
M68HCII
REFERENCE
MANUAL

M68HCllRM/AD
REV 3

® MOTOROL.A

General Description

M68HC11

REFERENCE MANUAL

Motorola reserves the right to make changes without further notice to any products herein to improve reliability,
function or design. Motorola does not assume any liability arising out of the application or use of any product
or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.
Motorola products are not authorized for use as components in life support devices or systems intended for
surgical implant into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any
such intended end use whereupon Motorola shall determine availability and suitability of its product or products
for the use intended. Motorola and ® are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Employment Opportunity/Affirmative Action Employer.

Printed in U.S.A.

Rev 3
©MOTOROLA INC., 1991

PREVIOUS EDITION © 1991
"ALL RIGHTS RESERVED"

TABLE OF CONTENTS
Paragraph
Number Title

Page
Number

Section 1
General Description

1.1 General Description of the MC68HC11 A8 .. 1-1
1.2 Programmer's Model ... 1-2
1.3 Product Derivatives. .. 1-4

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.4.1
2.2.4.2
2.2.4.3
2.2.4.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.5

MOTOROLA

Section 2
Pins and Connections

Packages and Pin Names
MC68HC11A8
MC68HC11 D31711 D3
MC68HC11 E91711 E9
MC68HC811 E2 Pin Assignments (48-Pin DIP)
MC68HC11 F1 .. .
MC68HC24 Port Replacement Unit

Pin Descriptions '
Power-Supply Pins (VDD and VSS)
Mode Select Pins (MODBIVSTBY and MODA/LlR)
Crystal Oscillator and Clock Pins (EXTAL, XTAL, and E)
Crystal Oscillator Application Information

Crystals for Parallel Resonance
Using Crystal Oscillator Outputs
Using External Oscillator
AT-Strip Versus AT-Cut Crystals

Reset Pin (Reset)
Interrupt Pins (XIRQ, IRQ)
AID Reference and Port E Pins (VREFL, VREFH, PE7-PEO)
Timer Port A Pins .. .
Serial Port D Pins .. .
Ports Band C, STRA, and STRB Pins

Termination of Unused Pins
Avoidance of Pin Damage

Zap and Latchup
Protective Interface Circuits
Internal Circuitry - Digital Input-Only Pin
Internal Circuitry - Analog Input-Only Pin
Internal Circuitry - Digital 1/0 Pin
Internal Circuitry - Input/Open-Drain-Output Pin
Internal Circuitry - Digital Output-Only Pin
Internal Circuitry - MODBIVSTBY Pin
Internal Circuitry - IRQIVPPBULK Pin

Typical Single-Chip-Mode System Connections

M68HC11 REFERENCE MANUAL

2-1
2-1
2-3
2-4
2-5
2-6
2-6
2-8
2-8
2-9
2-11
2-15
2-15
2-15
2-15
2-16
2-16
2-17
2-18
2-19
2-19
2-19
2-21
2-22
2-23
2-24
2-24
2-25
2-27
2-27
2-28
2-29
2-30
2-30

iii

Paragraph
Number

2.6
2.7
2.7.1
2.7.2
2.7.3

3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.3.3
3.4
3.4.1
3.4.2
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.4.1
3.5.4.2
3.5.4.3
3.5.4.4
3.6

4.1
4.2
4.2.1
4.2.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.5.1

iv

TABLE OF CONTENTS (Continued)

Page
Title Number

Typical Expanded-Mode-System Connections................................. 2-32
System Development and Debug Features : 2-35

Load Instruction Register (LlR).. 2-35
Internal Read Visibility (IRV)... 2-35
MC68HC24 Port Replacement Unit.. 2-36

Section 3
Configuration and Modes of Operation

Hardware Mode Selection... 3-1
Hardware Mode Select Pins... 3-2
Mode Control Bits in the HPRIO Register.................................. 3-2

EEPROM-Based Config Register... 3-3
Operation of CONFIG Mechanism... 3-3
The CONFIG Register ... 3-4

Protected Control Register Bits.. 3-6
RAM and I/O Mapping Register (lNIT) 3-6
Protected Control Bits in the TMSK2 Register............................ 3-8
Protected Control Bits in the OPTION Register........................... 3-8

Normal MCU Operating Modes.. 3-10
Normal Single-Chip Mode ... 3-10
Normal Expanded Mode... 3-10

Special MCU Operating Modes.. 3-11
Testing Functions Control Register (TEST1) 3-11
Test-Related Control Bits in the Baud Register........................... 3-13
Special Test Mode ... 3-14
Special Bootstrap Mode .. 3-15

Loading Programs in Bootstrap Mode 3-15
Executing User Programs in Bootstrap Mode......... 3-16
Using Interrupts in Bootstrap Mode 3-17
Bootloader Firmware Options... 3-17

Test and Bootstrap Mode Applications .. 3-18

Section 4
On-Chip Memory

ROM ... 4-1
RAM ... 4-2

Remapping Using the INIT Register... 4-2
RAM Standby... 4-3

EEPROM .. 4-4
Logical and Physical Organization... 4-4
Basic Operation of the EEPROM... 4-5
Systems Operating below 2-MHz Bus Speed (E Clock)................. 4-9
EEPROM Programming Register (PPROG) 4-10
Programming/Erasing Procedures... 4-11

Programming ... 4-12

M68HC11 REFERENCE MANUAL MOTOROLA

Paragraph
Number

4.3.5.2
4.3.5.3
4.3.5.4
4.3.5.5
4.3.6
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7

5.1
5.1.1
5.1.1.1
5.1.1.2
5.1.1.3
5.1.1.4
5.1.1.5
5.1.1.6
5.1.1.7
5.1.1.8
5.1.1.9
5.1.1.10
5.1.1.11
5.1.2
5.1.3
5.1.4
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.3.1
5.3.2
5.3.3
5.4
5.4.1
5.4.2
5.4.3

TABLE OF CONTENTS (Continued)

Page
Title Number

Bulk Erase 4-12
Row Erase.. 4-12
BYTE Erase ... 4-13
CONFIG Register .. 4-13

Optional EEPROM Security Mode.. 4-14
EEPROM Application Information.. ... 4-16

Conditions and Practices To Avoid .. 4-16
Using EEPROM To Select Product Options................................ 4-17
Using EEPROM for Setpoint and Calibration Information 4-18
Using EEPROM during Product Development 4-19
Logging Data .. 4-19
Self-Adjusting Systems using EEPROM.................................... 4-19
Software Methods to Extend Life Expectancy............................ 4-20

Section 5
Resets and Interrupts

Initial Conditions Established During Reset : 5-1
System Initial Conditions.. 5-2

CPU ... 5-2
Memory Map.. 5-2
Parallel 1/0 ;... 5-2
Timer ... 5-2
Real-Time Interrupt.. 5-3
Pulse Accumulator... 5-3
COP Watchdog.. 5-3
Serial Communications Interface (SCi).................. 5-3
Serial Peripheral Interface (SP!)... 5-3
Analog-To-Digital (AID) Converter...................................... 5-3
Other System Controls.. 5-3

CON FIG Register Allows Flexible Configuration.......................... 5-4
Mode of Operation Established.. 5-4
Program Counter Loaded with Reset Vector.............................. 5-5

Causes of Reset.. 5-5
Poweron Reset (POR).. 5-7
COP Watchdog Timer Reset... 5-7
Clock Monitor Reset............. 5-9

External Reset .. 5-10
Interrupt Process.. 5-10

Interrupt Recognition and Stacking Registers............................. 5-12
Selecting Interrupt Vectors .. 5-12
Return from Interrupt 5-19

Nonmaskable Interrupts... 5-20
Nonmaskable Interrupt Request (XIRQ) 5-20
Illegal Opcode Fetch... 5-21
Software Interrupt... 5-22

MOTOROLA M68HC11 REFERENCE MANUAL v

Paragraph
Number

5.5
5.5.1
5.5.2
5.6
5.6.1
5.6.2
5.7
5.7.1
5.7.2
5.7.3

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.1.4
6.3.1.5
6.3.1.6
6.3.2
6.3.3
6.3.4
6.3.4.1
6.3.4.2
6.3.4.3
6.3.4.4
6.3.4.5

vi

TABLE OF CONTENTS (Continued)

Page
Title Number

Maskable Interrupts... 5-22
I Bit in the Condition Code Register... 5-22
Special Considerations for I-Bit-Related Instructions.................... 5-23

Interrupt Request.. 5-24
Selecting Edge Triggering or Level Triggering........................... 5-24
Sharing Vector with Handshake 1/0 Interrupts............................ 5-25

Interrupts from Internal Peripheral Subsystems............................... 5-25
Inhibiting Individual Sources.. 5-25
Clearing Interrupt Status Flag Bits ... 5-26
Automatic Clearing Mechanisms on Some Flags........................ 5-26

Section 6
Central Processing Unit

Programmer's Model... 6-1
Accumulators (A, B, and D) 6-1
Index Registers (X and Y).. 6-2
Stack Pointer (SP).................. 6-3
Program Counter (PC) .. 6-4
Condition Code Register (CCR) ... ,. 6-4

Addressing Modes.. 6-6
Immediate (lMM)... 6-6
Extended (EXT)... 6-7
Direct (DIR).. 6-8
Indexed (lNDX,INDY).. 6-9
Inherent (INH)... 6-10
Relative (REL) ... 6-10

M68HC11 Instruction Set .. 6-11
Accumulator and Memory Instructions............ 6-11

Loads, Stores, and Transfers .. 6-12
Arithmetic Operations... 6-13
Multiply and Divide 6-14
Logical Operations... 6-14
Data Testing and Bit Manipulation..................................... 6-14
Shifts and Rotates .. 6-15

Stack and Index Register Instructions....................................... 6-16
Condition Code Register Instructions 6-17
Program Control Instructions ... 6-18

Branches ... 6-18
Jumps .. 6-19
Subroutine Calls and Returns (BSR, JSR, RTS) 6-19
Interrupt Handling (RTI, SWI, WAI) 6-19
Miscellaneous (NOP, STOP, TEST)..................................... 6-20

M68HC11 REFERENCE MANUAL MOTOROLA

Paragraph
Number

7.1
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.1.1
7.3.1.2
7.3.1.3
7.3.1.4
7.3.2
7.3.2.1
7.3.2.2
7.3.2.3
7.3.3
7.3.3.1
7.3.3.2
7.3.4
7.3.4.1
7.3.4.2
7.3.4.3
7.3.4.4
7.3.4.5
7.3.5
7.3.5.1
7.3.5.2
7.3.6
7.3.6.1
7.3.6.2
7.3.6.3
7.3.6.4
7.3.6.5
7.3.6.6
7.3.6.7
7.3.7
7.3.7.1
7.3.7.2
7.4
7.4.1
7.4.1.1
7.4.1.2
7.4.2

TABLE OF CONTENTS (Continued)

Title

Section 7
Parallel Input/Output

Page
Number

Parallel I/O Overview ... 7-1
Parallel 1/0 Register and Control Bit Explanations............................ 7-3

Port Registers... 7-4
Data Direction Registers.. 7-5

Detailed 1/0 Pin Descriptions... 7-6
Port A.... 7-7

PA2-PAO (lC3-IC1) Pin Logic.. 7-7
PA6-PA3 (OC5-0C2) Pin Logic... 7-8
PA7 (OC1,PAI) Pin Logic .. 7-8
Port A Idealized Timing... 7-11

PortB 7-11
Port B Pin Logic ... 7-12
Port B Idealized Timing ... 7-13
Special Considerations for Port B on MC68HC24 PRU , 7-13

R/W (STRB) Pin ... 7-14
R/W (STRB) Pin Logic ... 7-14
Special Considerations for STRB on MC68HC24 PRU 7-15

Port C ... 7-16
Port C Pin Logic for Expanded Modes 7-16
Summary of Port C Idealized Expanded-Mode Timing 7-17
Port C Single-Chip-Mode Pin Logic 7-17
Port C Idealized Single-Chip-Mode Timing 7-21
Special Considerations for Port C on MC68HC24 PRU 7-22

AS (STRA) Pin.. 7-22
AS STRA Pin Logic... 7-22
Special Considerations for STRA on MC68HC24 PRU............. 7-24

Port D....... 7-24
PDO (RxD) Pin Logic... 7-24
PD1 (TxD) Pin Logic.. 7-26
PD2 (MISO) Pin Logic... 7-28
PD3 (MOSI) Pin Logic... 7-29
PD4 (SCK) Pin Logic... 7-31
PD5 (SS) Pin Logic... 7-33
Idealized Port D Timing... 7-35

Port E.. 7-37
Port E Pin Logic ... 7-37
Idealized Port E Timing... 7-38

Handshake 1/0 Subsystem.. 7-39
Simple Strobe Mode.. 7-39

Port B Strobe Output.. 7-39
Port C Simple Latching Input.. 7-40

Full-Input Handshake Mode... 7-40

MOTOROLA M68HC11 REFERENCE MANUAL vii

Paragraph
Number

7.4.3
7.4.3.1
7.4.3.2
7.4.4
7.4.5

8.1
8.1.1
8.1.2
8.1.3
8.2
8.3
8.4
8.4.1
8.4.2
8.4.3
8.5
8.5.1
8.5.2
8.6
8.6.1
8.6.2
8.7
8.7.1
8.7.2

TABLE OF CONTENTS (Continued)

Page
Title Number

Full-Output Handshake Mode ... 7-41
Normal Output Handshake... 7-42
Three-State Variation of Output Handshake......................... 7-42

Parallel 1/0 Control Register (PIOC).. 7-43
Nonhandshake Uses of STRA and STRB Pins............................ 7-45

Section 8
Synchronous Serial Peripheral Interface

SPI Transfer Formats... 8-1
SPI Clock Phase and Polarity Controls...................................... 8-1
CPHA Equals Zero Transfer Format... 8-2
CPHA Equals One Transfer Format.. 8-2

SPI Block Diagram.. 8-3
SPI Pin Signals... 8-4
SPI Registers... 8-6

Port D Data Direction Control Register (DDRD)........................... 8-6
SPI Control Register (SPCR)... 8-7
SPI Status Register (SPSR) .. 8-8

SPI System Errors... 8-9
SPI Mode-Fault Error... 8-9
SPI Write-Collision Errors .. 8-10

Beginning and Ending SPI Transfers... 8-11
Transfer Beginning Period (Initiation Delay) 8-11
Transfer Ending Period... 8-11

Transfers to Peripherals with Odd Word Lengths............................. 8-14
Example 8-1: On-Chip SPI Driving an MC144110 D/A 8-15
Example 8-2: Software SPI Driving an MC144110 D/A 8-15

Section 9
Asynchronous Serial Communications Interface

9.1 General Description... 9-1
9.1.1 Transmitter Block Diagram.. 9-2
9.1.2 Receiver Block Diagram.. 9-3
9.2 SCI Registers and Control Bits... 9-5
9.2.1 Port D Related Registers and Control Bits (PORTD, DDRD, SPCR)... 9-6
9.2.2 Baud-Rate Control Register (BAUD).... 9-7
9.2.3 SCI Control Register 1 (SCCR1).......... 9-9
9.2.4 SCI Control Register 2 (SCCR2)... 9-9
9.2.5 SCI Status Register (SCSR) 9-11
9.2.6 SCI Data Register (SCDR) .. 9-14
9.3 SCI Transmitter...................................... 9-14
9.3.1 Eight- and Nine-Bit Data Modes.. 9-15
9.3.2 Interrupts and Status Flags.. 9-16
9.3.3 Send Break 9-16
9.3.4 Queued Idle Character .. ;....... 9-17

viii M68HC11 REFERENCE MANUAL MOTOROLA

Paragraph
Number

9.3.5
9.3.6
9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.5.1
9.4.5.2
9.5
9.5.1
9.5.2
9.6
9.6.1
9.6.2
9.6.3
9.6.4

10.1
10.1.1
10.1.2
10.1.3
10.2
10.2.1
10.2.1.1
10.2.1.2
10.2.1.3
10.2.2
10.2.3
10.2.4
10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.4
10.4.1
10.4.2

TABLE OF CONTENTS (Continued)

Page
Title Number

Disabling the SCI Transmitter ... 9-18
TxD Pin Buffer Logic .. 9-18

SCI Receiver.. 9-20
Data Sampling Technique... 9-20
Worst-Case Baud-Rate Mismatch.. 9-25
Double-Buffered Operation.. 9-27
Receive Status Flags and Interrupts... 9-27
Receiver Wake-Up Operation... 9-28

Idle-Line Wake Up .. 9-28
Address-Mark Wake Up ... 9-28

Baud-Rate Generator... 9-29
Timing Chain Block Diagram .. 9-29
Baud Rates vs. Crystal Frequency... 9-29

SCI Timing Details.. 9-29
Operation As Transmitter Is Enabled....................................... 9-30
TDRE and Transfers from SCDR to Transmit Shift Register........... 9-32
TC vs. Character Completion ... : 9-32
RDRF Flag Setting vs. End of a Received Character..................... 9-33

Section 10
Main Timer and Real-Time Interrupt

General Description ... 10-1
Overall Timer Block Diagram ... 10-2
Input-Capture Concept.. .. 10-2
Output-Compare Concept.. .. 10-4

Free-Running Counter and Prescaler ... 10-5
Overall Clock Divider Structure ... 10-5

Prescaler ... 10-7
Overflow ... 10-9
Counter Bypass (Test Mode) .. 10-10

Real-Time Interrupt (RTI) Function ... 10-11
COP Watchdog Function ... 10-13
Tips for Clearing Timer Flag.s ... 10-14

Input-Capture Functions ... 10-15
Programmable Options ... 10-16
Using Input Capture to Measure Period and Frequency 10-17
Using Input Capture to Measure Pulse Width 10-19
Measuring Very Short Time Periods .. 10-23
Measuring Long Time Periods with Input Capture and Overflow 10-23
Establishing a Relationship between Software and an Event.. 10-26
Other Uses for Input-Capture Pins ... 10-27

Output-Compare Functions ... 10-27
Normal I/O Pin Control Using OC5-0C2 10-31
Advanced I/O Pin Control Using OCl 10-33

MOTOROLA M68HC11 REFERENCE MANUAL ix

Paragraph
Number

10.4.2.1
10.4.2.2
10.4.3
10.5
10.6

11.1
11.1.1
11.1.2
11.2
11.2.1
11.2.2
11.3
11.3.1
11.3.2
11.4
11.5

12.1
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.3

x

TABLE OF CONTENTS (Concluded)

Title
Page

Number

One Output Compare Controlling Up to Five Pins 10-34
Two Output Compares Controlling One Pin 10-34

Forced Output Compares .. 10-36
Timing Details for the Main Timer System 10-37
Listing of Timer Examples .. 10-40

Section 11
Pulse Accumulator

General Description ... 11-1
Pulse Accumulator Block Diagram ... 11-2
Pulse Accumulator Control and Status Registers 11-3

Event Counting Mode .. 11-6
Interrupting after N Events .. 11-6
Counting More Than 256 Events ... 11-6

Gated Time Accumulation Mode .. 11-8
Measuring Times Longer Than the Range of the 8-Bit Counter 11-8
Configuring for Interrupt after a Specified Time 11-9

Other Uses for the PAl Pin .. 11-9
Timing Details for the Pulse Accumulator 11-9

Section 12
Analog-To-Digital Converter System

Charge-Redistribution AID ... 12-1
AID Converter Implementation on MC68HC11A8 12-10

MC68HC11A8 Successive-Approximation AID Converter 12-10
AID Charge Pump and Resistor-Capacitor (RC) Oscillator 12-11
MC68HC11A8 AID System Control Logic 12-13
AID ControllStatus Register (ADCTL) .. 12-13
AID Result Registers (ADR4-ADR1) ... 12-15

AID Pin Connection Considertions .. 12-16

Appendix A
Instruction Set Details

Appendix B
Bootloader Listings

Index

M68HC11 REFERENCE MANUAL MOTOROLA

LIST OF ILLUSTRATIONS
Figure

Number Title

1-1 Block Diagram .. .
1-2 M68HC11 Programmer's Model
1-3 Part Numbering

2-1 MC68HC11A8 Pin Assignments
2-2 MC68HC11 D31711 D3 Pin Assignments
2-3 MC68HC11 E91711 E9 Pin Assignments
2-4 MC68HC811 E2 Pin Assignments
2-5 MC68HC11 F1 Pin Assignments
2-6 MC68HC24 Pin Assignments
2-7 Reduced IDD MODA/LiR Connections
2-8 RAM Standby MODBIVSTBY Connections
2-9 High-Frequency Crystal Connections
2-10 Low-Frequency Crystal Connections
2-11 Crystal Layout Example .. .
2-12 Reset Circuit Example .. .
2-13 Low-Pass Fi Iter for A/D Reference Pi ns
2-14 CMOS Inverter .. .
2-15 Internal Circuitry - Digital Input-Only Pin
2-16 Internal Circuitry - Analog Input-Only Pin
2-17 Internal Circuitry - Digital I/O Pin
2-18 Internal Circuitry - Input/Open-Drain-Output Pin
2-19 Internal Circuitry - Output-Only Pin
2-20 Internal Circuitry - MODBIVSTBY Pin
2-21 Internal Circuitry - IRQIVpPBULK Pin
2-22 Basic Single-Chip-Mode Connections
2-23 Basic Expanded-Mode Connections

3-1 Schematic for Figure 3-2 .. .
3-2 Program to Check/Change CONFIG

4-1 Topological Arrangement of EEPROM Bytes (MC68HC11A8)
4-2 Topological Arrangement of Bits in an EEPROM Byte
4-3 Condensed Schematic of EEPROM Array
4-4 EEPROM Cell Terminology
4-5 Erasing an EEPROM Byte
4-6 Programming an EEPROM Byte
4-7 Reading an EEPROM Byte
4-8 Erase-Before-Write Programming Method
4-9 Program-More-Zeros Programming Method

MOTOROLA MC68HC11 REFERENCE MANUAL

Page
Number

1-3
1-4
1-4

2-2
2-3
2-4
2-5
2-6
2-7
2-10
2-11
2-12
2-12
2-13
2-16
2-18
2-21
2-24
2-26
2-27
2-28
2-28
2-29
2-30
2-31
2-33

3-20
3-22

4-5
4-5
4-6
4-6
4-7
4-8
4-8
4-23
4-23

xi

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number

4-10 Selective-Write Programming Method .. 4-24
4-11 Composite Programming Method.. 4-25

5-1 Typica I Externa I Reset Ci rcu it ... 5-11
5-2 Processing Flow Out of Resets.. 5-15
5-3 Interrupt Priority Resolution... 5-17
5-4 Interrupt Source Resolution within SCi....................................... 5-19

6-1 M68HC11 Programmer's Model.. 6-2

7-1 Parallel I/O Registers and Control Bits .. 7-3
7-2 Pin Logic Registers and Control Bits... 7-4
7-3 Special Symbols Used in Pin Logic Diagrams.............................. 7-6
7-4 PA2-PAO (IC3-IC1) Pin Logic '" 7-7
7-5 PA6-PA3 (OC5-0C2) Pin Logic... 7-9
7-6 PA7 (OC1,PAI) Pin Logic .. 7-10
7-7 Idealized Port A Timing... 7-11
7-8 Port B Pin Logic... 7-12
7-9 Idealized Port B Timing ... 7-13
7-10 R/W (STRB) Pin Logic ... 7-14
7-11 Port C Expanded Mode Pin Logic.. 7-16
7-12 Summary of Idealized Port C Expanded-Mode Timing.................... 7-18
7-13 Port C Single-Chip-Mode Pin Logic .. 7-19
7-14 Idealized Port C Single-Chip-Mode Timing................................... 7-21
7-15 AS (STRA) Pin Logic... 7-23
7-16 PDO (RxD) Pin Logic ... 7-25
7-17 PD1 (TxD) Pin Logic.. 7-26
7-18 PD2 (MISO) Pin Logic ... 7-28
7-19 PD3 (MOSI) Pin Logic ... 7-30
7-20 PD4 (SCK) Pin Logic... 7-32
7-21 PD5 (SS) Pin Logic... 7-34
7-22 Idealized Port D Timing... 7-36
7-23 Port E Pin Logic... 7-37
7-24 Idealized Port E Timing... 7-38
7-25 Idealized Timing for Simple Strobe Operations............................. 7-40
7-26 Idealized Timing for Full-Input Handshake 7-41
7-27 Idealized Timing for Full-Output Handshake................................. 7-42

8-1 CPHA Equals Zero SPI Transfer Format....................................... 8-2
8-2 CPHA Equals One SPI Transfer Format....................................... 8-3
8-3 SPI System Block Diagram... 8-4
8-4 Delay from Write SPDR to Transfer Start (Master)......................... 8-12
8-5 Transfer Ending for an SPI Master ... 8-13
8-6 Transfer Ending for an SPI Slave... 8-13

xii M68HC11 REFERENCE MANUAL MOTOROLA

Figure
Number

8-7
8-8
8-9
8-10
8-11
8-12

9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
10-15
10-16

LIST OF ILLUSTRATIONS (Continued)

Page
Title Number

Hardware Hookup for Examples 8-1 and 8-2................................ 8-14
Register Definitions and RAM Variables for Examples 8-1 and 8-2.... 8-15
Example 8-1 Software Listing ... 8-16
Timing Analysis for Example 8-1 ... 8-18
Example 8-2 Software Listing 8-19
Timing Analysis for Example 8-2... 8-20

SCI Transmitter Block Diagram... 9-2
SCI Receiver Block Diagram... 9-4
TxD Pin Logic Block Diagram.. 9-19
Start Bit - Ideal Case... 9-21
Start Bit - Noise Case One.. 9-22
Start Bit - Noise Case Two... 9-23
Start Bit - Noise Case Three... 9-23
Start Bit - Noise Case Four... 9-24
Start Bit - Noise Case Five.. 9-24
Start Bit - Noise Case Six... 9-25
Baud-Rate Frequency Tolerance.. 9-26
Baud-Rate Generator Block Diagram.. 9-30
Transmitter Enable Timing Details... 9-32
Write SCDR to Serial Data Start .. 9-33
Ending Details of Transmission... 9-34
RDRF Flag-Setting Details.. 9-35

Main Timer System Block Diagram 10-3
Timing Summary for Oscillator Divider Signals 10-6
Major Clock Divider Chains in the MC68HC11A8 10-8
Measuring a Period with Input Capture....................................... 10-18
Timing Analysis for Example 10-1 ... 10-18
Measuring a Pulse Width with Input Capture 10-21
Timing Analysis for Example 10-2 ... 10-22
Measuring Long Periods with Input Capture and TOF 10-25
Simple Output-Compare Example................................ 10-30
Generating a Square Wave with Output Compare 10-32
Timing Analysis for Example 10-5 ... 10-32
Producing Two PWM Outputs with OC1, OC2, and OC3 10-35
Timer Counter as MCU Leaves Reset 10-38
Timer Counter Read - Cycle-by-Cycle Analysis.......... 10-38
Input-Capture Timing Details .. 10-39
Output-Compare Timing Details .. 10-40

11-1 Pulse Accumulator Operating Modes ... 11-1
11-2 Block Diagram of Pulse Accumulator Subsystem.......................... 11-3
11-4 PAl Pin Edge-Detection Timing 11-10

MOTOROLA M68HC11 REFERENCE MANUAL xiii

Figure
Number

LIST OF ILLUSTRATIONS (Concluded)

Title
Page

Number

11-5 Pin Enable vs. Counting (Gated Accumulation Mode) 11-10
11-6 Timing Details for Pulse Accumulator Counter Overflow 11-11
11-7 PACNT Read and Write ... 11-12

12-1 Basic Charge-Redistribution AID.. 12-2
12-2 Charge-Redistribution AID with ± 1/2 LSB Quantization Error 12-8
12-3 MC68HC11 A8 AID in Sample Mode.. 12-11
12-4 Timing Diagram for a Sequence of Four AID Conversions 12-14
12-5 Electrical Model of an AID Input Pin (Sample Mode) 12-16
12-6 Graphic Estimation of Analog Sample Level (Case 2) 12-19

xiv M68HC11 REFERENCE MANUAL MOTOROLA

LIST OF TABLES

Table
Number Title

Page
Number

1-1 M68HC11 Family Members ... 1-5

2-1 Hardware Mode Select Summary... 2-9
2-2 Ports Band C, STRA, and STRB Pins... 2-20

3-1 Hardware Mode Select Summary... 3-2
3-2 Watchdog Rates vs. Crystal Frequency.. 3-9
3-3 Bootstrap Mode Pseudo-Vectors.. 3-17

5-1 Hardware Mode Select Summary ... 5-5
5-2 Reset Vector vs. Cause and MCU Mode... 5-6
5-3 Watchdog Rates vs. Crystal Frequency.. 5-8
5-4 Highest Priority I Interrupt vs. PSEL3-PSELO................................... 5-14

9-1 Baud-Rate Prescale Selects... 9-8
9-2 Baud-Rate Selects... 9-8
9-3 Baud Rates by Crystal Frequency, SCP1-SCPO and SCR2-SCRO.......... 9-31

10-1 Crystal Frequency vs. PR1, PRO Values .. 10-9
10-2 RTI Rates vs. RTR1, RTRO for Various Crystal Frequencies 10-12
10-3 COP Time-Out vs. CR1, CRO Values ... 10-13
10-4 Instruction Sequences To Clear TOF .. 10-14

11-1 Pulse Accumulator Timing Periods vs. Crystal Rate 11-2

12-1 AID Channel Assignments ... 12-15

MOTOROLA M68HC11 REFERENCE MANUAL xv

SECTION 1
GENERAL DESCRIPTION

This reference manual will be a valuable aid in the development of M68HC11 applications.
Detailed descriptions of all internal subsystems and functions have been developed and
carefully checked against internal Motorola design documentation, making this manual the
most comprehensive reference available for the M68HC11 Family of microcontroller units
(MCUs).

Practical applications are included to demonstrate the operation of each subsystem. These
applications are treated as complete systems, including hardware/software interactions
and trade-offs. Interfacing techniques to prevent component damage are discussed to aid
the hardware designer. For software programmers, SECTION 6 CENTRAL PROCESSING
UNIT (CPU) and APPENDIX A INSTRUCTION SET DETAILS contain examples demonstrating
efficient use of the instruction set.

This manual is intended to complement Motorola's official data sheet, not replace it. The
information in the data sheet is current and is guaranteed by production testing. Although
the information in this manual was checked against parts and design documentation, the
accuracy is not guaranteed like the data sheet is guaranteed. This manual assumes the
reader has some basic knowledge of MCUs and assembly-language programming; it may
not be appropriate as an instruction manual for a first-time MCU user.

The information in this manual is much more detailed than would usually be required for
normal use of the MCU, but a user who is familiar with the detailed operation of the part
is more likely to find a solution to an unexpected system problem. In many cases, a trick
based on software or on-chip resources can be used ratherthan building expensive external
circuitry. Data sheets are geared toward customary, straightforward use of the on-chip
peripherals; whereas, an experienced MCU user often uses these on-chip systems in very
unexpected ways. The level of detail in this manual will help the normal user to better
understand the on-chip systems and will allow the more advanced user to make maximum
use of the subtleties of these systems.

In addition to this manual, the data sheet(s) or technical summary is needed for the specific
version(s) of the M68HC11 being used. A pocket reference guide is another beneficial
source.

1.1 GENERAL DESCRIPTION OF THE MC68HC11A8

The high-density complementary metal-oxide semiconductor (HCMOS) MC68HC11A8 is an
advanced 8-bit MCU with highly sophisticated, on-chip peripheral capabilities. New design
techniques were used to achieve a nominal bus speed of 2 MHz. In addition, the fully static
design allows operation at frequencies down to dc, further reducing power consumption.

MOTOROLA M68HC11 REFERENCE MANUAL 1-1

..

The HCMOS technology used on the MC68HC11A8 combines smaller size and higher
speeds with the low power and high noise immunity of CMOS. On-chip memory systems
include 8K bytes of read-only memory (ROM). 512 bytes of electrically erasable program­
mable ROM (EEPROM), and 256 bytes of random-access memory (RAM).

Major peripheral functions are provided on-chip. An eight-channel analog-to-digital (AID)
converter is included with eight bits of resolution. An asynchronous serial communications
interface (SCI) and a separate synchronous serial peripheral interface (SPI) are included.
The main 16-bit, free-running timer system has three input-capture lines, five output-com­
pare lines, and a real-time interrupt function. An 8-bit pulse accumulator subsystem can
count external events or measure external periods.

Self-monitoring circuitry is included on-chip to protect against system errors. A computer
operating properly (COP) watchdog system protects against software failures. A clock
monitor system generates a system reset in case the clock is lost or runs too slow. An
illegal opcode detection circuit provides a nonmaskable interrupt if an illegal opcode is
detected.

Two software-controlled power-saving modes, WAIT and STOP, are available to conserve
additional power. These modes make the M68HC11 Family especially attractive for auto­
motive and battery-driven applications.

Figure 1-1 is a block diagram of the MC68HC11 A8 MCU. This diagram shows the major
subsystems and how they relate to the pins of the MCU. In the lower right-hand corner of
this diagram, the parallel I/O subsystem is shown inside a dashed box. The functions of
this subsystem are lost when the MCU is operated in expanded modes, but the MC68HC24
port replacement unit can be used to regain the functions that were lost. The functions are
restored in such a way that the software programmer is unable to tell any difference
between a single-chip system or an expanded system containing the MC68HC24. By using
an expanded system containing an MC68HC24 and an external EPROM, the user can de­
velop software intended for a single-chip application.

1.2 PROGRAMMER'S MODEL

In addition to executing all M6800 and M6801 instructions, the M68HC11 instruction set
includes 91 new opcodes. The nomenclature M68xx is used in conjunction with a specific
CPU architecture and instruction set as opposed to the MC68HC11xx nomenclature, which
is a reference to a specific member of the M68HCll Family of MCUs. Figure 1-2 shows the
seven CPU registers available to the programmer. The two 8-bit accumulators (A and B)
can be used by some instructions as a single 16-bit accumulator called the 0 register,
which allows a set of 16-bit operations even though the CPU is technically an 8-bit processor.

The largest group of instructions added involve the new Y index register. Twelve bit­
manipulation instructions that can operate on any memory or register location were added.
The exchange 0 with X and exchange 0 with Y instructions can be used to quickly get
index values into the double accumulator (D) where 16-bit arithmetic can be used. Two
16-bit by 16-bit divide instructions are also included.

1-2 M68HC11 REFERENCE MANUAL MOTOROLA

V

V

ROM - 8K BYTES

I
RAM - 256 BYTES

I
EEPROM - 512 BYTES

PE7~r--~
PE6~ ~

PE5~ ~

PE4~
w
~ I- NO

PE3~
a:
~ CONVERTER 0

Q.

PE2~ ~

PEl ~ f---+
PEO~ f---+

'--

REFH

REFL

R--ESET~

I

I

I

PULSE ACCUMULATOR I PAl
~- "'-~PA7

OC2 ~PA6
8 OC3 ~PA5

TIMER L OC4 ~~PA4
OC5 ~~PA3
ICl ~PA2

PERIODIC INTERRUPT IC2 ~PAl
IC3 _~PAO COP WATCHDOG

55 ~ ~PD5
SCK i: : 0 ~PD4 SPI Z

MOSI
0 ~PD3 1= 0
()

MISO ~ w I- ~PD2 a: a:
0 15 Q.

SCI TxD i. ~ ~ ~PDl
0

RxD ~PDO

M68HCll CPU

ADDRESSIDATA BUS I
XIRQ~ INTERRUPTS 1-- - -- - - -- - -- - -- -- - -- - - -- - ---- - ---1

(Vpp
IRQ·~

I I
I I
I I

BULK) : I HANDSHAKE 1/0 I;
I

~ XTAL +-
I
I
I :r:

XTAL~ OSCILLATOR I Q~ I
I ::::i::E I DATA DIRECTION C

E+-
I wo

I I ~::
i I PORTB I PORTC a: Z

c(~
POWER I Q.c(

MODA~
I ~
I ::::>
I 0

(UR) MODE I w
SELECT I

MODB~ : I~ l£ Ifl iIldi:l ill CD@ r- t.O U"):t" C") N ...-- 0
~~ : SINGLE I : 0.. a.. Q.. Q.. Q.. a.. a.. Q.. ~~~~~~~~ I- I-

: CHIP
TBY) I

en en L _____________________________________

------ -

E

(VS

0 en I~ ~ M N ~ 0 ~ 00 r- CD I.t) ..q M N ~ 0
I~ ~ EXPANDED I Cl en ::;c;c;:;;:;:;;:::;c::;c« ~~~~~~5l~ > >

Figure 1-1. Block Diagram

MOTOROLA M68HC11 REFERENCE MANUAL 1-3

IY

o SP

~================~

CONDITION CODE REGISTER I S X H

o PC

o

NZVCICCR

~I LCARRY

~ OVERFLOW

ZERO
NEGATIVE

'-------- I INTERRUPT MASK

'---------- HALF-CARRY (FROM BIT 3)

'----------- X INTERRUPT MASK
1.-__________ STOP DISABLE

Figure 1·2. M68HC11 Programmer's Model

1.3 PRODUCT DERIVATIVES

The M68HC11 Family of MCUs is composed of several members (see Table 1·1), and new
members are being developed. Figure 1·3 explains how the product part numbers are
constructed.

MC - FULL\' aUAUFIED
xc - TESTED PREPRODUCTION
M - GENERAL FAMILY REFERENCE

1-4

MC 68HC X 11 xx

7 - EPROM PROGRAM MEMORY
8 - EEPROM PROGRAM MEMORY

NONE - ROM OR NO PROGRAM MEMORY

Figure 1·3. Part Numbering

M68HC11 REFERENCE MANUAL

SPECIFIC PART TYPE
AS
Al
AO
E9
El
EO
A2
E2
03
Fl

ETC.

MOTOROLA

Table 1-1. M68HC11 Family Members

Part Number EPROM ROM EEPROM RAM CONFIG2 Comments

MC68HC11AS - 512 256 $OF Family Built Around This Device

MC68HC11A1 - - 512 256 $00 'AB with ROM Disabled

MC68HC11AO - - - 256 $OC 'AS with ROM and EEPROM Disabled

MC68HC811AB - - 8K+512 256 $OF EEPROM Emulator for 'AB

MC68HC11E9 - 12K 512 512 $OF Four Input Capture/Bigger RAM 12K ROM

MC68HC11El - - 512 512 $00 'E9 with ROM Disabled

MC68HC11EO - - - 512 $OC 'E9 with ROM and EEPROM Disabled

MC68HC811E2 - - 2K1 256 $FF3 No ROM Part for EXlJllnded Systems

MC68HC711E9 12K - 512 512 $OF One-Time Programmable Version of 'E9

MC68HC1103 - 4K - 192 N/A Low-Cost 4O-Pin Version

MC68HC711E9 4K - - 192 N/A One-Time Programmable Version of '03

MC68HC11F1 - - 5121 1K $FF3 High-Performance Nonmultiplexed 68-Pin

MC68HC11K4 - 24K 640 768 $FF >1 Meg memory space, PWM, CS, 84-Pin

MC68HC711K4 24K - 640 768 $FF One-Time Programmable Version of 'K4

MC68HC11L6 - 16K 512 512 $OF . Like 'E9 with more ROM and more I/O, 64/68

MC68HC711L6 16K - 512 512 $OF One-Time Programmable Version of 'L4

NOTES:
1. The EEPROM is relocatable to the top of any 4K memory page. Relocation is done with the upper four bits of the CONFIG register.
2. CONFIG .register values in this table reflect the value programmed prior to shipment from Motorola.
3. At the time of this printing a change was being considered that would make this value $OF.

MOTOROLA M68HC11 REFERENCE MANUAL 1-5

SECTION 2
PINS AND CONNECTIONS

This section discusses the functions of each pin on the MC6SHC11AS. Most pins on this
microcontroller unit (MCU) serve two or more functions. Information about the practical
use of each pin is presented in these pin descriptions. This section also includes information
concerning pins that are exposed to illegal levels or conditions. The most common source
of illegal levels or conditions is transient noise; however, a designer may wish to take
precautions against potential misapplication of a product or failures of other system com­
ponents such as power supplies. Consideration of these factors can influence end-product
reliability.

The basic connections for single-chip-mode and expanded-mode applications are pre­
sented in 2.5 TYPICAL SINGLE-CHIP-MODE CONNECTIONS and 2.6 TYPICAL EXPANDED­
MODE CONNECTIONS. These basic systems can be used as the starting point for any user
application and can minimize the time required to achieve a working prototype system.
The explanation of these basic systems includes information concerning additions, such
as additional memory on the expanded system.

System noise generation and susceptibility primarily depend on each system and its envi­
ronment. The MC6SHC11AS is designed for higher bus speeds than earlier MCUs; since it
is high-density complementary metal-oxide semiconductor (HCMOS), signals drive from
rail to rail, unlike earlier N-channel metal-oxide semiconductor (NMOS) processors. Since
these factors can significantly affect noise issues, the system designer should consider
these changes.

2.1 PACKAGES AND PIN NAMES

The following figures show pin assignments for several members of the M6SHC11 MCU
Family. The pin assignments for the MC6SHC24 port replacement unit (PRU) are also
presented for reference although the PRU is not discussed in detail in this manual.

Detailed mechanical data for packages may be found in the data sheets or technical sum­
maries. Ordering information, which relates part number suffixes to package types and
operating temperature range, are also found in the data sheets or technical summaries.

2.1.1. MC68HC11A8

The MC6SHC11AS is available in either a 52-pin plastic leaded chip carrier (PLCC) package
or a 4S-pin dual-in-line package (DIP). The silicon die is identical for both packages, but
four of the analog-to-digital (AID) converter inputs are not bonded out to pins in the 4S­
pin DIP. The MC6SHC11 Aland MC6SHC11 AD devices also use the same die as the
MC6SHC11AS, except that the contents of the nonvolatile CONFIG register determine
whether or not internal read-only memory (ROM) and/or electrically erasable program­
mable ROM (EEPROM) are disabled. These downgraded device versions have identical pin
assignments as the MC6SHC11AS.

Figure 2-1 shows the pin assignments for the MC6SHC11AS in the 52-pin PLCC package
and the 4S-pin DIP package.

MOTOROLA M68HC11 REFERENCE MANUAL 2-1

•

2-2

I~
-'ill
~g:
wcnw

XTAL 8
PCO/ADO 9
PC1/AD1 10

PC2IAD2 11
PC3/AD3 12

PC4/AD4 13

PC5/AD5 14
PCS/ADS 15

PC7/AD7 1S

RESET 17
XIRQ 18

IRQ 19
PDOlRxD 20

C\i ~gj('i!jl(l

c
1?J iB ~ I~ ~

Ei ~:!! c
"- ~~~a..

PA7/PAl/OC1
PA6!OC2IOC1

PAS/OC3/OC1

PA4/0C4/0C1

PA3/OCS/OC1 5
PA2IIC1 S
PA1nC2
PAOnCG 8
PB7/A15 9
PB6!A14 10
PB5/A13 11
PB4/A12 12
PB3/A11 13
PB2IA10 14

PB1/A9 15
PBOIAS 16

PEO/ANO 17

PE1/AN1 18

PE2IAN2 19

PE3/AN3 20

VRL 21

VRH 22

VSS 23

MODB 24

~~~~ 
(J):t:-Jr:;:(;)U5C\i 
C1)a:a:wwww 

> > > a.. a.. c.. a.. 

re~ <Xl ~ 0....- N C'? 
N C'II) C"') CO? C"') 

c~ ~ ~ ggog ~~2~ 
~§S ~S~~ 
~~~ ~~ 

VDD
PD5/SS
PD41SCK

PD3/MOSI

PD2!MISO

PD1ITxD
PDOlRxD
IRQ

XIFjQ

RESET
PC7/AD7
PCS/AD6
PC5/AD5
PC4/AD4

PC3/AD3

PC2IAD2

PC1/AD1
PCO/ADO

XTAL

EXTAL

STRBlRIW

E
STRAIAS

MODAlLIR

4S PE5/AN5

45 PE1/AN1

44 PE4/AN4

43 PEO/ANO

42 PBO/AS
41 PB1/A9

40 PB2/A10

39 PB3/A11

38 PB4/A12

37 PB5/A13

36 PB6!A14

35 PB7/A15

34 PAO/IC3

Figure 2-1. MC68HC11A8 Pin Assignments

M68HC11 REFERENCE MANUAL MOTOROLA

2.1.2 MC68HC11D3/711D3

The MC68HC11D3 is available in either a 44-pin PLCC package or a 40-pin DIP package.
The silicon die is identical for both packages, but the PLCC version has two additional
output compare pins bonded out and an extra VSS pin named EVSS. The MC68HC711 D3
is functionally equivalent to the MC68HC11 D3 but has 4K bytes of EPROM instead of mask
programmed ROM. The MC68HC711D3 is available as a one-time-programmable (OTP)
MCU in an opaque plastic package or in a ceramic windowed package for development
applications.

Figure 2-2 shows the pin assignments for the MC68HC11 D3/711 D3 in the 44-pin PLCC
package and the 40-pin DIP package.

>-
'" 1<>:

(')<'1..-0 ::J~
~~~~ Cf)...Jcf ~gJ vss XTAL 
~ ~ 2 ~ >~i'~ ~ w ~ ~ PCO/ADO EXTAL 

PC1/AD1 E 
<0 U') -.;t CO) N O~ ~ ~ :; ~ 

PC2lAD2 4 MODAlLIR 

PC4lAD4 7 39 PBO/AS PC3/AD3 MODBNSTBY 

PC5/AD5 8 38 PB1/A9 PC4/AD4 PBO/AS 

PC6/AD6 9 37 PB2IA10 PC5/AD5 7 PBlIA9 

PC7/AD7 10 36 PB3/A11 PC6lAD6 8 PB2IA10 

XIRQNpp 11 35 PB4/A12 PC7/AD7 9 PB3/A11 

PD7IRiW 12 34 PB5/A13 XIRQNpp. 10 31 PB4/A12 

PD6/AS 13 33 PB6IA14 PD71RiW 11 30 PB5/A13 

RESET 14 32 PB7/A15 PD6/AS 12 29 PB6IA14 

IRQ 15 31 N.C. RESET 13 28 PB7/A15 

PDOlRxD 16 30 PAC/IC3 IRQ 14 27 PAOAC3 

PD1ITxD 17 29 PA1AC2 PDOlRxD 15 26 PAMC2 

~~~N~!:lC'1iKl~{:;j~ 
PD1ITxD 16 25 PA2AC1

PD2JMISO 17 24 PA3/IC41OC5IOC1

Sl l3 ~ I~ g g g g g u u PD3iMOSI 18 23 PAS/0C3/OC1
:E:!!lIQ"'>-i'J-_Q~ PD41SCK 19 22 PA7/PAI/OC1 ~8~~ ~ggC3So.. a.. 0.. '" _ -. Q PD51SS 20 21 VDD

~~~:I:C3 
o..o..o..~ 

0.. 

Figure 2-2. MC68HC11D3/711D3 Pin Assignments 

MOTOROLA M68HC11 REFERENCE MANUAL 2-3 



II 

2.1.3 MC68HC11 E9t711 E9 

The MC68HC11E9 is available in a 52-pin PLCC package only. The MC68HC11E1 and 
MC68HC11 EO devices also use the same die as the MC68HC11 E9, except that the contents 
ofthe nonvolatile CON FIG register determine whether or not internal ROM and/or EEPROM 
are disabled. These downgraded device versions have identical pin assignments as the 
MC68HC11 E9. 

The MC68HC11 E9 is an upgrade from the MC68HC11 A8 version. The MC68HC11 E9 has 
12K bytes of mask ROM, 512 bytes of EEPROM, and 512 bytes of RAM. The timer system 
allows one output-compare channel to be reconfigured as a fourth input-capture channel. 

The MC68HC711 E9 is functionally equivalent to the MC68HC11 E9 but has 12K bytes of 
EPROM instead of mask programmed ROM. The MC68HC711 E9 is available as a one-time­
programmable (OTP) MCU in an opaque plastic package or in a ceramic windowed package 
for development applications. 

Figure 2-3 shows the pin assignments for the MC68HC11 E9 in the 52-pin PLCC packages. 
These pin assignments are the same as the MC68HC11A8, except for the pin name for the 
PA3tOC5/1C4/0C1 pin. 

2-4 

XTAL 8 

PCO/ADO 9 

PClIAD1 10 

PC2IAD2 11 

PC3/AD3 12 

PC4/AD4 13 

PC5/AD5 14 

PC6/AD6 15 

PC7/AD7 16 

RESET 17 
XIRQ 18 

IRQ [ 19 

PDOlRxD [ 20 

46 J PE5/AN5 

45 ~ PE1/AN1 

44 ~ PE4/AN4 

43 ~ PEa/ANa 

42 ~ PBO/AS 

41 ~ PB1/A9 

40 ~ PB2IA10 

39 ~ PB3/A11 

38 P PB4/A12 

37 PB5/A13 

36 PB6/A14 

35 PB7/A15 

34 ] PAO/IC3 

Figure 2-3. MC68HC11 E9/711 E9 Pin Assignments (52-Pin LCC) 

M68HC11 REFERENCE MANUAL MOTOROLA 



2-1.4 MC68HC811E2 

The MC68HC811 E2 is very similar to the MC68HC11 E9 version, except in the on-chip mem­
ory. The MC68HC811 E2 includes 2K bytes of EEPROM, which can be remapped to the upper 
half of any 4K-byte page in tile 64K map. There is no masked ROM memory in the 
MC68HC811 E2. The MC68HC811 E2 IS available in either a 52-pin PLCC package or a 48-
pin DIP. The silicon die used is the same for both packages, but four of the AID converter 
inputs are not bonded out to pins in the 48-pin package. 

The MC68HC811 E2 version replaces an earlier version called the MC68HC811A2. The only 
significant difference between the MC68HC811 E2 and MC68HC811A2 is that the 
MC68HC811 E2 has a slightly more flexi ble timer system, which allows one output-compare 
channel to be reconfigured as a fourth input-capture channel. 

The 52-pin PLCC package version of the MC68HC811 E2 has identical pin assignments to 
the MC68HC11 E9 pin assignments shown in Figure 2-3. Figure 2-4 illustrates the pin assign­
ments for the MC68HC811 E2 in the 48-pin DIP. 

PA7/PAliOCl vDD 
PA6/0C2'OCl PDS/SS 

PAS/OC3/0Cl PD41SCK 

PA4/0C4iOCl PD3IMOSI 

PA3/IC4/0C5,0Cl PD2IMISO 
PA2ilCl PD1ITxD 

PA1!IC2 PDOJRxD 

PAO/IC3 8 IRO 

PB7/A15 9 XIRO 

PB6/A14 10 RESET 

PBS/A13 11 PC7/AD7 

PB4/A12 12 PCS/ADS 

PB3/Al1 13 PCS/ADS 

PB2/Al0 14 PC4/AD4 

PB1/A9 15 PC3/AD3 
PBO/A8 16 PC2lAD2 

PEO/ANO 17 PC1/ADl 

PE1/ANl 18 PCO/ADO 

PE2IAN2 19 XTAL 

PE3/AN3 20 EXTAL 

VRL 21 STRBlR,w 

VRH 22 

Vss 23 STRAIAS 

MODB 24 MODAlLIR 

Figure 2-4. MC68HC811 E2 Pin Assignments (48-Pin DIP) 

MOTOROLA M68HC11 REFERENCE MANUAL 2-5 



II 

2.1.5 MC68HC11 F1 

The MC68HCll Fl is available in a 68-pin PLCC package only. The MC68HC11 Fl is the first 
non-multiplexed address/data bus version of the M68HCll family. In addition to the non­
multiplexed bus, this MCU includes 1 K bytes of on-chip RAM and intelligent chip selects 
for simple connecfion to external program memory without the need for any external logic 
chips. Other on-chip peripherals are similar to the MC68HCll E9. Figure 2-5 shows the pin 
assignments for the MC68HCll Fl in the 68-pin PLCC package. 

2.1,.6 MC68HC24 Port Replacement Unit 

The MC68HC24 is available in either a 44cpin PLCC package or a 40-pin DIP. Figure 2-6 
shows the pin assignments for the MC68HC24 in the 44-pin PLCC package and the 40-pin 
DIP package. 

2-6 

D1IPC1 10 60 P PE4/AN4 

D2IPC2 11 59 P PEO/ANO 

D3IPC3 12 

D4IPC4 13 

D5IPC5 14 

D6IPC6 15 

D7IPC7 16 

RESET 17 

XIRQ 18 

IRQ 19 

CSPROG/PG7 20 

CSGEN/PG6 21 

CSI01/PG5 22 

CSI02lPG4 23 

PG3 24 

PG2 [ 25 

PG1 [ 26 

u [) u [) 
Q Q Q -

g 8 g 

Figure 2-5. HC11F1 

M68HC11 REFERENCE MANUAL 

58 P PFO/AO 

57 P PF1/A1 

56 P PF2/A2 

55 P PF3/A3 

54 P PF4/A4 

53 P PF5/A5 

52 P PF6/A6 

51 P PF7/A7 

50 P PBO/A8 

49 P PB1/A9 
48 PB2IA10 

47 PB3/A11 

46 PB4/A12 

45 PB5/A13 

44 ] PB6/A14 

MOTOROLA 



MOTOROLA 

PCO 

PC1 

PC2 10 

PC3 11 

NIC 12 
PC4 13 
PC5 14 

PC6 15 
PC7 16 

VDD 17 

IfOTEST 

A15 
A14 

A13 
A12 5 

STRA 6 

PCO 
PC1 

PC2 

PC3 10 
PC4 11 

PC5 12 

PC6 13 

PC7 14 

VDD 15 
STRB 16 

PB7 17 

PB6 18 

PB5 19 

PB4 20 

40 

39 

38 

37 
36 

35 

34 
33 

32 

31 
30 

29 
28 

27 

26 
25 
24 

23 
22 

21 

CS 

39 RESET 
38 ADO 

AD1 

AD2 
35 AD3 

34 NIC 
AD4 
AD5 

31 AD6 
AD7 

Vss 

MODE 

AS 

E 
RFiJ 

RESET 

ADO 

AD1 

AD2 

AD3 
AD4 

AD5 

AD6 
AD7 

VSS 
IRQ 

PBO 

PB1 

PB2 
PB3 

Figure 2-S. MCS8HC24 Pin Assignments 

M68HC11 REFERENCE MANUAL 2-7 



II 

2.2 PIN DESCRIPTIONS 

This section provides a pin-by-pin description of the MCU. In general, a designer should 
consider all possible functions of each pin when designing the MCU into an application 
system. SECTION 7 PARALLEL INPUT/OUTPUT contains transistor-level schematics of the 
logic associated with each of the I/O pins. SECTION 3 CONFIGURATION AND MODES OF 
OPERATION discusses the pins that operate as a multiplexed address/data bus in expanded 
modes of operation as well as the functions of other pins related to mode selection and 
bus control. The reset and interrupt pins are presented again in SECTION 5 RESETS AND 
INTERRUPTS. Sections 8-12 discuss pins related to the on-chip peripherals presented in 
those sections. 

Figure 1-1 is a pin-function-oriented block diagram of the MC68HC11A8, which is a good 
reference for development and verification of application designs. 

2.2.1 Power-Supply Pins (VDD and VSS) 

Power is supplied to the MCU by using these pins. VDD is the positive power input, and 
VSS is ground. The MC68HC11A8 MCU uses a single power supply, but in some appli­
cations, there may also be optional power supplies for A/D reference and/or for battery 
backup of on-chip random-access memory (RAM). These additional power sources are 
optional, and the MCU, including RAM and A/D, can operate from a single 5-V (nominal) 
power supply. 

Although the MC68HC11A8 is a CMOS device, very fast signal transitions are present on 
many of the pins. Even when the MCU is operating at slow clock rates, short rise and fall 
times are present. Depending upon the loading on these fast signals, significant short­
duration current demands can be placed on the MCU power supply. Special care must be 
taken to provide good power-supply bypassing at the MCU. 

The faster edge times in the MC68HC11A8 generally place greater demands on bypassing 
than earlier NMOS MCU designs. A typical expanded-mode system should include a 1-j..lF 
capacitor and a separate O.01-j..lF capacitor. Both these capacitors should be as close (phys­
ically and electrically) as possible to the MC68HC11A8 and should have good high­
frequency characteristics (i.e., not old-technology dipped ceramic disc). The 1-j..lF capacitor 
primarily supplies charge for bus switching through a very low-impedance path (minimum­
length runners). Without this bypass, there could be very large voltage drops in the circuit­
board runners to the MCU due to the very high (although very short duration) current spike 
caused by several MCU pins simultaneously switching from one level to the other. The 
separate O.01-j..lF capacitor is included because the larger 1-j..lF capacitor is typically not as 
good at snubbing very high-frequency (low energy) noise. These are only general rec­
ommendations. Some lightly loaded single-chip systems may work quite well with a single 
O.1-j..lF bypass capacitor; whereas, more heavily loaded expanded-mode systems may 
require more elaborate bypassing measures. 

It is easier and less expensive to approach power-supply layout and bypassing as a pre­
ventive measure from the beginning of a design than to locate and correct a noise problem 
in a marginal design. Problems related to inadequate power-supply layout and bypassing 

2-8 M68HC11 REFERENCE MANUAL MOTOROLA 



are very difficult to locate and correct, but, if reasonable care is taken from the start of a 
design, noise should not arise as a problem. 

2.2.2 Mode Select Pins (MODBIVSTBY and MODA/UR) 

The mode B/standby RAM supply (MODBIVSTBY) pin functions as both a mode select input 
pin and a standby power-supply pin. The mode A/load instruction register (MODA/UR) pin 
is used to select the MCU operating mode while the MCU is in reset, and it operates as a 
diagnostic output signal while the MCU is executing instructions. 

The hardware mode select mechanism starts with the logic levels on the MODA and MODB 
pins while the MCU is in the reset state. The logic levels on the MODA and MODB pins 
are fed into the MCU via a clocked pipeline path. The levels captured are those that were 
present part of a clock cycle before the RESET pin rose, which assures there will be a zero 
hold-time requirement on the mode select pins relative to the rising edge at the RESET 
pin. The captured levels determine the logic state of the special mode (SMOD) and mode 
A select (MDA) control bits in the highest priority interrupt (HPRIO) register. These two 
control bits actually control the logic circuits involved in hardware mode selection. Mode 
A selects between single-chip modes and expanded modes; mode B selects between the 
normal variation and the special variation of the chosen operating mode. Bootstrap mode 
is the special variation of single-chip mode, and special test is the special variation of 
expanded mode. Table 2-1 summarizes the operation of the mode pins and mode 
control bits. 

Table 2-1. Hardware Mode Select Summary 

Inputs Control Bits in HPRIO (Latched at Reset) 

MODB MODA 
Mode Description 

RBOOT SMOD MDA IRV 

1 0 Normal Single Chip 0 0 0 0 

1. 1 Normal Expanded 0 0 1 0 

0 0 Special Bootstrap 1 1 0 1 

0 1 Special Test 0 1 1 1 

After reset is released, the mode select pins no longer influence the MCU operating mode. 
The MODA pin serves the alternate function of load instr.uction register (UR) when the 
MCU is not in reset. The open-drain active-low UR output pin drives low during the first 
E cycle of each instruction. The MODB pin serves the alternate function of a standby power 
supply (VSTBY) to maintain RAM contents when VDD is not present. The power-saving 
mode, STOP, is an alternate way to save RAM contents, which does not require a separate 
standby power source. 

The UR function is intended for monitoring on a logic analyzer during debug of a system. 
Since this status indicator shows where each instruction begins, programs can be followed 
easily. The mode A select levels and the UR status levels were selected to prevent inter­
ference between the shared functions of the pin. In single-chip applications, this pin is 
simply connected to VSS. Since the UR output is open-drain, there is no conflict between 

MOTOROLA M68HC11 REFERENCE MANUAL 2-9 



II 

the direct VSS connection and the LlR signal that drives the pin low during the first E cycle 
of each instruction. There is no practical reason to monitor LlR during single-chip modes 
because there is no visibility to internal data and address buses. In expanded-mode sys­
tems, the MODA/LIR pin is normally pulled up to VDD by a 4.7 kH resistor. During reset, 
the pullup resistor instructs the MODA pin to select expanded modes. During program 
execution, the pin is driven low during the first cycle of each instruction by the DR signal 
and is pulled up between LlR signals by the external 4.7 kH pullup. 

In expanded-mode systems where it is important to minimize power-supply current, logic 
could be used to drive the MODA/LIR pin rather than just using a simple pullup (see Figure 
2-7). During reset, the MODA pin would be driven high to select expanded mode. After 
reset, the LlR pin would be driven low by logic. The logic should not be operating against 
a pullup, but rather it should be a logic-gate-type output with some series resistance to 
protect against the unlikely event of a conflict between an active-low LlR signal and an 
active-high logic-gate output signal. Such a conflict could only occur briefly at the falling 
edge of reset. Since LlR is active for about one out of every three cycles during normal 
execution (average instructions take about three cycles), IDD could be reduced by about 
350 IJ.A (5 V -';- 4.7 kfl x 33% duty cycle). 

74HC04 

RESET -----I X> __ 'v4.7'\rK_~~ TOMODAlLIR 
OFM68HC11 

Figure 2-7. Reduced 100 MOOA/LIR Connections 

The VSTBY function is accomplished by a transistor switch that connects either VSTBY or 
VDD to the RAM and reset logic, depending upon the relative levels of VSTBY and VDD. 
The switch connects VDD unless VSTBY is more than a threshold higher than VDD. A 
threshold is approximately a diode drop (0.7 V) but varies from lot to lot due to processing 
variations. During normal operation of the MCU, VDD is supplying power to the RAM. In 
a standby situation, VSTBY should be maintained at a valid level, and RESET should be 
activated (pulled low) when VDD drops below legal limits. RESET should always be held 
low whenever VDD is below its operating limit. If the MCU is to be operated in a special 
mode (MODB low before applying reset) and the MODBIVSTBY pin is being used to back 
up the RAM, the MODBIVSTBY pin should not be driven low unless VDD is at (has returned 
to) a legal level. Some logic may be required in systems that use MODBIVSTBY as a standby 
supply and wish to use one of the special modes of operation. In most applications, the 
MODB pin would be connected to VDD through a 4.7 kH pullup resistor for normal modes 
or directly to ground for special modes. 

There are two ways to maintain the contents of on-chip RAM with minimal power con­
sumption (as in a battery-based application). The preferred method uses the STOP mode 
of operation, and the second method uses the MODBIVSTBY pin (see Figure 2-8). Each of 
these methods has advantages. The STOP method is preferred because it is much simpler 
than the separate power-supply method in terms of hardware costs and complexity. The 
STOP method saves power by stopping all MCU clocks, which reduces the VDD current to 
a few microamps. No external logic is needed, and the contents of internal registers are 
maintained in addition to the contents of internal RAM. The MODBIVSTBY pin method 

2-10 M68HC11 REFERENCE MANUAL MOTOROLA 



would be used in cases where there is a significant amount of external circuitry operating 
from VDD so that the added complexity of two supplies and added logic is justified by the 
power savings. 

I 

4.7K 
VOUT I--'V'v---l~ TO MODBNSTBY 

OF M68HC11 

Figure 2-8. RAM Standby MODBIVSTBY Connections 

2.2.3 Crystal Oscillator and Clock Pins (EXTAL, XTAL, and E) 

The oscillator pins can be used with an external crystal network or an externally generated 
CMOS-compatible clock source. The frequency applied to these pins is four times higher 
than the desired bus frequency (E-clock rate). The E clock is the bus frequency clock output, 
which is used as a basic timing reference signal. When the E clock ,is low (address portion 
of a bus cycle), an internal process is occurring; when E is high, data is being addressed. 
The E clock is free running at one-fourth the crystal frequency as long as the oscillator is 
active (STOP stops all clocks). 

The oscillator in the MC68HC11A8 consists of a large two-input NAND gate. One of the 
inputs to this gate is driven by an internal signal that disables the oscillator when the MCU 
is in the STOP mode. The other input is the EXTAL input pin of the MCU. The output of 
this NAND gate is the XTAL output pin of the MCU. 

The XTAL pin is normally left unterminated when using an external CMOS-compatible 
clock input to the EXTAL pin. However, a 10 kfl-100 kfl load resistor to ground may be 
used to reduce generated radio frequency interference (RFI) noise emission. The XTAL 
output is normally intended to drive only a crystal, but XTAL can be used as a 4xclock 
output if special care is taken to avoid undesirable loading. The XTAL output may be 
buffered with a high-impedance buffer such as the 74HC04, or it may be used to drive the 
EXTAL input of another M68HC11 MCU. In all cases, the circuit-board layout around the 
oscillator pins is critical. Load capacitances specified in the data sheets and technical 
summary include all stray layout capacitances. Thus, the physical capacitors connected to 
these pins should always be less than the specified load capacitances by the estimated 
interconnection capacitances. 

Figures 2-9 and 2-10 show the internal and external components that form the crystal 
oscillator, called a Pierce oscillator (also known as a parallel resonant crystal oscillator). 

MOTOROLA M68HC11 REFERENCE MANUAL 2-11 



II 

Figure 2-9 shows the connections for high-frequency crystals (greater than 1 MHz), and 
Figure 2-10 shows connections for low-frequency operation (less than 1 MHz). The resistor, 
Rf, provides a direct current bias to the input so the NAND operates in its linear region. In 
low-frequency designs, Rs and C2 provide a phase shift. Rs also limits the power into the 
crystal, which is important for many small crystals because they are designed for very low 
drive levels (typically 1-/-lW maximum). In high-frequency applications (see Figure 2-9), the 
output impedance of the NAND driver, combined with the lower impedance of C1 and C2, 
provides the same effect as the Rs in low-frequency designs. Higher frequency AT-cut 
crystals are designed for much higher drive levels. 

M6SHCll 

EXTAL XTAL 

R f 

XTAL 

Cl C2 

l l - -- -
Figure 2-9. High-Frequency Crystal Connections 

M68HCll 

EXTAL XTAL 

R f 

XTAL 

I 
Cl C2 

l l 
Figure 2-10. Low-Frequency Crystal Connections 

2-12 M68HC11 REFERENCE MANUAL MOTOROLA 



Exact values for the external components are a function of wafer processing parameters, 
package capacitance, printed circuit board (PCB) capacitance and inductance, socket 
capacitance, operating voltage, crystal technology, and frequency. Typical values are 
as follows: 

Rf = 1 Mil-20 Mil 

C1 = 5 pF-25 pF 
C2 = 5 pF-25 pF 

Higher values are sensitive to humidity; lower values reduce 
gain and could prevent startup. 
Value is usually fixed. 
Value may be varied to trim frequency. 

A tune-up procedure for experimentally determining Rs will be discussed at the conclusion 
of this subsection. Since circuit and layout capacitances effectively add to the values of C1 
and C2, the physical capacitances are usually smaller than the intended capacitances. 

In most high-frequency applications, the values of C1 and C2 are equal. In low-frequency 
designs, it is often desirable to make C1 smaller than C2, which provides a higher voltage 
at the EXTAL input due to an impedance transformation. The wider voltage swing at this 
input will result in lower power-supply current. 

As in all crystal oscillator designs, all leads should be kept short as possible. It is also good 
practice to route VSS paths as shown in Figure 2-11. These paths isolate the oscillator 
input from the output and the oscillator from adjacent circuitry, only adding capacitance 
in parallel with C1 and C2. Potentially noisy lines should be kept as far as possible from 
the oscillator components. Ground loops should be avoided around oscillator components 
(note the unterminated VSS paths ending under C1 and C2 in Figure 2-11) . 

MOTOROLA 

•• •• 
• • M~~11 •• 

•• •• •• • • ••••••••• ••••••• 
Figure 2-11. Crystal Layout Example 

M68HC11 REFERENCE MANUAL 2-13 



II 

Usually, the operation of the oscillator cannot be observed with an oscilloscope connected 
to one of the oscillator pins. The oscilloscope adds 3-30pF and 1-10 MH to VSS, which 
will usually affect oscillator operation. When the oscilloscope is connected to the EXTAL 
input, the 10 Mfl to VSS (oscilloscope input) forms a resistive divider with Rf and often 
disables the oscillator by biasing the circuit out of the linear region of the EXTAL input. 
This problem can sometimes be overcome by capacitively coupling the oscilloscope with 
a very small capacitor (1-5 pF) between the oscilloscope probe and the oscillator pin. It is 
usually better to observe the E-clock output from the MCU since this does not alter the 
operation of the oscillator. 

In low-frequency designs, it is often possible to observe the XTAL node with an oscilloscope 
because the high-impedance nodes of the oscillator are isolated from XTAL by Rs. Observe 
100 without the oscilloscope connected and again with the oscilloscope c9nnected. If the 
100 is unchanged, it is usually safe to assume the oscillator was unaffected. 

Low-frequency crystal circuits tend to be very high impedance. Thus, the PCB must be 
clean, dry, and free of conductive material such as solder rosin and excessive moisture 
from high humidity. If problems occur, the value of Rf can be reduced so the contaminant 
impedance is less significant in comparison. Of course, it is still best to eliminate the 
contaminants. 

Usually, startup time is inversely proportional to the frequency; thus, low-frequency os­
cillators start slower than high-frequency oscillators. There are many exceptions to this 
rule because there are many variables affecting startup time. Observation of a few circuits 
using the MC68HC11A8 with an 8-MHz crystal reveals startup from STOP takes approxi­
mately 2 ms, and startup from powerup occurs within a few milliseconds of when VOO 
reaches approximately 1 V. Powerup performance varies greatly since power-source turnon 
characteristics vary greatly. Since the MC68HC11A8 is a fully static design, the oscillator 
is not required to be running full speed before the processor starts executing instructions 
(most applications do not require a stable oscillator within the first few milliseconds after 
powerup). If the oscillator is not running at full speed, instructions will take longer to 
execute, but no unpredictable behavior will result as it would in an NMOS processor. An 
oscillator in the 32-kHz range could require hundreds of milliseconds or even a few seconds 
to start and stabilize. 

NOTE 

The following tune-up procedure is only meaningful for crystal frequencies below 
1 MHz. In higher frequency applications, because Rs is normally 0 fl, this pro­
cedure is not needed. 

The value of Rs can be determined experimentally by using the final PCB and an MCU of 
the exact type that will be used in the final application. The MCU need not have the final 
mask program because the MCU will be held in reset throughout the experiment. Because 
of the number of variables involved, use components with the exact properties of those 
that will be used in production. For example, do not use a ceramic-packaged MCU prototype 
for the experiment when a plastic-packaged MCU will be used in production. An emulator 
version of the part will also have slightly different electrical properties than the masked 
ROM version of the same part. 

2-14 M68HC11 REFERENCE MANUAL MOTOROLA 



To detetmine the optimum value for Rs, observe the operating current (lDD) of the MCU 
as a function of Rs. The MCU should be held in reset throughout this procedure because 
operating current variations during run modes are much greater than the current variations 
due to varying Rs. Normally, a dip in current will occur. This dip is not sharp as in many 
LC circuits but is instead very broad. As the shape of this curve suggests, the exact value 
of Rs is not critical. 

Finally, verify that the maximum-operating supply voltage does not overdrive the crystal. 
Observe the output frequency as a function of VDD at the buffered E-clock output. Under 
proper operating conditions, the frequency should increase a few parts-per-million as 
supply voltage increases. If the crystal is overdriven, an increase in supply voltage will 
cause a decrease in frequency, or the frequency will become unstable. If frequency prob­
lems arise, supply voltage must be decreased, or the values of Rs, C1, and C2 should be 
increased to r~duce the crystal drive. 

2.2.4 Crystal Oscillator Application Information 

Some crystal oscillator application information is presented in the following paragraphs. 

2.2.4.1 CRYSTALS FOR PARALLEL RESONANCE. Parallel resonance refers to a Pierce 
oscillator that has the crystal in parallel with an inverter. Almost all (if not all) CMOS MCUs 
use this type oscillator. AT-cut crystals are available as standard devices for both series 
resonant circuits and Pierce oscillators. The load capacitance has to be specified for the 
Pierce version. The series resonant versions do not require this specification and are more 
likely to be listed as a standard product. The type circuit affects the oscillating frequency 
of the crystal. 

Any 4- to 8-MHz AT-cut crystal will normally meet the requirements of an M68HC11. How­
ever, for a very accurate oscillator frequency, use the Pierce version of the crystal with C1 
and C2 values to match the specified load capacitance value for the crystal. The load 
capacitance is approximately equal to the series combination of C1 and C2. 

2.2.4.2 USING CRYSTAL OSCILLATOR OUTPUTS. The crystal oscillator is actually an RF 
application. Connecting the crystal pins to other circuitry is likely to interfere with proper 
operation of the oscillator. Modern CMOS inputs are very high impedance and relatively 
low capacitance; thus, one of these inputs can be connected to the oscillator without 
disturbing the oscillator. The data sheet shows examples of ways the crystal oscillator 
could be used to drive other circuits for crystal frequencies between 4 and 8 MHz. 

2.2.4.3 USING EXTERNAL OSCILLATOR. An externally built Pierce oscillator will operate 
like a crystal connected to the M68HC11. Use a single inverter and connect the crystal 
feedback resistor and load capacitors as if the external inverter input were the EXTAL pin 
and the inverter output were the XTAL pin. Use a 74HCU04 for this inverter. This device 
is an unbuffered HCMOS hex inverter. Avoid Schmitt-trigger devices because the oscillator 
may fail to start. Buffer the output of the external Pierce oscillator to drive additional logic. 

MOTOROLA M68HC11 REFERENCE MANUAL 2-15 



2.2.4.4 AT-STRIP VERSUS AT-CUT CRYSTALS. The AT-strip is a new-technology low­
power crystal. Connecting one of these crystals to the M68HC11 may cause problems due 
to the NAND gate in the MCU overdriving the crystal. Use an AT-cut crystal with the 
M68HC11 to avoid this problem. 

II 2.2.5 Reset Pin (RESET) 

This active-low, bidirectional control signal is used as an input to initialize the MC68HC11A8 
to a known startup state and as an open-drain output to indicate that an internal failure 
has been detected in either the clock monitor or computer operating properly (COP) watch­
dog circuit. This RESET signal is significantly different from the RESET signal used on 
earlier MCUs. More detailed information about this pin can be found in SECTION 5 RESETS 
AND INTERRUPTS. 

The reset circuitry is specifically designed to work with lower levels of VOO than other 
MCU circuitry. Thus, RESET can be used to prevent undesirable performance as VOO power 
is applied or decays, which is important for applications in which the contents of on-chip 
RAM must be maintained in the absence of VOO. In this situation, the RAM and reset input 
logic in the MCU would be powered from a standby power source connected to the MOOS/ 
VSTSY pin whenever VOO is too low to support proper MCU operation. Secondly, RESET 
must be controlled when VOO is below legal operating limits to prevent unintentional 
corruption of EEPROM data. Even if an application is not using the 512-byte EEPROM, the 
CONFIG register is still an EEPROM byte and must be protected from corruption. 

Virtually all MC68HC11A8 systems should include automatic control of RESET to drive it 
low whenever VOO is below legal limits. A simple, inexpensive, low voltage inhibit (LVI) 
device such as the MC34064 or MC34164 can be used. The MC34064 is available in TO-92 
or SOT-8 plastic packages and provides an open-drain output to directly drive the RESET 
pin of the MC68HC11A8. This device is connected to VOO, VSS, and the RESET pin of the 
MCU. A pullup resistor from RESET to VOO is the only other component required for the 
reset circuit in most applications. Figure 2-12 shows a typical reset circuit. 

r-----------------------------------------, , , 
: VDD : , , , , , , , , , , 
: 4.7K : , , , , , , , , , , , , 
: 4.7K IN : , , 4.7K 

: RESET : 

i MANUAL 411lF MC~~~4 i 
: RESET : , , , , , , , , , , 

RESET I---'_~~ TO RESET 
MC34064 OF M68HC11 

GND 

: - L...-t-' --------' 
~-----------------------------------------~ 

OPTIONAL POR DELAY AND MANUAL RESET SWITCH 

Figure 2-12. Reset Circuit Example 

2-16 M68HC11 REFERENCE MANUAL MOTOROLA 



2.2.6 Interrupt Pins (XIRQ, IRQ) 

The XIRQ pin provides a means for requesting nonmaskable interrupts after reset initial-
ization. During reset, the X bit in the condition code register (CCR) is set, and any interrupts • 
are masked until MCU software enables them. Since the XIRQ input is level sensitive, it 
cim be connected to a mUltiple-source wired-OR network with an external pullup resistor. 
XIRQ is often used as a power loss detect interrupt. 

The IRQ input provides a means for requesting asynchronous interrupts to the MC68HC11A8. 
IRQ is program selectable (OPTION register), having a choice of either level-sensitive or 
falling-edge-sensitive triggering. After reset, IRQ is configured for level-sensitive operation 
by default. 

Whenever. XIRQ or IRQ are used with multiple interrupt sources (IRQ must be configured 
for level-sensitive operation if there is more than one source of IRQ interrupt), each source 
must drive the interrupt input with an open-drain-type driver to avoid contention between 
outputs. There should be a single pullup resistor near the MCU interrupt input pin (typically 
4.7 kfl). There must also be an interlock mechanism at each interrupt source so that the 
source holds the interrupt line low until the MCU recognizes and acknowledges the interrupt 
request. If one or more other interrupt sources are still pending after the MCU services a 
request, the interrupt line will still be low; thus, the MCU will be interrupted again as soon 
as the interrupt mask bit in the MCU becomes clear (normally upon return from an interrupt). 

The IRQ pin is used during factory testing as a bulk VPP programming voltage source, 
which allows for parallel programming of as many as half of the bytes in the EEPROM in 
a single programming operation. Since the on-chip charge pump does not have sufficient 
drive capability to simultaneously program this many EEPROM locations, the external 
20-V power supply is needed to supplement the on-chip charge pump. The switchover 
mechanism, which decides whether EEPROM is powered by the internal charge pump or 
the external voltage source, is similar to the VSTBY logic at the MODBIVSTBY pin. When 
the external voltage is more than the charge-pump voltage, the switch connects the external 
high-voltage source to the internal VPP line. The added circuitry at this pin has no effect 
on normal IRQ functions, but it does have some effect on the way the pin reacts to illegal 
levels. 

In addition to XIRQ and IRQ, five other pins on the MC68HC11A8 can also be used to 
generate interrupt requests to the MCU. These pins are associated with other on-chip 
peripherals such as the timer or handshake I/O systems. The pins are PAO/IC3, PA1/IC2, 
PA2/IC1, PA7/PAI/OC1, and AS/STRA. The input-capture pins can be configured to detect 
rising edges, falling edges, or any edge. The PAl and STRA inputs can be configured to 
detect rising edges orfalling edges. The STRA input is only available ifthe MCU is operating 
in a single-chip mode because the pin is used as the address strobe (AS) output when the 
MCU is in expanded modes. These five pins have advantages over the IRQ and XIRQ pins 
in that each of these five interrupts is independently maskable with a local control bit as 
well as the global I bit in the CCR. Each of these five interrupts also has a readable status 
indication, and a pending request can be cleared without being serviced. 

MOTOROLA M68HC11 REFERENCE MANUAL 2-17 



II 

2.2.7 AID Reference and Port E Pins (VREFL, VREFH, PE7-PEO) 

The VREFH and VREFL pins provide the reference voltages for the AID converter circuitry. 
Since the AID converter is an all-capacitive charge-redistribution converter, there is essen­
tially no dc current associated with these pins. Very small dynamic currents are caused by 
charge-redistribution switching during conversions (see SECTION 12 ANALOG-TO-DIGITAL 
CONVERTER SYSTEM). These pins are normally connected to VDD and VSS through a 
low-pass filter network (see Figure 2-13) to isolate noise on the logic power supply from 
the relatively sensitive analog measurements. A low-noise precision reference supply can 
alternatively be used. There should be at least 2.5 V between VREFL and VREFH for full 
AID accuracy. Lower values will result in more inaccuracy, but the converter will continue 
to operate. The AID system is tested at 4.5 and 5.5 V across the reference supply pins. 

VDD 

~TOVREFH 1, "to OFM68HC11 

1 flF T 'r' _ TOV
REFL r-- OF M68HC11 

Figure 2-13. Low-Pass Filter for AID Reference Pins 

There is an inherent diode from VREFL to VSS. If VREFL goes below VSS by more than 
this diode drop, any conversion in progress may be corrupted, but no permanent physical 
damagewill result until significant current is drawn. The only documented cases of damage 
have been caused by blatent misapplication, such as connecting -12 V directly to the 
VREFL pin. Since no P-channel devices are associated with the VREFH pin, there is no 
diode clamping to VDD. The gates of analog switches associated with the AID reference 
and input pins are controlled by signals that switch between VSS and about 7 V. This 
higher-than-VDD supply is the output of a charge pump (separate from the charge pump 
used for programming on-chip EEPROM). There is no special requirement to keep VREFH 
below VDD. In fact, the converter will continue to produce good results up to approximately 
6 Von VREFH. 

The port E input pins are used for general-purpose inputs andlor AID analog inputs. These 
inputs are designed so that the digital input buffers are disabled at all times except for 
part of a cycle during an actual read of port E; thus, analog levels near the switch point 
of the digital input buffer do not result in high power-supply current drains as in a normal 
CMOS input buffer. The buffers are enabled by an extra N-channel device in series with 
the N-channel device in the input inverter. During a digital read of port E, these extra 
N-channel devices are turned on for part of the read cycle. Because of this special circuitry, 
it is not necessary to terminate unused port E pins. 

The analog and digital functions of port E do not normally interfere with each other; thus, 
any combination of pins can be used as digital inputs while the remaining port E pins are 
used for analog inputs. Turning on the digital buffer during an analog sample may cause 

2-18 M68HC11 REFERENCE MANUAL MOTOROLA 



small disturbances on the input line, which may cause small errors in the sampled analog 
level. The disturbances would be caused by small gate-to-drain and gate-to-source capac­
itances and would have to occur very close to the trailing edge of a sample period to have 
any noticeable effect. The disturbances are so small (if they exist) that they probably would 
not cause any measurable inaccuracy. Since it is so easy to arrange software to avoid this 
condition, it is probably easier to avoid potential disturbances. 

2.2.8 Timer Port A Pins 

Port A includes three input-only pins, four output-only pins, and one pin that can be 
configured to operate as an input or as an output. The input-only pins (PAO/IC3, PA1/1C2, 
and PA2/1C1) also serve as edge-sensitive timer input-capture pins. The four output-only 
pins (PA3/0C5/0C1, PA4/0C4/0C1, PA5/0C3/0C1, and PA6/0C2/0C1) also serve as main 
timer output-compare pins. Whenever an output-compare function is enabled, that pin 
cannot be used for general-purpose output. These four pins can be controlled by output 
compare 1 (OC1) and/or another output compare. The PA7IPAI/OC1 pin can be used as a 
general-purpose 1/0 pin, as a pulse-accumulator input, or as an OC1 output pin. 

2.2.9 Serial Port D Pins 

Port D includes six, general-purpose, bidirectional 1/0 pins that can be individually confi­
gured as inputs or as outputs. When the serial communications interface (SCI) receiver is 
enabled, the PDO/RxD pin becomes an input dedicated to the RxD function. When the SCI 
transmitter is enabled, the PD1/TxD pin becomes an output dedicated to the TxD function. 
When the serial peripheral interface (SPI) system is enabled, the PD2/MISO, PD3/MOSI, 
PD4/SCK, and PD5/SS pins become dedicated to SPI functions. Even while the SPI system 
is enabled, the PD5/SS pin can be used as a general-purpose output by setting the cor­
responding DDRD5 bit, provided the SPI system is configured for master mode of operation. 

The six port D pins can be configured (port D wired-OR mode (DWOM) control bit in SPI 
control register (SPCR)) for wired-OR operation. This option disables the P-channel device 
in the output drivers so port D outputs can actively drive low but not high, allowing two 
or more such outputs to be connected without contention. Since the P-channel device is 
physically present (just turned off), there is an inherent diode from the output pin to VDD 
so the pin cannot be pulled to a level higher than VDD (unlike a transistor-transistor logic 
(TTL) open-collector output). An external pullup resistor is required on all port D outputs 
when the wired-OR option is used. The firmware bootloader program configures port D 
for wire-OR operation when the MCU is reset in bootstrap mode. If the application is using 
bootstrap mode, either turn off the wired-OR option after downloading or supply external 
pullup resistors on port D output pins. 

2.2.10 Ports Band C, STRA, and STRB Pins 

These 18 pins are used for general-purpose 1/0 while the MCU is operating in single-chip 
mode. When an expanded mode is used, these 18 pins become a multiplexed addressl 

MOTOROLA M68HC11 REFERENCE MANUAL 2-19 



II 

data bus with an AS and a readlwrite (RIW) control line. Table 2-2 summarizes the functions 
of these pins related to the MCU operating mode. 

In single-chip modes, no external addressldata bus is needed; thus, these 18 pins are 
available for general-purpose I/O. Port B is an 8-bit output-only port; port C is an 8-bit 
bidirectional liD port. Any combination of bits in port C can be configured as outputs; the 
remaining bits are used as inputs. Several automated handshake liD functions are asso­
ciated with ports Band C. These strobe and handshake functions use the STRA and STRB 
pins as strobes and handshake controls. The STRA pin is an edge-detecting input that 
causes port C data to be latched into a special internal latch register. The active edge for 
STRA is software selectable, and any port C pin can be used for general-purpose static 
liD while other pins are being used for latched inputs. If strobe and handshake functions 
are not being used, STRA can still be used as an edge-detecting interrupt input but cannot 
be used as a general-purpose static input. The STRB pin is an output strobe associated 
with the handshake liD functions of ports Band C. If handshake functions are not being 
used, STRB can still be used as a general-purpose output, though it is more difficult to 
control than a normal port output pin. For a detailed discussion of the handshake liD 
functions of ports Band C, refer to SECTION 7 PARALLEL INPUT/OUTPUT. 

When the MCU is operating in expanded modes, these 18 pins are used for an addressl 
data bus to allow the central processing unit (CPU) to access a 64K-byte memory space. 
To save pins, the low-order address and 8-bit data are time multiplexed on eight pins. 
During the first half of each bus cycle, address output signals, A7-AO, are present on these 
eight pins; during the second half of each bus cycle, these eight pins are used as a bidi­
rectional data bus. The AS signal is used as an active-high latch enable to an external 
address latch. Address information is allowed through this external transparent latch while 
AS is high, and the stable address information is latched when AS is low. The E clock is 
used to enable external devices to drive data into the CPU during the second half of a read 

Table 2-2. Ports Band C, STRA, and STRB Pins 

Port Bit Single-Chip and Bootstrap Mode 
Expanded-Multiplexed and 

Special Test Mode 

B 0 PBO Output A8 Address Output 
B 1 PB1 Output A9 Address Output 
B 2 PB2 Output A10 Address Output 
B 3 PB3 Output A11 Add ress Output 
B 4 PB4 Output A12 Address Output 
B 5 PB5 Output A13 Address Output 
B 6 PB6 Output A14 Address Output 
B 7 PB7 Output A15 Add ress Output 

C 0 PCO Input/Output ADO Address/Data Multiplexed 
C 1 PC1 Input/Output AD1 Address/Data Multiplexed 
C 2 PC2 Input/Output AD2 AddresslData Multiplexed 
C 3 PC3 Input/Output AD3 AddresslData Multiplexed 
C 4 PC4 Input/Output AD4 AddresslData Multiplexed 
C 5 PC5 Input/Output AD5 AddresslData Multiplexed 
C 6 PC6 Input/Output AD6 Address/Data Multiplexed 
C 7 PC7 Input/Output AD7 Address/Data Multiplexed 

STRA Input Strobe (Edge In) AS Address Strobe (Out) 

STRB Output Strobe R/W Read/Write Select 

2-20 M68HC11 REFERENCE MANUAL MOTOROLA 



bus cycle (E clock high). The R/W signal indicates the direction of data - high for read 
cycles, low for write cycles. 

NOTE 

The AS/STRA pin is an output in expanded modes and an input in single-chip 
modes. Many users forget to terminate this pin as an unused input in single-chip 
modes. 

2.3 TERMINATION OF UNUSED PINS 

Because the MC68HC11A8 is a CMOS device, unused input pins must be terminated to 
assure proper operation and reliability. Figure 2-14 shows a CMOS inverter, which is rep­
resentative of circuitry found on CMOS input pins. When the input is logic zero, the 
P-channel transistor is on (conducts), and the N-channel transistor is off. When the input 
is logic one, the P-channel transistor is off, and the N-channel transistor is on. These 
transistors are actually linear devices with relatively broad switch points. As the input 
passes through midsupply, there is a region where both transistors conductto some degree. 
Under normal circumstances, the input does not remain in this linear region for very long. 
Once the inverter has completely switched so that only one of the two transitors is con­
ducting, there is virtually no current flow. This principle is why the overall current drain 
of a CMOS device is directly proportional to the rate of switching. Essentially all current 
is due to gates that are in the linear region during transitions and for charging and dis­
charging internal capacitances. Because the input is very high impedance, if it is not con­
nected, the input can oscillate or float to a midsupply level. Either of these conditions can 
result in added power-supply current. The oscillation case can result in coupling of noise 
to the power supply. In older CMOS designs, the large currents caused by an input that 
floated to midsupply could even induce CMOS latchup, which could destroy the integrated 
circuit. Current design techniques on the MC68HC11A8 have made latchup due to a floating 
input unlikely, but it is still important to terminate unused inputs to avoid oscillation, noise, 
and added supply current. 

Some inputs on the MCU (RESET, EXTAL, MODA, and MODB) cannot be left unterminated 
in any system. 

The port E input pins have an extra N-channel device between VSS and the bottom of the 
N-channel device of the input inverter. Since this extra device is only enabled for half a 

Figure 2-14. CMOS Inverter 

MOTOROLA M68HC11 REFERENCE MANUAL 2-21 



II 

cycle during a digital read of port E, it is less important to terminate unused port E pins 
than other unused inputs. In cases of very slow bus frequencies, even half a cycle might 
be a significant length of time, and unused port E pins could be terminated. In some battery­
powered systems where port E is read often, it would be desirable to eliminate the potential 
added supply current. 

Since the VREFL and VREFH pins do not connect to the inputs of any CMOS gates within 
the MC68HC11A8, these pins do not need terminating if they are not used. Although 
termination is not required, it may reduce the risk of damage due to high-voltage static 
electricity. 

Other than AID pins, there are two basic types of input pins an the MC68HC11A8 - an 
input-only pin and an input/output pin. The best method to terminate unused inputs is 
with a pullup or pulldown resistor for each unused pin. Input-only pins can be connected 
to each other and then to a common termination point. Although this method is less 
expensive and takes less space than individual pullups, it is much harder to separate and 
use one of these pins if it is needed later. Although input-only pins can be connected 
directly to VDD or VSS, it is better not to because this connection makes it difficult to 
change the level at that input. If a pullup or pulldown resistor is used instead, a signal can 
easily be connected to the input later. The preferred method of terminating pins that can 
be configured for input or output is with individual pullup or pulldown resitors for each 
unused pin. Some users leave these pins unconnected and reconfigure them as outputs 
during initialization. There is still a brief period during reset and initialization where these 
pins are unterminated inputs. There is also a small risk that a defective system might fail 
to reconfigure these pins as outputs. A pin capable of being configured as an output should 
never be connected to another such pin or directly to either power-supply rail. If the pin 
ever became an output, there is a possibility of high current drain due to an output conflict. 

Part of the verification procedure for the design of every MCU system should be a pin-by­
pin review of what is connected to every pin on the MCU to eliminate potential problems. 

2.4 AVOIDANCE OF PIN DAMAGE 

Any integrated circuit can be damaged or destroyed by exposure to illegal voltages or 
conditions. By understanding the failure mechanisms, a designer can protect against dam­
aging conditions. In some cases, a product can even be designed to tolerate common end­
user errors by designing protective interface circuits. 

The data sheets for integrated circuits state conservative limits and conditions that will 
definitely protect the integrated circuit. The consequences of violating the specified limits 
are not usually discussed because there are too many variables affecting the results. In 
some cases, the MCU can tolerate significantly worse conditions than the stated limits, 
although it is almost impossible to quantify or guarantee this better performance for all 
parts and conditions. 

There are several basic types of pin interface circuits on the MC68HC11A8. The exact devices 
connected to the pin influence what happens as the voltage level at the pin is driven above 

2-22 M68HC11 REFERENCE MANUAL MOTOROLA 



Voo or below VSS. Many other factors, including ambient temperature and lot-to-Iot proc­
ess variations, also influence the reaction ofthe MCU to illegal voltage levels and conditions. 
The following discussion explains the conditions leading to actual damage and what that 
damage might be. This information should be used as a guideline to help engineers avoid 
conditions leading to possible MCU damage. 

Connected to the substrate of the silicon die, the VSS pin is the reference point from which 
all other voltages are measured. The VOO pin is the main positive power supply for the 
MCU. Oata sheet information is tested and guaranteed for VOO equal to 5 V ± 10 percent, 

. but, in limited temperature range applications, the MCU can operate over a wider range 
ofVOO (some timing and drive capability specifications may not be met). VOO and operating 
temperature have a significant effect on the speed of CMOS logic. As VOO is reduced, the 
maximum crystal frequency must also be reduced. For VOO equal 5 V ± 10 percent, the 
MC68HC11A8 can operate with a maximum bus frequency of 2.1 MHz; when VOO is 3 V, 
the maximum bus frequency is about 1 MHz. At low temperatures, speed increases and 
power-supply current decreases. The MCU can typically operate with VOO levels up to 
7 V without damaging the MCU, but timing and drive levels will differ from the specified 
limits. Also, there may be some adverse effects on gate oxides from long-term exposure 
to VOO greater than or equal to 7 V. A battery-based application could be exposed to VOO 
greater than 5 V when batteries are new and still be expected to work properly as the 
battery voltage slowly decays to some level well below 5 V. Although the MC68HC11A8 
could be used in such an application, published specifications do not cover this range of 
VOO· 

2.4.1 Zap and Latchup 

Zap and latchup are terms familiar to failure analysis engineers that work on CMOS in­
tegrated circuits. Zap refers to damage caused by very high-voltage static-electricity ex­
posure. Static-electricity (zap) damage usually appears as breakdown of the relatively thin 
oxide layers that causes leakage or shorts. Often secondary damage occurs after an initial 
zap failure causes a short. 

Latchup refers to a usually catastrophic condition caused by turning on an unintentional, 
bipolar, silicon-controlled rectifier (SCR). A latchup SCR is formed by Nand P regions in 
the layout of the integrated circuit which act as the collector, base, and emitters of un­
intentional, parasitic transistors. Bulk resistance of silicon in the wells and substrate act as 
resistors in the SCR circuit. Application of voltages above VOO or below VSS, in conjunction 
with enough current to develop voltage drops across the parasitic resistors in the unin­
tentional SCR circuit, can cause the SCR to turn on. Once this SCR is turned on, it can 
normally only be turned off by removing all power from the integrated circuit. The on­
impedance of the SCR can overheat and destroy the integrated circuit. 

Improvements in layout and processing techniques have made newer HCMOS devices, 
such as the MC68HC11 A8, much less likely to suffer damage from zap and latchup. Because 
of the destructive nature of these mechanisms, it is impossible to test every device for zap 
and latchup limits the way timing and drive levels are tested. To assure product reliability, 
sample groups of devices are destructively tested. 

MOTOROLA M68HC11 REFERENCE MANUAL 2-23 



.. 
2.4.2 Protective Interface Circuits 

In applications where MCU pins might be exposed to detrimental conditions, protective 
interfaces may be needed to protect the MCU from damage. The two main goals of any 
protective interface are to prevent high currents from flowing and to prevent illegal voltage 
levels at a pin. A low-pass filter can often satisfy both goals. In less common situations, it 
may also be necessary to provide diode clamps to prevent high voltages at some pins. All 
pins on the M68HC11 have internal inherent diode clamps to VSS, but only some of the 
pins include clamps to VOO. The following subsections discuss the internal circuits for 
each type MCU pin and note special considerations for the protection of these pin types. 

Usually, the only pins needing protection are those that are exposed to signals from outside 
the system. For example, in an automobile engine controller, the sensors for air and fuel 
flow are connected to the engine control module and ultimately to MCU inputs. These 
signals are prime candidates for protective interfaces because noise or illegal levels could 
accidentally be appied through the interface wiring. On the other hand, any buses and 
signals wholly contained within the control module probably do not require any sort of 
protective interface because there is little chance that these signals would be exposed to 
illegal levels. In a few cases, a protective interface can even interfere with normal operation 
of an MCU signal. For example, a low-pass filter on an address or data line of an expanded 
MCU system would introduce significant delays to these signals, dramatically limiting the 
maximum operating speed of the system. 

2.4.3 Internal Circuitry - Digital Input-Only Pin 

Figure 2-15 shows the MOS circuitry for a digital input-only pin. The gates of input buffer 
(3) are very high impedance for all voltages that would ever be applied to the pin. The 
thick-field protection device (2) normally prevents the pin voltage from reaching levels that 
could damage the gates of the input buffer. The exact circuitry of the input buffer may be 
different for different digital inputs (e.g., to provide hysteresis, etc.), but only device gates 
will be connected directly to the pin. Allowing a pin to float (or be driven) to a midsupply 
level can result in both the N- and P-channel devices in the input buffer simultaneously 
being partially on, which causes excess current and noise on the VOOIVSS power supply. 
Port E inputs are exceptions because they are specifically designed to be driven by analog 
levels. 

2-24 

[11 INPUT 
BUFFER 

Figure 2-15. Internal Circuitry - Digital Input-Only Pin 

M68HC11 REFERENCE MANUAL MOTOROLA 



If a digital input pin (see Figure 2-15) is driven with voltages below VSS, the thick-field 
protection device [2] forms an inherent diode junction to VSS, which conducts when the 
pin voltage gets more than a diode drop below VSS. As the pin voltage is driven more 
negative with respect to VSS, current increases. These currents have a tendency to influence 
the die substrate in the area around the protection device, thus affecting the electrical 
characteristics of devices in the vicinity. When the pin current is increased to very high 
levels (typically more than 100 mA, specified limit is 25 mAl, physical damage can result. 

As voltage at [1] is driven above VDD, the protection device will begin to conduct and tend 
to clamp the input voltage to protect input buffer [3]. The voltage at which this condition 
will occur varies significantly from lot to lot and over the operating temperature range. At 
room temperature, the pin typically does not draw any current until approximately 20 V; 
at 125°C, the pin may start conducting at a slightly lower level. Up to this point, the pin 
appears to function normally and will return a logic one if read. As the pin voltage increases, 
the thick-field protection device begins to conduct more current to the die substrate, which 
is VSS. There should be some external series impedance between the pin and the input 
voltage source if the MCU will be used in a detrimental environment. If the input voltage 
is increased even further, the protection device [2] will avalanche, and the pin voltage will 
eventually fold back (typically to about 7 to 12 V). Under these conditions, a parasitic bipolar 
transistor, which is not obvious from the MOS schematic, is turned on and is holding the 
pin at the 7-V level. This avalanche is still normally not destructive to the pin. Since the 
foldback clamp level is relatively low impedance, the pin voltage cannot be raised further 
without supplying a large current. If the offending voltage source is increased to increase 
the pin current, the pin circuitry will be damaged (specified limit is 25 mA, typically takes 
more than 100 mAl. Gate oxides in these inputs are not intended to be exposed to voltages 
above 7 V for any significant amount of time. With the HCMOS processing used in the 
MC68HC11A8, a latchup failure is unlikely unless legal drive limits are grossly exceeded. 

2.4.4 Internal Circuitry - Analog Input-Only Pin 

Figure 2-16 shows the MOS circuitry associated with an analog input-only pin. This MOS 
logic is similar to that for a digital input-only pin except for the addition of the analog 
multiplexer [5] and the extra N-channel device below the buffer. The N-channel device [5] 
acts as an analog multiplexer and affects the behavior of an analog input pin when exposed 
to negative voltages. The N-channel device [4] allows the analog input pins to be driven 
by intermediate levels without causing the noise and current normally associated with the 
input buffer when its input is at a midsupply level. This device is only turned on for half 
an E-clock cycle during a digital read of port E. Since the analog input pins (including the 
VREF pins) are only connected to N-channel devices and high-impedance gates, these pins 
can be driven with levels above VDD without the usual fear of latchup. This aspect is 
important because the analog reference supply is typically independent of the VDD supply 
for noise isolation reasons. 

An analog input pin (see Figure 2-16) responds very much like a digital input to illegal 
levels except that negative levels at the pin can.affect AID operations. The analog functions 
associated with 'these pins also present some special challenges to protective interface 
circuits. Although the N-channel device [4] eliminates the need for external pullup or 
pulldown resistors on unused port E pins, a conservative designer would still terminate 
these pins to help prevent static damage. 

MOTOROLA M68HC11 REFERENCE MANUAL 2-25 



II 
[1J 

PIN 

~5J 

ANALOG 
MULTIPLEXER 

INPUT 
BUFFER 

Figure 2-16. Internal Circuitry - Analog Input-Only Pin 

If the pin voltage is driven low enough relative to the gate voltage of the analog multiplexer 
device, this N-channel device can turn on. A conductive path between the negative pin 
and the AID capacitor array may discharge the capacitors and disrupt any AID conversion 
in progress. The thick-field protection device and other circuit and layout measures around 
the N-channel multiplexer device are intended to prevent the pin voltage from becoming 
negative enough to turn on the multiplexer device. Even with these internal protective 
measures, a cautious user should avoid negative levels on any AID pin because a large 
negative transient could still disrupt an AID conversion. An AID conversion can be disrupted 
in this manner if any AID pin experiences a serious negative transient; the transient need 
not be on the pin associated with the conversion. 

External diode clamps to VDD are not necessarily a good idea on the anaolg inputs. Leakage 
through an external diode would be significant in relationship to the pin leakage current; 
thus, this extra leakage could affect the accuracy of analog conver,sion results, Analog input 
pins can usually be protected by a low-pass filter with enough series impedance to limit 
the pin voltage, The amount of series resistance is a trade-off between a high enough value 
to limit pin voltage and a low enough value to prevent pin leakage current from adversely 
affecting conversion results, Conversion accuracy is specified for a maximum external 
series resistance of 10 kD, The worst-case specified leakage current at the pin is 400 nA 
(at room temperature, leakage is typically much less), The 400 nA acting through 10 kD 
causes an absolute conversion error of minus one-fifth of a least significant bit (LSB) when 
VREF is 5.12 V, leaving only about one-quarter of an LSB for actual AID circuit errors before 
the results would be out of specified limits, Using a larger external resistance in series 
with an AID pin may cause some inaccuracy due to the leakage current acting through this 
resistance, but the AID wi" still respond in a predictable manner. There may be valid system 
design reasons for choosing a high external series resistance (e,g" to minimize power 
consumption in a battery-based system). For additional detailed information concerning 
the AID input pins, see 12.3 AID PIN CONNECTION CONSIDERATIONS, 

2-26 M68HC11 REFERENCE MANUAL MOTOROLA 



2.4.5 Internal Circuitry - Digital I/O Pin 

Figure 2-17 shows the MOS circuitry for an MCU pin capable of operating as an input or 
an output. Even when the pin is configured to disable the output driver circuitry, the MOS 
transistors still affect the way the pin reacts to illegal levels. The P-channel device of the 
output driver [3] forms an inherent diode to VDD, and the N-channel device forms an 
inherent diode to VSS, which is in parallel with the inherent diode of the thick-field pro­
tection device. 

[1) 
VDD 

PIN VDD 

-1 INPUT 
BUFFER 

OUTPUT 
BUFFER 

---1 oZ 
-,0 
w>= 
~~ N 
~b -:x: a: -1-0--- --

Figure 2-17. Internal Circuitry - Digital I/O Pin 

When the pin is configured as a high-impedance input, input signals are clamped to within 
a diode drop of the VSS and VDD power-supply rails. When the pin is configured as an 
output, the P- or N-channel device provides a low-impedance path to VDD or VSS, re­
spectively. The current into or out of the pin should be limited to prevent damage. The 
specified current limit is 25 mA although these pins can typically withstand transients of 
more than 100 mA at nominal room temperature. 

The port C and port D I/O pins of the M68HC11 can be configured as open-drain-type 
outputs. This configuration disables the gate signal to the P-channel device of the output 
buffer so the pin cannot be driven to an active-high logic level, but the P-channel device 
is still physically present and forms an inherent diode to VDD. In a few applications, the 
situation will arise where two or more MCU I/O pins are tied to the same point. Software 
would be arranged so that no more than one of these I/O pins is configured as an output 
at any time to avoid output driver contention. In these applications, the I/O pins should be 
configured for the open-drain mode so the output drivers are prevented from high-current 
contention. 

2.4.6 Internal Circuitry - Input/Open-Drain-Output Pin 

Two pins on the M68HC11 (RESET and MODA/UR) have high-impedance input functions 
as well as open-drain output functions (see Figure 2-18). These pins are similar to I/O pins 

MOTOROLA M68HC11 REFERENCE MANUAL 2-27 



• 
except that there is no P-channel device in the output driver. Since the P-channel output 
device is not present, there is no inherent diode to VDD. In terms of negative illegal levels 
at these pins, there are two diodes clamping the pin to a diode drop below ground. In 
terms of positive levels above VDD, the N-channel output device starts to conduct before 
the thick-field protection device; thus, the clamp level for these pins will typically be lower 
than that for a digital input-only pin. As for any MCU pin, current should be limited to 
prevent damage. 

N·CHANNEL ONLY 
OUTPUT BUFFER 

[1) 

PIN 

INPUT 
BUFFER 

Figure 2-18. Internal Circuitry - Input/Open-Drain-Output Pin 

2.4.7 Internal Circuitry - Digital Output-Only Pin 

Output-only pins react to illegal levels exactly like I/O pins. Figure 2-19 shows the MOS 
circuitry for a digital output-only pin. 

2-28 

--4 p 

OUTPUT 
BUFFER 

Figure 2-19. Internal Circuitry - Output-Only Pin 

M68HC11 REFERENCE MANUAL MOTOROLA 



2.4.8 Internal Circuitry - MODBIVSTBY Pin 

The MODBIVSTBY pin is unusual because it serves as a standby voltage source in addition 
to acting as a mode select input (see Figure 2-20). An MOS switch automatically connects 
the internal RAM power supply to the higher of VDD or VSTBY. If an illegal high level is 
applied to the MODBIVSTBY pin, this illegal voltage is passed in to the internal RAM system. 
A minor elevation of VSTBY relative to VDD can be tolerated during MCU operation, but 
any significant elevation can result in incorrect reads of RAM data. 

When a battery or other standby voltage source will be used to maintain RAM contents in 
the absence ofVDD, the MODBIVSTBY pin should be driven by VDD (rather than the standby 
source) during normal operation. The MODBIVSTBY pin should not be driven by a higher 
level than VDD, except during standby periods; during these periods, RESET should be 
driven low. 

MOTOROLA 

MODBN STBY 

[1] 

~-------------------------- -------
I 
I 

INPUT 
BUFFER 

'--+-______ ..-___ -+-_ ... POWER 
TO RAM 

MOS POWER SWITCH 

Figure 2-20. Internal Circuitry - MODBIVSTBY Pin 

M68HC11 REFERENCE MANUAL 2-29 



• 
2.4.9 Internal Circuitry - IRQ/VpPBULK Pin 

The IRQ pin is used as a high-voltage (20 V) power source during factory testing. This high­
voltage source supplies power for bulk programming operations because the internal 
charge pump is not designed to provide enough current for these bulk programming 
operations. Figure 2-21 shows the MOS circuitry for the IRONPPBULK pin. The IRONPPBULK 
pin essentially reacts like an input-only pin to illegal levels . 

11] 

IRON PPBULK PIN 

....---vpP 

INPUT 
BUFFER 

Figure 2-21. Internal Circuitry - IRQ/VPPBULK Pin 

The normal Vpp level used during testing is very near the level where the thick-field 
protection device begins to conduct. It is important to limit the current of the Vpp power 
supply into the IROIVPPBULK pin with an external series resistor (typically 27 kn) because 
noise or overshoot can trigger the low-impedance foldback mechanism of the protection 
device. Without a current-limiting resistor,the small metal line connecting the bonding 
pad to the pin input circuity will instantly vaporize. Normal users would not encounter this 
potential problem since the Vpp function of the IRQIVPPBULK pin is only intended for use 
by Motorola. The current-limiting resistor has no adverse affect on the bulk programming 
process since the current requirements for EEPROM pogramming are very small. 

2.5 TYPICAL SINGLE-CHIP-MODE SYSTEM CONNECTIONS 

Figure 2-22 is the schematic for a simple single-chip-mode system, which can be operated 
in normal single-chip or special bootstrap mode. This circuit can be used as the basis for 
any single-chip-mode application. In most cases, the circuitry for the poWer supply, oscil­
lator, and mode selects can be used exactly as shown in this system. Only specialized 1/0 
circuitry specific to the application needs to be designed from scratch. All unused inputs 
are terminated in an appropriate manner. 

2-30 M68HC11 REFERENCE MANUAL MOTOROLA 



MC68HC11A8 
VDD 

E 

VDD 
10KlYP 

PAOIIC3 

PA111C2 

VDD PA2IICO 

SYSTEM 0.11!F PA3/OCS/OC1 

POWER PA4/0C4/0Cl 

PAS/OC3/OCl 

VSS PA6/OC2l0C1 

PA7/PAI/OC1 

EXTAL 
PBO 

10M PB1 

XTAL PB2 
8.0 MHz PB3 

PB4 

18 pF PBS 

l 18P~ 
PB6 

PB7 

STAB 
VDD VDD 

STRA 

IN 
4.7K 

PCO 
RESET RESET PC1 

MC34064 PC2 
GND 

PC3 

PC4 

VDD PCS 

4.7K PC6 

XIRO PC7 

4.7K 
IRO PDOlRxD 

CONNECT PD1ffxD 
JUMPER FOR 4.7K 

PD2IMISO 
BOOTSTRAP MODE 

PD3IMOSI r MODBNSTBY PD4ISCK 

MODAllUR PDsiSS 

PEO/ANO 

PE1/AN1 

VDD PE2IAN2 

PE31AN3 

VRH PE41AN4 

PESIANS 

VRL PE6iAN6 

PE7/AN7 

Figure 2-22. Basic Single-Chip-Mode Connections 

MOTOROLA M68HC11 REFERENCE MANUAL 2-31 



II 

2.6 TYPICAL EXPANDED-MODE-SYSTEM CONNECTIONS 

The schematic shown in Figure 2-23 is for a fairly straightforward expanded-mode system, 
which can be operated in normal expanded mode or special test mode. This circuitry can 
be used as the basis for any expanded-mode application. In most cases, the circuitry for 
the power supply, oscillator, and mode selects can be used exactly as shown in this system. 
If additional memory or peripheral functions are added to the address and data buses, the 
loading should be reviewed to determine whether or not additional buffering is required. 
Loading is generally limited by load capacitance before the dc drive capabilities of the 
MCU drivers are reached. At bus frequencies lower than 2 MHz, more capacitance can be 
driven before buffers are required. In applications where heavy bus loading occurs, it is 
necessary to increase power-supply bypass capacitors to provide for these higher bus 
switching demands on VDD. 

The address decoding used in this example system is unusual in that the external EPROM 
is decoded to appear in either of two memory areas. Some commonly used terms to 
describe this type of decoding are partial decode, redundant mapping, and mirroring. In 
this system, the external EPROM appears at $EOOO-$FFFF and at $AOOO-$BFFF so that the 
reset vector can be fetched out of this EPROM whether the MCU is operating in normal 
expanded mode or special test mode. This mapping also allows the MCU to come out of 
reset in special test mode, check the contents of the EEPROM-based CON FIG register 
(change CON FIG if necessary), and then change the operating mode to normal expanded 
mode. There are several potential advantages to starting a system this way (see 3.5.3 
Special Test Mode). 

the 74HC138 decoder provides address-qualified read enable and write enable signals for 
two 8K by 8 static RAMs. The other four outputs of this 74HC138 provide additional chip 
selects for additional RAM or peripheral devices. Since the R/W signal drives one of the 
address selects of the 74HC138, there are four active-low read enable outputs and four 
active-low write enable outputs. The timing for these outputs is controlled by the E clock 
and the propagation delay through the 74HC138 decoder. Address and RIW are stable long 
before the rising edge of the E clock. 

The decoding for the EPROM was done with two sections of a quad NAND gate. Address 
valid time controls the chip select access time of the EPROM. This chip select decode 
provides for a longer access time than the chip select arrangement on the RAMs because 
EPROMs are typically slower than static RAMs. The E clock controls the output enable of 
the EPROM, which typically has a much shorter setup time requirement than the chip­
select input to the EPROM. Since address line 14 (A14) is not included in the decode for 
the EPROM, the EPROM will appear twice in the memory map: at $AOOO-$BFFF where A 14 
is low and at $EOOO-$FFFF where A14 is high. 

A few potential address conflicts can occur in this system. The on-chip ROM and/or on­
chip EEPROM can conflict with the external EPROM. For the purposes of this example, it 
is assumed that the internal ROM will not be used and will be disabled by the ROMON 

. control bit in the CON FIG register. The potential for conflict with the EEPROM poses no 
concern in normal expanded mode because the external MCUdata bus is high impedance 
and ignored during reads of the internal EEPROM. In special test mode, there is a potential 
for an undesirable conflict if the EEPROM is read while the IRV function is enabled (see 

2-32 M68HC11 REFERENCE MANUAL MOTOROLA 



v 
MC68HC11A8 

fO 

VOO 
10K TYP 

PAOIIC3 ,II. 

f 
.,., 

PAMC2 

VOO PA2IICO 

a: + =~ J.LF: 
0.01 J.1F PA3/OCS/OC1 -w 

~ ::::~ ~ PA4/OC4IOC1 '--
a.. 10J.LF PAS/OC3/OC1 -

Vss PA6/OC2/OC1 - OATABUS 

-== PA7IPAI/OC1 

- 00 AO 
AOO 00 00 

EXTAl 01 
01 

A1 
10M A01 01 

02 A2 
XTAL A02 02 02 

S.OMHz 03 
Q3 

A3 
A03 03 

HI!-- 04 
04 

A4 
A04 04 

05 
05 

AS 
18pF A05 05 

06 A6 

l 1S P:L A06 06 06 
07 

07 07 
A7 

A07 
- -- - AS LE OEfl RiR 

AS 

TO 
~~o Rm 74HC373 _ 

E 
E -

4.7K 
IN AS 

AS 
RESET RESET A9 

A9 

MC34064 
A10 

A10 
GNO 

A11 
A11 

-L A12 
A12 > 

0 

A13 
A13 0 - VOO :Il 
A14 m 

I 4.7K A14 Zl 
XIRO A15 

A15 III ., c:: 
rn 

4.7K 
IRO POOlRxO . 

P01ITxO 

4.7K P021MISO CONTROL BUS 
.11. MOOAlLIR P03IMOSI CONNECT 

4"7K JUMPER FOR P04iSCK 
TESTMOOE 1 P05tSS 

r~ MOOBNSTBY 

- PEO/ANO I--- PE1/AN1 I--

VOO PE2/AN2 I--

T 1K PE3/AN3 I--
VRH PE4/AN4 I--

== 1 J.LF PE5/AN5 I--
I--- VRL PE6/AN6 I--

-- PEl/ANl I---

Figure 2-23. Basic Expanded-Mode Connections (Sheet 1 of 2) 

MOTOROLA M68HC11 REFERENCE MANUAL 2-33 



• 
00 00 

AO 
AO 00 

AO 
AO 00 

01 01 
A1 

A1 01 
A1 

A1 01 
02 02 

A2 A2 02 
A2 

A2 02 
03 03 

A3 
A3 03 A3 

A3 03 
04 04 

A4 
A4 04 

A4 
A4 04 

05 05 
AS 

AS 05 
AS 

AS 05 
06 06 

A6 
A6 06 

A6 
A6 06 

07 07 
A7 

A7 07 
A7 

A7 07 
OATABUS 

AS 
A8 

AS 
A8 

A9 
A9 

A9 
A9 

A10 
A10 

A10 
A10 

A11 
A11 

A11 
A11 

A12 
A12 

A12 
A12 

A15 I '" CS WE 
A13 BE AD 

8K X8 EPROM 8KX8RAM 

E 
AO 00 

00 
RNi AO 01 

A1 
A1 01 

02 
p- A2 A2 02 

AO YO 03 RIW p- A3 
A3 03 

A1 Y1 04 A13 A4 04 
A2 Y2 A4 05 A14 A5 05 

Y3 A5 06 
A6 

A6 06 
Y4 07 

A7 
A7 07 

G Y5 
E 

"1': ~ 
A8 

A8 
Y6 

A9 
Y7 A9 

A10 
A10 

_ 74HC138 A11 
A11 

- A12 
A12 

-
WE 

AD 
AOORESSBUS 

8KX8RAM 

CONTROL BUS VOO 

'" 10K TYP 
00 

...A 01 

02 

03 

...A 04 . 
05 

06 

07 

Figure 2-23. Basic Expanded-Mode Connections (Sheet 2 of 2) 

2-34 M68HC11 REFERENCE MANUAL MOTOROLA 



2.7.2 Internal Read Visibility). Although this conflict would not typically be destructive, it 
would increase power consumption and generated noise. In this example system, the 
special test mode would only be in effect for a short time after reset, and reads of the 
internal EEPROM could easily be avoided during this time. 

2.7 SYSTEM DEVELOPMENT AND DEBUG FEATURES 

The designers of the M68HC11 carefully considered the system development needs of the 
user. Since smaller users cannot afford thousands of dollars for a development system, 
the M68HC11 was sj!lecifically designed to accommodate low-cost development tools. The 
M68HC11 EVB evaluation board and M68HC11 EVM evaluation module are two examples 
of such low-cost tools. Several customers have also built small plug-in modules that em­
ulate the MC68HC11A8 for product development purposes. The small size of these plug­
in emulators is possible because of the development features designed into the M68HC11. 

2.7.1 Load Instruction Register (UR) 

The LlR signal is intended as a debugging aid. This signal is driven to active low for the 
first bus cycle of each new instruction, making it easy to reverse assemble (disassemble) 
instructions from the display of a logic analyzer. 

2.7.2 Internal Read Visibility (lRV) 

During debugging of an application, it is useful to see what is being read from internal 
registers and memory locations. The IRV feature provides this capability. This feature 
should usually be disabled during normal operation of the system due to the possibility 
of bus conflicts. 

The IRV feature is controlled by the IRV bit in the HPRIO register. When the IRV bit is one, 
the data from a read of an internal register or memory location is driven out on the data 
bus so it can be monitored by a logic analyzer. If the IRV bit is zero, the IRV function is 
disabled, and the data bus is undriven during reads of an internal address. Special restric­
tions apply to the use of the IRV bit and function. When the MCU is reset in normal modes, 
the IRV bit is initially zero. In all but the newest derivatives in the M68HC11 Family, the 
IRV bit may not be written to one in the normal modes. In special test and bootstrap modes, 
the IRV bit is initially one and may be written to zero after which It becomes a read-only 
bit. . 

Care should be used if the IRV function is enabled. During reads of an internal address, 
the data bus is driven out even though the RIW line indicates that the bus direction is 
toward the MCU. Some external device may also be trying to drive the data lines, which 
leads to an undesirable bus contention. In a test or debugging situation, special address 
decode logic can be used to prevent such contention. It would be expensive and inappro­
priate to have this additional decode logic on all normal mode systems; thus, the IRV 
function was only provided in the special test and bootstrap modes. Due to several customer 
requests for the IRV function in normal modes, the logic was changed to allow the function 

MOTOROLA M68HC11 REFERENCE MANUAL 2-35 



• 
to be enabled in normal modes on new versions of the M68HC1 1. The default condition 
in normal modes is still IRV equals zero, which disables the function. If a user specifically 
wants the IRV function, IRV may be written to one, and the user becomes responsible for 
avoiding bus contentions. IRV can be written to one at any time unless it has previously 
been written to zero. If the IRV bit is written to zero, the function becomes disabled until 
the next reset sequence. 

2.7.3 MC68HC24 Port Replacement Unit 

The MC68HC24 PRU is a gate array that emulates the single-chip-mode functions of ports 
Band C, which are lost to the expansion bus function when the MCU is operated in 
expanded modes. The expanded mode permits program development In an external EPROM. 
A system consisting of an M68HC11 in expanded mode, an MC68HC24, an HC373 octal 
latch, and an external EPROM performs like the MC68HC11A8 operating in single-chip 
modes, thus allowing an application program to be developed and tested before a masked 
ROM pattern is ordered. 

The logic in the M68HC11 was specifically designed to permit emulation of single-chip 
functions with the MC68HC24. First, the addresses associated with ports Band C and their 
handshake I/O functions are treated as external addresses when the MCU is operating in 
expanded modes. Next, the interrupts associated with the handshake I/O system are vec­
tored to the same address as IRQ interrupts. Thus, the interrupt output of the MC68HC24 
can be connected to the IRQ interrupt input of the MCU, and handshake interrupts will be 
treated the same as internal handshake functions. The M68HC11 allows registers and/or 
internal RAM to be remapped to any 4K boundary. The MC68HC24 copies this logic so that 
the registers in the MC68HC24 will automatically track the internal remapping logic. Soft­
ware written on an expanded system, including an MC68HC24, will operate exactly as it 
would in the internal ROM of an MC68HC1 1 A8 in single-chip mode. 

2-36 M68HC11 REFERENCE MANUAL MOTOROLA 



SECTION 3 
CONFIGURATION AND MODES OF OPERATION 

This section discusses the mechanisms that allow the MC68HC11A8 to conform to a wide 
variety of applications. These mechanisms include hardware mode selection circuitry, a 
nonvolatile EEPROM-based configuration register, and protected control register bits. The 
majority of the control bits in the MC68HC11A8 are accessible at any time by software and 
will be discussed throughout this manual. 

The term mode is used in more than one context in discussing the microcontroller unit 
(MCU). For example, the serial peripheral interface (SPI) is said to be in either the master 
or slave mode, the parallel 110 system is said to be in simple strobed mode, full-input 
handshake mode, or full-output handshake mode. In most cases, there is no confusion 
about what the term mode refers to; however, the use of the term mode in conjunction 
with STOP and WAIT is often misunderstood. STOP and WAIT are actually modes of 
operation of the central processing unit (CPU) as opposed to single-chip and expanded 
modes, which are modes of operation of the MCU integrated circuit. In this section, the 
MCU operating modes and other mechanisms controlling the basic configuration of the 
MCU are discussed. 

Very few MCU functions are influenced by the mode of operation. For example, the timers, 
analog-to-digital converter (AID), and serial 1/0 functions all work the same in expanded 
modes as they do in single-chip modes. The parallel 1/0 functions of 18 pins are lost in the 
expanded modes but can be regained with a special, external, port-replacement chip called 
the MC68HC24. In the two special modes of MCU operation, some special testing functions 
become accessible, including the ability for software to change the MCU mode. 

3.1 HARDWARE MODE SELECTION 

There are only two fundamental modes of operation for the MC68HC11A8 MCU: single 
chip and expanded. Each mode has a normal variation and a special variation. These four 
mode variations are selected by the levels on the mode A (MODA) and mode S (MODS) 
pins during reset. The special variation of single-chip mode is called special bootstrap 
mode; the special variation of the expanded mode is called special test mode. The special 
bootstrap mode allows programs to be downloaded through the on-chip serial commu­
nications interface (SCI) into internal random-access memory (RAM) to be executed. The 
bootloaded program is used for a variety of tasks such as loading calibration values into 
internal electrically erasable programmable read-only memory (EEPROM) or performing 
diagnostics on a finished module. The bootstrap mode is a special user's mode, not a 
factory test mode. The special test mode, which is intended primarily for factory testing, 
is seldom used by the user except for emulation, development, or in other rare circum­
stances. 

MOTOROLA M68HC11 REFERENCE MANUAL 3-1 



• 

3.1.1 Hardware Mode Select Pins 

The hardware mode select mechanism starts with the logic levels on the MODA and MODB 
pins while the MCU is in the reset state. The logic levels on the MODA and MODB pins 
are fed into the MCU by way of a clocked pipeline path. The levels captured are those that 
were present part of a clock cycle before the RESET pin rose, which assures there will be 
a zero hold-time requirement on the mode select pins relative to the rising edge at the 
RESET pin. The captured levels determine the logic state of the special mode (SMOD) and 
mode A select (MDA) control bits in the highest priority interrupt (HPRIO) register. These 
two control bits actually control the logic circuits involved in hardware mode selection. 
Table 3-1 summarizes the operation of the mode pins and mode control bits. 

Table 3-1. Hardware Mode Select Summary 

Inputs Control Bits in HPRIO (Latched at Reset) 

MODB MODA 
Mode Description 

RBOOT SMOD MDA IRV 

1 0 Normal Single Chip 0 0 0 0 

1 1 Normal Expanded 0 0 1 0 

0 0 Special Bootstrap 1 1 0 1 

0 1 Special Test 0 1 1 1 

After RESET rises, the mode select pins no longer influence the MCU operating mode. The 
MODA pin serves the alternate function of load instruction register (LlR) when the MCU is 
not in reset. The open-drain active-low LlR output pin drives low during the first E-clock 
cycle of each instruction. The MODB pin serves the alternate function of a standby power 
supply (VSTBY) to maintain RAM contents when VDD is not present. The power-saving 
mode, STOP, is an alternate way to save RAM contents, which does not require a separate 
standby power source. 

3.1.2 Mode Control Bits in the HPRIO Register 

The following register and paragraphs show the HPRIO register. The four low-order bits 
(PSEL3-PSELO) are not related to the mode select logic and will be discussed in SECTION 
5 RESETS AND INTERRUPTS. The HPRIO register may be read at any time, but the four 
high-order bits may only be written under special circumstances. Usually, control bits for 
unrelated on-chip systems would not be mixed in the same register. 

RESET: (Refer to Table 3-1) 

HPRIO 
$103C 

RBOOT - Read Bootstrap ROM 

3-2 

Writable only while SMOD equals one 
1 = Bootstrap ROM enabled at $BF40-$BFFF 
0= Bootstrap ROM disabled and not present in memory map 

The RBOOT control bit enables or disables the special bootstrap control ROM. This 
192-byte, mask-programmed ROM contains the firmware required to load a user's 

M68HC11 REFERENCE MANUAL MOTOROLA 



program through the SCI into the internal RAM and jump to the loaded program. In 
all modes other than the special bootstrap mode, this ROM is disabled and does not 
occupy any space in the 64K-byte memory map. Although it is zero when the MCU 
comes out of reset in test mode, the RBOOT bit may be written to one while in special 
test mode. 

SMOD - Special Mode 
May be written to zero but not back to one 

1 = Special mode variation in effect 
0= Normal mode variation in effect 

MDA - Mode A Select 
Writable only while SMOD equals one 

1 = Normal expanded or special test mode in effect 
0= Normal single-chip or special bootstrap mode in effect 

IRV - Internal Read Visibility 
Writable only while SMOD equals one; forced to zero if SMOD equals zero 

1 = Data driven onto external bus during internal reads 
0= Data from internal reads not visible on expansion bus (levels on bus ignored) 

The IRV control bit is used during factory testing and sometimes during emulation to 
allow internal read accesses to be visible on the external data bus. Care is required to 
avoid data bus contention while IRV is active because the bidirectional data bus is 
driven out during reads of internal addresses, even though the R/W line suggests the 
data bus is in the high-impedance read mode. In normal modes, this function is dis­
abled; thus, complex decode logic is not required to protect against accidental bus 
conflicts. 

3.2 EEPROM-BASED CONFIG REGISTER 

The nonvolatile configuration (CONFIG) register allows additional flexibility in the MCU 
that would otherwise be provided by a more complex hardware mode select structure. By 
using EEPROM to implement the CON FIG register, these system controls are retained even 
when no power is applied to the MCU. The functions controlled by this register are char­
acteristicsthat must be inherently known to the MCU system as it comes out of the reset 
state. Ordinary software-accessible control bits would not effectively regulate these controls. 

3.2.1 Operation of CON FIG Mechanism 

The CONFIG register actually consists of an EEPROM byte (separate from the 512-byte 
EEPROM array), a static register that holds the configuration information during operation, 
and the associated logic, which controls the transfer of information from the EEPROM byte 
to the working static register. Programming and erasure of this register use the same logic 
used for programming and erasure of the 512-byte EEPROM array. Reads of this register 
return the contents of the static working register, not the EEPROM byte. During any reset, 
the contents of the EEPROM byte are transferred to the working static register over the 
data bus. Due to this mechanism, changes to the EEPROM CON FIG location are not visible 
and do not alter the operation of the MCU until after a subsequent reset. 

MOTOROLA M68HC11 REFERENCE MANUAL 3-3 

.. 



• 

Some versions of the M68HC11 Family allow the CONFIG working register to be written 
directly as a normal control register while operating in the special mode variations. This 
capability is included primarily to accelerate product testing but could be useful to the user 
in some applications. In versions that have this ability, the MCU could be reset in one of 
the special modes. The CONFIG register could be checked or written to any desired value; 
then the mode could be written to a normal mode to re-enable system-protection mech­
anisms. This procedure is independent of the EEPROM byte and the transfer during reset. 
Only some versions of the M68HC11 offer this capability. Risk factors are associated with 
operating in a special mode; therefore, keep the time between reset and writing the mode 
control bits back to a normal mode as stlort as possible to minimize these risks. 

3.2.2 The CON FIG Register 

The CON FIG register is an unusual control register used to enable or disable ROM, EEPROM, 
the computer operating properly (COP) watchdog system, and, optionally, the EEPROM 
security feature of the MCU. Unlike ordinary control registers, CON FIG retains its contents 
even when there is no power applied to the MCU. The contents are retained when the 
MCU is completely removed from a system (e.g., when shipped from the Motorola factory). 
In this way, the control bits in the CONFIG register are like mask-programmed options. 
Unlike mask options, the contents of this register can be altered after the MCU is manu­
factured to meet the customer's specific requirements. 

The CON FIG register is read like any other memory location. The contents of the working 
static register are returned on such reads as previously described. The CON FIG register is 
erased and programmed like an EEPROM location rather than being written as other reg­
isters. The programming and erase operations alter the EEPROM byte, which does not 
alter the operation of the MCU until after a subsequent reset operation. The programming 
and erase procedures, which are the same as those used to program EEPROM locations, 
use the PPROG register and are discussed in 4.3 EEPROM. 

The following register and paragraphs describe the CON FIG register and control bits of 
the MC68HC11A8. For specific information about the CONFIG register of other M68HC11 
Family members, refer to the technical summary for that member. 

3 2 

I NOSEC I NOCOP I ROMON I EEON 

RESET: (Refer to Section 3.2.11 

CON FIG 
$103F 

NOSEC - EEPROM Security Disabled 

3-4 

A special security feature is available on the MC68HC11A8 if it is requested at the time 
a user submits a mask ROM pattern. Once this feature is enabled at the mask-pro­
gramming level, the user activates it by programming the NOSEC bit to zero. While 
NOSEC is zero, the MCU can only be reset in single-chip modes (normal single chip 
or special bootstrap). This restriction is accomplished by forcing the MDA control bit 
to zero rather than allowing it to follow the MODA pin level at the rising edge of RESET. 
By disallowing expanded modes, a software pirate is prevented from seeing the data 
in EEPROM or RAM because there is no external address/data bus in single-chip modes. 

M68HC11 REFERENCE MANUAL MOTOROLA 



The software pirate can see what is in the on-chip ROM by disabling the security 
option, which can only be accomplished after the contents of EEPROM and RAM have 
been erased. When a secured part is reset in bootstrap mode, the firmware in the small 
bootloader program will not proceed with bootloading until the EEPROM, RAM, and 
CON FIG register have been successfully erased. When a secured part is operated in 
normal single-chip mode, the user's program in ROM is responsible for keeping the 
MCU secured. The CON FIG register in current versions of the MC6BHC11AB cannot be 
altered except in special bootstrap and special test modes. 

NOCOP - COP Watchdog System Disabled 
The default erased state of this bit corresponds to COP system off. 

1 = The COP system is disabled and does not generate system resets. 
0= The COP system is enabled as the MCU comes out of reset. 

A software service mechanism must be periodically completed prior to COP time-out 
to avoid a system reset. This service will only occur at the proper repeating rate if the 
software is executing in the expected, orderly fashion. If a software failure occurs, the 
watchdog will time-out and will generate a system reset to force the MCU to return 
to proper operation. The COP watchdog mechanism is discussed in detail in SECTION 
5 RESET AND INTERRUPTS. 

ROMON - Enable On-Chip ROM 
The default erased state of this bit corresponds to ROM enabled. 

1 = The BK-byte, on-chip program memory is enabled. 
O=The BK-byte ROM is disabled and takes no space in the memory map. 

In the normal single-chip operating mode, this control bit is overridden so that ROM 
is always enabled. In expanded modes, turning off the ROM with this bit allows the 
reset and interrupt vectors to be fetched from external memories; therefore, the user 
need not know where vectors should. point at the time the MCU is manufactured. 

EEON - Enable On-Chip EEPROM 
The default erased state of this bit corresponds to EEPROM enabled. 

1 =The 512-byte, on-chip EEPROM memory is enabled at locations $8600-$87FF. 
O=The 512-byte EEPROM is disabled and takes no space in the memory map. 

Some versions of the M6BHC11 Family have additional control bits in this register. For 
example, the MC6BHCB11A2 uses the upper four bits to remap its 2K-byte EEPROM to the 
upper half of any 4K page of memory. This reference manual is based primarily on the 
MC6BHC11AB member; specific information about other family members can be found in 
the technical summaries. 

The erased state of CONFIG is $OF on an MC6BHC11AB. The MC6BHC11A1 is the same die 
as the MC6BHC11AB but comes from the factory with $OD in CON FIG to disable the internal 
BK-byte masked ROM. Similarly, the MC6BHC11AO version of the part comes with $OC in 
CONFIG to disable both the BK ROM and 512-byte EEPROM. The CONFIG byte is not part 
of the 512-byte EEPROM. If the CON FIG register of an MC6BHC11A1 or MC6BHC11AO device 
is erased to $OF, the internal ROM and EEPROM memories become enabled but are not 
necessarily useful. The ROM of an MC6BHC11A 1 or MC68HC11AO part may contain a 
customer's program (with their permission) or a defective program. The EEPROM of an 
MC68HC11AO part could be partially/completely broken and should not be used because 

MOTOROLA M68HC11 REFERENCE MANUAL 3-5 



.. 

the error could be related to temperature or voltage. Therefore, the EEPROM mi~ht check 
as flawless but later fail when least expected. The upper four bits are not implemented in 
the working static register and always read zero. Although the corresponding bits in the 
EEPROM byte are implemented, they are not visible to the user. 

The erased state of the CON FIG register in the MC6SHCS11A2 version is $FF, which means 
the 2K EEPROM is enabled in the area from $FSOO-$FFFF when the part comes from the 
Motorola factory. To use the part, the user must have a meaningful reset vector at $FFFE,FFFF 
or must connect the mode pins so the system will come out of reset in one of the special 
modes. The reset vector can be programmed into the internal EEPROM before installing 
the part into a finished system, or the EEPROM can be moved out of the way (by pro­
gramming the CON FIG register) so an external memory in the end system can provide the 
reset vector. 

3.3 PROTECTED CONTROL REGISTER BITS 

In the MC6SHC11AS, several sensitive control registers and bits are protected against writes 
except under special circumstances. The protect mechanisms include the ability to write 
these bits only within the first 64 bus cycles after any reset and/or the ability to write them 
only one time after each reset. These bits control the basic configuration of the MCU where 
an accidental write could cause serious system problems - that is, these protections make 
it practical to include software-controlled features that might otherwise be excluded. As 
new members of the M6SHC11 Family are developed, additional control bits could fall into 
this category, but in the MC6SHC11AS, only three control registers are involved (lNIT, 
TMSK2, and OPTION). Some users have expressed concern about being able to write all 
of these control bits within 64 cycles, which will not be a problem since only three writes 
are required. 

Because these protect mechanisms are overridden in the special operating modes, these 
bits may be changed repeatedly during testing without going through a reset sequence. 
If the MCU is going to be changed to a normal mode variation after being reset in a special 
mode, write to the protected registers before writing the SMOD control bit to zero. 

3.3.1 RAM and I/O Mapping Register (lNIT) 

3 

RAM3 RAM2 RAM! RAMO REG3 

RESET: o 

REG2 REG! REGO INIT 
$1030 

RAM3-RAMO - RAM Map Position 

3-6 

These four bits,' which specify the upper hexadecimal digit of the RAM address, control 
the position of the RAM in the memory map. By changing these bits, the RAM can be 
repositioned to the beginning of any 4K-byte page in the memory map. After reset, 
these bits are zeros ($0); thus, the RAM is initially positioned from $OOOO-$OOFF. If 
these four bits are written to ones ($F), the RAM moves to $FOOO-$FOFF. The following 
explanation of the INIT register discusses what happens when RAM or registers are 
mapped to the same area of memory as some other internal resource. 

M68HC11 REFERENCE MANUAL MOTOROLA 



REG3-REGO - 64-Byte Register Block Position 
These four bits, which specify the upper hexadecimal digit of the address for the 64-
byte block of internal registers, control the position of these registers in the memory 
map. By changing these bits, the register block is repositioned to the beginning of any 
4K-byte page in the memory map. After reset, these bits are 0001 ($1); therefore, the 
registers are initially positioned from $1000-$1 03F. If these four bits are written to 
ones ($F), the registers move to $FOOO-$F03F. The following explanation discusses 
what happens when RAM or registers are mapped to the same area of memory as 
some other internal resource. 

The INIT register allows software to reposition the internal 256-byte RAM and/or 64-byte 
register space to any 4K page boundary in the 64K-byte memory m~p. There are two main 
reasons a user might want this capaqility. First, this capability allows the user to position 
RAM, I/O registers, or both in the direct addressing mode range ($OOOO-$OOFF). Instructions 
that use the direct addressing mode assume the upper eight bits of the address are $00; 
thus, these instructions take up less program memory space and operate fa'ster than the 
equivalent extended addressing mode instructions. The second reason for remapping RAM 
or registers would be to make the MCU compatible with the memory map of an existing 
system. For example, the MC6BOl MCU is not compatible with the Motorola EXORciser@). 
The MOOS@) disk-operating system software requires RAM to exist from $0000-$7FFF, 
ROM routines to exist from $EBOO-$EBFF, and system I/O devices to exist from $ECOO-$FOOO. 
Because the MC6BOl MCU has internal RAM and registers in $OOOO-$OOFF that cannot be 
disabled or moved, it cannot be made compatible with the EXORciser. However, the 
MC6BHCllAB can disable its internal ROM with the CON FIG register, and the RAM and 
registers can be remapped to $0000 and $COOO, respectively, by writing $OC to the INIT 
register. This procedure makes the MC6BHCllAB compatible with the EXORciser system 
without requiring changes to the existing MOOS software. A variation on this second reason 
for remapping RAM and registers would be to make maximum use of an external, 32K­
byte RAM in the lower half of the memory map. 

Users not needing this capability can leave the RAM and I/O registers in their default 
locations ($OOOO-$OOFF for RAM and $1000-$103F for registers). Since the INIT register 
becomes write protected shortly after reset, the user need not worry about accidental 
changes due to a software error. 

The internal address decode circuitry automatically protects against conflicts among inter­
nal resources or between an internal and external resource. When an internal resource is 
read, the external data bus is ignored (even if some external device tries to drive the data 
bus) so the CPU will read valid data. If the internal RAM and/or I/O register spaces are 
remapped so an overlap occurs between RAM, register space, or ROM, priority logic dis­
ables all but the highest priority resource. For example, consider the case of an expanded 
mode system where ROM is enabled and both RAM and registers have been remapped 
to $FOOO. For accesses from $FOOO-$F03F, ROM and RAM are disabled, and registers have 
highest access priority. From $F040-$FOFF, ROM is disabled, and RAM has access priority. 

Some users have questions about the priority of access for unused register locations in 
the 64-byte register space or the priority of registers in an external MC6BHC24. In the 
previous example, $F035 would correspond to an unused location in the 64-byte register 

MDOS and EXORciser are trademarks of Motorola Inc. 

MOTOROLA M68HC11 REFERENCE MANUAL 3-7 

• 



• 

space (the register block was moved from its usual position of $1000-$1 03F such that it 
overlaps RAM and ROM at $FOOO). Reads of this address access the undriven internal data 
bus, and any data present on the data bus pins is ignored. Six locations in the 64-byte 
register space become external accesses when the MC68HC11A8 is operating in an ex­
panded mode. This process allows the MC68HC24 to properly emulate the internal parallel 
I/O functions associated with the 18 MCU pins, which are dedicated to the multiplexed 
expansion bus . .Again referring to the earlier example, if any of these six addresses are 
accessed, the internal ROM and RAM are disabled so the CPU gets valid data from the 
external MC68HC24, which is considered a part of the internal register space. The six 
locations of interest are $X002-$X007 (PIOC, PORTC, PORTB, PORTCl, one reserved lo­
cation; and DDRC). Although X is usually 1, it was changed to $F by software in this example. 

3.3.2 Protected Control Bits in the TMSK2 Register 

The following register and paragraphs describe the time-protected timer prescale select 
bits (PR1-PRO) in the timer mask register 2 (TMSK2). The upper four bits of this register, 
which are related to the timer and pulse accumulator subsystems, will be discussed in 
SECTION 10 MAIN TIMER AND REAL-TIMER INTERRUPT and SECTION 11 PULSE ACCU­
MULATOR. Bits 3 and 2 are not implemented and always read as zeros. 

Tal RTII PAOVI PAil 

RESET: 

PRl PRO 

o 

TMSK2 
$1024 

PR1-PRO - Timer Prescaler Select 
These two bits select the prescale rate for the main 16-bit, free-running timer system. 
The following table shows the relationship between the prestale factor and the value 
of these control bits. A prescale factor of one corresponds to a timer count rate of E 
clock divided by one; a prescale factor of 16 corresponds to a timer count rate of E 
clock divided by 16. In normal modes, this prescale rate can only be changed once 
within the first 64 bus cycles after reset, and the resulting count rate stays in effect 
until the next reset. 

PR1 PRO Prescale Factor 

0 0 1 
0 1 4 
1 0 8 
1 1 16 

3.3.3 Protected Control Bits in the OPTION Register 

The following register and paragraphs discuss the time-protected control bits on the option 
(OPTION) control register. Bit 2 of this register is not implemented and always reads zero. 
ADPU, CSEl, and CME are not time-protected bits. 

3-8 M68HC11 REFERENCE MANUAL MOTOROLA 



AOPU CSEL IRUE DLY CME CRl eRO 

RESET: 

IRQE - Configure IRQ for Edge-Sensitive-Only Operation 
The default configuration is IRQE equals zero or level-sensitive IRQs. 

OPTION 
$1039 

1 = IRQ is configured for edge-sensitive-only operation. Falling edges at the IRQ 3 
pin are latched until the IRQ is honored. 

0= IRQ is configured for level-sensitive operation. IRQ interrupts are requested by 
a low level on the IRQ pin. The low level must remain until the interrupt service 
routine does something to acknowledge the source of the interrupt. Level­
sensitive operation allows more than one source to be connected to the IRQ 
pin in a wired-OR configuration. 

DL Y - Enable Oscillator Startup Delay 
1 = A delay of approximately 4,000 E-clock cycles is imposed as the MCU is started up 

from the STOP power-saving mode. This delay is intended to allow the crystal 
oscillator to stabilize. The actual time required for a crystal oscillator to stabilize 
depends on external components and physical layout. As far as the MCU is con­
cerned, it is not necessary for the oscillator to be stable at its operating frequency 
because the MC68HC11A8 is a fully static processor that can operate at frequencies 
down to dc. This delay is provided for the convenience of those applications re­
quiring proper timing measurements soon after restart, thus requiring a stable 
oscillator. 

O=The relatively long oscillator startup delay coming out of STOP is bypassed, and 
the MCU resumes processing within about four bus cycles. 

CR1-CRO - COP Timer Rate Select Bits 
The MCU internal E clock is first divided by 215 before it enters the COP watchdog 
system. The CR1 and CRO control bits control a further scaling factor for the watchdog 
timer as shown in Table 3-2. The cQlumns at the right of the table show the resulting 
watchdog time-out periods for three typical oscillator frequencies. After reset, the time­
out period is configured for the shortest time-out period by default. In normal operating 
modes, these bits can only be written once, and that write must be within 64 bus cycles 
after reset. The COP system is discussed in detail in SECTION 5 RESETS AND 
INTERRUPTS. 

Table 3-2. Watchdog Rates vs. Crystal Frequency 

Crystal Frequency 

CR1 CRO E + 2'5 DMded by 223 Hz 8 MHz 4MHz 

Nominal Time-Out 

0 0 1 15.625 ms 16.384 ms 32.768 ms 
0 1 4 62.5 ms 65.536 ms 131.07 ms 
1 0 16 250 ms 262.14 ms 524.29 ms 
1 1 64 1 s 1.049 s 2.1 s 

2.1 MHz 2 MHz 1 MHz 

Bus Frequency (E Clock) 

MOTOROLA M68HC11 REFERENCE MANUAL 3-9 



.. 

3.4 NORMAL MCU OPERATING MODES 

The normal modes of operation are selected by having a logic one on the MODB pin during 
reset. The reset vector is fetched from addresses $FFFE,FFFF, and program execution begins 
from the address indicated by this vector. In normal single-chip mode, the internal 8K-byte 
program memory is enabled in this memory space so the reset vector is fetched from this 
internal ROM. In normal expanded mode, the internal 8K-byte ROM mayor may not be 
enabled, depending on the ROMON bit in the CON FIG register. If the internal ROM is on, 
the reset vector is fetched from within this ROM; otherwise, it is fetched from external 
memory addresses $FFFE,FFFF. 

3.4.1 Normal Single-Chip Mode 

The normal single-chip mode is selected by a logic one on the MODB pin and a logic zero 
on the MODA pin during reset. Because the single-chip modes do not require any external 
address and data bus functions, port B, port C, strobe A (STRA), and strobe B (STRB) pins 
are available for general-purpose parallel 110. In this mode, all software needed to control 
the MCU is contained in internal memories. 

The ROMON control bit in the EEPROM-based CON FIG register is overridden in normal 
single-chip mode to force the internal 8K-byte ROM on. This procedure is required because 
there must be a valid reset vector for the MCU to operate in a logical manner. 

3.4.2 Normal Expanded Mode 

The normal expanded mode is selected by having a logic one on both the MODB pin and 
MODA pin during reset. This mode of operation allows external memory and peripheral 
devices to be accessed by a time-multiplexed address/data bus. By multiplexing the low­
order eight bits of address with data on the port C pins, only 18 pins are needed to provide 
an 8-bit data bus, a 16-bit address bus, and two bus control lines. The low-order address 
lines are separated from data with an external transparent latch such as a 74HC373, which 
is clocked by the address strobe (AS) signal. All bus cycles, whether internal or external, 
execute at the E-clock frequency (no throughput penalty for external devices). The maxi­
mum bus frequency for the MC68HC11A8 is 2.1 MHz, which is comparable to the fastest 
external EPROMs available at the time the MC68HC11 was introduced. SECTION 2 PINS 
AND CONNECTIONS gives more detailed information on the use of the expansion bus, 
including a discussion of an expanded-system example. 

For emulation purposes, there is a special companion chip called the MC68HC24 port 
replacement unit (PRU). This device reconstructs the parallel I/O functions that are lost to 
the 18 expansion bus lines. Software developed on an expanded system, which includes 
an MC68HC24, can later be submitted as a masked ROM pattern. The resulting custom­
ROM part can then be operated in the single-chip mode, and all parallel I/O functions will 
work as they did in the expanded system. Usually, the MC68HC24 companion chip would 
not be used as a general-purpose, peripheral I/O chip because cheaper ways exist to add 
general-purpose I/O to an expanded system. 

3-10 M68HC11 REFERENCE MANUAL MOTOROLA 



3.5 SPECIAL MCU OPERATING MODES 

The special mode variations are selected by having a logic zero on the MODB pin during 
reset. In the special mode variations, the reset and interrupt vectors are located at 
$BFCO-$BFFF, and software has access to special test features. One of these special test 
features (the disable resets (DISR) control bit in the TEST1 control register) temporarily 
disables the COP watchdog and clock monitor reset functions. All the special functions and 
privileges are available in the special test mode and special bootstrap mode . 

Since the reset vectors are located at $BFFE,BFFF, the internal8K-byte ROM cannot interfere 
with the vectors. The expanded special test mode assures that the reset vector is fetched 
from external memory even if the internal 8K-byte ROM is enabled. In special bootstrap 
mode, an on-chip bootloader firmware ROM is enabled at addresses $BF40-$BFFF so the 
reset vector is fetched from this internal ROM. 

The SMOD control bit is latched as logic one when the MCU is reset in the special modes. 
While SMOD is a one, special test functions and privileges are available. RBOOT and MDA 
can be turned on or off, and SMOD and IRV can be turned off but not back on. Thus, the 
operating mode of the MCU can be changed, but once the mode is changed to a normal 
mode (SMOD = 0), the privileges are revoked, An important, often overlooked application 
of this privilege is the ability to reset the MCU in bootstrap mode, which is a single-chip 
mode, then change the MDA bit to one to enable the multiplexed expansion bus. 

On present mask sets of the MC68HC11 A8 (B96D and newer), the SMOD bit must be one 
to allow programming of the EEPROM-based CONFIG register. In some M68HC11 Family 
members, the EEPROM-based CON FIG register becomes writable in special modes as if it 
were an ordinary static register. This privilege is not available in the original MC68HC11A8 
but is present in the MC68HC811A2. 

Another group of control bits in the MCU have special protection mechanisms to prevent 
accidental writes while operating in normal modes. These protections include write per­
mission only within the first 64 E-clock cycles after reset and/or the ability to write these 
bits only one time. While in either special mode, these protections are overridden, and 
these control bits may be written as if they were ordinary control bits. For a detailed 
description of these protection mechanisms, see 3.3 PROTECTED CONTROL REGISTER 
BITS. 

A special register (TEST1) becomes accessible in the special modes. This register reverts 
to all zeros and cannot be written when SMOD is zero (normal modes). Other than the 
DISR control bit in this register, the user should not be interested in the operation of these 
bits since they are only useful for factory testing of the MCU. Two other control bits in the 
SCI baud-rate control register are similarly enabled only in the special modes. 

3.5.1 Testing Functions Control Register (TEST1) 

The following register and paragraphs discuss the TEST1 control register. Testing functions 
are not recommended for use by the user since they may change at any time to meet the 

MOTOROLA M68HC11 REFERENCE MANUAL 3-11 

• 



• 

manufacturing requirements of Motorola; however, brief descriptions of these testing func­
tions will be presented. Occasionally, knowledge of these functions will help a user un­
derstand what is happening if one of these functions is accidentally invoked during 
development of an application. 

TILOP OCCR CBYP 

RESET: 

'The DISR control bit resets to one in special modes. 

OISR FCM 

0' 

FCOP TCON TESTl 
$103E 

TILOP - Test Illegal Opcode 
Writable only while SMOD equals one 

1 = Enable illegal opcode testing function 
0= Function disabled 

In factory test equipment, information presented to the data bus pins is independent 
of the address coming from the MCU. In normal systems, the address outputs from 
the MCU enable a specific location in a memory device so the data presented to the 
MCU is specifically related to the address. The TILOP works in conjunction with the 
LlR pin to allow testing of illegal opcodes on consecutive bus cycles rather than re­
quiring the time-consuming interrupt service normally associated with illegal opcodes. 
One consequence of the implementation of this function is that the address bus begins 
to decrement after the first illegal opcode is detected at the data bus. Since there is 
no cause-effect relationship between address and data on the factory test equipment, 
this unusual address bus activity poses no difficulty for factory testing of illegal op­
codes. However, this unusual address bus activity makes the illegal opcode test func­
tion unusable in a normal system. 

OCCR - Output Condition Code Register Status to Timer Port 
Writable only while SMOD equals one 

1 = The condition code register bits, H, N, Z, V, and C, are driven out of the five 
most significant bits of port A (bits 7-3, respectively), which allows the CPU 
operation to be verified without the burden of complex branching routines. 

NOTE 

While OCCR is set to one, the internal 8K ROM is disabled, regardless 
of the states of the ROMON bit in the CON FIG register or the TCON bit 
in the TEST1 register. 

0= Function disabled; port A operates as in normal modes. 

CBYP - Timer Divider Chain Bypass 
Writable only while SMOD equals one 

3-12 

1 = The 16-bit free-running timer is divided into 8-bit halves, and the prescaler is 
bypassed. The E clock directly drives both halves of the timer. This function 
greatly reduces testing time for the main timer system. 

0= Timer system operates normally. 

M68HC11 REFERENCE MANUAL MOTOROLA 



DISR - Disable Resets from COP and Clock Monitor 
Writable only while SMOD equals one; forced to zero if SMOD equals zero 

1 = Regardless of other control bit states, the COP and clock mon,itor systems do 
not generate a system reset. This function assures that testing operations are 
not interrupted by the COP or clock monitor protection mechanisms. 

0= COP and clock monitor resets operate normally. 

NOTE 

Users of the special bootstrap mode often forget that this bit is reset to 
a one in the bootstrap mode. If a bootloaded program uses one of these 
reset functions, this bit must be explicitly cleared by the loaded program. 
This is probably the only test-related control bit that is of interest to the 
user. 

FCM - Force Clock Monitor Failure 
Writable only while SMOD equals one 

1 = Writing a logic one to this location generates an immediate clock monitor failure 
reset if the clock monitor enable (CME) bit in the OPTION register is also set. 

0= System operates normally. 
The DISR control bit has priority over this bit and inhibits the forced reset functions. 

FCOP - Force COP Watchdog Time-Out 
Writable only while SMOD equals one 

1 = Writing a logic one to this location generates an immediate COP failure reset 
if either the NOCOP bit in the CON FIG register is zero or the TCON bit in the 
TEST1 register is one. 

O=System operates normally. 
The DISR control bit has priority over this bit and inhibits the forced reset functions. 

TCOI'Jj - Test Configuration 
Writable only while SMOD equals one 

1 = Overrides the specifications in the CON FIG register so that COP is enabled and 
ROM and EEPROM are in the memory map. If the OCCR bit is set to one, ROM 
is removed from the memory map, regardless of other control bits. 

0= Configuration options are controlled by the. CONFIG register. 

3.5.2 "test-Related Control Bits in the BAUD Register 

The following register and paragraphs describe the two test-related control bits in the SCI 
baud-rate (BAUD) control register. These bits, which are only accessible in the special 
modes, revert to zeros if the mode is changed to a normal mode. Because no read path 
is implemented for these two bits, they always read zero, even after they are written to 
one in a special mode. 

TelR SCPl SCPO RCKB SCR2 

RESET: 

MOTOROLA M68HC11 REFERENCE MANUAL 

SCRl SCRO 
BAUD 
5102B 

3-13 



• 

TCLR - Clear Baud-Rate Timing Chain 
Writable only while SMOO equals one. Writing a one to this bit triggers a reset of the 
baud-rate counter chain. This bit always reads zero. 

RCKB - SCI Baud-Rate Clock Test 
Writable only while SMOO equals one. Writing aone to this bit enables a baud-rate 
clock test using the P01 pin. When this baud-rate test function is enabled, the exclusive­
OR of the SCI receive clock (16 times the baud rate) and the SCI transmit clock (one 
times the baud rate) is driven out the P01 pin so it can be monitored by factory test 
equipment. This bit always reads zero. 

The other bits in this register are related to the asynchronous SCI (see SECTION 9 ASYN­
CHRONOUS SERIAL COMMUNICATIONS INTERFACE.) 

3.5.3 Special Test Mode 

The special test mode is primarily intended for Motorola internal production testing; how­
ever, there are a few cases where the user can utilize the test mode. These special cases 
include programming the CON FIG register, programming calibration data into the EEPROM, 
and development situations such as emulation and debug. Since the mode control bits 
can be written in test mode, it is possible to come out of reset in special test mode, check 
the contents of the CON FIG register, and then switch to a normal operating mode to re­
enable the automatic protection mechanisms. This trick is also useful for a first-time turnon 
situation where the contents of the CON FIG register might not be known. Except for these 
few limited cases, the MC68HC11A8 should not be in test mode in a user's application. 

Because the test mode overrides several automatic protection mechanisms or allows them 
to be overridden, there are risks associated with these modes of operation. For example, 
by default the COP and clock monitor are disabled in special modes. Also in special modes, 
the $00 opcode is a legal opcode, which causes the address bus to become an uninter­
ruptable 16-bit counter (useful for testing but a disaster in a real application). Several of 
the test functions are included in this category. Such risks must be weighed against what­
ever benefit is being derived from using special test or bootstrap operating mode. 

One important use of the test mode is to allow programming of the CONFIG register and/ 
or EEPROM. Since the reset and interrupt vectors are fetched from the user's external 
memory at the $BFCO-$BFFF area, it is not necessary for the user to know if internal ROM 
is on or off. Even if the COP watchdog is enabled in the CON FIG register, there is no need 
to service it because COP resets are inhibited in special modes. The program needed to 
change EEPROM data could be as simple as the program shown in Example 3-1 (see 3.6 
TEST AND BOOTSTRAP MODE APPLICATIONS). which just reprograms the CONFIG reg­
ister to a fixed value; it could be as complex as a complete monitor, similar to the BUFFALO 
monitor, which would allow interactive examination and modification of EEPROM data. 

The test mode is useful in the debug phase of a project. In test mode, the data from reads 
of internal addresses can be seen on the external data bus. This function is called IRV and 
is useful for debugging with a logic analyzer or bus state monitor. In normal operating 
modes, IRV is disabled since it could interfere with external circuitry. For example, if an 

3-14 M68HC11 REFERENCE MANUAL MOTOROLA 



external 32K-byte EPROM were mapped at $8000-$FFFF, it would overlap the internal 
EEPROM from $B600-$B7FF. The easiest decode logic would be to select the external 
EPROM when A 15 and R/W are both high, which is perfectly legal and reasonable for the 
MC68HC11A8 operating in normal expanded mode. Although the external EPROM is se­
lected for reads of the internal EEPROM, the read data from the external data bus is ignored, 
and the CPU receives valid, internal EEPROM data. If the IRV function were allowed in 
normal mode, this example would result in a direct contention between the read data from 
the internal EEPROM, which is driven out the data bus for visibility, and the read data from 
the external EPROM. To overcome this contention, more complex decoding would be 
required for the external devices. A mass-produced product should not bear the cost of a 
debug feature; the more complex decoding belongs in the low-volume emulator tool where 
IRV will be used. 

3.5.4 Special Bootstrap Mode 

When the MCU is reset in the special bootstrap mode, a small on-chip ROM is enabled at 
address $BF40-$BFFF. The reset vector is fetched from this bootstrap ROM, and the MCU 
proceeds to execute the firmware in this ROM. The program in this ROM initializes the on­
chip SCI system, checks for a security option, accepts a 256-byte program through the SCI, 
and then jumps to the loaded program at address $0000 in the on-chip RAM. There are 
almost no limitations on the programs that can be loaded and executed through the boot­
strap process. 

While the MCU is operating in bootstrap mode, the MDA control bit can be written; thus, 
it is possible to turn on the multiplexed expansion bus. This possibility makes the bootstrap 
mode useful in both single-chip and expanded systems. In some systems, it may be nec­
essary to disable the bootstrap ROM by writing a zero to the RBOOT control bit to allow 
access to external devices in $BF40-$BFFF. If the bootstrap ROM is disabled, it is necessary 
for the user to externally provide reset and interrupt vectors at $BFCO-$BFFF or switch the 
SMOD control bit back to zero so interrupt and reset vectors return to $FFCO-$FFFF. 

3.5.4.1 LOADING PROGRAMS IN BOOTSTRAP MODE. This section describes the boot­
loader firmware in the standard MC68HC11A8. When the security mode is not specifically 
requested, it is disabled at the mask level so it will not be invoked accidentally. In these 
cases, the program steps, which check for security and optionally erase the EEPROM and 
CON FIG register, are not included in the bootloader program. On some early production 
units before 1988, the security checks were included even on parts having the security 
mode disabled in the mask. Also, the security feature was enabled in the mask of some 
parts where the security feature was not specifically requested. 

The bootloader ROM program initializes the SCI so that the receiver and transmitter are 
enabled and the baud rate is E clockl16/16 (7812 baud if E = 2 MHz). If the security feature 
is present and enabled, $FF is transmitted. The EEPROM is then erased. If the erasure was 
unsuccessful, $FF is again transmitted, and erasure is attempted again. After successful 
erasure of EEPROM, the RAM is written over with $FF, and the CONFIG register is erased. 
Only after all of these operations are successful, can the bootloading process continue as 
if the part were never secured. 

MOTOROLA M68HC11 REFERENCE MANUAL 3-15 

• 



• 

If the MCU is not secured (or if the previous erase sequence has been completed), a break 
character is transmitted. For normal use of the bootloader, the user then sends a $FF 
character at a baud rate of either E clock/16/16 (7812 baud if E = 2 MHZ) or E clock/16113 
(1200 baud if E = 2 MHz). This initial character is used to establish the baud rate for the 
rest of the transfer and is not echoed to the transmitter as the remaining characters are. 

The user next downloads 256 bytes of program data, which wi" be put into on-chip RAM 
beginning at address $0000. If the program to be loaded is less than 256 bytes, dummy 
characters must be sent to make a total of 256 bytes. These 256 characters are echoed out 
the SCI transmitter for the user to option'a"y verify that they were received correctly. When 
the bootloader program receives the 256th byte, a jump is executed to location $0000, and 
the loaded program gains control. 

Future M68HCll Family derivatives could have additional features in the bootloader pro­
gram. One such feature is a variable-length download rather than the fixed-length, 256-
byte download on the MC68HCllA8 version. This feature will probably be included on 
M68HCll members that have more than 256 bytes of on-chip RAM. The MC68HCll E9 
version has 512 bytes of RAM and includes a variable-length download. 

3.5.4.2 EXECUTING USER PROGRAMS IN BOOTSTRAP MODE. An often overlooked as­
pect of the bootstrap mode is that the bootloader firmware in the bootstrap ROM executes 
after reset but before the user's downloaded program begins. Many users make the mistake 
of assuming all registers and liD pins are still in their reset state when their downloaded 
program starts. Actually, the bootloader firmware has made some significant changes to 
the reset state of the MCU in the course of its operation. Because the SCI receiver and 
transmitter have been enabled, the user must disable them if the POO or POl pins are to 
be used as general-purpose liD pins. The port 0 wired-OR mode (OWOM) control bit in 
the SPCR has been written to one so the port 0 outputs (especially P01/TxO) would operate 
as open-drain outputs during the download. This OWOM bit must be written back to zero 
if the user wants any port 0 pins to act as push-pull outputs. 

Because the bootstrap mode is a special mode, test-related functions are enabled. The 
OISR control bit is a one, which disables the COP watchdog and clock monitor functions. 
As long as the SMOO control bit is a one, all reset and interrupt vectors are located in 
$BFCO-$BFFF rather than $FFxx. A user's program may have to change some of these 
control bits. 

Special attention should be paid to the circuitry connected to the P01/TxO pin if the boot­
strap mode variation is used. Since the bootloader firmware enables the SCI transmitter, 
the POl pin is forced to operate as an output. To minimize limitations on external circuitry 
on the POl pin, port 0 is also configured for wired-OR operation to make it look like an 
open-collector-type output during downloading. Most users will use the P011TxO pin as a 
serial data output line; therefore, no conflict will occur between the bootstrap use of POl 
and the user's use of this pin. If the application uses the POl pin as an input to detect a 
switch or contact closure, there is still no conflict, although the user could not use the 
verify feature of the bootloader program if the POl pin happened to be driven low during 
the download. 

3-16 M68HC11 REFERENCE MANUAL MOTOROLA 



A downloaded program can jump back to the beginning of the bootstrap ROM, causing a 
new program segment to be serially downloaded. The downloaded program might also 
contain a routine to read information into the MCU over the SPI interface or from a parallel 
1/0 port. The loaded program can even turn on the multiplexed expansion bus to gain 
access to external memory or peripheral devices. Users are limited only by their imagination. 

3.5.4.3 USING INTERRUPTS IN BOOTSTRAP MODE. The reset and interrupt vectors for 
the bootstrap mode are located in the bootstrap ROM at $BFCO-$BFFF. Although this ROM 
is mask programmed, it is impossible to know in advance where a user's service routines 
will be located. To allow users to use their own service-routine addresses, a system of 
pseudo-vectors is included for bootstrap mode. Specific RAM addresses are coded in the 
actual vector locations of the bootstrap ROM (see Table 3-3). These RAM locations are 
called pseudo-vectors because they can be used like vectors to direct control to interrupt 
service routines. Each pseudo-vector is allowed three bytes of space, rather than the two 
bytes for normal vectors, because an explicit jump (JMP) opcode is needed to cause the 
desired jump to the user's service-routine address. For example, to use the SWI, a jump 
instruction to the user's SWI service routine would be placed in RAM at addresses $00F4, 
$00F5, and $00F6. When an SWI request is encountered, the registers are stacked, and the 
vector in the bootstrap ROM pass control to $00F4, which, in turn, contains a jump instruc­
tion to the user's SWI service routine. 

Table 3-3. Bootstrap Mode Pseudo-Vectors 

Address Vector Name Address Vector Name 

00C4-00C6 SCI 00E5-00E7 Timer Input Capture 2 

00C7-00C9 SPI 00E8-00EA Timer Input Capture 1 

OOCA-OOCC Pulse Accumulator Input Edge OOEB-OOED Real-Time Interrupt 

OOCO-OOCF Pulse Accumulator Overflow OOEE-OOFD IRQ 

0000-0002 Timer Overflow 00F1-00F3 XIRQ 

0003-0005 Timer Output Compare 5 00F4-00F6 SWI 

0006-0008 Timer Output Compare 4 00F7-00F9 Illegal Opcode 

0009-000B Timer Output Compare 3 OOFA-OO~C COP Fail 

OOOC-OOOE Timer Output Compare 2 OOFD-OOFF Clock Monitor Fail 

OOOF-OOEl Timer Output Compare 1 BF40 Reset (Bootloader Start) 

00E2-00E4 Timer Input Capture 3 

3.5.4.4 BOOTLOADER FIRMWARE OPTIONS. The designers of the MC68HC11A8 antici­
pated the need for a practical way to force the MCU to jump directly into EEPROM after a 
reset, but they wanted to avoid special modes that would make the part more difficult to 
understand. As a compromise, the bootloader firmware provides for this direct jump to 
EEPROM. After initializing the SCI and port D, the bootloader looks for the $FF character 
that will determine the baud rate for the download. If a break character is received at this 
point, instead of the $FF, an immediate jump to the start of EEPROM ($B600) is executed. 
Since the bootloader already transmits a break character, the user can tie the RxD and TxD 
pins together and to a pullup resistor, and then reset the part in special bootstrap mode. 

MOTOROLA M68HC11 REFERENCE MANUAL 3-17 

• 



.. 

This procedure will cause a direct jump to EEPROM at $8600. Tying the RxD line low will 
not accomplish the same result because a high-to-Iow transition is required to indicate the 
beginning of a start bit (see SECTION 9 ASYNCHRONOUS SERIAL COMMUNICATIONS 
INTERFACE). 

There is a small delay (a few milliseconds) between the reset and the start of the program 
in EEPROM due to the time required for the SCI preamble and break characters. The user 
should not be concerned about running out of time to access the time-protected control 
bits because bootstrap mode is a special mode and the protections are overridden until 
the SMOD control bit is written to zero. CGlnsider the current state of SCI and port D controls 
as well as the DISR control bit in the TEST1 control register, which disables COP and clock 
monitor resets. It may be necessary for the program in EEPROM to change these bits. The 
stack pointer is initialized as one of the first actions in the EEPROM program (good practice 
in almost all programs). It is advisable to initialize the illegal opcode pseudo-vector to help 
prevent program runaway in the event of an error in the EEPROM program or a misread 
opcode. 

Another bootloader firmware option allows a direct jump to the start of RAM, but this 
feature is probably not very useful to the user since it assumes there is already a meaningful 
program in the internal RAM at the time of reset. This option is invoked by sending a $55 
character to the SCI instead of the $FF or break characters previously described. This $55 
character can only use the E clock/16/16 (7812 baud for E=2 MHz) rate since it takes the 
place of the $FF character, which could have changed the baud rate. This feature allows 
for testing the MCU for proper single-chip mode operation when the E-clock frequency is 
beyond the capability of the multiplexed expansion bus. Test equipment can reset the MCU 
in special test mode (at a legal expansion bus frequency) and parallel load a program into 
RAM. The tester can then reset the MCU in bootstrap mode (at a higher clock frequency) 
and .serially send the $55 character to cause a jump to the start of RAM. This procedure 
takes significantly less time than using the normal bootloading procedure to serially load 
256 characters. Since the program segments are limited in size by the amount of on-chip 
RAM, the time required to load enough program segments to fully test the MCU would 
make such testing too expensive for all but a very few applications. 

3.6 TEST AND BOOTSTRAP MODE APPLICATIONS 

Most users are familiar with the uses for normal operating modes, but the special test and 
special bootstrap modes may be new. In this section, an example is presented to stimulate 
the user's imagination. After examining this example, some users will think of ways these 
special mode variations can help in their applications. 

Example 3-1: Programming CONFIG (Uses Special Test Mode) 

This example demonstrates how the special test mode can be used to program the EEPROM­
based CONFIG register. Current versions of the M68HC11 Family require the MCU to be 
in one of two special modes to program the CON FIG register. 

There are several reasons why a user might want to change the CON FIG register. Suppose 
the user has an MC68HC811 E2 and would like to experiment with it in an expanded system 

3-18 M68HC11 REFERENCE MANUAL MOTOROLA 



such as an MC68HC11 EVB evaluation board. As shipped from Motorola, the MC68HC811 E2 
part is not compatible with the memory map of the EVB. The EEPROM must be disabled 
by programming the EEON bit to zero, or the upper four bits of CONFIG must be changed 
to relocate the EEPROM away from EVB resources. Suppose the user is finished with initial 
debugging and wants to enable the COP watchdog system by programming the NOCOP 
bit in CON FIG to zero. Perhaps the CON FIG registers in some of the user's parts have been 
corrupted during initial experimentation. Some users forget to control reset during power 
transitions; thus, the CONFIG register could be corrupted due to program runaway when 
VDD is too low to allow proper operation. When this runaway happens, the part is not 
defective; it needs to have the CON FIG register changed back to the proper value. 

The schematic diagram shown in Figure 3-1 is a relatively simple expanded-mode system 
that can be operated in special test mode. By removing the jumper that pulls MODB low, 
this board can also be used in normal expanded mode. An interesting feature ofthis system 
is that the external EPROM appears in the memory map at $AOOO-$BFFF and again at 
$EOOO-$FFFF because address line A14 is left out ofthe address decode. This feature makes 
reset vectors in the highest locations of the EPROM appear the same to the MCU whether 
the MCU is reset in special test mode or normal expanded mode with the internal ROM 
disabled. Several subtle benefits to this feature are evident. First, it means no decode 
changes are needed to alternate between normal mode and special test operation of the 
board. In fact, after a reset in special test mode, software can change to normal expanded 
mode, and the reset and interrupt vectors are still available in the external EPROM. If the 
internal8K-byte ROM has a useful program in it (and internal ROM is enabled), the external 
EPROM can be used for additional program memory. Of course, when the CPU reads an 
internal ROM address, it sees valid internal ROM data even though the external data bus 
has data from the external EPROM. As long as the IRV function is not enabled, there is no 
conflict between the internal 8K ROM and the external EPROM. 

In Example 3-1, the program shown in Figure 3-2 is programmed into the external 2764-
type EPROM. When the board is turned on, this small program reads the eight-part switch 
that is wired to the port E pins. If the CON FIG register is different, it is reprogrammed to 
match the switches. Because the EEPROM is subject to wear-out (after thousands of write­
erase cycles), it should not be erased and reprogrammed unless it is incorrect. Since this 
program is intended to be very simple, it does not check to see if the change was successful. 

This program could be modified to include the ability to check the results. The security 
feature offers some challenges - for example, if security mode is being enabled, it is not 
possible toverify the CONFIG value in this setup. A reset is required to get the CONFIG 
value transferred into the readable working register, and the part can only be reset in 
single-chip modes after security is enabled. If the secured part is reset while MODB is low, 
it comes up in special bootstrap mode (MODA pin is ignored due to security). When reset 
in bootstrap mode, the EEPROM and CONFIG register are automatically erased, which is 
self-defeating. Presumably, a user has a meaningful program in internal ROM before the 
security bit is finally enabled, which provides for orderly program execution in normal 
single-chip mode. The user then verifies that security is enabled by a checking function in 
that internal software. Another way to check for security is to attempt to reset the part in 
normal expanded mode. If security is not enabled, the AS/STRA pin acts as an address 
strobe that clocks at the E-clock frequency even while RESET is still low (part does not 
have to be out of reset to check for security). If security is not activated, the AS/STRA pin 
acts as the strobe A high-impedance input. 

MOTOROLA M68HC11 REFERENCE MANUAL 3-19 

.. 



• 

3-20 

EM SYST 
POWE R 

v 
MC68HC11AS 

I~D 

VDD 
10KTYP 

PAOnC3 

PA111C2 
,'A' 

1 flF lo.o1 flF 

VDD PA2IICO 

+ PA3/0CS/OC1 f--
-'- PA4/0C4/0C1 :--
- r;"O flF T T PAS/OC3/OC1 :--

VSS,> PA6/OC2lOC1 f--

-'--
PA7/PAIIOC1 

-
EXTAL 

ADO 

10M 
AD1 

XTAL AD2 

H;~ 
AD3 

AD4 

18 pF ADS 

l 1SP~ 
AD6 

AD7 
- -- - AS 

TO VDD Rfil • E 

~ 4.7K 
IN 

AS 
RESET RESET A9 

MC34064 A10 
GND 

A11 

~ A12 

- VDD A13 

~ 4.7K A14 :--
J..A XIRQ A1S 

!.7K 
IRQ PDOlRxD YV-

PD1ITxD 

!.~K PD2IMISO 

CUT MODNUR PD3/MOSI 
JUMPER FOR 4.7K PD41SCK 

NORMAL MODE 1 PDStSS 
~~ MODBNSTBY 

~~ 
10K TYP 

PEO/ANO 
- PE1/AN1 

VDO PE2/AN2 

t 1K PE3/AN3 

F-
VRH PE4/AN4 

PES/ANS 

VRL PE6/AN6 

PE7/AN7 
-

Figure 3-1. Schematic for Figure 3-2 (Sheet 1 of 2) 

M68HC11 REFERENCE MANUAL 

ADO 

AD1 

AD2 

AD3 

AD4 

ADS 

AD6 

AD7 

AS 

Rfil 

E 

AS 

A9 

A10 

A11 

A12 

A13 

A1S 

PEO 

PE1 

PE2 

PE3 

PE4 

PES 

PE6 

PE7 

MOTOROLA 



ADO 
AD1 

AD2 

AD3 

AD4 
AD5 

AD6 

AD7 

AS 

Aiii 
E 

AS 

A9 

A10 
A11 

A12 

A13 

A15 

DO 

D1 

D2 

D3 

D4 
D5 

D6 

D7 

• 
10K TYP 

o ~ 
'" M " "' '" r-oo a a a a a a 

74HC373 

DO QO AO 

D1 Q1 A1 

D2 Q2 A2 

D3 Q3 A3 

D4 Q4 A4 

D5 Q5 A5 

D6 Q6 A6 

D7 Q7 A7 

LE 6E~ 

~--
E ~OE 

~ es 
A15 HCOO r-

10K TYP 

AS 

A9 
A10 

A11 

A12 

DIP 
SWITCH 

PEO --iHHHHH-;~>-<Y­
PE1 --iHHHH-;~I---<Y­

PE2--iHHH-;~I-----<~ 

PE3--i~~~~I-------<~ 

PE4 --i~~H"-'-------<~ 

PE5 ---iHH..-.-------<y­
PE6 ---iH ...... ----------<y­
PE7--~~--------<~ 

DATA BUS 

AO 
AO DO 

A1 A1 D1 

A2 
A2 D2 

A3 
A3 D3 

A4 A4 D4 

A5 A5 D5 

A6 A6 D6 

A7 A7 D7 

AS 
AS 

A9 A9 

A10 A10 

A11 A11 

A12 A12 

6E 
es 
SK XS EPROM 

ADDRESS BUS 

Figure 3-1. Schematic for Figure 3-2 (Sheet 2 of 2) 

MOTOROLA M68HC11 REFERENCE MANUAL 

DO 
D1 

D2 

D3 
D4 

D5 

D6 

D7 

3-21 



• 

3-22 

*********************************************************************** 
* Example 3-1 - 65 bytes total * 
* * 
* This example program uses the hardware setup in figure 3-1 in test * 
* mode. After reset the CONFIG register is checked against port E. * 
* If it is different, CONFIG is erased and reprogrammed to the port E * 
* value. $30 is written to port A and the program ends. * 
*****************************************'****************************** 

ORG $ACOO 

Ex31A LDS #$OOFF 
BSR DLY10 
LDAA $100A 
ANDA #$OF 
CMPA $103F 
BEQ NOWOK 

Start of external EPROM 

Establish top of stack 
Allow charge pump to stabilize 
Read port E DIP switches 
Mask off upper 4 bits (not imp1imented on 'AS) 
See if CONFIG is same 
If already OK 

* Not OK so first erase CONFIG 

* Now 

LDAB #$06 
STAB $103B 
STAA $103F 
INCB 
STAB $103B 
BSR DLY10 
CLR $103B 

reprogram CONFIG 
LDAB #$02 
STAB $103B 
STAA $103F 
INCB 
STAB $103B 
BSR DLY10 
CLR $103B 

* Programming complete 
NOWOK LDA #$30 

STAA $1000 
BRA * 

* 

Bulk Erase, and EELAT on 
Write to PPROG register 
Write to CONFIG address (any data) 
To $07 - turns on EEPGM bit 
Write to PPROG register 
Delay 10 mS for erase to complete 
Turn off charge pump (EEPGM to 0) 

with data from port E (still in A-reg) 
Turn on EELAT 
Write to PPROG register 
Write port E data to CONFIG address 
To $03 - Turns on EEPGM bit 
Write to PPROG register 
Delay 10 mS for erase to complete 
Turn off charge pump (EEPGM to 0) 

but you'can't check results till next reset 

You are done (check with scope) 
Branch to self (hangs till pwr off or rst) 

* PROGRAM END 

* 
subroutines follow 

*** 
* DLY10 - Subroutine to delay 10mS (for E=2MHz) 

*** 
DLY10 PSHX 

LDX #$OD06 
DLOOP DEX 

* 

BNE DLOOP 
PULX 
RTS 

Save X (not required in this ex I just do) 
3334 * 6- * 500nS/- = 10mS 
[3] # in []s is cycles for that instruc 
[3] cont. for 3334 times (loop time = 6-) 
Recover X value 
** RETURN ** 

* Establish a reset vector 

* 
ORG 

RESET FDB 
$BFFE 
$ACOO Point to start of program 

Figure 3-2. Program to Check/Change CONFIG 

M68HC11 REFERENCE MANUAL MOTOROLA 



SECTION 4 
ON·CHIP MEMORY 

The MC68HC11A8 includes on-chip random-access memory (RAM). read-only memory 
(ROM). and electrically erasable programmable ROM (EEPROM) memories. The on-chip 
RAM is a fully static read-write memory used for storage of variable and temporary infor- • 
mation. The MC68HC11A8 has 256 bytes of RAM; whereas, other members of the M68HC11 
Family include more or less RAM (MC68HC11 E9 has 512 bytes of RAM and MC68HC11D3 
has 192 bytes of RAM). Members of the M68HC11 Family include various amounts of on-
chip mask-programmed ROM. The MC68HC11A8 has 8K bytes of user ROM, the MC68HC11 E9 
has 12K bytes, and the MC68HC11 D3 has 4K bytes. This ROM is used for storage of user 
program instructions and fixed data. Some members of the M68HC11 Family have this 
internal ROM disabled, and the user programs reside in external memories. The last major 
memory system on the M68HC11 is the EEPROM. The MC68HC11A8 includes 512 bytes of 
EEPROM; whereas, other members of the M68HC11 include as much as 8.5K bytes of 
EEPROM. Data can be programmed into the EEPROM or erased from the EEPROM under 
software control. No power supplies other than the normal VDD (5 Vdc) supply are needed 
for programming or erasure of the 512 bytes of on-chip EEPROM in the MC68HC11A8. No 
power supplies are required to maintain the contents of this memory. This memory is 
commonly used for semipermanent information such as calibration tables, personality data, 
or product history information. The EEPROM can also be used for program memory; 
furthermore, the nonvolatile nature of this EEPROM supports programs that can adapt to 
changing conditions . 

. 4.1 ROM 

The primary use for on-chip ROM is to hold the user's application program instructions. 
Since these instructions are programmed into the microcontroller unit (MCU) when it is 
manufactured, they cannot be changed. A user develops the application program and 
debugs it before ordering production MCUs. The user places an order for production units 
with the pattern of instructions and data to be programmed into the on-chip ROM. Motorola 
then translates this pattern into a photographic mask to be used during processing of 
silicon wafers. Motorola then produces a small batch of these parts and returns them to 
the customer for verification. These units are called ROM verification units (RVUs). After 
customer approval of these RVUs, Motorola begins full production of these customized 
MCUs. The RVUs, processed on a quick turnaround basis, are not tested to environmental 
extremes because their sole purpose is to demonstrate that the customer-requested ROM 
pattern was properly implemented. 

The on-chip program ROM can be disabled by an EEPROM-based control bit in the con­
figuration control (CON FIG) register. When the program ROM is disabled, it uses up no 
space in the 64K-byte memory space, and an external memory is used for program in­
structions. ROM less versions of the M68HC11 Family, such as the MC68HCllA 1, actually 

MOTOROLA M68HC11 REFERENCE MANUAL 4-1 



II 

have on-chip ROM, but the ROM is disabled by the enable on-chip ROM (ROMaN) control 
bit equals zero in the CON FIG register. 

The MC68HC11A8 actually has two separate on-chip ROM memories - the 8K-byte user 
ROM, which is available for user-defined programs, and a separate 192-byte ROM, called 
the bootloader ROM. This bootloader ROM controls the bootstrap loading process of the 
special bootstrap mode. In normal modes of operation, the bootloader ROM is disabled 
and uses no space in the 64K-byte address space of the MCU. During expanded test mode, 
the bootloader ROM can be enabled for testing but is not in the memory map after a reset 
until/unless the test program software enables it. In special bootstrap mode, the bootloader 
ROM is enabled at $BF40-$BFFF by default out of reset, and the reset vector in this ROM 
at $BFFE,BFFF vectors to the bootloader program in this ROM. 

The bootloader program is also involved with the security feature that allows a user to 
protect the contents of EEPROM and RAM from being read by software pirates. When the 
security option is enabled, the MCU can only be reset in normal single-chip mode or special 
bootstrap mode. In normal single-chip mode, the reset vector is located in the on-chip 8K­
byte ROM, and the user's program controls all program actions. Since there are no external 
address or data buses, a pirate could not see what is in the internal EEPROM or RAM 
memories. In special bootstrap mode, the reset vector is located in the on-chip bootloader 
ROM, and the bootloader program is in control. The bootloader program checks the security 
enable control bit before proceeding to the program downloading step. If security is en­
abled, the entire EEPROM and RAM are erased before downloading continues. After the 
EEPROM and RAM have been erased and verified, the CONFIG register (which contains 
the security enable control bit) is erased, and downloading can proceed. For additional 
information about the CON FIG register and security option, refer to 3.2 EEPROM-BASED 
CON FIG REGISTER. SECTION 3 CONFIGURATION AND MODES OF OPERATION also in­
cludes additional details about modes of operation. 

4.2 RAM 

This subsection discusses the on-chip RAM of the MC68HC11A8. This 256-byte RAM can 
be mapped to the beginning of any 4K block in the 64K-byte address space. The methods 
and reasons for this remapping are discussed; two methods of RAM standby are also 
discussed. 

4.2.1 Remapping Using the INIT Register 

By default, the on-chip RAM is located in the first 256 locations ($OOOO-$OOFF) of the 64K­
byte memory map. In many (but not all) cases, this location is good for the on-chip RAM. 
The first 256 locations in memory are accessible using the direct addressing mode, which 
assumes the upper byte of the 16-bit address is $00. Since the direct addressing mode can 
address these locations with a one-byte address rather than a two-byte address, each such 
instruction saves a byte of program memory space and a cycle of execution time compared 
to the same instruction using expanded addressing mode. Depending upon the application, 
maximum efficiency can be achieved by having RAM, I/O registers, or both in this premium 
address space. 

4-2 M68HC11 REFERENCE MANUAL MOTOROLA 



The position of RAM in the 64K address space is controlled by the RAM and I/O mapping 
(lNIT) register. The upper four bits of INIT (RAM3-RAMO) specify the upper four bits of the 
16-bit RAM addresses. At reset, the RAM3-RAMO bits are forced to zero so the RAM is 
initially located at $OOOO-$OOFF. By writing some other value to the INIT register, the RAM 
can be relocated to the beginning of any 4K page in the 64K-byte address space. In normal 
operating modes, the INIT resister is protected so that it can only be changed within the 
first 64 cycles after reset. For more detailed information about the INIT register, see 3.3.1 
RAM and 1/0 Mapping Register (lNIT). 

4.2.2 RAM Standby 

There are several purposes for a RAM standby function. In battery operated systems, the 
RAM standby function provides a way to conserve limited battery power during times of 
MCU inactivity, which increases the effective time the system can operate without battery 
charging or replacement. In systems using a municipal electric system as the primary 
source of power, operating power is not usually a major issue, but power interruptions 
can be. There may be enough energy stored in regulator filter capacitors to allow a system 
to operate for some period of time after primary power is lost. The system current drain 
determines how long the stored energy can maintain the system. By detecting the loss of 
primary power and changing to a low-power standby mode, the MCU system can be 
maintained through longer power interruptions. After the interruption, the system can 
decide whether to continue operation or to perform a complete reset initialization. In other 
municipal-powered systems, it may be useful to maintain a limited amount of information 
during very long interruptions of primary power. In such cases, a separate standby power 
source based on a battery could be used to maintain the contents of RAM while the system 
is nonoperational. 

The on-chip RAM of the M68HCll Family is fully static; there are two ways RAM contents 
can be maintained while reducing system power consumption to very low levels. The 
easiest method for low-power RAM standby is the software-based STOP mode. The alter­
nate method uses the MOOBIVSTBY pin for standby power in a mostly hardware approach. 
Since the entire MCU, including RAM, is fully static, there is no minimum oscillator clock 
frequency. In complementary metal oxide semiconductor (CMOS) integrated circuits, power 
supply current is directly proportional to operating frequency; thus, only very small leakage 
currents exist when clocks are stopped. This is the basis for the STOP method of RAM 
standby. When the MCU is stopped, all CPU registers, control and I/O registers, and all 
RAM contents remain unchanged as long as VOO is present. 100 for the MCU is reduced 
to a few microamps when MCU clocks are stopped. 

In some systems,there may be other circuitry powered from VOO that cannot be easily 
placed in a low-power standby mode. In these systems, VOO must be turned off to reduce 
system power drain. The MOOBIVSTBY method of RAM standby allows VOO to be removed 
without losing the contents of on-chip RAM. This method is more hardware intensive 
because it involves a second power supply and associated problems. In CMOS systems, 
it is possible to power an integrated circuit through an I/O pin because, on some I/O pins, 
there is an inherent diode between the pin and the internal VOO. In some CMOS systems, 
even the sequencing of power supplies is critical, which implies using caution whenever 
there is more than one power supply in a system. Although the sequencing of VOO relative 

MOTOROLA M68HC11 REFERENCE MANUAL 4-3 

• 



to MOOBIVSTBY is not important on the MC68HC11A8 itself, the sequencing may be 
important to any other CMOS device in the system exposed to both VOO and VSTBY. 

Several I/O pins on the MCU should not have voltage on them while VOO is off. Any pin 
having the source or drain node of a P-channel device in the on-chip circuitry connected 
to this pin has an inherent diode to VOO. If such a pin were connected to a signal powered 
by VSTBY rather than VOO, the entire VOO network would be powered by VSTBY through 
the inherent diode. Powering the VOO network in this way may result in unexpected op­
eration of the system and definitely results in more load on the VSTBY supply than ex­
pected . 

• 4.3 EEPROM 

The MC68HC11A8 was the first MCU to include CMOS EEPROM. This 512-byte EEPROM 
memory can be used in the same ways ROM would be used, but some interesting pos­
sibilities arise that are not possible with ROM or RAM memories. A simple example is to 
store a unique serial number in the EEPROM of each finished product. Once information 
is programmed into the on-chip EEPROM, it remains unchanged even if VOO power is 
removed indefinitely. Unlike information in ROM, information in EEPROM can be erased 
or reprogrammed under software control. Since EEPROM programming and erasure op­
erations use an on-chip charge pump driven by VOO, no special power supplies are needed. 

This subsection describes the operation of the EEPROM on the MC68HC11A8 and explores 
some of its applications. In addition to the 512 bytes of user EEPROM on the MC68HC11A8, 
there is another EEPROM byte (CON FIG register) controlling some basic features of the 
MCU. The CON FIG register and mechanism are described in detail in 3.2 EEPROM-BASED 
CONFIG REGISTER, but some aspects of the EEPROM enable bit (EEON), and the security 
mode disable bit (NOSEC) will be discussed in terms of how they relate to EEPROM. 

The M68HC11 Family of MCUs includes members with various amounts of EEPROM. The 
MC68HC811A8 (emulator for the basic MC68HC11A8) has 8.5K bytes of EEPROM. The 
principles presented here apply specifically to the original MC68HC11A8. Some details of 
EEPROM operation may vary slightly for other members of the M68HC11 Family; however, 
the basic concepts presented here can be extended to explain the operation of these other 
members. 

4.3.1 Logical and Physical Organization 

The logical organization of the 512-byte EEPROM is important for identification of rows 
when using the row-erase feature. The physical organization may be useful in isolating 
problems in rare cases. 

Although some Family members (e.g., MC68HC811 E2) allow remapping of the on-chip 
EEPROM, the 512-byte EEPROM in the MC68HC11A8 is fixed at locations $B600-$B7FF. 
This 512-byte block is logically arranged into 32 rows of 16 bytes each. The first row occupies 
the locations $B600-$B60F, the second row occupies $B61 O-$B61F, etc. EEPROM locations 
can be erased individually (byte erase), in rows of 16 bytes each (row erase), or all 512 
bytes at once (bulk erase). The CONFIG byte is separate from this 512-byte block. Special 

4-4 M68HC11 REFERENCE MANUAL MOTOROLA 



restrictions apply to erasure of the CON FIG EEPROM byte. Figure 4-1 shows the topological 
organization of the 512 bytes of EEPROM in the MC68HC11A8. Figure 4-2 shows the to­
pological arrangement of bits within a byte of EEPROM. 

f ROM ARRAY 

B60F B60E • • • • • • • • • • •• 8601 8600 
862F 8620 
864F 8640 
B66F B660 ~ 
B68F B680 ~ 
86AF 86AO g; 
B6CF B6C0 0 
86EF ARRAY 86EO ~ 
B70F LEFT HALF B700 ~ 
B72F B720 ~ 
B74F B740 0 

B76F B760 ~ 
B78F B780 ~ 
B7AF B7M 0 a: 
B7CF B7CO 
B7EF B7EE •••••••••••• B7E1 B7EO 

86108611 •••••••••••• B61E 861F 
8630 863F 
8650 865F 
8670 867F 
8690 669F 
86Ba 86BF 
8600 86DF 
66FO ARRAY B6FF 
B710 RIGHT HALF B71 F 

B730 B73F 
B750 B75F 
B770 B77F 
B790 B79F 
B7BO B7BF 
B7DO B7DF 
B7FO B7F1 •••••••••••• B7FE B7FF 

CONFIGROW 

COLUMN DECODERS AND SENSE AMPS 

Figure 4-1. Topological Arrangement of EEPROM Bytes (MC68HC11A8) 

FOR LEFT HALF 

---v~5_6_BI ___ T 7 B __ IT_O _1_2---..3 v 4 5 6 BIT; ~IT 7 6 5 4 v,..-3_2 _1_BI ___ T 3 B __ IT_7_6_5_v--O FOR RIGHT HALF 

B601 B600 6610 B611 

Figure 4-2. Topological Arrangement of Bits in an EEPROM Byte 

4.3.2 Basic Operation of the EEPROM 

The following paragraphs briefly describe how the EEPROM operates. Figure 4-3, a con­
densed schematic of the EEPROM array, provides insight into the operation of the EEPROM 
system and illustrates the complexity of a byte-erasable EEPROM. Each byte in the EEPROM 
array consists of 17 transistors, eight floating-gate transistors, a select transistor for each 
floating-gate transistor, and a byte-select transistor. In comparison, an ultraviolet erasable 
EPROM byte requires only the eight floating-gate transistors. 

Figure 4-4 shows an EEPROM bit with important features and nodes labeled. These terms 
will be used in the following explanation of basic EEPROM operations. Figures 4-5, 4-6, 
and 4-7 show an EEPROM byte being erased, programmed, and read, respectively. The 
floating-gate transistor is the storage element in the EEPROM cell. Since the floating gate 
is isolated by thin oxide layers, any charge on this gate remains indefinitely unless a large 

MOTOROLA M68HC11 REFERENCE MANUAL 4-5 

.. 



ROW (0) 

• ROW(N) 

COL (0) 

COLIN) 

V ERASE 

( 

110(1) 

I~(O) 

4-6 

i-- - - -- -- - - -- -- - - - ... _- - - -- -- - - ---, 
: 1 BYTE _J 

, , 
, 

II II -------i II ---
11 

--- II , 
, I , 

1.1 ------11 r--F::; 1.1 ------11 , r--: 1'1 , 1'1 , 
, 
"- ------ --- ---- -------------- - -

I I I 
I I I 
I I I 

J r' 
1/ --- --- u ------I II II 

1 
II 

~=: I, ------11~ I, ------11 1'1 
1 1"1 

II II -------il II II 

I II -------i I, II 

Figure 4-3, Condensed Schematic of EEPROM Array 

BITUNE 

ROW 
SELECT 

FLOATING GATE ) 0 

CONTROL~I 
GATE ~ 

S 

BIT-SELECT 
DEVICE 

FLOATING-GATE 
DEVICE 

ARRAY GROUND 

Figure 4-4, EEPROM Cell Terminology 

M68HC11 REFERENCE MANUAL 

I 
I 
I 

AR RAY 
UNO GRO 

MOTOROLA 



----------------~, 

o 

Vpp--~H_--_+r_--~--~H_----~r_--+r--~H_--_+r_------

vss----~~--~----*---~~----~----.----4----~-----­
ARRAY GROUND 

Figure 4-5. Erasing an EEPROM Byte 

enough field is created, as in programming and erase modes. When a large enough field 
is present, Fowler-Nordheim electron tunneling allows charge to be transferred to or from 
the floating gate, depending on the polarity of the field. In the following discussion, VOO 
is nominally 5 V and Vpp is about 20 V. In the MC68HCllA8, Vpp is developed from VOO 
with an on-chip charge pump; thus, no external high voltages are required. 

In erase mode (see Figure 4-5), the array ground is connected to VSS. The row and column 
selects cause the control gates of the byte(s) being erased to be connected to Vpp. Other 
bytes in the array that are not being erased would have their control gates connected to 
an undriven logic zero. The bit-select devices are all turned on by Vpp on the word lines; 
however, the drains of the bit-select devices are high impedance. Thus, the drains of the 
floating-gate transistors are effectively floating. The high voltage on the control gate of 
the floating-gate transistor is capacitively coupled onto the floating gate. The large field 
between the floating gate and the substrate results in electron tunneling from the substrate 
to the floating gate. After erasure, the floating gate has a negative charge, which keeps 
the floating-gate transistor turned off during reads. If leakage in the floating-gate transistor 
caused the negative charge to leak off so that there was no charge on the floating gate, 
the bit would still read back as one. This fact implies that long-term retention errors cannot 
cause a logic-one bit to deteriorate to a logic zero. 

Figure 4-6 shows an EEPROM byte being programmed to the value $55 (0101 0101) to 
demonstrate the effect of programming both ones and zeros. Since the erased state of an 
EEPROM bit is one, programming a one is the same as doing nothing. Ouring programming, 
the array ground is not driven. The control gates of the byte to be programmed are driven 
to zero through the row-select and column-select path. Control gates for bytes not being 
programmed will be high impedance because the column-select and/or row-select device 
will be off. The bit-select devices are turned on hard because the row select, for the row 
containing the byte being programmed, is driven to Vpp. The bit lines are driven to VOO 
for bits not being programmed (ones) and to Vpp for bits being programmed (zeros). 

For bits not being programmed (ones), the drain of the floating-gate transistor is at VOO, 
and the control gate is at VSS. This configuration does not result in a large enough field 
for tunneling to occur; thus, no charge transfer occurs. 

MOTOROLA M68HC11 REFERENCE MANUAL 4-7 

• 



• 

o 
Vpp 

o 
Vpp 

1 

VDD 

o 
v pp 

o 
Vpp 

1 

VDD 

o 

Vpp--~H_--_+r_--~--~H_----~~--+T--~~--~~------

Figure 4-6. Programming an EEPROM Byte 

ARRAY GROUND 
(NOT DRIVEN) 

For bits being programmed (zeros), the drains of the floating-gate transistors are at VPP - VTN 
(because of the drain-to-source threshold voltage drop across the bit-select device), and 
the control gate is at VSS.This configuration results in a large enough field so electrons 
can tunnel from the floating gate to the drain region of the floating-gate transistor. Since 
the floating gate of a programmed bit has a positive charge, the floating-gate transistor 
will conduct during reads. 

Figure 4-7 shows an EEPROM byte being read. During a read operation, the bit lines are 
precharged to one. Column selects enable the bit lines from the byte being read to the 
sense amp inputs. The row select for the row containing the byte being read is driven to 
VDD to enable the bit-select devices. The array ground is connected to VSS. The floating­
gate devices of programmed bits conduct and pull the corresponding bit lines to zero. The 
floating-gate devices of bits not programmed do not conduct; therefore, the corresponding 
bit lines remain at the precharged level and read as ones. EEPROM operations are actually 
much more complicated than this discussion suggests, but the following general state­
ments may be useful to designers using the EEPROM. 1) Since no high voltages are present 
during read operations, no degradation of data can result from repeated read operations. 

4-8 

,,...-------- PRECHARGE THEN SENSE ------___ , 

o 

VDD--~H_--_+r_--~--~H_----~~--+T--~~--~r_-------

VSS----~~--~----*---~~----~----~---4~--~------­
ARRAY GROUND 

Figure 4-7. Reading an EEPROM Byte 

M68HC11 REFERENCE MANUAL MOTOROLA 



2) Erase operations normally take less time than programming operations. 3) The most 
common EEPROM failure (write ones) is an unintended bit change from one to zero during 
programming of $FF data. This failure occurs during endurance testing as the part ap­
proaches wearout (typically after tens of thousands of write-erase cycles). 4) Retention 
failures result in programmed zeros reverting to ones due to leakage of the floating-gate 
charge. 5) Ones never revert to zeros without an explicit programming operation (though 
the programming operation need not involve any zeros in the pattern being programmed). 

EEPROM programming and erasure involve the movement of charge through a thin oxide 
layer. This charge movement requires a relatively large field to be present for a significant 
length of time (milliseconds). Noise is not likely to cause individual bits to change state . 
Most failures of the EEPROM involve breakdowns due to the relatively high voltages or to 
an oxide degradation phenomenon (trapped charge). After many cycles of programming 
and erasure, charge may become trapped in the thin oxide layers isolating the floating 
gate. This trapped charge causes programming and erase operations to take longer as the 
amount of trapped charge increases. When the cell fails to program to zero in the allotted 
time, it is worn out. In many cases, these bits can still be programmed and erased provided 
the program and erase times are increased. The useful life of an EEPROM byte cannot be 
extended very far by extending the programming time because a worn bit exhibits a 
reduced ability to retain valid zeros for very long time periods. 

4.3.3 Systems Operating below 2-MHz Bus Speed (E Clock) 

The on-chip charge pump that generates Vpp from VDD uses MOS capacitors, which are 
relatively small in value. The efficiency of this charge pump and its drive capability are 
affected by the level of VDD and the frequency of the driving clock. The load depends on 
the number of bits being programmed or erased and capacitances in the EEPROM array. 
Effective array load capa.citances are influenced to some degree by the data in the array. 

The clock source driving the charge pump is software selectable. When the clock select 
(CSEL) control bit in the OPTION register is zero, the E clock is used; when CSEL is one, 
an on-chip resistor-capacitor (RC) oscillator is used. The frequency of this on-chip RC 
oscillator is about 2.5 MHz but varies with processing. 

The recommended programming and erase time is 10 ms when VDD is 5 Vdc ± 10 percent 
and the E clock is 2 MHz. If the E clock is 1 MHz or less, the CSEL bit should be written to 
one to enable the on-chip RC oscillator to drive the Vpp charge pump. For an E clock 
between 1 and 2 MHz, the programming and erase times can be increased to 20 ms, or 
the RC oscillator can be selected. Experimentation has shown the EEPROM is programm­
able with VDD equal to 3 Vdc and CSEL equals one to enable the on-chip RC clock. 

CSEL also enables a separate RC oscillator associated with the AID converter system. The 
E-clock frequency (where switchover to CSEL equals one is recommended) is lower for the 
AID than it is for EEPROM operations. In the AID system, switching to CSEL equals one 
can increase conversion errors; thus, it is better to perform AID conversions with CSEL 
equal.s zero. In some applications, it is worthwhile to switch CSEL on and off, depending 
on whether AID or EEPROM programminglerase operations are occurring. Refer to 12.2.2 
AID Charge Pump and RC Oscillator for additional information. 

MOTOROLA M68HC11 REFERENCE MANUAL 4-9 

• 



• 

4.3.4 EEPROM Programming Register (PPROG) 

The PPROG register controls programming and erasure ofthe on-chip EEPROM. The PPROG 
register may be read or written at any time, but programming and erase sequences are 
strictly controlled by logic to prevent unintentional changes to EEPROM data. In the 
MC68HC11A8, the CON FIG register EEPROM location cannot be programmed or erased 
unless the MCU is operating in special test or special bootstrap mode. The Vpp power­
supply voltage is not enabled to the EEPROM array until all sequence requirements are 
met for a programming or erase operation. The required sequence consists of the following 
steps: 1) write to PPROG with EEPROM latch control (EELAT) bit equals one and EEPROM 
programming voltage enable (EEPGM) bit equals zero; 2) write to a valid EEPROM location 
orthe CON FIG address; 3) write to PPROG with EELAT and EEPGM bits equal one. Hardware 
logic enforces this sequence by imposing the following restrictions. If an attempt is made 
to change both EELAT and EEPGM to ones with the same write operation, neither bit is 
set (enforces step 1). Writes to EEPROM addresses are inhibited while EEPGM is one, which 
prevents two kinds of errors. First, step 2 must be performed before step 3, or no EEPROM 
changes will occur. Second, a write to a different EEPROM location is prevented while a 
programming or erase operation is in progress. 

In some members of the M68HC11 Family, there is a block protection mechanism that can 
inhibit programming and erasure of the CON FIG register or selected areas of EEPROM. 
After reset, these block protect control bits (in a block protect (SPROT) register) are set to 
inhibit EEPROM changes. A user can write these bits to zero to enable programming and 
erase operations, but this write must be performed within 64 cycles after reset. The user 
may write these bits back to one at any time to inhibit further EEPROM changes. Once this 
protection is re-enabled, it remains in effect until another reset. There is no SPROT register 
in the MC68HC11A8. 

The following register and paragraphs describe the bits in the PPROG control register. 

ODD EVEN a BYTE 

RESET: 

ROW ERASE EELAT I EEPGM I PPROG 
$1038 

ODD - Program odd rows in half the EEPROM array 
EVEN - Program even rows in half the EEPROM array 

4-10 

These two bits are used only during factory testing of the EEPROM. To program all 
bytes in the odd(even) rows on one side of the EEPROM array with the same data in 
a single programming operation, set the ODD(EVEN) and EELAT bits to ones, write to 
an EEPROM location in an odd(even) row, and then set the EEPGM bit. Since the on­
chip Vpp charge pump does not have enough drive to perform this bulk programming 
operation, an external 20-V current-limited supply must be connected to the external 
EEPROM voltage source (IRQIVPPSULK) pin. The intended purpose of this function is 
to allow the entire EEPROM array to be filled with a checkerboard pattern in only four 
programming operations. This feature is not intended for customer use since the 
function serves no practical purpose other than product testing. 

M68HC11 REFERENCE MANUAL MOTOROLA 



BYTE - Byte/Other EEPROM Erase Mode 
ROW - Row/All EEPROM Erase Mode 

These two bits specify the type of erase operation that is to be performed. These bits 
have no meaning when the ERASE bit is clear. The following table shows the rela­
tionship between the state of these bits and the type of erase operation that will be 
performed: 

BYTE ROW Type of Erase 

0 0 Bulk Erase (All 512 Bytes) 

0 1 Row Erase (16-Byte Row) 

1 0 Byte Erase 

1 1 Byte Erase 

ERASE - Erase/Normal Control of EEPROM 
0= Normal read or prog ram mode 
1 = Erase mode 

EELAT - EEPROM Latch Control 
When this bit is zero, the EEPROM acts as a ROM in the MCU memory map. When 
EELAT is one, the EEPROM acts as if it has been removed from the memory map and 
placed into a programming socket. Latches on the address and data lines to the EEPROM 
array are enabled to capture data and address information needed during program or 
erase operations. While EELAT is one, the EEPROM cannot be read, which implies a 
software routine that programs or erases EEPROM cannot be executed from that same 
EEPROM. The operation of EELAT also implies that programs that access data from 
the EEPROM must not be executed while an EEPROM location is being programmed 
or erased. 

EEPGM - EEPROM Programming Voltage Enable 
This control bit enables the Vpp power supply to the EEPROM logic for programming 
and erase operations. When EEPGM is zero, Vpp is off; when EEPGM is one, Vpp is 
on. A logic interlock mechanism prevents setting this bit unless EELAT was earlier 
written to one. 

4.3.5 Programming/Erasing Procedures 

The following discussion and program segments demonstrate the various programming 
and erase operations that can be performed on EEPROM locations. These program seg­
ments are intended to be simple, straightforward examples of the sequences needed for 
basic program and erase operations. There are no special restrictions on the addressing 
modes used, and bit manipulation instructions may be used. Other operations can be 
performed during programming and erasure provided these operations do not include 
reads from the EEPROM (the EEPROM is disconnected from the read data bus during 
program and erase operations). The subroutine (DLY10) used in these program segments 
is not shown but can be any set of instructions that takes 10 ms. 

If several bytes of EEPROM are to be programmed, the EELAT bit can be left at one for 
the entire block. After each byte is programmed, EEPGM is written to zero and EELAT is 

MOTOROLA M68HC11 REFERENCE MANUAL 4-11 

• 



• 

left at one. The next EEPROM location is then written, and the EEPGM bit is written back 
to one to execute the programming request. 

4.3.5.1 PROGRAMMING. During EEPROM programming, the ROWand BYTE bits are not 
used. If the E-clock frequency is less than 2 MHz, the programming time may need to be 
increased, or the CSEL bit in the OPTION register may have to be set to enable an on-chip 
RC oscillator to drive the Vpp charge pump. Since programming can only change ones to 
zeros in the EEPROM, it is sometimes necessary to erase a byte to $FF in a separate 
operation before programming it to a new value. The following programming segment 
demonstrates how to program an EEPROM byte: 

* On entry, A=data to be programmed and X=an EEPROM address .. 
PROG LDAB 1$02 

STAB $103B Set EELAT bit (EEPGM=O) 
STAA O,X Store data to EEPROM address 
LDAB #$03 
STAB $103B Set EEPGM bit (EELAT=l) 
JSR DLYlO Delay 10 mS 
CLR $103B Turn off high voltage & set to read mode 

4.3.5.2 BULK ERASE. The following program segment demonstrates how to bulk erase 
the 512-byte EEPROM. The CON FIG register is not affected in this example. 

BULKE LDAB #$06 
STAB $103B Set to BULK erase mode 
STAB $B600 Write any data to any EEPROM address 
LDAB #$07 
STAB $103B Turn on programming voltage 
JSR DLY10 Delay 10 mS 
CLR $103B Turn off high voltage & set to read mode 

4.3.5.3 ROW ERASE. The following example demonstrates the row-erase function. A row 
is 16 bytes ($B600-B60F, $B61 0-B61 F ... $B7FO-B7FF). When large sections of EEPROM 
are to be erased, this type erase operation saves time compared to byte erase. 

4-12 M68HC11 REFERENCE MANUAL MOTOROLA 



* On entry, X=any address in ROW to be erased 

ROWE LDAB t$OE 
STAB $103B Set to ROW erase mode 
STAB O,X Write any data to any address in ROW 
LDAB t$OF 
STAB $103B Turn on high voltage 
JSR DLYlO Delay 10 mS 
CLR $103B Turn off high voltage , set to read mode 

4.3.5.4 BYTE ERASE. The following program segment demonstrates howto erase a single • 
byte of EEPROM. 

* On entry, X=any address of BYTE to be erased 
" 

BYTEE LDAB '$16 
STAB $103B Set to BYTE erase mode 
STAB O,X Write any data to address to be erased 
LDAB '$17 
STAB $103B Turn on high voltage 
JSR DLY10 Delay 10 mS 
CLR $103B Turn off high voltage , set to read mode 

4;3.5.5 CONFIG REGISTER. The following program segment shows how to program the 
CONFIG register in the MC68HC11A8 to a new value. The CON FIG byte can only be erased 
with the bulk-erase method on the original MC68HC11A8; however, some new members 
of the M68HC11 Family allow the CON FIG byte to be byte erased. If any question arises 
about which members can use byte erase, refer to the technical summary for that member. 
It is possible to program additional bits in CON FIG to zero without erasing the location 
first; however, it is better to perform an erase first as shown in this example and explained 
in 4.4 EEPROM APPLICATION INFORMATION. 

* On entry, A=data to be programmed into CONFIG 
" 

CNFCH LDAB '$06 
STAB $103B Set to BULK erase mode 
STAB $103F Write any data to CONFIG address 
LDAB '$07 
STAB $103B Turn on programming voltage 
JSR DLYlO Delay 10 mS 
LDAB '$02 
STAB $103B Turn off EEPGM, leave EELAT on 
STAA $103F Store new CONFIG data 
LDAB 1$03 
STAB $103B Set EEPGM bit (EELAT-l) 
JSR DLYlO Delay 10 mS 
CLR $103B Turn off high voltage , set to read mode 

MOTOROLA M68HC11 REFERENCE MANUAL 4-13 



.. 

4.3.6 Optional EEPROM Security Mode 

There is an optional security mode feature that can be used to protect the EEPROM and 
RAM contents from unauthorized access. Most MCU products are of little or no use without 
the software programs that control them. By protecting the secrecy of the program or a 
key part of the program, a product can be protected against unauthorized duplication. The 
MC68HC11A8 solves the dilemma of protecting against unauthorized access while per­
mitting testing and recovery of protected parts for reuse. 

The protection mechanism operates on the principle of restricting protected devices to the 
single-chip modes of operation. Since single-chip modes do not allow visibility of the 
internal address and data buses, the contents of memory locations cannot be monitored 
externally. Since the user's program has unlimited access to the internal EEPROM and 
RAM, it is still possible for the application prog.r:am to read information out of these mem­
ories, write new information into them, or even report the contents of these memories via 
MCU I/O ports. The user can develop a program to enter secret information into the MCU 
or to read secret information out of the MCU by some secret access procedure. All or part 
of this secret access procedure should be programmed in the EEPROM so that a software 
pirate could not decode the secret procedure by disassembling the ROM program, which 
can be read after turning off the security mode~ Although the security mode can be turned 
off easily by anyone at any time, this can only be done after the information in EEPROM 
and internal RAM have been completely erased. 

Two conditions are required to engage the security option. First, the option must be enabled 
by a mask option. This option is normally requested at the time the customer submits the 
mask program for the internal8K-byte ROM. Since this option is enabled or disabled during 
physical manufacturing of the silicon die, the choice must be made prior to manufacturing. 
Although this first level of enable makes the MCU capable of being secured, it does not 
activate the security mode. The second requirement to engage the security option is that 
the NOSEC bit in the CONFIG register be programmed to zero. Programming NOSEC to 
zero does not engage the security mode unless the MCU was manufactured ilvith the 
capability to recognize the security option. The reason for a two-level enable is to prevent 
accidental activation of the security option in applications that never intend to use it. 

Bootloader firmware is used to disengage the security option. Bootloader firmware checks 
the NOSEC bit in CON FIG to determine whether or not the security option is on. If security 
is on, the entire EEPROM is erased, and the entire RAM is written with $FF to overwrite 
anything that was in RAM before. The EEPROM and RAM are then rechecked to make sure 
the erase operations were successful. If the operations were not successful, they are re­
peated until successful. Once the EEPROM and RAM have been verified as erased, the 
CONFIG register is erased to disengage the security option, Clnd the downloading operation 
is started. It is not necessary to actually download a program via the bootstrap mode to 
disengage security. All that is required is to come out of reset in the bootstrap mode. The 
security option is disengaged regardless of whether anything is downloaded. 

The presence of the security option can be detected while the MCU is in reset by forcing 
the mode A (MODA) and mode B (MODB) pins to one and monitoring the strobe Aladdress 
strobe (STRAlAS) pin. When MODA and MODB are ones, the normal expanded mode is 
requested. If security is engaged, the STRAIAS pin will act as a high-impedance input 

4-14 M68HC11 REFERENCE MANUAL MOTOROLA 



because the security option causes the MODA pin to be interpreted as a zero even if it is 
a one. In single-chip modes, the STRA/AS pin is configured for the strobe A input function. 
If the security mode is not engaged, the STRA/AS pin will be acting as the address strobe 
output, which can easily be recognized on an oscilloscope. This checking procedure allows 
the security mode to be detected without disengaging it. If the MODB pin were low in this 
experiment, the bootstrap mode would be requested rather than the normal single-chip 
mode. In the case of MODB low, care is required not to release reset because doing so 
would cause the security option to be disengaged. 

When developing a security strategy, the user should remember ROM contents are not 
protected. A software pirate can disengage the security option, read the contents of the .. 
internal ROM, and disassemble the programs and subroutines in that ROM. Some measures • 
to protect an application program intentionally make the program more difficult to un­
derstand. Programs that are difficult to understand are also difficult to develop and main-
tain. Careful documentation of the function and intent of every written program is essential. 

A key can be stored in EEPROM. A user can then be required to supply a matching key 
value before the program will operate. This approach is somewhat weak because all of 
the operational programs are intact in the ROM; thus, a software pirate could find and 
bypass the key-checking routine. However, if the key-checking routine is repeated in more 
than one way and place, this approach can make unauthorized access difficult. 

Another approach would be to program a vital subroutine entirely within the EEPROM. 
This approach is better than the previous key-checking approach because the ROM does 
not contain all of the programs needed to make the product function. The weakness of 
this approach is that a software pirate can still duplicate the product after solving that one 
routine. Furthermore, there is a development cost advantage over the original manufacturer 
because only part of the application program has to be developed. 

Many application programs are modularly organized as a major loop consisting of calls to 
submodules. The application relies on both the routines that are called and the order in 
which they are called. A degree of security can be achieved by putting the major loop 
(which calls all the subprograms) in the EEPROM. In this case, a software pirate can decode 
the submodules, but the order of execution is not known. To make the program more 
difficult to decipher, extra incorrect programs could be included in ROM. The software 
pirate could not distinguish real routines from fake routines. There is a useful side-effect 
of this approach. Since the major loop is resident in the EEPROM, it can be changed to 
call a replacement or patch routine if one of the subprograms is defective. Rather than 
throwing away the entire MCU, the EEPROM can be reprogrammed to correct or replace 
the defective subprogram. 

Another approach to software secrecy involves accessing variables indirectly through a 
pointer stored in the EEPROM. The program in ROM could execute a sequence such as 
loading X with the pointer value from EEPROM (LOX addr;LDAA a,X). Since the software 
pirate does not know what X points to, there is no way of knowing what is being loaded 
into accumulator A. By mixing direct accesses and indirect accesses to the same variables, 
the software pirate is unable to recognize that two accesses are to the same variable. 

MOTOROLA M68HC11 REFERENCE MANUAL 4-15 



• 

4.4 EEPROM APPLICATION INFORMATION 

Since EEPROM is a relatively new technology, very little published application information 
exists. This subsection presents practices that could cause application problems and dis­
cusses several practical uses for EEPROM on an MCU. Next, there is a discussion of the 
use of EEPROM in programs that adjust themselves to accommodate variable conditions. 
Many applications can benefit from this type of programming, which is presently becoming 
practical because of the inclusion of EEPROM on an MCU. The subsection concludes with 
a detailed look at some proposed methods to extend the useful write-erase lifetime of the 
EEPROM . 

4.4.1 Conditions and Practices To Avoid 

When programming a new value over an old value in EEPROM without first erasing the 
EEPROM location, it is very important to avoid certain data patterns. The most common 
method for programming a new non-FF value to an EEPROM location containing a non­
FF value is to erase the location before programming the new value. This procedure works 
for any combination of old and new data values. In less common situations in which an 
EEPROM location endures many write-erase cycles, it may be desirable to program a new 
value over an old value without erasing the location first. This procedure is only possible 
when the new value has no ones where the EEPROM location already has a zero. A method 
called 'write-more-zeros' can be used to program additional bits in an EEPROM location 
without erasing the location first, which eliminates a write-erase cycle. Another method 
called 'selective-write' has been proposed but has not been tested and characterized enough 
to be sure it will work in all cases. In this method, the data pattern used in the programming 
operation would have ones in all positions except the bits that are zeros in the new value 
but were ones in the previous value. The idea in this method is to avoid reprogramming 
bits already programmed. The benefits are theoretical and have not been proven. Although 
both of these methods (write-more-zeros and selective-write) appear to work correctly in 
laboratory experimentation, the combination of the two methods is known to fail. An 
example of a failing combination would be to attempt to program $FC to a location that 
previously contained the value $OD in an attempt to change the location to the value $OC. 
In this case, bit 1 follows the write-more-zeros method; whereas, bits 4-7 follow the se­
lective-write method. A detailed explanation of this case is given in 4.4.7 Software Methods 
to Extend Life Expectancy. 

System software should be partitioned so that data and programs in EEPROM will never 
be used while an EEPROM programming or erase operation is in progress. When the EELAT 
control bit is set to one at the beginning of a program or erase operation, the EEPROM is 
electronically removed from the MCU memory map; thus, it is not accessible during the 
programming or erase operation. Since it is possible to perform other tasks while the 
10-ms EEPROM operation is in progress, it is fairly common to start the operation and 
return to the main program until the 10 ms is completed. If a routine in the main program 
or an interrupt tries to access a value in EEPROM while a programming operation is in 
progress, that operation will fail since the EEPROM is temporarily inaccessible. 

In an interrupt-driven system, it may be possible for an asynchronous interrupt to occur 
in the middle of an EEPROM programming or erase operation. Such an interrupt can cause 

4-16 M68HC11 REFERENCE MANUAL MOTOROLA 



the programming or erase operation to extend beyond the normal 10-ms period. A small 
extension of the programming or erase time will not damage the EEPROM or compromise 
the intended operation. Repeated extension or long extensions may involve a slight ac­
celeration of write-erase wear-out because wear-out is related to the length of time high 
voltages are present in the EEPROM array. The most significant effects of wear-out occur 
near the beginning of a program or erase operation because the charge tunneling activity 
follows an exponential decay curve, which implies that extensions of programming time 
should have very little effect on the EEPROM cell. Another risk, which is difficult to quantify, 
is the possibility of high-voltage breakdown of row and column devices due to the presence 
of programming voltage. If programming and erase times are extended, these devices are 
exposed to high voltages for a longer time; thus, there is increased risk that a breakdown 
might occur. 

In some systems, an EEPROM programming or erase operation could be in progress when 
a power failure or reset occurs, which presents the possibility that an EEPROM location 
rr,ight be corrupt or unreliable due to an incomplete programming operation. A way to 
avoid this problem is to design the system so power failures generate a nonmaskable 
interrupt prior to complete loss of power. This interrupt would allow EEPROM operations 
to be completed prior to system shutdown. Other systems may have battery backup of 
RAM so programming status could be maintained in this memory. Upon reset, this status 
(in RAM) could be checked, and any operation that was in progress could be redone to 
assure reliability. 

Avoid unnecessary erasures of the CON FIG register EEPROM location. In a normal system, 
the CON FIG register is established during the design of an end product and does not 
change. In rare cases, the CON FIG register may be reprogrammed after a gross system 
failure accidentally corrupts the intended value. One suggested technique for tolerating 
sud1 errors involves starting the MCU in special test or special bootstrap mode after any 
reset. The CON FIG register can then be evaluated and changed if necessary. In this scheme, 
it is not appropriate to routinely erase and reprogram the CON FIG register. Changes should 
only be made when an error is detected, which minimizes the possibility of wearing out 
the CONFIG EEPROM location. 

4.4.2 Using EEPROM To Select Product Options 

In many applications, it is possible to provide for several product variations with a single 
MCU ROM pattern. This variation allows a user to pay for a single ROM mask charge and 
amortize the cost over a higher volume of end products. This variation also reduces the 
customer's inventory requirements by reducing the number of unique customized MCUs 
that have to be stocked. Before the availability of on-chip EEPROM, it was possible to 
include multiple program variations in a single ROM pattern. The ROM program would 
determine the specific program variation to execute by reading some unique value on an 
I/O port or by looking for unique devices in the memory map of the finished system. An 
ideal place to store such optional identifiers is in the on-chip EEPROM. The on-chip EEPROM 
has some advantages over the previous methods. The EEPROM method requires no I/O 
pins for option selection. The EEPROM method can accommodate upgrades in the options 
after the end product is manufactured, and no hardware changes are necessary. A common 

MOTOROLA M68HC11 REFERENCE MANUAL 4-17 

• 



• 

software technique is to program the various tasks for an application as a series of sub­
routines, which are called in the desired order by a main program loop. The main program 
loop is usually quite small, consisting of little more than a series of jump to subroutine 
(JSR) instructions. If this main loop is programmed into the on-chip EEPROM, it is relatively 
easy to modify the number and order of ROM routines to be executed. 

4.4.3 Using EEPROM for Setpoint and Calibration Information 

Another ideal use for EEPROM is for storage of setpoints or calibration information that 
will not change often. In some older systems, this information had to be entered each time 
a system was activated. By storing this information in EEPROM, the product configuration 
and setup requirements can be simplified for the end user, and this data can be maintained 
indefinitely without power. 

An example of setpoint data would be the temperature setting of a home thermostat or 
the setback schedule for a more sophisticated thermostat. The two alternatives to storing 
this information in EEPROM are to require that the information be re-entered after a power 
interruption or to provide relatively expensive batteries and power sequencing logic. The 
home thermostat example can also benefit from a calibration table in EEPROM. There are 
many types of temperature sensors with various degrees of accuracy and linearity; how­
ever, the most accurate and most linear devices also tend to be the most expensive. Since 
the application dictates a minimum degree of accuracy, the designer must decide how to 
arrive at this accuracy. One approach is to use a very inexpensive sensor and calibrate it 
at the factory. The combination of on-chip EEPROM and an on-chip analog-to-digital 
(AID) converter is ideally suited to this task without requiring any expensive external cir­
cuitry. The thermostat could be completely assembled, and calibration information could 
be determined and stored in the EEPROM during final test of the assembled unit. The 
software required for this calibration could be part of the on-chip ROM program, or it could 
be loaded from a test fixture via the special bootstrap mode. The bootstrap mode approach 
offers the advantage that the calibration routines need not occupy any space in the limited 
internal ROM. 

There are two main approaches to calibration of inexpensive sensors. The choice of the 
best approach depends primarily on the characteristics of the sensor but also depends 
upon the degree of system accuracy required in the end application. If a sensor is basically 
linear but has wide variation in absolute offset, a gain-offset approach may be a good 
choice. This technique requires calibration at two standard levels from which a gain (slope) 
and offset are determined. The gain and offset values are then stored in EEPROM. An 
actual level is calculated by applying these values algebraically to an AID input level. 
Although this technique requires some calculations during calibration and during use, it 
uses very little EEPROM space. If a sensor is nonlinear, a table-lookup approach may be 
required. An actual level is determined by using the AID reading as an index into the 
calibration lookup table. During use, this method is very simple and fast, but the lookup 
table requires more EEPROM, and the calibration process requires more calibration points 
than the gain-offset method. 

4-18 M68HC11 REFERENCE MANUAL MOTOROLA 



4.4.4 Using EEPROM during Product Development 

During product development, the EEPROM can be used for storage of data and limited­
sized programs. If errors are discovered, they can be corrected even more easily than a 
program in an EPROM. In cases in which there is external memory, such as an EPROM in 
a system under development, it would be a good idea to store the main program loop in 
the on-chip EEPROM. This approach allows routines in the external EPROM to be checked 
one at a time without reprogramming the external EPROM. If errors are discovered, a 
substitute corrected routine could be programmed into the EEPROM to check the correc­
tions before erasing and reprogramming the external EPROM. 

4.4.5 Logging Data 

Data logging can involve several types of data. One traditional data type could be tem­
peratures measured at specific times of day over a period of weeks or months. Other data 
types could include historical data, such as the number of times a device has been exposed 
to illegal operating conditions or the total accumulated time a device has been used. This 
type information can be useful for monitoring product reliability. When such a device is 
returned to the factory for repair, the historical data can be read out of the EEPROM. Even 
if batteries and other power sources failed, this information could be valid. 

In this context, logging means to make a semipermanent record of data not requiring 
power or other normal operating conditions to remain valid. In many cases, there is also 
an implication that the data is not accessible to the end user for modification (i.e., the end 
user cannot erase the data by simply removing a battery or unplugging the unit). The on­
chip EEPROM ofthe MC68HC11A8 provides a convenient electronic medium for nonvolatile 
storage of logged data. 

4.4.6 Self-Adjusting Systems using EEPROM 

One of the most interesting uses for EEPROM in an MCU system is to implement self­
adjusting or self-adapting systems. A fairly simple form of self-adaptation would be a 
system that can calibrate or recalibrate a sensor as it ages. A more sophisticated form of 
self-adaptation would be a system that can modify its behavior to perform a desired task 
more efficiently as operating conditions change. The adaptation would be semipermanent 
so the modified behavior would be in effect the next time the system was activated (as if 
the system had originally been programmed that way). 

Any process-control algorithm that includes a feedback mechanism for monitoring results 
could potentially be programmed to improve itself through self-adaptation. Traditionally, 
process-control programs followed a fixed procedure, which was the result of experimen­
tation and development by engineers. The MCU is an excellent tool for such work because 
it can quickly repeat complex sets of instructions, including precise timing, with flawless 
accuracy. Unfortunately, this type system often requires tight tolerances on other system 
components such as sensors and valves. Cheaper (less precise) components could be used 
if the system provides for calibration, but calibration is often time-consuming and expen­
sive. As technology advanced, some systems were designed to automate the calibration 

MOTOROLA M68HC11 REFERENCE MANUAL 4-19 

• 



• 

process, thus making it practical to use less precise system components. At this point, the 
calibration step was still performed outside the context of actual system use. With the 
M68HC11, it is practical to consider systems that systematically make small adjustments 
while monitoring end results. Depending upon the application, the MCU could either sug­
gest changes to a human operator or directly modify process-control parameters to main­
tain optimum end results. The nonvolatile EEPROM is a critical element in such adaptive 
algorithms because it can save what has been learned over a period of time, even if power 
is lost; 

Consider using an adaptive algorithm in a system consisting of many tasks. High-priority 
tasks are executed quickly; whereas, low-priority tasks are delayed. One problem is to 
decide which tasks are most important, which can be accomplished by noting how many 
times a task was actually needed over some period of time. A second problem is to find 
some nonvolatile way to maintain the list of high- and low-priority tasks. The main loop 
could be programmed into EEPROM, or the main program could call tasks indirectly through 
a list of task addresses in the EEPROM. A background program could monitor the activity 
and demands of various tasks and rearrange the priorities to match real application de­
mands. As a task requests more frequent service, it could be elevated in priority, and as 
a high-priority task reduces its frequency of requests, it could be lowered in priority. In 
this manner, the tasks requiring the most frequent service would become the set of tasks 
that are serviced on every main loop pass. Although both the fixed priority and the dy­
namically adaptive priority schemes would accomplish the same amount of work, the 
adaptive scheme is more responsive. Because the learned priorities would remain in effect 
through poweroff periods, the system would begin with these learned priorities. As system 
demands change, priorities would change to match system requirements. 

4.4.7 Software Methods to Extend Life Expectancy 

EEPROM memory is subject to a long-term wear-out mechanism. Though the detailed 
mechanics of the failure mechanism are still the subject of much research, the current 
understanding is that charge is trapped in the thin oxide layers isolating the floating gate 
of the EEPROM storage transistor. The charge is trapped during tunneling, which only 
occurs while programming or erasing an EEPROM bit. The life expectancy of an EEPROM 
bit is expressed as a number of write-erase cycles (such as 10,000 write-erase cycles). 
Changing a bit from one to zero (write) followed by a change from zero back to one (erase) 
is considered one write-erase cycle. As a bit accumulates trapped charge and approaches 
wear-out, the time required to program or erase the location gets longer until the allotted 
time is no longer enough to program or erase the location, which implies that some 
extension of life expectancy might be achieved by using longer programming and erase 
times. However, the same wear-out mechanism that causes longer programming time also 
causes reduced retention capability. Limited data has been collected to support the use of 
as much as 20 ms for program and erase times rather than the 10 ms suggested in the 
data sheets. A new MC68HC11A8 operating at 5 V and 2 MHz can typically program an 
EEPROM location in about 2 ms. 

Many factors affect the useful life expectancy of an EEPROM location. Programming or 
erasing an EEPROM location at high ambient temperature accelerates wear-out. The Motorola 
reliability figures are based on all program and erase operations occurring at worst-case 
ambient temperature, but no realistic application would experience such harsh conditions. 
Temperature has a dramatic effect on write-erase endurance. An EEPROM having a life 

4-20 M68HC11 REFERENCE MANUAL MOTOROLA 



expectancy of 5,000 write-erase cycles at 125°C typically has a life expectancy of 100,000 
write-erase cycles at 55°C. Motorola publishes a quarterly reliability report which includes 
the latest life-expectancy data for this rapidly changing technology. The quality of the thin 
oxides (processing) is maintained at a very high level, but there is still some lot-to-Iot 
variation affecting write-erase endurance. The belief is that charge is more easily trapped 
at sites where the oxide lattice structure is imperfect. 

The method recommended in Motorola data sheets for changing an EEPROM byte from 
one data value (other than $FF) to another is to erase the location before programming 
the new value. In this manual, this method will be called 'erase-before-write.' When the 
new data value contains no ones where there is currently a zero in the EEPROM location 4 
(no bits need to be erased), there are two additional methods of arriving at the desired 
value without first erasing the EEPROM location. The first of these methods is called 
'program-more-zeros.' To program more zeros, the new value would be programmed into 
the EEPROM location. Bits previously not programmed will be programmed to zero, and 
bits already zero remain programmed. The second method, which does not involve erasure 
of the location before reprogramming, is called 'selective-write.' In the selective-write 
method, a value is calculated that contains zeros in bits needing to change from one to 
zero and contains ones in all other bits. This calculated value is programmed to the EEPROM 
location. The bits corresponding to zeros in the calculated pattern become programmed 
to zeros. The bits already programmed are not reprogrammed but remain zeros. The bits 
that were not zeros in the old or new data values are not programmed and remain ones. 
The theoretical objective of the selective-write method is to avoid programming some bits 
longer than others. 

The erase-before-write method is used in production testing and for ongoing reliability 
monitoring. Every part that Motorola ships is exposed to a significant number of write­
erase cycles at high temperature to eliminate parts having infant mortality problems and 
to identify any lots having processing problems. In addition, sample batches of parts are 
endurance tested to monitor processing quality. Data sheet and reliability figures are based 
on the erase-before-write method. 

A problem in production testing was traced to an unsuccessful attempt to program an 
EEPROM location, which unintentionally employed a composite ofthe program-more-zeros 
and the selective-write methods. An attempt was made to program an EEPROM location 
with $FC when the location previously contained the value $00. From what has been said 
about EEPROM programming and the program-more-zeros and selective-write methods, 
one would expect that the location would change to SOC. In practice, the operation fails if 
the location was previously $00 but passes if the location was previously $FF. The following 
table shows the situation more clearly: 

Value Case A - Fail Case B - Pass 

Original Value 00001101 1111 1111 

Value Written 1111 1100 11111100 

Expected Result 00001100 11111100 

Tester Read 00001101 00001100 

MOTOROLA M68HC11 REFERENCE MANUAL 4-21 



• 

The expected value shows the value one should expect to get as a result of an attempt to 
program the value written to an EEPROM location already containing the original value. 
The tester-read value shows what the tester read from the location after the attempted 
programming operation. Case B looks odd because the upper four bits are zeros where 
ones are expected because the location involved was the CON FIG register. Reads of the 
CON FIG register of an MC68HC11A8 return zeros in the upper four bits, regardless of what 
is in the upper four bits of the physical EEPROM location. Parts that failed (case A) were 
initially thought to have a defective bit 0 in the CON FIG register EEPROM location; however, 
the real problem was finally discovered to be the unintentional combination of the program­
more-zeros and selective-write methods. Bit 1 is (l'zero in the original value and the value 
written (like the program-more-zeros method). The upper four bits are zeros in the original 
value and ones in the value written (like the selective-write method). Case B, which always 
works, is equivalent to the erase-before-write method. 

NOTE 

Because the user has no way of knowing what is in the upper four bits of the 
CON FIG register EEPROM location, the calculated value for the selective-write 
method cannot be determined. Thus, the selective-write method cannot be used 
for the CONFIG location. Since the CONFIG location is only changed a few times 
in the lifetime of a product, there is no motivation to use any method other than 
erase-before-write to change the CONFIG location. 

An examination of the electrical conditions during each of the programming methods 
explains why the combination of write-more-zeros method and selective-write method fails 
as it did in case A. This analysis also presents possible advantages and disadvantages of 
these programming methods. The basic operation of the floating-gate EEPROM is discussed 
in Section 4.3.2 Basic Operation of the EEPROM. Figure 4-8 demonstrates the erase-before­
write method. One disadvantage of this method is that it requires a time-consuming erase 
step prior to the programming step. One advantage of this method is that it can be used 
to change any data pattern to any other data pattern. Another advantage is that this method 
is the same as that used for rating the write-erase life expectancy; thus, much character­
ization data exists to validate this method. 

The goal of the other two methods is to achieve a longer life expectancy without compro­
mising data retention or programming integrity. The program-more-zeros method appears 
to have no risks, and some experimental evidence shows that data retention and program 
integrity are not compromised. The selective-write method appears to have some theo­
retical problems, but experimental data has not confirmed any practical problem. Due to 
the theoretical risks of the selective-write method, that method should probably not be 
used without a complete understanding of the risks. 

Figure 4-9 shows the program-more-zeros method being used to change an EEPROM 
location from $FO to $CO. In this example, the low-order four bits were previously pro­
grammed, and the current programming operation will change bits 4 and 5 to zeros. 

It has been suggested that it might be undesirable to program some bits longer than other 
bits. Since charge transfer during programming occurs at an exponentially decaying rate, 
it seems unlikely that the additional programming time would result in any significant 
difference in floating-gate charge. Only considerable characterization data can prove or 

4-22 M68HC11 REFERENCE MANUAL MOTOROLA 



/,---------- NOT DRIVEN -----------.., 

VpP--*+--~-~~-~~--~~-~~-~+_-~+_-----

VPP--VTN-~++-~++--'rr-~~--~;--~;--~+_-*++_-----

VSS--~~--~~--~----~------~--~~---e----~------­
ARRAY GROUND 

o 
V PP 

1 

VDD 
o 

V PP 

ERASE FIRST 

1 

VDD 
o 

V PP 
1 

VDD 
o 

V PP 

Vpp--*+--~-~~-~~--~H--~H---.+---tt------

VSS-~{~-~++--'I~-~~--~.H--~;--~·.·~-*++------

THEN PROGRAM $55 

Figure 4-8. Erase-Before-Write Programming Method 

VDO 
1 

VOO V pp V pp V pp 
o 

V PP V PP V pp 

o 

ARRAY GROUND 
(NOT DRIVEN) 

Vpp---~--*+--~-~~--~~-~~--'H---'+------

VSS-~++-~++-~· 

ARRAY GROUND 
(NOT DRIVEN) 

Figure 4-9. Program-More-Zeros Programming Method 

MOTOROLA M68HC11 REFERENCE MANUAL 

• 

4-23 



• 

disprove these theories, but preliminary data supports the suggestion that the extra pro­
gramming time on some bits has no detrimental effects. 

Figure 4-10 shows the selective-write method being used to change an EEPROM location 
from $FO to $CO. The calculated data pattern, $CF, was written to the location during this 
programming operation (note the data pattern and voltage levels across the top of the 
diagram). The floating gates are highlighted for the bits that should be programmed to 
zero after the operation. The floating gates of the programmed bits are positively charged 
so these floating-gate transistors conduct, which introduces an interesting question. For 
bits 3-0, there is a conductive path from VOO to the array ground node. After programming, 
bits 4 and 5 have a conductive path from VPP to the array ground node. Since there is 
effectively a conductive path from VOO to Vpp, how does the selective-write method work? 
Experimental results for this method are good; however, additional study is required. 

1 

voo 
1 

voo 
o 

v pp 

o 
v pp 

1 

voo 
1 

voo 

o 

Vpp--~~---'+---~--~~-----'r---~--~H----'r--------

ARRAY GROUND 
(NOT DRIVEN) 

Figure 4-10. Selective-Write Programming Method 

The production testing failure provides some additional information about the selective­
write method but does not answer all the questions. Figure 4-11 shows the voltages driving 
the EEPROM bits during the production test failure. The location was previously pro­
grammed to $00, as indicated by the highlighted floating gates. The bit pattern and voltages 
across the top of Figure 4-11 reflect the $FC value that was written to the location during 
this programming operation. This programming operation was expected to cause bit 0 to 
be programmed, but the operation failed (indicated by the bit 0 floating gate not high­
lighted). This operation fails because there is already a conductive path from VOO to Vpp 
at the start of the programming operation. Since the weak Vpp supply is shunted to VOO, 
no programming can occur. 

The failure of the composite programming case verifies that the conductive paths exist 
from VOO to the array ground and from Vpp to the array ground. The failure also shows 
that these conductive paths are capable of shunting Vpp to a low enough level to prevent 
programming. . 

Vpp comes from a charge pump having very little drive-current capability. It is not very 
surprising that Vpp could be effectively shorted to VOO without producing any noticeable 

4-24 M68HC11 REFERENCE MANUAL MOTOROLA 



Figure 4-11. Composite Programming Method 

ARRAY GROUND 
(NOT DRIVEN) 

load to VOO. In the selective-write method (see Figure 4-10), the path from VOO to the 
array ground is conductive from the beginning of the operation. The path from VPP to the 
array ground (through the bits being programmed) does not become conductive until these 
floating gates are charged to a high enough positive level for the floating-gate transistor 
to become conductive. It may be that the shunting path does not develop until the bits 
have already finished programming. If two or more new bits are being programmed and 
one were to become programmed (conductive) before the other(s), VPP might become 
shunted before the other bit(s) could finish being programmed. One possible reason this 
unequal programming problem does not arise is because the bits in a byte are so physically 
close to each other that they should have nearly identical properties. 

The selective-write method may result in soft programming. The shunt path may develop 
. so late in the programming process that the bits are programmed well enough to be read 

back as ones but not well enough to provide reliable data retention. On the other hand, 
soft programming might be beneficial by limiting the stress on the thin oxides. The selec­
tive-write strategy should be viewed with skepticism until additional study can prove it 
has merit. 

In most cases, EEPROM locations are only exposed to a few write-erase cycles in the lifetime 
of a product. In some applications, a few variables need to endure several hundred thousand 
write-erase cycles (e.g., the odometer reading in an automobile). Since only a few variables 
require these extended write-erase cycle lifetimes, it is practical to consider solutions 
involving the use of mUltiple EEPROM locations for the storage of each such variable. Using 
an EEPROM location as an ordinary binary counter is perhaps the worst case for EEPROM 
wear-out because the least significant bit toggles at every count; thus, the EEPROM location 
must be erased and reprogrammed at each count and is exposed to one write-erase cycle 
for every two counts. 

A count value could be encoded so that an EEPROM location could be programmed eight 
times by the program-more-zeros method before it has to be erased. In such a scheme, 
the EEPROM location would only experience one write-erase cycle every eight counts. This 
scheme of bit-position coding would only be needed for the low-order bits of a counter 
since the high-order bits change much less frequently. 

MOTOROLA M68HC11 REFERENCE MANUAL 4-25 

• 



• 

To extend the write-erase lifetime of a variable even further, using multiple EEPROM 
locations would allow switching to a different location when the current location ap­
proached wear-out. The problem is to decide when a location is approaching wear-out. 

Counting the number of times the location has been changed has two problems. First, 
there is no good way of storing the usage count in EEPROM without wearing out the usage­
count location in the same way as the location being monitored. Second, if 10,000 is used 
as the nominal life-expectancy number, the user may actually wear out the location sooner 
than expected and fail, or he may not actually be using the location to its potential. The 
life expectancy is approximately 100,000 write-erase cycles at 55°C even though it is only 
5,000 at 125°C. 

4-26 M68HC11 REFERENCE MANUAL MOTOROLA 



SECTION 5 
RESETS AND INTERRUPTS 

Reset and interrupt operations are often discussed together because they share the com­
mon concept of vector fetching to force a new starting point for further central processing 
unit (CPU) operations. The reset structure in the MC68HC11A8, which is quite different 
from other MCUs, is presented in this section. This reset system can generate a reset output 
if reset-causing conditions are detected by internal systems. The on-chip electrically eras­
able programmable read-only memory (EEPROM) also places extra demands on external 
circuitry connected to the RESET pin. 

The MC68HC11A8 includes 18 separate interrupt sources. On-chip peripheral systems gen­
erate maskable interrupts, which are recognized only if the global interrupt mask bit (I) in 
the condition code register (CCR) is clear. Three interrupt sources considered nonmaskable 
will be discussed in detail in this section. 

Maskable interrupts are prioritized according to a default arrangement; however, anyone 
source may be elevated to the highest maskable priority position by a software-accessible 
control register. This highest priority interrupt (HPRIO) register may be written at any time 
provided the I bit in the CCR is set. 

When interrupt conditions occur in an on-chip peripheral system, an interrupt status flag 
is set to indicate the condition. When the user's program has properly responded to this 
interrupt request, the status flag must be cleared. The method of clearing varies from one 
system to another, depending on the requirements of the system. The various flag clearing 
methods and considerations are discussed in 5.7 INTERRUPTS FROM INTERNAL PERIPH­
ERAL SUBSYSTEMS. 

5.1 INITIAL CONDITIONS ESTABLISHED DURING RESET 

Reset is used to force the microcontroller unit (MCU) to assume a set of initial conditions 
and to begin executing instructions from a predetermined starting address. For most prac­
tical applications, the initial conditions take effect almost imrnediately after applying an 
active-low level to the RESET pin. Some reset conditions cannot take effect until/unless a 
clock is applied to the external clock input (EXTAL) pin. One example is port B, which acts 
as an address output port in the expanded modes and as a general-purpose output port 
in the single-chip modes. During reset in expanded mode, these pins would be $FF because 
this is the high-order half of $FFFE. During reset in single-chip mode, these pins would be 
$00. Since the mode pins are pipelined into the MCU, a clock is needed for the MCU to 
recognize the mode selected. 

If no clock is present, the port B pins could be in the wrong state due to the inability of 
the MCU to recognize the correct mode of operation. If no clock is present, the MCU cannot 

MOTOROLA M68HC11 REFERENCE MANUAL 5-1 



• 

advance out of the reset condition since internal reset is a .clocked sequence; thus, the 
MCU cannot advance past the first step of this sequence. Even with no clock present, a 
RESET signal will cause some changes. Most important, an unclocked RESET signal resets 
the clock divider circuitry so the on-chip oscillator will start. If an application includes 
external clock circuitry driving the EXTAL pin, the RESET signal should force this external 
clock to resume oscillation. 

5.1.1 System Initial Conditions 

Once the reset condition is recognized, internal registers and control bits are forced to an 
initial state. These initial states, in turn, control on-chip peripheral systems to force them 
to known startup states. Most of the initial conditions are independent of the operating 
mode. The following paragraphs summarize the initial conditions of the MCU as it leaves 
reset. 

5.1.1.1 CPU. After reset, the CPU fetches the restart vector from locations $FFFE,FFFF 
($BFFE,BFFF if in special test or bootstrap mode) during the first three cycles and begins 
executing instructions. The stack pointer and other CPU registers are indeterminate im­
mediately after reset; however, the X and I interrupt mask bits in the CCR are set to mask 
any interrupt requests. Also, the S bit in the CCR is set to disable the STOP mode. 

5.1.1.2 MEMORY MAP. After reset, the RAM and I/O mapping (lNIT) register is initialized 
to $01, putting the 256 bytes of random-access memory (RAM) at locations $OOOO-$OOFF 
and the control registers at locations $1000-$103F. The 8K-byte read-only memory (ROM) 
and/or the 512-byte EEPROM mayor may not be present in the memory map because the 
two bits thClt enable them in the configuration control (CON FIG) register are EEPROM cells 
not affected by reset or powerdown. 

5.1.1.3 PARALLEL I/O. When a reset occurs in expanded-multiplexed operating mode, 
the 18 pins used for parallel I/O are dedicated to the expansion bus. If a reset occurs in 
the single-chip operating mode, the strobe A flag (STAF). strobe A interrupt (STAI), and 
handshake (HNDS) control bits in the parallel input/output control (PIOC) register are cleared 
so that no interrupt is pending or enabled, and the simple strobed mode (rather than full­
handshake mode) of parallel I/O is selected. The port C wired-OR mode (CWOM) bit in 
PIOC is cleared. Port C is initialized as an input port (data direction register for port C, 
DDRC=$OO); port B is a general-purpose output port with all bits cleared. STRA is the 
edge-sensitive strobe A input, and the active edge is initially configured to detect rising 
edges (edge select for strobe A (EGA) bit in PIOC is set). Port C, port D (bits 5-0), port A 
(bits 0, 1, 2, and 7). and port E are configured as general-purpose high-impedance inputs. 
Port Band bits 6-3 of port A have their directions fixed as outputs, and their reset state 
is logic zero. 

5.1.1.4 TIMER. During reset, the timer system is initialized to a count of $0000. The prescaler 
bits are cleared, and all output-compare registers are intialized to $FFFF. All input-capture 
registers are indeterminate after reset. The output-compare 1 (OC1M) mask register is 

5-2 M68HC11 REFERENCE MANUAL MOTOROLA 



cleared so that successful OC1 compares do not affect any I/O pins. The other four output 
compares are configured to not affect any 1/0 pins on successful compares. All three input­
capture edge-detector circuits are configured for capture-disabled operation. The timer 
overflow interrupt flag and all eight timer function interrupt flags are cleared. All nine timer 
interrupts are disabled since their mask bits are cleared. 

5.1.1.5 REAL-TIME INTERRUPT. The real-time interrupt flag is cleared, and automatic 
hardware interrupts are masked. The rate control bits are cleared after reset and may be 
initialized by software before the real-time interrupt system is used. 

5.1.1.6 PULSE ACCUMULATOR. The pulse accumulator system is disabled at reset so 
that the pulse accumulator input (PAl) pin defaults to being a general-purpose input pin . 

5.1.1.7 COP WATCHDOG. The computer operating properly (COP) watchdog system is 
enabled ifthe NOCOP control bit in the CON FIG register (EEPROM cell) is clear and disabled 
if NOCOP is set. The COP rate is set for the shortest duration time-out. 

5.1.1.8 SERIAL COMMUNICATIONS INTERFACE (SCI). The reset condition of the SCI sys­
tem is independent of the operating mode. At reset, the SCI baud rate is indeterminate 
and must be established by a software write to the BAUD register. All transmit and receive 
interrupts are masked, and both the transmitter and receiver are disabled so the port pins 
default to being general-purpose 1/0 lines. The SCI frame format is initialized to an 8-bit 
character size. The send break and receiver wake-up functions are disabled. The transmit 
data register empty (TORE) and transmit complete (TC) status bits in the SCI status register 
are both set, indicating that there is no transmit data in either the transmit data register 
or the transmit serial shift register. The receive data register full (RDRF). IDLE, overrun 
(OR), and framing error (FE) receive-related status bits are all cleared. Upon reset in special 
bootstrap mode, execution begins in the 192-byte bootstrap ROM, which changes some 
of the initial conditions by the time the bootloading process is finished. This firmware sets 
port 0 to wired-OR mode, establishes a baud rate, and enables the SCI receiver and trans­
mitter. 

5.1.1.9 SERIAL PERIPHERAL INTERFACE (SPI). The SPI system is disabled by reset. The 
port pins associated with this function default to being general-purpose 1/0 lines. 

5.1.1.10 ANALOG-TO-DIGITAL (AID) CONVERTER. The AID converter system configura­
tion is indeterminate after reset. The conversion complete flag is cleared by reset. The 
AID powerup (ADPU) bit is cleared by reset, disabling the AID system. 

5.1.1.11 OTHER SYSTEM CONTROLS. The EEPROM programming controls are all dis­
abled so the memory system is configured for normal read operation. The highest priority 
I bit interrupt defaults to being the external interrupt request (IRQ) pin by PSEL3-PSELO 

MOTOROLA M68HC11 REFERENCE MANUAL .5-3 

• 



• 

equal to 0: 1 :0: 1. The IRQ pin is configured for level-sensitive operation (for wired-OR 
systems). The read bootstrap ROM (RBOOT), special mode (SMOD). and mode A (MDA) 
bits in the HPRIO register reflect the status of the mode B (MODB) and MODA inputs at 
the rising edge of reset. The enable oscillator startup delay (DLY) control bit is set to specify 
that an oscillator startup delay is imposed upon recovery from STOP mode. The clock 
monitor system is disabled by clock monitor enable (CME) equals zero. 

The MC68HC11A8 has three internal sources that can cause reset as well as the external 
application of a low level to the RESET pin. No matter which of these sources causes reset, 
the entire MCU is reset. The RESET pin is driven low as a result of any of the reset sources. 
The only distinction that is made between the causes of reset is the reset vector, which is 
used to tell the CPU the starting address for execution when reset is released. 

A few registers are not forced to a startup condition as a result of reset. Since these registers 
do not affect the starting conditions at MCU pins, it is not important to force them to a 
startup state during reset. One such example is the main-timer input-capture registers. 
Since these registers are not useful until after an input capture occurs, it is not important 
to force them to a startup state during reset. 

5.1.2 CON FIG Register Allows Flexible Configuration 

The M68HC11 includes a nonvolatile CONFIG register, which controls a number of options 
typically controlled by mask options or by additional mode selection choices in other MCUs. 
By using a nonvolatile EEPROM-based register, it is possible to achieve the same effects 
as if the options were mask programmed and, at the same time, allow users to change 
these features after the MCU is manufactured. The most important aspect of this method 
of selecting options is that the selections automatically take effect on any powerup or reset 
without any software intervention. Two classes of features can be controlled in this manner. 
First, there are configuration choices that must inherently be made before the reset vector 
is even fetched. For example, the ROM enable must be decided so that the reset vector 
can be fetched out ofthe correct memory as the MCU comes out of reset. The COP watchdog 
timer enable is an example of the second class of features that can be controlled by an 
EEPROM bit. The COP watchdog timer is intended to detect software failures; thus, it is 
important to enable or disable this feature without any software intervention. If software 
could disable or was required to enable the COP watchdog, the COP watchdog timer could 
not detect a failure of that software. 

The CON FIG register controls the presence or absence of ROM and/or EEPROM, enables/ 
disables the COP watchdog timer, and engages/disengages the security option. The CON FIG 
register and mechanism are described in greater detail in 3.2.1 Operation of the CON FIG 
Mechanism. The features enabled by the CON FIG register can be thought of as mask­
programmed options that do not require software service. 

5.1.3 Mode of Operation Established 

During reset, the basic mode of operation is established, which determines whether the 
MCU will operate as a self-contained single-chip system or as an expanded system that 

5-4 M68HC11 REFERENCE MANUAL MOTOROLA 



includes external memory resources. There are also special variations of these two basic 
modes of operation. The bootstrap mode is the special variation of the normal single-chip 
mode, and the special test mode is the special variation of the normal expanded mode. 
The levels on the two mode select pins during reset determine which of these four modes 
of operation will be selected. 

The hardware mode select mechanism begins with the logic levels on the MODA and 
MODB pins while the MCU is in the reset state. The logic levels on the MODA and MODB 
pins are fed into the MCU via a clocked pipeline path. The captured levels will be those 
that were present part of a clock cycle before the RESET pin rose. This fact assures a zero 
hold-time requirement on the mode select pins relative to the rising edge at the RESET 
pin. The captured levels determine the logic state of the SMOD and MDA control bits in 
the HPRIO register. These two control bits actually control the logic circuits involved in 
hardware mode selection. Table 5-1 summarizes the operation of the mode pins and mode 
control bits. 

Table 5-1. Hardware Mode Select Summary 

Inputs Control Bits in HPRIO (Latched at Reset) 

MODB MODA 
Mode Description 

RBOOl SMOD MDA IRV 

1 0 Normal Single Chip 0 0 0 0 

1 1 Normal Expanded 0 0 1 0 

0 0 Special Bootstrap 1 1 0 1 

0 1 Special lest 0 1 1 1 

5.1.4 Program Counter Loaded with Reset Vector 

As reset is released, the CPU program counter is loaded with the reset vector that points 
to the first instruction in the user's program. Depending on the cause of reset and the 
mode of operation, the reset vector may be fetched from any of six possible locations. In 
older Motorola MCUs, there was only one reset vector at $FFFE,FFFF. 

5.2 CAUSES OF RESET 

In the MC68HC11A8, there are on-chip systems that can detect MCU system failures and 
generate a low level out the RESET pin to reinitialize other peripherals in the system. To 
distinguish between these causes, separate reset vectors are used. The primary reset vector 
is used when the cause of reset is the internal poweron reset circuit or application of a 
low level to the RESET pin. In normal expanded and normal single-chip modes, this vector 
is located at $FFFE,FFFF. If the oscillator input stops or is running too slow, the clock 
monitor circuit will generate a reset (provided the clock monitor is enabled). Time-out of 
the internal COP watchdog timer will generate a reset (provided the COP system is enabled). 
Table 5-2 summarizes the reset-vector locations versus the cause of reset and mode of 
operation. 

MOTOROLA M68HC11 REFERENCE MANUAL 5-5 

• 



II 

Table 5-2. Reset Vector vs. Cause and MCU Mode 

Cause of Reset Normal Mode Vector Special Test or Bootstrap Vector 

paR or RESET Pin $FFFE,FFFF $BFFE,BFFF 

Clock Monitor Fail $FFFC,FFFD $BFFC,BFFD 

COP Watchdog Time-Out $FFFA,FFFB $BFFA,BFFB 

In special test and bootstrap modes, MCU vectors are located at $BFCO-$BFFF rather than 
the normal $FFCO-$FFFF area. The primary reason for this change is to be sure the reset 
vector can be supplied from an external source in special test mode. The normal reset 
vector is located at $FFFE,FFFF, which can be internal ROM or external memory space 
(depending on whether the internal ROM is enabled). The special test mode reset vector 
is at $BFFE,BFFF, which is always an external access independent of other system con­
ditions. 

This alternate mapping is important to the operation of bootstrap mode because it allows 
reset and other vectors to be located within the 192-byte bootloader ROM. As the MCU 
comes out of reset in special bootstrap mode, the reset vector is fetched out of the boot­
loader ROM, and execution begins at the start ofthe bootloader program. While in bootstrap 
mode, interrupts can be vectored to locations in the boot loaded program in RAM rather 
than vectoring to the routines specified in the internal ROM program. 

The M68HCll MCU is capable of distinguishing between an external reset and resets from 
the internal COP and clock monitor systems. When the COP watchdog timer times out or 
the clock monitor detects a clock failure, the COP and clock monitor status is temporarily 
saved. The RESET pin is then driven low for about four E-clock cycles and is released. Two 
E-clock cycles later, the RESET input is sampled. If RESET is high (has risen to logic one 
within the two cycles since it was released), the source of reset is presumed to be either 
the COP or clock monitor system. If RESET is still low, the source is presumed to be an 
external reset request, and the temporarily saved status from the COP and clock monitor 
systems is erased. Although there would rarely be more than one cause for a particular 
reset sequence, the three reset vectors are prioritized. If an external reset request drives 
the RESET pin low for less than four E-clock cycles, the differentiation logic could assume 
the source of reset was the internal COP or clock monitor system; however, as long as 
neither of these causes was indicated by the temporarily latched status, the normal reset 
vector would still be used by default. Although this MCU can differentiate between different 
reset causes, the most common implementation would direct all reset vectors to the same 
initialization software, regardless of the cause of reset. 

There are four possible sources of reset in the MC68HCllA8. An internal circuit detects 
the rising edge on VDD and initiates a poweron reset. An on-chip COP watchdog timer 
monitors proper software execution; if software does not service this timer within its time­
out period, a system reset is generated. Another on-chip circuit monitors the MCU clock 
frequency. If the MCU clock stops or is running too slow, a system reset is generated. 
Finally, a user can initiate an external reset by momentarily driving the RESET pin low. 
The COP and clock monitor features can be disabled. The poweron reset and external reset 
share the normal reset vector; whereas, the COP and clock monitor reset each have their 
own vector. The four causes of reset are described in greater detail in the following par­
agraphs. 

5-6 M68HC11 REFERENCE MANUAL MOTOROLA 



5.2.1 Poweron Reset (POR) 

The POR is only intended to initialize internal MCU circuits. As VDD is applied to the MCU, 
the POR circuit triggers and initiates a reset sequence. POR triggers an internal timing 
circuit that holds the RESET pin low for 4064 cycles of the internal PH2 clock. The MCU 
does not advance past this reset condition until a clock is present at the EXTAL pin long 
enough for these 4064-cycle PH2 clocks to be detected. The internal POR circuit will not 
retrigger unless VDD has discharged to 0 V; therefore, the internal POR circuit is not suitable 
as a power-loss detector. 

In almost all M68HC11 systems, there will be an external circuit to hold the RESET pin low 
whenever VDD is below normal operating level. This external voltage-level detector or 
other external reset circuits are the normal source of reset in a system; the internal POR 
circuit only serves to initialize internal control circuitry during cold starts. 

In some unusual applications, it may be desirable to hold RESET low long enough for the • 
oscillator to reach stable operating frequency. This stable operating frequency is not a 
requirement of the MCU because the M68HC11 is a fully static design, which can operate 
correctly even when the oscillator has not reached stable operating frequency. If the os-
cillator has not reached stable operating frequency by the time RESET is released, software 
and timed delays will be longer than expected since these delays are based on the oscillator 
frequency. In most applications, such errors within the first few milliseconds of operation 
are of no concern, and no external poweron delay is necessary. In cases where timing is 
critical immediately out of RESET, an external POR circuit must be provided. The required 
amount of delay depends upon the oscillator startup time, which varies with the frequency 
and design of the oscillator as well as such things as VDD rise time. In a typical M68HC11 
design with an E-clock frequency of 2 MHz, the internal POR will only hold RESET low for 
about 2 ms after oscillator start. With an 8-MHz crystal, the M68HC11 oscillator will typically 
start when VDD reaches about 1 V. For a typical VDD rise time, the internal POR times out 
well before VDD reaches an acceptable level. Thus, POR alone is rarely able to provide for 
all reset needs, and some external reset circuitry will be required. 

5.2.2 COP Watchdog Timer Reset 

The COP watchdog timer system is intended to detect software processing errors. When 
the COP is being used, software is responsible for keeping a free-running watchdog timer 
from timing out. If the watchdog timer times out, it is an indication that software is no 
longer being executed in the intended sequence; thus, a system reset is initiated. 

The COP system is enabled or disabled, depending on the state of the NOCOP bit in the 
CONFIG register. This enable is like a mask option in that it is effective immediately out 
of reset and is not dependent on any software action. Unlike a programmed mask option, 
the COP enable may be changed by the end user. The requirements for changing the enable 
bit are designed so the NOCOP bit is very unlikely to be changed by accident in the end 
system. The only way to change the enable status of the COP system is to change the 
contents of the EEPROM-based CON FIG register. Even after the NOCOP bit is changed, the 
MCU must be reset before the new status becomes effective. In the special test and boots­
trap operating modes, the COP system is initially inhibited by the disable resets (DISR) 

MOTOROLA M68HC11 REFERENCE MANUAL 5-7 



.. 

control bit in the TEST1 register. The DISR bit can be written to zero to enable COP resets 
while the MCU is in special test or bootstrap operating mode. 

The COP time-out period is set by the COP timer rate control bits (CR1 and CRO) in the 
configuration options (OPTION) register. After reset, these bits are both zero, which selects 
the fastest time-out period. The MCU internal E clock is first divided by 215 before it enters 
the COP watchdog system. The CR1 and CRO bits control a further scaling factor for the 
watchdog timer (see Table 5-3). The columns at the right of the table show the resulting 
watchdog time-out periods for three typical oscillator frequencies. In normal operating 
modes, these bits can only be written once, and that write must be within 64 bus cycles 
after reset. 

Table 5-3. Watchdog Rates vs. Crystal Frequency 

Crystal Frequency 

CR1 CRO E.;. 215 Divided By 223 Hz 8 MHz 4 MHz 

Nominal Time-Out 

0 0 1 15.625 ms 16.384 ms 32.768 ms 

0 1 4 62.5 ms 65.536 ms 131.07 ms 

1 0 16 250 ms 262.14ms 524.29 ms 

1 1 64 1 5 1.0495 2.1 5 

2.1 MHz 2 MHz 1 MHz 

Bus Frequency (E Clock) 

The COP timer must be reset by a software sequence prior to time-out to avoid a COP 
reset. The software COP reset is a two-step sequence. The first step is to write $55 to the 
COPRST register to arm the COP timer-clearing mechanism. The second step is to write 
$AA to the COPRST register, which clears the COP timer. Any number of instructions can 
be performed between these two steps as long as both steps are performed in the correct 
sequence before the timer times out. This reset sequence is sometimes referred to as 
servicing the COP timer. 

Since the COP timer is based on theMCU clock, the COP watchdog cannot detect errors 
that cause the MCU clock to stop. The clock monitor system (see 5.2.3 Clock Monitor Reset) 
can be used as a backup for COP to force a system reset if the MCU clocks stop. 

Placing the COP service instructions in an interrupt service routine is bad practice. In such 
a case, the interrupt could occur often enough to keep the COP system satisfied even if 
the main-line program was no longer functioning. 

The implementation of the COP timer causes a tolerance on the time-out period. The E 
divided by 215 clock into the COP system is free-running and, for practical purposes, is 
asynchronous to the COP service software. All additional divider stages in the COP timer 
are reset each time the COP service sequence is performed. There is an uncertainty about 
when the first E divided by 215 clock will reach the COP timer stages. This uncertainty 
causes the specified time-out period to have a tolerance of minus zero to plus one cycle 
of the E divided by 215 clock. This tolerance varies with E-clock frequency but does not 

5-8 M68HC11 REFERENCE MANUAL MOTOROLA 



change with respect to the COP rate selected by the CR1 and CRO bits. Figure 10-3 and 
10.2.3 COP Watchdog Function contain additional information about this clocking structure. 

5.2.3 Clock Monitor Reset 

The clock monitor circuit is based on an internal resistor-capacitor (RC) time delay. If no 
MCU clock edges are detected within this RC time delay, the clock monitor can optionally 
generate a system reset. The clock monitor function is enabled/disabled by the CME control 
bit in the OPTION register. This time-out is based on an RC delay so that the clock monitor 
can operate without any MCU clocks. 

Processing variations cause the RC time-out to vary somewhat from lot to lot and part to 
part. An E-clock frequency below 10 kHz will definitely be detected as a clock monitor error. 
An E-clock frequency of 200 kHz or more will prevent clock monitor errors. Any system • 
operating below 200 kHz E-clock frequency should not use the clock monitor function. 

When the clock monitor is enabled and the MCU clocks slow down or stop, a system reset 
is generated. The bidirectional RESET pin is driven low to reset the external system and 
the MCU. Clock monitor has a separate reset vector from COP reset and external reset to 
enable software to determine the cause of reset. While the MCU is in special test or 
bootstrap mode, resets from the COP and clock monitor systems are initially disabled by 
a one in the DISR bit in the TEST1 register. While still in the special operating modes, COP 
and clock monitor resets can be re-enabled by writing the DISR control bit to zero. In normal 
operating modes, the DISR bit is forced to zero and cannot be set to one. 

Clock monitor is often used as a backup for the COP watchdog system. Since the COP 
needs a clock to function, it is unable to function if the clocks stop. In such a case, the 
clock monitor system could detect clock failures not detected by the COP system. 

Another use for the clock monitor is to protect against the unintentional execution of the 
STOP instruction. Some applications view the STOP instruction as a serious problem be­
cause it causes MCU clocks to stop, thus disabling all software execution and on-chip 
peripheral functions. A stop disable bit (S) in the CCR is the first line of defense against 
unwanted STOP instructions. While the S bit is one, the STOP instruction acts as a no­
operation (NaP) instruction, which does not interfere with MCU clock operation. Clock 
monitor can provide an additional level of protection by generating a system reset if the 
MCU clocks are accidentally stopped. 

It is possible to use the clock monitor in systems that also use the STOP instruction. In 
such a system, the CME control bit would be written to zero to disable the clock monitor 
prior to executing an intentional STOP instruction. After recovery from STOP, the CME bit 
would be written to one to enable the clock monitor during normal execution. 

The reset sequence is a clocked operation; whereas, clock monitor resets are generated 
when the clocks stop. In many cases, the low level on RESET will correct the cause of the 
stopped MCU clocks, and recovery can proceed much as in the COP reset case. In cases 
where the MCU clocks do not resume as a result of the clock monitor reset, the driven low 
level at the RESET pin will remain indefinitely. 

MOTOROLA M68HC11 REFERENCE MANUAL 5-9 



• 

5.2.4 External Reset 

In addition to the internal sources, reset can be forced by applying a low level to the RESET 
pin. The resulting reset sequence is identical to the internal causes. Upon recognition of 
the reset request. internal logic turns on an internal N-channel device, which actively holds 
the RESET pin low for about four cycles. In a normal system, the external source of RESET 
would be redundantly driving the pin low during this time and would continue to hold the 
pin low longer than this four cycles. Two E-clock cycles after the internal N-channel driver 
releases the pin, the RESET pin is sampled. A low level at this time indicates the reset was 
caused by some external source. When the RESET pin is eventually released, the normal 
reset vector is fetched and processing begins. 

In all cases of reset, the internal N-channel device holds the RESET pin low for at least 
four E-clock cycles. All resets cause internal registers and on-chip peripherals to be rein­
itialized. The only difference between causes of reset is the vector locations used. 

In the abnormal case where the RESET pin is not held low long enough to be detected as 
the cause, the reset is tentatively assumed to have come from the COP or clock monitor 
systems. Priority logic assigns highest priority to the clock monitor and second highest 
priority to the COP watchdog. If neither of these sources is pending, the normal reset vector 
is selected by default. In another abnormal case where the RESET line is loaded by too 
much capacitance to rise within two cycles after the internal N-channel turns off, there will 
be no way for the internal logic to discriminate between an internal or external reset source; 
thus, all resets are interpreted as external requests. 

Figure 5-1 shows an example of an external reset circuit. The low voltage inhibit (LVI) 
device [1] holds RESET low whenever VDD is below operating level. The LVI device [2] and 
the RC on its input provide an external paR delay. The switch [3] provides for manual 
reset. Voltage detectors [1] and [2] have open-drain outputs, and the pullup resistor holds 
the RESET pin high unless either voltage detector or the internal MCU reset circuitry drives 
the RESET pin low. The LVI circuit [1] (or some equivalent circuit) is required for virtually 
all M68HC11 systems. The external paR delay and manual reset switch are optional. For 
many applications, the voltage detector [1] and the pullup resistor at [4] are the only external 
components needed for reset. 

5.3 INTERRUPT PROCESS 

The CPU in a microcontroller sequentially executes instructions. In many applications, it 
is necessary to execute sets of instructions in response to requests from various peripheral 
devices. These requests are often asynchronous to the execution of the main program. 
Interrupts provide a way to temporarily suspend normal program execution so the CPU 
can be freed to service these requests. After an interrupt has been serviced, the main 
program resumes as if there had been no interruption. 

The instructions executed in response to an interrupt are called the interrupt service routine. 
These routines are much like subroutines except that they are called through the automatic 
hardware interrupt mechanism rather than by a subroutine call instruction, and all CPU 
registers are saved on the stack rather than just saving the program counter. An interrupt 

5-10 M68HC11 REFERENCE MANUAL MOTOROLA 



VDD VDD 

[4] 

IN 4.7K 

[1] RESET TO RESET 

MC34064 OFM68HC11 
GND 

3 

--MANUAL 
RESET SWITCH RI 

P 
R2 

lC 
IN 

[2] RESET - -- - MC34164 
GND 

3 

--
Figure 5-1. Typical External Reset Circuit 

(provided it is enabled) causes normal program flow to be suspended as soon as the 
currently executing instruction finishes. The interrupt logic then pushes the contents of all 
CPU registers onto the stack so the CPU context can be restored after the interrupt is 
finished. After stacking the CPU registers, the vector for the highest priority pending in­
terrupt source is loaded into the program counter, and execution continues with the first 
instruction of the interrupt service routine. An interrupt is concluded with a return from 
interrupt (RTI) instruction, which causes all CPU registers and the return address to be 
recovered from the stack so that the interrupted program can resume as if there had been 
no interruption. 

Interrupts can be enabled or disabled by mask bits (X and I) in the CCR and by local enable 
mask bits in the on-chip peripheral control registers. A few important interrupt sources 
that are always enabled are called nonmaskable interrupts. The nonmaskable interrupt 
request (XIRQ) pin is effectively a nonmaskable interrupt source except that it is disabled 
immediately after reset. Very special logic is associated with the interrupt mask bit (X) for 
XIRQ in the CCR to overcome classic problems associated with a nonmaskable interrupt 
while allowing all of the benefits of such an interrupt. The remaining interrupt sources are 
maskable by the interrupt mask bit (I) in the CCR. 

The interrupt mask bits in the CCR provide a means of controlling the nesting of interrupts. 
In rare cases, it may be useful to allow an interrupt routine to be interrupted (nesting of 
interrupts). Nesting of interrupts is discouraged because it greatly complicates a system 
and rarely improves system performance. By default, the interrupt structure inhibits in­
terrupts during the interrupt entry sequence by setting the interrupt mask bit(s) in the CCR. 
As the CCR is recovered from the stack during the RTI instruction, the CCR bits return to 
the enabled state so additional interrupts can be serviced. If nesting of interrupts is desired, 
it must be specifically allowed by clearing the interrupt mask bit(s) after entering the 

MOTOROLA M68HC11 REFERENCE MANUAL 5-11 

• 



• 

interrupt service routine. Care must be taken to specifically mask (disable) the present 
interrupt with a local enable mask bit or to clear the interrupt source flag before clearing 
the mask bit in the CCR; otherwise, the same source would immediately interrupt, and an 
infinite loop could result. 

Upon reset, both the X and I bit are set to inhibit all maskable interrupts and XIRQ. After 
minimum system initialization, software may clear the X bit by a transfer accumulator A 
to CCR (TAP) instruction, thus enabling XIRO. Thereafter, software cannot set the X bit; 
thus, an XIRO is effectively a nonmaskable interrupt. Since the operation of the I-bit-related 
interrupt structure has no effect on the X bit, the external XIRO pin remains effectively 
nonmaskable. In the interrupt priority logic, XIRO is a higher priority than any source that 
is maskable by the I bit. AIlI-bit-related interrupts operate normally with their own priority 
relationship. When an I-bit-related interrupt occurs, the I bit is automatically set by hardware 
after stacking the CCR byte, but the X bit is not affected. When an XIRQ occurs, both the 
X and I bits are automatically set by hardware after stacking the CCR. An RTI instruction 
restores the X and I bits to their preinterrupt request state. 

5.3.1 Interrupt Recognition and Stacking Registers 

An interrupt can be recognized at any time provided it is enabled by its local mask (if any) 
and by the global mask bit in the CCR. Once any interrupt source is recognized, the CPU 
will respond at the completion of the currently executing instruction. Instructions cannot 
be interrupted; rather, the CPU decides whether to fetch another instruction or process an 
interrupt. In calculating the latency time from the actual interrupt request to the CPU 
response to that request, the user must consider the possibility that the CPU had just 
started a long instruction as the interrupt was requested. Most instructions are two to four 
cycles long, but the multiply (MUl) and (integer divide (lDIV) or fractional divide (FDIVll 
instructions are 10 and 41 cycles, respectively. 

When the CPU decides to service an interrupt, the contents of CPU registers are pushed 
(stored) on the stack in the order PCl, PCH, IVl, IVH, IXl, IXH, ACCA, ACCS, CCR. After 
the CCR value is stacked, the I bit in the CCR (and the X bit if XIRO is pending) is set to 
inhibit further interrupts. The interrupt sequence then proceeds to the priority resolution 
step. 

5.3.2 Selecting Interrupt Vectors 

After the CCR has been stacked, the CPU evaluates all pending interrupt requests to de­
termine which source has the highest priority. Since the priority resolution step occurs 
several cycles after the original decision to service an interrupt, a higher priority source 
could become pending after the stacking operation started but before the priority is re­
solved. In such a case, the interrupt that is serviced can be different from the source that 
initiated the interrupt sequence. This subtle aspect means that the latency from an interrupt 
request to when it is serviced can be shorter than expected. 

Interrupts obey a fixed hardware-priority circuit to resolve simultaneous requests; however, 
one I-bit-related interrupt source may be elevated to the highest I bit priority position in 

5-12 M68HC11 REFERENCE MANUAL MOTOROLA 



the resolution circuit. The first six interrupt sources are not masked by the I bit in the CCR 
and have the fixed priority interrupt relationship: reset, clock monitor fail, COP fail, illegal 
opcode, and XIRQ. Each of these sources is an input to the priority resolution circuit. 
Software interrupt (SWI) is actually an instruction and has the highest priority other than 
reset because, once the SWI opcode is fetched, no other interrupt can be honored until 
the SWI vector has been fetched. The highest I-bit-related priority input is assigned under 
software control (of the HPRIO register) to be connected to anyone of the remaining I-bit­
related interrupt sources. To avoid timing races, the HPRIO register may only be written 
while the I-bit-related interrupts are inhibited (I bit in CCR = 1). An interrupt that is assigned 
to this highest priority position is still subject to masking by any associated control bits or 
by the I bit in the CCR. The interrupt vector address is not affected by assigning a source 
to this highest priority position. 

The following figure shows the HPRIO register. The HPRIO register may be read at any 
time but may only be written under special circumstances. The high-order four bits of 
HPRIO may only be written while the MCU is operating in one of the special modes 
(SMOD = 1). The low-order four bits may only be written while thel bit in the CCR is one. 

RESET: IReter to Table 5-11 

RBOOT - Read Bootstrap ROM 
Writable only while SMOD equals one 

1 = Bootstrap ROM enabled and located from $BF40-$BFFF 
0= Bootstrap ROM disabled and not present in memory map 

HPRIO 
$103C 

The RBOOT control bit enables or disables the special bootstrap control ROM. This 
192-byte mask-programmed ROM contains the firmware required to load a user's 
program through the SCI into the internal RAM and jump to the loaded program. In 
all modes other than the special bootstrap mode, this ROM is disabled and does not 
occupy any space in the 64K-byte memory map. Although it is zero when the MCU 
comes out of reset in test mode, the RBOOT bit may be written to one while in special 
test mode. 

SMOD - Special Mode 
May be written to zero but not back to one 

1 = Special mode variation in effect 
0= Normal mode variation in effect 

MDA - Mode A Select 
Writable only while SMOD equals one 

1 = Normal expanded or special test mode in effect 
0= Normal single-chip or special bootstrap mode in effect 

MOTOROLA M68HC11 REFERENCE MANUAL 5-13 



II 

IRV - Internal Read Visibility 
Writable only while SMOD equals one; forced to zero if SMOD equals zero 

1 = Data driven onto external bus during internal reads 
0= Data from internal reads not visible on expansion bus (levels on bus ignored) 

The IRV control bit is used during factory testing and sometimes during emulation to 
allow internal read accesses to be visible on the external data bus. Care is required to 
avoid data bus contention while IRV is active because the bidirectional data bus is 
driven out during reads of internal addresses, even though the R/W line suggests the 
data bus is in the high-impedance read mode. In normal modes, this function is dis­
abled; thus, complex decode logic is not required to protect against accidental bus 
conflicts. 

PSEL3-PSELO - Priority Select Bits 3-0 
Writable only while I bit in CCR equals one 
These four bits allow anyone maskable interrupt source to be elevated to the highest 
priority position. Nonmaskable interrupts still take priority over all maskable interrupts. 
The following table shows the relationship between the PSEL3-PSELO bit values and 
the interrupt source that is promoted. The priority can only be changed while interrupt!? 
are masked (I bit in CCR = 1) to avoid race conditions. 

Table 5-4. Highest Priority I Interrupt VS. PSEL3-PSELO 

PSEL3 PSEL2 PSEL1 PSELO Interrupt Source Promoted 

0 0 0 0 Timer Overflow 

0 0 0 1 Pulse Accumulator Overflow 

a a 1 0 Pulse Accumulator Input Edge 

0 0 1 1 SPI Transfer Complete 

0 1 0 0 SCI Serial System 

0 1 0 1 Reserved (Default to IRQ) 

0 1 1 0 IRQ (External Pin or Parallel 1/0) 

0 1 1 1 Real-Time Interrupt 

1 0 0 0 Timer Input Capture 1 

1 0 0 1 Timer Input Capture 2 

1 0 1 0 Timer Input Capture 3 

1 0 1 1 Timer Output Compare 1 

1 1 0 0 Timer Output Compare 2 

1 1 0 1 Timer Output Compare 3 

1 1 1 0 Timer Output Compare 4 

1 1 1 1 Timer Output Compare 5 

Figures 5-2, 5-3, and 5-4 illustratethe interrupt process as it relates to normal processing. 
Figure 5-2 shows how the CPU begins from a reset and how interrupt detection relates to 
normal opcode fetches. F=igure 5-3, an expansion of a block in Figure 5-2, shows how 
interrupt priority is resolved. Figure 5-4, an expansion of the SCI interrupt block in Figure 
5-3, shows the resolution of interrupt sources within the SCI subsystem. 

5-14 M68HC11 REFERENCE MANUAL MOTOROLA 



MOTOROLA 

HIGHEST =====----

LOAD PROGRAM COUNTER 
WITH CONTENTS OF 

$FFFE, FFFF (VECTOR FETCH) 

PRIORITY 

CLOCK MONITORFAIL~ LOWEST 
(WITH CME = 1) 

LOAD PROGRAM COUNTER 
WITH CONTENTS OF 

$FFFC, FFFD (VECTOR FETCH) 

SET S, X, AND I BITS 
INCCR 

RESETMCU 
HARDWARE 

NO 

1B 

LOAD PROGRAM COUNTER 
WITH CONTENTS OF 

$FFFA, FFFB (VECTOR FETCH) 

STACK CPU 
REGISTERS 

SET X AND I BITS 

FETCH VECTOR 
$FFE4, FFE5 

Figure 5-2. Processing Flow Out of Resets (Sheet 1 of 2) 

M68HC11 REFERENCE MANUAL 5-15 

• 



• 

5-16 

STACK CPU 
REGISTERS 

SET X AND I BITS 

FETCH VECTOR 
$FFF8, FFF9 

STACK CPU 
REGISTERS 

SET X AND I BITS 

FETCH VECTOR 
$FFF6, FFF7 

NO 

START NEXT 
INSTRUCTION 

SEQUENCE 

STACK CPU 
REGISTERS 

RESOLVE INTERRUPT 
PRIORITY AND FETCH 
VECTOR FOR HIGHEST 

PENDING SOURCE 
(SEE FIGURE 5-3) 

Figure 5-2. Processing Flow Out of Resets (Sheet 2 of 2) 

M68HC11 REFERENCE MANUAL 

STACK CPU 
REGISTERS 

MOTOROLA 



MOTOROLA 

SET X BIT IN CCR 

FETCH VECTOR 
$FFF4, FFF5 

FETCH VECTOR 

FETCH VECTOR 
$FFFO, FFFl 

FETCH VECTOR 
$FFEE, FFEF 

FETCH VECTOR 
$FFEC, FFED 

FETCH VECTOR 
$FFEA, FFEB 

FETCH VECTOR 
$FFE8, FFE9 

Figure 5·3, Interrupt Priority Resolution (Sheet 1 of 2) 

M68HC11 REFERENCE MANUAL 5-17 



• 

5-18 

SPURIOUS INTERRUPT - TAKE IRQ VECTOR 

FETCH VECTOR 
$FFE6, FFE7 

FETCH VECTOR 
$FFE4, FFE5 

FETCH VECTOR 
$FFE2, FFE3 

FETCH VECTOR 
$FFEO, FFEl 

FETCH VECTOR 
$FFDE, FFDF 

FETCH VECTOR 
$FFDC, FFDD 

FETCH VECTOR 
$FFDA, FFDB 

FETCH VECTOR 
$FFD8, FFD9 

FETCH VECTOR 
$FFD6, FFD7 

FETCH VECTOR 
$FFF2, FFF3 

Figure 5-3. Interrupt Priority Resolution (Sheet 2 of 2) 

M68HCll REFERENCE MANUAL MOTOROLA 



Figure 5-4. Interrupt Source Resolution within SCI 

5.3.3 Return from Interrupt 

When an interrupt has been serviced as needed, the RTI instruction terminates interrupt 
processing and returns to the program that was running at the time of the interruption. 
During servicing of the interrupt, some or all of the CPU registers will have changed. To 
continue the former program as if it had not been interrupted, the registers must be restored 
to the values present at the time the former program was interrupted. The RTI instruction 
accomplishes this by' pulling (loading) the saved register values from the stack memory. 
The last value to be pulled from the stack is the program counter, which causes processing 
to resume where it was interrupted. 

MOTOROLA M68HC11 REFERENCE MANUAL 5-19 



• 

5.4 NONMASKABLE INTERRUPTS 

This subsection discusses the illegal opcode fetch interrupt, the SWI instruction, and the 
XIRQ input pin. The illegal opcode fetch interrupt is a nonmaskable interrupt source in­
tended to improve system integrity. Although it performs like an interrupt, SWI is an 
instruction rather than an asynchronous interrupt. The XIRQ input is an updated version 
of the nonmaskable interrupt (NMI) input of earlier MCUs. 

5.4.1 Nonmaskable Interrupt Request (XIRQ) 

Nonmaskable interrupts are useful because they can always interrupt CPU operation. The 
most common use for such an interrupt is for very serious system problems, such as 
program runaway or power failure. The XIRQ mechanism overcomes two significant prob­
lems with an NMI input while retaining the important capabilities associated with a non­
maskable source. 

The first NMI problem is as follows: What if an NMI is requested before the stack pointer 
has been initialized? If this request happens, the register stacking operation causes register 
values to be written to a random area of memory. If the stack pointer is pointing to some 
unimplemented memory area or to a read-only area, there will be no way to return to the 
program in progress at the time of the interrupt. If the stack pointer is pointing at a data 
area in memory, the register values will be written over the data (thus corrupting it). Since 
this situation is not desirable, the NMI had to be externally inhibited after reset until the 
stack pointer could be initialized. 

The second NMI problem is as follows: What if the NMI signal bounces so that NMI is 
nested? If nesting occurs, the stack can be filled with several copies of the register values, 
possibly filling the stack beyond its allotted space. Nesting in this way would also cause 
excessive latency from the request until the resulting program actions are executed. 

The M68HC11 solves both these problems with the X bit in the CCR. The X bit is very 
similar to the I bit except that there are special restrictions on setting and clearing of the 
X bit. Since X can only be cleared by a software instruction, the programmer has control 
over when the XIRQ input becomes enabled. The two software instructions that can clear 
the X bit are TAP and RTI (provided the stacked CCR value has a zero in the X bit position). 
The two hardware conditions that can set the X bit are system reset and the recognition 
of an XIRQ. 

Immediately after any reset, the X bit is set; thus, XIRQ is inhibited. When software has 
established initial conditions, including setting the stack pointer, the X bit may be cleared 
with a TAP instruction to enable XIRQ. These two steps overcome the first NMI problem. 
Since software cannot set the X bit, the XIRQ can be considered a nonmaskable source at 
this point. When an XIRQ occurs, the CCR value is stacked (with the X bit clear); the X bit 
is then automatically set to inhibit additional interrupts. This step overcomes the second 
NMI problem. When an RTI instruction is executed, the CCR is restored to the stacked value 
(which had the X bit clear). A common misconception is that the X bit can be set by 
executing an RTI instruction with a one in the X bit position of the stacked CCR value. In 
reality, the X bit is implemented as a set-reset flip-flop rather than a D-type flip-flop. The 

5-20 M68HC11 REFERENCE MANUAL MOTOROLA 



set input is connected to the OR of reset and XIRQ acknowledge. The reset input is con­
nected to the AND of a CCR write and data bit 6 equals zero. If an attempt is made to TAP 
or unstack a one to the X bit, neither the set nor the clear input to the X bit flip-flop will 
be activated, and the X bit will remain unchanged. 

The M68HC11 supports a STOP mode where all clocks are stopped to reduce power con­
sumption to a few microamps. Recovery to active mode is accomplished by a reset or an 
interrupt (IRQ or XIRQ). Depending upon the state of the X bit in the CCR, the XIRQ input 
offers a choice of two recovery methods. If X is zero, XIRQ interrupts are enabled, and 
recovery leads to register stacking and normal interrupt service. If X is one, XIRQ interrupts 
are inhibited, but the XIRQ pin can still be used for recovery from the STOP mode. Rather 
than resuming operation with service of an interrupt (XIRQ), the clocks start and processing 
resumes with the next opcode after the STOP opcode. This technique can be thought of 
as a STOP-continue mechanism. 

Some M68HC11 MCUs were manufactured with a subtle defect that can cause failure to 
properly recoverfrom STOP with an interrupt input (IRQ or XIRQ). Ifthe opcode immediately 
preceding the STOP opcode came from column 4 or 5 of the opcode map, recovery was 
incorrect. Column 4 and 5 opcodes are accumulator instructions, such as negate A (NEGA) 
or decrement B (DECB), which seldom appear immediately before a STOP instruction; 
therefore, a long time elapsed before the problem was discovered. A simple NOP instruction 
before the STOP opcode assures proper recovery from STOP in all cases. 

5.4.2 Illegal Opcode Fetch 

Since not all possible opcodes or opcode sequences are defined, an illegal opcode detection 
circuit has been included. When an illegal opcode is detected, an interrupt is requested to 
the illegal opcode vector. The illegal opcode vector should never be left uninitialized. The 
stack pointer should be reinitialized as a result of an illegal opcode interrupt so repeated 
execution of illegal opcodes does not cause stack overruns. If the illegal opcode vector 
were left uninitialized, it could point to a memory location that contained an illegal opcode. 
In such a case, there would be an infinite loop of repeated illegal opcodes and an infinite 
stack overflow, which would cause the register contents to be stored to all memory ad­
dresses in a very short time. 

The illegal opcode trap mechanism works for all unimplemented opcodes on all four 
opcode-map pages. The address stacked as the return address for the illegal opcode in­
terrupt is the address of the first byte of the illegal opcode. Otherwise, it would be almost 
impossible to determine whether the illegal opcode had been one or two bytes. The stacked 
return address can be used as a pointer to the illegal opcode so the illegal opcode service 
routine can evaluate the offending opcode. 

The illegal opcode mechanism can be used to create a number of special-purpose instruc­
tions that use otherwise illegal opcodes. When one of these opcodes is encountered, the 
interrupt service routine can look up the special opcode and perform some special task. 
The return address would need to be manually changed since it points to the illegal opcode 
rather than to the instruction that follows the illegal opcode. 

MOTOROLA M68HC11 REFERENCE MANUAL 5-21 

• 



• 

The TEST instruction (opcode $00) is a legal opcode in special test and bootstrap modes, 
but it is an especially offensive illegal opcode in normal operating modes. The illegal opcode 
detection logic treats the TEST opcode as illegal when the MCU is in normal operating 
modes and as legal in. special test and bootstrap modes. 

5.4.3 Software Interrupt 

The SWI is executed in the same manner as other instructions and takes precedence over 
pending interrupts only if the other interrupts are masked (I and X bits in the CCR set). 
The SWI instruction is executed in a manner similar to other maskable interrupts in that 
it sets the I bit, CPU registers are stacked, etc. SWI is not inhibited by the global interrupt 
mask bits (X or I) in the CCR. 

NOTE 

The SWI instruction will not be fetched if any other interrupt is pending. However, 
once an SWI instruction begins, no other interrupt can be honored until the SWI 
vector has been fetched. 

SWI instructions are commonly used in debug monitors to transfer control from a user 
program to the debug· monitor. For example, while operating under monitor control, a 
designer can specify a breakpoint at some address in the user program being debugged. 
The monitor will replace the user's opcode at this address with the opcode for an SWI 
instruction. When the user's program is running and this SWI opcode is encountered, the 
monitor, recognizing that this is a breakpoint, will take control. The SWI opcodes are usually 
placed into the user's program just before the program is run, and these locations are 
restored to the original opcode when the debug monitor regains control. 

5.5 MASKABLE INTERRUPTS 

The remaining twenty interrupt sources in the MC68HCllA8 are subject to masking by a 
global interrupt mask bit (I bit in CCR). In addition to the global I bit, all of these sources 
except the external interrupt (IRQ pin) are subject to local enable bits in control registers. 
Most interrupt sources in the M68HC11 have separate interrupt vectors; thus, there is 
usually no need for software to poll control registers to determine the cause of an interrupt. 
The maskable interrupt sources respond to a fixed-priority relationship except that any 
one source can be dynamically elevated to the highest priority position of any maskable 
source. 

This subsection discusses the maskable interrupt structure rather than the specific inter­
rupts from individual internal peripheral subsystems. The interrupts associated with the 
internal subsystems are discussed throughout this manual during the discussion of each 
peripheral system. 

5.5.1 I Bit in the Condition Code Register 

The I bit in the CCR acts as a primary enable control for all maskable interrupts. When the 
I bit is set, interrupts can become pending but will not be honored. When the I bit is clear, 

5-22 M68HC11 REFERENCE MANUAL MOTOROLA 



interrupts are enabled to interrupt normal program flow when an interrupt source requests 
service. 

The I bit is set during reset to prevent interrupts from being honored until minimum system 
initialization has been performed. Part of this minimum initialization would be to load the 
stack pointer so it points to an appropriate area of RAM. The I bit is also automatically set 
during entry into any interrupt service routine to prevent an infinite source of interrupts 
from overwhelming the CPU. Software can also set the interrupt mask bit to inhibit inter­
rupts during sensitive operations. 

The I bit can be cleared by software instructions or during the execution of an RTI instruc­
tion. In most applications, the I bit remains set during interrupt service routines so other 
interrupts will not be honored until a current interrupt service routine finishes (i.e., nesting 
is not permitted). In more unusual applications, it is possible to allow nesting of interrupts 
by clearing the I bit during an interrupt service routine. Since this procedure requires much 
expertise, it should not be attempted by a novice programmer. In some cases, worst-case 
interrupt latency can be reduced by allowing interrupt nesting, but usually the best pro­
cedure is to minimize the execution time of interrupt service routines. Since the overhead 
associated with interrupt nesting usually violates this procedure, nesting is not recom­
mended. 

The operation of the I bit during service of an interrupt proceeds as follows. When an 
enabled interrupt occurs and the I bit is clear, the CPU completes the current instruction 
and begins the interrupt response sequence. The current contents of the CPU registers are 
pushed onto the stack (stored in stack RAM). The register values are saved one byte at a 
time in the following order: PCl, PCH, IYl, IYH, IXl, IXH, ACCA, ACCB, and CCR. After the 
CCR value is stacked, the I bit in the CCR is set to inhibit further interrupts. Next, the vector 
for the highest priority pending interrupt is fetched, and processing continues with exe­
cution of the first instruction in the interrupt service routine. The last instruction in the 
interrupt service routine is the RTI instruction. This instruction causes the previously stacked 
register values to be loaded back into the registers in reverse order. Since the program 
counter is restored to its preinterrupt value, the next instruction executed will be the 
instruction that would have been executed if the interrupt had not occurred. 

A common error for new users is to put a set interrupt mask (SEI) instruction at the 
beginning of an interrupt service routine and a clear interrupt mask (CLI) instruction just 
before the RTI instruction. These instructions should not be used in this way because they 
are redundant. The automatic interrupt logic already sets the I bit on the way into an 
interrupt and clears the I bit during normal execution of the RTI instruction. 

5.5.2 Special Considerations for I-Bit-Related Instructions 

There are some special conditions associated with the I bit that require additional consid­
eration. The I bit is actually a sequential logic circuit rather than a simple flip-flop. When 
the I bit is set by an SEI or a TAP instruction, interrupts are inhibited immediately. An 
interrupt occurring while an SEI instruction is executing will not be honored until/unless 
the I bit is later cleared. When the I bit is cleared by a CLI or TAP instruction, the actual 
clear operation is delayed for one bus cycle so the instruction following the CLI or TAP 

MOTOROLA M68HC11 REFERENCE MANUAL 5-23 



• 

will always be executed. This procedure implies that the following loop can never be 
interrupted by a maskable interrupt: 

LOOP CLI Enable Interrupts 
SEI Disable Interrupts 
BRA LOOP Repeat 

The reason for this delayed clear operation can be seen in the next instruction sequence: 
CLI Enable Interrupts 
WAI Wait for an Interrupt 

If there were not a delay in clearing the I bit, it is possible the interrupt could be recognized 
between the CLI and WAI instructions. Upon return from the interrupt service routine, the 
WAI instruction would be executed, and the CPU would erroneously wait for the interrupt 
that was just serviced . 

During execution of an RTI instruction, the first register to be restored from the stack is 
the CCR. In this situation, the one-cycle delay in clearing the I bit expires long before the 
RTI instruction is finished; thus, a new interrupt sequence can be started even before a 
single instruction of the interrupted program is executed . 

. 5.6 INTERRUPT REQUEST 

The maskable interrupt structure in the M68HC11 can be extended to additional external 
interrupting sources through the IRO input. This subsection discusses the IRO input as it 
relates to the interrupt structure. The alternate use of the IRO pin as an EEPROM program­
ming voltage source during factory testing is discussed in 2.2.5 Interrupt Pins (XIRQ, IRQ). 

Although this subsection is primarily concerned with the IRO pin, there are several addi­
tional MCU pins that can be used as interrupt inputs. The XIRO pin provides for non­
maskable interrupts. The main-timer input-capture pins (lC3-IC1) can be used as edge­
sensitive interrupt inputs with separate controls for selecting the significant edge and 
separate interrupt vectors. The pulse accumulator input pin can also be used as an addi­
tional edge-sensitive interrupt. If the MCU is operating in single-chip mode, the strobe A 
(STRAlAS) pin is available as an edge-triggered interrupt input. Though there is only one 
IRO pin, these other pins allow an MC68HC11A8 to have up to seven interrupt pins. 

5.6.1 Selecting Edge Triggering Or Level Triggering 

The default (most common) configuration for the IRO pin in an M68HC11 application is a 
low-level-sensitive wired-OR network. In less common applications, IRO can be a low-going 
edge-sensitive input. The edge-sensitive configuration is less common because it only 
allows a single interrupt source to use the IRO pin; whereas, the level-sensitive configu­
ration can accommodate many sources on the single IRO pin. The IRO select edge-sensitive 
only IROE bit in the OPTION control register is used to select the IRO pin configuration 
(lROE = 0 for low level sensitive and IROE = 1 for low-going edge sensitive). The IROE control 
bit is time-protected, which means it can only be written onc!,! within the first 64 E-clock 
cycles after reset. IROE is cleared by default during reset. 

5-24 M68HC11 REFERENCE MANUAL MOTOROLA 



The interrupt sources within the MCU all operate as a wired-OR level-sensitive network. 
When an event triggers an interrupt, a software-accessible interrupt flag is set, which (if 
enabled) causes a constant request for interrupt service. When software has recognized 
the interrupt, this flag is cleared, thus releasing the request for service. The flag bit acts 
as a static indication that service is required. If more than one interrupt source is connected 
to a single level-sensitive line, the line may remain asserted for several overlapping events 
from different sources, and the flag bits assure that all requests will be serviced. 

In an edge-sensitive network, the MCU is responsible for latching a request upon recog­
nition of a low-going edge at the interrupt input. This configuration is only capable of 
recognizing that an edge occurred (there is no software-accessible record to identify the 
requesting source); thus, the edge-sensitive configuration is appropriate only where a 
single source could have made the request. 

5.6.2 Sharing Vector with Handshake 1/0 Interrupts 

Because the IRQ vector is shared by the handshake I/O subsystem and the IRQ input pin, 
the handshake 110 functions can be rebuilt externally when the MCU is operating in ex­
panded modes. While the MCU is in an expanded mode, 18 pins, which were used for the 
handshake 1/0 subsystem, become dedicated to the expansion bus. The MC68HC24 is a 
port replacement unit (PRU) that rebuilds the handshake 110 functions. The MCU is spe­
cifically designed to treat the associated addresses as external locations while in expanded 
modes so that software sees no difference between an expanded system with a PRU and 
an M68HC11 operating in single-chip mode. Since the handshake I/O system uses the same 
vector as the IRQ pin, the PRU can drive the IRQ pin of the MCU. Even the interrupts for 
the handshake I/O system are faithfully emulated. 

The shared interrupt with IRQ solves most emulation problems for the PRU; however, 
there are some difficulties in applications where IRQ is configured for edge-sensitive op­
eration. In such a system, the PRU is connected to the IRQ pin and to the user's external 
interrupt source. The edge-sensitive configuration is not able to distinguish which source 
caused an interrupt. Also, if an edge-triggered interrupt is generated by the external source 
while an interrupt is pending from the PRU, the low level on the IRQ line prevents any 
new edge from being detected. Since the level-sensitive configuration is more common 
for IRQ and since so many other pins can act as edge-sensitive interrupt inputs, this 
limitation should not be serious. 

5.7 INTERRUPTS FROM INTERNAL PERIPHERAL SUBSYSTEMS 

The following paragraphs discuss common aspects of the interrupts generated by on-chip 
peripheral systems. The interrupt sources for on-chip peripheral systems are discussed in 
greater detail in the sections for each peripheral system. 

5.7.1 Inhibiting Individual Sources 

All on-chip interrupt sources have software-accessible control bits to enable the interrupt 
sources on an individual basis. Each source has a flag bit, which indicates service is 

MOTOROLA M68HC11 REFERENCE MANUAL 5-25 



• 

required, and an interrupt enable bit, which enables the flag to generate hardware interrupt 
requests. The programmer decides which sources will be used to generate interrupts and 
which will be handled by software polling rather than by interrupts. The global interrupt 
mask (I bit in CCR) can be used to inhibit all maskable interrupts. 

5.7.2 Clearing Interrupt Status Flag Bits 

The method for clearing the interrupt status flags varies from one system to another. 
Detailed explanations ofthe clearing requirements for each flag are provided in the sections 
for each on-chip peripheral system. 

Timer system interrupt flags are cleared by writing a logic one to the flag bit position(s) 
to be cleared. This action is explicit and is intended to prevent these flags from being 
cleared unintentionally. The most straightforward way to accomplish clearing is to load 
an accumulator with an immediate value (with ones in the bit positions corresponding to 
a flag bit(s) to be cleared) and then write this value to the status register. Other instruction 
sequences can be used to clear these timer flag bits, including bit manipulation instructions. 
Several instruction sequences for clearing timer flags are discussed in detail in 10.2.4 Tips 
for Clearing Timer Flags. 

5.7.3 Automatic Clearing Mechanisms on Some Flags 

For some of the interrupt sources, such as the parallel 110 interrupt and the SCI interrupts, 
the flags are automatically cleared during the normal course of responding to the interrupt 
requests. For example, the RDRF flag in the SCI system is cleared by the automatic clearing 
mechanism consisting of a read of the SCI status register while RDRF is set, followed by 
a read of the SCI data register. The normal response to an RDRF interrupt request would 
be to read the SCI status register to check for receive errors, then read the received data 
from the SCI data register. These two steps satisfy the automatic clearing mechanism 
without requiring any special instructions. 

In unusual cases, a programmer must take special care not to unintentionally trigger the 
automatic clearing mechanisms. The following guidelines help to avoid such problems. 
Reads of registers containing status flags should be minimized. Ideally, the status register 
should be read only during the course of servicing the interrupt, and the status flag should 
be read only once for each time the interrupt is requested. If more than one part of the 
service routine uses different bits in the status register, the register should be read only 
once, and a copy should be kept in RAM or in a CPU register for further use. The cycle­
by-cycle operation of instructions that access status registers may also present another 
problem. Some instructions are read-modify-write instructions even though the read in­
formation is not actually needed for the instruction. For example, the clear (CLR) instruction 
performs a read of the operand address even though the value read is irrelevant. A situation 
could arise where the SCI data register is cleared to transmit a $00 value via the SCI 
transmitter. Though it is not obvious, this action can satisfy the second step of the automatic 
clearing mechanism for the RDRF flag because clearing of the SCI transmit data register 
involves a read of the SCI data register prior to the write of $00. 

5-26 M68HC11 REFERENCE MANUAL MOTOROLA 



SECTION 6 
CENTRAL PROCESSING UNIT 

This section discusses the M68HC11 central processing unit (CPU). which is responsible 
for executing all software instructions in their programmed sequence. The M68HC11 CPU 
can execute all M6800 and M6801instructions (source and object-code compatible) and 
more than 90 new instruction opcodes. Since more than 256 instruction opcodes exist, a 
mUltiple-page opcode map is used in which some new instructions are specified by a page­
select prebyte before the opcode byte. 

The architecture of the M68HC11 CPU causes all peripheral, 1/0, and memory locations to 
be treated identically as locations in the 64K-byte memory map. Thus, there are no special 
instructions for 1/0 that are separate from those used for memory. This technique is some- II 
times called "memory-mapped 1/0." In addition, there is no execution-time penalty for • 
accessing an operand from an external memory location as opposed to a location within 
the MCU. 

The M68HC11 CPU offers several new capabilities when compared to the earlier M6801 
and M6800 CPUs. The biggest change is the addition of a second 16-bit index register (V). 
Powerful, new bit-manipulation instructions are now included, allowing manipulation of 
any bit or combination of bits in any memory location in the 64K-byte address space. Two, 
new 16-bit by 16-bit divide instructions are included. Exchange instructions allow the con­
tents of either index register to be exchanged with the contents of the 16-bit double ac­
cumulator. Finally, several instructions have been upgraded to make full 16-bit arithmetic 
operations even easier than before. 

This section discusses the CPU architecture, addressing modes, and the instruction set (by 
instruction types). Examples are included to show efficient ways of using this architecture 
and instruction set. To condense this section, detailed explanations of each instruction are 
included in APPENDIX A INSTRUCTION SET DETAILS. These explanations include detailed 
cycle-by-cycle bus activity and boolean expressions for condition code bits. This section 
should be used to gain a general understanding of the CPU and instruction set. 

6.1 PROGRAMMER'S MODEL 

Figure 6-1 shows the programmer's model of the M68HC11 CPU. The CPU registers are 
an integral part of the CPU and are not addressed as if they were memory locations. Each 
of these registers is discussed in the subsequent paragraphs. 

6.1.1 Accumulators (A, B, and D) 

Accumulators A and B are general-purpose 8-bit accumulators used to hold operands and 
results of arithmetic calculations or data manipulations. Some instructions treat the com­
bination of these two 8-bit accumulators as a 16-bit double accumulator (accumulator D). 

MOTOROLA M68HC11 REFERENCE MANUAL 6-1 



• 

15 

15 

15 

15 

15 

ACCUMULATOR A o I 7 ACCUMULATOR B A:B 

DOUBLE ACCUMULATOR D o D 

INDEX REGISTER X IX 

INDEX REGISTER Y IY 

STACK POINTER o SP 

PROGRAM COUNTER o PC 

o 

CONDITION CODE REGISTER I S X H NZVCICCR 

I ~LCARRY ~ OVERFLOW 

ZERO 

NEGATIVE 

'--------- I INTERRUPT MASK 

'----------- HALF-CARRY (FROM BIT 3) 

'------------ X INTERRUPT MASK 
L-. __________ STOP DISABLE 

Figure 6-1. M68HC11 Programmer's Model 

Most operations can use accumulator A or B interchangeably; however, there are a few 
notable exceptions. The ABX and ABY instructions add the contents of the 8-bit accu m u lator 
B to the contents of the 16-bit index register X or Y, and there are no equivalent instructions 
that use A instead of B. The TAP and TPA instructions are used to transfer data from 
accumulator A to the condition code register or from the condition code register to ac­
cumulator A; however, there are no equivalent instructions that use B rather than A. The 
decimal adjust accumulator A (DAA) instruction is used after binary-coded decimal (BCD) 
arithmetic operations, and there is no equivalent BCD instruction to adjust B. Finally, the 
add, subtract, and compare instructions involving both A and B (ABA, SBA, and CBA) only 
operate in one direction; therefore, it is important to plan ahead so the correct operand 
will be in the correct accumulator. 

6.1.2 Index Registers (X and Yl 

The 16-bit index registers X and Yare used for indexed addressing mode. In the indexed 
addressing mode, the contents of a 16-bit index register are added to an 8-bit offset, which 
is included as part of the instruction, to form the effective address of the operand to be 
used in the instruction. In most cases, instructions involving index register Y take one extra 
byte of object code and one extra cycle of execution time compared to the equivalent 
instruction using index register X. The second index register is especially useful for moves 
and in cases where operands from two separate tables are involved in a calculation. In the 
earlier M6800 and M6801, the programmer had to store the index to some temporary 
location so the second index value could be loaded into the index register. 

6-2 M68HC11 REFERENCE MANUAL MOTOROLA 



The ABX and ABY instructions along with increment and decrement instructions allow 
some arithmetic operations on the index registers, but, in some cases, more powerful 
calculations are needed. The exchange instructions, XGDX and XGDY, offer a very simple 
way to load an index value into the 16-bit double accumulator, which has more powerful 
arithmetic capabilities than the index registers themselves. 

It is very common to load one of the index registers with the beginning address of the 
internal register space (usually $1000)' which allows the indexed addressing mode to be 
used to access any of the internal 1/0 and control registers. Indexed addressing requires 
fewer bytes of object code than the corresponding instruction using extended addressing. 
Perhaps a more important argument for using indexed addressing to access register space 
is that bit-manipulation instructions are available for indexed addressing but not for ex­
tended addressing. 

6.1.3 Stack Pointer (SP) 

The M68HC11 CPU automatically supports a program stack. This stack may be located II 
anywhere in the 64K-byte address space and may be any size up to the amount of memory • 
available in the system. Normally, the stack pointer register is initialized by one of the very 
first instructions in an application program. Each time a byte is pushed onto the stack, the 
stack pointer is automatically decremented, and each time a byte is pulled off the stack, 
the stack pointer is automatically incremented. At any given time, the stack pointer register 
holds the 16-bit address of the next free location on the stack. The stack is used for 
subroutine calls, interrupts, and for temporary storage of data values. 

When a subroutine is called by a jump to subroutine (JSR) or branch to subroutine (BSR) 
instruction, the address of the next instruction after the JSR or BSR is automatically pushed 
onto the stack (low half first). When the subroutine is finished, a return from subroutine 
(RTS) instruction is executed. The RTS causes the previously stacked return address to be 
pulled off the stack, and .execution continues at this recovered return address. 

Whenever an interrupt occurs (provided it is not masked), the current instruction finishes 
normally, the address of the next instruction (the current value in the program counter) is 
pushed onto the stack, all of the CPU registers are pushed onto the stack, and execution 
continues at the address specified by the vector for the highest priority pending interrupt. 
After completing the interrupt service routine, a return from interrupt (RTI) instruction is 
executed. The RTI instruction causes the saved registers to be pulled off the stack in reverse 
order, and program execution resumes as if there had been no interruption. 

Another common use for the stack is for temporary storage of register values. A simple 
example would be a subroutine using accumulator A. The user could push accumulator A 
onto the stack when entering the subroutine and pull it off the stack just before leaving 
the subroutine. This method is a simple way to assure a register(s) will be the same after 
returning from the subroutine as it was before starting the subroutine. 

The most important aspect of the stack is that it is completely automatic. A programmer 
does not normally have to be concerned about the stack other than to be sure that it is 
pointing at usable random-access memory (RAM) and that there is sufficient space. To 

MOTOROLA M68HC11 REFERENCE MANUAL 6-3 



II 

assure sufficient space, the user would need to know the maximum depth of subroutine 
or interrupt nesting possible in the particular application. 

There are a few less common uses for the stack. The stack can be used to pass parameters 
to a subprogram, which is fairly common in high-level language compilers but is often 
overlooked by assembly-language programmers. There are two advantages of this tech­
nique over specific assignment of temporary or variable locations. First, the memory lo­
cations are only needed for the time the subprogram is being executed; they can be used 
for something else when the subprogram is completed. Second, this feature makes the 
subprogram re-entrant so that an interrupting program could call the same subprogram 
with a different set of values without disturbing the interrupted use of the subprogram. 

In unusual cases, a programmer may want to look at or even manipulate something that 
is on the stack, which should only be attempted by an experienced programmer because 
it requires a detailed understanding of how the stack operates. Monitor programs like 
BUFFALO sometimes place items on a stack manually and then perform an RTI instruction 
to go to a user program. This technique is an odd use of the stack and RTI instruction 
because an RTI would normally correspond to a previous interrupt. 

6.1.4 Program Counter (PC) 

The program counter is a 16-bit register that holds the address of the next instruction to 
be executed. 

6.1.5 Condition Code Register (CCR) 

This register contains five status indicators, two interrupt masking bits, and a STOP disabl~ 
bit. The register is named for the five status bits since that is the major use of the register. 
In the earlier M6800 and M6801 CPUs, there was no X interrupt mask and no STOP disable 
control in this register. 

The five status flags reflect the results of arithmetic and other operations of the CPU as it 
performs instructions. The five flags are half carry (H), negative (N), zero (Z), overflow (V), 
and carry/borrow (C). The half-carry flag, which is used only for BCD arithmetic operations 
(see 6.3.1.2 ARITHMETIC OPERATIONS), is only affected by the add accumulators A and 
B (ABA), ADD, and add with carry (ADC) addition instructions (21 opcodes total). The N, 
Z, V, and C status bits allow for branching based on the results of a previous operation. 
Simple branches are included for either state of any of these four bits. Both signed and 
unsigned versions of branches are provided for the conditions <, ~, =, *', ?, or >. 

The H bit indicates a carry from bit 3 during an addition operation. This status indicator 
allows the CPU to adjust the result of an 8-bit BCD addition so it is in correct BCD format, 
even though the add was a binary operation. This H bit, which is only updated by the ABA. 
ADD, and ADC instructions, is used by the DAA instruction to compensate the result in 
accumulator A to correct BCD format. 

The N bit reflects the state ofthe most significant bit (MSB) of a result. For twos complement, 
a number is negative when the MSB is set and positive when the MSB is zero. The N bit 

6-4 M68HC11 REFERENCE MANUAL MOTOROLA 



has uses other than in twos-complement operations. By assigning an often tested flag bit 
to the MSB of a register or memory location, the user can test this bit by loading an 
accumulator. 

The Z bit is set when all bits of the result are zeros. Compare instructions do an internal 
implied subtraction, and the condition codes, including Z, reflect the results of that sub­
traction. A few operations (INX, DEX, INY, and DEY) affect the Z bit and no other condition 
flags. For these operations, the user can only determine = and f.. 

The V bit is used to indicate if a twos-complement overflow has occurred as a result of 
the operation. 

The C bit is normally used to indicate if a carry from an addition or a borrow has occurred 
as a result of a subtraction. The C bit also acts as an error flag for mUltiply and divide 
operations. Shift and rotate instructions operate with and through the carry bit to facilitate 
multiple-word shift operations. 

In the M68HC11 CPU, condition codes are automatically updated by almost all instructions; 
thus, it is rare to execute any extra instructions to specifically update the condition codes. 
For example, the load accumulator A (LDAA) and store accumulator A (STAA) instructions 
automatically set or clear the N, Z, and V condition code flags. (In some other architectures, 
very few instructions affect the condition code bits; thus, it takes two instructions to load 
and test a variable.) The challenge in a Motorola processor lies in finding instructions that 
specifically do not alter the condition codes in rare cases where that is desirable. The most 
important instructions that do not alter conditions codes are the pushes, pulls, add B to X 
(ABX), add B to Y (ABY), and 16-bit transfers and exchanges. It is always a good idea to 
refer to an instruction set summary such as the pocket guide (MC68HC11A8RG/AD) to 
check which condition codes are affected by a particular instruction. 

The STOP disable (S) bit is used to allow or disallow the STOP instruction. Some users 
consider the STOP instruction dangerous because it causes the oscillator to stop; however, 
the user can set the S bit in the CCR to disallow the STOP instruction. If the STOP instruction 
is encountered by the CPU while the S bit is set, it will be treated like a no-operation (NaP) 
instruction, and processing continues to the next instruction. 

The interrupt request (IRQ) mask (I bit) is a global mask that disables all maskable interrupt 
sources. While the I bit is set, interrupts can become pending and are remembered, but 
CPU operation continues uninterrupted until the I bit is cleared. After any reset, the I bit 
is set by default and can only be cleared by a software instruction. When any interrupt 
occurs, the I bit is automatically set after the registers are stacked but before the interrupt 
vector is fetched. After the interrupt has been serviced, an RTI instruction is normally 
executed, restoring the registers to the values that were present before the interrupt oc­
curred. Normally, the I bit would be zero after an RTI was executed. Although interrupts 
can be re-enabled within an interrupt service routine, to do so is unusual because nesting 
of interrupts becomes possible, which requires much more programming care than single­
level interrupts and seldom improves system performance. 

The XIRQ mask (X bit) is used to disable interrupts from the XIRQ pin. After any reset, X 
is set by default and can only be cleared by a software instruction. When XIRQ is recognized, 
the X bit (and I bit) are automatically set after the registers are stacked but before the 

MOTOROLA M68HC11 REFERENCE MANUAL 6-5 

II 



• 

interrupt vector is fetched. After the interrupt has been serviced, an RTI instruction is 
normally executed, causing the registers to be restored to the values that were present 
before the interrupt occurred. It is logical to assume the X bit was clear before the interrupt; 
thus, the X bit would be zero after the RTI was executed. Although XIRQ can be re-enabled 
within an interrupt service routine, to do so is unusual because nesting of interrupts be­
comes possible, which requires much more programming care than single-level interrupts. 

6.2 ADDRESSING MODES 

hi the M68HCll CPU, six addressing modes can be used to reference memory: immediate, 
direct, extended, indexed (with either of two 16-bit index registers and an 8-bit offset), 
inherent, and relative. Some instructions require an additional byte (a prebyte) before the 
opcode to accommodate a mUltiple-page opcode map. 

Each of the addressing modes (except inherent) results in an internally generated, double­
byte value referred to as the effective address. This value, which is the result of a statement 
operand field, is the value that appears on the address bus during the memory reference 
portion of the instruction. The addressing mode is an implicit part of every M68HCll 
instruction. 

Bit-manipulation instructions actually employ two or three addressing modes during ex­
ecution but are classified by the addressing mode used to access the primary operand. All 
bit-manipulation instructions use immediate addressing to fetch a bit mask, and branch 
variations use relative addressing mode to determine a branch destination. 

The following paragraphs provide a description of each addressing mode. In these de­
scriptions, effective address is used to indicate the memory address from which the ar­
gument is fetched or stored or from which execution is to proceed. 

6.2.1 Immediate (lMM) 

In the immediate addressing mode, the actual argument is contained in the byte(s) im­
mediately following the instruction in which the number of bytes matches the size of the 
register. These instructions are two, three, or four (if prebyte is required) bytes. 

Machine-code byte(s) that follow the opcode are the value of the statement rather than 
the address of a value. In this case, the effective address of the instruction is specified by 
the character # sign and implicitly points to the byte following the opcode. The immediate 
value is limited to either one or two bytes, depending on the size of the register involved 
in the instruction. Examples of several assembly-language statements using the immediate 
addressing mode are shown. Symbols and expression used in these statements are defined 
immediately after the examples. 

The first three statements are assembler directives that set up values to be used in the 
remaining statements. The remaining nine statements are examples of immediate ad­
dressing. The value of each statement operand field appears in byte(s) immediately fol­
lowing the opcode. The operand field for immediate addressing begins with the character 

6-6 M68HC11 REFERENCE MANUAL MOTOROLA 



Machine Code Label Operation Operand Comments 

CAT EOU 7 CAT SAME AS 7 
ORG $1000 SET LOCATION COUNTER 

REGS EOU * ADDR(REGS) IS $1000 

86 16 LDAA #22 DECIMAL 22. ACCA ($16) 
C8 34 EORB #$34 XOR ($34,ACCB) • ACCB 
81 24 CMPA #%100100 RIGHT ALIGNED BINARY 

86 07 LDAA #CAT 7.ACCA 
CC 12 34 LDD #$1234 
CC 00 07 LDD #7 7. ACCA:ACCB 

86 12 LDAA #(022 OCTAL 
86 41 LDAA #'A ASCII 
CE 10 00 LDX #REGS ADDR(REGS). X 

# sign. The character # sign is used by the assembler to detect the immediate mode of • 
addressing. A very common programming error is to forget this character # sign. 

A variety of symbols and expressions can be used following the character # sign. Since 
not all assemblers use the same rules of syntax and special characters, the user should 
refer to the documentation for the particular assembler that will be used. Character prefixes 
used in the previous example statements are defined as follows: 

Prefix Definition 
None Decimal 

$ Hexidecimal 
(u Octal 
% Binary 

Single ASCII Character 

6.2.2 Extended (EXT) 

In the extended addressing mode, the effective address of the instruction appears explicitly 
in the two bytes following the opcode. Therefore, the length of most instructions using 
the extended addressing mode is three bytes: one for the opcode and two for the effective 
address. The last two bytes of the instruction contain the absolute address of the operand. 
These instructions are three or four (if prebyte is required) bytes: one or two for the opcode 
and two for the effective address. Instructions from the second, third, and fourth opcode­
map pages require a page-select prebyte prior to the opcode byte. Only four extended 
addressing mode instructions involving index register Y require this extra prebyte. 

Examples of assembly-language statements that use extended addressing mode are grouped 
with direct addressing mode examples and appear after the discussion of the direct ad­
dressing mode. 

MOTOROLA M68HC11 REFERENCE MANUAL 6-7 



.. 

6.2.3 Direct (DIR) 

In the direct addressing mode, the least significant byte of the effective address of the 
instruction appears in the byte following the opcode. The high-order byte of the effective 
address is assumed to be $00 and is not included as an instruction byte (saves program 
memory space and execution time). This fact limits the use of direct addressing mode to 
operands in the $OOOO-$OOFF area of memory (called the direct page). The direct addressing 
mode is sometimes called zero-page addressing mode. The length of most instructions 
using the direct addressing mode is two bytes: one for the opcode and one for the effective 
address. Instructions from the second, third, and fourth opcode-map pages require a page­
select prebyte prior to the opcode byte. Only four direct addressing mode instructions 
involving index register Y require this extra prebyte. 

Direct addressing allows the user to access $OOOO-$OOFF, using instructions that take one 
less byte of program memory space than the equivalent instructions using extended ad­
dressing. By eliminating the additional memory access, execution time is reduced by one 
cycle. In the course of a large program, this savings can be substantial. For most appli­
cations, the default memory map of the microcontroller unit (MCU). which places internal 
random-access memory (RAM) in the $OOOO-$OOFF area, is a good choice because the 
designer can assign these locations to frequently referenced data variables. In some MCU 
applications, it is desirable to locate the internal registers in this premium memory space. 
This arrangement might be desirable in an IIO-intensive application in which the program 
space savings are important or in the case of some very critical timing requirement in 
which the extra cycle for extended addressing mode is undesirable. In the M68HC11 MCU, 
software can configure the memory map so that internal RAM, and/or internal registers, 
or external memory space can occupy these addresses (see 3.3.1 RAM and I/O Mapping 
Register). 

There are some instructions that provide for extended addressing mode but not direct 
addressing mode. These instructions, which are members of a group called read-modify­
write instructions, operate directly on memory (opcodes $40-$7F except jump (JMP) and 
test for zero or minus (TST) on all opcode pages) and have the following form: 

<operation>M • M 

The increment memory byte (INC), decrement memory byte (DEC). clear memory byte 
(CLR), and ones complement memory byte (COM) instructions are members of this group, 
and each supports extended addressing mode but not direct addressing mode. The fol­
lowing example shows the direct and extended addressing modes. 

Machine Code Label 

B3 00 12 
CAT 

93 12 
7F 00 12 

Operation Operand 

SUBD 
EQU 

SUBD 
CLR 

CAT 
$12 

CAT 
CAT 

Comments 

FWD REF TO CAT 
DEFINE CAT=$12 

BKWD REF TO CAT 
EXTENDED ONLY 

In the previous example, the first reference to the CAT label is a forward reference, and 
the assembler selected the extended addressing mode. The second reference, which is a 

6-8 M68HC11 REFERENCE MANUAL MOTOROLA 



backward reference, enabled the assembler to know the symbol value when processing 
the statement, and the assembler selected the direct addressing mode. The last reference 
to CAT is also a backward reference to a symbol in the direct addressing area, but the 
extended addressing mode was selected because there is no direct addressing mode 
variation of that particular instruction. Some assemblers allow the direct or extended 
addressing modes to be forced (by preceding the operand field with < or >, respectively). 
even when other conditions would suggest the other mode. 

6.2.4 Indexed (IN OX, INDY) 

In the indexed addressing mode, either index register X or Y is used in calculating the 
effective address. In this case, the effective address is variable and depends on the current 
contents of index register X or Y and a fixed, 8-bit, unsigned offset contained in the 
instruction. This addressing mode can be used to reference any memory location in the 
64K-byte address space. These instructions are usually two or three (if prebyte is required) 
bytes - the opcode and the 8-bit offset. 

In microprocessor-based systems, instructions usually reside in read-only memory (ROM). • 
Therefore, the offset in the instruction should be considered a fixed value that is determined • 
at assembly time rather than during program execution. The use of dynamic single-byte 
offsets is facilitated with the use of the add accumulator B to index register X (ABX) 
instruction. More complex address calculations are aided by the arithmetic capability of 
the 16-bit accumulator D and the XGDX and XGDY instructions. 

If no offset is specified or desired, the machine code will contain $00 in the offset byte. 
The offset is an unsigned single-byte value that, when added to the current value in the 
index register, yields the effective address of the operand, leaving the index register un­
changed. Because the offset byte is unsigned, only positive offsets in the range 0-255 can 
be specified. To use the indexed addressing mode to access on-chip registers in the 
MC68HC11A8, it is best to initialize the index register to the starting address of the register 
block (usually $1000) and use an 8-bit offset ($00-$3F) in the instructions that access 
registers. This method is preferred over loading the index register with the 16-bit address 
of a register and then specifying a zero offset in the instruction. This latter method requires 
modification of the index register for each register access; whereas, the former method 
does not. 

Examples of the indexed addressing mode are shown (EA indicates effective address): 

Machine Code Label Operation Operand Comments 

E3 00 ADDD X EA=(X) 
E3 00 ADDD ,X EA=(X) 
E3 00 ADDD O,X EA=(X) 

E3 04 ADDD 4,X EA=(X)+4 
CAT EQU 7 DEFINE CAT=7 

E3 07 ADDD CAT,X EA=(X)+7 
E3 22 ADDD $22,X EA= (X) +$22 
E3 22 ADDD CAT *8/2 + 6,X EA= (X) + (CAT*8-;- 2+6) 

MOTOROLA M68HC11 REFERENCE MANUAL 6-9 



• 

Bit-manipulation instructions support direct and indexed addressing modes but not ex­
tended addressing mode. The indexed addressing mode becomes very important for these 
instructions because the direct addressing mode only permits access to the first 256 mem­
ory locations; whereas, the indexed addressing mode allows access to any memory lo­
cation in the 64K-byte memory map. 

The second index register (V) improves the efficiency of move operations and operations 
involving data from more than one table. Most instuctions involving index register V require 
two-byte opcodes, thus requiring one extra byte of program memory space and one extra 
cycle of execution time compared to the equivalent index register X instruction. 

6.2.5. Inherent (lNH) 

In the inherent addressing mode, everything needed to execute the instruction is inherently 
known by the CPU. The operands (if any) are CPU registers and thus are not fetched from 
memory. These instructions are usually one or two bytes . 

Many M68HC11 MCU instructions use one or more registers as operands. For instance, 
the ABA instruction causes the CPU to add the contents of accumulators A and B and place 
the result in accumulator A. The INCB instruction causes the contents of accumulator B to 
be incremented by one. Similarly, the INX instruction causes the index register X to be 
incremented by one. These three assembly-language statements are examples of the in­
herent addressing mode: 

Machine Code 

1B 
5C 
08 

6.2.6 Relative (REL) 

Label Operation Operand 

ABA 
INCB 
INX 

Comments 

A+B.A 
B+1.B 
X+1.X 

The relative addressing mode is used only for branch instructions. Branch instructions, 
other than the branching versions of bit-manipulation instructions, generate two machine­
code bytes: one for the opcode and one for the relative offset. Because it is desirable to 
branch in either direction, the offset byte is a signed twos-complement offset with a range 
of -128 to + 127 bytes (with respect to the address of the instruction immediately following 
the branch instruction). If the branch condition is true, the contents of the 8-bit signed byte 
following the opcode (offset) are added to the contents of the program counter to form 
the effective branch address; otherwise, control proceeds to the instruction immediately 
following the branch instruction. 

The offset byte is always the last byte of a branch instruction. If the offset byte is zero, 
execution will proceed to the instruction immediately following the branch instruction, 
regardless of the test involved. A branch always (BRA) instruction with an offset of $FE 
will result in an infinite loop back to itself. Direct or indexed X addressing mode branch if 
bit clear (BRCLR) and brancn if bit set (BRSET) instructions are four-byte instructions; 
therefore, an offset byte of $FC will cause the instruction to execute repeatedly until the 

6-10 M68HC11 REFERENCE MANUAL MOTOROLA 



bit test becomes false. Indexed Y addressing mode BRCLR and BRSET instructions are five­
byte instructions; thus, an offset byte of $FB will cause the instruction to execute repeatedly 
until the bit test becomes false. 

Examples of the relative addressing mode are shown in the following assembly-language 
statements: 

Machine Code Label Operation Operand Comments 

20 00 THERE BRA WHERE FORWARD BRANCH 
22 FC WHERE BHI THERE BACKWARD BRANCH 
24 04 BCC LBCC L-O-N-G BCC 

27 FE HANG BEQ HANG BRANCH TO SELF 
27 FE BEQ * "*" MEANS "HERE" 
7E 10 00 LBCC JMP $1000 

80 F7 BSR HANG 

6.3 M68HC11 INSTRUCTION SET 

This section is intended to explain the basic capabilities and organization of the instruction 
set. For this discussion, the instruction set is divided into functional groups of instructions. 
Some instructions will appear in more than one functional group. For example, transfer 
accumulator A to CCR (TAP) appears in the CCR group and in the load/store/transfer subgroup 
of accumulator/memory instructions. Detailed explanations of each instruction are given 
in APPENDIX A INSTRUCTION SET DETAILS. 

To expand the number of instructions used in the M68HC11 CPU, a prebyte mechanism 
that affects certain instructions has been added. Most of the instructions affected are 
associated with index register Y. Instructions that do not require a prebyte reside in page 
1 of the opcode map. Instructions requiring a prebyte reside in pages 2, 3, and 4 of the 
opcode map. The opcode-map prebyte codes are $18 for page 2, $1 A for page 3, and $CD 
for page 4. A prebyte code applies only to the opcode immediately following it. That is, 
all instructions are assumed to be single-byte opcodes unless the first byte ofthe instruction 
happens to correspond to one of the three prebyte codes rather than a page 1 opcode. 

6.3.1 Accumulator and Memory Instructions 

Most of these instructions use two operands. One operand is either an accumulator or an 
index register; whereas, the second operand is usually obtained from memory using one 
of the addressing modes discussed earlier. These accumulator memory instructions can 
be divided into six subgroups: 1) loads, stores, and transfers, 2) arithmetic operations, 3) 
multiply and divide, 4) logical operations, 5) data testing and bit manipulation, and 6) shifts 
and rotates. These instructions are discussed in the following tables and paragraphs. 

MOTOROLA M68HC11 REFERENCE MANUAL 6-11 



II 

6.3.1.1 LOADS, STORES, AND TRANSFERS. Almost all MCU .activities involve transfer­
ring data from memories or peripherals into the CPU or transferring results from the CPU 
into memory or I/O devices. The load, store, and transfer instructions associated with the 
accumulators are summarized in the following table. There are additional load, store, push, 
and pull instructions associated with the index registers and stack pointer register (see 
6.3.2 Stack and Index Register Instructions). 

Function Mnemonic IMM DIR EXT INDX INDY INH 

Clear Memory Byte CLR X X X 

Clear Accumulator A CLRA X 

Clear Accumulator B CLRB X 

Load Accumulator A LDAA X X X X X 

Load Accumulator B LDAB X X X X X 

Load Double Accumulator D LDD X X X X X 

Pull A from Stack PULA X 

Pull B from Stack PULB X 

Push A onto Stack PSHA X 

Push B onto Stack PSHB X 

Store Accumulator A STAA X X X X X 

Store Accumulator B STAB X X X X X 

Store Double Accumulator D STD X X X X X 

Transfer A to B TAB X 

Transfer A to CCR TAP X 

Transfer B to A TBA X 

Transfer CCR to A TPA X 

Exchange D with X XGDX X 

Exchange D with V EGDY X 

6-12 M68HC11 REFERENCE MANUAL MOTOROLA 



6.3.1.2 ARITHMETIC OPERATIONS. This group of instructions supports arithmetic op­
erations on a variety of operands; 8- and 16-bit operations are supported directly and can 
easily be extended to support multiple-word operands. Twos-complement (signed) and 
binary (unsigned) operations are supported directly. BCD arithmetic is supported by fol­
lowing normal arithmetic instruction sequences, using the DAA instruction, which restores 
results to BCD format. Compare instructions perform a subtract within the CPU to update 
the condition code bits without altering either operand. Although test instructions are 
provided, they are seldom needed since almost all other operations automatically update 
the condition code bits. 

Function Mnemonic IMM DIR EXT INDX INDY INH 

Add Accumulators ABA X 

Add Accumulator B to X ABX X 

Add Accumulator B to Y ABY X 

Add with Carry to A ADCA X X X X X 

Add with Carry to B ADCB X X X X X 

Add Memory to A ADDA X X X X X 

Add Memory to B ADDB X X X X X 

Add Memory to D (16 Bitl ADDD X X X X X 

Compare A to B CBA X 

Compare A to Memory CMPA X X X X X 

Compare B to Memory CMPB X X X X X 

Compare D to Memory (16 Bitl CPD X X X X X 

Decimal Adjust A (for BCD I DAA X 

Decrement Memory Byte DEC X X X 

Decrement Accumulator A DECA X 

Decrement Accumulator B DECB X 

Increment Memory Byte INC X X X 

Increment Accumulator A INCA X 

Increment Accumulator B INCB X 

Twos Complement Memory Byte NEG X X X 

Twos Complement Accumulator A NEGA X 

Twos Complement Accumulator B NEGB X 

Subtract with Carry from A SBCA X X X X X 

Subtract with Carry from B SBCB X X X X X 

Subtract" Memory from A SUBA X X X X X 

Subtract Memory from B SUBB X X X X X 

Subtract Memory from D (16 Bitl SUBD X X X X X 

Test for Zero or Minus TST X X X 

Test for Zero or Minus A TSTA X 

Test for Zero or Minus B TSTB X 

MOTOROLA M68HC11 REFERENCE MANUAL 6-13 

• 



II 

6.3.1.3 MULTIPLY AND DIVIDE. One multiply and two divide instructions are provided. 
The 8-bit by 8-bit multiply produces a 16-bit result. The integer divide (lDIV) performs a 
16-bit by 16-bit divide, producing a 16-bit result and a 16-bit remainder. The fractional 
divide (FDIV) divides a 16-bit numerator by a larger 16-bit denominator, producing a 16-
bit result (a binary weighted fraction between a and 0.99998) and a 16-bit remainder. FDIV 
can be used to further resolve the remainder from an IDIV or FDIV operation. 

Function Mnemonic INH 

Multiply (A x B • D) MUL X 

Fractional Divide (D + X • X; r .D) FDIV X 

Integer Divide (D7 X. X; r .D) IDIV X 

6.3.1.4 LOGICAL OPERATIONS. This group of instructions is used to perform the boolean 
logical operations AND, inclusive OR, exclusive OR, and ones complement. 

Function Mnemonic IMM DIR EXT INDX INDY INH 

AND A with Memory ANDA X X X X X 

AND B with Memory ANDB X X X X X 

Bit(s) Test A with Memory BITA X X X X X 

Bit(s) Test B with Memory BITB X X X X X 

Ones Complement Memory Byte COM -X X X 

Ones Complement A COMA X 

Ones Complement B COMB X 

OR A with Memory (Exclusive) EORA X X X X X 

OR B with Memory (Exclusive) EORB X X X X X 

OR A with Memory (Inclusive) DRAA X X X X X 

OR B with Memory (Inclusive) DRAB X X X X X 

6.3.1.5 DATA TESTING AND BIT MANIPULATION. This group of instructions is used to 
operate on operands as small as a single bit, but these instructions can also operate on 
any combination of bits within any 8-bit location in the 64K-byte memory space. The bit 
test (BITA or BITB) instructions perform an AND operation within the CPU to update con­
dition code bits without altering either operand. The BSET and BCLR instructions read the 
operand, manipulate selected bits within the operand, and write the result back to the 
operand address. Some care is required when read-modify-write instructions such as BSET 
and BCLR are used on I/O and control register locations because the physical location read 
is not always the same as the location written. 

Function Mnemonic IMM DIR EXT INDX INDY 

Bit(s) Test A with Memory BITA X X X X X 

Bit(s) Test B with Memory BITB X X X X X 

Clear Bit(s) in Memory BCLR X X X 

Set Bit(s) in Memory BSET X X X 

Branch if Bit(s) Clear BRCLR X X X 

Branch if Bit(s) Set BRSET X X X 

6-14 M68HCll REFERENCE MANUAL MOTOROLA 



6.3.1.6 SHIFTS AND ROTATES. All the shift and rotate functions in the M68HC11 CPU 
involve the carry bit in the CCR in addition to the 8- or 16-bit operand in the instruction, 
which permits easy extension to multiple-word operands. Also, by setting or clearing the 
carry bit before a shift or rotate instruction, the programmer can easily control what will 
be shifted into the opened end of an operand. The arithmetic shift right (ASR) instruction 
maintains the original value of the MSB of the operand, which facilitates manipulation of 
twos-complement (signed) numbers. 

Function Mnemonic IMM DIR EXT INDX INDY INH 

Arithmetic Shift Left Memory ASL X X X 

Arithmetic Shift Left A ASLA X 

Arithmetic Shift Left B ASLB X 

Arithmetic Shift Left Double ASLD X 

Arithmetic Shift Right Memory ASR X X X 

Arithmetic Shift Right A ASRA X 

Arithmetic Shift Right B ASRB X 

(Logical Shift Left Memoryl (LSLI X X X 

(Logical Shift Left AI (LSLAI X 

(Logical Shift Left BI (LSLBI X 

(Logical Shift Left Doublel (LSLDI X 

Logical Shift Right Memory LSR X X X 

Logical Shift Right A LSRA X 

Logical Shift Right B LSRB X 

Logical Shift Right D LSRD X 

Rotate Left Memory ROL X X X 

Rotate Left A ROLA X 

Rotate Left B ROLB X 

Rotate Right Memory ROR X X X 

Rotate Right A RORA X 

Rotate Right B RORB X 

The logical-left-shift instructions are shown in parentheses because there is no difference 
between an arithmetic and a logical left shift. Both mnemonics are recognized by the 
assembler as equivalent, but having both instruction mnemonics makes some programs 
easier to read. 

MOTOROLA M68HC11 REFERENCE MANUAL 6-15 

II 



II 

6.3.2 Stack and Index Register Instructions 

The following table summarizes the instructions available for the 16-bit index registers (X 
and Y) and the 16-bit stack pointer. 

Function Mnemonic IMM DIR EXT INDX INDV INH 

Add Accumulator B to X ABX X 

Add Accumulator B to Y ABY X 

Compare X to Memory (16 Bit) CPX X X X X X 

Compare Y to Memory (16 Bit) CPY X X X X X 

Decrement Stack Pointer DES X 

Decrement Index Register X DEX X 

Decrement Index Register Y DEY X 

Increment Stack Pointer INS X 

Increment Index Register X INX X 

Increment Index Register Y INY X 

Load Index Register X LDX X X X X X 

Load Index Register Y LDY X X X X X 

Load Stack Pointer LDS X X X X X 

Pull X from Stack PULX X 

Pull V from Stack PULY X 

Push X onto Stack PSHX X 

Push Y onto Stack PSHY X 

Store Index Register X STX X X X X X 

Store Index Register Y STY X X X X X 

Store Stack Pointer STS X X X X X 

Transfer SP to X TSX X 

Transfer SP to Y TSV X 

Transfer X to SP TXS X 

Transfer Y to SP TYS X 

Exchange D with X XGDX X 

Exchange D with Y XGDY X 

The exchange D with X (XGDX) and exchange D with Y (XGDY) provide a simple way of 
transferring a pointer value from a 16-bit index register to accumulator D, which has more 
powerful 16-bit arithmetic capabilities than the 16-bit index registers. Since these are bi­
directional exchanges, the original value of accumulator D is automatically preserved in 
the index register while the pointer is being manipulated in accumulator D. When pointer 
calculations are finished, another exchange simultaneously updates the index register and 
restores accumulator D to its former value. 

The transfers between an index register and the stack pointer deserve additional comment. 
The stack pointer always points at the next free location on the stack as opposed to the 
last item that was pushed onto the stack. The usual reason for transferring the stack pointer 
value into an index register is to allow indexed addressing access to information that was 
formerly pushed onto the stack. In such cases, the address pointed to by the stack pointer 

6-16 M68HC11 REFERENCE MANUAL MOTOROLA 



is of no value since nothing has yet been stored at that location. This fact explains why 
the value in the stack pointer is incremented during transfers to an index register. There 
is a corresponding decrement of a 16-bit value as it is transferred from an index register 
to the stack pointer. 

6.3.3 Condition Code Register Instructions 

These instructions allow a programmer to manipulate bits in the CCR. 

Function Mnemonic INH 

Clear Carry Bit ClC X 

Clear Interrupt Mask Bit CLI X 

Clear Overflow Bit ClV X 

Set Carry Bit SEC X 

Set Interrupt Mask Bit SEI X 

Set Overflow Bit SEV X 

Transfer A to CCR TAP X 

Transfer CCR to A TPA X 

Initially, it may appear that there should be a set and a clear instruction for each of the 
eight bits in the CCR; however, these instructions are present for only three of the eight 
bits (C, I, and V). Upon closer consideration, good reasons exist for not including the set 
and clear instructions for the other five bits. The stop disable (S) bit is an unusual case 
because this bit is intended to lock out the STOP instruction for those who view it as an 
undesirable function in their application. Providing set and clear instructions for this bit 
would make it easier to enable STOP when it was not wanted or disable STOP when it 
was wanted. The TAP instruction provides a way to change the S bit but reduces the chance 
of an undesirable change to S because the value of accumulator A at the time the TAP 
instruction is executed determines whether the S bit will actually change. 

The XIRQ mask (X bit) is another unusual case. The definition of this bit specifically states 
that software shall not be allowed to change X from zero to one; in fact, this change is 
even prohibited by hardware logic. This feature immediately eliminates a need for a set X 
instruction. For arguments similar to those used for the S bit, the TAP instruction is preferred 
over a clear X instruction to clear X because TAP makes it a little less likely that X will 
become cleared before the programmer intended. 

The half-carry (H) bit needs no set or clear instructions because this condition code bit is 
only used by the DAA instruction to adjust the result of a BCD add or subtract. Since the 
H bit is not used as a test condition for any branches, it would not be useful to be able to 
set or clear this bit. 

This leaves only the negative (N) and zero (Z) condition code bits. In contrast to S, X, and 
H, it is often useful to be able to easily set or clear these flag bits. A clear accumulator 
instruction, such as CLRB, will clear the N and set the Z condition code bits. The load 
instruction, ;LDAA#$80, causes N to be set and Z to be cleared. Since there are so many 
simple instructions that can set or clear Nand Z, it is not necessary to provide specific set 
and clear instructions for Nand Z in this group. 

MOTOROLA M68HC11 REFERENCE MANUAL 6-17 

• 



• 

6.3.4 Program Control Instructions 

This group of instructions, which is used to control the flow of a program rather than to 
manipulate data, has been divided into five subgroups: 1) branches, 2) jumps, 3) subroutine 
calls and returns, 4) interrupt handling, and 5) miscellaneous. 

6.3.4.1 BRANCHES. These instructions allow the CPU to make decisions based on the 
contents of the. condition code bits. All decision blocks in a flow chart would correspond 
to one of the conditional branch instructions summarized in the following table. 

Function Mnemonic REL DIR INDX INDY Comments 

Branch if Carry Clear BCC X C=O? 

Branch if Carry Set BCS X C=l ? 

Branch if Equal Zero BEQ X Z=l ? 

Branch if Greater Than or Equal BGE X Signed .'" 

Branch if Greater Than BGT X Signed> 

Branch if Higher BHI X Unsigned> 

Branch if Higher or Same (same as BCC) BHS X Unsigned '" 

Branch if Less Than or Equal BLE X Signed .;; 

Branch if Lower (same as BCS) BLO X Unsigned < 
.Branch if Lower or Same BLS X Unsigned .;; 

Branch if Less Than BLT X Signed < 
Branch if Minus BMI X N= 1 ? 

Branch if Not Equal BNE X Z=O? 

Branch if Plus BPL X N=O? 

Branch if Bit(s) Clear in Memory Byte BRCLR X X X Bit Manipulatilln 

Branch Never BRN X 3-cycle Nap 

Branch if Bit(s) Set in Memory Byte BRSET X X X Bit Manipulation 

Branch if Overflow Clear BVC X V=O? 

Branch if Overflow Set BVS X V=l? 

The limited range of branches (-128/ + 127 locations) is more than adequate for most (but 
not all) situations. In cases where this range is too short, a jump instruction must be used. 
For every branch, there is a branch for the opposite condition; thus, it is simple to replace 
a branch having an out-of-range destination with a sequence consisting of the opposite 
branch around a jump to the out-of-range destination. For example, if a program contained 
the following instruction 

BHI TINBUK2 Unsigned > 

where TINBUK2 was out of the -128/ + 127 location range, the following instruction se­
quence could be substituted: 

6-18 

BLS 
JMP 

AROUND EQU 

AROUND unsigned S 
TINBUK2 Still go to TINBUK2 if > 
* 

M68HCll REFERENCE MANUAL MOTOROLA 



6.3.4.2 JUMPS. The jump instruction allows control to be passed to any address in the 
64K-byte memory map. 

Function 

Jump 

6.3.4.3 SUBROUTINE CALLS AND RETURNS (BSR, JSR, RTS). These instructions provide 
an easy way to divide a programming task into manageable blocks called subroutines. The 
CPU automates the process of remembering the address in the main program where 
processing should resume after the subroutine is finished. This address is automatically 
pushed onto the stack when the subroutine is called and is pulled off the stack during the 
RTS instruction that ends the subroutine. 

Function Mnemonic REL D1R EXT INDX INDY INH 

Branch to Subroutine BSR X 

Jump to Subroutine JSR X X X X 

Return from Subroutine RTS X 

6.3.4.4 INTERRUPT HANDLING (RTI, SWI, WAil. This group of instructions is related to 
interrupt operations. 

Function Mnemonic INH 

Return from Interrupt RTI X 

Software Interrupt SWI X 

Wait for Interrupt WAI X 

The software interrupt (SWI) instruction is similar to a JSR instruction, except the contents 
of all working CPU registers are saved on the stack rather than just the return address. 
SWI is unusual in that it is requested by the software program as opposed to other interrupts 
that- are requested asynchronously to the executing program. 

Wait for interrupt (WAI) has two main purposes. WAI is executed to place the MCU in a 
reduced power-consumption standby state (WAIT mode) until some interrupt occurs. The 
other use is to reduce the latency time to some important interrupt. The reduction of latency 
occurs because the time-consuming task of storing the CPU registers on the stack is per­
formed as soon as the WAI instruction begins executing. When the interrupt finally occurs, 
the CPU is ready to fetch the appropriate vector so the delay associated with register 
stacking is eliminated from latency calculations. 

MOTOROLA M68HC11 REFERENCE MANUAL 6-19 

II 



• 

6.3.4.5 MISCELLANEOUS (NOP, STOP, TEST). Nap, which can be used to introduce a 
small time delay into the flow of a program, is often useful in meeting the timing require­
ments of slow peripherals. By incorporating Nap instructions into loops, longer delays can 
be produced. 

Function Mnemonic INH 

No Operation (2-cycle delay I NOP X 

Stop Clocks STOP X 

Test TEST X 

During debugging, it is common to replace various instructions with Nap opcodes to 
effectively remove an unwanted instruction without having to rearrange the rest of the 
program. By using the memory modify function of a debug monitor, the instruction can 
easily be removed and restored to see the effect. 

Occasionally, a programmer is faced with the problem of fine-tuning the delays through 
various paths in his program. In such cases, it is sometimes useful to use a branch never 
(BRN) instruction as a three-cycle Nap. It is also possible to fine-tune execution time by 
choosing alternate addressing-mode variations of instructions to change the execution 
time of an instruction sequence without changing the program's function. 

STOP is an unusual instruction because it causes the oscillator and all MCU clocks to freeze. 
This frozen state is called STOP mode, and power consumption is dramatically reduced in 
this mode. The operation of this instruction is also dependent upon the S condition code 
bit because the STOP mode is not appropriate for all applications. If S is one, the STOP 
instruction is treated as a Nap instruction, and processing continues to the next instruction. 

The TEST instruction is used only during factory testing and is treated as an illegal opcode 
in normal operating modes of the MCU. This instruction causes unusual behavior on the 
address bus (counts backwards), which prevents its use in any normal system. 

6-20 M68HC11 REFERENCE MANUAL MOTOROLA 



SECTION 7 
PARALLEL INPUT/OUTPUT 

This section describes parallel liD operations in the MC68HC11A8, which includes port 
reads and writes as well as strobe and handshake operations on ports Band C. The section 
begins with an overview, followed by detailed descriptions of each port and the handshake 
liD subsystem. A number of schemes for efficient use of parallel liD on the MC68HC11A8 
are included. 

7.1 PARALLEL 1/0 OVERVIEW 

The MC68HC11A8 has a total of 40 liD pins, which will be discussed in 7.3 DETAILED I/O 
PIN DESCRIPTIONS. All these pins are shared between general-purpose liD usage and at 
least one other on-chip peripheral function. Although the following paragraphs are pri-
marily concerned with the general-purpose liD capabilities of these pins, some important • 
interactions with the alternate functions will be discussed. 

Shared functions of port A include general-purpose liD, the main timer system, and the 
pulse accumulator system. Port A has three fixed-direction input pins, four fixed-direction 
output pins, and one bidirectional pin. The direction of the PA7 pin is controlled by the 
data direction register A bit 7 control bit (DDRA7) in the pulse accumulator control (PACTL) 
register. Port A data is read from and written to the PORTA register. Meaningful data may 
be read from port A even when the pins are configured for an alternate timer or pulse 
accumulator function. Data written to port A does not directly affect port A pins configured 
for an alternate timer output function, but the data is remembered in an internal latch so 
that, if the alternate function is disabled later, the last data written to port A will be driven 
out of the associated output pin. 

Ports Band C and the strobe A (STRA) and strobe B (STRB) pins should be considered 
together because their function depends on the basic operating mode of the MC68HC11 A8. 
When the microcontroller unit (MCU) is operating in a single-chip mode, these 18 pins are 
used for general-purpose liD and for the handshake liD subsystem. When the MCU is 
operating in an expanded mode, these pins are used for a multiplexed addressldata bus. 
The handshake and general-purpose liD functions, which are lost in the expanded mode, 
can be regained by use of the MC68HC24 port replacement unit. Special care was taken 
in designing both these parts so that software could be developed on an expanded system 
using these two parts and then later be mask programmed into the read-only memory 
(ROM) of an MC68HC11A8, which will be used in single-chip mode. Although care was 
taken to assure that the expanded system with an MC68HC24 would work exactly like the 
MC68HC11A8 in single-chip mode, there are afew subtle differences. For the vast majority 
of applications, these differences are irrelevant. For the benefit of those rare cases where 
a problem could arise, the differences will be explained in the detailed descriptions of 
these ports and pins in 7.3 DETAILED I/O PIN DESCRIPTIONS. 

MOTOROLA M68HC11 REFERENCE MANUAL 7-1 



Port B is a general-purpose, 8-bit, fixed-direction output port. Writes to the port B register 
(PORTB) cause data to be latched and driven out of the port B pins. Reads of PORTB return 
the last data that was written to port B. When the handshake 110 subsystem is operating 
in simple strobed mode, writes toPORTB automatically cause a pulse on the STRB output 
pin. The simple strobe mode is selected by the handshake (HNDS) control bit equal to zero 
in the parallel I/O control (PIOC) register. . 

Port C is a general-purpose, 8-bit, bidirectional I/O port. The primary direction of data flow 
at each port C pin is independently controlled by a corresponding bit in the data direction 
control register for port C (DDRC). In addition to normal I/O functions at port C, there is an 
independent, 8~bit, parallel latch that captures port C data whenever a selected active edge 
is detected on the STRA input pin. Reads of PORTCL return the contents of this port C 
latch; whereas, reads of PORTC return the current data from port C. Writes to either PORTC 
or PORTCL cause the written data to be driven out of port C output pins; however, PORTCL 
writes also trigger output handshake sequences; PORTC writes do not. Writes to port C 
pins not configured as outputs do not cause data to be driven out of those pins, but the 
data is remembered in internal latches; thus, if the pins later become outputs, the last data 
written to PORTC or PORTCL will be driven out the port C pins. 

Port C can be configured for wired-OR operation by setting the port C wired-OR mode 
(CWOM) control bit in the PIOC register. This procedure disables the P-channel pullup 
drivers of port C output pins and allows port C pins to be directly connected to each other 
or to other open-drain-type pins. In this configuration, there is no danger of destructive 
conflicts if two output drivers try to drive the same node at the same time. As with any 
open-drain line, an external pullup resistor is required. 

Whenever the handshake I/O subsystem is configured for a full-handshake mode, port C 
is used for parallel data input or output. STRA is a strobe input pin that causes port C data 
to be captured when a selected edge is detected. In the three-state variation of full-output 
handshake, the STRA pin also acts as an output enable control to force port C pins to be 
driven outputs while STRA is in its selected state. STRB is a strobe output pin that can be 
used in a pulsed or interlocked configuration. In the pulsed configuration, some action in 
the handshake I/O subsystem initiates STRB, which then stays active for two E-clock cycles 
before reverting to its inactive state. In the interlocked configuration, STRB is initiated by 
one action in the handshake subsystem and terminated by a separate action. The final 
major element of the handshake subsystem is the strobe A flag (STAF) status bit. STAF is 
always set upon recognition of the selected edge at the STRA pin, but the action that clears 
STAF depends on the handshake mode. There is a more detailed description of the hand­
shake 110 subsystem in 7.4 HANDSHAKE I/O SUBSYSTEM. 

Port D is a general-purpose, 6-bit, bidirectional data port. Two port D pins are alternately 
used by the asynchronous serial communications interface (SCI) subsystem. The remaining 
four port D pins are alternately used by the synchronous serial peripheral interface (SPI) 
subsystem. The primary direction of data flow at each of the port D pins is selected by a 
corresponding bit in the data direction register for port D (DDRD). Port D can be configured 
for wired-OR operation by setting the port D wired-OR mode control bit (DWOM) in the 
SPI control register (SPCR). 

Port E is an 8-bit, fixed-direction input port. Port E pins alternately function as analog-to­
digital (AID) converter channel inputs. Port E input buffers are specially designed so they 

7-2 M68HC11 REFERENCE MANUAL MOTOROLA 



will not draw excessive power-supply currents when their inputs are driven by intermediate 
levels. 

7.2 PARALLEL 1/0 REGISTER AND CONTROL BIT EXPLANATIONS 

Figure 7-1 shows all the registers and control bits concerned with the discussion of parallel 
liD in the following paragraphs. The registers are shown in the order they appear in the 
memory map of the MC68HC11A8 because this order is significant in the case of double­
byte reads and writes. Figure 7-2 shows a number of registers and control bits mentioned 
in 7.3 DETAILED 1/0 PIN DESCRIPTIONS. These control bits are used to enable other on­
chip peripheral subsystems to use the 110 pins. These registers, which are shown here for 
reference, are discussed throughout this manual. Bit positions labeled with a zero rather 
than a name indicate unimplemented bits that always read as zeros. 

Bit 7 Bit 0 PORTA 
$1000 

STAF STAI CWDM HNDS DIN PLS EGA INVB Ploe 
$1002 

Bit 7 Bit 0 PORTC 
$1003 

Bit 7 Bit 0 PORTS 
$1004 

Bit 7 Bit 0 PORTCL 
$1005 

Bit 7 Bit 0 OORC 
$1007 

0 0 Bit 5 Bit 0 PORTO 
$1008 

0 0 Bit 5 Bit 0 DDRO 
$1009 

Bit 7 Bit 0 PORTE 
$100A 

DDRA7 PAEN PAMOD PEDGE RTRl RTRO 
PACTL 
$1026 

SPIE SPE DWDM MSTR I epOL CPHA SPRl SPRO 
SPCR 
$1028 

Figure 7-1. Parallel 1/0 Registers and Control Bits 

MOTOROLA M68HC11 REFERENCE MANUAL 7-3 



• 

FOCl FOC2 FOC3 FOC4 FOC5 CFORC 
$100B 

I OC1M71 OC1M61 OC1M51 OC1M41 OC1M31 
OC1M 
$100C 

OC1D7 OC1D6 OC1D5 OC1D4 OC1D3 OClO 
$100D 

OM2 OL2 OM3 OL3 OM4 OL4 OM5 OL5 TCTL1 
$1020 

SPIE SPE I DWOM I MSTR CPOL CPHA SPRl SPRO 
SPCR 
$1028 

TIE TCIE RIE ILiE TE RE RWU SBK 
SCCR2 
$102D 

HPRIO 
$103C 

RAM3 RAM2 RAMl I RAMO REG3 
I 

REG2 
I 

REGl REGO 
I 

INIT 
$1030 

Figure 7-2. Pin Logic Registers and Control Bits 

The addresses for the registers in Figures 7-1 and 7-2 are in the form "$10xx" where xx 
is a hexadecimal number between 00 and 3F. The "1" indicates that the most significant 
hexadecimal digit is a variable controlled by user software. The RAM and 1/0 mapping 
(lNIT) register is used to specify the location of internal registers and RAM. By default, 
RAM is located from $0000 to $OOFF, and registers are located from $1000 to $1 03F at reset. 
The user can elect to move either one or both of these resources by writing a new value 
into the INIT register within 64 bus cycles after reset. The INIT register is discussed in 
greater detail in SECTION 4 ON-CHIP MEMORY. 

The bit-manipulation instructions in the MC68HC11A8 can only be used in zero-page or 
indexed addressing modes. To use indexed addressing mode to access internal registers, 
the user would first set either the X or Y index register equal to the base address of the 
registers (usually $1000). To use the zero-page addressing mode, the user would first remap 
the internal registers by writing to the INIT register during reset initialization. 

7.2.1 Port Registers 

Reads of port registers will return either the level at the pin itself or the logic state at a 
point inside the output pin buffer. Usually, the state of the corresponding DDR bit will 
determine which of these points will be used for a read if a choice exists. Refer to 7.3 
DETAILED 1/0 PIN DESCRIPTIONS for more specific information. Writes to port registers 
cause the written data to be latched and driven out of the corresponding port output pins. 

7-4 M68HC11 REFERENCE MANUAL MOTOROLA 



If a port pin is capable of being an output, this written information is latched even if the 
pin is not configured as a port output at the time of the write. If the pin is subsequently 
reconfigured to be a port output, the output pin will be driven with the last data that was 
written to that port. Writes to port bits that are fixed-direction input pins have no meaning 
or effect. 

PORTCL, a special port register associated with port C, is part of the handshake I/O subsystem. 
Reads of this address return data from an 8-bit port C latch. The inputs to this port C latch 
are connected to the port C pins, and the latches are clocked when a selected edge is 
recognized at the STRA pin. Contrary to first impressions, writes to PORTCL do not change 
the data in the port C latch register. Instead, writes to PORTCL are used as an alternate 
way to write data to port C. In addition to writing data to the port C output latches, writes 
to PORTCL also trigger special handshake sequences in the handshake I/O subsystem, 
which allows some port C pins to be treated as general-purpose outputs while others are 
being used for full-handshake outputs. A user would write data to PORTC to change the 
nonhandshake pins in port C. To change the data on a full-handshake pin of port C, the 
user would write to PORTCL. 

7.2.2 Data Direction Registers 

These registers and control bits are used to specify the primary direction of data flow at 
each bidirectional port pin. A zero in a data direction register (DDR) bit disables the output 
buffer for that pin so the pin is configured as an input. When a DDR bit is set to one, it 
enables the output driver for the associated port pin so the pin is configured as an output. 
During reset, internal logic in the MC68HC11A8 forces all DDR bits to zero; thus, all bidi­
rectional I/O pins are configured as high-impedance inputs until they are reconfigured by 
software. 

In some cases, an enabled on-chip subsystem can override the DDR bit and force a pin to 
be an input or an output. For example, it is illogical for the TxD pin to be configured as an 
input while the SCI transmitter is using this pin. Whenever the SCI transmitter subsystem 
is enabled, the TxD pin is configured as an output, regardless of what the corresponding 
DDRD bit is. There is a subtle benefit to this override besides the obvious savings gained 
by not having to write to the DDR. Depending on the overall system attached to the TxD 
pin, it may be desirable for this pin to revert to a specific driven logic level or to a high­
impedance condition. If the DDR bit is zero, the TxD pin will revert to a general-purpose, 
high-impedance input pin when not being used by the transmitter. If the DDR bit is one, 
the TxD pin will revert to a general-purpose output pin, and the driven logic level will 
reflect what was last written to bit 1 of port D. 

In other cases, the DDR bits continue to affect the configuration of a port pin even after 
an on-chip subsystem has been enabled to use the pin. Consider the SPI bidirectional data 
pins master in/slave out (MISO) and master out/slave in (MOSI). Although the MC68HC11A8 
SPI system is capable of full-duplex operation, some synchronous serial protocols are 
configured for half-duplex operation with a single, bidirectional data line. For the 
MC68HC11A8 to operate in such a system, it must be able to selectively disable its MOSI 
and MISO outputs. 

MOTOROLA M68HC11 REFERENCE MANUAL 7-5 



• 

The state of a DDR bit influences the source of data when the corresponding port bit is 
read. In general, when a pin is configured as an input, reads return the logic level from 
the pin itself. When a pin is configured as an output, reads return a value corresponding 
to the level at the inside of the output buffer for that pin. This fact is especially important 
in the case of pins configured for wired-OR operation or for the three-state variation of 
full-output handshake at port C. In these cases, the value at the pin itself does not necessarily 
reflect the value last written to the port; therefore, it is important to read the level inside 
the output buffer rather than the level at the pin. 

7.3 DETAILED I/O PIN DESCRIPTIONS 

The logic associated with each of the I/O pins is described in detail in the following par­
agraphs. All circuitry directly connected to a pin is shown exactly as it is implemented in 
the MC68HC11A8. Logic not directly connected to a pin is functionally accurate, but the 
drawings have been simplified. Figure 7-3 shows some of the symbols used in the logic 
drawings, which may not be familiar to all readers. The protection devices, which are 

7-6 

THICK-FIELD 
PROTECTION 
DEVICE 

[3] - REFERENCE NUMBER 

I DORA? I - CONTROL BIT 

r-------------------------~ 

I I 
I 
I 
I 

* > I 
I 
I 
I 
I 

TRANSMISSION GATE 
~ ________________________ J 

r--------------------------------------------
I 

c--~+_----~~----_, 

Usa 

C Q 
. R HFF 

HALF FLIP-flOP 
~--_.------4-~~_4---a 

5-1 

Figure 7-3. Special Symbols Used in Pin Logic Diagrams 

M68HC11 REFERENCE MANUAL MOTOROLA 



intended to protect the MC68HC11 A8 from high-voltage transients, have no effect while 
pins are within the VSS to VDD range. Although transmission gates are actually full CMOS 
bidirectional switches, they are shown in simplified form in the logic diagrams. Half flip­
flops (HFFs) are latches that are transparent while the clock input is high and are latched 
while the clock input is low. Set and reset inputs are optional on HFFs. Any name enclosed 
in a rectangle indicates a control bit within the MC68HC11A8. Numbers in square brackets 
are references for the text descriptions. 

7.3.1 Port A 

The eight port A pins can be independently configured for general-purpose I/O or for timer 
or pulse accumulator functions. The following paragraphs describe the pin logic for port 
A pins. The idealized timing for critical port A signals is presented in 7.3.1.4 PORT A 
IDEALIZED TIMING. 

7.3.1.1 PA2-PAO (lC3-IC1) PIN LOGIC. Refer to Figure 7-4 for the following discussion. 
The cross-coupled NAND circuit with four associated inverters is a hysteresis buffer. Hys­
teresis is provided by sizing inverter [1] so its switch point is higher than normal and by 
sizing inverter [2] so its switch point is lower than normal. 

02-00 

RPORTA ---' 

Figure 7-4. PA2-PAO (lC3-IC1) Pin Logic 

PA2-PAO 
(ICHC3) 

Starting with zero on the pin, a slowly rising signal causes inverter [2] to switch so that 
the R signal goes to an inactive-high state. As the input continues to rise, inverter [1] 
switches, causing a low S, which causes the cross-coupled NAND latch to set Q high and 
clear Q low. The low Q reinforces the S signal so that, even if noise causes inverter [1] to 
switch back to S equals one, the cross-coupled latch will not reset. 

Conversely, starting with one on the pin, a slowly falling signal causes inverter [1] to switch, 
causing the S signal to be placed in an inactive-high state. As the input continues to fall, 
inverter [2] switches, causing a low R. This low R resets the cross-coupled NAND latch, 
setting Q high and clearing Q low. The low Q reinforces the R signal so that, even if noise 
causes inverter [2] to switch back to R equals one, the cross-coupled latch will not become 
set. 

MOTOROLA M68HC11 REFERENCE MANUAL 7-7 



• 

For bits 0, 1, and 2, port A reads return the buffered states of the corresponding pins. Port 
A reads are completely independent of timer input-capture functions. 

7.3.1.2 PA6-PA3 (OC5-0C2) PIN LOGIC. Refer to Figure 7-5 for the following discussion. 
For bits 3, 4, 5, and 6, port A reads return the logic state from a point inside the output 
pin buffer. During a port A read, transmission gate [1] is enabled to couple logic state [2] 
to the internal data bus. 

Inverter [2] is driven by a head-to-tail cheater latch. The feedback inverter [3] in this cheater 
latch is sized to be overridden by transmission gate [4]. [5]. or [6]. These three transmission 
gates correspond to the three possible sources of data for these port A pins as follows. 
General-purpose port A outputs come through transmission gate [4] from HFF latch [7]. 
Output compares 5 through 2 (OC5-0C2) affect their corresponding port A pin via trans­
mission gate [6]; output compare 1 (OC1) can affect these port A pins via transmission 
gate [5]. 

Control gate [8] enables general-purpose port A outputs during PTACLK when no timer 
function is enabled to control this pin. PTACLK is an internal clock signal that synchronizes 
port A pin changes to the falling edge of E. OCl is enabled when the corresponding OCl Mx 
bit is one, which disables control gate [8] and enables control gate [9]. The OC5-0C2 
functions are enabled to control their corresponding port A pin by the OMx:OLx bits not 
equal to 0:0. When OMx:OLx are not 0:0, control gate [8] is disabled and control gate [10] 
is enabled. 

Control gate [9] allows OCl to affect this port A pin. When the corresponding OCl Mx 
control bit is one, control gate [9] is enabled. The PTACLK clock signal acts as a strobe. 
When there is a successful OCl compare (OCl CMP) or when OCl is forced by FOCl equals 
one, control gate [9] enables transmission gate [5]. which causes the corresponding OCl Ox 
state to be transferred to cheater latch [3]. NAND gate [11] provides a disable to control 
gate [10] so that if OCl and another output compare simultaneously attempt to change 
the same port A pin, OCl will override. 

Control gate [10] is enabled by the corresponding OMx:OLx control bits not equal to 0:0. 
When there is a successful output compare x (OCxCMP) or when OCx is forced by FOCx 
equals one, control gate [10] enables transmission gate [6] and momentarily disables 
transmission gate [12]. Transmission gate [12J transfers the previous port A pin state to 
cheater latch [14J. Cheater latch [14] holds the previous pin state stable for logic [13] while 
transmission gate [12] is disabled and transmission gate [6] is enabled. Set-reset (SIR) 
latch [13] and associated logic is used to determine the next timer output state that would 
result from a successful OCx compare. This next timer output state is determined by the 
states of the associated OMx and OLx control bits and the previous port A pin state. 

7.3.1.3 PA7 (OC1,PAII PIN LOGIC. Refer to Figure 7-6 for the following discussion. Hys­
teresis buffer [1] was previously described in 7.3.1.1 PA2-PAO (lC3-IC1) PIN LOGIC. Reads 
of port A bit 7 always return the buffered state of the PA7 pin. For this bidirectional 1/0 
pin, the state of the corresponding DDR control bit has no effect on the source of the data 
for the read. During a port A read, transmission gate [2] is enabled so the buffered state 
of the PA7 pin is driven onto the internal data bus. 

7-8 M68HC11 REFERENCE MANUAL MOTOROLA 



RPORTA ------..., 

D~D3 ---~-_K ~--CK 

HFFR 
[7] 

D Q I---IC 

WPORTA -----l 

RST --------' 

OC1CMP 

FOC1 

x=5,4,3,2 

OCxCMP 
x=5,4,3,2 

FOCx 
x=5,4,3,2 

OMx OLx 

o 0 

o 

OM5 OL5 

OM4 OL4 

OM3 OL3 

OM2 OL2 

DISABLE 

TOGGLE 

CLEAR 

SET 

[8J 

PREVIOUS 
TIMER OUT 

STATE 

[11J 

[5J 

[10J 

[12J lr 

Figure 7·5. PA6-PA3 (OC5-0C2) Pin Logic 

MOTOROLA M68HC11 REFERENCE MANUAL 

[6J 
JL 

NEXT TIMER 
OUT STATE 

PA~PA3 
(OC2-OC5) 

7-9 



• 

.--_____________ ---------~ TOPULSE 
ACCUMULATOR 

07 

RPORTA 

HFFR 

..... ----10 Q 

WPORTA -----I 
RST --------' 

PTACLK -------, 
[8) 

Figure 7·6. PA7 (OC1,PAI) Pin Logic 

PA7 
(PAl) 

Output buffer [3] is enabled when DDRA7 is one. When DDRA7 is zero, the N· and P-channel 
drivers are disabled so the PA7 pin acts as a high-impedance input. Data for the PA7 pin 
is held in cheater latch [4]. Transmission gates [5] and [6] correspond to the two possible 
sources of output data for the PA7 pin. 

When the OCl M7 control bit is zero, control gate [9] is disabled and control gate [8] is 
enabled. Control gate [8] enables transmission gate [5] so general-purpose output data 
from HFF [7] is transferred to cheater latch [4]. A write to port A causes data to be written 
into HFF [7]. which is cleared to zero during reset. 

When the OCl M7 control bit is one, control gate [8] is disabled and control gate [9] is 
enabled. While control gate [9] is enabled, a successful OCl compare (OC1CMP) or a force 
OCl (FOC1) will enable transmission gate [6]. Transmission gate [6] causes the OCl D7 
state to be transferred to cheater latch [4]. 

7-10 M68HC11 REFERENCE MANUAL MOTOROLA 



7.3.1.4 PORT A IDEALIZED TIMING. Figure 7-7 shows the idealized timing for important 
port A control signals. This timing diagram, which does not consider any propagation 
delays, cannot be used as a substitute for data-sheet timing specifications. This information 
is useful for understanding the basis for data-sheet timing specifications so timing infor­
mation can be· extrapolated for bus frequencies other than that used for the data sheet. 

EXTAL 

AS ======l,--I ! 
E I I 

PTACLK I 
·····PORT A INPUT ......................................................................................... lr-------...:.R=EA~D...:.F:..::RO~!M=PO=R=T=A=+: ==~ ......................................................................... . 

RPORTA. _____ -+ ______ -!! I· ,--c==::l,r----II 
VALID DATA REQUIRED AT CPU < } 

·PORT A OUTPUT~:::::.' .. '= .. ' .. ='W= ...... =.w'.=.'.' .. =' .. '= ....... ·=,····=· .. ,,·=··,·,·:j··,·'c····,=W.= .. W.= ...... = .. w.= .. '''='''=w.= .. W·='·'W='~=;~=;='~O=W··POR=·······=········=~~= ....... = ....... =~:L ..... _ ....... _ ....... _ ..... ,_ ....... _ ... W--!-I==t==l 

PORT A OUTPUT PINS ------r-----------.,-----tXXX NEW ~RT A DATA ! 
:: ...................................................... w._, .... • ... ·.·ow ....... • ... ·.·.w.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.w.·.· ... ·.WhW.·. ·.·.W .... hW.·.·.· ........... w.·.·.·.·.·.· ....... · ... ·•·.•.· ......... ·.·.·•• 1.·.' .... ' ............. w ..... , .......... --.- ........................... w ....................... J 

CONTROL BIT CHANGES _______________ ~Xr----------
FOR BITS: OC1 Mx, OC1Dx, ' 

OMx, OLx, DDRA7, FOCx 

Figure 7-7. Idealized Port A Timing 

On a port A read, the RPORTA signal enables transmission gates driving port A data onto 
the internal data bus. After the RPORTA signal is deasserted, data is held stable&n the 
self-latching internal data bus, The central processing unit (CPU) actually require&.tJrils data 
to be valid for a setup and hold time around the rising edge of the internal PH2 clock signal. 

All operations that can cause changes to the port A output pins (except DDRA7 control bit 
changes) are synchronized to the falling edge of the E clock. Changes to DDRA7 cause port 
A pins to change state at the falling edge of the internal PH2 clock. 

7.3.2 Port B 

The eight port B pins are fixed-direction output pins, When the MC68HC11A8 is operating 
in an expanded mode, port B is used for high-order address outputs. In single-chip modes, 
port B is used for general-purpose output or for simple strobe output. The following par­
agraphs describe the port B pin logic and the idealized timing for selected port B signals. 

MOTOROLA M68HC11 REFERENCE MANUAL 7-11 



• 

When the MC68HC11A8 is operating in an expanded mode; reads and writes to the port B 
address are treated as external accesses to allow port B functions to be emulated with 
external logic. The MC68HC24 port replacement unit (PRU) duplicates the general-purpose 
and handshake 1/0 functions of ports Band C and the STRA and STRB pins. The MC68HC24 
connects to the multiplexed addressldata bus of the MC68HC11A8. 

7.3.2.1 PORT B PIN LOGIC. Refer to Figure 7-8 for the following discussion. Reads of port 
B return the logic state from a point inside the output pin buffer. During reads of port B, 
transmission gate [1] is enabled by the RPORTB signal to couple logic state [2] to the 
internal data bus. The RPORTB signal is not asserted for port B reads in expanded modes 
since port B is an external address in that case . 

PB7-PBO 

07-00 -------"'----IIC .)t---t--o< 

RPORTB ---------1 

[
EXPANDED -AS 1 ______ ---' 

SINGLE CHIP - WPORTB J 

Figure 7-8. Port B Pin Logic 

In single-chip modes, the mode A (MDA) control bit is zero, which enables AND gate [3] 
and disables AND gate [4]. The internal data bus is coupled through AND gate [3] and 
clocked into HFF [5] by the write port B (WPORTB) signal. The output of HFF [5] is buffered 
and driven out the port B pins. In single-chip modes, HFF [5] is set to one by AND gate [6] 
during reset, which results in logic zero at the port B pins. 

In expanded modes, the MDA control bit is one, enabling AND gate [4] and. disabling AND 
gate [3], which couples high-order addresses to HFF [5]. In expanded modes, HFF [5] is 
transparent while address strobe (AS) is high and latched while AS is low. The output of 
HFF [5] is buffered and driven out the port B pins. 

7-12 M68HC11 REFERENCE MANUAL MOTOROLA 



7.3.2.2 PORT B IDEALIZED TIMING. Figure 7-9 shows the idealized timing for important 
port B control signals. This timing diagram, which does not consider any propagation 
delays, cannot be used as a substitute for data-sheet timing specifications. This information 
is useful for understanding the basis for data-sheet timing specifications so timing infor­
mation can be extrapolated for bus frequencies other than that used for the data sheet. 

EXTAL 

AS ========::::r---l 
E 

("PORT 8 INPUT (SINGLE-CHIP MODE) ................. . 'R -E-AD-F --RO-MP -0 -R--T-8 - ·I· .. uu 

RPORT8 
----------~----~ 

:i" PORT 8 OUTPUT (SINGLE-CHIP MODE) . WRITE TO PORT 8 

WPORT8 I 
PORT8PINS =====±==========4Xxx...,orr-N-E-W-P01R-T-B-DA-T-A--1==== 

PORT 8 PINS ' Xxx: NEW PORT 8 DATA .' 
(MC68HC24 ONLY) ------------:------------------------------f---

" .. · .. ·.EX··P·A··N··D··E·D···:~~~·····:··············...............] ..... , ........... "':':.:'::":.':':.':":':::":':'.::::::::."::.:'.::':"::j::"':'::~':::""':::.:::::":"'::"":': 
PORT 8 PINS X HIGH ORDER ADDRESS X' 

AS (REPEATED) =======~~~~~ __ -~i-j ===::;-.:..=;.:....:..:.=:..:..::.==-----l~j~==::::;-L---·. 
, ~----------------~~, 

Figure 7-9. Idealized Port B Timing 

On a port B read, the RPORTB signal enables transmission gates, which drive portr6 data 
onto the internal data bus. There is no case where port B data can change in tne1same 
cycle in which a port B read is occurring. Port B writes cause changes to the port B output 
pins at the falling edge of the internal PH2 clock. This edge corresponds to the middle of 
the E-clock high time. 

Although this section is not specifically concerned with expanded-mode operation of port B, 
it is included here for reference. A more detailed discussion ofthe expansion bus is included 
in 2.5 TYPICAL EXPANDED-MODE SYSTEM CONNECTIONS. Port B logic provides a full 
one-eight-cycle hold time on the high-order addresses relative to the falling edge of E. 

7.3.2.3 SPECIAL CONSIDERATIONS FOR PORT B ON MC68HC24 PRU. The external PRU 
does not have access to the internal PH2 clock of the MC68HC11A8; therefore, slight 

MOTOROLA M68HC11 REFERENCE MANUAL 7-13 



• 

differences exist in the timing of port B, port C, STRA. and STRB activities. See Figure 
7-9 for differences in timing for writes to port B of the MC68HC11A8 in single-chip mode 
as compared to writes to port B of the MC68HC24. 

7.3.3 RlW (STRB) Pin 

When the MC68HC11A8 is operating in an expanded mode, this pin acts as the read/write 
(R/W) bus control signal. When the MC68HC11A8 is operating in a single-chip mode, this 
pin acts as the STRB output signal for the handshake I/O subsystem. The MC68HC24 can 
be used to regain the STRB functions when the MCU is operating in an expanded mode. 

7.3.3.1 R/W (STRB) PIN LOGIC. Refer to Figure 7-10 for the following discussion. When 
the MC68HC11A8 is operating in an expanded mode, the MDA control bit is one. A one 
on MDA disables transmission gate [2] and enables transmission gate [1]. which, in turn, 
couples the output of HFF [3] to the pin output buffer. HFF [3] is transparent when AS is 
high and latched when AS is low, which gives R/W the same timing as a high-order address 
line at port B and assures a long hold time on RIW relative to the falling edge of E. R/W 
and the expansion bus are described more fully in 2.5 TYPICAL EXPANDED-MODE SYSTEM 
CONNECTIONS . 

When the MC68HC11A8 is operating in a single-chip mode, MDA is low, disabling trans­
mission gate [1] and enabling transmission gate [2]. Transmission gates [4] and [5] further 
select whether the Q or Q of c,ross-coupled latch [6] will be coupled to the STRB pin. When 

Rfii (INTERNAL) --------i 0 Q 

AS --------ic Q D---tC 

HFF 

[5J 

Figure 7-10. R/W (STRB) Pin Logic 

7-14 M68HC11 REFERENCE MANUAL 

RNi 
(STRB) 

MOTOROLA 



the invert strobe B (lNVB) control bit in the PIOC register is zero, the Q of cross-coupled 
latch [6] is coupled to the STRB pin, and STRB signals are active low. When the INVB 
control bit is one, the Q of cross-coupled latch [6] is coupled to the STRB pin and STRB 
signals are active high. 

The start strobe B (STARTSTRB) is an active-low signal from the handshake 1/0 subsystem. 
The conditions that enable strobe B depend on the strobe or handshake mode in effect. 
The strobe and handshake modes are controlled by the state of the HNDS and output/input 
(OIN) control bits in the PIOC register. When HNDS is zero, the simple strobe mode is 
selected, and the state of the OIN control bit is ignored. In simple strobe mode, STARTSTRB 
is asserted at the rising edge of the internal PH2 clock following a write to the PORTB 
register. This time corresponds to the center of the E low time following the write to port 
B. When HNDS is one and OIN is zero, full-input handshake is selected. In full-input hand­
shake mode, STARTSTRB is asserted at the rising edge of the internal PH2 clock following 
a read of the PORTCL register. This time corresponds to the center of the E low time 
following the read of port C latched data. When HNDS and OIN are one, full-output hand­
shake is selected. In full-output handshake mode', STARTSTRB is asserted at the rising 
edge of the internal PH2 clock following a write to the PORTCL register. This time corre­
sponds to the center of the E low time following the write to port C at PORTCL address. 

The end strobe B (ENDSTRB) is an active-low signal from the handshake 1/0 subsystem. 
Three possible conditions can cause the ENDSTRB to be asserted. If the HNDS bit is zero 
or if the pulse (PLS) control bit is one, ENDSTRB is asserted exactly two full E-clock periods 
after STARTSTRB was asserted. This configuration corresponds to the simple strobe mode 
or a full-handshake mode where strobe B is configured for pulsed-mode operation. The 
second condition causing ENDSTRB to be asserted corresponds to the full-handshake 
modes where strobe B has been configured for interlocked operation by PLS equal zero. 
In this case, the ENDSTRB signal is asserted at the next PH2 rising edge after the selected 
active edge is detected at the STRA input pin. The internal, PH2 rising edge corresponds 
to the center of the E low time. The third condition that can cause ENDSTRB to be asserted 
is included to avoid a problem if strobe B is changed from interlocked operation to pulsed 
operation while strobe B is active. If PLS is written to one while HNDS is a one, the ENDSTRB 
signal is asserted so the strobe B signal will be terminated at the next PH2 rising edge, 
which corresponds to the center of the E low time following the cycle where PIOC was 
written with HNDS and PLS equal to one. 

7.3.3.2 SPECIAL CONSIDERATIONS FOR STRB ON MC68HC24 PRU. Because the external 
PRU does not have access to the internal PH2 clock of the MC68HC11A8, slight differences 
exist in the timing of port B, port C, STRA. and STRB activities. In the MC68HC24, edges 
on strobe B occur one-quarter E cycle later than they would in the MC68HC11A8 in single­
chip mode. In the case of full-handshake interlocked mode, strobe B will be terminated on 
the next rising edge of E after a strobe A edge is detected. The MC68HC24 has a synchronizer 
on the strobe A input, which is clocked by AS; thus, the worst-case delay from an edge 
on strobe A to a response on strobe B is one and one-eighth E cycles rather than one E 
cycle (MC68HC11A8). 

Because the implementation of the strobe B logic in the MC68HC24 is slightly different 
than that in the MC68HC11A8, the third condition that could terminate a strobe B signal 

MOTOROLA M68HC11 REFERENCE MANUAL 7-15 



• 

was not included in the MC68HC24. Since changing from interlocked operation to pulsed 
operation in the middle of a transaction is not normal, this subtle difference should not 
concern most users. 

7.3.4 Port C 

Port C is the most complex port on the MC68HC11A8 because it can act as general-purpose 
bidirectional 110, full-input or full-output handshake I/O, or as a time-multiplexed address/ 
data bus port. Due to the complexity of the port C pin logic, expanded and single-chip 
modes of operation will be discussed separately. The following paragraphs explain the 
logic associated with port C pins and the idealized timing of selected signals. 

Although this section is not specifically concerned with expanded-mode operation of port 
C, it is included for reference. A more detailed discussion of the expansion bus is included 
in 2.5 TYPICAL EXPANDED-MODE SYSTEM CONNECTIONS. 

7.3.4.1 PORT C PIN LOGIC FOR EXPANDED MODES. In expanded modes, port C is a time­
multiplexed address/data bus. During the first half of a cycle, addresses are driven out of 
port C. During the second half of the cycle, data is either written out of port C or read into 
port C. Refer to Figure 7-11 for the following discussion. 

Pin output buffer [1] can be enabled or disabled by the PTCTSC signal. This signal is driven 
to zero when address or data information needs to be driven out of port C. When PTCTSC 

PTCTSC ------------+----\ 

A7-AO ------K. ~----, 
AOOREN ---------' 

WOATEN --------, 

[51 

07-DO -----"~--lC :)1---10 DI---CK 

RDATEN ---------' 

E-------------.I 
STOPWAIT-------------~ 

Figure 7-11. Port C Expanded Mode Pin Logic 

7-16 M68HC11 REFERENCE MANUAL MOTOROLA 



is one, the output buffer is disabled so port C pins become high-impedance input pins 
(e.g., while data is being read into port C). 

Information to be driven out of port C can come from either transmission gate [2] or [3]. 
When the address enable (ADDREN) signal is one, transmission gate [2] is enabled to 
couple address lines A7-AO to the output buffer of their associated port C pin. When the 
write data enable (WDATEN) signal is one, transmission gate [3] is enabled to couple data 
lines D7-DO to the output buffer of their associated port C pin. 

In the read direction, data comes from the port C pins to strobe input buffers [6]. Data 
from buffers [6] is then clocked into HFF [5] during the E high time. Data is coupled to the 
CPU through transmission gate [4] when the read data enable (RDATEN) signal is one. 
Since the CPU actually uses the read data during the one-quarter cycle after E goes low, 
HFF [5] also provides a level of synchronization for the incoming data. 

In normal operation, the stop/wait (STOPWAIT) signal is logic one, which enables buffers 
[6]. When the MCU is in the stop/wait low-power modes, the STOPWAIT is zero, and buffers 
[6] are disabled. While buffers [6] are disabled, intermediate or switching levels on the port 
C pins will not cause the relatively high currents normally expected for CMOS inputs. 

7.3.4.2 SUMMARY OF PORT C IDEALIZED EXPANDED-MODE TIMING. Port C expanded­
mode timing includes four types of bus cycles. Write cycles look identical at port C re­
gardless ofthe address written to. The second type cycle is a read from an external address. 
The last two cycle types are reads of internal addresses - that is, reads of a memory 
location or register inside the MC68HC11A8. For debugging, the data read from the internal 
location is driven out of port C to be monitored with a logic analyzer. For normal use of 
the MCU, the data from the internal reads is not driven out of port C because it could 
conflict with some external device. There is an internal read visibility (lRV) control bit in 
the MC68HC11A8 determining whether or not internal read data will be driven out of port 
C. The IRV bit and the expansion bus are described in greater detail in 2.5 TYPICAL 
EXPANDED-MODE SYSTEM CONNECTIONS. 

Logic in the MC68HC11A8 generates the signals PTCTSC, ADDREN, WDATEN, and RDATEN 
to control the activity of port C, depending on the type bus cycle to be performed. The 
operation of these signals is explained in 7.3.4.1 PORT C PIN LOGIC FOR EXPANDED 
MODES. Figure 7-12 summarizes the idealized timing of these signals for the four types 
of bus cycles. 

7.3.4.3 PORT C SINGLE-CHIP-MODE PIN LOGIC. Refer to Figure 7-13 for the following 
discussion. During a write to DDRC, data is clocked into HFF [1] by the write DDRC (WDDRC) 
signal. During a read of DDRC, transmission gate [2] is enabled by the read DDRC (RDDRC) 
signal, which couples the output of the DDRC HFF onto the internal data bus. During reset, 
HFF [1] is forced to zero, which configures port C pins as high-impedance inputs. The state 
of DDRC at the output of HFF [1] controls port C output buffer [3] via NOR gate [4]. The 
state of DDRC also influences the source of data for reads of the PORTC register via NAND 
gate [6]. 

MOTOROLA M68HC11 REFERENCE MANUAL 7-17 



.. 

7-18 

EXTAL 

AS I 
E======~II j I~' ______ __ 

'"V,,',' '.v·v,·,·.·.',·,·,'.·.·,·.',,·.·.·v.·.·,',·.'.·.' ........•.• {.,.... ,','V, ,I", "'."" . . .,' , ....... 1,." ........ , ... . 

PTCTSC 111 11 .... ____ -+1 ____ _ 
WRITE 

TO ANY 
ADDRESS 

READ FROM 
EXTERNAL 
ADDRESS 

ADDREN -.-J I I 

WDATEN - I I ~~--:-...J..i ~:;;:::;;:::;:; 

==-==i:=:: :'t>::I~ :~==i: <"Xl"'" 
PTCTSC 111 . I 
ADDREN -.-J I 

RDATEN =I'~"::" .'·::1 ==~;dl~===~=====:if===---.L 
PORTC -k ADDR >\<>>-----~NEXT ADDR 

~~- =t: =:=+ :=1 "'-"~"" -=4 -------===-
~ :.: d'>CM i i 1 .. ,!,.,. 

• PORT C --k: ADDR > in,> ' 

i"""" PTCT"SC"'~' ", j""", ""I :l~N""" ;,"'''' ""'" '''.;:::;:;};:;:.I !! 
'-------+-------

ADDREN -.-J I I 

RE~!ii~~~ RDATEN;;';:';;;;:) I I I 

(IRV,;:,=, .. ',.,', .. , .. , .. , .. ", .. ,., .. , .. , .. , .. , .. , .. ,., .. , .. ,., .. , .. ,., .. ,W,p, .. D,O.,A.,R.,T,T,E,.~"",.,.,mrm,.','.',:,:,!k "OR ~ ~ ID/CC;q;;; L >- ,.,.,;,' 
"1"""""""''1'"''''1''''' """",N, "'1""""1""""","""""""" 

OSCCLK 

r-----+'-~ I 

I I 

Figure 7-12. Summary of Idealized Port C Expanded-Mode Timing 

M68HC11 REFERENCE MANUAL MOTOROLA 



~ 
STRAPIN ~ 

RDDRC ------, 

HFFR 
[1) 

D 01-..... --1 

WDDRC ---+---1 

RST---+--..... 

WPORTC ---+---\ 
WPORTCL ---+---/ 

D7-oo --_.---tc: Jlt--------QC 

RPORTC ---4-------..... 

[20) o D 

RPORTCL -------' 

STRAEDGE _-=JL= _________ ~ 
STOPWAIT-------------------' 

Figure 7-13. Port C Single-Chip-Mode Pin Logic 

MOTOROLA M68HC11 REFERENCE MANUAL 7-19 



• 

The CWOM control bit allows the user to disable the P-channel driver of output buffer [3]. 
CWOM simultaneously affects all eight bits of port C. Since the N-channel driver is not 
affected by CWOM, CWOM equal one causes port C to become an open-drain-type output 
port. When a port C bit is logic zero, it is actively driven low by the N-channel driver. When 
a port C bit is logic one, it becomes high impedance since neither the N- nor P-channel 
devices are active. It is customary to have an external pullup resistor on lines that are 
driven by open-drain devices. Port C can only be configured for wired-OR operation when 
the MCU is in a single-chip mode of operation. 

AND gate [5] provides an override to DDRC during the three-state variation of full-output 
handshake. In this handshake mode, the HNDS and OIN control bits are ones, enabling 
AND gate [5]. While AND gate [5] is enabled, a one from exclusive-OR gate [7] will force 
output buffer [3] to be enabled, regardless of the state of the DDRC bit from HFF [1]. The 
EGA control bit specifies the level required at the STRA pin to force port C pins to be 
outputs. 

While the output-handshake mode is specified, any of the port C bits having their corre­
sponding DDRC bits set to zero are configured for the three-state variation of full-output 
handshake. For those bits, the corresponding port C pins will appear as high-impedance 
inputs while the STRA pin is at its selected inactive level. When the STRA pin goes to its 
active level, AND gate [5] will force all port C pins to the output mode. Any port C bits 
having their corresponding DDRC bits set to one will be driven outputs, regardless of the 
logic at AND gate [5]. 

While the MCU is operating in output-handshake mode, NAND gate [14] outputs zero and 
NAND gate [6] outputs one. When PORTC is read in this case, AND gate [10] enables 
transmission gate [11] to couple the logic state from point [12] inside the output buffer 
onto the internal data bus. When a port C pin is configured for output by its corresponding 
DDRC bit equal one at HFF [1]. inverter [15] outputs zero and NAND gate [6] outputs one. 
Again, when PORTC is read, AND gate [10] enables transmission gate [11] to couple the 
logic state from point [12] inside the output buffer onto the internal data bus. When neither 
of the previous conditions are true, the port C pin is configured for input and NAND gate 
[6] outputs a zero. In this case, when PORTC is read, AND gate [8] enables transmission 
gate [9] to couple the buffered state of the corresponding port C pin from the strobed 
buffers [13] onto the internal data bus. 

On writes to port C, data is clocked into the HFF [16] by the output of OR gate [17]. A write 
to either the PORTC register or the PORTCl register will enable HFF [16] via OR gate [17]. 
The output of HFF [16] drives the port C pins through buffer [3] subject to the controls on 
the buffer described in the previous paragraphs. 

The port C latch register (PORTCl) is composed of HFFs [18] and [19]. Normally, the strobe 
A edge signal (STRAEDGE) is low so HFF [19] is latched and HFF [18] is transparent. When 
a selected edge is asynchronously detected at the strobe A pin, a short active-high pulse 
is issued on STRAEDGE. While STRAEDGE is high, HFF [18] is temporarily latched so stable 
data is transferred into HFF [19]. When the PORTCl register is read, the RPORTCl signal 
enables transmission gate [20] to couple the output of HFF [19] onto the internal data bus. 

7-20 M68HC11 REFERENCE MANUAL MOTOROLA 



The STOPWAIT signal is normally high, enabling strobe buffers [13]. When the MCU is in 
the stop or wait power-saving modes, STOPWAIT is low, and strobe buffers [13] are dis­
abled. This function was included to reduce power consumption mainly in the expanded 
modes where port C is a multiplexed address/data bus, but there is a side effect that can 
influence strobe and handshake input at port C in a very special case. 

The wait-mode definition states that any enabled interrupt source can be used to force the 
MCU to return to normal operation. An active edge at the STRA pin is a possible source 
of the interrupt that will wake the MCU from the wait standby mode. Although the edge 
at STRA will wake the MCU from the wait mode, valid data will not be latched into PORTCL 
because strobe input buffers [13] were disabled at the time of the asynchronous edge at 
STRA. 

7.3.4.4 PORT C IDEALIZED SINGLE-CHIP-MODE TIMING. Figure 7-14 shows the idealized 
timing for important port C control signals. Because this timing diagram does not reflect 
any propagation' delays, it cannot be used as a substitute for data-sheet timing specifica­
tions. This information is useful for understanding the basis for data-sheet timing speci­
fications so timing information can be extrapolated for bus frequencies other than that 
used for the data sheet. 

EXTAL 

f""""""" '''""~:"''"",,,I .~.... ··1' '~~IIII'· ""''' I If ........ I.. .~.:,:,.' 
"RPORTC _____ --+ ___ ~--___l. . 

"..................................... VALID DATA REQUIRED AT CPU < ' I> : 
.::;,,":,":::,;;:;~;;;,........ .. ............. ~;;;;;;;;;;;;,~ .. ·1·· ···· ... ···1::::=1:::: 

PORT C OUTPUT PINS Xxx NEW PORT C DATA ' 

PORT C OUTPUT PINS =====:::C==:::::J=======C, ~==tXXX~=::NE~W::;PJ;~R;:T::;C:;D:::AT;:A= 
,.... ... (~~~~~~~~.~.~~~I -----······'1-·····-···-· .. ·-.. ··-· .. ·-·· .. '.l-'''''-RE-A-D-PO-·'~-;C-'''~-;-~·-~~-''~-~-''~r---~J":':::':':'''::':l::''::'': .......... , 

""",a.,, "'""' ~+= won' mooeo •• ~..~~=~ ~ .. _. 
WDDRC _____ -+F _________ ~, I 

I ~I---

Figure 7-14. Idealized Port C Single-Chip-Mode Timing 

MOTOROLA M68HC11 REFERENCE MANUAL 7-21 



• 

During a read of port C, the RPORTC signal enables transmission gates that drive port C 
data onto the internal data bus. After the RPORTC signal is deasserted, data is held stable 
on the self-latching internal data bus. The CPU actually requires data to be stable for a 
setup time before and a hold time after the rising edge of the internal PH2 clock. The 
RPORTC signal is deasserted one-quarter cycle before this time so data will be stable while 
the CPU is actually reading it. 

During a DDRC read, the RDDRC signal enables a transmission gate to couple the state of 
the DDRC bit to the internal data bus. In contrast to the RPORTC signal, RDDRC is active 
while the CPU is actually reading the data from the internal data bus, which does not pose 
potential problems because it is not possible for the DDRC value to change in the same 
cycle it is being read. 

The timing for the RPORTCL signal is the same as that for the RDDRC signal. Unlike DDRC 
data, data in the PORTCL register can chartge at any time since the strobe A latching edge 
is asynchronous. Since it is undesirable for data to be changing at the instant the CPU is 
latching in this data, the user should avoid this synchronization hazard. Usually, the system 
design automatically solves the problem because an edge on STRA cannot normally occur 
during a read of PORTCL. For example, in a full-input handshake, PORTCL is only read in 
response to recognizing that the STAF has been set. In such a case, the edge that caused 
STAF to be set and data to be latched into PORTCL will have occurred several cycles before 
the PORTCL read could possibly occur. Also, in the full-handshake protocol, the external 
device is inhibited from latching new data into PORTCL until the previous data is read from 
PORTCL. This inhibit is accomplished by the STRB handshake output. 

Writes to portC at PORTC or PORTCL and writes to DDRC are controlled by WPORTC, 
WPORTCL, and WDDRC, respectively. All three signals are synchronized to the falling edge 
of the internal PH2 clock, which corresponds to the center of the E high time. 

7.3.4.5 SPECIAL CONSIDERATIONS FOR PORT CON MC68HC24 PRU. Since the external 
PRU does not have access to the internal PH2 clock of the MC68HC11A8, there are slight 
differences in the timing of port B, port C, STRA, and STRB activities. Refer to Figure 7-14 
for the differences between internal MC68HC11A8 writes to port C and MC68HC24 writes 
to port C. 

7.3.5 AS (STRA) Pin 

In expanded modes, this pin acts as the AS control signal, which is used to demultiplex 
low-order addresses from data at port C. In single-chip modes, this pin acts as the STRA 
input, which serves the handshake 1/0 subsystem on the MC68HC11A8. The MC68HC24 
can be used to regain the STRA functions when the MCU is operating in an expanded 
mode. 

7.3.5.1 AS STRA PIN LOGIC. Refer to Figure 7-15 for the following discussion. When the 
MC68HC11A8 is operating in a single-chip mode, the MDA control bit is zero; thus, both 
the P- and N-channel output drivers are disabled. While the MCU is operating in an ex­
panded mode, the MDA control bit enables the output driver logic. As long as the MCU is 
not in stop mode, the AS signal is buffered and driven out the AS pin. 

7-22 M68HC11 REFERENCE MANUAL MOTOROLA 



[1] 

~---------+~1----------------1 

STOP 

[6] 

[7] [8] 

AS 
(STRA) 

USED TO SET STAF FLAG 
AND TO TERMINATE STRB 

SHORT ASYNCHRONOUS <==---------------...... PULSE USED TO TRIGGER 
PORTCL LATCHES 

Figure 7-15. AS (STRAl Pin Logic 

When the MC68HC11A8 is in stop mode, the STOP signal goes high, which forces the AS 
pin to logic zero. A one on STOP forces a zero on one input of NAND gate [1]. which forces 
a zero on one input of NAND gate [2]. which disables the P-channel driver. The one on 
STOP also forces a one at the output of NAND gate [3]. which places a zero on the lower 
input of NOR gate [4]. Since the one on MDA forces the other input of NOR gate [4] to 
zero, the output of this NOR gate will be one, which enables the N-channel driver and 
forces the pin to zero. 

Hysteresis buffer [5] is described in 7.3.4.1 PA2-PAO PIN LOGIC. EGA controls the block 
of logic [7], which detects asynchronous edges on the signal from inverter [6]. the buffered 
signal from the strobe A pin. The output from the block of logic [7] is a short high-going 
asynchronous pulse, which is used to asynchronously latch data from the port C pins into 
the PORTCL register. 

In response to the asynchronous pulse from block [7]. the block of logic [8] produces a 
pulse that is synchronized to the internal PH2 clock. Provided the asynchronous pulse 
meets a setup time before the rising edge of PH2, the output of block [8] will go high at 

MOTOROLA M68HC11 REFERENCE MANUAL 7-23 



• 

that PH2 rising edge and stay high until PH2 goes low. If the setup time is not met, the 
pulse will appear at the next PH2, causing a delay from when an edge is presented at the 
STRA pin until it is recognized by the logic of block [8]. The delay could be from a few 
nanoseconds to a full E-clock cycle, depending on where the edge occurs relative to the 
clocks. The rising edge of the internal PH2 clock corresponds to the center of the E-clock 
low time. A significant number of internal logic-gate delays exists between the STRA pin 
and the block of logic [8]. 

The synchronized pulse from block [8] is used for several functions in the handshake I/O 
subsystem. STAF is set by this pulse. The arming mechanism for automatically clearing 
STAF is cleared by this pulse. This pulse can terminate the STRB output in some handshake 
modes. These functions and their timing are discussed in greater detail in 7.4 HANDSHAKE 
I/O SUBSYSTEM. 

7.3.5.2 SPECIAL CONSIDERATIONS FOR STRA ON MC68HC24 PRU. Because the external 
PRU does not have access to the internal PH2 clock of the MC68HCllA8, slight differences 
exist in the timing of port B, port C, STRA, and STRB activities. The differences for strobe 
A are associated with the block of logic [8] in Figure 7-15. Although Figure 7-15 depicts 
the MC68HC11A8, there is a similar block of logic in the MC68HC24. In the MC68HC24, AS 
and E are used to synchronize the strobe A pulse to the E clock. Any strobe A edge meeting 
a setup time to the falling edge of AS results in a synchronized pulse that is high for the 
next E-clock high time. This pulse is used for the same purposes as the PH2 synchronized 
pulse in the MC68HC11A8. 

7.3.6 Port 0 

Port D is a six-bit bidirectional data port. Two port D pins alternately serve as the receive 
and transmit data pins for the on-chip asynchronous SCI system. The other four port D 
pins alternately serve the on-chip synchronous SPI system. Although the pin logic for all 
six port D pins is essentially identical, each pin is described separately to note subtle 
differences. The following paragraphs explain the detailed logic associated with port D 
pins and the idealized timing of important port D control signals. 

7.3.6.1 PD~ (RxD) PIN LOGIC. Refer to Figure 7-16 for the following discussion. The data 
direction specification for this pin is held in HFF [1]. During a write to the DDRD register, 
the WDDRD signal is asserted, which causes data to be transferred into HFF [1] from the 
internal data bus. A read of DDRD causes the RDDRD signal to be asserted, which enables 
transmission gate [2] to couple the output of HFF [1] onto the internal data bus. During 
reset, HFF [1] is cleared to zero, configuring this pin as a high-impedance input. 

The state of DDRD controls the pin output buffer via AND gate [3]' and DDRD affects the 
source of data for port D reads via transmission gates [4] and [5]. When the DDRD bit from 
HFF {1] is zero, AND gate [3] outputs a zero, which disables output driver [9]. When the 
DDRD bit from HFF [1] is zero, transmission gate [5] is enabled. In this case, reads of port 
D enable transmission gate [6]' coupling the buffered pin state from inverters [7] to the 
internal data bus. When the DDRD bit from HFF [1] is one, transmission gate [4] is enabled. 
In this case, reads of port D enable transmission gate [6]' coupling the level from the output 

7-24 M68HC11 REFERENCE MANUAL MOTOROLA 



D 

WPORTD C 

RCVON -+---1 

RDDRD -+--...., 

HFFR [1[ 

D Q 1-..... --+-1 

WDDRD 

[4] 
RST -+---' 

[5] 

DO ---e--K. ,)I-..... --------K. ,)I-----4I~<K 

PDO 
(RxD) 

RPORTD ----' 
'---------.... TO SCI RECEIVER 

Figure 7-16. PD~ (RxD) Pin Logic 

of HFF [8] to the internal data bus, which corresponds to the output level for the pin before 
output driver [9]. Since output driver [9] can be configured for wired-OR operation, some 
external source can force the pin low, even if the logic for this pin is trying to output a 
one. In this case, a read of port D will return the intended logic one from inside the output 
buffer rather than the zero from the pin. 

During a write to port D, the V\lPORTD signal is asserted, causing data from the internal 
data bus to be latched into HFF [8]. Written data is then buffered to the pin by output driver 
[9] subject to data direction control from AND gate [3] and wired-OR control from the 
DWOM control bit. When the DWOM control bit is one, the P-channel driver is disabled so 
port D outputs act as open-drain drivers. The DWOM control bit simultaneously affects all 
port D pins. 

When the output of AND gate [3] is zero, the output driver is completely disabled; thus, 
this pin is configured as a high-impedance input. AND gate [3] will output a zero to disable 
the output driver whenever the corresponding DDRD bit is zero from HFF [1]. AND gate 
[3] will also disable the output driver when the SCI receiver is enabled by the receiver-on 
signal (RCVON). The state of the DDRD bit still influences the source of read data when 
the RCVON signal is forcing the pin to a high-impedance state. 

MOTOROLA M68HC11 REFERENCE MANUAL 7-25 



• 

This pin alternately serves as the receive data (RxD) input pin for the asynchronous SCI 
system. The SCI receiver is enabled by the receive enable (RE) control bit in an SCI control 
register, which forces the RCVON signal to one, disabling pin output driver [9]' regardless 
of the state of the DDRD bit from HFF [1]. The state of the DDRD bit allows the programmer 
to read the RxD pin (DDRD = 0) or the value in port D latch [8] (when DDRD = 1). Data from 
the pin is buffered by inverters [7] and driven to the SCI receive logic. The data path from 
the pin to the SCI receive logic is not affected by the state of DDRD. 

7.3.6.2 P01 (TxO) PIN LOGIC. Refer to Figure 7-17 for the following discussion. The data 
direction specification for this pin is held in HFF [1]. During a write to the DDRD register, 
the WDDRD signal is asserted, causing data to be transferred into HFF [1] from the internal 
data bus. A read of DDRD causes the RDDRD signal to be asserted, which enables trans­
mission gate [2] to couple the output of HFF [1] onto the internal data bus. During reset, 
HFF [1] is cleared to zero, which configures this pin as a high-impedance input. 

The state of DDRD controls the pin output buffer via OR gate [3]' and DDRD affects the 
source of data for port D reads via transmission gates [4] and [5]. When the DDRD bit from 
HFF [1] is one, OR gate [3] outputs a one, which enables output driver [9]. Also, when the 

XMITON 

XMITOATA 

HFF [8J 

0 Q 

WPORTD C Q 

ROORO 

HFFR [1J 

o Q I--___ --f-~ 

WOORO 

RST _-+-_.....1 [4J 

01 - .... -1( ")1--+--------1( ")I---OC 

RPORTD ----' 

Figure 7·17. P01 (TxO) Pin Logic 

7-26 M68HC11 REFERENCE MANUAL 

voo 

P01 
(TxO) 

MOTOROLA 



DDRD bit from HFF (1) is one, transmission gate (4) is enabled. In this case, reads of port 
D enable transmission gate (6), which couples the level from the output of HFF (8) to the 
internal data bus. The value returned on such a read corresponds to the last value written 
to the corresponding bit of port D. Since output driver (9) can be configured for wired-OR 
operation, some external source can force the pin low even if the pin logic for this pin is 
attempting to output a one. If the DDRD bit did not affect the source of the read data, an 
erroneous zero could be read when the pin logic is actually trying to output a one. When 
the DDRD bit from HFF (1) is zero, OR gate (3) outputs a zero, which disables output driver 
(9). Also, when the DDRD bit is zero, transmission gate (5) is enabled. In this case, reads 
of port D enable transmission gate (6). which couples the buffered pin state from inverters 
(7) to the internal data bus. 

During a write to port D, the WPORTD signal is asserted, causing data from the internal 
data bus to be latched into HFF (8). When the SCI transmitter is enabled, the transmit-on 
(XMITON) signal is one and transmission gate [10) is enabled, which couples serial transmit 
data (XMITDATA) to pin driver (9). When the SCI transmitter is disabled, the XMITON signal 
is zero, and transmission gate (11) is enabled, which couples port D data from HFF (8) to 
pin driver (9). Pin output driver (9) is enabled by data direction logic from OR gate (3). The 
DWOM control bit can optionally disable the P-channel driver of output buffer (9). 

When the DWOM control bit is one, the P-channel driver is disabled, causing port D outputs 
to act as open-drain drivers. The DWOM control bit concurrently affects all port D pins. 
When the output of OR gate (3) is zero, the output driver is completely disabled; thus, this 
pin is configured as a high-impedance input. OR gate [3) will output a zero to disable the 
output driver whenever the corresponding DDRD bit is zero from HFF [1) and the SCI 
transmitter is disabled by the XMITON signal. The state of the DDRD bit still influences the 
source of read data when the XMITON signal is forcing the pin to the output configuration. 

This pin alternately serves as the transmit data (TxD) output pin for the asynchronous SCI 
system. The SCI transmitter is enabled by the TE control bit in an SCI control register. 
Enabling the transmitter forces the pin driver to be configured as an output by forcing a 
one at the output of OR gate (3). The state of the DDRD bit allows the programmer to read 
the TxD pin (DDRD = 0) or the value in port D latch (8) (when DDRD equals one). The SCI 
transmitter retains control of the port D pin by keeping XMITON equal to one as long as 
any information is being transmitted (even after the TE bit is written to zero). This control 
assures that a transmission will not be cut off in the middle of a serial character. 

The user can control what happens to the TxD pin when the transmitter is finished. When 
the transmitter is finished using the TxD pin, the XMITON signal switches from one to 
zero, which causes the data direction to be controlled by the DDRD bit from HFF (1) instead 
of the XMITON input to OR gate (3). Disabling XMITON also causes transmission gate [10) 
to be disabled and transmission gate (11) to be enabled. If the corresponding DDRD bit is 
zero, the pin will revert to being a high-impedance input when the transmitter is finished. 
If the DDRD bit is one and the last data written to the corresponding bit of port 0 was a 
zero, the pin will revert to a driven logic zero when the transmitter is finished. If the DDRD 
bit is one and the last data written to the corresponding bit of port D was a one, the pin 
will revert to a driven logic one when the transmitter is finished. 

MOTOROLA M&8HC11 REFERENCE MANUAL 7-27 



• 

7.3.6.3 P02 (MISO) PIN LOGIC. This pin alternately functions as the MISO pin when the 
synchronous SPI system is enabled. Refer to Figure 7-18 for the following discussion. The 
data direction specification for this pin is held in HFF [1]. During a write to the DDRD 
register, the WDDRD signal is asserted, which causes data to be transferred into HFF [1] 
from the internal data bus. A read of DDRD causes the RDDRD signal to be asserted, 
enabling transmission gate [2] to couple the output of HFF [1] onto the internal data bus. 

When HFF [1] is cleared to zero, this pin is configured as a high-impedance input. OR gate 
[13] causes HFF [1] to be cleared to zero during reset. OR gate [13] also causes HFF [1] to 
be cleared if an SPI mode fault (MFAULT) occurs. An SPI mode fault is caused when a 
device configured as a master SPI device is selected as if it were a slave. This condition 
could indicate that more than one SPI device is attempting to drive the common SPI lines, 
which could cause a bus conflict. To avoid the possibility of latchup, the port D pins 
associated with the SPI are immediately forced to their input configuration. 

HFF 

D Q 1------< 

WPORTD --+-i C 0-

SLAVDO --+------+---1( ;t-.... ---..... -f 

[12) 

SLAVON 

RDUl'ID 

HFFR [1) 

D Q 

[4) 

WDDRD C 
R 

0-

D2 

MFAULT 
[6) 

PD2 
(MISO) 

RST 
L-. _______ ....... ~~~;~R DATA IN 

RPORTD 

Figure 7-18. P02 (MISO) Pin Logic 

7-28 M68HC11 REFERENCE MANUAL MOTOROLA 



The actual data direction for this port D pin is determined by the logic output of NAND 
gate [3). When the SPI system is disabled, the DDRD bit from HFF [1) controls direction. 
When the SPI system is enabled in master mode, this pin is forced to a high-impedance 
input. When the SPI system is enabled in slave mode, the DDRD bit from HFF [1) controls 
direction. This last condition means that the user must set the corresponding DDRD bit to 
one to enable slave data output from this pin when the SPI system is enabled for slave 
operation. The uses and implications ofthis logic are discussed in greater detail in SECTION 
8 SYNCHRONOUS SERIAL PERIPHERAL INTERFACE. 

When the output of NAND gate [3) is one, driver [9) is disabled so the pin is configured 
as a high-impedance input. To enable pin driver [9). both inputs to NAND gate [3) must 
be ones. When the SPI system is disabled, SPE is zero, which makes the output of NAND 
gate [12) a one. A logic one enables NAND gate [3) so that the DDRD bit from HFF [1) can 
enc;lble or disable driver [9). When the SPI system is operating as a master, SPE ,will be 
one and slave on (SLAVON) will be zero. This configuration causes NAND gate [12) to 
output a zero, which disables output driver [9). regardless of the state of the DDRD bit at 
HFF [1). When the SPI system is enabled as a slave, SPE is one and SLAVON is one. This 
configuration causes NAND gate [12) to output a one, which enables NAND gate [3) to 
control the direction of output buffer [9) based on the state of the DDRD bit from HFF [1). 

Output driver [9) can be placed in a wired-OR configuration by the DWOM control bit. This 
control bit simultaneously affects all six port D pins. When DWOM is one, the P-channel • 
device in the output driver is disabled so the pin cannot be actively driven high. When the 
pin attempts to output a logic one, the N-channel device is disabled; thus, the pin appears 
as a high-impedance input. An external pullup is used to passively pull the pin high. 

The data for output driver [9) comes from transmission gate [10) or [11). When the SPI 
system is enabled, the SPE bit is one; thus, transmission gate [10) is enabled, and data 
for the output driver comes from the SPI slave data output signal (SLAVDO). When the SPI 
system is disabled, the SPE control bit is zero; thus, transmission gate [10) is disabled and 
transmission gate (11) is enabled. In this case, port D data is coupled from the output of 
HFF [8) to the input of output driver [9). During a write to port D, the WPORTD signal is 
asserted, which causes data to be latched into HFF [8) from the internal data bus. 

During a read of port D, transmission gate [6) is enabled by the RPORTD signal to couple 
data to the internal data bus. The source of data for port D reads depends on the direction 
control for the output driver. If the output of NAND gate [3) is zero, output driver [9) is 
enabled and transmission gate [4) is enabled. In this case, port D reads return the data 
from a point inside the output driver. If the output of NAND gate [3) is one, transmission 
gate [5) is enabled. In this case, reads of port D return the buffered state from the pin 
through inverters [7). 

The output of inverters [7) drives the serial master data input to the SPI system logic. The 
source of this data is always from the MISO pin and is not affected by the data direction 
logic. 

7.3.6.4 P03 (MOSI) PIN LOGIC. This pin alternately functions as the MOSI pin when the 
synchronous SPI system is enabled. Refer to Figure 7-19 for the following discussion. The 
data direction specification for this pin is held in HFF [1). During a write to the DDRD 

MOTOROLA M68HC11 REFERENCE MANUAL 7-29 



• 

HFF 

o QI----~IC 

WPORTO C Q 

MSTRDO --+-----+----IC ")1-....... ---..-1 

MSTRON 

ROORO 

HFFR 

0 Q 

WOORD C R Q 

03 

MFAUlT 

RST 

RPORtO 

[l[ 

[6] 

[4] 

P03 
(MOSI) 

TOSPI 
L..------------i~ SLAVE DATA IN 

Figure 7·19. PD3 (MOSI) Pin Logic 

register, the WDDRD signal is asserted, causing data to be transferred into HFF (1) from 
the internal data bus. A read of DDRD causes the RDDRD signal to be asserted, which 
enables transmission gate (2) to couple the output of HFF (1) onto the internal data bus. 

When HFF (1) is cleared to zero, this pin is configured as ahigh·impedance input. OR gate 
(13) causes HFF (1) to be cleared to zero during reset. OR gate (13) also causes HFF (1) to 
be cleared if an SPI mode fault occurs. An SPI mode fault is caused when a device configured 
as a master SPI is selected as if it were a slave. This condition could indicate that more 
than one SPI device is attempting to drive the common SPllines, which could cause a bus 
conflict. To avoid the possibility of latchup, the port D pins associated with the SPI are 
immediately forced to their input configuration. 

7-30 M68HC11 REFERENCE MANUAL MOTOROLA 



The actual data direction for this port D pin is determined by the logic output of NAND 
gate [3]. When the SPI system is disabled, the DDRD bit from HFF [1] controls direction. 
When the SPI system is enabled in slave mode, this pin is configured as a high-impedance 
input. When the SPI system is enabled in master mode, the DDRD bit from HFF [1] controls 
direction. This last condition means that the user must set the corresponding DDRD bit to 
one to enable master data output from this pin when the SPI system is configured for 
master operation. The uses and implications of this logic are discussed in greater detail 
in SECTION 8 SYNCHRONOUS SERIAL PERIPHERAL INTERFACE. 

When the output of NAND gate [3] is one, driver [9] is disabled; thus, the pin is configured 
as a high-impedance input. To enable pin driver [9]. both inputs to NAND gate [3] must 
be ones. When the SPI system is disabled, SPE is zero, making the output of NAND gate 
[12] a one. This configuration enables NAND gate [3] so that the DDRD bit from HFF [1] 
can enable or disable driver [9]. When the SPI system is enabled as a slave, SPE is one 
and master on (MSTRON) is zero. This configuration causes NAND gate [12] to output zero, 
which disables output driver [9]. regardless of the state of the DDRD bit at HFF [1]. When 
the SPI system is enabled as a master, SPE is one and MSTRON is one. This configuration 
causes NAND gate [12] to output a one, which enables NAND gate [3] to control the direction 
of output buffer [9] based on the state of the DDRD bit from HFF [1]. 

Output driver [9] can be placed in a wired-OR configuration by the DWOM control bit. This 7 
control bit simultaneously affects all six port D pins. When DWOM is one, the P-channel 
device in the output driver is disabled so the pin cannot be actively driven high. When the 
pin attempts to output logic one, the N-channel device is disabled; thus, the pin appears 
as high-impedance input. An external pullup is used to passively pull the pin high. 

The data for output driver [9] comes from transmission gate [10] or [11]. When the SPI 
system is enabled, the SPE bit is one; transmission gate [10] is enabled, and data for the 
output driver comes from the SPI master data output signal (MSTRDO). When the SPI 
system is disabled, the SPE control bit is zero; transmission gate [10] is disabled and 
transmission gate [11] is enabled. In this case, port D data is coupled from the ouput of 
HFF [8] to the input of output driver [9]. During a write to port D, the WPORTD signal is 
asserted, which causes data to be latched into HFF [8] from the internal data bus. 

During a read of port D, transmission gate [6] is enabled by the RPORTD signal to couple 
data to the internal data bus. The source of data for port D reads depends on the direction 
control for the output driver. If the output of NAND gate [3] is zero, output driver [9] is 
enabled and transmission gate [4] is enabled. In this case, port D reads return the data 
from a point inside the output driver. If the output of NAND gate [3] is one, transmission 
gate [5] is enabled. In this case, reads of port D return the buffered state from the pin 
through inverters [7]. 

The output of inverters [7] drives the serial slave data input to the SPI system logic. Because 
the source of this data is always from the MOSI pin, it is not affected by the data direction 
logic. 

7.3.6.5 PD4 (SCK) PIN LOGIC. This pin alternately functions as the SPI SCK output pin 
when the synchronous SPI system is enabled. Refer to Figure 7-20 for the following dis­
cussion. The data direction specification for this pin is held in HFF [1]. During a write to 

MOTOROLA M68HC11 REFERENCE MANUAL 7-31 



• 

HFF 

o Q \------1(" 

WPORTO --+-I C Q 

SPISCK --+------+----1( :::..-..... ---...... --1 

MSTRON 

ROORO 

HFFR 

0 Q 

WOORO C R Q 

04 

MFAULT 

RST 

!WORTO 

1121 

11J 

16J 

14J 

P04 
(SCKI 

TOSPI 
L..-----------i~ SLAVECLOCK 

Figure 7-20. PD4 (SCK) Pin Logic 

the DDRD register, the WDDRD signal is asserted, causing data to be transferred into HFF 
[1] from the internal data bus. A read of DDRD causes the RDDRD signal to be asserted, 
which enables transmission gate [2] to couple the output of HFF [1] onto the internal data 
bus. 

When HFF [1] is cleared to zero, this pin is configured as a high-impedance input. OR gate 
[13] causes HFF [1] to be cleared to zero during reset. OR gate [13] also causes HFF [1] to 
be cleared if there is an SPI mode fault. An SPI mode fault is caused when a device 
configured as a master SPI device is selected as if it were a slave. This condition could 
indicate that more than one SPI device is attempting to drive the common SPllines, which 
could cause a bus conflict. To avoid the possibility of latchup, the port D pins associated 
with the SPI are immediately forced to their input configuration. 

7-32 M68HC11 REFERENCE MANUAL MOTOROLA 



The actual data direction for this port D pin is determined by the logic output of NAND 
gate [3]. When the SPI system is disabled, the DDRD bit from HFF [1] controls direction. 
When the SPI system is enabled in slave mode, this pin is forced to a high-impedance 
input. When the SPI system is enabled in master mode, the DDRD bit from HFF [1] controls 
direction. This last condition means that the user must set the corresponding DDRD bit to 
one to enable the master clock output from this pin when the SPI system is configured for 
master operation. The uses and implications of this logic are discussed in greater detail 
in SECTION 8 SYNCHRONOUS SERIAL PERIPHERAL INTERFACE. 

When the output of NAND gate [3] is one, driver [9] is disabled so the pin is configured 
as a high-impedance input. To enable pin driver [9], both inputs to NAND gate [3] must 
be ones. When the SPI system is disabled, SPE is zero, which makes the output of NAND 
gate [12] a one. This enables NAND gate [3] so that the DDRD bit from HFF [1] can enable 
or disable driver [9]. When the SPI system is enabled as a slave, SPE is one and MSTRON 
is zero. This configuration causes NAND gate [12] to output a zero, which disables output 
driver [9], regardless of the state of the DDRD bit at HFF [1]. When the SPI system is enabled 
as a master, SPE is one and MSTRON is one. This configuration causes NAND gate [12] 
to output a one, which enables NAND gate [3] to control the direction of output buffer [9] 
based on the state of the DDRD bit from HFF [1]. 

Output driver [9] can be placed in a wired-OR configuration by the DWOM control bit. This 
control bit simultaneously affects all six port D pins. When DWOM is one, the P-channel 
device in the output driver is disabled so the pin cannot be actively driven higtl. When the 
pin attempts to output a logic one, the N-channel device is off; thus, the pin appears as a 
high-impedance input. An external pullup is used to passively pull the pin high. 

The data for output driver [9] comes from transmission gate [10] or [11]. When the SPI 
system is enabled, the SPE bit is one; thus, transmission gate [10] is enabled, and data 
for the output driver comes from the SPI master clock output signal (SPISCK). When the 
SPI system is disabled, the SPE control bit is zero; transmission gate [10] is disabled and 
transmission gate [11] is enabled. In this case, port D data is coupled from the output of 
HFF [8] to the input of output driver [9]. During a write to port D, the WPORTD signal is 
asserted, which causes data to be latched into HFF [8] from the internal data bus. 

During a read of port D, transmission gate [6] is enabled by the RPORTD signal to couple 
data to the internal data bus. The source of data for port D reads depends on the direction 
control for the output driver. If the output of NAND gate [3] is zero, output driver [9] is 
enabled and transmission gate [4] is enabled. In this case, port D reads return the data 
from a point inside the output driver. If the output of NAND gate [3] is one, transmission 
gate [5] is enabled. In this case, reads of port D return the buffered state from the pin 
through inverters [7]. 

The output of inverters [7] drives the SPI slave clock.input to the SPI system logic. Because 
the source of this clock is always from the SCK pin, it is not affected by the data direction 
logic. When the SPI system is operating in master mode, the SPI clock is generated by the 
SPI system logic, and the slave clock input from inverters [7] is ignored. 

7.3.6.6 PD5 (55) PIN LOGIC. This pin alternately functions as the (SS) pin when the 
synchronous SPI system is enabled. Refer to Figure 7-21 for the following discussion. The 

MOTOROLA M68HC11 REFERENCE MANUAL 7-33 



• 

HFF [8) 

o Q~--------------------~ 

WPORTD C Q 

PD5 

RDDRD ----+---, 

HFFR [1) 

o Q 

WDDRD ----t-I 

RST ----+---.... 

RPORTD --------------1 
)()-__ ---:~ ¥~~~ ENABLE 

[11) 

Figure 7-21. PD5 (55) Pin Logic 

data direction specification for this pin is held in HFF [1). During a write to the DDRD 
register, the WDDRD signal is asserted, causing data to be transferred into HFF [1) from 
the internal data bus. A read of DDRD causes the RDDRD signal to be asserted, which 
enables transmission gate [2) to couple the output of HFF [1) onto the internal data bus. 
When HFF [1) is cleared to zero during reset. this pin is configured as a high-impedance 
input. Unlike the other three pins associated with the SPI system, the direction of this pin 
is not affected by mode faults. 

The actual data direction for this port D pin is determined by the logic output of NAND 
gate [3). When the SPI system is disabled, the DDRD bit from HFF [1) controls direction. 
When the SPI system is enabled in slave mode, this pin is configured as a high-impedance 
input. When the SPI system is enabled in master mode, the DDRD bit from HFF [1) controls 
direction. This last condition allows a user to decide how this pin will be used when the 
SPI system is configured for master mode. If the DDRD bit is cleared to zero, this SS pin 
is used as an input to detect mode faults. If the SPI system is configured so that mode 
faults would not occur, as in a single-master system, the user can set the DDRD bit cor­
responding to the SS pin. In this case, the pin becomes a general-purpose output pin not 

7-34 M68HC11 REFERENCE MANUAL MOTOROLA 



associated with the SPI system. The uses and implications of this logic are discussed in 
greater detail in SECTION 8 SYNCHRONOUS SERIAL PERIPHERAL INTERFACE. 

When the output of NAND gate [3) is one, driver [9) is disabled; thus, the pin is configured 
as a high-impedance input. To enable pin driver [9). both inputs to NAND gate [3) must 
be ones. When the SPI system is disabled, SPE is zero, making the output of NAND gate 
[10) a one. This configuration enables NAND gate [3) so that the DDRD bit from HFF [1) 
can enable or disable driver [9). When the SPI system is enabled as a slave, SPE is one, 
and the master/slave control bit (MSTR) is zero. This configuration causes NAND gate [10) 
to output zero, which disables output driver [9). regardless of the state of the DDRD bit at 
HFF [1). When the SPI system is enabled as a master, SPE is one and MSTR is one. This 
causes NAND gate [10) to outputone, which enables NAND gate [3) to control the direction 
of output buffer [9) based on th~state of the DDRD bit from HFF [1). 

Output driver [9) can be placed in a wired-OR configuration by the DWOM control bit. This 
control bit simultaneously affects all six port D pins. When DWOM is one, the P-channel 
device in the output driver is disabled so the pin cannot be actively driven high. When the 
pin attempts to output logic one, the N-channel device is disabled; thus, the pin appears 
as a high-impedance input. An external pullup is used to passively pull the pin high. The 
data for output driver [9) comes from the output of HFF [8). During a write to port D, the 
WPORTD signal is asserted, which causes data to be latched into HFF [8) from the internal 
data bus. 

During a read of port D, transmission gate [6) is enabled by the RPORTD signal to couple 
data to the internal data bus. The source of data for port D reads depends on the direction 
control for the output driver. If the output of NAND gate [3) is zero, output driver [9) is 
enabled and transmission gate [4) is enabled. In this case, port D reads return the data 
from a point inside the output driver. If the output of NAND gate [3) is one, transmission 
gate [5) is enabled. In this case, reads of port D return the buffered state from the pin 
through inverters [7). 

The slave enable signal to the SPI logic is developed by NOR gate [11). The active-low SS 
signal from the pin is buffered by inverters [7) and drives one input of NOR gate [11). The 
other two inputs to this NOR gate act as enables, and the output of the NOR gate is an 
active-high slave select signal to the main SPllogic. When the SPI system is disabled, SPE 
is zero, disabling NOR gate [11) by forcing its output to zero. When pin output driver [9) 
is enabled by a zero at the output of NAND gate [3). NOR gate [11) is also disabled by the 
output of inverter [12). This disabled condition corresponds to SPI being enabled as a 
master and the DDRD bit associated with the SS pin being set to one. In this case, the PD5 
pin is being used as a general-purpose output and has nothing to do with the SPI system. 
To avoid an erroneous mode fault condition due to a zero at this pin, the SS signal is 
disabled to the SPI logic. 

7.3.6.7 IDEALIZED PORT D TIMING. Figure 7-22 shows the idealized timing for important 
port D control signals. Since this timing diagram does not consider any propagation delays, 
it cannot be used as a substitute for data-sheet timing specifications. This information is 
useful for understanding the basis for data-sheet timing specifications so timing infor­
mation can be extrapolated for bus frequencies other than that used for the data sheet. 
Timing information concerning the SPI system is included in SECTION 8 SYNCHRONOUS 
SERIAL PERIPHERAL INTERFACE. 

MOTOROLA M68HC11 REFERENCE MANUAL 7-35 



• 
Figure 7·22. Idealized Port 0 Timing 

On a port D read, the RPORTD signal enables transmission gates that drive port D data 
onto the internal data bus. After the RPORTD signal is deasserted, data is held stable on 
the self-latching internal data bus. The CPU actually requires this data to be valid for a 
setup before and hold time after the rising edge of the internal PH2 clock. 

Port D writes cause changes to the port D output pins at the falling edge of the internal 
PH2 clock. This edge corresponds to the center of the E-clock high time. 

During a DDRD read, the RDDRD signal enables a transmission gate to couple the state of 
the DDRD bit to the internal data bus. In contrast to the RPORTD signal, RDDRD is active 
while the CPU is actually reading the data from the internal data bus. Although it should 
pose no problems to the user, there is a remote chance that the state of the DDRD bits 
associated with three ofthe SPI pins (MISO, MOSI, and SCK) could change asynchronously 
with respect to a DDRD read due to a mode fault. In such a case, the bits in transition could 
be read incorrectly. 

The timing for writes to DDRD is such that the pin configuration will change at the falling 
edge of the internal PH2 clock. This edge corresponds to the middle of the E-clock high 
time. 

7-36 ' M68HC11 REFERENCE MANUAL MOTOROLA 



7.3.7 Port E 

The eight port E pins are fixed-direction input pins that also serve as AID analog channel 
inputs. Each of the port E pins has this same logic. The following paragraphs describe the 
detailed port E pin logic and the idealized timing of important port E signals. 

7.3.7.1 PORT E PIN LOGIC. Figure 7-23 shows the detailed pin logic for one port E pin. 
When the internal AID converter system samples a port E pin, N-channel device [1] is 
enabled to couple the analog level from the port E pin to the sample and hold capacitance 
in the AID system. The enable stgnal to device [1] is active for the first 12 E-clock cycles 
of a conversion cycle for the associated analog channel. A more detailed discussion of the 
timing of this enable signal is included in SECTION 12 ANALOG-TO-OIGITAL CONVERTER 
SYSTEM. N-channel device [1] and the gate signal driving it are specially designed to 
accurately pass analog levels over the full VREFL to VREFH range, even if VREFH is slightly 
above VDD. 

N- and P-channel devices [2] form an inverter whose input is connected to the pin and 
whose output is connected to the similar inverter stage [3]. Unlike a usual CMOS inverter, 
the N-channel device is connected through another series N-channel device to VSS. This 
extra device acts as a strobe enable for the inverter. Since the port E pins are also used 
as analog inputs, there will be times when the pin is at an intermediate level. Intermediate 

TO 
CAPACITIVE -----, 

OAC 
_ ___ Tl....J [11 

SAMPLES- -
SAMPLE 1 

ATDREAO 

07-00 
PE7-PEO 

RPORTE -------------+---...... --t--.., 

Figure 7-23. Port E Pin Logic 

MOTOROLA M68HC11 REFERENCE MANUAL 7-37 



• 

levels cause normal CMOS inverters to draw excessive power-supply currents because 
both the N- and the P-channel devices can be partially turned on simultaneously, creating 
a low-impedance path between VDD and VSS. For port E pins, this path is interrupted by 
extra N-channel device [4). 

Four N-channel devices [4) and [5) are used to isolate the potential analog levels at the 
port E pins from the digital logic associated with port E. When port E is read digitally, the 
RPORTE signal is asserted to enable these devices. The devices [4) enable inverters [2) 
and [3). The devices [5) connect the outputs of inverters [2) and [3) to the set and reset 
inputs of cross-coupled NAND latch [7). The RPORTE signal is only asserted for one-fourth 
of an E-clock cycle for the cycle where port E is read. The cross-coupled NAND latch holds 
this port E data until later in the read cycle when the CPU actually reads the data. The 
AID read signal (ATDREAD) is asserted during port E reads to enable transmission gate 
[8) to couple the data from output latch [7) to the internal data bus. 

Digital reads of port E are not recommended during the sample portion of an AID conversion· 
cycle when the gate signal to N-channel device [1) is enabled. The concern is that enabling 
inverters [2) and [3) might disturb the analog sample that is occurring. This disturbance is 
caused by very tiny gate-to-source and gate-to-drain capacitances in N- and P-channel 
devices [2) . 

7.3.7.2 IDEALIZED PORT E TIMING. Figure 7-24 shows the idealized timing for important 
port E control signals. This timing diagram, which does not consider any propagation 
delays, cannot be used as a substitute for data-sheet timing specifications. This information 
is useful for understanding the basis for data-sheet timing specifications so timing infor­
mation can be extrapolated for bus frequencies other than that used for the data sheet. 

On a port E read, the RPORTE signal is asserted for one-fourth E-clock cycle to enable the 
pin input buffers and transfer the digital value from the port E pins into cross-coupled 
NAND latches in the pin logic for each port E pin. The ATDREAD signal is also asserted to 
enable transmission gates that couple the outputs of the NAND latches to the internal data 

EXTAL 

~=====r~~ __ +-~I I I 

r"""""'>(1T ~ READ"';'''''''' -rl 
I A= I I I I 
~ VAUDDATAREQUIREDATCPU { > i 
~-:.: ..... ..:.: ..... ..:.: .. ..w..:.:o:o:-" ...... ..:o:o:>w.o: ..... #.o:.:o:.-.«o: .. ..:o;.x.:«o:o:«o:«o:_o:o:o:.:.:o:o:.:.:o:.-.:.:.!.: .... ~ ... ..:0:.:«.:.:0:0:« .. ..:0:0:«0:.:.:.:.:0:0:0: .. ".:.:0:.:.:.:.:.:.:.:.:«.:.:0:0:-:.:«,., ... :-:0:,.:.:.,_0:0:«.:.:.:o:o:o:~.:o:.:o:o: ..... :.:.:o:o:o:.xo:o:.:o:.:~o:o:o:.:o:.:.:o:o:.:.:o:.:o:0:.:0:0:0:1 

Figure 7-24. Idealized Port E Timing 

7-38 M68HC11 REFERENCE MANUAL MOTOROLA 



bus. Since the CPU does not actually use the data from the NAND latches until after the 
RPORTE signal is disabled, the latches are actually acting as synchronizers for port E data. 

7.4 HANDSHAKE I/O SUBSYSTEM 

The handshake 1/0 subsystem involves ports Band C, STRA input, STRB output, and the 
PIOC register. The following paragraphs explains the strobe and handshake protocols and 
the detailed operation of the PIOC register. 

There are three primary modes of operation for the handshake 1/0 subsystem. The first 
(default) mode of operation is the simple strobe mode, which uses port B as a simple 
strobe output port and port C as a simple latching input port. The second mode of operation 
is a full-input handshake; the third mode is a full-output handshake. In the full-handshake 
modes of operation, port B is not involved; therefore, it defaults to being a general-purpose 
output port. 

If the application does not require handshake functions, these functions can generally be 
ignored. Ports Band C can be used for simple general-purpose 1/0; in fact, the STRA and 
STRB pins can even be used for limited nonhandshake functions. When handshake func­
tions are being used, it is usually possible to use any port C pins, which are not needed 
for handshake, as general-purpose 1/0 pins without interfering with the handshake functions • 
of the other port C pins. The one exception to this possibility is that while full-output 
handshake is specified, port C pins cannot usually function as general-purpose input pins. 
Examples of mixed use of port C pins is presented in 7.4.5 Nonhandshake Uses of STRA 
and STRB Pins. 

7.4.1 Simple Strobe Mode 

The simple strobe mode for the handshake 1/0 subsystem is selected by HNDS equal to 
zero in the PIOC register. At reset, HNDS is forced to zero, which is the default mode of 
operation for the handshake 1/0 subsystem. In this mode, the OIN and PLS control bits in 
PIOC have no meaning or effect. 

In simple strobe mode, port B is used as a strobe output port in conjunction with the STRB 
output pin. Port C is simultaneously used as a latching input port in conjunction with the 
STRA input pin. The strobe output function at port B is independent of the latching input 
function at port C. 

Figure 7-25 shows the idealized timing for simple strobe mode operations in the 
MC68HC11A8. The timing for the MC68HC24 is slightly different because the MC68HC24 
does not have access to the internal PH2 clock of the MC68HC11A8. Detailed descriptions 
of the strobe A and strobe B pins are presented in 7.3.3.2 SPECIAL CONSIDERATIONS FOR 
STRB ON MC68HC24 PRU and 7.3.5.2 SPECIAL CONSIDERATIONS FOR STRA ON MC68HC24 
PRU. 

7.4.1.1 PORT B STROBE OUTPUT. In response to a write to PORTB, data is changed at 
port B, and then a two E-cycle pulse is generated at the STRB pin. Although the INVB 

MOTOROLA M68HC11 REFERENCE MANUAL 7-39 



II 

PH2 (INTERNAL) 

E 

,{··STROBED OUTPUT •........... 

PORTB 

STROBE B 

LATCHED INPUT ...................................................................... . 

STROBE A 
Ir-__ T-------------------------

VI 1 771 
PORTe -------~~>----ilf----------

STAF I 

Figure 7-25. Idealized Timing for Simple Strobe Operations 

control bit in PIOC allows a choice of polarity for strobe B pulses, Figure 7-25 only shows 
the INVB equals one case, which selects active-high strobe B pulses. 

7.4.1.2 PORT C SIMPLE LATCHING INPUT. Data at port C is required to be valid for a 
short setup time before and a short hold time after the selected edge on the strobe A pin. 
Since the edge on strobe A is asynchronous, it need not have any special relationship with 
the E clock. The internal STAF bit, which indicates that port C data has been latched, must 
be synchronized with the internal clocks to avoid setting the flag in the portion of a cycle 
where it could be read. This factor implies there may be a delay between when the actual 
port C data is latched and when the MCU becomes aware of it. Not counting internal 
propagation delays, the MC68HC11A8 would have a delay between zero nanoseconds and 
one E-clock period. If the relationship between the strobe A edges and the E clock is known, 
the user can predict the delay between port C data latching and setting STAF by a careful 
study of the strobe A pin description. 

7.4.2 Full-Input Handshake Mode 

Full-input handshake mode is selected when HNDS is one and OIN is zero. In this mode, 
the strobe B output acts as a ready signal to an external system. The external system 
should not attempt to strobe data into port C until the strobe B signal has been asserted, 
indicating a ready condition. The strobe A input is an edge-sensitive latch command, 
allowing the external system to asynchronously latch information into port C. 

When a ready condition is recognized, the external device places data on the port D inputs, 
then pulses the strobe A input. The active edge on strobe A latches data into the PORTCL 

7-40 M68HC11 REFERENCE MANUAL MOTOROLA 



register, sets STAF (optionally causing an interrupt). and deasserts strobe B. Deassertion 
of strobe B automatically inhibits the external system from strobing any new data into port 
C. Reading the latched data from PORTCL (independent of clearing STAF) causes strobe 
B to be asserted, indicating new data may now be strobed into port C. 

Control bits allow flexibility to adapt to the requirements of a particular application. The 
INVB control bit selects the polarity of the strobe B signals. The EGA determines whether 
rising or falling edges will be the active edges for the strobe A input. The PLS bit determines 
whether strobe B will operate in pulsed mode or interlocked mode. In the interlocked mode, 
strobe B is asserted when the PORTCL register is read and is deasserted when an active 
edge is detected at the strobe A input. In the pulsed mode, strobe B is asserted when the 
PORTCL register is read but only remains asserted for two E-clock cycles. 

Figure 7-26 illustrates the full-input handshake protocol. Separate waveforms are included 
to clarify the pulsed versus interlocked modes of strobe B. Although the polarity of strobe 
B and the active edge for strobe A can be selected, the figure only shows the case where 
INVB and EGA are ones. This configuration specifies strobe A to be sensitive to rising 
edges and the active level on strobe B to be high. The timing shown in Figure 7-26 is the 
idealized timing for the MC68HC11A8. The idealized timing for the MC68HC24 port re­
placement unit has small differences, which do not concern most users. 

7.4.3 Full-Output Handshake Mode 

Full-output handshake mode is selected when HNDS and OIN are ones. In this mode, port 
C is used to output data to some external system. The strobe B output signal indicates 
that port C data is ready for the external system. The strobe A input is pulsed by the external 
system to acknowledge that it has accepted the data on port C. In the three-state variation 
of output handshake, strobe A aiso acts like the output enable of a 74HC244 buffer. 

PH2 (INTERNAL) 

E I I 
ST::::: ---+~-cS...I: )-/_1+1 ____ j} ........ , .... ,-+! -+-------+-----

r" (INTERLOCKED) -----' - .... 1 J 1 

ST~,~~.:,,~,.. (PULSED) I I I 

(A~~~D~~;;;; -----~I ~. W 
PIOCWITHSTAF=l) 

Figure 7-26. Idealized Timing for Full-Input Handshake 

MOTOROLA M68HC11 REFERENCE MANUAL 7-41 



• 

Figure 7-27 illustrates the full-output handshake protocol. This figure shows strobe B wave­
forms for both interlocked and pulsed modes. Waveforms are also provided to show the 
three-state variation of the output-handshake protocol. Although the polarities for strobes 
A and B are software programmable, only the case in which EGA and INVB are ones is 
shown. This case specifies strobe B is active high, strobe A responds to rising edges, and 
the active level on strobe A is low for the three-state variation of output handshake. 

PH2 (INTERNAL) , I ' 

I I 

eoo,;~:: :::~: =--i=i·.~p~m~t~t~~! • ....,mt·~,-='-'iNI[I:,,;,;w=p~O~R":':'T=C~D=A":':'T=A=====i==~~--I--+-! --'--+-----

::····(DDRBITS=O) I ~ 

ST;~B~N;ERLOCKED) ______ :------"""'!--.\ II. I I 
......... (PULSED) ~ 

, ~ VI vr--+1--STRCBE A 

STAF I ----------------+--------\,------~, 

Figure 1-21. Idealized Timing for Full-Output Handshake 

1.4.3.1 NORMAL OUTPUT HANDSHAKE. In an output-handshake transaction, data is out­
put to port C pins by writing to the PORTCL register, which automatically causes strobe B 
to be asserted. The external system recognizes this strobe B signal as a ready indication. 
After accepting the data from port C, the external system pulses the strobe A input to 
acknowledge the receipt of data. The active edge on strobe A causes strobe B to be 
deasserted and STAF to be set. STAF signals that the MCU can begin the next transaction 
by writing the next byte of data to PORTCL. 

1.4.3.2 THREE-STATE VARIATION OF OUTPUT HANDSHAKE. The three-state variation 
of output handshake can be thought of as if a 74HC244 buffer had been placed in series 
with the port C outputs with its output enable connected to the strobe A signal. The 
transaction sequence is identical to the normal output handshake protocol previously 
described. 

Port C pins, which are to act as three-state outputs, have their corresponding DDRC control 
bits cleared to zero. As long as the strobe A input is at its inactive level, all port C pins 
obey their corresponding DDRC specification. When strobe A goes to its active level, all 
port C pins act as driven outputs, regardless of their corresponding DDRC specification. 
The active level is automatically specified when EGA is selected. If EGA is zero, falling 

7-42 M68HC11 REFERENCE MANUAL MOTOROLA 



edges are selected and the active level is high. If EGA is one, rising edges are selected and 
the active level is low. The relationship between the active edge and the active level at 
strobe A was chosen so that the active edge will correspond to the trailing edge of a port 
C output enable pulse to strobe A. 

7.4.4 Parallel 1/0 Control Register (PIOC) 

The PIOC register is used to configure and control the handshake I/O subsystem in the 
MC68HC11A8. The following register and paragraphs describe each ofthe control or status 
bits in greater detail. 

STAF STAI 1 CWOM 1 HNOS 

RESET: 

STAF - Strobe A Flag 

OIN I. PlS EGA 

u 

INVB Ploe 
$1002 

This status flag is a key element of the handshake I/O subsystem. Independent of the 
strobe or handshake mode, STAF is always set as a result of a selected active edge at 
the STRA pin. The edge at STRA, which is asynchronous to the MCU E-clock, causes 
data to be asynchronously latched into the PORTCL register. The STAF bit is synchro­
nized to the internal PH2 clock. Provided the asynchronous edge occurs at least a setup 
time before the rising edge of PH2, STAF will become set at that PH2 rising edge. If 
this setup time is not met, then STAF would not be set until the next PH2. The rising 
edge of PH2 corresponds to the center of the E-clock low time. The active edge at STRA 
is software selectable by the EGA bit in the PIOC register. 

The STAF bit is cleared by a two-step, automatic clearing sequence. The first step arms 
the clearing mechanism; the second step clears STAF to zero. To arm the clearing 
mechanism, software reads the PIOC register while the STAF bit is set to one. The 
second step depends upon the strobe or handshake mode in effect. In simple strobe 
mode (HNDS = 0), the second step of the clearing sequence is to read the PORTCL 
register. In full-input handshake mode (HNDS=1 and OIN=O), the second step ofthe 
clearing sequence is to read the PORTCL register. In full"output handshake mode 
(HNDS = 1 and OIN = 1), the second step of the clearing sequence is to write to the 
PORTCL register. The handshake mode can be changed between the arming and clear­
ing steps of this sequence. If the mode is changed, the action required for the second 
step of the clearing sequence is governed by the state of HNDS and OIN at the time 
the second step is performed. Although any amount of delay is permitted between 
the two steps of this clearing sequence, it is best to keep the steps as close together 
as possible. The arming mechanism is automatically cleared whenever the selected 
edge is detected at the STRA pin. If an edge is recognized after the arming step but 
before the clearing step, the internal arming signal will be deasserted, and the clearing 
step will not clear STAF. 

STAI- Strobe A Interrupt Enable 
This control bit determines whether STAF will cause interrupts. When STAI is one, a 
hardware interrupt request is generated whenever the STAF bit is set. When STAI is 
zero, STAF interrupts are inhibited. 

MOTOROLA M68HC11 REFERENCE MANUAL 7-43 



• 

CWOM - Port C Wired-OR Mode 
This bit is used to configure all port C outputs for wired-OR operation. When CWOM 
is zero, port C outputs operate as active push-pull drivers. When CWOM is one, the 
P-type pullup devices are disabled, causing port C outputs to act as open-drain drivers. 
The CWOM bit simultaneously affects all eight port C bits. The P-channel device forms 
a P-N junction between the VDD supply and the output pin so that the pin cannot be 
pulled more than a diode drop above the VDD supply. For this reason, the wired-OR 
mode cannot be used for level conversion the way open-collector TTL devices are 
sometimes used. 

In a TTL system, a brief contention between two push-pull drivers, though not good 
practice, generally has no serious consequences. In a CMOS system, a brief contention 
between push-pull drivers can induce destructive latchup. In cases where two CMOS 
output drivers could be in contention, they should be configured for wired-OR oper­
ation. If there is a brief contention between the time one driver is turned on and the 
other is turned off, there will be no danger of latchup damage. 

HNDS - Handshake/Simple Strobe Mode Select 
When HNDS is zero, the simple strobe mode is selected. In the simple strobe mode, 
the STRB pin is pulsed for two E-clock cycles after each write to port B. Also, port C 
data is asynchronously latched into the PORTCL register each time the selected edge 
is detected at the STRA pin. When HNDS is set to one, either full-input or full-output 
handshake mode is selected. All full-handshake modes use port C, the STRA strobe 
input pin, and the STRB handshake output pin. Since the handshake I/O subsystem 
does not use port B when a full-handshake mode is selected, port B defaults to being 
a general-purpose output port. 

OIN - Output/Input Handshake Select 
This bit has no effect unless HNDS is one. When HNDS is one, OIN further qualifies 
the handshake mode. When OIN is one, full-output handshake is selected. When OIN 
is zero, full-input handshake is selected. 

PLS - Strobe B Pulse Mode Select 
This control bit determines whether the STRB pin is configured for pusled or interlocked 
operation. In interlocked mode, once STRB is asserted, it will remain active until an 
acknowledge edge is detected at the STRA pin. The interlocked mode is selected when 
PLS is zero. Interlocked mode cannot be specified unless HNDS is logic one. In pulsed 
mode, STRB is deasserted exactly two E-clock cycles after it is asserted. When the 
simple strobe mode is selected (HNDS = 0), the pulsed mode is assumed, even if PLS 
is set to one. Additional information about strobe B can be found in 7.3.3 RIW (STRB) 
Pin. 

EGA - Edge Select for Strobe A 

7-44 

This control bit selects which polarity edge will be recognized at the STRA input pin. 
When EGA is zero, falling edges are detected and rising edges are ignored. When EGA 
is one, only rising edges are recognized at the STRA pin. When the three-state variation 
of the full-output handshake mode is being used, EGA also specifies the level on STRA 
that will cause port C output buffers to be enabled. The output enable for port C pins 
is an active-high internal signal, which is the exclusive OR of EGA with the level at the 
STRA pin. Thus, the trailing edge of the enable signal on the STRA pin will be the 
selected active edge used by the handshake sequence. 

M68HC11 REFERENCE MANUAL MOTOROLA 



INVB - Invert Strobe B 
The STRB signal is developed in an SIR flip-flop in the STRB pin logic. The INVB control 
bit selects either the Q or Q output of this flip-flop to be coupled out of the STRB pin. 
If INVB is zero, the Q of this latch is coupled out of the STRB pin, and STRB signals 
are active low. If INVB is one, the Q of this latch is used, and STRB signals are active 
high. Changes to INVB do not affect the state of the internal SIR flip-flop. 

7.4.5 Nonhandshake Uses of STRA and STRB Pins 

When not being used for handshake functions, the STRA pin can be used as a general­
purpose edge-detection interrupt source, which is fairly common use for the STRA pin. 
The STAF is set each time a selected edge is recognized. The STAI control bit allows strobe 
A edges to force a maskable interrupt to the IRQ vector. The EGA control bit allows the 
user to select either rising edges or falling edges as the triggering edge for the strobe A 
input. 

Though not a very common practice, the STRB pin can be used as an extra static output. 
When full-input handshake mode is selected, STRB remains at its inactive level until the 
PORTCL register is read. If PORTCL is never read, STRB stays at its inactive level indefinitely. 
The INVB control bit allows the user to switch the inactive level from one to zero by writing 
to the PIOC register. In this scheme, it is important never to read the PORTCL register • 
because this would cause STRB to automatically go to its active level. Other similar schemes 
may be developed to meet specific application needs. 

Usually when the STRA and STRB pins are being used for non handshake functions, the 
handshake I/O subsystem would be configured for full-input handshake mode because the 
other two modes result in interactions between the strobe pins and the port Band C pins. 
If simple strobe mode is selected, any write to port B will generate a pulse on the STRB 
pin. If full-output handshake is selected, each time the STRA pin goes to its selected active 
level, all port C pins are forced to be outputs (even if the DDRC bits indicate they should 
be inputs). These interactions are a normal consequence of the handshake I/O functions 
but could interfere with non handshake use of the STRA and STRB pins. For this reason, 
users are encouraged to study the operation of the handshake I/O subsystem carefully if 
they plan to use STRA and STRB for nonhandshake functions. 

MOTOROLA M68HC11 REFERENCE MANUAL 7-45 



• 



SECTION 8 
SYNCHRONOUS SERIAL PERIPHERAL INTERFACE 

The serial peripheral interface (SPI) is one of two independent serial communications 
subsystems included on the MC68HCllA8. As the name implies, the SPI is primarily used 
to allow the microcontroller unit (MCU) to communicate with peripheral devices. The SPI 
is also capable of interprocessor communications in a multiple-master system. Peripheral 
devices are as simple as an ordinary transistor-transistor logic (TTL) shift register or as 
complex as a complete subsystem, such as a liquid crystal diode (LCD) display driver or 
an analog-to-digital (A/D) converter subsystem. The SPI system is flexible enough to in­
terface directly with numerous standard product peripherals from several manufacturers. 
The system can be configured as a master or a slave device. Data rates as high as 1 Mbit/ 
sec are accommodated when the system is configured as a master; rates as high as 2 Mbits/ 
sec are accommodated when the system is operated as a slave. 

Clock control logic allows a selection of clock polarity and a choice of two, fundamentally 
different clocking protocols to accommodate most available synchronous serial peripheral 
devices. When the SPI is configured as a master, software selects one of four different bit 
rates for the serial clock. 

Error-detection logic is included to support interprocessor communications. A write­
collision detector indicates when an attempt is made to write data to the serial shift register 
while a transfer is in progress. A multiple-master mode-fault detector automatically disables 
SPI output drivers if more than one MCU simultaneously attempts to become bus master. 

The I/O pin control logic on the MC68HCllA8 is more flexible than that of other Motorola 
MCUs. This added I/O pin control allows the MC68HCllA8 to implement systems with a 
single, bidirectional data line or other unusual synchronous serial configurations. 

8.1 SPI TRANSFER FORMATS 

During an SPI transfer, data is simultaneously transmitted (shifted out serially) and received 
(shifted in serially). A serial clock line synchronizes shifting and sampling of the information 
on the two serial data lines. A slave select line allows individual selection of a slave SPI 
device; slave devices that are not selected do not interfere with SPI bus activities. On a 
master SPI device, the slave select line can optionally be used to indicate a multiple-master 
bus contention. 

8.1.1 SPI Clock Phase and Polarity Controls 

Software can select any of four combinations of serial clock (SCK) phase and polarity using 
two bits in the SPI control register (SPCR). The clock polarity is specified by the CPOL 

MOTOROLA M68HC11 REFERENCE MANUAL 8-1 

• 



• 

control bit, which selects an active high or active low clock and has no significant effect 
on the transfer format. The clock phase (CPHA) control bit selects one of two fundamentally 
different transfer formats. The clock phase and polarity should be identical for the master 
SPI device and the communicating slave device. In some cases, the phase and polarity are 
changed between transfers to allow a master device to communicate with peripheral slaves 
having different requirements. The flexibility of the SPI system on the MC68HC11A8 allows 
direct interface to almost any existing synchronous serial peripheral. 

8.1.2 CPHA Equals Zero Transfer Format 

Figure 8-1 is a timing diagram of an SPI transfer where CPHA is zero. Two waveforms are 
shown for SCK: one for CPOL equals zero and another for CPOL equals one. The diagram 
may be interpreted as a master or slave timing diagram since the SCK, master in/save out 
(MISO)' and master out/slave in (MOSI) pins are directly connected between the master 
and the slave. The MISO signal is the output from the slave, and the MOSI signal is the 
output from the master. The SS line is the slave select input to the slave; the SS pin of 
the master is not shown but is assumed to be inactive. The SS pin of the master must be 
high or must be reconfigured as a general-purpose output not affecting the SPI. This timing 
diagra'm functionally depicts how a transfer takes place; it should not be used as a re­
placement for data-sheet parametric information. 

SCK CYCLE # 
(FOR REFERENCE) 

SCK (CPOL=O) __ -+~ 

SCK (CPOL= 1) 

MOSI ----~,r_~-{,~~~r-L~lr_~-{~~~r-L-lr_~~.r_~~,------­

(FROM MASTER) 

MISO 

~~ I I 
~(TOS~VE) ~~I __ ~~-+ __ ~~-+ __ ~~-+ __ +-~-+ __ +-~-+ __ +-~~~ 

*Not defined but normally MSB 01 character just received 

Figure 8-1. CPHA Equals Zero SPI Transfer Format 

8.1.3 CPHA Equals One Transfer Format 

Figure 8-2 is a timing diagram of an SPI transfer where CPHA is one. Two waveforms are 
shown for SCK: one for CPOL equals zero and another for CPOL equals one. The diagram 
may be interpreted as a master or slave timing diagram since the SCK, MISO, and MOSI 
pins are directly connected between the master and the slave. The MISO signal is the 
output from the slave, and the MOSI signal is the output from the master. The SS line is 
the slave select input to the slave; the SS pin of the master is not shown but is assumed 

8-2 M68HC11 REFERENCE MANUAL MOTOROLA 



SCK CYCLE # 
(FOR REFERENCE) 

SCK (CPOL=O) __ ..J 

MOSt ----~,r_~_{,~~'r~~'r_~_{,~~'r~--\r_~~,~~~------­
(FROM MASTER) 

MtSO ---.1 , 

(FROM SLAVEI ---- I 

~(TOSLAVE) ~+! __ +--+ __ ~+--+ __ ~+--+ __ ~+--+ __ ~+--+ __ ~+--+ __ -L~ 
'Not defined but normally LSB of previously transmitled character. 

Figure 8-2. CPHA Equals One SPI Transfer Format 

to be inactive. The SS pin of the master must be high or must be reconfigured as a general­
purpose output not affecting the SPI. This timing diagram functionally illustrates how a 
transfer takes place; it should not be used as a replacement for data-sheet parametric 
information. 

When CPHA equals zero, the SS line must be deasserted and reasserted between each 
successive serial byte. Also, if the slave writes data to the SPI data register (SPDR) while 
SS is active low, a write-collision error results. 

When CPHA equals one, the SS line may remain active low between successive transfers 
(can be tied low at all times). This format is sometimes preferred in systems having a 
single, fixed master and a single slave driving the MISO data line. 

8.2 SPI BLOCK DIAGRAM 

Figure 8-3 is a block diagram of the SPI subsystem. When an SPI transfer occurs, an 8-bit 
character is shifted out one data pin while a different 8-bit character is simultaneously 
shifted in a second data pin. Another way to view this transfer is that an 8-bit shift register 
in the master and another 8-bit shift register in the slave are connected as a circular 16-
bit shift register. When a transfer occurs, this distributed shift register is shifted eight bit 
positions; thus, the characters in the master and slave are effectively exchanged. 

The central element in the SPI system is the block containing the shift register and the 
read data buffer. The system is single buffered in the transmit direction and double buffered 
in the receive direction. This fact means new data for transmission cannot be written to 
the shifter until the previous transaction is complete; however, received data is transferred 
into a parallel read data buffer so the shifter is free to accept a second serial character. As 
long as the first character is read out of the read data buffer before the next serial character 
is ready to be transferred, no overrun condition will occur. A single MCU register address 
is used for reading data from the read data buffer and for writing data to the shifter. 

MOTOROLA M68HC11 REFERENCE MANUAL 8-3 

• 



II 

PH2 

(INT~NAL) . 

MSB LSB __ K DIVIDER I 
'-- "--I 8-BIT SHIFT REGISTER +2 +4 +16 +32 

I SPI CLOCK (MASTER) 
SELECT I 

~ 0 a: a: 
"- "-en en 

SPI CONTROL 

---' "-
"- 0 0 

95 ~ 0 
::0 

I I I I I 

SPI STATUS REGISTER 

--" 

SPIINTERRUPT 
REQUEST 

1 READ DATA BUFFER 

MSTR 

SPE 

INTERNAL 
DATA BUS 

tCLOCK 

CLOCK 
LOGIC 

I 
::0 a: -< ---' ~ 0 

~ UJ ~ tn :r: 0 a: a: 
"- "- "- "- "- "-en en 0::;; 00 en en 

1 SPI CONTROL REGISTER 

I 
1 

Figure 8-3. SPI System Block Diagram 

8.3 SPI PIN SIGNALS 

S -® M PD2 

M ----@ S S.1 PD3 
l? 
0 
---' 
---' 
0 a: 
~ z 
8 
z 
c:: 

S -® M PD4 

-00 PD5 

::0 a: 
~ ~d~ en 
::0 eno 

There are four I/O pin signals associated with SPI transfers: the SCK, the MISO data line, 
the MOSI data line, and the active low SS pin. When the SPI system is disabled, the four 
pins are configured for general-purpose I/O, and the primary direction of data is controlled 
by a data direction control bit corresponding to each I/O pin. When the SPI system is 
enabled, the data direction control bits still influence the direction of data at the pins. 
Detailed logic for these pins is included in SECTION 7 PARALLEL INPUT/OUTPUT. The 
following rules will answer the most common questions. When the SPI system is on and 

8-4 M68HC11 REFERENCE MANUAL MOTOROLA 



expects a pin to be an input, the pin will be configured as an input regardless of the state 
of its data direction control bit. When the SPI system is on and expects a pin to be an 
output, the pin will be configured as an output only if its data direction control bit is set 
to one. When the SPI is configured as a master, the PD5/SS pin is a special case. 

NOTE 

SPI transfers will not occur unless the outputs are enabled by setting the corre­
sponding DDRD bits. SPI outputs are disabled (high impedance) unless their cor­
responding DDRD bits are set to one. SPI inputs are configured as high-impedance 
inputs even if their corresponding DDRD bits are set to one. 

The SCK pin is an output when the SPI is configured as a master and an input when the 
SPI is configured as a slave. When the SPI is configured as a master, the SCK signal is 
derived from the internal MCU bus clock. When the master initiates a transfer, eight clock 
cycles are automatically generated on the SCK pin. When the SPI is configured as a slave, 
the SCK pin is an input, and the clock signal from the master synchronizes the data transfer 
between the master and slave devices. Slave devices ignore the SCK signal unless the 
slave select pin is active low. In both the master and slave SPI devices, data is shifted on 
one edge of the SCK signal and is sampled on the opposite edge where data is stable. 
Edge polarity is determined by the SPI transfer protocol. 

The MISO and MOSI data pins are used for transmitting and receiving serial data. When 
the SPI is configured as a master, MISO is the master data input line, and MOSI is the 
master data output line. When the SPI is configured as a slave, these pins reverse roles. II 
In a multiple-master system, all SCK pins are tied together, all MOSI pins are tied together, : 
and all MISO pins are tied together. A single SPI device is configured as a master; all other 
SPI devices on the SPI bus are configured as slaves. The single master drives data out its 
SCK and MOSI pins to the SCK and MOSI pins of the slaves. One selected slave device 
optionally drives data out its MISO pin to the MISO master pin. The automatic control of 
the direction of these pins makes reconfiguration through external logic unnecessary when 
a new device becomes the master. 

The SS pin behaves differently on master and slave devices. On a slave device, this pin is 
used to enable the SPI slave for a transfer. If the SS pin of a slave is inactive (high). the 
device ignores SCK clocks and keeps the MISO output pin in the high-impedance state. 
On a master device, the SS pin can optionally serve as an error-detection input for the SPI 
or as a general-purpose output not affecting the SPI. The choice is based on the corre­
sponding data direction control bit (DDRD5). When DDRD5 is logic one and the SPI is 
configured as a master, the PD5/SS pin acts as a general-purpose output that is independent 
of SPI activities. When the DDRD5 bit is logic zero and the SPI system is configured as a 
master, the SS pin acts as an error-detection input, which should remain high. If the SS 
pin goes low while the SPI is a master and is using the SS pin as an error-detection input, 
it indicates that some other device on the SPI bus is attempting to be a master. This attempt 
causes the master device sensing the error to immediately exit the SPI bus to avoid po­
tentially damaging driver contentions. This detection is called a mode fault and is discussed 
in 8.5.1 SPI Mode-Fault Error. 

The port D liD pins, including the four SPI pins, can be configured to behave as open-drain 
drivers. The port D wired-OR mode (DWOM) control bit is used to enable this option. An 

MOTOROLA M68l-iC11 REFERENCE MANUAL 8-5 



• 

external pullup resistor is required on each port D output pin while this option is selected. 
In multiple-master systems, this option provides extra protection against CMOS latchup 
because, even if more than one SPI device tries to simultaneously drive the same bus line, 
there will be no destructive contention. Other unusual SPI system configurations also 
benefit from this option (e.g., when MISO and MOSI are tied together to form a single, 
bidirectional data line). 

8.4 SPI REGISTERS 

The SPI control register (SPCRl, SPI status register (SPSRl, and SPDR are software­
accessible registers used to configure and operate the SPI system. Because the port D data 
direction control register (DDRD) influences SPI activities, it will be discussed briefly. De­
tailed logic diagrams of the port D pins can be found in SECTION 7 INPUT/OUTPUT. 

8.4.1 Port D Data Direction Control Register (DDRD) 

This register, which may be read or written at any time, is used to control the primary 
direction of port D pins. Bits 5, 4, 3, and 2 of port D are used by the SPI system when the 
SPI enable (SPE) control bit is one. The serial communications interface (SCI) system uses 
the other two bits of port D when the SCI receiver and transmitter are enabled. This 
description of DDRD is only intended to cover material related to the SPI system . 

3 2 

DDRD5 DDRD41 DDRD31 DDRD21 DDRDl DDRDO $1009 

RESET: 0 0 0 
REFERENCE: ss SCK MOSI MISO TxD RxD 

DDRD5 - Data Direction Control for Port D Bit 5 (SS) 

8-6 

When the SPI system is enabled as a slave (SPE = 1; MSTR = 0), the PD5/SS pin is the 
slave select input, regardless of the value of DDRD5. 

When the SPI system is enabled as a master (SPE = 1; MSTR = 1), the function of the 
PD5/SS pin depends on the value in DDRD5. 

0= The SS pin is used as an input to detect mode-fault errors. A low on this pin 
indicates that some other device in a multiple-master system has become a 
master and is trying to select this MCU as a slave. To prevent harmful conten­
tions between output drivers, a mode fault is generated, which causes the 
device sensing the fault to immediately change all of its SPI pins to high imped­
ance. Additional information on mode faults is given in 8.5.1 SPI Mode-Fault 
Error. 

1 = The PD5/SS pin acts as a general-purpose output not affected by the SPI system. 
Because the mode-fault detection logic in the SPI is disabled, changing this 
PD5 output pinto zero does not affect the SPI system. 

M68HC11 REFERENCE MANUAL MOTOROLA 



DDRD4 - Data Direction Control for Port D Bit 4 (SCK) 
When the SPI system is enabled as a slave, the PD4/SCK pin acts as the SPI serial clock 
input, regardless of the state of DDRD4. 

When the SPI system is enabled as a master, the DDRD4 bit must be set to one to 
enable the SCK output. 

DDRD3 - Data Direction Control for Port D Bit 3 (MOSI) 
When the SPI system is enabled as a slave, the PD3/MOSI pin acts as the slave serial 
data input, regardless of the state of DDRD3. 

When the SPI system is enabled as a master, the DDRD3 bit must be set to one to 
enable the master serial data output. If a master device wants to initiate an SPI transfer 
to receive a byte of data from a slave without transmitting a byte, it might purposely 
leave the MOSI output disabled. SPI systems that tie MOSI and MISO together to form 
a single bidirectional data line also need to selectively disable the MOSI output. 

DDRD2 - Data Direction Control for Port D Bit 2 (MISO) 
When the SPlsystem is enabled as a slave, the DDRD2 bit must be set to one to enable 
the slave serial data output. A master SPI device can simultaneously broadcast a 
message to several slaves as long as no more than one of the slaves tries to drive the 
MISO line. SPI systems that tie MOSI and MISO together to form a single bidirectional 
data line also need to selectively disable the MISO output. 

When the SPI system is enabled as a master, the PD2/MISO pin acts as the master 
serial data input, regardless of the state of DDRD2. 

8.4.2 SPI Control Register (SPCRI 

This register, which may be read or written at any time, is used to configure the SPI system. 
The DDRD register must also be properly configured before SPI transfers can occur. 

SPIE SPE I DWDM I MSTR CPDL CPHA SPRl SPRO $1028 

RESET: u u 

SPIE - SPI Interrupt Enable 
0= SPI interrupts are disabled. Polling is used to sense the SPIF and MODF flags. 
1 = SPI interrupt is requested if SPIF or MODF set (provided I bit in condition code 

register (CCR) is zero). 

SPE - SPI System Enable 
0= SPI system is off. 
1 = SPI system is on. 

MOTOROLA M68HC11 REFERENCE MANUAL 8-7 

• 



II 

DWOM - Port D Wired-OR Mode Select 
0= Port D outputs are push-pull. 
1 = P-channel pullups on all six port D output drivers are disabled so port D outputs 

act as open-drain drivers. 

MSTR - Master/Slave Mode Select 
0= SPI is configured as a slave. 
1 = SPI is configured as a master. 

CPOL - Clock Polarity Select 
o = Active high clocks selected; SCK idles low. 
1 =Active low clocks selected; SCK idles high. 

CPHA - Clock Phase Select 
This control bit selects one of two, fundamentally different transfer formats (see 8.1 
SPI TRANSFER FORMATS). 

SPR1,SPRO - SPI Bit Rate Select 
The following table shows the relationship between the SPR1 and SPRO control bits 
and the bit rate for transfers when the SPI is operating as a master. When the SPI is 
operating as a slave, the serial clock is input from the master; therefore, the SPR1 and 
SPRO control bits have no meaning. 

SPR1 SPRO E Clock 
Divided By 

0 0 2 

0 1 4 

1 0 16 

1 1 32 

8.4.3 SPI Status Register (SPSR) 

This read-only register contains status flags indicating the completion of an SPI transfer 
and the occurrence of certain SPI system errors. The flags are automatically set by the 
occurrence of the corresponding SPI events; the flags are cleared by automatic software 
sequences. 

SPIF weOl MOOF $1029 

RESET: 

SPIF - SPI Transfer Complete Flag 

8-8 

This flag is automatically set to one at the end of an SPI transfer. SPIFis automatically 
cleared by reading the SPSR with SPIF set, followed by an access of the SPDR. The 

M68HC11 REFERENCE MANUAL MOTOROLA 



definition of end of a transfer varies with master versus slave and the transfer format 
specified by CPHA. This subject is discussed in 8.6 BEGINNING AND ENDING SPI 
TRANSFERS. 

WCOl - Write Collision Error Flag 
This flag is automatically set if the SPDR is written while a transfer is in progress. 
WCOl is automatically cleared by reading the SPSR with WCOl set, followed by an 
access of the SPDR. The details of when a transfer technically begins and ends depend 
on the configuration of the SPI system, which is discussed in 8.6 BEGINNING AND 
ENDING SPI TRANSFERS. 

Bit 5 - Not implemented; always reads zero. 

MODF - Mode-Fault Error Flag 
This flag is set if the SS signal goes to active low while the SPI is configured as a 
master (MSTR = 1). MODF is automatically cleared by reading the SPSR with MODF 
set, followed by a write to the SPCR. Because the mode-fault mechanism is intended 
to prevent damage due to conflicts between output drivers, it takes effect immediately, 
regardless of the SPI system configuration at the time of the fault. The MSTR control 
bit in the SPCR and all four DDRD control bits associated with the SPI are cleared, and 
an interrupt is generated subject to masking by the SPIE control bit and the I bit in the 
CCA. Mode-fault errors are discussed in greater detail in the following paragraphs. 

Bits 3-0 - Not implemented; always read zero. 

8.5 SPI SYSTEM ERRORS 

Two system errors can be detected by the SPI system in the MC68HC11A8. The first type 
error arises in a multiple-master system when more than one SPI device simultaneously 
tries to be a master. This error is called a mode fault. The second type error, a write collision, 
indicates that an attempt has been made to write data to the SPDR while a transfer was 
in progress. 

8.5.1 SPI Mode-Fault Error 

When the SPI system is configured as a master and the SS input line goes to active low, 
a mode-fault error has occurred. Only an SPI master can experience a mode-fault error, 
caused when a second SPI device becomes a master and selects this device as if it were 
a slave. In cases where more than one device is concurrently configured as a master, there 
is a chance of contention between two pin drivers. For push-pull CMOS drivers, this con­
tention can cause catastrophic latchup. When this type error is detected, the following 
actions are taken immediately: 

1. The DDRD bits corresponding to the four SPI-related I/O pins are forced to zero to 
disable all SPI output drivers. 

2. The MSTR control bit is forced to zero to reconfigure the SPI as a slave. 

MOTOROLA M68HC11 REFERENCE MANUAL 8-9 

• 



• 

3. The SPE control bit is forced to zero to disable the SPI system. 

4. The MODF status flag is set, and an SPI interrupt is generated subject to masking by 
the SPIE bit and the I bit in the CCR. 

After software has corrected the problems that led to the mode fault, MODF is cleared and 
the system is returned to normal operation. The MODF flag is automatically cleared by 
reading SPSR while MODF is set, followed by a write to the SPDR. The DDRD must also 
be restored before SPI transfers can resume. 

In some cases, the mode-fault mechanism does not fully protect multiple-master systems 
from driver contention. For example, suppose a second device becomes a master but does 
not immediately drive the SS pin of this master low. Perhaps a system fault selects two 
slave devices, and these slave devices try to simultaneously drive the MISO line. Both 
these cases result in output driver contentions, but neither causes a mode-fault error. Too 
many system configurations are possible to discuss all the possibilities, but some sug­
gestions will help the system designer find practical ways to prevent problems. 

Under normal conditions, a moderate resistance, (i.e., 1 to 10K ohms) in series with an SPI 
pin does not adversely affect SPI transfer operations. If a driver contention occurs, this 
series resistance will protect the drivers against latchup. Another way to protect against 
latchup would be to employ the DWOM option, which transforms the SPI output drivers 
into open-drain-type drivers. When the DWOM option is selected, it affects all six port D 
pins; therefore, pullup resistors are needed on the PDO and PD1 pins if they are being used 
as outputs. Both of these suggestions affect the maximum usable data rate, depending on 
the loading capacitance on the SPI lines. 

8.5.2 SPI Write-Collision Errors 

A write collision occurs if the SPDR is written while a transfer is in progress. Since the 
SPDR is not double buffered in the transmit direction, writes to SPDR cause data to be 
written directly into the SPI shift register. Because this write corrupts any transfer in prog­
ress, a write-collision error is generated. The transfer continues undisturbed, and the write 
data that caused the error is not written to the shifter. 

A write collision is normally a slave error because a slave has no control over when a 
master will initiate a transfer. A master knows when a transfer is in progress; thus, there 
is no excuse for a master to generate a write-collision error, although the SPI logic can 
detect write collisions in a master as well as in a slave. 

The details of what constitutes a transfer in progress depend on the SPI configuration. For 
a master, a transfer starts when data is written to SPDR and ends when SPIF is set. For a 
slave with CPHA equals zero, a transfer starts when SS goes low and ends when SS returns 
high. In this instance, SPIF is set at the middle of the eighth SCK cycle when data is 
transferred from the shifter to the parallel data register, but the transfer is still in progress 
until SS goes high. For a slave with CPHA equals one, a transfer starts when the SCK line 
goes to its active level, which is the edge at the beginning of the first SCK cycle. The transfer 
ends in a slave in which CPHA equals one when SPIF is set. 

8-10 M68HC11 REFERENCE MANUAL MOTOROLA 



8.6 BEGINNING AND ENDING SPI TRANSFERS 

The two basic SPI transfer formats are described in 8.1 SPI TRANSFER FORMATS. A transfer 
includes the eight SCK cycles plus an initiation period at the beginning and ending period 
of the transfer. The details of the beginning and ending periods depend on the CPHA format 
selected and whether the SPI is configured as a master or a slave. The initiation delay 
period is also affected by the SPI clock rate selection when the SPI is configured as a 
master. 

It may be useful to refer to the transferformat illustrated in Figures 8-1 and 8-2 to understand 
how the beginning and ending details fit into a complete transfer operation. 

8.6.1 Transfer Beginning Period (Initiation Delay) 

All SPI transfers are started and controlled by a master SPI device. As a slave, the 
MC68HCllA8 considers a transfer to begin with the first SCK edge or the falling edge of 
SS, depending on the CPHA format selected. When CPHA equals zero, the falling edge of 
SS indicates the beginning of a transfer. When CPHA equals one, the first edge on the SCK 
indicates the start of the transfer. In either CPHA format, a transfer can be aborted by taking 
the SS line high, which causes the SPI slave logic and bit counters to be reset. The SCK 
rate selected has no effect on slave operations since the clock from the master is controlling 
transfers. 

When the SPI is configured as a master, transfers are started by a software write to the • 
SPDR. CPHA has no effect on the delay to the start of the transfer, but it does affect the : 
initial state of the SCK signal. When CPHA equals zero, the SCK signal remains inactive 
for the first half of the first SCK cycle. When CPHA equals one, the first SCK cycle begins 
with an edge on the SCK line from its inactive to its active level. The SPI clock rate (selected 
by SPR1 :SPRO) affects the delay from the write to SPDR and the start of the SPI transfer 
(see Figure 8-4). The internal SPI clock in the master is a free-running derivative of the 
internal MCU clock (PH2). SCK edges occur a small propagation delay after the rising edge 
of PH2. The rising edge of PH2 occurs at the middle of the E-clock low period. Since the 
SPI clock is free-running, there is an uncertainty about where the write to SPDR will occur 
relative to the slower SCK. This uncertainty causes the variation in the initiation delay 
shown in Figure 8-4. 

8.6.2 Transfer Ending Period 

An SPI transfer is technically complete when the SPIF flag is set, but, depending on the 
configuration of the SPI system, there may be additional tasks. Because the SPI bit rate 
does not affect timing of the ending period, only the fastest rate will be considered in 
discussions of the ending period. 

When the SPI is configured as a master, SPIF is set at the end of the eighth SCK cycle. 
When CPHA equals one, SCK is inactive for the last half of the eighth SCK cycle. Figure 
8-5 shows the transfer ending period for a master. The SCK waveforms in this figure show 
only the CPOL equals zero case, since clock polarity does not affect timing of the ending 
period. 

MOTOROLA M68HC11 REFERENCE MANUAL 8-11 



• 

t.,., .... ,AE CYCLE WHERE SPDRW"'R_ITT_EN _____________________ _ 

i lJ1Jlf1J 
N ,I, 

~ MIN E 

1-
"rI 

MAX 

U1JlfUlJlr 

~ MIN 

MAX 1-----' 

MOSI 

SCK 
(CPHA=l) 

SCK 
(CPHA=O) 

SCKCYCLE 
NUMBER 

INSET: Detailed view of initiation delay from write SPDR to transfer begin, 

:: MAX 1---------------' 
t.,., ..... , . 

BIT6 

2 

~"",",",",""""'" POSSIBLE TRANSFER START POINTS """"",',', 
~; 

t------------~ttttttttttttttt1 

Figure 8-4. Delay from Write SPDR to Transfer Start (Master) 

When the SPI is operating as a slave, the ending period is different because the SCK line 
can be asynchronous to the MCU clocks of the slave and because the slave does not have 
access to as much information about SCK cycles as the master, For example, when CPHA 
equals one, where the last SCK edge occurs in the middle of the eighth SCK cycle, the 
slave has no way of knowing when the end of the last SCK cycle is. For these reasons, the 
slave considers the transfer complete after the last bit of serial data has been sampled, 
which corresponds to the middle of the eighth SCK cycle. A synchronization delay is 
required so the setting of the SPIF flag is properly positioned relative to the internal PH2 
clock of the slave. Figure 8-6 shows the ending period for a slave. The SCK waveforms in 
this figure show only the CPOL equals zero case, since clock polarity does not affecttiming 
of the ending period. 

8-12 M68HC11 REFERENCE MANUAL MOTOROLA 



SCK CYCLE # 

SCK (CPHA= 1) 

SCK (CPHA=O) 

RIW 

SCK (CPHA=O) 
SECOND LAST EDGE 

SCK (CPHA= 1) 
LAST EDGE 

E 

RIW 

NEW OPCODE 
(NOT EXECUTED DUE TO INTERRUPT) 

PC (LOW) PC (HIGH) ••• 

EARLIEST POSSIBLE STACKING 
DUE TO SPIF INTERRUPT 
(NO OTHER INTERRUPT PENDING) 

Figure 8-5. Transfer Ending for an SPI Master 

SYNCHRONIZATION 
UNCERTAINTY 

----~~~1------~--
n B 

PC (LOW) PC (HIGH) ••• 

EARLIEST POSSIBLE STACKING 
DUE TO SPIF INTERRUPT 
(NO OTHER INTERRUPT PENDING) 

Figure 8-6. Transfer Ending for an SPI Slave 

When CPHA equals zero, there is a potential problem that can be avoided by proper software 
but is sometimes overlooked. The SPIF flag is set at the end of a transfer, but the slave is 
not permitted to write new data to the SPDR while the SS line is still low. If the master 

MOTOROLA MiSHC11 REFERENCE MANUAL 8-13 

• 



• 

device is busy, the SS line to the slave can remain low longer than the slave expects. The 
proper way for the slave to manage this problem is to read the state of the port D bit 5 
pin, (SS), before writing to SPDR. If this procedure is not followed (slave mode and CPHA=O) 
and an attempt is made to write to SPDR before SS goes high, a write collision will result. 

8.7 TRANSFERS TO PERIPHERALS WITH ODD WORD LENGTHS 

The SPI system in the MC68HC11A8 is oriented toward 8-bit transfers, but not all peripherals 
use eight bits. Some peripherals use multiples of eight bits, but a few use odd word lengths. 
When a peripheral uses an odd number of bits, it is usually possible to send it some 
multiple of eight bits, and the peripheral will ignore the extra bits. Serial peripherals are 
commonly designed for cascading. In these devices, only the most recent bits received 
will be important, and extra leading bits pass through the peripheral. In more unusual 
peripheral designs, the leading bits can alter the way the peripheral. will interpret the 
remaining bits in a serial stream. In all cases, the requirements of each peripheral in the 
system must be considered. 

The MC144110 six-channel, 6-bit, D/A converter peripheral is an example of a peripheral 
with an odd word length. This device requires six 6-bit words (a total of 36 bits) to update 
all six channels. The following examples show two possible approaches for managing this 
device to illustrate some of the possible trade-off decisions found in unusual peripherals. 
The hardware hookup, which is identical for both examples, is shown in Figure 8-7. A 
software program includes the routines needed for both examples. Figure 8-8 shows the 
register definitions and RAM variables used by both example programs . 

P1·26 r l MC144110DIA 

MC68HC11 EVB BOARD Q1 r-L 
VDD VDD R1 

3 

P1-24 10 
ClK ClK Q2 ~ 

P1-23 1 
R2 

5 
PD3iMOSI DIN 

...!2.... 
DOUT Q3 ....L 

7 

PD5,ss 
P1-25 8 EN 

R3 

Q4 ....!.2.-
R4 

12 

Q5 ~ 

RS 
14 

P1-1 
Vss 

.J2.. Q6 

R6 
16 

Vss 
-'--

- ~ 
NOTE: Pin numbers on P1 of the MC68HC11 EVB board are the same as those for a 52-pin MC68HC 11 AS. 

Figure 8-7. Hardware Hookup for Examples 8-1 and 8-2 

8-14 M68HC11 REFERENCE MANUAL 

MEASURE WITH 
HIGH-IMPEDANCE 

VOLTMETER 

MOTOROLA 



1008 

1009 
1028 

1029 

102a 

0000 
0001 
0002 
0003 
0004 
0005 

0006 
0007 
0008 
0009 
OOOa 

* Register definitions for 68HC11 registers (used for Ex 8-1 & 8-2) 
PORTD EQU $1008 Port D data register 
* "-, ,SS* ,SCK ;MOSI,MISO,TxD ,RxD " 
DDRD EQU $1009 Port D data direction 
SPCR EQU $1028 SPI control register 
* "SPIE,SPE ,DWOM,MSTR;CPOL,CPHA,SPR1,SPRO" 
SPSR EQU $1029 SPI status register 
* "SPIF,WCOL, - ,MODF; -, , , 
SPDR EQU $102A SPI data register; Read-Buffer; Write-Shifter 

* RAM variables (DAx 
DA1 EQU $00 
DA2 EQU $01 
DA3 EQU $02 
DM EQU $03 
DA5 EQU $04 
DA6 EQU $05 
* Upper 2 bits of DAx 
SPI1 EQU $06 
SPI2 EQU $07 
SPI3 EQU $08 
SPI4 EQU $09 
SPI5 EQU $OA 
* NOTE: Upper 4 bits 

used by Ex 8-1 & 8-2, SPIx used only by 8-1) 
6-bit val for D/A ch 1 "-,-,15,14;13,12,11,10" 
6-bit val for D/A ch 2 "-,-,25,24;23,22,21,20" 
6-bit val for D/A ch 3 "-,-,35,34;33,32,31,30" 
6-bit val for D/A ch 4 "-i-,45,44;43,42,41,40" 
6-bit val for D/A ch 5 "-,-,55,54;53,52,51,50" 
6-bit val for D/A ch 6 "-,-,65,64;63,62,61,60" 
should be 0 but will be ignored. 
SPI packed byte 1 "--,--,--,--;65,64,63,62" 
SPI packed byte 2 "61,60,55,54;53,52,51,50" 
SPI packed byte 3 "45,44,43,42;41,40,35,34" 
SPI packed byte 4 "33,32,31,30;25,24,23,22" 
SPI packed byte 5 "21,20,15,14;13,12,11,10" 

of SPI1 are unused extras but will be O. 

Figure 8-8. Register Definitions and RAM Variables for Examples 8-1 and 8-2 

8.7.1 Example 8-1: On-Chip SPI Driving an MC144110 D/A 

In this example, software must reformat (pack) the six 6-bit data values into five 8-bit 
words, which can then be transferred to the MC144110 O/A using the on-chip SPI. Figure 
8-9 is the software listing for the Example 8-1 routines. 

In the Example 8-1 setup, the MCU is running at 2-MHz E-clock frequency. To meet the 
timing req·uirements of the MC14411 0 O/A, the slowest SPI clock rate (E -7- 32) is used. Figure 
8-10 shows a detailed analysis of important timing parameters. These timing details are 
derived from knowledge of the cycle-by-cycle activity of software instructions and detailed 
SPI system timing. This timing analysis depicts the strong interdependence of software 
and hardware in MCU systems. 

8.7.2 Example 8-2: Software SPI Driving an MC144110 D/A 

Sometimes it is easier and/or more efficient to use software to emulate an SPI to allow 
even more flexibility than the on-chip SPI system allows (e.g., odd word lengths). As 
Example 8-2 shows, it is not necessarily difficult to manipulate I/O pins to create an SPI­
like interface. In this example, a software SPI allows 6-bit transfers so the six O/A values 
can be used without any packing or reformatting (needed in the previous example). Figure 
8-11 is the software listing for Example 8-2. 

MOTOROLA M68HC11 REFERENCE MANUAL 8-15 

• 



II 

*********************************************************************** 
* Example 8-1 * 

* * 
* This example program uses the on-chip hardware SPI to drive an * 
* MC144110 six channel 0 to A converter peripheral. * 

* * 
* To try Ex 8-1, connect MC144110 to Port 0 pins on EVB, load * 
* program into EVB RAM, manually enter data for DA1 to DA6 and * 
* execute a GO to $COOO. * 
*********************************************************************** 

cOOO 
cOOO 8e cf ff 
c003 86 2f 

c005 b7 10 08 
c008 86 38 
cOOa b7 10 09 

cOOd 86 57 
cOOf b7 10 28 

*** 

(3) INIT1 
(2) 

(4) 
(2) 
(4) 

* 

ORG 
LOS 
LDAA 

$COOO 
*$CFFF 
*$2F 

Start of user's RAM in EVB 
Top of C page RAM 
-,-,1,0;1,1,1,1 
SS*-Hi, SCK-Lo, MOSI-Hi 

STAA PORTO So SS stays high when DDRD5 
LDAA *$38 -,-,1,1;1,0,0,0 
STAA DDRD SS*, SCK, MOSI - Outs 

set 

* MISO, TxD, RxD - Ins 

(2) 
[4) 

* DDRD5=1 so SS* pin is a general purpose output 

* 

LDAA *$57 
STAA SPCR SPI on as Master, CPHA=1, CPOL=O 

E/32 Clk rate 

* Following two instructions call main routine for Ex 8-1 
*** 

c012 8d 38 
c014 7e eO 00 

*** 
3c 
18 3c 
36 

c04c 
c04d 
c04f 
c050 
c052 ce 
c055 18 
c059 18 
c05d a6 
cO Sf b7 
c062 b6 
c065 2a 

8d 

c067 08 

c5 
00 06 
ce 10 00 
1d 08 20 
00 
10 2a 
10 29 
fb 

c068 8c 00 Ob 
c06b 26 fO 
c06d 18 1c 08 20 
c071 32 
c072 18 38 
c074 38 
c075 39 

[6) 
[3) 

[4) 
[5) 
[3) 
[6) 
[3) 
[4) 
[8) 
[4) 
(4) 
[4) 
[3) 

[3) 
[4) 
[3) 
[8) 
[4) 
[6) 
(5) 
(5) 

BSR 
JMP 

UPDAT1 PSHX 
PSHY 
PSHA 
BSR 
LOX 
LOY 
BCLR 

TFRLP1 LDAA 
STAA 

WAIT1 LDAA 
BPL 

* 
INX 
CPX 
BNE 
BSET 
PULA 
PULY 
PULX 
RTS 

UPDAT1 
$EOOO 

REFORM 
*SPIl 
*$1000 
PORTD,Y 
O,X 
SPDR 
SPSR 
WAIT1 

tSPI5+1 
TFRLP1 
PORTD,Y 

Xfer 58-bit words to MC144110 
Restart BUFFALO 

Save registers X and A 

Reformat data so SPI can xfer it 
Point at 1st byte to send via SPI 
Point at on-chip registers 

%00100000 Drive SS* low 
Get a byte to transfer via SPI 
Write SPI data reg to start xfer 
Loop to wait for SPIF 
SPIF is in MSB of SPSR 
(when SPIF set, SPSR neg) 
Point to next SPI byte 
Done yet ? 
If not, tfr another byte 

%00100000 Drive SS* high 
When done, restore regs X, Y & A 

** Return ** 

Figure 8-9. Example 8-1 Software Listing (Sheet 1 of 2) 

8-16 M68HC11 REFERENCE MANUAL MOTOROLA 



*********************************************************************** 
* REFORM - This subroutine reformats six 6 bit values into five 8 bit * 
* values so they can be sent by the SPI system. * 
* * 
* The MC144110 needs 36 bits of information which is not a mUltiple * 
* of 8 bits; however, we can send five 8 bit words (40 bits) and the * 
* MC144110 will use only the last 36 bits. * 
* * 
* 
* 
* 
* 
* 
* 
* 

Original format 
DA1 "-,-,15,14;13,12,11,10" 
DA2 "-,-,25,24;23,22,21,20" 
DA3 "-,-,35,34;33,32,31,30" 
DA4 "-,-,45,44;43,42,41,40" 
DA5 "-,-,55,54;53,52,51,50" 
DA6 "-,-,65,64;63,62,61,60" 

Change to this format 
SPI1 "--,--,--,--;65,64,63,62" 
SPI2 "61,60,55,54;53,52,51,50" 
SPI3 "45,44,43,42;41,40,35,34" 
SPI4 "33,32,31,30;25,24,23,22" 
SPI5 "21,20,15,14;13,12,11,10" 

* 
* 
* 
* 
* 
* 
* 

*********************************************************************** 

cOl7 37 
c018 36 
c019 96 00 
c01b 48 
cOle 48 
cOld d6 01 
cOlf c4 3f 
c021 54 
c022 46 
c023 54 
c024 46 
c025 97 Oa 
c027 d7 09 
c029 96 03 
c02b d6 02 
c02d 58 
c02e 58 
c02f 58 
c030 49 
c031 58 
c032 49 
c033 da 09 
c035 d7 09 
c037 97 08 
c039 96 04 
c03b 48 
c03c 48 
c03d d6 05 
c03f c4 3f 
c041 54 
c042 46 
c043 54 
c044 46 
c045 97 07 
c047 d7 06 
c049 32 
c04a 33 
c04b 39 

MOTOROLA 

[3] 
[3] 
[3] 
[2] 
[2] 
[3] 
[2] 
[2] 
[2] 
[2] 
[2] 
[3] 
[3] 
[3] 
[3] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[3] 
[3] 
[3] 
[3] 
[2] 
[2] 
[3] 
[2] 
[2] 
[2] 
[2] 
[2] 
[3] 
[3] 
[4] 
[4] 
[5] 

REFORM PSHB 
PSHA 
LDAA 
ASLA 
ASLA 
LDAB 
ANDB 
LSRB 
RORA 
LSRB 
RORA 
STAA 
STAB 
LDAA 
LDAB 
ASLB 
ASLB 
ASLB 
ROLA 
ASLB 
ROr,.A 
ORAB 
STAB 
STAA 
LDAA 
ASLA 
ASLA 
LDAB 
ANDB 
LSRB 
RORA 
LSRB 
RORA 
STAA 
STAB 
PULA 
PULB 
RTS 

DA1 

DA2 
t$3F 

SPI5 
SPI4 
DA4 
DA3 

SPI4 
SPI4 
SPI3 
DA5 

DA6 
#$3F 

SPI2 
SPIl 

Save registers B and A 

A="--,--,15,14;13,12,11,10" 
A="--, 15, 14, 13; 12,11,10, 0" 
A="15,14,13,12;11,10, 0, 0" 
B="--,--,25,24;23,22,21,20" 
B=" 0, 0,25,24;23,22,21,20" 
B=" 0, 0, 0,25;24,23,22,21" 
A="20,15,14,13;12,11,10, 0" 
B=" 0, 0, 0, 0;25,24,23,22" 
A="21,20,15,14;13,12,11,10" 
SPI5 is done 
SPI4 intermediate value 
A="--,--,45,44;43,42,41,40" 
B="--,--,35,34;33,32,31,30" 
B="--,35,34,33;32,31,30, 0" 
B="35,34,33,32;31,30, 0, 0" 
B="34,33,32,31;30, 0, 0, 0" 
A="--,45,44,43;42,41,40,35" 
B="33,32,31,30; 0, 0, 0, 0" 
A="45,44,43,42;41,40,35,34" 
B="33,32,31,30;25,24,23,22" 
SPI4 now complete 
SPI3 done 
A="--,--,55,54;53,52,51,50" 
A="--,55,54,53;52,51,50, 0" 
A="55,54,53,52;51,50, 0, 0" 
B-"--,--,65,64;63,62,61,60" 
B-" 0, 0,65,64;63,62,61,60" 
B-" 0, 0, 0,65;64,63,62,61" 
A-"60,55,54,53;52,51,50, 0" 
B-" 0, 0, 0, 0;65,64,63,62" 
A-" 61,60,55,54; 53, 52', 51, 50" 
SPI2 done 
SPIl done 
Restore registers A and B 

** Return ** 

Figure 8·9. Example 8·' Software Listing (Sheet 2 of 2) 

M68HC11 REFERENCE MANUAL 

C-"20 

C-"21 

C-"35 

C-"34 

C-"60 

C-"61 

8-17 

.. 



I BClR PORTD,X $20 lDAA O,X I ST AA SPDR II 

I... ----;5 T031 ECYClES~ 
(SEE FIGURE 8-41 I 

~---------------\r_------------~------­

~---DELAY, EN lOW TO ClK (MIN 115 ",SIMAX 19 5 "'Sl~ 
SCK _______________________________ \ ~rl-------

(a) EN Low to SCK Start Delay (MC144110 Needs 5 !Ls) 

MOSI __ ---'X VALID DATA *=== 
i== ~ 8 ",S SETUP ----~.~1~ ... ~-=--=--=--=--=--=-~-~-8 _I-'S_S_ET_U_P ~ 

SCK----~~~ ____________________ ~{ ~ 

(b) Data Valid vs. SCK Timing (MC144110 Needs 1 !Ls Setup/5 !LS Hold) 

.. . lONGEST CASE ---3)o~ I LDAA SPSR ,I J~~1 I lDAA SPSR ,I J~~1 I INX I·· . 
(VARIES WITH SCK SPIF NOT SET YET -t SPIF SET NOW -t 
ALIGNMENT TO ~ SOFTWAREI ~ 6 E CYCLES 

... SHORTEST CASE ___ -3S~PIFIS::::;P:l1 BPl I INX ICPX#SP15+11 BNE I BSET PORTD X $40 I I I WAIT1 TFRlP1' , 

SCK 

~----- LAST SCK EDGE TO EN RELEASE (MIN 19.51-'SIMAX 22.51-'81 -----:.~I 
~ r 
-----\~-----\r_----------------------------------~, 

Ie) Last SCK Edge to EN Release Timing (MC144110 Needs 5 !Ls) 

Figure 8-10. Timing Analysis for Example 8-1 

8-18 M68HC11 REFERENCE MANUAL MOTOROLA 



*********************************************************************** 
* Example 8-2 

* 
* 
* 

* This example program uses a software equivalent of the SPI to * 
* drive an MC144110 six channel D to A converter peripheral. The * 
* physical hookup is the same as that of the previous example to make * 
* comparisons easier. * 
* 
* To try Ex 8-2, connect MCl44110 to Port D pins on EVB, load 
* program into EVB RAM, manually enter data for DAI to DA6 and 
* execute a GO to $C100. 

* 
* 
* 
* 

*********************************************************************** 

c100 
c100 8e cf ff 
c103 86 2f 
c105 b7 10 08 
c108 86 38 
c10a b7 10 09 
clOd 86 04 

c10f b7 10 28 
*** 

[3] INIT2 
[2] 
[4] 
[2] 
[4] 
[2] 

* 
[4] 

ORG $C100 
LDS #$CFFF 
LDAA #$2F 
STAA PORTD 
LDAA #$38 
STAA DDRD 
LDAA #$04 

TOp of C page RAM 
-,-,1,0;1,1,1,1 
PD5/SS*-Lo,PD4/SCK-Lo,PD3/MOSI-Hi 
-,-,1,1;1,0,0,0 
PD5, PD4, PD3 =Outs; Others =Ins 

"SPIE,SPE,DWOM,MSTR;CPOL,CPHA,SPRl,SPRO" 
STAA SPCR Make sure SPI off 

* Following two instructions call main routine for Ex 8-2 
*** 

c1l2 8d 03 
c1l4 7e eO 00 

*** 
c1l7 3c 
cl18 18 3c 
clla 36 
c11b 18 ce 00 05 
cllf ce 10 00 
c122 86 20 
c124 1d 08 20 
c127 01 
c128 01 
c129 1c 08 10 
c12c 18 as 00 
c12f 27 05 
c131 1c 08 08 
c134 20 05 
c136 1d 08 08 
c139 20 00 
cl3b 1d 08 10 
c13e 44 
c13f 26 e8 
c141 18 09 
c143 18 

26 c147 
c149 

8c ff ff 
db 

c14c 
c14d 
c14f 
c150 

1c 08 20 
32 
18 38 
38 
39 

MOTOROLA 

[6] 
[3] 

[4] 
[5] 
[3] 
[4] 
[3] 
[2] 
[7] 
[2] 
[2] 
[7] 
[5] 
[3] 
[7] 
[3] 
[7] 
[3] 
[7] 
[2] 
[3] 
[4] 
[5] 
[3] 
[7] 
[4] 
[6] 
[5] 
[5] 

BSR 
JMP 

UPDAT2 PSHX 
PSHY 
PSHA 
LDY 
LDX 

TFRLP2 LDAA 
BCLR 
NOP 
NOP 

NXTBIT BSET 
BITA 
BEQ 
BSET 
BRA 

ZBIT BCLR 
BRA 

ENDBIT BCLR 
LSRA 
BNE 
DEY 
CPY 
BNE 
BSET 
PULA 
PULY 
PULX 
RTS 

UPDAT2 
$EOOO 

#DA6 
#$1000 
#$20 
PORTD,X 

Xfer six 6 bit words to MC144110 
Restart BUFFALO 

Save X, Y and A 

Point at 
Point at 
1st pntr 

%00100000 
Need more 

1st D/A value to xfer. 
register area. 
to MSB of 6 bit data val 

PD5(SS*) Falling edge 
dly for MC144110 specs. 

PORTD,X %00010000 PD4(SCK) Rising edge 
O,Y Test sense of bit to be sent 
ZBIT If zero skip around 
PORTD,X %00001000 PD3(MOSI) Hi bit 
ENDBIT 
PORTD,X %00001000 PD3(MOSI) Lo bit 
ENDBIT Want Lo time to match Hi time 
PORTD,X %00010000 PD4(SCK) Falling edge 

Pointer to nxt lower bit position 
NXTBIT Done if pointer shifted past LSB 

Point at next value to send 
#DA1-1 
TFRLP2 
PORTD,X 

Done yet ? 
If not go back to top of loop 

%00100000 PD5(SS*) Rising edge 
Restore X, Y and A 

** RETURN ** 

Figure 8-11. Example 8-2 Software Listing 

M68HC11 REFERENCE MANUAL 8-19 

.. 



II 

Figure 8-12 shows a detailed analysis of important timing parameters. These timing details 
are derived from knowledge of the cycle-by-cycle activity of software instructions. This 
timing analysis illustrates the strong interdependence of software and hardware in MCU 
systems. 

I BeLA POI'ITD.X $20 II NOP I NOP I BCLR PORTD,X $20 II BITA O,Y I .. · 
E 

I 
~ . r: DEC"'" cow W"'O',., Jr--_______ _ 

SCK ________________________ ~~I 

(a) EN Low to SCK Start Delay (MC144110 Needs 5 fJ.s) 

BCLA PORTD,X $1 0 BITAO,Y BEQ 
ZBIT 

SCK _____ -l 

MOSI --------------------
(b) Data to,SCK Setup (MC144110 Needs 1 fJ.s) 

Figure 8-12. Timing Analysis for Example 8-2 (Sheet 1 of 2) 

8-20 M&8HC11 REFERENCE MANUAL MOTOROLA 



E 

SCK 

MOSI 

E 

SCK 

BeLR PORTD,X $10 II LSRA I N~~~IT I BeLR PORTD,X $10 

I 

BITA O,Y BEO 
ZBIT 

BSET PORTD,X $08 
BeLR PORTD,X $08 

~--------DATAHOLD(13.5.,s)--------~~ 

------------~--------------------------~ 

(el Data Hold vs. SCK (MC144110 Needs 5 f.Lsl 

I BeLR PORTD,X $10 II LSRA I N~~~IT I DEY I CPY #DA1 1 I T~~CP2 I BSET PORTD,X $20 II 

I 
~I~--------------------------------~----
li"I-<~------SCKTOEN HOLD (12I-'S) -----------~.~I __ _ 

EN ~ 
------------------------------------~, 

(dl SCK Low to EN Hold (MC144110 Needs 5f.Lsl 

Figure 8-12. Timing Analysis for Example 8-2 (Sheet 2 of 21 

MOTOROLA M68HC11 REFERENCE MANUAL 8-21 

• 



II 



SECTION 9 
ASYNCHRONOUS SERIAL COMMUNICATIONS INTERFACE 

This section describes the universal asynchronous receiver transmitter (UART) type serial 
communications interface (SCI) system, which is one of two independent serial 1/0 sub­
systems in the M68HC11. The other serial 1/0 subsystem (called SPI) provides for high­
speed synchronous serial communication to peripherals or other microcontroller units 
(MCUs), usually located on the same printed circuit board as the M68HC11. This SCI system 
can be used to connect a CRT terminal or personal computer to the MCU, or several widely 
distributed MCUs can use their SCI subsystems to form a serial communication network. 

9.1 GENERAL DESCRIPTION 

The SCI is a full-duplex UART-type asynchronous system, using standard nonreturn-to­
zero (NRZ) format (one start bit, eight or nine data bits, and a stop b.it). An on-chip baud­
rate generator derives standard baud-rate frequencies from the MCU oscillator. Both the 
transmitter and the receiver are double buffered; thus, back-to-back characters can be 
handled easily, even if the central processing unit (CPU) is delayed in responding to the 
completion of an individual character. The SCI transmitter and receiver are functionally 
independent but use the same data format and baud rate. In this user's manual, baud rate 9 
and bit rate are used synonymously. The user will usually have to provide external level-
shifter buffers to translate the RS232 or RS422 levels (typically ± 12 V) to the 0- to 5-V logic 
levels used by the MCU. 

This SCI receiver includes a number of advanced features to assure high-reliability data 
reception and to assist development of efficient communications networks. The M68HC11 
resynchronizes the receiver bit clock on all one-to-zero transitions in the bit stream rather 
than just at the beginning of the start bit time; therefore, differences in baud rate between 
the sending device and the MCU are not as likely to cause reception errors. Three logic­
level samples are taken near the middle of each bit time, and majority logic decides the 
sense for the bit. Even if noise causes one of these samples to be incorrect, the bit will 
still be received correctly. The receiver also has the ability to enter a temporary standby 
mode (called receiver wake up) to ignore messages intended for a different receiv(i)r. Logic 
automatically wakes up the receiver in time to see the first character of the next message. 
This wake-up feature greatly reduces CPU overhead in multidrop SCI networks. 

The SCI transmitter can produce queued characters of idle (whole characters of all logic 
one) and break (whole characters of all logic zero). In addition to the usual transmit data 
register empty (TDRE) status flag, this SCI also provides a transmit complete (TC) indication 
that can be used in applications with a modem. 

MOTOROLA M68HC11 REFERENCE MANUAL 9-1 



• 

9.1.1 Transmitter Block Diagram 

Figure 9-1 is a block diagram of the transmitter section of the SCI subsystem. The descrip­
tion given in the following paragraphs is an overview; a more detailed discussion of the 
SCI transmitter is given in 9.3 SCI TRANSMITIER. 

9-2 

lX SCDR Tx BUFFER 
" [WRITE-ONL Vj 

BAUD RATE -
CLOCK t I DDRDl I 

10 (11) - BIT Tx SHIFT REGISTER 

_I PIN BUFFER I 
~ I H 1(8)1 7 6 5 4 3 2 1 OiL -- I AND CONTROL I 

~ ~ ~ 

~ a: 
~ ~ -'" ~ w 

I:!:l ~ ~ 
!;2 ~ ~ ::> z en <II w w I ~ ~ I- ::! w u.. < -' a: :r .., <II W 

~ en ~ a: 
<II en w 

~ a: 
"-

I-
FORCE PIN DIRECTION (OUT) 

~ 
TRANSMITIER I. CONTROL LOGIC 

~I, , , 
w 

~1~lgjl~I~1 , a: ~IF I::! 
00 a: I- I- I-

SCCR1 SCI CONTROL 1 I SCSR INTERRUPT STATUS I 

t \ 1 
D 

TORE 

TIE 

-G TC I TCiE 

IJ. 
w ~I~I~ ll!1~lgj !!! c::s 

I- l-

I SCCR2 SCI CONTROL 2 ~ 

SCI Ax SCI INTERRUPT 
REQUESTS REQUEST 

Figure 9-1. SCI Transmitter Block Diagram 

M68HC11 REFERENCE MANUAL 

INTERNAL 
DATA BUS 

" POl 
TxD 

MOTOROLA 



The heart of the transmitter is the transmit serial shift register near the top of the figure. 
Usually, this shift register gets its data from the write-only transmit buffer. Data gets into 
the transmit buffer when software writes to the SCI data register (SCDR). Whenever data 
is transferred into the shifter from the transmit buffer, a zero is loaded into the least 
significant bit (LSB) of the shifter to act as a start bit, and a logic one is loaded into the 
last bit position to act as a stop bit. In the case of a preamble, the shifter is jammed to all 
ones, including the bit position usually holding the logic zero start bit. A preamble is 
jammed each time the transmit enable bit is written from zero to one. In the case of a send 
break command, the shifter is jammed to all zeros, including the last bit position usually 
holding the logic one stop bit. 

The T8 bit in SCI control register 1 (SCCR1) acts like an extra high-order bit (ninth bit) of 
the transmit buffer register. This ninth bit is only used if the M bit in SCCR1 is one to select 
the 9-bit data character format. The M bit also controls the length of idle and break char­
acters. The R8 and WAKE bits in SCCR1 are associated with the SCI receiver and are only 
shown in Figure 9-1 for reference. 

The pin buffer logic is quite flexible and useful in some SCI systems. This block diagram 
is not detailed enough to show all of the functions of this block. 9.3.6 TxD Pin Buffer Logic 
describes this logic in greater detail, and a complete MOS transistor-level schematic and 
explanation of this logic is included in 7.3.6.2 PD1 (TxD) PIN LOGIC. 

The status flag and interrupt generation logic is shown in Figure 9-1. The TDRE and TC 
status flags in the SCI status register (SCSR) are automatically set by the transmitter logic. 
These two bits can be read at any time by software. The transmit interrupt enable (TIE) 
and transmit complete interrupt enable (TCIE) interrupt control bits enable the TDRE and 
TC bits, respectively, to generate SCI interrupt requests. 

9.1.2 Receiver Block Diagram 

Figure 9-2 is a block diagram of the receiver section of the SCI subsystem. The description 
given in the following paragraphs is an overview; a more detailed discussion of the SCI 
receiver is given in 9.4 SCI RECEIVER. 

SCI receive data comes in the RxD pin, is buffered, and drives the data recovery block. The 
data recovery block is actually a high-speed shifter operating at 16 times the bit rate; 
whereas, the main-receive serial shifter operates at one times the bit rate. This higher 
speed sample rate allows the start-bit leading edge to be located more accurately than a 
1 x clock would allow. The high-speed clock also allows several samples to be taken within 
a bit time so logic can make an intelligent decision about the logic sense of a bit (even in 
the presence of noise). The data recovery block provides the bit level to the main receiver 
shift register and also provides a noise flag status indication. 

This block diagram is not detailed enough to show all of the subtleties of the RxD pin buffer 
logic; acomplete schematic and explanation of this pin logic can be found in 7.3.6.1 PD~ 
(RxD) PIN LOGIC. 

MOTOROLA M68HC11 REFERENCE MANUAL 9-3 

• 



• 

16X 
BAU ORATE 

C LOCK 

PDO 
RxD 

I DDRDO I 

~ ~ 
PIN BUFFER DATA ~ 

AND CONTROL RECOVERY 

I DISABLE 
DRIVER 

RE 

M 

~ 
WAKE-UP 

LOGIC 

0. 10(11)- BIT t-
o !.1i: 
t- Rx SHIFT REGISTER t-
V> V> 

---- (S17 6 5 4 3 2 1 01 

\ MSB ALL ONES 

~ 

RWU 

~ ~I I::::; ~ ~I~I~ w 
§5 "- ~I I I I t-t-a: Z "-I 

SCITx 
REOUESTS 

SCCR1 SCI CONTROL 1 
1 

l SCSR INTERRUPTSTATUS l 

rO 
!D 

.1 

SCI INTERRUPT 
REQUEST 

RDRF 

RIE 

IDLE 

ILiE 

OR 

I RIE 

i 

~I~I~ !!! ~I~ =~a: => :1 ~51 

I SCCR2 SCI CONTROL 2 

Figure 9-2. SCI Receiver Block Diagram 

SCDR Rx BUFFER 

~ 

(READ-ONLY) 

INTERNAL 
DATA BUS 

1 

The heart of the receiver is the receive serial shift register shown in Figure 9-2. This shifter 
is enabled by the receive enable (RE) bit from the SCI control register 2 (SCCR2). The M 
bit from the SCCR1 register determines whether the shifter will be 10 or 11 bits long. After 
detecting the stop bit of a character, the received data is transferred from the shifter to the 

9-4 M68HC11 REFERENCE MANUAL MOTOROLA 



SCDR, and the receive data register full (RDRF) status flag is set. When a character is ready 
to be transferred to the receive buffer but the previous character has not yet been read, 
an overrun condition occurs. In the overrun condition, data is not transferred and the 
overrun (OR) status flag is set to indicate the error. 

The wake-up block uses the WAKE control bit from SCCR1 to decide whether to use the 
most significant bit (MSB) signal (address mark) or the ALL ONES signal (idle line) to wake 
up the receiver. When the selected condition is detected, the wake-up logic clears the 
receiver wake-up (RWU) bit in SCCR2, which wakes up the receiver. 

There are three re'ceiver-related interrupt sources in the SCI. These flags can be polled by 
software or optionally cause an SCI interrupt request. The receive interrupt enable (RIE) 
control bit enables the RDRF and the OR status flags to generate hardware interrupt re­
quests. The idle line interrupt enable (ILlE) control bit allows the IDLE status flag to gener,ate 
SCI interrupt requests. 

9.2 SCI REGISTERS AND CONTROL BITS 

Primarily, the SCI system is configured and controlled by five registers (BAUD, SCCR1, 
SCCR2, SCSR, and SCDR), In addition, the port D register, data direction register for port 
D (DDRD), and the port D wired-OR mode bit in the SPI control register (SPCR) are sec­
ondarily related to the SCI system. First, the main function of each of these registers is 
presented, and then detailed descriptions of each bit are presented. 

When the SCI receiver and/or transmitter is enabled, the SCI logic takes control of the pin 
buffers for the associated port D pin(s). Data directions for the RxD and TxD pins are 
overridden to input and output, respectively. Even though it does not control the direction II 
of port D pins while the SCI has control, the DDRD can be important to a user because it 
influences what will be read when port D is read by software. The DDRD also determines 
how the pin will behave when the SCI gives up control. The port D register is important 
to an SCI user because the value written to port D can determine what will be driven out 
of port D when the SCI gives up control. 

The port D wired-OR mode bit in the SPCR modifies the driver functions of port D pins, 
even if they are being used for SCI or SPI functions. 

The baud-rate control register (BAUD) is used to select the baud rate for SCI operations 
and contains two control bits for factory testing. 

SCCR1 includes three bits associated with the optional 9-bit data format. The WAKE bit is 
used to select one of two methods of receiver wake up. 

SCCR2 contains the main SCI controls. The upper four bits are local interrupt enable 
controls, which determine whether SCI status flags will be polled or will generate hardware 
interrupt requests. The TE and RE bits are the respective transmitter and receiver subsystem 
enable controls. The RWU bit allows software to put the receiver to sleep and hardware 
to automatically wake it up by clearing this bit. The send break SBK bit allows software to 
generate break characters on the TxD line. 

MOTOROLA M68HC11 REFERENCE MANUAL 9-5 



II 

The SCSR contains two transmitter status flags and five receiver-related status flags. The 
transmitter generates flags for TDRE and TC. The receiver generates flags for RDRF, OR, 
idle-line detect (IDLE). a noise flag (NF). and a framing error (FE) indication. 

The SCDR is actually two separate registers. TDR is a write-only transmit data buffer 
register, and RDR is a read-only receive data buffer register. When software reads SCDR, 
it is accessing RDR; when software writes to SCDR, it is accessing TDR. 

9.2.1 Port D Related Registers and Control Bits (PORTD, DDRD, SPCRI 

The following registers are the port 0 related registers. Because the SCI system uses the 
two LSBs of this port, only the interactions between general-purpose 1,10 and the use of 
these pins by the SCI will be discussed. The actual MOS logic for port D pins is shown and 
discussed in 7.3.6 Port D. 

0 

Bit 5 I ~PORTD 
. ~ $1008 

RESET: 0 0 0 0 0 0 
REFERENCE: P05/SS P04/SCK P03/MOSI P02/MISO P01ITxO POO/RxO 

OOR05 OOR04 OOR03 OOR02 DDRDl DDRDO I OORO 
$1009 

RESET: 

SPIE SPE I DWOM I MSTR CPOL CPHA SPR', SPRO I SPCR 
$1028 

RESET: LI U 

Each internal, peripheral subsystem interacts with port 1/0 pins in different ways. In some 
cases, such as the SCI system, the internal subsystem overrides other pin controls to 
actively take control of the pin. In other cases, such as the SPI and pulse accumulator, the 
pin controls (data direction and others) still influence the configuration of the pin logic. 
The user must never assume that all pins in a port are affected ih the same way by data 
direction controls. 

When the SCI receiver is enabled (by the RE bit in the SCCR2 register), bit 0 of DDRD is 
overridden, and the output buffer is disabled. Writes to port D bit 0 while the SCI has 
control of the pin do not alter the logic state at the pin; however, any value written is 
remembered in an internal latch. If the SCI receiver later relinquishes control of the pin, 
the logic value in this latch will drive the PDO/RxD pin. Although the DDRDO bit does not 
affect the pin while the SCI receiver is enabled, it still affects what is returned when port 
D is read. If DDRDO is zero, the pin is read. If DDRDO is one (suggesting the pin should be 
an output). the value in the internal port 0 bit 0 latch is returned. 

9-6 M68HC11 REFERENCE MANUAL MOTOROLA 



When the SCI transmitter is active, bit 1 of DDRD is overridden, and the corresponding 
output buffer is forced on and is driven by SCI logic (as opposed to port output logic). The 
transmitter is active (controlling the PDlITxD pin) whenever the transmitter enable bit (TE 
in the SCCR2 register) is one or an unfinished character is being transmitted after the TE 
bit is disabled. Writes to bit 1 of port D while the SCI has control of the pin do not alter 
the logic state at the pin; however, any value written is remembered in an internal latch. 
If the SCI transmitter later relinquishes control of the pin, the logic value in this latch will 
drive the PD1/TxD pin. Although the DDRD1 bit does not affect the pin while the SCI 
transmitter is active, it still affects what is returned when port D is read. If DDRD1 is zero, 
the pin is read (reflects what the SCI transmitter is currently driving out of the pin). If DDRD1 
is one (suggesting the pin should be an output). the value in the internal port D bit 1 latch 
is returned (reflects what the pin would revert to if the SCI transmitter relinquishes control 
of the pin). 

All six bits of port D are affected by the port D wired-OR mode control bit (DWOM in the 
SPCR). Whenever DWOM is one, the high-side driver (P-channel device) for all port D pins 
is disabled. This disabling makes port D pins behave somewhat like open-collector outputs; 
thus, an external pullup resistor is needed for any port D pin being used as an output 
(general-purpose or peripheral subsystem outputs). The DWOM bit does not affect the use 
of port D pins as inputs. 

9.2.2 Baud-Rate Control Register (BAUD) 

The following register and paragraphs describe the BAUD control register, which is used 
to set the bit rate for the SCI system. Normally, this register is written once during initial­
ization to set the baud rate for SCI communications. Both the receiver and the transmitter 
use the same baud rate, which is derived from the MCU bus rate clock. A two-stage divider 
is used to develop customary baud rates from normal MCU crystal frequencies; therefore, 
it is not necessary to use special baud-rate crystal frequencies. Tables 9-1 and 9-2 should 
be adequate for most users, but a more comprehensive tabulation of baud rates is provided 
in Table 9-3 to help users with unusual requirements. 

4 

TClR SCPl SCPO RCKB 

RESET: 

SCP1-SCPO - SCI Baud-Rate Prescale Selects 

SCR2 SCRl 

U U 

SCRO 

U 

BAUD 
$1028 

These two bits select a prescale factor for the SCI baud-rate generator. The output 
frequency of this prescaler determines the highest available baud rate in the system. 
The actual 16 x baud rate will be a binary submultiple (71, 72, 74, ... 7128) of this 
prescaler output as selected by the SCR2-SCRO bits. Table 9-1 shows the highest baud 
rates that result for various combinations of crystal frequency and prescaler select 
control bit values. The actual frequency coming out of this prescaler stage is 16 times 
the baud rates listed. Since not all of these entries are of practical use, the ones of 
interest have been highlighted in bold. This prescaler is set to its fastest rate by default 
out of reset and may be changed at any time. Of course, it makes no sense to change 
the baud rate while any SCI transfer is in progress. 

MOTOROLA M68HC11 REFERENCE MANUAL 9-7 



• 

Table 9-1. Baud-Rate Prescale Selects 

Crystal Frequency 

SCP1 SCPO Division Factor 223 Hz 8 MHz 4.9152 MHz 4 MHz 3.6864 MHz 

Highest Baud Rate 

0 0 1 131.072K Baud 125.000K Baud 76.80K Baud 62.50K Baud 57.60K Baud 
0 1 3 43.691 K Baud 41.667K Baud 25.60K Baud 20.833K Baud 19.20K Baud 
1 0 4 32.768K Baud 31.250K Baud 19.20K Baud 15,625K Baud 14.40K Baud 
1 1 13 10.082K Baud 9600 Baud 5.908K Baud 4800 Baud 4431K Baud 

2.1 MHz 2 MHz 1.2288 MHz 1 MHz 921.6 kHz 

Bus Frequency (E clock) 

SCR2-SCRO - SCI Baud-Rate Selects 
These three bits are used in conjunction with the SCI prescaler bits (see Table 9-1) to 
specify the SCI baud rate. The prescale bits, SCP1-SCPO, determine the highest baud 
rate; whereas, the SCR2-SCRO bits select an additional binary submultiple ( -.;-1, -.;- 2, 
-.;-4, ... -.;-128) of this highest baud rate. The result of these two dividers working in 
series is the 16 x receiver baud-rate clock. Table 9-2 shows the SCI baud rates that 
result for various settings of SCR2-SCRO and the highest baud rates from Table 9-1. 
Since not all of these entries are of practical use, the ones of interest have been 
highlighted in bold. The SCR2-SCRO bits are not affected by reset and may be changed 
at any time. Of course, it makes no sense to change the baud rate while any SCI transfer 
is in progress. 

Table 9-2. Baud-Rate Selects 

Highest Baud Rate (from Table 9·1) 

SCR2, SCR1 SCRO Division 131.072K Baud 32.768K Baud 76.80K Baud 19.20K Baud 9600 Baud 
Factor 

SCI Baud Rate 

0 0 0 1 131.072K Baud 32.768K Baud 76.80K Baud 19.20K Baud 9600 Baud 
0 0 1 2 65.536K Baud 16.384K Baud 38.40K Baud 9600 Baud 4800 Baud 
0 1 0 4 32.768K Baud 8192 Baud 19.20K Baud 4800 Baud 2400 Baud 
0 1 1 8 16.384K Baud 4096 Baud 9600 Baud 2400 Baud 1200 Baud 
1 0 0 16 8192 Baud 2048 Baud 4800 Baud 1200 Baud 600 Baud 
1 0 1 32 4096 Baud 1024 Baud 2400 Baud 600 Baud 300 Baud 
1 1 0 64 2048 Baud 512 Baud 1200 Baud 300 Baud 150 Baud 
1 1 1 128 1024 Baud 256 Baud 600 Baud 150 Baud 75 Baud 

TCLR - Clear Baud-Rate Timing Chain (Test Modes Only) 
This bit is disabled and remains low in any mode other than test or bootstrap modes. 
Reset clears this bit. While in test or bootstrap modes, writing a one to this bit causes 
the baud-rate counter chains to be reset. Because the one state of this bit is transitory, 
reads always return a logic zero. This control bit is intended only for factory testing 
of the MCU. 

RCKB - SCI Baud-Rate Clock Test (Test Modes Only) 

9-8 

This bit is disabled and remains low in any m6de other than test or bootstrap modes. 
Reset clears this bit. While in test or bootstrap modes, this bit may be written but not 
read (reads always return a logic zero). Writing a one to this bit enables a baud-rate 
counter test mode where the exclusive-OR of the receiver clock (16 x the baud rate) 
and the transmit clock (1 x the baud rate) is driven out the PD1ITxD pin. This control 
bit is intended only for factory testing of the MCU. 

M68HC11 REFERENCE MANUAL MOTOROLA 



9.2.3 SCI Control Register 1 (SCCR1) 

The SCCR1 contains control bits related to the 9-bit data character format and the receiver 
wake-up feature. Four of the bits in this register are not used and always read as zeros. 

R8 T8 

RESET: u u 

R8 - Receive Data Bit 8 

4 

M WAKE o SCCRl 
$102C 

When the SCI system is configured for 9-bit data characters, this bit acts as an extra 
(ninth) bit of the RDR. The MSB of received characters is transferred into this bit at 
the same time the remaining eight bits are transferred from the serial receive shifter 
to the SCDR. 

T8 - Transmit Data Bit 8 
When the SCI system is configured for 9-bit data characters, this bit acts as the extra 
(ninth) bit of the TDR. When the low-order eight bits of a transmit character are trans­
ferred from the SCDR to the serial transmit shift register, this bit is transferred to the 
ninth bit position of the shifter. In cases where the sense of this bit is the same as it 
was for the previous character, it is not necessary to write to this bit before transmission 
of the new character. For example, if the 9-bit format is used to get an extra stop bit 
(logic one), the T8 bit is written to one before transmitting the first character, and no 
other writes are needed. 

M - SCI Character Length 
0= One start bit, eight data bits, one stop bit 
1 = One start bit, nine data bits, one stop bit 

The M bit controls the character length for both the transmitter and receiver at 
the same time. The 9-bit data format is most commonly used for an extra stop bit 
or in conjunction with the address-mark wake-up method, but it can also be used 
for parity. Mark and space parity are trivial, but odd and even parity require soft­
ware calculations. 

WAKE - Wake-Up Method Select 
0= Idle line; detection of at least a full character time of idle line causes the receiver 

to wake up. 
1 = Address mark; a logic one in the MSB position (eighth or ninth data bit depending 

on character size selected by M bit) causes the receiver to wake up. 

9.2.4 SCI Control Register 2 (SCCR2) 

The SCCR2 is the main control register for the SCI subsystem. 

3 

TIE TCIE RIE ILiE TE RE RWU 

RESET: 

MOTOROLA M68HC11 REFERENCE MANUAL 

SBK SCCR2 
$1020 

9-9 

• 



• 

TIE - Transmit Interrupt Enable 
0= TDRE interrupts disabled (software polling mode). 
1 =An SCI interrupt is requested when TDRE is set to one. 

TCIE - Transmit Complete Interrupt Enable 
0= TC interrupts disabled (software polling mode). 
1 =An SCI interrupt is requested when TC is set to one. 

RIE - Receive Interrupt Enable 
0= RDRF and OR interrupts disabled (software polling mode). 
1 =An SCI interrupt is requested when either RDRF or OR is set to one. 

ILiE - Idle-Line Interrupt Enable 
0= IDLE interrupts disabled (software polling mode). 
1 =An SCI interrupt is requested when IDLE is set to one. 

The idle-line function is inhibited while the receiver wake-up function is enabled. 

TE - Transmit Enable 
0= SCI transmitter disabled 
1 = SCI transmitter enabled 

The transmitter does not turn off in the middle of a character. When TE is written 
to zero, the transmitter keeps control of the TxD pin until any character in progress 
(including preambles or break characters) is finished. When TE is written from 
zero to one, the transmitter sends a preamble character consisting of 10 (11 if 
M = 1) bits of logic one. This mechanism can be used to queue an idle character 
time between the last character of one message and the first character of the 
succeeding message. The procedure would be to wait for TDRE to be set after 
writing the last character to the SCDR (this signals that the character has transferred 
to the shifter to be sent serially). Then write TE to zero and back to one. Since the 
last character is still being shifted out, the transmitter will not relinquish control 
of the TxD pin, but the act of writing TE from zero to one causes an idle preamble 
character to be queued to be sent as soon as the last character from the previous 
message finishes being shifted out. Finally, write the first character of the next 
message to the SCDR. This new character will start transmitting as soon as the 
queued idle character finishes. 

RE - Receive Enable 
0= SCI receiver disabled 
1 = SCI receiver enabled 

While the SCI receiver is disabled, the RDRF, IDLE, OR, NF, and FE status flags 
cannot become set. If these flags were set, turning off RE does not cause them to 
be cleared. 

RWU - Receiver Wake Up 

9-10 

0= Normal SCI receiver operation (wake-up feature not enabled). 
1 = Places the SCI receiver in a standby mode where receiver-related interrupts are 

inhibited until some hardware condition is met to wake up the sleeping receiver. 
The condition that wakes the receiver up depends on which method of wake up 
was specified with the WAKE bit in SCCR1. 

M68HCll REFERENCE MANUAL MOTOROLA 



Although it is possible for software to write the RWU bit to zero, is very unusual 
to do so. The normal sequence is for software to set the RWU bit after deciding 
that a particular SCI message is of no interest. Setting the RWU bit causes the 
receiver to go to sleep (ignore further receiver interrupt sources) until the start of 
the next message. Receiver wake-up logic recognizes when the unimportant mes­
sage is over and automatically clears the RWU bit to wake up the sleeping receiver. 

SBK - Send Break 
0= Normal transmitter operation. 
1 = Enable transmitter to send synchronous break characters. 

Whenever the SBK bit is written to one, at least one character time of break will 
be queued and sent. In the context of the M68HC11, a break character causes the 
TxO line to go to logic zero for 10 (11 if M = 1) bit times. 

In old teletype systems, a break was caused by simply disconnecting the serial 
line, which caused the line to go to logic zero for some asynchronous length of 
time (usually as long as the break key was pressed). A receiver seeing a break 
character produced by an M68HC11 would receive im all-zero character with a 
framing error (FE) because the line would be low where the receiver expected to 
see a logic-high stop bit. 

The break characters in the M68HC11 are synchronous because no partial character 
times of the break condition are ever produced. When SBK is set to one, a break 
character is queued pending completion of any character currently shifting out of 
the transmit shift register. When the transmit shift register becomes available, the 
queued break character is jammed into the shift register to be serially sent, and, 
if the SBK bit is still one, another break is queued. It will always be at least one 
character time from when the SBK bit is written back to zero before the transmitter 
can resume sending normal characters. 

9.2.5 SCI Status Register (SCSR) 

The seven status bits associated with the SCI system are located in the SCSR, which is 
depicted in the followi ng reg ister. Some of these bits optiona Ily generate ha rdware i nterru pt 
requests; whereas, others simply indicate errors in the reception of a character. These 
status bits are automatically set by the corresponding conditions having been met in the 
SCI logic. Once set, these bits remain set until software completes a clearing sequence. 
The clearing sequences are somewhat automatic in that they are satisfied by performing 
functions normally doneanyway. For example, to clear the TORE flag, software must read 
the SCSR while TORE is set, and then write to the TOR. Since these are exactly the normal 
steps in response to the TORE, no instructions are needed to clear the flag. 

4 3 

TORE TC RDRF IDLE DR 

RESET: o 

TORE - Transmit Data Register Empty 

NF FE SCSR2 
$102E 

0= Not empty; a character was previously written to the SCOR and has not yet trans­
ferred to the transmit shift register to be serially sent. 

MOTOROLA M68HC11 REFERENCE MANUAL 9-11 

• 



• 

1 = Indicates a new character may now be written to the SCDR. 
In normal transmit operations, this bit is checked before each new character is 
sent to see if the SCDR can accept the new data. The SCI transmitter is double 
buffered so the TDR holds the second character in line while the transmit serial 
shift register holds the character in the process of being transmitted serially. 

The TDRE flag is cleared by reading SCSR, followed by a write to the SCDR. TDRE 
must be read as one during the read of SCSR, or the first step of the clearing 
sequence is not satisfied. 

The TDRE bit is set to one during reset to indicate that there is no meaningful data 
in the SCDR. 

TC - Transmit Complete 
0= The transmitter is busy sending a character, preamble, or break character. 
1 = The transmitter has completed sending and has reached an idle state. 

This bit is useful in systems where the SCI is driving a modem. When TC is set at 
the end of a transmission, the modem can be disabled. In older ACIA and SCI 
systems, the TDRE status bit was the only indication that a transmission was near 
completion. Since TDRE only indicated that the last character had transferred to 
the transmit shift register, software had to delay an amount of time greater than 
or equal to the time it took for this last character to finish transmitting serially. 
Since the delay time depended on the baud rate, it was relatively difficult to know 
when it was safe to disable the modem. The TC bit on the M68HC11 offers a much 
more convenient way to tell when the transmitter has completed sending. 

The TC flag is cleared by reading SCSR, followed by a write to the SCDR. TC must 
be read as one during the read of SCSR, or the first step of the clearing sequence 
is not satisfied . 

The TC bit is set to one during reset to indicate that the transmitter is not busy 
transmitting anything. 

RDRF - Receive Data Register Full 

9-12 

0= Not full; nothing has been received since the last character was read out of the 
SCDR. 

1 = A character has been received and has transferred from the receive shift register 
to the parallel SCDR where software can read it. 
This is the normal indication that a character has been received by the SCI. The 
NF and FE status bits provide additional information about this normally received 
character in the SCDR. If set, the OR flag would indicate that another character 
was serially received and was ready to be transferred to the SCDR, but the pre­
viously received character was not yet read. Software should check RDRF, OR, NF, 
and FE to tell if there was any error in the reception of a character (RDRF should 
be set and the other three flags should be clear). 

The RDRF flag is cleared by reading SCSR, followed by a read of the SCDR. RDRF 
must be read as one during the read of SCSR, or the first step of the clearing 
sequence is not satisfied. Since the NF and FE flags are set at the same time as 
RDRF, the clearing sequence for RDRF will also dear NF and FE if they were set 
for this received character. 

M68HC11 REFERENCE MANUAL MOTOROLA 



IDLE - Idle-Line Detect 
0= The RxD line is either active now or has never been active since IDLE was last 

cleared. 
1 = The RxD line has become idle. 

The idle condition is defined as at least a full character time of logic one on the 
RxD line. A character time is 10 bit times if M = 0 or 11 bit times if M = 1. 

The IDLE flag is cleared by reading SCSR, followed by a read of the SCDR. IDLE 
must be read as one during the read of SCSR, or the first step of the clearing 
sequence is not satisfied. 

Once IDLE has been cleared, it cannot be set again until the RxD line has been 
active and then becomes idle again. The idle-line function is inhibited while the 
receiver wake-up function is enabled (RWU = 1). 

OR - Overrun Error 
0= No overrun error. 
1 = Indicates that another character was serially received and was ready to be trans-

ferred to the SCDR, but the previously received character was not yet read. 
Since the SCI receiver is double buffered, there is a full character time between 
reception of a character and when it must be read from the SCDR to avoid an OR 
caused by a subsequent character. In an OR condition, the character that caused 
the OR is lost, but the previously received character in the SCDR is not disturbed. 

The NF and FE status bits are associated with the normally received character in 
the SCDR (never the character that caused an OR). 

The OR flag is cleared by reading SCSR, followed by a read of the SCDR. OR must 
be read as one during the read of SCSR, or the first step of the clearing sequence 
is not satisfied. 

NF - Noise Flag 
0= No noise detected during reception of the character in the SCDR. 
1 = Data recovery logic detected noise during reception of the character in the SCDR. 

NF does not generate interrupt requests because it is always associated with the 
setting of RDRF, which does cause interrupts. Even if the noise is detected early 
in the reception of the caharacter, NF is not set until RDRF is set at the end of 
reception of a character. Perceived noise in any of the data bit times or the start 
or stop bit times will cause NF to be set. During data bit times and the stop bit 
time, noise is indicated if the three samples taken near the middle of the bit time 
do not unanimously agree. During reception ofthe start bit, four additional samples 
are taken during the first half of the bit time to detect the leading edge of the bit 
time and to verify that it is a start bit. If all seven samples taken during the start 
bit time are not zero, noise is indicated and NF is set. Many systems ignore the 
NF because the data recovery logic has already made a good first-order attempt 
to correct the problem. In critical applications, the NF could be used to generate 
a request for retransmission of the questionable data. 

The NF flag is cleared by reading SCSR followed by a read of the SCDR. NF must 
be read as one during the read of SCSR, or the first step of the clearing sequence 
is not satisfied. 

MOTOROLA M68HC11 REFERENCE MANUAL 9-13 

• 



.. 

FE - Framing Error 
0= No framing error detected. 
1 = A framing error was detected for the character in the SCOR. 

Asynchronous serial data reception requires the receiver to properly align the 
character reception frame with the incoming serial data. This alignment is achieved 
by asynchronously searching for the falling edge of the start bit; alignment is 
verified by looking for the expected logic high during the last bit time (stop bit) 
of the character. If a logic zero is detected where the stop bit was expected, the 
FE flag is set. The FE indicator is not a foolproof indication of improper framing. 
It is possible for the receiver to be misframed without there being any FE indication 
because the RxO line could by chance be high when the receiver expected to see 
the stop bit. 

The FE flag is cleared by reading SCSR followed by a read of the SCOR. FE must 
be read as one during the read of SCSR, or the first step of the clearing sequence 
is not satisfied. 

9.2.6 SCI Data Register (SCDR) 

The SCOR shown in the following register is actually two separate registers. When SCOR 
is read, the read-only ROR is accessed; when SCOR is written, the write-only TOR is ac­
cessed. In discussions of the SCI system, any of the mnemonics SCOR, TOR, or ROR might 
be used to refer to this register location. 

R7 RS R5 R4 

T7 T6 T5 T4 

RESET: u u u u 

9.3 SCI TRANSMITTER 

R3 R2 Rl 

T3 T2 T1 

u u u 

RO 

TO 

u 

SCDR 
$102F 

RDR (READI 

TOR (WRITEI 

The SCI transmitter (see Figure 9-1) uses an internally generated bit-rate clock to serially 
shift data out of the TxO pin. A normal transmission is initiated by enabling the transmitter 
(setting TE to one) and then writing data to be transmitted to the SCOR. Since the SCI 
transmitter is double buttered, a new character may be written to the transmit queue 
whenever the TORE status flag is set to one. 

The transmit bit-rate clock is free running, and there is normally nQ way to know where a 
bit clock transition will occur relative to the software instructions that write data to the 
TOR. Since transfers to the transmit shift register and transmission of data must be syn­
chronized to this bit-rate clock, there will be an uncertainty about exactly when a character 
will start being transmitted relative to when it was written to the TOR. The transmit bit­
rate clock is free running as opposed to being started when a character is written to the 
TOR. 

9-14 M68HC11 REFERENCE MANUAL MOTOROLA 



Transmitter logic adds a zero start bit and a one stop bit to the data. characters presented 
by the CPU for transmission. The transmitter can be configured to send characters with 
eight (M = 0) or nine (M = 1) data bits. When the TOR is able to accept a new data character, 
the TORE status flag is set, and an interrupt can optionally be ge.nerated. Another status 
flag (TC) and optional interrupt are produced when the transmitter has finished sending 
everything in its queue. In addition to data characters, the transm·itter is capable of sending 
idle-line characters and break characters, which are useful in multidrop SCI networks. The 
transmitter is double buffered, which means that one character can be in the parallel TOR 
while another is in the transmit shift register being sent. In the case of queued idle and 
break characters, three characters can be in the queue, but no more than two can be data 
characters. The last topic of discussion for the transmitter will be the TxO pin buffer. This 
flexible buffer can be used to control what happens to the TxO pin when the transmitter 
is finished using the pin. 

9.3.1 Eight- and Nine-Bit Data Modes 

The M bit in the SCCR1 determines the length of SCI characters for both the transmitter 
and receiver. The most common configuration is one: start bit, eight data bits, and one 
stop bit,which is selected by M equals zero. When M equals one, characters are composed 
of one start bit, nine data bits, and one stop bit. In this 9-bit data mode, the low-order eight 
bits come from the normal TOR, and the ninth bit comes from the T8 bit of SCCR1. Oata 
is transmitted LSB first, and this ninth bit becomes the new MSB, which is transmitted just 
before the stop bit. Since this bit is adjacent to the stop bit, it can be used as an extra stop 
bit by setting T8 to one. 

Another common use for the 9-bit data format 'is in conjunction with the address-mark 
variation of receiver wake up. In a multidrop SCI network, all receivers evaluate the first 
character(s) of a message to decide whether or not this message is important to this 
receiver. If not, receiver wake up may be activated by writing a one to the RWU bit in 
SCCR2. A one in RWU causes the receiver to ignore any other characters in the message, 
thus allowing the MCU to perform more useful functions than responding to interrupts 
from the SCI. The SCI receiver is still monitoring characters normally except that status 
flags and interrupts are not being produced., When address-mark wake up is being used, 
the SCI receive logic automatically clears RWU when it sees a character whose MSB is 
one. The one in the MSB of a character indicates that this character is the first addressing 
character of a new message; thus, all receivers should wake up and evaluate this character. 
The 9-bit data format allows for full 8-bit data characters to be used in the body of a 
message while the ninth bit acts as the address marker. The first character of ea<;:h message 
will have this ninth bit set to one; whereas, the remaining characters in the message will 
have a zero in this ninth bit. Address-mark wake up can be used with 8-bit data format, 
but message characters could only use the lower seven bits for information. 

The ninth bit can also be used as a parity bit. Mark or space parity can be produced by 
simply making T8 equals one or T8 equals zero, respectively. Odd and even parity require 
software calculations with the resulting parity-bit value stored in T8. A new T8 value will 
have to be calculated for each serial character. 

MOTOROLA M68HC11 REFERENCE MANUAL 9-15 



II 

9.3.2 Interrupts and Status Flags 

Two status flags are associated with the SCI transmitter. These flags are read by software 
to tell when the corresponding condition exists. This technique is called polling. Alterna­
tively, a local interrupt enable bit can be set to enable each of these status conditions to 
generate interrupt requests when the corresponding condition is present. This technique 
is called an interrupt-driven operation. Status flags are automatically set by hardware logic 
conditions, but software clears these flags, which provides an interlock mechanism for 
logic to know when software has noticed the status indication. The software clearing 
sequence for these status flags is automatic in that functions normally performed in re­
sponse to the status flags also satisfy the conditions of the clearing sequence. 

When the transmitter is first enabled (TE written to one), the TORE and TC flags are normally 
already set. The SCI transmitter should be initialized in such a manner that the system can 
handle these interrupts before the TE bit is written to one because an immediate interrupt 
can occur from these sources. 

The TORE flag indicates that there is room in the transmit queue to store another data 
character in the TOR. The TIE bit is the local interrupt mask for TORE. When TIE is zero, 
TORE must be polled; when TIE is one, an interrupt is requested whenever TORE is one. 
To clear TORE, the user must read SCSR while TORE is one, then write to SCOR. 

The TC flag indicates that the transmitter has finished transmitting everything in its queue, 
including any idle preamble or break character that has been queued. The TCIE bit is the 
local interrupt mask for TC. When TCIE is zero, TC must be polled; when TCIE is one, an 
interrupt is requested whenever TC is one. To clear TC, the user must read SCSR while TC 
is one, then write to SCOR. 

One interrupt vector is associated with the SCI system; therefore, the interrupt service 
routine must begin by reading the SCSR to determine which interrupt(s) caused the service 
routine to be called. Possible interrupt sources include the two transmitter sources pre­
viously discussed and three receiver-related sources. 

9.3.3 Send Break 

In the M68HC11, break characters art~ character-length periods where the TxO line goes to 
zero. The character length for all characters, including idle and break characters, is influ­
enced by the M bit in SCCR1. When M equals zero, all characters are 10 bit times lon~l; 
when M equals one, all characters are 11 bit times long. Break characters have no start or 
stop bits. As long as the SBK control bit is one, break characters will be queued and sent. 
The TxO line will continuously remain at zero while break characters are being sent. When 
SBK is written back to zero, at least one bit time of logic one will appear on the TxO line 
as soon as the last break character is finished. This high bit time assures that a receiver 
can detect the falling edge at the beginning of the start bit for the next data character. 

If the transmitter is busy transmitting a character when SBK is toggled on and back off by 
software, exactly one break character will be produced following completion of the char­
acter that was being transmitted. If the transmitter is idle at the time the SBK bit is toggled 

9-16 M68HC11 REFERENCE MANUAL MOTOROLA 



on and off, it is not certain whether one or two break characters will be sent. When SBK 
js set to one, a break character is queued. When the transmit shift register becomes available 
and synchronization requirements are met with respect to the internal 1 x ba,ud-rate clock, 
the queued break character is jammed into the shift register to be serially sent and, if the 
SBK bit is still one, another break is queued. The transfer mechanism from the queue to 
the shifter is internally synchronized to the 1 x baud-rate clock; however, the relationship 
of this clock to operating software is not normally known. The instructions to write one 
and then write zero to the SBK bit execute very quickly relative to a normal baud-rate 
frequency, but there is still a small probability that the baud-rate clock edge could occur 
between writing the one and writing the zero to SBK. 

9.3.4 Queued Idle Character 

When the SCI transmitter is not sending some character,it is idle and the TxO line rests 
at logic one. This idle-line condition can last for essentially any length of time and should 
not be confused with idle characters. Idle characters are character-length periods where 
the TxO line goes to logic one. The character length for all characters, including idle and 
break characters, is influenced by the M bit in SCCR1. When M equals zero, all characters 
are 10 bittimes long; when M equals one, all characters are 11 bit times long. Idle characters 
have no start or stop bits. 

Idle characters are only produced when the transmitter is enabled from a disabled state 
(TE changed from zero to one). The first time the transmitter is enabled, this idle character 
acts as a preamble. The character-length period of logic one assures that any receiver 
connected to this transmitter will be resynchronized so that it can properly recognize the 
leading edge of the start bit for the next character. 

Software can queue an idle character into a serial data stream by momentarily turning TE • 
off and then back on again. This queueing function is useful when using the idle-line 
variation of receiver wake up. In a multidrop SCI network, all receivers evaluate the first 
character(s) of a message to decide whether or not this message is important to this 
receiver. If not, receiver wake up is invoked by writing a one to the RWU bit in SCCR2. A 
one in RWU causes the receiver to ignore any other characters in the message, thus allowing 
the MCU to perform more useful functions than responding to interrupts from the SCI. 
The SCI receiver is still monitoring characters normally except that status flags and inter-
rupts are not being produced. When idle-line wake up is being used, the SCI receive logic 
automatically clears RWU (waking up the receiver) when it sees a full character time of 
logic one. During a message, there must never be any gap between characters within a 
message because even a single bit time of idle can trigger wake up if the previous character 
was $FF. The queued idle function allows exactly one character time of idle to be inserted 
into the data steam to maintain maximum efficiency and data throughput. Before queued 
idle was available, software had to avoid writing to the TOR for two or more character 
times after seeing TORE go high, which caused the TxO line to go idle for enough time to 
trigger RWU. The new queued idle function is much cleaner and easier to use. 

The procedure for queueing an idle character is as follows. Write the last character to the 
TOR and wait for TORE to become set (indicates the last character has transferred to the 
transmit shifter to be transmitted serially). Write zero and then write one to TE. Since the 

MOTOROLA M68HC11 REFERENCE MANUAL 9-17 



• 

last character is still being transmitted, the transmitter will not give up control of the TxO 
pin, and the character being transmitted is undisturbed. The zero-to-one transition of TE 
queues the idle character to be sent as soon as the transmit shifter becomes available. As 
soon as TE is written back to one, the first character of the next message may be written 
to the TOR. In this unusual case, the transmit queue can be three characters deep: the last 
data character of the previous message still transmitting, the. queued idle character, and 
the first character of the next message in the parallel TOR. 

One subtle aspect of the TxO pin buffer logic can be especially useful with the queued idle 
function. In the previous queued idle discussion, it was assumed that the transmitter would 
not relinquish control of the TxO pin because the last character was still being transmitted, 
but what if this character is completed while TE is zero? This completion could occur if the 
user is using a fast baud rate cmd the system is so busy that there is a delay in responding 
to the TORE request. The TxO pin will revert to the general-purpose I/O function. If this 
scenario is a possibility, write bit 1 of PORTO and OORO to one. This configures the POll 
TxO pin to behave as an output and drive a one if the transmitter relinquishes control of 
the pin. Since this pin state is identical to an idle TxO line, the system would see a slightly 
longer than expected idle character time. 

Since the queuing of an idle character occurs at the rising edge of the TE bit, exactly one 
idle character results from the queueing procedure. There is never any possibility of a 
second idle character being produced because of uncertainty about the relationship be­
tween the software and the internal baud-rate clock (as there was with queued break 
characters). 

9.3.5 Disabling the SCI Transmitter 

Writing a zero to TE requests that the transmitter stop when it can. The transmitter will 
finish any transmission in progress before actually shutting down. Only an MCU reset can 
cause the transmitter to stop and shut down immediately. 

If TE is written to zero when the transmitter is already idle, the pin will revert to its general­
purpose I/O function (synchronized to the bit-rate clock). If anything is being transmitted 
when TE is written to zero, that character is completed before the pin reverts to general­
purpose I/O, but any other characters waiting in the transmit queue are lost. The TC and 
TORE flags are set at the completion ofthis last character even though TE has been disabled. 

9.3.6 TxD Pin Buffer Logic 

Several features of the TxO pin buffer logic are especially important to an SCI user. When 
the SCI transmitter is enabled, the data direction control is overridden, and the output 
buffer is forced on. When the transmitter is disabled and the transmission in progress is 
completed, the pin reverts to being a general-purpose I/O pin controlled by the PORTO 
and OORO registers. In some systems, it is very important to know just what wiJl happen 
to the pin when the SCI stops controlling it. Another feature of this pin buffer allows it to 
act like an open-collector-type buffer, which helps prevent otherwise catastrophic problems 
if two or more drivers connected to this same TxO line were to become enabled at the 

9-18 M68HC11 REFERENCE MANUAL MOTOROLA 



same time. Finally, the DDRD1 control bit still influences what is returned on reads of 
PORTD even though it is overridden in terms of controlling the output buffer enable. 

Figure 9-3 is a simplified block diagram of the TxD pin logic that illustrates the points of 
the following discussion. The MOS transistor-level schematic and a more detailed descrip­
tion of the TxD pin logic are found in 7.3.6 Port D. 

SCI 
TRANSMIT -----------, 

DATA 

XMITON _______ -+:..:.AIB=_! 

B 

HFF 

D Q 1---1-----. 

WPORTD ---+-1 c a 
[3) 

DDRD1 

INTERNAL 
DATABUS ............. -lC 

RPORTD ____ ---J 

OUTPUT 
BUFFER 

Figure 9-3. TxD Pin Logic Block Diagram 

PD1 
TxD 

Output buffer [1] is enabled by DDRD or by the SCI transmitter on (XMITON) signal. The 
XMITON signal is active while the TE bit is one and long enough after TE is written to zero 
to allow any currently transmitting character to finish. The DWOM signal determines whether 
port D pins will act as open-collector-type drivers or as totem-pole-type drivers. DWOM 
simultaneously controls all six port D pins; thus, if open-collector-type operation is needed 
on any port D pin(s), it must be used on all six. A fairly common case might be where the 
SPI needed open-collector operation so DWOM is set to one. In this case, the TxD pin 
needs a pullup resistor since the internal high-side driver was disabled. 

The data driven out the TxD pin is selected by multiplexer [2]. When the transmitter is 
enabled, SCI transmit data will drive the pin buffer. When the transmitter is disabled, latched 
port D data from half flip-flop (HFF) [3] drives the pin buffer. HHF [3] holds the last data 
written to PORTD even if the transmitter was enabled at the time. 

The DDRD1 control bit provides an enable for pin output buffer [1] and a select to multiplexer 
[4]. When PORTD is read, analog switch [5] couples the output of multiplexer [4] onto the 

MOTOROLA M68HC11 REFERENCE MANUAL 9-19 

.. 



II 

data bus to the CPU. Multiplexer [4) determines what will be returned on reads of port D. 
If DDRD1 is one, the output of the port D bit 1 latch [3) is read. If DDRD1 is zero, pin input 
buffer [6) is read. When the SCI transmitter is enabled, setting DDRD1 to zero allows 
software to directly read the current state ofthe TxD pin as data is being serially transmitted. 
In unusual cases, port D bit 1 latch [3) can be used as a software flag bit that can be written 
and read without disturbing SCI transmissions. 

Probably the most commonly used aspect of the TxD pin logic is the ability to control what 
the pin does after the SCI gives up control. For the pin to revert to a driven high, write 
DDRD1 and port D bit 1 to ones. For the pin to revert to high impedance, write a zero to 
DDRD1. This high-impedance choice is useful in multidrop systems where more than one 
transmitter is connected to a common transmit line but no more than one transmitter is 
ever simultaneously using the line. The high-impedance choice can also be used to make 
a two-wire SCI system where the TxD and RxD pins of the M68HC11 are tied together and 
data travels in only one direction at a time (half duplex). 

Since the M68HC11 is a CMOS device, it is a good idea to select the wired-OR option with 
DWOM whenever more than one output driver could potentially try to drive the same line. 

9.4 SCI RECEIVER 

The SCI receiver is responsible for synchronization to the serial data stream and recovery 
of data characters. Since the data stream has no clock, data recovery depends on the 
transmitting device and the receiving device operating at close to the same baud rate. The 
SCI system can tolerate a moderate amount of system noise without losing any information. 

The SCI receive function is somewhat more difficult than the transmit function due to the 
asynchronous nature of incoming serial data. A significant amount of discussion will be 
devoted to the way the M68HC11 recognizes a start bit because this procedure determines 
the amount of baud-rate frequency mismatch that can be tolerated and gives an indication 
of how well this SCI receiver can handle noise. Second, basic double-buffered receive 
functions are discussed. Finally, the two variations of the receiver wake-up function are 
explained. 

9.4.1 Data Sampling Technique 

The receiver front-end logic uses a sampling clock that is 16 times the baud-rate frequency. 
This sampling clock is called the RT clock in the following discussion, and one RT is 
understood to be one-sixteenth of a bit time. In the following figures, the RT clock cycles 
are numbered from one (start of a bit time) to 16 (end of a bit time). 

When the receiver is first enabled and after the reception of a stop bit at the end of a frame, 
an asynchronous search is initiated to find the leading edge of the next start bit. The goal 
of this asynchronous search is to gain bit-time synchronization between the serial data 
stream and the internal RT clock. Once synchronization has been established, the RT clock 
controls where the MCU perceives the bit-time boundaries to be. The first step in locating 
a start bit is to find a sample where RxD is zero preceded by three consecutive samples 

9-20 M68HC11 REFERENCE MANUAL MOTOROLA 



of logic one. These four samples are called start-bit qualifiers. Until the start-bit qualifiers 
are detected, the RT clock is reset to state RT1 after each sample. Once the qualifiers are 
found, the beginning of a start bit is tentatively assumed, and subsequent samples are 
assigned successive RT state numbers. Next, start-bit verification samples are taken at 
RT3, RT5, and RT7. If any two of the three verification samples are logic ones, the low at 
RT1 is assumed to have been noise, and the asynchronous search is started again. When 
the start-bit qualifiers and the start-bit verification requirements are met, synchronization 
has been achieved, and the RT count state is used to determine the position of bit-time 
boundaries. 

During each bit time, including the start and stop, data samples are taken at RTB, RT9, and 
RT10 to determine the logic sense of the bit time and to (possibly) set a working NF. The 
logic sense of the bit time is considered to be the majority of all samples taken during the 
bit time. If any sample disagrees with the rest, the working NF is set. Even if the samples 
at RTB, RT9, and RT10 suggest it should be one, the start bit time is always assumed to 
be zero. The primary reason for this assumption is to avoid an accidental wake up while 
using the idle-line variation of receiver wake up. If the previous character had been all 
ones ($FF), the stop bit and the erroneous logic high in the new start bit would. combine 
to make a full character time of logic one and would erroneously wake up the receiver. 
Also, at least three of the four samples at RT1, RT3, RT5, and RT7 were logic zero, which 
would contradict a decision of logic one based on the samples at RTB, RT9, and RT10. 

If there is any disagreement among the samples taken during any bit time in a frame 
(including the start and stop)' the working NF is set. At the end of a character reception, 
data is transferred from the receive shifter to the parallel RDR, and the RDRF flag is set. If 
noise was detected during reception of the character, the NF is set at the same time as 
RDRF. 

Figure 9-4 shows the details of the ideal case of start-bit recognition. All samples taken at 
[1] detect logic ones on the RxD line and correspond to the idle-line time or a stop-bit time 
prior to this start bit. At [2] a logic-zero sample is preceded by three logic-one samples. 
These four samples are called the start-bit qualifiers. The beginning of the start bit time is 
tentatively perceived to occur between the third logic-one sample and the logic-zero sample 
of the start qualifiers. Next, the samples at RT3, RT5, and RT7 [3] are taken to verify that 
this bit time is indeed the start bit. The samples at RTB, RT9, and RT10 are called the data 

RxD PIN 

SAMPLES 

RT CLOCK 
(16X BAUD RATE] 

RT CLOCK 
STATE 

RESET RT 

MOTOROLA 

1
:( PERCEIVED START BIT ----i·~1 
foII:(E---- ACTUAL START BIT -----i.~""'f- LSB ~ 

----------~~ l~----

iii iii i iii; ; ; ;;;; 
!-[1]~ '--[2]T '--[3]---" ~[4]..J 

ll~ ~ ~ ~ ~ ~ ~ ~I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Z 2 ~ ~ ~I~ ~ ~ ~ a: a: a: a:: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a:: a: a: a: 

• • • • • • • • • 
Figure 9-4. Start Bit - Ideal Case 

M68HC11 REFERENCE MANUAL 9-21 

• 



.. 

samples [4]. In any bit time other than the start bit, these samples would drive a majority 
voting circuit to determine the logic sense of the bit time. In the special case of the start 
bit time, the bit value is forced to be zero independent of what the data samples at RT8, 
RT9, and RT10 suggest. 

In this ideal case, the actual start bit and the perceived start bit match. The resolution of 
the RT clock leads to an uncertainty about the exact placement of the leading edge of the 
start bit. The uncertainty in the placement of the edge will be one-sixteenth of a bit time. 

Figure 9-5 shows what occurs if noise causes a sample to be erroneously detected as a 
zero before the actual beginning of the start bit. Logic-zero sample [1] in conjunction with 
the three preceding samples of logic one meet the conditions for start qualification; thus, 
logic tentatively perceives the start bit as beginning here. Subsequent start-verification 
samples at RT3 and RT5 [2] are both ones; therefore, the tentative placement of the start 
edge is rejected, and the search is restarted. When the sample at the actual beginning of 
the start bit is detected, the preceding three samples are ones; the start bit is now perceived 
to begin here. In this case, the three samples taken at RT3, RT5, and RT7 now verify that 
the start bit has been found. 

RxD PIN 

SAMPLES 

RTCLOCK 
(16X BAUD RATE) 

RT CLOCK 
STATE 

RESETRT 

[1] 

\J 
1 1 1 0 

t t t t 

I: PERCEIVED START BIT 

:1< ACTUAL START BIT LSB~ 

~ t 
1 1 1 1 0 0 0 o 0 0 0 

t t t t t t t t t t t 

Figure 9-5. Start Bit - Noise Case One 

Figure 9-6 is similar to the previous case except noise [1] is now closer to the actual 
beginning of the start bit. The noise sample and the preceding three ones meet the start­
qualification requirements. The start-verification sample at RT3 [2]. is one, which will cause 
the working NF to be set. The samples at RT5 and RT7 [3] are zeros. Since two out of three 
of the start-verification samples are correct, the original perceived position for the begin­
ning of the start bit is accepted. The RT clock will rollover from state 16 to state 1 [4], and 
bit-time misalignment [5] will continue for the remainder of this character. (A one-to-zero 
transition in the data character would cause the alignment to be readjusted.) Even though 
the perceived alignment of the serial data to the RT clock is technically incorrect, the data 
samples at RT8, RT9, and RT10 fall well within the actual bit time. This character would 
almost certainly be received correctly; however, the NF will be set to inform the user of 
the questionable character. 

9-22 M68HC11 REFERENCE MANUAL MOTOROLA 



RxD PIN 

SAMPLES 

RTCLOCK 
(16X BAUD RATE) 

---~~*I o(~ PERCEIVED LSB ~ 

I [5] "1< LSB ~ 

RTCLOCK t= I ~ ~ ~ i= I t= ~ ~ ;! I!? ~ r:: ~ g! ~ ~ ~ ~ ~ ~ ~ I i= ~ ~ ~ I ~ 1£ r:: ~ STATE a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: 

RESETRT ~ ~ ~ ~ ~ [4] 

Figure 9-6. Start Bit - Noise Case Two 

Figure 9-7 shows a burst of noise [1] causing two samples to detect erroneous zeros. The 
sample at RT5 would cause the working NF to set. Even though this example shows a 
worst-case alignment of perceived bit-time boundaries to actual bit-time boundaries, the 
data samples taken at RT8, RT9, and RT10 will fall within the actual bit time, and data 
recovery should still be successful. Perceived bit-time boundary [2] is almost half a bit time 
too soon; however, the data samples for LSB [3] still fall within the actual LSB bit time. 
This example is a theoretical case, and such gross noise should never be seen in an actual 
application. This case is an indication of how tolerant the SCI receiver is to system noise. 

RxDPIN 

SAMPLES 

RTCLOCK 
(16X BAUD RATE) 

---~~- PERCEIVEDLSB ~ 

RTCLOCK i= t= i=1i= ~ ~ j:! ~ ~ J::: ~ ~ ~ ~ ~ 2 ~ ~ ~Ii= ~ ~ ;! ~ ~Ir:: ~ ~ ~ 
STATE a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: 

RESETRT ~ ~ ~ 

Figure 9-7. Start Bit - Noise Case Three 

Figure 9-8 depicts the case of noise causing an erroneous sample of one early in the start 
bit. In this case, the NF would be set due to the one at sample RT3. The alignment of the 
perceived bit-time boundary matches that of the actual bit-time boundary. 

Figure 9-9 shows a gross burst of noise [1] during the start-verification samples. The two 
logic-one samples at RT5 and RTI cause the one-to-zero transition at the actual beginning 
of the start bit to be rejected as the perceived start bit. Since there are no more cases of 
three logic-one samples in a row [2], the start bit is never detected. Because the circuit 

MOTOROLA M68HC11 REFERENCE MANUAL 9-23 

• 



RxD PIN 

SAMPLES 

RTCLOCK 
(16X BAUD RATE) 

I: 
LJ\ 

1 1 1 1 1 1 1 1 1 0 1 

t t t t t t t t t t t 

PERCEIVED START BIT :I~ LSB ~ ACTUAL ST ART BIT 

t 
0 o 0 0 0 

t t t t t 

RTCLOCK ;::::1;::::;::;::;::;::;:: t:.: ;::1;:: ~ ~ j:! ~ ~ ~ ~ ~ ~ ~ 2 2 ~ ~ ~I;:: ~ ~ j::!: 
~m ~~~~~~~~~~~~rrrrrrrrrrrrrrrrrrrrrrrrrrococococ 

RESET RT t t t t t t t t t 

Figure 9-8. Start Bit - Noise Case Four 

NO START BIT FOUND-SEE TEXT 

I~ ACTUALSTARTBIT---~.t~~ LSB ~ 
RxD PIN-------.,X'-___ fL]\ ,,---[2)--__ , t 

SAMPLES 

RTCLOCK 
(16X BAUD RATE) 

1 1 1 1 1 1 1 1 1 0 

t t t t t t t t t t 
o 1 [1) 1 0 0 0 0 0 0 0 0 0 d d d 

t t t t t t t t t t t t t t t 

RT CLOCK ;:: I;:: ;:: ;:: ;:: ;:: ;:: t= ;:: I;:: P! ~ j:! ~ j:£ ~ ;:: ;:: ;:: ;:: ;:: ;:: ;:: ;:: t= I;:: ;:: ;:: 
STATE a: a: a: a: a: a: a: a: ex: a: a: a: a: a:: a: a: a: a: a: a: a: a: a: a: a: a: a: a: 

RESET RT t t t t t t t t t t t t t t t t t t t t t 

.. Figure 9-9. Start Bit - Noise Case Five 

could not locate the start bit, the frame will be received as a framing error, be improperly 
received, or be missed entirely, depending on the data in the frame and when the start 
search logic synchronized on what it thought was a start bit. This example shows two, 
independent noise incidents that are specifically positioned within a frame. Of the six cases 
of noise during the start-bit search, this case is the only one that causes incorrect data 
reception. 

The final start-bit case shown in Figure 9-10 shows a burst of noise in the middle of the 
start bit time. The noise [1] causes two out of three data samples to be erroneously detected 
as ones. The start-bit logic forces this bit to be detected as a zero even though the majority 
of samples RT8, RT9, and RT10 suggest it should be one. The majority of all seven samples 
taken during the start bit time agree with the forced zero. 

Another advanced feature of the data sampling technique allows the RT clock to be re­
synchronized on any valid one-to-zero transition in a frame. Data is constantly being sam­
pled and shifted into a 16 x baud-rate shift register. A one-to-zero transition is indicated 
by the pattern (1110dOdOdO), which corresponds to three logic-one samples preceding the 

9-24 M68HC11 REFERENCE MANUAL MOTOROLA 



RxD PIN 

SAMPLES 

RTCLOCK 
(16XBAUDRATE) 

RTCLOCK 
STATE 

RESET RT 

I: PERCEIVED START BIT :1. LSB ~ ACTUAL START BIT 

~ rLJ\ t 
1 1 1 1 1 1 1 1 1 0 0 0 o 1 0 1 

t t t t t t t t t t t t t t t t 

Figure 9-10. Start Bit - Noise Case Six 

falling edge and logic-zero samples at RT1, RT3, RT5, and RTl. (As long as no more than 
one of the samples at RT3, RT5, and RTl was a one, the falling edge would be recognized.) 
This feature does not help a worst-case analysis. However, this feature improves the 
probability of proper alignment between perceived bit times and actual bit times in the 
data stream, thus improving the reliability of normal data reception. 

After a framing error is detected (provided a break was not detected at the same time), 
the three logic-one samples leading to start-bit qualification are forced into the high-speed 
shift register. This procedure is analogous to pretending the stop bit of the misframed 
character was really a logic one. The forced logic-one samples are positioned at RT14, 
RT15, and RT16 of the perceived stop bit in an attempt to permit normal reception to 
proceed. If the samples were not forced to ones, the subsequent start bit could be missed. • • A break is detected when a framing error occurs and the data character associated with it 
is all zeros. In the case of a break detect. the artificial start edge is not forced. 

From an understanding of how character alignment is achieved and where the logic sense 
of a bit time is sampled, it is possible to calculate the worst-case baud-rate mismatch that 
can be tolerated between two SCI devices. In this worst-case analysis, no one-to-zero 
transitions are assumed to occur within the character to cause realignment. The noise 
cases discussed previously are ignored because they do not apply to normal reception. In 
the case of baud-rate mismatch, the data sampling technique may be unable to recover 
correct data in the presence of gross noise. 

9.4.2 Worst-Case Baud-Rate Mismatch 

Two cases must be considered and each of these cases must be modified for normal 8-
bit data format and optional 9-bit data format. In the first case, a too-slow transmitting 
device sends characters to this SCI receiver. In the second case, a too-fast transmitting 
device is operating above the ideal baud rate. When the accumulated bit-time alignment 
error causes more than one of the three data samples for the stop bit time to fall outside 
the actual stop bit time, an error has occurred. In both cases, assume the receiver is 
operating at the ideal baud rate for reference, which should provide the basis for any worst-

MOTOROLA M68HC11 REFERENCE MANUAL 9-25 



II 

case baud-rate analysis. For most users, the amount of mismatch that can be tolerated is 
much more than the amount that is ever likely to be encountered. 

Figure 9-11 (a) shows a worst-ci;lse slow signal on RxD relative to the RT clock states of the 
16 x receiver RT clock. The alignment of the falling edge of start bit [1] in Figure 9-11 (a) 
and [3] in Figure 9-11(b) shows the uncertainty resulting from the resolution of the RT 
clock. Only two out of the three data samples for the stop bit fall within actual stop bit [2]. 
Majority sampling can still correctly detect the stop-bit value of one, even if the MSB had 
been a zero. Of course, this worst-case analysis is not considering other errors or noise. 

RxD PIN -----l START nn __ MSB STOP 

[1]1 
RECEIVER ____ _ ____ _ 

RT~~':i~ nn 11213141516171819110L __ n 
PERCEIVED START BIT PERCEIVED STOP BIT 

(al Receive Data Slower Than Receiver Baud Rate 

RxD PIN ---1 START 

1 1 1 I. 

STOP [4] ~ IDLE OR NE~T~~~~~~ TER 

1[3] 
RECEIVER ____ _ ____ _ 

RT~~'fJ ____ 1 12131415161718191 10I..n __ 
I 

11(21314151617 8 9 101111121131141151161 
PERCEIVED START BIT PERCEIVED STOP BIT 

(bl Receive Data Faster Than Receiver Baud Rate 

Figure 9-11. Baud-Rate Frequency Tolerance 

For 8-bit data format, the ratio of the frequency of incoming data to the frequency of the 
receiver baud-rate clock can be written as follows: 

(9 bit times) -;- [15/16 + 8(16/16) + 8/16] 

The nine bit times are measured from the leading edge of the start bit to the trailing edge 
of the MSB (the stop bit was not measured although it could have been if a different 
denominator time had been used). The 15/16 is the amount of overlap between the actual 
start bit and the perceived start bit. For convenience, multiply everything by 16 to obtain 
measurements in terms of RT clock cycles as opposed to baud-rate clock cycles. The 8(161 
16) corresponds to the eight bit times of data between the perceived start and stop bits. 
The 8/16 corresponds to the portion of the perceived stop bit time to the boundary between 
the actual MSB and stop bit. This ratio calculates as follows: 

(9 x 16)1(15+8 x 16+8) = 144/(15+ 128+ 8) = 144/151 =95.36% 

9-26 M68HC11 REFERENCE MANUAL MOTOROLA 



The equivalent calculation for 9-bit data format would be 

(10 x 16)/(15+ 9 x 16+8) = 160/(15 + 144+8) = 160/167 =95.81% 

Figure 9-11 (b) can be used in a similar way to derive the calculations for the fastest serial 
data rate that can be tolerated. The actual start bit and the perceived start bit both begin 
at [3]. In this case, measure the time for the complete actual frame, which ends between 
RT clock states 9 and 10 of the perceived stop bit. The calculation for 8-bit data format is 

(10 x 16)/(9 x 16+ 9) = 160/153 = 104.56% 

The equivalent calcuation for 9-bit data format is 

(11 x 16)/(10 x 16+9)= 176/169= 104.14% 

For 8-bit data format, the baud-rate variation that can be tolerated is about ±4.5%; for 
9-bit data format, the variation is about ±4%. This analysis assumes one of the devices 
was operating at the exact baud-rate frequency, and the calculations show how much the 
other device could vary from this. One device operating four percent too slow cannot 
communicate with another device operating four percent too fast. 

9.4.3 Double-Buffered Operation 

The SCI receiver in the M68HC11 is double buffered, which means that the receiver can 
have up to two characters in it at any given moment. One of the characters is in a readable 
parallel receive data buffer (SCDR); another could be shifting into the receive serial shift 
register. This double-buffered arrangement gives software some time to notice a received 
character and read it before the next serial character is finished. Without double buffering, 
the transmitting device would be required to insert delays between transmitted characters 
to avoid a receiver overrun. An overrun occurs in a double-buffered M68HC11 if a serial 
character is received and is ready to transfer into the parallel RDR while there is still a 
previously received character in the RDR. The transfer could not occur without destroying 
the previously received character. 

9.4.4 Receive Status Flags and Interrupts 

Five status flags are associated with the SCI receiver. RDRF is set and optionally generates 
an interrupt request when a character has been received and transferred into the parallel 
RDR. The OR flag is set and optionally generates an interrupt request instead of RDRF (if 
RDRF was already set when a new character was ready to be transferred into the parallel 
RDR). When an overrun takes place, the new character is lost, and the character that was 
in its way in the parallel RDR is undisturbed. The NF and FE flags provide additional 
information about the character in the parallel RDR. Since NF and FE are always accom­
panied by RDRF and since RDRF already generates an interrupt request, NF and FE do not. 
The last receiver status flag and" interrupt source comes from the IDLE flag. The RxD line 
is idle if it has constantly been at logic one for a full character time. The IDLE flag is set 
only after the RxD line has been busy and becomes idle, which prevents repeated interrupts 
for the whole time RxD remains idle. 

MOTOROLA M68HC11 REFERENCE MANUAL 9-27 

• 



• 

Status flags are set by the SCI logic in response to specific conditions in the receiver. These 
flags can be read (polled) at any time by software. Three of the flags (RDRF, OR, and IDLE) 
can also optionally generate an automatic interrupt request. The RIE is a local enable for 
both RDRF and OR. If RIE is set to one, RDRF and OR generate interrupts whenever either 
is set to one. If RIE is zero, RDRF and OR do not generate interrupts, and the receiver 
operates in polled mode. ILiE works similarly as a local enable for the IDLE status flag. 
When ILiE is set to one, an interrupt request is generated whenever IDLE is a one. When 
ILiE is zero, the IDLE status flag does not generate interrupt requests. When the receiver 
wake-up function is enabled (RWU = 1), setting the IDLE flag is inhibited. 

9.4.5 Receiver Wake-Up Operation 

The M68HC11 receiver logic hardware also supports a receiver wake-up function, which 
is intended for systems having more than one receiver. With this function, a transmitting 
device directs messages to an individual receiver or group of receivers by passing ad­
dressing information as the initial byte(s) of each message. Receivers not addressed ac­
tivate the receiver wake-up function, which makes these receivers dormant for the remainder 
of the unwanted message and eliminates any further software overhead to service the 
remaining characters of the unwanted message. 

The receiver is placed in wake-up mode by writing a one to the RWU bit in the SCCR2 
register. While RWU is one, all of the receiver-related status flags (RDRF, IDLE, OR, NF, 
and FE) are inhibited (cannot become set). Although RWU can be cleared by a software 
write to SCCR2, to do so would be unusual. Normally, RWU is set by software and is cleared 
automatically with hardware by one of the two following methods . 

9.4.5.1 IDLE-LINE WAKE UP. To use this receiver wake-up method in an actual system, 
a software addressing scheme is established to allow the transmitting device(s) to direct 
messages to individual receivers or groups of receivers. This addressing scheme is purely 
a software device and may take any form as long as all transmitting and receiving devices 
are programmed to understand the same scheme. The addressing information is usually 
the first frame(s) in a message; therefore, uninterested receivers are burdened only with 
these minimum addressing frames. All receivers are awake (RWU =0) when each message 
begins. As soon as a receiver determines that the message is not intended for it, software 
sets the RWU bit (RWU = 1), which inhibits further flag setting until the RxD line goes idle 
at the end of the message. As soon as an idle line is detected by receiver logic, hardware 
automatically clears the RWU bit so that the first frame ofthe next message can be received. 
This method of receiver wake up requires a minimum of one idle-line frame time between 
messages and no idle time between frames in a message. 

9.4.5.2 ADDRESS-MARK WAKE UP. In this method of receiver wake up, all serial char­
acters consist of seven (eight if M = 1) information bits and an MSB, which is used to 
indicate an address character (when set to one - mark). The first character of each message 
is an addressing character (MSB is one). All receivers in the system evaluate this character 
to determine if the remainder of the message is directed toward this particular receiver. 
As soon as a receiver determines that a mes:;age is not intended for it, the receiver activates 

9-28 M68HC11 REFERENCE MANUAL MOTOROLA 



the RWU function by setting (with a software write) the RWU bit. Since setting RWU inhibits 
receiver-related flags, there is no further software overhead for the rest of this message. 
When the next message begins, its first character will have its MSB set, which automatically 
clears the RWU bit and enables normal character reception. The first character whose MSB 
is set will also be the first character to be received after wake up because RWU gets cleared 
before the stop bit for that frame is serially received. This method of wake up allows 
messages to include gaps of idle time, unlike the earlier idle-line method, but there is an 
efficiency loss due to the extra bit time per character (address bit) required in all characters. 

9.5 BAUD-RATE GENERATOR 

This discussion, which provides a more detailed description of the baud-rate generator, is 
useful to those users who have an odd crystal frequency or some other unusual require­
ment. The usual approach to selecting a baud rate is to start from a particular crystal 
frequency and select one of the 32 available division factors to arrive at a desired baud 
rate. If a system uses equipment from other manufacturers (such as a CRT terminal or host 
computer), a standard baud rate, such as 9600 baud, is used. Many applications include 
SCI networks that do not have to communicate with ordinary RS232-type sources. In these 
cases, any frequency can be used as long as all of the devices in the network use the same 
baud rate - for example, in the automotive industry, 32.768K baud has commonly been 
used. These systems include separate controllers for various parts of the car and test­
equipment interfaces. All of the custom equipment is controlled by the automobile man­
ufacturer. In this environment, high throughput on the SCI and maximum bus frequency 
are more important than a customary baud rate. 

9.5.1 Timing Chain Block Diagram 

Figure 9-12 is a block diagram of the SCI baud-rate timing chain. The crystal frequency is 
divided by four to get the bus rate PH2 clock. PH2 is the same frequency as E (but leads 
E by 90°). The prescale select bits, SCP1-SCPO, select an initial division factor of 1, 3, 4, or 
13 that drives a series of divide-by-two stages. The rate select bits (SCR2-SCRO) determine 
where the RT clock will be tapped off of this divider chain. The RT clock is 16 times the 
baud-rate frequency. This 16 x baud-rate clock is finally divided by 16to get the transmitter 
baud-rate clock. The actual baud-rate generator functions like this block diagram although 
the implementation is slightly different to overcome potential circuit-delay problems. (It is 
important to the overall SCI circuit design to maintain minimum delays from PH2 to baud­
rate clock edges.) 

9.5.2 Baud Rates vs. Crystal Frequency 

Table 9-3 is a complete listing of all possible baud rates that can be achieved for five crystal 
frequencies. The entries most likely to be of interest are in bol.d. 

9.6 SCI TIMING DETAILS 

The timing information presented in the following paragraphs is much more detailed than 
most users need but will help normal users better understand the SCI system. For rare 

MOTOROLA M68HC11 REFERENCE MANUAL 9-29 

• 



II 

EXTAL -XTAL 

OSCILLATOR 
AND 

CLOCK GENERATOR 

(+4) 

E 

L..-_ ..... AS 

INTERNAL BUS CLOCK (PH2) 

SCI 
RECEIVE 

BAUD RATE 
(16X) 

SCI 
TRANSMIT 

BAUD RATE 
(1X) 

1:1 

Figure 9-12. Baud-Rate Generator Block Diagram 

applications needing this much detail, this discussion is an authoritative reference source 
although it is not intended to replace guaranteed data-sheet timing information. 

9.6.1 Operation As Transmitter Is Enabled 

When the transmitter is initially enabled (writing one to TE), the SCI logic overrides DDRD 
control of the PD1ITxD pin, and an initial preamble character is sent. This preamble char­
acter is 10 (11 if M = 1) bit times of continuous logic high at the pin. An uncertainty arises 

9-30 M68HC11 REFERENCE MANUAL MOTOROLA 



Table 9·3. Baud Rates by Crystal Frequency, SCP1·SCPO and SCR2·SCRO 

Crystal Frequency 

SCP1 SCPO SCR2 SCR1 SCRO 223 Hz 8 MHz 4.9152 MHz 4 MHz 3.6864 MHz 

Baud Rates 

a a a a a 131.072K Baud 125.00K Baud 76.80K Buad 62.50K Baud 57.60K Baud 
a a a a 1 65.536K Baud 62.50K Baud 38.40K Baud 31.25K Baud 28.80K Baud 
a a a 1 a 32.768K Baud 31.25K Baud 19.20K Baud 15.625K Baud 14.40K Baud 
a a a 1 1 16.384K Baud 15.625K Baud 9600 Baud 7812.5 Baud 7200 Baud 
a a 1 a a 8192 Baud 7812.5 Baud 4800 Baud 3906 Baud 3600 Baud 
a a 1 a 1 4096 Baud 3906 Baud 2400 Baud 1953 Baud 1800 Baud 
a a 1 1 a 2048 Baud 1953 Baud 1200 Baud 977 Baud 900 Baud 
a a 1 1 1 1024 Baud 977 Baud 600 Baud 488 Baud 450 Baud 

a 1 a a a 43.691 K Baud 41.666K Baud 25.60K Baud 20.833K Baud 19.20K Baud 
a 1 a a 1 21.845K Baud 20.833K Baud 12.80K Baud 10.417K Baud 9600 Baud 
a 1 a 1 a 10.923K Baud 10.417K Baud 6400 Baud 5208 Baud 4800 Baud 
a 1 a 1 1 5461 Baud 5208 Baud 3200 Baud 2604 Baud 2400 Baud 
a 1 1 a a 2731 Baud 2604 Baud 1600 Baud 1302 Baud 1200 Baud 
a 1 1 a 1 1365 Baud 1302 Baud 800 Baud 651 Baud 600 Baud 
a 1 1 1 a 683 Baud 651 Baud 400 Baud 326 Baud 300 Baud 
a 1 1 1 1 341 Baud 326 Baud 200 Baud 163 Baud 150 Baud 

1 a a a a 32.768K Baud 31.250K Baud 19.20K Baud 15.625K Baud 14.40K Baud 
1 a a a 1 16.384K Baud 15.625K Baud 9600 Baud 7812.5 Baud 7200 Baud 
1 0 (j 1 a 8192 Baud 7812.5 Baud 4800 Baud 3906 Baud 3600 Baud 
1 a 0 1 1 4096 Baud 3906 Baud 2400 Baud 1953 Baud 1800 Baud 
1 a 1 a a 2048 Baud 1953 Baud 1200 Baud 977 Baud 900 Baud 
1 a 1 a 1 1024 Baud 977 Baud 600 Baud 488 Baud 450 Baud 
1 a 1 1 a 512 Baud 488 Baud 300 Baud 244 Baud 225 Baud 
1 a 1 1 1 256 Baud 244 Baud 150 Baud 122 Baud 112.5 Baud 

1 1 0 a 0 10.082K Baud 9600 (+0.16%) 5908 Baud 4800 1+0.16%) 4431 Baud 
1 1 a a 1 5041 Baud 4800 Baud 2954 Baud 2400 Baud 2215 Baud 
1 1 0 1 0 2521 Baud 2400 Baud 1477 Baud 1200 Baud 1108 Baud 
1 1 0 1 1 1260 Baud 1200 Baud 738 Baud 600 Baud 554 Baud 
1 1 1 a a 630 Baud 600 Baud 369 Baud 300 Baud 277 Baud 
1 1 1 0 1 315 Baud 300 Baud 185 Baud 150 Baud 138 Baud 
1 1 1 1 0 158 Baud 150 Baud 92 Baud 75 Baud 69 Baud 
1 1 1 1 1 79 Baud 75 Baud 46 Baud 38 Baud 35 Baud 

2.1 MHz 2 MHz 1.2288 MHz 1 MHz 921.6 kHz 

Bus Frequency IE clock) 

because all transmissions are synchronized to the relatively slow baud-rate clock, and the 
relationship of this clock to running software is normally not known. Figure 9-13 sum­
marizes the timing details related to transmitter enable. 

TE can be written to one anytime in the interval from [1] to [3]; it will be recognized at the 
falling edge of Tx clock [4]. The rising edge of TE [1] is too late relative to the falling edge 
of internal Tx clock [2). The rising edge of TE [3] is in time to be recognized at the falling 
edge of internal Tx clock [4]. This reflects an uncertainty about the delay from writing TE 
to one and when the SCI transmitter actually takes control of the TxO pin. The pin functions 
as the general-purpose 110 pin (P01) until [5] where the SCI transmitter takes over and 
begins sending the preamble character. 

MOTOROLA M68HC11 REFERENCE MANUAL 9-31 

• 



II 

TE 

~ 
SYNCHRONIZATION ~ 

UNCERTAINTY I 

TxD PIN -----------------{, [51 I 

Figure 9-13. Transmitter Enable Timing Details 

9.6.2 TORE and Transfers from SCDR to Transmit Shift Register 

To transmit information, data is written to the SCOR, which places data in the write-only 
TOR. This parallel buffer register holds the character until the transmit serial shift register 
is available. When any previously queued character(s) have finished, the data from the 
parallel TOR is transferred into the transmit shift register, and a start and stop bit are added 
to it. Figure 9-14 shows the case where data was written to the SCOR some time before 
the middle of the last bit time of a previous character. From this figure and a functional 
understanding of the transmitter, a user could develop a similar timing diagram for cases 
where the transmitter is idle when SCOR is written. 

A sequence of events begins at the middle of the last bit time of the previous character 
frame [1]. The inset of Figure 9-14 shows an expanded view of this sequence. The rising 
edge of internal Tx clock [2] occurs at a falling edge of the internal PH2 clock. At the next 
falling edge of PH2 [3], a one-half cycle transfer signal is generated. This internal pulse 
causes the data waiting in the parallel TOR to be transferred into the transmit shift register. 
TxO pin [5] finishes sending the stop bit from the previous character even though the next 
character is already in the transmit shift register to transmit immediately after the stop bit 
ends. At the next falling edge of PH2 [4], the TORE flag is set to indicate that the parallel 
TOR is available for another character. 

In a case where no data is waiting in the parallel TOR, the TORE flag would already be one 
prior to [4]. No transfer pulse would be generated as there is nothing available to transfer. 
Whenever data is finally written to the parallel TOR, it will transfer almost immediately to 
the shift register subject to synchronization delays. All transfers are synchronized to rising 
edges of the internal free-running Tx clock signal. Normally, the relationship between this 
internal baud-rate clock and running software is not known. 

9.6.3 TC VS. Character Completion 

The last timing detail for the transmitter involves the end of a transmission. When the 
transmitter is disabled by writing TE to zero, any character in progress finishes being 

9-32 M68HC11 REFERENCE MANUAL MOTOROLA 



......, STOP BIT ----------:)o~<E:_ START BIT --~ , .... """"~________ , NEXT 

TxD PIN ~ (1J (5J ~ 
I/"l";-·_········· .. .;;."."". ------;1 L-__ _ 

TxCLOCK IL.. _______ +-l---l' I \. I 
TRANSFERTO _--'-________ -t:l_' --'-I' n \ ..... ,-----

Tx SHIFTER .. 

TORE )\ I I / i 
\"1,, ..... ,·.······// 

INSET: Expanded Timing Diagram. 

___ --IY I2J TxCLOCK 

PH2 

TRANSFER TO 
Tx SHIFTER 

TORE 

1 (3J 

___ ~ __ ---l~~_~ __ _ 

__ ~_---,-'_----,Y (4J 

Figure 9-14. Write SCDR to Serial Data Start 

transmitted before TC is set and the TxD pin reverts to the PD1 general-purpose I/O function. 
Figure 9-15 shows a case where TE is cleared while a character is being transmitted. 

Some time before completion of a transmit character, TE is written to zero to disable the 
SCI transmitter. The transmitter does not relinquish control of the PD1 pin until the end of 
the character that is in progress. At the end of stop bit [1] (the last bit time in the frame), 
TC is set, and the TxD pin reverts to the PD1 general-purpose I/O function. The inset, an 
expanded view of the end of the stop bit, shows how these events are related to the PH2 
clock. All bit-time boundaries are aligned to falling edges of the internal Tx clock. A falling 
edge of the Tx clock occurs at a falling edge of the PH2 clock. 

9.6.4. RDRF Flag Setting vs. End of a Received Character 

A user is not generally concerned with timing relationships between an operating program 
and the serial receive data until a character has been completely received. After receiver 
logic detects the stop bit of a serial character, the character is transferred to the parallel 
RDR and the RDRF flag is set to one. Figure 9-16 shows the details related to receive 
character completion. 

MOTOROLA M68HC11 REFERENCE MANUAL 9-33 

• 



II 

I I PIN REVERTS 
fooIo(~-------- STOP BIT ---------,.~o(~-TO PD1 ---~ 

.. /... ....... FUNCTION 

TxDPIN ~ [11 ~\L.._-:...:,,-__ _ 

~,--____________ ~~----------~-'L __ +-__ _ TxCLOCK L •• _ 

/ .. i 
\. TC 

.... , .. ' 
.. :: ............. ;. 

INSET: Expanded Timing Diagram. 

TxD PIN 

Tx CLOCK 

PH2 

TC Y 
------'1 

Figure 9-15. Ending Details of Transmission 

Although the bit-time sampling is performed about the middle of a bit time, the RDRF flag 
is not set until the end of the perceived stop bit. Small differences can exist between the 
perceived and actual bit-time boundaries. The inset for Figure 9-16 is expanded to show 
how the signals of interest relate to the relatively fast PH2 clock. In reality, bit times are 
not aligned with the falling edge of PH2, but perceived bit times are specifically aligned 
with the falling edge of PH2. The falling edge of PH2 [1) at the perceived end of the stop 
bit sets RDRF [2). At the same time, a half-cycle transfer pulse is generated. This half-cycle 
active-low pulse [3) causes a received character to be transfered from the Rx shifter to the 
parallel RDR. 

9-34 M68HC11 REFERENCE MANUAL MOTOROLA 



~I·:============~_P_E_R~_I_VE_D_~_O_P_BI_T============~:~~-~~""~~-~~~r-------
PER~IVED RxD ---v I' KI '\ -1, ....... ...,..., ____ _ 

RDRF I f I ' ~ . ~ 

MOTOROLA 

I i I 

I \ I U, ::.. l 
"'~ 

INSET: Expanded Timing Diagram. 

PH2 

PER~lilED END 1 OF STOP BIT 

RDRF ____ --' 
I 

~ 
I 

Figure 9-16. RDRF Flag-Setting Details 

M68HC11 REFERENCE MANUAL 

....................... 

9-35 

• 



II 



SECTION 10 
MAIN TIMER AND REAL-TIME INTERRUPT 

This section describes the main timer system of the MC68HC11A8. Because the clocking 
chains associated with the real-time interrupt and computer operating properly (COP) 
watchdog timer branch offthe main timer counter, these timing functions are also discussed 
in this section. All major clock divider chains in the microcontroller unit (MCU) are illustrated 
from the oscillator to the serial baud-rate generators, which helps put the timer counter 
chain in context with the rest of the MCU system. 

Since the architecture of the main timer is primarily a software-driven system, several 
application examples are included throughout this section. Some examples demonstrate 
how to measure pulse widths and frequencies. Other examples demonstrate techniques 
for controlling timer output signals. Still other examples depict how output compares can 
be used for software timing. 

10.1 GENERAL DESCRIPTION 

This timer system is based on a free-running 16-bit counter with a four-stage programmable 
prescaler. A timer overflow function allows software to extend the timing capability of the 
system beyond the 16-bit range ofthe counter. Three independent input-capture functions 
are used to automatically record (latch) the time when a selected transition is detected at 
a respective timer input pin. Five output-compare functions are included for generating 
output signals or for timing software delays. Since the input-capture and output-compare 
functions may not be familiar to all users, these concepts are explained in greater detail. 

A programmable periodic interrupt circuit called the real-time interrupt (RTI) is tapped off 
of the main 16-bit timer counter. Software can select one of four rates for the RTI, which 
is most commonly used to pace the execution of software routines. 

The computer operating properly (COP) watchdog function is loosely related to the main 
timer in that the clock input to the COP system (E+215) is tapped off the free-running 
counter chain. The clocking structure for this system will be discussed briefly in this section, 
but the overall COP system is explained in greater detail in SECTION 5 RESETS AND 
INTERRUPTS. 

The timer subsystem involves more registers and control bits than any other subsystem 
. on the MCU. Each of the three input-capture functions has its own 16-bit time capture latch 

(input-capture register) and each of the five output-compare functions has its own 16-bit 
compare register. All timer functions, including the timer overflow and RTI have their own 
interrupt controls and separate interrupt vectors. Additional control bits permit software 
to control the edge(s) that trigger each input-capture function and the automatic actions 

MOTOROLA M68HC11 REFERENCE MANUAL 10-1 

• 



.. 

that result from output-compare functions. Although hardwired logic is included to auto­
mate many timer activities, this timer architecture is essentially a software-oriented system. 
This structure is easily adaptable to a very wide range of applications although it is not as 
efficient as dedicated hardware for some specific timing applications. 

10.1.1 Overall Timer Block Diagram 

Figure 10-1 is an overall block diagram of the main timer system. It will be helpful to refer 
to this figure as the detailed explanations of the various control registers and bits are 
discussed in the remainder of this section, which helps put these details in context with 
the overall timer system. 

The port A pin control block includes logic for timer functions and for general-purpose 
liD. For pins PAD, PA 1, and PA2, this block contains edge-detection logic as well as control 
logic that allows the user to select which edges will trigger an input capture. The digital 
level on these pins can be read at any time (read PORTA register) even if the pin is being 
used for the input-capture function. Pins PA6-PA3 are used for general-purpose output or 
as output-c()mpare pins. When one of these pins is being used for an output-compare 
function, it cannot be written directly as if it were a general-purpose output. Each of the 
output-compare functions (OC5-0C2) is related to one of the port A output pins. Output 
compare one (OC1) has extra control logic, allowing it to optionally control any combination 
of the PA7-PA3 pins. This extra logic is presented in 10.4.2 Advanced I/O Pin Control Using 
OC1. The PA7 pin can be used as 'a general-purpose I/O pin, as an input to the pulse 
accumulator, or as an OC1 output pin. 

The timer functions of these pins are discussed in detail throughout this section. In some 
cases, a user may need more detailed information about the logic associated with these 
pins, especially when part of port A is being used for timer I/O and the rest is being used 
for general-purpose I/O. The best source for such details appears in 7.3.1 Port A, which 
·includes complete logic diagrams for all of the port A pins . 

10.1.2 Input-Capture Concept 

The input-capture function is a fundamental element of the timer architecture of the 
MC68HC11A8. For the MCU, physical time is represented by the count in the 16-bit free­
running counter. This counter is the central element in the main timer system. Input-capture 
functions, used to record the time at which some external event occurred, are accomplished 
by latching the contents of the free-running counter when a selected edge is detected at 
the related timer input pin. The time at which the event occurred is saved in the input 
capture register (16-bit latch); therefore, although it may take an undetermined variable 
amount of time to respond to the event, software can tell exactly when the event occurred. 

By recording the times for successive edges on an incoming signal, software can determine 
the period and/or pulse width of the signal. To measure a period, two successive edges 
of the same polarity are captured. To measure a pulse width, two alternate polarity edges 
are captured. For example, to measure the pulse width for a high-going pulse, the user 
would capture at a rising edge and subtract this time from the time captured for the 

10-2 M68HC11 REFERENCE MANUAL MOTOROLA 



16-BIT TIMER BUS 

MOTOROLA 

TAPS FOR RTI, 
COPWATCHDOG, AND 
PULSE ACCUMULATOR 

;, * I TMSK1 ~ 
\ INTERRUPT 1 
j ENABLES ~ 
.~:.:.:o: .... :«.:-:o:-:.:o:.:.:.:O' 

t 
I INTEI'U'IUPT REQUESTS I 

(FUFlTHEFI QUAUFIED 
BY I BIT IN ceR) 

TO PULSE 
ACCUUULATOI'I 

BlT& 

BITS 

SIf4 

Bin 

liT 2 

BIT 1 

liTO 

POFIT A 
PIN 

CONTPIOL 

Figure 10-1. Main Timer System Block Diagram 

M68HC11 REFERENCE MANUAL 

III 

10-3 



subsequent falling edge. When the period or pulse width is less than a full 16-bit counter 
overflow period, the measurement is very straightforward. In practice, software usually 
has to keep track of the overflows of the 16-bit counter to extend its range. 

Another important use for the input-capture functions is to establish a time reference. In 
this case, an input-capture function is used in conjunction with an output-compare function. 
For example, if the user wishes to activate an output signal a certain number of clock cycles 
after detecting an input event (edge), the input-capture function would be used to record 
the time at which the edge occurred. A number corresponding to the desired delay would 
be added to this captured value and stored to an output-compare register. Since both input 
captures and output compares are referenced to the same 16-bit counter, the delay can be 
controlled to the resolution of the free-running counter independent of software latencies. 
Details about the implementation of the input-capture functions as well as more specific 
examples of how to use input-capture functions in the MC68HCllA8 are included in 10.3 
INPUT CAPTURES. 

10.1.3 Output-Compare Concept 

The output-compare function is also a fundamental element of the timer architecture of 
the MC68HC11A8. For the MCU, physical time is represented by the count in the 16-bit 
free-running counter. This counter is the central element in the main timer system. Output­
compare functions are used to program an action to occur at a specific time (when this 
16-bit counter reaches a specific value). For each of the five output-compare functions, 
there is a separate 16-bit compare register and a dedicated 16-bit comparator. The value 
in the compare register is compared to the value of the free-running counter on every bus 
cycle. When the compare register matches the counter value, an output is generated, which 
sets an output-compare status flag and initiates the automatic actions for that output­
compare function. Optional automatic actions initiated by an output compare include gen­
eration of a hardware interrupt request and state changes at the related timer output pints). 

One of the easiest uses of an output-compare function is to produce a pulse of a specific 
duration. First, a value corresponding to the leading edge of the pulse is written to the 
output-compare register. The output compare is configured to automatically set the cor­
responding output either high or low, depending on the polarity of the pulse being pro­
duced. After this compare occurs, the output compare is reprogrammed to automatically 
change the output pin back to its inactive level at the next compare. A value corresponding 
to the width of the pulse is added to the original output-compare register value, and this 
result is written to the output-compare register. Since the pin-state changes occur auto­
matically at specific values of the free-running counter, the pulse width can be controlled 
accurately to the resolution of the free-running counter independent of software latencies. 
By repeating the actions for generating pulses, an output signal of a specific frequency 
and duty cycle can be generated. 

Another use of the output-compare function is to generate a specific delay. For example, 
to produce a 10-ms delay to time programming of an EEPROM byte, follow the initial 
programming steps to the point where the programming supply has been enabled (EEPGM 
bit has been written to one). Read the current value of the main timer counter and add a 
number corresponding to 10 ms (if the count rate is 2 MHz, the value corresponding to 10 
ms would be 20,00010 or $4E20). Write this sum to the output-compare register so that an 

10-4 M68HC11 REFERENCE MANUAL MOTOROLA 



interrupt will occur when the counter gets to this value. In this example, the actual EEPROM 
programming time started just before the current time was read from the counter and 
ended after responding to the output compare and turning off EEPGM. The small delays 
for setting up the output compare and the latency for responding to the output compare 
are not considered because they only make the EEPROM programming time longer by a 
few microseconds. A more advanced user of output-compare functions will learn how to 
correct for these details, although it is often not necessary. Details about the implementation 
of the output-compare functions and specific examples of how to use output-compare 
functions in the MC68HC11A8 are included in 10.4 OUTPUT COMPARES. 

10.2 FREE-RUNNING COUNTER AND PRESCALER 

The central element of the main timer system in the MC68HC11A8 is a 16-bit free-running 
counter. This counter starts from a count of $0000 as the MCU is coming out of reset and 
then counts up continuously. When the maximum count is reached ($FFFF), the counter 
rolls over to a count of $0000, sets an overflow flag, and continues to count up. As long 
as the MCU is running in a normal operating mode, there is no way to reset, change, or 
interrupt the counting of this counter. This counter may be read at any time to tell what 
time it is. All activities of the main timer system are referenced to this one free-running 
counter; therefore, all timer functions have a known relationship to each other. 

4 

I Bit 15 Bit 8 
TeNT 
$100E 

I Bit 7 Bit 0 $100F 

The timer counter (TCNT) register is meant to be read using a double-byte read instruction 
such as load D (LDD) or load X (LDX). The low-order half of the counter passes through a 1m 
normally transparent buffer to the TCNT register. When the low-order half of the counter • 
is read using a single-byte read instruction, the value returned is simply the value of the 
low-order eight bits of the main timer counter. When the high"order byte of the TCNT 
register is read, the transparent buffer on the low-order byte ofthe TCNT register is inhibited 
for one bus cycle. In the case of a double-byte read of TCNT, the high-order byte is accessed 
first, which returns the high-order count value and, atthe same time, freezes the low-order 
count value buffer, which is read during the next bus cycle. This procedure assures that 
the two bytes read from TCNT belong with each other. The count value that is returned 
on a double-byte read corresponds to the value of the free-running counter at the second-
to-last cycle of the double-byte read instruction. This and other subtle timing details related 
to the main timer are. discussed in 10.5 TIMING DETAILS FOR THE MAIN TIMER SYSTEM. 

10.2.1 Overall Clock Divider Structure 

The following figures, registers, and paragraphs describe the major clock divider chains 
for the entire MCU system. The largest chain includes the 16-bit timer counter and its 
associated prescaler. Clocks for the pulse accumulator system, RTI, and COP watchdog 

MOTOROLA M68HC11 REFERENCE MANUAL 10-5 



branch off the main timer clocking chain. The alternative to tapping these slower clocks 
off the main timer chain would have been to build additional clock divider chains, which 
would have used expensive chip area. These taps off the main timer clocking chain have 
special circuitry to compensate for the main timer prescaler so that the clock frequency at 
these taps is independent of the prescale factor. These postscaler circuits make it practical 
to share portions of the timer clocking chain in a way that still allows the rates of the 
various systems to be selected independent of each other. 

There is a relatively complex block of logic that divides the 4 x oscillator clock down to 
the internal phase 2 (PH2) clocks and the external E clock. The address strobe (AS) signal 
for demultiplexing the low-order address from data is also developed in this first oscillator 
divider block. Almost everything that happens inside the MCU is referenced to the internal 
PH2 clocks rather than the E clock, which lags 900 behind the internal PH2 clocks. Users 
who are familiar with the older MC6800 and MC6801 Families should note that this phase 
shift between E and PH2 is different from what they are used to. From an external point 
of view, they can still think of bus cycles as starting and ending on falling edges of E, but 
they will notice a big improvement in address and data hold times relative to this edge. 

Figure 10-2 shows idealized timing relationships for the clocks and AS that are developed 
in the initial oscillator divider block. Since this section is devoted to the main timer system, 
these clocks will not be discussed in any great detail; Figure 10-2 is presented for reference 
only. For more information concerning these signals, refer to SECTION 2 PINS AND CON­
NECTIONS and Figure 7-12. 

The logic associated with the STOP power-saving mode also contributes to the complexity 
of the initial oscillator divider block. When the STOP mode is exited, the internal clocks 
resume before the external E clock starts. 

The pulse accumulator can be clocked by an external source (event counting mode) or an 
internal source (time accumulation mode). The internal clocking source is an E divided by 
64 rate clock, which is tapped off of the main timer clocking chain. The pulse accumulator 
is described in more detail in SECTION 11 PULSE ACCUMULATOR, but the E divided by 
64 tap is discussed in this section since it is tapped off the main timer. The pulse accumulator 
tap is also used to inhibit write permission to the time-protected control registers and bits. 

10-6 

EXTAl 

PH2 ,L...-_-':---'-........ 
E 1..-__ ----11 

. I I 
AS ___ -:-~I ~I ---:-____ -.:-..... 

_-,-..JX ADDR '>-f,....--""":I<~DA~TA--.>e:: 
~ ~E BUS CYCLE ----.\ 

ADDRESSitlATA 

Figure 10-2. Timing Summary for Oscillator Divider Signals 

M68HC11 REFERENCE MANUAL MOTOROLA 



Certain registers and bits, such as the timer prescaler control bits in the TMSK2 register, 
can only be written within the first 64 E-clock cycles after reset. 

The divider chains for the serial peripheral interface (SPI) clock rate and the serial com­
munications interface (SCI) baud-rate generator are the last two major clock divider chains 
in the MCU. The 4,064 bus-cycle oscillator startup delay at powerup and after STOP is 
derived from the SCI baud-rate counter. Like the main timer divider chain, this divider is 
free running and uninterruptable except by special commands available only in special 
test modes. 

Figure 10-3, which illustrates all the major clock divider chains in the MC68HC11A8, will 
help the user understand how the timer fits into the overall MCU system. The main timer 
counter and its prescaler and derived clock chains for RTI and COP watchdog are described 
in more detail in subsequent paragraphs. 

10.2.1.1 PRESCALER. A programmable prescaler allows the user to select one of four 
clocking rates to drive the 16-bit main timer counter. This choice allows the programmer 
to make a trade-off between timer resolution and timer range. The default fastest rate 
causes the main timer counter to clock at the E-clock rate, which results in a timer resolution 
of 500 ns and a timer range of 32.77 ms between overflows (for E = 2 MHz). The slowest 
rate (largest prescale factor) causes the main timer counter to clock at an E divided by 16 
rate, which results in timer resolution of 8 IlS and a timer range of 524.3 ms between 
overflows (for E = 2 MHz). 

The timer range is important because the software needed for timing functions is more 
complex if timer overflows must be considered. If time periods are known to be less than 
the time between successive overflows, then the overflows can be ignored, and time 
periods are calculated using simple 16-bit arithmetic instructions (even if an overflow occurs 
within the timed period). The overflow from 16-bit arithmetic instructions behaves just like 
an overflow from the 16-bit counter. To illustrate this point, if the timer counter is near its II 
maximum count ($FFFO) and an output compare is desired in 10010 cycles, add $FFFO plus 
$0064 (modulo $FFFF) to get $0054 (in base ten modulo 65,536, that would be 
65,520 + 100 = 84). Then write this result ($0054) to an output-compare register. In 100 
cycles, the timer counter will have overflowed and counted up to $0054 where the output 
compare will occur. When overflow has to be considered, timing calculations become much 
more complicated. 

Another factor to consider in selecting the prescaler rate is power consumption. Since 
CMOS power consumption is directly proportional to its frequency of operation, power is 
saved by reducing frequency. The amount of logic driven by the prescaled timer clock is 
fairly small compared to the amount of logic driven by the PH2 clock, but some savings 
will still result from selecting a slower count rate. 

The user should consider resolution needed and the longest time period needed (or the 
length of the longest pulse needed). As an example, consider measuring periods between 
10 ms and 100 ms. For an E-clock frequency of 2 MHz, a prescale division factor of 4 would 
result in a timing range of 131.1 ms; therefore, overflows could be ignored in calculations. 
Since the resolution would be 2 Ils, an error of one count would represent an error of 0.02 

MOTOROLA M68HC11 REFERENCE MANUAL 10-7 



EXTAl -XTAL 
PH2 

OSCILLATOR 
AND 

CLOCK GENERATOR 
(+4) 

CBYP-e_CXX 
POSTSCAlER 

PR1:PRO 

TIMER BUS 
(16 BITS) 

ADDRESS STROBE (AS) 

EXTERNAl BUS ClOCK (E) 

INTERNAL BUS CLOCK (PH2) 

AlWAYS 
E+26 

AlWAYS 
E+213 

RTR1:RTRO 

SCP1:SCPO 
1:1 

SCR2:SCR1 :SCRO 
0:0:0 

SCI 
tRANSMIT 

BAUD RATE 
(lX) 

Figure 10-3. Major Clock Divider Chains in the MC68HC11A8 

10-8 M68HC11 REFERENCE MANUAL MOTOROLA 



percent of the shortest expected pulse (10 ms). For most applications, this accuracy is 
more than required. 

When software has to handle overflows, the latency and execution time of the overflow 
service routine can become a factor in the overall accuracy of timer output functions. For 
example, consider the case where an output compare coincidentally occurs shortly after 
a timer overflow. In the most straightforward approach to generating pulses that are longer 
than the range of the timer counter, the output compare is not rescheduled until after a 
certain number of overflows. If the output compare occurs on a very low counter value 
(shortly after an overflow), the value could pass by while the overflow routine is being 
executed. Since the desired time for the output compare has already passed, the output 
compare is forced rather than being scheduled. Because this forced compare is subject to 
software latencies rather than being strictly referenced to the timer counter, an error will 
occur in the timing of the generated output signal. These errors can be avoided by careful 
software treatment; however, this example demonstates some of the costs of using an 
unnecessarily small prescaler value. 

The following register and paragraphs explain the prescaler select bits, PRl and PRO, which 
are in the timer mask register 2 (TMSK2). The other bits in this register are not related to 
the timer prescaler. 

101 Rlil PAOVI 

RESET: 

PR1, PRO - Timer Prescaler Select 

PAil PRI PRO lMSK2 
$1024 

These two bits select the prescale rate for the main 16-bit free-running timer system. 
Table 10-1 shows the relationship between the prescale factor and the value of these 
control bits. A prescale factor of one corresponds to an E divided by one rate for the 
main timer; whereas, a prescale factor of 16 corresponds to a timer count rate of E 
divided by 16. In normal modes, this prescale rate can only be changed once within 
the first 64 bus cycles after reset, and the resulting count rate stays in effect until the 
next reset. 

Table 10-1. Crystal Frequency vs. PR1, PRO Values 

Crystal Frequency 

PRl PRO Prescale Factor 223 Hz 8 MHz 4 MHz 

One Count (Resolution}/Overflow (Range) 

0 0 1 477 ns/31.25 ms 500 ns/32.77 ms 1 fLs/65.54 ms 
1 0 4 191 fLs/125 ms 2 fLs/131.1 ms 4 fLs/262.1 ms 
1 0 8 3.81 fLs/250 ms 4 fLs/262.1 ms 8 fLs/524.3 ms 
1 1 16 7.63 fLs/0.5 s 8 fLs/524.3 ms 16 fLs/1.049 s 

2.1 MHz 2 MHz 1 MHz 

Bus Frequency (E Clock) 

10.2.1.2 OVERFLOW. In cases where periods greater than the range of the timer counter 
have to be measured or produced, the timer overflow must be used, which is similar to 

MOTOROLA M68HC11 REFERENCE MANUAL 10-9 



measuring times greater than 60 seconds by using the seconds display of a digital clock. 
The minute and hour displays can be thought of as software counters, which extend the 
range of the seconds counter. Each time the seconds counter overflows (goes from 59 to 
0), the minutes counter is incremented. If a period less than 60 seconds is desired, add 
(modulo 60) the desired number of seconds to the starting time to get the ending time. 

In the MC68HC11A8, the timer overflow flag (TOF) status bit is set each time the timer 
counter overflows from $FFFF to $0000. This bit can optionally generate an automatic 
interrupt request each time it is set by setting the timer overflow interrupt (Tal) enable bit 
in the timer mask register 2 {TMSK21. Software must acknowledge that it has seen the overflow 
condition by clearing the TOF status indicator. The free-running counter continues to run 
even if the TOF status indicator is not cleared. If overflow indications are not important to 
a particular application, they may be ignored. The following registers and paragraphs 
describe the TOF status bit and the Tal interrupt enable. The other bits in these registers 
are not associated with the timer overflow. 

TOI RTII PAOVI PAil PRI 

RESET: 

[!OF RTIF PAOVF PAIF 

RESET: 

Tal, TOF - Timer Overflow Interrupt Enable, Timer Overflow Flag 

PRO 
TMSK2 
$1024 

TFlG2 
$1025 

The TOF status bit is automatically set to one each time the free-running 16-bit counter 
rolls over from $FFFF to $0000. This status bit is cleared by writing to the TFLG2 register 
with a one in the corresponding data bit position (bit 7). The Tal control bit allows the 
user to config.ure the timer overflow for polled or interrupt-driven operation but does 
not affect the setting or clearing of the TOF bit. When Tal is zero, timer overflow 
interrupts are inhibited, and the timer overflow is operating in a polled mode. In this 
mode, the TOF bit must be polled (read) by user software to determine when an 
overflow has occurred. When the Tal control bit is one, a hardware interrupt request 
is generated whenever the TOF bit is set to one. Before leaving the interrupt service 
routine, software must clear the TQF bit by writing to the TFLG2 register (see 10.2.4 
Tips for Clearing Timer Flags). 

10.2.1.3 COUNTER BYPASS (TEST MODE). In special modes of operation (test and boot­
strap), there is a counter bypass function to simplify testing of the main timer functions. 
This function is activated by writing a one to the counter bypass (CBYP) control bit in the 
TEST1 control register, which is only writable in the special modes. When CBYP is one, 
the main timer counter is reconfigured so that the prescaler is bypassed and the upper 
and lower halves of the 16-bit counter are simultaneously driven by the internal PH2 clock. 
This dramatically reduces testing time for the main timer. 

10-10 M61HC11 REFERENCE MANUAL MOTOROLA 



The functions that are tapped off of the main timer would have erroneous timing while 
the CBYP function is enabled. Since this configuration is only possible in special test modes, 
it does not interfere with any use of the systems in normal modes. 

10.2.2 Real-Time Interrupt (RTII Function 

The RTI function can be used to generate hardware interrupts at a fixed periodic rate. A 
common software practice is to organize the routines that compose the software for an 
application into a sequence of major subroutine calls. The length oftime required to execute 
all of the routines is a variable, which depends upon how much each routine had to do, 
but the worst-case time to execute the entire sequence of routines should be known. After 
completing a pass through all the routines, software enters a delay mode until a time 
reference signal is detected. Upon detecting this signal, a jump is performed to the top of 
the sequence, and all the subroutines are again executed in sequence. By knowing the 
time between successive time reference signals, a routine can measure real time by noting 
the number of times it is executed and multiplying by the time between successive time 
reference signals (in this case, the RTI period). 

In the MC68HC11 A8, the RTI system can be used to provide this periodic time reference 
signal. To accommodate the needs of a variety of applications, four different rates are 
available for the RTI signal. These rates are a function of the MCU oscillator frequency and 
the value of two software-accessible control bits (RTR1 and RTRO). Although the rate can 
be changed at any time, it is typically established shortly after reset and left alone. 

The clock source for the RTI function is a free-running clock that cannot be stopped or 
interrupted. This clock causes the time between successive RTI time-outs to be a constant, 
which is independent of the software latencies associated with flag clearing and service. 
Thus, an RTI period starts from the previous RTI time-out, not from when RTIF is cleared. 

The most common problem users encounter with the RTI system is that they forget to 
clear RTIF after it is recognized. If the flag is not cleared by a specific software write to the 
TFLG2 register, it will already be pending the next time it is checked. If the system is being 
used in an interrupt-driven mode, the interrupt will be requested and serviced immediately 
after the return from interrupt (RTI) instruction is executed at the end of the RTI service 
routine. This sequence results in a system lockup where the RTI service routine is executed 
continuously to the exclusion of all else. The only way out of this infinite loop is a system 
reset. If the RTI system is operating in a polled mode, the main routine sequence will 
operate correctly the first time and wait until RTIF is set the first time. As soon as RTIF is 
set, the jump is executed back to the top of the sequence as expected. The routines will. 
be executed the second time and software should wait for the end of the next RTI period, 
but, since RTIF is still set, software thinks the RTI period has already expired. The result 
will be that the main sequence is repeated too quickly. 

The following registers and paragraphs explain the RTI flag and RTI enable. The other bits 
in these registers are not related to the RTI system. 

MOTOROLA M68HC11 REFERENCE MANUAL 10-11 



3 

TOI RTII PAOVI PAil PR1 PRO 
TMSK2 
$1024 

RESET: 

TOF RTiF PAOVF PAIF TFlG2 
$1025 

RESET: 0 

RTII, RTIF - Real-Time Interrupt Enable, Real-Time Interrupt Flag 
The RTIF status bit is automatically set to one at the end of every RTI period. This 
status bit is cleared by writing to the TFLG2 register with a one in the corresponding 
data bit position (bit 6). The RTII control bit allows the user to configure the RTI system 
for polled or interrupt-driven operation but does not affect the setting or clearing of 
RTIF. When RTII is zero, interrupts are inhibited, and the RTI system is operating in a 
polled mode. In this mode, the RTIF bit must be polled (sampled) by user software to 
determine when an RTI period has elapsed. When the RTII control bit is one, a hardware 
interrupt request is generated each time RTIF is set to one. Before leaving the interrupt 
service routine, software must clear RTIF by writing to the TFLG2 register (see 10.2.4 
Tips for Clearing Timer Flags). 

The following register and paragraphs explain the RTI rate select bits in the pulse accumulator 
control register (PACTL). The other bits in this register are not related to the RTI system. 

4 

DDRA7 PAEN PAMOD PEDGE 

RESET: o o 

RTR1, RTRO - Real-Time Interrupt Rate Selects 

RTRl RTRO PACTl 
$1026 

These two bits determine the rate at which interrupts will be requested by 
the RTI system. The RTI system is driven by an E divided by 213 rate clock 
compensated so that it is independent of the timer prescaler. These two 
control bits select an additional division factor. Table 10-2 shows the RTI 
rates that result for various combinations of crystal frequency and RTI rate­
select control bit values. RTI is set to its fastest rate by default out of reset 
and may be changed at any time. 

RTR1 

0 
0 
1 
1 

10-12 

Table 10-2. RTI Rates VS. RTR1, RTRO for Various 
Crystal Frequencies 

Crystal Frequency 

RTRO E+213 Divided By 223 Hz 8 MHz 4 MHz 

Nominal RTI Rate 

0 1 3.91 ms 4.10 ms 8.19 ms 
1 2 7.81 ms 8.19 ms 16.38 ms 
0 4 15.62 ms 16.38 ms 32.77 ms 
1 8 31.25 ms 32.77 ms 65.54 ms 

2.1 MHz 2 MHz 1 MHz 

Bus Frequency (E Clock) 

M68HC11 REFERENCE MANUAL MOTOROLA 



10.2.3 COP Watchdog Function 

The COP watchdog function is only superficially related to the main timer system. The 
clocking chain for the watchdog function is tapped off of the main timer divider chain. 
Figure 10-3 illustrates how the COP clock is derived from the main timer clocking chain. 
Although the COP clocking chain is discussed briefly, the COP system is explained in greater 
detail in SECTION 5 RESETS AND INTERRUPTS. 

The counter stages up to the E divided by 215 tap have no reset input; whereas, the divider 
stages after this tap are reset each time the COP clearing sequence is executed (see Figure 
10-3). This structure determines the uncertainty of the COP time-out period because soft­
ware has no practical way of knowing when the first clocking edge will appear at the E 
divided by 215 tap relative to the COP clearing sequence. For a bus frequency of 2 MHz 
(E)' the first clock can appear at the E divided by 215 tap anywhere between ~O to 16.4 ms 
after a COP clearing sequence. This tolerance or uncertainty depends on the bus frequency 
(E) but does not vary with respect to the rate selects (CR1, CRO). 

The following register and paragraphs explain the COP timer rate select bits located in the 
options control register (OPTION). The other bits in this register are not related to the main 
timer system or the COP system. 

ADPU CSEL IROE DLY 

RESET: 

CR1, CRO - COP Timer Rate Select Bits 

CME CRl CRO OPTION 
$1039 

The MCU internal E clock is first divided by 215 before it enters the COP watchdog 
system. The CR1 and CRO control bits regulate a further scaling factor for the watchdog 
timer as shown in Table 10-3. The columns at the right of the table show the resulting II 
watchdog time-out periods for three typical oscillator frequencies. After reset, the time- • 
out period is configured for the shortest time-out period by default. In normal operating 
modes, these bits can only be written once, and that write must be within 64 bus cycles 
after reset. 

Table 10-3. COP Time-Out vs. CR1, CRO Values 

Crystal Frequency 

CRI CRO E+215 Divided By 223 Hz 8 MHz 4 MHz 

Nominal Time-Out 

0 0 1 15.625 ms 16.384 ms 32.768 ms 
0 1 4 62.5 ms 65.536 ms 131.07 ms 
1 a 16 250 ms 262.14ms 524.29 ms 
1 1 64 1 s 1.049 s 2.1 s 

2.1 MHz 2 MHz 1 MHz 

Bus Frequency IE Clock) 

MOTOROLA M68HC11 REFERENCE MANUAL 10-13 



10.2.4 Tips for Clearing Timer Flags 

The most common method of clearing a status flag bit in the timer flag registers is to load 
an accumulator with a mask that has a one in the bit(s) corresponding to the flag(s) to be 
cleared; then write this value to TFLG1 or TFLG2. A bit clear (BCLR) instruction can also 
be used to clear a flag in TFLG1 or TFLG2. The mask, which is supplied with the BCLR 
instruction, should have zeros in the bit positions corresponding to the flags to be cleared 
and ones in all other bits. To clear the TOF flag, execute BCLR TFLG2 with a mask of 
%01111111. The BCLR instruction will read TFLG2, AND it with the inverse of the supplied 
mask (%10000000 in this case), and write the result back to TFLG2. The condition of the 
other flags in the register is not important, even if they become set in the middle of the 
BCLR instruction, because the write cycle of the instruction will write zeros to all bits except 
those corresponding to flags that are to be cleared. Writing a zero to a bit corresponding 
to a flag that is set does not disturb the flag. 

It is not appropriate to use the bit set (BSET) instruction to clear flags in the timer flag 
registers because this could inadvertently clear one or more ofthe other flags in the register. 
Again, consider the case of clearing the TOF bit. Suppose RTIF is set after the TOF interrupt 
is recognized but before the BSET instruction is started. The BSET instruction is a read­
modify-write instruction that reads the operand, ORs this with a mask having ones in the 
bit(s) to be set, and writes the resulting value back to the operand address. Using this 
instruction on TFLG1 or TFLG2 will clear all flags that are set at the time the operand (in 
this case, the TFLG2 register) is read. 

There are many instruction sequences that can be used to clear timer flags. In general, 
each sequence takes a different number of bytes of object code and a different number of 
cycles of execution time. The best sequence depends on a number of factors, including 
(but not limited to) whether the user wants minimum execution time or minimum program 
memory space. In many cases, the subtle differences in program size and execution time 
are unimportant, and any of the sequences shown would be equally acceptable. Some 
sequences require registers to be in the direct addressing mode memory space 
($OOOO-$OOFF), which is not practical. in many applications. Since other sequences use 
indexed addressing, their efficiency will depend on whether or not the index register already 
points to the register space (extra instructions and time are required if the index register 
has to be changed). Table 10-4 illustrates seven different instruction sequences that could 
be used to clear the TOF status bit in TFLG2. 

Table 10-4. Instruction Sequences To Clear TOF 

Instruction 
Opcode Operand(s) Address Bytes Cycles 

Total Sequence 
Sequence Mode Bytes Cycles 

1 LDAA #$80 (lMM) 2 2 
STAA <TFLG2 (DIR) 2 3 4 5 

2 BelR <TFlG2 $7F (DIR) 3 6 3 6 

3 lDAA #$80 (IMM) 2 2 
STAA TFlG2 (EXT) 3 4 5 6 

4 lDAA #$80 (lMM) 2 2 
STAA TFlG2,X (lND,X) 2 4 4 6 

5 BelR TFLG2,X $7F (lND,X) 3 7 3 7 

6 LDAA #$80 (lMM) 2 2 
STAA TFLG2,Y (lND,Y) 3 5 5 7 

7 BelR TFlG2,Y $7F (lND,Y) 4 8 4 8 

10-14 M68HC11 REFERENCE MANUAL MOTOROLA 



10.3 INPUT-CAPTURE FUNCTIONS 

Each input-capture function includes a 16-bit latch, input edge-detection logic, and interrupt 
generation logic. The 16-bit latch captures the current value of the free-running counter 
when a selected edge is detected at the corresponding timer input pin. The edge-detection 
logic includes control bits so that user software can select the edge polarity that will be 
recognized. Each of the three input-capture functions can be independently configured to 
detect rising edges only, falling edges only, or any edge (rising or falling). The interrupt 
generation logic includes a status flag, which indicates that an edge has been detected, 
and a local inte'rrupt enable bit, which determines whether or not the corresponding input­
capture function will generate a hardware interrupt request. If the interrupt request is 
inhibited, the input capture is operating in polled mode where software must read the 
status flag to recognize that an edge was detected. 

Input-capture edges are generally asynchronous to the internal timer counter, which is 
clocked relative to the PH2 clock. These asynchronous capture requests are then synchro­
nized to PH2 so that the actual latching will occur on the opposite half cycle of PH2 from 
when the timer counter is being incremented. This synchronization process introduces a 
delay from when the actual edge occurs to when the counter value is latched. In almost 
all cases, this very short delay should be ignored. When the time between two edges is 
being measured, both edges are subject to the same delay; therefore, these delays will 
offset each other. When an input capture is being used in conjunction with an output 
compare, there will be a similar delay between the actual compare point and when the 
output pin actually changes state. When a prescale factor other than one is being used, 
the capture delay is smaller than the uncertainty due to timer resolution. Detailed information 
abouttimer system delays is given in 10.5 TIMING DETAILS FOR THE MAIN TIMER SYSTEM. 

The central element of each input-capture function is the input-capture latch, which can 
be read by software as a pair of 8-bit registers (see the following input-capture registers). 
The TICx registers are not affected by reset and cannot be written by software. When an 
edge has been detected and synchronized, the 16-bit free-running counter value is trans-
ferred into the input-capture register pair as a single 16-bit parallel transfer. Timer-counter III 
value captures and timer-counter incrementing occur on opposite half cycles of the PH2 
clock so that the count value is stable whenever a capture occurs. The input-capture func-
tions operate independently of each other, and all three functions can capture the same 
16-bit count value if the input edges are all detected within the same timer count cycle. 

3 

I 

Bit 15 

I I I I I I 

Bit 8 
T1Cl 
$1010 

Bit 7 Bit 0 $1011 

• 

Bit 15 

I I I I I I 

Bit 8 
T1C2 
$1012 

Bit 7 Bit 0 $1013 

I 

Bit 15 

I I I I I 

i 
Bit 8 

T1C3 
$1014 

Bit 7 Bit 0 $1015 

MOTOROLA M68HC11 REFERENCE MANUAL 10-15 



A read of the high-order byte of an input-capture register pair inhibits a new capture transfer 
for one bus cycle. As long as a double-byte read instruction such as load D (LDD) is used 
to read input-capture values, the user is assured that the two bytes belong with each other. 
If a new input-capture occurs so that a transfer would have occurred immediately after the 
high-byte read, it will be delayed for one more cycle but will not be lost. 

The latching action of an input-capture function occurs every time a selected edge is 
detected on the corresponding timer input pin (even if the corresponding input-capture 
flag is already set). This means that the value read from the input-capture register corre­
sponds to the most recent edge at the pin, which may not be the edge that caused the 
input-capture flag to be set. In a few applications, there could be a number of closely 
spaced edges (i.e., an unfiltered bouncing switch contact). In cases where these extra 
captures are undesirable, software can write to the edge-select control bits to inhibit further 
captures until after the current capture has been handled. 

The following registers and paragraphs explain the input-capture status flags and the local 
interrupt enable control bits for the input-capture functions. 

4 3 

DCIi De21 DC31 DC41 DC51 lell le21 le31 TMSKl 
$1022 

RESET: 0 0 0 0 

DC1F DC2F DC3F DC4F DC5F lelF le2F le3F TFlGl 
$1023 

RESET: 0 0 

ICxl, ICxF - Input Capture Interrupt Enables and Input Capture Flags (x = 1, 2, or 3) 
The ICxF status bit is automatically set to one each time a selected edge is detected 
at the corresponding input-capture pin. This status bit is cleared by writing to the 
TFLGl register with a one in the corresponding data bit position. The ICxl control bit 
allows·the user to configure each input-capture function for polled or interrupt-driven 
operation but does not affect the setting or clearing of the corresponding ICxF bit. 
When ICxl is zero, the corresponding input-capture interrupt is inhibited, and the input 
capture is operating in a polled mode. In this mode, the ICxF bit must be polled (read) 
by user software to determine when an edge has been detected. When the ICxl control 
bit is one, a hardware interrupt request is generated whenever the corresponding ICxF 
bit is set to one. Before leaving the interrupt service routine, software must clear the 
ICxF bit by writing to the TFLGl register (see 10.2.4 Tips for Clearing Timer Flags). 

10.3.1 Programmable Options 

The user can program each input-capture function to detect a particular edge polarity on 
the corresponding timer input pin. A pair of control bits (EDGxB, EDGxA) in the timer 
control register 2 (TCTL2) are used to select the edge(s) detected by each input-capture 
function. 

10-16 M68HCll REFERENCE MANUAL MOTOROLA 



EDG1B EDG1A EDG2B EDG2A EDG3B EDG3A 

RESET: 

EDGxB, EDGxA - Input Capture Edge Control (x= 1,2, or 3) 

TCTL2 
$1021 

These pairs of bits determine which edge(s) the input-capture functions will be sensitive 
to. These bit pairs are encoded as shown in the following table: 

EDGxB EDGxA Configuration 

0 0 Capture Disabled 

0 1 Capture on Rising Edges Only 

1 0 Capture on Falling Edges Only 

1 1 Capture on Any Edge (Rising or Falling) 

10.3.2 Using Input Capture to Measure Period and Frequency 

Timer Examples 10-1(a) and 10-1(b) show how to measure a period using an input-capture 
function. A complete assembly listing for all timer section examples is shown in 10.7 
LISTING OF TIMER EXAMPLES. Timer Example 10-1 (a) measures the time between two 
successive rising edges on an input signal at the PA2/IC1 pin. This program uses the input­
capture function in polled mode for demonstration because it is a little simpler than the 
interrupt-driven operation. Other examples in this section will demonstrate interrupt-driven 
operation, which is often a more flexible approach because the MCU can be performing 
other tasks while waiting for a particular timer event. 

Example 10-1(b) changes the period obtained from Example 10-1(a) into a frequency to 
display the results in a more familiar form. Also, support routines are provided to convert • 
hexidecimal numbers into decimal numbers. When running the example, a period is meas-
ured at the IC1 pin and displayed as a decimal period (in Ecycles) and as a frequency (in 
Hz). After printing the result, the program returns to its start and repeats continuously. 
Depending on the display-device speed and the signal at IC1, a screen can be filled with 
results very quickly. To stop, just press the reset button on the EVB board. 

Figure 10-4 shows the critical instructions in the measurement of the period of the signal 
at the PA2/IC1 pin. The numbers in square brackets in the listings indicate the number of 
MCU E cycles needed to execute each instruction. This information is used in the timing 
analysis presented in Figure 10-5. 

The timing analysis for Example 10-1 is shown in Figure 10-5, which is very detailed to 
show exactly what occurs in an input capture. Software instructions are used to read the 
first captured value, to prepare for the second capture, and to reset the input-capture flag. 
These instructions require a finite amount oftime.lfthe period ofthe signal being measured 
is too short, the second edge can come before the program is ready for it. This period will 
determine the highest frequency that can be measured with this example program. If the 
si.gnal period being measured is longer than the range of the 16-bit timer counter, then 

MOTOROLA M68HC11 REFERENCE MANUAL 10-17 



II 

E 

* Ready to detect first rising edge 
cOOe 1f 2304 fc [7] BRCLR TFLG1,X $04 * Loop here until edge 

c012 ec 10 
c014 fd dO Od 
c017 86 04 
c019 a7 23 

* First edge detected 
[5] LDD. TIC1,X 
[5] STD FRSTE 
[2] LDAA 1$04 
[4] STAA TFLG1,X 

Read time of first edge 
Save first capture value 

Clear IC1F before next edge 

* Ready to capture time of second edge 
c01b If 23 04 fc [7] BRCLR TFLG1,X $04 * Loop here until edge 

c01f ec 10 
c021 b3 dO Od 
c024 fd dO Of 

* Second edge detected 
[5] LDD TIC1,X 
[6] SUBD FRSTE 
[5] STD PERC 

Read time of second edge 
2nd - 1st -> 0 
Save result (period in cycles) 

Figure 10-4. Measuring a Period with Input Capture 

BRCLR TFLG1.X $04. I BRCLR TFLG1.X $04. 
I I 

LDD TlC1.X I STD FRSTE I ~~ I T~~~X I BRCLR TFLG1.X $04. 

IC1 
PIN 

1;~ ______________ r-112_J ____ .... __ .., '14J~r-____ _ 

I: : 'L BESTCA~~~I~~~~~:!RIOD(20CYCLES) --~~~I 
.111( WORST CASE MINIMUM PERIOD (27 CYCLES) --------3~~. 

Figure 10-5. Timing Analysis for Example 10-1 

two periods, which are exactly one overflow time apart, are not distinguishable. Since this 
program does not consider overflows, this period will determine the lowest frequency that 
can be measured with this program. These limitations are program limits, and, as shown 
in other examples, the input-capture functions can be used to measure much shorter or 
much longer periods. 

As shown in Example 10-1 (a), the CPU repeats the BRCLR instruction continuously, waiting 
for the first rising edge. Since the edge is asynchronous to the program execution, where 
the edge will occur relative to this program is uncertain. This uncertainty leads to a best­
case and a worst-case minimum period that can be measured by this program. The worst 
case arises if the edge is detected too late to be seen by the BRCLR instruction at [1). The 
best case arises when the edge is detected in time to be seen by the BRCLR instruction at 
[2]. From the cycle-by-cycle description of the BRCLR instruction, the read of the operand 
(TFLGl register in this case) is shown to occur in the third cycle of the instruction. The 
captured value is read during the last two cycles of the LDD instruction at [3), and the IC1 F 
status flag is cleared during the last cycle of the STAA TFLG1,X instruction at [4). Although 
a new capture could occur between [3) and [4), it would be cleared by the STAA at [4) and 

10-18 M68HC11 REFERENCE MANUAL MOTOROLA 



would not be recognized by the program. The earliest place the second edge could occur 
and be properly handled is during the cycle after the status flag clear instruction [4]. 

This timing analysis is based on a detailed knowledge of timer logic and instruction timing. 
Instruction timing tells which cycle within the instruction actually reads or writes a register. 
Instruction details can be found in APPENDIX A INSTRUCTION SET DETAILS. Detailed 
information concerning timer captures is given in 10.5 TIMER DETAILS FOR THE MAIN 
TIMER SYSTEM. For most applications, it is not necessary to study the timing in this much 
detail, but at least one detailed example should be studied. 

Example 10-1(b), which converts the period from Example 10-1(a) into frequency, is more 
of a demonstration of FDIV and XGDX than anything else. In a real application, the user 
would normally work with the period value rather than converting it to a frequency. Some 
shortcuts Were taken since the results were not that critical. For example, the partial sums 
were truncated rather than rounding or extending the precision of the calculations. Al­
though these shortcuts lead to small errors in the results, these errors were not important, 
considering the resolution ofthemeasurements. To measure the frequency of an incoming 
signal, a user could accumulate the time of many cycles of the signal and calculate an 
average period, which would yield much finer resolution than the single-cycle measurement 
taken in Example 10-1. 

After working with the timer and pulse accumulator for a while, a good exercise mighot be 
to develop a way to measure the signal frequency to five digits of accuracy. The following 
discussion presents a proposed technique that could be tried, although it has not been 
proven. First, connect the signal to the pulse accumulator input and to an input-capture 
input. Capture the time of a first edge and start the pulse accumulator at a count of 256 
minus 200. While waiting for 199 cycles of the incoming signal, monitor timer overflows, 
like Example 10-3 does, because 200 cycles of the signal are very likely to take longer than 
one timer overflow. When the pulse accumulator has counted 199 cycles of the signal, 
clear the input-capture flag and wait for a capture of the time of the 200th cycle. From the 
number of overflows and the difference between the final capture value and the first capture 
value, the user can determine the period of 200 cycles of the incoming signal. Finally, a 
convert this into frequency. The accuracy is basically one E cycle in 200 cycles of the signal, • 
which corresponds to about± 1 Hz at 20 kHz, and the accuracy improves for lower fre-
quencies. For very low frequencies, it is not necessary to measure many periods to get 
the accuracy. Try to include a preliminary trial measurement to decide how many cycles 
should be measured to get the needed accuracy (auto ranging). 

10.3.3 Using Input Capture to Measure Pulse Width 

Timer Example 10-2 shows how to measure a pulse width with an input capture, which is 
almost the same as measuring a period, except that the input-capture edge sensitivity must 
be reconfigured between the capture of the first edge and the second edge. Since this 
particular program measures the period of a high-going pulse, the input capture is first 
configured to capture on a rising edge at the input. After detecting the first edge, the input 
capture is reconfigured to detect a falling edge. 

Since this program is interrupt driven, it must have an interrupt service routine, which is 
automatically called as a result of an interrupt, an initialization portion, and a mainline 

MQTOROLA M68HC11 REFERENCE MANUAL 10-19 



program portion. Since this example is only demonstrating the input-capture function, the 
mainline program will be a trivial two-instruction loop that repeats until a pulse has been 
measured. In a practical application, the mainline portion would be everything other than 
initialization and interrupt service routines. 

This example is intended to run on an MC68HC11 EVB evaluation board; thus, the interrupt 
vector will be treated in a somewhat unusual way. The actual interrupt vector for input 
capture 1 is at $FFEE and $FFEF, which is in the monitor program EPROM on the EVB 
board. To allow use of these vectors, they have been initialized to point at specific RAM 
locations called pseudo-vectors. To use a vector, put a jump (JMP) instruction to the address 
of the interrupt service routine at the RAM pseudo-vector locations ($00E8, E9, and EA for 
timer input-capture 1). 

In a normal application, the address of the service routine would be hard coded into the 
double-byte vector location rather than writing a jump instruction into RAM during 
initialization. For additional information about interrupts, see SECTION 5 RESETS AND 
INTERRUPTS. 

The partial listing shown in Figure 10-6 depicts the important parts of the pulse-width 
measurement illustrated in Example 10-2. 

A detailed timing analysis for Example 10-2 is shown in Figure 10-7. Unlike the previous 
example, interrupt latencies must be considered to determine the minimum pulse width 
that can be measured by this program. The instructions in the main program do not affect 
the minimum measurable pulse except that the execution time of the longest instruction 
executing at the time of the interrupt determines the longest possible latency from an 
input-capture edge to when it can be serviced. The interrupt operation does not begin until 
the currently executing instruction is completed. If the pulse width being measured is too 
short, the second edge can come before the program is ready for it. This time will determine 
the shortest pulse that can be measured with this example program. As in the previous 
example, if the signal being measured is longer than the range of the 16-bit timer counter, 
then two pulse widths, which were different by an exact multiple of the overflow period, 
are not distinguishable. Since this program does not consider overflows, the overflow 
period of the 16-bit timer will determine the longest pulse that can be measured correctly 
with this program. These limitations are program limits and, as shown in other examples, 
the input-capture functions can be used to measure much shorter or much longer times. 

As shown in Example 10-2, the CPU repeats the WAITL2 loop continuously, waiting for the 
first rising edge. Since the edge is asynchronous to the program execution, where the edge 
will occur relative to this program is uncertain. This uncertainty leads to a best-case and 
a worst-case minimum period that can be measured by this program. The worst case arises 
when the first edge is not recognized before the end of the BEQ WAITL2 instruction at [1). 
In this worst case, the LDAA IC1 DUN instruction would have to finish, which causes an 
extra four-cycle delay. The best case arises when the edge is recognized just before the 
end of an instruction in the main program. In this best case, interrupt processing starts 
almost immediately. A more obscure possibility would exist if there were other lower 
priority interrupts enabled in the system. In that case, a lower priority interrupt could initiate 
stacking leading to the interrupt. The priority resolution to decide which vector to take does 
not occur until the stacking operations are finished. If the IC1 edge is recognized before 

10-20 M68HC11 REFERENCE MANUAL MOTOROLA 



*** initialization - (see full listing) *** 

c09c ce 10 00 [3] PWTOP LDX 'REGBAS Point to register block 
c09f 86 10 [2] LDAA 4%00010000 EDG1B:EDG1A - 0:1 
cOal a7 21 [4] STAA TCTL2,X IC1 rising edges 
cOa3 86 ff [2] LDAA t$FF 
cOa5 b7 dO 06 [4] STAA IC1MOD FF-off; 0-lst edge; l-last edge 
cOa8 7f dO 05 [6] CLR IC1DUN Signal pulse not done 
cOab 1d 23 fb [7] BCLR TFLG1,X $FB clear IC1F (if any) 
cOae 1c 22 04 [7] BSET TMSK1,X $04 enable IC1 interrupts 
cOb1 Oe [2] CLI Enable Interrupts 

cOb2 b6 dO 05 . [4] WAITL2 LDAA IC1DUN Sets after pulse done 
cObS 27 fb [3] BEQ WAITL2 Loop till pulse has been timed 
cOb7 Of [2] SEI Pulse done, disable interrupts 

*** display results - (see full listing) *** 

cOd8 ce 10 00 
cOdb 7c dO 06 
cOde 26 Od 

cOeO ec 10 
cOe2 fd dO Od 

cOe5 1d 21 30 
cOe8 1c 21 20 
cOeb 20 10 

cOed ec 10 
cOef b3 dO Od 
cOf2 fd dO 15 
cOf5 1d 21 30 
cOf8 86 01 
cOfa b7 dO 05 
cOfd 1d 23 fb 
c100 3b 

[3] 
[6] 
[3] 

[5] 
[5] 

[7] 
[7] 
[3] 

[5] 
[6] 
[5] 
[7] 
[2] 
[4] 
[7] 

[12] 

*** 
* SV2IC1 - Input Capture 1 service routine 

* * Called first when a rising edge is detected and again 
* when a falling edge is detected. 
*** 
SV2IC1 LDX 'REGBAS point at top of register block 

INC IC1MOD $FF->O at 1st edge; 0->1 at 2nd 
BNE N01ST2 if not 0, this is trailing edge 

* Process leading edge of pulse 
LDD TIC1,X read time of first edge 
STD FRSTE save till next capture 

* Reconfigure IC1 for trailing falling edge 
BCLR TCTL2,X $30 EDG1B:EDG1A->0:0 
BSET TCTL2,X $20 EDG1B:EDG1A->1:0 
BRA OU2IC1 done processing first edge 

* Process trailing edge of pulse 
N01ST2 LDD TIC1,X get time of trailing edge 

SUBD FRSTE (time of last) - (time of 1st) 
STD HPW update result 
BCLR TCTL2,X $30 disable IC1 
LDAA U 
STAA IC1DUN signal pulse measured 

OU2IC1 BCLR TFLG1,X $FB clear. IC1F 
RTI ** Return from IC1 service ** 

Figure 10-6. Measuring a Pulse Width with Input Capture 

the condition code register (CCR) is stacked, it will be serviced rather than the lower priority 
interrupt that started the interrupt process. In this unusual case, the best-case minimum 
response could be much shorter. This case does not arise in Example 10-2 because no 
lower priority interrupts are enabled. 

The response time in Figure 10-7 is slightly longer than it would be for a normal program 
because of the pseudo-vector mechanism in the EVB board. The JMP instruction at [3] is 

MQTOROLA M68HC11 REFERENCE MANUAL 10-21 

II 



E 

IC1 
PIN 

LOAA 
IC10UN 

BEQ I 
WAITL2 

I BEQ ~ ~ PS~YJlDO . WAlTL2 INTERRUPT RESPONSE VECTOR 

lOAA PC Y Y X X CT JMP LOX 
IC10UN ,l H l H l H B A CC, I VE SV21C1 ~EGBAS I 

111~ ______ 1 [3J 1[4J 

II '1[" d 
I k-- BEST CASE MINIMUM RESPONSE (17 CYCLES) 0( 

~ WORST CASE MINIMUM RESPONSE (21 CYCLES) 

(a) Leading edge latency 

[6J 

INCIC1MOO I BNE I N01ST2 

[5J 1 

'''C'''''SJ~ 

I LOO TIC1,X I STD FRSTE I BClR TCTL2,X $30 I BSETTCTL2,X $20 I 03~'~1 I BClR TFlG1,X $FB I [9J 

E 

. '[7]1 

(b) Process first edge, earliest opportunity for second edge 

Figure 10-7. Timing Analysis for Example 10-2 

not shown in Example 10-2 because it is actually constructed by program instructions 
during the initialization portion of this example program. This indirect vectoring is done 
in the EVB board because the vectors are located in the monitor EPROM and are not 
accessible to an EVB user. To allow use of the interrupts in an EVB, the vectors were 
purposely pointed at specific RAM locations call'ed pseudo-vectors. A JMP instruction 
would be stored in these RAM locations, which points to the start of the interrupt service 
routine. In a normal application, the starting address of the interrupt service routine would 
be hard coded into the vector locations at the top of memory. When an interrupt occurs, 
the user would vector directly to the service routine rather than having to execute the extra 
JMP instruction. 

The BNE N01ST2 instruction at [5] will not branch during processing of the leading edge 
of the pulse being measured. Execution continues with the LDD instruction in Figure 10-
7(b). The BCLR; BSET sequence at [6] is not as fast as a simple LDAA #, STAA TCTL2, but 
the longer sequence was chosen because it does not disturb the other bits in the register. 

10-22 M68HC11 REFERENCE MANUAL MOTOROLA 



The earliest place the second edge could occur and be properly handled is during the cycle 
after the status flag clear instruction [7]. which occurs before returning from the interrupt 
service routine after processing the leading edge of the pulse. If the second edge came 
before this time, it would still be captured, but the IC1 F flag would be cleared by the clearing 
instruction intended to clear the flag from the first edge. The minimum pulse width that 
can be measured by this program would be the time from [1] or [2] through [7]. This time 
is a total of 63 to 67 cycles or about 34 fLs. 

This timing analysis is based on this specific example running by itself in the EVB board 
and is not intended to show the smallest pulse that can be measured. Since no other tasks 
are being performed in this example, the interrupt latency is somewhat shorter than it 
would be in a realistic system. In a normal system, the user would not have to work through 
the EVB's pseudo-vector mechanism and would save three cycles of latency time (because 
of the JMP in the pseUdo-vector locations). Conversely, in a real system, the user could 
get this interrupt just as a multiply instruction had started; thus, there could be a wait of 
up to 10 cycles (MUL takes 10 cycles) for that instruction to finish before servicing the 
input-capture interrupt. Worse yet, the user may have just started servicing another inter­
rupt source when the edge was recognized; thus, the input capture would have to wait for 
that interrupt service routine to be completed before it could be serviced. A much more 
detailed discussion of interrupts is presented in SECTION 5 RESETS AND INTERRUPTS. 
The shortest pulse the user would be able to measure in a realistic system will be a few 
hundred cycles rather than the few dozen cycles shown this isolated example. 

This timing analysis is based on a detailed knowledge of timer logic and instruction timing. 
Instruction timing tells which cycle within the instruction actually reads or writes a register. 
Instruction details can be found in APPENDIX A INSTRUCTION SET DETAILS. Detailed 
information concerning timer captures is given in SECTION 10.5 TIMING DETAILS FOR 
THE MAIN TIMER SYSTEM. Detailed operation of the interrupt mechanism is presented in 
SECTION 5 RESETS AND INTERRUPTS. . 

10.3.4 Measuring Very Short Time Periods 

Since the MC68HC11A8 has three input-capture functions, it is theoretically possible to 
measure pulse widths as short as one timer count by connecting the signal to two input­
capture pins. One input capture is configured to detect the leading edge of the pulse; 
whereas, the other is configured to detect the trailing edge. Although this function is 
possible, it is not commonly used. 

10.3.5 Measuring Long Time Periods with Input Capture and Overflow 

There are at least two ways to measure time periods that are longer than the range of the 
16-bit free-running timer. The following paragraphs discuss an example based on input 
capture and counting timer overflows, which is accurate to ± 1 timer count (500 ns in this 
case). If the user were measuring times in the seconds range to a resolution of ± 100 ms, 
a software approach might be easier than the input-capture/overflow method. In the soft­
ware approach, the user sets up a real-time loop structure where the main program is 
executed once each tenth of a second. Other real-time periods could be used, but a tenth 

MQTOROLA M68HC11 REFERENCE MANUAL 10-23 

II 



of a second is easier. The user starts a software counter when the signal first changes, 
increments the count once each time through the main loop, and stops the count at the 
end of a period. This method is very simple and yields an accuracy of ± 100 ms, which is 
quite reasonable for many applications. 

To measure a time greater than the range of the 16-bit main timer counter with an input 
capture, timer overflows must be considered. A program is presented that extends the 
range of the timer to 24 bits by keeping track of overflows in an 8-bit software counter. By 
increasing the size of this software counter, the user could measure even longer periods. 
At 2-MHz bus speed and a divide by one prescale factor, 24 bits allow the user to measure 
periods up to about 8.38 s. 

The most difficult part of this procedure is deciding whether or not to count an overflow 
when a capture occurs very close to a timer overflow. Given some assumptions, the user 
can tell if the capture happened before or after the overflow by looking at the MSB of the 
captured value. Once the user knows which happened first, the case can be treated ac­
cordingly. 

First, assume that all timer overflow conditions (TOF = 1) will be handled before the MSB 
of the free-running counter becomes set again (that is, in less than half the time between 
successive overflows). If TOF and ICxF are both set and the captured value has a one in 
its MSB, then the user knows the capture occurred before the overflow. Conversely, if TOF 
and ICxF are both set and the captured value is positive (MSB = 0), then the capture occurred 
after the overflow. Servicing an overflow interrupt takes less than 15 ms, even in a busy 
system. 

Second, assume that if a capture and an overflow happen in the vicinity of each other, the 
input capture will be serviced before the overflow. Vicinity means so close together that 
both are pending when the user reaches the input-capture service routine. The input­
capture routine checks for a close overflow; therefore, if an overflow occurred just after 
the leading edge or just before a trailing edge of a measurement period, it can be included 
correctly. This assumption is needed to avoid the possibility of missing an overflow that 
should have been counted or to avoid counting one that occurred just outside the period 
being measured. Again, this condition is easy to service because timer overflow is a lower 
priority interrupt than input captures. The only wayan overflow can be serviced before an 
input capture that occurred in the vicinity is if the overflow happened enough before the 
input capture for the stacking and vector selection to be completed before the capture is 
detected. Such a case, which is no different from having the overflow occur long before 
the capture, is treated correctly without taking any special action. 

Example 10-3 uses input capture and counts overflows in an 8-bit software counter to allow 
measurement of periods between about 70 and 16,777,215 cycles (35 fLS to 8.38 s). The 
program runs on an EVB board and displays results on the EVB terminal display. The 
important parts of the program are shown in Figure 10-8; see 10.7 LISTING OF TIMER 
EXAMPLES for a complete listing. . 

10-24 M68HC11 REFERENCE MANUAL MOTOROLA 



Example 10-3 was specifically structured to allow easy expansion to other functions. For 
example, two more period measurement functions can be added by adding a few instruc­
tions to the overflow service routine and basically duplicating the IC1 service routine for 
IC2 and IC3. The following lines of code are from Example 10-3: 

c191 a6 25 
c193 2a 23 
c195 7a dO 07 

[4] 
[3] 
[6] 

LDAA TFLG2,X 
BPL OU3IC1 
DEC 'OVCNT1 

Check for TOF in MSB 
If no overflow, you're done 
This TOF shouldn't count 

* decrement OVCNT1 to -1, TOF svc routine will inc to 0 

This example demonstrates the idea of indicating the TOF should not count rather than 
directly clearing it to make it not count. Although the TOF is not needed for this period 
measurement function, it may be needed for some other function that might be in progress. 
Although the three input-capture functions and the five output-compare functions are 
effectively independent of each other, they are all specifically related to the single, 16-bit, 

*** initialization - (see full listing) *** 

c114 ce 10 00 
c117 86 10 
c119 a7 21 
c11b 86 ff 
c11d b7 dO 06 
c120 7f dO 05 
c123 1d 23 fb 
c126 1d 25 7f 
c129 1c 22 04 
c12c 1c 24 80 
c12f Oe 

c130 b6 dO 05 
c133 27 fb 
cl35 Of 

[3] PER24T LDX tREGBAS Point to register block 
[2] LDAA t%00010000 EDG1B:EDG1A = 0:1 
[4] STAA 
[2] LDAA 
[4] STAA 
[6] CLR 
[7] BCLR 
[7] BCLR 
[7] BSET 
[7] BSET 
[2] CLI 

TCTL2,X 
t$FF 
IC1MOD 
IC1DUN 
TFLG1,X 
TFLG2,X 
TMSK1,X 
TMSK2,X 

[4] WAITL3 LDAA IC1DUN 
[3] BEQ WAITL3 
[2] SEI 

IC1 rising edges 

FF-IC1 off; 0-lst edge; l-last 
Signal period not done 

$FB clear IC1F (if any) 
$7F clear TOF (if any) 
$04 enable IC1 interrupts 
$80 enable TOF interrupts 

Enable Interrupts 

Sets after period done 
Loop till period has been timed 
Done, disable interrupts 

*** display results - (see full listing) *** 

cl71 7d dO 06 
c174 2b 03 
c176 7c dO 07 
c179 86 80 
c17b b7 10 25 
c17e 3b 

*** 
* SV3TOF - Timer Overflow service routine 

* * Called whenever any timer overflow is detected. 
* If the IC1 period measurement is in progress 
* (IC1MOD positive) then the overflow counter 
* (upper 8-bits of period) is incremented. 
*** 

[6] SV3TOF TST 
[3] BMI 
[6) INC 
[2] OU3TOF LDAA 
[4] STAA 

[12] RTI 

IC1MOD 
OU3TOF 
OVCNT1 
1$80 

o or 1, IC1 active; count TOFs 
if neg, IC1 not active 
increment IC1 overflow count 

REGBAS+TFLG2 Clear overflow flag 
** Return from TOF service ** 

Figure 10-8. Measuring Long Periods with Input Capture and TOF (Sheet 1 of 2) 

MOTOROLA M68HC11 REFERENCE MANUAL 10-25 



c17f ce 10 00 
c182 7c dO 06 
c185 26 13 

c1S7 7f dO 07 
c18a ec 10 
cUc fd dO 08 
c18f 2b 27 
c191 a6 25 
c193 2a 23 
c195 7a dO 07 

c19S 20 1e 

c19a ec 10 
c19c 2b 07 
c1ge 6d 25 
c1aO 2a 03 
c1a2 7c dO 07 
c1a5 b3 dO 08 
c1aS fd dO 08 
c1ab 24 03 
clad 7a dO 07 
c1bO 1d 21 30 
c1b3 86 01 
c1b5 b7 dO 05 
c1ba 1d 23 fb 
c1bb 3b 

*** 
* SV3ICl - Input Capture 1 service routine 

* 
* Called at start and end of a period being measured 
*** 

(3) SV3IC1 LDX fREGBAS point at top of register block 
$FF->O at 1st edge; 0->1 at 2nd 
if not 0, this is second edge 

[ 6) INC IC1MOD 
(3) BNE N01ST3 

[ 6) 
[5) 
(5) 
[3) 
(4) 
[3) 
[6) 

[3) 

[5) 
(3) 
(6) 
(3) 
(6) 
[6) 
(5) 
(3) 
(6) 
(7) 
(2) 
[ 4) 
[7] 

(12) 

* Process first edge of 
CLR OVCNTl 

period 
Zero the overflow count 
Read time of first edge 
Save till next capture 

LDD 
STD 
BMI 
LDAA 
BPL 
DEC 

TIC1,X 
RES1 
OU3IC1 
TFLG2,X 
OU3IC1 
OVCNT1 

* decrement OVCNT1 to 
BRA OU3IC1 

* Process second edge 
N01ST3 LDD TIC1,X 

BMI ARNOV1 
TST TFLG2,X 
BPL ARNOV1 
INC OVCNT1 

ARNOV1 SUBD RES1 
STD RES1 
BCC RESlOK 

If IC was before any overflow 
Check for TOF in MSB 
If no overflow, you're done 
This TOF shouldn't count 

-1, TOF svc routine will inc 
Done processing first edge 

of period 
Get time of second edge 
If MSB=l, skip TOF check 
Check for overflow 
If no TOF, skip increment 

to 0 

TOF was before edge so count it 
(Time of last) - (time of 1st) 
Update result 
Check for borrow 

DEC OVCNT1 If borrow, fix overflow count 
RES10K BCLR TCTL2,X $30 Disable IC1 

LDAA U 
STAA IC1DUN Signal period measured 

OU3IC1 BCLR TFLG1,X $FB Clear IClF 
RTI ** Return from IC1 service ** 

Figure 10-8. Measuring Long Periods with Input Capture and TOF (Sheet 2 of 2) 

free-running counter and thus share the overflow mechanism. The capture and compare 
functions can independently monitor the overflow, but they should not directly interfere 
with its operation. 

10.3.6 Establishing a Relationship between Software and an Event 

In common MCU applications, a software program must generate various output control 
signals as a result of various input signals or events. A software program monitors the 
input signals and produces output signals as needed. Sometimes it is important for the 
output signals to be in some strict timing relationship to an input signal. A problem, which 
is called latency, arises when software requires some time to notice and respond to an 
input event. In many MCU systems, this latency determines the worst-case uncertainty in 
the ability of software to know exactly when an event occurred and the accuracy of the 

10-26 M68HC11 REFERENCE MANUAL MOTOROLA 



timing relationship between the event and a resulting output signal. In the MC68HC11 A8, 
the timer system allows much more accurate control of the relationship between events 
and resulting output signals. 

The critical input signal will drive one ofthe input-capture pins ofthe MCU. When an event 
(edge) occurs on this pin, the input-capture function automatically latches the current value 
of the free-running timer counter. Even though software takes a variable amount of time 
to respond to the event, the time at which it took place was latched (recorded), thus 
eliminating uncertainty due to software latency. Now software can read the timer counter 
to determine the present timing relationship between the program and when the event 
occurred. Better yet, an output-compare function can be set up to produce the desired 
output signal action at another specific value of the timer counter (i.e., at another specific 
time relative to the input event). Since both the input event and the output action are 
referenced to the same timer counter, the resolution of the counter determines the worst­
case uncertainty in the timing relationship. Although software latency still determines the 
minimum controllable delay between the input event and the output action, it no longer 
influences the accuracy of the timing relationship. 

10.3.7 Other Uses for Input-Capture Pins 

At any time, software can read the logic levels on the pins used for input-capture functions 
(even if the input-capture function is enabled). These three pins may also be used as flexible 
interrupt input pins when the timer input-capture functions are not needed. Each of these 
pins can be used as a separate edge-triggered interrupt with its own interrupt vector. The 
significant edge(s) can be individually selected by the control bits in the TCTL2 register. 
An important advantage of these interrupt pins over the IRQ pin is that these interrupts 
can be enabled/disabled with the local interrupt enable bits (lCx!) in the TMSK1 register. 
Another advantage ofthese pins is that there is a readable status indicator (lCxF) so software 
can tell if an interrupt request is pending from these sources. Software can also choose 
to clear any pending interrupt from one of these sources before enabling it. As with all 
maskable interrupt sources, interrupts can be disabled from these pins by setting the I bit .a. 
in the CCR in the CPU. ..... 

10.4 OUTPUT-COMPARE FUNCTIONS 

Rather than being specifically configured to perform a single function, such as variable­
frequency square-wave generation, the output-compare functions in the MC68HC11A8 are 
configured and controlled by software-accessible control registers and bits so they can 
perform a wide variety oftasks. Although some software overhead exists for some common 
timing functions, such as pulse-width modulation (PWM) signals, these software-controlled 
output-compare functions are easily adaptable to a much wider range of applications than 
dedicated timer functions would be. 

There are five output-compare functions in the MC68HC11A8. Each output compare has a 
16-bit compare register and a dedicated 16-bit comparator. The comparator checks the 
free-running timer value against the 16-bit compare register during every timer count. 
When a match is detected, a status flag is set (OCxF), an interrupt is optionally generated, 
and timer output pins are automatically changed according to software-accessible control 

MQTOROLA M68HC11 REFERENCE MANUAL 10-27 



III 

bits. Since each of the five interrupts is separately maskable with a local interrupt enable 
control bit and since each has its own interrupt vector, there is no need to perform any 
software polling to determine the cause of an interrupt. 

Fbur of the output compares operate much like the output compares on the M680l Family 
of MCUs except that the MC68HCll has more output-compare channels and has slightly 
more control over the timer output pins. The fifth output compare on the MC68HCllA8 
(OC1) can control any combination of the five timer output pins even if another output 
compare is already controlling the pin(s). The value and implications of this feature will 
be explained in greater detail. 

For OC5-0C2, a pair of control bits in the timer control register 1 (TCTL 1) control the 
automatic action that will occur atthe respective timer output pin when an output compare 
happens (16-bit OCx register matches the free-running timer). The control bit pairs (OMx, 
OLx, x = 2, 3, 4, or 5) are encoded to allow the four following possibilities: 1) timer output 
compare causes no pin change; 2) toggle pin on each successful compare; 3) force pin to 
zero on a successful compare; and 4) force pin to one on a successful compare. Each of· 
the output compares (OC5-0C2) is associated with a separate port A pin, and the automatic 
pin actions for each output compare are independently controlled. . 

For OC1, the automatic pin actions are controlled by the OCl mask (OCl M) and OCl data 
(OCl D) registers. The OCl M register specifies which port A pins are to be affected by OC1. 
The DCl D register specifies the data to be sent to the affected port A pin(s) when there is 
a successful OCl match. If OCl and another output compare are both controlling the same 
pin and if both attempt to change the pin simultaneously, OCl will have priority. 

Output pins for the five output-compare functions can be used as general-purpose output 
pins having nothing to do with the timer system or as timer outputs directly controlled by 

. the timer system. When one of these pins is configured for timer use, it cannot be written 
directly from software as a general-purpose port A output line. If the user needs to change 
a timer output pin without waiting for an actual output compare, the force output-compare 
function can be used. This function may be used to initialize the state of timer outputs or 
to force an output change before it was scheduled to occur by the associated output­
compare register. Another way to change the state of a timer output pin is to temporarily 
disengage the timer by changing the timer control registers. This method requires a more 
detailed understanding of the actual port A pin logic. Detailed schematics of the port A 
output pins are shown and explained in SECTION 7 PARALLEL INPUT/OUTPUT. 

The l6-bit output-compareregisterfor each output-compare function can be read or written 
by software as a pair of 8-bit registers. The TOCx registers are forced to $FFFF during reset. 

A write to the high-order byte of an output-compare register pair inhibits the output­
compare function for one bus cycle. This inhibit prevents erroneous comparisons using a 
l6-bit value whose high-order half was just written and whose low-order half still contains 
data from the previous output-compare value. Consider the case where an output-compare 
register is $FFOF and the user tries to write it to $OOFF as the free-running timer is counting 
through the value $OOOF. Without the one-cycle inhibit after writing to the upper half of 
the output-compare register, an erroneous compare could occur at $OOOF. As long as the 
user utilizes a double-byte write instruction, such as store D (STD), to update output­
compare registers, this one-cycle inhibit mechanism will assure that no unintentional com­
pares will result after the write of the high-order half but before the write of the low-order 
half: 

10-28 M68HC11 REFERENCE MANUAL MOTOROLA 



I ::~ I I I I I I I ::: I 

I :: ~ I I I I I I I ::: I 

I ::~ I I I I I I I ::: I 

I ::~ I I I I I I I ::: I 

I ::~ I I I I I I I ::: 

TOC1 
$1016 

$1017 

TOC2 
$1018 

$1019 

TOC3 
$101A 

$101B 

TOC4 
$101C 

$1010 

TOC5 
$101E 

$101F 

As long as an output-compare function is configured to change a pin state or to generate 
an interrupt, the action occurs every time the timer-count value matches the compare 
register (not just the first time a match occurs). To generate a single interrupt after some III 
delay, read the TeNT register, add a value corresponding to the desired delay, write that 
value to the output-compare register, and write the appropriate controls to enable the 
interrupt. When the interrupt occurs, write the appropriate controls to disable the interrupt, 
or another interrupt will occur as soon as the free-running timer rolls around to the output-
compare register value again. 

The following registers and paragraphs explain the output-compare status flags and the 
local interrupt enable control bits for the output-compare functions. 

MOTOROLA M68HC11 REFERENCE MANUAL 10-29 



.. 

OCxl, OCxF - Output Compare Interrupt Enables and Output Compare Flags 
(x= 1,2,3,4, or 5) 

The OCxF status bit is automatically set to one each time the corresponding output­
compare register matches the free-running timer. This status bit is cleared by writing 
to the TFLG1 register with a one in the corresponding data bit position. The OCxl 
control bit allows the user to configure each output-compare function for polled or 
interrupt-driven operation but does not affect the setting or clearing of the correspond­
ing OCxF bit. When OCxl is zero, the corresponding output-compare interrupt is in­
hibited, and the output compare is operating in a polled mode. In this mode, the OCxF 
bit must be polled (read) by user software to determine when a match has been 
detected. When the OCxl control bit is one, a hardware interrupt request is generated 
whenever the corresponding OCxF bit is set to one. Before leaving the interrupt service 
routine, software must clear the OCxF bit by writing to the TFLG1 register (see 10.2.4 
Tips for Clearing Timer Flags). 

Example 10-4 is a very simple program that uses an output compare to control a software 
time delay. For simplicity, this example uses polled mode and does not cause any automatic 
pin changes as the result of the output compare. The program generates a 10-ms delay 
like the user might utilize to time an EEPROM program or erase operation; however, instead 
of actually programming EEPROM, it will just produce a pulse on an output port pin so 
the results can be studied on an oscilloscope. Output-compare functions can also cause 
automatic pin changes and generate interrupt requests (see Examples 10-5 and 10-6). A 
partial listing of the program for Example 10-4 is shown in Figure 10-9. 

c1bc ce 10 00 [3] INZA LDX #REGBAS Point to register block 
c1bf 86 80 [2] LDAA #$80 
c1c1 a7 23 [4] STAA TFLG1,X Clear any pending OC1F flag 
c1c3 6f 04 [6] CLR PORTB,X Initialize port B to zeros 

c1c5 86 01 [2] TOP4A LDAA #1 Top of Ex10-4a 
c1c7 a7 04 [4] STAA PORTB,X Set LSB of port B 

* This is where the 10mS delay part actually starts 
* 

c1c9 ec Oe [5] LDD TCNT,X Get current timer count 
c1cb c3 4e 20 [4] ADDD #20000 What will count be in 10mS? 
c1ce ed 16 [5] STD TOC1,X Set OC1 to trigger then 
c1dO 1f 23 80 fc [7] LP1 BRCLR TFLG1,X $80 LP1 Loop here till OC1F=1 

* 
*Delay is actually done here; rest is just support 

c1d4 1d 23 7f [7] BCLR TFLG1,X $7F Clear OC1F 
c1d7 6f 04 [6] CLR PORTB,X Clear PBO pin 
c1d9 18 ce 16 4e [4] LDY #5710 5710* (7~/loop) = about 20mS 
cldd 18 09 [4] DLP1 DEY Top of software delay loop 
cldf 26 fc [3] BNE DLPl Loop 'till Y is zero 
clel 20 e2 [3] BRA TOP4A Repeat continuously for O-scope 

Figure 10-9. Simple Output-Compare Example 

10-30 M68HC11 REFERENCE MANUAL MOTOROLA 



This example is only intended to show the most basic use of an output-compare function. 
It is not intended to be an especially efficient way to delay a fixed period of time. The 
following three instructions are a simpler way to delay if no other tasks are to be performed 
during the delay: 

c1d9 18 ce 16 4e 
c1dd 18 09 
c1df 26 fc 

[4] 
[4] DLP1 
[3] 

LOY 
DEY 
BNE 

45710 

DLP1 

5710*(7-/loop)= about 20mS 
Top of software delay loop 
Loop 'till Y is zero 

By contrast, an output compare in interrupt-driven mode has the advantage of allowing 
the user to perform other tasks while waiting for the delay. 

10.4.1 Normal 1/0 Pin Control Using OC5-0C2 

The user can independently program the automatic pin actions to occur for each output­
compare function. For OC5-0C2, a pair of control bits (OMx, OLx) in TCTL 1 are used to 
control the automatic pin actions. 

OM2 Ol2 OM3 Ol3 OM4 Ol4 OM5 

RESET: 

OMx, OLx - Output Compare Pin Control (x = 1, 2, 3, 4, or 5) 

Ol5 TCTLl 
$1020 

This pair of bits determines the automatic actions that occur on the port A timer output 
pin when there is a successful output compare. Each OC5-0C2 function corresponds 
to a specific pin of port A. Each pair of bits controls the action for the corresponding 
output-compare function. These bit pairs are encoded as shown in the following table: 

OMx OLx Configuration 

0 0 OCx Does Not Affect Pin (OC1 Still May) 

0 1 Toggle OCx Pin on Successful Compare 

1 0 Clear OCx Pin on Successful Compare 

1 1 Set OCx Pin on Successful Compare 

Example 10-5 uses OC2 to generate a square wave at the PA6/0C2 pin. The program runs 
on an EVB board, and the results are monitored with an oscilloscope. Before running this 
program, manually set the half-cycle delay time (as a number of cycles) in the double-byte 
location HOLY ($0000,0001). For example, if $01 ,00 is stored at $0000,0001, a square wave 
with a period of 256 f.LS would be generated (half period = 256 cycles x 500 ns/cyc). Figure 
10-10 shows the program for Example 10-5. 

The initialization of the pseudo-vector at the top of Example 10-5 is done for the EVB board 
and would not be a normal part of a practical application. The three cycles needed for the 
extra JMP instruction are shown at [3] in Figure 10-11. 

MOTOROLA M68HC11 REFERENCE MANUAL 10-31 



II 

c1e3 8e 
c1e6 86 
c1e8 97 
c1ea ce 
c1ed df 
clef ce 
c1f2 86 
c1f4 a7 
c1f6 a7 
c1f8 a7 
c1fa Oe 
c1fb 20 

c1fd fc 
c200 e3 
c202 ed 
c204 1d 
c207 3b 

E 

OC2 
PIN 

OC2F 

00 47 [3] TOP5 LDS 1$0047 Top of User's stack area on EVB 
7e [2] LOAA t$7E Jump (extended) Opcode 
dc [3] STAA PVOC2 Pseudo Vector see manual text 
c1 fd [3] LOX tSV5OC2 Address of OC2 service routine 
dd [4] STX PVOC2+1 Finish jump instruc to TOF svc 
10 00 [3] LOX tREGBAS Point to register block 
40 [2] LOAA 1%01000000 OM2:0L2 = 0:1 
20 [4] STAA TCTL1,X Set OC2 for toggle on compare 
23 [4] STAA TFLG1,X Clear any pending OC2F 
22 [4] STAA TMSK1,X Enable OC2 interrupts 

[2] CLI Enable Interrupts 
fe [3] BRA * Interrupt driven; sit here 

*** 
* SV50C2 - Output Compare 2 service routine 
* 
* Called at each OC2 interrupt. 
*** 

dO 00 [5] SV50C2 LOD HOLY Get delay time for 1/2 cycle 
18 [6] ADDD TOC2,X Add to last compare value 
18 [5] STD TOC2,X Update OC2 (schedule next edge) 
23 bf [7] BCLR TFLG1,X $BF Clear OC2F 

[12] RTI ** Return from OC2 service ** 

Figure 10-10. Generating a Square Wave with Output Compare 

EVB h INTERRUPT RESPONSE ~ PSEUDO VECTOR 

BRA. PC Y Y x X IVECT JMP 
LHLHLHBACC SV5OC2 , , LDDHDLY ADDDTOC2,X 

(1)1 [3) (4) (5)1 

1 

t ~---------- (28 CYCLES) j 
-----------------------------

------------

E ~ -,rrD-;,;;,:;- x Y Y PC 
L H L H L 

BRA. 

'

INTERRUPT RESPONSE --.. 

PC YYXX 
,L H L H L H B 

(6) 
OC2r-------------------+---------------------~~ 
PIN 

OC2F 1------------\ I 
~--------------(28CYCLES)----------~~ 

Figure 10-11. Timing Analysis for Example 10-5 

10-32 M68HC11 REFERENCE MANUAL MOTOROLA 



Figure 10-11 shows a detailed timing analysis for Example 10-5. This degree of detail is 
not normally needed, but this analysis shows exactly what ocurs during an interrupt driven 
output compare. The timer count has a fixed relationship to real time; whereas, software 
can be aligned to the timer count in any of sevi=lral ways. It is generally not known (nor 
does it need to be) which of these several possible relationships is correct. Although 
software latencies do not affect the accuracy with which output edges are placed, these 
latencies do determine the shortest possible delay between successive output edges. In 
this isolated example, the software latencies are quite short, but in a practical application, 
latencies from other interrupt sources must be considered. 

This timing analysis shows the case where the half-period delay (HDL Y) is 54 cycles, and 
the OC2F was set just before the BRA * finished [1]. This analysis represents the fastest 
response to the OC2F bit. The flag is actually set [1] just before the pin state changes. The 
exact timing of the flag and pin changes is discussed in detail in 10.5 TIMING DETAILS 
FOR THE MAIN TIMER SYSTEM. The period can be set as short as 52 cycles (the total time 
needed to service each interrupt from [1] to [8]). 

This example is intended to show a way to produce a simple square wave and is not 
intended to be the most efficient way to perform this task. 

10.4.2 Advanced I/O Pin Control Using OC1 

One of the five output-compare functions (OC1) in the MC68HC11A8 has special timer 
output pin controls that were not present on any previous Motorola MCUs. These new 
controls allow this output-compare function to simultaneously control the states of up to 
five output pins. This output compare can also be configured to control a pin or pins that 
are also being controlled by one of the other four output-compare functions. 

OC1 uses the OC1 M and the OC1 D to control the automatic timer output pin actions 
occurring as a result of a match between the OC1 register and the free-running timer. Each 
of the five MSBs of these registers corresponds bit-for-bit with a port A output pin. The 1m 
three remaining low-order bits of these registers are not used and always read as zeros. 
For each port A output pin to be affected by OC1, the user would set the corresponding 
bit of OC1 M. When a successful OC1 compare occurs, each port A pin to be affected 
(indicated by the corresponding bit of OCl M set) will assume the value of the corresponding 
bit of OC1 D. Values of bits in OCl D corresponding to zeros in the OCl M register are don't 
cares. Usually, the user only has to write to the OCl M register once to establish which 
pins will be controlled by OC1. The relationship between register bits and port A pins is 
provided in the reference below the following registers: 

7 S 5 4 3 

I OC1M71 OC1M61 OC1M51 OC1M41 OC1M31 
OCIM 
$100C 

RESET: 

EI OClD6 OClD5 OC1D4 OC1D3 OCID 
$100D 

RESET: 0 0 0 0 0 0 0 0 
REFERENCES: PA7/PAI PAS/OC2 PA5/0C3 PA4/0C4 PA3/0C5 PA2/ICI PAI/IC2 PAO/IC3 

MOTOROLA M68HC11 REFERENCE MANUAL 10-33 



II 

OCl can only affect the PA7 pin if the pin is configured as an output as opposed to its 
default configuration as an input. To configure PA7 as an output, the data direction control 
bit for port A bit 7 (DDRA7) in the pulse accumulator control register (PACTL) must be set 
to one. 

10.4.2.1 ONE OUTPUT COMPARE CONTROLLING UP TO FIVE PINS. The special pin con­
trol mechanisms on OCl allow it to simultaneously control as many as five timer output 
pins. (Software can be used to allow any single output compare to control multiple outputs, 
but software latency will affect the resolution and repeatability of timed actions.) The OCl 
mechanism allows pins to be controlled with a timing accuracy equal to one count of the 
timer counter. 

The ability to control multiple outputs with a single output-compare channel is especially 
useful where the outputs are all associated with a single external device - for example, 
the signals driving a stepper motor. In such a case, it is always possible to know the 
required state for all of the outputs whenever anyone is going to change. On the other 
hand, if the outputs control unrelated devices, it might be more practical to use separate 
output-compare channels for each output. 

A side benefit to using OCl to control several timer outputs is that the other output-compare 
functions associated with these pins become available for general-purpose software timing 
functions that do not directly control pins. 

10.4.2.2 TWO OUTPUT COMPARES CONTROLLING ONE PIN. OCl can also be used in 
conjunction with one or more other output compares to achieve even more timing flexi­
bility. OCl can control a timer output even when one of the other output compares is 
already controlling the same pin, which allows the programmer to schedule two succeeding 
edges of each output signal at a time. This capability reduces software overhead because 
only one of the two output compares needs to generate an interrupt. Pulses as short as 
one E cycle, which are accurately positioned with one-cycle resolution (500-ns resolution), 
can be generated .. 

Example 10-6 uses OC1, OC2, and OC3 together to produce two PWM outputs. This par­
ticular program can produce active-high PWM signals with a minimum period of 200 cycles 
(100 f-Ls or 10kHz) and a duty cycle of Oto 100 percent. Actually, the program only produces 
duty cycles of 50 to 100 percent. When a smaller duty cycle is specified, it is automatically 
changed to 100 percent minus the specified duty cycle, and the polarity of the output is 
switched. (A 30-percent active-high duty cycle is the same as a 70-percent active-low duty 
cycle.) Figure 10-12 shows the important parts of the program for Example 10-6. 

Before running this example program on the EVB board, the period and duty cycle are 
established manually with memory modify commands. Period is set indirectly by setting 
the location PWMPl Pat $D002. This value is one percent of the period (in cycles); thus, a 
value of $02 sets the period to 200 cycles. When the program starts, this value is multiplied 
by 100 and stored to location PWMPER. Program latencies are such that a period of 100 
cycles (PWMPl P = $01) is too short, and the program will not operate correctly. Duty cycles 
are stored as percentages at locations PWMDCl and PWMDC2 ($D003 and $D004, respec­
tively; $64= 100 percent). 

10-34 M68HC11 REFERENCE MANUAL MOTOROLA 



*** initialization - (see full listing) *** 
c217 86 50 [2] LDAA 1%010ioooo OMx:OLx = 0:1 for toggle 
c219 a7 20 [4] STAA TCTL1,X OC2 and OC3 for toggle 
c21b 86 70 [2] LDAA 1%01110000 OC1M6,5, & 4 = 1 
c21d a7 Oc [4] STAA OC1M,X Control OC2/PA6, OC3/PA5, & PA4 
c21f 5f [2] CLRB Build OC1D initial value in B 
c220 b6 dO 03 [4] LDAA PWMDC1 Check for OC2 duty> or = 50% 
c223 81 32 [2] CMPA 150 If <50% OC1 drives low ... 
c225 23 02 [3] BLS ARNZ61 and OC2 toggles high. 
c227 cb 40 [2] ADDB 1%01000000 Else OC1 driv high/OC2 tog low 
c229 b6 dO 04 [4] ARNZ61 LDAA PWMDC2 Check for OC3 duty> or = 50% 
c22c 81 32 [2] CMPA 150 If <50% OC1 drives low ... 
c22e 23 02 [3] BLS ARNZ62 and OC3 toggles high. 
c230 cb 20 [2] ADDB 1%00100000 Else OC1 driv high/OC3 tog low 
c232 e7 Od [4] ARNZ62 STAB OC1D,X Store starting value for OC1D 

c234 b6 dO 02 
c237 c6 64 
c239 3d 
c23a fd dO 1f 
c23d ed 16 
c23f b6 dO 03 
c242 8d 12 
c244 ed 18 
c246 b6 dO 04 
c249 8d Ob 
c24b ed 1a 
c24d 86 80 
c24f a7 23 
c251 a7 22 
c253 Oe 
c254 20 fe 

c269 ce 10 00 
c26c a6 Od 
c26e 88 10 
c270 a7 Od 
c272 ec 18 
c274 f3 dO lf 
c277 ed 18 
c279 ec 1a 
c27b f3 dO lf 
c27e ed 1a 
c280 ec 16 
c282 f3 dO lf 
c285 ed 16 
c287 1d 23 7f 
c28a 3b 

[4] 
[2] 

[10] 
[5] 
[5] 
[4] 
[6] 
[5] 
[4] 
[6] 
[5] 
[2] 
[4] 
[4] 
[2] 
[3] 

[3] 
[4] 
[2] 
[4] 
[5] 
[6] 
[5] 
[5] 
[6] 
[5] 
[5] 
[6] 
[5] 
[7] 

[12] 

* Calculate period & duty cycle as cycle count offsets 

*** 

LDAA PWMP1P 1% of period 
LDAB noo 
MUL 
STD 
STD 
LDAA 
BSR 
STD 
LDAA 
BSR 
STD 
LDAA 
STAA 
STAA 
CLI 
BRA 

PWMPER 
TOC1,X 
PWMDC1 
CALOFF 
TOC2,x 
PWMDC2 
CALOFF 
TOC3,x 
1$80 
TFLG1,X 
TMSl<l,X 

* 

100 * PWMP1P = PWMPER 
Store period 
Start with TCNT=PWMPER 
Calculate offset for OC2 
Adj duty and calc offset 
Schedule first OC2 toggle 
Calculate offset for OC3 
Adj duty and calc offset 
Schedule first OC3 toggle 
Finish initialization 
Clear any old OCl flag 
Enable OCl interrupt 

PWMs driven by OCl interrupts 

* SV60Cl - Output Compare 1 service routine 
*** 
SV60Cl LDX lREGBAS Point to register block 

LDAA OC1D,X Change state of PA4 at next OCl 
EORA 1%00010000 Inverts OC1D4 (PA4 pin control) 
STAA OC1D,X Update OCl automatic pattern 
LDD TOC2,X Get last OC2 compare value 
ADDD PWMPER Add count equiv to period 
STD TOC2,x Update OC2 (schedule next OC2) 
LDD TOC3,x Get last OC3 compare value 
ADDD PWMPER Add count equiv to period 
STD TOC3,X Update OC3 (schedule next OC3) 
LDD TOC1,X Get last OCl compare value 
ADDD PWMPER Add count equiv to period 
STD TOC1,X Update OCl (schedule next OC1) 
BCLR TFLG1,X $7F Clear OC1F 
RTI ** Return from OCl service ** 

Figure 10·12. Producing Two PWM Outputs with OC1, OC2, and OC3 

MOTOROLA M68HC11 REFERENCE MANUAL 10-35 



The larger upper portion of this program is executed only once to set up and to start the 
PWM outputs. After this initial setup, the PWM signals are free running and are controlled 
by OC1 interrupts only. When an OC1 interrupt occurs, a value equal to the period is added 
to each of the output-compare registers (TOC1, TOC2, and TOC3). When this OC1 service 
routine is enabled, the PWM outputs will have been forced to their active level by the OC1 
match that requested the interrupt. When this service routine is done, OC1 is set to start 
the next PWM period; OC2 and OC3 are set to terminate the current PWM pulse. The PWM 
pulses, which are known to be at least 50 percent of the period, control how quickly the 
OC1 service routine must finish (OC2 and OC3 must be scheduled in time to occur as early 
as 50 percent of the way to the next PWM pulse start). The OC1 interrupt service takes 
almost 100 cycles, but OC2 and OC3 are updated somewhat before the end of the routine. 
Thus, the theoretical minimum period is about 140 cycles (two times 70 cycles, where 70 
cycles is the approximate latency time from an OC1 interrupt request to when OC2 and 
OC3 have been updated). Because the example was set up so that period is specified by 
the number of cycles in one percent of the period, a value of two makes period equal 200 
cycles, which is acceptable; whereas, a value of one makes period equal 100 cycles, which 
is too small. 

This example is only one of many ways to generate PWM signals in the MC68HC11. Example 
10-7 demonstrates an alternate way, which uses only one output compare. The approach 
used in that example does not allow the duty cycle to be too close to 0 or 100 percent 
because there is a minimum latency requirement between any two successive edges on 
the PWM output signal. In general, any approach will be subject to some unique set of 
limitations. As with many engineering problems, there is no single best solution; the user 
will have to select the best method based on all the application requirements. 

10.4.3 Forced Output Compares 

The output-compare force mechanism provides a convenient way to change timer output 
pin states without actually setting up and waiting for an output-compare match. The force 
mechanism is useful to force an initial state at the start of a timing sequence or to force 
an output compare earlier than it was scheduled. Consider the case where the user has 
scheduled an output compare to occur at a certain time, but as the time approaches, the 
user decides instead the compare should occur as soon as possible. (This case is an actual 
situation that arises in spark timing control in some automotive engine control applica­
tions.) In the older M6801 Family MCU, the user had to read the timer counter, add a small 
value to it corresponding to a software delay, and write this value to the output-compare 
register so that a compare match would occur at the next E-clock cycle after the compare 
register update. With the force mechanism in the M68HC11 Family, the user writes to the 
CFORC register to force any combination of output-compare channels to trigger. 

To use the output-compare force mechanism, the user would write to the CFORC register 
with ones in the bit positions corresponding to the output-compare channels to be forced. 
Writing a zero to a bit in the CFORC register has no effect on the corresponding output­
compare channel. At the next timer count after the write to CFORC, the forced channels 
will trigger their programmed pin actions to occur. The forced actions are synchronized to 
the timer counter clock, which is slower than E if a prescale factor has been specified (PR1, 
PRO). As shown in Figure 10-1, the output-compare force signal causes pin action but does 
not affect the OCxF bit nor generate interrupts. 

10-36 M68HC11 REFERENCE MANUAL MOTOROLA 



Normally, the force mechanism would not be used in conjunction with the automatic pin 
action that toggles the corresponding output-compare pin. Consider the case previously 
described where a force is being used to trigger the pin action earlier than it was scheduled 
to occur. The user might easily fall into the trap of forcing a toggle just before the output­
compare match was about to occur. The force mechanism would toggle the pin once, and 
as soon as the match occurs, the pin would toggle again, which is almost certainly not 
what the user would want to happen. In the same situation, if the automatic pin action 
was programmed to set the pin high or clear the pin low, an actual match just after a force 
mechanism would order the pin to change to the state it is already in (same effect as doing 
nothing). 

The following register and bit descriptions explain the output-compare force register 
(CFORC). 

FOCI FOC2 FOC3 FOC4 FOC5 

RESET: 

FOCx - Force Output Compare (x = 1, 2, 3, 4, or 5) 

CFORC 
$100B 

These bits may be used to force an output compare rather than waiting for a match 
between the output-compare register and the free-running counter. The automatic pin 
actions programmed for the output compare happen as if a match had occurred, but 
no interrupt is generated (OCxF is not set). To force one or more output-compare 
channels, write to the CFORC register with ones in the bit positions corresponding to 
the channels to be forced. The logic-high state of these bits is transitory, and the CFORC 
register will never be read as anything other than zero. The force mechanism is syn­
chronized to the timer counter clock. As many as 16 E-clock cycles could occur between 
the write to CFORC and the compare force if the largest prescale factor is set for the 
timer system (PR1, PRO=1:1 to.;.-16). 

10.5 TIMING DETAILS FOR THE MAIN TIMER SYSTEM 

The detailed timing information presented is much more detailed than most users will ever 
need, but it is given to provide additional insight into the operation of the MCU. 

Figure 10-13 shows the details concerning the timer counter as the MCU leaves reset. 
During reset, the counter is forced to $FFFF and does not count. As the internal reset signal 
is released, the counter begins to count just before the reset vector appears on the address 
bus. Although Figure 10-13 shows the reset vector to be $FFFE,FFFF, the timing details 
would be the same if the processor is reset in any mode, including test and bootstrap 
modes where the reset vector would be $BFFE,BFFF. The timer overflow logic is inhibited 
so that this first $FFFF-$OOOO transition does not register as an overflow. 

Figure 10-14 shows timing details for a read of TCNT. The address and data buses shown 
in Figure 10-14 are internal buses and have different timing than the more familiar external 
buses. These internal buses were used because it is much more difficult to understand 
what is occurring from the external address and data buses. 

MOTOROLA M68HC11 REFERENCE MANUAL 10-37 



E 

ADDRESS BUS 

TIMER COUNT 

PH2 

* Sequence is the same lor any reset (external. cop. or clock monhor) and any mode (normal or special). 

Figure 10-13. Timer Counter as MCU Leaves Reset 

PH2 

TIMER COUNT X N ...,.-._--IX N+l X N+2 X N+3 X N+4 X N+5 

ADDRESS BUS 
(INTERNAL) 

DATA BUS 
(INTERNAL) 

E 

I FETCH OPCODE I FETCH 16-B1T OPERAND ADDRESS I READ HGH BYTE I READ LOW BYTE I 
OF TCNT OF TCNT 

Figure 10-14. Timer Counter Read - Cycle-by-Cycle Analysis 

Figure 10-14 shows a cycle-by-cycle view of these internal buses for a double-byte read 
instruction (LDD TeNT). When the upper byte of TeNT is read in the fourth cycle of the 
LDD instruction, the current value of the timer is n + 3. The low-order half of the timer is 
passed through a normally transparent latch. This latch is frozen for one cycle after every 
high-byte read of TeNT so that a double-byte read can read the low-order half that belongs 
with the same count state as the upper half just read. Even though the counter has actually 
advanced to n + 4 by the last cycle of this LDD instruction, the value read will be the lower 
half of count n + 3. 

The information in Figures 10-13 and 10-14 can be combined to find the value that would 
be returned if the LDD instruction was performed as the first instruction after reset - that 

10-38 M68HC11 REFERENCE MANUAL MOTOROLA 



is, if the reset vector pointed directly to the LDD instruction. The value read will always be 
$0005. 

The prescaler is built around a divided by 16 counter. When a new value is written to the 
prescaler control bits (PR1, PRO) in the TMSK2 register, the clocking rate to the main timer 
changes to the new rate at the next $F-$O transition of this internal 4-bit prescaler counter. 

Figure 10-15 shows timing details for an input capture. Input-capture timing is not affected 
by a prescale factor; thus, this figure only shows the divided by one case. This figure also 
only shows the case where the input-capture function is configured to detect a rising edge. 
Again, the polarity of the edge is not important to the timing. 

The normal sequence of events in an input capture is as follows: 

1. Asynchronously detect an edge at the ICx pin. 

2. Set the ICxF bit at the next falling edge of the internal PH2 clock. 

3. Transfer the current timer count to the 16-bit TICx register during the next PH2 logic 
high. 

PH2 

I I 
ICxPIN 

I I 
ICxF 

I I 
TIMER COUNT N-1 X N N+1 X N+2 X N+3 X N+4 

h 31-1 h SI-1 
E 

r:: ' I ~ [4] » < [5] 

READ TICx (HI) READ TICx (LO) 

Figure 10-15. Input-Capture Timing Details 

If the cycle at [4J happens to be a high-byte read of the TICx register (which would be 
unusual), the transfer at [3J will be delayed until [6J so the transfer will not corrupt a double­
byte read at cycles [4J and [5]. 

Figure 10-16 shows two timing situations related to output compares. A normal compare 
match is shown at [1]; a compare inhibit situation is shown at [4J. 

In the normal compare match situation, the timer count is compared to the value in a TOCx 
register during PH2 high. Timer counting occurs at the falling edges of PH2 to prevent 
interference between counting and comparisons. PH2 is an internal clock that leads E by 

MOTOROLA M68HC11 REFERENCE MANUAL 10-39 



PH2 

TIMER COUNT 

E 

COMPARE 
ENABLE 

OCxPIN 

OCxF 

I =x N-l x N X N+l X N+2 N+3 X N+4 

I 

(4) 

--~----------------------------~Ir----------
_.--______ PR_E_VIO_U_S_PI_N_ST_A_TE ______ -r--fX NEW PIN STATE 

-+----------rV i 
Figure 10-16. Output-Compare Timing Details 

90°. When the match is detected [1 L OCxF is set at the falling edge PH2 where the match 
was true. The pin-state change (if any) is delayed by another quarter cycle so changes will 
occur at the falling edge of the E clock. If there were a prescale factor, the compare true 
would occur during the first PH2 cycle where the count matched the TOCx value. Additional 
matches would be inhibited until the next timer clock or until TOCx is written. This inhibit 
mechanism protects against multiple compare matches during a prescaled timer count 
(the TOCx register actually matches the timer count for several PH2 cycles when there is 
a prescale factor). In the unlikely case of a big prescale factor (e.g., 716) and a match at 
the start of count $nnnn, if the user wrote $nnnn to the TOCx register while the count was 
still $nnnn, the output-compare actions would be retriggered. 

At [4] in Figure 10-16, the one-cycle compare inhibit results from a write to TOCx during 
cycle [3]. This inhibit mechanism prevents an erroneous compare during the write to the 
low-order half of TOCx. If the output compare were not inhibited here, (he TOCx register 
would contain an erroneous value composed of the new high byte written at [3] and the 
low byte from the former value in TOCx. This inhibit mechanism is separate from the 
compare mechanism discussed in the previous paragraph. 

10.6 LISTING OF TIMER EXAMPLES 

The following listing is a composite of timer section Examples 10-1 through 10-7. Since 
many of the references and equates are common for all the examples, it saves space to 
group them. All the examples can be assembled and loaded into an EVB board for' eval­
uation at the same time. In general, the user must set up some initial signals and variables, 
and then execute an EVB "go" command to start each example routine. 

10-40 M68HC11 REFERENCE MANUAL MOTOROLA 



Listinq 

1000 
0004 
OOOc 
OOOd 
OOOe 
0010 
0016 
0018 
001a 
0020 
0021 
0022 
0023 
0024 
0025 

ffb8 
ffc4 
ffca 
ffc7 

00e8 
OOdO 
OOdc 
OOdf 

dOOO 
dOOO 
d002 
d003 
d004 
d005 
d006 
d007 
d008 
dOOa 
dOOd 
dOOf 
dOll 
dO 13 
d015 
d017 

dOH 
d021 
d023 

***** 
* This 
***** 

MOTOROLA 

Timer Examples Sheet 1 of 16 

listing contains all Examples for Reference Manual Section 10 

** Equates - Registers will be addressed with Ind,X mode 
* 
REGBAS EQU $1000 Starting address for register block 
PORTB EQU $04 Output port B 
OC1M EQU SOC OC1M7,OC1M6,OC1M5,OC1M4;OC1M3,-,-,-
OC1D EQU $00 OC1D7,OC1D6,OC1D5,OC1D4;OC1D3,-,-,-
TCNT EQU $OE Free running counter (16-bit) 
TIC1 EQU $10 IC1 register (16-bit) 
TOC1 EQU $16 OC1 register (16-bit) 
TOC2 EQU $18 OC2 register (16-bit) 
TOC3 EQU $lA OC3 register (16-bit) 
TCTL1 EQU $20 OM2,OL2,OM3,OL3;OM4,OL4,OM5,OL5 
TCTL2 EQU $21 -,-,EDG1B,EDG1A;EDG2B,EDG2A,EDG3B,EDG3A 
TMSK1 EQU $22 OC1I,OC2I,OC3I,OC4I;OC5I,IC1I,IC2I,IC31 
TFLG1 EQU $23 OC1F,OC2F,OC3F,OC4F;OC5F,IC1F, IC2F, IC3F 
TMSK2 EQU $24 TOI,RTII,PAOVI,PAII;-,-,PR1,PRO 
TFLG2 EQU $25 TOF,RTIF,PAOVF,PAIF;-,-,-,-

*** EVB Routine Addresses & Pseudo Vector Equates 

.OUTA 

.OUTCRL 

.OUTSTO 

.OUTSTR 

PVIC1 
PVTOF 
PVOC2 
PVOC1 

EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 

$FFB8 
$FFC4 
$FFCA 
$FFC7 

$00E8 
$0000 
$OODC 
$OODF 

Print character in A-reg 
Output <cr><lf> 
Output Msg seg (no <cr,lf» 
Output Msg wi leading <cr,lf> 

EVB Pseudo Vector for IC1 
EVB Pseudo Vector for TOF 
EVB Pseudo Vector for OC2 
EVB Pseudo Vector for OC1 

*** RAM Variable Assignments 

HOLY 
ORG 
RMB 

$0000 
2 

PWMP1P RMB 1 
PWMDC1 RMB 1 
PWMDC2 RMB 1 
IC1DUN RMB 1 
IC1MOD RMB 1 
OVCNT1 RMB 1 
RES1 RMB 2 
HTEMP RMB 3 
FRSTE RMB 2 
PERC RMB 2 
TEMP 1 RMB 2 
FREQH RMB 2 
HPW RMB 2 
DBUFR RMB 8 
* Some routines use 
PWMPER RMB 2 
OFFHI RMB 2 
OFFLO RMB 2 

Start variables in EVB RAM (upper half) 
Half-cycle delay (in 0.5~S increments) 
1% of PWM period (1 to 256 cyc) Ex 10-7 
Duty cycle for PWM signal at OC2 pin 
Duty cycle for PWM signal at OC3 pin 
flag: O-not done,l-pulse measured 
slw mode flag: FF-off,O-lst,l-last edge 
Overflow cnt (upper 8-bits of result) 
Pulse width in cycles (16-bits) 
Temp for H6TOD8 (3 bytes) 
Time of first edge (16-bits) 
Period in cycles (16-bits) 
Temp for conversion (16-bits) 
Freq in Hex (16-bits) 
Pulse Width (16-bits hex) 
Decimal result buffer (8 bytes ASCII) 

only first 5 bytes of DBUFR 
Period of PWM signals in (cycles) 
OC2 high offset (calculated) 
OC2 low offset (calculated) 

M68HC11 REFERENCE MANUAL 10-41 



II 

Listing 'l'i •• r Bxaapl.s She.t 2 o~ 16 

cOOO 

* 

.c..Q.O.Q. 

ORG $COOO Prog starts in EVB RAM at $COOO 

*** 
TIMBll EXAMPLE 10-1 (a) Measuring Period with Input Capture 
* * Uses polling rather than interrupts. 
* Measures period between two rising edges at IC1 pin. 
* Overflows not considered so max period is 65,535 cyc 
* Min period measurable with this program is about 27 cyc 
* * This program runs on an EVB board and displays results 
* on the EVB terminal display. 
*** 

OPT c 

8e 00 47 [3] PERTOP LDS t$0047 Top of User's stack area on EVB 
c003 ce 10 00 [3] LDX tREGBAS Point to register block 
c006 86 10 [2] LDAA t%00010000 
c008 a7 21 [4] STAA TCTL2,X EDG1B:EDG1A - 0: 1, rising edges 
cOOa 86 04 [2] LDAA U04 
cOOc a7 23 [4] STAA TFLG1,X Clear any old OC1 flag 

* Ready to detect first rising edge 
cOOe 1f 23 04 fc [7] BRCLR TFLG1,X $04 * Loop here until edge 

* First edge detected 
c012 ec 10 [5] LDD TIC1,X Read time of first edge 
c014 fd dO Od [5] STD FRSTE Save first capture value 
c017 86 04 [2] LDAA t$04 
c019 a7 23 [4] STAA TFLG1,X Clear IC1F before next edge 

* Ready to capture time of second edge 
c01b If 23 04 fc [7] BRCLR TFLG1,X $04 * Loop here until edge 

cOlt 
c021 
c024 

* 

10-42 

* Second edge detected 
ec 10 [5] LDD TIC1,X Read time of second edge 
b3 dO Od [6] SUBD FRSTE 2nd - 1st -> D 
fd dO Of [5] STD PERC Save result (period in cycs) 

* The period of the signal at PA2/IC1 pin has been 
* measured and the time is stored at "PERC" as a 16-bit 
* hex number representing the number of CPU bus cycles 
* that elapsed between two rising edges 

*** 
':I_It EXAMPLJ: 10-1 (b) Changing Period to I'requency 

* * The period found in example 10-la is expressed as a number 
* of bus cycles (@E-2MHz, 1 bus cycle-0.5~S) and it is 
* currently in the D-reg and at "PERC". Values < or - $20 
* will be considered too small (freq too high) to be 
* accurately measured with this program and will be trapped 
* out to make the period to frequency conversion program easier. 
* $0021 corresponds to 60,606 Hz, $FFFF is 30.5 Hz. 
*** 

M68HC11 REFERENCE MANUAL MOTOROLA 



Listing - 'l'imer Examples Sheet 3 o:f 16 

c027 fe dO Of [5] LDX PERC Period in cycles (16-bits) 
c02a 1a 83 00 20 [5] CPD '32 ($20) Check against min allowed 
c02e 22 03 [3] BRI OKP Skip if OK 
c030 7e cO 88 [3] JMP OUTRNG Else go say it was too small 
c033 
c036 
c037 

cc 00 20 [3] OKP LDD '32 X=period; D=32 
03 [41] FDIV D/X -> X; r -> D 
ff dO 11 [5] STX TEMP 1 

* (Freq*16)+l,OOO,OOO; radix left of MSB 

* 
* We now have frequency but it isn't in a good displayable 
* form yet. If we move the binary radix 16 places to the right 
* we would have a 16-bit integer representing 
* [(2**20)/(10**6) x freq] or [«l,048,576)/(l,OOO,000»*freq]. 
* By adding and subtracting binary multiples of the freq we 
* will arrive at [«l,OOO,OOO)/(l,OOO,OOO»*freq] (or just frequency) 

* 
* 1,048,576 
* - 32,768 
* - 16,384 

16-bit starting value «2**20)freq)+(10**6) 
2**15 
2**14 

* + 512 2**9 
* + 64 2**6 
* -1,000,000 * freq 

* 
* The limitation of 33 ($21) cycles min was selected so 
* (1,048,576/1,000,000)*freq would fit in 16-bits so we would 
* only need 1 FDIV. Although it is pretty easy to extend the 
* precision of an FDIV 
* 
* The partial results which are added and subtracted in this 
* program may have an error of ±1 LSB ea. because I truncated 
* rather than rounding. 
* 

c03a fc dO 11 [5] LDD TEMP 1 (2**20)f; where f=freq+(10**6) 
c03d 04 [3] LSRD 
c03e 04 [3] LSRD 
c03f 04 [3] LSRD A=(2**9)f; D-(2**17)f 
c040 7f dO 13 [6] CLR FREQR Clr upper half of hex freq loco 
c043 b7 dO 14 [4] STAA FREQR+l FREQR is a temp .. 512f 
c046 04 [3] LSRD 
c047 04 [3] LSRD now D=(2**15)f or 32,768f 
c048 fd dO 11 [5] STD TEMP 1 Needs to be in mem for subtract 
c04b 8f [3] XGDX D=(2**20)f; X=(2**15)f 
c04c b3 dO 11 [6] SUBD TEMP 1 1st subtraction (-32K) 
c04f 8f [3] XGDX Working result -> X; D-(2**15)f 
cO 50 04 [3] LSRD A=(2**6)f; D=(2**14)f 
c051 fd dO 11 [5] STD TEMP 1 Put in mem so you can subtract 
c054 bb dO 14 [4] ADDA FREQR+l (512+64)f 
c057 b7 dO 14 [4] STAA FREQR+l Update low half of FREQR 
c05a 8f [3] XGDX D=l,015,808*f; X-junk 
c05b b3 dO 11 [6] SUBD TEMP 1 999,424*f 
c05e f3 dO 13 [6] ADDD FREQR 1,000,000*f .. frequency 
c061 fd dO 13 [5] STD FREQR Save the 16-bit binary result 

MOTOROLA M68HC11 REFERENCE MANUAL 10-43 

• 



Listing 

c064 bd ff c4 
c067 ce dO Of 
c06a bd c3 33 
c06d bd c2 df 
c070 ce c3 d3 
c073 bd ff ca 
c076 ce dO 13 
c079 bd c3 33 
c07c bd c2 df 
c07f ce c3 eO 
c082 bd ff ca 
c085 7e cO 00 

c088 ce c3 e4 
c08b bd ff c7 
c08e 20 f5 

*** 

Timer Examples Sheet 4 of 16 

[6] 
[3] 
[6] 
[6] 
[3] 
[ 6] 
[3] 
[6] 
[ 6] 
[3] 
[6] 

* Since most of us don't think in hexidecimal, let's 
* change to decimal before printing. The subroutine 
* (HTODP) is shown at the end of this listing. 

* 
* The display will look like ... 
* 
*ppppp Cyc fffff Hz ---or like---
*Freq. is too high 

* 
* where ppppp is period in cycles & fffff is freq. 
* (decimal) 
* 
* EVB subroutines will be used and when done we will 
* jump back to the beginning and repeat continuously. 
* 

Print a <cr,lf> 
Point at hex period 
Convert to 5 digit decimal 
Print 5 digit decimal 
Point at " Cycles 
Print message segment 
Point at hex frequency 
Convert to 5 digit decimal 
Print 5 digi decimal 
Point at " Hz" 
Print message segment 

[3] JTOP 

JSR 
LDX 
JSR 
JSR 
LDX 
JSR 
LDX 
JSR 
JSR 
LDX 
JSR 
JMP 

.OUTCRL 
fPERC 
HTOD 
P5DEC 
fMSGCYC 
.OUTSTO 
fFREQH 
HTOD 
P5DEC 
fMSGHZ 
.OUTSTO 
PERTOP To top & measure another period 

[3] OUTRNG LDX 
[6] JSR 
[3] BRA 

* 

fMSGER1 
.OUTSTR 
JTOP 

***** END Ex 10-lb 

Point at "Freq. is too high" 
Print mag wI leading <cr,lf> 
To top & measure another period 

* TIMBR EXAMPLE 10-2 

* 
Measuring Pulses With Input Capture 

~ 
c093 
c095 
c097 
c09a 

10-44 

* Uses interrupts. 
* Measures time between a rising edge and a falling edge 
* (period of a positive pulse) at the IC1 pin. 
* Overflows not considered so max is 65,536 cyc 
* Min time measurable with this program is about __ eye 
* 
* This program runs on an EVB board and displays results 
* on the EVB terminal display. 
*** 

* Initialization Portion 
* 

8e 00 47 [3] PWINZ LDS #$0047 Top of User's stack area on EVB 
86 7e [2] LDAA #$7E Jump (extended) Ope ode 
97 e8 [3] STAA PVIC1 IC1 Pseudo vector 
ce cO d8 [3] LDX fSV2IC1 Address of IC1 service routine 
df e9 [4] STX PVIC1+1 Finish JMP inst to IC1 routine 

M68HC11 REFERENCE MANUAL MOTOROLA 



Li.tiDCJ - Tim.er BXaJIlple. Sheet 5 o~ 16 

c09c ce 10 00 
c09f 86 10 
cOal a7 21 
cOa3 86 ff 
cOa5 b7 dO 06 
cOa8 7f dO 05 
cOab 1d 23 fb 
cOae 1c 22 04 
cOb1 Oe 
cOb2 b6 dO 05 
cOb5 27 fb 
cOb7 Of 

cOb8 bd ff c4 
cObb fc dO 15 
cObe 04 
cObf 24 03 
cOc1 c3 00 01 
cOc4 fd dO 15 
cOc7 ce dO 15 
cOca bd c3 33 
cOcd bd c2 df 
cOdO ce c3 f6 
cOd3 bd ff ca 
cOd6 20 c4 

cOd8 ce 10 00 
cOdb 7c dO 06 
cOde 26 Od 

cOeO ec 10 
cOe2 fd dO Od 

cOe5 1d 21 30 
cOe8 1c 21 20 
cOeb 20 10 

cOed ec 10 
cOef b3 dO Od 
cOf2 fd dO 15 
cOf5 Id 21 30 
cOf8 86 01 
cOfa b7 dO 05 
cOfd 1d 23 fb 
c100 3b 

MOTOROLA 

* Main Program Portion of Pulse Width program 
* 

[3] PWTOP LOX tREGBAS Point to register block 
[2] LOAA t'00010000 Top of Main for PW24 prog 
[4] STAA TCTL2,X EDG1B:EDG1A-0:1 IC1 rising edge 
[2] LOAA UFF 
[4] STAA IC1MOD FF-IC1 off; 0-lst; l-last edge 
[6] CLR ICIDUN Signal pulse not done 
[7] BCLR TFLG1,X $FB clear IC1F (if any) 
[7] BSET TMSK1,X $04 enable IC1 interrupts 
[2] CLI Enable Interrupts 
[4] WAITL2 LOAA ICIDUN Sets after pulse done 
(3) B!Q WAITL2 Loop till pulse has been timed 
[2] SEl Pulse done, disable interrupts 

* Display pulse width as xx,xxx ~S (32,768 max) 
[6] JSR .OUTCRL Begin printing result 
[5] LOD HPW number of cyc (0.5~S/cyc) 
[3] LSRD 16-bit +2 to change to ~S 
[3] BCC ARNUP2 ? need to round result ? 
[4] ADDD t1 yes; round up 
[5] ARNUP2 STD HPW Update hex Pulse width 
[3] LOX tHPw Point at hex pulse width 
[6] JSR HTOD Convert to 5 digit decimal 
[6] JSR P5DEC Print 5 digi decimal 
[3] LOX tMSGMS Point at rest of display line 
[6] JSR . OUTS TO Print" milliseconds" 
[3] BRA PWTOP Goto top of main & repeat 

* * END of Main Program Portion 
*** 
* SV2IC1 - Input Capture 1 service routine 
* * Called first when a rising edge is detected and again 
* when a falling edge is detected. 
*** 

[3] SV2IC1 LOX tREGBAS point at top of register block 
[6] INC IC1MOD $FF->O at 1st edge; 0->1 at 2nd 
[3] BNE NOlST2 if not 0, this is trailing edge 

* Process leading edge of pulse 
[5] LOD TIC1,X read time of first edge 
[5] STD FRSTE save till next capture 

* Reconfigure IC1 for trailing falling edge 
[7] BCLR TCTL2,x $30 EDG1B:EDG1A->0:0 
[7] BSET TCTL2,X $20 EDG1B:EDG1A->1:0 
[3] BRA OU2IC1 done processing first edge 

* Process trailing edge of pulse 
[5] N01ST2 LOD TIC1,X get time of trailing edge 
[6] SUBD FRSTE time of last minus time of 1st 
[5] STD HPW update result 
[7] BCLR TCTL2,X $30 disable IC1 
[2] LOAA t1 
[4] STAA IC1DUN signal pulse measured 
[7] OU2IC1 BCLR TFLG1,X $FB clear IC1F 

[12] RTI ** Return from IC1 service ** 
* 
***** END Ex 10-2 

M68HC11 REFERENCE MANUAL 10-45 

• 



Listing 

*** 
* 

Timer Examples Sheet 6 of 16 

* TIMER EXAMPLE 10-3 

* 
Measuring Long Periods with IC 

* Uses interrupts. 
* Measures period between two rising edges at the IC1 pin. 
* Overflows are counted so max is 16,777,215 cyc (-8.38 Sec) 
* Min time measurable with this program is about 70 cyc 
* 
* This program runs on an EVB board and displays results 
* on the EVB terminal display. 
*** 

.c.lJll 8e 00 47 
c104 86 7e 
cl06 97 dO 
c108 97 e8 
c10a ce c1 71 
clOd df d1 
c10f ce c1 7f 
c1l2 df e9 

c1l4 ce 10 00 
c1l7 86 10 
c1l9 a7 21 
cllb 86 ff 
clld b7 dO 06 
c120 7f dO 05 
c123 1d 23 fb 
c126 1d 25 7f 
c129 1c 22 04 
c12c 1c 24 80 
c12f Oe 

c130 b6 dO 05 
c133 27 fb 
c135 Of 

c136 ce dO 07 
c139 64 00 
c13b 66 01 
cl3d 66 02 
c13f 24 Oa 
c141 6c 02 
cl43 26 06 
cl45 6c 01 
cl47 26 02 
cl49 6c 00 
cl4b bd c3 6c 
c14e bd ff c4 

10-46 

* Initialization Portion 
* 

[3] P24INZ LOS 
[2] LDAA 

#$0047 
#$7E 
PVTOF 
PVIC1 
tSV3TOF 
PVTOF+1 
tsv3IC1 
PVIC1+1 

TOp of User's stack area on EVB 
Jump (extended) Opcode 

[3] STAA 
[3] STAA 

TOF Pseudo Vector see manual 
IC1 Pseudo Vector 

[3] LOX 
[4] STX 
[3] LOX 
[4] STX 

Address of TOF service routine 
Finish JMP inst to TOF routine 
Address of IC1 service routine 
Finish JMP inst to ICl routine 

* Main Program Portion of PER24 program 
* 

[3] PER24T LOX tREGBAS Point to register block 
[2] LOAA t%00010000 Top of Main for PER24 prog 
[4] STAA TCTL2,X EDG1B:EDG1A=0:1 IC1 rising edge 
[2] LOAA 
[4] STAA 
[6] CLR 
[7] BCLR 
[7] BCLR 
[7] BSET 
[7] BSET 
[2] CLI 

t$FF 
IC1MOD 
IC1DUN 
TFLG1,X 
TFLG2,X 
TMSK1,X 
TMSK2,X 

[4] WAITL3 LOAA IC1DUN 

FF-IC1 off; 0-lst; 1-last 
Signal period not done 

$FB clear IC1F (if any) 
$7F clear TOF (if any) 
$04 enable IC1 interrupts 
$80 enable TOF interrupts 

Enable Interrupts 

Sets after period done 

edge 

[3] BEQ WAITL3 
[2] SEI 

Loop till period has been timed 
Done, disable interrupts 

* Display period as x.xxxxxx Seconds (to nearest ~S) 
[3] LDX tOVCNT1 Point at hi byte of 6 digit hex 
[6] LSR O,X 24-bit +2 to change to ~S 
[6] ROR 1,X (lcyc-0.5~S) 

[6] ROR 2,X RORs include carry 
[3] BCC ARNUP3 ? need to round result ? 
[6] INC 2,x yes; round up 
[3] SNE ARNUP3 carry to middle byte ? 
[6] INC 1,X yes 
[3] SHE ARNUP3 carry to high byte ? 
[6] INC O,X yes 
[6] ARNUP3 JSR H6TOD8 Convert to 8 digit decimal 
[6] JSR .OUTCRL Begin printing result 

M68HC11 REFERENCE MANUAL MOTOROLA 



Listing - Ti.er Examples Sheet 7 of 16 

c151 ce dO 18 
c154 a6 00 
0156 bd ff b8 
0159 86 2e 
c15b bd ff b8 
c15e 08 
c15f a6 00 
c161 bd ff b8 
c164 8c dO 1e 
c167 26 f5 
c169 ce c4 04 
c160 bd ff ca 
c16f 20 a3 

cl71 7d dO 06 
c174 2b 03 
c176 7c dO 07 
c179 86 80 
c17b b7 10 25 
c17e 3b 

c17f ce 10 00 
c182 7c dO 06 
c185 26 13 

c187 7f dO 07 
c18a ec 10 
c18c fd dO 08 
c18f 2b 27 
c191 a6 25 
c193 2a 23 
c195 7a dO 07 

c198 20 1e 

MOTOROLA 

[3] LOX 
[4] LOAA 
[6] JSR 
[2] LOAA 
[6] JSR 
[3] DUMPLP INX 
[4] LOAA 
[6] JSR 
[4] CPX 
[3] BNE 
[3] LOX 
[6] JSR 
[3] BRA 

* 

IDBUFR+1 
O,X 
.OUTA 
I'. ' 
.OUTA 

O,X 
.OUTA 
IDBUFR+7 
DUMPLP 
IMSGSEC 
.OUTSTO 
PER24T 

Start at 2nd digit (1st is 0) 
Seconds digit 
Print 
ASCII period 
Print 
Advance pointer to next digit 
get digit 
Print it 
Was that the last ? 
If not continue 
Point at rest of display line 
Print " Seconds" 
Goto top of main & repeat 

* END of Main Program Portion 

*** 
* SV3TOF - Timer Overflow service routine 

* * Called whenever any timer overflow is detected. If 
* the IC1 period measurement is in progress (IC1MOD 
* positive) then the overflow counter (upper 8-bits of 
* period) is incremented. 
*** 

[6] SV3TOF TST 
[3] BMI 
[6] INC 
[2] OU3TOF LOAA 
[4] STAA 

[12] RTI 

*** 

IC1MOD 
OU3TOF 
OVCNT1 

if 0 or 1 IC1 active-count TOFs 
if neg, IC1 not active 
increment IC1 overflow count 

1$80 
REGBAS+TFLG2 Clear overflow flag 

** Return from TOF service ** 

* SV3IC1 - Input Capture 1 service routine 

* * Called first when a rising edge is detected and again 
* when another rising edge is detected. 
*** 

[3] SV3IC1 LOX 
[6] INC 
[3] BNE 

lREGBAS 
IC1MOD 
N01ST3 

point at top of register block 
$FF->O at 1st edge; 0->1 at 2nd 
if not 0, this is second edge 

* Process first edge of period 
[6] CLR OVCNT1 Zero the overflow count 
[5] LOD TIC1,X Read time of first edge 
[5] STD RES1 Save till next capture 
[31 BMI OU3IC1 Done if IC was before any TOF 
[4] LOAA TFLG2,x Check for TOF in MSB 
[3] BPL OU3IC1 If no overflow, you're done 
[6] DEC OVCNT1 This TOF shouldn't count 

* decrement OVCNT1 to -1 ... 
* TOF svc routine will inc back to zero 

[3] BRA OU3IC1 Done processing first edge 

M68HC11 REFERENCE MANUAL 10-47 



II 

Listing 'l'imer Exampl.es Sheet 8 of 16 

c19a ec 10 
c19c 2b 07 
c1ge 6d 25 
claD 2a 03 
c1a2 7c dO 07 
c1a5 b3 dO 08 
c1a8 fd dO 08 
c1ab 24 03 
clad 7a dO 07 
c1bO 1d 21 30 
c1b3 86 01 
c1b5 b7 dO 05 
c1b8 1d 23 fb 
c1bb 3b 

*** 
* 

[5] 
[3] 
[6] 
[3] 
[6] 
[ 6] 
[5] 
[3] 
[6] 
[7] 
[2] 
[4] 
[7] 

[12] 

* Process second edge of period 
N01ST3 LDD TIC1,X Get time of second edge 

BMI ARNOV1 If MSB=l, skip TOF check 
TST TFLG2,X Check for overflow 
BPL ARNOV1 If no TOF, skip increment 
INC OVCNT1 TOF was before edge so count it 

ARNOV1 SUBD RES1 Time of last minus time of 1st 
STD RES1 Update result 
BCC RES 10K Check for borrow 
DEC OVCNT1 If borrow, fix overflow count 

RES10K BCLR TCTL2,X $30 Disable IC1 
LDAA #1 
STAA IC1DUN Signal period measured 

OU3IC1 BCLR TFLG1,X $FB Clear IC1F 
RTI ** Return from IC1 service ** 

* 
***** END Ex 10-3 

* TIMER EXAMPLE 10-4 

* 
Simple Output Compare Example 

* Ex10-4 uses polled mode. 
* Generate a 10mS period like you would use to time an EE write 
* but rather than wearout the EEPROM just change an output pin 

* 
* Example 10-4 runs on an EVB board and drives PBO high for 
* 10mS once every 30mS so you can see on an oscilloscope. 
*** 

~ ce 10 00 
c1bf 86 80 
c1c1 a7 23 
c1c3 6f 04 

c1c5 86 01 
c1c7 a7 04 

c1c9 ec Oe 
c1cb c3 4e 20 
c1ce ed 16 
c1dO 1f 23 80 fc 

c1d4 1d 23 7f 
c1d7 6f 04 
c1d9 18 ce 16 4e 
c1dd 18 09 
c1df 26 fc 
c1e1 20 e2 

10-48 

[3] INZA 
[2] 
[4] 
[6] 

LDX lREGBAS 
LDAA 1$80 
STAA TFLG1,X 
CLR PORTB,X 

[2] TOP4A LDAA 11 
[4] STAA PORTB,X 

Point to register block 

Clear any pending OC1F flag 
Initialize port B to zeros 

Top of Ex10-4a 
Set LSB of port B 

* This is where the 10mS delay part actually starts 

[5] 
[4] 
[5] 
[7] 

[7] 
[6] 
[4] 
[4] 
[3] 
[3] 

* 

LP1 
* 

LDD TCNT,X 
ADDD 120000 
STD TOC1,X 
BRCLR TFLG1,X 

Get current timer count 
What will count be in 10mS? 
Set OC1 to trigger then 

$80 LP1 Loop here till OC1F=1 

*Delay is actually done here; rest is just support 

DLP1 

* 

BCLR 
CLR 
LDY 
DEY 
BNE 
BRA 

TFLG1,X 
PORTB,X 
15710 

DLP1 
TOP4A 

***** END Ex 10-4 

$7F Clear OC1F 
Clear PBO pin 
5710*(7~/100p)= about 20mS 
Top of software delay loop 
Loop 'till Y is zero 
Repeat continuously for O-scope 

M68HC11 REFERENCE MANUAL MOTOROLA 



Liatinq Ti.er J:xam.plea Sheet 9 of 16 

* 

*** 
* 

TIMER EXAMPLE 10-5 

* 
Square "ave using Output Compare 

* Ex10-5 uses interrupts. 
* Generate a square wave at the PA6 output pin using OC2 

* 
* This program runs on an EVB board. The half-cycle delay 
* time is entered into the double byte variable "HOLY" at 
* $0000,0001 with a memory modify before going to the program. 
*** 

~ 8e 00 47 
c1e6 86 7e 
c1e8 97 dc 
c1ea ce c1 fd 
c1ed df dd 
clef ce 10 00 
clf2 86 40 
c1f4 a7 20 
clf6 a7 23 
clf8 a7 22 
c1fa Oe 

[3] 
[2] 
[3] 
[3] 
[4] 
[3] 
[2] 
[4] 
[4] 
[4] 
[2] 
[3] 

TOP5 LOS 
LOAA 
STAA 
LOX 
STX 
LOX 
LOAA 
STAA 
STAA 
STAA 
CLI 
BllA 

#$0047 
'$7E 

Top of User's stack area on EVB 
Jump (extended) Opcode 

clfb 20 fe 

clfd fc dO 00 
c200 e3 18 
c202 ed 18 
c204 1d 23 bf 
c207 3b 

*** 

[5] 
[6] 
[5] 
[7] 

[12] 

*** 

PVOC2 
'Sv50C2 
PVOC2+1 
'REGBAS 
n01000000 
TCTL1,X 
TFLG1,X 
TMSK1,X 

* 

OC2 Pseudo Vector see manual 
Address of OC2 service routine 
Finish JMP inst to TOF routine 
Point to register block 
0M2:0L2 = 0:1 
Setup OC2 to toggle on compares 
Clear any pending OC2F 
Enable OC2 interrupts 
Enable Interrupts 
Interrupt driven from here 

* SV50C2 - Output Compare 2 service routine 

* * Called at each OC2 interrupt. 
*** 
SV5OC2 LOO HOLY 

ADOO TOC2,X 
STO TOC2,X 
BCLR TFLG1,X 
RTI 

* 
***** END Ex 10-5 

Get delay time for 1/2 cycle 
Add to last compare value 
Update OC2 (schedule next edge) 

$BF Clear OC2F 
** Return from OC2 service ** 

* TIMER EXAMPLE 10-6 
* OC1, OC2, and OC3 used together to produce 2 PWM signals 

* * OC1 controls two pins of port A in conjunction with OC2 and OC3 
* OC1 drives the period and the scheduling of OC2 and OC3 
* OC2 & OC3 automatically control pins but don't generate interrupts 
* Set "PWMP1P", "PWMDC1" & "PWMDC2" manually before running this example 
* "PWMP1P" sets size of a 1% segment of PWM period (cycles) 
* min PWMP1P for this program is 2 (period = 200 cycles) 
* "PWMDC1" sets Outy cycle for OC2 pin in % (0 to $64 hex) 
* "PWMDC2" sets Outy cycle for OC3 pin in % (0 to $64 hex) 
* Outy cycle (%) will be translated into a • of cycles offset 
* and period will be calculated as (100 * PWMP1P) at prog start 
* PA4 pin will toggle at each OC1 compare as a scope reference signal 

MOTOROLA M68HC11 REFERENCE MANUAL 10-49 



Listing - Timer Examples Sheet 10 of 16 

* Produces high going PWM signals of the period and duty cycle specified 
* Note actually only produces PWMs of 50% to 100% because spec'd duty of 
* 0 to 50% is changed to low going PWM wI duty cyc = [100% - spec(0-50)] 

* * This program runs on an EVB board and drives output pins. 
* An oscilloscope is used to study the results. 

*** 

~ 8e 00 47 
c20b 86 7e 
c20d 97 df 
c20f ce c2 69 
c212 df eO 
c214 ce 10 00 
c217 86 50 
c219 a7 20 
c21b 86 70 
c21d a7 Oc 
c21f 5f 
c220 b6 dO 03 
c223 81 32 
c225 23 02 
c227 cb 40 
c229 b6 dO 04 
c22c 81 32 
c22e 23 02 
c230 cb 20 
c232 e7 Od 

c234 b6 dO 02 
c237 c6 64 
c239 3d 
c23a fd dO 1f 
c23d ed 16 
c23f b6 dO 03 
c242 8d 12 
c244 ed 18 
c246 b6 dO 04 
c249 8d Ob 
c24b ed 1a 

c24d 86 80 
c24f a7 23 
c251 a7 22 
c253 Oe 

c254 20 fe 

10-50 

[3] 
[2] 
[3] 
[3] 
[4] 
[3] 
[2] 
[4] 
[2 ] 
[4] 
[2] 
[4] 
[2] 
[3] 
[2] 
[4] 
[2] 
[3] 
[2] 
[4] 

[4] 
[2] 

[10J 
[5] 
[5] 
[4] 
[6] 
[5] 
[4] 
[6] 
[5] 

[2] 
[4] 
[4J 
[2] 

[3] 

INZ6 LDS 
LDAA 
STAA 
LDX 
STX 
LDX 
LDAA 
STAA 
LDAA 
STAA 
CLRB 
LDAA 
CMPA 
BLS 
ADDB 

ARNZ61 LDAA 
CMPA 
BLS 
ADDB 

4$0047 
4$7E 
PVOC1 
4SV60C1 
PVOC1+1 
4REGBAS 
4%01010000 
TCTLl,X 
4%01110000 
OC1M,X 

PWMDC1 
450 
ARNz61 
4%01000000 
PWMDC2 
450 
ARNz62 
4%00100000 

TOp of User's stack area on EVB 
Jump (extended) Opcode 
OCI Pseudo Vector see manual 
Address of OC1 service routine 
Finish JMP inst to OC1 routine 
Point to register block 
OMx:OLx - 0:1 for toggle 
OC2 and OC3 for toggle 
OC1M6,5, & 4 = 1 
Control OC2/PA6, OC3/PA5, & PA4 
Build OC1D initial value in B 
Check for OC2 duty > or = 50% 

If<50% OC1 goes 10 OC2 togls hi 
else OC1 goes high OC2 togls 10 
Check for OC3 duty > or = 50% 

I<50% OC1 goes 10 OC3 togls hi 
else OC1 goes hi, OC3 togls 10 
Store starting value for OC1D ARNz62 STAB OC1D,X 

* Calculate period & 
LDAA PWMP1P 

duty cycle as cycle count offsets 

LDAB HOO 
MUL 
STD PWMPER 
STD TOC1,X 
LDAA PWMDC1 
BSR CALOFF 
STD TOC2,X 
LDAA PWMDC2 
BSR CALOFF 
STD TOC3,X 

* Finish initialization 
LDAA 1$80 
STAA TFLG1,X 
STAA TMSK1,X 
CLI 

BRA * 

1% of period 

100 * PWMP1P - PWMPER 
Store period 
Start 1st PWM per @ TCNT=PWMPER 
Calculate offset for OC2 
Adj duty as req'd & calc offset 
Schedule first OC2 toggle 
Calculate offset for OC3 
Adj duty as req'd & calc offset 
Schedule first OC3 toggle 

OC1F=1 to clr any old OC1 flag 
then OC1I=1 to enable OC1 into 

OC1 interrupt runs PWMs now 

M68HC11 REFERENCE MANUAL MOTOROLA 



Listing - Timer Examples Sheet 11 of 16 

c256 81 32 
c258 24 04 
c25a 16 
c25b 86 64 
c25d 10 
c25e 81 64 
c260 23 02 
c262 86 64 
c264 f6 dO 02 
c267 3d 
c268 39 

c269 ce 10 00 
c26c a6 Od 
c26e 88 10 
c270 a7 Od 
c272 ec 18 
c274 f3 dO 1£ 
c277 ed 18 
c279 ec 1a 
c27b f3 dO 1f 
c27e ed 1a 
c280 ec 16 
c282 f3 dO 1f 
c285 ed 16 
c287 1d 23 7f 
c28a 3b 

*** 

*** Local subroutine to change duty cycle to offset cnt 
* If duty < 50% ($32) change to 100-duty 
* If duty >100% ($64) force to $64 
* Finally mult by 1% of period (cyc) 
* Enter with PWMDCx duty in A-reg, Return offset in D 

[2] 
[3] 
[2] 
[2] 
[2] 
[2] 
[3] 
[2] 
[4] 

CALOFF CMPA .50 Check for 0-49% 
BHS ARN6A Around fixup 
TAB If <50% set to 100 - duty cycle 

[10] 
[5] 

LDAA flOO 
SBA 

ARN6A CMPA 
BLS 
LDAA 

flOO 
ARN6B 
flOO 

ARN6B LDAB PWMP1P 
MUL 
RTS 

* 
*** 

*** 

A-B to A 
Check for > 100% 

If > 100% - set to 100% 

PWMP1P * adj'd duty cyc =OFFOCx 
** Return from CALOFF ** 

* SV60C1 - Output Compare 1 service routine 
*** 

[3] SV60C1 LDX 
[4] LDAA 
[2] EORA 
[4] STAA 
[5] LDD 
[6] ADDD 
[5] STD 
[5] LDD 
[6] ADDD 
[5] STD 
[5] LDD 
[6] ADDD 
[5] STD 
[7] BCLR 

[12] RTI 

* 

'REGBAS 
OC1D,X 
1%00010000 

Point to register block 
Make PA4 flip @ nxt OC1 compare 
Flips OC1D4 bit(PA4 pin contrl) 
Update nxt OC1 auto pattern 
Get last OC2 compare value 
Add count equiv to period 
Update OC2 (schedule next OC2) 
Get last OC3 compare value 
Add count equiv to period 
Update OC3 (schedule next OC3) 
Get last OC1 compare value 
Add count equiv to period 
Update OC1 (schedule next OCl) 

OC1D,X 
TOC2,X 
PWMPER 
TOC2,X 
TOC3,x 
PWMPER 
TOC3,X 
TOC1,X 
PWMPER 
TOC1,X 
TFLG1,X $7F Clear OC1F 

** Return from OCl service ** 

***** END Ex 10-6 

* Tl:MER EXAMPLE 10-7 
* OC2 used alone to produce one PWM signal 

* * OC2 controls period and duty cycle of one port A pin 
* Set "PWMP1P" & "PWMDC1" manually before running this 
* example 
* "PWMP1P" sets size of a 1% segment of PWM period 
* (in cycles) 
* "PWMOC1" sets Duty cycle for OC2 pin in % - NOTE: This 
* program will not work properly with values of duty 
* cycle too near 0 or 100% 
* Refer to User's Manual text for discussions 
* Program calculates "OFFHI" and "OFFLO" at start 

MOTOROLA M68HC11 REFERENCE MANUAL 10-51 



Listing - Timer Examples Sheet 12 of 16 

* This program runs on EVB board & drives PA6/0C2 pin. 
* An oscilloscope is used to study the results. 
*** 

.Q2Jlb Be 00 47 
c2Be B6 7e 
c290 97 dc 
c292 ce c2 c2 
c295 df dd 
c297 ce 10 00 

c29a b6 dO 03 
c29d f6 dO 02 
c2aO 3d 

c2al fd dO 21 
c2a4 b6 dO 02 
c2a7 c6 64 
c2a9 3d 
c2aa b3 dO 21 
c2ad fd dO 23 

c2bO B6 cO 
c2b2 a7 20 
c2b4 cc 00 00 
c2b7 ed lB 
c2b9 B6 40 
c2bb a7 23 
c2bd a7 22 
c2bf Oe 

c2cO 20 fe 

c2c2 ce 10 00 
c2c5 If 20 40 05 
c2c9 fc dO 21 
c2cc 20 03 
c2ce fc dO 23 
c2dl e3 lB 
c2d3 ed 18 
c2d5 a6 20 
c2d7 BB 40 
c2d9 a7 20 
c2db 1d 23 bf 
c2de 3b 

10-52 

[3] INZ7 
[2] 

LDS #$0047 
LDAA *$7E 
STAA PVOC2 
LDX *SV70C2 
STX PVOC2+1 
LDX *REGBAS 

TOp of User's stack area on EVB 
Jump (extended) Opcode 

[3] 
[3] 
[4] 
[3] 

[4] 
[4] 

[10] 

LDAA PWMDC1 
LDAB PWMP1P 
MUL 

* PWMP1P * duty cycle 

OC2 Pseudo Vector 
Address of OC2 service routine 
Finish JMP instruc to OC2 prog 
Point to register block 

Calculate OC2 high time 
1% of period 

[5] STD OFFHI 
high part of period 
Save high offset 

[4] LDAA PWMP1P 1% of period 
[2] LDAB *100 

[10] MUL 100 * PWMP1P = period 
[6] SUBD OFFHI period - high time = low time 

Store low offset [5] STD OFFLO 

[2] 
[4] 
[3] 
[5] 
[2] 
[4] 
[4] 
[2] 

[3] 

[3] 
[7] 
[5] 
[3] 
[5] 
[6] 
[5] 
[4] 
[2] 
[4] 
[7] 

[12] 

* Finish initialization 

*** 

LDAA *%11000000 OM2:0L2 = 1:1 for set pin high 
STAA TCTL1,X 1st OC2 starts first high time 
LDD #$0000 
STD TOC2,X 
LDAA *$40 
STAA TFLG1,X 
STAA TMSK1,X 
CLI 

BRA * 

Start 1st PWM period @ TCNT=O 

OC2F=1 to clr any old OC2 flag 
then OC2I=1 to enable OC2 inter 

OC2 interrupt runs PWM now 

* SV70C2 - Output Compare 2 service routine 
*** 
SV70C2 LDX *REGBAS 

BRCLR TCTL1,X 
LDD OFFHI 
BRA UPOC2 

Point to register block 
%01000000 ADDLO Which half of cyc? 

ADDLO 
UPOC2 

* 

LDD 
ADDD 
STD 
LDAA 
EORA 

OFFLO 
TOC2,x 
TOC2,X 
TCTL1,X 
n01000000 

High part so add OFFHI to OC2 

Low part so add OFFLOto OC2 
Add to last compare value 
Update OC2 (schedule next edge) 
Change OL2 to setup next edge 
Inverts OL2 bit 

STAA TCTL1,X Update control reg 
BCLR TFLG1,X $BF Clear OC2F 
RTI ** Return from OC2 service ** 

***** END Ex 10-7 

M68HC11 REFERENCE MANUAL MOTOROLA 



Listing - Timer Bxamples Sheet 13 of 16 

*** * General purpo.e .Ubroutine. 
*** 

*** 
* PSDBC - Subroutine to display a five digit decimal 
* number at "OBUFR", 
* Prints in the form "xx, xxx" with leading zeros 
* suppressed, Prints 6 columns, leading spaces, 
* units always prints (0-9) 

* * Calls EVB routine ",OUTA" 
* Calls "SKP1" with BSR to advance X and print a 
* leading space SKP1 subroutine follows P5DEC 
* All registers are unchanged upon return from P50EC 
*** 

c2df 3c 
c2eO 37 
c2e1 36 
c2e2 ce dO 17 
c2e5 86 30 
c2e7 a1 00 
c2e9 26 19 
c2eb 8d 3d 
c2ed a1 00 
c2ef 26 19 
c2fl 8d 37 
c2f3 8d 35 
c2f5 09 
c2f6 a1 00 
c2f8 26 1b 
c2fa 8d 2e 
c2fc a1 00 
c2fe 26 1b 
c300 8d 28 
c302 20 1d 
c304 a6 00 
c306 bd ff b8 
c309 08 
c30a a6 00 
c30c bd ff b8 
c30f 86 2c 
c311 bd ff b8 
c314 08 
c315 a6 00 
c317 bd ff b8 
c31a 08 
c31b a6 00 
c31d bd ff b8 
c320 08 
c321 a6 00 
c323 bd ff b8 
c326 32 
c327 33 
c328 38 
c329 39 

MOTOROLA 

[4] P50EC 
[3] 
[3] 
[3] 
[2] 
[4] 
[3] 
[6] 
[4] 
[3] 
[6] 
[6] 
[3] 
[4] 
[3] 
[6] 
[4] 
[3] 
[6] 
[3] 
[4] P10K 
[6] 
[3] 
[4] P1K 
[6] 
[2] 
[6] 
[3] 
[4] P100 
[6] 
[3] 
[4] P10 
[6] 
[3] 
[4] P1 
[6] 
[4] 
[4] 
[5] 
[5] 

PSHX 
PSHB 
PSHA 
LDX 
LDAA 
CMPA 
BNE 
BSR 
CMPA 
BNE 
BSR 
BSR 
DEX 
CMPA 
BNE 

.BSR 
CMPA 
BNE 
BSR 
BRA 
LDAA 
JSR 
INX 
LDAA 
JSR 
LDAA 
JSR 
INX 
LDAA 
JSR 
INX 
LDAA 
JSR 
INX 
LDAA 
JSR 
PULA 
PULB 
PULX 
RTS 

tOBUFR 
1$30 
O,X 
P10K 
SKP1 
O,X 
P1K 
SKP1 
SKP1 

O,X 
P100 
SKP1 
O,X 
P10 
SKP1 
P1 
O,X 
OUTA 

O,X 
OUTA ", , 
OUTA 

O,X 
,OUTA 

O,X 
OUTA 

O,X 
OUTA 

Save registers 

Point at decimal (MS character) 
Chk for leading Os (ASCII) 
Check 10,000s digit 
Start at 10k digit 
INX & print a space 
Chk 1,000s (A stil1=ASCII<sp» 
Start at 1k digit 
INX & print a space 
INX & print extra sp for "," 
just wanted <sp> so back up 1 
Check 100s digit 
Start at 100s digit 
INX & print a space 
Check lOs digit 
Start at lOs digit 
INX & print a space 
Start at 1s digit (default) 
10,000s digit 
Print 10,000s digit 
Advance pointer to next digit 
1,000s digit 
Print it 
ASCII comma 
Print 
Advance pointer to next digit 
100s digit 
Print it 
Advance pointer to next digit 
lOs digit 
Print it 
Advance pointer to next digit 
1s digit 
Print it 
Restore registers 

** Return from P50EC ** 

M68HC11 REFERENCE MANUAL 10-53 



Listing - Ti.er Examples Sheet 14 of 16 

c32a 36 
c32b 08 
c32c 86 20 
c32e bd ff b8 
c331 32 
c332 39 

*** 

[3] 
[3] 
[2] 
[6] 
[4] 
[5] 

*** Local SKP1 subroutine (called from above with BSRs) 
SKP1 PSHA Save A 

INX 
LOAA #$20 
JSR OUTA 
PULA 
RTS 

Advance X 
ASCII <sp> 
Print the <sp> 

Restore A 
** Return from SKP1 ** 

* HTOD - Subroutine to convert a 16-bit hex number to a 
* 5 digit decimal number. 
* * Uses 5 byte variable "OBUFR" for decimal ASCII result 
* On entry X points to hex value to be converted & 
* displayed 
* All registers are unchanged upon return 
*** 

c333 3c 
c334 37 
c335 36 

[4] HTOO 
[3] 
[.3] 

Save registers 

c336 ec 00 
0338 oe 27 10 
033b 02 

[5] 

PSHX 
PSHB 
PSHA 
LOO 
LOX 
IOIV 
XGOX 
ADOB 
STAB 
XGOX 
LOX 
IOIV 
XGOX 
ADOB 
STAB 
XGOX 
LOX 
IOIV 
XGOX 
ADOB 
STAB 
XGDX 
LOX 
IDIV 
ADOB 
STAB 
XGOX 
ADOB 
STAB 
PULA 
PULB 
PULX 
RTS 

O,X 
flOOOO 

O=hex value to be oonverted 

c33c 8f 
c33d ob 30 
c33f f7 dO 17 
0342 8f 
c343 ce 03 e8 
0346 02 
c347 8f 
c348 cb 30 
c34a f7 dO 18 
034d 8f 
c34e oe 00 64 
0351 02 
0352 8f 
c353 cb 30 
0355 f7 dO 19 
0358 8f 
0359 oe 00 Oa 
c35c 02 
035d ob 30 
035f f7 dO 1b 
c362 8f 
c363 ob 30 
c365 f7 dO 1a 
0368 32 
0369 33 
c36a 38 
036b 39 

10·54 

[3] 
[41] 

[3] 
[2] 
[4] 
[3] 
[3] 

[41] 
[3] 
[2] 
[4] 
[3] 
[3] 

[41] 
[3] 
[2] 
[4] 
[3] 
[3] 

[41] 
[2] 
[4] 
[3] 
[2] 
[4] 
[4] 
[4] 
[5] 
[5] 

#$30 
OBUFR 

flOOO 

#$30 
OBUFR+1 

flOO 

#$30 
OBUFR+2 

flO 

#$30 
OBUFR+4 

#$30 
OBUFR+3 

freq+10,000 -> X; r -> 0 
Sav r in X 10,000s digit in A:B 
Convert to ASCII 
Store in deoimal buffer 
r back to 0 

r+1,000 -> X; r -> 0 
Sav r in X; 1,000s digit in A:B 
Convert to ASCII 
Store in deoimal buffer 
r baok to 0 

r+100 -> X; r -> 0 
Save r in X; 100s digit in A:B 
Convert to ASCII 
Store in deoimal buffer 
r back to 0 

r+10 -> X; r in D (B- 1s digit) 
Convert to ASCII 
Store to units digit 
lOs digit to 0 (A:B) 
Convert to ASCII 
Store in deoimal buffer 
Restore registers 

** Return ** 

M68HC11 REFERENCE MANUAL MOTOROLA 



Listing' - Timer Bx_ple. Sheet 15 o~ 16 

*** * B6~8 - Subroutine to convert a 24-bit hex number to 
* an 8 diqit decimal number. 
* * Uses 3 byte variable "HTEMP" for hex workinq value 
* Uses 8 byte variable "DBUFR" for decimal ASCII result 
* On entry X points to the hex value to be converted & 
* displayed 
* All reqisters are unchanqed upon return 
*** 

c36c 18 3c 
c36e 3c 
c36f 37 
c370 36 
c371 ec 01 
c373 fd dO Ob 
c376 a6 00 
c378 b7 dO Oa 
c37b 18 ce dO 17 
c37f ce c4 Od 

c382 4£ 
c383 4c 
c384 £6 dO Oc 
c387 eO 02 
c389 £7 dO Oc 
c38c £6 dO Ob 
c38£ e2 01 
c391 £7 dO Ob 
c394 £6 dO Oa 
c397 e2 00 
c399 £7 dO Oa 
c39c 24 e5 

c3ge £6 dO Oc 
c3a1 eb 02 
c3a3 £7 dO Oc 
c3a6 £6 dO Ob 
c3a9 e9 01 
c3ab £7 dO Ob 
c3ae £6 dO Oa 
c3b1 e9 00 
c3b3 f7 dO Oa 

c3b6 8b 2£ 
c3b8 18 a7 00 
c3bb 18 08 
c3bd 08 
c3be 08 
c3bf 08 
c3cO 8c c4 22 
c3c3 26 bd 

MOTOROLA 

[5] H6TOD8 PSHY 
[4] PSHX 
[3] PSHB 
[3] PSHA 
[5] LDD 1,X 

HTEMP+1 
O,X 
HTEMP 
tDBUFR 
tCON10M 

[5] STD 
[4] LDAA 
[4] STAA 
[4] LDY 
[3] LDX 

[2] HTDLP 
[2] HLP IN 
[4] 
[4] 
[4] 
[4] 
[4] 
[4] 
[4] 
[4] 
[4] 
[3] 

[4] 
[4] 
[4] 
[4] 
[4] 
[4] 
[4] 
[4] 
[4] 

[2] 
[5] 
[4] 
[3] 
[3] 
[3] 
[4] 
[3] 

CLRA 
INCA 
LDAB 
SUBB 
STAB 
LDAB 
SBCB 
STAB 
LDAB 
SBCB 
STAB 
BCC 

HTEMP+2 
2,X 
HTEMP+2 
HTEMP+1 
1,X 
HTEMP+1 
HTEMP 
O,x 
HTEMP 
HLPIN 

LDAB HTEMP+2 
ADDB 2,X 
STAB HTEMP+2 
LDAB HTEMP+1 
ADCB 1,X 
STAB HTEMP+1 
LDAB HTEMP 
ADCB O,X 
STAB HTEMP 

ADDA t$2F 
STAA O,Y 
INY 
INX 
INX 
INX 
CPX tCON1!:ND 
BNE HTDLP 

Save reqisters 

Move hex to HTEMP to convert 
Two lower bytes moved 
Upper byte 

Pnt @ MS diqit of decimal buf'r 
Point at first 24-bit constant 

A keeps track o£ t of subtracts 
Inner loop; once per subtract 
Start 24-bit subtract 

Update low byte 
Middle byte 
Sub with carry 
Update middle byte 
Hiqh byte 

Update hiqh byte 
If no borrow; subtract aqain 

Last subtract too far; add back 

Update low byte 
Middle byte 
Sub with carry 
Update middle byte 
Hiqh byte 

Update hiqh byte 

Convert diqit to ASCII 
Store to decimal buffer 
Point to next decimal diqit 
Point to next 24-bit const 

See if dQne yet 
If not done, do nxt diqit 

M68HC11 REFERENCE MANUAL 10-55 

• 



Listing - 'l'imer Exampl.es Sheet 16 of 16 

c3c5 b6 dO Oc [4] LDAA HTEMP+2 Get Is digit 
c3c8 8b 30 [2] ADDA #$30 Convert to ASCII 
c3ca 18 a7 00 [5] STAA 0, Y Store to last decimal digit 

c3cd 32 [4] PULA Restore registers 
c3ce 33 [4] PULB 
c3cf 38 [5] PULX 
c3dO 18 38 [ 6] PULY 
c3d2 39 [5] RTS ** Return from H6TOD8 ** 

* 
* Display Messages & Constants 

* 
c3d3 20 43 79 63 6c MSGCYC FCC ' Cycles 

65 73 20 20 20 
20 20 

c3df 04 FCB $04 End-of-message mark 
c3eO 20 48 7a MSGHZ FCC ' Hz' 
c3e3 04 FCB $04 End-of-message mark 
c3e4 46 72 65 71 2e MSGER1 FCC 'Freq. is too high' 

20 69 73 20 74 
6f 6f 20 68 69 
67 68 

c3f5 04 FCB $04 End-of-message mark 
c3f6 20 6d 69 63 72 MSGMS FCC ' microseconds' 

6f 73 65 63 6f 
6e 64 73 

c403 04 FCB $04 End-of-message mark 
c404 20 53 65 63 6f MSGSEC FCC , Seconds' 

6e 64 73 
c40c 04 FCB $04 End-of-message mark 

c40d 98 96 80 CON10M FCB $98,$96,$80 24-bit equiv of 10,000,000 
c410 Of 42 40 FCB $OF,$42,$40 24-bit equiv of 1,000,000 

II 
c413 01 86 aO FCB $01,$86,$AO 24-bit equiv of 100,000 
c416 00 27 10 FCB $00,$27,$10 24-bit equiv of 10,000 
c419 00 03 e8 FCB $00,$03,$E8 24-bit equiv of 1,000 
c41c 00 00 64 FCB $00,$00,$64 24-bit equiv of 100 
c4lf 00 00 Oa FCB $OO,$OO,$OA = 24-bit equiv of 10 
c422 CONEND EQU * Don't need Is const 

* END OF FILE 
o error(s) 

10-56 M68HC11 REFERENCE MANUAL MOTOROLA 



SECTION 11 
PULSE ACCUMULATOR 

The pulse accumulator, which is similar to the timers in older MC6805 MCUs, is a much 
simpler system than the main timer discussed in SECTION 10 MAIN TIMER AND REAL· 
TIME INTERRUPT. This system is based on an 8-bit counter and can be configured to 
operate as a simple event counter or for gated time accumulation. Unlike the main timer, 
the 8-bit pulse accumulator counter can be read or written at any time (the 16-bit counter 
in the main timer cannot be written). Control bits allow the user to configure and control 
the pulse accumulator subsystem. Two maskable interrupts are associated with the system, 
each having its own controls and interrupt vector. 

The port A bit 7 I/O pin (PA7/PAI/OC1) associated with the pulse accumulator can be 
configured to act as a clock (event counting mode) or as a gate signal to enable a free­
running E divided by 64 clock to the 8-bit counter (gated time accumulation mode). The 
alternate functions of the pulse accumulator input (PAl) pin present some interesting ap­
plication possibilities. 

11.1 GENERAL DESCRIPTION 

The pulse accumulator is an 8-bit counter/timer system that can be configured to operate 
in either of two basic modes. In the event counting mode, the 8-bit counter is clocked to 
increasing values at each active edge of the PAl pin. In the gated time accumulation mode, 
the 8-bit counter is clocked by a free-running E divided by 64 clock subject to the PAl pin 
being active. Figure 11-1 is a simplified block diagram of the pulse accumulator in each of 
these two possible modes. 

f .. · ..... ; .... ""';·x ...... ;-;.,;-;-;~.;.;-;.;-;.;-;-;.; ... ;.;.;-;.;-;-;-;-;.; ... ;.;-; ...... -;.; ... ;.;.;-;.;.; .... ; ... ;.;.;..; .... ;.;.;.;.;.;.,:.;.;.;-;..-; ... ;..; ... ;-; ..... ;«.;.;~ 

I ~N I 

I 8-BIT COUNTER I "" CLOCK 
~ PACNT 
L PAMOD=O 
" x __ ~ EVENT COUNTING MODE _~x __ d 

E+64CLOCK 
(FROM MAIN TIMER) 

CLOCK 

a-BIT COUNTER 

PACNT 

~ PAMOD-1 " 
"".,.".,.",.,.,.,.,.,.,.,.,.,., GATED-TIME ACCUMULATION MODE"""""""'''''''''''''';': 

Figure 11·1. Pulse Accumulator Operating Modes 

MOTOROLA M68HC11 REFERENCE MANUAL 11-1 

• 



III 

Table 11-1 summarizes the important timing periods for the pulse accumulator (when 
operating in gated time accumulation mode) for various common crystal rates. The formulas 
at the bottom of the table can be used for a different crystal frequency than those shown. 

Table 11-1. Pulse Accumulator Timing Periods vs. Crystal Rate 

E Crystal Frequency E Period 1 Count (Resolution) Overflow (Range) 

2.1 MHz 223 Hz 477 ns 30.52 iJ-S 7.81 ms 

2 MHz 8 MHz 500 ns 32 iJ-S 8.19 ms 

1 MHz 4 MHz 1 iJ-S 64 iJ-S 16.38 ms 

Formula: 64(E Period) 16,384(E Period) 

The free-running E divided by 64 clock is a tap off the main timer clocking chain (see 10.2.1 
Overall Clock Divider Structure and Figure 10-3). In general, any signal applied to the PAl 
pin is asynchronous to this E divided by 64 clock; therefore, the first count could occur 
anywhere between zero and 64 E clocks after the PAl pin goes to the chosen active level. 

User software can enable the pulse accumulator system, select its mode, and determine 
the polarity of signals recognized at the PAl pin. Two separate interrupts are associated 
with the pulse accumulator system: one is generated by detection of a selected edge at 
the PAl pin; the other is generated when the 8-bit counter rolls over from $FF to $00 
(overflow). Each of these interrupt sources has its own local enable bit and its own interrupt 
vector; thus, no software polling is required to determine the cause of any pulse accu­
mulator interrupts. 

11.1.1 Pulse Accumulator Block Diagram 

Figure 11-2 is a functional block diagram of the pulse accumulator SUbsystem, The central 
element of this system is an 8-bit up-counter that can be read or written at any time. The 
pulse accumulator enable (PAEN) control bit enables/disables this 8-bit counter. The pulse 
accumulator mode (PAMOO) bit selects the clock source to this counter. In the event 
counting mode, the clock is the output of the edge detector of the PAl pin. In the gated 
time accumulation mode, the clock is a free-running, internal E divided by 64 clock AN Oed 
(gated) with the active level of the PAl pin. The pulse accumulator edge select (PEOGE) bit 
controls the polarity of signals on the PAl pin that will be recognized by the pulse accu­
mulator system. 

The pulse accumulator overflow interrupt enable (PAOVI) bit determines whether or not a 
pulse accumulator overflow interrupt flag (PAOVF) will generate hardware interrupt re­
quests. The pulse accumulator input edge interrupt enable (PAil) bit determines whether 
or not detected edges at the PAl pin will cause the pulse accumulator input flag (PAIF) to 
be set (generating hardware interrupt requests). In addition to the PAil and PAOVI local 
interrupt enables, these interrupts are subject to masking by the I bit in the condition code 
register in the central processing unit (CPU). For additional information about interrupts, 
refer to SECTION 5 RESET AND INTERRUPTS. 

The input buffer on the PAl pin is always connected from the pin to the pulse accumulator 
and port A read logic, but the output buffer is enabled or disabled by the data direction 

11-2 M68HC11 REFERENCE MANUAL MOTOROLA 



E+64CLOCK 
(FROM MAIN TIMER) 

PAOVI 
PAOVF 

PAil 
PAIF 

OVERFLOW 

INTERRUPT 
REQUESTS 

CLOCK ,.,j 
1--I--f-~~+---'1 PACNT 8-BITCOUNTER 

PAEN 

INTERNAL 
DATA BUS 

Figure 11-2. Block Diagram of Pulse Accumulator Subsystem 

control bit (DDRA7) in the pulse accumulator control (PACTL) register. Normally, when the 
pulse accumulator is being used, the PAl pin is configured as a high-impedance input 
(DDRA7 = 0), but it is possible for software or the main timer (by way of output compare 
1) to directly control the pulse accumulator by setting DDRA7 equal to one (output). A 
detailed transistor-level schematic of this pin logic is shown in SECTION 7 PARALLEL 
INPUT/OUTPUT. 

11.1.2 Pulse Accumulator Control and Status Registers 

Figure 11-3 shows all control and status registers related to the pulse accumulator. Each 
of these registers and bits is discussed in detail in the following paragraphs. 

The 8-bit pulse accumulator counter (PACNT -$1027) is not affected by reset and can be 
read or written any time. Counting is synchronized to the internal PH2 clock so thati.ncre­
menting and reading occur during opposite half cycles. 

MOTOROLA M68HC11 REFERENCE MANUAL 11-3 

III 



.. 

The following register and paragraphs describe the pulse accumulator related bits in the 
PACTL register. Bits 2 and 3 are not implemented and always read as zeros. Although, bits 
o and 1 are not related to the pulse accumulator, an awareness of these real-time interrupt 
rate bits is necessary to prevent inadvertent change while writing to the pulse accumulator 
related bits. 

DDRA7 PAEN I PAMOD I PEDGE RTRl 

RESET: 

RTRO 
PACTL 
$1026 

DDRA7 - Data Direction Control for Port A Bit 7 
O=Port A bit 7 is configured for input only (output buffer is disabled). 
1 = Port A bit 7 is configured for output. 

Normally when the pulse accumulator is being used, the PAl pin will be configured 
as an input. In unusual cases, the PA7/PAI/DC1 pin can be configured as an output 
to allow DC1 or a software output to drive the pulse accumulator system. Since 
the input buffer is always connected to the pin (even when the pin is configured 
as an output), any output function that is controlling the PA7 pin will also be 
driving the pulse accumulator. 

PAEN - Pulse Accumulator Enable 
0= Pulse accumulator disabled. 
1 = Pulse accumulator enabled. 

11-4 

When the pulse accumulator is disabled, the 8-bit counter stops counting, and 
pulse accumulator interrupts are inhibited. Though the flags cannot become set, 

M68HC11 REFERENCE MANUAL MOTOROLA 



they will remain set if they were ones at the time the pulse accumulator was 
disabled. 

PAMOD - Pulse Accumulator Mode Select 
0= External event counting mode (pin acts as clock). 
1 = Gated time accumulation mode (pin acts as clock enable for E divided by 64 clock). 

PEDGE - Pulse Accumulator Edge Select 
0= Pulse accumulator responds to falling edges (inhibit gate level is zero). 
1 = Pulse accumulator responds to rising edges (inhibit gate level is one). 

In gated time accumulation mode (PAMOD = 1), the PEDGE bit has added meaning. 
In addition to specifying the edge polarity that causes the PAIF bit to be set, PEDGE 
also controls the inhibit gate level, which disables the internal, free-running E 
divided by 64 clock to the pulse accumulator counter. The PAIF interrupts occur 
at the trailing edge of a gate enable signal; thus, selecting falling edges causes 
the free-running E divided by 64 clock to be disabled while the PAl pin is low. 

The following registers and paragraphs explain the pulse accumulator interrupt flags and 
the pulse accumulator interrupt enable bits. The other bits in these registers not related 
to the pulse accumulator system are discussed in SECTION 10 MAIN TIMER AND REAL­
TIME INTERRUPT. 

TOI RTII PAOVI PAil 

RESET: 

TOF RTIF I PAOVF I PAIF 

RESET: 

PRl PRO 
TMSK2 
$1024 

TFLG2 
$1025 

PAOVI, PAOVF - Pulse Accumulator Overflow Interrupt Enable and Flag • 
The PAOVF status bit is automatically set to one each time the pulse accumulator count 
rolls over from $FF to $00. This status bit is cleared by writing to the TFLG2register 
with a one in the corresponding data bit position (bit 4). The PAOVI control bit allows 
the user to configure the pulse accumulator overflow for polled or interrupt-driven 
operation but does not affect the setting or clearing of PAOVF. When PAOVI is zero, 
pulse accumulator overflow interrupts are inhibited, and the system is operating in a 
polled mode. In this mode, PAOVF must be polled (sampled) by user software to 
determine when an overflow has occurred. When the PAOVI control bit is one, a 
hardware interrupt request is generated each time PAOVF is set to one. Before leaving 
the interrupt service routine, software must clear PAOVF by writing to the TFLG2 
register. For additional information, refer to 10.2.4 Tips for Clearing Timer Flags. 

PAil, PAIF - Pulse Accumulator Input Edge Interrupt Enable and Flag 
The PAIF status bit is automatically set to one each time a selected edge is detected 
at the PA7/PAI/OC1 pin. This status bit is cleared by writing to the TFLG2 register with 

MOTOROLA M68HC11 REFERENCE MANUAL 11-5 



II 

a one in the corresponding data bit position (bit 5). The PAil control bit allows the user 
to configure the pulse accumulator input edge detect for polled or interrupt-driven 
operation but does not affect the setting or clearing of the PAIF bit. When PAil is zero, 
pulse accumulator input interrupts are inhibited, and the system is operating in a polled 
mode. In this mode, the PAIF bit must be polled (sampled) by user software to deter­
mine when an edge has occurred. When the PAil control bit is one, a hardware interrupt 
request is generated each time PAIF is set to one. Before leaving the interrupt service 
routine, software must clear PAIF by writing to the TFLG2 register. For additional 
information, refer to 10.2.4 Tips for Clearing Timer Flags. 

11.2 EVENT COUNTING MODE 

Many microcontroller unit (MCU) applications require "things" to be counted. These things 
are called events, but in real applications they might be anything: pieces on an assembly 
line, cycles of an incoming signal, or units oftime. To be counted by the pulse accumulator, 
these things must be translated into rising or falling edges on the PAl pin. Either edge will 
do because software can pick which edge will be recognized. A trivial example of event 
counting might be to count pieces on an assembly line. A light emitter/detector pair could 
be placed across the path of the pieces so that, as each piece passes the sensor, the light 
beam is interrupted and a logic-level signal is produced, which can be connected to the 
PAl pin. 

11.2.1 Interrupting after N Events 

By writing to the PAC NT, the pulse accumulator can be set up to produce an interrupt after 
N events. The trick is to write the twos complement of the number (N) to PACNT so that 
the counter will overflow after N counts. If the following program sequence is used, the 
PACNT will overflow after the 100th count: 

---- 86 64 
---- 40 
---- b7 10 27 

[2] 
[2] 
[4] 

LOAA noo 
NEGA 
STAA PACNT 

11.2.2 Counting More Than 256 Events 

Hex ($64) 
Twos complement ($9C) 
Store to pulse accum counter 

More than 256 events can be counted by using software to keep track of how many times 
the PACNT overflows. Before the first event, calculate the number of overflows needed 
and a value corresponding to any remainder that is left after seeing how many whole times 
256 goes into the intended count. Two cases are used as examples. In the first case, 512 
($0200) events will be counted; in the second case, 515 ($0203) events will be counted. In 
both cases, assume the desired count is in the 0 register. Since 0 is the concatenation of 
the A register (upper 8 bits of 0) and the B register (lower 8 bits of 0), division to see how 
many whole times 256 can go into the desired count is not necessary (the A register has 
this count). 

For case 1, two overflows are needed (there is no remainder). Zero is stored to PACNT. 
For reasons illustrated in the following paragraphs, the user may wish to negate the B 

11-6 M68HC11 REFERENCE MANUAL MOTOROLA 



register instead and store the result to PACNT (negative of $00 is $00). Save A in a RAM 
variable so software can decrement it at each overflow. As the pulse accumulator starts 
counting, the first overflow will occur after detecting the 256th event (counter counts 
$00-01-02 ... FE-FF-OO). The second overflow will occur after the 512th count. If the RAM 
variable was decremented at each overflow (it started at $02), it would become $00 after 
the second overflow (i.e., after the desired 512 events). 

For case 2, negate the B register and store the result to PACNT (negative of $03 is $FD). 
As the pulse accumulator starts counting, the first overflow will occur after detecting the 
third event (counter counts $FD-FE-FF-OO). The second overflow will occur after the 259th 
count, and the third overflow will occur after the 515th count. A third overflow is needed 
because there was an initial remainder that had to be counted before starting to count 
whole sets of 256 events. 

The user can write a program that will handle either case by checking the B register to see 
if it was zero. If it was not zero, the A register is incremented before storing it to the RAM 
variable that keeps track of overflows. Before negating the B register, test B and branch 
around an increment A register instruction if the B register was zero. This procedure is 
demonstrated in the following partial listing: 

cc 02 03 [3] LDD 4515 Get desired count in A:B 
40 [2] TSTB Test for remainder count 
27 01 [2] BEQ ARNINC If none; skip the INCA 
4c [2] INCA Increment the overflow count 
50 [2] ARNINC NEGB Twos complement remainder in B 
f7 10 27 [ 4] STAB PACNT Store to pulse accum counter 

---- b7 DO 00 [4] STAA OVCNT Store to RAM overflow variable 

The test B instruction can be eliminated (saving a byte of program space and two cycles 
of execution time) by checking the carry flag that results after the negate-B operation. Carry 
is set in all cases except when B is zero). The following partial listing demonstrates this 
slightly shorter procedure: 

cc 02 03 [3] LDD 4515 Get desired count in A:B 
50 [2] NEGB C-bit only cleared if B was 0 
27 01 [2] BCC ARNINC If B was ($00) ; skip the INCA 
4c [2] INCA Increment the overflow count 
f7 10 27 [4] ARNINC STAB PACNT Store twos compo remainder count 

---- b7 DO 00 [4] STAA OVCNT Store to RAM overflow variable 

This alternate approach illustrates that a sophisticated, careful user can sometimes find 
tricks to save memory and execution time, but are they that important in all MCU appli­
cations? The costs of this trick and others like it are 1) it often makes the program slightly 
more difficult to understand (more risk of a mistake), and 2) it takes extra development 
time. Remember, the savings in this case is just one byte of program space and two cycles 
of execution time. 

MOTOROLA M68HC11 REFERENCE MANUAL 11-7 

II 



II 

11,3 GATED TIME ACCUMUI-A TION MODE 

This mode changes the pulse accumulator from a counter into a timer. In this mode, the 
8-bit PACNT is incremented every 64th E-clock cycle provided the PAl pin is active. The 
PEDGE bit controls which level at the PAl pin inhibits counting. This mode is called gated 
time accumulation mode because the PACNT can be used to accumulate the total time the 
pin was active over a series of pulses. Each time the PAl pin goes to the chosen active 
level, the PACNT continues to count from where it left off at the end of the previous pulse. 

A more common use of gated time accumulation mode is to measure the duration of single 
pulses (pulse-width measurement). Since this counter does not start counting until the 
input signal becomes active, pulse-width measurement is done a little differently than it 
would be with a main timer input capture. With the pulse accumulator, the counter is set 
to zero before the pulse starts, and the resulting pulse time is directly read when the pulse 
is finished; whereas, with input capture, it is necessary to capture a starting count and an 
ending count and subtract. 

Separate maskable interrupts are generated at counter overflow and at the trailing edge 
of the counter enable signal on the PAl pin. The overflow interrupt is useful for generating 
interrupts after a specific time delay from when the pin became active or for measuring 
signals longer than the range of the 8-bit counter. The PAl pin-related interrupt is useful 
for signaling the end of a timing period; software can then be used to see how long the 
input was active. These two interrupts can be used together to create a pulse-width dis­
criminator - for example, write the counter to a value that would cause an overflow 
interrupt half way between the time of the shorter pulse width and the longer pulse width. 
If the overflow triggers before the PAl pin interrupt, the pulse is the longer size. If the pin 
interrupt triggers before the overflow interrupt, the pulse is the shorter size. If the pulse 
widths are longer than the range of the 8-bit counter, incorporate a software overflow 
counter into the overflow service routine and use the timeout of this software count, instead 
of the first PAOVF interrupt, to discriminate between pulse durations. 

11.3.1 Measuring Times Longer Than the Range of the 8-Bit Counter 

Extending the timing range is done in much the same way as it is for input captures. 
Because the pulse accumulator is 8-bits rather than 16-bits, overflows happen more often. 
As long as the input signal is active, the user would count overflows. The PAl pin interrupt 
indicates when the pulse ends (by setting the PAIF status bit and optionally generating an 
interrupt). The period of the pulse will be 

(256 N + PACNT) x (64 E periods/count) 

where: 
N equals the number of overflows 
PACNT equals the final count in the 8-bit pulse accumulator counter 

The problems associated with overflows, which occur near input capture edges in the main 
timer, are not present in the pulse accumulator. Since the PACNT is not running before 
the leading edge of the pulse, there is no potential confusion about an overflow near this 
edge. At the trailing edge of the pulse, the PACNT also stops so any pending overflow will 

11-8 M68HC11 REFERENCE MANUAL MOTOROLA 



count in the total. The PAOVF interrupt is higher priority than the PAIF interrupt; therefore, 
a just-in-time overflow will always be serviced before servicing the trailing edge of a pulse 
so the PAIF service routine does not have to check for an overflow. 

11.3.2 Configuring for Interrupt after a Specified Time 

This concept is the time equivalent of setting up an interrupt after N events, which was 
previously discussed. First, calculate the number of E divided by 64 counts, which would 
be equivalent to the time period the user wants to specify. For example, if a delay of 5 ms 
is desired, divide 5 ms by the time for one E divided by 64 count (from Table 11-1, one 
count equals 32 J.l.s for E = 2 MHz). Since 5 ms divided by 32 J.l.s equals 156.25, truncate to 
156. The resolution of the counter causes a tolerance of ± 32 J.l.S (64 E periods; E = 2 MHz). 
Next, take the twos complement of this value and store the result in the PAC NT. When the 
input goes to its chosen active level, the counter will start incrementing every 64 E cycles. 
An overflow will occur after the 156th count. 

11.4 OTHER USES FOR THE PAl PIN 

At any time, software can read the logic level on the PA7/PAI/OC1 pin even if one or more 
of the other functions associated with this pin is also enabled. This pin can also be used 
as an extra edge-triggered interrupt input pin when the pulse accumulator functions are 
not needed. (In fact, examples have been presented in this chapter where this pin is being 
used as an edge-triggered interrupt even while the pulse accumulator is being used.) This 
pin has some advantages over the IRQ pin. The PEDGE control bit allows the user to select 
either rising or falling edges (IRQ cannot be configured to detect rising edges). The PAil 
control bit allows the user to locally enable or disable this interrupt; in addition, the I bit 
in the CPU condition code register acts as a global enable for all I-bit-related interrupts. 
Finally, the PAIF status flag allows software to detect a pending PAl pin interrupt and to 
clear the pending interrupt if necessary (with IRQ this function is not possible). 

11.5 TIMING DETAILS FOR THE PULSE ACCUMULATOR 

The timing information presented in the following paragraphs is much more detailed than III 
most users will ever need. This information is not intended to replace guaranteed data-
sheet timing information. 

Figure 11-4 shows the timing related to edge detection at the PA7/PAI/OC1 pin. Primarily, 
this timing concerns the event counting mode, butthe setting of the PAIF status flag applies 
to gated time accumulation mode as well. PAl signals are synchronized to the internal 
phase 2 (PH2) clock to prevent any interference between clocking and reading the PACNT. 
This synchronization process limits the maximum counting rate for the pulse accumulator 
to one-half the E-clock frequency. 

Any incoming edge [1] presented after the rising edge of E but before the next rising edge 
of E is recognized during PH2 high and causes the PAIF status flag [2] to be set at the 
falling edge of that PH2. In event counting mode, the PACNT counter is incremented at 
that same PH2 falling edge. The soonest another edge can be detected is two cycles later 
[3]. 

MOTOROLA M68HC11 REFERENCE MANUAL 11-9 



III 

PH2 

PAl PIN 

PAiF 

PACNTCOUNT 

E 

PH2 

PAl PIN 

PACNTCOUNT 

E 

V [2) 
------~------~I 
________ ,-__ N ____ ~_4~r------N-+-l-------+r--------------

Figure 11-4. PAl Pin Edge-Detection Timing 

Figure 11-5. Pin Enable vs. Counting (Gated Accumulation Mode) 

In gated time accumulation mode, an internal, free-running E divided by 64 clock drives 
the PACNT whenever the PAl pin is at its chosen active level. Figure 11-5 shows the timing 
relationship between the counter enable signal at the PAl pin [1] and the start of counting. 
In general, the signal at the PAl pin is asynchronous to the free-running E divided by 64 
clock; thus, there would be an uncertainty about the delay between the active level at the 
PAl pin and the first increment of the PACNT. The first increment could come as early as 
[2]' as late as [5], or at any PH2 falling edge between ([3]' [4], etc.). 

Knowing the relationship between software and the free-running E divided by 64 clock is 
not normally useful, but it is theoretically possible to determine this relationship. From 
Figure 10-3 and the prescale control bit values (PR1 :PRO), it can be determined where the 
E divided by 64 clock is tapped off the main timer. Software can then read the low-order 
half of the 16-bit main timer counter to see when the next edge will appear at the tap point. 
Because this procedure can be involved, it is not worth pursuing unless there is a very 
good reason. 

Figure 11-6 shows timing details for a pulse accumulator counter overflow. At the PH2 
falling edge where the PACNT count changes from $FF to $00 [1]' the PAOVF bit also is 
set [2]. 

11-10 M68HC11 REFERENCE MANUAL MOTOROLA 



PH2 

------------------------\1""-----------
PACNTCOUNT $FF $00 ------------------------1'------------

PAOVF 

E 

Figure 11-6. Timing Details for Pulse Accumulator Counter Overflow 

Reading orwriting to the PACNT occurs in a portion of the PH2 cycle that eliminates conflicts 
between accesses to PACNT and counting. Figure 11-7(a) shows the detailed timing for a 
read of PACNT; Figure 11-7(b) shows a write. The address and data buses shown in Figure 
11-7 are the internal buses that have different timing than the external buses. 

MOTOROLA M68HC11 REFERENCE MANUAL 11-11 

III 



III 

PH2 

PACNTCOUNT 

ADDRESS BUS 
(INTERNAL) 

DATA BUS 
(INTERNAL) 

E 

PH2 

PACNTCOUNT 

ADDRESS BUS 
(INTERNAL) 

11-12 

DATA BUS 
(INTERNAL) 

E 

~ __ ~X ____ ~X __ ~X~_NN~X~ __ ~X __ __ 

I ==:>--< OPCODE H $10 H $OE H NN H,--~}-( 
~ LDAA PACNT READ PULSE ACCUMULATOR COUNT (EXTENDED) ~ 

I FETCH OPCODE I FETCH 16-BIT OPERAND ADDRESS I READ PACNT I 

(a) PACNT Read 

I ==:>--< OPCODE H $10 H $27 H NN H,--_}-( 
~ STAA PACNT WRITE TO PULSE ACCUMULATOR (EXTENDED) -...j 

I FETCH OPCODE I FETCH 16-61T OPERAND ADDRESS I WRITE PACNT I 

(b) PACNT Write 

Figure 11-7. PACNT Read and Write 

M68HC11 REFERENCE MANUAL MOTOROLA 



SECTION 12 
ANALOG-TO-DIGITAL CONVERTER SYSTEM 

The MC68HC11A8 analog-to-digital (AID) converter system uses an all-capacitive charge­
redistribution technique for conversions. The AID system is an 8-channel, 8-bit, successive­
approximation converter with ± 1/2 least significant bit (LSB) accuracy over the complete 
operating temperature range. Because of the charge-redistribution technique, no external 
sample and hold circuits are required. 

This section first discusses the charge-redistribution technique, which is useful in under­
standing subtle details concerning the application of the MC68HC11A8 AID system. The 
second part of this section includes a detailed description of the MC68HC11A8 AID system 
and features. The section concludes with a discussion of how external circuitry can influence 
AID accuracy. 

12.1 CHARGE-REDISTRIBUTION AID 

Figure 12-1 shows a simplified circuit to perform a 4-bit, successive-approximation AID 
conversion using charge redistribution. The actual circuit used in the MC68HC11A8 includes 
several additions to this simple circuit to improve quality and simplify manufacturing. After 
an initial introduction to the charge-redistribution technique, some of these additions are 
discussed. Since the capacitive charge redistribution technique depends upon capacitance 
ratios rather than absolute capacitance values, the capacitors in Figure 12-1 are marked in 
units. 

During the sample time (Figure 12-1 (a)), the top plate of all capacitors is switched to VL 
(0.0 V), and the bottom plates are connected to the unknown analog input, Vx. Using the 
simple relationship Os equals CV, the total charge may be calculated by 

Os = 16(VX - VLl 

Unless otherwise stated, it is assumed VL equals 0.0 V; therefore, 

OS=16 Vx 

Next, the circuit is changed to the hold state by logically controlled analog switches (Figure 
12-1(b)). In this state, the top plates are disconnected from VL, and the bottom plates are 
switched from Vx to VL. The charge is now written as 

Since VL=O 

OH = -16 Vi 

MOTOROLA M68HC11 REFERENCE MANUAL 12-1 



12-2 

(a) Sample Mode 

J! 1 1 1 1 'i fG>­I I I I J 'L 

VL 

(b) Hold Mode 

'H J J J, J 
f pppp 
~ t t t t 

L I MSB I I I LSB I ...... -------' 
SUCCESSIVE-APPROXIMATION REGISTER 

(SAR) 

(e) Approximation Mode 

Figure 12-1. Basic Charge-Redistribution AID 

M68HC11 REFERENCE MANUAL MOTOROLA 



Since charge is conserved, Os equals 0H; therefore, 

16 VX= -16 Vi 
VX= -Vi 
Vi= -VX 

which is the initial voltage at the input of the comparator. 

Finally, in the conversion portion of the AID process, each capacitor, beginning with the 
largest one, which corresponds to the most significant bit (MSB) of the digital result, is 
switched from VL (0.0 V) to VH. The output of the comparator, after each capacitor is 
switched, determines whether the bottom plate of that capacitor will remain at VH or be 
returned to VL before the next capacitor is switched. 

To understand how the process works, a conversion sequence is presented for an analog 
input, (VX equals 21/32 (VH). 

During the sample time, the capacitors attain a total charge 

Os = 16 Vx = (16) 21/32 (VH) = 21/2 VH 

During hold, the minus input to the comparator (Vi) goes to - Vx or - 21/32 VH. 

Next, the eight-unit capacitor is switched from VL to VH resulting in the following circuit: 

VH 

1 
T "~ 111 1: 

I I I T V
L 

~ L 

The charge is written as follows: 

but VL = 0; thus, 

MOTOROLA 

0=8 VH-8 Vi-8 Vi 
0=8 VH-16 Vi 

M68HC11 REFERENCE MANUAL 12-3 



By charge conservation, this charge is set equal to the original charge obtained during the 
sample time: 

21/2 VH =8 VH-16 Vi 

Solving for Vi yields the following results: 

16 Vi=8 VH-21/2 VH 
Vi = 1/2 VH - 21/32 VH 
Vi= -5/32 VH 

which is negative. 

Since the output of the comparator is a logic one, the eight-unit capacitor remains connected 
to VH for the next step. Also, bit 3 of the successive-approximation register (SAR) is set 
to a logic one. After the conversion sequence, the SAR contains the digital equivalent of 
the original analog input. 

Next, the four-unit capacitor will be switched from VL to VH resulting in the following 
circuit: 

The charge is written as follows: 

Q=8(VH-Vj)+4(VH-Vi)-4 Vi 
Q= 8 VH -8 Vi+4 VH -4 Vi -4 Vi 
Q= 12 VH-16 Vi 

By charge conservation, this charge is set equal to the original charge: 

2112 VH = 12 VH-16 Vi 

12-4 M68HC11 REFERENCE MANUAL MOTOROLA 



Solving for Vi yields the following results: 

16 Vi = 12 VH-2112 VH 
16 Vi =3/2 VH 

Vi =3/32 VH 

which is positive. 

The output of the comparator is a logic zero; therefore, the four-unit capacitor returns to 
VL before proceeding to the next step. Also, bit 2 of the SAR is cleared to zero. 

Next, the two-unit capacitor will be switched from VL to VH resulting in the following 
circuit: 

): 
L 

The charge is written as follows: 

0= 8(VH -Vj) +2(VH - Vj}- 6 Vi 
0=8 VH-8 Vi+2 VH-2 Vi-6 Vi 
0=10VH-16Vi 

results: 
Setting this charge equal to the original charge by charge conversion yields the following .. 

2112 VH = 10 VH-16 Vi 
16 Vi = 10 VH-21/2 VH 
16 Vi = - 1/2 VH 

Vi = -1132 VH 

which is negative. 

Since the output of the comparator is now a logic one, the two-unit capacitor remains 
connected to VH for the next step, and bit 1 of the SAR is set to one. 

MOTOROLA M68HC11 REFERENCE MANUAL 12-5 



II 

As the last step in the conversion sequence, the one-unit capacitor will be switched from 
VL to VH. The second one-unit capacitor remains connected to VL throughout the conver­
sion sequence. The following circuit is for the last conversion step: 

The charge is now written as follows: 

Q = 8(VH - Vi) + 2(VH - Vj) + 1(VH - Vj}- 5 Vi 
Q = 8 VH + 2 VH + 1 VH - 8 Vi - 2 Vi - 1 Vi - 5 Vi 
Q = 11 VH -16 Vi 

Charge conservation yields the following results: 

21/2VH=11 VH-16Vi 
16Vi=11 VH-21/2VH 
16Vi=1/2VH 

Vi = 1/32 VH 

which is positive. 

Since the output of the comparator is now a logic zero, the LSB of the SAR is cleared to 
zero. Because the conversion is complete, it is not necessary to switch the one-unit capacitor 
back to VL. The digital result of this example conversion is 10102. 

In the previous example, an analog input voltage of 21132 VH yields a digital result of 10102 
or 10/16 VH. An error occurred even though ideal components and conditions were as­
sumed. A closer look at an even simpler 2-bit AID explains the reason. If the second one­
unit capacitor is omitted, the following circuit results: 

P L 

12-6 M68HC11 REFERENCE MANUAL MOTOROLA 



The transfer characteristic of the circuit is as follows: 

11 

'::; 
:::J 
ffl 10 
a: 
>-
~ 01 
i'i5 

-------- 1""1 -_ ..... 

I 
I 
I 

OO~------+_----~r------r 

ANALOG INPUT 

Without the extra one-unit capacitor, each unit of capacitance corresponds to one-third the 
total rather than corresponding to the desired one-fourth. When the second one-unit capacitor 
is added, the following circuit and transfer characteristics result: 

~ 1 1 
11 

'::; 
:::J 
~ 10 
a: 

~ 01 
i'i5 

-------------------- 1"'1 -----

I 
I 
I 

------------- ,..---...... 

00~----+_----~--~,_--_1_ 
1 1 
4"V H 2 VH 

ANALOG INPUT 

An analog input of 1/4 VH produces a digital result of 012 or 1/4 VH, but an analog input 
of 1/8 VH yields a digital result of 002 or 0.0 V, which is in error by 1/8 VH or 1/2 LSB. This 
quantization error is an unavoidable consequence of any AID converter. This particular 
2-bit AID has a quantization error of -01+1 LSB. A more desirable specification is ±1/2 
LSB quantization error, as is the case on the MC68HC11A8. Quantization error is always a 
total of 1 LSB, and many manufacturers do not include this error in specifications of AID 
accuracy. 

In an all-capacitive charge-redistribution converter, a simple method exists for shifting the 
transfer characteristic down by 1/2 LSB to center the quantization error. A half-unit capacitor 
is connected to VH during the sample time and is switched to VL for the remainder of the 
conversion sequence. Figure 12-2 demonstrates how this technique is applied to the pre­
viously described 2-bit converter. 

The charge obtained during the sample time is 

QS = 4(VX - VU + 1/2(VH - VU 

Assuming VL = 0 simplifies the equation to 

QS=4 VX+1/2 VH 

MOTOROLA M68HC11 REFERENCE MANUAL 12-7 

.. 



(a) Sample Mode 

(b) Hold Mode 

II t t 
BIT 1 BIT 0 

SAR 

(e) Approximation Mode 

Figure 12-2. Charge-Redistribution AID with ± 1/2 LSB Quantization Error 

12-8 M68HC11 REFERENCE MANUAL MOTOROLA 



The effect of the half-unit capacitor becomes apparent when Vi is calculated for the circuit 
corresponding to a digital result of 012. The equivalent circuit is 

The charge is now written as follows: 

Q= HVH-Vil-3-1/2 Vi 
Q=VH-4-1/2 Vi 

Charge conservation yields the following results: 

4 VX+1/2 VH=VH-4-1/2 Vi 
4-1/2 Vi = VH -112 VH -4 Vx 
4-1/2 Vi = 1/2 VH -4 Vx 

9 Vi = 1 VH - 8 Vx 
9/8 Vi = 1/8 VH - Vx 

The comparator only outputs a logic one when Vi is less than zero, which is when Vx is 
greater than 1/8 VH. 

Next, Vi is calculated for the circuit corresponding to a digital result of 102. The equivalent 
circuit is as follows: 

MOTOROLA M68HC11 REFERENCE MANUAL 12-9 

lEI 



II 

The charge is written as follows: 

0=2(VH-Vi)-2-1/2 Vi 
0=2 VH-4-1/2 Vi 

Change conservation yields the following results: 

4 VX+1/2 VH =2 VH-4·1/2 Vi 
4-1/2 Vi = 2 VH -112 VH-4 Vx 
4-1/2 Vi =312 VH-4 Vx 

9 Vi =3 VH-8 Vx 
9/8 Vi = 3/8 VH - Vx 

The comparator only outputs a logic one when Vi is less than zero, which is when Vx is 
greater than 3/8 VH. The complete transfer characteristic for the 2-bit AID with the new 
half-unit capacitor is 

11 ---------------- ... , ---
i 10 --------- ... : ___ i 
I 01 --: ; 

I 
I 

1 1 3 
TVH 2"VH TVH 

ANALOG INPUT 

The user should note that there is no 2-bit digital code for 4/4 VH (full scale). 

12.2 AID CONVERTER IMPLEMENTATION ON MC68HC11A8 

The AID converter in the MC68HC11A8 is composed of a single successive-approximation 
charge-redistribution AID converter and digital control circuitry. The analog section is some­
what more complex than the circuits previously described but identical charge­
redistribution principles are used. The digital section consists of the logic that makes the 
AID work as a system with the rest of the microcontroller unit (MCU). 

12.2.1 MC68HC11A8 Successive-Approximation AID Converter 

A discussion of the actual converter in the MC68HC11A8 is presented in the following 
paragraphs. Figure 12-3 shows the successive-approximation converter of the MC68HC11A8 
AID in sample mode. 

Unlike earlier examples, the weighted capacitor array has a series capacitor (Cs) separating 
the low-order half of the array from the high-order half. This capacitor effectively divides 

12-10 M68HC11 REFERENCE MANUAL MOTOROLA 



Figure 12-3. MC68HC11A8 AID in Sample Mode 

the value of the low-order capacitors to the left by 16, which simplifies the layout of the 
weighted capacitor array and assures better matching of capacitance sizes. 

Except the half-unit and 1.1-unit elements, all capacitors are composed of connected groups 
of one-unit capacitors, which minimizes errors caused by sizing and processing. In the 
MC68HC11A8, these capacitors consist of polysilicon plates separated by an interlevel 
oxide; the lower plates are isolated from the substrate by a second layer of oxide. The 
capacitance of this structure is not subject to variation due to voltages on the plates relative 
to the substrate. 

In the MC68HC11 A8 AID, both inputs and the output of the comparator are shorted together 
during the sample time, which causes all three points to stabilize at the trip voltage of the 
comparator; thus, comparator offsets are effectively cancelled out of the calculations. After 
the sample period, the shorting paths are disconnected, and the conversion sequence 
proceeds as in the earlier examples. The 16-unit capacitor from the plus input of the 
comparator to VL is not critical in terms of size because it is only used to hold the plus 
input at VTRIP during the short conversion time. 

12.2.2 AID Charge Pump and Resistor-Capacitor (RC) Oscillator 

A charge pump on the chip develops about 7 or 8 V, and this high voltage is used to drive 
the gates of the analog switches in the input multiplexer and capacitor array. This high 
gate voltage assures low source to drain impedance for analog signals up to and including 
VDD. In fact, VRH can be somewhat higher thanVDD (approximately 6 V), and the converter 
will still yield good ratiometric results. 

The AID charge pump is disabled coming out of reset and is turned on by setting the AID 
powerup (ADPU) control bit in the OPTION control register before the AID system can be 

MOTOROLA M68HC11 REFERENCE MANUAL 12-11 

.. 



used. A delay is required after turning on ADPU to allow the charge pump and comparator 
circuits to stabilize before using the converter system. 

The charge-redistribution AID process is a dynamic process in that the charge on the 
capacitor array will eventually leak off. This capacitor array is part of an internal digital­
to-analog converter (DAC)' which means the conversion process must be completed within 
a reasonable time after the sample time ends. The other circuitry on the MCU is static to 
allow very low clock frequencies, thus saving power. At bus frequencies (E clock) below 
750 kHz, the E clock should not normally be used as the AID conversion clock because 
there is a risk of error due to charge leakage at temperature extremes. Laboratory char­
acterization has indicated good performance at E-clock rates as low as 10kHz, but the 
specification has been guard banded against process variations. 

An on-chip RC oscillator provides an alternate clocking source for the AID system when 
the E clock is running too slow to assure good conversions. This clock source is selected 
by writing a one to the clock select (CSEL) control bit in the OPTION control register. The 
AID clock (E clock or RC oscillator depending on CSEL) drives the SAR sequencer and the 
AID charge pump. Some delay may be required after switching clock sources, depending 
on their frequencies. The RC oscillator frequency varies with processing but is typically 
about 2 MHz. 

When the E clock is being used as the AID clock source, the conversion sequence is 
inherently synchronized to the main MCU clocks. Using the E clock has two advantages 
over using the RC oscillator, which is asynchronous to system clocks. First, the comparator 
output is sampled at relatively quiet times in the system clock cycle, thus reducing the 
effects of internal MCU noise. When the RC oscillator is being used, there is more error 
attributable to internal system clock noise. Second, result-register updates automatically 
occur during a portion of the system clock cycle where reads do not occur; thus, an update 
cannot interfere with a read. When the RC oscillator is used, there is no conflict between 
updates and reads, but there is an additional synchronization delay imposed at the end of 
each channel conversion to allow for synchronization to the system E clock. 

The following illustration shows the OPTION control register for reference since the ADPU 
and CSEL control bits affect the AID converter system. 

ADPU CSEL IROE DLY 

RESET: 

CME CRl CRO OPTION 
$1039 

The CSEL control bit also selects an alternate clock source for the on-chip EEPROM charge 
pump. This charge pump is separate from the AID charge pump, but both pumps are 
selected with the CSEL control bit. In the case of the AID charge pump, CSEL needs to be 
one when the E clock is too slow to assure that the successive-approximation sequence 
will finish before any significant charge loss. In the case of the EEPROM, the efficiency of 
the charge pump is at issue. More details on EEPROM charge-pump efficiency are presented 
in SECTION 4 ON-CHIP MEMORY. When the E clock is at or above 2 MHz, CSEL should 
always be zero; when the E clock is' below 750 kHz, CSEL should almost always be one. 

12-12 M68HC11 REFERENCE MANUAL MOTOROLA 



At E-clock frequencies between 750 kHz and 2 MHz, CSEL should be set to one for EEPROM 
programming and erase operations so the EEPROM charge pump works more efficiently; 
however, CSEL should be set to zero for AID conversions to assure highest A/D accuracy 
by reducing the effects of on-chip noise. 

In most applications, switching CSEL on and off is not necessary. Instead, a trade-off can 
usually be made on the basis of application requirements. For example, the additional 
AID error attributable to internal noise when CSEL equals one is on the order of ± 112 LSB, 
which is acceptable in many applications. 

12.2.3 MC68HC11A8 AID System Control Logic 

The AID system on the MC68HC11A8 consists of a single successive-approximation AID 
converter, an input multiplexer to select one of 16 channels (including eight channels 
associated with pins on the MCU), and sophisticated control ciruitry to configure and control 
conversion activities. Four separate result registers are included with control logic that 
implements automatic conversion sequences on a selected channel four times or on four 
channels (once each). Conversion sequences are configured to repeat continuously or to 
stop after one set of four conversions. An on-chip RC oscillator is selected to allow normal 
operation of the AID when very low MCU clock frequencies are being used. 

Figure 12-4 shows the timing for a sequence of four AID conversions; the system E clock 
is being used as the conversion clock, which is the normal case. The AID converter is 
dynamic in that the charge attained during the sample period will eventually leak off the 
DAC capacitors. If the system E clock is slower than 750 kHz, an on-chip RC oscillator should 
be selected as the AID conversion clock source. The RC clock source is selected by setting 
the CSEL control bit in the OPTION register. Since the RC clock source is asynchronous to 
the MCU E clock, a synchronization delay is required at the end of each conversion in the 
sequence to prevent result-register updates in the same part of the E-clock cycle where a 
read is taking place. AID result registers should not normally be used before the conversion 
complete flag (CCF) is set at the end of the fourth conversion in a sequence because of 
uncertainty in the exact frequency of the on-chip RC oscillator and because of synchro­
nization delays. When the E clock is being used as the conversion clock, Figure 12-4 can 
be used to determine the earliest availability of valid data in result registers 3-1. For 
example, ADR1 has valid conversion results 34 E-clock cycles after the AID control/status 
register is written. 

12.2.4 AID Control/Status Register (ADClL) 

All bits in this register may be read or written except bit 7, which is a read-only status 
indicator, and bit 6, which always reads zero. Bit 7 is cleared by reset, but the other bits 
are not affected by reset. The following register and paragraphs describe the function of 
each bit. 

CCF SCAN MULT CD CC 

RESET: u u u u 

MOTOROLA M68HC11 REFERENCE MANUAL 

CB CA 

u u 

ADell 
$1030 

12-13 

.. 



E CLOCK 

" 
~ 
!!: 

~ 
w 
::::J o 
w 
(f) 

!;( 
W 

I- a.. w W 
I (f) I a: 

CONVERT FOURTH ~ 
CHANNEL 

AND UPDATE ADR4 . E 
128 CYCLES 

Figure 12-4. Timing Diagram for a Sequence of Four AID Conversions 

CCF - Conversions Complete Flag 
This read-only status indicator is set when all four AID result registers contain valid 
conversion results. Each time the ADCTl register is written, this bit is automatically 
cleared, and a new conversion sequence is started immediately. In the continuous 
scan modes, conversions continue in round-robin fashion, and the result registers are 
updated with current data even though the CCF bit remains set. 

NOTE 

The user must write to the ADCTl register to initiate conversion oper­
ations. To abort a conversion operation in progress, write to the ADCTl 
register, and a new conversion operation is initiated immediately. 

Bit 6 - Not implemented; always reads z~ro. 

SCAN - Continuous Scan Control 
When this bit is zero, the four requested conversions are performed, once each, to fill 
the four result registers. When this bit is one, conversions continue in a round-robin 
fashion with the result registers being updated as new data becomes available. 

MUl T - Multiple-ChanneIiSingle-Channel Control 
When this bit is zero, the AID system is configured to perform four consecutive con­
versions on the single channel specified by the four channel-select bits (CD-CA of the 
ADCTL register). When this control bit is one, the AID system is configured to perform 
conversions on each channel in the group of four channels specified by the CD and 

12-14 M68HC11 REFERENCE MANUAL MOTOROLA 



CC channel-select bits. In this multiple-channel mode, each channel is associated with 
a specific result register. 

CD, CC, CB, CA - Channel Selects 
These four channel-select bits are used to specify the channel(s) to be operated on for 
an AID conversion operation. Table 12-1 shows the relationship between the CD-CA 
bits and the channel(s) to be operated on. When a multiple-channel mode is selected 
(MULT = 1). the CB and CA selects have no effect, and the group of four channels 
affected are selected by CD and CC. 

Table 12-1. AID Channel Assignments 

Channel 
CD CC CB CA Signal 

0 0 0 0 PEO 

0 0 0 1 PE1 

0 0 1 0 PE2 

0 0 1 1 PE3 

0 1 0 0 PE4' 

0 1 0 1 PE5' 

0 1 1 0 PE6* 

0 1 1 1 PE7* 

1 0 0 0 Reserved 

1 0 0 1 Reserved 

1 0 1 0 Reserved 

1 0 1 1 Reserved 

1 1 0 0 VH** 

1 1 0 1 VL** 

1 1 1 0 1/2 VH** 

1 1 1 1 Reserved" 

'Not available in 48-pin package versions. 
**These channels intended for factory testing. 

Result in ADRx 
if MULT=1 

ADR1 

ADR2 

ADR3 

ADR4 

ADR1 

ADR2 

ADR3 

ADR4 

ADR1 

ADR2 

ADR3 

ADR4 

ADR1 

ADR2 

ADR3 

ADR4 

The last group of four analog channels is used during factory testing of the MCU. The 
1/2 VRH channel is misleading in that there is no internal voltage divider actually dividing .. 
the reference supply. Rather, a result of 1/2 VRH is artificially produced by special control 
logic, which forces unusual connections of the DAC capacitors during sample time. Thus, 
the charge attained will be identical to that obtained by sampling an analog level of 1/2 
VRH on one of the eight analog input pins. 

12.2.5 AID Result Registers (ADR4-ADR11 

The AID result registers are read-only registers used to hold an 8-bit conversion result. 
After all four result registers have been filled with valid data in a conversion sequence, the 
CCF status bit is set to indicate the results are valid. New conversion results are calculated 

MOTOROLA M68HC11 REFERENCE MANUAL 12-15 



in the AID logic and are transferred into the result registers in a part of the clock cycle 
where reads do not take place; therefore, no interference occurs between software reads 
and result updates. 

12.3 AID PIN CONNECTION CONSIDERATIONS 

Since there are no P-channel devices directly connected to the AID input or reference pins, 
voltages above VDD do not pose a latchup threat. If an AID input rises above the threshold 
of the protection device, an input protection device avalanches, and current into this device 
should be limited. Because of an inherent diode to VSS, AID inputs must not go below 
VSS, or the input can be permanently damaged. A series resistor of 1 kO will prevent 
damage, but avoid a series resistor of more than 10 kO because input leakage acting through 
this impedance will degrade AID accuracy. External clamping diodes on AID inputs should 
be avoided because the leakage through these devices is greater than the input pin leakage 
current and could significantly degrade accuracy if significant resistance exists in series 
with the analog source. Figure 12-5 shows a model of an AID input pin, which is useful in 
planning external circuitry and connections. 

INPUT 
:,"""""'" PROTECTION """"""",: 
~, DEVICE " 
" -: 

DIFFUSION AND 
POLY COUPLER 

~-20PF 
I DAC 

CAPACITANCE 

VRL 

* This analog swrtch is closed only during the 12 cycle sample time. 

Figure 12-5. Electrical Model of an AID Input Pin (Sample Mode) 

Capacitors from AID inputs to VRL help prevent errors due to system noise, but it is 
important to size these capacitors properly for the way the AID converter is being used in 
a particular system. Factors affecting the size of these capacitors are as follows: 

1) Source impedance of the analog signal 
2) Rate of change of the analog signal 
3) Electrical model of the AID inputs 
4) Frequency of AID conversion requests to the particular channel 
5) Analog level on the previously converted channel (in some cases) 

The first three factors are straightforward, but the last two factors are subtle. Figures 
12-4 and 12-5 should be used in conjunction with the following discussion. 

The maximum external source impedance of an analog signal is limited by the leakage 
into the pin (see Figure 12-5). When VRH - VRL = 5.12 V, 1 LSB corresponds to 20 mV of 

12-16 M68HC11 REFERENCE MANUAL MOTOROLA 



input voltage. The worst-case input leakage of 400 nA acting through 10 kO of external 
series resistance will result in about 0.2 LSBs of offset. Although the specification states 
the maximum-allowable external series resistance is 10 kO, a higher source impedance 
can be used, but it may cause additional errors in the results. The leakage current arises 
from N-channel junction leakages that are worse at high temperatures. Since only N­
channel devices contribute to this current, it is unidirectional toward VSS and will only 
cause errors lowering AID results below the expected value. 

The minimum-desirable source impedance for an analog input signal should ensure the 
current at the AID pin never gets high enough to cause CMOS latchup. The HCMOS process 
used on the MC68HC11A8 is much more robust than older 14xxx-style CMOS, but the 
current at a pin should still be limited to 25 mA or less. Although the pins can withstand 
much more, 25 mA is considered a good design target. The source impedance that meets 
this limitation will depend on the total system. For example, suppose the worst-case scen­
ario for a particular system results in an analog source accidentally shorting to -12 V. The 
inherent internal diodes to VSS will clamp the voltage at the pin to about - 0.7 V. This 
clamped voltage means a maximum current of 25 mA must cause 11.3 V to be dropped 
across a series-limiting resistance, which calculates to 452 O. However, some guard band 
should be allowed for tolerances on the clamped voltage, the source voltages, the resistor, 
etc. 

NOTE 

Two ofthe most common AID application error.s have been either too much source 
impedance, resulting in higher-than-expected errors, or too little source imped­
ance, resulting in permanent damage to AID inputs. The most common cause of 
damage to AID inputs is a very low source impedance to a negative voltage, which 
is more than 1 V below VSS. 

The rate of change of the analog input signal is important if an external low-pass filter is 
used to increase noise immunity. If too large an RC time constant is chosen for the external 
filter, meaningful transitions may be filtered out of analog signal source. An external low­
pass filter also introduces a delay between the analog source and the AID input pin. If the 
AID system is used to locate a timing reference to a peak level on an analog input signal, 
this delay must be considered. If the input to a channel changes drastically between suc­
cessive samples in a sequence of conversions, a charge-share mechanism can affect the 
accuracy of the result as described in the following paragraphs. This charge-share mech­
anism is normally only visible in mUltiple-channel, continuous-scan conversion sequences 
where two adjacent channels are connected to grossly different analog levels. 

A subtle aspect of Figure 12-5 is that the DAC capacitance is shared by all conversions. 
This aspect results in the initial voltage on the DAC capacitance, just before a sample 
period, being approximately equal to the voltage on the last channel converted. For indi­
vidual conversions, this result usually does not produce any observable effect because the 
charge stored in the internal DAC capacitance is so small. Consider what happens when 
a multiple-channel, continuous-scan conversion operation is occurring (MUL T and SCAN = 1). 
For an E-clock rate of 2 MHz, a particular channel is sampled once every 64 j.l.S. Each time, 
the initial voltage on the DAC capacitance just before the sample is equal to the voltage 
on the previously sampled channel. Over fifteen-thousand times a second, a small amount 
of charge is removed from or added to the external capacitance on the pin. The charge is 

MOTOROLA M68HC11 REFERENCE MANUAL 12-17 



restored by charging or discharging through the external source impedance. For some 
values of external Rand C, the charge added during the sample time cannot be fully bled 
off through the external RC before the next sample time occurs. This problem causes a 
stairstep building of charge in the extrnal capacitance that builds until an equilibrium is 
reached, in which the amount of charge added during a sample time is exactly offset by 
the charge bled off during the period between samples. This condition is a secondary 
effect, which seldom results in more than an LSB of error (even in the most extreme case). 
After studying the mechanism, it should be fairly easy to avoid problems from this effect 
by careful choice of the external Rand C values, by avoiding channel assignments resulting 
in grossly different levels on adjacent critical channels, and/or by avoiding the multiple­
channel, continuous-scan conversion modes when a high-frequency E clock is being used. 

Three types of cases must be considered, which result from the interaction of an external 
RC filter and the internal model of an AID input pin. The method of determining the error 
expected from a particular choice of external component values depends on which of the 
three cases applies. Errors arise from leakage current acting through the external series 
resistance or from system noise. If a very large external series impedance is used, a problem 
can arise where the internal DAC capacitance cannot be properly charged within the 12-
cycle sample time; however, errors due to simple leakage through the external resistance 
usually do not allow using a large enough external resistance to cause this effect. The 
following paragraphs .describe the cases of interaction of an external filter to the input 
model. 

The first case arises when the external time constant is small compared to the length of 
the 12-cycle sample period. In this case, all residual charge on the internal DAC capacitance 
is dissipated, and the pin settles at the expected voltage before the end of the sample time. 
The problem with this case is that a filter with such a short time constant provides very 
little filtering. In this case no errors result; thus, no calculations are needed. 

The second case arises when the external time constant is long compared to the sample 
period but is relatively short compared to the period between samples. In this case, the 
residual charge on the internal DAC capacitance is redistributed to the external capacitance 
during the sample, but this charge is not dissipated through the external resistance before 
the end of the sample time. This condition results in a small error in the sample, but this 
charge is dissipated before the next sample of this channel. Thus, no accumulated error 
occurs. In cases of this second type, the primary governing factor is the redistribution of 
the residual charge from the internal DAC capacitance. Usually, the external capacitance 
is so much larger than the internal DAC capacitance that the voltage change due to charge 
redistribution reduces to the difference between the previous channel voltage and the 
current channel voltage times the ratio of the internal DAC capacitance to the external 
capacitance. Some of this charge is dissipated before the end of the sample period by the 
external RC time constant. Figure 12-6 is a graphic estimation of the amount of error 
resulting in such a case. Errors of this type are present even in single-pass conversion 
sequences but rarely cause noticeable errors. 

In Figure 12-6, the solid waveform [4] is the graphic estimation of the analog level at an 
AID input. This waveform results from the simultaneous operation of charge redistribution 
of the residual charge on the internal DAC capacitance just before the sample period began 

12-18 M68HC11 REFERENCE MANUAL MOTOROLA 



[1}- ------~"~"~"~»-;'\""";;'"''''C''' ;;.".",.".,,,-,,,,,,.,-' 

t 
[2} 

w 
~ 
~ 
~ 
z 
c:: 

~ 
O.OV 

to 
TIME -----------~~ .. 

Figure 12·6. Graphic Estimation of Analog Sample Level (Case 2) 

at to and from the dissipation of this charge through the external RC network. Waveform 
[2) has a time constant, 1'~80 ns, based on the model of an AID input. The peak level [1) 
is 

where 

(VA-VB) x (Ci +(CX+Ci)) 

VA = the analog level driving the previously sampled channel 
VB = the level driving the currently sampled channel 
Ci = the internal DAC capacitance 

Cx = the external capacitance 

Waveform [3] is the familiar RC exponential decay through the external network, and it is 
assumed that the external capacitance is very large compared to the 20 pF DAC capacitance. 
The time, t1, marks the end of the 12-cycle sample period, and level [5) is the level that 
will be captured, held, and converted even though the pin voltage continues to decay 
through the external network. 

The third case arises when the external time constant is very long compared to the time 
between samples. In this case, the residual charge redistributed during the first sample is 
not completely dissipated before the next sample; thus, there is an accumulation of charge. 
This accumulation causes increasing errors on successive samples until equilibrium is 
reached between the charge added during a sample and the charge dissipated between 
samples. Errors caused by cases of this third type are often misinterpreted as leakage 
between adjacent channels. The magnitude of this type error is estimated by developing 
equations for voltage change caused by charge added during a sample time and voltage 
change caused by the action of the external RC between successive samples. These two 
equations are set equal to each other, and the equilibrium voltage can then be resolved. 

MOTOROLA M68HC11 REFERENCE MANUAL 12-19 



II 

The voltage change during the sample is controlled by the ratio of the internal DAC ca­
pacitance to the external capacitance (as in the previous case), but the external RC is 
assumed to be so long that it produces no significant effect until after the sample time 
ends. The voltage change between samples results from a simple RC exponential decay. 

To illustrate the estimation of errors resulting from a case-three situation, consider this 
example. The E-clock rate equals 2 MHz, VRH equals 5.12 V, VRl equals 0.0 V, channel one 
is connected to a 5.12-V analog level, and channel 2 is connected to a O-V analog level. 
The external series resistance is 10 kn, and the external capacitance is 0.01 j.LF. The value 
$30 is written to the ADCTl register to initiate continuous round-robin conversion of chan­
nels 0, 1, 2, and 3. The following circuit is a model of the circuitry under investigation: 

ANALOG 
LEVEL 
(0.0 V) 10 K!l 

r~;;;;---~WW·~I 

1. ~ 
~4K!l ~20pF ~ 

flj , 

C'r DAC 1~ J CAPACITANCE I 
VRL ~ 

COMPONENTS ~ WITHIN MCU··'·'·,·······,·,·····,························ .... ···· .......... , ........................................... . 

RX and Cx are the external components, Ci is the internal DAC capacitance, and Ri is the 
internal series resistance (includes N-channel couplers and polysilicon interconnections). 
From Figure 12-5, Ci is 20 pF and Ri is :s:; 4 kn. The switch represents an analog switch 
closed only during the sample time. For the chosen E-clock rate, the sample time is 6 j.Ls, 
and the period from one sample to the next sample of the same channel is 64 j.LS. 

The voltage change due to redistribution of the residual charge on the DAC capacitance, 
which is left from conversion of the previous channel, is written as 

aVSAMP = (V1- V2) [Ci/(CX + Ci)] 

where V1 =5.12 V and V2=0.0 V 

aVSAMP=5.12 (20 pF/0.01 j.LF) V 
aVSAMP=10 mV 

Not all of this voltage decays before the second sample; thus, there is an accumulation of 
error until an equilibrium is reached. Since this equilibrium voltage is very small relative 
to the (V1-V2) term of this equation, the aVSAMP value does not change significantly 
between the first sample and a sample time when equilibrium is reached. Since Cx is so 
large relative to Ci, Ci is ignored in the (CX T Ci) term. 

12-20 M68HC11 REFERENCE MANUAL MOTOROLA 



The voltage change between samples of channel 2 is a simple exponential decay through 
the external RC, which is written as 

AVHOLD = (VEO- V2)(1-e- t/RxCx) 

where VEO is the equilibrium voltage 

AVHOLD=VEO(1-e-64 j.Ls/10K 0.01 j.LF) 
AVHOLD=VEo(1-e- 0.64) 
AVHOLD = 0.473 VEO 

When equilibrium is reached, the voltage gained during a sample is equal to the voltage 
lost between samples. Therefore, set AVHOLD equals AVSAMP and solve for VEO: 

0.473 VEO = 10 mV 
VEO = 10 mV/O.473"",21 mV 

This value amounts to almost one LSB of error. If the external capacitance is changed to 
0.1 j.LF, the error attributable to this effect becomes approximately 1 mV. As the external 
capacitance is changed, two changes occur: first, the time constant of the external RC 
changes; second, the ratio of the external capacitance to the DAC capacitance changes. 
Because these two changes influence the result at different rates, it is no~ practical to make 
a general statement about the amount of influence versus the change in the external 
capacitance. 

For external series resistances not exceeding the recommended limit of 10 kO, the errors 
attributable to this effect are very small. However, if the external series resistance is in­
creased to 100 kO and small capacitance values are used, the errors can become serious. 
For example, an external RC of 100 kO and 0.001 j.LF would cause errors of about 200 mV 
in the previous example (about 10 LSBs). The extra leakage effects are also as much as 
40 mV. 

MOTOROLA M68HC11 REFERENCE MANUAL 12-21 



II 



A.1 INTRODUCTION 

APPENDIX A 
INSTRUCTION SET DETAILS 

This appendix contains complete detailed information for all M68HC11 instructions. The 
instructions are arranged in alphabetical order with the instruction mnemonic set in larger 
type for easy reference. 

A.2NOMENCLATURE 

The following nomenclature is used in the subsequent defintions. 

(a) Operators 
( ) = Contents of Register Shown Inside Parentheses 

• = Is Transferred to 
... = Is Pulled from Stack 
... = Is Pushed onto Stack 

= Boolean AND 
+ = Arithmetic Addition Symbol Except Where Used as Inclusive-OR Symbol 

in Boolean Formula 
E9 = Exclusive-OR 
x = Multiply 

= Concatenation 
= Arithmetic Subtraction Symbol or Negation Symbol (Twos Complement) 

(b) Registers in the MPU 
ACCA = Accumulator A 
ACCB = Accumulator B 
ACCX = Accumulator ACCA or ACCB 
ACCD = Double Accumulator - Accumulator A Concatenated with Accumulator B 

Where A is the Most Significant Byte 
CCR = Condition Code Register 
IX = Index Register X, 16 Bits 
IXH = Index Register X, Higher Order 8 Bits 
IXl = Index Register X, lower Order 8 Bits 
IV = Index Register V, 16 Bits • 
IVH = Index Register V, Higher Order 8 Bits l 

IVl = Index Register V, lower Order 8 Bits 
PC = Program Counter, 16 Bits 
PCH = Program Counter, Higher Order (Most Significant) 8 Bits 
PCl = Program Counter, lower Order (least Significant) 8 Bits 
SP = Stack Pointer, 16 Bits 
SPH = Stack Pointer, Higher Order 8 Bits 
SPl = Stack Pointer, lower Order 8 Bits 

MOTOROLA M68HC11 REFERENCE MANUAL A-1 



• 

(c) Memory and Addressing 
M = A Memory Location (One Byte) 
M + 1 = The Byte of Memory at $0001 Plus the Address of the Memory Location 

Rei 

(opr) 
(msk) 
(rei) 

Indicated by "M" 
= Relative Offset (i.e., the Twos Complement Number Stored in the Last Byte 

of Machine Code Corresponding to a Branch Instruction) 
= Operand 
= Mask Used in Bit Manipulation Instructions 
= Relative Offset Used in Branch Instructions 

(d) Bits 7-0 of the Condition Code Register 
S = Stop Disable, Bit 7 
X = X Interrupt Mask, Bit 6 
H = Half Carry, Bit 5 
I = I Interrupt Mask, Bit 4 
N = Negative Indicator, Bit 3 
Z = Zero Indicator, Bit 2 
V = Twos Complement Overflow Indicator, Bit 1 
C = Carry/Borrow, Bit 0 

(e) Status of Individual Bits BEFORE Execution of an Instruction 
An = Bit n of ACCA (n = 7,6,5 ... 0) 
Bn =BitnofACCB(n=7,6,5 ... 0) 
Dn = Bit n of ACCD (n = 15,14,13 ... 0) 

Where Bits 15-8 Refer to ACCA and Bit 7-0 Refer to ACCB 
IXn =BitnofIX(n=15,14,13 ... 0) 
IXHn = Bit n of IXH (n=7, 6, 5 ... 0) 
IXLn = Bit n of IXL (n =7,6,5 ... 0) 
IYn =Bit n of IY (n=15, 14, 13 ... 0) 
IYHn = Bit n of IYH (n=7, 6, 5 ... 0) 
IYLn = Bit n of IYL (n=7, 6, 5 ... 0) 
Mn =BitnofM(n=7,6,5 ... 0) 
SPHn = Bit n of SPH (n=7, 6, 5 ... 0) 
SPLn = Bit n of SPL (n=7, 6, 5 ... 0) 
Xn = Bit n of ACCX (n=7, 6, 5 ... 0) 

(f) Status of Individual Bits of RESULT of Execution of an Instruction 
(i) For 8-Bit Results 

A-2 

Rn = Bit n of the Result (n = 7, 6, 5 ... 0) 
This applies to instructions which provide a result contained in a single 
byte of memory or in an 8-bit register. 

(ii) For 16-Bit Results 
RHn = Bit n of the Most Significant Byte of the Result (n = 7, 6, 5 ... 0) 
RLn = Bit n ofthe Least Significant Byte of the Result (n = 7,6, 5 ... 0) 

This applies to instructions which provide a result contained in two 
consecutive bytes of memory or in a 16-bit register. 

Rn =Bit n of the Result (n=15, 14, 13 ... 0) 

M68HC11 REFERENCE MANUAL MOTOROLA 



(g) Notation Used in CCR Activity Summary Figures 
= Bit Not Affected 

o = Bit Forced to Zero 
1 = Bit Forced to One 

• = Bit Set or Cleared According to Results of Operation 
• = Bit may change from one to zero, remain zero, or remain one as a result 

of this operation, but cannot change from zero to one. 

(h) Notation Used in Cycle-by-Cycle Execution Tables 

ii 
jj 
kk 
hh 
II 
dd 

mm 
ff 
rr 

OP 
OP+n 
SP 
SP+n 
SP-n 
Sub 
Nxt op 
Rtn hi 
Rtn 10 
Svc hi 
Svc 10 
Vec hi 
Vec 10 

MOTOROLA 

= Irrelevant Data 
= One Byte of Immediate Data 
= High-Order Byte of 16-Bit Immediate Data 
= Low-Order Byte of 16-Bit Immediate Data 
= High-Order Byte of 16-Bit Extended Address 
= Low-Order Byte of 16-Bit Extended Address 
= Low-Order 8 Bits of Direct Address $OOOO-$OOFF 

(High Byte Assumed to be $00) 
= 8-Bit Mask (Set Bits Correspond to Operand Bits Which Will Be Affected) 
= 8-Bit Forward Offset $00 (0) to $FF (255) (Is Added to Index) 
= Signed Relative Offset $80 (-128) to $7F (+ 127) 

(Offset Relative to Address Following Machine Code Offset Byte) 
= Address of Opcode Byte 
= Address of nth Location after Opcode Byte 
= Address Pointed to by Stack Pointer Value (at the Start of an Instruction) 
= Address of nth Higher Address Past That Pointed to by Stack Pointer 
= Address of nth Lower Address Before That Pointed to by Stack Pointer 
= Address of Called Subroutine 
= Opcode of Next Instruction 
= High-Order Byte of Return Address 
= Low-Order Byte of Return Address 
= High-Order Byte of Address for Service Routine 
= Low-Order Byte of Address for Service Routine 
= High-Order Byte of Interrupt Vector 
= Low-Order Byte of Interrupt Vector 

M68HC11 REFERENCE MANUAL A-3 

• 



• 

ABA Add Accumulator B to Accumulator A ABA 

Operation: ACCA. (ACCA) + (ACCB) 

Description: Adds the contents of accumulator B to the contents of accumulator A and 
places the result in accumulator A. Accumulator B is not changed. This instruction 
affects the H condition code bit so it is suitable for use in BCD arithmetic operations 
(see DAA instruction for additional information). 

Condition Codes and Boolean Formulae: 

S X H I N Z v c 

• • 
H A3· B3 + B3 • R3 + R3 • A3 

Set if there was a carry from bit 3; cleared otherwise. 

N R7 
Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·R1·RO 
Set if result is $00; cleared otherwise. 

V A7· B7 • R7 + A7 • B7 • R7 
Set if a twos complement overflow resulted from the operation; cleared otherwise. 

C A7· B7 + B7 • R7 + R7 • A7 
Set if there was a carry from the MSB of the result; cleared otherwise. 

Source Forms: ABA 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
ABA (IN H) 

Addr Data RIW 

1 OP 18 1 
2 OP+1 - 1 

A-4 M68HC11 REFERENCE MANUAL MOTOROLA 



ABX Add Accumulator B to Index Register X ABX 
Operation: IX • (IX) + (ACCB) 

Description: Adds the 8-bit unsigned contents of accumulator B to the contents of index 
register X (IX) considering the possible carry out of the low-order byte of the index 
register X; places the result in index register X (IX). Accumulator B is not changed. 
There is no equivalent instruction to add accumulator A to an index register. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Forms: ABX 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
ABX (lNH) 

Addr Data RIW 

1 OP 3A 1 
2 OP+l - 1 
3 FFFF - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-5 

• 



• 

ABY Add Accumulator B to Index Register V ABY 

Operation: IV. (IV) + (ACCB) 

Description: Adds the 8-bit unsigned contents of accumulator B to the contents of index 
register V (IV) considering the possible carry out of the low-order byte of index register 
V; places the result in index register V (IV). Accumulator B is not changed. There is 
no equivalent instruction to add accumulator A to an index register. 

Condition Codes and Boolean Formulae: 

S X H N Z V c 
I - I - I - I I - I 

None affected 

Source Forms: ABV 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
ABY (lNH) 

Addr Data RIW 

1 OP 18 1 
2 OP+1 3A 1 
3 OP+2 - 1 
4 FFFF - 1 

A-6 M68HC11 REFERENCE MANUAL MOTOROLA 



ADC Add with Carry ADC 

Operation: ACCX. (ACCX)+(M)+(C) 

Description: Adds the contents of the C bit to the sum of the contents of ACCX and M 
and places the result in ACCX. This instruction affects the H condition code bit so it 
is suitable for use in BCD arithmetic operations (see DAA instruction for additional 
information). 

Condition Codes and Boolean Formulae: 

S X H N Z V C 

H X3· M3 + M3 • R3 + R3 • X3 
Set if there was a carry from bit 3; cleared otherwise. 

N R7 
Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $00; cieared otherwise. 

V X7· M7 • R7 + X7 • M7 • R7 
Set if a twos complement overflow resulted from the operation; cleared otherwise. 

C X7· M7 + M7 • R7 + R7 • X7 
Set if there was a carry from the MSB of the reStllt; cleared otherwise. 

Source Forms: ADCA (opr); ADCB (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
ADCA(lMM) ADCA (DIR) ADCA (EXT) ADCA (IND. X) ADCA (IND. V) 

Addr Data RIW Addr Data R/W Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 89 1 OP 99 1 OP 89 1 OP A9 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 A9 1 
3 DOdd (DOdd) , OP+2 II , FFFF - , OP+2 ff , 
4 hhll (hhll) 1 X+ff (X + ff) 1 FFFF - 1 
5 V+ff (Y+ff) 1 

Cycle 
ADCB(lMM) ADCB (DIR) ADCB (EXT) ADCB (IND. X) ADCB(lND. V) 

Addr Data RIW Addr Data R/W Addr Data RIW Addr Data R/W Addr Data R/W 

1 OP C9 1 OP 09 1 OP F9 1 OP E9 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 E9 1 
3 DOdd (DOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 Y+ff (Y+ff) 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-7 

• 



• 

ADD Add without Carry ADD 
Operation: ACCX. (ACCX)+(M) 

Description: Adds the contents of M to the contents of ACCX and places the result in 
ACCX. This instruction affects the H condition code bit so it is suitable for use in the 
BCD arithmetic operations (see DAA instruction for additional information). 

Condition Codes and Boolean Formulae: 

S X H N Z v c 

• • 
H X3· M3 + M3 • R3 + R3 • X3 

Set if there was a carry from bit 3; cleared otherwise. 

N R7 
Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $00; cleared otherwise. 

V X7· M7 • R7 + X7 • M7 • R7 
Set if a twos complement overflow resulted from the operation; cleared otherwise. 

C X7· M7 + M7 • R7 + R7 • X7 
Set if there was a carry from the MSB of the result; cleared otherwise. 

Source Forms: ADDA (opr); ADDB (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
ADDA(lMM) ADDA(DIR) ADDA (EXT) ADDA (IND. X) ADDA(lND. V) 

Addr Data R/W Addr Data R/W Addr Data RIW Addr Data R/W Addr Data R/W 

1 OP 8B 1 OP 9B 1 OP BB 1 OP AB 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 AB 1 
3 DOdd (DOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhlll 1 X+ff (X+ff) 1 FFFF - 1 
5 Y+ff (Y+ff) 1 

Cycle 
ADDB(lMM) ADDB (DIR) ADDB (EXT) ADDB (IND. X) ADDB (IND. V) 

Addr Data R/W Addr Data R/W Addr Data RIW Addr Data R/W Addr Data R/W 

1 OP CB 1 OP DB 1 OP FB 1 OP EB 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 EB 1 
3 DOdd (DOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 Y+ff (Y+ff) 1 

A-8 M68HC11 REFERENCE MANUAL MOTOROLA 



ADDD Add Double Accumulator ADDD 
Operation: ACCD. (ACCD)+(M:M + 1) 

Description: Adds the contents of M concatenated with M + 1 to the contents of ACCD 
and places the results in ACCD. Accumulator A corresponds to the high-order half of 
the 16-bit double accumulator D. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

1 - 1 -I 1 - 1 

N R15 
Set if MSB of result is set; cleared otherwise. 

Z R15' R14· R13' R12' R11 • R10' R9' R8· R7' R6' R5' R4· R3' R2· FrI· RO 
Set if result is $0000; cleared otherwise. 

V D15·M15·R15+D15·M15·R15 
Set if a twos complement overflow resulted from the operation; cleared otherwise. 

C D15·M15+M15·R15+R15·D15 
Set if there was a carry from the MSB of the result; cleared otherwise. 

Source Form: ADDD (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

ADDD(lMM) ADDD (DIR) ADDD (EXT) AD DO (lND, X) ADDD (lND, V) 
Cycle 

Add. Data R/W Add. Data R/W Add, Data R/W Add, Data R/W Add. Data R/W 

1 OP C3 1 OP D3 1 OP F3 1 OP E3 1 OP 18 1 
2 OP+1 jj 1 OP+1 dd 1 OP+1 hh 1 OP+l If 1 OP+l E3 1 
3 OP+2 kk . 1 OOdd (OOdd) 1 OP+2 II 1 FFFF - 1 OP+2 If 1 
4 FFFF - 1 OOdd + 1 (OOdd + 11 1 hhll (hhll) 1 XcII (X+ffi 1 FFFF - 1 
5 FFFF - 1 hhll + 1 (hhll + 1) 1 X + 1fT 1 (X + ff , 11 1 y,lf (Y ~If) 1 
6 FFFF - 1 FFFF - 1 V . If· 1 IY· If + 11 1 
7 FFFF - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-9 

• 



• 

AND Logical AND AND 

Operation: ACCX, (ACCX)· (M) 

Description: Performs the logical AND between the contents of ACCX and the contents 
of M and places the result in ACCX. (Each bit of ACCX after the operation will be the 
logical AND of the corresponding bits of M and of ACCX before the operation.) 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I o I 

N R7 
Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·R1·RO 
Set if result is $00; cleared otherwise. 

V 0 
Cleared 

Source Forms: ANDA (opr); ANDB (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

ANDA(lMM) ANDA (DIR) ANDA (EXT) ANDA (IND. X) ANDA (IND. V) 
Cycle 

Addr Data RIW Addr Data RIW Addr Data fWI Addr Data RIW Addr Data RlW 

1 OP 84 1 OP 94 1 OP B4 1 OP A4 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 A4 1 
3 DOdd (DOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 V+ff (V +ffl 1 

Cycle 
ANDB(lMM) AN DB (DIR) ANDB (EXT) AN DB (IND. X) AN DB (IND. V) 

Addr Data R/W Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RlW 

1 OP C4 1 OP D4 1 OP F4 1 OP E4 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 E4 1 
3 DOdd (DOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X +ffl 1 FFFF - 1 
5 V+ff (V+ff) 1 

A-10 M68HC11 REFERENCE MANUAL MOTOROLA 



ASL 

Operation: 

Arithmetic Shift Left 
(Same as LSL) 

ASL 

Description: Shifts all bits of the ACCX or M one place to the left. Bit 0 is loaded with 
a zero. The C bit in the CCR is loaded from the most significant bit of ACCX or M. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I - I - I - I • I • I • I • 

N R7 
Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $00; cleared otherwise. 

V N EB C = IN • C] + eN • C] (for Nand C after the shift) 
Set if (N is set and C is clear) or (N is clear and C is set); cleared otherwise (for 
values of Nand C after the shift). 

C M7 
Set if. before the shift, the MSB of ACCX or M was set; cleared otherwise. 

Source Forms: ASLA; ASLB; ASL (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
ASLA (lNHI ASLB (lNHI ASL (EXTI ASL (lND, Xl ASL (lND, VI 

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data RIW 

1 OP 48 1 OP 58 1 OP 78 1 OP 68 1 OP 18 1 
2 OP+1 - 1 OP+1 - 1 OP+1 hh 1 OP+1 ff 1 OP+1 68 1 
3 OP+2 II 1 FFFF - 1 OP+2 ff. 1 
4 hhll (hhlll 1 X+ff (X + ttl 1 FFFF - 1 
5 FFFF - 1 FFFF - 1 V+ff (Y+ffl 1 
6 hhll result 0 X+ff result 0 FFFF - 1 
7 Y+ff result 0 

MOTOROLA M68HC11 REFERENCE MANUAL A-l1 

II 



• 

ASLD 

Operation: 

Arithmetic Shift Left Double Accumulator 
(Same as LSLD) 

ACCA ACCB 

ASLD 

Description: Shifts all bits of ACCD one place to the left. Bit 0 is loaded with a zero. The 
C bit in the CCR is loaded from the most significant bit of ACCD. 

Condition Codes and Boolean Formulae: 

S X H N z v c 

/ - / -/ • • • • 
N R15 

Set if MSB of result is set; cleared otherwise. 

Z R15·R14·R13·R12·R11·R10·RS·R8·R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $0000; cleared otherwise. 

V NEB C= [N· C] + [N· C] (for Nand C after the shift) 
Set if (N is set and C is clear) or (N is clear and C is set); cleared otherwise (for 
values of Nand C after the shift). 

C D15 
Set if, before the shift, the MSB of ACCD was set; cleared otherwise. 

Source Form: ASLD 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
ASLD (lNH) 

Addr Data RIW 

1 OP 05 1 
2 OP+l - 1 
3 FFFF - 1 

A-12 M68HC11 REFERENCE MANUAL MOTOROLA 



ASR Arithmetic Shift Right ASR 

Operation: 

Description: Shifts all of ACCX or M one place to the right. Bit 7 is held constant. Bit 0 
is loaded into the C bit of the CCR. This operation effectively divides a twos complement 
value by two without changing its sign. The carry bit can be used to round the result. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I • • • • 
N R7 

Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $00; cleared otherwise. 

V N E8 C = [N • C) + [N • C) (for Nand C after the shift) 
Set if (N is set and C is clear) or (N is clear and C is set); cleared otherwise (for 
values of Nand C after the shift). 

C MO 
Set if, before the shift, the LSB of ACCX or M was set; cleared otherwise. 

Source Forms: ASRA; ASRB; ASR (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
ASRA (lNH) ASRB (lNH) ASR (EXT) ASR (IND. X) ASR (IND. V) 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 47 1 OP 57 1 OP 77 1 OP 67 1 OP 18 1 
2 OP+1 - 1 OP+1 - 1 OP+1 hh 1 OP+1 ff 1 OP+1 67 1 
3 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 FFFF - 1 FFFF - 1 Y+ff (Y+ff) 1 
6 hhll result 0 X+ff result 0 FFFF - 1 
7 Y+ff result 0 

MOTOROLA M68HC11 REFERENCE MANUAL A-13 

• 



• 

Bee 
Operation: 

Branch if Carry Clear 
(Same as BHS) 

PC • (PC) + $0002 + Rei if (C)=O 

Bee 

Description: Tests the state of the C bit in the CCR and causes a branch if C is clear. 

See BRA instruction for further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 

s x H N z v c 
I - I - I - I 

None affected 

Source Form: BCC (reI) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BCC (REL) 

Addr Data RIW 

1 OP 24 1 
2 OP+1 rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch Comment 

r>m Z+ IN EB V)=O BGT 2E r:::::;m BLE 2F Signed 

r~m NEBV=O BGE 2C r<m BLT 2D Signed 

r=m Z=1 BEQ 27 r40m BNE 26 Signed 

r:-s;m Z+(NEBV)=1 BLE 2F r>m BGT 2E Signed 

r<m NEBV=1 BLT 2D r~m BGE 2C Signed 

r>m C+Z=O BHI 22 r~m BLS 23 Unsigned 

r~m C=O BHS/BCC 24 r<m BLO/BCS 25 Unsigned 

r=m Z=1 BEQ 27 r40m BNE 26 Unsigned 

r~m C+Z=1 BLS 23 r>m BHI 22 Unsigned 

r<m C=1 BLO/BCS 25 r~m BHS/BCC 24 Unsigned 

Carry C=1 BCS 25 No Carry BCC 24 Simple 

Negative N=1 BMI 2B Plus BPL 2A Simple 

Overflow V=1 BVS 29 No Overflow BVC 28 Simple 

r=O Z=1 BEQ 27 r400 BNE 26 Simple 

Always - BRA 20 Never BRN 21 Unconditional 

A-14 M68HC11 REFERENCE MANUAL MOTOROLA 



BCLR Clear Bit(s) in Memory BCLR 

Operation: M • (M)o(PC + 2) 
M • (M)·(PC + 3) (for IND, Y address mode only) 

Description: Clear multiple bits in location M. The bit(s) to be cleared are specified by 
ones in the mask byte. All other bits in M are rewritten to their current state. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I 

N R7 
Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $00; cleared otherwise. 

V 0 
Cleared 

Source Forms: BCLR (opr) (msk) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BCLR (DIRl BCLR (lND, Xl BCLR (lND, Vl 

Addr Data R/W Addr Data RIW Addr Data R/W 

1 OP 15 1 OP 1D 1 OP 18 1 
2 OP+1 dd 1 OP+1 ff 1 OP+1 1D 1 
3 OOdd (OOdd) 1 FFFF - 1 OP+2 ft 1 
4 OP+2 mm 1 X+ff IX+ff) 1 FFFF - 1 
5 FFFF - 1 OP+2 mm 1 IIY)+ft IV +ft) 1 
6 OOdd result 0 FFFF - 1 OP+3 mm 1 
7 X+ff result 0 FFFF - 1 
8 Y+ff result 0 

• 
MOTOROLA M68HC11 REFERENCE MANUAL A-15 



II 

Bes 
Operation: 

Branch if Carry Set 
(Same as BLO) 

PC • (PC) + $0002 + Rei if (C)= 1 

Bes 

Description: Tests the state of the C bit in the CCR and causes a branch if C is set. 

See BRA instruction for further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 

s x H N Z v 
I - I - I - I - I 

None affected 

Source Form: BCS (reI) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
Addr 

BCS (REL) 

Data R/W 

1 OP 25 1 
2 OP+1 rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch Comment 

r>m Z+(N EllV)=O BGT 2E r-%m BLE 2F Signed 

r:;'m N EllV=O BGE 2C r<m BlT 2D Signed 

r=m Z=1 BEQ 27 r*m BNE 26 Signed 

r:o:;;m Z+(N Ell V)=1 BlE 2F r>m BGT 2E Signed 

r<m N EllV=1 BlT 2D r?-m BGE 2C Signed 

r>m C+Z=O BHI 22 r~m BlS 23 Unsigned 

r;:?:m C=O BHS/BCC 24 r<m BlO/BCS 25 Unsigned 

r=m Z=1 BEQ 27 r*m BNE 26 Unsigned 

r~m C+Z=1 BlS 23 r>m BHI 22 Unsigned 

r<m C=1 BlO/BCS 25 r~m BHS/BCC 24 Unsigned 

Carry C=1 BCS 25 No Carry BCC 24 Simple 

Negative N=1 BMI 2B Plus BPl 2A Simple 

Overflow V=1 BVS 29 No Overflow BVC 28 Simple 

r=O Z=1 BEQ 27 r*O BNE 26 Simple 

Always - BRA 20 Never BRN 21 Unconditional 

A-16 M68HC11 REFERENCE MANUAL MOTOROLA 



BEQ Branch if Equal BEQ 

Operation: PC • (PC) + $0002 + Rei if (Z)= 1 

Description: Tests the state of the Z bit in the CCR and causes a branch if Z is set. 

See BRA instruction for further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: BEQ (rei) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
Addr 

BEO (REL) 

Data RIW 

1 OP 27 1 
2 OP+1 rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch Comment 

r>m Z+IN fBV)=O BGT 2E r'::::;;m BlE 2F Signed 

r;>-m NfBV=O BGE 2C r<m BlT 2D Signed 

r=m Z=1 BEQ 27 roF m BNE 26 Signed 

r:s.;m Z+(N fBV)=1 BlE 2F r>m BGT 2E Signed 

r<m N fBV=1 BlT 2D r~m BGE 2C Signed 

r>m C+Z=O BHI 22 r::;:;m BlS 23 Unsigned 

r~m C=O BHS/BCC 24 r<m BlO/BCS 25 Unsigned 

r=m Z=1 BEQ 27 roF m BNE 26 Unsigned 

r~m C+Z=1 BlS 23 r>m BHI 22 Unsigned 

r<m C=1 BlO/BCS 25 r:3m BHS/BCC 24 Unsigned 

Carry C=1 BCS 25 No Carry BCC 24 Simple 

Negative N=1 BMI 2B Plus BPl 2A Simple • Overflow V=1 BVS 29 No Overflow BVC 28 Simple 

r=O Z=1 BEQ 27 roFO BNE 26 Simple 

Always - BRA 20 Never BRN 21 Unconditional 

MOTOROLA M68HC11 REFERENCE MANUAL A-17 



• 

BGE Branch if Greater than or Equal to Zero BGE 

Operation: if (N)EB(V)=O PC • (PC) + $0002 + Rei 
i.e., if (ACCX);;.(M) (twos-complement "signed" numbers) 

Description: If the BGE instruction is executed immediately after execution of any of 
the instructions, CBA. CMP(A, B, or 01. CP(X or V), SBA, SUB(A, B, or 0), the branch 
will occur if and only if the twos-complement number represented by the ACCX was 
greater than or equal to the two-complement number represented by M. 

See BRA instruction for further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 
S X H N z v c 

I - I - I - I 
None affected 

Source Form: BGE (reI) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BGE (REL) 

Addr Data RIW 

1 OP 2C 1 
2 OP+1 rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch Comment 

r>m Z+(N EBV)=O BGT 2E r:;;;;m BlE 2F Signed 

r~m NEBV=O BGE 2C r<m BlT 20 Signed 

r=m Z=1 BEQ 27 r"'m BNE 26 Signed 

r:s:;;m Z+(N EBV)=1 BlE 2F r>m BGT 2E Signed 

r<m NEBV=1 BlT 2D r~m BGE 2C Signed 

r>m C+Z=O BHI 22 r~m BlS 23 Unsigned 

r~m C=O BHS/BCC 24 r<m BlO/BCS 25 Unsigned 

r=m Z=1 BEQ 27 r"'m BNE 26 Unsigned 

r~m C+Z=1 BlS 23 r>m BHI 22 Unsigned 

r<m C=1 BlO/BCS 25 r;.;:=m BHS/BCC 24 Unsigned 

Carry C=1 BCS 25 No Carry BCC 24 Simple 

Negative N=1 BMI 2B Plus BPl 2A Simple 

Overflow V=1 BVS 29 No Overflow BVC 28 Simple 

r=O Z=1 BEQ 27 r"'O BNE 26 Simple 

Always - BRA 20 Never BRN 21 Unconditional 

A-18 M68HC11 REFERENCE MANUAL MOTOROLA 



BGT 

Operation: 

Branch if Greater than Zero 

PC • (PC) + $0002 + Rei 
i.e., if (ACCX»(M) 

if (ZI+[(NI.(VI]=O 
(twos-complement signed numbers) 

BGT 

Description: If the BGT instruction is executed immediately after execution of any of 
the instructions, CBA. CMP(A, B, or D), CP(X or V), SBA, SUBIA, B, or D), the branch 
will occur if and only if the twos-complement number represented by ACCX was 
greater than the twos-complement number represented by M. 

See BRA instruction for further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 
S X H N z v c 

I - I - I - I 
None affected 

Source Form: BGT (reI) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BGT (REL) 

Addr Data RIW 

1 OP 2E 1 
2 OP+1 rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch Comment 

r>m Z+IN EeV)=O BGT 2E r~m BLE 2F Signed 

r~m NEeV=O BGE 2C r<m BLT 2D Signed 

r=m Z=1 BEQ 27 r#m BNE 26 Signed 

r::s;;m Z+(N EeV)=1 BLE 2F r>m BGT 2E $igned 

r<m NEeV=1 BLT 2D r~m BGE 2C Signed 

r>m C+Z=O BHI 22 r::s;;m BLS 23 Unsigned 

r~m C=O BHS/BCC 24 r<m BLO/BCS 25 UnSigned 

r=m Z=1 BEQ 27 r#m BNE 26 Unsigned 

r~m C+Z=1 BLS 23 r>m BHI 22 Unsigned 

r<m C=1 BLO/BCS 25 r~m BHS/BCC 24 Unsigned 

Carry C=1 BCS 25 No Carry BCC 24 Simple 

Negative N=1 BMI 2B Plus BPL 2A Simple 

Overflow V=1 BVS 29 No Overflow BVC 28 Simple 

r=O Z=1 BEQ 27 r#O BNE 26 Simple 

Always - BRA 20 Never BRN 21 Unconditional 

MOTOROLA M68HC11 REFERENCE MANUAL A-19 

• 



• 

BHI 

Operation: 

Branch if Higher 

PC • (PC) + $0002 + Rei 
i.e., if (ACCX»(M) 

if (C)+(Z)=O 
(unsigned binary numbers) 

BHI 

Description: Ifthe BHI instruction is executed immediately after execution of any ofthe 
instructions, CBA, CMP(A, B, or D), CP(X or V), SBA, SUBIA, B, or D), the branch will 
occur if and only if the unsigned binary number represented by ACCX was greater 
than the unsigned binary number represented by M. Generally not useful after INCI 
DEC, LD/ST, TST/CLR/COM because these instructions do not affect the C bit in the 
CCR. 

See BRA instruction for further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 
S X H 

I - I - I - I 
None affected 

Source Form: BHI (reI) 

N z v c 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BHI (REL) 

Addr Data R/W 

1 OP 22 1 
2 OP+1 rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch 

r>m Z+(N alV)=O BGT 2E r:E;;m BlE 2F 

r;:?:m N al V=O BGE 2C r<m BlT 20 

r=m Z=1 BEQ 27 r*m BNE 26 

r=s;;m Z+(NalV)=1 BlE 2F r>m BGT 2E 

r<m NalV=1 BlT 20 r~m BGE 2C 

r>m C+Z=O BHI 22 r~m BlS 23 

r~m C=O BHS/BCC 24 r<m BlO/BCS 25 

r=m Z=1 BEQ 27 r*m BNE 26 

rE:m C+Z=1 BlS 23 r>m BHI 22 

r<m C=1 BlO/BCS 25 r;;.;:m BHS/BCC 24 

Carry C=1 BCS 25 No Carry BCC 24 

Negative N=1 BMI 2B Plus BPl 2A 

Overflow V=1 BVS 29 No Overflow BVC 28 

r=O Z=1 BEQ 27 r*O BNE 26 

Always - BRA 20 Never BRN 21 

A-20 M68HC11 REFERENCE MANUAL 

Comment 

Signed 

Signed 

Signed 

Signed 

Signed 

Unsigned 

Unsigned 

Unsigned 

Unsigned 

Unsigned 

Simple 

Simple 

Simple 

Simple 

Unconditional 

MOTOROLA 



BHS 

Operation: 

Branch if Higher or Same 
(Same as BCC) 

PC • (PC) + $0002 + Rei 
i.e., if (ACCX);;.(M) 

if (C)=O 
(unsigned binary numbers) 

BHS 

Description: If the BHS instruction is executed immediately after execution of any of. 
the instructions, CBA, CMP(A, B, or D), CP(X or V), SBA, SUBIA, B, or D), the branch 
will occur if and only if the unsigned binary number represented by ACCX was greater 
than or equal to the unsigned binary number represented by M. Generally not useful 
after INC/DEC, LO/ST, TST/CLR/COM because these instructions do not affect the C bit 
in the CCR. 

See BRA instruction for further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 
S X H 

I - I - I - I 
None affected 

Source Form: BHS (reI) 

N z v c 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BHS (REl) 

Addr Data RIW 

1 OP 24 1 
2 OP+1 rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructons. 

Test Boolean Mnemonic Opcode Complementary Branch 

r>m Z+(N El3V)=O BGT 2E r~m BlE 2F 

r~m NEI3V=O BGE 2C r<m BlT 20 

r=m Z=1 BEQ 27 r~m BNE 26 

r~m Z+(NEI3V)=1 BlE 2F r>m BGT 2E 

r<m NEI3V=1 BlT 20 r~m BGE 2C 

r>m C+Z=O BHI 22 r::s;;m BlS 23 

r~m C=O BHS/BCC 24 r<m BLO/BCS 25 

r=m Z=1 BEQ 27 r~m BNE 26 

r~m C+Z=1 BLS 23 r>m BHI 22 

r<m C=1 BlO/BCS 25 r~m BHS/BCC 24 

Carry C=1 BCS 25 No Carry BCC 24 

Negative N=1 BMI 2B Plus BPl 2A 

Overflow V=1 BVS 29 No Overflow BVC 28 

r=O Z=1 BEQ 27 r~O BNE 26 

Always - BRA 20 Never BRN 21 

MOTOROLA M68HC11 REFERENCE MANUAL 

Comment 

Signed 

Signed 

Signed 

Signed 

Signed 

Unsigned 

Unsigned 

Unsigned 

Unsigned 

Unsigned 

Simple 

Simple 

Simple 

Simple 

Unconditional 

A-21 

• 



.. 

BIT Bit Test BIT 

Operation: (ACCX)o(M) 

Description: Performs the logical AND operation between the contents of ACCX and 
the contents of M and modifies the condition codes accordingly. Neither the contents 
of ACCX or M operands are affected. (Each bit of the result of the AND would be the 
logical AND of the corresponding bits of ACCX and M.) 

Condition Codes and Boolean Formulae: 

s x H N Z v c 

I - I 
I • I • 

o I 

N R7 
Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $00; cleared otherwise. 

V 0 
Cleared 

Source Forms: BITA (opr); BITB (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BITA(lMM) BITA (DIR) BITA (EXT) BITA (lND,X) 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 85 1 OP 95 1 OP 85 1 OP A5 1 
2 OP+1 ji 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 
3 DOdd (DOdd) 1 OP+2 II 1 FFFF - 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 
5 

Cycle 
BITB(lMM) BITB (DIR) BITII (EXT) BITB (lND, X) 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP C5 1 OP D5 1 OP F5 1 OP E5 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 
3 DOdd (DOdd) 1 OP+2 II 1 FFFF - 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 
5 

A-22 M68HC11 REFERENCE MANUAL 

BITA (lND, V) 

Addr Data RIW 

OP 18 1 
OP+1 A5 1 
OP+2 ff 1 
FFFF - 1 
Y+ff (Y+ff) 1 

BITB (lND, V) 

Addr Data RIW 

OP 18 1 
OP+1 E5 1 
OP+2 ff 1 
FFFF - 1 
Y+ff (Y+ff) 1 

MOTOROLA 



BLE 

Operation: 

Branch if Less than or Equal to Zero 

PC. (PC) + $0002 + Rei 
i.e., if (ACCX)~(M) 

if (Z) + [(N)EB(V)J = 1 
(twos-complement signed numbers) 

BLE 

Description: If the BLE instruction is executed immediately after execution of any of 
the instructions, CBA, CMP(A, B, or OJ, CP(X, or V), SBA, SUBIA, B, or OJ, the branch 
will occur if and only if the twos-complement number represented by ACCX was less 
than or equal to the twos-complement number represented by M. 

See BRA instruction for further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 
S x H N Z V 

1-1-1-1-1-1-1-1 
None affected 

Source Form: BLE (rei) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
Addr 

BlE (REl) 

Data R/W 

1 OP 2F 1 
2 OP+1 rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch Comment 

r>m Z+(N 6l V)=O BGT 2E r~m BlE 2F Signed 

r;::::m N61V=O BGE 2C r<m BlT 2D Signed 

r=m Z=1 BEQ 27 refm BNE 26 Signed 

r~m Z+(N 6lV)=1 BlE 2F r>m BGT 2E Signed 

r<m N61V=1 BlT 2D r~m BGE 2C Signed 

r>m C+Z=O BHI 22 r~m BlS 23 Unsigned 

r;:.-:m C=O BHS/BCC 24 r<m BlO/BCS 25 Unsigned 

r=m Z=1 BEQ 27 refm BNE 26 Unsigned 

r~m C+Z=1 BlS 23 r>m BHI 22 Unsigned 

r<m C=1 BlO/BCS 25 r~m BHS/BCC 24 Unsigned 

Carry C=1 BCS 25 No Carry BCC 24 Simple 

Negative N=1 BMI 2B Plus BPl 2A Simple 

Overflow V=1 BVS 29 No Overflow BVC 28 Simple 

r=O Z=1 BEQ 27 ref 0 BNE 26 Simple 

Always - BRA 20 Never BRN 21 Unconditional 

MOTOROLA M68HC11 REFERENCE MANUAL A-23 

• 



• 

BLO 

Operation: 

Branch if Lower 
(Same as BCS) 

PC • (PC) + $0002 + Rei 
i.e., if (ACCX)«M) 

if(C)=1 
(unsigned binary numbers) 

BLO 

Description: If the BlO instruction is executed immediately after execution of any of 
the instructions, CBA, CMP(A, B, or D), CP(X or V), SBA, SUBIA, B, or Dj, the branch 
will occur if and only if the unsigned binary number represented by ACCX was less 
than the unsigned binary number represented by M. Generally not useful after INCI 
DEC, lD/ST, TST/ClR/COM because these instructions do not affect the C bit in the 
CCR. 

See BRA instruction for further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 
S X H 

I - I - I - I 
None affected 

Source Form: BlO (rei) 

N z v c 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BLO (REL) 

Addr Data RIW 

1 OP 25 1 
2 OP+l rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch 

r>m Z+IN El3V)=O BGT 2E r~m BLE 2F 

r~m N El3V=O BGE 2C r<m BlT 20 

r=m Z=l BEQ 27 r40m BNE 26 

r~m Z+(NEl3V)=l BlE 2F r>m BGT 2E 

r<m N El3V=l BlT 20 r~m BGE 2C 

r>m C+Z=O BHI 22 r~m BlS 23 

r~m C=O BHS/BCC 24 r<m BlO/BCS 25 

r=m Z=l BEQ 27 r40m BNE 26 

r~m C+Z=l BlS 23 r>m BHI 22 

r<m C=l BlO/BCS 25 r~m BHS/BCC 24 

Carry C=l BCS 25 No Carry BCC 24 

Negative N=1 BMI 2B Plus BPl 2A 

Overflow V=l BVS 29 No Overflow BVC 28 

r=O Z=1 BEQ 27 r40 0 BNE 26 

Always - BRA 20 Never BRN 21 

A-24 M68HC11 REFERENCE MANUAL 

Comment 

Signed 

Signed 

Signed 

Signed 

Signed 

Unsigned 

Unsigned 

Unsigned 

Unsigned 

Unsigned 

Simple 

Simple 

Simple 

Simple 

Unconditional 

MOTOROLA 



BLS 
Operation: 

Branch if Lower or Same 

PC • (PC) + $0002 + Rei 
i.e., if (ACCX)~(M) 

if (C)+(Z)=1 
(unsigned binary numbers) 

BLS 

Description: If the BLS instruction is executed immediately after execution of any of 
the instructions, CBA, CMP(A, B, or D), CP(X or V), SBA, SUBIA, B, or D), the branch 
will occur if and only if the unsigned binary number represented by ACCX was less 
than or equal to the unsigned binary number represented by M. Generally not useful 
after INC/DEC, LD/ST, TST/CLR/COM because these instructions do not affect the C bit 
in the CCR. 

See BRA instruction for further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 
S X H 

I - I - I - I 
None affected 

Source Form: BLS (rei) 

N z v 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BLS (REL) 

Addr Data R/W 

1 OP 23 1 
2 OP+1 rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch 

r>m Z+(N E!7V)=O BGT 2E r:::.;;m BLE 2F 

r;?!rn N E!7V=O BGE 2C r<m BLT 2D 

r=m Z=l BEQ 27 r"m BNE 26 

r~m Z+(N E!7V)=l BLE 2F r>m BGT 2E 

r<m N E!7V=l BLT 2D r~m BGE 2C 

r>m C+Z=O BHI 22 r~m BLS 23 

r~m C=O BHS/BCC 24 r<m BLO/BCS 25 

r=m Z=l BEQ 27 r"m BNE 26 

r:o:;;;m C+Z=l BLS 23 r>m BHI 22 

r<m C=l BLO/BCS 25 r?!m BHS/BCC 24 

Carry C=l BCS 25 No Carry BCC 24 

Negative N=l BMI 2B Plus BPL 2A 

Overflow V=l BVS 29 No Overflow BVC 28 

r=O Z=l BEQ 27 r"O BNE 26 

Always - BRA 20 Never BRN 21 

MOTOROLA M68HC11 REFERENCE MANUAL 

Comment 

Signed 

Signed 

Signed 

Signed 

Signed 

Unsigned 

Unsigned 

Unsigned 

Unsigned 

Unsigned 

Simple 

Simple 

Simple 

Simple 

Unconditional 

A-25 



• 

Bll 
Operation: 

Branch if Less than Zero 

PC • (PC) + $0002 + Rei 
i.e., if (ACCX)«M) 

if (N)EB(V) = 1 
(twos-complement signed numbers) 

Bll 

Description: If the BlT instruction is executed immediately after execution of any of 
the instructons, CBA. CMP(A, B, or D), CP(X or V), SBA, SUBIA, B, or D), the branch 
will occur if and only if the twos-complement number represented by ACCX was less 
than the twos-complement number represented by M. 

See BRA instruction for further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 
S X H N z v c 

I - I - I - I 
None affected 

Source Form: BlT (reI) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BlT (REl) 

Addr Data R/W 

1 OP 20 1 
2 OP+l rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch Comment 

r>m Z+ IN Ell V)=O BGT 2E r~m BlE 2F Signed 

r~m NEll V=O BGE 2C r<m BlT 20 Signed 

r=m Z=l BEQ 27 r40m BNE 26 Signed 

r~m Z+(NEllV)=l BLE 2F r>m BGT 2E Signed 

r<m NEllV=l BLT 20 r;:=:m BGE 2C Signed 

r>m C+Z=O BHI 22 r:s;;;m BlS 23 Unsigned 

r~m C=O BHS/BCC 24 r<m BLO/BCS 25 Unsigned 

r=m Z=l BEQ 27 r40m BNE 26 Unsigned 

r:s;m C+Z=l BlS 23 r>m BHI 22 Unsigned 

r<m C=l BlO/BCS 25 r;;:=:m BHS/BCC 24 Unsigned 

Carry C=l BCS 25 No Carry BCC 24 Simple 

Negative N=l BMI 2B Plus BPL 2A Simple 

Overflow V=l BVS 29 No Overflow BVC 28 Simple 

r=O Z=l BEQ 27 r400 BNE 26 Simple 

Always - BRA 20 Never BRN 21 Unconditional 

A-26 M68HC11 REFERENCE MANUAL MOTOROLA 



8MI Branch if Minus 8MI 

Operation: PC • (PC) + $0002 + Rei if (N)=1 

Description: Tests the state of the N bit in the CCR and causes a branch if N is set. 

See BRA instruction for further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: BMI (reI) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BMI (REL) 

Addr Data R/W 

1 OP 2B 1 
2 OP+1 rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch Comment 

r>m Z+IN EB V)=O BGT 2E r~m BLE 2F Signed 

r;::m NEBV=O BGE 2C r<m BLT 20 Signed 

r=m Z=1 BEQ 27 r~m BNE 26 Signed 

r=e;;m Z+(NEBV)=1 BLE 2F r>m BGT 2E Signed 

r<m NEBV=1 BLT 20 r;=:rn BGE 2C Signed 

r>m C+Z=O BHI 22 r:s:;m BLS 23 Unsigned 

r~m C=O BHS/BCC 24 r<m BLO/BCS 25 Unsigned 

r=m Z=1 SEQ 27 r*m BNE 26 Unsigned 

r=e;;m C+Z=1 BLS 23 r>m BHI 22 Unsigned 

r<m C=1 BLO/BCS 25 r;3!:m BHS/BCC 24 Unsigned 

Carry C=1 BCS 25 No Carry BCC 24 Simple 

Negative N=1 BMI 2B Plus SPL 2A Simple 

Overflow V=1 BVS 29 No Overflow BVC 28 Simple • r=O Z=1 BEQ 27 r*O BNE 26 Simple 

Always - BRA 20 Never BRN 21 Unconditional 

MOTOROLA M68HC11 REFERENCE MANUAL A-27 



BNE Branch if Not Equal to Zero BNE 
Operation: PC. (PC) + $0002 + Rei if (Z)=O 

Description: Tests the state of the Z bit in the CCR and causes a branch if Z is clear. 

See BRA instruction for further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
1-1-1-1 

None affected 

Source Form: BNE (reI) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BNE (REL) 

Addr Data RIW 

1 OP 26 1 
2 OP+l rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch Comment 

r>m Z+(N a1V)=O BGT 2E r~m BlE 2F Signed 

r~m Na1V=O BGE 2C r<m BlT 20 Signed 

r=m Z=1 BEQ 27 r,om BNE 26 Signed 

r~m Z+(Na1V)=l BlE 2F r>m BGT 2E Signed 

r<m Na1V=l BlT 20 r~m BGE 2C Signed 

r>m C+Z=O BHI 22 r~m BlS 23 Unsigned 

r;;.m C=O BHS/BCC 24 r<m BLO/BCS 25 Unsigned 

r=m Z=1 BEQ 27 r,om BNE 26 Unsigned 

• 
r::s;;m C+Z=1 BlS 23 r>m BHI 22 Unsigned 

r<m C=1 BlO/BCS 25 r~m BHS/BCC 24 Unsigned 

Carry C=1 BCS 25 No Carry BCC 24 Simple 

Negative N=1 BMI 2B Plus BPl 2A Simple 

Overflow V=1 BVS 29 No Overflow BVC 28 Simple 

r=O Z=1 BEQ 27 r,oO BNE 26 Simple 

Always - BRA 20 Never BRN 21 Unconditional 

A-28 M68HC11 REFERENCE MANUAL MOTOROLA 



BPL Branch if Plus BPL 

Operation: PC • (PC) + $0002 + Rei if (N)=O 

Description: Tests the state of the N bit in the CCR and causes a branch if N is clear. 

See BRA instruction for details of the execution of the branch. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: BPL (rei) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BPL(REL) 

Addr Data RIW 

1 OP 2A 1 
2 OP+1 rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch Comment 

r>m Z+(NE/:lV)=O BGT 2E r:e:m BLE 2F Signed 

r~m NE/:lV=O BGE 2C r<m BLT 20 Signed 

r=m Z=1 BEQ 27 r~m BNE 26 Signed 

rEim Z+(NE/:lV)=1 BLE 2F r>m BGT 2E Signed 

r<m NE/:lV=1 BLT 20 r~m BGE 2C Signed 

r>m C+Z=O BH( 22 r:e;m BLS 23 Unsigned 

r;;.m C=O BHS/BCC 24 r<m BLO/BCS 25 Unsigned 

r=m Z=1 BEQ 27 r~m BNE 26 Unsigned 

rEim C+Z=1 BLS 23 r>m BH( 22 Unsigned 

r<m C=1 BLO/BCS 25 r~m BHS/BCC 24 Unsigned 

Carry C=1 BCS 25 No Carry BCC 24 Simple 

Negative N=1 BMI 2B Plus BPL 2A Simple 

Overflow V=1 BVS 29 No Overflow BVC 28 Simple • r=O Z=1 BEQ 27 r~O BNE 26 Simple 

Always - BRA 20 Never BRN 21 Unconditional 

MOTOROLA M68HC11 REFERENCE MANUAL A-29 



.. 

BRA Branch Always BRA 

Operation: PC • (PC) + $0002 + Rei 

Description: Unconditional branch to the address given by the foregoing formula, in 
which Rei is the relative offset stored as a twos complement number in the second 
byte of machine code corresponding to the branch instruction. 

The source program specifies the destination of any branch instruction by its absolute 
address, either as a numerical value or as a symbol or expression, that can be nu­
merically evaluated by the assembler. The assembler obtains the relative address, Rei, 
from the absolute address and the current value of the location counter. 

Condition Codes and Boolean Formulae: 
S X H N Z V 

I - I - I - I I - I 

None affected 

Source Form: BRA (rei) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BRA (REL) 

Addr Data RIW 

1 OP 20 1 
2 OP+1 rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch Comment 

r>m Z+(N ffi V)=O BGT 2E r~m BLE 2F Signed 

r~m N ffiV=O BGE 2C r<m BLT 20 Signed 

r=m Z=1 BEQ 27 r40m BNE 26 Signed 

r~m Z+(NffiV)=1 BLE 2F r>m BGT 2E Signed 

r<m N ffiV=1 BLT 20 r~m BGE 2C Si!lned 

r>m C+l=O BHI 22 r~m BLS 23 Unsigned 

r~m C=O BHS/BCC 24 r<m BLO/BCS 25 Unsigned 

r=m Z=1 BEQ 27 r40m BNE 26 Unsigned 

r~m C+Z=1 BLS 23 r>m BHI 22 Unsigned 

r<m C=1 BLO/BCS 25 r~m BHS/BCC 24 Unsigned 

Carry C=1 BCS 25 No Carry BCC 24 Simple 

Negative N=1 BMI 2B Plus BPL 2A Simple 

Overflow V=1 BVS 29 No Overflow BVC 28 Simple 

r=O Z=1 BEQ 27 r40 0 BNE 26 Simple 

Always - BRA 20 Never BRN 21 Unconditional 

A-30 M68HC11 REFERENCE MANUAL MOTOROLA 



BRCLR Branch if Bit(s) Clear BRCLR 
Operation: PC. (PC) + $0004 + Rei if (M)o(PC + 2) = 0 

PC. (PC)+$0005+Rel if (M)o(PC+3)=0 (for IND, Y address mode only) 

Description: Performs the logical AND of location M and the mask supplied with the 
instruction, then branches if the result is zero (only if all bits corresponding to ones 
in the mask byte are zeros in the tested byte). 

Condition Codes and Boolean Formulae: 

S X H N Z v 
I - I - I - I I - I 

None affected 

Source Form: BRCLR (opr) (msk) (rei) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BRCLR (DIRI BRCLR (IND, XI BRCLR (IND, VI 

Addr Data R/W Addr Data R/W Addr Data RIW 

1 OP 13 1 OP 1F 1 OP 18 1 
2 OP+1 dd 1 OP+1 If 1 OP+1 1F 1 
3 DOdd (DOdd) 1 FFFF - 1 OP+2 If 1 
4 OP+2 mm 1 X+1f IX +ffI 1 FFFF - 1 
5 OP+3 rr 1 OP+2 mm 1 IIV)+1f IV +ffI 1 
6 FFFF - 1 OP+3 rr 1 OP+3 mm 1 
7 FFFF - 1 OP+4 rr 1 
8 FFFF - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-31 

• 



.. 

BRN Branch Never BRN 
Operation: PC • (PC) + $0002 

Description: Never branches. In effect, this instruction can be considered as a two-byte 
NOP (no operation) requiring three cycles for execution. Its inclusion in the instruction 
set is to provide a complement for the BRA instruction. The instruction is useful during 
program debug to negate the effect of another branch instruction without disturbing 
the offset byte. Having a complement for BRA is also useful in compiler implemen­
tations. 

Condition Codes and Boolean Formulae: 

S X H N Z V C 

1-1-1-1-1-1-1-1 

None affected 

Source Form: BRN (rei) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BRN (REL) 

Addr Data R/W 

1 OP 21 1 
2 OP+1 rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch Comment 

r>m Z+INffiV)=O BGT 2E r~m BlE 2F Signed 

r~m N ffiV=O BGE 2C r<m BlT 2D Signed 

r=m Z=1 BEQ 27 r"m BNE 26 Signed 

r~m Z+(N ffi V)= 1 BlE 2F r>m BGT 2E Signed 

r<m N ffi V=1 BlT 2D r~m BGE 2C Signed 

r>m C+Z=O BHI 22 r~m BlS 23 Unsigned 

r~m C=O BHS/BCC 24 r<m BlO/BCS 25 Unsigned 

r=m Z=1 BEQ 27 r"m BNE 26 Unsigned 

r~m C+Z=1 BlS 23 r>m BHI 22 Unsigned 

r<m C=1 BlO/BCS 25 r~m BHS/BCC 24 Unsigned 

Carry C=1 BCS 25 No Carry BCC 24 Simple 

Negative N=1 BMI 2B Plus BPl 2A Simple 

Overflow V=1 BVS 29 No Overflow BVC 28 Simple 

r=O Z=1 BEQ 27 r"O BNE 26 Simple 

Always - BRA 20 Never BRN 21 Unconditional 

A-32 M68HC11 REFERENCE MANUAL MOTOROLA 



BRSET Branch if Bit(s) Set BRSET 
Operation: PC. (PC)+$0004+Rel if (M)·(PC+2)=0 

PC. (PC) +$0005 + Rei if (M)·(PC+3)=0 (for IND, Y address mode only) 

Description: Performs the logical AND of location M inverted and the mask supplied 
with the instruction, then branches if the result is zero (only if all bits corresponding 
to ones in the mask byte are ones in the tested byte). 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: BRSET (opr) (msk) (rei) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BRSET (DIRI BRSET (IND. XI BRSET (IND. VI 

Addr Data RIW Addr Data RlW Addr Data RIW 

1 OP 12 1 OP 1E 1 OP 18 1 
2 OP+1 dd 1 OP+1 ff 1 OP+1 1E 1 
3 OOdd (OOddl 1 FFFF - 1 OP+2 ff 1 
4 OP+2 mm 1 X+ff (X+ffl 1 FFFF - 1 
5 OP+3 rr 1 OP+2 mm 1 (lYI+ff (Y+ffl 1 
6 FFFF - 1 OP+3 rr 1 OP+3 mm 1 
7 FFFF - 1 OP+4 rr 1 
8 FFFF - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-33 

• 



• 

BSET Set Bit(s) in Memory BSET 

Operation: M. (M)+(PC+2) 
M • (M) + (PC + 3) (for IND, Y address mode only) 

Description: Set multiple bits in location M. The bit(s) to be set are specified by ones 
in the mask byte (last machine code byte of the instruction). All other bits in Mare 
unaffected. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I I - I 

N R7 
Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $00; cleared otherwise. 

V 0 
Cleared 

Source Form: BSET (opr) (msk) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BSET (DIR) BSET (lND; Xl BSET (IND. VI 

Addr Data RIW Addr Data RlW Addr Data RIW 

1 OP 14 1 OP 1C 1 OP 18 1 
2 OP+1 dd 1 OP+1 ff 1 OP+1 1C 1 
3 OOdd (OOdd) 1 FFFF - 1 OP+2 ff 1 
4 OP+2 mm 1 X+ff (X+ff) 1 FFFF - 1 
5 FFFF - 1 OP+2 mm 1 IIV)+ff (Y +ff) 1 
6 OOdd result 0 FFFF - 1 OP+3 mm 1 
7 X+ff result 0 FFFF - 1 
8 Y+ff result 0 

A-34 M68HC11 REFERENCE MANUAL MOTOROLA 



BSR 

Operation: PC. (PC) +$0002 
.(PCl) 
SP • (SP) - 0001 
.(PCH) 
SP. (SP) -$0001 
PC • (PC) + Rei 

Branch to Subroutine 

Advance PC to return address 
Push low-order return onto stack 

Push high-order return onto stack 

load start address of requested subroutine 

BSR 

Description: The program counter is incremented by two (this will be the return ad-
dress). The least significant byte of the contents of the program counter (low-order 
return address) is pushed onto the stack. The stack pointer is then decremented by 
one. The most significant byte of the contents of the program counter (high-order 
return address) is pushed onto the stack. The stack pointer is then decremented by 
one. A branch then occurs to the location specified by the branch offset. 

See BRA instruction for further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: BSR (reI) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BSR (REL) 

Addr Data R!W 

1 OP 8D 1 
2 OP+1 rr 1 
3 FFFF - 1 
4 Sub Nxt op 1 
5 SP Rtn 10 0 
6 SP-1 Rtn hi 0 

MOTOROLA M68HC11 REFERENCE MANUAL A-35 

• 



• 

Bve Branch if Overflow Clear Bve 
Operation: PC • (PC) + $0002 + Rei if (V)=O 

Description: Tests the state of the V bit in the CCR and causes a branch if V is clear. 

Used after an operation on twos-complement binary values, this instruction will cause 
a branch if there was NO overflow. That is, branch if the twos-complement result was 
valid. 

See BRA instruction for further details of the execution of the branch. 

Condition Codes and Boolean Formulae: 

S X H N z v c 

None affected 

Source Form: BVC (reI) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BVC (REL) 

Addr Data R/W 

1 OP 28 1 
2 OP+1 rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch Comment 

r>m Z+(N E9V)=O BGT 2E r:s;;;m BlE 2F Signed 

r~m NE9V=O BGE 2C r<m BlT 2D Signed 

r=m Z=1 BEQ 27 r~m BNE 26 Signed 

r..;m Z+(NE9V)=1 BlE 2F r>m BGT 2E Signed 

r<m NE9V=l BlT 2D r~m BGE 2C Signed 

r>m C+Z=O BHI 22 r:s;;;m BlS 23 Unsigned 

r~m C=O BHS/BCC 24 r<m BlO/BCS 25 Unsigned 

r=m Z=l BEQ 27 r~m BNE 26 Unsigned 

r..;m C+Z=l BlS 23 r>m BHI 22 Unsigned 

r<m C=l BLO/BCS 25 r~m BHS/BCC 24 Unsigned 

Carry C=l BCS 25 No Carry BCC 24 Simple 

Negative N=l BMI 2B Plus BPl 2A Simple 

Overflow V=l BVS 29 No Overflow BVC 28 Simple 

r=O Z=l BEQ 27 r~O BNE 26 Simple 

Always - BRA 20 Never BRN 21 Unconditional 

A-36 M68HC11 REFERENCE MANUAL MOTOROLA 



BVS Branch if Overflow Set BVS 

Operation: PC • (PC) + $0002 + Rei if (V)=1 

Description: Tests the state of the V bit in the CCR and causes a branch if V is set. 

Used after an operation on twos-complement binary values, this instruction will cause 
a branch if there was an overflow. That is, branch if the twos-complement result was 
invalid. 

See BRA instruction for details of the execution of the branch. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 
None affected 

Source Form: BVS (reI) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
BVS (REL) 

Addr Data RIW 

1 OP 29 1 
2 OP+1 rr 1 
3 FFFF - 1 

The following table is a summary of all branch instructions. 

Test Boolean Mnemonic Opcode Complementary Branch Comment 

r>m Z+(N E/1V)=O BGT 2E r::e;:m BlE 2F Signed 

r~m NE/1V=O BGE 2C r<m BlT 20 Signed 

r=m Z=1 BEQ 27 r#m BNE 26 Signed 

r::e;:m Z+(NE/1V)=1 BlE 2F r>m BGT 2E Signed 

r<m NE/1V=1 BlT 20 r~m BGE 2C Signed 

r>m C+Z=O BHI 22 r::e;:m BlS 23 Unsigned 

r;,.m C=O BHS/BCC 24 r<m BLO/BCS 25 Unsigned 

r=m Z=1 BEQ 27 r#m BNE 26 Unsigned 

r .. m C+Z=1 BLS 23 r>m BHI 22 Unsigned 

r<m C=1 BlO/BCS 25 r~m BHS/BCC 24 Unsigned 

Carry C=1 BCS 25 No Carry BCC 24 Simple 

Negative N=1 BMI 2B Plus BPl 2A Simple 

Overflow V=1 BVS 29 No Overflow BVC 28 Simple 

r=O Z=1 BEQ 27 r#O BNE 26 Simple 

Always - BRA 20 Never BRN 21 Unconditional 

MOTOROLA M68HC11 REFERENCE MANUAL A-37 

II 



• 

CBA Compare Accumulators CBA 

Operation: (ACCA) - (ACC8) 

Description: Compares the contents of ACCA to the contents of ACC8 and sets the 
condition codes, which may be used for arithmetic and logical conditional branches. 
80th operands are unaffected. 

Condition Codes and Boolean Formulae: 

s x H N z v c 
I - I • • • • 
N R7 

Set if MS8 of result is set; cleared otherwise. 

Z R7·RS·R5·R4·R3·R2·R1·RO 
Set if result is $00; cleared otherwise. 

V A7· 87 • R7 + A7 • 87 • R7 
Set if a twos complement overflow resulted from the operation; cleared otherwise. 

C A7· 87 + 87 • R7 + R7 • A7 
Set if there was a borrow from the MS8 of the result; cleared otherwise. 

Source Form: C8A 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
CBA(lNH) 

Addr Data RJW 

1 OP 11 1 
2 OP+1 - 1 

A-38 M68HC11 REFERENCE MANUAL MOTOROLA 



CLC Clear Carry CLC 

Operation: 

Description: Clears the C bit in the CCR. 

CLC may be used to set up the C bit prior to a shift or rotate instruction involving the 
C bit. 

Condition Codes and Boolean Formulae: 

s x 
I - I 

C 0 
Cleared 

H 

Source Form: CLC 

N z v 
I a 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
CLC (lNH) 

Addr Data RIW 
1 OP DC 1 
2 OP+1 - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-39 

• 



• 

Cli Clear Interrupt Mask Cli 
Operation: 

Description: Clears the interrupt mask bit in the CCR. When the I bit is clear, interrupts 
are enabled. There is a one E-clock cycle delay in the clearing mechanism for the I bit 
so that, if interrupts were previously disabled, the next instruction after a CLI will 
always be executed, even if there was an interrupt pending prior to execution of the 
CLI instruction. 

Condition Codes and Boolean Formulae: 

s x 
I - I 

o 
Cleared 

Source Form: CLI 

H N Z V 

o I I - I 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
CLI (lNH) 

Addr Data RIW 
1 OP DE 1 
2 OP+l - 1 

A-40 M68HC11 REFERENCE MANUAL MOTOROLA 



CLR Clear 

Operation: ACCX.O or: 

Description; The contents of ACCX or M are replaced with zeros. 

Condition Codes and Boolean Formulae: 

s x 
I - I 

N 0 
Cleared 

Z 1 
Set 

v 0 
Cleared 

C 0 
Cleared 

H N Z 

o I 1 

Source Forms: CLRA; CLRB; CLR (apr) 

v c 
o I 0 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
CLRA (lNHI CLRB (lNHI CLR (EXTI CLR (IND. XI 

Addr Data R/W Addr Data R/W Addr Data RIW Addr Data R/W 

1 OP 4F 1 OP 5F 1 OP 7F 1 OP 6F 1 
2 OP+1 - 1 OP+1 - 1 OP+1 hh 1 OP+1 ff 1 
3 OP+2 II 1 FFFF - 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 
5 FFFF - 1 FFFF - 1 
6 hhll 00 0 X+ff 00 0 
7 

MOTOROLA M68HC11 REFERENCE MANUAL 

CLR 

CLR (IND. VI 

Addr Data R/W 

OP 18 1 
OP+1 6F 1 
OP+2 ff 1 
FFFF - 1 
V+ff (Y+ff) 1 
FFFF - 1 
Y+ff 00 0 

.. 

A-41 



• 

CLV Clear Twos-Complement Overflow Bit 

Operation: V bit. 0 

Description: Clears the twos complement overflow bit in the CCR. 

Condition Codes and Boolean Formulae: 

s x 
I - I 

V 0 
Cleared 

H 

Source Form: CLV 

N z v c 
I 0 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
CLVIINHI 

Addr Data RIW 

1 OP OA 1 
2 OP+l - 1 

A-42 M68HC11 REFERENCE MANUAL 

CLV 

MOTOROLA 



CMP Compare CMP 
Operation: (ACCX)-(M) 

Description: Compares the contents of ACCX to the contents of M and sets the condition 
codes, which may be used for arithmetic and logical conditional branching. Both 
operands are unaffected. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I • • • • 
N R7 

Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $00; cleared otherwise. 

V X7· M7 • R7 + X7 • M7 • R7 
Set if a twos complement overflow resulted from the operation; cleared otherwise. 

C X7· M7 + M7 • R7 + R7 • X7 
Set if there was a borrow from the MSB of the result; cleared otherwise. 

Source Forms: CMPA (opr); CMPB (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

CMPAIIMM) CMPA(DIR) CMPA (EXT) CMPAIIND. X) CMPAIIND. V) 
Cycle 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 81 1 OP 91 1 OP B1 1 OP A1 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 A1 1 
3 OOdd (OOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 V+ff (V+ff) 1 

CMPBIIMM) CMPB (DIR) CMPB (EXT) CMPB liND. X) CMPB liND. V) 
Cycle 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP C1 1 OP D1 1 OP F1 1 OP E1 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 E1 1 
3 OOdd (OOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 V+ff (V+ff) 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-43 

• 



• 

COM Complement COM 
Operation: ACCX. (~)=$FF-(ACCX) or: M. (M)=$FF-(M) 

Description: Replaces the contents of ACCX or M with its ones complement. (Each bit 
of the contents of ACCX or M is replaced with the complement of that bit.) To complement 
a value without affecting the C-bit, EXclusive-OR the value with $FF. 

Condition Codes and Boolean Formulae: 

s x H N z v c 
I - I • • I 0 I 1 

N R7 
Set if MsB of result is set; cleared otherwise. 

Z R7·RS·R5·R4·R3·R2·R1·RO 
Set if result is $00; cleared otherwise. 

V 0 
Cleared 

C 1 
Set (For compatibility with M68(0) 

Source Forms: COMA; COMB; COM (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
COMAIINHI COMBIINHI COM (EXTI COM liND. XI 

Addr Date RIW Addr Date RIW Addr Data RIW Addr Data RIW 

1 OP 43 1 OP 53 1 OP 73 1 OP 63 1 
2 OP+l - 1 OP+l - 1 OP+l hh 1 OP+l ff 1 
3 OP+2 II 1 FFFF - 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 
5 FFFF - 1 FFFF - 1 
6 hhll result 0 X+ff result 0 
7 

A-44 M68HC11 REFERENCE MANUAL 

COM liND. VI 

Addr Data RIW 

OP 18 1 
OP+l 63 1 
OP+2 ff 1 
FFFF - 1 
Y+ff (Y+ff) 1 
FFFF - 1 
Y+ff result 0 

MOTOROLA 



CPO Compare Double Accumulator CPO 

Operation: (ACCD)- (M:M + 1) 

Description: Compares the contents of accumulator D with a 16-bit value at the address 
specified and sets the condition codes accordingly. The compare is accomplished 
internally by doing a 16-bit subtract of (M:M+1) from accumulator D without modi­
fying either accumulator D or (M:M+1). 

Condition Codes and Boolean Formulae: 

S X H N z v c 

I - I - I • • • • 
N R15 

Set if MSB of result is set; cleared otherwise. 

ZR15' R14· R13· R12' R11· R10· RS· RS' R7· R6' R5' R4· R3' R2' Rf· RO 
Set if result is $0000; cleared otherwise. 

V D15·M15·R15+D15·M15·R15 
Set if a twos complement overflow resulted from the operation; cleared otherwise. 

C D15·M15+M15·R15+R15·D15 
Set if the absolute value of the contents of memory is larger than the absolute 
value of the accumulator; cleared otherwise. 

Source Form: CPD (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

CPOllMM) CPO (OIR) CPO (EXT) CPO UNO. X) CPO UNO. V) 
Cycle 

Add, Data RIW Add, Data RIW Add, Data RIW Add, Data RIW Add, Data RIW 

1 OP 1A 1 OP 1A 1 OP 1A 1 OP 1A 1 OP CD 1 
2 OP+1 83 1 OP+1 93 1 OP+1 83 1 OP+1 A3 1 OP+1 A3 1 
3 OP+2 jj 1 OP+2 dd 1 OP+2 hh 1 OP+2 ff 1 OP+2 ff 1 
4 OP+3 kk 1 OOdd (OOdd) 1 OP+3 II 1 FFFF - 1 FFFF - 1 
5 FFFF - 1 OOdd+1 (OOdd+1) 1 hhll (hhll) 1 X+ff (X+ff) 1 Y+ff (Y+ff) 1 
6 FFFF - 1 hhll+l (hhll+ 1) 1 X+ff+l (X+ff+1) 1 Y+ff+1 (Y+ff+1) 1 
7 FFFF - 1 FFFF - 1 FFFF - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-45 

• 



• 

CPX Compare Index Register X CPX 

Operation: (IX) - (M:M + 1) 

Description: Compares the contents of the index register X with a 16-bit value at the 
address specified and sets the condition codes accordingly. The compare is accom­
plished internally by doing a 16-bit subtract of (M:M + 1) from index register X without 
modifying either index register X or (M:M+1). 

Condition Codes and Boolean Formulae: 

S X H N z v c 

I - I - I • • • • 
N R15 

Set if MSB of result is set; cleared otherwise. 

Z R15· R14· R13· R12· R11· R10· R9· RS· R7 ·R6· R5· R4· R3· R2· FIT· RO 
Set if result is $0000; cleared otherwise. 

V IX15·M15·R15+IX15·M15·R15 
Set if a twos complement overflow resulted from the operation; cleared otherwise. 

C IX15·M15+M15·R15+R15·IX15 
Set if the absolute value of the contents of memory is larger than the absolute 
value of the index register; cleared otherwise. 

Source Form: CPX (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

CPX(lMMI CPX (DIRI CPX (EXTI CPX (IND. XI CPX (IND. VI 
Cycle 

Add. Data RIW Add. Data RIW Add. Data RIW Add. Data RIW Add. Data RIW 

1 OP BC 1 OP 9C 1 OP BC 1 OP AC 1 OP CD 1 
2 OP+1 jj 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 AC 1 
3 OP+2 kk 1 OOdd (OOddl 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 FFFF - 1 OOdd+ 1 (OOdd+ 11 1 hhll (hhlll 1 X+ff (X+ffl 1 FFFF - 1 
5 FFFF - 1 hhll+1 (hhll + 11 1 X+ff+ 1 (X+ff+ 11 1 V+ff (V + ffI 1 
6 FFFF - 1 FFFF - 1 Y+ff+1 (Y+ff+11 1 
7 FFFF - 1 

A-46 M68HC11 REFERENCE MANUAL MOTOROLA 



Cpy Compare Index Register Y Cpy 

Operation: (IY)-(M:M+1) 

Description: Compares the contents of the index register Y with a 16-bit value at the 
address specified and sets the condition codes accordingly. The compare is accom­
plished internally by doing a 16-bit subtract of (M: M + 1) from index register Y without 
modifying either index register Y or (M: M + 1). 

Condition Codes and Boolean Formulae: 

S X H N z v c 

I - I - I • 
N R15 

Set if MSB of result is set; cleared otherwise. 

Z R15·R14·R13·R12·R11·R10·R9·RS·R7·R6·R5·R4·R3·R2·R1·RO 
Set if result is $0000; cleared otherwise. 

V IY15·M15·R15+IY15·M15·R15 
Set if a twos complement overflow resulted from the operation; cleared otherwise. 

C IY15·M15+M15·R15+R15·IY15 
Set if the absolute value of the contents of memory is larger than the absolute 
value of the index register; cleared otherwise. 

Source Form: CPY (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cpy (lMM) Cpy (DIR) Cpy (EXT) CPY (IND. X) CPY (lND, Y) 
Cycle 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 18 1 OP 18 1 OP 18 1 OP 1A 1 OP 18 1 
2 OP+1 8C 1 OP+1 9C 1 OP+1 BC 1 OP+1 AC 1 OP+1 AC 1 
3 OP+2 jj 1 OP+2 dd 1 OP+2 hh 1 OP+2 ff 1 OP+2 ff 1 
4 OP+3 kk 1 OOdd (OOdd) 1 OP+3 II 1 FFFF - 1 FFFF - 1 
5 FFFF - 1 OOdd + 1 (OOdd + 1) 1 hhll (hhll) 1 X+ff (X+ff) 1 Y+ff (Y+ff) 1 
6 FFFF - 1 hhll+1 (hhll+1) 1 X+ff+ 1 IX+ff+ 1) 1 Y+ff+1 (Y+ff+1) 1 
7 FFFF - 1 FFFF - 1 FFFF - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-47 

• 



.. 

DAA Decimal Adjust ACCA DAA 
Operation: The following table summarizes the operation of the DAA instruction for 

all legal combinations of input operands. A correction factor (column 5 in the following 
table) is added to ACCA to restore the result of an addition of two BCD operands to 
a valid BCD value and set or clear the carry bit. 

State of Upper Initial Lower Number State of 
CBit Half·Byte Half-Carry Half-Byte Added C Bit 

Before of ACCA H Bit of ACCA toACCA After 
OAA (Bits 7-4) from CCR (Bits 3-0) byOAA OAA 

(Column 1) (Column 2) (Column 3) (Column 4) (Column 51 (Column 6) 

0 0-9 0 0-9 00 0 
0 0-8 0 A-F 06 0 
0 0-9 1 0-3 06 0 

0 A-F 0 0-9 60 1 
0 9-F 0 A-F 66 1 
0 A-F 1 0-3 66 1 

1 0-2 0 0-9 60 1 
1 0-2 0 A-F 66 1 
1 0-3 1 0-3 66 1 

NOTE 
Columns (1) through (4) of the above table represent all possible cases which can 
result from any of the operations ABA. ADD, or ADC, with initial carry either set or 
clear, applied to two binary-coded-decimal operands. The table shows hexadecimal 
values. 

Description: If the contents of ACCA .and the state of the carry/borrow bit C and the 
state of the half-carry bit H are all the result of applying any of the operations ABA. 
ADD, or ADC to binary-coded-decimal operands, with or without an initial carry, the 
DAA operation will adjust the contents of ACCA and the carry bit C in the CCR to 
represent the correct binary-coded-decimal sum and the correct state of the C bit. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I • • • 
N R7 

Set if MSB of result is set; cleared otherwise . 

z· R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $00; cleared otherwise. 

V ? 
Not defined 

C See table above. 

A-48 M68HC11 REFERENCE MANUAL MOTOROLA 



DAA 

Source Form: DAA 

Decimal Adjust ACCA 
(Continued) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
DAA(lNHI 

Addr Data RIW 

1 OP 19 1 
2 OP+1 - 1 

DAA 

For the purpose of illustration, consider the case where the BCD value $99 was just 
added to the BCD value $22. The add instruction is a binary operation, which yields 
the result $BB with no carry (C) or half carry (H). This corresponds to the fifth row of 
the table on the previous page. The DAA instruction will therefore add the correction 
factor $66 to the result of the addition, giving a result of $21 with the carry bit set. 
This result corresponds to the BCD value $121, which is the expected BCD result. 

MOTOROLA M68HC11 REFERENCE MANUAL A-49 

II 



• 

DEC Decrement DEC 

Operation: ACCX. (ACCX)-$01 or: M. (M)-$01 

Description: Subtract one from the contents of ACCX or M. 

The N, Z, and V bits in the CCR are set or cleared according to the results of the 
operation. The C bit in the CCR is not affected by the operation, thus allowing the DEC 
instruction to be used as a loop counter in multiple-precision computations. 

When operating on unsigned values, only BEQ and BNE branches can be expected to 
perform consistently. When operating on twos-complement values, all signed branches 
are available. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I I 
N R7 

Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $00; cleared otherwise 

V X7·X6·X5·X4·X3·X2·X1·XO=R7·R6·R5·R4·R3·R2·R1·RO 
Set if there was a twos complement overflow as a result of the operation; cleared 
otherwise. Twos complement overflow occurs if and only if (ACCX) or (M) was 
$80 before the operation. 

Source Forms: DECA; DECB; DEC (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
DECA/INHI DECB /lNHI DEC (EXTI DEC /IND. XI DEC/IND. VI 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 4A 1 OP 5A 1 OP 7A 1 OP 6A 1 OP 18 1 
2 OP+1 - 1 OP+1 - 1 OP+1 hh 1 OP+1 ff 1 OP+1 6A 1 
3 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhlll 1 X+ff (X+ffl 1 FFFF - 1 
5 FFFF - 1 FFFF - 1 V+ff (Y+ff) 1 
6 hhll result 0 X+ff result 0 FFFF - 1 
7 Y+ff result 0 

A-50 M68HC11 REFERENCE MANUAL MOTOROLA 



DES Decrement Stack Pointer DES 

Operation: SP • (SP) - $0001 

Description: Subtract one from the stack pointer. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: DES 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

DES (lNHI 
Cycle 

Add. Data RIW 
1 OP 34 1 
2 OP+l - 1 
3 SP - 1 

• 
MOTOROLA M68HC11 REFERENCE MANUAL A-51 



DEX Decrement Index Register X DEX 

Operation: IX. (lX)-$0001 

Description: Subtract one from the index register X. 

Only the Z bit is set or cleared according to the result of this operation. 

Condition Codes and Boolean Formulae: 

S X H N Z V C 

1-1-1-1-1-1-1-1 
Z R15·R14·R13·R12·R11·R10·R9·RS·R7·R6·R5·R4·R3·R2·R1·RO 

Set if result is $0000; cleared otherwise. 

Source Form: DEX 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

DEX UNHI 
Cycle 

Addr Data RIW 

1 OP 09 1 
2 OP+l - 1 
3 FFFF - 1 

II 

A-52 M68HC11 REFERENCE MANUAL MOTOROLA 



DEY Decrement Index Register V DEY 
Operation: IY • (lY) - $0001 

Description: Subtract one from the index register Y. 

Only the Z bit is set or cleared according to the result of this operation. 

Condition Codes and Boolean Formulae: 

S X H I N Z V C 

1 - 1 - 1 - 1 -I - 1 • 1 - 1 

Z R15·R14·R13·R12·R11·R10·R9·R8·R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $0000; cleared otherwise. 

Source Form: DEY 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
DEY (lNH) 

Addr Data RIW 
1 OP 18 1 
2 OP+1 09 1 
3 OP+2 - 1 
4 FFFF - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-53 

• 



• 

EOR Exclusive-OR EOR 

Operation: ACCX. (ACCX) EB (M) 

Description: Performs the logical exclusive-OR between the contents of ACCX and the 
contents of M and places the result in ACCX. (Each bit of ACCX after the operation 
will be the logical exclusive-OR of the corresponding bits of M and ACCX before the 

. operation.) 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I • • o I 

N R7 
Set if MSB of result is set; cleared otherwise. 

Z R7'R6'R5'R4'R3'R2'~'RO 
Set if result is $00; cleared otherwise 

V 0 
Cleared 

Source Forms: EORA (opr); EORB (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

EORAUMMI EORA/DIRI EORA /EXTI EORAUND, XI EORAUND, VI 
Cycle 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 88 1 OP 98 1 OP B8 1 OP A8 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 A8 1 
3 OOdd (OOddl 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll /hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 Y+ff (Y+ff) 1 

Cvcle 
EORBUMMI EORB/DIRI EORB (EXTI EORB UND,XI EORBUND, VI 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP C8 1 OP 08 1 OP F8 1 OP E8 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 E8 1 
3 OOdd (OOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 Y+ff (Y+ff) 1 

A-54 M68HC11 REFERENCE MANUAL MOTOROLA 



FDIV Fractional Divide FDIV 

Operation: (ACCD)/(lX); IX. Quotient, ACCD. Remainder 

Description: Performs an usigned fractional divide of the 16-bit numerator in the D 
accumulator by the 16-bit denominator in the index register X and sets the condition 
codes accordingly. The quotient is placed in the index register X, and the remainder 
is placed in the D accumulator. The radix point is assumed to be in the same place 
for both the numerator and the denominator. The radix point is to the left of bit 15 
for the quotient. The numerator is assumed to be less than the denominator. In the 
case of overflow (denominator is less than or equal to the numerator) or divide by 
zero, the quotient is set to $FFFF, and the remainder is indeterminate. 

FDIV is equivalent to multiplying the numerator by 216 and then performing a 32 x 16-
bit integer divide. The result is interpreted as a binary-weighted fraction, which resulted 
from the division of a 16-bit integer by a larger 16-bit integer. A result of $0001 
corresponds to 0.000015, and $FFFF corresponds to 0.9999S. The remainder of an IDIV 
instruction can be resolved into a binary-weighted fraction by an FDIV instruction. The 
remainder of an FDIV instruction can be resolved into the next 16-bits of binary­
weighted fraction by another FDIV instruction. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

• • 
Z R15·R14·R13·R12·R11·R10·R9·RS·R7·R6·R5·R4·R3·R2·R1·RO 

Set if quotient is $0000; cleared otherwise. 

V 1 if IX~D 
Set if denominator was less th~m or equal to the numerator; cleared otherwise. 

C IX15 ·IX14 ·IX13 ·IX12 ·IX11 ·IX10 ·IX9 ·IXS· 
IX7 • IX6· IX5· IX4· IX3· IX2 • IX1 • IXO 
Set if denominator was $0000; cleared otherwise. 

Source Form: FDIV 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
FDIV (lNH) 

Addr Data R/W 

1 OP 03 1 
2 OP+1 - 1 

3-41 FFFF - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-55 

• 



• 

IDIV Integer Divide IDIV 

Operation: (ACCD)/(lX); IX. Quotient, ACCD. Remainder 

Description: Performs an unsigned integer divide of the l6-bit numerator in D accu-
mulator by the l6-bit denominator in index register X and sets the condition codes 
accordingly. The quotient is placed in index register X, and the remainder is placed 
in accumulator D. The radix point is assumed to be in the same place for both the 
numerator and the denominator. The radix point is to the right of bit zero for the 
quotient. In the case of divide by zero, the quotient is set to $FFFF, and the remainder 
is indeterminate. 

Condition Codes and Boolean Formulae: 

S X H I N Z V C 

1-1-1-1-1-1_10 -

Z R15· R14· R13· R12· Rll • Rl0· R9· R8· R7· R6· R5· R4· R3· R2· AT • RO 
Set if result is $0000; cleared otherwise. 

V 0 
Cleared. 

C IX15 ·IX14 ·IX13 ·IX12 ·IXll ·IX10 ·IX9 ·IX8· 
IX7· IX6 • IX5 • IX4· IX3 • IX2 • IXl • IXO 
Set if denominator was $0000; cleared otherwise. 

Source Form: IDIV 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cvcle 
IDIV(lNH) 

Addr Data RIW 
1 OP 02 1 
2 OP+1 - 1 

3-41 FFFF - 1 

A-56 M68HC11 REFERENCE MANUAL MOTOROLA 



INC Increment INC 

Operation: ACCX. (ACCX) +$01 or: M. (M)+$01 

Description: Add one to the contents of ACCX or M. 

The N, Z, and V bits in the CCR are set or cleared according to the results of the 
operation. The C bit in the CCR is not affected by the operation, thus allowing the INC 
instruction to be used as a loop counter in multiple-precision computations. 

When operating on unsigned values, only BEQ and BNE branches can be expected to 
perform consistently. When operating on twos-complement values, all signed branches 
are available. 

Condition Codes and Boolean Formulae: 

s x H N z v 

I - I I - I • 
N R7 

Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $00; cleared otherwise. 

V X7· X6 • X5 • X4 • X3 • X2 • X 1 • XO 
Set if there is a twos complement overflow as a result of the operation; cleared 
otherwise. Twos complement overflow occurs if and only if (ACCX) or (M) was 
$7F before the operation. 

Source Forms: INCA; INCB; INC (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

INCA (lNH) INCB (lNH) INC (EXT) INC (lND, X) INC (lND, V) 
Cycle 

Addr Data RIW Addr Data RlW Addr Data R/W Addr Data R/W Addr Data R/W 

1 OP 4C 1 OP 5C 1 OP 7C 1 OP 6C 1 OP 18 1 
2 OP+1 - 1 OP+1 - 1 OP+1 hh 1 OP+1 ff 1 OP+1 6C 1 
3 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X +ff) 1 FFFF - 1 
5 FFFF - 1 FFFF - 1 V+ff (V + ff) 1 
6 hhll result 0 X+ff result 0 FFFF - 1 
7 V+ff result 0 

MOTOROLA M68HC11 REFERENCE MANUAL A-57 

• 



INS Increment Stack Pointer INS 
Operation: SP • (SP) + $0001 

Description: Add one to the stack pointer. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I - I 

None affected 

Source Form: INS 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
INS (lNH) 

Addr Data R1W 

1 OP 31 1 
2 OP+1 - 1 
3 SP - 1 

• 
A-58 M68HC11 REFERENCE MANUAL MOTOROLA 



INX Increment Index Register X INX 

Operation: IX. (IX) + $0001 

Description: Add one to index register X. 

Only the Z bit is set or cleared according to the result of this operation. 

Condition Codes and Boolean Formulae: 

S X H I N Z V C 

1-1-1-1-1-1-1-1 
Z R15·R14·R13·R12·Rll·Rl0·R9·RS·R7·R6·R5·R4·R3·R2·R1·RO 

Set if result is $0000; cleared otherwise. 

Source Form: INX 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
INXUNH) 

Addr Data RIW 
1 OP 08 1 
2 OP+l - 1 
3 FFFF - 1 

• 
MOTOROLA M68HC11 REFERENCE MANUAL A-59 



• 

INY Increment Index Register V INY 

Operation: IV. (IV) + $0001 

Description: Add one to index register V. 

Only the Z bit is set or cleared according to the result of this operation. 

Condition Codes and Boolean Formulae: 

S X H I N Z V C 

1-1-1-1-1-1-1-1 
Z R15· R14· R13· R12· R11· R10· RS· RS· R7· R6· R5· R4· R3·R2· R1· RO 

Set if result is $0000; cleared otherwise. 

Source Form: INV 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
INYUNHI 

Addr Data RIW 
1 OP 18 1 
2 OP+1 08 1 
3 OP+2 - 1 
4 FFFF - 1 

A-60 M68HC11 REFERENCE MANUAL MOTOROLA 



JMP Jump JMP 

Operation: PC. Effective Address 

Description: A jump occurs to the instruction stored at the effective address. The ef-
fective address is obtained according to the rules for EXTended or INDexed addressing. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: JMP (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
JMP(EXTI JMP UND,XI JMP UNO, VI 

Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 7E 1 OP 6E 1 OP 18 1 
2 OP+1 hh 1 OP+1 ff 1 OP+1 6E 1 
3 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 FFFF - 1 

• 
MOTOROLA M68HC11 REFERENCE MANUAL A-61 



• 

JSR Jump to Subroutine JSR 

Operation: PC • (PC) + $0003 
pc. (PC) + $0002 
.(PCl) 

(for EXTended or INDexed, Y addressing) or: 
(for DIRect or INDexed, X addressing) 

SP. (SP) - $0001 
.(PCH) 
SPHSP)-$0001 
PC • Effective Addr 

Push low-order return address onto stack 

Push high-order return address onto stack 

load start address of requested subroutine 

Description: The program counter is incremented by three or by two, depending on 
the addressing mode, and is then pushed onto the stack, eight bits at a time, least 
significant byte first. The stack pointer points to the next empty location in the stack. 
A jump occurs to the instruction stored at the effective address. The effective address 
is obtained according to the rules for EXTended, DIRect, or INDexed addressing. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: JSR (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

JSR (DIR) JSR (EXT) JSR (lND, X) JSR (lND, V) 
Cvcle 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 90 1 OP BD 1 OP AD 1 OP 18 1 
2 OP+1 dd 1 OP+1 hh 1 OP+l ff 1 OP+1 AD 1 
3 OOdd (OOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 SP Rtn 10 0 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 SP-1 Rtn hi 0 SP Rtn 10 0 SP Rtn 10 0 Y+ff (Y+ff) 1 
6 SP-1 Rtn hi 0 SP-1 Rtn hi 0 SP Rtn 10 0 
7 SP-1 Rtn hi 0 

A-62 M68HC11 REFERENCE MANUAL MOTOROLA 



LOA Load Accumulator LOA 

Operation: ACCX.(M) 

Description: Loads the contents of memory into the 8-bit accumulator. The condition 
codes are set according to the data. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I • • o I 
N R7 

Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·R1·RO 
Set if result is $00; cleared otherwise 

V 0 
Cleared 

Source Form: LDAA (opr); LDAB (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
LDAA(lMM) LDAA (DIR) LDAA(EXT) LDAA liND. X) LDAAIIND. V) 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 86 1 OP 96 1 OP B6 1 OP A6 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 A6 1 
3 OOdd (OOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 V+ff (Y+ff) 1 

Cycle 
LDAB(lMM) LDAB (DIR) LDAB(EXT) LDAB liND. X) LDAB liND. V) 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP C6 1 OP 06 1 OP F6 1 OP E6 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 E6 1 
3 OOdd (OOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 Y+ff (Y+ff) 1 

• 
MOTOROLA M68HC11 REFERENCE MANUAL A-63 



• 

LDD Load Double Accumulator LDD 

Opeation: ACCD f (M:M+1); ACCAf (M), ACCB f (M+1) 

Description: Loads the contents of memory locations M and M + 1 into the double 
accumulator D. The condition codes are set according to the data. The information 
from location M is loaded into accumulator A, and the information from location M + 1 
is loaded into accumulator B. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I • • I 0 

N R15 
Set if MSB of result is set; cleared otherwise. 

Z R15·R14·R13·R12·R11·R10·R9·RS·R7·R6·R5·R4·R3·R2·R1·RO 
Set if result is $0000; cleared otherwise. 

V 0 
Cleared 

Source Form: LDD (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

LDDIIMM) LDD(DIR) LDD(Elm LDDIIND,X) 
Cycle 

Acldr Data RIW Acldr Data RIW Acldr Data RIW Acldr Data 

1 OP CC 1 OP DC 1 OP FC 1 OP EC 
2 OP+1 jj 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 
3 OP+2 kk 1 OOdd (OOdd) 1 OP+2 II 1 FFFF -
4 OOdd+1 (OOdd+ 1) 1 hhll (hhll) 1 X+ff (X+ff) 
5 hhll+1 (hhll+1) 1 X+ff+1 (X+ff+1) 
6 

A-64 M68HC11 REFERENCE MANUAL 

LDDIIND, V) 

RIW Acldr Data RIW 

1 OP 18 1 
1 OP+1 EC 1 
1 OP+2 ff 1 
1 FFFF - 1 
1 Y+ff (Y+ff) 1 

Y+ff+1 (Y+ff+1) 1 

MOTOROLA 



LOS Load Stack Pointer LOS 

Operation: SPH • (M), SPL • (M + 1) 

Description: Loads the most significant byte of the stack pointer from the byte of mem-
ory at the address specified by the program, and loads the least significant byte of 
the stack pointer from the next byte of memory at one plus the address specified by 
the program. 

Condition Codes and Boolean Formulae: 

S X H N z v c 

I - I - II • • o I 
N R15 

Set if MSB of result is set; cleared otherwise. 

Z R15·R14·R13·R12·R11·R10·RS·RS·R7·R6·R5·R4·R3·R2·R1·RO 
Set if result is $0000; cleared otherwise. 

V 0 
Cleared 

Source Form: LOS (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

LDSUMMI LDS IDiRI LOS IEXTI LDSUND.XI 
Cycle 

AcIdr Data R/W Acldr Data R/W Addr Data R/W Addr Data 

1 OP 8E 1 OP 9E 1 OP BE 1 OP AE 
2 OP+1 jj 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 
3 OP+2 kk 1 OOdd IOOdd) 1 OP+2 II 1 FFFF -
4 OOdd+1 IOOdd+1) 1 -hhll Ihhll) 1 X+ff IX+ff) 
5 hhll+1 Ihhll+1) 1 X+ff+1 IX+ff+1) 
6 

MOTOROLA M68HC11 REFERENCE MANUAL 

LOSUND, VI 

R/W Addr Data 

1 OP 18 
1 OP+1 AE 
1 OP+2 ff 
1 FFFF -
1 V+ff (V+ff) 

V+ff+1 IY+ff+1) 

R/W 

1 
1 
1 
1 
1 
1 

A-65 

II 



• 

LOX Load Index Register X LOX 

Operation; IXH. (M), IXL. (M + 1) 

Description: Loads the most sign.ificant byte of index register X from the byte of memory 
at the address specified by the program, and loads the least significant byte of index 
register X from the next byte of memory at one plus the address specified by the 

program. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I • • o I 

N R15 
Set if MSB of result is set; cleared otherwise. 

Z R 15 • R 14 • R 13 • R 12 • R 11 • R 1 0 • R9 • RS • R7 • RS • R5 • R4 • R3 • R2 • R 1 • RO 
Set if result is $0000; cleared otherwise. 

V 0 
Cleared 

Source Form: LOX (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

LOX (lMMI LDX(DIRI LDX (EXT) LDX (IND. Xl 
Cycle 

Add. Data RIW Add. Data RIW Add. Data RIW Add. Data 

1 OP CE 1 OP DE 1 OP FE 1 OP EE 
2 OP+l jj 1 OP+l dd 1 OP+l hh 1 OP+l ff 
3 OP+2 kk 1 DOdd (OOdd) 1 OP+2 II 1 FFFF -
4 OOdd+l (OOdd+l) 1 hhll (hhll) 1 X+ff (X+ff) 
5 hhll+l (hhll+l) 1 X+ff+l (X+ff+l) 
6 

LOX (IND. VI 

RIW Add. Data 

1 OP CD 
1 OP+l EE 
1 OP+2 ff 
1 FFFF -
1 Y+ff (Y+ff) 

Y+ff+l (Y+ff+l) 

RIW 

1 
1 
1 
1 
1 
1 

A·66 M68HC11 REFERENCE MANUAL MOTOROLA 



LDY Load Index Register Y LDY 

Operation: 

Description: Loads the most significant byte of index register Y from the byte of memory 
at the address specified by the program, and loads the least significant byte of index 
register Y from the next byte of memory at one plus the address specified by the 

program. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I • • o I 

N R15 
Set if MSB of result is set; cleared otherwise. 

Z R15·R14·R13·R12·R11·R10·R9·RS·R7·R6·R5·R4·R3·R2·R1·RO 
Set if result is $0000; cleared otherwise. 

V 0 
Cleared 

Source Form: LOY (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

LDVIIMM) LDV (DlR) LDV(EXT) LDV liND. X) 
Cycle 

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data 

1 OP 18 i OP 18 1 OP 18 1 OP 1A 
2 OP+1 CE 1 OP+1 DE 1 OP+1 FE 1 OP+1 EE 
3 OP+2 jj 1 OP+2 dd 1 OP+2 hh 1 OP+2 ff 
4 OP+3 kk 1 OOdd (OOdd) 1 OP+3 II 1 FFFF -
5 OOdd+1 (OOdd+1) 1 hhll (hhll) 1 X+ff (X+ff) 
6 hhll+ 1 (hhll + 1) 1 X+ff+1 (X+ff+ 1) 

MOTOROLA M68HC11 REFERENCE MANUAL 

LDVIIND. V) 

R/W Addr Data 

1 OP 18 
1 OP+1 EE 
1 OP+2 ff 
1 FFFF -
1 V+ff (V+ff) 
1 Y+ff+1 (Y+ff+1) 

R/W 

1 
1 
1 
1 
1 
1 

A-67 

• 



• 

LSL 

.. 
Operation: 

Logical Shift Left 
(Same as ASl) 

LSL 

Description: Shifts all bits of the ACCX or M one place to the left. Bit 0 is loaded with 
zero. The C bit is loaded from the most significant bit of ACCX or M. 

Condition Codes and Boolean Formulae: 

s x H N z v c 
I - I • • • • 
N R7 

Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·R1·RO 
Set if result is $00; cleared otherwise. 

V N EEl C = [N • C] + [N • C] (for Nand C after the shift) 
Set if (N is set and C is clear) or (N is clear and C is set); cleared otherwise (for 
values of Nand C after the shift). 

C M7 
Set if, before the shift, the MSB of ACCX or M was set; cleared otherwise. 

Source Forms: LSLA; LSLB; LSL (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
LSLA (INHI LSLB (INHI LSL (EXTI LSL (IND, Xl LSL(lND, Yl 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 48 1 OP 58 1 OP 78 1 OP 68 1 OP 18 1 
2 OP+1 - 1 OP+1 - 1 OP+1 hh 1 OP+1 ff 1 OP+1 68 1 
3 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ffl 1 FFFF - 1 
5 FFFF - 1 FFFF - 1 Y+ff (Y+ffl 1 
6 hhll result 0 X+ff result 0 FFFF - 1 
7 Y+ff result 0 

A-S8 M68HC11 REFERENCE MANUAL MOTOROLA 



LSLD Logical Shift Left Double 
(Same as ASLD) 

LSLD 

Operation: 

ACCA ACCB 

Description: Shifts all of ACCD 'one place to the left. Bit 0 is loaded with zero. The C bit 
is loaded from the most significant bit of ACCD. 

Condition Codes and Boolean Formulae: 

S X H N Z V C 

1 - 1 - I - I -I • I • 1 • I • 
N R15 

Set if MSB of result is set; cleared otherwise. 

Z R15·R14·R13·R12·R11·R10·R9·RS·R7·R6·R5·R4·R3·R2·R1·RO 
Set if result is $0000; cleared otherwise. 

V N $ C = [N • C) + [N • C) (for Nand C after the shift) 
Set if (N is set and C is clear) or (N is clear and C is set); cleared otherwise (for 
values of Nand C after the shift). 

C 015 
Set if, before the shift, the MSB of ACCD was set; cleared otherwise. 

Source Form: LSLD 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
LSLD (lNHI 

Addr Data R/W 

1 OP 05 1 
2 OP+l - 1 
3 FFFF - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-69 

• 



• 

LSR Logical Shift Right LSR 

Operation: 

Description: Shifts all bits of ACCX or M one place to the right. Bit 7 is loaded with 
zero. The C bit is loaded from the least significant bit of ACCX or M. 

Condition Codes and Boolean Formulae: 

s x 

I - I 
N 0 

Cleared. 

H N Z 

o I • 

Z R7·RS·RS·R4·R3·R2·R1·RO 

v 

• 

Set if result is $00; cleared otherwise. 

c 

• 

V N EB C = [N • C] + [1'1 • C] (for Nand C after the shift) 
Since N =0, this simplifies to C (after the shift). 

C MO 
Set if, before the shift, the LSB of ACCX or M was set; cleared otherwise. 

Source Forms: LSRA; LSRB; LSR (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
LSRA(lNH) LSRB(lNH) LSR (EXT) LSR (IND. X) LSR(lND. V) 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data . RIW Addr Data RIW 

1 OP 44 1 OP 54 1 OP 74 1 OP 64 1 OP 18 1 
2 OP+1 - 1 OP+1 - 1 OP+1 hh 1 OP+1 ff 1 OP+1 64 1 
3 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 FFFF - 1 FFFF - 1 V+ff (V+ff) 1 
6 hhll result 0 X+ff result 0 FFFF - 1 
7 V+ff result 0 

A-70 M68HC11 REFERENCE MANUAL MOTOROLA 



LSRD Logical Shift Right Double Accumulator LSRD 
-------.~ . 

Operation: O--.ib7 - - - - - - bol-.lb7 - - - - - - bol---CTI 
ACCA ACCB 

Description: Shifts all bits of ACCD one place to the right. Bit 15 (MSB of ACCA) is 
loaded with zero. The C bit is loaded from the least significant bit of ACCD (LSB of 
ACCB). 

Condition Codes and Boolean Formulae: 

s x 
I - I 
N 0 

Cleared 

H N z 
I 0 • 

v c 

• • 

Z R15- R14- R13- R12 - R11- R10- RS- RS- R7 - RS- R5- R4- R3- R2- FIT- RO 
Set if result is $0000; cleared otherwise. 

V DO 
Set if, after the shift operaton, C is set; cleared otherwise. 

C DO 
Set if, before the shift, the least significant bit of ACCD was set; cleared otherwise. 

Source Form: LSRD 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
LSRD (lNH) 

Addr Data RIW 

1 OP 04 1 
2 OP+1 - 1 
3 FFFF - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-71 

• 



• 

MUL Multiply Unsigned MUL 

Operation: ACCD. (ACCA) x (ACCS) 

Description: Multiplies the 8-bit unsigned binary value in accumulator A by the 8-bit 
unsigned binary value in accumulator S to obtain a 16-bit unsigned result in the double 
accumulator D. Unsigned multiply allows multiple-precision operations. The carry flag 
allows rounding the most significant byte of the result through the sequence: MUL, 
ADCA #0. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I • 
C R7 

Set if bit 7 of the result (ACCS bit 7) is set; cleared otherwise. 

Source Form: MUL 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
MUL(lNHI 

Addr Data RIW 
1 OP 3D 1 
2 OP+1 - 1 

3-10 FFFF - 1 

A-72 M68HC11 REFERENCE MANUAL MOTOROLA 



NEG Negate NEG 
Operation: (ACCX). -(ACCX)=$OO-(ACCX) or: (M). -(M)=$OO-(M) 

Description: Replaces the contents of ACCX or M with its twos complement; the value 
$80 is left unchanged. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I • • • • 
N R7 

Set if MSB of result is set; cleared otherwise. 

Z R7-RS-R5-R4-R3-R2-m-RO 
Set if result is $00; cleared otherwise. 

V ~-M-R5-M-~-R2-m-~ 
Set if there is a twos complement overflow from the implied subtraction from 
zero; cleared otherwise. A twos complement overflow will occur if and only if the 
contents of ACCX or M is $80. 

C R7+RS+R5+R4+R3+R2+R1+RO 
Set if there is a borrow in the implied subtraction from zero; cleared otherwise. 
The C bit will be set in all cases except when the contents of ACCX or M is $00. 

Source Forms: NEGA; NEGB; NEG (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
NEGAIINH) NEGB (lNH) NEG (EXT) NEG (lND, X) NEG liND, V) 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 40 1 OP 50 1 OP 70 1 OP 60 1 OP 18 1 
2 OP+1 - 1 OP+1 - 1 OP+1 hh 1 OP+1 If 1 OP+l 60 1 
3 OP+2 II 1 FFFF - 1 OP+2 If 1 
4 hhll (hhll) 1 X+1f (X+If) 1 FFFF - 1 
5 FFFF - 1 FFFF - 1 Y+1f (Y+If) 1 
6 hhll result 0 X+1f result 0 FFFF - 1 
7 Y+1f result 0 

MOTOROLA M68HC11 REFERENCE MANUAL A-73 

• 



• 

NOP No Operation NOP 
Description: This is a single-byte instruction that causes only the program counter to 

be incremented. No other registers are affected. This instruction is typically used to 
produce a time delay although some software disCiplines discourage CPU frequency­
based time delays. During debug, NOP instructions are sometimes used to temporarily 
replace other machine code instructions, thus disabling the replaced instruction(s). 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I ~ I 

None affected 

Source Form: NOP 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
NOPIINH) 

Addr Data RJW 

1 OP 01 1 
2 OP+1 - 1 

A-74 M68HC11 REFERENCE MANUAL MOTOROLA 



ORA Inclusive-OR ORA 

Operation: ACCX. (ACCX) + (M) 

Description: Performs the logical inclusive-OR between the contents of ACCX and the 
contents of M and places the result in ACCX. (Each bit of ACCX after the operation 
will be the logical inclusive-OR of the corresponding bits of M and of ACCX before 
the operation.) 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I • • I 0 

N R7 
Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $00; cleared otherwise 

V 0 
Cleared 

Source Forms: ORAA (opr); ORAB (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
ORAAIIMMI ORAA(DIRI ORAA(EXTI ORAA liND. XI ORAAIIND. VI 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 8A 1 OP 9A 1 OP SA 1 OP AA 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 AA 1 
3 OOdd (OOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 V+ff (V+ff) 1 

Cyde 
ORABIIMMI ORAB(DIR) ORAB(EXTI ORAB liND. XI ORABIIND. VI 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP CA 1 OP DA 1 OP FA 1 OP EA 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 EA 1 
3 OOdd (OOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 V+ff (V+ff) 1 

MOTOROLA M68HC11 REFERENCE MANUAL A·75 

• 



• 

PSH Push Data onto Stack PSH 

Operation: .. ACCX, SP. (SP) - $0001 

Description: The contents of ACCX are stored on the stack at the address contained in 
the stack pointer,The stack pointer is then decremented. 

Push instructions are commonly used to save the contents of one or more CPU reg­
isters at the start of a subroutine. Just before returning from the subroutine, corre­
sponding pull instructions are used to restore the saved CPU registers so the subroutine 
will appear not to have affected these registers. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Forms: PSHA; PSHB 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
PSHA IINHI PSHB IINHI 

Addr Data RIW Addr Data RIW 
1 OP 36 1 OP 37 1 
2 OP+l - 1 OP+l - 1 
3 SP (AI 0 SP (81 0 

A-76 M68HC11 REFERENCE MANUAL MOTOROLA 



PSHX 

Operation: 

Push Index Register X onto Stack 

.(lXL), SP • (SP) - $0001 

.(lXH), SP. (SP) - $0001 

PSHX 

Description: The contents of the index register X are pushed onto the stack (low-order 
byte first) at the address contained in the stack pointer. The stack pointer is then 
decremented by two. 

Push instructions are commonly used to save the contents of one or more CPU reg­
isters at the start of a subroutine. Just before returning from the subroutine, corre­
sponding pull instructions are used to restore the saved CPU registers so the subroutine 
will appear not to have affected these registers. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: PSHX 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
PSHXUNHI 

Addr Data RIW 

1 OP 3C 1 
2 OP+1 - 1 
3 SP (lXLI 0 
4 SP-1 (lXH) 0 

MOTOROLA M68HC11 REFERENCE MANUAL A-77 

• 



• 

PSHY Push Index Register V onto Stack PSHY 

Operation: .(lYL), SP. (SP) -$0001 
.(lYH), SP. (SP) - $0001 

Description: The contents of the index register Yare pushed onto the stack (low-order 
byte first) at the address contained in the stack pointer. The stack pointer is then 
decremented by two. 

Push instructions are commonly used to save the contents of one or more CPU reg­
isters at the start of a subroutine. Just before returning from the subroutine, corre­
sponding pull instructions are used to restore the saved CPU registers so the subroutine 
will appear not to have affected these registers. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I -' I 

None affected 

Source Form: PSHY 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
PSHYIINHI 

Addr Data RIW 

1 OP 18 1 
2 OP+1 3C 1 
3 OP+2 - 1 
4 SP IIYL) 0 
5 SP-1 (lYH) 0 

A-78 M68HC11 REFERENCE MANUAL MOTOROLA 



PUL Pull Data from Stack PUL 
Operation: SP. (SP) + $0001, .. (ACCX) 

Description: The stack pointer is incremented. The ACCX is then loaded from the stack 
at the address contained in the stack pointer. 

Push instructions are commonly used to save the contents of one or more CPU reg­
isters at the start of a subroutine. Just before returning from the subroutine, corre­
sponding pull instructions are used to restore the saved CPU registers so the subroutine 
will appear not to have affected these registers. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Forms: PULA; PULB 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
PULAIINH) PULB IINH) 

Addr Data RIW Addr Data RIW 

1 op 32 1 OP 33 1 
2 OP+l - 1 OP+l - 1 
3 SP - 1 SP - 1 
4 SP+l get A 1 SP+l get B 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-79 

• 



• 

PULX Pull Index Register X from Stack PULX 

Operation: SP. (SP) + $0001; .(lXH) 
SP. (SP) + $0001; .(lXL) 

Description: The index register X is pulled from the stack (high-order byte first), begin-
ning at the address contained in the stack pointer plus one. The stack pointer is 
incremented by two in total. 

Push instructions are commonly used to save the contents of one or more CPU reg­
isters at the start of a subroutine. Just before returning from the subroutine, corre­
sponding pull instructions are used to restore the saved CPU registers so the subroutine 
will appear not to have affected these registers. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: PULX 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
PULX(lNHI 

Addr Data RJW 

1 OP 38 1 
2 OP+l - 1 
3 SP - 1 
4 SP+ 1 get IXH 1 
5 SP+2 get IXL 1 

A-SO M&8HC11 REFERENCE MANUAL MOTOROLA 



PULY 
Operation: 

Pull Index Register V from Stack 

SP. (SP)+$0001; .(lYH) 
SP • (SP) + $0001; .(lYL) 

PULY 

Description: The index register Y is pulled from the stack (high-order byte first) begin-
ning at the address contained in the stack pointer plus one. The stack pointer is 
incremented by two in total. 

Push instructions are commonly used to save the contents of one or more CPU reg­
isters at the start of a subroutine. Just before returning from the subroutine, corre­
sponding pull instructions are used to restore the saved CPU registers so the subroutine 
will appear not to have affected these registers. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: PULY 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
PULY (lNH) 

Addr Data RIW 

1 OP 18 1 
2 OP+1 38 1 
3 OP+2 - 1 
4 SP - 1 
5 SP+ 1 get IYH 1 
6 SP+2 get IYL 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-81 

• 



• 

ROL Rotate Left ROL 

Operation: 

Description: Shifts all bits of ACCX or M one place to the left. Bit 0 is loaded from the 
C bit. The C bit is loaded from the most significant bit of ACCX or. M. The rotate 
operations include the carry bit to allow extension of the shift and rotate operations 
to multiple bytes. For example, to shift a 24-bit vaue left one bit, the sequence ASL 
LOW, ROL MID, ROL HIGH could be used where LOW, MID, and HIGH refer to the low­
order, middle, and high-order bytes of the 24-bit value, respectively. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I • • • • 
N R7 

Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $00; cleared otherwise. 

V N EB C = [N • Cl + [N ·Cl (for Nand C after the rotate) 
Set if (N is set and C is clear) or (N is clear and C is set); cleared otherwise (for 
values of Nand C after the rotate). 

C M7 
Set if, before the rotate, the MSB of ACCX or M was set; cleared otherwise. 

Source Forms: ROLA; ROLB; ROL (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
ROLA (lNHI ROLB (lNHI ROL (EXT) ROL (IND. Xl ROL (IND. VI 

Addr Data RIW Addr Data RlW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 49 1 OP 59 1 OP 79 1 OP 69 1 OP 18 1 
2 OP+1 - 1 OP+1 - 1 OP+1 hh 1 OP+1 ff 1 OP+1 69 1 
3 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X +ffl 1 FFFF - 1 
5 FFFF - 1 FFFF - 1 V+ff (V+ffl 1 
6 hhll result 0 X+ff result 0 FFFF - 1 
7 V+ff result 0 

A-82 M68HC11 REFERENCE MANUAL MOTOROLA 



ROR Rotate Right ROR 

Operation: W-+- [b7 - - - - - - bO[~ITJ 

Description: Shift all bits of ACCX or M one place to the right. Bit 7 is loaded from the 
C bit. The C bit is loaded from the least significant bit of ACCX or M. The rotate 
operations include the carry bit to allow extension of the shift and rotate operations 
to mUltiple bytes. For example, to shift a 24-bit value right one bit, the sequence LSR 
HIGH, ROR MID, ROR LOW could be used where LOW, MID, and HIGH refer to the low­
order, middle, and high-order bytes ofthe 24-bit value, respectively. The first LSR could 
be replaced by ASR to maintain the original value of the sign bit (MSB of high-order 
by~e) of the 24-bit value. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I • • • • 
N R7 

Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $00; cleared otherwise. 

V N EB C = [N • C] + [N • C] (for Nand C after the rotate) 
Set if (N is set and C is clear) or (N is clear and C is set); cleared otherwise (for 
values of Nand C after the rotate). 

C MO 
Set if, before the rotate, the LSB of ACCX or M was set; cleared otherwise. 

Source Forms: RORA; RORB; ROR (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
RORA (lNH) RORB (lNH) ROR (EXT) ROR (IND. X) ROR (IND. V) 

Addr Data RIW Addr Data R/W Addr Data R/W Addr Data R/W Addr Data RIW 

1 OP 46 1 OP 56 1 OP 76 1 OP 66 1 OP 18 1 
2 OP+1 - 1 OP+1 - 1 OP+1 hh 1 OP+1 ff 1 OP+1 66 1 
3 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 FFFF - 1 FFFF - 1 Y+ff (Y+ff) 1 
6 hhll result 0 X+ff result 0 FFFF - 1 
7 Y+ff result 0 

MOTOROLA M68HC11 REFERENCE MANUAL A-83 

• 



• 

RTI Return from Interrupt RTI 

Operation: SP. (SP)+$0001, ... (CCR) 
SP. (SP)+$0001, ... (ACCB) 
SP. (SP) + $0001, .. (ACCA) 
SP. (SP) + $0001, ... (lXH) 
SP. (SP) + $0001, ... (lXl) 
SP. (SP)+$0001, ... (lYH) 
SP. (SP) + $0001, ... (lYl) 
SP. (SP)+$0001, ... (PCH) 
SP. (SP)+$0001, ... (PCl) 

Description: The condition code, accumulators B and A, index registers X and Y, and 
the program counter will be restored to a state pulled from the stack. The X bit in the 
CCR may be cleared as a result of an RTI instruction but may not be set if it was 
cleared prior to execution of the RTI instruction. 

Condition Codes and Boolean Formulae: 

S X H 1 N Z V C 

Condition code bits take on the value of the corresponding bit of the unstacked CCR except 
that the X bit may not change from a zero to a one. Software can leave X set, leave X clear, 
or change X from one to zero. The XIRO interrupt mask can only become set as a 'REm 
of a reset or recognition of an XIRO interrupt. 

Source Form: RTI 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
RTII1NHI 

Addr Data RIW 

1 OP 38 1 
2 OP+1 - 1 
3 SP - 1 
4 SP+ 1 get CC 1 
5 SP+2 get 8 1 
6 SP+3 get A 1 
7 SP+4 get IXH 1 
8 SP+5 get IXL 1 
9 SP+6 get IXH 1 

10 SP+ 7 get IXL 1 
11 SP+8 Rtn hi 1 
12 SP+9 Rtn 10 1 

A-84 M68HC11 REFERENCE MANUAL MOTOROLA 



RTS 

Operation: 

Return from Subroutine 

SP. (SP) +$0001, .(PCH) 
SP • (SP) + $0001, .(PCL) 

RTS 

Description: The stack pointer is incremented by one. The contents of the byte of mem-
ory, at the address now contained in the stack pointer, are loaded into the high-order 
eight bits of the program counter. The stack pointer is again incremented by one. The 
contents of the byte of memory, at the address now contained in the stack pointer, 
are loaded into the low-order eight bits of the program counter. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: RTS 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
RTS (lNHI 

Addr Data RIW 

1 op 39 1 
2 OP+l - 1 
3 SP - 1 
4 SP+l Rtn hi 1 
5 SP+2 Rtn 10 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-85 

• 



• 

SBA Subtract Accumulators SBA 

Operation: ACCA • (ACCA) - (ACCB) 

Description: Subtracts the contents of ACCB from the contents of ACCA and places the 
result in ACCA. The contents of ACCB are not affected. For subtract instructions, the 
C bit in the CCR represents a borrow. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I • • • • 
N R7 

Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·R1·RO 
Set if result is $00; cleared otherwise. 

V A7' B7' R7 +A7' B7' R7 
Set if a twos complement overflow resulted from the operation; cleared otherwise. 

C A7· B7 + B7 • R7 + R7 • A7 
Set if the absolute value of ACCB is larger than the absolute value of ACCA; 
cleared otherwise. 

Source Form: SBA 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
SBA(lNH) 

Addr Deta RIW 

1 OP 10 1 
2 OP+1 - 1 

A-S6 M68HC11 REFERENCE MANUAL MOTOROLA 



SBC Subtract with Carry SBC 

Operation: ACCX. (ACCX) - (M) - (C) 

Description: Subtracts the contents of M and the contents of C from the contents of 
ACCX and places the result in ACCX. For subtract instructions the C bit in the CCR 
represents a borrow. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I • • • • 
N R7 

Set if MSB of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $00; cleared otherwise. 

V X7· M7 • R7 + X7 • M7 • R7 
Set if a twos complement overflow resulted from the operation; cleared otherwise. 

C X7· M7 + M7 • R7 + R7 • X7 
Set if the absolute value of the contents of memory plus previous carry is larger 
than the absolute value of the accumulator; cleared otherwise. 

Source Forms: SBCA (opr); SBCB (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
SBCAUMMI SBCA(DIRI SBCA(EXTI SBCAUND,XI SBCAUND, VI 

Addr Data RJW Addr Data RJW Addr Data RJW Addr Data RJW Addr Data RJW 

1 OP 82 1 OP 92 1 OP B2 1 OP A2 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 A2 1 
3 OOdd (OOddl 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ffl 1 FFFF - 1 
5 Y+ff (Y+ff) 1 

Cycle 
SBCBUMMI SBCB (DIRI SBCB (EXTI SBCBUND, XI SBCB UNO, 'VI 

Addr Data RJW Addr Data RJW Addr Data RJW Addr Data RJW Addr Data RJW 

1 OP C2 1 OP 02 1 OP F2 1 OP E2 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 E2 1 
3 OOdd (OOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 Y+ff (Y+ff) 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-87 

• 



SEC Set Carry SEC 
Operation: C bit. 1 

Description: Sets the C bit in the CCR. 

Condition Codes and Boolean Formulae: 

s X H N Z V c 
I - I I 1 

C 1 
Set 

Source Form: SEC 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
SEC (lNHI 

Addr Data RIW 

1 OP 00 1 
2 OP+l - 1 

• 
A-SS M68HC11 REFERENCE MANUAL MOTOROLA 



SEI Set Interrupt Mask SEI 

Operation: 

Description: Sets the interrupt mask bit in the CCR. When the I bit is set, all maskable 
interrupts are inhibited, and the MPU will recognize only non-maskable interrupt sources 
or an SWI. 

Condition Codes and Boolean Formulae: 

s X H N Z V c 
I - I 1 I 

1 
Set 

Source Form: SEI 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
SEIIINH) 

Addr Data RIW 

1 OP OF 1 
2 OP+1 - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-B9 

• 



• 

SEV Set Twos Complement Overflow Bit 

Operation: V bit.1 

Description: Sets the twos complement overflow bit in the CCR. 

Condition Codes and Boolean Formulae: 

S X H 

I - I - I 

V 1 
Set 

Source Form: SEV 

- I 
N z v c 

I 1 I -

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

cycle 
SEVIINHI 

AcIdr Data RIW 

1 01' 08 1 
2 OP+1 - 1 

A-SO _HC11 REFERENCE MANUAL 

SEV 

MOTOROLA 



STA Store Accumulator STA 

Operation: M • (ACCX) 

Description: Stores the contents of ACCX in memory. The contents of ACCX remains 
unchanged. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

1- I • • o I 

N X7 
Set if MSB of result is set; cleared otherwise. 

Z ~·~·~·~·~·~·X1·~ 
Set if resultis $00; cleared otherwise. 

V 0 
Cleared 

Source Forms: STAA (opr); STAB (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
STAAIDIR) STAAIEXT) STAAIIND. X) 

Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 97 1 OP B7 1 OP A7 1 
2 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 
3 OOdd IA) 0 OP+2 II 1 FFFF - 1 
4 hhll (A) 0 X+ff (A) 0 
5 

Cycle 
STABIDIR) STAB (EXT) STAB liND. X) 

Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 07 1 OP F7 1 OP E7 1 
'" 2 OP+1 dd 1 OP+l hh 1 OP+1 ff 1 

3 OOdd (B) 0 OP+2 II 1 FFFF - 1 
4 hhll (B) 0 X+ff (B) 0 
5 

MOTOROLA M68HC11 REFERENCE MANUAL 

STAAIIND. V) 
Addr Data RIW 

OP 18 1 
OP+l A7 1 
OP+2 ff 1 
FFFF - 1 
V+ff (A) 0 

STAB liND. V) 
Addr Data RIW 

OP 18 1 
OP+l E7 1 
OP+2 ff 1 
FFFF - 1 
V+ff (B) 0 

A-91 

• 



• 

STD Store Double Accumulator STD 

Operation: M:M + 1 • (ACCO); M. (ACCA), M + 1 • (ACCS) 

Description: Stores the contents of double accumulator ACCO in memory. The contents 
of ACCO remain unchanged. 

Condition Codes and Boolean Formulae: 

S X H N z v c 

I - I - I • • o I 

N 015 
Set if MSS of result is set; cleared otherwise. 

Z 015 • 014· 013 • 012 • 011 • 010· 09· 08· 07 • 06· 05 • 04· 03 • 02 • 01 • DO 
Set if result is $0000; cleared otherwise. 

v 0 
Cleared 

Source Form: STO (apr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

STD(DIRI STD (EXTI STD (lND,XI 
Cycle 

Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP DO 1 OP FD 1 OP ED 1 
2 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 
3 OOdd (A) 0 OP+2 II 1 FFFF - 1 
4 OOdd+ 1 (B) 0 hhll (A) 0 X+ff (AI 0 
5 hhll+1 (B) 0 X +ff+ 1 (B) 0 
6 

A-92 M68HC11 REFERENCE MANUAL 

STD (lND, VI 

Addr Data RIW 

OP 18 1 
OP+1 ED 1 
OP+2 ff 1 
FFFF - 1 
Y+ff (A) 0 

Y+ff+1 (B) 0 

MOTOROLA 



STOP Stop Processing STOP 

Description: If the S bit in the CCR is set, then the STOP instruction is disabled and 
operates like the NOP instruction. If the S bit in the CCR is clear, the STOP instruction 
causes all system clocks to halt, and the system is placed in a minimum-power standby 
mode. All CPU registers remain unchanged. 1/0 pins also remain unaffected. 

Recovery from STOP may be accomplished by RESET, XIRQ, or an unmasked IRQ. 
When recovering from STOP with XIRQ, if the X bit in the CCR is clear, execution will 
resume with the stacking operations for the XIRQ interrupt. If the X bit in the CCR is 
set, masking XIRQ interrupts, execution will resume with the opcode fetch for the 
instruction which follows the STOP instruction (continue). 

An error in some mask sets of the M68HC11 caused incorrect recover from STOP under 
very specific unusual conditions. If the opcode of the instruction before the STOP 
instruction came from column 4 or 5 of the opcode map, the STOP instruction was 
incorrectly interpreted as a two-byte instruction. A simple way to avoid this potential 
problem is to put a NOP instruction (which is a column 0 opcode) immediately before 
any STOP instruction. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: STOP 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
STOP (lNHI 

Addr Data RIW 

1 OP CF 1 
2 OP+l - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-93 

• 



.. 

STS Store Stack Pointer STS 

Operation: M • (SPH), M + 1 • (SPL) 

Description: Stores the most significant byte of the stack pointer in memory at the 
address specified by the program and stores the least significant byte of the stack 
pointer at the next location in memory, at one plus the address specified by the 
program. 

Condition Codes and Boolean Formulae: 

S X H N z v c 

I - I - I • • o I 
N SP15 

Set if MSB of result is set; cleared otherwise. 

Z SP15· SP14· SP13· SP12· SP11 • SP10· SP9· SP8· 
SP7 • SP6 • SP5 • SP4 • SP3 • SP2 • SP1 • SPO 
Set if result is $0000; cleared otherwise. 

V 0 
Cleared 

Source Form: STS (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
STS (DIR) STS (EXT) STS liND. X) 

Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 9F 1 OP SF 1 OP AF 1 
2 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 
3 OOdd (SPH) 0 OP+2 II 1 FFFF - 1 
4 oodd+ 1 (SPl) 0 hhll (SPH) 0 X+ff (SPH) 0 
5 hhll+ 1 (SPl) 0 X+ff+1 (SPl) 0 
6 

A-94 M68HC11 REFERENCE MANUAL 

STS liND. Y) 

Addr Data RIW 

OP 18 1 
OP+1 AF 1 
OP+2 ff 1 
FFFF - 1 
Y+ff (SPH) 0 

Y+ff+1 (SPl) 0 

MOTOROLA 



STX Store Index Register X STX 

Operation: M • (lXH). M + 1 • (lXL) 

Description: Stores the most significant byte of index register X in memory at the 
address specified by the program and stores the least significant byte of index register 
X at the next location in memory, at one plus the address specified by the program. 

Condition Codes and Boolean Formulae: 

S X H N z v c 

I - I - I • • I 0 

N IX15 
Set if MSB of result is set; cleared otherwise. 

Z IX15 -IX14 -IX13 -IX12 -IX11 -IX10 -IX9 -IX8-
IX7 - IX6 - IX5 - IX4 - IX3 - IX2 - IX1 - IXO 
Set if result is $0000; cleared otherwise. 

V 0 
Cleared 

Source Form: STX (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
STX (DIR) STX (EXT) STX (lND, X) 

Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP DF 1 OP FF 1 OP EF 1 
2 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 
3 OOdd (lXH) 0 OP+2 II 1 FFFF - 1 
4 oodd+1 (lXL) 0 hhll (IXH) 0 X+ff (lXH) 0 
5 hhll+ 1 (IXL) 0 X+ff+1 (lXL) 0 
6 

MOTOROLA M68HC11 REFERENCE MANUAL 

STX (lND, V) 

Addr Data RIW 

OP CD 1 
OP+1 EF 1 
OP+2 ff 1 
FFFF - 1 
Y+ff (lXH) 0 

Y+ff+1 (IXl) 0 

A-95 

• 



• 

STY Store Index Register V STY 

Operation: M • (lYH), M + 1 • (lYL) 

Description: Stores the most significant byte of index register Y in memory at the 
address specified by the program and stores the least significant byte of index register 
Y at the next location in memory, at one plus the address specified by the program. 

Condition Codes and Boolean Formulae: 

S X H N z v c 

I - I - I • • o I 
N IY15 

Set if MSB of result is set; cleared otherwise. 

Z IY15 -IY14 -IY13 -IY12 -IV11 -IY10 -IY9 -IY8-
IY7 - IY6 - IY5 - IY 4 - IY3 - IY2 - Wf - IYO 
Set if result is $0000; cleared otherwise. 

V 0 
Cleared 

Source Form: STY (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

STY (DIR) STY (EXT) STY /IND. X) 
Cycle 

Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 18 1 OP 18 1 OP 1A 1 
2 OP+1 OF 1 OP+1 FF 1 OP+1 EF 1 
3 OP+2 dd 1 OP+2 hh 1 OP+2 ff 1 
4 OOdd /lVH) 0 OP+3 II 1 FFFF - 1 
5 OOdd+ 1 /lYL) 0 hhll (IYH) 0 X+ff /lYH) 0 
6 hhll+1 /lYL) 0 X+ff+1 /lYL) 0 

A-96 M68HC11 REFERENCE MANUAL 

STY/IND. V) 

Addr Data RIW 

OP 18 1 
OP+1 EF 1 
OP+2 ff 1 
FFFF - 1 
Y+ff /lYH) 0 

Y +ff+ 1 /lYL) 0 

MOTOROLA 



SUB Subtract SUB 

Operation: ACCX. (ACCX) - (M) 

Description: Subtracts the contents of M from the contents of ACCX and places the 
result in ACCX. For subtract instructions, the C bit in the CCR represents a borrow. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I • • • • 
N R7 

Set if MSB of result is set; cleared otherwise. 

Z R7-R6-RS-R4-R3-R2-R1-RO 
Set if result is $00; cleared otherwise. 

V X7 - M7 - R7 + X7 - M7 - R7 
Set if a twos complement overflow resulted from the operation; cleared otherwise. 

C X7- M7 + M7 - R7 + R7 - X7 
Set if the absolute value of the contents of memory are larger than the absolute 
value of the contents of the accumulator; cleared otherwise. 

Source Forms: SUBA (opr); SUBB (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
SUBAIIMM) SUBA (DIR) SUBA(EXT) SUBAIIND,X) SUBAIIND, V) 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 80 1 OP 90 1 OP BO 1 OP AO 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 AO 1 
3 OOdd (OOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 Y+ff (Y+ff) 1 

Cycle 
SUBBIIMM) SUBB(DIR) SUBBIEXT) SUBB IIND,X) SUBB liND, V) 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data R/W Addr Data RIW 

1 OP CO 1 OP DO 1 OP FO 1 OP EO 1 OP 18 1 
2 OP+1 ii 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 EO 1 
3 OOdd (OOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhlll 1 X+ff (X+ff) 1 FFFF - 1 
5 Y+ff (Y+ff) 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-97 



• 

SUBD Subtract Double Accumulator SUBD 

Operation: ACCD. (ACCD)-(M:M+1) 

Description: Subtracts the contents of M: M + 1 from the contents of double accumulator 
D and places the result in ACCD. For subtract instructions, the C bit in the CCR rep­
resents a borrow. 

Condition Codes and Boolean Formulae: 

S X H N z v c 

I - I - I • • • • 
N R15 

Set if MSB of result is set; cleared otherwise. 

Z R15·R14·R13·R12·R11·R10·RS·RS·R7·R6·R5·R4·R3·R2·R1·RO 
Set if result is $0000; cleared otherwise. 

V D15·M15·R15+D15·M15·R15 
Set if a twos complement overflow resulted from the operation; cleared otherwise. 

C D15·M15+M15·R15+R15·D15 
Set if the absolute value of the contents of memory is larger than the absolute 
value of the accumulator; cleared otherwise. 

Source Form: SUBD (opr) 

Addressing Modes, Machine Code, andCycle-by-Cycle Execution: 

SUBDUMM) SUBD (DIR) SUBD (EXT) SUBD UNO. X) SUBD UNO. V) 
Cycle 

Add, Data R/W Add, Data R/W Add, Data R/W Addr Data RfW Addr Data R/W 

1 OP 83 1 OP 93 1 OP 63 1 OP A3 1 OP 18 1 
2 OP+1 jj 1 OP+1 dd 1 OP+1 hh 1 OP+1 ff 1 OP+1 A3 1 
3 OP+2 kk 1 OOdd (OOdd) 1 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 FFFF - 1 OOdd+ 1 (OOdd+1) 1 hhll (hhll) 1 X+ff (X+ff) 1 FFFF - 1 
5 FFFF - 1 hhll+1 (hhll+1) 1 X+ff+l (X+ff+1) 1 V+ff (V+ff) 1 
6 FFFF - 1 FFFF - 1 Y+ff+1 (Y+ff+1) 1 
7 FFFF - 1 

A-98 M68HC11 REFERENCE MANUAL MOTOROLA 



SWI 

Operation: 

Software Interrupt 

PC. (PC) +$0001 
... (PCl), SP. (SP) - $0001 
... (PCH), SP. (SP)-$0001 
... (lYl), SP • (SP) - $0001 
... (lYH), SP • (SP) - $0001 
... (lXl), SP • (SP) - $0001 
... (lXH), SP • (SP) - $0001 
... (ACCA), SP. (SP) -$0001 
... (ACCB), SP. (SP) - $0001 
... (CCR), SP • (SP) - $0001 
I • 1, PC • (SWI vector) 

SWI 

Description: The program counter is incremented by one. The program counter, index 
registers Y and X, and accumulators A and B are pushed onto the stack. The CCR is 
then pushed onto the stack. The stack pointer is decremented by one after each byte 
of data is stored on the stack. The I bit in the CCR is then set. The program counter 
is loaded with the address stored at the SWI vector, and instruction execution resumes 
at this location. This instruction is not maskable by the I bit. 

Condition Codes and Boolean Formulae: 

s X H N Z V c 
I 1 

1 
Set 

Source Form: SWI 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
SWlIINH) 

Addr Data RIW 

1 OP 3F 1 
2 OP+1 - 1 
3 SP Rtn 10 0 
4 SP-1 Rtn hi 0 
5 SP-2 (lYL) 0 
6 SP-3 (lYH) 0 
7 SP-4 (lXL) 0 
8 SP-5 (lXH) 0 
9 SP-6 (A) 0 

10 SP-7 (B) 0 
11 SP-8 (eeR) 0 
12 SP-8 (eeR) 1 
13 Vee hi Sve hi 1 
14 Vee 10 Sve 10 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-99 

• 



TAB Transfer from Accumulator A to Accumulator B TAB 
Operation: ACCS • (ACCA) 

Description: Moves the contents of ACCA to ACCS. The former contents of ACCS are 
lost; the contents of ACCA are not affected. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I • • I 0 

N R7 
Set if MSS of result is set; cleared otherwise. 

Z R7·R6·R5·R4·R3·R2·~·RO 
Set if result is $00; cleared otherwise 

V 0 
Cleared 

Source Form: T AS 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
TAB (lNH) 

Addr Data RIW 
1 OP 16 1 
2 OP+1 - 1 

• 
A-100 M68HCll REFERENCE MANUAL MOTOROLA 



TAP 

Operation: 

Transfer from Accumulator A to 
Condition Code Register 

CCR.(ACCA) 

Bit Positions 

7 6 5 432 1 0 

I I I I I I I I I ACCA 

ill l t t ! t 
I slxlHlllNlzlvlcl CCR 

~. ~Carry/BOrrOw 
Overflow (Twos-Complementl 

Zero 

Negative 
L.-____ I Interrupt Mask 

L.-_____ Half Carry 

L.-_______ X Interrupt Mask 

....... -------- Stop Disable 

TAP 

Description: Transfers the contents of bit positions 7-0 of accumulator A to the cor-
responding bit positions of the CCR. The contents of accumulator A remain unchanged. 
The X bit in the CCR may be cleared as a result of a TAP instruction but may not be 
set if it was clear prior to execution of the TAP instruction. 

Condition Codes and Boolean Formulae: 

s X H I N Z V C 

Condition code bits take on the value of the corresponding bit of accumulator A 
except that the X bit may not change from a zero to a one. Software can leave X set, 
leave X clear or change X from one to zero. The XfRO interrupt mask can only become 
set as a result of a 'RESET or recognition of an XfRO interrupt. 

Source Form: TAP 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
TAP IINHI 

Addr Data RIW 

1 OP 06 1 
2 OP+1 - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-l0l 

• 



• 

TBA Transfer from Accumulator B to Accumulator A TBA 
Operation: ACCA. (ACCB) 

Description: Moves the contents of ACCB to ACCA. The former contents of ACCA are 
lost; the contents of ACCB are not affected. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I • • o I 

N R7 
Set if MSB of result is set; cleared otherwise. 

Z R7·RS·R5·R4·R3·R2·R1·RO 
Set if result is $00; cleared otherwise. 

V 0 
Cleared 

Source Form: TBA 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
TBAIINH) 

Addr Data R/W 

1 OP 17 1 
2 OP+1 - 1 

A-102 M68HC11 REFERENCE MANUAL MOTOROLA 



TEST Test Operation 
(Test Mode Only) 

TEST 

Description: This is a single-byte instruction that causes the program counter to be 
continuously incremented. It can only be executed while in the test mode. The MPU 
must be reset to exit this instruction. Code execution is suspended during this instruc­
tion. This is an illegal opcode when not in test mode. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: TEST 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
Addr 

TESTIINHI 

Data RIW 

I OP 00 I 
2 OP+l - I 
3 OP+2 - 1 
4 OP+3 - I 

5-n PREV-l (PREV-11 I 

MOTOROLA MAHCU REFERENCE MANUAL A-103 

II 



• 

TPA 
Operation: 

Transfer from Condition Code Register to 
Accumulator A 

(ACCA) • (CCR) 

Bit Positions 

7 6 543 2 1 0 

I I I I I I I I I 
t t t t t t t t 

ACCA 

I S I X I H I I I N I z I V I C I CCR 

~I LCarrY/BOrrOw 

~ Overflow ITwos-Complement) 

Zero 

Negative 

1...-_____ I Interrupt Mask 

'-------- Half Carry 

'--------- X Interrupt Mask 

'---------- Stop Disable 

TPA 

Description: Transfers the contents of the CCR to corresponding bit positions of ac-
cumulator A. The CCR remains unchanged. 

Condition Codes and Boolean Formulae: 

S X H N Z v c 
I - I - I - I I - I 

None affected 

Source Form: TPA 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
TPA (INH) 

Addr Data RIW 

1 OP 07 1 
2 OP+l - 1 

A-104 M68HC11 REFERENCE MANUAL MOTOROLA 



TST Test TST 

Operation: (ACCX)-$OO or: (M)-$OO 

Description: Subtracts $00 from the contents of ACCX or M and sets the condition codes 
accordingly. 

The subtraction is accomplished internally without modifying either ACCX or M. 

The TST instruction provides only minimum information when testing unsigned val­
ues. Since no unsigned value is less than zero, BLO and BLS have no utility. While 
BHI could be used after TST, it provides exactly the same control as BNE, which is 
preferred. After testing signed values, all signed branches are available. 

Condition Codes and Boolean Formulae: 

s x H N z v c 

I - I • 
N M7 

Set if MSB of result is set; cleared otherwise. 

Z M7·M6·M5·M4·M3·M2·M1·MO 
Set if result is $00; cleared otherwise 

V 0 
Cleared 

C 0 
Cleared 

Source Forms: TSTA; TSTB; TST (opr) 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
TSTA (lNHI TSTB(lNHI TST (EXTI TST (IND. XI TST (IND. VI 

Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW Addr Data RIW 

1 OP 40 1 OP 50 1 OP 70 1 OP 60 1 OP 18 1 
2 OP+1 - 1 OP+1 - 1 OP+1 hh 1 OP+1 ff 1 OP+1 60 1 
3 OP+2 II 1 FFFF - 1 OP+2 ff 1 
4 hhll (hhlll 1 X+ff (X+ffl 1 FFFF - 1 
5 FFFF - 1 FFFF - 1 V+ff (Y+ffl 1 
6 FFFF - 1 FFFF - 1 FFFF - 1 
7 FFFF - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-105 

• 



• 

TSX Transfer from Stack Pointer to Index Register X TSX 

Operation: IX. (SP) +$0001 

Description: Loads the index register X with one plus the contents of the stack pointer. 
The contents of the stack pointer remain unchanged. After a TSX instruction the index 
register X points at the last value that was stored on the stack. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
1 - 1 - 1 -I 

None affected 

Source Form: TSX 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
TSX (lNH) 

Addr Data RIW 

1 OP 30 1 
2 OP+l - 1 
3 SP - 1 

A-106 M68HC11 REFERENCE MANUAL MOTOROLA 



TSV Transfer from Stack Pointer to Index Register V TSV 

Operation: IV • (SP) + $0001 

Description: Loads the index register V with one plus the contents of the stack pointer. 
The contents of the stack pointer remain unchanged. After a TSV instruction the index 
register V points at the last value that was stored on the stack. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: TSV 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
TSVClNH) 

AdcIr Data RIW 

1 OP 18 1 
2 OP+1 30 1 
3 OP+2 - 1 
4 SP - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-107 

• 



TXS Transfer from Index Register X to Stack Pointer TXS 

Operation: SP • (IX) - $0001 

Description: Loads the stack pointer with the contents of the index register X minus 
one. The contents of the index register X remain unchanged. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: TXS 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
TXS (IN H) 

Addr Data RIW 

1 OP 35 1 
2 OP+1 - 1 
3 FFFF - 1 

• 
A-108 M68HC11 REFERENCE MANUAL MOTOROLA 



TYS Transfer from Index Register V to Stack Pointer TYS 
Operation; SP • (IV) - $0001 

Description: Loads the stack pointer with the contents of the index register Y minus 
one. The contents of the index register Y remain unchanged. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: TYS 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
TYSIINH) 

Addr Data RIW 

1 OP 18 1 
2 OP+1 35 1 
3 OP+2 - 1 
4 FFFF - 1 

• 
MOTOROLA M68HC11 REFERENCE MANUAL A-109 



II 

WAI Wait for Interrupt WAI 
Operation; PC. (PC) + $0001 

.(PCl), SP. (SP) - $0001 

.(PCH), SP. (SP) - $0001 

.(lYl), SP • (SP) - $0001 

.(lYH), SP • (SP) - $0001 

.(lXl), SP • (SP) -$0001 
• (lXH), SP • (SP) - $0001 
.(ACCA), SP. (SP)-$O001 
.(ACCB), SP. (SP)-$0001 
.(CCR), SP • (SP) - $0001 

< . 

Description: The program counter is incremented by one. The program counter, index 
registers Y and X, and accumulators A and B are pushed onto the stack. The CCR is 
then pushed onto the stack. The stack pointer is decremented by one after each byte 
of data is stored on the stack. 

The MPU then enters a wait state for an integer number of MPU E-clock cycles. While 
in the wait state, the address/data bus repeatedly runs read bus cycles to the address 
where the CCR contents were stacked. The MPU leaves the wait state when it senses 
any interrupt that has not been masked. ' ' 

Upon leaving the wait state, the MPU sets the I bit in the CCR, fetches the vector 
(address) corresponding to the interrupt sensed. and instruction execution is resumed 
at this location. 

Condition Codes and Boolean Formulae: 

S X H I N Z V C 

1-1-1-1-1-1-1-1 
Although the WAI instruction itself does not alter the condition code bits, the 
interrupt which causes the MCU to resume processing causes the I bit (and the 
X bit if the interrupt was XIRQ) to be set as the interrupt vector is being fetched. 

A-110 M68HC11 REFERENCE MANUAL MOTORqLA 



WAI Wait for Interrupt WAI 

Source Form: WAI 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cyde 
WAIUNH) 

Addr Data, RIW 

1 OP 3E 1 
2 OP+1 - 1 
3 SP Rtn 10 0 
4 SP-1 Rtn hi 0 
5 SP-2 (lYL) 0 
6 SP-3 (lYH) 0 
7 SP-4 (lXL) 0 
8 SP-5 (lXH) 0 
9 SP-6 (A) 0 
10 SP-7 (B) 0 
11 SP-8 (CCR) 0 

12t012+n SP-8 (CCR) 1 
13+n Vec hi Svc hi 1 
14+n Vec 10 Svclo 1 

• 
MOTOROLA M68HC11 REFERENCE MANUAL A-111 



• 

XGDX 

Operation: 

Exchange Doubte Accumulator and 
Index Register X 

(IX)" (ACCD) 

XGDX 

Description: Exchanges the contents of double accumulator ACCD and the contents of 
index register X. A common use for XGDX is to move an index value into the double 
accumulator to allow 16-bit arithmetic calculations on the index value before exchang­
ing the updated index value back into the X index register. 

Condition Code. and Boolean Formulae: 

S X H N z v c 
I - I - I - I - I 

None affected 

Source Form: XGDX 

Addressing Modes. Machine Code. and Cycle-by-Cycle Execution: 

Cycle 
XGDX(INH) 

Addr DatIl R/W 

1 OP 8F 1 
2 OP+l - 1 
3 FFFF - 1 

A-112 M68HC11 REFERENCE MANUAL MOTOROLA 



XGDY 

Operation: 

Exchange Double Accumulator and 
Index Register V 

(IV) .. (ACCD) 

XGDY 

Description: Exchanges the contents of double accumulator ACCD and the contents of 
index register V. A common use for XGDV is to move an index value into the double 
accumulator to allow 16-bit arithmetic calculations on the index value before exchang­
ing the updated index value back into the V index register. 

Condition Codes and Boolean Formulae: 

S X H N z v c 
I - I - I - I 

None affected 

Source Form: XGDV 

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution: 

Cycle 
XGDY(lNHI 

Addr Data RIW 

1 OP 18 1 
2 OP+1 8F 1 
3 OP+2 - 1 
4 FFFF - 1 

MOTOROLA M68HC11 REFERENCE MANUAL A-113 

• 



• 



APPENDIX B 
BOOTLOADER LISTINGS 

This appendix contains source code listings of the internal bootloader ROMs for several 
members of the M68HC11 Family. 

Family 
MC68HC11A8 
MC68HC11A8 
MC68HC811 E2 
MC68HC811E2 
MC68HC11E9 
MC68HC11E9 
MC68HC11F1 

Security Option 
No 
Ves 
No 
Ves 
No 
Ves 
No 

Page 
8-2-8-4 
8-5-8-8 
8-9-8-11 

8-12-8-16 
8-17-8-19 
8-20-8-24 
8-25-8-27 

Listings of other M68HC11 Family bootloader ROMs can be found in application note AN1060 . 

MOTOROl,A M68HC11 REFERENCE MANUAL 8-1 

• 



II 

Liatinq - MC68BC1~8 Bootloadar (No Security) Sheet 1 o~ 3 

0008 
0009 
0028 
002b 
002c 
002d 
002e 
002f 
003b 
003e 
003f 

b600 
b7ff 

b£40 
b£40 

b£40 8e 00 ff 

b£43 ce 10 00 

b£46 1c 28 20 

bfU 86 a2 
b£4b a7 2b 

bUd 86 Oc 
bf4£ a7 2d 

8-2 

* BOOTLOADER FIRMWARE FOR MC68HC11A8 W/O SECURITY 

***************************************************** 
* Thu Dec 11,18:46:19 CST 1986 
***************************************************** 

* EQUATES FOR USE WITH INDEX OFFSET - $1000 

PORTO EQU $08 
DDRD EQU $09 
SPCR EQU $28 (FOR DWOM BIT) 
BAUD EQU $2B 
SCCR1 EQU $2C 
SCCR2 EQU $2D 
SCSR EQU $2E 
SCDAT EQU $2F 
PPROG EQU $3B 
TESTl EQU $3E 
CONFIG EQU $3F 

* MORE EQUATES 
* 
EEPSTR EQU $B600 START OF EEPROM 
EEPEND EQU $B7FF END OF EEPROM 

***************************************************** 
* THIS BOOTSTRAP PROGRAM ALLOWS THE USER TO 
* DOWNLOAD A PROGRAM OF EXACTLY 256 BYTES. 
* THE PROGRAM MUST START AT $0000. 
* EACH BYTE OF THE PROGRAM IS RECEIVED BY THE 
* SCI, STARTING WITH THE $0000 BYTE AND WORKING 
* UP TO THE $OOFF BYTE. 

* * THE TRANSMITTER WILL BE USED FOR THE PURPOSE 
* OF COMMUNICATION TO THE OUTSIDE WORLD. 
***************************************************** 

ORG $BF40 
BEGIN EQU * 

* INIT STACK 
LOS f$OOFF 

* INIT X REG FOR INDEXED ACCESS TO REGISTERS 
LOX #$1000 

* PUT PORT D IN WIRE OR MODE 
BSET SPCR,X $20 

* INIT SCI AND RESTART BAUD DIVIDER CHAIN 
LOU t$A2 DIV BY 16 
STU BAUD, X 

* RECEIVER' TRANSMITTER ENABLED 
LOU f$OC 
STU SCCR2,X 

M68HC11 REFERENCEM4NUAL MOTOROLA 



Listing - HC68HCIIA8 Bootloadar (No Security) Sheet 2 of 3 

bf51 1e 2d 01 

bf54 1e 08 01 fc 
bf58 1d 2d 01 

bf5b 1f 2e 20 fc 
bf5f a6 2f 

bf61 26 03 
bf63 7e b6 00 
bf66 

bf66 81 55 
bf68 27 1e 

bf6a 81 ff 
bf6c 27 03 

bf6e 1e 2b 33 

bf71 
bf71 18 ee 00 00 

bf75 
bf75 1f 2e 20 fc 
bf79 a6 2f 
bf7b 18 a7 00 
bf7e a7 2f 
bf80 18 08 

bf82 18 8e 01 00 
bf86 26 ed 

bf88 
bf88 7e 00 00 

MOTOROLA 

* SECURITY CODE IS REMOVED 

* SEND BREAK TO SIGNAL START OF DOWNLOAD 
BSET SCCR2,X $01 

* CLEAR BREAK AS SOON AS START BIT IS DETECTED 
BRSET PORTD,X $01 * 
BCLR SCCR2,X $01 CLEAR BREAK 

* WAIT FOR FIRST CHARACTER (USERS SEND $FF) 
BRCLR SCSR, X $20 * WAIT FOR RDRF 
LDAA SCDAT,X READ DATA 

* IF DATA - $00 (BREAK OR $00), THEN JUMP TO EEPROM 
BNE NOT ZERO 
JMP $B600 

NOT ZERO EQU * 
* IF DATA - $55, THEN SKIP DOWNLOAD (TEST MODE) 

CMPA 1$55 
BEQ STAR 

* IF DATA - $FF, THEN /16 IS CORRECT BAUD 
CMPA t$FF 
BEQ BAUDOK 

* ELSE CHANGE TO /104 (/13 & /8) 1200 @ 2MHZ 
BSET BAUD,X $33 

* THEN DOWNLOAD 256 BYTE PROGRAM 
BAUDOK EQU * 

LDY 1$0000 INIT POINTER 
* READ IN PROGRAM AND PUT INTO RAM 
BK2 EQU * 

BRCLR SCSR,X $20 * WAIT FOR RDRF 
LDAA SCDAT, X 
STAA $OO,y 
STAA SCDAT,X HANDSHAKE 
INY 

* UNTIL THE END IS REACHED 
CPY 1$0100 
BNE BK2 

***************************************************** 
* ALL START USER'S PROGRAM 

* 
STAR EQU * 

JMP $0000 

M68HC11 REFERENCE MANUAL 8-3 

• 



Li.ting~MC68BC11A8 Bootloadar (No Security) Sheet 3 of 3 

bfd4 ORG $BF04 NEEDED IF BOOTROM < MAX 

* MASK 1. O. BYTE 
bfd4 00 00 FOB $0000 

***************************************************** 
* VECTORS 
* 

bfd6 00 c4 FOB $100-60 SCI 
bfd8 00 c7 FOB $100-57 SPI 
bfda 00 ca FOB $100-54 PULSE ACCUM INPUT EDGE 
bfdc 00 cd FOB $100-51 PULSE ACCUM OVERFLOW 
bfde 00 dO FOB $100-48 TIMER OVERFLOW 
bfeO 00 d3 FOB $100-45 TIMER OUTPUT COMPARE 5 
bfe2 00 d6· FOB $100-42 TIMER OUTPUT COMPARE 4 
bfe4 00 d9 FOB $100-39 TIMER OUTPUT COMPARE 3 
bfe6 00 dc FOB $100-36 TIMER OUTPUT COMPARE 2 
bfe8 00 df FOB $100-33 TIMER OUTPUT COMPARE 1 
bfea 00 e2 FOB $100-30 TIMER INPUT CAPTURE 3 
bfec 00 e5 FOB $100-27 TIMER INPUT CAPTURE 2 
bfee 00 e8 FOB $100-24 TIMER INPUT CAPTURE 1 
bffO 00 eb FOB $100-21 REAL TIME INT 
bff2 00 ee FOB $100-18 IRQ 
bff4 00 fl FOB $100-15 XIRQ 
bff6 00 f4 FOB $100-12 SWI 
bff8 00 f7 FOB $100-9 ILLEGAL OP-COOE 
bffa 00 fa FOB $100-6 COP FAIL 
bffc 00 fd FOB $100-3 CLOCK MONITOR 
bffe bf 40 FOB tBEGIN RESET 

***************************************************** 
* END 
***************************************************** 

II 

8-4 M68HC.11 REFERENCE ~N,UAl MOTOROLA 



Listing - MC68HC11A8 Bootloader (With Security) Sheet 1 of 4 

0008 
0009 
0028 
002b 
002c 
002d 
002e 
002f 
003b 
003e 
003f 

b600 
b7ff 

bf40 

bf40 

bf40 

bf43 

bf46 

bf49 
bf4b 

8e 

ce 

1c 

86 
a7 

bf4d 86 
bf4f a7 

00 

10 

28 

a2 
2b 

Oc 
2d 

MOTOROLA 

ff 

00 

20 

* BOOT LOADER FIRMWARE FOR MC68HC11A8 (with Security) 

***************************************************** 
* Wed Dec 5 16:14:54 CST 1984 
***************************************************** 

* EQUATES FOR USE WITH INDEX OFFSET = $1000 

PORTD EQU $08 
DDRD EQU $09 
SPCR EQU $28 
BAUD EQU $2B 
SCCR1 EQU $2C 
SCCR2 EQU $2D 
SCSR EQU $2E 
SCDAT EQU $2F 
PPROG EQU $3B 
TEST1 EQU $3E 
CONFIG EQU $3F 

* MORE EQUATES 

* 
EEPSTR EQU $B600 
EEPEND EQU $B7FF 

(FOR DWOM BIT) 

START OF EEPROM 
END OF EEPROM 

***************************************************** 
* THIS BOOTSTRAP PROGRAM ALLOWS THE USER TO 
* DOWNLOAD A PROGRAM OF EXACTLY 256 BYTES. 
* THE PROGRAM MUST START AT $0000. 
* EACH BYTE OF THE PROGRAM IS RECEIVED BY THE 
* SCI, STARTING WITH THE $0000 BYTE AND WORKING 
* UP TO THE $OOFF BYTE. 

* 
* THE TRANSMITTER WILL BE USED FOR THE PURPOSE 
* OF COMMUNICATION TO THE OUTSIDE WORLD. 
***************************************************** 

ORG $BF40 

BEGIN EQU * 
* INIT STACK 

LDS I$OOFF 
* INIT X REG FOR INDEXED ACCESS TO REGISTERS 

LDX 1$1000 
* PUT PORT D IN WIRE OR MODE 

BSET SPCR,X $20 
* INIT SCI AND RESTART BAUD DIVIDER CHAIN 

LDAA t$A2 DIV BY 16 
STAA BAUD, X 

* RECEIVER & TRANSMITTER ENABLED 
LDAA t$OC 
STAA SCCR2,x 

M68HC11 REFERENCE MANUAL 8·5 

II 



• 

Listing -MC68RCllA8 Bootloader (With Security) Sheet 2 o~ 4 

bfS1 1e 3f 08 34 

bfSS 
bfSS a6 2e 
bfS7 86 ff 
bfS9 a7 2f 

bfSb e6 06 
bf5d e7 3b 
bfSf f7 b6 00 
bf62 8d Sf 

bf64 1f 3f 01 11 

bf68 18 ee b6 00 
bf6e 
bf6e 18 a1 00 

bf6f 26 e4 
bf7l 18 08 
bf73 18 8e b8 00 
bf77 26 f3 

bf79 

bf79 
bf79 3e 
bf7a ee ff 02 
bf7d 
bf7d a7 fe 
bf7f 08 
bf80 26 fb 
bf82 38 

8-6 

* ~EST THE SECURITY BIT 
BRSET CONFIG,X $08 NOSEC 

***************************************************** 
* WE ARE IN SECURITY MODE 

* OUTPUT $FF ON TRANSMITT~R 
AGAIN EQU * 

LDAA SCSR,X 
LDAA t$FF 
STAA SCDAT,X 

* ERASE EEPROM: 
* SET ERASE AND EELAT BITS BEFORE USING "ERASE" 

LDAB #$06 
STAB PPROG, X 
STAB EEPSTR WRITE ANY EEPROM LOCATION 
BSR ERASE 

* ACCB IS NOW SET FOR $06 

******** 
* ERASE CYCLE IS C~MPLETE 

* IF THE EE IS DISABLED (EEON=O), SKIP EE CHK 
* WE CAN'T CHECK THAT THE EEPROM IS ERASED 

BRCLR CONFIG,X $01 NOEE 
* EEPROM IS ENABLED (EEON-1), 
* NOW CHECK THAT THE EEPROM IS ERASED 

LDY tEEPSTR 
LOOP EQU * 

CMPA 0, Y (A = $FF) 
* ANY UNERASED BYTE SENDS US BACK TO ERASE AGAIN 

BNE AGAIN 

NOEE 

INY 
CPY tEEPEND+l 
BNE LOOP 

EQU * 
***************************************************** 
* WRITE $FF TO ENTIRE RAM (EXCEPT LAST TWO BYTES 
* WHICH ARE USED BY THE STACK) 

ERAM EQU * 
PSHX 
LDX #$FF02 

LOP 1 EQU * 
STAA $FE,X 
INX 
BNE LOP 1 
PULX 

M68HC11 REFERENCE MANUAL MOTOROLA 



Listing - MC68HCllA8 Bootloader (With Security) Sheet 3 of 4 

bf83 

bf83 e7 3b 

bf85 e7 3f 
bf87 8d 3a 

bf89 

bf89 1e 2d 01 

bf8e 1e 08 01 fe 
bf90 1d 2d 01 

bf93 1f 2e 20 fe 
bf97 a6 2f 

bf99 26 03 
bf9b 7e b6 00 
bfge 

bfge 81 55 
bfaO 27 1e 

bfa2 81 ff 
bfa4 27 03 

bfa6 1e 2b 33 

bfa9 
bfa9 18 ee 00 00 

bfad 
bfad 1f 2e 20 fe 
bfb1 a6 2f 
bfb3 18 a7 00 
bfb6 a7 2f 
bfb8 18 08 
bfba 18 8e 01 00 
bfbe 26 ed 

bfeO 
bfeO 7e 00 00 

MOTOROLA 

***********************'****************************** 
* NOW ERASE CONFIG REGISTER 
ECONFG EQU * 
* SET ERASE AND EELAT BITS 

STAB PPROG,X (B STILL = $06) 
* WRITE CONFIG REGISTER, LATCH ADDR FOR ERASURE 

STAB CONFIG,X 
BSR ERASE 

* ERASE CYCLE IS COMPLETE 

***************************************************** 
* NON-SECURITY AND SECURITY MODES MEET HERE 

NOSEC EQU * 
* SEND BREAK TO SIGNAL START OF DOWNLOAD 

BSET SCCR2,X $01 
* CLEAR BREAK AS SOON AS START BIT IS DETECTED 

BRSET PORTD,X $01 * 
BCLR SCCR2,X $01 CLEAR BREAK 

* WAIT FOR FIRST CHARACTER (USERS SEND $FF) 
BRCLR SCSR,X $20 * WAIT FOR RDRF 
LDAA SCDAT,X READ DATA 

* IF DATA = $00 (BREAK OR $00), THEN JUMP TO EEPROM 
BNE NOTZERO 
JMP $B600 

NOTZERO EQU * 
* IF DATA = $55, THEN SKIP DOWNLOAD (TEST MODE) 

CMPA 4$55 
BEQ STAR 

* IF DATA = $FF, THEN /16 IS CORRECT BAUD 
CMPA 4$FF 
BEQ BAUDOK 

* ELSE CHANGE TO /104 (/13 & /8) 1200 @ 2MHZ 
BSET BAUD,X $33 

* THEN DOWNLOAD 256 BYTE PROGRAM 
BAUDOK EQU * 

LDY #$0000 INIT POINTER 
* READ IN PROGRAM AND PUT INTO RAM 
BK2 EQU * 

BRCLR SCSR,X $20 * WAIT FOR RDRF 
LDAA SCDAT,X 
STAA $OO,Y 
STAA 
INY 
CPY 
BNE 

SCDAT,X 

*$0100 
BK2 

HANDSHAKE 

UNTIL THE END IS REACHED 

***************************************************** 
* ALL START USER'S PROGRAM 
STAR EQU * 

JMP $0000 

M68HC11 REFERENCE MANUAL 8-7 

a 



Listing - MC68BCllA8 Bootloader (With Security) Sheet 4 of .. 4 

***************************************************** 
* EEPROM ERASE SUBROUTINE 
* 
* ASSUMES CALLING ROUTINE HAS ALREADY SET ERASE 
* AND EELAT BITS, AS WELL AS ACCESSED CONFIG REG 
* IF THAT IS TO BE ERASED 
* 
* ENTRY X=$1000 
* EXIT X"$1000, Y"$OOOO 

bfe3 ERASE EQU .* 
* SET EEPGM BIT 

bfe3 1e 3b 01 BSET PPROG,X $01 
* 10 MILLISEC DELAY @ 2.1 MHZ 

bfe6 18 ee Ob b8 LOY #3000 
bfea 18 09 BK1 DEY 
bfee 26 fe BNE BK1 

* TURN OFFEEPGM BIT; THEN "ERASE & EELAT" BITS 
bfee 1d 3b 01 BCLR PPROG,X $01 
bfd1 6f 3b CLR PPROG,X 
bfd3 39 RTS 

* MASK I. O. BYTE 
bfd4 00 00 FOB $0000 

***************************************************** 
* VECTORS 

* ORG $BF06 NEEDED IF BOOTROM < MAX 
bfd6 00 e4 FOB $100-60 SC.I 
bfd8 00 e7 FOB $100-57 SPI 
bfda 00 ea FOB $100-54 PULSE ACCUM INPUT EDGE 
bfde 00 cd FOB $100-51 PULSE ACCUM OVERFLOW 
bfde 00 dO FOB $100-48 TIMER OVERFLOW 
bfeO 00 d3 FOB $100-45 TIMER OUTPUT COMPARE 5 
bfe2 00 d6 FOB $100-42 TIMER OUTPUT COMPARE 4 
bfe4 00 d9 FOB $100-39 TIMER OUTPUT COMPARE 3 
bfe6 00 de FOB $100-36 TIMER OUTPUT COMPARE 2 
bfe8 00 df FOB $100-33 TIMER OUTPUT COMPARE 1. 
bfea 00 e2 FOB $100-30 TIMER INPUT CAPTURE 3 
bfee 00 eS . rOB $100-27 TIMER INPUT CAPTURE 2 
bfee 00 e8 FOB $100-24 TIMER INPUT CAPTURE 1 
bffO 00 eb FOB $100-21 REAL TIME INT 
bff2 00 ee FOB $100-18 IRQ 
bff4 00 fl FOB $100-15 XIRQ 
bff6 00 f4 FDB $100-12 SWI 
bff8 00 f7 FOB $100-9 ILLEGAL OP-COOE 

• bffa 00 fa FOB $100-6 COP FAIL 
bffe 00 fd FOB $100-3 CLOCK MONITOR 
bffe bf 40 FOB tBEGIN RESET 

* END 

8-8 M68HC1 1· REFERENCE MANUAL MOTOROLA 



Listing - MC68HC811E2 Bootloader (No Security) Sheet 1 of 3 

0008 
0009 
0028 
002b 
002c 
002d 
002e 
002f 
003b 
003e 
003f 

f800 
ffff 

bf40 

bf40 

bf40 

bf43 

8e 

ce 

00 ff 

10 00 

bf46 1c 28 20 

MOTOROLA 

* BOOT LOADER FIRMWARE FOR 68HC11E2 

***************************************************** 
* Mon Jan 11 16:06:00 CST 1988 
***************************************************** 

* EQUATES FOR USE WITH INDEX OFFSET = $1000 

PORTD 
DDRD 
SPCR 
BAUD 
SCCR1 
SCCR2 
SCSR 
SCDAT 
PPROG 
TEST1 
CONFIG 

* MORE 

* 
EEPSTR 
EEPEND 

EQU $08 
EQU $09 
EQU $28 
EQU $2B 
EQU $2C 
EQU $2D 
EQU $2E 
EQU $2F 
EQU $3B 
EQU $3E 
EQU $3F 

EQUATES 

EQU $F800 
EQU $FFFF 

(FOR DWOM BIT) 

START OF EEPROM 
END OF EEPROM 

***************************************************** 
* THIS BOOTSTRAP PROGRAM ALLOWS THE USER TO 
* DOWNLOAD A PROGRAM OF EXACTLY 256 BYTES. 
* THE PROGRAM MUST START AT $0000. 
* EACH BYTE OF THE PROGRAM IS RECEIVED BY THE 
* SCI, STARTING WITH THE $0000 BYTE AND WORKING 
* UP TO THE $OOFF BYTE. 

* 
* THE TRANSMITTER WILL BE USED FOR THE PURPOSE 
* OF COMMUNICATION TO THE OUTSIDE WORLD. 
******** 
* THIS PROGRAM WAS KEPT AS MUCH THE SAME AS 
* THE 68HC11A8 BOOTLOADER AS POSSIBLE. 
***************************************************** 

ORG $BF40 

BEGIN EQU * 
* INIT STACK 

LDS t$OOFF 
* INIT X REG FOR INDEXED ACCESS TO REGISTERS 

LDX t$1000 

******** 
* PUT PORT D IN WIRE OR MODE 

BSET SPCR,X $20 

M68HC11 REFERENCE MANUAL 8-9 

• 



II 

Listinq - MC68HC811E2 Bootloader (No Security) Sheet 2 of 3 

bf49 86 a2 
bf4b a7 2b 

bf4d 86 00 
bf4f a7 2d 

bf51 10 2d 01 

bf54 Ie 08 01 fo 
bf58 Id 2d 01 

bf5b If 2e 20 fo 
bf5f a6 2f 

bf61 26 03 
bf63 7e f8 00 
bf66 

bf66 81 55 
bf68 27 Ie 

bf6a 81 ff 
bf60 27 03 

bf6e 10 2b 33 

bf7l 
bf71 18 oe 00 00 

bf75 
bf75 If 2e 20 fo 
bf79 a6 2f 
bf7b 18 a7 00 
bf7e a7 2f 
bf80 18 08 

bf82 18 80 01 00 
bf86 26 ed 

bf88 
bf88 7e 00 00 

8-10 

* INIT SCI AND RESTART BAUD DIVIDER CHAIN 
LDAA #$A2 DIV BY 16 
STAA BAUD,X 

* RECEIVER & TRANSMITTER ENABLED 
LDAA f$OC 
STAA SCCR2,x 

******** 
* SEND BREAK TO SIGNAL START OF DOWNLOAD 

BSET SCCR2,X $01 
* CLEAR BREAK AS SOON AS START BIT IS DETECTED 

BRSET PORTD,X $01 * 
BCLR SCCR2,x $01 CLEAR BREAK 

* WAIT FOR FIRST CHARACTER (USERS SEND $FF) 
BRCLR SCSR,X $20 * WAIT FOR RDRF 
LDAA SCDAT,X READ DATA 

* IF DATA = $00 (BREAK OR $00), THEN JUMP TO EEPROM 
BNE NOT ZERO 
JMP EEPSTR 

NOT ZERO EQU * 
* IF DATA = $55, THEN SKIP DOWNLOAD (TEST MODE) 

CMPA #$55 
BEQ STAR 

* IF DATA- $FF, THEN /16 IS CORRECT BAUD 
CMPA #$FF 
BEQ BAUDOK 

* ELSE CHANGE TO /104 (/13 & /8) 1200 @ 2MHZ 
BSET BAUD,X $33 

* THEN DOWNLOAD 256 BYTE PROGRAM 
BAUDOK EQU * 

LDY f$0000 INIT POINTER 
* READ IN PROGRAM AND PUT INTO RAM 
BK2 EQU * 

BRCLR SCSR,X $20 * WAIT FOR RDRF 
LDAA SCDAT,X 
STAA $OO,y 
STAA SCDAT,X HANDSHAKE 
INY 

* UNTIL THE END IS REACHED 
CPY f$0100 
BNE BK2 

***************************************************** 
* ALL START USER'S PROGRAM 
STAR EQU * 

JMP $0000 

M68HC11 REFERENCE MANUAL MOTOROLA 



Liatinq - MC68HC811Z2 Bootloacler (110 Security) Sheet 3 of 3 

bfd4 ORG $BFD4 NEEDED IF BOOTROM < MAX 
***************************************************** 
* MASK 1.D. FOR 'Sl1E2 WITH NO SECURITY 

bfd4 e2 e2 FDB $E2E2 

***************************************************** 
* VECTORS 

* 
bfd6 00 e4 FDB $100-60 SCI 
bfdS 00 e7 FDB $100-57 SPI 
bfda 00 ea FDB $100-54 PULSE ACCUM INPUT EDGE 
bfde 00 cd FDB $100-51 PULSE ACCUM OVERFLOW 
bfde 00 dO FDB $100-48 TIMER OVERFLOW 
bfeO 00 d3 FDB $100-45 TIMER OUTPUT COMPARE 5 
bfe2 00 d6 FOB $100-42 TIMER OUTPUT COMPARE 4 
bfe4 00 d9 FDB $100-39 TIMER OUTPUT COMPARE 3 
bfe6 00 de FDB $100-36 TIMER OUTPUT COMPARE 2 
bfe8 00 df FDB $100-33 TIMER OUTPUT COMPARE 1 
bfea 00 e2 FDB $100-30 TIMER INPUT CAPTURE 3 
bfee 00 e5 FDB $100-27 TIMER INPUT CAPTURE 2 
bfee 00 eS FDB $100-24 TIMER INPUT CAPTURE 1 
bffO 00 eb FDB $100-21 REAL TIME INT 
bff2 00 ee FDB $100-lS IRQ 
bff4 00 f1 FDB $100-15 XIRQ 
bff6 00 f4 FDB $100-12 SWI 
bff8 00 f7 FDB $100-9 ILLEGAL OP-CODE 
bffa 00 fa FDB $100-6 COP FAIL 
bffe 00 fd FDB $100-3 CLOCK MONITOR 
bffe bf 40 FDB $BF40 RESET 

* END 

II 

MOTOROLA M68HC11 REFERENCE MANUAL B-11 



II 

Listing - MC68BC811E2 Bootloacler (With Security) Sheet 1 of 5 

0008 
0009 
0028 
002b 
002c 
002d 
002e 
002f 
0035 
003b 
003e 
003f 

f800 
ffff 

bf40 

bf40 

bf40 8e 00 ff 

bf43 ce 10 00 

bf46 1c 28 20 

8-12 

* BOOT LOADER FIRMWARE FOR 68HC11E2 - SECURED VERSION 

***************************************************** 
* Tue Oct 25 11:38:07 COT 1988 
***************************************************** 

* EQUATES FOR USE WITH INDEX OFFSET - $1000 

PORTO EQU $08 
DDRD EQU $09 
SPCR EQU $28 (FOR DWOM BIT) 
BAUD EQU $2B 
SCCR1 EQU $2C 
SCCR2 EQU $20 
SCSR EQU $2E 
SCDAT EQU $2F 
BPROT EQU $35 
PPROG EQU $3B 
TEST1 EQU $3E 
CONFIG EQU $3F 

* MORE EQUATES 
* 
EEPSTR EQU $F800 START OF EEPROM 
EEPEND EQU $FFFF END OF EEPROM 

****************************************************. 
* THIS BOOTSTRAP PROGRAM ALLOWS THE USER TO 
* DOWNLOAD A PROGRAM OF EXACTLY 256 BYTES. 
* THE PROGRAM MUST START AT $0000. 
* EACH BYTE OF THE PROGRAM IS RECEIVED BY THE 
* SCI, STARTING WITH THE $0000 BYTE AND WORKING 
* UP TO THE $OOFF BYTE. 

* 
* THE TRANSMITTER WILL.BE USED FOR THE PURPOSE 
* OF COMMUNICATION TO THE OUTSIDE WORLD. 
******** 
* THIS PROGRAM WAS KEPT AS MUCH THE SAME AS 
* THE 68HC11A8 BOOT LOADER AS POSSIBLE. 
***************************************************** 

ORG $BF40 

BEGIN EQU * 
* INIT STACK 

LDS #$OOFF 
* INIT X REG FOR INDEXED ACCESS TO REGISTERS 

LDX #$1000 

* PUT PORT 0 IN WIRE OR MODE 
BSET SPCR,lI. $20 

M68HC11 REFERENCE MANUAL MOTOROLA 



Liatift9 - HC68BC811Z2 Bootloader (With Security) Sheet 2 of 5 

bf49 86 a2 
bf4b a7 2b 

bf4d 86 Oe 
bf4f a7 2d 

bf51 le 3f 08 36 

bf55 
bf55 a6 2e 
btS7 86 ff 
bf59 a7 2f 

bf5b 6f 35 

bf5d e6 06 
bf5f e7 3b 
bf61 f7 f8 00 
bf64 8d Sf 

bf66 If 3f 01 11 

bf6a 18 ee f8 00 
bf6e 
bf6e 18 al 00 

bf7l 26 e2 
bf73 18 08 
bf75 18 8e 00 00 
bf79 26 f3 
bf7b 

MOTOROLA 

* INIT SCI AND RESTART BAUD DIVIDER CHAIN 
LDAA '$A2 DIV BY 16 
STAA BAUD,X 

* RECEIVER , TRANSMITTER ENABLED 
LDAA f$OC 
STAA SCCR2,X 

* TEST THE SECURITY BIT 
BRSET CONFIG,X $08 NOSEC 

***************************************************** 
* WE ARE IN SECURITY MODE 
* OUTPUT $FF ON TRANSMITTER 
AGAIN EQU * 

LDAA SCSR,X 
LDAA f$FF 
STAA SCDAT, X 

* ERASE EEPROM: 
* TURN OFF BLOCK PROTECT 

CLR BPROT,X 
* SET ERASE AND EELAT BITS BEFORE USING "ERASE" 

LDAB 1$06 
STAB PPROG,X 
STAB EEPSTR WRITE EEPROM LOCATION 
BSR ERASE 

* ACCB IS NOW SET FOR $06 
******** 
* ERASE CYCLE IS COMPLETE 

* 
* IF THE EEPROM IS NOT ENABLED 
* WE CAN'T CHECK THAT THE EEPROM IS ERASED 

BRCLR CONFIG,X $01 NOEE 
* EEPROM is ON, 
* NOW CHECK THAT THE EEPROM IS ERASED 

LDY 'EEPSTR 
LOOP EQU * 

CMPA 0, Y (A - $FF) 
* ANY UNERASED BYTE SENDS US BACK TO ERASE AGAIN 

BNE AGAIN 
INY 
CPY 'EEPEND+l 
BNE LOOP 

NOEE EQU * 

M68HC11 REFERENCE MANUAL 8-13 



II 

Listing - MC68BC811B2 Bootloader (With Security) She.t 3 o~ 5 

bf7b 
bf7b 3c 
bf7c ce ff 02 
bf7f 
bf7f a7 fe 
bfSl OS 
bfS2 26 fb 
bfS4 3S 

bfS5 

bfS5 e7 3b 

bfS7 e7 3f 
bfS9 Sd 3a 

bfSb 

bf8b 1c 2d 01 

bfSe le OS 01 fc 
bf92 1d 2d 01 

bf95 1f 2e 20 fc 
bf99 a6 2f 

bUb 26 03 
bUd 7e fS 00 
bfaO 

bfaO Sl 55 
bfa2 27 le 

8-14 

***************************************************** 
* WRITE $FF TO ENTIRE RAM (EXCEPT LAST TWO BYTES 
* WHICH ARE USED BY THE STACK) 

ERAM EQU * 
PSHX 
LDX I$FF02 

LOP 1 EQU * 
STAA $FE,X 
INX 
BNE LOP 1 
PULX 

***************************************************** 
* NOW ERASE CONFIG REGISTER 

ECONFG EQU * 
* SET ERASE AND EELAT BITS 

STAB PPROG,X (B STILL - $06) 
* WRITE CONFIG REGISTER LATCH IT FOR ERASURE 

STAB CONFIG,X 
BSR ERASE 

* ERASE CYCLE IS COMPLETE 

***************************************************** 
* NON-SECURITY AND SECURITY MODES MEET HERE 

* 
NOSEC EQU * 
* SEND BREAK TO SIGNAL START OF DOWNLOAD 

BSET SCCR2,X $01 
* CLEAR BREAK AS SOON AS START BIT IS DETECTED 

BRSET PORTD,X $01 * 
BCLR SCCR2,X $01 CLEAR BREAK 

* WAIT FOR FIRST CHARACTER (USERS SEND $FF) 
BRCLR SCSR,X $20 * WAIT FOR RDRF 
LDAA SCDAT, X READ DATA 

* IF DATA - $00 (BREAK OR $00), THEN JUMP TO EEPROM 
BNE NOT ZERO 
JMP EEPSTR 

NOTZERO EQU * 
* IF DATA - $55, THEN SKIP DOWNLOAD (TEST MODE) 

CMPA 1$55 
BEQ STAR 

M68HC11 REFERENCE MANUAL MOTOROLA 



Lhtift9 - IIC68BC811J:2 Bootloader (WitJl Security) Suet" of 5 

bfa4 81 ff 
bfa6 27 03 

bfa8 1e 2b 33 

bfab 
bfab 18 ee 00 00 

bfaf 
bfaf 1f 2e 20 fe 
bfb3 a6 2f 
bfbS 18 a7 00 
bfb8 a7 2f 
bfba 18 08 

bfbe 18 8e 01 00 
bfeO 26 ed 

bfe2 
bfe2 7e 00 00 

bfeS 

bfeS 1e 3b 01 

bfe8 18 ee Ob b8 
bfee 18 09 
bfee 26 fe 

bfdO 6£ 3b 
bfd2 39 

MOTOROLA 

* IF DATA - $FF, THEN /16 IS CORRECT BAUD 
CMPA I$FF 
BEQ BAUDOK 

* ELSE CHANGE TO /104 (/13 , /8) 1200 @ 2MHZ 
BSET BAUD,X $33 

* THEN DOWNLOAD 256 BYTE PROGRAM 
BAUDOK EQU * 

LDY 1$0000 INIT POINTER 
* READ IN PROGRAM AND PUT INTO RAM 
BK2 EQU * 

BRCLR SCSR,X $20 * WAIT FOR RDRF 
LDAA SCDAT,X 
STAA $00, Y 
STAA SCDAT,X HANDSHAKE 
INY 

* UNTIL THE END IS REACHED 
CPY 1$0100 
BNE BK2 

***************************************************** 
* ALL START USER'S PROGRAM 
STAR EQU * 

JMP $0000 

***************************************************** 
* EEPROM ERASE SUBROUTINE 

* 
* ASSUMES CALLING ROUTINE HAS ALREADY SET ERASE 
* AND EELAT BITS, AS WELL AS ACCESSED CONFIG REG 
* IF THAT IS TO BE ERASED 

* 
* ENTRY X-$1000 
* EXIT X-$1000, Y-$OOOO 

ERASE EQU * 
* SET EEPGM BIT 

BSET PPROG,X $01 
* 10 MILLISEC DELAY @ 2.1 MHZ 

LDY .3000 
BK1 DEY 

BNE BK1 
* TURN OFF EEPGM, ERASE AND EELAT BITS 

CLR PPROG,X 
RTS 

M68HC11 REFERENCE MANUAL 8-15 

II 



II 

Listing - 1IC68BC811B2 Bootloade~ (With Security) Sheet 5 o~ 5 

bfd4 

bfd4 e2 5e 

bfd6 00 e4 
bfd8 00 e7 
bfda 00 ea 
bfde 00 cd 
bfde 00 dO 
bfeO 00 d3 
bfe2 00 d6 
bfe4 00 d9 
bfe6 00 de 
bfe8 00 df 
bfea 00 e2 
bfee 00 e5 
bfee 00 e8 
bffO 00 eb 
bff2 00 ee 
bff4 00 fl 
bff6 00 f4 
bff8 00 f7 
bffa 00 fa 
bffe 00 fd 
bffe bf 40 

8-16 

ORG $BF04 NEEDED IF BOOT ROM < MAX 
********* •• ****************************************** 
* MASK 1.0. FOR '811E2 WITH SECURITY 

FOB $E25C e5C - SC FOR SECURITY) 

***************************************************** 
* VECTORS 

* END 

FOB $100-60 
FOB $100-57 
FOB $100-54 
FOB $100-51 
FOB $100-48 
FOB $100-45 
FOB $100-42 
FOB $100-39 
FOB $100-36 
FOB $100-33 
FOB $100-30 
FOB $100-27 
FOB $100-24 
FOB $100-21 
FOB $100-18 
FOB $100-15 
FOB $100-12 
FOB $100-9 
FOB $100-6 
FOB $100-3 
FOB $BF40 

SCI 
SPI 
PULSE ACCUM INPUT EDGE 
PULSE ACCUM OVERFLOW 
TIMER OVERFLOW 
TIMER OUTPUT COMPARE 5 
TIMER OUTPUT COMPARE 4 
TIMER OUTPUT COMPARE 3 
TIMER OUTPUT COMPARE 2 
TIMER OUTPUT COMPARE 1 
TIMER INPUT CAPTURE 3 
TIMER INPUT CAPTURE 2 
TIMER INPUT CAPTURE 1 
REAL TIME INT 
IRQ 
XIRQ 
SWI 
ILLEGAL OP-CODE 
COP FAIL 
CLOCK MONITOR 
RESET 

M68HC11 REfERENCE MANUAL MOTOROLA 



Li8t1A9 - HC68BCllB9 Bootloader (Ro Security) Sheet 1 of 3 

0008 
0009 
0016 
0028 
002b 
002c 
002d 
002e 
002f 
003b 
003e 
003f 

b600 
b7ff 

0000 
01ff 

OdbO 
021b 

MOTOROLA 

* BOOTLOADER FIRHNARE FOR 68HCllE9 - NO SECURITY 

***************************************************** 
* Tue Jan 12 17:08:00 CST 1988 
***************************************************** 

***************************************************** 
* THIS NEW VERSION ALLOWS VARIABLE LENGTH DOWNLOAD 
* BY QUITTING RECEPTION OF CHARACTERS WHEN AN IDLE 
* OF AT LEAST FOUR WORD TIMES OCCURS 
***************************************************** 

* EQUATES FOR USE WITH INDEX OFFSET - $1000 

PORTD EQU $08 
DDRD EQU $09 
TOCl EQU $16 [EXTRA STORAGE (POOR STYLE)] 
SPCR EQU $28 (FOR DWOM BIT) 
BAUD EQU $2B 
SCCRl EQU $2C 
SCCR2 EQU $2D 
SCSR EQU $2E 
SCDAT EQU $2F 
PPROG EQU $3B 
TESTl EQU $3E 
CONFIG EQU $3F 

* MORE EQUATES 
* 
EEPSTR EQU $B6oo START OF EEPROM 
EEPEND EQU $B7FF END OF EEPROM 

RAMSTR EQU $0000 
RAMEND EQU $OlFF 

DELAYS EQU 3504 DELAY AT SLOW BAUD 
DELAYF EQU 539 DELAY AT FAST BAUD 

***************************************************** 
* THIS BOOTSTRAP PROGRAM ALLOWS THE USER TO 
* DOWNLOAD A PROGRAM OF 0 - 512 BYTES. 
* THE PROGRAM MUST START AT $0000. 
* EACH BYTE OF THE PROGRAM IS RECEIVED BY THE SCI. 
* THE FIRST BYTE ESTABLISHES BAUD RATE. 
* THEN THE PROGRAM IS DOWNLOADED STARTING WITH 
* THE $0000 BYTE AND WORKING UP TOWARD THE $OlFF 
* A DELAY OF FOUR WORD TIMES (AT EITHER BAUD RATE) 
* CAUSES THE RECEPTION OF CHARACTERS TO STOP AND 
* A JUMP TO $0000. 

* * THE TRANSMITTER WILL BE USED FOR THE PURPOSE 
* OF COMMUNICATION TO THE OUTSIDE WORLD. 
***************************************************** 

M68HC11 REFERENCE MANUAL 8-17 



Listing - MC68HCllE9 Bootloader (No Security) Sheet 2 of 3 

bf40 ORG $BF40 

bf40 BEGIN EQU * 
* INIT STACK 

bf40 8e 01 ff LOS #RAMEND 
* INIT X REG FOR INDEXED ACCESS TO REGISTERS 

bf43 ce 10 00 LOX #$1000 
* PUT PORT 0 IN WIRE OR MODE 

bf46 1c 28 20 BSET SPCR,X $20 
* INIT SCI AND RESTART BAUD DIVIDER CHAIN 

bf49 cc a2 Oc LDD #$A20C DIV BY 16 
bf4c a7 2b STAA BAUD, X 

* RECEIVER & TRANSMITTER ENABLED 
bf4e e7 2d STAB SCCR2,X 

* SET UP DELAY FOR FASTEST BAUD RATE 
bfSO cc 02 1b LDD #DELAYF 
bfS3 ed 16 STD TOC1,X 

* SEND BREAK TO SIGNAL START OF DOWNLOAD 
bfSS 1c 2d 01 BSET SCCR2,x $01 

* CLEAR BREAK AS SOON AS START BIT IS DETECTED 
bfS8 1e 08 01 fc BRSET PORTD,X $01 * 
bfSc 1d 2d 01 BCLR SCCR2,X $01 CLEAR BREAK 

* WAIT FOR FIRST CHARACTER (USERS SEND $FF) 
bfSf 1f 2e 20 fc BRCLR SCSR,X $20 * WAIT FOR RDRF 
bf63 a6 2f LDAA SCDAT,X READ DATA 

* IF DATA = $00 (BREAK OR $00), THEN JUMP TO EEPROM 
bf6S 26 03 BNE NOT ZERO 
bf67 7e b6 00 JMP EEPSTR 
bf6a NOTZERO EQU * 

* IF DATA = $FF, THEN /16 IS CORRECT BAUD 
bf6a 81 ff CMPA #$FF 
bf6c 27 08 BEQ BAUDOK 

* ELSE CHANGE TO /104 (/13 & /8) 1200 @ 2MHZ 
bf6e 1c 2b 33 BSET BAUD,X $33 

* SET UP DELAY FOR SLOWER BAUD RATE 
bf71 cc Od bO LDD #DELAYS 
bf74 ed 16 STD TOC1,X 

bf76 BAUDOK EQU * 
bf76 18 ce 00 00 LOY #RAMSTR POINTER TO START OF RAM 

II 

8-18 M68HC11 REFERENCE MANUAL MOTOROLA 



Listing - MC68BCllE9 Bootloadar (No Security) Sheet 3 of 3 

bf7a ee 16 
bf7e 1e 2e 20 07 
bf80 8f 
bf81 09 
bf82 8f 
bf83 26 f7 
bf85 20 Of 

bf87 a6 2f 
bf89 18 a7 00 
bf8e a7 2f 
bf8e 18 08 
bf90 18 8e 02 00 
bf94 26 e4 

bf96 
bf96 7e 00 00 

bfd2 

bfd2 00 00 
bfd4 e9 e9 

bfd6 00 e4 
bfd8 00 e7 
bfda 00 ea 
bfde 00 cd 
bfde 00 dO 
bfeO 00 d3 
bfe2 00 d6 
bfe4 00 d9 
bfe6 00 de 
bfe8 00 df 
bfea 00 e2 
bfee 00 e5 
bfee 00 e8 
bffO 00 eb 
bff2 00 ee 
bff4 00 f1 
bff6 00 f4 
bff8 00 f7 
bffa 00 fa 
bffe 00 fd 
bffe bf 40 

MOTOROLA 

* TIME EACH BYTE 
WAIT LDO TOC1,X PUT OELAY TIME IN ACCO 
WTLOOP BRSET SCSR,X $20NEWONE 

XGOX 
OEX 
XGOX 
BNE WTLOOP 
BRA STAR 

OELAY INTO X 
OECREMENT OELAY 
RETURN OELAY TO ACCO 

010 NOT TIME OUT 
* READ IN BYTE AND PUT INTO RAM 
NEWONE LDAA SCOAT,X 

STAA $OO,Y 
STAA SCOAT,X 
INY 
CPY fRAMEND+1 
BNE WAIT 

HANDSHAKE 

***************************************************** 
* ALL START USER'S PROGRAM 
STAR EQU * 

JMP RAMSTR 

ORG $BF02 
***************************************************** 
* MASK 1.0. f 

FOB $0000 
FOB $E9E9 E9 1.0. 

***************************************************** 
* VECTORS 

* 

* END 

FOB 
FOB 
FOB 
FOB 
FOB 
FOB 
FOB 
FOB 
FOB 
FOB 
FOB 
FOB 
FOB 
FOB 
FOB 
FOB 
FOB 
FOB 
FOB 
FOB 
FOB 

$100-60 
$100-57 
$100-54 
$100-51 
$100-48 
$100-45 
$100-42 
$100-39 
$100-36 
$100-33 
$100-30 
$100-27 
$100-24 
$100-21 
$100-18 
$100-15 
$100-12 
$100-9 
$100-6 
$100-3 
fBEGIN 

SCI 
SPI 
PULSE ACCUM INPUT EOGE 
PULSE ACCUM OVERFLOW 
TIMER OVERFLOW 
TIMER OUTPUT COMPARE 5 
TIMER OUTPUT COMPARE 4 
TIMER OUTPUT COMPARE 3 
TIMER OUTPUT COMPARE 2 
TIMER OUTPUT COMPARE 1 
TIMER INPUT CAPTURE 3 
TIMER INPUT CAPTURE 2 
TIMER INPUT CAPTURE 1 
REAL TIME INT 
IRQ 
XIRQ 
SWI 
ILLEGAL OP-COOE 
COP FAIL 
CLOCK MONITOR 
RESET 

M68HC11 REFERENCE MANUAL 8-19 



II 

Listinq - HC68BCllB9 Bootloader Ofith Security) Sheet 1 of 5 

0008 
0009 
0016 
0028 
002b 
002c 
002d 
002e 

·002f 
0035 
003b 
003e 
003f 

b600 
b7ff 

0000 
01ff 

OdbO 
021b 

8-20 

* BOOTLOADER FIRMWARE FOR 68HC11E9 - SE~ VERSION 

***************************************************** 
* Tue Oct 25 16:38:50 COT 1988 
***************************************************** 

***************************************************** 
* THIS NEW VERSION ALLOWS VARIABLE LENGTH DOWNLOAD 
* BY QUITTING RECEPTION OF CHARACTERS WHEN AN IDLE 
* OF AT LEAST FOUR WORD TIMES OCCURS 
***************************************************** 

* EQUATES FOR USE WITH INDEX OFFSET - $1000 

PORTD EQU 
DDRD EQU 
TOC1 EgU 
SPCR EQU 
BAUD EQU 
SCCR1 EQU 
SCCR2 EQU 
SCSR EQU 
SCDAT EQU 
BPROT EQU 
PPROG EQU 
TEST1 EgU 
CONFIG EQU 

* MORE EQUATES 

* 
EEPSTR EQU 
EEPEND EQU 
RAMSTR EQU 
RAMEND EQU 

DELAYS EQU 
DELAY!' EQU 

$08 
$09 
$16 
$28 
$2B 
$2C 
$2D 
$2E 
$21' 
$35 
$3B 
$3E 
$31' 

$B600 
$B7FF 

$0000 
$011'1' 

3504 
539 

[EXTRA STORAGE (POOR STYLE)] 
(FOR DWOM BIT) 

START OF EEPROM 
END OF EEPROM 

DELAY AT SLOW BAUD 
DELAY AT FAST BAUD 

***************************************************** 
* THIS BOOTSTRAP PROGRAM ALLOWS THE USER TO 
* DOWNLOAD A PROGRAM OF 0 - 512 BYTES. 
* THE PROGRAM MUST START AT $0000. 
* EACH BYTE OF THE PROGRAM IS RECEIVED BY THE SCI. 
* THE FIRST BYTE ESTABLISHES BAUD RATE. 
* THEN THE PROGRAM IS DOWNLOADED STARTING WITH 
* THE $0000 BYTE AND WORKING UP TOWARD THE $OlFF 
* A DELAY OF FOUR WORD TIMES (AT EITHER BAUD RATE) 
* CAUSES THE RECEPTION OF CHARACTERS TO STOP AND 
* A JUMP TO $0000. 

* * SCI TRANSMITTER USED TO ECHO TO OUTSIDE WORLD 
***************************************************** 

M68HC11 REFERENCE MANUAL MOTOROLA 



Liatinq - HC68HCllB9 Bootloader (With Security) Sheet 2 o~ 5 

bf40 

bf40 

bf40 8e 01 ff 

bf43 ee 10 00 

bf46 1e 28 20 

bf49 ee a2 Oe 
bf4e a7 2b 

bf4e e7 2d 

bf50 1e 3f 08 35 

bf54 
bf54 a6 2e 
bf56 86 ff 
bf58 a7 2f 

bf5a 6f 35 

bf5e 54 
bf5d e7 3b 
bf5f f7 b6 00 
bf62 8d 72 

bf64 If 3f 01 11 

bf68 18 ee b6 00 
bf6e 
bf6e 18 a1 00 

bf6f 26 e3 
bf7l 18 08 
bf73 18 8e b8 00 
bf77 26 f3 

MOTOROLA 

ORG $aF40 

aEGIN EQU * 
* INIT STACK 

LDS t$OlFF 
* INIT X REG FOR INDEXED ACCESS TO REGISTERS 

LDX 1$1000 
* PUT PORT D IN WIRE OR MODE 

BSET SPCR,X $20 
* INIT SCI AND RESTART BAUD DIVIDER CHAIN 

LDD t$A20C DIV BY 16 
STAA BAUD, X 

* RECEIVER & TRANSMITTER ENABLED 
STAB SCCR2,X 

* TEST THE SECURITY BIT 
BRSET CONFIG,X $08 NOSEC 

***************************************************** 
* WE ARE IN SECURITY MODE 
* OUTPUT $FF ON TRANSMITTER 
AGAIN EQU * 

LDAA SCSR,X 
LDAA t$FF 
STAA SCDAT, X 

* ACCA NOW IS SET FOR $FF 

* ERASE EEPROM: 
* TURN OFF BLOCK PROTECT 

CLR BPROT,X 
* SET ERASE AND EELAT BITS BEFORE USING "ERASE" 

LSRB CHANGE SOC TO $06 
STAB PPROG, X 
STAB EEPSTR WRITE EEPROM LOCATION 
BSR ERASE 

* ACCB IS NOW SET FOR $06 
* ERASE CYCLE IS COMPLETE 

* IF THE EEPROM IS NOT ENABLED, 
* WE CAN'T CHECK THAT THE EEPROM IS ERASED 

BRCLR CONFIG,X $01 NOEE 
* EEPROM IS ON, 
* NOW CHECK THAT THE EEPROM IS ERASED 

LDY tEEPSTR 
LOOP EQU * 

CMPA 0, Y (A - $FF) 
* ANY UNERASED BYTE SENDS US BACK TO ERASE AGAIN 

BHE AGAIN 
INY 
CPY tEEPEND+1 
BHE LOOP 

M68HC11 REFERENCE MANUAL 8-21 

II 



II 

Li.tug - IlellBeU •• Bootl __ zo (1fltJa8ecuzolty) 8Met 3 of 5 

bf79 

bf79 
bf79 3c 
bf7. c. 01 
bf7d 
bf7d .7 00 
bf7f 09 
bf80 26 fb 
bf82 38 

bf83 

bf83 .7 3b 

bUS .7 3f 
bf87 8d 4d 

bf89 

fd 

bU9 co 02 lb 
bf8c .d 16 

bU. lc 2d 01 

bf91 1. 08 01 
bUS ld2d 01 

bU8 If 2. 20 
bUo a6 2f 

bU. 26 03 
bfaO 7. b6 00 
bfa3 

bfa3 81 ff 
bfaS 27 08 

8-22 

fc 

fo 

NOBB BQU * 
***************************************************** 
* WRIT!: OVER ENTIRE RAM, BXCEPT LAST TWO 8YTBS WHICH 
* ARB USED BY THE STACK 5 $0000 WHICH IS LEFT INTACT 
BRAM BQU * 

PSHX 
LDX '1WIBND-2 

LOP 1 BOU * 
STU $OO,X 
DBX 
BNB LOP 1 
PULX 

***************************************************** 
* NOW BRASB CONFIG REGISTBR 
BCONFG EgU * 
* SBT BRASB AND BBLAT BITS 

STAB PPROG,X (8 STILL - $06) 
* WRITE CONFIG REGISTBR LATCH IT FOR BRASURE 

STAB CONFIG,X 
BSR BRASB 

* BRASE CYCLE IS COMPLETB 

***************************************************** 
* NON-SECURITY AND SBCURITY MODBS MEBT HERB 

* 
NOSBC BgU * 
* SET UP DBLAY FOR FASTBST BAUD RATS 

LDD 'DSLAYF 
STD TOC1,X 

* SEND 8RBAIt TO SIGNAL START OF DOWNLOAD 
BSST SCCR2,X $01 

* CLEAR BREAK AS SOON AS START BIT IS DS'l'BC'l'BD 
BRSST PORTD,X $01 * 
8CLR SCCR2, X $01 CLEAR 8RBAIt 

* WAIT FOR FIRST CHARACTER (USERS SEND $FF) 
BRCLR SCSR, X $20 * WAIT FOR IU)RF 
LDU SCDAT,X READ DATA 

* IF DATA - $00 (BREAK OR $00), THEN JUMP TO .. PROM 
an NOTZSRo 
JMP DPSTR 

NOTZBRO SOU * 
* IF DATA - $FF, THEN /16 IS CORRECT BAUD 

OIPA f$FF 
BEg BAUDOIt 

Ml8HC11 REFERENCE MANUAL MOTOROLA 



L1atiDq - HC68BCllB' Bootloade~ (With S.cu~1ty) Sheet 4 of 5 

bfa7 1e 2b 33 

bfaa ee Od bO 
bfad ad 16 
bfaf 
bfaf 18 ee 00 00 

bfb3 ee 16 
bfbS 1e 2e 20 07 
bfb9 8f 
bfba 09 
bfbb 8f 
bfbc 26 f7 
bfbe 20 Of 
bfeO 

bfeO a6 2f 
bfe2 18 a7 00 
bfeS a7 2f 
bfe7 18 08 
bfe9 18 8e 02 00 
bfed 26 e4 

bfef 
bfef 7e 00 00 

bfd2 

bfd2 00 00 
bfd4 e9 Se 

bfd6 
bfd6 1e 3b 01 

bfd9 18 ee Ob b8 
bfdd 18 09 
bfdf 26 fe 
bfe1 6f 3b 
bfe3 39 

MOTOROLA 

* ELSE CHANGE TO /104 (/13 , /8) 1200 @ 2MHZ 
BSET BAUD,X $33 

* SET UP DELAY FOR SLOWER BAUD RATE 
LDD 'DELAYS 
STD TOC1,X 

BAUDOIt EOU * 
LDY 'RAMSTR POINTER TO START OF RAM 

* TIME EACH BYTE 
WAIT LDD TOC1,X 
WTLOOP BRSET SCSR,X $20 

XGDX 
DEX 
XGDX 
BNE WTLOOP 
BRA STAR 

NEWONE EOU * 

PUT DELAY TIME IN ACCD 
NEWONE 
DELAY INTO X 
DECREMENT DELAY 
RETURN DELAY TO ACCD 

* DID NOT TIME OUT SO READ IN BYTE AND PUT INTO RAM 
LDAA SCDAT, X 
STAA $OO,y 
STAA SCDAT,X HANDSHAKE 
INY 
CPY 'RAMEND+1 
BNE WAIT 

***************************************************** 
* ALL START USER'S PROGRAM 
STAR EOU * 

JMP RAMSTR 

ORG $BFD2 
***************************************************** 
* MASIt I.D •• 

FOB $0000 
FOB $E9SC E9 I.D. (SC - SC FOR SECURITY) 

***************************************************** 
* EEPROM ERASE SUBROUTINE 

* * ASSUMES CALLING ROUTINE HAS ALREADY SET ERASE AND 
* EELAT BITS AND HAS ACCESSED WHATEVER IS TO BE ERASED 

* 
* ENTRY X-$1000 
* EXIT X-$1000, Y-$OOOO 
ERASE EOU * 

BSET PPROG,X $01 SET EEPGM BIT 
* 10 MILLISEC DELAY @ 2.1 MHZ 

LDY .3000 
Blt1 DEY 

BNE Blt1 
CLR PPROG,X CLEAR ERASE & EELAT BITS 
RTS 

M68HC11 REFERENCE MANUAL 8-23 

II 



Li8t1A9 - 1IC'8JIC11.' ~loadezo (With Iecnazol1:y) IMet 5 of5 

***************************************************** 
* VBC'lORS (FIRST SBVDI DOII'T POIIIT TO RAM) 
* 
* FDB $100-60 SCI 
* FDB $100-57 SPI 
* FDB $100-54 PULS. ACCtJM INPUT BDGB 
* FDB $100-51 PULS. ACCtJM OVBRFLOW 
* FDB $100-48 TIMER OVERFLOW 
* FDB $100-45 TIMBR OUTPUT COMPARE 5 
* FDB $100-42 TIMER OUTPUT COMPARE 4 

bfe4 00 d9 FDB $100-39 TIMER OUTPUT COMPARE 3 
bfe6 00 de FDB $100-36 TIMER OUTPUT COMPARI: 2 
bfe8 00 df FDB $100-33 TIMER OUTPUT COMPAJUIl 1 
bfea 00 e2 FDB $100-30 TIMER INPUT CAP'l'URB 3 
bfec 00 .5 FDB $100-27 TIMER INPUT CAP'l'tJRB 2 
bfee 00 e8 FDB $100-24 TIMER INPUT CAP'l'tJRB 1 
bffO 00 eb FDB $100-21 REAL 'lIMB lIlT 
bff2 00 .e FDB $100-18 IRQ 
bff4 00 f1 FDB $100-15 XIRQ 
bff6 00 f4 FDB $100-12 SWI 
bffB 00 f7 FDB $100-9 ILLEGAL OP-CODB 
bffa 00 fa FDB $100-6 COP FAIL 
bffc 00 fd FDB $100-3 CLOCK MONITOR 
bff. bf 40 FDB 1$8F40 RBSBT 

* BIll) 

• 
8-24 MUHC11 REFERENCE MANUAL MOTOROLA 



Liatlag -·HC68BCllrl Bootloade~ Sheet 1 of 3 

0008 
0009 
0016 
0028 
002b 
0020 
002d 
002e 
002f 
003b 
003e 
003f 

feOO 
ffff 

0000 
03ff 

OdbO 
021b 

MOTOROLA 

* BOOTLOADER FIRMWARE FOR 68HC11F1 - NO SECURITY 

***************************************************** 
* Thr Mar 10 08:49:00 CST 1988 
***************************************************** 

***************************************************** 
* THIS NEW VERSION ALLOWS VARIABLE LENGTH DOWNLOAD 
* BY QUITTING RECEPTION OF CHARACTERS WHEN AN IDLE 
* OF AT LEAST FOUR WOIU) TIMES OCCURS 
***************************************************** 

* EQUATES FOR USE WITH INDEX OFFSET - $1000 

PORTO EQU $08 
DDIU) EQU $09 
TOC1 EQU $16 [EXTRA STORAGE (POOR STYLE)] 
SPCR EQU $28 (FOR DWOM BIT) 
BAUD EQU $2B 
SCCR1 EQU $2C 
SCCR2 EQU $2D 
SCSR EQU $2E 
SCDAT EQU $2F 
PPROG EQU $3B 
TEST1 EQU $3E 
CONFIG EQU $3F 

* MORE EQUATES 
* 
EEPSTR EQU $FEOO START OF EEPROM 
EEPEND EQU $FFFF END OF EEPROM 

RAMSTR EQU $0000 
RAMEND EQU $03FF 

DELAYS EQU 3504 DELAY AT SLOW BAUD 
DELAYF EQU 539 DELAY AT FAST BAUD 

***************************************************** 
* THIS BOOTSTRAP PROGRAM ALLOWS THE USER TO 
* DOWNLOAD A PROGRAM OF 0 - 1024 BYTES. 
* THE PROGRAM MUST START AT $0000. 
* EACH BYTE OF THE PROGRAM IS RECEIVED BY THE SCI. 
* THE FIRST BYTE ESTABLISHES BAUD RATE. 
* THEN THE PROGRAM ~S DOWNLOADED STARTING WITH 
* THE $0000 BYTE AND WORKING UP TOWAIU> THE $03FF 
* A DELAY OF FOUR WOIU) TIMES (AT EITHER BAUD RATE) 
* CAUSES THE RECEPTION OF CHARACTERS TO STOP AND 
* A JUMP TO $0000. 

* * THE TRANSMITTER WILL BE USED FOR THE PURPOSE 
* OF COMMUNICATION TO THE OUTSIDE WORLD. 
***************************************************** 

M68HC11 REFERENCE MANUAL 8-25 

• 



II 

ListiD9 - MC68BCllrl Bootloadar SJuaet 2 of 3 

bfOO 

bfOO 

bfOO 8e 03 ff 

bf03 ee 10 00 

bf06 1e 28 20 

bf09 ec a2 Oc 
bfOc a7 2b 

bfOe e7 2d 

bflO cc 02 1b 
bfl3 ed 16 

bflS 1c 2d 01 

bfl8 1e 08 01 fc 
bflc 1d 2d 01 

bflf 1f 2e 20 fc 
bf23 a6 2f 

bf2S 26 03 
bf27 7e fe 00 
bf2a 

bf2a 81 ff 
bf2c 27 08 

bf2e 1c 2b 33 

bf31 cc Od bO 
bf34 ed 16 

bf36 
bf36 18 ce 00 00 

B-26 

ORG $BFOO 

BEGIN EQU * 
* INIT STACK 

IDS 'RAMEN!) 
* INIT X REG FOR INDEXED ACCESS TO REGISTERS 

IDX 1$1000 

* PUT PORT D IN WIRE OR MODE 
SSET SPCR,X $20 

* INIT SCI AND RESTART BAUD DIVIDER CHAIN 
IDD '$A20C DIV BY 16 
STAA BAUD,X 

* RECEIVER , TRANSMITTER ENABLED 
STAB SCCR2,X 

* SET UP DELAY FOR FASTEST BAUD RATE 
IDD 'DELAYF 
STD TOC1,X 

* SEND BREAK TO SIGNAL START OF DOWNLOAD 
BSET SCCR2,X $01 

* CLEAR BREAK AS SOON AS START BIT IS DETECTED 
BRSET PORTD,X $01 * 
BCLR SCCR2,X $01 CLEAR BREAK 

* WAIT FOR FIRST CHARACTER (USERS SEND $FF) 
BRCLR SCSR, X $20 * WAIT FOR RORI' 
IDAA SCDAT, X READ DATA 

* IF DATA - $00 (BREAK OR $00), THEN JUMP '1'0 EEPROM 
BNB. NOTZBRO 
JMP BEPSTR 

NOTZERO EQU * 
* IF DATA - $1'1', THEN /16 IS CORRECT BAUD 

CMPA 1$1'1' 
BEQ BAUDOK 

* ELSE CHANGE '1'0 /104 (/13 , /8) 1200 • 2MHZ 
BSET BAUD,X $33 

* SET UP DELAY FOR SLOWER BAUD RATB 
IDD 'DELAYS 
sm TOC1,X 

* 
BAUDOK EQU * 

IDY 'RAMSTR POINTER TO START OF RAM 

. M68HC11 REFERENCE MANUAL MOTOROLA 



Liatinq - MC68RCllrl Bootloadar Sheet 3 of 3 

* TIME EACH BYTE 
bf3a ee 16 WAIT LDD TOC1,X PUT DELAY TIME IN ACCD 
bf3e 1e 2e 20 07 WTLOOP BRSET SCSR,X $20 NEWONE 
bf40 8f XGDX DELAY INTO X 
bf41 09 DEX DECREMENT DELAY 
bf42 8f XGDX RETURN DELAY TO ACCD 
bf43 26 f7 BNE WTLOOP 
bf45 20 Of BRA STAR 

* DID NOT TIME OUT SO READ IN BYTE AND PUT INTO RAM 
bf47 a6 2f NEWONE LDAA SCDAT,X 
bf49 18 a7 00 STAA $00, Y 
bf4e a7 2f STAA SCDAT,X HANDSHAKE 
bf4e 18 08 INY 
bf50 18 8e 04 00 CPY tRAHEND+1 
bf54 26 e4 BNE WAIT 

***************************************************** 
* ALL START USER • S PROGRAM 

bf56 STAR EQU * 
bf56 7e 00 00 JMP RAMSTR 

bfd4 ORG $BFD4 
***************************************************** 
* F1 MASK I.D. 

bfd4 f1 f1 FDB $F1F1 

***************************************************** 
* VECTORS 
* 

bfd6 00 e4 FDB $100-60 SCI 
bfd8 00 e7 FDB $100-57 SPI 
bfda 00 ea FOB $100-54 PULSE ACCUM INPUT EDGE 
bfde 00 cd FDB $100-51 PULSE ACCUM OVERFLOW 
bfde 00 dO FDB $100-48 TIMER OVERFLOW 
bfeO 00 d3 FDB $100-45 TIMER OUTPUT COMPARE 5 
bfe2 00 d6 FDB $100-42 TIMER OUTPUT COMPARE 4 
bfe4 00 d9 FDB $100-39 TIMER OUTPUT COMPARE 3 
bfe6 00 de FDB $100-36 TIMER OUTPUT COMPARE 2 
bfe8 00 df FDB $100-33 TIMER OUTPUT COMPARE 1 
bfea 00 e2 FDB $100-30 TIMER INPUT CAPTURE 3 
bfee 00 e5 FDB $100-27 TIMER INPUT CAPTURE 2 
bfee 00 e8 FDB $100-24 TIMER INPUT CAPTURE 1 
bffO 00 eb FOB $100-21 REAL TIME INT 
bff2 00 ee FDB $100-18 IRQ 
bff4 00 f1 FDB $100-15 XIRQ 
bff6 00 f4 FDB $100-12 SWI 

II bff8 00 f7 FDB $100-9 ILLEGAL OP-CODE 
bffa 00 fa FDB $100-6 COP FAIL 
bffe 00 fd FDB $100-3 CLOCK MONITOR 
bffe bf 00 FDB tBEGIN RESET 

* END 

MOTOROLA M68HC11 REFERENCE MANUAL B-27 



a 



-A-
A15-A8 Pins, 2-19-2-20, 2-32-2-34, 7-11-7-13 
AID Accuracy, 2-18, 4-18,12-6-12-7, 12-12-12-13, 

12-16-12-17 
AID Pins, 2-18-2-19, 2-25-2-26, 7-37-7-38, 

12-16-12-21 
Accumulator, 6-1-6-2, 6-11-6-15 
Adaptive Algorithm, 4-19-4-20 
ADCTl Register, 12-13-12-15 
Addressi ng Modes, 6-6-6-11 

Direct, 3-7, 6-8-6-9 
Extended, 6-7-6-8 
Immediate, 6-6-6-7 
Indexed,6-9-6-10 
Inherent, 6-10 
Relative, 6-11-6-12 

Address Mark Wake Up, 9-28-9-29 
Address Strobe, 2-19-2-21, 2-33, 3-19, 4-14-4-15, 

7-18,7-22-7-24,10-6 
ADPU (Bit in OPTION), 3-8-3-9,12-11-12-12 
ADR1-ADR4 Registers, 12-15-12-16 
ADx Pins, 2-19-2-20, 2-32-2-34, 7-16-7-18 
AN7-ANO Pins, 2-18-2-19, 2-25-2-26, 7-37-7-39, 

12-16-12-17 
Analog Multiplexer, 2-25-2-26, 7-37-7-38,12-11, 

12-13,12-16 
AS Pin, 2-19-2-21,2-27,2-33,7-18,7-22-7-23 
Asynchronous Serial 1/0,9-1-9-35 
AT-Cut Crystal, 2-12, 2-15, 2-16 
Automatic Clearing Mechanism, 5-26 

MODF Bit, 8-9 
SCI Status Bits, 9-11-9-14 
SPIF Bit, 8-8 
STAF Bit, 7-43 
WCOl Bit, 8-9 

-B-
BAUD Register, 3-13-3-14, 9-7-9-8 
Baud Rate Generator, 9-29-9-31,10-7 
Baud Rate Tolerance, 9-25-9-27 
BCD, 6-2, 6-4, 6-13, 6-17, A-48-A-49 
Binary-Coded Decimal, 6-2, 6-4, 6-13, 6-17, 

A-48-A-49 
Bit Manipulation, 6-6, 6-10, 6-14,10-14 
Bootloader ROM, 3-2-3-3, 3-11, 3-15-3-18, 4-2, 

B-1-B-27 
Bootstrap Mode, 3-1-3-3, 3-11-3-18 

INDEX 

Bootstrap ROM, 3-2-3-3, 3-11, 3-15-3-18, 4-2, 
B-1-B-27 

BPROT Register, 4-10 
Branch Instructions, 6-18, A-14-A-37 
Branch Offset, 6-10-6-11 
Break,9-16-9-17 
Bulk Erase, 4-12-4-13 
Bus Timing, 7-17-7-18,10-6 
Bypass Counter, 3-12,10-8,10-10-10-11 
Bypass Power Supply, 2-8-2-9, 2~32 
BYTE (Bit in PPROG), 4-10-4-11 
Byte Erase, 4-5, 4-13 

-c-
CBYP (Bit in TEST1), 3-12,10-8,10-10-10-11 
CCF (Bit in ADCTl), 12-14 
CCR, 3-12, 6-4-6-6, 6-17 
CD-CA (Bits in ADCTl), 12-15 
CFORC Register, 7-8-7-11,10-36-10-37 
Chains (Clock Divider), 10-5-10-9 
Charge Conservation, 12-1-12-10 
Charge Pump, 2-30,4-7,4-9,12-11-12-12 
Charge Redistribution, 12-1-12-11 
Charge Sharing, 12-17-12-21 
Charge Trapping, 4-20-4-21 
Cheater latch, 7-8-7-10 
Clock Divider Chains, 10-5-10-9 
Clock Monitor, 5-9, 5-15 
CME (Bit in OPTION), 3-8-3-9, 5-9 
Condition Code Register, 3-12, 6-4-6-6, 6-17 
CONFIG Register, 2-16, 2-32, 3-3-3-6, 3-13, 3-14, 

3-18-3-22,4-13,4-14-4-15,4-17,4-22 
CONFIG Mechanism, 3-3-3-4, 3-12 
Configuration, 3-3-3-4, 3-12 
Conversion Sequence, 12-1-12-6, 12-13-12-14 
COP Watchdog, 5-7-5-9, 10-8, 10-13 

Time-out Tolerance, 5-8-5-9, 10-13 
COPRST Register, 5-8 
Counter Bypass, 3-12, 10-8, 10-10-10-11 
CPHA (Bit in SPCR), 8-2-8-3, 8-8 
CPOl (Bit in SPCR), 8-2-8-3, 8-8 
CPU, 6-1-6-20, A-1-A-113 

Memory Mapped 1/0,6-1 
Programmer's Model, 6-1-6-2 
Status Flags in CCR, 6-4-6-5, 6-18, A-14-A-37 

CR1,CRO (Bits in OPTION), 3-9,5-8-5-9,10-13 
Crystal Oscillator, 2-11-2-16, 3-9, 5-1-5-2, 5-7 
CSEl (Bit in OPTION), 3-8-3-9, 4-9,12-12-12-13 
CWOM (Bit in PIOC), 2-27, 7-19-7-20, 7-44 

MOTOROLA MC68HC11 REFERENCE MANUAL INDEX-' 



-D-
Data Direction, 7-5-7-6, 7-24-7-26 
DDRA7 (Bit in PACTL), 7-8-7-11,10-34,11-4 
DDRC Register, 7-17-7-20 
DDRD Register, 7-24-7-36, 8-6-8-7, 9-6-9-7 
Derivatives, 1-4-1-5 
Direct Page Addressing, 3-7, 4-2-4-3, 6-8-6-9 
Disable Resets, 3-13, 5-7-5-8, 5-9 
DISR (Bit in TEST1), 3-13, 5-7-5-8, 5-9 
Divide, 5-12, 6-14, A-55-A-56 
DL Y (Bit in OPTION)' 3-9, 10-7 
Double Accumulator, 6-1-6-2 
Double-Byte Read, 7-3,10-5,10-16 
Double-Byte Write, 7-3, 10-28 
DWOM (Bit in SPCR), 2-19, 3-16, 7-25-7-35, 

8-5-8-6, 9-6-9-7 

-E-
E, 2-11, 2-28, 7-18,10-6 
Edge Sensitive, 3-9, 5-24, 5-25 
EDGxB:EDGxA (Bits in TCTL2), 10-17 
EELAT (Bit in PPROG)' 4-10-4-13 
EEON (Bit in CONFIG), 3-4-3-6 
EEPGM (Bit in PPROG), 4-10-4-13 
EEPROM, 2-16, 2-30, 3-4-3-6, 4-4-4-26 

Cell,4-5-4-6 
Charge Pump, 2-30, 4-7, 4-9, 12,11-12-12 
Configuration Register, 2-16, 2-32, 3-3-3-6, 

3-13,3-14,3-18-3-22,4-13,4-14-4-15,4-17, 
4-22 

Erasure, 4-7, 4-12-4-13, 4-17 
Mapping, 2-5, 3-5-3-6, 4-4 
Programming, 2-17, 2-30, 4-7-4-8, 4-12, 4-16, 

4-17 
Security, 3-4-3-5, 4-14-4-15 

EGA (Bit in PIOC), 7-23, 7-44 
ERASE (Bit in PPROG), 4-10-4-11 
E rase-Before-Write, 4-21-4-23 
EVEN (Bit in PPROG), 4-10 
Expanded Mode, 2-19-2-20, 2-32-2-34, 7-17-7-18 
EXTAL Pin, 2-11-2-15, 2-24-2-25, 5-1 
Extended Addressing, 6-7-6-8 
Extending Pulse Accumulator Range, 11-6-11-7, 

11-8-11-9 
Extending Timer Range, 10-23-10-26 
External Reset, 5-10 

-F-
FCM (Bit in TEST1), 3-13 
FCOP (Bit in TESTl), 3-13 
FE (Bit in SCSR), 9-14, 9-27-9-28 
Flag Clearing, 5-26, 10-14 

Floating Gate, 4-5-4-7 
Floating Input, 2-21-2-22, 2-25-2-26 
FOC5-FOC1 (Bits in CFORC)' 7-8-7-11,10-37 
Forced Output Compares, 7-8-7-11, 10-36-10-37 
Fractional Divide, 5-12, 6-14, A-55 
Free-Running Counter, 10-5-10-9, 10-37-10-39 

-G-
Gated-Time Accumulation, 11-1, 11-8-11-9, 11-10 

-H-
Half Flip-Flop, 7-6-7-7 
Handshake 1/0, 2-19-2-20, 7-39-7-45 
Highest Priority Interrupt, 5-12-5-19 
HNDS (Bit in PIOC), 7-15, 7-44 
HPRIO Register, 3-2-3-3, 5-13-5-14 
Hysteresis Input Buffer, 7-7 

-1-

I Bit, 5-11-5-16, 5-22-5,24, 6-5, 6-17 
IC3-IC1 Pins, 2-19, 2-24-2-25, 5-24, 7-7-7-8 
ICxF (Bits in TFLG1), 10-16 
ICxl (Bits in TMSKl), 10-16 
IDLE (Bit in SCSR), 5-19, 9-10, 9-13 
Idle-Line Wake Up, 9-17-9-18, 9-28 
ILiE (Bit in SCCR2), 5-19, 9-10 
Illegal Opcode, 3-12, 5-21-5-22 
Immediate Addressing, 6-6-6-7 
Index Register, 6-2-6-3, 6-9, 6-16 
Indexed Addressing, 6-9-6-10 
Indexed Offset, 6-2-6-3, 6-9 
Inherent Addressing, 6-10 
INIT Register, 3-6-3-8, 4-2-4-3, 6-8, 7-4 
Input Capture, 10-2-10-4, 10-15-10-27, 10-39 
Input Handshake, 7-40-7-41 
Integer Divide, 5-12, 6-14, A-56 
Interlocked, 7-41-7-42, 7-44 
Interrupts 

Bootstrap, 3-17 
Flag Clearing, 5-26, 10-14 
Global Inhibit Masks, 5-11-5-12, 5-22-5-24, 

6-5-6-6, 6-17 
Interrupt Process, 5-10-5-26 
Local Enables, 5-11 
Nonmaskable, 5-20-5-22 
Pins, 2-17,5-24,7-45,10-27,11-9 
Priority Selection, 5-12-5-19 
Vector, 5-1, 5-12-5-13, 5"15-5"19 

Instruction Set, 6-11-6-20, A-1-A-113 
Interrupt Driven, 10-17 
INVB (Bit in PIOC), 7-14-7-15, 7-45 

INDEX-2 MC68HC11 REFERENCE MANUAL MOTOROLA 



IRO, 2-17, 2-30, 3-9 
IROE (Bit in OPTION), 3-9, 5-25 
IRV (Bit in HPRIO), 2-32, 2-35-2-36, 3-3, 3-14-3-15, 

5-14 
IX (CPU Index Register X), 6-2-6-3 
IV (CPU Index Register V), 6-2-6-3 

-L-
Latched Inputs at Port C, 7-5, 7-19-7-21, 7-39-7-43 
Latchup, 2-23, 2-25, 12-16 
Level Sensitive, 3-9, 5-24, 5-25 
Life Expectancy (EEPROM), 4-20-4-26 
UR (Debug Aid), 2-35, 3-12 
UR Pin, 2-9-2-10, 2-27-2-28 
Listing of Timer Examples, 10-41-10-56 
Logic (See Pin Logic Diagrams) 
LVI (Low Voltage Inhibit), 5-10-5-11 

-M-
M (Bit in SCCR1), 9-9, 9-15 
Mapping 

EEPROM, 2-5, 3-5-3-6, 4-4 
RAM and Registers, 2-36, 3-6-3-8, 4-2-4-3 
External Conflicts, 2-32-2-36, 3-7-3-8, 3-19 
Resolving Priority, 3-7-3-8 

Mark (SCI Data High Level), 9-28 
Maskable Interrupts, 5-22-5-26 
MC68HC11A8 Block Diagram, 1-3 
MDA (Bit in HPRIO), 3-3, 3-15, 5-13 
Measuring Long Time Periods, 10-23-10-26, 

11-8-11-9 
Measuring Short Time Periods, 10-23 
Memory Addressing Modes, 6-6-6-11 
MISO Pin, 2-19, 2-27, 7-28-7-29, 8-5, 8-7 
MODA Pin, 2-9-2-10, 2-27-2-28, 3-2 
MODS Pin, 2-9-2-11, 2-29, 3-2 
Mode Fault, 8-9-8-10 
Mode Selection, 2-9, 3-1-3-3, 5-4-5-5 
Modem Control, 9-12 
MODF (Bit in SPSR), 8-9 
MOSI Pin, 2-19, 2-27, 7-29-7-31, 8-5, 8-7 
MSTR (Bit in SPCR), 8-8 
MULT (Bit in ADCTL), 12-13-12-15 
Multiplexed Bus, 2-19-2-20, 2-33-.2-34, 7-17-7-18 
Multiplexer (On A to 0 Inputs), 2-25-2-26, 

7-37-7-38,12-11,12-13 
Multiply (MUL) Instruction, 5-12, A-72 

-N-
NF (Bit in SCSR), 9-13, 9-22-9-25, 9-27-9-28 
NOCOP (Bit in CONFIG), 3-4-3-5, 3-13, 5-7 
Nonmaskable Interrupt, 5-20-5-22 

Normal Expanded Mode, 2-32-2-34, 3-10 
Normal Modes, 3-10 
Normal Single-Chip Mode, 2-30-2-31, 3-10 
NOSEC (Bit in CONFIG), 3-4-3-5, 4-14 
NRZ, 9-1 

-0-
OC1D Register, 10-28, 10-33-10-34 
OC1D7-0C1D3 (Bits in OC1D), 7-8-7-10, 

10-33-10-34 
OC1M Register, 10-28, 10-33-10-34 
OC1M7-0C1M3 (Bits in OC1M), 7-8-7-10, 

10-33-10-34 
OC2/OC1 Pin, 2-19, 2-28, 7-8-7-11,10-28 
OC3/0C1 Pin, 2-19, 2-28, 7-8-7-11,10-28 
OC4/0C1 Pin, 2-19, 2-28, 7-8-7-11,10-28 
OC5/OC1 Pin, 2-19, 2-28, 7-8-7-11,10-28 
OCCR (Bit in TEST1), 3-12 
OCxF (Bits in TFLG1), 10-29-10-30 
OCxl (Bits in TMSK1), 10-29-10-30 
ODD (Bit in PPROG), 4-10 
Offset (Branch), 6-10-6-11 
Offset (Indexed), 6-2-6-3, 6-9 
OIN (Bit in PIOC), 7-44 
OL5-0L2 (Bits in TCTL1), 7-8-7-11,10-31 
OM5-0M2 (Bits in TCTL1), 7-8-7-11,10-31 
Open Drain Ou~t (See Also CWOM, DWOM, 

RESET, and UR), 2-27-2-28, 7-19-7-20 
OPTION Register, 3-8-3-9, 10-13, 12-11-12-13 
OR (Bit in SCSR), 5-19, 9-13, 9-27-9-28 
Oscillator, 2-11-2-16, 3-9, 5-1-5-2, 5-7 
Output Compare, 10-4-10-5, 10-27-10-37, 10-40 
Output Handshake, 7-41-7-43 

-p-

PA2-PAO Pins, 2-19, 2-24-2-25, 7-7-7-8 
PA6-PA3 Pins, 2-19, 2-28,7-8-7-9 
PA7 Pin, 2-19, 2-27, 7-8-7-11 
PACNT Register, 11-3,11-11-11-12 
PACTL Register, 10-12, 11-4-11-5 
PAEN (Bit in PACTL), 11-4-11-5 
PAl Pin, 2-19, 2-27, 7-8-7-11,11-5-11-6 
PAIF (Bit in TFLG2), 11-5-11-6 
PAil (Bit inTMSK2),11-5-11-6 
PAMOO (Bit in PACTL), 11-1,11-5 
PAOVF (Bit in TFLG2), 11-5 
PAOVl (Bit in TMSK2), 11-5 
PB7-PBO Pins, 2-19-2-20, 2-28, 7-11-7-14 

. PC7-PCO Pins, 2-19-2-20, 2-27,7-16-7-22 
PD5-PDO Pins, 2-19, 2-27, 3-16, 7-24-7-36, . 

9-18-9-20 
PE7-PEO Pins., 2-18-2-19, 2-25-2-26, 7-37-7-39, 

12-16-12-17 
PEDGE (Bit in PACTL), 11-5 

MOTOROLA MC68H.C11 REFERENCE MANUAL INOEX-3 



Period of a Signal, 10-17-10-19 
Periodic Interrupt, 10-11-10-12 
PH2 (Internal Clock Signal), 7-18,10-6 
Phase 2 (PH2), 7-18, 10-6 
Pin Assignments, 2-1-2-7 

MC68HCllA8, 2-1-2-2 
MC68HCll D3/711 D3, 2-3 
MC68HCll E2, 2-5 
MC68HCll E9/711 E9, 2-4 
MC68HC 11 Fl, 2-6 
MC68HC24, 2-6-2-7 

Pin Logic Diagrams, 7-6-7-37 
AS, 7-23 
Port A, 7-7, 7-9, 7-10 
Port B, 7-12 
Port C, 7-16, 7-19 
Port D, 7-25, 7-26, 7-28, 7-30, 7-32, 7-34 
Port E, 7-37 
R/W, 7-14 
STRA, 7-23 
STRB,7-14 

Pin Protection, 2-22-2-30 
Analog Input, 2-25-2-26,12-16-12-17 
Digital 1/0, 2-27 
Digitai In/Open-Drain, 2-27-2-28 
Digital Input Only, 2-24-2-25 
Digital Output Only, 2-28 
IRQIVpPBULK, 2-30 
MODBIVSTBY, 2-29 

Pins 
A 15-A8, 2-19-2-20, 2-32-2-34, 7-11-7-13 
AD7-ADO, 2-19-2-20, 2-32-2-34, 7-16-7-18 
AN7-ANO, 2-18-2-19, 2-25-2-26, 7-37-7-39, 

12-16-12-17 
AS, 2-19-2-21, 2-27, 2-33, 7-18, 7-22-7-23 
E, 2-11, 2-28, 7-18 
EXTAL, 2-11-2-15, 2-24-2-25, 5-1 
ICx, 2-19, 2-24-2-25, 5-24, 7-7-7-8 
IRQ, 2-17, 2-30 
LlR, 2-9-2-10, 2-27-2-28 
MISO, 2-19, 2-27, 7-28-7-29, 8-5, 8-7 
MODA, 2-9-2-10, 2-27-2-28, 3-2 
MODB, 2-9-2-11, 2-29, 3-2 
MOSI, 2-19, 2-27, 7-29-7-31, 8-5, 8-7 
OCx/OC1, 2-19, 2-28, 7-8-7-11, 10-28 
PA2-PAO, 2-19, 2-24-2-25, 7-7-7-8 
PA6-PA3, 2-19, 2-28, 7-8-7-9 
PA7, 2-19, 2-27, 7-8-7-11 
PAI/OC1, 2-19, 2-27, 7-8-7-11,11-5-11-6 
PB7-PBO, 2-19-2-20, 2-28, 7-11-7-14 
PC7-PCO, 2-19-2-20, 2-27, 7-16-7-22 
PD5-PDO, 2-19, 2-27, 3-16, 7-24-7-36, 9-18-9-20 
PE7-PEO, 2-18-2-19,2-25-2-26,7-37-7-39, 

12-16-12-17 
R/W, 2-19-2-21, 2-28, 2-35, 7-14 
RESET, 2-16, 2-27-2-28, 5-1, 5-5-5-11 
RxD, 2-19, 2-27, 7-24-7-26 
SCK, 2-19, 2-27, 7-31-7-33, 8-5, 8-7 
SS, 2-19, 2-27, 7-33-7-35, 8-5, 8-6 
STRA, 2-19-2-21, 2-27, 7-22-7-24, 7-45 
STRB, 2-19-2-21, 2-28, 7-14-7-16, 7-45 

Pins (Continued) 
TxD, 2-19, 2-27, 3-14, 7-26-7-27, 9-18-9-20 
VDD, 2-8-2-9 
Vpp, 2-17, 2-30 
VREFH,VREFL, 2-18, 2-22, 2-25-2-26,12'11 
VSS, 2-8-2-9, 2-23 
VSTBY, 2-9-2-11, 2-16, 2-29, 4-3-4-4 
XIRQ, 2-17, 2-24-2-25, 5-20-5-21, 6-5-6-6 
XTAL, 2-11-2-16, 2-27 

PIOC Register, 3-7-3-8, 7-3, 7-43-7-45 
PLCC, 2-1-2-7 
PLS (Bit in PIOC), 7-44 
Polled Interrupts, 10-12, 10-17 
POR,5-7 
Port Replacement Unit (MC68HC24), 2-1, 2-6-2-7, 

2-36,3-7,3-8-3-10,7-1,7-13,7-15,7-22,7-24, 
7-39 

Port A Pins, 2-19, 2-24-2-25, 2-27-2-28 7-7-7-11 
PORTA Register, 7-1, 7-3, 7-7-7-11 
Port B Pins, 2-19-2-20, 2-28, 7-11-7-14 
PORTB Register, 7-2-7-3, 7-11-7-14 
Port C Pins, 2-19-2-20, 2-27, 7-16-7-22 
PORTC Register, 7-2-7-3, 7-16-7-22 
PORTCL Register, 7-3, 7-5, 7-19-7-22, 7-39-7-43, 

7-45 
Port D Pins, 2-19, 2-27, 3-16, 7-24-7-36, 9-18-9-20 
PORTD Register, 7-2-7-3, 7-24-7-36, 9-6 
Port E Pins, 2-18-2-19, 2-25-2-26, 7-37-7-39, 

12-16-12-17 
PORTE Register, 7-2-7-3,7-37-7-39 
Postscaler, 10-5-10-6, 10-8 
Power Consumption, 2-21, 6-19-6-20, 10-7, A-93, 

A-l10-A-l11 
Poweron Reset, 5-7, 5-10-5-11 
PPROG Register, 4-10-4-13 
PR1,PRO (Bits in TMSK2)' 3-8,10-8-10-9 
Pre byte, 6-6 
Prescaler (Baud Rate), 9-7-9-8, 9-29-9-30 
Prescaler (Main Timer), 3-8,10-7-10-9 
Program-More-Zeros, 4-16, 4-20-4-23 
Programmable Prescaler, 3-8,10-7-10-9 
Programmers Model, 6-1-6-2 
Programming (See EEPROM), 2-17, 2-30, 4-7-4-8, 

4-12,4-16,4-17 
Protected Registers, 3-6-3-9, 4-10 
Protection Device, 2-24, 7-6-7-7 
PRU, 2-1, 2-6-2-7, 2-36, 3-7, 3-8-3-10, 7-1, 7-13, 

7-15,7-22,7-24,7-39 
PSEL3-PSELO (Bits in HPRIO), 5-14 
Pseudo Vector, 3-17, 10-31-10-32 
Pulse Accumulator, 11-1-11-12 

Block Diagram, 11-2-11-3 
Event Counting, 11-1, 11-6-11-7 
Overflows, 11-2, 11-5, 11-6-11-7, 11-8-11-9, 

11-10-11-11 
Resolution, 11-2 
Time Accumulation, 11-1, 11-8-11-9, 11-10 

Pulse Width, 10-19-10-23, 11-8 
Pulse Width Modulation, 10-34-10-36 
Pulsed Operation, 7-41-7-42, 7-44 
PWM, 10-34-10-36 

INDEX-4 MC68HC11 REFERENCE MANUAL MOTOROLA 



-Q-

Quantizing Error, 12-6-12-10 
Queued Break, 9-16-9-17 
Queued Idle, 9-17 

-R-
RiW Pin, 2-19-2-21, 2-28, 2-35, 7-14 
R8 (Bit in SCCR1), 9-9, 9-15 
RAM, 4-2-4-4 
RAM Standby, 2-9-2-11, 2-29, 4-3-4-4 
RAM3-RAMO (Bits in IN IT), 3-6-3-8, 4-2-4-3 
RBOOT (Bit in HPRIO), 3-2-3-3, 3-15, 5~13 
RC Oscillator, 4-9,12-12-12-13 
RCKB (Bit in BAUD), 3-13-3-14, 9-7-9-8 
RDR Register, 5-26,9-14 
RDRF (Bit in SCSR), 5-19, 5-26, 9-12, 9-33-9-35 
RE (Bit in SCCR2), 5-19, 7-24-7-26, 9-6, 9-10 
Real-Time Interrupt, 10-8, 10-11-10-12· 
Receiver Wake Up, 9-9-9-11, 9-15, 9-17, 9-28-9-29 
REG3-REGO (Bits in INIT), 3-6-3-8, 7-4 
Relative Addressing, 6-11-6-12 
Reset 

Clock Monitor, 3-13, 5-9, 5-10 
CON FIG Settings, 3-,\-3-6, 5-3, 5-4 
COP Watchdog, 3-13, 5-7-5-9 
Determining Source of Reset, 5-5-5-6, 5-10 
External Ci rcuits, 2-16, 3-20, 5-11 
External Reset, 5-10 
Initial Conditions, 5-1-5-4 
Poweron Reset, 5-7, 10-7 
Vector, 3-19, 5-2, 5-5-5-6 

RESET Pin, 2-16, 2-27-2-28, 5-1, 5-5-5-11 
Return from Interrupt (RTI) Instruction, 5-12, 5-19, 

6-5,10-32, A-84 
RIE (Bit in SCCR2), 5-19, 9-10 
ROM, 3-4-3-5, 4-1-4-2 
ROM, Bootloader, 3-2-3-3, 3-11, 3-15-3-18, 4-2, 

B-1-B-27 
ROMON (Bit in CONFIG), 3-4-3-5, 3-12 
ROW (Bit in PPROG), 4-10-4-11 
Row Erase, 4-12-4-13 
RTI (See Real-Time Interrupt) 
RTI (See Return from Interrupt (RTI) Instruction) 
RTIF (Bit in TFLG2), 10-12 
RTII (Bit in TMSK2), 10-12 
RTR1,RTRO (Bits in PACTL), 10-12 
RWU (Bit in SCCR2), 9-9-9-11, 9-15, 9-17, 9-28-9-29 
RxD Pin, 2-19, 2-27, 7-24-7-26 

-5-
Sample and Hold, 12-1 
SAR, 12-2-12-6 

SBK (Bit in SCCR2), 9-11, 9-16-9-17 
SCAN (Bit in ADCTL), 12-13-12-14 
SCCR1 Register, 9-9 
SCCR2 Register, 9-9-9-11 
SCDR Register, 9-14 
SCI (Serial Communications Interface), 9-1-9-35 

8/9 Bit Data Mode, 9-15 
Baud Rate, 9-29-9-31 
Data Sampling, 9-20-9-25 
Double-Buffered Receive, 9-27 
Double-Buffered Transmit, 9-12, 9-15 
Extra Stop Bit, 9-15 
Framing Error, 9-13, 9-14 
Idle Line, 9-13 
Noise Flag, 9-13, 9-21 
Parity, 9-15 
Preamble, 9-10, 9-17 
Receiver, 9-20-9-29 
Rx Block Diagram, 9-3-9-5 
Transmitter, 9-14-9-20 
Tx Block Diagram, 9-2-9-3 

SCK Pin, 2-19, 2-27, 7-31-7-33, 8-5, 8-7 
SCP1,SCPO (Bits in BAUD), 9-7-9-8, 9-29-9-31 
SCR2-SCRO (Bits in BAUD), 9-8, 9-29-9-31 
SCSR Register, 9-11-9-14 
Security, 3-4-3-5, 3-19, 4-14-4-15 
Selective-Write, 4-16, 4-20-4-25 
Send Break, 9-16-9-17 
Service Routine, 5-10, 10-19-10-21 
Single-Chip Mode, 2-30-2-31, 3-10 
SMOD (Bit in HPRIO), 3-3, 3-11-3-15, 5-13 
Software Interrupt, 5-16, 5-22, 6-19, A-99 
SPCR Register, 8-7-8-8 
SPDR Register, 8-3, 8-6, 8-8, 8-10, 8-15 
SPE (Bit in SPCR), 7-28-7-35, 8-7 
Special Bootstrap Mode, 3-1-3-3, 3-11-3-18 
Special Modes, 3-1, 3-11-3-22 
Special Test Mode, 2-32-2-36, 3-1-3-3, 3-11-3-15, 

3-18-3-22 
SPI (Serial Peripheral Interface), 8-1-8-21 

Block Diagram, 8-3-8-4 
Double-Buffered Receive, 8-3-8-4 
Error Conditions, 8-9-8-10 
Pin Direction Controls, 8-4-8-7 
Software Equivalent of, 8-15, 8-19-8-21 
SS Between Transfers, 8-3 
Transfer End Details, 8-11-8-14 
Transfer Formats, 8-1-8-3 
Transfer Start Details, 8-11-8-12 

SPIE (Bit in SPCR), 8-7 
SPIF (Bit in SPSR), 8-8-8-9, 8-13 
SPR1,SPRO (Bits in SpeRl, 8-8, 10-8 
SPSR Register, 8-8-8-9 
SS Pin, 2-19, 2-27, 7-33-7-35,8-5,8-6 
Stack Pointer, 6-3-6-4, 6-16-6-17 
Stacking CPU Registers, 5-12 
STAF (Bit in PIOC), 7-43 
STAI (Bit in PIOC), 7-43-7~44 
Start Bit (SCI), 9-20-9-25 

MOTOROLA MC68HC11 REFERENCE MANUAL INDEX-5 



STOP Instruction, 5-9, 5-21, 6-20, A-93 
Stop Bit, 9-3, 9-14 
Stop Disable, 5-9, 6-4, 6-5, 6-17 
Stop Mode, 3-1, 3-9, 5-21 
STRA Pin, 2-19-2-21, 2-27, 7-22-7-24, 7-45 
STRB Pin, 2-19-2-21, 2-28, 7-14-7-16, 7-45 
Strobed 1/0, 7-39-7-40 
Successive Approximation, 12-2-12-6 
SWI, 5-16, 5-22, 6-19, A-99 
Synchronous Serial 1/0, 8-1-8-21 

-1-

T8 (Bit in SCCR1), 9-9, 9-15 
TC (Bit in SCSR), 5-19, 9-12, 9-32-9-34 
TCIE (Bit in SCCR2), 5-19, 9-10 
TClR (Bit in BAUD), 3-13-3-14, 9-7-9-8 
TCNT Register, 10-5, 10-37-10-39 
TCON (Bit in TEST1), 3-13 
TCTU Register, 10-31 
TCTl2 Register, 10-16-10-17 
TOR Register, 5-26, 9-14 
TORE (Bit in SCSR), 5-19, 9-11-9-12, 9-32-9-33 
TE (Bit in SCCR2), 5-19, 7-26-'-7-27, 9-7, 9-10, 9-19, 

9-30-9-32 
Termination of Unused Pins, 2-21-2-22 
Test Control Bits, 3-2-3-3, 3-11-3-14,9-8 
Test Mode, 2-32-2-34, 3-1-3-3, 3-11-3-15, 

3-18-3-22 
TEST Instruction, 5-22, 6-20, A-103 
TEST1 Register, 3-11-3-13 
TFlG1 Register, 10-14, 10-16, 10-29-10-30 
TFlG2 Register, 10-10, 10-12, 10-14, 11-5-11-6 
Thick-Field Device, 2-24, 7-6-7-7 
Three-State Handshake, 7-42-7-43 
TIC1 Register, 10-15-10-16 
TIC2 Register, 10-15-10-16 
TIC3 Register, 10-15-10-16 
TIE (Bit in SCCR2), 5-19, 9-10 
TllOP (Bit in TEST1), 3-12 
Timer, 10-1-10-56 

Block Diagram, 10-2-10-3 
Capture Inhibit, 10-16, 10-39 
Compare Inhibit, 10-28, 10-40 
Counter, 10-5-10-9, 10-37-10-39 
Double-Byte Read, 10-5, 10-38 
Input Capture, 10-2, 10-4, 10-15-10-27, 10-39 
Output Compare, 10-4-10-5, 10-27-10-37, 

1 0-39-1 0-40 
Output Toggle, 10-28, 10-31. 10-37 
Overflow, 10-9-10-10, 10-23-10-26 
Prescaler, 10-7-10-9 
Range, 10-7-10-10 
Resolution, 10-7-10-9 

TMSK1 Register, 10-16, 10-29-10-30 
TMSK2 Register, 3-8,10-9,10-10,10-12,11-5-11-6 
TOC1 Register, 10-27-10-29 

TOC2 Register, 10-27-10-29 
TOC3 Register, 10-27-10-29 
TOC4 Register, 10-27-10-29 
TOC5 Register, 10-27-10-29 
TOF (Bit in TFlG2), 10-10 
TOI (Bit in TMSK2), 10-10 
Transfer Characteristic, 12-7-12-10 
Transmission Gate, 7-6, 12-11 
Trapped Charge, 4-20-4-21 
TxD Pin, 2-19, 2-27, 3-14, 7-26-7-27, 9-18-9-20 

-u-
UART (See SCI), 9-1-9-35 

-v-
VDD Pin, 2-8-2-9 
Vector (Interrupt), 5-1, 5-12-5-13, 5-15-5-19 
Vector (Reset), 3-19, 5-1, 5-2, 5-5-5-6 
Visibility of Internal Reads, 2-32, 2-35-2-36, 3-3, 

3-14-3-15,5-14 
Vpp, 2-17, 2-30, 4-7, 4-9-4-10 
VREFH,VREFl Pins, 2-18, 2-22, 2-25-2-26 
VSS, 2-8-2-9, 2-13, 2-23 
VSTBY Pin, 2-9-2-11, 2-16, 2-29, 4-3-4-4 

-w-
WAllnstruction, 6-19, A-110-A-111 
Wait for Interrupt, 6-19, A-110-A-111 
Wait Mode, 3,1, 6-19, A-11 0-A-111 
WAKE (Bit in SCCR1), 9-9, 9-28-9-29 
Watchdog, 5-7-5-9, 10-8, 10-13 
WCOl (Bit in SPSR), 8-9 
Wired-OR 1/0, 2-19, 2-27, 7-44, 8-5-8-6 
Write Collision, 8-10, 8-11 
Write-Erase Cycles, 4-16, 4-20-4-26 

-x-
X Bit, 5-11-5-12, 5-20-5-21, 6-5-6-6, 6-17 
XIRQ Pin, 2-17, 2-24-2-25, 5-20-5-21, 6-5-6-6 
XTAl Pin, 2-11-2-16, 2-27 

-z-
Zap, 2-22, 2-23 
Zero Page Addressing, 3-7, 4-2-4-3, 6-8-6-9 

INDEX-6 MC68HC11 REFERENCE MANUAL MOTOROLA 



.. 

Literature Distribution Centers : 

USA: Motorola Literature Distribution ; P.O. Box 20912; Phoenix, Arizona 85036. 
EUROPE : Motorola Ltd. ; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. 
JAPAN : Nippon Motorola Ltd. ; 4-32-1 , Nish i-Gotanda, Shinagawa-ku , Tokyo 141 Japan. 
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd .; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, 

Tai Po, N.T., Hong Kong . 

@ MOTOROLA 
M68HCll RM/AD 

1111111111111111111111111111111 111111111111111111111111111111111111111 


