWITM)
RWITM-atomic

sync

TlB -invalidate

3-20

Table 3-6. Response to Bus Transactions

603e Response

No action is taken.

No action is taken.

Write-with-flush and write-with-flush-atomic operations occur after the processor issues
a store or stwcx. instruction, respectively.
• If the addressed block is in the exclusive state, the address snoop forces the state of

the addressed block to invalid.
• If the addressed block is in the modified state, the address snoop causes ARTRY to

be asserted and initiates a push of the modified block out of the cache and changes
the state of the block to invalid.

• The execution of an stwCX. instruction cancels the reservation associated with any
address.

The kill block operation is an address-only bus transaction initiated when a dcbz
instruction is executed; when snooped by the 603e, the addressed cache block is
invalidated if in the E state, or flushed to memory and invalidated if in the M state, and
any associated reservation is canceled.

In a write-with-kill operation, the processor snoops the cache for a copy of the
addressed block. If one is found, an additional snoop action is initiated internally and the
cache block is forced to the I state, killing modified data that may have been in the block.
Any reservation associated with the block is also canceled.

The read operation is used by most single-beat and burst read operations on the bus. All
burst reads observed on the bus are snooped as if they were writes, causing the
addressed cache block to be flushed. A read on the bus with the GBl signal asserted
causes the following responses:
• If the addressed block in the cache is invalid. the 603e takes no action.
• If the addressed block in the cache is in the exclusive state, the block is invalidated.
• If the addressed block in the cache is in the modified state, the block is flushed to

I memory and the block is invalidated. I
• If the snooped transaction is a caching-inhibited read, and the block in the cache is in

the exclusive state the snOOD causes no bus activitv ann thA hln~k 'AmRin<: in th 0" ._._ ~._. _" ••• _ •• _,-

exclusive state. If the block is in the cache in the modified state, the 603e initiates a
push of the modified block out to memory and marks the cache block as exclusive.

Read atomic operations appear on the bus in response to Iwarx instructions and
generate the same snooping responses as read operations.

A RWITM operation is issued to acquire exclusive use of a memory location for the
purpose of modifying it.
• If the addressed block is invalid. the 603e takes no action.
• If the addressed block in the cache is in the exclusive state, the 603e initiates an

additional snoop action to change the state of the cache block to invalid.
• If the addressed block in the cache is in the modified state, the block is flushed to

memory and the block is invalidated.

The RWITM atomic operations appear on the bus in response to stwcx. instructions
and are snooped like RWITM instructions.

No action is taken.

No action is taken.

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

3.6.8 Operations Causing ARTRY Assertion
The following scenarios cause the 603e to assert the ARTRY signal:

• Snoop hits to a block in the M state (flush or clean)

This case is a normal snoop hit and will result in ARTRY being asserted if the
snooped transaction was a "flush" or "clean" request. If the snooped transaction was
a "kill" request, ARTRY will not be asserted.

• Snoop attempt during the last TA of a cache line fill

In no-DRTRY mode, during the cycle that the last TA is asserted to the 603e on a
cache line fill, the tag is being written to its new state by the 603e and is not
accessible. This will result in a collision being signaled by asserting ARTRY. With
DRTRY enabled, the cache tags are inaccessible to a snoop operation one cycle after
the last TA.

• Snoop hit after the first TA of a burst load operation

After the first TA of a burst load operation, the data tags are committed to being
written; snoop operations cannot be serviced until the load completes, thereby
causing the assertion of ARTRY.

• Snoop hits to line in the cast-out buffer

The 603e's cast-out buffer is kept coherent with main memory, and snoop operations
that hit in the cast-out buffer will cause the assertion of ARTRY.

• Snoop attempt during cycles that debz instruction or load or store operation is
updating the tag

During the execution of a debz instruction or during a load or store operation that
requires a cache line cast-out, the cache tags will be inaccessible during the first and
last cycle of the operation.

• Snoop attempt during the cycle that a debf or debst instruction is updating the tag

If the EA of a debf or debst instruction hits in the cache, the tag will be changed to
its new state. During that clock, the tag is not accessible and snoop transactions
during that cycle will cause the assertion of ARTRY.

3.6.9 Enveloped High-Priority Cache Block Push Operation
In cases where the 603e has completed the address tenure of a read operation, and then
detects a snoop hit to a modified cache block by another bus master, the 603e provides a
high-priority push operation. If the address snooped is the same as the address of the data
to be returned by the read operation, ARTRY is asserted one or more times until the data
tenure of the read operation is completed. The cache block push transaction can be
enveloped within the address and data tenures of a read operation. This feature prevents
deadlocks in system organizations that support multiple memory-mapped buses.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-21

More specifically, the 603e internally detects the scenario where a load request is
outstanding and the processor has pipelined a write operation on top of the load. Normally,
when the data bus is granted to the 603e, the resulting data bus tenure is used for the load
operation. The enveloped high-priority cache block push feature defines a bus signal, the
data bus write only qualifier (DBWO), which, when asserted with a qualified data bus grant,
indicates that the resulting data tenure should be used for the store operation instead. This
signal is described in Section 8.10, "Using Data Bus Write Only." Note that the enveloped
copyback operation is an internally pipelined bus operation.

3.7 Cache Control Instructions
Software must use the appropriate cache management instructions to ensure that caches are
kept consistent when data is modified by the processor. When a processor alters a memory
location that may be contained in an instruction cache, software must ensure that updates
to memory are visible to the instruction fetching mechanism. Although the instructions to
enforce coherency vary among implementations and hence operating systems should
provide a system service for this function, the following sequence is typical:

1. debst (update memory)
2. syne (wait for update)

3. iebi (invalidate copy in cache)
4. isyne (invalidate copy in own instruction buffer)

These operations are necessary because the processor does not maintain instruction
memory coherent with data memory. Software is responsible for enforcing coherency of
instruction caches and data memory. Since instruction fetching may bypass the data cache,
changes made to items in the data cache may not be reflected in memory until after the
instruction fetch completes.

The PowerPC architecture defines instructions for controlling both the instruction and data
caches when they exist. The 603e interprets the cache control instructions (icbi, debi, debt,
debz, debst) as if they pertain only to the 603e's caches. They are not intended for use in
managing other caches in the system.

The dcbz instruction causes an address-only broadcast on the bus if the contents of the
block are from a page marked global through the WIMG bits. This broadcast is performed
for coherency reasons; the debz instruction is the only cache control instruction that can
allocate and take new ownership of a line. Note that if the HIDO[ABE] bit is set on a PID7v-
603e processor, the execution of the debf, debi, and debst instructions will also cause an
address-only broadcast. The debz instruction is also the only cache operation that is
snooped by the 603e. The cache instructions are intended primarily for the management of
the on-chip cache, and do not perform address-only broadcasts for the maintenance of other
caches in the system. The ability of the PID7v-603e to optionally perform address-only
broadcasts when executing the debi, debf, and the debst instructions allows the coherency
management of an external copyback L2 cache.

3-22 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The other instructions do not broadcast either for the purpose of invalidating or flushing
other caches in the system or for managing system resources. Any bus activity caused by
these instructions is the direct result of performing the operation in the 603e cache. Note
that a data access exception is generated if the effective address of a debi, debst, debf, or
debz instruction cannot be translated due to the lack of a TLB entry. (Note that exceptions
are referred to as interrupts in the architecture specification.)

Note that in the PowerPC architecture, the term 'cache block', or simply 'block' when used
in the context of cache implementations, refers to the unit of memory at which coherency
is maintained. For the 603e this is the eight-word cache line. This value may be different
for other PowerPC implementations. In-depth descriptions of coding these instructions is
provided in Chapter 3, "Addressing Modes and Instruction Set Summary," and Chapter 10,
"Instruction Set," in The Programming Environments Manual.

3.7.1 Data Cache Block Invalidate (dcbi) Instruction
If the block containing the byte addressed by the EA is in the data cache, the cache block
is invalidated regardless whether the block is in the exclusive or modified state. If
HIDO[ABE] is set on a PID7v-603e when a debi instruction is executed, the PID7v-603e
will perform an address-only bus transaction. The debi instruction can only be executed
when the 603e is in the supervisor state.

3.7.2 Data Cache Block Touch (dcbt) Instruction
This instruction provides a method for improving performance through the use of software­
initiated prefetch hints. The 603e performs the fetch for the cases when the address hits in
the TLB or the BAT registers, and when it is a permitted load access from the addressed
page. The operation is treated similarly to a byte load operation with respect to coherency.

If the address translation does not hit in the TLB or BAT mechanism, or if it does not have
load access permission, the instruction is treated as a no-op.

If the cache is locked or disabled, or if the access is to a page that is marked as guarded, the
debt instruction is treated as a no-op.

If the access is directed to a write-through or caching-inhibited page, the instruction is
treated as a no-op.

The debt instruction never affects the referenced or changed bits in the hashed page table.

A successful debt instruction affects the state of the TLB and cache LRU bits as defined
by the LRU algorithm.

The touch load buffer will be marked invalid if the contents of the touch buffer have been
moved to the cache, if any data cache management instruction has been executed, if a debz
instruction is executed that matches the address of the cache block in the touch buffer, or if
another debt instruction is executed.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-23

3.7.3 Data Cache Block Touch for Store (dcbtst) Instruction
The debtst instruction, like the data cache block touch instruction (debt), allows software
to prefetch a cache block in anticipation of a store operation (read with intent to modify).

3.7.4 Data Cache Block Clear to Zero (dcbz) Instruction
If the block containing the byte addressed by the EA is in the data cache, all bytes are
cleared.

If the block containing the byte addressed by the EA is not in the data cache and the
corresponding page is caching-allowed, the block is established in the data cache without
fetching the block from main memory, and all bytes of the block are cleared. If the contents
of the cache block are from a page marked global through the WIM bits, an address-only
bus transaction is run.

If the page containing the byte addressed by the EA is caching-inhibited or write-through,
then the system alignment exception handler is invoked.

The debz instruction is treated as a store to the addressed byte with respect to address
translation and protection.

3.7.5 Data Cache Block Store (dcbst) Instruction
If the block containing the byte addressed by the EA is in coherency-required mode, and a
block containing the byte addressed by the EA is in the data cache of any processor and has
been modified, the writing of it to main memory is initiated. On a PID7v-603e, if the cache
block is unmodified, HIDOr ABEl is set, and if the contents of the cache block are from a
page marked global through the WIM bits, an address-only bus transaction is run.

The function of this instruction is independent of the write-through and caching­
inhibited/caching-allowed modes of the block containing the byte addressed by the EA.

This instruction is treated as a load to the addressed byte with respect to address translation
and protection.

3.7.6 Data Cache Block Flush (dcbf) Instruction
The action taken depends on the memory mode associated with the target, and on the state
of the cache block. The list below describes the action taken for the various cases. The
actions described are executed regardless of whether the page containing the addressed byte
is in caching-inhibited or caching-allowed mode. The following actions occur in both
coherency-required mode (WIM = ObXXl) and coherency-not-required mode (WIM =
ObXXO).

3-24 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The debf instruction causes the following cache activity:

• Unmodified block-Invalidates the block in the processor's cache.
• Modified block-Copies the block to memory and invalidates data cache block.

• Absent block-Does nothing.

The 603e treats this instruction as a load to the addressed byte with respect to address
translation and protection.

3.7.7 Enforce In-Order Execution of 1/0 Instruction (eieio)
As defined by the PowerPC architecture, the eieio instruction provides an ordering function
for the effects of load and store instructions executed by a given processor. Executing eieio
ensures that all memory accesses previously initiated by the given processor are completed
with respect to main memory before any memory accesses subsequently initiated by the
processor access main memory. The eieio instruction orders loads and stores to caching­
inhibited memory only.

The eieio instruction is intended for use only in performing memory-mapped 110
operations. It enforces "strong" ordering of cache-inhibited memory accesses during 110
operations between the processor and 110 devices.

When executed by the 603e, the eieio instruction is treated as a no-op; caching-inhibited
load and store operations (inhibited by the WIMG bits for the page) are performed in strict
program order.

3.7.8 Instruction Cache Block Invalidate (icbi) Instruction
The execution of an icbi instruction causes all four cache sets indexed by the EA to be
marked invalid. No cache hit is required, and no MMU translation is performed.

3.7.9 Instruction Synchronize (isync) Instruction
The isyne instruction waits for all previous instructions to complete and then discards any
previously fetched instructions, causing subsequent instructions to be fetched (or refetched)
from memory and to execute in the context established by the previous instructions. This
instruction has no effect on other processors or on their caches.

3.8 Bus Operations Caused by Cache Control
Instructions

Table 3-7 provides an overview of the bus operations initiated by cache control instructions.
The cache control, TLB management, and synchronization instructions supported by the
603e may affect or be affected by the operation of the bus. None of the instructions will
actively broadcast through address-only transactions on the bus (except for debz), and no
broadcasts by other masters are snooped by the 603e (except for kills). The operation ofthe

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-25

instructions, however, may indirectly cause bus transactions to be performed, or their
completion may be linked to the bus. Table 3-7 summarizes how these instructions may
operate with respect to the bus.

Note that Table 3-7 assumes that the WIM bits are set to 001; that is, since the cache is
operating in write-back mode, caching is permitted and coherency is enforced.

Table 3-7. Bus Operations Caused by Cache Control Instructions (WIM = 001)

Operation Cache State Next Cache State Bus Operations Comment

sync Don't care No change None Waits for memory queues
to complete bus activity

iebl Don't care I None -
debi Don't care I None -

debf I, E I None -

debf M I Write with kill Block is pushed

debst I, E No change None -

debst M E Write Block is pushed

debz I M Write with kill -

debz E,M M Kill block Writes over modified data

debt I No change Read Fetched cache block is
stored in touch load queue

debt E,M No change None -

debtst I No change Read-with-intent- Fetched cache block is
to-modify stored in touch load queue

1 debtst 1 E,M I No change 1 None 1-
Table 3-7 does not include noncacheable or write-through cases, nor does it completely
describe the mechanisms for the operations described. For more information, see
Section 3.10, "MEl State Transactions."

For detailed information on the cache control instructions, refer to Chapter 2,
"Programming Model," in this book and Chapter 8, "Instruction Set," in The Programming
Environments Manual. The 603e contains snooping logic to monitor the bus for these
commands and the control logic required to keep the cache and the memory queues
coherent. For additional details about the specific bus operations performed by the 603e,
see Chapter 8, "System Interface Operation."

3-26 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

3.9 Bus Interface
The bus interface buffers bus requests from the instruction and data caches, and executes
the requests per the 603e bus protocol. It includes address register queues, prioritization
logic, and bus control logic. The bus interface also captures snoop addresses for snooping
in the cache and in the address register queues, snoops for reservations, and holds the touch
load address for the cache. All data storage for the address register buffers (load and store
data buffers) are located in the cache section. The data buffers are considered temporary
storage for the cache and not part of the bus interface.

The general functions and features of the bus interface are as follows:

• Seven address register buffers that include the following:

- Instruction cache load address buffer

- Data cache load address buffer

- Data cache touch load address buffer (associated data block buffer located in
cache)

- Data cache castoutlstore address buffer (associated data line buffer located in
cache)

- Data cache snoop copyback address buffer (associated data line buffer located in
cache)

- Reservation address buffer for snoop monitoring

• Pipeline collision detection for data cache buffers
• Reservation address snooping for lwarxlstwcx. instructions

• One-level address pipelining
Load ahead of store capability

A conceptual block diagram of the bus interface is shown in Figure 3-5. The address
register queues hold transaction requests that the bus interface may issue on the bus
independently of the other requests. The bus interface may have up to two transactions
operating on the bus at any given time through the use of address pipelining.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-27

J
I-Cache I I J D-Cache I~

!
t t t

BIU H I-Cache II D-Cache J I D-Cache II D-Cache I D-Cache
Control LDAddr LD Addr TLD Addr CST/ST Addr SNP Addr

t t t t

I Snoop I
t

Control
System Bus

Addr Addr Data I
Figure 3-5. Bus Interface Address Buffers

For additional information about the 603e bus interface and the bus protocols, refer to
Chapter 8, "System Interface Operation."

3.10 MEl State Transactions
Table 3-8 shows MEl state transitions for various operations. Bus operations are described
in Table 3-6.

Table 3-8. MEl State Transitions

Ii I Cache I Bus I W'fv' I Current I Next I Bus
pera on

Operation sync ' , State State
",acne A.CIIOnS

Operation

Load Read No xOx I Same 1 Cast out of modified Write-with-kill
(T= 0) block (as required)

2 Pass four-beat read Read
to memory queue

Load Read No xOx E,M Same Read data from cache -
(T = 0)

Load (T = 0) Read No x1x I Same Pass single-beat read Read
to memory queue

Load (T = 0) Read No x1x E I CRTRY read -

Load (T= 0) Read No x1x M I CRTRY read (push Write·with-kill
sector to write queue)

Iwarx Read Acts like other reads but bus operation uses special encoding

3-28 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 3-8. MEl State Transitions (Continued)

Operation
Cache Bus

WIM
Current Next

Cache Actions
Bus

Operation sync State State Operation

Store Write No OOx I Same 1 Cast out of modified Write-with-kill
(T=O) block (if necessary)

2 Pass RWITM to RWITM
memory queue

Store Write No OOx E,M M Write data to cache -
(T=O)

Store * stwex. Write No 10x I Same Pass single-beat write Write-with-
(T=O) to memory queue flush

Store * stwex. Write No 10x E Same 1 Write data to cache -
(T=O)

2 Pass single-beat Write-with-
write to memory flush
queue

Store * stwex. Write No 10x M Same 1 CRTRYwrite -
(T=O)

2 Push block to write Write-with-kill
queue

Store (T= 0) Write No x1x I Same Pass single-beat write Write-with-
orstwex. to memory queue flush
(WIM = 10x)

Store (T = 0) Write No x1x E I CRTRYwrite -
or stwex.
(WIM = 1 Ox)

Store (T = 0) Write No x1x M I 1 CRTRYwrite -
orstwex.
(WIM = 1 Ox) 2 Push block to write Write-with-kill

queue

stwex. Conditional If the reserved bit is set, this operation is like other writes except the bus operation
write uses a special encoding.

debt Data cache No xxx I,E Same 1 CRTRY debt -

block flush
2 Pass flush Flush

Same I 3 State change only -

debt Data cache No xxx M I Push block to write Write-with-kill
block flush queue

debst Data cache No xxx I,E Same 1 CRTRY debst -
block store

2 Pass clean Clean

Same Same 3 No action -

debst Data cache No xxx M E Push block to write Write-with-kill
block store queue

debz Data cache No x1x x x Alignment trap -
block set to
zero

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-29

Table 3-8. MEl State Transitions (Continued)

Operation Cache Bus
WIM

Current Next Cache Actions Bus
Operation sync State State Operation

dcbz Data cache No 10x x x Alignment trap -
blocksetto
zero

dcbz Data cache Yes OOx I Same 1 CRTRYdcbz -
block set to
zero 2 Cast out of modified Write·with·kill

block

3 Pass kill Kill

Same M 4 Clear block -

dcbz Data cache No OOx E,M M Clear block -
block set to
zero

dcbt Data cache No x1x I Same Pass single· beat read Read
block touch to memory queue

dcbt Data cache No x1x E I CRTRY read -
block touch

dcbt Data cache No x1x M I 1 CRTRY read -
block touch

2 Push block to write Write·with·kill
queue

dcbt Data cache No xOx I Same 1 Cast out of modified Write·with·kill
block touch block (as required)

2 Pass four·beai read Read
to memory queue

deb! Data cache No xOx <= •• Same L..,'Y' No action -

block touch

Single·beat Reload No xxx I Same Forward data_in -
read dump 1

Four·beat read Reload No xxx I E Write data_in to cache -
(double·word· dump
aligned)

Four·beat write Reload No xxx I M Write data_in to cache -
(double·word· dump
aligned)

E~I Snoop No xxx E I State change only -
write or kill (committed)

M~I Snoop No xxx M I State change only -
kill (committed)

Push Snoop No xxx M I Conditionally push Write·with·kill
M~I flush

Push Snoop No xxx M E Conditionally push Write·with·kill
M~E clean

3·30 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 3-8. MEl State Transitions (Continued)

Operation Cache Bus
WIM

Current Next
Cache Actions

Bus
Operation sync State State Operation

tlbie TLB No xxx x x 1 CRTRYTLBI -
invalidate

2 PassTLBI -
3 No action -

sync Synchroni- No xxx x x 1 CRTRYsync -
zation

2 Pass sync -

3 No action -

Note that single-beat writes are not snooped in the write queue.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-31

3-32 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Chapter 4
Exceptions
The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions, and differ from the arithmetic exceptions defined by the IEEE for floating­
point operations. When exceptions (referred to as interrupts in the architecture
specification) occur, information about the state of the processor is saved to certain registers
and the processor begins execution at an address (exception vector) predetermined for each
exception. Processing of exceptions occurs in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception-for example, the DSISR or the FPSCR. Additionally, certain exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction­
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. Any exceptions caused by those instructions are
handled first. Likewise, exceptions that are asynchronous and precise are recognized when
they occur, but are not handled until the instruction currently in the completion stage
successfully completes execution or generates an exception, and the completed store queue
is emptied. An instruction is said to have "completed" when the results of that instruction's
execution have been committed to the registers defined by the architecture (for example, the
GPRs or FPRs, rather than rename buffers). If a single instruction encounters multiple
exception conditions, those exceptions are taken and handled sequentially. Likewise,
exceptions that are asynchronous are recognized when they occur, but are not handled until
the next instruction to complete in program order successfully completes. Throughout this
chapter, the term 'next instruction' implies the next instruction to complete in program
order.

Note that exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested. It is up to the exception handler to save the states
to allow control to ultimately return to the original excepting program.

MOTOROLA Chapter 4. Exceptions 4-1

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are handled sequentially. After the exception handler
handles an exception, the instruction execution continues until the next exception condition
is encountered. However, in many cases there is no attempt to re-execute the instruction.
This method of recognizing and handling exception conditions sequentially guarantees that
exceptions are recoverable.

Exception handlers should save the information stored in SRRO and SRRI early to prevent
the program state from being lost due to a system reset or machine check exception or to
an instruction-caused exception in the exception handler, and before enabling external
interrupts.

In this chapter, the following terminology is used to describe the various stages of exception
processing:

Recognition Exception recognition occurs when the condition that can cause an
exception is identified by the processor.

Taken An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routing is executed in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is performed at
supervisor-level.

4.1 Exception Classes
The PowerPC architecture supports four types of exceptions:

4-2

Synchronous, precise-These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored. This means that (excluding the trap
and system call exceptions) the address of the faulting instruction is provided to the
exception handler and that neither the faulting instruction nor subsequent
instructions in the code stream will complete execution before the exception is
taken. Once the exception is processed, execution resumes at the address of the
faulting instruction (or at an alternate address provided by the exception handler).
When an exception is taken due to a trap or system call instruction, execution
resumes at an address provided by the handler.

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

• Synchronous, imprecise-The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. Even though the
PowerPC 603e provides a means to enable the imprecise modes, it implements these
modes identically to the precise mode (that is, all enabled floating-point enabled
exceptions are always precise on the 603e). (The EC603e microprocessor does not
support floating-point operations.)

• Asynchronous, maskable-The external, system management interrupt (SMI), and
decrementer exceptions are maskable asynchronous exceptions. When these
exceptions occur, their handling is postponed until the next instruction, and any
exceptions associated with that instruction, completes execution. If there are no
instructions in the execution units, the exception is taken immediately upon
determination of the correct restart address (for loading SRRO).

• Asynchronous, nonmaskable-There are two nonmaskable asynchronous
exceptions: system reset and the machine check exception. These exceptions may
not be recoverable, or may provide a limited degree of recoverability. All exceptions
report recoverability through the MSR[RI] bit.

The 603e exception classes are shown in Table 4-1.

Table 4-1. Exception Classifications

Synchronous/Asynchronous Precise/lmprecise Exception Type

Asynchronous, nonmaskable Imprecise Machine check
System reset

Asynchronous, maskable Precise External interrupt
Decrementer
System management interrupt

Synchronous Precise Instruction-caused exceptions

Although exceptions have other characteristics as well, such as whether they are maskable
or nonmaskable, the distinctions shown in Table 4-1 define categories of exceptions that the
603e handles uniquely. Note that Table 4-1 includes no synchronous imprecise exceptions.
While the PowerPC architecture supports imprecise handling of floating-point exceptions,
the 603e, with the exception of the EC603e microprocessor, implements floating-point
exception modes as precise exceptions. (The EC603e microprocessor does not support
floating-point operations.)

Although the PowerPC architecture specifies that the recognition of the machine check
exception is nonmaskable, on the 603e the stimuli that cause this exception are maskable.
For example, the machine check exception is caused by the assertion of TEA, APE, DPE,
or MCP. However, the MCP, APE, and DPE signals can be disabled by bits 0, 2, and 3
respectively in HIDO. Therefore, the machine check caused by TEA is the only truly
nonmaskable machine check exception.

MOTOROLA Chapter 4. Exceptions 4-3

The 603e' s exceptions, and conditions that cause them, are listed in Figure 4-1. Exceptions
that are specific to either the PID6-603e or PID7v-603e, or that are handled differently on
the EC603e microprocessor, are indicated.

Figure 4·1. Exceptions and Conditions

Exception Vector Offset
Causing Conditions

Type (hex)

Reserved 00000 -

System reset 00100 A system reset is caused by the assertion of either SRESET or HRESET.

Machine 00200 A machine check is caused by the assertion of the TEA signal during a data bus
check transaction, assertion of MCP, or an address or data parity error.

DSI 00300 The cause of a DSI exception can be determined by the bit settings in the DSISR,
listed as follows:
1 Set if the translation of an attempted access is not found in the primary hash

table entry group (HTEG), or in the rehashed secondary HTEG, or in the range
of a DBAT register; otherwise cleared.

4 Set if a memory access is not permitted by the page or DBAT protection
mechanism; otherwise cleared.

5 Set by an eciwx or ecowx instruction if the access is to an address that is
marked as write-through, or execution of a load/store instruction that accesses
a direct-store segment.

6 Set for a store operation and cleared for a load operation.
11 Set if eciwx or ecowx is used and EAR[EJ is cleared.

lSI 00400 An lSI exception is caused when an instruction fetch cannot be performed for any
of the following reasons:

· The effective (logical) address cannot be translated. That is, there is a page
fault for this portion of the translation, so an lSI exception must be taken to load
the PTE (and possibly the page) into memory.

• The fetch access is to a direct-store segment (indicated by SRRI [3J set).
• The fetch access violates memorv Drotection (indicated bv SRR1f41 set) If the .. - -

key bits (Ks and Kp) in the segment register and the PP bits in the PTE are set
to prohibit read access, instructions cannot be fetched from this location.

External 00500 An external interrupt is caused when MSR[EEJ = 1 and the INT signal is asserted.
interrupt

Alignment 00600 An alignment exception is caused when the 603e cannot perform a memory
access for any of the reasons described below:

· The operand of a floating-point load or store instruction is not word-aligned.

· The operand of Imw, stmw, Iwarx, and stwcx. instructions are not aligned.

· The operand of a single-register load or store operation is not aligned, and the
603e is in little-endian mode (PID6-603e only).

· The execution of a floating-point load or store instruction to a direct-store
segment.

· The operand of a load, store, load multiple, store multiple, load string, or store
string instruction crosses a segment boundary into a direct-store segment, or
crosses a protection boundary.

· Execution of a misaligned eciwx or ecowx instruction (PID7v-603e only).

· The instruction is Imw, stmw, Iswi, Iswx, stswi, stswx and the 603e is in little-
endian mode.

· The operand of dcbz is in memory that is write-through-required or caching-
inhibited.

4-4 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Figure 4-1. Exceptions and Conditions (Continued)

Exception Vector Offset
Causing Conditions

Type (hex)

Program 00700 A program exception is caused by one of the following exception conditions, which
correspond to bit settings in SRRI and arise during execution of an instruction:

· Floating-point enabled exception-A floating-point enabled exception condition
is generated when the following condition is met:

(MSR[FEO]I MSR[FE1]) & FPSCR[FEX] is 1.

(Not supported by the EC603e microprocessor.)

FPSCR[FEX] is set by the execution of a floating-point instruction that causes
an enabled exception or by the execution of one of the "move to FPSCR"
instructions that results in both an exception condition bit and its corresponding
enable bit being set in the FPSCR. (Not supported by the EC603e
microprocessor.)

· Illegal instruction-An illegal instruction program exception is generated when
execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields (including PowerPC
instructions not implemented in the 603e), or when execution of an optional
instruction not provided in the 603e is attempted (these do not include those
optional instructions that are treated as no-ops).

· Privileged instruction-A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR], is set. In the 603e, this exception is
generated for mtspr or mfspr with an invalid SPR field if SPR[O] = 1 and
MSR[PR] = 1. This may not be true for all PowerPC processors.

· Trap-A trap type program exception is generated when any of the conditions
specified in a trap instruction is met.

Floating- 00800 A floating-point unavailable exception is caused by an attempt to execute a
point floating-point instruction (including floating-point load, store, and move
unavailable instructions) when the floating-point available bit is disabled (MSR[FP] = 0).

Note that the EC603e microprocessor takes a floating-point unavailable exception
when execution of a floating-point instruction is attempted.

Decrementer 00900 The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1. Must also be enabled with the
MSR[EE] bit.

Reserved OOAOO- -
OOBFF

System call OOCOO A system call exception occurs when a System Call (sc) instruction is executed.

Trace 00000 A trace exception is taken when MSR[SE] =1 or when the currently completing
instruction is a branch and MSR[BE] =1.

Reserved OOEOO The 603e does not generate an exception to this vector. Other PowerPC
processors may use this vector for floating-point assist exceptions.

Reserved 00E1Q-OOFFF -

Instruction 01000 An instruction translation miss exception is caused when an effective address for
translation an instruction fetch cannot be translated by the ITLB.
miss

MOTOROLA Chapter 4. Exceptions 4-5

Figure 4-1. Exceptions and Conditions (Continued)

Exception Vector Offset
Causing Conditions

Type (hex)

Data load 01100 A data load translation miss exception is caused when an effective address for a
translation data load operation cannot be translated by the DTLB.
miss

Data store 01200 A data store translation miss exception is caused when an effective address for a
translation data store operation cannot be translated by the DTLB, or where a DTLB hit
miss occurs, and the change bit in the PTE must be set due to a data store operation.

Instruction 01300 An instruction address breakpoint exception occurs when the address (bits 0-29)
address in the IABR matches the next instruction to complete in the completion unit, and
breakpoint the IABR enable bit (bit 30) is set.

System 01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI input
management signal is asserted.
interrupt

Reserved 0150D-02FFF -

Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions­
system reset and machine check exceptions (although the machine check exception
condition can be disabled so the condition causes the processor to go directly into
the checkstop state). These exceptions cannot be delayed, and do not wait for the
completion of any precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

3. Maskable asynchronous exceptions (external interrupt and decrementer exceptions)
are delayed until higher priority exceptions are taken.

System reset and machine check exceptions may occur at any time and are not delayed even
if an exception is being handled. As a result, state information for the interrupted exception
may be lost; therefore, these exceptions are typically nonrecoverable.

All other exceptions have lower priority than system reset and machine check exceptions,
and the exception may not be taken immediately when it is recognized.

4-6 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.1.1 Exception Priorities
The exceptions are listed in Table 4-2 in order of highest to lowest priority.

Table 4-2. Exception Priorities

Exception
Priority Exception Cause Category

Asynchronous 0 System reset HRESET or power-on reset

1 Machine check TEA, MCP, APE, or DPE

2 System reset SRESET

3 System SMI
management
interrupt

4 External interrupt INT

5 Decrementer Decrementer passed through OxOOOOOOOO
exception

Instruction 0 ITLB miss Instruction TLB miss
fetch

1 Instruction Instruction access exception
access

MOTOROLA Chapter 4. Exceptions 4-7

Table 4-2. Exception Priorities (Continued)

Exception
Priority Exception Cause

Category

Instruction 0 IABR Instruction address breakpoint exception
dispatch!

1 Program Program exception due to the following: execution · Illegal instruction

· Privileged instruction

· Trap

2 System call System call exception

3 Floating-point Floating-point unavailable exception due to the following:
unavailable · 603e microprocessor-Floating-point unavailable

exception.

· EC603e microprocessor-Execution of a floating-point
instruction.

4 Program Program exception due to a floating-point enabled exception

5 Alignment Alignment exception due to the following:

· Floating-point not word-aligned (not applicable to the
EC603e microprocessor)

· Imw, stmw, Iwarx, or stwcx. not word-aligned

· Little-endian access is misaligned

· Multiple or string access with little-endian bit set

6 Data access Data access exception due to a BAT page protection violation

7 Data access Data access exception due to the following:

· eclwx, ecowx, Iwarx, or stwCX. to direct-store segment
(bit 5 of DSISR)

· Crossing from memory segment to direct-store segment
(bit 0 of DSISR)

· Crossing from direct-store segment to memory segment

· Any access to direct-store, SR[T] = 1

· eciwx Oi ecOViX with EAR[E] == 0 (bit 11 of DSISR)

8 DTLBmiss Data TLB miss exception due to:

· Store miss

· Load miss

9 Alignment Alignment exception due to a dcbz to a write-through or
caching-inhibited page

10 Data access Data access exception due to TLB page protection violation

11 DTLBmiss Data TLB miss exception due to a change bit not set on a store
operation

Post- 0 Trace Trace exception due to the following:
instruction · MSR[SE)= 1
execution · MSR[BE) = 1 for branches

Exception priorities are described in detail in "Exception Priorities," in Chapter 6,
"Exceptions," in The Programming Environments Manual.

4-8 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.1.2 Summary of Front-End Exception Handling
The following list of interrupt categories describes how the 603e handles exceptions up to
the point of signaling the appropriate exception to occur. Note that a recoverable state is
reached if the completed store queue is empty (drained, not canceled) and any instruction
that is next in program order and has been signaled to complete has completed. If MSR[RI]
is clear, the 603e is in a nonrecoverable state by default. Also, completion of an instruction
is defined as performing all architectural register writes associated with that instruction, and
then removing that instruction from the completion buffer queue.

• Asynchronous nonmaskable nonrecoverable-(System reset caused by the assertion
of either HRESET or internally during power-on reset (POR)). These exceptions
have highest priority and are taken immediately regardless of other pending
exceptions or recoverability. A nonpredicted address is guaranteed.

Asynchronous maskable nonrecoverable-(Machine check). A machine check
exception takes priority over any other pending exception except a nonrecoverable
system reset caused by the assertion of either HRESET or internally during POR. A
machine check exception is taken immediately regardless of recoverability. A
machine check exception can occur only if the machine check enable bit, MSR[ME],
is set. If MSR[ME] is cleared, the processor goes directly into checkstop state when
a machine check exception condition occurs. A nonpredicted address is guaranteed.

• Asynchronous nonmaskable recoverable-(System reset caused by the assertion of
SRESET). This interrupt takes priority over any other pending exceptions except
nonrecoverable exceptions listed above. This exception is taken immediately when
a recoverable state is reached.

• Asynchronous maskable recoverable-(System management interrupt, external
interrupt, decrementer exception). Before handling this type of exception, the next
instruction in program order must complete or except. If this action causes another
type of exception, that exception is taken and the asynchronous maskable
recoverable exception remains pending. Once an instruction can complete without
causing an exception, further instruction completion is halted while the exception
not taken remains pending. The exception is taken when a recoverable state is
reached.

• Instruction fetch-(ITLB, lSI). When this type of exception is detected, dispatch is
halted and the current instruction stream is allowed to drain. If completing any
instructions in this stream causes an exception, that exception is taken and the
instruction fetch exception is forgotten. Otherwise, as soon as the machine is empty
and a recoverable state is reached, the instruction fetch exception is taken.

MOTOROLA Chapter 4. Exceptions 4-9

• Instruction dispatch/execution-(Program, DSI, alignment, emulation trap, system
call, DTLB miss on load or store, IABR). This type of exception is determined at
dispatch or execution of an instruction. The exception remains pending until all
instructions in program order before the exception-causing instruction are
completed. The exception is then taken without completing the exception-causing
instruction. If any other exception condition is created in completing these previous
instructions in the machine, that exception takes priority over the pending
instruction dispatch/execution exception, which will then be forgotten.

• Post-instruction execution-(Trace). This type of exception is generated following
execution and completion of an instruction while a trace mode is enabled. If
executing the instruction produces conditions for another type of interrupt, that
exception is taken and the post-instruction execution exception is forgotten for that
instruction.

4.2 Exception Processing
When an exception is taken, the processor uses the save/restore registers, SRRO and SRRl,
to save the contents of the machine state register for user-level mode (referred to as problem
mode in the architecture specification) and to identify where instruction execution should
resume after the exception is handled.

When an exception occurs, SRRO is set to point to the instruction at which instruction
processing should resume when the exception handler returns control to the interrupted
process. All instructions in the program flow preceding this one will have completed and
no subsequent instruction will have completed. This may be the address of the instruction
that caused the exception or the next one (as in the case of a system call exception). Tne
instruction addressed can be determined from the exception type and status bits. This
address is used to resume instruction processing in the interrupted pmcess, typically when
an rfi instruction is executed. The SRRO register is shown in Figure 4-2.

SRRO (holds EA for resuming program execution)

o 31

Figure 4-2. Machine Status Save/Restore Register 0

The save/restore register 1 (SRRl) is used to save machine status (the contents ofthe MSR)
on exceptions and to restore those values when rfi is executed. SRRI is shown in
Figure 4-3.

Exception-specific information and MSR bit values

o 31

Figure 4-3. Machine Status Save/Restore Register 1

4-10 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Typically, when an exception occurs, bits 0-15 of SRR1 are loaded with exception-specific
information and bits 16-31 of MSR are placed into the corresponding bit positions of
SRRI. The 603e loads SRR1 with specific bits for handling machine check exceptions, as
shown in Table 4-3.

Table 4-3. SRR1 Bit Settings for Machine Check Exceptions

Bits Name Description

0 MSR[O] Copy of MSR bit 0

1-4 - Reserved

5-9 MSR[5-9] Copy of MSR bits 5-9

10-11 - Reserved

12 MCP Machine check

13 TEA TEA error

14 OPE Data parity error

15 APE Address parity error

16-31 MSR[16-31] Copy of MSR bits16-31

The 603e loads SRR1 with specific bits for handling the three TLB miss exceptions, as
shown in Table 4-4.

Table 4-4. SRR1 Bit Settings for Software Table Search Operations

Bits Name Description

0-3 CRFO Copy of condition register field 0 (CRO)

4 - Reserved

5-9 MSR[5-9] Copy of MSR bits 5-9

10-11 - Reserved

12 KEY TLB miss protection key

13 I/O Instruction/data TLB miss
0 DTLB miss
1 ITLB miss

14 WAY Bit 14 indicates which TLB associativity set should be replaced
0 Set 0
1 Set 1

15 S/L Store/load protection instruction
0 Load miss
1 Store miss

16-31 MSR[16-31] Copy of MSR bits 16-31

MOTOROLA Chapter 4. Exceptions 4-11

Note that in some implementations, every instruction fetch when MSR[IR] = 1 and every
instruction execution requiring address translation when MSR[DR] = I may modify SRRI.

The MSR is shown in Figure 4-4. When an exception occurs, MSR bits, as described in
Table 4-5, are altered as determined by the exception.

TGPR

o 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 4-4. Machine State Register (MSR)

Table 4-5 shows the bit definitions for the MSR. Full function reserved bits are saved in
SRRI when an exception occurs; partial function reserved bits are not saved.

Table 4-5. MSR Bit Settings

Bit(s) Name Description

0 - Reserved. Full function.

1-4 - Reserved. Partial function.

5-9 - Reserved. Full function.

10-12 - Reserved. Partial function.

13 POW Power management enable (603e-specific)

I a Disables programmable power modes (normal operation mode).
1 Enables programmable power modes (nap, doze, or sleep mode).
This bit controls the programmable power modes only; it has· no effect on dynamic power
management (DPM). MSR[POW] may be altered with an mtmsr instruction only. Also, when
altering the POW bit, software may alter only this bit in the MSR and no others. The mtmsr
instruction must be followed by a context-synchronizing instruction.
See Chapter 9, "Power Management;' for more information.

14 TGPR Temporary GPR remapping (603e-specific)
0 Normal operation
1 TGPR mode. GPRO-GPR3 are remapped to TGPRO-TGPR3 for use by TLB miss

routines.
The contents of GPRO-GPR3 remain unchanged while MSR[TGPR] = 1. Attempts to use
GPR4-GPR31 with MSR[TGPR] = 1 yield undefined results. Temporarily replacesTGPRO-
TGPR3 with GPRO-GPR3 for use by TLB miss routines. When this bit is set, all instruction
accesses to GPRO-GPR3 are mapped to TGPRO-TGPR3, respectively. The TGPR bit is set
when either an instruction TLB miss, data read miss, or data write miss exception is taken. The
TGPR bit is cleared by an rfi instruction.

15 ILE Exception little-end ian mode. When an exception occurs, this bit is copied into MSR[LE] to
select the endian mode for the context established by the exception.

16 EE External interrupt enable
0 The processor ignores external interrupts, system management interrupts, and

decrementer interrupts.
1 The processor is enabled to take an external interrupt, system management interrupt, or

decrementer interrupt.

4-12 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 4-5. MSR Bit Settings (Continued)

Bit(s) Name Description

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18 FP Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point

loads, stores, and moves, default state for the EC603e microprocessor.
1 The processor can execute floating-point instructions, and can take floating-point

enabled exception type program exceptions.

19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 FEO Floating-point exception mode 0 (see Table 4-6) (Not supported on the EC603e
microprocessor)

21 SE Single-step trace enable
0 The processor executes instructions normally.
1 The processor generates a trace exception upon the successful completion of the next

instruction.

22 BE Branch trace enable
0 The processor executes branch instructions normally.
1 The processor generates a trace exception upon the successful completion of a branch

instruction.

23 FE1 Floating-point exception mode 1 (see Table 4-6) (Not supported on the EC603e
microprocessor)

24 - Reserved. Full function.

25 IP Exception prefix. The setting of this bit specifies whether an exception vector offset is
prepended with Fs or Os. In the following description, nnnnn is the offset of the exception. See
Figure 4-1.
0 Exceptions are vectored to the physical address OxOOOn_nnnn.
1 Exceptions are vectored to the physical address OxFFF n_nnnn.

26 IR Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information see Chapter 5, "Memory Management:'

27 DR Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information see Chapter 5, "Memory Management:'

28-29 - Reserved. Full function.

30 RI Recoverable exception (for system reset and machine check exceptions)
0 Exception is not recoverable.
1 Exception is recoverable.

31 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-end ian mode.

MOTOROLA Chapter 4. Exceptions 4-13

The IEEE floating-point exception mode bits (FEO and FEl) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at
all. (Note that FEO and FEI are not supported on the EC603e microprocessor.) The possible
settings and default conditions for the 603e are shown in Table 4-6. For further details, see
Chapter 6, "Exceptions," of The Programming Environments Manual.

Table 4-6. IEEE Floating-Point Exception Mode Bits

FEO FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Floating-paint imprecise nonrecoverable*

1 0 Floating-point imprecise recoverable*

1 1 Floating-point precise mode

* Not implemented in the 603e

MSR bits are guaranteed to be written to SRRI when the first instruction of the exception
handler is encountered.

4.2.1 Enabling and Disabling Exceptions
When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition.

• IEEE floating-point enabled exceptions (a type of program exception) are ignored
when both MSR[FEO] and MSR[FEI] are cleared. If either of these bits are set, all
IEEE enabled floating-point exceptions are taken and cause a program exception.
(Not supported on the EC603e microprocessor.)

• Asynchronous, maskable exceptions (that is, the external, system management, and
decrementer interrupts) are enabled by setting the MSR[EE] bit. When MSR[EE] =
0, recognition of these exception conditions is delayed. MSR[EE] is cleared
automatically when an exception is taken, to delay recognition of conditions causing
those exceptions.

• A machine check exception can occur only if the machine check enable bit,
MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into checkstop
state when a machine check exception condition occurs. Individual machine check
exceptions can be enabled and disabled through bits in the HIDO register, which is
described in Table 2-2.

• System reset exceptions cannot be masked.

4-14 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.2.2 Steps for Exception Processing
After it is determined that the exception can be taken (by confirming that any instruction­
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1. The machine status save/restore register 0 (SRRO) is loaded with an instruction
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.

2. Bits 1--4 and 10-15 of SRRI are loaded with information specific to the exception
type.

3. Bits 5-9 and 16-31 of SRRI are loaded with a copy of the corresponding bits ofthe
MSR.

4. The MSR is set as described in Table 4-5. The new values take effect beginning with
the fetching of the first instruction of the exception-handler routine located at the
exception vector address.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

5. Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by adding the exception's
vector (see Figure 4-1) to the base address determined by MSR[IP]. IfIP is cleared,
exceptions are vectored to the physical address OxOOOn_nnnn. IfIP is set, exceptions
are vectored to the physical address OxFFFn_nnnn. For a machine check exception
that occurs when MSR[ME] = 0 (machine check exceptions are disabled), the
processor enters the checkstop state (the machine stops executing instructions). See
Section 4.5.2, "Machine Check Exception (Ox00200)."

4.2.3 Setting MSR[RI]
The operating system should handle MSR[RI] as follows:

• In the machine check and system reset exceptions-If SRR1[RI] is cleared, the
exception is not recoverable. If it is set, the exception is recoverable with respect to
the processor.

• In each exception handler-When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSR[RI].

• In each exception handler-Clear MSR[RI], set the SRRO and SRRI registers
appropriately, and then execute rfi.

• Note that the RI bit being set indicates that, with respect to the processor, enough
processor state data is valid for the processor to continue, but it does not guarantee
that the interrupted process can resume.

MOTOROLA Chapter 4. Exceptions 4-15

4.2.4 Returning from an Exception Handler
The Return from Interrupt (rfi) instruction performs context synchronization by allowing
previously issued instructions to complete before returning to the interrupted process. In
general, execution of the rfi instruction ensures the following:

• All previous instructions have completed to a point where they can no longer cause
an exception. If a previous instruction causes a direct -store interface error exception,
the results must be determined before this instruction is executed.

• Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

• The rfi instruction copies SRRI bits back into the MSR.

• The instructions following this instruction execute in the context established by this
instruction.

For a complete description of context synchronization, refer to Chapter 6, "Exceptions," of
The Programming Environments Manual.

4.3 Process Switching
The operating system should execute one of the following when processes are switched:

• The sync instruction, which orders the effects of instruction execution. All
instructions previously initiated appear to have completed before the sync
instruction completes, and no subsequent instructions appear to be initiated until the
sync instruction completes. For an example showing use of the sync instruction, see
Chapter 2, "PowerPC Register Set," of The Progranuning Environnzents lvlanual.

• The isync instruction, which waits for all previous instructions to complete and then
dis<.:ards any fetched instructions, causing subsequent instruciions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation,
protection, etc.) established by the previous instructions.

• The stwcx. instruction, to clear any outstanding reservations, which ensures that an
lwarx instruction in the old process is not paired with an stwcx. instruction in the
new process.

The operating system should set the MSR[RI] bit as described in Section 4.2.3, "Setting
MSR[RI]."

4-16 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.4 Exception Latencies
Latencies for taking various exceptions depend on the state of the machine when the
exception conditions occur. This latency may be as short as one cycle, in which case an
exception is signaled in the cycle following the appearance of the exception condition. The
latencies are as follows:

• Hard reset and machine check-In most cases, a hard reset or machine check
exception will have a single-cycle latency. A two-to-three-cycle delay may occur
only when a predicted instruction is next to complete, and the branch guess that
forced this instruction to be predicted was resolved to be incorrect.

• Soft reset-The latency of a soft reset exception is affected by recoverability. The
time to reach a recoverable state may depend on the time needed to complete or
except an instruction at the point of completion, the time needed to drain the
completed store queue, and the time waiting for a correct empty state so that a valid
MSR[IP] may be saved. For lower-priority externally-generated interrupts, a delay
may be incurred waiting for another interrupt, generated while reaching a
recoverable state, to be serviced.

Further delays are possible for other types of exceptions depending on the number and type
of instructions that must be completed before those exceptions may be serviced. See
Section 4.1.2, "Summary of Front-End Exception Handling," to determine possible
maximum latencies for different exceptions.

4.5 Exception Definitions
Table 4-7 shows all the types of exceptions that can occur with the 603e and the MSR bit
settings when the processor transitions to supervisor mode. The state of these bits prior to
the exception is typically stored in SRR1.

Table 4-7. MSR Setting Due to Exception

Exception
MSR Bit

Type
POW TaPR ILE EE PR FPl ME FE02 SE BE FE12 IP IR DR RI LE

System reset 0 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Machine 0 0 - 0 0 0 0 0 0 0 0 - 0 0 0 ILE
check

OSI 0 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

lSI 0 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

External 0 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Alignment 0 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Program 0 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Floating- 0 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE
point
unavailable3

MOTOROLA Chapter 4. Exceptions 4-17

Table 4-7. MSR Setting Due to Exception (Continued)

Exception
MSR Bit

Type
POW TGPR ILE EE PR FP1 ME FE02 SE BE FE12 IP IR DR RI

Oecrementer 0 0 - 0 0 0 - 0 0 0 0 - 0 0 0

System call 0 0 - 0 0 0 - 0 0 0 0 - 0 0 0

Trace 0 0 - 0 0 0 - 0 0 0 0 - 0 0 0
exception

ITLBmiss 0 1 - 0 0 0 - 0 0 0 0 - 0 0 0

OTLB miss 0 1 - 0 0 0 - 0 0 0 0 - 0 0 0
on load

OTLB miss 0 1 - 0 0 0 - 0 0 0 0 - 0 0 0
on store

Instruction 0 0 - 0 0 0 - 0 0 0 0 - 0 0 0
address
breakpoint

System 0 0 - 0 0 0 - 0 0 0 0 - 0 0 0
management
interrupt

o Bit is cleared
1 Bit is set
ILE Bit is copied from the ILE bit in the MSR.

Bit is not altered
Reserved bits are read as if written as o.

Notes:

1. The floating-point available bit is always set to 0 on the EC603e microprocessor.

2. FEO and FE1 are not supported on the EC603e microprocessor.

3. On the EC603e microprocessor, the floating-point unavailable exception is caused by the execution of a
floating-point instruction.

4.5.1 Reset Exceptions (Ox00100)

LE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

The system reset exception is a nonmaskable, asynchronous exception signaled to the 603e
either through the assertion of the reset signals (SRESET or HRESET) or internally during
the power-on reset (POR) process. The assertion of the soft reset signal, SRESET, as
described in Section 7.2.9.6.2, "Soft Reset (SRESET)-Input" causes the soft reset
exception to be taken and the physical base address of the handler is determined by the
MSR[IP] bit. The assertion of the hard reset signal, HRESET, as described in
Section 7.2.9.6.1, "Hard Reset (HRESET)-Input" causes the hard reset exception to be
taken and the physical address of the handler is always OxFFFO_OlOO.

4-18 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.5.1.1 Hard Reset and Power-On Reset
As described in 4.1.2, "Summary of Front-End Exception Handling," the hard reset
exception is a nonrecoverable, nonmaskable asynchronous exception (maskable interrupt).
When HRESET is asserted or at power-on reset (POR), the 603e immediately branches to
OxFFFO_0100 without attempting to reach a recoverable state. A hard reset has the highest
priority of any exception. It is always nonrecoverable. Table 4-8 shows the state of the
machine just before it fetches the first instruction of the system reset handler after a hard
reset.

The HRESET signal can be asserted for the following reasons:

• System power-on reset
System reset from a panel switch

• An action required by the ESP utility

For information on the HRESET signal, see Section 7.2.9.6.1, "Hard Reset (HRESET)­
Input."

Table 4-8. Settings Caused by Hard Reset

Register Setting Register Setting

GPRs Unknown PVR 0003000n

FPRs* Unknown HIDO 00000000

FPSCR* 00000000 HID1 00000000

CR All Os DMISS and IMISS AliOs

SRs Unknown DCMP and ICMP All Os

MSR 00000040 RPA All Os

XER 00000000 IABR All Os

TBU 00000000 DSISR 00000000

TBL 00000000 DAR 00000000

LR 00000000 DEC FFFFFFFF

CTR 00000000 HASH1 00000000

SDR1 00000000 HASH2 00000000

SRRO 00000000 TLBs Unknown

SRR1 00000000 Cache All cache blocks invalidated

SPRGs 00000000 BATs Unknown

Tag directory All Os. (However, LRU bits are
initialized so each side of the
cache has a unique LRU
value.)

Note: Not supported on the EC603e microprocessor.

MOTOROLA Chapter 4. Exceptions 4-19

The following is also true after a hard reset operation:

• External checkstops are enabled.

• The on-chip test interface has given control of the 1I0s to the rest of the chip for
functional use.

• Since the reset exception has data and instruction translation disabled (MSR[DR]
and MSR[IR] both cleared), the chip operates in real addressing mode as described
in Section 5.2, "Real Addressing Mode."

4.5.1.2 Soft Reset
As described in Section 4.1.2, "Summary of Front-End Exception Handling," the soft reset
exception is a type of system reset exception that is recoverable, nonmaskable, and
asynchronous. When SRESET is asserted, the processor attempts to reach a recoverable
state by allowing the next instruction to either complete or cause an exception, blocking the
completion of subsequent instructions, and allowing the completed store queue to drain.

Unlike a hard reset, the latches are not initialized and the instruction cache is disabled. The
SRESET signal must be asserted for at least two bus clock cycles. After the SRESET signal
is negated, the 603e vectors to the system reset routine at OxOOOO_OlOO if MSR[IP] is
cleared or OxFFFO_OIOO if MSR[IP] is set. A soft reset is recoverable provided that
attaining the recoverable state does not cause a machine check exception. This interrupt
case is third in priority, following hard reset and machine check.

When a soft reset occurs, registers are set as shown in Table 4-9.

Table 4-9. Soft Reset Exception-Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to complete
next if no exception conditions were present.

SRR1 0--15 Cleared
16-31 Loaded from bits 16-31 of the MSR. Note that if the processor state is corrupted to the extent

that execution cannot be reliably restarted, SRR1 [30] is cleared.

MSR POW 0 EE 0 FE02 0 IR 0
TGPRO PR 0 SE 0 DR 0
ILE - FP1 0 BE 0 RI 0
IP - ME - FE12 0 LE Set to value of ILE

Notes:

1. The floating-point available bit is always set to 0 on the EC603e microprocessor.

2. FEO and FE1 are not supported on the EC603e microprocessor.

4-20 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.5.2 Machine Check Exception (Ox00200)
The 603e conditionally initiates a machine check exception after detecting the assertion of
the TEA or MCP signals on the 603e bus (assuming the machine check is enabled,
MSR[ME] = 1). The assertion of one of these signals indicates that a bus error occurred and
the system terminates the current transaction. One clock cycle after the signal is asserted,
the data bus signals go to the high-impedance state; however, data entering the GPR or the
cache is not invalidated. Note that if HIDO[EMCP] is cleared, the processor ignores the
assertion of the MCP signal.

Note that the 603e makes no attempt to force recoverability; however, it does guarantee the
machine check exception is always taken immediately upon request, with a nonpredicted
address saved in SRRO, regardless of the current machine state. Any pending stores in the
completed store queue are canceled when the exception is taken. Software can use the
machine check exception in a recoverable mode for checking bus configuration. For this
case, a sync, load, sync instruction sequence is used. A subsequent machine check
exception at the load address indicates a bus configuration problem and the processor is in
a recoverable state.

If the MSR[ME] bit is set, the exception is recognized and handled; otherwise, the 603e
attempts to enter an internal checkstop. Note that the resulting machine check exception has
priority over any exceptions caused by the instruction that generated the bus operation.

Machine check exceptions are only enabled when MSR[ME] = 1; this is described in
Section 4.5.2.1, "Machine Check Exception Enabled (MSR[ME] = 1)." If MSR[MEl = 0
and a machine check occurs, the processor enters the checkstop state. Checkstop state is
described in 4.5.2.2, "Checkstop State (MSR[ME] = 0)."

MOTOROLA Chapter 4. Exceptions 4-21

4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
When a machine check exception is taken, registers are updated as shown in Table 4-10.

Table 4-10. Machine Check Exception-Register Settings

Register Setting Description

SRRO Set to the address of the next instruction that would have been completed in the interrupted
instruction stream. Neither this instruction nor any others beyond it will have been completed. All
preceding instructions will have been completed.

SRR1 0-11 Cleared
12 MCP-Machine check signal caused exception
13 TEA-Transfer error acknowledge signal caused exception
14 OPE-Data parity error signal caused exception
15 APE-Address parity error signal caused exception
16-31 Loaded from MSR[16-31].

MSR POW 0 EE 0 FE02 0 IR 0
TGPRO PR 0 SE 0 DR 0
ILE - FP1 0 BE 0 RI 0
IP - ME - FE12 0 LE Set to value of ILE

Note that when a machine check exception is taken, the exception handler should set MSR[ME]as
soon as it is practical to handle another TEA assertion. Otherwise, subsequent TEA assertions
cause the processor to automatically enter the checkstop state.

Notes:

1. The floating-point available bit is always cleared to 0 on the EC603e microprocessor.

2. FEO and FE1 are not supported on the EC603e microprocessor.

When a machine check exception is taken, instruction execution for the handler begins at
offset Ox00200 from the physical base address indicated by MSR[IP].

In order to return to L1.c main program, the exception handler should do the following:

1. SRRO and SRR1 should be given the values to be used by the rfi instruction.
2. Execute rfi.

4.5.2.2 Checkstop State (MSR[ME] = 0)
When the 603e enters the checkstop state, it asserts the checkstop output signal,
CKSTP _OUT. The following events will cause the 603e to enter the checkstop state:

• Machine check exception occurs with MSR[ME] cleared.
• External checkstop input, CKSTP _IN, is asserted.
• An extended transfer protocol error occurs.

When a processor is in the checkstop state, instruction processing is suspended and
generally cannot be restarted without resetting the processor. The contents of all latches are
frozen within two cycles upon entering the checks top state so that the state of the processor
can be analyzed as an aid in problem determination.

4-22 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Note that not all PowerPC processors provide the same level of error checking. The reasons
a processor can enter checks top state are implementation-dependent.

4.5.3 OSI Exception (Ox00300)
A DSI exception occurs when no higher priority exception exists and a data memory access
cannot be performed. The condition that caused the DSI exception can be determined by
reading the DSISR register, a supervisor-level SPR (SPRI8) that can be read by using the
mfspr instruction. Bit settings are provided in Table 4-11. Table 4-11 also indicates which
memory element is saved to the DAR. DSI exceptions can occur for any of the following
reasons:

• The instruction is not supported for the type of memory addressed.

• Any access to a direct-store segment (SR[T] = 1).

• The access violates memory protection. Access is not permitted by the key (Ks and
Kp) and PP bits, which are set in the segment register and PTE for page protection
and in the BATs for block protection.

Note that the OEA specifies an additional case that may cause a DSI exception-when an
effective address for a load, store, or cache operation cannot be translated by the TLBs. On
the 603e, this condition causes a TLB miss exception instead.

These scenarios are common among all PowerPC processors. The following additional
scenarios can cause a DSI exception in the 603e:

• A bus error indicates crossing from a direct-store segment to a memory segment.
• The execution of any load/store instruction to a direct-store segment, SR[T] = 1.

• A data access crosses from a memory segment (SR[T] = 0) into a direct-store
segment (SR[T] = 1).

DSI exceptions can be generated by load/store instructions, and the cache control
instructions (debi, debz, debst, and debf).

The 603e supports the crossing of page boundaries. However, if the second page has a
translation error or protection violation associated with it, the 603e will take the DSI
exception in the middle of the instruction. In this case, the data address register (DAR)
always points to a byte address in the first word of the offending page.

If an stwex. instruction has an effective address for which a normal store operation would
cause a DSI exception, the 603e will take the DSI exception without checking for the
reservation.

If the XER indicates that the byte count for an lswi or stswi instruction is zero, a DSI
exception does not occur, regardless of the effective address.

The condition that caused the exception is defined in the DSISR. These conditions also use
the data address register (DAR) as shown in Table 4-11.

MOTOROLA Chapter 4. Exceptions 4-23

Table 4-11. OSI Exception-Register Settings

Register Setting Description

SRRa Set to the effective address of the instruction that caused the exception.

SRR1 0-15 Cleared
16-31 Loaded with bits 16-31 of the MSR

MSR POW a EE a FEa2 a IR a
TGPRa PR a SE a DR a
ILE - FP1 a BE a RI a
IP - ME - FE12 a LE Set to value of ILE

DSISR a Set if a load or store instruction results in a direct-store error exception.
1 Set by the data TLB miss exception handler if the translation of an attempted access is not

found in the primary hash table entry group (HTEG), or in the rehashed secondary HTEG, or in
the range of a DBAT register; otherwise cleared.

2-3 Cleared
4 Set if a memory access is not permitted by the page or BAT protection mechanism; otherwise

cleared.
5 Set if the Iwarx or stwex. instruction is attempted to direct-store space.
6 Set for a store operation and cleared for a load operation.
7-31 Cleared

DAR Set to the effective address of a memory element as described in the following list:

· A byte in the first word accessed in the page that caused the DSI exception, for a byte, half word, or
word memory access.

· A byte in the first word accessed in the BAT area that caused the DSI exception for a byte, half
word, or word access to a BAT area.

· A byte in the block that caused the exception for iebi, debz, debst, debt, or debi instructions.

· Any EA in the memory range addressed (for direct-store exceptions).

Notes:

1. The f!oatingwpoint available bit is always cleared to 0 on the EC603e microprocessor.

2. FEa and FE1 are not supported on the EC6a3e microprocessor.

When a DSI exception is taken, instruction execution for the handler begins at offset
Ox00300 from the physical base address indicated by MSR[IP].

The architecture permits certain instructions to be partially executed when they cause a DSI
exception. These are as follows:

• Load multiple or load string instructions-Some registers in the range of registers to
be loaded may have been loaded_

• Store multiple or store string instructions-Some bytes of memory in the range
addressed may have been updated.

In these cases, the number of registers and amount of memory altered are instruction- and
boundary-dependent. However, memory protection is not violated. Furthermore, if some of
the data accessed is in direct-store space (SR[T] = 1) and the instruction is not supported
for direct-store accesses, the locations in direct-store space are not accessed.

For update forms, the update register (rA) is not altered.

4-24 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.5.4 lSI Exception (Ox00400)
The lSI exception is implemented as it is defined by the PowerPC architecture. An lSI
exception occurs when no higher priority exception exists and an attempt to fetch the next
instruction fails for any of the following reasons:

• If an instruction TLB miss fails to find the desired PTE, then a page fault is
synthesized. The ITLB miss handler branches to the lSI exception handler to retrieve
the translation from a storage device.

• An attempt is made to fetch an instruction from a direct-store segment while
instruction translation is enabled (MSR[IR] = 1).

• An attempt is made to fetch an instruction from no-execute memory.

• An attempt is made to fetch an instruction from guarded memory when MSR[lR] =
1.

• The fetch access violates memory protection.

Register settings for this exception are described in Chapter 6, "Exceptions," in The
Programming Environments Manual.

When an lSI exception is taken, instruction execution for the handler begins at offset
Ox00400 from the physical base address indicated by MSR[IP].

4.5.5 External Interrupt (Ox00500)
An external interrupt is signaled to the 603e by the assertion of the INT signal as described
in Section 7.2.9.1, "Interrupt (INT)-Input." The interrupt may not be recognized if a
higher priority exception occurs simultaneously or if the MSR[EE] bit is cleared when INT
is asserted.

After the INT is detected (and provided that MSR[EE] is set), the 603e generates a
recoverable halt to instruction completion. The 603e requires the next instruction in
program order to complete or except, block completion of any following instructions, and
allow the completed store queue to drain. If any other exceptions are encountered in this
process, they are taken first and the external interrupt is delayed until a recoverable halt is
achieved. At this time the 603e saves the state information and takes the external interrupt
as defined in the PowerPC architecture.

MOTOROLA Chapter 4. Exceptions 4-25

The register settings for the external interrupt are shown in Table 4-12.

Table 4-12. External Interrupt-Register Settings

Register Setting

SRRO Set to the effective address of the instruction that the processor would have attempted to execute
next if no interrupt conditions were present.

SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR

MSR POW 0 EE 0 FE02 0 IR 0
TGPRO PR 0 SE 0 DR 0
ILE - FP1 0 BE 0 RI 0
IP - ME - FE12 0 LE Set to value of ILE

Notes:

1. The floating-point available bit is always cleared to 0 on the EC603e microprocessor.

2. FEO and FE1 are not supported on the EC603e microprocessor.

When an external interrupt is taken, instruction execution for the handler begins at offset
Ox00500 from the physical base address indicated by MSR[IP].

The 603e only recognizes the interrupt condition (INT asserted) if the MSR[EE] bit is set;
it ignores the interrupt condition if the MSR[EE] bit is cleared. To guarantee that the
external interrupt is taken, the INT signal must be held active until the 603e takes the
interrupt. If the INT signal is negated before the interrupt is taken, the 603e is not
guaranteed to take an external interrupt. The interrupt handler must send a command to the
device that asserted INT, acknowledging the interrupt and instructing the device to negate
INT.

4.5.6 Aiignment Exception (Ox00600)
This section describes conditions that can cause alignment exceptions in the 603e. Similar
to DSI exceptions, alignment exceptions use the SRRO and SRRI to save the machine state
and the DSISR to determine the source of the exception. The 603e will initiate an alignment
exception when it detects any of the following conditions:

• The operand of a floating-point load or store operation is not word-aligned. (Not
supported on the EC603e microprocessor.)

• The operand of an Imw, stmw, lwarx, or stwcx. instruction is not word-aligned.
• A little-endian access (MSR[LE] = 1) is misaligned.
• A multiple or string access is attempted with the MSR[LE] bit set.

• The operand of a dcbz instruction is in a page that is write-through or caching­
inhibited.

4-26 MPC603e & EC603e RiSe Microprocessors User's Manual MOTOROLA

The register settings for alignment exceptions are shown in Table 4-12.

Table 4-13. Alignment Interrupt-Register Settings

Register Setting

SRRO Set to the effective address of the instruction that caused the exception.

SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR

MSR POW 0 EE 0 FE02 0 IR 0
TGPRO PR 0 SE 0 DR 0
ILE - FP1 0 BE 0 RI 0
IP - ME - FE12 0 LE Set to value of ILE

DSISR 0-11 Cleared
12-13 Cleared. (Note that these bits can be set by several 64-bit PowerPC instructions that are

not supported in the 603e.)
14 Cleared
15-16 For instructions that use register indirect with index addressing-set to bits 29-30 of the

instruction.
For instructions that use register indirect with immediate index addressing--cleared.

17 For instructions that use register indirect with index addressing-set to bit 25 of the
instruction.
For instructions that use register indirect with immediate index addressing- Set to bit 5 of
the instruction

18-21 For instructions that use register indirect with index addressing-set to bits 21-24 of the
instruction.
For instructions that use register indirect with immediate index addressing-set to bits 1--4
of the instruction.

22-26 Set to bits 6-10 (identifying either the source or destination) of the instruction. Undefined
for dcbz.

27-31 Set to bits 11-15 of the instruction (rA)
Set to either bits 11-15 of the instruction or to any register number not in the range of
registers loaded by a valid form instruction, for Imw, Iswi, and Iswx instructions. Otherwise
undefined.

DAR Set to the EA of the data access as computed by the instruction causing the alignment exception.

Notes:

1. The floating-point available bit is always cleared to 0 on the EC603e microprocessor.

2. FEO and FE1 are not supported on the EC603e microprocessor.

The architecture does not support the use of an unaligned EA by lwarx or stwcx.
instructions. If one of these instructions specifies an unaligned EA, the exception handler
should not emulate the instruction, but should treat the occurrence as a programming error.

4.5.6.1 Integer Alignment Exceptions
The 603e is optimized for load and store operations that are aligned on natural boundaries.
Operations that are not naturally aligned may suffer performance degradation, depending
on the type of operation, the boundaries crossed, and the mode that the processor is in
during execution. More specifically, these operations may either cause an alignment
exception or they may cause the processor to break the memory access into multiple,
smaller accesses with respect to the cache and the memory subsystem.

MOTOROLA Chapter 4. Exceptions 4-27

The 603e can initiate an alignment exception for the access shown in Table 4-14. In this
case, the appropriate range check is perfonned before the instruction begins execution. As
a result, if an alignment exception is taken, it is guaranteed that no portion of the instruction
has been executed.

Table 4-14. Access Types

MSR[DR] SR[T] Access Type

1 0 Page-address translation access

4.5.6.1.1 Page Address Translation Access
A page-address translation access occurs when MSR[DR] is set, SR[T] is cleared and there
is not a match in the BAT. Note the following points:

• The following is true for all loads and stores except strings/multiples:

- Byte operands never cause an alignment exception.

- Half-word operands can cause an alignment exception if the EA ends in OxFFF.

- Word operands can cause an alignment exception if the EA ends in OxFFD-FFF.

- Double-word operands cause an alignment exception if the EA ends in
OxFF9-FFF.

• The dcbz instruction causes an alignment exception if the access is to a page or
block with the W (write-through) or I (cache-inhibit) bit set in the TLB or BAT,
respectively.

A misaligned memory access that does not cause an alignment exception will not perfonn
as well as an aligned access of the same type. The resulting perfonnance degradation due
to misaligned accesses depends on how well each individual access behaves with respect to
the memory hierarchy. At a minimum, additional cache access cycles are required that can
delay other processor resources from using the cache. More dramatically, for an access to
a noncacheable page, each discrete access involves individual processor bus operations that
reduce the effective bandwidth of that bus.

Finally, note that when the 603e is in page address translation mode, there is no special
handling for accesses that fall into BAT regions.

4.5.6.2 Floating-Point Alignment Exceptions
The 603e implements the alignment exception as it is defined in the PowerPC architecture.
For infonnation on bit settings and how exception conditions are detected, refer to The
Programming Environments Manual.

4-28 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Note that the PowerPC architecture allows individual processors to determine whether an
exception is required to handle various alignment conditions. The 603e initiates an
alignment exception when it detects any of the following conditions:

• The operand of a floating-point load or store operation is not word-aligned.

• The operand of a dcbz instruction is in a page that is write-through or caching­
inhibited for a virtual mode access.

• The operand of an lmw, stmw, Iwarx, or stwcx. instruction is not word-aligned.
Note that unlike other alignment exceptions, which store the address as computed
by the instruction in the DAR, alignment exceptions for load or store multiple
instructions store that address value + 4 into the DAR.

A little-endian access is misaligned.

A multiple access is attempted while the little-endian, MSR[LE], bit is set.

4.5.7 Program Exception (Ox00700)
The 603e implements the program exception as it is defined by the PowerPC architecture
(OEA). A program exception occurs when no higher priority exception exists and one or
more of the exception conditions defined in the OEA occur.

When a program exception is taken, instruction execution for the handler begins at offset
Ox00700 from the physical base address indicated by MSR[IP]. The exception conditions
are as follows:

• Floating-point enabled exception-These exceptions correspond to IEEE-defined
exception conditions, such as overflows, and divide by zeros that may occur during
the execution of a floating-point arithmetic instruction. As a group, these exceptions
are enabled by the FEO and FE1 bits in the in the MSR. Individual conditions are
enabled by specific bits in the FPSCR. For general information about this exception,
see The Programming Environments Manual. For more information about how these
exceptions are implemented in the 603e, see Section 4.5.7.1, "IEEE Floating-Point
Exception Program Exceptions."

Note: The floating-point enabled exception is not supported on the EC603e
microprocessor.

• Illegal instruction-An illegal instruction program exception is generated when
execution of an instruction is attempted with an illegal opcode or illegal combination
of opcode and extended opcode fields (including PowerPC instructions not
implemented in the 603e). These do not include those optional instructions treated
as no-ops.

• Privileged instruction-A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the MSR
register user privilege bit, MSR[PR], is set. In the 603e, this exception is generated
for mtspr or mfspr with an invalid SPR field if SPR[O] = 1 and MSR[PR] = 1. This
may not be true for all PowerPC processors.

MOTOROLA Chapter 4. Exceptions 4-29

• Trap---A trap type program exception is generated when any of the conditions
specified in a trap instruction is met.

4.5.7.1 IEEE Floating-Point Exception Program Exceptions
Floating-point exceptions (not supported on the EC603e microprocessor) are signaled by
condition bits set in the floating-point status and control register (FPSCR). They can cause
the system floating-point enabled exception handler to be invoked. The 603e handles all
floating-point exceptions precisely. The 603e implements the FPSCR as it is defined by the
PowerPC architecture; for more information about the FPSCR, see The Programming
Environments Manual.

Floating-point operations that change exception sticky bits in the FPSCR may suffer a
performance penalty. When an exception is disabled in the FPSCR and MSR[FE] = 0,
updates to the FPSCR exception sticky bits are serialized at the completion stage. This
serialization may result in a one- or two-cycle execution delay. The penalty is incurred only
when the exception bit is changed and not on subsequent operations with the same
exception. See Chapter 6, "Instruction Timing," for a full description of completion
serialization.

When an exception is enabled in the FPSCR, the instruction traps to the emulation trap
exception vector without updating the FPSCR or the target FPR. The emulation trap
exception handler is required to complete the instruction. The emulation trap exception
handler is invoked regardless of the FE setting in the MSR.

The two IEEE floating-point imprecise modes, defined by the PowerPC architecture when
MSR[FEO] :t MSR[FEI], are treated as precise exceptions (that is, MSR[FEO] =
MSR[FEl] = I). This is regardless of the setting of MSR[NI].

For the highest and most predictable floating-point performance, all exceptions should be
disabled in the FPSCR and MSR. For more information about the program exception, see
The Programming Environments Manual.

4.5.7.2 Illegal, Reserved, and Unimplemented Instructions
Program Exceptions

In accordance with the PowerPC architecture, the 603e considers all instructions defined
for 64-bit implementations and unimplemented optional instructions, such as fsqrt, eciwx,
and ecowx as illegal and takes a program exception when one of these instructions is
encountered. Likewise, if a supervisor-level instruction is encountered when the processor
is in user-level mode, a privileged instruction-type program exception is taken.

The 603e implements some instructions, such as double-precision floating-point and
load/store string instructions in software. These instructions take the 603e-specific
emulation trap exception (OxOI600) rather than a program exception.

4-30 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.5.8 Floating-Point Unavailable Exception (Ox00800)
A floating-point unavailable exception occurs when no higher priority exception exists, an
attempt is made to execute a floating-point instruction (including floating-point load, store,
and move instructions), and the floating-point available bit in the MSR is disabled
(MSR[FP] = 0); note that on the EC603e microprocessor, the MSR[FP] is always cleared
to O. Register settings for this exception are described in Chapter 6, "Exceptions," in The
Programming Environments Manual

When a floating-point unavailable exception is taken, instruction execution for the handler
begins at offset Ox00800 from the physical base address indicated by MSR[IP].

4.5.9 Decrementer Exception (Ox00900)
The 603e implements the decrementer interrupt exception as it is defined in the PowerPC
architecture. A decrementer exception request is made when the decrementer counts down
through zero. The request is held until there are no higher priority exceptions and
MSR[EE] = 1. At this point the decrementer exception is taken. If multiple decrementer
exception requests are received before the first can be reported, only one exception is
reported. The occurrence of a decrementer exception cancels the request. Register settings
for this exception are described in Chapter 6, "Exceptions," in The Programming
Environments Manual.

When a decrementer exception is taken, instruction execution for the handler begins at
offset Ox00900 from the physical base address indicated by MSR[IP].

4.5.10 System Call Exception (OxOOCOO)
The 603e implements the system call exception as It IS defined by the PowerPC
architecture. A system call exception request is made when a system call (sc) instruction is
completed. If no higher priority exception exists, the system call exception is taken, with
SRRO being set to the EA of the instruction following the sc instruction. Register settings
for this exception are described in Chapter 6, "Exceptions," in The Programming
Environments Manual.

When a system call exception is taken, instruction execution for the handler begins at offset
OxOOCOO from the physical base address indicated by MSR[IP].

MOTOROLA Chapter 4. Exceptions 4-31

4.5.11 Trace Exception (OxOODOO)
The trace exception is taken under one of the following conditions:

• When MSR[SE] is set, a single-step instruction trace exception is taken when no
higher priority exception exists and any instruction (other than rfi or isync) is
successfully completed. Note that other PowerPC processors will take the trace
exception on isync instructions (when MSR[SE] is set); the 603e does not take the
trace exception on isync instructions. Single-step instruction trace mode is described
in Section 4.5.11.1, "Single-Step Instruction Trace Mode."

• When MSR[BE] is set, the branch trace exception is taken after each branch
instruction is completed.

• The 603e deviates from the architecture by not taking trace exceptions on isync
instructions. Single-step instruction trace mode is described in Section 4.5.11.2,
"Branch Trace Mode."

Successful completion implies that the instruction caused no other exceptions. A trace
exception is never taken for an sc instruction or for a trap instruction that takes a trap
exception.

MSR[SE] and MSR[BE] are cleared when the trace exception is taken. In the normal use
of this function, MSR[SE] and MSR[BE] are restored when the exception handler returns
to the interrupted program using an rfi instruction.

Register settings for the trace mode are described in Table 4-15.

Table 4-15. Trace Exception-Register Settings
I I i

Register Setting Description

SRRO Set to the address of the instruction following the one for which the trace exception was generated.

SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR

MSR POW 0 EE 0 FE02 0 IR 0
TGPRO PR 0 SE 0 DR 0
ILE - FP1 0 BE 0 RI 0
IP - ME - FE12 0 LE Set to value of ILE

Notes:

1. The floating-point available bit is always cleared to 0 on the EC603e microprocessor.

2. FEO and FE1 are not supported on the EC603e microprocessor.

Note that a trace or instruction address breakpoint exception condition generates a soft stop
instead of an exception if soft stop has been enabled by the JTAG/COP logic. If trace and
breakpoint conditions occur simultaneously, the breakpoint conditions receive higher
priority.

When a trace exception is taken, instruction execution for the handler begins as offset
OxOODOO from the base address indicated by MSR[IP].

4-32 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.5.11.1 Single-Step Instruction Trace Mode
The single-step instruction trace mode is enabled by setting MSR[SE]. Encountering the
single-step breakpoint causes one of the following actions:

• Trap to address vector OxOODOO

• Soft stop (wait for quiescence)

The default single-step trace action traps after an instruction execution and completion. The
soft stop option, in which the 603e stops in a restartable state after an instruction execution
and completion, can be enabled only through the COP function. The ESP, which interfaces
to the COP, can restart the 603e after a soft stop. Refer to the section on JTAG/COP and
Section 8.9, "IEEE I 149. I-Compliant Interface," for more information.

4.5.11.2 Branch Trace Mode
The branch trace mode is enabled by setting MSR[BE]. Encountering the branch trace
breakpoint causes one of the following actions:

• Trap to interrupt vector OxOODOO

• Soft stop
• Hard stop

The default branch trace action is to trap after the completion of any branch instruction
whenever MSR[BE] is set. However, if soft stop is enabled through the COP interface, the
603e stops in a restartable state. If hard stop is enabled through the COP interface, the 603e
stops immediately without waiting to reach a restartable state. Therefore, the 603ejs not
guaranteed to be restartable after a hard stop. For more information, see Section 8.9, "IEEE
1149 . I-Compliant Interface."

4.5.12 Instruction TLB Miss Exception (Ox01000)
When the effective address for an instruction load, store, or cache operation cannot be
translated by the ITLBs, an instruction TLB miss exception is generated. Register settings
for the instruction and data TLB miss exceptions are described in Table 4-16.

MOTOROLA Chapter 4. Exceptions 4-33

Table 4-16. Instruction and Data TLB Miss Exceptions-Register Settings

Register Setting Description

SRRO Set to the address of the next instruction to be executed in the program for which the TLB miss
exception was generated.

SRR1 0-3 Loaded from Condition register CRO field
4-12 Cleared
13 o = data TLB miss

1 = instruction TLB miss
14 o = replace TLB associativity set 0

1 = replace TLB associativity set 1
15 0= data TLB miss on store (or C = 0)

1 = data TLB miss on load
16-31 Loaded from bits 16-31 of the MSR

MSR POW 0 EE 0 FE02 0 IR 0
TGPR1 PR 0 SE 0 DR 0
ILE - FP1 0 BE 0 RI 0
IP - ME - FE12 0 LE Set to value of ILE

Notes:

1. The floating-point available bit is always cleared to 0 on the EC603e microprocessor.

2. FEO and FE1 are not supported on the EC603e microprocessor.

If the instruction TLB miss exception handler fails to find the desired PTE, then a page fault
must be synthesized. The handler must restore the machine state and tum off the GPRs
before invoking the lSI exception (Ox00400).

Software table search operations are discussed in Chapter 5, "Memory Management."

When an instruction TLB miss exception is taken, instruction execution for the handler
begins at offset OxOlOOO from the physical base address indicated by MSR[IP].

4.5.13 Data TLB Miss on Load Exception (Ox011 00)
When the effective address for a data load or cache operation cannot be translated by the
DTLBs, a data TLB miss on load exception is generated. Register settings for the
instruction and data TLB miss exceptions are described in Table 4-16.

If a data TLB miss exception handler fails to find the desired PTE, then a page fault must
be synthesized. The handler must restore the machine state and tum off MSR[TGPR]
before invoking the DSI exception (Ox00300).

Software table search operations are discussed in Chapter 5, "Memory Management."

When a data TLB miss on load exception is taken, instruction execution for the handler
begins at offset OxOl100 from the physical base address indicated by MSR[IP].

4-34 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.5.14 Data TLB Miss on Store Exception (Ox01200)
When the effective address for a data store or cache operation cannot be translated by the
DTLBs, a data TLB miss on store exception is generated. The data TLB miss on store
exception is also taken when the changed bit (C = 0) for a DTLB entry needs to be updated
for a store operation. Register settings for the instruction and data TLB miss exceptions are
described in Table 4-16.

If a data TLB miss exception handler fails to find the desired PTE, then a page fault must
be synthesized. The handler must restore the machine state and tum off the TGPRs before
invoking a DSI exception (OxOO300).

Software table search operations are discussed in Chapter 5, "Memory Management."

When a data TLB miss on store exception is taken, instruction execution for the handler
begins at offset Ox01200 from the physical base address indicated by MSR[IP].

4.5.15 Instruction Address Breakpoint Exception (Ox01300)
The instruction address breakpoint is controlled by the IABR special purpose register.
IABR[0-29] holds an effective address to which each instruction is compared. The
exception is enabled by setting IABR[30]. Note that the 603e ignores the translation enable
bit (IABR[31]). The exception is taken when an instruction breakpoint address matches on
the next instruction to complete. The instruction tagged with the match is not completed
before the instruction address breakpoint exception is taken.

The breakpoint action can be one of the following:

• Trap to interrupt vector Ox01300 (default)

• Soft stop

The bit settings for when an instruction address breakpoint exception is taken are shown in
Table 4-17.

Table 4-17. Instruction Address Breakpoint Exception-Register Settings

Register Setting Description

SRRO Set to the address of the next instruction to be executed in the program for which the TLB miss
exception was generated.

SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 olthe MSR

MSR POW 0 EE 0 FE02 0 IR 0
TGPRO PR 0 SE 0 DR 0
ILE - FP1 0 BE 0 RI 0
IP - ME - FE12 0 LE Set to value of ILE

Notes:

1. The floating-point available bit is always cleared to 0 on the EC603e microprocessor.

2. FEO and FE1 are not supported on the EC603e microprocessor.

MOTOROLA Chapter 4. Exceptions 4-35

The default breakpoint action is to trap before the execution of the matching instruction.

The soft stop feature can be enabled only through the COP interface. With soft stop enabled,
the 603e stops in a restartable state, while with hard stop enabled, the 603e stops
immediately without attempting to reach a restartable state. Upon restarting from a soft
stop, the matching instructions are executed and completed unless it generates an
exception. For soft stops, the next ten instructions that could have passed the IABR check
can be monitored only by single-stepping the processor. When soft stops are used, the
address compare must be separated by at least 10 instructions.

If soft stop is enabled, only one soft stop is generated before completion of an instruction
with an IABR match, regardless of whether a soft stop is generated before that instruction
for any other reason, such as trace mode on for the preceding instruction or a COP soft stop
request.

Table 4-18 shows the priority of actions taken when more than one mode is enabled for the
same instruction.

Table 4-18. Breakpoint Action for Multiple Modes Enabled for the Same Address

IABR[IE] MSR[BE] MSR[SE] First Action Next Action Comments

1 1 0 Instruction Trace Enabling both modes is useful only if both
address (branch) trace and address breakpoint interrupts

are needed.

1 0 1 Instruction Trace (single- Enabling both modes is useful only if
address step) different breakpoint actions are required.
breakpoint

0 1 1 I Trace None The action for branch trace and single-step
(branch) trace is the same. Enabling both trace

modes is redundant except for hard stop
on branches.

1 1 1 Instruction Trace Enabling all modes is redundant. This
address entry is for clarification only.
breakpoint

Note that a trace or instruction address breakpoint exception condition generates a soft stop
instead of an exception if soft stop has been enabled by the JTAG/COP logic. If trace and
breakpoint conditions occur simultaneously, the breakpoint conditions receive higher
priority.

The 603e requires that an mtspr instruction that updates the IABR be followed by a
context-synchronizing instruction. If the mtspr instruction enables the instruction address
breakpoint exception, the context-synchronizing instruction cannot generate a breakpoint
response. The 603e also cannot block a breakpoint response on the context-synchronizing
instruction if the breakpoint was disabled by the mtspr instruction. See "Synchronization
Requirements for Special Registers and TLBs" in Chapter 2, "Register Set," in The
Programming Environments Manual" for more information on this requirement.

4-36 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

4.5.16 System Management Interrupt (Ox01400)
The system management interrupt behaves like an external interrupt except for the signal
asserted and the vector taken. A system management interrupt is signaled to the 603e by the
assertion of the SMI signal. The interrupt may not be recognized if a higher priority
exception occurs simultaneously or if the MSR[EE] bit is cleared when SMI is asserted.
Note that SMI takes priority over !NT if they are recognized simultaneously.

After the SMI is detected (and provided that MSR[EE] is set), the 603e generates a
recoverable halt to instruction completion. The 603e requires the next instruction in
program order to complete or except, block completion of any following instructions, and
allow the completed store queue to drain. If any higher priority exceptions are encountered
in this process, they are taken first and the system management interrupt is delayed until a
recoverable halt is achieved. At this time the 603e saves state information and takes the
system management interrupt.

The register settings for the external interrupt exception are shown in Table 4-19.

Table 4-19. System Management Interrupt-Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to complete
next if no interrupt conditions were present.

SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR

MSR POW 0 EE 0 FE02 0 IR 0
TGPRO PR 0 SE 0 DR 0
ILE - FP1 0 BE 0 RI 0
IP - ME - FE12 0 LE Set to value of ILE

Notes:

1. The floating-point available bit is always cleared to 0 on the EC603e microprocessor.

2. FEO and FE1 are not supported on the EC603e microprocessor.

When a system management interrupt is taken, instruction execution for the handler begins
at offset OX01400 from the physical base address indicated by MSR[IP].

The 603e recognizes the interrupt condition (SMI asserted) only if the MSR[EE] bit is set;
and ignores the interrupt condition otherwise. To guarantee that the external interrupt is
taken, the SMI signal must be held active until the 603e takes the interrupt. If the SMI signal
is negated before the interrupt is taken, the 603e is not guaranteed to take a system
management interrupt. The interrupt handler must send a command to the device that
asserted SMI, acknowledging the interrupt and instructing the device to negate SMI.

MOTOROLA Chapter 4_ Exceptions 4-37

4-38 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Chapter 5
Memory Management
This chapter describes the PowerPC 603e microprocessor's implementation of the memory
management unit (MMU) specifications provided by the PowerPC operating environment
architecture (OBA) for PowerPC processors. The 603e MMU implementation is very
similar to that of the PowerPC 603 microprocessor except that the 603e implements an
extra key bit in the SRRl register that simplifies the table search software. In addition,
because the 603e does not support direct-store bus accesses, it causes a DSI exception when
a direct-store segment is encountered. Refer to Appendix C, "PowerPC 603 Processor
System Design and Programming Considerations," for a complete description of the
differences applicable to the PowerPC 603 microprocessor.

The primary function of the MMU in a PowerPC processor is the translation of logical
(effective) addresses to physical addresses (referred to as real addresses in the architecture
specification) for memory accesses, and lIO accesses (lIO accesses are assumed to be
memory-mapped). In addition, the MMU provides access protection on a segment, block,
or page basis. This chapter describes the specific hardware used to implement the MMU
model of the OBA in the 603e. Refer to Chapter 7, "Memory Management," in The
Programming Environments Manual for a complete description of the conceptual model.

Two general types of accesses generated by PowerPC processors require address
translation-instruction accesses, and data accesses to memory generated by load and store
instructions. Generally, the address translation mechanism is defined in terms of segment
descriptors and page tables used by PowerPC processors to locate the effective-to-physical
address mapping for instruction and data accesses. The segment information translates the
effective address to an interim virtual address, and the page table information translates the
virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as on­
chip segment registers on 32-bit implementations (such as the 603e). In addition, two
translation lookaside buffers (TLBs) are implemented on the 603e to keep recently-used
page address translations on-chip. Although the PowerPC OBA describes one MMU
(conceptually), the 603e hardware maintains separate TLBs and table search resources for
instruction and data accesses that can be accessed independently (and simultaneously).
Therefore, the 603e is described as having two MMU s, one for instruction accesses
(IMMU) and one for data accesses (DMMU).

MOTOROLA Chapter 5. Memory Management 5-1

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as pairs
of BAT registers that are accessible as supervisor-level special-purpose registers (SPRs).
There are separate instruction and data BAT mechanisms, and in the 603e, they reside in
the instruction and data MMUs respectively.

The MMUs, together with the exception processing mechanism, provide the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 4, "Exceptions." Section 4.2, "Exception Processing," describes the MSR, which
controls some of the critical functionality of the MMUs.

5.1 MMU Features
The 603e implements the memory management specification of the PowerPC OEA for 32-
bit implementations. Thus, it provides 4 Gbytes of effective address space accessible to
supervisor and user programs with a 4-Kbyte page size and 256-Mbyte segment size. In
addition, the MMUs of 32-bit PowerPC processors use an interim virtual address (52 bits)
and hashed page tables in the generation of 32-bit physical addresses. PowerPC processors
also have a block address translation (BAT) mechanism for mapping large blocks of
memory. Block sizes range from 128 Kbyte to 256 Mbyte and are software-programmable.

The 603e completely implements all features required by the MMU specifications of the
PowerPC architecture (OEA) for 32-bit implementations. Table 5-1 summarizes all 603e
MMU features including the architectural features of PowerPC MMUs (defined by the
OEA) for 32-bit processors and the implementation-specific features provided by the 603e.

Table 5-1. MMU Features Summary

Feature Category
Architecturally Defined!

Feature
603e-Speciflc

Address ranges Architecturally defined 232 bytes of effective address

252 bytes of vi rtual address

232 bytes of physical address

Page size Architecturally defined 4 Kbytes

Segment size Architecturally defined 256 Mbytes

Block address Architecturally defined Range of 128 Kbyte-256 Mbytes sizes
translation

Implemented with IBAT and DBAT registers in BAT array

Memory protection Architecturally defined Segments selectable as no-execute

Pages selectable as user/supervisor and read-only

Blocks selectable as user/supervisor and read-only

Page history Architecturally defined Referenced and changed bits defined and maintained

5-2 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 5-1. MMU Features Summary (Continued)

Feature Category
Architecturally Definedl

Feature
603e-Specific

Page address Architecturally defined Translations stored as PTEs in hashed page tables in memory
translation

Page table size determined by mask in SDR1 register

TLBs Architecturally defined Instructions for maintaining optional TLBs (tlbie instruction in
603e)

603e-specific 64-entry, two-way set associative ITLB
64-entry, two-way set associative DTLB

Segment descriptors Architecturally defined Stored as segment registers on-chip

Page table search 603e-specific Three MMU exceptions defined: ITLB miss exception, DTLB
support miss on load exception, and DTLB miss on store (or C = 0)

exception; MMU-related bits set in SRR1 for these exceptions

IMISS and DMISS registers (missed effective address)
HASH1 and HASH2 registers (pTEG addr)
ICMP and DCMP registers (for comparing PTEs)
RPA register (for loading TLBs)

tlbli rB instruction for loading ITLB entries
tlbld rB instruction for loading DTLB entries

Shadow registers for GPRO-GPR3 (can use rO-r3 in table
search handler without corruption of rO-r3 in context that was
previously executing)

5.1.1 Memory Addressing
A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, or cache instruction, and when it fetches the next
instruction. The effective address is translated to a physical address according to the
procedures described in Chapter 7, "Memory Management," in The Programming
Environments Manual, augmented with information in this chapter. The memory
subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, "Effective
Address Calculation."

5.1.2 MMU Organization
Figure 5-1 shows the conceptual organization of a PowerPC MMU in a 32-bit
implementation; note that it does not describe the specific hardware used to implement the
memory management function for a particular processor. Processors may optionally
implement on-chip TLBs and may optionally support the automatic search of the page
tables for PTEs. In addition, other hardware features (invisible to the system software) not
depicted in the figure may be implemented.

MOTOROLA Chapter 5. Memory Management 5-3

Figure 5-2 and Figure 5-3 show the conceptual organization of the 603e instruction and
data MMUs, respectively. The instruction addresses shown in Figure 5-2 are generated by
the processor for sequential instruction fetches and addresses that correspond to a change
of program flow. Data addresses shown in Figure 5-3 are generated by load and store
instructions and by cache instructions.

As shown in the figures, after an address is generated, the higher-order bits of the effective
address, EAO-EA 19 (or a smaller set of address bits, EAO-EAn, in the cases of blocks), are
translated into physical address bits PAO-PA19. The lower-order address bits, A20-A3l are
untranslated and therefore identical for both effective and physical addresses. After
translating the address, the MMUs pass the resulting 32-bit physical address to the memory
subsystem.

In addition to the higher-order address bits, the MMUs automatically keep an indicator of
whether each access was generated as an instruction or data access and a supervisor/user
indicator that reflects the state of the PR bit of the MSR when the effective address was
generated. In addition, for data accesses, there is an indicator of whether the access is for a
load or a store operation. This information is then used by the MMUs to appropriately direct
the address translation and to enforce the protection hierarchy programmed by the
operating system. Section 4.2, "Exception Processing," describes the MSR, which controls
some of the critical functionality of the MMUs.

The figures show the way in which the A20-A26 address bits index into the on-chip
instruction and data caches to select a cache set. The remaining physical address bits are
then compared with the tag fields (comprised of bits PAO-PA19) ofthe four selected cache
blocks to determine if a cache hit has occurred. In the case of a cache miss, the instruction
or data access is then forwarded to the bus interface unit which then initiates an external
memory access.

5-4 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

A20-A31

PAQ-PA31

~ _-~ Optional

Figure 5-1. MMU Conceptual Block Diagram-32-Bit Implementations

MOTOROLA Chapter 5. Memory Management 5-5

5·6

Instruction
Unit A2O-A31

PAO-PA31

Figure 5-2. IMMU Block Diagram

MPC603e & EC603e RISC Microprocessors User's Manual

I Cache

I Cache
Hit/Miss

MOTOROLA

MOTOROLA

PAD-PA31

Figure 5-3. DMMU Block Diagram

Chapter 5. Memory Management 5-7

5.1.3 Address Translation Mechanisms
PowerPC processors support the following four types of address translation:

• Page address translation-translates the page frame address for a 4-Kbyte page size

• Block address translation-translates the block number for blocks that range in size
from 128 Kbyte to 256 Mbyte

• Direct-store interface address translation-used to generate direct-store interface
accesses on the external bus; not implemented in the 603e.

• Real addressing mode translation-when address translation is disabled, the
physical address is identical to the effective address.

Figure 5-4 shows the three implemented address translation mechanisms provided by the
603e MMUs. The segment descriptors shown in the figure control the page address
translation mechanism. When an access uses page address translation, the appropriate
segment descriptor is required. In 32-bit implementations, one of the 16 on-chip segment
registers (which contain segment descriptors) is selected by the four highest-order effective
address bits.

A control bit in the corresponding segment descriptor then determines if the access is to
memory (memory-mapped) or to the direct-store interface space (selected when the direct­
store translation control bit (T bit) in the corresponding segment descriptor is set). Note that
the direct-store interface is present only for compatibility with existing 110 devices that use
this interface. When an access is determined to be to the direct-store interface space, the
603e takes a DSI exception as described in Section 4.5.3, "DSI Exception (Ox00300)" if it
is a data access, and takes an lSI exception as described in Section 4.5.4, "lSI Exception
(Ox00400)" if it is an instruction access.

For memory accesses translated by a segment descriptor, the interim virtual address is
generated using the information in the segment descriptor. Page address translation
corresponds to the conversion of this virtual address into the 32-bit physical address used
by the memory subsystem. In most cases, the physical address for the page resides in an on­
chip TLB and is available for quick access. However, if the page address translation misses
in an on-chip TLB, the MMU causes a search of the page tables in memory (using the
virtual address information and a hashing function) to locate the required physical address.
When this occurs, the 603e vectors to exception handlers that search the page tables with
software.

Block address translation occurs in parallel with page address translation and is similar to
page address translation; however, fewer higher-order effective address bits are translated
into physical address bits (more lower-order address bits (at least 17) are untranslated to
form the offset into a block). Also, instead of segment descriptors and a TLB, block address
translations use the on-chip BAT registers as a BAT array. If an effective address matches
the corresponding field of a BAT register, the information in the BAT register is used to
generate the physical address; in this case, the results of the page translation (occurring in
parallel) are ignored (even if the segment corresponds to the direct-store interface space).

5-8 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

o 31
I Effective Address

Address Translation Disabled

(MSR[IR] 0, or MSR[DR]- 0)

I Segment Descriptor!
Located -'

! Match ~ith BAT Reg-!
Listers I

(T = 1) I (T = 0) I

o
I

Direct-Store Interface
Translation

Page

51
Virtual Address I

Block Address
Translation

(see Section 5.3)

Real Addressing Mode
Effective Address = ~ Address

(see Section 52)

rO~=-~~~ __ ~31 rO~=-~~~ __ ~31 rO~=-~~~ __ ~31
Physical Address Physical Address Physical Address

Figure 5-4_ Address Translation Types

Real addressing mode translation occurs when address translation is disabled; in this case
the physical address generated is identical to the effective address. Instruction and data
address translation is enabled with the MSR[IR] and MSR[DR] bits, respectively. Thus
when the processor generates an access, and the corresponding address translation enable
bit in MSR (MSR[IR] for instruction accesses and MSR[DR] for data accesses) is cleared,
the resulting physical address is identical to the effective address and all other translation
mechanisms are ignored.

MOTOROLA Chapter 5. Memory Management 5-9

5.1.4 Memory Protection Facilities
In addition to the translation of effective addresses to physical addresses, the MMUs
provide access protection of supervisor areas from user access and can designate areas of
memory as read-only as well as no-execute or guarded. Table 5-2 shows the eight
protection options supported by the MMUs for pages.

Table 5-2. Access Protection Options for Pages

Option

Supervisor-only

Supervisor-only-no-execute

Supervisor-write-only

Supervisor-write-only-no-execute

Both user/supervisor

Both user/supervisor-no-execute

Both read-only

Both read-only-no-execute

..j access permitted
- protection violation

User Read

I-Fetch Data

- -

- -

..j ..j

- ..j

..j ..j

- ..j

..j ..j

- ..j

User
Supervisor Read

Write
I-Fetch Data

- ..j ..j

- - ..j

- ..j ..j

- - ..j

..j ..j ..j

..j - ..j

- ..j ..j

- - ..j

Supervisor
Write

..j

..j

..j

..j

..j

..j

-

-

The operating system programs whether instructions can be fetched from an area of
memor! by appropriately using the no-execute option provided in me segment descriptor.
Each of the remaining options is enforced based on a combination of information in the
segment descriptor a..t1d t..lJ.e page table enwj. Thus, the super/isor-only option allows only
read and write operations generated while the processor is operating in supervisor mode
(corresponding to MSR[PR] = 0) to access the page. User accesses that map into a
supervisor-only page cause an exception to be taken.

Finally, there is a facility in the VEA and OEA that allows pages or blocks to be designated
as guarded preventing out-of order accesses that may cause undesired side effects. For
example, areas of the memory map that are used to control JlO devices can be marked as
guarded so that accesses (for example, instruction prefetches) do not occur unless they are
explicitly required by the program.

For more information on memory protection, see "Memory Protection Facilities," 10

Chapter 7, "Memory Management," in the The Programming Environments Manual.

5-10 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

5.1.5 Page History Information
The MMUs of PowerPC processors also define referenced (R) and changed (C) bits in the
page address translation mechanism that can be used as history information relevant to the
page. This information can then be used by the operating system to determine which areas
of memory to write back to disk when new pages must be allocated in main memory. While
these bits are initially programmed by the operating system into the page table, the
architecture specifies that the Rand C bits may be maintained either by the processor
hardware (automatically) or by some software-assist mechanism that updates these bits
when required. The software table search routines used by the 603e set the R bit when a
PTE is accessed; the 603e causes an exception (to vector to the software table search
routines) when the C bit in the corresponding TLB entry requires updating.

5.1.6 General Flow of MMU Address Translation
The following sections describe the general flow used by PowerPC processors to translate
effective addresses to virtual and then physical addresses.

5.1.6.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data
translation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode translation is
used (physical address equals effective address) and the access continues to the memory
subsystem as described in Section 5.2, "Real Addressing Mode."

Figure 5-5 shows the flow used by the MMUs in determining whether to select real
addressing mode, block address translation or to use the segment descriptor to select page
address translation.

MOTOROLA Chapter 5. Memory Management 5-11

Instruction
Translation Disabled

(MSR[IR] = 0)

Perform Real
Addressing Mode

Translation

Effective Address
Generated

D-access I-access

~truction
Translation Enabled

(MSR[IR] =1

~ Data
Data ~ Translation Disabled

Translation Enabled (MSR[DR] = 0)
(MSR[DR] = 1)

Compare Address with
Instruction or Data BAT
Array (as appropriate)

Perform Real
Addressing Mode

Translation

BAT Array
Miss

BAT Array (see The Programming
Hit ------:::onments Manual)

Perform Address Translation
with Segment Descriptor

Access ~ Access
Protected Permitted

(see Figure 5-6) Access Faulted

Continue Access
to Memory
Subsystem

Figure 5-5_ Generai Fiow oj Address Transiation (Reai Addressing Mode and Siock)

Note that if the BAT array search results in a hit, the access is qualified with the appropriate
protection bits. If the access violates the protection mechanism, an exception (lSI or DSI
exception) is generated.

5.1.6.2 Page Address Translation Selection
If address translation is enabled (real addressing mode not selected) and the effective
address information does not match with a BAT array entry, then the segment descriptor
must be located. Once the segment descriptor is located, the T bit in the segment descriptor
selects whether the translation is to a page or to a direct-store interface segment as shown
in Figure 5-6. Note that the 603e does not implement the direct -store interface, and accesses
to these segments cause a DSI exception. In addition, Figure 5-6 also shows the way in
which the no-execute protection is enforced; if the N bit in the segment descriptor is set and
the access is an instruction fetch, the access is faulted as described in Chapter 7, "Memory
Management," in The Programming Environments Manual. Note that the figure shows the
flow for these cases as described by the PowerPC OEA, and so the TLB references are
shown as optional. Since the 603e implements TLBs, these branches are valid, and
described in more detail throughout this chapter.

5-12 MPC603e & EC603e RiSe Microprocessors User's Manual MOTOROLA

PTE Not
Found

I
I
I
I

Page Address
Translation

~(T=O)

othe~i~

Use EAQ-EA3 to
Select One of 16 On-Chip

Segment Registers

I I-Fetch with N-bit Set in
Segment Descriptor

Generate 52-Bit Virtual
Address from Segment

Descriptor

Compare Virtual
Address with TLB

Entries

(No-Execute)

_____________ ..J

TLB
Miss

(See
Figure 5-9)

PTE Found

._--j----
: Load TLB Entry I

"'- TLB
Hit .", (See Figure 5-8)

Access
Permitted

Continue Access
to Memory Subsystem

- - - Optional to the PowerPC architecture. Implemented in the 603e.

Direct-Store
Segment Address

(T= 1)*

DSIIISI exception

Access
Protected

Access Faulted

'In the case of
instruction accesses,
causes lSI exception

Figure 5-6. General Flow of Page and Direct-Store Interface Address Translation

MOTOROLA Chapter 5. Memory Management 5-13

If the T bit in the corresponding segment descriptor is zero, page address translation is
selected. The information in the segment descriptor is then used to generate the 52-bit
virtual address. The virtual address is then used to identify the page address translation
information (stored as page table entries (PTEs) in a page table in memory). For increased
performance, the 603e has two TLBs to store recently-used PTEs on-chip.

If an access hits in the appropriate TLB, the page translation occurs and the physical
address bits are forwarded to the memory subsystem. If the required PTE is not resident,
the MMU requires a search of the page table. In this case, the 603e traps to one of three
exception handlers for the system software to perform the page table search. If the PTE is
successfully matched, a new TLB entry is created and the page translation is once again
attempted. This time, the TLB is guaranteed to hit. Once the PTE is located, the access is
qualified with the appropriate protection bits. If the access is a protection violation (not
allowed), an exception (instruction access or data access) is generated.

If the PTE is not found by the table search operation, a page fault condition exists, and the
TLB miss exception handlers synthesize either an lSI or OSI exception to handle the page
fault.

5.1.7 MMU Exceptions Summary
In order to complete any memory access, the effective address must be translated to a
physical address. In the 603e, an MMU exception condition occurs if this translation fails
for one of the following reasons:

• Page fault-there is no valid entry in the page table for the page specified by the
effective address (and segment descriptor) and t.l)ere is no valid BAT trfu'lslation.

• An address translation is found but the access is not allowed by the memory
protection mechanism.

Additionally, because the 603e relies on software to perform table search operations, the
processor also takes an exception when:

• There is a miss in the corresponding (instruction or data) TLB.

• The page table requires an update to the changed (C) bit.

The state saved by the processor for each of these exceptions contains information that
identifies the address of the failing instruction. Refer to Chapter 4, "Exceptions," for a more
detailed description of exception processing.

5-14 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Because a page fault condition (PTE not found in the page tables in memory) is detected
by the software that performs the table search operation (and not the 603e hardware), it does
not cause 603e exception in the strictest sense in that exception processing as described in
Chapter 4, "Exceptions," does not occur. However, in order to maintain architectural
compatibility with software written for other PowerPC devices, the software that detects
this condition should synthesize an exception by setting the appropriate bits in the DSISR
or SRRI and branching to the lSI or DSI exception handler. Refer to Section 5.5.2,
"Implementation-Specific Table Search Operation," for more information and examples of
this exception software. The remainder of this chapter assumes that the table search
software emulates this exception and refers to this condition as an exception.

The translation exception conditions defined by the OEA for 32-bit implementations cause
either the lSI or the DSI exception to be taken as shown in Table 5-3.

Table 5-3. Translation Exception Conditions

Condition Description Exception

Page fault (no PTE found) No matching PTE found in page tables (and I access: lSI exception'
no matching BAT array entry) SRR1[1] = 1

D access: DSI exception'
DSISR[1] =1

Block protection violation Conditions described for block in "Block I access: lSI exception
Memory Protection" in Chapter 7, "Memory SRR1[4] = 1
Management:' in The Programming

o access: OSI exception Environments Manual."
OSISR[4] =1

Page protection violation Conditions described for page in "Page I access: lSI exception"
Memory Protection" in Chapter 7, "Memory SRR1[4] = 1
Management:' in The Programming o access: OSI exception" Environments Manual.

OSISR[4] =1

No·execute protection violation Attempt to fetch instruction when SR[N] = 1 lSI exception
SRR1[3] = 1

Instruction fetch from direct·store Attempt to fetch instruction when SR[T] = 1 lSI exception
segment SRR1[3] =1

Data access to direct·store segment Attempt to perform load or store (including OSI exception
(including floating·point accesses) floating-point load or store"') when SR[TJ = 1 OSISR[5] =1
Note: this is a 603e-specific
condition

Instruction fetch from guarded Attempt to fetch instruction when MSR[IR] = 1 lSI exception
memory with MSR[IR] = 1 and either matching xBAT[G] = 1, or no SRR1[3] =1

matching BAT entry and PTE[G] = 1

• The 603e hardware does not vector to these exceptions automatically. It is assumed that the software
that performs the table search operations vectors to these exceptions and sets the appropriate bits when
a page fault condition occurs.

"The table search software can also vector to these exception conditions

"'The EC603e microprocessor does not support the floating-point unit.

MOTOROLA Chapter 5. Memory Management 5-15

In addition to the translation exceptions, there are other MMU-related conditions (some of
them defined as implementation-specific and therefore, not required by the architecture)
that can cause an exception to occur in the 603e. These exception conditions map to the
processor exception as shown in Table 5-4. For example, the 603e also defines three
exception conditions to support software table searching. The only exception conditions
that occur when MSR[DR] = 0 are the conditions that cause the alignment exception for
data accesses. For more detailed information about the conditions that cause the alignment
exception (in particular for string/multiple instructions), see Section 4.5.6, ''Alignment
Exception (Ox00600)."

Note that some exception conditions depend upon whether the memory area is set up as
write-though (W = 1) or cache-inhibited (I = 1). These bits are described fully in
"Memory/Cache Access Attributes," in Chapter 5, "Cache Model and Memory Coherency,"
of The Programming Environments Manual. Refer to Chapter 4, "Exceptions," and to
Chapter 6, "Exceptions," in The Programming Environments Manual for a complete
description of the SRRI and DSISR bit settings for these exceptions.

Table 5-4. Other MMU Exception Conditions

Condition Description Exception

TLB miss for an instruction fetch No matching entry found in ITLB Instruction TLB miss exception
SRR1[13] = 1
MSR[14] = 1

TLB miss for a data access No matching entry found in DTLB for Load: data TLB miss on load
data access exception

MSR[14] = 1

I Store: data TLB miss on store

I exception
SRR1[15] =1
MSR[14] = 1

Store operation and C = 0 Matching DLTB entry has C = 0 and Data TLB miss on store exception
access is a store SRR1[15] =1

MSR[14] = 1

dcbzwithW=10rl=1 dcbz instruction to write-through or Alignment exception (not required
cache-inhibited segment or block by architecture for this condition)

dcbz when the data cache is The dcbz instruction takes an Alignment exception
locked alignment exception if the data cache

is locked (HIDO bits 18 and 19) when it
is executed.

Iwarx or stwCll:. with W = 1 Reservation instruction to write- DSI exception
through segment or block DSISR[5] = 1

Iwarx, stwcx., eclwx, or ecowx Reservation instruction or external DSI exception
instruction to direct-store control instruction when SR[T] =1 DSISR[5] = 1
segment

Floating-point load or store to FP memory access when SRm = 1 See data access to direct-store
direct-store segment' segment in Table 5-3.

5-16 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 5-4. Other MMU Exception Conditions (Continued)

Condition Description Exception

Load or store that results in a Does not occur in 603e Does not apply
direct-store error

eciwx or ecowx attempted when eciwx or ecowx attempted with DSI exception
external control facility disabled EARlE] =0 DSISRI11] = 1

Imw, stmw, Iswi, Iswx, stswi, or Imw, stmw, Iswi, Iswx, stswi, or Alignment exception
stswx instruction attempted in stswx instruction attempted while
little-end ian mode MSRILE] = 1

Operand misalignment Translation enabled and operand is Alignment exception (some of these
misaligned as described in Chapter 4, cases are implementation-specific)
"Exceptions."

'The EC603e microprocessor does not support the floating-point unit.

5.1.8 MMU Instructions and Register Summary
The MMU instructions and registers provide the operating system with the ability to set up
the block address translation areas and the page tables in memory.

Note that because the implementation of TLBs is optional, the instructions that refer to
these structures are also optional. However, because these structures serve as caches of the
page table, the architecture specifies a software protocol for maintaining coherency
between these caches and the tables in memory whenever changes are made to the tables in
memory. When the tables in memory are changed, the operating system purges these caches
of the corresponding entries, allowing the translation caching mechanism to refetch from
the tables when the corresponding entries are required.

Note that the 603e implements all TLB-related instructions except tibia, which is treated
as an illegal instruction. The 603e also uses some implementation-specific instructions to
load two on-chip TLBs.

Because the MMU specification for PowerPC processors is so flexible, it is recommended
that the software that uses these instructions and registers be "encapsulated" into
subroutines to minimize the impact of migrating across the family of implementations.

Table 5-5 summarizes 603e instructions that specifically control the MMU. For more
detailed information about the instructions, refer to Chapter 2, "Programming Model," in
this book and Chapter 8, "Instruction Set;' in The Programming Environments Manual.

MOTOROLA Chapter 5. Memory Management 5-17

Table 5-5. Instruction Summary-MMU Control

Instruction Description

mtsrSR,rS Move to Segment Register
SR[SR#I~ rS

mtsrin rS,rB Move to Segment Register Indirect
SR[rB[O-3ll~rS

mfsrrD,SR Move from Segment Register
rD~SR[SR#1

mfsrin rD,rB Move from Segment Register Indirect
rD~SR[rB[0-311

tlbie rB' TLB Invalidate Entry
For effective address specified by rB, TLB[V]~O
The tlbie instruction invalidates both TLB entries indexed by the EA, and operates on
both the instruction and data TLBs simultaneously invalidating four TLB entries. The
index corresponds to bits 15-19 of the EA.

tlbsync' TLB Synchronize
Synchronizes the execution of all other tlbie instructions in the system. In the 603e,
when the TLBISYNC signal is negated, instruction execution may continue or resume
after the completion of a tlbsync instruction. When the TLBISYNC signal is asserted,
instruction execution stops after the completion of a tlbsync instruction.

tlbll Load Instruction TLB Entry
(603e-specific) Loads the contents of the ICMP and RPA registers into the ITLB

tlbld Load Data TLB Entry
(603e-specific) Loads the contents of the DCMP and RPA registers into the DTLB

'These instructions are defined by the PowerPC architecture, but are optional.

Table 5-6 summarizes the registers that the operating system uses to program the 603e
MMUs. These registers are accessible to supervisor-level sufiware oniy. Tnese registers are
described in Chapter 2, "Register Set," in The Programming Environments Manual. For
603e-specific registers, see Chapter 2, "Programming Model," of this book.

Table 5-6. MMU Registers

Register Description

Segment registers The sixteen 32-bit segment registers are present only in 32-bit implementations of
(SRQ-SR15) the PowerPC architecture. The fields in the segment register are interpreted

differently depending on the value of bit O. The segment registers are accessed by
the mtsr, mtsrln, mfsr, and mfsrin instructions.

BAT registers There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBATOU-IBAT3U, (IBATOU-IBAT3U paired with IBATOL-IBAT3L) and four pairs of data BAT registers
IBATOL-IBAT3L, (DBATOU-DBAT3U paired with DBATOL-DBAT3L). The BAT registers are defined
DBATOU-DBAT3U,and as 32-bit registers in 32-bit implementations. These are special-purpose registers
DBATOL -DBAT3L) that are accessed by the mtspr and mfspr instructions.

SDR1 The SDR1 register specifies the variable used in acceSSing the page tables in
memory. SDR1 is defined as a 32-bit register for 32-bit implementations. This is a
special-purpose register that is accessed by the mtspr and mtspr instructions.

5-18 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 5-6. MMU Registers (Continued)

Register Description

Instruction TLB miss When a TLB miss exception occurs, the 1M ISS or DMISS register contains the 32·bit
address and data TLB effective address of the instruction or data access, respectively, that caused the
miss address registers miss. Note that the 603e always loads a big-endian address into the DMISS register.
(IMISS and DMISS) These registers are 603e-specific.

Primary and secondary The HASH1 and HASH2 registers contain the primary and secondary PTEG
hash address registers addresses that correspond to the address causing a TLB miss. These PTEG
(HASH1 and HASH2) addresses are automatically derived by the 603e by performing the primary and

secondary hashing function on the contents of IMISS or DMISS, for an ITLB or
DTLB miss exception, respectively.

These registers are 603e-specific.

Instruction and data PTE The ICMP and DCMP registers contain the word to be compared with the first word
compare registers of a PTE in the table search software routine to determine if a PTE contains the
(ICMP and DCMP) address translation for the instruction or data access. The contents of ICMP and

DCMP are automatically derived by the 603e when a TLB miss exception occurs.

These registers are 603e-specific.

Required physical address The system software loads a TLB entry by loading the second word of the matching
register (RPA) PTE entry into the RPA register and then executing the tlbli or tlbld instruction (for

loading the ITLB or DTLB, respectively).

This register is 603e-specific.

Note that the 603e contains other features that do not specifically control the 603e MMU
but are implemented to increase performance and flexibility. These are:

• Complete set of shadow segment registers for the instruction MMU. These registers
are invisible to the programming model, as described in Section 5.4.3, "TLB
Description."

• Temporary GPRO-GPR3. These registers are available as rO-r3 when MSR[TGPR]
is set. The 603e automatically sets MSR[TGPR] whenever one of the three TLB
miss exceptions occurs, allowing these exception handlers to have four registers that
are used as scratchpad space, without having to save or restore this part of the
machine state that existed when the exception occurred. Note that MSR[TGPR] is
restored to the value in SRRI when the rfi instruction is executed. Refer to
Section 5.5.2, "Implementation-Specific Table Search Operation," for code
examples that take advantage of these registers.

In addition, the 603e also automatically saves the values of CR[CRO] of the executing
context to SRRl[0-3] whenever one of the three TLB miss exceptions occurs. Thus, the
exception handler can set CR[CRO] bits and branch accordingly in the exception handler
routine, without having to save the existing CR[CRO] bits. However, the exception handler
must restore these bits to CR[CRO] before executing the rfi instruction. There are also four
other bits saved in SRRI whenever a TLB miss exception occurs that give information
about whether the access was an instruction or data access; and if it was a data access,
whether it was for a load or a store instruction. Also these bits give some information related
to the protection attributes for the access, and which set in the TLB will be replaced when

MOTOROLA Chapter 5. Memory Management 5-19

the next TLB entry is loaded. Refer to Section 5.5.2.1, "Resources for Table Search
Operations," for more information on these bits and their use.

5.2 Real Addressing Mode
If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access,
the effective address is treated as the physical address and is passed directly to the memory
subsystem as described in Chapter 7, "Memory Management," in The Programming
Environments Manual.

Note that the default WIMG bits (ObOOll) cause data accesses to be considered cacheable
(I = 0) and thus load and store accesses are weakly ordered. This is the case, even if the data
cache is disabled in the HIDO register (as it is out of hard reset). If 110 devices require load
and store accesses to occur in strict program order (strongly ordered), translation must be
enabled so that the corresponding I bit can be set. Also, for instruction accesses, the default
memory access mode bits (WIMG) are ObOOOl. That is, instruction accesses are considered
cacheable (I = 0), and the memory is guarded. Again, instruction cache accesses are
considered cacheable even if the instruction cache is disabled in the HIDO register (as it is
out of hard reset). The W and M bits have no effect on the instruction cache.

For information on the synchronization requirements for changes to MSR[lR] and
MSR[DR], refer to "Synchronization Requirements for Special Registers and for
Lookaside Buffers" in Chapter 2, "PowerPC Register Set," in The Programming
Environments Manual.

5.3 Block Address iranslation
The block address translation (BAT) mechanism in the OEA provides a way to map ranges
of effective addresses larger than a single page into contiguous areas of physical memory.
Such areas can be used for data that is not subject to normal virtual memory handling
(paging), such as a memory-mapped display buffer or an extremely large array of numerical
data.

The software model for block address translation in the 603e is described in Chapter 7,
"Memory Management," in The Programming Environments Manual for 32-bit
implementations.

Implementation Note-The 603e BAT registers are not initialized by the hardware after
the power-up or reset sequence. Consequently, all valid bits in both instruction and data
BAT areas must be cleared before setting any BAT area for the first time. This is true
regardless of whether address translation is enabled. Also, software must avoid overlapping
blocks while updating a BAT area or areas. Even if translation is disabled, multiple BAT
area hits are treated as programming errors and can corrupt the BAT registers and produce
unpredictable results.

5-20 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

5.4 Memory Segment Model
The 603e adheres to the memory segment model as defined in Chapter 7, "Memory
Management," in The Programming Environments Manual for 32-bit implementations.
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented
memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address translation), while providing the programming
flexibility afforded by a large virtual address space (52 bits).

The segment/page address translation mechanism may be superseded by the block address
translation (BAT) mechanism described in Section 5.3, "Block Address Translation." If not,
the translation proceeds in the following two steps:

1. from effective address to the virtual address (which never exists as a specific entity
but can be considered to be the concatenation of the virtual page number and the byte
offset within a page), and

2. from virtual address to physical address.

This section highlights those areas of the memory segment model defined by the OEA that
are specific to the 603e.

5.4.1 Page History Recording
Referenced (R) and changed (C) bits reside in each PTE to keep history information about
the page. They are maintained by a combination of the 603e hardware and the table search
software. The operating system uses this information to determine which areas of memory
to write back to disk when new pages must be allocated in main memory. Referenced and
changed recording is performed only for accesses made with page address translation and
not for translations made with the BAT mechanism or for accesses that correspond to direct­
store interface (T = 1) segments. Furthermore, R and C bits are maintained only for
accesses made while address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1).

In the 603e, the referenced and changed bits are updated as follows:

• For TLB hits, the C bit is updated according to Table 5-7.

• For TLB misses, when a table search operation is in progress to locate a PTE, the R
and C bits are updated (set, if required) to reflect the status of the page based on this
access.

MOTOROLA Chapter 5. Memory Management 5·21

Table 5-7. Table Search Operations to Update History Bits-TLB Hit Case·

Rand C Bits
Processor Action

inTLB entry

00 Combination doesn't occur

01 Combination doesn't occur

10 Read: No special action
Write: Table search operation required to update C.

Causes a data TLB miss on store exception

11 No special action for read or write

Table 5-7 shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is
what causes the processor to update the C bit in the PTE (the R bit is assumed to be set in
the page tables if there is a TLB hit). Therefore, when software clears the R and C bits in
the page tables in memory, it must invalidate the TLB entries associated with the pages
whose referenced and changed bits were cleared.

The 603e causes the R bit to be set for the execution of the debt or debtst instruction to that
page (by causing a TLB miss exception to load the TLB entry in the case of a TLB miss).
However, neither of these instructions cause the C bit to be set.

The update of the referenced and changed bits is performed by PowerPC processors as if
address translation were disabled (real addressing mode translation). Additionally, these
updates should be performed with single-beat read and byte write transactions on the bus.

5.4.1.1 Reierenced Bit
The referenced (R) bit of a page is located in the PTE in the page table. Every time a page
is referenced (with a read or write access) and the R bit is zero, the R bit is then set in the
page table. The OEA specifies that the referenced bit may be set immediately, or the setting
may be delayed until the memory access is determined to be successful. Because the
reference to a page is what causes a PTE to be loaded into the TLB, the referenced bit in all
603e TLB entries is effectively always set. The processor never automatically clears the
referenced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At
times, the referenced bit may be set although the access was not logically required by the
program or even if the access was prevented by memory protection. Examples of this in
PowerPC systems include the following:

• Fetching of instructions not subsequently executed

• Accesses generated by an lswx or stswx instruction with a zero length

• Accesses generated by a stwex. instruction when no store is performed because a
reservation does not exist

• Accesses that cause exceptions and are not completed

5-22 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

5.4.1.2 Changed Bit
The changed bit of a page is located both in the PTE in the page table and in the copy of the
PTE loaded into the TLB (if a TLB is implemented, as in the 603e). Whenever a data store
instruction is executed successfully, if the TLB search (for page address translation) results
in a hit, the changed bit in the matching TLB entry is checked. If it is already set, the
processor does not change the C bit. If the TLB changed bit is 0, it is set and a table search
operation is performed to also set the C bit in the corresponding PTE in the page table. The
603e causes a data TLB miss on store exception for this case so that the software can
perform the table search operation for setting the C bit. Refer to Section 5.5.2,
"Implementation-Specific Table Search Operation," for an example code sequence that
handles these conditions.

The changed bit (in both the TLB and the PTE in the page tables) is set only when a store
operation is allowed by the page memory protection mechanism and all conditional
branches occurring earlier in the program have been resolved (such that the store is
guaranteed to be in the execution path). Furthermore, the following conditions may cause
the C bit to be set:

• The execution of an stwex. instruction is allowed by the memory protection
mechanism but a store operation is not performed because no reservation exists.

• The execution of an stswx instruction is allowed by the memory protection
mechanism but a store operation is not performed because the specified length is
zero.

• The store operation is not performed because an exception occurs before the store is
performed.

Again, note that although the execution of the debt and debtst instructions may cause the
R bit to be set, they never cause the C bit to be set.

5.4.1.3 Scenarios for Referenced and Changed Bit Recording
This section provides a summary of the model (defined by the OEA) that is used by
PowerPC processors for maintaining the referenced and changed bits. In some scenarios,
the bits are guaranteed to be set by the processor, in some scenarios, the architecture allows
that the bits may be set (not absolutely required), and in some scenarios, the bits are
guaranteed to not be set.

In implementations that do not maintain the R and C bits in hardware (such as the 603e),
software assistance is required. For these processors, the information in this section still
applies, except that the software performing the updates is constrained to the rules
described (that is, must set bits shown as guaranteed to be set and must not set bits shown
as guaranteed to not be set).

MOTOROLA Chapter 5. Memory Management 5-23

Table 5-8 defines a prioritized list of the R and C bit settings for all scenarios. The entries
in the table are prioritized from top to bottom, such that a matching scenario occurring
closer to the top of the table takes precedence over a matching scenario closer to the bottom
of the table. For example, if an stwcx. instruction causes a protection violation and there is
no reservation, the C bit is not altered, as shown for the protection violation case. Note that
in the table, load operations include those generated by load instructions, by the eciwx
instruction, and by the cache management instructions that are treated as a load with respect
to address translation. Similarly, store operations include those operations generated by
store instructions, by the ecowx instruction, and by the cache management instructions that
are treated as a store with respect to address translation. In the columns for the 603e, the
combination of the 603e itself and the software used to search the page tables (described in
Section 5.5.2, "Implementation-Specific Table Search Operation") is assumed.

Table 5-8. Model for Guaranteed Rand C Bit Settings

R Bit Set
Priority Scenario

OEA

1 No-execute protection violation No

2 Page protection violation Maybe

3 Out-ot-order instruction letch or load operation Maybe

4 Out-ol-order store operation lor instructions that will Maybe2

cause no other kind 01 precise exception (in the
absence 01 system-caused, imprecise, or Iloating-
point assist exceptions) 1

5 All other out-ol-order store operations Maybe2

6 Zero-length load (Iswx) Maybe

7 Zero-length store (stswx) Maybe2

8 Store conditional (stwex.) that does not store Maybe2

9 In-order instruction letch Yes3

10 LOad instruction or eeiwx Yes

11 Store instruction, eeowx or debz instruction Yes

12 debt, debtst, debst, or debf instruction Maybe

13 febl instruction Maybe2

14 debi instruction Maybe2

1 The EC603e microprocessor does not support the Iloating-point unit.
2 II C is set, R is guaranteed to also be set

603e

No

Yes

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

3This includes the case in which the instruction was letched out-ol-order and R was not set
(does not apply for 603e).

5-24 MPC603e & EC603e RISC Microprocessors User's Manual

C Bit Set

OEA 603e

No No

No No

No No

No No

Maybe2 No

No No

Maybe2 Yes

Maybe2 Yes

No No

No No

Yes Yes

No No

N02 No

Maybe2 Yes

MOTOROLA

For more information, see "Page History Recording" III Chapter 7, "Memory
Management," of The Programming Environments Manual.

5.4.2 Page Memory Protection
The 603e implements page memory protection as it is defined in Chapter 7, "Memory
Management," in The Programming Environments Manual.

5.4.3 TLB Description
This section describes the hardware resources provided in the 603e to facilitate the page
address translation process. Note that the hardware implementation of the MMU is not
specified by the architecture, and while this description applies to the 603e, it does not
necessarily apply to other PowerPC processors.

5.4.3.1 TLB Organization
Because the 603e has two MMUs (IMMU and DMMU) that operate in parallel, some of
the MMU resources are shared, and some are actually duplicated (shadowed) in each MMU
to maximize performance. Figure 5-7 shows the relationships between these resources
within both the IMMU and DMMU and how the various portions of the effective address
are used in the address translation process.

MOTOROLA Chapter 5. Memory Management 5-25

EAQ-EA31 Segment Registers
0 7 8 31

0 T

EAQ-EA3 VSID

15 T VSID
EA4-EA14

TLB

0 V

Line 1

Line 0

EA15-EA19 Select

31
RPN

I '-______ ~. PAO-PA19

Figure 5-7. Segment Register and TLB Organization

While both MMUs can be accessed simultaneously (both sets of segment registers and
TLBs can be accessed in the same clock), when there is an exception condition, only one
exception is reported at a time. ITLB miss exceptions are reported when there are no more
instructions to be dispatched or retired (the pipeline is empty), and DTLB miss conditions
are reported when the load or store instruction is ready to be retired. Refer to Chapter 6,
"Instruction Timing," for more detailed information about the internal pipelines and the
reporting of exceptions.

As TLB entries are on-chip copies of PTEs in the page tables in memory, they are similar
in structure. TLB entries consist of two words; the high-order word contains the VSID and
API fields of the high-order word of the PTE and the low-order word contains the RPN, the
C bit, the WIMG bits and the PP bits (as in the low-order word of the PTE). In order to

5-26 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

uniquely identify a TLB entry as the required PTE, the TLB also contains five more bits of
the page index, EAIO-EAl4 (in addition to the API bits ofthe PTE).

When an instruction or data access occurs, the effective address is routed to the appropriate
MMU. EAO-EA3 select one of the 16 segment registers and the remaining effective address
bits and the virtual address from the segment register is passed to the TLB. EAI5-EAI9
then select two entries in the TLB; the valid bit is checked and EAIO-EAI4, the VSID, and
API fields (EA4-EA9) for the access are then compared with the corresponding values in
the TLB entries. If one of the entries hits, the PP bits are checked for a protection violation,
and the C bit is checked. If these bits do not cause an exception, the RPN value is passed to
the memory subsystem and the WIMG bits are then used as attributes for the access.

Although address translation is disabled on a reset condition, the valid bits of the BAT array
and TLB entries are not automatically cleared. Thus TLB entries must be explicitly cleared
by the system software (with the tlbie instruction) before the valid entries are loaded and
address translation is enabled. Also, note that the segment registers do not have a valid bit,
and so they should also be initialized before translation is enabled.

5.4.3.2 TLB Entry Invalidation
For the PowerPC processors, such as the 603e, that implement TLB structures to maintain
on-chip copies of the PTEs that are resident in physical memory, the optional tibie
instruction provides a way to invalidate the TLB entries. Note that the execution of the tibie
instruction in the 603e invalidates four entries-both the ITLB entries indexed by
EAI5-EAI9 and both the indexed entries of the DTLB.

The architecture allows tibie to optionally enable a TLB invalidate signaling mechanism in
hardware so that other processors also invalidate their resident copies of the matching PTE.
The 603e does not signal the TLB invalidation to other processors nor does it perfonn any
action when a TLB invalidation is perfonned by another processor.

The tibsync instruction causes instruction execution to stop if the TLBISYNC signal is also
asserted. If TLBISYNC is negated, instruction execution may continue or resume after the
completion of a tibsync instruction. Section 8.8.2, "TLBISYNC Input," describes the TLB
synchronization mechanism in further detail.

The tIbia instruction is not implemented on the 603e and when its opcode is encountered,
an illegal instruction program exception is generated. To invalidate all entries of both TLBs,
32 tibie instructions must be executed, incrementing the value in EAI5-EAI9 by one each
time. See Chapter 8, "Instruction Set," in The Programming Environments Manual for
detailed information about the tibie instruction.

MOTOROLA Chapter 5. Memory Management 5-27

5.4.4 Page Address Translation Summary
Figure 5-8 provides the detailed flow for the page address translation mechanism. The
figure includes the checking of the N bit in the segment descriptor and then expands on the
"TLB Hit" branch of Figure 5-6. The detailed flow for the "TLB Miss" branch of Figure 5-6
is described in Section 5.5.1, "Page Table Search Operation-Conceptual Flow." Note that
as in the case of block address translation, if the dcbz instruction is attempted to be
executed either in write-through mode or as cache-inhibited (W = lor 1= 1), the alignment
exception is generated. The checking of memory protection violation conditions for page
address translation is described in Chapter 7, "Memory Management," in The
Programming Environments Manual for 32-bit implementations.

5-28 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Effective Address
Generated

Page Address
Translation

Generate 52-bit
Virtual Address from
Segment Descriptor

Compare Virtual Address
with TLB Entries

I-Fetch with N-bit set in
Segment Descriptor

(no-execute)

dcbz Instruction
withWorl = 1

otherwise

Check Page Memory
Protection Violation Conditions

(See The Programming
Environments Manua~

Access Permitted Access Prohibited
(See The

Programming
Environments

Manua~

-~.~~
PTE [CI = 0 otherwise

Page Memory
Protection Violation

Page Table
Search Operation

(See Figure 5-9)

Continue Access to Mem­
ory Subsystem with WIMG

bits from PTE

Figure 5-8. Page Address Translation Flow for 32-Bit Implementations-TLB Hit

MOTOROLA Chapter 5. Memory Management 5-29

5.5 Page Table Search Operation
As stated earlier, the operating system must synthesize the table search algorithm for setting
up the tables. In the case of the 603e, the TLB miss exception handlers also use this
algorithm (with the assistance of some hardware-generated values) to load TLB entries
when TLB misses occur as described in Section 5.5.2, "Implementation-Specific Table
Search Operation."

5.5.1 Page Table Search Operation-Conceptual Flow
The table search process for a PowerPC processor varies slightly for 64- and 32-bit
implementations. The main differences are the address ranges and PTE formats specified.
An outline of the page table search process performed by a 32-bit implementation (such as
the 603e) is as follows:

1. The 32-bit physical address of the primary PTEG is generated as described in
Chapter 7, "Memory Management," in The Programming Environments Manual for
32-bit implementations.

2. The first PTE (PTEO) in the primary PTEG is read from memory. PTE reads should
occur with an implied WIM memory/cache mode control bit setting of ObOOl.
Therefore, they are considered cacheable and burst in from memory and placed in
the cache.

3. The PTE in the selected PTEG is tested for a match with the virtual page number
(VPN) of the access. The VPN is the VSID concatenated with the page index field
of the virtual address. For a match to occur, the following must be true:

- PTE[H] =0

- PTE[V] = 1

- PTE[VSID] = VA[0-23]

- PTE[API] = VA[24-29]

4. If a match is not found, step 3 is repeated for each of the other seven PTEs in the
primary PTEG. If a match is found, the table search process continues as described
in step 8. If a match is not found within the eight PTEs of the primary PTEG, the
address of the secondary PTEG is generated.

5. The first PTE (PTEO) in the secondary PTEG is read from memory. Again, because
PTE reads typically have a WIM bit combination of ObOOl, an entire cache line is
burst into the on-chip cache.

6. The PTE in the selected secondary PTEG is tested for a match with the virtual page
number (VPN) of the access. For a match to occur, the following must be true:

- PTE[H] = 1

- PTE[V] = 1

- PTE[VSID] = VA[0--23]
- PTE [API] = VA[24-29]

5-30 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

7. If a match is not found, step 6 is repeated for each of the other seven PTEs in the
secondary PTEG.

8. If a match is found, the PTE is written into the on-chip TLB (if implemented, as in
the 603e) and the R bit is updated in the PTE in memory (if necessary). If there is no
memory protection violation, the C bit is also updated in memory and the table
search is complete.

9. If a match is not found within the eight PTEs of the secondary PTEG, the search
fails, and a page fault exception condition occurs (either an lSI exception or a DSI
exception). Note that the software routines that implement this algorithm for the
603e must synthesize this condition by appropriately setting the bits in SRRI (or
DSISR) and branching to the lSI or DSI handler routine.

Reads from memory for table search operations should be performed as global (but not
exclusive), cacheable operations, and can be loaded into the on-chip cache.

Figure 5-9 and Figure 5-10 provide conceptual flow diagrams of primary and secondary
page table search operations, respectively as described in the OEA for 32-bit processors.
Recall that the architecture allows for implementations to perform the page table search
operations automatically (in hardware) or software assist may be required, as is the case
with the 603e. Also, the elements in the figure that apply to TLBs are shown as optional
because TLBs are not required by the architecture.

Figure 5-9 shows the case of a dcbz instruction that is executed with W = 1 or I = I, and
that the R bit may be updated in memory (if required) before the operation is performed or
the alignment exception occurs. The R bit may also be updated in the case of a memory
protection violation.

MOTOROLA Chapter 5. Memory Management 5-31

Primary Page
Table Search

Generate PA using Primary Hash Function
PA (- Base PA of PTEG

otherwise

otherwis~
Last PTE in PTEG

Perform Secondary
Page Table Search

PTE [VSID, API, H, V] =
Segment Descriptor [VSID], EA[API], 0, 1

PTE[R] = 1

: Write PTE :
1 intoTLB 1

----I---·

PTE[R] = 0

Secondary Page
Table Search Hit

otherwise ~ dcbz Instruction
with W or I = 1

R_~othe~
____ 1 ____ , l Check Memory Protection

Violation Conditions

Access Permitted "'Access Prohibited

: Byte Write to 1
1 Update PTE[R] 1
1 in Memory - 1 , _________ 1

otherwiX.ore Operation with ~ .A" PTE[C] = 0

otherwise - I _____ 1 ____ ~ otherwise

R_Flag = 1 1 TLB[PTE[Cll (- 1 1 R_Flag = 1

Perform Operation to
Memory or Take

Alignment Exception

5-32

PTE[R] (-1
(update PTE[R]

in memory)

Page Table
Search Complete

,---------- . ____ l ___ _
PTE[C] (-1

(update PTE[C]
in memory)

Page Table
Search Complete

: PTE[Rl (-1 :
1 (update PTE[R] 1

in memory) 1
1

Memory Protection
Violation

Figure 5-9. Primary Page Table Search-Conceptual Flow

MPC603e & EC603e RISC Microprocessors User's Manual

~_-~ Optional

MOTOROLA

Secondary Page
Table Search

Generate PA using Secondary Hash Function
PA f- Base PA of PTEG

otherwise

--;~~
Last PTE in PTEG

*.Foo.

Fetch PTE from PTEG

PTE [VSID, API, H, V] =
Segment Descriptor [VSID], EA[API], 1, 1

Secondary Page
Table Search Hit

(See Figure 5-9)

Instruction Access Data Access

Figure 5-10. Secondary Page Table Search Flow-Conceptual Flow

5.5.2 Implementation-Specific Table Search Operation
The 603e has a set of implementation-specific registers, exceptions, and instructions that
facilitate very efficient software searching of the page tables in memory. This section
describes those resources and provides three example code sequences that can be used in a
603e system for an efficient search of the translation tables in software. These three code
sequences can be used as handlers for the three exceptions requiring access to the PTEs in
the page tables in memory-instruction TLB miss, data TLB miss on load, and data TLB
miss on store exceptions.

MOTOROLA Chapter 5. Memory Management 5-33

5.5.2.1 Resources for Table Search Operations
In addition to setting up the translation page tables in memory, the system software must
assist the processor in loading PrEs into the on-chip TLBs. When a required TLB entry is
not found in the appropriate TLB, the processor vectors to one of the three TLB miss
exception handlers so that the software can perform a table search operation and load the
TLB. When this occurs, the processor automatically saves information about the access and
the executing context. Table 5-9 provides a summary of the implementation-specific
exceptions, registers, and instructions, that can be used by the TLB miss exception handler
software in 603e systems. Refer to Chapter 4, "Exceptions," for more infonnation about
exception processing.

Table 5-9. Implementation-Specific Resources for Table Search Operations

Resource Name Description

Exceptions Instruction TlS miss exception No matching entry found in ITlS
(vector offset Ox1000)

Data TlS miss on load exception No matching entry found in DTlS for a load
(vector offset Ox11 00) data access

Data TlS miss on store No matching entry found in DTlS for a store
exception-also caused when data access or matching DlTS entry has C = 0
changed bit must be updated and access is a store.
(vector offset Ox1200)

Registers IMISS and DMISS When a TlS miss exception occurs, the IMISS
or DMISS register contains the 32-bit effective
address of the instruction or data access that
caused the miss exception.

ICMP and DCMP The ICMP and DCMP registers contain the
word to be compared with the first word of a
PTE in ihe iabie search soiiware routine to
determine if a PTE contains the address
translation for the instruction or data access.
The contents of ICMP and DCMP are
automatically derived by the 603e when a TlS
miss exception occurs.

HASH1 and HASH2 The HASH1 and HASH2 registers contain the
primary and secondary PTEG addresses that
correspond to the address causing a TlS
miss. These PTEG addresses are
automatically derived by the 603e by
performing the primary and secondary hashing
function on the contents of IMISS or DMISS,
for an ITlS or DTlS miss exception,
respectively

RPA The system software loads a TlS entry by
loading the second word of the matching PTE
entry into the RPA register and then executing
the tlbli or tlbld instruction (for loading the
ITlS or DTlS, respectively).

5-34 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 5-9. Implementation-Specific Resources for Table Search Operations

Resource Name Description

Instructions tlbll rB Loads the contents of the ICMP and RPA
registers into the ITLB entry selected by <aa>
and SRR1 [WAY]

tlbld rB Loads the contents of the DCMP and RPA
registers into the DTLB entry selected by <ea>
and SRR1[WAYl

In addition, the 603e contains the following features that do not specifically control the
603e MMU but that are implemented to increase performance and flexibility in the
software table search routines whenever one of the three TLB miss exceptions occurs:

• Temporary GPRO--GPR3. These registers are available as rO-r3 when MSR[TGPR]
is set. The 603e automatically sets MSR[TGPR] for these cases, allowing these
exception handlers to have four registers that are used as scratchpad space, without
having to save or restore this part of the machine state that existed when the
exception occurred. Note that MSR[TGPR] is cleared when the rfi instruction is
executed because the old MSR value (with MSR[TGPR] = 0) saved in SRRI is
restored. Refer to Section 5.5.2.2, "Software Table Search Operation," for code
examples that take advantage of these registers.

• The 603e also automatically saves the values of CR[CRO] of the executing context
to SRRl[0-3]. Thus, the exception handler can set CR[CRO] bits and branch
accordingly in the exception handler routine, without having to save the existing
CR[CRO] bits. However, the exception handler must restore these bits to CR[CRO]
before executing the rfi instruction.

• Also saved in SRRI are two bits identifying the type of miss (SRRI [DIl] identifies
instruction or data, and SRRl[L/S] identifies a load or store). Additionally,
SRRl[WAY] identifies the associativity class of the TLB entry selected for
replacement by the LRU algorithm. The software can change this value, effectively
overriding the replacement algorithm. Finally, the SRRI [KEY] bit is used by the
table search software to determine if there is a protection violation associated with
the access (useful on data write misses for determining if the C bit should be updated
in the table). Table 5-10 summarizes the SRRI bits updated whenever one ofthe
three TLB miss exceptions occurs.

MOTOROLA Chapter 5. Memory Management 5-35

Table 5-10. Implementation-Specific SRR1 Bits

Bit Number Name Function

0-3 CRFO Condition register field 0 bits

12 KEY Key forTLB miss (either Ks or Kp from segment register,
depending on whether the access is a user or supervisor access)

13 011 Set if instruction TLB miss

14 WAY Next TLB set to be replaced (set per LRU)

15 S/L Set if data TLB miss was for a load instruction

The key bit saved in SRRI is derived as shown in Figure 5-11.

Select KEY from segment register:
If MSR[PR] = 0, KEY = Ks
If MSR[PR] = 1, KEY = Kp

Figure 5-11. Derivation of Key Bit for SRR1

The remainder of this section describes the format of the implementation-specific SPRs that
are not defined by the PowerPC architecture, but are used by the TLB miss exception
handlers. These registers can be accessed by supervisor-level instructions only. Any attempt
to access these SPRs with user-level instructions results in a privileged instruction program
exception. As DMISS, IMISS, DCMP, ICMP, HASH1, HASH2, and RPA are used to
access the translation tables for software table search operations, they should only be
accessed when address iransiaiion is disabled (that is, MSR[IR] = 0 and MSR[DRJ = 0).
Note that MSR[IR] and MSR[DR] are cleared by the processor whenever an exception
occurs.

5.5.2.1.1 Data and Instruction TLB Miss Address Registers (DMISS and
IMISS)

The DMISS and IMISS registers have the same format as shown in Figure 5-12. They are
loaded automatically upon a data or instruction TLB miss. The DMISS and IMISS contain
the effective page address of the access which caused the TLB miss exception. The contents
are used by the processor when calculating the values of HASHl and HASH2, and by the
tlbld and tlbli instructions when loading a new TLB entry. Note that the 603e always loads
a big-endian address into the DMISS register. These registers are read-only to the software.

Effective Page Address

o 31

Figure 5-12. DMISS and IMISS Registers

5-36 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

5.5.2.1.2 Data and Instruction TLB Compare Registers (DCMP and ICMP)
The DCMP and ICMP registers are shown in Figure 5-13. These registers contain the first
word in the required PTE. The contents are constructed automatically from the contents of
the segment registers and the effective address (DMISS or IMISS) when a TLB miss
exception occurs. Each PTE read from the tables in memory during the table search process
should be compared with this value to determine whether or not the PTE is a match. Upon
execution of a tlbld or tlbli instruction, the contents of the DCMP or ICMP register is
loaded into the first word of the selected TLB entry.

VSID API

o 1 24 25 26 31

Figure 5-13. DCMP and ICMP Registers

Table 5-11 describes the bit settings for the DCMP and ICMP registers.

Table 5-11. DCMP and ICMP Bit Settings

Bits Name Description

0 V Valid bit. Set by the processor on a TLB miss exception.

1-24 VSID Virtual segment ID. Copied from VSID field of corresponding segment register.

25 H Hash function identifier. Cleared by the processor on a TLB miss exception

26-31 API Abbreviated page index. Copied from API of effective address.

5.5.2.1.3 Primary and Secondary Hash Address Registers (HASH1 and
HASH2)

HASHI and HASH2 contain the physical addresses of the primary and secondary PTEGs
for the access that caused the TLB miss exception. Only bits 7-25 differ between them. For
convenience, the processor automatically constructs the full physical address by routing
bits 0-6 of SDRI into HASHI and HASH2 and clearing the lower six bits. These registers
are read-only and are constructed from the contents of the DMISS or !MISS register. The
format for the HASHI and HASH2 registers is shown in Figure 5-14.

ii!I Reserved

HTABORG Hashed Page Address

o 6 7 25 26 31

Figure 5-14. HASH1 and HASH2 Registers

MOTOROLA Chapter 5. Memory Management 5-37

Table 5-12 describes the bit settings of the HASHI and HASH2 registers.

Table 5-12. HASH1 and HASH2 Bit Settings

Bits Name Description

(}-6 HTABORG[G-6] Copy of the upper 7 bits of the HTABORG field from SDR1

7-25 Hashed page address Address bits 7-25 of the PTEG to be searched.

26-31 - Reserved

5.5.2.1.4 Required Physical Address Register (RPA)
The RPA is shown in Figure 5-15. During a page table search operation, the software must
load the RPA with the second word of the correct PTE. When the tlbld or tlbli instruction
is executed, data from the !MISS and ICMP (or DMISS and DCMP) and the RPA registers
is merged and loaded into the selected TLB entry. The TLB entry is selected by the effective
address of the access (loaded by the table search software from the DMISS or !MISS
register) and the SRR1[WAY] bit.

III Reserved

RPN

o 19 20 22 23 24 25 28 29 30 31

Figure 5-15. Required Physical Address (RPA) Register

Table 5-13 describes the bit settings of the RPA register.

Table 5-13. RPA Bit Settings

Bits Name Description

0-19 RPN Physical page number from PTE

20-22 - Reserved

23 R Referenced bit from PTE

24 C Changed bit from PTE

25-28 WIMG Memory/cache access attribute bits

29 - Reserved

30-31 PP Page protection bits from PTE

5.5.2.2 Software Table Search Operation
When a TLB miss occurs, the instruction or data MMU loads the !MISS or DMISS register,
respectively, with the effective address of the access. The processor completes all
instructions dispatched prior to the exception, status information is saved in SRR1, and one
of the three TLB miss exceptions is taken. In addition, the processor loads the ICMP or
DCMP register with the value to be compared with the first word of PTEs in the tables in
memory.

5-38 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The software should then access the first PTE at the address pointed to by HASHI. The first
word of the PTE should be loaded and compared to the contents of DCMP or ICMP. If there
is a match, then the required PTE has been found and the second word of the PTE is loaded
from memory into the RPA register. Then the tlbli or tlbld instruction is executed, which
loads the contents of the ICMP (or DCMP) and RPA registers into the selected TLB entry.
The TLB entry is selected by the effective address of the access and the SRR1 [WAY] bit.

If the compare did not result in a match, however, the PTEG address is incremented to point
to the next PTE in the table and the above sequence is repeated. If none of the eight PTEs
in the primary PTEG matches, the sequence is then repeated using the secondary PTEG (at
the address contained in HASH2).

If the PTE is also not found in the eight entries of the secondary page table, a page fault
condition exists, and a page fault exception must be synthesized. Thus the appropriate bits
must be set in SRR1 (or DSISR) and the TLB miss handler must branch to either the lSI or
DSI exception handler, which handles the page fault condition.

This section provides a flow diagram outlining some example software that can be used to
handle the three TLB miss exceptions, as well as some example assembly language that
implements that flow.

5.5.2.2.1 Flow for Example Exception Handlers
Figure 5-16 shows the flow for the example TLB miss exception handlers. The flow shown
is common for the three exception handlers, except that the IMISS and ICMP registers are
used for the instruction TLB miss exception while the DMISS and DCMP registers are used
for the two data TLB miss exceptions. Also, for the cases of store instructions that cause
either a TLB miss or require a table search operation to update the C bit, the flow shows
that the C bit is set in both the TLB entry and the PTE in memory. Finally, in the case of a
page fault (no PTE found in the table search operation), the setup for the lSI or DSI
exception is slightly different for these two cases.

Figure 5-17 shows the flow for checking the R and C bits and setting them appropriately,
Figure 5-18 shows the flow for synthesizing a page fault exception when no PTE is found.
Figure 5-19 shows the flow for managing the cases of a TLB miss on an instruction access
to guarded memory, and a TLB miss when C = 0 and a protection violation exists. The set
up for these protection violation exceptions is very similar to that of page fault conditions
(as shown in Figure 5-18) except that different bits in SRRI (and DSISR) are set.

MOTOROLA Chapter 5. Memory Management 5-39

5-40

TLB Miss Exception

Load primary PTEG pointer:
ptr f- HASH1 - 8

compare_value f- ICMP/OCMP

Read lower word of next
PTE from memory:

ptr f- ptr + 8
temp f- (ptr)

temp = compare_value

T instruction access and I temp[G] = 1

othelise

otherwise

~cnt'¢'O
otherwise -----'

compare_value ~otherwise
Secondary hash

complete

Set up for page
fault exception

(See Figure 5- i 8)

Set up for protection
violation exception

(See Figure 5-19)

Check R, C bits
and set as needed (See Figure 5-17)

Figure 5-16. Flow for Example Software Table Search Operation

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Check R, C bits
and set as needed

handler for data store op

temp[C]=~
Check pro- y-

. - 10 tectlon pp - otherwise
11

~ pp=OO
pp=10 I 01

pp = 11

Set up for
protection violation

(See Figure 5-19)

otherwise

Return to TLB Miss
Exception flow

(See Figure 5-16)

SRR1[KEY] = 1

Set up for
protection violation

(See Figure 5-19)

otherwise

Return to TLB Miss
Exception flow

(See Figure 5-16)

Figure 5-17. Check and Set Rand C Bit Flow

MOTOROLA Chapter 5. Memory Management 5-41

5-42

Set up for page
fault exception

Data TLB miss handlers

DSISR[1] (- 1

dtemp (- DMISS

SRR1[31] = 1
(little-endian mode)

Branch to DSI
exception Handler

Instruction TLB
miss handlers

Branch to lSI exception
Handler

Figure 5-18. Page Fault Setup Flow

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

MOTOROLA

(Data access
to protected

memory; C=O)

Set up for protection
violation exceptions

Data TLB miss handlers

SRR1[31] = 1
(Iittle-endian mode)

Instruction TLB
miss handler (Instruction access

to guarded memory)

Figure 5·19. Setup for Protection Violation Exceptions

Chapter 5. Memory Management 5-43

5.5.2.2.2 Code for Example Exception Handlers
This section provides some assembly language examples that implement the flow diagrams
described above. Note that although these routines fit into a few cache lines, they are
supplied only as a functional example; they could be further optimized for faster
performance.

TLB software load for 603e

New Instructions:
tlbld
tlbli
#NewSPRs
dmiss
imiss
hash I
hash2
iCmp
dCmp
rpa

gpr rO .. r3 are shadowed

there are three flows.

- write the dtlb with the pte in rpa reg
- write the itlb with the pte in rpa reg

- address of dstream miss
- address of istream miss
- address primary hash PTEG address
- returns secondary hash PTEG address
- returns the primary istream compare value
- returns the primary dstream compare value
- the second word of pte used by tlblx

tlbDataMiss- tlb miss on data load
tlbCeqO - tlb miss on data store or store with tlb change bit = 0
tlbInstrMiss- tlb miss on instruction fetch
#+
place labels for reI branches
#-
#.machine PPC_603e
.set rO,o
.set rI, I
.set r2,2
.set r3,3
.set dMiss,lOlO
.set dCmp, lOll
.set hashl,1012
.set hash2,I013
.set iMiss, 1014
.set iCmp, 1015
.set rpa,lOlO
.set cO,O
.set dar, 19
.set dsisr,I8
.set srrO,26
.set srrl,27

.csect tlbmiss[PR]
vecO:
.globl vecO

5-44 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

.org vecO+Ox300
vec300:
.org vecO+Ox400
vec400:
#+
Instruction TB miss flow
Entry:
Vec = 1000

srrO -> address of instruction that missed
srrl -> 0:3=crO 4=lru way bit 16:31 = saved MSR
msr<tgpr> -> 1
iMiss
iCmp
hashl
hash2

-> ea that missed
-> the compare value for the va that missed
-> pointer to first hash pteg
-> pointer to second hash pteg

Register usage:
rO is saved counter
rl is junk
r2 is pointer to pteg
r3 is current compare value

.org vecO+Oxl000

tlbInstrMiss:
mfspr
addi

mfctr
mfspr
addi

imO: mtctr
iml: Iwzu

cmp
bdneq
bne
I
andi.
bne
mtctr
mfspr
mfspr
mtcrf
mtspr
ori

srw
tlbli
stb
rfi

#+
Register usage:

MOTOROLA

r2, hashl
rl, 0, 8
rO
r3, iCmp
r2, r2,-8
rl
rI, 8(r2)
cO, rl, r3

get first pointer
load 8 for counter
save counter
get first compare value
pre dec the pointer
load counter
get next pte
see if found pte

im 1 # dec count br if cmp ne and if count not zero
instrSecHash# if not found set up second hash or exit
r1, +4(r2) # load tlb entry lower-word
r3, rI, 8 # check G-bit
doISIp # if guarded, take an lSI
rO # restore counter
rO, iMiss # get the miss address for the tlbli
r3, srrl # get the saved crO bits
Ox80, r3 # restore CRO
rpa, r 1 # set the pte
rl, rl, Ox 100# set reference bit
rl, rl, 8 # get byte 7 of pte
rO # load the itlb
rI, +6(r2) # update page table

return to executing program

Chapter 5. Memory Management 5-45

rO is saved counter
rl isjunk
r2 is pointer to pteg
r3 is current compare value
#-
instrSecHash:

#+

andi.
bne
mfspr
ori
addi

rI. r3, Ox0040# see if we have done second hash
dolSI # if so, go to lSI exception
r2, hash2 # get the second pointer
r3, r3, Ox0040# change the compare value
rI, 0, 8 # load 8 for counter

addi r2, r2, -8 # pre dec for update on load
b imO # try second hash

entry Not Found: synthesize an lSI exception
guarded memory protection violation: synthesize an lSI exception
Entry:

rO is saved counter
rI is junk
r2 is pointer to pteg

r3 is current compare value

dolSIp:

dolSI:

isil

#+

mfspr
andi.
addis
b

mfspr
andi.
addis
mtctr
mtspr
mfmsr
xori
mtcn
mtmsr
b

Data TLB miss flow
Entry:

r3, srrl # get srrl
r2,r3,Oxffff # clean upper srr I
r2, r2, Ox0800# or in srr<4> = I to flag prot violation
isil :

r3, srrl # get srrl
r2, r3, Oxffff# clean srrl
r2, r2, Ox4000# or in srr 1 <1> = I to nag pte not found
rO # restore counter
srrl,r2 # set srrl
rO # get msr
rO, rO, Ox8000# flip the msr<tgpr> bit
Ox80, r3 # restore CRO
rO # flip back to the native gprs
vec400 # go to instr. access exception

Vee = 1100

srrO
srrl

-> address of instruction that caused data tlb miss
-> 0:3=crO 4=lru way bit 5=1 if store 16:31 = saved MSR

msr<tgpr> -> 1
dMiss -> ea that missed
dCmp -> the compare value for the va that missed
hash 1 -> pointer to first hash pteg

5-46 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

hash2

Register usage:

-> pointer to second hash pteg

rO is saved counter
rl isjunk
r2 is pointer to pteg
r3 is current compare value
#-

.csect tlbmiss[PR 1

.org vecO+OxllOO

tlbDataMiss:
mfspr r2, hashl # get first pointer
addi rl, 0,8 # load 8 for counter

mfctr rO # save counter
mfspr r3, dCmp # get first compare value
addi r2, r2,-8 # pre dec the pointer

dmO: mtctr rl # load counter
dml: lwzu rl,8(r2) # get next pte

cmp cO, rl, r3 # see if found pte
bdneq dml # dec count br if cmp ne and if count not zero
bne dataSecHash# if not found set up second hash or exit
1 rl, +4(r2) # load tlb entry lower-word
mtctr rO # restore counter

mfspr rO, dMiss # get the miss address for the tlbld
mfspr r3, srrl # get the saved crO bits
mtcrf Ox80, r3 # restore CRO
mtspr rpa, rl # set the pte
ori r 1, rl, Ox 100# set reference bit

srw rl, rl, 8 # get byte 7 of pte
tlb1d rO # load the dtlb
stb r1, +6(r2) # update page table
rfi # return to executing program

#+
Register usage:
rO is saved counter
rl is junk
r2 is pointer to pteg
r3 is current compare value
#-

dataSecHash:

#+

andi.
bne
mfspr
ori
addi
addi
b

MOTOROLA

r1, r3, Ox0040# see if we have done second hash
doDSI # if so, go to DSI exception
r2, hash2 # get the second pointer
r3, r3, Ox004O# change the compare value
rl, 0, 8 # load 8 for counter
r2, r2,-8

dmO
pre dec for update on load
try second hash

Chapter 5. Memory Management 5-47

C=O in dtlb and dtlb miss on store flow
Entry:
Vec = 1200

srrO
srr1

-> address of store that caused the exception
-> O:3=crO 4=lru way bit 5=1 16:31 = saved MSR

msr<tgpr> -> I
dMiss -> ea that missed
dCmp -> the compare value for the va that missed
hash I -> pointer to first hash pteg
hash2 -> pointer to second hash pteg

Register usage:
rO is saved counter
rl isjunk
r2 is pointer to pteg
r3 is current compare value
#-

.csect tlbmiss[PR]

.org vecO+Oxl200

tlbCeqO:

ceqO:
ceq1:

ceq2:

#+

mfspr
addi

mfctr
mfspr
addi

mtctr
Iwzu
cmp
bdneq
bne

andi.
beq
mtctr
mfspr
mfspr
mtcrf
mtspr
tlbld
rfi

Register usage:

r2, hashl # get first pointer
rI, 0, 8 # load 8 for counter
rO # save counter
r3,dCmp # get first compare value
r2, r2,-8 # pre dec the pointer
rl # load counter
rl,8(r2) # get next pte
cO, rl, r3 # see iffound pte
ceq I # dec count br if cmp ne and if count not zero
cEqOSecHash# if not found set up second hash or exit
rl, +4(r2) # load tlb entry lower-word
r3,r1,Ox80 # check the C-bit
cEqOChkProt# if (C==O) go check protection modes
rO # restore counter
rO, dMiss # get the miss address for the tlbld
r3, srrl # get the saved crO bits
Ox80, r3 # restore CRO
rpa, rI # set the pte
rO # load the dtlb

return to executing program

rO is saved counter
rl isjunk
r2 is pointer to pteg
r3 is current compare value
#-
cEqOSecHash:

andi.

5-48

r1, r3, Ox0040# see if we have done second hash

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

bne doDSI # if so, go to DSI exception
mfspr r2, hash2 # get the second pointer
ori r3, r3, OxOO40# change the compare value
addi rl, 0,8 # load 8 for counter
addi r2, r2, -8 # pre dec for update on load
b ceqO # try second hash

#+
entry found and PTE(c-bit==O):
(check protection before setting PTE(c-bit)
Register usage:
rO is saved counter
rl is PTE entry
r2 is pointer to pteg
r3 is trashed
#-
cEqOChkProt:

chkO:

chk2:

#+

rlwinm.
bge­
andi.

r3,rl,30,0,1 # test PP
chkO
r3,rl,l

if (PP==OO or PP=Ol) goto chkO:
test PP[O]

beq+ chk2 # return if PP[O]==O
b doDSIp # else DSIp

rnfspr
andis.
beq
b
ori
sth
b

r3,srrl # get old msr
r3,r3,OxOO08# test the KEY bit (SRRO-bit 12)
chk2 # if (KEY==O) goto chk2:
doDSIp # else DSIp
rl, rl, Ox I 80# set reference and change bit
rl, -2(r2) # update page table
ceq2 # and back we go

entry Not Found: synthesize a DSI exception
Entry:

rO is saved counter
rl is junk
r2 is pointer to pteg

r3 is current compare value

doDSI:

doDSIp:

dsil:

rnfspr
rlwinm
addis
b

mfspr
rlwinm
addis
mtctr
andi.
mtspr

r3, srrl # get srrl
rl, r3, 9,6,6# get srrl<flag> to bit 6 for load/store, zero rest
rl, rl, Ox4000# or in dsisr<l> = 1 to flag pte not found
dsi1:

r3, srr 1 # get srrl
rl, r3, 9,6,6# get srrl<flag> to bit 6 for load/store, zero rest
rl, rl, Ox0800# or in dsisr<4> = 1 to flag prot violation
rO # restore counter
r2, r3, Oxffff# clear upper bits of srrl
srrl, r2 # set srrl

mtspr dsisr, rl # load the dsisr

MOTOROLA Chapter 5. Memory Management 5-49

mfspr rl, dMiss # get miss address
rlwinm. r2,r2,O,3l ,31# test LE bit
bne dsi2: # if little endian then:
xor rl,rl,Ox07 # de-mung the data address

dsi2: mtspr dar, rl # put in dar
mfmsr rO # get msr
xoris rO, rO, Ox2 # flip the msr<tgpr> bit
mtcrf Ox80, r3 # restore eRO
mtmsr rO # flip back to the native gprs
b vec300 # branch to DSI exception

5.5.3 Page Table Updates
When TLBs are implemented (as in the 603e) they are defined as noncoherent caches ofthe
page tables. TLB entries must be flushed explicitly with the TLB invalidate entry
instruction (tlhie) whenever the corresponding PTE is modified. Since the 603e is intended
primarily for uniprocessor environments, it does not provide coherency of TLBs between
multiple processors. If the 603e is used in a multiprocessor environment where TLB
coherency is required, all synchronization must be implemented in software.

Processors may write referenced and changed bits with unsynchronized, atomic byte store
operations. Note that the V, R, and C bits each resides in a distinct byte of a PTE. Therefore,
extreme care must be taken to use byte writes when updating only one of these bits.

Explicitly altering certain MSR bits (using the mtmsr instruction), or explicitly altering
PTEs, or certain system registers, may have the side effect of changing the effective or
physical addresses from which the current instruction stream is being fetched. This kind of
side effect is defined as an implicit branch. Implicit branches are not supported and an
attempt to perform one causes boundedly-undefined results. Therefore, PTEs must not be
changed in a manner that causes an implicit branch. Chapter 2, "PowerPC Register Set," in
The Programming Environments Manual, lists the possible implicit branch conditions that
can occur when system registers and MSR bits are changed.

5.5.4 Segment Register Updates
There are certain synchronization requirements for using the move to segment register
instructions. These are described in "Synchronization Requirements for Special Registers
and for Lookaside Buffers" in Chapter 2, "PowerPC Register Set," in The Programming
Environments Manual.

5-50 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Chapter 6
Instruction Timing
This chapter describes instruction prefetch and execution through all of the execution units
of the PowerPC 603e microprocessor. It also provides examples of instruction sequences
showing concurrent execution and various register dependencies to illustrate timing
interactions. Bus signals described in this chapter are only accurate to within half clock
cycle increments. See Chapter 8, "System Interface Operation," for more specific
information regarding bus operation timing. Instruction mnemonics used in this chapter can
be identified by referring to Chapter 8, "Instruction Set," in The Programming
Environments Manual.

6.1 Terminology and Conventions
This section describes terminology and conventions used in this chapter.

• Branch prediction-The process of guessing whether a branch will be taken. Such
predictions can be correct or incorrect; the term predicted as it is used here does not
imply that the prediction is correct (successful). The PowerPC architecture defines
a means for static branch prediction, which is part of the instruction encoding.

• Branch resolution-The determination of whether a branch is taken or not taken. A
branch is said to be resolved when it can exactly be determined which path it will
take. If the branch is resolved as predicted, the instructions following the predicted
branch can be completed. If the branch is not resolved as predicted, instructions on
the mispredicted path are purged from the instruction pipeline and are replaced with
the instructions from the nonpredicted path.

• Completion---Completion occurs when an instruction is removed from the
completion buffer. When an instruction completes we can be sure that this
instruction and all previous instructions will cause no exceptions. In some situations,
an instruction can finish and complete in the same cycle.

• Finish-The term indicates the final cycle of execution. In this cycle, the completion
buffer is updated to indicate that the instruction has finished executing.

• Latency-The number of clock cycles necessary to execute an instruction and make
ready the results of that execution for a subsequent instruction.

MOTOROLA Chapter 6. Instruction Timing 6-1

6-2

• Pipeline-In the context of instruction timing, the term pipeline refers to the
interconnection of the stages. The events necessary to process an instruction are
broken into several cycle-length tasks to allow work to be performed on several
instructions simultaneously-analogous to an assembly line. As an instruction is
processed, it passes from one stage to the next. When it does, the stage becomes
available for the next instruction.

Although an individual instruction may take many cycles to complete (the number
of cycles is called instruction latency), pipelining makes it possible to overlap the
processing so that the throughput (number of instructions completed per cycle) is
greater than if pipelining were not implemented.

• Program order-The original order in which program instructions are provided to
the instruction queue from the cache.

• Rename buffer-Temporary buffers used by instructions that have not completed
and as write-back buffers for those that have.

• Reservation station-A buffer between the dispatch and execute stages that allows
instructions to be dispatched even though the operands required for execution may
not yet be available.

• Stage-An element in the pipeline at which certain actions are performed, such as
decoding the instruction, performing an arithmetic operation, and writing back the
results. A stage typically takes a cycle to perform its operation; however, some
stages are repeated (a double-precision floating-point multiply, for example). When
this occurs, an instruction immediately following it in the pipeline is forced to stall
in its cycle.

In some cases, an instruction may also occupy more than one stage
simultaneously-for example, instructions may complete and write back their
results in the same cycle.

After an instruction is fetched, it can always be defined as being in one or more
stages.

• Stall-An occurrence when an instruction cannot proceed to the next stage.

• Superscalar-A superscalar processor is one that can issue multiple instructions
concurrently from a conventional linear instruction stream. In a superscalar
implementation, multiple instructions can be in the same stage at the same time.

Throughput-A measure of the number of instructions that are processed per cycle.
For example, a series of double-precision floating-point multiply instructions has a
throughput of one instruction per clock cycle.

• Write-back-Write-back (in the context of instruction handling) occurs when a
result is written from the rename registers into the architectural registers (typically
the GPRs and FPRs). Results are written back at completion time or are moved into
the write-back buffer. Results in the write-back buffer cannot be flushed. If an
exception occurs, these buffers must write back before the exception is taken.

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

6.2 Instruction Timing Overview
The 603e has been designed to minimize average instruction execution latency. Latency is
defined as the number of clock cycles necessary to execute an instruction and make ready
the results of that execution for a subsequent instruction. For many of the instructions in the
603e, this can be simplified to include only the execute phase for a particular instruction.
However, data access instructions require additional clock cycles between the execute
phase and the write-back phase due to memory latencies.

In accordance with this definition, logical, bit-field, and most integer instructions have a
latency of one clock cycle (for example, results for these instructions are ready for use on
the next clock cycle after issue). Other instructions, such as the integer multiply, require
more than one clock cycle to complete execution.

Effective throughput of more than one instruction per clock cycle can be realized by the
many performance features in the 603e including pipelining, superscalar instruction issue,
branch acceleration, and multiple execution units that operate independently and in
parallel.

The load/store and floating-point units on the 603e are pipelined, which means that the
execution units are broken into stages. Each stage performs a specific step, which
contributes to the overall execution of an instruction. The pipe lined design is analogous to
an assembly line where workers perform a specific task and pass the partially complete
product to the next worker. (Note: The EC603e microprocessor does not support the
floating-point unit.)

When an instruction is issued to a pipelined execution unit, the first stage in the pipeline
begins its designated work on that instruction. As an instruction is passed from one stage in
the pipeline to the next, evacuated stages may accept new instructions. This design allows
a single execution unit to be working on several different instructions simultaneously.
While it may take several cycles for a given instruction to propagate through the execution
pipeline, once the pipeline has been filled with instructions the execution unit is capable of
completing an instruction every clock.

Figure 6-1 shows a graphical representation of a generic pipelined execution unit.

MOTOROLA Chapter 6. Instruction Timing 6-3

CLOCK 0

CLOCK 1

CLOCK 2

CLOCK 3

I (STAGE 1) A II (STAGE 2) II (STAGE 3)

I (STAGE 1) {1r§GE 2) A II (STAGE 3)

I (STAGE 1) @GE 2) Bfc§GE 3) A I

I (STAGE 1) Dfc§GE 2) Cfc§GE 3) B I
Figure 6-1. Pipelined Execution Unit

If the number of stages in each pipeline is equal to the total latency in clock cycles of its
respective execution unit, the processor can continuously issue instructions to the same
execution unit without stalling. Thus, when enough instructions have been issued to an
execution unit to fill its pipeline, the first instruction will have completed execution and
exited the pipeline, allowing subsequent instructions to be issued into the tail of the pipeline
without interruption.

The 603e's completion buffer is capable of retiring two instructions on every clock cycle.
In general, instruction processing is accomplished in four stages described as follows:

6-4

• The fetch pipeline stage primarily involves retrieving instructions from the memory
system and determining the location of the next instruction fetch. Additionally, the
BPU decodes branches during the fetch stage and folds out branch instructions
before the dispatch stage if possibie. The instruction fetch stage includes the clock
cycles necessary to request instructions from the on-chip cache as well as the time
it takes the on-cl-jp cache to respond to that request.

• The decode/dispatch pipeline stage is responsible for decoding the instructions
supplied by the instruction fetch stage, and determining which of the instructions are
eligible to be dispatched in the current cycle. In addition, the source operands of the
instructions are read from the appropriate register file and dispatched with the
instruction to the execute pipeline stage. At the end of the dispatch pipeline stage,
the dispatched instructions and their operands are latched by the appropriate
execution unit.

• During the execute pipeline stage each execution unit that has an executable
instruction executes the selected instruction (perhaps over multiple cycles), writes
the instruction's result into the appropriate rename register, and notifies the
completion stage that the instruction has finished execution. In the case of an internal
exception, the execution unit reports the exception to the completionlwriteback
pipeline stage and discontinues instruction execution until the exception is handled.
The exception is not signaled until that instruction is the next to be completed.
Execution of most fioating-point instructions is pipelined within the FPU allowing
up to three instructions to be executing in the FPU concurrently. The pipeline stages

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

for the floating-point unit are multiply, add, and round-convert. Execution of most
load/store instructions is also pipelined. The load/store unit has two pipeline stages.
The first stage is for effective address calculation and MMU translation and the
second stage is for accessing the data in the cache.

• The complete/writeback pipeline stage maintains the correct architectural machine
state and transfers the contents of the rename registers to the GPRs and FPRs as
instructions are retired. If the completion logic detects an instruction causing an
exception, all following instructions are canceled, their execution results in rename
registers are discarded, and instructions are fetched from the correct instruction
stream.

More information regarding these operations are provided in the following paragraphs.

6.3 Timing Considerations
A superscalar processor is one that issues multiple independent instructions into multiple
pipelines allowing instructions to execute in parallel. The 603e has five independent
execution units (four execution units on the EC603e microprocessor), one each for integer
instructions, floating-point instructions (not supported on the EC603e microprocessor),
branch instructions, load/store instructions, and system register instructions. The IU and the
FPU each have dedicated register files for maintaining operands (GPRs and FPRs,
respectively), allowing integer calculations and floating-point calculations to occur
simultaneously without interference. Integer division performance of the PID7v-603e has
been improved, with the divwux and divwx instructions executing in 20 clock cycles,
instead of the 37 cycles required in the PID6-603e.

Note: The FPU is not supported on the EC603e microprocessor; therefore, floating-point
instructions are trapped by the floating-point unavailable exception and can be emulated in
software.

The 603e is a true superscalar implementation of the PowerPC architecture since a
maximum of three instructions can be issued to the execution units (one branch instruction
to the branch processing unit, and two instructions issued from the dispatch queue to the
other execution units) during each clock cycle. Although a superscalar implementation
complicates instruction timing, these complications are transparent to the software. While
the 603e appears to the programmer to execute instructions in sequential order, the 603e
provides increased performance by executing multiple instructions at a time, and using
hardware to manage dependencies.

The 603e provides support for single-cycle store and it provides an adder/comparator in the
system register unit that allows the dispatch and execution of multiple integer add and
compare instructions on each cycle.

When an instruction is issued, the register file places the appropriate source data on the
appropriate source bus. The corresponding execution unit then reads the data from the bus.

MOTOROLA Chapter 6. Instruction Timing 6-5

The register files and source buses have sufficient bandwidth to allow the dispatching of two
instructions per clock.

The 603e contains the following execution units that operate independently and in parallel:

• Branch processing unit (BPU)

• 32-bit integer unit (IV)
• 64-bit floating-point unit (FPU) (not supported on the EC603e microprocessor)

• Load/store unit (LSU)
• System register unit (SRU)

The 603e's branch processing unit decodes and executes branches immediately after they
are fetched. The resources of the branch unit include-a count register (CTR) rename
register for mtspr(CTR), a link register (LR) rename register for mtspr(LR), a link register
(LR) rename register for branches specifying an update of the link register, and a branch
reservation station for conditional branches that cannot be resolved due to a CR-data
dependency.

When a conditional branch cannot be resolved due to a CR-data dependency, the branch
direction is predicted and execution commences down the predicted path. If the branch
resolves as incorrectly guessed, then:

1. the instruction buffer is purged and fetching of the correct path commences,

2. any instructions executed prior to the predicted branch in the completion buffer are
allowed to "complete",

3. all inst..··uctions executed subsequent to the mispredicted branch are purged from the
machine, and 4) dispatching down the correct path commences.

When the IV, SRU, or FPU (not supported on the EC603e microprocessor) finishes
executing an instruction, it places the resulting data, if any, into one of the general-purpose
register (GPR) or floating-point register (FPR) rename registers. The results are then stored
into the correct GPR during the write-back stage. If a subsequent instruction is waiting for
this data, it is forwarded past the register file, directly into the appropriate execution unit
for the immediate execution of the waiting instruction. This allows a data-dependent
instruction to be decoded without waiting for the data to be written into the register file and
then read back out again. This feature, known as feed forwarding, significantly shortens the
time the machine may stall on data dependencies.

6.3.1 General Instruction Flow
Instructions are fetched from the instruction cache at a peak rate of two per cycle, and
placed in either the instruction queue (IQ) or the BPU. Instructions enter the IQ and are
issued to the various execution units from the dispatch queue. The IQ is a six-entry queue,
which is the backbone of the master pipeline for the microprocessor. The 603e tries to keep
the IQ full at all times. Although two instructions can be brought in from the on-chip cache
in a single clock cycle, if there is a one-instruction vacancy in the IQ, one instruction will

6-6 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

be fetched from the cache to fill it. If while topping off the IQ, the request for new
instructions misses in the on-chip cache, then arbitration for a memory access will begin.

Instructions enter the IQ through entry 5 and filter down to be issued from queue entry I
or o. The fetch bus between the IQ and the on-chip cache is wide enough for two
instructions to be brought into the IQ simultaneously, which matches the dispatcher's
ability to issue two instructions per cycle.

Branch instructions are identified by the fetcher, and forwarded to the BPU directly,
bypassing the dispatch queue. The branch is either executed and resolved (if the branch is
unconditional or if required conditions are available), or is predicted. Once a branch
instruction has been executed, it may need to update a special-purpose register. In that case,
the branch instruction will do its write back sometime after the decode/execute phase. If no
write back is needed, the branch instruction is retired. All other instructions are issued from
the dispatch queue, with dispatch rate contingent on execution unit busy status, rename and
completion buffer availability, and the serializing behavior of some instructions. Instruction
dispatch is done in program order, and if the instruction in queue entry 0 is unable to be
dispatched, it will inhibit the instruction in queue entry 1 from being issued.

MOTOROLA Chapter 6. Instruction Timing 6-7

Figure 6-2 reflects the organization of the 603e, and the paths taken by instructions issued
from the instruction queue and how those instructions progress through the various
execution units.

Fetch

r-------------------
: Completion Buffer
: Assignment , , , , , , , , ,

Store Queue

o

Branch
Processing Unit

liiililfjBmfi Instruction Queue

.!fSII!Iili~a (In Program Order)

Dispatch

IU

, •• ~.~ •• Iiii~.=t~i.I~. Completion Queue

(In Program Order)

Note: The EC603e microprocessor does not support the floating-point unit.

Figure 6-2_ Instruction Flow Diagram

6-8 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

6.3.2 Instruction Fetch Timing
The timing of the instruction fetch mechanism on the 603e depends heavily on the state of
the on-chip cache. The speed with which the required instruction is returned to the fetcher
depends on whether the instruction being asked for is in the on-chip cache (cache hit) or
whether a memory transaction is required to bring the data into the cache (cache miss).

These issues are discussed further in the following sections.

6.3.2.1 Cache Arbitration
When the instruction fetcher attempts to fetch instructions from the on-chip cache, the
cache mayor may not be able to immediately respond to the request. There are two
scenarios that may be encountered by the instruction fetcher when it requests instructions
from the on-chip cache.

The first scenario is when the on-chip cache is idle and a request comes in from the
instruction fetcher for additional instructions. In this case, the on-chip cache responds with
the requested instructions on the next clock cycle.

The second scenario occurs if at the time the instruction fetcher requests instructions, the
on-chip cache is busy due to a cache-line-reload operation. When this case arises, the on­
chip cache will be inaccessible until the reload operation is complete.

6.3.2.2 Cache Hit
Assuming that the instruction fetcher is not blocked from the cache by a cache-reload
operation and the instructions it needs are in the on-chip cache (a cache hit has occurred),
there will be only one clock cycle between the time that the instruction fetcher requests the
instructions and the time that the instructions enter the IQ. As previously stated, two
instructions can be simultaneously fetched from the on-chip cache and loaded into the IQ.

Figure 6-3 shows a brief example of instruction fetching that hits in the on-chip cache. In
this example, two instructions are fetched into the IQ during clock cycle O. During clock
cycle 1, instructions 0 and 1 are dispatched to the integer and floating-point execution units.
During clock cycle 2, a branch instruction is fetched into the branch processing unit. The
BPU is immediately able to determine that the branch will indeed change program flow and
sends a request to the on-chip cache for the new instruction stream.

During clock cycle 4, the new instructions arrive in the IQ. In clock cycle 5, one integer
instruction is dispatched to the integer unit, and the following instruction (also an integer
instruction) is blocked from dispatch until clock cycle 6. Instructions fetched in clock
cycle 5 are held in the IQ until the dispatch queue is cleared on the next cycle. As the IQ is
emptied into the individual execution units, additional instructions will be requested from
the on-chip cache.

MOTOROLA Chapter 6. Instruction Timing 6-9

o

c=J
Iflf:~~.

mnnm --~
Fetch

2 3

I 4 br

i 5 fadd 1tJ&1i!lrj
i 6 fadd i
17faddl

4 5 6 7

Dispatch ! 8 add ~,'t2l1;.
Held in IQ

Execute

Write back

Deallocate

I 9 add Ii1P!lfMt~~jl
i 10 add ~lIIllIIili;~IMl
111 fSUb~lIlIIlII~i1ljllJi

Figure 6-3. Instruction Timing-Cache Hit

6.3.2.3 Cache Miss

8 9

Figure 6-4 shows a brief example of an instruction fetch that misses in the on-chip cache
and how that fetch affects the instruction issue. Note that the processorlbus clock ratio is
1: 1 in this exainple.

In this example, two instructions are fetched into the IQ during clock cycle O. During clock
cycle I, instructions 0 and 1 are dispatched to the integer and floating-point execution units.
During clock cycle 2, a branch instruction is fetched into the branch processing unit. The
BPU is immediately able to determine that the branch will indeed change program flow and
sends a request to the on-chip cache for the new instruction stream.

6-10 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

o 2 3 4 5 6 7 8 9 10 11

AD~RESS HL_~_---,.lf------';--
. . .

e e e: : DATA: -~----<-<

i 2 add Ii , ---
13 fadd Ie;> " ,---

" ~ ~,'; ~ : 1 d~' ~ ~' , ==
I 4 br

c:=J Fetch

Dispatch - Execute 8 fsub I; ·1 - Write back

~ Deallocate

Figure 6-4. Instruction Timing-Cache Miss

During clock cycle 3, the on-chip cache misses the access and determines that a memory
access will have to occur. During clock cycle 5, the address of the block of instructions is
applied to the system bus. During clock cycle 7, two instructions (64 bits) are returned from
memory, and are forwarded to the cache and the instruction fetcher. In subsequent clock
cycles, one integer and one floating-point instruction is dispatched to their respective
execution units. Instructions are forwarded to the instruction fetcher and the cache until the
cache line reload is completed in cycle 10.

6.3.3 Instruction Dispatch and Completion Considerations
Several factors affect the 603e's ability to dispatch instructions at a peak rate of two per
cycle. These factors include execution unit availability, destination rename register
availability, completion buffer availability, and the handling of dispatch-serialized
instructions.

To avoid dispatch unit stalls due to instruction data dependencies, the 603e provides a
reservation station for each execution unit. If a data dependency exists that may preclude
an instruction from beginning execution, that instruction will be dispatched to the
reservation station associated with its execution unit, thereby clearing the dispatch unit.
When the data that the operation depends upon is returned via a cache access or as a result
of a previous operation, execution will begin during the same clock cycle that the register

MOTOROLA Chapter 6. Instruction Timing 6-11

file is being updated. If the second instruction in the dispatch unit requires the same
execution unit, dispatch of that instruction will stall until the first instruction completes
execution.

The completion unit provides a mechanism to track instructions from dispatch through
execution, and then retire or "complete" them in program order. Completing an instruction
implies the commitment of the results of instruction execution to the architected registers.
In-order completion ensures the correct architectural state when the 603e must recover
from a mispredicted branch, or any other exception or interrupt. (Note that the term
exception is referred to as interrupt in the architecture specification.)

Instruction state and all information required for completion is kept in a first-in, first-out
queue of five completion buffers. A single completion buffer is allocated for each
instruction once it is dispatched by the dispatch unit. A completion buffer is a required
resource for dispatch; if there are no completion buffers available, the dispatch unit will
stall. While a maximum of two instructions per cycle may be completed and retired in
program order from the completion unit, instruction completion can be stalled by the
instruction reaching the last position in the completion queue while the instruction is still
being executed. Store instructions, and instructions executed by the FPU (not supported by
the EC603e microprocessor) and SRU (with the exception of integer add and compare
instructions) can only be retired from the last position in the completion queue.

The rate of instruction completion is also affected by the 603e's ability to write the
instruction results from the rename registers to the architected registers when the
instruction is retired. The 603e can perform two write-back operations from the rename
registers to the GPRs each clock cycle, but can perform only one write back per cycle to the
CR, FPR (not supported on the EC603e microprocessor), LR, and CTR.

Due to the 603e's out-of-order execution capability, the in-order completion of instructions
by the completion unit provides a precise exception mechanism. All program-related
exceptions are signaled when the instruction causing the exception has reached the last
position in the completion buffer. All prior instructions are allowed to complete before the
exception is taken.

6.3.3.1 Rename Register Operation
To avoid contention for a given register file location in the course of out-of-order execution,
the 603e provides rename registers for the storage of instruction results prior to their
commitment to the architected register by the completion unit. Five rename registers are
provided for the GPRs, four for the FPRs (not supported on the EC603e microprocessor),
and one each for the condition register, the link register and the count register.

When the dispatch unit dispatches an instruction to its execution unit, it allocates a rename
register for the results of that instruction. If an instruction is dispatched to a reservation
station associated with an execution unit due to a data dependency, the dispatcher will also
provide a tag to the execution unit identifying which rename register will forward the

6-12 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

required data upon instruction completion. When the data is available in the rename
register, the pending execution may begin.

Instruction results are transferred from the rename registers to the architected registers by
the completion unit when an instruction is retired from the completion queue without
exceptions and after any predicted branch conditions preceding it in the completion queue
have been resolved correctly. If a predicted branch is found to have been incorrectly
predicted, the instructions following the branch will be flushed from the completion queue,
and the results of those instructions will be flushed from the rename registers.

6.3.3.2 Instruction Serialization
While the 603e is capable of dispatching and completing two instructions per cycle, there
is a class of instructions referred to as serializing instructions that limit dispatch and
completion to one instruction per cycle. The type of serialization caused by these
instructions fall into three categories-completion, dispatch, and refetch serialization.

Completion serialized instructions are held in the execution unit until all prior instructions
in the completion unit have been retired. Completion serialization is used for instructions
that access or modify nonrenamed resources. Results from these instructions will not be
available or forwarded for subsequent instructions until the serializing instruction is retired
from the completion unit. Instructions that are completion serialized are as follows:

• Instructions (with the exception of integer add and compare instructions) executed
by the system register unit

• Floating-point instructions that access or modify the FPSCR (not supported on the
EC603e microprocessor) or CR (mtfsbl, mcrfs, mtfsfi, mffs, and mtfsf)

• Instructions that manage caches and TLBs

• Instructions that directly access the GPRs (load and store mUltiple word and load
and store string instructions)

• Instructions defined by the architecture to have synchronizing behavior

A subset of the completion serialized instructions are dispatch serialized. Dispatch
serialized instructions inhibit the dispatching of subsequent instructions until the serializing
instruction is retired from the completion unit. Dispatch serialization is used for
instructions that access renamed resources used by the dispatcher, and for instructions
requiring refetch serialization, including:

• The load multiple instructions, lmw, lswi, and Iswx
• The mtspr(XER) and mcrxr instructions
• The synchronizing instructions, sync, isync, mtmsr, rfi, and sc

A subset of the dispatch serialized instructions are also refetch serialized. Refetch serialized
instructions inhibit dispatching of subsequent instructions and force the refetching of
subsequent instructions after the serializing instructions are retired from the completion
unit. The context synchronizing instruction, isync, is a refetch serializing instruction.

MOTOROLA Chapter 6. Instruction Timing 6-13

6.3.3.3 Execution Unit Considerations
As previously noted, the 603e is capable of dispatching and retiring two instructions per
clock cycle. One of the factors affecting the peak dispatch rate is the availability of
execution units on each clock cycle.

For an instruction to be issued, the required execution unit must be available.· The
dispatcher monitors the availability of all execution units and suspends instruction dispatch
if the required execution unit is not available. An execution unit may not be available if it
can accept and execute only one instruction per cycle, or if an execution unit's pipeline
becomes full. This situation may occur if instruction execution takes more clock cycles than
the number of pipeline stages in the unit, and additional instructions are issued to that unit
to fill the remaining pipeline stages.

6.4 Execution Unit Timings
The following sections describe instruction timing considerations within each of the
respective execution units in the 603e. Refer to Table 6-1 for branch instruction execution
timing.

6.4.1 Branch Processing Unit Execution Timing
Flow control operations (conditional branches, unconditional branches, and traps) are
typically expensive to execute in most machines because they disrupt normal flow in the
instruction stream. When a change in program flow occurs, the IQ must be reloaded with
the target instruction stream. During this time the execution units will be idle. However,
previously issued instructions will continue to execute wl>,ile the new instruction strea.-n
makes its way into the IQ.

Performance features such as branch folding and static branch prediction help minimize the
penalties associated with flow control operations on the 603e. The timing for branch
instruction execution is determined by many factors including the following:

• Whether the branch is taken
• Whether the target instruction stream is in the on-chip cache
• Whether the branch is predicted
• Whether the prediction is correct

6.4.1.1 Branch Folding
When a branch instruction is encountered by the fetcher, the BPU immediately tries to pull
that instruction out of the instruction stream and resolve it. When the BPU pulls the branch
instruction out of the instruction stream, the instruction above the branch is shifted down to
take the place of the removed branch. The technique of removing the branch instruction
from the instruction sequence seen by the other execution units, is known as branch folding.

6-14 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Often, branch folding reduces the penalties of flow control instructions to zero since
instruction execution proceeds as though the branch was never there.

If the folded branch instruction changes program flow (the branch is said to be "taken" in
this case), the BPU immediately requests the instructions at the new target from the on-chip
cache. In most cases, the new instructions arrive in the IQ before any bubbles are introduced
into the execution units. If the folded branch does not change program flow (the branch is
said to be "not taken" in this case), the branch is already removed from the instruction
stream and execution continues as if there were never a branch in the original sequence.

When a conditional branch cannot be resolved due to a CR data dependency, the branch is
executed by means of static branch prediction, and instruction fetching proceeds down the
predicted path. If the branch prediction was incorrect when the branch is resolved, the
instruction queue and all subsequently executed instructions are purged, instructions
executed prior to the predicted branch are allowed to complete, and instruction fetching
resumes down the correct path.

There are several situations where instruction sequences create dependencies that prevent
a branch instruction from being resolved immediately, thereby causing execution of the
subsequent instruction stream based on the predicted outcome of the branch instruction.
The instruction sequences, and the resulting action of the branch instruction is described as
follows:

• An mtspr(LK) followed by a belr-Fetching is stopped, and the branch waits for
the mtspr to execute.

• An mtspr(CTR) followed by a bcctr-Fetching is stopped, and the branch waits for
the mtspr to execute.

• An mtspr(CTR) followed by a bc(CTR)-Fetching is stopped, and the branch waits
for the mtspr to execute.

• A bc(CTR) followed by another bc(CTR)-Fetching is stopped, and the second
branch waits for the first branch to be completed.

• A bc(CTR) followed by a bcctr-Fetching is stopped, and the bcctr waits for the
first branch to be completed.

• A branch(LK = 1) followed by a branch(LK = I)-Fetching is stopped, and the
second branch waits for the first branch to be completed. (Note: a bl instruction does
not have to wait for a branch(LK = 1) to complete.)

• A bc(based-on-CR) waiting for resolution due to a CR-dependency followed by a
bc(based-on-CR)-Fetching is stopped and the second branch waits for the first CR­
dependency to be resolved. (Note: branch conditions can be a function of the CTR
and the CR; if the CTR condition is sufficient to resolve the branch, then a CR­
dependency is ignored.)

MOTOROLA Chapter 6. Instruction Timing 6-15

6.4.1.2 Static Branch Prediction
Static branch prediction is a mechanism by which software (for example, compilers) can
give a hint to the machine hardware about the direction the branch is likely to take. When
a branch instruction encounters a data dependency, the BPU waits for the required
condition code to become available. Rather than stalling instruction issue until the source
operand is ready, the 603e predicts which path the branch instruction is likely to take, and
instructions are fetched and executed along that path. When the branch operand becomes
available, the branch is evaluated. If the predicted path was correct, program flow continues
along that path uninterrupted; otherwise, the processor backs up, and program flow resumes
along the correct path.

There is a scenario where a flow control instruction will not be predicted on the 603e. If the
target address of the branch (link or count register) will be modified by an instruction that
appears before the branch instruction, the BPU must wait until the target address is
available.

The 603e executes through one level of prediction. The microprocessor may not predict a
branch if a prior branch instruction is still unresolved.

The number of instructions that can be executed after the issue of a predicted branch
instruction is limited by the fact that no instruction executed after a predicted branch may
actually update the register files or memory until the branch is completed. That is,
instructions may be issued and executed, but may not reach the write-back stage in the
completion unit. When an instruction following a predicted branch has completed
execution, it will not be moved into the write-back stage, instead, it will simply stall in the
last stage of the completion unit. This means that the completion queue may become full,
which will limit the number of additional instructions that may be issued subsequent to an
unresolved predicted bra..'lch.

In the case of a misprediction, the 603e is able to redirect its machine state rather painlessly
because the programing model has not been updated. When a branch is found to be
mispredicted, all instructions that were issued subsequent to the predicted branch
instruction are simply flushed from the completion queue, and their results flushed from the
rename registers. No architected register state needs to be restored because no architected
register state was modified by the instructions following the unresolved predicted branch.

6.4.1.2.1 Predicted Branch Timing Examples
Figure 6-5 depicts the cases where branch instructions are predicted, and shows both
"taken" and "not taken" branch outcomes. During clock cycle 0, two instructions are
dispatched to their respective execution units. Notice that the BPU has a combined
decode/execute stage, thus the branch (instruction 1) is predicted not to be taken during
clock cycle I because its source register (condition register) is not available.

During clock cycle 2, instructions 0 and 2 progress through their pipelines. In addition, the
branch (instruction 1) remains predicted. Notice that the next branch instruction
(instruction 5) is not able to begin its decode/execute phase while instruction 1 is predicted.

6-16 MPC603e & EC603e RiSe Microprocessors User's Manual MOTOROLA

During clock cycle 3, instruction 0 begins its write-back stage. The write back of instruction
o resolves the data dependency for the first branch (instruction 1); thus the first branch
becomes resolved and it is determined that the prediction was correct. Recall that only one
branch may be predicted at a time; thus, when instruction I is resolved the BPU is free to
predict instruction 5.

During clock 4, the second branch instruction remains predicted while additional
instructions move through the various pipelines.

During clock cycle 5, the BPU realizes that the prediction made for instruction 5 was
incorrect. Note that since instruction 6 was issued and executed conditionally, it never
performed its write back. As a result of the misprediction, all instructions that followed the
branch in the instruction stream must be flushed from the respective execution unit
pipelines. Notice that instructions 6 and 7 do not continue execution since it has been
determined that these instructions should have never been issued in the first place. Since the
branch has been resolved, a request is sent to the on-chip cache for the new instruction
stream (based on the execution of instruction 5). During clock 6, the new set of instructions
are in the IQ and the appropriate dispatching begins on clock cycle 7.

o 2 3

:e e e:
i 0 add I

2 fadd !<
3 add II

! 4 fadd !

C=::J Fetch

Dispatch

_ Predicted

_ Execute

_ Writeback

~ Deallocate

! 6 add t

17 fadd

4 5 6 7 8

8 and F/oO
9 fsub I 00 .00 I

Figure 6-5. Branch Instruction Timing

MOTOROLA Chapter 6. Instruction Timing

9 10

eee

6-17

6.4.2 Integer Unit Execution Timing
The integer unit executes all integer and bit-field instructions. Many of these instructions
execute in a single clock cycle. The integer unit has one execute phase in its pipeline, thus
when a multicycle integer instruction is being executed, no other integer instructions may
begin an execute phase. Refer to Table 6-4 for integer instruction execution timing.

6.4.3 Floating-Point Unit Execution Timing
The floating-point unit on the 603e (not supported on the EC603e microprocessor) executes
all floating-point instructions. Execution of most floating-point instructions is pipelined
within the FPU, allowing up to three instructions to be executing in the FPU concurrently.
While most floating-point instructions execute with three- or four-cycle latency, and one­
or two-cycle throughput, three instructions (fdivs, fdiv, and fres) execute with latencies of
18 to 33 cycles. The fdivs, fdiv, fres, mtfsbO, mtfsbl, mtfsfi, mffs, and mtfsfinstructions
block the floating-point unit pipeline until they complete execution, and thereby inhibit the
dispatch of additional floating-point instructions. With the exception of the mcrfs
instruction, all floating-point instructions will immediately forward their CR results to the
BPU for fast branch resolution without waiting for the instruction to be retired by the
completion unit, and the CR updated. Refer to Table 6-5 for floating-point instruction
execution timing.

6.4.4 Load/Store Unit Execution Timing
The execution of most load and store instructions is pipelined. The LSU has two pipeline
stages; the first stage is for effective address calculation and MMU translation, and the
second stage is for accessing the data in the cache. Load and store instructions have a two­
cycle latency and one-cycle throughput. Load instructions that miss in the cache block
subsequent accesses to the cache \vhile the cache line refill is in process. Refer to Table 6-6
for load and store instruction execution timing.

6.4.5 System Register Unit Execution Timing
The majority of the instructions executed by the SRU access or modify nonrenamed
registers, or directly access renamed registers, and generally execute in a serial manner.
Results from these instructions will not be available or forwarded for use by subsequent
instructions until the instruction completes and is retired. The SRU can also execute the
integer instructions addi, addis, add, addo, cmpi, cmp, cmpli, and cmpl without
serialization, and in parallel with another integer instruction. Refer to Section 6.3.3.2,
"Instruction Serialization," for additional information on serializing instructions executed
by the SRU, and Table 6-2, Table 6-3, and Table 6-4 for SRU instruction execution timing.

6.5 Memory Performance Considerations
Due to the 603e's instruction throughput of three instructions per clock cycle, lack of data
bandwidth can become a performance bottleneck. In order for the 603e to approach its
potential performance levels, it must be able to read and write data quickly and efficiently.

6-18 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

If there are many processors in a system environment, one processor may experience long
memory latencies while another bus master (for example, a direct memory access
controller) is using the external bus.

In order to alleviate this possible contention, the 603e provides three memory update
modes-copy-back, write-through, and cache-inhibit. Each page of memory is specified to
be in one of these modes. If a page is in copy-back mode, data being stored to that page is
written only to the on-chip cache. If a page is in write-through mode, writes to that page
update the on-chip cache on hits and always update main memory. If a page is cache­
inhibited, data in that page will never be stored in the on-chip cache. All three of these
modes of operation have advantages and disadvantages. A decision as to which mode to use
depends on the system environment as well as the application.

This section describes how performance is impacted by each memory update mode. For
details about the operation of the on-chip cache and the memory update modes, see
Chapter 3, "Instruction and Data Cache Operation."

6.5.1 Copy-Back Mode
When storing data while in copy-back mode, store operations for cacheable data do not
necessarily cause an external bus cycle to update memory. Instead, memory updates only
occur on modified line replacements, cache flushes, or when another processor attempts to
access a specific address for which there is a corresponding modified cache entry. For this
reason, copy-back mode may be preferred when external bus bandwidth is a potential
bottleneck-for example, in a mUltiprocessor environment. Copy-back mode is also well
suited for data that is closely coupled to a processor, such as local variables.

If more than one device uses data stored in a page that is in copy-back mode, snooping must
be enabled to allow copy-back operations and cache invalidations of modified data. The
603e implements snooping hardware to prevent other devices from accessing invalid data.
When bus snooping is enabled, the processor monitors the transactions of the other devices.
For example, if another device accesses a memory location and its memory-coherent (M)
bit is set, and the 603e's on-chip cache has a modified value for that address, the processor
preempts the bus transaction, and updates memory with the cache data. If the cache
contents associated with the snooped address are unmodified, the 603e will invalidate the
cache block. The other device is then free to attempt an access to the updated memory
address. See Chapter 3, "Instruction and Data Cache Operation," for complete information
about bus snooping.

Copy-back mode provides complete cache/memory coherency as well as maximizing
available external bus bandwidth.

6.5.2 Write-Through Mode
Store operations to memory in write-through mode always update memory as well as the
on-chip cache (on cache hits). Write-through mode is used when the data in the cache must
always agree with external memory (for example, video memory), or when there is shared

MOTOROLA Chapter 6. Instruction Timing 6-19

(global) data that may be used frequently, or when allocation of a cache line on a cache miss
is undesirable. Automatic copy back of cached data is not performed if that data is from a
memory page marked as write-through mode since valid cache data always agrees with
memory.

Stores to memory that are in write-through mode may cause a decrease in performance.
Each time a store is performed to memory in write-through mode, the bus will be busy for
the extra clock cycles required to perform the memory update; therefore, load operations
that miss the on-chip cache must wait while the external store operation completes.

6.5.3 Cache-Inhibited Accesses
If a memory page is specified to be cache-inhibited, data from this page will not be stored
in the on-chip cache.

Areas of the memory map can be cache-inhibited by the operating system software. If a
cache-inhibited access hits in the on-chip cache, the corresponding cache line is
invalidated. If the line is marked as modified, it is copied back to memory before being
invalidated.

In summary, the copy-back mode allows both load and store operations to use the on-chip
cache. The write-through mode allows load operations to use the on-chip cache, but store
operations cause a memory access and a cache update if the data is already in the cache.
Lastly, the cache-inhibited mode causes memory access for both loads and stores.

6.6 Instruction Scheduling Guidelines
The performance of the 603e can be improved by avoiding resource conflicts and
promoting parallel utilization of execution units through efficient instruction scheduling.
Instruction scheduling on the 603e can be improved by observing the following guidelines:

• Implement good static branch prediction (setting of y bit in BO field).

• When branch prediction is uncertain, or an even probability, predict fall through.

• To reduce mispredictions, separate the instruction that sets CR bits from the branch
instruction that evaluates them; separation by more than nine instructions ensures
that the CR bits will be immediately available for evaluation.

• When branching conditionally to a location specified by count registers (CTRs) or
link registers (LRs), or when branching conditionally based on the value in the count
register, separate the mtspr instruction that initializes the CTR or LR from the
branch instruction performing the evaluation. Separation of the branch instruction
and the mtspr instruction by more than nine instructions ensures the register values
will be immediately available for use by the branch instruction.

• Schedule instructions such that they can dual issue.

• Schedule instructions to minimizeexecution-unit-busy stalls.

6-20 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

• Avoid using serializing instructions.

• Schedule instructions to avoid dispatch stalls due to renamed resource limitations.

- Only five instructions can be in execute-complete stage at anyone time

- Only five GPR destinations can be in execute-complete-deallocate stage at any
one time. Note that load with update address instructions use two destination
registers.

- Only four FPR destinations can be in execute-complete-deallocate stage at any
one time. (Not supported on the EC603e microprocessor)

6.6.1 Branch, Dispatch, and Completion Unit Resource
Requirements

This section describes the specific resources required to avoid stalls during branch
resolution, instruction dispatching, and instruction completion.

6.6.1.1 Branch Resolution Resource Requirements
The following is a list of branch instructions and the resources required to avoid stalling the
fetch unit in the course of branch resolution:

• The beIr instruction requires LR availability.

• The bcctr instruction requires CTR availability.

• "Branch and link" instructions require shadow LR availability.

• The "branch conditional on counter decrement and CR condition" requires CTR
availability or the CR condition must be false, and 603e cannot be executing
instructions following an unresolved predicted branch when the branch is
encountered by the BPU.

• The "branch conditional on CR condition" cannot be executed following an
unresolved predicted branch instruction.

6.6.1.2 Dispatch Unit Resource Requirements
The following is a list of resources required to avoid stalls in the dispatch unit; note that the
two dispatch buffers are described as DQ[O] and DQ[l], where DQ[O] is the dispatch buffer
located at the very bottom of the dispatch queue:

• Requirements for dispatching from DQ[O] are as follows:

- Needed execution unit available
- Needed GPR rename register(s) available

- Needed FPR rename registers available (not supported on the EC603e
microprocessor)

- Completion buffer is not full

- Instruction is dispatch serialized and completion buffer is empty

- A dispatch serialized instruction is not currently being executed

MOTOROLA Chapter 6. Instruction Timing 6-21

• Requirements for dispatching from DQ[1] are as follows:

- Instruction in DQ[O] must dispatch

- Instruction dispatched by DQ[O] is not dispatch serialized

- Needed execution unit is available (after dispatch from DQ[OD

- Needed GPR rename registers(s) are available (after dispatch from DQ[OD

- Needed FPR rename register is available (after dispatch from DQ[OD
(Not supported on the EC603e microprocessor)

- Completion buffer is not full (after dispatch from DQ[OD

- Instruction dispatched from DQ[1] is not dispatch serialized

6.6.1.3 Completion Unit Resource Requirements
The following is a list of resources required to avoid stalls in the completion unit; note that
the two completion buffers are described as CQ[O] and CQ[I], where CQ[O] is the
completion buffer located at the very end of the completion queue:

• Requirements for completing an instruction from CQ[O] are as follows:

- Instruction in CQ[O] must be finished
- Instruction in CQ[O] must not follow an unresolved predicted branch

- Instruction in CQ[O] must not cause an exception

• Requirements for completing an instruction from CQ[I] are as follows:

- Instruction in CQ[O] must complete in same cycle

- Instruction in CQ[I] must be finished

- Instruction in CQ[1] must not follow an unresolved predicted branch

- Instruction in CQ[1] must not cause an exception

- Instruction in CQ[l] must be an integer or load instruction

- Number of CR updates from both CQ[O] and CQ[I] must not exceed one

- Number of GPR updates from both CQ[O] and CQ[1] must not exceed two

- Number of FPR updates from both CQ[O] and CQ[1] must not exceed one
(not supported on the EC603e microprocessor)

6.7 Instruction Latency Summary
Table 6-1 through Table 6-6 list t:l;le latencies associated with each instruction executed by
the 603e. Note that the instruction latency tables contain no 64-bit architected instructions.
These instructions will trap to an illegal instruction exception handler when encountered.
Recall that the term latency is defined as the total time it takes to execute an instruction and
make ready the results of that instruction.

6-22 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 6-1 provides the latencies for the branch instructions.

Table 6-1. Branch Instructions

Primary Extended Mnemonic Unit Cycles

16 --- bc[l][a] BPU 1·

18 --- b[I][a] BPU 1·

19 016 bclr[l] BPU 1·

19 528 bcctr[l] BPU 1·

·These operations may be folded for an effective cycle time of O.

Table 6-2 provides the latencies for the system register instructions.

MOTOROLA

Table 6-2. System Register Instructions

Primary Extended Mnemonic Unit Cycles

17 --1 sc SRU 3

19 050 rfi SRU 3

19 150 isync SRU 1&

31 083 mfmsr SRU 1

31 146 mtmsr SRU 2

31 210 mtsr SRU 2

31 242 mtsrin SRU 2

31 339 mfspr (notl/DBATs) SRU 1

31 339 mfspr (DBATs) SRU 3&

31 339 mtspr (IBATs) SRU 3&

31 467 mtspr (not I BATs) SRU 2 (XER-&)

31 467 mtspr (IBATs) SRU 2&

31 595 mfsr SRU 3&

31 598 sync SRU 1&

31 659 mfsrin SRU 3&

31 854 eieio SRU 1

31 371 mftb SRU 1

31 467 mttb SRU 1

Note: Cycle times marked with "&" require a variable number of cycles due to
serialization.

Chapter 6. Instruction Timing 6-23

Table 6-3 provides the latencies for the condition register logical instructions.

Table 6-3. Condition Register Logical Instructions

Primary Extended Mnemonic Unit Cycles

19 000 mcrf SRU 1

19 033 crnor SRU 1

19 129 crandc SRU 1

19 193 crxor SRU 1

19 225 crnand SRU 1

19 257 crand SRU 1

19 289 creqv SRU 1

19 417 crorc SRU 1

19 449 cror SRU 1

31 019 mtcr SRU 1

31 144 mtcrf SRU 1

31 512 mcrxr SRU 1&

Note: Cycle times marked with "&" require a variable number of
cycles due to serialization.

Table 6-4 provides the latencies for the integer instructions.

Table 6-4. Integer Instructions

I Primary I Extended I Mnemonic I Unit Cycles

03 - twi Integer 2

07 - mUIli Integer 2,3

08 - subtic Integer 1

10 - cmpli Integer 11\
&SRU

11 - cmpi Integer 11\
&SRU

12 - addic Integer 1

13 - addic. Integer 1

14 - addi Integer 1
&SRU

15 - addis Integer 1
&SRU

20 - rlwimi[.] Integer 1

21 I rlwmm[.] Integer

6-24 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 6-4. Integer Instructions (Continued)

Primary Extended Mnemonic Unit Cycles

23 - rlwnm[.] Integer 1

24 - ori Integer 1

25 - oris Integer 1

26 - xori Integer 1

27 - xoris Integer 1

28 - andl. Integer 1

29 - andis. Integer 1

31 000 cmp Integer 1"
&SRU

31 004 tw Integer 2

31 008 subfc[o][.] Integer 1

31 010 addc[o][.] Integer 1

31 011 mulhwu[.] Integer 2,3.4,5,6

31 024 slw[.] Integer 1

31 026 cntlzw[.] Integer 1

31 028 and[.] Integer 1

31 032 cmpl Integer 1"
&SRU

31 040 sUbf[.] Integer 1

31 060 andc[.] Integer 1

31 075 mUlhw[.] Integer 2,3,4,5

31 104 neg[o][.] Integer 1

31 124 nor[.] Integer 1

31 136 subfe[o][.] Integer 1

31 138 adde[o][.] Integer 1

31 200 subtze[o][.] Integer 1

31 202 addze[o][.] Integer 1

31 232 subfme[o][.] Integer 1

31 234 addme[o][.] Integer 1

31 235 mull[o][.] Integer 2,3.4,5

31 266 add[o][.] Integer 1
&SRU1

31 284 eqv[.] Integer 1

31 316 xor[.] Integer 1

MOTOROLA Chapter 6. InstructionTiming 6-25

Table 6-4. Integer Instructions (Continued)

Primary Extended Mnemonic Unit Cycles

31 412 orc[.] Integer 1

31 444 or[.] Integer 1

31 459 dlvwu[o][.] Integer 37

31 476 nand[.] Integer 1

31 491 dlvw[o][.] Integer 37

31 536 srw[.] Integer 1

31 792 sraw[.] Integer 1

31 824 srawi[.] Integer 1

31 922 extsh[.] Integer 1

31 954 extsb[.] Integer 1

Notes:

"II" indicates that the cycle time immediately forwards their CR
results to the BPU for fast branch resolution.

1. The SRU can only execute the add and add[o] instructions.

Table 6-5 provides the latencies for the floating-point instructions. Note that floating-point
instructions are not supported on the EC603e microprocessor and execution of a floating­
point instruction will result in a trap to the floating-point unavailable exception vector.

Table 6-5. Floating-Point Instructions

I Primary I Extended I Mnemonic I Unit I Cycles

59 018 fdivs[.] FPU 1811

59 020 fsubs[.] FPU 1-1-111

59 021 fadds[.] FPU 1-1-111

59 024 fres[.] FPU 1811

59 025 fmuls[.] FPU 1-1-111

59 028 fmsubs[.] FPU 1-1-111

59 029 fmadds[.] FPU 1-1-111

59 030 fnmsubs[.] FPU 1-1-111

59 031 fnmadds[.] FPU 1-1-111

63 000 fcmpu FPU 1-1-111

63 012 frsp[.] FPU 1-1-111

63 014 fctiw[.] FPU 1-1-111

63 015 fctiwz[.] FPU 1-1-111

63 018 fdlv[.] FPU 3311

6-26 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

MOTOROLA

Table 6-5. Floating-Point Instructions (Continued)

Primary Extended Mnemonic Unit Cycles

63 020 fsub[.] FPU 1-1-11\

63 021 fadd[.] FPU 1-1-11\

63 023 fsel[.] FPU 1-1-11\

63 025 fmul[.] FPU 2-1-11\

63 026 frsqrte[.] FPU 1-1-11\

63 028 fmsub[.] FPU 2-1-11\

63 029 fmadd[.] FPU 2-1-11\

63 030 fnmsub[.] FPU 2-1-11\

63 031 fnmadd[.] FPU 2-1-11\

63 032 fcmpo FPU 1-1-11\

63 038 mtfsb1[.] FPU 1-1-1&1\

63 040 fneg[.] FPU 1-1-11\

63 064 mcrfs FPU 1-1-1&

63 070 mtfsbO[.] FPU 1-1-1&1\

63 072 fmr[.] FPU 1-1-11\

63 134 mtfsfi[.] FPU 111&1\

63 136 fnabs[.] FPU 1-1-11\

63 264 fabs[.] FPU 1-1-11\

63 583 mffs[.] FPU 1-1-1&1\

63 711 mtfsf[.] FPU 1-1-1&1\

Notes: Cycle times marked with "&" require a variable number of
cycles due to completion serialization.

Cycle times marked with "1\" immediately forward their CR
results to the BPU for fast branch resolution.

Cycle times marked with a "-" specify the number of clock
cycles in each pipeline stage. Instructions with a single entry
in the cycles column are not pipelined.

Chapter 6. Instruction Timing 6-27

Table 6-6 provides latencies for the load and store instructions.

Table 6-6. Load and Store Instructions

Primary Extended Mnemonic Unit Cycles

31 020 Iwarx LSU 2:1

31 023 Iwzx LSU 2:1

31 054 dcbst LSU 215&

31 055 Iwzux LSU 2:1

31 086 dcbf LSU 215&

31 087 Ibzx LSU 2:1

31 119 Ibzux LSU 2:1

31 150 stwcx. LSU 8

31 151 stwx LSU 2:1

31 183 stwux LSU 2:1

31 215 stbx LSU 2:1

31 246 dcbtst LSU 2

31 247 stbux LSU 2:1

31 278 dcbt LSU 2

31 279 Ihzx LSU 2:1

31 306 tlbie LSU 3&

31 310 eciwx LSU 2:1

31 311 Ihzux LSU 2:1

31 343 Ihax LSU 2:1

31 375 Ihaux LSU 2:1

31 407 sthx LSU 2:1

31 438 ecowx LSU 2:1

31 439 sthux LSU 2:1

31 470 dcbl LSU 2&

31 533 Iswx LSU 2+n&

31 534 Iwbrx LSU 2:1

31 535 Ifsx LSU 2:1

31 566 tlbsync LSU 2&

31 567 Ifsux LSU 2:1

31 597 Iswi LSU 2+n&

31 599 Ifdx LSU 2:1

6-28 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 6-6. Load and Store Instructions (Continued)

Primary Extended Mnemonic Unit Cycles

31 631 Ifdux LSU 2:1

31 661 stswx LSU 1 + n&

31 662 stwbrx LSU 2:1

31 663 stfsx LSU 2:1

31 695 stfsux LSU 2:1

31 725 stswi LSU 1 + n&

31 727 stfdx LSU 2:1

31 759 stfdux LSU 2:1

31 790 Ihbrx LSU 2:1

31 918 sthbrx LSU 2:1

31 978 tlbld LSU 2&

31 982 icbi LSU 3&

31 983 stfiwx LSU 2:1

31 1010 tlbli LSU 3&

31 1014 dcbz LSU 10&

32 --- Iwz LSU 2:1

33 --- Iwzu LSU 2:1

34 --- Ibz LSU 2:1

35 --- Ibzu LSU 2:1

36 --- stw LSU 2:1

37 --- stwu LSU 2:1

38 --- stb LSU 2:1

39 --- stbu LSU 2:1

40 --- 1hz LSU 2:1

41 --- Ihzu LSU 2:1

42 --- Iha LSU 2:1

43 --- Ihau LSU 2:1

44 --- sth LSU 2:1

45 --- sthu LSU 2:1

46 --- Imw LSU 2 + n&

47 --- stmw LSU 1 + n&

48 --- Ifs LSU 2:1

MOTOROLA Chapter 6. Instruction Timing 6-29

6-30

Table 6-6. Load and Store Instructions (Continued)

Primary Extended Mnemonic Unit Cycles

49 ... Ifsu LSU 2:1

50 --- Ifd LSU 2:1

51 --- Ifdu LSU 2:1

52 --- stfs LSU 2:1

53 --- stfsu LSU 2:1

54 --- stfd LSU 2:1

55 --- stfdu LSU 2:1

Notes: Cycle times marked with U&" require a variable number of cycles
due to serialization.

Cycle times marked with a "f'specify hit and miss times for
cache management instructions that require conditional bus
activity.

Cycle times marked with a ":" specify cycles of total latency and
throughput for pipe lined load and store instructions.

Load and store multiple and string instruction cycles are shown
as a fixed number of cycles plus a variable number of cycles
where Un" is the number of words accessed by the instruction.

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Chapter 7
Signal Descriptions
This chapter describes the PowerPC 603e microprocessor's external signals. It contains a
concise description of individual signals, showing behavior when the signal is asserted and
negated and when the signal is an input and an output.

NOTE

A bar over a signal name indicates that the signal is active
low-for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active-low, such as AP[0-3] (address bus parity signals)
and TT[0--4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.

The 603e signals are grouped as follows:

• Address arbitration signals-The 603e uses these signals to arbitrate for address bus
mastership.

• Address transfer start signals-These signals indicate that a bus master has begun a
transaction on the address bus.

• Address transfer signals-These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

• Transfer attribute signals-These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted, write­
through, or cache-inhibited.

• Address transfer termination signals-These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

• Data arbitration signals-The 603e uses these signals to arbitrate for data bus
mastership.

• Data transfer signals-These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.

MOTOROLA Chapter 7. Signal Descriptions 7-1

7-2

• Data transfer termination signals-Data termination signals are required after each
data beat in a data transfer. In a single-beat transaction, the data termination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the final
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

• System status signals-These signals include the external interrupt signal,
checkstop signals, and both soft- and hard-reset signals. These signals are used to
interrupt and, under various conditions, to reset the processor.

• ITAG/COP interface signals-The ITAG (IEEE 1149.1) interface and common on­
chip processor (COP) unit provides a serial interface to the system for performing
monitoring and boundary tests.

• Processor status-These signals include the memory reservation signal, machine
quiesce control signals, time base enable signal, and TLBISYNC signal.

• Clock signals-These signals provide for system clock input and frequency control.

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

7.1 Signal Configuration
Figure 7-1 illustrates the 603e microprocessor's signal configuration, showing how the
signals are grouped.

NOTE

A pinout showing actual pin numbers is included in the 603e
hardware specifications.

ADDRESS
ARBITRATION t

-[-ADDRESS
START

ADDRESS BUS t •
TRANSFER
ATTRIBUTE

,-

-.
•
•

-

ADDRESS
TERMINATION {..

CLOCKS t

MOTOROLA

BR
1 1 DBG

BG .. 1 1 DBWO
ABB .. 1 1 DBB

is ... 1
64

DH[0-31], Dl[0-31]

8 DP[O-7]

A[0-31J .. 32 1 lJF5E

1 DBDIS
AP[0-3J .. 4

APE 1 1 TA

1 DFiTR'l
TI[Q-4j .. 5 1 TEA
TeST .. 1

TSIZ[O-2]
3 2 iNT SMi

cree en fVICP
CT

.. 1 0 1
1 W 2 CRSTP II'! CRSTP oui

WT
1 CD 2 ~SF!ESEi

CSE[O-l]
2

TC[O-l] 2 1 RS1W

2 OREO QACR

1 TBEN

1 TlBISYI'!C
AACK ... 1

ARTRY .. 1
5 iRSj, TCK, TMS, TDI, TOO

SYSClK .. 1
ClK OUT 1 3 TEST

Pll_CFG[O-3] .. 4

I-±-
+3.3 V

Figure 7-1. Signal Groups

Chapter 7. Signal Descriptions

1 DATA J ARBITRATION

1 DATA
JTRANSFER

=t DATA :.r TERMINATION

~ INTERRUPTS
CHECKSTOPS
RESET

=l PROCESSOR J STATUS

"""LJTAGICOP :r INTERFACE

l LSSDTEST
S CONTROL

7-3

7.2 Signal Descriptions
This section describes individual603e signals, grouped according to Figure 7-1. Note that
the following sections are intended to provide a quick summary of signal functions.
Chapter 8, "System Interface Operation," describes many of these signals in greater detail,
both with respect to how individual signals function and how groups of signals interact.

7.2.1 Address Bus Arbitration Signals
The address arbitration signals are a collection of input and output signals the 603e uses to
request the address bus, recognize when the request is granted, and indicate to other devices
when mastership is granted. For a detailed description of how these signals interact, see
Section 8.3.1, "Address Bus Arbitration."

7.2.1.1 Bus Request (BR)-Output
The bus request (BR) signal is an output signal on the 603e. Following are the state meaning
and timing comments for the BR signal.

State Meaning Asserted-Indicates that the 603e is requesting mastership of the
address bus. Note that BR may be asserted for one or more cycles,
and then de-asserted due to an internal cancellation of the bus request
(for example, due to a load hit in the touch load buffer). See
Section 8.3.1, "Address Bus Arbitration."

Negated-Indicates that the 603e is not requesting the address bus.
The 603e may have no bus operation pending, it may be parked, or
the ARTRY input was asserted on the previous bus clock cycle.

Timing COll1.luents Assertion-Occurs when the 603e is not parked and a bus
transaction is needed. This may occur even if the two possible
pipeline accesses have occurred. BR will also be asserted for one
cycle during the execution of a dcbz instruction, and during the
execution of a load instruction which hits in the touch load buffer.

7-4

Negation-Occurs for at least one bus clock cycle after an accepted,
qualified bus grant (see BG and ABB), even if another transaction is
pending. It is also negated for at least one bus clock cycle when the
assertion of ARTRY is detected on the bus.

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

7.2.1.2 Bus Grant (BG)-Input
The bus grant (BG) signal is an input signal on the 603e. Following are the state meaning
and timing comments for the BG signal.

State Meaning Asserted-Indicates that the 603e may, with the proper qualification,
assume mastership of the address bus. A qualified bus grant occurs
when BG is asserted and ABE and ARTRY (after AACK) are not
asserted. The ABB and ARTRY signals are driven by the 603e or
other bus masters. If the 603e is parked, BR need not be asserted for
the qualified bus grant. See Section 8.3.1, "Address Bus Arbitration."

Negated- Indicates that the 603e is not the next potential address
bus master.

Timing Comments Assertion-May occur at any time to indicate the 603e is free to use
the address bus. After the 603e assumes bus mastership, it does not
check for a qualified bus grant again until the cycle during which the
address bus tenure is completed (assuming it has another transaction
to run). The 603e does not accept a BG in the cycles between the
assertion of any TS and AACK.

Negation-May occur at any time to indicate the 603e cannot use the
bus. The 603e may still assume bus mastership on the bus clock cycle
of the negation of BG because during the previous cycle BG
indicated to the 603e that it was free to take mastership (if qualified).

7.2.1.3 Address Bus Busy (ABB)
The address bus busy (ABB) signal is both an input and an output signal.

7.2.1.3.1 Address Bus Busy (ABB}-Output
Following are the state meaning and timing comments for the ABB output signal.

State Meaning Asserted-Indicates that the 603e is the address bus master. See
Section 8.3.1, "Address Bus Arbitration."

Negated-Indicates that the 603e is not using the address bus. If
ABB is negated during the bus clock cycle following a qualified bus
grant, the 603e did not accept mastership, even if BR was asserted.
This can occur if a potential transaction is aborted internally before
the transaction is started.

Timing Comments Assertion-Occurs on the bus clock cycle following a qualified BG
that is accepted by the processor (see Negated).

MOTOROLA

Negation-Occurs for a minimum of one-half bus clock cycle
following the assertion of AACK. If ABB is negated during the bus
clock cycle following a qualified bus grant, the 603e did not accept
mastership, even if BR was asserted.

High Impedance-Occurs after ABB is negated.

Chapter 7. Signal Descriptions 7-5

7.2.1.3.2 Address Bus Busy (ABB)-Input
Following are the state meaning and timing comments for the ABB input signal.

State Meaning Asserted-Indicates that the address bus is in use. This condition
effectively blocks the 603e from assuming address bus ownership,
regardless of the BG input; see Section 8.3.1, "Address Bus
Arbitration."

Negated-Indicates that the address bus is not owned by another bus
master and that it is available to the 603e when accompanied by a
qualified bus grant.

Timing Comments Assertion-May occur when the 603e must be prevented from using
the address bus (and the processor is not currently asserting ABB).

Negation-May occur whenever the 603e can use the address bus.

7.2.2 Address Transfer Start Signals
Address transfer start signals are input and output signals that indicate that an address bus
transfer has begun. The transfer start (TS) signal identifies the operation as a memory
transaction.

For detailed information about how TS interacts with other signals, refer to Section 8.3.2,
"Address Transfer."

7.2.2.1 Transfer Start (TS)
The TS signal is both an input and an output signal on the 603e.

7.2.2.1.1 Transfer Start (TS)-Output
Following are the state meaning and timing comments for the TS output signal.

State Meaning Asserted-Indicates that the 603e has begun a memory bus
transaction and that the address bus and transfer attribute signals are
valid. When asserted with the appropriate TT[0-4] signals it is also
an implied data bus request for a memory transaction (unless it is an
address-only operation).

Negated-Indicates that no bus transaction is occurring during
normal operation.

Timing Comments Assertion-Coincides with the assertion of ABB.

7-6

Negation--Occurs one bus clock cycle after TS is asserted.
High Impedance-Coincides with the negation of ABB.

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

7.2.2.1.2 Transfer Start (TS)-Input
Following are the state meaning and timing comments for the TS input signal.

State Meaning Asserted-Indicates that another master has begun a bus transaction
and that the address bus and transfer attribute signals are valid for
snooping (see GBL).

Negated-Indicates that no bus transaction is occurring.

Timing Comments Assertion-May occur during the assertion of ABB.
Negation-Must occur one bus clock cycle after TS is asserted.

7.2.3 Address Transfer Signals
The address transfer signals are used to transmit the address and to generate and monitor
parity for the address transfer. For a detailed description of how these signals interact, refer
to Section 8.3.2, "Address Transfer."

7.2.3.1 Address Bus (A[O-31])
The address bus (A[0--31]) consists of 32 signals that are both input and output signals.

7.2.3.1.1 Address Bus (A[0-31])-Output
Following are the state meaning and timing comments for the A[O--31] output signals.

State Meaning AssertedlNegated-Represents the physical address (real address in
the architecture specification) of the data to be transferred. On burst
transfers, the address bus presents the double-word-aligned address
containing the critical code/data that missed the cache on a read
operation, or the first double word of the cache line on a write
operation. Note that the address output during burst operations is not
incremented. See Section 8.3.2, "Address Transfer."

Timing Comments AssertionlNegation-Occurs on the bus clock cycle after a qualified
bus grant (coincides with assertion of ABB and TS).

High Impedance-Occurs one bus clock cycle after AACK is
asserted.

7.2.3.1.2 Address Bus (A[O-31])-lnput
Following are the state meaning and timing comments for the A [0--31] input signals.

State Meaning AssertedlNegated-Represents the physical address of a snoop
operation.

Timing Comments AssertionlNegation-Must occur on the same bus clock cycle as the
assertion ofTS; is sampled by 603e only on this cycle.

MOTOROLA Chapter 7. Signal Descriptions 7-7

7.2.3.2 Address Bus Parity (AP[O-3])
The address bus parity (AP[0-3D signals are both input and output signals reflecting one
bit of odd-byte parity for each of the 4 bytes of address when a valid address is on the bus.

7.2.3.2.1 Address Bus Parity (AP[O-3])-Output
Following are the state meaning and timing comments for the AP[0-3] output signal on the
603e.

State Meaning Asserted/Negated-Represents odd parity for each of 4 bytes of the
physical address for a transaction. Odd parity means that an odd
number of bits, including the parity bit, are driven high. The signal
assignments correspond to the following:

APO A [0-7]
API A[8-1S]
AP2 A[16-23]
AP3 A[24-31]

For more information, see Section 8.3.2.1, "Address Bus Parity."

Timing Comments AssertionlNegation-The same as A[0-31].
High Impedance-The same as A[0-31].

7.2.3.2.2 Address Bus Parity (AP[O-3])-lnput
Following are the state meaning and timing comments for the AP[0-3] input signal on the
603e.

State Meaning Asserted/Negated-Represents odd parity for each of 4 bytes of the
physical address for snooping operations. Detected even parity
causes the processor to take a machine check exception or enter the
checkstop state if address parity checking is enabled in the HIDO
register; see Section 2.1.2.1, "Hardware Implementation Registers
(HIDO and HIDl)." (See also the APE signal description.)

Timing Comments AssertionlNegation-The same as A[0-31].

7.2.3.3 Address Parity Error (APE)-Output
The address parity error (APE) signal is an output signal on the 603e. Note that the (APE)
signal is an open-drain type output, and requires an external pull-up resistor (for example,
10 ill to V dd) to assure proper de-assertion of the APE signal. Following are the state
meaning and timing comments for the APE signal on the 603e. The APE signal will not be
asserted if address parity checking is disabled (HIDO[EBA] cleared to 0). For more
information, see Section 8.3.2.1, "Address Bus Parity."

State Meaning Asserted-Indicates incorrect address bus parity has been detected
by the 603e on a snoop (GBL asserted).

7-8

Negated-Indicates that the 603e has not detected a parity error
(even parity) on the address bus.

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Timing Comments Assertion-Occurs on the second bus clock cycle after TS is
asserted.

High Impedance-Occurs on the third bus clock cycle after TS is
asserted.

7.2.4 Address Transfer Attribute Signals
The transfer attribute signals are a set of signals that further characterize the transfer-such
as the size of the transfer, whether it is a read or write operation, and whether it is a burst
or single-beat transfer. For a detailed description of how these signals interact, see
Section 8.3.2, "Address Transfer."

Note that some signal functions vary depending on whether the transaction is a memory
access or an I/O access.

7.2.4.1 Transfer Type (TT[O-4])
The transfer type (TT[~]) signals consist of five input/output signals on the 603e. For a
complete description of TT[O-4] signals and for transfer type encodings, see Table 7-1.

7.2.4.1.1 Transfer Type (TT[O-4])-Output
Following are the state meaning and timing comments for the TT[~] output signals on
the 603e.

State Meaning AssertedlNegated-lndicates the type of transfer in progress.

Timing Comments AssertionlNegationlHigh Impedance-The same as A[O-31].

7.2.4.1.2 Transfer Type (TT[O-4])-lnput
Following are the state meaning and timing comments for the TT[0-3] input signals on the
603e.

State Meaning AssertedlNegated-lndicates the type of transfer in progress (see
Table 7-2).

Timing Comments AssertionlNegation-The same asA[0-31].

Table 7-1 describes the transfer encodings for a 603e bus master.

Table 7-1. Transfer Encoding for the Bus Master

603e Bus
Transaction

60x Bus
Master

Source
TTO TT1 TT2 TT3 TT4 Specification Transaction

Transaction Command

N/A N/A 0 0 0 0 0 Clean block Address only

N/A N/A 0 0 1 0 0 Flush block Address only

N/A N/A 0 1 0 0 0 sync Address only

Address only dcbz 0 1 1 0 0 Kill block Address only

N/A N/A 1 0 0 0 0 eieio Address only

MOTOROLA Chapter 7. Signal Descriptions 7-9

Table 7-1. Transfer Encoding for the Bus Master (Continued)

603e Bus
Transaction

60x Bus
Master

Source
no n1 n2 TT3 TT4 Specification Transaction

Transaction Command

Single-beat ecowx 1 0 1 0 0 External control Single-beat
write (nonGBL) word write write

N/A N/A 1 1 0 0 0 TlB invalidate Address only

Single-beat read eciwx 1 1 1 0 0 External control Single-beat
(nonGBL) word read read

N/A N/A 0 0 0 0 1 Iwarx Address only
Reservation set

N/A N/A 0 0 1 0 1 Reserved -

N/A N/A 0 1 0 0 1 tlbsync Address only

N/A N/A 0 1 1 0 1 icbi Address only

N/A N/A 1 X X 0 1 Reserved -
Single-beat Caching- 0 0 0 1 0 Write-with-flush Single-beat
write inhibited or write- write or burst

through store

Burst (nonGBl) Cast-out, or 0 0 1 1 0 Write-with-kill Single-beat
snoop copyback write or burst

Single-beat read Caching- 0 1 0 1 0 Read Single-beat
inhibited load or read or burst
instruction fetch

Burst load miss, store 0 1 1 1 0 Read-with-intent- Burst
miss, or to-modify
instruction fetch

Single-beat stwcx. 1 0 0 1 0 Write-with-flush- Single-beat
write atomic write

N/A N/A 1 0 1 1 0 Reserved N/A

Single-beat read Iwarx (caching- 1 1 0 1 0 Read-atomic Single-beat
inhibited load) read or burst

Burst Iwarx 1 1 1 1 0 Read-with-intent- Burst
(load miss) to-modify-atomic

N/A N/A 0 0 0 1 1 Reserved -

N/A N/A 0 0 1 1 1 Reserved -
N/A N/A 0 1 0 1 1 Read-with-no- Single-beat

intent-to-cache read or burst

N/A N/A 0 1 1 1 1 Reserved -
N/A N/A 1 X X 1 1 Reserved -

7-10 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 7-2 describes the 60x bus specification transfer encodings and the 603e bus snoop
response on an address hit.

Table 7-2. Snoop Hit Response

SOx Bus Specification
603e Bus

Transaction TTO TT1 TT2 TT3 TT4 Snooper;
Command

Action on Hit

Clean block Address only 0 0 0 0 0 N/A

Flush block Address only 0 0 1 0 0 N/A

sync Address only 0 1 0 0 0 N/A

Kill block Address only 0 1 1 0 0 Kill, cancel
reservation

eieio Address only 1 0 0 0 0 N/A

External control word write Single-beat write 1 0 1 0 0 N/A

TLB Invalidate Address only 1 1 0 0 0 N/A

External control word read Single-beat read 1 1 1 0 0 N/A

Iwarx Address only 0 0 0 0 1 N/A
Reservation set

Reserved - 0 0 1 0 1 N/A

tlbsync Address only 0 1 0 0 1 N/A

icbi Address only 0 1 1 0 1 N/A

Reserved - 1 X X 0 1 N/A

Write-with-flush Single-beat write or burst 0 0 0 1 0 Flush, cancel
reservation

Write-with-kill Single-beat write or burst 0 0 1 1 0 Kill, cancel
reservation

Read Single-beat read or burst 0 1 0 1 0 Clean or flush

Read-with-intent-to-modify Burst 0 1 1 1 0 Flush

Write-with-flush-atomic Single-beat write 1 0 0 1 0 Flush, cancel
reservation

Reserved N/A 1 0 1 1 0 N/A

Read-atomic Single-beat read or burst 1 1 0 1 0 Clean or flush

Read-with-intent-to modify- Burst 1 1 1 1 0 Flush
atomic

Reserved - 0 0 0 1 1 N/A

Reserved - 0 0 1 1 1 N/A

Read-with-no-intent-to-cache Single-beat read or burst 0 1 0 1 1 Clean

Reserved - 0 1 1 1 1 N/A

Reserved - 1 X X 1 1 N/A

MOTOROLA Chapter 7 _ Signal Descriptions 7-11

The 603e provides transfer type signals (Tf[0--4]) that characterize bus transfers. When
HIDO[ABE] is set, the PID7v-603e performs address-only bus transactions with the
encodings shown in Table 7-3.

Table 7-3. Implementation-Specific Transfer Encoding

TTD TT1 TT2 TT3 TT4
PID7v-6D3e

Transaction
Transaction

Transaction Source

0 0 0 0 0 Clean block Address only debst

0 0 1 0 0 Flush block Address only debf

0 1 1 0 0 Kill block Address only debz, debl

The 603e provides a CLK_OUT signal for test purposes that allows the monitoring of the
processor and bus clock frequencies. The frequency of the CLK_OUT signal is determined
by the configuration of the HIDO[SBCLK] and HIDO[ECLK] bits, as shown in Table 7-4.
Note that the PID7v-603e's CLK_OUT signal will be driven at the processor frequency
during the assertion of HRESET; when the HRESET signal is deasserted, the CLK_OUT
signal enters the default high-impedance state.

Table 7-4. ClK_OUT Signal Configuration

HIDD[SBClK] HIDD[EClK] ClK_OUT Output State

0 0 High-impedance

0 1 Processor clock frequency

1 0 Half-bus clock frequency

1 1 Bus clock frequency

7.2.4.2 Transfer Size (TSIZ[O-2])-Output
The transfer size (TSIZ[0-2]) signals consist of three output signals on the 603e. Following
are the state meaning and timing comments for the TSIZ[O-2] output signals on the 603e.

State Meaning

7-12

AssertedlNegated-For memory accesses, these signals along with
TBST, indicate the data transfer size for the current bus operation, as
shown in Table 7-5. Table 8-4 shows how the transfer size signals are
used with the address signals for aligned transfers. Table 8-5 shows
how the transfer size signals are used with the address signals for
misaligned transfers.

For external control instructions (eciwx and ecowx), TSIZ[0-2] are
used to output bits 29-31 of the external access register (EAR),
which are used to form the resource ID (TBSTIITSIZ[0-2]).

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Timing Comments AssertionlNegation-The same as A[O-31].
High Impedance-The same as A[0-31].

Table 7-5. Data Transfer Size

TBST TSIZ[o-2] Transfer Size

Asserted 010 Burst (32 bytes)

Negated 000 8 bytes

Negated 001 1 byte

Negated 010 2 bytes

Negated 011 3 bytes

Negated 100 4 bytes

Negated 101 5 bytes

Negated 110 6 bytes

Negated 111 7 bytes

7.2.4.3 Transfer Burst (TBST)
The transfer burst (TBST) signal is an input/output signal on the 603e.

7.2.4.3.1 Transfer Burst (TBST)-'-Output
Following are the state meaning and timing comments for the TBST output signal.

State Meaning Asserted-Indicates that a burst transfer is in progress.

Negated-Indicates that a burst transfer is not in progress.

For external control instructions (eciwx and ecowx), TBST is used to
output bit 28 of the EAR, which is used to form the resource ID
(TBSTIITSIZ[O-2]).

Timing Comments AssertionlNegation-The same as A[0-31].
High Impedance-The same as A[O-31].

7.2.4.3.2 Transfer Burst (TBST)-Input
Following are the state meaning and timing comments for the TBST input signal.

State Meaning AssertedlNegated-U sed when snooping for single-beat reads (read
with no intent to cache).

Timing Comments AssertionlNegation-The same as A[0-31].

MOTOROLA Chapter 7. Signal Descriptions 7-13

7.2.4.4 Transfer Code (TC[O-1])-Output
The transfer code (TC[O-l]) consists of two output signals on the 603e. Following are the
state meaning and timing comments for the TC[O-l] signals.

State Meaning AssertedlNegated-Represents a special encoding for the transfer in
progress (see Table 7-6).

Timing Comments AssertionlNegation-The same as A[O-31].
High Impedance-The same as A[O-31].

Table 7-6. Encodings for TC[O-1] Signals

TC(o-1) Read Write

00 Data transaction Any write

01 Touch load -

1 0 Instruction fetch -

1 1 Reserved -

7.2.4.5 Cache Inhibit (CI)-Output
The cache inhibit (CI) signal is an output signal on the 603e. Following are the state
meaning and timing comments for the CI signal.

State Meaning Asserted-Indicates that a single-beat transfer will not be cached,
reflecting the setting of the I bit for the block or page that contains
the address of the current transaction.

Negated-Indicates that a burst transfer will allocate a line in the
603e data cache.

Timing Comments AssertionlNegation-The same as ArO-311.
High Impedance-The same as A[O-31].

7.2.4.6 Write-Through (WT)-Output
The write-through (WT) signal is an output signal on the 603e. Following are the state
meaning and timing comments for the WT signal.

State Meaning Asserted-Indicates that a single-beat transaction is write-through,
reflecting the value of the W bit for the block or page that contains
the address of the current transaction.

Negated-Indicates that a transaction is not write-through.

Timing Comments AssertionlNegation-The same as A[O-31].
High Impedance-The same as A[O-31].

7-14 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

7.2.4.7 Global (GBl)
The global (GBL) signal is an input/output signal on the 603e.

7.2.4.7.1 Global (GBL)-Output
Following are the state meaning and timing comments for the GBL output signal.

State Meaning Asserted-Indicates that a transaction is global, reflecting the setting
of the M bit for the block or page that contains the address of the
current transaction (except in the case of copy-back operations and
instruction fetches, which are nonglobal.)

Negated-Indicates that a transaction is not global.

Timing Comments AssertionlNegation-The same as A[0-31].
High Impedance-The same as A[0-31].

7.2.4.7.2 Global (GBL)-Input
Following are the state meaning and timing comments for the GBL input signal.

State Meaning Asserted-Indicates that a transaction must be snooped by the 603e.

Negated-Indicates that a transaction is not snooped by the 603e.

Timing Comments AssertionlNegation-The same asA[0-31].

7.2.4.8 Cache Set Entry (CSE[O-1])-Output
Following are the state meaning and timing comments for the CSE[O-l] signals.

State Meaning Asserted/Negated-Represents the cache replacement set element
for the current transaction reloading into or writing out of the cache.
Can be used with the address bus and the transfer attribute signals to
externally track the state of each cache line in the 603e's cache. Note
that the CSE[O-l] signals are not meaningful during data cache
touch load operations.

Timing Comments AssertionlNegation-The same as A[0-31].
High Impedance-The same as A[0-31].

7.2.5 Address Transfer Termination Signals
The address transfer termination signals are used to indicate either that the address phase
of the transaction has completed successfully or must be repeated, and when it should be
terminated. For detailed information about how these signals interact, see Section 8.3.3,
"Address Transfer Termination."

MOTOROLA Chapter 7. Signal Descriptions 7-15

7.2.5.1 Address Acknowledge (AACK)-Input
The address acknowledge (AACK) signal is an input signal (input-only) on the 603e.
Following are the state meaning and timing comments for the AACK signal.

State Meaning Asserted-Indicates that the address phase of a transaction is
complete. The address bus will go to a high impedance state on the
next bus clock cycle. The 603e samples ARTRY on the bus clock
cycle following the assertion of AACK.

Negated-(During ABB) indicates that the address bus and the
transfer attributes must remain driven.

Timing Comments Assertion-May occur as early as the bus clock cycle after TS is
asserted (unless 603e is configured for 1:1 or 1.5:1 clock modes,
when AACK can be asserted no sooner than the second cycle
following the assertion ofTS-one address wait state); assertion can
be delayed to allow adequate address access time for slow devices.
For example, if an implementation supports slow snooping devices,
an external arbiter can postpone the assertion of AACK.

Negation-Must occur one bus clock cycle after the assertion of
AACK.

7.2.5.2 Address Retry (ARTRY)
The address retry (ARTRY) signal is both an input and output signal on the 603e.

7.2.5.2.1 Address Retry (ARTRY)-Output
Following are the state meaning and timing comments for the ARTRY output signal.

State Meaning Asserted-Indicates that the 603e detects a condition in which a
snooped address tenure must be reLried. If the 603e needs to update
memory as a result of the snoop that caused the retry, the 603e asserts
BR the second cycle after AACK if ARTRY is asserted.

High Impedance-Indicates that the 603e does not need the snooped
address tenure to be retried.

Timing Comments Assertion-Asserted the third bus cycle following the assertion of
TS if a retry is required.

7-16

Negation-Occurs the second bus cycle after the assertion of AACK.
Since this signal may be simultaneously driven by multiple devices,
it negates in a unique fashion. First the buffer goes to high impedance
for a minimum of one-half processor cycle (dependent on the clock
mode), then it is driven negated for one bus cycle before returning to
high impedance.

This special method of negation may be disabled by setting
precharge disable in HIDO.

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

7.2.5.2.2 Address Retry (ARTRY)-Input
Following are the state meaning and timing comments for the ARTRY input signal.

State Meaning Asserted-If the 603e is the address bus master, ARTRY indicates
that the 603e must retry the preceding address tenure and
immediately negate BR (if asserted). If the associated data tenure has
already started, the 603e will also abort the data tenure immediately,
even if the burst data has been received. If the 603e is not the address
bus master, this input indicates that the 603e should immediately
negate BR for one bus clock cycle following the assertion of ARTRY
by the snooping bus master to allow an opportunity for a copy-back
operation to main memory. Note that the subsequent address
presented on the address bus may not be the same one associated
with the assertion of the ARTRY signal.

NegatedlHigh Impedance-Indicates that the 603e does not need to
retry the last address tenure.

Timing Comments Assertion-May occur as early as the second cycle following the
assertion ofTS, and must occur by the bus clock cycle immediately
following the assertion of AACK if an address retry is required.

Negation-Must occur during the second cycle after the assertion of
AACK.

7.2.6 Data Bus Arbitration Signals
Like the address bus arbitration signals, data bus arbitration signals maintain an orderly
process for determining data bus mastership. Note that there is no data bus arbitration signal
equivalent to the address bus arbitration signal BR (bus request), because, except for
address-only transactions, TS implies data bus requests. For a detailed description on how
these signals interact, see Section 8.4.1, "Data Bus Arbitration."

One special signal, DBWO, allows the 603e to be configured dynamically to write data out
of order with respect to read data. For detailed information about using DBWO, see
Section 8.10, "Using Data Bus Write Only."

7.2.6.1 Data Bus Grant {DBG)-Input
The data bus grant (DB G) signal is an input signal (input-only) on the 603e. Following are
the state meaning and timing comments for the DBG signal.

State Meaning Asserted-Indicates that the 603e may, with the proper qualification,
assume mastership ofthe data bus. The 603e derives a qualified data
bus grant when DBG is asserted and DBB, DRTRY, andARTRY are
negated; that is, the data bus is not busy (DBB is negated), there is no
outstanding attempt to retry the current data tenure (DRTRY is

......,=~ negated), and there is no outstanding attempt to perform an ARTRY
of the associated address tenure.

Negated-Indicates that the 603e must hold off its data tenures.

MOTOROLA Chapter 7. Signal Descriptions 7-17

Timing Comments Assertion-May occur any time to indicate the 603e is free to take
data bus mastership. It is not sampled until TS is asserted.

Negation-May occur at any time to indicate the 603e cannot
assume data bus mastership.

7.2.6.2 Data Bus Write Only (DBWO)-Input
The data bus write only (DBWO) signal is an input signal (input-only) on the 603e.
Following are the state meaning and timing comments for the DBWO signal.

State Meaning Asserted-Indicates that the 603e may run the data bus tenure for an
outstanding write address even if a read address is pipelined before
the write address. Refer to Section 8.10, "Using Data Bus Write
Only," for detailed instructions for using DBWO.

Negated-Indicates that the 603e must run the data bus tenures in the
same order as the address tenures.

Timing Comments Assertion-Must occur no later than a qualified DBG for an
outstanding write tenure. DBWO is only recognized by the 603e on
the clock of a qualified DBG. If no write requests are pending, the
603e will ignore DBWO and assume data bus ownership for the next
pending read request.

Negation-May occur any time after a qualified DBG and before the
next assertion of DBG.

7.2.6.3 Data Bus Busy (DBB)
The data bus busy (DBB) signal is both an input and output signal on the 603e.

7.2.6.3.1 Data Bus Busy (DBB)-Output
Following are the state meaning and timing comments for the DBB output signal.

State Meaning Asserted-Indicates that the 603e is the data bus master. The 603e
always assumes data bus mastership if it needs the data bus and is
given a qualified data bus grant (see DBG).

Negated-Indicates that the 603e is not using the data bus.

Timing Comments Assertion-Occurs during the bus clock cycle following a qualified
DBG.

Negation-Occurs for a minimum of one-half bus clock cycle
(dependent on clock mode) following the assertion of the final TA.

High Impedance-Occurs after DBB is negated.

7.2.6.3.2 Data Bus Busy (DBB)-Input
Following are the state meaning and timing comments for the DBB input signal.

Stare Meaning Asserted-Indicates that another device is bus master.

7-18

Negated-Indicates that the data bus is free (with proper
qualification, see DBG) for use by the 603e.

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Timing Comments Assertion-Must occur when the 603e must be prevented from using
the data bus.

Negation-May occur whenever the data bus is available.

7.2.7 Data Transfer Signals
Like the address transfer signals, the data transfer signals are used to transmit data and to
generate and monitor parity for the data transfer. For a detailed description of how the data
transfer signals interact, see Section 8.4.3, "Data Transfer."

7.2.7.1 Data Bus (DH[O-31], DL[O-31])
The data bus (DH[0-31] and DL[0-31]) consists of 64 signals that are both input and output
on the 603e. Following are the state meaning and timing comments for the DH and DL
signals.

State Meaning The data bus has two halves-data bus high (DH) and data bus low
(DL). See Table 7 -7 for the data bus lane assignments.

Timing Comments The data bus is driven once for noncached transactions and four
times for cache transactions (bursts).

Table 7-7. Data Bus Lane Assignments

Data Bus Signals Byte Lane

DH[Q-7] 0

DH[8-15] 1

DH[16-23] 2

DH[24-31] 3

DL[Q-7] 4

DL[8-15] 5

DL[16-23] 6

DL[24-31] 7

7.2.7.1.1 Data Bus (DH[O-31], DL[O-31])-Output
Following are the state meaning and timing comments for the DH and DL output signals.

State Meaning AssertedlNegated-Represents the state of data during a data write.
Byte lanes not selected for data transfer will not supply valid data.

Timing Comments Assertion/Negation-Initial beat coincides with DBB and, for
bursts, transitions on the bus clock cycle following each assertion of
TA.

MOTOROLA

High Impedance-Occurs on the bus clock cycle after the final
assertion of TA.

Chapter 7. Signal Descriptions 7-19

7.2.7.1.2 Data Bus (DH[O-31], DL[O-31])-lnput
Following are the state meaning and timing comments for the DH and DL input signals.

State Meaning AssertedlNegated-Represents the state of data during a data read
transaction.

Timing Comments AssertionlNegation-Data must be valid on the same bus clock cycle
that TA is asserted.

7.2.7.2 Data Bus Parity (DP[O-7])
The eight data bus parity (DP[0-7]) signals on the 603e are both output and input signals.

7.2.7.2.1 Data Bus Parity (DP[O-7])-Output
Following are the state meaning and timing comments for the DP output signals.

State Meaning AssertedlNegated-Represents odd parity for each of 8 bytes of data
write transactions. Odd parity means that an odd number of bits,
including the parity bit, are driven high. The signal assignments are
listed in Table 7-8.

Timing Comments AssertionlNegation-The same as DL[0-31].
High Impedance-The same as DL[0-31].

Table 7-8. DP[o-7] Signal Assignments

Signal Name Signal ASSignments

DPO DH[0-7]

DP1 DH[8-15]

DP2 DH[16-23]

DP3 DH[24-31]

DP4 DL[0-7]

DP5 DL[8-15]

DP6 DL[16-23]

DP7 DL[24-31]

7.2.7.2.2 Data Bus Parity (DP[O-7])-lnput
Following are the state meaning and timing comments for the DP input signals.

State Meaning AssertedlNegated-Represents odd parity for each byte of read data.
Parity is checked on all data byte lanes, regardless of the size of the
transfer. Detected even parity causes a checkstop if data parity errors
are enabled in the HIDO register. (See DPE.)

Timing Comments AssertionlNegation-The same as DL[0-31].

7-20 MPC603e & EC603e RISC Microprocessors User's Manual, MOTOROLA

7.2.7.3 Data Parity Error (DPE)-Output
The data parity error (DPE) signal is an output signal (output-only) on the 603e. Note that
the (DPE) signal is an open-drain type output, and requires an external pull-up resistor (for
example, 10 kQ to V dd) to assure proper de-assertion of the (DPE) signal. Following are
the state meaning and timing comments for the DPE signal.

State Meaning Asserted-Indicates incorrect data bus parity.
Negated-Indicates correct data bus parity.

Timing Comments Assertion-Occurs on the second bus clock cycle after fA is asserted
to the 603e, unless TA is cancelled by an assertion of DRTRY.

High Impedance-Occurs on the third bus clock cycle after TA is
asserted to the 603e.

7.2.7.4 Data Bus Disable (DBDIS)-Input
The Data Bus Disable (DBDIS) signal is an input signal (input-only) on the 603e.
Following are the state meanings and timing comments for the DBDIS signal.

State Meaning Asserted-Indicates (for a write transaction) that the 603e must
release data bus and the data bus parity to high impedance during the
following cycle. The data tenure will remain active, DBB will remain
driven, and the transfer termination signals will still be monitored by
the 603e.

Negated-Indicates the data bus should remain normally driven.
DB DIS is ignored during read transactions.

Timing Comments AssertionlNegation-May be asserted on any clock cycle when the
603e is driving, or will be driving the data bus; may remain asserted
multiple cycles.

7.2.8 Data Transfer Termination Signals
Data termination signals are required after each data beat in a data transfer. Note that in a
single-beat transaction, the data termination signals also indicate the end of the tenure,
while in burst accesses, the data termination signals apply to individual beats and indicate
the end of the tenure only after the final data beat.

For a detailed description of how these signals interact, see Section 8.4.4, "Data Transfer
Termination."

MOTOROLA Chapter 7. Signal Descriptions 7-21

7.2.8.1 Transfer Acknowledge (TA)-Input
The transfer acknowledge (TA) signal is an input signal (input-only) on the 603e. Following
are the state meaning and timing comments for the TA signal.

State Meaning Asserted-Indicates that a single-beat data transfer completed
successfully or that a data beat in a burst transfer completed
successfully (unless DRTRY is asserted on the next bus clock cycle).
Note that TA must be asserted for each data beat in a burst
transaction, and must be asserted during assertion of DRTRY. For
more information, see Section 8.4.4, "Data Transfer Termination."

Negated-(During DBB) indicates that, until TA is asserted, the
603e must continue to drive the data for the current write or must
wait to sample the data for reads.

Timing Comments Assertion-Must not occur before AACK for the current transaction
(if the address retry mechanism is to be used to prevent invalid data
from being used by the processor); otherwise, assertion may occur at
any time during the assertion of DBB. The system can withhold
assertion of TA to indicate that the 603e should insert wait states to
extend the duration of the data beat.

Negation-Must occur after the bus clock cycle of the final (or only)
data beat of the transfer. For a burst transfer, the system can assert TA
for one bus clock cycle and then negate it to advance the burst
transfer to the next beat and insert wait states during the next beat.
(Note: when the 603e is configured for 1:1 clock mode and is
performing a burst read into the data cache, the 603e requires one
wait state between the assertion of TS and the first assertion of TA
for that transaction. If no-DRTRY mode is also selected, the 603e
requires two wait states for 1: 1 clock mode, or I wait state for 1.5: 1
clock mode.)

7.2.8.2 Data Retry (DRTRY)-Input
The data retry (DRTRY) signal is input only on the 603e. Following are the state meaning
and timing comments for the DRTRY signal.

State Meaning Asserted-Indicates that the 603e must invalidate the data from the
previous read operation.

Negated-Indicates that data presented with TA on the previous read
operation is valid. Note that DRTRY is ignored for write
transactions.

Timing Comments Assertion-Must occur during the bus clock cycle immediately after
TA is asserted if a retry is required. The DRTRY signal may be held
asserted for multiple bus clock cycles. When DRTRY is negated,
data must have been valid on the previous clock with TA asserted.

7-22 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Negation-Must occur during the bus clock cycle after a valid data
beat. This may occur several cycles after DBB is negated, effectively
extending the data bus tenure.

Start-up-The DRTRY signal is sampled at the negation of
HRESET; ifDRTRY is asserted, No-DRTRY mode is selected. If
DRTRY is negated at start-up, DRTRY is enabled.

7.2.8.3 Transfer Error Acknowledge (TEA)-Input
The transfer error acknowledge (TEA) signal is input only on the 603e. Following are the
state meaning and timing comments for the TEA signal.

State Meaning Asserted-Indicates that a bus error occurred. Causes a machine
check exception (and possibly causes the processor to enter
checkstop state if machine check enable bit is cleared
(MSR[ME] = 0)). For more information, see Section 4.5.2.2,
"Checkstop State (MSR[ME] = 0)." Assertion terminates the current
transaction; that is, assertion of TA and DRTRY are ignored. The
assertion of TEA causes the negationlhigh impedance ofDBB in the
next clock cycle. However, data entering the GPR or the cache are
not invalidated. (Note that the term, 'exception,' is also referred to as
'interrupt' in the architecture specification.)

Negated-Indicates that no bus error was detected

Timing Comments Assertion-May be asserted while DBB is asserted, and the cycle
after TA during a read operation. TEA should be asserted for one
cycle only.

Negation-TEA must be negated no later than the negation of DBB.

7.2.9 System Status Signals
Most system status signals are input signals that indicate when exceptions are received,
when checkstop conditions have occurred, and when the 603e must be reset. The 603e
generates the output signal, CKSTP _OUT, when it detects a checkstop condition. For a
detailed description of these signals, see Section 8.7, "Interrupt, Checkstop, and Reset
Signals."

7.2.9.1 Interrupt (INT)-Input
The interrupt (INT) signal is input only. Following are the state meaning and timing
comments for the INT signal.

State Meaning Asserted-The 603e initiates an interrupt if MSR[EE] is set;
otherwise, the 603e ignores the interrupt. To guarantee that the 603e
will take the external interrupt, the INT signal must be held active
until the 603e takes the interrupt; otherwise, whether the 603e takes
an external interrupt, depends on whether the MSR[EE] bit was set
while the INT signal was held active.

MOTOROLA Chapter 7. Signal Descriptions 7-23

Negated-Indicates that normal operation should proceed. See
Section 8.7.1, "External Interrupts."

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the input clocks. The !NT input is level-sensitive.
Negation-Should not occur until interrupt is taken.

7.2.9.2 System Management Interrupt (SMI)-Input
The system management interrupt (SMI) signal is input only. Following are the state
meaning and timing comments for the SMI signal.

State Meaning Asserted-The 603e initiates a system management interrupt
operation if the MSR[EE] is set; otherwise, the 603e ignores the
exception condition. The 603e must hold the SMI signal active until
the exception is taken.

Negated-Indicates that normal operation should proceed. See
Section 8.7.1, "External Interrupts."

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the input clocks. The SMI input is level-sensitive.

Negation-Should not occur until interrupt is taken.

7.2.9.3 Machine Check Interrupt (MCP)-Input
The machine check interrupt (MCP) signal is input only on the 603e. Following are the state
meaning and timing comments for the MCP signal.

State Meaning Asserted-The 603e initiates a machine check interrupt operation if
MSR[ME] and HIDO[EMCP] are set; if MSR[ME] is cleared and
HIDO[EMCP] is set, the 603e must terminate operation by internally
gating off all clocks, and releasing all outputs (except CKSTP _OUT)
to the high impedance state. If HIDO[EMCP] is cleared, the 603e
ignores the interrupt condition. The MCP signal must be held
asserted for 2 bus clock cycles.

Negated-Indicates that normal operation should proceed. See
Section 8.7.1, "External Interrupts."

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the input clocks. The MCP input is negative edge­
sensitive.

Negation-May be negated 2 bus cycles after assertion.

7.2.9.4 Checkstop Input (CKSTP _IN)-Input
The checkstop input (CKSTP _IN) signal is input only on the 603e. Following are the state
meaning and timing comments for the CKSTP _IN signal.

State Meaning Asserted-Indicates that the 603e must terminate operation by
internally gating off all clocks, and release all outputs (except

7-24 MPC603e & EC603e RiSe Microprocessors User's Manual MOTOROLA

CKSTP _OUT) to the high impedance state. Once CKSTP _IN has
been asserted it must remain asserted until the system has been reset.

Negated-Indicates that normal operation should proceed. See
Section 8.7.2, "Checkstops."

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the input clocks.

Negation-May occur any time after the CKSTP _OUT output signal
has been asserted.

7.2.9.5 Checkstop Output (CKSTP _OUT)-Output
The checkstop output (CKSTP _OUT) signal is output only on the 603e. Note that the
CKSTP _OUT signal is an open-drain type output, and requires an external pull-up resistor
(for example, 10 kO to Vdd) to assure proper de-assertion of the CKSTP _OUT signal.
Following are the state meaning and timing comments for the CKSTP _OUT signal.

State Meaning Asserted-Indicates that the 603e has detected a checks top
condition and has ceased operation.

Negated-Indicates that the 603e is operating normally.
See Section 8.7.2, "Checkstops."

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the 603e input clocks.

~'"""'-=;;-Negation-Is negated upon assertion of HRESET.

7.2.9.6 Reset Signals
There are two reset signals on the 603e-hard reset (HRESET) and soft reset (SRESET).
Descriptions of the reset signals are as follows:

7.2.9.6.1 Hard Reset (HRESET)-Input
The hard reset (HRESET) signal is input only and must be used at power-on to properly
reset the processor. Following are the state meaning and timing comments for the HRESET
signal.

State Meaning Asserted-Initiates a complete hard reset operation when this input
transitions from asserted to negated. Causes a reset exception as
described in Section 4.5.1.1, "Hard Reset and Power-On Reset."
Output drivers are released to high impedance within five clocks
after the assertion of HRESET.

MOTOROLA

Negated-Indicates that normal operation should proceed. See
Section 8.7.3, "Reset Inputs."

Chapter 7. Signal Descriptions 7-25

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the 603e input clock; must be held asserted for a
minimum of 255 clock cycles after the PLL lock time has been met.
Refer to the appropriate hardware specifications for further timing
comments.

Negation-May occur any time after the minimum reset pulse width
has been met.

This input has additional functionality in certain test modes.

7.2.9.6.2 Soft Reset (SRESET)-Input
The soft reset (SRESET) signal is input only. Following are the state meaning and timing
comments for the SRESET signal.

State Meaning Asserted- Initiates processing for a reset exception as described in
Section 4.5.1.2, "Soft Reset."

Negated-Indicates that normal operation should proceed. See
Section 8.7.3, "Reset Inputs."

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the 603e input clock. The SRESET input is
negative edge-sensitive.
Negation-May be negated 2 bus cycles after assertion.

This input has additional functionality in certain test modes.

7.2.9.7 Processor Status Signals
Processor status signals indicate the state of the processor. This includes the memory
reservation signal, machine quiesce control signals, time base enable signal, and
TLBISYl"~C signal.

7.2.9.7.1 Quiescent Request (QREQ)
The quiescent request (QREQ) signal is output only. Following are the state meaning and
timing comments for the QREQ signal.

State Meaning Asserted-Indicates that the 603e is requesting all bus activity
normally required to be snooped to terminate or to pause so the 603e
may enter a quiescent (low power) state. Once the 603e has entered
a quiescent state, it no longer snoops bus activity.

Negated-Indicates that the 603e is not making a request to enter the
quiescent state.

Timing Comments Assertion/Negation-May occur on any cycle. QREQ will remain
asserted for the duration of the quiescent state.

7.2.9.7.2 Quiescent Acknowledge (QACK)
The quiescent acknowledge (QACK) signal is input only. Following are the state meaning
and timing comments for the QACK signal.

7-26 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

State Meaning Asserted-Indicates that all bus activity that requires snooping has
terminated or paused, and that the 603e may enter the quiescent (or
low power) state.

Negated-Indicates that the 603e may not enter a quiescent state,
and must continue snooping the bus.

Timing Comments AssertionlNegation-May occur on any cycle following the
assertion of QREQ, and must be held asserted for a minimum of one
bus clock cycle.

Start-Up-QACK is sampled at the negation of HRESET to select
reduced-pinout mode; if QACK is asserted at start-up, reduced­
pinout mode is disabled.

7.2.9.7.3 Reservation (RSRV)-Output
The reservation (RSRV) signal is output only on the 603e. Following are the state meaning
and timing comments for the RSRV signal.

State Meaning AssertedlNegated-Represents the state of the reservation
coherency bit in the reservation address register that is used by the
lwarx and stwcx. instructions. See Section 8.8.1, "Support for the
lwarx/stwcx. Instruction Pair."

Timing Comments AssertionlNegation-Occurs synchronously with respect to bus
clock cycles. The execution of an lwarx instruction sets the internal
reservation condition.

7.2.9.7.4 Time Base Enable (TBEN)-Input
The time base enable (TBEN) signal is input only on the 603e. Following are the state
meanings and timing comments for the TBEN signal.

State Meaning Asserted-Indicates that the time base should continue clocking.
This input is essentially a "count enable" control for the time base
counter.

Negated-Indicates the time base should stop clocking.

Timing Comments AssertionlNegation-May occur on any cycle.

7.2.9.7.5 TLBI Sync (TLBISYNC)
The TLBI Sync (TLBISYNC) signal is input only on the 603e. Following are the state
meanings and timing comments for the TLBISYNC signal.

State Meaning

MOTOROLA

Asserted-Indicates that instruction execution should stop after
execution of a tlbsync instruction.

Negated-Indicates that the instruction execution may continue or
resume after the completion of a tlbsync instruction.

Chapter 7. Signal Descriptions 7-27

Timing Comments Assertion/Negation-May occur on any cycle.

Start-Up-TLBISYNC is sampled at the negation ofHRESET to
select 32-bit data bus mode; ifTLBISYNC is negated at start-up, 32-
bit mode is disabled and the default 64-bit mode is selected.

7.2.10 COP/Scan Interface
The 603e has extensive on-chip test capability including the following:

• Built-in instruction and data cache self test (BIST)
• Debug control/observation (COP)

• Boundary scan (IEEE 1149.1 compliant interface)

• LSSD test control

The BIST hardware is not exercised as part of the power-on reset (PaR) sequence. The
COP and boundary scan logic are not used under typical operating conditions.

Detailed discussion of the 603e test functions is beyond the scope of this document;
however, sufficient information has been provided to allow the system designer to disable
the test functions that would impede normal operation.

The COP/scan interface is shown in Figure 7-2. For more information, see Section 8.9,
"IEEE 1 149. I-Compliant Interface."

-----1 .. ~1 TOI (Test Data Input)

"I TMS (Test Mode Seiect)

-----1 .. ~ TCK (Test Clock input)

.. TOO (Test Data Output)

---...... ~I TRST (Test Reset)

Figure 7-2. IEEE 1149.1-Compliant Boundary Scan Interface

7.2.11 Pipeline Tracking Support
The 603e provides for nonintrusive instruction pipeline tracking. Setting the HIDO[EICE]
bit causes the address parity and data parity signals to be redefined as outputs providing
pipeline tracking information. These signals toggle at the CPU clock rate and will have
special loading and timing requirements when in this mode.

7-28 MPC603e & EC603e RiSe Microprocessors User's Manual MOTOROLA

Table 7-9 shows the outputs when HIDO[EICE] is set.

Table 7-9. Pipeline Tracking Outputs

Bit(s) Function Encoding

DP[0-1] Fetch 00 None
01 Two
10 One
11 Branch

DP[2-3] Retire 00 None
01 Two
10 One
11 Exception

DP[4-5] Fold 00 None
01 First
10 Second
11 Both

DP[6-7] Prediction 00 Nonspec
01 Spec_2nd
10 Spec_both
11 Flush_spec

AP[0-3] FEA FEA[20-23]

Given the object code, these signals provide sufficient information to track instruction
execution (except for register indirect branches). Register indirect branches may be tracked
either by examining and matching potential target streams (nonintrusive but not always
resolvable), or by forcing register indirect branch targets to be fetched externally by setting
HIDO[FBIOB].

Setting HIDO[EICE] also enables the processor clock to the CLK_OUT signal which
provides a synchronizing clock to the pipeline tracking outputs.

7.2.12 Clock Signals
The clock signal inputs of the 603e determine the system clock frequency and provide a
flexible clocking scheme that allows the processor to operate at an integer multiple of the
system clock frequency.

Refer to the appropriate hardware specifications for exact timing relationships of the clock
signals. .

MOTOROLA Chapter 7. Signal Descriptions 7-29

7.2.12.1 System Clock (SYSCLK)-Input
The 603e requires a single system clock (SYSCLK) input. This input sets the frequency of
operation for the bus interface. Internally, the 603e uses a phase-locked loop (PLL) circuit
to generate a master clock for all of the CPU circuitry (including the bus interface circuitry)
which is phase-locked to the SYSCLK input. The master clock may be set to an integer or
half-integer multiple (1:1, 1.5:1,2:1,2.5:1,3:1,3.5:1 or 4:1) of the SYSCLK frequency
allowing the CPU core to operate at an equal or greater frequency than the bus interface.

State Meaning AssertedlNegated-The SYSCLK input is the primary clock input
for the 603e, and represents the bus clock frequency for 603e bus
operation. Internally, the 603e may be operating at an integer or half­
integer multiple of the bus clock frequency.

Timing Comments Duty cycle-Refer to the appropriate hardware specifications for
timing comments.
Note: SYSCLK is used as the frequency reference for the internal
PLL clock generator, and must not be suspended or varied during
normal operation to ensure proper PLL operation.

7.2.12.2 Test Clock (CLK_OUT)-Output
The test clock (CLK_OUT) signal is an output-only signal on the 603e. Following are the
state meaning and timing comments for the CLK_OUT signal.

State Meaning AssertedlNegated-Provides PLL clock output for PLL testing and
monitoring. The CLK_OUT signal clocks at either the processor
clock frequency, the bus clock frequency, or the half-bus clock
frequency if enabled by the appropriate bits in the HIDO register; the
default state of the CLK_OUT signal is high-impedance. The
CLK.-OUT signal is provided for testing purposes only_

Timing Comments AssertionlNegation-Refer to the appropriate hardware
specifications for timing comments.

7.2.12.3 PLL Configuration (PLL_CFG[O-3])-lnput
The PLL (phase-lock loop) is configured by the PLL_CFG[0-3] signals. For a given
SYSCLK (bus) frequency, the PLL configuration signals set the internal CPU frequency of
operation.

Following are the state meaning and timing comments for the PLL_CFG[0-3] signals.

State Meaning AssertedlNegated- Configures the operation of the PLL and the
internal processor clock frequency. Settings are based on the desired
bus and internal frequency of operation.

Timing Comments AssertionlNegation-Must remain stable during operation; should
only be changed during the assertion of HRESET or during sleep
mode. These bits may be read through bits PCO-PC3 in the HID 1
register.

7-30 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 7-10. PLL Configuration

Bus, CPU and PLL Frequencies

CPU!
Bus Bus Bus Bus Bus Bus Bus

PLL_CFG[D-3] SYSCLK
Ratio

16.6 MHz 20 MHz 25 MHz 33.3 MHz 40 MHz 50 MHz 66.6 MHz

0000 1:1 - - - - - - 66.6
(133)

0001 1:1 - - - 33.3 40 50 -
(133) (160) (200)

0010 1 :1 16.6 20 25 - - - -
(133) (160) (200)

1100 1.5:1 - - - - - 75 100
(150) (200)

0100 2:1 - - - 66.6 80 100 -
(133) (160) (200)

0101 2:1 33.3 40 50 - - - -
(133) (160) (200)

0110 2.5:1 - - - 83.3 100 - -
(166) (200)

1000 3:1 - - 75 100 - - -
(150) (200)

1110 3.5:1 - 70 87.5 - - - -
(140) (175)

1010 4:1 66.6 80 100 - - - -
(133) (160) (200)

0011 PLLBypass

1111 Clock Off

Notes:

1. Some PLL configurations may select bus, CPU, or PLL frequencies which are not useful, not
supported, or not tested for by the 603e. For complete and up-to-date information, refer to the
appropriate hardware specifications. PLL frequencies, shown in parentheses, should not fall below
133 MHz, and should not exceed 200 MHz.

2. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly, and the bus is
set for 1:1 mode operation. In clock-off mode, no clocking occurs inside the 603e regardless of the
SYSCLK input.

MOTOROLA Chapter 7. Signal Descriptions 7-31

7.2.13 Power and Ground Signals
The 603e ptovides the following connections for power and ground:

• VDD and OVDD-The VDD and OVDD signals provide the connection for the
supply voltage. On the 603e, there is no electrical distinction between the VDD and
the OVDD signals.

• AVDD-The AVDD power signal provides power to the clock generation phase­
lock ed loop. See the appropriate hardware specifications for information on how to
use this signal.

• GND and OGND-The GND and OGND signals provide the connection for
grounding the 603e. On the 603e, there is no electrical distinction between the GND
and OGND signals.

7-32 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Chapter 8
System Interface Operation
This chapter describes the PowerPC 603e microprocessor's bus interface and its operation.
It shows how the 603e signals, defined in Chapter 7, "Signal Descriptions," interact to
perform address and data transfers.

8.1 Overview
The system interface prioritizes requests for bus operations from the instruction and data
caches, and performs bus operations per the 603e bus protocol. It includes address register
queues, prioritization logic, and bus control unit. The system interface latches snoop
addresses for snooping in the data cache and in the address register queues, snoops for
direct-store reply operations and for reservations controlled by the Load Word and Reserve
Indexed (Iwarx) and Store Word Conditional Indexed (stwcx.) instructions, and maintains
the touch load address for the cache. The interface allows one level of pipelining; that is,
with certain restrictions discussed later, there can be two outstanding transactions at any
given time. Accesses are prioritized with load operations preceding store operations.

Instructions are automatically fetched from the memory system into the instruction unit
where they are dispatched to the execution units at a peak rate of three instructions per
clock. Conversely, load and store instructions explicitly specify the movement of operands
to and from the integer and floating-point register files and the memory system. (The
EC603e microprocessor does not support the floating-point register files.)

When the 603e encounters an instruction or data access, it calculates the logical address
(effective address in the architecture specification) and uses the low-order address bits to
check for a hit in the on-chip, l6-Kbyte instruction and data caches. During cache lookup,
the instruction and data memory management units (MMUs) use the higher-order address
bits to calculate the virtual address, from which they calculate the physical address (real
address in the architecture specification). The physical address bits are then compared with
the corresponding cache tag bits to determine if a cache hit occurred. If the access misses
in the corresponding cache, the physical address is used to access system memory.

In addition to the loads, stores, and instruction fetches, the 603e performs software table
search operations following TLB misses, cache cast-out operations when least-recently
used cache lines are written to memory after a cache miss, and cache-line snoop push-out
operations when a modified cache line experiences a snoop hit from another bus master.

MOTOROLA Chapter 8. System Interface Operation 8-1

Figure 8-1 shows the address path from the execution units and instruction fetcher, through
the translation logic to the caches and system interface logic.

The 603e uses separate address and data buses and a variety of control and status signals
for performing reads and writes. The address bus is 32 bits wide and the data bus can be
configured to be 32 or 64 bits wide. The interface is synchronous-all 603e inputs are
sampled at and all outputs are driven from the rising edge of the bus clock. The bus can run
at the full processor-clock frequency or at an integer division of the processor-clock speed.
While the 603e operates at 3.3 volts, all the I/O signals are 5.0 volt TTL-compatible.

8.1.1 Operation of the Instruction and Data Caches
The 603e provides independent instruction and data caches. Each cache is a physically­
addressed, l6-Kbyte cache with four-way set associativity. Both caches consist of 128 sets
of four cache lines , with eight words in each cache line.

Because the data cache on the 603e is an on-chip, write-back primary cache, the
predominant type of transaction for most applications is burst-read memory operations,
followed by burst-write memory operations, direct-store operations, and single-beat
(noncacheable or write-through) memory read and write operations. Additionally, there can
be address-only operations, variants of the burst and single-beat operations (global memory
operations that are snooped, and atomic memory operations, for example), and address
retry activity (for example, when a snooped read access hits a modified line in the cache).

Since the 603e data cache tags are single ported, simultaneous load or store and snoop
accesses cause resource contention. Snoop accesses have the highest priority and are given
first access to the tags, unless the snoop access coincides with a tag write, in which case the
snoop is retried and must re-arbitrate for access to the cache. Loads or stores that are
deferred due to snoop accesses are performed on the clock cycle following the snoop.

The 603e supports a three-state coherency protocol that supports the modified, exclusive,
and invalid (MEl) cache states. The protocol is a subset of the MESI
(modifiedlexclusive/sharedlinvalid) four-state protocol and operates coherently in systems
that contain four-state caches. With the exception of the dcbz instruction, the 603e does not
broadcast cache control instructions. The cache control instructions are intended for the
management of the local cache but not for other caches in the system.

Cache lines in the 603e are loaded in four beats of 64 bits each (or eight beats of 32 bits
each when operating in 32-bit bus mode). The burst load is performed as "critical double
word first." The cache that is being loaded is blocked to internal accesses until the load
completes (that is, no hits under misses). The critical double word is simultaneously written
to the cache and forwarded to the requesting unit, thus minimizing stalls due to load delays.

8-2 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

64 Bit

t
SEQUENTIAL 64 Bit BRANCH

FETCHER PROCESSING

164 Bit UNIT

EI3 INSTRUCTION
QUEUE

SYSTEM ~64Bit REGISTER
UNIT

I- Dispatch Unit
[II INSTRUCTION UNIT

, 64 Bit

-= '"""'" .,
j 64 Bit ~ 64 Bitl 1 64 Bit .1

INTEGER 1+ I- GPR File ~ LOA~~~ORE~ FPR File ~ FLOATING- I
UNIT PQINTUNIT I
~ PP Rename FP Rename rz::::II I Registers [II I Registers

c::RlliJ
I I~ I

I FPSCRI I

I I I
_.J

32 Bit
COMPLETION

UNIT
DMMU IMMU

§ ISRsl~ 64 Bit ISRsl~
I DTLB I ~ IITLBI~

Power Time Base I Dissipation Counter/
Control Decremente

Tags J 16-KbYte} 16-Kby1e}
JTAG/COP Clock D Cache

Tags
I Cache

Interface Multiplier

i l
Touch Load Buffer I PROCESSOR BUS

Copyback Buffer J INTERFACE

32-BIT ADDRESS BUS 1
32-/64-BIT DATA BUS

• Note that the EC603e microprocessor does not support the floating-point unit or the floating-point register file.

Figure 8-1. Block Diagram

MOTOROLA Chapter 8. System Interface Operation 8-3

Cache lines are selected for replacement based on an LRU (least recently used) algorithm.
Each time a cache line is accessed, it is tagged as the most recently used line of the set.
When a miss occurs, if both lines in the set are marked as valid, the least recently used line
is replaced with the new data. When data to be replaced is in the modified state, the
modified data is written into a write-back buffer while the missed data is being read from
memory. When the load completes, the 603e then pushes the replaced line from the write­
back buffer to main memory in a burst write operation.

8.1.2 Operation of the System Interface
Memory accesses can occur in single-beat (1-8 bytes) and four-beat (32 bytes) burst data
transfers when the 603e is configured with a 64-bit data bus. When the 603e is in the
optional 32-bit data bus mode, memory accesses can occur in single-beat (1 to 4 bytes),
two-beat (8 bytes), and eight-beat (32 bytes) bursts. The address and data buses are
independent for memory accesses to support pipelining and split transactions. The 603e can
pipeline as many as two transactions and has limited support for out-of-order split-bus
transactions.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism. is flexible,
allowing the 603e to be integrated into systems that implement various fairness and bus­
parking procedures to avoid arbitration overhead.

'TYPically, memory accesses are weakly ordered-sequences of operations, including
load/store string and multiple instructions, do not necessarily complete in the order they
begin-maximizing the efficiency of the bus without sacrificing coherency of the data. The
603e allows load operations to precede store operations (except when a dependency exists).
In addition, the 603e can be configured to reorder high-priority store operations ahead of
lower-priority store operations. Because the processor can dynamically optimize run-time
ordering of load/store traffic, overall performance is improved.

Note that the Synchronize (sync) instruction can be used to enforce strong Qrdering.

The following sections describe how the 603e interface operates, providing detailed timing
diagrams that illustrate how the signals interact. A collection of more general timing
diagrams are included as examples of typical bus operations.

Figure 8-2 is a legend of the conventions used in the timing diagrams.

This is a synchronous interface-all 603e input signals are sampled and output signals are
driven on the rising edge of the bus clock cycle (see the PowerPC 603e RISC
Microprocessor Hardware Specifications for exact timing information).

8-4 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

apO

qual BG

< >

\
\ '- ____ J

Bar over signal name indicates active low

603e input (while 603e is a bus master)

603e output (while 603e is a bus master)

603e output (grouped: here, address plus attributes)

603e internal signal (inaccessible to the user, but used in I
diagrams to clarify operations)

Compelling dependency-event will occur on the
next clock cycle

Prerequisite dependency-event will occur on an
undetermined subsequent clock cycle

603e three-state output or input

603e nonsampled input

Signal with sample point

A sampled condition (dot on high or low state)
with multiple dependencies

Timing for a signal had it been asserted (it is not
actually asserted)

Figure 8-2. Timing Diagram Legend

8.1.2.1 Optional 32-Bit Data Bus Mode
The 603e supports an optional 32-bit data bus mode. The 32-bit data bus mode operates the
same as the 64-bit data bus mode with the exception of the byte lanes involved in the
transfer and the number of data beats that are performed. The number of data beats required
for a data tenure in the 32-bit data bus mode is one, two, or eight beats depending on the
size of the program transaction and the cache mode for the address. For additional
information about 32-bit data bus mode, see Section 8.6.1, "32-Bit Data Bus Mode."

MOTOROLA Chapter 8. System Interface Operation 8-5

8.1.3 Direct-Store Accesses
The 603e does not support the extended transfer protocol for accesses to the direct-store
storage space. The transfer protocol used for any given access is selected by the T bit in the
MMU segment registers; if the T bit is set, the memory access is a direct-store access. An
attempt to access to a direct-store segment will result in the 603e taking a DSI exception.

8.2 Memory Access Protocol
Memory accesses are divided into address and data tenures. Each tenure has three phases­
bus arbitration, transfer, and termination. The 603e also supports address-only transactions.
Note that address and data tenures can overlap, as shown in Figure 8-3.

Figure 8-3 shows that the address and data tenures are distinct from one another and that
both consist of three phases-arbitration, transfer, and termination. Address and data
tenures are independent (indicated in Figure 8-3 by the fact that the data tenure begins
before the address tenure ends), which allows split-bus transactions to be implemented at
the system level in multiprocessor systems. Figure 8-3 shows a data transfer that consists
of a single-beat transfer of as many as 64 bits. Four-beat burst transfers of 32-byte cache
lines require data transfer termination signals for each beat of data.

ADDRESS TENURE

__ ------------~A~------------~ r ~

ARBITRATION TERMINATION

/
INDEPENDENT ADDRESS AND DATA

\ DATA TENURE
~ ____ A,----_ r ,
I ARBITRATION I SINGLE-BEAT TRANSFER I TERMINATION I

Figure 8-3_ Overlapping Tenures on the Bus for a Single-Beat Transfer

8-6 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The basic functions of the address and data tenures are as follows:

Address tenure

- Arbitration: During arbitration, address bus arbitration signals are used to gain
mastership of the address bus.

- Transfer: After the 603e is the address bus master, it transfers the address on the
address bus. The address signals and the transfer attribute signals control the
address transfer. The address parity and address parity error signals ensure the
integrity of the address transfer.

- Termination: After the address transfer, the system signals that the address tenure
is complete or that it must be repeated.

• Data tenure

- Arbitration: To begin the data tenure, the 603e arbitrates for mastership of the
data bus.

- Transfer: After the 603e is the data bus master, it samples the data bus for read
operations or drives the data bus for write operations. The data parity and data
parity error signals ensure the integrity of the data transfer.

- Termination: Data termination signals are required after each data beat in a data
transfer. Note that in a single-beat transaction, the data termination signals also
indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the
final data beat.

The 603e generates an address-only bus transfer during the execution of the dcbz
instruction, which uses only the address bus with no data transfer involved. Additionally,
the 603e's retry capability provides an efficient snooping protocol for systems with multiple
memory systems (including caches) that must remain coherent.

8.2.1 Arbitration Signals
Arbitration for both address and data bus mastership is performed by a central, external
arbiter and, minimally, by the arbitration signals shown in Section 7.2.1, "Address Bus
Arbitration Signals." Most arbiter implementations require additional signals to coordinate
bus master/slave/snooping activities. Note that address bus busy (ABB) and data bus busy
(DBB) are bidirectional signals. These signals are inputs unless the 603e has mastership of
one or both of the respective buses; they must be connected high through pull-up resistors
so that they remain negated when no devices have control of the buses.

MOTOROLA Chapter 8. System Interface Operation 8-7

The following list describes the address arbitration signals:

• BR (bus request)-Assertion indicates that the 603e is requesting mastership of the
address bus.

• BG (bus grant)-Assertion indicates that the 603e may, with the proper
qualification, assume mastership of the address bus. A qualified bus grant occurs
when BG is asserted and ABB and ARTRY are negated.

If the 603e is parked, BR need not be asserted for the qualified bus grant.

• ABB (address bus busy)-Assertion by the 603e indicates that the 603e is the
address bus master.

The following list describes the data arbitration signals:

• DBG (data bus grant)-Indicates that the 603e may, with the proper qualification,
assume mastership of the data bus. A qualified data bus grant occurs when DBG is
asserted while DBB, DRTRY, and ARTRY are negated.

The DBB signal is driven by the current bus master, DRTRY is only driven from the
bus, and ARTRY is from the bus, but only for the address bus tenure associated with
the current data bus tenure (that is, not from another address tenure).

• DBWO (data bus write only)-Assertion indicates that the 603e may perform the
data bus tenure for an outstanding write address even if a read address is pipelined
before the write address. If DBWO is asserted, the 603e will assume data bus
mastership for a pending data bus write operation; the 603e will take the data bus for
a pending read operation if this input is asserted along with DBG and no write is
pending. Care must be taken with DBWO to ensure the desired write is queued (for
exampie, a cache-line snoop push-out operation).

• DBB (data bus busy)-Assertion by the 603e indicates that the 603e is the data bus
master. The 603e always assumes data bus mastership if it needs the data bus and is
given a qualified data bus grant (see DBG).

For more detailed information on the arbitration signals, refer to Section 7.2.1,
"Address Bus Arbitration Signals," and Section 7.2.6, "Data Bus Arbitration
Signals."

8.2.2 Address Pipelining and Split-Bus Transactions
The 603e protocol provides independent address and data bus capability to support
pipelined and split-bus transaction system organizations. Address pipelining allows the
address tenure of a new bus transaction to begin before the data tenure of the current
transaction has finished. Split-bus transaction capability allows other bus activity to occur
(either from the same master or from different masters) between the address and data
tenures of a transaction.

While this capability does not inherently reduce memory latency, support for address
pipelining and split-bus transactions can greatly improve effective bus/memory throughput.
For this reason, these techniques are most effective in shared-memory multiprocessor

8-8 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

implementations where bus bandwidth IS an important measurement of system
performance.

External arbitration is required in systems in which multiple devices must compete for the
system bus. The design of the external arbiter affects pipelining by regulating address bus
grant (BG), data bus grant (DBG), and address acknowledge (AACK) signals. For example,
a one-level pipeline is enabled by asserting AACK to the current address bus master and
granting mastership of the address bus to the next requesting master before the current data
bus tenure has completed. Two address tenures can occur before the current data bus tenure
completes.

The 603e can pipeline its own transactions to a depth of one level (intraprocessor
pipelining); however, the 603e bus protocol does not constrain the maximum number of
levels of pipelining that can occur on the bus between multiple masters (interprocessor
pipelining). The external arbiter must control the pipeline depth and synchronization
between masters and slaves.

In a pipelined implementation, data bus tenures are kept in strict order with respect to
address tenures. However, external hardware can further decouple the address and data
buses, allowing the data tenures to occur out of order with respect to the address tenures.
This requires some form of system tag to associate the out-of-order data transaction with
the proper originating address transaction (not defined for the 603e interface). Individual
bus requests and data bus grants from each processor can be used by the system to
implement tags to support interprocessor, out-of-order transactions.

The 603e supports a limited intraprocessor out-of-order, split-transaction capability via the
data bus write only (DBWO) signal. For more information about using DBWO, see
Section 8.10, "Using Data Bus Write Only."

8.3 Address Bus Tenure
This section describes the three phases of the address tenure-address bus arbitration,
address transfer, and address termination.

8.3.1 Address Bus Arbitration
When the 603e needs access to the external bus and it is not parked (BG is negated), it
asserts bus request (BR) until it is granted mastership of the bus and the bus is available (see
Figure 8-4). The external arbiter must grant master-elect status to the potential master by
asserting the bus grant (BG) signal. The 603e requcsting the bus determines that the bus is
available when the ABB input is negated. When the address bus is not busy (ABB input is
negated), BG is asserted and the address retry (ARTRY) input is negated. This is referred
to as a qualified bus grant. The potential master assumes address bus mastership by
asserting ABB when it receives a qualified bus grant.

MOTOROLA Chapter 8. System Interface Operation 8-9

-1 o
Logical Bus Clock

Figure 8-4. Address Bus Arbitration

External arbiters must allow only one device at a time to be the address bus master. In
implementations in which no other device can be a master, BG can be grounded (always
asserted) to continually grant mastership of the address bus to the 603e.

If the 603e asserts BR before the external arbiter asserts BG, the 603e is considered to be
unparked, as shown in Figure 8-4. Figure 8-5 shows the parked case, where a qualified bus
grant exists on the clock edge following a need_bus condition. Notice that the bus clock
cycle required for arbitration is eliminated if the 603e is parked, reducing overall memory
latency for a transaction. The 603e always negates ABB for at least one bus clock cycle
after AACK is asserted, even if it is parked and has another transaction pending.

Typically, bus parking is provided to the device that was the most recent bus master;
however, system designers may choose other schemes such as providing unrequested bus
grants in situations where it is easy to correctly predict the next device requesting bus
mastership.

8-10 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

-1 o

~B© ~------~--------~~
-;....;----------;

Figure 8-5. Address Bus Arbitration Showing Bus Parking

When the 603e receives a qualified bus grant, it assumes address bus mastership by
asserting ABB and negating the BR output signal. Meanwhile, the 603e drives the address
for the requested access onto the address bus and asserts TS to indicate the start of a new
transaction.

When designing external bus arbitration logic, note that the 603e may assert BR without
using the bus after it receives the qualified bus grant. For example, in a system using bus
snooping, if the 603e asserts BR to perform a replacement copy-back operation, another
device can invalidate that line before the 603e is granted mastership of the bus. Once the
603e is granted the bus, it no longer needs to perform the copy-back operation; therefore,
the 603e does not assert ABB and does not use the bus for the copy-back operation. Note
that the 603e asserts BR for at least one clock cycle in these instances.

8.3.2 Address Transfer
During the address transfer, the physical address and all attributes of the transaction are
transferred from the bus master to the slave device(s). Snooping logic may monitor the
transfer to enforce cache coherency; see discussion about snooping in Section 8.3.3,
"Address Transfer Termination."

MOTOROLA Chapter 8. System Interface Operation 8-11

The signals used in the address transfer include the following signal groups:

• Address transfer start signal: Transfer start (TS)

• Address transfer signals: Address bus (A[0-31]), address parity (AP[O-3]), and
address parity error (APE)

• Address transfer attribute signals: Transfer type (TT[O-4]), transfer code (TC[O-l]),
transfer size (TSIZ[0-2]), transfer burst (TBST), cache inhibit (CI), write-through
(WT), global (GBL), and cache set element (CSE[O-l])

Figure 8-6 shows that the timing for all of these signals, except TS and APE, is identical.
All of the address transfer and address transfer attribute signals are combined into the
ADDR+ grouping in Figure 8-6. The TS signal indicates that the 603e has begun an address
transfer and that the address and transfer attributes are valid (within the context of a
synchronous bus). The 603e always asserts TS coincident with ABB. As an input, TS need
not coincide with the assertion of ABB on the bus (that is, TS can be asserted with, or on,
a subsequent clock cycle after ABB is asserted; the 603e tracks this transaction correctly).

o 2 3 4

Figure 8-6. Address Bus Transfer

In Figure 8-6, the address transfer occurs during bus clock cycles 1 and 2 (arbitration occurs
in bus clock cycle 0 and the address transfer is terminated in bus clock 3). In this diagram,
the address bus termination input, AACK, is asserted to the 603e on the bus clock following
assertion of TS (as shown by the dependency line). This is the minimum duration of the
address transfer for the 603e; the duration can be extended by delaying the assertion of
AACK for one or more bus clocks.

8-12 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

8.3.2.1 Address Bus Parity
The 603e always generates 1 bit of correct odd-byte parity for each of the 4 bytes of address
when a valid address is on the bus. The calculated values are placed on the AP[O-3] outputs
when the 603e is the address bus master. If the 603e is not the master and TS and GBL are
asserted together (qualified condition for snooping memory operations), the calculated
values are compared with the AP[O-3] inputs. If there is an error, and address parity
checking is enabled (HIDO[EBA] set to 1), the APE output is asserted. An address bus
parity error causes a checkstop condition if MSR[ME] is cleared to O. For more information
about checkstop conditions, see Chapter 4, "Exceptions."

8.3.2.2 Address Transfer Attribute Signals
The transfer attribute signals include several encoded signals such as the transfer type
(TT[O-4]) signals, transfer burst (TBST) signal, transfer size (TSIZ[O-2]) signals, and
transfer code (TC[O-I]) signals. Section 7.2.4, "Address Transfer Attribute Signals,"
describes the encodings for the address transfer attribute signals.

8.3.2.2.1 Transfer Type (TT[0-4]) Signals
Snooping logic should fully decode the transfer type signals if the GBL signal is asserted.
Slave devices can sometimes use the individual transfer type signals without fully decoding
the group. For a complete description of the encoding for transfer type signals TT[O-4],
refer to Table 8-1 and Table 8-2.

8.3.2.2.2 Transfer Size (TSIZ[0-2]) Signals
The transfer size signals (TSIZ[O-2]) indicate the size of the requested data transfer as
shown in Table 8-1. The TSIZ[0-2] signals may be used along with TBST andA[29-31] to
determine which portion of the data bus contains valid data for a write transaction or which
portion of the bus should contain valid data for a read transaction. Note that for a burst
transaction (as indicated by the assertion of TBST), TSIZ[O-2] are always set to ObOlO.
Therefore, if the TBST signal is asserted, the memory system should transfer a total of eight
words (32 bytes), regardless of the TSIZ[O-2] encoding.

MOTOROLA Chapter 8. System Interface Operation 8-13

Table 8-1. Transfer Size Signal Encodings

TBST TSIZO TSIZ1 TSIZ2 Transfer Size

Asserted a 1 a Eight-word burst

Negated a a a Eight bytes

Negated a a 1 One byte

Negated a 1 a Two bytes

Negated a 1 1 Three bytes

Negated 1 a a Four bytes

Negated 1 a 1 Five bytes (N/A)

Negated 1 1 a Six bytes (N/A)

Negated 1 1 1 Seven bytes (N/A)

The basic coherency size of the bus is defined to be 32 bytes (corresponding to one cache
line). Data triIDsfers that cross an aligned, 32-byte boundary either must present a new
address onto the bus at that boundary (for coherency consideration) or must operate as
noncoherent data with respect to the 603e. The 603e never generates a bus transaction with
a transfer size of 5 bytes, 6 bytes, or 7 bytes.

8.3.2.3 Burst Ordering During Data Transfers
During burst data transfer operations, 32 bytes of data (one cache line) are transferred to or
from the cache in order. Burst write transfers are always performed zero double word first,
but since burst reads are performed critical double word first, a burst read transfer may not
start with the first double word of the cache line, and the cache line fill may wrap around
the end of the cache line. This section describes the burst ordering for the 603e when
operating in either the 64- or 32-bit bus mode.

Table 8-2 describes the burst ordering when the 603e is configured with a 64-bit data bus.

Table 8-2. Burst Ordering-64-Bit Bus

For Starting Address:
Data Transfer

A[27-28] = 00 A[27-28] = 01 A[27-28] = 10 A[27-28] = 11

First data beat OWO OW1 OW2 OW3

Second data beat OW1 OW2 OW3 OWO

Third data beat OW2 OW3 OWO OW1

Fourth data beat OW3 OWO OW1 OW2

Note: A[29-31] are always ObOOO for burst transfers by the 603e.

8-14 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 8-3 describes the burst ordering when the 603e is configured with a 32-bit bus.

Table 8-3. Burst Ordering-32-Bit Bus

For Starting Address:
Data Transfer

A[27-28] = 00 A[27-28] = 01 A[27-28] = 10 A[27-28] = 11

First data beat DWO-U DW1-U DW2-U DW3-U

Second data beat DWO-L DW1-L DW2-L DW3-L

Third data beat DW1-U DW2-U DW3-U DWO-U

Fourth data beat DW1-L DW2-L DW3-L DWO-L

Fifth data beat DW2-U DW3-U DWO-U DW1-U

Sixth data beat DW2-L DW3-L DWO-L DW1-L

Seventh data beat DW3-U DWO-U DW1-U DW2-U

Eighth data beat DW3-L DWO-L DW1-L DW2-L

Notes: A[29-31] are always ObOOO for burst transfers by the 603e.

"U" and "I;' represent the upper and lower word of the double word respectively.

8.3.2.4 Effect of Alignment in Data Transfers (64-Bit Bus)
Table 8-4 lists the aligned transfers that can occur on the 603e bus when configured with a
64-bit width. These are transfers in which the data is aligned to an address that is an integer
multiple of the size of the data. For example, Table 8-4 shows that 1-byte data is always
aligned; however, for a 4-byte word to be aligned, it must be oriented on an address that is
a multiple of 4.

Table 8-4. Aligned Data Transfers (64-Bit Bus)

Data Bus Byte Lane(s)
Transfer Size TSIZO TSIZ1 TSIZ2 A[29-31]

0 1 2 3 4 5 6 7

Byte 0 0 1 000 .,j - - - - - - -

0 0 1 001 - .,j - - - - - -

0 0 1 010 - - .,j - - - - -
0 0 1 011 - - - .,j - - - -
0 0 1 100 - - - - .,j - - -

0 0 1 101 - - - - - .,j - -

0 0 1 110 - - - - - - .,j -
0 0 1 111 - - - - - - - .,j

MOTOROLA Chapter 8. System Interface Operation 8-15

Table 8-4. Aligned Data Transfers (64-Bit Bus) (Continued)

Data Bus Byte Lane(s)
Transfer Size TSIZO TSIZ1 TSIZ2 A[2~1]

0 1 2 3 4 5 6

Half word 0 1 0 000 .,j .,j - - - - -
0 1 0 010 - - .,j .,j - - -
0 1 0 100 - - - - .,j .,j -

0 1 0 110 - - - - - - .,j

Word 1 0 0 000 .,j .,j .,j .,j - - -

1 0 0 100 - - - - .,j .,j .,j

Double word 0 0 0 000 .,j .,j .,j .,j .,j .,j .,j

Notes:

These entries indicate the byte portions of the requested operand that are read or written during that
bus transaction.

These entries are not required and are ignored during read transactions and are driven with unde­
fined data during all write transactions.

7

-
-

-
.,j

-
.,j

.,j

The 603e supports misaligned memory operations, although their use may substantially
degrade performance. Misaligned memory transfers address memory that is not aligned to
the size of the data being transferred (such as, a word read of an odd byte address). Although
most of these operations hit in the primary cache (or generate burst memory operations if
they miss), the 603e interface supports misaligned transfers within a word (32-bit aligned)
boundary, as shown in Table 8-5. Note that the 4-byte transfer in Table 8-5 is only one
example of misalignment. As long as the attempted transfer does not cross a word
boundary, the 603e can transfer the data on the misaligned address (for example, a half­
word read from an odd byte-aligned address). An attempt to address data that crosses a
word boundary requires two bus transfers to access the data. Note that an attempt to load or
store a floating-point operand that is not word-aligned will result in a floating-point
alignment exception. For more information, refer to Section 4.5.6, "Alignment Exception
(Ox00600)."

Due to the performance degradations associated with misaligned memory operations, they
are best avoided. In addition to the double-word straddle boundary condition, the address
translation logic can generate substantial exception overhead when the load/store multiple
and load/store string instructions access misaligned data. It is strongly recommended that
software attempt to align code and data where possible.

8-16 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 8-5. Misaligned Data Transfers (Four-Byte Examples)

Transfer Size
Data Bus Byte Lanes

(Four Bytes)
TSIZ[o-2] A[29-31]

0 1 2 3 4 5 6 7

Aligned 100 000 A A A A - - - -

Misaligned-first access 011 001 A A A - - - -

second access 001 100 - - - - A - - -

Misaligned-first access 010 010 - - A A - - - -

second access 011 100 - - - - A A - -

Misaligned-first access 001 011 - - - A - - - -
second access 011 100 - - - - A A A -

Aligned 100 100 - - - - A A A A

Misaligned-first access 011 101 - - - - - A A A

second access 001 000 A - - - - - - -

Misaligned-first access 010 1 1 0 - - - - - - A A

second access 010 000 A A - - - - - -

Misaligned-first access 001 111 - - - - - - - A

second access 01 1 000 A A A - - - - -

Notes:

A: Byte lane used
-: Byte lane not used

8.3.2.5 Effect of Alignment in Data Transfers (32-Bit Bus)
The aligned data transfer cases for 32-bit data bus mode are shown in Table 8-6. All of the
transfers require a single data beat (if caching-inhibited or write-through) except for
double-word cases which require two data beats. The double-word case is only generated
by the 603e for load or store double operations to/from the floating-point GPRs (not
supported on the EC603e microprocessor). All caching-inhibited instruction fetches are
performed as word operations.

MOTOROLA Chapter 8. System Interface Operation 8-17

Table 8-6. Aligned Data Transfers (32-Bit Bus Mode)

Data Bus Byte Lane(s)
Transfer Size TSIZO TSIZ1 TSIZ2 A[29-31]

0 1 2 3 4 5 6 7

Byte 0 0 1 000 A - - - x x x x

0 0 1 001 - A x - x x x x

0 0 1 010 - - A - x x x x

0 0 1 011 - - - A x x x x

0 0 1 100 A - - - x x x x

0 0 1 101 - A - - x x x x

0 0 1 110 - - A - x x x x

0 0 1 111 - - - A x x x x

Half word 0 1 0 000 A A - - x x x x

0 1 0 010 - - A A x x x x

0 1 0 100 A A - - x x x x

0 1 0 110 - - A A x x x x

Word 1 0 0 000 A A A A x x x x

1 0 0 100 A A A A x x x x

Double word 0 0 0 000 A A A A x x x x

Second beat 0 0 0 000 A A A A x x x x

Notes:

A: Byte lane used
-: Byte lane not used
x: Byte lane not used in 32-bit bus mode

Misaligned data transfers when the 603e is configured with a 32-bit data bus operate in the
same way as when configured with a 64-bit data bus, with the exception that only the
DH[0-31] data bus is used. See Table 8-7 for an example of a 4-byte misaligned transfer
starting at each possible byte address within a double word.

8-18 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Table 8-7. Misaligned 32-Bit Data Bus Transfer (Four-Byte Examples)

Transfer Size
(Four Bytes)

TSIZ[0-2]

Aligned 100

Misaligned-first access 011

second access 001

Misaligned-first access 010

second access 010

Misaligned-first access 001

second access 011

Aligned 100

Misaligned-first access 011

second access 001

Misaligned-first access 010

second access 010

Misaligned-first access 001

second access 011

Notes:

A: Byte lane used
Byte lane not used

A[29-31]

000

001

100

010

100

011

100

100

101

000

110

000

111

000

x: Byte lane not used in 32-bit bus mode

0

A

A

-

A

-

A

A

-
A

-

A

-

A

Data Bus Byte Lanes

1 2 3 4 5

A A A x x

A A A x x

- - - x ·x

- A A x x

A - x x x

- - A x x

A A - x x

A A A x x

A A A x x

- - - x x

- A A x x

A - - x x

- - A x x

A A - x x

8.3.2.5.1 Alignment of External Control Instructions

6 7

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

The size of the data transfer associated with the eciwx and ecowx instructions is always
4 bytes. However, if the eciwx or ecowx instruction is misaligned and crosses any word
boundary, the 603e will generate two bus operations, each with a size of fewer than 4 bytes.
For the first bus operation, bits A[29-31] equal bits 29-31 of the effective address of the
instruction, which will be Ob 10 1, Ob 110, or 0b111. The size associated with the first bus
operation will be 3, 2, or 1 bytes, respectively. For the second bus operation, bits A[29-31]
equal ObOOO, and the size associated with the operation will be 1,2, or 3 bytes, respectively.
For both operations, TBST and TSIZ[O-2] are redefined to specify the resource ID (RID).
The resource ID is copied from bits 28-31 of the EAR. For eciwxlecowx operations, the
state of bit 28 of the EAR is presented by the TBST signal without inversion (if
EAR[28] = 1, TBST = 1). The size of the second bus operation cannot be deduced from the
operation itself; the system must determine how many bytes were transferred on the first
bus operation to determine the size of the second operation.

MOTOROLA Chapter 8. System Interface Operation 8-19

Furthermore, the two bus operations associated with such a misaligned external control
instruction are not atomic. That is, the 603e may initiate other types of memory operations
between the two transfers. Also, the two bus operations associated with a misaligned ecowx
may be interrupted by an eciwx bus operation, and vice versa. The 603e does guarantee that
the two operations associated with a misaligned ecowx will not be interrupted by another
ecowx operation; and likewise for eciwx.

Because a misaligned external control address is considered a programming error, the
system may choose to assert TEA or otherwise cause an exception when a misaligned
external control bus operation occurs. (The term exception is referred to interrupt in the
architecture specification.)

8.3.2.6 Transfer Code (TC[O-1]) Signals
The TCO and TC1 signals provide supplemental information about the corresponding
address. Note that the TCx signals can be used with the TT[O-4] and TBST signals to
further define the current transaction.

Table 8-8 shows the encodings ofthe TCO and TC1 signals.

Table 8-8. Transfer Code Encoding

TC[0-1] Read Write

00 Data transaction Any write

01 Touch load N/A

10 Instruction fetch N/A

1 1 (Reserved) N/A

8.3.3 Address Transfer Termination
The address tenure of a bus operation is terminated when completed with the assertion of
AACK, or retried with the assertion of ARTRY. The 603e does not terminate the address
transfer until the AACK (address acknowledge) input is asserted; therefore, the system can
extend the address transfer phase by delaying the assertion of AACK to the 603e. Although
AACK can be asserted as early as the bus clock cycle following TS (see Figure 8-7), which
allows a minimum address tenure of two bus cycles when the 603e clock is configured for
1: 1 (processor clock to bus clock) mode, the ARTRY snoop response cannot be determined
in the minimum allowed address tenure period. When in 1:1 or 1.5:1 clock mode, AACK
must not be asserted until the third clock of the address tenure (one address wait state) to
allow the 603e an opportunity to assert ARTRY on the bus. For other clock configurations
(2:1, 2.5:1, 3:1, 3.5:1, and 4:1), the ARTRY snoop response can be determined in the
minimum address tenure period, and AACK may be asserted as early as the second bus
clock of the address tenure. As shown in Figure 8-7, these signals are asserted for one bus
clock cycle, three-stated for half of the next bus clock cycle, driven high till the following
bus cycle, and finally three-stated. Note that AACK must be asserted for only one bus clock
cycle.

8-20 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The address transfer can be tenninated with the requirement to retry if ARTRY is asserted
anytime during the address tenure and through the cycle following AACK. The assertion
causes the entire transaction (address and data tenure) to be rerun. As a snooping device,
the 603e asserts ARTRY for a snooped transaction that hits modified data in the data cache
that must be written back to memory, or if the snooped transaction could not be serviced.
As a bus master, the 603e responds to an assertion of ARTRY by aborting the bus
transaction and re-requesting the bus. Note that after recognizing an assertion of ARTRY
and aborting the transaction in progress, the 603e is not guaranteed to run the same
transaction the next time it is granted the bus due to internal reordering of load and store
operations.

If an address retry is required, the ARTRY response will be asserted by a bus snooping
device as early as the second cycle after the assertion of TS (or until the third cycle
following TS if I: 1 or 1.5: 1 processor to bus clock ratio is selected). Once asserted, ARTRY
must remain asserted through the cycle after the assertion of AACK. The assertion of
ARTRY during the cycle after the assertion of AACK is referred to as a qualified ARTRY.
An earlier assertion of ARTRY during the address tenure is referred to as an early ARTRY.

As a bus master, the 603e recognizes either an early or qualified ARTRY and prevents the
data tenure associated with the retried address tenure. If the data tenure has already begun,
the 603e aborts and terminates the data tenure immediately even if the burst data has been
received. If the assertion of ARTRY is received up to or on the bus cycle following the first
(or only) assertion of TA for the data tenure, the 603e ignores the first data beat, and if it is
a load operation, does not forward data internally to the cache and execution units. If
ARTRY is asserted after the first (or only) assertion of TA, improper operation of the bus
interface may result.

During the clock of a qualified ARTRY, the 603e also determines if it should negate BR and
ignore BG on the following cycle. On the following cycle, only the snooping master that
asserted ARTRY and needs to perform a snoop copy-back operation is allowed to assert BR.
This guarantees the snooping master an opportunity to request and be granted the bus
before the just-retried master can restart its transaction. Note that a nonclocked bus arbiter
may detect the assertion of address bus request by the bus master that asserted ARTRY, and
return a qualified bus grant one cycle earlier than shown in Figure 8-7.

MOTOROLA Chapter 8. System Interface Operation 8-21

2 3 4 5 6 7 8

addr BV'-------'L-$ ~.: ----' ~. >til

r-'\'---+-_-+----II
qualBG .\

Figure 8-7. Snooped Address Cycle with ARTRY

8.4 Data Bus Tenure
This section describes the data bus arbitration, transfer, and termination phases defined by
the 603e memory access protocol. The phases ofthe data tenure are identical to those of the
address tenure, underscoring the symmetry in the control of the two buses.

BA.1 Data Bus Arbitration
Data bus arbitration uses the data arbitration signal group-DBG, DBWO, and DBB .
. Additionally, the combination of TS and TT[0-4] provides information about the data bus
request to extemallogic.

The TS signal is an implied data bus request from the 603e; the arbiter must qualify TS with
the transfer type (TT) encodings to determine if the current address transfer is an address­
only operation, which does not require a data bus transfer (see Figure 8-7). lithe data bus
is needed, the arbiter grants data bus mastership by asserting the DBG input to the 603e. As
with the address bus arbitration phase, the 603e must qualify the DBG input with a number
of input signals before assuming bus mastership, as shown in Figure 8-8.

8-22 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

o 2 3

Diaia ~-----+-------=~ _______ -+-___ -:

Figure 8-8. Data Bus Arbitration

A qualified data bus grant can be expressed as the following:

QDBG = DBG asserted while DBB, DRTRY, and ARTRY (associated with the data
bus operation) are negated.

When a data tenure overlaps with its associated address tenure, a qualified ARTRY
assertion coincident with a data bus grant signal does not result in data bus mastership
(DBB is not asserted). Otherwise, the 603e always asserts DBB on the bus clock cycle after
recognition of a qualified data bus grant. Since the 603e can pipeline transactions, there
may be an outstanding data bus transaction when a new address transaction is retried. In
this case, the 603e becomes the data bus master to complete the previous transaction.

8.4.1.1 Using the DBB Signal
The DBB signal should be connected between masters if data tenure scheduling is left to
the masters. Optionally, the memory system can control data tenure scheduling directly
with DBG. However, it is possible to ignore the DBB signal in the system if the DBB input
is not used as the final data bus allocation control between data bus masters, and if the
memory system can track the start and end of the data tenure. If DBB is not used to signal
the end of a data tenure, DBG is only asserted to the next bus master the cycle before the
cycle that the next bus master may actually begin its data tenure, rather than asserting it
earlier (usually during another master's data tenure) and allowing the negation of DBB to
be the final gating signal for a qualified data bus grant. Even if DBB is ignored in the
system, the 603e always recognizes its own assertion of DBB, and requires one cycle after
data tenure completion to negate its own DBB before recognizing a qualified data bus grant
for another data tenure. If DBB is ignored in the system, it must still be connected to a pull­
up resistor on the 603e to ensure proper operation.

MOTOROLA Chapter 8. System Interface Operation 8-23

8.4.2 Data Bus Write Only
As a result of address pipelining, the 603e may have up to two data tenures queued to
perform when it receives a qualified DBG. Generally, the data tenures should be performed
in strict order (the same order) as their address tenures were performed. The 603e, however,
also supports a limited out-of-order capability with the data bus write only (DBWO) input.
When recognized on the clock of a qualified DBG, DBWO may direct the 603e to perform
the next pending data write tenure even if a pending read tenure would have normally been
performed first. For more information on the operation of DBWO, refer to Section 8.10,
"Using Data Bus Write Only."

If the 603e has any data tenures to perform, it always accepts data bus mastership to
perform a data tenure when it recognizes a qualified DBG. If DBWO is asserted with a
qualified DBG and no write tenure is queued to run, the 603e still takes mastership of the
data bus to perform the next pending read data tenure.

Generally, DBWO should only be used to allow a copy-back operation (burst write) to
occur before a pending read operation. If DBWO is used for single-beat write operations,
it may negate the effect of the eieio instruction by allowing a write operation to precede a
program-scheduled read operation.

8.4.3 Data Transfer
The data transfer signals include DH[O-31], DL[0-31], DP[O-7J and DPE. For memory
accesses, the DH and DL signals form a 64-bit data path for read and write operations.

The 603e transfers data in either single- or four-beat burst transfers when configured with
a 64-bit data bus; when configured with a 32-bit data bus, the 603e performs one-, two-, and
eight-beat data transfers. Single-beat operations can transfer from 1 to 8 bytes at a time and
can be misaligned; set: St:clion 8.3.2.4, "Effect of Alignment in Data Transfers (64-Bit
Bus)." Note that the EC603e microprocessor can transfer from 1 to 4 bytes during single­
beat operations. Burst operations always transfer eight words and are aligned on eight-word
address boundaries. Burst transfers can achieve significantly higher bus throughput than
single-beat operations.

The type of transaction initiated by the 603e depends on whether the code or data is
cacheable and, for store operations whether the cache is considered in write-back or write­
through mode, which software controls on either a page or block basis. Burst transfers
support cacheable operations only; that is, memory structures must be marked as cacheable
(and write-back for data store operations) in the respective page or block descriptor to take
advantage of burst transfers.

The 603e output TBST indicates to the system whether the current transaction is a single­
or four-beat transfer (except during eciwxlecowx transactions, when it signals the state of
EAR[28]). A burst transfer has an assumed address order. For load or store operations that
miss in the cache (and are marked as cacheable and, for stores, write-back in the MMU),
the 603e uses the double-word-aligned address associated with the critical code or data that

8-24 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

initiated the transaction. This minimizes latency by allowing the critical code or data to be
forwarded to the processor before the rest of the cache line is filled. For all other burst
operations, however, the cache line is transferred beginning with the oct-word-aligned data.

The 603e does not directly support dynamic interfacing to subsystems with less than a 64-
bit data path. It does, however, provide a static 32-bit data bus mode; for more information,
see Section 8.1.2.1, "Optional 32-Bit Data Bus Mode."

8.4.4 Data Transfer Termination
Four signals are used to terminate data bus transactions-TA, DRTRY (data retry), TEA
(transfer error acknowledge), and ARTRY. The TA signal indicates normal termination of
data transactions. It must always be asserted on the bus cycle coincident with the data that
it is qualifying. It may be withheld by the slave for any number of clocks until valid data is
ready to be supplied or accepted. DRTRY indicates invalid read data in the previous bus
clock cycle. DRTRY extends the current data beat and does not terminate it. If it is asserted
after the last (or only) data beat, the 603e negates DBB but still considers the data beat
active and waits for another assertion ofTA. DRTRY is ignored on write operations. TEA
indicates a nonrecoverable bus error event. Upon receiving a final (or only) termination
condition, the 603e always negates DBB for one cycle.

If DRTRY is asserted by the memory system to extend the last (or only) data beat past the
negation of DBB, the memory system should three-state the data bus on the clock after the
final assertion of TA, even though it will negate DRTRY on that clock. This is to prevent a
potential momentary data bus conflict if a write access begins on the following cycle.

The TEA signal is used to signal a nonrecoverable error during the data transaction. It may
be asserted on any cycle during DBi3, or on the cycle after a qualified 'fA during a read
operation, except when no-DRTRY mode is selected (where no-DRTRY mode cancels
checking the cycle after T A). The assertion of TEA terminates the data tenure immediately
even if in the middle of a burst; however, it does not prevent incorrect data that has just been
acknowledged with TA from being written into the 603e's cache or GPRs. The assertion of
TEA initiates either a machine check exception or a checkstop condition based on the
setting of the MSR.

An assertion of ARTRY causes the data tenure to be terminated immediately if the ARTRY
is for the address tenure associated with the data tenure in operation. If ARTRY is
connected for the 603e, the earliest allowable assertion of T A to the 603e is directly
dependent on the earliest possible assertion of ARTRY to the 603e; see Section 8.3.3,
"Address Transfer Termination."

If the 603e clock is configured for 1: 1 or 1.5: 1 (processor clock to bus clock ratio) mode
and the 603e is performing a burst read into its data cache, at least one wait state must be
provided between the assertion of TS and the first assertion of T A for that transaction. If
no-DRTRY mode is also selected, at least two wait states must be provided. The wait states
are required due to possible resource contention in the data cache caused by a block

MOTOROLA Chapter 8. System Interface Operation 8-25

replacement (or cast-out) required in connection with the new linefill. These waits states
may be provided by withholding the assertion of T A to the 603e for that data tenure, or by
withholding DBG to the 603e thereby delaying the start of the data tenure. This restriction
applies only to burst reads into the data cache when configured in 1: 1 or 1.5: 1 clock modes.
(It does not apply to instruction fetches, write operations, noncachable read operations, or
non-I:1 or 1.5:1 clock modes.)

8.4.4.1 Normal Single-Beat Termination
Normal termination of a single-beat data read operation occurs when TA is asserted by a
responding slave. The TEA and DRTRY signals must remain negated during the transfer
(see Figure 8-9).

o 2 3 4

rn '-, ------"
5l(,--------~

data

AACK l-! -----+----+-.j \~ __ -+'; /

Figure 8-9. Normal Single-Beat Read Termination

8-26 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

The DRTRY signal is not sampled during data writes, as shown in Figure 8-10.

o 2 3

data:

ta~~~Im~~~~~~~~
I I • I •
• I I I •

drtry ;£);~;~~~~~;t{%f;f,~~~;:;.l1j~':;R~~i~;~]rf;;,\:gf:\Mai~;ji:(~;~,:'r;1i~~J~~W~*,~~~[i'.;,
• I. I
I I I • , , ,

AACK !

Figure 8-10. Normal Single-Beat Write Termination

Normal termination of a burst transfer occurs when TA is asserted for four bus clock cycles,
as shown in Figure 8-11. The bus clock cycles in which T A is asserted need not be
consecutive, thus allowing pacing of the data transfer beats. For read bursts to terminate
successfully, TEA and DRTRY must remain negated during the transfer. For write bursts,
TEA must remain negated for a successful transfer. DRTRY is ignored during data writes.

2 3 4 5 6 7

Figure 8-11. Normal Burst Transaction

MOTOROLA Chapter 8. System Interface Operation 8-27

For read bursts, DRTRY may be asserted one bus clock cycle after TA is asserted to signal
that the data presented with T A is invalid and that the processor must wait for the negation
of DRTRY before forwarding data to the processor (see Figure 8-12). Thus, a data beat can
be terminated by a predicted branch with fA and then one bus clock cycle later confirmed
with the negation of DRTRY. The DRTRY signal is valid only for read transactions. TA
must be asserted on the bus clock cycle before the first bus clock cycle of the assertion of
DRTRY; otherwise the results are undefined.

The DRTRY signal extends data bus mastership such that other processors cannot use the
data bus until DRTRY is negated. Therefore, in the example in Figure 8-12, DBB cannot
be asserted until bus clock cycle 5. This is true for both read and write operations even
though DRTRY does not extend bus mastership for write operations.

2 3 4 5

-' drtry:

Figure 8-12. Termination with DRTRY

Figure 8-13 shows the effect of using DRTRY during a burst read. It also shows the effect
of using T A to pace the data transfer rate. Notice that in bus clock cycle 3 of Figure 8-13,
T A is negated for the second data beat. The 603e data pipeline does not proceed until bus
clock cycle 4 when the T A is reasserted.

Note that DRTRY is useful for systems that implement predicted forwarding of data such
as those with direct-mapped, second-level caches where hit/miss is determined on the
following bus clock cycle, or for parity- or ECC-checked memory systems.

Note that DRTRY may not be implemented on other PowerPC processors.

8-28 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

8.4.4.2 Data Transfer Termination Due to a Bus Error
The TEA signal indicates that a bus error occurred. It may be asserted while DBB (and/or
DRTRY for read operations) is asserted. Asserting TEA to the 603e terminates the
transaction; that is, further assertions of TA and DRTRY are ignored and DBB is negated;
see Figure 8-13.

2 3 4 5 6 7 8 9

Figure 8-13. Read Burst with TA Wait States and DRTRY

Assertion of the TEA signal causes a machine check exception (and possibly a checkstop
condition within the 603e). For more information, see Section 4.5.2, "Machine Check
Exception (Ox00200)." Note also that the 603e does not implement a synchronous error
capability for memory accesses. This means that the exception instruction pointer does not
point to the memory operation that caused the assertion of TEA, but to the instruction about
to be executed (perhaps several instructions later). However, assertion of TEA does not
invalidate data entering the GPR or the cache. Additionally, the corresponding address of
the access that caused TEA to be asserted is not latched by the 603e. To recover, the
exception handler must determine and remedy the cause of the TEA, or the 603e must be
reset; therefore, this function should only be used to flag fatal system conditions to the
processor (such as parity or uncorrectable ECC errors).

After the 603e has committed to run a transaction, that transaction must eventually
complete. Address retry causes the transaction to be restarted; TA wait states and DRTRY
assertion for reads delay termination of individual data beats. Eventually, however, the
system must either terminate the transaction or assert the TEA signal (and vector the 603e
into a machine check exception.) For this reason, care must be taken to check for the end
of physical memory and the location of certain system facilities to avoid memory accesses
that result in the generation of machine check exceptions.

MOTOROLA Chapter 8. System Interface Operation 8-29

Note thatTEA generates a machine check exception depending on the ME bit in the MSR.
Clearing the machine check exception enable control bits leads to a true checks top
condition (instruction execution halted and processor clock stopped).

8.4.5 Memory COherency-MEl Protocol
The 603e provides dedicated hardware to provide memory coherency by snooping bus
transactions. The address retry capability enforces the three-state, MEl cache-coherency
protocol (see Figure 8-14).

The global (GBL) output signal indicates whether the current transaction must be snooped
by other snooping devices on the bus. Address bus masters assert GBL to indicate that the
current transaction is a global access (that is, an access to memory shared by more than one
device). If GBL is not asserted for the transaction, that transaction is not snooped. When
other devices detect the GBL input asserted, they must respond by snooping the broadcast
address.

Normally, GBL reflects the M bit value specified for the memory reference in the
corresponding translationdescriptor(s). Note that care must be taken to minimize the
number of pages marked as global, because the retry protocol discussed in the previous
section is used to enforce coherency and can require significant bus bandwidth.

When the 603e is not the address bus master, GBL is an input. The 603e snoops a
transaction if TS and GBL are asserted together in the same bus clock cycle (this is a
qualified snooping condition). No snoop update to the 603e cache occurs if the snooped
transaction is not marked global. This includes invalidation cycles.

When the 603e detects a qualified snoop condition, the address associated with the TS is
compared against the data cache tags. Snooping completes if no hit is detected. If, however,
the address hits in the cache, the 603e reacts according to the MEl protocol shown in
Figure 8-14, assuming the WIM bits are set to write-back, caching-allowed, and coherency­
enforced modes (WIM = 001).

The 603e's on-chip data cache is implemented as a four-way set-associative cache. To
facilitate external monitoring of the internal cache tags, the cache set entry (CSE[O-l])
signals indicate which cache set is being replaced on read operations. Note that these
signals are valid only for 603e burst operations; for all other bus operations, the CSE[O-I]
signals should be ignored.

8-30 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

SH = Snoop Hit
RH = Read Hit
WH = Write Hit
WM = Write Miss
RM = Read Miss

BUS TRANSACTIONS

CD = Snoop Push

CD = Cache Line Fill

SH/CRW = Snoop Hit, Cacheable Read/Write
SH/CIR = Snoop Hit, Cache Inhibited Read

Figure 8-14. MEl Cache Coherency Protocol-State Diagram (WIM = 001)

Table 8-9 shows the CSE encodings.

Table 8-9. CSE[0-1] Signals

CSE[o-1] Cache Set Element

00 Set 0

01 Set 1

10 Set 2

11 Set 3

MOTOROLA Chapter 8. System Interface Operation 8-31

8.5 Timing Examples
This section shows timing diagrams for various scenarios. Figure 8-15 illustrates the fastest
single-beat reads possible for the 603e. This figure shows both minimal latency and
maximum single-beat throughput. By delaying the data bus tenure, the latency increases,
but, because of split-transaction pipelining, the overall throughput is not affected unless the
data bus latency causes the third address tenure to be delayed.

Note that all bidirectional signals are three-stated between bus tenures.

8-32

1 1 213141516 7 1 8 1 9 10 11 12

''--__ ---'7 ''--_----'7

SG t''---T-=P'=i;''':'''''' =i,L,=lJ",,;,Fi=i,iC;:;1." ---:----<I={",,;ll"=i' =i'='~l>=''----7_I",";=====''l

ASS: , fT\ !f\'---+-----+--1!

TS: L0 : Ll.J ! LL!
A[0-31]~! -+-CJ:C~PU~AC::>---+--< : CPUA: >---+-<C~CP~U~A:J--i----t-~

TT[O-4] ~: -+-C~R~ea~d =::=>-+-< Read >-+--<C=:jR~ea~d~}--+--+-~

I I I I
I I I I

AACK: ~~'~--+.~r~-+-~

ARTRY:

OSG !ri,'ii/t;j" LHi'/l;ie ,;ie/';G' t l '

OSS ! '--+--J L.i..J LU
0[0-63] ;.-! -~-+-10)---+--!--~0)---+--!---{0)-----7--~--C

T A ir:i'iKi ,g'd{i} ;!';K;''';\

ORTRY:

TEA!~~-~-~-~--+--+--+--7--!----f--~-~

1 1 7 1 8 1 9 1 10 11 12

Figure 8-15. Fastest Single-Beat Reads

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Figure 8-16 illustrates the fastest single-beat writes supported by the 603e. All bidirectional
signals are three-stated between bus tenures.

1 1 213141516 7 1 8 1 9 1 10 11 12

\~~--~I \~~ __ ~ __ ~~

BG :\'---f--Lc::?\ ;"'-i-• • "'-"L-....f.---l-IC";3. ', '....:,. .. _" .L....T_~r~','~1 . .
\~:_~I1\~~:_~r1\~_~1

: '--J..J : '--J..J
A[0-31] r---+-{~C~PU~A~M--<~-;--CP_U_A..,--J>-+--<=:~CP~U~A :=>-T--+-~

TT[Q-4] ~--+-{=S~BW~:J>--+--'

GBL;0r"1;,;<,J,"~

AACK!

ARTRY:

DBB:

I:"'/;~',;!, ,4', ': i\

W-!

>---+--< : SBW :

r '::<:'\\

W-!

i;,'{':""/ ,"':;;/,':>1,', "';"i

'---l.J
D[Q--63] ;.-.! --;--~~f--T---T--i~f--';""---"-<@f----+----------

TA ?\t;~,l\\f";)f'{i't~';A ht;."'''''' iF"\ k", j
''.\ f!,\,)i'[t':;:;~fi:;t!>j

DRTRy~:--~'~~---+--~:--~--+---+---~~f--~---+--~

TEA:

1 1 6 1 7 8 1 9 1 10 11 12

Figure 8-16. Fastest Single-Beat Writes

MOTOROLA Chapter 8. System Interface Operation 8-33

Figure 8-17 shows three ways to delay single-beat reads showing data-delay controls:

• The TA signal can remain negated to insert wait states in clock cycles 3 and 4.
• For the second access, DBG could have been asserted in clock cycle 6.
• In the third access, DRTRY is asserted in clock cycle 11 to flush the previous data.

Note that all bidirectional signals are three-stated between bus tenures. The pipelining
shown in Figure 8-17 can occur if the second access is not another load (for example, an
instruction fetch).

I 1 I 2 3 I 4 I 5 I 6 7 I 8 I 9 10 11 12 13 I 14 I

BR~ cb cb :
BG ~ : @'f;,~;li";Ult!ili,i§'l : L!F'~ili~lR!{I'~"'\ : #!li!IJ.?;!li+\Wi~lq :

ABB I I \ I I r-+-"\ I r+"\ I I I
I I I I I I I I I

fS: : ~: : ~ : ~ :
A[0-31]I I CPUA)---+--{ CPUA >--y CPUA I

I I I I I
TT[O-4] I I Read >---+---< Read >---+-< Read I

I I I I I
TBST I I I I I I I

GBL ~iiii;t~. M!!!a.~l rm~!Ji1 (0\mJsJ!I~~~I:1!i;!'%§~
AACK: : :~: y~~

ARTRY I I I I I I
I I I I I I I I

OBG ''&1111##;\ AI,IjIWltltlilll'SIII, \ ,. I 135:~-~,~IE'l![~m'!'!!;if:tl:;lilmm'i!l:1l11171.1-.I"§!rnrn!,:'m;g~;:,_,.rn!'~
I I I I I I I I I I I I

OBBI \ I I 1/ ~
I I I I I I I

0[0-63]1----+--1---+--+--< In

I I I I I I I I I I
TA .il!'jl~I" \\...-I-_._'I'1"l~m_!2_il.!',_1i1'----l_~_" '.;w/:m' ----I--~I~.-m-', ""'. _1&1"",;~"",!tI,=;:I_t~iI''''''lij

I I I I I
ORTRY I I I I I

TEA~I -~I--+I-~-~-~-+I-~I-~-~--+--+--~~-~

I 1 6 I 7 I 8 I 9 10 11 12 13 14

Figure 8-17. Single-Beat Reads Showing Data-Delay Controls

8-34 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Figure 8-18 shows data-delay controls in a single-beat write operation. Note that all
bidirectional signals are three-stated between bus tenures. Data transfers are delayed in the
following ways:

• The TA signal is held negated to insert wait states in clocks 3 and 4.
• In clock 6, DBG is held negated, delaying the start of the data tenure.

The last access is not delayed (DRTRY is valid only for read operations).

I 1 2 I 3 I 4 I 5 6 I 7 I 8 I 9 I 10 11 12

''---'---.--'' ',---.--.....-J' ,'----~---

I

A[0-31] ~-+-C~:C~PU~A::J>-+--< : CPUA: >---+--<=:: C~P~UA~:::J-+-+-~

ARTRY!

OBG ~j~~lt~\

OBBl \

~t:i;,j;~,;tZl~~;,vJAi1:
, , , , , ,

,'---+ -..... "i"':"_ .. --+ /i_ll"i"'~"ffi_I_ .. 'T'"'··.·_·,.·""""i.
, , , ,

~
0[0-63] ;~---+--+-{=:=~o~ut=::=}--t---t-C§}---l--{E)I"--7-~

\'---i---"1i.",,8iiii!'·~;~d·· '~.rt.llilIi;;~,"!,31l:l111'L..-~~"" ... ~··"!I'":'''a:· ---t......&' ... lIli!':!ditj. ... I&"""'i¥~
, ,

I 1 7 I 8 I 9 10 I 11 12

Figure 8-18. Single-Beat Writes Showing Data Delay Controls

MOTOROLA Chapter 8. System Interface Operation 8-35

Figure 8-19 shows the use of data-delay controls with burst transfers. Note that all
bidirectional signals are three-stated between bus tenures. Note the following:

• The first data beat of bursted read data (clock 0) is the critical quad word.
• The write burst shows the use of TA signal negation to delay the third data beat.
• The final read burst shows the use of DRTRY on the third data beat.
• The address for the third transfer is delayed until the first transfer completes.

I I I I I

SR r0 l6 i ,'-__ --'. 7 : '1-_-"---';
BG :\I-T-"_""'" /'P"" '"-T-----f-""lli).",;," """-' -+--+-+L_il"'P~p,1

A[0-31]

TT[0-4] Write Read

AACK:

ARTRY:

DM~ : A~~~" .~~~ ar~ .. ~ ,
i G,-+-i -l--l--l--l-': G : : I"'Ti DBB:
• I • I I • I I I
I I I I I • • I I

0[0-63] :-.: ---+~~In~o~~~~ . ,

TAja.

DRTRY: \.J)
TEA~: ~~~~~~~--~~~~~--~~~-+~~+-~~,--.

Figure 8-19. Burst Transfers with Data Delay Controls

8-36 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

Figure 8-20 shows the use of the TEA signal. Note that all bidirectional signals are three­
stated between bus tenures. Note the following:

• The first data beat of the read burst (in clock 0) is the critical quad word.

• The TEA signal truncates the burst write transfer on the third data beat.

• The 603e eventually causes an exception to be taken on the TEA event.

1112131415161718191101111121131141151161171

ABB:

TS:

A[0-31] ;

TT[O-4] :

AACK:

ARTRY!

OBG ~ I; F,I;:;"';"';'""'" "',":,')};, 1;;;;"'"' ':C;;', t"":~" ~~~,:

OBB ! " : m : fT\~---7----7-----7"': 1:-:
, , , ,

0[0-63]:--; ~--:-~~~~~

TA 1,h~~;) ,;i;A : 0 : 0

ORTRY:

TEA:

1 1 1 2 1 3 14 1 5 1 6 1 7 8 9 10 111 12 13 14 15 16 117 1

Figure 8-20. Use of Transfer Error Acknowledge (TEA)

MOTOROLA Chapter 8. System Interface Operation 8-37

8.6 Optional Bus Configurations
The 603e supports three optional bus configurations that are selected by the assertion or
negation of DRTRY, TLBISYNC, and QACK signals during the negation of the HRESET
signal. The operation and selection of the optional bus configurations are described in the
following sections.

8.6.1 32-Bit Data Bus Mode
The 603e supports an optional 32-bit data bus mode. The 32-bit data bus mode operates the
same as the 64-bit data bus mode with the exception of the byte lanes involved in the
transfer and the number of data beats that are performed. When in 32-bit data bus mode,
only byte lanes 0 through 3 are used corresponding to DHO-DH31 and DPO-DP3. Byte
lanes 4 through 7 corresponding to DLO-DL31 and DP4-DP7 are never used in this mode.
The unused data bus signals are not sampled by the 603e during read operations, and they
are driven low during write operations.

The number of data beats required for a data tenure in the 32-bit data bus mode is one, two,
or eight beats depending on the size of the program transaction and the cache mode for the
address. Data transactions of one or two data beats are performed for caching-inhibited
load/store or write-through store operations. These transactions do not assert the TBST
signal even though a two-beat burst may be performed (having the same TBST and
TSIZ[O-2] encodings as the 64-bit data bus mode). Single-beat data transactions are
performed for bus operations of 4 bytes or less, and double-beat data transactions are
performed for 8-byte operations only. The 603e only generates an 8-byte operation for a
double-word-aligned load or store double operation to or from the floating-point GPRs (not
supported on the EC603e microprocessor). All cache-inhibited instruction fetches are
performed as word (single-beat) operations.

Data transactions of eight data beats are performed for burst operations that load into or
store from the 603e's internal caches. These transactions transfer 32 bytes in the same way
as in 64-bit data bus mode, asserting the TBST signal, and signaling a transfer size of 2
(TSIZ(O-2) = ObOlO).

The same bus protocols apply for arbitration, transfer, and termination of the address and
data tenures in the 32-bit data bus mode as they apply to the 64-bit data bus mode. Late
ARTRY cancellation of the data tenure applies on the bus clock after the first data beat is
acknowledged (after the first TA) for word or smaller transactions, or on the bus clock after
the second data beat is acknowledged (after the second TA) for double-word or burst
operations (or coincident with respective TA if no-DRTRY mode is selected).

An example of an eight-beat data transfer while the 603e is in 32-bit data bus mode is
shown in Figure 8-21.

8-38 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA

, , ,

TS!i-----(-h

ABB~
ADDR:~ >----: , , ,

TBSTi~
AACKi~

ARTRY: : I
DBB! ~~ __ ~ __ ~ ____ ~ __ ~ __ ~ __ ~ __ ~ __ ~v---:

DH[Q-31]:

TA:

DRTAY:

: e~ ~ ~~~ ~ ~t=~ES: f\: : ""': ""': :,,!,,: : ,

~ G~ ~ 'F~ sr\~~~.
• I • I • I • I I

TEA:
I I I I I 1 I I

Figure 8-21. 32-Bit Data Bus Transfer (Eight-Beat Burst)

An example of a two-beat data transfer (with DRTRY asserted during each data tenure) is
shown in Figure 8-22,

I I I I I

TS~
ABB~
ADDR~ , ~
TBST~

AACK~
, ,

, ---' --~---
,

,'---+-----+---.;.--....;1

DH[O-31]

TA

DRTRY

TEA

~~~: : ,~, , 

'~ : : ~:----

• , 

Figure 8-22. 32-Bit Data Bus Transfer (Two-Beat Burst with DRTRY) 

The 603e selects 64-bit or 32-bit data bus mode at startup by sampling the state of the 
TLBISYNC signal at the negation of HRESET. If the TLBISYNC signal is negated at the 
negation of HRESET, 64-bit data mode is entered by the 603e. If TLBISYNC is asserted at 
the negation of HRESET, 32-bit data mode is entered. 

MOTOROLA Chapter 8. System Interface Operation 8-39 



8.6.2 No-DRTRY Mode 
The 603e supports an optional mode to disable the use of the data retry function provided 
through the DRTRY signal. The no-DRTRY mode allows the forwarding of data during 
load operations to the internal CPU one bus cycle sooner than in the normal bus protocol. 

The PowerPC bus protocol specifies that, during load operations, the memory system 
normally has the capability to cancel data that was read by the master on the bus cycle after 
TAwas asserted. In the 603e implementation, this late cancellation protocol requires the 
603e to hold any loaded data at the bus interface for one additional bus clock to verify that 
the data is valid before forwarding it to the internal CPU. For systems that do not implement 
the DRTRY function, the 603e provides an optional no-DRTRY mode that eliminates this 
one-cycle stall during all load operations, and allows for the forwarding of data to the 
internal CPU immediately when fA is recognized. 

When the 603e is in the no-DRTRY mode, data can no longer be cancelled the cycle after 
it is acknowledged by an assertion of TA. Data is immediately forwarded to the CPU 
internally, and any attempt at late cancellation by the system may cause improper operation 
by the 603e. 

When the 603e is following normal bus protocol, data may be cancelled the bus cycle after 
TA by either of two means-late cancellation by DRTRY, or late cancellation by ARTRY. 
When no-DRTRY mode is selected, both cancellation cases must be disallowed in the 
system design for the bus protocol. 

When no-DRTRY mode is selected for the 603e, the system must ensure that DRTRY will 
not be asserted to the 603e. If it is asserted, it may cause improper operation of the bus 
interface. The system must also ensure that an assertion of ARTRY by a snooping device 
must occur before or coincident \vith the first assertion of T A to the 603e, but not on the 
cycle after the first assertion of T A. 

Other than the inability to cancel data that was read by the master on the bus cycle after T A 
was asserted, the bus protocol for the 603e is identical to that for the basic transfer bus 
protocols described in this chapter, as well asfor 32-bit data bus mode. 

The 603e selects the desired DRTRY mode at startup by sampling the state ofthe DRTRY 
signal itself at the negation of the HRESET signal. If the DRTRY signal is negated at the 
negation of HRESET, normal operation is selected. If the DR TRY signal is asserted at the 
negation of HRESET, no-DRTRY mode is selected. 

8.6.3 Reduced-Pinout Mode 
The 603e provides an optional reduced-pinout mode. This mode idles the switching of 
numerous signals for reduced power consumption. The DL[0-31], DP[0-7], AP[O-3], 
APE, DPE, and RSRV signals are disabled when the reduced-pinout mode is selected. Note 
that the 32-bit data bus mode is implicitly selected when the reduced-pinout mode is 
enabled. 

8-40 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



When in the reduced-pinout mode, the bidirectional and output signals disabled are always 
driven low during the periods when they would normally have been driven by the 603e. The 
open-drain outputs (APE and DPE) are always three-stated. The bidirectional inputs are 
always turned-off at the input receivers of the 603e and are not sampled. 

The 603e selects either full-pinout or reduced-pinout mode at startup by sampling the state 
of the QACK signal at the negation of HRESET. If the QACK signal is asserted at the 
negation of HRESET, full-pinout mode is selected by the 603e. If QACK is negated at the 
negation of HRESET, reduced-pinout mode is selected. 

8.7 Interrupt, Checkstop, and Reset Signals 
This section describes external interrupts, checks top operations, and hard and soft reset 
inputs. 

8.7.1 External Interrupts 
The external interrupt input signals (INT, SMI and MCP) of the 603e eventually force the 
processor to take the external interrupt vector, or the system management interrupt vector 
if the MSR[EE] is set, or the machine check interrupt if the MSR[ME] bit and the 
HIDO[EMCP] bit are set. 

8.7.2 Checkstops 
The 603e has two checkstop input signals-CKSTP _IN (non-maskable) and MCP (enabled 
when MSR[ME] is cleared, and HIDO[EMCP] is set), and a checkstop output 
(CKSTP _OUT). If CKSTP _IN or MCP is asserted, the 603e halts operations by gating off 
all internal clocks. The 603e asserts CKSTP _OUT if CKSTP _IN is asserted. 

If CHECKSTOP is asserted by the 603e, it has entered the checkstop state, and processing 
has halted internally. The CHECKS TOP signal can be asserted for various reasons 
including receiving a TEA signal and detection of external parity errors. For more 
information about checkstop state, see Section 4.5.2.2, "Checkstop State (MSR[ME] = 0)." 

8.7.3 Reset Inputs 
The 603e has two reset inputs, described as follows: 

• HRESET (hard reset)-The HRESET signal is used for power-on reset sequences, 
or for situations in which the 603e must go through the entire cold-start sequence of 
internal hardware initializations. 

• SRESET (soft reset)-The soft reset input provides warm reset capability. This 
input can be used to avoid forcing the 603e to complete the cold start sequence. 

When either reset input is negated, the processor attempts to fetch code from the system 
reset exception vector. The vector is located at offset OxOO 1 00 from the exception prefix (all 
zeros or ones, depending on the setting of the exception prefix bit in the machine state 
register (MSR[IP]). The IP bit is set for HRESET. 

MOTOROLA Chapter 8. System Interface Operation 8-41 



8.7.4 System Quiesce Control Signals 
The system quiesce control signals (QREQ and QACK) allow the processor to enter a low 
power state, and bring bus activity to a quiescent state in an orderly fashion. 

The system quiesce state is entered by asserting the QREQ signal. This signal allows the 
system to terminate or pause any bus activities that are normally snooped. When the system 
is ready to enter the system quiesce state, it asserts the QACK signal. At this time the 603e 
may enter a quiescent (low power) state. When the 603e is in the quiescent state, it stops 
snooping bus activity. 

8.8 Processor State Signals 
This section describes the 603e's support for atomic update and memory through the use of 
the lwarxlstwcx. opcode pair, and includes a description of the 603e TLBISYNC input. 

8.8.1 Support for the Iwarxlstwcx. Instruction Pair 
The Load Word and Reserve Indexed (lwarx) and the Store Word Conditional Indexed 
(stwcx.) instructions provide a means for atomic memory updating. Memory can be 
updated atomically by setting a reservation on the load and checking that the reservation is 
still valid before the store is performed. In the 603e, the reservations are made on behalf of 
aligned, 32-byte sections of the memory address space. 

The reservation (RSRV) output signal is driven synchronously with the bus clock and 
reftectsthe status of the reservation coherency bit in the reservation address register (see 
Chapter 3, "Instruction and Data Cache Operation," for more information). See 
Section 7.2.9.7.3, "Reservation (RSRV)-Output," for information about timing. 

8.8.2 TLBISYNC Input 
. The TLBISYNC input allows for the hardware synchronization of changes to MMU tables 
when the 603e and another DMA master share the same MMU translation tables in system 
memory. It is asserted by a DMA master when it is using shared addresses that could be 
changed in the MMU tables by the 603e during the DMA master's tenure. 

The TLBISYNC input, when asserted to the 603e, prevents the 603e from completing any 
instructions past a tlbsync instruction. Generally, during the execution of an eciwx or 
ecowx instruction by the 603e, the selected DMA device should assert the 603e's 
TLBISYNC signal and maintain it asserted during its DMA tenure if it is using a shared 
translation address. Subsequent instructions by the 603e should include a sync and tlbsync 
instruction before any MMU table changes are performed. This will prevent the 603e from 
making table changes disruptive to the other master during the DMA period. 

8-42 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



8.9 IEEE 1149.1-Compliant Interface 
The 603e boundary-scan interface is a fully-compliant implementation of the IEEE 1149.1 
standard. This section describes the 603e IEEE 1149. 1 (JTAG) interface. 

8.9.1 IEEE 1149.1 Interface Description 
The 603e has five dedicated JTAG signals which are described in Table 8-10. The TDI and 
TDO scan ports are used to scan instructions as well as data into the various scan registers 
for JTAG operations. The scan operation is controlled by the test access port (TAP) 
controller which in turn is controlled by the TMS input sequence. The scan data is latched 
in at the rising edge of TCK. 

Table 8-10. IEEE Interface Pin Descriptions 

Signal Name Input/Output 
WeakPullup 

IEEE 1149.1 Function 
Provided 

TOI Input Yes Serial scan input signal 

TOO Output No Serial scan output signal 

TMS Input Yes TAP controller mode signal 

TCK Input Yes Scan clock 

iRSi Input Yes TAP controller reset 

TRST is a JTAG optional signal which is used to reset the TAP controller asynchronously. 
The TRST signal assures that the JTAG logic does not interfere with the normal operation 
of the chip, and can be asserted coincident with the HRESET. 

The PID7v-603e implements the JTAG/COP in the same manner as does the PID6-603e 
implementation with the exception of the introduction of the 33-bit Run_N counter register 
in which the most-significant 32 bits form a 32-bit counter. The function of the least­
significant bit remains unchanged. The Run_N counter is used by the COP to control the 
number of processor cycles that the processor runs before halting. 

8.10 Using Data Bus Write Only 
The 603e supports split-transaction pipelined transactions. It supports a limited out-of­
order capability for its own pipelined transactions through the data bus write only (DBWO) 
signal. When recognized on the clock of a qualified DBG, the assertion of DBWO directs 
the 603e to perform the next pending data write tenure (if any), even if a pending read 
tenure would have normally been performed because of address pipelining. The DBWO 
signal does not change the order of write tenures with respect to other write tenures from 
the same 603e. It only allows that a write tenure be performed ahead of a pending read 
tenure from the same 603e. 

In general, an address tenure on the bus is followed strictly in order by its associated data 
tenure. Transactions pipe lined by the 603e complete strictly in order. However, the 603e 

MOTOROLA Chapter 8. System Interface Operation 8-43 



can run bus transactions out of order only when the external system allows. the. 603e to 
perform a cache-line-snoop-push-out operation (or other write transaction, if pending in the 
603e write queues) between the address and data tenures of a read operation through the 
use of DBWO. This effectively envelopes the write operation within the read operation. 
Figure 8-23 shows how the DBWO signal is used to perform an enveloped write 
transaction. 

Write Address 

(1) (2),...---__ 
L.J LJ 
~ 

LJ LJ 

Enveloped Write 
Transaction 

(2) ,--_____ --, (1)r-_____ _ 
L.J LJ 

DBB ~~ ______ ~!I~ ______ ~r-
DBWO --u-

Figure 8-23. Data Bus Write Only Transaction 

Note that although the 603e can pipeline any write transaction behind the read transaction, 
special care should be used when using the enveloped write feature. It is envisioned that 
most system implementations will not need this capability; for these applications, DBWO 
should remain negated. In systems \vhere t.ltis capability is needed, DB\"I{O should be 
asserted under the following scenario: 

1. The 603e initiates a read transaction (either single-beat or burst) by completing the 
read address tenure with no address retry. 

2. Then, the 603e initiates a write transaction by completing the write address tenure, 
with no address retry. 

3. At this point, if DBWO is asserted with a qualified data bus grant to the 603e, the 
603e asserts DBB and drIves the write data onto the data bus, out of order with 
respect to the address pipeline. The write transaction concludes with the 603e 
negating DBB. 

4. The next qualified data bus grant signals the 603e to complete the outstanding read 
transaction by latching the data on the bus. This assertion of DBG should not be 
accompanied by an asserted DBWO. 

Any number of bus transactions by other bus masters can be attempted between any of these 
steps. 

8-44 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Note the following regarding DBWO: 

• DBWO can be asserted if no data bus read is pending, but it has no effect on write 
ordering. 

• The ordering and presence of data bus writes is determined by the writes in the write 
queues at the time BG is asserted for the write address (not DBG). If a particular 
write is desired (for example, a cache-line-snoop-push-out operation), then BG must 
be asserted after that particular write is in the queue and it must be the highest 
priority write in the queue at that time. A cache-line-snoop-push-out operations may 
be the highest priority write, but more than one may be queued. 

• Because more than one write may be in the write queue when DBG is asserted for 
the write address, more than one data bus write may be enveloped by a pending data 
bus read. 

The arbiter must monitor bus operations and coordinate the various masters and slaves with 
respect to the use of the data bus when DBWO is used. Individual DBG signals associated 
with each bus device should allow the arbiter to synchronize both pipelined and split­
transaction bus organizations. Individual DBG and DBWO signals provide a primitive form 
of source-level tagging for the granting of the data bus. 

Note that use of the DBWO signal allows some operation-level tagging with respect to the 
603e and the use of the data bus. 

MOTOROLA Chapter 8. System Interface Operation 8-45 



8-46 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Chapter 9 
Power Management 
The PowerPC 603e microprocessor is the first microprocessor specifically designed for 
low-power operation. The 603e provides both automatic and program-controllable power 
reduction modes for progressive reduction of power consumption. This chapter describes 
the hardware support provided by the 603e for power management. 

9.1 Dynamic Power Management 
Dynamic power management automatically powers up and down the individual execution 
units of the 603e, based upon the contents of the instruction stream. For example, if no 
floating-point instructions are being executed, the floating-point unit is automatically 
powered down. Power is not actually removed from the execution unit; instead, each 
execution unit has an independent clock input, which is automatically controlled on a 
clock-by-clock basis. Since CMOS circuits consume negligible power when they are not 
switching, stopping the clock to an execution unit effectively eliminates its power 
consumption. The operation of DPM is completely transparent to software or any external 
hardware. Dynamic power management is enabled by setting bit 11 in HIDO on power-up, 
or following HRESET. 

9.2 Programmable Power Modes 
The 603e provides four power modes selectable by setting the appropriate control bits in 
the machine state register (MSR) and hardware implementation register 0 (HIDO) registers. 
The four power modes are described briefly as follows: 

• Full-power-This is the default power state of the 603e. The 603e is fully powered 
and the internal functional units are operating at the full processor clock speed. If the 
dynamic power management mode is enabled, functional units that are idle will 
automatically enter a low-power state without affecting performance, software 
execution, or external hardware. 

• Doze-All the functional units of the 603e are disabled except for the time basel 
decrementer registers and the bus snooping logic. When the processor is in doze 
mode, an external asynchronous interrupt, a system management interrupt, a 
decrementer exception, a hard or soft reset, or machine check brings the 603e into 

MOTOROLA Chapter 9. Power Management 9-1 



the full-power state. The 603e in doze mode maintains the PLL in a fully powered 
state and locked to the system external clock input (SYSCLK) so a transition to the 
full-power state takes only a few processor clock cycles. 

• Nap-The nap mode further reduces power consumption by disabling bus snooping, 
leaving only the time base register and the PLL in a powered state. The 603e returns 
to the full-power state upon receipt of an external asynchronous interrupt, a system 
management interrupt, a decrementer exception, a hard or soft reset, or a machine 
check input (MCP) signal. A return to full-power state from a nap state takes only a 
few processor clock cycles. 

• Sleep-Sleep mode reduces power consumption to a minimum by disabling all 
internal functional units, after which external system logic may disable the PLL and 
SYSCLK. Returning the 603e to the full-power state requires the enabling of the 
PLL and SYSCLK, followed by the assertion of an external asynchronous interrupt, 
a system management interrupt, a hard or soft reset, or a machine check input (MCP) 
signal after the time required to relock the PLL. 

The PID7v-603e implementation offers the following enhancements to the 603e family: 

Lower-power design 

• 2.S-volt core and 3.3-volt 110 

Hardware can enable a power management state through external asynchronous interrupts. 
The hardware interrupt causes the transfer of program flow to interrupt handler code. The 
appropriate mode is then set by the software. The 603e provides a separate interrupt and 
interrupt vector for pow'er ffiatiagement-the syste111 111anagenlent interrupt (Slv1I). The 
603e also contains a decrement timer which allows it to enter the nap or doze mode for a 
predetermined amount of time and then return to full po\ver operation through the 
decrementer interrupt exception. Note that the 603e cannot switch from one power 
management mode to another without first returning to full-on mode. The nap and sleep 
modes disable bus snooping; therefore, a hardware handshake is provided to ensure 
coherency before the 603e enters these power management modes. Table 9-1 summarizes 
the four power states. 

9-2 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Table 9-1. Programmable Power Modes 

PM Mode Functioning Units Activation Method 
Full-Power Wake Up 

Method 

Full power All units active - -

Full power Requested logic by By instruction dispatch -
(with DPM) demand 

Doze • Bus snooping Controlled by SW External asynchronous 
• Data cache as needed exceptions * 
• Decrementer timer Decrementer interrupt 

Reset 

Nap Decrementer timer Controlled by hardware External asynchronous 
and software exceptions 

Decrementer interrupt 
Reset 

Sleep None Controlled by hardware External asynchronous 
and software exceptions 

Reset 

9.2.1 Power Management Modes 
The following sections describe the characteristics of the 603e's power management 
modes, the requirements for entering and exiting the various modes, and the system 
capabilities provided by the 603e while the power management modes are active. 

9.2.1.1 Full-Power Mode with DPM Disabled 
Full-power mode with DPM disabled power mode is selected when the OPM enable bit (bit 
11) in HIOO is cleared. 

• Default state following power-up and HRESET 
• All functional units are operating at full processor speed at all times 

9.2.1.2 Full-Power Mode with DPM Enabled 
Full-power mode with DPM enabled (HID0[11] = 1) provides on-chip power management 
without affecting the functionality or performance of the 603e. 

• Required functional units are operating at full processor speed 
• Functional units are clocked only when needed 
• No software or hardware intervention required after mode is set 
• Softwarelhardware and performance transparent 

MOTOROLA Chapter g. Power Management 9-3 



9.2.1.3 Doze Mode 
Doze mode disables most functional units but maintains cache coherency by enabling the 
bus interface unit and snooping. A snoop hit will cause the 603e to enable the data cache, 
copy the data back to memory, disable the cache, and fully return to the doze state. 

• Most functional units disabled 
• Bus snooping and time base/decrementer still enabled 

• Doze mode sequence 

- Set doze bit (HIDO[8] = 1) 
- 603e enters doze mode after several processor clocks 

• Several methods of returning to full-power mode 

- Assert INT, SMI, MCP or decrementer interrupts 
- Assert hard reset or soft reset 

• Transition to full-power state takes no more than a few processor cycles 

• PLL running and locked to SYSCLK 

9.2.1.4 Nap Mode 
The nap mode disables the 603e but still maintains the phase-locked loop (PLL) and the 
time base/decrementer. The time base can be used to restore the 603e to full-on state after 
a programmed amount of time. Because bus snooping is disabled for nap and sleep mode, 
a hardware handshake using the quiesce request (QREQ) and quiesce acknowledge 
(QACK) signals are required to maintain data coherency. The 603e will assert the QREQ 
signal to indicate that it is ready to disable bus snooping. When the system has ensured that 
snooping is no longer necessary, it will assert QACK and the 603e will enter the sleep or 
nap mode. 

• Time base/decrementer still enabled 

• Most functional units disabled (including bus snooping) 

• All nonessential input receivers disabled 

• Nap mode sequence 

- Set nap bit (HIDO[9] = 1) 

- 603e asserts quiesce request (QREQ) signal 

- System asserts quiesce acknowledge (QACK) signal 

- 603e enters sleep mode after several processor clocks 

• Several methods of returning to full-power mode 

- Assert INT, SMI, MCP or decrementer interrupts 

- Assert hard reset or soft reset 

• Transition to full-power takes no more than a few processor cycles 

• PLL running and locked to SYSCLK 

9-4 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



9.2.1.5 Sleep Mode 
Sleep mode consumes the least amount of power of the four modes since all functional units 
are disabled. To conserve the maximum amount of power, the PLL may be disabled and the 
SYSCLK may be removed. Due to the fully static design of the 603e, internal processor 
state is preserved when no internal clock is present. Because the time base and decrementer 
are disabled while the 603e is in sleep mode, the 603e's time base contents will have to be 
updated from an external time base following sleep mode if accurate time-of-day 
maintenance is required. Before the 603e enters the sleep mode, the 603e will assert the 
QREQ signal to indicate that it is ready to disable bus snooping. When the system has 
ensured that snooping is no longer necessary, it will assert QACK and the 603e will enter 
the sleep mode. 

• All functional units disabled (including bus snooping and time base) 

• All nonessential input receivers disabled 

- Internal clock regenerators disabled 
- PLL still running (see below) 

Sleep mode sequence 

- Set sleep bit (HIDO[lO] = 1) 
- 603e asserts quiesce request (QREQ) 

- System asserts quiesce acknowledge (QACK) 
- 603e enters sleep mode after several processor clocks 

• Several methods of returning to full-power mode 

- Assert INT, SMI or MCP interrupts 
- Assert hard reset or soft reset 

• PLL may be disabled and SYSCLK may be removed while in sleep mode 
• Return to full-power mode after PLL and SYSCLK disabled in sleep mode 

- Enable SYSCLK 
- Reconfigure PLL into desired processor clock mode 

- System logic waits for PLL startup and relock time (100 J..lsec) 
- System logic asserts one of the sleep recovery signals (for example, INT or SMI) 

MOTOROLA Chapter 9. Power Management 9-5 



9.2.2 Power Management Software Considerations 
Since the 603e is a dual issue processor with out-of-order execution capability, care must 
be taken in how the power management mode is entered. Furthermore, nap and sleep modes 
require all outstanding bus operations to be completed before the power management mode 
is entered. Normally during system configuration time, one of the power management 
modes would be selected by setting the appropriate HIDO mode bit. Later on, the power 
management mode is invoked by setting the MSR[POW] bit. To ensure a clean transition 
into and out of the power management mode, set the MSR[EE] bit and execute the 
following code sequence: 

sync 

mtmsr[POW = 1] 

isync 

loop: bloop 

9-6 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Appendix A 
PowerPC Instruction Set Listings 
This appendix lists the PowerPC 603e microprocessor's instruction set as well as the 
additional PowerPC instructions not implemented in the 603e. Instructions are sorted by 
mnemonic, opcode, function, and form. Also included in this appendix is a quick reference 
table that contains general information, such as the architecture level, privilege level, and 
form, and indicates if the instruction is 64-bit and optional. 

Note that split fields, that represent the concatenation of sequences from left to right, are 
shown in lowercase. For more information refer to Chapter 8, "Instruction Set," in The 
Programming Environments Manual. 

A.1 Instructions Sorted by Mnemonic 
Table A-I lists the instructions implemented in the PowerPC architecture in alphabetical 
order by mnemonic. 

Table A-1. Complete Instruction List Sorted by Mnemonic 

Key: 

D Reserved bits Instruction not implemented in the 603e 

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

31 0 A B 266 

31 0 A B 10 

31 0 A B 138 

addi 14 0 A SIMM 

addic 12 0 A SIMM 

addic. 13 0 A SIMM 

addis 15 0 A SIMM 

addmex 31 0 A 234 

addzex 31 0 A 202 

andx 31 S A B 28 

andcx 31 S A B 60 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-1 

lEI 



Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

andi. 28 S A UIMM 

andis. 29 S A UIMM 

bx 18 LI 

bex 16 BO BI BD 

beetrx 19 BO BI 528 

belrx 19 16 

emp 31 erfD 0 

empi 11 erfD SIMM 

em pi 31 erfD 32 

erand 19 erbD erbA erbB 257 

erande 19 erbD erbA erbB 129 

ereqv 19 erbD erbA erbB 

ernand 19 erbD erbA erbB 225 

ernor 19 erbD erbA erbB 33 

eror 19 erbD crbA crbB 449 

crorc 19 crbD erbA crbB 4i7 

erxor 19 crbD crbA crbB 193 

debf 31 A B 86 

debi 1 31 A B 470 

debst 31 A B 54 

debt 31 A B 278 ,.. 
debtst 31 A B 246 

divwux 31 459 

eeiwx 31 310 
~--------~--------~-------+--------+-----------------~ 

eeowx 31 438 
------------------~ 

eieio 31 854 

A-2 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

eqvx 31 S A 
~----------+---------~---------+~ 

extsbx 31 S A 

fctiwzXT 63 D 

fdivx7 63 D 

fdivsXT 59 D A B 

fmaddXT 63 D A B 

fmaddsXT 59 D A B C 29 

fmrx7 63 D 72 

fmsubXT 63 D C 28 

fmsubsXT 59 D C 28 

fmulx7 63 D C 25 

fmulsx7 59 D C 25 

fnabsXT 63 D 136 

.:I fnegXT 63 D 

fnmaddx7 63 D A B C 

fnmaddsx7 59 D A B C 

fnmsubx7 63 D A B C 

fnmsubsXT 59 D 

fresx 5,7 59 D 

frspXT 63 D 

frsqrtex5,7 63 D 

fselx 5,7 63 D 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-3 



Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

fsubs'? 59 

icbi .31 

Isync 19 

Ibz 34 

Ibzu 35 

Ibzux 31 

Ifdu7 51 D A d 

Ifdux7 31 D A B 631 

Ifdx7 31 D A B 599 

Ifs7 48 D A d 

Ifsu7 49 D A d 

Ifsux7 31 D A B 567 

Ifsx7 31 D A B 535 

Ell 
Iha 42 D A d 

Ihau 43 D A d 

Ihaux 31 D A B 375 

Ihax 31 D A B 343 

Ihbrx 31 D A B 790 

1hz 40 D A d 

Ihzu 41 D A d 

Ihzux 31 D A B 311 

Ihzx 31 D A B 279 

Imw 3 46 D A d 

A-4 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Name 0 

Iswi 3 

Iwz 

Iwzu 

Iwzux 

Iwzx 

mcrf 

mcrfs7 

mcrxr 

mfcr 

mffsx7 

mfmsr 1 

mfspr 2 

mfsr 1 

mfsrin 1 

mftb 

mtcrf 

mtfsbOx7 

mtfsb1x 7 

mtfsfx7 

mtfsfix7 

mtmsr 1 

mtspr 2 

mtsr 1 

MOTOROLA 

31 

32 

33 

31 

31 

19 

63 

31 

31 

63 

31 

31 

31 

31 

31 

31 

63 

63 

63 

63 

31 

31 

31 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

D A NB 597 

D A d 

D A d 

D A B 55 

23 

0 

64 

512 

19 

D 583 

D 83 

D 339 

D 595 

659 

371 

144 

70 

38 

711 ... 
134 

146 

467 

210 

Appendix A. PowerPC Instruction Set Listings A-5 



Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 192021 22 23 24 25 26 27 28 29 30 31 

mullwx 31 D A 235 

nandx 31 S A 476 

negx 31 D A 104 

norx 31 S A 124 

orx 31 S A B 444 

orcx 31 S A B 412 

ori 24 S A UIMM 

oris 25 UIMM 

A-6 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

stfd 54 S A d 

stfdu 55 S A d 

stfdux 31 S A B 759 

stfdx 31 S A B 727 

stfiwx 5 31 S A B 983 

stfs 52 S A d 

stfsu 53 S A d 

stfsux 31 S A B 695 

stfsx 31 S A B 663 

sth 44 S A d 

sthbrx 31 S A B 918 

sthu 45 S A d 

sthux 31 S A B 439 

sthx 31 S A B 407 

stmw 3 47 S A d 

stswi 3 31 S A NB 725 

lEI stswx 3 31 S A B 661 

stw 36 S A d 

stwbrx 31 S A B 662 

stwcx. 31 S A B 150 

stwu 37 S A d 

stwux 31 S A B 183 

stwx 31 S A B 151 

subfx 31 D A B 40 

subfcx 31 D A B 8 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-7 



Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

subfex 31 o 
subfle 08 o 

subfmex 31 o 
subfzex 31 

tlbld 1,6 31 

tlbll 1,6 31 

tlbsyne1,S 31 

tw 31 

twi 03 

xorx 31 S 

xori 26 S 

xoris 27 S 

1 Supervisor-level instruction 
2 Supervisor- and user-level instruction 
3 Load and store string or multiple instruction 
4 54-bit instruction 
5 Optional in the PowerPC architecture 
6 Implementation-specific instruction 

A B 136 

A SIMM 

A 

978 

1010 

566 

4 

A SIMM 

A B 316 

A UIMM 

A UIMM 

7 Floating-point instructions are not supported by the EC603e microprocessor and are trapped by the 
floating-point unavailable exception vector, 

A-8 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



A.2 Instructions Sorted by Opcode 
Table A-2 lists the instructions defined in the PowerPC architecture in numeric order by 
opcode. 

Key: 

D Reserved bits .. Instruction not implemented in the 603e 

Table A-2. Complete Instruction List Sorted by Opcode 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

mUIli 000111 A SIMM 

subfic 001000 A SIMM 

cmpli 001010 A UIMM 

cmpi 001011 A SIMM 

addic 001100 D A SIMM 

addic. 001101 D A SIMM 

addi 001110 D A SIMM 

addis 001111 D A SIMM 

bcx 010000 

sc 010001 

bx 010010 

mcrf 010011 0000000000 

bclrx 010011 0000010000 

crnor 010011 0000100001 

rfi 010011 0000110010 

crandc 010011 0010000001 

isync 010011 0010010110 

crxor 010011 crbD crbA crbB 0011000001 

crnand 010011 crbD crbA crbB 0011100001 

crand 010011 crbD crbA crbB 0100000001 

creqv 010011 crbD crbA crbB 0100100001 

crorc 010011 crbD crbA crbB 0110100001 

cror 010011 crbD crbA crbB 0111000001 

bcctrx 010011 BO BI 

rlwimix 010100 S A 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-9 

lEI 



Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

rlwinmx 010101 S A SH MB ME 

rlwnmx 010111 S A B MB ME 

ori 011000 S A UIMM 

oris 011001 S A UIMM 

xori 011010 S A UIMM 

xoris 011011 S A UIMM 

andi. 011100 S A UIMM 

andis. 011101 S A UIMM 

Iwzux 011111 A B 0000110111 

A-10 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

0001010111 

011111 D A 0001101000 

011111 D A 0001110111 

011111 s A B 0001111100 

011111 D A B 0010001000 

011111 D A B 0010001010 

011111 s 0010010000 

mullwx 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 

mtsrin r001111-:111111-r-~;-1~~~~j0j--B--r-'----~OD001111-:111;o00011(0)-1~ 
dcbtst 011111 B 0011110110 

stbux 0 1 1 1 1 1 ABO 0 1 1 1 1 0 1 1 1 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-11 



Name 

add x 

debt 

Ihzx 

eqvx 

tlbie 1,5 

eeiwx 

Ihzux 

xorx 

Iswx 3 

Iwbrx 

A-12 

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

011111 B 0100001010 

011111 B 0100010110 

011111 B 0100010111 

011111 B 0100011100 

011111 B 0100110010 

011111 D A B 0100110110 

011111 D A B 0100110111 

011111 S A B 0100111100 

011111 1000010101 

011111 D A B 1000010110 

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Name 0 

Ifsx7 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

011111 o A B 1000010111 

Ifsux7 011111 1000110111 

mfsr 011111 1001010011 

Iswi 3 011111 1001010101 

sync 011111 1001010110 

Ifdx7 011111 1001010111 

Ifdux7 011111 0 B 1001110111 

mfsrin 1 011111 0 B 1010010011 

stswx 3 011111 S A B 1010010101 

stwbrx 011111 S A B 1010010110 

stfsx 011111 S A B 1010010111 

stfsux 011111 S A B 1010110111 

stswi 3 011111 S A NB 1011010101 

stfdx7 011111 S A B 1011010111 

stfdux7 011111 S A B 1011110111 

Ihbrx 011111 0 A B 1100010110 

1101010110 

sthbrx 011111 1110010110 

extshx 011111 1110011010 

extsbx 011111 1110111010 

tlbld 1,6 011111 1111010010 

icbi 011111 1111010110 

dcbz 011111 B 1111110110 
~---------F-=~~~~-------+--------~----------------~4 

Iwz 100000 A d 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A·13 

.a 



Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Iwzu 100001 D A d 

Ibz 100010 D A d 

Ibzu 100011 D A d 

stw 100100 S A d 

stwu 100101 S A d 

stb 100110 S A d 

stbu 100111 S A d 

1hz 101000 D A d 

Ihzu 101001 D A d 

Iha 101010 D A d 

Ihau 10101 1 D A d 

sth 101100 S A d 

sthu 101101 S A d 

Imw 3 101 11 0 D A d 

stmw 3 101111 S A d 

Ifs7 110000 D A d 

Ifsu7 110001 D A d 

Ifd7 110010 D A d 

lidu7 i i 00 i i D A d 

stfs7 110100 S A d 

stfsu7 110101 S A d 

sUd7 110110 S A d 

sUdu7 110111 S A d .. 

fmulsK 1 1 1 0 1 1 D 
~--------~--------r--------+~~~~4--------4--------~~ 

fmsubsx7 1 1 1 0 1 1 D A c 1 1 1 00 

A-14 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Name 0 

fmaddsx7 

fnmsubsx7 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

111011 D A B c 1 1 1 01 

1 1 1 0 1 1 D A B c 1 1 1 1 0 

frspK 1 1 1 1 1 1 
~----------4----------

fctiwK 1 1 1 1 1 1 D 

fctiwzK 111111 D 

fdlvK 1 1 1 1 1 1 D 
~--------~--------~-------+---------

fsubK 1 1 1 1 1 1 D 

fmulK 111111 D 

frsqrtex 5,7 111111 D 

fmsubK 111111 D 

fmaddK 1 1 1 1 1 1 D A B C 1 1 1 01 

fnmsubK 111111 D A B C 1 1 1 1 0 

fnmaddx 7 111111 A B C 1 1 1 1 1 

fempo 7 1 1 1 1 1 1 erfD 0000100000 

mtfsb1x 7 111111 0000100110 

fnegK 111111 0000101000 

merfs7 111111 erfD 0001000000 

mtfsbOK 1 1 1 1 1 1 0001000110 

fmrK 1 1 1 1 1 1 0001001000 

mtfsflK 111111 erfD 0010000110 

fnabsK 111111 0010001000 

fabsK 111111 0100001000 

mffsK 111111 1001000111 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-15 

lEI 



Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

A-16 

1 Supervisor-level instruction 
2 Supervisor- and user-level instruction 
3 Load and store string or multiple instruction 
4 64-bit instruction 
5 Optional in the PowerPC architecture 
6603e-implementation specific instruction 
7 Floating-point instructions are not supported by the EC603e microprocessor and are trapped by the 
floating-point unavailable exception vector. 

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



A.3 Instructions Grouped by Functional Categories 
Table A-3 through Table A-30 list the PowerPC instructions grouped by function. 

Key: 

D Reserved bits • Instruction not implemented in the 603e 

Table A-3. Integer Arithmetic Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

addx 31 D A B 266 

addcx 31 D A B 10 

addex 31 D A B 138 

addi 14 D A SIMM 

addic 12 D A SIMM 

addic. 13 D A SIMM 

addis 15 D A SIMM 

31 D A 234 

-31 D A 235 

31 D A 104 

31 D A 40 

31 D A B 8 

08 D A SIMM 

31 D A 136 

31 D A 232 

31 D A 200 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-17 



Table A-4. Integer Compare Instructions 

Name 0 5 678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31 

cmp 31 crfO A B 

cmpl 11 crfO A 

cmpl 31 crfO A B 

cmpll 10 crfO A 

Table A-S. Integer Logical Instructions 

Name 0 5 678 9 10 11 12 13 14 15 16 17 18 192021 22 23 24 25 26 27 28 29 30 31 

andx 31 S A B 28 

andcx 31 S A B 60 

andl. 28 S A UIMM 

norx 31 S A B 124 

orx 31 S A B 444 

orcx 31 S A B 412 

ori 24 S A UIMM 

oris 25 S A UIMM 

Ell xorx 31 S A B 316 

xori 26 S A UIMM 

xoris 27 S A UIMM 

Table A-S. Integer Rotate Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 

A-18 MPC603e& EC603e RISC Microprocessors User's Manual MOTOROLA 



Table A-G. Integer Rotate Instructions (Continued) 

Table A-7. Integer Shift Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table A-S. Floating-Point Arithmetic Instructions7 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

MOTOROLA Appendix A. Power PC Instruction Set Listings A-19 



Name 0 

fmaddx 

fmaddsx 

fmsubx 

fmsubsx 

fnmaddx 

fnmaddsx 

fnmsubx 

fnmsubsx 

Table A-9. Floating-Point Multiply-Add Instructions? 
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

63 D A B C 29 Rc 

59 D A B C 29 Rc 

63 D A B C 28 Rc 

59 D A B C 28 Rc 

63 D A B C 31 Rc 

59 D A B C 31 Rc 

63 D A B C 30 Rc 

59 D A B C 30 Rc 

Table A-10. Floating-Point Rounding and Conversion Instructions? 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table A-11. Floating-Point Compare Instructions? 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

63 fempo cnD A B 
1-----1----

fcmpu 63 crfD A B 

Table A-12. Floating-Point Status and Control Register Instructions? 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

64 

583 

70 

38 

711 

134 

A-20 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Table A-13. Integer Load Instructions 

Name 0 

Ibz 

Ibzu 

Ibzux 

Ibzx 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22232425 26 2728 29 30 31 

34 D A d 

35 D A d 

31 D A B 119 

31 D A B 87 

Iha 42 D A d 

Ihau 43 D A d 
~-----+--------+--------1--------'------------------

Ihaux 31 DAB 375 
~-----+--------+--------1--------~-----------------

Ihax 31 DAB 343 

1hz 40 D A 

Ihzu 41 D A 

Iwz 

Iwzu 

Iwzux 

Iwzx 

32 

33 

31 

31 

D A 

D A 

D A 

D A 

B 

B 

MOTOROLA Appendix A. PowerPC Instruction Set Listings 

d 

d 

d 

d 

55 

23 

A-21 



Table A-14. Integer Store Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

stb 38 s A d 

stbu 39 s A d 

sthu 45 S A 
sthux 31 S A 

sthx 31 S A 
stw 36 S A d 

stwu 37 S A d 

stwux 31 S A B 183 
stwx 31 S A B 151 

Table A-15. Integer Load and Store with Byte-Reverse Instructions 

Name 0 

Ihbrx l 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 

Iwbrx 

sthbrx 

stwbrx 

"11 -
31 
31 
31 

n 
~ 

D 
S 
S 

A u ''<IV 

A B 534 
A B 918 
A B 662 

~ Table A-16. Integer Load and Store Multiple Instructions 

n'f[' 

~ 
~! 
r~1 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 222324 25 26 27 28 29 30 31 

Imw31 46 DAd 

stmw3~===4=7==~~====S====~~====A====~~===============d===============~ 

A-22 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Name 0 

Iswi 3 

Iswx 3 

stswi 3 

stswx 3 

Name 0 

Name 0 

Ifd 

Ifdu 

Ifdux 

Ifdx 

Ifs 

Ifsu 

Ifsux 

Ifsx 

MOTOROLA 

Table A-17.lnteger Load and Store String Instructions 

5 678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

31 D A NB 597 

31 D A B 533 

31 S A NB 725 

31 S A B 661 

Table A-18. Memory Synchronization Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table A-19. Floating-Point Load Instructions7 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

50 D A d 

51 D A d 

31 D A B 631 

31 D A B 599 

48 D A d 

49 D A d 

31 D A B 567 

31 D A B 535 [I 

Appendix A. PowerPC Instruction Set Listings A-23 



Name 0 

stfd 

stfdu 

stfdux 

stfdx 

stfiwx 5 

stfs 

stfsu 

stfsux 

stfsx 

Name 

fabsx 

fmrx 

fnabsx 

fnegx 

Name 

0 

0 

bxl 

bcx 

bcctrx 

bclrx 

Name 0 

A·24 

crand 

crandc 

creqv 

crnand 

crnor 

Table A-20. Floating-Point Store Instructions7 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 2223 24 25 26 27 28 29 30 31 

54 S A d 

55 S A d 

31 S A B 759 

31 S A B 727 n( 
31 s A B 983 

52 S A d 

53 S A d 

31 S A B 695 

31 S A B 663 
'.::;' 

Table A-21. Floating-Point Move Instructions7 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

63 D B 264 Re 

63 D B 72 Re 

63 D B 136 Re 

63 D B 40 Re 

Table A-22. Branch Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

18 LI IMiLKI 

16 BO BI BD LK 

19 BO BI 528 LK 

19 BO BI 16 LK 

Table A-23. Condition Register Logical Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

19 erbD erbA erbB 257 ti~~ 
19 erbD erbA erbB 129 ~IM 

19 erbD erbA erbB 289 
, 

19 erbD erbA erbB 225 

19 erbD erbA erbB 33 
~ ~ 

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Table A-23. Condition Register Logical Instructions (Continued) 

eror 19 erbD erbA erbB 449 

erore 19 erbD erbA erbB 417 

erxor 19 erbD crbA erbB 193 

merf 19 

Table A-24. System Linkage Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

rfi 1 19 

se 17 

Table A-25. Trap Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table A-26. Processor Control Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

merxr 31 erfS 512 

mfer 31 D 19 

mfmsr 1 31 D 83 

mfspr 2 31 D 339 

mftb 31 D 371 

mterf 31 S 144 

mtmsr 1 31 S 146 

mtspr 2 31 D 467 lEI 

MOTOROLA Appendix A. Power PC Instruction Set Listings A-25 



Table A-27. Cache Management Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

debt 31 A B 86 

debl 1 31 A B 470 

debst 31 A B 54 

debt 31 A B 278 

debtst 31 A B 246 

debz 31 A B 1014 

iebi 31 A B 982 

Table A-28. Segment Register Manipulation Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 192021 22232425 26 27 28 29 30 31 

mtsr 1 31 D 595 

mtsrin 1 31 D 659 

mtsr 1 31 s 210 

mtsrln 1 s 242 

Table A-29. Lookaside Buffer Management Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

tlbld 1,6 31 978 

tlbli 1,6 31 1010 

tlbsyne1,5 31 566 ,. 

A-26 MPC603e & EC603eFlISC Microprocessors User's Manual MOTOROLA 



Table A-30. External Control Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

eciwx 31 o A 

ecowx 31 S A 

1 Supervisor-level instruction 
2 Supervisor- and user-level instruction 
3 Load and store string or multiple instruction 
4 64-bit instruction 
5 Optional in the PowerPC architecture 
6 603e-implementation specific instruction 

B 310 

B 438 

7 Floating-point instructions are not supported by the EC603e microprocessor and are trapped 
by the floating-point unavailable exception vector. 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-27 



A.4 Instructions Sorted by Form 
Table A-31 through Table A-45 list the PowerPC instructions grouped by form. 

Key: 

Reserved bits • Instruction not implemented in the 603e 

Table A-31. I-Form 

OPCD LI 

Specific Instruction 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

bxl 18 LI MLKI 
Table A-32. B-Form 

OPCD BO BI BD IA4LKI 
Specific Instruction 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

bcx BD LK 
Table A-33. SC-Form 

Specific Instruction 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

sc 

Table A-34. D-Form 

OPCD D A d 

OPCD D A SiMM - OPCD S A d 

OPCD S A UIMM 

OPCD erfD L A SIMM 

OPCD erfD L A UIMM 

OPCD TO A SIMM 

A-28 MPC60~ & EC603e RISC Microprocessors User's Manual MOTOROLA 



Name 0 

i add 

addic 

addic 

addis 

andi 

i 

i 

andis 

cmp 

cmpl 

Ibz 

Ibzu 

Ifd7 

Ifdu 7 

Ifs7 

Ifsu7 

Iha 

Ihau 

1hz 

Ihzu 

Imw 3 

Iwz 

Iwzu 

mull I 

i or 

oris 

stb 

stbu 

stfd7 

stfdu7 

stfs7 

stfsu7 

sth 

sthu 

MOTOROLA 

14 

12 

13 

15 

28 

29 

11 

10 

34 

35 

50 

51 

48 

49 

42 

43 

40 

41 

46 

32 

33 

7 

24 

25 

38 

39 

54 

55 

52 

53 

44 

45 

Specific Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

D A SIMM 

D A SIMM 

D A SIMM 

D A SIMM 

S A UIMM 

S A UIMM 

criD L A SIMM 

criD L A UIMM 

D A d 

D A d 

D A d 

D A d 

D A d 

D A d 

D A d 

D A d 

D A d 

D A d 

D A d 

D A d 

D A d 

D A SIMM 

S A UIMM 

S A UIMM 

S A d 

S A d 

S A d 

S A d 

S A d 

S A d 

S A d 

S A d 

Appendix A. PowerPC Instruction Set Listings A-29 



stmw 3 47 S A d 

stw 36 S A d 

stwu 37 S A d 

subflc 08 D A SIMM 

twl 03 TO A SIMM 

xori 26 S A UIMM 

xoris 27 S A UIMM 

Table A-35. OS-Form 

opeD D A ds I:: opeD S A ds 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

opeD D xo 
opeD D xo 
opeD D xo 
opeD D xo 
opeD D xo 

~ opeD S A B xo 
opeD S A B xo 
opeD S A B xo 
opeD S A NB xo 
opeD S xo 
opeD S xo 
opeD S xo 
opeD S xo 
opeD S xo 
opeD crfD xo 

A-3D MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 

andx 31 S B 28 

andcx 31 B 60 

cmp 31 crfD B 0 

dcbt 31 86 

dcbl 1 31 A B 470 

dcbst 31 A B 54 

dcbt 31 A B 278 

dcbtst 31 A B 246 

dcbz 31 A B 1014 

eciwx 31 A B 310 

ecowx 31 438 IE 
854 

284 

954 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-31 



fctiwz? 63 D B 15 

fmr? 63 D B 72 

fnabs? 63 D B 136 

fneg? 63 D B 40 

frsp? 63 B 12 

icbi 31 B 982 

Ibzux 31 B 119 

Ifdux7 31 D A B 631 

Ifdx7 31 D A B 599 

Ifsux7 31 D A B 567 

Ifsx7 31 D A B 535 

Ihaiix 31 D A B 375 

Ihax 31 D A B 343 

Ihbrx 31 A B 790 

Ihzux 31 D A B 311 

Ihzx 31 D A B 279 

Iswl 3 31 D A NB 597 .. Iswx 3 31 D A B 533 

Iwarx 31 D A B 20 

A-32 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



mffsx7 63 0 583 

mfmsr 1 31 0 83 

mfsr 1 31 0 595 

mfsrin 1 31 0 659 

mtfsbOx7 63 70 

mtfsb1x 7 63 38 

mtfsfix7 63 crbD 134 

mtmsr 1 31 S 146 

mtsr 1 31 S 210 

mtsrin 1 31 S 242 

nandx 31 S A B 476 

norx 31 S A B 124 

orx 31 S A B 444 

stfdux7 31 S A B 759 

stfdx7 31 S A B 727 

stfiwx5,7 31 S A B 983 

stfsux7 31 S A B 695 

stfsx7 31 S A B 663 

sthbrx 31 S A B 918 

sthux 31 S A B 439 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-33 



sthx 31 S A B 407 

stswi 3 31 S A NB 725 

stswx 3 31 S A B 661 

stwbrx 31 S A B 662 

stwcx. 31 S A B 150 

stwux 31 S A B 183 

stwx 31 151 

tlbld 1,6 31 978 

t1bli 1,6 31 1010 

tlbsync1,5 31 566 

tw 31 4 

xorx 31 316 

Table A-37. XL-Form 

opeD xo 

opeD xo 

opeD xo 

nnl"n XO V'--VLJ 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

bcctrx 19 BO BI 528 

~ 19 BO BI 16 

crand 19 crbD crbA crbB 257 

crandc 19 crbD crbA crbB 129 

creqv 19 crbD crbA crbB 289 

crnand 19 crbD crbA crbB 225 

crnor 19 crbD crbA crbB 33 

cror 19 crbD crbA crbB 449 

crorc 19 crbD crbA crbB 417 

crxor 19 crbD crbA crbB 193 

A-34 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



isync 

mcrf 

rfi 1 

Name 0 

mfspr 2 

mftb 

mtcrf 

mtspr 2 

Name 0 

19 150 

19 o 

19 50 

Table A-3S. XFX-Form 

opeD D spr XO t.~ 
opeD D ~I CRM Iq XO .! 

opeD s spr XO 

opeD D tbr XO 

Specific Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

31 D spr 339 

31 D tbr 371 

31 S I>~'I CRM 1·:9·; 144 

31 D spr 467 

Table A-39. XFL-Form 

opeD f~l FM B xo 

Specific Instructions 

5 6 7 8 9 1011 12131415161718192021 22232425262728293031 

mtfsfx7 ,-I _63_---'I=q·"-I ___ F_M __ ~fQ"'_I __ B _ ____' ____ 7_11 ___ __'_IR-,cl 

Table A-40. XS-Form 

opeD s A sh xo 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table A-41. XO-Form 

opeD D A xo Rc 

opeD D A xo Rc 

opeD D A xo Rc 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 

a::::I:===:=:===:====:=====:====:=====:====:=====~:=~:=======2=:=:========1::::1 
MOTOROLA Appendix A. PowerPC Instruction Set Listings A-35 



,.. 

addex 

addmex 

negx 

subfx 

subfcx 

subfex 

subfmex 

subfzex 

Name 

faddx7 

faddsx7 

fdivX' 

fdivsx7 

fmaddx7 

fmaddsx7 

fmsubx7 

fmsubsx7 

A-36 

31 

31 

31 

31 

31 

31 

31 

31 

opcn 

OPCD 

OPCD 

OPCD 

0 

63 

59 

63 

59 

63 

59 

63 

59 

D A 

D A 

D A 104 

D A 40 

D A 8 

D A 136 

D A 232 

D A 200 

Table A-42. A-Form 

D XO Rc 

D XO Rc 

D XO Rc 

D XO Rc 

Specific Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

D A B 21 Rc 

D A B 21 Rc 

D A B 18 Rc 

D A B 18 Rc 

D A B C 29 Rc 

D A B C 29 Rc 

D A B C 28 Rc 

D A B C 28 Rc 

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



fmulx7 

fmulsx7 

fnmaddx 7 

fnmaddsx7 

fnmsubx7 

fnmsubsx7 

fresx 5'7 

frsqrtex 5,7 

fsubsx7 

Name 

rlwimix 

rlwinmx 

rlwnmx 

0 

Name 0 

MOTOROLA 

63 

59 

63 

59 

63 

59 

59 

63 

59 

OPCD 

OPCD 

20 

21 

23 

OPCD 

OPCD 

D A C 25 

D A C 25 

D A B C 31 

D A B C 31 

D A B C 30 

D C 30 

D 

D 

D A B 

Table A-43. M-Form 

S A SH MB ME 

1:1 S A B MB ME 

Specific Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2728293031 

S A SH MB ME Rc 

S A SH MB ME Rc 

S A B MB ME Rc 

Table A-44. MD-Form 

S A sh mb XO 

S A sh me XO 

Specific Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Appendix A. PowerPC Instruction Set Listings A-37 



Table A-45. MDS-Form 

OPCD S A B mb XO 

1::1 OPCD S A B me XO 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

A-38 

I Supervisor-level instruction 
2 Supervisor- and user-level instruction 
3 Load and store string or multiple instruction 
4 64-bit instruction 
5 Optional in the PowerPC architecture 
6 603e-implementation specific instruction 
7 Floating-point instructions are not supported by the EC603e microprocessor and are trapped 

by the floating-point unavailable exception vector. 

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



A.S Instruction Set Legend 
Table A-46 provides general information on the PowerPC instruction set (such as the 
architectural level, privilege level, and form). 

Key: 

o Reserved bits • Instruction not implemented in the 603e 

Table A-46. PowerPC Instruction Set Legend 

UISA VEA OEA Supervisor Level 64-Bit Optional Form 

addx " XO 

addex " XO 

addex " XO 

addi " D 

addie " D 

addie. " D 

addis " D 

addmex " XO 

addzex " XO 

andx " X 

andex " X 

andi. " D 

andis. " D 

bx " I 

bex " B 

bectrx " XL 

belrx " XL 

emp " X 

em pi " D 

em pi " X 

empll " D 

entlzwx " X 

erand " XL 

erande " XL 

ereqv " XL 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-39 



ernand ...j XL 

ernor ...j XL 

eror ...j XL 

erore ...j XL 

erxor ...j XL 

debt X 

debl 1 X 

debst ...j X 

debt ...j X 

debtst ...j X 

debz ...j X 

dlvwx ...j XO 

divwux ...j XO 

eciwx ...j ...j X 

eeowx ...j ...j X 

eieio ...j X 

eqvx ...j X 

extsbx ...j X 

extshx ...j X 

tetiw.? ...j X 

tetiwz.? ...j X 

tdlv.? ...j A 

tdivs.? ...; A 

tmadd.? ...j A 

A-40 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



fmaddsx7 

fmrx7 

fmsubx7 

fmsubsx7 

fmulx7 

fmulsx7 

fnabsx7 

fnegx7 

fnmaddx 7 

fnmaddsx7 

fnmsubx7 

fnmsubsx7 

fresx 5,7 

frspx7 

frsqrtex 5,7 

fselx 5,7 

fsubx7 

fsubsx7 

icbi 

isync 

Ibz 

Ibzu 

Ibzux 

Ibzx 

Ifd7 

Ifdu 7 

(fdux7 

Ifdx7 

MOTOROLA 

,f A 

,f X 

,f A 

,f A 

,f A 

,f A 

,f X 

,f X 

,f A 

,f A 

,f A 

,f A 

,f A 

,f X 

,f ,f A 

,f ,f A 

,f A 

,f A 

,f X 

,f XL 

,f D 

,f D 

,f X 

,f X .rl 

D 

D 

X 

X 

Appendix A. PowerPC Instruction Set Listings A-41 



A-42 

Ifs7 

Ifsu7 

Ifsux7 

Ifsx7 

Iha 

Ihau 

Ihaux 

Ihax 

Ihbrx 

1hz 

Ihzu 

Ihzux 

Ihzx 

Imw 3 

Iswi 3 

Iswx 3 

Iwbrx 

Iwz 

Iwzu 

Iwzux 

Iwzx 

mcrf 

mcrfs7 

UISA VEA OEA Supervisor Level 64-bit Optional Form 

;f D 

;f D 

;f X 

;f X 

;f D 

;f D 

;f X 

;f X 

;f X 

;f D 

;f D 

;f X 

;f X 

;f D 

;f X 

;f X 

;f X 

;f D 

;f D 

;f X 

;f X 

;f XL 

;f X 

~~ ;f X 

mfcr ;f X 

~? ;f X 

mfmsr 1 ;f;f X 

mfspr 2 ;f ;f;f XFX 
~-----+------+---~~----~-----r------+-----~------~ 

mfsr 1 ;f.~ X 

mfsrin 1 ;f;f X 

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



mftb 

mtcrf 

mtfsbOX' 

mtfsb1x 7 

mtfsfx7 

mtfsfix7 

mtmsr 1 

mtspr 2 

mtsr 1 

mtsrin 1 

multi 

mullwx 

nandx 

negx 

norx 

orx 

orcx 

ori 

oris 

rlwimix 

rlwinmx 

rlwnmx 

MOTOROLA 

UISA 

;j 

;j 

;j 

;j 

;j 

;j 

;j 

;j 

;j 

;j 

;j 

;j 

;j 

;j 

;j 

YEA OEA Supervisor Level 64-bit Optional Form 

;j XFX 

XFX 

X 

X 

XFL 

X 

;j ;j X 

;j ;j XFX 

;j ;j X 

;j ;j X 

D 

XO 

X 

XO 

X 

X 

X 

D 

D 

~ 

M 

M 

M 

Appendix A_ PowerPC Instruction Set Listings A-43 



UISA VEA OEA Supervisor Level 64-bit Optional Form 

srwx ...j X 

stb ...j D 

stbu ...j D 

stbux ...j X 

stbx ...j X 

sHd7 ...j D 
r------+------+-----~----------_r------+_----~------~ 

sHdu7 ...j D 

sHdux7 ...j X 

sHdx7 ...j X 

sHlwx 5,7 ...j X 
r------+------+-----~----------_r------+_----~------~ 

sHs7 ...j D 
r------+------+-----~----------_r------+_----~------~ 

sHsu7 ...j D 

sHsux7 ...j X 

sHsx7 ...j X 

~ ...j D 
r------+------+-----~~--------_r------+_----_1------~ 

sthbrx ...j X 
r------+------+-----~~--------_r------+_----_1------~ 

~ ...j D 
r------+------+-----~r_--------_r------+_----_1------~ 

sthux ...j X 

sthx ...j X 

A-44 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



stmw 3 ...J 

stswi 3 ...J 

stswx 3 ...J 

stw ...J 

stwbrx ...J 

stwex. ...J 

stwu ...J 

stwux ...J 

stwx ...J 

subfx ...J 

subfex ...J 

subfex ...J 

subfle ...J 

subfmex ...J 

subfzex ...J 

syne ...J 

tlbld 1,6 

tlbll 1,6 

tlbsyne 1,5 

tw ...J 

twi ...J 

xorx ...J 

xorl ...J 

xoris ...J 

1 Supervisor-level instruction 
2 Supervisor- and user-level instruction 
3 Load and store string or multiple instruction 
4 64-bit instruction 
5 Optional in the PowerPC architecture 
6 603e-implementation specific instruction 

D 

X 

X 

D 

X 

X 

D 

x 
X 

XO 

XO 

XO 

D 

XO 

XO 

X 

...J X 

...J X 

...J X 

X 

D 

X 

D 

D 

7 Floating-point instructions are not supported by the EC603e microprocessor andare trapped 
by the floating-point unavailable exception vector, 

MOTOROLA Appendix A. PowerPC Instruction Set Listings 

ID 

A-45 



A-46 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Appendix B 
Instructions Not Implemented 
This appendix provides a list of the 32-bit and 64-bit PowerPC instructions that are not 
implemented in the PowerPC 603e microprocessor. It also provides a list of the fioating­
point instructions that are not supported by the EC603e microprocessor and the 64-bit SPR 
encoding that is not implemented by the 603e. Note that any attempt to execute instructions 
that are not implemented on the 603e will generate an illegal instruction exception. Note 
that exceptions are referred to as interrupts in the architecture specification. 

Table B-1 provides the 32-bit PowerPC instructions that are optional to the PowerPC 
architecture but not implemented by the 603e. 

Table B-1. 32-Bit Instructions Not Implemented by the PowerPC 603e 

Mnemonic Instruction 

fsqrt Floating Square Root (Double-Precision) 

fsqrts Floating Square Root Single 

tibia TLB Invalidate All 

Table B-2 provides a list of 64-bit instructions that are not implemented by the 603e and 
EC603e microprocessors. 

Table B-2. 64-Bit Instructions Not Implemented 

Mnemonic Instruction 

cntlzd Count Leading Zeros Double Word 

divd Divide Double Word 

divdu Divide Double Word Unsigned 

extsw Extend Sign Word 

fcfid Floating Convert From Integer Double Word 

fctid Floating Convert to Integer Double Word 

fctidz Floating Convert to Integer Double Word with Round toward Zero 

Id Load Double Word 

Idarx Load Double Word and Reserve Indexed 

MOTOROLA Appendix B. Instructions Not Implemented B-1 



Table B-2. 64-Bit Instructions Not Implemented (Continued) 

Mnemonic Instruction 

Idu Load Double Word with Update 

Idux Load Double Word with Update Indexed 

Idx Load Double Word Indexed 

Iwa Load Word Algebraic 

Iwaux Load Word Algebraic with Update Indexed 

Iwax Load Word Algebraic Indexed 

mulld Multiply Low Double Word 

mulhd Multiply High Double Word 

mulhdu Multiply High Double Word Unsigned 

rldel Rotate Left Double Word then Clear Left 

rider Rotate Left Double Word then Clear Right 

rldie Rotate Left Double Word Immediate then Clear 

rldiel Rotate Left Double Word Immediate then Clear Left 

rldler Rotate Left Double Word Immediate then Clear Right 

rldimi Rotate Left Double Word Immediate then Mask Insert 

slbia SLB Invalidate All 

slbie SLB Invalidate Entry 

sid Shift Left Double Word 

srad Shift Right Algebraic Double Word 

sradi Shift Right Algebraic Double Word Immediate 

srd Shift Right Double Word 

std Store Double Word 

stdex. Store Double Word Conditional Indexed 

stdu Store Double Word with Update 

stdux Store Double Word Indexed with Update 

stdx Store Double Word Indexed 

td Trap Double Word 

tdi Trap Double Word Immediate 

8-2 MPC603e & EC603e RiSe Microprocessors User's Manual MOTOROLA 



Table B-3 lists floating-point instructions that are not supported by the EC603e 
microprocessor. The EC603e microprocessor does not support the floating-point unit; 
therefore, floating-point instructions are trapped by the floating-point unavailable exception 
vector but they may be emulated by software. 

MOTOROLA 

Table 8-3. Floating-Point Instructions Not Supported by the 
EC603e Microprocessor 

Mnemonic Instruction 

fabs Floating Absolute 

fadd Floating Add 

fadds Floating Add Single 

fcmpo Floating Compare Ordered 

fcmpu Floating Compare Unordered 

fctlw Floating Convert to Integer Word 

fctiwz Floating Convert to Integer Word with Round toward Zero 

fdiv Floating Divide 

fdlvs Floating Divide Single 

fmadd Floating Multiply Add 

fmadds Floating Multipy Add Single 

fmr Floating Move Register 

fmsub Floating Multiply Subtract 

fmsubs Floating Multiply Subtract Single 

fmul Floating Multiply 

fmuls Floating Multiply Single 

fnabs Floating Negative Absolute 

fneg Floating Negative 

fnmadd Floating Negative Multiply-Add (Double-Precision) 

fnmadds Floating Negatve Multiply-Add Single 

fnmsub Floating Negative Multiply-Subtract (Double-Precision) 

fnmsubs Floating Negative Multiply -Subtract Single 

fres Floating Reciprocal Estimate Single 

frsp Floating Round to Single 

frsqrte Floating Reciprocal Square Root Estimate 

fsel Floating Select 

fsqrt Floating Square Root (Double-Precision) 

fsqrts Floating Square Root Single 

Appendix B. Instructions Not Implemented B-3 



Table B-3. Floating-Point Instructions Not Supported by the 
EC603e Microprocessor (Continued) 

Mnemonic Instruction 

fsub Floating Subtract 

fsubs Floating Subtract Single 

Ifd Load Floating-Point Double 

Ifdu Load Floating-Point Double with Update 

Ifdux Load Floating-Point Double with Update Indexed 

Ifdx Load Floating-Point 

Ifs Load Floating-Point Single 

Ifsu Load Floating-Point Single with Update 

Ifsux Load Floating-Point Single with Update Indexed 

Ifsx Load Floating-Point Indexed 

mcrfs Move to Condition Register from FPSCR 

mffs Move from FPSCR 

mtfsbO Move to FPSCR Bit 0 

mtfsb1 Move to FPSCR Bit 1 

mtfsf Move to FPSCR Fields 

mtfsfi Move to FPSCR Field Immediate 

sUd Siore Floaiing-Point Double 

stfdu Store Floating-Point Double with Update 

stfdux Store Floating-Point Double with Update Indexed 

stfdx Store Floating-Point Double Indexed 

stfiwx Store Floating-Point as Integer Word Indexed 

stfs Store Floating-Point Single 

stfsu Store Floating-Point Single with Update 

stfsux Store Floating-Point Single with Update Indexed 

stfsx Store Floating-Point Single Indexed 

tibia TLB Invalidate All 

Table B-4 provides the 64-bit SPR encoding that is not implemented by the 603e and 

8-4 MPC603e & EC603e RISC Microprocessors User·s Manual MOTOROLA 



EC603e microprocessor. 

Table B-4. 64-Bit SPR Encoding Not Implemented 

SPR 
Register 

Access 
Decimal spr[5-9] spr[0-4] 

Name 

280 01000 11000 ASR Supervisor 

MOTOROLA Appendix B. Instructions Not Implemented 6-5 



8-6 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Appendix C 
PowerPC 603 Processor System Design 
and Programming Considerations 
While the PowerPC 603 microprocessor shares most of the attributes of the PowerPC 603e 
microprocessor, the system designer or programmer should keep in mind the 603 hardware 
and software differences, described in the following sections, that can require modifications 
to accommodate the 603 in systems designed for the 603e. 

C.1 PowerPC 603 Microprocessor Hardware 
Considerations 

The 603's hardware implementation differs from the 603e in the following ways: 

• XATS signal replaces CSEI signal 
• Hardware support for access to direct-store segments 
• Bus clock multipliers of 1: 1, 2: 1, 3: 1, and 4: 1 only 

8-Kbyte, two-way set associative instruction and data caches 

• HID 1 register not implemented in 603 

", 

The following sections provide further information on the operation of some of the 
hardware features specific to the 603. 

C.1.1 Hardware Support for Direct-Store Accesses 
The 603 provides hardware support for direct-store bus accesses through the provision of 
the extended address transfer start (XATS) signal, and support for direct-store accesses in 
the bus interface unit. Direct-store accesses are invoked when a segment register T bit is set 
to 1. 

The operation of the XATS signal is described in the following section. The XATS signal 
is in the same location as the CSE 1 signal on the 603e. ~ 

MOTOROLA Appendix C. PowerPC 603 Processor System Design 
and Programming Considerations 

C-1 



.. 

C.1.1.1 Extended Address Transfer Start (XATS) 
The XATS signal is both an input and an output signal on the 603. 

C.1.1.1.1 Extended Address Transfer Start (XATS)-Output 
Following are the state meaning and timing comments for the XATS output signal. 

State Meaning Asserted-Indicates that the 603 has begun a direct-store operation 
and that the first address cycle is valid. When asserted with the 
appropriate XATC signals it is also an implied data bus request for 
certain direct-store operation (unless it is an address-only operation). 

Negated-Is negated during an entire memory transaction. 

Timing Comments Assertion-Coincides with the assertion of ABB. 
Negation-Occurs one bus clock cycle after the assertion of XATS. 

High Impedance-Coincides with the negation of ABB. 

C.1.1.1.2 Extended Address Transfer Start (XATS)-Input 
Following are the state meaning and timing comments for the XATS input signal. 

State Meaning Asserted-Indicates that the 603 must check for a direct-store 
operation reply. 

Negated-Indicates that there is no need to check for a direct-store 
operation reply. 

Timing Comments Assertion-May occur while ABB is asserted. 
Negation-Must occur one bus clock cycle after XATS is asserted. 

C.1.2 Direct-Store Protocol Operation 
The 603 defines separate memory-mapped and I/O address spaces, or segments, 
distinguished by the corresponding segment register T bit in the address translation logic of 
the 603. If the T bit is cleared, the memory reference is a normal memory-mapped access 
and can use the virtual memory management hardware of the 603. If the T bit is set, the 
memory reference is a direct-store access. 

The following points should be considered for direct-store accesses: 

• The use of direct-store segment accesses may have a significant impact on the 
performance of the 603. The provision of direct-store segment access capability by 
the 603 is to provide compatibility with earlier hardware 110 controllers and may not 
be provided in future derivatives of the 603 family . 

• Direct-store accesses are strongly ordered; for example, these accesses occur on the 
bus strictly in order with respect to the instruction stream. 

• Direct-store accesses provide synchronous error reporting. 

The 603 has a single bus interface to support both memory accesses and direct-store 
segment accesses. 

C-2 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



The direct-store protocol for the 603 allows for the transfer of 1 to 128 bytes of data 
between the 603 and the bus unit controller (BUC) for each single load or store request 
issued by the program. The block of data is transferred by the 603 as multiple single-beat 
bus transactions (individual address and data tenure for each transaction) until completion. 
The program waits for the sequence of bus transactions to be completed so that a final 
completion status (error or no error) can be reported precisely with respect to the program 
flow. The completion status is snooped by the 603 from a bus transaction run by the BUC. 

The system recognizes the assertion of the TS signal as the start of a memory-mapped 
access. The assertion of XATS indicates a direct-store access. This allows memory-mapped 
devices to ignore direct-store transactions. If XATS is asserted, the access is to a direct­
store space and the following extensions to the memory access protocol apply: 

• A new set of bus operations are defined. The transfer type, transfer burst, and transfer 
size signals arc redefined for direct-store operations; they convey the opcode for the 
1/0 transaction (see Table C-l). 

There are two beats of address for each direct-store transfer. The first beat (packet 0) 
provides basic address information such as the segment register and the sender tag 
and several control bits; the second beat (packet 1) provides additional addressing 
bits from the segment register and the logical address. 

• The TT[0-3], TBST, and TSIZ[0-2] signals are remapped to form an 8-bit extended 
transfer code (XATC) which specifies a command and transfer size for the 
transaction. The XATC field is driven and snooped by the 603 during direct-store 
transactions. 

Only the data signals such as DH[0-31] and DP[0-3] are used. The lower half of the 
data bus and parity is ignored. 

The sender that initiated the transaction must wait for a reply from the receiver bus 
unit controller (BUC) before starting a new operation. 

The 603 does not burst direct -store transactions. All direct -store transactions 
generated by the 603 are single-beat transactions of 4 bytes or less (single data beat 
tenure per address tenure). 

Direct-store transactions use separate arbitration for the split address and data buses and 
define address-only and single-beat transactions. The address-retry vehicle is identical, 
although there is no hardware coherency support for direct-store transactions. The ARTRY 
signal is useful, however, for pacing 603 transactions, effectively indicating to the 603 that 
the BUC is in a queue-full condition and cannot accept new data. 

In addition to the extensions noted above, there are fundamental differences between 
memory-mapped and direct-store operations. For example, only half of the 64-bit data path 
is available for 603 direct-store transactions. This lowers the pin count for 110 interfaces but 
generally results in substantially less bandwidth than memory-mapped accesses. 
Additionally, loadlstore instructions that address direct-store segments cannot complete 
successfully without an error-free reply from the addressed BUC. Because normal direct-

MOTOROLA Appendix C. PowerPC 603 Processor System Design 
and Programming Considerations 

C-3 



store accesses involve multiple I/O transactions (streaming), they are likely to be very long 
latency instructions; therefore, direct-store operations usually stall 603 instruction issue. 

Figure C-I shows a direct-store tenure. Note that the I/O device response is an address-only 
bus transaction. 

ADDRESS TENURE 1/0 RESPONSE 

~ __________ ~A~ ____________ ~ 
( , ~ __________ ~A~ ____________ ~ 

( , 
ARBITRATION TERMINATION ••• ARBITRATION TERMINATION 

INDEPENDENT ADDRESS AND DATA 

~ 
DATA TENURE 

ARBITRATION TRANSFER TERMINATION ••• 
NO DATA TENURE FOR 1/0 RESPONSE 

(1/0 responses are address-only) 

Figure C-1. Direct-Store Tenures 

It should be noted that in the best case, the use of the 603 direct-store protocol degrades 
performance and requires the addressed controllers to implement 603 bus master capability 
to generate the reply transactions. 

C.l.2.1 Direci-Siore Transactions 
The 603 defines seven direct-store transaction operations, as shown in Table C-l. These 
operations permit communication between the 603 and BUCs. A single 603 store or load 
instruction (that translates to a direct-store access) generates one or more direct-store 
operations (two or more direct-store operations for loads) from the 603 and one reply 
operation from the addressed BUe. 

Table C-1. Direct-Store Bus Operations 

Operation Address Only Direction XATC Encoding 

Load start (request) Yes 603~ 10 01000000 

Load immediate No 603~ 10 0101 0000 

Load last No 603~ 10 0111 0000 

Store immediate No 603~ 10 0001 0000 

Store last No 603~ 10 0011 0000 

Load reply Yes 10 ~603 11000000 

Store reply Yes 10~603 10000000 

C-4 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



For the first beat of the address bus, the extended address transfer code (XATC) contains 
the 110 opcode as shown in Table C-I; the opcode is formed by concatenating the transfer 
type, transfer burst, and transfer size signals defined as follows: 

XATC = TT[0:3]IITBSTIITSIZ[0-2] 

C.1.2.1.1 Store Operations 
There are three operations defined for direct-store store operations from the 603 to the 
BUC, defined as follows: 

1. Store immediate operations transfer up to 32 bits of data each from the 603 to the 
BUC. 

2. Store last operations transfer up to 32 bits of data each from the 603 to the BUC. 

3. Store reply from the BUC reveals the success/failure of that direct-store access to the 
603. 

A direct-store store access consists of one or more data transfer operations followed by the 
110 store reply operation from the BUC. If the data can be transferred in one 32-bit data 
transaction, it is marked as a store last operation followed by the store reply operation; no 
store immediate operation is involved in the transfer, as shown in the following sequence: 

STORE LAST (from 603) 

• 
• 

STORE REPLY (from BUC) 
However, if more data is involved in the direct-store access, there will be one or more store 
immediate operations. The BUC can detect when the last data is being transferred by 
looking for the store last opcode, as shown in the following sequence: 

STORE IMMEDIATE(s) 

• 
• 

STORE LAST 

• 
STORE REPLY 

C.1.2.1.2 Load Operations 
Direct-store load accesses are similar to store operations, except that the 603 latches data _ 
from the addressed BUC rather than supplying the data to the BUC. As with memory 
accesses, the 603 is the master on both load and store operations; the external system must 
provide the data bus grant to the 603 when the BUC is ready to supply the data to the 603. 

The load request direct-store operation has no analogous store operation; it informs the 
addressed BUC of the total number of bytes of data that the BUC must provide to the 603 

MOTOROLA Appendix C. PowerPC 603 Processor System Design 
and Programming Considerations 

C-5 



on the subsequent load immediate/load last operations. For direct-store load accesses, the 
simplest, 32-bit (or fewer) data transfer sequence is as follows: 

LOAD REQUEST 

• 
• 

LOAD LAST 

• 
• 

LOAD REPLY (from BVC) 

However, if more data is involved in the direct-store access, there will be one or more load 
immediate operations. The BUC can detect when the last data is being transferred by 
looking for the load last opcode, as seen in the following sequence: 

LOAD REQUEST 

• 
• 

LOADIMM(s) 

• 
• 

LOAD LAST 

• 
• 

LOAD REPLY 
Note that three of the seven defined operations are address-only transactions and do not use 
tile daia bus. However, unlike the memory transfer protocol, these transactions are not 
broadcast from one master to all snooping devices. The direct-store address-only 
transaction protocol strictly controls communication between the 603 and the BVe. 

C.1.2.2 Direct-Store Transaction Protocol Details 
As mentioned previously, there are two address-bus beats corresponding to two packets of 
information about the address. The two packets contain the sender and receiver tags, the 
address and extended address bits, and extra control and status bits. The two beats of the 
address bus (plus attributes) are shown at the top of Figure C-2 as two packets. The first 
packet, packet 0, is then expanded to depict the XATC and address bus information in 
detail. 

C-6 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



C.1.2.2.1 Packet 0 
Figure C-2 shows the organization of the first packet in a direct-store transaction. 

The XATC contains the I/O opcode, as discussed earlier and as shown in Table C-l. The 
address bus contains the following: 

Key bit II segment register II sender tag 

A(O-31)+Attributes ~ 

__ ------------------~A~------------------~ 
( Address Bus (AO-A31) "\ 

o 7 
XATC I + 

I/OOpcode 

~ __________________ ~A~ ________________ ~ 
r \ 
o 1 23 1112 2728 31 

I I I I I I 

~Il\.... BUID v~ ___ JTo 
From Segment Register 

Key Bit 

Reserved 

Figure C-2. Direct-Store Operation-Packet 0 

This information is organized as follows: 

• Bits 0 and 1 of the address bus are reserved-the 603 always drives these bits to zero. 

• Key bit-Bit 2 is the key bit from the segment register (either SR[Kp] or SR[Ks]). 
Kp indicates user-level access and Ks indicates supervisor-level access. The 603 
multiplexes the correct key bit into this position according to the current operating 
context (user or supervisor). (Note that user- and supervisor-level refer to problem 
and privileged state, respectively, in the architecture specification.) 

• Segment register-Address bits 3-27 correspond to bits 3-27 of the selected 
segment register. Note that address bits 3-11 form the 9-bit receiver tag. Software 
must initialize these bits in the segment register to the ID of the BUC to be 
addressed; they are referred to as the BUID (bus unit ID) bits. 

• PID (sender tag)-Address bits 28-31 form the 4-bit sender tag. The 603 PID 
(processor ID) comes from bits 28-31 of the 603's processor ID register. The 4-bit 
PID tag allows a maximum of 16 processor IDs to be defined for a given system. If 
more bits are needed for a very large multiprocessor system, for example, it is 
envisioned that the second-level cache (or equivalent logic) can append a larger 
processor tag as needed. The BUC addressed by the receiver tag should latch the 
sender address required by the subsequent I/O reply operation. 

MOTOROLA Appendix C. PowerPC 603 Processor System Design 
and Programming Considerations 

C-7 



C.1.2.2.2 Packet 1 
The second address beat, packet 1, transfers byte counts and the physical address for the 
transaction, as shown in Figure C-3. 

ADDR+~ 
~ ____________________________ ~A~ __________________________ ~ 
I '\ 
o 7 0 3 4 31 
I XATC I + ISR(28-31j Bus Address I 

Byte Count Address Bus (AD-A31) 

Figure C-3. Direct-Store Operation-Packet 1 

For packet 1, the XATC is defined as follows: 

• Load request operations-XATC contains the total number of bytes to be transferred 
(128 bytes maximum for 603). 

• Immediatellast (load or store) operations-XATC contains the current transfer byte 
count (1 to 4 bytes). 

Address bits 0-31 contain the physical address of the transaction. The physical address is 
generated by concatenating segment register bits 28-31 with bits 4-31 of the effective 
address, as follows: 

Segment register (bits 28-31) II effective address (bits 4-31) 

While the 603 provides the address of the transaction to the BUC, the BUC must maintain 
a valid address pointer for the reply. 

C.1.2.3 1/0 Reply Operations 
Hues must respond to 603 direct-store transactions with an 110 reply operation, as shown 
in Figure C-4. The purpose of this reply operation is to inform the 603 of the success or 
failure of the attempted direct-store access. This requires the system direct-store slave to 
have 603 bus mastership capability-a substantially more complex design task than bus 
slave implementations that use memory-mapped 110 access. 

Reply operations from the BUC to the 603 are address-only transactions. As with packet 0 
of the address bus on 603 direct-store operations, the XATC contains the opcode for the 
operation (see Table C-1). Additionally, the 110 reply operation transfers the 
sender/receiver tags in the first beat. 

C-s MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Address Bus (AO-A31) 
~ ________________________________ ~A~ ______________________________ ~ 
r \ 
o 7 0123 1112 2728 31 

I XATC I + I I I V"'I I 
1/0 Opcode ~"-~ ________ --... ~ ________ ~/"--y--J 

1 
BUID Bue ~ecific PID 

"-~----------------~ ~----------------/ V 
Error 
Bit 

ReseNed 

Segment Register 

Figure C-4. VO Reply Operation 

The address bits are described in Table C-2. 

Table C-2. Address Bits for VO Reply Operations 

Address Bits Description 

0-1 Reserved. These bits should be cleared for compatibility with future PowerPC microprocessors. 

2 Error bit. It is set if the BUC records an error in the access. 

3-11 BUIO. Sender tag of a reply operation. Corresponds with bits 3-11 of one of the 603 segment 
registers. 

12-27 Address bits 12-27 are BUC-specific and are ignored by the 603. 

28-31 PIO (receiver tag). The 603 effectively snoops operations on the bus and, on reply operations, 
compares this field to bits 28-31 of the PIO register to determine if it should recognize this 1/0 reply. 

The second beat of the address bus is reserved; the XATC and address buses should be 
driven to zero to preserve compatibility with future protocol enhancements. 

The following sequence occurs when the 603 detects an error bit set on an 110 reply 
operation: 

1. The 603 completes the instruction that initiated the access. 

2. If the instruction is a load, the data is forwarded to the register file(s )lsequencer. 

3. A direct-store error exception is generated, which transfers 603 control to the direct­
store error exception handler to recover from the error. 

If the error bit is not set, the 603 instruction that initiated the access completes and 
instruction execution resumes. 

MOTOROLA Appendix C. PowerPC 603 Processor System Design 
and Programming Considerations 

e-9 



System designers should note the following: 

• "Misplaced" reply operations (that match the processor tag and arrive unexpectedly) 
are ignored by the 603. 

• Extemallogic must assert AACK for the 603, even though it is the receiver of the 
reply operation. AACK is an input-only signal to the 603. 

• The 603 monitors address parity when enabled by software and XATS and reply 
operations (load or store). 

C.1.2.4 Direct-Store Operation Timing 
The following timing diagrams show the sequence of events in a typical 603 direct-store 
load access (Figure C-5) and a typical 603 direct-store store access (Figure C-6). All 
arbitration signals except for ABB and DBB have been omitted for clarity, although they 
are still required. Note that, for either case, the number of immediate operations depends 
on the amount and the alignment of data to be transferred. If no more than 4 bytes are being 
transferred, and the data is double-word-aligned (that is, does not straddle an 8-byte address 
boundary), there will be no immediate operation as shown in the figures. 

The 603 can transfer as many as 128 bytes of data in one load or store instruction (requiring 
more than 33 immediate operations in the case of misaligned operands). 

In Figure C-5, XATS is asserted with the same timing relationship as TS in a memory 
access. Notice, however, that the address bus (and XATC) transition on the next bus clock 
cycle. The first of the two beats on the address bus is valid for one bus clock cycle window 
only, and that window is defined by the assertion of XATS. The second address bus beat, 
however, can be extended by delaying the assertion of AACK until the system has latched 
the address. 

The load request and load reply operations, shown in Figure C-5, are address-only 
transactions as denoted by the negated TT3 signal during their respective address tenures. 
Note that other types of bus operations can occur between the individual direct-store 
operations on the bus. The 603 involved in this transaction, however, does not initiate any 
other direct-store load or store operations once the first direct-store operation has begun 
address tenure; however, if the I/O operation is retried, other higher-priority operations can 
occur. 

Notice that, in this example (zero wait states), 13 bus clock cycles are required to transfer 
no more than 8 bytes of data. 

C-10 MPC603e & EC603e RIse Microprocessors User's Manual MOTOROLA 



IMM.OP REPLYOP REQUESTOP 

121 3 4 I 5 I 6 

LASTOP 

7 I 8 I 9 10 11 I 12 I 13 

I 
AI8I8 

I 
}{AlrS 

I I 
ADlDl~+}{AlrC I I 

I I 
I I I I I I I 

DlI8I8~.$: Li-J$: I ~ 
DH[o-311~~*,,1)lr~ 

TA .... lij,~m. : .. : • 
Figure C-S. Direct-Store Interface Load Access Example 

Figure C-6 shows a direct-store store access comprised of three direct-store operations. As 
with the example in Figure C-5, notice that data is transferred only on the 32 bits of the DH 
bus. As opposed to Figure C-5, there is no request operation since the 603 has the data ready 
for the BUC. 

The assertion of the TEA signal during a direct-store operation indicates that an 
unrecoverable error has occurred. IT the TEA signal is asserted during a direct-store 
operation, the TEA action will be delayed and the following direct-store transactions will 
continue until all data transfers from the direct store segment had been completed. The bus 
agent that asserts TEA is responsible for asserting the TEA signal for every direct-store 
transaction tenure including the last one. The direct-store reply, in this case, is not required 
and will be ignored by the processor. The processor will take a machine check exception 
after the last direct-store data tenure has been terminated by the assertion of TEA, and not 
before. 

MOTOROLA Appendix C. PowerPC 603 Processor System Design 
and Programming Considerations 

C-11 



I 
~ 

I 
~ 

I 
ADDIPl+XAl"C 

I 
I 

IMM. OP I LAST OP 

121 3 I 4 I 5 I 6 

I I 

DH[0-311~ I 
I I ~ 

TA •• ! .... ! AI 

I REPLYOP 

7 I 8 I 9 I 10 

Figure C-6. Direct-Store Interface Store Access Example 

C.1.3 CSE Signal 
The 603 employs two-way set associativity for both the instruction and data caches, in place 
of the four-way set associativity of the 603e. The CSE signal indicates which cache set is 
being loaded during a cache line fill. 

Table C-3 shows the CSE signal encoding indicating the cache set selected during a cache 
load operation. 

Table C-3. CSE Signal Encoding 

CSE Cache Set Element 

D SelD 

1 Sel1 

C.1.4 PowerPC 603 Processor Bus Clock Multiplier Configuration 
The 603 provides support for bus clock multipliers of 1:1, 2:1, 3:1, and 4:1. The bus clock 
multipliers are selected through the setting of the PLL_CFG[O-3] signals as shown in 
Table C-4. 

C-12 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



PLL_CFG 
0-3 

0000 

0001 

0010 

0100 

0101 

1000 

1001 

1100 

0011 

1111 

Notes: 

Table C-4. PowerPC 603 Microprocessor PLL Configuration 

Bus, CPU, and PLL Frequencies 

CPU! 
Bus Bus Bus Bus Bus Bus Bus 

SVSCLK 
Ratio 

16.6 MHz 20 MHz 25 MHz 33.3 MHz 40 MHz 50 MHz 66.6 MHz 

1 :1 - - - - - - 66.6 
(133) 

1 :1 - - - 33.3 40 50 -
(133) (160) (200) 

1:1 16.6 20 25 - - - -
(133) (160) (200) 

2:1 - - - 66.6 80 100 -
(133) (160) (200) 

2:1 33.3 40 50 - - - -
(133) (160) (200) 

3:1 - - 75 100 - - -
(150) (200) 

3:1 50 - - - - - -
(200) 

4:1 66.6 80 100 - - - -
(133) (160) (200) 

PLL bypass 

Clock off 

1. Some PLL configurations may select bus, CPU, or PLL frequencies which are not useful, not 
supported, or not tested for by the 603. PLL frequencies (shown in parenthesis in ) should not 
fall below 133 MHz, and should not exceed 200 MHz. 

2. In PLL bypass mode, the SYSCLK input signal clocks the internal processor directly, the PLL 
is disabled, and the bus mode is set for 1:1 mode operation. This mode is intended for factory 
use only. Note that the AC timing specifications given in this document do not apply in PLL 
bypass mode. 

3. In clock·off mode, no clocking occurs inside the 603 regardless of the SYSCLK input.4. 
PLL_CFGO-PLL_CFG1 signals selectthe CPU·to·bus ratio (1:1,2:1,3:1,4:1), 
PLL_CFG2-PLL_CFG3 signals select the CPU·to·PLL multiplier (x2, x4, x8). 

C.1.S PowerPC 603 Processor Cache Organization 
The 603 provides two 8-Kbyte, two-way set associative caches to allow the registers and 
execution units rapid access to instructions and data. The instruction and data caches are 
configured as 128 sets of two blocks. The operation of the 603' s instruction and data caches 
is consistent with the caches in the 603e, with the exception of the reduced cache size and 
set associativity. 

MOTOROLA Appendix C. PowerPC 603 Processor System Design 
and Programming Considerations 

C-13 



C.1.S.1 Instruction Cache Organization 
The organization of the instruction cache is shown in Figure C-7. Each cache block 
contains eight contiguous words from memory that are loaded from an eight-word 
boundary (that is, bits A27-A31 of the logical (effective) addresses are zero); as a result, 
cache blocks are aligned with page boundaries. 

Note that address bits A20-A26 provide an index to select a set. Bits A27-A31 select a byte 
within a block. The tags consists of bits PAO-PA19. Address translation occurs in parallel, 
such that higher-order bits (the tag bits in the cache) are physical. Note that the replacement 
algorithm is strictly an LRU algorithm; that is, the least recently used block is filled with 
new instructions on a cache miss. 

SET 1 

SET 0 I 
BLOCK 0 

I 

BLOCK 127 

ADDRESS TAG f0-

r-

r-

r-

r-

r-

r-

• I I • • 

r--

ADDRESS TAG f-

I I I I I I I I 
r­

~--~--~--+---+---~--+---4-~ r-
~--~--~--+---+---~--+---4-~ r-
~--~--~--+---+---~--+---4-~ r-
~--~--~--+---+---~--+---4-~ r-
~--~--~--+---+---+---+---4-~ r--
~--~--~--+---+---~--+---4-~ r--

• • I I: I I I 

I" 8 WORDS -I 

Figure C-7.lnstruction Cache Organization 

C.1.S.2 Data Cache Organization 
The organization of the data cache is shown in Figure C-8. Each cache block contains eight 
contiguous words from memory that are loaded from an eight-word boundary (that is, bits 
A27-A31 of the logical (effective) addresses are zero); as a result, cache blocks are aligned 
with page boundaries. 

C-14 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Note that address bits A20-A26 provide an index to select a set. Bits A27-A3l select a byte 
within a block. The tags consists of bits PAO-PA19. Address translation occurs in parallel, 
such that higher-order bits (the tag bits in the cache) are physical. Note that the replacement 
algorithm is strictly an LRU algorithm; that is, the least recently used block is filled with 
new data on a cache miss. 

BLOCK 11 

BLOCK 01 

SET ° ADDRESS TAG 

• 
• 
• 

SET 127 ADDRESS TAG 

I I I I I 
-
-
-
-
-
-

-

• 
• 
• 

-

-
aWaRDS 

Figure C-S. Data Cache Organization 

C.1.6 PLL Configuration (PLL_ CFG[O-3])-lnput 

I I I 
-

-
-
-
-
'-

-

• 
• 
• 

l-

f-

The 603 operates as described in Section 7.2.12.3, "PLL Configuration (PLL_CFG[O-
3D-Input," except for the following: 

To avoid incorrect operation of the PLL, the clock input to the SYSCLK signal input should 
be stable and within the frequency range specified for the selected PLL_CFG configuration 
during power-up, during normal operation, or when exiting the sleep power-saving mode. 

C.1.7 Address Pipelining and Split-Bus Transactions 
The 603 operates as described in Section 8.2.2, "Address Pipelining and Split-Bus 
Transactions," except for the following: 

Note that in multiprocessor systems, addresses associated with cache line loads are not 
snooped between the third and fourth beat during the data tenure when the system is 
configured for 64-bit bus operation. 

MOTOROLA Appendix C. PowerPC 603 Processor System Design 
and Programming Considerations 

C-15 



When configured for 32-bit bus operation, cache line loads are not snooped between the 
sixth and eighth beats. To ensure memory coherency, multiprocessor systems should avoid 
pipe lined operation, or disallow snooping during the last data beat of a cache load 
operation. 

C.1.8 Data Bus Arbitration 
The 603 operates as described in Section 8.4.1, "Data Bus Arbitration," except for the 
following: 

When the 603 is configured for 1: 1 processor to bus clock operation and DBG is always 
held asserted, multiple single-beat writes will cause incorrect data to be written to memory. 
The DBG signal should only be asserted when the data tenure can be started on the 
following bus cycle. 

C.2 PowerPC 603 Processor Software 
Considerations 

When developing software for the 603, the programmer should note the following 
differences from the 603e: 

• The 603 supports direct-store accesses; setting T = 1 in a segment register does not 
result in a DSI exception. 

• Store instructions have two-cycle latency and two-cycle throughput. 

• The 603 does not perform integer add or compare instructions in the SRU. 

• The 603 does not implement the key bit (bit 12) in SRRI to provide information 
about memory protection violations prior to page table search operations. 

• HIDI is not implemented by the 603; no read-only access to the PLL_CFG signal 
configuration is provided. 

• The PVR value for the 603 is Ox0003. 

The following sections provide further information on the 603 attributes that may affect 
software written for the 603e. 

C.2.1 Direct-Store Interface Address Translation 
With address translation enabled, all memory accesses generated by the 603 map to a 
segment descriptor in the segment table. If T = 1 for the selected segment descriptor and 

~ there are no BAT hits, the access maps to the direct-store interface, invoking a specific bus 
protocol for accessing some special-purpose 110 devices. Direct-store segments are 
provided for POWER compatibility. As the direct-store interface is present only for 
compatibility with existing 110 devices that used this interface and the direct-store interface 
protocol is not optimized for performance, its use is discouraged. The selection of address 
translation type differs for instruction and data accesses only in that instruction accesses are 
not allowed from direct-store segments; attempting to fetch an instruction from a direct-

C-16 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



store segment causes an lSI exception. Applications that require low latency load/store 
access to external address space should use memory-mapped 110, rather than the direct­
store interface. Refer to Chapter 5, "Memory Management" for additional information 
about address translation and memory accesses. 

C.2.1.1 Direct-Store Segment Translation Summary Flow 
Figure C-9 shows the flow used by the MMU when direct-store segment address translation 
is selected. In the case of a floating-point load or store operation to a direct-store segment, 
other implementations may not take an alignment exception, as is allowed by the PowerPC 
architecture. In the case of an eciwx, eeowx, lwarx, or stwex. instruction, the 603 sets the 
DSISR register as shown and causes the DSI exception. 

MOTOROLA 

Direct-Store 
Segment Translation 

Instruction Access Data Access 

1 Floating-Point 
Load or Store 

...... 
otherwise ... 

A : A~g~e~tl ~c~t~n : 
eciwx, eeowx, Iwar~ . I 
or stwex. instruction otherwise 

, --c: ~ """,.1_,"" ('d>!, 
DSISR[5] f- 1 otherwise debtst, debf, debi, debst, 

L _ _ _ _ ..J debz, or iebi) 

Perform Direct-Store 
Interface Access 

............... 
~NO-OP ) 

- - - Optional to the PowerPC architecture. Implemented in the 603. 

Figure C-9_ Direct-Store Segment Translation Flow 

Appendix C. PowerPC 603 Processor System Design 
and Programming Considerations 

C-17 



A direct-store access occurs when a data access is initiated and SR[T] is set. In the 603, 
MSR[DR] is a don't care for this case. The following apply for direct-store accesses: 

• Floating-point loads and stores to direct-store segments always cause an alignment 
exception, regardless of operand alignment. 

• Iwarx or stwex. instructions that map into a direct -store segment always cause a DSI 
exception. However, if the instruction crosses a segment boundary, an alignment 
exception is taken instead. 

C.2.1.2 Direct-Store Interface Accesses 
When the address translation process determines that the segment descriptor has T = I, 
direct-store interface address translation is selected and no reference is made to the page 
tables and referenced and changed bits are not updated. These accesses are performed as if 
the WIMG bits were ObOlOl; that is, caching is inhibited, the accesses bypass the cache, 
hardware-enforced coherency is not required, and the accesses are considered guarded. 

The specific protocol invoked to perform these accesses involves the transfer of address and 
data information in packets; however, the PowerPC OEA does not define the exact 
hardware protocol used for direct-store interface accesses. Some instructions cause 
multiple address/data transactions to occur on the bus. In this case, the address for each 
transaction is handled individually with respect to the DMMU. 

The following data is sent by the 603 to the memory controller in the protocol (two packets 
consisting of address-only cycles). 

• Packet 0 

- One of the Kx bits (Ks or Kp) is selected to be the key as follows: 

- For supervisor accesses (MSR[PR] = 0), the Ks bit is used and Kp is ignored. 

- For user accesses (MSR[PR] = 1), the Kp bit is used and Ks is ignored. 

- The contents of bits 3-31 of the segment register, which is the BUm field 
concatenated with the "controller-specific" field. 

• Packet I-SR[28-31] concatenated with the 28 lower-order bits of the effective 
address, EA4-EA31. 

C.2.1.3 Direct-Store Segment Protection 
Page-level memory protection as described in Section 5.4.2, "Page Memory Protection," is 
not provided for direct-store segments. The appropriate key bit (Ks or Kp) from the segment 
descriptor is sent to the memory controller, and the memory controller implements any 
protection required. Frequently, no such mechanism is provided; the fact that a direct-store 
segment is mapped into the address space of a process may be regarded as sufficient 
authority to access the segment. 

C-18 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



C.2.1.4 Instructions Not Supported in Direct-Store Segments 
The following instructions are not supported at all and cause a DSI exception in the 603 
(with DSISR[5] set) when issued with an effective address that selects a segment descriptor 
that has T = 1 (or when MSR[DR] = 0): 

• lwarx 
• stwex. 

• eciwx 
• ecowx 

C.2.1.5 Instructions with No Effect in Direct-Store Segments 
The following instructions are executed as no-ops by the 603 when issued with an effective 
address that selects a segment where T = 1: 

• debt 
• debtst 
• debf 
• debi 
• debst 
• debz 
• icbi 

C.2.2 Store Instruction Latency 
The store instructions executed by the 603 execute with 2-cycle latency, and 2-cycle 
throughput, in contrast to the 2-cycle latency and I-cycle throughput of the 603e. Table C-5 
provides the latencies for the store instructions executed by the 603. 

MOTOROLA 

Table C-S. Store Instruction Timing 

Primary Extended Mnemonic Unit Cycles 

31 151 stwx LSU 2:2 

31 183 stwux LSU 2:2 

31 215 stbx LSU 2:2 

31 247 stbux LSU 2:2 

31 407 sthx LSU 2:2 

31 438 ecowx LSU 2:2 

31 439 sthux LSU 2:2 

31 662 stwbrx LSU 2:2 

31 663 stfsx LSU 2:2 

31 695 stfsux LSU 2:2 

31 727 stfdx LSU 2:2 

Appendix C. PowerPC 603 Processor System Design 
and Programming Considerations 

C-19 



Table C-S. Store Instruction Timing (Continued) 

Primary Extended Mnemonic Unit Cycles 

31 918 sthbrx LSU 2:2 

31 983 stfiwx LSU 2:2 

36 --- stw LSU 2:2 

37 --- stwu LSU 2:2 

38 --- stb LSU 2:2 

39 --- stbu LSU 2:2 

44 --- sth LSU 2:2 

45 --- sthu LSU 2:2 

52 --- stfs LSU 2:2 

53 --- stfsu LSU 2:2 

54 --- stfd LSU 2:2 

55 --- stfdu LSU 2:2 

C.2.3 Instruction Execution by System Register Unit 
Unlike the 603e, the 603's SRU does not execute integer add and compare instructions. 
Table C-6 lists the instructions executed by the 603's SRU, and the number of cycles 
required for execution. 

Table C-6. System Register Instructions 

Primary Extended Mnemonic Unit Cycles 

17 - -1 sc SRU 3 

19 050 rfi SRU 3 

19 150 isync SRU 1& 

31 083 mfmsr SRU 1 

31 146 mtmsr SRU 2 

31 210 mtsr SRU 2 

31 242 mtsrin SRU 2 

31 339 mfspr (not I/DBATs) SRU 1 

31 339 mfspr (DBATs) SRU 3& 

31 339 mfspr (I BATs) SRU 3& 

31 467 mtspr (not IBATs) SRU 2 (XER-&) 

31 467 mtspr (IBATs) SRU 2& 

31 595 mfsr SRU 3& 

31 598 sync SRU 1& 

C-20 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Table C-6. System Register Instructions (Continued) 

Primary Extended Mnemonic Unit Cycles 

31 659 mfsrin SRU 3& 

31 854 eieio SRU 1 

31 371 mftb SRU 1 

31 467 mttb SRU 1 

Note: Cycle times marked with "&" require a variable number of cycles due to 
serialization. 

C.2.4 Machine Check Exception (Ox00200) 
The 603 operates as described in Section 4.5.2, "Machine Check Exception (Ox00200)," 
with the exception of the following: 

To ensure memory coherency following the assertion of TEA, the instruction cache should 
be invalidated by setting and clearing HIDO[lCFI], and flushing the data cache before 
performing any load or store operations, or executing any data cache management 
instructions other than debf. 

Note that an assertion of TEA during an instruction fetch will result in an immediate 
instruction refetch before the machine check exception is taken, which will result in a 
second assertion of the TEA signal. The second assertion of TEA while the machine check 
exception is pending from the previous TEA assertion will result in the 603 entering the 
checks top state instead of taking the machine check exception. 

C.2.S Instruction Address Breakpoint Exception (Ox01400) 
The 603 operates as described in Section 4.5.15, "Instruction Address Breakpoint 
Exception (OxOI300)," with the exception of the following: 

To avoid spurious IABR exceptions, the IABR special-purpose register should not be 
loaded with an address that falls within the same cache line as a disabled, but matching 
IABR address. 

C.2.6 Cache Control Instructions 
The 603 operates as described in Section 3.7, "Cache Control Instructions," with the 
exception of the following: 

Note that loop structures that contain long sequences of debz or debi instructions may .s 
cause snoop performance degradation. Programmers can improve snoop performance by 
inserting no-op instructions (ori 0,0,0) between debz or debi instructions, replacing the 
debz or debi instructions with a sequence of write-through store operations, using the 
decrementer to generate a periodic exception to allow snoop activity, or mapping the 
address space where the debz or debi instructions execute as global (M = 1). 

MOTOROLA Appendix C. PowerPC 603 Processor System Design 
and Programming Considerations 

C-21 



III 

Note that the use of the dcbz instruction in a multiprocessor system can result in loss of 
data coherency if the dcbz instruction is executed in memory space marked as global (M = 
1). Programmers should use software coherency protocols to ensure that no processor can 
perform a kill operation to memory used by another processor. 

C-22 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Glossary of Terms and Abbreviations 
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this 
book. Some of the terms and definitions included in the glossary are reprinted from IEEE 
Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by 
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE. 

A Atomic. A bus access that attempts to be part of a read-write operation to the 
same address uninterrupted by any other access to that address (the 
term refers to the fact that the transactions are indivisible). The 
PowerPC 603e microprocessor initiates the read and write 
separately, but signals the memory system that it is attempting an 
atomic operation. If the operation fails, status is kept so that the 603e 
can try again. The 603e implements atomic accesses through the 
lwarxlstwcx. instruction pair. 

B Beat. A single state on the 603e bus interface that may extend across multiple 

MOTOROLA 

bus cycles. A 603e transaction can be composed of multiple address 
or data beats. 

Biased exponent. The sum of the exponent and a constant (bias) chosen to 
make the biased exponent's range non-negative. 

Big-endian. A byte-ordering method in memory where the address n of a 
word corresponds to the most significant byte. In an addressed 
memory word, the bytes are ordered (left to right) 0, 1,2,3, with 0 
being the most significant byte. 

Boundedly undefined. The results of attempting to execute a given 
instruction are said to be boundedly undefined if they could have 
been achieved by executing an arbitrary sequence of defined 
instructions, in valid form, starting in the state the machine was in 
before attempting to execute the given instruction. Boundedly 
undefined results for a given instruction may vary between 
implementations, and between execution attempts in the same 
implementation. 

Glossary of Terms and Abbreviations Glossary-1 

lijllJ 



Branch folding. A technique of removing the branch instruction from the 
instruction sequence. 

Burst. A multiple beat data transfer whose total size is typically equal to a 
cache block (in the 603e, a 32-byte block). 

Bus clock. Clock that causes the bus state transitions. 

Bus master. The owner of the address or data bus; the device that initiates or 
requests the transaction. 

C Cache. High-speed memory containing recently accessed data and/or 

D 

Glossary-2 

instructions (subset of main memory). 

Cache block. The cacheable unit for a PowerPC processor. The size of a 
cache block may vary among processors. For the 603e, it is one 
cache line (8 words). 

Cache coherency. Caches are coherent if a processor performing a read from 
its cache is supplied with data corresponding to the most recent value 
written to memory or to another processor's cache. 

Cast-outs. Cache block that must be written to memory when a snoop miss 
causes the least recently used block with modified data to be 
replaced. 

Context synchronization. Context synchronization is the result of specific 
instructions (such as sc or rfi) or when certain events occur (such as 
an exception). During context synchronization, ail instructions in 
execution complete past the point where they can produce an 
exception; all instructions in execution complete in the context in 
which they began execution; all subsequent instructions are fetched 
and executed in the new context. 

Copy-back operation. A cache operation in which a cache line is copied 
back to memory to enforce cache coherency. Copy-back operations 
consist of snoop push-out operations and cache cast-out operations. 

Denormalized number. A nonzero floating-point number whose exponent 
has a reserved value, usually the format's minimum, and whose 
explicit or implicit leading significand bit is zero. 

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Direct-store segment access. An access to an 110 address space. The 603 
defines separate memory-mapped and 110 address spaces, or 
segments, distinguished by the corresponding segment register T bit 
in the address translation logic of the 603. If the T bit is cleared, the 
memory reference is a normal memory-mapped access and can use 
the virtual memory management hardware of the 603. If the T bit is 
set, the memory reference is a direct-store access. 

E Exception. An unusual or error condition encountered by the processor that 

F 

MOTOROLA 

results in special processing. 

Exception handler. A software routine that executes when an exception 
occurs. Normally, the exception handler corrects the condition that 
caused the exception, or performs some other meaningful task (such 
as aborting the program that caused the exception). The addresses of 
the exception handlers are defined by a two-word exception vector 
that is branched to automatically when an exception occurs. 

Exclusive state. EMI state (E) in which only one caching device contains 
data that is also in system memory. 

Execution synchronization. All instructions in execution are architecturally 
complete before beginning execution (appearing to begin execution) 
of the next instruction. Similar to context synchronization but doesn't 
force the contents of the instruction buffers to be deleted and 
refetched. 

Exponent. The component of a binary floating-point number that normally 
signifies the integer power to which two is raised in determining the 
value of the represented number. Occasionally the exponent is called 
the signed or unbiased exponent. 

Feed-forwarding. A 603e feature that reduces the number of clock cycles 
that an execution unit must wait to use a register. When the source 
register of the current instruction is the same as the destination 
register of the previous instruction, the result of the previous 
instruction is routed to the current instruction at the same time that it 
is written to the register file. With feed-forwarding, the destination 
bus is gated to the waiting execution unit over the appropriate source 
bus, saving the cycles which would be used for the write and read. 

Floating-point unit. The functional unit in the 603e processor responsible 
for executing all floating-point instructions. 
(Not supported on the EC603e microprocessor) 

Glossary of Terms and Abbreviations Glossary-3 

RI.) 



Flush. An operation that causes a modified cache block to be invalidated and 
the data to be written to memory. 

Fraction. The field of the significand that lies to the right of its implied binary 
point. 

G General-purpose register. Any of the 32 registers in the 603e register file. 
These registers provide the source operands and destination results 
for all 603e data manipulation instructions. Load instructions move 
data from memory to registers, and store instructions move data from 
registers to memory. 

I IEEE 754. A standard written by the Institute of Electrical and Electronics 
Engineers that defines operations of binary floating-point arithmetic 
and representations of binary floating-point numbers. 

Instruction queue. A holding place for instructions fetched from the current 
instruction stream. 

Integer unit. The functional unit in the 603e responsible for executing all 
integer instructions. 

Interrupt. An external signal that causes the 603e to suspend current 
execution and take a predefined exception. 

Invalid state. EMI state (I) that indicates that the cache block does not 
contain valid data. 

K Kill. An operation that causes a cache block to be invalidated. 

L Latency. The number of clock cycles necessary to execute an instruction and 

M 

Glossary-4 

make ready the results of that instruction. 

Little-endian. A byte-ordering method in memory where the address n of a 
word corresponds to the least significant byte. In an addressed 
memory word, the bytes are ordered (left to right) 3, 2, 1,0, with 3 
being the most significant byte. 

Livelock. A state in which processors interact in a way such that no processor 
makes progress. 

Mantissa. The decimal part of logarithm. 

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Memory-mapped accesses. Accesses whose addresses use the segmented or 
block address translation mechanisms provided by the MMU and 
that occur externally with the bus protocol defined for memory. 

Memory coherency. Refers to memory agreement between caches and 
system memory (for example, EMI cache coherency). 

Memory consistency. Refers to levels of memory with respect to a single 
processor and system memory (for example, on-chip cache, 
secondary cache, and system memory). 

Memory-forced 110 controller interface access. These accesses are made 
to memory space. They do not use the extensions to the memory 
protocol described for 110 controller interface accesses, and they 
bypass the page- and block-translation and protection mechanisms. 

Memory management unit. The functional unit in the 603e that translates 
the logical address bits to physical address bits. 

Modified state. EMI state (M) in which one, and only one, caching device 
has the valid data for that address. The data at this address in external 
memory is not valid. 

N NaN. An abbreviation for not a number; a symbolic entity encoded in 
floating -point format. There are two types of NaN s-signaling NaN s 
and quiet NaNs. 

No-op. No-operation. A single-cycle operation that does not affect registers 
or generate bus activity. 

o Out-of-order. An operation is said to be out-of-order when it is not 

MOTOROLA 

guaranteed to be required by the sequential execution model, such as 
the execution of an instruction that follows another instruction that 
may alter the instruction flow. For example, execution of instructions 
in an unresolved branch is said to be out-of-order, as is the execution 
of an instruction behind another instruction that may yet cause an 
exception. The results of operations that are performed out-of-order 
are not committed to architected resources until it can be ensured that 
these results adhere to the in-order, or sequential execution model. 

Overflow. An error condition that occurs during arithmetic operations when 
the result cannot be stored accurately in the destination register(s). re!.] 
For example, if two 32-bit numbers are added, the sum may require 
33 bits due to carry. Since the 32-bit registers of the 603e cannot 
represent this sum, an overflow condition occurs. 

Glossary of Terms and Abbreviations Glossary-5 



P Packet. A term used in the 603 with respect to direct store operations. 

Q 

Page. A 4-Kbyte area of memory, aligned on a 4-Kbyte boundary. 

Park. The act of allowing a bus master to maintain mastership of the bus 
without having to arbitrate. 

Pipelining. A technique that breaks instruction execution into distinct steps 
so that multiple steps can be performed at the same time. 

Precise exceptions. The pipeline can be stopped so the instructions that 
preceded the faulting instruction can complete, and subsequent 
instructions can be executed following the execution of the exception 
handler. The system is precise unless one of the imprecise modes for 
invoking the floating-point enabled exception is in effect. 

Quiesce. To come to rest. The processor is said to quiesce when an exception 
is taken or a sync instruction is executed. The instruction stream is 
stopped at the decode stage and executing instructions are allowed to 
complete to create a controlled context for instructions that may be 
affected by out-of-order, parallel execution. See Context 
synchronization. 

Quiet NaNs. Propagate through almost every arithmetic operation without 
signaiing exceptions. These are used to represent the results of 
certain invalid operations, such as invalid arithmetic operations on 
infinities or on Nfu~~S, when invalid. 

S Scan interface. The 603e's test interface. 

Glossary-6 

Shadowing. Shadowing allows a register to be updated by instructions that 
are executed out of order without destroying machine state 
information. 

Signaling NaNs. Signal the invalid operation exception when they are 
specified as arithmetic operands 

Significand. The component of a binary floating-point number that consists 
of an explicit or implicit leading bit to the left of its implied binary 
point and a fraction field to the right. 

Slave. The device addressed by a master device. The slave is identified in the 
address tenure and is responsible for supplying or latching the 
requested data for the master during the data tenure. 

MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Snooping. Monitoring addresses driven by a bus master to detect the need for 
coherency actions. 

Snoop push. Write-backs due to a snoop hit. The block will transition to an 
invalid or exclusive state. 

Split-transaction. A transaction with independent request and response 
tenures. 

Split-transaction Bus. A bus that allows address and data transactions from 
different processors to occur independently. 

Static branch prediction. Mechanism by which software (for example, 
compilers) can give a hint to the machine hardware about the 
direction the branch is likely to take. 

Superscalar machine. A machine that can issue multiple instructions 
concurrently from a conventional linear instruction stream. 

Supervisor mode. The privileged operation state of the 603e. In supervisor 
mode, software can access all control registers and can access the 
supervisor memory space, among other privileged operations. 

T Tenure. The period of bus mastership. For the 603e, there can be separate 
address bus tenures and data bus tenures. A tenure consists of three 
phases: arbitration, transfer, termination 

Transaction. A complete exchange between two bus devices. A transaction 
is minimally comprised of an address tenure; one or more data 
tenures may be involved in the exchange. There are two kinds of 
transactions: address/data and address-only. 

Transfer termination. Signal that refers to both signals that acknowledge the 
transfer of individual beats (of both single-beat transfer and 
individual beats of a burst transfer) and to signals that mark the end 
of the tenure. 

U Underflow. An error condition that occurs during arithmetic operations when 

MOTOROLA 

the result cannot be represented accurately in the destination register. 
For example, underflow can happen if two floating-point fractions 
are multiplied and the result is a single-precision number. The result 
may require a larger exponent and/or mantissa than the single- @I.] 
precision format makes available. In other words, the result is too 
small to be represented accurately. 

Glossary of Terms and Abbreviations Glossary-7 



User mode. The unprivileged operating state of the 603e. In user mode, 
software can only access certain control registers and can only access 
user memory space. No privileged operations can be performed. 

W Write-through. A memory update policy in which all processor write cycles 
are written to both the cache and memory. 

Glossary-8 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



Numerics 
603e 

features 
hardware, 1-7 
list of features, 1-2 
PID7v-specific, 1-4 

instructions, 2-46 
overview, I-I, 1-16 
PID7v 

features, 1-4 
HlDO bits (PID7v-specific), 2-8, 3-22 

processor identification (PID) number 
definition, xxvii, I-I 

603-specific features, 1-7, C-I 

A 
AACK signal, 7-16 
ABB signal, 7-5, 8-8 
ABE (address broadcast enable) bit, 2-8, 3-22 
Address bus 

address tenure, 8-7, C-4 
address transfer 

An, 7-7 
APE, 7-8, 8-13 
APn, 7-8 

address transfer attribute 
CI,7-14 
CSEn, 7-15 
GBL,7-15 
TBST, 7-13, 8-13 
TCn, 7-14 
TCn, 8-20 
TSIZn, 7-12 
TSIZn, 8-13 
TIn, 7-9,8-13 
WT,7-14 

address transfer start 
TS, 7-6,8-12 
XATS (603-specific), 1-7, C-2 
XATS(603-specific), C-3 

address transfer termination 
AACK,7-16 
ARTRY, 3-21,7-16 
terminating address transfer, 8-20 

arbitration signals, 7-4, 8-8 
bus arbitration 

ABB, 7-5, 8-8 
BG, 7-5, 8-8 
BR, 7-4, 8-8 
bus parking, 8-11 

Address calculation 
branch instructions, 2-36 
effective address, 2-19 

MOTOROLA 

INDEX 

Index 

floating -point load and store, 2-34 
integer load and store, 2-29 

Address translation, see Memory management unit 
Addressing conventions 

addressing modes, 2-18 
alignment, 2-13 

Aligned data transfer, 2-13, 8-15, 8-19 
Alignment 

data transfers, 2-13, 8-15 
exception, 4-26, 5-16 
rules, 2-13 

An signals, 7-7 
APE signal, 7-8, 8-13 
APn signals, 7-8 
Arbitration, system bus, 8-9, 8-22 
ARTRY signal, 3-21, 7-16 
Atomic memory references 

stwcx., 2-38 
using Iwarxlstwcx., 3-19 

B 
BG signal, 7-5, 8-8 
Block address translation 

BAT register initialization, 5-20 
block address translation flow, 5-11 
selection of block address translation, 5-8 

Boundedly undefined, definition, 2-16 
BR signal, 7-4, 8-8 
Branch folding, 6-14 
Branch instructions 

address calculation, 2-36 
branch instructions, 2-36, A-24 
condition register logical, 2-36, A-24 
system linkage, 2-42, A-25 
trap, 2-37, A-25 

Branch prediction, 6-1, 6-16 
Branch processing unit 

branch instruction timing, 6-17 
execution timing, 6-14 
latency, branch instructions, 6-23 
overview, 1-9 

Branch resolution, 6-1 
Burst data transfers 

32-bit data bus, 8-15 
64-bit data bus, 8-14 
transfers with data delays, timing, 8-36 

Burst transactions, 3-8 
Bus arbitration, see Data bus 
Bus configurations, 8-38, 8-40 
Bus interface unit (BIU), 3-2 
Byte ordering 

default, 2-18 
Byte-reverse instructions, 2-31, A-22 

Index-1 

.'~'., 



C 
Cache 

characteristics, 3-1 
instructions, 2-41, 2-44, 3-22, A-26 
MEl state definition, 3-15 
organization, instruction/data, 3-3-3-7 
overview, 1-25 

Cache arbitration, 6-9 
Cache block push operation, 3-8 
Cache block, definition, 3-1 
Cache cast-out operation, 3-8 
Cache coherency 

actions on load operations, 3-18 
actions on store operations, 3-19 
copy-back operation, 3-11 
in single-processor systems, 3-18 
MEl protocol, 3-15 
out -of-order execution, 3-13 
overview, 3-2 
reaction to bus operations, 3-19 
WIMG bits, 3-10, 3-13, 8-30 
write-back mode, 3-11 

Cache hit, 6-9 
Cache management instructions, 2-41, 2-44, 3-22, 

A-26 
Cache miss, 6-10 
Cache operations 

basic data cache operations, 3-8 
data cache transactions, 3-8 
instruction cache fill operations, 3-4 
overview, 1-13,3-1 
respoust: tu bus lransa<;liuns, 3-19 

Cache unit 
memory performance, 6-19 
operation of the cache, 8-2 
overview, 3-1 

Cache-inhibited accesses (I bit) 
cache interactions, 3-10 
I-bit setting, 3-11 
timing considerations, 6-20 

Changed (C) bit maintenance 
recording, 5-11, 5-21-5-24 

Checkstop 
signal, 7-24, 8-41 
state, 4-22 

CI signal, 7-14 
Classes of instructions, 2-16 
Clean block operation, 3-20 
Clock signals 

CLK_OUT,7-30 
PLL_CFGn,7-30 
SYSCLK,7-30 

Compare instructions, 2-27, A-18 
Completion considerations, 6-11 

INDEX 

Completion, definition, 6-1 
Context synchronization, 2-20 
Conventions, xxxiii, xxxvii, 2-12 
COP/scan interface, 7-28 
Copy-back mode, 6-19 
CR logical instructions, 2-36 
CSEn signals, 7-15, 8-30 

D 
Data bus 

32-bit data bus mode, 8-38 
arbitration signals, 7-17, 8-8 
bus arbitration, 8-22 
data tenure, 8-7, C-4 
data transfer, 7-19, 8-24 
data transfer termination, 7-21,8-25 

Data cache 
basic operations, 3-8 
broadcasting, 3-7 
bus transactions, 3-8 
cache control, 3-6 
configuration, 3-1 
DCFI, DCE, DLOCK bits, 3-6 
disabling, 3-6 
fill operations, 3-5, 3-8 
locking, 3-6 
organization, 3-5, C-15 
touch load operations, 3-7 
touch ioad support, 3-/ 

Data storage interrupt (DSI), see DSI exception 
Data TLB miss on load exception, 4-34 
Data TLB miss on store exception, 4-35 
Data transfers 

alignment, 2-13, 8-15 
burst ordering, 8-14 
eciwx and ecowx instructions, alignment, 8-19 
signals, 8-24 

DBB signal, 7-18, 8-8, 8-23 
DBDlS signal, 7-21 
DBG signal, 7-17,8-8 
DBWO signal, 7-18, 8-8, 8-24, 8-43 
DCMP and ICMP registers, 2-10, 5-37 
Decrementer interrupt, 4-31, 9-2 
Defined instruction class, 2-16 
DHnlDLn signals, 7-19 
Direct address translation (translation disabled) 

data accesses, 3-11, 5-9, 5-11, 5-20 
instruction accesses, 3-11, 5-9, 5-11, 5-20 

Direct-store access on the 603e, 3-9 
Direct-store interface (603-specific) 

accesses, C-18 
alignment exception, C-18 
architectural ramifications of accesses, C-2 

Index-2 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



bus protocol 
address and data tenures, C-4 
detailed description, C-6 
load access, timing, C-ll 
load operations, C-5 
store access, timing, C-12 
store operations, C-5 
transactions, C-4 
XATS,C-3 

instructions with no effect, C-19 
no-op instructions, C-19 
protection, C-18 
segment protection, C-18 
selection of direct-store segments, C-16 
unsupported functions, C-19 

Dispatch considerations, 6-11 
DMISS and IMISS registers, 2-9, 5-36 
DPE signal, 7-21 
DPn signals, 7-20 
DRTRY signal, 7-22, 8-25, 8-28 
DSI exception, 4-23 

E 
EC603e 

features list, 1-2 
instructions not supported, B-3 
overview, 1-1 

Effective address calculation 
address translation, 5-3 
branches, 2-19, 2-36 
loads and stores, 2-19, 2-29, 2-34 

Error termination, 8-29 
Exceptions 

alignment exception, 4-26 
data TLB miss on load, 4-34 
data TLB miss on store, 4-35 
decrementer interrupt, 4-31 
DSI exception, 4-23 
enabling and disabling, 4-14 
exception classifications, 4-2 
exception processing, 4-10, 4-15 
external interrupt, 4-25 
FP unavailable exception, 4-31 
instruction address breakpoint, 4-35 
instruction related, 2-20 
instruction TLB miss, 4-33 
machine check exception, 4-21 
overview, 1-27 
program exception, 4-29 
register settings 

FPSCR,4-30 
MSR,4-17 
SRRO/SRRl,4-11 

reset, 4-18 

MOTOROLA 

INDEX 

Index 

returning from an exception handler, 4-16 
summary, 2-20 
system call, 4-31 
system management interrupt, 4-37 
trace exception, 4-32 

Execution synchronization, 2-20 
Execution units, 1-10 
External control instructions, 2-42, 8-19, A-27 

F 
Features list, 1-2 
Feed forwarding, 6-6 
Finish cycle, definition, 6-1 
Floating-point model 

FEO/FE1 bits, 4-14 
FP arithmetic instructions, 2-26, A-19 
FP compare instructions, 2-27, A-20 
FP execution models, 2-12 
FP load instructions, 2-34, A-23 
FP move instructions, 2-28, A-24 
FP multiply-add instructions, 2-26, A-20 
FP rounding/conversion instructions, 2-27, A-20 
FP store instructions, 2-34, A-24 
FP unavailable exception, 4-31 
FPSCR instructions, 2-27, A-20 

Floating-point unit 
execution timing, 6-18 
latency, FP instructions, 6-26 
overview, 1-10 

Flow control instructions 
branch instruction address calculation, 2-36 
branch instructions, 2-36 
condition register logical, 2-36 

Flush block operation, 3-20 
FPRO-FPR31,2-4 
FPSCR instructions, 2-27, A-20 

G 
GBL signal, 7-15 
GPRO-GPR31,2-4 
Guarded memory bit (G bit) 

H 

cache interactions, 3-10 
G-bit setting, 3-12 

HASHI and HASH2 registers, 2-10, 5-37 
Hashing functions 

primary PTEG, 5-32 
secondary PTEG, 5-33 

HIDO register 
bit settings, 2-8 
DCFI, DCE, DLOCK bits, 3-6 
doze bit, 9-4 

Index-3 

1",.1 



"~I.I 

INDEX 

doze, nap, sleep, DPM bits, 2-8 
DPM enable bit, 9-3 
ICFI, ICE, ILOCK bits, 3-4 
nap bit, 9-4 
PID7v-specific bits, 1-18,3-22 

HID 1 register 
bit settings, 2-9 
PLL configuration, 2-9, 7-30 

HRESET signal, 7-25 

I/O tenures, C-4 
IABR (instruction address breakpoint register), 2-11 
ICE control bit, 3-4 
ICFI control bit, 3-4 
IEEE 1149.1-compliant interface, 8-43 
IFEM (instruction fetch enable) bit, 1-18, 2-8 
Illegal instruction class, 2-17 
ILOCK control bit, 3-4 
Instruction address breakpoint exception, 4-35 
Instruction cache 

cache control bits, 3-4 
cache fill operations, 3-4 
configuration, 3-1 
ICFI, ICE, ILOCK bits, 3-4 
organization, 3-3, C-14 

Instruction timing 
execution unit, 6-14 
fetch,6-9 
instruction flow, 6-6 
memory performance considerations, 6-18 
overview, 1-33, 6-3 
terminology, 6-1 
timing considerations, 6-5 

Instruction TLB miss exception, 4-33 
Instruction unit, 1-9 
Instructions 

603e, instructions not implemented, B-1 
603e-specific instructions, 2-46 
branch address calculation, 2-36 
branch instructions, 2-36, A-24 
cache management instructions, 2-41, 2-44, 

3-22, A-26 
classes, 2-16 
condition register logical, 2-36, A-24 
defined instructions, 2-16 
EC603e, instructions not supported, B-3 
external control, 2-42, A-27 
floating-point 

arithmetic, 2-26, A-19 
compare, 2-27, A-20 
FP load instructions, 2-34, A-23 
FP move instructions, 2-28, A-24 
FP status and control register, 2-27 

FP store instructions, 2-34, A-24 
FPSCR isntructions, 2-27, A-20 
multiply-add, 2-26, A-20 
rounding and conversion, 2-27, A-20 

illegal instructions, 2-17 
integer 

arithmetic, 2-22, A-17 
compare, 2-22, A-18 
load, A-21 
logical, 2-23, A-18 
multiple, 2-32, A-22 
rotate and shift, 2-24, A-18-A-19 
store, 2-30, A-22 

latency summary, 6-22 
load and store 

address generation, floating-point, 2-34 
address generation, integer, 2-29 
byte-reverse instructions, 2-31, A-22 
integer load, 2-29 
integer mUltiple instructions, 2-32, A-22 
integer store, 2-30 
string instructions, 2-33, A-23 

memory control, 2-41, 2-44, 3-22, A-26 
memory synchronization, 2-38, 2-40, A-23 
PowerPC instructions, list 

form (format), A-28 
function, A-17 
legend, A-39 
mnemonic. A-I 
opcode, A-9 

processor control, 2-37, 2-39, 2-42, A-25 
rese.rved instructions, 2-18 
segment register manipulation, 2-45, A-26 
simplified mnemonics, 2-46 
supervisor-level cache management, 2-44 
support for lwarx/stwcx., 8-42 
system linkage, 2-42, A-25 
TLB management instructions, 2-45, A-26 
trap instructions, 2-37, A-25 

INT signal, 7-23, 8-41 
Integer arithmetic instructions, 2-22, A-17 
Integer compare instructions, 2-22, A-18 
Integer load instructions, 2-29, A-21 
Integer logical instructions, 2-23, A-18 
Integer multiple instructions, 2-32, A-22 
Integer rotate and shift instructions, 2-24, A-18-A-19 
Integer store instructions, 2-30, A-22 
Integer unit 

execution timing, 6-18 
latency, integer instructions, 6-24 
overview, 1-10 

Interrupt, external, 4-25 
Interrupt, see Exceptions 

Index-4 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



K 
Kill block operation, 3-20 

L 
Latency, 6-1, 6-3, 6-22, 8-24 
Load operations 

I/O load accesses, C-5 
memory coherency actions, 3-18 

Load/store 
address generation, 2-29, 2-34 
byte-reverse instructions, 2-31, A-22 
floating-point load instructions, 2-34, A-23 
floating-point move instructions, 2-28, A-24 
floating-point store instructions, 2-34, A-24 
integer load instructions, 2-29, A-21 
integer store instructions, 2-30, A-22 
load/store multiple instructions, 2-32, A-22 
memory synchronization instructions, 2-38, 

2-40, A-23 
string instructions, 2-33, A-23 

Load/store unit 
execution timing, 6-18 
latency, load and store instructions, 6-28 

Logical addresses 
translation into physical addresses, 5-1 

Iwarx/stwcx. 

M 

atomic memory references, 3-19 
support, 8-42 

Machine check exception 
checkstop state, 4-22 
register settings, 4-22 
SRR I bit settings, 4-11 

machine check exception enabled, 4-22 
MCP signal, 7-24 
MEl protocol 

definition, MEl states, 3-15 
enforcing memory coherency, 8-30 
hardware considerations, 3-17 

Memory accesses, 8-4 
Memory coherency bit (M bit) 

cache interactions, 3-10 
I-bit setting, 3-12 
M-bit setting, 3-12 
timing considerations, 6-19 

Memory control instructions 
segment register manipulation, 2-45 
supervisor-level cache management, 2-44 
TLB management, 2-45 
user-level cache, 2-41, 2-44, 3-22 

Memory management unit 
address translation flow, 5-11 

MOTOROLA 

INDEX 

Index 

address translation mechanisms, 5-8, 5-11 
block address translation, 5-8, 5-11, 5-20 
block diagram, 5-5-5-7 
direct address translation, 3-11, 5-9, 5-11, 5-20 
exceptions, 5-14 
features summary, 5-2 
instructions and registers, 5-17 
memory protection, 5-10 
overview, 1-12, 1-32 
page address translation, 5-8,5-11,5-28 
page history status, 5-11, 5-21-5-25 
page table search operation, 5-30 
segment model, 5-21 
software table search operation, 5-33, 5-38, 5-40 

Memory synchronization 
instructions, 2-38, 2-40, A-23 
stwcx., 2-38 

Memory/cache access modes 
performance impact of copy-back mode, 6-19 
see also WIMG bits 

Misaligned accesses, 2-13 
Misaligned data transfer, 8-17, 8-19 
Move instructions, 2-28 
MSR (machine state register) 

N 

bit settings, 4-12 
DRlIR bit, 4-13 
EE bit, 4-12 
FEOIFEI bits, 4-14 
POW bit, 2-5, 4-12 
RI bit, 4-15 
settings due to exception, 4-17 
TGPR bit, 2-5, 4-12 

No-DRTRY mode, 8-40 
Nondenormalized mode, support, 2-25 

o 
Operand conventions, 2-12 
Operand placement and performance, 2-14 
Operating environment architecture (OEA), xxviii, 

1-16,2-42 
Optional instructions, A-39 

p 
Page address translation 

page address translation flow, 5-28 
page size, 5-21 
selection of page address translation, 5-8, 5-14 
table search operation, 5-30 
TLB organization, 5-26 

Page history status 
Rand C bit recording, 5-11, 5-21-5-25 

Index-5 



INDEX 

Page tables 
page table updates, 5-50 
resources for table search operations, 5-34 
software table search operation, 5-33, 5-38 
table search for PTE, 5-30 

Performance considerations, memory, 6-18 
Phase locked loop, 9-4 
Physical address generation 

memory management unit, 5-1 
PID7v-603e features, 1-4 
Pipeline 

instruction timing, definition, 6-2 
Pipeline stages 

description, 6-4 
Pipelined execution unit, 6-4 
PLL configuration, 7-31 
Power management 

doze mode, 9-4 
doze, nap, sleep, DPM bits, 2-8, 2-9 
full-power mode, 9-3 
nap mode, 9-4 
programmable power modes, 9-3 
sleep mode, 9-5 
software considerations, 9-6 

Power management modes, 1-15 
Power-on reset settings, 4-19 
PowerPC 603-specific features, 1-7, C-I 
PowerPC architecture 

instruction list, A-I. A-9, A-17 
levels of implementation, 1-16 
operating environment architecture (OEA), xxviii, 

1-16,2-42 
user instruction set architecture (UISA), xxviii, 1-

16,2-1 
virtual environment architecture (VEA), xxviii, 1-

16,2-39 
Privilege levels 

supervisor-level cache instruction, 2-44 
Privileged state, see Supervisor mode 
Problem state, see User mode 
Process switching, 4-16 
Processor control instructions, 2-37, 2-39, 2-42, A-25 
Processor identification (PID) number 

definition, xxvii, 1-1 
Program exception, 4-29 
Program order, 6-2 
Programmable power states 

doze mode, 9-4 
full-power mode (DPM enabled/disabled), 9-3 
nap mode, 9-4 
sleep mode, 9-5 

Protection of memory areas 
direct-store interface protection 

(603-specific), C-18 

no-execute protection, 5-12 
options available, 5-10 
protection violations, 5-14 

PTEGs (PTE groups), 5-30 
PTEs (page table entries), 5-30 

Q 
QACK signal, 7-26, 8-38, 8-41 
QREQ signal, 7-26, 8-42 
Qualified bus grant, 8-8 
Qualified data bus grant, 8-23 

R 
Read atomic operation, 3-20 
Read operation, 3-20 
Read with intent to modify operation, 3-20 
Real address (RA), see Physical address generation 
Real addressing mode, see Direct address translation 
Reduced-pinout mode, 8-40 
Referenced (R) bit maintenance 

recording, 5-11, 5-21-5-24, 5-31 
Registers 

configuration registers 
MSR,2-5 
PVR,2-6 

exception handling registers 
DAR, 2-6 
DSISR,2-6 
SPRGO-SPRG3, 2-6 
SRRO, 2-6 
SRRl,2-6 

implementation-specific registers 
DCMPIICMP, 2-9 
DMISSIIMISS, 2-9 
HASHlIHASH2, 2-10 
HIDOIHIDI, 1-18,2-7 
IABR,2-11 
RPA,2-11 
Run_N, 1-19,2-12 

memory management registers 
BAT registers, 2-6 
SDRl,2-6 
SR,2-6 

supervisor-level 
BAT registers, 2-6 
DAR, 2-6 
DCMP and ICMP, 2-9, 5-37 
DEC, 2-7 
DMISS and IMISS, 2-9, 5-36 
DSISR,2-6 
EAR, 2-7 
HASH 1 and HASH2, 2-10, 5-37 
HIDO and HIDl, 1-18,2-7 

Index-6 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



IABR,2-11 
MSR,2-5 
PVR,2-6 
RPA,2-11 
SDRI,2-6 
SPRGO-SPRG3,2-6 
SR,2-6 
SRRO,2-6 
SRRl,2-6 
TB,2-6 

user-level 
CR,2-4 
CTR,2-4 
FPRO-FPR31,2-4 
FPSCR,2-4 
GPRO-GPR31,2-4 
LR,2-4 
TB,2-5 
TGPRO-TGPR3,5-35 
XER,2-4 

Rename buffer, 6-2 
Rename register operation, 6-12 
Reservation station, 6-2 
Reserved instruction class, 2- I 8 
Reset 

HRESET signal, 7-25, 8-41 
reset exception, 4-18 
settings caused by hard reset, 4-19 
SRESET signal, 7-26, 8-41 

Rotate and shift instructions, 2-24, A-18-A-19 
RPA (required physical address), 2-1 1, 5-38 
RSRV signal, 7-27, 8-42 
Run_N counter register, 1-19, 2-12 

s 
Segment registers 

SR manipulation instructions, 2-45, A-26 
T bit, C-2, 3 

INDEX 

checkstop, 8-41 
cr,7-14 
CKSTP_IN,7-24 
CKSTP_OUT,7-25 
CLK_OUT,7-30 
configuration, 7-3 
COP/scan interface, 7-28 
CSEn, 7-15, 8-30 
data arbitration, 8-8, 8-22 
data transfer termination, 8-25 
DBB, 7-18, 8-8, 8-23 
DBDlS,7-21 
DBG, 7-17, 8-8 
DBWO, 7-18, 8-8, 8-24, 8-43 
DHnIDLn,7-19 
DPE,7-21 
DPn,7-20 
DRTRY, 7-22, 8-25, 8-28 
GBL,7-15 
HRESET,7-25 
INT, 7-23, 8-41 
MCP, 7-24 
PLL_CFGn, 7-30 
QACK, 7-26,8-38,8-41 
QREQ, 7-26, 8-42 
reset, 8-41 
RSRV, 7-27, 8-42 
SMI, 4-37, 7-24 
SRESET, 7-26, 8-41 
TA,7-22 
TBEN,7-27 
TBST, 7-13, 8-24 
TCn, 7-14, 8-20 
~, 7-23, 8-25, 8-29 
TLBlSYNC,7-27 
TS,7-6 

Segmented memory model, see Memory management 

TSIZn, 7-12, 8-13 
TTn, 7-9, 8-13 
WT,7-14 
XATS (603-specific), 1-7, C-2, C-3 

Single-beat reads with data delays, timing, 8-35 
Single-beat transactions, 3-8 

unit 
Self-modifying code, 2-29 
Serializing instructions, 6-13 
Signals 

AACK,7-16 
ABB, 7-5,8-8 
address arbitration, 7-4, 8-8 
address transfer, 8-12 
address transfer attribute, 8-13 
An, 7-7 
APE, 7-8 
APn,7-8 
ARTRY, 7-16, 8-25 
BG, 7-5,8-8 
BR, 7-4,8-8 

MOTOROLA Index 

Single-beat transfer 
reads with data delays, timing, 8-34 
reads, timing, 8-32 
termination, 8-26 
writes, timing, 8-33 

SMI signal, 4-37, 7-24 
Snoop operation, 3-19, 6-19 
Split-bus transaction, 8-8 
SPR encodings not implemented in 603e, B-5 
SRESET signal, 7-26 
SRRO/SRRI (status save/restore registers) 

bit settings for machine check exception, 4-11 
bit settings for table search operations, 4-11 

Index-7 



Key bit derivation (SRR1), 5-36 
Stall,6-2 
Static branch prediction, 6-16 
Store operations 

I/O operations to BUC, C-5 
memory coherency actions, 3-19 
single-beat writes, 8-33 

String instructions, 2-33, A-23 
Superscalar, 6-2 
Supervisor mode, see Privilege levels 
Supervisor-level registers summary, 2-5 
sync operation, 3-20 
Synchronization 

context/execution synchronization, 2-19 
execution of rfi, 4-16 
memory synchronization instructions, 2-38, 

2-40, A-23 
SYSCLK signal, 7-30 
System call exception, 4-31 
System interface 

overview, 1-35 
System linkage instructions, 2-42, A-25 
System management interrupt, 4-37,9-2 
System quiesce control signals, 8-42 
System register unit 

execution timing, 6-18 
latency, CR logical instructions, 6-24 
latency, system register instructions, 6-23, C-20 

System status 

T 

CKSTP IN,7-24 
CKSTP _OUT, 7-25 
HRESET,7-25 
INT,7-23 
MCP, 7-24 
QACK,7-26 
QREQ,7-26 
RSRV, 7-27 
SMI,7-24 
SRESET,7-26 
TBEN,7-27 
TLBISYNC, 7-27 

TA signal, 7-22 
Table search operations 

algorithm, 5-30 
software routines, 5-33 
software routines for the 603e, 5-38-5-50 
SRRI bit settings, 4-11 
table search flow (primary and secondary), 5-31 

TBEN signal, 7-27 
TBST signal, 7-13, 8-13, 8-24 
TCn signals, 7-14, 8-20 
TEA signal, 7-23, 8-29 

INDEX 

Termination, 8-20, 8-25 
TGPRO-GPR3 registers, 5-35 
Throughput, 6-2 
Timing diagrams, interface 

address transfer signals, 8-12 
burst transfers with data delays, 8-36 
direct-store interface load access, C-ll 
direct-store interface store access, C-12 
single-beat reads, 8-32 
single-beat reads with data delays, 8-34 
single-beat writes, 8-33 
single-beat writes with data delays, 8-35 
use of TEA, 8-37 
using DBWO, 8-43 

Timing, instruction 
BPU execution timing, 6-14 
branch timing example, 6-17 
cache arbitration, 6-9 
cache hit, 6-9 
cache miss, 6-10 
FPU execution timing, 6-18 
instruction dispatch, 6-11 
instruction fetch timing, 6-9 
instruction flow, 6-6 
instruction scheduling guidelines, 6-20 
ill execution timing, 6-18 
latency summary, 6-22 
load/store unit execution timing, 6-18 
overview, 6-3 
SRU execution timing, 6-18 
stage, definition, 6-2 

TLB 
description, 5-25 
invalidate, A-26 
invalidate (tlbie instruction), 5-27, 5-50 
TLB management instructions, 2-46, A-26 

TI..BISYNC signal, 7-27 
Trace exception, 4-32 
Transactions, data cache, 3-8 
Transfer, 8-11, 8-24 
Trap instructions, 2-37 
TS signal, 7-6, 8-12 
TSIZn signals, 7-12, 8-13 
TIn signals, 7-9,8-13 

U 
Use of TEA, timing, 8-37 
User mode, 4-1 
User instruction set architecture (UISA), xxviii, 

1-16,2-1 
User-level registers summary, 2-4 
user-mode, 2-42 
Using DBWO, timing, 8-43 

Index-a MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



v 
Virtual environment architecture (VEA), xxviii, 

1-16,2-39 

W 
WIMG bits, 3-10, 8-30 
Write with atomic operation, 3-20 
Write with flush operation, 3-20 
Write with kill operation, 3-20 
Write-back, 6-2 
Write-back mode, 3-11 
Write-through mode (W bit) 

cache interactions, 3-10 
timing considerations, 6-\9 
W-bit setting, 3-11 

WT signal, 7-14 

X 
XATS signal (603-specific), 1-7, C-2, C-3 

MOTOROLA 

INDEX 

Index Index-9 



INDEX 

Index-10 MPC603e & EC603e RISC Microprocessors User's Manual MOTOROLA 



MOTOROLA AUTHORIZED DISTRIBUTOR & WORLDWIDE SALES OFFICES 

NORTH AMERICAN DISTRIBUTORS 

UNITED STATES 
ALABAMA 

Huntsville 
Arrow/Schweber Electronics ... (205)837-6955 
FAI ......................... (205)837-9209 
Future Electronics ............ (205)830-2322 
Hamilton/Hallmark ........... (205)837-8700 
Newark. . . . . . . . (205)837-9091 
Wyle Electronics... . ... (205)830-1119 

ARIZONA 
Phoenix 

FAI ......................... (602)731-4661 
Future Electronics ............ (602)968-7140 
Hamilton/Hallmark ........... (602)736-7000 
Wyle Electronics ............. (602)804-7000 

Tempe 
Arrow/Schweber Electronics ... (602)431-{)030 
Newark ..................... (602)966-6340 
PENSTOCK ................. (602)967-1620 

CALIFORNIA 
Agoura Hills 

Future Electronics ............ (818)865-0040 
Calabassas 

Arrow/Schweber Electronics ... (818)880-9686 
Wyle Electronics ............. (818)880-9000 

Culver City 
Hamilton/Hallmark ........... (310)558-2000 

Garden Grove 
Newark ..................... (714)893-4909 

Irvine 
Arrow/Schweber Electronics ... (714)587-{)404 
FAI ......................... (714)753-4778 
Future Electronics ............ (714)453-1515 
Hamilton/Hallmark ........... (714)789-4100 
Wyle Laboratories Corporate .. (714)753-9953 
Wyle Electronics ............. (714)789-9953 

Los Angeles 
FAI ......................... (818)879-1234 

Manhattan Beach 
PENSTOCK ................. (310)546-6953 

Newberry Park 
PENSTOCK ................. (805)375-6680 

Palo Alto 
Newark ..................... (415)812-6300 

Rancho Cordova 
Wyle Electronics ... 

Riverside 
Newark .......... . 

Rocklin 
HamiltonfHalimark .. 

Sacramento 
FAI 
Newark ............ . 

San Diego 

...... (916)638-5282 

· . .. (909)980-21 05 

· . .. (916)632-4500 

..... (916)782-7882 
· . .. (916)565-1760 

Arrow/Schweber Electronics ... (619)565-4800 
FAI ......................... (619)623-2888 
Future Electronics ............ (619)625-2800 
HamiltonfHalimark .... .. (619)571-7540 
Newark.. .. (619)453-8211 
PENSTOCK. . . . . . . . . . .. (619)623-9100 
Wyle Electronics ....... . .. (619)556-6600 

San Jose 
ArrowfSchweberElectronics ... (408)441-9700 
Arrow/Schweber Electronics ... (408)426-6400 
FAI ......................... (408)434-0369 
Future Electronics .. (408)434-1122 

Santa Clara 
Wyle Electronics .. (408)727-2500 

Santa Fe Springs 
Newark ..................... (310)929-9722 

Sierra Madre 
PENSTOCK ................. (818)355-6775 

Sunnyvale 
Hamilton/Hallmark ........... (408)435-3600 
PENSTOCK ................. (408)730-0300 

Thousand Oaks 
Newark ..... 

Woodland Hills 
HamiltonfHalimark 

COLORADO 
Lakewood 

FAI 
Future Electronics .. 

Denver 

..... (805)449-1480 

.... (818)594-{)404 

· .. (303)237-1400 
· .. (303)232-2008 

Newark ..................... (303)373-4540 
Englewood 

ArrowfSchweber Electronics ... (303)799-0258 
HamiitonfHalimark .... . ..... (303)790-1662 
PENSTOCK ................. (303)799-7845 

Thornton 
Wyle Electronics ............. (303)457-9953 

CONNECTICUT 
Bloomfield 

Newark ..................... (203)243-1731 
Cheshire 

FAI ......................... (203)250-1319 
Future Electronics ............ (203)25Q-{)083 
Hamilton/Hallmark ........... (203)271-5700 

Wallingford 
ArrowTSchweberElectronics ... (203)265-7741 
Wyle Electronics ............. (203)269-8077 

FLORIDA 
Altamonte Springs 

Future Electronics ............ (407)865-7900 
Clearwater 

FAI ......................... (813)530-1665 
Future Electronics ............ (813)530-1222 

Deerfield Beach 
ArrowfSchweber Electronics ... (305)429-8200 
Wyle Electronics ............. (305)420-0500 

Ft. Lauderdale 
FAI ......................... (954)428-9494 
Future Electronics ............ (954)426-4043 
Hamilton/Hallmark ........... (954)677-3500 
Newark ..................... (954)486-1151 

Lake Mary 
ArrowfSchweber Electronics ... (407)333-9300 

LargorrampaiSt. Petersburg 
HamiltonfHalimark ........... (813)507-5000 
Newark................... (813)287-1578 
Wyle Electronics. .. . . . . . .. (813)376-3004 

Maitland 
Wyle Electronics ............. (407)740-7450 

Orlando 
FAI . . . . .............. (407)865-9555 
Newark. . . .. . . . . . . . . . .. (407)896-6350 

Tallahassee 
FAI 

Tampa 
Newark 
PENSTOCK. 

Winter Park 
Hamilton/Hallmark 
PENSTOCK .. 

GEORGIA 
Atlanta 

FAI. 
Duluth 

· .. (904)668-7772 

... (813)287-1578 
. .... (813)247-7556 

.. (407)657-3300 
(407)672-1114 

.. (404)447-4767 

ArrowfSchweber Electronics ... (404)497-1300 
HamiltonfHalimark .. (770)623-4400 

Norcross 
Future Electronics ...... (770)441-7676 
Newark. . . . . . . . . . . . . . (770)448-1300 
PENSTOCK ............ (770)734-9990 
Wyle Electronics .......... (770)441-9045 

IDAHO 
Boise 

FAI ......................... (208)376-6080 
Newark ..... . (208)342-4311 

ILLINOIS 
Addison 

Wyle Laboratories ..... 
Arlington Heights 

HamiitonfHalimark 
Chicago 

. (708)620-{)969 

....... (847)797-7300 

FAI .............. . . . .. (708)843-0034 
Newark Electronics Corp ... 1-800-4NEWARK 

Hoffman Estates 
Future Electronics 

Itasca 
. . .. (708)882-1255 

ArrowfSchweber Electronics ... (708)250-{)500 

Palatine 
PENSTOCK. . .............. (708)934-3700 

Schaumburg 
Newark 

INDIANA 
Indianapolis 

.. (708)310-8980 

ArrowfSchweber Electronics ... (317)299-2071 
HamiltonfHalimark ........... (317)575-3500 
FAI ......................... (317)469-{)441 
Future Electronics ............ (317)469-{)447 
Newark ..................... (317)259-{)085 

Ft. Wayne 
Newark ..................... (219)484-{)766 
PENSTOCK ....... (219)432-1277 

IOWA 
Cedar Rapids 

Newark ......... . 
KANSAS 

Kansas City 
FAI ............ . 

Lenexa 

..... (319)393-3800 

. (913)381-6800 

Arrow/Schweber Electronics .... (913)541-9542 
Olathe 

PENSTOCK ................. (913)829-9330 
Overland Park 

Future Electronics ............ (913)649-1531 
HamiltonfHalimark ........... (913)663-7900 
Newark ..................... (913)677-{)727 

MARYLAND 
Baltimore 

FAI ......................... (410)312-{)833 
Columbia 

Arrow/Schweber Electronics ... (301 )596-7800 
Future Electronics...... . .. (410)29Q-{)600 
HamiitonfHalimark (410)720-3400 
PENSTOCK......... . .. (410)290-3746 
Wyle Electronics.... .. (410)312-4844 

Hanover 
Newark ............. . 

MASSACHUSETTS 
Bedford 

.. (410)712-6922 

Wyle Electronics... . ...... (617)271-9953 
Boston 

ArrowfSchweber Electronics ... (508)658-0900 
FAI . .. (508)779-3111 
Newark ..... 

Bolton 
Future Corporate 

Burlington 
PENSTOCK 

Peabody 

. . .. 1-800-4NEWARK 

....... (508)779-3000 

... (617)229-9100 

Hamilton/Hallmark .. (508)532-3701 
Woburn 

Newark ...... (617)935-8350 
MICHIGAN 

Detroit 
FAI..... . ............... (313)513-{)015 
Future Electronics ............ (616)698-6800 

Grand Rapids 
Newark. . . ... (616)954-6700 

continued on next page 

For changes to this information contact Technical Publications at FAX (602) 244-6560 



AUTHORIZED DISTRIBUTORS - continued 
UNITED STATES - continued 
MICHIGAN - continued 

livonia 
Arrow/Schweber Electronics ... (810)455-0850 
Future Electronics ............ (313)261-5270 
Hamilton/Hallmark ........... (313)416-5800 

Troy 
Newark ......... . 

MINNESOTA 
Bloomington 

. (810)583-2899 

Wyle Electronics .............. (612)853-2280 
Burnsville 

PENSTOCK .................. (612)882-7630 
Eden Prairie 

Arrow/SchweberElectronics ... (612)941-5280 
FAI ......................... (612)947-0909 
Future Electronics. . .. . ...... (612)944-2200 
Hamilton/Hallmark.... (612)881-2600 

Minneapolis 
Newark ............. . 

MISSOURI 
Earth City 

(612)331-6350 

Hamilton/Hallmark ........... (314)291-5350 
St. Louis 

Arrow/SchweberElectronics ... (314)567-6888 
Future Electronics ............ (314)469-6805 
FAI ......................... (314)542-9922 
Newark........ . ....... (314)453-9400 

NEW JERSEY 
Bridgewater 

PEIiJSTOCK ......... . .. (908)575-9490 
East Brunswick 

Newark ............. . .. (908)937-6600 
Fairfield 

FAI ............... . (201)331-1133 
Marlton 

Arrow/Schweber Electronics ... (609)596-8000 
FAI . . . . . . . . . . . . . . . . . (609)988-1500 
Future Electronics ............ (609)596-4080 

Mt. Laurel 
Hamilton/Hallmark ........... (609)222-6400 
Wyle Electronics ............. (609)439-9110 

Oradell 
Wyle Electronics ............. (201 )261-3200 

Pinebrook 
Arrow/Schweber Electronics (201 )227-7RRO 
Wyle Electronics ............. (201 )882-8358 

Parsippany 
Future Electronics 
Hamilton/Hallmark 

NEW MEXICO 
Albuquerque 

...... ' (201 )299-0400 
...... (201)515-1641 

Hamilton/Hallmark ........... (505)293-5119 
Newark. . . . . . . .... (505)828-1878 

NEW YORK 
Bohemia 

Newark. . . . . . . . . . . . . .. . .... (516)567-4200 
Hauppauge 

Arrow/SchweberElectronics ... (516)231-1000 
FAI ......................... (516)348-3700 
Future Electronics ............ (516)234-4000 
Hamilton/Hallmark ........... (516)434-7400 
Newark .................. 1-800-4NEWARK 
PENSTOCK. (516)724-9580 
Wyle Electronics ............. (516)231-7850 

Henrietta 
Wyle Electronics ............. (716)334-5970 

Konkoma 
Hamilton/Hallmark ........... (516)737-0600 

Pittsford 
Newark ..................... (716)381-4244 

Rochester 
Arrow/SchweberElectronics ... (716)427-0300 
Future Electronics ............ (716)387-9550 
FAI .............. . (716)387-9600 
Hamilton/Hallmark ...... (716)272-2740 

S~~~cu.se ................... (315)451-4405 
Future Electronics ............ (315)451-2371 
Newark......... . ......... (315)457-4873 

NORTH CAROLINA 
Charlotte 

FAI ........ (704)548-9503 
Future Electronics ............ (704)547-1107 
Newark .. . . .... (704)535-5650 

Morrisville 
Wyle Electronics ............. (919)469-1502 

Raleigh 
Arrow/Schweber Electronics ... (919)876-3132 
FAI . . . . . . . . . . . . . . .... (919)876-0088 
Future Electronics ............ (919)790-7111 
Hamilton/Hallmark .... (919)872-0712 
Newark. . . . . . . . . . . .. 1-800-4NEWARK 

OHIO 
Centerville 

Arrow/Schweber Electronics ... (513)435-5563 
Cleveland 

FAI 
Newark. 

Columbus 
Newark .. 

Dayton 

.. (216)448-0061 
. ..... (216)391-9330 

.... (614)328-0352 

FAI .... ......... .. (513)427-6090 
Future Electronics. . ...... (513)426-0090 
Hamilton/Hallmark ........... (513)439-6735 
Newark ......... (513)294-8980 

Mayfield Heights 
Future Electronics 

Miamisburg 
Wyle Electronics . 

Solon 

. . . .. (216)449-6996 

(937)436-9953 

Arrow/Schweber Electronics ... (216)248-3990 
Hamilton/Hallmark (216)498-1100 
Wyle Electronics ............. (216)248-9996 

Worthington 
Hamilton/Hallmark 

OKLAHOMA 
Tulsa 

FAI .. 
Hamilton/Hallmark 
Newark. 

OREGON 
Beaverton 

. (614)888-3313 

. ...... (918)492-1500 
(918)459-6000 
(918)252-5070 

Arrow/Almac Electronics Corp. 
Future Electronics .. 

. (503)629-8090 
(503)645-9454 

He!T!!!tor.!Ha!!mark ........... (503)526-6200 
Portland 

FAI .. 
Newark. 
PENSTOCK 
Wyle Electronics .. 

PENNSYLVANIA 
Coatesville 

PENSTOCK. 
Ft. Washington 

Newark . . 

Pittsburgh 

· ...... (503)297-5020 
...... (503)297-1984 

... (503)646-1670 
· ...... (503)598-9953 

. ........ (610)383-9536 

· ...... (215)654-1434 

EIPaso 
FAI ... 
Newark 

Ft. Worth 

. ... (915)577--B531 
. (915)772-6367 

Allied Electronics ............. (817)336-5401 
Houston 

Arrow/Schweber Electronics ... (713)647-6868 
FAI .. ' ... (713)952-7088 
Future Electronics 
Hamilton/Hallmark 
Newark .. 
Wyle Electronics .' 

Richardson 
PENSTOCK ... 
Wyle Electronics .' 

San Antonio 
FAI. 
Newark 

UTAH 
Draper 

... (713)785-1155 
....... (713)781-6100 

.. (713)894-9334 

.. (713)784-9953 

(214)479-9215 
(214)235-9953 

· ...... (210)738-3330 
(210)734-7960 

Wyle Electronics .......... (801 )523-2335 
Salt Lake City 

Arrow/Schweber Electronics ... (801 )973-6913 
FAI .. (301 )467-9696 
Future Electronics 
Hamilton/Hallmark 
Newark ... . 

West Valley City 

" (801 )467-4448 
........... (801 )266-2022 

.. (801)261-5660 

Wyle Electronics ............. (801)974-9953 
WASHINGTON 

Bellevue 
Almac Electronics Corp. 
PENSTOCK 

Bothell 
Future Electronics . ... 

" (206)643-9992 
.. (206)454-2371 

.. (206)489-3400 
Kirkland 

Newark. · ........... (206)814-6230 
Redmond 

Hamilton/Hallmark 
Wyle Electronics 

Seattle 
FAI 

WISCONSIN 
Brookfield 

· ...... (206)882-7000 
...... (206)881-1150 

(206)485-6616 

Arrow/Schweber Electronics ... (414)792-0150 
ruiurt:l Eiecironics 
Wyle Electronics .. 

.. (4 i4)879-o244 

.. (414)879-0434 
Madison 

Newark. · ........... (608)278-0177 
Milwaukee 

FAI 
New Berlin 

Hamilton/Hallmark 
Wauwatosa 

Newark 

CANADA 

. .... (414)792-9778 

.... (414)780-7200 

.. (414)453-9100 

Arrow/Schweber Electronics ... (412)963-6807 
Newark.. . ...... (412)788-4790 ALBERTA 

TENNESSEE c~~a~ 
Knoxville 

Newark ... 

TEXAS 
Austin 

. ....... (615)588-6493 

Arrow/Schweber Electronics ... (512)835-4180 
Future Electronics ............ (512)502-0991 
FAI ........ (512)346-6426 
Hamilton/Hallmark ........... (512)219-3700 
Newark ....... (972)458-2528 
PENSTOCK. . . ...... (512)348-9762 
Wyle Electronics.. . ..... (512)833-9953 

Benbrook 
PENSTOCK .. 

Carollton 
. ........ (817)249-0442 

Arrow/Schweber Electronics ... (214)380-6464 
Dallas 

FAI. 
Future Electronics .. 
Hamilton/Hallmark 
Newark. 

..... (214)231-7195 
.... (214)437-2437 
.... (214)553-4300 

· ...... (214)458-2528 

Future Electronics 
Hamilton/Hallmark 

Edmonton 
FAI ............. . 
Future Electronics 
Hamilton/Hallmark 

Saskatchewan 
Hamilton/Hallmark 

BRITISH COLUMBIA 
Vancouver 

Arrow Electronics 

......... (403)291-5333 
.......... (403)250-5550 

.... (800)663-5500 

(403)438-5888 
· ...... (403)438-2858 

.. (800)663-5500 

.. (800)663-5500 

.. (604)421-2333 
FAI. · ........... (604)654-1050 
Future Electronics ...... (604)294-1166 
Hamilton/Hallmark .... (604)420-4101 

MANITOBA 
Winnipeg 

FAI 
Future Electronics 
Hamilton/Hallmark .. 

........ (204)786-3075 

........ (204)944-1446 
...... (800)663-5500 

For changes to this information contact Technical Publications at FAX (602) 244-6560 



AUTHORIZED DISTRIBUTORS - continued 
CANADA - continued 

ONTARIO 
Kanata 

PENSTOCK ... 
London 

Newark .... 
Mississauga 

PENSTOCK ... . 
Newark ....... . 

.. (613)592-6088 

. .... (519)685-4280 

. ..... (905)403-0724 
(905)670-2888 

Ottawa QUEBEC 
Arrow Electronics ............ (613)226-6903 Montreal 
FAI ......................... (613)820-8244 Arrow Electronics ............ (514)421-7411 
Future Electronics .... (613)727-1800 FAI ......................... (514)694-8157 
Hamilton/Hallmark... . ..... (613)228-1700 Future Electronics ........•..• (514)694-7710 

Toronto Hamiijon/Hallmark ........... (514)335-1000 
Arrow Electronics .. (905)670-7769 
FAI ......................... (905)612-9888 

Mt. Royal 
Newark ..................... (514)738-4488 

Future Electronics .. (905)612-9200 
Hamilton/Hallmark ... . ... (905)564-6060 

Quebec City 
Arrow Electronics ............ (418)687-4231 

Newark .. . . . . . . . . . . . . . . . . . .. (905)670-2888 FAI ......................... (418)682-5775 
Future Electronics ............ (418)877-6666 

INTERNATIONAL DISTRIBUTORS 
ARGENTINA 

Electrocomponentes . . . . . . (5-41) 375-3366 
Elko ................... (5-41) 372-1101 

AUSTRALIA 
Avnet VSI Electronics (Aust.) .. . (61)29878-1299 
Veltek Australia Pty Ltd .... (61)39574-9300 

AUSTRIA 
EBV Elektronik .............. (43) 1 8941774 
SEI/Elbatex GmbH ............ (43) 1 866420 
Spoerle Electronic ........... (43) 1 31872700 

BELGIUM 
EBV Elektronik .. (32) 2 716 0010 
SEI/Belgium . . . . . . . . . . . . . . .. (32) 24600560 
Spoerle Electronic. . . . . . . . . .. (32) 27254660 

BRAZIL 
Future ...................... (019) 235-1511 
Intertek ..................... (011) 268-2922 
Karimex .................... (011) 524-2366 
Masktrade .................. (011) 221-9411 
Panamericana ............... (011) 223-0222 
Siletek..... . ............ (011) 534-4401 
Tec . . . . . . . . . . . . . . . . . . . . . .. (001) 5505-2046 
Teleradio ................... (001) 574-0788 

BULGARIA 
Macro Group ................. (359) 2708140 

CHINA 
Future Advanced Electronics Ltd. .. (852)2305-3633 
Avnet WKK Components Ltd ...... (852)2357-6888 
China EI. App. Corp. XiaMan Co .. (86)106818-9750 
Nanco Electronics Supply Ltd .. (852) 2 765-3025 

........... or (852) 2 333-5121 
Qing Cheng Enterprises Ltd ... (852) 2 493-4202 

CZECH REPUBLIC 
EBV Elektronik .......... (420) 2 90022101 
Spoerle Electronic ............ (420) 2 731355 
SEI/Elbatex ... " (420) 2 4763707 
Macro Group.. . .... (420) 2 3412182 

DENMARK 
Arrow Exatec ..... (45) 44 927000 
AlS Avnet EMG . . . . .... (45) 44 880800 
EBV Elektronik- Soeborg ...... (45) 39690511 
EBV Elektronik - Aabyhoej ..... (45) 86250660 

ESTONIA 
Arrow Field Eesti . 
Avnet Baltronic .. ' 

FINLAND 
Arrow Field OY 
Avnet EMG OY . 
EBV Elektronik 

FRANCE 

· ... (372) 6503288 
· ... (372) 6397000 

.... (358)97775 71 

. .... (358)9613181 
· .. (358)98557730 

Arrow Electronique (33) 1 49 78 49 78 
Avnet EMG . . . . . . . . . . . . . .. (33) 1 49 65 25 00 
EBV Elektronik ............. (33) 1 40963000 
Future Electronics.... (33) 169821111 
Newark. . . . . .. (33) 1 30954060 
SEI/Scaib . . (33) 1 69 19 89 00 

GERMANY 
Avnet EMG. . .. (49) 894511001 
EBV Elektronik GmbH.. . .. (49) 89 99114-0 
Future Electronics GmbH .... (49) 89-957 270 
SEI/Jermyn GmbH...... (49) 6431-5080 

GERMANY - continued 
Newark .................... (49)2154-70011 
Sasco Semiconductor ......... (49) 89-46110 
Spoerle Electronic .......... (49) 6103-304-0 

GREECE 
EBV Elektronik ............... (30) 13414300 

HONG KONG 
Avnet WKK Components Ltd. . . . .. (852)2 357-8888 
Nanshing Clr. & Chern. Co. Ltd (852)2333-5121 

HUNGARY 
Macro Group ................. (36) 12030277 
SEI/Elbatex .................. (36) 11409194 
Spoerle Electronic ............. (36) 11294202 

INDIA 
Max India Ltd .............. (91) 80 558-7758 

INDONESIA 
P.T. Ometraco ............. (62) 21619-6166 

IRELAND 
Arrow Electronics ........... (353) 14595540 
EBV Elektronik ............. (353) 14564034 
Future Electronics ............. (353) 6541330 
Macro Group ............... (353) 16766904 

ITALY 
Avnet EMG SRL .............. (39) 2 381901 
EBV Elektronik SRL ........... (39) 2 660961 
Future Electronics ............. (39) 2 660941 
Silverstar Ltd. SpA ........... (39) 2 6612 51 

JAPAN 
AMSC Co., Ltd ............. 81-422-54-6800 
Fuji Electronics Co., Ltd ..... 81-3-3814-1411 
Marubun Corporation ....... 81-3-3639-8951 
Nippon Motorola Micro Elec .. 81-3-3280-7300 
OMRON Corporation ....... 81-3-3779-9053 
Tokyo Electron Ltd .......... 81-3-5561-7254 

KOREA 
Jung Kwang Sa 
Lite-On Korea Ltd ..... 
Nasca Co. Ltd .. 

LATVIA 

. . . .. (82)2278-5333 
. ... " (82)2858-3853 
.... (82)23772-6800 

Avnet Baltronic Ltd. .. ... (371) 8821118 
Macro Group .... .. .......... (371) 7313195 

LITHUANIA 
Macro Group 

MEXICO 
....... (370) 7764937 

Avnet. . . ........ (3) 632-0182 
Dicopel ...... . .. (5) 705-7422 
Future .............. (3) 122-0043 
SemiconductoresProlesionales ...... (5) 658-6011 
Steren ........................ (5) 325-0925 

NETHERLANDS 
HOLLAND 
EBV Elektronik ............. (31) 3465 83010 
SEI/Benelux B.V. .. ..... (31) 7657 22500 
Spoerle Electronics - Nieuwegen ... (31) 3060 91234 
Spoerle Eleclronics- Veldhoven ... (31) 4025 45430 

NEW ZEALAND 
Avnet VSI (NZ) Ltd 

NORWAY 
Arrow Tahonic AlS 
AlS Avnet EMG ... . 
EBV Elektronik .... . 

(64)9636-7801 

. (47)22378440 
(47)66773600 

. (47)2267 1780 

PHILIPPINES 
Alexan Commercial ......... (63) 2241-9493 

POLAND 
EBV Elektronik ............. (48) 713422944 
Macro Group ................ (48) 22 224337 
SEI/Elbatex ................ (48) 22 6254877 
Spoerle Electronic ........... (48) 22 6060447 

PORTUGAL 
Amitron Arrow ............... (35) 114714806 

ROMANIA 
Macro Group ................. (401) 6343129 

RUSSIA 
EBV Elektronik ............. (7) 095 9763510 
Macro Group - Moscow ..... (7) 095 30600266 
Macro Group-51. Petersburg ..... (7) 81 25311476 

SCOTLAND 
EBV Elektronik ............ (44) 141 4202070 
Future .................... (44) 141 9413999 

SINGAPORE 
Future Electronics ............. (65)479-1300 
Strong Pte. Ltd ............... (65) 276-3996 
Uraco Technologies Pte Ltd ..... (65) 545-7811 

SLOVAKIA 
Macro Group ................. (42) 89634181 
SEI/Elbatex ................... (42) 7722137 

SLOVENIA 
EBV Elektronik ............ (386) 611 330216 
SEI/Elbatex ............... (386) 611957196 

S.AFRICA 
Avnet-ASD ................ (27) 11 4442333 
Reutech Components ....... (27) 11 3972992 

SPAIN 
Amitron Arrow .............. (34) 1 304 30 40 
EBV Elektronik ............. (34) 1 804 32 56 
SEI/Selco S.A ............... (34) 1 6371011 

SWEDEN 
Arrow-Th:s .................. (46) 8 362970 
Avnet EMG AB ............. (46) 8 6291400 
EBV Elektronik .............. (46) 405 92100 

SWITZERLAND 
EBV Elektronik .............. (41) 1 7456161 
SEI/ElbatexAG ............. (41)564375111 
Spoerle Electronic ............ (41) 1 8746262 

TAIWAN 
Avnet-Mercuries Co., Ltd ... (886)2516-7303 
Solomon Technology Corp. .. (886)2788--8989 
Strong Electronics Co. Ltd ... (886)2917-9917 

THAILAND 
Shapiphat Ltd. .............. (66) 2221-1)432 
......................... or (66) 2221-5384 

TURKEY 
EBV Elektronik ............ (90) 216 4631352 

UNITED KINGDOM 
Arrow Electronics (UK) Ltd.. (44) 1 234270027 
Avnet EMG . . . . . . . .. .. . ... (44) 1 462488500 
EBV Elektronik ........... (44) 1 628783688 
Farnell ................... (44) 1 132790101 
Future Electronics Ltd. . . . .. (44) 1 753763000 
Macro Group .............. (44) 1 628 60600 
Newark . .. .. .. .. . .. . . . ... (44) 1 420 543333 

For changes to this information contact Technical Publications at FAX (602) 244-6560 



MOTOROLA WORLDWIDE SALES OFFICES 
UNITED STATES 

ALABAMA 
Huntsville .. . 

ALASKA ... . 
ARIZONA 

Phoenix ........ . 
CALIFORNIA 

Calabasas .. . 
Irvine ........ . 
Los Angeles .. 
San Diego .. . 
Sunnyvale .... . 

COLORADO 

. ... (205)464-6800 
. .... ' (800)635-8291 

.. (602)302-8056 

· (818)878-6800 
.. (714)753-7360 

(818)878-6800 
· (619)541-2163 

(408)749-{J510 

TEXAS 
Austin .. . 
Houston 
Plano .... 

VIRGINIA 
Richmond .. 

WASHINGTON 
Bellevue 
Seattle (toll free) 

WISCONSIN 
Milwaukee/Brookfield 

· ...... (512)502-2100 
.. (713)251-0006 

. ...... (972)516-5100 

.. (804)285-2100 

.. ... .. (206)454-4160 
.. (206)622-9960 

...... (414)792-0122 

Field Applications Engineering Available 
Through All Sales Offices 

Denver ........... . 
CONNECTICUT 

Wallingford ..... 

· (303)337-3434 CANADA 

.. (203)949-4100 BRITISH COLUMBIA 
FLORIDA 

Clearwater . (813)524-4177 
Maitland .... .. (407)628-2636 
Pompano Beach/Ft. Lauderdale .... (954)351-6040 

GEORGIA 
Atlanta ... 

IDAHO 
Boise ... 

ILLINOIS 

.. .......... (770)729-7100 

.. ........... (208)323-9413 

Chicago/Schaumburg ......... (847)413-2500 
INDIANA 

Indianapolis .... . 
Kokomo ... . 

IOWA 
Cedar Rapids. 

KANSAS 
Kansas City/Mission .. 

MARYLAND 
Columbia ... 

MASSACHUSETTS 
Marlborough. 
Woburn . 

MICHIGAN 

.. (317)571-{J400 
. . . .. (765)455-51 00 

· (319)378-{J383 

. .. (913)451-8555 

. ..... (410)381-1570 

(508)357--6207 
· (781 )932-9700 

Detroit ...................... (248)347--6800 

.. (612)932-1500 

Vancouver. · ...... (604)606-8502 
ONTARIO 

Ottawa 
Toronto 

QUEBEC 

............. (613)226-3491 
... (416)497-8181 

Montreal. 

INTERNATIONAL 
AUSTRALIA 

. ..... (514)333-3300 

Melbourne ................. (61-3)98870711 
Sydney...... .. (61-2)99661071 

BRAZIL 
Sao Paulo ............... 55(011 )3033-5244 

CHINA 
Beijing 
Guangzhou 
Shanghai 
Tianjin . . 

CZECH REPUBLIC 

. .. 86-10-68437222 

. .. 86-20--67537888 
..... 86-21--63747668 
· . . .. 86-22-25325072 

.......................... (420) 2 21852222 
FINLAND 

Helsinki 
Direct Sales Lines 

FRANCE 
Paris. 

GERMANY 

..... 358 9 6824 400 
3589 6824 4044 

... 358 9 6824 4045 

. 33134 635900 

KOREA 
Pusan .. . 
Seoul. 

MALAYSIA 
Penang .. 

MEXICO 
Chihuahua ... 
Mexico City .. 
Guadalajara .... 
Zapopan Jalisco 
Marketing ... 
Customer Service 

NETHERLANDS 
Best. 

PHILIPPINES 
Manila. 

POLAND 

PUERTO RICO 
Rio Piedras ..... 

RUSSIA 

. ....... 82(51)4635-035 
. .. 82(2)554-5118 

...... 60(4)228-2514 

. ....... 52(14)39-3120 
....... 52(5)282-0230 
· ..... 52(36)78-0750 

. ....... 52(36)78-0750 
· ..... 52(36)21-2023 
· .... 52(36)669-9160 

(31)499361211 

(63)2822-{J625 

.... (48) 34 27 55 75 

. ....... (787)282-2300 

.............. (7)0959299025 
SCOTLAND 

East Kilbride. 
SINGAPORE 
SPAIN 

(44)1355565447 
..... (65)4818188 

Madrid .. . 
or ..... . 

· . . . .. 34( 1 )457-8204 
............. 34(1 )457-8254 

SWEDEN 
801na. 

SWITZERLAND 
Geneva .. 
Zurich. 

TAIWAN 
Taipei 

THAILAND 
Bangkok ... 

TURKEY 

UNITED KINGDOM 
Aylesbury 

NORTH AMERICA 

· ..... 46(8)734-8800 

41(22)7991111 
...... 41(1)733-4074 

..... 886(2)717-7089 

. ........ 66(2)254-4910 

... (90)2122746648 

· ... 44 1 (296)395252 MiNNESOTA 
Minnetonka 

MISSOURI 
St.Louis ....... · (314)275-7380 

Langenhagen/Hanover 49(511)786880 FULL LINE REPRESENTATIVES 

NEW JERSEY 
Fairfield ........ . . .... (973)808-2400 

NEW YORK 
Fairport .. (716)425-4000 
Fishkill... .. (914)896-0511 
Hauppauge ................. (516)361-7000 

NORTH CAROLINA 
Raleigh ..... 

OHIO 
.. (919)870-4355 

Cleveland ................... (440)349-3100 
Columbus/Worthington... (614)431-8492 
Dayton (937)438-6800 

OKLAHOMA 
Tulsa ...... . 
or ...... . 

OREGON 
Portland 

PENNSYLVANIA 
Colmar 
Philadelphia/Horsham 

TENNESSEE 
Knoxville ............ . 

· (918)251-3414 
· (918)258-0933 

.. (503)641-3681 

...... (215)997-1020 
... (215)957-4100 

.. (423)584-4841 

Munich 
Nuremberg. 
Sindelfingen 
Wiesbaden. 

HONG KONG 
Kwai Fong 
Tai Po . 

HUNGARY 

INDIA 
Bangalore. 

ISRAEL 
Herzlia 

ITALY 
Milan .. 

JAPAN 
Kyusyu 
Gotanda 
Nagoya .... 
Osaka 

....... 498992103-0 
49 911 96-3190 

...... 497031 79710 
49 611 973050 

· .... 852-2-613-6888 
· . . .. 852-2-666-8333 

...... (36) 1 250 83 29 

. .. 91-80-5598615 

972-9-9522333 

39(2)82201 

..... 81-92-725-7583 
...... 81-3-5487-8311 

81-52-232-3500 
.......... 81-6-305-1801 

Sendai ...... . ........... 81-22-268-4333 
Takamatsu 
Tokyo 

..... 81-878-37-9972 
81-3-3440-3311 

AR;ZONA, Tempe 
S&S Technologies, Inc. .. (602)414-1100 

CALIFORNIA, Loomis 
Galena Technology Group ..... (916)652-{J268 

INDIANA, Indianapolis 
Bailey's Electronics ...... (317)848-9958 

NEVADA, Clark County 
S&S Technologies, Inc ........ (602)414-1100 

NEVADA, Reno 
Galena Tech. Group .......... (702)746-0642 

NEW MEXICO, Albuquerque 
S&S Technologies, Inc ........ (505)414-1100 

TEXAS, EI Paso 
S&S Technologies, Inc. . ..... (915)833-5461 

UTAH, Salt Lake City 
Utah Compo Sales, Inc. . .. (801)572-4010 

WASHINGTON, Spokane 
Doug Kenley ......... (509)924-2322 

NORTH AMERICA 
HYBRID/MCM COMPONENT SUPPLIERS 

Chip Supply ...... (407)298-7100 
Elmo Semiconductor ...... (818)768-7400 
Minco Technology Labs Inc .... (512)834-2022 
Semi Dice Inc. (310)594-4631 

For changes to this information contact Technical Publications at FAX (602) 244-6560 



Overview 

Programming Model 

Instruction and Data Cache Operation 

Exceptions 

Memory Management 

Instruction Timing 

Signal Descriptions 

System Interface Operation 

Power Management 

PowerPC Instruction Set Listings _ 

Instructions Not Implemented ..:sJ 
PowerPC 603 Processor System Design _ 

and Programming Considerations 

Glossary fill.] 

Index 'I~I.J 



Overview 

Programming Model 

Instruction and Data Cache Operation 

Exceptions 

Memory Management 

Instruction Timing 

Signal Descriptions 

System Interface Operation 

Power Management 

PowerPC Instruction Set Listings 

Instructions Not Implemented 

PowerPC 603 Processor System· Design 
and Programming Considerations 

i'Im Glossary 

DmI Index 



Attention! 
This book is a companion to the PowerPC Microprocessor Family: The Programming 
Environments, referred to as The Programming Environments Manual. Note that the 
companion Programming Environments Manual exists in two versions. See the Preface for 
a description of the following two versions: 

• PowerPC Microprocessor Family: The Programming Environments, Rev 1 
Order #: MPCFPEI AD 

• PowerPC Microprocessor Family: The Programming Environments for 32-Bit 
Microprocessors, Rev 1 
Order #: MPCFPE32B/AD 

Call the Motorola LDC at 1-800-441-2447 (website: http://1dc.nmd.com) or contact your 
local sales office to obtain copies. 



1ATX35069-1 Printed in USA 11/97 BANTA CO. MOTa #130 5,000 LlTRISC 



@ MOTOROI.A 

• • 
, . 

-. 

INTERNET: S~S 

Mfax IS a trademark of Motorola, 

•• 

• .. 

a. 

. -

...... : I 

Industrial F?ark, 51 


