MC68881UM/AD
REV 1

MCO68881/MCO68882

Floating-Point Coprocessor
User’s Manual

THE FLOATING-POINT PERFORMANCE STANDARD

@ MOTOROLA

@ MOTOROLA

MC68881/MC68882

FLOATING-POINT COPROCESSOR
USER'S MANUAL

First Edition

PRENTICE HALL, Englewood Cliffs, N.J. 07632

This document contains information on a new product. Specifications and
information herein are subject to change without notice. Motorola reserves
the right to make changes to any products herein to improve functioning or
design. Although the information in this document has been carefully re-
viewed and is believed to be reliable, Motorola does not assume any liabiliy
arising out of the application or use of any product or circuit described herein;

neither does it convey any license under its patent rights nor the rights of
other.

Motorola, Inc. general policy does not recommend the use of its components in life support
applications where in a failure or malfunction of the component may directly threaten life or
injury. Per Motorola Terms and Conditions of Sale, the user of Motorola components in life
support applications assumes all risk of such use and indemnifies Motorola against all damages.

©MOTOROLA, INC., 1987

PREFACE

This manual assumes that the MC68881/MC68882 is connected as a coprocessor to the
MC68020/MC68030 microprocessor. If the MC68881/MC68882 is used in a system with
a main processor other than the MC68020/MC68030, it is expected that the main pro-
cessor emulates the M68000 Family coprocessor interface as required by the MC68881/
MC68882.

This manual is divided into two major parts. The first part, sections 2 through 8, describes
the programmer’s model of the MC68881/MC68882 and the floating-point instruction set
that it implements. This part of the manual includes a detailed description of each in-
struction and a section on instruction timing that can be used for program optimization
and to predict floating-point arithmetic performance.

The second part of the manual, sections 9 through 13, describes the hardware interface
of the MC68881/MC68882 to the main processor, and is most pertinent to system hard-
ware designers. Bus cycle timing diagrams, interface register addressing, etc., are dis-
cussed from the viewpoint of the MC68020/MC68030 hardware conventions. A prior
knowledge of the MC68020/MC68030 bus interface, particularly as it pertains to the
M68000 Family coprocessor interface, is quite helpful in understanding the operation of
the MC68881/MC68882 bus interface.

Throughout this manual, M68000 or M68000 Family is used to refer to the family of
devices that support the Motorola 68000 Family architecture. A number that is preceded
by MC, such as MC68020, MC68030, MC68881, or MC68882, refers to a specific part. A
reference to MC68881/MC68882 or FPCP applies to either floating-point coprocessor, and
a reference to MC68020/MC68030 or MPU applies to either main processor.

The sections and appendices of the manual are:
Section 1. General Description
Section 2. Programming Model
Section 3. Operand Data Formats
Section 4. Instruction Set
Section 5. Coprocessor Programming
Section 6. Exception Processing
Section 7. Coprocessor Interface
Section 8. Instruction Execution Timing
Section 9. Functional Signal Descriptions
Section 10. Bus Operation
Section 11. Interfacing Methods
Section 12. Electrical Specifications
Section 13. Ordering Information and Mechanical Data

Appendix A. Glossary
Appendix B. Abbreviations and Acronyms

MC68881/MC68882 USER'S MANUAL MOTOROL&
. 1l

TABLE OF CONTENTS

Paragraph Page
Number Title Number

Section 1

General Description

1.1 The Coprocessor CONCEPLuvuieiriiiiieretrirrereniaerrenenetenraeranensarnraesnsnen 1-2
1-2 Hardware OVEIVIEWiuieiiiiiiii et ie e e e e e e et e seseaananaas 1-2
1.2.1 Bus Interface Unit.......cooviiiiiiiiiiiiiic e e 1-6
1.2.2 Coprocessor INterface....c.vuviiiiiiiiiiir i e 1-8
1.3 Operand Data FOrMAtSuiuiinieiieeiiiieii e e st e e e e aaan 1-9
1.3.1 Integer Data FOrmMats........c.vvveiiniriiieiii e esr e s aens 1-9
1.3.2 Floating-Point Data FOrmats..........cvveiiiiieirrinineirnrreninsinensneeenenens 1-9
1.3.3 Packed Decimal String Real Data Format...........ocooiiiiiiininiinicininenans 1-10
1.34 Data FOrmat SUMIMAIY ..o.oiiniiiiie i e e e e e, 1-10
1.4 INSEIUCHION S, v vuieiiiiie it e e e e e et e ae e ens 1-12
1.4.1 VIOV S, ettt ittt e et e 1-12
1.4.2 Move Multiple RegiSterscccveieniiiiiiiii e eeaaes 1-12
1.4.3 Monadic Operations.........cvivuieiiiiiiiiiiiiicir e e 1-13
1.4.4 Dyadic OPerationsc.oeeuieieiieriiiiiiiiniieeiieie et saieisrar e aaaens 1-13
1.4.5 Branch, Set, and Trap-On Conditioncccviiviiiiiiiiiiiiiinneens 1-13
1.4.6 Miscellaneous INStruCtioNScccvvviiiiiiiiiiiiiii e e 1-14
1.5 Addressing MOGESiviiiiiiiii i e e 1-14
1.6 MC68882 Programming Considerationscovcveeiiviiiiiiiiiiiieneieeennnns 1-14

Section 2

Programming Model

2.1 Floating-Point Data RegiSters........oovviiriiiiiiiiiiien e aas 2-1
2.2 Floating-Point Control Registerccovviiiiiiiiiiiiiii e 2-2
2.2.1 FPCR Exception Enable Bytecccovviiiiiiiiiiiiiiiiiiincens 2-2
2.2.2 FPCR Mode Control Byte.......ccvuveieriiiiiiiiiiiiiiiiiineeis e ce e iena e 2-3
2.3 Floating-Point Status Register.........c..veiiiiiiii e 2-4
2.3.1 FPSR Floating-Point Condition Code Bytecccocvvvviviiiiiniiiiiiiiiininnns 2-4
2.3.2 FPSR QUOtIENT BYLE ...vvineiitiie it e eaeaees 2-5
2.3.3 FPSR Exception Status Byte.........ccoieiiiiiiniiiiiiiiii e 2-6
234 FPSR Accrued EXCeption Byteo.vveeiriiiiiiniiiiiiiiiii e rcnenineinanens 2-6.
2.4 Floating-Point Instruction Address Register........c.cocvvviiiiiiinioniniiiicinenane, 2-7

Section 3

Operand Data Formats

3.1 Integer Data FOrmatsociuiriiiiiiii et r e e nans 3-1
3.2 Binary Real Data FOrmatso.viiiiiiiiiiiiriiiei e i e e e e 3-2
3.2.1 Normalized NUMDETS ..ot s 3-4
3.22 Denormalized NUMDEIScccvneiiiiiiii i 3-4
3.23 =] {01 O PPN 35

MC68881/MC68882 USER'S MANUAL MOTOROLA
v

TABLE OF CONTENTS (Continued)

Paragraph) Page
Number Title Number
3.24 IR S et e 3-5
3.25 NOt-A-NUMDEIS. .. it ee s iaaans 3-5
3.2.6 Binary Real Data SUMmMary.........covvvveiiiieriiiiiiiciis e 3-6
33 Packed Decimal Real Data Formatcoccoviiiiiiiiiiiiiiiin s 3-6
3.4 Internal Data FOrmat.........ccoviiiiiiiiieiiii e 3-7
35 FOrmat CoNVEISIONS .iiuiiiitie it e e et eraa e eenenees 3-8
3.5.1 Conversion to Extended Precision Data Format...............coovviiininnnnns 3-8
35.2 Conversions to Other Data Formats.........cccocvveviiniiiiniiiicnciieneneenn, 3-8
3.6 Data Format Details......cvvveeieiiiiiiii e 3-8
Section 4
Instruction Set
41 Instruction Description CoNVENtioNS......c.vvviiiviiiiiiiiieiin e inieens 41
4.2 INSErUCEION GIOUPS 1vvvveeiiiiitiiiciiii i s a s 4-1
4.2 Data Movement Operationsc.cocvuviniereeeniniiiinnieeiiineicaienes 4-2
4.2.2 Dyadic Operationsciiuiiiiiiiiiiii e e e 4-2
423 Monadic Operations......c.cvivuveviieiiiiiii e 4-3
424 Program Control Operationsvveviiiriiinniieniiiin s e 4-4
4.2.5 System Control Operations.......c.ovviiiiviiinniiiiiiic e aniaees 4-5
4.3 Computational ACCUTACY......iuiuiirieiiiinitiie i 4-5
431 Arithmetic INSTrUCtIONSeviiiii i e e aaas 4-6
43.2 Transcendental INStruCtionScoovviviiiiiiiiiii s 4-7
4.3.3 Decimal CoONVEISIONS. .. vvvieiieiiiiin i etiie s e e et rasae s rasaas 4-7
4.4 Conditional Test Definitionscovvvviiiiiiiiiiii e 4-8
4.41 IEEE NON-AWEIE TeStS . uiutiiiieiiiieniiieiiniiine it 4-9
44.2 IEEE AWAIe TeStS iuuueriieriitisitiieeienteritiareeitessteraasuenensnesaenarsniasens 4-10
443 MisCellaneous TeStS ... viviriiiriiiiiiii e e e e 4-10
4.5 Detailed Instruction Descriptionsc.ccoevviiiiiiiiciii e eenas 4-10
4.5.1 Addressing Modes........ccoovvieiiiiiiiiiiii 4-10
45.2 Instruction Description Formatcooeviiiiiiiiciiiiiiiin e 4-11
453 (0] 11 &1 (0T 4 TR I o] =T Pt 4-13
454 N2 N PPN 4-13
45.4.1 Non-Signaling NANSccviviiiiiiiii s 4-13
45.4.2 Signaling NANSviti i e e e e e e 4-13
455 Operation Post Processing........ocvereciiuiiirneainciiiarineierrieneanceenens 4-14
4.5.5.1 Setting Floating-Point Condition Codes.........cccoivvevrrerinininiiiennns 4-14
4.5.5.2 Underflow, Round, Overflowccoevviiiiininiincinnnenens 4-14
4.6 Individua!l Instruction DesCriptionsc.covuirieiiiiiiiiiiieiii s 4-15
4.7 Instruction Encoding Details........viveiiiiiiiiiiiiiiirccc e e e e 4-120
4.7.1 General Type Coprocessor Instruction Formatc.ccovvivieeieniiiinnn, 4-120
4.7.1.1 Register-to-Register InStructions..........c.ccvvviiviiiiiiniiiiincnnenn, 4-121
47.1.2 ~ External Operand-to-Register INStructions..........cvcveviviiniiineninnnnes 4-122
4.7.1.3 Move Constant to Floating-Point Data Register Instructions........... 4-123
47.1.4 Move to External Destination Instructionscccvveieviiinnnnnnns 4-124
4715 Move System Control Register Instructionscceveveviiinnnnnns 4-125
4.7.1.6 Move Multiple Floating-Point Data Registers Instructions.............. 4-125
4.71.7 Undefined, Reserved Command Wordscc.civiiieviienninininennnes 4-128

} MOTOROLA . MC68881/MC68882 USER'S MANUAL
Vi)

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
4.7.2 FDBcc, FScc, and FTRAPcc Instruction FOrmats.....oovvvvviverivnniinnennnnns 4-129
4.7.3 Conditional Branch Instruction FOrmat...........cccovvviiviviniieniiiinininanans 4-131
4.7.4 Save Instruction FOrmat........o.oviiiiiniiiieiiir e e 4-131
4.7.5 Restore Instruction FOrmatccoveviiiiiiiiiiiiiiiii e, 4-132
4.8 Instruction Format Summary.........c.ooveiiiiii i 4-132
4.8.1 Coprocessor ID Fieldccouiiiiiiii e e 4-132
4.8.2 Effective Address Fieldcooviiiiiiiiii 4-132
4.8.3 Register/Memory Field.........coviiiiiiii e, 4-132
4.8.4 Source Specifier Field.......coviiiiiiiiiiii 4-132
4.8.5 Destination Register Field..........coocouiiiiiiiciii e, 4-133
4.8.6 Conditional Predicate Fieldcooiiiviiirieiiiiiiiin e eeaeaes 4-133
4.9 Instruction FOrmat Diagrams ...u.ieiiiuiiiiiii e i ere e eanans 4-134
Section 5
Coprocessor Programming
5.1 Applications Programming.........cvevuiiiiiiiiiiiiiiiiicie e 5-1
5.1.1 (080T [T 1 =11 1o OO 5-1
5.1.1.1 Concurrent Integer and Floating-Point Computations................... 5-1
5.1.1.2 Concurrent Floating-Point Computations.............cocccveviniiincnnn, 5-2
5.1.2 Optimization of Code for the MCB8882...........ccceevviiiierieineiiiiiienanenes 5-8
5.1.2.1 UNTOHING LOOPS. ciuieeeiiiitiii et r e e e ve e e e e e eaaaans 5-8
5.1.2.2 Avoiding Register Conflictsccovvveiiiiiiiiiiiniiiiccce e, 5-8
5.1.2.3 Arranging FMOVE INStructions..........cveeeuiriiirnicininiinnr e neaenans 5-8
5.1.2.4 Performance Improvement Examplecoocviiiiiiiiiiiciiininnnns 5-9
5.2 Systems Programming.......co.vuviriiiiiiiiii e e 5-9
5.2.1 State Frame SizeS.....cvuveiiiiiiiiiiiiii i 5-9
5.2.2 Exception Handler Code.............c.cceneeee. et tiereeeeaee e 5-10
5.2.3 Processing of Special Conditionsccovveveiiiiiiiiiininiciicr e, 5-12
5.2.3.1 11 =T 0 gV 1o £ P OO 5-12
5.2.3.2 Bus Arbitration ...c..ceuiieiiiii e 5-12
5.2.3.3 Context SWItching.....cooviiiiiiiiiin e 5-12
5.2.34 BUS ErTOrS vttt e e et e 5-13
5.2.35 Exception ProCessing.......ocvvrviiiiiiiiiiniiinci e 5-13
5.2.3.6 Simultaneous Floating-Point Exception and Task Switch Interrupt.. 5-13
5.2.4 Detecting CoprocesSor PreSENCE vvvrerriiirierereninticenerensnsnssenannnns 5-14
Section 6
Exception Processing ,
6.1 Coprocessor-Detected EXCEPLIONSc.vviuiiiiiiiiiiiiiieiir e 6-2
6.1.1 Branch/Set on Unordered (BSUN)covriiiiiiiienii s 6-5
6.1.2 Signaling Not-a-Number ... 6-6
6.1.3 OPErand EITOr cu.ueeit ittt e e st e e 6-7
6.1.4 OVEITIOW Lo 6-9
6.1.56 UNAEerflow .. e 6-10
6.1.6 DiVide DY ZEI0 ... e 6-13

MC68881/MC68882 USER’S MANUAL MOTOROLA
vii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
6.1.7 INeXact RESUIt......cieiir i s e enecee e 6-14
6.1.8 Inexact Result on Decimal INPpUL.......ccviieiniiiiiiiiier e, 6-17
6.1.9 Multiple EXCEPLIONS ..viviiiiieiiiii i i e e e 6-18
6.1.10 IEEE Exception and Trap Compatibility.............co.ooo, 6-18
6.1.11 Illegal Command Wordscoveiiiiniiviiiiiiiii e e 6-19
6.1.12 Coprocessor-Detected Protocol Violationccocvvviviiiiieiiniinininns 6-19
6.1.13 Recovery from EXCEPtiONScuiuiiiieniriiiiei ettt eenas i eee e 6-21
6.2 Main Processor Detected EXCEptioNS........ccoevviiiniiiiiieniiiiini e 6-23
6.2.1 Trap on Coprocessor Condition Instructionccovvviviiiiiiiiniiieenns 6-23
6.2.2 lllegal INSTrUCLIONS .. viviiiiii it e 6-23
6.2.3 Main-Processor-Detected Protocol Violations............c.ccooeiiiniiiniannnn, 6-23
6.2.4 Trace EXCEPLIONS .iuiiiiiiieiiieiiii e e e e e s e e e e aeree e aans 6-24
6.2.5 101 T4 (1] PP 6-25
6.2.6 Address and BUS EITOIS ...i.iiiiiiiiiiiiiiieirn e it e rene e rereaes 6-26
6.2.7 Privilege Violationsccoiiieiieiiiiici i e 6-26
6.2.8 Format Error EXCEPtioNS ..vvvieiiiiiiiiiiiieii i e se s 6-26
6.3 MC68882 Exception Handlersoeieviiiiiiininiieie i eeeens 6-27
6.4 Context SWItChING.....oieieeiiieiii e e 6-27
6.4.1 FSAVE and FRESTORE Instruction Overviews..............coveveiiiiinnnnen. 6-27
6.4.2] & 1 o =10 LT PP 6-28
6.4.2.1 NUll State Frame.......coveiiiiiiiiiii e e e eaas 6-31
6.4.2.2 Idle State Framec.c.oviriiiiiiiiiiii e e 6-31
6.4.2.3 Busy State Frame.........cciuiiiiiiiiiieieii et e ee e 6-34
6.4.3 FSAVE ProtOCOl.....viuiiriiiinieiiiiiiiiin it iesesensir et tenseneannstsennanens 6-34
6.4.3.1 Reset Phase......ccviviiiiiiiiiiiciii e et e e 6-36
6.4.3.2 IdIe PRESE .uveiieieiiiii e e 6-36
6433 Initial Phase.o e 6-36
6.4.3.4 Middle Phase.....cc.cvvininiiiiiiiiit e e e eeaa e e eae 6-36
6.4.3.5 End Phase..........oovvvvvnnenns F et e e rererraeetaat e e ee e eraerarerrrararerne 6-36
6.4.4 FRESTORE ProtoColcuviuiniriiieniieiiiiiinneeneeeianen et asaneieaneaenennans 6-37
6.4.5 Context Switching Summary..........ococviiiiiiiii 6-37
Section 7
Coprocessor Interface
7.1 Chip-Select DECOMEvvviueirii it e e e e e eeaanas 7-1
7.2 Coprocessor Interface Registersocvcvviiiiiiiiiiiiiiiiiinc e, 7-2
7.2.1 Response CIR ($00) ...uiuiiiiiiiiiiiii i ae s 7-3
7.2.2 Control CIR ($02)ceeiiiiiieiiiiie et e e a e e e neanas 7-3
7.2.3 SaVve CIR (B04) ..oyt eie e e e et et e et e e e e e e an e r e e e ens 7-4
7.2.4 ReStore CIR ($Q6)....uuuiniiiieiiieiiii i earaenes 7-5
7.25 Operation Word CIR ($08)cuvvivriniiiiiiereiiieniaterererieiaeienenresenens 7-5
7.2.6 Command CIR ($0A). . ..eiiiiiiiiiriie e e e 7-5
7.2.7 Condition CIR ($OE)......cuuiiireiiiieeieiieeiieetiee e ee e ie e ee et eeerneeaans 7-5
7.2.8 Operand CIR {$10) ..uvuiiiiiiiiiiiiiii e 7-6
7.29 Register Select CIR ($714) ..uvueeiiiniiiiiiiii e eee e e e 7-6
7.2.10 Instruction Address CIR ($18)viviiuiriiiiiiiiiiiiie e e 7-7
7.2.11 Operand Address CIR ($1C)uuvuuiuiiiiiiniiiiiiiiiineee e, 7-8

]
MOTOROLA - : MC68881/MC68882 USER'S MANUAL
viii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
7.3 Interprocessor Transfers.........covviviiiiiiiiiiiiinin i, 7-8
7.4 Coprocessor INSTrUCIONS ...cvvviiuiviiniiiiiiiinii e e 7-8
7.4.1 INStruction ProtocCol.....cccviviiiiiiiiiiiiiiiici e 7-9
7.4.2 Response Primitives.........covviiiiiiiiiiiii e, 7-9
7.4.2.1 NUll Primitive......covoveriiveniininicenecescnneen e et 7-10
7.4.2.2 Evaluate Effective Address and Transfer Data Primitive................ 7-12
7.4.2.3 Transfer Single Main Processor Register Primitivecccveuene, 7-13
74.2.4 Transfer Multiple Coprocessor Registers Primitive...............c........ 7-14
7.4.25 Take Pre-Instruction Exception Primitiveooovoiiiiiiinniinann, 7-15
7.4.2.6 Take Mid-Instruction Exception Primitive.......c..coccvvviinniecninennnn, 7-16
7.4.2.7 Response Primitive SUmMmary.........cooviiiieiiiiiiiiiciinenicnceneene, 7-17
7.5 Instruction Dialogscocciieiiiiiiiiiiiii 7-19
7.5.1 General INStrUCtiONSvvviiiiiiiii e e 7-20
7.5.1.1 Register-to-Register (OPCLASS 000)........ccccvvnveniiiiiniinniiinienenne. 7-20
7.5.1.2 External-to-Register (OPCLASS 010).........cceveieriiniiiniiiiiciienenee, 7-21
7.5.1.3 Register-to-External (OPCLASS 011).....ovveiiiiiiniiicineiciiennenens 7-22
7.5.1.4 Move Control Registers (OPCLASS 100 and 101) ..cccovvereniiininennns 7-24
7.5.1.5 Move Multiple FPn (OPCLASS 110 and 111).ccuiveniniiinencieninnnenens 7-24
7.5.2 Conditional INStruCtioNSvcviviviiiiiiiii e 7-26
7.5.3 Context SWitch INSLrUCIONS ..vvvvivivii i e 7-26
7.5.3.1 FSAVE. ..ot bierttirarr et ieneansa 7-27
7.56.3.2 FRESTORE.ttt ettt e et eerineenseeaianensenearsernaranrrenenas 7-28
7.5.4 EXCEPLion PrOCESSING vvvvevivvrieriieiiririetiieertressniesesriinaseeessaesneeens 7-28
7.5.4.1 Take Pre-Instruction Exception...........ccvivviiiiiiiiiiiiiiii e, 7-29
7.5.4.2 Take Mid-Instruction EXCEPLiONccvvveiiiiuiiiniiiiiiiinniiiaaes 7-30
7.5.4.3 Mid-Instruction INterrupt.....ccviiiiiiiiiiiic e 7-33
7.5.4.4 Take BSUN EXCEPLION ..uvuvieiitiieiiiiieeeiieirieesicnir s s tnnensaanes 7-33
7.5.4.5 F-Line Emulator EXCeptionvvviniiiieiiiiiiiinieiiinincnniaiannns 7-36
7.5.4.6 Format Exception, FSAVE Instructioncccocviiiiiiiiiiniiienninnas 7-37
7.5.4.7 Format Exception, FRESTORE Instruction..............cocevveiviniiinenns 7-38
Section 8
Instruction Execution Timing .
8.1 Factors Affecting Execution Times...........cociiiiiiiiiiiinni s 8-1
8.1.1 Instruction Start-Up Phase........cccooiiiiiiiiiiia 8-2
8.1.2 Calculation Phase.....c.cuvuviieiiiiiiiiniiiinie s irsiense e iiscae s nasennes 8-3
8.1.3 Round/Store Result Phasec.cvviiiiiiiniiiiieiiiiiicieciicine e eees 8-3
8.2 Concurrent Instruction EXecution...........covviviiiiiiiiiiiiiiiae 8-4
8.3 Interrupt Latency Times.....oovuiiiiiii i e e eaas 8-5
8.4 Coprocessor Interface Overhead.......c.cccivviiiiiiniiiiiiiiiii s 8-6
85 Execution Timing Tablesc.ovievreririiiieeiriiiineeeeriineeeeer e eean e eeeeanns 8-8
8.5.1 Timing Tables for Typical EXECUtiONvveeeiiiiviicniiieeii e 8-10
8.5.1.1 Effective Address Calculationsocoviiiiiiciiiiiiiiniiiinn 8-10
8.5.1.2 Arithmetic Operations......coc.vuveieiciii e ctirre e aene 8-11
8.6.1.3 MC68882 Concurrent Operations........cccoevevuverriniieiiniiiieneneinanens 8-14
8.5.1.4 Move Control Register and FMOVEM Operations..........c.coovvvenns 8-15

MC68881/MC68882 USER'S MANUAL MOTOROLA
ix

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
8.5.1.5 Conditional INStrUCHIONS. . ..iiiiiriieiiet i 8-16
8.5.1.6 FSAVE and FRESTORE InStructions.........ccccvivrveiiiiiniiiiiienininenns 8-17
8.5.2 MC68881 Detail Timing Tablesvvveveriiiviiiiie e iereaeeiees 8-17
8.6.2.1 Instruction Start-Up......cccooeiiiiiiiiiiii 8-23
8.5.2.2 Transfer Operand.........cocovuviieriiini i 8-24
8.5.2.3 Input Operand CONVErsioNvuveieiineriiieriieiiie i erenens 8-25
8.5.24 Arithmetic Calculation..........oceviiiiiii e 8-27
8.5.2.5 Output Operand CONVEIrSION....o.iiieiiiiiiieiee i eaeaaane 8-30
8.5.2.6 Rounding and Exception Handling...........coovveviiiiininiiiiininciininnns 8-31
8.5.2.7 Conditional Terminationccvveeiiiiiir i 8-32
8.5.2.8 Multiple Register Transfer......c.oiiiiiieeiiiiin e 8-34
8.5.2.9 State Frame Transfer......oovviiiiiiiiiii e 8-34
8.5.2.10 Exception Processing.....cvuveveeuiiveiniiiiinine e 8-35
8.6 Main Processor Instruction Overlap Timingc..cooveeeeiiivineniiienecenenns. 8-36
Section 9
Functional Signal Descriptions
9.1 Address Bus (A0 through Ad)coiiiiiiiiiii s 9-1
9.2 Data Bus (DO through D31)coooiiiiiiiiiiiiiiiiie e, 9-2
9.3 Size (SIZE)........ e e e e 9-2
9.4 Address Strobe (AS).....iciieiiiiiii i e 9-2
9.5 (o TR T= e (O] TP 9-3
9.6 REAA/WIIte (R/W)uiviiiiiiiiiiiiiiiie e 9-3
9.7 Data Strobe (DS) 9-3
9.8 Data Transfer and Size Acknowledge (DSACKO, DSACK1)cccovvvivinininnns 9-3
9.9 RESEE (RESET) .ouiuitiiiiiiiriit st r e e e e e e e e s e e s e e e rn e aar e e eaneaas 9-4
9.10 ClOCK (CLK) ettt ett ittt ee ettt e e e e e et ettt e e e e sa e ne s raraneinas 9-4
9.1 Sense Device (SENSE) .oviiiiiiii i it e 9-4
9.12 Power (VCC and GND) c.oviuiniiiiiiie e e e e e e e 94
9.13 NO CONNECE (NC).euivniriinreii e e et r e e e s e s e e aaes 9-6
9.14 SIgNAl SUMIMIAIY . et e e e ee e aeaees 9-6

Section 10
Bus Operation

10.1 Basic Transfer Mechanism OVerview........c..oocvvviiiiiiniiiininiinieneenenn 10-1
10.1.1 32-Bit POt Size .ovivuiiiiieiiii e e 10-2
10.1.2 TB-Bit POIt SIZ8 ...viitiiiiii e e e 10-3
10.1.3 8-Bit POIt Size...uivieiiiiiiiiiii i 10-4
10.2 Rt 0o 1T - 1 {]o] o PSP 10-5
10.3 Chip Select Timing.......cocovviviviniiiiiiieannes e 10-6
10.4 Bus Cycle Functional Descriptionsccovveiiiiniiirenieinieeereiaeeneneinanes 10-9
10.4.1 Synchronous Read CyClesuviviriiiiiiiiiiiiiiii e 10-9
10.4.2 Asynchronous Read CyCleS........cocvviviiiiiiiiiiiiniiiiiniinecrnineneaes 10-11
10.4.3 Asynchronous Write CyClesvcieiiiieiiniiiiiici i eeceenas 10-12

MOTOROLA MC68881/MC68882 USER'S MANUAL
X

TABLE OF CONTENTS (Concluded)

Paragraph Page
Number Title Number
10.5 Inter-Cycle Timing ReStriCtionS.vcveiiiiiiiiiieniiii i s ereaenee 10-12
10.6 Coprocessor Interface Protocol Restrictionscoovviveiiniiniinincnieninninnnn, 10-14

Section 11
Interfacing Methods

11.1 FPCP and MPU INterfaCingovviviiiiiiiiiiiiieii i cre i cnine e ve e raenens 11-1
11.1.1 32-Bit Data Bus Coprocessor Connectionc.cvveviiiiniiveieriniiiiinninens 11-1
11.1.2 16-Bit Data Bus Coprocessor CONNECHIONvv.vvvivinininininiiiiiiinininnnnnns 11-2
11.1.3 8-Bit Data Bus Coprocessor CONNECLioN.......c.cvvivireiniierininiiinneneniaens 11-2
11.2 Interfacing the FPCP as a Peripheral...........cccoviiiiiiniiniiiii 11-2
11.2.1 16-Bit Data Bus Peripheral Processor Connectionccovvevenninnnnnns 11-3
11.2.2 8-Bit Data Bus Peripheral Processor Connection..........ccoccovvviiininenen. 11-3
11.3 Peripheral Processor Operation..........veiiiieiniiiiiiiinii e e eeeaas 11-5

Section 12

Electrical Specifications

121 Maximum Ratings.....ocoeuinieiiniiiiiiiiiiiii e 12-1
12.2 Thermal Characteristics — PGA Package.........cc.coovveiiiiiiiiiniiieiniiiennnn, 12-1
12.3 Power CoNSIderationsviiiriiieiniiiicieriinne e nen e s s enaneaenns 12-1
124 DC Electrical CharacteristiCsocvvviiiviiiiiiiirniiiiiiiiiieireiiie e enaans 12-2
12.5 AC Electrical Characteristics — Clock Input..........oooviiiiiiiiininciiinns 12-3
12.6 AC Electrical Characteristics — Read and Write Cycles...........cocoevvnivininene. 12-4

Section 13

Ordering Information and Mechanical Data

13.1 Standard MC68881/MC68882 Order Informationcccvevvveveieiriivniininnns 13-1
13.2 PN ASSIgNMIENES . .\ttt e e e e et et st ae e 13-2
13.3 Package DiMENSIONS. . ..ciuiiiiririneereiitirneneneeenetsineanenertaersrneneneransanenes 13-3

Appendix A

Glossary

Appendix B
Abbreviations and Acronyms

Index

o
MC68881/MC68882 USER'S MANUAL MOTOROLA
xi

LIST OF ILLUSTRATIONS

Figure Page
Number Title Number
1-1 MC68881/MC68882 Programming Model..........coovvviiiiiiiiiniiiiiniinn, 1-3
1-2 Exception Status/Enable Bytec.cooviiniiiiiiiiiii 1-4
1-3 Mode Control Bytouiviieiiiiiiiiiiiiiiii e e s e e e na 1-4
1-4 Condition €ode Byte.....cviviieiiiiiiiirnr i e 1-4
1-6 QUOLIENE BBttt e e 1-4
1-6 Accrued EXception Byle......cicivuiiiiiiiiiiiiiiiiiici e 1-5
1-7 Typical Coprocessor Configurationcoeviviiiiiiiiiiiiiio 1-5
1-8 MC68881 Simplified Block Diagramcvviiiiviienininininiiniaan, 1-6
1-9 MC68882 Simplified Block Diagramcvcvvniniiiiiiiiiiiiiniininan 1-7
1-10 MC68881/MC68882 Data Format SUMMArycccvviivriiieiiineiissieiisinienns 1-11
2-1 MC68881/MC68882 Programming Model........cocvvvveniiiiiiiiiininnciiieneees, 2-1
2-2 MC68881/MC68882 FPCR Exception Enable Bye............coovvviiinninininennnn, 2-2
2-3 MC68881/MC68882 FPCR Mode Control Bytecocevvviiiviniiniiniiinnnnnns 2-3
2-4 MC68881/MC68882 FPSR Condition Code Bytec.cevvvveiiiiniininininiininanes 2-4
2-5 MC68881/MC68882 FPSR Quotient Byteocvvviviiiiiiineniiiiiiiiniennn, 2-5
2-6 MC68881/MC68882 FPSR Exception Status Byteccoovvviiiiiiiniiinnne, 2-6
2-7 MC68881/MC68882 FPSR Accrued Exception Byte.........cvvevviiviineniiinnnnne. 2-7
3-1 Signed Integer Data FOrmats........cccoeveiiiiiiiniiinininni i 3-1
3-2 Binary Real Data FOrmatsccociviiviiiiiiniiiiii e ae 3-2
3-3 Format of Normalized Numbers.......c.ccociiiiiiiiiiiiiciiii 34
3-4 Format of Denormalized NUMDErScoovviiiiiiiiiiiiiii e 3-4
3-5 FOrmat of Zero.......ccoiiiiiiiiiiiiii 3-5
3-6 Format of Infinityccooereiiii 3-5
3-7 Format of NOot-A-NUMDEIS ..ot 3-5
3-8 Binary Real Data Type SUMMary......cocvvviviieiiiiininiininiiniinnieenenss 3-6
3-9 Packed Decimal Real Data Formatccooeviiiiiiiiiiiiin, 3-7
3-10 Intermediate Result Format........cccoiviiiniiiiiiiiiiiii 37
3-11 Packed Decimal Real Data Format Detail...........ccoviviiiiiiiiiiiiinninieninnn., 312
4-1 Instruction Description FOrmat..........ocoviiiiiiiiiiniiii 4-12
4-2 Operation Table Example (FADD Instruction)cocvvviveriiniiiniineniinnnnn. 4-13
5-1 MC68881 Concurrency — FMUL Instructionc.coovviiiiiiiiiiiinniiniinins 5-2
5-2 MC68881 Concurrency - FMUL Followed by FMUL and FMOVE................. 5-6
5-3 MC68882 Concurrency — FMUL Followed by FMUL and FMOVE............... 5-7
5-4 Rolled Version of Linpack LOOP......c.ccoviviiniiiiiiiiiiiiins 5-9
5-5 Optimized Linpack LOOP «.vveiriniiiiisiiiiii s e 5-10
5-6 Minimum Exception Handlercooooiiiiiiiiiii 5-11
5-7 Idle State Frame Access Example......coooviviiiniiiiiiiiiinn e, 5-11
5-8 Simultaneous Task Switch Interrupt and Floating-Point Exception 5-14
5-9 Coprocessor Identification Code..........cvvvvniiiiiiiiiiiiiii 5-15

MC68881/MC68882 USER'S MANUAL MOTOROL'/}
X1

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
6-1 EXC and ENABLE Byte Bit ASSignments......coveviiiniiiniininiiniiiiiniinna, 6-4
6-2 Intermediate Result Format.........coovviiiiiniiiiiiii e 6-15
6-3 Rounding Algorithm ..o 6-16
6-4 MC68881 State Frame FOrmMatsvvvvvrieviiiiiiniiinniererinerernsiaisnierenanas 6-29
6-5 MC68882 State Frame FOrmatsccoviviivieriiiiiiiiiiiniieiiaens 6-30
6-6 2 LU P To T o] o 1 - S PP 6-32
6-7 Full Context Save/Restore Instruction SEqUENCESvviviviinviiiiniiiiiiiianas, 6-38
7-1 MPU Address Bus Encoding for Coprocessor ACCESSES ...ouvviviniereruriinenins 7-1
7-2 FPCP Coprocessor Interface Register Mapcocviiiiiiiiiiinniin, 7-2
7-3 Control CIR RegiSter .. uuiiiiiiitiiieiiciiieient et enensiscrsenraniaasenneasass 7-3
7-4 Operand CIR Data Alignment.........coveveirieiiniaianeneeiiin e nenenns 7-7
7-5 Coprocessor Instruction General Formatccoeviviiiiiiiiiiiiniii.. 7-8
7-6 FPCP Instruction Operation Wordcooiiiiiiniieiniiiiiii s 7-8
7-7 MC68000 Coprocessor Response Primitive General Format...................... 7-9
7-8 Null Primitive FOrmat......oooviiiiiiiiiiiiin e 7-10
7-9 Evaluate Effective Address and Transfer Data Primitive Format................. 7-12
7-10 Transfer Single Main Processor Register Primitive Format....................... 7-13
7-11 Transfer Multiple Coprocessor Registers Primitive Formatc.oevns 7-14
7-12 Transfer Multiple Floating-Point Data Register to Stack Example............... 7-15
7-13 Take Pre-Instruction Exception Primitive Format.............ccovcvivniininnnnn, 7-16
7-14 Pre-Instruction Exception Stack Frame........ccovviiiiiiiiiiieniiianninn e 7-16
7-15 Take Mid-Instruction Exception Primitive Formatcoovviiiiiiiiiiinnn 7-17
7-16 Mid-Instruction Stack Frame..........coveiiiiiiriiiiiiiiiree e 7-17
7-17 MC68881 Register-to-Register Instruction Dialog.......coevvviviiiiiiiiniinininn. 7-21
7-18 MC68881/MC68882 External-to-Register Instruction Dialog...........cc.evuniene. 7-21
7-19 MC68882 External-to-Register Instruction Dialog........cccvvrvrveriveniniiierennnss 7-22
7-20 MC68881/MC68882 Register-to-External Instruction Dialog.........cocoeviininns 7-23
7-21 MC68882 Register-to-External Instruction Dialog (S,D, and X Formats) 7-24
7-22 Move Control Register Instruction Dialogcvveviiiniiiiiiiiinienns 7-25
7-23 Move Multiple Floating-Point Data Registers Instruction Dialog................. 7-25
7-24 Conditional Instruction Dialog...c.ceeeeirerniniiin e 7-26
7-25 FSAVE INStruction Dialog.....cuvuiueieieniiiiiiiiiiiineieriene e eenenenrennaanearannes 7-27
7-26 FRESTORE Instruction Dialogcovviviiiiiiiiiiiiii 7-28
7-27 Take Pre-Instruction Exception Dialog — MCB8881........c.cvevvviniiiirnnenens, 7-29
7-28 Take Pre-Instruction Exception Dialog — MCB8882..........c.cevviviiniiinnennnnn. 7-31

7-29 Take Pre-Instruction Exception Dialog — MC68882

with No FSAVE Instruction in the Handleroocviieiciiieniniiiiniannns 7-31
7-30 Take Pre-Instruction Exception Dialog — MC68882

with No BSET Instruction in the Exception Handler................c.cceeiiniis 7-32
7-31 Take Mid-Instruction Exception Dialog — MC68881......c..cvevviivririnncninnnnns 7-32
7-32 Take Mid-Instruction Exception Dialog — MC68882

General ConCUITENT CaASE ..vuvivirinieiiiiieeieinereienierenrtenerenanensanenaaanans 7-34
7-33 Take Mid-Instruction Exception Dialog — MC68882

FMOVE CONCUITENT CASE. . uiuiiriiieiaetiieeiaineneiratraeeesesisnentensnerenmans 7-34
7-34 Take Mid-Instruction Exception Dialog — MC68882

with No FSAVE Instruction in the Handlercoooiviviniiiiniiicnnnnns 7-35

MOTOROLA MC68881/MC68882 USER’'S MANUAL
Xiv

LIST OF ILLUSTRATIONS (Concluded)

Figure Page
Number Title Number

7-35 Take Mid-Instruction Exception Dialog — MC68882

with No BSET Instruction in the Handlerc.coieiiiiiiiiiiicnniinnnnns 7-35
7-36 Mid-Instruction Interrupt Dialogc.ovvivririeieiiiii e 7-36
7-37 Take BSUN Exception Dialog......ovveriiiiiiiiiiiiiciiiiniee e e eneneeisananes 7-36
7-38 Take F-Line Emulator Exception Dialog.......cocvviiiiiiiiiiiiniiiiiiiniinenennnn, 7-37
7-39 FSAVE Format Exception Dialog........covueeeiiniiiiiciiiniciiieneccneeeeiaas 7-37
7-40 FRESTORE Format Exception Dialogvvvveevriiiniiiniiiniiineciieenennenans 7-38
8-1 Non-Concurrent Instruction Execution, Interrupts Allowed 8-5
8-2 Best-Case Coprocessor Interface Overhead Timing........cocovveivininiiininnnnn, 8-7
8-3 Worst-Case FPCP Interface Overhead Timingcoveiiiiiiininiiiiiineniinnn.. 8-8
8-4 Instruction Overlap Examples — FMOVE.X FPmM,FPn.........cccovvniniiicnnnnn 8-20
8-5 Instruction Overlap Example — FMOVES.S (An),FPn......ccoveviiiiniiiiinennnnn, 8-21
9-1 MC68881/MC68882 Input/Output Signals.........ocvvnivveinieniiieiiiieninanne 9-1
9-2 Sense Device Circuit EXampPle....oivereeiiiiiiiiiiiniiriniiie e e ccee e ean 9-5
10-1 FPCP Data Bus Bit ASSIGNMENTS ...vvvvieriiiiiieieeninerraeeeaenenarnrneerrnennes 10-2
10-2 Data Bus Activity vs Port Size and Operand Alignmentcoccvvievninns 10-2
10-3 FPCP Reset Logic EXample.......ccoviiiiiiiiiiiiininc e 10-6
10-4 Example of Early Chip Select Circuitsvvvvvieviviiiiencn i, 10-7
10-5 Example of Late Chip Select Circuitccveiiiieiiiiiiiiiiii e reneseaens 10-8
10-6 Synchronous Read Cycle Timing Diagram.......cc.ceeeeieiiiiiiiinnciniiiinenen. 10-10
10-7 Asynchronous Read Cycle Timing Diagramcoovviiiieiiiniiincnennnnennnn.. 10-12
10-8 Asynchronous Write Cycle Timing Diagram...........coovvviiiiiiiiniiiin . 10-13
32-Bit Data Bus Coprocessor CONNECION......vvvvvrieiiirineirinennieaieneineenans 11-1
16-Bit Data Bus Coprocessor ConNeCtion........c.cveeveiviiniiiiensnnniinniniinn 11-2
11-3 8-Bit Data Bus Coprocessor CONNECIONveuveieiereiiiiiiiiieieiieneiiaenes 11-3
16-Bit Data Bus Peripheral Processor Connection.......c.ccoeveiveiiviiiinininnnens 114
1-5 8-Bit Data Bus Peripheral Processor Connectioncocovviiiiiiininininnes 11-4
12-1 =) O 6 T T P 12-2
12-2 Clock Input Timing Diagramcoc.euieeieiinininiiniiii e 12-3
12-3 Asynchronous Read Cycle Timing Diagramcccovviiiiiiiiiiiininininnn.. Foldout
1
12-4 Asynchronous Write Cycle Timing Diagramcoovoviviiiiiin, Foldout
2
12-5 Synchronous Read Cycle Timing Diagram.......cccocvveieinieviniiniiiiennnian, Foldout
3

MC68881/MC68882 USER'S MANUAL MOTOROLA
XV

LIST OF TABLES

Table Page
Number Title Number
1-1 EXponent and MantiSSa SiZESuuuuurueeierieeeerereeerrisursrnisisesseseesseenns 1-10
2-1 Condition Code versus Result Data TypPe........ccevvvvererininiiiiniieinieineennnn, 2-4
3-1 Single Precision Binary Real Format.........cocoiiiiiniiiiiiniiiiniciisncineiae e 3-9
3-2 Double Precision Binary Real FOrmatcccovvviniiiiniiinininniicieninenenensn, 3-10
33 Extended Precision Binary Real Format.............covvvviiiiiiniiniiiiinnineennen, 31
3-4 Decimal String Type Definitions......ccccovivviiiiiiiiiinr e, 3-12
4-1 Data Movement OperationS.......c..cuuvieiiniiniiiiiriirineiiinersnerieineerenreeenns 4-2
4-2 Dyadic Operation FOrmat.........coieiiiiiiiiiiiiieniiei e e aree e eaeens 4-2
4-3 Dyadic OPErationsS.......ivu.iueiniitieieit ettt eeiie e e e ee et ert e et e eenieteeereaans 4-3
4-4 Monadic Operation FOrmatvuviiiiiiiiiiiiie e rea e e e 4-3
4-5 Monadic Operationscc.ocveviiriiniiiiiiiii s ieeiireensennesreenaeaeneiin. 4-3
4-6 Dual Monadic Operation FOrMAatcccuvieniiiiirieeeeiieiieiineenereaerieienenns 4-4
4-7 Program Control Operations......o.u.iiieeiiveiiiieririeiinieirireireerienerarnesnserens 4-4
4-8 Conditional Test MNEMONICS «....oviiuiiiiie et ire e ae e eaenens 4-4
4-9 System Control Operationscceeevviveeriiiniireneirniiircrerersecenenione. 45
4-10 Effective Addressing Mode Categories.......icvvviveeirreeniriviiieeiinerenneenieneen 411
4-11 General Type Instruction Command Word Fieldscccoccvvivinviiennnninnns 4-121
4-12 Register Field ENCOAING.......covivviirieeiciiiiiiinieiie s ereen i e e rrnnsaeees 4-122
4-13 Extension Field Encoding for Arithmetic Operationscccovveevivenenninnnes 4-123
4-14 Source Format Field ENCOdingcccviviiiininiiiiiniieireneneneiiiinerenenensnnes 4-124
4-15 Destination Format Field Encodingcocvvvvenen. ererre e aeaas 4-125
4-16 Extension Field ENCOAiNg......coivviuiiiiiiiiiiiiieiini e 4-126
4-17 Encoding for Move FPcr Operations..........cvcvuiiiiiiiiiiiieniiieiinienicnnisaaes 4-127
4-18 Encodings for Move Multiple FPn Operations..........ccovvvevciiiiiniininnenennns 4-128
4-19 Encodings for the FDBcc, FScc, and FTRAPCC INStUCtioNS......c.ccvvvivvnneene. 4-129
4-20 Conditional Predicate Evaluation Responses...........ccovvvviiciirivniiinenenenns. 4-130
4-21 Effective Address Field Encoding SUmmarycceeveiiiiiiiiniienniiininenenn, 4-133
4-22 Conditional Predicate Field Encoding Summary..........covevieiiineiiiinennnnnnn. 4-134
5-1 Minimum-Concurrency INStrUCTIONS .i..uvevvriririineeiieiiiireeiracenrnreenienens 5-3
5-2 Monadic INStrUCHIONS . c.uvviieiiiiiiii e 5-5
5-3 Dyadic Operations.......cou.eeeiiiiiiviriiii i rere e e 5-5
5-4 Partial-Concurrency INStructions.........cvvvviiniiininininiiinii s i.. 55
5-5 Fully-Concurrent INStruCtiONScoviiinieiiicein e e e 5-5
5-6 Conditional INStrUCHIONS. .. .viiiiitii e e e e e eenes 5-6
5-7 FMOVE Instruction EXecution Times.vevieiiiiiniriniiiieiinianesinninaenens .. 59
5-8 State Frame SIzeSc.vuvvieiiiiiiiiiiii i s 5-10
6-1 MC68881/MC68882 Exception Vector ASSignments........cvvveveeevinvnenenenens. 6-4
6-2 Possible Operand Errors........ciiuiiveeeiiieiiiiiinensiirieeiieressreneirarnenenees 6-7

MC68881/MC68882 USER'S MANUAL MOTOROLA
xvii

LIST OF TABLES (Continued)

Table Page

Number Title ‘ Number
6-3 Possible Divide-by-Zero EXceptions..........c.coiviiiiiiiiiiiniiinn, 6-13
6-4 BIU Flag Bit Definitionsvvvviviiviiiiiiciiiici i 6-33
6-5 MC68881/MC68882 Responses to Save Command.........cc.ovvevveveinarnennnnn. 6-34
6-6 MC68881/MC68882 Format Word Definitions..........c.ooveviiiiiiiiiniinn, 6-35
7-1 MPU CPU Space Type Field Encodingcccoviiiiiiiiiiiiininni s 7-2
7-2 Coprocessor Interface Register Characteristics.............cocoviiiiiiiinnn, 7-3
7-3 Null Primitive ENCOdiNgsvvviiiiiiiiiiiiiiiin s 7-11
7-4 Coprocessor Valid Effective Address Codesvvvvvirieuneiriinieineiireninniennns 7-12
7-5 Evaluate Effective Address and Transfer Data Primitive Encoding.............. 7-13
7-6 FPCP Vector NUumbers.......ccccovviiiiiiiii e 7-15
7-7 MC68881/MC68882 Primitive RESPONSES ...covvviviiviiiiiiiiiiiiinniiiiiinienes 7-18
8-1 Effective Address Calculationscoovvviiiiiiiiiiii 8-11
8-2 MC68881 Overall EXecution Times......ovvveieiiiniiiiiiiiciise e s 8-12
8-3 MC68882 Overall EXecution TimMeS.....cvuveieiiieieiiiriiiiiiiinieeerenieenes 8-13
8-4 Bus Cycle Activity — Arithmetic Operations........cc.cvvviviviiiiiiiiinnnin, 8-14
8-5 Timing Calculation Example..........cooiiiiiin 8-15
8-6 Move Control Register and MOVEM Execution Times.............coceeiinnnnen, 8-16
8-7 Conditional Instruction Execution Timescovvvviviiiiiiiiniininen, 8-16
8-8 FSAVE and FRESTORE Instruction Execution Times..........c.cocovvineninieninen, 8-17
8-9 Instruction Start-Up Timescoveiiriiniiiiii e, 8-23
8-10 Null Primitive Time Values.......cccoovviiiiniiiiiiiiii 8-24
8-11 Operand Transfer Time — External Operand.............c.coocviiiiiiiiiinnn, 8-24
8-12 Operand Transfer Time — Immediate Operandcccooviiiiiiiiinine, 8-24
8-13 Input Operand CONVEISIONc.viviiiiiiiiiiiiiini e 8-25
8-14 Arithmetic Calculation Times — Dyadic Operations...........ccoveveiiiiniiininnn 8-27
8-15 Arithmetic Calculation Times — Monadic Operations............ccovvvieiiinennns 8-30
8-16 Output Operand CoONVEISION......viitirieiiiiriaenereienere et estarreraerrenssaenes 8-31
8-17 Output Operand Conversion — Binary Real Formats..............cccvvvvinnnene. 8-31
8-18 Rounding Operation Time Valuesccoviviiiiiiiiiiiin e 8-32
8-19 Exception Handling Time Valuesccocvviiiiiiniiiiiiiiiccine e 8-33
-8-20 Conditional Termination Times Valuesc.cvcveiviiiiiiiiiiiiiiiieeinens 8-33
8-21 Multiple Register Transfer Time Values.........c..coovvivviiiiiiiiiniinniin 8-34
8-22 State Frame Transfer Time Values........ccociiiviiiiiiiiiiiii i 8-34
8-23 Instruction Termination Processing Time Values.............coooeiiiiiiiiiiiinnn 8-35
8-24 Exception Processing Time Values......c.cooiviiiiiiiiiiiiiciii e 8-35
8-25 Overlap Allowed Times — Arithmetic Operations..........cccovvvviininiiinnnnn, 8-37
9-1 Coprocessor Interface Register Selection.......ccovvvviveiiiiiiinininiina, 9-2
9-2 System Data Bus Size Configurationccocooiiiiiiiiiiiiiii 9-2
9-3 DSACK ASSEITIONS. .. uetieiteii ittt e et et e e rane e 9-3
9-4 VCC and GND Pin ASSIGNMENTS t.uuviiiiiiiieetiereiiensnseiireiennineneenienenens 9-5
9-5 SIgNAl SUMIMIAIY ...ttt e st e ae s e a st anenanaaes 9-6

MOTOROLA MC68881/MC68882 USER'S MANUAL
Xviii

SECTION 1
GENERAL DESCRIPTION

The MC68881 and MC68882 floating-point coprocessors (FPCP) both fully implement the /EEE
Standard for Binary Floating-Point Arithmetic (ANSI-IEEE Std 754-1985) for use with the Motorola
M68000 Family of microprocessors. The coprocessors are both implemented in VLSI technology
to give systems designers the highest possible functionality in a physically small device. The
MC68882 provides an increased level of performance in a coprocessor that is fully compatible
and physically interchangeable with the MC68881.

Intended primarily for use as coprocessors to the MC68020/MC68030 32-bit microprocessor unit
(MPU), the MC68881 and MC68882 provide a logical extension to the main processing unit integer
data processing capabilities. These coprocessors provide a very high performance floating-point
arithmetic unit and a set of floating-point data registers utilized in a manner that is analogous to
the use of the integer data registers. The MC68881/MC68882 instruction set, a natural extension
of all earlier members of the M68000 Family, supports all of the addressing modes of the host
MPU. Due to the flexible bus interface of the M68000 Family, the MC68881 or MC68882 can be
used with any of the MPU devices of the family and may also be used as a peripheral to other
processors.

The major features of the MC68881 and MC68882 are:

e Eight general purpose floating-point data registers, each supporting a full 80-bit extended
precision real data format (a 64-bit mantissa plus a sign bit, and a 15-bit signed exponent).

® A 67-bit arithmetic unit to allow very fast calculations, with intermediate precision greater
than the extended precision format.

® A 67-bit barrel shifter for high-speed shifting operations (for normalizing, etc.).
® Forty-six instructions, including 35 arithmetic operations.

® Full conformance to the ANSI-IEEE 754-1985 standard, including all requirements and sug-
gestions.

® Support of functions not defined by the IEEE standard, including a full set of trigonometric
and transcendental functions.

® Seven data formats: byte, word, and long word integers; single, double, and extended pre-
cision real numbers; and packed binary coded decimal string real numbers.

Twenty-two constants available in the on-chip ROM, including m, e, and powers of 10.
Virtual memory/machine operations.

Efficient mechanisms for exception processing, context switches, and interrupt handling.
Fully concurrent instruction execution with the main processor.

Use with any host processor, on an 8-, 16-, or 32-bit data bus.

In addition to these features, the MC68882 provides:
® Concurrent execution of multiple floating-point instructions.

® Special purpose hardware for high-speed conversion of binary real memory operands to/
from the internal extended format.

MC68881/MC68882 USER'S MANUAL MOTOROLA
1-1

® Simultaneous access to the floating-point registers by the MC68882’'s conversion and arith-
n metic processing units.

® Reduced coprocessor interface overhead to increase throughput.

1.1 THE COPROCESSOR CONCEPT

The FPCP functions as a coprocessor in systems where the MC68020 or MC68030 is the main
processor via the M68000 coprocessor interface. It functions as a peripheral processor in systems
where the main processor is the MC68000, MC68008, or MC68010.

The FPCP utilizes the M68000 Family coprocessor interface to provide a logical extension of the
MPU registers and instruction set in a manner that is transparent to the programmer. The pro-
grammer perceives the MPU and FPCP execution model as if both devices were implemented on
one chip.

A fundamental goal of the M68000 Family coprocessor interface is to provide the programmer
with an execution model based upon sequential instruction execution by the MPU and the FPCP.
For optimum performance, however, the coprocessor interface allows floating-point instructions
to execute concurrently with MPU integer instructions. Concurrent instruction execution is further
extended by the MC68882, which can execute multiple floating-point instructions simultaneously.
However, the coprocessor interface and the FPCP are designed to maintain a strictly sequential
instruction execution model from the programmer’s viewpoint.

The FPCP is a non-DMA type coprocessor that uses a subset of the general purpose coprocessor
interface supported by the MPU. Features of the interface implemented in the FPCP are as follows:

® The main processor and the FPCP communicate via standard M68000 bus cycles.

® Communication between the main processor and the FPCP is not dependent upon the ar-
chitecture of the individual devices (e.g., instruction pipes or caches, addressing modes).

® The main processor and the FPCP can operate at different clock speeds.
® The FPCP instructions support all addressing modes provided by the main processor.

o All effective addresses calculations and data transfers performed by the main processor at
the request of the coprocessor.

e Overlapped (concurrent) instruction execution enhances throughput while maintaining the
programmer’s model of sequential instruction execution.

® Coprocessor detection of an exception that requires a trap to be taken is serviced by the main
processor at the request of the FPCP.

® Support of virtual memory/virtual machine systems is provided via the FSAVE and FRESTORE
instructions.

® Up to eight coprocessors can reside in a system simultaneously.
e Multiple coprocessors of the same type are allowed.

e Systems can use software emulation of the FPCP without reassembling or relinking user
software,

1.2 HARDWARE OVERVIEW

The MC68881 and MC68882 are high performance floating-point devices designed to interface
with the MC68020 or MC68030 as coprocessors. These coprocessors fully support the MPU virtual
machine architecture and are implemented in HCMOS, Motorola’s low power, small geometry

MOTOROLA MC68881/MC68882 USER'S MANUAL
1-2

process. This process allows CMOS and HMOS (high density NMOS) gates to be combined on
the same device. CMOS structures are used where speed and low power are required, and HMOS
structures are used where minimum silicon area is desired. As a result, HCMOS technology
provides the combined advantages of high performance and low power consumption without
enlarging the die size.

In systems using the MC68000, MC68008, or MC68010 as the main processor, the MC68881 or
MC68882 functions as a peripheral processor. The configuration of the FPCP as a peripheral
processor or coprocessor can be completely transparent to user software (i.e., the same object
code can be executed in either configuration).

The architecture of the FPCP appears to the user as a logical extension of the M68000 Family
architecture. Because of the coupling of the coprocessor interface, the MPU programmer can view
the FPCP registers as though the registers were resident in the MPU. Thus, a MPU and FPCP
device pair appears to be one processor that supports seven floating-point and integer data types
with eight integer data registers, eight address registers, and eight floating-point data registers.

The FPCP programming model is shown in Figures 1-1 through 1-6 and consists of the following:

® Eight 80-bit floating-point data registers (FPO-FP7). These registers are analogous to the
integer data registers (D0-D7) and are completely general purpose (i.e., any instruction may
use any register).

® A 32-bit control register that contains enable bits for each class of exception trap, and mode
bits to set the user-selectable rounding and precision modes.

® A 32-bit status register that contains floating-point condition codes, quotient bits, and ex-
ception status information.

® A 32-bit instruction address register that contains the main processor memory address {vir-
tual) of the last floating-point instruction that was executed. This address is used in exception
handling to locate the instruction that caused the exception.

79 63 0

FPO

FP1

FP2

FP3 | FLOATING-POINT
- DATA REGISTERS

FP5

FP6

FP7

31 23 15 7 0 _

| EXCEPTION | MODE
L 0 XCEFTION | o0t | #pcr | conthot RecisTeR

CONDITION EXCEPTION | ACCRUED
LCODE |!]UOTIENTI STATUS EXCEPTIUNJ FPSR } STATUS REGISTER

| INSTRUCTION ADDRESS
I FPAR } REGISTER

Figure 1-1. MC68881/MC68882 Programming Model

MC68881/MC68882 USER'S MANUAL MOTOROLA
1-3

12 n 10 9 8

1 15 14 13
BSUN SNAN OPERR OVFL UNFL 874 INEX2 INEX1
L——— INEXACT DECIMAL INPUT

INEXACT OPERATION

DIVIOE BY ZERD

UNDERFLOW

OVERFLOW

OPERAND ERROR

SIGNALLING NOT A NUMBER
BRANCH/SET ON UNORDERED

Figure 1-2. Exception Status/Enable Byte

PREC RND 0

ROUNDING MODE:
00 TO NEAREST
01 TOWARD ZERO
10 TOWARD MINUS INFINITY
11 TOWARD PLUS INFINITY

ROUNDING PRECISION:
00 EXTENDED
01 SINGLE
10 DOUBLE
11 (UNDEFINED, RESERVED)

Figure 1-3. Mode Control Byte

31 30 29 28 27 26 25 24
0 N z | NAN
l—_—— NOT A NUMBER OR UNORDERED
INFINITY
ZERD
NEGATIVE

Figure 1-4. Condition Code Byte

23 22, 21 20 19 18 17 16

S QUOTIENT

SEVEN LEAST SIGNIFICANT
BITS OF QUOTIENT

SIGN OF QUOTIENT

Figure 1-5. Quotient Byte

MOTOROLA MC68881/MC68882 USER'S MANUAL
1-4 .

0P OVFL UNFL Dz INEX i}

INEXACT

DIVIDE BY ZERO
UNDERFLOW
OVERFLOW

INVALID OPERATION

Figure 1-6. Accrued Exception Byte

The connection between the MPU and the FPCP is a simple extension of the M68000 bus interface.
The FPCP is connected as a coprocessor to the MPU, and a chip select signal (decoded from the
MPU function codes and address bus) selects the FPCP. Figure 1-7 illustrates the coprocessor/
MPU configuration.

As shown in Figure 1-8, the MC68881 is internally divided into two processing elements; the bus
interface unit (BIU) and the arithmetic processing unit (APU). The BIU communicates with the
MPU, and the APU executes all MC68881 instructions. Though the BIU monitors the state of the
APU closely, it operates independently of the APU. The APU operates on the command word and
operands that the BIU passes to it. In return, the APU reports its internal status to the BIU.

The BIU contains the coprocessor interface registers (CIRs). In addition to these registers, the CIR
register select and DSACK timing control logic is contained in the BIU. Finally, the status flags
used to monitor the status of communications with the main processor are contained in the BIU.

The eight 80-bit floating-point data registers (FP0-FP7} and the 32-bit control, status, and instruction
address registers (FPCR, FPSR, and FPIAR) are located in the APU. In addition to these registers,
the APU contains a high-speed 67-bit arithmetic unit used for both mantissa and exponent cal-
culations, a barrel shifter that can shift from 1 bit to 67 bits in one machine cycle,and ROM constants
(for use by the internal algorithms or user programs).

| ‘ Y

MC68881/MC68882

INPUT/OUTPUT

A | Fioamne-pai s MEMDRY
COPROCESSOR

ML I fI7 .-

FUNCTION CODE

10
MC68020/MC68030 ADDRESS BUS > — GLOBAL

PROCESSOR BUS
< DATA BUS

Figure 1-7. Typical Coprocessor Configuration

MC68881/MC68882 USER'S MANUAL MOTORO1L§

BIU
Tl :
Y1 7 vu
COPROCESSOR BUILT IN | CLOCK GENERATOR |
= INTERFACE REGISTER SELF-TEST
L E SELECT AND DSACK REGISTERS

CONTROL
RESET uPC STACK

pPC SELECT

DSACKO,

= CONTROL CIR [T e c
_| =] & MULTIPLEXER uP
s| 13| B8
al |2 5] RESTORE CIR)
2l (8] |'@
= 1E] & INSTRUCTION DECODE KROM
Sl I E=3 1 Bl SAVE CIR PLA(S)

g ¥

|v$

<g

18 RESPONSE CIR

= INSTRUCTION DECODE nROM

- HEF RESPONSE PLA REGISTER
o
=]

STATUS FLAGS

§
i
§

C

OMMAND/CONDITION CIR

{EXPONENT)

TEMPORARY REGISTERS

INSTRUCTION ADDRESS CIR

REGISTER SELECT CIR |
OPERAND CIR |

Figure 1-8. MC68881 Simplified Block Diagram

T

|

FLOATING-POINT DATA REGISTERS
{MANTISSA}

CONSTANT ROM

Vee —T

GND =

FPCR, FPSR AND FPIAR

ROUND LOGIC

The control section of the APU contains the clock generator, a two-level microcoded sequencer,
the microcode ROM, and self-test circuitry. The built-in self-test capabilities of the FPCP enhance
reliability and ease manufacturing requirements; however, these diagnostic functions are not
accessible outside of the special test environment supported by VLSI test equipment.

In addition to the BIU and APU as described for the MC68881 (refer to Figure 1-9), the MC68882
has a conversion unit (CU) that performs data format conversions to the internal extended format.
The CU relieves the APU of a significant work load and allows the MC68882 to execute FMOVE
instructions concurrently with arithmetic or transcendental operations.

1.2.1 Bus Interface Unit

All communications between the MPU and the FPCP are performed with standard M68000 Family
bus transfers. The FPCP is designed to operate on 8-, 16-, or 32-bit data buses. ’

The FPCP contains a number of coprocessor interface registers (CIRs), which are addressed by
the main processor in the same manner as memory. The M68000 Family.coprocessor interface
is implemented as a protocol of bus cycles in which the main processor reads and writes to these
registers. The MPU implements this general purpose coprocessor interface protocol in hardware
and microcode.

When the MPU detects a FPCP general type instruction, the MPU writes the command word of
the instruction to the memory-mapped command CIR, and reads the response CIR. In this response,

|1V|OTOROLA MC68881/MC68882 USER'S MANUAL
-6

¥

APU

—r Y _’L
COPROCESSOR BUIT IN | CLOCK GENERATOR |
= INTERFACE REGISTER SELF-TEST
4 SELECT AND DSACK REGISTERS
e CONTROL
g - 4PC STACK
3 4PC SELECT
< CONTROL CIR PLA uPC
|zl g : MULTIPLEXER
@ : a
al (2] [RESTORE CIR
gl |z |B
g NS SAVE CIR INSTRUCTION DECODE HROM
2 |z PLAIS) ;
” RESPONSE CIR

RESPONSE PLA

STATUS FLAGS

COMMAND/CONDITION CIR

INSTRUCTION DECODE
REGISTER

\

r
¢
)
Sf CONTROL (C!

e

(EXPONENT)

(MANTISSA)
CONSTANT ROM
BARREL SHIFTER

| INSTRUCTION ADDRESS CIR I
I REGISTER SELECT CIR I
OPERAND CIR

TEMPORARY REGISTERS

LOATING-POINT DATA REGISTERS

[

Vee —»~
GND —»~

S0 X
CONVERSION EXECUTION UNIT
CONVERSION CONTROL UNIT

Figure 1-9. MC68882 Simplified Block Diagram

ROUND LOGIC

FPCR, FPSR, AND FPIAR

the BIU encodes requests for any additional service required of the. MPU on behalf of the FPCP.
For example, the response may request that the MPU fetch an operand from the evaluated effective
address and transfer the operand to the operand CIR. Once the MPU fulfills the coprocessor
request(s), the MPU is free to fetch and execute subsequent instructions.

A key concern in a coprocessor interface that allows concurrent instruction execution is synchro-
nization during main processor and coprocessor communication. If a subsequent instruction is
written to the command CIR before the APU has completed execution of the previous instruction
(in the case of the MC68881) or before the CU has passed its results to the APU (in the case of
the MC68882), the response instructs the MPU to wait. Thus, the choice of concurrent or non-
concurrent instruction execution is determined on an instruction-by-instruction basis by the co-
processor.

The only difference between a coprocessor bus transfer and any other bus transfer by the MPU
is that the function code issued by the MPU specifies the CPU address space during the cycle
(the function codes are generated by the M68000 Family processors to identify one of eight
separate address spaces). Thus, the memory-mapped coprocessor interface registers do not infr-
inge upon instruction or data address spaces. The MPU places a coprocessor ID field from the
coprocessor instruction words onto three of the upper address lines during coprocessor accesses.
This ID, along with the CPU address space function code, is decoded to select one of eight possible
coprocessors in the system.

I‘VI¢768881/M068882 USER’'S MANUAL MOTOROLA
1-7

Since the coprocessor interface protocol consists solely of bus transfers, the protocol is easily
emulated by software when the FPCP is used as a peripheral with any processor capable of
memory-mapped I/0 over an M68000-style bus. When used as a peripheral processor with the 8-
bit MC68008 or either the 16-bit MC68000 or MC68010, all FPCP instructions are trapped by the
main processor to an exception handler at execution time. Trapping the instructions enables the
software emulation of the coprocessor interface protocol to be totally transparent to the user.
The FPCP can provide a performance option for MC68000-based designs by changing the main
processor to an MC68020 or MC68030. The software migrates without change to the next gen-
eration equipment using the MPU.

Since the bus is asynchronous, the FPCP need not run at the same clock speed as the main
processor. Total system performance can therefore be customized. For a given CPU performance
requirement, the floating-point performance can be selected to meet particular price/performance
specifications, running the FPCP at slower (or faster) clock speeds than the CPU clock.

1.2.2 Coprocessor Interface

The M68000 Family coprocessor interface is an integral part of the FPCP and MPU designs. The
interface partitions MPU and coprocessor operations so that the MPU does not have to completely
decode coprocessor instructions, and the FPCP does not have to duplicate main processor func-
tions (such as effective address evaluation).

This partitioning provides an orthogonal extension of the instruction set by permitting FPCP
instructions to utilize all MPU addressing modes and to generate execution time exception traps.
Thus, from the programmer’s view, the MPU and coprocessor appear to be integrated onto a
single chip. While the execution of the great majority of FPCP instructions can be overlapped with
the execution of MPU instructions, concurrency is completely transparent to the programmer.
The MPU single-step and program flow (trace) modes are fully supported by the FPCP and the
M68000 Family coprocessor interface.

While the M68000 Family coprocessor interface permits coprocessors to be bus masters, the FPCP
never functions as one. The FPCP requests that the MPU fetch all operands and store all results.
In this manner, the MPU 32-bit data bus provides high speed transfer of floating-point operands
and results while .reducing the pin count of the FPCP.

Since the coprocessor interface consists solely of bus cycles (to and from the CPU space) and the
FPCP never functions as a bus master, the coprocessor can be placed on either the logical or
physical side of the system memory management unit in an MC68020 system. Since the memory
management unit of the MC68030 is on-chip, the FPCP is always on the physical side of the
memory management unit in an MC68030 system.

The virtual machine architecture of the MPU is supported by the coprocessor interface and the
FPCP with the FSAVE and FRESTORE instructions. If the MPU detects a page fault and/or a task
timeout, the MPU can force the FPCP to stop whatever operation is in progress at any time and
save the FPCP internal state in memory. During the execution of a floating-point instruction, the
FPCP can stop at predetermined points as well as at the completion of the instruction.

The size of the saved internal state of the FPCP is dependent upon the state of the APU at the
time that the FSAVE is executed. If the MPU is in the reset state when the FSAVE instruction is
initiated, only one word of state is transferred to memory. The stored word may be examined by
the operating system to determine that the coprocessor programmer’s model is empty. If the

.
MOTOROLA MC68881/MC68882 USER'S MANUAL
1-8

are transferred to memory. If the APU is in the middle of executing an instruction, it may be
necessary to save the entire internal state of the machine. Instructions that can complete execution
in less time than it would take to save the larger state in mid-instruction are automatically allowed
to complete execution and then save the idle state. Thus, the size of the saved internal state is
kept to a minimum. The ability to utilize several internal state sizes greatly reduces the average
context switching time.

APU is in the idle state when the FSAVE instruction is decoded, only a few words of internal state

The FRESTORE instruction permits reloading an internal state saved earlier and continues any
previously suspended operation. Restoring the reset internal state re-establishes default register
values, a function identical to the FPCP hardware reset.

1.3 OPERAND DATA FORMATS

The FPCP supports the following data formats:
Byte Integer (B)
Word Integer (W)
Long Word Integer (L)
Single Precision Real (S)
Double Precision Real (D)
Extended Precision Real (X)
Packed Decimal String Real (P)

The capital letters within the parentheses denote suffixes added to mnemonics of the assembly
language instructions to specify the data format to be used.

1.3.1 Integer Data Formats

The three integer data formats (byte, word, and long word) are the standard twos complement
data formats defined in the M68000 Family architecture. Whenever an integer is used in a floating-
point operation, the integer is automatically converted by the FPCP to an extended precision
floating-paint number before being used. For example, to add an integer constant of five to the
number in floating-point data register 3 {FP3), the following instruction can be used:

FADD.W #5,FP3
(The Motorola assembler syntax uses “#" to denote immediate addressing.)

The ability to effectively use integers in floating-point operations saves user memory since an
integer representation of a number, if representable, is usually smaller than the equivalent floating-
point representation.

1.3.2 Floating-Point Data Formats

The floating-point data formats, single precision (32-bits) and double precision (64-bits), are im-
plemented in the FPCP as defined by the IEEE standard. These data formats are the main floating-
point formats and should be used for most calculations involving real numbers. Table 1-1 lists
the exponent and mantissa sizes for single, double, and extended precision. The exponent is
biased, and the mantissa is in sign and magnitude form. Since single and double precision require
normalized numbers, the most-significant bit of the mantissa is implied as a one and is not
included, thus giving one extra bit of precision.

MC68881/MC68882 USER'S MANUAL MOTOROLA
19

The extended precision data format is also in Table 1-1. Exponent and Mantissa Sizes
conformance with the |IEEE standard, but the -
standard does not specify this format to the bit Fgf;‘;t E"%‘;;‘:"' M“;{;‘:’“
level as it does for single and double precision.

The memory format for the FPCP consists of Single 8 2+ 1)
96 bits (three long words). Only 80 bits are Double " 52(+1)
actually used; the other 16 bits are for future Extended 15 64

expandability and for long-word alignment of
floating-point data structures in memory. Extended format has a 15-bit exponent, a 64-bit mantissa,
and a 1-bit mantissa sign.

Extended precision numbers are intended for use as temporary variables, intermediate values,
or where extra precision is needed. For example, a compiler might select extended precision
arithmetic for evaluation of the right side of an equation with mixed sized data and then convert
the answer to the data type on the left side of the equation. It is anticipated that extended precision
numbers will not be stored in large arrays due to the amount of memory required by each value.

1.3.3 Packed Decimal String Real Data Format

The packed decimal data format allows packed BCD strings to be transferred to and from the
FPCP. The strings consist of a 3-digit base 10 exponent and a 17-digit base 10 mantissa. Both the
exponent and mantissa have separate sign bits. All digits are packed BCD, and the entire string
fits in 96 bits (three long words). As is the case with all data formats, when packed BCD strings
are supplied to the FPCP, the strings are automatically converted to extended precision real values.
This conversion allows packed BCD numbers to be used as inputs to any operation. For example:

FADD.P #-6.023E +24,FP5

BCD numbers can be supplied by the FPCP in a format readily used for printing by a program
generated by a high-level language compiler. For example:

FMOVE.P FP3,BUFFER{#-5}

This instruction converts the contents of floating-point data register 3 (FP3) into a packed BCD
string with five significant digits to the right of the decimal point (FORTRAN F format).

1.3.4 Data Format Summary

All data formats described in the preceding sections are supported orthogonally by all arithmetic
and transcendental operations and by all appropriate MPU addressing modes. For example, all
of the following are valid instructions:

FADD.B #0,FPO

FADD.W D2,FP3

FADD.L BIGINT,FP7

FADD.S #3.14159,FP5
FADD.D (SP)+,FP6

FADD.X [(TEMP PTR,A7)],FP3
FADD.P #1.23E25,FPO

Most on-chip calculations are performed in the extended precision format, and the eight floating-
point data registers always contain extended precision values. All operands are converted to
extended precision by the FPCP before a specific operation is performed, and all results are in
extended precision. This ensures maximum accuracy without sacrificing performance.

MOTOROLA MC68881/MC68882 USER’S MANUAL
1-10

Refer to Figure 1-10 for a summary of the memory formats for the seven data formats supported

by the FPCP.
I
a0 2 0
| Iexﬁﬂml rnﬁ%u SINGLE REAL
SIGN OF FRACTION
62 51 0
EX'PE:IENT ;::;:LN DOUBLE REAL
SIGN OF FRACTION
9 80 63 0
“ ExponaT I R0 l: oS l EXTENDED REAL
IMPLICIT BINARY POINT
SIGN OF MANTISSA
9 80 &7 0
l“ E:Pglnsgnl 2ER0* lT :: IE :: Ej i M‘;Z,'“DTI,?‘STA i. E .E i :: i E‘—| PACKED DECIMAL REAL
IMPLICIT DECIMAL POINT

2 BITS, USED ONLY FOR +INFINITY OR NAN(S), ZERO OTHERWISE
SIGN OF EXPONERT
SIGN OF MANTISSA

*Unless a binary-to-decimal conversion overflow occurs

Figure 1-10. MC68881/IVIC68882 Data Format Summary

|
MC68881/MC68882 USER’'S MANUAL MOTOROLA
1-1

n 1.4 INSTRUCTION SET

The FPCP instruction set is organized into six major classes:
1. Moves between the FPCP and memory or the MPU (to or from)
Move multiple registers (to or from)
Monadic operations
Dyadic operations
Branch, set, or trap conditionally
Miscellaneous

ook N

1.4.1 Moves

On all moves from memory (or from an MPU data register) to the FPCP, data is converted from
the source data format to the internal extended precision format. On all moves from the FPCP to
memory (or to an MPU data register), data is converted from the internal extended precision
format to the destination data format.

Note that data movement instructions perform arithmetic operations, since the result is always
rounded to the precision selected in the FPCR mode control byte. The result is rounded using the
selected rounding mode and is checked for overflow and underflow.

The syntax for the FMOVE instruction is:

FMOVE.<fmt> <ea>,FPn Move to FPCP
FMOVE.<fmt> FPm,<ea> Move from FPCP
FMOVE.X FPm,FPn Move within FPCP

where:
<ea> is an MPU effective address operand
.<fmt> is the data format size
FPm and FPn are floating-point data registers.

1.4.2 Move Multiple Registers

The floating-point move multiple instruction on the FPCP resembles its integer counterpart on
the M68000 Family processors. Any set of the floating-point registers FPO through FP7 can be
moved to or from memory with one instruction. These registers are always moved as 96-bit
extended data with no conversion (hence no possibility of conversion errors). Some examples of
the move multiple instruction are as follows:

FMOVEM <ea>,FPO-FP3/FP7
FMOVEM FP2/FP4/FP6,<ea>

The move multiple instruction is useful during context switches and interrupts to save or restore
the state of a program. It is also useful at the start and end of a procedure to save and restore
the calling routine’s register set. In order to reduce procedure call overhead, the list of registers
to be saved or restored can be stored in a data register thus enabling run-time optimization by
allowing a called routine to save as few registers as possible. Note that no rounding or overflow/
underflow checking is performed by these operations.

MOTOROLA MC68881/MC68882 USER'S MANUAL
1-12

1.4.3 Monadic Operations

A monadic operation has one operand. This operand may be in a floating-point data register, in
memory, or in an MPU data register. The result is always stored in a floating-point data register.
For example, the syntax for square root is any of the following:

FSQRT.<fmt> <ea>,FPn

FSQRT.X FPm,FPn
FSQRT.X FPn

The monadic operations available with the FPCP are as follows:
FABS Absolute Value FLOG2 Log Base 2
FACOS Arc Cosine FLOGN Log Base e
FASIN Arc Sine FLOGNP1 Log Base e of (x+1)
FATAN Arc Tangent FNEG Negate
FATANH Hyperbolic Arc Tangent FSIN Sine
FCOS Cosine FSINCOS Simultaneous Sine and Cosine
FCOSH Hyperbolic Cosine FSINH Hyperbolic Sine
FETOX e to the x Power FSQRT Square Root
FETOXM1 e to the x Power - 1 FTAN Tangent
FGETEXP Get Exponent FTANH Hyperbolic Tangent
FGETMAN Get Mantissa FTENTOX 10 to the x Power
FINT Integer Part FTST Test
FINTRZ Integer Part (Truncated) FTWOTOX 2 to the x Power

FLOG10 Log Base 10

1.4.4 Dyadic Operations

Dyadic operations have two operands each. The first operand is in a floating-point data register,
memory, or an MPU data register. The second operand is the contents of a floating-point data
register. The destination is the same floating-point data register used for the second operand.
For example, the syntax for floating-point add is either of the following:

FADD.<fmt> <ea>,FPn

FADD.X FPm,FPn

The dyadic operations available with the FPCP are as follows:
FADD Add FREM IEEE Remainder
FCMP Compare FSCALE Scale Exponent
FDIV Divide FSGLDIV Single Precision Divide
FMOD Modulo Remainder FSGLMUL Single Precision Multiply
FMUL Multiply FSUB Subtract

Assuming that operands are single precision, the FSGLMUL and FSGLDIV instructions round
results as such while maintaining the range of extended precision. In special applications where
multiply and divide performance are more important than loss of precision, the FSGLMUL and
FSGLDIV instructions can be used.

1.4.5 Branch, Set, and Trap-On Condition

The floating-point branch, set, and trap on condition instructions implemented by the FPCP are
similar to the equivalent integer instructions of the M68000 Family processors, except more

MC68881/MC68882 USER'S MANUAL MOTOROLA
1-13

instruction is executed, the FPCP performs the necessary condition checking and reports the result,
true or false, to the MPU; the MPU then takes the appropriate action. Since the FPCP and MPU
are closely coupled, the floating-point branch operations are quickly executed.

- conditions exist due to the special values in |EEE floating-point arithmetic. When a conditional

The FPCP conditional operations are:

FBcc Branch
FDBcc Decrement and Branch
FScc Set According to Condition

FTRAPcc Trap-on Condition {with an Optional Parameter)

where:
cc is one of the 32 floating-point conditional test specifiers listed in 3.3 PACKED DECIMAL REAL
DATA FORMAT.

1.4.6 Miscellaneous Instructions
Miscellaneous instructions include moves to and from the status, control, and instruction address

registers. Also included are the virtual memory/machine FSAVE and FRESTORE instructions that
save and restore the internal state of the FPCP.

FMOVE <ea>,FPcr Move to Control Register(s)
FMOVE FPcr,.<ea> Move from Control Register(s)
FSAVE <ea> Virtual Machine State Save
FRESTORE <ea> Virtual Machine State Restore

1.5 ADDRESSING MODES

The FPCP does not perform address calculations. Thus, when the FPCP instructs the MPU to
transfer an operand via the coprocessor interface, the MPU performs the addressing mode cal-
culations requested in the instruction. In this case, the instruction is encoded specifically for the
MPU, and the instruction execution by the FPCP is dependent only on the value of the command
word written to the FPCP by the main processor.

This interface is quite flexible and allows any addressing mode to be used with floating-point
instructions. For the M68000 Family, these addressing modes include immediate, postincrement,
predecrement, data or address register direct, and the indexed/indirect addressing modes of the
MPU. Some addressing modes are restricted for some instructions in keeping with the M68000
Family architectural definitions (e.g., program counter relative addressing is not allowed for a
destination operand).

The orthogonal instruction set of the FPCP, along with the flexible branches and addressing modes
of the MPU, allows a programmer or a compiler writer to think of the FPCP as though it were
part of the MPU. There are no special restrictions imposed by the coprocessor interface, and
floating-point arithmetic is coded exactly like integer arithmetic.

1.6 MC68882 PROGRAMMING CONSIDERATIONS

To exploit the enhanced performance of the MC6888_2 requires the programmer ta be aware of
the manner in which the coprocessor overlaps execution of instructions. Upgrading a system to

MOTOROLA - MC68881/MC68882 USER’S MANUAL
1-14

use the MC68882 requires minor system software changes but no user software changes. To
optimize applications code for the MC68882 may require reordering of floating-point instructions:. n
SECTION 5 COPROCESSOR PROGRAMMING describes the concurrency capabilities of the MC68882,
the required system software changes, and the optlmlzatlon of existing software for the enhanced

floating-point coprocessor.

VIC68881/MC68882 USER'S MANUAL MOTOROLA
1-15

SECTION 2
PROGRAMMING MODEL

This section describes the registers of the MC68881/MC68882 (FPCP) programming model. The
notation used to refer to the registers conforms to the Motorola assembler syntax. The program-
ming model for the MC68882 is identical to that for the MC68881.

Figure 2-1 is a pictorial representation of the registers in the FPCP programming model. The
following paragraphs describe each group of registers.

2.1 FLOATING-POINT DATA REGISTERS

The eight 80-bit floating-point data registers (FP0-FP7) are analogous to the integer data registers
(D0-D7) of all M68000 Family processors. Floating-point data registers always contain extended
precision numbers. The data format used is identical to the extended precision data format de-
scribed in Table 3-3, except that the reserved {unused) 16 bits are deleted from the table. All
external operands, regardless of the data format, are converted to extended precision values
before being used in any calculation or stored in a floating-point data register.

A reset function or a restore operation of the null state sets FPO-FP7 to positive non-signaling
not-a-numbers (NANs), described in 3.2.5 Not-A-Numbers.

79 63 0

FPO

FP1

FP2

P3| FoATING-POINT

DATA REGISTERS

FP4

FP5

FPB

FP7

Fo———————-
EXCEPTION | MODE
lL__ _ _E | enasie” | contRoL FPCR]— CONTROL REGISTER

CONDITION EXCEPTION | ACCRUED
rCUUE \IOUUTIENT STATUS IEXCEPTION FPSR } STATUS REGISTER

INSTRUCTION ADDRESS
I I FPIAR } REGISTER

Figure 2-1. MC68881/MC68882 Programming Model

MC68881/MC68882 USER'S MANUAL MOTOROLA
21

2.2 FLOATING-POINT CONTROL REGIS I EK

The 32-bit floating-point control register (FPCR) contains an exception enable byte that enables/
disables traps for each class of floating-point exceptions and a mode byte that sets the user

n selectable modes.

The control register can be read or written to by the user. Bits 16 through 31 are reserved for
future definition by Motorola. These bits are always read as zero and are ignored during write
operations (but should be zero for future compatibility). This register is cleared by the reset function
or a restore operation of the null state. When cleared, this register provides the IEEE standard
defaults.

2.2.1 FPCR Exception Enable Byte

One of the bits of the exception enable byte (ENABLE), shown in Figure 2-2, corresponds to each
floating-point exception class. The user can separately enable traps for each class of floating-
point exceptions.

If a bit in the status register exception byte is set by the FPCP and the corresponding bit in the
control register ENABLE byte is also set, an exception is signaled. The address of the exception
handler is derived from the vector address corresponding to the exception. When a user writes
to the control register ENABLE byte that enables a class of floating-point exceptions, a previously
generated floating-point exception does not cause a trap to be taken regardless of the value in
the status register exception byte.

The eight floating-point exception classes shown in Figure 2-2 are described in greater detail in
SECTION 6 EXCEPTION PROCESSING. Note that the bits in the FPSR exception byte and the FPCR
enable byte occupy the same positions within each byte.

In a few cases, dual and triple exceptions can be generated by a single instruction execution.
When multiple exceptions occur with traps enabled for more than one exception class, the highest
priority exception is reported; the lower priority exceptions are never reported or taken. The
exception handler routine must check for multiple exceptions. The bits of the ENABLE byte are
organized in decreasing priority, left to right, i.e., BSUN is the highest priority, and INEX1 is the
lowest priority. The only multiple exception possibilities are:

SNAN and INEX1 OVFL and INEX2 and/or INEX1
OPERR and INEX2 UNFL and INEX2 and/or INEX1
OPERR and INEX1 INEX2 AND INEX1
15 14 13 12 n 10 9 8
BSUN | SNAN | OPERR | OVFL | UNFL 0z INEX2 | INEX]
I——— INEXACT DECIMAL INPUT
INEXACT OPERATION

DIVIDE BY ZERD

UNDERFLOW

OVERFLOW

OPERAND ERROR

SIGNALLING NOT A NUMBER
BRANCH/SET ON UNORDERED

Figure 2-2. MC68881/MC68882 FPCR Exception Enable Byte

MOTOROLA MC68881/MC68882 USER'S MANUAL
2-2

2.2.2 FPCR Mode Control Byte

The mode control byte (MODE), shown in Figure 2-3, controls the user-selectable rounding modes
and rounding precisions. A zero in this byte selects the IEEE defaults.

The rounding mode specifies how inexact results are rounded. “Round to the nearest” specifies
that the nearest number to the infinitely precise result should be selected as the rounded value.
In case of a tie, the even result is selected. "Round towards zero'’ truncates the result. ‘Round
towards plus infinity’ always rounds numbers towards plus infinity. Round toward minus infinity
always rounds numbers towards minus infinity. See 6.1.7 Inexact Result for a detailed description
of the rounding algorithm used.

The rounding precision selects where rounding of the mantissa occurs. For extended precision,
the result is rounded to a 64-bit boundary. A single precision result is rounded to a 24-bit boundary,
and a double precision result is rounded to a 53-bit boundary.

The single and double rounding precisions are provided for emulation of machines that only
support those precisions. When the FPCP performs any operation, the calculation is carried out
using extended precision inputs and the intermediate result is calculated as if to produce infinite
precision. After the calculation is complete, this intermediate result is rounded to the selected
precision and stored in the destination.

If the destination is a floating-point data register, the stored value is in the extended precision
format rounded to the precision specified by the PREC bits. Thus, all mantissa bits beyond the
selected precision are zero after the rounding operation. Also, if the single or double precision
mode is selected, the exponent value is in the correct range for the single or double precision
format (although it is stored in extended precision format). An important exception to this rule
is for the FSGLDIV and FSGLMUL instructions. Regardless of the precision specified by the PREC
bits, these instructions round the result mantissa to single precision and generate an extended
precision exponent which may be out of range for a single precision number.

If the destination i§ a memory location, the PREC bits are ignored. In this case, a number in.the
extended precision format is taken from the source floating-point data register, rounded to the
destination format precision, and written to memory.

The execution speed of all instructions is degraded significantly when single and double precision
rounding modes are used. Because these modes are intended to be used for emulation, this

PREC RND 0

ROUNDING MODE:
00 TO NEAREST
01 TOWARD ZERO
10 TOWARD MINUS INFINITY
11 TOWARD PLUS INFINITY

ROUNDING PRECISION:
00 EXTENDED
01 SINGLE
10 DOUBLE
11 (UNDEFINED, RESERVED)

Figure 2-3. MC68881/MiC68882 FPCR Mode Control Byte

MC68881/MC68882 USER'S MANUAL MOTOROLA
2-3

reduction is not detrimental. When operating in these modes, the FPCP produces the same result
as any other machine that conforms to the IEEE standard without supporting extended precision
calculations. However, the result obtained by performing a series of operations with single or
double precision rounding may not be the same as the result of performing the same operations
E in extended precision and storing the final result in the single or double precision format.

2.3 FLOATING-POINT STATUS REGISTER

The floating-point status register (FPSR) contains a floating-point condition code byte, a floating-
point exception status byte, quotient bits, and a floating-point accrued exception byte. All bits in
the FPSR can be read or written by the user. Execution of most floating-point instructions modifies
this register.

The reset function or a restore operation of the null state clears the FPSR.

2.3.1 FPSR Floating-Point Condition Code Byte

The floating-point condition code byte (FPCC), shown in Figure 2-4, contains four condition code
bits that are set at the end of all arithmetic instructions involving the floating-point data registers.
The FMOVE FPm,<ea>, move multiple floating-point data register, and move system control
register instructions do not affect the FPCC.

31 30 29 28 27 26 25 24
0 N z [NAN
—l:—- NOT A NUMBER OR UNORDERED

INFINITY
ZERD
NEGATIVE

Figure 2-4. MC68881/MC68882 FPSR Condition Code Byte

The operation result data type determines how the four condition code bits are set. Table 2-1 lists
the condition code bit settings for each result data type. Because of the mutually exclusive nature
of the data types described by the condition code bits, the FPCP generates only eight of the 16
possible combinations. Loading the FPCC byte with one of the other condition code bit combi-
nations and executing a conditional instruction may produce an unexpected branch condition.

Table 2-1. Condition Code versus Resuit Data Type

N 4 | NAN Result Data Type

0 0 0 0 + Normalized or Denormalized
1 0 0 0 ~ Normalized or Denormalized
0 1 0 0 +0

1 1 0 0 -0

0 0 1 0 + Infinity

1 0 1 0 — Infinity

0 0 0 1 + NAN

1 0 0 1 — NAN

MOTOROLA MC68881/MC68882 USER'S MANUAL
2-4

The [EEE standard defines the following four conditions and only requires the generation of the
condition codes as a result of a floating-point compare operation. In addition to this requirement,
the FPCP can test these conditions at the end of any operation affecting the condition codes.

EQ Equal To

GT Greater Than

LT Less Than

UN Unordered

An unordered condition occurs when one or both of the operands in a floating-point compare
operation is a NAN. For purposes of the floating-point conditional branch, set byte on condition,
decrement and branch on condition, and trap on condition instructions, the FPCP logically com-
bines the four condition codes to form the IEEE conditions according to the following equations:

EQ=Z
GT=NvNANvZ
LT=NANANvZ
UN=NAN

where:
A" =Logical AND
"v''=Logical OR

Note that the setting of the FPCP condition codes is independent of the operation executed; the
condition codes only indicate the data type of the result generated. Unlike other M68000 condition
codes, the IEEE defined conditions can always be derived from the data type of the result. The
setting of the M68000 integer condition codes is dependent upon the operation executed as well
as the result.

To aid programmers of floating-point subroutine libraries, the FPCP implements the four previ-
ously described floating-point condition code bits in hardware instead of the four IEEE defined
conditions. The |EEE conditions are derived by an instruction when needed. For example, the
programmer of a complex arithmetic multiply subroutine usually prefers to handle “special” data
types such as zeros, infinities, or NANs, separately from ““normal’ data types. The FPCP condition
codes allow users to efficiently detect and handle these “special’’ values.

2.3.2 FPSR Quotient Byte

The quotient byte (see Figure 2-5) is set at the completion of the modulo (FMQOD) or IEEE remainder
(FREM) instructions. This byte contains the seven least-significant bits of the quotient (unsigned)
and the sign of the entire quotient.

The quotient bits can be used in argument reduction for transcendentals and other functions. For
example, seven bits are more than enough to determine the quadrant of a circle in which an
operand resides. The quotient bits remain set until they are cleared by the user, or until another
FMOD or FREM instruction is executed.

23 22 21 20 19 18 17 16

S QUOTIENT

SEVEN LEAST SIGNIFICANT
BITS OF QUOTIENT

SIGN OF QUOTIENT

Figure 2-5. MC68881/IVIC68882 FPSR Quotient Byte

MC68881/MC68882 USER'S MANUAL MOTOROLA
2-5

2.3.3 FPSR Exception Status Byte

The exception status byte (EXC), shown in Figure 2-6, contains a bit for each floating-point ex-
ception that may have occurred during the most recent arithmetic instruction or move operation.
n This byte is cleared by the FPCP at the start of most operations; operations that cannot generate
any floating-point exceptions (the FMOVEM and FMOVE control register instructions) do not clear
this byte. This byte can be used by an exception handler to determine which floating-point ex-
ception(s) caused a trap.

15 14 13 12 " 10 9 8

BSUN SNAN OPERR OVFL UNFL prd INEX2 INEX1

|— INEXACT DECIMAL INPUT

INEXACT OPERATION

DIVIDE BY ZERO

UNDERFLOW

OVERFLOW

OPERAND ERROR

SIGNALLING NOT A NUMBER
BRANCH/SET ON UNORDERED

Figure 2-6. MC68881/MC68882 FPSR Exception Status Byte

If a bit is set by the FPCP in the EXC byte and the corresponding bit in the ENABLE byte is also
set, an exception is signaled to the main processor. When a floating-point exception is detected
by the FPCP, the corresponding bit in the EXC byte is set, even if the trap for that exception class
is disabled. (A user write operation to the status register, which sets a bit in the EXC byte, does
not cause a trap to be taken regardless of the value in the ENABLE byte.)

Note that the bits in the status EXC byte and control ENABLE byte are in the same bit positions
within each byte. The eight floating-point exception classes are described in greater detail in
SECTION 6 EXCEPTION PROCESSING. ‘

2.3.4 FPSR Accrued Exception Byte

The accrued exception byte (AEXC), shown in Figure 2-7, cantains the five exception bits required
by the IEEE standard for trap disabled operation. These exceptions are logical combinations of
the bits in the EXC byte. The AEXC byte contains the history of all floating-point exceptions that
have occurred since the user last cleared the AEXC byte. In normal operations, only the user
clears this byte (by writing to the status register). The AEXC byte is cleared by the FPCP only by
a reset or a restore operation of the null state.

Many users elect to disable traps for all or part of the floating-point exception classes. The AEXC
byte is provided to make it unnecessary to poll the EXC byte after each floating-point instruction.
At the end of most operations (all but the FMOVEM and FMOVE control register instructions), the
bits in the EXC byte are logically combined to form an AEXC value that is logically ORed into the
existing AEXC byte. This operation creates “sticky” floating-paint exception bits in the AEXC byte
that the user need poll only once (at the end of a series of floating-point operations, for example).

The setting or clearing of bits in the AEXC byte does not cause the FPCP to take an exception,
nor does it prevent taking an exception. The relationship between the bits in the EXC byte and

L
MOTORQLA ’ MC68881/MC68882 USER'S MANUAL
2-6 '

op OVFL UNFL Dz INEX 0

INEXACT

DIVIDE BY ZERD
UNDERFLOW |
OVERFLOW |
INVALID OPERATION “

Figure 2-7. MC68881/MC68882 FPSR Accrued Exception Byte

the bits in the AEXC byte is shown by the following equations. These equations apply to setting
the AEXC bits at the end of each operation that affects the AEXC byte:
AEXC(I0OP) = AEXC(IOP)VvEXC(BSUNVSNANVOPERR)
AEXC(OVFL)=AEXC(OVFL)VEXC(OVFL)
AEXC(UNFL) = AEXC(UNFL)VEXC{UNFLAINEX2)
AEXC(DZ) = AEXC(DZ)VEXC(DZ)
AEXC(INEX) = AEXC(INEX)VEXC(INEX1VINEX2vOVFL)
where:
“v'" = Logical OR
“A’"" = Logical AND

2.4 FLOATING-POINT INSTRUCTION ADDRESS REGISTER

A majority of the FPCP instructions operate concurrently with the MC68020/MC68030 (MPU). That
is, the MPU can be executing instructions while the FPCP is simultaneously executing a floating-
point instruction. Additionally, the MC68882 can execute two floating-point instructions concur-
rently. As a result of this non-sequential instruction execution, the program counter value stacked
by the MPU, in response to an enabled floating-point exception trap may not point to the offending
instruction.

For the subset of the FPCP instructions that generate floating-point exception traps, the 32-bit
floating-point instruction address (FPIAR) register is loaded with the logical address of an instruc-
tion before the instruction is executed (unless all arithmetic exceptions are disabled). This address
can then be used by a floating-point exception handler to locate a floating-point instruction that
hds caused an exception. Since the FPCP FMOVE to/from the FPCR, FPSR, or FPIAR and FMOVEM
instructions cannot generate floating-point exceptions, these instructions do not modify the FPIAR.
These instructions can be used to read the FPIAR in the trap handler without changing the previous
value.

This register is cleared by the reset operation or a restore operation of the null state.

MC68881/MC68882 USER'S MANUAL MOTOROLA
2-7

SECTION 3
OPERAND DATA FORMATS

The following paragraphs describe the MC68881/MC68882 (FPCP) operand data formats. Seven n
data formats are supported: three signed binary integer formats, three binary floating-point for-
mats, and one packed binary coded decimal (BCD) floating-point format. All data formats are
supported uniformly by all arithmetic and transcendental instructions. These formats are as fol-

lows:
Byte Integer (B) Double Precision Real (D)
Word Integer (W) Extended Precision Real (X)
Long Word Integer (L) Packed Decimal Real (P)

Single Precision Real (S)

The capital letter in parentheses is the suffix added to an instruction in the assembly language
syntax to specify the data format of operands external to the FPCP. All data formats are organized
in memory consistently with the M68000 Family data organization, i.e., the most-significant byte
is located at the lowest address (nearest $00000000), with each successively less significant byte
located at the next address (N+1, N+2, etc.). The least-significant byte is located at the highest
address (nearest SFFFFFFFF).

Within the floating-point data formats, there are five types of numbers that can be represented:
normalized numbers, denormalized numbers, zeros, infinities, and not-a-numbers (NANs). These
data types are represented with special encodings corresponding to each data format.

3.1 INTEGER DATA FORMATS

The three signed {twos complement) integer data formats supported by the FPCP (byte, word,
and long word) are identical to those supported by the M68000 Family architecture (see Figure
3-1).

7 0

8 BITS BYTE INTEGER

16 BITS WORD INTEGER

31 0

32BITS LONG INTEGER

Figure 3-1. Signed Integer Data Formats

MC68881/MC68882 USER'S MANUAL MOTOROLA
3-1

Since all FPCP internal operations are performed in full extended precision format, signed integer
operands are converted to extended precision values before the specified operation is performed.
Thus, mixed mode arithmetic is implicitly supported.

3.2 BINARY REAL DATA FORMATS

{32 bits), double precision (64 bits), and double extended precision (36 bits, 80 of which are used).

E Floating-point numbers can be encoded in any of three binary real data formats: single precision
All three of these formats fully comply with the /EEE Standard for Binary Floating-Point Arithmetic.

NOTE

The single extended precision data format defined in the IEEE standard is redundant in
a device that supports the double extended precision format. Thus, all references in this

manual to extended precision imply double extended precision as defined by the [EEE
standard.

Since all FPCP internal operations are performed in extended precision, single and double pre-
cision operands are converted to extended precision values before the specified operation is
performed. Thus, mixed mode arithmetic is implicitly supported. The memory formats for the
real data formats are shown in Figure 3-2.

30 2 0
88T 23811
mmmm| FRACTION SINGLE REAL
|— SIGN OF FRACTION
62 51 0
1181 52.BT
” EXPONENT l FRACTION l DOUBLE REAL
SIGN OF FRACTION
94 80 83 o
1587 SoaT
II EXPONENT l MANTISSA | EXTENDED REAL
IMPLICIT BINARY POINT

SIGN OF MANTISSA

Figure 3-2. Binary Real Data Formats

The exponent in all three binary formats is an unsigned binary integer with an implied bias added
to it. The bias values for single, double, and extended precision are 127, 1023, and 16383, re-
spectively. When the bias is subtracted from the value of the exponent, the result represents a
signed twos complement power of two that yields the magnitude of a normalized floating-point
numberwhen multiplied by the mantissa. Since biased exponents are used, a program can execute
an integer compare instruction (CMP) to compare floating-point numbers in memory (regardless
of the absolute magnitude of the exponents).

Data formats for single and double precision numbers differ slightly from the data formats for
extended precision numbers in the representation of the mantissa. A normalized mantissa, for

MOTOROLA MC68881/MC68882 USER'S MANUAL
3-2

all three precisions, is always in the range [1.0 ... 2.0). The extended precision data format ex-
plicitly represents the entire mantissa, including the explicit integer part bit. However, for single
and double precision data formats, only the fractional portion of the mantissa is explicitly rep-
resented and the integer part, always one, is implied.

The IEEE standard has created the term “significand’’ to bridge this difference and to avoid the
historical implications of the term mantissa. The IEEE standard defines a significand as the com-
ponent of a binary floating-point number that consists of an explicit or implicit leading bit to the
left of the implied binary point. This manual uses the terms mantissa and significand, defined as
follows, interchangeably.

Single Precision Mantissa = Single Precision Significand
=1.<23-Bit Fraction Field>
Double Precision Mantissa = Double Precision Significand
=1.<52-Bit Fraction Field>
Extended Precision Mantissa = Extended Precision Significand
= 1.Fraction
= <64-Bit Mantissa Field>

NOTE

Throughout this manual, ranges are specified using traditional set notation with the
format “bound . .. bound” specifying the boundaries of the range. The type of brackets
enclosing the range defines whether the endpoint is inclusive or exclusive. A square
bracket indicates inclusive, and a parenthesis indicates exclusive. For example, the range
specification "/[1.0...2.0]"" defines the range of numbers greater than or equal to 1.0 and
less than or equal to 2.0. The range specification ““(0.0...+inf]"" defines the range of
numbers greater than 0.0 and less than or equal to positive infinity.

Each of the three floating-point data formats can represent five unique floating-point data types:
Normalized Numbers
Denormalized Numbers
Zeros
Infinities
Not-A-Numbers (NANs)

The normalized data type never uses the maximum or minimum exponent value for a given
format (except for the extended precision format, see following note). These exponent values in
each precision are reserved for representing the special data types: zeros, infinities, denormalized
numbers, and NANs. Details of each type of number for each format are shown in 3.6 DATA
FORMAT DETAILS.

NOTE

There is a subtle difference between the definition of an extended precision number with
an exponent equal to zero and a single or double precision number with an exponent
equal to zero. If the exponent of a single or double precision number is zero, the number
is defined to be denormalized, and the implied integer bit is also a zero. However, an
extended precision number with an exponent of zero may have an explicit integer bit
equal to one, which results in a normalized number (even though the exponent is equal
to the minimum value). '

For simplicity, the following discussion treats all three real formats in the same manner, where
an exponent value of zero identifies a denormalized number. However, it should be noted that
the extended precision format may deviate from this rule.

MC68881/MC68882 USER'S MANUAL MOTOROLA
3-3

3.2.1 Normalized Numbers

Normalized numbers encompass all representable real values between the overflow and under-
flow thresholds, i.e., those numbers whose exponents lie between the maximum and minimum
values. Normalized numbers may be positive or negative. For normalized numbers, the implied
integer part bit in single and double precision is a one (1). In extended precision, the integer bit
is explicitly a one (1). See Figure 3-3.

MIN < EXPONENT < MAX MANTISSA = ANY BIT PATTERN
|— SIGN OF MANTISSA, 0 OR 1

Figure 3-3. Format of Normalized Numbers

3.2.2 Denormalized Numbers

Denormalized numbers represent real values near the underflow threshold (underflow is detected
for a given data format and operation when the result exponent is less than or equal to the
minimum exponent value). Denormalized numbers may be positive or negative. For denormalized
numbers, the implied integer part bit in single and double precision is a zero (0). In extended
precision, the integer bit is explicitly a zero (0). See Figure 3-4.

EXPONENT =0 MANTISSA = ANY NON-ZERO BIT PATTERN
I— SIGN OF MANTISSA, 0 OR 1

Figure 3-4. Format of Denormalized Numbers

Traditionally, floating-point number systems perform a “flush-to-zero” when underflow is de-
tected. This leaves a large gap in the number line between the smallest magnitude normalized
number and zero. The |EEE standard implements gradual underflows: the result mantissa is shifted
right (denormalized) while the result exponent is incremented until the result exponent reaches
the minimum value. If all mantissa bits of the result are shifted off to the right during this de-
normalization, the result becomes zero. In many instances, gradual underflow limits the potential
underflow damage to no more than a round-off error. (This underflow and denormalization de-
scription ignores the effects of rounding and the user selectable rounding modes.) Thus, the large
gap in the number line created by “flush-to-zero” floating-point number systems is filled with

representable (denormalized) numbers in the IEEE ‘‘gradual underflow’” floating-point number
system,

NOTE

Since the extended precision data format has an explicit integer part bit, a number can
be formatted with a non-zero exponent (less than the maximum value) and a zero integer
bit, which is not defined by the IEEE standard. Such a number is called an unnormalized
number. The MC68881 never generates an unnormalized number as the result of any
operation. Unnormalized inputs are always converted to normalized or denormalized
numbers or zero before being used. Thus, as required by the IEEE standard, the FPCP
does not distinguish between redundant encodings of extended precision values.

MOTOROLA MC68881/MC68882 USER'S MANUAL
34

3.2.3 Zeros

Zeros are signed (positive or negative) and represent the real values +0.0 and —0.0. See Figure
3-5.

EXPONENT = 0 MANTISSA = 0

SIGN OF MANTISSA. 0 OR 1 n

Figure 3-5. Format of Zero

3.2.4 Infinities

Infinities are signed (positive or negative) and represent real values that exceed the overflow
threshold. Overflow is detected for a given data format and operation when the result exponent
is greater than or equal to the maximum exponent value. (This overflow description ignores the
effects of rounding and the user selectable rounding modes.) See Figure 3-6. For extended pre-
cision infinities, the most-significant bit of the mantissa (the integer bit) can be either one or zero.

EXPONENT = MAXIMUM MANTISSA =0*

SIGN OF MANTISSA, 0 OR 1

*For the extended precision format, the most significant bit of the mantissa (the integer bit) is a don’t care.

Figure 3-6. Format of Infinity

3.2.5 Not-A-Numbers

When created by the FPCP, not-a-numbers (NANs), represent the results of operations that have
no mathematical interpretation, such as infinity divided by infinity. All operations involving a NAN
operand as an input return a NAN result. When created by the user, NANs can protect against
un-initialized variables and arrays, or represent user-defined special number types. See Figure 3-
7. For extended precision NANs, the most significant bit of the mantissa (the integer bit) can be
either one or zero.

EXPONENT = MAXIMUM MANTISSA = ANY NON-ZERO BIT PATTERN

l—-— SIGN OF MANTISSA, 0 OR 1

Figure 3-7. Format of Not-A-Numbers

Two different types of NANs are implemented by the FPCP. The value of the most-significant bit
(MSB) of the fraction identifies the type. The identifying bit is the MSB of the mantissa for single
and double precision and the MSB of the mantissa minus one for extended precision. NANs with
a leading fraction bit equal to one are non-signaling NANs; NANs with a leading fraction bit equal
to zero are signaling NANs (SNANs). A SNAN can be used as an escape mechanism for a user-
defined non-IEEE data type. The FPCP never creates a SNAN as a result of an operation.

MC68881/MC68882 USER'S MANUAL MOTOROLA
3-5

The IEEE specification defines the manner in which a NAN is processed when used as an input
to an operation. Particularly, if a SNAN is uséd as an input and the SNAN trap is not enabled, a
non-signaling NAN must be returned as the result. The FPCP accomplishes this by using the
source SNAN, setting the most-significant bit of the fraction, and storing the resultant non-sig-
naling NAN in the déstination. Due to the IEEE formats for NANS, the result of setting the most-
significant fraction bit of a SNAN is always a non-signaling NAN.

‘When NANs are created by the FPCP, the NANs always contain the same bit pattern in the
mantissa; for any precision, all bits of the mantissa are ones. When a NAN is created by the user,
any non-zero bit pattern can be stored in the mantissa.

3.2.6 Binary Real Data Summary

Figure 3-8 presents a summary, for quick reference, of the five floating-point data types for the
single, double and extended precision formats:

3.3 PACKED DECIMAL REAL DATA FORMAT

The packed decimal floating-point data format consists of a twenty-four digit packed decimal
string as shown in Figure 3-9. A decimal floating-point source operand is converted to an extended
precision value before the specified operation is performed. Thus, mixed mode arithmetic is
implicitly supported.

MIN < EXPONENT < MAX SIGNIFICAND = ANY BIT PATTERN

-

SIGN OF SIGNIFICAND, 0 OR 1

EXPONENT = 0 SIGNIFICAND = ANY NON-ZERO BIT PATTERN

-

SIGN OF SIGNIFICAND, 0 OR 1

EXPONENT = 0 SIGNIFICAND = 0

-

SIGN OF SIGNIFICAND, 0 OR 1

EXPONENT = MAXIMUM SIGNIFICAND =0 *

-

SIGN OF SIGNIFICAND, 0 OR 1

EXPONENT = MAXIMUM SIGNIFICAND = ANY NON-ZERO BIT PATTERN

SIGN OF SIGNIFICAND, 0 OR 1

*For the extended precision format, the most significant bit of the significand (the integer bit) is a don't care.

Figure 3-8. Binary Real Data Type Summary

MOTOROLA MC68881/MC68882 USER'S MANUAL
3-6

91 80 67 0

) T T T 1] T T M T T T T T T T
3-DIGIT T R TR S TR TR A1) T R Y S O S
”ﬂ monsml wor | A N O O A A A I et
IMPLICIT DECIMAL POINT
————— 2 BITS, USED ONLY FOR XINFINITY OR NAN(S), ZERO OTHERWISE
SIGN OF EXPONENT
SIGN OF MANTISSA

*Unless a binary-to-decimal conversion overflow occurs

Figure 3-9. Packed Decimal Real Data Format

The packed decimal representation for the special data types of zero, infinity, and NAN is described
in 3.6 DATA FORMAT DETAILS, which also defines all possible data patterns in the packed decimal
data format.

3.4 INTERNAL DATA FORMAT

AllFPCP internal operations are performed in extended precision. All external operands, regardless
of data format, are converted to extended precision values before the specified operation is
performed.

The format used in the eight floating-point data registers is identical to the extended precision
data format described previously and in 3.6 DATA FORMAT DETAILS (with the deletion of the 16
unused bits). The extended precision data format has a 15-bit biased integer exponent and a 64-
bit mantissa.

The format of an intermediate result is shown in Figure 3-10. The intermediate result exponent
for some dyadic operations (multiply and divide) can easily overflow or underflow the 15-bit
exponent. In order to simplify overflow and underflow detection, intermediate results in the FPCP
maintain a 17-bit twos complement integer exponent. When an overflow or underflow interme-
diate result is detected, the intermediate 17-bit exponent is always converted into a 15-bit biased
exponent before it is stored in a floating-point data register. Additionally, the mantissa is main-
tained internally as 67 bits for rounding purposes, but is always rounded to 64 bits (or less,
depending on the selected rounding precision) before it is stored in a floating-point data register.

17817 63-BIT i
EXPONENT FRACTION HH
LEAST SIGNIFICANT BIT OF FRACTION ———I
INTEGER BIT GUARD BIT
OVERFLOW BIT ROUND BIT
STICKY BIT

Figure 3-10. Intermediate Result Format

= . - " i
MC68881/MC68882 USER'S MANUAL MOTOROLA
3-7

3.5 FORMAT CONVERSIONS

Two cases of conversion between two data formats are:

e Converting an operand in any memory data format to the extended precision data format
and storing it in a floating-point data register, or using it as the source operand for an
arithmetic operation.

e Converting the extended precision value in a floating-point data register to any data format
m and storing it in a memory destination.

3.5.1 Conversion to Extended Precision Data Format

Since the internal data format used by the FPCP is always extended precision, all external op-
erands, regardless of data format, are converted to extended precision values before the specified
operation is performed. If the external operand, regardless of data format, is a denormalized
number, the number is normalized before the specified operation is performed. Conversion and
normalization apply not only to loading a floating-point data register but also to external operands
involved in arithmetic operations.

Since floating-point data registers always contain extended precision data format values, an
external extended precision denormalized number moved into a floating-point data register is
stored as an extended precision denormalized number. In this case, the number is first normalized
and then denormalized before it is stored in the designated floating-point data register. This
method simplifies the handling of all other data formats and types.

If an external operand is an extended precision unnormalized number, the number is normalized
before it is used in an arithmetic operation. If the external operand is an extended precision
unnormalized zero (i.e., with a mantissa of all zeros), the number is converted to an extended
precision normalized zero before the specified operation is performed. This normalization and
conversion applies not only to external unnormalized operands involved in arithmetic operations,
but also applies to loading a floating-point data register. Note that the regular use of unnormalized
inputs defeats the purpose of the IEEE standard, and may produce gross inaccuracy in the results.

3.5.2 Conversions to Other Data Formats

Conversion from the extended precision data format to any of the other six data formats occurs
when the contents of an FPCP floating-point data register are stored to memory or an MPU data
register. Since no operation performed by the FPCP can create an unnormalized result, the result
of moving a floating-point data register to an extended precision external destination can never
be an unnormalized number.

3.6 DATA FORMAT DETAILS

This section provides the format specification details for the single (S), double (D), extended (X)
precision binary real, and packed decimal (P) real string data formats. Refer to Tables 3-1 through
3-4 and Figure 3-11.

MOTOROLA MC68881/MC68882 USER'S MANUAL
3-8

Table 3-1. Single Precision Binary Real Format

Memory Format:

Field Size (in Bits}):

s = Sign

e = Biased Exponent
f = Fraction

Total

Interpretation of Sign:
Positive Mantissa, s =
Negative Mantissa, s =

Normalized Numbers:
Bias of e
Range of e
Range of f
Mantissa = Significand =
Relation to Representation of Real Numbers

Denormalized Numbers:
e = Format Minimum =
Bias of e
Range of f
Mantissa = Significand =
Relation to'Representation of Real Numbers

Signed Zeros:
e = Format Minimum =
f = Mantissa = Significand

Signed Infinities:
e = Format Maximum =
f = Mantissa = Significand =

NANs (Not-A-Number}:
s =
e = Format Maximum =
f=
Representation of f

XXXX . o o XXXX
f When Created by the FPCP

Ranges (Approximate):
Maximum Positive Normalized
Minimum Positive Normalized
Minimum Positive Denormalized

MC68881/MC68882 USER'S MANUAL

3130 23 22
BIASED

S EXPONENT FRACTION
1

8

23

32

0

1

+127 ($7F)

0 < e < 255 ($FF)
Zero or Non-Zero

1.f

(=1)s x 26127 x 1.f

0 ($00)

+126 ($7E)
Non-Zero

0.f

(-1)8x2-126 x of

0 ($00)
0f =00

255 ($FF)
0.f =0.0

Don't Care

255 ($FF)

Non-Zero

JAxxxx ... xxxx, Non-Signaling
.0xxxx . . . xxxx, Signaling
Non-Zero Bit Pattern
RARARIR R R B

3.4 x 1038
1.2 x 105—38
1.4 x 10—45

MOTOROLA
3-9

Table 3-2. Double Precision Binary Real Format

63 62 52 51 0

BIASED
EXPONENT

Memory Format:

S FRACTION

Field Size (in Bits):
s = Sign 1

= Biased Exponent 11
f = Fraction 52
Total 64

Interpretation of Sign:
Positive Mantissa, s = 0
Negative Mantissa, s = 1

L]

Normalized Numbers:

Bias of e +1023

Range of e 0 < e < 2047 ($7FF)

Range of f Zero or Non-Zero

Mantissa = Significand = 1.f

Relation to Representation of Real Numbers (1) x 26~1023 x 1.f
Denormalized Numbers: e = Format Minimum = 0 ($000)

Bias of e

+1022 {$3FE)

Range of f Non-Zero

Mantissa = Significand = 0.f

Relation to Representation of Real Numbers (—1)8 x 2-1022 x o.f

Signed Zeros:

e = Format Minimum = 0 ($00)
f = Mantissa = Significand = 0.f = 0.0
Signed Infinities:
e = Format Maximum = 2047 {$7FF)
f = Mantissa = Significand = 0.f = 0.0
NANs (Not-A-Number):
s = Don't Care
e = Format Maximum = 2047 ($7FF)
f= Non-Zero
Representation of f Axxxx . .. xxxx, Non-Signaling
.OxxxX . . . xxxx, Signaling
XXXX .+ . o XXXX Non-Zero Bit Pattern
f When Created by the FPCP Ao
Ranges (Approximate): 18 x 10307
Maximum Positive Normalized
Minimum Positive Normalized 2.2 x 10—308
Minimum Positive Denormalized 4.9 x 10—324

MOTOROLA MC68881/MIC68882 USER'S MANUAL
3-10

Table 3-3. Extended Precision Binary Real Format

Memory Format:

Field Size (in Bits):
s = Sign
e = Biased Exponent
u = Zero, Reserved
j = Integer Part
f = Fraction
Total

o

Interpretation of Unused Bits:
Input
Output

Interpretation of Sign:
Positive Mantissa, s =
Negative Mantissa, s =

Normalized Numbers:
Bias of e
Range of e
j=
Range of f
j.f = Mantissa = Significand =
Relation to Representation of Real Numbers

Denormalized Numbers:
e = Format Minimum
Bias of e
j=
Range of f
j.f = Mantissa = Significand =
Relation to Representation of Real Numbers

Signed Zeros:
e = Format Minimum =
j.f = Mantissa = Significand =

Signed Infinities:
e = Format Maximum =
j=
j.f = Mantissa = Significand

NANSs (Not-A-Number):

Format Maximum =

Do =0

epresentation of f

XXX . . . XXXX
f When Created by the FPCP

Ranges (Approximate):
Maximum Positive Normalized
Minimum Positive Normalized
Minimum Positive Denormalized

MC68881/MC68882 USER'S MANUAL

95 94 80 79 64 62

BIASED INTEGER PART

S| expONENT ZERO FRACTION

1

15
16
1

63
96

Don‘t Care
All Zeros

+16383 ($3FFF)

0 <= e < 32767 ($7FFF)
1

Zero or Non-Zero

1.f
(—1)s x 26— 16383 x jf

0 ($0000)

+ 16383 ($3FFF)
0

Non-Zero

0.f

(—1)s x 2—16383 x 0.f

0 ($0000)
0.0

32767 ($7FFF)
Don't Care
j.000...0000

Don't Care

Don’t Care

32767 ($7FFF)

Non-Zero

j-1xxx . . . xxxx, Non-Signaling
j.0xxx . .. xxxx, Signaling
Non-Zero Bit Pattern
1ML 1

6 x 104931

8 x 10—-4933
9 x 104952

MOTOROLA
3-11

Table 3-4. Decimal String Type Definitions

Operand Word 5 Word 4 Words 3-0
Type 15 14 13 12 11...0 15...0 B]

SM SE y y 3-Digit Exponent 1-Digit Integer 16-Digit Fraction
+INFINITY 01 1 1 1 $FFF $xxx $00...00
+NAN 0/1 1 1 1 $FFF $xXXX Non-Zero, see Note 1

+SNAN 0/1 1 1 1 $FFF $xxXX Non-Zero, see Note 1
+ZERO 0 01 X X $000-$999 $xxx0 $00...00
-ZERO 1 01 x X $000-$999 $xxx0 $00...00
+In-Range 0 0/1 X x $000-$999 $xxx0-$xxx9 $00...01-$99...$99
—In-Range 1 0/1 X X $000-$999 $xxx0-$xxx9 $00...01-$99...%99
NOTES:

1. A decimal string with the SE and y bits set, an exponent of $FFF, and a non-zero 16-digit decimal fraction is a NAN. When this
string is used by the FPCP, the fraction part of the NAN is moved bit-for-bit into the extended precision mantissa of a floating-
point register. The exponent of the register is set to signify a NAN, but no decimal-to-binary conversion or any other conversion
is performed. Therefore, the most-significant bit of the most-significant digit in the decimal fraction {most-significant bit of
MANT15) is a don't care (as in extended NANs) and the most significant bit minus one of MANT15 is the signaling NAN (SNAN)
bit. If the NAN bit is a zero, then it is a SNAN.

2. If a non-decimal digit [$A . .. $F) appears in the exponent of a zero, the number is converted to a true zero. The FPCP does not
detect non-decimal digits [$A . . . $F) in the exponent, integer, or fraction digits of an in-range decimal string. These non-decimal
digits are converted to binary in the same manner as decimal digits; however, the result is probably useless, although it is
repeatable.

3. Since in-range numbers cannot overflow or underflow when converted to extended precision, normalized extended precision
numbers are always produced by conversion from the decimal data format.

SIGN OF MANTISSA
0= POSITIVE, 1 = NEGATIVE IMPLICIT DECIMAL POINT ———
SIGN OF EXPONENT
—— USED ONLY FOR £INFINITY OR NAN(S) DONT CARES
|
| !

w| e EXP1 EXPO (EXP3) XXXX | xxxx | wmanTis

MANTIS | MANTI4 | MANTIZ | manTiz | MANTIY | mANTIO | manTS | MANTE

MANT7 MANT6 MANTS MANT4 MANT3 MANT2 MANT1 MANTO

MANTn s the nth digit of the mantissa.

EXPn Is the nth digit of the exponent. EXP3 is only generated during a move out operation if the source
operand exponent exceeds the magnitude of a three digit exponent; otherwise, it is a don't care.
Only EXPO-EXP2 are used for input.

XXXX Are don’t care bits, which are zero when written and ignored when read.

Figure 3-11. Packed Decimal Real Data Format Detail

MOTOROLA MC68881/MC68882 USER'S MANUAL
3-12

SECTION 4
INSTRUCTION SET

This section describes the MC68881/MC68882 (FPCP) instruction set in detail, using the Motorola
assembly language syntax and notation. As an introduction, a summary of the instruction set is

presented, followed by a detailed description of each instruction. Also included at the end of this
section is a listing of the binary patterns of all of the instructions and an opcode map summary
for use by assembler and compiler writers.

4.1 INSTRUCTION DESCRIPTION CONVENTIONS

The instruction set is discussed in this section using this functional grouping and the following

notation:

B, W, L

v X O o»

FPm, FPn
FPcr

<ea>

cce
<list>

<label>

The same size codes as all M68000 Family processors; specifies a signed integer
data type (twos complement) of byte (8 bits), word (16 bits), or long word (32
bits)

Single precision real data format (32 bits)

Double precision real data format (64 bits)

Extended precision real data format (96 bits, 16 bits unused)

Packed BCD real data format (96 bits, 12 bytes)

One of the eight floating-point data registers

One of the three floating-point system control registers (FPCR, FPSR, or FPIAR)
Any valid MC68020/MC68030 (MPU) addressing mode

A twos complement signed integer (-64 to +17) that specifies the format of a
number to be stored in the packed decimal format

An index into the FPCP constant ROM
A list of floating-point data registers or control registers

A relative label used by an assembler to calculate a displacement

4.2 INSTRUCTION GROUPS

The following paragraphs briefly describe each instruction group along with tables showing the
Motorola syntax for each instruction. The FPCP instructions can be separated into the following

groups:
Data Movement Program Control
Dyadic Operations System Control

Monadic Operations

A
MC68881/MC68882 USER'S MANUAL MOTOROLA

4-1

4.2.1 Data Movement Operations

This group of instructions includes those that load or store the user visible configuration of the
FPCP and that move operands into, between, or out of the floating-point data registers. Data
format conversion functions are also implicitly supported since all external data formats are
converted to extended precision for internal storage, and vice vérsa. Operations to move the
system control registers into and out of the FPCP are also provided. The move constant ROM
(FMOVECR) instruction allows floating-point data registers to be loaded quickly with commonly
used constants such as , €, 0.0, 1.0, etc. Tablé 4-1 summarizes the data movement instructions
that are available and the operand data formats supported.

Table 4-1. Data Movement Operations

Instruction Operand Syntax | Operand Format Operation
FMOVE FPm,FPn X source # destination
{ea),FPn B,W,L,S,D.X.P
FPm {ea) B,W,L,S,D,X
FPm,{ea){#k} P
FPm,{ea){Dn} P
(ea),FPcr L
FPcr,(ea) L
FMOVECR #ccc,FPn X ROM constant # FPn
FMOVEM (ea),(list)? LX listed registers # destination
{ea),Dn X
(Ivist)1,(ea) L.X source » listed registers
Dn,(ea) X

NOTE: The register list may include any combination of the eight floating-point data registers, or it
may contain any combination of the three control registers FPCR, FPSR, and FPIAR. If the
register list mask resides in a main processor data register, only floating-point data registers
may be specified.

4.2.2 Dyadic Operations

The dyadic floating-point instructions provide several arithmetic functions that require two input
operands such as add, subtract, muitiply, and divide. For these operations, the first operand may
be located in memory, in an integer data register, or in a floating-point data register, and the
second operand is always contained in a floating-point data register. The results of the operation
are stored in the register specified as the second operand. With two exceptions, all operations
support any data format and are performed to extended precision. The exceptions are the single
precision multiply and divide instructions (FSGLMUL and FSGLDIV). These instructions support
any precision inputs, but return results accurate only to single precision. These instructions provide
very high speed operations by sacrificing accuracy. The general format of the dyadic instructions
is given in Table 4-2; the available operations are listed in Table 4-3.

Table 4-2. Dyadic Operation Format

MOTOROLA
4-2

Instruction Operand Syntax Operand Format Operation
F(dop) {ea),FPn B,W,L,S,DX,P FPn {function) source § FPn
FPm,FPn X
where: .

<dop> is any one of the dyadic operation specifiers.

MC68881/MC68882 USER'S MANUAL

Table 4-3. Dyadic Operations

Instruction Function
FADD add
FCMP compare
FDIV divide
FMOD modulo remainder
FMUL multiply
FREM IEEE remainder
FSCALE scale exponent
FSGLDIV single precision divide
FSGLMUL single precision multiply
FSUB subtract

4.2.3 Monadic Operations

The monadic floating-point instructions provide several arithmetic functions that require only one
input operand. Unlike the integer counterparts to these functions (e.g., NEG <ea>), a source and
a destination may be specified. The operation is performed on the source operand and the result
is stored in the destination, which is always a floating-point data register. When the source is not
a floating-point data register, all data formats are supported; the data format is always extended
precision for register-to-register operations. The general format of these instructions is shown in
Table 4-4, and the available operations are listed in Table 4-5. The form of the simultaneous sine
and cosine instruction is given in Table 4-6.

Table 4-4. Monadic Operation Format

Instruction Operand Syntax | Operand Format Operation
F(mop) (ea),FPn B,wW,L,S,D,X,P source ¢ function » FPn
FPm,FPn X
FPn X FPn » function » FPn
where:

<mop> is any one of the monadic operations specifiers.

Table 4-5. Monadic Operations

Instruction Function Instruction Function
FABS absolute value FLOGN In(x)
FACOS arc cosine FLOGNP1 In{x+1)
FASIN arc sine FLOG10 log1g(x)
FATAN arc tangent FLOG2 loga(x)
FATANH hyperbolic arc tangent FNEG negate
FCOS cosine FSIN sine
FCOSH hyperbalic cosine FSINH hyperbolic sine
FETOX eX FSQRT square root
FETOXM1 ex—-1 FTAN tangent
FGETEXP extract exponent FTANH hyperbolic tangent
FGETMAN extract mantissa FTENTOX 0%
FINT extract integer part FTWOTOX 2X
FINTRZ extract integer part, rounded-to-zero

MC68881/MC68882 USER'S MANUAL ‘ MOTORO‘I‘_;;

Table 4-6. Dual Monadic Operation Format

Instruction Operand Syntax | Operand Format Operation
FSINCOS (ea),FPc:FPs B,W,LS,D X,P SIN{source) » FPs;
FPm,FPc:FPs X COS(source) # FPc

4.2.4 Program Control Operations

The program control instructions provide a means of affecting program flow based on conditions
present in the floating-point status register after any operation that sets the condition codes. In

“ addition to allowing direct control of program flow with the branch conditionally (FBcc) and the
decrement and branch conditionally (FDBcc) instructions, the set conditionally (FScc) instruction
allows the user to set a Boolean variable based on the floating-point condition codes as an
intermediate result in the evaluation of a complex Boolean equation. Also included is a test
operand instruction (FTST) that sets the floating-point condition codes for use by the other program
and system control instructions, and a no operation instruction (FNOP) that may be used to force
synchronization of the FPCP with the main processor. Table 4-7 summarizes the program control
instructions that are available.

Table 4-7. Program Control Operations

Instruction Operand Syntax | Operand Format Operation
FBcc (label) w,L if condition true,
then PC+d » PC
FDBcc Dn,(label) w if condition true, then no operatlon,
else Dn—1 # Dn;
ifDn# —1
then PC+d» PC
FNOP none none no operation
FScc (ea) B if condition true,
then 1's # destination
else 0's # destination
FTST (ea) B,W,L,S,DX,P set FPSR condition codes
FPn X

The FPCP supports 32 conditional tests that are separated into two groups — 16 that cause an
exception if an unordered condition is present when the conditional test is attempted, and 16 that
do not cause a exception if an unordered condition is present. (An unordered condition occurs
when an input to an arithmetic operation is a NAN.) Table 4-8 lists the 32 condition code mne-
monics along with the condifional test function. Refer to 4.4 CONDITIONAL TEST DEFINITIONS
for a detailed description of the conditional equation used by each test.

Table 4-8. Conditional Test Mnemonics

Exception on Unordered No Exception on Unordered
GE greater than or equal OGE ordered greater than or equal
GL greater than or less than OGL ordered greater than or less than
GLE greater than or less OR ordered
GT greater than OGT ordered greater than
LE less than or equal OLE ordered less than or equal
LT less than OLT ordered less than
NGE not (greater than or equal) UGE unordered or greater than equal

|
MOTOROLA MC68881/MC68882 USER'S MANUAL
4-4

Table 4-8. Conditional Test Mnemonics (Continued)

Exception on Unordered No Exception on Unordered
NGL not (greater than or less than) UEQ unordered or equal
NGLE not (greater than or less than or equal) UN unordered
NGT not greater than UGT unordered or greater than
NLE not (less than or equal) ULE unordered or less than or equal
NLT not less than ULT unordered or less than
SEQ signaling equal EQ equal
SNE signaling not equal NE not equal
SF signaling always false F always false
ST signaling always true T always true n

4.2.,5 System Control Operations

The system control instructions communicate with the operating system via a conditional trap
instruction (FTRAPcc), and save or restore (FSAVE or FRESTORE) the non-user visible portion of
the FPCP during context switches in a virtual memory or other type of multitasking system. The
conditional trap instruction uses the same conditional tests as the program control instructions
and allows an optional 16- or 32-bit immediate operand to be included as part of the instruction
for passing parameters to the operating system. Table 4-9 summarizes the system control in-
structions.

Table 4-9. System Control Operations

Instruction Operand Syntax Operand Size Operation
FRESTORE (ea) none state frame # internal registers
FSAVE (ea) none internal registers # state frame
FTRAPcc none none if condition true,

#XXX w.L, then take exception

4.3 COMPUTATIONAL ACCURACY

Whenever an attempt is made to represent a real number in a binary format of finite precision,
there is a possibility that the number cannot be represented exactly; this is commonly referred
to as round-off error. Furthermore, when two inexact numbers are used in a calculation, the error
present in each number is reflected and possibly aggravated, in the result.

One of the major reasons that the /EEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE
Std 754-1985) was developed is to define the error bounds for calculation of binary floating-point
values so that all machines conforming to the standard produce the same results for an operation.
The operation must meet the following conditions:

1. same input values,
2. same rounding mode, and
3. same precision.

The IEEE standard specifies not only the format of data items, but also defines:
1. the maximum allowable error that may be introduced during a calculation, and
2. the manner in which rounding of the result is performed.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-5

However, the IEEE specification defines only the operation of some of the instructions supported
by the FPCP; those not specified by the IEEE standard are described in detail in the following
paragraphs. The following paragraphs discuss the accuracy of the calculations performed by the
FPCP, grouping them as follows:

1. the IEEE specified operations and non-transcendental functions,
2. the transcendental functions, and
3. the IEEE specified conversions between binary and decimal real formats.

4.3.1 Arithmetic Instructions

The IEEE Specification for Binary Floating-Point Arithmetic specifies that the following operations
must be supported for each data format: add, subtract, multiply, divide, remainder, square root,
integer part, and compare. Conversions between the various data formats are also required. In
addition to these arithmetic functions, the FPCP also supports the non-transcendental operations
of: absolute value, get exponent, get mantissa, negate, modulo remainder, scale exponent, and
test. Since the IEEE specification defines the error bounds to which all calculations are performed,
the result obtained by any conforming machine can be predicted exactly for a particular precision
and rounding mode. The error bound defined by the IEEE specification is one-half unit in the last
place of the destination data format in the round-to-nearest mode, and one unit in the last place
in the other rounding modes.

The FPCP performs all calculations using a 67-bit mantissa for the intermediate results. The three
bits beyond the precision of the extended format allow the FPCP to perform all calculations as if
to infinite precision, and then round the result to the desired precision before storing it in the
destination. By performing calculations in this manner, the final result is always correct for the
specified destination data format before rounding is performed (unless an overflow or underflow
error occurs). The specified rounding operation then produces a number that is as close as possible
to the infinitely precise intermediate value and is still representable in the selected precision. An
example of how the 67-bit mantissa allows the FPCP to meet the error bound of the IEEE speci-
fication is as follows:

S

Mantissa | g r
1 0 O (Tie Case)

Intermediate Result: X.X......x00
Round-to-Nearest Result: X.X..... X00

In this case, the least-significant bit (I) of the rounded result is not incremented, even though the
guard bit (g) is set in the intermediate result. The IEEE standard specifies that tie cases should
be handled in this manner. Assuming that the destination data format is extended, if the difference
between the infinitely precise intermediate result and the round-to-nearest result is calculated,
the relative difference is 2—64 (the value of the guard bit). This error is equal to one-half of the
value of the least significant bit, and is the worst-case error that can be introduced when using
the round-to-nearest mode. Thus, the term one-half unit in the last place correctly identifies the
error bound for this operation. This error specification is the relative error present in the result;
the absolute error bound is equal to 2exponent x 2—64, An example of the error bound for the
other rounding modes is as follows:

Mantissa | g r s
1

Intermediate Result: X.X......x00 11
Round-to-Zero Result: X. X0 X00

In this case, the difference between the infinitely precise result and the rounded result is
2—-641+2-65+2-66, which is slightly less than 2—63 (the value of the least-significant bit). Thus,

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-6

the error bound for this operation is not more than one unit in the last place. For all of the
arithmetic operations, these error bounds are met by the FPCP, thus providing accurate and
repeatable results.

4.3.2 Transcendental Instructions

The IEEE specification does not define the error bound to which transcendental (except square
root) functions are to be performed. In this context, the transcendental functions are all of those
operations not mentioned in the previous paragraphs (i.e., the trigonometric, hyperbolic, loga-
rithmic, and exponential instructions). Due to the highly recursive nature of the algorithms used
to calculate these functions, the round-off error in the input operands to a function, combined
with the limited precision of the FPCP ALU, do not allow the calculation of a result with the same
error limit as the arithmetic functions. However, these operations are quite accurate given the
constraint of using an ALU with a finite precision of 67 bits. In general, the worst-case accuracy
of any transcendental function is one unit in the last place of double precision (which is equal to
4096 units in the last place of extended precision). The typical error bound for these instructions
is approximately 64 units in the last place of extended precision. The following example illustrates
the significance of this error bound:

Mantissa

Correct Result: x.x......x00000000
FPCP Calculated Result: x.x......x01000000

In this case, the relative difference between the correct result and the result calculated by the
FPCP is 2—57 (assuming an extended precision result), which is 26 times the value of the least-
significant bit. This difference corresponds to an error of 64 units in the last place.

Note that the transcendental functions perform limited checking for special case input values such
as boundary conditions. For exampie, the exponential functions check for a zero input value, but
do not check for exact integer values. Thus, raising a number to an exact integer value may not
produce an exact result (e.g., the instruction FTENTOX #1,FP0O does not produce an extended
precision value of exactly 10.0), and the INEX2 bit in the FPSR may be set even if an exact result
is produced.

4.3.3 Decimal Conversions

The IEEE standard does not specify the format of the decimal real representation used by any
conforming machine, but it does define the error bounds for conversions between decimal and
the single and double precision binary formats. Thus, such conversions always produce consist-
ently rounded results, and those results are predictable and repeatable on any conforming system.
However, it is not always possible to perform an exact conversion between these data formats,
due to the limited precision of the numbers and the different radices of the values. The error
bound for these conversions is 0.97 unit in the last digit of the destination precision for the round-
to-nearest mode; and 1.47 units in the last digit of the destination precision for the other rounding
modes. When an input conversion cannot produce an exact result, the FPCP sets the INEX1 bit
in the FPSR exception byte. This indication allows for special handling of these conversion errors
that is separate from the handling of other types of inaccurate results. When an output conversion
cannot produce an exact result, the INEX2 bit is set.

The packed decimal data format supported by the FPCP allows the representation of double
precision binary numbers in a decimal form, in accordance with the IEEE specification. When a

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-7

packed decimal number is converted to extended precision, the result is always in range although
the conversion may be inexact. The result is within range because the magnitudes of the exponent
and mantissa of a packed decimal number are less than the largest values representable in the
extended precision format. Refer to 6.1.8 Inexact Result on Decimal Input for a description of the
handling of inaccurate decimal to binary conversions.

When an extended precision number is converted to packed decimal, the result may be a number
that cannot be represented exactly, or a number that is too large to be represented with a three-
digit exponent. When this type of conversion is performed, the k factor specified is used to locate
the decimal rounding boundary. If the magnitude of the rounded decimal result exponent exceeds
999, the FPCP signals an operand error and calculates a fourth exponent digit, which is included
n in the destination operand (see Figure 3-11 for the position of the fourth digit). Refer to 6.1.7
Inexact Result for a description of the handling of inaccurate binary to decimal conversions.

Note that the error bounds specified by the IEEE standard apply only to conversions of values in
the range of the double precision format. The error bound for conversions by the FPCP of extended
precision values which cannot be represented in double precision is significantly larger. Software
must be provided to convert such extended precision values to decimal. The conversion must
generate decimal results with an error bound analogous to those specified in the IEEE standard
for double precision values. That software envelope must utilize a super extended precision to
achieve such error bounds.

Note that the binary to/from decimal conversions performed by the FPCP utilize the on-chip ROM
values of powers of 10 for speed and accuracy, thus allowing exact conversions in many cases
(particularly for values that are exact powers of ten).

4.4 CONDITIONAL TEST DEFINITIONS

The FPCP provides a very simple mechanism for performing conditional tests of the result of any
arithmetic floating-point operation. First, the condition code bits in the FPSR are set or cleared at
the end of any arithmetic operation or move operation to a single floating-point data register.
The condition code bits are always set consistently based on the result of the operation. Second,
the FPCP provides 32 conditional tests that are supported in hardware by the M68000 Family
coprocessor interface. This mechanism allows conditional instructions that test floating-point
conditions to be coded in exactly the same way as the integer conditional instructions. The
evaluation of the conditional test by the FPCP is performed automatically. The combination of
the consistent setting of the condition code bits and the simple programming of conditional
instructions gives the MC68020/MC68030 and FPCP combination a very flexible, high performance
method of altering program flow based on floating-point results.

One important programming consideration is that the inclusion of the NAN data type in the |EEE
floating-point number system requires each conditional test to include the NAN condition code
bit in its Boolean equation. Because a comparison of a NAN with anything is unordered (i.e., it
is impossible to determine if a NAN is bigger or smaller than an in-range number), the compare
instruction sets the NAN condition code bit when an unordered compare is attempted. All arith-
metic instructions also set the NAN bit if the result of an.operation is a NAN. The conditional
instructions interpret the NAN condition code bit equal to 1 as the unordered condition.

The inclusion of the unordered condition in floating-point branches destroys the familiar tricho-
tomy relationship (greater than, equal, less than) that exists for integers. For example, the opposite
of floating-point branch greater than (FBGT) is not floating-point branch less than or equal (FBLE).
Rather, the opposite condition is floating-point branch not greater than (FBNGT). If the result of

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-8

the previous instruction was unordered, FBNGT is true; whereas, both FBGT and FBLE would be
false since unordered fails both of these tests (and sets BSUN). Compiler programmers should
be particularly careful of the lack of trichotomy in the floating-point branches since it is common
for compilers to invert the sense of conditions.

In the following paragraphs, the conditional tests are described in three main categories:
1. IEEE non-aware tests,
2. |EEE aware tests, and
3. Miscellaneous.

The set of IEEE non-aware tests is best used:

1. when porting a program from a system that does not support the IEEE standard to a con-
forming system, or

2. when generating high-level language code that does not support |[EEE floating-point concepts
(i.e., the unordered condition).

When using the set of IEEE non-aware tests, the user receives a BSUN exception whenever a
branch is attempted and the NAN condition code bit is set, unless the branch is an FBEQ or an
FBNE. If the BSUN trap is enabled in the FPCR register, the exception causes a trap. Therefore,
the IEEE non-aware program is interrupted if something unexpected occurs.

The IEEE aware branch set should be used in programs that contain ordered and unordered
conditions by compilers and programmers who are knowledgeable of the IEEE standard. Since
the ordered or unordered attribute is explicitly included in the conditional test, the BSUN bit is
not set in the status register EXC byte when the unordered condition occurs.

4.4.1 IEEE Non-Aware Tests

All of the conditional tests in the following table, except EQ and NE, set the BSUN bit in the status
register exception byte if the NAN condition code bit is set when a conditional instruction is

executed.

Mnemonic Definition Equation Predicate
EQ Equal z 000001
NE Not Equal z 001110
GT Greater Than NANVZVN 010010
NGT Not Greater Than NANvZvN 011101
GE Greater Than or Equal Zv{NANVN) 010011
NGE Not (Greater Than or Equal) NANV(NAZ) 011100
LT Less Than NA(NANvVZ) 010100
NLT Not Less Than NANv(ZVN) 011011
LE Less Than or Equal Zv(NANAN) 010101
NLE Not (Less Than or Equal) NANv(ﬁ) 011010
GL Greater or Less Than NANvZ 010110
NGL Not (Greater or Less Than) NANvZ 011001
GLE Greater, Less or Equal W 010111
NGLE Not (Greater, Less or Equal) NAN 011000

where:

“v'" = Logical OR

“A" =Logical AND

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-9

4.4.2 IFEE Aware Tests

The following conditional tests do not set the BSUN bit in the status register exception byte under
any circumstances.

Mnemonic Definition Equation Predicate
EQ Equal 4 000001
NE Not Equal z 001110
OGT Ordered Greater Than NANVZVN 000010
ULE Unordered or Less or Equal NANvZvN 001101
OGE Ordered Greater Than or Equal Zv(m) 000011

n ULT Unordered or Less Than NANv(NAE) 001100
oLT Ordered Less Than NA{NANVZ) 000100
UGE Unordered or Greater or Equal NANvZvN 001011
OLE Ordered Less Than or Equal - Zv(NAN_Aﬁ) 000101
UGT Unordered or Greater Than : NANvtﬁ) 001010
oGL Ordered Greater or Less Than NANvZ 000110
UEQ Unordered or Equal NANvZ 001001
OR Ordered NAN 000111
UN Unordered NAN 001000
where:
"v"'=Logical OR

"A" =Logical AND

4.4.3 Miscellaneous Tests

The following tests are not generally used but are implemented for completeness of the set. If
the NAN condition code bit is set, T and F do not set the BSUN bit, but SF, ST, SEQ, and SNE do
set the BSUN bit,

Mnemonic Definition Equation Predicate
F False False 000000
T True True 001111
SF Signalling False False 010000
ST Signalling True True 011111
SEQ Signalling Equal z 010001
SNE Signalling Not Equal z 011110

4.5 DETAILED INSTRUCTION DESCRIPTIONS

Subsequent paragraphs contain detailed information about each instruction in the FPCP instruction
set. Instructions are arranged in alphabetical order by assembler mnemonic. The following par-
agraphs provide background information to aid in reading the detailed instruction information
presented.

4.5.1 Addressing Modes

Due to the nature of the MC68020/MC68030 and FPCP coprocessor interface, the FPCP supports
all MC68020/MC68030 addressing modes. The MC68020/MC68030 effective address modes are

MOTOROLA MC68881/MC68882 USER’'S MANUAL
4-10

categorized by the manner in which the modes are used. The following classifications are used
in the instruction details.

Data If an effective address is used to refer to data operands, it is considered a data
addressing mode.
Memory If an effective address is used to refer to memory operands, it is considered a
, memory addressing mode.
Alterable If an effective address is used to refer to alterable (writable) operands, it is
considered an alterable addressing mode.
Control If an effective address is used to refer to memory operands that do not have

an associated size, it is considered a control addressing mode.

Table 4-10 shows the various addressing categories of each effective address mode. These cat-
egories may be combined so that additional, mare restrictive, classifications may be defined. For
example, the instruction descriptions use such classifications as memory alterable or data alter-
able. The former refers to those addressing modes which are both memory and alterable addresses
(i.e., the intersection of the two sets of modes), and the latter refers to addressing modes which
are both data and alterable.

4.5.2 Instruction Description Format

The details of each instruction are provided in 4.6 Individual Instruction Descriptions. Figure 4-1
illustrates what information is given in these instructions descriptions.

Table 4-10. Effective Addressing Mode Categories

Address Modes Mode Register Data Memory Control Alterable | Assembler Syntax

Data Register Direct 000 reg. no. X — — X Dn
Address Register Direct 001 reg. no. —_ . . X An
Address Register Indirect 010 reg. no. X X X X (An)
Address Register Indirect

with Postincrement 011 reg. no. X X —_ X {An) +
Address Register Indirect

with Predecrement 100 reg. no. X X — X —(An)
Address Register Indirect

with Displacement 101 reg. no. X X X X {d16.An)
Address Register Indirect with

Index (8-Bit Displacement) 110 reg. no. X X X X (dg,An,Xn)
Address Register indirect with

Index (Base Displacement) 110 reg. no. X X X X {bd,An,Xn)
Memory Indirect Postindexed 110 reg. no. X X X X {[bd,An],Xn,od)
Memory Indirect Preindexed 110 reg. no. X X X X ([bd,An,Xn],od)
Absolute Short M 000 X X X X (xxx).W
Absolute Long 111 001 X X X X {xxx).L
Program Counter Indirect

with Displacement 1 010 X X X — {d16,PC)
Program Counter Indirect with

Index (8-Bit) Displacement m on X X — (dg,PC,Xn)
Program Counter Indirect with

Index (Base Displacement) m 011 X X X — (bd,PC,Xn}
PC Memory Indirect

Postindexed 111 011 X X X — ([bd,PC},Xn,o0d)
PC Memory Indirect

Preindexed m o X X X — {[bd,PC,Xn],0d)
Immediate m 100 X X — — #(data)

MC68881/MC68882 USER'S MANUAL ' MOTOROLA
4-11

Instruction Name > FABS

Operation Description (see 4.6 Individual In- |_» Operation: Absolute Value of Sou
struction Descriptions for notation definitions)

. Assembler FABS.<fmt> <ea

Syntax for this Instruction Syntax: FABS.X FPrr

FABS.X FPn

n Attributes: Format=(Byte, Word,
Text Description of Instruction Operation _ Description: Converts the source o]

absolute value of that number in

Result of Operation for Input Operand(s). (This |_» Operation Table:
table defines the data type of the result that is — s ”
returned for each combination of input oper- Destination el .
ands.) Result Abso
NOTE: If the source operand is a
Status Register Effects > Status Register:
Condition Codes: Affected
DITION ¢
Quotient Byte: Not affe:
Exception Byte: BSUN
SNAN
OPERR
OVFL
UNFL
Instruction Format (This specifies the bit pat- DZ
tern and fields of the operation and command INEX2
words, and any other words that are always INEX1

part of the instruction. The effective address
extensions are not explicitly illustrated. The ex-
tension words (if any) follow immediately after
the illustrated portions of the instructions. Re-

Accrued Exception Byte: Affected

N bility.

fer to the user’'s manual of the MC68020 or \Instruction Format:
MC68030 for the format of any required exten-
sion words.) 15 14 13 12 " 10
COPROCESSO
Meanings and Allowed Values (for the various { ! ! ! ! ID_.
fields required by the instruction format.) SOURCE
0 | RM | 0 SPECIFIER

Figure 4-1. Instruction Description Format

|
4M102TOROLA MC68881/MC68882 USER'S MANUAL

4.5.3 Operation Tables

An operation table is included for most instructions. This table lists the result data types for the
instruction based on types of input operand(s). For example, Figure 4-2 illustrates the table for
the FADD instruction.

Source In Range Zero Infinity
Destination + - + - + -
InRange © Add Add +inf ~inf
+ +0.0 0.0 . . n
Zero _ Add 007 —0.0 +inf ~inf
nfinit + +inf +inf +inf NAN?2
Yoo —inf —inf NAN2 —inf

NOTES:
1. Returns +0.0 in rounding modes RN, RZ, and RP; returns —0.0 in RM.
2. Sets the OPERR bit in the FPSR exception byte.
3. If either operand is a NAN, refer to 4.5.4 NANs for more information.

Figure 4-2. Operation Table Example (FADD Instruction)

In this table, the type of the source operand is shown along the top, and the type of the destination
operand is shown along the side. In-range numbers are normalized, denormalized, or unnor-
malized real numbers, integers, or packed decimal numbers that are converted to normalized or
denormalized extended precision numbers upon entering the FPCP.

From this table, it can be seen that if both the source and destination operand are positive zero,
the result is also a positive zero. For another example, if the source operand is a positive zero
and the destination operand is an in-range number, then the ADD algorithm is executed to obtain
the result. If a label such as ADD appears in the table, it indicates that the FPCP performs the
indicated operation and returns the correct result.

A third example of using the tables is when a source operand is plus infinity, and the destination
operand is minus infinity. Since the result of such an operation is undefined, a not-a-number
(NAN) is returned as the result, and the OPERR bit is set in the FPSR exception byte.

4.5.4 NANs

In addition to the data types covered in the operation tables for each instruction, NANs can also
be used as inputs to an arithmetic operation. The operation tables do not contain a row and
column for NANs because NANs are handled the same way in all operations.

4.5.4.1 NON-SIGNALING NANS. If either, but not both, operand of an operation is a NAN, and it
is a non-signaling NAN, then that NAN is returned as the result. If both operands are non-signaling
NANSs, then the destination operand non-signaling NAN is returned as the result.

4.5.4.2 SIGNALING NANS. If either operand to an operation is a signaling NAN (SNAN), then the
SNAN bit is set in the FPSR EXC byte. If the SNAN trap enable bit is set in the FPCR ENABLE
byte, then the trap is taken and the destination is not modified. If the SNAN trap enable bit is not

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-13

set, then the SNAN is converted to a non-signaling NAN (by setting the SNAN bit in the operand
to a one), and the operation continues as described in the preceding section for non-signaling
NANSs.

4.5.5 Operation Post Processing

Most floating-point operations end with an identical post processing step. While reading the
summary for each instruction, it should be assumed that an instruction performs post processing
unless the summary specifically states that the instruction does not do so. The following para-
graphs describe post processing in detail.

n 45.5.1 SETTING FLOATING-POINT CONDITION CODES. Unlike the integer arithmetic condition
codes found in the MC68020/MC68030, which are set uniquely for each instruction, the floating-
point condition codes are either not changed by an instruction or are always set in the same way
by any instruction. Therefore, it is not necessary to include details of condition code settings for
each FPCP instruction in the detailed instruction descriptions. The following paragraphs describe
how condition codes are set for all instructions that modify any condition codes.

Refer to 2.3.1 FPSR Floating-Point Condition Code Byte for a description of the FPSR condition
code byte. The four condition code bits are:

N Sign of Mantissa | Infinity

z Zero NAN Not-A-Number

These condition code bits differ slightly from integer condition codes. The floating-point condition
codes are not dependent on the type of operation being performed, but rather, can be set at the
end of the operation by examining the result. (The M68000 integer condition codes bits N and Z
have this characteristic, but the V and C bits are set differently for different instructions.) At the
end of any floating-point operation, the result is inspected, and the condition code bits are set or
cleared accordingly. For example, if the result of an operation is a positive normalized number,
then all of the condition code bits are set to zero. If the result is a minus infinity, then the N and
| bits are set, and the Z and NAN bits are cleared.

Refer to 2.3.1 FPSR Floating-Point Condition Code Byte for a description of the use of these bits
to generate the four conditions required by the IEEE floating-point standard. Refer to 4.4 CON-
DITIONAL TEST DEFINITIONS for a description of the use of the four condition code bits to generate
the 32 floating-point conditional tests.

4.5.5.2 UNDERFLOW, ROUND, OVERFLOW. During calculation of an arithmetic result, the ALU
of the FPCP has more precision and range than the 80-bit extended precision format. However,
the final result of these operations is an extended precision floating-point value. In some cases,
an internal result becomes either smaller or larger than can be represented in extended precision.
Also, the operation may have generated a larger exponent or more bits of precision than can be
represented in the chosen rounding precision. For these reasons, every arithmetic instruction
ends by rounding the result and checking for overflow and underflow.

At the completion of an arithmetic operation, the internal result is checked to see if it is too small
to be represented as a normalized number in the selected precision. If so, the underflow (UNFL)
bit is set in the FPSR EXC byte. It is also denormalized unless denormalization provides a zero
value. Denormalizing a number causes a loss of accuracy, but a zero is not returned unless
absolutely necessary. If a number is grossly underflowed, the FPCP returns a correctly signed
zero or the correctly signed smallest denormalized number, depending on the rounding mode in
effect. For more details on underflow, refer to 6.1.5 Underflow.

MOTOROLA MC68881/MC68882 USER’S MANUAL
4-14

If no underflow occurs, the internal result is rounded according to the user-selected rounding
precision and rounding mode. Refer to Figure 6-3 for a detailed description of rounding. After
rounding, the inexact bit (INEX2) is set appropriately. Lastly, the magnitude of the result is checked
to see if it is too large to be represented in the current rounding precision. If so, the overflow
(OVFL) bit is set and a correctly signed infinity or correctly signed largest normalized number is
returned, depending on the rounding mode in effect. For details on overflow refer to 6.1.4 Ov-
erflow,

Two important exceptions to the above description are: the execution of the FSGLDIV instruction

and of the FSGLMUL instruction. For these two instructions, the rounding precision programmed

in the mode control byte is ignored (although the selected rounding mode is used). The input
operands to these instructions are assumed to be single precision values, but no checking is n
performed to verify the inputs (each mantissa is truncated to 23 bits, and the exponent is accepted

as an extended precision value).

These two instructions first check the intermediate result for underflow as previously described,
but use the underflow threshold of extended precision regardless of the selected rounding pre-
cision. If no underflow occurs, the mantissa is rounded to the single precision boundary and is
denormalized if necessary. Finally, the exponent is checked for overflow, again using the overflow
threshold of extended precision. Thus, the final result generated has the range of an extended
precision number with a mantissa accurate to only 23 bits. If an underflow or overflow occurs,
the correctly signed number returned (largest normalized number, infinity, zero, or smallest de-
normalized number) is an extended precision number with an extended precision mantissa value.

4.6 INDIVIDUAL INSTRUCTION DESCRIPTIONS

The following notation is used in the detailed instruction definitions that follow:
{operand) Contents of the referenced location or register.

<fmt> Operand data format: Byte, word, long, single, double, extended, or packed (denoted
in the assembler syntax as an extension to the instruction mnemonic of .B, .W, .L,
.S, .D, .X, or .P, respectively). '

<ea> Any valid MC68020/MC68030 addressing mode.

<label> A relative label used by an assembler to calculate a displacement.

<list> A list of the floating-point data registers or control registers.

» The left operand is moved to the location specified by the right operand.

FPcr One of the three floating-point system control registers (FPCR, FPSR, or FPIAR).
FPn One of eight floating-point data registers {(always specifies the destination register).
FPm One of eight floating-point data registers (always specifies the source register).

FPc:FPs Two of eight floating-point data registers. This notation is used only with the FSIN-
COS instruction and specifies the register pair where the cosine and sine values are

stored.

+inf Positive infinity

—inf Negative infinity

NAN Not-A-Number
Displacement

k An integer (—64 to +17) that specifies the format of a number to be stored in the
packed BCD format.

cce An index into the FPCP constant ROM.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-15

FABS FABS

Absolute Value

Operation: Absolute Value of Source » FPn
Assembler FABS.<fmt> <ea>,FPn
Syntax: FABS.X FPm,FPn
FABS.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

“ Description: Converts the source operand to extended precision (if necessary) and stores the
absolute value of that number in the destination floating-point data register.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -
Result Absolute Value Absolute Value Absolute Value
NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-

DITION CODES.

Quotient Byte: Not affected

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs
OPERR Cleared
OVFL Cleared
UNFL If the source is an extended precision denormalized
number, refer to 6.1.5 Underflow; cleared otherwise.
DZ Cleared
INEX2 Cleared
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility.
Instruction Format:
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1
COPROCESSOR EFFECTIVE ADDRESS
! 1 1 1 D 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | RM | 0 SPECIFIER REGISTER 0 0 1 L 0 0 0

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-16

FABS Absolute Value FABS

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeroes.
If RIM =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register n

Dn* 000 reg. number:Dn {xxx).W 11 000

An — — {xxx).L 1M1 001

(An) 010 reg. number:An #<data> 11 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 1M1 010

(dg,An,Xn}) 110 reg. number:An {dg,PC,Xn) 11 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 11 011

({bd,An,Xn),od) 110 reg. number:An ([bd,PC,Xn],0d)} 1M 011

(lbd,An],Xn,od) 110 reg. number:An {[bd,PC],Xn,0d) 111 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the sdurce operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If RIM =0, specifies the source floating-point data register, FPm.
If R’M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is then written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

1
MC68881/MC68882 USER'S MANUAL MOTOROLA
4-17

FACOS FACOS

Arc Cosine

Operation: Arc Cosine of Source » FPn
Assembler FACOS.<fmt> <ea>,FPn
Syntax: FACOS.X FPm,FPn
FACOS.X FPn
Attributes: Format =(Byte, Word, Long, Single, Double, Extended, Packed)
Description: ~ Converts the source operand to extended precision (if necessary) and calculates

the arc cosine of that number. Stores the result in the destination floating-point data register.
This function is not defined for source operands outside of the range [—1... +1]; if the
source is not in the correct range, a NAN is returned as the result and the OPERR bit is set
in the FPSR. If the source is in the correct range, the result is in the range of [0 . .. 7].

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

+7/2 NAN?

Result Arc Cosine

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Cohdition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-

DITION CODES.

Quotient Byte: Not affected

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source is infinity, > 41 or < —1; cleared
otherwise.
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility.
Instruction Format:
5 1" 13 12 1 10 8 6 5 4 3 2 1
COPROCESSOR EFFECTIVE ADDRESS
! ! L ' D 0 0 MODE REGISTER
SOURCE DESTINATION
o | MM SPECIFIER REGISTER 0 0 1 ! ! 0

A
MOTOROLA ‘ ' MC68881/MC68882 USER'S MANUAL
4-18 ’

FACOS Arc Cosine FACOS

Instruction Fields:
Coprocessor 1D Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If RIM =0, this field is unused, and should be all zeroes.
If RIM =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register n

Dn* 000 reg. number:Dn (xxx).W 1M 000

An — — (xxx).L m 001

(An) 010 reg. number:An #<data> m 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC) 1 010

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 1 on

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011

{[bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d} m o1

{[bd,An],Xn,0d) 110 reg. number:An (Ibd,PC],Xn,0d) 11 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is then written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER’'S MANUAL MOTOROLA
4-19

FADD Add FADD

Operation: Source + FPn # FPn
Assembler FADD.<fmt> <ea>,FPn
Syntax: FADD.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
n Description: Converts the source operand to extended precision (if necessary) and adds that
number to the number contained in the destination floating-point data register. Stores the
result in the destination floating-point data register.

Qperation Table:

Source In Range Zero Infinity
Destination + - + - + -
InRange © Add Add +inf —inf
+ +0.0 0.0 . .
Zero N Add 0.0 ~0.0 +inf —inf
Infinit +inf +inf +inf NAN2
ninity —inf —inf NAN2 —inf

NOTES:
1. Returns +0.0 in rounding modes RN, RZ, and RP; returns —0.0 in RM.
2. Sets the OPERR bit in the FPSR exception byte.
3. If either operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES.
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source and the destination are opposite-
signed infinities; cleared otherwise.
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
Dz Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-
bility.

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-20

FADD Add FADD

Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! 1 1 ! 0 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | RM | 0 SPECIFIER REGISTER 0 ! 0 0 0 ! 0

Instruction Fields: n

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP,

Effective Address Field — Determines the addressing mode for external operands.
If R“M =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn (xxx).W 111 000
An —_ —_ (xxx).L m : 001
(An) 010 reg. number:An #<data> 1 100
(An) + on reg. number:An
—(An) 100 reg. number:An
{d16.An) 101 reg. number:An (d16.PC) m 010
(dg,An,Xn) 110 reg. number:An (dg.PC,Xn) 11 011
(bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 1 01
{[bd,An,Xn},od) 110 reg. number:An ({[bd,PC,Xn],od) 111 011
{[bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-21

FASIN Arc Sine FASIN

Operation: Arc Sine of the Source » FPn

Assembler FASIN.<fmt> <ea>,FPn

Syntax: FASIN.X FPm,FPn
FASIN.X FPn

Attributes: Format =(Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and calculates
the arc sine of the number. Stores the result in the destination floating-point data register.
This function is not defined for source operands outside of the range [—1... +1]; if the
source is not in the correct range, a NAN is returned as the result and the OPERR bit is set
in the FPSR. If the source is in the correct range, the result is in the range of [—%w/2... + =/
2].

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

Result Arc Sine +0.0 -0.0 NAN?

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES.
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source is infinity, > +1 or < —1; cleared
otherwise
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! ! 1 D 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 RiM 0 SPECIFIER REGISTER 0 0 0 1 1 0 0

MOTOROLA MC68881/MC68882 USER’S MANUAL
4-22

FASIN Arc Sine FASIN

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If RIM =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn {xxx).W m 000

An — — {xxx).L 1M1 001

(An) 010 reg. number:An #<data> 1M1 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16.PC) 11 010

{dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 11 011

(bd,An,Xn) 110 reg. number:An {bd,PC,Xn} 111 on

{(bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 1M1 011

{[bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,0d) 11 - 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is then written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-23

FATAN FATAN

Arc Tangent

Operation: Arc Tangent of Source » FPn
Assembler FATAN.<fmt> <ea>,FPn
Syntax: FATAN.X FPm,FPn
FATAN.X FPn
Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)
Description: Converts the source operand to extended precision (if necessary) and calculates

the arc tangent of that number. Stores the result in the destination floating-point data register.
The result is in the range of [-w/2... +w/2].

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -
Result Arc Tangent +0.0 -0.0 +m/2 - /2
NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES.

Not affected

Condition Codes:

Quotient Byte:

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Cleared
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 ¥ 10 9 8 7 6 5 4 3 2 1
COPROCESSOR EFFECTIVE, ADDRESS
! ! ! ! D 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | AM 0 SPECIFIER REGISTER 0 0 0 L 0 ! 0

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.

MOTOROLA
4-24

MC68881/MC68882 USER’S MANUAL

FATAN Arc Tangent FATAN

Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeroes.
If R’M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 1M1 000
An . . (xxx).L m 001
(An) 010 reg. number:An #<data> 1M 100

(An) + 011 reg. number:An

- (An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) 1M 010
(dg,An,Xn) 110 reg. number:An (dg.PC,Xn) m 0N
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m on
([bd,An,Xn},od) 110 reg. number:An ([bd,PC,Xn},0d) 1 011
{[bd,An],Xn,od) 110 reg. number:An {[bd,PC],Xn,od) M 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If RIM =1, specifies the source data format: ‘

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is then written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

.
MC68881/MC68882 USER'S MANUAL MOTOROLA
4-25

FATAN H Hyperbblic Arc Tangent FATAN H

Operation: Hyperbolic Arc Tangent of Source » FPn
Assembler FATANH.<fmt> <ea>FPn
Syntax: FATANH.X FPm,FPn

FATANH.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and calculates
the hyperbolic arc tangent of that value. Stores the result in the destination floating-point
data register. This function is not defined for source operands outside of the range (—1... +1);
and the resultis equal to —infinity or +infinity if the source is equal to + 1 or — 1, respectively.
If the source is outside of the range [—1... +1], a NAN is returned as the result and the
OPERR bit is set in the FPSR.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -
Hyperbolic _ 1
Result Arc Tangent +0.0 0.0 NAN

NOTE:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANSs.
OPERR Set if the source is > +1 or < —1; cleared otherwise
OVFL Cleared
UNFL Refer to 6.1.5 Underflow.
Dz Set if the source is equal to +1 or —1; cleared oth-
erwise
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-
bility

MOTOROLA MC68881/MC68882 USER’S MANUAL
4-26

FATANH

Instruction Format:

Hyperbolic Arc Tangent

FATANH

15 14 13 12 1 10 9 8 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! ! ! D 0 MODE REGISTER
SOURCE DESTINATION
0 | RM | 0 SPECIFIER REGISTER 0 0 ! ! 0 !

Instruction Fields: ,

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If RIM =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 1m 000

An — — (xxx).L m 001

(An) 010 reg. number:An #<data> 1 100
(An)+ 011 reg. number:An
—{An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 11 on

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn}) 111 on

([bd,An,Xn],od) 110 reg. number:An {[bd,PC,Xn],0d) 11 011

([bd,An],Xn,od) 110 reg. number:An {[bd,PC],Xn,0d) 11 011

*Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R‘/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is then written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-27

FBcc Branch Conditionally FBcc

Operation: If condition true, then PC + d ¢ PC
Assembler FBcc.<size> <label>
Syntax:

Attributes: Size =(Word, Long)

n Description: If the specified floating-point condition is met, program execution continues at

the location (PC) + displacement. The displacement is a twos complement integer that counts

the relative distance in bytes. The value of the PC used to calculate the destination address

is the address of the branch instruction plus two. If the displacement size is word, then a 16-

bit displacement is stored in the word immediately following the instruction operation word.

If the displacement size is long word, then a 32-bit displacement is stored in the two words
immediately following the instruction operation word.

The conditional specifier cc selects any one of the 32 floating-point conditional tests as
described in 4.4 CONDITIONAL TEST DEFINITIONS.

Status Register:

Condition Codes: Not affected
Quotient Byte: Not affected
Exception Byte: BSUN Set if the NAN condition code is set and the condition
selected is an IEEE non-aware test
SNAN Not Affected
OPERR Not Affected
QOVFL Not Affected
UNFL Not Affected
DZ Not Affected
INEX2 Not Affected
INEX1 Not Affected

Accrued Exception Byte: The IOP bit is set if the BSUN bit is set in the exception byte. No
other bit is affected.

Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
v | o] v] v] coprocessoRin | o | 1 | sizE | CONDITIONAL PREDICATE
16-BIT DISPLACEMENT, OR MOST SIGNIFICANT WORD OF 32-BIT DISPLACEMENT
LEAST SIGNIFICANT WORD OF 32-BIT DISPLACEMENT (IF NEEDED)

MOTOROLA MC68881/MC68882 USER’'S MANUAL
4-28

FBCC Branch Conditionally FBCC

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP,

Size Field — Specifies the size of the signed displacement:
If Format=0, then the displacement is 16-bits and is sign extended before use.
If Format=1, then the displacement is 32-bits.

Conditional Predicate Field — Specifies one of 32 conditional tests as defined in 4.4 CON-
DITIONAL TEST DEFINITIONS.

NOTE: When a BSUN exception occurs, the main processor takes a pre-instruction exception.
If the exception handler returns without modifying the image of the PC on the stack
frame (to point to the instruction following the FBcc), then it must clear the cause of the
exception (by clearing the NAN bit or disabling the BSUN trap) or the exception occurs
again immediately upon return to the routine that caused the exception.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-29

FCMP FCMP

Compare
Operation: FPn — Source
Assembler FCMP.<fmt> <ea>,FPn
Syntax: FCMP.X FPm,FPn
Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

n Description: Converts the source operand to extended precision (if necessary) and subtracts
the operand from the destination floating-point data register. The result of the subtraction is
not retained, but it is used to set the floating-point condition codes as described in 4.5.5.1

SETTING FLOATING-POINT CONDITION CODES.

Operation

Table: The entries in this operation table differ from those of the tables describing most
of the FPCP instructions. For each combination of input operand types, the condition code
bits that may be set are indicated. If the name of a condition code bit is given and is not
enclosed in brackets, then it is always set. If the name of a condition code bit is enclosed in
brackets, then that bit is either set or cleared, as appropriate. If the name of a condition code
bit is not given, then that bit is always cleared by the operation. The infinity bit is always
cleared by the FCMP instruction, since it is not used by any of the conditional predicate
equations. Note that the NAN bit is not shown, since NANs are always handled in the same
manner (as described in 4.5.4 NANs).

Source In Range Zero Infinity
Destination + - + - + -
In Range {NZ} none none none N none
9 N INZ N N N none
Zero + N none z z N none
- N none NZ NZ N none
Infinit none none none none Z none
¥ N N N N N NZ

NOTE: |If either operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:
Condition Codes: Affected as described in the operation table above

Quotient Byte: Not affected

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANSs.
OPERR Cleared
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Cleared
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Accrued Exception Byte:

MOTOROLA
4-30

bility

Decimal Input; cleared otherwise

Affected as described in 6.1.10 IEEE Exception and Trap Compati-

MC68881/MC68882 USER'S MANUAL

FCMP

FCMP

Compare
Instruction Format:
5 W13 @t 9 8 7 5 4 3 2 1 0
" COPROCESSOR EFFECTIVE ADDRESS
1 1 1 1 RS 0 0 MODE REGISTER
SOURCE © " DESTINATION
0 | RM | 0 svﬁcmm " REGISTER 1 ! ! 0 0 0

Instruction Fields:

Coprocessor ID Field —~59ecifta§ which coprocessor in the system is to execute this instruc-

tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field - Determmes the addressing mode for external operands.
If RIM =0, this field. isvunuse, and should be all zeroes.
If R'M =1, this fueld sa eucodecf*mthan M68000 addressing mode as shown:

v Reglster

Addressing Mode | Mode Addressing Mode Mode Register
Dn* S oo ['Ireg, number:Dn (xxx).W 11 000
A" T (xxx) L 11 001
(An) 010 reg. number:An #<data> 111 100

(An) + l . 011 reg number:An
HyWa N DR o ok
(di1gAn) {d16.PC) 11 010
(dg.An Xn)‘ ((dg,PC,Xn) m on
(bd,AnXn} .+ 110 | reg. number:An {bd,PC,Xn) 11 on
{Ibd,AnXnlod) |G ”,reg number:An (lbd,PC,Xn],0d) m on
{[bd,An},Xn, od) A.% ; . feg “number:An {[bd,PC],Xn,0d) AR 011

If RIM =0, specme'a o

If RIM =1, spemfrey. the source. data format:

000
001
010
011 .
100

101 -
110

ng. Word Integer

‘ Smgle Precision Real
““fixtended Precision Real
' chked Décimal Real
Word lmeger

E Double Precision Real
- Byte Integer

SOUFCE 'floatmg point data register, FPm.

Destination Regtster Fueld S«pemfles the destination floating-point data register, FPn.

MC68881/MC68882 USEB s MWM e

MOTOROLA

4-31

FCOS Cosine FCOS

Operation: Cosine of Source » FPn

Assembler FCOS.<fmt> <ea>,FPn

Syntax: FCOS.X FPm,FPn
FCOS.X FPn

Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

m Description: Converts the source operand to extended precision (if necessary) and calculates
the cosine of that number. Stores the resuit in the destination floating-point data register.
This function is not defined for source operands of (+) infinity. If the source operand is not
in the range of [— 24 ... +2m], then the argument is reduced to within that range before the
cosine is calculated. However, large arguments may lose accuracy during reduction, and very
large arguments (greater than approximately 1020) lose all accuracy. The result is in the range
of [-1... +1].

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

Result Cosine +1.0 NAN?

NOTE:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.56.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source operand is (+ or —)infinity; cleared
otherwise
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-
bility.

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-32

FCOS Cosine FCOS

Instruction Format:

5 ¥ 1 12 om0 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! ! ! D 0 0 0 MODE REGISTER
SOURCE DESTINATION
o | M0 SPECIFIER REGISTER 0 0 ! ! ! 0 !

Instruction Fields: n

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.

Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should contain zeroes.
If RIM =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W m 000

An — — {xxx).L 111 001

(An) 010 reg. number:An #<data> m 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC) m 010

(dg,An,Xn) 110 reg. number:An {dg,PC,Xn) 11 011

{bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 1M1 [k}

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d) M 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC),Xn,od) m 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If RI/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 * B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-33

FCOSH FCOSH

Hyperbolic Cosine

Operation: Hyperbolic Cosine of Source » FPn
Assembler FCOSH.<fmt> <ea>,FPn
Syntax: FCOSH.X FPm,FPn
FCOSH.X FPn
Attributes: Format =(Byte, Word, Long, Single, Double, Extended, Packed)
Description: Converts the source operand to extended precision (if necessary) and calculates

the hyperbolic cosine of that number. Stores the result in the destination floating-point data
register.

bperation Table:

Source In Range Zero Infinity
Destination + - + - + —

+1.0

Result Hyperbolic Cosine +inf

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES

Not affected

Condition Codes:

Quotient Byte:

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Refer to 6.1.4 Overflow.
UNFL Cleared
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 n 10 9 8 6 5 4 3 2 1
COPROCESSOR EFFECTIVE ADDRESS
L ! 1 1 D 0 0 MODE REGISTER
SOURCE DESTINATION
0 R/M 0 SPECIFIER REGISTER 0 0 ! ! 0 0

MOTOROLA MC68881/MC68882 USER’'S MANUAL
4-34

FCOSH Hyperbolic Cosine FCOSH

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion, Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register n

Dn* 000 reg. number:Dn {xxx).W 111 000

An — — {xxx).L m o

(An) 010 reg. number:An #<data> 11 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An

(dq6,An) 101 reg. number:An (d16.PC) 11 010

{dg,An,Xn) 110 reg. number:An {dg,PC,Xn) m 0N

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m o1

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) m 011

{[bd,An],Xn,od)} 110 reg. number:An ([bd,PC],Xn,0d) m on

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R’M =0, specifies the source floating-point data register, FPm.
If RI'M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the saurce and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

M068881/MC68882 USER'S MANUAL ‘ MOTOROLA
) 4-35

FD BCC Test Condition, Decrement,and Branch FD BCC

Operation: If condition true then no operation
else Dn —1 » Dn
if Dn # —1
then PC+d » PC
else execute next instruction

Assembler FDBcc Dn,<label>
n Syntax:
Attributes: Unsized

Description: This instruction is a looping primitive of three parameters: a floating-point con-
dition, a counter (an MPU data register) and a 16-bit displacement. The FPCP first tests the
condition to determine if the termination condition for the loop has been met, and if so, the
main processor proceeds to execute the next instruction in the instruction stream. If the
termination condition is not true, the low order 16-bits of the counter register are decremented
by one. If the result is — 1, the count is exhausted, and execution continues with the next
instruction. If the result is not equal to —1, execution continues at the location specified by
the current value of the PC plus the sign-extended 16-bit displacement. The value of the PC
used in the branch address calculation is the address of the displacement word.

The conditional specifier cc selects any one of the 32 floating-point conditional tests as
described in 4.4 CONDITIONAL TEST DEFINITIONS.

Status Register:

Condition Codes: Not affected
Quotient Byte: Not affected
Exception Byte: BSUN Set if the NAN condition code is set and the condition
selected is an IEEE non-aware test
SNAN Not Affected
OPERR Not Affected
OVFL Not Affected
UNFL Not Affected
Dz Not Affected
INEX2 Not Affected
INEX1 Not Affected

Accrued Exception Byte: The IOP bit is set if the BSUN bit is set in the exception byte. No
other bit is affected.

Instruction Format:

B W 13 12 om0 3 8 71 8 5 4 3 2 1 0
COPROCESSOR COUNT
1 1 1 Iv D 0 0 1 0 0 1 REGISTER
o | o] o 0 o [o] o o | o 0 CONDITIONAL PREDICATE
16-BIT DISPLACEMENT

|
MOTOROLA MC68881/MC68882 USER'S MANUAL
4-36

FD BCC Test Condition, Decrement,and Branch FD BCC

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.

Count Register Field — Specifies main processor data register that is used as the counter.

Conditional Predicate Field — Specifies one of the 32 floating-point conditional tests as
described in 4.4 CONDITIONAL TEST DEFINITIONS.

Displacement Field — Specifies the branch distance (from the address of the instruction plus
2) to the destination in bytes.

NOTES:

1. The terminating condition is like that defined by the UNTIL loop constructs of high-level
languages. For example: FDBOLT can be stated as ““decrement and branch until ordered less
than”. '

2. There are two basic ways of entering a loop: at the beginning, or by branching to the trailing
FDBcc instruction. If a loop structure terminated with FDBcc is entered at the beginning, the
control counter must be one less than the number of loop executions desired. This count is
useful for indexed addressing modes and dynamically specified bit operations. However,
when entering a loop by branching directly to the trailing FDBcc instruction, the count should
equal the loop execution count. In this case, if the counter is zero when the loop is entered,
the FDBcc instruction does not branch, causing a complete bypass of the main loop.

3. When a BSUN exception occurs, a pre-instruction exception is taken by the main processor.
If the exception handler returns without modifying the image of the PC on the stack frame
(to point to the instruction following the FDBcc), then it must clear the cause of the exception
(by clearing the NAN bit or disabling the BSUN trap) or the exception occurs again imme-
diately upon return to the routine that caused the exception.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-37

FDIV Divide FDIV

Operation: FPn (+) Source » FPn

Assembler FDIV.<fmt> <ea>,FPn
Syntax: FDIV.X FPm,FPn

Attributes: Format=(Byte, Word, Long, Single, Doub

xtaded, Packed)

taioh (Yff né(‘:essary) and divides that

“ Description: Converts the source operand to extende‘d_"p“r‘
tdata fegcster Stores the result in

number into the number in the destination floating-po
the destination floating-point data register. S

Operation Table:

Source In Range
Destination + - -
N . -0.0
In Range Divide +0.0
+ +0.0 +0.0 -0.0
Zero -0.0 +0.0 +0.0
- + +inf —inf
Infinity - —inf +inf
NOTES:
1. Sets the DZ bit in the FPSR exception byte.
2. Sets the OPERR bit in the FPSR exception byte. L L
3. If either operand is a NAN, refer to 4.5.4 NANs for morg m 3 A LT
Status Register:

Condition Codes: Affected as described in 455., $ETYING FLOATING-POINT CON-
DITION CODES T
Quotient Byte: Not affected
Exception Byte: BSUN Cleared))
SNAN Refer to 4.5.4 NANS:
OPERR Set for O(+ }G i y()mflnlty, cleared otherwise
OVFL Refer to 6.1.4 Ovetflow. "’
UNFL Refer to 6.T. tUnaeﬁlow
Dz Set if the source is zero andtha destination is in range;
cleared otherwise - . .
INEX2 Refer to 6.1.7 Inexatt Re‘wit.
INEX1 If <fmt> is Packed; iéler to 6.1.8 Inexact Result on

Decimal Input; claa‘red otherwise.

Accrued Exception Byte: Affected as described in 6 'l 10 1EEE ﬁlceptlon and Trap Compati-
bility

MOTOROLA
4-38

31/MC68852 USER'S MANUAL

FDIV Divide FDIV

Instruction Format:

15 1 13 12 n 10 9 8 7 6 5 4 3 2 i 0
COPROCESSOR EFFECTIVE ADDRESS
1 1 ! ! 0 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | RM | 0 SPECIFIER REGISTER 0 ! 0 0 0 0 0

Instruction Fields: n

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers defauit to ID=1 for the FPCP.

Effective Address Field — Determines the addressing mode for external operands.
If R‘'M =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn {xxx).W m 000

An — — (xxx).L m 001

(An) 010 reg. number:An #<data> m 100
{An)+ on reg. number:An
~{An} 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 11 010

(dg,An,Xn) 110 reg. number:An {dg,PC,Xn) m 011

{bd,An,Xn) 110 reg. number:An (bd,PC,Xn} m o1

([bd,An,Xn],od) 110 reg. number:An {[bd,PC,Xn],od) m on

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,0d) 1M1 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If RIM =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

0017 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER’'S MANUAL MOTOROLA
4-39

FETOX FETOX

Operation: elSource) p Fpn
Assembler FETOX.<fmt> <ea>,FPn
Syntax: FETOX.X FPm,FPn
FETOX.X FPn
Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

“ Description: Converts the source operand to extended precision (if necessary) and calculates
e to the power of that number. Stores the result in the destination floating-point data register.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + —-

+1.0 +0.0

Result eX +inf

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES

Not affected

Condition Codes:

Quotient Byte:

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANSs.
OPERR Cleared
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 1 10 8 6 4 3 2 1
COPROCESSOR EFFECTIVE ADDRESS
1 L 1 1 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | M 0 SPECIFIER REGISTER 0 1 0 0 0

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-40 :

FETOX o FETOX

Effective Address Field — Determines the addressing mode for external operands.
If RM =0, this field is unused, and should be all zeroes.
If RA/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn ' {xxx).W 11 000
An — — (xxx).L m 001
(An) 010 reg. number:An #<data> m 100
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 111 011
{bd,An,Xn) 110 reg. number:An (bd,PC,Xn} 1 011
([bd,An,Xn],od) 110 reg. number:An {[bd,PC,Xn],0d) 1M1 011
([bd,An],Xn,od) 110 reg. number:An (Ibd,PC],Xn,od) m 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Sotirce Specifier Field — Specifies the source register or data format.
If RIM =0, specifies the source floating-point data register, FPm.
If RIM =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-41

FETOXM1 -1 FETOXM1

Operation: e(Source) - 1»FPn

Assembler FETOXM1.<fmt> <ea>,FPn

Syntax: FETOXM1.X FPm,FPn

FETOXM1.X . FPn
Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)
n, Description: Converts the source operand to extended precision (if necessary) and calculates

e to the power of that number. Then, subtracts one from that value, and stores the result in
the destination floating-point data register.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

Result eX -1 +0.0 -0.0 +inf -1.0

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.56.1 SETTING FLOATING-POINT CON-
DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! 1 L 1 D 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | RM | 0 SPECIFIER REGISTER 0 0 0 i 0 0 0

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.

e
MOTOROLA MC68881/MC68882 USER'S MANUAL
4-42

FETOXM1 X1 FETOXM1

Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 11 000

An - — fxxx).L 1 001

(An) 010 reg. number:An #<data> m 100
(An)+ o1 reg. number:An
-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 11 010

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m o1

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 1 on

{[bd,An,Xn],od) 110 reg. number:An {{bd,PC,Xn],od) m 01

{[bd,An],Xn,od) 110 reg. number:An {{bd,PC],Xn,od) m 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R’M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M=0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

-
MC68881/MC68882 USER'S MANUAL MOTOROLA
4-43

FG ETEXP Get Exponent FG ETEXP

Operation: Exponent of Source » FPn

Assembler FGETEXP.<fmt> <ea>,FPn
Syntax: FGETEXP.X FPm,FPn
FGETEXP.X FPn

! Attributes: Format =(Byte, Word, Long, Single, Double, Extended, Packed)

n Description: Converts the source operand to extended precision (if necessary) and extracts
the binary exponent. Removes the exponent bias, converts the exponent to an extended
precision floating-point number, and stores the result in the destination floating-point data
register.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

Result Exponent +0.0 -0.0 NAN1

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANSs.
OPERR Setifthe source is (+ or —)infinity; cleared otherwise
OVFL Cleared
UNFL Cleared
Dz Cleared
INEX2 Cleared
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
5 413 12 N 3 8 7 § 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! 1 1 D 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | Rm] 0 SPECIFIER REGISTER 0 0 ! ! ! ! 0

MOTOROLA MC683881/MC68882 USER'S MANUAL
4-44

FG ETEXP Get Exponent FG ETEXP

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If RIM =0, this field is unused, and should be all zeroes.
If R‘'M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn (xxx).W m 000
An — — (xxx).L 1M 001
(An) 010 reg. number:An #<data> 1 100
(An) + 011 reg. number:An
~(An) 100 reg. number:An
(d1.An) 101 reg. number:An (d16.PC) m 010
{dg.An,Xn} 110 reg. number:An (dg,PC,Xn)} 1M on
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m on
([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn}],od) 1M1 01
{[bd,An],Xn,od) 110 reg. number:An {[bd,PC],Xn,od) 11 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm..
If R‘M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

|
MC68881/MC68882 USER'S MANUAL MOTOROLA
4-45

FG ETMAN Get Mantissa FG ETMAN

Operation: Mantissa of Source » FPn

Assembler FGETMAN.<fmt> <ea>,FPn
Syntax: FGETMAN.X FPm,FPn
FGETMAN.X FPn

Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and extracts
the mantissa. Converts the mantissa to an extended precision value and stores the result in
the destination floating-point data register. The result is in the range [1.0... 2.0) with the
sign of the source mantissa, zero, or is a NAN.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

Result Mantissa +0.0 -0.0 NAN?

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Setif the source is (+ or —)infinity; cleared otherwise
OVFL Cleared
UNFL Cleared
Dz Cleared
INEX2 Cleared '
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 .1 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR ' EFFECTIVE ADDRESS
! ! ! ! 1D 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | AM 0 SPECIFIER REGISTER 0 0 ! 1 ! 1 1

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-46

FG ETMAN Get Mantissa FG ETMAN

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeroes.
If RIM =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn {xxx).W 11 000

An — — (xxx).L 1m 001

{An) 010 reg. number:An #<data> m 100
(An)+ (28] reg. number:An
—(An) 100 reg. number:An

(d16,An) 101 reg. number:An {d16.PC) M 010

(dg,An,Xn) 110 reg. number:An (dg,PC.Xn) m 011

{bd,An,Xn} 110 reg. number:An {bd,PC,Xn) 1M 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od} m 011

({bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) m o1

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-47

FI NT Integer Part FI NT

Operation: Integer Part of Source » FPn

Assembler FINT.<fmt> <ea>,FPn

Syntax: FINT.X FPm,FPn
FINT.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and extracts
the integer part and converts it to an extended precision floating-point number. Stores the
result in the destination floating-point data register. The integer part is extracted by rounding
the extended precision number to an integer using the current rounding mode selected in
the FPCR mode control byte. Thus, the integer part returned is the number that is to the left
of the radix point when the exponent is zero, after rounding. For example, the integer part
of 137.57 is 137.0 for the round-to-zero and round-to-minus infinity modes, and 138.0 for the
round-to-nearest and round-to-plus infinity modes. Note that the result of this operation is
a floating-point number.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

Result Integer +0.0 -0.0 +inf —inf

NOTE: |If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-
bility

MOTOROLA MC68881/MC68882 USER’'S MANUAL
4-48

FI NT Integer Part FI NT

Instruction Format:

15 i 13 12 n 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVﬁ ADDRESS
! ! 1 1 0 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | RM | 0 SPECIFIER REGISTER 0 0 0 0 0 0 L

Instruction Fields: n

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.

Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn {xxx).W m 000

An - — {xxx).L m 001

(An) 010 reg. number:An #<data> m 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16.PC) 1M 010

{dg,An,Xn) 110 reg. number:An {dg,PC.Xn) m o011

(bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 1Mm o

{[bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ({bd,PC),Xn,od) m 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-49

FI NTRZ Integer Part, Round-to-Zero FI NTRZ

Operation: Integer Part of Source # FPn

Assembler FINTRZ.<fmt> <ea>,FPn

Syntax: FINTRZ.X FPm,FPn
FINTRZ.X FPn

Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

n Description: Converts the source operand to extended precision (if necessary) and extracts
the integer part and converts it to an extended precision floating-point nhumber. Stores the
result in the destination floating-point data register. The integer part is extracted by rounding
the extended precision number to an integer using the round-to-zero mode, regardless of
the rounding mode selected in the FPCR mode control byte (making it useful for FORTRAN
assignments). Thus, the integer part returned is the number that is to the left of the radix
point when the exponent is zero. For example, the integer part of 137.57 is 137.0; the integer
part of 0.1245 x 102 is 12.0. Note that the result of this operation is a floating-point number.

Operation Table:

Source In Range Zero Infinity
Destination + ’ - + - + -

Integer, Forced

Round-To-Zero +0.0 -0.0 +inf —inf

Result

NOTE: I[f the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-
bility '

L
MOTOROLA MC68881/MC68882 USER'S MANUAL
4-50

Fl NTRZ Integer Part, Round-to-Zero FI NTRZ

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! ! L D 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | AM 0 SPECIFIER REGISTER 0 0 0 0 0 1 !

Instruction Fields: “

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motarola assemblers default to ID=1 for the FPCP.

Effective Address Field — Determines the addressing mode for external operands.
If RIM =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W m 000

An — — {xxx).L m 001

(An) 010 reg. number:An #<data> 11 100
(An)+ 01 reg. number:An
~(An) 100 reg. number:An

{d16.An) 101 reg. number:An (d15,PC) 11 010

(dg,An,Xn) 110 red. number:An (dg,PC,Xn) 1 011

{bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 1M1 011

([bd,An,Xn],od) 110 reg. number:An {[bd,PC,Xn],0d) 11 011

{Ibd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 1 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If RM =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-51

FLOG10 FLOG10

Log10
Operation: Log10 of Source » FPn
Assembler FLOG10.<fmt> <ea>,FPn
Syntax: FLOG10.X FPm,FPn
FLOG10.X FPn
Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

n Description: Convert the source operand to extended precision (if necessary) and calculates
the logarithm of that number using base 10 arithmetic. Stores the result in the destination
floating-point data register. This function is not defined for input values less than zero.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + —

NAN? —inf2 NAN'

Result Logio +inf

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. Sets the DZ bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-

DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANSs.

OPERR Set if the source operand is <0; cleared otherwise
OVFL Cleared

UNFL Cleared

DZ Set if the source is (+ or —); cleared otherwise
INEX2 Refer to 6.1.7 Inexact Result.

INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 n 10 9 8 6 4 3 2 1
COPROCESSOR EFFECTIVE ADDRESS
1 ! L ! D 0 0 MODE REGISTER
SOURCE DESTINATION
0 | RM | 0 SPECIFIER REGISTER 0 ! 0 ! 0 !

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-52

FLOG10 Log10 FLOG10

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R’M =0, this field is unused, and should be all zeroes.
If R’M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register n
Dn* 000 reg. number:Dn {xxx).W m 000
An — — (xxx).L 11 001
(An) 010 reg. number:An #<data> 1 100
(An) + on reg. number:An
—{An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16,PC) 11 010
(dg,An,Xn) 110 reg. number:An {dg,PC.Xn) "1 011
({bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011
(Ibd,An,Xn),0d) 110 reg. number:An ([bd,PC,Xn],0d) 1 011
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,o0d) m on

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R’M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-53

FLOG2 FLOG2

Log2

Operation: Log2 of Source » FPn

Assembler FLOG2.<fmt> <ea>,FPn

Syntax: FLOG2.X FPm,FPn
FLOG2.X FPn

Attributes:

n Description: Converts the source operand to extended precision (if necessary) and calculates
the logarithm of that number using base 2 arithmetic. Stores the result in the destination
floating-point data register. This function is not defined for input values less than zero.

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Operation Table:

Destination

Source

In Range

+

Zero

+

Infinity

Result

Logz

NAN?

—inf2

+inf

NAN?

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. Sets the DZ bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES

Not affected

Condition Codes:

Quotient Byte:

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source is < 0; cleared otherwise
OVFL Cleared
UNFL Cleared
DZ Set if the source is (+ or —)0; cleared otherwise
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 M 10 9 8 7 6 4 3 2 1 0
" COPROCESSOR , EFFECTIVE ADDRESS
! ! 1 L D 0 0 MODE REGISTER
SOURCE DESTINATION
0 | RM | 0 SPECIFIER REGISTER 0 1 0 L 1 0

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-54

FLOGZ Log2 FLOG2

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If RFM =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn {xxx).W 1M1 000
An — — {xxx).L M 001
(An) 010 reg. number:An #<data> 11 100
(An) + o1 reg. number:An
—{An}) 100 reg. number:An .

(d16.An) 101 reg. number:An (d16.PC) m 010
(dg,An,Xn) 110 reg. number:An {dg,PC.Xn) 1M1 011
(bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 1m on

{[bd,An,Xn),od) 110 reg. number:An {[bd,PC,Xn],od) 1M1 011
{[bd,An],Xn,od) 110 reg. number:An {[bd,PC],Xn,od) m on

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R’M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

S
MC68881/MC68882 USER'S MANUAL MOTOROLA
4-55

FLOGN FLOGN

Loge
Operation: Loge of Source » FPn
Assembler FLOGN.<fmt> <ea>,FPn
Syntax: FLOGN.X FPm,FPn
FLOGN.X FPn
Attributes: Format =(Byte, Word, Long, Single, Double, Extended, Packed)

n Description: Converts the source operand to extended precision (if necessary) and calculates
the natural logarithm of that number. Stores the result in the destination floating-point data
register. This function is not defined for input values less than zero.

Operation Table:

Destination

Source
+

In Range

Zero

+

Infinity

Result

In{x)

NAN?

—inf2

+inf

NAN?

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. Sets the DZ bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES

Not affected

Condition Codes:

Quotient Byte:

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source operand is < 0; cleared otherwise
OVFL Cleared
UNFL Cleared
DZ Set if the source is (+ or —)0; cleared otherwise
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 1 10 9 8 6 4 3 2 1 0
COPROCESSOR EFFECTIVE, ADDRESS
! 1 L ! D 0 0 MODE REGISTER
SOURCE DESTINATION
0| M 0 SPECIFIER REGISTER 0 ! 0 1 0 0

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-56

FLOGN Loge FLOGN

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If RIM =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register n
Dn* 000 reg. number:Dn {xxx).W m 000
An — — (xxx).L 1 001
(An) 010 reg. number:An #<data> 111 100
(An) + 011 reg. number:An
—({An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16,PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 11 on
(bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 111 011
([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d) 111 011
{[bd,An},Xn,od) 110 reg. number:An ([bd,PC],Xn,o0d) 1 on

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

L
MC68881/MC68882 USER'S MANUAL ' MOTOROLA
4-57

FLOGNP1

Loge of (Source + 1) » FPn

Operation:
Assembler
Syntax:

Attributes:

Description:

Loge (x+1)

FLOGNP1 <fmt> <ea>,FPn
FLOGNP1.X
FLOGNP1.X

FPm,FPn
FPn

FLOGNP1

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Converts the source operand to extended precision (if necessary), adds 1 to that
value, and calculates the natural logarithm of that intermediate result. Stores the result in
the destination floating-point data register. This function is not defined for input values less

than —1.

Operation Table:

Source

In Range

Destination

+

+

Zero

+

Infinity

Result

In{x+1) In(x+1)?

+0.0

-0.0

+inf

NANZ

NOTES:

1. If the source is — 1, sets the DZ bit in the FPSR exception byte and returns a NAN. If the source
is < —1, sets the OPERR bit in the FPSR exception byte and returns a NAN.

2. Sets the OPERR bit in the FPSR exception byte.

3. If the source operand is a NAN, refer to 4.5.4 NANs for more |nformat|on.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Accrued Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-

DITION CODES
Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
DZ
INEX2
INEX1

Cleared
Refer to 4.5.4 NANs.
Set if the source operand is < —1; cleared otherwise
Cleared ’
Refer to 6.1.5 Underflow.
Set if the source operand is -1; cleared otherwise
Refer to 6.1.7 Inexact Result.

If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.
Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1
COPROCESSOR EFFECTIVE ADDRESS
! ! L ! D 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | AM 0 SPECIFIER REGISTER 0 0 0 0 ! 1

MOTOROLA
4-58

MC68881/MC68882 USER’S MANUAL

FLOGNP1 Loge (x+1j FLOGNP1

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register n
Dn* 000 reg. number:Dn {xxx).W m 000
An — — {xxx).L m 001
{An) 010 reg. number:An #<data> m 100
(An)+ o1 reg. number:An
- (An) 100 reg. number:An
{d18.An) 101 reg. number:An (d16,PC) 1M 010
(dg,An,Xn) 110 reg. number:An {dg,PC,Xn) m on
{bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011
{[bd,An,Xn],od) 110 reg. number:An (Ibd,PC,Xn],od) m 011
{[bd,An],Xn,od) 110 reg. number:An {{bd,PC],Xn,od) m 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format!

0000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

|
MC68881/MC68882 USER'S MANUAL MOTOROLA
4-59

FMOD FMOD

Modulo Remainder

Operation: Modulo remainder of (FPn (+) Source) » FPn

Assembler FMOD.<fmt> <ea>,FPn

Syntax: FMOD.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and calculates

the modulo remainder of the number in the destination floating-point data register, using
the source operand as the modulus. Stores the result in the destination floating-point data
register, and stores the sign and seven least significant bits of the quotient in the FPSR
quotient byte (the quotient is the result of FPn (+) Source). The modulo remainder function
is defined as: '
FPn (Source x N)
where:
N=INT(FPn (/) Source) in the round-ta-zero mode

The FMOD function is not defined for a source operand equal to zero or for a destination
operand equal to infinity. Note that this function is not the same as the FREM instruction,
which uses the round-to-nearest mode and thus returns the remainder that is required by
the /IEEE Specification for Binary Floating-Point Arithmetic.

Operation Table:

Source In Range Zero Infinity
Destination + - - +
In Range Modulo Remainder NAN? FPn2
Zero oo NAN' oo
Infinity * NAN' NAN? NAN?
NOTES:

1. Sets the OPERR bit in the FPSR exception byte.

2. Returns the value of FPn before the operation. However, the result is processed by the normal
instruction termination procedure to round it as required. Thus, an overflow and/or inexact
result may occur if the rounding precision has been changed to a smaller size since the FPn
value was loaded. .

3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES

Loaded with the sign and least significant seven bits of the quotient
(FPn (+) Source). The sign of the quotient is the exclusive OR of
the sign bits of the source and destination operands.

Condition Codes:

Quotient Byte:

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs,
OPERR Set if the source is zero, or the destination is infinity;
cleared otherwise
OVFL Cleared
UNFL Refer to 6.1.5 Underflow.

|
MOTOROLA ' MC68881/MC68882 USER'S MANUAL
4-60

FMOD Modulo Remainder FMOD

DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0 n

COPROCESSOR EFFECTIVE ADDRESS

! ! ! ! D 0 0 0 MODE REGISTER
SOURCE DESTINATION

0 [RM [0 SPECIFIER REGISTER 0 1 0 0 0 0 !

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn {xxx).W m 000
An — — {xxx).L m 001
(An) 010 reg. number:An #<data> m 100
(An}+ 011 reg. number:An
- (An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC.Xn) m 011
(bd,An,Xn) 110 reg. number:An {bd,PC,Xn) m 011
{[bd,An,Xn),od) 110 reg. number:An ([bd,PC,Xn],od) m 011
{[bd,An],Xn,od) 110 reg. number:An {[bd,PC],Xn,od) m on

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-61

FM OVE Move Floating-Point Data Register FM OVE

Operation: Source #» Destination

Assembler FMOVE.<fmt> <ea>,FPn

Syntax: FMOVE.<fmt> FPm,<ea>
FMOVE.P FPm,<ea>{Dn}
FMOVE.P FPm,<ea>{#k}

n Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

Description: Moves the contents of the source operand to the destination operand. Although
the primary function of this instruction is data movement, it is also considered an arithmetic
instruction since conversions from the source operand format to the destination operand
format are performed implicitly during the move operation. Also, the source operand is
rounded according to the selected rounding precision and mode.

Unlike the M68000 Family integer data movement instruction, the floating-point move in-
struction does not support a memory-to-memory format (for such transfers, it is much faster
to utilize the M68000 Family integer MOVE instruction to transfer the floating-point data than
to use the FMOVE instruction). The FMOVE instruction only supports memory-to-register,
register-to-register, and register-to-memory operations (in this context, memory may refer
to an MPU data register if the data format is byte, word, long or single). The memory-to-
register and register-to-register operations use a command word encoding distinctly different
from that used by the register-to-memory operation, and these two operation classes are
described separately below.

Memory-to-Register or Register-to-Register Operation:
Converts the source operand to an extended precision floating-point number (if necessary)
and stores it in the destination floating-point data register. Depending on the source data
format and the rounding precision, some operations may produce an inexact result. In the
following table, combinations that can produce an inexact result are marked with a dot (o),
but all other combinations produce an exact result.

Source Format: B wW L S D X P

Rounding Precision: Single . e o o
Double e o
Extended °

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES

Quotient Byte: Not affected

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-62

FM OVE Move Floating-Point Data Register FMOVE

Exception Byte: BSUN Cleared

SNAN Refer to 4.5.4 NANs.

OPERR Cleared

OVFL Cleared

UNFL Refer to 6.1.5 Underflow if the source is an extended
precision denormalized number; cleared otherwise.

DZ Cleared

INEX2 Refer to 6.1.7 Inexact Result if <fmt> is L, D or X; n
cleared otherwise.

INEX1 Refer to 6.1.8 Inexact Result on Decimal Input if <fmt>

is P; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! 1 L 1 D 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 RIM 0 SPECIFIER REGISTER 0 0 0 0 0 0 0

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R‘M =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn (xxx).W m 000
An — — (xxx).L m 001
(An) 010 reg. number:An #<data> m 100
(An) + 011 reg. number:An
—{An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16.PC) 11 010
{dg,An,Xn) 110 reg. number:An {dg,PC,Xn) 1M on
{bd,An,Xn) 110 reg. number:An {bd,PC,Xn) m 011
([bd,An,Xn],od} 110 reg. number:An ([bd,PC,Xn],od) 1M 011
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) m oM

*Only if <fmt> is Byte, Word, Long, or Single.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-63

FM OVE Move Floating-Point Data Register FMOVE

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R‘M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer
“ 001 S Single Precision Real

010 X Extended Precision Real

011 P Packed Decimal Real

100 W Word Integer

101 D Double Precision Real

110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

Register-to-Memory Operation:
Rounds the source operand to the size of the specified destination format and stores it at the
destination effective address. If the format of the destination is packed decimal, a third
operand is required to specify the format of the resultant string. This operand, called the k-
factor, is a 7-bit signed integer (twos complement) and may be specified as an immediate
value or in a main processor data register. If a data register contains the k-factor, only the
least significant 7 bits are used, and the rest of the register is ignored.

Status Register:

Condition Codes: Not affected
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
<fmt>is B, W, or L SNAN Refer to 4.5.4 NANs.
OPERR Set if the source operand is infinity, or if the desti-

nation size is exceeded after conversion and round-
ing; cleared otherwise

OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 Cleared

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-64

FMOVE Move Floating-Point Data Register FM OVE

<fmt>is S, D, or X BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 Cleared n
<fmt> is P BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the k-factor > +17, or the magnitude of the
decimal exponent exceeds 3 digits; cleared otherwise
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 Cleared
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-
bility
Instruction Format:
15 14 13 12 n 10 8 7 8 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! ! ! 0 0 0 0 MODE E[REGISTER
0] . DESTINATION SOURCE K-FACTOR
FORMAT REGISTER (IF REQUIRED)

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.

NMIC68881/MC68882 USER'S MANUAL

MOTOROLA
4-65

FM OVE Move Floating-Point Data Register FM OVE

Effective Address Field — Encoded with the M68000 addressing mode for the destination
operand as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn {xxx).W m 000

An — — (xxx).L 1 001

(An) 010 reg. number:An #<data> — —
n (An) + 01 reg. number:An
—{An) 100 reg. number:An

(d16.An) 101 reg. number:An {d16,PC) — —

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —

{bd,An,Xn) 110 reg. number:An (bd,PC,Xn) . .

([bd,An,Xn],od) 110 reg. number:An {[bd,PC,Xn],od) —_ —_

([bd,An],Xn,od) 110 reg. number:An {[bd,PC],Xn,0d} — —

*Only if <fmt> is Byte, Word, Long, or Single.

Destination Format Field — Specifies the data format of the destination operand:

000 L Long Word Integer

001 S Single Precision Real

010 X Extended Precision Real

011 P{#k} Packed Decimal Real with static k-factor
100 w Word Integer

101 D Double Precision Real

110 B Byte Integer

111 P{Dn} Packed Decimal Real with dynamic k-factor

Source Register Field — Specifies the source floating-point data register, FPm.

k-factor Field — Only used if the destination format is Packed Decimal, to specify the format
of the decimal string. For any other destination format, this field should be set to all zeroes.
For a static k-factor, this field is encoded with a twos complement integer where the value
defines the format as follows:
—64 to 0 — Indicates the number of significant digit to the right of the decimal point

(Fortran “F" format). ;

+1to + 17 —Indicates the number of significant digits in the mantissa (Fortran ““E"’ format).
+18 to +63 — Sets the OPERR bit in the FPSR exception byte, treated as +17.

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-66

FM OVE Move Floating-Point Data Register FM OVE

The format of this field for a dynamic k-factor is:
rrr0000

where:

“rrr” is the number of the main processor data register that contains the k-factor value.

The following table gives several examples of how the k-factor value affects the format of

the decimal string that is produced by the FPCP. The format of the string that is generated
is independent of the source of the k-factor (static or dynamic).

k-Factor Source Operand Value

-5 +12345.678765
-3 +12345.678765
-1 -+12345.678765

0 +12345.678765
+1 +12345.678765
+3 +12345.678765
+5 +12345.678765

Destination String

+1.234567877 E+4
+1.2345679 E+4
+1.23457 E+4
+1.2346 E+4
+1.E+4
+1.23E+4
+1.2346 E+4

MC68881/MC68882 USER'S MANUAL

MOTOROLA
4-67

FM OVE Move System Control Register FM OVE

Operation: Source # Destination
Assembler FMOVE.L <ea>,FPcr
Syntax: FMOVE.L FPcr,<ea>

Attributes: Size=(Long)

n Description: Moves the contents of a floating-point system control register into or out of the
FPCP (the control registers are the FPCR, FPSR and FPIAR). The external operand may be in
memory or a main processor register. A 32-bit transfer is always performed, even though
the system control register may not have 32 implemented bits. Unimplemented bits of a
control register are read as zeros and are ignored during writes (but must be zero for com-

patability with future devices).

This instruction does not cause pending exceptions (other than protocol violations) to be
reported to the main processor. Furthermore, a write to the FPCR exception enable byte or
the FPSR exception status byte cannot generate a new exception, regardless of the value
written.

Status Register: Changed only if the destination is the FPSR; in which case all bits are modified
to reflect the value of the source operand.

Instruction Format:

15 1 13 12 1 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! L L ! 0 0 0 0 MODE REGISTER
REGISTER
1 0 dr SELECT 0 0 0 0 0 0 0 0 0 0

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for the operation:

Memory-to-Register —

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 reg. number:Dn {xxx).W 1M1 000
An* 001 reg. number:An {xxx).L m 001
(An) 010 reg. number:An #<data> 1M1 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An]

(d1g.An) 101 reg. number:An (d16.PC) 111 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn} 11 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) M 011

{[bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d) 111 01
([bd,An),Xn,od) 110 reg. number:An {[bd,PC],Xn,od) 11 011

*Only if the source register is the FPIAR.

MOTOROLA MC68881/MC68882 USER’'S MANUAL
4-68

FM OVE Move System Control Register FM OVE

Register-to-Memory —

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn {xxx).W m 000

An* 001 reg. number:An (xxx).L m 001

{An) 010 reg. number:An #<data> - —
(An)+ 011 reg. number:An
—{An) 100 reg. number:An

{d16.An) 101 reg. number:An (d16.PC) — —_

(dg,An,Xn) 110 reg. number:An (dg.PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — -

({bd,An,Xn],od) 110 reg. number:An {{bd,PC,Xn],0d) — —

{[bd,An],Xn,od) 110 reg. number:An {[bd,PC],Xn,0d) — —

*Only if the destination register is the FPIAR.

dr Field — Specifies the direction of the data transfer.
0 — Move an external operand to the specified system control register.
1 — Move the specified system control register to an external location.
Register Select Field — Specifies the system control register to be moved:
100 FPCR Floating-point Control Register
010 FPSR Floating-point Status Register
001 FPIAR Floating-point Instruction Address Register

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-69

FMOVECR Move Constant ROM FMOVECR

Operation: ROM Constant » FPn
Assembler

Syntax: FMOVECR.X #cce,FPn
Attributes: Format=(Extended)

“ Description: Fetches an extended precision constant from the FPCP on-chip ROM, rounds it
to the precision specified in the FPCR mode control byte, and stores it in the destination
floating-point data register. The constant is specified by a predefined offset into the constant
ROM. The values of the constants contained in the ROM are shown in the offset table at the

end of this description.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Cleared
OPERR Cleared
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 Cleared
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-
bility

Instruction Format:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 COPROISESSOR 0 0 0 0 0 0 0 0 0
DESTINATION ROM

0 1 0 1 1 1 REGISTER OFFSET

MOTOROLA » MC68881/MC68882 USER'S MANUAL
4-70

FMOVECR Move Constant ROM FMOVECR

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Destination Register Field — Specifies the destination floating-point data register, FPn.
ROM Offset Field — Specifies the offset into the FPCP on-chip constant ROM where the
desired constant is located. The offsets for the available constants are:

Offset Constant “
$00

™
$0B Log10(2)
$0C e
$0D Logale)
$0E Logiole)
0.0

$0F)

$30 1n(2)
$31 1n(10)
$32 100
$33 10!
$34 102
$35 104
$36 108
$37 1016
$38 1032
$39 1064
$3A 107128
$3B 10256
$3C 10512
$3D 101024
$3E 102048
$3|: 104096

The on-chip ROM contains other constants useful only to the on-chip microcode routines.
The values contained at offsets other than those defined above are reserved for the use of
Motorola, and may be different on various mask sets of the FPCP.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-71

FM OVEM Move Multiple Data Registers FM OVEM

Operation: Register List # Destination
Source » Register List

Assembler FMOVEM.X <list>,<ea>
Syntax: FMOVEM.X Dn,<ea>
FMOVEM.X <ea>,<list>

n FMOVEM.X <ea>,Dn
<list>

A list of any combination of the eight floating-point data reg-
isters, with individual register names separated by a slash (/);
and/or contiguous blocks of registers specified by the first and
last register names separated by a dash (-).

Attributes: Format = (Extended)

Description: Moves one or more extended precision numbers to or from a list of floating-point
data registers. No conversion or rounding is performed during this operation, and the FPSR
is not affected by the instruction. This instruction does not cause pending exceptions (other
than protocol violations) to be reported to the main processor.

Any combination of the eight floating-point data registers can be transferred, with the selected
registers specified by a user-supplied mask. This mask is an 8-bit number, where each bit
corresponds to one register; if a bit is set in the mask, that register is moved. The register
select mask may be specified as a static value contained in the instruction, or a dynamic
value in the least significant 8-bits of a main processor data register {the remaining bits of
the register are ignored).

FMOVEM allows three types of addressing modes: the control modes, the predecrement
mode, or the postincrement mode. If the effective address is one of the control addressing
modes, the registers are transferred between the FPCP and memory starting at the specified
address and up through higher addresses. The order of the transfer is from FPO through FP7.

If the effective address is the predecrement mode, only a register to memory operation is
allowed. The registers are stored starting at the address contained in the address register
and down through lower addresses. Before each register is stored, the address register is
decremented by 12 (the size of an extended precision number in memory) and the floating-
point data register is then stored at the resultant address. When the operation is complete,
the address register points to the image of the last floating-point data register stored. Each
register is stored in the format described in SECTION 3 OPERAND DATA FORMATS, with the
most significant byte of the register image stored at the lowest address, and the least sig-
nificant byte at the highest address. The order of the transfer is from FP7 through FPO.

If the effective address is the postincrement mode, only a memory to register operation is
allowed. The registers are loaded starting at the specified address and up through higher
addresses. After each register is stored, the address register is incremented by 12 (the size
of an extended precision number in memory). When the operation is complete, the address
register points to the byte immediately following the image of the last floating-point data
register loaded. The order of the transfer is the same as for the control addressing modes:
FPO through FP7.

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-72

FMOVEM

Status Register:

Instruction Format:

Move Multiple Data Registers

1 10 9

FMOVEM

Not Affected. Note that the FMOVEM instruction provides the only mechanism
for moving a floating-point data item between the FPCP and memory without performing
any data conversions or affecting the condition code and exception status bits.

4 3 2

1 1 1

1

COPROCESSOR

EFFECTIVE ADDRESS
MODE

REGISTER

1 1 dr

D
moE [o [o

REGISTER LIST

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.

Effective Address Field — Determines the addressing mode for the operation:

Memory-to-Register —

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 11 000
An — — (xxx).L 1 001
(An) 010 reg. number:An #<data> — —
(An)+ - 011 reg. number:An
—(An) — —_

{d16,An} 101 reg. number:An (d16.PC) 1m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 111 011
{bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d) 111 0
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) m 0N
Register-to-Memory —
Addressing Mode Mode Register Addressiné Mode Mode Register
Dn — - (xxx).W m 000
An — - (xxx).L m 001
(An) 010 reg. number:An #<data> — —
(An) + — —
—{An) 100 reg. number:An

{d16,An) 101 reg. number:An {d16,PC) — —
{dg,An,Xn} 110 reg. number:An (dg,PC,Xn) — —
{bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d) — —_
([bd,An],Xn,o0d) 110 reg. number:An {[bd,PC],Xn,od) — =

MC68881/MC68882 USER'S MANUAL

MOTOROLA

4-73

FMOVEM . Move Multiple Data Registers FMOVEM

dr Field — Specifies the direction of the transfer.
0 — Move the listed registers from memory to the FPCP.
1 — Move the listed registers from the FPCP to memory.
Mode Field — Specifies the type of the register list and addressing mode.
00 — Static register list, predecrement addressing mode.
01 — Dynamic register list, predecrement addressing mode.
10 — Static register list, postincrement or control addressing mode,
n 11 — Dynamic register list, postincrement or control addressing mode.
Register List Field:
Static list— contains the register select mask; if a register is to be moved, the corresponding
bit in the mask is set as shown below, otherwise it is clear.
Dynamic list — contains the main processor data register number, rrr, as shown below:

Register List Format

Static, —(An) — FP7 FP6 FP5 FP4 FP3 FP2 FP1 FPO
Static, (An)+ or Control — FPO FP1 FP2 FP3 FP4 FP5 FP6 FP7
Dynamic — 0 r r r 0 0 0 0

The format of the dynamic list mask is the same as for the static list and is contained in the
least significant 8 bits of the specified main processor data register. .

Programming Note: This instruction provides a very useful feature, dynamic register list speci-
fication, that can significantly enhance system performance. If the calling conventions used
for procedure calls utilize the dynamic register list feature, the number of floating-point data
registers saved and restored can be reduced. A minimum of 6 bus cycles is required to load
or save a floating-point data register {more if the memory address is not long word aligned).
Thus, a minimum of 36 clock cycles (2x 6 bus cycles x 3 clocks per bus cycle) is eliminated
from the procedure call and return overhead for each register not saved and restored un-
necessarily.

In order to utilize the dynamic register specification feature of the FMOVEM instruction, both
the calling and the called procedures must be written to communicate information about
register usage. When one procedure calls another, a register mask must be passed to the
called procedure to indicate which registers must not be altered upon return to the calling
procedure. The called procedure then saves only those registers that are modified and are
already in use. There are several techniques that can be used to utilize this mechanism, and
an example follows.

In this example, a convention is defined by which each called procedure is passed a word
mask in D7 that identifies all floating-point registers in use by the calling procedure. Bits 15
though 8 identify the registers in the order FPO through FP7, and bits 7 through 0 identify
the registers in the order FP7 through FPO (the two masks are required due to the different
transfer order used by the predecrement and postincrement addressing modes). The code
used by the calling procedure consists of simply moving the mask (which is generated at
compile time) for the floating-point data registers currently in use into D7:

Calling procedure. . . “
MOVE.W #ACTIVE,D7 Load the list of FP registers that are in use
BSR PROC-2

MOTOROLA ' MC68881/MC68882 USER’S MANUAL
4-74

FMOVEM Move Multiple Data Registers FM OVEM

The entry code for all other procedures computes two masks. The first mask identifies the
registers in use by the calling procedure that are used by the called procedure (and therefore
saved and restored by the called procedure). The second mask identifies the registers in use
by the calling procedure that are used by the called procedure {and therefore not saved on
entry). The appropriate registers are then stored along with the two masks:

Called procedure. . ..

MOVE.W D7,D6 Copy the list of active registers

ANDW #WILL_.USE,D7 Generate the list of doubly-used registers
FMOVEM D7,-(A7) Save those registers

MOVE.W D7,-(A7) Save the register list

EOR.W D7,D6 Generate the list of not saved active registers
MOVE.W D6,P(A7) Save it for later use

If the second procedure calls a third procedure, a register mask is passed to the third procedure
that indicates which registers must not be altered by the third procedure. This mask identifies
any registers in the list from the first procedure that were not saved by the second procedure,
plus any registers used by the second procedure that must not be altered by the third pro-
cedure. An example of the calculation of this mask is:

Nested calling sequence. ..
MOVE.W UNSAVED Load the list of active registers not saved at entry

(A7),D7
OR.W #ACTIVE, D7 Combine with those active at this time
BSR PROC-3

Upon return from a procedure, the restoration of the necessary registers follows the same
convention, and the register mask generated during the save operation on entry is used to
restore the required floating-point data registers:

Return to caller. ..

ADDQ.L #2,A7 Discard the list of registers not saved

MOVE.B (A7)+,D7 Get the saved register list (pop word, use byte)
FMOVEM (A7)+,D7 Restore the registers

RTS Return to the

calling routine

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-75

FM OVEM Move Multiple Control Registers FM OVEM

Operation: Register List » Destination
Source # Register List
Assembler FMOVEM.L <list>,<ea>
Syntax: FMOVEM.L <ea>,<list>
<list> A list of any combination of the three floating-

“ point system control registers (FPCR, FPSR and

FPIAR) with individual register names sepa-
rated by a slash (/).

Attributes: Size=(Long)

Description: Moves one or more 32-bit values into or out of the specified system control
registers. Any combination of the three system control registers may be specified. The reg-
isters are always moved in the same order, regardless of the addressing mode used; with
the FPCR moved first, followed by the FPSR, and the FPIAR moved last (if a register is not
selected for the transfer, the relative order of the transfer of the other registers is the same).
The first register is transferred between the FPCP and the specified address, with successive
registers located up through higher addresses.

When more than one register is moved, the memory or memory alterable addressing modes
are allowed as shown in the addressing mode tables. If the addressing mode is predecrement,
the address register is first decremented by the total size of the register images to be moved
(i.e., 4 times the number of registers) and then the registers are transferred starting at the
resultant address. For the postincrement addressing mode, the selected registers are trans-
ferred to or from the specified address, and then the address register is incremented by the
total size of the register images transferred. If a single system control register is selected,
the data register direct addressing mode may be used; or, if the only register selected is the
FPIAR, then the address register direct addressing mode is allowed. Note that if a single
register is selected, the opcode generated is the same as for the FMOVE single system control
register instruction.

Status Register:ls changed only if the destination list includes the FPSR; in which case all bits
are modified to reflect the value of the source register image.

Instruction Format:

15 14 13 12 " 10 9 8 - 1 6 5 4 3 2 i 0
COPROCESSOR EFFECTIVE ADDRESS
1 1 1 1 D 0 0 0 MODE REGISTER
REGISTER
1 1 dr LIST 0 0 0 0 0 0 0 0 0 0

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.

MOTOROLA MC68881/M1C68882 USER'S MANUAL
4-76

FM OVEM Move Multiple Control Registers FM OVEM

Effective Address Field — Determines the addressing mode for the operation:

Memory-to-Register —

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn (xxx).W m 000
An** 001 reg. number:An {xxx).L m 001
(An) 010 reg. number:An #<data> 11 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16.PC) m 010
{dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011
([bd,An,Xn],0d) 110 reg. number:An {[bd,PC,Xn],0d) m 011
([bd,An],Xn,od) 110 reg. number:An {{bd,PC],Xn,od) m [N

*Only if a single FPcr is selected.
**Only if the FPIAR is the single register selected.

Register-to-Memory —

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn {xxx).W m 000
' An** 001 reg. number:An {xxx).L m 001
(An) 010 reg. number:An #<data> - -
(An)+ 011 reg. number:An
—(An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16.PC) — —_
{dg,An,Xn) 110 reg. number:An (dg,PC,Xn) - —
(bd,An,Xn) 110 reg. number:An {bd,PC,Xn) — —
([bd,An,Xn},o0d) 10 reg. number:An ([bd,PC,Xn],od) _ -
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) - -

*Only if a single FPcr is selected.
**Only if the FPIAR is the single register selected.

dr Field — Specifies the direction of the transfer.
0 — Move the listed registers from memory to the FPCP.
1 — Move the listed registers from the FPCP to memory.

Register List Field: — Contains the register select mask; if a register is to be moved, the
corresponding bit in the list is set, otherwise it is clear.
Bit Number — 12 1 10
Register — FPCR FPSR FPIAR

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-77

FMUL FMUL

Multiply
Operation: Source X FPn » FPn
Assembler FMUL.<fmt> <ea>,FPn
Syntax: FMUL.X FPm,FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
n Description: Converts the source operand to extended precision (if necessary) and multiplies

that number by the number in the destination floating-point data register. Stores the result
in the destination floating-point data register.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -
. +0.0 -0.0 +inf —inf
In Range Multiply ~00 +00 | —inf +inf

+ +0.0 -0.0 +0.0 -0.0 1

zero _ -0.0 +00 | -00 +0.0 NAN
- +inf —inf 1 +inf —inf
Infinity —inf +inf NAN —inf +inf
NOTES:

1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES

Not affected

Condition Codes:

Quotient Byte:

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set for 0 X infinity; cleared otherwise
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 1 31N 1 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
' ! ! ! D 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | AM 0 SPECIFIER REGISTER 0 1 0 0 ¢ !

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-78

FMUL Multiply FMIUL

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If RIM =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register n
Dn* 000 reg. number:Dn {xxx).W 1 000
An - — {xxx).L 1m 001
{An) 010 reg. number:An #<data> 1 100
(An) + on reg. number:An
—{An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16.PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m on
(bd,An,Xn) 110 reg. number:An {bd,PC,Xn} m 01
([bd,An,Xn},od} 110 reg. number:An {[bd,PC,Xn],0d) 11 01
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) m 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R’M =0, specifies the source floating-point data register, FPm.
If RIM =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-79

FNEG FNEG

Negate

Operation: —(Source) » FPn
Assembler FNEG.<fmt> <ea>,FPn
Syntax: FNEG.X FPm,FPn
FNEG.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and inverts the
sign of the mantissa. Stores the result in the destination floating-point data register.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -
Result Negate -0.0 +0.0 —inf +inf
NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-

DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Cleared
UNFL If source is an extended precision denormalized num-
ber, refer to 6.1.5 Underflow; cleared otherwise.
Dz Cleared
INEX2 Cleared
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 1 10 9 3 7 6 5 4 3 2 1
COPROCESSOR EFFECTIVE ADDRESS
! 1 1 !) 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 RM 0 SPECIFIER REGISTER 0 0 1 ! 0 L 0

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-80

FN EG Negate FN EG

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn (xxx).W 11 000
An — — (xxx).L m 001
{An) 010 reg. number:An #<data> 1m 100
(An) + on reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An {(d1g.PC) 11 010
(dg.An,Xn) 110 reg. number:An (dg,PC,Xn) 111 011
(bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 111 01
{[bd,An,Xn],od) 110 reg. number:An {[bd,PC,Xn],od) 1M 01
{[bd,An},Xn,od) 110 reg. number:An ({bd,PC],Xn,o0d) 111 o1

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If RIM =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-81

FNOP No Operation FNOP

Operation: None
Assembler

Syntax: FNOP
Attributes; Unsized

Description: This instruction does not perform any explicit operation. However, it is useful to
force synchronization of the FPCP with a main processor, or to force processing of pending
exceptions. The synchronization function is inherent in the way that the FPCP uses the M68000
Family coprocessor interface. For most FPCP instructions, the main processor is allowed to
continue with the execution of the next instruction once the FPCP has any operands needed
for an operation, thus supporting concurrent execution of floating-point and integer instruc-
tions. However, if the main processor attempts to initiate the execution of a new floating-
point instruction in the MC68881 before the previous one is completed, the main processor
is forced to wait until that instruction execution is finished before proceeding with the new
instruction. FNOP is treated in the same way as other instructions and thus cannot be executed
until the previous floating-point instruction is completed, and the main processor is syn-
chronized with the MC68881.

The MC68882 may not wait to begin execution of another floating-point instruction until it
has completed execution of the current instruction. However, the FNOP instruction synchro-
nizes the coprocessor and MPU by causing the MPU to wait until the current instruction (or
both instructions) have completed. '

The FNOP instruction also forces the processing of exceptions pending from the execution
of previous instructions. This is also inherent in the way that the FPCP utilizes the M68000
Family coprocessor interface. Once the FPCP has received the input operand for an arithmetic
instruction, it always releases the main processor to execute the next instruction (regardless
of whether or not concurrent execution is prevented for the instruction due to tracing) without
reporting the exception during the execution of that instruction. Then, when the main pro-
cessor attempts to initiate the execution of the next FPCP instruction, a pre-instruction ex-
ception may be reported to initiate exception processing for an exception that occurred during
a previous instruction. By using the FNOP instruction, the user can force any pending ex-
ceptions to be processed without performing any other operations.

Status Register: Not Affected

Instruction Format:

5 4 18 12 n w8 8 7 6 5 4 3 2 1 0
I T I T COPROCESSOR o | 1 oo | o oo | 0| o
o o J ol ool ofoJolololo]olo]o]o]o

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-82

FNOP No Operation FNOP

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-

tion. Motorola assemblers default to ID=1 for the FPCP.
NOTE

FNOP uses the same opcode as the FBce.W <label> instruction, with cc=F (non-
trapping false) and <label>=*+2 (which results in a displacement of 0). n

|
MC68881/MC68882 USER’'S MANUAL MOTOROLA
4-83

FREM FREM

IEEE Remainder

Operation: IEEE Remainder of {FPn {+) Source)) FPn

Assembler FREM.<fmt> <ea>,FPn

Syntax: FREM.X FPm,FPn

Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and calculates

the modulo remainder of the number in the destination floating-point data register, using
the source operand as the modulus. Stores the result in the destination floating-point data
register, and stores the sign and seven least significant bits of the quotient in the FPSR
quotient byte (the quotient is the result of FPn {+) Source). The IEEE remainder function is
defined as:
FPn —(Source X N)

where:

N=INT(FPn (+) Source) in the round-to-nearest mode
The FREM function is not defined for a source operand equal to zero or for a destination
operand equal to infinity. Note that this function is not the same as the FMOD instruction,
which uses the round-to-zero mode and thus returns a remainder that is different from the
remainder required by the /EEE Specification for Binary Floating-Point Arithmetic.

Operation Table:

Source In Range Zero Infinity
Destination + - + = + -
In Range IEEE Remajpder NANT FPn2
+0.0 , +0.0
Zero 00 NAN _0.0
infinity * NAN? NAN' NAN'

NOTES:

1. Sets the OPERR bit in the FPSR exception byte.

2. Returns the value of FPn before the operation. However, the result is processed by the normal
instruction termination procedure to round it as required. Thus, an underflow and/or inexact
result may occur if the rounding precision has been changed to a smaller size since the FPn
value was loaded.

3. If either operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-

DITION CODES

Loaded with the sign and least significant seven bits of the quotient
(FPn (=) Source). The sign of the quotient is the exclusive OR of
the sign bits of the source and destination operands.

Quotient Byte:

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source is zero, or the destination is infinity;
cleared otherwise
OVFL Cleared

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-84

FREM | IEEE Remainder FREM

UNFL Refer to 6.1.5 Underflow.

DZ Cleared

INEX2 Cleared

INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format: n
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVﬁ ADDRESS
L 1 1 1 D 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 M |0 SPECIFIER REGISTER 0 1 0 0 ! 0 !

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An —_ —_ {xxx).L 1 001

(An) 010 reg. number:An #<data> m 100
(An)+ oM reg. number:An
—{An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC) m 010

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m 011

{bd,An,Xn) 110 reg. number:An {bd,PC,Xn) m 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d) 111 011

({bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,0d) m 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L -Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-85

FR ESTORE Restore Internal State FR ESTORE

{Privileged Instruction)

Operation: If in supervisor state
then FPCP State Frame » Internal State
else TRAP

Assembler

Syntax: FRESTORE <ea>

n Attributes: Unsized, privileged.

Description: Aborts the execution of any operation in progress, and loads a new internal state
from the state frame located at the effective address. The first word at the specified address
is the format word of the state frame, which specifies the size of the frame and the revision
number of the FPCP that created it. The MPU writes the first word to the FPCP Restore CIR
to initiate the restore operation, and then reads the response CIR to verify that the FPCP
recognizes the format word as valid. If the format word is invalid for the FPCP (either because
the size of the frame is not recognized, or the revision number does not match the revision
of the processor), the MPU is instructed to take a format exception. The MPU then writes an
abort to the control CIR, and the FPCP enters the IDLE state. If the format word is valid, the
appropriate state frame is loaded, starting at the specified location and proceeding through
higher addresses.

The FRESTORE instruction does not normally affect the programmer’s model registers of the
FPCP (except for the NULL state size, as described below), but is used only to restore the
user invisible portion of the machine. The FRESTORE instruction is used with the FMOVEM
instruction to perform a full context restoration of the FPCP, including the floating-point data
registers and system control registers. In order to accomplish a complete restoration, the
FMOVEM instructions are first executed to load the programmer’s model, followed by the
FRESTORE instruction to load the internal state and continue any previously suspended
operation. Refer to 6.4 CONTEXT SWITCHING for more information.

The current implementation of the FPCP supports three state frames. Refer to 6.4.2 State
Frames for the exact format of these state frames.

NULL: This state frame is four bytes long, with a format word of $0000. An FRESTORE
operation with this size state frame is equivalent to a hardware reset of the FPCP.
The programmer’s model is set to the reset state, with non-signaling NANs in the
floating- point data registers and zeroes in the FPCR, FPSR and FPIAR. (Thus, it
is unnecessary to load the programmer’s model before this operation.)

IDLE: This state frame is 28 ($1C) bytes long in the MC68881, and 60 ($3C) bytes long
in the MC68882. An FRESTORE operation with this size state frame causes the
FPCP to be restored to the idle state, waiting for the initiation of the next instruc-
tion. Exceptions that were pending before the execution of the previous FSAVE
instruction are pending following the execution of the FRESTORE instruction. The
programmer’s model is not affected by loading this type of state frame.

MOTOROLA MC68881/MC68882 USER’S MANUAL
4-86

FRESTORE

BUSY: This state frame is 184 ($B8) bytes long in the MC68881 and 216 ($D8) bytes long
in the MC68882. An FRESTORE operation with this size state frame causes the

FPCP to be restored to the busy state, executing the instruction that was sus-

. pended by a previous FSAVE operation. The programmer’s model is not affected

by loading this type of state frame (although the completion of the suspended

Restore Internal State

(Privileged Instruction)

FRESTORE

instruction after the restore is executed may modify the programmer’s model).

Status Register: Cleared if the state size is NULL, otherwise not affected

Instruction Format:

5 4 3 2

COPROCESSOR
1D

EFFECTIVE ADDRESS

MODE REGISTER

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-

tion. Motorola assemblers default to ID=1 for the FPCP.

Effective Address Field — Determines the addressing mode for the state frame. Only postin-

crement or control addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — {xxx).W 1M1 000
An — — {xxx).L 11 001
(An) 010 reg. number:An #<data> — —
{An)+ 011 reg. number:An
—(An) — —

(d16,An) 101 reg. number:An (d16,PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m on
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 11 011

([bd,An,Xn],od) 110 reg. number:An {[bd,PC,Xn],0d) m on
({bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) m 011

|
MC68881/MC68882 USER'S MANUAL

MOTOROLA

4-87

F SAVE Save Internal State FSAVE

(Privileged Instruction)

Operation: If in supervisor state
then FPCP Internal State » State Frame
else TRAP

Assembler

Syntax: FSAVE <ea>

n Attributes: Unsized, privileged.

Description: Suspends the execution of any operation in progress, and saves the internal state
in a state frame located at the effective address. After the save operation, the FPCP is in the
idle state, waiting for the execution of the next instruction. The first word written to the state
frame is the format word, which specifies the size of the frame and the revision number of
the FPCP. The MPU initiates the FSAVE instruction by reading the FPCP save CIR, which is
encoded with a format word that indicates the appropriate action to be taken by the main
processor. The current implementation of the FPCP always returns one of five responses in
the save CIR:

Value Definition

$0018 Save NULL state frame

$0118 Not ready, come again

$0218 lllegal, take format exception

$XX18 Save IDLE state frame

$XXB4 Save BUSY state frame

where:

XX is the FPCP version number.
The Not Ready format word indicates that the FPCP is not prepared to perform a state save
and that the MPU should process interrupts, if necessary, and then re-read the save CIR. The
FPCP uses this format word to cause the main processor to wait while an internal operation
is completed, if possible, in order to allow an IDLE frame to be saved rather than a BUSY
frame. The lllegal format word is used to abort an FSAVE instruction that is attempted while
the FPCP is executing a previous FSAVE instruction. All other format words cause the MPU
to save the indicated state frame at the specified address. For state frame details see 6.4.2
State Frames. These state frames are defined as follows:

NULL: This state frame is four bytes long. An FSAVE instruction that generates this size
state frame indicates that the FPCP state has not been modified since the last
hardware reset or FRESTORE instruction with a NULL state frame. This indicates
that the programmer’s model is in the reset state, with non-signaling NANs in
the floating-point data registers and zeroes in the FPCR, FPSR, and FPIAR. (Thus,
it is not necessary to save the programmer’s model.)

IDLE: This state frame is 28 ($1C) bytes long in the MC68881, and 60 ($3C) bytes long
in the MC68882. An FSAVE instruction that generates this size state frame indicates
that the FPCP was in an idle condition, waiting for the initiation of the next in-
struction. Any exceptions that were pending are saved in the frame and are then
cleared internally. Thus, the pending exceptions are not reported until after a
subsequent FRESTORE instruction loads the state frame. In addition to being used
for context switching, this frame may be used by exception handler routines,
since it contains the value of the operand that caused the last floating-point
exception.

MOTOROLA MC68881/MC68882 USER’'S MANUAL
4-88

FSAVE FSAVE

Save Internal State
(Privileged Instruction)

BUSY: This state frame is 184 ($B8) bytes long in the MC68881, and 216 ($D8) bytes long
in the MC68882. An FSAVE instruction that generates this size state frame indicates
that the FPCP was at a point within an instruction where it was necessary to save
the entire internal state of the processor. This frame size is only used when
absolutely necessary because of the large size of the frame and the amount of
time required to transfer it. The action of the FPCP when this state frame is saved
is the same as for the IDLE state frame.

The FSAVE does not save the programmer’s model registers of the FPCP, but is used to save
only the user invisible portion of the machine. The FSAVE instruction may be used with the
FMOVEM instruction to perform a full context save of the FPCP including the floating-point
data registers and system control registers. In order to accomplish a complete context save,
an FSAVE instruction is first executed to suspend the current operation and save the internal
state, followed by the appropriate FMOVEM instructions to store the programmer’s model.
Refer to 6.4 CONTEXT SWITCHING for more information.

Status Register: Not affected

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

COPROCESSOR EFFECTIVE ADDRESS
D REGISTER

MODE

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for the state frame. Only prede-
crement or control alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W M 000

An — — {xxx).L 1m 001

(An) 010 reg. number:An #<data> — —

{An)+ — —

—-{An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16.PC) — —

(dg.An,Xn) 110 reg. number:An {dg,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —_

{{bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

MC68881/M068882 USER’'S MANUAL

MOTOROLA
4-89

FSCA LE Scale Exponent FSCA LE

Operation: FPn x INT(2Source) y FPn

Assembler FSCALE.<fmt> <ea>,FPn
Syntax: FSCALE.X FPm,FPn

Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

“ Description: ~ Converts the source operand to an integer (if necessary) and adds that integer to

the destination exponent. Stores the result in the destination floating-point data register. This
function has the effect of multiplying the destination by 25Source, but is much faster than a
multiply operation when the source is an integer value.

The FPCP assumes that the scale factor is an integer value before the operation is executed.
If not, the value is chopped (i.e., rounded using the round-to-zero mode) to an integer before
it is added to the exponent. When the absolute value of the source operand is (=) 24, an
overflow or underflow always results.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -
In Range i" Scale Exponent FPn1 NAN2
+ +0.0 +0.0 2
Zero _ ~0.0 ~00 NAN
Infinit +inf +inf NAN2
inty —~inf —inf

NOTES:

1. Returns the value FPn before the operation. However, the result if processed bythe normal
instruction termination procedure to round it as required. Thus, an underflow and/or inexact
result may occur if the rounding precision has been changed to a smaller size since the FPn
value was loaded.

2. Sets the OPERR bit in the FPSR exception byte.

3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source operand is (+ or —)infinity; cleared
otherwise
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Cleared
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Resuit on

Decimal Input; cleared otherwise.

|
MOTOROLA MC68881/MC68882 USER'S MANUAL
4-90

FSCALE

Scale Exponent

FSCALE

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 n 10 9 8 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! ! ! D 0 MODE REGISTER
SOURCE DESTINATION
0 RM | 0 SPECIFIER REGISTER 1 0 0 ! 1 0

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 1m 000

An — — (xxx).L 1 001

{An) 010 reg. number:An #<data> 11 100
(An)+ on reg. number:An
~(An) 100 reg. number:An

(d16,An) 101 reg. number:An {d16,PC) 111 010

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m on

{bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 11 011

([bd,An,Xn],0d) 110 reg. number:An (lbd,PC,Xn],od). 1m oM

([bd,An},Xn,od) 10 reg. number:An ([bd,PC],Xn,od) m 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If RIM =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER’S MANUAL MOTOROLA
4-91

FSCC Set According to Condition FSCC

Operation: If (condition true)
then 1s » Destination
else Os p Destination

Assembler
Syntax: FScc.<size> <ea>
n Attributes: Size = (Byte)
Description: If the specified floating-point condition is true, sets the byte integer operand at

the destination to TRUE (all ones), otherwise sets the byte to FALSE (all zeroes). The con-
ditional specifier cc may select any one of the 32 floating-point conditional tests as described
in 4.4 CONDITIONAL TEST DEFINITIONS.

Status Register:

Condition Codes: Not affected
Quotient Byte: Not affected
Exception Byte: BSUN Set if the NAN condition code is set and the condition
selected is an |IEEE non-aware test
SNAN Not Affected
OPERR Not Affected
OVFL Not Affected
UNFL Not Affected
DZ Not Affected
INEX2 Not Affected
INEX1 Not Affected

Accrued Exception Byte: The IOP bit is set if the BSUN bit is set in the exception byte. No
other bit is affected.

Instruction Format:

5 ¥ 1B 1 n W 9 8 71 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS

L L L ID o e MODE REGISTER

o J o [o [o oo o[oo]o CONDITIONAL PREDICATE

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-92

FSCC Set According to Condition FSCC

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Specifies the addressing mode for the byte integer operand:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 reg. number:Dn {xxx).W m 000
An — — {xxx).L 1m 001 n

(An) 010 reg. number:An #<data> — —
(An)+ 011 reg. number:An
-(An) 100 reg. number:An

{d16.An) 101 reg. number:An (d16,PC) - —

{dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn],0d} 110 reg. number:An {[bd,PC,Xn],od) — —

{[bd,An],Xn,od) 110 reg. number:An {[bd,PC],Xn,o0d) — —_

Conditional Predicate Field — Specifies one of 32 conditional tests as defined in 4.4 CON-
DITIONAL TEST DEFINITIONS.

NOTE

When a BSUN exception occurs, a pre-instruction exception is taken by the main
processor. If the exception handler returns without modifying the image of the PC
on the stack frame (to point to the instruction following the FScc), then it must clear
the cause of the exception (by clearing the NAN bit or disabling the BSUN trap) or
the exception occurs again immediately upon return to the routine that caused the
exception.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-93

FSGLDIV

FPn (+) Source » FPn

Operation:

Assembler
Syntax:

Attributes:

Description:

Single Precision Divide

FSGLDIV

FSGLDIV.<fmt> <ea>,FPn

FSGLDIV.X

FPm,FPn

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Converts the source operand to extended precision (if necessary) and divides that
number into the number in the destination floating-point data register. Stores the result in
the destination floating-point data register, rounded to single precision (regardless of the
current rounding precision). This function is undefined for 0(+)0 and infinity{ =)infinity.

Both the source and destination operands are assumed to be representable in the single
precision format. If either operand requires more than 24 bits of mantissa to be accurately
represented, the accuracy of the result is not guaranteed. Furthermore, the result exponent
may exceed the range of single precision, regardless of the rounding precision selected.in
the FPCR mode control byte. Refer to 4.56.5.2 UNDERFLOW, ROUND, OVERFLOW for more
information.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -
In Range Divide +inf! ~infl +0.0 -0.0
9 {Single Precision) —infl +inf? -0.0 +0.0
+0.0 -0.0 2 +0.0 -00
Zero -0.0 +00 NAN -00 +00

- + +inf —inf +inf —inf 2

R A T +inf| —inf +inf NAN
NOTES:

1. Sets the DZ bit in the FPSR exception byte.
2. Sets the OPERR bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 4.5.4 NANSs for more information.

Status Register:

Condition Codes:

Quotient Byte:

Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES

Not affected

BSUN
SNAN
OPERR
OVFL
UNFL
Dz

INEX2
INEX1

Cleared

Refer to 4.5.4 NANSs.

Set for 0(+)0 or infinity(+)infinity

Refer to 6.1.4 Overflow.

Refer to 6.1.5 Underflow.

Set if the source is zero and the destination is in range;
cleared otherwise

Refer to 6.1.7 Inexact Result.

If <fmt> is Packed, refer to 6.1.8 Inexact Result on
Decimal Input; cleared otherwise.

MOTOROLA
4-94

MC68881/MC68882 USER'S MANUAL

FSG LDIV Single Precision Divide FSG LD IV

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE, ADDRESS
! ! ! 1 D 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | ARM | 0 SPECIFIER REGISTER 0 1 0 0 ! 0 0

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If RM =0, this field is unused, and should be all zeroes.
If R’/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn {xxx).W m 000

An - — {xxx).L 111 001

(An) 010 reg. number:An #<data> m 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16.PC) 1 010

(dg.An,Xn) 110 reg. number:An (dg,PC,Xn) m 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m on

{[bd,An,Xn],od) 110 reg. number:An {[bd,PC,Xn],od) m o1

{[bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 1 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If RIM =0, specifies the source floating-point data register, FPm.
If R'M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
1000 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-95

FSG LM U L Single Precision Multiply FSG LM U L

Operation: Source X FPn » FPn

Assembler FSGLMUL.<fmt>

Syntax: FSGLMUL.X
<ea>,FPn
FPm,FPn

nAttributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and multiplies
that number by the number in the destination floating-point data register. Stores the result
in the destination floating-point data register, rounded to single precision (regardless of the
current rounding precision).

Both the source and destination operands are assumed to be representable in the single
precision format. If either operand requires more than 24 bits of mantissa to be accurately
represented, the accuracy of the result is not guaranteed. Furthermore, the result exponent
may exceed the range of single precision, regardless of the rounding precision selected in
the FPCR mode control byte. Refer to 4.5.5.2 UNDERFLOW, ROUND, OVERFLOW for more
information.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -
In Range Multiply +0.0 -0.0 +inf —inf
9 (Single Precision -0.0 +0.0 —inf +inf
+ +0.0 -0.0 +0.0 -0.0 1
Zero ~0.0 +0.0 -0.0 +0.0 NAN
- +inf ~inf 1 +inf —inf
Infinity —inf +inf NAN inf +inf

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if one operand is zero and the other is infinity;
cleared otherwise
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

MOTOROLA MC68881/MC68882 USER’'S MANUAL
4-96

FSGLMUL

Single Precision Multiply

FSGLMUL

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 1 10 9 8 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS |
1 1 1 ! D 0 MODE REGISTER
SOURCE DESTINATION
0 RiM 0 SPECIFIER REGISTER ! 0 0 L L 1

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-

tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeroes.
If RIM =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W m 000

An — — (xxx).L MM 001

(An) 010 reg. number:An #<data> m 100
(An)+ on reg. number:An
—{An) 100 reg. number:An

{d16.An) 101 reg. number:An {d16.PC) m 010

{dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m 011

{bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m (R

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) m 011

([bd,An],Xn,0d} 110 reg. number:An {[bd,PC],Xn,od)} m an

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

|
MC68881/MIC68882 USER'S MANUAL ‘ MOTOROLA
4-97

FSIN Sine FSIN

Operation: Sine of Source » FPn

Assembler FSIN.<fmt> <ea>,FPn

Syntax: FSIN.X FPm,FPn
FSIN.X FPn

Attributes: Format ={Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and calculates
the sine of that number. Stores the result in the destination floating-point data register. This
function is not defined for source operands of (=)infinity. If the source operand is not in the
range of [—2w ... +27], the argument is reduced to within that range before the sine is
calculated. However, large arguments may lose accuracy during reduction, and very large
arguments (greater than approximately 1020) lose all accuracy. The result is in the range of
—=1...+1]

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

Result Sine +0.0 -0.0 NAN1

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Setifthe sourceis (+ or —)infinity; cleared otherwise.
OVFL Cleared
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-
bility

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-98

FSIN

FSIN

Sine
Instruction Format:
15 14 13 12 n 10 9 8 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! ! !) 0 MODE REGISTER
SOURCE DESTINATION
0 | AM | 0 SPECIFIER REGISTER 0 ¢ ! ! ! 0

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.

If RAM =0, this field is unused, and should be all zeroes.

If R’M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn {xxx).W m 000
An — — {xxx).L m 001
(An) 010 reg. number:An #<data> m 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An
(d1g.An) 101 reg. number:An (d16.PC) m 010
| (dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 1m 011
{bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011
([bd,An,Xn),od) 110 reg. number:An {[bd,PC,Xn],0d) 1M 011
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 1M1 011

*Only if <fmt> is Byte, Word, Long,

or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If RIM =1, specifies the source data format:

000
001
010
011
100
101
110

WOsTUXWOLr

Long Word Integer
Single Precision Real
Extended Precision Real
Packed Decimal Real
Word Integer

Double Precision Real
Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, then the input operand is taken from
the specified floating-point data register, and the result is written into the same register.
If the single register syntax is used, Motorola assemblers set the source and destination
fields to the same value.

MC68881/MC68882 USER'S MANUAL

MOTOROLA
4-99

FSINCOS FSINCOS

Simultaneous Sine and Cosine

Operation: Sine of Source » FPs
Cosine of Source » FPc
Assembler FSINCOS.<fmt> <ea>,FPc:FPs
Syntax: FSINCOS.X FPm,FPc:FPs
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and calculates
both the sine and the cosine of that number. Calculates both functions simultaneously; thus,
this instruction is significantly faster than performing separate FSIN and FCOS instructions.
Loads the sine result into the destination floating-point data register FPs and the cosine result
into the destination floating-point data register FPc. Sets the condition code bits according
to the sine result. If FPs and FPc are specified to be the same register, the cosine result is
first loaded into the register and then is overwritten with the sine result. This function is not
defined for source operands of (+ or —)infinity.

If the source opérand is not in the range of (— 2w . .. + 2], the argument is reduced to within
that range before the sine and cosine are calculated. However, large arguments may lose
accuracy during reduction, and very large arguments (greater than approximately 1029) lose
all accuracy. The results are in the range of [—1... +1].

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -
FPs Sine +0.0 -0.0 NAN?
FPc Cosine +0.0 +0.0 NAN?
NOTES:

1. Sets the OPERR bit in the FPSR exception byte.
2.1f the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register: A
Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES (for the sine result)

Quotient Byte: Not affected

Exception Byte: BSUN Cleared

SNAN Refer to 4.5.4 NANs.

OPERR Setifthe source is (+ or —)infinity; cleared otherwise

OVFL Cieared

UNFL Set if a sine underflow occurs, in which case the cos-
ine resultis 1. Cosine cannot underflow. Referto 6.1.5
Underflow.

DZ Cleared

INEX2 Refer to 6.1.7 Inexact Result.

INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

Affected as described in 6.1.10 IEEE Exception and Trap Compati-
bility

Accrued Exception Byte:

i . i |
MOTOROLA MC68881/MC68882 USER'S MANUAL
4-100

FSINCOS Simultaneous Sine and Cosine FSINCOS

Instruction Format:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! ! 1 I 0 0 0 MODE REGISTER
SOURCE DESTINATION DESTINATION
0 | RM 0 SPECIFIER REGISTER, FPs 0 1 ! 0 REGISTER, FPc

Instruction Fields: n
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If RIM =0, this field is unused, and should be all zeroes.
If RIM =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 11 000

An — - (xxx).L 11 001

(An) 010 reg. number:An #<data> m 100
(An)+ on reg. number:An
—(An) 100 reg. number:An

(dy6.An) 101 reg. number:An (d16.PC) m 010

{dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 11 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 1M 011

(Ibd,An,Xn],od) 110 reg. number:An {[bd,PC,Xn],od) 11 011

([bd,An],Xn,od) 110 reg. number:An ({bd,PC),Xn,0d) 11 011

*Only if <fmt> is Byte, Word, Long, or Single.
R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R’M =0, specifies the source floating-point data register, FPm.
If RIM =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register, FPc Field — Specifies the destination floating-point data register, FPc.
The cosine result is stored in this register.

Destination Register, FPs Field — Specifies the destination floating-point data register, FPs.
The sine result is stored in this register. If FPc and FPs specify the same floating-point data
register, the sine result is stored in the register, and the cosine result is discarded.

If R/M =0 and the source register field is equal to either of the destination register fields, the

input operand is taken from the specified floating-point data register, and the appropriate

result is written into the same register.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-101

FSINH FSINH

Hyperbolic Sine

Operation: Hyperbolic Sine of Source #» FPn
Assembler FSINH.<fmt> <ea>,FPn
Syntax: FSINH.X FPm,FPn
FSINH.X FPn
Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

n Description: Converts the source operand to extended precision (if necessary) and calculates
the hyperbolic sine of that number. Stores the result in the destination floating-point data
register.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -
Result Hyperbolic Sine +0.0 -0.0 +inf —inf
NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES

Not affected

Condition Codes:

Quotient Byte:

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Undetflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 " 10 9 8 7 6 5 4 3 2 1
COPROCESSOR EFFECTIVE ADDRESS
! ! ! ! D 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 RM 0 SPECIFIER REGISTER 0 0 0 0 0 1 0

MOTOROLA

4-102

MC68881/MC68882 USER'S MANUAL

FSINH Hyperbolic Sine FSINH

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If RM =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W m 000

An — — (xxx).L m 001

(An) 010 reg. number:An #<data> m 100
(An)+ on reg. number:An
~(An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC) 11 010

(dg.An,Xn) 110 reg. number:An (dg,PC,Xn) 111 on

(bd,An,Xn} 110 reg. number:An {bd,PC,Xn) M o

(Ibd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d) m on

([bd,An],Xn,od) 110 reg. number:An {[bd,PC],Xn,o0d) m 01

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If RIM =0, specifies the source floating-point data register, FPm.
If RIM =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, the input operand is taken from the
specified floating-point data register, and the result is written into the same register. If the
single register syntax is used, Motorola assemblers set the source and destination fields
to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-103

FSQRT FSQRT

Square Root

Operation: Square Root of Source » FPn
Assembler FSQRT.<fmt> <ea>,FPn
Syntax: FSQRT.X FPm,FPn
FSQRT.X FPn
Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

u Description: Converts the source operand to extended precision (if necessary) and calculates
the square root of that number. Stores the result in the destination floating-point data register.
This function is not defined for negative operands.

Operation Table:

Destination

Source

+

In Range

Zero

+

Infinity

Result

/X

NAN?

+0.0

-0.0

+inf

NAN?

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-

DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source operand is not zero and is negative;
cleared otherwise
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 1 13 12 1 10 9 8 7 6 5 4 3 2 1
COPROCESSOR EFFECTIVE ADDRESS
L ! ! !) 0 0 ¢ MODE REGISTER
SOURCE DESTINATION
0 | RM 0 SPECIFIER REGISTER 0 0 0 0 ! 0

L ___]
' MC68881/MC68882 USER’S MANUAL

MOTOROLA
4-104

FSQRT Square Root FSQRT

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If RIM =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register n

Dn* 000 reg. number:Dn (xxx).W m 000

An — — (xxx).L 1m 001

(An) 010 reg. number:An #<data> m 100
(An)+ on reg. number:An
—{An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 11 010

(dg.An,Xn) 110 reg. number:An (dg,PC,Xn) 1M 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011

{[bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d) 11 011

{[bd,An],Xn,od) 110 reg. number:An {[bd,PC],Xn,od) 111 011

*Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source flodting-point data register, FPm.
If R/ M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, the input operand is taken from the
specified floating-point data register, and the result is written into the same register. If the
single register syntax is used, Motorola assemblers set the source and destination fields
to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
. 4-105

FS U B Subtract FS U B

Operation: FPn —Source » FPn

Assembler FSUB.<fmt> <ea>,FPn

Syntax: FSUB.X FPm,FPn

Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

m Description: Converts the source operand to extended precision (if necessary) and subtracts
that number from the number in the destination floating-point data register. Stores the result
in the destination floating-point data register.

Operation Table:

Source In Range Zero Infinity
Destination + - L + - + -
In Range f Subtract Subtract —inf +inf
+ +0.01 -0.0 . .
Zero - Subtract —0.0 +001| —inf +inf
Infinit + +inf +inf NAN2 —inf
yoo- —inf —inf —inf NAN2

NOTES:
1. Returns +0.0 in rounding modes RN, RZ, and RP; returns —0.0 in RM.
2. Sets the OPERR bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register: v
Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-

DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if both the source and destination are like-signed
infinities; cleared otherwise
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Resulit.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-
bility

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-106

FS U B Subtract FS U B

Instruction Format:

15 1 13 12 n 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
L 1 L L 0 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | RM 0 SPECIFIER REGISTER 0 1 0 ! 0 0 0

Instruction Fields: n

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.

Effective Address Field — Determines the addressing mode for external operands.
If R‘M =0, this field is unused, and should be all zeroes.
If R’/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn {xxx).W m 000

An — — {xxx).L m 001

(An) 010 reg. number:An #<data> m 100
(An)+ 011 reg. number:An
—(An} 100 reg. number:An

(d16,An) 101 reg. number:An {d16,PC) m 010

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m 011

(bd,An,Xn) 110 reg. number:An {bd,PC,Xn) m 011

{{bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn},0d) m o1

{[bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,0d) m 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If RIM =0, specifies the source floating-point data register, FPm.
If RIM =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

e
MC68881/MC68882 USER’S MANUAL MOTOROLA
4-107

FTA N Tangent FTAN

Operation: Tangent of Source » FPn

Assembler FTAN.<fmt> <ea>,FPn

Syntax: FTAN.X FPm,FPn
FTAN.X FPn

Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and calculates
the tangent of that number. Stores the result in the destination floating-point data register.
This function is not defined for source operands of { =)infinity. If the source operand is not
in the range of [—m/2... +m/2], the argument is reduced to within that range before the
tangent is calculated. However, large arguments may lose accuracy during reduction, and
very large arguments (greater than approximately 1029) lose all accuracy.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

Result Tangent +0.0 -0.0 NAN'

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-
DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source is (+)infinity; cleared otherwise
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 i 13 12 M 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! ! i) ¢ 0 0 MODE REGISTER
SOURCE DESTINATION
0 [RM | D SPECIFIER REGISTER 0 0 0 ! ! ! !

MOTOROLA MC68881/MC68882 USER'S MANUAL
4-108

FTAN Tangent FTAN

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeroes.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn {xxx).W m 000
An - — {xxx).L m 001
(An) 010 reg. number:An | #<data> 111 100
(An) + 011 reg. number:An
—{An) 100 reg. number:An
{d16,An) 101 reg. number:An (d16,PC) 11 010
(dg,An,Xn) 110 reg. number:An (dg.PC,Xn) 1m on
{bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m on
([bd,An,Xn],od} 110 reg. number:An {[bd,PC,Xn],od) m 011
([bd,An],Xn,od)} 110 reg. number:An {Ibd,PC],Xn,0d) m 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R’M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, the input operand is taken from the
specified floating-point data register, and the result is written into the same register. If the
single register syntax is used, Motorola assemblers set the source and destination fields
to the same value.

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-109

FTANH FTANH

Hyperbolic Tangent

Operation: Hyperbolic Tangent of Source » FPn

Assembler FTANH.<fmt> <ea>,FPn

Syntax: FTANH.X FPm,FPn
FTANH.X FPn

Attributes:

n Description: Converts the source operand to extended precision (if necessary) and calculates
the hyperbolic tangent of that number. Stores the result in the destination floating-point data
register.

Format=(Byte, Word, Long, Single, Double, Extended, Packed)

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

+0.0 -0.0 +1.0 -1.0

Result Hyperbolic Tangent

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-

DITION CODES

Quotient Byte: Not affected

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared

- OVFL Cleared

UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Resulit.

INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
15 14 13 12 1 10 8 7 6 5 4 3 2 1
COPROCESSOR EFFECTIVE, ADDRESS
L 1 1 L) 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | AM 0 SPECIFIER REGISTER 0 0 0 1 0 0 1

MOTOROLA
4-110

MC68881/MC68882 USER'S MANUAL

FTAN H Hyperbolic Tangent FTA N H

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this instruc-
tion. Motorola assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeroes.
If R‘/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register n

Dn* 000 reg. number:Dn (xxx).W m 000

An — — (xxx).L m 001

(An) 010 reg. number:An #<data> m 100
(An)+ on reg. number:An
—(An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16.PC) 1m 010

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m 011

{bd,An,Xn} 110 reg. number:An {bd,PC,Xn) m 011

([bd,An,Xn],od) 110 reg. number:An {[bd,PC,Xn],0d) m 011

{[bd,An],Xn,od) 110 reg. number:An {[bd,PC],Xn,0d) m 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R‘M =0, specifies the source floating-point data register, FPm.
If RIM =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn. If R/
M =0 and the source and destination fields are equal, the input operand is taken from the
specified floating-point data register, and the result is written into the same register. If the
single register syntax is used, Motorola assemblers set the source and destination fields
to the same value. ‘

MC68881/MC68882 USER'S MANUAL MOTOROLA
4-111

10x

FTENTOX FTENTOX

Operation: 10Source y FpPp
Assembler FTENTOX.<fmt> <ea>,FPn
Syntax: FTENTOX.X FPm,FPn
FTENTOX.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and calculates
10 to the power of that number. Stores the result in the destination floating-point data register.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -
Result 10X +1.0 +inf +0.0
NOTE: |[f the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT CON-

DITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result on

Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Compati-

bility
Instruction Format:
5 113 2N 10 9 8 6 5 4 3 2 1
COPROCESSOR EFFECTIVE‘ ADDRESS
! ! 1 1 D 0 0 MODE REGISTER
SOURCE DES