M68HCO5AG/AD

HC

M68HCO05
APPLICATIONS
GUIDE

@ MOTOROLA



Introduction

Microcontroller Operation

MC68HC705C8 Functional Data

Applications

Instruction Set Details

Review Questions

1

3



1 Introduction

2 Microcontroller Operation

3 MC68HC705C8 Functional Data

Applications

Instruction Set Details

Review Questions



M68HCO05
MICROCONTROLLER

Applications
Guide

Motorola reserves the right to make changes without further notice to any products herein
to improve reliability, function or design. Motorola does not assume any liability arising out
of the application or use of any product or circuit described herein; neither does it convey
any license under its patent rights nor the rights of others. Motorola products are not author-
ized for use as components in life support devices or systems intended for surgical implant
into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any
such intended end use whereupon Motorola shall determine availability and suitability of its
product or products for the use intended. Motorola and ® are registered trademarks of
Motorola, Inc. Motorola, inc. is an Equal Employment Opportunity/Affirmative Action
Employer.

*MOTOROLA INC., 1989






TABLE OF CONTENTS

Paragraph Page
Number Title Number
Section 1
Introduction
1.1 DefiNitiONS ..iveii i 1-2
1.2 BackgroUNd ......ooiiriiiiiii e 1-2
1.3 Computer Systems Description ......cocoviviiiiiiiicin e, 1-3
1.4 Microcontroller Applications OVerview.........ccoccoveieviiiiieenieinnnnns, 1-4
1.5 Project Description........veiviiiiiiine e 1-5
Section 2
Microcontroller Operation

2.1 NUMDEr SYSIEMS . .uitiiiii i e 2-2
2.2 (0701 03T TV 1 (=T O 6o To [ U 2-4
2.3 ComMpPUtEr MEMIOTY. . i 2-6
2.31 Computer ArchiteCtUure ......coovevivviiivi e 2-7
23.2 CPU REQGISLEIS ..uiuiieiiii et et 2-8
233 MEMOIY USES..cuuieiiiiiiiiiiiiiiiiir e a e e aanes 2-9
2.3.4 MeEMOIY MapPS.....cviieiiiiieie e 2-12
24 TIMING oot 2-13
2.5 Programming .......ocuicuiii 2-14
2.5.1 FIOWChArt ..vuieiii e 2-14
25.2 Mnemonic SOUrce Code .......iiiiuiiirieiiiiieneieeeeee e eanes 2-15
25.3 Software Delay Program..........ccovviiiiiiiniiiniiiineieeieeeenn 2-17
254 Assembler Listing ......ooeiviniiiiii e 2-18
255 CPU View of @ Program.........cccoviiiiiiiiiiiininccieceieceee e 2-22
2.6 CPU Operation .....iiu i e e 2-23
2.6.1 Detailed Operation of CPU Instructions .........c..covvevieviienninnes 2-24
2.6.1.1 Store Accumulator (Direct Addressing Mode) ................ 2-24
2.6.1.2 Load Accumulator (Immediate Addressing Mode).......... 2-25
2.6.1.3 Conditional Branch ..........ocoeiiviiiiiiiiincc e 2-26
2.6.1.4 Subroutine Calls and Returns.........cc.coveveeiiiiiiieinennnnnn 2-27
2.6.2 Playing CompPULEr.......iiiiiiin e e 2-30

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE iii



TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
2.7 On-Chip Peripherals.......cccouiiiiiiiiiiiincin e e 2-34
271 Serial Communications Interface (SCH ..........ccooviivieniinnnnnn. 2-35
2.7.2 Serial Peripheral Interface (SPI).......cccccovieiiiiiiiiiiein e, 2-36
2.7.3 16-Bit Timer SYSteM.....civiiiiiiiiiei e 2-36
2.7.4 Memory Peripherals........ccoo.vieiiiiiiiiiiiii e, 2-37
275 Other On-Chip Peripherals...........coccciviviiiiiiiiiin i 2-37
Section 3
MC68HC705C8 Functional Data

3.1 MCU DESCHIPHION eviieeiteeie e eeeas 3-1
3.2 . Pins and Connections........ccoooiiiiiiiii e, 3-4
3.2.1 Pin FUNCLIONS .oiueiieiie e 3-4
3.2.2 Typical Basic CONNECLIONS ......c.ivviiiiiiiiieiiiicee e 3-8
3.3 ON-Chip MEMOIY couiiieii et e e eeas 3-10
3.3.1 MEMOTY TYPES ettt ee e 3-10
3.3.2 MEMOTY M i e 3-10
3.4 Central Processor UNit......c.oviuvieeviiiiiniieiiieinie e 3-12
3.4.1 REGISTEIS 1ottt 3-12
34.2 Arithmetic/Logic Unit (ALU) .....oooooiiiiiiiii e, 3-17
3.4.3 CPU CoNtrol v e 3-17
3.4.4 RESEES 1ttt 3-17
3.4.4.1 Power-On RESet.......cocuiviiiiiiiiii e e ee 3-17
3.4.4.2 Computer Operating Properiy (COP) Watchdog Timer

2T T] - PPN 3-18
3.4.4.3 Clock Monitor Reset........ccvvieiviviiiiiiiniine e eeaaen 3-20
3.4.5 Addressing MOdes.......c.c.ooieiiviiiiiiiii e 3-21
3.4.5.1 Inherent Addressing Mode........cooociviiiiiniiniiicieniieeenen, 3-22
3.45.2 Immediate Addressing Mode ........c.ccoeivviiiiiiiiiiiiiinenns 3-24
3.4.5.3 Extended Addressing Mode ..........cocoeviviiiiniiiniiiineneees 3-25
345.4 Direct Addressing Mode ..........occvviiiriniiiniiieiniiceen 3-26
3.45.5 Indexed Addressing Mode .......c.coovviviiiiiniinicniie e, 3-28
3.4.5.5.1 Indexed, NO Offset......c.cccvriniiiiiiiiiiiicieceee 3-28
3.45.5.2 Indexed, 8-Bit Offset........ccccovvuivrniiiiiiniiiiinren, 3-30
34553 Indexed, 16-Bit Offset........ccoeivviiiiiiiiniiiiicnean, 3-32
3.45.6 Relative Addressing Mode........coooiiiiiiiiiiiniie 3-34
3.45.7 Bit Test and Branch Instructions...........ccovovevvniieniennnns 3-35
3.45.8 Instructions Organized by Type ....ccovvvviiiiiiiniiiiiieanes 3-35
iv M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
3.4.6 Instruction Set SUMMAIY ......cooviiiiiiie e en e 3-40
3.4.7 INTEITUPLS oo 3-45
3.4.7.1 Software Interrupt (SWI).....oooeviiiiiiiiii 3-47
3.4.7.2 External INterrupl. ..o e 3-49
3.4.7.3 Timer INterrupt ... 3-49
34.74 Serial Communications Interface (SCI} Interrupt............. 3-50
34.75 Serial Peripheral Interface (SPI) Interrupt.............ccooeuvs 3-50
3.5 Microcontroller INnput/QuUtpUL.........oovviieiiiee e 3-50
3.5.1 Parallel VO ..o e e 3-51
3.5.2 Serial O i e 3-63
3.6 Serial Communications Interface (SCI) ......c...ccoveiiiiinniiiiciinnnnn, 3-53
3.6.1 SCl Transmitter ......cooeevveeninnennn. U PR 3-54
3.6.2 SCl RECBIVET .ttt e 3-56
3.6.3 REGISTEIS ..ttt e e 3-58
3.6.3.1 Baud Rate Register (BAUD)........ccuuvurviiiiiiinineeiiiiiineneens 3-58
3.6.3.2 Serial Communications Control Register One (SCCR1).... 3-60
3.6.3.3 Serial Communications Control Register Two (SCCR2) ... 3-61
3.6.34 Serial Communications Status Register (SCSR).............. 3-62
3.6.35 Serial Communications Data Register (SCDAT).............. 3-63
3.64 Data FOrmMatsS. ... e e 3-64
3.65 Hardware ProcedUres.......co.ueiveeiineeniriiieieiiee et 3-65
3.6.6 Software Procedures.......ovivviiiiiiieiiieciene e 3-65
3.6.6.1 Initialization Procedure..........coocovvviiiiniiiiiiinininnns 3-65
3.6.6.2 Normal Transmit Operation ...........ccoveivieiuviivieiiinaenenne 3-66
3.6.6.3 Normal Receive Operation........cooccveviiniineiiieiniincienenns 3-66
3.6.7 SCI Application Example ......c..ccoiiiiiiiiiiinii 3-67
3.7 Synchronous Serial Peripheral Interface (SPI)......c..cocvviiveiiininnes 3-69
3.71 Data Movement.....ccouviieiiiii i 3-71
3.7.2 Functional Description.........coviieiiiiniiiici 3-72
3.7.3 Pin DesCriptioNs. .. .o vviiiiii i 3-72
3.7.3.1 Serial Data Pins (MISO, MOSI) .......cccociiiiiniiiniceiireenee, 3-72
3.7.3.2 Serial Clock (SCK) . uuiiiiiiiiiiiiicinece e e 3-73
3.7.3.3 Stave Select {SS) .o 3-73
3.7.4 REGISTEIS .iveitiinie ettt 3-73
3.7.4.1 Serial Peripheral Control Register (SPCR)............c..cceee. 3-74
3.7.4.2 Serial Peripheral Status Register (SPSR).......cc.cccoeeennnenn. 3-75
3.7.4.3 Serial Peripheral Data I/O Register (SPDR)...........c......... 3-76
3.7.5 SPI Application Example.........ccooiiiiiiiiiiii i 3-76

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE v



TABLE OF CONTENTS (Concluded)

Paragraph Page
Number Title Number
3.8 Programmable Timer ....cococuiiiiiiiiir e aee 3-78
3.8.1 Functional Description........ccvuviiiivinieieiiic e, 3-81
3.8.2 Timer Counter and Alternate Counter Registers................... 3-83
3.8.3 Input-Capture CoONCEPL......ceuiiiiiiiee e 3-84
3.84 Input-Capture Operation.....ccc.ceeieiinieieiiicieiree e 3-85
3.85 Output-Compare CONCEPL .....vvureriiiiii i 3-86
3.8.6 Output-Compare Operation........ccieciveruiiiiaricie e ineeres 3-88
3.8.7 Timer Control Register......ccvvivriiiiiiiiii e 3-89
3.8.8 Timer Status Register (TSR)....c.oveviiiiiiiii i 3-90
3.8.9 Timer Application EXample.....ccovvviiiiiiiiiiiiiicnciiae 3-91
3.9 Stop/Wait Instruction Effects.......ccccoveiiiiiiiiiiiiciiin e, 3-91
3.9.1 Low Power-Consumption Modes...........covvvvvviiiniinininnienennns 3-91
3.9.2 Effects on On-Chip Peripherals..........ccoccoviiiiiiiiiiininiiniinin, 3-94
3.9.2.1 Timer Action During Stop Mode.........cccooviieiiiivineninnnns 3-94
3.9.2.2 SCI Action During Stop Mode ........cocvivvviienviiiiiniinnens, 3-94
3.9.23 SPI Action During Stop Mode ........cccoveivviiiiinicniieinnenn, 3-94
3.9.24 Wait Mode Effects.......cccoiviiiiiiiii e, 3-95
3.10 OTPROM/EPROM Programming ......cooevuveeineinieuieinnenininesieanasinns 3-95
3.10.1 Erasing ......cocovnnns Ce ettt e ettt et e e 3-95
3.10.2 Programming ....c..oociiiiiiii e 3-96
3.10.3 Program RegiSter.......cuuviuiiiiiii i eei e 3-96
3.10.4 Option REGISIEr ..ivuvieiiiiir i 3-97
Section 4
Applications
4.1 Hardware Development Methods ..........cooeviviiicicivinci e 4-3
4.2 Software Development Methods .........c.oc i 4-4
4.2.1 Freeware ... 4-6
4.2.2 Third-Party SOftware ..........cooviiiiiiiiiii e 4-7
4.3 Thermostat Project DetailS.........cocoveviinieiiiiiinii e 4-8
4.3.1 Hardware Details .........ooviiiiiiiii i 4-9
4.3.2 Project Programming .......ccoeiviiiviiiriinieieiiecnennseeeneensennen 4-12
Appendix A

vi

Instruction Set Details

Appendix B
Review Questions

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



3-10
3-11
3-12
3-13
3-14
3-15
3-16

LIST OF ILLUSTRATIONS

Page
Title Number
A Typical Computer SYStem......coovviiiiiiiiiiiiiir e, 1-3
A Temperature Control Flowchart.........c.coveeviiniiiiiiinniinicnneen, 1-5
Thermostat Project Block Diagram..........ccoeeveiviiiiiiiiiniiniinnenennnn. 1-6
MCU Expanded Block Diagram..........cccoooviiiiiiiiiniciiiinenen, 2-1
MBBHCO5 CPU ReQiSterS.....cciiviiiiiiiiiiiiietirieiiieieeeieeeeeevieene e en, 2-8
Memory and 1/O CirCUItry .....ooveiiiiiiii e, 2-11
Typical Memory Map .....oociiiiii i 2-12
Example Flowchart .........cooviiiiii e 2-15
Flowchart and MNemonicCs.........coviiiiiiiiiiiiie e e 2-16
Delay Routine Flowchart and Mnemonics...........cc..ccoviiiiiiien.... 2-17
Assembler LiSting .....coovoinviii e 2-19
Explanation of Assembler Listing ...........ccoooviiiiiiiiiiiiinicees 2-20
Memory Map of Example Program...........covevviiiiiiieiciiciieieennn, 2-23
Subroutine Call SEeqUENCE........c.vvviiiiiiii i 2-28
Playing Computer Worksheet............cooeiiiveiiiiiiiie e, 2-31
Completed WOrksSheet........coouviriiniiiiieiiii e 2-32
MC68HC705C8 Microcontroller Block Diagram ...........ccceeevvnnnennn. 3-3
Pin ASSIGNMENtS. . ..couiiiiiiiii e 3-5
Oscillator CoONNECLIONS. .. .uiviii it e e 3-7
Typical Basic CoONNECtioNS .......ocuiviiiiiiiiiiie e, 3-9
MCG6BHC705C8 Memory Map .....cvcieeiiiiieiiiiiiie e e e e 3-11
M68HCO5 CPU Block Diagram ........covvvviiiiiiiiiiii e, 3-12
Programming Model.........cooviiiiiiiiici e, 3-13
Hardware Interrupt Flowchart...........cccoooiiiiiiiiiicieeeeeens 3-48
Interrupt Stacking Order.........coceviiiiiiiinie e, 3-49
Port A and Data Direction A Registers..........ccovvviiiiiiriinrernincnnn, 3-51
Port B and Data Direction B Registers.........cccccoviiiiieniiiiinennennnn. 3-51
Port C and Data Direction C Registers.......c...ccovevvinieiiieninnennennnn. 3-52
Parallel Port /0 CirCuitry .....occcovivieniiiiiii e e 3-52
Port D Fixed Input Port......ccoovuiiiiii e er e 3-53
SCI Transmitter Block Diagram............covviiiiiiiieniiiec i 3-55
SCI Receiver Block Diagram.......cceceiviiiniiiiiiiniie i e eneene 3-57

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE vii



Figure
Number

3-17
3-18
3-19
3-20
3-21

3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31

3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
3-41

3-42
3-43
3-44
3-45
3-46

4-1
4-2
4-3

4-5
4-6

viii

LIST OF ILLUSTRATIONS (Continued)

Title
Baud Rate Register .....cvuvviriiiiiiiiiciiire e
Rate Generator DiViSiON.........ccovvvvuiiiiiiiineiiie e
Serial Communications Control Register One ......................
Serial Communications Control Register Two......................
Serial Communications Status Register........c..ccocevvvniennnnnnn.
Serial Communications Data Register..........cooceiiiieiiiiniennns
Double BUffering .....ovviiciiiii e
Data FOrmats. .....couviiiiiii i
SCl Normal Transmit Operation Flowchart ..............covcieeneis
SCI Normal Receive Operation Flowchart...............ccoevineni.
SCI Application Example Program .........coccovviiviiiiiiiiieinnnnns
SPIBIOCk Diagram ....ccuviviviinii i
Shift Register Operation .......cociviii i e
Data/Clock Timing Diagram.......ccccoeeiiiiiiiiiniiie v,
Serial Peripheral Control Register.........cccooivveiiviiniiiinninninnns
Serial Peripheral Status Register ..........oovvvveiiiiiiiineeineennennnn.
Serial Peripheral Data 1/0 Register.........c.cccovvviiiinieinnienennn.
SPI Application Example Diagram .........ccooeevvevivirineinnnennnns
SPI Application Example Flowchart..............cooeeieeeiiicinnnn.
SPI Application Example Program ............cccovviiiiiinvennnennennn.
Programmable Timer Block Diagram .............ccoeevveviininnnn,
16-Bit Counter Reads........cooviviniiiiiiiie e
Input-Capture Operation .......iveveeiiiivie i e
Output-Compare Operation........ccc.vvuiiievineeieiiiiiieieeieienieanns
Timer Control Register .........ccoooviviiiiiiiiiniiiiii,
Timer Status Register......cooiviiiiinciniiiincr e,
Timer Application Example Program..........ccoocovvevviiviinennnnnn.
STOP/WAIT Flowchart.........ovvviviiiiin v ne e
Program RegiSter......cv..iiiiiiiiiieiiiii e e e
Option REGIStEr ..u.vieiiiiieit s
Thermostat Project Schematic Diagram.............coooviiiiinnnnn.
Precision Temperature Sensing Circuit.........ccc.coeveviniiennnen.
POrt A SUMMAIY ..o
POrt B SUMMAIY ...t
POrt C SUMMAINY ...ttt e e e e
Port D SUMMAIY ... e
M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Page
Number

MOTOROLA



LIST OF ILLUSTRATIONS (Concluded)

Figure

Number Title
4-6 Port D SUMMANY ..o
4-7 Display Checkout Flowchart.........ccoooiiiiiiiiiieee
4-8 Display Checkout Program Listing ........cccccooeiiiiieniiniinicnnnnn.
4-9 Keypad Checkout Flowchart..........coooveiiiiiinie
4-10 Keypad Checkout Program Listing .........ccooviiviiiiiiiiininniinnns
4-11 Main Program Flowchart.........ccoociviiiiiiiiiie e

LIST OF TABLES

Table

Number Title
2-1 Decimal, Binary, and Hexadecimal Equivalents .....................
3-1 COP Timeout Period versus CM1 and CMO........ccooevveniennnenn.
3-2 Register/Memory InStructions..........ccoeevveiiiniiiiiineinenen,
3-3 Read/Modify-Write INStructions .......c.cooevvviiiiiniiiiiiiieiiveaienes
3-4 Branch INstrucCtions .....cveve i e e
3-5 Control INSTIUCTIONS. ... vt e e
3-6 Vector Address for Interrupts and Reset..........cooceiviiiiinnnnnn,
4-1 Thermostat Project Parts List .......oooveviriiiiiiiiiiiinieeeeens

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Page
Number



M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



SECTION 1
INTRODUCTION

Welcome to the world of microcontrollers!

In this applications guide, we will develop a project using a Motorola
MC68HC705C8 microcontroller unit (MCU) in a familiar application — a home
thermostat. The MC68HC705C8 is a member of the M68HCO5 Family of MCUs.
The project will demonstrate only a few of the many possible microcontroller
functions that you can use.

This guide assumes that you have no knowledge of microcontrollers and no
MCU applications experience.

Section 1 begins with definitions, gives background information, and describes
computer systems. An overview of microcontroller applications is also pre-
sented and an application project is discussed.

Section 2 describes in detail how microcontrollers operate.

Section 3 contains functional data for the Motorola MC68HC705C8 MCU. This
section gives you specific information needed to use this MCU in an appli-
cation. More information can be found in slightly different form in BR594/D,
the MC68HC705C8 Technical Summary, which is available separately.

Section 4 shows you how to develop applications and gives you the ther-
mostat project details.

Appendix A provides a detailed description of each instruction in the
MC68HCO5 instruction set.

Appendix B contains review questions, answers, and explanations.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 1-1



1.1 DEFINITIONS

The heart of a computer is the central processor unit (CPU). A microprocessor
is a CPU on a single chip.

A computer system is a CPU plus peripherals such as mput/output (1/0)
devices, memory, a program, and a timing reference.

A microcontroller is a very small product that contains many of the functions
found in any computer system. A microcontroller uses a microprocessor (as
its CPU) as well as memory and peripherals on the same chip.

A microcontroller (MCU) is packaged as a single chip that can be programmed
by the user with a series of instructions loaded into its memory.

1.2 BACKGROUND

1-2

Before MCUs, controllers were hard-wired electronic devices whose opera-
tion was determined by the circuits and wires contained within them.

The operation of an MCU-based controller is determined primarily by its
program instead of its components and wires. Any function that can be
implemented using hard-wired digital integrated circuits (ICs) can also be
implemented and performed by an MCU.

As the size and complexity of the devices increase, MCUs become attractive
for two reasons:

1. The hard-wired approach requires adding ICs to perform more complex
tasks; whereas, MCUs require only a longer program.

2. Microcontrollers are more versatile. Any change in a hard-wired system
usually involves replacing ICs and rerouting wires. Most modifications
to an MCU system are made simply by changing the program.

MCUs are very useful where many decisions or calculations are required. It
is easier to use the computational power of a computer than to use discrete
logic.

Microcontrollers are now being used to replace existing designs because
they are far simpler to use than conventional IC fogic. Since the MCU approach
is programmable, many additional features are possible at little or no added
cost. Programmability makes possible multiple use of a common piece of
hardware since only the control program needs to be changed.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



1.3 COMPUTER SYSTEMS DESCRIPTION

Whatever their size, all computer systems consist of the same fundamental
parts: CPU, I/0 devices, memory, program(s) and a timing reference (clock)

as shown in Figure 1-1.

o MEMORY .
o :>— —-:> g88:58
SWITCH @ LCD DISPLAY
1 3[A CENTRAL
HAEA INPUTS PROCESSOR OUTPUTS N
AR UNIT = L)
<[>0 (CPU)
KEYPAD BEEPER
:DE i i | SN
°F CLOCK 4 :gm
TEMPERATURE T RELAY
SENSOR l—'ll—' :

CRYSTAL

Figure 1-1. A Typical Computer System

The CPU processes information in accordance with a program of instructions
and data in a particular language called machine code. The CPU controls all
the system operations and provides control signals for enabling and disabling
the various peripherals and /0 devices.

Input devices supply information to the MCU from the outside world. Some
input devices convert analog signals into digital signals that the MCU can
understand and manipulate. Other input devices translate real-world infor-
mation into the 0 to +5 Vdc signals required by MCUs. Examples of this are
a temperature sensor, a switch, a keypad, and a typewriter-style keyboard.
A computer system might have one or a number of these input devices.

Output devices are controlled by signals from the MCU. An external interface
is required by some output devices to translate the 0 to +5 Vdc MCU levels
into different voltage or current levels. Liquid crystal displays, video display
terminals, and heating/cooling equipment are examples of output devices.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 13



Memory can store information, including the instructions and data that the
CPU uses. The two basic memory types are random access memory (RAM)
and read-only memory (ROM).

RAM is used for temporary storage of data and instructions. The computer
system can write information into and read information from a RAM in an
arbitrary random order. RAM is volatile in that its contents are lost when
power is removed.

ROM has data and instructions (a program) stored permanently in it when
it is manufactured. The CPU can read information from a ROM but cannot
write information into it. ROM information is nonvolatile in that it does not
change even when power is removed.

A programmable read-only memory (PROM) is a type of ROM that can be
programmed by the user.

An erasable programmable read-only memory (EPROM) is a type of PROM
that can be erased by exposing it to ultraviolet light. Once erased, an EPROM
may be reprogrammed with new instructions and data.

An OTPROM is a type of EPROM that is manufactured in an inexpensive
plastic package. Since the plastic package is opaque to ultraviolet light, an
OTPROM can be programmed only once.

Like ROM, PROM, EPROM, and OTPROM are nonvolatile types of memory.

The program contains instructions and data. The computer system uses the
program to perform some desired process(es).

The computer clock is used for timing and sequencing the various operations.
A crystal is usually used to provide the reference frequency for the clock.

1.4 MICROCONTROLLER APPLICATIONS OVERVIEW

The development of a new microcontroller application is limited only by skill
and imagination, since the elements of a microcontroller system are easily
assembled. MCU applications generally allow many new functions that make
process control simpler and more powerful, often at reduced cost.

Many applications require analog inputs and outputs. The resulting system
is the equivalent of a traditional analog controller with a number of control
loops. Control loops regulate an output as a function of one or more inputs.
Control loops are illustrated in the flowchart of Figure 1-2.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



CONTROL LOOP

HEATING
SELE”CTED

TEMP TOO
COLD

TURN OFF HEATING

TURN OFF HEATING

COOLING
SELE”CTED

NO

TURN ON HEATING

TEMP TOO
Hg)T

TURN OFF COOLING

TURN OFF COOLING

TURN ON COOLING

Figure 1-2. A Temperature Control Flowchart

Some applications have costly sensors and control mechanisms. The cost of
the sensors required for input and the cost of the control devices required
for output are usually much greater than the cost of a standard MCU.

The advantage of an MCU system is the use of software to replace complex
and expensive hardware previously required. The cost of the software is a
tradeoff against the cost of the additional hardware and the space it requires.

Programming allows use of complex functions that could not easily be
accomplished with hard-wired devices. Changes in functions can be made
and programs can be improved or replaced with few or no hardware changes.

1.5 PROJECT DESCRIPTION

A basic thermostat controller was chosen for this project because it shouid
be familiar to all readers and because it includes the fundamental elements

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 1-5



common to all MCU applications. Figure 1-3 illustrates a home thermostat
controller that can control both heating and air conditioning.

DATA ENTRY CRYSTAL LCD DISPLAY

KEYPAD
e |-lll-] BE:aS

> INTERFACE

=)

—lofo|>)

V|
INDOOR
MICROCONTROLLER —
Lo~» =
= Ik
°F
———— u RELAY
OUTDOOR i 8 =
TEMPERATURE & :5 N = oo | 1
SENSOR g — @ Em &
P4
;b RELAY
’ oo

- =

cooL

RELAY

Figure 1-3. Thermostat Project Block Diagram

Since the thermostat is based on an MCU, complex functions can be added.
The thermostat could include a timed setback feature that allows specifying
certain times of the day when there will be reduced demand for heating or
air conditioning, thus giving some energy savings. A more unusual feature
would be to measure the outdoor temperature and control the indoor-to-
outdoor temperature difference. This would be very difficult to accomplish
with a conventional electromechanical thermostat.

The four fundamental elements of this system are inputs, outputs, time, and
a microcontroller to tie the other elements together. The inputs include push-
buttons (a keypad) to enter time and temperature information into the MCU
and sensors to measure the indoor and outdoor temperatures. Qutputs in-
clude a display to show system conditions and signals to the interfaces that

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



control the heating and air conditioning equipment. Time is derived from a
crystal connected to the MCU. As we will see later, this crystal would be used
by the CPU even if the application did not have time-of-day requirements. A
program controls the entire operation of the thermostat. Section 4 of this
manual contains project details.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 1-7



M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



SECTION 2
MICROCONTROLLER OPERATION

A microcontroller unit (MCU) is a complete computer system on a single
silicon chip. In a great many controller applications, the MCU can satisfy all
system requirements with no additional integrated circuits (ICs). Due to very
low cost and a high degree of flexibility, these powerful new MCU devices
are finding their way into many applications that were previously accom-
plished with combinational logic or even by mechanical means. As a result,
there are many experienced engineers who need to become familiar with
the function and application of Motorola MCUs. This section, which is spe-
cifically designed for those engineers, is also a good reference for engineers
who are familiar with MCUs from some other manufacturer.

The MCU block in the thermostat block diagram of Figure 1-3 can be expanded
as shown in Figure 2-1 to show the functional blocks within the MCU. The

[ OSCILLATOR
-— & >
T CLOCKS CENTRAL PROCESSING UNIT
CRYSTAL ENTRA Pcpu
RESET >
t-?\ PROGRAM
(POWER) MEMORY
w
L._, Vop 2 §
[72]
v @ DATA =
_E——' SS = MEMORY a
—L 2
(GROUND)
v 10 &
> 31 PERIPHERALS > >
> > > >
DIGITAL o . . o DIGITAL
INPUTS § . . < OUTPUTS
> > > >

Figure 2-1. MCU Expanded Block Diagram

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-1



CPU block is the central element of a digital binary computer much like the
mainframe computers used in business except that it is much smaller. The
goal of this section is to study the internal operation of this CPU and how it
interacts with the other functional blocks within the MCU. Although this
discussion is based on a relatively simple CPU, the principles apply to even
the most powerful mainframe computers.

The CPU is a system of simple logic elements and buses that can sequentially
interpret and execute a finite set of instructions. Starting from a specific
address in memory after reset, the CPU mindlessly fetches and executes one
simple instruction after another. Each instruction is composed of several even
simpler steps. The small substeps comprising each instruction are deter-
mined by the wiring within the CPU. The transistors, logic gates, and buses
which comprise the CPU are called hardware. The instructions the CPU fol-
lows to accomplish an application task are determined by an end user or
design engineer and are called a software program.

Before we can get into the discussion of the internal operations of the CPU,
some basic concepts must be understood. The following paragraphs discuss
numbering systems and special codes used by computers.

2.1 NUMBER SYSTEMS

2-2

Computers work best with information in a different form than people use.
Humans typically work in the base 10 (decimal) numbering system (probably
because we have ten fingers). Digital binary computers work in the base 2
(binary) numbering system because this allows all information to be repre-
sented by sets of digits, which can only be zeros or ones. In turn, a one or
zero can be represented by the presence or absence of a logic voltage on a
signal line or the on and off states of a simple switch.

In decimal {base 10) numbers, the weight of each digit is ten times as great
as the digit immediately to its right. The rightmost digit of a decimal integer
is the ones place, the digit to its left is the tens digit, and so on. In binary
(base 2) numbers, the weight of each digit is two times as great as the digit
immediately to its right. The rightmost digit of the binary integer is the ones
digit, the next digit to the left is the twos digit, next is the fours digit, then
the eights digit, and so on.

Although computers are quite comfortable working with binary numbers of

8, 16, or even 32 binary digits, humans find it very inconvenient to work with
so many digits at a time. The base 16 (hexadecimal) numbering system offers

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



a practical compromise. One hexadecimal digit can exactly represent four
binary digits, thus, an 8-bit binary number can be expressed by two hex-
~adecimal digits.

The correspondence between a hexadecimal digit and the four binary digits
it represents is simple enough that humans who work with computers easily
learn to mentally translate between the two. In hexadecimal (base 16) num-

_ bers, the weight of each digit is 16 times as great as the digit immediately
to its right. The rightmost digit of a hexadecimal integer is the ones place,
the digit to its left is the sixteens digit, and so on.

Table 2-1 demonstrates the relationship between the decimal, binary, and
hexadecimal representations of values. These three different numbering sys-
tems are just different ways to represent the same physical quantities.

Table 2-1. Decimal, Binary, and
Hexadecimal Equivalents

Base 10 . Base 16
Decimal Base 2 Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
1 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 0001 0000 10
17 0001 0001 11
100 0110 0100 64
255 1111 111 FF
1024 0100 0000 0000 | 400
65,535 111 1111 1111 1N FFFF

The letters A through F are used to represent the hexadecimal values cor-
responding to 10 through 15 because each hexadecimal digit can represent
16 different quantities; whereas, our customary numbers only include the 10
unique symbols (0 through 9). Thus, some other single-digit symbols had to
be used to represent the hexadecimal values for 10 through 15.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-3



To avoid confusion about whether a number is decimal or hexadecimal,
hexadecimal numbers are preceded by the $ symbol. For example, 64 means
decimal “‘sixty-four”’; whereas, $64 means hexadecimal “‘six-four”, which is
equivalent to decimal 100. Some other computer manufacturers follow hex-
adecimal values with a capital H (as in 64H).

Hexadecimal is a good way to express and discuss numeric information
processed by computers because it is easy for people to mentally convert
between hexadecimal digits and their 4-bit binary equivalent. The hexade-
cimal notation is much more compact than binary while maintaining the
binary connotations.

2.2 COMPUTER CODES

2-4

Computers must handle many kinds of information other than just numbers.
Text (alphanumeric characters) and instructions must be encoded in such a
way that the computer can understand this information. The most common
code for text information is the American Standard Code for Information
Iinterchange {or ASCII). The ASCIl code establishes a widely accepted cor-
relation between alphanumeric characters and specific binary values. Using
the ASCIl code, $41 corresponds to capital A, $20 corresponds to a space
character, etc. The ASCIl code translates characters to 7-bit binary codes, but
in practice the information is most often conveyed as 8-bit characters with
the most significant bit equal to zero. This standard code allows equipment
made by various manufacturers to communicate because all of the machines
use this same code.

Computers use another code to give instructions to the CPU. This code is
called an operation code or opcode. Each opcode instructs the CPU to execute
a very specific sequence of steps that together accomplish an intended op-
eration. Computers from different manufacturers use different sets of op-
codes because these opcodes are internally hard-wired in the CPU logic. The
instruction set for a specific CPU is the set of all opcodes that the CPU knows
how to execute. Even though the opcodes differ from one computer to another,
all digital binary computers perform the same kinds of basic tasks in similar
ways. The CPU in the MC68HC05 MCU can understand 62 basic instructions.
Some of these basic instructions have several slight variations, each requiring
a separate opcode. The instruction set of the MC68HCO05 includes 210 unique
instruction opcodes. We will discuss how the CPU actually executes instruc-
tions a little later in this section after a few more basic concepts have been
presented.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



An opcode such as $4C is understood by the CPU, but it is not very meaningful
to a human. To solve this problem, a system of mnemonic instruction formats
is used. The $4C opcode corresponds to the INCA mnemonic, which is read
“increment accumulator.”” Although there is printed information to show the
correlation between mnemonic instructions and the opcodes they represent,
this information is seldom used by a programmer because the translation
process is automatically handled by a separate computer program called an
assembler. An assembler is a program that converts a program written in
mnemonics into a list of machine codes (opcodes) that can be used by a
CPU.

An engineer develops a set of instructions for the computer in mnemonic
form and then uses an assembler to translate these instructions into opcodes
that the CPU can understand. We will discuss instructions, writing programs,
and assemblers later in this applications guide, but you should understand
that people prepare instructions for a computer in mnemonic form and the
computer understands only opcodes; thus, a translation step is required to
change the mnemonics to opcodes, and this is the function of the assembler.

Before leaving this discussion of number systems and codes, we will look
at two additional codes you may have heard about. Octal (base 8) notation
was used for some early computer work but is seldom used today. Octal
notation uses the numbers 0 through 7 to represent sets of three binary digits
in the same way hexadecimal is used to represent sets of four binary digits.
The octal system had the advantage of using customary number symbols
(unlike the hexadecimal symbols A through F discussed earlier).

Two disadvantages caused octal to be abandoned for the hexadecimal no-
tation used today. First of all, most computers use 4, 8, 16, or 32 bits per
word; these words do not break down nicely into sets of three bits. (Some
early computers used 12-bit words which did break down into four sets of
three bits each.) The second problem was that octal is not as compact as
hexadecimal. For example, the ASCIl value for capital A is 1000001, in binary,
414 in hexadecimal, and 101z in octal. When a human is talking about the
ASCIl value for A, it is easier to say ““four-one” than it is to say “one-zero-
one.” When mentally translating from hexadecimal to binary, it is easy to
convert each hexadecimal digit into four binary bits. It is more difficult to
make the octai-to-binary translation because you have to remember to throw
away the leading zero of the first group of three binary bits. You probably
had to think twice about that last statement, and that is exactly the point.

Binary coded decimal (BCD) is a hybrid notation used to express decimal
values in binary form. BCD uses four binary bits to represent each decimal

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-5



digit. Since four binary digits can express 16 different physical quantities,
there will be six bit-value combinations that are considered invalid (specifi-
cally, the hexadecimal values A through F). Values are kept in pseudo-decimal
form during calculations.

When the computer does a BCD add operation, it performs a binary addition
and then adjusts the result back to BCD form. As a simple example, consider.
the BCD addition of 94+ 1,0=104. The computer adds 0000 1001, + 0000
0001,=0000 1010,, but 1010, is equivalent to A which is not a valid BCD
value. When the computer finishes the calculation, a check is performed to
see if the result is still a valid BCD value. If there was any carry from one
BCD digit to another or if there was any invalid code, a sequence of steps
would be performed to. correct the result to proper BCD form (0000 1010, is
corrected to 0001 0000, (BCD 10) in this example).

In most cases, it is inefficient to use BCD notation in computer calculations.
It is better to change from decimal to binary as information is entered, do
all computer calculations in binary, and change the binary result back to BCD
or decimal as needed for display. First, not all computers are capable of doing
BCD calculations because they need a digit-to-digit carry indicator which is
not present on ail computers (though Motorola MCUs do have this half-carry
indicator). Secondly, forcing the computer to emulate human behavior is
inherently less efficient than allowing the computerto work in its native binary
system.

2.3 COMPUTER MEMORY

2-6

Before the operation of the CPU can be discussed in detail, some conceptual
knowledge of computer memory is required. In many beginning program-
ming classes, memory is presented as being similar to a matrix of pigeon
holes where you can save messages and other information. The pigeon holes
we are referring to are like the mailboxes in a large apartment building. This
is a good analogy but needs a little refinement if it is to be used to explain
the inner workings of a CPU. We will confine our discussion to an 8-bit CPU
so that we can be very specific.

In an 8-bit CPU, each pigeon hole (or mailbox) can be thought of as containing
a set of eight on/off switches (eight bits of data are called a byte of data).
Unlike a pigeon hole, you cannot fit more information in by writing smaller,
and there is no such thing as an empty pigeon hole {though the contents of
a memory location can be unknown or undefined at a given time). The switches
would be in a row where each switch would represent a single binary digit.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



2.3.1

A binary one corresponds to the switch being on, and a binary zero corre-
sponds to the switch being off. Each pigeon hole (memory location) has a
unique address so that information can be stored and reliably retrieved.

Computer Architecture

Motorola M68HC05 and M68HC11 8-bit MCUs have a specific organization
which is called a Von Neumann architecture after an American mathematician
of the same name. In this architecture, a CPU and a memory array are inter-
connected by an address bus and a data bus. The address bus is used to
identify which pigeon hole is being accessed, and the data bus is used to
convey information either from the CPU to the memory location (pigeon
hole) or from the memory location to the CPU.

In the Motorola implementation of this architecture, there are a few special
pigeon holes (called CPU registers) inside the CPU, which act as a small
scratch pad and control panel for the CPU. These CPU registers are similar
to memory in that information can be written into them and remembered.
However, it is important to remember that these registers are directly wired
into the CPU and are not part of the addressable memory available to the
CPU.

All information (other than the CPU registers) accessible to the CPU is en-
visioned (by the CPU) to be in a single row of several thousand pigeon holes.
This organization is sometimes called a ‘memory-mapped /O’ system be-
cause the CPU treats all memory locations alike whether they contain pro-
gram instructions, variable data, or input-output (I/O) controls. There are
other computer architectures, but this applications guide is not intended to
explore these variations. Fortunately, the Motorola architecture we are dis-
cussing is one of the easiest to understand and use. This architecture encom-
passes the most important concepts of digital binary computers; thus, the
information presented in this applications guide will be applicable even if
you go on to study other architectures.

The number of wires in the address bus determines the total possible number
of pigeon holes; the number of wires in the data bus determines the amount
of information that can be stored in each pigeon hole. In the MC68HC705C8,
the address bus is 13 bits, making a maximum of 8192,, separate pigeon
holes (in MCU jargon you would say this CPU can access 8K locations). Since
the data bus in the MC68HC705C8 is eight bits, each pigeon hole can hold
one byte of information. One byte is eight binary digits, or two hexadecimal
digits, or one ASCII character, or a decimal value from 0 to 255.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-7




2.3.2 CPU Registers

2-8

Different CPUs have different sets of CPU registers. The differencesare pri-
marily the number and size of the registers. Figure 2-2 shows the CPU reg-
isters found in an M68HCO05. While this is a relatively simple set of CPU
registers, it is representative of all types of CPU registers and can be used
to explain all of the fundamental concepts.

7 0
——
I ACCUMULATOR I A
T T T T T T Ll
l INDEX REGISTER I X
i i l L i I 1 J
12 - 7 5 0
T T T T Ll
oo oo [ [ shacronin | =
15 12 0
T Ll T T T T 1 T T T Ll 1
[ OJ 0 LO l PROGRAM COUNTER I PC
7 4 3 2 1 0
T T T T
CONDITION CODE REGISTER l 1 l 1 I 1 ﬁ I N Z ¢C | cc
L—CAHRY
ZERO
NEGATIVE
I INTERRUPT MASK

HALF-CARRY (FROM BIT 3)

Figure 2-2. M68HC05 CPU Registers

The A register, an 8-bit scratch-pad register, is also called an accumulator
because it is often used to hold one of the operands or the result of an
arithmetic operation.

The X register is an 8-bit index register, which can also serve as a simple
scratch pad. The main purpose of an index register is to point at an area in
memory where the CPU will load (read) or store (write) information. Some-
times an index registeris called a pointer register. We will learn more about
index registers when we discuss indexed addressing modes.

The program counter (PC) register is used by the CPU to keep track of the

address of the next instruction to be executed. When the CPU is reset (starts
up), the PC is loaded from a specific pair of memory locations called the reset

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



vector. The reset vector locations contain the address of the first instruction
to be executed by the CPU. As instructions are executed, logic in the CPU
increments the PC such that it always points to the next piece of information
that the CPU will need. The number of bits in the PC exactly matches the
number of wires in the address bus. This determines the total potentially
available memory space that can be accessed by a CPU. In the case of an
MC68HC705C8, the PC is 13 bits long; therefore, its CPU can access up to
8K bytes (8192) of memory. Values for this register are expressed as four
hexadecimal digits where the upper-order three bits of the corresponding
16-bit binary address are always zero.

The condition code (CC) register is an 8-bit register holding status indicators
that reflect the result of some prior CPU operation. The three high-order bits
of this register are not used and always stay at logic one. Branch instructions
use these status bits to make simple either/or decisions.

The stack pointer (SP) is used as a pointer to the next available location in
a last-in-first-out (LIFO) stack. The stack can be thought of as a pile of cards,
each holding a single byte of information. At any given time, the CPU can
put a card on top of the stack or take a card off the stack. Cards within the
stack cannot be used unless all the cards piled on top are removed first. The
CPU accomplishes this stack effect by way of the SP. The SP points to a
memory location {pigeon hole), which is thought of as the next available
card. When the CPU pushes a piece of data onto the stack, the data value is
written into the pigeon hole pointed to by the SP; the SP is then decremented
so it points at the next previous memory location (pigeon hole). When the
CPU pulls a piece of data off the stack, the SP is incremented so it points at
the most recently used pigeon hole, and the data value is read from that
pigeon hole. When the CPU is first started up or after a reset stack pointer
(RSP) instruction, the SP points to a specific memory location in RAM (a
certain pigeon hole).

2.3.3 Memory Uses

The computer memory holds all information needed by the computer for
instructions, variable data, and even /O status and controls. Some memory
locations contain fixed data like the instructions for the CPU and tables of
constant data. This information is typically held in a read-only memory (ROM)
although there is no special requirement that this information has to be
located in ROM. A second type of information used by computers is variable
information that changes often during the operation of the system. This type

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-9



2-10

of data is typically held in a read-write random-access memory (RAM). Infor-
mation can be read from or written to various locations in RAM in an arbitrary
random order. A third type of information found in a computer system is
I/0 status and control information. This type of memory location allows the
computer system to get information to or from the outside world. This type
of memory location is unusual because the information can be sensed and/
or changed by something other than the CPU.

The simplest kind of /0 memory locations are a simple input port and a
simple output port. In an 8-bit MCU, a simple input port would consist of
eight pins that can be read by the CPU. A simple output port would consist
of eight pins that the CPU can control (write to). In practice, a simple output
port location is usually implemented with eight latches and feedback paths
that allow the CPU to read back what was previously written to the address
of the output port.

Figure 2-3 shows the equivalent circuit for one bit of RAM, one bit of an input
port, and one bit of a typical output port having readback capability. In a real
MCU, this circuit would be repeated eight times to make a single 8-bit RAM
location, input port, or output port.

When the CPU stores a value to the address that corresponds to the RAM
bit in Figure 2-3 (a), the WRITE signal is activated to latch the data from the
data bus line into the fiip-flop [1]. This latch is static and remembers the
value written until a new value is written to this location {or power is re-
moved). When the CPU reads the address of this RAM bit, the READ signal
is activated, which enables the multiplexer at [2]. This multiplexer couples
the data from the output of the flip-flop into the data bus line. In a real MCU,
RAM bits are actually much simpler than shown here, but they are functionally
equivalent to this circuit.

When the CPU reads the address of the input port shown in Figure 2-3 (b),
the READ signal is activated, which enables the multiplexer at [3]. The multi-
plexer couples the buffered data from the pin onto the data bus line. A write
to this address would have no meaning.

When the CPU stores a value to the address that corresponds to the output
port in Figure 2-3 (c), the WRITE signal is activated to latch the data from the
data bus line into the flip-flop [4]. The output of this latch, which is buffered
by the buffer driver at [5], appears as a digital level on the output pin. When
the CPU reads the address of this output port, the READ signal is activated,
which enables the multiplexer at [6]. This multiplexer couples the data from
the output of the flip-flop onto the data bus line.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



READ —__Bd[ )

DATABITn
(n=0,1...0r7)

WRITE

READ
8
DATABITn

—

M

(a) RAM Bit

DIGITAL
{PlN l INPUT

(n=0,1...0r 7) N /]
< N
BUFFER
(b) Input Port Bit
READ Wﬁl
«— X
HFE I\
DATABIT D Q
(n=0, 1...or7r; —> —> l/[5]
WRITE c Q BUFFER - DRIVER

(c) Output Port with Readback

Figure 2-3. Memory and I/O Circuitry

MOTOROLA

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

DIGITAL
iP‘N I OUTPUT



2.3.4 Memory Maps

Since there are several thousand memory locations in the MCU system, it is
important to have a convenient way to track locations. A memory map is a
pictorial representation of the total MCU memory space. Figure 2-4 is a typical
memory map showing a subset of the memory resources in the

$0000 0 Pori A Data Registe! $00
$001F 32 Bytes ) 'l:on B Data Register $o01
$0020 ™ ort C Data Register $02
Port D Fixed Input Register $03

Motorola Use SEE INSET = | Port A Data Direction Register | $04

48 Bytes Port B Data DirectionRegister | $05

$004F Port C Data Direction Register | $06
$0050 ~ Unused $07
T Unused $08

Unused $09

RAM SPI Control Register $0A

176 Bytes SPI Status Register $0B

$00BF _} ol ______ ] SPI Data I/ Register $0C
$00co | SCi Baud Rate Register $0D
Gf?d(es SCI Control Register $0E

$O0FF " SCI Control Register $OF
$0100 ~ Y SCI Status Register $10
SCI Data Register $11

Timer Control Register $12

Timer Status Register $13

Input Capture Register (high) $14

Input Capture Register (low) $15

Output Compare Register (high) | $16

Output Compare Register {low) $17

Timer Count Register (high) $18

Timer Count Register (low) $19
User PROM All_Count Register (high) $1A

7680 Bytes Alt. Count Register(low) $1B

EPROM Program Register $1C

COP Reset Register $1D

COP Control Register $1E

Unused $1F

$1EFF _ A
$1F00 SPI Vector (high) $1FF4
SPI Vector (low) $1FF5
SCI Vedtor {high} $1FF6
SCi Vector (low) $1FF7
”?3‘1’%3,35 ¢ Tirmer Vedtor (high] $1FF8
Timer Vector (low) $1FF9
IRQ Vedtor (high) $1FFA
IRQ Vedtor {low) $1FFB
$1FF3 _ SWI Veclor {high) $1FFC
$1FF4 User PROM SWI Vector (low) $1FFD
Vectors RESET Vector (high byte) $1FFE
$1FFF _ 12 Bytes RESET Vector {low byte) $1FFF
INSET
Bit7 Bito

'[ Port A Data Direction Fiagisler i£ [pora7]obras | poras [ ooras J poras | boraz [oorat [oorac)

Figure 2-4. Typical Memory Map

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



MC68HC705C8. Some memory areas (reserved for Motorola use) were pur-
posely left out of this figure to make it easier to understand. The complete
version of this memory map can be found in the Figure 3-5. '

The four-digit hexadecimal values along the left edge of Figure 2-4 are ad-
dresses beginning with $0000 at the top and increasing to $1FFF at the bot-
tom. $0000 corresponds to the first memory location selected (when the CPU
drives all address lines of the internal address bus to logic zero). $1FFF
corresponds to the last memory location selected {(when the CPU drives all
13 address lines of the internal address bus to logic one). The labels within
the vertical rectangle identify what kind of memory (RAM, PROM, /O reg-
isters, etc.) resides in a particular area of memory.

Some areas, such as I/O registers, need to be shown in more detail because
it is important to know the names of each individual location. The vertical
rectangle can be interpreted as a row of 8192 pigeon holes (memory loca-
tions). Each of these 8192 memory locations contains eight bits of data as
shown in the inset in Figure 2-4.

The first 256 memory locations ($0000-$00FF) can be accessed with the direct
addressing mode of many CPU instructions. In this addressing mode, the
CPU assumes that the upper two hexadecimal digits of address are always
zeros; thus, only the two low-order digits of the address need to be explicitly
given in the instruction. All on-chip /O registers and 176 bytes of RAM are
located in the $0000-$00FF area of memory. in the memory map (Figure
2-4), the expansion of the I/O area of memory identifies each register location
with the two low-order digits of its address rather than the full four-digit
address. For example, the two-digit hexadecimal value $00 appears to the
right of the port A data register, which is actually located at address $0000
in the memory map.

Now that we have some background knowledge of computer memory, we
can continue with our discussion of the CPU.

2.4 TIMING -

A high-frequency clock source (typically derived from a crystal connected to
the MCU) is used to control the sequencing of CPU instructions. Typical MCUs
divide the basic crystal frequency by two or more to arrive at a bus-rate clock.
Each memory read or write takes one bus-rate clock cycle. In the case of the
MC68HC705C8 MCU, a 4-MHz (maximum) crystal oscillator clock is divided
by two to arrive at a 2-MHz (maximum) internal processor clock. Each substep

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-13



of an instruction takes one cyclé of this internal processor clock (500 ns).
Most instructions take two to five of these substeps; thus, the CPU is capable
of executing about 500,000 instructions every second.

2.5 PROGRAMMING

2.5.1

2-14

At this point, we will write a short program in mnemonic form, translate it
into machine code, and discuss how the CPU would execute the program.
This exercise will provide insight into the internal operation of the CPU and
computers in general. The instruction set explanations and the process of
writing programs will be more understandable with this background.

Our program will read the state of a switch connected to an input pin. When
the switch is closed, the program will cause an LED connected to an output
pin to light for about one second and then go out. The LED will not light
again until the switch has been released and closed again. The length of time
the switch is held closed will not affect the length of time the LED is lighted.

Although this program is very simple, it demonstrates the most common
elements of any MCU application program. First, it demonstrates how a
program can sense input signals such as switch closures. Second, this is an
example of a program controlling an output signal. Third, the LED on-time
of about one second demonstrates one way a program can be used to meas-
ure real time. Because the algorithm is sufficiently complicated, it cannot be
accomplished in a trivial manner with discrete components (at minimum, a
one-shot IC with external timing components would be required). This ex-
ample demonstrates that an MCU and a user-defined program (software)
can replace complex circuits. .

Flowchart

Figure 2-5 is a flowchart of the example program. Flowcharts are often used
as a planning tool for writing software programs because they show the
function and flow of the program under development. The importance of
notes, comments, and documentation for software cannot be overempha-
sized. Just as you would not consider a circuit-board design complete until
there is a schematic diagram, parts list, and assembly drawing, you should
not consider a program complete until there is a commented listing and a
comprehensive explanation of the program such as a flowchart.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



FLOWCHART

SET INITIAL CONDITIONS:
PORT C = ALL OUTPUTS
DATA PATTERN 1110 0000 TO PORT C

>

>
>

READ SWITCH

<>

YES

DELAY TO DEBOUNCE

TURN ONLED
DELAY 1 SECOND

TURN OFF LED

SWITCH
STILL CLOSED ?

DELAY TO DEBOUNCE

Figure 2-5. Example Flowchart

2.5.2 Mnemonic Source Code

Once the flowchart or plan is completed, the programmer develops a series
of assembly language instructions to accomplish the function(s) called for in
each block of the plan. The programmer is limited to selecting instructions
from the instruction set for the CPU being used (in this case the MC68HCO05).

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-15



2-16

The programmer writes instructions in @ mnemonic form which is easy to
understand. Figure 2-6 shows the mnemonic source code next to the flow-
chart of our example program so you can see what CPU instructions are
used to accomplish each block of the flowchart. The meanings of the mne-
monics used in the right side of Figure 2-6 can be found in Appendix A.

FLOWCHART MNEMONIC PROGRAM

INIT LDA #SFF
SET INITIAL CONDITIONS:

PORT C = ALL OUTPUTS STA  DDRC
DATA PATTERN 1110 0000 TO PORT G IDA  #$EO
STA  PORTC
READ SWITCH TOP LDA  PORTB
BPL  TOP

DELAY TO DEBOUNCE

JSR DLY50

TURN ON LED BCLR 6,PORTC

LDA #20
DELAY 1 SECOND DLYLP JSR  DLY50
DECA

BNE DLYLP

TURN OFF LED BSET 6,PORTC

OFFLP BRSET 7,PORTB, OFFLP

SWITCH
STILL CLOSED ?

DELAY TO DEBOUNCE

JSR DLY50

BRA TOP

Figure 2-6. Flowchart and Mnemonics

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



During development of the program instructions, it was noticed that a time
delay was needed in three places. A subroutine was developed that would
generate a 50-ms delay. This subroutine was used directly in two places (for
switch debouncing) and made the one-second delay easier to produce. To
keep this figure simple, the comments that would usually be included within
the source program for documentation are omitted. The comments will be
shown in the complete assembly listing in Figure 2-8.

2.5.3 Software Delay Program

Figure 2-7 shows an expanded flowchart of the 50-ms delay subroutine. A
subroutine is a relatively small program which performs some commonly
required function. Even if the function needs to be performed many times

INSTRUCTION
FLOWCHART MNEMONICPROGRAM it ro\a 08
START 6 (JSR)
SUBROUTINE
SAVE ACCUMULATOR DLY50 STA TEMP1 4
LOAD VALUE
CORRESPONDING TO 50mS LDA #32 2
> r
QUTLP CLRX 3
DECREMENT COUNT INNRLP DECX 3 )
BNE INNRLP 3
‘ @
DECA 3
E)((;Sgg ? BNE QUTLP 3
ACCOMATOR LDA  TEMP1 3
RETURN FROM
‘

[1]- INNRLP is executed 256 times on each pass through outer loop.
[2] - OUTLP is executed 32 times.

Figure 2-7. Delay Routine Flowchart and Mnemonics

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-17



in the course of a program, the subroutine only has to be written once. Each
place where this function is needed, the programmer would call the subrou-
tine with a branch-to-subroutine (BSR) or jump-to-subroutine {(JSR) instruc-
tion.

Before starting to execute the instructions in the subroutine, the address of
the instruction which follows the JSR (or BSR) is automatically stored in
temporary RAM memory locations. When the CPU finishes executing the
instructions within the subroutine, a return-from-subroutine (RTS) instruction
is performed as the last instruction in the subroutine. The RTS instruction
causes the CPU to recover the previously saved return address; thus, the
CPU continues the program with the instruction following the JSR (or BSR)
instruction that originally called the subroutine.

The delay routine of Figure 2-7 involves an inner loop (INNRLP) within another
foop (OUTLP). The inner loop consists of two instructions executed 256 times
before X reaches $00 and the BNE branch condition fails. This amounts to
six cycles at 1 ps/cycle times 256, which equals 1.536 ms for the inner loop.
The outer loop executes 32 times. The total execution time for the outer loop
is 32(1536 +9) or 32(1545)=49.44 ms. The miscellaneous instructions in this
routine other than those in the outer loop total 21 cycles; thus, the total time
required to execute the DLY50 routine is 49.461 ms, including the time re-
quired for the JSR instruction that calls DLY50.

The 16-bit timer system in the MC68HC705C8 can also be used to measure
time. The timer-based approach is actually preferred because the CPU can
perform other tasks during the delay, and the delay time is not dependent
on the exact number of instructions executed as it is in DLY50.

2.5.4 Assembler Listing

2-18 -

After a complete program or subprogram is written, it must be converted
from mnemonics into binary machine code that the CPU can later execute.
A separate computer system, such as an IBM PC, is used to perform this
conversion to machine language. A computer program called an assembler
is used. The assembler reads the mnemonic version of the program (also
called the source version of the program) and produces a machine-code

version of the program in a form that can be programmed into the memory
of the MCU.

The assembler also produces a composite listing showing both the original
source program {(mnemonics) and the object code translation. This listing is
used during the debug phase of a project and as part of the documentation
for the software program. Figure 2-8 shows the listing which results from

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



KhkAhkAAk kA kA KAk hkkkhhkhkhkhkhkkhkkhkhkhkhkkhkkkkkkkhkhkkhkkkkkkkkkx

Simple 68HC05 Program Example *
Read sw connected to bit-7 of port B; l=closed *
When sw. closes, light LED for about 1 Sec; LED *
on when port C bit 6 = 0. Wait for sw release, *

* then repeat. Debounce sw 50mS on & off
% %k %k Kk Kk Kk k% ok ke ke ok %k Sk ok ok sk Kk %k Kk ok %k ok ko ke sk ok sk ok ok ok ok ok ok Sk %k ok gk ke ok ke k ke k ke ke ok ok

* X Ok %

0001 PORTB EQU $01 Direct address of port B (sw)
0002 PORTC EQU $02 Direct address of port C (LED)
0005 DDRB EQU $05 Data direction control, port B
0006 DDRC EQU $06 Data direction control, port C
009f TEMP1 EQU SOF One byte temp storage location
00a0 ORG  SA0 Program will start at $00A0

* $00A0 is in '705C8 RAM
00a0 a6 ff INIT LDA  #SFF Begin initialization
00a2 b7 06 STA DDRC Set port C to act as outputs

* Port B is configured as inputs by default from reset.
00a4 a6 e0 LDA #SEO Red & green LEDs and beeper off
00a6 b7 02 STA PORTC Turn off red LED

* Some pins of port C (of my board) happen to be connected
* to devices which don't apply to this example program.
* The $E0 pattern turns off my stuff & turns off red LED

00a8 b6 01 TOP LDA PORTB Read sw at MSB of Port B
00aa 2a fc BPL TOP Loop till MSB=1 (Neg trick)
00ac cd 00 c3 JSR DLY50 Delay about 50 mS to debounce
00af 14 02 BCLR 6,PORTC Turn on LED (bit-6 to zero)
00bl a6 14 LDA #20 Decimal 20 assembles to $14
00b3 cd 00 ¢3 DLYLP JSR DLY50 Delay 50 mS
00b6 4a DECA Loop counter for 20 loops
00b7 26 fa BNE DLYLP 20 times (20-19,19-18,.1-0)
00b9 1lc 02 BSET 6,PORTC Turn LED back off
00bb Oe 01 fd OFFLP BRSET 7,PORTB,OFFLP Loop here till sw off
00be cd 00 c3 JSR DLY50 Debounce release
00cl 20 e5 BRA TOP Look for next sw closure

* Kk

* DLY50 - Subroutine to delay ~50mS
* Saves original accumulator value

* but X will always be zero on return
* Xk

00c3 b7 9f DLY50 STA TEMP1 Save accumulator in RAM

00c5 a6 20 LDA #32 Do outer loop 32 times

00c7 5f OUTLP CLRX X used as inner loop count
00c8 5Sa INNRLP DECX 0-FF, FF-FE,...1-0 256 loops
00c9 26 fd BNE  INNRLP 6cyc*256*1puS/cyc = 1.536mS
00cb 4a DECA 32-31, 31-30,...1-0

00cc 26 £9 BNE OUTLP 1545cyc*32*1uS/cyc=49.440ms
00ce b6 9f LDA TEMP1 Recover saved Accumulator val
00d0 81 RTS ** Return **

Figure 2-8. Assembiler Listing

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-19



2-20

assembling the example program. Comments were added before the pro-
gram was assembled.

Section 4 should be thoroughly studied before attempting to run any of the
sample programs in this guide. Some of the sample programs were devel-
oped on another member of the M68HC05 Family which has a slightly dif-
ferent memory map than the MC68HC705C8. Minor modifications may be
necessary to successfully run these programs on the MC68HC705C8.

Refer to Figure 2-9 for the following discussion. This figure shows some lines
of the listing with reference numbers indicating the various parts of the line.
The first line is an example of an assembler directive line. This line is not
really part of the program; rather, it provides information to the assembler
so that the real program can be converted properly into binary machine code.

0001 PORTB EQU 501 Direct address of port B (sw)
00a0 ORG $AQ Program will start at $00A0
00a8 b6 01 TOP LDA PORTB Read sw at MSB of Port B
w2 e w1 e

Figure 2-9. Explanation of Assembler Listing

EQU, short for equate, is used to give a specific memory location or binary
number a name which can then be used in other program instructions. In
this case, the EQU directive is being used to assign the name PORTB to the
value $01, which is the address of port B in the MC68HC705C8. It is easier
for a programmer to remember the mnemonic name PORTB rather than the
annonymous numeric value $01. When the assembler encounters one of
these names, the name is automatically converted to its corresponding binary
value in much the same way that instruction mnemonics are converted into
binary instruction codes. '

The second line shown in Figure 2-9 is another assembler directive. The
mnemonic ORG, which is short for originate, tells the assembler where the
program-will start {the address of the start of the first instruction following
the ORG directive line). ORG directives may be used more than once in a
program to tell the assembler to put different parts of the program in specific
places in memory. Refer to the memory map of the MCU to select an appro-
priate memory location where a program should start.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



In this assembler listing, the first two fields, [1] and [2], are generated by the
assembler, and the last four fields, [3], [4], [5], and [6], are the original source
program written by the programmer. Field [3] is a label (TOP) which can be
referred to in other instructions. In our example program, the last instruction
was “BRA TOP"”, which simply means the CPU will continue execution with
the instruction that is labeled “TOP"".

When the programmer is writing a program, the addresses where instructions
will be located are not typically known. Worse yet, in branch instructions,
rather than using the address of a destination, the CPU uses an offset (dif-
ference) between the current PC value and the destination address. Fortu-
nately, the programmer does not have to worry about these problems because
the assembler takes care of these details through a system of labels. This
system of labels is a convenient way for the programmer to identify specific
points in the program (without knowing their exact addresses); the assembler
can later convert these mnemonic labels into specific memory addresses and
even calculate offsets for branch instructions so that the CPU can use them.

Field [4] is the instruction field. The LDA mnemonic is short for load accu-
mulator. Since there are six variations (different opcodes) of the load accu-
mulator instruction, additional information is required before the assembler
can choose the correct binary opcode for the CPU to use during execution
of the program. Field [5] is the operand field, providing information about
the specific memory location or value to be operated on by the instruction.
The assembler uses both the instruction mnemonic and the operand specified
in the source program to determine the specific opcode for the instruction.

The different ways of specifying the value to be operated on are called
addressing modes (a more complete discussion of addressing modes is pre-
sented later). The syntax of the operand field is slightly different for each
addressing mode so the assembler can determine the correct intended
addressing mode from the syntax of the operand. In this case, the operand
[5] is PORTB, which the assembler automaticaily converts to $01 (recall the
EQU directive). The assembler interprets $01 as a direct addressing mode
address between $0000 and $00FF, thus selecting the opcode $B6, which is
the direct addressing mode variation of the LDA instruction. If PORTB had
been preceded by a # symbol, that syntax would have been interpreted by
the assembler as an immediate addressing mode value, and the opcode $A6
would have been chosen instead of $B6.

Field [6] is called the comment field and is not used by the assembler to
translate the program into machine code. Rather, the comment field is used
by the programmer to document the program. Although the CPU does not
use this information during program execution, a good programmer knows

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-21



255

2-22

that it is one of the most important parts of a good program. The comment
[6] for this line of the program says “‘read sw at MSB of port B."” This comment
tells someone who is reading the listing why port B is being read, which is
essential for understanding how the program works. An entire line can be
made into a comment line by using an asterisk (*) as the first character in
the line. In addition to good comments in the listing, it is also important to
document programs with a flowchart or other detailed information explaining
the overall flow and operation of the program.

CPU View of a Program

Figure 2-10, a memory map of the MC68HC705C8, shows how the example
program fits in the memory of the MCU. This figure is the same as Figure
2-4 except that a different portion of the memory space has been expanded
to show the contents of all locations in the program. Figure 2-10 shows that
the CPU sees the example program as a linear sequence of binary codes,
including instructions and operands in successive memory locations. The
CPU begins this program with its program counter (PC) pointing at the first
byte in the program. Each instruction opcode tells the CPU how many (if any)
and what type of operands go with that instruction. in this way, the CPU can
remain aligned to instruction boundaries even though the mixture of opcodes
and operands looks confusing to us.

Most application programs would be located in ROM, EPROM, or OTPROM.
This example program is loaded into an area of RAM to avoid having to
program (and later erase) the EPROM. There is no special requirement that
instruction must be in a ROM-type memory to execute. As far as the CPU is
concerned, any program is just a series of binary bit patterns which are
sequentially processed.

Carefully study the program listing in Figure 2-8 and the memory map of
Figure 2-10. Find the first instruction of the DLY50 subroutine in Figure 2-8
and then find the same two bytes in Figure 2-10.

You should have found the following line from near the bottom of
Figure 2-8.

00c3 b7 9f DLY50 STA TEMP1 Save accumulator in RAM

The outlined section of memory in Figure 2-10 is the area you should have
identified.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



110
$FF__| $00A1
$O01F _ 32 Bytes S5 oo
$0020 $06__| $00A3
Motorola Use $A6 $00A4
48 Bytes E0 | $00A5
$B7__| $00A6
So0aF _ 02 $00A7
$0050 A $B6 | $00A8
o
Bytes
gg.ﬁ’iF - % $FC__| $00AB
$CD $00AC
$00 $00AD
$00D0 03] $00AE
FF y $1D__ | $O00AF
e \ $02_| $0080
Al $00B1
$14 $00B2
$CD | $00B3
$00 $00B4
$C3__| $00B5
$4A__| $00B6
$26 | $00B7
$FA__| $00B8
1C__| $00B9
User PROM 2 $00BA
7680 B ¥
ytes 0| $00BB
[soi_] sooBC
$FD__| $00BD
$00C3
e $00C4
C3__| $00CO
1
$E5
S$1EFF / 87 | $00C3
$1F00 ~ $OF | $00C4
A6
6
| SR
Motorola Use __$5F $00C7
144 Bytes $5A $00C8
$26 $00C9
$FD__| $00CA
$4A_| $00CB
$1FF3 | $26 | $oocc
$1FF4 User PROM $F9 | $00CD
e ==
es
$1FFF _ o 0000

Figure 2-10. Memory Map of Example Program

2.6 CPU OPERATION

This section will first discuss the detailed operation of CPU instructions and
then explain how the CPU would execute the example program. The detailed
descriptions of typical CPU instructions are intended to make you think like
a CPU. We can then go through the example program using a teaching
technique called ‘playing computer’ in which you pretend you are the CPU
interpreting and executing the instructions in a program.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-23



2.6.1 Detailed Operation of CPU Instructions

Before seeing how the CPU would execute the example program, it would
help to know (in detail) how the CPU breaks down instructions into funda-
mental operations and performs these tiny steps to accomplish a desired
instruction. As we will see, many small steps execute very quickly and very
accurately within each instruction, but none of the small steps is very com-
plicated.

The logic circuitry inside the CPU would seem straightforward to a design
engineer accustomed to working with TTL logic or even relay logic. What
sets the MCU and its CPU apart from these other forms of digital logic is the
packing density. Very large scale integration (VLSI) techniques have made it
possible to fit the equivalent of thousands of TTL integrated circuits on a
single silicon die. By arranging these logic gates to form a CPU, you get a
general-purpose instruction executer capable of acting as a universal logic
element. By placing different combinations of instructions in the device, it
can perform virtually any definable function.

A typical instruction takes two to five cycles of the internal processor clock.
Although it is not normally important to know exactly what happens during
each of these execution cycles, it can help to go through a few instructions
in detail to understand how the CPU works internally.

2.6.1.1 STORE ACCUMULATOR (DIRECT ADDRESSING MODE). Look up the STA

2-24

instruction in Appendix A. In the table at the bottom of the page, we see that
$B7 is the direct addressing mode version of the store accumulator instruc-
tion. We also see that the instruction requires two bytes, one to specify the
opcode ($B7) and the second to specify the direct address where the accu-
mulator will be stored. (The two bytes are shown as “B7 dd” in the machine
code column of the table.)

We will be discussing the addressing modes in more detail later, but the
following brief description will help in understanding how the CPU executes
this instruction. In direct addressing modes, the CPU assumes the address
is in the range of $0000 through $00FF; thus, there is no need to include the

upper byte of address of the operand in the instruction (since it is always

$00).
The table at the bottom of the STA page shows that the direct addressing

version of the STA instruction takes four CPU cycles to execute. During the
first cycle of this STA instruction, the CPU reads the opcode $B7, which

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



identifies the instruction as the direct addressing version of the STA instruc-
tion and advances the PC to the next memory location.

During the second cycle, the CPU places the value from the PC on the internal
address bus and reads the low-order byte of the direct address ($02 for
example). The CPU uses the third cycle of this STA instruction to internally
construct the full address where the accumulator is to be stored, and also
advances the PC so it points to the next address in memory (the address of
the opcode of the next instruction).

In this example, the CPU appends the assumed value $00 (because of direct
addressing mode) to the $02 that was read during the second cycle of the
instruction to arrive at the complete address $0002. During the fourth cycle
of this instruction, the CPU places this constructed address ($0002) on the
internal address bus, places the accumulator value on the internal data bus,
and asserts the write signal. That is, the CPU writes the contents of the
accumulator to $0002 during the fourth cycle of the STA instruction.

This explanation left out certain details, such as setting the condition code
flags, but it gives an idea of what occurs within the CPU during the execution
of a single instruction.

2.6.1.2 LOAD ACCUMULATOR (IMMEDIATE ADDRESSING MODE). Next, look up
the LDA instruction in the instruction set. The immediate addressing mode
version of this instruction appears as A6 ii"’ in the machine code column of
the table at the bottom of the page. This version of the instruction takes two
internal processor clock cycles to execute.

The $A6 opcode tells the CPU to get the byte of data that immediately follows
the opcode and put this value in the accumulator. During the first cycle of
this instruction, the CPU reads the opcode $A6 and advances the PC to point
to the next location in memory (the address of the immediate operand ii).
During the second cycle of the instruction, the CPU reads the contents of the
byte following the opcode into the accumulator and advances the PC to point
at the next location in memory (i.e., the opcode byte of the next instruction).

While the accumulator was being loaded, the N and Z bits in the accumulator
were set or cleared according to the data that was loaded into the accu-
mulator. The boolean logic formulae for these bits appears near the middle
of the instruction set page. The Z bit will be set if the value loaded into the
accumulator was $00; otherwise, the Z bit will be cleared. The N bit will be
set if the most significant bit of the value loaded was a logic one; otherwise,
N will be cleared.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-25



The N (negative) condition code bit may be used to detect the sign of a twos-
complement number. In twos-complement numbers, the most significant bit
is used as a sign bit, one indicates a negative value, and zero indicates a
positive value. The N bit may also be used as a simple indication of the state
of the most significant bit of a binary value.

2.6.1.3 CONDITIONAL BRANCH. Branch instructions allow the CPU to select one

2-26

of two program flow paths, depending upon the state of a particular bit in
memory or various condition code bits. If the condition checked by the branch
instruction is true, program flow proceeds to a specified location in memory.
If the condition checked by the branch is not true, the CPU proceeds to the
instruction following the branch instruction. Decision blocks in-a flowchart
correspond to conditional branch instructions in the program.

Most branch instructions contain two bytes, one for the opcode and one for
a relative offset byte. Branch on bit clear (BRCLR) and branch on bit set
(BRSET) instructions require three bytes: the opcode, a one-byte direct ad-
dress (to specify the memory location to be tested), and the relative offset
byte.

The relative offset byte is interpreted by the CPU as a twos-éomplement
signed value. If the branch condition checked is true, this signed offset is
added to the PC, and the CPU reads its next instruction from this calculated

‘new address. If the branch condition is not true, the CPU just continues to

the next instruction after the branch instruction.

The following excerpt from Figure 2-8 demonstrates a useful way to use a
conditional branch based on the N condition code bit that is sometimes
overlooked.

00a8 b6 01 TOP LDA PORTB Read sw at MSB of Port B
00aa 2a fc BPL TOP Loop till MSB=1 (Neg trick)
00ac cd 00 c3 JSR DLY50 Delay about 50 'mS to debounce

The first line means “load accumulator with the value at 1/0 port B of the
MCU.” The most significant bit of this port is connected to a normally opened
switch and a pulldown resistor. When the switch is pressed (closed), a logic
one is applied to the port pin. If the LDA PORTB instruction is executed when
the switch is opened, the N condition code bit will be cleared. Conversely, if
the LDA PORTB instruction is executed when the switch is closed, the N
condition code bit will be set. !

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



The second line in the listing (BPL TOP) is read “branch if plus to TOP.” In
response to this instruction, the CPU either branches back to the first line of
this program or falls to the third line of the program, depending on the
condition of the N condition code bit. If the N condition code bit is clear, the
CPU branches to the first line of the program. This corresponds to the CPU
interpreting the value previously read from port B as a positive value; hence,
the instruction name “branch if plus.”

Tricks such as that just described are not the only way to read and respond
to I/0 conditions. The following two lines of code would accomplish the same
effect as the three lines which used the N-bit trick.

00a8 0f 01 fd TOP BRCLR 7,PORTB, TOP Loop till sw closed
00ab cd 00 c3 JSR DLY50 Delay about 50 m$ to debounce

The first line of this sequence is read “‘branch to TOP if bit 7 of port B is
clear.” In this particular case, the second sequence is better than the first
sequence for several reasons. The second squence is more straightforward
{less chance for confusion), it takes one less byte of machine code, and it
executes one cycle faster than the three-line sequence. However, in some
cases the operand (PORTB) is needed in the accumulator for some other
reason; thus, the first instruction sequence based on the N-bit trick becomes
the slightly better choice. From a practical point of view, the differences
between these two approaches is very small, and either would work well in
an application.

2.6.1.4 SUBROUTINE CALLS AND RETURNS. The jump-to-subroutine (JSR} and
branch-to-subroutine (BSR) instructions automate the process of leaving the
normal linear flow of a program to go off and execute a set of instructions
and then return to where the normal flow left off. The set of instructions
outside the normal program flow is called a subroutine. A JSR or BSR instruc-
tion is used to go from the running program to the subroutine and a return-
from-subroutine (RTS) instruction is used to return to the program from which
the subroutine was called.

The following figure shows lines of an assembler listing which will be used
to demonstrate how the CPU executes a subroutine call. Assume that the
stack pointer (SP) points to address $00FF when the CPU encounters the JSR
instruction at focation $0102.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-27



0100 a6 02 TOP LDA #502 Load an immediate value

0102 cd 02 00 JSR SUBBY Go do a subroutine

0105 b7 02 STA $02 Store accumulator to port C
" " " " . "
I'. " " " "
L] " "w " ”

0200 4a SUBBY * DECA Decrement accumulator

0201 26 fd BNE SUBBY Loop till accumulator=0

0203 81 RTS ** Return from subroutine **

Refer to Figure 2-11 during the following discussion. We will begin the ex-
planation with the CPU executing the instruction “LDA #%$02" at address
$0100. The left side of the figure shows the normal program flow composed
of TOP LDA #$20, JSR SUBBY, and STA $02 (in that order) in consecutive
memory locations. The right half of the figure shows subroutine instructions
SUBBY DECA, BNE SUBBY, and RTS.

START !
$0100 (1 (s | 191 $0200 SUBBY DECA

TOP  LDA #$02 6]

$o101 2 (17

[10]
("

$0102 3] el | 121 [ 526 ] sozot BNE SUBBY
JSR SUBBY $0103 4 {;ﬁ} Hi} (s ] w22
$0104 5 »{2} $0203 RTS
R (6]
0 23]
6 —" 24
‘ [29]
$0105 27] 126}
STA  $02
$0106 (28]
- [29]

130] |

Figure 2-11. Subroutine Call Sequence

Each.number in square brackets indicates a cycle of the internal processor
clock. The cycle numbers will be used as references in the following expla-
nation of this figure.

[1] CPU reads $A6 opcode from focation $0100 (LDA immediate).

[2] CPU reads immediate data $02 from location $0101 into the accu-
mulator. :

2-28 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



[3] CPU reads $CD opcode from location $0102 (JSR extended).
[4] CPU reads high-order extended address $02 from $0103.

[6] CPU reads low-order extended address $00 from $0104.

[6] CPU builds full address of subroutine ($0200).

[7] CPU writes $05 to $00FF and decrements SP to $00FE. Another way
to say this is “‘push low-order half of return address on stack.”

[8] CPU writes $01 to $00FE and decrements SP to $00FD. Another way
to say this is “push high-order half of return address on stack.” The
return address that was saved on the stack is $0105, which is the
address of the instruction that follows the JSR instruction.

[9] CPU reads $4A opcode from location $0200. This is the first instruction
of the called subroutine.

[10] [11] The DECA instruction takes three cycles {[9], [10], and [11]).
[12] CPU reads BNE opcode ($26) from location $0201.
[13] CPU reads relative offset ($FD) from $0202.

{14] During the LDA #%$02 instruction at [1], the accumulator was loaded
with the value 2; during the DECA instruction at [9], the accumulator
was decremented to 1 {which is not equal to zero). Thus, at [14] ti.
branch condition was true, and the twos-complement offset ($FD or
—3) was added to the internal PC (which was $0203 at the time) to
get the value $0200.

[15] through [19] are a repeat of cycles [9] through [13] except that when
the DECA instruction at [15] was executed this time, the accumulator
went from $01 to $00.

[20] Since the accumulator is now “equal to zero,” the BNE [19] branch
condition is not true, and the branch will not be taken.

[21] CPU reads the RTS opcode ($81) from $0203.

[22] through [26] The RTS takes six cycles. During the last five cycles of
this instruction, the SP is incremented to $00FE, the high-order return
address ($01) is read from the stack ($00FE), the SP is incremented
again to $00FF, the low-order return address ($05) is read from the
stack ($00FF), and the PC is loaded with this recovered return address
($0105).

[27] CPU reads the STA direct opcode {$B7) from location $0105.
[28] CPU reads the low-order direct address ($02) from location $0106.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-29



[29] [30] The STA direct instruction takes a total of four cycles. During
these last two cycles of the instruction, the CPU constructs the com-
plete address where the accumulator will be stored by appending $00
(assumed value for the high-order half of the address due to direct
addressing mode) to the $02 read during [28]. The accumulator {($00
at this time) is then stored to this constructed address ($0002).

2.6.2 Playing Computer

2-30

Playing computer is a learning exercise where you pretend to be a CPU that
is executing a program. Programmers often mentally check programs by
playing computer as they read through a software routine. While playing
computer, it is not necessary to break instructions down to individual pro-
cessor cycles. Instead, instructions are treated as a single complete operation
rather than several detailed steps.

The following paragraphs demonstrate the process of playing computer by
going through the subroutine-call exercise of Figure 2-11. The playing-com-
puter approach to analyzing this sequence is much less detailed than the
cycle-by-cycle analysis done earlier on Figure 2-11, but it accomplishes the
same basic goal — i.e., it shows what happens as the CPU executes the
sequence. After seeing how to do this exercise, you should attempt the same
thing with a larger program such as the example of Figure 2-10.

You begin the process by preparing a worksheet like that shown in Figure
2-12. This sheet includes the mnemonic program and the machine code that
it assembles to. (You could alternately choose to use a listing positioned next
to the worksheet.) The worksheet also includes the CPU register names across
the top of the sheet with ample of room below to write new values as the
registers change in the course of the program.

On this worksheet, there is an area for keeping track of the stack. After you
become comfortable with how the stack works, you would probably leave
this section off, but it will be instructive to leave it here for now.

As a value is saved on the stack, you will cross out any prior value and write
the new value to its right in a horizontal row. You must also update (dec-
rement) the SP value by crossing out any prior value and writing the new
value beneath it under the SP heading at the top of the worksheet. As a value
is recovered from the stack, you would update (increment) the value of SP
by crossing out the old value and writing the new value below it. You would
then read the value from the location now pointed to by the SP and put it
wherever it belongs in the CPU (e.g., in the upper or lower half of the PC).

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



Stack_ Condition Index Program
Pointer  Accumulator 11 19-°-°'-e§H INZC Begister ~ Counter
$00FC
$00FD
$00FE
$OOFF
0100 a6 02 TOP LDA #502 Load an
0102 cd 02 00 JSR SUBBY
0105 b7 02 C
-ement accumulator
Loop till accumulator=0
** Return from subroutine **

Figure 2-12. Playing Computer Worksheet

Figure 2-13 shows how the worksheet will look after working through the
whole JSR sequence. Follow the numbers in square brackets as the process
is explained. During the process, many values were written and later crossed
out; a line has been drawn from the square bracket to either the value or the
crossed out mark to show which item the reference number applies to.

Beginning the sequence, the PC should be pointing to $0100 [1], and the SP
should be pointing to $00FF [2] (due to an earlier assumption). The CPU reads
and executes the LDA #$02 instruction (load accumulator with the immediate
value $02); thus, you write $02 in the accumulator column [3] and replace
the PC value [4] with $0102, which is the address of the next instruction. The

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-31



2-32

Condition.

Stack Index ~ Program
Pointer  Accumulator 1 ’ fﬂgﬁzz Register mmum_r
(2™, (3] A11HINZC s 4
~SOOFFTIN  SO2TN (5~ 4 4 0066215 “W‘L]

W$QGFW$IM w$ef [14]
11122017
MGF@w] $00 m$9260:j121
19] M‘;{m}
$O00FF &20@16}
.~$@26’1‘j17]
20]
0002 - Port C $00 [?'] $0268]
$o002 $ $0105
$00FC
$O0FD
$0OFE  $01 &
$00FF  $05 [©
0100 a6 02 TOP ILDA #$02 Load an immediate value
0102 cd 02 00 JSR SUBBY Go do a subroutine
0105 b7 02 STA $02 Store accumulator to port C
0200 4a SUBBY DECA Decrement accumulator
0201 26 fd BNE SUBBY Loop till accumulator=0
0203 81 RTS ** Return from subroutine **

Figure 2-13. Completed Worksheet

load accumulator instruction affects the N and Z CCR bits. Since the value
loaded was $02, the Z bit would be cleared, and the N bit would be cleared
[5]. This information can be found in Appendix A. Since the other bits in the
CCR are not affected by the LDA instruction, we have no way of knowing
what they should be at this time, so we put question marks in the unknown
positions for now [5].

Next, the CPU reads the JSR SUBBY instruction. Temporarily remember the
value $0105, which is the address where the CPU should come back to after
executing the called subroutine. The CPU saves the low-order half of the
return address on the stack; thus, you write $05 [6] at the location pointed
to by the SP ($00FF) and decrement the SP {7] to $00FE. The CPU then saves

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



the high-order half of the return address on the stack; you write $01 [8] to
$00FE and again decrement the SP [9] (this time to $00FD). To finish the JSR
instruction, you load the PC with $0200 [10], which is the address of the called
subroutine,

The CPU fetches the next instruction. Since the PC is $0200, the CPU executes
the DECA instruction, the first instruction in the subroutine. You cross out
the $02 in the accumulator column and write the new value $01 [11]. You
also change the PC to $0201 [12]. Because the DECA instruction changed the
accumulator from $02 to $01 (which is not zero or negative), the Z bit and N
bit remain clear. Since N and Z were already cleared at [5], you can leave
them alone on the worksheet.

The CPU now executes the BNE SUBBY instruction. Since the Z bit is clear,
the branch condition is met, and the CPU will take the branch. Cross out the
$0201 under PC and write $0200 [13].

The CPU again executes the DECA instruction. The accumulator is now
changed from $01 to $00 [14] (which is zero and not negative); thus, the Z
bit is set, and the N bit remains clear [15]. The PC advances to the next
instruction [16].

The CPU now executes the BNE SUBBY instruction, but this time the branch
condition is not true (Z is set now), so the branch will not be taken. The CPU
simply falls to the next instruction (the RTS at $0203). Update the PC to $0203
[171.

The RTS instruction causes the CPU to recover the previously stacked PC.
Pull the high-order half of the PC from the stack by incrementing the SP to
$00FE [18] and by reading $01 from location $00FE. Next, pull the low-order
half of the address from the stack by incrementing SP to $00FF [19] and by
reading $05 from $00FF. The address recovered from the stack replaces the
value in the PC [20].

The CPU now reads the STA $02 instruction from location $0105. Program
flow has returned to the main program sequence where it left off when the
subroutine was called. The STA (direct addressing mode) instruction writes
the accumulator value to the direct address $02 ($0002), which is port C on
the MC68HC705C8. We can see from the worksheet that the current value in
the accumulator is $00; therefore, all eight pins of port C would be driven
low (provided they are configured as outputs at this time). Since the original
worksheet did not have a place marked for recording the value of port C,
you would make a place and write $00 there [21].

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-33



For a larger program, the worksheet would have many more crossed out
values by the time you are done. Playing computer on a worksheet like this
is a good learning exercise, but, as a programmer gains experience, the
process would be simplified.

One of the first simplifications would be to quit keeping track of the PC
because you learn to trust the CPU to take care of this for you. Another
simplification of the worksheet is to stop keeping track of the condition codes.
When a branch instruction which depends on a condition code bit is en-
countered, you can mentally work backwards to decide whether or not the
branch should be taken.

Next, the storage of values on the stack would be skipped, although it is still
a good idea to keep track of the SP value because it is fairly common to have
programming errors resulting from incorrect values in the SP. A fundamental
operating principle of the stack is that over a period of time, the same number
of items must be removed from the stack as were put on the stack. Just as
left parentheses must be matched with right parentheses in a mathematical
formula, JSRs and BSRs must be matched one for one to subsequent RTSs
in a program. Errors which cause this rule to be broken will appear as er-
roneous SP values while playing computer.

Even an experienced programmer will play computer occasionally to solve
some difficult problem. The procedure the experienced programmer would
use is much less formal than what was explained here, but it still amounts
to placing yourself in the role of the CPU and working out what happens as
the program is executed.

2.7 ON-CHIP PERIPHERALS

2-34

A peripheral is a block of circuitry which performs some useful function under
control of the CPU. One example of a peripheral is a universal asynchronous
receiver/transmitter (UART), which acts as an interface between a computer
and an asynchronous serial communication link. The most common example
of such a communication link is the RS-232 or RS-422 serial port on a com-
puter. This standard is so universal that almost every personal and mainframe
computer made anywhere in the world has at least one such port.

Before the MCU was developed, a computer designer had to use a separate
UART integrated circuit to include this serial interface function in a computer.
Often a number of other miscellaneous logic gates were aiso needed to
interface the UART to the CPU buses.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



Since the level of integration allows thousands of logic gates to be included
in a single MCU integrated circuit, it is practical to put several peripherals,
including this UART function, on the same chip along with the CPU and
memories. The on-chip serial communications interface (SCIl} in the
MC68HC705C8 is a UART-type peripheral.

It is important for the MCU manufacturer to select peripheral functions that
will be useful to many potential users for inclusion on the MCU chip. This
pressure to make on-chip peripherals satisfy the requirements of as many
customers as possible causes the need for user-selectable options to modify
the operation of the on-chip peripherals.

The MC68HC705C8 has control registers, which allow a user to select which
parallel /0 pins will be inputs and which will be outputs. Although any one
application is likely to need only one specific mixture of inputs and outputs,
twenty different applications are likely to need a dozen collective mixtures.
The ability to specify the direction of each 1/0 pin at the time of use makes
this MCU ideal for many different applications.

Control registers are controlled by the CPU in essentially the same way as
a digital output port. You could think of control/status registers as internal
I/O registers connected to internal logic rather than to MCU pins. To change
the voltage level at an output pin, the CPU writes a digitai value to the address
of the output port register. The level (0 or 1) in each bit of the output port
register controls the voltage level on a corresponding MCU pin. In the case
of a control register, the state of a bit in the control register determines the
logic level of an internal control signal rather than on a pin.

in Section 3 of this applications guide, you will find more complete descrip-
tions of the on-chip peripherals in the MC68HC705C8.

2.7.1 Serial Communications Interface (SCI)

The SCI system on the MC68HC705C8 is a UART-type asynchronous serial
communications interface. The most common use of this peripheral is to
implement an RS-232 interface to a host computer system (such as a personal
computer). The SCI system can be used to communicate over relatively long
distances.

In normal applications, the CPU simply writes data to a parallel data register
to send a formatted serial character. The SCI peripheral system takes care
of all the details of transforming the data into the proper serial format, in-
cluding the addition of start and stop bits required to meet standards. The

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-35



transmitter even allows up to two characters to be queued up for transmis-
sion, thus allowing the CPU more time to prepare additional characters.

The receiver portion of the SCI automatically detects the start of a character
and intelligently samples the incoming serial data to assure correct reception,
even in noisy applications. All activity related to receiving serial data and
converting it to parallel data is performed within the SCI peripheral logic with
no intervention of the CPU. After a character is received, the CPU simply
reads a data byte from a receive data register.

A number of options are offered to allow various data rates (baud rates),
alternate character formats, and an automatic standby/wakeup feature. You
can choose between software polling or interrupts for detection of SCI status.

2.7.2 Serial Peripheral Interface (SPI)

The SPI system on the MC68HC705C8 is separate from the SCI system and
is used primarily for communications with standard peripheral logic chips
on the same circuit board as the MCU. A few examples of the chips that can
use SPI are serial-to-parallel and parallel-to-serial shift registers, A/D periph-
erals, LCD peripherals, and many others.

The SPI system works like a distributed 16-bit shift register in which half the
shifter is in the MCU (SPI}, and the other half is in the peripheral. When the
MCU initiates a transfer, this distributed shifter is rotated eight bit positions
so that the data in the master MCU is effectively exchanged with the data in
the peripheral slave. In some cases, the loop is incomplete, and data is
transferred only from the MCU to the peripheral or from the peripheral to
the MCU.

An SPI system typically consists of a master MCU and one or more slave
peripherals. Other configurations such as two MCUs or multiple master sys-
tems are possible but less common.

The SPI system includes options to select shift rate, master or slave mode,
clock polarity, and phase to allow compatibility with most synchronous serial
peripheral devices from many manufacturers.

2.7.3 16-Bit Timer System

The MC68HC705C8 MCU includes a 16-bit timer system used to measure
time and to produce signals of specific period or frequency. This system is

2-36 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



based on a free-running 16-bit counter, a 16-bit output-compare register, and
a 16-bit input-capture register.

The CPU controls the timing of output signals through the output-compare
mechanism. To schedule an output change to occur at a specific time (a
specific count of the free-running counter), a 16-bit value corresponding to
the desired time is written to the output-compare register. When the free-
running counter matches the value in the output-compare register, the planned
output change occurs.

The CPU detects the time of an event or measures the period of an input
signal with the input-capture mechanism. The CPU can select either positive
or negative edges detected on an MCU pin to trigger the input-capture mech-
anism. When the selected edge occurs, the current value in the free-running
counter (which corresponds to the time the edge occurred), is captured by
(transferred to) the input-capture register. The CPU can later read the value
in the input-capture register and determine the exact time when the edge
occurred.

2.7.4 Memory Peripherals

Memory systems are also a form of peripheral. The uses for different types
of memory were discussed earlier, but the logic required to support these
memories was not discussed. ROM and RAM memories are very straight-
forward and require no support logic other than address-select logic to dis-
tinguish one location from another.

EPROM (erasable programmable ROM) and EEPROM (electrically erasable
programmable ROM) memories require support logic for programming (and
erasure in the case of EEPROM). The peripheral support logic in the
MC68HC705C8 is like having a PROM programmer built into the MCU. A
control register includes control bits to select between programming and
normal modes and to enable the high-voltage programming supply.

2.7.5 Other On-Chip Peripherals

There are many other peripherals available on MCUs (see other members of
the M68HCO05 Family of MCUs). These other peripherals include analog-to-
digital {A/D) converters, liquid crystal display drivers (LCD),and vacuum flou-
rescent display drivers (VFD).

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-37



2-38 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



SECTION 3
MC68HC705C8 FUNCTIONAL DATA

The MC68HC705C8 microcontroller (MCU) is a member of the M68HC05 Fam-
ily of low-cost, single-chip microcontrollers.

The HCMOS technology used on the MC68HC705C8 combines smaller size
and higher speeds with the low power and high noise immunity of CMOS.

An additional advantage of CMOS is that circuitry is fully static. CMOS micro-
controllers may be operated at any clock rate less than the guaranteed maxi-
mum. This feature may be used to conserve power since power consumption
increases with higher clock frequencies. Static operation may also be ad-
vantageous during product development.

Two software-controlled power-saving modes, WAIT and STOP, are available
to conserve additional power. These modes make the MC68HC705C8 espe-
cially attractive for automotive and battery-driven applications.

3.1 MCU DESCRIPTION
The hardware and software highlights of the MC68HC705C8 are as follows:

Hardware Features

HCMOS Technology

8-Bit Architecture

Power-Saving Stop, Wait, and Data Retention Modes
24 Bidirectional 1/0 Lines

7 Input-Only Lines

2 Timer I/O Pins

2.1 MHz Internal Operating Frequency, 5 Volts; 1.0 MHz, 3 Volts
Internal 16-Bit Timer

Serial Communications Interface (SCI) System

Serial Peripheral Interface {(SPI) System

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-1



3-2

Ultraviolet (UV) light EPROM or One-Time Programmable ROM (OTPROM)
Selectable Memory Configurations

Computer Operating Properly (COP) Watchdog System
Clock Monitor

On-Chip Bootstrap Firmware for Programming
Software-Programmable External Interrupt Sensitivity
External Pin, Timer, SCl, and SPI Interrupts

Master Reset and Power-On Reset

Single 3- to 6-Volt Supply (2-Volt Data Retention Mode)
On-Chip Oscillator

40-Pin Dual-in-Line Package or

44-Lead PLCC (Plastic Leaded Chip Carrier) Package

Software Features v

Upward Software Compatible with the M146805 CMOS Family
Efficient Instruction Set

Versatile Interrupt Handling

True Bit Manipulation

Addressing Modes with Indexed Addressing for Tables
Memory-Mapped 1/0

Two Power-Saving Standby Modes

Figure 3-1 shows the MC68HC705C8 MCU block diagram.

The central processor unit (CPU) contains the 8-bit arithmetic logic unit,
accumulator, index register, condition code register, stack pointer, program
counter, and CPU control logic.

Major peripheral functions are provided on-chip. On-chip memory systems
include bootstrap read-only memory (ROM), programmable ROM (EPROM
or OTPROM), and random-access memory (RAM).

On-chip /0 devices include an asynchronous serial communications interface
(SCI), a separate serial peripheral interface (SPl), and a 16-bit programmable
timer system.

Self-monitoring circuitry is included on-chip to protect against system errors.
A computer operating properly (COP) watchdog system protects against soft-
ware failures. A clock monitor system generates a system reset if the clock
is lost or runs too slow. An illegal opcode detection circuit provides a non-
maskable interrupt if an illegal opcode is detected.

\
M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



<> PA7
<> PA6
€ PAS
> PA4
<> PA3
<> PA2
> PA1

EPROM/OTPROM — 7744 BYTES
(144 BYTES CONFIGURABLE) E
l<—> PAO
j<<—>> PB7
L___ <> PB6

EPROM
Vpp—>>1 PROGRAMMING [ PROCRAM <:t:—
PP CONTROL REGISTER

DATA DIRECTION A
PORTA

OPTION @
REGISTER 5 <> PES
om
S| & [« r
a 8 l<—>» PB3
RAM — 176 BYTES | ﬂj S|&]
{UP TO 304 BYTES) <:: = <> PB2
Qe <> PB1
<> PB0
< PC7
BOOT ROM — 240 BYTES ﬁ: N Po7
8| le>rcs
RESET — < NE BT
ESET g ARITHMETIC 2|5 Pe3
it conrRoL LOGIC UNIT s|e<> o
G (ALY) <:">————— = >
] > PCt
M88HCO5 CPU ro
CPU REGISTERS P <>
< J<— PO7
—
[oToToToTo 11T stackronter ] SS -~ (———p;p5
Lofo]o] PROGRAM COUNTER ] :—_‘> Pl MSé?SKI <> '2 lc—> Pg;
conpmioncoves  [TiTTIA]T[N[Z]c] < 7|90
[N z]c] Wosi (<13 D Fos
1 00 »|  f<> PD1
oset DIVIDE scl RDI 1 l«— P00
OSCILLATOR [ »
05C2 - BY2 ||
BAUD RATE
GENERATOR
COP WATCHDOG <
] AND
CLOCK MONITOR »
A < : ) —> TCMP
Vop ~—> TIMER SYSTEM
POWER >
Vsg —>| <— TCAP

Figure 3-1. MC68HC705C8 Microcontroller Block Diagram

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-3



3.2 PINS AND CONNECTIONS

The following paragraphs discuss the MCU pin assignments, pin functions,
and basic connections.

Because the MCG68HC705C8 is a CMOS device, unused input pins must be
terminated to avoid oscillation, noise, and added supply current. The pre-
ferred method of terminating pins that can be configured for input or output
is with individual pullup or pulidown resistors for each unused pin.

Pin assignments are shown in Figure 3-2. Mechanical data and ordering
information can be found in BR594/D, the MC68HC705C8 Technical Summary,
available separately.

3.2.1 Pin Functions

34

Vpp and Vgg

Power is supplied to the MCU using these two pins. Vpp is power and
Vsg is ground. The MCU can operate from a single 5-volt (nominal) power

supply.

Vpp

The Vpp pin is used when programming the one-time programmable ROM
(OTPROM) or EPROM. Programming voltage (14.75 Vdc) is applied to this
pin when programming the PROM. Normally, this pin is connected to Vpp.

CAUTION
Do not connect Vpp pin to Vgg (GND). It will damage the MCU.

IRQ (Maskable Interrupt Request)

IRQ is a software programmable option which provides two different choices
of interrupt triggering sensitivity. These options are 1) negative edge-sen-
sitive triggering only, or 2) both negative edge-sensitive and level-sensitive
triggering.

In the latter case, either a negative edge or a low level input to the IRQ pin
will produce an interrupt. The MCU completes the cuEgnt‘instruction be-
fore it responds to the interrupt request. When the IRQ pin goes low, a

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



o N\

RESET [ 1 40 P Vpp
a2 39 f1 08¢
Vep O3 3g ] 0OsC2
PA7 [} 4 a7 | TCAP
PAG [} 5 3% g PO7
PAs Il 6 35 f] TCMP
pr ] 7 34 |y PDSS
PA3 [] 8 33 [1 PD4/SCK
PA2 (1 o 32 [} PD3MOSI
PA1 [ 10 31 g PD2MISO
PAO ] 11 30 [y PDI/TDO
PBO f 12 20 I POORDI
PB1 1] 13 P g PCo
PB2 [ 14 27 1 PO
PB3 [] 15 26 f1 PC2
pes [ 16 25 | PC3
PB5 [} 17 24 [ PC4
pes (] 18 2 {1 PCS
pe7 [ 19 22 [j PC8
Vgs § 20 2 pp PO7

40-Pin Dual-In-Line Package

PAS pPD7
PA4 ToMP
PA3 PD5/SS
PA2 PD4/SCK
PA1 PD3MOSI
PAO PD2MISO
PBO PD1/TDO
PB1 PDO/RDI
PB2 PCo
"PB3 PC1
PB4 PC2
RTYIJ[I IR
2EEE 8358838
44-Lead PLCC Package

Figure 3-2. Pin Assignments

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-56



small synchronization delay occurs, and a logic one is latched internally
to signify an interrupt has been requested. When the MCU completes its
current instruction, the interrupt latch is tested. If the interrupt latch con-
tains a logic one and the interrupt mask bit (I bit) in the condition code
register is clear, the MCU then begins the interrupt sequence.

If the option is selected to include level-sensitive triggering, then the IRQ
input requires an external resistor to Vpp for “wired-OR" operation. See
3.4.7 Interrupts for more detail concerning interrupts.

RESET

The RESET pin is an active-low bidirectional control signal. As an input,
the RESET pin initializes the MCU to a known startup state. As an open-
drain output, the RESET pin indicates an internal MCU failure detected by
the computer operating properly (COP) watchdog timer or clock monitor
circuitry. ‘

This RESET pin is significantly different from the RESET signal used on
other Motorola M68HCO5 Family devices. Refer to 3.4.4 Resets and 3.4.7
Interrupts before designing circuitry to generate or monitor the RESET
signal.

TCAP

The TCAP pin provides the input to the input-capture feature for the on-
chip programmable timer system. Refer to input-capture register in 3.8
PROGRAMMABLE TIMER.

TCMP

The TCMP pin provides an output for the output-compare feature of the
on-chip timer system. Refer to output-compare register in 3.8 PROGRAMM-
ABLE TIMER.

0SC1,08C2

The MC68HC705C8 can accept either a crystal, ceramic resonator, or ex-
ternal input to control the internal oscillator. The internal processor clock
is derived by dividing the oscillator frequency (fggc) by two.

The circuit shown in Figure 3-3(a) is recommended when using a crystal.
The internal oscillator is designed to interface with an AT-cut parallel res-
onant quartz crystal or a ceramic resonator up to 4 MHz. The crystal and
components should be mounted as close as possible to the input pins to
minimize output distortion and startup stabilization time.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



MOTOROLA

STOP

-

MC68HC705C8

08C1 0sC2

10 Meg

——AN——9
XTAL

J»——Ill———-o

| 25 pF 1. 25pF

(a) Crystal/Ceramic Resonator Oscillator Connections

9
|

Db

MC6BHC705C8

0sC1 0sc2
UNCONNECTED

< EXTERNAL
~~ CMOS CLOCK

(b) External Clock Source Connections

Figure 3-3. Oscillator Connections

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-7



A ceramic resonator may be used in place of the crystal in cost-sensitive
applications. The circuit in Figure 3-3(a) is recommended when using a
ceramic resonator or a crystal. The manufacturer of the particular ceramic
resonator being considered should be consulted for specific information.

An external clock may be applied to the OSC1 input with the OSC2 pin not
connected, as shown in Figure 3-3(b).

PA7-PAO

These eight 1/0 lines comprise port A. Each port A pin can be software
programmed to act as an input or output.

PB7-PB0

These eight lines comprise port B. Each port B pin can be software pro-
grammed to act as an input or output.

PC7-PCO

These eight lines comprise port C. Each port C pin can be software pro-
grammed to act as an input or output.

PD5-PDO, PD7

These seven lines comprise port D. During power-on or reset, these seven
pins are configured as inputs. When the SPI system is enabled, four of
these lines, MISO/PD2, MOSI/PD3, SCK/PD4, and SS/PD5, are used by the
SPI system. When the SCI receiver is enabled, the PDO/RDI pin becomes
the receive data input to the SCI. When the SCI transmitter is enabled, the
PD1/TDO pin becomes the transmit data output for the SCI.

3.2.2 Typical Basic Connections

3-8

There are MCU basic connections that can be used as the starting point for
any application to minimize the time required to create a prototype system.

Figure 3-4 is the schematic diagram for a simple MC68HC705C8 system. This
circuit can be used as the basis for any MC68HC705C8 application. In most
cases, the circuitry for the power supply and oscillator can be used as shown
in this diagram. All unused inputs are terminated in an appropriate manner.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTORCLA



MOTOROLA

VIDD
SYSTEM l + ]_0 1pF
POWER
| 4.7pF T
10M
""""Mv
4.0 MHz
0—-| [ | l—o
18 pF
-
| 18 pF
VTDD Voo
i 47K
RESET .
MC34064
GND
er
47K
—NW—

MC68HC705C8

PAO
PA1
Vbp PA2

PA3 |

PAS

PAS

Vgs PAG
PAT

PBO |

osct PB1

0sc2 PB2

PB3 |

PB4
PBS
PB6
PB7

PCO
PC1
PC2
PC3
PC4
RESET PCS
PC6
PC7

PDO/RDI
PD1/TDO
PD2MISO
PD3MOSI
PD4/SCK
PD5/SS

PD7

TCAP
Vpp
TCMP

Figure 3-4. Typical Basic Connections

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

—0—0—0—0—0—0—0—0—0000-090-9 —0—0—0—0——0—0—0

—0—0—0—0—0

PULLUP RESISTORS RECOMMENDED FOR UNUSED INPUTS

3-9




3.3 ON-CHIP MEMORY

3.3.1

The MC68HC705C8 memory includes 176 to 304 bytes of random-access
memory (RAM), 240 bytes of read-only memory (ROM), and 7600 to 7744
bytes of programmabile memory (EPROM or OTPROM).

Memory Types

RAM means that any word in the memory may be accessed without having
to go through all the other words to get to it. RAM is a volatile form of
memory in that all the memory content is lost when the power is removed
from the chip. RAM contents may be retained by keeping at least 2 volts on
Vpp. Power requirements in this standby mode are very small.

ROM is very similar to RAM except, unlike RAM, it is not possible to change
the contents of ROM after it is manufactured. This type memory is useful
only for storage of information or programs.

The special bootstrap mode allows programs to be downloaded through the
on-chip serial communications interface (SCI) into internal RAM to be exe-
cuted. The bootloaded program is used for a variety of tasks such as loading
calibration values into internal EPROM or performing diagnostics on a fin-
ished module.

The MC68HC705C8 on-chip ROM is called the bootloader ROM. This ROM
controls the loading process of the special bootstrap mode.

Erasable programmable ROM (EPROM) is nonvolatile memory that can be
programmed in the field by the user. Nonvolatile memories retain their con-
tents even when no power is applied. Once it has been programmed, the
EPROM cannot be written into, but it can be read from as many times as
necessary. However, EPROM can be erased by ultraviolet light and repro-
grammed. :

OTPROM is the same as EPROM except it can be programmed only once
and cannot be erased.

3.3.2 Memory Map

3-10

The MC68HC705C8 MCU contains four selectable memory configurations as
shown in Figure 3-5. The memory configurations are accessed via the option

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



PORT A DATA REGISTER
PORT B DATA REGISTER
SO0 32BYTES J PORT C DATA REGISTER
T PORT D FIXED INPUT REGISTER
i IO PORT A DATA DIRECTION REG.
$002F -1 USERPROM -=--==--~ | PORT B DATA DIRECTION REG.
| 4BBYTES |} 323%3 3 PORT C DATA DIRECTION REG.
| ¥ ; UNUSED
| RAMO=0 *! 1 RAMO=t *1 UNUSED
$004F _L________ R Lo UNUSED
$0050 T SPI CONTROL REGISTER
SPISTATUS REGISTER
L, SPIDATA IO REGISTER
SCI BAUD RATE REGISTER
sooBF | _____l______ l SCICONTROL REGISTER 1
0co ) SCICONTROL REGISTER 2
efTBQr%s SCISTATUS REGISTER
$00FF L SCI DATAREGISTER
Ly fiase
1 () 1
i % BYTES i 5 %6 BYTES l: INPUT CAPTURE REG. (HIGH)
sotsE | RAMI=0 %11 RAMI=t *1 INPUT CAPTURE REG. (LOW)
$0160” ] T 1" OUTPUT COMPARE REG. (HIGH)
OUTPUT COMPARE REG. (LOW)
TIMER COUNT REGISTER (HIGH)
TIMER COUNT REGISTER (LOW)
USER PROM ALT. COUNT REGISTER (HIGH)
7584 BYTES ALT. COUNT REGISTER (LOW)
EPROM PROGRAM REGISTER
COP RESET REGISTER
COP CONTROL REGISTER
—— UNUSED
$1F00
BOOT ROM
223 BYTES SPIVECTOR (HIGH)
SPIVECTOR (LOW)
$IFDE___ | . ] SCI VECTOR {HIGH}
S\ g | FTIONREQISTER SCIVECTOR (LOW)
TIMER VECTOR (HIGH)
BT oM TIMER VECTOR (LOW)

16 BYTES IRQ VECTOR (HIGH)
$1FEF— IRQ VECTOR (LOW)
$1FFa___ | UNUSED4BYTES SWI VECTOR (HIGH)
$1FF4 USER PROM SWI VECTOR (LOW)

VECTORS RESET VECTOR (HIGH BYTE)
S1FFF— 12BYTES RESET VECTOR (LOW BYTE)

* Refer to 3.10.4 OPTION REGISTER for an explanation of software-selectable memory configurations.

MOTOROLA

Figure 3-5. MC68HC705C8 Memory Map

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

$00
$01
$02

$0D
$0E
$0F
$10
$11

$12
$13
$14
$15
$16
$17
$18
$19
$1A
$8
$1C
$1D
$1E
$1F

$1FF4
$1FF5
$1FF6
$1FF7
$1FF8
$1FFO
$1FFA
$1FFB
$1FFC
$1FFD
$1FFE
$1FFF

3-11




register ($1FDF) RAMO and RAM1 bits. During reset, the RAMO and RAM1
control bits are forced to 0. RAMO and RAM1 bit states determine the amount
of RAM and PROM, which can be selected as follows:

RAMO RAM1 RAM Bytes PROM Bytes
0 0 176 7744
1 0 208 7696
0 1 272 7648
1 1 304 7600

3.4 CENTRAL PROCESSOR UNIT

The MC68HC705C8 CPU is responsible for executing all software instructions
in their programmed sequence for a specific application.

The CPU block diagram is shown in Figure 3-6.

o || B
CONTROL (ALU)
M68HC05 CPU
CPU REGISTERS
[eTeToTooTi 1T stackPointER ]
Lo]o]o] PROGRAM COUNTER ]
conomoncopes [t AW n]z]c]

Figure 3-6. M68HC05 CPU Block Diagram

3.4.1 Registers

The CPU contains five registers as shown in Figure 3-7. Registers in the CPU
are memories inside the microprocessor {not part of the memory map).

Accumulator (A)
The accumulator is an 8-bit general-purpose register used to hold oper-
ands, results of the arithmetic calculations, and data manipulations. It is
also directly accessible to the CPU for nonarithmetic operations. The ac-
cumulator is used during the execution of a program when the contents

3-12 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



7 0
I ACCUMULATOR J A
| ACCUMULATOR

L

T T T T T T
I INDEX REGISTER
L e PR L

7 5
Lo|o|o|olo”1}1| :'ST:ACKF:’OINT:ERI

12

] sP
15 12 0
I 0 | 0 ] 0 L PROGRAMCOUNTER I PC
7 4 3 2 1 0
CONDITION CODE REGISTER [1i1l1 IH "IN z ¢ I CCR
| I-—CARRY
ZERO
NEGATIVE
| INTERRUPT MASK

HALF-CARRY (FROM BIT 3)

Figure 3-7. Programming Model

of some memory iocation are loaded into the accumulator. Also, the store
instruction causes the contents of the accumulator to be stored at some
prescribed memory location.

7 0
T T T T L v T
| ACCUMULATOR I A

Index Register (X)
The index register is used for indexed modes of addressing or may be
used as an auxiliary accumulator. This 8-bit register can be loaded either
directly or from memory, have its contents stored in memory, or its con-
tents can be compared to memory.

In indexed instructions, the X register provides an 8-bit value that is added
to an instruction-provided value to create an effective address. The instruc-
tion-provided value can be 0, 1, or 2 bytes long.

7 0
¥ T T 1 L 1
INDEX REGISTER I X

1 I

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-13




Condition Code Register (CCR)

The condition code register contains five status indicators that reflect the
results of arithmetic and other operations of the CPU. The five flags are
half-carry (H), negative (N), zero (Z), overflow (V), and carry/borrow (C).

7 4 03 2 1 0
CONDITION CODE REGISTER | 1 l 1 [1 IH 1N Z ¢ I CCR
I ‘——CARRY
ZERO
NEGATIVE
| INTERRUPT MASK

HALF-CARRY (FROM BIT 3)

Half-Carry Bit (H) — The half-carry flag is used for binary-coded decimal
(BCD) arithmetic operations and is affected by the ADD or ADC addition
instructions. The H bit is set to a one when a carry occurs between bits 3
and 4.

Interrupt Mask Bit {I) — The interrupt mask bit disables all maskable in-
terrupt sources when the | bit is set. Clearing this bit enables the interrupts.
When any interrupt occurs, the | bit is automatically set after the registers
are stacked but before the interrupt vector is fetched.

If an external interrupt occurs while the | bit is set, the interrupt is latched
and processed after the | bit is cleared; therefore, no interrupts from the
IRQ pin are lost because of the | bit being set.

After an interrupt has been serviced, a return from interrupt (RTI) instruction
causes the registers to be restored to their previous values. Normally, the
| bit would be zero after an RT| was executed. After any reset, | is set and
can only be cleared by a software instruction.

Negative (N) — The N bit is set to one when the result of the last arithmetic,
logical, or data manipulation is negative (bit 7 of the MSB in the result is
a logic one).

The N bit has other uses. By assigning an often-tested flag bit to the MSB
of a register or memory location, you can test this bit simply by loading
the accumulator with the contents of that location.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



MOTOROLA

Zero (Z) — The Z bit is set to one when the result of the last arithmetic,

logical, or data manipulation is zero.

Carry/Borrow (C) — The C bit is used to indicate whether or not there was
a carry from an addition or a borrow as a result of a subtraction. Shift and
rotate instructions operate with and through the carry bit to facilitate mui-
tiple word shift operations. This bit is also affected during bit test and

branch instructions.

The following illustration is an example of the way condition code bits are

affected by arithmetic operations.

Assume Initial Values in Accumulator and Condition Codes:

ACCUMULATOR CONDITION CODES
7 0 H I N Z ¢
Before | 1 1 1 1 1 1 1 1|($FF) L111J1|0 11 0 o]
Execute the Following Instruction:
~-== AB 02 ADD #2 Add 2 to Accumulator
ACCUMULATOR CONDITION CODES
7 0 H I N Z C
Aner|o|oLooolo_o‘1|(so1) |1[1l1|1 10 0 1

" I 1

Condition Codes and Accumulator Reflect the Results of the Add Instruction:

H- Set because there was a carry from bit 3 to bit 4 of the accumulator.
i - No change.

N- Clear because result is not negative (bit 7 of accumulator is 0).

Z- Clear because result is not zero.

C- Set because there was a carry out of bit 7 of the accumulator.

The H bit is not useful after this operation because the accumulator was not

a valid BCD value before the operation.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE



Program Counter (PC)
The program counter is a 13-bit register that contains the address of the
next instruction or instruction operand to be fetched by the processor.

15 12
L v 1 Ll LA L} L} L} T L T L}
l[o]o]o] PROGRAM COUNTER | e

" L 1 1

Normally, the program counter advances one memory location at a time
as instructions and instruction operands are fetched.

Jump, branch, and interrupt operations cause the program counter to be
loaded with a memory address other than that of the next sequential lo-
cation.

Stack Pointer (SP)
The stack pointer is a 13-bit register that contains the address of the next
free location on the stack. During an MCU reset or the reset stack pointer
(RSP) instruction, the stack pointer is set to location $00FF. The stack pointer
is then decremented as data is pushed onto the stack and incremented as
data is pulled from the stack.

0

12 7 5
b LO j 0 I 0 LO—H 1J 1 | STACK POINTER l SP
4 . e I s

When accessing memory, the seven MSBs of the SP are permanently set
to 0000011. These seven bits are appended to the six LSB bits to produce
an address within the range of $00FF to $00CO. Subroutines and interrupts
may use up to 64 (decimal) locations. If 64 locations are exceeded, the
stack pointer wraps around and loses the previously stored information.
A subroutine call occupies two locations on the stack; an interrupt uses
five locations.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



3.4.2 Arithmetic/Logic Unit (ALU)

The arithmetic/logic unit (ALU) is used to perform the arithmetic and logical
operations defined by the instruction set.

The various binary arithmetic operations circuits decode the instruction in
the instruction register and set up the ALU for the desired function. Most
binary arithmetic is based on the addition algorithm, and subtraction is car-
ried out as negative addition. Multiplication is not performed as a discrete
instruction but as a chain of addition and shift operations within the ALU
under control of CPU control logic. The multiply instruction (MUL) requires
11 internal processor cycles to complete this chain of operations.

3.4.3 CPU Control

The CPU control circuitry sequences the logic elements of the ALU to carry
out the required operations.

3.4.4 Resets

Reset is used to force the MCU system to a known starting address. Peripheral
systems and many control and status bits are also forced to a known state
as a result of reset.

The following four conditions can cause reset in the MC68HC705C8 MCU:
1) External, active-low input signal on the RESET pin.
2) internal power-on reset (POR) condition.
3) Internal computer operating properly (COP) watchdog system reset
condition.
4) Internal clock monitor reset condition.

3.4.4.1 POWER-ON RESET. The power-on reset occurs when a positive transition
is detected on Vpp. The power-on reset is used strictly for power turn-on
conditions and should not be used to detect any drops in the power supply
voltage. There is no provision for a power-down reset.

The power-on circuitry provides for a 4064 cycle delay from the time that the
oscillator becomes active. If the external RESET pin is low at the end of the
4064 delay timeout, the processor remains in the reset condition until RESET
goes high.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-17



The following internal actions occur as the result of any MCU reset:

1)
2)
3)
4)
5)

12)
13)
14)

All data direction registers are cleared to zero (input).
Stack pointer configured to $00FF. | |

| bit in the condition code register to logic one.
External interrupt latch cleared.

SCl disabled (serial control bits TE =0 and RE =0). Other SCI bits cleared
by reset include: TIE, TCIE, RIE, ILIE, RWU, SBK, RDRF, IDLE, OR, NF,
and FE.

Serial status bits TDRE and TC set.
SCI prescaler and rate control bits SCP0, SCP1 cleared.

SP] disable (serial output enable control bit SPE=0). Other SPI bits
cleared by reset include: SPIE, MSTR, SPIF, WCOL, and MODF.

All serial interrupt enable bits cleared (SPIE, TIE, and TCIE).
SPI system configured as slave (MSTR=0).

Timer prescaler reset to zero state.

Timer counter configured to $FFFC.

Timer output compare (TCMP) bit reset to zero.

All timer interrupt enable bits cleared (ICIE, OCIE, and TOIE) to disable
timer interrupts.

The OLVL timer bit is also cleared by reset.

STOP latch cleared.
WAIT latch cleared.

Internal address bus forced to restart vector (on exit from reset, upper
byte of program counter is loaded from $1FFE, and lower byte of
program counter is loaded from $1FFF).

3.4.4.2 COMPUTER OPERATING PROPERLY (COP) WATCHDOG TIMER RESET. The
COP watchdog timer system is intended to detect software errors. When the
COP is being used, software is responsible for keeping a free-running watch-
dog timer from timing out. If the watchdog timer times out, it is an indication
that software is no longer being executed in the intended sequence; thus, a
system reset is initiated.

3-18

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



Since the COP timer relies on the internal bus clock in order to detect a
software failure, a clock monitor is also included to guard against a failure
of the clock. When the COP timer is enabled, the clock monitor should also
be enabled since the COP timer cannot detect failures of the internal bus
clock.

The COP control register ($1E), as shown below, is used to control the COP
watchdog timer and clock monitor functions.

Bt7 6 5 4 3 2 1 Bit0
1 o ] o | o JcopF]] cMe Jcore] cmt | cMo | $1E COPCR
| [
0 0

| | | | | |
[ o 1 0 0 0 0 ] RESET CONDITION

TSELECT COP TIMEOUT PERIOD

COP WATCHDOG TIMER ENABLE
CLOCK MONITOR ENABLE
COP SYSTEM FLAG

{1} - Cleared on external or POR reset, set on COP or clock monitor fail resets.

COPF — Computer Operating Properly Flag
1=COP or clock monitor reset has occurred
0=No COP or clock monitor reset has occurred
Reading the COP control register clears COPF.

CME — Clock Monitor Enable
1=Clock monitor enabled
0=Clock monitor disabled
CME is readable and writable at any time.

COPE — Computer Operating Properly Enable
1=COP timeout enabled
0=COP timeout disabled

CM1, CM0 — Computer Operating Properly Mode
These two bits are used to select the COP watchdog timeout period
(see Table 3-1).

The actual timeout period is dependent on the system bus clock frequency,
but, for reference purposes, Table 3-1 shows the relationship between the
CM1 and CMO select bits and the COP timeout period for various system

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-19



Table 3-1. COP Timeout Period versus CM1 and CMO0

E/2'5| XTAL=4.0 MHz XTAL=3.5796 XTAL=2.0 MHz XTAL=1.0 MHz
CM1 | CMO | Div. E=2.0 MHz E=1.7897 MHZ E=1.0 MHz E=0.5 MHz
By Timeout Timeout Timeout Timeout
0 0 1 16.38 ms 18.31 ms 3277 ms 65.54 ms
0 1 4 65.54 ms 73.24 ms 131.07 ms 262.14 ms
1 0 16 262.14 ms 292.95 ms 524.29 ms 1.048 s
1 1 64 1.048 s 1.172's 2.097 s 4194 s

clock frequencies (“E” stands for the system bus clock). The default reset
condition of the COP mode bits (CM1 and CMO) is cleared, which corresponds
to the shortest timeout period.

The COP reset register ($1D) is used to keep the COP watchdog timer from
timing out.

Bit 7 6 5 4 1 Bit 0

L I | | | I ] swocoesr

The sequence required to reset the COP watchdog timer is:
1) Write $55 to the COP reset register at location $1D.
2) Write $AA to the same address location.

Both write operations must occur in the correct order prior to timeout, but
any number of instructions may be executed between the two write opera-
tions. The elapsed time between adjacent software reset sequences must
never be greater than the COP timeout period.

Upon detection of a timeout condition, the COP watchdog timer (if enabled
by COPE=1) will cause a system reset to be generated. This reset is issued
to the external system via the bidirectional RESET pin for four bus cycles.

3.4.4.3 CLOCK MONITOR RESET. When a clock failure is detected by the clock

3-20

monitor (and CME=1), a system reset will be generated.

When CME is set, the clock monitor detects the absence of the internal bus
clock for more than a certain period of time. When CME is cleared, the clock
monitor is disabled. The timeout period is dependent on processing param-
eters and will be between 5 and 100 ps. Thus, a bus clock rate of 200 kHz or
more will never cause a clock monitor failure, and a bus clock rate of 10 kHz
or less will definitely cause a clock monitor reset.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



A clock monitor reset is issued to the external system via the bidirectional
RESET pin for four bus cycles. The clock monitor does not have a separate
reset vector.

Special considerations are needed when using the STOP instruction with the
clock monitor. Since the STOP instruction causes the clocks to be halted, the
clock monitor will generate a reset sequence (if enabled by CME =1) at the
time the STOP instruction is entered.

3.4.5 Addressing Modes

The power of any computer lies in its ability to access memory. The ad-
dressing modes of the CPU provide that capability. The addressing modes
define the manner in which an instruction is to obtain the data required for
its execution. Because of different addressing modes, an instruction may
access the operand in one of up to six different ways. In this manner, the
addressing modes expand the basic 62 M68HC05 Family instructions into
210 distinct opcodes.

The M68HCO05 addressing modes that are used to reference memory are
inherent, immediate, extended, direct, indexed (no offset, 8-bit offset, and
16-bit offset), and relative. One- and two-byte direct addressing instructions
access all data bytes in most applications. Extended addressing uses three-
byte instructions to reach data anywhere in memory space. The various
addressing modes make it possible to locate data tables, code conversion
tables, and scaling tables anywhere in the memory space. Short indexed
accesses are single-byte instructions; whereas, the longest instructions (three
bytes) permit accessing tables anywhere in memory.

A general description and examples of the various modes of addressing are
provided in the following paragraphs. The term effective address (EA) is used
to indicate the memory address where the argument for an instruction is
fetched or stored. More details on addressing modes and a description of
each instruction is available in Appendix A.

The information provided in the program assembly examples uses several
symbols to identify the various types of numbers that occur in a program.
These symbols include:

1. A blank or no symbol indicates a decimal number.

2. A $immediately preceding a number indicates it is a hexadecimal num-
ber; e.g., $24 is 24 in hexadecimal or the equivalent of 36 in decimal.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-21



3. A # indicates immediate operand and the number is found in the lo-
cation following the opcode. A variety of symbols and expressions can
be used following the character # sign. Since not all assemblers use
the same syntax rules and special characters, refer to the documentation
for the particular assembler that will be used.

Prefix Definition

None Decimal

$ Hexadecimal
@ Octal

Y% Binary

' Single ASCII Character

For each addressing mode, an example instruction is explained in detail.
These explanations describe what happens in the CPU during each processor
clock cycle of the instruction. Numbers in square brackets [ | refer to a specific
CPU clock cycle.

3.4.5.1 INHERENT ADDRESSING MODE. In inherent addressing mode, all infor-
mation required for the operation is already inherently known to the CPU,
and no external operand from memory or from the program is needed. The
operands (if any) are only the index register and accumulator. These are
always one byte instructions.

Example Prégram Listing:

0200 4c INCA Increment accumulator

Execution Sequence:
$0200 $4C  [1], [2], (3]

Explanation:
[1] CPU reads opcode $4C — increment accumulator
[2], [3] CPU reads accumulator value, adds one to it, stores the new value
in the accumulator, and adjusts condition code flag bits as neces-
sary.

3-22 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



Instruction
Arithmetic Shift Left
Arithmetic Shift Right
Clear Carry Bit
Clear Interrupt Mask Bit
Clear
Complement
Decrement
Increment
Logical Shift Left
Logical Shift Right
Multiply
Negate
No Operation
Rotate Left thru Carry
Rotate Right thru Carry
Reset Stack Pointer
Return from Interrupt
Return from Subroutine
Set Carry Bit
Set Interrupt Mask Bit
Enable IRQ, Stop Oscillator
Software Interrupt
Transfer Accumulator to Index Register
Test for Negative or Zero
Transfer Index Register to Accumulator
Enable Interrupt, Halt Processor

The following is a list of all M6BHCO5 instructions that can use the inherent
addressing mode.

Mnemonic
ASLA, ASLX
ASRA, ASRX
CLC

CLi

CLRA, CLRX
COMA, COMX
DECA, DECX
INCA, INCX
LSLA, LSLX
LSRA, LSRX
MUL

NEGA, NEGX
NOP

ROLA, ROLX
RORA, RORX
RSP

RTI

RTS

SEC

SEI

STOP

SWI

TAX

TSTA, TSTX
TXA

WAIT

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-23



3.4.5.2 IMMEDIATE ADDRESSING MODE. Inthe immediate addressing mode, the
operand is contained in the byte immediately following the opcode. This
mode is used to hoid a value or constant which is known at the time the
program is written and which is not changed during program execution.
These are two-byte instructions, one for the opcode and one for the imme-
diate data byte.

Example Program Listing:

0200 a6 02 LDA #502 Load accumulator w/ immediate value

Execution Seguence:
$0200 $A6 (1]
$0201 $02 [2]

Explanation:
[1] CPU reads opcode $A6 — load accumulator with the value immediately
following the opcode.
[2] CPU then reads the immediate data $02 from location $0201 and loads
$02 into the accumulator.

The following is a list of all M68HCO5 instructions that can use the immediate
addressing mode. .

Instruction Mnemonic

Add with Carry ADC
Add ADD
Logical AND AND
Bit Test Memory with Accumulator BIT

Compare Accumulator with- Memory CMP
Compare Index Register with Memory CPX
Exclusive OR Memory with Accumulator EOR
Load Accumulator from Memory LDA
Load Index Register from Memory LDX
Inclusive OR ORA
Subtract with Carry SBC
Subtract SUB

3-24 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



3.4.5.3 EXTENDED ADDRESSING MODE. In the extended addressing mode, the
address of the operand is contained in the two bytes following the opcode.
Extended addressing references any location in the MCU memory space
including 1/0, RAM, ROM, and EPROM. Extended addressing mode instruc-
tions are three bytes, one for the opcode and two for the address of the
operand.

Example Program Listing:
0200 c6 06 e5 LDA $06E5 Load accumulator from extended addr

Execution Sequence:
$0200 $C6 [1]
$0201 $06 [2]
$0202 $E5 [3] and [4]

Explanation:

[1] CPU reads opcode $C6 — load accumulator using extended addressing
mode.

{2] CPU then reads $06 from location $0201. This $06 is interpreted as the
high-order half of an address.

[3] CPU then reads $E5 from location $0202. This $E5 is interpreted as the
low-order half of an address. -

[4] CPU internally appends $06 to the $E5 read to form the complete ad-
dress ($06E5). The CPU then reads whatever value is contained in the
location $06E5 into the accumulator.

, The following is a list of all M68HCO5 instructions that can use the extended
addressing mode.

Instruction Mnemonic

Add with Carry ADC
Add ADD
Logical AND AND
Bit Test Memory with Accumulator BIT

Compare Acumulator with Memory CMP
Compare Index Register with Memory CPX
Exclusive OR Memory with Accumulator EOR
Jump JMP
Jump to Subroutine JSR
Load Accumulator from Memory LDA
Load Index Register from Memory LDX
Inclusive OR ORA
Subtract with Carry SBC
Store Accumulator in Memory STA
Store Index Register in Memory STX
Subtract SUB

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-25



3.4.5.4 DIRECT ADDRESSING MODE. The direct addressing mode is similar to

3-26

the extended addressing mode except the upper byte of the operand address
is assumed to be $00. Thus, only the lower byte of the operand address needs
to be included in the instruction. Direct addressing allows you to efficiently
address the lowest 256 bytes in memory. This area of memory is called the
direct page and includes on-chip RAM and /O registers. Direct addressing
is efficient in both memory and time. Direct addressing mode instructions
are usually two bytes, one for the opcode and one for the low-order byte of
the operand address.

Example Program Listing:
0200 b6 50 LDA $50 Load accumulator from direct address

Execution Sequence:
$0200 $B6 [1]
$0201 $50 [2] and [3]

Explanation:

[1] CPU reads opcode $B6 — load accumulator using direct addressing
mode.

[2] CPU then reads $50 from location $0201. This $50 is interpreted as the
low-order half of an address. In direct addressing mode, the high-order
half of the address is assumed to be $00.

[3] CPU internally appends $00 to the $50 read in the second cycle to form
the complete address ($0050). The CPU then reads whatever value is
contained in the location $0050 into the accumulator.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



The following is a list of all M6BHCO5 instructions that can use the direct
addressing mode.

Instruction Mnemonic
Add with Carry ADC
Add ADD
Logical AND AND
Arithmetic Shift Left ASL
Arithmetic Shift Right ASR
Clear Bit in Memory BCLR
Bit Test Memory with Accumulator BIT
Branch if Bit n is Clear BRCLR
Branch if Bit n is Set BRSET
Set Bit in Memory BSET
Clear CLR
Compare Accumulator with Memory CMP
Complement COM
Compare Index Register with Memory CPX
Decrement DEC
Exclusive OR Memory with Accumulator EOR
Increment INC
Jump JMP
Jump to Subroutine JSR
Load Accumulator from Memory LDA
Load Index Register from Memory LDX
Logical Shift Left LSL
Logical Shift Right LSR
Negate NEG
Inclusive OR ORA
Rotate Left thru Carry ROL
Rotate Right thru Carry ROR
Subtract with Carry SBC
Store Accumulator in Memory STA
Store Index Register in Memory STX
Subtract SUB
Test for Negative or Zero TST

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-27



3:4.5.5 INDEXED ADDRESSING MODE. In the indexed addressing mode, the ef-

fective address is variable and depends upon two factors: 1) the current
contents of the index (X) register and 2) the offset contained in the byte(s)
following the opcode. Three types of indexed addressing exist in the MCU:
no offset, 8-bit offset, and 16-bit offset. A good assembler should use the
indexed addressing mode that requires the least number of bytes to express
the offset.

3.4.5.5.1 Indexed, No Offset. In the indexed, no-offset addressing mode, the ef-

3-28

fective address of the instruction is contained in the 8-bit index register. Thus,
this addressing mode can access the first 256 memory locations. These in-
structions are only one byte.

Example Program Listing:
0200 f6 LDA X Load accumulator from location
pointed to by index reg (no offset)
Execution Sequence:
$0200 $F6  [1], [2], [3]

Expfanation:
[1] CPU reads opcode $F6 — load accumulator using indexed, no offset,
addressing mode.

[2] CPU forms a complete address by adding $0000 to the contents of the
index register.

[3] CPU then reads the contents of the addressed location into the accu-
mulator.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



The following is a list of all M68HCO5 instructions that can use the indexed,
no-offset addressing mode.

MOTOROLA

Instruction
Add with Carry
Add
Logical AND
Arithmetic Shift Left
Arithmetic Shift Right
Bit Test Memory with Accumulator
Clear
Compare Accumulator with Memory
Complement
Compare Index Register with Memory
Decrement
Exclusive OR Memory with Accumulator
Increment
Jump
Jump to Subroutine
Load Accumulator from Memory
Load Index Register from Memory
Logical Shift Left
Logical Shift Right
Negate
Inclusive OR
Rotate Left thru Carry
Rotate Right thru Carry
Subtract with Carry
Store Accumulator in Memory
Store Index Register in Memory
Subtract
Test for Negative or Zero

Mnemonic
ADC
ADD
AND
ASL
ASR
BIT
CLR
CMP
COM
CPX
DEC
EOR
INC
JMP
JSR
LDA
LDX
LSL
LSR
NEG
ORA
ROL
ROR
SBC
STA
STX
SuB
TST

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

3-29




3.4.5.5.2 Indexed, 8-Bit Offset. In the indexed, 8-bit offset addressing mode, the

3-30

effective address is obtained by adding the contents of the byte following
the opcode to the contents of the index register. This mode of addressing is
useful for selecting the kth element in a ‘n’ element table. To use this mode,
the table must begin in the lowest 256 memory locations, and may extend
through the first 511 memory locations (1FE is the last location which the
instruction may access). Indexed 8-bit offset addressing can be used for ROM,
RAM, or 1/0. This is a two-byte instruction with the offset contained in the
byte following the opcode. The content of the index register (X) is not changed.
The offset byte supplied in the instruction is an unsigned 8-bit integer.

Example Program Listing:

0200 e6 05 1LDA $5,X Load accumulator from location
pointed to by index reg (X) + $05

Execution Sequence:
$0200 $E6 [1]
$0201 $05 [2], (3], [4]

Explanation:

[1] CPU reads opcode $E6 — load accumulator using indexed, 8-bit offset
addressing mode.

[2] CPU then reads $05 from location $0201. This $05 is interpreted as the
low-order half of a base address. The high-order half of the base ad-
dress is assumed to be $00.

[3] CPU will add the value in the index register to the base address $0005.
The results of this addition is the address that the CPU will use in the
load accumulator operation.

[4] The CPU will then read the value from this address and load this value
into the accumulator.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



The following is a list of all M68HCO5 instructions that can use the indexed,
8-bit offset addressing mode.

Instruction Mnemonic

Add with Carry ADC
Add ADD
Logical AND AND
Arithmetic Shift Left ASL
Arithmetic Shift Right ASR
Bit Test Memory with Accumulator BIT

Clear CLR

Compare Accumulator with Memory CMP
Complement COM
Compare Index Register with Memory CPX
Decrement DEC
Exclusive OR Memory with Accumulator EOR
Increment INC

Jump JMP
Jump to Subroutine JSR

Load Accumulator from Memory LDA
Load Index Register from Memory LDX
Logical Shift Left LSL

Logical Shift Right LSR

Negate NEG
Inclusive OR ORA
Rotate Left thru Carry ROL
Rotate Right thru Carry ROR
Subtract with Carry SBC
Store Accumulator in Memory STA
Store Index Register in Memory STX
Subtract SUB
Test for Negative or Zero TST

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-31



3.4.5.5.3 Indexed, 16-Bit Offset. In the indexed, 16-bit offset addressing mode,

3-32

the effective address is the sum of the contents of the 8-bit index register
and the two bytes following the opcode. The content of the index register is
not changed. These instructions are three bytes, one for the opcode and two
for a 16-bit offset.

Example Program Listing:

0200 d6 07 00 LDA $0700,X Load accumulator from location
pointed to by index reg (X) + $0700
Execution Sequence:
$0200 $D6 [1]
$0201 $07 (2]
$0202 $00 (3], [4], [5]

Explanation:

[1] CPU reads opcode $D6 — load accumulator using indexed, 16-bit offset
addressing mode.

[2] CPU then reads $07 from location $0201. This $07 is interpreted as the
high-order half of a base address.

[3] CPU then reads $00 from location $0202. This $00 is interpreted as the
low-order half of a base address.

[4] CPU will add the value in the index register to the base address $0700.
The results of this addition is the address that the CPU will use in the
load accumulator operation.

[5] The CPU will then read the value from this address and load this value
into the accumulator.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



The following is a list of all M68HCO5 instructions that can use the indexed,
16-bit offset addressing mode.

MOTOROLA

Instruction
Add with Carry
Add
Logical AND
Bit Test Memory with Accumulator
Compare Accumulator with Memory
Compare Index Register with Memory
Exclusive OR Memory with Accumulator
Jump
Jump to Subroutine
Load Accumulator from Memory
Load Index Register from Memory
Inclusive OR
Subtract with Carry
Store Accumulator in Memory
Store Index Register In Memory
Subtract

Mnemonic
ADC
ADD
AND
BIT
CMP
CPX
EOR
JMP
JSR
LDA
LDX
ORA
SBC
STA
STX
SUB

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

3-33




3.4.5.6 RELATIVE ADDRESSING MODE. The relative addressing mode is used

3-34

only for branch instructions. Branch instructions, other than the branching
versions of bit-manipulation instructions, generate two machine-code bytes:
one for the opcode and one for the relative offset. Because it is desirable to
branch in either direction, the offset byte is a signed twos-complement offset
with a range of —127 to +128 bytes (with respect to the address of the
instruction immediately following the branch instruction). If the branch con-
dition is true, the contents of the 8-bit signed byte following the opcode
(offset) are added to the contents of the program counter to form the effective
branch address; otherwise, control proceeds to the instruction immediately
following the branch instruction.

A programmer specifies the destination of a branch as an absolute address
(or label which refers to an absolute address). The Motorola assembler cal-
culates the 8-bit signed relative offset, which is placed after the branch opcode
in memory.

Example Program Listing:

0200 27 rr BEQ DEST Branch to DEST if 2Z=1
(branch if equal or zero)

Execution Sequence:
$0200 $27 [1]
$0201 $rr [2], [3]

Explanation:
[1] CPU reads opcode $27 — branch if Z=1, {relative addressing mode).
[2] CPU reads the offset, $rr.
[3] CPU internally tests the state of the Z bit and causes a branch if Z is
set.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



The following is a list of all MB8HCO5 instructions that can use the relative
addressing mode.

Instruction Mnemonic
Branch if Carry Clear BCC
Branch is Carry Set BCS
Branch if Equal BEQ
Branch if Half-Carry Clear BHCC
Branch if Half-Carry Set BHCS
Branch if Higher BHI
Branch if Higher or Same BHS
Branch if Interrupt Line is High BIH
Branch if Interrupt Line is Low BIL
Branch if Lower BLO
Branch if Lower or Same BLS
Branch if Interrupt Mask is Clear BMC
Branch if Minus BMI
Branch if Interrupt Mask Bit is Set BMS
Branch if Not Equal BNE
Branch if Plus BPL
Branch Always BRA
Branch if Bit n is Clear BRCLR
Branch if Bit n is Set BRSET
Branch Never BRN
Branch to Subroutine BSR

3.4.5.7 BIT TEST AND BRANCH INSTRUCTIONS. These instructions use direct
addressing mode to specify the location being tested and relative addressing
to specify the branch destination. This applications guide treats these in-
structions as direct addressing mode instructions. Some older Motorola doc-
uments call the addressing mode of these instructions BTB for bit test and
branch.

3.4.5.8 INSTRUCTIONS ORGANIZED BY TYPE. Tables 3-2 through 3-5 show the
MCB8HCO5 instruction set displayed by instruction type.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-35



3dIND SNOILYIITddV HITTI0HLNOJOUIIN SOOHS8IIN 9¢e-€

VIOHOLON

Table 3-2. Register/Memory Instructions

Addressing Modes

. . indexed Indexed Indexed
Immediate Direct Extended {No Offset) (8-Bit Offset) (16-Bit Offset)
Function Mnem| O | # # | op- | # # | op- | # # Op- | # # | op- | # # | op- | # #
‘| code | Bytes |Cycles| code | Bytes |Cycles| code | Bytes [Cycles| code | Bytes |Cycles| code | Bytes |Cycles| code | Bytes [Cycles
Load A from Memory | LDA A6 2 2 B6 2 3 Ccé 3 4 F6 1 3 E6 2 4 D6 3 5
Load X from Memory | LDX AE 2 2 BE 2 3 CE 3 4 FE 1 3 EE 2 4 DE 3 5
Store A in Memory STA — — — B7 2 4 c7 3 5 F7 1 4 E7 2 5 D7 3 6
Store X in Memory STX — — — BF 2 4 CF 3 5 FF 1 4 EF 2 5 DF 3 6
Add Memory to A ADD AB 2 2 BB 2 3 cB 3 4 FB 1 3 EB 2 4 DB 3 5
Add Memory and apc| as | 2 | 2 B | 2| 3 |co| 3| 4| r | 3 e | 2] a|oof| 3| s
Carry to A
Subtract Memory SUB A0 2 2 BO 2 3 Cco 3 4 FO 1 3 EQ 2 4 DO 3 5
Subtract Memory fromi gpe | 25 | 2 | B2 | 2 3 | c2| 3 4 2| 1 3 | 2| 2 4 | b2 | s 5
A with Borrow
AND Memory to A AND A4 2 2 B4 2 3 C4 3 F4 1 3 E4 2 D4 5
OR Memory with A ORA | AA 2 2 BA 2 CA 3 FA 1 3 EA 2 DA 5
Exclusive ORMemory ) eop | ag | 2 | 2 [ B8 | 2 | 3 |cs| 3 |a || 1|3 |es| 2|4 D38| 3]s
Arithmetic Compare Al cyip | a9 | 9 | 2 [ 81 | 2 | 3 [ et | 3| & | /1| 1 3 et | 2| a|o1| 3| s
with Memory
Arithmetic Compare X| cpy | a3 | 2 | 83| 2 3 | 3| 3 4 3| 1 3 | e | 2 4 | b3 | 3 5
with Memory
Bit Test Memorywith | gz} a5 | 5 | 2 | Bs | 2 | 3 | cs | 3| 4 | rs | 1 3 | es| 2] alos| 3| s
A {(Logical Compare)
Jump Unconditional JMP — —_ — BC 2 2 cC 3 FC 1 2 EC 2 DC 4
Jump to Subroutine JSR — — — BD 2 5 CcD FD 1 5 ED 2 6 DD 7




V104010

34dIND SNOILVYIITddV H3ITTOHLNOJIOHIIN SOOH8IN

LEE

Table 3-3. Read/Modify-Write Instructions

Addressing Modes

Inherent (A) Inherent (X) . Direct (l\:gdg;(fi:t) (B-E?%(;:et]
Function Mnem. Op- # # Op- # # Op- # # Op- # # Op- # #
code | Bytes |Cycles| code | Bytes |Cycles| code | Bytes |Cycles| code | Bytes [Cycles| code | Bytes [Cycles

Increment INC 4C 1 3 5C 1 3 3C 2 5 7C 1 5 6C 2 6
Decrement DEC 4A 1 3 5A 1 3 3A 2 5 7A 1 5 6A 2 6
Clear CLR | 4F 1 3 5F 1 3 3F 2 5 7F 1 5 6F 2 6
Complement cCoM | 43 1 3 53 1 3 33 2 5 73 1 5 63 2 6
Ne(g’ast%ompwment) NEG | 40 1 3 50 1 3 | 30 | 2 5 70 1 5 | 60 2 6
Rotate Left Thru Carry| ROL | 49 1 3 59 1 3 39 2 5 79 1 5 69 2 6
Rotate Right Thru Carry{ ROR 46 1 3 56 1 3 36 2 5 76 1 5 66 2 6
Logical Shift Left LSL | 48 1 3 58 1 3 38 2 5 78 1 5 68 2 6
Logical Shift Right LSR 44 1 3 54 1 3 34 2 5 74 1 5 64 2 6
Arithmetic Shift Right | ASR 47 1 3 57 1 3 37 2 5 77 1 5 67 2 6
Test ;‘;’rg'egative tsT|ap | 1| 3 || 1| 3 || 2]|a|mm|1}|ale]| 2|5
Multiply MUL 42 1 1 — — — — — — — — — — — —




3-38

Table 3-4. Branch Instructions

Relative Addressing Mode

Function Mnemonic # #
Opcode | Bytes | Cycles

Branch Always BRA 20 2 3
Branch Never BRN 21 2 3
Branch IFF Higher BHI 22 2 3
Branch IFF Lower or Same BLS 23 2 3
Branch IFF Carry Clear BCC 24 2 3
Br(ax;:r:;ngHéglgr or Same BHS 2 P 3
Branch IFF Carry Set BCS 25 2 3
B e a0 | m | 2 |
Branch IFF Not Equal BNE 26 2 3
Branch IFF Equal BEQ 27 2 3
Branch IFF Half-Carry Clear BHCC 28 2 3
Branch IFF Half-Carry Set BHCS 29 . 2 3
Branch IFF Plus BPL 2A 2 3
Branch IFF Minus BMI 2B 2 3
Branch IFF Interrupt Mask Bit is Clear BMC 2C 2 3
Branch IFF Interrupt Mask Bit is Set BMS 2D 2 3
Branch IFF Interrupt Line is Low BIL 2E 2 3
Branch IFF Interrupt Line is High BIH 2F 2 3
Branch to Subroutine BSR AD 2 6

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



MOTOROLA

Table 3-5. Control Instructions

Inherent
Function Mnemonic # #
Opcode | Bytes | Cycles

Transfer A to X TAX 97 1 2
Transfer X to A TXA 9F 1 2
Set Carry Bit SEC 99 1 2
Clear Carry Bit CLC 98 1 2
Set Interrupt Mask Bit SEI 9B 1 2
Clear Interrupt Mask Bit CLl 9A 1 2
Software Interrupt SWi 83 1 10
Return from Subroutine RTS 81 1 6
Return from Interrupt RTI 80 1 9
Reset Stack Pointer RSP 9C 1 2
No-Operation NOP 9D - 1 2
Stop STOP 8E 1 2
Wait WAIT 8F 1 2

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

3-39




3.4.6 Instruction Set Summary

3-40

Computers use an operation code or opcode to give instructions to the CPU.
The instruction set for a specific CPU is the set of all opcodes that the CPU
knows how to execute. The CPU in the MC68HC705C8 MCU can understand
62 basic instructions, some of which have several variations that require
separate opcodes. The M68HCO5 instruction set includes 210 unique instruc-

_ tion opcodes.

The following table is an alphabetical listing of the M68HCO5 instructions
available to the user. In listing all the factors necessary to program, the table
uses the following symbols:

ONZ—I

ACCA
cc

Condition C

Half Carry (Bit 4)
Interrupt Mask (Bit 3)
Negate (Sign Bit 2)
Zero (Bit 1)
Carry/Borrow (Bit 0)

Boolean

Contents of (i.e., (M)
means the contents
of memory location
M)

is loaded with, ‘gets’

AND

ode Symblols
&

do-vl

Operators

+
@

X —

MPU Registers

Accumulator

Accumulator

Condition Code Reg.

Index Register

Any memory location
(one byte)

Addressing Modes

Inherent

Immediate
Direct (for bit

test instructions)
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Relative

PC
PCH
PCL
sp
REL

(Abbreviation)

INH
IMM
DIR

EXT
IX
IX1
IX2
REL

Test and Set if True,
(cleared otherwise)

Not Affected

Load CC from Stack

Cleared

Set

(inclusive) OR
Exclusive OR
NOT
Negation

(twos complement}
Multiplication

Program Counter
PC High Byte
PC Low Byte
Stack Pointer
Relative Address

Operands

none

ii

dd

dd rr
hh Il
none
ff

ee
rr

ff

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



INSTRUCTION ADDRESSING MODES, AND EXECUTION TIMES (Sheet 1 of 4)

Addressing | Machine Coding
Source Operation Boolean Mode for | (hexadecimal) [ Bytes |Cyeles{Condition Code)
Form(s) Expression

Operand | Opcode [Operand HlI1[N]|Z]C
ADC (opr) Add with Carry ACCA ¢ ACCA+M+C IMM A9 il 2 2 HiEBEHE

DIR B9 dd 2 3

EXT Cc9 hh I 3 4

IX2 D9 ee ff 3 5

X1 E9 ff 2 4

X F9 1 3
ADD (opr) Add ACCA ¢ ACCA+M IMM AB i 2 2 el |e|2|e

DIR BB dd 2 3

EXT CB bh I 3 4

X2 DB ee ff 3 5

IX1 EB ff 2 4

IX FB 1 3
AND (opr) Logical AND ACCA 4 ACCAeM MM A4 ii 2 2 {—|— sle|—

DIR B4 dd 2 3

EXT ca hh 1l 3 4

1X2 D4 ee ff 3 5

X1 E4 ff 2 4

IX F4 1 3
ASL (opr) Arithmetic Shift Left DIR 38 dd 2 5 |—|— HEE

ASLA - INH(A) 48 1 3

ASLX [Jo[TTTTTTTY 40 FINHIX) 58 i 3

ASL {opr) C b7 b0 1X1 68 ff 2 6

ASL (opr) IX 78 1 5
ASR (opr} Arithmetic Shift Right DIR 37 dd 2 5 |—[—|es|2|s

ASRA —_— INH(A) 47 1 3

ASRX : Lo INH(X) 57 1 3

ASR {opr) b7 b0 C 1X1 67 ff 2 6

ASR (opr) IX 77 1 5
8CC (rel) Branch if Carry Clear ?2C=0 REL 24 m 2 3 |—|—|—|—]—
BCLR n, {opr) Clear Bit n in Memory Mn 40 DIR(bO) 11 dd 2 5 |—|—|—|—|—

DIR(b1} 13 dd 2 5

DIR(b2) 15 dd 2 5

DIR(b3) 17 dd 2 5

DIR(b4) 19 dd 2 5

DIR(b5) 1B dd 2 5

DIR(b6) 10 dd 2 5

DIR(b7) 1F dd 2 5
BCS (rel) Branch if Carry Set ?7C=1 REL 25 rr 2 3 |—|—l—i—1—
BEQ (rel) Branch if Equal ?2Z=1 REL 27 rr 2 3 |—]—f—l—|—
BHCC (rel) Branch if Half Carry Clear ?H=0 REL 28 [dd 2 3 |—l—1—|—l—
BHCS (rel) Branch if Half Carry Set ?H=1 REL 29 m 2 3 |—|—|—1—|—
BHI {rel) Branch if Higher ?2{C+2)-0 REL 22 43 2 3 |—l—1—I—I1—
BHS (rel) Branch if Higher or Same ?2C=0 REL 24 rr 2 3 j—l—|l=]=]=
BiH (rel) Branch if IRQ Pin is High ? IRQ Pin=1 REL 2F frr 2 F R [ [ N [
BIL (rel) Branch if IRQ Pin is Low ? 1RQ Pin =0 REL 26 | 2 3 |—|=]—]=|—
BIT (rel} Bit Test Memory with A ACCAeM IMM A5 ii 2 2 |—|— sls—

DIR B5 dd 2 3

EXT C5 hh I 3 4

IX2 D5 ee ff 3 5

1X1 E5 ff 2 4

IX F5 1 3
BLO (rel) Branch if Lower ?2C=1 REL 25 rr 2 3 [—I—I—1—I—
BLS {rel) Branch if Lower or Same 2{C+X)=1 REL 23 rr 2 3 |—=l—|—]—]—
BMC (rel) Branch if | Bit is Clear ?21=0 REL 2C rr 2 3 |—|—]—]—|—

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-41



INSTRUCTION ADDRESSING MODES, AND EXECUTION TIMES (Sheet 2 of 4)

Addressing Machine Coding
Source Operation Boolean Mode for | (hexadecimall | gytes |Cycles |Condition Code
Form(s} Expression
Operand | Qpcode |Operand H]Il|N|Z|C
BMI (rel) Branch if Minus ?N-1 REL 2B m 2 3 |—=|—l—]—l—
BMS (rel) Branch if | Bit is Set ?21-1 REL 2D rr 2 3 |—l—f{—l—1—
BNE (rel) Branch if Not Equal ?Z-0 REL 26 " 2 O e e Bl e
BPL (rel) Branch if Plus ?N-0 REL 2A i 2 3 |—|—{—1—|—
BRA {rel) Branch Always ?71-1 REL 20 rr 2 3 {——]—1—1—
BRCLR n, (opr) |Branch if Bitn of M- 0 ?Bitnof M-0 DiR(b0) 01 dd rr 3 5 |—|—|—{—|=a
(rel) DiR(b1) 03 dd rr 3 5
DIR{b2) 05 dd rr 3 5
DIR(b3) 07 dd rr 3 5
DIR(b4) 09 dd rr 3 5
DIR(b5) 0B dd rr 3 5
DIR(b6) oD dd rr 3 5
DIR(b7) OF dd rr 3 5
BRN (rel) Branch Never ?71-0 REL 21 rr 2 3 |—l—|—-I—|—
BRSET n, (opr) [Branch if Bitnof M 1 ?BitnofM -1 DIR(b0) 00 dd rr 3 5 |—j—|—|— s
(rel) DIR(b1) 02 dd rr 3 5
DIR(b2} 04 dd rr 3 5
DIR(b3) 06 dd rr 3 5
DIR(b4) 08 dd rr 3 5
DIR(b5) 0A dd rr 3 5
DiR(b6} ocC dd rr 3 5
DIR(b7) OE dd rr 3 5
BSET n, {opr} Set Bit n in Memory Mn 41 DIR(b0) 10 dd 2 5 [—]—I—]—|—
DIR(b1) 12 dd 2 5
DiR(b2} 14 dd 2 5
DIR(b3} 16 dd 2 5
DIR(b4) 18 dd 2 5
DIR(b5) 1A dd 2 5
DIR(b6) 1C dd 2 5
DIR(b7) 1E dd 2 5
BSR (rel) Branch to Subroutine PC 4 PC + 0002 REL AD rr 2 6 |—|—|—|—]|—
(SP) 4 PCL; SP 4 SP- 0001
(SP) ¢ PCH; SP 4 SP--0001
PC ¢ PC +Rel
CLC Clear C Bit Chite0 INH 98 1 2 |—|—|—|—]0
CLI Clear | Bit | bit 4 0 INH 9A 1 2 |—=|0|—|—|—
CLR (opr) Clear M ¢ 00 DIR 3F dd 2 5 |—|—|0o||—
CLRA A 400 INH(A) 4F 1 3
CLRX X 400 INH(X) 5F 1 3
CLR (opr) M ¢4 00 X1 6F ff 2 6
CLR (opr) M 4 00 IX 7F 1 5
CMP (opr) Compare A with Memory ACCA-M IMM Al ii 2 2 |—|— slele
DIR B1 dd 2 3
EXT C1 hh I 3 4
X2 D1 ee ff 3 5
1X1 E1 ff 2 4
IX F1 1 3
COM (opr) 1's Complement M ¢ M - $FF - M DIR 33 |dd 2 5 [—|—|=|e]"
COMA A4A-SFF-A INH(A) 43 1 3
COMX X 4 X-$FF- X INH(X) 53 1 3
COM (opr) MeM- $FF-M 1X1 63 ff 2 6
COM {opr) M ¢ M -=$FF-M 1X 73 1 5
CPX {opr) Compare X with Memory X-M IMM A3 i 2 2 |—|— HEE
DIR B3 dd 2 3
EXT c3 hho 1l 3 4
1X2 D3 ee ff 3 5
1X1 E3 ff 2 4
IX F3 1 3
3-42 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA




INSTRUCTION ADDRESSING MODES, AND EXECUTION TIMES (Sheet 3 of 4)

Source Boolean Addressing | Machine QOding iti
F Operation . Mode for | _(hexadecimall | Bytes | Cycles|Condition Code
orm(s) Expression o
perand | Opcode [Operand H|1]|N]|Z]C
DEC (opr) Decrement MeM-01 DIR 3A dd 2 5 —|—-|e|e|—
DECA A4A-01 INH(A) 4A 1 3
DECX DEX (same as DECX) X4X-01 INH(X) S5A 1 3
DEC (opr) M ¢ M-01 1X1 6A ff 2 6
DEC (opr) M ¢ M-01 IX 7A 1 5
EOQR (opr) Exclusive OR A with Memory {ACCA ¢ ACCA & M MM A8 ii 2 2 (—[—|=|a|—
DIR B8 dd 2 3
EXT c8 hh 1l 3 4
1X2 D8 ee ff 3 5
IX1 E8 ff 2 4
IX F8 1 3
INC (opr) Increment MaM+01 DIR 3C dd 2 5 |—|— sle|—
INCA AeA+01 INH(A) 4C 1 3
INCX INX {same as INCX) X 4X+01 INH(X) 5C 1 3
INC (opr) MaM+01 X1 6C ff 2 6
INC (opr) MeM+01 IX 7C 1 5
JMP (opr) Jump PC ¢ effective address DIR BC dd 2 2 {\—l—=t—l—1—
EXT cc hh I 3 3
1X2 bC ee ff 3 4
X1 EC ff 2 3
IX FC 1 2
JSR (opr) Jump to Subroutine PC4PC+ni{n=1,20r3) | DR BD dd 2 5 [—|—|—|—1|—
(SP) 4 PCL; SP 4 SP—0001| EXT cD hh 1l 3 6
(SP) 4 PCH; SP 4 SP--0001] 1X2 bbD ee ff 3 7
PC ¢ effective address IX1 ED ff 2 6
1X FD 1 5
LDA {opr) Load A from Memory ACCA « M IMM A6 ii 2 2 |—|— sle|—
DIR B6 dd 2 3
EXT o] hh 1l 3 4
1X2 D6 ee ff 3 5
1X1 E6 ff 2 4
IX F6 1 3
LDX (opr) Load X from Memory XeM IMM AE ii 2 2 (—|—(e(g|—
DIR BE dd 2 3
EXT CE hh Il 3 4
1X2 DE ee ff 3 5
1X1 EE ff 2 4
IX FE 1 3
LSL (opr) Logical Shift Left DIR 38 dd 2 5 |—|—is|esls
LSLA — INH(A) 48 1 3
LSLX C¢[TTTTTILL] #© INH(X) 58 1 3
LSL (opr) ¢ b7 b0 1X1 68 ff 2 6
LSL (opr) IX 78 1 5
LSR (opr) Logical Shift Right DIR 34 dd 2 5 (—|—|0|s|s
LSRA . INH(A) 44 1 3
LSRX oo ITTTTTTTI*D) INH(X) 54 1 3
LSR {opr) L7 bo C X1 64 ff 2 6
LSR (opr) X 74 1 5
MUL Unsigned Multiply XAQXOA INH 42 1 1M1 |o]—]—|—]0
NEG (opr) Negate (2's Complement) M¢ - Mlie 00-M) DIR 30 dd 2 5 |[—|— zlsls
NEGA Aq-A INH(A) 40 1 3
NEGX X4-X INH(X) 50 1 3
NEG (opr) M¢-M 1X1 60 ff 2 6
NEG (opr M4e -M IX 70 1 5
NOP No Operation INH 9D 1 2 |—t—l—1—1—
ORA (opr) Inclusive OR ACCA ¢ ACCA+M MM AA ii 2 2 |—|— HH e
DIR BA dd 2 3
EXT CA hh it 3 4
IX2 DA ee ff 3 5
1X1 EA ff 2 4
IX FA 1 3

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-43



INSTRUCTION ADDRESSING MODES, AND EXECUTION TIMES (Sheet 4 of 4)

Addressing Machine Coding
Source Operation Boolea_n Mode for | (hexadecimal) | Bytes |cCycles|Condition Code
Form(s) Expression -
Operand | Opcode [Operand H[1[N]Z]C
ROL (opr) Rotate Left through Carry DIR 39 dd 2 5 |—[—|s|2|e
ROLA D ne— INH(A) 49 1 3
ROLX OITITITTID | iNH(x) 59 1 3-
ROL (opr) ¢ b0 € fixq 69 | ff 2 6
ROL (opr IX 79 1 5
ROR {opr) Rotate Right through Carry DIR 36 dd 2 5 [—|—|s s|e
RORA —_— INH{A} 46 1 3
RORX Ol T | INHX) 56 1 3
ROR (opr) C b7 bo C 1X1 66 | ff 2 6
ROR (opr) X 76 1 5
RSP Reset Stack Pointer SP 4 $00FF INH 9C 1 2 |—]|—=]—]—|—
RT! Return from Interrupt SP ¢ SP +0001; CC 4 {(SP) | INH 80 1 9 (From Stack)
SP 4SP -+ 0001; ACCA4 (SP)
SP 4 SP +0001; X ¢ (SP) s|=|sis|®
SP 4 SP ~0001; PCH 4 (SP)
SP ¢ SP ~-0001; PCL 4 (SP)
RTS Return from Subroutine SP 4 SP ~0001; PCH 4 (SP)| INH 81 1 6 |—|—|—|—]—
SP ¢ SP - 0001; PCL 4 (SP)
SBC (opr) Subtract with Carry ACCA ¢ ACCA -M-C IMM A2 i 2 2 |—1— sis|s
DIR B2 dd 2 3
EXT C2 hh It 3 4
X2 D2 ee ff 3 5
1X1 E2 ff 2 4
IX F2 1 3
SEC Set C Bit C bite1 INH 99 1 2 |—|—]—]=}1
SEI Set | Bit | bit 4 1 INH 9B 1 2 |—|1]=]—]—
STA (opr) Store A in Memory M 4 ACCA DIR B7 dd 2 4 |—]— slel—
EXT Cc7 hh 1l 3 5
X2 D7 ee ff 3 6
X1 E7 ff 2 5
1X F7 1 4
STOP Enable iRQ, Stop Oscillator INH 8E 1 2 |—|o|—|—|—
STX {opr) Store X in Memory M4 X DIR BF dd 2 4 11—\ e 0
EXT CF hh 1l 3 5
1X2 DF ee ff 3 6
1X1 EF ff 2 5
1X FF 1 4
SUB (opr) Subtract ACCA ¢ ACCA- M IMM A0 i 2 2 |—|— slsle
DIR BO dd 2 3
EXT co hh il 3 4
X2 Do ee ff 3 5
X1 EO ff 2 4
IX FO 1 3
SWi Software Interrupt PC 4 PC+0001 INH 83 1 10 |—{ 1 |—|—|—
(SP) ¢ PCL; SP ¢ SP- 0001
(SP) ¢ PCH; SP 4 SP-- 0001
(SP) 4 X; SP ¢ SP-0001
(SP) 4 ACCA; SP 4 SP -0001
(SP) 4 CC; SP 4 SP- 0001
I bite1
PCH 4 $xFFC (vector
PCL 4 $xFFD fetch)
TAX Transfer A to X X 4 ACCA INH 97 1 2 |—={=l=]—]—
TST (opr) Test for Negative or Zero M-0 DIR 3D dd 2 4 |—|— sls 0
TSTA INH(A) 4D 1 3
TSTX INH(X) 5D 1 3
TST (opr) X1 6D ff 2 5
TST (opr) 1X 7D 1 4
TXA Transfer X to A ACCA ¢ X INH 9F 1 2 |—l—|—=|—|—
WAIT Enable Interrupts, Halt CPU INH 8F 1 2 |10 |~]|—|—
3-44 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



3.4.7 Interrupts

Systems often require that normal processing be interrupted so that some
external event may be serviced. The MC68HC705C8 may be interrupted by
one of five different methods: any one of four maskable hardware interrupts
(IRQ, SPI, SCI, or timer) and one nonmaskable software interrupt (SWI). In-
terrupts such as timer, SPI, and SC! have several flags which will cause the
interrupt. Generally, interrupt flags are located in read-only status registers;
their equivalent enable bits are located in associated control registers. The
interrupt flags and enable bits are never contained in the same register. If
the enable bit is a logic zero, it blocks the interrupt from occurring but does
not inhibit the flag from being set. Reset clears all enable bits to preclude
interrupts during the reset procedure.

The general sequence for clearing an interrupt is a software sequence of first
accessing the status register while the interrupt flag is set, followed by a read
or write of an associated register. When any of these interrupts occur and
the enable bit is a logic one, normal processing is suspended at the end of
the current instruction execution.

Figure 3-8 shows how interrupts fit into the normal flow of CPU instructions.
Interrupts cause the processor registers to be saved on the stack and the
interrupt mask (I bit) to be set to prevent additional interrupts. The appropriate
interrupt vector then points to the starting address of the interrupt service

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-45



9v-€

3diND SNOILYIITddV H3TTOHLNODJOHIIIN SOOH8IN

VIOHOLOW

M68HCO05 Instruction Set Opcode Map

Bit Manipulation Branch Read/Modify/Write Control Register/Memory
BTB BSC REL DIR INH INH X1 X INH INH IMM DIR EXT X2 X1 IX
i [} 1 2 3 4 5 6 7 8 9 A B c D E F HI
LOW 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 LOW.
5 5, 3 5 8 5 9 2 5 4 3
v BRSETO_L BSETO BRA NEG NEGA NEGX NEG NEG RTI SUB SUB SUB suB SuB 0(?00
BIBJ2 BSC REL DIR]1 INH| 1 INHJ2 X1 X 4“4&‘ 2 IV | 2 1X2] 1X1 X
1 5 5 3 6 2| 5 4 3 1
wor | BRCLRO BCLRO BRN RTS cvP cMP cmP cMP CcMP o00n
BTB{2 BSC REL INH 2 MM |2 X2 X1 X
2 3 1 2 5 a 3 2
oo | BRSETI BSET1 BHI MUL SBC SBC SBC SBC SBC om0
BSC REL 1 INH 2 MM |2 1X2 1X1 X
3 5 3 5 3 3 6 5 10 2 5 4 3 3
o BCLR1 BLS com COMA COMX com com SWi CPX CPX CPX cPX cPX o
BSC REL DIR|1 INH{ 1 INH|2 X1 X INH 2 MM § 2 X2 1X1 iX
4 5 3 5 6 5 2 5 4 3 4
ven BSET2 BCC LSR LSRA LSRX LSR LSR AND AND AND AND AND oo
BSC REL DTR|1 INH| 1 INH|2 X1 1X 2 MV §2 X2 1X1 S ),
5 5 5 3 2 5 4 3 5
oo | BRCLR2 BCLR2 BCS BIT BIT BIT BIT BIT o
BTB|2 BSC REL 2 MM |2 1X2 X1 X
6 5 5 3 5 6 5 2 5 4 3 6
woo | BRSET3 BSET3 BNE ROR RORA RORX ROR ROR LDA LDA LDA LDA LDA oo
BTB}2 BSC REL DIR]1 INH] 1 INH]2 IX1 1X 2 IMM ]2 1X2 1X1 1X
7 5 5 3 5 6 5 2 6 5| 4 7
oi | BRCLR3 BCLR3 BEQ ASR ASRA ASRX ASR ASR TAX STA STA STA STA omi
3 BTB}2 BSC REL DIR{1 INH{1 INH}2 IX1 1X INH 2 1X2 1X1 X
8 5 5 3] 5| 3 5 2 2 5 4 3 8
1o | BRSET4 | BSET4 BHCC LSt LSLA LSLX LSt LSL cLe EOR EOR EOR EOR EOR o
BTB{2 B8SC REL DIR}1 INHE1 INH 2 1X1 X INH 2 MV § 2 (X2 1X1 iX
9 5 5| 5] 3 6 - 5 2 2 5 4 3] 9
o | BRCLR4 | BCLR4 BHCS ROL ROLA ROLX ROL ROL SEC ADC ADC ADC ADC ADC o
BTB|2 BSC REL DIR|1 INH]1 INH 2 iX1 X INH |2 MM I 2 X2 IX1 X
A 5 5, 3 5 3] 6 5 2 2 5 a4 3 A
o | BRSETS BSETS BPL DEC DECA DECX DEC DEC cu ORA ORA ORA ORA ORA oo
81812 BSC REL DIRJ1 INH]1 INH| 2 X1 X INH |2 IMM |2 IX2 IXt X
B 5] 5, 3 2 2 5 4 3 B
o1 | BRCLRS BCLRS BMI SEI ADD ADD ADD ADD ADD o
BTBf2 BSC REL INH{2 IMM ]2 1X2 1X1 1X
c 5 5 3 5 6 5 2 2 3 4 3, 2 C
o | BRSETE BSET6 BMC INC INCA INCX INC INC RSP JMP Jmp JMP JmpP JMP 1o
2 BSC REL DIRY1 INH| 1 INH| 2 1X1 1X INH 2 DIR|3 EXT]3 1X2 1X1 1X
D 5 3 4 5 a 2 ] 5 6 7 € 5 D
B BCLR6 BMS TST TSTA TSTX TST TST NOP BSR JSR JSR JSR JSR JSR ot
BSC REL DIR{1 iINHIY INH]2 1X1 1X INH{2 REL{2 DIR|3 EXT]3 1X2 1X1 X
E 5 3 2 3 4 5 4 3 E
o BSET7 BIL STOP LDX LDX LDX LDX LDX LDX o
B8SC REL INH 2 IMM|2 DIRJ3 EXT{3 1X2 1X1 X
F 5 3 5 6 2; 4 5 6 5 4 F
. BCLR? BIH CLR CLRA CLRX CLR CLR WAIT TXA STX STX STX STX STX i
BSC REL DﬁlT INHJ 1 INH|2 1X1 iX INH INH 2 DIR|3 EXT|3 X2 1X1 iX
Legend
Abbreviations for Address Modes EXT Extended F SE)C(;/?[?ECII?AAL
REL Relative 1111~
INH Inherent BSC Bit Set/Clear 3 W OPCODE IN
h 0 NAR
A Accumulafor BTB Bit Test and Branch MNEMONIC ——}—> suB -] BINARY
X Index Register X Indexed (No Offset) BYTES ——>41 X 0000
MM Immediate X1 Indexed, 1 Byte (8-Bit) Offset
DIR Direct IX2 Indexed, 2 Byte {16-Bit) Offset CYCLES — / ADDRESS MODE



routine (refer to Figure 3-9 and Table 3-6 for vector location). Upon completion
of the interrupt service routine, the RTl instruction {which is normally the last
instruction of the routine) causes the register contents to be recovered from
the stack followed by a return to normal processing.

NOTE

The interrupt mask bit (I bit) will be cleared if, and only if, the cor-
responding bit stored in the stack is zero.

Table 3-6. Vector Address for Interrupts and Reset

. Flag CPU Vector
Register Name Interrupts Interrupt Address
N/A N/A Reset RESET $1FFE-$1FFF
N/A N/A Software Swi $1FFC-$1FFD
N/A N/A External Interrupt iRQ $1FFA-$1FFB
Timer Status ICF Input Capture TIMER $1FF8-$1FF9
OFC Output Compare
TOF Timer Overflow
SCI Status TDRE Transmit Buffer Empty SCI $1FF6-$1FF7
TC Transmit Complete
RDRF Receiver Buffer Full
IDLE Idle Line Detect
OR Overrun
SPI Status SPIF Transfer Complete SPI $1FFA-$1FF5
MODF Mode Fault

Reset and interrupt operations are often discussed together because they
share the common concept of vector fetching to force a new starting point
for further CPU operation. Unlike interrupts, there is no intention to ever
return to whatever the CPU was doing before a reset occurred.

A low on the RESET input pin causes the program to vector to its starting
address specified by the contents of memory location $1FFE and $1FFF. The
| bit in the condition code register is also set. Much of the MCU is configured
(forced) to a known state during reset.

3.4.7.1 SOFTWARE INTERRUPT (SWI). The software interrupt is an executable
instruction. The action of the SWI instruction is similar to the hardware in-
terrupts. The SWI is executed regardless of the state of the interrupt mask (|
bit) in the condition code register. The interrupt service routine address is
specified by the contents of memory location $1FFC and $1FFD.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-47



1BIT
INCC REGISTER
SET?
B> o
INTERRUPT Faran
INTERNAL
TIMER TES 5 >
INTERRUPT ’
STACK
PC, X, A, CC
Y
SET I-BIT
IN CC REGISTER
Y
LOAD PG FROM VECTOR:
IRQ: $1FFA, $1FFB
TIMER: $1FF8, $1FF9
SCI: $1FF6, $1FF7
NO SPI' $1FF4, $1FF5
ol Y
\
FETCH NEXT
INSTRUCTION

RESTORE REGISTERS

FROM STACK

RTI
INSTRUCTION
? CC,A X, PC

EXECUTE
INSTRUCTION

Y

Y

Figure 3-8. Hardware Interrupt Flowchart -

3-48 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



TOWARD LOWER ADDRESSES
(LOWEST STACK ADDRESS IS $00C0)

STACK 7 ﬁ 0
1

‘} | | ! \ 1 I C:ONDI?I'IONTQODE;:_; I

L

ACCUMULATOR I

[ 1 !

g T T T T T BZ:
Z | INDEX REGISTER 5
E T L L T E
Z | 0 l 0 | 0 | PROG COUNTER HIGH
1 L 1 1
L) T T T L} T T
I PROGRAM COUNTER LOW I Y
] yNsTACK
TOWARD HIGHER ADDRESSES

(HIGHEST STACK ADDRESS IS $00FF)

NOTE: When an interrupt occurs, CPU registers are saved
on the stack in the order PCL, PCH, X, A, CC. Onareturn
from interrupt registers are recovered from the stack in
reverse order.

Figure 3-9. Interrupt Stacking Order

3.4.7.2 EXTERNAL INTERRUPT. If the interrupt mask (I bit) of the condition code
register has been cleared and the external interrupt pin (IRQ) has gone low,
then the external interrupt is recognized. When the interrupt is recognized,
the current state of the CPU is pushed onto the stack and the | bit is set. This
masks further interrupts until the present one is serviced. The interrupt serv-

ice routine address is specified by the contents of memory location $1FFA
and $1FFB.

The MC68HC705C8 MCU IRQ pin sensitivity is software programmable. Either
negative edge- and level-sensitive triggering or negative edge-sensitive trig-
gering are available. The MC68HC705C8 MCU uses the option register resid-
ing at location $1FDF to control the IRQ pin sensitivity.

3.4.7.3 TIMER INTERRUPT. There are three different interrupt flags that will cause
a timer interrupt whenever they are set and enabled. These three interrupt
flags are found in the three MSBs of the timer status register (TSR, location

$13), and all three will vector to the same interrupt service routine
($1FF8-$1FF9).

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-49



All interrupt flags have corresponding enable bits {ICIE, OCIE, and TOIE) in
the timer control register (TCR, location $12). Reset clears all enable bits,
thus preventing an interrupt from occurring during the reset time period. The
actual processor interrupt is generated only if the | bit in the condition code
register is also cleared. The general sequence for clearing an interrupt is a
software sequence of accessing the status register while the flag is set, fol-
lowed by a read or write of the associated control register.

3.4.7.4 SERIAL COMMUNICATIONS INTERFACE (SCI) INTERRUPT. An interrupt

in the SCI occurs when one of the interrupt flag bits in the serial commu-
nications status register is set, provided the | bit in the condition code register
is clear and the enable bit in the serial communication control register 2
(location $0F) is enabled. Software in the serial interrupt service routine must
determine the priority and cause of the SCI interrupt by examining the in-
terrupt flags and the status bits located in the serial communications status
register (location $10) The general sequence for clearing an interrupt is a
software sequence of accessing the status register while the flag is set, fol-
lowed by a read or write of the associated control register.

3.4.7.5 SERIAL PERIPHERAL INTERFACE (SPI) INTERRUPT. An interruptin the SPI

occurs when one of the interrupt flag bits in the serial peripheral status
register {location $0B) is set, provided the | bit in the condition code register
is clear and the enable bit in the serial peripheral control register (location
$0A) is enabled. The general sequence for clearing an interrupt is a software
sequence of accessing the status register while the flag is set, followed by
a read or write of the associated control register.

3.5 MICROCONTROLLER INPUT/OUTPUT

3-50

Since inputs to and outputs from the MCU are usually digital (0 to +5 Vdc
at fow power), interface logic is often needed to couple the MCU to external
devices. Interface logic can operate in parallel or serial form.

Parailel interfaces allow I/0 data transfer eight bits at a time, to paratllel ports
on the MCU. Serial interfaces transfer I/O data one bit at a time through a
serial communications interface (SCI) or serial peripheral interface (SPI) that
are parts of the MCU.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



Data transfers between the MCU and external logic are controlled by the
MCU.

NOTE

Tie all unused inputs and I/O ports to an appropriate logic level,
either VDD or VSsS.

3.5.1 Parallel IO

The MC68HC705C8 MCU contains 31 general-purpose parailel 1/0 pins ar-
ranged in four ports. Ports A, B, and C are 8-bit ports in which the direction
of each pin is programmable by software-accessible registers. Each 8-bit port
has an associated 8-bit data direction register (DDR) as shown in Figures
3-10, 3-11, and 3-12.

Bt7 6 5 4 3 2 1 Bit 0
| poRA7 | DDRAG | DDRAS | DDRA4 J] DDRAS | DDRA2 | DDRA1 | DDRAO| $04 DDRA
1 1 ] |

[ o 0 0 0 0 0 0 0 jrﬁﬂg&rg))mon
S R S RN T B B
4 1 1 F ] J [ ] $00 PORTA

' 1 1 ! 1 I 1

1
L PORT OUTPUT REGISTER STATES NOT CHANGED BY RESET J RESET CONDITION

A A A

PA7 PAB PAS PA4 PA3 PA2 PA1 PAO  PIN NAMES (REF.)

Figure 3-10. Port A and Data Direction A Registers

Bt7 6 5 4 3 2 1 Bit0
| pore? [ ooraes | pores | obres [ oorea | bore2 [ ooret [ ooreo | $05 DDRB
1 i 1 i | 1 ] 1

[ o 0 0 0 0 0 0 0| RESETCONDITION

by vy e
[.f|7 1 1 1 1g%0t PORTB

i | [ |
L PORT OUTPUT REGISTER STATES NOT CHANGED BY RESET l RESET CONDITION

A A A A

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO  PIN NAMES (REF.)

Figure 3-11. Port B and Data Direction B Registers

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-51



3-52

Bt7 6 5 4 3 2 Bit0
| bore7 | bores | pores | borce J| bores | oore2 [ opret fobreo | $06 DDRC
|- ) ] | 1 | ' 1

[ o 0 0 0 0 0 0 0 J&iﬁg&gmon
P I T T T 2 T
1| L1 1 FIT | ] $02 PORTC

1 1 [ 1 ) 1 i
l PORT QUTPUT REGISTER STATES NOT CHANGED BY RESET J RESET CONDITION

T A A A A A

PC7 PCé PC5 PC4 PC3 PC2 PC1 PCO  PIN NAMES (REF.)

Figure 3-12. Port C and Data Direction C Registers

Any port A, B, or C pin is configured as an output if its corresponding DDR
bit is set to a logic one. A pin is configured as an input if its corresponding
DDR bit is cleared to a logic zero. At power-on or reset, all DDRs are cleared,
which configure all port A, B, and C pins as inputs. The DDRs are capable of
being written to or being read by the processor. Refer to Figure 3-13 and
Table 3-7. When a port pin is configured as an output, a read of the data
register actually reads the value of the output data latch and not the I/0 pin.

DATA DIRECTION
REGISTER
BIT

LATCHED
| OUTPUT DATA 9— ]
BIT
>

12

i

CONNECTIONS TO INTERNAL
DATA BUS

/

[1] - Output Buffer, enables latched output to drive pin when DDR bitis 1 (output)
[2] - Input Buffer, enabled when DDR bit is 0 (Input).
[3] - Input Buffer, enabled when DDR bit is 1 (Output).

Figure 3-13. Parallel Port /0 Circuitry

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



Table 3-7. /O Pin Functions

RIW* DDR 1/0 Pin Function
0
0
1
1

The /O pin is in input mode. Data is written into the output data latch.

Data is written into the output data iatch and output to the 1/O pin.

The state of the I/O pin is read.

= Jo|-=|o

The 1/0 pin is in output mode. The output data latch is read.

*R/W is an internal signal.

3.5.2 Serial 1/0

Port D (see Figure 3-14) is a 7-bit fixed-direction input port. The SPl and SCI
systems take control of port D pins when these systems are enabled. During
power-on reset or external reset, all seven pins (PD5-PDO0, PD7) are config-
ured as input ports because all special-function output drivers are disabled.
For example, with the SCI system enabled (RE=TE = 1), PD0 and PD1 inputs
will read zero. With the SPI system disabled (SPE =0), PD5-PD2 will read the
state of the pin at the time of the read operation.

The SCI function uses two of the pins (PD1-PDO) for its receive data input 3
(RDI) and transmit data output (TDO); the SPI function uses four of the pins
(PD5-PD2) for its serial data input/output (MISO, MOSI), system clock (SCK),
and slave select (SS), respectively.

| | ] | | I [ ] %03 PORTD

T S S Y N

PD7 not PD5 PD4  PD3 PD2 PDI  PDO
wed 55 SCK MOSI MO TDO  RDI INNAMES(REF)

(A A G A

7/

SPI sCl

AN

ALTERNATE USE (REF.)

Figure 3-14. Port D Fixed Input Port

3.6 SERIAL COMMUNICATIONS INTERFACE (SCl)

SCl is one of two independent serial /0 subsystems in the MC68HC705C8.
The other serial I/0 system (called SPI) provides for high-speed synchronous
serial communication to peripherals or other MCUs. The SCl is a full-duplex
UART-type asynchronous system that can be used for communication be-
tween the MCU and a CRT terminal or a personal computer, or several widely

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-53



3.6.1

3-54

distributed MCUs can use their SCl subsystems to form a serial communi-
cations network.

The SCI uses standard nonreturn-to-zero (NRZ) format {one start bit, eight
or nine data bits, and a stop bit). The most common data format is eight bits.
An on-chip baud rate generator derives standard baud rate frequencies from
the MCU oscillator. The SCI transmitter and receiver are functionally inde-
pendent but use the same data format and baud rate. In this applications
guide, “baud rate’’ and “bit rate”” are used synonymously.

SCI Features:

Two-Wire Serial Interface

Standard NRZ (mark/space) Format

Full-Duplex Operation (independent transmit and receive)
Software Programmable for One of 32 Different Baud Rates
Software-Selectable Word Length (8- or 9-bit words)
Separate Transmitter and Receiver Enable Bits
Communication may be Interrupt Driven

Receiver:
® Receiver Data Register Full Flag
® Error Detect Flags — Framing, Noise, Overrun
® |dle-Line Detect Flag
® Receiver Wakeup Function (idle or address bit)

Transmitter:
® Transmit Data Register Empty Flag
e Transmit Complete Flag (for modem control)
® Break Send

SCI Transmitter

The SCI transmitter block diagram is shown in Figure 3-15. The heart of the
transmitter is the transmit serial shift register near the top of the figure.
Usually, this shift register obtains its data from the write-only transmit buffer.
Data is transferred into the transmit buffer when software writes to the SCI
data register (SCDAT). Whenever data is transferred into the shifter from the
transmit buffer, a zero is loaded into the LSB of the shifter to act as start bit,
and a logic one is loaded into the last bit position to act as a stop bit. In the
case of a preamble, the shifter is loaded with all ones, including the bit
position usually holding the logic zero start bit. A preamble is loaded each
time the transmit enable bit is written from zero to one. In the case of a send

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROCLA



1X WRITE-ONLY
BAUD RATE I SCDAT Tx BUFFER ](-—L———R
CLOCK

Y
10 (11)- BIT Tx SHIFT REGISTER
- PIN BUFFER PD1
[Hlef7 6 5 432 ofh--> >1  ANDGONTROL |
\ \
A A A A A A Y
B vl = =1 B =
Y el 2 2 =| = \
> 2| 2 z 2 3 N
=i Z| ul %
[+ =4 I - m 1w
Bl & 2| &
0 w
= 4
d
> FORCE PIN DIRECTION (OUT)
> TRANSMITTER
> CONTROL LOGIC <
A YY
ale| 3] Ble 2l |
] 111 il L
| SCCR1 SCI CONTROL 1 I SCSR INTERRUPT STATUS
YY ?
\
TDRE
=
TC
TCE
(11} 2
el
[ SCCR2 SCI CONTROL 2 I-(-—)—\
A
IL v
SCIRx SCIINTERRUPT INTERNAL
REQUESTS REQUEST DATABUS

Figure 3-15. SCI Transmitter Block Diagram

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-55



break command, the shifter is loaded with all zeros, including the last bit
position usually holding the logic one stop bit.

The T8 bit in SCI contro! register 1 (SCCR1) acts like an extra high-order bit
(ninth bit) of the transmit buffer register. This ninth bit is only used if the M
bit in SCCR1 is set, selecting the 9-bit data character format. The M bit also
controls the length of idle and break characters.

The status flag and interrupt generation logic are shown in Figure 3-15. The
transmit data register empty (TDRE) and transmit complete (TC) status flags
in the SCI status register (SCSR) are automatically set by the transmitter
logic. These two bits can be read at any time by software. The transmit
interrupt enable (TIE) and transmit complete interrupt enable (TCIE) control
bits enable the TDRE and TC flags, respectively, to generate SCI interrupt
requests.

3.6.2 SCI Receiver

3-56

The receiver block diagram is shown in Figure 3-16. SCl received data comes
in on the RDI pin, is buffered, and drives the data recovery block. The data
recovery block is actually a high-speed shifter operating at 16 times the bit
rate; the main receive serial shifter operates at one times the bit rate. This
higher speed sample rate allows the start-bit leading edge to be located more
accurately than a 1x clock would allow. The high-speed clock also allows
several samples to be taken within a bit time so logic can make an intelligent
decision about the logic sense of a bit (even in the presence of noise). The
data recovery block provides the bit level to the main receiver shift register
and also provides a noise flag status indication.

The heart of the receiver is the receive serial shift register. This register is
enabled by the receive enable (RE) bit in the SCI control register 2 (SCCR2).
The M bit from the SCCR1 register determines whether the shifter will be 10
or 11 bits. After detecting the stop bit of a character, the received data is
transferred from the shifter to the SCDAT, and the receive data register full
(RDRF) status flag is set. When a character is ready to be transferred to the
receive buffer but the previous character has not yet been read, an overrun
condition occurs. In the overrun condition, data is not transferred, and the
overrun (OR) status flag is set to indicate the error.

There are three receiver-related interrupt sources in the SCI. These flags can

be polied by software or, when enabled, cause an SCl interrupt request. The
receive interrupt enable (RIE) control bit enables the RDRF and OR status

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



BAUD RATE
CLOCK

10 (11)- BIT
Y 2 Rx SHIFT REGISTER

w
redoveRy [—>T-"~">] [@]7 6 5 4 8 2 | of |
\

TOP
TART

Y

PDO
| PINBUFFER

Y E ALL ONES
A A
Y VY
M
WAKEUP | o
- LOGIC “ RWU
Y A VVY
4 wl et
del ] Bl ,,
| SCCR1 SCI CONTROL 1 | | SCSR INTERRUPT STATUS | [ SCDAT Rx BUFFER l
? YUV ? ¥ FEADONLY)
\,

N

RDRF

IDLE
ILIE
OR
RIE
P w >
ﬂﬂ%ﬁﬂgéﬁ
l SCCR2 SCI CONTROL 2 —}4-)—\
A
Y
SCI Tx SCI INTERRUPT INTERNAL
REQUESTS REQUEST DATA BUS

Figure 3-16. SCI Receiver Block Diagram

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-57



flags to generate hardware interrupt requests. The idle line interrupt enable
(ILIE) control bit allows the IDLE status flag to generate interrupt requests.

3.6.3 Registers

The SCI system includes five registers (BAUD, SCCR1, SCCR2, SCSR, and
SCDAT) and two external pins (TDO and RDI). When the SCI receiver and/or
transmitter is enabled, the SCI logic takes control of the pin buffers for the
associated port D pin(s). When the SCl is disabied, the TDO and RDI pins act
as general-purpose inputs.

The main function of each of these registers will be discussed. Normally, the
SCCR1, SCCR2, and BAUD registers would be written once to initialize and
then not used again. An example of the software/programming procedure is
shown later in this section.

3.6.3.1 BAUD RATE REGISTER (BAUD). The BAUD register (see Figure 3-17) is

3-58

used to select the baud rate for the SCI system. Both the transmitter and
receiver use the same data format and baud rate, which is derived from the
MCU bus rate clock. The SCP1-SCP0 bits function as a prescaler for the
SCR2-SCRO bits. Together, these five bits provide multiple baud rate com-
binations for a given crystal frequency.

The diagram shown in Figure 3-18 and Tables 3-8 and 3-9 illustrate the divider
chain used to obtain the baud rate clock (transmit clock). For example, using
a 4-MHz crystal, the internal processor clock is 2 MHz.

Bt7 6 5 4 3 2 1 Bit0
I -] - Iscet]scro|] - |[scra]scri]scro| $0D BAUD -
[ | I [ | [ [ [

| |

[ SCI RATE SELECT
DIVIDE PRESCALER OUTPUT
BY1,2,4,8,..128

SCI PRESCALER RATE SELECT
DIVIDE INTERNAL PROCESSOR CLOCK
BY1,3,4,0r13

[ o 0 0 0 0 o 0 0 | RESET CONDITION

Figure 3-17. Baud Rate Register

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



CRYSTAL

FREQUENCY I

Figure 3-18. Rate Generator Division

SCP1 - SCPO
PRESCALER
CONTROL

+N

4

SCR2 - SCRO
SCI SELECT
RATE CONTROL

+M

FIXED
+16

INTERNAL

@—————>» PROCESSOR

CLOCK

PRESCALER OUTPUT
(Frequency is 16 times
the values in Table 3-4)

RECEIVER CLOCK
(16X BAUD RATE)
(Frequency is 16 times
the values in Table 3-5)

L——-+ TRANSMITTER CLOCK

{1X BAUD RATE)

Table 3-8. Prescaler Baud Rate Frequency Output

SCP Bit Clock* Crystal Frequency MHz

1 o | Divided By | 4.194304 4.0 2.4576 2.0 1.8432
0 0 1 131.072 kHz | 125.000 kHz | 76.80 kHz | 62.60 kHz | 57.60 kHz
0 1 3 43.691 kHz | 41.666 kHz | 25.60 kHz | 20.833 kHz | 19.20 kHz
1 0 4 32768 kHz | 31.250 kHz | 19.20 kHz | 15.625 kHz | 14.40 kHz
1 1 13 10.082 kHz 9600 Hz 5.907 kHz 4800 Hz 4430 Hz

*The clock in the “’Clock Divided By” column is the internal processor ciock.

NOTE: The divided frequencies shown in Table 3-8 represent baud rates which are the highest transmit
baud rate (Tx) that can be obtained by a specific crystal frequency and only using the prescaler
division. Lower baud rates may be obtained by providing a further division using the SCl rate
select bits shown below for some representative prescaler outputs.

The SCP1-SCPO0 bits in the baud rate register set the division factor (N in
Figure 3-18) for the baud rate divider. Reset clears these bits, setting the
prescaler to divide-by-one.

The SCR2, SCR1, and SCRO bits are used to set the division factor (M in Figure
3-18) for the baud rate divider. Reset does not affect these bits.

Example:

From Table 3-8, find the crystal frequency used (in this case, 4 MHz). Next,
find 9600 or a binary multiple of 9600. In this example, you would select

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-59



Table 3-9. Transmit Baud Rate Output

SCR Bits Divided Representative Highest Prescaler Baud Rate Output

211})0 By 131.072 kHz | 32.768 kHz 76.80 kHz 19.20 kHz 9600 Hz
0f{o0fo0 1 131.072 kHz | 32.768 kHz 76.80 kHz 19.20 kHz 9600 Hz
0l0}1 2 65.536 kHz | 16.384 kHz 38.40 kHz 9600 Hz 4800 Hz
o110 4 32.768 kHz 8.192 kHz 19.20 kHz 4800 Hz 2400 Hz
of1]1 8 16.384 kHz 4.096 kHz 9600 Hz 2400 Hz 1200 Hz
11010 16 8.192 kHz 2.048 kHz 4800 Hz 1200 Hz 600 Hz
11011 32 4.096 kHz 1.024 kHz 2400 Hz 600 Hz 300 Hz
11110 64 2.048 kHz 512 Hz 1200 Hz 300 Hz 150 Hz
11111 128 1.024 kHz 256 Hz 600 Hz 150 Hz 75 Hz

NOTE: Table 3-9 illustrates how the SCI select bits can be used to provide lower transmitter baud rate
by further dividing the prescaler output frequency. The five examples are only representative
samples. In all cases, the baud rates shown are transmit baud rates (transmit clock), and the
receive clock is 16 times higher in frequency than the actual baud rate.

the bottom row which corresponds to SCP1:SCP0=1:1 (divide-by-thirteen).
Next, find the column in Table 3-5 that corresponds to 9600 Hz. Find the
desired baud rate in this column. In this example, you would select the top
row, which corresponds to SCR2:SCR1:SCR0=0:0:0 (divide-by-one).

3.6.3.2 SERIAL COMMUNICATIONS CONTROL REGISTER ONE (SCCR1). The se-
rial communications control register one (SCCR1) shown in Figure 3-19 in-
cludes three bits associated with the optional 9-bit data format. The WAKE
bit is used to select one of two methods of receiver wakeup. Normal setup
for bit M is 0 for 8-bit words. The other register bits are not used in most
systems. In a typical system, this register would be written to $00 during

3-60

initialization.
Bt7 6 5 4 3 2 1 Bit0
['Re | ] — I m Twwe] - T - | - | $OE SCCR1
I I [ [ [ l |
Lo 0 - 0 0 - - ~ | RESET CONDITION
l— WAKEUP METHOD SELECT

0-IDLE LINE 1-ADDRESS MARK

SELECT SCI DATALENGTH
0-8 BITS 1-9BITS

NINTH TRANSMIT BIT (IF M=1)
NINTH RECEIVE BIT (IF M=1)

Figure 3-19. Serial Communications Control Register One

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



3.6.3.3 SERIAL COMMUNICATIONS CONTROL REGISTER TWO (SCCR2). The se-
rial communications control register two (SCCR2) shown in Figure 3-20 is
the main control register for the SCI subsystem. This register can enable/
disable the transmitter or receiver, enable the system interrupts, and provide
the wakeup enable bit and a “send break code’” bit. The TIE, TCIE, RIE, and
ILIE bits are local interrupt enable controls, which determine whether SCI
status flags will be polled or generate hardware interrupt requests.

Bit 7 6 5 4 3 2 1 Bit0

{ 7€ Jvoe [ me [ we J] 7e | re [ rwu | sek | $OF SCCR2
I I I ! [ I
[ o 0 0 0 0 0 | RESET CONDITION

| |
0 0
L L SEND BREAK

RECEIVER WAKEUP FUNCTION
ENABLE SCI RECEIVER
ENABLE SCI TRANSMITTER
IDLE LINE INTERRUPT ENABLE
RECEIVER INTERRUPT ENABLE
— TRANSMISSION COMPLETE INTERRUPT ENABLE
— TRANSMITTER INTERRUPT ENABLE

Figure 3-20. Serial Communications Control Register Two

In a typical system:
TE and RE would be written to one to enable the transmitter and receiver
subsystems.
ILIE, RWU, and SBK would seldom be used and would be written to zero.

If interrupts were not being used, TIE, TCIE, and RIE would be written to
zero. If interrupts were used, these three bits would be written to one.

For example, in a system which does not use interrupts, SCCR2 would be
loaded with $0C during initialization.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-61



3.6.3.4 SERIAL COMMUNICATIONS STATUS REGISTER (SCSR). The SCI status
register (SCSR) in Figure 3-21 contains two transmitter status flags and five
receiver related status flags. The TDRE and RDRF bits are always used. The
TC and IDLE bits are not commonly used.

Bt7 6 5 4 3 2 1 Bit0
[ oRe | T¢ | morF J e [ oR TN [ FE ] -] $10 SCSR
I | | [ [ I I |
K 1 0 0 0 0 0 - | RESET CONDITION
FRAMING ERROR
NOISE FLAG
OVERRUN
IDLE LINE DETECT
RECEIVE DATA REGISTER FULL
TRANSMISSION COMPLETE

— TRANSMIT DATA REGISTER EMPTY

Figure 3-21. Serial Comunications Status Register

The OR, NF, and FE bits should be monitored and may or may not be used,
depending on the type of SCI system. For errors to be corrected, both the
transmitting and receiving device must have a common method of handling
errors.

There are two major types of communication links associated with the SCI.
An example of a direct connection would be an MCU connected to a personal
computer. In this direct connection link OR, NF, and FE errors are very unlikely
and are typically ignored. The second type of link involves two remote devices
where each is connected to a modem. In this type of link, errors are more
fikely and both computers would typically use a protocol that permits re-
transmission when an error is detected.

3-62 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



3.6.3.5 SERIAL COMMUNICATIONS DATA REGISTER (SCDAT). The SC! SCDAT
data register (see Figure 3-22) has two functions: it is the transmit data
register when written to and the receive data register when read. Both the
transmitter and receiver are double buffered (see Figure 3-23), so back-to-
back characters can be handied easily even if the CPU is delayed in respond-
ing to the completion of an individual character.

Bit7 6 5 4 3 2 1 Bit0

I I I | $11 SCDAT

Figure 3-22. Serial Communications Data Register

PARALLEL DATA
FROM CPU DATABUS TDRE flag set each time new data is
transferred from the TDR buffer to the

wL i \L l l, l i i Transmit serial shift register.

TDR BUFFER ] SERIAL DATA OUT

YYVYYYYY —
1] TRANSMIT SHIFTER Jo

«

STOP START
BIT BIT
IRANSMITTER
SERIALDATAIN  STOP START

BIT BIT

\d A
m 1] RECEIVE SHIFTER |o]

RDRF flag set each time new data is }  YYYYY V
transferred from the serial shift register RDR BUFFER
fo the RDR buffer. ¢¢¢¢«¢¢¢¢
PARALLELDATA
TO CPU DATA BUS
RECEIVER

Figure 3-23. Double Buffering

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-63



3.6.4 Data Formats

3-64

The standard NRZ data formats used for communications are shown in Figure
3-24. The upper portion of this figure shows the normal 8-bit data format;
the lower portion of the figure shows the 9-bit data format. The 9-bit data
format is selected by setting the M control bit in SCCR1 to 1.
The basic characteristics of the NRZ format are as follows:

1) A high level indicates a logic one and a low level, a logic zero.

2) The idle line is high prior to message transmission/reception.

3) A start bit (logic zero) is transmitted/received as the first bit of data in
a character.

4) Data is transmitted/received LSB first.
5) The last bit in a character (bit 10 or 11) is a high (stop bit).

6) A break is a low (logic zero) for 10 or 11 bit times.

A A

START STOP
BIT

BIT NEXT
START BIT

1L T TTTTT T I« L[
srtm s;tpt

BIT NEXT
START BIT

[1] - Control bit "M" selects optional ninth data bit.

Figure 3-24. Data Formats

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



3.6.5 Hardware Procedures

Some simple hardware setup is required. A universal standard RS232 cable
is used to interconnect the SCl to a CRT terminal or the PC. The user would
usually have to provide an external level shifter buffer (MC145406) to convert
the RS232 (typically =12 volts) to the 0-5 volt logic levels used by the
MC68HC705C8.

3.6.6 Software Procedures

The following paragraphs and flowcharts discuss software procedures. These
flowcharts illustrate how straightforward normal SCI operations are.

3.6.6.1 INITIALIZATION PROCEDURE. The following list reflects the initialization
procedure.

1) Write to BAUD register (SCP1-SCP0, SCR2-SCRO0) to set baud rate.

2) Write to SCCR1 (R8, T8, M, WAKE) to set character length and choose
wakeup method.

3) Write to SCCR2 (TIE, TCIE, RIE, ILIE, TE, RE, RWU, SBK) to enable desired
interrupt sources. To turn on the transmitter and receiver, RWU and
SBK would be written to zero during initialization.

The following is a reference list of interrupt enable control bits versus the
interrupt source(s) they enable:

Enable Flags Interrupt Source Names

TIE TDRE Transmit data register empty
TCIE TC Transmit complete

RIE RDRF, OR  Receive data register full, overrun
ILIE IDLE Idie line detect

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-65




3.6.6.2 NORMAL TRANSMIT OPERATION. Refer to Figure 3-25, a flowchart of the
normal transmit operation.

FLOWCHART MNEMONIC PROGRAM

START N
SUBROUTINE

SENDATA  BRCLR 7, SCSR, SENDATA

WRITE DATA N
TO SCDAT STA SCDAT

RETURN FROM
SUBROUTINE

Figure 3-25. SCI Normal Transmit Operation Flowchart

RTS

3.6.6.3 NORMAL RECEIVE OPERATION. Refer to Figure 3-26, a flowchart of the
normal receive operation.

FLOWCHART MNEMONIC PROGRAM

START
SUBROUTINE

)

GETDATA BRCLR 5, SCSR, GETDATA

READ DATA -
FROMSCDAT LDA  SCDAT

RETURN FROM
SUBROUTINE

Figure 3-26. SCI Normal Receive Operation Flowchart

RTS

3-66 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



3.6.7 SCI Application Example

Figure 3-27 is an example software program for communication between the
SCI of the MCU and a dumb terminal. The MCU will receive (read) an ASCI|
character that was sent by the dumb terminai. The MCU will then translate
the 8-bit binary character representing the ASCIlI character into two ASCII
characters.

When this translation is completed, the MCU will transmit a <CR>, line feed,
a $ sign and the two characters that represent the original hexadecimal
equivalent of the received character back to the terminal. The program then
waits for another character.

In practice, the following would occur:
You type a number/character on the keyboard. It goes from the terminal
to the MCU over the SCI receiver. Use the example of the letter “A"".
The program translates A" to “4’" and ‘1", then sends CR, line feed, $, 4,
and 1, to the SCi transmitter.

When the transmission is complete, the program goes back to the top for
another keyboard number/character to be sent over the SCI receiver.

Table 3-10 is a chart of the ASCIl-hexadecimal code conversion.

Table 3-10. ASCll-Hexadecimal Code Conversion

ASCIl CHARACTER SET (7-BIT CODE)
MS
Dig. | 1 2 3 4 5 6 7
LS
Dig.

0 NUL | DLE | sP 0 (w p ' p
1 SOH | pc1 1 1 A o) a a
2 sTx | bc2 | 2 B R b r
3 ETX | bc3 | # 3 c S c s
4 EOT | pca | $ 4 D T d t
5 ENQ | NAK | % 5 E u e u
6 ACK | sYN | & 6 F v f v
7 BEL | ETB : 7 G w g w
8 BS | CAN | { 8 H X h X
9 HT | EM ) 9 | Y i y
A LF | suB | « : J z j z
B vT | esc | + : K [ k |
c FF FS ' < L v | |
D crR | s = M ] m }
E so | Rs ) > N A n ~
F S| uUs / / 0 — o | DEL

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-67



KKK A KKK KA AN KA A A A KA hAhd Ak hkhkhkhkhhkhkkhkkkkkhkkkhk

* Simple 68HC05 SCI Program Example *
Ahhk kA kA KAk A Ak Ak A A Ak Ak hkkRA A Ak kA hkhkkhkkkkhk kA hkkhkkx k%

0ood BRATE EQU $0D -,-,SCP1,SCP0O; -, SCR2, SCR1, SCRO
000e SCCR1 EQU SO0E R8,T8,-,M;WAKE, -, -, —

000f SCCR2 EQU SOF TIE, TCIE,RIE,ILIE;TE, RE,RWU, SBK
0011 SCDAT EQU 511 Read - RDR; Write - TDR

0010 SCSR EQU $10 TDRE, TC, RDRF, IDLE; OR, NF,FE, -
00a0 TEMP EQU $SA0 One byte temp storage location
00al TEMPHI EQU SAl Upper byte changed to ASCII
00a2 TEMPLO EQU $A2 Lower byte changed to ASCII
0500 ORG $500 Program will start at $0500
0500 a6 30 INITIAL LDA #%00110000 Begin initialization

0502 b7 0d STA BRATE Baud rate to 4800 @2MHz Xtal
0504 a6 00 LDA #%00000000 Set up SCCRL

0506 b7 Oe STA SCCR1 Store in SCCR1 register
0508 a6 Oc LDA #%00001100 Set up SCCR2

050a b7 0Of STA SCCR2 Store in SCCR2 register
050c cd 05 43 START JSR GETDATA Checks for receive data

050f b7 a0 STA TEMP Store received ASCII data in temp
0511 a4 Of AND #SOF Convert LSB of ASCII char to hex
0513 aa 30 ORA #5$30 $3(LSB) = "LSB™

0515 al 39 CMP #3539 3A-3F need to change to 41-46
0517 23 02 BLS ARN1 Branch if 30-39 OK

0519 ab 07 ADD #7 Add offset

051b b7 a2 ARN1 STA TEMPLO Store LSB of hex in TEMPLO
051d b6 a0 LDA TEMP Read the original ASCII data
051f 44 LSRA Shift right 4 bits

0520 44 LSRA

0521 44 LSRA

0522 44 LSRA

0523 aa 30 ORA #3530 ASCII for N is $3N (N=0-9)
0525 al 39 . CMP #$39 3A-3F need to change to 41-46
0527 23 02 BLS ARN2 Branch if 30-39

0529 ab 07 ADD #7 Add offset

052b b7 al ARN2 STA TEMPHI MS nibble of hex to TEMPHI
052d a6 04 LDA #30D Load hex value for "<CR>"

052f ad 18 BSR SENDATA Carriage return

0531 a6 0a LDA #$0A Load hex value for "<LF>"

0533 ad 14 : BSR SENDATA Line feed

0535 a6 24 LDA #'S Load hex value for "$"

0537 ad 10 BSR SENDATA Print dollar sign

0539 b6 al LDA TEMPHI Get high half of hex value
053b ad 0Oc BSR SENDATA Print

053d b6 a2 LDA TEMPLO Get low half of hex value

053f ad 08 BSR SENDATA Print

0541 20 c9 BRA START Branch back to start

Figure 3-27. SCI Application Example Program (Sheet 1 of 2)

3-68 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



*** Get an SCI character, return w/ it in A
0543 0b 10 fd GETDATA BRCLR 5,SCSR,GETDATA RDRF = 1 ?
0546 b6 11 LDA SCDAT OK, get
0548 81 RTS ** Return from GETDATA **

*** Send an SCI character, call sub w/ it in A
0549 0f 10 fd SENDATA BRCLR 7,SCSR,SENDATA TDRE = 1 ?
054c b7 11 STA SCDAT OK, send
054e 81 RTS **x Return from SENDATA **

Figure 3-27. SCI Application Example Program (Sheet 2 of 2)

3.7 SYNCHRONOUS SERIAL PERIPHERAL INTERFACE (SPI)

The SPI subsystem included in the MC68HC705C8 allows the MCU to com-
municate with peripheral devices. Peripheral devices can be as simple as an
ordinary TTL shift register or as complex as a complete subsystem such as
an LCD display driver or an A/D converter subsystem. The SP| system is
flexible enough to interface directly with numerous standard product pe-
ripherals from several manufacturers.

SPl is an added feature for those applications that require more inputs and
outputs than there are parallel /O pins on the MCU. SPI offers a very easy
way to expand the I/0 function while using a minimum number of MCU pins.
The SPI block diagram is shown in Figure 3-28.

SPI features are as follows:

® Full-Duplex, Three-Wire Synchronous Transfers
Master or Slave Operation
1.05 MHz {(maximum) Master Bit Frequency
2.1 MHz (maximum) Slave Bit Frequency
Four Programmable Master Bit Rates
Programmable Clock Polarity and Phase
End of Transmission Interrupt Flag
Write-Collision Flag Protection

An SPI subsystem can operate under software control in either complex or
simple system configurations:

® One Master MCU and Several Siave MCUs

® Several MCUs Interconnected in a Multimaster System

® One Master MCU and One or More Slave Peripherals

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-69



INTERNAL PROCESSOR * 3>
CLiCK , > ; |
DIVIDER MSB LSB M
2 44 416 +32 «€--|  8.BIT SHIFT REGISTER 4 s §
READ DATA BUFFER 3
e
Y A z
YYVYY v CLOCK §
SELECT SPI CLOCK (MASTER) > o F€ s =
LOGIC > M PD4
A {\ >
£l AAA =
71 PDS
\
3
Y Y 21%
MSTR
SPI CONTROL <3t
- w -l o
AN NN ]
| sPisTATUS REGISTER ] SPI CONTROL REGISTER |
> \/—<—>—l
A
Y J
SPIINTERRUPT INTERNAL
REQUEST DATA BUS
Figure 3-28. SPI Block Diagram
3-70 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



3.7.1

The majority of all applications use one MCU device as the master. This
master initiates and controls the transfer of data-to/from one or more slave
peripheral devices that receive/supply the data being transferred. Slaves can
read data from or transfer data to the master only after the master instructs
an action to occur. This system configuration will be discussed in this ap-
plications guide.

Data Movement

There is no need to specify the direction of data movement for each transfer
because the master simultaneously transmits and receives serial data on
separate pins every transfer. When an SPI transfer occurs, an 8-bit character
is shifted out on one data pin while a different 8-bit character is simultane-
ously shifted in on a second data pin (see Figure 3-29). Another way to think
of this is that an 8-bit shift register in the master and another in the slave
are connected as a circular 16-bit shift register. When a transfer occurs, this
distributed shift register is shifted eight bit positions so the characters in the
master and slave are effectively exchanged.

Many simple slave devices are designed to only receive data from a master
or only supply data to a master. For example, a serial-to-parallel shift register
can act as an 8-bit output port. An MCU configured as a master SPI device
would initiate a transfer to send an 8-bit data value to the shift register. Since
the shift register does not send any data to the master, the master would
simply ignore whatever it received as a result of that transmission.

MOs!
SPI SHIFT REGISTER SPI SHIFT REGISTER
4 MSO |
< - - T~
iyt [_>S_S <L
REGEIVE BUFFER RECEIVE BUFFER
o SCK
> >
MCBBHC705C8 MCEBHC705C8
MASTER DEVICE SLAVE DEVICE

Figure 3-29. Shift Register Operation

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-71




3.7.2 Functional Description

Four I/O pins located at port D are associated with SP| data transfers. They
are the serial clock (SCK-PD4), the master in/slave out (MISO-PD2) data line,
the master out/slave in (MOSI-PD3) data line, and the active-low slave select
(SS-PD5). When the SPI system is not utilized, the four pins (SS, SCK, MISO,
and MOSI) are configured as general-purpose inputs (PD5, PD4, PD3, and
PD2).

In a master configuration, the master start logic receives an input from the
CPU (in the form of a write to the SP| data register) and originates the serial
clock (SCK) based on the internal processor clock. This clock is also used
internally to control the state controller as well as the 8-bit shift register. Data
is parallel loaded into the 8-bit shift register (during the CPU write to SPDR)
and then shifted out serially to the MOSI pin for application to the serial input
line of the slave device(s). At the same time, data is applied serially from a
slave device through the MISO pin to the 8-bit shift register. After the eighth
shift in a transfer, data is parallel transferred to the read buffer where it is
available to the internal data bus during a CPU read cycle. The SPIF status
flag is used by the master and slave devices to indicate when a transfer is
complete.

3.7.3 Pin Descriptions

The four I/0 pins are discussed in the following paragraphs.

3.7.3.1 SERIAL DATA PINS (MISO, MOSI). The master-in slave-out (MISO) and

3-72

master-out slave-in (MOSI) data pins are used for transmitting and receiving
data serially: MSB first, LSB last. When the SPI is configured as a master,
MISO is the master data input line and MOSI is the master data output line.
In the master device, the MSTR control bit (bit 4 of the s«rial peripheral control
register) is set to a logic one (by the program) to allow the master device to
output data on its MOSI pin. When the SPI is configured as a slave, these
pins reverse roles; MISO becomes the slave data output line and MOSI be-
comes the slave data input line.

The timing diagram of Figure 3-30 shows the relationship between data and
clock (SCK). As shown in Figure 3-30, four possible timing relationships may
be chosen by using control bits CPOL and CPHA. Setting CPOL is equivalent
to putting an inverter in series with the clock signal. CPHA selects one of two
fundamentally different clocking protocols to allow the SPI system to com-
municate with virtually any synchronous serial peripheral device.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



] 1 1 1 ] 1 1 1 1] ] 1 1 1 1 ] 1
SCK (CPOL=0) | |
| 1 1 1 1 1 ] i I 1 1 1 I I ] 1 1 t

SCK (CPOL=1) ‘

ssowes™\_| L ELELETETENETE
smw_»\ v v v v v [y v
ATA QUTRUT (XX Bre X(Brs B X BB 2X(Br)

SAMPLEINPUT—>}*‘*|*|*}*|vl|*‘* ‘
oA gy, —{wse (Bt X B s X it 4 X Bita X B2 X Bit 1 X 158 X? }——

Figure 3-30. Data/Clock Timing Diagram

3.7.3.2 SERIAL CLOCK (SCK). SCK is used to synchronize the movement of data
both in and out of the device through the MOSI and MISO pins. The SCK pin
is an output when the SPI is configured as a master and an input when the
SPl is configured as a slave.

When the SPI is configured as a master, the SCK signal is derived from the
internal MCU bus clock. When the master initiates a transfer, eight clock
cycles are automatically generated on the SCK pin. In both the master and
slave SPI devices, data is shifted on one edge of the SCK signal and sampled
on the opposite edge, where data is stable. Two bits (SPR0O and SPR1) in the
SPCR (location $0A) of the master device select the clock rate. Both master
and slave devices must be programmed to similar timing modes for proper
data transfers, as controlled by the CPOL and CPHA bits in the SPCR.

3.7.3.3 SLAVE SELECT (SS). The SS pin behaves differently on master devices
than on slave devices. On a slave, this pin is used to enable the SPI slave
for a transfer. On a master, the SS pin is normally pulled high externally.

3.7.4 Registers

Three registers in the SPI provide control, status, and data storage functions.
These registers include the serial peripheral control register (location $0A),
serial peripheral status register (location $0B), and serial peripheral data I/O
register {location $0C).

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-73




3.7.4.1 SERIAL PERIPHERAL CONTROL REGISTER (SPCR). In most systems, this
register (Figure 3-31) is written only once shortly after reset to initialize the

SPI system.
Bt7 6 5 4 3 2 1 BitO
| spE | spE | - | wmstR || croL | cPHA | sPR1 | spro | $OA SPCR
| | [ | | | | |
[0 0 - 0 0 0 0 0 | RESET CONDITION

| |
\—C/SPI MASTER BIT RATE

CLOCK PHASE (BASIC PROTOCOL)
CLOCK POLARITY
MASTER (1) or SLAVE (0) MODE SELECT
SPI SYSTEM ENABLE
L SPI INTERRUPT ENABLE

Figure 3-31. Serial Peripheral Control Register

The SPCR bits have the following functions:

SPIE
0=SPI interrupts are disabled {the most common configuration).
1=SPI interrupt requests are enabled if SPIF and/or MODF is set to one.

SPE
0=_SPI system is turned off.
1=SPIl system is turned on.

MSTR
0==SPI is configured as a slave.
1=SPl is configured as a master.

/

CPOL
0= Active-high clocks selected, SCK idles low.
1=Active-low clocks selected, SCK idles high.
(This bit is used in conjunction with the clock phase control bit to produce
the desired clock-data relationship between master and slave.)

CPHA
The clock phase bit, in conjunction with the CPOL bit, controls the rela-
tionship between the data on the MISO and MOSI pins and the clock pro-
duced or received at the SCK pin. CPHA selects one of two fundamentally

3-74 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



different clocking protocols to allow the SPI system to communicate with

virtually any synchronous serial peripheral device.

SPR1/SPRO

These two serial peripheral rate bits select one of four bit rates to be used
as SCK if the device is a master; they have no effect in the slave mode.

Internal Processor Frequency if XTAL Frequency if XTAL
SPR1 | SPRO Clock Divided By is 4.0 MHz is 2 MHz
0 0 2 1.0 MHz 500.0 kHz
0 1 4 500.0 kHz 250.0 kHz
1 0 16 125.0 kHz 62.50 kHz
1 1 32 62.5 kHz 31.25 kHz

3.7.4.2 SERIAL PERIPHERAL STATUS REGISTER (SPSR). This read-only register
(Figure 3-32} contains status flags which indicate the completion of an SPI
transfer and the occurrence of certain SPI system errors. The flags are
automatically set by the SPI events; the flags are cleared by automatic soft-
ware sequences and upon reset. In the majority of all systems, only the SPIF
status bit is important. :

Bt7 6 5 4 3 2 1 Bit0
|'spe Jweor | - fwmoorfl. - | - | - | - | $0B SPSR
| | |
[ o 0 - 0 - - - — | RESET CONDITION
L LMODE FAULT
WRITE COLLISION

SPI TRANSFER COMPLETE

Figure 3-32. Serial Peripheral Status Register

The bits in this register have the following functions:

SPIF
When set to one, the serial peripheral data transfer flag bit notifies the user
that a data transfer between the MCU and an external peripheral device
has been completed. The transfer of data is initiated by the master device
writing to its serial peripheral data register. SPIF is automatically cleared
by reading SPSR with SPIF set, followed by an access of the SPI data
register.

MOTOROLA M6&8HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-75



WCOL S
The write-collision status bit notifies the user that an attempt was made
to write to the serial peripheral data register while a data transfer with an
external peripheral device was in progress. The transfer continues unin-
terrupted, and the write will be unsuccessful.

MODF
This flag is set if the SS signal goes to its active-low level while the SPI is
configured as a master (MSTR=1). In normal systems, this would never

be possible. For information on how to use MODF in multimaster systems,
see BR594/D, the MC68HC705C8 Technical Summary.

3.7.4.3 SERIAL PERIPHERAL DATA 1/0 REGISTER (SPDR). The SPDR (Figure 3-33)

in the master MCU device is used to transmit data to and receive data from
the slave device. Only a write to this register in a master will initiate trans-
mission/reception of data. The data is then ioaded directly into the 8-bit shift
register where eight bits are shifted out on the MOSI pin to the slave while
another eight bits are simultaneously shifted in on the MISO pin to the 8-bit
shift register. At the completion of data transmission, the SPIF status bit is
set. A write or read of the SPDR, after reading SPSR with SPIF set, will clear
SPIF.

Bit 7 6 5 4 3 2 1 Bit0

L1 1T [T M [ [T [ ]$cC SPDR

Figure 3-33. Serial Peripheral Data I/0 Register

3.7.5 SPI Application Example

3-76

The example application and program are similar to the one shown in Section
2, paragraph 2.5, except the SPI function will be added.

A switch is connected to an input pin. When the switch is closed, the program
will send data out to a peripheral device using the SPI function and will cause
an LED connected to an output pin to light for about one second and then
go out.

The peripheral device used in this application is an MC74HC595 serial-to-

parallel shift register. Hardware setup, the SPI control register, and the soft-
ware program will be discussed briefly.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



Figure 3-34 shows the hardware connections for the SPI application example.
The SPI signals at the left of the diagram come from the PGMR board (an
M68HC05 PGMR, available from a Motorola distributor) or directly from the
MC68HC705C8. The shift register outputs (QA-QH of the MC74HC595) will
be monitored with an oscilloscope. In this example, the MISO line is not used.
The shifter is selected by the general-purpose output PC3 (but could have
been driven by any general-purpose output). The SS pin of the MC68HC705C8
is an input in master mode and must be tied high.

+5V >

SYSTEM
POWER

0.1 pF

Gnd > —T_ {—e

8

—-
o

< Voo v
T po Vss Vop
o T 10 s 15 QA
s X ] RESET m( — \
512 a g
o
PDIMOSI |2 MOSI_ 5 I SERIALIN 5[ @ 2
=
C QE
PDASCK K311 sHFTck g : * s
b4 =
poy |5 ENRBE _t2 || o R é
K 7 QH )
I g
OUTEN SQH —x
FROM PGOMRBOARD
R
MC68HC705C8 — MC74HC595
SERIAL TO PARALLEL
SHIFT REGISTER

Figure 3-34. SPI Application Example Diagram

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-77



To initialize the SPI function, the SPCR (SPIE, SPE, —, MSTR, CPOL, CPHA,
SPR1, SPRO) bits need to be written. For this application, the SPCR was
initialized with %01010000 or $50.
SPIE=0 No interrupts involved in this application.
SPE=1 Enable the SPI system.
—=0 Don’t care bit.
MSTR=1 MC68HC705C8 is the master.
CPOL=0 Selects clock rest at low value.
CPHA=0 MC74HC595 accepts data at rising clock edge
SPR1=0 Internal processor clock divide by two.
SPRO=0 (Shift rate =500 kHz for a 2-MHz crystal).

The SPCR needs to be initialized once. For each transfer, there is a four-step
sequence:

1) Enable the slave. In this example the PC3 general-purpose output pro-
vides the enable signal to the MC74HC595 peripheral.

2) Write data to SPDR to initiate the transfer.
3) Wait for SPIF. The slave cannot be disabled until the transfer is finished.
4) Disable the slave.

The flowchart and mnemonics for the SPI application example are shown in
Figure 3-35.

Assume this application program has been assembled and downloaded to
an MC68HC705C8. You can test this program by using an oscilloscope con-
nected to the MC74HC595 parallel data outputs (pins 1-7 and 15). The pro-
gram is arranged to increment the 8-bit parallel bit value each time the switch
is pressed. Figure 3-36 is the complete listing for the SPI application example
program.

3.8 PROGRAMMABLE TIMER

3-78

The programmable timer can be used for many purposes, including input
waveform measurements, while simultaneously generating an output wave-
form. The architecture of the main timer is primarily a software driven system.
Software can be written for measuring pulse widths and frequencies, for
controlling timer output signals, or for timing delays.

The programmable timer is based on a 16-bit free-running counter preceded
by a prescaler that divides the internal processor clock by four. A timer

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



FLOWCHART MNEMONIC PROGRAM

SET INITIAL CONDITIONS:
PORT C = ALL OUTPUTS
DATA PATTERN 11100000 TO PORT C

INITIALIZE SPI & SET SPIVAL=0

CLR SPIVAL
LDA #%01010000
STA

DELAY TO DEBOUNCE

Y
ENABLE 74HC595

SEND DATAVIASPI | <

INCREMENT "SPIVAL'

DONE
(SPIF-1) HERE

DISABLE 74HC595

BCLR 3, PORTC

LDA SPIVAL
STA SPDR

INC SPIVAL

BRCLR 7, SPSR, HERE

BSET 3,PORTC

TURN ON LED
FOR 1 SECOND
THEN OFF

DELAY TO DEBOUNCE

NOTE: Shaded parts of this figure are identical to Figure 2-6. Unshaded instructions were added to

} demonstrate the SP!I system.

|

Figure 3-35. SPI “Application Example Flowchart

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-79



0001
0002
0005
0006
000a
000b
000c

009%e
009f

0250

0250
0252

0254
0256

0258
025a
025¢

025e
0260
0262

0265
0267
0269
026b
026d
0270

0272
0274
0276
0279
027a
027c
027e
0281
0284

3-80

a6
b7

a6
b7

3f
a6
b7

b6
2a
cd

17

b7
3c
0f
16

1d
a6
cd
4a
26
1lc
Oe
cd
20

ff
06

el
02

86

fd

86

fd

KA A Ak kAR KA Ak Ak Rk kA Ak khkkkhk Ak hkkkkkhkhkkkkhkkkk

* Simple 68HCO05 SPI Program Example *
Khkkkhkkhkhkkhkhkhhkhkhhkhkhkhhhkhkkhkkkhkhkhdhkhkhkdkhkkhkkkkhkkkk

PORTB - EQU $01 Direct address of port B (sw)
PORTC EQU $02 Direct address of port C (LED)
DDRB EQU $05 Data direction control, port B
DDRC EQU 506 Data direction control, port C
SPCR EQU $0A SPIE, SPE, -,MSTR;CPOL,CPHA, SPR1, SPRO
SPSR EQU - $0B SPIF,WCOL,-,MODF;~,~-,=,—
SPDR EQU $0C SPI Data Register
SPIVAL EQU $9E One byte RAM storage location
TEMP1 EQU S9F One byte temp storage location
ORG $250 Program will start at $0250
INIT LDA #SFF Begin initialization
STA DDRC Set port C to act as outputs
* Port B is configured as inputs by default from reset.
LDA #SES8 Red & grn LED & beep off, SPI EN off
STA PORTC Turn off red LED

* Some pins of port C (my board) happen to be connected
* to devices which don't apply to this example program.
* The SE8 pattern turns off my stuff & turns off red LED

CLR SPIVAL Start with 0
LDA #%01010000 SPE, MSTR, norm lo fast clk

STA SPCR Initialize SPI control reg
TOP LDA PORTB Read sw at MSB of Port B

BPL  TOP Loop till MSB=1 (Neg trick)

JSR DLY50 Delay about 50 mS to debounce

BCLR 3,PORTC Drive select of 74HC595 low
LDA SPIVAL Current data to send to SPI

STA SPDR Send SPI data
INC SPIVAL Add one to current SPI value
HERE BRCLR 7, SPSR, HERE Wait for SPIF to set

BSET 3,PORTC Drive select of 74HCS595 hi

BCLR 6,PORTC Turn on LED (bit-6 to zero)

LDA #20 Decimal 20 assembles to $14
DLYLP JSR  DLY50 Delay 50 mS
DECA Loop counter for 20 loops

BNE DLYLP 20 times (20-19,19-18,.1-0)
BSET 6,PORTC Turn LED back off

OFFLP BRSET 7,PORTB,QFFLP Loop here till sw off
JSR DLY50 Debounce release
BRA TOP Look for next sw closure

Figure 3-36. SPI Application Example Program

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



overflow function allows software to extend its timing capability beyond the
range of 16 bits. All activities of the timer are referenced to this one free-
running counter so all timer functions have a known relationship to each
other. From the MCU viewpoint, physical time is represented by the count
in this free-running counter and the counter can be read at any time “to tell
what time it is.”

The input-capture function can be used to automatically record {latch) the
time when a selected transition was detected. The output-compare function
can be used to generate output signals or for timing program delays.

3.8.1 Functional Description

The timer features are as follows:

® 16-Bit Free-Running Counter with Prescaler
Overflow Flag to Extend Timing Range
16-Bit Output-Compare Register
16-Bit Input-Capture Register
Three Interrupt Sources

The block diagram of the timer is shown in Figure 3-37.

The programmable timer capabilities are provided by using ten addressable
8-bit registers and two external pins, output level (TCMP) and edge input
(TCAP). The 10 registers are as follows:

Counter High Register, location $18

Counter Low Register, location $19

Alternate Counter High Register, location $1A

Alternate Counter Low Register, location $1B

Input-Capture High Register, location $14

Input-Capture Low Register, location $15

Output-Compare High Register, location $16

Output-Compare Low Register, location $17

Timer Control Register (TCR), location $12

Timer Status Register (TSR), location $13

Because the timer has a 16-bit architecture, the counter and alternate counter,
input-capture, and output-compare values are represented by two 8-bit reg-
isters. The two 8-bit registers contain the high and low byte of each timer
function value (see Figure 3-38).

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-81



INTERNAL PROCESSOR
CLOCK

(XTAL +2)
EDGE LATCH 15 8 7 0 FIXED
Tor SELECT b 16:BIT INPUT-CAPTURE REGISTER > DIVOE BY
DETECT
15 | | 8 7 I | 0
\ T &_—l
16-BIT TIMER COUNTER >
g | LSBBUFFER Y
g —
° FIN ToMP
- CONTROL
| 16-BIT COMPARATOR = ONTRC
A
[ 16-BIT OUTPUT-COMPARE REGISTER fe>—
15 8 7 0
/
/
wiwlw s u
88|8 813 St =
111 \AASEEEN |1
| TIMER CONTROL REGISTER | | TIMERSTATUS REGISTER | /
¢ TIMER
INTERNAL INTERRUPT
DATA BUS REQUEST

Figure 3-37. Programmable Timer Block Diagram

3-82 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



15 8 7 0

[ COUNTER HIGH BYTE | L COUNTER LOW BYTE I
READ COUNTER )| \,L
HIGH BYTE 10 i
LSB LATCH
i E J
READ COUNTER | ’
LOW BYTE _
INTERNAL DATA BUS

[1] - LSB latch is normally transparent, becomes latched when high
byte of counter is read, and becomes transparent again when low byte
of counter is read.

Figure 3-38. 16-Bit Counter Reads

Generally, accessing the low byte of a specific timer function allows full
control of that function; however, an access of the high byte inhibits that
specific timer function until the low byte is also accessed. A read from the
MSB causes the LSB to be latched at the next sequential address.

NOTE

Set the | bit in the condition code register while manipulating both
the high- and low-byte register of a specific timer function. This
prevents interrupts from occurring between the time that the high
and low bytes are accessed.

A description of each register and the external pins is given in the following
paragraphs.

3.8.2 Timer Counter and Alternate Counter Registers

The 16-bit free-running counter or counter register starts from a count of
$0000 as the MCU is coming out of reset and then counts up continuously.
When the maximum count is reached ($FFFF), the counter rolls over to a
count of $0000, sets an overflow flag, and continues to count up. As fong as
the MCU is running in a normal operating mode, there is no way to reset,
change, or interrupt the counting of this counter. This counter, which may
be read at any time to “tell what time it is,” is always a read-only register.

The prescaler gives the timer a resolution of 2.0 us if the MCU crystal is
4 MHz (internal processor clock is 2.0 MHz). Including 0", the counter repeats

MOTOROLA - M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-83



every 65,5636 counts ($FFFF=65,535). Because the free-running counter is
preceded by a fixed divide-by-four prescaler, the value in the free-running
counter repeats every 262,144 internal processor clock cycles.

The double-byte free-running counter can be read from either of two locations
$18-$19 or $1A-$1B. These registers are called the counter register and the
counter alternate register, respectively.

NOTE

Normally, a timer read is made from the counter alternate register
unless the read sequence is intended to clear the timer overflow flag.

If a read of the free-running counter register first addresses the most signif-
icant byte ($18), it causes the least significant byte ($19) to be transferred to
a buffer. This buffer value remains fixed after the first most-significant-byte
read, even if the user reads the most significant byte several times. This
buffer is accessed when reading the free-running counter register least sig-
nificant byte ($19), thus completing a read sequence of the total 16-bit counter
value. The same read sequence applies to the counter alternate register. A
read sequence containing only a read of the least significant byte of the free-
running counter ($19) will receive the count value at the time of the read.

NOTE

In reading either the free-running counter or counter alternate reg-
ister, if the most significant byte is read, the least significant byte
must also be read to complete the sequence.

3.8.3 Input-Capture Concept

3-84

The input-capture function is a fundamental element of the MC68HC705C8
timer architecture. Input-capture functions are used to record the time at
which some external event occurred. This is accomplished by latching the
contents of the free-running counter when a selected edge is detected at the
related timer input pin (edge input-TCAP pin). The time at which the event
occurred is saved in the input capture register (16-bit latch). Although it may
take an undetermined variable amount of time to respond to the event, soft-
ware can tell exactly when the event occurred.

By recording the times for successive edges on an incoming signal, software

can determine the period and/or pulse width of the signal. To measure a
period, two successive edges of the same polarity are captured. To measure

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



a pulse width, two alternate polarity edges are captured. For example, to
measure the pulse width for a high-going pulse, capture the time at a rising
edge and subtract this time from the time captured for the subsequent falling
edge.

When the period or pulse width is known to be less than a full 16-bit counter
overflow period, the measurement is very straightforward. The counter repeats
every 65,536 timer clocks, which is equivalent to 262,144 internal processor
clock cycles. For period or pulse widths that extend over the full 16-bit counter
period, write software to keep track of the overflows of the 16-bit counter.
Examples where measurement of a period or pulse width would be used are
the period of a pendulum swing or the AC line frequency (to distinquish
between 50 and 60 Hz).

Another important use for the input-capture function is to establish a time
reference. In this case , an input-capture function is used in conjunction with
an output-compare function. For example, suppose an application requires
an output signal to be activated a certain number of clock cycles after de-
tecting an input event (edge). The input-capture function would be used to
record the time at which the edge occurred. A number corresponding to the
desired delay would be added to this captured value and stored in the output-
compare register. Since both input captures and output compares are ref-
erenced to the same 16-bit counter, the delay can be controlied to the res-
olution of the free-running counter, independent of software latencies. (An
example of this use would be to fire a spark plug ““n” microseconds after a
timing pulse is sent from the engine flywheel.)

3.8.4 Input-Capture Operation

The input capture function includes a 16-bit latch, input edge detection logic,
and interrupt generation logic. The latch captures the current value of the
free-running counter when a selected edge is detected at the corresponding
timer input pin. The edge detection logic includes a control bit (IEDG), which
enables the user’'s software to select the polarity of edge(s) that will be
recognized. The interrupt generation logic includes a status flag to indicate
that an edge has been detected and a local interrupt enable bit to determine
whether or not the corresponding input-capture function will generate a hard-
ware interrupt request. See Figure 3-39.

The two 8-bit registers (locations $14-most significant byte and $15-least

significant byte) comprising the 16-bit input-capture register are read-only
and are used to latch the value of the free-running counter after a defined

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-85



15 8 7 0

[ COUNTER HIGH BYTE COUNTER LOW BYTE I
15 - -< 0
EDGE SELECT S 16-BIT INPUT-CAPTURE LATCH |
A
@G—l e STATUS FLAG
IEDG = Oforfaling edges

IEDG = 1 for rising edges REQUEST A TIMER
INTERRUPT
ICIE

Figure 3-39. Input-Capture Operation

transition is sensed by the corresponding input-capture edge detector. The
level transition which triggers the counter transfer is defined by the input
edge bit (IEDG in the timer control register).

The free-running counter contents are transferred to the input-capture reg-
ister on each proper signal transition, regardless of whether the input-capture
flag (ICF) is set or clear. There is an uncertainty about the exact value latched
due to the resolution of the counter and synchronization delays. The input-
capture register always contains the free-running counter value, which cor-
responds to the most recent input capture. Reset does not affect the contents
of the input-capture register.

3.8.5 Output-Compare Concept

3-86

The output-compare function is aiso a fundamental element of the
MC68HC705C8 timer architecture. Output-compare functions are used to pro-
gram an action to occur at a specific time (i.e., when the 16-bit counter reaches
a specific value). The value in the output-compare register is compared with
the value of the free-running counter on every fourth bus cycle. When the
output-compare register matches the counter value, an output is generated,
which sets an output compare status flag and transfers the level of the OLVL
bit to the TCMP output pin (see Figure 3-40).

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



OLVL =0 1o force TCMP
pin to 0 on valid compare.

15 8 7 0 OLVL =1 to force TCMP
pin high on valid compare.
I COUNTER HIGH BYTE | COUNTER LOW BYTE | oL

. Y
PIN CONTROL ToMe
LOGIC

[}
~

I 16-BIT COMPARATOR

P
15 8 7 0

L 16-BIT OUTPUT-CdMPARE REGISTER

| - STATUS FLAG

REQUEST A TIMER
INTERRUPT

X

T
Figure 3-40. Output-Compare Operation

Change the values in the output-compare register and the output level bit

after each successful comparison to control an output waveform or to es-
tablish a new elapsed timeout.

An interrupt can also accompany a successful ocutput compare if the corre-
sponding interrupt enable bit {OCIE) is set.

One of the easiest uses for an output-compare function is to produce a pulse
of a specific duration. First, a value corresponding to the leading edge of the
pulse is written to the output-compare register. The output compare is con-
figured to automatically set the TCMP output either high or low, depending
on the polarity of the pulse being produced. After this compare occurs, the
output compare is reprogrammed to automatically change the output pin
back to its inactive level at the next compare. A value corresponding to the
width of the pulse is added to the original output-compare register value,
and this result is written to the output-compare register. Since the pin-state
changes occur automatically at specific values of the free-running counter,
the pulse width can be controlled accurately (to the resolution of the free-
running counter) independent of software latencies. By repeating the actions
for generating pulses, you can generate an output signal of a specific fre-
guency and duty cycle.

Another use of the output-compare function is to generate a specific delay.
For example, suppose you want to produce a 1 millisecond delay to time

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-87



programming of an EPROM byte. First, go through the initial programming
steps to the point where the programming supply has been enabled (EPGM
bit has been written to one). Now, read the current value of the main timer
counter and add a number corresponding to 1 millisecond (XTAL=2 MHZ,
INT CLK=1 MHz, 1 timer count=4 ps; thus, T ms =250 decimal =$FA). Write
this sum to the output-compare register so that an output compare will occur
when the counter gets to this value.

In this example, the actual EPROM programming time started just before the
current time was read from the counter and ended after responding to the
output compare and turning off EPGM. The small delays for setting up the
output compare and the latency for responding to the output compare were
not considered because they only make the EPROM programming time longer
by a few microseconds. As you become a more advanced user of output-
compare functions, you will learn how to correct these details, although it is
often not necessary.

NOTE

This program would have to run from RAM since the EPROM is not
usable during programming.

3.8.6 Output-Compare Operation

3-88

The output-compare register is a 16-bit register composed of two 8-bit reg-
isters at locations $16 {most significant byte) and $17 (least significant byte).
The contents of the output-compare register are compared with the contents
of the free-running counter once during every four internal processor clocks.
If a match is found, the output-compare flag (OCF) bit is set, and the output
level (OLVL) bit is clocked {by the output-compare circuit pulse) to the TCMP
pin.

After a processor write cycle to the most significant byte of the output-
compare register ($16), the output-compare function is inhibited until the
least significant byte ($17) is also written. You must write to both bytes
(locations) if the most significant byte is written first.

Because neither the output-compare flag (OCF bit) or output-compare register
is affected by reset, take care when initializing the output-compare function
with software. The following procedure is recommended:

1) Write to the high byte of the output-compare register to inhibit further
compares until the low byte is written.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



2) Read the timer status register to clear the OCF bit if it is already set.

3) Write to the low byte of the output-compare register to enable the
output-compare function.

The purpose of this procedure is to prevent the OCF bit from being set
between the writes to the high and low halves of the 16-bit output-compare
register. A software example follows:

B7 16 STA OCMPHI Inhibit output compare

B6 13 LDA TSR Clear OCF bit if set

BF 17 STX OCMPLO Ready for next compare

3.8.7 Timer Control Register (TCR)

The timer control register {see Figure 3-41) is an 8-bit read/write register
containing five control bits. Three of these bits control interrupts associated
with the three flag bits found in the timer status register. The other two bits
control 1) which edge is significant to the input-capture edge detector (i.e.,
negative or positive) and 2) the next value to be clocked to the TCMP output
pin in response to a successful output compare.

The TCMP pin is forced low during external reset and stays low until a valid
compare changes it to a high.

Bt7 6 5
| e | ocie | ToE |
[ I [

[ o 0 0

1 Bit0

[ eoc J o | $12 TCR
I
0 | RESET CONDITION

|
U
I' I—OUTPUT COMPARE LEVEL

INPUT CAPTURE EDGE
O-FALLING 1-RISING

TIMER OVERFLOW INTERRUPT ENABLE
OUTPUT COMPARE INTERRUPT ENABLE
INPUT CAPTURE INTERRUPT ENABLE

o|—|o)] &
o|—|lo| »

-
ojl—jo] v

Figure 3-41. Timer Control Register

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-89



3.8.8 Timer Status Register (TSR)

The timer status register (see Figure 3-42) is an 8-bit register with three read-
only bits that indicate the following status information:

1) A selected transition has occurred at the edge input (TCAP) pin with an
accompanying transfer of the free-running counter contents to the input-
capture register.

2) A match has been found between the free-running counter and the
output-compare register.

3) A free-running counter transition from $FFFF to $0000 has been sensed
(timer overflow).

Bt7 6 5 4 3 2 1 Bt
| wecFk JocF |l 1o0F ] o J] o | o | o [ o | $13 TSR
[ ! ! | [ | | [
[ o 0 0 0 0 0 0 0 | RESET CONDITION
TIMER OVERFLOW FLAG
OUTPUT COMPARE FLAG
INPUT CAPTURE FLAG

Figure 3-42. Timer Status Register

ICF
The input-capture flag (ICF) is set when a proper edge has been sensed by
the input-capture detector. It is cleared by a processor access of the timer
status register (with ICF set) followed by accessing the low byte ($15) of
the input-capture register.

OCF
The output-compare flag (OCF) is set when the output-compare register
contents matches the contents of the free-running counter. OCF is cleared
by accessing the timer status register {(with OCF set) and then accessing
the low byte ($17) of the output-compare register.

TOF
The timer overflow flag (TOF) bit is set by a transition of the free-running
counter from $FFFF to $0000. It is cleared by accessing the timer status
register (with TOF set) and then accessing the least significant byte ($19)
of the free-running counter.

3-90 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE - MOTOROLA



NOTE

The counter alternate register contains the same value as the free-
running counter but reading the alternate register does not clear
TOF; therefore, this alternate register should be used to read the
timer counter in all cases except when intending to clear TOF. This
will avoid the possibility of the TOF being unintentionally cleared.

3.8.9 Timer Application Example

Figure 3-43 shows an example program to produce a 10-second delay after
the timer counter is read. In this case, the timer counter and the output-
compare functions are used in the software program.

The two key programming instructions that you should note are 1) the read
and/or write instructions at the alternate counter and output-compare reg-
isters and 2) the addition of 16-bit numbers.

3.9 STOP/WAIT INSTRUCTION EFFECTS

The STOP and WAIT instructions put the MC68HC705C8 MCU into low power-
consumption modes. These instructions also affect the programmable timer,
the SCI, and the SPI systems. A STOP/WAIT flowchart is shown in Figure
3-44.

3.9.1 Low Power-Consumption Modes

The STOP instruction places the MC68HC705C8 in its lowest power-
consumption mode. In the STOP mode, the internal oscillator is turned off,
causing all internal processing to be halted. During the STOP mode, the | bit
in the condition code register is cleared to enable external interrupts. All
other registers and memory remain unaltered, and all I/O lines remain un-
changed. This state continues until an external interrupt (IRQ) or RESET is
sensed, at which time the internal oscillator is turned on. The external in-
terrupt or reset causes the program counter to vector to memory location
$1FFA and $1FFB or $1FFE and $1FFF. These locations contain the starting
address of the interrupt or reset service routine, respectively.

The WAIT instruction also places the MC68HC705C8 in a low power-
consumption mode, but the WAIT mode consumes somewhat more power
than the STOP mode. In the WAIT mode, all CPU processing is stopped;

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-91



KhkAkhkkhkhkAhkhkhkkhkkhkhkhkhkkhkhhkkhkhkhkkkkkkhkkkhkkkkkkkhkkk

* Simple 68HCO05 Timer Program Example *

KAAAKAAKAA KA KNRAKRAAAKR KA A Ak kA A A hkkkhkhkhhkhkkhkkkhkkkxk
0006 DDRC EQU $06 Data direction control, port C
0002 PORTC EQU 502 Direct address of port C (LED)
0016 OCMPHI EQU $16 Output compare high reg.
0017 OCMPLO EQU $17 Output compare low reg.
0013 TSR EQU $13 ICF,OCF,TOF,0;0,0,0,0
00a0 TENSEC EQU $AQ Used to count 39 out compares
00al TEMP EQU SAl One byte temp for 16 bit OCMP add
0350 ORG $350
0350 a6 40 INIT LDA #%01000000 Make DDR bit for LED a one
0352 b7 06 STA DDRC So Red LED pin is an output
0354 a6 40 BEGIN LDA #%01000000 Port C bit 6 is red LED
0356 b8 02 EOR  PORTC Toggle red LED on PGMR board
0358 b7 02 STA PORTC Red LED will change every 10 Sec
035a a6 27 LDA #39 10 sec = 38 rev + 9,632 ticks
035¢c b7 a0 STA TENSEC Counter for timer out compares

KK KA KA I A KA KK AKAKA KA KA A IR A AR A A A KN KAA A AR A AR Ak Ak Ak Ak hkkkkkkhkhhkkhhkkkhkkk

* For XTAL=2MHz (Int proc. clk=1MHz) Timer +4 makes 1 count = 4UuS *
* Counter rolls from $FFFF to 0 every 65,536 counts (262.144 mS) *
* 10 Sec + 262.144 mS = 38 revs of timer & 9,632 counts remainder *
* 10 Sec = 2,500,000 counts @ 4uS/count. 38 * 65,536 = 2,490,368 *
* 2,500,000 - 2,490,368 = 9632. 9632 (decimal) = $25A0 *
* *
* To time 10 Sec, read initial count, add 9632 (remainder count) *
* store to out compare reg (“schedule a compare™). When OCF flag =1 *
* clear it & next compare will occur when timer counts 65,536 counts *
* count the first compare plus 38 more compares (full revs). *
K %k Kk Kk k k Kk ke k ke kK Kk ok sk sk e ke ke ek %k ok ok ok ok ok Sk sk %k ok ok ok ok ok ok kK ok ke sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok k ki ko ke ok ko ke ke ok
035e a6 a0 LDA #SA0 Lower half hex equiv of 9632

0360 bb 17 ADD OCMPLO Low half of a 16 bit add

0362 b7 al STA TEMP Temp. store until OCMPHI is added
0364 a6 25 LDA #$25 Upper half hex equiv of 9632

0366 b9 16 ADC OCMPHI High half of 16 bit add (w/ carry)
0368 b7 16 STA OCMPHI Update OCMP hi

036a b6 al LDA TEMP Get previous saved OCMP low

036¢c b7 17 STA OCMPLO Update OCMP lo after OCMP hi

KKK KA KR KKK AR A A A A AR A A I AR AARKRKR I A A Ik kA A A Ak ko khkkk kA khkkhkhkhkkhkkrhkhkhkkkkkkhkhkhk
* You add low half first due to possible carry, then add high byte *

* including any carry (ADC). You should update out compare high *
* byte first to avoid an erroneous compare value (compare lockout *
* after OCMPHI till OCMPLO prevents this potential problem. *

Kk Kk ok ek ok ok gk ok ok ok ok ok ke ok ok Sk ke ok ok ok ke ok R ok ke kK ok Sk ok K ok ok ke R ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok e ke ok ok ok ok

036e O0c 13 £4 LOOP BRCLR 6,TSR,LOCP Checks for out comp. flag

0371 b6 17 LDA OCMPLO To clear OCF flag

0373 3a a0 DEC TENSEC Ten seconds count down
0375 26 £7 BNE LOOP Loop until 10 sec done
0375 20 db BRA BEGIN Repeat so PC6 toggles /10 Sec

Figure 3-43. Timer Application Example Program

3-92 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



‘ STOP ’ WAIT

Y \
OSCILLATOR ACTIVE
o | | S
SETIBITINCCREG CPU CLOCKS STOPPED
> <
Y

RESET ? RESET ?

EXT
RQ
INTERRUPT

EXT
RQ
INTERRUPT

INTERNAL
TIMER
INTERRUPT,

<.
«

4 Y

TURN ON OSCILLATOR RESTART
DELAY TO STABILIZE CPU CLOCK

Y Y

Y

51; FETCH RESET VECTOR or
2) SERVICE INTERRUPT
a. SAVE CPU REGS ON STACK
b. SET | BIT IN CC REG
¢. VECTOR TO INTERRUPT
SERVICE ROUTINE

Figure 3-44. STOP/WAIT Flowchart

however, the internal clock, the programmable timer, SPI and SCI systems
(if enabled) remain active. During the WAIT mode, the | bit in the condition
code register is cleared to enable all interrupts. All other registers and mem-
ory remain unaltered, and all parallel I/O lines remain unchanged. This state
continues until any interrupt or reset is sensed. At this time, the program
counter is loaded with the interrupt vector at memory location $1FF4-$1FFF,
which contains the starting address of the interrupt or reset service routine.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-93



3.9.2 Effects on On-Chip Peripherals

The STOP instruction causes the oscillator to be turned off, which halts all
internal CPU processing as well as the operation of the programmable timer,
SClI, and SPI. The oscillator starts again when an external interrupt (IRQ) or
RESET occurs.

3.9.2.1 TIMER ACTION DURING STOP MODE. When the MCU enters the STOP

mode, the timer counter stops counting (the internal processor clock is
stopped). It remains at that particular count value until an interrupt or reset
occurs. If the interrupt is an external low on the IRQ pin, the counter resumes
from its stopped value as if nothing had happened. If a reset occurs, the
counter is forced to $FFFC.

3.9.2.2 SCIACTION DURING STOP MODE. When the MCU enters the STOP mode,

the baud rate generator driving the receiver and transmitter is stopped, which
halts all SCI activity.

If the STOP instruction is executed during a transmitter transfer, that transfer
is halted. When the STOP mode is exited, that particular transmission re-
sumes if the exit is the result of a low input to the IRQ pin. Since the STOP
mode interferes with SCI character transmission, make sure that the SCI
transmitter is idle when the STOP instruction is executed.

If the receiver is receiving data when the STOP instruction is executed, re-
ceived data sampling is stopped (baud rate generator stops), and the re-
mainder of the data is lost. The STOP mode should not be used while SCi
characters are being received.

3.9.2.3 SPIACTION DURING STOP MODE. When the MCU enters the STOP mode,

3-94

the bit rate generator driving the SPI stops, halting all master mode SPI
operation. Thus, the master SPI is unable to transmit or receive data. If the
STOP instruction is executed during an SPI transfer, that transfer is halted
until the MCU exits the STOP mode (if the exit resulted from a logic low on
the IRQ pin). If the STOP mode is exited by a reset, then the appropriate
control/status bits are cleared, and the SPI is disabled.

If the device is in the slave mode when the STOP instruction is executed, the

slave SPI will still operate. It can still accept data and clock information in
addition to transmitting its own data back to a master device. At the end of

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



a transmission with a slave SPI in the STOP mode, no flags are set until a
logic low IRQ input results in an MCU “wake up.”

When the MCU enters the STOP mode, all enabled output drivers (TDO,
TCMP, MISO, MOSI, and SCK ports) remain active. Any sourcing currents
from these outputs will be part of the total supply current required by the
device.

3.9.2.4 WAIT MODE EFFECTS. When the MCU enters the wait mode, the CPU
clock is halted. All CPU action is suspended; however, the timer, SCI, and
SPI systems remain active. An interrupt from the timer, SCI, or SPI (in addition
to a logic low on the IRQ or RESET pins) will cause the processor to resume
normal processing.

The wait mode power consumption depends on how many systems are
active. The power consumption will be greatest when all the systems (timer,
TCMP, SCI, and SPI) are active. The power consumption will be least when
the SCI and SPI systems are disabled (timer operation cannot be disabled in
the wait mode). If a nonreset exit from the wait mode is performed (e.g.,
timer overflow interrupt exit), the state of the remaining systems will be
unchanged. If a reset exit from the wait mode is performed, all systems revert
to the (disabled) reset state.

3.10 OTPROM/EPROM PROGRAMMING

The OTPROM or EPROM programming technique is used to load a user
program into the MC68HC705C8 MCU OTPROM or EPROM. This type of
programming is accomplished via a bootstrap mode of operation.

3.10.1 Erasing

MC68HC705C8 EPROM MCUs are erased by exposure to a high-intensity
ultraviolet (UV) light with a wavelength of 2537 angstrom. The recommended
dose (UV intensity X exposure time) is 15 Ws/cm2. UV lamps should be used
without shortwave filters, and the EPROM MCU should be postioned about
one inch from the UV lamps.

MC68HC705C8 one-time programmable ROM (OTPROM) MCUs are shipped
in an erased state and are packaged in an opaque plastic package; thus,
erasing operations cannot be performed on OTPROM MCUs.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-95



3.10.2 Programming

Programming operations are controlled by software-accessible control bits.
The software program which programs the internal EPROM/OTPROM is lo-
cated in either the on-chip bootstrap ROM or internal RAM.

The first programming method uses a program in the bootstrap ROM to read
information from an external 8K by 8 EPROM and to program this information
into the on-chip EPROM/OTPROM. The external EPROM is connected to I/0
port pins of the MCB8HC705C8. In this programming method, information to
be programmed into the internal EPROM/OTPROM is first programmed into
the external EPROM using an industry-standard PROM programmer.

A second programming method allows user programs developed on a per-
sonal computer to be downloaded to the MC68HC705C8 for programming
into the on-chip EPROM/OTPROM. This method eliminates the extra steps
needed to program a separate 8K by 8 EPROM. A small program that runs
on the personal computer is available through the Motorola FREEWARE bul-
letin board service (BBS) and can be downloaded for the price of the phone
call. This method is explained in Section 4 of this applications guide.

Both methods described for programming the on-chip EPROM/OTPROM ul-
timately use a software program running in the MCU that is being pro-
grammed. The programming software uses the program register (PROG) to
control the EPROM programming process.

3.10.3 Program Register

3-96

The program register (see Figure 3-45) is used for PROM programming.

Bt7 6 5 4 3 2 1 Bit0
L o ol o o J]l o F'tar] o |ram] $1C PROG
| | | | [ | | |
[ o 0 0 0 0 0 0 0 | RESET CONDITION
‘— PROGRAMMING POWER
0-OFF 1-ON

LATCH CONTROL

Figure 3-45. Program Register

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



LAT
Prior to a PROM write operation, set the latch (LAT) bit. This enables the
PROM data and address buses to be latched for programming a PROM
location. Reset clears the LAT bit. When the LAT bit is cleared, PROM data
and address buses are unlatched for normal CPU operations. This bit, which
is both readable and writable, must be cleared to allow PROM read op-
erations.

PGM
When the program (PGM) bit is set, Vpp power is applied to the PROM for
programming mode of operation. Reset clears the PGM bit. This bit, which
is readable, is only writable when the LAT bit is set. If the LAT bit is cleared,
the PGM bit cannot be set.

3.10.4 Option Register

The option register (see Figure 3-46) is used to select memory RAM/ROM
configurations, enable PROM security, and select the MCU IRQ pin sensitivity.

Bit7 6 5 4 3 2 1 Bit0

| rRavo JRami | o | o [ secT - [T ma] o | $1FDF OPTION
| | | | | J | |

[ o 0 0 0  PROM Motorola 1 0 | RESET CONDITION

0-EDGE & LEVEL 1-EDGE ONLY

l‘ L SELECT IRQ SENSITIVITY

Motorola USE ONLY (1 or 0)

EPROM SECURITY
BIT IMPLEMENTED IN EPROM/OTPROM

SELECT MEMORY TYPE IN $0100-$015F AREA
0-96 BYTES PROM 1-86 BYTES RAM

— SELECT MEMORY TYPE IN $0020-$004F AREA
0-48 BYTES PROM 1-32 BYTES RAM

Figure 3-46. Option Register

RAMO
The RAMO bit determines the amount and type of memory in the
$0020-$005F area.
0=48 bytes of PROM ($0020-$005F)
1 =32 bytes of RAM ($0030-$005F)
When RAM is selected by RAMO=1, the 16 bytes from $0020-$002F are
unused. This bit is readable and writable at all times, allowing selection of

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-97




3-98

the desired memory configuration during program execution. Reset clears
the RAMO bit.

RAM1
The RAM1 bit determines the type of memory in the $0100-$015F area.
0=96 bytes of PROM
1=96 bytes of RAM
This bit is readable and writable at all times, allowing selection of the
desired memory configuration during program execution. Reset clears the
RAM?1 bit.

SEC
The SEC bit is implemented as a PROM bit. During PROM programming,
the SEC bit is set to enable the security feature (to disable the bootloader).
This bit is normaily cleared (security disabled) for an OTPROM device. For
an EPROM device, clearing is accomplished by exposing the EPROM to UV
light until the SEC bit is erased.

Bit 2
Factory use (logic one or logic zero).

IRQ
When the IRQ bit is set (logic one), the IRQ pin is negative edge and level
sensitive. When the IRQ bit is cleared (logic zero), the IRQ pin is negative
edge sensitive. Reset sets the IRQ bit. The IRQ bit can only be written once
following each reset.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



SECTION 4
APPLICATIONS

This section discusses the development of an application (home thermostat
project) based on a microcontroller. A typical MCU application involves hard-
ware development, software development, and mechanical development.
Though separate to some degree, all elements must work together as a
system; thus, everyone working on the project should be somewhat familiar
with the requirements of each element.

The principles of systematic project management, including planning, review,
prototyping, and testing, still apply. Although genius and unusuat creativity
are assets to a microcontroller designer, they are not a requirement. The
majority of MCU applications result from simple systematic development.
Due to the nature of MCUs, applications based on an MCU often include
noteworthy features that cannot be found on similar products which do not
use an MCU.

In this applications guide, we assume some knowledge of the traditional
mechanical and electrical aspects of a project. What is new is the software
program that allows the MCU to perform the desired functions of the appli-
cation. On-chip peripherals that can be configured and controlled by program
instructions are also a new concept.

When residential electricity became common, house plans required addi-
tional pages to document the location of switches and outlets. The idea of
how electricity went from one place to another was foreign to the architects
of the day. A new system of symbols and conventions had to be developed.

MCU-based application projects are essentially the same as mechanical or
discrete logic projects except for the addition of software programming.
Software programming is not entirely an added design task because the
programmable nature of an MCU simplifies the hardware aspects of the
project.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-1



4-2

The normal order of events in MCU-based projects is as follows:

1) Proposal — A marketing and/or design group proposes preliminary
requirements of a project to satisfy customer demand.

2) Specification — This step defines limits of operation but should not
identify internal components, preventing selection of the most cost-
effective solution to a problem.

3) Breadboarding — This procedure is primarily a hardware activity al-
though some software is normally required to verify the accuracy of
the hardware design.

4) Software Development — This step involves planning and implemen-
tation of software programs. The programmer must know how the sys-
tem is electrically interfaced to components outside the MCU because
software programs control the operation of these external components.

5) System Integration — This procedure involves putting together finished
(preliminary) software and hardware.

6) Testing — This step is a design verification process.

In practice, the steps occur in parallel to some degree, and some changes
normally occur during the development which impact all of the steps. In this
applications guide, we assume you are familiar with traditional design meth-
ods; therefore, we will only discuss how MCU-based methods differ from
traditional methods.

The first area of difference is in the hardware design where the flexibility of
the software-driven MCU simplifies the connection of external circuitry. Sig-
nal polarity and timing are easily controlled by software to match the needs
of external components. The hardware design consists of connecting pe-
ripheral devices to general-purpose I/O lines and of checking the ability of
software to control the connected devices.

The second and most significant area of difference between MCU-based
projects and discrete logic projects is the area of software development. The
preparation of programs replaces the development of complex logic circuits.
Instead of laboring over complex wire-wrapped breadboards with an oscil-
loscope, the programmer sits at a computer terminal and develops sets of
computer instructions.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



4.1 HARDWARE DEVELOPMENT METHODS

When a project has been selected, determine what hardware will be required
for the final design (input and output devices and power supply) and what
hardware can be used to make the prototype (substitutions such as poten-
tiometers for temperature sensors).

Two approaches can be used to develop a hardware circuit (breadboarding)
for a system based on an M68HC05 MCU. You can use an M68HC05 PGMR
board, or you can wire a complete circuit on another board with a socket for
the MCU. The PGMR board approach is the fastest since the basic wiring to
the MCU is already done. The complete circuit with a socket for the MCU
has the advantage of not having to worry about interference between PGMR
board functions and application requirements.

Since the PGMR board is also used to program information into the EPROM
in the MCU, there are a few areas where some conflict may occur between
the planned application and components on the PGMR board. The areas are
small and usually easy to avoid. For example, the port D pins of the MCU
are connected to switches on the PGMR board. To use these pins, you would
turn off the switches so that there is no conflict with the components of your
application.

Aiso the PGMR board can be used with other members of the M68HC05
Family to increase your development choices. In addition to the MC68HC705C8
8K EPROM device, the PGMR can also operate with the MC68HC805C4
4K EEPROM device or the MC68HC05A6 4K ROM + 2K EEPROM device. Each
of these devices supports a slightly different approach to development.

With the EPROM approach (MC68HC705C8), you would write a software
program, transfer this program into the EPROM in the MCU, and reset the
MCU to execute the program. When you discover a mistake or want to make
a change, you remove the MCU from the PGMR board and erase the EPROM
with an ultraviolet (UV) light source. After the MCU is erased, you can pro-
gram the modified program into it and continue debugging (finding errors).

After a program is developed with a windowed EPROM, you can program
the working software program into any of several OTP MCUs for use in your
finished products. The OTP MCU is identica!l to the windowed device used
for development, except that it is packaged in a less expensive plastic pack-
age. Since this plastic package is opaque, you cannot erase the on-chip
EPROM after it has been programmed.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-3



The MC68HC805C4 has 4K bytes of electrically erasable PROM (EEPROM),
which allows easier erasure of programs during development (EEPROM does
not have to be erased with UV light). In most other respects this MCU is the
same as the MC68HC705C8 OTPROM MCU. Thus, programs can be devel-
oped with the MC68HCB05C4 and later programmed into less expensive
MC68HC705C8 OTP MCUs for production quantities.

The MC68HCO5AG6 is also similar to the MC68HC705C8 except that it has 2K
bytes of EEPROM and a 4K-byte ROM monitor program instead of an
8K-byte EPROM. This on-chip monitor program allows you to interactively
develop and check programs; thus, you can develop a program on a personal
computer, transfer it into the EEPROM in the MC68HCO05A6, and try the pro-
gram using the monitor commands of the on-chip monitor program. When
a mistake is found, you can often make the change with the single-line as-
sembler command of the monitor and retry the program immediately. This
was the method used to develop the thermostat application example. Al-
though we could have developed this application using the MC68HC705CS8,
it would have taken slightly longer.

Motorola produces a line of low-cost {about $500) evaluation boards (EVMs)
which can be used for high-speed interactive development. To use this de-
velopment approach, you would build a prototype of your system with a
socket where the MCU will go. Instead of an MCU, you would connect the
EVM into this socket. The EVM emulates the actions of a real MCU but allows
visibility into the internal activities of the MCU.

Some of the possible uses for an EVM include examination and modification
of memory locations, executing a user program until a certain instruction is
found, or looking at a program in mnemonic form. You can also trace indi-
vidual instructions and look at the contents of registers and memory before
and after executing each instruction.

4.2 SOFTWARE DEVELOPMENT METHODS

4-4

The development of programs for MCU-based systems requires the use of
slightly different techniques from those used with hardware-based systems.
MCU-based systems are programmed with instructions which control the
MCU; whereas, hardware-based systems are programmed by changing wired
connections. This section describes program development techniques for
MCU-based systems.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



A program is a series of instructions for the MCU. The program gives the
MCU alternatives to transact, depending on what it learns as the result of
executing previous instructions.

For instance, to determine if a thermostat should operate the compressor or
the heater, we might program it as follows:

1) Read the existing temperature.

2) Read the desired temperature setting.

3) Compare these two readings.

4) If existing is less than desired, operate heater.

5) If existing is more than desired, operate compressor.

To write a program, you can draw a flowchart to show the decision process
that must be performed to accomplish a specific task. Flowcharts are not
always necessary; sometimes a list of steps will do, depending upon the
application complexity.

In general, programming requires planning and developing rules, algorithms,
or flowcharts. Programs evolve by repeating the following steps several times:

1) Generate the source file (the program in mnemonic form).

A development station (usually a personal computer) is used to generate
a text file. This text file, the source of the data to be run by the MCU,
is called the "“source program.” This text file is for the convenience of
the programmer since the MCU understands only 8-bit bytes of encoded
information. This text representation makes it easier to develop the
program. Previously, programs for computers had to be in binary form,
the native code of the computer.

2) Translate the source file.

The text file is then translated into a binary object file (or S-record
encoded obiject file) by an assembler. This assembler program runs on
the development station, not on the MCU. The assembler does not
usually directly generate the final binary file (i.e., the object code or
executable file for the MCU) since this file has to be transferred from
the development station to the MCU. The transfer process can create
errors from external electrical noise. Motorola has a file transfer form
which encodes the MCU obiject file into ASCIl data with a checksum for
error detection. This encoding is referred to as Motorola *’S-records”
or “S1-S9" records.

Transfer the object file into the MCU.
The final step in developing MCU-based systems is to transfer the
S-record or binary file (the MCU program) to the MCU itself. We can

3

~—

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-5



take the binary or S-record file and send it to program an external
EPROM in an EPROM programmer; send it to an EPROM programmer
to program the MCU directly (not all EPROM programmers support this);
or send the file to the MCU in bootstrap mode and have the MCU
program itself. In all cases, the S-record file is used and is translated to
binary during the programming process so the MCU can use the object
file.

4.2.1 Freeware

46

Motorola has an electronic bulletin board system (BBS) dedicated to support
Motorola microprocessor units (MPUs) and microcontroller units (MCUs).
“Freeware,” the name for this BBS, is on-line 24 hours a day, except when
system maintenance is required. The following is a sample of the available
freeware topics:

8-Bit MCUs

16- and 32-Bit MPUs

Evaluation Boards (EVBs) and Evaluation Modules (EVMs)

Development Systems (HDS-200 and HDS-300)

IBM-PC Software Tools (assemblers, etc.)

Conference and Special Interest Groups

To use the BBS, you need to obtain the following hardware and software
items:
1) A 1200/2400 baud modem

2) A terminal or personal computer (PC) with communications software
(e.g. Kermit, ProComm, etc.)

3) A telephone line

Use the following procedure to log onto the freeware line:
1) Set systems character format to 8-bit, no parity, 1 stop bit.
2) Dial (512) 891-3733 or (512) 891-FREE.

3) A series of questions will appear. Enter the requested information to
log on. You are now a registered user.

4) Follow the menus for the desired functions (e.g., download, upload,
mail, conferences, etc). On-line help is also available.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



4.2.2 Third-Party Software

Many third-party vendors sell assemblers to translate mnemonic text files
into machine-readable files. These assemblers are similar to the free assem-
bler available on the Freeware BBS except that the third-party assemblers
offer additional features.

One common feature is the ability to use macros. Macros are sets of instruc-
tions used repeatedly in a program. A set of instructions can be typed into
the program, declared as a macro, and be given a name. When this set of
instructions is needed again, you would type the name of the macro where
an instruction mnemonic would normally go. The assembler recognizes the
macro name and inserts the previously defined set of instructions at that
point into the machine-readable object file. Macros improve programmer
productivity and often improve the readability of the assembly-language
listing.

A simulator is a software program that runs on a personal computer (or other
computer system). The simulator emulates the behavior of an MCU in the
same way you would play computer (see 2.6.2 Playing Computer). Although
a simulator does not operate as fast as the actual MCU, it does operate much
faster than you could play computer.

In a typical simulator, the computer screen will display windows showing
current and recent contents of memory and registers as well as the condition
of I/0 pins and peripheral systems. These displays help a programmer un-
derstand the operation of a program under development better than the other
methods of software development.

A simulator can show internal conditions that are not visible from outside
the MCU. In other development methods, the programmer has to deduce
this information indirectly. Two disadvantages of the simulator approach are
operating speed and accuracy of emulation. In terms of speed, the simulator
runs much slower than a real MCU would (although this is often fast enough
so the programmer does not notice any problems). Since simulators are
based on a software emulation of specified MCU operation, there can be
subtle differences between the way the simulator behaves and the way a
real MCU behaves. ldeally, these differences are small enough not to be
significant; in reality, the differences sometimes cause problems.

A compiler is similar to an assembler, but it translates a higher level language

into a machine-readable object file (rather than translating mnemonic as-
sembly language}). One common high-level language is “C.”

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-7



The object of programming in C or some other high-level language instead
of assembly language is to improve productivity and to avoid learning the
assembly language of several different MCUs. The compiler translates the
high-level language instructions into a machine-readable object file for a
particular MCU.

The greatest disadvantage of using a high-level language and a compiler is
the significant inefficiency introduced in translating to the MCU machine
language. The degree of inefficiency depends on the power of the MCU
instruction set and the task being performed. The M68HCO05 has a relatively
small instruction set compared to a mainframe or personal computer; thus,
it is difficult and inefficient to use C language instructions in this MCU.

The inefficiency of using C language instructions also affects timing of I/0
operations. For some applications where very fine control of timing is im-
portant, it is better to use assembly language than to use C. Inefficient pro-
grams also require more memory to perform a task.

For many applications, the speed of the CPU is so great compared to the
requirements of the application that the inefficiencies of high-level language
are unimportant. Present-day MCUs often have enough on-chip memory so
that program size may be unimportant. Using high-level language with the
M68HCO5 is not recommended in most cases. However, at least one good C
compiler is available for the M68HCO05. If you want to use high-level languages
for Motorola MCUs, you can get a list of names and addresses of third-party
vendors and products from a local Motorola representative or by calling the
freeware BBS.

4.3 THERMOSTAT PROJECT DETAILS

4-8

The major steps for the project to be developed are as follows:
1) Select the application — in this case, a home thermostat.

2) Define the functions desired for the thermostat.
Read/display existing indoor/outdoor temperature
Enter/display desired indoor/outdoor temperature
Enter/display time of day
Select heating or cooling
Operate heater or compressor

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



3) Determine the hardware required based on the functions.
A microcontroller (MC68HC705C8)
Temperature sensing devices
A/D converters (MC145041)
Keypad
Display
Relays/relay drivers
Audible alarm device
Pullup resistors
Bypass capacitors
Power supply
Circuit board

4) Develop simple programs to test the hardware circuits. Develop the
main program for the desired functions. The program(s) to be written
for this project are as follows:

A program to test the audible alarm

A program to test the display

A program to test the display and keypad

A program to test the basic software organization

The programs written for this thermostat application will be written in as-
sembly language on a PC using the MCU instruction set commands. An
assembler program contained in the PC memory will translate the programs
into machine language — i.e., a series of binary codes of “0"” and ““1"" which
the MCU understands. This code will be put into the OTPROM or EPROM to
be debugged.

4.3.1 Hardware Details

The best way to learn about MCUs is to try this application example ther-
mostat project and develop additional projects in your area of interest. Even
if you choose not to duplicate this thermostat project, you can still benefit
from studying the documentation in this example.

Figure 4-1 is the schematic diagram for the thermostat project. For devel-
opment, the MC68HC705C8 is being replaced by the M68HC05 PGMR board.
In this schematic diagram, only the I/O circuitry is shown. To see the other
MCU connections, refer to the schematic diagram of the PGMR board in the
Programmer Board User’s Manual included with the PGMR board.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-9



MCBBHGT705C8
(PGMR BOARD)
1 7 Vop
PAO . DATAO .
par F2 81 paTaAd LCD DISPLAY MODULE
g ) 20 CHARACTERS X 2 LINES
PA2 [ To| PATA2 v |2 b
PA3 | ] DATA3 0D -
PAY = 5] PATA4 12
3 > >
P =
A w1 DaTAS Vo >3 2
PAS |- —] patas 20K
PA7 s DATA7 POT. %
- W Vss 8
=1 R
E =
PBO 2
PBT o
14
PB2 [
PB3 |
1 2 3 A
16 o4 04 o9 Toe K
PB4 7 L & & & A
4 5 6 B
s 1 o4 04 o4 No-e K
P86 = é é é b 4 AA
7 8 9 c
P87 g\o-o o9 g\o-o oNo—¢ 1K
» * * 2 > S ANMN—
PCo > oo god o8
PC1 Z g g g g AN—e
Po2 = 4 X4 KEYPAD -
PC3 PIEZO =
2 BEEPER
g 2 ))) Vop
pes 2 — 1' L ;COOL
21 - T
4 s I $
| IE
Voo 1 Dc Jondi i |
1k T X HEAT
37
TCAP | b LO_J\M T
» 37MC1413 Ty
TCMP f— ggl s
2 >° st T >
hL |7 e
SO0
] £l
od|, B3 e,
3 14 ]
¢ v
s 10K 8 DD
PDORD1 AN .
W i B
PD1/TDO 31 Vv 10K " | -_— POT.
PDRMISO == — bout ANO [ >SN
PDIMOSI == —{on ANI |
PD4SCK = o 5K A ra 10K
PDSS —AN— s 38 AN 0AuF PoT. |
10K Ky B AN »>< ouT
% [ VRH GE M- L
PD7 —AN— =% ANG |— = =L
AN |2 0.1pF
N 10K wF] 13 A EN H —
VAG 11 -
AN9 i —
' ey AN10 p=5- -

Figure 4-1. Thermostat Project Schematic Diagram

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



During development, it was convenient to use potentiometers rather than
temperature sensors because doing so allowed us to simulate temperature
changes. In the final application, we would use an actual temperature sensor
such as that shown in Figure 4-2.

The LCD display is used to show the keypad entries of time-of-day, the tem-
perature limits, the current temperature, and the selection of heating or cool-
ing operation. The keypad can be a 4x4 array or larger. An audible alarm
can be used along with the display, if desired.

The project parts list is shown in Table 4-1. Only the parts not commonly
available are listed.

Figure 4-2. Precision Temperature Sensing Circuit

Table 4-1. Thermostat Project Parts List

Item and Description Suggested Source

LCD Display Module — 20 Characters by 2 Lines Digi-Key Wholesale
0OP220-ND

Keypad — 4 by 4 Matrix of Momentary Push-Button Switches Any

Piezo Beeper — Solid State Buzzer Radio Shack
273-060A

A/D Converter — Serial Interface to SPI Motorola ~— Special Functions
MC145041

Relay Driver — Translates 0-5 V MCU Signals to High Current | Motorola — Interface

Inductive Load Drive MC1413 or ULN2003
Relays — Coil 5V, Contacts 24 VAC 1A SPST (Minimum) Radio Shack

275-243 or Other

Op-Amp — For Precision Temp Sensor Circuits QUAD Op-Amp | Motorola — Linear
LM324

Precision Temperature Sensor — TO-92 Pkg National Semiconductor
LM34C

NOTE: This is only a partial parts list. Parts commonly found in lab stock are not shown.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-1



4.3.2 Project Programming

Figures 4-3, 4-4, 4-5, and 4-6 (MCU port summary information) act as a handy
reference to the software programmer in the thermostat project. These fig-
ures summarize the most important information needed by the programmer.

Bt7 6 5 4 3 2 1 BitO
| oorA7 | DDRA6 | DDRAS | DDRA4 || DDRAS | DDRA2 | DDRAT | DDRAO | $04 DDRA
1 1 1 1

F 1 1 1 1 1 1 1 INIT TO $FF
OUT OUT OUT OUT OUT OUT OUT OUT | (ALLOUTPUTS)
'SR S R T
] ] | Il ] 1 ] | $00 PORTA
A

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PAO  PIN NAMES (REF.)

LCD LCD LCD LCD LCD LCD LCD LCD  THERMOSTAT
DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATAO FUNCTION

4 5 6 7 8 9 10 1 MCU PIN NUMBER
14 13 12 1 10 9 8 7 LCD PIN NUMBER
SEE PORT C FOR LCD SIGNALS - E, RS, AND RW

Figure 4-3. Port A Summary

Bt7 6 5 4 3 2 1 BitO
{ pors7 | pores { oorBs | opred J[ porea [ oore2 | ooret [ooReo | $05 DDRB
1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 INIT TO $OF
IN IN IN IN OUT  OUT OUT  OUT | (HALFIN, HALF OUT)

| R R R A |
| ] ] | | | T ] $01 PORTB
(T T T A A

PB7 PB6 P85 PB4 PB3 PB2 PB1 PBO  PIN NAMES (REF.)
BOT TOP LEFT . .. RIGHT THERMOSTAT
<-- INPUTS --> ROW coL < OUTPUTS ---> coL

ROW FUNCTION
19 18 17 16 15 14 13 12 MCU PIN NUMBER
1 2 3 A
Bathis bha the BV E
g\o-og\o-og\o-ug\o-o 0K '
7 8 9 C
g\o-ﬂg\o-ug\o-og\o« K |
- o o o5

10K
& . 2 3 & —AN—@
4 X 4 KEYPAD

Figure 4-4. Port B Summary

4-12 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



Bt7 6 5 4 3 2 1 Bit0
| boRe7 | bores | bbres | boRe4 || pbres | borcz | boret [obreo | $06 DDRC

| [ | | | 1 | 1

1 1 1 1 1 1 1 1 INIT TO $FF
ouT  OUT  OouT our OUT OUT OUT  OUT | (ALLOUTPUTS)

S S T A B
L1

v 4
[ T T T T ]so2 PoRTC

LA A A T A A A

PC7 PC6 PC5 PC4 PC3 PC2 PC1 PCO  PIN NAMES (REF.)

FAN  HEAT COOL BEEP AD LCD  LCD LCD  THERMOSTAT
RELAY RELAY RELAY SEL” E RS RW  FUNCTION
21 22 23 24 25 26 27 28 MCU PIN NUMBER
RED GREEN 6 4 5 LCD PIN NUMBER

LOW TRUE SELECT TO SERIAL AD
TRANSFER

0=QUIET; 1=BEEP

FOR DEVELOPMENT USE LOW TRUE (TO LIGHT LEDs ON PGMR BOARD)
FOR FINAL SWITCH TO HIGH TRUE

Figure 4-5. Port C Summary

. [ { @ [ [ I |]$s3 PORTD

t oyt

PD? no  PDS PDé  PD3  PD2  PDI  PDO
SCK  MoSI MISO TDO  RDI  ['NNAMES(REF)

pin 8S
by oy vy
\
o P ALTERNATE USE (REF.)
- PUL AD AD AD  _ _ THERMOSTAT
UP  SCK DN  DOUT FUNCTION
36 R 2 3 30 20 MCUPINNUMBER
IEEE S5 S5 RS232 RS232 PGMRBOARD

ON OFF OFF OFF  TO AVOID INTERFERRENCE WITH
THERMOSTAT APPLICATION

Figure 4-6. Port D Summary

After selecting major components and completing a preliminary hardware
design, plan and begin writing software programs. You first write small pro-
grams that exercise the basic parts of the project. This procedure will expose
any problems in the hardware design and will help you learn details of
controlling major external peripherals.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-13




Begin your project with a very simple program such as that shown in the
assembler listing of Figure 2-8 Assembler Listing. You can easily modify the
program to suit the keypad switches rather than wiring a switch as called for
in the Figure 2-8 example. Also, you can modify the program to control the
beeper rather than the red LED.

This first small program is meant to be very simple because you want to
perform a crude check of the setup, as opposed to testing your programming
ability. The simple example is not likely to have any significant programming
problems.

Next, write a short program to check the LCD display. It is important to
understand the operation of major elements, such as this display, before
attempting a large program. Since there are so many possible causes of
complete failure in a large program, you will have difficulty determining the
source of your problems.

Figure 4-7 is a flowchart of the display checkout program. Figure 4-8 is the
listing for this small program. Two subroutines (WCTRL and WDAT) were
written to simplify operations with the LCD display. These subroutines will
eventually become part of the final application program.

When this thermostat project was developed, the programs were not correct
at first because the data sheet for the LCD display module was imprecise.
The purpose of the small checkout programs is to work out these minor
problems before beginning the large application program.

Application example programs shown in this applications guide can be tried
in an MC68HC705C8 in one of two ways, depending upon their size.

For small programs (less than 176 bytes), you can download the example
program to RAM (in the area $0051-$00FF) and execute it without program-
ming any EPROM (so you don’t have to erase EPROM to try another). To use
this method, you must ORG your program at $0050 and the first byte must
be the size of your example. The following procedure will provide the needed
size byte.

1. Replace your ORG statement with the following two lines . ..
ORG $50
START FCB END-START

2. After the last line in your program put. ..
END EQU *

3. Assemble the example program and make sure it ends at or before
$OOFF.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



1 TRYLCD }

Y

INITIALIZE MCU HARDWARE
(PORTS AND DDR REGS)

Y
WRITE CONTROL WORDS TO
INITIALIZE LCD MODULE.

$01 - CLEAR

$02 - HOME

$38 - FUNCTION SET

$OE - DISPLAY ON/CURSOR OFF
$06 - ENTRY MODE

| START WITH ASCIl A' J

> DLP
Y
L WRITE DATATO LCD J

Y

| NEXT LETTER ABC..S.T I

Y

—"2< EQUALT ? )

YES
Y

‘ STOP ’

Figure 4-7. Display Checkout Flowchart

If the example program is too large to fit in the 176 bytes of RAM ($0050 to
$00FF), you will have to program the example into EPROM and provide a
reset vector. To provide a reset vector for a program example that begins
with the label “BEGIN"”, put the following two lines at the end of your pro-
gram:

ORG  $1FFE
FDB BEGIN

NOTE
The example programs provided do not include a size byte or a reset
vector; you will have to add whichever is appropriate for your sit-
uation.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-15



0000
0001
0002
0004
0005
0006

00%e
009f

0100

0100
0102
0104
0106
0108

010a
010c
010f
0111
0114
0lle
0119
011b
Olle
0120

0123
0125
0128
0129
012b
012d

a6
b7
a6

b7

a6
cd
a6
cd
a6
cd
a6
cd
ab
cd

a6
cd
4c
al

20

e8
02
f£
04
06

fe

2f

2f

2f

2f

2f

49

KA KK KA KKK KKK R A AR KA AR A KR AR KRR KRR KA A AR K AAR KA KK KRR I AR KA AR KK

* TRYLCD - LCD Check out program *

* Initialize LCD module and display ABCDEF...S *
AA K AKA KA KA A KA A IR A A AR A AR A AR AR AR AR A Ak Ak Ak hkhkkhhkhhkkAkhkkhkhkkhk

* Register Equates

PORTA EQU
PORTB EQU
PORTC EQU

DDRA EQU
DDRB EQU
DDRC EQU

* RAM Equates
TEMPA EQU
TEMPX EQU

ORG

TRYLCD LDA
STA
LDA
STA

$00 LCD display data
$01 Keypad Row4,3,2,1;Coll,2,3,4
502 Fan*,Heat*, Cool*,Beep;ADen*,E,RS,R/W
$04 Data direction, Port A (all output)
$05 Direction, Port B (7-4in, 3-0Oout)
$06 Data direction, Port C (all output)
S9E One byte temp storage location
$9F One byte temp storage location
$100

* Set Port data patterns and directions
#SE8 Fan*,Heat*,Cool*, 6 Beep;ADen*,E,RS,R/W
PORTC Initial Thermostat control values
#SFF
DDRA Port A all outputs
DDRC Port C all outputs

STA

* LCD display peripheral needs to be initialized

LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR

LDA
DLP JSR
INCA
CMP
BNE
HERE BRA

#5$01
WCTRL Clear
#$02
WCTRL Home
#538 .
WCTRL Function Set~ 8-bit,2-line, 5X7
#50C
WCTRL Display on, Cursor off
#506
WCTRL Entry mode- Inc addr, no shift
#'A ASCII 'A’
WDAT Display a character
To next ASCII character
#'T Go ABCDEFGHIJKLMNOPQRS & stop
DLP Loop till T
HERE Stop

Figure 4-8. Display Checkout Program Listing (Sheet 1 of 2)

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



012f
0131
0133
0135
0137
0139
013a
013c
013e
0140
0143
0144
0l46
0148

0149
014b
0144
014f
0151
0153
0155
0157
0159
015a
015¢c
015e
0160

bf
b7

15
ae
5a
26
al
22
cd
S5a
26
be
81

MOTOROLA

% Kk Kk kK ok kK k Kk kK kK K Kk sk kK ok ok K sk ok sk Kk ok ko ok ok kK ok ke sk ok ok ok ok ok ok %k ok ok ok Rk ok ok Rk ok kok

* WCTRL - Write control word to LCD peripheral *
* Enter with control word in accumulator *
* Return with original value of X *
* Delay ~4.5mS if A=$01 or $02 else delay ~120uS *

ARA KKK KA KA KA I K AR KA A AR AR AR A AR KA AR KRR A kA kA kA Ak kkkhkhkkk

9f WCTRL STX TEMPX Save X

00 STA  PORTA Write control word to LCD
02 BSET 2,PORTC E~->1
02 BCLR 2,PORTC E->0
14 LDX  #20 20*6~*1US/~=120U8
L120U DECX Delay loop ~120uS
fd BNE L120U 20-19,19-18...1-0
02 CMP  #$02 Commands $01 & $02 req extra delay
06 BHI ARNSM If command > $02 skip long delay
01 48 L5M JSR  ANRTS JSR+RTS TAKES 12~ (just want delay)
DECX TAKES 3~ (X=0->1 on first pass)
fa BNE  L5M 3~ Loop 256*18~*1us/~=4.608mS Delay
9f ARNSM LDX TEMPX Restore X
ANRTS RTS ** RETURN **

KAKKAKRAK KA KKK KKK ARAKR KA KA AR A A A Ak hkkhkkkkkkkkkkkhkhkhkhkhkkkkkk

* WDAT - Write data word to LCD peripheral *
* Enter with data word in accumulator *
* Return with original values of X & A *
* Delay ~120uS after data write *
KKK A KA A KA KKK AAR KA AR A AR A A AR AR AR Rk khkhkkokkkkkhkkhkhkkhkkkk

9f WDAT STX TEMPX Save X

9e STA TEMPA Save A

00 STA  PORTA Write data word to LCD

02 BSET 1,PORTC RS->1

02 BSET 2,PORTC E->1

02 BCLR 2,PORTC E->0

02 BCLR 1,PORTC RS->0

14 LDX #20 © 20%6~*1uS/~=120US
L120 DECX Delay loop ~120us

fd BNE L120 20-19,19-18...1-0

9e LDA TEMPA Restore A

9f LDX TEMPX Restore X

RTS ** RETURN **

Figure 4-8. Display Checkout Program Listing (Sheet 2 of 2)

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-17



4-18

Since we now understand the LCD display, we can use the display to check
out the keypad interface. To read a keypad key, we must recognize a key
closure, delay to allow debounce, and decode the position {row/column) of
the key. This is an example of how the MCU can simplify the hardware design.
Software can be used to debounce the keys rather using complicated hard-
ware circuits. Software also allows many switches to be wired in a row/
column matrix so fewer I/O lines are needed.

The flowchart in Figure 4-9 shows how keypad keys are detected. Figure
4-10 is a listing of the keypad checkout program.

A real-time loop structure was chosen for the thermostat project main pro-
gram. This basic structure can be used for many applications. The timing of
the main loop determines the delays between activities in the complete ap-
plication program.

A real time-of-day clock can easily be developed using the main loop time
and simple software counters. Figure 4-11 is the flowchart for this basic loop
structure. The complete listing for the thermostat project is included at the
end of this section.

After a reset, there are a series of instructions to initialize ports, peripheral

systems, and software variables. After this initialization, the main loop is
entered and repeated continuously as long as power is applied.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



KEYTRY

I INIT MCU HARDWARE (PORTS)

“ANYK”

XYY

,’YES

| DELAY 50 ms (DEBOUNCE) ]

—’£< ANY KEY 2 >

[ POINT AT LAST TABLE ENTRY

1 "KYLOOP"
Y

GET ROW/COL PATTERN FROM
TABLE & DRIVE COLUMNS

+NO

NEXT TABLE ENTRY
(POINTER = POINTER - 2)

¥
ﬂ( END OF TABLE ? >
YES

“FOUND" v

¥
< ROW MATCH ? >lEi-

& DISPLAY

READ ASCH FROM TABLE

ON LCD 1st ROW LEFT

> “TILALS"
Y

ﬁ(

ANY KEY 2 )

VNO

l DELAY 50 ms (DEBOUNCE) l

Y

Figure 4-9. Keypad Checkout Flowchart

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

4-19




KKK K AKAA KA AR ARk A AR A Ak kA kAR Ak k kA kA kA Ak khkkk Ak kkk kA kkkkx
* KEYTRY - Try out keypad debounce and decode software *

* Detect and debounce keys. When a key found *
* change it to ASCII and display on LCD *
* Debounce release of key and look for more *

IEA KKK A A IKA I A AR AA A A AR IR KA AR KA AR AR KA KA AR A kAR Ak kkkhkkkkkk

* Register Equates

0000 PORTA EQU $00 LCD display data
0001 PORTB EQU $01 Keypad Row4,3,2,1;Coll,2,3,4
0002 PORTC EQU $02 Fan*,Heat*,6 Cool*,Beep;ADen*,E,RS,R/W
0004 DDRA EQU $04 Data direction, Port A (all output)
00605 DDRB EQU $05 Direction, Port B (7-4in,3-0out) -
0006 DDRC EQU $06 Data direction, Port C (all output)
* RAM Equates
009d KEYVAL EQU $9D Keypad key (ASCII)
009%e TEMPA EQU $S9E One byte temp storage location
009f TEMPX EQU $9F One byte temp storage location
0100 ORG $100
* Set Port data patterns and directions
0100 a6 e8 INIT LDA #SES8 Fan*, Heat*,Cool*,Beep;ADen*,E,RS,R/W
0102 b7 02 STA PORTC Initial Thermostat control values
0104 4f CLRA Row3,2,1,0;Co0l1,2,3,4
0105 b7 01 STA PORTB All cols initially off
0107 4a DECA to $FF
0108 b7 04 STA DDRA Port A all outputs
010a b7 06 STA DDRC Port C all outputs
010c a6 Of LDA #S0F Rows=in, Cols=outs
010e b7 05 STA DDRB Port B half ins, half outs
* LCD display peripheral needs to be initialized
0110 a6 01 LDA #$01
0112 cd 01 93 JSR WCTRL Clear
0115 a6 02 LDA #$02
0117 cd 01 93 JSR WCTRL Home
0lla a6 38 LDA  #$38
0llc cd 01 93 JSR WCTRL Function Set- 8-bit,2-line, 5X7
011f a6 Oc LDA #s0C
0121 cd 01 93 JSR WCTRL Display on, Cursor off
0124 a6 06 LDA #506
0126 cd 01 93 JSR  WCTRL Entry mode- Inc addr, no shift

** END oOf INITIALTZATION %%k sk ks k ok ok % Kk % k % % &k % &k % & % ok % & ok % ok % %

Figure 4-10. Keypad Checkout Program Listing (Sheet 1 of 2)

4-20 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



0129 a6 Of KEYTRY LDA #SOF

012b b7 01 STA PORTB Turn on all cols

012d b6 01 ANYK LDA PORTB Reads rows in upper 4

012f a4 f0 AND #SFO Mask away cols

0131 27 fa BEQ  ANYK Loop till a key is found
0133 cd 01 65 JSR DLY50 Debounce key

0136 ae 1le LDX #30 Pointer to last pair in KYTBL
0138 d6 01 73 KYLOOP LDA KYTBL,X Get row/col pattern

013b b7 01 STA PORTB Drive cols

0134 bl 01 CMP PORTB Check for row & col match
013f 27 06 BEQ FOUND If =; key found

0141 5Sa DECX Point to next pair of entries
0142 5a DECX in KYTBL

0143 2a £3 BPL  KYLOOP Loop if more entries

0145 20 e2 BRA KEYTRY Key gone; start over

0147 d6 01 74 FOUND LDA KYTBL+1,X Get key equiv from table
0l4a b7 94 STA KEYVAL Save for now

0l4c a6 80 LDA #580 Left end of 1lst row

0l4e cd 01 93 JSR WCTRL Position entry point

0151 b6 94 LDA KEYVAL Get the ASCII key value
0153 cd 01 ad JSR  WDAT Display the key

0156 a6 Of LDA #SOF

0158 b7 01 STA PORTB Turn on all cols

0l5a b6 01 TILRLS LDA PORTB Reads rows in upper 4

015c a4 f0 AND #SFO Mask away cols

015e 26 fa BNE TILRLS Loop till no key pressed
0160 cd 01 65 JSR DLY50 Debounce release

0163 20 c4 BRA KEYTRY Look for another key

KAk kkkkkkhkhkkkhkhhkkkkhkkhkhkkkkkkkkkkk

* Keypad Correspondance Table
* 1st entry of each pair is Row/Col bit pattern
* 2nd entry of each pair is ASCII equiv of key
* COL # -> 1 2 3 4
b v Vv v Vv
* ROW 1 -> 1 2 3 &
* ROW 2 -> 4 5 6 B
* ROW 3 —> 7 8 9 C
* ROW 4 -> < 0 > !
0173 18 31 KYTBL FCB $18,'1 Row 1, Col 1 (Top Left)
0175 28 34 FCB $28,'4 Row 2, Col 1
0177 48 37 FCB $48,'17 Row 3, Col 1
0179 88 3c FCB $88,'< Row 4, Col 1
017b 14 32 FCB $14,'2 Row 1, Col 2
017d 24 35 FCB $24,'5 Row 2, Col 2
017f 44 38 FCB $44,'8 Row 3, Col 2
0181 84 30 FCB $84,°'0 Row 4, Col 2
0183 12 33 FCB $12,'3 Row 1, Col 3
0185 22 36 FCB $22,'6 Row 2, Col 3
0187 42 39 FCB $42,'9 Row 3, Col 3
0189 82 3e FCB $82,'> Row 4, Col 3
018b 11 41 FCB $11,'A Row 1, Col 4
018d 21 42 FCB $21,'B Row 2, Col 4
018f 41 43 FCB $41,'C Row 3, Col 4
0191 81 21 FCB $81,'! Row 4, Col 4 (Bot Right)

Figure 4-10. Keypad Checkout Program Listing (Sheet 2 of 2)

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-21



4-22

MAIN

-
L.
C o

\

i

LO_(

OCF FLAG SET ? >
YES

Y

SCHEDULE NEXT OCF
TO OCCUR IN 50ms
(AND CLEAR OCF FLAG)

Y

L

TIC=TIC +1 J

Y

<

TiC=20?

YES
Y

I

CLEARTIC TO ZERO |

"ARNC1" -

>_&

Y

1) UPDATE TIME AND DAY

2) SERVICE KEYPAD

3) SERVICE BEEPER

4) CHECK FOR USER ENTRY

5) SERVICE AD TEMP. SENSORS

6) UPDATE HVAC OUTPUTS

7) SERVICE LCD DISPLAY

4

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

J L

JL_

¢ Measure 50 ms Intervals

Modulo 20 counter to count 50 ms ‘TICs'
TIC counts 0, 1, 2...18, 19, 0 etc.
Twenty 50 ms TICs equal 1 second.

f Major task subprograms (modules).

Each is called once per 50 ms though

a subprogram may decide to do littie or
nothing depending on the state of variables
such as TIC.

Figure 4-11. Main Program Flowchart

MOTOROLA



Listing — Thermostat Example Sheet 1 of 21

KA A KA KK A AAAA A ARk KAk Akhkkhkkhkkhkkhkkhkhkkhkhkhkkkkkkk
* MC68HC705C8 Example Development Project
* A Home Thermostat with indoor/outdoor
temperature and time-of-day

This example uses an LCD display, a 4x4
keypad, a piezo beeper, and an MC145041
serial A/D converter.

Software is configured in a real-time
loop and demonstrates timing techniques
and program modularity principles.

The project is complete enough to show
the development process but is not

intended to be a finished product.
KEAAKA AR A AAKAKRKAAAAKR A KRR A AR R A R AR Rk Ak khkhkhkkhkhkkx

* Ok % ok %k A % % X Ok X X %
¥ % % %k ok Ok % OF O ¥ X ¥ % X X

* Register Egquates

0000 PORTA EQU $00 LCD display data

0001 PORTB EQU $01 Keypad Row4,3,2,1;Coll,2,3,4

0002 PORTC EQU 502 Fan*,Heat*, Cool*,Beep;ADen*,E,RS,R/W
0003 PORTD EQU  $03 in, -, $8*, SCK;MOSI,MISO, TxD, RxD

0004 DDRA EQU $04 Data direction, Port A (all output)
0005 DDRB EQU $05 Data direction, Port B (7-4in,3-0Oout)
0006 DDRC EQU 506 Data direction, Port C (all output)
000a SPCR EQU $0A SPIE, SPE, -,MSTR; CPOL, CPHA, SPR1, SPRO
000b SPSR EQU $0B SPIF,WCOL,-,MODF; ~,-,—,~

000c SPDR EQU $0C SPI Data

000d BAUD EQU $0D -,-,SCP1,SCP0; -, SCR2, SCR1, SCRO

000e SCCR1 EQU  $0E R8,T8, -, M; WAKE, -, =, = '

000f SCCR2 EQU SO0F TIE,TCIE,RIE, ILIE; TE, RE,RWU, SBK

0010 SCSR EQU 510 TDRE, TC, RDRF, IDLE; OR, NF, FE, -

0011 SCDR EQU $11 SCI Data

0011 RDR EQU $11 SCI Receive Data (same as SCDR)

0011 TDR EQU $11 SCI Transmit Data (same as SCDR)
0012 TCR EQU 512 ICIE, OCIE, TOIE,0;0, 0, IEGE,OLVL

0013 TSR EQU $13 ICF,OCF,TOF,0; 0,0,0,0

0014 ICAP EQU $14 Input Capture Reg (Hi-$14, Lo-$15)
0016 OCMP EQU $16 Output Compare Reg (Hi-$16, Lo-S$17)
0018 TCNT EQU 518 Timer Count Reg (Hi-$18, Lo-$19)
00la ALTCNT EQU $1A Alternate Count Reg (Hi-$1A, Lo-$1B)

* RAM Equates
00a0 ORG SA0
* Using 'A6 to debug and monitor uses lower RAM

00a0 TEMPA RMB 1 One byte temp storage location
00al TEMPX RMB 1 One byte temp storage location
00a2 TIC RMB 1 50mS Tics 00-19 20 Tics = 1 Sec
00a3 SEC RMB 1 Current Time Seconds 00-59

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-23



Listing

00a4

mode.
00a5s
00a6
00a7
00a8
00a9
00aa

00ab
00ac
00ad
00ae
00af
00b0

00bl

00b2
00b3
00b4

00b5

00b6

4-24

Thermostat Example Sheet 2 of 21

BCDEQ RMB 1 BCD equivalent of ENTRY
* it's easier to roll in new digits to a BCD buffer vs binary.

* Next 7 entries are accessed by indexed addressing

* using a 1 byte

* offset from ENTRY. The offset is MODE (in X) and the value at
* ENTRY,X is the value that is subject to change in the selected

ENTRY RMB 1 Binary value being entered by user
HR RMB 1 Current Time Hour 1-12 (binary)
MIN RMB 1 Current Time Minute 00-59 (binary)
AMPM RMB 1 Current Time AM=0, PM=1

DAY RMB 1 Day of Wk 1=Sun...7=Sat

HVACM RMB 1 HVAC Equipment Mode

* Modes 0 - Off

* 1 - Heat

* 2 - Cool

* 3 - Fan Only

GOAL RMB 1 Goal temp. setting (+)

* End of values accessed by offset from ENTRY

INTMP RMB 1 Current Indoor Temperature (+)
OUTMP RMB 1 Current Outdoor Temperature (+/-)
ASC100 RMB 1 ASCII hundreds digit (-,<sp>,1l, or 2)
ASC10 RMB 1 ASCII tens digit (0 thru 9)

ASC1 RMB 1 ASCII ones digit (0 thru 9)

MODE RMB 1 Current Mode (for user interfce)

* Modes 0 - Inactive; display shows current time/temp/etc.
* 1 - Set Time HR

* 2 - Set Time MIN

* 3 - Set Time AM/PM

* 4 - Set Time DAY

* 5 - Set HVAC Mode - Off, Heat, Cool, Fan Only

* 6 - Set Target Temperature

HVACON RMB 1 0=0ff, l=on (running now)

KEYVAL RMB 1 Keypad key (ASCII) or debounce state
BEEPM RMB 1 Beeper request

* 2=>single 100mS beep, 8=>double beep, 26=>1 sec beep

ACTIMR RMB 1 Activity timer
* Set=60 sec on key, decrement 1l/sec, if 0 mode reverts to 0

ENTFLG RMB 1 New entry flag, O-new l-old

* Entries default to current value when new. If user enters

* a single digit the tens digit is cleared. If user enters

* more digits they shift in from rt. so new digit is 1's, old
* 1's becomes 10's, and old 10's falls off left (lost).

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



Listing

0100

0100

0101
0103
0105
0106
0108
0109
010b
010d
010f

0111
0113
0115
0117

0119
011b

011d
O0lle

0120
0122
0125
0127
012a
0l2c
012f
0131
0134
0136

9¢c

a6

4f
b7
4a
b7
b7
aé
b7

b6
a4
al
26

a6
b7

4f
b7

a6
cd
a6
cd
a6
cd
a6
cd
a6
cd

03
3C
20
£8

50
O0a

MOTOROLA

20

20

20

20

20

Thermostat Example Sheet 3 of 21

ORG $0100 Program will start at $0100
* 50100 is the start of EPROM in the '705C8

* Initialization done at reset & on detection of some errors
INIT RSP Reset stack pointer to S$FF

* Set Port data patterns and directions

LDA #SE8 Fan*,Heat*,Cool*, Beep;ADen*, E,RS,R/W
STA PORTC Initial values for Thermostat controls
CLRA Row3,2,1,0;Co0l1,2,3,4

STA  PORTB All cols initially off

DECA to SFF

STA DDRA Port A all outputs

STA DDRC Port C all outputs

LDA #$0F Rows=in, Cols=outs

STA DDRB Port B half ins, half outs

* Set up SPI to talk to ext serial A/D converter MC145041

* k

** CAUTION !! S3 thru S6 on PGMR Board can conflict with SPI
* %
WAITSW LDA PORTD Wait 'till S3-on, S4, S5, S6-off

AND #83C only care about S$3,thru S6

CcMP #$20 S3-on, S4, S5, S6-off ?

BNE WAITSW If not wait till they are
* Previous 4 lines only needed for development on PGMR board

LDA  #$50 SPIE, SPE, -,MSTR; CPOL, CPHA, SPR1, SPRO
STA SPCR SPI on as Master, 2US norm low clock
* SCI not used in this application
* Timer output compare used to time 50mS loop
CLRA ICIE,OCIE, TOIE,0;0,0, IEGE, OLVL
STA TCR no timer interrupts or pins used

* LCD display peripheral needs to be initialized

LDA #501

JSR WCTRL Clear

LDA #3502

JSR WCTRL Home

LDA #538

JSR WCTRL Function Set- 8-bit,2-line,5X7
LDA #50C

JSR  WCTRL Display on, Cursor off

LDA #3506

JSR WCTRL Entry mode- Inc addr, no shift

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-25



Listing

0139
013b
013d
013f
0141
0143
0145
0147

0149
014b
01l4d
014f
0151
0153
0155

4-26

a2
a3
Oc
a6
a’7
a8
01
a9

Thermostat Example

Sheet 4

* Set time to 12:00 AM SUN

CLR
CLR
LDA
STA
CLR
CLR
LDA
STA

CLR
CLR
CLR
CLR
CLR
LDA
STA

TIC
SEC
#12
HR
MIN
AMPM
#1
DAY

MODE
KEYVAL
BEEPM
HVACON
HVACM
#72
GOAL

Init 50mS counter
Init seconds to 0
Hr=12

Min=00

AM (AMPM=0)
Sun-1,Sat-7
Day=Sunday

Set user interface to inactiv
Say no key closed

Set beeper request to off
Indicate HVAC Equip not runni
Set HVAC Equip mode to off

Set default goal temp to 72°F

of 21

e

ng now

*% END of INITIALTIZATION * %%k sk sk kkk sk ks k ok %ok d ko ok ok o ok ok ook ok okok ok

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



Listing — Thermostat Example Sheet 5 of 21

%k % Kk Kk Kk ok ok %k %k ok k Kk ke ke k kK k ke k ok ok ok ok ok ok ke ke ok ok %k ok ke ok ok kR ok Rk kR k ok ok kK kK ke k ok ok ok
* MAIN - Beginning of main program loop

* Loop is executed once every 50mS (exactly)

A pass through all major task routines takes
less than 50mS and then time is wasted until
the output compare flag gets set (every 50mS).
When an output compare triggers, the flag is
cleared & 12500 is added to the compare reg

so the next trigger will occur in exactly 50mS
(12500*4uS/cnt = 50mS) . (Xtal = 2MHz, bus = 1MHz)

The variable TIC keeps track of 50mS periods
when TIC increments from 19 to 20 it is cleared
to 0 and seconds are incremented.

The keypad is checked every 50mS pass and a new
closure or release is not acted upon until the
pass after it is first seen. This acts as a
switch debounce.

The display is updated only when seconds change.
Display call is at bottom of main loop so any
change caused by a key is reflected in the
display update.

¥ ook ok ok % o % R Sk % % Ok % % % Ok Ok % ¥ %
X% %k O OF ok R % X % % Ok O % Ok R % F X % X ¥ X ¥ ¥

* Temperature readings are only taken once/sec
KKK A A AR KA A KKK A KA AR AAKRA AR A AAKRKRA A KA AN AR A A AR AR A AR Ak Ak kX
0157 0d 13 fd MAIN BRCLR 6,TSR,MAIN Loop here till OCF flag set
015a b6 17 LDA OCMP+1 Low byte of OC register
015¢c ab d4 ADD #$D4 Low half of 12500
015e b7 a0 STA TEMPA Save till high half calculated
0160 b6 16 LDA OCMP High byte of OC register
0162 a9 30 ADC #530 High half of 12500 (+carry)
0164 b7 16 STA OCMP Update OC reg
0166 b6 al LDA TEMPA Get low half of updated value
0168 b7 17 STA OCMP+1 Update low half of OC reg
* OC now = old OC + 12500, and OCF flag is clear
0l6a b6 a2 LDA TIC Get current TIC value
016¢c 4c INCA TIC=TIC+1
016d b7 a2 STA TIC Update TIC
016f al 14 CMP #20 20th TIC ?
0171 25 02 BLO ARNC1 If not, skip next clear
0173 3f a2 CLR TIC Clear TIC on 20th
* End of synchronization to 50mS TIC; Run main tasks and
*

branch back to main within,SOmS. Sync OK as long as
no 2 consecutive passes take more than 100mS.

*

0175 cd 01 8c ARNC1l JSR TIME Update time-of-day & day-of-week

0178 cd 01 c9 JSR KYPAD Check/service keypad

017b cd 02 16 JSR BEEP Update Beeper

017e cd 02 2f JSR USER User Interface to set time, temp, etc.
0181 cd 03 09 JSR A2D Check Temp Sensors

0184 cd 03 34 JSR HVAC Update Heat/Air Cond Outputs

0187 cd 03 9d JSR  LCD Update LCD display

018a 20 cb BRA  MAIN Back to Top & wait for next TIC

**% END Of Main LOOp ***Akkkkkkkkk kX kkkkkkkkk Xk kX KXk k kK Ak %

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-27



Listing

018c
018c
0l8e
0190
0192
0194
0196
0198
019a
019c
019%e
0la0
0la2
0la4
0lab
0la8
Olaa
Olac
Olae
01b0
01b2
01b4
01b6
01b8
Olba
0lbc
Olbe
01lcO
0lc2
0lc4
0lcé
0lc8

4-28

3d
26
3c

bl
26
3f
3c
bl
26
3f
3c
b6
al

a6
b7
20
al

b6
a8

26
3c
b6
al
26
a6
b7
81

Thermostat Example : Sheet 6 of 21

KAk A KK IAKA A I KA KKK K A ARk hkhkkkkhkhkhkhkhkhkhkhkkkkkkhkkhkkkkkkkkkx
* TIME - Update Time-of-day & Day-of-week

* If TIC not = 0, just skip whole routine

When SEC rolls 59->0, inc MIN

When MIN rolls 59->0, inc HR

When HR rolls 11->12, change AMPM 1->0 or 0->1
When AMPM chgs 1->0, inc DAY

. When DAY rolls 7->8, set to.l (Sun)
H Kk Kk Kk Kk Tk k kK ok k ok Kk k Kk ke sk gk ke k kK ke ke ke ke ke ok sk sk gk K Kk ok ok ok ke ke ok %k ok ok ok ko k ke ok ok ok ok ok ok ok

* % % % %
* % ¥ k% ¥ K

TIME EQU * Update Time-of-day & Day-of-week
TST TIC Check for TIC=zero
BNE XTIME If not; just exit
INC SEC SEC=SEC+1
LDA #60
CMP SEC Did SEC -> 60 ?

BNE  XTIME If not; just exit
CLR SEC Seconds rollover
INC MIN MIN=MIN+1

CMP MIN A still 60; MIN=60 ?
BNE XTIME If not; Jjust exit
CLR MIN Minutes rollover
INC HR HR=HR+1

LDA HR For comparisons
CMP #13 HR=13 ?

BNE ARNS1 If not; skip

LDA #1

STA HR Set HR=1

BRA XTIME Exit

ARNS1 CMP #12 HR=12 ?

BNE XTIME If not; just exit
LDA AMPM

EOR #%00000001 Invert AM/PM bit
STA AMPM 0=AM, 1=PM

BNE XTIME If not AM now; just exit
INC DAY DAY=DAY+1

LDA DAY

CMP #8 Day rollover ?

BNE XTIME If not; just exit
LDA #1

STA DAY Set Day to 1 (SUN)

XTIME RTS ** RETURN from TIME **

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



Listing

01lc9
01lc9
Olcb
O0lcd
Olcf
01d1
0143
01d5
01d7
01d9
0ldb
0ldd
01ldf
Olel
Ole4
0leé
0le8
Olea
Oleb
Olec
Olee
01f0
01f3
01£5
01£7
01f9
01fb
01fd
01ff
0201
0203
0205
0207
0209
020b
020d
020f
0211
0213
0215

b3
Oe
0f

01
f0
3e
b3
3a
01
1lc
le
06
01

06

MOTOROLA

00

01

Thermostat

Example Sheet 7 of 21

KA A KA A A KA A AR K A A A AR AR A KA A AR A AR AR KR A Rk kA hkhkkk kkkkkx
KYPAD - Check for & decode keys
KEYVAL indicates ASCII equivalent of key or
debounce status as follows

$20-$7F - key found, debounced, & decoded (not seen)
SFE - key recognized by some task, wait for release

*
*
*
* $00 - no key pressed, look for any closure
*
*
*
*

SFF - key released 50mS ago (debounce release)

*
*
*
*
$01 - key closed 50mS ago (debounce), decode now *
*
*
*
*

KA KA KA A KK KK AR A AA AR A A KA A AR A AAKAA KA KRAKRA KRR Ak Ak kA Ak hkkhkkhkkkkx

KYPAD EQU
LDA
BNE
LDA
STA
LDA
AND
BEQ
INC
BRA
CHK401 CMP
BNE
LDX
KYLOOP  LDA
STA
CMP
BEQ
DECX
DECX
BPL
CLR
FOUND LDA
STA
LDA
STA
BRA
CHK4FE  CMP
BNE
LDA
STA
LDA
AND
BNE
LDA
STA
BRA
CHK4FF CMP
BNE
CLR
XKYPAD RTS

* Check for & decode keys
KEYVAL KEYVAL indicates what to do
CHK401 If not 0; Check for $01

¥S0F

PORTB Turn on all cols
PORTB Reads rows in upper 4
#SFO Mask away cols

XKYPAD Exit if no key
KEYVAL To $01
XKYPAD Exit, key will be decoded in 50mS

#3501 KEYVAL=$01 ?

CHKA4FE If not 0; Check for $FE

#30 Pointer to last pair in KYTBL
KYTBL,X Get row/col pattern

PORTB Drive cols

PORTB Check for row & col match

FOUND If =; key found
Point to next pair of entries
in KYTBL
KYLOOP Loop if more entries
KEYVAL No key found; set KEYVAL=0
KYTBL+1,X Get key equiv from table
KEYVAL $20 £ KEYVAL < §$7F
#2
BEEPM Request beep as feedback
XKYPAD Exit

#SFE KEYVAL=SFE ?

CHK4FF If not check for $FF
#SO0F

PORTB Turn on all cols

PORTB Reads rows in upper 4
#SFO Mask away cols

XKYPAD Exit if key still closed
#SFF

KEYVAL Set KEYVAL=S$FF
XKYPAD & Exit

#SFF KEYVAL=S$FF ?
XKYPAD If not; exit
KEYVAL Set KEYVAL=$00
** RETURN from KYPAD **

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-29



Listing — Thermostat Example Sheet 8 of 21

KAAAAKAKAAKAAAK A K ARA AR KA KA A KA KA AAAA K AR Ak hkkkhkkkkhkhkkhkhkhkkkkkkkk

* BEEP - Update audible beeper *
* Single 100mS beep on key closure (feedback) *
* Beep (100mS/on, 2000ff, 100on) entry accepted *
* Beep 1 second to indicate entry error *
KA K KA KA KA KA A AR A I AR KA KA AR A A A AR AR A KA A A ARk kkkkkkkkkkkkk k%

0216 BEEP EQU * Update audible beep

0216 b6 b4 LDA  BEEPM BEEPM indicates what to do

0218 26 04 BNE ACTIV Branch if beeper active

021la 19 02 BCLR 4,PORTC Turn off beeper

021c 20 10 BRA XBEEP & Exit

021le 3a b4 ACTIV DEC BEEPM Times beeps

* Accumulator has undecremented version of BEEPM
* Beeper should be on unless BEEPM is between 3 and 6

0220 al 03 CMP #3

0222 25 08 BLO BPRON If <3 turn beeper on
0224 al 06 CMP #6

0226 22 04 BHI BPRON If >6 turn beeper on
0228 19 02 BCLR 4,PORTC Turn beeper off

022a 20 02 BRA XBEEP & Exit

022c 18 02 BPRON BSET 4,PORTC Turn beeper on

022e 81 XBEEP RTS ** RETURN from BEEP **

4-30 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



Listing — Thermostat Example Sheet 9 of 21

KA AR KK AK A A A I A IR AR KA IA A KRR A AR KAA KRR KK A KA KA KK KAk kkkkkk ok kK

USER - User Interface to set time, temp, etc.
Variable named MODE identifies current user function
0 - Inactive; display shows current time/temp/etc.

- Set Time HR

- Set Time MIN

Set Time AM/PM

- Set Time DAY

- Set HVAC Mode - Off, Heat, Cool, Fan Only

- Set Target Temperature

MODE reverts to O-inactive if no keys for 1 min
To activate modes press A until desired value
to be changed is blinking. Next enter desired
setting numbers and press enter (!).

* Current program does not use <,>,B, or C keys.
AR A A A AKRK A A AKRA A I AR A AR AR AKRAAKRAR A A AR AR AR R A R A kA Ak kkkkkkkhk*k

AUV WN
I

*
*
*
*
*
*
*
*
*
*
*
*
*

LS . I . R T S

022f USER EQU * User Interface to set time, temp, etc.
022f 3d a3 TST SEC Seconds = 0 ?

0231 26 0Oa BNE CHKEY If not, skip ACTIMR

0233 3a bs DEC ACTIMR Decrement activity timer
0235 26 02 BNE ARMCLR No activity for 1 minute
0237 3f bl CLR MODE Force to inactive

0239 2a 02 ARMCLR BPL CHKEY Did ACTIMR roll neg ?

023b 3f bS5 CLR ACTIMR If so clear it

023d b6 b3 CHKEY LDA KEYVAL Get key value

023f al 20 CMP #3520 Ignore key if <$20 or >$7F
0241 25 04 BLO XUSER2 Exit if <$20

0243 al 7f CMP #$7F ? > $7F is invalid

0245 23 03 BLS VALKEY valid

0247 cc 02 ba XUSER2 JMP XUSER May be too far to branch

* Valid key has been detected

024a ae 3c VALKEY LDX #60 60 seconds

024c bf bs STX ACTIMR Set to timeout in 1 min.
024e al 41 CMP #'A KEYVAL = A ?

0250 27 52 BEQ NXTMOD Advance to next setting
0252 al 30 CMP #'0 ASCII O

0254 25 33 BLO TRYENT Branch if < 0

0256 al 39 CMP #'9 ASCII 9

0258 22 2f BHI TRYENT BRANCH IF > 9

025a 3d b6 TST ENTFLG First # in entry ?

025¢c 26 06 BNE NOFST Skip if not

025e 3f a5 CLR ENTRY Clear ENTRY

0260 3f a4 CLR BCDEQ & its BCD equivalent

0262 3¢ b6 INC ENTFLG 0->1 (NO LONGER 1lst)

0264 48 NOFST ASLA Get hex 0-9 in left nibble
0265 48 ASLA

0266 48 ASLA

0267 48 ASLA nnnn 0000 & BCDEQ = XXXX yyvyy

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-31



Listing

0268
0269
026b
026¢c
026e
026f
0271
0272
0274
0276
0278
027a
027c
0274
027e
027f
0280
0282
0283
0285
0287
0289
028b
028d

0290

0292
0294
0296
0298
029%a
029c
029%e
02a0
02a2
02a4
02a6
02a8
02aa
02ac
02ae
02b0
02b2
02b4
02b6
02b8
02ba

4-32

a4

a4

a4

a4
a4
of
a5
ad

bb

Thermostat

ASLA
ROL
ASLA
ROL
ASLA
ROL
ASLA
ROL
LDA
AND
STA
LDA
LSRA
LSRA
LSRA
LSRA
LDX
MUL
ADD
STA
BRA
TRYENT CMP
BNE
JSR

Example Sheet 10 of 21

Roll new digit into BCD
BCDEQ Equiv of ENTRY

With 4 double byte
BCDEQ left shifts

BCDEQ

BCDEQ BCDEQ now = yyyy nnnn

BCDEQ
#S0F Mask off 10's
ENTRY Temp save 1's
BCDEQ Get BCD again
Right justify 10's
¥10
A <~ 10 * BCD 10's
ENTRY Add in ones
ENTRY Now binary equiv of BCDEQ
KEYFE Acknowledge key and leave
LAN! Enter key ?
KEYFE If not, Ack key & leave

CHKPNT Check for legal entry

* On return N-bit indicates legal (Positive) & X points
* at applicable value to be changed (HR,MIN,AMPM,DAY etc.)

BPL
LDA
STA
CLR
LDA
STA
BRA
LEGENT STA
LDA
STA
NXTMOD  INC
LDA
CMP
BLO
CLR
NOCLR LDX
LDA
STA
CLR
KEYFE LDA
STA
XUSER RTS

LEGENT Branch if legal
ENTRY,X Get current value

ENTRY Revert to current (legal) value
ENTFLG So next # treated as first
#26 26 * 50mS = 1.3 sec

BEEPM Beep 15/200mS-off/100mS-on
KEYFE Acknowledge entry attempt
ENTRY,X Update value being set

#8 100mS-on/200mS-of£/100mS-on
BEEPM Double beep

MODE Adv to next setting

MODE Check for past 6

#7 <7? )

NOCLR If OK skip clear

MODE Rollover to 0

MODE Use as index to current

ENTRY,X Get current value of entry

ENTRY Use current as default setting

ENTFLG Indicate next # is 1lst
#SFE

KEYVAL Acknowledge key closures
** RETURN from USER **

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



Listing — Thermostat Example Sheet 11 of 21

* K K

* CHKPNT - a utility subroutine used by USER routine
* Checks for entry within legal limits which

* depend on value being changed. HR=1-12, MIN=0-59
* and so on. If legal, N bit will be 0 (Positive).
* On return A has enrty value (or $FF if illegal)
* and X points at value to be changed. ENTRY,X
* may be used to access value to be changed.

02bb b6 a5 CHKPNT  LDA ENTRY For compares to chk limits

02bd be bl LDX MODE For compares & as return pointer

02bf a3 01 CPX #1 Set HR ?

02cl 26 08 BNE TRI2 If not

02c3 al 01 CMP #1 <1?

02c5 25 04 BLO TRI2 illegal (will ripple through)

02¢c7 al Oc CMP #12 1-12 2

02c9 23 3b BLS OKENT Valid HR entry

02cb a3 02 TRI2 CPX #2 Set MIN ?

02cd 26 07 BNE TRI3 If not

02cf 4d TSTA <0?

02d0 2b 04 BMI TRI3 illegal (will ripple through)

02d2 al 3b CMP #59 0~-59 2

02d4 23 30 BLS OKENT Valid MIN entry

02d6 a3 03 TRI3 CPX #3 Set AMPM ?

0248 26 07 BNE TRI4 If not

02da 4d TSTA <0?

02db 2b 04 BMI TRI4 illegal (will ripple through)

02dd al 01 ‘ CMP #1 0 or 1?2

02df 23 25 BLS OKENT valid AMPM entry

02el a3 04 TRI4 CPX #4 Set DAY ?

02e3 26 08 BNE TRIS If not

02e5 al 01 CMP #1 <12

02e7 25 04 BLO TRIS illegal (will ripple through)

02e9 al 07 CMP #7 1-7 ?

02eb 23 19 BLS OKENT Valid DAY entry

02ed a3 05 TRIS CPX #5 Set HVAC Mode ?

02ef 26 07 BNE TRIG If not

02f1 4d TSTA <0?

02f2 2b 04 BMI TRI6 illegal (will ripple through)

02f4 al 03 CMP #3 0-3 2

02f6 23 Qe BLS OKENT Valid HVACM entry

02f8 a3 06 TRIG6 CPX #6 Set GOAL Temp ?

02fa 26 08 BNE BADENT Illegal entry

02fc al 32 CMP #50 <50°F ?

02fe 25 04 BLO BADENT illegal

0300 al 63 CcMP #99 < or = 99°F ?

0302 23 02 BLS OKENT Valid goal temp

0304 a6 ff BADENT LDA  #SFF A negative value to set N

0306 b7 a5 OKENT STA ENTRY Sets/or clears N

0308 81 RTS ** Return from CHKPNT **
* 11! There is more to this exit than is obvious. X=MODE
* so X points at entry to be changed HR,MIN,AMPM,DAY, HVACM,GOAL
* A has entry (or $FF if it was illegal). After return N-bit
* of CCR indicates whether entry was OK or not.
* STA ENTRY was used to make N bit reflect sign of ENRTY
*

rather than the result of a compare.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-33



Listing

0309
0309
030b
030d
030f
0310
0311
0312
0313
0315
0317

0319
031c
03le
0320
0322
0324
0327
032a
032c
032e
0331
0333

4-34

a2

24

0b
02
0c

Ob
02
a2
11
Oc

06
ac

06
ad

fd

07
ea

eb

Thermostat

Example Sheet 12 of 21

Y ok ke k ok k Kk vk dk ok k k kK ok k ks %k ok kK gk ok gk ok ok ok ok % e ok ok ok sk gk k %k Kk ke R ok ke ke ke ok ok ok ke k ok koK ke ok

* A2D - Check temp. sensors (via SPI and MC145041) *
* If TIC = 0, send addr 0 ignore return data *
* If TIC = 1, send addr 1 return data is ch.0 val *
* If TIC = 2, send addr 2 return data is ch.l val *
* If TIC > 2, skip A2D routine *
* To compensate for sensor & op-amp offset, A/D result *
*  will be modified by subtracting an offset constant *
KEE A KKK A KA A AR A AR AR AR AR AR AR A A AR AR kA ARk A A Ak Ak Ak kA khkhkkkk

A2D EQU
LDA
CMP
BHI
ASLA
ASLA
ASLA
ASLA
TST
BCLR
STA

* Check temp. sensors

TIC If Tic = 0, 1, or 2 write to SPI
#2

XA2D If Tic > 2; Exit

Move TIC # 0-2 to upper nibble

4 bit left shift

SPSR Reads SPIF (part of SPIF clear)
3,PORTC Drive low true SA/D CE* to 0
SPDR Initiates a transfer

* Requests conversion of next channel and returns data
* from previous channel Ch.0=Indoor Ch.1l=Outdoor

SPIFLP BRCLR
BSET
LDA
BEQ
LDA
BRSET
SUB
STA
BRA

ADCH1 SUB
STA

XA2D RTS

7,SPSR,SPIFLP Wait for SPI Xfer complete
3,PORTC Drive low true SA/D CE* to 1

TIC If 0-Exit, 1 or 2 Read A/D data
XA2D 0 so exit

SPDR Get A/D data

1,TIC,ADCH1 If Tic=2, data is Ch.1l

OFF0 A/D Ch.0; subtract offset

INTMP Update indoor temperature

XA2D & Exit

OFF1 A/D Ch.1l; subtract offset

OUTMP Update outdoor temperature

** RETURN from A2D **

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



Listing -—

0334
0334
0336
0338
033a
033c
033e
0340
0342
0344
0346
0348
034a
034c
034e
0350

0353
0354
0356
0358
035a
035c
035e

0360
0361
0363
0365
0367
0369
036b
036d
036f
0371
0373
0375
0377
0379
037b
037d
037f£

MOTOROLA

02 0d

Thermostat Example Sheet 13 of 21
AIKAKAKR KA AAAKAAAKAKRKR KA AR A AR AKRK A AR AR A A AR A AR AR AR AN Ak kkk k)
* HVAC - Update Fan, Heat, and Cool outputs *
* Low-true outputs will be buffered to drive 24VAC *
* relay coils in HVAC equipment. (high true in final) *
* Heat and Cool requests should not permit short- *
* cycle (ie a min delay is required between changes) *
* Once Heat or Cool requested, do not turn off for *
* at least 30 sec. Also enforce 30 sec. minimum *
* off time to restart. *
* Allow *1° around target temp as hysteresis. *
* HVACM = 0 - Off, 1 - Heat, 2 - Cool, 3 - Fan Only *
AAKKK KA A KK A KA A A KK A AR A KK AA A A AR A AAAKRAR A AR AA KA AR AR AR A ok khkkhk
HVAC EQU * Update Fan, Heat, and Cool outputs

LDA SEC Exit unless sec = 0 or 30

BEQ DOHVAC 0 so do HVAC

CMP #30

BNE XHVAC Exit if not 0 or 30
DOHVAC LDA HVACM 0-off, l-heat, 2-cool, 3-fan

BNE HM1Q If not 0 go see if 1

LDA PORTC Fan*,Heat*,Cool*,Beep;ADen*,E,RS,R/W

ORA #SEO Set fan, heat, cool all high (off)

STA PORTC Update port

BRA XHVAC & Exit
HM1Q CMP #1 Check for mode 1 ~ heat

BNE HM2Q If not go see if 2

BSET 5,PORTC Turn off cool output

LDA GOAL Get target temp

BRSET 6,PORTC,HONQ If not; see if it should be
* Heat on; turn off when indoor temp > goal + 1

INCA Goal+l for hysteresis

CMP  INTMP GOAL+1 < INTMP ? Turn off ?

BHS XHVAC NO; just leave

BSET 6,PORTC Turn off heat

BSET 7,PORTC Turn off fan

CLR HVACON Turn off flag to indicate off

BRA XHVAC Then leave
* Heat off; turn on when indoor temp < goal - 1
HONQ DECA Goal-1l for hysteresis

CMP INTMP GOAL-1 > INTMP ? Turn on ?

BLS XHVAC NO; just leave

BCLR 7,PORTC Turn on fan

BCLR 6,PORTC Turn on heat

LDA #1

STA HVACON Set flag to indicate on

BRA XHVAC Then leave
HM2Q CMP #2 Check for mode 2 - cool

BEQ HCOOL Branch if cool mode 2

BCLR 7,PORTC Turn on fan

BSET 6,PORTC Turn off heat

BSET 5,PORTC Turn off cool

BRA XHVAC Then leave
HCOOL BSET 6,PORTC Turn off heat output

LDA GOAL Get target temp

BRSET 5,PORTC,CONQ If not; see if it should be

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-35



Listing — Thermostat Example Sheet 14 of 21

* Cool on; turn off when indoor temp < goal - 1

0382 4c INCA Goal-1 for hysteresis
0383 bl ac CMP INTMP GOAL-1 > INTMP ? Turn off ?
0385 23 15 BLS XHVAC NO; just leave
0387 1a 02 BSET 5,PORTC Turn off cool
0389 le 02 BSET 7,PORTC Turn off fan
038b 3f b2 CLR  HVACON Turn off flag to indicate off
038d. 20 0d BRA  XHVAC Then leave

* Cool off; turn on when indoor temp > goal + 1
038f 4a CONQ DECA Goal+l for hysteresis
0390 bl ac CMP INTMP GOAL+1 < INTMP ? Turn on ?
0392 24 08 BHS  XHVAC NO; just leave
0394 1f 02 BCLR 7,PORTC Turn on fan
0396 1b 02 BCLR 5,PORTC Turn on cool
0398 a6 01 LDA  #1
039a b7 b2 STA HVACON Set flag to indicate on
039c¢c 81 XHVAC RTS ** RETURN from HVAC *x*

AAKKKAAKA KA KRR KA XA KR A A A hkAhkhkhkhkkhkhkhkhkhhkkhkhkkkhkhkkkkhkkhkhkkkhkk
* LCD - LCD Display Update

* If value is being set now, display ENTRY rather than
* the current value and flash it like time colon.

* Flash time colon if time not being set now (else:on)
*

*

*

% ok %k X %

Update current time if time not being set now
Update HVAC active '*' unless HVAC mode being set now*

Flash value to set if user is changing a setting *
KA KK AR KK A KA KA KRAAA KA AR KARA AR AAKRAKRAKN AR AAAR R AR A A AR AR ARk ok kK
039d LCD EQU * LCD Display Update
0394 a6 80 LDA #580 Left end of 1st row
039f cd 06 20 JSR WCTRL Position entry point
03a2 b6 a2 . LDA TIC 50mS periods 0-19
03a4 27 09 BEQ TICO Only update once/sec
03a6 al 0Oa CMP #10 TIC = 10 at mid second
03a8 26 08 BNE XLCD If not 0 or 10, just leave
03aa cd 03 b3 JSR BLINKR Blanks colon or value being set
03ad 20 03 BRA  XLCD Exit
03af cd 04 0f TICO JSR DSPLAY Update the LCD display
03b2 81 XLCD RTS ** RETURN from LCD **

4-36 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



Listing

03b3
03b3
03b5
03b7
03b9
03bc
03be
03bf
03cl
03c3
03c6
03c8
03c9
03cb
03cd
03d0
0342
03d3
03d5
0347
03da
03dc

03dd:

03df
03el
03e4
03e6
03e7
03e9
03eb
03ee
03£0
03f2
03£5
03£7
03£9
03fc
03fe
0401
0404
0406
0409
040b
040e

MOTOROLA

be
26
a6
cd
20
S5a
26
a6
cd
20
S5a
26
a6
cd
20
5a
26
abé
cd
20
5a
26
a6
cd
20
S5a
26
a6
cd

a6
cd

a6
cd
a6
cd
cd
a6
cd
a6
cd
81

20

20

20

20

20

20

20

3a

3a
3a

3a

3a

Thermostat Example

* Kk k

Sheet 15 of 21

* Following subroutines support the LCD main task

* k

BLINKR

CIF1

CIF2

CIF3

CIF4

CIF5

MUSTB6

SP5

Sp4

SP2

SP1

EQU
LDX
BNE
LDA
JSR
BRA
DECX
BNE
LDA
JSR
BRA
DECX
BNE
LDA
JSR
BRA
DECX
BNE
LDA
JSR
BRA
DECX
BNE
LDA
JSR
BRA
DECX
BNE
LDA
JSR
BRA
LDA
JSR
BRA
LDA
JSR
LDA
JSR
JSR
LDA
JSR
LDA
JSR
RTS

*
MODE
CIFl
#s82
WCTRL
SP1

CIF2
$580
WCTRL
SP2

CIF3
#3583
WCTRL
SpP2

CIF4
#586
WCTRL
SP1

CIFS
#588
WCTRL
SP4

MUSTB6
#5co
WCTRL
SPS
#5Ceé
WCTRL
Sp2
#520
WDAT
$#$20
WDAT
WDAT
#520
WDAT
#520
WDAT

Blink colon or user entry
Mode 0 ?

If not see if mode 1

Cursor position of colon
Send cursor position to LCD
Send 1 ASCII space and leave
Mode 1 ?

If not see if mode 2

Cursor position of HR

Send cursor position to LCD
Send 2 ASCII spaces and leave
Mode 2 ?

If not see if mode 3

Cursor position of MIN

Send cursor position to LCD
Send 2 ASCII spaces and leave
Mode 3 ?

If not see if mode 4

Cursor position of AMPM
Send cursor position to LCD
Send 1 ASCII space and leave
Mode 4 ?

If not see if mode 5

Cursor position of DAY

Send cursor position to
Send 4 ASCII spaces and
Mode 5 ?

If not, mode must be 6
Cursor position of HVAC
Send cursor position to
Send 5 ASCII spaces and
Must be mode 6

Cursor position of Goal
Send 2 ASCII spaces and
ASCII space <sp>

Send a space to LCD
ASCII space <sp>

Send a space to LCD
Send a space to LCD
ASCII space <sp>

Send a space to LCD
ASCII space <sp>

Send a space to LCD

** RETURN from BLINKR **

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

LCD
leave

Mode
LCD
leave

Temp
leave

4-37



Listing

040f
0411
0414
0416
0418
041la
041c
O04le
0421
0424
0426
0429
042b
0424
042f
0431
0434
0437
0439
043c
043e
0440
0442
0444
0445
0447
0449
044b
044d
0450
0452
0455
0457
0459
045b
0454
045f
0461
0463
0464
0466
0467
046a
046c
046e
0471
0472
0474

4-38

20

a6

3a

a6
56

3a

3a

3a

8a

3a

Thermostat Example

Sheet 16 of 21

IR SRS sss s s s s i s s s s s s s s s S S R
DSPLAY - Writes full 40 character display of current *

system conditions to the LCD display peripheral *
Following is a typical LCD display...

*
*
*
*

*

12:00
OFF

A SUN
72°

IN 75°F *
OUT 102°F *

s Ly e R 2 s T
DSPLAY LDA

JSR
LDX
LDA
CPX
BNE
LDA

AEl JSR

JSR
LDA
JSR
LDA
CPX
BNE
LDA

AE2 JSR

JSR
LDA
JSR
LDA
CPX
BNE
LDA

AE3 TSTA

BNE
LDA
BRA

ITSPM LDA
SHOWAP JSR

LDA
JSR
LDA
CPX
BNE
LDX
BRA

AE4 LDX
DAYLP ADD

DECX
BNE
TAX

SHODAY LDA

CMP
BEQ
JSR
INCX
BRA

DUNDAY CLRX

#5500
WCTRL
MODE
HR

#1
AEl
ENTRY
CNVERT
SHOW2
#':
WDAT
MIN
#2
AE2
ENTRY
CNVERT
SHOW2
#3520
WDAT
AMPM
#3
AE3
ENTRY

ITSPM
¥'A
SHOWAP
#'P
WDAT
#520
WDAT
#-4
#4
AE4
ENTRY
DAYLP
DAY
#4

DAYLP
MDAY, X
#4
DUNDAY
WDAT

SHODAY

Left end of 1lst line on LCD
Position entry point
Use for mode compares

Mode= HR set ?

Skip if not 1

Use ENTRY rather than HR
Convert HRs to ASCII
Display as 2 digits
ASCII colon

To LCD

Mode= MIN set ?

Skip if not 2

Use ENTRY rather than MIN
Convert MINs to ASCII
Display as 2 digits

ASCII <sp>

<sp> to LCD

Current AMPM indicator
Mode= AMPM set ?

Skip if not 3

Use ENTRY rather than AMPM
Check for AM (0)

If not its PM

ASCITI A

Display A for AM

If it wasn't AM

Show A or P

ASCII <sp>

To LCD

Offset from MDAY

Mode= DAY set ?

Skip if not 4

Use ENTRY rather than DAY
Print Entry day

DAY =1 to 7

*

Advance pointer to next MDAY entry

1->0 or n->(n-1)

Loop till X=0 (A will = 4*DAY)

Move offset to X

Get next char

End of message ?

If done printing day
Send char to LCD
Point at next char
Loop till $04 found
Loop index

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



Listing — Thermostat Example Sheet 17 of 21

0475 d6 06 80 LPSIN LDA MSINS,X Get next ASCII char

0478 cd 06 3a JSR WDAT Loop prints ' 1IN '

047b 5c INCX

047c a3 05 CPX #5

047e 26 £5 BNE LPSIN Loop till S5 chars

0480 b6 ac LDA INTMP Indoor temp

0482 cd 06 a6 JSR CNVERT Convert to ASCII

0485 cd 06 56 JSR SHOW2 Display as 2 digits

0488 cd 06 Sf JSR LCDDF Display '°F'

048b a6 c0 LDA #$CO Left end of 2nd line

048d cd 06 20 JSR  WCTRL Reposition entry point
0490 a6 20 LDA #$20 ASCII <sp>

0492 3d b2 TST HVACON Heat/cool running ?

0494 27 02 BEQ ARNAST If not go around asterisk
0496 a6 2a LDA #1x ASCII asterisk

0498 cd 06 3a ARNAST JSR WDAT Show <sp> or *

049b Sf CLRX Message offset from MHVAC
049c b6 bl LDA MODE Get Mode in A

049%e al 05 CMP #5 Mode= HVACM set ?

04a0 26 04 BNE AES Skip if not 5

04a2 b6 as LDA ENTRY Use ENTRY rather than HVACM
04a4 20 02 BRA AES5B

04a6 b6 aa AES5 LDA HVACM HVAC mode

04a8 27 Qe AESB BEQ  HVD If HVACM=0 display 'OFF '
04aa ae 06 LDX #6 Offset to 'HEAT '

O04ac al 01 CMP #1 Heat mode ?

04ae 27 08 BEQ HVD If so; display

04b0 ae Oc LDX #12 Offset to 'COOL '

04b2 al 02 CMP #2 Cool mode ?

04b4 27 02 BEQ HVD If so; display

04b6 ae 12 LDX #18 Offset to 'FAN ' (must be)
04b8 d6 06 68 HVD LDA MHVAC, X

04bb al 04 CMP ¥4 End of message ?

04bd 27 06 BEQ DUNHVD If so, skip ahead

04bf cd 06 3a JSR  WDAT Else display nxt char
04c2 5c¢ INCX Point at next

04c3 20 £3 BRA HVD Continue loop

04c5 b6 ab DUNHVD LDA GOAL Goal temp setting

04c7 be bl LDX MODE Get mode in X

04c9 a3 06 CPX #6 Mode= GOAL set °?

O04cb 26 02 BNE AE6 Skip if not 6

04cd b6 a5 LDA ENTRY Use ENTRY rather than GOAL
04cf cd 06 a6 AE6 JSR CNVERT Convert to ASCII

04d2 cd 06 56 JSR SHOW2 Display as 2 digits

04d5 cd 06 5f JSR  LCDDF Display '°F'

04d8 5f CLRX Loop index

04d9 d6 06 85 LPSOT LDA MSOUT,X Get message character
04dc cd 06 3a JSR WDAT Send to LCD

04df 5c INCX Nxt char of ' OUT '

04e0 a3 05 CPX #5 Check for done

04e2 26 f£5 BNE LPSOT Loop for 5 characters
04e4 b6 ad LDA OUTMP Outdoor temp

04e6 cd 06 ab JSR CNVERT Convert to ASCII

04e9 cd 06 52 JSR SHOW3 Display as 3 digits

04ec cd 06 5f JSR  LCDDF Display '°F‘

Od4ef 81 RTS ** RETURN from DSPLAY **

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-39



Listing

0600

0600-

0602
0604
0606
0608
060a
060c
060e
0610
0612
0614
0616
0618
06la
06lc
O6le

4-40

Thermostat Example

ORG

$0600

Sheet 18 of 21

Temp ORG to get subs away from main

*hkhkkhkkkkkhkkkkkkhkkkhkhhhkkkhkkkkkhhkkk

*

*

*

* SUBROUTINES & CONSTANT TABLES *

*

% % %k %k d Kk Kk Kk Kk ok Kk k Kk ok ok kA ok ok Kk k sk ok ok ok ok ok ok ok ok

Keypad Correspondance Table )
1st entry of each pair is Row/Col bit pattern

2nd entry of each pair is ASCII equiv of key

COL # ->

ROW 2 ->
ROW 3 ->
ROW 4 ->

Port B layout
R4,R3,R2,R1;

*
*
*
*
*
*
*
* ROW 1 —->
*
*
*
*
*
*
*

KYTBL FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB

1

<

AN b=

This is layout of keypad

2 3 4

v v v

2 3 A

5 6 B

8 9 C

o > !

is...

c1,c2,C3,C4
$18,'1 Row
$28,'4 Row
$48,'7 Row
$88,'< Row
$14,'2 Row
$24,'5 Row
$44,'8 Row
$84,°'0 Row
$12,'3 Row
$22,'6 Row
$42,'9 Row
$82, '> Row
$11,'A Row
$21,'B Row
$41,'C Row
$81,'! Row

R's=ins,

Col
Col
Col
Col
Col
Col
Col
Col
Col
Col
Col
Col
Col
Col
Col
Col

1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4

C's=outs

(Top Left)

(Bot Right)

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



Listing — Thermostat Example Sheet 19 of 21

ARAKK KKK KK KR KK KKK IR AR AN KAKRAA KA AAA KRR AR ARk Ak Ak Ak kkhhk*k

* WCTRL - Write control word to LCD peripheral *
* Enter with control word in accumulator *
. Return with original value of X *
* Delay ~4.5mS if A=$01 or $02 else delay ~120uS *

KKK KK A A KKK K KKK KKKK KK KKK AR KKARKKRKKARK Kk k kR kkk kK k kK
0620 bf al WCTRL STX TEMPX Save X

0622 b7 00 STA PORTA Write control word to LCD

0624 14 02 BSET 2,PORTC E->1

0626 15 02 BCLR 2,PORTC E=->0

0628 ae 14 LDX  #20 20%6~*1US/~=1201S

062a 5a L120U DECX Delay loop ~120uS

062b 26 fd BNE L120U 20-19,19-18...1-0

062d al 02 CMP #502 Commands $01 & $02 req extra delay
062f 22 06 BHI ARNSM If command > $02 skip long delay
0631 cd 06 39 LSM JSR ANRTS JSR+RTS TAKES 12~ (just want delay)
0634 5a DECX TAKES 3~ (X=0->1 on first pass)
0635 26 fa BNE L5M 3~ Loop 256*18~*1usS/~=4.608mS Delay
0637 be al ARNS5M LDX TEMPX Restore X

0639 81 ANRTS RTS ** RETURN **

% %k d ok ok Kk %k Kk ok 3k ok ok k ks sk sk ok ok ok gk ok ok ok ok ok ok ok ok ok ok ke ok Kk ke ok ok ok ke ke ok ke ke ok ke ok ok ok

* WDAT - Write data word to LCD peripheral *
o Enter with data word in accumulator *
* Return with original values of X & A *
* Delay ~120uS after data write *
% %k K Kk %k %k % Kk %k %k %k K Kk % Kk Kk ok k& k Kk Kk % J Kk Kk Kk ok k Kk ok ok ok k sk ke ke ok ok ke ek ok kok ok ok k ok ok ok

063a bf al WDAT STX TEMPX Save X

063c b7 a0 STA  TEMPA Save A

063e b7 00 STA PORTA Write data word to LCD

0640 12 02 BSET 1,PORTC RS->1

0642 14 02 BSET 2,PORTC E->1

0644 15 02 BCLR 2,PORTC E=->0

0646 13 02 BCLR 1,PORTC RS->0

0648 ae 14 LDX  #20 20*6~*1UuS/~=120US

064a 5a 1120 DECX Delay loop ~120uS

064b 26 fd BNE L120 20-19,19-18...1-0

064d b6 a0 LDA  TEMPA Restore A

064f be al ILDX  TEMPX Restore X

0651 81 RTS ** RETURN **

MOTOROLA M68HC05 VICROCONTROLLER APPLICATIONS GUIDE fl-41



Listing -

0652
0654
0656
0658
065a
065c
065e

065f
0661
0663
0665
0667

aé
ad
a6
ad
81

Thermostat Example

KAA KA AR AR KR A KA A KRR AR KA IR AR AR I A KR AR AR A Kk Ak hkkkkhkkkkkkk

Sheet 20 . of

* SHOW3 - Display 3 ASCII.chars on LCD *
* ASC100, ASC10; ASCl *
* SHOW2 - Display 2 ASCII chars on LCD *
* ASC10; ASCl *

KEKEKK KK KA KA KKK A KRAKRKR KA KA IR AR KAA ANk AA AR ATk Ak Ak Ak Ak kkkkkkkk

SHOW3 LDA ASC100 Get ASCII 100's digit
BSR WDAT Send to LCD

SHOW2 LDA ASC10 Get ASCII 10's digit
BSR WDAT Send to LCD
LDA ASC1 Get ASCII 1's digit
BSR WDAT Send to LCD
RTS ** RETURN **

KA KKK KA KA KA KA A A A KA KA KA KA A A KA AR AR AR AR AR KA ARk Rk Kk kk ok

* LCDDF - Display °F on LCD *
%k %k Kk Kk ok Kk dk ok kK ok kK Ak ok ok ok sk ok sk ke ke ok ok ok ok ok ok ok ok ok ok ke ok ke ok ki ok ok ok ok ok ok R ke Rk Rk ok ok ok ok ko

LCDDF LDA #S$DF Get ASCII degrees symbol
BSR WDAT Send to LCD
LDA #'F Get ASCII capitol F
BSR WDAT Send to LCD
RTS ** RETURN **
* Normal LCD display format...
*HH: MM A DAY IN 100°F
* HEAT _72°__0O0UT -22°F
* 1st line of display is $00 (left) - $13
*

2nd line of display is $40 - $53

* Miscellaneous LCD message segments (Used in DSPLAY sub)

21

0668
0664
066e
0673
0674
0679
067a
067f
0680
0685
068a
0684
068e
0691
0692
0695
0696
0699
069%a
069d
06%e
06al
06a2
06a5

46
45
4f

41

55
45
48
52

41

4-42

46
41
af
4e
49
55
de
de
45
44
55
49

54

20 20 MHVAC FCC 'OFF ' These 4 messages accessed by
FCB $04 X offset from MHVAC. $04 is
54 20 FCC 'HEAT ' wused to mark the end of a string
FCB $04
4c 20 FCC 'CooL !
FCB  $04
20 20 FCC 'FAN '
FCB $04
4e 20 MSINS FCC "IN
54 20 MSOUT FCC ' oUT !
' MDAY FCC 'SUN' These messages accessed by
FCB $04 X offset from MDAY. $04 is
FCC "MON' used to mark the end of a string
FCB $04
FCC 'TUE"
FCB  $04
FCC '"WED'
FCB $04
FCC 'THU'
FCB  $04
FCC 'FRI'
FCB $04
FCC 'SAT!'
FCB  $04

‘M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



Listing

06a6
06a8
06aa
0O6ac
O6ae
06b0
06b2
06b4
06b6
06b8
06ba
06bc
06be
06c0
06c2
06c4
06cé6

06c8.

06c9
06cb
06cd

06cf
06d1
0643
06d5
0647
0649
06db
06dd
064f
06el
06e3
06e5
06e7
06e9

O6ea

06eb

1ffe
1ffe

3c
3c

01 00

MOTOROLA

Thermostat Example Sheet 21 of 21

Kk Kk Kk k ke kK ok k ok ok ok ok ok ok ok %k ok ok ok sk Kk sk Sk ok ok ok ke ok ok ok ok kK ok ke ok k ok Kk k ok ok ok ok ok ok

* CNVERT - Convert a binary value to ASCII
* Enter with binary value in A

*
*

* Result stored in ASC100, ASC1l0, ASC1 *
* ASC100 (100's digit) defaults to blank (<sp>) *
* but could be 1 or minus (-) depending on valu *
* ASC10 and ASCl digits default to zeros *
* Result can be -99 through 127. *
% % J Kk kK Kk ok kK sk Kk kg ke sk ke ke ke sk v ok ok ok gk % 3k sk ke sk %k vk ok k ok vk ok ok e e ok Aok ek ke ke ok ke ke ok ok
CNVERT STA TEMPA Save original binary value

LDA  #$20 ASCII <sp>

STA ASC100 Tenative 100's digit

LDA #'0 ASCII zero

STA ASC10 Tenative 10's

STA ASC1 Tenative 1's

LDA TEMPA Get value to convert

BPL CVPOS Branch if value positive

LDA #'- ASCII minus sign

STA ASC100

LDA TEMPA Get orig value again
LP10S INC  ASC10 Loop to find 10's digit

ADD #10 Trial addition

BMI LP10S Loop till addition fails

BEQ XVERT If 0 conversion done; exit

DEC ASC10 Too far; back up

SUB ¥10 Now between -9 & -1

NEGA Change to positive

ADD ASC1 Add to 1's digit

STA  ASC1 Update RAM location

BRA XVERT Conversion done; exit
CVPOS CMP #100 Value >100 ?

BLO LPAS10 If less; skip 100's

LDA #'1

STA ASC100 Put ASCII 1 in 100's

LDA TEMPA Get value again

SUB #100 Take 100 away
LPAS10 INC ASC10 Increments 10's

SUB #10 Trial subtraction

BPL LPAS10 Loop till trial sub fails

DEC ASC10 Too far

ADD #10 Add back, now 0-9

ADD ASC1 Add to ASCII 1's

STA ASC1 Update RAM location
XVERT RTS ** RETURN from CNVERT **

* A/D Offsets to compensate sensors

* Analog temp = (A/D reading) - (Offset)
OFFO0 FCB 60 Offset correction for sensor 1
OFF1 FCB 60 Offset correction for sensor 2

* %k k Kk ok ok kkkkKk

ORG $1FFE Reset vector address
FDB INIT Reset vector
M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-43



4-44

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



APPENDIX A
INSTRUCTION SET DETAILS

This appendix contains complete detailed information for all M68HCO5 in-
structions. The instructions are arranged in alphabetical order with the in-
struction mnemonic set in larger type for easy reference.

The nomenclature listed below is used in the following definitions:

(a) Operators
{ ) =Contents of Register or Memory Location Shown inside
Parentheses
4 =Is Loaded with (read:""gets”’)
« =|s Pulled from Stack
#  =|s Pushed onto Stack
. =Boolean AND
+  =Arithmetic Addition (Except Where Used as Inclusive-OR
in Boolean Formula)
@  =Boolean Exclusive-OR
X =Multiply
: =Concatenate
—  =Negate (Twos Complement)

(b) Registers in the MPU
ACCA =Accumulator
CCR =Condition Code Register
X =Index Register
PC =Program Counter
PCH =Program Counter, Higher Order {Most Significant) 8 Bits
PCL =Program Counter, Lower Order (Least Significant) 8 Bits
SP  =Stack Pointer

{c) Memory and Addressing

M =A memory location or absolute data, depending on
addressing mode
Rel =Relative offset (i.e., the twos-complement number stored

in the last byte of machine code corresponding to a
branch instruction)

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-1



(d) Bits in the Condition Code Register (CCR)
H =Half Carry, Bit 4
| =Interrupt Mask, Bit 3
N = Negative Indicator, Bit 2
C =Carry/Borrow, Bit 1
z =Zero Indicator, Bit 0

(e) Status of individual bits BEFORE execution of an instruction
(h=7,6,5,...0)
An  =Bit n of ACCA
Xn =Bit n of X
Mn =Bitnof M

(f) Status of individual bits AFTER the execution of an instruction
Rn =Bit n of the result (n=7, 6,5, ...0)

{g) Notation used in CCR activity summary figures
—  =Bit not affected

0  =Bit forced to zero
1 =Bit forced to one
¢  =Bit set or cleared according to results of operation

(h) Notation used in machine coding
dd =Low-order 8-bits of a direct address $0000-$00FF (high
byte assumed to be $0000)
ee =Upper 8 bits of 16-bit offset
ff =Lower 8 bits of 16-bit offset or 8-bit offset
i =0ne byte of immediate data
hh =High-order byte of 16-bit extended address
Il =Low-order byte of 16-bit extended address
rr =Relative offset

(i) Notation used in source forms
(opr) =Operand (one or two bytes depending on address mode)
(rel) =Relative offset used in branch and bit manipulation
instructions

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



ADC Add with Carry ADC

Operation: ACCA ¢ (ACCA) +(M)+{(C)

Description: Adds the contents of the C bit to the sum of the contents of ACCA and M
and places the result in ACCA.

Condition Codes and Boolean Formulae:

o1 N 2 ¢
Lol [ e[ -[elels]

H A3+M3+M3+R3+R3:A3
Set if there was a carry from bit 3; cleared otherwise.

N R7
Set if MSB of result is set; cleared otherwise.

Z R7-R6+*R5+R4+<R3<R2+R1+R0O
Set if all bits of the result are cleared; cleared otherwise.

C A7+M7+M7+R7+R7-A7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
ADC (opr}) IMM A9 ii 2
ADC (opr) DIR B9 dd 3
ADC (opr) EXT Cc9 hh il 4
ADC,X IX F9 3
ADC (opr},X X1 E9 ff 4
ADC (opr}, X 1X2 D9 ee ff 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-3



ADD

Description:
ACCA.

Add without Carry

ACCA ¢ (ACCA) +(M)

Condition Codes and Boolean Formulae:

H

| N z

Lol Jrfa[-[elsls]

H A3-M3+M3<R3+R3-A3

Set if there was a carry from bit 3; cleared otherwise.

N R7

Set if MSB of result is set; cleared otherwise.

Z R7+R6+-R5+R4+R3+R2<R1+R0

Set if all bits of the result are cleared; cleared otherwise.

C A7+M7+M7+R7+R7+A7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
ADD (opr} iMM AB ii 2
ADD (opr) DIR BB dd 2
ADD (opr) EXT CcB hh 1l 3
ADD,X IX FB 1
ADD (opr},X 1X1 EB ff 2
ADD (opr}, X 1X2 DB ee ff 3

A-4

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

ADD

Adds the contents of M to the contents of ACCA and places the result in

MOTOROLA



AN D Logical AND AN D

Operation: ACCA 4 (ACCA) » (M)

Description:  Performs the logical AND between the contents of ACCA and the contents
of M and places the result in ACCA. (Each bit of ACCA after the operation will be the
logical AND of the corresponding bits of M and of ACCA before the operation.)

Condition Codes and Boolean Formulae:

-l -]

N R7
Set if MSB of result is set; cleared otherwise.

Z R7°R6+R5¢R4°R3+R2<R1-R0O
Set if all bits of the result are cleared; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
AND (opr) IMM A4 i 2
AND (opr) DIR B4 dd 3
AND (opr} EXT c4 hh I 4
AND,X 1X F4 3
AND (opr},X X1 E4 ff 4
AND (opr),X X2 D4 ee ff 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-5



ASL

Operation:

Description:

Arithmetic Shift Left
(Same as LSL)

ASL

Shifts all bits of the ACCA, X, or M one place to the left. Bit 0 is loaded

with a zero. The C bit in the CCR is ioaded from the most significant bit of ACCA, X,

or M.

Condition Codes and Boolean Formulae:

HoI N 7 ¢
Lol o[ ]-[-[elesle]

N R7

Set if MSB of result is set; cleared otherwise.

Z R7°R6+R5+R4+R3+R2+R1+RO

Set if all bits of the result are cleared; cleared otherwise.

C b7

Set if, before the shift, the MSB of ACCA, X, or M was set; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
ASLA INH (A) 48 3
ASLX INH {X) 58 3
ASL {opr) DIR 38 dd 5
ASL, X IX 78 5
ASL (opr), X 1X1 68 ff 6

A-6

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



ASR Arithmetic Shift Right ASR

—_—
Operation: 1:ljb7 —————— bOl ————>’ C ’

Description:  Shifts all of ACCA, X, or M one place to the right. Bit 7 is held constant.
Bit 0 is loaded into the C bit of the CCR. This operation effectively divides a twos-
complement value by two without changing its sign. The carry bit can be used to
round the result.

Condition Codes and Boolean Formulae:

H | N Z C

o[ f-T-Tsls]s]|

N R7
Set if MSB of result is set; cleared otherwise.

Z R7+R6+R5°R4-R3°R2+R1+-R0O
Set if all bits of the result and cleared; cleared otherwise.

C b0
Set if, before the shift, the LSB of ACCA, X, or M was set; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
ASRA INH (A) 47 3
ASRX INH (X) 57 3
ASR (opr) DIR 37 dd 5
ASR, X IX 77 5
ASR (opr), X 1X1 67 f 6

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A7



BCC | | Branch if Carry Clear BCC

(Same as BHS)

Operation: PC ¢ (PC)+$0002 + Rel if (C)=0
Description: Tests the state of the C bit in the CCR and causes a branch if C is clear.
See BRA instruction for further details of thé execution of the branch.

Condition Codes and Boolean Formulae:

H | N 4 C

I B A I I N

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

BCC (rel) REL 24 rr 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+Z=0 BHI 22 r<m BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z=1 BEQ 27 r£m BNE 26 Unsigned
rsm C+Z=1 BLS 23 r>m BHI 22 Unsigned
r<m C=1 BLO/BCS 25 r=m BHS/BCC 24 Unsigned
Carry C=1 BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r#0 BNE 26 Simple
Negative N=1 BMI 2B Plus BPL 2A Simple
| Mask I=1 BMS 2D I Mask=0 BMC 2C Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
iRQ Pin High — BIH 2F iRQ Low BIL 2F Simple
Always — BRA 20 Never BRN 21 Unconditional

r=register (ACCA or X)
m =memory operand

A-8 M68HC05 MICROCONTROLLER: APPLICATIONS GUIDE MOTOROLA



BCLR n Clear Bit(s) in Memory BCLR n

Operation: Mn 40

Description: Clearbitn(n=7,6,5,...0)in location M. All other bits in M are unaffected.
M can be any RAM or I/O register address in the $0000 to $00FF area of memory (i.e.,
direct addressing mode is used to specify the address of the operand).

Condition Codes and Boolean Formulae:

! N JA C

N

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
BCLR 0,(opr) DIR (bit 0) 1" dd 5
BCLR 1,(opr) DIR (bit 1) 13 dd 5
BCLR 2,{opr) | DIR(bit2) | 15  dd 5
BCLR 3.(opr) DIR (bit 3) 17 dd 5
BCLR 4,(opr) DIR (bit 4) 19 dd 5
BCLR 5,{opr) DIR (bit 5} 1B dd 5
BCLR 6,(opr) DIR (bit 6) 1D dd 5
BCLR 7,(opr) DIR (bit 7) 1F dd 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-9



Branch if Carry Set , BCS
(Same as BLO) :

Operation: PC 4 (PC)+ $0002 + Rel if (C}=1

Description:  Tests the state of the C bit in the CCR and causes a branch if C is set.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

Z C

H Il N
I R N B B =

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

BCS (rel) REL 25 rr 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+2=0 BHI 22 r<m BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z=1 BEQ 27 r£m BNE 26 Unsigned
rsm C+Z=1 BLS 23 r>m BHI 22 Unsigned
r<m C=1 BLO/BCS 25 r=m BHS/BCC 24 Unsigned
~ Carry C=1 BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r+0 BNE 26 Simple
Negative N=1 BMI 2B Plus BPL 2A Simple
| Mask I=1 BMS 2D | Mask=0 BMC 2C Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
IRQ Pin High — BIH oF IRQ Low BIL 2E Simple
Always — BRA 20 Never BRN 21 Unconditional

r=register {ACCA or X)
m=memory operand

A-10 - M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



BEQ Branch if Equal BEQ

Operation: PC ¢ (PC) +$0002 + Re! if (Z)=1

Description:  Tests the state of the Z bit in the CCR and causes a branch if Z is set.
Following a compare or subtract instruction, BEQ will cause a branch if the arguments
were equal.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

| N C

H z
I IR I B I I I

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) { Cycles

BEQ (rel) REL 27 rr 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+Z2=0 BHI 22 r<m BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z=1 BEQ 27 r#m BNE 26 Unsigned
rsm C+Z=1 BLS 23 r>m BHI 22 Unsigned
r<m C=1 BLO/BCS 25 r=m BHS/BCC 24 Unsigned
Carry C=1 BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r#0 BNE 26- Simple
Negative N=1 BMI 2B Plus BPL 2A Simple
| Mask =1 BMS 2D | Mask=0 BMC 2C Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
iRQ Pin High — BIH 2F 1RQ Low BIL 2E Simple
Always — - BRA 20 Never BRN 21 Unconditiona!

r=register {ACCA or X)
m=memory operand

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-11



BHCC Branch if Half Carry Clear BHCC

Operation: PC ¢ (PC) + 30002 + Rel if (H)=0

Description:  Tests the state of the H bit and causes a branch if H is clear. This instruction
is used in algorithms involving BCD numbers.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H | N Z C

Le oo J-T-1T-JT-7T-1]

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

BHCC (rel) REL 28 rr 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+Z=0 BHI 22 rsm BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z=1 BEQ 27 r£m BNE 26 Unsigned
rsm C+Z=1 BLS 23 r>m BHI 22 Unsigned
r<m C=1 BLO/BCS 25 r=m BHS/BCC 24 Unsigned
Carry C=1 BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r#0 BNE 26 Simple
Negative N=1 BMI 2B Plus BPL 2A Simple
| Mask 1=1 BMS 2D | Mask=0 BMC 2C Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple
Always — BRA 20 Never BRN 21 Unconditional

r=register (ACCA or X)
m =memory operand

A-12 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



BHCS Branch if Half Carry Set BHCS

Operation: PC 4 (PC)+%$0002+Rel  if (H)=1

Description:  Tests the state of the H bit and causes a branch if H is clear. This instruction
is used in algorithms involving BCD numbers. See BRA instruction for further details
of the execution of the branch.

Condition Codes and Boolean Formulae:

H I Nz ¢
N B N A S N N

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s} | Cycles

BHCS (rel) REL 29 r 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+Z2=0 BHI 22 rsm BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z=1 BEQ 27 r#m BNE 26 Unsigned
r<m C+Z=1 BLS 23 r>m BHI 22 Unsigned
r<m C=1 BLO/BCS 25 rzm BHS/BCC 24 Unsigned
Carry C=1 BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r+0 BNE 26 Simple
Negative N=1 BMI 2B Plus BPL 2A Simple
I Mask I=1 BMS 2D | Mask=0 BMC 2C Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple
Always — BRA 20 Never BRN 21 Unconditional

r=register (ACCA or X)
m =memory operand

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-13



BHI I Branch if Higher | ' BHI .

Operation: PC ¢ (PC) +$0002 + Rel if (C)+(Z)=0
i.e., if (ACCX)>(M) {unsigned binary numbers)

Description: Causes a branch if both C and Z are cleared. If the BHI instruction is exe-
cuted immediately after execution of a CMP or SUB instruction, the branch will occur
if the unsigned binary number represented by ACCA was greater than the unsigned
binary number represented by M. "

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H ! N 4 C

Le ol T-T-T-T-T7-]

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) [ Cycles

BH! (rel) REL 22 rr 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+2=0 BHI 22 rsm BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z=1 BEQ 27 r£m BNE 26 Unsigned
rsm C+Z= BLS 23 >m BHI 22 Unsigned
r<m Cc=1 BLO/BCS 25 r=m BHS/BCC 24 Unsigned
Carry C=1 BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r#0 BNE 26 Simple
Negative =~ N=1 BMi 2B Plus BPL 2A Simple
| Mask 1=1 BMS 2D | Mask=0 BMC 2C Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple
Always — BRA 20 Never BRN 21 Unconditional

r=register (ACCA or X)
m=memory operand

A-14 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



BHS Branch if Higher or Same BHS

(Same as BCC)

Operation: PC ¢ (PC)+$0002 + Rel if (C)=0
i.e., if (ACCA)=(M) (unsigned binary numbers)

Description: If the BHS instruction is executed immediately after execution of a CMP
or SUB instruction, the branch will occur if the unsigned binary number represented
by ACCA was greater than or equal to the unsigned binary number represented by
M.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H | N z c

Lo [T =] -T-T=-]=1]

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

BHS (rel) REL 24 rr 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m © C+Z=0 BHI 22 r<m BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z=1 BEQ 27 r£m BNE 26 Unsigned
rsm C+Z=1 BLS 23 r>m BHI 22 Unsigned
r<m C=1 BLO/BCS 25 r=m BHS/BCC 24 Unsigned
Carry C= BCS 25 No Carry BCC 24 Simple
r=0 Z= BEQ 27 r+0 BNE 26 Simple
Negative N= BMI 2B Plus BPL 2A Simple
| Mask j=1  BMS 2D | Mask=0 BMC 2C Simple
Half Carry H= BHCS 29 No Half Carry BHCC 28 Simple
TRQ Pin High — BIH 2F RQ Low BIL 2E Simple
Always — BRA 20 Never BRN 21 Unconditional

r=register (ACCA or X)
m=memory operand

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-15




BI H Branch if Interrupt Pin is High BlH

Operation: PC ¢4 (PC)+$0002 -+ Rel if IRQ=1

Description:  Tests the state of the external interrup pin and causes a branch if the pin
is high.

See BRA instsruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand{s) | Cycles

BIH (rel) REL 2F r 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+Z=0 BHI 22 rsm BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z= BEQ 27 r£m BNE 26 Unsigned
r<m C+Z= BLS 23 r>m BHI 22 Unsigned
r<m C= BLO/BCS 25 r=m BHS/BCC 24 Unsigned
Carry C= BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r+0 BNE 26 Simple
Negative N=1 BMI 2B Plus BPL 2A Simple
| Mask 1=1 BMS 2D | Mask=0 BMC 28 Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple
Always — BRA 20 Never BRN 21 Unconditional

r = register (ACCA or X}
m =memory operand

A-16 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



Bl L Branch if Interrupt Pin is Low BI L

Operation: PC 4 (PC)+$0002 + Rel if IRQ=0
Description:  Tests the state of the external interrupt pin and branchs if it is low.
See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H | N z C

Led o Jo T -J-JT-T-7T-1]

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

BIL (rel) REL 2E rr 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+Z=0 BHI 22 r<m BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z= BEQ 27 r<m BNE 26 Unsigned
r<m C+Z=1 BLS 23 r>m BHI 22 Unsigned
r<m C= BLO/BCS 25 r=m BHS/BCC 24 Unsigned
Carry C= BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r+0 BNE 26 Simple
Negative N=1 BMI 2B Plus BPL 2A Simple
| Mask I=1 BMS 2D | Mask=0 BMC 2C Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple
Always —_ BRA 20 Never BRN 21 Unconditional

r=register (ACCA or X)
m=memory operand

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-17



BIT Bit Test BIT

Operation: (ACCX)+(M)

Description:  Performs the logical AND comparison of the contents of ACCA and the
contents of M, and modifies the condition codes accordingly. Neither the contents of
ACCA or M are altered. (Each bit of the result of the AND would be the logical AND
of the corresponding bits of ACCA and M). '

Condition Codes and Boolean Formulae:

H | N Z C

Ll JJ-T-Tsls]

N R7
Set if MSB of result is set; cleared otherwise.

Z R7+R6+R5+R4+R3+R2+R1+R0O
Set if result is $00; cleared otherwise.

-Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
BIT (opr) IMM A5 ii 2
BIT (opr) DIR B5 dd 3
BIT (opr) EXT C5 hh il 4
BIT,X IX F5 3
BIT (opr), X 1X1 E5 ff 4
BIT (opr).X . 1X2 D5 ee ff 5

© Ad8  M6BHCOS MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



B LO Branch if Lower B LO

(Same as BCS)
Operation: PC 4 (PC)+$0002 + Rel if (C)=1
i.e., if (ACCX)<(M) (unsigned binary numbers)
Description:  If the BLO instruction is executed immediately after execution of a CMP
or SUB instruction, the branch will occur if the unsigned binary number represented
by ACCA was less than the unsigned binary number represented by M.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

BLO (rel) REL 25 rr 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+Z=0 BHI 22 rsm BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z=1 BEQ 27 r£m BNE 26 Unsigned
r<m C+Z=1 BLS 23 >m BHI 22 Unsigned
r<m C=1 BLO/BCS 25 r=m BHS/BCC 24 Unsigned
Carry C=1 BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r#0 BNE 26 Simple
Negative N=1 BMI 2B Pius BPL 2A Simple
I Mask I=1 BMS 2D | Mask=0 BMC 2C Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
IRQ Pin High — BIH 2F RQA Low BIL 2E Simple
Always —_ BRA 20 Never BRN 21 Unconditional

r=register (ACCA or X)
m =memory operand

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-19



BLS
Operation:

Description:

Branch if Lower or Same

PC ¢ (PC)+$0002 +Rel
i.e., if (ACCA)<(M)

if ([C)+(2)]=1
(unsigned binary numbers)

BLS

Causes a branch if (C is set) or (Z is set). If the BLS instruction is executed

immediately after execution of a CMP or SUB instruction, the branch will occur if and
only if the unsigned binary number represented by ACCA was less than or equal to
the unsigned binary number represented by M.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H

| N A

C

Lol T T=-T-T-T-T-1

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles
BLS (rel) REL 23 rr 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+Z=0 BHI 22 r<m BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z=1 BEQ 27 r£m BNE 26 Unsigned
r<sm C+Z=1 BLS 23 r>m BHI 22 Unsigned
r<m C=1 BLO/BCS 25 r=m BHS/BCC 24 Unsigned
Carry C=1 BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r£0 BNE 26 Simple
Negative N=1 BMI 2B Plus BPL 2A Simple
I Mask I=1 BMS 2D I Mask=0 BMC 2C Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
IRQ Pin High - BIH 2F IRQ Low BIL 2E Simple
Always — BRA 20 Never BRN 21 Unconditional

r=register (ACCA or X)
m=memory operand

A-20

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



BMC Branch if Interrupt Mask is Clear BMC

Operation: PC ¢ (PC)+$0002 + Rel if1I=0

Description:  Tests the state of the | bit in the CCR and causes a branch if | is clear (i.e.,
if interrupts are enabled). See BRA instruction for further details of the execution of
the branch.

Condition Codes and Boolean Formulae:

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operandl(s) | Cycles

BMC (rel) REL 2C rr 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+Z=0 BHI 22 r<m BLS 23 Unsigned
rzm C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z=1 BEQ 27 r£m BNE 26 Unsigned
rsm C+Z=1 BLS 23 r>m BHI 22 Unsigned
r<m C=1 BLO/BCS 25 r=m BHS/BCC 24 Unsigned
Carry C=1 BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r£0 BNE 26 Simple
Negative N=1 BMI 2B Plus BPL 2A Simple
| Mask 1=1 BMS 2D | Mask=0 BMC 2C Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple
Always - BRA 20 Never BRN 21 Unconditional

r=register (ACCA or X)
m =memory operand

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-21



BMI ; Branch if Minus ‘ BMI

Operation: PC 4 (PC)+$0002+Rel  if (N)=1
Description:  Tests the state of the N bit in the CCR and causes a branch if N is set.
‘See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

BMI (rel) REL 2B r 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+Z=0" BHI 22 rsm BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z=1 BEQ 27 r#m BNE 26 Unsigned
r<m C+Z=1 BLS 23 >m BHI 22 Unsigned
r<m C=1 BLO/BCS 25 r=m BHS/BCC 24 Unsigned
Carry C=1 - BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r#0 BNE 26 Simple
Negative N=1 BMI 2B Plus BPL 2A Simple
| Mask =1 BMS 2D | Mask=0 BMC 2C Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
IRQ Pin High - BIH 2F IRQ Low BIL 2E Simple
Always —_— BRA 20 Never BRN 21 Unconditional

r=register {ACCA or X)
m =memory operand

A-22 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



B MS Branch if Interrupt Mask is Set B M S

Operation: PC 4 (PC) +$0002 + Rel if (}=1

Description:  Tests the state of the | bit in the CCR and causes a branch if | is set (i.e.,
if interrupts are disabled).

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

BMS (rel) REL 2D rr 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+Z=0 BHI 22 r<m BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z=1 BEQ 27 r£m BNE 26 Unsigned
r<m C+Z=1 BLS 23 r>m BHI 22 Unsigned
r<m C=1 BLO/BCS 25 r=m BHS/BCC 24 Unsigned
Carry C=1 BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r+0 BNE 26 Simple
Negative N=1 BMI 2B Plus BPL 2A Simple
| Mask I=1 BMS 2D | Mask=0 BMC 2C Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple
Always — BRA 20 Never BRN 21 Unconditional

r=register {ACCA or X)
m=memory operand

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-23




B N E Branch if Not Equal to Zero B N E

Operation: PC ¢ (PC) +$0002 + Rel if (Z)=0

Déscription: Tests the state of the Z bit in the CCR and causes a branch if Z is clear.
Following a compare or subtract instruction, BEQ will cause a branch if the arguments
were not equal. :

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

BNE (rel) REL 26 rr 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+2=0 BHI 22 rsm BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z=1 BEQ 27 r£m BNE 26 Unsigned
rsm C+Z=1 BLS 23 r>m " BHI 22 Unsigned
r<m C= BLO/BCS 25 r=m BHS/BCC 24 Unsigned
Carry C= BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r#0 BNE 26 Simple
Negative N=1 BMI 2B Plus BPL 2A Simple
| Mask =1 BMS 2D | Mask=0 BMC 2C Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
iRQ Pin High — BIH 2F IRQ Low BIL 2E Simple
Always — BRA 20 Never BRN 21 Unconditional

r= reigister (ACCA or X)
m=memory operand

A-24 ; M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



BPL Branch if Plus BPL

Operation: PC ¢ (PC)+$0002 + Rel if (N)=0
Description:  Tests the state of the N bit in the CCR and causes a branch if N is clear.
See BRA instruction for details of the execution of the branch.

Condition Codes and Boolean Formulae:

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

BPL (rel) REL 2A rr 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+Z2=0 BHI 22 r<m BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z=1 BEQ 27 r#m BNE 26 Unsigned
r<m C+Z=1 BLS 23 r>m BHI 22 Unsigned
r<m Cc=1 BLO/BCS 25 r=m BHS/BCC 24 Unsigned
Carry C=1 BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r#0 BNE 26 Simple
Negative N=1 BMI 2B Plus BPL 2A Simple
| Mask =1 BMS 2D | Mask=0 BMC 2C Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple
Always — BRA 20 Never BRN 21 Unconditional

r=register (ACCA or X)
m =memory operand

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-25



BRA

Operation:

Description:

Branch Always

PC 4 (PC) +$0002 + Rel

BRA

Unconditional branch to the address given by the foregoing formula, in

which Rel is the relative offset stored as a twos-complement number in the last byte
of machine code corresponding to the branch instruction. PC is the address of the
opcode for the branch instruction.

The source program specifies the destination of any branch instruction by its absolute
address, either as a numerical value or as a symbol or expression which can be
numerically evaluated by the assembler. The assembler calculates the relative address,
Rel, from the absolute address and the current value of the location counter.

Condition Codes and Boolean Formulae:

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles
BRA {(rel) REL 20 rr 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+Z=0 BHI 22 r<m BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z= BEQ 27 r£m BNE 26 Unsigned
rsm C+Z= BLS 23 r>m BHI 22 Unsigned.
r<m C=1 BLO/BCS 25 r=m BHS/BCC 24 Unsigned
Carry c=1 BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r+0 BNE 26 Simple
Negative N=1 BMI 2B Plus BPL 2A Simple
| Mask 1=1 BMS 2D | Mask=0 BMC 2C Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
RQ Pin High — BIH 2F IRQ Low BIL 2E Simple
Always — BRA 20 Never BRN 21 Unconditional

r=register (ACCA or X)
m=memory operand

A-26

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



BRCLR n Branch if Bit n Clear BRCLR n

Operation: PC 4 (PC)+$0003 + Rel if bitn of M=0

Description: Tests bit n (n=7, 6, 5, ... 0} of location M and branches if the bit is clear.
M can be any RAM or I/O register address in the $0000 to $00FF area of memory (i.e.,
direct addressing mode is used to specify the address of the operand).
The C bit is set to the state of the bit tested. When used along with an appropriate
rotate instruction, BRCLR n provides an easy method for performing serial to parallel
conversions.

Condition Codes and Boolean Formulae:

Ho 1L N 7 ¢
Ll f-J-1-1T-T¢]

C Set if Mn=1; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
BRCLR 0,{opr) | DIR (bit 0) 01 dd rr 5
BRCLR 1,(opr) | DIR (bit 1) 03 dd rr 5
BRCLR 2,(opr) | DIR (bit 2) 05 dd rr 5
BRCLR 3,(opr) | DIR (bit 3) 07 dd rr 5
BRCLR 4,(opr) | DIR (bit 4) 09 dd rr 5
BRCLR 5,(opr} | DIR (bit 5) 0B dd rr 5
BRCLR 6,(opr} | DIR (bit 6) oD dd rr 5
BRCLR 7,(opr} | DIR (bit 7) OF dd rr 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-27



BRN

Operation:

Description:

Branch Never

PC 4 (PC) +$0002

BRN

Never branches. In effect, this instruction can be considered as a two-byte
NOP (no operation) requiring three cycles for execution. Its inclusion inthe instruction
set is to provide a complement for the BRA instruction. The instruction is useful during
program debug to negate the effect of another branch instruction without disturbing
the offset byte. .

Condition Codes and Boolean Formulae:

Source Forms, Addressing Modes, Machine Code, and Cycles:

A-28

None affected

Source Addressing Machine Code HCMOS
Forms Mode Opcode  Operand(s) | Cycles
BRN (rel) REL 21 rr 3

The following table is a summary of all branch instructions.

Test Boolean Mnemonic Opcode Complementary Branch Comment
r>m C+Z=0 BHI 22 rsm BLS 23 Unsigned
r=m C=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned
r=m Z=1 BEQ 27 r¢m BNE 26 Unsigned
rsm C+Z= BLS 23 r>m BHI 22 Unsigned
r<m C=1 BLO/BCS 25 r=m BHS/BCC 24 Unsigned
Carry C=1 BCS 25 No Carry BCC 24 Simple
r=0 Z=1 BEQ 27 r+0 BNE 26 Simple
Negative N=1 BMI 2B Plus BPL 2A Simple
I Mask 1=1 BMS 2D | Mask=0 BMC 2C Simple
Half Carry H=1 BHCS 29 No Half Carry BHCC 28 Simple
IRQ Pin High — BIH 2F IRQ Low BIL 2E Simple
Always — BRA 20 Never BRN 21 Unconditional

r=register (ACCA or X)
m=memory operand

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



BRSET n Branch if Bit n Set BRSET n

Operation: PC 4 (PC)+$0003 + Rel if bit n of M=1

Description: Tests bit n (n=7, 6, 5, ... 0) of location M and branches if the bit is set.
M can be any RAM or |/O register address in the $0000 to $00FF area of memory (i.e.,
direct addressing mode is used to specify the address of the operand).
The C bit is set to the state of the bit tested. When used along with an appropriate
rotate instruction, BRSET n provides an easy method for performing serial to parallel

conversions.

Condition Codes and Boolean Formulae:

H 1L Nz ¢
Ll e f-T-[-T-Ts]

C Setif Mn=1; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
BRSET 0,{opr),{rel} DIR (bit 0) 00 dd rr 5
BRSET 1,{opr),{rel) DIR (bit 1) 02 dd re 5
BRSET 2,(opr),(rel) DIR (bit 2) 04 dd rr 5
BRSET 3,{opr),(rel) DIR (bit 3) 06 dd rr 5
BRSET 4,{opr),{rel} DIR (bit 4) 08 dd  rr 5
BRSET 5,(opr),{rel) DIR ({bit 5) 0A dd rr 5
BRSET 6,(opr),(rel) DIR (bit 6) oC dd rr 5
BRSET 7,(opr),(rel) DIR (bit 7} OE dd rr 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-29



BSET n Set Bit in Memory BSET n

Operation: Mn 41

Description: Setbitn{(n=7,6,5,...0)inlocation M. All other bits in M are unaffected.
M can be any RAM or I/O register address in the $0000 to $00FF area of memory (i.e.,
direct addressing mode is used to specify the address of the operand).

Condition Codes and Boolean Formulae:

| N z C

N I e

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
BSET 0,(opr) DIR (bit 0) 10 dd 5
BSET 1,(opr) DIR (bit 1) 12 dd 5
BSET 2,(opr) DIR (bit 2) 14 dd 5
BSET 3,(opr) DIR (bit 3) 16 dd 5
BSET 4,(opr) DIR (bit 4) 18 dd 5
BSET 5,(opr) DIR (bit 5) 1A dd 5
BSET 6,(opr) DIR (bit 6) 1C dd 5
BSET 7,(opr) DIR (bit 7) 1E dd 5

A-30 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



BSR Branch to Subroutine BSR

Operation: PC 4 (PC) +$0002 Advance PC to return address
= (PCL) Push low-order return onto stack
SP ¢ (SP)—-$0001
=« (PCH) Push high-order return onto stack
SP ¢ (SP)—$0001
PC 4 (PC) +Rel Load PC with start address of requested subroutine

Description:  The program counter is incremented by two from the opcode address, (i.e.,
so it points to the opcode of the next instruction which will be the return address).
The least significant byte of the contents of the program counter (low-order return
address) is pushed onto the stack. The stack pointer is then decremented by one. The
most significant byte of the contents of the program counter (high-order return ad-
dress) is pushed onto the stack. The stack pointer is then decremented by one. A
branch then occurs to the location specified by the branch offset.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

| N Z C

H
Lo o [=F-T-]T=-1-]

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

BSR (rel) REL AD rr 3

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-31



CLC Clear Carry CLC

Operation: Cbit40

Description: Clears the C bit in the CCR. CLC may be used to set up the C bit prior to
a shift or rotate instruction involving the C bit.

Condition Codes and Boolean Formulae:
| N

H z _C
N I N B I I N

co
Cleared

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

CLC INH 98 2

A-32 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



CLI Clear Interrupt Mask Bit CLI

Operation: I bit40

Description: Clears the interrupt mask bit in the CCR. When the | bit is clear, interrupts
are enabled. There is a one E-clock cycle delay in the clearing mechanism for the | bit
so that, if interrupts were previously disabled, the next instruction after a CLI will
always be executed, even if there was an interrupt pending prior to execution of the
CLI instruction.

Condition Codes and Boolean Formulae:
H N z c

|
KN IR N I I A

(]
Cleared

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

CLI INH 9A 2

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-33



CLR Clear

Operation: ACCA ¢$00  or: M ¢ $00 or: X 4 %00

Description;  The contents of ACCA, M, or X are replaced with zeros.

Condition Codes and Boolean Formulae:

H I N z o
Lo d v =-T=ToT+]-1
N 0

Cleared
Z 1

Set

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
CLRA INH (A) 4F 3
CLRX INH (X) 5F 3
CLR (opr) DIR 3F dd 5
CLR, X 1X 7F 5
CLR (opr),X 1X1 6F ff 6

A-34 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

CLR

MOTOROLA



CM P Compare Accumulator with Memory CM P

Operation: (ACCA)—(M)

Description: Compares the contents of ACCA to the contents of M and sets the condition
codes, which may be used for arithmetic and logical conditional branching. The con-
tents of both ACCA and M are unchanged.

Condition Codes and Boolean Formulae:

H | N Z C

Lol fof-]-Jsles]s]

N R7
Set if MSB of result is set; cleared otherwise.

Z R7+R6°R5°R4+R3+<R2+R1°R0
Set if result is $00; cleared otherwise.

C A7+M7+M7+R7+R7+A7
Set if the absolute value of the contents of memory is larger than the absolute
value of the accumulator; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
CMP (opr) IMM Al ii 2
CMP (opr) DIR B1 dd 3
CMP (opr) EXT C1 hh 1] 4
CMP,X IX F1 3
CMP (opr),X X1 E1 ff 4
CMP (opr),X I1X2 D1 ee f 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-35



COM - Complement COM

Operation: ACCA ¢ (ACCA)=$FF—(ACCA) or: M ¢ (M)=$FF—(M) or:
X ¢ X=$FF—(X)

Description: Replaces the contents of ACCA, X, or M with its ones complement. (Each
bit of the contents of ACCA, X, or M is replaced with the complement of that bit.)

Condition Codes and Boolean Formulae:

Ho Il N 2 ¢
Lol o[- [-Telel]

N R7
Set if MSB of result is set; cleared otherwise.

Z R7+R6+R5+R4+R3+-R2+R1+R0O
Set if result is $00; cleared otherwise.

C 1
Set

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
COMA INH (A) 43 3
COMX INH {X) 53 3
COM (opr) DIR 33 dd 5
COM, X IX 73 5
COM (opr), X 1X1 63 ff 6

A-36 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



CPX Compare Index Register with Memory CPX

Operation: (X)= (M)

Description: Compares the contents of the index register with the contents of memory
and sets the condition codes, which may be used for arithmetic and logical branching.
The contents of both ACCA and M are unchanged.

Condition Codes and Boolean Formulae:

H | N A C

Ll Jf-J-Jsfs]s]

N R7
Set if MSB of result is set; cleared otherwise.

Z R7<R6+R5+R4+R3+R2<R1°*R0O
Set if result is $00; cleared otherwise.
C IX7+M7+M7+R7+R7+1X7

Set if the absolute value of the contents of memory is larger than the absolute
value of the index register; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) [ Cycles
CPX (opr) IMM A3 ii 2
CPX (opr) DIR B3 dd 3
CPX (opr) EXT C3 hh Il 4
CPX, X IX F3 3
CPX (opr),X 1X1 E3 ff 4
CPX (opr),X 1X2 D3 ee ff 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-37



D EC Decrement : DEC

Operation: ACCA ¢ (ACCA)—$01 or: M (M)—$01 or: X ¢ (X)—$01
Description:  Subtract one from the contents of ACCA, X, or M.

The N and Z bits in the CCR are set or cleared according to the result of this operation.
The C bit is in the CCR is not affected; therefore, the only branch instructions that are
useful following a DEC instruction are BEQ, BNE, BPL, and BMI.

Condition Codes and Boolean Formulae:

- I-Tslel-]

N R7
Set if MSB of result is set; cleared otherwise.

Z R7*R6+R5+*R4+R3+R2+R1+R0O
Set if result is $00; cleared otherwise

Source Forms, Addressing Modes Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
DECA INH (A) 4A 3
DECX INH (X} 5A 3
DEC (opr) DIR 3A dd 5
DEC, X 1X 7A 5
DEC (opr),X X1 6A ff 6

(DEX is recognized by the Assembler as being equivalent to
DECX)

A-38 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



EO R Exclusive-OR EO R

Operation: ACCA ¢ (ACCA) @ (M)

Description: Performs the logical exclusive-OR between the contents of ACCA and the
contents of M and places the result in ACCA. (Each bit of ACCA after the operation
will be the logical exclusive-OR of the corresponding bits of M and ACCA before the
operation.)

Condition Codes and Boolean Formulae:

H | N Z C
Lol -T-[sls]-]

N R7
Set if MSB of result is set; cleared otherwise.

Z R7+R6°R5°R4+R3<R2+R1+R0O
Set if result is $00; cleared otherwise

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
EOR (opr) IMM A8 ii 2
EOR (opr) DIR B8 dd 3
EOR (opr) EXT C8 hh Il 4
EOR,X IX F8 3
EOR (opr),X X1 E8 ff 4
EOR (opr),X X2 D8 ee ff 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-39




I N C Increment I N C

Operation: ACCA ¢ (ACCA)+$01 or: M4a(M)+$01 or: X ¢ (X)+$01

Description:  Add one to the contents of ACCA, X, or M.
The N and Z bits in the CCR are set or cleared according to the results of this operation.
The C bit in the CCR is not affected; therefore, the only branch instructions that are

useful following a INC instruction are BEQ, BNE, BPL, and BMI.

Condition Codes and Boolean Formulae:

H | N z C
Lol lol-1 -Jels]-]

N R7
Set if MSB of result is set; cleared otherwise.

Z R7°R6+R5+R4+*R3°R2+R1+R0O
Set if result is $00; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s} | Cycles
INCA INH (A) 4C 3
INCX INH (X} 5C 3
INC (opr) DIR 3C dd 5
INC, X 1X 7C 5
INC (opr), X 1X1 6C ff 6

(INX is recognized by the Assembler as being equivalent to
INCX)

A-40 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



JMP Jump JMP

Operation: PC ¢ Effective Address

Description: A jump occurs to the instruction stored at the effective address. The ef-
fective address is obtained according to the rules for EXTended, DIRect, or INDexed
addressing.

Condition Codes and Boolean Formulae:

H I Nz ¢
(o f TP -J-T-T-1T-1

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
JMP (opr) DIR BC dd 2
JMP (opr) EXT cc hh It 3
JMP, X X FC 2
JMP (opr), X 1X1 EC ff 3
JMP (opr), X 1X2 DC ee ff 4

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-41



JSR

Operation:

Description:

PC ¢« (PC)+n
w (PCL); SP 4 SP—3%0001
w (PCH); SP 4 SP-$0001
PC ¢ Effective Addr

Jump to Subroutine

JSR

n=1, 2, 3 depending on address mode
Push low-order return address onto stack
Push high-order return address onto stack
Load PC with start address of requested

subroutine

The program counter is incremented by n so that it points to the opcode
of the instruction that follows the JSR instruction (n=1, 2, or 3 depending on the
addressing mode). The PC is then pushed onto the stack, eight bits at a time, least
significant byte first. Unused bits in the program counter high byte are stored as ones
on the stack. The stack pointer points to the next empty location on the stack. A jump
occurs to the instruction stored at the effective address. The effective address is ob-
tained according to the rules for EXTended, DIRect, or INDexed addressing.

Condition Codes and Boolean Formulae:

H [ Nz
Lo T=1=-T-1T=-T

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
JSR (opr) DIR BD  dd 5
JSR (opr} EXT cD hh Il 6
JSR, X 1X FD 5
JSR (opr), X IX1 ED ff 6
JSR {opr}, X 1X2 DD ee ff 7

A-42

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



LDA Load Accumulator from Memory LDA

Operation: ACCA ¢ (M)

Description: Loads the contents of memory into the accumulator. The condition codes
are set according to the data.

Condition Codes and Boolean Formulae:

T T-T-Tslel-]

N R7
Set if MSB of result is set; cleared otherwise.

Z R7°R6°R5°R4+R3+R2+R1+R0O
Set if result is $00; cleared otherwise

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
LDA {opr) IMM A6 i 2
LDA (opr) DIR B6 dd 3
LDA (opr) EXT Ccé hh 1l 4
LDA X IX F6 3
LDA {opr),X 1X1 E6 ff 4
LDA (opr), X 1X2 D6 ee ff 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE ‘ A-43



LDX

Operation;

Description:

The condition codes are set according to the data.

X 4 (M)

Load Index Register from Memory

LDX

Loads the contents of the specified memory location into the index regisier.

Condition Codes and Boolean Formulae:

- l+-]

N R7

Set if MSB of result is set; cleared otherwise.

Z R7°R6+R5*R4+R3+R2+R1+R0
Set if result is $00; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
LDX (opr) IMM AE ii 2
LDX (opr) DIR - BE dd 3
LDX (opr) EXT CE hh 1l 4
LDX,X 1X FE 3
LDX (opr),X 1X1 EE ff 4
LDX {opr},X IX2 DE ee ff 5

A-44

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



LSL Logical Shift Left LSL

(Same as ASL)

Operation: \ C l<——Lb7 —————— b0‘<—0

Description: Shifts all bits of the ACCA, X, or M one place to the left. Bit 0 is loaded
with zero. The C bit is loaded from the most significant bit of ACCA, X, or M.

Condition Codes and Boolean Formulae:

o [-T-Tsl+l=]

N R7
Set if MSB of result is set; cleared otherwise.

Z R7+R6+Rb*R4+R3+R2+R1+R0
Set if result is $00; cleared otherwise.

C b7
Set if, before the shift, the MSB of ACCA or M was set; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS |
Forms Mode Opcode Operand(s) | Cycles
LSLA INH (A) 48 3
LSLX INH (X) 58 3
LSL (opr) DIR 38 dd 5
LSL, X IX 78 5
LSL (opr),X IX1 68 ff 6

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-45



LS R Logical Shift Right LSR

Operation: 0—»b7 - - - - - - b0’——~>[ C w

Description: Shifts all bits of ACCA, X, or M one place to the right. Bit 7 is loaded with
zero. Bit 0 is shifted into the C bit.

Condition Codes and Boolean Formulae:

EREEEEESESEEFIEY

N 0
Cleared.

Z R7+R6°R5¢R4+R3+R2+R1+R0O
Set if result is $00; cleared otherwise.

C bo
Set if, before the shift, the LSB of ACCA, X, or M was set; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
LSRA INH (A) 44 3
LSRX INH (X) 54 3
LSR (opr) DIR 34 dd 5
LSR, X IX 74 5
LSR (opr).X 1X1 64 ff 6

A-46 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



M U L Multiply Unsigned M U L

Operation: X:A 4 XxA

Description: Multiplies the eight bits in the index register by the eight bits in the ac-
cumulator to obtain a 16-bit unsigned number in the concatenated index register and
accumulator. After the operation, X contains the upper 8 bits of the 16-bit result.

Condition Codes and Boolean Formulae:

| N

H z cC
Lol T Jof-T-T-T5o]

H 0
Cleared

cCo
Cleared

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

MUL INH 42 1.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-47



NEG e ~ NEG

Operation: ACCA ¢ —(ACCA); or: X4 —(X); or: M4 —(M)

Description:  Replaces the contents of ACCA, X, or M with its twos complement. Note
that the value $80 is left unchanged.

Condition Codes and Boolean Formulae:

H | N z C

Lo f o f o -J-[slsls]

N R7
Set if MSB of result is set; cleared otherwise.

Z R7+R6+*R5+*R4+R3+R2+R1+R0O
Set if result is $00; cleared otherwise.
C R7+R6+R5+R4+R3+R2+R1+R0
Set if there is a borrow in the implied subtraction from zero; cleared otherwise.

The C bit will be set in all cases except when the contents of ACCA, X, or M (prior
to the NEG operation) is $00.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
NEGA INH (A) 40 3
NEGX INH (X) 50 3
NEG (opr) DIR 30 dd 5
NEG, X IX 70 5
NEG (opr),X 1X1 60 ff 6

A-48 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



NOP No Operation NOP

Description:  This is a single-byte instruction that causes only the program counter to
be incremented. No other registers are affected.

Condition Codes and Boolean Formulae:

| N z C

S N e

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

NOP INH 9D 2

MOTOROLA M68HC05 MIICROCONTROLLER APPLICATIONS GUIDE A-49



O RA Inclusive-OR 0 RA

Operation: ACCA 4 (ACCA)+ (M)

Description:  Performs the logical inclusive-OR between the contents of ACCA and the
contents of M and places the result in ACCA. Each bit of ACCA after the operation will
be the logical inclusive-OR of the corresponding bits of M and of ACCA before the
operation.

Condition Codes and Boolean Formulae:
H i N z c
Lol -T-Jele|-]

N R7
Set if MSB of result is set; cleared otherwise.

Z R7+R6+R5°R4+R3<R2+R1+R0O
Set if result is $00; cleared otherwise

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
ORA (opr) IMM AA ii 2
ORA (opr) DIR BA dd 3
ORA (opr) EXT CA hh 1l 4
ORA X IX FA 3
ORA (opr), X IX1 EA ff 4
ORA (opr),X X2 DA ee ff 5

A-50 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



R 0 L Rotate Left R 0 L

Operation: I C l<—lb7 —————— b0\<—| C ‘

Description: Shifts all bits of ACCA, X, or M one place to the left. Bit 0 is loaded from
the C bit. The C bit is loaded from the MSB of ACCA, X, or M. The rotate instructions
include the carry bit to allow extension of the shift and rotate operations to multiple
bytes. For example, to shift a 24-bit value left one bit, the sequence {ASL LOW, ROL
MID, ROL HIGH} could be used where LOW, MID, and HIGH refer to the low-order,
middle, and high-order bytes of the 24-bit value, respectively.

Condition Codes and Boolean Formulae:

Ho 1 Nz ¢
Lot fof-[-Tslsls]

N R7
Set if MSB of result is set; cleared otherwise.

Z R7°-R6*R5°R4°R3°R2+R1°+R0O
Set if result is $00; cleared otherwise.
C b7
Set if, before the rotate, the MSB of ACCA or M was set; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
ROLA INH (A) 49 3
ROLX INH (X) 59 3
ROL {opr) DIR 39 dd 5
ROL, X IX 79 5
ROL (opr), X 1X1 69 ff 6

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-51



RO R Rotate Right RO R

Operation: IL(—>{b7 —————— bO’—»I C ’

Description: Shift all bits of ACCA, X, or M one place to the right. Bit 7 is loaded from
the C bit. The rotate operations include the carry bit to allow extension of the shift
and rotate operations to multiple bytes. For example, to shift a 24-bit value right one
bit, the sequence {LSR HIGH, ROR MID, ROR LOW} could be used where LOW, MID,
and HIGH refer to the low-order, middie, and high-order bytes of the 24-bit value,
respectively.

Condition Codes and Boolean Formulae:

H | N z C

Lol [ [-T-Jefe[s]

N R7
Set if MSB of result is set; cleared otherwise.

Z R7+R6+R5+R4+R3+R2<R1°*R0O
Set if result is $00; cleared otherwise.

C bo
Set if, before the rotate, the LSB of ACCA, X, or M was set; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
RORA INH (A} 46 3
RORX INH (X) 56 3
ROR (opr) DIR 36 dd 5
ROR, X IX 76 5
ROR (opr),X X1 66 ff 6

A-52 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



RS P Reset Stack Pointer RS P

Operation: SP ¢ $00FF
Description: Resets the stack pointer to the top of the stack.

Condition Codes and Boolean Formulae:

H | N _z ¢
I N BN B S A

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

RSP *INH 9C 2

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-53



RTI | Return from Interrupt RTI

Operation: SP ¢ (SP)+$0001; & CCR Restore CCR from stack
SP 4 (SP)+$0001; &= ACCA Restore ACCA from stack
SP 4 (SP)+$0001; &« X Restore X from stack

SP 4 (SP)+$0001; & PCH Restore PCH from stack
SP 4 (SP)+$0001; = PCL Restore PCL from stack

Description: The condition codes, accumulator, the index register, and the program
counter are restored to the state previously saved on the stack. The I-bit will be reset
if the corresponding bit stored on the stack is zero.

Condition Codes and Boolean Formulae:

Ho I N 7 ¢
Lofif i Jefefelels]

Set or cleared according the the byte pulled from the stack.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

RTI INH 80 9

A-54 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



RTS Return from Subroutine RTS

Operation: SP 4 (SP)+$0001; & PCH Restore PCH from stack
SP ¢ (SP)+$0001; = PCL Restore PCL from stack

Description:  The stack pointer is incremented by one. The contents of the byte of mem-
ory that is pointed to by the stack pointer is loaded into the high-order byte of the
program counter. The stack pointer is again incremented by one. The contents of the
byte of memory at the address now contained in the stack pointer is loaded into the
low-order 8 bits of the program counter.

Condition Codes and Boolean Formulae:

T

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

RTS INH 81 6

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-55




SBC Subtract with Carry S BC

Operation: ACCA ¢ (ACCA)—(M)—(C)

Description:  Subtracts the contents of M and the contents of C from the contents of
ACCA and places the result in ACCA.
Condition Codes and Boolean Formulae:

H | N Z C

Lol ol of-J -Tsf[sfs]

N R7
Set if MSB of result is set; cleared otherwise.

Z R7<R6+*R5¢R4+R3+R2+R1+R0
Set if result is $00; cleared otherwise.

C A7+M7+M7+R7+R7+A7
Set if the absolute value of the contents of memory plus previous carry is larger
than the absolute value of the accumulator; cleared otherwise.

.Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
SBC (opr) MM A2 ii 2
SBC (opr) DIR B2 dd 3
SBC {opr) EXT C2 hh I 4
SBC,X IX F2 3
SBC (opr),X 1X1 E2 ff 4
SBC (opr),X X2 D2 ee ff 5

A-56 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



S EC Set Carry S EC

Operation: Cbitq1

Description: Sets the C bit in the CCR. SEC may be used to set up the C bit prior to a
shift or rotate instruction that involves the C bit.

Condition Codes and Boolean Formulae:
c

B B A S

C 1
Set

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

SEC INH 99 2

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-57



SEI

Operation:

Description:

from servicing interrupts while the | bit is set.

| bit41

Set Interrupt Mask

‘SEI

Sets the interrupt mask bit in the CCR. The microprocessor is inhibited

Condition Codes and Boolean Formulae:

Source Forms, Addressing Modes, Machine Code, and Cycles

A-58

N A

C

CT T

[ - [-1~-

1
Set

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles
SEI INH 9B 2

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



STA Store Accumulator STA

Operation: M ¢ (ACCA)

Description:  Stores the contents of ACCA in memory. The contents of ACCA remain
unchanged.
Condition Codes and Boolean Formulae:

H | N JA C

Lol el -f-Jsls]|-]

N A7
Set if MSB of result is set; cleared otherwise.

Z A7+A6+A5°A4°-A3<A2-A1+A0
Set if result is $00; cleared otherwise.

Source Forms, Addressing Mades, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
STA (opr) DIR B7 dd 4
STA (opr) EXT Cc7 hh 1l 5
STA, X IX F7 4
STA (opr), X IX1 E7 ff 5
STA {opr),X IX2 D7 ee f 6

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-59



STOP Enable IRQ, Stop Oscillator STOP

Description: Reduces power consumption by eliminating alt dynamic power dissipation.

This resultsin: 1) timer prescaler cleared, 2) timer interrupts disabled, 3) timer interrupt
flag cleared, 4) external interrupt request enabled, and 5) oscillator inhibited.

When the RESET or IRQ input goes low, the oscillator is enabled, a delay of 1920
processor clock cycles is initiated allowing the oscillator to stabilize, the interrupt
request vector or reset vector is fetched, and the service routine is executed, depending
on which signal was applied.

External interrupts are enabled following the STOP command.

Condition Codes and Boolean Formulae:

[ T N T S

I 0
Cleared

Source Forms, Addressing Modes, Machine Code, and Cycles:

A-60

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

STOP INH 8E 2

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



STX Store Index Register X STX

Operation: M 4 (X)
Description: Stores the contents of X in memory. The contents of X remain unchanged.

Condition Codes and Boolean Formulae:

H | N A C

Lefofof-[-Jsle]-|

N X7
Set if MSB of result is set; cleared otherwise.

Z X7+X6eX5eX4sX3+X2+X1+X0
Set if result is $00; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
STX (opr) DIR BF dd 4
STX {opr) EXT CF hh It 5
STX, X IX FF 4
STX {opr), X X1 EF ff 5
STX (opr), X 1X2 DF ee ff 6

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-61



SUB - Subtract SU B

Operation: ACCA ¢ (ACCA)— (M)

Description: Subtracts the contents of M from the contents of ACCA and places the
result in ACCA.
Condition Codes and Boolean Formulae:

N 4 C

T -T-Tslels]

N R7
Set if MSB of result is set; cleared otherwise.

Z R7+R6+R5+*R4+R3+R2+R1+R0
Set if result is $00; cleared otherwise.

C A7+M7+M7+R7+R7+A7
Set if the abolsute value of the contents of memory plus the previous carry is
larger than the absolute value of the accumulator; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
SUB (opr) IMM A0 ii 2
SUB (opr) DIR B0 dd 3
SUB (opr) EXT co hh Il 4
SUB,X IX FO 3
SUB {opr), X IX1 EO ff 4
SUB (opr},X IX2 DO ee ff 5

A-62 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



SWI Software Interrupt SWI

Operation: PC ¢ (PC)+$0001 Advance PC to return address
w (PCL); SP ¢ (SP}—%$0001 Push low-order return address onto stack
= (PCH); SP 4 (SP)—$0001 Push high-order return address onto stack
w» (X); SP 4 (SP)—$0001 Push index register onto stack
» (ACCA); SP 4 (SP)—$0001 Push accumulator onto stack
w» (CCR); SP 4 (SP)—$0001 Push CCR onto stack

I bit ¢ 1
PCH 4 ($xFFC) Vector fetch (x=1 or 3 depending on
PCL 4 ($xFFD) HCO05 version)

Description:  The program counter is incremented by one. The program counter, index
register, and accumulator are pushed onto the stack. The CCR bits are then pushed
onto the stack, with bits H, I, N, Z, and C going into bit positions 4-0 and bit positions
7, 6, and 5 containing ones. The stack pointer is decremented by one after each byte
of data is stored on the stack. The interrupt mask bit is then set. The program counter
is then loaded with the address stored in the SWI vector {located at memory locations
n-0002 and n—-0003, where n is the address corresponding to a high state on all lines
of the address bus). The address of the SWI vector can be expressed as $xFFC:$xFFD,
where x is 1 or 3 depending on the version of 68HC05 being used. This instruction is
not maskable by the | bit.

Condition Codes and Boolean Formulae:
H z c

N A S O S S

1
Set

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

SWi INH 83 10

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-63



TAX

Operation:

Description:

Transfer Accumulator to Index Register

X 4 (ACCA)

TAX

Loads the index register with the contents of the accumulator. The contents
of the accumulator are unchanged.

Condition Codes and Boolean Formulae:

Source Forms, Addressing Modes, Machine Code, and Cycles:

A-64

| N

. H
NN RN

T

None affected

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles
TAX INH 97 2

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA



TST Test for Negative or Zero TST

Operation: (ACCA)—$00 or: (X)—$00 or: (M)—$00

Description:  Sets the condition codes N and Z according to the contents of ACCA, X,
or M. The contents of ACCA, X, and M are not altered.

Condition Codes and Boolean Formulae:

H 1 Nz ¢
Ll o[ -J-Telel-]

N M7

Set if the MSB of the contents of ACCA, X, or M is set; cleared otherwise.
Z M7eM6eM5eNdeM3eM2eMT e MO

Set if the contents of ACCA, X, or M is $00; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS

Forms Mode Opcode Operand(s) | Cycles
TSTA INH (A) 4D 3
TSTX INH (X) 5D 3
TST (opr) DIR 3D dd 4
TST, X 1X 7D 4
TST (opr),X 1X1 6D ff 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-65



TXA

Operation:

Description:

Transfer Index Register to Accumulator

ACCA ¢ (X)

TXA

Loads the accumulator with the contents of the index register. The contents
of the index register are not altered.

Condition Codes and Boolean Formulae:

H I N 7 ¢
Lot J-J-J-1T-1-]

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles
TXA INH 9F 2

A-66

M68HC05 MICROCONTROLLER APPLICATIONS. GUIDE

MOTOROLA



WAIT Enable Interrupt, Stop Processor WAIT

Description:  Reduces power consumption by eliminating most dynamic power dissi-
pation. The timer, the timer prescaler, and the on-chip peripherals continue to operate
because they are potential sources of an interrupt. Wait causes enabling of interrupts
by clearing the I bit in the CCR and stops clocking of processor circuits.

Interrupts from on-chip peripherais may be enabled or disabled by local control bits
prior to execution of the WAIT instruction.

When the RESET or IRQ input goes low or when any on-chip system requests interrupt
service, the processor clocks are enabled, and the reset, IRQ, or other interrupt service
request is processed.

Condition Codes and Boolean Formulae:

H [ Nz c
N R BN I N A

I 0
Cleared

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) | Cycles

WAIT INH 8F 2

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-67



A-68 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



APPENDIX B
REVIEW QUESTIONS

The 50 review questions presented are based directly on the text of this
applications guide. These review questions are repeated with the proper
answers, indicating the portion of text from which the information was ob-
tained.

1. The instruction set of a CPU is
O A. a software program written by an end user.
O B. the same for all computers.
O C. determined by the wiring within the CPU.
O D. the data sheet for a microprocessor.

2. Which numbering system offers the best compromise between the needs
of a CPU and those of a human?
O A. Binary
O B. Octal
O C. Decimal
O D. Hexadecimal

3. A specific 8-bit value in a computer memory can mean different things
depending on its context. The value could be a number, a code repre-
senting an alphabetic character, a code for an instruction (opcode), etc.
The hexadecimal value $42 could be interpreted by an MC68HC705C8 to
mean any of the following things except one. Choose the one answer
which is not likely to be a correct interpretation of the value $42.

O A. The opcode for the MUL {multiply) instruction.
O B. The decimal value 66.

O C. The address of an on-chip control register.

O D. The letter “B".

4. Which of the following items requires the most memory bits?
O A. The BCD representation of 125.
O B. The binary representation of 254.
O C. The ASCII representation of the letter “A".
O D. The binary equivalent of the octal number 75g.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-1



B-2

How many 8-bit memory locations would be needed to hold the ASCIl
representation of the name ““FRED""?
O A. 16

O B 4
C. 7
D. 2

s 00O

hich of these CPU registers in the MC68HC705C8 contains the most
its?

O A. The accumulatorv(A)

O B. The index register (X)

O C. The condition code register (CCR)

O D. The program counter (PC)

o

Which CPU register in the MC68HC705C8 would most likely point to the
next instruction that the CPU will execute?

O A. The accumulator {A)

O B. The index register (X)

O C. The stack pointer (SP)

O D. The program counter (PC)

During execution of a subroutine, where would the CPU save the return
address? All except one of the following address pairs is incorrect due
to improper memory type or address.

O A. $1FFE,1FFF

O B. $00EC,00ED

O C. $00AE,00AF

O D. $015E,015F

How many different opcodes correspond to the LDA (load accumulator)
instruction?
O A1

OO0
Cow
= O W

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



10. In the following partial listing, what 8-bit value or code is present in
memory location $0193?

018c TIME EQU * Update Time-of-day
018c 3d a2 TST TIC Check for TIC=zero
018e 26 38 BNE XTIME If not; just exit
0190 3¢ a3 INC SEC SEC=SEC+1

0192 a6 3c LDA 460

0194 bl a3 CMP SEC Did SEC -> 60 ?

O A. $A2

O B. $3C

O C. $93

O D. $01

11. The following instruction reads the current value of the 8-bit variable
“TIC'" and internally tests for a negative or zero value. At what physical
address is the variable “TIC"" located?

018c 3d a2 TST TIC Check for TIC=zero

O A. $01A2
O B. $018D
O C. $3DA2
O D. $00A2

12. After executing the following sequence of instructions, what value will
be in the accumulator?

BEGIN LDA #$80

BPL LABEL
INCA
LABEL DECA
DECA
O A. $7E
O B. $7F
O C. $80
O D. $81

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-3




B-4

13.

14.

15.

16.

17.

After executing the following instruction sequence from “START" to
“END”, what value will be in memory location $00FF?

0100 9c¢ START RSP Reset SP to $SOOFF
0101 cd 02 00 JSR SUB Call SUB
0104 cd 02 00 JSR SUB Call SUB again
0107 9d END NOP Done
” ” L\ " " "
0200 81 SUB RTS Just Return
O A. $00
O B. $01
O C. $04
O D. $07

What frequency crystal would be used on an MC68HC705C8 to get a 500-
ns internal processor clock?

O A. 1.0 MHz

O B. 2.0 MHz

O C. 4.0 MHz

O D. 8.0 MHz

For an MC68HC705C8 with a 4.0-MHz crystal, what amount of time cor-
responds to a single count of the 16-bit timer?

O A. 500 ns

O B. 1.0 us

O C. 2.0 ps

O D. 4.0 ps

For an MC68HC705C8 with a 4.0-MHz crystal, what is the fastest baud
rate available for the SCI (UART-type serial interface)?

O A. 131.072 kbaud

O B. 125 kbaud

O C. 19.2 kbaud

O D. 9600 baud

For an MC68HC705C8 with a 4.0-MHz crystal, what is the fastest master
mode bit rate available for the SPI (synchronous serial peripheral inter-
face)?

O A. 1 Mbit/sec

O B. 500 kbits/sec

O C. 250 kbits/sec

O D. 125 kbits/sec

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE -MOTOROLA



18.

19. To assure an orderly startup, reset forces the CPU to begin executing
instructions in a predictable, repeatable way. Which of the following
statements best describes how the CPU proceeds from reset?

O A. The CPU fetches the instruction from $1FFF and executes it.
O B. The CPU loads the program counter (PC) with the address $1FFE
and begins executing instructions.

C. The CPU begins executing instructions starting at address $0000.

D. The CPU loads the program counter (PC) with the address stored

at $1FFE,1FFF and then begins executing instructions starting at
that address.

O
O

20. To change the SCI baud rate, what address would you write to?
O A. $000D
O B. $000E
O C. $0D00
O D. $100E
21. The half-carry bit (H) in the condition code register (CCR)
O A. is used in rounding results of arithmetic operations.
O B. indicates that the MSB of the accumulator is 1.
O C. may be used to adjust the results of BCD add operations.
O D. indicates a borrow occurred during a subtract operation.

22. In an MCB8HC705C8 system which uses no interrupts, what is the max-
imum possible nesting depth for subroutines (without causing errors)?
If one subroutine called a second subroutine, that would be a nesting
depth of 2.
O A 2
O B. 32
O C. 64
O D. 128

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-5



B-6

23. Which of the following on-chip systems would be used to detect prob-

lems with the oscillator?

O A. Power-on reset

O B. COP watchdog timer

O C. Clock monitor

O D. IRQ interrupt
24. In the following instruction sequence, a value is read into the accumu-

lator. From what address is this value being read? (It may be helpful to

look at the machine code as well as the mnemonic instructions.)
0003 SAM EQU $03 SAM equal an 8-bit value
1400 LARRY EQU $1400 LARRY equal a 16-bit wvalue
0100 ORG $100 Set program starting point
0100 ae 02 TOP LDX #$02 Initialize index register
0102 a6 05 ) LDA #$05 Read value into A

O A. $0005

O B. $0102

O C. $0103

O D. $a605
25. In the following instruction sequence, a value is read into the accumu-

lator. From what address is this value being read? (It may be helpful to

look at the machine code as well as the mnemonic instructions.)
0003 SAM EQU $03 SAM equal an 8-bit value
1400 LARRY EQU $1400 LARRY equal a 16-bit value
0100 ORG $100 Set program starting point
0100 ae 02 TOP LDX #8$02 Initialize index register
0102 b6 05 LDA $05 Read value into A

O A. $0005

O B. $0102

O C. $0103

O D. $b605

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



26. in the following instruction sequence, a value is read into the accumu-
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003 SAM EQU $03 SAM equal an 8-bit wvalue
1400 LARRY EQU $1400 LARRY equal a 16-bit value
0100 ORG $100 Set program starting point
0100 ae 02 TOP LDX #$02 Initialize index register
0102 c6 01 00 LDA TOP Read value into A

O A. $0003

O B. $0100

O C. $0103

O D. $0104

27. In the following instruction sequence, a value is read into the accumu-
lator. From what address is this value being read? (It may be helpful to
ook at the machine code as well as the mnemonic instructions.)

0003 SAM EQU $03 SAM equal an 8-bit value
1400 LARRY EQU $1400 LARRY equal a 16-bit value
0100 ORG $100 Set program starting point
0100 ae 02 TOP LDX #$02 Initialize index register
0102 f6 LDA O0,X Read value into A

O A. $0000

O B. %0002

O C. $0003

O D. $0102

28. In the following instruction sequence, a value is read into the accumu-
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003 SAM EQU $03 SAM equal an 8-bit wvalue
1400 LARRY EQU $1400 LARRY equal a 16-bit value
0100 ORG $100 Set program starting point
0100 ae 02 TOP LDX #$02 Initialize index register
0102 e6 03 LDA SAM,X Read value into A

O A. $0002

O B. $0003

O C. $0005

O D. $0105

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-7



29. In the following instruction sequence, a value is read into the accumu-
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003
1400
0100
0100
0102

ae 02
dé6 14 00

O A. $0002
O B. $1400
O C. $1402
O D. $1600

. SAM

LARRY

TOP

EQU
EQU
ORG
LDX
LDA

$03

$1400
$100
#502

LARRY, X

SAM equal an 8-bit value
LARRY equal a 16-bit value
Set program starting point
Initialize index register
Read value into A

30. After executing the following instruction sequence from “START" to
“END,” what value will be in the stack pointer (SP)?

31.

B-8

0100 9c

0101 cd 02 00
0104 cd 02 00

0107 9d

0200 81

$0200
$00FB
$00FD
$00FF

oOo®m>

OO00O>» 0OO00O
3

oo w»

”"w

START

END

SUB

icrocontroller is
the CPU part of a digital binary computer.

the same thing as a microprocessor.

any system that includes an MCU integrated circuit.

a computer system including a CPU, memory, and peripherals on

a single I.C.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

RSP
JSR
JSR
NOP

RTS

SUB
SUB

Reset SP to $00FF
Call SUB

Call SUB again
Done

”

Just Return

MOTOROLA



32. After executing the following instruction sequence from “TOP’ to “BOT",
what values will be in locations $00A0 and $00A1, respectively?

0100 a6
0102 b7
0104 a6
0106 b7
0108 38
010a 39
010c 38
010e 39
0110 9d

£3 TOP

a0
81
al
al
a0
al
a0

BOT

LDA #%11110011 Initial value

STA $AO For $00A0D

LDA #%10000001 Initial value
STA $Al For $00Al

ASL $Al Comment left off
ROL S$A0 intentionally
ASL $Al

ROL $A0

NOP

O A. $00A0;00A1=11110011 10000001
O B. $00A0;00A1=11001100 00000100
O C. $00A0;00A1=11001110 00000111
O D. $00A0;00A1=11001110 00000100

Refer to the following four program listings to answer questions 33 through
38. These programs demonstrate four different ways to generate pulses at
port A bit 0 of an MC68HC705C8. All four programs assume that port A has
been configured as outputs by the data direction register (DDRA) equal $FF.

0100
0102
0104
0106
0108

0100
0102
0104

0100
0102
0103
0105
0107

0100
0102
0104
0106

MOTOROLA

10 00
11 00
20 fa

a6 01
5f

b7 00
bf 00
20 fa

PROG1

PROG2

PROG3

LOOP3

PROG4

LDA
STA
LDA
STA
BRA

BSET
BCLR
BRA

LDA
CLRX
STA
STX
BRA

LDA
EOR
STA
BRA

#$01
$00
#3500
$00
PROG1

0,%00
0,500
PROG2

#501

$00
$00
LOOP3

$00
#$01
500
PROG4

[2]
(4]
[2]
(4]
[3]

(5]
[5]
[3]

[2]
[3]
[4]
[4]
[3]

[3]
[2]
[4]
{31

Pattern for bit 0 high
Write to port A

Pattern for bit 0 low
Write to port A

Repeat loop continuously

Set port A bit 0
Clear port A bit 0
Repeat loop continuously

Pattern for bit 0 high
Pattern for bit 0 low
Write to port A

Write to port A

Repeat loop continuously

Read present port A data
Form new port A pattern
Write to port A

Repeat loop continuously

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-9




B-10

33.

34.

35.

36.

37.

Which of the four programs requires the fewest bytes of program mem-
ory?

O A. PROG1

O B. PROG2

O C. PROG3

O D. PROG4

Which of the four programs produces the shortest pulse width (logic one
at the pin)?

O A. PROG1

O B. PROG2

O C. PROG3

O D. PROG4

Which of the four programs produces the longest period?
O A. PROG1
O B. PROG2
O C. PROG3
O D. PROG4

Sometimes it is important to change the level on a pin without disturbing
values in the CPU accumulator and other CPU registers. Which of the
four programs uses no CPU registers other than the program counter
(PC)?

O A. PROG1

O B. PROG2

O C. PROG3

O D. PROG4

Which of the four programs produces a square wave (equal high and
low times)?

O A. PROG1

O B. PROG2
O C. PROG3
O D. PROG4

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



38. Some instructions affect only a single bit in a memory location while
others affect all bits in a memory location. Which two of the four pro-
grams do not make any assumptions about other bits in port A?

O A. PROG1 & PROG2

B. PROG2 & PROG4

C. PROG3 & PROG4

D. PROG4 & PROG1

© 00O

39. On an MC68HC705C8, which of the following pins is an input-only pin?
O A. RESET

O B. Port D bit 4/SCK

O C. Port D bit7

O D. Port A bit 7

40. What does the following sequence of instructions do?

0100 a6 08 START LDA #3508 Comments left off intentionally
0102 b7 1le STA $S1E
0104 8e STOP

O A. Reset the COP watchdog timer and return to normal program.
O B. Force a hardware RESET.

O C. Store a value $08 in RAM and stop processing.

O D. Enables the clock monitor and the COP watchdog timer.

41. Forthe four following addresses, which one would not allow you to read
back an arbitrary value which you just wrote to that address?
O A. $0004
O B. $0050
O C. $00FF
O D. $1000

42. For an MC68HC705C8, which of the four following addresses would be
the best address to store a product serial number and a variable which
changed once a second? Refer to the memory map on page 3-11 of the
applications guide.

O A. $0000
O B. $002F
O C. $00FF
O D. $015F

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-11



43.

44,

45.

46.

47.

48.

If you discovered an incorrect value in a memory location as you were
starting volume production, which of the following memory types would
require the longest time to correct the error?

O A. RAM

O B. ROM

O C. EPROM

O D. EEPROM

A microcontroller includes

O A. a central processor unit (CPU).
O B. memory.

O C. /0O devices.

O D. all of the above.

A central processor unit (CPU)

O A. is part of a microcontroller (MCU).
. is a complete computer system.

. contains memory and I/O devices.
. contains an MCU.

00O
UOw

A memory is said to be volatile if it forgets its contents when power is
removed for long periods of time. Which of the following memory types
is volatile?

O A. ROM

O B. RAM

O C. EPROM

O D. EEPROM

An EPROM memory is normally erased by

O A. software instructions.

O B. infrared light.

O C. ultraviolet light.

O D. application of high voltage.

To program the OPTION register on the MC68HC705C8

O A. program all bits as if they were EPROM.

O B. program all bits as if they were RAM.

O C. program one bit like RAM and the rest of the bits as if they were
EPROM.

O D. program one bit like EPROM and the rest of the bits as if they were
RAM.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



49. In the MC68HC705C8, bit manipulation instructions (BSET and BCLR)
O A. canbe usedto manipulate any on-chip /0 register or RAM location
in the $0000 through $00FF area of memory.
O B. can be used to manipulate any location in the 8K-byte memory
map.
O C. can be used only with indexed addressing modes.
O D. can be used to manipulate any on-chip RAM location.

50. Which of the following statements best describes what happens during
an SPI data transfer between two MC68HC705C8 MCUs?
O A. A slave device transfers an 8-bit character to a master device.
O B. A master device transfers an 8-bit character to a slave device.
O C. A master and a slave exchange 8-bit data characters.
O D. A master device sends a start bit, 8 data bits, and a stop bit to a
slave.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-13



REVIEW QUESTIONS, ANSWERS,

AND EXPLANATIONS

The questions that seem to give the most trouble are 40, 35, and 13 in that
order. The problem on 35 is that it is a tricky question. The loop in PROG4
must be executed twice to make one period on the port pin. On 40, some
persons who got the wrong answer seemed to be tricked by the indirect
nature of this operation and chose D, thinking it was the closest thing to a
correct answer. Almost all those who got 35 wrong chose A, which has the
longest loop time but not the longest period. The majority of those who
missed 13 seemed to think that the RAM locations in the stack are cleared
as values are recovered from the stack during a return from subroutine —
this assumption is incorrect. A few others got the stacking order reversed.
The key to getting 13 right was to play computer very carefully.

1. The instruction set of a CPU is
O A. a software program written by an end user.
O B. the same for all computers.
= C. determined by the wiring within the CPU. (see p. 2-2 2nd Y and p.
2-4 last )
O D. the data sheet for a microprocessor.

2. Which numbering system offers the best compromise between the needs
of a CPU and those of a human?
O A. Binary
O B. Octal
O C. Decimal
= D. Hexadecimal

See p. 2-2 last § and p. 2-5. A few engineers who were around in the
days of the PDP-8 or work a lot with minicomputers that still carry on
the octal tradition may argue about this answer. The text on p. 2-5 and
modern microcontroller data sheets explain why hexadecimal is the best
choice.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



3. A specific 8-bit value in a computer memory can mean different things
depending on its context. The value could be a number, a code repre-
senting an alphabetic character, a code for an instruction (opcode), etc.
The hexadecimal value $42 could be interpreted by an MC68HC705C8 to
mean any of the following things except one. Choose the one answer
which is not likely to be a correct interpretation of the value $42.

O A. The opcode for the MUL (multiply) instruction. (see p. A-47)
O B. The decimal value 66. (see Table 2-1 p. 2-3)

t= C. The address of an on-chip control register.

O D. The letter “B"”. (see Table 3-10 p. 3-67)

By elimination, the correct response is answer C. Looking at the memory
map (Figure 3-5 p. 3-11) you would find that address $42 is a RAM or
PROM location; whereas, all on-chip control registers (except OPTION
at $1FDF) are in the area from $0000 to $001F.

4. Which of the following items requires the most memory bits?
rs A. The BCD representation of 125. (0001 0010 0101 or 12 bits)
O B. The binary representation of 254. (1111 1110 or 8 bits)
O C. The ASCII representation of the ietter A", (1000001 or 0100 0001,
7 or 8 bits)
O D. The binary equivalent of the octal number 75g. (111 101 or 6 bits)

See pp. 2-2 through 2-6.

5. How many 8-bit memory locations would be needed to hold the ASCII
representation of the name “FRED"'?
O A. 16
= B. 4 {See p. 2-4 3rd 9. Each ASCII character takes one byte.)
7
2

oo

O
O

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-15



B-16

Which of these CPU registers in the MC68HC705C8 contains the most
bits?

O A. The accumulator (A)

O B. The index register (X)

O C. The condition code register (CCR)

> D. The program counter (PC)

See Figure 2-2 p. 2-8. The PC is 13 or 16 bits, depending on whether or
not you count the upper three bits that are fixed. A and X are 8 bits each,
and CCR is 5 or 8 (again depending on whether or not you count the
upper three bits that are fixed). :

Which CPU register in the MC68HC705C8 would most likely point to the
next instruction that the CPU will execute?

O A. The accumulator (A)

O B. The index register (X)

O C. The stack pointer {SP)

v# D. The program counter (PC) (see p. 2-8 last )

During execution of a subroutine, where would the CPU save the return
address? All except one of the following address pairs is incorrect due
to improper memory type or address.

O A. $1FFE,1FFF

> B. $00EC,00ED

O C. $00AE,00AF

O D. $015E,015F

See p. 3-16 last 1 and Section 2.6.1.4 beginning on p. 2-27 if you need
help understanding subroutine calls.

How many different opcodes correspond to the LDA (load accumulator)
instruction?

O A1

O B. 3

1> C. 6 (see p. A-43 and p. 2-21 4th 1)

O D. 16

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



10. In the following partial listing, what 8-bit value or code is present in
memory location $0193?

018c TIME EQU * Update Time-of-day
018c 3d a2 TST TIC Check for TIC=zero
018e 26 38 BNE XTIME If not; just exit

0190 3¢ a3 INC SEC SEC=SEC+1

0192 a6 3c LDA #60

0194 bl a3 CMP SEC Did SEC -> 60 ?

O A. $A2

1= B. $3C (see Sections 2.5.4 and 2.5.5 especially p. 2-22 4th 1)
O C. $93

O D. $01

11. The following instruction reads the current value of the 8-bit variable
“TIC"” and internally tests for a negative or zero value. At what physical
address is the variable “TIC" located?

018c 3d a2 TST TIC Check for TIC=zero

O A. $01A2
O B. $018D
O C. $3DA2
1= D. $00A2 (see p. 3-26 and p. A-65)

12. After executing the following sequence of instructions, what value will
be in the accumulator?

BEGIN LDA #$80
"BPL LABEL
INCA
LABEL DECA
DECA

The first instruction loads A with the immediate value $80 (which is
negative). The second instruction will not branch because the N condition
code flag is set. The CPU then increments A (to $81), then decrements
A (to $80), and finally decrements A again (to $7F).

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE . B17



B-18

13.

14.

15.

After executing the following instruction sequence from “START" to
“END”, what value will be in memory location $00FF?

0100 9c START RSP Reset SP to $00FF
0101 cd 02 00 JSR SUB Call SUB
0104 cd 02 00 JSR SUB Call SUB again
0107 29d END NOP Done '
" " "w n " ”
0200 81 SUB RTS Just Return
O A. $00
O B. $01
O C. %04
r D. $07

See Section 2.6.2 especially p. 2-32 last § and p. 2-33 6th ¥; see also p.
2-9 3rd 9. In the course of executing this program segment, the CPU
would call a subroutine (and store the return address at $00FF and $00FE),
then return from the subroutine (which causes the return address to be
recovered from the stack and the stack pointer to end up pointing at
$00FF again). When the second subroutine call is executed, the return
address {(now $0107) is saved on the stack at $00FF and $00FE (with the
$07 at $00FF). The second return from subroutine causes this return
address to be read from the stack. Since no other value is stored to
location $00FF during this program, $07 will still be there at the end of
the sequence.

What frequency crystal would be used on an MC68HC705C8 to get a 500-
ns internal processor clock?

O A 1.0 MHz

O B. 2.0 MHz

rz C. 4.0 MHz (see p. 3-6 7th § or Figure 3-18 p. 3-59)

O D. 8.0 MHz

For an MC68HC705C8 with a 4.0-MHz crystal, what amount of time cor-
responds to a single count of the 16-bit timer?

O A. 500 ns

O B. 1.0 ps

r= C. 2.0 ps (see p. 3-82 upper right and p. 3-83 last 9.)

O D. 4.0 us

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



16.

17.

18.

19.

MOTOROLA

For an MC68HC705C8 with a 4.0-MHz crystal, what is the fastest baud
rate available for the SCI (UART-type serial interface)?

O A. 131.072 kbaud

vz B. 125 kbaud (see Table 3-8 p. 3-59 top entry in 4.0 column)

O C. 19.2 kbaud

O D. 9600 baud

For an MC68HC705C8 with a 4.0-MHz crystal, what is the fastest master
mode bit rate available for the SPI {(synchronous serial peripheral inter-
face)?

= A. 1 Mbit/sec (see table on p. 3-75)

O B. 500 kbits/sec

O C. 250 kbits/sec

O D. 125 kbits/sec

Only a master SPI device produces a serial clock. As a slave, the fastest
bit rate the SPI can accept would be the crystal frequency divided by 2
(or 2 MHz for a 4-MHz crystal). '

How many bit times are there in one SCI character frame?
O A8

OB 9

O C. 10

¥ D. 10 or 11 (see Figure 3-24 p. 3-64)

Don't forget to count the start and stop bit times.

To assure an orderly startup, reset forces the CPU to begin executing

instructions in a predictable repeatable way. Which of the following state-

ments best describes how the CPU proceeds from reset?

O A. The CPU fetches the instruction from $1FFF and executes it.

O B. The CPU loads the program counter (PC) register with the address
$1FFE and begins executing instructions.

C. The CPU begins executing instructions starting at address $0000.

D. The CPU loads the program counter (PC) with the address stored
at $1FFE,1FFF and then begins executing instructions starting at
that address.

See p. 3-18 item 14 and p. 2-8 last 1. Think about the other three answers;
you should see that they do not make sense.

O
e

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-19




B-20

20.

21.

22,

23.

To change the SCI baud rate, what address would you write to?
= A. $000D
O B. $000E
O C. $0D00
O D. $100E

See memory map Figure 2-4 p. 2-12 or Figure 3-5 p. 3-11, or see Figure
3-17 p. 3-58. See also p. 2-13 4th 1.

The half-carry bit (H) in the condition code register (CCR)

O A. isused in rounding results of arithmetic operations. (describes the
C bit)

O B. indicates that the MSB of the accumulator is 1. (describes the N
bit)

= C. may be used to adjust the results of BCD add operations.

O D. indicates a borrow occurred during a subtract operation. (de-
scribes the C bit)

See p. 3-14 2nd § and p. 2-6 3rd 1.

In an MCB68HC705C8 system which uses no interrupts, what is the max-
imum possible nesting depth for subroutines (without causing errors)?
If one subroutine called a second subroutine, that would be a nesting
depth of 2. :

O A 2

z B. 32 (see p. 3-16 last 1)

O C. 64

O D. 128

Remember that each subroutine call uses two 8-bit memory locations to
store the return address.

Which of the following on-chip systems would be used to detect prob-
lems with the oscillator?

O A. Power-on reset

O B. COP watchdog timer

iz C. Clock monitor (see p. 3-19 1st § and p. 3-20 6th )

O D. IRQ interrupt

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



24. In the following instruction sequence, a value is read into the accumu-
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003 SAM EQU $03 SAM equal an 8-bit value
1400 LARRY EQU $1400 LARRY equal a 16-bit value
0100 ORG $100 Set program starting point
0100 ae 02 TOP LDX #$02 Initialize index register
0102 a6 05 LDA #$05 Read value into A

O A. $0005

O B. $0102

rz C. $0103 (see immediate addressing mode p. 3-24)

O D. $a605

25. In the following instruction sequence, a value is read into the accumu-
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003
1400
0100
0100 ae 02
0102 b6 05

SAM EQU
LARRY EQU
ORG
TOP LDX
LDA

$03
$1400
5100
#s02
$05

SAM equal an 8-bit value
LARRY equal a 16-bit value
Set program starting point
Initialize index register
Read value into A

> A. $0005 (see direct addressing mode p. 3-26)
O B. $0102
O C. $0103

OD.$

b605

26. In the following instruction sequence, a value is read into the accumu-
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003 SAM EQU $03 SAM equal an 8-bit value
1400 LARRY EQU $1400 LARRY equal a 16-bit value
0100 ORG $100 Set program starting point
0100 ae 02 TOP LDX #$02 Initialize index register
0102 c¢c6 01 00 LDA TOP Read value into A

O A. $0003

> B. $0100 (see extended addressing mode p. 3-25)

O C. $0103

O D. $0104

Although this instruction sequence has no practical use, it would assem-
ble and function. The value loaded into A would be $AE (the opcode of
the LDX-immediate instruction). If you were not familiar with the use of

MOTOROLA

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-21




27.

0003
1400
0100
0100
0102

28.

0003
1400
0100
0100
0102

B-22

labels, you could have looked at the machine code C6 01°00. The C6
indicates the extended addressing mode variation of the LDA instruction
and 0100 is the address of the operand that would be loaded into A.

In the following instruction sequence a value is read into the accumulator.
From what address is this value being read? (It may be helpful to look
at the machine code as well as the mnemonic instructions)

SAM EQU © $03 SAM equal an 8-bit value
LARRY EQU $1400 LARRY equal a 16-bit value
ORG $100 Set program starting point
ae 02 TOP LDX #3502 Initialize index register
£f6 Lpa 0,X Read value into A
O A. $0000
= B. $0002 (see indexed no-offset p. 3-28)
O C. $0003
O D. %0102

At the time the LDA 0,X instruction is executed, X contains $02 due to
the previous instruction.

In the following instruction sequence a value is read into the accumulator.
From what address is this value being read? (It may be helpful to look
at the machine code as well as the mnemonic instructions.)
SAM EQU $03 SAM equal an 8-bit value
LARRY EQU $1400 LARRY equal a 16-bit value
ORG $100 Set program starting point
ae 02 TOP LDX #$02 Initialize index register
e6 03 LDA SAM,X Read value into A
O A. $0002
O B. $0003
1z C. $0005 (see indexed 8-bit offset p. 3-30)
O D. $0105

Don’t forget to add the current value of X ($02) to the value SAM ($03).

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



29. In the following instruction sequence, a value is read into the accumu-
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003 SAM EQU $03 SAM equal an 8-bit value
1400 LARRY EQU $1400 LARRY equal a 16-bit value
0100 ORG $100 Set program starting point
0100 ae 02 TOP LDX #$02 Initialize index register
0102 d6 14 00 LDA LARRY,X Read value into A

O A. $0002

O B. $1400

z C. $1402 (see indexed 16-bit offset p. 3-32)

O D. $1600

Don’t forget to add the current value of X ($02) to the value LARRY

($1400).

30. After executing the following instruction sequence from “START” to
“END"’, what value wil! be in the stack pointer (SP)?

0100 9c START RSP Reset SP to $00OFF
0101 cd 02 00 JSR SUB Call SUB

0104 cd 02 00 JSR SUB Call SUB again
0107 9d END NOP Done

0200 81 SUB RTS Just Return

O A. $0200

O B. $00FB

O C. $00FD

= D. $00FF

This is a variation of the exercise in Section 2.6.1.4 and Figure 2-11.
During execution the stack pointer will have the values FF-FE-FD-FE-FF-
FE-FD-FE-FF.

31. A microcontroller is
O A. the CPU part of a digital binary computer.
O B. the same thing as a microprocessor.
O C. any system that includes an MCU integrated circuit.
= D. a computer system including a CPU, memory, and peripherals on
a single I.C.

See p. 2-1 1st sentence and p. 1-2 2nd {.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-23



B-24

32. Afterexecuting the following instruction sequence from “TOP” to “BOT",
what values will be in locations $00A0 and $00A1, respectively?

0100

a6 £3

0102 b7 a0

0104
0106
0108
010a
010c
010e
0110

O A

a6 81
b7 al
38 al
39 a0
38 al
39 a0

TOP

BOT

LDA
STA
LDA
STA
ASL
ROL
ASL
ROL
NOP

#%11110011 Initial value

$SAO For $00A0
#%10000001 Initial value
sal For $00Al

SAl Comment left off
$a0 intentionally
$Al

SAQ

$00A0;00A1=11110011 10000001
O B. $00A0;00A1=11001100 00000100

O C. $00A0;00A1=11001110 00000111

= D. $00A0;00A1=11001110 00000100

See ASL p. A-6 and ROL p. A-51. Play computer to see how this sequence
works. This is a 16-bit version of the multibyte shift sequence described
in the ROL instruction description.

Refer to the following four program listings to answer questions 33
through 38. These programs demonstrate four different ways to generate
pulses at port A bit 0 of an MC68HC705C8. All four programs assume
that port A has been configured as outputs by the data direction register
(DDRA) equal $FF.

0100 a6 01
0102 b7 00
0104 a6 00
0106 b7 00
0108 20 f£6

PROG1

PROCESSOR
CLOCK (INT)

PAQ
PIN

BROG1

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

LDA
#$01

LDA #3501 [2] Pattern for bit 0 high
STA $00 [4] Write to port A
LDA #3500 [2] Pattern for bit 0 low
STA s$00 [4) Write to port A
BRA PROG1 [3] Repeat loop continuously
LDA BRA | LDA
| STA$00 l”°°| STAS$00 | oA !#w | STA$00 l
—>»  PULSE HIGH = 6~
[ €—————————— PERIOD = 15~ ——————— >

MOTOROLA



0100 10 00 PROG2 BSET 0,%00 [5] Set port A bit 0
0102 11 00 BCLR 0,$00 [5] Clear port A bit O
0104 20 fa BRA PROG2 [3] Repeat loop continuously

BRA
' BSET 0,500 l BCLR 0,500 IPHoezl BSET 0,00 l

s JUUU L
PAO
PIN
PROG? —>»| PULSE HIGH = 5~
[ €—————— PERIOD = 13~ ——————
0100 a6 01 PROG3 LDA #5501 [2] Pattern for bit 0 high
0102 S5f CLRX [3] Pattern for bit 0 low
0103 b7 00 LOOP3 STA $00 [4] Write to port A
0105 bf 00 STX $00 [4] Write to port A
0107 20 fa BRA LOOP3 [3] Repeat loop continuously

LDA BRA
#wi CLRX | STA$00 l STX$00 lP | STA$00 I STX$00 IPROG3|

ROG3
PROCESSOR
CLOCK (INT)
PAQ
PIN :
PROG3 —>»| PULSE Hl = 4~
|€———— PERIOD = 11~ ——>»
0100 b6 00 PROG4 1LDA $00 [3] Read present port A data
0102 a8 01 EOR #3501 [2] Form new port A pattern
0104 b7 00 STA $00 [4] Write to port A
0106 20 f£8 BRA PROG4 [3] Repeat loop continuously

‘ LDA $00 l EOR I STA$00 ‘ BRA ‘ LDA $00 I EOR | sTA$00 BRA I LDA $00 IEOR l STA$00

PROG4 PROG4 |
PROCESSOR nn”n”nﬂn‘lﬂnnn”nnnnnn ﬂ
CLOCK (INT)
PAO
PIN
: [€——— PULSE HIGH = 12~ ————»|
-« PERIOD = 24~ >

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-25



33.

34.

35.

36.

37.

B-26

Which of the four programs requires the fewest bytes of program mem-
ory?

O A. PROG1 (10)

= B. PROG2 (6)

O C. PROG3 (9)

O D. PROG4 (8)

Which of the four programs produces the shortest puise width (logic one

at the pin)?

O A. PROGT1 {

O B. PROG2 (

= C. PROG3 (
(

6
5
4

O D. PROG4 (1

)
)
)
2)
Which of the four programs produces the longest period?

O A. PROG1 (15)

O B. PROG2 {13)

O C. PROG3 (11)

= D. PROG4 (24) (Notice the loop executes twice to make a single pe-

riod.)

Sometimes it is important to change the level on a pin without disturbing
values in the CPU accumulator and other CPU registers. Which of the
four programs uses no CPU registers other than the program counter
(PC)?

O A. PROG1 (uses A)

= B. PROG2 (BSET and BCLR use no CPU registers)

O C. PROG3 (uses A and X)

O D. PROG4 (uses A)

Which of the four programs produces a square wave (equal high and
low times)?

O A. PROG1 (6/9)

O B. PROG2 {5/8)

O C. PROGS3 (4/7)

= D. PROG4 (12/12)

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



38. Some instructions affect only a single bitin a memory location; whereas,
others affect all bits in a memory location. Which of the four programs
does not make any assumptions about other bits in port A?

O A. PROG1 & PROG2
rz B. PROG2 & PROG4
O C. PROG3 & PROG4
O D. PROG4 & PROG1

Programs 1 and 3 force bits 7 through 1 of port A to zero; programs 2
and 4 affect only bit 0.

39. On an MC68HC705C8, which of the following pins is an input-only pin?
O A. RESET
O B. Port D bit 4/SCK
> C. Port D bit 7 (see Figure 3-1 p. 3-3)
O D. Port A bit7

This question was intended to emphasize that reset is not an input-only
pin.

40. What does the following sequence of instructions do?

0100 a6 08 START LDA #3S08 Comments left off intentionally
0102 b7 1le STA S$1E
0104 8e - STOP

O A. Reset the COP watchdog timer and return to normal program.
= B. Force a hardware RESET. (see p. 3-21 2nd )

O C. Store a value $08 in RAM and stop processing.

O D. Enables the clock monitor and the COP watchdog timer.

This question was intended to show a way to force a reset with software,
which may be useful in some applications. This question also reinforces
important aspects of the clock monitor system and the STOP instruction.

41. For the four following addresses, which one would not allow you to read
back an arbitrary value which you just wrote to that address?
O A. $0004
O B. $0050
O C. $00FF
r> D. $1000 (see Figure 3-5 p. 3-11)

$0050 and $00FF are RAM addresses and can obviously be read back
after being written. $0004 is the data direction register for port A (see p.
3-52).

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-27



- B-28

42.

43.

44,

45,

For an MC68HC705C8, which of the four following addresses would be
the best address to store a product serial number and a variable which
changed once a second? Refer to the memory map on p. 3-11 of the
applications guide.

O A. $0000

O B. $002F

O C. $00FF

= D. $015F (see description of RAM1 p. 3-98)

This question was intended to point out that the RAM1 control bit in the
OPTION control register can be controlled by software to alternately
enable RAM or PROM during normal operation. The result is that both
the RAM and the PROM are usable, although software is required to
choose which is active at any particular time. You couid enable the PROM
and program a serial number into location $015F before shipping a prod-
uct. You could turn on the PROM during startup to read the serial number,
then change RAM1 to enable the RAM to use the RAM located at $015F
as the storage location for a software variable.

If you discovered an incorrect value in a memory location as you were

starting volume production, which of the following memory types would

require the longest time to correct the error?

O A. RAM (RAM values can be changed in a single bus cycle or about
1 ws)

= B. ROM (ROM changes require several weeks because new parts
must be manufactured.)

O C. EPROM (EPROM takes several minutes of exposure to UV light to
erase.)

O D. EEPROM (EEPROM can be changed in tens of milliseconds. See
p. 1-4 and p. 4-4 1st 9).

A microcontroller includes

O A. a central processor unit (CPU)

O B. memory.

O C. I/O devices.

= D. all of the above. (see Section 1.1 p. 1-2)

A central processor unit (CPU)

= A. is part of a microcontrolier (MCU). (see Section 1.1 p. 1-2)
O B. is a complete computer system.

O C. contains memory and I/O devices.

O D. contains an MCU.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



46. A memory is said to be volatile if it forgets its contents when power is
removed for long periods of time. Which of the following memory types
is volatile?

O A. ROM

= B. RAM

O C. EPROM
O D. EEPROM

See p. 1-4 2nd Y and p. 4-4 1st 1.

47. An EPROM memory is normally erased by
O A. software instructions.
O B. infrared light.
= C. ultraviolet light. (see p. 1-4 5th )
O D. application of high voltage.
48. To program the OPTION register on the MC68HC705C8
O A. program all bits as if they were EPROM.
O B. program all bits as if they were RAM.
O C. program one bit like RAM and the rest of the bits as if they were
EPROM.
= D. program one bit like EPROM and the rest of the bits as if they were
RAM. (see pp. 3-97 and 3-98)

49. In the MCB68HC705C8, bit manipulation instructions (BSET and BCLR)
1= A. can be used to manipulate any on-chip I/O register or RAM location
in the $0000 through $00FF area of memory.
O B. can be used to manipulate any location in the 8K-byte memory
map.
O C. can be used only with indexed addressing modes.
O D. can be used to manipulate any on-chip RAM location.

See pp. A-9 and A-30.

50. Which of the following statements best describes what happens during
an SPI data transfer between two MC68HC705C8 MCUs?
O A. A slave device transfers an 8-bit character to a master device.
O B. A master device transfers an 8-bit character to a slave device.
1= C. A master and a slave exchange 8-bit data characters.
O D. A master device sends a start bit, 8 data bits, and a stop bit to a
slave.

See p. 3-71 2nd 1.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-29



B-30 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA



Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; P.O. Box 80300; Cheung Sha Wan Post Office; Kowloon Hong Kong.

JAPAN: Nippon Motorola Ltd.; 3-20-1 Minamiazabu, Minato-ku, Tokyo 106 Japan.

@ MOTOROLA




