

INTRODUCTION TO THE DSP56002 __

DSP56002 PIN DESCRIPTIONS _

MEMORY MODULES AND OPERATING MODES _

PORTA ..

PORTB _

PORTe _

TIMER _

APPENDIX A - BOOTSTRAP CODE _

APPENDIX B - PROGRAMMING SHEETS _

TROUBLE REPORT _

INDEX

INTRODUCTION TO THE DSP56002

III DSP56002 PIN DESCRIPTIONS

III MEMORY MODULES AND OPERATING MODES

_ PORTA

.. PORTB

.. PORTC

_ TIMER

l1li APPENDIX A - BOOTSTRAP CODE

_ APPENDIX B - PROGRAMMING SHEETS

_ TROUBLE REPORT

INDEX

DSP56002

DIGITAL SIGNAL PROCESSOR
USER'S MANUAL

Motorola reserves the right to make changes without further notice to any products herein to im­

prove reliability, function or design. Motorola does not assume any liability arising out of the appli­

cation or use of any product or circuit described herein; neither does it convey any license under its

patent rights nor the rights of others. Motorola products are not authorized for use as components

in life support devices or systems intended for surgical implant into the body or intended to support

or sustain life. Buyer agrees to notify Motorola of any such intended end use whereupon Motorola

shall determine availability and suitability of its product or products for the use intended. Motorola

and ®are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Oppor­

tunity IAffirmative Action Employer.

OnCETM is a trade mark of Motorola, Inc.

© MOTOROLA INC., 1993

Paragraph
Number

TABLE OF CONTENTS

Title

SECTION 1
INTRODUCTION TO THE DSP56002

Page
Number

1.1 INTRODUCTION ; 1-3
1.2 FEATURES :' 1-4
1.3 DSP56K CENTRAL PROCESSING UNIT OVERVIEW 1-4
1.4 MANUAL ORGANIZATION 1-5

. SECTION 2
DSP56002 PIN DESCRIPTIONS

2.1. INTRODUCTION ... 2-3
SIGNAL DESCRIPTIONS ... ~ 2-3 2.2

2.2.1
2.2.1.1
2.2.1.2
2.2.2
2.2.2.1
2.2.2.2
2.2.2.3
2.2.2.4
2.2.2.5
2.2.2.6
2.2.2.7
2.2.2.8
2.2.2.9
2.2.2.10
2.2.3
2.2.3.1

2.2.3.2
2.2.3.3

Port A Address and Data Bus 2-3
Address (AO-A 15) " 2-4
Data Bus (DO-D23) 2-4

Port A Bus Control '~ 2-4
Program Memory Select (PS) 2-4
Data Memory Select (DS) : 2-5
XN Select (XN) .. 2-5
Read Enable (RD) " ... -.' .. :- 2-5
Write Enable (WR) 2-5
Bus Needed (BN) 2-5
Bus Request (BR) " '.' 2-5
Bus Grant (BG)" 2-6
Bus Strobe (BS) .. 2-6
Bus Wait (WT) ~ ... ' 2-6

Interrupt and Mode Control 2-6
Mode Select AlExternal Interrup't Request A
(MODAlIRQA)/STOP Recovery' 2-6
Mode Select B/Externallnterrupt Request B (MODB/IRQB) 2-7
Mode Select C/Non-Maskable Interrupt Request (MODC/NMI) 2-7

Table of Contents (Continued)
Paragraph Page

Number Title Number
2.2.3.4 Reset (RESET) ' 2-7
2.2.4 Power and Clock ... 2-8
2.2.4.1 Power (Vcc), Ground (GND) " 2-8
2.2.4.2 External Clock/Crystal Input (EXTAL) 2-8
2.2.4.3 Crystal Output (XTAL) 2-8
2.2.5 Host Interface ... 2-8
2.2.5.1 Host Data Bus (HO-H7) ... ~ 2-8
2.2.5.2 Host Address (HAO-HA2) '" 2-9
2.2.5.3 Host Read/Write (HRIW) .. ,' ; 2-9
2.2.5.4 Host Enable (HEN) 2-9
2.2.5.5 Host Request (HREQ) ~ ' ... 2-9
2.2.5.6 Host Acknowledge (RACK) 2-9
2.2.6 Serial Communication Interface (SCI) 2-10
2.2.6.1 . Receive Data (RXD) .. ' ~' 2-10
2.2.6.2 Transmit Data (TXD) " 2-10
2.2.6.3 SCI Serial Clock (SCLK) 2-10
2.2.7 Synchronous Serial Interface (SSI) 2-10
2.2.7.1 Serial Clock Zero (SCO) 2-10
2.2.7.2 Serial Control One (SC1) ' 2-11
2.2.7.3 Serial Control Two (SC2) 2-11
2.2.7.4 SSI Serial Clock (SCK) ',' 2-11
2.2.7.5 SSI Receive Data (SRD) ,: 2-11
2.2.7.6 SSI Transmit Data (STD) .. ;' ,~ 2-11
2.3 ON-CHIP EMULATION (OnCE) PINS ... ; ' 2-11,
2.3.1 Debug Serial Input/Chip Status 0 (DSI/OSO) " 2-11
2.3.2 Debug Serial Clock/Chip Status 1 (DSCKlOS1) 2-12
2.3.3 Debug Serial Output (DSO) ' 2-12
2.3.4 Debug Request Input (DR) ... ~ : '.~' ',' ... ~ 2-13
2.4 PLL PINS ~ ~ ' ~ . " .' 2-1'3
2.5, TIMER/EVENT COUNTER MODULE PIN '.' ... ; ; 2-14

SECTION 3
MEMORY MODULES

AND OPERATING MODES

3.1 MEMORY MODULES AND OPERATING MODES, 3-3
3.2 DSP56002 DATA AND PROGRAM MEMORY 3-3
3.2.1 Program Memory ... ~ ~ ~ 3-3
3.2.2 X Data Memory .. 3-4

Table of Contents (Continued)
Paragraph

Number Title
Page

Number
3.2.3
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.5

Y Data Memory .. 3-4
DSP56002 OPERATING MODE REGISTER (OMR) 3-4

Chip Operating Mode (Bits 0 and 1) 3-6
Data ROM Enable (Bit 2) 3-6
Internal Y Memory Disable Bit (Bit 3) 3-6
Chip Operating Mode (Bit 4) 3-7
Reserved (Bit 5) ... 3-7
Stop Delay (Bit 6) .. 3-7
Reserved OMR Bits (Bits 7-23) 3-7

DSP56002 OPERATING MODES 3-7
Single Chip Mode (Mode 0) 3-8
Bootstrap From EPROM (Mode 1) 3-8
Normal Expanded Mode (Mode 2) 3-11
Development Mode (Mode 3) 3-11
Reserved (Mode 4) ... 3-11
Bootstrap From Host (Mode 5) 3-11
Bootstrap From SCI (Mode 6) 3-12
Reserved (Mode 7) ... 3-12

DSP560021NTERRUPT PRIORITY REGISTER 3-12
3.6 DSP56002 PHASE-LOCKED LOOP (PLL) MULTIPLICATION FACTOR .. 3-13

SECTION 4
PORTA

4.1 INTRODUCTION ... 4-3
4.2 PORT A INTERFACE ... 4-3
4.3 PORT A TIMING ... 4-9
4.4 PORT A WAIT STATES .. 4-13
4.5 BUS CONTROL REGISTER (BCR) " 4-13
4.6 BUS STROBE AND WAIT PiNS 4-15
4.7 BUS ARBITRATION AND SHARED MEMORy 4-16
4.7.1 Bus Arbitration Using Only BR and BG With Internal Control. 4-18
4.7.2 Bus Arbitration Using BN, BR, and BG With External Control 4-18
4.7.3 Bus Arbitration Using BR and BG, and WT and BS With No Overhead. 4-20
4.7.4 Signaling Using Semaphores 4-22

Paragraph
Number

Table of Contents (Continued)

Title

SECTION 5
PORTB

Page
Number

5.1
5.2
5.2.1
5.2.2

INTRODUCTION ... 5-3
GENERAL PURPOSE 1/0 CONFIGURATION 5-4

Programming General Purpose 1/0 5-5
Port B General Purpose 1/0 Timing 5-8

5.3 HOST INTERFACE (HI) .. 5-10
5.3.1
5.3.2
5.3.2.1
5.3.2.1.1
5.3.2.1.2
5.3.2.1.3
5.3.2.1.4
5.3.2.1.5
5.3.2.1.6
5.3.2.2
5.3.2.2.1
5.3.2.2.2
5.3.2.2.3
5.3.2.2.4
5.3.2.2.5
5.3.2.2.6
5.3.2.2.7
5.3.2.3
5.3.2.4
5.3.2.5
5.3.2.6
5.3.2.7
5.3.3
5.3.3.1
5.3.3.2
5.3.3.2.1
5.3.3.2.2
5.3.3.2.3
5.3.3.2.4
5.3.3.2.5
5.3.3.2.6
5.3.3.2.7
5.3.3.3

Host Interface - DSP CPU Viewpoint. 5-11
Programming Model - DSP CPU Viewpoint 5-12

Host Control Register (HCR) 5-14
HCR Host Receive Interrupt Enable (HRIE) Bit 0 5-14
HCR Host Transmit Interrupt Enable (HTIE) Bit 1 5-14
HCR Host Command Interrupt Enable (HCIE) Bit 2 5-14
HCR Host Flag 2 (HF2) Bit 3 5-14
HCR Host Flag 3 (HF3) Bit 4 5-15
HCR Reserved Control (Bits 5,6, and 7) 5-15

Host Status Register (HSR) 5-15
HSR Host Receive Data Full (HRDF) Bit 0 5-15
HSR Host Transmit Data Empty (HTDE) Bit 1 5-15
HSR Host Command Pending (HCP) Bit 2 5-16
HSR Host Flag 0 (HFO) Bit 3 5-16
HSR Host Flag 1 (HF1) Bit 4 5-16
HSR Reserved Status (Bits 5 and 6) 5-17
HSR DMA Status (DMA) Bit 7 5-17

Host Receive Data Register (HRX) 5-17
Host Transmit Data Register (HTX) 5-17
Register Contents After Reset 5-17
Host Interface DSP CPU Interrupts 5-18
Host Port Usage Considerations - DSP Side ' 5-18

Host Interface - Host Processor Viewpoint 5-19
Programming Model - Host Processor Viewpoint 5-20
Interrupt Control Register (ICR) 5-20

ICR Receive Request Enable (RREQ) Bit 0 5-22
ICR Transmit Request Enable (TREQ) Bit 1 5-22
ICR Reserved Bit (Bit 2) , ... 5-23
ICR Host Flag 0 (HFO) Bit 3 5-23
ICR Host Flag 1 (HF1) Bit 4 ' 5-23
ICR Host Mode Control (HM1 and HMO bits) Bits 5 and 6 5-23
ICR Initialize Bit (INIT) Bit 7 5-24

Command Vector Register (CVR) 5-26

Paragraph
Number

5.3.3.3.1
5.3.3.3.2
5.3.3.3.3
5.3.3.4
5.3.3.4.1
5.3.3.4.2
5.3.3.4.3
5.3.3.4.4
5.3.3.4.5
5.3.3.4.6
5.3.3.4.7
5.3.3.4.8
5.3.3.5
5.3.3.6
5.3.3.7
5.3.3.8
5.3.4
5.3.4.1
5.3.4.2
5.3.4.3
5.3.4.4
5.3.4.5
5.3.4.6
5.3.5
5.3.5.1
5.3.5.2
5.3.5.3
5.3.5.4
5.3.5.5
5.3.6
5.3.6.1
5.3.6.2
5.3.6.2.1
5.3.6.2.2
5.3.6.2.3
5.3.6.2.4
5.3.6.3
5.3.6.3.1
5.3.6.3.2
5.3.6.3.3
5.3.6.3.4
5.3.6.4
5.3.6.5

Table of Contents (Continued)

Title
Page

Number
CVR Host Vector (HV) Bits 0-5 5-26
CVR Reserved Bit (Bit 6) 5-27
CVR Host Command Bit (HC) Bit 7 5-27

Interrupt Status Register (ISR) 5-27
ISR Receive Data Register Full (RXDF) Bit 0 5-27
ISR Transmit Data Register Empty (TXDE) Bit 1 5-28
ISR Transmitter Ready (TRDY) Bit 2 5-28
ISR Host Flag 2 (HF2) Bit 3 5-28
ISR Host Flag 3 (HF3) Bit 4 5-28
ISR Reserved Bit (Bit 5) 5-28
ISR DMA Status (DMA) Bit 6 5-29
ISR Host Request (HREQ) Bit 7 5-29

Interrupt Vector Register (IVR) 5-29
Receive Byte Registers (RXH, RXM, RXL) 5-29
Transmit Byte Registers (TXH, TXM, TXL) 5-30
Registers After Reset 5-30

Host Interface Pins ... 5-30
Host Data Bus(HO-H7) 5-30
Host Address (HAO-HA2) 5-31
Host Read/Write (HRIW) 5-32
Host Enable (HEN) 5-32
Host Request (HREQ) 5-32
Host Acknowledge (HACK) 5-32

Servicing the Host Interface 5-33
HI Host Processor Data Transfer 5-34
HI Interrupts Host Request (HREQ) 5-34
Polling .. 5-35
Servicing Non-DMA Interrupts 5-36
Servicing DMA Interrupts ~ 5-37

HI Application Examples 5-37
HI Initialization .. 5-38
Polling/Interrupt Controlled Data Transfer 5-38

Host to DSP - Data Transfer 5-40
Host to DSP - Command Vector 5-43
Host to DSP - Bootstrap Loading Using the HI 5-50
DSP to Host Data Transfer 5-51

DMA Data Transfer 5-54
Host To DSP Internal Processing 5-56
Host to DSP DMA Procedure 5-57
DSP to Host Internal Processing 5-59
DSP to Host DMA Procedure 5-60

Example Circuits .. 5-62
Host Port Usage Considerations - Host Side 5-65

Paragraph
Number

Table of Contents (Continued)

Title

SECTION 6
PORTC

Page
Number

6.1 INTRODUCTION ... 6-3
6.2
6.2.1
6.2.2

GENERAL-PURPOSE I/O (PORT C) ' 6-4
Programming General Purpose I/O 6-6
Port C General Purpose 1/0 Timing 6-9

6.3 SERIAL COMMUNICATION INTERFACE (SCI) 6-11
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.2
6.3.2.1
6.3.2.1.1
6.3.2.1.2
6.3.2.1.3
6.3.2.1.4
6.3.2.1.5
6.3.2.1.6
6.3.2.1.7
6.3.2.1.8
6.3.2.1.9
6.3.2.1.10
6.3.2.1.11
6.3.2.1.12
6.3.2.1.13
6.3.2.1.14
6.3.2.2
6.3.2.2.1
6.3.2.2.2
6.3.2.2.3
6.3.2.2.4
6.3.2.2.5
6.3.2.2.6
6.3.2.2.7
6.3.2.2.8
6.3.2.3
6.3.2.3.1
6.3.2.3.2
6.3.2.3.3

SCI 1/0 Pins .. 6-11
Receive Data (RXD) 6-12
Transmit Data (TXD) 6-12
SCI Serial Clock (SCLK) 6-12

SCI Programming Model 6-12
SCI Control Register (SCR) 6-14

SCR Word Select (WDSO, WDS1, WDS2) Bits 0,1, and 2 6-14
SCR SCI Shift Direction (SSFTD) Bit 3 6-18
SCR Send Break (SBK) Bit 4 6-18
SCR Wakeup Mode Select (WAKE) Bit 5 6-18
SCR Receiver Wakeup Enable (RWU) Bit 6 6-18
SCR Wired-OR Mode Select (WOMS) Bit 7 6-19
SCR Receiver Enable (RE) Bit 8 6-19
SCR Transmitter Enable (TE) Bit 9 6-19
. SCR Idle Line Interrupt Enable (ILlE) Bit 10 6-20
SCR SCI Receive Interrupt Enable (RIE) Bit 11 6-21
SCR SCI Transmit Interrupt Enable (TIE) Bit 12 6-21
SCR Timer Interrupt Enable (TMIE) Bit 13 6-21
SCR SCI Timer Interrupt Rate (STIR) Bit 14 6-21
SCR SCI Clock Polarity (SCKP) Bit 15 6-22

SCI Status Register (SSR) 6-22
SSR Transmitter Empty (TRNE) Bit 0 6-22
SSR Transmit Data Register Empty (TDRE) Bit 1 6-22
SSR Receive Data Register Full (RDRF) Bit 2 6-23
SSR Idle Line Flag (IDLE) Bit 3 6-23
SSR Overrun Error Flag (OR) Bit 4 6-23
SSR Parity Error (PE) Bit 5 6-23
SSR Framing Error Flag (FE) Bit 6 6-24
SSR Received Bit 8 Address (R8) Bit 7 6-24

SCI Clock Control Register (SCCR) 6-24
SCCR Clock Divider (CD11-CDO) Bits 11-0 6-25
SCCR Clock Out Divider (COD) Bit 12 6-26
SCCR SCI Clock Prescaler (SCP) Bit 13 6-26

Table of Contents (Continued)
Paragraph Page
Number Title Number

6.3.2.3.4 SCCR Receive Clock Mode Source Bit (RCM) Bit 14 6-26
6.3.2.3.5 SCCR Transmit Clock Source Bit (TCM) Bit 15 6-26
6.3.2.4 SCI Data Registers 6-26
6.3.2.4.1 SCI Receive Registers 6-26
6.3.2.4.2 SCI Transmit Registers 6-28
6.3.2.5 Preamble, Break, and Data Transmission Priority 6-30
6.3.3 Register Contents After Reset 6-31
6.3.4 SCI Initialization ... 6-31
6.3.5 SCI Exceptions .. 6-37
6.3.6 Synchronous Data ... 6-39
6.3.7 Asynchronous Data .. 6-44
6.3.7.1 Asynchronous Data Reception 6-45
6.3.7.2 Asynchronous Data Transmission 6-48
6.3.8 Multidrop ... 6-55
6.3.8.1 Transmitting Data and Address Characters 6-57
6.3.8.2 Wired-OR Mode .. 6-57
6.3.8.3 Idle Line Wakeup .. 6-57
6.3.8.4 Address Mode Wakeup 6-61
6.3.8.5 Multidrop Example 6-61
6.3.9 SCI Timer .. 6-68
6.3.10 Bootstrap Loading Through the SCI (Operating Mode 6) 6-71
6.3.11 Example Circuits ... 6-74
6.4 SYNCHRONOUS SERIAL INTERFACE (SSI) 6-76
6.4.1 SSI Data and Control Pins 6-78
6.4.1.1 Serial Transmit Data Pin (STD) 6-78
6.4.1.2 Serial Receive Data Pin (SRD) 6-80
6.4.1.3 Serial Clock (SCK) 6-80
6.4.1.4 Serial Control Pin (SCO) 6-82
6.4.1.5 Serial Control Pin (SC1) 6-82
6.4.1.6 Serial Control Pin (SC2) 6-83
6.4.2 SSI Programming Model. 6-83
6.4.2.1 SSI Control Register A (CRA) 6-87
6.4.2.1.1 CRA Prescale Modulus Select (PM7-PMO) Bits 0-7 6-87
6.4.2.1.2 CRA Frame Rate Divider Control (DC4-DCO) Bits 8-12 6-87
6.4.2.1.3 CRA Word Length Control (WLO, WL 1) Bits 13 and 14 6-87
6.4.2.1.4 CRA Prescaler Range (PSR) Bit 15 6-88
6.4.2.2 SSI Control Register B (CRB) 6-88
6.4.2.2.1 CRB Serial Output Flag 0 (OFO) Bit 0 6-88
6.4.2.2.2 CRB Serial Output Flag 1 (OF1) Bit 1 6-88
6.4.2.2.3 CRB Serial Control 0 Direction (SCDO) Bit 2 6-89
6.4.2.2.4 CRB Serial Control 1 Direction (SCD1) Bit 3 6-89
6.4.2.2.5 CRB Serial Control 2 Direction (SCD2) Bit 4 6-89

Table of Contents {Continued}
Paragraph Page

Number Title Number
6.4.2.2.6 CRB Clock Source Direction (SCKD) Bit 5 6-89
6.4.2.2.7 CRB Shift Direction (SHFD) Bit 6 6-91
6.4.2.2.8 CRB Frame Sync Length (FSLO and FSL 1) Bits 7 and 8 6-91
6.4.2.2.9 CRB Sync!Async (SYN) Bit 9 6-91
6.4.2.2.10 CRB Gated Clock Control (GCK) Bit 10 6-91
6.4.2.2.11 CRB SSI Mode Select (MOD) Bit 11 6-92
6.4.2.2.12 CRB SSI Transmit Enable (TE) Bit 12 6-92
6.4.2.2.13 CRB SSI Receive Enable (RE) Bit 13 6-92
6.4.2.2.14 CRB SSI Transmit Interrupt Enable (TIE) Bit 14 6-93
6.4.2.2.15 CRB SSI Receive Interrupt Enable (RIE) Bit 15 6-93
6.4.2.3 SSI Status Register (SSISR) 6-94
6.4.2.3.1 SSISR Serial Input Flag 0 (IFO) Bit 0 6-94
6.4.2.3.2 SSISR Serial Input Flag 1 (IF1) Bit 1 6-94
6.4.2.3.3 SSISR Transmit Frame Sync Flag (TFS) Bit 2 ; 6-94
6.4.2.3.4 SSISR Receive Frame Sync Flag (RFS) Bit 3 6-95
6.4.2.3.5 SSISR Transmitter Underrun Error Flag (TUE) Bit 4 6-96
6.4.2.3.6 SSISR Receiver Overrun Error Flag (ROE) Bit 5 6-96
6.4.2.3.7 SSISR SSI Transmit Data Register Empty (TDE) Bit 6 6-97
6.4.2.3.8 SSISR SSI Receive Data Register Full (RDF) Bit 7 6-97
6.4.2.3.9 SSI Receive Shift Register " 6-97
6.4.2.3.10 SSI Receive Data Register (RX) 6-97
6.4.2.3.11 SSI Transmit Shift Register " 6-97
6.4.2.3.12 SSI Transmit Data Register (TX) 6-100
6.4.2.3.13 Time Slot Register (TSR) 6-100
6.4.3 Operational Modes and Pin Definitions ~ 6-100
6.4.4 Registers After Reset 6-100
6.4.5 SSllnitialization ... 6-104
6.4.6 SSI Exceptions .. 6-109
6.4.7 Operating Modes - Normal, Network, and On~Demand 6-112
6.4.7.1 Data/Operation Formats ; 6-112
6.4.7.1.1 Normal/Network Mode Selection 6-112
6.4.7.1.2 Continuous/Gated Clock Selection 6-113
6.4.7.1.3 Synchronous! Asynchronous Operating Modes 6-113
6.4.7.1.4 Frame Sync Selection ' 6-123
6.4.7.1.5 Shift Direction Selection 6-127
6.4.7.2 Normal Mode Examples .•................................ 6-127
6.4.7.2.1 Normal Mode Transmit 6-130
6.4.7.2.2 Normal Mode Receive 6-133
6.4.7.3 Network Mode Examples 6-135
6.4.7.3~1 Network Mode Transmit 6-140
6.4.7.3.2 Network Mode Receive 6-144
6.4.7.4 On-Demand Mode Examples 6-145

Paragraph
Number

6.4.7.4.1
6.4.7.4.2
6.4.8
6.4.9

Table of Contents (Continued)

Title
Page

Number
On-Demand Mode - Continuous Clock 6-148
On-Demand Mode - Gated Clock 6-148

Flags .. 6-153
Example Circuits ... 6-157

SECTION 7
DSP56002 TIMER AND

EVENT COUNTER

7.1 INTRODUCTION ... 7-3
7.2 TIMER/EVENT COUNTER BLOCK DIAGRAM 7-3
7.3 TIMER COUNT REGISTER (TCR) 7-4
7.4 TIMER CONTROUSTATUS REGISTER (TCSR) 7-5
7.4.1 Timer Enable (TE) Bit 0 7-5
7.4.2 Timer Interrupt Enable (TIE) Bit 1 ~ 7-5
7.4.3 Inverter (INV) Bit 2 ... 7-5
7.4.4 Timer Control (TCO-TC2) Bits 3-5 7-6
7.4.5 General Purpose I/O (GPIO) Bit 6 7-6
7.4.6 Timer Status (TS) Bit 7 7-7
7.4.7 . Direction (DIR) Bit 8 .. 7-7
7.4.8 Data Input (DI) Bit 9 .. 7-7
7.4.9 Data Output (DO) Bit 10 7-7
7.4.10 TCSR Reserved bits (Bits 11-23) 7-7
7.5 TIMER/EVENT COUNTER MODES OF OPERATION 7-7
7.5.1 Timer Mode 0

7.5.2

7.5.3

7.5.4
7.5.5
7.5.6
7.5.7

(Standard Timer Mode, Internal Clock, No Timer Output) 7-7
Timer Mode 1
(Standard Timer Mode, Internal Clock, Output Pulse Enabled) 7-8
Timer Mode 2 .
(Standard Timer Mode, Internal Clock, Output Toggle Enabled) 7-10
Timer Mode 4 (Pulse Width Measurement Mode) 7-11
Timer Mode 5 (Period Measurement Mode) 7-12
Timer Mode 6 (Standard Time Counter Mode, External Clock) 7-13
Timer Mode 7 (Standard Timer Mode, External Clock) 7-15

7.6 TIMER/EVENT COUNTER BEHAVIOR DURING WAIT and STOP 7-16
7.7 OPERATING CONSiDERATIONS 7-17
7.8 SOFTWARE EXAMPLES 7-18
7.8.1 General Purpose I/O Input 7-18
7.8.2 General Purpose I/O Output 7-19

Paragraph
Number

Table of Contents (Continued)

Title
. Page
Number

7.8.3 Timer Mode 0, Input Clock, GPIO Output, and No Timer Output 7-20
7.8.4 Pulse Width Measurement Mode (Timer Mode 4) 7-21
7.8.5 Period Measurement Mode (Timer Mode 5) 7-22

APPENDIX A
BOOTSTRAP

AND
ROM CODE

A.1 INTRODUCTION ... A-3

APPENDIX B
PROGRAMMING SHEETS

8.1 PERIPHERAL ADDRESSES ~ 8-3
8.2 INTERRUPT VECTOR ADDRESSES 8-4
8.3 INSTRUCTIONS ... 8-5
8.4 CENTRAL PROCESSOR 8-10
8.5 GP 1/0 .. 8-14
8.6 HOST .. 8-16
8.7 SCI ... 8-21
8.8 SSI ... 8-24
8.9 TIMER ... 8-27

Figure
Number

LIST of FIGURES

Title
Page

Number

1-1 DSP56002 Technical Literature 0 1-3
1-2 DSP56002 Block Diagram 0 '0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-6

2-1 DSP56002 Signals 0.0 0 0 0 0 0 0 0 0 2-3

3-1 DSP56002 Memory Maps 000000000000000000000000000000000000000 3-5
3-2 OMR Format 000 3-6
3-3 Port A Bootstrap Circuit 0 0 0 0 ••••••••••••••••••••••• ' ••••• 0 •••••••• 3-9
3-4 DSP56002 Interrupt Priority Register (IPR) 00 ••• 00 •• 0 0 0 0 •••• 0000 0000 3-13

4-1 Port A Signals 0 ••• 0 ••• 0 0 0 ••• 0 0 0 ••• 0 0 •••• 0 •••• 0 0 •• 0 0 0 0 0 • 0 0 • 0 0 0 0 4-4
4-2 External Program Space . 0 ••• 0 0 0 0 •• 0 0 0 0 • 0 0 0 ••• 0 0 0 •• 0 0 0 0 0 • 0 0 0 0 0 0 0 4-5
4-3 External X and Y Data Space 0 0 0 0 •• 0 • 0 0 •• 0 0 0 0 • 0 0 0 •• 0 • 0 0 0 0 • 0 0 0 0 0 0 0 4-6
4-4 Memory Segmentation o. 0 0 0 0 •• 0 0 0 •• 0 0 0 0 0 • 0 0 0 • 0 0 00 ••• 0 0 0 0 0 0 • 0 0 0 0 4-7
4-5 Port A Bootstrap ROM with X and Y RAM 0 ••• 0 0 0 0 0 0 0 0 0 ••• 0 0 0 0 0 • 0 0 0 0 4-8
4-6 Port A Bus Operation with No Wait States ., 0 ••• 0 0 0 •• 0 0 0 0 • 0 • 0 0 0 • 0 0 o. 4-9
4-7 Port A Bus Operation with Two Wait States 0 0 •• 0 0 0 0 0 0 0 0 0 •••• 0 0 0 • 0 0 0 • 4-10
4-8 Mixed-Speed Expanded System 0 •• 0 0 0 0 • 0 • 0 0 •• 0 0 0 •• 0 0 0 0 0 •• 0 0 0 ~ 0 0 0 0 4-12
4-9 Bus Control Register 0 •• 0 • 0 0 0 •• 0 0 0 0 0 • 0 0 0 0 •• 0 0 • 0 0 0 0 0 0 •• 0 0 0 0 0 • 0 0 • 0 4-14
4-10 Bus Strobe/Wait Sequence 0 0 0 ••• 0 0 0 ••• 0 0 0 •• 0 0 •• 0 0 0 0 0 0 • 0 0 0 0 0 • 0 0 • • 4-15
4-11 Bus Request/Bus Grant Sequence 000000000000 •• 0 0 0 0 • 0 • 0 0 0 000.0.00 4-17
4-12 Bus Arbitration Using Only BR and BG with Internal Control 0 0 0 0 • 0 •• 0 0 0 0 4-19
4-13 Two DSPs with External Bus Arbitration Timing .. 0 0 •• 0 0 0 0 0 0 • 0 0 • 0 • 0 0 0 • 4-19
4-14 Bus Arbitration Using BN, BR, and BG with External Control 000000 •• 0 • 0 0 4-20
4-15 Bus Arbitration Using BR and BG,

and WT and BS with No Overhead 000. 0 000 •• 0 0 0 • 0 0 0 0 0 0 0 0 0 0 000. 0 • 0 0 4-21
4-16 Two DSPs with External Bus Arbitration Timing 0 0 0 0 0 0 • 0 0 0 0 0 0 0.0 0 •• 0 0 0 0 4-22
4-17 Signaling Using Semaphores . 0 •• 0 0 0 0 0 ~ • 0 • 0 • 0 0 4-23

5-1 Port B Interface 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 5-3
5-2 Parallel Port B Registers 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 5-4
5-3 Parallel Port B Pinout 0 0 0 0 •• 0 0 0 0 •• 0 0 0 ~ • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 5-5
5-4 Port B I/O Pin Control Logic 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 5-6
5-5 On-Chip Peripheral Memory Map 0 0 •••• 0 0 0 0 •• 0 0 0 0 0 o. 0 0 • 0 0 0 0 0 0 5-7
5-6 Instructions to Write/Read Parallel Data with Port Boo 0 0 0 •• 0 0 0 0 0 0 0 000 0 0 5-8

Figure
Number

List of Figures (Continued)

Title
Page

Number

5-7 110 Port B Configuration .. 5-9
5-8 HI Block Diagram ... 5-12
5-9 Host Interface Programming Model- DSP Viewpoint 5-13
5-10 Host Flag Operation '..................... 5-16
5-11 HSR-HCR Operation .. 5-19
5-12 Host Processor Programming Model - Host Side. 5-21
5-13 HI Register Map .. 5-22
5-14 Command Vector Register•....... 5-26
5-15 Host Processor Transfer Timing 5-33
5-16 Interrupt Vector Register Read Timing " 5-34
5-17 H I I nte rru pt Structu re .. 5-36
5-18 DMA Transfer Logic and Timing 5-37
5-19 HI Initialization Flowchart 5-38
5-20 Hllnitialization-DSP Side " 5-39
5-21 a HI Configuration-Host Side. .. 5-40
5-21 b HI Initialization-Host Side, Polling Mode 5-40
5-21 c HI Initialization-Host Side, Interrupt Mode 5-41
5-21 d HI Initialization-Host Side, DMA Mode .. 5-42
5-22 Host Mode and I N IT Bits " 5-43
5-23 Bits Used for Host-to-DSP Transfer 5-44
5-24 Data Transfer from Host to DSP .. 5-45
5-25 Receive Data from Host-Main Program " 5-46
5-26 Receive Data from Host Interrupt Routine 5-46
5-27 HI Exception Vector Locations 5-47
5-28 Host Command • . 5-48
5-29 Bootstrap Using the HI : 5-49
5-30 Transmit/Receive Byte Registers 5-50
5-31 Bootstrap Code Fragment " 5-51
5-32 Bits Used for DSP to Host Transfer 5-52
5-33 Data Transfer from DSP to Host " 5-53
5-34 Main Program - Transmit 24-Bit Data to Host 5-54
5-35 Transmit to HI Routine ... 5-54
5-36 HI Hardware-DMA Mode 5-55
5-37 DMA Transfer and Host Interrupts 5-56
5-38 Host Bits with TREQ and RREQ .. 5-57
5-39 Host-to-DSP DMA Procedure 5-58
5-40 DSP to Host DMA Procedure 5-61
5-41 MC68HC11 to DSP56002 Host Interface " 5-62
5-42 MC68000 to DSP56002 Host Interface " 5-63
5-43 Multi-DSP Network Example " 5-64

Figure
Number

List of Figures (Continued)

Title
Page

Number

6-1 Port C Interface ... 6-3
6-2 Port C GPIO Control ... 6-4
6-3 Port C GPIO Registers ... 6-5
6-4 Port C I/O Pin Control Logic 6-6
6-5 On-Chip Peripheral Memory Map .. 6-7
6-6 Write/Read Parallel Data with Port C 6-8
6-7 I/O Port C Configuration .. 6-9
6-8 SCI Programming Model- Control and Status Registers 6-13
6-9 SCI Programming Model .. 6-14
6-10 Serial Formats (Sheet 1 of 2) 6-16
6-11 16 x Serial Clock .. 6-25
6-12 SCI Baud Rate Generator 6-27
6-13 Data Packing and Unpacking 6-29
6-14 SCI Initialization Procedure 6-33
6-15 SCI General Initialization Detail - Step 2 (Sheet 1 of 2) 6-34
6-16 SCI Exception Vector Locations 6-38
6-17 Synchronous Master ... 6-40
6-18 Synchronous Slave 6-42
6-19 Synchronous Timing ... 6-43
6-20 SCI Synchronous Transmit 6-44
6-21 SCI Synchronous Receive ~ .. 6-45
6-22 Asynchronous SCI Receiver Initialization 6-46
6-23 SCI Character Reception 6-47
6-24 SCI Character Reception with Exception ~ . .. 6-49
6-25 Asynchronous SCI Transmitter Initialization 6-50
6-26 Asynchronous SCI Character Transmission 6-51
6-27 Transmitting Marks and Spaces 6-52
6-28 SCI Asynchronous TransmiVReceive Example (Sheet 1 of 3) 6-53
6-29 11-Bit Multidrop Mode .. 6-56
6-30 Transmitting Data and Address Characters 6-58
6-31 Wired-OR Mode .. 6-59
6-32 Idle Line Wakeup ... 6-60
6-33 Address Mode Wakeup ~ 6-62
6-34 Multidrop Transmit Receive Example (Sheet 1 of 4) 6-64
6-35 SCI Timer Operation ... 6-69
6-36 SCI Timer Example (Sheet 1 of 2) 6-70
6-37 DSP56002 Bootstrap Example - Mode 6 6-72
6-38 Bootstrap Code Fragment. .. 6-73
6-39 Synchronous Mode Example 6-74

Figure
Number

List of Figures (Continued)

Title
Page

Number

6-40 Master-Slave System Example .. 6-75
6-41 Multimaster System Example 6-75
6-42 SSI Clock Generator Functional Block Diagram .. 6-80
6-43 SSI Frame Sync Generator Functional Block Diagram 6-81
6-44 SSI Programming Model - Control and Status Registers 6-84
6-45 SSI Programming Model (Sheet 1 of 2) 6-85
6-46 Serial Control, Direction Bits 6-90
6-47 Receive Data Path .. 6-98
6-48 Transmit Data Path 6-99
6-49 SSllnitialization Block Diagram 6-104
6-50 SSI CRA Initialization Procedure 6-105
6-51 SSI CRB Initialization Procedure 6-106
6-52 SSllnitialization Procedure 6-107
6-53 SSI Exception Vector Locations 6-110
6-54 SSI Exceptions ... 6-111
6~55 CRB MOD Bit Operation .. 6-114
6-56 Normal Mode, External Frame Sync (8 Bit, 1 Word in Frame) 6-115
6-57 Network Mode, External Frame Sync (8 Bit, 2 Words in Frame) 6-115
6-58 CRB GCK Bit Operation ... 6-116
6-59 Continuous Clock Timing Diagram (8-Bit Example) 6-117
6-60 Internally Generated Clock Timing (8-Bit Example) 6-118
6-61 Externally Generated Gated Clock Timing (8-Bit Example) 6-119
6-62 Synchronous Communication . ~ .. 6-120
6-63 CRB SYN Bit Operation .. 6-121
6-64 Gated Clock - Synchronous Operation 6-122
6-65 Gated Clock - Asynchronous Operation .. 6-122
6-66 Continuous Clock - Synchronous Operation . 6-122
6-67 Continuous Clock - Asynchronous Operation ... 6-122
6-68 CRB FSLO and FSL 1 Bit Operation 6-124
6-69 Normal Mode Initialization for FLS1=0 and FSLO=O 6-125
6-70 Normal Mode Initialization for FSL 1=1 and FSLO=O 6-126
6-71 CRB SHFD Bit Operation (Sheet 1 of 2) 6-128
6-72 Normal Mode Example ... 6-130
6-73 Normal Mode Transmit Example (Sheet 1 of 2) 6-132
6-74 Normal Mode Receive Example (Sheet 1 of 2) 6-134
6-75 Network Mode Example .. 6-136
6-76 TDM Network Software Flowchart 6-137
6-77 Network Mode Initialization 6-139
6-78 Network Mode Transmit Example Program (Sheet 1 of 2) 6-141
6-79 Network Mode Receive Example Program (Sheet 1 of 2) 6-143

Figure
Number

List of Figures (Continued)

Title
Page

Number

6-80 On Demand Example .. 6-146
6-81 On-Demand Data-Driven Network Mode 6-147
6-82 Clock Modes . 6-148
6-83 SPI Configuration ... 6-149
6-84 On-Demand Mode Example - Hardware Configuration 6-150
6-85 On-Demand Mode Transmit Example Program (Sheet 1 o'f 2) 6-150
6-86 On-Demand Mode Receive Example Program 6-152
6-87 Output Flag Timing ',' 6-154
6-88 Output Flag Example .. 6-155
6-89 Output Flag Initialization .. 6-156
6-90 Input Flags '.' 6-157
6-91 SSI Cascaded Multi-DSP System 6-157
6-92 SSI TDM Parallel DSP Network 6-159
6-93 SSI TDM Connected Parallel Processing Array 6-160
6-94 SSI TDM Serial/Parallel Processing Array 6-161
6-95 SSI Parallel Processing - Nearest Neighbor Array ; 6-162
6-96 SSI TDM Bus DSP Network 6-163
6-97 SSI TDM Master-Slave DSP Network. .. 6-164

7-1 Timer/Event Counter Module Block Diagram 7-3
7-2 Timer/Event Counter Programming Model 7-4
7-3 Standard Timer Mode (Mode 0) : ... : 7~B.
7-4 Timer/Event Counter Disable ~ ' ... 7-9
7-5 Standard Timer Mode, Internal Clock, Output Pulse Enabled (INV=O) 7-10
7-6 Standard Timer Mode, Internal Clock, Output Pulse Enabled (INV=1) 7-11
7-7 Standard Timer Mode, Internal Clock, Output Toggle Enable' 7-12
7-8 Pulse Width Measurement Mode (INV=O) 7-13
7-9 Pulse Width Measurement Mode (INV=1) 7-14
7-10 Period Measurement Mode (INV=O)' 7-15
7-11 Period Measurement Mode (INV=1) : ... 7-16
7-12 Standard Time Counter Mode, External Clock (INV=O) 7-17
7-13 Standard Timer Mode, External Clock (INV=1) 7-18
7-14 Standard Timer Mode, External Clock (INV=O) 7-19
7-15 Standard Timer Mode, External Clock (INV=1) 7-20

A-1 DSP56002 Bootstrap Program (Sheet 1 of 3) . A-4

B-1 On-chip Peripheral Memory Map B-3
8-2 Status Register (SR) .. B-10
B-3 Bus Control Register (BCR) B-10
8-4 Interrupt Priority Register (IPR) B-11

List of Figures {Continued}
Figure Page

Number Title Number
B-5 Operating Mode Register (OMR) 8-12
B-6 PLL Control Register (PCTL) '.............. 8-13
B-7 Port 8 Control Register (PBC) 8-14
B-8 Port 8 Data Direction Register (P8DDR) 8-14
B-9 Port 8 Data Register (P8D) ;............ 8-14
B-10 Port C Control Register (PCC) 8-15
B-11 Port CData Direction Register (PCQDR) 8-15
B-12 Port C Data Register (PCD) 8-15
B-13 'Port 8 Control Register (P8C) 8-16
B':'14 Host Control Register (HCR) ' 8-16
B-15 Host Transmit Data Register (HTX) 8-17
B-16 Host Receive Data Register (HRX) ' 8-17
B-17 Host Status Register (HSR) 8-17

'B-18 Command Vector Register (CVR) 8-18
'B-19 Interrupt Control Register (ICR) 8-18
B-20 Interrupt Status Register (ISR) ~ 8-19
B-21 Interrupt Vector Register (IVR) ~ 8-19

"B':'22 Receive 8yte Registers .. 8-20
B-23 Transmit 8yte Registers .. 8-20
B-24 Port C Control Register (PCC) 8-21
B-25 SCI Control Register (SCR) 8-21
B-26 SCI Clock Control Register (SCCR) 8-22
B-27 SCI Status Register (SSR) ~, ; 8-22
B-28 SCI Receive Data Registers 8-23
B-29 'SCI Transmit Data Registers ' '. 8-23
B730 SSI Control Register, (PCC), ~ 8~24
B-31 SSI Control Register A (CRA) 8-24
B-32 SSI Control Register 8 (CR8) ', ; ~ 8-25
8-33 SSI Status Register (SSISR) ; ~ 8-26
8-34 Timer Control and Status Register (TCSR) ; 8-27
8-35 Timer Count Register (TCR) ~ 8-27

Table
Number

List of Tables

Title
Page

Number

2-1 Program and Data Memory Select Encoding 2-4

3-1 Memory Mode Bits .. 3-7
3-2 DSP56002 Operating Mode Summary 3-8
3-3 Organization of EPROM Data Contents 3-10
3-4 Interrupt Vectors .. 3-14
3-5 Exception Priorities Within an IPL 3-15

4-1 Program and Data Memory Select Encoding4-7
4-2 Wait State Control. ... 4-13
4-3 BR and BG During WAIT4-17

5-1 Host Registers after Reset-DSP CPU Side 5-18
5-2 HREQ Pin Definition ... 5-23
5-3 Host Mode Bit Definition .. 5-24
5-4 HREQ Pin Definition ... 5-25
5-5 Host Registers after Reset (Host Side) 5-31
5-6 Port B Pin Definitions .. 5-32

6-1 Word Formats .. 6-15
6-2 SCI Registers after Reset 6-32
6-3a Asynchronous SCI Bit Rates for a 40-MHz Crystal. 6-36
6-3b Frequencies for Exact Asynchronous SCI Bit Rates 6-36
6-4a Synchronous SCI Bit Rates for a 32.768-MHz Crystal 6-37
6-4b Frequencies for Exact Synchronous SCI Bit Rates 6-37
6-5 Definition of SCO, SC1, SC2, and SCK 6-79
6-6 SSI Clock Sources, Inputs, and Outputs 6-79
6-7 SSI Operation: Flag 0 and Rx Clock 6-82
6-8 SSI Operation: Flag 1 and Rx Frame Sync 6-83
6-9 SSI Operation: Tx and Rx Frame Sync 6-83
6-10 Number of Bits/Word ... 6-87
6-11 Frame Sync Length .. 6-91
6-12 Mode and Pin Definition Table - Continuous Clock 6-101
6-13 Mode and Pin Definition Table - Gated Clock 6-102
6-14 SSI Registers After Reset 6-103
6-15a SSI Bit Rates for a 40-MHz Crystal ~ 6-108
6-15b SSI Bit Rates for a 39.936-MHz Crystal 6-108
6-16 Crystal Frequencies Required for Codecs 6-108
6-17 SSI Operating Modes .. 6-112

7-1 Timer/Event Counter Control Bits 7-6

Table
Number

List of Tables (Continued)

Title
Page

Number

8-1 Interrupts Starting Addresses and Sources 8-4
8-2 Instruction Set Summary - Sheet 1 of 5 8-5

SECTION 1

INTRODUCTION TO THE DSP56002

1.1 INTRODUCTION
This manual describes the DSP56002 24-bit digital signal processor, its memory and op­
erating modes, and its peripheral modules. It is intended to be used with the DSP56K
Central Processing Unit Manual (DSP56KFAMUMIAD), which describes the central pro­
cessing unit, programming models, and includes details of the instruction set. The
DSP56002 Technical Data Sheet (DSP56002lD) provides timing, pinout, and packaging
descriptions (see Figure 1-1).

This section presents the DSP56002 features.

Family Manual

DSP56KFAMUM/AD

DSP56002
User's Manual

DSP56002UM/AD

Products

Central Processor and
Instruction Manual
• central processor
• instruction set

Device Manual
• peripherals
• memories

Specification
• electrical
• mechanical

Figure 1-1 DSP56002 Technical Literature

III

1.2 FEATURES

DSP56K Central Processing Unit (CPU) Features
• 20 Million Instructions per Second (MIPS) at 40 MHz
• Single-Cycle 24 x 24 Bit Parallel Multiply-Accumulator
• Highly Parallel Instruction Set with Unique DSP Addressing Modes
• Zero Overhead Nested DO Loops
• Fast Auto-Return Interrupts
• Fully Static Logic, Operation Frequency Down to DC
• Very Low-power CMOS Design
• STOP and WAIT Low-power Standby Modes

DSP56002 Features
• 512 x 24 Program RAM
• Two 256 x 24 Data RAM
• Two 256 x 24 Data ROM (Sine and Cosine Tables)
• Full Speed Memory Expansion Port with 16-bit Address and 24-bit Data Buses
• Byte-wide Host Interface with DMA Support
• Synchronous Serial Interface Port
• Serial Communication Interface (Asynchronous) Port
• 24 General Purpose I/O Pins
• 24-bit Timer/Event Counter*
• On-Chip Emulator (OnCETM) for Unobtrusive, Full Speed Debugging
• Optional Program Security Feature Disables Unauthorized Program ROM and

OnCE Access
• PLL Based Clocking with Wide Input Frequency Range, Wide Range Frequency

Multiplication (1 to 4096) and Power Saving Clock Divider (2i, i=0, ... ,15) to
Reduce Clock Noise

1.3 DSP56K CENTRAL PROCESSING UNIT OVERVIEW
The DSP56K series of 24-bit modular processors is built on a common central processing
unit (CPU). In the expansion area around the CPU, the chip can support various configu­
rations of memory and peripheral modules which may change between series members.

* The first version of the DSP56002 (mask number D4 t G) did not have the timer/event counter. Later versions of the DSP56002 which have
different mask numbers do have the timer/event counter. This mask number can be found below the part number on each chip.

The central components are:

• Data Buses
• Address Buses
• Data Arithmetic Logic Unit (data ALU)
• Address Generation Unit (AGU)
• Program Control Unit (PCU)
• Memory Expansion (Port A)
Figure 1-2 shows a block diagram of the DSP56002, including the CPU and the expansion
area for memory and peripherals. The DSP56000 Family Manual (DSP56KFAMUMIAD)
presents the det~ils of each of the above CPU components.

1.4 MANUAL ORGANIZATION
This manual includes the following sections:

SECTION 2 - PIN DESCRIPTIONS presents the DSP56002 pinout.

SECTION 3 - MEMORY MODULES AND OPERATING MODES presents the details of
the DSP56002 memory maps and explains the various operating modes that affect the
processor's program and data memories.

SECTION 4 - PORT A describes the external memory port, its registers, and control sig­
nals.

SECTION 5 - PORT B describes the port B parallel I/O and the host interface, their reg­
isters, and their controls.

SECTION 6 ~ PORT C describes the port C parallel I/O, the Synchronous Serial Inter­
face, the Synchronous Communication Interface, their registers, and their controls.

SECTION 7 - DSP56002 TIMER AND EVENT COUNTER describes the timer/counter
and its registers and controls.

APPENDIX A - BOOTSTRAP PROGRAM

APPENDIX B - PROGRAMMING SHEETS

TROUBLE REPORT - This trouble report is a form that allows the reader to notify the
factory of any errors or discrepancies discovered in this manual.

-

EXTERNAL
ADDRESS

16 ~ 24-Bit 56K BUS ex:
CPU SWITCH Cl

Cl «

«
-' I-

BUS 10 ~ ex:
0

CONTROL l- e.. z
0 u

INTERNAL EXTERNAL
DATA DATA BUS
BUS SWITCH

SWITCH

4
PROGRAM: :-PAC:GFWv1 ~ I DATAALU
INTERRUPT ~I DECODE ~ ADDRESS I 24X24+56~56-BIT MAC OnCE

I~~ ~~f3t\"lCB TWO 56-BIT ACCUMULATORS
Control Unit

-- 16 BITS

-24 BITS

Figure 1-2 DSP56002 Block Diagram

SECTION 2 -
DSP56002 PIN DESCRIPTIONS

-

2.1 INTRODUCTION
This section introduces pins associated with the DSP56002. It divides the pins into their
functional groups and explains the role each pin plays in the operation of the chip. It acts
as a reference for following chapters which explain the chip's peripherals in detail.

2.2 SIGNAL DESCRIPTIONS
The DSP56002 is available in a 132-pin grid array package or surface mount (Plastic Quad
Flat Pack, or PQFP). The input and output signals are organized into the functional groups
indicated in Section Figure 2-1. The signals are discussed in the paragraphs that follow.

Functional Group
Number
of Pins D()'D23 H()'H7

DGND(6) HA()'HA2

Port A Data Bus 24 DVCC(3) HRIW
REf\l'

Port A Address 19
AO-A15 RREO

PS ~
us HGND(4)

Port A Bus Control 7 X/Y HVCC(2)

Port B Host Interface 15
AGND(5) RXD
AVCC(3) TXD

EN SCLK

Port C Synchronous Comm. Interface 3
tID
WR SVCC
BR SGND(2)

Port C Synchronous Serial Interface 6

Interrupt and Mode Control 4

BG
SC()'SC2 wr

as SCK

CGND SRD

CVCC STD

PLL and Clock 7

On-Chip Emulation (OnCE) 4
MODC/NW DSCKlOS1

MODB/TROB DSIIOSO

MODAITROA DSO

RESET DR

Power (VCC) 16 EXTAL pvcc
XTAL PGND

Ground (GND) 24 QGND(4) PCAP
QVCC(4) CKP

Timer 1 PLOCK
TIO~ Timer PINIT

Reserved 2 RESERVED (2)
CLVCC
CLGND

Total (for the PGA package) 132
CKOUT

Figure 2-1 DSP56002 Signals

2.2.1 Port A Address and Data Bus
The Port A address and data bus signals control the access to external memory. They are
three-stated during reset unless noted otherwise, and may require pull-up resistors to min­
imize power consumption and to prevent erroneous operation.

Note: All unused inputs should have pull-up resistors for two reasons: 1) floating inputs
draw excessive power, and 2) a floating input can cause erroneous operation. For

-

-
example, during reset, all signals are three-stated. Without pull-up resistors, the BR
and WT signals may become active, causing two or more memory chips to try to
simultaneously drive the external bus, which can damage the memory chips. A pull':
up resistor in the 50K-ohm range should be sufficient. Also, for future enhance­
ments, all reserved pins (see Section Figure 2-1) should be left unconnected.

2.2.1.1 Address (AQ-A 1S)
These three-state output pins specify the address for external program and data memory
accesses. To minimize power dissipation, AO-A 15 do not change state when external
memory spaces are not being accessed.

2.2.1.2 Data Bus (DQ-D23)
These pins provide the bidirectional data bus for external program and data memory ac­
cesses. 00-023 are in the high-impedance state when the bus grant signal is asserted.

2.2.2 Port A Bus Control
The Port A bus control signals are discussed in the following paragraphs. The bus control
signals provide a means to connect additional bus masters (which may be additional
OSPs, microprocessors, direct memory access (OMA) controllers, etc.) through port A to
the OSP56002. They are three-stated during reset and may require pull-up resistors to
prevent erroneous operation.

2.2.2.1 Program Memory Select (PS)
This three-state output is asserted only when external program memory is referenced
(see Table 2-1).

Table 2-1 Program and Data Memory Select Encoding

PS us XIY External Memory Reference

1 1 1 No Activity

1 0 1 X Data Memory on Data Bus

1 0 0 Y Data Memory on Data Bus

0 1 1 Program Memory on Data Bus (Not Exception)

0 1 0 External Exception Fetch: Vector or Vector +1
(Development Mode Only)

0 0 X Reserved

1 1 0 Reserved

2.2.2.2 Data Memory Select (DS)
This three-state output is asserted only when external data memory is referenced (see Table 2-1).

2.2.2.3 XIV Select (XIV)
This three-state output selects which external data memory space (X or Y) is referenced
by US (see Table 2-1).

2.2.2.4 Read Enable (RO)
This three-state output is asserted to read external memory on the data bus (00-023).

2.2.2.5 Write Enable (WR)
This three-state output is asserted to write external memory on the data bus (00-023).

2.2.2.6 Bus Needed (aN)
The BN output pin is asserted whenever the chip requires the external memory expansion
port (Port A). Ouring instruction cycles where the external bus is not required, BN is deas­
serted. If an external device has requested the bus by asserting the BR input and the OSP
has granted the bus (by asserting 00), the OSP will continue processing as long as no
external accesses are required. If an external access is required and the chip is not the
bus master, it will stop processing and remain in wait states until bus ownership is re­
turned. If the ~ pin is asserted when the chip is not the bus master, this indicates that
processing has stopped and the OSP is waiting to acquire bus ownership. An external ar­
biter may use this pin to help decide when to return bus ownership to the OSP.

Note: The BN pin cannot be used as an early indication of imminent external bus access
because it is valid later than the other bus control signal BS.

Ouring hardware reset, EN is deasserted.

2.2.2.7 Bus Request (SR)
When the bus request input (SR) is asserted,. the OSP56002 will always relinquish the bus
to an external device such as a processor or OMA controller. The external device will be­
come the new master of the external address and data buses while the OSP continues·
internal operations using internal memory spaces. When BR is deasserted, the
OSP56002 will again assume bus mastership.

When BR is asserted, the OSP56002 will always release Port A, including AO-A 15, 00-
023, and the bus control pins (PS, US, XIV, RD, WR, and BS) by placing them in the high­
impedance state, after the execution of the current instruction has been completed.

Note: To prevent erroneous operation, the BR pin should be pulled up when it is not in use.

l1li

-
2.2.2.8 Bus Grant (BG)
When this output is asserted, it signals to the external device that it has been granted the ex­
ternal bus (Le. Port A has been three-stated).This output is deasserted during hardware reset.

2.2.2.9 Bus Strobe (BS)
The as output is asserted when the DSP accesses Port A. It acts as an early indication
of the state of the external bus access by the DSP56002. It may also be used with the bus
wait input, wr, to generate wait states, a feature which provides capabilities such as con­
necting asynchronous devices to the DSP, allowing devices with differing timing
requirements to reside in the same memory space, allowing a bus arbiter to provide a fast
multiprocessor bus access, and providing an alternative to the WAIT and STOP instruc­
tions to halt the DSP at a known program location and have a fast restart. This output is
deasserted during hardware reset.

2.2.2.10 Bus Wait (WT)
For as long as it is asserted by an external device, this input allows that device to force
the DSP56002 to generate wait states. If wr is asserted when as is asserted, wait states
will be inserted into the current cycle (see the DSP56002 Technical Data Sheet
(DSP56002/D) for timing details.

2.2.3 Interrupt and Mode Control
The interrupt and mode control pins select the chip's operating mode as it comes out of
hardware reset, and they receive interrupt requests from external sources.

2.2.3.1 Mode Select AlExternallnterrupt Request A (MODAIJRID()/STOP Recovery
This input pin has three functions. It works with the MODS and MODC pins to select the
chip's operating mode, it receives an interrupt request from an external source, and it
turns on the internal clock generator, causing the chip to recover from the stop processing
state. Reset causes this input to act as MODA.

During reset, this pin should be forced to the desired state, because as the chip comes
out of reset, it reads the states of MODA, MODS, and MODC and writes the information
to the Operating Mode Register to set the chip's operating mode. (Operating Modes are
discussed in SECTION 3 MEMORY MODULES AND OPERATING MODES.) After the
chip has left the reset state, the MODA pin automatically changes to external interrupt
request TROA. ,

lROA receives external interrupt requests. It can be programmed to be level sensitive or
negative edge triggered. When the signal is edge triggered, triggering occurs at a voltage
level and is not directly related to the fall time of the interrupt signal. However, as the fall

time of the interrupt signal increases, the probability that noise on TROA will generate mul­
tiple interrupts also increases.

2.2.3.2 Mode Select B/Externallnterrupt Request B (MODBIIROS)
This input pin works with the MODA and MOOG pins to select the chip's operating mode,
and it receives an interrupt request from an external source. Reset causes this input to act
as MODS.

During reset, this pin should be forced to the desired state, because as the chip comes
out of reset, it reads the states of the mode pins and writes the information to the Operat­
ing Mode Register, which sets the chip's operating mode. After the chip has left the reset
state, the MODS pin automatically changes to external interrupt request TROB.

TROB receives external interrupt requests. It can be programmed to be level sensitive or
negative edge triggered. When the signal is edge triggered, triggering occurs at a voltage
level and is not directly related to the fall time of the interrupt signal. However, as the fall
time of the interrupt signal increases, the probability that noise on ~ will generate mul­
tiple interrupts also increases.

2.2.3.3 Mode Select C/Non-Maskable Interrupt Request (MODC/NMl)
This input pin works with the MODA and MODS pins to select the chip's operating mode,
and it receives an interrupt request from an external source. Reset causes this input to act
as MOOG.

During reset, this pin should be forced to the desired state, because as the chip comes out
of reset, it reads the states of the mode pins and writes the information to the Operating
Mode Register, which sets the chip's operating mode. After the chip has left the reset state,
the MOOG pin automatically changes to a nonmaskable interrupt request (NKilT) input.

The negative-edge triggered NJVfT receives nonmaskable interrupt requests. Triggering
occurs at a voltage level and is not directly related to the fall time of the interrupt signal.
However, as the fall time of the interrupt signal increases, the probability that noise on NJVfT
will generate multiple interrupts also increases.

2.2.3.4 Reset (RESET)
This Schmitt trigger input pin is used to reset the DSP56002. When RESET is asserted,
the DSP56002 is initialized and placed in the reset state. When RESET is deasserted,
the chip writes the mode pin (MODA, MODS, MOOG) information to the operating mode

-

-
register, setting the chip's operating mode. The chip also samples the PINIT pin and
writes its information into the PEN bit of the PLL Control Register, and it samples the CKP
pin to determine the polarity of the CKOUT signal. When the chip comes out of the reset
state, deassertion occurs at a voltage level and is not directly related to the rise time of
the RESET signal. However, the probability that noise on RESET will generate multiple
resets increases with increasing rise time of the RESET signal.

2.2.4 Power and Clock
The power and clock signals are presented in the following paragraphs.

2.2.4.1 Power (Vee), Ground (GND)
There are six sets of power and ground pins: a set of eight (four power, four ground) for
internal logic; a set of eight (three power, five ground) for the address bus output buffer;
a set of nine (three power, six ground) for the data bus output buffer; a set of eleven (four
power, seven ground) for ports Band C and for the OnCE; a set of one power and one
ground for the PLL; and a set of one power and one·ground for the CKOUT pin. Refer to
the pin assignments in the Layout Practices section of the DSP56002 Technical Data
Sheet (DSP56002/D).

2.2.4.2 External Clock/Crystal Input (EXT AL)
The EXT AL input interfaces the internal crystal oscillator input to an external crystal or an
external clock.

2.2.4.3 Crystal Output (XT AL)
This output connects the internal crystal oscillator output to an external crystal. If an ex­
ternal clock is used, XT AL should not be connected. It may be disabled through software
control using the XTLD bit in the PLL control register.

2.2.5 Host Interface
The following paragraphs discuss the host interface signals, which provide a convenient
connection to another processor through Port B on the DSP56002.

2.2.5.1 Host Data Bus (HO-H7)
This bidirectional data bus transfers data between the host processor and the DSP56002.
It acts as an input unless REf\I is asserted and HRIW is high, making HO-H7 become out­
puts and allowing the host processor to read DSP56002 data. It is high impedance when
REf\I is deasserted. HO-H7 can be programmed as general-purpose 1/0 pins (PBO-PB7)

when the host interface is not being used. These pins are configured as GPIO input pins
during hardware reset.

2.2.5.2 Host Address (HAO-HA2)
These inputs provide the address selection for each host interface register. HAO-HA2 can
be programmed as general-purpose liD pins (PB8-PB10) when the host interface is not
being used. These pins are configured as GPIO input pins during hardware reset.

2.2.5.3 Host ReadlWrite (HRIW)
This input selects the direction of data transfer for each host processor access. If HRIW
is high and REN is asserted, HO-H7 are outputs and DSP data is transferred to the host
processor. If HRIW is low and REN is asserted, HO-H7 are inputs and host data is trans­
ferred to the DSP. HRIW is stable when REN is asserted. It can be programmed as a
general-purpose liD pin (PB11) when the host interface is not being used, and is config­
ured as a GPIO input pin duriflg hardware reset.

2.2.5.4 Host Enable (HEN)
This input enables a data transfer on the host data bus. When REN is asserted and HRIW
is high, HO-H7 become outputs and the host processor may read DSP56002 data. When
RE1'J is asserted and HRIW is low, HO-H7 become inputs. When REN is deasserted, host
data is latched inside the DSP. Normally, a chip select signal derived from host address
decoding and an enable clock are used to generate REN. REN can be programmed as a
general-purpose 110 pin (PB12) when the host interface is not being used, and is config­
ured as a GPIO input pin during hardware reset.

2.2.5.5 Host Request (HR"EQ")
This open-drain output signal is used by the host interface to request service from the
host processor, DMA controller, or a simple external controller. RREO can be pro­
grammed as a general-purpose lID (not open-drain) pin (PB13) when the host
interface is not being used.

2.2.5.6 Host Acknowledge (RACK)
This input has two functions. It provides a host acknowledge handshake signal for DMA
transfers and it receives a host interrupt acknowledge compatible with MC68000 Family
processors. When the port is defined as the host interface and neither of the RACK pin's
two functions are being used, the user may program this input as a general-purpose liD pin.
For more details about the programming options for this pin, see Section 5.3.4.6 Host Ac­
knowledge (RACK). This pin is configured as a GPIO input pin during hardware reset.

Note: RACK should always be pulled high when it is not in use.

-

-
2.2.6 Serial Communication Interface (SCI)
The following signals relate to the SCI. They are introduced briefly here and described in
more detail in SECTION 6 - PORT C.

2.2.6.1 Receive Data (RXD)
This input receives byte-oriented data and transfers the data to the SCI receive shift reg­
ister. Input data is sampled on the positive or the negative edge of the receive clock,
depending on how the SCI control register is programmed. RXD can be programmed as
a general-purpose 1/0 pin (PCQ) when it is not being used as an SCI pin, and it is config­
ured as a GPIO input pin during hardware reset.

2.2.6.2 Transmit Data (TXD)
This output transmits serial data from the SCI transmit shift register. Data changes on the
negative edge of the transmit clock. This output is stable on the positive or the negative
edge of the transmit clock, depending on how the SCI control register is programmed.
TXD can be programmed as a general-purpose 1/0 pin (PC1) when the SCI TXD function
is not being used, and it is configured as a GPIO input pin during hardware reset.

2.2.6.3 SCI Serial Clock (SCLK)
This bidirectional pin provides an input or output clock from which the transmit andlor re­
ceive baud rate is derived in the asynchronous mode, and from which data is transferred
in the synchronous mode. SCLK can be programmed as a general-purpose 1/0 pin (PC2)
when the SCI SCLK function is not being used, and it is configured as a GPIO input pin
during hardware reset.

2.2.7 Synchronous Seriallnteriace (SSI)
The SSI signals are presented in the following paragraphs.The SSI operating mode af­
fects the definition and function of SSI control pins SCQ, SC1, and SC2. They are
introduced briefly here and are described in more detail in SECTION 6 - PORT C.

2.2.7.1 Serial Clock Zero (SCQ)
This bidirectional pin's function is determined by whether the SCLK is in synchronous or
asynchronous mode. In synchronous mode, this pin is used for serial flag 1/0. In asynchro­
nous mode, this pin receives clock 1/0. SCQ can be programmed as a general-purpose
1/0 pin (PC3) when the SSI SCQ function is not being used, and it is configured as a GPIO
input pin during hardware reset.

2.2.7.2 Serial Control One (SC1)
The SSI uses this bidirectional pin to control flag or frame synchronization. This pin's func­
tion is determined by whether the SCLK is in synchronous or asynchronous mode.ln
asynchronous mode, this pin is frame sync I/O. For synchronous mode with continuous
clock, this pin is serial flag SC1 and operates like the SCQ. SCQ and SC1 are independent
serial 110 flags but may be used together for multiple serial device selection. SC1 can be
programmed as a general-purpose I/O pin (PC4) when the SSI SC1 function is not being
used, and it is configured as a GPIO input pin during hardware reset.

2.2.7.3 Serial Control Two (SC2)
The SSI uses this bidirectional pin to control frame synchronization only. As with SCQ and
SC1, its function is defined by the SSI operating mode. SC2 can be programmed as a
general-purpose I/O pin (PC5) when the SSI SC2 function is not being used, and it is con­
figured as a GPIO input pin during hardware reset.

2.2.7.4 5S1 Serial Clock (SCK)
This bidirectional pin provides the serial bit rate clock for the SSI when only one clock is
being used. SCK 'can be programmed as a general-purpose I/O pin (PC6) when it is not
needed as an SSI pin, and it is configured as a GPIO input pin during hardware reset.

2.2.7.5 SSI Receive Data (SRD)
This input pin receives serial data into the SSI receive shift register. SRD can be pro­
grammed as a general-purpose I/O pin (PC7) when it is not needed as an SSI pin, and it
is configured as a GPIO input pin during hardware reset.

2.2.7.6 SSI Transmit Data (STD)
This output pin transmits serial data from the SSI transmit shift register. STD can be pro­
grammed as a general-purpose I/O pin (PC8) when it is not needed as an SSI pin, and it
is configured as a GPIO input pin during hardware reset.

2.3 ON·CHIP EMULATION (OnCE) PINS
The following paragraphs describe the OnCE pins associated with the OnCE controller
and its serial interface.

2.3.1 Debug SeriallnputiChip Status 0 (DSI/OSO)
Serial data or commands are provided to the OnCE controller through the OSI/OSQ pin
when it is an input. The data received on the DSI pin will be recognized only when the
DSP56K has entered the debug mode of operation. Data is latched on the falling edge of

-

-
the DSCK serial clock. Data is always shifted into the OnCE serial port most significant bit
(MSB) first. When the OSI/OSO pin is an output, it works in conjunction with the OS1 pin
to provide chip status information (see Section 10 ON CHIP EMULATION (OnCE) in the
DSP56000 Family Manua~. The DSI/OSO pin is an output when the processor is not in
debug mode. When switching from output to input, the pin is three-stated. During hard­
ware reset, this pin is defined as an output and it is driven low.

Note: To avoid possible glitches, an external pull-down resistor should be attached to this pin.

2.3.2 Debug Serial Clock/Chip Status 1 (DSCKlOS1)
The DSCKlOS1 pin supplies the serial clock to the OnCE when it is an input. The serial
clock provides pulses required to shift data into and out of the OnCE serial port. (Data is
clocked into the OnCE on the falling edge and is clocked out of the OnCE serial port on
the rising edge.) The debug serial clock frequency must be no greater than 1/8 of the pro-
cessor clock frequency. '

The pin is three-stated when it is changing from input to output. When it is an output, it works
with the OSO pin to provide information about the chip status (see SECTION 10 ON CHIP
EMULATION (OnCE) in the DSP56000 Family Manua~. It is an output when the chip is not
in debug mode. During hardware reset, this pin is defined as an output and is driven low.

Note: To avoid possible glitches, an external pull-down resistor should be attached to this pin.

2.3.3 Debug Serial Output (DSO)
The DSP reads serial data from the OnCE through the DSO output pin, as specified by
the last command received from the external command controller. Data is always shifted
out the OnCE serial port most significant bit (MSS) first. Data is clocked out of the OnCE
serial port on the rising edge of OSCK.

The DSO pin also provides acknowledge pulses to the external command controller.
When the chip enters the debug mode, the DSO pin will be pulsed low to indicate (ac­
knowledge) that the OnCE is waiting for commands. After receiving a read command,
the DSO pin will be pulsed low to indicate that the requested data is available and the
OnCE serial port is ready to receive clocks in order to deliver the data. After receiving
a write command, the DSO pin will be pulsed low to indicate that the OnCE serial port
is ready to receive the data to be written; after the data is written, another acknowl­
edge pulse will be provided.

During hardware reset and when the processor is idle, the OSO pin is held high.

2.3.4 Debug Request Input (OR)
The debug request input (OR) allows the user to enter the debug mode of operation from
the external command controller. When OR is asserted, it causes the DSP to finish the
current instruction being executed, save the instruction pipeline information, enter the de­
bug mode, and wait for commands to be entered from the DSlline. While in debug mode,
the OR pin lets the user reset the OnCE controller by asserting it and deasserting it after
receiving an acknowledge. It may be necessary to reset the OnCE controller in cases
where synchronization between the OnCE controller and external circuitry is lost. Assert­
ing DR when the DSP is in the WAIT or the STOP state, and keeping it asserted until an
acknowledge pulse in the DSP is produced, sends the DSP into the debug mode. After
receiving the acknowledge, OR must be deasserted before sending the first OnCE com­
mand. For more information, see Section 10.6 METHODS OF ENTERING THE DEBUG
MODE in the DSP56000 Family Manual (DSP56KFAMUM/AD).

2.4 PLL PINS
The following pins are dedicated to the PLL operation:

• Analog PLL Circuit Power (PVC C) - The Vcc input is dedicated to the analog
PLL circuits. The voltage should be well regulated and the pin should be pro­
vided with an extremely low impedance path to the Vcc power rail. PVcc should
be bypassed to PGND by a 0.1 JlF capacitor located as close as possible to the
chip package.

• Analog PLL Circuit Ground (PGND) - This GND input is dedicated to the an­
alog PLL circuits. The pin should be provided with an extremely low impedance
path to ground. PVcc should be bypassed to PGND by a 0.1 JlF capacitor locat­
ed as close as possible to the chip package.

• CKOUT Power (CLVCC) - This input acts as VCC for the CKOUT output. The
voltage should be well regulated and the pin should be provided with an ex­
tremely low impedance path to the VCC power rail. CLVCC should be by­
passed to CLGND by a 0.1 JlF capacitor located as close as possible to the chip
package.

• CKOUT Ground (CLGND) - This input acts as GND for the CKOUT output.
The pin should be provided with an extremely low impedance path to ground.
CLVCC should be bypassed to CLGND by a 0.1JlF capacitor located as close
as possible to the chip package.

• PLL Filter Capacitor (PCAP) - This input is used to connect an external ca­
pacitor needed for the PLL filter. One terminal of the capacitor is connected to
PCAP while the other terminal is connected to PVCC. The capacitor value is
specified in the DSP56002 Technical Data Sheet (DSP56002/D).

-

-
• Output Clock (CKOUT) - This output pin provides a 50% duty cycle output

clock synchronized to the internal processor clock when the PLL is enabled and
locked. When the PLL is disabled, the output clock at CKOUT is derived from,
and has the same frequency and duty cycle as, EXT AL.
Note: If the PLL is enabled and the multiplication factor is less than or equal to

4, then CKOUT is synchronized to EXT AL. (For information on the
DSP56002's PLL multiplication factor, see Section Section 3.6 PLL
MULTIPLICATION FACTOR.

• CKOUT Polarity Control (CKP) - This input pin defines the polarity of the CK­
OUT clock output. Strapping CKP through a resistor to GND will make the CK­
OUT polarity the same as the EXT AL polarity. Strapping CKP through a resistor
to Vcc will make the CKOUT polarity the inverse of the EXT AL polarity. The CK­
OUT clock polarity is internally latched at the end of the hardware reset, so that
any changes of the CKP pin logic state after deassertion of hardware reset will
not affect the CKOUT clock polarity.

• PLL Initialization Input (PINIT) - During the assertion of hardware reset, the
value at the PINIT input pin is written into the PEN bit of the PLL control register.
The PEN bit enables the PLL by causing it to derive the internal clocks from the
PLL VCO output. When the bit is clear, the PLL is disabled and the chip's inter­
nal clocks are derived from the clock connected to the EXT AL pin. After hard­
ware reset is deasserted, the PINIT pin is ignored.

• Phase and Frequency Locked (PLOCK) - The PLOCK output originates
from the Phase Detector. The chip asserts PLOCK when the PLL is enabled
and has locked on the proper phase and frequency of EXT AL. The PLOCK out­
put is deasserted by the chip if the PLL is enabled and has not locked on the
proper phase and frequency. PLOCK is asserted if the PLL is disabled. PLOCK
is a reliable indicator of the PLL lock state only after the chip has exited the
hardware reset state. During hardware reset, the PLOCK state is determined
by PINIT and by the PLL lock condition.

2.5 TIMER/EVENT COUNTER MODULE PIN
The bidirectional TIO pin is the pin that provides an interface to the timer/event counter mod­
ule. When the TIO is used as an input, the module functions as an external event counter,
or it measures external pulse width/signal period. When the TIO is used as an output, the
module functions as a timer and the signal on the TIO pin is the timer pulse. When the timer
module is not using the TIO pin, the TIO can act as a general purpose I/O pin.

SECTION 3

MEMORY MODULES
AND OPERATING MODES -

3.1 MEMORY MODULES AND OPERATING MODES
The memory of the DSP56002 can be partitioned in several ways to provide high-speed
parallel operation and additional off-chip memory expansion. Program and data memory
are separate, and the data memory is, in turn, divided into two separate memory spaces,
X and Y. Both the program and data memories can be expanded off-chip. There are also
two on-chip data read-only memories (ROMs) that can overlay a portion of the X and Y
data memories, and a bootstrap ROM that can overlay part of the program random-ac­
cess memory (RAM). The data memories are divided into two independent spaces to work
with the two address arithmetic logic units (ALUs) to feed two operands simultaneously to
the data ALU.

The DSP operating modes determine the memory maps for program and data memories
and the start-up procedure when the DSP leaves the reset state. This section describes
the DSP56002 Operating Mode Register (OMR), its operating modes and their associated
memory maps, and discusses how to set and reset operating modes.

This section also includes details of the interrupt vectors and priorities and describes the
effect of a hardware reset on the PLL multiplication factor.

3.2 DSP56002 DATA AND PROGRAM MEMORY
The DSP56002 has 512 words of program RAM, 64 words of bootstrap ROM, 256 words
of RAM and 256 words of ROM for each of the X and Y internal data memories. The mem­
ory maps are shown in Section Figure 3-1 DSP56002 Memory Maps.

3.2.1 Program Memory
The DSP56002 has 512 words of program RAM and 64 words of factory-programmed
bootstrap ROM.

The bootstrap ROM is programmed to perform the bootstrap operation from the memory
expansion port (port A), from the host interface, or from the SCI. It provides a convenient,
low cost method of loading the program RAM with a user program after power-on reset.
The bootstraJ,J ROM activity is controlled by the MA, MB, and MC bits in the OMR (see
3.3 DSP56002 OPERATING MODE REGISTER (OMR) for a complete explanation of the
OMR and the DSP56002's operating modes and memory maps):

Addresses are received from the program control logic (usually the program counter) over
the PAB. Program memory may be written using the program memory (MOVEM) instruc­
tions. The interrupt vectors are located in the bottom 128 locations ($OOOO-$007F) of
program memory. Program memory may be expanded to 64K off-chip.

-

3.2.2 X Data Memory
The on-chip X data RAM is a 24-bit-wide, static internal memory occupying the lowest 256
locations (0-255) in X memory space. The on-chip X data ROM occupies locations 256-
511 in the X data memory space and is controlled by the DE bit in the OMR. (See the ex­
planation of the DE bit in Section 3.3.2 Data ROM Enable (Bit 2). Also, see Figure 3-
1.)The on-Chip peripheral registers occupy the top 64 locations of the X data memory
($FFCO-$FFFF). The 16-bit addresses are received from the XAB, and 24-bit data trans­
fers to the data AlU occur on the XDB. The X memory may be expanded to 64K off-Chip.

3.2.3 Y Data Memory
The on-chip Y data RAM is a 24-bit-wide internal static memory occupying the lowest 256
locations (0-255) in the Y memory space. The on-Chip Y data ROM occupies locations
256-511 in Y data memory space and is controlled by the DE and YD bits in the OMR.
(See the explanations of the DE and YD bits in Sections Section 3.3.2 Data ROM En­
able (Bit 2) and Section 3.3.3 Internal Y Memory Disable Bit (Bit 3), respectively. Also,
see Figure 3-1~) The 16-bit addresses are received from the YAB, and 24-bit data trans­
fers to the data AlU occur on the YDB. Y memory may be expanded to 64K off-chip.

Note: The off-chip peripheral registers should be mapped into the top 64 locations ($FFCo-
$FFFF) to take advantage of the move peripheral data (MOVEP) instruction~

3.3 DSP56002 OPERATING MODE REGISTER (OMR)
Operating modes determine the memory maps for program and data memories, and the
start-up procedure when the DSP leaves the reset state. The processor samples the
MODA, MODB, and MODG pins as it leaves the reset state, establishes the initial operat­
ing mode, and writes the operating mode information to the Operating Mode Register.
When the processor leaves the reset state, the MODA and MODB pins become general­
purpose interrupt pins, TROA and TROB, respectively,· and the MODC pin becomes the
nonmaskable interrupt pin NMT.

The OMR is a 24-bit register (only six bits are defined) that controls the current operating
mode of the processor. It is located in the DSP56002's Program Control Unit (described
in Section 5 of the DSP56000 Family Manua~. The OMR bits are only affected by proces­
sor reset and by the ANDI, ORI, MOVEC, BSET, BClR, and BCHG instructions, which
directly reference the OMR. The OMR format for the DSP56002 is shown in Figure 3-2
OMR Format.

$FFFF

PROGRAM
MEMORY

SPACE

$7F
INTERRUPT
VECTORS

$0

OPERATING MODE DETERMINES
PROGRAM MEMORY AND RESET

STARTING ADDRESS

MODE 0 MODE 2 MODE 3
MC=O MB=O MA=O MC=O MB=1 MA=O MC=O MB=1 MA=1

INTERNAL
RAM

1$Q()3FI=:::-:~:-I $003F I----~ !!;()031:m~~~
INTERRUPTS T'

$0L-__ --I

INTERNAL P: RAM INTERNAL P: RAM NO INTERNAL P: RAM
INTERNAL RESET EXTERNAL RESET EXTERNAL RESET

INTERRurT MAP

$007F
$0040 HOST COMMANDS

$003E iILEGALINSTRUCTION INC
$003C TIMER INTERRUPT
$003~ HOSTCOMMANOS- - -­
$0024

~S~C~II~N~TE~R~RU~P~TS~-~

SSIINTERRUPTS
EXTERNAL INTERRUPTS
SWI INTERRUPT
TRACE INTERRUPT

$FFFF

$FFDE

ON-CHIP
PERIPHERAL MAP

INTERRUPT PRIORITY
BUS CONTROL
SCI INTERFAC E
SSIINTERFAC E
HOST INTERFACE
PARALLEL lio INTERFAC E
TIMER

t-------1

STACK ERROR INTERRUPT RESERVED

$0000 RESET $FFCO '--____ ---1

$FFFF $FFFF

X DATA YDATA
MEMORY MEMORY

SPACE SPACE

$0 $0

DE and YD BITS IN THE OMR DETERMINE
THE X AND Y DATA MEMORY MAPS

DE= 1
YD=O

DATA ROMS ENABLED

DE= 1
YD=1

DE=O
YD=O

DE=O
YD= 1

Figure 3-1 DSP56002 Memory Maps

23 876543210

I * I * J SO J * I Mel YO I OE I MB lMA I
I I

Figure 3-2 OMR Format

OPERATING MODES A, B

DATA ROM ENABLE

INTERNAL Y MEMORY DISABLE

OPERATING MODE C

RESERVED

STOP DELAY

RESERVED

RESERVED

3.3.1 Chip Operating Mode (Bits 0 and 1)
The chip operating mode bits, MB and MA, together with Me, define the program mem­
ory maps and the operating mode of the DSP56002. On processor reset, MB and MA are
loaded from the external mode select pins, MODB and MODA, respectively. After the
DSP leaves the reset state, MB and MA can be changed under software control.

3~3.2 Data ROM Enable (Bit 2)
The DE bit enables the two, on-chip, 256X24 data ROMs located between addres~es
$0100--$01 FF in the X and Y memory spaces. When DE is cleared, the $0100-$01 FF
address space is part of the external X and Y data spaces, and the on-chip data ROMs

.. are disabled. Hardware reset clears the DE bit.

3.3.3 Internal Y Memory Disable Bit (Bit 3) ,
Bit 3 is defined as Internal Y Memory Disable (YD). When set, all Y Data Memory address­
es are considered to be external, disabling access to internal Y Data Memory. When
cleared, internal Y Data Memory may be accessed according to the state of the DE control
bit. The content of the internal Y Data Memory is not affected by the state of the YD bit.
The YD bit is cleared during hardware reset.

Figure 3-1 DSP56002 Memory Maps shows a graphic representation of the DE and YD
bit effects on the X and Y data memory maps. Table 3-1 also compares the DE and YD
effects on the memory maps~

Table 3-1 . Memory Mode Bits

DE YD Data Memory

0 0 InternalROMs Disabled and their addresses are part of
External Memory

0 1 Internal X Data ROM is Disabled and is part of External
Memory. Internal Y Data RAM and ROM are Disabled and
are part of External Memory

1 0 X and Y Data ROMs Enabled

1 1 Internal Y Data RAM and ROM are Disabled and are part of
External Memory. Internal X Data ROM Enabled.

3.3.4 Chip Operating Mode (Bit 4)
The MC bit, together with bits MA and MS, define the program memory map and the operating
mode of the chip. Upon reset, the processor loads this bit from the MODC external mode se­
lect pin. After the DSP leaves the reset state, MC can be changed under software control.

3.3.5 Reserved (Bit 5)
This bit is reserved for future expansion and will be read as zero during read operations.

3.3.6 Stop Delay (Bit 6)
The SD bit determines the length of the clock stabilization delay that occurs when the
processor leaves the stop processing state. If the stop delay bit is zero when the chip
leaves the stop state, a 64K clock cycle delay is selected before continuing the stop
instruction cycle. However, if the stop delay bit is one, the delay before continuing the
instruction cycle is long enough to allow a clock stabilization period for the internal clock
to begin oscillating and to stabilize. (See the DSP56002 Technical Data Sheet
(DSP56002/D) for the actual timing values.) When a stable external clock is used, the
shorter delay allows faster start-up of the DSP.

3.3.7, Reserved OMR Bits (Bits 7-23)
These bits are reserved for future expansion and will be read as zero during read operations.

3.4 DSP56002 OPERATING MODES
The user can set the chip operating mode through hardware by pulling high the MODC,
MODS, and MODA pins appropriately, and then assert the RESET pin. When the DSP
leaves the reset state, it samples the mode pins and writes to the OMR to set the initial
operating mode.

-

Chip operating modes can also be changed using software to write the operating mode
bits (MC, MB, MA) in the OMR. Changing operating modes does not reset the DSP.

Note: The user should disable interrupts immediately before changing the OMR to pre-
vent an interrupt from going to the wrong memory location. Also, one no-operation
(NaP) instruction should be included after changing the OMR to allow for remap- .
ping to occur.

Table 3-2 DSP56002 Operating Mode Summary

Operating M M M Description
Mode C B A

0 0 0 0 Single-Chip Mode - P: RAM enabled, reset @ $0000

1 0 0 1 Bootstrap from EPROM, exit in Mode 0

2 0 1 0 Normal Expanded Mode - P: RAM enabled, reset @ $EOOO

3 0 1 1 Development Mode - P: RAM disabled, reset @ $0000

4 1 0 0 Reserved for Bootstrap

5 1 0 1 Bootstrap from Host, exit in Mode 0

6 1 1 0 Bootstrap from SCI (external clock), exit in Mode 0

7 1 1 1 Reserved for Bootstrap

3.4.1 Single Chip Mode (Mode 0)
In the single-chip mode, all internal program and data RAM memories are enabled (see
Figure 3-1). A hardware reset causes the DSP to jump to internal program memory loca­
tion $0000 and resume execution. The memory maps for mode 0 and mode 2 (see Figure
3-1) are identical. The difference between the two modes is that reset vectors to program
memory location $0000 in mode 0 and vectors to location $EOOO in mode 2.

3.4.2 Bootstrap From EPROM (Mode 1)
The bootstrap modes allow the DSP to load a program from an inexpensive byte-wide
ROM into intern'al program memory during a power-on reset. On power-up, the wait­
state generator adds 15 wait states to all external memory accesses so that slow mem­
ory can be used. The bootstrap program uses the bytes in three consecutive memory
locations in the external ROM to build a single word in internal program memory.

In the bootstrap mode, the chip enables the bootstrap ROM and executes the bootstrap
program. (The bootstrap program code is shown in Appendix A.) The bootstrap ROM con­
tains the bootstrap firmware program that performs initial loading of the DSP56002
program RAM. Written in DSP56002 assembly language, the program initializes the pro­
gram RAM by loading from an external byte-wide EPROM starting at location P:$COOO.

The EPROM is typically connected to the chip's address and data bus.The data contents
of the EPROM must be organized as shown in Table 3-3 Organization of EPROM Data
Contents.

FROM OPEN
COLLECTOR
BUFFER

FROM
RESET
FUNCTION

FROM OPEN
COLLECTOR
BUFFER

+5V

DR DSP56002
BR
RACK

"WT
MOOAlfROA

2716
MOOCfl\J1VIT '

PS CE

AO-A10
11

AO-A10

RESET
00-07

8
00-07

~'---------~----~MOOBflROB

ADDRESS OF EXTERNAL
BYTE-WIDE P MEMORY

P:$COOO
P:$C001
P:$C002

P:$C5FD
P:$C5FE
P:$C5FF

Notes: 1. "These diodes must be Schottky diodes.
2. All resistors are 15KQ unless noted otherwise.
3. When in RESET, TROA, TROB and NfJI must

be deasserted by external peripherals.

CONTENTS LOADED
TO INTERNAL P: RAM AT:

P:$OOOO LOW BYTE
P:$OOOO MID BYTE
P:$OOOO HIGH BYTE

P:$Ol FF LOW BYTE
P:$Ol FF MID BYTE
P:$Ol FF HIGH BYTE

Figure 3-3 Port A Bootstrap Circuit

-

III

Table 3-3 Organization of EPROM Data Contents

Address of External Contents Loaded to Internal
Byte-Wide Memory: Program RAM at:

P:$COOO P:$OOOO low byte

P:$COO1 P:$OOOO. mid byte

P:$COO2 P:$OOOO high byte

· ·
· ·
· ·

P:$C5FD P:$01FF low byte

P:$C5FE P:$01 FF mid byte

P:$C5FF P:$01FF· high byte

After loading the internal memory, the DSP switches to the single-chip mode (Mode 0) and
begins program execution at on-chip program memory location $0000.

If the user selects Mode 1 through hardware (MODA, MODS, MODC pins), the following
actions occur once the processor comes out of the reset state.

1. The control logic maps the bootstrap ROM into the internal DSP program mem­
ory space starting at location $0000.

2. The control logic causes program reads to come from the bootstrap ROM (only
address bits 5-0 are significant) and all writes go to the program RAM (all ad­
dress bits are significant). This condition allows the bootstrap program to load
the user program from $0000-$01 FF.

3. Program execution begins at location $0000 in the bootstrap ROM. The boot­
strap ROM program loads program RAM from the external byte-wide EPROM
starting at P:$COOO.

4. The bootstrap ROM program ends the bootstrap operation and begins executing
the user program. The processor enters Mode 0 by writing to the OMR. This ac­
tion is timed to remove the bootstrap ROM from the program memory map and
re-enable read/write access to the program RAM. The change to Mode 0 is
timed to allow the bootstrap program to execute a single-cycle instruction (clear
status register), then a JMP #<00, and begin execution of the user program at
location $0000.

The user can also getinto the bootstrap mode (Mode 1) through software by writing zero
to MC and MB, and one to MA in the OMR. This selection initiates a timed operation to
map the bootstrap ROM into the program address space (after a delay to allow execution
of a single-cycle instruction), and then a JMP #<00 to begin the bootstrap process de­
scribed previously in steps 1 through 4. This technique allows the user to reboot the
system (with a different program, if desired).

The code to enter the bootstrap mode is as follows:

MOVEP #O,X:$FFFF ;Disable interrupts.

MOVEC #1,OMR ;The bootstrap ROM is mapped
;into the lowest 64 locations
;in program memory.

NOP ;Allowone cycle delay for the
;remapping.

JMP <$0 ;Begin bootstrap.

The code disables interrupts before executing the bootstrap code. Otherwise, an interrupt
could cause the DSP to execute the bootstrap code out of sequence because the boot­
strap program overlays the interrupt vectors.

3.4.3 Normal Expanded Mode (Mode 2)
In this mode, the internal program RAM is enabled and the hardware reset vectors to:lo­
cation $EOOO. (The memory maps for Mode 0 and Mode 2 are identical. The difference
for Mode 0 is that, after reset, the instruction at location $EOOO is executed instead of the
instruction at $0000 - see Figure 3-1 and Table, 3-2).

3.4.4 Developmen~ Mode (Mode 3) .,
In this mode, the internal program RAM is disabled and the· hardware reset vectors to lo­
cation $0000. All refere'nces to progra~ memory'space are directed to external program
memory. The reset vector points to location $0000. The memory map for this mode is
shown in Figure 3-1 and ,Table 3-2.

3.4.5 Reserved (Mode 4)
This mode is reserved for future definition. If selected, it defaults to Mode 5.

3.4.6 Bootstrap From Host (Mode 5)
In this mode, the Bootstrap ROM is enabled and the bootstrap program is executed. This is
similar to Mode 1 except that the bootstrap program loads internal P: RAM from the Host Port.

IEII

Note: The, difference between Modes 1 and 5 in the· DSP56002 and Mode 1 in the
DSP56001 may be considered software incompatibility. A DSP56001 program that
reloads the internal P: RAM from the Host Port by setting MB-MA = 01 (assuming
external pull-up resistor on bit 23 of P:$COOO) will not work correctly in the
DSP56002. In the DSP56002, the program would trigger a bootstrap from the exter­
nal EPROM. The solution is to modify the DSP56001 program to set MC-MA = 101.

3.4.7 Bootstrap From SCI (Mode 6)
In this mode, the Bootstrap ROM is enabled and the bootstrap program is executed. The
internal and/or external program RAM is loaded from the SCI serial interface. The number
of program words to load and the starting address must be specified. The SCI bootstrap
code expects to receive 3 bytes specifying t~e number of program words, 3 bytes speci­
fying the address from which to start loading the program words, and then 3 bytes for each
program word to be loaded. The number of words, the starting address and the program
words are received least significant byte first, followed by the mid-, and then by the most
significant byte. After receiving the program words, program execution starts at the ad­
dress where the first instruction was loaded. The SCI is programmed to work in
asynchronous mode with 8 data bits, 1 stop bit, and no parity. The clock source is external
and the clock frequency must be 16x the baud rate. After each byte is received, it is ech­
oed back through the SCI transmitter.

3.4.8 Reserved (Mode 7)
This mode is reserved for future definition. If selected, the processor defaults to Mode 6.

3.5 DSP56002 INTERRUPT PRIORITY REGISTER
Section 7 of the DSP56000 Family Manual describes interrupt (exception) processing in
detail. It discusses interrupt sources, interrupt types, and interrupt priority levels (IPL).

Interrupt prioriw levels for each on-chip, peripheral device and for each external interrupt
source can beprogrammed under software control by writing to the interrupt priorityreg­
ister. Level 3 interrupts are nonmaskable, and interrupts of levels 0-2 are maskable.

The DSP56002 Interrupt Priority Register (I PR) configuration is shown in Section Fig­
ure 3-4 DSP56002 Interrupt Priority Register (IPR). The starting addresses of interrupt
vectors in the DSP56002 are defined as shown in Section Table 3-4 Interrupt Vectors,
while the relative priorities of exceptions within the same IPL are defined as shown in
Section Table 3-5 Exception Priorities Within an IPL).

11 10 9 8 7 6 5 4 3 2 0

TROAMODE

TROBMODE

RESERVED

HOST IPL

23 22 21 20 19 18 17 16 15 14 13 12

SSIIPL

SCIIPL

TIMER IPL

RESERVED

Reserved, read as zero and should be written with zero for future compatibility.

Figure 3-4 DSP56002 Interrupt Priority Register (IPR)

3.6 DSP56002 PHASE-LOCKED LOOP (PLL) MULTIPLICATION FACTOR
Section 9 of the DSP56000 Family Manual discusses the details of the PLL. The multipli­
cation factor determines the frequency at which the Voltage Controlled Oscillator (VCO)
will oscillate. The user sets the multiplication factor by writing to the MFO-MF11 bits in the
PLL control register.

The DSP56002 PLL multiplication factor is set to 1 during hardware reset, which means
that the Multiplication Factor Bits MFO-MF11 in the PLL Control Register (PCTL) are set
to $000.

-

Table 3-4 Interrupt Vectors

Interrupt
Starting Address IPL Interrupt Source

P:$OOOO 3 Hardware RESET

P:$0002 3 Stack Error

P:$OOO4 3 Trace

- P:$OO06 3 SWI

P:$0008 0-2 TFmA

P:$OOOA 0-2 TROO

P:$OOOC 0-2 SSI Receive Data

P:$OOOE 0-2 SSI Receive Data With Exception Status

P:$OO10 0-2 SSI Transmit Data

P:$OO12 0-2 SSI Transmit Data with Exception Status

P:$0014 0-2 SCI Receive Data

P:$OO16 0-2 SCI Receive Data with Exception Status

P:$OO18 0-2 SCI Transmit Data

P:$001A 0-2 SCI Idle Line

P:$001C 0-2 SCllimer

P:$OO1E 3 NMI

P:$OO20 0-2 Host Receive Data

P:$0022 0-2 Host Transmit Data

P:$OO24 0-2 Host Command (Default)

P:$0026 0-2 Available for Host Command

-::::::::::- --:::;:::::::::
P:$OO3A 0-2 Available for Host Command

P:$003C 0-2 limer

P:$OO3E 3 Illegal Instruction

P:$OO40 0-2 Available for Host Command

--= ---=:::

E P:$007E o - 2 Available for Host Command

Table 3-5 Exception Priorities Within an IPL

Priority Exception

Level 3 (Nonmaskable)

Highest Hardware FrES"ET

Illegal Instruction

NfVfI

Stack Error -
Trace

Lowest SWI

Levels 0,1,2 (Maskable)

Highest TROA (External Interrupt)

TROS (External Interrupt)

Host Command Interrupt

Host Receive Data Interrupt

Host Transmit Data Interrupt

SSI RX Data with Exception Interrupt

SSI RX Data Interrupt

SSI TX Data with Exception Interrupt

SSI TX Data Interrupt

SCI RX Data with Exception Interrupt

SCI RX Data Interrupt

SCI TX Data with Exception Interrupt

SCI TX Data Interrupt

SCI Idle Line Interrupt

SCllimer Interrupt

Lowest limer Interrupt

SECTION 4

PORTA

-

•

4.1 INTRODUCTION
Port A provides a versatile interface to external memory, allowing economical connection
with fast memories/devices, slow memories/devices, and multiple bus master systems.

Port A has two power-reduction features. It can access internal memory spaces, toggling
only the external memory signals that need to change, thereby eliminating unneeded
switching current. Also, if conditions allow the processor to operate at a lower memory
speed, wait states can be added to the external memory access to significantly reduce
power while the processor accesses those memories.

4.2 PORT A INTERFACE
The OSP56002 processor can access one or more of its memory sources (X data mem­
ory, V data memory, and program memory) while it executes an instruction. The memory
sources may be either internal or external to the OSP. Three address buses (XAB, V AB,
and PAB) and four data buses (XOB, VOB, POB, and GOB) are available for internal
memory accesses during one instruction cycle. Port A's one address bus and one data
bus are available for external memory accesses.

If all memory sources are internal to the DSP, one or more of the three memory sources
may be accessed in one instruction cycle (i.e., program memory access or program mem­
ory access plus an X, V, XV, or L memory reference). However, when one or more of the
memories are external to the chip, memory references may require additional instruction
cycles because only one external memory access can occur per instruction cycle.

If an instruction cycle requires more than one external access, the processor will make
the accesses in the following priority: X memory, V memory, and program memory. It
takes one instruction cycle for each external memory access - i.e., one access can be
executed in one instruction cycle, two accesses take two instruction cycles, etc. Since the
external data bus is only 24 bits wide, one XV or long external access will take two instruc­
tion cycles. The 16-bit address bus can sustain a rate of one memory access per
instruction cycle (using no-wait-state memory which is discussed in 4.4 PORT A WAIT
STATES).

Figure 4-1 shows the port A signals divided into their three functional groups: address bus
signals (AO-A1S), data bus signals (00-015), and bus control. The bus control signals can
be subdivided into three additional groups: read/write control (fIT) and WR), address
space selection (including program memory select (PS), data memory select (ITS), and
X!Y select) and bus access control (BN, SR, 00, WT, BS).

The read/write controls can act as decoded read and write controls, or, as seen in Figure
4-2, Figure 4-3, and Figure 4-4, the write signal can be used as the read/write control, and
the read signal can be used as an output enable (or data enable) control for the memory.

-

16 - BIT INTERNAL
ADDRESS BUSES

X ADDRESS (XA)

Y ADDRESS (YA)

PROGRAM ADDRESS (PA)

- 24 - BIT INTERNAL
DATA BUSES

X DATA (X D)

YDATA(YD)

PROGRAM DATA(PD)

GLOBAL DATA (GD)

EXTERNAL
ADDRESS BUS

SWITCH

EXTERNAL
DATA BUS
SWITCH

EXTERNAL
BUS CONTROL

LOGIC

EXTERNAL
ADDRESS BUS

AO-A1S

EXTERNAL
DATA BUS
DO - 023

BUS CONTROL SIGNALS

.-----t--.RO - READ ENABLE

.---+-... ·m - WRITE ENABLE
t----t--.pg - PROGRAM MEMORY SELECT
.----t--.US - DATA MEMORY SELECT
.----t-... XIY - X MEMORY/y MEMORY SELECT

.----t-_-BN- BUS NEEDED

I_--of---BR - BUS REQUEST

~--r--.BG-BUSGRANT
-BUS WAIT

t---t-... as - BUS STROBE

Figure 4-1 Port A Signals

Vee Vss
+5 V GROUND

PROGRAM MEMORY

ADDRESS BUS 1-------.....,."----'
AO-A15 ADDRESS

DATA BUS
DO - 023 DATA

DSP56002

BUS
CONTROL

1m t--------------+I UE 24 BIT x N WORDS

WR RIW
1'S CS"
00 ~----------~

XIV 1-----......

BI'I 1-----......

BRa---­
BG 1-----......
wr 1.---­
as 1-----

Figure 4-2 External Program Space

Decoding in such a way simplifies connection to high-speed random-access memories
(RAMs). The program memory select, data memory select, and XN select can be consid­
ered additional address signals, which extend the directly addressable memory from 64K
words to 192K words total.

Since external logic delay is large relative to RAM timing margins, timing becomes more
difficult as faster DSPs are introduced. The separate read and write strobes used by the
DSP56002 are mutually exclusive, with a guard time between them to avoid an instance
where two data buffers are enabled simultaneously. Other methods using external logic
gates to generate the RAM control inputs require either faster RAM chips or external
data buffers to avoid data bus buffer conflicts.

Figure 4-2 shows an example of external program memory. A typical implementation of
this circuit would use three-byte-wide static memories and would not require any addi­
tional logic. The PS signal is used as the program-memory chip-select signal to enable
the program memory at the appropriate time.

-

-

Vee Vss
+5V G 0

DATA BUS
00- 023

16

DATA

KDATA
MEMORY

ADDRESS DATA

YDATA
MEMORY

ADDRESS

24 BITS x N WORDS 24 BITS x N WORDS

BUS
CONTROL

OE PJW CS CE OE PJW CS CE

~ r---------~--_+--_+--_+--------~

WR ~------------~--_+--_+------------~
PS 1-------
00 I------------------~--_+----------------~
m~---------------------+------~
m t-----­
BR ~----­
BG t-----­
wr t-----­
as 1-------

Figure 4-3 External X and V Data Space

Figure 4-3 shows a similar circuit using the US signal to enable two data memories and
using the X/Y signal to select between them. The three external memory spaces (pro­
gram, X data, and Y data) do not have to reside in separate physical memories; a single
memory can be employed by using the 'PS, US, and X!Y signals as additional address
lines to segment the memory into three spaces (see Figure 4-4). Table 4-1 shows how
the 'PS, US, and X!Y signals are decoded.

If the DSP is in the development mode, an exception fetch to any interrupt vector location
will cause the X!Y signal to go low when 'PS is asserted. This procedure is useful for
debugging and for allowing external circuitry to track interrupt servicing.

Table 4-1 Program and Data Memory Select Encoding

PS os XfY External Memory Reference

1 1 1 No Activity

1 0 1 X Data Memory on Data Bus

1 0 0 Y Data Memory on Data Bus

0 1 1 Program Memory on Data Bus (Not an Exception)

0

0

1

Vcc Vss
+5V GROUND

ADDRESS BUS
AO ·A15

DSP56002

DATA BUS
DO· 023

BUS
CONTROL

1 0

0 X

1 0

External Exception Fetch: Vector or Vector +1
(Development Mode Only)

Reserved

Reserved

16 AO·A10

CE

24

EXTERNAL
PROGRAM

X AND Y MEMORY

$3FFF

4K
PROGRAM
MEMORY

"DE $3000
RIW RO ~-------------r-----------------==-----~

~~--------------------~-------------------------~~----------Jl~2FFF~ $2FFF
PS ~-------------r--~~--~
US ~-------------r-'~----~

XIY ~----------,

1m 1-----.
BR 1+----­
BG 1-----.
WT ... ---­
as t----.

CS

A12

A11

Figure 4-4 Memory Segmentation

2K
X DATA

MEMORY

$2800

$27FF

2K
YDATA

MEMORY

$2000

~24BITS

-

FROM OPEN
COLLECTOR
BUFFER

FROM
RESET
FUNCTION

FROM OPEN
COLLECTOR
BUFFER

.... : ..
:~ :

"-
/

"-
/

.....

"

+5V

> .. : .. : .. ~ ~ : .. :}
~ : > : > : > : ~ : ~ lOR DSP56002 RU

'- m1
RACK WR
WT ITS -

1
MOOAl11mA X1Y

AO-A10
MOOCfNliJT

MBD301* 4 PS

~~
~ MBD301

~~

~~ *

RESET

erMBD301

MOOB/fROS - 00-023

11., ,
I--

et:

---~

I

10
"

u
I

AO-A10

2716

00-07

"~8

,r
Notes: 1 ..

2.
3.

1 ,Ir
t'\ (t

IAo-A9 A10 "CS WE DE

2018-55 (3)

00-023

jll

'~4
,Ir

- .

f-

~

rwise.
ust

be deasserted by external peripherals.

Figure 4-5 Port A Bootstrap ROM with X and Y RAM

Figure 4-5 shows a system that uses internal program memory loaded from an external
ROM during power-up and splits the data memory space of a single memory bank into X:
and Y: memory spaces. Although external program memory must be 24 bits, external data
memory does not. Of course, this is application specific. Many systems use 16 or fewer bits
for AID and 01 A conversion and, therefore, they may only need to store 16, 12, or even eight
bits of data. The 24/56 bits of internal precision is usually sufficient for intermediate results.
This is a cost saving feature which can reduce the number of external memory chips.

4.3 PORT A TIMING
The external bus timing is defined by the operation of the address bus, data bus, and bus
control pins. The transfer of data over the external data bus is synchronous with the clock.
The timing A, B, and C relative t6 the edges of an external clock (see Figure 4-6 and Fig­
ure 4-7) are provided in the DSP56002 Advance Information Data Sheet (DSP56002lD).
This timing is essential for designing synchronous multiprocessor systems. Figure 4-6
shows the port A timing with no wait states (wait-state control is discussed in Section 4.4).
One instruction cycle equals two clock cycles or four clock phases. The clock phases,
which are numbered TO - T3, are used for timing on the DSP. Figure 4-7 shows the same
timing with two wait states added to the external X: memory access.

ONE INSTRUCTION CYCLE

ONE CLOCK CYCLE

INTERNAL CLOCK PHASES

ADDRESS PS, OS, XIY

CYCLE

1;.0' _ot_---- 8 -----~------i
READ [fID

DATAIN ~~----:--------~:XXXXX

WRITE [WR
CYCLE

. DATAOUT-------i('-___ ~)I---------------

Figure 4-6 Port A Bus Operation with No Wait States

-

•

ONE CLOCK CYCLE

INTERNALCLOCK PHASES

ADDRESS 'PS, US, Xl?

~-----ONE INSTRUCTIONCY'CLE---..,.-----I~

READ [m
CYCLE '

, DATAIN~~~

[

WR ~C---~ _________ ~ = DATAOUT-------(,----------------..I------

DATA LATCHED HERE

Figure 4-7 Port A Bus Operation with Two Wait States

Four TW clock phases have been added because, one wait state adds two T phases and
is equivalent to repeating the T2 and T2 clock phases. The write signal is also delayed
from the T1 to the T2 state when one or more wait states are added to ease, interfacing to
the port. Each external memory access requires the following procedure:

1. The external memory address is defined by the address bus (AO-:-A 15) and the
memory reference selects (ps, US, and X/Y). These signals change in the first
phase (TO) of the bus cycle. Since the memory reference select signals have
the same timing as the address bus, they may be used as additional address
lines. The address and memory reference signals are also used ,to generate
chip-select signals, for the appropriate memory chips. These chip-select sig­
nals change the memory chips from low-power standby mode to active mode
and begin the read access time. This mode change allows slower memories to
be used since the chip-select signals can be address based rather than read

, , or write enable based. Read and write enable do not become active until after
the address is valid. See the timing diagrams in the DSP56002 Advance Infor­
mation Data Sheet (DSP56002lD) for detailed timing information.

2. When the address and memory reference signals are stable, the data transfer
is enabled by read enable (AU) or write enable (WR). 'RU or WR is asserted to
"qualify" the address and memory reference signals as stable and to perform
the read or write data transfer. 'RU and WR are asserted in the second phase
of the bus cycle (if there are no wait states). Read enable is typically con­
nected to the output enable (OE) of the memory chips and simply controls the
output buffers of the chip-selected memory. Write enable is connected to the
write enable (WE) or write strobe (VIS) of the memory chips and is the pulse
that strobes data into the selected memory. For a read operation, Rr5 is
asserted and WR remains deasserted. Since write enable remains negated, a
memory read operation is performed. The DSP data bus becomes an input,
and the memory data bus becomes an output. For a write operation, WR is
asserted and 'RU remains deasserted. Since read enable remains deasserted,
the memory chip outputs remain in the high-impedance state even before write
strobe is asserted. This state assures that the DSP and the chip-selected
memory chips are not enabled onto the bus at the same time. The DSP data
bus becomes an output, and the memory data bus becomes an input.

3. Wait states are inserted into the bus cycle by a wait-state counter or by assert­
ing WT. The wait-state counter is loaded from the bus control register. If the
value loaded into the wait-state counter is zero, no wait states are inserted into
the bus cycle, and 'RU and WR are asserted as shown in Figure 4-6. If a value
W:t;Q is loaded into the wait state counter, W wait states are inserted into the
bus cycle. When wait states are inserted into an external write cycle, WR is
delayed from T1 to T2. The timing for the case of two wait states (W=2) is
shown in Figure 4-7.

4. When Rr5 or WR are deasserted at the start of T3 in a bus cycle, the data is
latched in the destination device - i.e., when 'RU is deasserted, the DSP
latches the data internally; when WR is deasserted, the external memory
latches the data on the positive-going edge. The address signals remain sta­
ble until the first phase of the next external bus cycle to minimize power dissi­
pation. The memory reference signals (PS, US, and XIV) are deasserted (held
high) during periods of no bus activity, and the data signals are three-stated.
For read-modify-write instructions such as BSET, the address and memory
reference signals remain active for the complete composite (i.e., two leye)
instruction cycle.

-

..

PORT A BUS CONTROL REGISTER (BCR)

EXTERNAL
X MEMORY

115 121111

. X:$FFFE I 0100 I

AO-A15
f-""""'t"'"~:::"1

DO - 023

40 MHz
DSP56002

8Kx24
X RAM
150 ns

(4 WAIT STATES)

CS "CS WEOE

EXTERNAL EXTERNAL
YMEMORY PMEMORY

all7
1000 ; I 1010

D/A
CONVERTER

D "CS

8Kx24
YROM
250 ns

WR

(8 WAIT STATES) .

~ ~--~--~~--~~---a

os ~--~----~~~~---a

4113

I

EXTERNAL
VOMEMORY

01

1101 I

AID
CONVERTER

D"CS

32K x24
PROM
300 ns

(10 WAIT STATES)

RO

WR ~--~--------~~----------------+-----------r-----~--------~
~ ~--~-----------4~--~~--------+-----~----~----~----------~
PS ~--~----------------~~--------+---------~

Figure 4-8 Mixed-Speed Expanded System

Figure 4-8 shows an example of mixing different memory speeds and memory-mapped
peripherals in different address spaces. The internal memory uses no wait states, X: memory
uses two wait states, Y: memory uses four wait states, P: memory uses five wait states, and
the analog converters use 14 wait states. Controlling five different devices at five different
speeds requires only one additional logic package. Half the gates in that package are used
to map the analog converters to the top 64 memory locations in Y: memory.

4.4 PORT A WAIT STATES
The DSP56002 features two methods to allow the user to accommodate slow memory
by changing the port A bus timing. The first method uses the bus control register (SCR),
which allows a fixed number of wait states to be inserted in a given memory access to all
locations in each of the four memory spaces: X, Y, P, and I/O. The second method uses
the bus strobe (BS) and bus wait (WT) facility, which allows an external device to insert
an arbitrary number of wait states when accessing either a single location or multiple
locations of external memory or I/O space. Wait states are executed until the external
device releases the DSP to finish the external memory cycle.

Table 4-2 Wait State Control

BCR
WT Number of Wait States Generated

Contents

0 Deasserted 0

0 Asserted 2 (minimum)

>0 Deasserted Equals value in SCR

>0 Asserted Minimum equals 2 or value in SCR.
Maximum is determined by SCR or WT,
whichever is larger.

4.5 BUS CONTROL REGISTER (BCR)
The SCR determines the expansion bus timing by controlling the timing of the bus inter­
face signals, RU and WR, and the data output lines. It is a memory mapped register
located at X:$FFFE. Each of the memory spaces in Figure 4-9 (X data, Y data, program
data, and I/O) has its own 4-bit SCR, which can be programmed for inserting up to 15
wait states (each wait state adds one-half instruction cycle to each memory access - i.e.,
50 ns for a 20-Mhz clock). In this way, external bus timing can be tailored to match the
speed requirements of the different memory spaces. On processor reset, the BCR is
preset to all ones (15 wait states). This allows slow memory to be used for boot strap­
ping. The SCR needs to be set appropriately for the memory being used or the processor
will insert 15 wait states between each memory fetch and cause the DSP to run slow.

-

-

15 12 11

X:$FFFE
EXTERNAL

X MEMORY· ,

$FFFF r-======~

$200
~==

INTERNAL
PROGRAM

RAM

0

PROGRAM
MEMORY SPACE

8 7

EXTERNAL
YMEMORY·

INTERNAL

$100
X ROM

INTERNAL
X RAM

0

X DATA
MEMORY

SPACE

* Zero to 15 wait states can be inserted into each external memory access.

EXTERNAL
P MEMORY·

Figure 4-9 Bus Control Register

4 3 o

EXTERNAL
VO MEMORY·

INTERNAL

$100
YROM

INTERNAL
YRAM

0

YDATA
MEMORY

SPACE

Figure 4-9 illustrates which of the four BCR subregisters affect which external memory
space. All the internal peripheral devices are memory mapped, and their control registers
reside between X:$FFCO and X:$FFFF.

To load the BCR the way it is shown in, Figure 4-8, execute a "MOVEP #$48AD,
X:$FFFE" instruction. Or, change the individual, bits in one of the four subregisters by
using the BSET and BCLR instructions which are detailed in the DSP56000 Family Man­
ual, SECTION 6 and APPENDIX A.

Figure 4-8 shows an example of mixing different memory speeds and memory:.mapped
peripherals in different address spaces. The internal memory us'es no wait states, X:mem­
ory uses two wait states, Y: memory usesfour wait states, P: memory uses five waitstates,
and the analog converters use 14 wait states. Controlling five different devices at five,dif­
ferent speeds requires only one additional logic' p'ackage. Half the gates in that package
are used to map the analog converters to the top 64 memory locations in Y: memory.

Vee Vss
+5 V GROUND

DSP56000/DSP56001

OPERATING MODE REGISTER

76543210

I EM I SD I 0 I 0 I 0 I DE I MB I MA I
SET EM= 1

TO Tl T2 TW TW TW T3 TO

ADDRESS BUS
AO-A15

AO -A15, DO - 023, PS, US, X!Y V--
------------------~~

DATA BUS
DO - 023

BUS
CONTROL

RJj /------.

WR /------.
PS /------.
US /------.
Xfl 1-----_1

wr~----

WTIS
SAMPLED

WTIS
SAMPLED

WTIS
SAMPLED

r-T3~
as 1----_ ,'--___________ ---JIL

Figure 4-10 BusStrobelWait Sequence

Aqding wait states to external memory accesses can substantially reduce power require­
ments. Cons~lt the DSP56002 Technical Data Sheet (DSP56002lD) for specific power
consumption requirements.

4.6 BUS STROBE AND WAIT PINS
The ability to insert wait states· using as and WT provides a means to connect asynchro­
nous devices to the DSP,' allows devices with differing timing requirements to reside in the
same memory space,allows a bus arbiter to provide a fast multiprocessor bus access, and
provides another means of halting the DSP at a known program location with a fast restart.

The timing of the as and WT pins is illustrated in Figure 4-10. Every external access, as
is asserted concurrently with the address lines in TO. as can be used by external wait-

-

..

state logic to establish the start of an external access. as is deasserted in T3 of each
external bus cycle, signaling that the current bus cycle will complete. Since the wr signal
is internally synchronized, it can be asserted asynchronously with respect to the system
clock. The wr signal should only be asserted while.as is asserted. Asserting wr while
as is deasserted will give indeterminate results. However, for the number of inserted wait
states to be deterministic, wr timing must satisfy setup and hold timing with respect to the
negative-going edge of EXT AL. The setup and hold times are provided in the DSP56002
Advancejnformation Data Sheet (DSP56002lD). The timing of WR is controlled by the
SGR and is independent of wr. The minimum number of wait states that can be inserted
using the wr pin is two. The SGR is still operative when using as and WT and defines
the minimum number of wait states that are inserted. Table 4-2 summarizes the effect of
the SGR and WT pin on the number of wait states generated .

4.7 BUS ARBITRATION AND SHARED MEMORY
The DSP56002 has five pins that control port A. They are bus needed (BN), bus request
(BR), bus grant (BG), bus strobe (as) and bus wait (WT) and they are described in SEC·
TION 2 DSP56002 PIN DESCRIPTIONS.

The bus control signals provide the means to connect additional bus masters (which may be
additional OSPs, microprocessors, direct memory access (OMA) controllers, etc.) to the port
A bus. They work together to arbitrate and determine what device gets access to the bus.

If an external device has requested the external bus by asserting the BR input, and the
OSP has granted the bus by asserting 00, the OSP will continue to process as long as it
requires no external bus accesses itself. If the OSP does require an external access but
is not the bus master, it will stop processing and remain in wait states until it regains bus
ownership. The BN pin will have been asserted, and an external device may use BN to
help "arbitrate", or decide when to return bus ownership to the chip.

Four examples of bus arbitration will be described later in this section: 1) bus arbitration
using only BR and 00 with internal control, 2) bus arbitration using BN, BR, and BG with
external control, 3) bus arbitration using BR, BG and WT, as with no overhead, and 4)
signaling using semaphores.

The BR input allows an external device to request and be given control of the external bus
while the OSP continues internal operations using internal memory spaces. This allows a
bus controller to arbitrate a multiple bus-master system. (A bus master can issue
addresses on the bus; a bus slave can respond to addresses on the bus. A single device
can be both a master and a slave, but can only be one or the other at any given time.)

AO -A15, 00- 023, PS,
OS,XI'?,m,WR

DSP56002 A DIFFERENT DSP56002
BUS MASTER-----..j~---- BUS MASTER -------t4---rBUS MASTER

Figure 4-11 Bus Request/Bus Grant Sequence

Before 00 is asserted, all port A signals are driven_ When 00 is asserted (see Rgure 4-11), the
DSP will assert 00 after the current external access cycle completes and will simultaneously
three-state (high-impedance) the port A signals (see the DSP56002 Technical Data Sheet
(DSP56002lD) for exact timing of 00 and 00). The bus is then available to whatever external
device has bus mastership. The external device will return bus mastership to the DSP by deas­
serting 00. After the DSP completes the current cycle (an internally executed instruction with or
without wait states), 00 will be deasserted. When 00 is deasserted, the AO-A15, PS, OS, Xfi,
and RO, WR lines will be driven. However, the data lines will remain in three-state. All signals
are now ready for a normal external access.

During the wait state (see Section 7 in the DSP56000 Family Manua~, the BR and BG
circuits remain active. However, the port is inactive - the control signals are deasserted,
the data signals are inputs, and the address signals remain as the last address read or
written. When BR is asserted, all signals are three-stated (high impedance). Table 4-3
shows the status of BR and BG during the wait state.

Table 4-3 BR and 1m During WAIT

BeforeBR While 'Em AfterBR
After Return to

After First
Signal

Asserted Asserted Deasserted
Normal State

External Access
(BG Deasserted)

P"S Driven Three-state Three-state Driven Driven

OS" Driven Three-state Three-state Driven Driven

XlV Driven Three-state Three-state Driven Driven

RU Driven Three-state Three-state Driven Driven

WR Driven Three-state Three-state Driven Driven

Data Driven Three-state Three-state Three-state Driven

Address Driven Three-state Three-state Driven Driven

-

-

4.7.1 Bus Arbitration Using Only BR and B"G With Internal Control
Perhaps the simplest example of a shared memory system using a DSPS6002 is shown
in Figure 4-12. The bus arbitration is performed within the DSP#2 by using software.
DSP#2 controls all bus operations by using 1/0 pin OUT2 to three~state its own port A
and by never accessing port A without first calling the subroutine that arbitrates the bus.
When the DSP#2 needs to use external memory, it uses 1/0 pin OUT1 to request bus
access and 1/0 pin IN1 to read bus grant. DSP#1 does not need any extra code for bus
arbitration since the BR and 00 hardware handles its bus arbitration automatically. The
protocol for bus arbitration is as follows:

At reset: DSP#2 sets OUT2=0 (BR#2=O) and OUT1 =1 (BR#1 =1), which gives DSP#1
access to the bus and suspends DSP#2 bus access.

When DSP#2 wants control of the memory, the following steps are performed (see Figure 4-13):

1. DSP# 2 sets OUT1 =0 (BR#1 =0).

2. DSP# 2 waits for IN1=0 (00#1=0 and DSP#1 off the bus).

3. DSP#2 sets OUT2=1 (BR#2=1 to let DSP#2 control the bus).

4. DSP#2 accesses the bus for block transfers, etc. at full speed.

5. To release the bus, DSP#2 sets OUT2=O (BR#2=O) after the last external
access.

6. DSP#2 then sets OUT1=1 (BR#1=1) to return control of the bus to DSP#1.

7. DSP#1 then acknowledges mastership by deasserting 00#1.

4.7.2 Bus Arbitration Using BN, BR, and B"G With External Control
Figure 4-14 can be implemented with external bus arbitration logic, which will save pro­
cessing capacity on the DSPs and can make bus access much faster at a cost of addi­
tional hardware. The bus arbitration logic takes control of the external bus by deasserting
an enable signal (E1, E2, and E3) to all DSPs, which will then acknowledge by granting
the bus (BG=O). When a DSP (DSP#1 in Figure 4-14) needs the bus, it will enter the
WAIT state with Bl\I asserted. If DSP#1 has highest priority, the arbitration logic grants
the bus to DSP#1 by asserting E1 (E2 for DSP#2; E3 for DSP#3) to let the DSP know
that it can have the bus. DSP#1 will then deassert 00 to tell the arbiter it has taken con­
trol of the bus. When the DSP no longer needs to make an external access it will deas­
sert Bl\I and the arbiter deasserts E1, after which the DSP deasserts 00.

BR

I OUT2

BR OUT1

BG IN1

CONTROL CONTROL

AO-A1S AO-A1S

DO - D23 DO - D23

DSP56002 #1 DSP56002 #2
BUS ARBITER -C A D

MEMORY
BANK

Figure 4-12 Bus Arbitration Using Only BR and BG with Internal Control

oun \ I
i

IN1 ~ (
OUT2

I: DATA ~ TRANSFERRED : .:........- HERE -' 4 5 7

Figure 4-13 Two DSPs with External Bus Arbitration Timing

-

SYSTEM MEMORY
32K x 24 X DATA RAM
32K x 24 Y DATA RAM

32K x 24 PROGRAM RAM

ADDRESS DATA CONTROL

ADDRESS ;16

/

DATA /24 ,
CONTROL 5

,

A D C A D C A D C

DSP56002 #1 DSP56002 #2 DSP56002 #3

BG BR m BG BR m BG BR m

Al El BRl I A2 E2 BR2 I A3 E3 BR3

BUS ARBITRATION LOGIC WITH PRIORITY ENCODER

Figure 4-14 Bus Arbitration Using BN, BR, and 00 with External Control

4.7.3 Bus Arbitration Using BR and 00, and WT and BS With No Overhead
By using the circuit shown in Figure 4-15, two DSPs can share memory with hardware
arbitration that requires no software on the part of the DSPs. The protocol for bus arbitra­
tion in Figure 4-15 is as follows:

At RESET assume DSP#1 is not making external accesses so that B'R#2 is deasserted.
Hence, BG of DSP#2 is deasserted, which three-states the buffers, giving DSP#2 control
of the memory.

DSP#1

DO· D23

AO·A15

RO,WR,
OS, PS, XIY

as WT

MEMORY

D A C

THREE·STATE
BUFFER

I DIR

EI'lAB[E

(

Figure 4-15 Bus Arbitration Using BR and BG,
and WT and as with No Overhead

DSP#2

DO·23

AQ·A15

RIT, m,
ITS, PS, Xfl

BG" BR

When DSP#1 wants control of the memory the following steps are performed (see Figure 4-16):

1. DSP#1 makes an external access, thereby asserting BS, which asserts WT
(causing DSP#1 to execute wait states in the current cycle) and asserts
DSP#2 BR (requesting that DSP#2 release the bus).

2. When DSP#2 finishes its present bus cycle, it three-states its bus drivers and
asserts 00. Asserting 00 enables the three-state buffers, placing the DSP#1
signals on the memory bus. Asserting 00 also deasserts WT, which allows
DSP#1 to finish its bus cycle.

3. When DSP#1 's memory cycle is complete, it releases BS, which deasserts
BR. DSP#2 then deasserts 00, three-stating the buffers and allowing DSP#2
to access the memory bus.

-

-
: DATA TRANSFERRED :
~ BETWEEN DSP#1 ---+:
2 AND MEMORY HERE

Figure 4-16 Two DSPs with External Bus Arbitration Timing

4.7.4 Signaling Using Semaphores
Figure 4-17 shows a more sophisticated shared memory system that uses external arbi­
tration with both local external memory and shared memory. The four semaphores are
bits in one of the words in each shared memory bank used by software to arbitrate mem­
ory use. Semaphores are commonly used to indicate that the contents of the sema­
phore's memory blocks are being used by one processor and are not available for use by
another processor. Typically, if the semaphore is cleared, the block is not allocated to a
processor; if the semaphore is set, the block is allocated to a processor.

Without semaphores, one processor may try to use data while it is being changed by
another processor, which may cause 'errors. This problem can occur in a shared memory
system when separate test and set instructions are used to "lock" a data block for use by
a single processor.

The correct procedure is to test the semaphore and then set the semaphore if it was
clear to lock and gain exclusive use of the data block. The problem occurs when the sec­
ond processor acquires the bus and tests the semaphore after the first processor tests
the semaphore but before the first processor can lock the data block. The incorrect
sequence is:

1. the first processor tests the semaphore and sees that the block is available

2. the second processor then tests the bit and also sees that the block is available

3. both processors then set the bit to lock the data

4. both proceed to use the data on the assumption that the data cannot be
changed by another processor

-.2J SEMAPHORE 3

BANK 3

~ SEMAPHORE 2

BANK 2

~ SEMAPHORE 1

BANK 1

-.2J SEMAPHORE 0

BANKO

DSP56002 PROCESSOR
LOCAL LOCAL

MEMORY MEMORY

DSP56002 PROCESSOR
ORDMA

BUS BUS

ADDRESS
BUFFER I BUFFER

ADDRESS
DATAAND DATA AND
CONTROL CONTROL

BUSES BUSES

ARBITRATION
LOGIC

Figure 4-17 Signaling Using Semaphores

The DSP56K processor series has a group of instructions designed to prevent this prob­
lem. They perform an indivisible read-modify-write operation and do not release the bus
between the read and write (specifically, AO-A15, US, PS, and X/Y do not change state).
Using a read-modify-write operation allows these instructions to test the sema­
phore and then to set, clear, or change the semaphore without the possibility of
another processor testing the semaphore before it is changed. The instructions are
bit test and change (BCHG), bit test and clear (BCLR), and bit test and set (BSET).
(They are discussed in detail in the DSP56000 Family Manual.) The proper way to set
the semaphore to gain exclusive access to a memory block is to use BSET to test the
semaphore and to set it to one. After the bit is set, the result of the test operation will
reveal if the semaphore was clear before it was set by BSET and if the memory block is
available. If the bit was already set and the block is in use by another processor, the DSP
must wait to access the memory block.

-

SECTION 5

PORTB

-

-

5.1 INTRODUCTION
Port B is a dual-purpose I/O port. It performs as 15 general-purpose I/O (GPIO) pins,
each configurable as output or input, to be used for device control. Or, it can perform as
an a-bit bidirectional host interface (HI) (see Figure 5-1), where it provides a convenient
connection to another processor. This section describes both configurations, including
examples of how to configure and use the port.

DEFAULT ALTERNATE
FUNCTION FUNCTION

16
EXTERNAL ADDRESS AO-A1S

SWITCH
24

00- 023

EXTERNAL DATA 'PS
SWITCH

PORT os
A XIV
VO "AU (47)

WR
m

BUS BR
CONTROL BG

wr
as

a a
PBO - PB7 • • HO-H7
PBa HAO
PB9 HAl
PB10 HA2
PBll HRIW
PB12 ~
PB13 • HREO
PB14 RACK or PB14

PCO RXD
SCI

PCl TXD INTERFACE •
PC2 • SCLK

PORT
PC3 SCO C •

VO PC4 • SCl
(9)

PCS • SC2
SSI

PC6 • SCK INTERFACE
PC7 SRD

pca • STD

Figure 5-1 Port B Interface

-

-

5.2 GENERAL PURPOSE I/O CONFIGURATION
When it is configured as general-purpose 1/0, Port B acts as three memory-mapped reg­
isters (see Figure 5-2) that control 15 I/O pins (see Figure 5-3). They are the Port B control
register (PBC), Port B data direction register (PBDDR), and Port B data register (PBD).

The software and hardware resets clear the PBC and PBDDR, which configures Port B
as general-purpose 1/0, with all 15 pins as inputs. (External circuitry connected to these
pins may need pullups until the pins are configured for operation.)

To select between general purpose 1/0 and the HI, set PBC bits 0 and 1 as shown in Fig­
ure 5-2. Use the PBDDR to determine whether the corresponding bit in the PBD shall be
an input pin (bit is set to zero) or an output pin (bit is set to one).

If a pin is configured as a GPIO input (as shown in Figure 5-4) and the processor reads
the PBD, the processor sees the logic level on the pin. If the processor writes to the PBD,
the data is latched there, but does not appear on the pin because the buffer is in the high­
impedance state.

23

BCl BCQ Function

a a Parallel 1/0 (Reset Condition)

a Host Interface

a Host Interface (with RACK pin as GPIO)

Reserved

23 0

PORTBDATA
DIRECTION
REGISTER (PBDDR) -- ----I ,

BOx Data Direction

a Input (Reset Condition)

1 Output

23

Figure 5-2 Parallel Port B Registers

ENABLED BY DIRECTION INPUT/OUTPUT
BITS IN SELECTED BY DATA
X:$FFEO X:$FFE2 X:$FFE4

PBO BCO/BCl BOO PBO
PBl BCO/BCl BOl PBl
PB2 BCO/BCl B02 PB2
PB3 BCO/BCl B03 PB3

P PB4
0

PBS
R
T

PB6
PB7

BCO/BCl B04 PB4
BCO/BCl BOS PBS
BCO/BCl B06 PB6
BCO/BCl B07 PB7

B
PBS BCO/BCl BOS PBS
PB9 BCO/BCl B09 PB9

PB10 BCO/BCl BOlO PB10
PB11 BCO/BCl BOll PB11
PB12 BCO/BCl B012 PB12
PB13 BCO/BCl B013 PB13
PB14 BCO/BCl B014 PB14

Figure 5-3 Parallel Port 8 Pinout

If a pin is configured as a GPIO output and the processor reads the PBD, the processor
sees the contents of the PBD rather the logic level on the pin, which allows the PBD to be
used as a general purpose 15-bit register. If the processor writes to the PBD, the data is
latched there and appears on the pin during the following instruction cycle (see Section
5.2.2 Port 8 General Purpose I/O Timing).

If a pin is configured as a host pin, the Port B GPIO registers can be used to help in
debugging the HI. If the PBDDR bit for a given pin is cleared (configured as an input), the
PBD will show the logic level on the pin, regardless of whether the HI function is using the
pin as an input or an output.

If the PBDDR is set (configured as an output) for a given pin that is configured as a host
pin, when the processor reads the PBD, it sees the contents of the PBD rather than the
logic level on the pin - another case which allows the PBD to act as a general purpose
register.

Note: The external host processor should be carefully synchronized to the DSP56002 to
assure that the DSP and the external host will properly read status bits transmitted
between them. There is more discussion of such port usage considerations in sec­
tions Section 5.3.2.7 Host Port Usage Considerations - DSP Side and Section
5.3.6.5 Host Port Usage Considerations - Host Side.

5.2.1 Programming General Purpose I/O
Port B is a memory-mapped peripheral as are all of the DSP56002 peripherals (see
Figure 5-5). The standard MOVE instruction transfers data between Port B and a reg~
ister; as a result, MOVE takes two instructions to perform a memory-to-memory data

-

-
PORT

REGISTERS

Port Control
Register Bit

a
a
1

PORT B DATA (PBD)
REGISTER BIT

DATA DIRECTION
REGISTER (PBDDR) BIT

PORT B CONTROL
REGISTER (PBC) BIT

PORT INPUT DATA BIT

Data Direction
Register Bit

a
1

X

f
HI OUTPUT DATA BIT

. PERIP~~~~ _--:..:.:.HI~DA~T~A;:.;.DI:..:.:RE:;.;:;C.:..:.TIO;:.;.N.:..:B::..:..;IT~ _____ ~

HI INPUT DATA BIT

Pin Function

Port Input Pin

Port Output Pin

Alternate Function

Figure 5-4 Port B I/O Pin Control Logic

transfer and uses a temporary holding register. The MOVEP instruction is specifically
designed for 1/0 data transfer as shown in Figure 5-6. Although the MOVEP instruc­
tion may take twice as long to execute as a MOVE instruction, only one MOVEP is
required for a memory-to-memory data transfer, and MOVEP does not use a tempo­
rary register. Using the MOVEP instruction allows a fast interrupt to move data tolfrom
a peripheral to memory and execute one other instruction or move the data to an abso­
lute address. MOVEP is the only memory-to-memory move instruction; however, one
of the operands must be in the top 64 locations of either X: or Y: memory.

The bit-oriented instructions that use 1/0 short addressing (BCHG, BCLR, B8ET, BT8T,
JCLR, J8CLR, J8ET, and J88ET) can also be used to address individual bits for faster
I/O processing. The digital signal processor (D8P) does not have a hardware data strob~
to strobe data out of the GPIO port. If a strobe is needed, it can be implemented using
software to toggle one of the GPIO pins.

X:$FFCO

23 16 15 8 7

1!!~!I[:[====illj)l~[====1INTERRUPT PRIORITY REGISTER (IPR)

~------------~------------~

~~----------~-------------+------------~

--------------1
r-------------I

--------------1

PORT A- BUS CONTROL REGISTER (BCR)

PLL CONTROL REGISTER

OnCE GOB REGISTER

SCI HI - REClXMIT DATA REGISTER (SRXlSTX)

SCI MID - REClXMIT DATA REGISTER (SRXlSTX)

SCI LOW - REClXMIT DATA REGISTER (SRXlSTX)

SCI TRANSMIT DATA ADDRESS REGISTER (STXA)

SCI CONTROL REGISTER (SCCR)

SCI INTERFACE STATUS REGISTER (SSR)
f-----~

SCI INTERFACE CONTROL REGISTER (SCR)

~-------------+--------------I
SSI RECIEVEfTRANSMIT DATA REGISTER (RXITX)

~------------~
SSI STATUSfTlME SLOT REGISTER (SSISRfTSR)

r-----------I
SSI CONTROL REGISTER B (CRB)

--------------+-------------~
SSI CONTROL REGISTER A (CRA)

-----------T-----------~
HOST RECEIVEfTRANSMIT REGISTER (HRXlHTX)

HOST STATUS REGISTER (HSR)
---------I

HOST CONTROL REGISTER (HCR)

TIMER CONTROUSTATUS REGISTER (TCSR)

RESERVED

I;;'i~ = Read as random number; write as don't care.

Figure 5-5 On-Chip Peripheral Memory Map

-

-

•
MOVE #$O,X:$FFEO ;Select Port B to be general-purpose 1/0

MOVE #$7FOO,X:$FFE2 ;Select pins PBO-PB7 to be inputs

• ;and pins PB8-PB14 to be outputs

•
MOVEP #data_out,X:$FFE4 ;Put bits 8-14 of "data_ouf' on pins

;PB8-PB14 bits 0-7 are ignored
MOVEP X:$FFE4,#data_in ;Put PBO-PB7 in bits 0-7 of "data_in"

Figure 5-6 Instructions to Write/Read Parallel Data with Port B

Figure 5-7 details the process of programming Port B as GPIO. Normally, it is not good
programming practice to activate a peripheral before programming it. However, reset acti­
vates the Port B general-purpose 1/0 as all inputs; the alternative is to configure Port B as
an HI, which may not be desirable. In this case, it is probably better to insure that Port B
is initially configured for general-purpose 1/0, and then configure the data direction and
data registers. It may be better in some situations to program the data direction or the data
registers first to prevent two devices from driving one Signal. The order of steps 1, 2, and
3 in Figure 5-7 is optional and can be changed as needed.

5.2.2 Port B General Purpose 1/0 Timing
General purpose data written to Port B is synchronized to the central processing unit
(CPU) but delayed by one instruction cycle. For example, the instruction

MOVE DATA15,X:PORTB DATA24,Y:EXTERN

1. writes 15 bits of data to the Port B register, but the output pins do not change
until the following instruction cycle

2. writes 24 bits of data to the external Y memory, which appears on Port A dur­
ing T2 and T3 of the current instruction

As a result, if it is desirable to synchronize Port A and Port B outputs, two instructions must
be used:

MOVE
NOP

DATA15,X:PORTB
DATA24,Y:EXTERN

The NOP can be replaced by any instruction that allows parallel moves. Inserting one or
more "MOVE DATA15,X:PORTB DATA24,Y:EXTERN" instructions between the first and

second instruction effectively produces an external 39-bit write each instruction cycle with
only one instruction cycle lost in setup time:

MOVE
MOVE
MOVE

MOVE
NOP

DATA15,X:PORTB
DATA 15,X:PORTB
DATA15,X:PORTB

DATA15,X:PORTB

DATA24,Y:EXTERN
DATA24,Y:EXTERN

DATA24,Y:EXTERN
DAT A24, Y:EXTERN

One application of this technique is to create an extended address for Port A by concate­
nating the Port A address bits (instead of data bits) to the Port B general-purpose output
bits. The Port B general-purpose 1/0 register would then work as a base address register,
allowing the address space to be extended from 64K words (16 bits) to two billion words
(16 bits +15 bits = 31 bits).

STEP 1. ACITIVATE PORT B FOR GENERAL· PURPOSE 110:
SET BITS 0 AND 1 TO ZERO-------..---.

15

STEP 2. SET INDIVIDUAL PINS TO INPUT OR OUTPUT:

15

X:$FFE2 *

BDxx = 0 + INPUT

OR

BDxx = 1 + OUTPUT

o
SO PORT B DATA DIRECTION
o REGISTER (PBDDR)

~~~~~~~-~~~~~~~-~~ 

STEP 3. WRITE OR READ DATA: 

15 

PBxx + INPUT IF BDxx = 0 

OR 

PBxx + OUTPUT IF BDxx = 1 

o 
PS PORT B DATA 

X:$FFE4 ~* ~~~~~~_~~~~~~~_~~O REGISTER (PBD) 

*Reserved; write as zero. 

Figure 5-7 1/0 Port 8 Configuration 



-

Port B uses the DSP CPU four-phase clock for its operation. Therefore, if wait states are 
inserted in the DSP CPU timing, they also affect Port B timing. The result is that ports A 
and B in the previous synchronization example will always stay synchronized, regardless 
of how many wait states are used. 

5.3 HOST INTERFACE (HI) 
The HI is a byte-wide, full-duplex, double-buffered, parallel port which may be connected 
directly to the data bus of a host processor. The host processor may be any of a number 
of industry standard microcomputers or microprocessors, another DSP, or DMA hardware 
because this interface looks like static memory. The HI is asynchronous and consists of 
two banks of, registers - one bank accessible to the host processor and a second bank 
accessible to the DSP CPU (see Figure 5-8). A brief description of the HI features is pre-
sented in the following listing: '. , 

Speed 
3.3 Million Word/Sec Interrupt Driven Data Transfer Rate (This is the maximum interrupt 
rate for the DSP56002 running at 40 MHz - i.e., one interrupt every six instruction cycles.) 

Signals (15 Pins) 
HO-H7 Host Data Bus 
HAO-HA2 Host Address Select 
H RIW Host ReadlWrite Control 
REf\I Host Transfer Enable 
RREO Host Request 
RACK Host Acknowledge 

Interface - DSP CPU Side 
Mapping: Three X: Memory Locations 
Data Word: 24 Bits 

Transfer Modes: 
DSP to Host 
Host to DSP 
Host Command 

Handshaking Protocols: 
Software Polled 
Interrupt Driven (Fast or long Interrupts) 
Direct Memory Access 

Instructions: 
Memory-mapped registers allow the standard MOVE instruction to be used 
Special MOVEP instruction provides for 1/0 service capability using fast interrupts 
Bit addressing instructions (BCHG, BClR, BSET, BTST, JClR, JSClR, JSET, 
JSSET) simplify 1/0 service routines 
110 short addressing provides faster execution with fewer instruction words 



Interface - Host Side 
Mapping: 

Eight Consecutive Memory Locations 
Memory-Mapped Peripheral for Microprocessors, DMA Controllers, etc. 

Data Word: Eight Bits 

Transfer Modes: 
DSP to Host 
Host to DSP 
Host Command 
Mixed 8-, 16-, and 24-Bit Data Transfers 

Handshaking Protocols: 
Software Polled 
Interrupt Driven and Compatible with MC68000 
Cycle Stealing DMA with Initialization 

Dedicated Interrupts: 
Separate Interrupt Vectors for Each Interrupt Source 
Special host commands force DSP CPU interrupts under host processor control, 
which are useful for: 

Real-Time Production Diagnostics 
Debugging Window for Program Development 
Host Control Protocols and DMA Setup 

Figure 5-8 is a block diagram showing the registers in the HI. These registers can be 
divided vertically down the middle into registers visible to the host processor on the left 
and registers visible to the DSP on the right. They can also be divided horizontally into 
control at the top, DSP-to-host data transfer in the middle (HTX, RXH, RXM, and RXL), 
and host-to-DSP data transfer at the bottom (THX, TXM, TXL, and HRX). 

5.3.1 Host Interface - DSP CPU Viewpoint 
The DSP CPU views the HI as a memory-mapped peripheral occupying three 24-bit 
words in data memory space. The DSP may use the HI as a normal memory-mapped 
peripheral, using either standard polled or interrupt programming techniques. Separate 
transmit and receive data registers are double buffered to allow the DSP and host proces­
sor to efficiently transfer data at high speed. Memory mapping allows DSP CPU 
communication with the HI registers to be accomplished using standard instructions and 
addressing modes. In addition, the MOVEP instruction allows HI-to-memory and memory­
to~HI data transfers without going through an intermediate register. Both hardware and 
software reset disable the HI and change Port B to general-purpose I/O with all pins des­
ignated as inputs. 



-
HOSTMPU 
DATA BUS 

COMMAND VECTOR 
REGISTER / . , 
(READIWRITE) ....... " ......... . 

" , " 

HOST CONTROL REGISTER 
........... (READIWRITE) 

X:$FFE9 

HOST STAlUS REGISTER 
.............. (READ ONLy) 

CONTROL 

LOGIC 

X:$FFEB 

HOST TRANSMIT 
I+---+-~I"'---f HTX "'--1 DATA REGISTER -

(WRITE ONLy) 

X:$FFEB 24 

HOST RECIEVE 
+-_-+-~I"'---1~ HRX .............. DATA REGISTER 

(READ ONLy) 

Figure 5-8 HI Block Diagram 

5.3.2 Programming Model - DSP CPU Viewpoint 
The HI has two programming models: one for the OSP programmer and one for the host pro­
cessor programmer. In most cases, the notation used reflects the OSP perspective. The HI -
OSP programming model is shown in Figure 5-9. There are three registers: a control register 
(HeR), a status register (HSR), and a data transmit/receive register (HTXlHRX). These ·reg­
isters can only be accessed by the OSP56002; they can not be accessed by the host 
processor. The HI host processor programming model is shown in Figure 5-12. 



X:$FFEB 

X:$FFEB 

7 

X:$FFE8 

7 

X:$FFE9 

DSP CPU HI FLAGS 
,------ HOST FLAG 3 

HOST FLAG 2 

o 

HOST CONTROL REGISTER (HCR) 
(READIWRITE) 

INTERRUPT ENABLES 
HOST RECEIVE 

'----- HOST TRANSMIT 
HOST COMMAND 

HOST HI FLAGS 
r------ HOST FLAG 1 

HOST FLAG 0 

o 

~~L---~~~~~~-;~-T~-T~ 

HOST STATUS REGISTER (HSR) 
(READ ONLY) 

23 1615 

RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE 

TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE 

7 o 7 

NOTE: The numbers in parentheses are reset values. 

B 7 

o 7 

HOST RECEIVE DATA FULL 
'--___ HOST TRANSMIT DATA EMPTY 

HOST COMMAND PENDING 

o 

RECEIVE LOW BYTE 

TRANSMIT LOW BYTE 

o 

HOST RECEIVE DATA REGISTER 
(HRX) (READ ONLY) 

HOSTTRANSMIT DATA REGISTER 
(HTX) (WRITE ONLy) 

Figure 5-9 Host Interface Programming Model - DSP Viewpoint 

-



-

The following paragraphs describe the purpose and operation of each bit in each register 
of the HI visible to the DSP CPU. The effects of the different types of reset on these reg­
isters are shown. A brief discussion of interrupts and operation of the DSP side of the HI 
complete the programming model from the DSP viewpoint. The programming model from 
the host viewpoint begins at Section 5.3.3.1 Programming Model - Host Processor 
Viewpoint. 

5.3.2.1 Host Control Register (HCR) 
The HCR is an 8-bit read/write control register used by the DSP to control the HI interrupts 
and flags. The HCR cannot be accessed by the host processor. It occupies the low-order 
byte of the internal data bus; the high-order portion is zero filled. Any reserved bits are 
read as zeros and should be programmed as zeros for future compatibility. (The bit manip­
ulation instructions are useful for accessing the individual bits in the HCR.) The contents 
of the HCR are cleared on hardware or software reset. The control bits are described in 
the following paragraphs. 

5.3.2.1.1 HCR Host Receive Interrupt Enable (HRIE) Bit 0 
The HRIE bit is used to enable a DSP interrupt when the host receive data full (HRDF) 
status bit in the host status register (HSR) isset. When HRIE is cleared, HRDF interrupts 
are disabled. When HRIE is set, a host receive data interrupt request will occur if HRDF 
is also set. Hardware and software resets clear HRIE. 

5.3.2.1.2 HCR Host Transmit Interrupt Enable (HTIE) Bit 1 
The HTIE bit is used to enable a DSP interrupt when the host transmit data empty 
(HTDE) status bitin" the HSR is set. When HTI E is cleared, HTDE interrupts are disabled. 
When HTIE is set, a host transmit data interrupt request will occur if HTDE is also set. 
Hardware and software resets clear the HTIE. 

5.3.2.1.3 HCR Host Command Interrupt Enable (HCIE) Bit 2 
The HCIE bit is used to enable a vectored DSP interrupt when the host command pend­
ing (HCP) status bit in the HSR is set. When HCIE is cleared, HCP interrupts are dis­
abled. When HCIE is set, a host command interrupt request will occur if HCPis also set. 
The "starting address of this interrupt is determined by the host vector (HV). Hardware 
and software resets clear the HCI E. 

5.3.2.1.4 HCR Host Flag 2 (HF2) Bit 3 
The HF2 bit is used as a general-purpose flag for DSP-to-host communication. HF2 may 
be set or cleared by the DSP~ HF2 is visible in the interrupt status register (ISR) on the 
host processor side (see Figure 5-10). Hardware and software resets clear HF2. 



5.3.2.1.5 HCR Host Flag 3 (HF3) Bit 4 
The HF3 bit is used as a general-purpose flag for DSP-to-host communication. HF3 may 
be set or cleared by the DSP. HF3 is visible in the ISR on the host processor side (see 
Figure 5-10). Hardware and software resets clear HF3. 

Note: There are four host flags: two used by the host to signal the DSP (HFO and HF1) 
and two used by the DSP to signal the host processor (HF2 and HF3). They are 
general purpose flags and are not designated for any specific purpose. The host 
flags do not cause interrupts; they must be polled to see if they have changed. 
These flags can be used individually or as encoded pairs. See Section 5.3.2.7 
Host Port Usage Considerations - DSP Side for additional information. An ex­
ample of the usage of host flags is the bootstrap loader, which is listed in the 
DSP56001 Technical Data Sheet. Host flags are used to tell the bootstrap program 
whether or not to terminate early. 

5.3.2.1.6 HCR Reserved Control (Bits 5, 6, and 7) 
These unused bits are reserved for future expansion and should be written with zeros for 
upward compatibility. 

5.3.2.2 Host Status Register (HSR) 
The HSR is an 8-bit read-only status register used by the DSP to interrogate status and 
flags of the HI. It can not be directly accessed by the host processor. When the HSR is 
read to the internal data bus, the register contents occupy the low-order byte of the data 
bus; the high-order portion is zero filled. The status bits are described in the following 
paragraphs. 

5.3.2.2.1 HSR Host Receive Data Full (HRDF) Bit 0 
The HRDF bit indicates that the host receive data register (HRX) contains data from the 
host processor. HRDF is set when data is transferred from the TXH:TXM:TXL registers 
to the HRX register. HRDF is cleared when HRX is read by the DSP. HRDF can also be 
cleared by the host processor using the initialize function. Hardware, software, individual, 
and STOP resets clear HRDF. 

5.3.2.2.2 HSR Host Transmit Data Empty (HTDE) Bit 1 
The HTDE bit indicates that the host transmit data register (HTX) is empty and can be written 
by the DSP. HTDE is set when the HTX register is transferred to the RXH:RXM:RXL regis­
ters. HTDE is cleared when HTX is written by the DSP. HTDE can also be set by the host 
processor using the initialize function. Hardware, software, individual, and STOP sets HTDE. 

-



-

5.3.2.2.3 HSR Host Command Pending (HCP) Bit 2 
The HCP bit indicates that the host has set the He bit and that a host command interrupt 
is pending. The HCP bit reflects the status of the HC bit in the command vector register 
(CVR). HC and HCP are cleared by the DSP exception hardware when the exception is 
taken. The host can clear HC, which also clears HCP. Hardware, software, individual, 
and STOP resets clear HCP. 

5.3.2.2.4 HSR Host Flag 0 (HFO) Bit 3 
The HFO bit in the HSR indicates the state of host flag 0 in the ICR on the host processor 
side. HFO can only be changed by the host processor (see Figure 5-10). Hardware, soft­
ware, individual, and STOP resets clear HFO. 

5.3.2.2.5 HSR Host Flag 1 (HF1) Bit 4 
The HF1 bit in the HSR indicates the state of host flag 1 in the ICR on the host processor 
side. HF1 can only be changed by the host processor (see Figure 5-10). Hardware, soft­
ware, individual, and STOP resets clear HF1. 

HOST 

1 
DSP56002 

HOST 

I 
DSP56002 

HOST TO DSP56002 STATUS FLAGS 

7 
r--~r--~r-----'---r---r----"----"---' INTERRUPT CONTROL REGISTER (ICR) 

L...-----lL..-----lL....---1---,r-'---,----'_--"_---I._
RR

_
E
---I
Q 

(READIWRITE) 

7 

X:$FFE9 1 DMA I ° I ° I HF1 I I I I HOST STATUS REGISTER (HSR) 
L--__ L..-----lL....---1_----'_H_F_O ..... _H_C_P ...... _H_TD_E ...... _HR_D--IF • (READ ONLY) 

DSP56002 TO HOST STATUS FLAGS 

7 
r---r--~r-----,~--r---r----,.----,.---, INTERRUPT STATUS REGISTER (ISR) 

L...-_L..-----lL..---1.........,,.........&---,----'_--"_---I._
RX

_
D
---I
F 

(READ ONLY) . 

7 

X:$FFESI 0 I ° ° I HF3 I I I I HOST CONTROL REGISTER (HCR) 
HF2 . HCIE . HTIE . HRIE • (READIWRITE) 

Figure 5-10 Host Flag Operation 



5.3.2.2.6 HSR Reserved Status (Bits 5 and 6) 
These status bits are reserved for future expansion and read as zero during DSP 
read operations. 

5.3.2.2.7 HSR DMA Status (DMA) Bit 7 
The DMA bit indicates that the host processor has enabled the DMA mode of the HI by 
setting HM1 or HMO to one. When the DMA bit is zero, it indicates that the DMA mode is 
disabled by the HMO and HM1 bits in the ICR and that no DMA operations are pending. 
When the DMA bit is set, the DMA mode has been enabled if one or more of the host 
mode bits have been set to one. The channel not in use can be used for polled or inter­
rupt operation by the DSP. Hardware, software, individual, and STOP resets clear the 
DMA bit. 

5.3.2.3 Host Receive Data Register (HRX) 
The HRX register is used for host-to-DSP data transfers. The HRX register is viewed as 
a 24-bit read-only register by the DSP CPU. The HRX register is loaded with 24-bit data 
from the transmit data registers (TXH:TXM:TXL) on the host processor side when both 
the transmit data register empty TXDE (host processor side) and DSP host receive data 
full (HRDF) bits are cleared. This transfer operation sets TXDE and HRDF. The HRX reg­
ister contains valid data when the HRDF bit is set. Reading HRX clears HRDF. The DSP 
may program the HRIE bit to cause a host receive data interrupt when HRDF is set. 
Resets do not affect HRX. 

5.3.2.4 Host Transmit Data Register (HTX) 
The HTX register is used for DSP-to-host data transfers. The HTX register is viewed as a 
24-bit write-only register by the DSP CPU. Writing the HTX register clears HTDE. The 
DSP may program the HTI E bit to cause a host transmit data interrupt when HTDE is set. 
The HTX register is transferred as 24-bit data to the receive byte registers 
(RXH:RXM:RXL) if both the HTDE bit (DSP CPU side) and receive data full (RXDF) status 
bits (host processor side) are cleared. This transfer operation sets RXDF and HTDE. Data 
should not be written to the HTX until HTDE is set to prevent the previous data from being 
overwritten. Resets do not affect HTX. 

5.3.2.5 Register Contents After Reset 
Table 5-1 shows the results of four reset types on bits in each of the HI registers seen by 
the DSP CPU. The hardware reset (HW) is caused by the RESET signal; the software 
reset (SW) is caused by executing the RESET instruction; the individual reset (IR) is 
caused by clearing PSC register bits 0 and 1, and the stop reset (ST) is caused by exe­
cuting the STOP instruction. 

-



.. 

Register 
Name 

HCR 

HSR 

HRX 

HTX 

Table 5-1 Host Registers after 
Reset-DSP CPU Side 

Reset Type 
Register 

Data HW SW IR 
Reset Reset Reset 

HF{3-2) 0 0 -

HCIE 0 0 -

HTIE 0 0 -

HRIE 0 0 -

DMA 0 0 0 

HF{1- 0) 0 0 0 

HCP 0 0 0 

HTDE 1 1 1 

HRDF 0 0 0 

HRX (23 - 0) - - -
HTX (23 - 0) - - -

5.3.2.6 Host Interface DSP CPU Interrupts 

ST 
Reset 

-

-

-

-
0 

0 

0 

1 

0 

-

-

The HI may request interrupt service from either the DSP or the host processor. The DSP 
CPU interrupts are internal and do not require the use of an external interrupt pin (see Fig­
ure 5-11). When the appropriate mask bit in the HCR is set, an interrupt condition caused 
by the host processor sets the appropriate bit in the HSR, which generates an interrupt 
request to the DSP CPU. The DSP acknowledges interrupts caused by the host processor 
by jumping to the appropriate interrupt service routine. The three possible interrupts are 
1) receive data register full, 2) transmit data register empty, and 3) host command. The 
host command can access any interrupt vector in the interrupt vector table although it has 
a set of vectors reserved for host command use. The DSP interrupt service routine must 
read or write the appropriate HI register (clearing HRDF or HTDE, for example) to clear 
the interrupt. In the case of host command interrupts, the interrupt acknowledge from the 
program controller will clear the pending interrupt condition. 

5.3.2.7 Host Port Usage Considerations - DSP Side 
Synchronization is a common problem when two asynchronous systems are connected, 
and careful synchronization is required when reading multi-bit registers that are written by 
another asynchronous system. The considerations for proper operation on the DSP CPU 
side are discussed in the following paragraphs, and considerations for the host processor 
side are discussed in Section 5.3.6.5 Host Port Usage Considerations - Host Side. 



MASK 

7 o 
HCR 

Figure 5-11 HSR-HCR Operation 

DSP CPU INTERRUPTS 

RECIEVE DATA FULL 
P:$0020 

TRANSMIT DATA EMPTY 
P:$0022 

HOST COMMAND 
P:(2xHV - $0000 - $OO7E) 
RESET - HV = $0012 in CVR 

DMA, HF1, HFO, HCP, HTDE, and HRDF status bits are set or cleared by the host pro­
cessor side of the interface. These bits are individually synchronized to the DSP clock. 

The only system problem with reading status occurs if HF1 and HFO are encoded as a 
pair because each of their four combinations (00, 01, 10, and 11) has significance. There· 
is a small possibility that the DSP will read the status bits during the transition and receive 
"01" or "10" instead of "11". The solution to this potential problem is to read the bits twice 
for consensus (See Section 5.3.6.5 Host Port Usage Considerations - Host Side for 
additional information). 

5.3.3 Host Interface - Host Processor Viewpoint 
The HI appears to the host processor as eight words of byte-wide static memory. The host 
may access the HI asynchronously by using polling techniques or interrupt-based tech­
niques. Separate transmit and receive data registers are double buffered to allow the DSP 
CPU and host processor to transfer data efficiently at high speed. The HI contains a rudi­
mentary DMA controller, which makes generating addresses (HAO-HA2) for the TXlRX 
registers in the HI unnecessary. 

-



.. 

5.3.3.1 Programming Model - Host Processor Viewpoint 
The HI appears to the host processor as a memory-mapped peripheral occupying eight 
bytes in the host processor address space (see Figure 5-12 and Figure 5-13). These reg­
isters can be viewed as one control register (lCR), one status register (lSR), three data 
registers (RXHrrXH, RXMrrXM, and RXLfTXL), and two vector registers (IVR and CVR). 
The CVR is a special command register that is used by the host processor to issue com­
mands to the DSP. These registers can be accessed only by the host processor; they 
can not be accessed by the DSP CPU. Host processors may use standard host proces­
sor instructions (e.g., byte move) and addressing modes to communicate with the HI 
registers. The HI registers are addressed so that 8-bit MC6801-type host processors can 
use 16-bit load (LDD) and store (STD) instructions for data transfers. The 16-bit 
MC68000/MC68010 host processor can address the HI using the special MOVEP 
instruction for word (16-bit) or long-word (32-bit) transfers. The 32-bit MC68020 host pro­
cessor can use its dynamic bus sizing feature to address the HI using standard MOVE 
word (16-bit), long-word (32-bit) or quad-word (64-bit) instructions. The AREa and 
FlACK handshake flags are provided for polled or interrupt-driven data transfers with the 
host processor. Because the DSP interrupt response is sufficiently fast, most host micro­
processors can load or store data at their maximum programmed I/O (non-DMA) 
instruction rate without testing the handshake flags for each transfer. If the full hand­
shake is not needed, the host processor can treat the DSP as fast memory, and data can 
be transferred between the host processor and the DSP at the fastest host processor 
data rate. DMA hardware may be used with the handshake flags to transfer data without 
host processor intervention. 

One of the most innovative features of the host interface is the host command feature. 
With this feature, the host processor can issue vectored exception requests to the 
DSP56002. The host may select anyone of 64 DSP56002 exception routines to be exe­
cuted by writing a vector address register in the HI. This flexibility allows the host 
programmer to execute up to 64 preprogrammed functions inside the D8P56002. For 
example, host exceptions can allow the host processor to read or write DSP56002 regis­
ters (X, V, or program memory locations), force exception handlers (e.g., S81, SCI, TRQA, 

TRaS exception routines), and perform control and debugging operations if exception rou­
tines are implemented in the DSP56002 to perform these tasks. 

5.3.3.2 Interrupt Control Register (ICR) 
The ICR is an 8-bit read/write control register used by the host processor to 'control the HI 
interrupts and flags. ICR cannot be accessed by the DSP CPU. ICR is a read/write regis­
ter, which allows the use of bit manipulation instructions on control register bits. The 
control bits are described in the following paragraphs. 



7 

$0 

7 

$1 1 
HC 

(0) 

7 

$2 

7 

$31 

31 $4 

00000000 

NOT USED 

7 

MODES FLAGS 

0 

INTERRUPT CONTROL REGISTER (ICR) 
(READIWRITE) 

0 0 Interrupt Mode (DMA Off) 

0 24-Bit DMA Mode 

0 16-Bit DMA Mode 

a-Bit DMA Mode 

0 

HOST VECTOR 1 COMMAND VECTOR REGISTER (CVR) 
0 ($12) (READIWRITE) 

FLAGS STATUS 

INTERRUPT STATUS REGISTER (ISR) 
(READ ONLY) 

0 

INTERRUPT VECTOR NUMBER 1 INTERRUPT VECTOR REGISTER (IVR) 

($OF) (READIWRITE) 

RECEIVE BYTE REGISTERS (RXH:RXM:RXL) 
(READ ONLY) 

24 23 $5 16 15 $6 8 7 

RXH RXM 
RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE 

TXH TXM 
TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE 

o 7 o 7 

TRANSMIT BYTE REGISTERS (TXH:TXM:TXL) 
(WRITE ONLY) 

o 7 

$7 

RXL 
RECEIVE LOW BYTE 

TXL 
TRANSMIT LOW BYTE 

0 

o 

NOTE: The numbers in parentheses are reset values. 

Figure 5-12 Host Processor Programming Model- Host Side 



-

HOST ADDRESS 
HAO-HA2 

$0 

$1 

$2 

$3 

$4 

$5 

$6 

$7 

ICR 

CVR 

ISR 

IVR 

00000000 

RXHfTXH 

RXMfTXM 

RXUTXL 

1 
HOST DATA BUS 

HO-H7 

INTERRUPT CONTROL 

COMMAND VECTOR 

INTERRUPT STATUS 

INTERRUPT VECTOR 

UNUSED 

} 

RECEIVEfTRANSMIT 
BYTES . 

Figure 5-13. HI Register Map 

5.3.3.2.1 ICR Receive Request Enable (RREQ) Bit 0 
The RREQ bit is used to control the AREa pin for host receive data transfers. 

In interrupt mode (DMA oft), RREQ is used to enable interrupt requests via the external 
host request (RREO) pin when the receive data register full (RXDF) status bit in the ISR 
is set. When RREQ is cleared, RXDF interrupts are disabled. When RREQ is set, the 
external AREa pin will be asserted if RXDF is set. 

In DMA modes, RREQ must be set or cleared by software to select the direction of DMA 
transfers. Setting RREQ sets the direction of DMA transfer to be DSP to host and enables 
the AREa pin to request data transfer. Hardware, software, individual, and STOP resets 
clear RREQ. 

5.3.3.2.2 ICR Transm_it Request Enable (TREQ) Bit 1 
The TREQ bit is used to control the AREa pin for host transmit data transfers. 

In interrupt mode (DMA oft), TREQ is used to enable interrupt requests via the external 
RREO pin when the transmit data register empty (TXDE) status bit in the ISR is set. When 
TREQ is cleared, TXDE interrupts are disabled. When TREQ is set, the external RREO 
pin will be asserted if TXDE is set. 

In DMA modes, TREQ must be set or cleared by software to select the direction of DMA 
transfers. Setting TREQ sets the direction of DMA transfer to be host to DSP and enables 
the AREa pin to request data transfer. Hardware, software, individual, and STOP resets 
clearTREQ. 

Table 5-2 summarizes the effect of RREQ and TREQ on the AREa pin. 



Table 5-2 RREQ Pin Definition 

TREQ RREQ HREQPin 

Interrupt Mode 

a a No Interrupts (Polling) 

a 1 RXDF Request (Interrupt) 

1 a TXDE Request (Interrupt) 

1 1 RXDF and TXDE Request (Interrupts) 

DMAMode 

a a NoDMA 

a 1 DSP to Host Request (RX) 

1 a Host to DSP Request (TX) 

1 1 Undefined (Illegal) 

5.3.3.2.3 ICR Reserved Bit (Bit 2) 
This bit, which is reserved and unused, reads as a logic zero. 

5.3.3.2.4 ICR Host Flag 0 (HFO) Bit 3 
The HFO bit is used as a general-purpose flag for host-to-DSP communication. HFO may 
be set or cleared by the host processor and cannot be changed by the DSP. HFO is visi­
ble in the HSR on the DSP CPU side of the HI (see Figure 5-10). Hardware, software, 
individual, and STOP resets clear HFO. 

5.3.3.2.5 ICR Host Flag 1 (HF1) Bit 4 
The HF1 bit is used as a general-purpose flag for host-to-DSP communication. HF1 may 
be set or cleared by the host processor and cannot be changed by the DSP. Hardware, 
software, individual, and STOP resets clear HF1. 

5.3.3.2.6 ICR Host Mode Control (HM1 and HMO bits) Bits 5 and 6 
The HMO and HM1 bits select the transfer mode of the HI (see Table 5-3). HM1 and HMO 
enable the DMA mode of operation or interrupt (non-DMA) mode of operation. 

When both HM1 and HMO are cleared, the DMA mode is disabled, and the TREQ and 
RREQ control bits are used for host processor interrupt control via the external RREO out-· 
put pin. Also, in the non-DMA mode, the RACK input pin is used for the MC68000 Family 
vectored interrupt acknowledge input. 

-



.. 

Table 5-3 Host Mode Bit Definition 

HM1 HMO Mode 

0 0 Interrupt Mode (DMA Off) 

0 1 DMA Mode (24 Bit) 

1 0 DMAMode (16 Bit) 

1 1 DMA Mode (8 Bit) 

When HM1 or HMO are set, the DMA mode is enabled, and the HREO pin is used to 
request DMA transfers. When the DMA mode is enabled, the TREQ and RREQ bits select 
the direction of DMA transfers. The RACK input pin is used as a DMA transfer acknowl­
edge input. If the DMA direction is from DSP to host, the contents of the selected register 
are enabled onto the host data bus when RACK is asserted. If the DMA direction is from 
host to DSP, the selected register is written from the host data bus when RACK is asserted . 

The size of the DMA word to be transferred is determined by the DMA control bits, HMO 
and HM1. The HI register selected during a DMA transfer is determined by a 2-bit address 
counter, which is preloaded with the value in HM1 and HMO. The address countersubsti­
tutes for the HA 1 and HAO bits of the HI during a DMA transfer. The host address bit (HA2) 
is forced to one during each DMA transfer. The address counter can be initialized with the 
INIT bit feature. After each DMA transfer on the host data bus, the address counter is 
incremented to the next register. When the address counter reaches the highest register 
(RXL or TXL), the address counter is not incremented but is loaded with the value in HM1 
and HMO. This allows 8-, 16- or 24-bit data to be transferred in a circular fashion and elim­
inates the need for the DMA controller to supply the HA2, HA 1, and HAO pins. For 16- or 
24-bit data transfers, the DSP CPU interrupt rate is reduced by a factor of 2 or 3, respec­
tively, from the host request rate - i.e., for every two or three host processor data transfers 
of one byte each, there is only one 24-bit DSP CPU interrupt. 

Hardware, software, individual, and STOP resets clear HM1 and HMO. 

5.3.3.2.7 , leR Initialize Bit (INIT) Bit 7 
The INIT bit is used by the host processor to force initialization of the HI hardware. Initial-: 
ization consists of configuring the HI transmit and receive control bits and loading HM1 
and HMO into the internal DMA address counter. Loading HM1 and HMO into the DMA 
address counter causes the HI to begin transferring data on a word boundary rather than 
transferring only part of the first data word. 



Table 5-4 RREQ Pin Definition 

Transfer 
TREQ RREQ After INIT Execution Direction 

Initialized 

Interrupt Mode (HM1 = 0, HMO = 0) INIT Execution 

0 0 INIT = 0; Address Counter = 00 None 

0 1 INIT = 0; RXDF = 0; HTDE = 1; Address DSP to Host 
Counter = 00 

1 0 INIT = 0; TXDE = 1; HRDF = 0; Address Host to DSP 
Counter = 00 

1 1 INIT = 0; RXDF = 0; HTDE = 1; TXDE = Host to/from DSP 
1; HRDF = 0; Address Counter = 00 

DMA Mode (HM1 or HMO = 1) INIT Execution 

0 0 INIT = 0; Address Counter = HM1, HMO None 

0 1 INIT = 0; RXDF = 0; HTDE = 1; Address DSPto Host 
Counter = HM1, HMO 

1 0 INIT = 0; TXDE = 1; HRDF = 0; Address Host to DSP 
Counter = HM1, HMO 

1 1 Undefined (Illegal) Undefined 

There are two methods of initialization: 1) allowing the DMA address counter to be auto­
matically set after transferring a word, and 2) setting the INIT bit, which sets the DMA 
address counter. Using the INIT bit to initialize the HI hardware mayor may not be nec­
essary, depending onthe software design of the interface. 

The type of initialization done when the INIT bit is set depends on the state of TREQ and 
RREQ in the HI. The INIT command, which is local to the HI, is designed to conveniently 
configure the HI into the desired data transfer mode. The commands are described in the 
following paragraphs and in Table 5-4. The host sets the INIT bit, which causes the HI hard­
ware to execute the INIT command. The interface hardware clears the INIT bit when the 
command has been executed. Hardware, software, individual, and STOP resets clear INIT. 

INIT execution always loads the DMA address counter and clears the channel according 
to TREQ and RREQ. INIT execution is not affected by HM1 and HMO. 

The internal DMA counter is incremented with each DMA transfer (each RACK pulse) until 
it reaches the last data register (RXL or TXL). When the DMA transfer is completed, the 
counter is loaded with the value of the HM1 and HMO bits. When changing the size of the 

-



.. 

DMA word (changing HMO and HM1 in the ICR), the DMA counter is not automatically 
updated, and, as a result, the DMA counter will pOint to the wrong data register immedi­
ately after HM1 and HMO are changed. The INIT function must be used to preset the 
internal DMA counter correctly. Alway~ set INIT after changing f-iMO and HM1. However, 
the DMA counter can not be initialized in the middle of a DMA transfer. Even though the 
INIT bit is set, the internal DMA controller will wait until after completing the data transfer 
in progress before executing the initialization. 

5.3.3.3 Command Vector Register (CVR) 
The host processor uses the CVR to cause the DSP to execute a vectored interrupt. The 
host command feature is independent of the data transfer mechanisms in the HI. It can 
be used to cause any of the 64 possible interrupt routines in the DSP CPU to be exe­
cuted. The command vector register is shown in Figure 5-14. 

5.3.3.3.1 CVR Host Vector (HV) Bits 0-5 
The six HV bits select the host command exception address to be used by the host com­
mand exception logic. When the' host command exception is recognized by the DSP 
interrupt control logic, the starting address of the exception taken is 2xHV. The host can 
write HC and HV in the same write cycle, if desired. 

7 6 543 2 0 

I HC I * I HV5 I HV4 I HV3 I HV21 HV1 I HVO I 

H 

HO 

OSTVECTOR 

RESERVED 

STCOMMAND 

Figure 5-14 Command Vector Register 

The host processor can select any of the 64 possible exception routine starting addresses 
in the DSP by writing the exception routine starting address divided by 2 into HV. This 
means that the host processor can force any of the existing exception handlers (SSI, SCI, 
IRQA, IHQB, etc.) and can use any of the reserved or otherwise unused starting 
addresses provided they have been preprogrammedin the DSP. HVis set to $12 (vector 
location $0024) by hardware, software, individual, and STOP resets. Vector location 
$0024 is the first of 45 special host command vectors. . ' 



CAUTION 
The HV should not be used with a value of zero because the reset location 
is normally programmed with a JMP instruction. Doing sO'will cause an im­
proper fast interrupt. 

5.3.3.3.2 CVR Reserved Bit (Bit 6) 
.Reserved bit which.is unused and read by the host processor as zero. 

5.3.3.3.3 CVR Host Command Bit (HC) Bit 7 
The HC bit is used by the host processor to handshake the exe.cution of host command 
exceptions. Normally, the. host processor sets HC=1 to request the host command 
.exception from the DSP .. When the host command exception is acknowledged by the 
DSP, the HC bit is cleared by the HI hardware. The host processor can read the state of 
HC to determine when the host command has been accepted. The host processor may 
elect to clear the HC bit, canceling the host command exception request at any time 
before it is accepted by the DSP CPU. 

CAUTION 
The command exception might be recognized by the DSP and executed be­
fore it can be canceled by the host, even if the host clears the He bit. 

Setting HC causes host command pending (HCP) to be set in the HSR. The host can write 
HC and HV in the same write cycle if desired. Hardware, software, individual, and STOP 
resets clear HC. 

5.3.3.4 Interrupt Status Register (ISR) 
The ISR is an 8-bit read-only status register used by the host processor to interrogate the 
status and flags of the HI. The host processor can write this address without affectingthe 
internal state of the HI, which is useful if the user desires to access all of the HI registers 
by stepping through the HI addresses. The ISR can not be accessed by the DSP. The sta­
tus bits' are described in the following paragraphs. 

5.3.3.4.1 ISR Receive Data Register Full (RXDF) Bit 0 
The RXDF bit indicates thatthe receive byte registers (RXH, RXM, and RXL) contain 
data from the DSP CPU and may be read by the host processor. RXDF is set when the 
HTX is transferred to the receive byte registers. RXDF is cleared when the receive data 
low (RXL) register is read by the host processor. RXL is normally the last byte of the 
receive byte registers to be read by the host processor. RXDF can be cleared by the host 
processor using the initialize function. RXDF may be used to assert the external RREO 



-

pin if the RREQ bit is set. Regardless of whether the RXDF interrupt is enabled, RXDF 
provides valid status so that polling techniques may be used by the host processor. 
Hardware, software, individual, and STOP resets clear RXDF. 

5.3.3.4.2 ISR Transmit Data Register Empty (TXDE) Bit 1 
The TXDE bit indicates that the transmit byte registers (TXH, TXM, and TXL) are empty 
and can be written by the host processor. TXDE is set when the transmit byte registers 
are transferred to the HRX register. TXDE is cleared when the transmit byte low (TXL) 
register is written by the host processor. TXL is normally the last byte of the transmit byte 
registers to be written by the host processor. TXDE can be set by the host processor 
using the initialize feature. TXDE may be used to assert the external AREa pin if the 
TREQ bit is set. Regardless of whether the TXDE interrupt is enabled, TXDE provides 
valid status so that polling techniques may be used by the host processor. Hardware, 
software, individual, and STOP resets set TXDE. 

5.3.3.4.3 ISR Transmitter Ready (TROY) Bit 2 
The TRDY status bit indicates that both the TXH,TXM,TXL and the HRX registers are empty. 

TRDY=TXDE. RRIJF' 

When TRDY is set to one, the data that the host processor writes to TXH,TXM, and TXL 
will be immediately transferred to the DSP CPU side of the HI. This has many applica­
tions. For example, if the host processor issues a host command which causes the DSP 
CPU to read the HRX, the host processor can be guaranteed that the data it just trans­
ferred to the HI is what is being received by the DSP CPU. 

Hardware, software, individual, and STOP resets set TRDY. 

5.3.3.4.4 ISR Host Flag 2 (HF2) Bit 3 . 
The HF2 bit in the ISR indicates the state of host flag 2 in the HCR on the CpU side. HF2 
can only be changed by the DSP (see Figure 5-10). HF2 is cleared bya hardware or 
software reset. 

5.3.3.4.5 ISR Host Flag 3 (HF3) Bit 4 
The HF3 bit in the ISR indicates the state of host flag 3 in the HCR on the CPU side. HF3 
can only be changed by the DSP (see Figure 5-10). HF3 is cleared by a hardware or 
software reset. 

5.3.3.4.6 ISR Reserved Bit (Bit 5) 
This status bit is reserved for future expansion and will read as zero during host proces­
sor read operations. 



5.3.3.4.7 ' ISR DMA Status (DMA) Bit 6 
The DMAstatus bit indicates that the host processor has. enabled the DMA mode of the 
HI (HM1 or HMO=1). When the DMA status bit is clear, it indicates that the DMA mode is 
disabled (HMO=HM1=O) and no DMA operations are pending. When DMA is set, it indi­
cates that the· DMA mode is enabled and the host processor should not use the active 
DMA channel (RXH, RXM, RXL or TXH, TXM, TXL depending on DMA direction) to avoid 
conflicts with the DMA data transfers. The channel not in use can be used for polled oper­
ation by the host and operates in the interrupt mode for internal DSP exceptions or poll­
ing. Hardware, software, individual, and STOP resets clear the DMA status bit. 

5.3.3.4.8 ISR Host Request (HREQ) Bit 7 
. The HREQ bit indicates the status of the external host request output pin (AREa). When 
the HREQ status bit is cleared, it indicates that the external RREO pin is deasserted and 
no host processor interrupts or DMA transfers are being requested. When the HREQ sta­
tus bit is set, it indicates that the external AREa pin is asserted, indicating that the DSP 
is interrupting the host processor or that a DMA transfer request is occurring. The HREQ 
interrupt request may originate from either or both of two sources - the receive byte reg­
isters are full or the transmit byte registers are empty. These conditions are indicated by 
the ISR RXDF and TXDE status bits, respectively. If the interrupt source has been 
enabled by the associated request enable bit in the ICR, HREQ will be set if one or more 
of the two enabled interrupt sources is set. Hardware, software, individual, and STOP 
resets clear HREQ. 

5.3.3.5 Interrupt Vector Register (IVR) 
The IVR is an 8-bit read/write register which typically contains the exception vector num­
ber used with MC68000 Family processor vectored interrupts. Only the host processor 
can read and write this register. The contents of IVR are placed on the host data bus 
(HO-H7) when both theRREO and RACK pins are asserted and the DMA mode. is dis­
abled. The contents of this register are initialized to $OF by a hardware or software reset, 
which corresponds to the uninitialized exception vector in the MC68000 Family. 

5.3.3.6 Receive Byte Registers (RXH, RXM, RXL) 
The receive byte registers are viewed as three 8-bit read-only registers by the host pro­
cessor. These registers are called receive high (RXH), receive middle (RXM), and receive 
low (RXL). These three registers receive data from the high byte, middle byte, and low 
byte, respectively, of the HTX register and are selected by three external host address 
inputs (HA2, HA1, and. HAO) during a host processor read operation or by an on-chip 
address counter in DMA operations. The receive byte registers (at least RXL) contain 

-



-

valid data when the receive data register full (RXDF) bit is set. The host processor may 
program the RREQ bit to assert the external RREO pin when RXDF is set. This informs 
the host processor or DMA controller that the receive byte registers are full. These regis­
ters may be read in any order to transfer 8-, 16-, or 24-bit data. However, reading RXL 
clears the receive data full RXDF bit. Because reading RXL clears the RXDF status bit, it 
is normally the last register read during a 16- or 24-bit data transfer. Reset does not affect 
RXH, RXM,or RXL. 

5.3.3.7 Transmit Byte Registers (TXH, TXM, TXL) 
The transmit byte registers are viewed as three 8-bit write-only registers by the host pro­
cessor. These registers are called transmit high (TXH), transmit middle (TXM), and 
transmit low (TXL). These three registers send data to the high byte, middle byte and low 
byte, respectively, of theHRX register and are selected by three external host address 
inputs (HA2, HA 1, and HAO) during a host processor write operation. Data may be written 
into the transmit byte registers when the transmit data register empty (TXDE) bit is set. 
The host processor may program the TREQ bit to assert the external HREO pin when 

. TXDE is set. This informs the host processor or DMA controller that the transmit byte reg­
isters are empty. These registers may be written in any order to transfer 8-, 16-, or 24-bit 
data. However, writing TXL clears the TXDE bit. Because writing the TXL register clears 
the TXDE status bit, TXL is normally the last register written during a 16- or 24-bit data 
transfer. The transmit byte registers are transferred as 24-bit data to the HRX register 
when both TXDE and the HRDF bit are cleared. This transfer operation sets TXDE and 
HRDF. Reset does not affect TXH, TXM, or TXL. 

5.3.3.8 Registers After Reset 
Table 5-5 shows the result of four kinds of reset on bits in each of the HI registers seen 
by the host processor. The hardware reset is caused by asserting the REsET pin; the 
software reset is caused by executing the RESET instruction; the individual reset is 
caused by clearing the PBe register bit 0; and the stop reset is caused by executing the 
STOP instruction. 

5.3.4 Host Interface Pins 
The 15 HI pins are described here for convenience. Additional information, including tim­
ing, is given in the DSP56002 Technical Data Sheet (DSP56002/D). 

5.3.4.1 Host Data Bus(HO-H7) 
This bidirectional data bus transfers data between the host processor and the DSP56002. 
It acts as an input unless Rrn is asserted and HR/W is high, making HO-H7 become out­
puts and allowing the host processor to read DSP56002 data. It is high impedance when 



HEN is deasserted. HO-H7 can be programmed as general-purpose I/O pins (PBO-PB7) 
when the host interface is not being used. These pins are configured as GPIO input pins 
during hardware reset. 

5.3.4.2 Host Address (HAO-HA2) 
These inputs provide the address selection for each host interface register. HAO-HA2 can 
be programmed as general-purpose I/O pins (PB8-PB10) when the host interface is not 
being used. These pins are configured as GPIO input pins during hardware reset. 

Table 5-5 Host Registers after Reset (Host Side) 

Reset Type 
Register Register 

Name Data HW SW IR ST 
Reset Reset Reset Reset 

INIT 0 0 0 0 

HM (1 - 0) 0 0 0 0 

leR TREQ 0 0 0 0 

RREQ 0 0 0 0 

HF (1 - 0) 0 0 0 0 

He 0 0 0 0 
eVR 

HV (5 - 0) $12 $12 $12 $12 

HREQ 0 0 0 0 

OMA 0 0 0 0 

HF (3 - 2) 0 0 - -
ISR 

TROY 1 1 1 1 

TXOE 1 1 1 1 

RXOF 0 0 0 0 

IVR IV (7 - 0) $OF $OF - -

RXH (23 - 16) - - - -

RX RXM (15 - 8) - - - -

RXL(7 - 0) - - - -

TXH (23 - 21) - - - -

TX TXM (15 - 8) - - - -

TXL (7 - 0) - - - -

-



-

5.3.4.3 Host ReadlWrite (HRJW) 
This input selects the direction of data transfer for each host pr0gessor access. If HR/W 
is high and REf\I is asserted, HO-H7 are outputs and DSP data is transferred to the host 
processor. If HR/W is low and REf\! is asserted, HO-H7 are inputs and host data is trans­
ferred to the DSP. HR/W is stable when REf\! is asserted. It can be programmed as a 
general-purpose liD pin (PB11) when the host interface is not being used, and is config­
ured as a GPIO input pin during hardware reset. 

5.3.4.4 Host Enable (HEN) 
This input enables a data transfer on the host data bus. When REf\I is asserted and HRIW 
is high, HO-H7 become outputs and the host processor may read DSP56002 data. When 
HEN is asserted and HR/W is low, HO-H7 become inputs. When REf\! is deasserted, host 
data is latched inside the DSP. Normally, a chip select signal derived from host address 
decoding and an enable clock are used to generate HEN. REf\I can be programmed as a 
general-purpose liD pin (PB12) when the host interface is not being used, and is config­
ured as a GPIO input pin during hardware reset. 

5.3.4.5 Host Request (RREQ) 
This open-drain output signal is used by the DSP56002 HI to request service from the host 
processor, DMA controller, or a simple external controller. HREO may be connected to an 
interrupt request pin of a host processor, a transfer request of a DMA controller or a con­
trol input of external circuitry. RREO is asserted when an enabled request occurs in the 
host interface. HREO is deasserted when the enabled request is cleared or masked, DMA 
RACK is asserted, or the DSP is reset. RREO may be programmed as a general purpose 
I/O pin (not open-drain) called PB13 when the HI is not being used. 

5.3.4.6 Host Acknowledge (RACK) 
The Port B Control register allows the user to program this input independently of the 
other Host Interface pins. When the port is defined for general purpose liD, this input acts 

Table 5-6 Port 8 Pin Definitions 

BeQ BC1 Function 

0 0 Parallel I/O (Reset Condition) 

0 1 Host Interface 

1 0 Host Interface (RACK is defined as general purpose 1/0) 

1 1 Reserved 



as a general purpose I/O pin called PB14. When the port is defined as the host interface, 
the user may manipulate the Port B Control register to program this input as either PB14, 
or as the RACK pin. The table below shows the Port B Control register bit configurations. 

RACK may act as a data strobe for HI DMA data transfers (See Figure 5-18). Or, if RACK 
is used as an MC68000 host interrupt acknowledge, it enables the HI interrupt vector reg­
ister (IVR) on the host data bus HO-H7 ifRREO is asserted (See Figure 5-16). In this case, 
all other HI control pins are ignored and the state of the HI is not affected. 

Note: RACK should always be pulled high when it is not in use. 

5.3.5 Servicing the Host Interface 
The HI can be serviced by using one of the following protocols: 

1. Polling 
2. Interrupts, which can be either 

a. non-DMA 
. b.DMA 

, 

From the host processor viewpoint, the service consists of making a data transfer since 
this is the only way to reset the appropriate status bits. 

DSP56002 

HAO-HA2 ~ 'IJ:;lJJJ. XXXXX 
3 

HAC- HA2 

HRtW 
~ I HFW1 

REfiJ ~ r: / Am 

HO-H7 ( }- HO-H7 

WRITE DATA READ 
LATCHED 

INHI RREO 

Figure 5-15 Host Processor Transfer Timing 

.. 



.. 

5.3.5.1 HI Host Processor Data Transfer 
The HI looks like static RAM to the host processor. Accordingly, in order to transfer data 
with the HI, the host processor: 

1. asserts the HI address (HAO, HA 1, HA2) to select the register to be read or written 
2. asserts HRIW to select the direction of the data transfer 
3. strobes the data transfer using REf\I. When data is being written to the HI by the 

host processor, the positive-going edge of REf\I latches the data in the HI register 
selected. When data is being read by the host processor, the negative-going edge 
of REf\I strobes the data onto the data bus HO-H7 

Figure 5-15 illustrates this process. The specified timing relationships are given in the 
DSP56002 Technical Data Sheet. 

5.3.5.2 HI Interrupts Host Request (RREO) 
The host processor interrupts are external and use the HREO pin. HREO is normally con­
nected to the host processor maskable interrupt (IPLO, IPL 1 or IPL2 in ·Figure 5-16) input. 

MC6BOOO 

7 o 
$3 I INTERRUPT VECTOR NUMBER I INTERRUPT VECTOR REGISTER (IVR) 

L... _______________ ...... (READIWRITE) . 

1. THE DSP56002 ASERTS FIREO TO INTERRUPT THE HOST PROCESSOR. +5 V DSP56002 

_...&....-----1 AREa ~ 
1K 

"--------..;....---

2. THE HOST PROCESSOR ASSERTS ~ WITH ITS INTERRUPT 
ACKNOWLEDGE CYCLE. 

\'-----A1-A31 __ .,., 

FCO - FC2 t--...... ~ 

3. WHEN FIREOAND ~ARE SIMULTANEOUSLY ASSERTED, THE 
CONTENTS OF THE IVR ARE PLACED ON THE HOST DATA BUS. 

HO-H7 

r---..., INTERRUPT 
VECTOR 
REGISTER 

L....-.......-..... (IVR) oo-~~ ________________________________________ ~ ___ 

Figure 5-16 Interrupt Vector Register Read Timing 



The host processor acknowledges host interrupts by executing an interrupt service rou­
tine. The most significant bit (HREQ) of the ISR may be tested by the host processor to 
determine if the DSP is the interrupting device and the two least significant bits (RXDF 
and TXDE) may be tested to determine the interrupt source (see Figure 5-17). The host 
processor interrupt service routine must read or write the appropriate HI register to clear 
the interrupt. RREQ" is deasserted when1) the enabled request is cleared or masked, 2) 
DMA RACK is asserted, or 3) the DSP is reset. 

5.3.5.3 Polling 
In the polling mode of operation, the RREQ" pin is not connected to the host processor and 
RACK must be deasserted to insure DMA data or IVR data is not being output on HO-H7 
when other registers are being polled. 

The host processor first performs a data read transfer to read the ISR (see Figure 5-17) 
to determine, whether: 

1. RXDF=1, signifying the receive data register is full and therefore a data read 
should be performed 

2. TXDE=1, signifying the transmit data register is empty so that a data write can 
be performed 

3. TRDY=1, signifying the transmit data register is empty and that the receive 
data register on the DSP CPU side is also empty so that the data written by 
the host processor will be transferred directly to the DSP side 

4. HF2. HF3 -::F 0, signifying an application-specific state within the DSP CPU 
has been reached, which requires action on the part of the host processor 

5. DMA=1, signifying the HI is currently being used for DMA transfers. If DMA 
transfers are possible in the system, deactivate RACK prior to reading the ISR 
so both DMA data and the contents of ISR are not simultaneously output on 
HO- H7 

6. If HREQ=1, the HREO pin has been asserted, and one of the previous five 
conditions exists 

Generally, after the appropriate data transfer has been made, the corresponding status 
bit will toggle. 

If the host processor has issued a command to the DSP by writing the CVR and setting 
the HC bit, it can read the HC bit in the CVR to determine when the command has been 
accepted by the interrupt controller in the DSP's central processing module. When the 
command has been accepted for execution, the interrupt controller will reset the HC bit. 

.. 



• 

7 

EXCEPTION SOURCE 

ICR 

Figure 5-17 HI Interrupt Structure 

5.3.5.4 Servicing Non-DMA Interrupts 
When HMO=HM1=O (non-DMA) and AREa is connected to the host processor interrupt 
input, the HI can request service from the host processor by asserting HREQ. In the non­
DMA mode, AREa will be asserted when TXDE=1 and/or RXDF=1 and the correspond­
ing mask bit (TREQ or RREQ, respectively) is set. This is depicted in Figure 5-17. 

Generally, servicing the interrupt starts with reading the ISR, as described in the previous 
section on polling, to determine which DSP has generated the interrupt and why. When 
multiple DSPs occur in a system, the HREQ bit in the ISR will normally be read first to 
determine the interrupting'device. The host processor interrupt service routine must read 
or write the appropriate HI register to clear the interrupt. AREa is deasserted when the 
enabled request is, cleared or masked. 

In the case where the host processor is a member of the MC680XX Family, servicing the 
interrupt will start by asserting AREa to interrupt the processor (see Figure 5-17). The 
host processor then acknowledges the interrupt by asserting RACK. While RREO and 
RACK are simultaneously asserted, the contents of the IVR are placed on the host data 
bus. This vector' will tell the host processor which routine to use to service the HREO inter­
rupt. 

The RREO pin is an open-drain output pin so that it can be wire-ORed with the HREO pins 
from other DSP56002 processors in the system. When the DSP56002 gener~tes an inter­
rupt request, the host processor can poll the HREQ bit in each of thelSRs to determine 
which device generated the interrupt. 



5.3.5.5 Servicing DMA Interrupts 
When HMO:;tO and/or HM1 :;to, RREa will be asserted to request a DMA transfer. Gener­
ally the RREa pin will be connected to the REO input of a DMA controller. The HAO-2, 
REf\J, and HRIW pins are not used during DMA transfers; DMA transfers only use the 
RREO and RACK pins after the DMA channel has been initialized. RACK is used to strobe 
the data transfer as shown in Figure 5-18 where an MC68440 is used as the DMA con­
troller. DMA transfers to and from the HI are considered in more detail in Section 5.3.6 HI 
Application Examples. 

5.3.6 HI Application Examples 
The following paragraphs describe examples of initializing the HI, transferring data with 
the HI, bootstrapping via the HI, and performing DMA transfers through the HI. 

TOIRQB 

DSP56002 

~------~------------------~mo 

+5 V +5V 

D o~--------------~------~ 

RREQ 1------1 

+5V 

R?\CR .----L ____________ -( 
AO 
A1 
AS 

'--_IV""- 0Wf'l' 

MC68440 

~~ ~ ~ ____________________________________________________________________________________________________ -JI 

1 DMA CYCLE = 8T = 4 DMA CLOCK CYCLES 
MAX. MC68440 CLOCK = 10 MHz = > T = 50 ns 

FAST INTERRUPT 
TO TRANSFER 24-BIT WORD 

DMAACK GATED OFF 

Figure 5-18 DMA Transfer Logic and Timing 

-



• 

STEP 1 
THE DSP CPU INITIALIZES THE DSP SIDE OF 
THE HI BY WRITING: 
1) HCR AT X:$FFEB AND 
2) PBC AT X:$FFEO 

1 
STEP 2 

THE HOST PROCESOR INITIALIZES THE 
HOST SIDE OF THE HI BY WRITING: 
1) ICR AT $0 ANDIOR 
2) CVRAT $1 ANDIOR 
3) IVRAT$3 

Figure 5-19 HI Initialization Flowchart 

5.3.6.1 HI Initialization 
Initializing the HI takes two steps (see Figure 5-19). The first step is to initialize the DSP 
side of the HI, which requires that the options for interrupts and flags be selected and then 
the HI be selected (see Figure 5-20). The second step is for the host processor to clear 
the HC bit by writing the CVR, select the data transfer method - polling, interrupts, or DMA 
(see Figure 5-21 (d) and Figure 5-23), and write the IVR in the case of a MC680XX Family 
host processor. Figure 5-19 through Figure 5-22 provide a general description of how to 
initialize the HI. Later paragraphs in this section provide more detailed descriptions for 
specific examples.These subsections include some code fragments illustrating how to ini­
tialize and transfer data using the HI. 

5.3.6.2 Polling/lnterrupt Controlled Data Transfer 
Handshake flags are provided for polled or interrupt-driven data transfers. Because the 
DSP interrupt response is sufficiently fast, most host microprocessors can load or store 
data at their maximum programmed I/O (non-DMA) instruction rate without testing the 
handshake flags for each transfer. If the full handshake is not needed, the host processor 
can treat the DSP as fast memory, and data can be transferred between the host and DSP 
at the fastest host processor rate. DMA hardware may be used with the external host 
request and host acknowledge pins to transfer data at the maximum DSP interrupt rate. 

The basic data transfer p'rocess from the host processor's view (see Figure 5-15) is for 
the host to: 

1. Assert HREO when the HI is ready to transfer data 
2. Assert RACK If the interface is using RACK 
3. Assert HR/W to select whether this operation will read or write a register 
4. Assert the HI address (HA2, HA 1 , and HAO) to select the register to be read or written 



5. Assert REf\I to enable the HI 
6. When REf\I is deasserted, the data can be latched or read as appropriate if the 

timing requirements have been observed 
7. RREO will be deasserted if the operation is complete 

X:$FFEO 

STEP 1 OF HOST PORT CONFIGURATION 

1. ENABLE/DISABLE 
HOST RECEIVE DATA FULL INTERRUPT ----------, 
ENABLE INTERRUPT: BIT 0 = 1 . 
DISABLE INTERRUPT: BIT 0 = 0 

2, ENABLE/DISABLE 
HOST TRANSMIT DATA EMPTY INTERRUPT -------. 
ENABLE INTERRUPT: BIT 1 = 1 
DISABLE INTERRUPT: BIT 1 = 0 

3. ENABLE/DISABLE 
HOST COMMAND PENDING INTERRUPT -----, 
ENABLE INTERRUPT: BIT 2 = 1 
DISABLE INTERRUPT: BIT 2 = 0 

4. SET/CLEAR 
HOST FLAG 2 (OPTIONAL) -------, 
ENABLE FLAG: BIT 3 = 1 
DISABLE FLAG: BIT 3 = 0 

5. SET/CLEAR 

DISABLE FLAG: BIT 4 = 0 

HOST FLAG 3 (OPTIONAL) " 
ENABLE FLAG: BIT 4 = 1 

7 6 5 4 

X:$FFESI * I * I * I HF31 

321 a 
HF21 HCIEI HTIEI HRIEIHOSTCONTROLREGISTER(HCR) 

(READIWRITE) 

6. SELECT PORT B FOR HOST PORT OPERATION: 

• Reserved; write as zero. 

NOTE:' The host flags are general-purpose semaphores. They are not required for host port operation 
but may be used in some applications. 

Figure 5-20 Hllnitialization-DSP Side 

-



-

STEP 2 OF HOST PORT CONFIGURATION 

1. CLEAR HOST COMMAND BIT (HC): 

BIT7= 0 

7 

$1 HC I * I HV 

"Reserved; write as zero. 

2. OPTION 1: SELECT HOST VECTOR (HV) -----' 

o 

I COMMAND VECTOR REGISTER (CVR) 
(READIWRITE) 

(OPTIONAL SINCE HV CAN BE SET ANY TIME BEFORE THE HOST COMMAND IS EXECUTED. DSP INTERRUPT VECTOR = THE HOST 
VECTOR MULTIPLIED BY 2. DEFAULT (UPON DSP RESET): HV = $12 ... DSP INTERRUPT VECTOR $0024 . 

Figure 5-21 (a) HI Configuration-Host Side 

STEP 2 OF HOST PORT CONFIGURATION 

2. OPTION 2: SELECT POLLING MODE FOR HOST TO OSP COMMUNICATION 

INITIALIZE DSP 
AND HOST PORT 

~ IOPTALI 

~~ 
7 6 5 4 3 2 o 

$0 L-IN_IT---LI_H_M_1 ..... I_H_M_0...JIL..-HF_1--L.I_H_F_O ...L1_*-...J1L-T_R_E_O ..... 1 R_R_E ...... O I ~~~~~:~~~NTROL REGISTER (ICR) 

"Reserved; write as zero. 

Figure 5-21 (b) HI Initialization-Host Side, Polling Mode 

The previous transfer description is an overview. Specific and exact information for the HI 
data transfers and their timing can be found in Section 5.3.6.3 DMA Data Transfer and 
in the DSP56002 Advance Information Data Sheet (DSP56002lD). 

5.3.6.2.1 Host to DSP - Data Transfer 
Figure 5-23 shows the bits in the ISR and ICR registers used by the host processor and the 
bits in the HSR and HCR registers used by the DSP to transfer data from the host processor to 
the DSP. The registers shown are the status register and control register as they are seen by 
the host processor, and the status register and control register as they are seen by the DSP. 



STEP 2 OF HOST PORT CONFIGURATION 

2. OPTION 3: SELECT INTERRUPT MODE FOR DSPTOHOST 

OR 

HOSTTODSP 

OR 

DSPTOHOST 
AND 

ENABLE 
RECEIVE DATA FULL INTERRUPT 

BITO .. 1 
BIT 1 =0 

I 
ENABLE 

TRANSMIT DATA EMPTY INTERRUPT 
BITO=O 
BIT 1 =1 

I 
ENABLE 

RECEIVE DATA FULL INTERRUPT AND 
TRANSMIT DATA EMPTY INTERRUPT 

BITO= 1 
BITl =1 X 

HOSTTODSP 
OPTIONAL 

--~--- ~ 
7 6 5 4 3 2 1 0 

$0 IINIT I HM1 I HMO I HF1 I HFO I * I TREQ I RREQ I ~~~~~:~~~NTROL REGISTER (ICR) 

2. OPTION 4: LOAD HOST INTERRUPT VECTOR IF USING THE INTERRUPT MODE AND THE HOST PROCESSOR REQUIRES AN 
INTERRUPT VECTOR. 

7 6 5 4 3 2 o 
$3 I 1V7 IV6 IVS IV4 IIV3 IV2 IV1 IVO I INTERRUPT VECTOR REGISTER (IVR) 

'-_"""---_..&....._"""'"""-_ ........ _....L..._-'-_--'-_--'. (READIWRITE) 

"Reserved; write as zero. 

""See Figure 10 - 23. 

Figure 5-21 (c) HI Initialization-Host Side, Interrupt Mode 

Only the registers used to transmit data from the host processor to the DSP are 
described. Figure 5-24 illustrates the process of that data transfer. The steps in Figure 5-
24 can be summarized as follows: 

1. When the TXDE bit in the ISR is set, it indicates that the HI is ready to receive 
a data byte from the host processor because the transmit byte registers (TXH, 
TXM, TXL) are empty. 

2. The host processor can poll as shown in this step. 
3. Alternatively, the host processor can use interrupts to determine the status of 

this bit. Setting the TREQ bit in the leR causes the RREO pin to interrupt the 
host processor when TXDE is set. 

4. Once the TXDE bit is set, the host can write data to the HI. It does this by writ­
ing three bytes to TXH, TXM, and TXL, respectively, or two bytes to TXM and 
TXL, respectively, or one byte to TXL. 

5. Writing data to TXL clears TXDE in the ISA. 
6. From the DSP's viewpoint, the HRDF bit (when set) in the HSR indicates that 

data is waiting in the HI for the DSP. 

-



-

7. When the DSP reads the HRX, the HRDF bit is automatically cleared and 
TXDE in the ISR is set. 

8. When TXDE=O and HRDF=O, data is automatically transferred from TBR to 
HRX which sets HRDF. 

9. The DSP can poll HRDF to see when data has arrived, or it can use interrupts. 
10. If HRIE (in the HCR) and HRDF are set, exception processing is started using 

interrupt vector P:$0020. 

The code shown in Figure 5-25 is an excerpt from the Host I/O Port Technical Bulletin (in­
house document). The MAIN PROGRAM initializes the HI and then hangs in a wait loop 
while it allows interrupts to transfer data from the host processor to the DSP. The first 
three MOVEP instructions enable the HI and configure the interrupts. The following 
MOVE enables the interrupts (this should always be done after the interrupt programs and 
hardware are completely initialized) and prepares the DSP CPU to look for the host flag, 
HFO=1. The JCLR instruction is a polling loop that looks for HFO=1, which indicates that 
the host processor is ready. When the host processor is ready to transfer data to the DSP, 
the DSP enables HRIE in the HCR, which allows the interrupt routine to receive data from 
the host processor. The jump-to-self instruction that follows is for test purposes only, it can 
be replaced by any other code in normal operation. 

STEP 2 OF HOST PORT CONFIGURATION 

2. OPTION 5: SELECT DMA MODE FOR 

INITIALIZE DSP 
INITIALIZE HI" 

BIT7= 1 

ENABLE 

DSPTOHO ST 
RECEIVE DATA FULL INTERRUPT 

BITO= 1 

OR 

OR '-------' 

HOST TO 

_ _'__ ~ OPT
AL 

~ 
7 6 5 4 3 2 

$0 I INIT I HM1 I HMO I HF1 I HFO I * 

'Reserved; write as zero. 

"See Figure 5-23. 

BIT 1 =0 

I 
ENABLE 

TRANSMIT DATA EMPTY INTERRUPT 
DSP BITO = 0 

BIT 1 = 1 

I 

r "' o 

I TREO I RREol INTERRUPT CONTROL REGISTER (ICR) 
• . . (READIWRITE) 

Figure 5-21 (d) HI Initialization-Host Side, DMA Mode 



MODES 

7 a 
HOST SETS INIT BIT .. I INIT I HM1 I HMO I HF1 I HFO I o I TREQ I RREQ I INTERRUPT CONTROL REGISTER (lCR) 

(READIWRITE) 

1 1 
0 0 Interrupt Mode (DMA Off) - RESET CONDITION 

0 1 24 Bit DMA Mode 

} 1 0 16 Bit DMA Mode 

1 1 8 Bit DMA Mode 

INTERRUPT MODE (DMA OFF) DMAMODE 

TREQ RREQ 

0 0 

0 1 

1 0 

1 1 

INIT Execution TREQ RREQ INIT Execution 

INIT = 0; Address Counter = 00 0 0 INIT = 0; Address Counter = HM1. HMO 

INIT = 0; RXDF = 0; HTDE = 1; 0 1 INIT = 0; RXDF = 0; HTDE = 1; 

Address Counter = 00 Address Counter = HM1. HMO 

INIT = 0; TXDE = 1; HRDF = 0; 1 0 INIT = 0; TXDE = 1; HRDF = 0; 

Address Counter = 00 Address Counter = HM1. HMO 

INIT = 0; RXDF = 0; HTDE = 1: TXDE = 1; 1 1 Undefined (Illegal) 

HRDF = 0; Address Counter = 00 

INIT is used by the HOST to force initialization of the HI hardware. 
The HI hardware automatically clears INIT when the command is executed. 
INIT is cleared by DSP RESET. 

Figure 5-22 Host Mode and INIT Bits 

The receive routine in Figure 5-26 was implemented as a long interrupt (the instruction at 
the interrupt vector location, which is not shown, is a JSR). Since there is only one instruc­
tion, this could have been implemented as a fast interrupt. The MOVEP instruction moves 
data from the HI to a buffer area in memory and increments the buffer pointer so that the 
next word received will be put in the next sequential location. 

5.3.6.2.2 Host to DSP - Command Vector 
The host processor can cause three types of interrupts in the DSP (see Figure 5-27). 
These are host receive data (P:$0020), host transmit data (P:$0022), and host command 
(P:$0024 - P:$007E). The host command (HC) can be used to control the DSP by forcing 
it to execute any of 45 subroutines that can be used to run tests, transfer data, process 
data, etc. In addition, the HC can cause any of the other 19 interrupt routines in the DSP 
to be executed. 

-



I 
HOST • DSP56002 

7 o 7 o 
~--~----~--~----r----r----r----r----' ~PTSTARB HOST STATUS 

$2 I HREQ I DMA I 0 HF3 HF2 I TRDY I TXDE I RXDF I ~s:..~ X:$FFE9 I DMA I 0 I 0 HF1 HFO HCP I HTDE I HRDF I ~RE~~~~L~SR) 

TXDE - TRANSMIT DATA REGISTER EMPTY HRDF - HOST RECEIVE DATA FULL 
1 = INDICATES THE TRANSMIT BYTE REGISTERS (TXH, TXM, TXL) ARE EMPTY. 
o = CLEARED BY WRITING TO TXL; TXDE CAN BE USED TO ASSERT THE 

HRrnPIN. 

1 = THE HOST RECEIVE REGISTER (HRX) CONTAINS DATA FROM THE 
HOST PROCESSOR. 

0= HRX IS EMPTY. 

TRDY - TRANSMITTER READY = TXDE • HROF DMA -INDICATES THE HOST PROCESSOR HAS ENABLED THE DMA MODE 
1 =DMAON. 

$0 

1 = BOTH THE TRANSMIT BYTE REGISTERS AND THE HOST RECEIVE DATA 
REGISTERS ARE EMPTY. o = HOST MODE. 

o = ONE OR BOTH REGISTERS ARE FULL. 

MODES 

7 ~ 

0 0 Interrupt Mode (DMA Off) 

0 24 Bit DMA Mode 

0 16 Bit DMA Mode 

8 Bit DMA Mode 

o INTERRUPTcam:n.. 7 0 HOST CONTROL 

REGISTER(ICR) X:$FFE8 0 0 I 0 HF3 I HF2 I HCIE I HTIE I HRIE I REGISTER (HCR) 
(READWRfTE) (READIWRITE) 

HRIE - HOST RECEIVE INTERRUPT ENABLE 
ENABLES INTERRUPT AT P:$0020 

DSP INTERRUPT IS CAUSED BY HRDF = 1 
1 = INTERRUPT P:$0020 ENABLED. 
o = INTERRUPT P:$0020 DISABLED. 

TREQ - TRANSMIT REQUEST ENABLE 
USED TO ENABLE INTERRUPTS THAT COME FROM TXDE TO THE HOST 
VIA THE HRrn PIN. 
1 = TXDE INTERRUPTS PASS TO HRrn. 

·0 = TXDE INTERRUPTS ARE MASKED. 

Figure 5-23 Bits Used for Host-to-DSP Transfer 



VIEW FROM HOST 

1. WHEN TXDE = 1, TOR IS EMPTY. 

7 o 

$2 I HREQ I DMA I ° I HF3 I HF2 I TRDY I 1 I RXDF I ~~TUS 
TXDE] 

TRANSMIT DATA REGISTER EMPTY 

2. HOST MAY POLL TXDE. 

7 0 

VIEW FROM DSP56002 

6. IF DSP560022 HAS OLD DATA IN HRX, THEN HRDF = 1. 

7. WHEN DSP56002 READS HRX, THEN HRDF = O. 

7 o 
X:$FFE9 I ° 0 0 HF1 HFO rHCP]-HToEIO --I ~~~~S~~~~R)' 

DMA J 
HRDF 

HOST RECEIVE DATA FULL 

$0 INIT 0 0 HF1 I HFO 0 I 1 IRREQI ~~ 
HM1 HMO J 

TREQ 8. WHEN TXDE = 0 AND HRDF = 0, THEN TRANSFER OCCURS. 

TRANSMIT REQUEST ENABLE 23 o 

3. IF TREQ = 1, THEN Rf1EO PIN IS ASSERTED TO INTERRUPT HOST. 

IH~I~OI • ~ 
4. HOST WRITES DATA TO TRANSMIT BYTE REGISTERS. 

5. WRITE TO TXL CLEARS TXDE IN ISR. 

7 o 

$5~H } TRANSFER 
$6 TXM ------...... 

LAST WRITE" $7 TXL 

TRANSMIT BYTE 
REGISTERS (TBR) 

....-_____ ........ ______ -.-_____ ----. HOST RECEIVE 

X:$FFEB HIGH BYTE MIDDLE BYTE LOW BYTE I DATA 
L...-_____ ......&. ______ -'-_____ ~. REGISTER (HRX) 

9. THE TRANSFER SETS HRDF FOR THE DSP56002 TO POLL. 

7 o 
-I-I~ I I I 1 HOST CONTROL X:$FFE8 CTJ 0 0};?l HF2 HCIE HTIE 1 REGISTER (HCR) 

HRIE] 
,...------------ HOST RECEIVE INTERRUPT ENABLE 

10. IF HRDF = 1 AND INTERRUPTS ARE ENABLED, THEN EXCEPTION 
PROCESSING BEGINS. 

,.... 
P:$0020 L HOST RECEIVE DATA VECTOR 

FAST INTERRUPT 
OR 

LONG INTERRUPT 

--1 

d-

Figure 5-24 Data Transfer from Host to DSP 

I 



-

The process to execute a HC (see Figure 5-28) is as follows: 

1. The host processor writes the CVR with the desired HV (the HV is the DSP's 
interrupt vector (IV) location divided by two - i.e. if HV=$12, IV=$24). 

2. The HC is then set. 
3. The HCP bit in the HSR is set when HC is set. 
4. If the HCIE bit in the HCR has been set by the DSP, the HC exception pro­

cessing will start. The HV is multiplied by 2 and the result is used by the DSP 
as the interrupt vector. 

5. When the HC exception is acknowledged, the HC bit (and therefore the HCP 
bit) is cleared by the HC logic. HC can be read by the host processor as a sta­
tus bit to determine when the command is accepted. Similarly, the HCP bit can 
be read by the DSP CPU to determine if an HC is pending. 

To guarantee a stable interrupt vector, write HV only when HC is clear. The HC bit and 
HV can be written simultaneously. The host processor can clear the HC bit to cancel a 
host command at any time before the DSP exception is accepted. Although the HV can 
be programmed to any exception vector, it is not recommended that HV=O (RESET) be 
used because it does not reset the DSP hardware. DMA must be disabled to use the host 
exception . 

. **************************************** , 
; MAIN PROGRAM ... receive data from host 
.**************************************** , 

ORG 
MOVE 
MOVE 
MOVEP 
MOVEP 
MOVEP 
MOVE 
JCLR 
MOVEP 
JMP 

Figure 5-25 

P:$40 
#O,RO 
#3,MO 
#1,X:PBC ;Turn on Host Port 
#O,X:HCR ;Turn off XMT and RCV interrupts 
#$OCOO,X:IPR ;Turn on host interrupt 
#O,SR ;Unmask interrupts 
#3,X:HSR,* ;Wait for HFO (from host) set to 1 
#$1,X:HGR ;Enable host receive interrupt 
* ;Now wait for interrupt 
Receive Data from Host-Main Program 

.************************************ , 
; Receive from Host Interrupt Routine 
.************************************: , 

RCV 

END 

MOVEP 
RTI 

X:HRX,X:(RO)+ ;Receive data. 

Figure 5-26 Receive Data from Host Interrupt Routine 



EXCEPTION 
STARTING 
ADDRESS 

PROGRAM MEMORY SPACE 

EXCEPTION SOURCE 

$0000 HARDWARE trESET 

$0002 STACK ERROR 

$0004 TRACE 

$0006 SWI (SOFTWARE INTERRUPT) 

$0008 ~EXTERNALHARDWAREINTERRUPT 

$OOOA mas EXTERNAL HARDWARE INTERRUPT 

$OOOC SSI RECEIVE DATA 

$OOOE SSI RECEIVE DATA WITH EXCEPTION STATUS 

. $0010 SSI TRANSMIT DATA 

$0012 SSI TRANSMIT DATA WITH EXCEPTION STATUS 

$0014 SCI RECEIVE DATA 

$0016 SCI RECEIVE DATA WITH EXCEPTION STATUS 

$0018 SCI TRANSMIT DATA 

$001A SCI IDLE LINE 

$OOlC SCI TIMER 

$OOlE RESERVED 

$0020 HOST RECEIVE DATA 

$0022 HOST TRANSMIT DATA 

$0024 HOST COMMAND (DEFAULT) 

$0026 AVAILABLE FOR HOST COMMAND 

$0028 AVAILABLE FOR HOST COMMAND 

• 
• 
• 

$003C AVAILABLE FOR HOST COMMAND 

$003E ILLEGAL INSTRUCTION 

$0040 AVAILABLE FOR HOST COMMAND 

$0042 AVAILABLE FOR HOST COMMAND 

• • • 
$007E AVAILABLE FOR HOST COMMAND 

a.---

TWO WORDS PER VECTOR EXTERNAL INTERRUPTS 

f t t 
INTERNAL 

l 
INTERRUPTS 

i 
EXTERNAL 

INTERRUPTS 

f 
SYNCHRONOUS 

SERIAL 
INTERFACE 

INTERNAL 
INTERRUPTS 

SERIAL I COMMUNICATIONS 
INTERFACE 

HOST INTERNAL 
INTERFACE INTERRUPTS 

Figure 5-27 HI Exception Vector Locations 

-



I 
VIEW FROM HOST VIEW FROM DSP56002 

1. WRITE CVR WITH DESIRED HV. 3. HCP IS SET UNTIL EXCEPTION IS ACKNOWLEDGED. 

2. SETHC= 1. 

7 5 0 7 0 

$1 0 HOST VECTOR (HV) ICOMMAND VECTOR X:$FFE9 1 DMA I 0 0 HF1 HFO I 1 1 HTDEI HRDF 1 HOST STATUS 
......... __ "'-_---:-_______ ......:..........:... __ .....J.REGISTER (CVR) • . . . REGISTER (HSR) 

... '-./ J 
HC T $12-DEFAULT HCP 
HOST COMMAND HOST COMMAND PENDING 

4. HOST COMMAND IS MASKED UNTIL HCIE = 1. 

7 a 
, 1 --I 1 -I I· -- 1 1 - ,HOSTCONTROL X:$FFEB 0 0 0 HF3· HF2 1 HTIE HRIE. REGISTER (HCR) 

EXCEPTION VECTOR 
ADDRESS = HV x 2 

HCIE] 

HOST COMMAND INTERRUPT ENABLE 

EXCEPTION VECTOR TABLE 

PW~L J 

5. WHEN THE HOST COMMAND EXCEPTION IS ACKNOWLEDGED, THE HC 
BIT IS CLEARED BY THE HOST COMMAND LOGIC. HC CAN BE READ AS 
A STATUS BIT. 

7 5 o 

P:$0024 

P:$007E 

--_. ---I COMMAND VECTOR 
$1 CO I HOST VECTOR (HV) REGISTEA (CVA) 

HC - HOST COMMAND (STATUS) 

~ 

HOST COMMAND DEFAULT VECTOR 

AVAILABLE FOR HOST COMMAND 

AVAILABLE FOR HOST COMMAND 

AVAILABLE FOR HOST COMMAND 

FAST INTERRUPT 
OR 

LONG INTERRUPT 

Figure 5-28 Host Command 

-

-



+5V 

DSP56002 

o::m 

FROM OPEN AS 
COLLECTOR >--1-+--+-...... ------1 
BUFFER A4-A23 

~--------~MOOC~ 

+5V MC68000 

1K 
(12.5MHz) 

FROM 
RESET 
FUNCTION 

OTACR 

>-r------~--~RESET 

HRIW 

HO-H7 14-----:~-----__ .. 
3 FROM OPEN HAO-HA214-------7;L--------i 

COLLECTOR >-_-------4~-___t MODB/TRQB 
BUFFER 

Notes: 1. 'This diode must be a Schottky diode. 

RIW 

00-07 

A1-A3 

2. All resistors are 15K!} unless noted otherwise. 

7 HOST 

$0 

o 

3. When in RESET. ffiQA, mOB and 'fJ"fJT must 
be deasserted by external peripherals. 

INTERRUPT CONTROL REGISTER (ICR) 
(READIWRITE) 

SETTING HFO TERMINATES BOOTSTRAP LOADING AND STARTS 
EXECUTION AT LOCATION P:$OOOO. 

HOST ADDRESS 
WRITTEN 

4 (DUMMY) 
5 
6 
7 

CONTENTS LOADED 
TO INTERNAL P: RAM AT: 

P:$OOOO HIGH BYTE 
P:$OOOO MID BYTE 
P:$OOOO LOW BYTE 

SET HFO FOR EARLY TERMINATION ------... • 
4 (DUMMY) 
5 
6 
7 

• Because the DSP56002 is so fast, host handshaking is generally not required. 

P:$Ol FF HIGH BYTE 
P:$Ol FF MID BYTE 
P:$Ol FF LOW BYTE 

Figure 5-29 Bootstrap Using the HI 

-



.. 

5.3.6.2.3 Host to DSP - Bootstrap Loading Using the HI 
The circuit shown in Figure 5-29 will cause the DSP to boot through the HI on power up. 
During the bootstrap program, the DSP looks at the MODC, MODS, and MODA bits. If the 
bits are set at 101 respectively, the DSP will load from the HI. Data is written by the host 
processor in a pattern of four bytes, with the high byte being a dummy and the low byte 
being the low byte of the DSP word (see Figure 5-29 and Figure 5-30). Figure 5-30 shows 
how an 8-,16-,24-, or 32-bit word in the host processor maps into the HI registers. The HI 
register at address $4 is not used and will read as zero. It is not necessary to use address 
$4, but since many host processors are 16- or 32-bit processors, address $4 will often be 
used as part of the 16- or 32-bit word. The low order byte (at $7) should always be written 
last since writing to it causes the HI to initiate the transfer of the word to the HRX. Data is 
then transferred from the HRX to the DSP program memory. If the host processor needs 
to terminate the bootstrap loading before 512 words have been down loaded, it can set 
the HFO bit in the ICR. The DSP will then terminate the down load and start executing at 
location P:$OOOO. Since the DSP56002 is typically faster than the host processor, hand 
shaking during the data transfer is normally not required . 

HOST 
DATA 

31 24 23 16 15 

READ - 00000000 I HIGH I MIDDLE WRITE - XXXXXXXX 

7 

HOST 
TRANSMIT/RECEIVE 

BYTE REGISTERS 

00000000 

TXHlRXH 
HIGH BYTE 

TXM/RXM 
MIDDLE BYTE 

TXURXL 
LOW BYTE 

8 7 

LOW 

HOST BYTE 
o ADDRESS 

0 

4 

5 

6 

ACCESS TO 
7_LOWBYTE 

INITIATES 
TRANSFER 

I. 
i- !--a-.,TTRANSFEe-. 

l6-BIT TRANSFER 

24-BIT TRANSFER 

32-BIT TRANSFER, LS 24 BITS ARE SIGNIFICANT 

NOTE: Access low byte last 

Figure 5-30 Transmit/Receive Byte Registers 



.************************************************** , 
; This routine loads from the Host Interface. 
; MC:MB:MA=100 - reserved 
; MC:MB:MA=101 - Host 
.************************************************* , 
HOSTLD 

_LOOP3 

BSET 
DO 
JCLR 
ENDDO 
JMP 

JCLR 

MOVEP 

JMP 

#O,X:PBC 
#512,_LOOP3 
#3,X:HSR,_LBLB 

#O,X:HSR,_LBLA 

X:HRX,P:(RO)+ 

<FINISH 

;Configure Port B as Host 
;Load 512 instruction words 
;If HFO=1, stop loading data. 
;Must terminate the DO loop 

;Wait for HRDF to go high 
;(meaning data is present). 
;Store 24-bit data in P memory 
;and go get another 24-bit word. 
;finish bootstrap 

Figure 5-31 Bootstrap Code Fragment 

The actual code used in the bootstrap program is given in APPENDIX A. The portion of 
the code that loads from the HI is shown in Figure 5-31. The BSET instruction configures 
Port B as the HI and the first JCLR looks for a flag (HFO) to indicate an early termination 
of the download. The second JCLR instruction causes the DSP to wait for a complete 
word to be received and then a MOVEP moves the data from the HI to memory. 

5.3.6.2.4 DSP to Host Data Transfer 
Data is transferred from the DSP to the host processor in a similar manner as from the 
host processor to the DSP'. Figure 5-32 shows the bits in the status registers (ISR and 
HSR) and control registers (ICR and HCR) used by the host processor and DSP CPU, 
respectively. The DSP CPU (see Figure 5-33) can poll the HTDE bit in the HSR (1) to 
see when it can send data to the host, or it can use interrupts enabled by the HTI E bit in 
the HCR (2). If HTIE=1 and interrupts are enabled, exception processing begins at inter­
rupt vector P:$0022 (3). The interrupt routine should write data to the HTX (4), which will 
clear HTDE in the HSR~ From the host's viewpoint, (5) reading the RXL clears RXDF in 
the ISA. When RXDF=O and HTDE=O (6) the contents of the HTX will be transferred to 
the receive byte registers (RXH:RXM:RXL). This transfer sets RXDF in the ISR (7), 
which the host processor can poll to see if data is available or, if the RREQ bit in the ICR 
is set, the HI will interrupt the host processor with AREa (8). 

The code shown in Figure 5-34 is essentially the same as the MAIN PROGRAM in Figure 
5-25 except that, since this code will transmit instead of receive data, the HTI E bit is set 
in the HCR instead of the HRIE bit. 

-



I 

HOST ~. ____________________________________________________ ___ 

DSP56002 

7 0 
r-~--~--~--~--~--~--~~~&A~ 

$2 I HREOI DMA I 0 I HF31 HF21 TRDyl TXDEI RXDFI ~~~ 

RXDF - RECEIVE DATA REGISTER FULL 
1 = INDICATES THE RECIEVE BYTE REGISTERS (RXH, RXM, RXL) 

CONTAIN DATA FROM THE DSP. 
0= CLEARED BY READING RXL. 

MODES 

7 ~ 0 INTERRUPT 

$0 I INIT I HM1 I HMO I HF1 HFO I 0 I TREO I RREQ I ~~~~~ (HCR) 
(READiWRITE) 

RREQ -RECEIVE REQUEST ENABLE (USED TO CONTROL THE RREO PIN) 
1 = ENABLE INTERRUPT REQUESTS CREATED BY RXDF. 
0= DISABLE INTERRUPT REQUESTS. 

7 o 
r---_r--~r---_r--~~--_r----~--_r--~ HOSTSTATUS 

X:$FFE9 I DMA I 0 0 HF1 HFO HCP I HTDE I HRDF I REGISTER (HSR) 
~.----~. ----~--~--~~--~----~. ----~.--~. (READONLY) 

HTDE - HOST TRANSMIT DATA EMPTY 
1 = HTX IS EMPTY AND CAN BE WRITTEN BY DSP. 
o = HTX IS FULL. 

7 o 
r---_r----r---_r----r---_r----~--_r--~ HOST CONTROL 

X:$FFE8 0 0 0 I HF3 I HF2 I HCIE I HTIE I HRIE I REGISTER (HCR) 
'----......... ----~--~. ----~. ----~. ----~. ----~. --~. (READIWRITE) 

HTIE - HOST TRANSMIT INTERRUPT ENABLE 
1 = ENABLE THE DSP INTERRUPT TO P:$0022. 
0= DISABLE THE DSP INTERRUPT TO P:$0022. 

DSP INTERRUPT IS CAUSED BY HTDE = 1 

Figure 5-32 Bits Used for DSP to Host Transfer 



VIEWFROMHOST~.~------------------------------------------------------ VIEW FROM HOST 

s. READ OF RXL BY HOST CLEARS RXDF IN ISA. 

6. WHEN RXDF = 0 AND HTDE = 0, THEN TRANSFER OCCURS. 

7 0 

$5 RXH } $6 RXM 

LAST READ .. $7 RXL 

RECEIVE BYTE 
REGISTERS (RBR) 

7. THE TRANSFER SETS RXDF FOR THE HOST TO POLL. 

7 

$2 

7 

$0 

a.IF RREQ = 1, THEN AREa PIN IS ASSERTED TO INTERRUPT HOST. 

·IH~~al ~ 

o 

o 

MERRUPT 
STATUS 
REGISTER (ISR) 

MERRUPT 
CCMR:l. 
REGISTER (O'l) 

1. WHEN HTDE = 1, THEN HTX IS EMPTY. 

7 o 
~--I II I I-g: II HOSTSTATUS X:$FFE9 I DMA 0 0 HF1 HFO HCP ~ HRDF REGISTER (HSR) 

HTDE 
HOST TRANSMIT DATA EMPTY 

2. DSP56002 MAY POLL HTDE. 

7 o 
X:$FFE8 ro 0 I 0 1 HF3-,-H-F-2 1 HCIE ,-11 HRIE 1 ~~~~~~} 

HTIE] 
r--------- HOST TRANSMIT INTERRUPT ENABLE 

3.IF HTIE = 1, AND INTERRUPTS ARE ENABLED, THEN EXCEPTION 
PROCESSING BEGINS. 

P:$OOOOl d 
r:: :"1 

P:$0022 L HOST TRANSMIT DATA VECTOR :J 
r-- ..., 

P:$007E I AVAILABLE FOR HOST COMMAND 

FAST INTERRUPT 
OR 

LONG INTERRUPT 

4. DSP56002 WRITES DATA TO HTX, WHICH CLEARS HTDE IN HSR. 

~ 0 r---------T------r--------, HOST RECEIVE 
X:$FFEB I HIGH BYTE MIDDLE BYTE LOW BYTE I DATA ..... -----......... -----'---------1. REGISTER (HSR) 

Figure 5-33 Data Transfer from DSP to Host 



-

·**************************************** , 
; MAIN PROGRAM ... transmit 24-bit data to host 

.**************************************** , 
ORG P:$40 

MOVEP #1,X:PBC 
MOVEP #$OCOO,X:IPR 
MOVEP #O,X:HCR 

MOVE #O,SR 
JCLR #3,X:HSR,* 

AND XO,A 

JEQ LOOP 

MOVEP . #$2,X:HCR 

JMP * 

;Turn on Host Port 
;Turn on host interrupt 
;Turn off XMT and RCV interrupts 

;Unmask interrupts 
;Wait for HFO (from host) set to 1 

;Enable host transmit interrupt 

;Now wait for interrupt 

Figure 5-34 Main Program - Transmit 24-Bit Data to Host 

.*********************************** , 
;TRANSMIT to Host Interrupt Routine 

.************************************ , 

XMT MOVEP 
MOVEP 
RTI 

END 

#$123456,X:HTX 
#O,X:HCR 

;Test value to transmit 
;Turn off XMT Interrupt 

Figure 5-35 Transmit to HI Routine 

The transmit routine used by the code in Figure 5-34 is shown in Figure 5-35. The interrupt 
vector contains a JSR, which makes it a long interrupt. The code sends a fixed test pattern 
($123456) and then resets the HI for the next interrupt. 

5.3.6.3 DMA Data Transfer 
The DMA mode allows the transfer of 8-, 16- or 24-bit data through the DSP HI under the 
control of an external DMA controller. The HI provides the pipeline data registers and the 
synchronization logic between the two asynchronous processor systems. The DSP host 



exceptions provide cycle-stealing data transfers with the DSP internal or external mem­
ory. This technique allows the DSP memory address to be generated using any of the 
DSP addressing modes and modifiers. Queues and circular sample buffers are easily cre­
ated for DMA transfer regions. The host exceptions can be programmed as high priority 
fast or long exception service routines. The external DMA controller provides the transfers 
between the DSP HI registers and the external DMA memory. The external DMA control­
ler must provide the address to the external DMA memory; however, the address of the 
selected HI register is provided by a DMA addre~s counter in the HI. 

DMA transfers can only be in one direction at a time; however, the host processor can 
access any of the registers not in use during the DMA transfer by deasserting RACK and 
using REf\J and HAO-HA2 to transfer data. The host can therefore,transfer data in the other 
direction during the DMA operation using polling techniques. 

+5 V 

DMA J 1K CONTROLLER 

1 RANSFER REQUEST 

TRANSFER 
ACKNOWLEDGE 

MEMORY 

I I RIW 

CONTROL 

-' .A 
ADDRESS DATA < V' ..... 

Characteristics of Host DMA Mode 

• The RREO pin is NOT available for host processor interrupts. 

• TREQ and RREQ select the direction of DMA transfer. 
-DMA to DSP56002 
- DSP56002 to DMA 
-Simultaneous bidirectional DMA transfers are not permitted. 

DSP56002 
HOST INTERFACE 

HAm 

INTERNAL 
ADDRESS 
COUNTER 

RACK CD 
HO- H7 

~ 

• Host processor software polled transfers are permitted in the opposite direction of the DMA transfer. 

• 8-, 16-, or 24-bit transfers are supported. 
• 16-, or 24-bit transfers reduce the DSP interrupt rate by a factor of 2 or 3, respectively. 

Figure 5-36 HI Hardware-DMA Mode 



-

DMA 
CONTROLLER 

24-BIT TRANSFER 
(INTERNAL COUNTER) 

16-BIT TRANSFER 
(INTERNAL COUNTER) 

a-BIT TRANSFER 
(INTERNAL COUNTER) 

FAST INTERRUPT ROUTINE 
P:$0020 MOVE X:$FFE8.A READ HRX 
P:$0021 MOVE A. Y:(R7)+ ;AND PUT INTO Y MEMORY 

Figure 5-37 DMA Transfer and Host Interrupts 

5.3.6.3.1 Host To DSP Internal Processing 

DSP560021 

The following procedure outlines the steps that the HI hardware takes to transfer DMA 
data from the host data bus to DSP memory (see Figure 5-35 and Figure 5-36). 

1. HI asserts the HREO pin when TXDE=1. 
2. DMA controller enables data on HO-H7 and asserts RACK. 
3. When RACK is asserted, the HI deassertsHREO. 
4. When the DMA controller deasserts RACK, the data on HO-H7 is latched into 

the TXH, TXM, TXL registers. 
5. If the byte register written was not TXL (Le., not $7) the DMA address counter 

internal to the HI increments and HREO is again asserted. Steps 2-5 are then 
repeated. 

6. If TXL ($7) was written, TXDE will be set to zero and the address counter in 
the HI will be loaded with the contents of HM1 and HMO. When TXDE=O, the 
contents of TXH:TXM:TXL are transferred to HRX provided HRDF=O. After the 
transfer to HRX, TXDE will be set to one, and HREO will be asserted to start 
the transfer of another word from external memory to the HI. 

7. When the transfer to HRX occurs within the HI, HRDF is set to one. Assuming 
HRIE=1, a host receive exception will be generated. The exception routine 
must read the HRX to clear HRDF. 



MODES 

$0 

o o Interrupt Mode (DMA Off) RESET CONDITION 

o 24 Bit DMA Mode } 1 0 16 Bit DMA Mode 

1 1 8 Bit DMA Mode 

INTERRUPT MODE (DMA OFF) DMAMODE 

TREQ RREQ RREQ"PIN TREQ RREQ RREQ"PIN 

0 0 No Interrupts (Polling) 0 0 NoDMA 

0 1 RXDF Request (Interrupt) 0 1 DSP to Host Request (RX) 

1 0 XDE Request (Interrupt) 1 0 Host to DSP Request (TX) 

1 1 XDF and TXDE Request (Interrupts) 1 1 Undefined (Illegal) 

I I 

7 I 0 
MERFUPTSfAn.JS 

$2 I HREQI DMA I o I HF3 I HF2 TRDY I TXDE I RXDF I REGISTER(ISR) 

7~ 
(REAOQ\JLY) 

0 
HOST STATUS 

X:$FFE9 I DMA l 0 I o I HF1 I HFO HCP I HTDE I HRDF J REGISTER (HSR) 
(READ ONLY) 

Figure 5-38 Host Bits with TREQ and RREQ 

Note: The transfer of data from the TXH, TXM, TXL registers to the HRX register auto­
. matically loads the DMA address counter from the HM1 and HMO bits in the DMA 
host to DSP mode. This DMA address is used with the HI to place the received 
byte in the correct register (TXH, TXM, or TXL). 

Figure 5-36 shows the differences between 24-, 16-, and 8-bit DMA data transfers. The 
interrupt rate is three times faster for 8-bit data transfers than for 24-bit transfers. TXL is 
always loaded last. 

5.3.6.3.2 Host to DSP DMA Procedure 
The following procedure outlines the typical steps that the host processor must take to 
setup and terminate a host-to-DSP DMA transfer (see Figure 5-37). 



HOST PROCESSOR 

1. PROGRAM DMA CONTROLLER. 
- START ADDRESS 
- BYTE COUNT 
- TRANSFER DIRECTION 
- START DMA CHANNEL 

I 
DMA CONTROLLER DSP56002 

7 0 
WRITE ICR INTERRUPT 

2. INITIALIZE DSP56002 HOST INTERFACE. • $0 I 0 HF1 HFO 0 0 I CONTROL 
- MODE 24 BIT DMA REGISTER (ICR) 
_ HOST TO DSP INIT HM1 HMO TAEQ AAEQ 

- USE INIT BIT TO: 
SETTXDE 
CLEARHRDF 
LOAD DMA COUNTER 

3. TELL DSP56002 
- WHERE TO STORE DATA (i.e., PROGRAM 

ADDRESS REGISTER R7). 
- ENABLE INTERRUPT HRIE (CAN BE 

DONE WITH A HOST COMMAND). 

5. HOST IS FREE TO PERFORM 
OTHER TASKS (i.e., DSP TO HOST 
TRANSFER ON A POLLED BASIS). 

8. TERMINATE DMA CHANNEL. 

9. TERMINATE DSP DMA MODE BY 
CLEARING HM1, HMO,ANDTREQ. 

7 o 
.. THFSr THcIEI-- f11 HOST CONTROL 

X:$FFESI 0 TTl 0 ~ HF2 ~ HTIE~REGISTER(HCR} 

4. ASSERT HREO TO START DMA TRANSFER. 

6. DMA CONTROLLER PERFORMS WRIT~S. ~REQ 
PIN 

011 TXH 1 

10~M 11 TXL 

01 TXH 

10 TXM 

111 TXL 

01
1 TXH 

10 TXM 

11 

P:$OOOO l EXCEPTION VECTOR TABLE I 
::::J 

P:$0020 l HOST RECEIVE DATA VECTOR I 
:::J 

r :"J i 

r- ...., 
P:$007E I AVAILABLE FOR HOST COMMAND 

7. DMA CONTROLLER INTERRUPTS HOST 
WHEN TRANSFERS ARE DONE. 

FAST INTERRUPT 
OR 

LONG INTERRUPT 

Figure 5-39 Host-to-DSP DMA Procedure 

HAlE 



1. Set up the external DMA controller (1) source address, byte count, direction, 
and other control registers. Enable the DMA controller channel. 

2. Initialize the HI (2) by writing the ICR to select the word size (HMO and HM1), 
to select the direction (TREQ=1, RREQ=O), and to initialize the channel setting 
INIT =1 (see Figure 5-38). 

3. Initialize the DSP's destination pointer (3) used in the DMA exception handler 
(an address register, for example) and set HRIE to enable the HRDF interrupt 
to the DSP CPU. This procedure can be done with a separate host command 
exception routine in the DSP. HREO will be asserted (4) immediately by the HI 
to begin the DMA transfer. ' 

4. Perform other tasks (5) while the DMA controller transfers data (6) until inter­
rupted by the DMA controller DMA transfer complete interrupt (7). The DSP 
interrupt control register (lCR), the interrupt status register (ISR), and RXH, 
RXM, and RXL registers may be accessed at any time by the host processor 
but the TXH, TXM and TXL registers may not be accessed until the DMA 
mode is disabled. 

5. Terminate the DMA controller channel (8) to disable DMA transfers. 
6. Terminate the DSP HI DMA mode (9) in the ICR by clearing the HM1 and HMO 

bits and clearing TREQ. 

The AREa will be active immediately after initialization is completed (depending on hard­
ware) because the data direction is host to DSP and TXH, TXM, and TXL registers are 
empty. When the host writes data to TXH, TXM, and TXL, this data will be immediately 
transferred to HRX. If the DSP is due to work in interrupt mode, HRIE must be enabled. 

5.3.6.3.3 DSP to Host Internal Processing 
The following procedure outlines the steps that the HI hardware takes to transfer DMA 
data from DSP memory to the host data bus. 

1. On the DSP side of the HI, a host transmit exception will be generated when 
HTDE=1 and HTIE=1. The exception routine must write HTX, thereby setting 
HTDE=O. 

2. If RXDF=O and HTDE=O, the contents of HTX will be automatically transferred 
to RXH:RXM:RXL, thereby setting RXDF=1 and HTDE=1. Since HTDE=1 
again on the initial transfer, a second host transmit exception will be generated 
immediately, and HTX will be written, which will clear HTDE again. 

3. When RXDF is set to one, the HI's internal DMA address counter is loaded 
(from HM1 and HMO) and AREa is asserted. 

4. The DMA controller enables the data from the appropriate byte register onto 
HO-H7 by asserting RACK. When RACK is asserted, HREO is deasserted by 
the HI. 



-

5. The DMA controller latches the data presented on HO-H7 and deasserts 
RACK. If the byte register read was not RXL (i.e;, not $7), the HI's internal 
DMA counter increments, and RREO is again asserted. Steps 3, 4, and 5 are 
repeated until RXL is read. 

6. If RXL was read, RXDF will be set to zero and, since HTDE=O, the contents of 
HTX will be automatically transferred to RXH:RXM:RXL, and RXFD will be set 
to one. Steps 3,4, and 5 are repeated until RXL is read again. 

Note: The transfer of data from the HTX register to the RXH:RXM:RXL registers auto­
matically loads the DMA address counter from the HM1 and HMO bits when in the 
DMA DSP-HOST mode. This DMA address is used within the HI to place the ap­
propriate byte on HO-H7. 

5.3.6.3.4 DSP to Host DMA Procedure 
The following procedure outlines the typical steps that the host processor must take to 
setup and terminate a DSP-to-host DMA transfer (see Figure 5-39). 

1. Set up the DMA controller (1) destination address, byte count, direction, "and 
other control registers. Enable the DMA controller channel. 

2. Initialize the HI (2) by writing the ICR to select the word size (HMO and HM1), 
the direction (TREQ=O, RREQ=1), and setting INIT =1 (see Figure 5-39 for 
additional information on these bits). 

3. Initialize the DSP's source pOinter (3) used in the DMA exception handler (an 
address register, for example), and set HTIE to enable the DSP host transmit 
interrupt. This could be done by the host processor with a host command 
exception routine. 

The DSP host transmit exception will be activated immediately after HTIE is 
set. The DSP CPU will move data to HTX. The HI circuitry will transfer the con­
tents of HTX to RXH:RXM:RXL, setting RXDF which asserts RREO. Asserting 
RREO (4) starts the DMA transfer from RXH, RXM, and RXL to the host pro­
cessor. 

4. Perform other tasks (5) while the DMA controller transfers data (6) until inter­
rupted by the DMA controller DMA complete interrupt (7). 'The DSP interrupt 
control register {lCR), the interrupt status register (ISR), and TXH, TXM, and 
TXL may be accessed at any time by the host processor but the RXH, RXM 
and RXL registers may not be accessed until the DMA mode is disabled. 

5. Terminate the DMA controller channel (8) to disable DMA transfers. 
6. Terminate the DSP HI DMA mode (9) in the Interrupt Control Register {lCR) by 

clearing the HM1 and HMO bits and clearing RREQ. 



HOST PROCESSOR 

1. PROGRAM DMA CONTROLLER. 
- START ADDRESS 
- BYTE COUNT 
- TRANSFER DIRECTION 
- START DMA CHANNEL 

2. INITIALIZE DSP56002 HOST INTERFACE. 
- MODE 24 BIT DMA 
- HOSTTODSP 
- USE INIT BIT TO: 

CLEARTXDE 
SETHRDF 
LOAD DMA COUNTER 

DMA CONTROLLER DSP56002 

7 0 
WRITE ICR INTERRUPT ----------------I .. ~ $0 I 0 HF1 HFO 0 0 1 I CONTROL 

L. _-..I __ -'-_ ......... __ .L...-_ ......... _-..I __ -'-_ .......... REGISTER (ICR) 
INIT HM1 HMO TREO RREO 

7 o 
~~~~~ ~-_ SOURCE POINTER ADDRESS .. X:$FFE80EI 0 I HF31 HF2 [H§E] -TJ!iTIE I HOST CONTROL 

_ ENABLE HTIE (CAN BE DONE REGISTER (HCR)

WITH A HOST COMMAND). HRIE

5. HOST IS FREE TO PERFORM
OTHER TASKS (Le., DSP TO HOST
TRANSFER ON A POLLED BASIS).

8. TERMINATE DMA CHANNEL.

9. TERMINATE DSP DMA MODE BY
CLEARING HM1, HMO,ANDTREQ.

4. ASSERT RREO TO START DMA TRANSFER.

6. DMA CONTROLLER PERFORMS READ5."\ ~
01 I RXH I . "---------c::J
10 RXM

11 RXL

01 RXH

10 RXM

111 RXL

01 1 RXH
10 RXM

P:$OOOO L EXCEPTION VECTOR TABLE J
P:$0022

L :J
HOST TRANSMIT DATA VECTOR

r-,
P:$007E I AVAILABLE FOR HOST COMMAND

FAST INTERRUPT
OR

LONG INTERRUPT

111 1 7. DMA CONTROLLER INTERRUPTS HOST
WHEN TRANSFERS ARE DONE.

Figure 5-40 DSP to Host DMA Procedure

-

5.3.6.4 Example Circuits
Figure 5-40, Figure 5-41, and Figure 5-42 illustrate the simplicity of the HI. The
MC68HC11 in Figure 5-41 has a multiplexed address and data bus which requires that
the addre~s be latched. Although the RACK is not used in this circuit, it is pulled up. All
unused input pins should be terminated to prevent erroneous signals. When determining
whether a pin is an input, keep in mind that it may change during reset or while changing
Port B between general purpose I/O and HI functions. l

The MC68000 (see Figure 5-41) can use a MOVEP instruction with word and long-word
data size to transfer multiple bytes. If an MC68020 or MC68030 is used, dynamic bus siz-
ing can be used to transfer multiple bytes with any instrl!ction. .

Figure 5-42 is a high level block diagram of a system using a single host to control multiple
DSPs. In addition, the DSPs use the SSI to network together the DSPs and multiple
codecs. This system, as shown with four DSPs, can process 80 million instructions per
second at 40 MHz and can be easily expanded if more processing power is needed.

MC6SHC11
+5V . DSP56002

+5V R1\CK
(HOST ACKNOWLEDGE)

TRO ~---L _____________ ~ ARm

(HOST REQUEST)

AS -A15 t-----I ...

HEfJ .
P----.t

Er----~-+----~ (HOST ENABLE)

HR/W
R/W t-------+----------+j (HOST READIWRITE)

A3-A7

ASt--------~ AO - A2 HAO - HA2
t----~.;.;..--~ (HOST ADDRESS)

AO/DO - A7/D7

Use LOA and STA for a-Bit Transfers.
Use LOO and STO for 16-Bit Transfers.

HO-H7
(HOST DATA)

Figure 5-41 MC68HC11 to. DSP56002 Host Interface

+5V
MC68000

~
DSP56002

IPLO-IPL2 INTERRUPT RRrn ENCODER

.....
A4-A23 ;;> ADDRESS -DECODE

FCO- FC2 ~ IDS Am
J!;S :J f -

~ INTERRUPT ~ VECTOR
DECODE --

'OTimK I 'OTimK I
TIMING I

BERR I GENERATOR I -RIW HRIW

Al-A3
.A .1\.

HAO- HA2

DO- D7 '- ,/ HO- H7
.... ...

MC68000 - USE MOVEP for multiple byte transfers.
MC68020 or MC68030 - Any Memory references will work due to dynamic bus sizing.

Figure 5-42 MC68000 to DSP56002 Host Interface

..
HOST

~ Cl
a:

SELECT

SELECT

DATA

ADDRESS

RDIWR

REO

SELECT

SELECT

(J)

:::l
CD
(J)
(J)
w
a:
Cl
Cl
<

(J)
:::l
CD

~
Cl

I-

-

~

I-

o
(!) (!)

:5 :5 0
I--- .---- ...J

u. u. ()

RX

HOST SSI

~

f--- -
DSP56002

I--- .--- TX

RX

HOST SSI

f--- '---
DSP56002

~

- - TX

RX

HOST SSI

f--- '---
~

DSP56002

f--- - TX

RX

HOST SSI

I--- L..--
~

DSP56002

Figure 5-43 Multi-DSP Network Example

< a:
a: W
u. (J)

r-- ANALOG

I- INPUT - CODEC
I---

ANALOG
- OUTPUT

r--- ANALOG
I.- INPUT

r--
CODEC

f--~

ANALOG
'- OUTPUT

5.3.6.5 Host Port Usage Considerations - Host Side
Synchronization is acommon problem when two asynchronous systems are connected,
and careful synchron~zation is required when reading mUlti-bit registers that are written by
another asynchronous system. The considerations for proper operation are discussed
below.

1. Unsynchronized Reading of Receive Byte Registers:
When reading receive byte registers, RXH, RXM, or RXL, the host programmer
should use interrupts or poll the RXDF flag which indicates that data is avail­
able. This guarantees that the data in the receive byte registers will be stable.

2. Overwriting Transmit Byte Registers:
The host programmer should not write to the transmit byte registers, TXH, TXM,
or TXL, unless the TXDE bit is set, indicating that the transmit byte registers are
empty. This guarantees that the DSP will read stable data when it reads the
HRX register.

3. Synchronization of Status Bits from DSP to Host:
HC, HREQ, DMA, HF3, HF2, TRDY, TXDE, and RXDF status bits are set or
cleared from inside the HI and read by the host processor. The host can read
these status bits very quickly without regard to the clock rate used by the DSP,
but there is a chance that the state of the bit could be changing during the read
operation. This possible change is generally not a system problem, since the
bit will be read correctly in the next pass of any host polling routine.

However, if the host holds FfEl\I for the minimum assertion time plus x clock
cycles (see "Host Port Usage Considerations" in the DSP56002 Technical Data
Sheet (DSP560021D) for the minimum number of cycles), the status data is
guaranteed to be stable. The x clock cycles are used to synchronize the REl\J
signal and block internal updates of the status bits. There is no other minimum
HEN assertion time relationship to DSP clocks. There is a minimum HEN deas­
sertion time so that the blocking latch can be updated if the host is in a tight
polling loop. This minimum time only applies to reading status bits.

The only potential problem with the host processor's reading of status bits
would be its reading HF3 and HF2 as an encoded pair. For example, if the DSP
changes HF3 and HF2 from "00" to "11", there is a small possibility that the host
could read the bits during the transition and receive "01" or "10" instead of "11".
If the combination of HF3 and HF2 has significance, the host processor could
potentially read the wrong combination. Two solutions would be to 1) read the
bits twice and check for consensus, or 2) hold HEN access for HEN + x clock
cycles so that status bit transitions are stabilized.

-

-

4. Overwriting the Host Vector:
The host programmer should change the host vector register only when the HC
bit is clear. This will guarantee that the DSP interrupt control logic will receive a
stable vector.

5. Cancelling a Pending Host Command Exception:
The host processor may elect to clear the HC bit to cancel the host command
exception request at any time before it is recognized by the DSP. The DSP CPU
may execute the host exception after the HC bit is cleared because the host
processor does not know exactly when the exception will be recognized. This
uncertainty in timing is due to differences in synchronization between the host
processor and DSP CPU and the uncertainties of pipelined exception process­
ing. For this reason, the HV should not be changed at the same time the HC bit
is cleared. However, the HV can be changed when the HC bit is set.

6. When using the AREa pin for handshaking, wait until AREa is asserted and
then start writing/reading data using the HEN pin or the RACK pin.

When not using HREO for handshaking, poll the INIT bit in the ICR to make
sure it is cleared by the hardware (which means the INIT execution is com­
pleted). Then, start writinglreading data.

If using neither RREO for handshaking, nor polling the INIT bit, wait at least 6T
after negation of HEf\I that wrote ICR, before writing/reading data. This wait
ensures that the INIT is completed, because it needs 3T for synchronization
(worst case) plus 3T for executing the INIT.

7. All unused input pins should be terminated. Also, any pin that is temporarily
not driven by an output during reset, when reprogramming a port or pin, when
a bus is· not driven, or at any other time, should be pulled up or down with a
resistor. For example, the HEN is capable of reacting to 2-ns noise spikes
when it is not terminated. Allowing HACK to float may cause problems even
though it is not needed in the circuit.

SECTION 6

PORTe

-

•

6.1 INTRODUCTION

Port Cis a triple-function I/O port with nine pins (see Figure 6-1). Three of the nine pins
can be configured as general-purpose I/O or as the serial communication interface (8CI)
pins. The other six pins can also be configured as GPIO, or they can be configured as the
synchronous serial interface (881) pins.

When configured as general-purpose I/O, port C can be used for device control. When the
pins are configured as serial interfaces, port C provides a convenient connection to other
D8Ps, processors, codecs, digital-to-analog and analog-to-digital converters, and any of
several transducers. This section describes all three port C functions as well as examples
of how to configure and use each function.

DEFAULT ALTERNATE
FUNCTION FUNCTION

16
EXTERNAL ADDRESS AO·A15 SWITCH

24
DO· 023

EXTERNAL DATA PS
SWITCH us PORT

A XI'?
VO

RO (47)
WR
m

BUS BR
CONTROL BG

wr
as

a a
r---

PBO· PB7 .. II HO· H7
PBa HAO

PORT PB9 HAl
HOST/DMA B PB10 HA2
PARALLEL va PBll HRIW INTERFACE (15)

PB12 ~
PB13 .. HREO
PB14 RACKorPB14 -
PCO RXD

PCl .. TXD

PC2 .. SCLK

PC3 II sca

PC4 II SCl

PC5 II SC2

PC6 .. SCK

PC7 SRD

pca .. STD

Figure 6-1 Port C Interface

..

•

6.2 GENERAL-PURPOSE 1/0 (PORT C)

When itis configured as GPIO, Port C can be viewed as nine I/O pins (see Figure 6-2),
which are controlled by three memory-mapped registers. These registers are the Port C
control register (PCC), Port C data direction register (PCDDR), and Port C data register
(PCD) (see Figure 6-3).

PCO

PC1
P PC2
0

PC3
R
T

PC4

PCS

C
PC6

PC7
pca

ENABLED BY
BITS IN
:$FFE1 x
CCO

CC1

CC2

CC3

CC4

CCS

CC6

CC7

cca

DIRECTION
SELECTED BY

X:$FFE3

COO

C01

CO2
C03

C04

CDS

C06

C07

coa

INPUT/OUTPUT
DATA REGISTER

X:$FFE5

PCO

PC1

PC2

PC3

PC4

PCS

PC6

PC7
pca

Figure 6-2 Port C GPIO Control

Reset clears PCC and PCDDR to configure Port C as general-purpose I/O with all nine pins
as inputs. (External circuitry connected to these pins may need pullups until the pins are
configured for operation.) Each Port C pin may be individually programmed as a gener­
al-purpose I/O pin or as a dedicated on-chip peripheral pin under software control. Pin se­
lection between general-purpose I/O and SCI or SSI is made by setting the appropriate PCC
bit (memory location X:$FFE1) to zero for general-purpose I/O or to one for serial interface.

The PCDDR (memory location X:$FFE3) programs each pin corresponding to a bit in the PCD
(memory location X:$FFE5) as an input pin (if PCDDR=O) or as an output pin (if PCDDR=1).

If a pin is configured as a GPIO input (as shown in Figure 6-4) and the processor reads
the PCD, the processor sees the logic level on the pin. If the processor writes to the PCD,
the data is latched there, but does not appear on the pin because the buffer is in the
high-impedance state.

23

$I{
CCx Function

SC1
sca a GPIO

Serial Interface
SCI {

SCLK
TXD
RXD

23 a

CDx Data Direction

a Input

1 Output

23 a

NOTE: Hardware and software reset clears PCC and PCDDR.

Figure 6-3 Port C GPIO Registers

If a pin is configured as a GPIOoutput and th.e processor reads the PCD, the processor
sees the contents of the PCD rather the logic revel on the pin, which allows the PCD to be
used as a general purpose 1S-bit register. If the processor writes to the PCD, the data is
latched there and appears on the pin during the following instruction cycle (see 6.2.2).

If a pin is configured as aserial interface (8CI or 881) pin, the Port C GPIO registers can
be used to help in debugging the serial interface. If the PCDDR bit for a given pin is
cleared (configured as an input), the PCD will show the logic level on the pin, regardless
of whether the serial interface function is using the pin as an input or an output. If the PCD­
DR is set (configured as an output) for a given serial interface pin, when the processor
reads the PCD, it sees the contents of the PCD rather than the logic level on the pin -
another case which allows the PCD to act as a general purpose register.

..

..

PORT
REGISTERS

Port Control
Register Bit

a
a
1

PORT C DATA (PCD)
REGISTER BIT

DATA DIRECTION
REGISTER (PCDDR) BIT

PORT C CONTROL
(PCC) REGISTER BIT

PORT INPUT DATA BIT

Data Direction
Register Bit

a
1

X

PERIPHERAL· DATA DIRECTION BIT t
OUTPUT DATA BIT

LOGIC .-'----=~=:;.;;.;..;.;="-'--------...I

INPUT DATA BIT

Pin Function

Port Input Pin

Port Output Pin

Alternate Function

Figure 6-4 Port ClIO Pin Control Logic

6.2.1 Programming General Purpose 1/0

Port C and all the DSP56002 peripherals are memory mapped (see Figure 6-5). The stan­
dard MOVE instruction transfers data between Port Cand a register; as a result, perform­
ing a memory-to-memory data transfer takes two MOVE instructions and a register. The
MOVEP instruction is specifically designed for I/O data transfer as shown in Figure 6-6.
Although the. MOVEP instruction may take twice as long to execute as a' MOVE instruc­
tion, only one MOVEP is required for a memory-to-memory data transfer, and MOVEP
does not use a temporary register. Using the MOVEP instruction allows a fast interrupt to
move data to/from a peripheral to memory and execute one other instruction or t6 move
the data to an absolute address. MOVEP is the only memory-to-memory move instruction;
however, one of the operands must be in the top 64 locations of either X: or Y: memory.
The bit-oriented instructions which use I/O short addressing (BCHG, BClR, BSET, BTST,
JClR, JSClR, JSET, and JSSET) can also be used to address individual bits for faster
I/O processing.

X:$FFCO

23 16 15 8 7 o

~I!~![:I====]~~M~====] INTERRUPT PRIORITY REGISTER (IPR)

--------------+-------------~

--------------1

1--------------1

:--------------1

--------------1

--------------+-------------~

~--------------t

...... --------------t
------------+-----------~

--------------+-------------~

---------I

-----+--------------t

f;;';i;;1 = Read as random number; write as don't care.

PORT A- BUS CONTROL REGISTER (BCR)

PLL CONTROL REGISTER

SCI HI- RECIXMIT DATA REGISTER (SRXlSTX)

SCI MID - REC/XMIT DATA REGISTER (SRXlSTX)

SCI LOW - REC/XMIT DATA REGISTER (SRXlSTX)

SCI TRANSMIT DATAADDRESS REGISTER (STXA)

SCI CONTROL REGISTER (SCCR)

SCI INTERFACE STATUS REGISTER (SSR)

SCI INTERFACE CONTROL REGISTER (SCR)

SSI RECIEVEITRANSMIT DATA REGISTER (FWrX)

SSI STATUSITIME SLOT REGISTER (SSISRlTSR)

SSI CONTROL REGISTER B (CRB)

SSI CONTROL REGISTER A (CRA)

HOST RECEIVEITRANSMIT REGISTER (HRXlHTX)

HOST STATUS REGISTER (HSR)

HOST CONTROL REGISTER (HCR)

TIMER COUNT REGISTER (TCR)

TIMER CONTROUSTATUS REGISTER (TCSR)

RESERVED

Figure 6-5 On-Chip Peripheral Memory Map

..

•

MOVEP #$0,X:$FFE1 .
MOVEP #$01 FO,X:$FFE3

MOVEP #data_out,X:$FFE5

MOVEP X:$FFEO,#data_in

;Select Port C to be general-purpose 1/0
;Select pins PCO-PC3 to be inputs
;and pins PC4-PC8 to be outputs

;Put bits 4-8 of "data_ouf' on pins
;PB4-PB8 bits 0-3 are ignored.
;Put PBO-PB3 in bits 0-3 of "data_in"

Figure 6-6 WritelRead Parallel Data with Port C

The DSP does not have a hardware data strobe to strobe data out of the GPIO port. If a data
strobe is needed, it can be implemented using software to toggle one of the GPIO pins.

Figure 6-7 shows the process of programming Port C as general-purpose 1/0. Normal­
ly, it is not good programming practice to activate a peripheral before programming it.
However, reset activates the Port C general-purpose 1/0 as <all inputs, and the alter­
native is to configure the port as an SCI andlor 881, which may not be desirable. In
this case, it is probably better to insure that Port C is initially configured for gener­
al-purpose 1/0 and then configure the data direction and data registers. It may be bet­
ter in some situations to program the data direction or the data registers first to prevent
two devices from driving one signal. The order of steps 1 , 2, and 3 in Figure 6-7 is
optional and can be changed as needed.

STEP 1. SELECT EACH PIN TO BE GENERAL·PURPOSE 1/0 OR AN ON·CHIP PERIPHERAL PIN:
CCx = 0 .. GENERAL· PURPOSE 1/0
CCx = 1 .. ON·CHIP PERIPHERAL

PORT C CONTROL REGISTER (PCC)

STEP 2. SET EACH GENERAL· PURPOSE VO PIN (SELECTED ABOVE) AS INPUT OR OUTPUT:

8

COx = 0 .. INPUT PIN
OR

COx = 1 .. OUTPUT PIN

o

STEP 3. READIWRITE GENERAL· PURPOSE VO PINS:
PCx = OUTPUT DATA IF SELECTED FOR GENERAL· PURPOSE VO AND OUTPUT IN STEPS 1 AND 2.

OR ,
PCx = INPUT DATA IF SELECTED FOR GENERAL· PURPOSE VO AND INPUT IN STEPS 1 AND 2.

8 o

PORT C DATA REGISTER (PCO)

Figure 6-7 1/0 PortC ,Configuration

6.2.2 Port C General Purpose 1/0 Timing
Parallel data written to Port C is delayed by one instruction cycle. For example, the follow-
ing instruction:

MOVE DATA9,X:PORTC DATA24,Y:EXTERN

1. writes nine bits of data to the Port C register, but the output pins do not change
until the following instruction cycle

2. writes 24 bits of data to the external Y memory, which appears on Port A dur­
ing T2 and T3 of the current instruction

As a result, if it is necessary to synchronize the Port A and Port C outputs, two instructions
must be used:

MOVE
NOP

DATA9,X:PORTC
DATA24,Y:EXTERN

..

..

The NOP can be replaced by any instruction that allows parallel moves. Inserting one or
more "MOVE DATA15,X:PORTC DATA24,Y:EXTERN" instructions between the first and
second instruction produces an external 33-bit write each instruction cycle with only one
instruction cycle lost in setup time:

MOVE
MOVE
MOVE

MOVE
NOP

DATA9,X:PORTC
DATA9,X:PORTC
DATA9,X:PORTC

DATA9,X:PORTC

DATA24,Y:EXTERN
DATA24,Y:EXTERN

DATA24,Y:EXTERN
DATA24,Y:EXTERN

One application of this technique is to create an extended address for Port A by concate­
nating the Port A address bits (instead of data bits) to the Port C general-purpose output
bits. The Port C general-purpose 1/0 register would then work as a base address register,
allowing the address space to be extended from 64K words (16 bits) to 33.5 million words
(16 bits+ 9 bits=25 bits).

Port C uses the DSP central processing unit (CPU) four-phase clock for its operation.
Therefore, if wait states are inserted in the DSP CPU timing, they also affect Port C timing .
As a result, Port A and Port C in the previous synchronization example will always stay
synchronized, regardless of how many wait states are used.

6.3 SERIAL COMMUNICATION INTERFACE (SCI)

The SCI provides a full-duplex port for serial communication to other DSPs, microproces­
sors, or peripherals such as modems. The communication can be TTL-level signals or,
with additional logic, RS232C, RS422, etc.

This interface uses three dedicated pins: transmit data (TXD), receive data (RXD), and
SCI serial clock (SCLK). It supports industry-standard asynchronous bit rates and proto­
cols as well as high-speed (up to 5 Mbps for a 40-MHz clock) synchronous data transmis­
sion. The asynchronous protocols include a multidrop mode for master/slave operation
with wakeup on idle line and wakeup on address bit capability.

The SCI consists of separat~ transmit and .. receive sections whose operations can be
asynchronous with respect to 'each other. Aprogrammable baud-rate generatorprovides
the transmit and receive clocks. An enable vector and an interrupt vector have been in­
cluded so that the baud-rate generator can function as a general-purpose timer when it is
not being used by the SCI peripheral or when the interrupt timing is the same as that used
by the SCI. The following is a short list of SCI features:

• Three-Pin Interface:
TXD - Transmit Data
RXD - Receive Data
SCLK - Serial Clock

• 625 Kbps NRZ Asynchronous Communications Interface (40-MHz System Clock)
• 5.0 Mbps Synchronous Seria~ Mode (40-MHz System Clock)
• Multidrop Mode for Multiprocessor Systems:

Two Wakeup Modes: Idle Line and Address Bit
Wired-OR Mode

• On-Chip or External Baud Rate Generation/Interrupt Timer
• Four Interrupt Priority Levels
• Fast or Long Interrupts

6.3.1 SCI I/O Pins
The three SCI pins can be configured as either general-purpose I/O or as a specific SCI
pin. Each pin is independent of the other two, so that if only TXD is needed, RXD and
SCLK can be programmed for general-purpose I/O. However, at least one of the three
pins must be selected as an SCI pin to release the SCI from reset.

..

..

SCI interrupts may be enabled by programming the SCI control registers before any of the
SCI pins are programmed as SCI functions. In this case, only one transmit interrupt can be
generated because the transmit data register is empty. The timer and timer interrupt will
operate as they do when one or more of the SCI pins is programmed as an SCI function.

6.3.1.1 Receive Data (RXD)
This input receives byte-oriented serial data and transfers the data to the SCI receive shift
register. ,Asynchronous input data is sampled on the positive edge of the receive clock (1
x SCLK) if SCKPequals zero. See the DSP56002 Technical Data Sheet for detailed tim­
ing information. RXD may be programmed as a general-purpose 1/0 pin (PCO) when the
SCI RXD function is not being used.

6.3.1.2 Transmit Data (TXD)
This output transmits serial data from the SCI transmit shift register. Data changes on the
negative edge of the asynchronous transmit clock (SCLK). if SCKP equals zero. This out­
put is stable on the positive edge of the transmit clock. See the DSP56002 Technical Data
Sheet for detailed timing information. TXD may be programmed as a general-purpose 1/0
pin (PC1) when the SCI TXD function is not being used.

6.3.1.3 SCI Serial Clock (SCLK)
This bidirectional pin provides an input or output clock from which the transmit andlor re­
ceive baud rate is derived in the asynchronous mode and from which data is transferred
in the synchronous mode. SCLK may be programmed as a general-purpose 1/0 pin (PC2)
when the SCI SCLK function is not being used. This pin may be programmed as PC2
when data is being transmitted on TXDsince, in the asynchronous mode, the clock need
not be transmitted. There is no connection between programming the'PC2 pin as SCLK
and data coming out the TXD pin because SCLK is independent of SCI data 1/0.

6.3.2 SCI Programming Model
The resources available in the SCI are described before discussing specific examples of
how the SCI is used. The registers comprising the SCI are shown in Figure 6-8 and Figure
6-9. These registers are the SCI control register (SCR), SCI status register (SSR), SCI
clock control register (SCCR), SCI receive data registers (SRX), SCI transmit data regis­
ters (STX), and the SCI transmit data address register (STXA). The SCI programming
model can be viewed as three types of registers: 1) control - SCR and SCCR in Figure
6-8; 2) status - SSR in Figure 6-8; and 3) data transfer - SRX, STX, and STXA in Figure
6-9. The following paragraphs describe each bit in the programming model.

23 16 15 14 13 12 11 10 9 8

X:$FFFO

SCI CLOCK POLARITY
TIMER INTERRUPT RATE

TIMER INTERRUPT ENABLE
TRANSMIT INTERRUPT ENABLE

RECEIVE INTERRUPT ENABL
IDLE LINE INTERRUPT ENABLE

TRANSMITTER ENABLE

23

X:$FFF1 0

RECEIVED BIT 8
FRAMING ERROR FLAG

PARITY EHROR FLAG
OVERRUN ERROR FLAG

23 16 15 14 13 12 11 10 9 8

X:$FFF2

7 6 5 4 3 2

8 7 6 5 4 3

7 6 5 4 3 2

0

SCI a::Nl'tU.FE2ISlER (SCR)
(READ'tv'R1E)

WORD SELECT BITS
SCI SHIFT DIRECTION
SEND BREAK
WAKEUP MODE SELECT
RECEIVER WAKEUP ENABLE
WIRED - OR MODE SELECT
RECEIVER ENABLE

0

SCI STATIJS REGISTER (SSA)
(READCN..Y)

TRANSMITTER EMPTY
TRANSMITTER DATA REGISTER EMPTY
RECEIVE DATA REGISTER FULL
IDLE LINE FLAG

o
SCI CLOCK a::Nl'tU.
REGISTER(~
(READWRITE)

TRANSMIT CLOCK SOURCE BIT
RECEIVE CLOCK SOURCE BIT'

"---- .-/

CLOCK PRESCALER----~
CLOCK OUTPUT DIVIDER-------....

NOTE: The number in parentheses is the condition of the bit after hardware reset.

~
CLOCK DIVIDER BITS

Figure 6-8 SCI Programming Model - Control and Status Registers

I

23 1615 8 7

X:$FFF6

X:$FFF5

X:$FFF4 ~iiiiil::i~:~~~~'~~ SCI RECIEVE DATA REGISTER HIGH (READ ONLY) SCI RECIEVE DATA REGISTER MID (READ ONLY)

SCI RECEIVE DATA REGISTER LOW (READ ONLY)

'-- -...........------------------~

~
1:

SCI RECEIVE DATA SHIFT REGISTER

NOTE: SRX is the same register decoded at three different addresses.

{a} Receive Data Register

23 16 15 8 7

X:$FFF6 ~iiiiii::j~::~~~~~~ SCI TRANSMIT DATA REGISTER HIG (WRITE ONLY)
X:$FFF5 SCI TRANSMIT DATA REGISTER MID (WRITE ONLY)

X:$FFF4 SCI TRANSMIT DATA REGISTER LOW (WRITE ONLY)

SCI TRANSMITDATA SHIFT REGISTER

23 16 15 8 7

X:$FFF3 ,IIIIIIIIIII[=~§~=J SCI TRANSMITDATAADDRESS REGISTER L (WRITE ONLY)

NOTES:
1. Bytes are masked on the fly.
2. STX is the same register decoded at three different addresses.

(b) Transmit Data Register

Figure 6-9 SCI Programming Model

6.3.2.1 SCI Control Register {SCR}
The SCR is a 16-bit read/write register that controls the serial interface operation. Each
bit is described in the following paragraphs.

6.3.2.1.1 SCR Word Select {WDSO, WDS1, WDS2} Bits 0, 1, and 2
The three word-select bits (WDSO, WDS1, WDS2) select the format of the transmit and re­
ceive data. The formats include three asynchronous, one multidrop asynchronous mode,
and an 8-bit synchronous (shift register) mode. The asynchronous modes are compatible
with most UART -type serial devices and support standard RS232C communication links.

The multidrop asynchronous modes are compatible with the MC68681 DUART, the
M68HC11 SCI interface, and the Intel 8051 serial interface.

The synchronous data mode is essentially a high-speed shift register used for lID expan­
sion and stream-mode channel interfaces. A gated transmit and receive clock that is com­
patible with the Intel 8051 serial interface mode 0 accomplishes data synchronization. The
word formats are shown in Table 6-1 (also see Figure 6-10 (a) and (b)).

Table 6-1 Word Formats

WDS2 WDS1 WDSO Word Formats

a a a a-Bit Synchronous Data (shift register mode)

a a 1 Reserved

a 1 a 1 a-Bit Asynchronous (1 start, a data, 1 stop)

a 1 1 Reserved

1 a a 11-Bit Asynchronous (1 start, a data, 1 even parity, 1 stop)

1 a 1 11-Bit Asynchronous (1 start, 8 data, 1 odd parity, 1 stop)

1 1 a 11-Bit Multidrop (1 start, a data, 1 data type, 1 stop)

1 1 1 Reserved

When odd parity is selected, the transmitter will count the number of bits in the data word.
If the total is not an odd number, the parity bit is made equal to one and thus produces an
odd number. If the receiver counts an even number of ones, an error in transmission has
occurred. When even parity is selected, an even number must result from the calculation
performed at both ends of the line or an error in transmission has occurred.

The word-select bits are cleared by hardware and software reset.

•

MOOED

2 o
X:$FFFO I 0 0 0 la-BIT SYNCHRONOUS DATA (SHIFT REGISTER MODE)

WDS2 WDS1 WDSO

'-TX
(SSFTD=O)

MODE 2

2

I DO Dl D2 D3 D4 D5 D6 D7 I
1 ----- ONE BYTE FROM SHIFT REGISTER -----.~I

o
X:$FFFO I. 0 0 110-BIT ASYNCHRONOUS (1 START, 8 DATA, 1 STOP)

'--W-D-S-2....L.-W-D-S-1-'--W-D-S-O ...

.-TX
(SSFTD=O)

START
BIT

MODE 4

2 o
X:$FFFO I 0

WDS2 WDS1

o I 11-BITASYNCHRONOUS (1 START,8 DATA, 1 EVEN PARITY, 1 STOP)

WDSO

.-TX
(SSFTD=O)

START
BIT

MODES

2 1

X:$FFFO I 0 1 I 11-BIT ASYNCHRONOUS (1 START,8 DATA, 1000 PARITY, 1 STOP)

WDS2 WDS1 WDSO

-TX
(SSFTD=O)

MODE 6

o

STOP
BIT

X:$FFFO I 1 0 I 11-BIT ASYNCHRONOUS MULTIDROP (1 START,8 DATA, 1 DATA TYPE, 1 STOP)
~W~D~S-2~W~DS-1~-W~D~S~0~

'-TX
(SSFTD=O)

START
BIT

Data Type: 1 = Address Byte
0= Data Byte

NOTES:
1.
2.

Modes1, 3, and 7 are reserved.
DO =LSB;D7 = MSB

3. Data is transmitted and received LSB first if SSFTD = 0 or MSB first if SSFTD = 1.

(a) SSFTD = 0

Figure 6-10 Serial Formats (Sheet 1 of 2)

STOP
BIT

STOP
BIT

STOP
BIT

MODED

X:$FFFO I 0 0

WDS2 WDS1

-TX
(SSFTD= 1)

MODE 2

la-BIT SYNCHRONOUS DATA (SHIFT REGISTER MODE)

WDSO

I 07 06 05 D4 03 02 01 DO I
1 "" ----- ONE BYTE FROM SHIFT REGISTER -----•• 1

X:$FFFO I 0 O· 110-BIT ASYNCHRONOUS (1 START, B DATA, 1 STOP)
~W~D~S~2~~W~D~S-1~~W~D~S-0~

_TX
(SSFTD= 1)

MODE 4

X:$FFFO I 0 I 11-BIT ASYNCHRONOUS (1 START, B DATA, 1 EVEN PARITY, 1 STOP)

WDS2 WDS 1 WDSO

_TX
(SSFTD= 1)

MODE 5

X:$FFFO I 0 I 11-BIT ASYNCHRONOUS (1 START, B DATA, 1 ODD PARITY, 1 STOP)

WDS2 WDS 1 WDSO

_TX
(SSFTD= 1)

MODE 6

STOP
BIT

X:$FFFO I 1 0 I 11-BIT ASYNCHRONOUS MULTIDROP (1 START, B DATA, 1 DATA TYPE, 1 STOP)
""-:-:'W~D~S'::"2 """--:W-:-:D=-S=-1~~W:":':D~S~O-'

_TX
(SSFTD= 1)

Data Type: 1 = Address By1e
0= Data Byte

NOTES:
1.
2.

Modes 1, 3, and 7 are reserved.
DO = LSB;D7 = MSB

3. Data is transmitted and received LSB first if SSFTD = 0 or MSB first if SSFTD = 1.

(b) SSFTD = 1

Figure 6-10 Serial Formats (Sheet 2 of 2)

STOP
BIT

STOP
BIT

STOP
BIT

•

•

6.3.2.1.2 SCR SCI Shift Direction (SSFTD) Bit 3
The SCI data shift registers can be programmed to shift data in/out either LSB first if
SSFTD equals zero, or MSB first if SSFTD equals one. The parity and data type bits do
not change position and remain adjacent to the stop bit. SSFTD is cleared by hardware
and software reset.

6.3.2.1.3 SCR Send Break (SBK) Bit 4
A break is an all-zero word frame - a start bit zero, a character of all zeros (including any
parity), and a stop bit zero: i.e., 1 a or 11 zeros depending on the WDS mode selected. If
SBK is set and then cleared, the transmitter completes transmission of any data, sends
1 a or 11 zeros, and reverts to idle or sending data. If SBK remains set, the transmitter will
continually send whole frames of zeros (1 a or 11 bits with no stop bit). At the completion
of the break code, the transmitter sends at least one high bit before transmitting any data
to guarantee recognition of a valid start bit. Break can be used to signal an unusual con­
dition, message, etc. by forcing a frame error, which is caused by a missing stop bit.
Hardware and software reset clear SBK.

6.3.2.1.4 SCR Wakeup Mode Select (WAKE) Bit 5
When WAKE equals zero, an idle line wakeup is selected. In the idle line wakeup mode,
the SCI receiver is re-enabled by an idle string of at least 1 a or 11 (depending on WDS
mode) consecutive ones. The transmitter's software must provide this idle string between
consecutive messages. The idle string cannot occur within a valid message because each
word frame contains a start bit that is a zero.

When WAKE equals one, an address bit wakeup is selected. In the address bit wakeup
mode, the SCI receiver is re-enabled when the last (eighth or ninth) data bit received in a
character (frame) is one. The ninth data bit is the address bit (R8) in the 11-bit multidrop
mode; the eighth data bit is the address bit in the 1 a-bit asynchronous and 11-bit asyn­
chronous with parity modes. Thus, the received character is an address that has to be pro­
cessed by all sleeping processors - i.e., each processor has to compare the received
character with its own address and decide whether to receive or ignore all following char­
acters. WAKE is cleared by hardware and software reset.

6.3.2.1.5 SCR Receiver Wakeup Enable (RWU) Bit 6
When RWU equals one and the SCI is in an asynchronous mode, the wakeup function is
enabled - i.e., the SCI is put to sleep waiting for a reason (defined by the WAKE bit) to
wakeup. In the sleeping state, all receive flags, except IDLE, and interrupts are disabled.
When the receiver wakes up, this bit is cleared by the wakeup hardware. The programmer
may also clear the RWU bit to wake up the receiver.

RWU can be used by the programmer to ignore messages that are for other devices on a
multidrop serial network. Wakeup on idle line (WAKE=O) or wakeup on address bit
(WAKE=1) must be chosen.

1. When WAKE equals zero and RWU equals one, the receiver will not respond
to data on the data line until an idle line is detected.

2. When WAKE equals one and RWU equals one, the receiver will not respond
to data on the data line until a data byte with bit 9 equal to one is detected.

When the receiver wakes up, the RWU bit is cleared, and the first byte of data is received.
If interrupts are enabled, the CPU will be interrupted, and the interrupt routine will read the
message header to determine if the message is intended for this DSP.

1. If the message is for this DSP, the message will be received, and RWU will
again be set to one to wait for the next message.

2. If the message is not for this DSP, the DSP will immediately set RWU to one.
Setting RWU to one causes the DSP to ignore the remainder of the message
and wait for the next message.

RWU is cleared by hardware and software reset. RWU is a don't care in the synchronous mode.

6.3.2.1.6 SeR Wired-OR Mode Select (WOMS) Bit 7
When the WOMS bit is set, the SCI TXD driver is programmed to function as an open­
drain output and may be wired together with other TXD pins in an appropriate bus config­
uration such as a master-slave multidrop configuration. An external pullup resistor is re­
quired on the bus. When the WOMS is cleared, the TXD pin uses an active internal pullup.
This bit is cleared by hardware and software reset.

6.3.2.1.7 SeR Receiver Enable (RE) Bit 8
When RE is set, the receiver is enabled. When RE is cleared, the receiver is disabled, and
data transfer is inhibited to the receive data register (SRX) from the receive shift register.
If RE is cleared while a character is being received, the reception of the character will be
completed before the receiver is disabled. RE does not inhibit RDRF or receive interrupts.
RE is cleared by a hardware and software reset.

6.3.2.1.8 SeR Transmitter Enable (TE) Bit 9
When TE is set, the transmitter is enabled. When TE is cleared, the transmitter will com­
plete transmission of data in the SCI transmit data shift register; then the serial output is

•

forced high (idle). Data present in the SCI transmit data register (STX) will not be trans­
mitted. STX may be written and TDRE will be cleared, but the data will not betransferred
into the shift register. TE does not inhibit TORE or transmit interrupts. TE is cleared by a
hardware and software reset.

Setting TE will cause the transmitter to send a preamble of 10 or 11 consecutive ones (de­
pending on WDS). This procedure gives the programmer a convenient way to ensure that
the line goes idle before starting a new message. To force this separation of messages
by the minimum idle line time, the following sequence is recommended:

1. Write the last byte of the first message to STX

2. Wait for TORE to go high, indicating the last byte has been transferred to the
transmit shift register

3. Clear TE and set TE back to one. This queues an idle line preamble to imme­
diately follow the transmission of the last character of the message (including
the stop bit)

4. Write the first byte of the second message to STX

In this sequence, if the first byte of the second message is not transferred to the STX prior
to the finish of the preamble transmission, then the transmit data line will simply mark idle
until STX is finally written.

6.3.2.1.9 SCR Idle Line Interrupt Enable (IUE) Bit 10
When ILiE is set, the SCI interrupt occurs when IDLE is set. When ILiE is clear, the IDLE
interrupt is disabled. ILiE is cleared by hardware and software reset.

An internal flag, the shift register idle interrupt (SRIINT) flag, is the interrupt request to the
interrupt controller. SRIINT is not directly accessible to the user.

When a valid start bit has been received, an idle interrupt will be generated if both IDLE
(SCI Status Register bit 3) and ILIE equals one. The idle interrupt acknowledge fromthe
interrupt controller clears this interrupt request. The idle interrupt will not be asserted
again until at least one character has been received. The result is as follows:

1. The IDLE bit shows the real status of the receive line at all times.

2. Idle interrupt is generated once for each idle state, no matter how long the idle
state lasts.

6.3.2.1.10 SCR SCI Receive Interrupt Enable (RIE) Bit 11
The RIE bit is used to enable the SCI receive data interrupt. ·If RIE is cleared, receive in­
terrupts are disabled, and the RDRF bit in the SCI status register must be polled to deter­
mine if the receive data register is full: If both RIE and RDRF are set, the SCI will request
an SCI receive data interrupt from the interrupt controller.

One of two possible receive data interrupts will be requested:

1. Receive without exception will be requested if PE, FE, and OR are all clear
(Le., a normal received character).

2. Receive with exception will be requested if PE, FE, and OR are not all clear
(Le., a received character with an error condition).

RIE is cleared by hardware and software reset.

6.3.2.1.11 SCR SCI Transmit Interrupt Enable (TIE) Bit 12
The TIE bit is used to enable the SCI transmit data interrupt. If TIE is cleared, transmit
data interrupts are disabled, and the transmit data register empty (TDRE) bit in the SCI
status register must be polled to determine if the transmit data register is empty. If both
TI E and TDRE are set, the SCI will request an SCI transmit data interrupt from the inter­
rupt controller. TIE is cleare.d by hardware and software reset.

6.3.2.1.12 SCR Timer Interrupt Enable (TMIE) Bit 13
The TMIE bit is used to enable the SCI timer interrupt. If TMIE is set (enabled), the timer
interrupt requests will be made to the interrupt controller at the rate set by the SCI clock
register. The timer interrupt is automatically cleared by the timer interrupt acknowledge
from, the interrupt controller. This feature allows DSP programmers to use the SCI baud
clock generator as a simple periodic interrupt generator if the SCI is not in use, if external
clocks are used for the SCI, or if periodic interrupts are needed at the SCI baud rate. The
SCI internal clock is divided by 16 (to match the 1 x SCI baud rate) for timer interrupt gen­
eration. This timer does not require that any SCI pins be configured for SCI use to operate.
TMIE is cleared by hardware and software reset.

6.3.2.1.13 SCR SCI Timer Interrupt Rate (STIR) Bit 14
This bit controls a divide by 32 in the SCI Timer interrupt generator. When this bit is
cleared, the divide by 32 is inserted in the chain. When the bit is set, the divide by 32 is
bypassed, thereby increasing the timer resolution by 32 times. This bit is cleared by hard­
ware and software reset.

..

..

6.3.2.1.14 SCR SCI Clock Polarity (SCKP) Bit 15
The clock polarity, sourced orreceived on the clock pin (SCLK), can be inverted using this
bit, eliminating the need for an external inverter. When bit 15 equals zero, the clock polar­
ity is positive; when bit 15 equals one, the clock polarity is negative. In the synchronous
mode, positive polarity means that the clock is normally positive and transitions negative
during data valid; whereas, negative polarity means that the clock is normally negative
and transitions positive during valid data. In the asynchronous mode, positive polarity
means that the rising edge of the clock occurs in the center of the period that data is valid;
negative polarity means that the falling edge of the clock occurs during the center of the
period that data is valid. SCKP is cleared on hardware and software reset.

6.3.2.2 SCI Status Register·(SSR)
The SSR is an 8-bit read-only register used by the OSP CPU to determine the status of
the SCI. When the SSR is read onto the internal data bus, the register contents occupy
the low-order byte of the data bus and all high~order portions are zero filled. The status
bits are described in the following paragraphs.

6.3.2.2.1 SSR Transmitter Empty (TRNE) Bit 0
The TRNE flag is set when both the transmit shift register and data register are empty to
indicate that there is no data in the transmitter. When TRNE is set, data written to one of
the three STX locations or to the STXA will be transferred to the transmit shift register and
be the first data transmitted. TRNE is cleared when TORE is cleared by writing data into
the transmit data register (STX) or the transmit data address register (STXA), or when an
idle, preamble, or break is transmitted. The purpose of this bit is to indicate that the trans­
mitter is empty; therefore, the data written to STX or STXA will be transmitted next - i.e.,
there is not a word in the transmit shift· register presently being transmitted. This proce­
dure is useful when initiating the transfer of a message (Le., a string of characters). TRNE
is set by the hardware, software, SCI individual, and stop reset.

6.3.2.2.2 SSR Transmit Data Register Empty (TORE) Bit 1
The TORE bit is set when the SCI transmit data register is empty. When TDRE is set, new
data may be written to one of the SCI transmit data registers (STX) or transmit data ad­
dress register (STXA). TORE is cleared when the SCI transmit data register is written.
TORE is set by the hardware, software, SCI individual, and stop reset.

In the SCI synchronous mode, when using the internal SCI clock, there is a delay of up to
5.5 serial clock cycles between the time that STX is written until TORE is set, indicating
the data has been transferred from the STX to the transmit shift register. There is a two to
four serial clock cycle delay between writing STX and loading the transmit shift register;

in addition, TDRE is set in the middle of transmitting the second bit. .When using an exter­
nal serial transmit clock, if the clock stops, the SCI transmitter stops. TDRE will not be set
until the middle of the second bit transmitted after the external clock starts. Gating the ex­
ternal clock off after the first bit has been transmitted will delay TDRE indefinitely.

In the SCI asynchronous mode, the TORE flag is not set immediately after a word is trans­
ferred from the STX or STXA to the transmit shift register nor when the word first begins
to be shifted out. TDRE is set two cycles of the 16x clock after the start bit - i.e., two 16X
clock cycles into to transmission time of the first data bit.

6.3.2.2.3 SSR Receive Data Register Full (RDRF) Bit 2
The RDRF bit is set when a valid character is transferred to the SCI receive data register
from the SCI receive shift register. RDRF is cleared when the SCI receive data register is
read or by the hardware, software, SCI individual, and stop reset.

6.3.2.2.4 SSR Idle Line Flag (IDLE) Bit 3
IDLE is set when 10 (or 11) consecutive ones are received. IDLE is cleared by a start-bit
detection. The IDLE status bit represents the status of the receive line. The transition of
IDLE from zero to one can cause an IDLE interrupt (ILlE). IDLE is cleared by the hard­
ware, software, SCI individual, and stop reset.

6.3.2.2.5 SSR Overrun Error Flag (OR) Bit 4
The OR flag is set when a byte is ready to be transferred from the receive shift register to
the receive data register (SRX) that is already full (RDRF=1). The receive shift register
data is not transferred to the SRX. The OR flag indicates that character(s) in the receive
data stream may have been lost. The only valid data is located in the SRX. OR is cleared
when the SCI status register is read, followed by a read of SRX. The OR bit clears the FE
and PE bits - i.e., overrun error has higher priority than FE or PE. OR is cleared by the
hardware, software, SCI individual, and stop reset.

6.3.2.2.6 SSR Parity Error (PE) Bit 5
In the 11-bit asynchronous modes, the PE bit is set when an incorrect parity bit has been
detected in the received character. It is set simultaneously with RDRF for the byte which
contains the parity error - i.e., when the received word is transferred to the SRX. If PE is
set, it does not inhibit further data transfer into the SRX. PE is cleared when the SCI status
register is read, followed by a read of SRX. PE is also cleared by the hardware, software,
SCI individual, or stop reset. In the 1 O-bit asynchronous mode, the 11-bit multidrop mode,

-

..

and the 8-bit synchronous mode, the PE bit is always cleared since there is no parity bit
in these modes. If the byte received causes both parity and overrun errors; the SCI receiv­
er will only recognize the overrun error.

6.3.2.2.7 SSR Framing Error Flag (FE) Bit 6
The FE bit is set in the asynchronous modes when no stop bit is detected in the data string
received. FE and RDRE are set simultaneously - i.e., when the received word is trans­
ferred to the SRX. However, the FE flag inhibits further transfer of data into the SRX until
it is cleared. FE is cleared when the SCI status register is read followed by reading the
SRX. The hardware, software, SCI individual, and stop reset also clear FE. In the 8-bit
synchronous mode, FE is always cleared. If the byte received causes both framing and
overrun errors, the SCI receiver will only recognize the overrun error.

6.3.2.2.S SSR Received Bit S Address (RS) Bit 7
In the 11-bit asynchronous multidrop mode, the R8 bit is used to indicate whether the re­
ceived byte is an address or data. R8 is not affected by reading the SRX or status register.
The hardware, software, SCI individual, and stop reset clear R8.

6.3.2.3 SCI Clock Control Register (SCCR)
The SCCR is a 16-bit read/write register which controls the selection of the clock modes
and baud rates for the transmit and receive sections of the SCI interface. The control bits
are described in the following paragraphs. The SCCR is cleared by hardware reset.

The basic points of the clock generator are as follows:

1. The SCI core always uses a 16 x internal clock in the asynchronous modes
. and always uses a 2 x internal clock in the synchronous mode. The maximum
internal clock available to the SCI peripheral block is the oscillator frequency
divided .by 4. With a 40-MHz crystal, this gives a maximum data rate of 625
Kbps for asynchonous data and 5 Mbps for synchronous data. These. maxi­
mum rates are the same for internally or externally supplied clocks.

2. The 16 x clock is necessary for the asynchronous modes to synchronize the
SCI to the incoming data (see Figure 6-11).

3. For the asynchronous modes, the user must provide a 16 x clock if he wishes
to use an external baud rate generator (Le., SCLK input).

4. For the asynchronous modes, the user may select either 1 x or 16 X for the
output clock when using internal TX and RX clocks (TCM=O and RCM=O).

5. The transmit data on the TXD pin changes on the negative edge of the 1 x
serial clock and is stable on the positive edge (SCKP=O). For SCKP equals
one, the data changes on the positive edge and is stable on the negative
edge. '

6. The receive data on the RXD pin is sampled on the positive edge (if SCKP=O)
or on the negative edge (if SCKP=1) of the 1 x serial clock.

7. For the asynchronous mode, the output clock is continuous.

8. For the synchronous mode, a 1 x clock is used for the output or input baud
rate. The maximum 1 x clock is the crystal frequency divided by 8.

9. For the synchronous mode, the clock is gated.

10. For. both the asynchronous and synchronous modes, the transmitter and
receiver are synchronous with each other.

6.3.2.3.1 SCCR Clock Divider (CD11-CDO) Bits 11-0
The clock divider bits (CD11-CDO) are used to preset a 12-bit counter, which is decre­
mented at the leye rate (crystal frequency divided by 2). The counter is not accessible to
the user. When the counter reaches zero, it is reloaded from the clock divider bits. Thus,
a value of 000000000000 in CD11-CDO produces the maximum rate of leye, and a value
of 0000 0000 0001 produces a rate of leye/2. The lowest rate available is Icyd4096. Figure
6-12 and Figure 6-35 show the clock dividers. Bits CD11-CDO are cleared by hardware
and software reset.

RX, TX DATA
(SSFTD=O)

xl CLOCK

x16CLOCK
(SCKP=O)

IDLE LINE

START

SELECT 8-0R 9-BIT WORDS

~
o 2345678

STOP START

Figure 6-11 16 x Serial Clock

-

..

6.3.2.3.2 SCCR Clock Out Divider (COD) Bit 12
Figure 6-12 and Figure 6-35 show the clock divider circuit. The output divider is controlled
by COD and the SCI mode. If the SCI mode is synchronous, the output divider is fixed at
divide by 2; if the SCI mode is asynchronous, and

1. If COD equals zero and SCLK is an output (Le., TCM and RCM=O), the SCI
clock is divided by 16 before being output to the SCLK pin; thus, the SCLK out­
put is a 1 x clock

2. If COD equals one and SCLK is an output, the SCI clock is fed directly out to
the SCLK pin; thus, the SCLK output is a 16 x baud clock

The COD bit is cleared by hardware and software reset.

6.3.2.3.3 SCCR SCI Clock Prescaler (SCP) Bit 13
The SCI SCP bit selects a divide by 1 (SCP=O) or divide by 8 (SCP=1) prescaler for the clock
divider. The output of the prescaler is further divided by 2 to form the SCI clock. Hardware and
software reset clear SCP. Figure 6-12 and Figure 6-35 show the clock divider diagram.

6.3.2.3.4 SCCR Receive Clock Mode Source Bit (RCM) Bit 14
RCM selects internal or external clock for the receiver (see Figure 6-35). RCM equals zero
selects the internal clock; RCM equals one selects the external clock from the SCLK pin.
Hardware and software reset clear RCM.

6.3.2.3.5 SCCR Transmit Clock Source Bit (TCM) Bit 15
The TCM bit selects internal or external clock for the transmitter (see Figure 6-35). TCM
equals zero selects the internal clock; TCM equals one selects the external clock from the
SCLK pin. Hardware and software reset clear TCM.

6.3.2.4 SCI Data Registers
The SCI data registers are divided into two groups: receive and transmit. There are two

. receive registers - a receive data register (SRX) and a serial-to-parallel receive shift reg­
ister. There are also two transmit registers - a transmit data register (called either STX or
STXA) and a parallel-to-serial transmit shift register.

6.3.2.4.1 SCI Receive Registers
Data words received on the RXD pin are shifted into the SCI receive shift register. When
the complete word has been received, the data portion of the word is transferred to the
byte-wide SRX. This process converts the serial data to parallel data and provides double

buffering. Double buffering provides flexibility and increased throughput since the pro­
grammer can save the previous word while the current word is being received.

The SRX can be read at three locations: X:$FFF4, X:$FFF5, and X:$FFF6 (see Figure
6-13). When location X:$FFF4 is read, the contents of the SRX are placed in the lower
byte of the data bus and the remaining bits on the data bus are written as zeros. Similarly,
when X:$FFF5 is read, the contents of SRX are placed in the middle byte of the bus, and
when X:$FFF6 is read, the contents of SRX are placed in the high byte with the remaining
bits zeroed. Mapping SRX as described allows three bytes to be efficiently packed into

TCM RCM TXClock

0 0 Internal

0 1 Internal

1 0 External

1 1 External

to
BPS = 64 x (7(SCP) + 1) x CD + 1)

where: SCP = 0 or 1
CD = 0 to $FFF

RXClock

Internal

External

Internal

External

SCLK Pin Mode

Output Synchronous/Asynchronous

Input Asynchronous Only

Input Asynchronous Only

Input Synchronous/Asynchronous

SCI CORE LOGIC
USES DIVIDE BY 16 FOR

ASYNCHRONOUS
USES DIVIDE BY 2 FOR

SYNCHRONOUS

INTERNAL CLOCK

TOSCLK

Figure 6-12 SCI Baud Rate Generator

••

..

one 24-bit word by "OR"-ing three data bytes read from the three addresses. The following
code fragment requires that RO initially points to X:$FFF4, register A is initially cleared,
and R3 points to a data buffer. The only programming trick is using BCLR to test bit 1 of
the packing pointer to, see if it ispointing to X:$FFF6 and cle~ring bit 1 to point to X:$FFF4
ifit had been poi'nting to X:$FFF6. This procedure resets the packing pointer after receiv­
ing three bytes ..

MOVE X:(RO),XO ;Copy received data to temporary register
BCLR #$1,RO ;Test for last byte

;reset pointer if it is the last byte
OR XO,A ;Pack the data into register A
MOVE (RO)+ ;and increment t~e packing pointer.
JCS ~LAG ;Jump to clean up routine if last byte
RTI ;Else return until next byte is received

FLAG MOVE A,(R3)+ ;Move the packed data to memory
CLR A ;Prepare A for packing next three bytes
RTI ;Return until the next byte is received

The length and format of the serial word is defined by the WDSO, WDS1, and WDS2 con­
trol bits in the SCI control register. In the synchronous modes, the start bit, the eight data
bits with LSB first, the address/data indicator bit and/or the parity bit, and the stop bit are
received in that order for SSFTD equals zero (see Figure 6-10 (a)). For SSFTD equals
one, the data bits are transmitted MSB first (see Figure 6-1 O(b)). The clock source is de­
fined by the receive clock mode (RCM) select bit in the SCA. In the synchronous mode,
the synchronization is provided by gating the clock. In either mode, when a complete word
has been clocked in, the contents of the shift register can be transferred to the SRX and
the flags; RDRF, FE, PE, and OR are changed appropriately. Because the operation of
the SCI receive shift register is transparent to the DSP, the contents of this register are
not directly accessible to the programmer.

6.3.2.4.2 SCI Transmit Registers
The transmit data register is one byte-wide register mapped into four addresses:
X:$FFF3, X:$FFF4, X:$FFF5, and X:$FFF6. In the asynchronous mode, when data is to
be transmitted, X:$FFF4, X:$FFF5, and X:$FFF6 are used, and the register is called STX.
When X:$FFF4 is written, the low byte on the data bus is transferred to the STX; when
X:$FFF5 is written, the middle byte is transferred to the STX; and when X:$FFF6 is writ­
ten, the high byte is transferred to the STX. This structure (see Figure 6-9) makes it easy
for the programmer to unpack the bytes in a 24-bit word for transmission. Location
X:$FFF3 should be written in the 11-bit asynchronous multidrop mode when the data is

an address and it is desired that the ninth bit (the address bit) be set. When X:$FFF3 is
written, the transmit data register is called STXA, and data from the low byte on the data
bus is stored in STXA. The address data bit will be cleared in the 11-bit asynchronous mul­
tidrop mode when any of X:$FFF4, X:$FFF5, or X:$FFF6 is written. When either STX or
STXA is written, TDRE is cleared.

The transfer from either STX or STXA to the transmit s~ift register occurs automatically,
but not immediately, when the last bit from the previous word has been shifted out - i.e.,
the transmit shift register is empty. Like the receiver, the transmitter is double buffered.
However, there will be a two to four serial clock cycle delay between when the data is
transferred from either STX or STXA to the transmit shift register and when the first bit
appears on the TXD pin. (A serial clock cycle is the time required to transmit one data bit).

XO

X:$FFF6

X:$FFF5

X:$FFF4

"A" "8" "G"

23

,
16 15 l 8 7 l
lc:~~:~111111 MOVE XO, X:$FFF6; TRANSMIT CHARACTER "A"

illll!i;;i~;~~~~~~~ MOVE XO, X:$FFF5; TRANSMIT CHARACTER "S" m MOVE XO, X:$FFF4; TRANSMIT CHARACTER "C·

NOTE: STX is the same register decoded at three different addresses.

(a) Unpacking .

°

~iiiii~:~i::~:;I:~ MOVE XO, X:$FFF6; RECEIVE CHARACTER UN ••..... MOVE XO, X:$FFF5; RECEIVE CHARACTER "S"

MOVE XO, X:$FFF4; RECEIVE CHARACTER "C"

NOTE: SRX is the same register decoded at three different addresses.

(b) Packing

Figure 6-13 Data Packing and Unpacking

..

..

The transmitshift register is not directly addressable, and a dedicated flag for this register
does not exist. Because ,of this fact and the two to four cycle delay, two bytes cannot be
written consecutively to STX or STXA without polling. The second byte will overwrite the
first byte. The TDRE flag should always be polled prior to writing STXor STXA to prevent
overruns unless transmit interrupts have been enabled. Either STX or STXA is usually
written as part of the interrupt service routine. Of course, the interrupt will only be gener­
ated if TDRE equals one. The transmit shift register is indirectly visible via the TRNE bit
in theSSR. ,"

In the synchronous modes, data is synchronized with the transmit clock, which may have
either an internal or external source as defined by the TCMbit in the SCCR. The length
and format of the serial word is defined by the WDSO, WDS1, and WDS2 control bits in
the SCR. In the asynchronous modes, the start bit, the eight data bits (with the LSB first
if SSFTD=O and the MSB first if SSFTD=1), the address/data indicator bit or parity bit, and
the stop bit are transmitted in that order (see Figure 6-10).

The data to be transmitted can be written to anyone of the three STX addresses. If SCKP
equals one and SSHTD equals one, the SCI synchronous mode is equivalent to the SSI
operation in the 8-bit data on-demand mode;

6.3.2.5 Preamble~ Break, and Data, Transmission Priority
It is possible that two or three transmission command~ are set simultaneously: ,

1. A preamble (TE was toggled)

2. A break (SBK was set or was toggled) ,

3. There is data for transmission (TDRE=O)

After the current character transmission, if two or more of these commands are set, the
transmitter will execute them in t~e following priority:

1. Preamble

2. Break

3. Data

6.3.3 Register Contents After Reset
There are four methods to reset the SCI. Hardware or software reset clears the port con­
trol register bits, which configure all I/O as general-purpose input. The SCI will remain in
the reset state while all SCI pins are programmed as general-purpose I/O (CC2, CC1, and
CCO=O); the SCI will become active only when at least one of the SCI 1/0 pins is pro­
grammed as not general-purpose 1/0.

During program execution, the CC2, CC1, and CCO bits may be cleared (individual re­
set), which will cause the SCI to stop serial activity and enter the reset state. All SCI
status bits will be set to their reset state; however, the contents of the interface control
register are not affected, allowing the DSP program to reset the SCI separately from the
other internal peripherals.

The STOP instruction halts operation of the SCI until the DSP is restarted, causing the
SSR to be reset. No other SCI registers are affected by the STOP instruction. Table 6-2
illustrates how each type of reset affects each register in the SCI.

6.3.4 SCI Initialization
The correct way to initialize the SCI is as follows:

1. Hardware or software reset

2. Program SCI control registers

3. Configure SCI pins (at least one) as not general-purpose 1/0

Figure 6-14 and Figure 6-15 show how to configure the bits in the SCI registers. Figure
6-14 is the basic initialization procedure showing which registers must be configured. (1)
A hardware or software reset should be used to reset the SCI and prevent it from doing
anything unexpected while it is being programmed. (2) Both the SCI interface control reg­
ister and the clock control register must be configured for any operation using the SCI. (3)
The pins to be used must then be selected to release the SCI from reset and (4) begin
operation. If interrupts are to be used, the pins must be selected, and interrupts must be
enabled and unmasked before the SCI will operate. The order does not matter; anyone
of these three requirements for interrupts can be used to finally enable the SCI.

Figure 6-15 shows the meaning of the individual bits in the SCR and SCCR. The figures
below do not assume that interrupts will be used; they recommend selecting the appropri­
ate pins to enable the SCI. Programs shown in Figures Figure 6-20, Figure 6-21, Figure
6-28, Figure 6-34, and Figure 6-36 control the SCI by enabling and disabling interrupts.
Either method is acceptable.

-

-

Table 6-2 SCI Registers after Reset

Register Bit
Bit Number

Reset Type

Bit Mnemonic HW Reset SWReset

SCKP 15 0

STIR 14 0
TMIE 13 0
TIE 12 0
RIE 11 0
ILiE 10 '0

TE 9 0

SCR RE 8 0
WOMS 7 0
RWU 6 0

WAKE 5 0
SBK 4 0

SSFTD 3 0
WDS (2-0) 2-0 0

R8 7 0
FE 6 0
PE 5 0

SSR OR 4 0
IDLE 3 0

RDRF 2 0
TORE 1 1
TRNE 0 1

TCM 15 0
RCM 14 0

SCCR SCP 13 0
COD 12 0

CD (11-0) 11-0 0
SRX SRX (23-0) 23-16, 15-8, 7-0 -
STX STX (23-0) 23-0 -

SRSH SRS (8-0) a-o -
STSH STS (8-0) a-o -

NOTES:
SRSH - SCI receive shift register, STSH - SCI transmit shift register
HW - Hardware reset is caused by asserting the external RESET pin.
SW - Software reset is caused by executing the RESET instruction.

0

0

0
0

0

0

0

0
0

0

0

0

0

0

0

0

0

0
0

0
1

1

0
0

0

0

0

-
-
-
-

IR Reset

-
-
-
-
-
-
-
-
-
-
-
-
-
-
0

0

0

0
0

0
1

1

-
-
-

. -
-
-
-
-
-

IR - Individual reset is caused by clearing PCC (bits 0-2) (configured for general-purpose 110).
ST - Stop reset is caused by executing the STOP instruction.
1 - The bit is set during the xx reset.
0- The bit is cleared during the xx reset.
-- The bit is not changed during the xx reset.

ST Reset

-
-
-
-
-
-
-'

-
-
-
-
-
-
-
0

0

0

0
0

0
1

1

-
-
-
-
-
-
-
-
-

1. PERFORM HARDWARE OR SOFTWARE RESET.

2. PROGRAM SCI CONTROL REGISTERS:
a) SCI INTERFACE CONTROL REGISTER - X:$FFFO
b) SCI CLOCK CONTROL REGISTER - X:$FFF2

3. CONFIGURE AT LEAST ONE PORT C CONTROL BIT AS SCI.

~ 0

CCx Function

o GPIO

Serial Interface

4. SCI IS NOW ACTIVE.

Figure 6-14 SCI Initialization Procedure

Table 6-3 (a) through Table 6-4 (b) provide the settings for common baud rates for
the SCI. The asynchronous SCI baud rates show a baud rate error for the fixed os­
cillator frequency (see Table 6-3 (a)). These small-percentage baud rate errors
should allow most UARTs to synchronize. The synchronous applications usually re­
quire exact frequencies, which require that the crystal frequency be chosen carefully
(see Table 6-4 (a) and Table 6-4 (b)).

An alternative to selecting the system clock to accommodate the SCI requirements is to
provide an external clock to the SCI. For example, a 2.048 MHz bit rate requires a CPU
clock of 32.768 MHz. An application may need a 40 MHz CPU clock and an external clock
for the SCI.

-

STEP 2a. SELECT SCI OPERATION:
FOR A BASIC CONFIGURATION, SET:

SCKP BIT 15 = 0
STIR BIT 14 = 0
TMIE BIT 13 = 0
ILiE BIT 10 = 0
RWU BIT 6=0
WAKE BIT 5=0
SBK BIT 4=0
SSFTD - BIT 3=0

15 14 13 12 11 10 9

I

I {
a 7 6 4 2

ENABLE/DISABLE
TRANSMIT INTERRUPT
ENABLE = 1
DISABLE=O

ENABLE/DISABLE -
RECEIVE INTERRUPT
ENABLE = 1
DISABLE =0

ENABLE/DISABLE
TRANSMIT DATA
ENABLE = 1
DISABLE=O

ENABLE/DISABLE
RECEIVE DATA
ENABLE = 1
DISABLE=O

o

X:$FFFO SCIINTERFACECONTROLREGISTER (SCR)
~ __ ~ __ ~ __ L-__ ~ __ ~ __ ~ __ ~ __ ~~~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~~'~

WIRED - OR MODE

MULTIDROP = 1
POINT TO POINT = 0

Step 2a

000 = a-BIT SYNCHRONOUS DATA (SHIFT REGISTER MODE)
001 = RESERVED
010 = 10-BITASYNCHRONOUS (1 START, a DATA, 1 STOP)
011 = RESERVED
100 = 11-BIT ASYNCHRONOUS (1 START, a DATA, EVEN PARITY, 1 STOP)
101 = 11-BIT ASYNCHRONOUS (1 START, a DATA, ODD PARITY, 1 STOP)
110 = 11-BIT MULTIDROP (1 START, a DATA, EVEN PARITY, 1 STOP)
111 = RESERVED

Figure 6-15 SCI General Initialization Detail- Step 2 (Sheet 1 of 2)

STEP 2b. SELECT CLOCK AND DATA RATE:
SETTHE CLOCK DIVIDER BITS (CDO - CD11) ACCORDING TO TABLES 11 - 2 OR 11 - 3.
SET THE SCI CLOCK PRESCALER BIT (SCP, BIT 13) ACCORDING TOTABLES 11 - 2 OR 11 - 3.

1 . {
15 14 13 12 11 10 7 6 5

X:$FFF2

SET
TRANSMIT CLOCK SOURCE
EXTERNAL CLOCK = 1
INTERNAL CLOCK = 0

SET
RECEIVE CLOCK SOURCE
EXTERNAL CLOCK = 1
INTERNAL CLOCK = 0

SET
SCI CLOCK PRESCALER
DIVIDE BY 8 = 1
DIVIDE BY 1 = 0

SET
CLOCK OUT DIVIDER
IF SCLK PIN IS AN OTUPUT AND
COD = 1 SCLK OUTPUT = 16X
COD = 0 SCLK OUTPUT = 1 X

4 3 2 o

SCI CLOCK cc:Ml'n.REGISTER (sa:::R)

~--~--~--~--~--~--~--~--~--~--~--~--~--~--~--~~'~

Step 2b

Figure 6-15 SCI General Initialization Detail- Step 2 (Sheet 2 of 2)

I

..

Table 6-3 (a) Asynchronous SCI Bit Rates for a 40-MHz Crystal

Bit Rate SCP Divider Bits Bit Rate
(BPS) Bit (CDG-CD11) Error, Percent

625.0K 0 $000 0

56.0K 0 $OOA +1.46

38.4K 0 $OOF +1.72

19.2K 0 $020 -1.36

9600 0 $040 +0.16

8000 0 $04D +0.15

4800 0 $081 +0.15

2400 1 $020 -1.38

1200 1 $040 +0.08

600 1 $081 0

300 1 $103 0

BPS= to + II (64X (7(SCP) + 1) X (CD + 1)); to=40 MHz

SCP=O or 1
CD=O to $FFF

Table 6-3 (b) Frequencies for Exact Asynchronous SCI Bit Rates

Bit Rate
SCP Bit

Divider Bits
(BPS) (CDO-CD11)

9600 0 $040

4800 ° $081

2400 0 $103

1200 0 $207

300 0 $822

9600 1 $007

4800 1 $OOF

2400 1 $01F

1200 1 $040

300 1 $103

fO=BPS X 64X (7(SCP) + 1)X(CD + 1))
SCP=O or 1
CD=Oto $FFF

Crystal
Frequency

39,936,000

39,936,000

39,936,000

39,936,000

39,993,000

39,321,600

39,321,600

39,321,600

39,360,000

39,936,000

Table 6-4 (a) Synchronous SCI Bit Rates for a 32.768-MHz Crystal

Baud Rate Divider Bits
Baud Rate

(BPS)
SCP Bit

(CDO-CD11)
Error,

Percent

4.096M 0 $000 0

128K 0 $01F 0

64K 0 $03F 0

56K 0 $048 -0.195

32K 0 $07F 0

16K 0 $OFF 0

8000 0 $1FF 0

4000 0 $3FF 0

2000 ·0 $7FF 0

1000 0 $FFF 0

BPS= fo + (8 x (7(SCP) + 1) x (CD + 1)); fo=32.768 MHz

SCP=O or 1
CD=O to $FFF

Table 6-4 (b) Frequencies for Exact Synchronous SCI Bit Rates

Bit Rate
SCP Bit

Divider Bits
(BPS) (CDQ-CD11)

2.048M 0 $001

1.544M 0 $002

1.536M 0 $002

fo=BPS x 8 x (7(SCP) + 1) x (CD+ 1)

SCP=O or 1
CD=Oto $FFF

6.3.5 SCI Exceptions

Crystal
Frequency

32.768 MHz

37.056 MHz

36.864 MHz

The SCI can cause five different exceptions in the DSP (see Figure 6-53). These excep­
tions are as follows:

1. SCI Receive Data - caused by receive data register full with no receive error
conditions existing. This error-free interrupt may use a fast interrupt service
routine for minimum overhead. This interrupt is enabled by SCR bit 11 (RIE).

-

..

EXCEPTION
STARTING
ADDRESS

, PROGRAM MEMORY SPACE

EXCEPTION SOURCE

$0000 HARDWARE 'RESET

$0002 STACK ERROR

$0004 TRACE

$0006 SWI (SOFTWARE INTERRUPT)

$0008 TROA EXTERNAL HARDWARE INTERRUPT

$OOOA TROS EXTERNAL HARDWARE INTERRUPT

$OOOC SSI RECEIVE DATA

$OOOE SSI RECEIVE DATA WITH EXCEPTION STATUS

$0010 SSI TRANSMIT DATA

$0012 SSI TRANSMIT DATA WITH EXCEPTION STATUS

$0014 SCI RECEIVE DATA

$0016 SCI RECEIVE DATA WITH EXCEPTION STATUS

$0018 SCI TRANSMIT DATA

$OOlA SCI IDLE LINE

$OOlC SCI TIMER

$OOlE RESERVED

$0020 HOST RECEIVE DATA

$0022 HOST TRANSMIT DATA

$0024 HOST COMMAND (DEFAULT)

$0026 AVAILABLE FOR HOST COMMAND

$0028 AVAILABLE FOR HOST COMMAND

•
•
•

$003A AVAILABLE FOR HOST COMMAND

$003C TIMER

$003E ILLEGAL INSTRUCTION

$0040 AVAILABLE FOR HOST COMMAND

• • •
$007E AVAILABLE FOR HOST COMMAND

~ -

TWO WORDS PER VECTOR EXTERNAL INTERRUPTS

f f t
INTERNAL

INTERRUPTS ,
i

EXTERNAL
INTERRUPTS

f
SYNCHRONOUS

SERIAL
INTERFACE

INTERNAL
INTERRUPTS

SERIAL
COMMUNICATIONS

INTERFACE

HOST INT,ERNAL
INTERFACE INTERRUPTS

Figure 6-16 SCI Exception Vector Locations

2. SCI Receive Data with Exception Status - caused by receive data register full
with a receiver error (parity, framing, or overrun error). The SCI status register
must be read to clear the receiver error flag. A long interrupt service routine
should be used to handle the error condition. This interrupt is enabled by SCR
bit 11 (RIE).

3. SCI Transmit Data - caused by transmit data register empty. This error-free
interrupt may use a fast interrupt service routine for minimum overhead. This
interrupt is enabled by SCR bit 12 (TIE).

4. SCI Idle Line - occurs when the receive line enters the idle state (10 or 11 bits
of ones). This interrupt is latched and then automatically reset when the inter­
rupt is accepted. This interrupt is enabled by SCR bit 10 (ILlE).

5. SCI Timer - caused by the baud rate counter underflowing. This interrupt is
automatically reset when the interrupt is accepted. This interrupt is enabled by
SCR bit 13 (TMIE).

6.3.6 Synchronous Data
The synchronous mode (WDS=O, shift register mode) is designed to implement serial-to--
parallel and parallel-to-serial conversions. This mode will directly interface to 8051/8096
synchronous (mode 0) buses as both a controller (master) or a peripheral (slave) and is
compatible with the SSI mode if SCKP equals one. In synchronous mode, the clock is al­
ways common to the transmit and receive shift registers.

As a controller (synchronous master) shown in Figure 6-17, the DSP puts out a clock on
the SCLK pin when data is present in the transmit shift register (a gated clock mode). The
master mode is selected by choosing internal transmit and receive clocks (setting TCM
and RCM=O). The example shows a 74HC165 parallel-to-serial shift register and
74HC164 serial-to-parallel shift register being used to convert eight bits of serial 1/0 to
eight bits of parallel 1/0. The load pulse latches eight bits into the 74HC165 and then
SCLK shifts the RXD data into the SCI (these data bits are sample bits 0-7 in the timing
diagram). At the same time, TXD shifts data out (80-87) to the 74HC164. When using the
internal clock, data is transmitted when the transmit shift register is full. Data is valid on
both edges of the output clock, which is compatible with an 8051 microprocessor. Re­
ceived data is sampled in the middle of the clock low time if SCKP equals zero or in the
middle of the clock high time if SCKP equals one. There is a window during which STX
must be written with the next byte to be transmitted to prevent a gap between words. This
window is from the time TDRE goes high halfway into transmission of bit 1 until the middle
of bit 6 (see Figure 6-19(a)).

-

X:$FFFO

X:$FFF2

15 14 13

I SCKP

I

15 14 ·13

0

CLOCK OUTPUT
(SCP=O)

TRANSMIT DATA
(SSFTD=O)

RECEIVE DATA

I
12 11 10

SSFTD WDS2 WDS1 WDSO

12 11 10 9 8 7 5 4 3 2

xxxxxx XX XX XX XX. XX XX XX : XXXXXXX

SAMPLE 0 1 2 3 4 5 6 7

EXAMPLE: SHIFT REGISTER I/O

DSP56002 74HC165
D 8 PARALLEL INPUTS

RXD Q L LOAD PULSE -U-
CLK

SCLK +
t

TXD o CLK Q 8 PARALLEL OUTPUTS

74HC164
SIP

Figure 6-17 Synchronous Master

SCI cx::NTROlREGISlER (seA)
(REAI}WRfTE)

SCI QOCKcx::NTROlREGISlER (SCCR)
(REAI}WRfTE)

As a peripheral (synchronous slave) shown in Figure 6-18, the DSP accepts an input clock
from the SCLK pin. If SCKP equals zero, data is clocked in on the rising edge of SCLK,
and data is clocked out on the falling edge of SCLK. If SCKP equals one, data is clocked
in on the falling edge of SCLK, and data is clocked out on the rising edge of SCLK. The
slave mode is selected by choosing external transmit and receive clocks (TCM and
RCM=1). Since there is no frame signal, if a clock is missed due to noise or any other rea­
son, the receiver will lose synchronization with the data without any error signal being gen­
erated. Detecting an error of this type can be done with an error detecting protocol or with
external circuitry such as a watchdog timer. The simplest way to recover synchronization
is to reset the SCI.

The timing diagram in Figure 6-18 shows transmit data in the normal driven mode. Bit B7
is essentially one-half SCI clock long {T SCI/2 + 1.5 T EXTAd The last data bit is truncated
so that the pin is guaranteed to go to its reset state before the start of the next data word,
thereby delimiting data words. The 1.5 crystal clock cycles provide sufficient hold time to
satisfy most external logic requirements. The example diagram requires that the WOMS
bit be set in the SCR to wired-OR RXD and TXD, which causes TXD to be three-stated
when not transmitting. Collisions (two devices transmitting simultaneously) must be avoid­
ed with this circuit by using a protocol such as alternating transmit and receive periods. In
the example, the 8051 is the master device because it controls the clock. There is a win­
dow during which STX must be written with the next byte to be transmitted to prevent the
current word from being retransmitted. This window is from the time TORE goes high,
which is halfway into the transmission of bit 1, until the middle of bit 6 (see Figure 6-19{b)).
Of course, this assumes the clock remains continuous - i.e., there is a second word. If the
clock stops, the SCI stops.

The DSP is initially config~red according to the protocol to either receive data or transmit data.
If the protocol determines that the next data transfer will be a DSP transmit, the DSP will con­
figure the SCI for transmit and load STX (or STXA). When the master starts SCLK, data will
be ready and waiting. If the protocol determines that the next data transfer will be a DSP re­
ceive, the DSP will configure the SCI for receive and will either poll the SCI or enable inter­
rupts. This methodology allows multiple slave processors to use the same data line. Selection
of individual slave processors can be under protocol control or by multiplexing SCLK.

Note: TCM=O, RCM=1 and TCM=1,RCM=0 are not allowed in the synchronous mode.
. The results are undefined.

The assembly program shown in Figure 6-20 uses the SCI synchronous mode to transmit
only the low byte of the Y data ROM contents. The program sets the reset vector to run
the program after a hardware reset, puts the MOVEP instruction at the SCI transmit inter­
rupt vector location, sets the memory wait states to zero, and configures the memory
pointers, operating mode register, and the I PRo

-

X:$FFFO

X:$FFF2

15 14

I SCKP

15 14

TCM RCM

CLOCK INPUT
(SKP=O)

TRANSMIT DATA
(SSFTD=O)

I
13 12 11 10 9 8

SCI CO'JTROLREGISTER (SCR)
(READWRfTE)

SSFTD WDS2 WDS1 WDSO

13 12 11 10 9 8

SCI a..ocKCO'JTROLREGISTER (SCCR)
(READWRfTE)

~ 1.5fcyc

SAMPLE 0 2 3 ·4 5 7

EXAMPLE: INTERFACE TO SYNCHRONOUS MICROCOMPUTER BUSES

DSP56002 ~ RXD P3.0

f 8051

TXD
OR

8096

SCLK P3.1

Figure 6-18 Synchronous Slave

SYNCHRONOUS MODE, INTERNAL CLOCK (MASTER)

SERIAL
CLOCK

(INT)
L.-...I L-.I L.-...I L......-I ~ ~

STX t= STX WRITE RANGE -,-
WRITE GAP BETWEEN WORDS 1 AND 2
RANGE MAX 5.5 SERIAL CLOCK CYCLES_I

TRDE ~ 1;--\-"'r'\--\ \r---.T\~DR""rE'£~>-BY~) TX\ W >~ITE""r\~\-\ I

TXD ~~
(TRANSMIT BIT 0 BIT1 BIT 2

DATA) I

NOTE: In internal clock mode, if data 2 is written after the middle of bit 6 of data 1, then a gap of at least two serial bits is inserted
between word 1 and word 2. The gap is bigger as STX is written later.

(a) Master

SYNCHRONOUS MODE, INTERNAL CLOCK (SLAVE)

SERIAL
CLOCK-------------------------,

(EXT)

STX
WRITE ,- STX WRITE RANGE -,- STX WRITE RANGE -,
RANGE

TRDE ~ I \ \ \ \ \\ \ \ \ \ \ \ \ J
TDRE* 0 BY STX WRITE

TXD
(TRANSMIT -------------~

DATA) ~'---I'---'

NOTE: In external clock mode, if data 2 is written after the middle of bit 6 of data 1, then the previous data is retransmitted and
data 2 is transmitted after the retransmission of data 1.

(b) Slave

Figure 6-19 Synchronous Timing

I

-

ORG P:O ;Reset vector
JMP $40
ORG P:$18 ;SCI transmit interrupt vector
MOVEP Y:{RO}+,X:$FFF4 ;Transmit low byte of data

ORG P:$40
MOVEP #O,X:$FFFE ;Clear BCR
MOVE #$100,RO ;Data ROM start address
MOVE #$FF,MO ;Size of data ROM - Wraps around at $200
MOVEC #6,OMR ;Change operating mode to enable data ROM
MOVEP #$COOO,X:$FFFF ;Interrupt priority register
MOVEP #$1200,X:$FFFO ;8-bit synchronous mode
MOVEP #7,X:$FFE1 ;Port C control register - enable SCI
MOVEC #O,SR ;Unmask interrupts

LABO JMP LABO ;Wait in loop for inte'rrupts

Figure 6-20 SCI Synchronous Transmit

The SCI is then configured and the interrupts are unmasked, which starts the data trans­
fer. The jump-to-self instruction {LABO JMP LABO} is used to wait while interrupts transfer
the data.

The program shown in Figure 6-21 is the program for receiving data from the program pre­
sented in Figure 6-20. The program sets the reset vector to run the program after hard­
ware reset, puts the MOVEP instruction to store the data in a circular buffer starting at
$100 at the SCI receive interrupt vector location, puts another MOVEP instruction at the
SCI receive interrupt vector location, sets the memory wait states to zero, and configures
the memory pointers and I PRo The SCI is then configured and the interrupts are un­
masked, which starts the data transfer. The jump-to-self instruction {LABO JMP LABO} is
used to wait while interrupts transfer the data.

6.3.7 Asynchronous Data
Asynchronous data uses a data format with embedded word sync, which allows an un­
synchronized data clock to be synchronized with the word if the clock rate and number of
bits per word is known. Thus, the clock can be generated by the receiver rather than re­
quiring a separate clock signal. The transmitter and receiver both use an internal clock
that is 16 x the data rate to allow the SCI to synchronize the data. The data format re­

quires that each data byte have an additional start bit and stop bit. In addition, two of the
word formats have a parity bit. The multidrop mode used when SCls are on a common
bus has an additional data type bit. The SCI can operate in full-duplex or half-duplex

ORG P:O ;Reset vector
JMP $40

ORG P:$14 ;SCI receive data vector
MOVEP X:$FFF4,Y:(RO)+ ;Receive low byte of data
NOP ;Fast interrupt response

MOVEP X:$FFF1,XO ;Receive with exception. Read status register
MOVEP X:$FFF4,Y:(RO)+ ;Receive low byte of data

ORG P:$40
MOVEP #O,X:$FFFE ;Clear BCR
MOVE #$100,RO ;Data ROM start address
MOVE #$FF,MO ; Size of data ROM - wraps around at $200
MOVEP #$COOO,X:$FFFF ;Interrupt priority register
MOVEP #$900,X:$FFFO ; a-bit synchronous mode receive only
MOVEP #$COOO ,X:$FFF2 ;Clock control register external clock
MOVEP #7,X:$FFE1 ;Port C control register - enable SCI
MOVEC #O,SR ;Unmask interrupts

LABO' JMP LABO ;Wait in loop for interrupts

Figure 6-21 SCI Synchronous Receive

modes since the transmitter and receiver are independent. The SCI transmitter and re­
ceiver can use either the internal clock (TCM=O and/or RCM=O) or an external clock
(TCM=1 and/or RCM=1) or a combination. If a combination is used, the transmitter and
receiver can run at different data rates.

6.3.7.1 Asynchronous Data Reception
Figure 6-22 illustrates initializing the SCI data receiver for asynchronous data. The first
step (1) resets the SCI to prevent the SCI from transmitting or receiving data. Step two (2)
selects the desired operation by programming the SCA. As a minimum, the word format
(WDS2, WDS1, and WDSO) must be selected, and (3) the receiver must be enabled
(RE=1). If (4) interrupts are to be used, set RIE equals one. Use Table 6-3 (a) through
Table 6-4 (b) to set (5) the baud rate (SCP and CDO-CD11 in the SCCR). Once the SCI
is completely configured, it is enabled by (6) setting the RXD bit in the PCC.

The receiver is continually sampling RDX at the 16 x clock rate to find the idle-start-bit
transition edge. When that edge is detected (1) the following eight or nine bits, depending
on the mode, are clocked into the receive shift register (see Figure 6-23). Once a com­
plete byte is received, (2) the character is latched into the SRX, and RDRF is set as well
as the error flags, OR, PE, and FE. If (3) interrupts are enabled, an interrupt is generated.

-

I
1. HARDWARE OR SOFTWARE RESET
2. PROGRAM SCR WITH DESIRED MODE AND FEATURES.
3. TURN ON RECEIVER (RE = 1).
4. OPTIONALLY ENABLE RECEIVER INTERRUPTS (RIE = 1).

15 14 13 12 11 10 9 8 7 6 4 3 2 o

X:$FFFO
SCI CONlROLREGISTER (SCR)

~--~----~--~~--~----~--~----~----~--~----~--~~--~----~--~----~--~, ~
RIE RE

5. SET THE BAUD RATE BY PROGRAMMING THE SCCR.

15 14 13 12 11 10 9 8 7 6 4 2 o

X:$FFF2
SCI CONTROL REGISTER (SCCR)

~--~--~-r~----~--~--~--~----~--~--~--~--~~--~--~--~--~' ~

"---- ~
L I DIVIDESY,

IF SCP = 1, THEN DIVIDE BY 8 • TO 4096
IF SCP = 0, THEN DIVIDE BY 1

6. SET THE RXD BIT IN PCC TO ENABLE THE SCI RECEIVER SYSTEM.
SCI

~
23 9 7 6 5 4 2 0

X,$FFEl 0 CC, CC7 CCG ces =1 cc, cc'l:OS I PORfC<XlNTlUfEGISIER(PCCI

RXD
,-------,

CCx Function

0 GPIO

Serial Interface

NOTE: If RE is cleared while a valid character is being received, the reception of the character will be completed before the receiver is disabled.

Figure 6-22 Asynchronous SCI Receiver Initialization

1. THE RECEIVER IS IDLE UNTILACHARACTER IS RECEIVED INTHE DATA SHIFT REGISTER.

I I I I I I I I I I -I

2. TRANSFERRING THE RECEIVED CHARACTER INTO SRX SETS RDRF IN THE SSR.

7 6 5 4 3 2 o
X:$FFF1 r R8 TFE lPEl ORlIDLE I 1 ITDRE I TRNE I STATUS REGISTER (SSR)

- (READ ONLy)
RDRF

3. IF RIE = 1 IN SCR, THEN AN INTERRUPT IS GENERATED.
23 1615 8 7 o

T-:::::::=7 =
X:$FFF6 SRX : .. ,.: .. iiii:::::::':?}"':':· ... '::.>:.:::.

, X:$FFF5 SRX I::,:,:,:,::»":"·':· ,':: ':.,,:,,·:::·i:i,,:i:"·'::':x:,

II
::'.'.'., ... ,. ., .. , ..

X:$FFF4 SRX

RECEIVE J • J INTERRUPT
~

SERVICE
ROUTINE

P:$0014
S. READING SRX CLEARS RDRF IN THE SSR.

c:==-J 4. THE RECEIVE INTERRUPT SERVICE ROUTINE READS THE RECEIVED CHARACTER.

Figure 6-23 SCI Character Reception

I

-

The interrupt service routine, which can be a fast interrupt or a long interrupt, (4) reads
the received character. Reading the SRX (5) automatically clears RDFR in the SSR and
makes the SRX ready to receive another byte.

If (1) an FE, PE, or OR occurs while receiving data (see Figure 6-24), (2) RDRF is set be­
cause a character has been received; FE, PE, or OR is set in the SSR to indicate that an
error was detected. Either (3) the SSR can be polled by software to look for errors, or (4)
interrupts can be used to execute an interrupt service routine. This interrupt is different
from the normal receive interrupt and is caused only by receive errors. The long interrupt
service routine should (5) read the SSR to determine what error was detected and then
(6) read the SRX to clear RDRF and all three error flags.

6.3.7.2 Asynchronous Data Transmission
Figure 6-25 illustrates initializing the SCI data transmitter for asynchronous data. The first
step (1) resets the SCI to prevent the SCI from transmitting or receiving data. Step two (2)
selects the desired operation by programming the SCR. As a minimum, the word format
(WDS2, WDS1, and WDSO) must be selected, and (3) the transmitter must be enabled
(TE=1). If (4) interrupts are to be used, set TIE equals one. Use Table 6-3 (a) through Ta­
ble 6-4 (b) to set (5) the baud rate (SCP and CDO-CD11 in the SCCR). Once the SCI is
completely configured, it can be enabled by (6) setting the TXD bit in the PCC. Transmis­
sion begins with (7) a preamble of ones.

If polling is used to transmit data (see Figure 6-26), the polling routine can look at either
TDRE or TRNE to determine when to load another byte into STX. If TDRE is used (1), one
byte may be loaded into STX. If TRNE is used (2), two bytes may be loaded into STX if
enough time is allowed for the first byte to begin transmission (see 6.3.2.4.2). If interrupts
are used (3), then an interrupt is generated when STX is empty. The interrupt routine,
which can be a fast interrupt or a long interrupt, writes (4) one byte into STX. If multidrop
mode is being used and this byte is an address, STXA should be used instead of STX.
Writing STX or STXA (5) clears TDRE in the SSR. When' the transmit data shift register
is empty (6), the byte in STX (or STXA) is latched into the transmit data shift register,
TRNE is cleared, and TDRE is set.

There is a provision to send a break or preamble. A break (space) consists of a period of
zeros with no start or stop bits that is as long or longer than a character frame. A preamble
(mark) is an inverted break. A preamble of 10 or 11 ones (depending on the word length
selected by WDS2, WDS 1, and WDSO) can be sent with the following procedure (see Fig­
ure 6-27). (1) Write the last byte to STX and (2) wait for TDRE equals one. This is the byte
that will be transmitted immediately before the preamble. (3) Clear TE and then again set
it to one. Momentarily clearing TE causes the output to go high for one character frame.

1. A CHARACTER IS RECEIVED WITH AT LEAST ONE OF THE FOLLOWING ERRORS:
- FRAMING ERROR (FE = BIT 6 IN SSR
- PARITY ERROR (PE = BIT 5 IN SSR)
- OVERRUN ERROR (OR = BIT 4 IN SSR)

SERIAL STRING OF BAD DATA

I I I I I I I I I I ./
2. THIS SETS RDRF AND SET OR, PE, OR FE IN SSR.

3. SSR CAN BE POLLED BY SOFTWARE.

7 6 5 4 320

X:$FFF1\ RS \ FE , PE , OR , IDLE' 1 'TORE' TRNE \ f~~~~~~~EGISTER (SSR)

'-----v-----" RDRF

AT LEAST ONE BIT SET

4. IF RIE = 1 IN SCR, THEN AN INTERRUPT WITH ERROR IS GENERATED.

7 6 5 4 3 2 o
X:$FFF1 I RS FE PE OR I IDLE I 1 I TORE I TRNE I SCI STATUS REGISTER (SSR)

____ ~r-~,_~~~.--~.~~.~~L.~~.(R~DON~)

RECEIVE WITH

INTERRUPT
VECTOR

EXCEPTION

TABLE

INTERRUPT
SERVICE
ROUTINE

L]
P:$0016 [SCI RECEIVE DATA]

::J
r

~ ------------------------~-
23 16 15 8 7 0

X~FF61; SRX

I, 'I
SRX X:$FFF5

X:$FFF4

]
SRX

] J
5. READSSR

6. READ SRX. THIS CLEARS RDRF IN THE SSR AND CLEARS THE OR, PE, AND
FE FLAGS.

F J Figure 6-24 SCI Character Reception with Exception

I

I
1. HARDWARE OR SOFTWARE RESET
2. PROGRAM SCR WITH DESIRED MODE AND FEATURES.
3. TURN ON TRANSMITIER (TE = 1).
4. OPTIONALLY ENABLE TRANSMITIER INTERRUPTS (TIE = 1).

15 14 13 12 11 10 9 7 6 5 4 3 2 o
SCI CXNTroI..REGISTER (SCR)

X:$FFFO
~--~--~----~--~----~--~----~--~--~----~--~----~--~--~----~--~, ~

TIE TE

5. SET THE SCI CLOCK PRESCALER BIT AND THE CLOCK DIVIDER BITS IN THE SCCR.
6. SET THE TXD BIT IN PCC TO ENABLE THE SCI TRANSMITIER SYSTEM.

SCI

~
23 8 7 6 4 3 2 0

X:$FFE1 0 T~C8 \~7 \ CC6 CC5 CC4\ CC3 CC2\ CCO I PORTCCXNTroI..REGISTER(pcc)

CCx Function

0 GPIO

1 Serial Interface

7. THE TRANSMITIER WILL FIRST BROADCAST A PREAMBLE OF ONES BEFORE BEGINNING DATA TRANSMISSION:
10 ONES WILL BE TRANSMITIED FOR THE 1 O-BIT ASYNCHRONOUS MODE.
11 ONES WILL BE TRANSMITIED FOR THE 11-BIT ASYNCHRONOUS MODE.

TXD

NOTE: If TE is cleared while transmitting a character, the transmission of the character will be completed before the transmitter is disabled.

Figure 6-25 Asynchronous SCI Transmitter Initialization

15 14 13 12 11 10 9 8 7 5 4 3 2 0

X:$FFF1 I~~~ 0 1 0 1 0 0 1 ~R!J:EJ!<GR -GLE rR-;F 1 -~ I 1 -I ~REGSTER{~
1. WHEN STX IS EMPTY, THEN TDRE = 1.
2. WHEN STX IS EMPTY AND THE TRANSMIT DATA SHIFT REGISTER IS EMPTY THEN TRNE = 1.
3. IF TIE = 1 IN SCR AND TDRE = 1 IN SSR, THEN AN INTERRUPT IS GENERATED.

INTERRUPT VECTOR TABLE TRANSMIT

I I r INTERRUPT
SERVICE
ROUTINE

4. STORE ONE

FAVAILABLE FOR HOST COMMANDl I CHARACTER
INTO STX (A)

5. THIS CLEARS
TDREIN SSR.

6. THE CHARACTER IN STX IS COPIED INTO TRANSMIT DATA SHIFT REGISTER.
TRNE IS CLEARED.
TDRE IS SET.
GO TO STEP 2.

X:$FFF6

X:$FFF5

X:$FFF4

X:$FFF3

TDRE TRNE

23 J. 1615 J.

Figure 6-26 Asynchronous SCI Character Transmission

I

8 7 .L 0

I
15 14 13 12 11 10 9 7 4 2 o

SCI INlERFACECONTRa.. REGISTER (SCR) X:$FFFO
~ __ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~~~~ __ ~ __ ~ ____ ~ __ -L~ __ ~ __ ~ __ ~ ____ ~ __ ~' ~~

• 10 OR 11 ONES/ZEROS WILL BE SENT DEPENDING ON THE WORD LENGTH SPECIFIED BY WDS2. WDS1. WDSO.

LAST CHARACTER

SBK= 1

MARKS (ONES)

1. WRITE THE LAST BYTE TO STX.
2. WAIT FOR TRDE = 1. THE LAST BYTE IS NOW IN THE TRANSMIT SHIFT REGISTER.
3. CLEAR TE AND SET BACK TO ONE. THIS QUEUES THE PREAMBLE TO FOLLOW THE LAST BYTE.
4. WRITE THE FIRST BYTE TO FOLLOW THE PREAMBLE INTO SRX.

PREAMBLE OF 10 ONES

STOP IDLE LINE

SPACES (ZEROS)

SBK= 1

FIRST CHARACTER

A STOP BIT AT THE END OF THE BREAK WILL BE INSERTED
BEFORE THE NEXT CHARACTER STARTS

11 12 13 14 15 1 61 71 81 911011 12
I j ,

911O~~~:113141516IS:~:~ 911011 , " ,,¥
CHARACTER ENDS

BEFORE BREAK BEGINS.

TOP

START
OF

BREAK
BREAK PERIOD IS AN EXACT MULTIPLE OF

CHARACTER TIMES.

Figure 6-27 Transmitting Marks and Spaces

START
OF

BREAK

FIRST
CHARACTER

AFTER BREAK

If TE remains cleared for a longer period, the output will remain high for an even number
of character frames until TE is set. (4) Write the first byte to follow the preamble into SRX
before the preamble is complete and resume normal transmission. Sending a break fol­
lows the same procedure except that instead of clearing TE, SBK is set in the SCR to send
breaks and then reset to resume normal data transmission.

The example presented in Figure 6-28 uses the SCI in the asynchronous mode to transfer
data into buffers. Interrupts are used, allowing the DSP to perform other tasks while the
data transfer is occurring. This program can be tested by connecting the SCI transmit and
receive pins. Equates are used for convenience and readability.

The program sets the reset vector to run the program after reset, puts a MOVEP instruc­
tion at the SCI receive interrupt vector location, and puts a MOVEP and BClR at the SCI
transmit interrupt vector location so that, after transmitting a byte, the transmitter is dis­
abled until another byte is ready for transmission. The SCI is initialized by setting the in­
terrupt level, which configures the SCR and SeCR, and then is enabled by writing the
PCC. The main program begins by enabling interrupts, which allows data to be received.
Data is transmitted by moving a byte of data. to the transmit register and by enabling in­
terrupts. The jump-to-self instruction (SEND JMP SEND) is used to wait while interrupts
transfer the data.

.*** ,
SCI ASYNC WITH INTERRUPTS AND SINGLE BYTE BUFFERS*

.*** ,

.*** ,
SCI and other EQUATES*

.*** ,
START EQU $0040 ;Start of program
PCC EQU $FFE1 ;Port C control register
SCR EQU $FFFO ;SCI interface control register
SCCR EQU . $FFF2 ;SCI clock control register
SRX EQU . $FFF4 ;SCI receive register .
STX EQU $FFF4 ;SCI transmit register
BCR EQU $FFFE ;Bus control register
IPR EQU $FFFF ;Interrupt priority register
RXBUF EQU $100 ;Receive buffer
TXBUF EQU $200 ;Transmit buffer

Figure 6-28 SCI Asynchronous Transmit/Receive Example (Sheet 1 of 3)

-

..

.***

RESET VECTOR •
. ******************************.*******************

ORG
JMP

P:$OOOO
START

.***

SCI RECEIVE INTERRUPT VECTOR •
. ***

ORG
MOVEP

P:$0014
X:SRX,Y:(RO)+

;Load the SCI RX interrupt vectors
;Put the received byte in the receive
;buffer. This receive routine is
;implemented as a fast interrupt

.***

SCI TRANSMIT INTERRUPT VECTOR •

. ***

ORG
MOVEP

BCLR

P:$0018
X:(R3)+,X:STX

#12,X:SCR

;Load the SCI TX interrupt vectors
;Transmit a byte and
;increment the pointer in the
;transmit buffer.
;Disable transmit interrupts

.*** ,
INITIALIZE THE SCI PORT AND RX, TX BUFFER POINTERS •

• ***

ORG
ORI
MOVEP
MOVEP

MOVEP

MOVEP
MOVE
MOVE

P:START
#$03,MR
#$COOO,X:IPR
#$OB02,X:SCR

;Start the program at location $40
;Mask interrupts temporarily
;Set interrupt priority to 2
;Disable TX, enable RX interrupts
;Enable transmitter, receiver
;Point to point
;1 O-bit asynchronous
;(1 start, 8 data, 1 stop)

#$0022,X:SCCR;Use internal TX, RX clocks

#>$03,X:PCC
RXBUF,RO
TXBUF,R3

;9600 BPS
;Select pins TXD and RXD for SCI
;Initialize the receive buffer
;Initialize the transmit buffer

Figure 6-28 SCI Asynchronous Transmit/Receive Example {Sheet 2 of 3}

.*** ,
MAIN PROGRAM •

. *** ,
ANDI #$FC,MR ;Re-enable interrupts
MOVE #>$41,X:(R3) ;Move a byte to the transmit buffer
MOVE RO,X:(R3)
BSET #12,X:SCR ;and enable interrupts so it

;will be transmitted
SEND JMP SEND ;Normally something more useful

;would be put here.
END ;End of example.

Figure 6-28 SCI Asynchronous Transmit/Receive Example (Sheet 3 of 3)

6.3.8 Multidrop
Multidrop is a special case of asynchronous data transfer. The key difference is that a pro-
tocol is used to allow networking transmitters and receivers on a single data-transmission
line. Interprocessor messages in a multidrop network typically begin with a destination ad­
dress. All receivers check for an address match at the start of each message. Receivers
with no address match can ignore the remainder of the message and use a wakeup mode
to enable the receiver at the start of the next message. Receivers with an address match
can receive the message and optionally transmit an acknowledgment to the sender. The
particular message format and protocol used are determined by the user's software.
These. message formats include pOint-to-point, bus, token-ring, and custom configura­
tions. The SCI multidrop network is compatible with other leading microprocessors.

Figure 6-29 shows a multidrop system with one master and N slaves. The multidrop mode
is selected by setting WDS2 equals one, WDS1 equals one, and WDSO equals zero. One
possible protocol is to have a preamble or idle line between messages, followed by an ad­
dress and then a message. The idle line causes the slaves to wake up and compare the
address with their own address. If the addresses match, the slave receives the message.
If the addresses do not match, the slave ignores the message and goes back to sleep. It
is also possible to generate an interrupt when an address is received, eliminating the need
for idle time between consecutive messages and addresses. It is also possible for each
slave to look for more than one address, which allows each slave to respond to individual
messages as well as broadcast messages (e.g., a global reset).

-

15

X:$FFFO I SCKP

I
14 13 12 11 10 9 8 7 4 2 0

WDS2 WDS1 WDSO

HEADER

~
IDLE LINE I ADDRESS 1 I LONG MESSAGE FOR MPU 1

l r 1 l
RXD

RXD RXD RXD OTHER
DSP56002 DSP56002 MC68HC11 • • • SERIAL

ADDRESS 1 ADDRESS 2 ADDRESS 3 DEVICE
ADDRESSN

DEVICE RECEIVING . DEVICES IGNORING MESSAGES
MESSAGE

NO /u[oA~~""~r'\II:~>-_N_O ______ --,

YES IGNORE REST
OF MESSAGE.

DISABLE RECEIVER
AND ITS INTERRUPTS BY

SETTING RWU = 1.

l
C EXIT)

Figure 6-29 11-Bit Multidrop Mode

SCI CONTROl REGISTER (SCCR)
(READWRfTE)

IDLE LINE

TXD
DSP56002

6.3.8.1 Transmitting Data and Address Characters
Transmitting data and address when the multidrop mode is selected is shown in Figure
6-30. The output sequence shown is idle line, data/address, and the next character. In
both cases, an "A" is being transmitted. To send data, TE must be toggled to send the idle
line, and then "A" must be sent to STX. Sending the "A" to the STX sets the ninth bit in the
frame to zero, which indicates that this frame contains data. If the "A" is sent to STXA in­
stead, the ninth bit in the frame is set to a one, which indicates that this frame contains an
address.

6.3.8.2 Wired-OR Mode
Building a multidrop bus network requires connecting multiple transmitters to a common
wire. The wired-OR mode allows this to be done without damaging the transmitters when
the transmitters are not in use. A protocol is still needed to prevent two transmitters from
simultaneously driving the bus. The SCI multidrop word format provides an address field
to support this protocol. Figure 6-31 shows a multidrop configuration using wired-OR (set
bit 7 of the SeR). The protocol shown consists of an idle line between messages; each
message begins with an address character. The message can be any length, depending
on the protocol. Each processor in this system has one address that it responds to al­
though each processor can be programmed to respond to more than one address .

6.3.8.3 Idle Line Wakeup
A wakeup mode frees a DSP from reading messages intended for other processors. The
usual operational procedure is for each DSP to suspend SCI reception (the DSP can con­
tinue processing) until the beginning of a message. Each DSP compares the address in
the message header with the DSPs address. If the addresses do not match, the SCI again
suspends reception until the next address. If the address matches, the DSP will read and
process the message and then suspend reception until the next address.

The idle line wakeup mode wakes up the SCI to read a message before the first character
arrives. This mode allows the message to be in any format.

Figure 6-32 shows how to configure the SCI to detect and respond to an idle line. The
word format chosen (WDS2, WDS1, and WDSO in the SCR) must be asynchronous. The
WAKE bit must be clear to select idle line wakeup, and RWU must be set to put the SCI
to "sleep" and enable the wakeup function. RIE should be set if interrupts are to be used
to receive data. If processing must occur when the idle line is first detected, ILiE should
be set. The current message is followed by one or more data frames of ones (10 or 11 bits
each, depending on which word format is used), which are detected as an idle line. If the
word format is multidrop (an 11-bit code), after the 11 ones, the receiver determines the
line is idle and (1) clears the RWU, enabling the receiver. The IDLE bit (2) and an internal
flag SRIINT (3) are set, indicating the line is idle. The SCI is now ready to receive mes­
sages; however, nothing more will happen until the next start bit unless (4) ILiE is set.

..

I
"A" DATA
$41

01000001

23 1615 8 7 0

X:$FFF6 SCI TRANSMIT DATA REGISTER HIGH (WRITE ONLy)

X:$FFF5 SCI TRANSMIT DATA REGISTER MID (WRITE ONY)

X:$FFF4 SCI TRANSMIT DATA REGISTER LOW (WRITE ONLy)

I N= CHARACTER

SCI TRANSMIT DATA SHIFT REGISTER· I ~TXD} Inl I::: I I~II::: I C'T I • I 0 0 0 0 o I 1 I 0 : ISTO~sJtl
23 1615 8 7

X:$FFF3 STXA DATA

23 1615 8 7 0 ADDRESS

X:$FFF6

X:$FFF5

X:$FFF4

C
U ············1······· , ... ;.:.

I

-.r-"
I

SCI TRANSMIT DATA SHIFT REGISTER
IDLELINE ~ 0 0 0 0

23 1615 8 7

X:$FFF3 SCI TRANSMIT DATA REGISTER (WRITE ONLy) ADDRESS

'-----.y---/
"A"

Figure 6-30 Transmitting Data and Address Characters

15 14

X:$FFFO I SCKP

DSP56002
SCI PORT

ADDRESS 1

XMIT REC

ADDRESS CHARACTER WAKEUP
ANDIOR INTERRUPT

13 12 11 10

DSP56002
SCI PORT

ADDRESS 2

XMIT REC

IDLE LINE WAKEUP
ANDIOR INTERRUPT

8 7

OTHER
SERIAL PORT
ADDRESS 3

XMIT REC

INDICATES AN ADDRESS CHARACTER

6 4 2 0

SCI CXl'fIID...AEGISTER (SCA)
(READWRfTE)

DSP56002 DSP56002
SCI PORT SCI PORT

ADDRESS N-1 ADDRESS N

XMIT REC XMIT REC
>

1K

r-FIRST CHARACTER OF MESSAGE D-I
INDICATES A DATA CHARACTER

Figure 6-31 Wired-OR Mode

I

I
15 14 13 12 11 10 9 8 7 6 4 2 o

OCI <XX'ITROLREGISTER (SCR)
X:$FFFO L-__ ~ __ ~~ __ ~ __ ~ ____ ~ __ -L ____ L-__ ~ __ ~ ____ ~ __ -L ____ ~ __ ~ __ ~~ __ ~ __ ~' ~

RIE ILiE RWU WAKE

LINE IS IDLE FOR 10 OR 11 STOP BITS-I

!
1. RWU IS CLEARED; THE RECEIVER IS ENABLED.
2. IDLE IS SET IN SSR, INDICATING THE LINE IS IDLE.
3. AN INTERNAL FLAG SRIINT IS GENERATED ONCE EACH IDLE STATE, NO MATTER HOW LONG IT LASTS.

7 6 5 4 3 2 o
X;$FFF1! R8 FE TpEl OR·! 1 !-RDRF! TDRE! TRNE! SCI STATUS REGISTER (SSR)

__ ~.~ __ ~. ____ ~. __ ~.(READONL~

IDLE (SRIINT)

4. IF ILiE = 1 IN SCR, THEN AN SCI IDLE LINE INTERRUPT IS PENDING.
5. WHEN IDLE LINE INTERRUPT IS ACCEPTED, SRIINT IS AUTOMATICALLY CLEARED.

P;$001A

Figure 6-32 Idle Line Wakeup

INTERRUPT
VECTOR
TABLE

p-:=-j

IDLE LINE
INTERRUPT SERVICE

ROUTINE
(FAST OR LONG)

If ILiE is set, an SCI idle line interrupt will be recognized as pending. When the idle line
interrupt is recognized (5), SRIINT is automatically cleared, and the SCI waits for the first
start bit of the next character. Since RIE was set, when the first character is received, an
SCI receive data interrupt (or SCI receive data with exception status interrupt if an error
is detected) will be recognized as pending. When the receiver has processed the mes­
sage and is ready to wait for another idle line, RWU must be set to one again.

6.3.8.4 Address Mode Wakeup
The purpose and basic operational procedure for address mode wakeup is the same as
idle line wakeup. The difference is that address mode wakeup re-enables the SCI when
the ninth bit in a character is set to one (if cleared, this bit marks a character as data; if
set, an address). As a result, an idle line is not needed, which eliminates the dead time
between messages. If the protocol is such that the address byte is not needed or is not
wanted in the first byte of the message, a data byte can be written to STXA at the begin­
ning of each message. It is not essential that the first byte of the message contain an ad­
dress; it is essential that the start of a new message is indicated by setting the ninth bit to
one using STXA.

Figure 6-33 shows how to configure the SCI to detect and respond to an address charac­
ter. The word format chosen (WDS2, WDS1, and WDSO in the SCR) must be an asyn­
chronous word format. The WAKE bit must be set to select address mode wakeup and
RWU must be set to put the SCI to "sleep" and enable the wakeup function. RIE should
be set if interrupts are to be used to receive data. (1) When an address character (ninth
bit=1) is received, then R8 is set to one in the SSR, and RWU is cleared. Clearing RWU
re-enables the SCI receiver. Since (2) RIE was set in this example, when the first charac­
ter is received, an SCI receive data interrupt (or SCI receive data with exception status
interrupt if an error is detected) will be recognized as pending. When the receiver is ready
to wait for another address character, RWU must be set to one again.

6.3.8.5 Multidrop Example
The program shown in Figure 6-34 configures the SCI as a multidrop master transmitter
and slave receiver (using wakeup on address bit) that uses interrupts to transmit data from
a circular buffer and to receive data into a different circular buffer. This program can be run
with the I/O pins (RXD and TXD) connected and with a pullup resistor for test purposes.

The program starts by setting equates for convenience and clarity and then points
the reset vector to the start of the program. The receive and transmit interrupt vec­
tor locations have JSRs forming long interrupts because the multidrop protocol and
circular buffers require more than two instructions for maintenance. Byte packing
and unpacking are not used in this example. The SRX and STX registers are equat­
ed to $FFF4, causing only the LSB of the 24-bit DSP word to be used for SCI data.

-

I
. 15 14 13 12 11 10 9 S 6 5 4 3 2 o

SCI CONTROL REGISTER (SCR)
X:$FFFO I . I (READM'RITE)

RIE RWU WAKE

1. WHEN ADDRESS CHARACTER IS RECEIVED. THEN RS = 1 IN SSR AND RWU IS CLEARED. THE RECEIVER WAKES UP.

7 0

X:$FFF11 _1--lIL-F_E.....L._P_E--1._0R---Jl-....1':"""LI R~D:.:.R.::.FJ.I..:..T=DR~E:J.I...:.T.:..:R:..:NE~I SCI STATUS REGISTER (SSR) • • • • (READ ONLy)

RS

2. IF RIE = 1 IN SCR. THEN AN SCI RECEIVE DATA INTERRUPT IS PROCESSED.

INTERRUPT
VECTOR
TABLE

P:$0014 I SCI RECEIVE DATA

F?4
Figure, 6-33 Address Mode Wakeup

RECEIVE DATA
INTERRUPT SERVICE

ROUTINE
(FAST OR LONG)

The SCI is then initialized as wired-OR, multidrop, and using interrupts. The SCI
is enabled but the interrupts are masked, which prevents the SCI from transmitting
or receiving data at this time.

The circular buffers used have two pointers. The first points to the first data byte; the sec­
ond pOints to the last data byte. This configuration allows the transmit buffer to act as a
first-in first-out (FIFO) memory. The FIFO can be loaded by a program and emptied by the
SCI in real time. As long as the number of data bytes never exceeds the buffer size, there
will be no overflow or underflow of the buffer. Registers MO-M3 must be loaded with the
buffer size minus one to make pointer registers RO-R3 work as circular pointers. Register
N2 is used as a constant to clear the receive buffer empty flag.

The main program starts by filling the transmit buffer with a data packet. When the trans­
mit buffer is full, it calls the subroutine that transmits the slave's address and then jumps
to self (SEND jmp SEND), allowing interrupts to transmit and receive the data.

The receive subroutine first checks each byte to see if it is address or data. If it is an ad­
dress, it compares the address with its own. If the addresses do not match, the SCI is put
back to sleep. If the addresses match, the SCI is left awake, and control is returned to the
main program. If the byte is data, it is placed in the receive buffer, and the receive buffer
empty flag is cleared. Although this flag is not used in this program, it can be used by an­
other program as a simple test to see if data is available. Using N2 as the constant $0
allows the flag to be cleared with a single-word instruction, which can be part of a fast in­
terrupt.

The transmit subroutine transmits a byte and then checks to see if the transmit buffer is
empty. If the buffer is not empty, control is returned to the main program, and interrupts
are allowed to continue emptying the buffer. If the buffer is empty, the transmit buffer emp­
ty flag is set, the transmit interrupt is disabled, and control is returned to the main program.

The wakeup subroutine transmits the slave's address by writing the address to the STXA
register and by enabling the transmit interrupt to allow interrupts to empty the transmit
buffer. Control is then returned to the main program.

-

-

.*** , .

MULTIDROP MASTER/SLAVE WITH INTERRUPTS AND CIRCULAR BUFFERS*

.***

.***

SCI and other EQUATES*

.*** ,
START EQU $0040 ;Start of program
TX_BUFF EQU $0010 ;Transmit buffer location
RX_BUFF EQU $0020 ;Receive buffer location
B_SIZE EQU $OOOE ;Transmit and receive buffer size

;(don't allow the TX buffer and RX
;buffers to overlap).

TX_MTY EQU $0000 ;Transmit buffer empty
RX_MTY EQU $0001 ;Receive buffer empty
PCC EQU $FFE1 ;Port C control register
SCR EQU $FFFO ;SCI interface control register
SCCR EQU $FFF2 ;SCI clock control register
STXA EQU $FFF3 ;SCI transmit address register
SRX EQU $FFF4 ;SCI receive register
STX EQU $FFF4 ;SCI transmit register
BCR EQU $FFFE ;Bus control register
IPR EQU $FFFF ;Interrupt priority register
.***

RESET VECTOR*

.***

ORG
JMP

P:$OOOO
START

.***

SCI RECEIVE INTERRUPT VECTOR*

.***

ORG
JSR

NOP

P:$0014
RX

;Load the SCI RX interrupt vectors
;Jump to the receive routine that puts
;data packet in a circular buffer if it is for
;this address.
;Second word of fast interrupt not needed

Figure 6-34 Multidrop Transmit Receive Example (Sheet 1 of 4)

ORG

NOP
NOP

P:$0016 ;This interrupt occurs when data is
;received with errors. This example
;does not trap errors so this
;interrupt is not used.

.*** ,
SCI TRANSMIT INTERRUPT VECTOR •

• *** ,
ORG
JSR
NOP

P:$0018
TX

;Load the SCI TX interrupt vectors
;Transmit next byte in buffer

.***

INITIALIZE THE SCI PORT •

. ***

ORG
ORI
MOVEP
MOVEP

MOVEP

MOVEP

P:START
#$03,MR
#$COOO,X:IPR
#$OBE6,X:SCR

#$OOOO,X:SCCR

#>$03,X:PCC

.**

;Start the program at location $40
;Mask interrupts temporarily
;Set interrupt priority to 2
;Disable TX, enable RX interrupts
;Enable transmitter and receiver,
;Wired-OR mode, Rec. wakeup
;mode, 11-bit multidrop (1 start,

. ;8 data,1 data type, 1 stop)
;Use internal TX, RX clocks
;625K BPS at 40 MHz
;Select pins TXD and RXD for SCI

;INITIALIZE INTERRUPTS, REGISTERS, ETC .•

• **

MOVEP
MOVE
MOVE
MOVE
MOVE
MOVE

#$O,X:BCR
#TX_BUFF,RO
#TX_BUFF,R1
#RX_BUFF,R2
#RX_BUFF,R3
#>$41,R5

; No wait states
;Load start pointer of transmit buffer
;Load end pointer of transmit buffer
;Load start pointer of receive buffer
;Load end pointer of receive buffer
;Init data register ... R5 contains
;the data that will be sent in this
;example; it is initialized to an ASCII A.

Figure 6-34 Multidrop Transmit Receive Example {Sheet 2 of 4}

-

..

MOVE #B_SIZE,MO
MOVE #B_SIZE,M1
MOVE #B_SIZE,M2
MOVE #B_SIZE,M3
MOVE #>$1 ,NO
MOVE #>$1,N1
MOVE #O,N2
MOVEP X:SRX,X:(RO)

.** ,
MAIN PROGRAM •

• ** ,
ANDI #$FC,MR
MOVE (R1)+

LOOP MOVE R1,A
MOVE (R1)-
MOVE RO,B
CMP A,B
JEQ SND_BUF
MOVE RS,X:(R1)+

MOVE (RS)+
MOVE (R1)+

JMP LOOP
SND_BUF JSR WAKE_UP
SEND JMP SEND

;Load transmit buffer size
;Load transmit buffer siz.e
;Load receive buffer size
;Load receive buffer size
;Load receive address
;Load first slave address
;Load a constant (0) into N2
;Clear receive register

;Re-enable interrupts
;Temporarily increment the tail pointer
;Build a packet
;Check to see if the TX buffer is full
;(fix tail pointer now that we've used it)
;by comparing the head and tail pointers
;of the circular transmit buffer.
;if equal, transmit completed packet
;if not, put next character in
;transmit buffer and
;increment the pointers.
;Temporarily increment the tail
;pointer to test buffer again

;Wake up proper slave and send packet
;and allow interrupts to drain
;the transmit buffer.

Figure 6-34 M"ultidrop Transmit Receive Example (Sheet 3 of 4)

.***

; SUBROUTINE TO READ SCI AND STORE IN BUFFER USING A lONG INTERRUPT*

.***

RX JClR #7,X:$FFF1,RX_DATA ;Check if this is address or data.
MOVEP X:SRX,A ;Compare the received address
MOVE N1,B ;with the slave address.
CMP A,B
JEQ END_RX ;If address OK, use interrupts to Rx

;packet
BSET #6,X:$FFFO ;if not, go back to sleep
JMP END_RX ;and return to previous program.

RX_DATA MOVEP X:SRX,X:(R3)+ ;Put data in buffer,
MOVE N2,X:RX_MTY ;and clear the Rx buffer empty flag

END_RX RTI ;Return to previous program
.***

SUBROUTINE TO WRITE BUFFER TO SCI USING A lONG INTERRUPT*

.***

TX MOVEP X:(RO)+,X:STX ;Transmit a byte and increment the
;pointer -MOVE RO,A ;Check to see if the TX buffer is
;empty

MOVE R1,B
CMP A,B
JNE END_TX ;If not, return to main
MOVE #$000001,XO ;If it is, set the TX buffer empty flag
MOVE XO,X:TX_MTY
BClR #12,X:SCR ;disable transmit interrupts, and

END_TX RTI ;return to main
.***

SUBROUTINE TO WAKE UP THE ADDRESSED SlAVE*

.***

WAKE_UP MOVEP N1,X:STXA ;Transmit slave address using STXA
;not STX

BSET #12,X:SCR ;Enable transmit int~rrupts to send
;packet

AWAKE RTI
END ;End of example.

Figure 6-34 Multidrop Transmit/Receive Example (Sheet 4 of 4)

..

6.3.9 SCI Timer
The SCI clock determines the data transmission rate and can also be used to establish a periodic
interrupt that can act as an event timer or be used in any other timing function. Figure 6-35 illus­
trates how the SCI timer is programmed. Bits CD11-CDO, SCP, and STIR in the SCCR work to­
gether to determine the time base. The crystal oscillator fosc is first divided by 2 and then divided
by the number CD11-CDO in the SCCR. The oscillator is then divided by 1 (if SCP=O) or eight
(if SCP=1). This output is used as is if STIR = 1 or, if STIR = 0, it is divided by 2 and then by 16
before being used. If TMIE in the SCR = 1 when the periodic timeout occurs, the SCI timer inter­
rupt is recognized and pending. The SCI timer interrupt is automatically cleared when the inter­
rupt is serviced. This interrupt will occur every time the periodic timer times out. If only the timer
function is being used (Le., PCO, PC1, and PC2 pins have been programmed as GPIO pins), the
transmit interrupts should be turned off (TIE=O). Under individual reset, TORE will remain set and
the timer will continuously generate interrupts.

Figure 6-35 shows that an external clock can be used for SCI receive and/or transmit, which
frees the SCI timer to be programmed for a different interrupt rate. In addition, both the SCI timer
interrupt and the SCI can use the internal time base if the SCI receiver and/or transmitter require
the same clock period as the SCI timer.

The program in Figure 6-36 configures the SCI to interrupt the DSP at fixed intervals. The" pro­
gram starts by setting equates for convenience and clarity and then points the reset vector to the
start of the program. The SCI timer interrupt vector location contains "move (RO)+", incrementing
the contents of RO,which serves as an elapsed time counter.

The timer initialization consists of enabling the SCI timer interrupt, setting the SCI baud rate
counters for the desired interrupt rate, setting the interrupt mask, enabling the interrupt, and then
enabling the SCI state machine.

SCI CONTROL REGISTER (SCCR)
(READIWRITE)

15

X:$FFF2

14 13 12 11

PRESCALER
IF SCP = 1, THEN DIVIDE BY 8
IF SCP = 0, THEN DIVIDE BY 1

10 8

DIVIDE BY 1
TO 4096

r-------------------, SCKP
OUTPUT DIVIDER

7 6 5 4

.... ------------I~ IF SYNC, THEN DIVIDE BY 2
IF ASYNC THEN: ~------~------~SCLK

I
N
T
E
R
N
A
L

C
L
o
C

COD COD = 1, DIVIDE BY 1
COD = 0, DIVIDE BY 16

RCM --_r--_
~-----------~ TCM --~L.-_

TCM

TRANSMIT CONTROL I

SCKP

IF ASYNC, THEN DIVIDE BY 16 TRANSMIT CLOCK t 0---"
IF SYNC THEN: .. --------o~

MASTER, DIVIDE BY 2
SLAVE, DIVIDE BY 1 o

K .----------------------------9

' ~
15 14

X:$FFFO

SCKP STIR

RECEIVE CONTROL I
IF ASYNC, THEN DIVIDE BY 16 RECEIVE CLOCK t D--f-.....

l
13

TMIE

IF SYNC THEN: ~-------o"
MASTER, DIVIDE BY 2
SLAVE, DIVIDE BY 1

SCI CONTROL REGISTER (SCR)
(READIWRITE)

12 11 10 9 8 7 6

o

5 4

E
X
T
E
R
N
A
L

C
L
o
C
K

SSFTD

2

o

o

1. WHEN PERIODIC TIMEOUT OCCURS AND TMIE = 1 IN SCR, THEN AN SCI TIMER EXCEPTION IS TAKEN.

INTERRUPT
VECTOR
TABLE

P:$OOlC k~::!..!.~~-t------I

SCI TIMER
INTERRUPT

SERVICE
ROUTINE

(FAST OR LONG)

2. PENDING TIMER INTERRUPT IS AUTOMATICALLY CLEARED WHEN INTERRUPT IS SERVICED.

Figure 6-35 SCI Timer Operation

..

•

·***

TIMER USING SCI TIMER INTERRUPT •

• ***

.***

SCI and other EQUATES •

• ***

START
SCR
seCR
IPR

EQU
EQU
EQU
EQU

$0040
$FFFO
$FFF2
$FFFF

.***

RESET VECTOR •

. ***

ORG
JMP

P:$OOOO
START

.***

SCI TIMER INTERRUPT VECTOR •

.***

ORG
MOVE
NOP

P:$001C
(RO)+

.***

INITIALIZE THE SCI PORT •

• ***

;Start of program
;SCI control register
;SCI clock control register
;Interrupt priority register

;Load the SCI timer interrupt vectors
;Increment the timer interrupt counter
;This timer routine is implemented
;as a fast interrupt

ORG P:ST ART ;Start the program at location $40
MOVE
MOVEP
MOVEP

#O,RO ;Initialize the timer interrupt counter
#$2000,X:SCR ;Select the timer interrupt
#$013F,X:SCCR;Set the interrupt rate at 1 ms

;(arbitrarily chosen)
;Interrupts/second =
;fosc/(64x(7(SCP)-+ 1)X(CD+ 1))
;Note that this is the same equation
;as for SCI async baud rate

Figure 6-36 SCI Timer Example (Sheet 1 of 2)

END

MOVEP

ANDI

JMP

END

;For 1 ms, SCP=O,
;CD=0001 0011 1111.

#$COOO,X:I PR ;Set the interrupt priority level­
;application specific.

#$FC,MR ;Enable interrupts, set MR bits 11 and
;10=0

END ;Normally something more useful
;would be put here.
;End of example.

Figure 6-36 SCI Timer Example (Sheet 2 of 2)

6.3.10 Bootstrap Loading Through the SCI (Operating Mode 6)
When the DSP comes out of reset, it looks at the MODC, MODS, and MODA pins and
sets the corresponding mode bits in the OMR. If the mode bits are set to 110 respec­
tively, the DSP will load the program RAM from the SCI. Figure 6-37 shows how the SCI
is configured for receiving this code and Figure 6-37 shows the segment of bootstrap
code that is used to load from the SCI. The complete code used in the bootstrap program
is given in APPENDIX A. This program (1) configures the SCI, (2) loads the program
size, (3) loads the location where the program will begin loading in program memory, and
(4) loads the program.

First, the SCI Control Register is set to $0302 (see Figure 5-2) which enables the trans­
mitter and receiver and configures the SCI for 10 bits asynchronous with one start bit,
8 data bits, one stop bit, and no parity. Next, the SCI Clock Control Register is set to
$COOO which configures the SCI to use external receive and transmit clocks on the
SCLK pin. This clock must be 16 times the serial data rate.

The next step is to receive the program size and then the starting address to load the
program. These two numbers are three bytes each loaded least significant byte first.
Each byte will be echoed back as it is received. After both numbers are loaded, the pro­
gram size is in AO and the starting address is in A 1.

The program is then loaded one byte at a time, . least significant byte first. After loading
the program, the operating mode is set to zero, the CCR is cleared, and the DSP begins
execution with the first instruction that was loaded.

..

..

FROM OPEN
COLLECTOR
BUFFER

FROM
RESET
FUNCTION

FROM OPEN
COLLECTOR
BUFFER

+5V

DSP56002 Serial
Bootstrap

Loader

RXD I------l

(1 start,
8 data,
1 stop,
no parity,
LSB first)

a_--'----l MODCIl'JW TXD J---------~

~~----~---lMODBflROB

16xCLK
SCLK~--------~

Notes: 1. "These diodes must be Schottky diodes .
2. All resistors are 15KO unless noted otherwise.
3. When in RESET, TROA, mos and Nm must

be deasserted by external peripherals.

Figure 6-37 DSP56002 Bootstrap Example - Mode 6

; This routine loads from the SCI.
; MC:MB:MA=11 0 - external SCI clock
; MC:MB:MA=111 - reserved

SCILD MOVEP #$0302,X:SCR ; Configure SCI Control Reg
JMP <EXTC ; go to next boot rom segment
NOP ; just to fill the last space

ORG PL:$1 OO,PL:$1 00 ; starting address of 2nd ROM

EXTC MOVEP #$COOO,X:SCCR ; Configure SCI Clock Control Reg
MOVEP #7,X:PCC ; Configure SCLK, TXD and RXD

- SCI1 DO #6,_LOOP6 ; get 3 bytes for number of
; program words and 3 bytes
; for the starting address

JCLR #2,X:SSR,* ; Wait for RDRF to go high
MOVEP X:SRXL,A2 ; Put 8 bits in A2
JCLR #1,X:SSR,* ; Wait for TDRE to go high
MOVEP A2,X:STXL ; echo the received byte
REP #8
ASR A • - LOOP6
MOVE A1,RO ; starting address for load
MOVE A1,R1 ; save starting address
DO AO,_LOOP4 ; Receive program words

DO #3,_LOOP5
JCLR #2,X:SSR,* ; Wait for RDRF to go high
MOVEP X:SRXL,A2 ; Put 8 bits in A2
JCLR #1,X:SSR,* ; Wait for TDRE to go high
MOVEP A2,X:STXL ; echo the received byte
REP #8
ASR A

LOOP5 -
MOVEM A1,P:(RO)+ ; Store 24-bit result in P memory

LOOP4 -

Figure 6-38 Bootstrap Code Fragment

•

6.3.11 Example Circuits
The SCI can be used in a number of configurations to connect multiple processors. The
synchronous mode shown in Figure 6-39 shows the DSP acting as a slave. The 8051 pro­
vides the clock that clocks data in and out of the SCI, which is possible because the SCI
shift register mode timing is compatible with the timing for 8051/8096 processors. Trans­
mit data is changed on the negative edge of the clock, and receive data is latched on the
positive edge of the clock. A protocol must be used to prevent both processors from trans­
mitting simultaneously. The DSP is also capable of being the master device.

A multimaster system can be configured (see Figure 6-41) using a single transmit/receive
line, multidrop word format, and wired-OR. The use of wired-OR requires a pullup resistor
as shown. A protocol must be used to prevent collisions. This scheme is physically the
simplest multiple DSP interconnection because it uses only one wire and one resistor.

The master-slave system shown in Figure 6-40 is different in that it is full duplex. The clock
pin is not required; thus, it is configured as a GPIO pin. Communication is asynchronous.
The slave's transmitters must be wire-ORed because more than one transmitter is on one
line. The master's transmitter does not need to be wire-ORed.

CLOCK INPUT

--i ~ 1.5 Ccyc

TRANSMIT DATA

RECEIVE DATA XXXXXX

SAMPLE o 4 5 7

DSP56002 . 8051

RXD. P3.0

U TXD

SCLK P3.1

Figure 6-39 Synchronous Mode Example

MASTER RECEIVE

MASTER TRANSMIT

MC68HCll
MASTER

RXD

TXD

PC2

:~
>

DSP56002 DSP56002
SLAVE SLAVE

~ RXD RXD
- TXD - TXD -

- PC2 - PC2 -

Figure 6-40 Master-Slave System Example

DSP56002
MASTER

TXD

RXD

PC2

DSP56002
MASTER

Figure 6-41 Multimaster System Example

TXD

RXD

PC2

DSP56002
SLAVE

RXD
TXD -

PC2 -

..

-

6.4 SYNCHRONOUS SERIAL INTERFACE (SSI)
The synchronous serial interface (SSI) provides a full-duplex serial port for serial commu­
nication with a variety of serial devices including one or more industry-standard codecs,
other DSPs, microprocessors, and peripherals which implement the Motorola SPI.

The user can independently define the following characteristics of the SSI: the number of
bits per word, the protocol, the clock, and the transmit/receive synchronization.

The user can select among three modes: normal, on-demand, and network. The normal
mode is typically used to interface with devices on a regular or periodic basis. Thedat­
a-driven on-demand mode is intended to be used to communicate with devices on a non­
periodic basis. The network mode provides time slots in addition to a bit clock and frame
synchronization pulse.

The SSI functions with a range of 2 to 32 words of I/O per frame in the network mode. This
mode is typically used in star or ring time division multiplex networks with other DSP56K
processors and/or codecs. The clock can be programmed to be continuous or gated.
Since the transmitter and receiver sections of, the SSI are independent, they can be pro­
grammed to be synchronous (using a common clock) or asynchronous with respect to
each other.

The S81 requires up to six pins, depending on its operating mode. The most common mini­
mum configuration is three pins: transmit data (STD), receive data (SRD) and clock (SCK).

The SSI consists of independent transmitter and receiver sections and a common SSI
clock generator. Three to six pins are required for operation, depending on the operating
mode selected.

The following is a short list of SSI features:

• Three-Pin Interface:
TXD - Transmit Data
RXD - Receive Data
SCLK - Serial Clock

• A 10 Mbps at 40 MHz (fosd4) serial interface

• Double Buffered

• User Programmable

• Separate Transmit and Receive Sections

• Control and Status Bits

- Interface to a Variety of Serial Devices, Including:
Codecs (usually-without additional logic)

MC145502
MC145503
MC145505
MC145402 (13-bit linear codec)
MC145554 Family of Codecs
MC145532

Serial Peripherals (AID, D/A)
Most Industry-Standard AID, D/A
DSP56ADC16 (16-bit linear AID)

DSP56K to DSP56K Networks
Motorola SPI Peripherals and Processors
Shift Registers

-Interface to Time Division Multiplexed Networks without Additional Logic

• Six Pins:
STD SSI Transmit Data
SRD SSI Receive Data
SCK SSI Serial Clock
SCO Serial Control 0 (defined by SSI mode)
SC1 Serial Control 1 (defined by SSI mode)
SC2 Serial Control 2 (defined by SSI mode)

• On-chip Programmable Functions Include:
Clock - Continuous, Gated, Internal, External
Synchronization Signals - Bit Length and Word Length
TX/RX Timing - Synchronous, Asynchronous
Operating Modes - Normal, Network, On-Demand
Word Length - 8, 12, 16, 24 Bits
Serial Clock and Frame Sync Generator

- Four Interrupt Vectors:
Receive
Receive with Exception
Transmit
Transmit with Exception

..

This interface is descriptively named "synchronous" because all serial transfers are syn­
chronized to a clock. Additional synchronization signals are used to delineate the word
frames. The normal mode of operation is used to transfer data at a periodic rate, but only
one word per period. The network mode is similar in that it is also intended for periodic
transfers; however, it will support up to 32 words (time slots) per period. This mode can
be used to build time division multiplexed (TOM) networks. In contrast, the on-demand
mode is intended for nonperiodic transfers of data. This mode can be used to transfer data
serially at high speed when the data becomes available. This mode offers a subset of the
SPI protocol.

6.4.1 SSI Data and Control Pins
The SSI has three dedicated 110 pins (see Figure 6-1), which are used for transmit data
(STO), receive data (SRO), and serial clock (SCK), where SCK may be used by both the
transmitter and the receiver for synchronous data transfers or by the transmitter only for
asynchronous data transfers. Three other pins may also be used, depending on the mode
selected; they are serial control pins SCO, SC1, and SC2. They may be programmed as
SSI control pins in the Port C control register. Table 6-5 shows the definition of SCO, SC1 ,
SC2, and SCK in the various configurations. The following paragraphs describe the uses
of these pins for each of the SSI operating modes. Figure 6-42 and Figure 6;.43 show the
internal clock path connections in block diagram form. The receiver and transmitter clocks
can be internal or external depending on the SYN, SCOO, and SCKO bits in CRB.

6.4.1.1 Serial Transmit Data Pin (STD)
STO is used for transmitting data from the serial transmit shift register. STO is an output
when data is being transmitted. Data changes on the positive edge of the bit clock. STO
goes to high impedance on the negative edge of the bit clock of the last data bit of the
word (Le., during the second half of the last data bit period) with external gated clock, re­
gardless of the mode. With an internally generated bit clock, the STD pin becomes high
impedance after the last data bit has been transmitted for a full clock period, assuming
another data word does not follow immediately. If a data word follows immediately, there
will not be a high-impedance interval.

Codecs label the MSB as bit 0; whereas, the OSP labels the LSB as bit 0. Therefore, when
using a standard codec, the OSP MSB (or codec bit 0) is shifted out first when SHFO=O, and
the OSP LSB (or codec bit 7) is shifted out first when SHFO=1. STO may be programmed
as a general-purpose pin called PCB when the SSI STO function is not being used.

Table 6-5 Definition of SCO, SC1, SC2, and SCK

Asynchronous (SYN=O) Synchronous (SYN=1)
SSI Pin Name

(Control Bit Name)

SCO=O (in)

SCO=1 (out)
(SCDO)

SC1=O (in)

SC1=1 (out)
(SCD1)

SC2=O (in)

SC2=1 (out)
(SCD2)

SCK=O (in)

SCK=1 (out
(SCKD)

TXC - Transmitter Clock
RXC - Receiver Clock

Continuous Clock Gated Clock Continuous Clock
(GCK=O) (GCK=1) . (GCK=O)

RXC External RXC External Input FO

RXC Internal RXC Internal Output FO

FSR External Not Used Input F1

FSR Internal FSR Internal Output F1

FST External Not Used FS* External

FST Internal FST Internal FS* Internal

TXC External TXC External *XC External

TXC Internal TXC Internal) *xc Internal

FSR - Receiver Frame Sync

*XC - Transmitter/Receiver Clock
(synchronous operation)

FS* - Transmitter/Receiver Frame Sync
(synchronous operation)

FO - Flag 0
FST - Transmitter Frame Sync F1 - Flag 1

Table 6-6 SSI Clock Sources, Inputs, and Outputs

Gated Clock
(GCK=1)

Input FO

Output FO

Input F1

Output F1

Not Used

FS* Internal

*XC External

*XC Internal

SYN SCKD SCDO
R Clock RXClock

T Clock Source TX Clock Out
Source Out

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

EXT - External Pin Name
INT - Internal Bit Clock

0

1

0

1

0

1

0

1

Asynchronous

EXT, SCO - EXT, SCK -
INT SCO EXT, SCK -

EXT,SCO - INT SCK

INT SCO INT SCK

Synchronous

EXT, SCK - EXT,SCK -
EXT, SCK - EXT,SCK -

INT SCK INT SCK

INT SCK INT SCK

-

.. FOSC

FLAGOOUT
(SYNC MODE)

FLAGO IN
(SYNC MODE)

SYN=1

PRESCALE
DIVIDE BY 1

OR
DIVIDE BY 8

PSR

SCDO= 1

INTERNAL BIT CLOCK

DIVIDER
DIVIDE BY 1
TO DIVIDE

BY 256

PMO-PM7

DIVIDE
BY2

WL1, WLO

SYN=O

Figure 6-42 SSt Clock Generator Functional Block Diagram

6.4.1.2 Serial Receive Data Pin (SRD)

RXWORD
CLOCK

TXWORD
CLOCK

SRD receives serial data and transfers the data to the SSI receive shift register. SRD may
be programmed as a general-purpose 110 pin called PC7 when the SSI SRD function is
not being used. Data is sampled on the negative edge of the bit clock.

6.4.1.3 Serial Clock (SCK)
SCK is a bidirectional pin providing the serial bit rate clock for the SSI interface. The SCK
is a clock input or output used by both the transmitter and receiver in synchronous modes
or by the transmitter in asynchronous modes (see Table 6-6).

Note: Although an external serial clock can be independent of and asynchronous to the
DSP system clock, it must exceed the minimum clock cycle time of 8T (i.e., the sys­
tem clock frequency must be at least four times the external SSI clock frequency).
The SSI needs at least four DSP phases (DSP phase= T) inside each half of the
serial clock.

RXWORD
CLOCK

TXWORD
CLOCK

DCO- DC4

RECEIVER
FRAME RATE

DIVIDER

RECEIVE
CONTROL

LOGIC

DCO- DC4

TRANSMITTER
FRAME RATE

DIVIDER

TRANSMIT
CONTROL

LOGIC

FSLO, FSL1

INTERNAL AX FRAME CLOCK

SCD1 = 1

SYN=O

FLAG1 IN FLAG10UT
FSLO, FSL1 (SYNC MODE) (SYNC MODE)

INTERNAL TX FRAME CLOCK

TRANSMIT

FRAME SYNC

Figure 6-43 SSI Frame Sync Generator Functional Block Diagram -

..

6.4.1.4 Serial Control Pin (SCQ)
The function of this pin is determined solely on the selection of either synchronous or
asynchronous mode (see Table 6-5 and Table 6-6). For asynchronous mode, this pin will
be used for the receive clock I/O. For synchronous mode, this pin is used for serial flag
I/O. A typical application of flag I/O would be multiple device selection for addressing in
codec systems. The direction of this' pin is determined by the SCDO bit in the CRB as de­
scribed in Table 6-7. When configured as an output, this pin will be either serial output flag
0, based on control bit OFO in CRB, or a receive shift register clock output. When config­
ured as an input, this pin may be used either as serial input flag 0, which will control status
bit IFO in the SSISR, or as a receive shift register clock input.

Table 6-7 SSI Operation: Flag Q and Rx Clock

SYN GCK SCDO Operation

Synchronous Continuous Input Flag 0 Input

Synchronous Continuous Output Flag 0 Output

Synchronous Gated Input Flag 0 Input

Synchronous Gated Output Flag 0 Output

Asynchronous Continuous Input Rx Clock - External

Asynchronous Continuous Output Rx Clock - Internal

Asynchronous Gated Input Rx Clock - External

Asynchronous Gated Output Rx Clock -Internal

6.4.1.5 Serial Control Pin (SC1)
The function of this pin is determined solely on the selection of either synchronous or
asynchronous mode (see Table 6-5 and Table 6-8). In asynchronous mode (such as a sin­
gle codec with asynchronous transmit and receive), this pin is the receiver frame sync I/O.
For synchronous mode with continuous clock, this pin is serial flag SC1 and operates like
the previously described SCO. SCO and SC1 are independent serial I/O flags but may be
used together for multiple serial device selection. SCO and SC1 can be used unencoded
to select up to two codecs or may be decoded externally to select up to four codecs. The
direction of this pin is determined by the SCD1 bit in the CRB. When configured as an out­
put, this pin will be either a serial output flag, based on co~trol bit OF1 , or it will make the
receive frame sync Gignal available. When configured as an input, this pin may be used
as a serial input flag, which will control status bit IF1 in the SSI status register, or as a re­
ceive frame sync from an external source for continuous clock mode. In the gated clock
mode, external frame sync signals are not used.

Table 6-8 SSI Operation: Flag 1 and Rx Frame Sync

SYN GCK SCD1 Operation

. Synchronous Continuous Input Flag 1 Input

Synchronous Continuous Output Flag 1 Output

Synchronous Gated Input Flag·1 Input

Synchronous Gated Output Flag 1 Output

Asynchronous Continuous Input RX Frame Sync - External

Asynchronous Continuous Output RX Frame Sync - Internal

Asynchronous Gated Input -
Asynchronous Gated Output RX Frame Sync - Internal

6.4.1.6 Serial Control Pin {SC2}
This pin is used for frame sync 1/0 (see Table 6-5 and Table 6-9). SC2 is the frame sync for
both the transmitter and receiver in synchronous mode and for the transmitter only in asyn­
chronous mode. The direction of this pin is determined by the SCD2 bit in CRB. When config­
ured as an output, this pin is the internally generated frame sync signal. When configured as
an input, this pin receives an external frame sync signal for the transmitter (and the receiver
in synchronous operation). In the gated clock mode, external frame sync signals are not used.

Table 6-9 S51 Operation: Tx and Rx Frame Sync

SYN GCK SCD2 Operation

Synchronous Continuous Input TX and RX Frame Sync

Synchronous Continuous Output TX and RX Frame Sync

Synchronous Gated Input -
Synchronous Gated Output TX and RX Frame Sync

Asynchronous Continuous Input TX Frame Sync - External

Asynchronous Continuous Output TX Frame Sync - Internal

Asynchronous Gated Input -
Asynchronous Gated Output TX Frame Sync - Internal

6.4.2 SSI Programming Model
The SSI can be viewed as two control registers, one status register, a transmit register, a

receive register, and special-purpose time slot register. These registers are illustrated in
Figure 6-44 and Figure 6-45. The following paragraphs give detailed descriptions and op­
erations of each of the bits in the SSI registers. The SSI registers are not prefaced with
an "S" (for serial) as are the SCI registers.

..

I
11 10 9 7 6 5 4 3 2 o

SSI CONTROL REGISTER A (CRA)
X:$FFEC 'i' ,-, '-'!. ,-, ,-, ,-, ,-, ! ~ ,-, ,-r ,-r ,-, ,-r n n n n' (READIWRITE)

PRESCALE
RANGE

X:$FFED

15

TRANSMIT INTERRUPT ENABLE

RECEIVER ENABLE

14 13 12

TRANSMITTER ENABLE -----...

11

MODE SELECT (NElWORKINORMAL) -----~-.....

X

X

RECEIVE DATA REGISTER FULL

TRANSMIT DATA REGISTER EMPTY

RECEIVER OVERRUN ERROR FLAG

:$FFEE

:$FFEE

7

RESET VALUE = $0000

10 9 8 7 6 5 4 3 o
SSI CONTROL REGISTER B (CRB)

, , , , (READIWRITE)

\... ""V"'" ,1~
SERIAL CONTROL DIRECTION OUTPUT FLAGS

SHIFT DIRECTION

.L-_~ __ FRAME SYNC LENGTH 0 (MIXED BITIWORD)

L-______ FRAME SYNC LENGTH (BITIWORD)

L-----------SYNCMSYNCCONTROL

~--------------------GATEDCLOCKCONTROL

RESET VALUE = $0000

6 5 4 3 2

RESET VALUE = $40

o
S~

(VI
I TIME SLOT REGISTER. (TSR)
RITE)

I STATUS REGISTER (SSISR)
EAD)

TRANSMIT FRAME SYNC

RECEIVE FRAME SYNC

TRANSMITTER UNDERRUN ERROR FLAG

Figure 6-44 SSI Programming Model - Control and Status Registers

X:$FFEF

SERIAL
RECEIVE

23 16 15 a 7

RE~~~~~~~::::::::::::=-~~~::::;:::::::-J-=~::::::::::::~
7 0 7 0 7

MSB
8-BIT DATA LSB"I ~O 0

LSB
t+---- 12-BIT DATA

MSB

MSB
16-BIT DATA

MSB
24-BIT DATA

NOTES:
1. Data is received MSB first if SHFD = O.
2. Compatible with fractional format.

16 BIT

12 BIT

a BIT

WL1,WLO _

LSB

LSB

(a) Receive Registers for SHFD = 0

SERIAL RECEIVE SHIFT REGISTER

23 16 15 a 7

'--___ --I

LEAST SIGNIFICANT
ZERO FILL

.----------..,.-----------,.-----------, SERIAL TRANSMIT DATA

(TX) REGISTER =-___ -:-___ -:---= ___ --;-___ --:-'"="" ___ --:-___ ---:-' (WRITE ONLY)

a-BIT DATA LS~ I~O 0 - _--- 0 ----+I

LSB
... ---- 12-BIT DATA

MSB

MSB

MSB LSB
16-BIT DATA

MSB LSB
24-BIT DATA

NOTES:
1. Data is sent MSB first if SHFD = o.
2. Compatible with fractional format.

(b) Transmit Registers for SHFD = 0

SERIAL TRANSMIT
SHIFT REGISTER

LEAST SIGNIFICANT
ZERO FILL

Figure 6-45 SSI Programming Model (Sheet 1 of 2)

..

23 16 15 8 7 o
SERIAL RECEIVE DATA
(RX) REGISTER

~------r-------~~------~------~~------~------~ (READON~)

. LSB

8-BITDATAT~ 0 --... .._----- 0

LSB
... --- 12-BIT DATA

MSB

MSB

MSB LSB
16-BITDATA

MSB
24-BIT DATA

NOTES:
1. Dala is received LSB first if SHFD = 1.
2. Compatible with fractional format.

(c) Receive Registers for SHFD = 1

23 16 15 8 7

X:$FFEF

LSB

SERIAL RECEIVE
SHIFT REGISTER

LEAST SIGNIFICANT
ZERO FILL

WLl.WLO
MSB

8-BITDATA LSB'I~O . 0 __ _--- 0 ______

LSB
.... --- 12-BIT DATA

MSB

LEAST SIGNIFICANT
ZERO FILL

MSB LSB
16-BIT DATA

MSB LSB
24-BIT DATA

NOTES:
1. Data is received LSB first if SHFD = 1.
2. Compatible with fractional format.

(d) Transmit Registers for SHFD = 1

Figure 6-45 SSI Programming Model (Sheet 2 of 2)

6.4.2.1 SSI Control Register A (CRA)
CRA is one of two 16-bit read/write control registers used to direct the operation of the
SSI. The CRA controls the SSI clock generator bit and frame sync rates, word length, and
number of words per frame for the serial data. The high-order bits of CRA are read as ze­
ros by the DSP CPU. The CRA control bits are described in the following paragraphs.

6.4.2.1.1 CRA Prescale Modulus Select (PM7-PMO) Bits 0-7
The PMO-PM7 bits specify the divide ratio of the prescale divider in the SSI clock generator.
A divide ratio from 1 to 256 (PM=O to $FF) may be selected. The bit clock output is available
at the transmit clock (SCK) and/or the receive clock (SCO) pins of the DSP. The bit clock
output is also available internally for use as the bit clock to shift the transmit and receive
shift registers. Careful choice of the crystal oscillator frequency and the prescaler modulus
will allow the industry-standard codec master clock frequencies of 2.048 MHz, 1.544 MHz,
and 1.536 MHz to be generated. Hardware and software reset clear PMO-PM7.

6.4.2.1.2 CRA Frame Rate Divider Control (DC4-DCO) Bits 8-12
The DC4-DCO bits control the divide ratio for the programmable frame rate dividers used
to generate the frame clocks (see Figure 6-43). In network mode, this ratio may be inter­
preted as the number of words per frame minus one. In normal mode, this ratio deter­
mines the word transfer rate. The divide ratio may range from 1 to 32 (DC=OOOOO to
11111) for normal mode and 2 to 32 (DC=00001 to 11111) for network mode.

A divide ratio of one (DC=OOOOO) in network mode is a special case (see 6.4.7.4). In nor­
mal mode, a divide ratio of one (DC=OOOOO) provides continuous periodic data word trans­
fers. A bit-length sync (FSL 1 =1, FSLO=O) must be used in this case. Hardware and soft­
ware reset clear DC4-DCO.

6.4.2.1.3 CRA Word Length Control (WLO, WL 1) Bits 13 and 14
The WL 1 and WLO bits are used to select the length of the data words being transferred via the
SSI. Word lengths of 8,12,16, or 24 bits may be selected according to Table 6-10.

Table 6-10 Number of BitslWord

WL1 WLO Number of Bits/Word

0 0 8

0 1 12

1 0 16

1 1 24

..

These bits control the number of active clock transitions in the gated clock modes and
control the word length divider (see Figure 6-42 and Figure 6-43), which is part of the
frame rate signal generator for continuous clock modes. The WL control bits also control
the frame sync pulse length when FSLO and FSL 1 select a WL bit clock (see Figure 6-42).
Hardware and software reset clear WLO and WL 1.

6.4.2.1.4 CRA Prescaler Range (PSR) Bit 15
The PSR controls a fixed divide-by-eight prescaler in series with the variable prescaler.
This bit is used to extend the range of the prescaler for those cases where a slower bit
clock is desired (see Figure 6-42). When PSR is cleared, the fixed prescaler is bypassed.
When PSR is set, the fixed divide-by-eight prescaler is operational. This allows a 128-kHz
master clock to be generated for MC14550x series codecs.

The maximum internally generated bit clock frequency is fosc/4, the minimum internally
generated bit clock frequency is fosc/4/8/256=fosc/8192. Hardware and software reset
clear PSR.

6.4.2.2 SSI Control Register B (CRB)
The CRB is one of two 16-bit read/write control registers used to direct the operation of
the SS\. CRB controls the SSI multifunction pins, SC2, SC1 , and SCO, which can be used
as clock inputs or outputs, frame synchronization pins, or serial I/O flag pins. The serial
output flag control· bits and the direction control bits for the serial control pins are in the
SSI CRB. Interrupt enable bits for each data register interrupt are provided in this control
register. When read by the DSP, CRB appears on the two low-order bytes of the 24-bit
word, and the high-order byte reads as zeros. Operating modes are also selected in this
register. Hardware and software reset clear all the bits in the CRB. The relationships be­
tween the SSI pins (SCO, SC1, SC2, and SCK) and some of the CRB bits are summarized
in Tables Table 6-5, Table 6-12, and Table 6-13. The SSI CRB bits are described in the
following paragraphs.

6.4.2.2.1 CRB Serial Output Flag 0 (OFO) Bit 0
When the SSI is in the synchronous clock mode and the serial control direction zero bit
(SCDO) is set, indicating that the SCO pin is an output, then data present in OFO will be
written to SCO at the beginning of the frame in normal mode or at the beginning of the next
time slot in network mode. Hardware and software reset clear OFO.

6.4.2.2.2 CRB Serial Output Flag 1 (OF1) Bit 1
When the SSI is in the synchronous clock mode and the serial control direction one

(SCD1) bit is set, indicating that the SC1 pin is an output, then data present in OF1 will be
written to the SC1 pin at the beginning of the frame in normal mode or at the beginning of
the next time slot in network mode (see 6.4.7).

The normal sequence for setting output flags when transmitting data is to poll TOE (TX
empty), to first write the flags, and then write the transmit data to the TX register. OFO and
OF1 are double buffered so that the flag states appear on the pins when the TX data is
transferred to the transmit shift register (i.e., the flags are synchronous with the data).
Hardware and software reset clear OF1.

Note: The optional serial output pins (SCO, SC1, and SC2) are controlled by the frame
timing and are not affected by TE or RE.

6.4.2.2.3 CRB Serial Control 0 Direction (SCDO) Bit 2
SCOO controls the direction of the SCO I/O line. When SCDO is cleared, SCO is an input;
when SCDO is set, SCO is an output (see Tables Table 6-5 and Table 6-6, and Figure
6-46). Hardware and software reset clear SCDO.

6.4.2.2.4 CRB Serial Control 1 Direction (SCD1) Bit 3
SC01 controls the direction of the SC1 I/O line. When SCD1 is cleared, SC1 is an input;
when SCD1 is set, SC1 is an output (see Tables Table 6-5 and Table 6-6 and Figure
6-46). Hardware and software reset clear SCD1.

6.4.2.2.5 CRB Serial Control 2 Direction (SCD2) Bit 4
SCD2controis the direction of the SC2 1/0 line. When SCD2 is cleared, SC2 is an input;
when SCD2 is set, SC2 is an output (see Tables Table 6-5 and Table 6-6, and Figure
6-46). Hardware and software reset clear SCD2.

6.4.2.2.6 CRB Clock Source Direction (SCKD) Bit 5
SCKD selects the source of the clock signal used to clock the transmit shift register in the
asynchronous mode and both the transmit shift register and the receive shift register in
the synchronous mode. When SCKD is set, the internal clock source becomes the bit
clock for the transmit shift register and word length divider and is the output on the SCK
pin. When SCKD is cleared, the clock source is external; the internal clock generator is
disconnected from the SCK pin, and an external clock source may drive this pin. Hard­
ware and software reset clear SCKD.

-

X:$FFED

15 14 13 12 11 10

P SCO

0 SC1
R SC2
T SCK

SRD
C

STD

NOTE: Parentheses indicate RESET condition,

9 8 7

DIRECTION
CONTROLLED BY

SCDO
SCD1
SCD2
SCKD

I

6 4 3 2 o

'----- _-,-,' I SSI CONTROL
, \ - I , \ ~ I

-v--- ' (REAIlINRl1E) REGISlER B (CRB)

1 = OUTPUT
0= INPUT

BASIC FUNCTION

RECEIVE CLOCKIFLAG 0

RECEIVE FRAME SYNCIFLAG 1
TRANSMIT FRAME SYNCfTX AND AX FRAME SYNC
TRANSMIT CLOCKfTXAND AX CLOCK
SSI RECEIVE DATA
SSI TRANSMIT DATA

Figure 6-46 Serial Control, Direction Bits

6.4.2.2.7 CRB Shift Direction (SHFD) Bit 6 .
This bit causes the transmit shift register to shift data out MSB first when SHFD equals
zero or LSB first when SHFD equals one. Receive data is shifted in MSB first when SHFD
equals zero or LSB first when SHFD equals one. Hardware reset and software reset clear
SHFD.

6.4.2.2.8 CRB Frame Sync Length (FSLO and FSL 1) Bits 7 and 8
These bits select the type of frame sync to be generated or recognized (see Table 6-11).
If FSL 1 equals zero and FSLO equals zero, a word-length frame sync is selected for both
TX and RX that is the length of the data word defined by bits WL 1 and WLO. If FSL 1 equals
one and FSLO equals zero, a 1-bit clock period frame sync is selected for both TX and RX.
When FSLO equals one, the TX and RX frame syncs are different lengths. Hardware reset
and software reset clear FSLO and FSL 1.

Table 6-11 Frame Sync Length

FSL1 FSLO Frame Sync Length

0 0 WL bit clock for both TXlRX

0 1 One-bit clock for TX and WL bit clock for RX

1 0 One-bit clock for both TXlRX

1 1 One-bit clock for RX and WL bit clock for TX

6.4.2.2.9 CRB Sync/Async (SYN) Bit 9
SYN controls whether the receive and transmit functions of the SSI occur synchronously
or asynchronously with respect to each other. When SYN is cleared, asynchronous mode
is chosen and separate clock and frame sync signals are used for the transmit and receive
sections. When SYN is set, synchronous mode is chosen and the transmit and receive
sections use common clock and frame sync signals. Hardware reset and software reset
clearSYN.

6.4.2.2.10 CRB Gated Clock Control (GCK) Bit 10
GCK is used to select between a continuously running data clock or a clock that runs only
when there is data to be sent in the transmit shift register. When GCK is cleared, a con­
tinuous clock is selected; when GCK is set, the clock will be gated. Hardware reset and
software reset clear GCK.

Note: For gated clock mode with externally generated bit clock, internally generated
frame sync is not defined.

-

-

6.4.2.2.11 CRB SSI Mode Select (MOD) Bit 11 .
MOD selects the operational mode of the 881. When MOD is cleared, the normal mode is
selected; when MOD is set, the network mode is selected. In the normal mode, the frame
rate divider determines the word transfer rate - one word is transferred per frame sync
during the frame sync time slot. In network mode, a word is (possibly) transferred every
time slot. For more details, see 6.4.3. Hardware and software reset clear MOD.

6.4.2.2.12 CRB SSI Transmit Enable (TE) Bit 12
TE enables the transfer of data from TX to the transmit shift register. When TE is set and
a frame sync is detected, the transmit portion of the 881 is enabled for that frame. When
TE is cleared, the transmitter will be disabled after completing transmission of data cur­
rently in the 881 transmit shift register. The serial output is three-stated, and any data
present in TX will not be transmitted (Le., data can be written to TX with TE cleared; TDE
will be cleared, but data will not be transferred to the transmit shift register).

The normal mode transmit enable sequence is to write data to TX or T8R before setting
TE. The normal transmit disable sequence is to clear TE and TIE after TDE equals one.

In the network mode, the operation of clearing TE and setting it again will disable the
transmitter after completing transmission of the current data word until th'e beginning of
the next frame. During that time period, the 8TD pin will remain in the high-impedance
state. Hardware reset and software reset clear TE. .

The on-demand mode transmit enable sequence can be the same as the normal mode,
or TE can be left enabled.

Note: TE does not inhibit TDE or transmitter interrupts. TE does not affect the generation
of frame sync or output flags.

6.4.2.2.13 CRB SSI Receive Enable (RE) Bit 13
When RE is set, the receive portion of the 881 is enabled. When this bit is cleared, the
receiver will be disabled by inhibiting data transfer into RX. If data is being received while
this bit is cleared, the remainder of the word will be shifted in and transferred to the 881
receive data register.

RE must be set in the normal mode and on-demand mode to receive data. In network
mode, the operation of clearing RE and setting it again will disable the receiver after re­
ception of the current data word until the beginning of the next data frame. Hardware and
software reset clear RE.

Note: RE does not inhibit RDF or receiver interrupts. RE does not affect the generation

of a frame sync.

6.4.2.2.14 CRB SSI Transmit Interrupt Enable (TIE) Bit 14
The DSP will be interrupted when TIE and the TDE flag in the SSI status register is set.
(In network mode, the interrupt takes effect in the next frame synch, not in the next time
slot.) When TIE is cleared,this interrupt is disabled. However, the TDE bit will always in­
dicate the transmit data register empty condition even when the transmitter is disabled
with the TE bit. Writing data to TX or TSR will clear TDE, thus clearing the interrupt. Hard­
ware and software reset clear RE.

There are two transmit data interrupts that have separate interrupt vectors:

1. Transmit data with exceptions - This interrupt is generated on the following
condition:

TIE=1, TDE=1, and TUE=1

2. Transmit data without exceptions - This interrupt is generated on the following
condition:

TIE=1, TDE=1, and TUE=O

See SECTION 7 PROCESSING STATES in the DSP56000 Family Manual for more in­
formation on exceptions.

6.4.2.2.15 CRB SSI Receive Interrupt Enable (RIE) Bit 15
When RIE is set, the DSP will be interrupted when RDF in the SSI status register is set.
(In network mode, the interrupt takes effect in the next frame synch, not in the next time
slot.) When RIE is cleared, this interrupt is disabled. However, the RDF bit still indicates
the receive data register full condition. Reading the receive data register will clear RDF,
thus clearing the pending interrupt. Hardware and software reset clear RI E.

There are two receive data interrupts that have separate interrupt vectors:

1; Receive data with exceptions - This interrupt is generated on the following
condition:

RIE=1, RDF=1, and ROE=1

2. Receive data without exceptions - This interrupt is generated on the following
condition:

RIE=1, RDF=1, and ROE=O

See SECTION 7 PROCESSING STATES in the DSP56000 Family Manual for more in­
formation on exceptions.

-

-

6.4.2.3 SSI Status Register (SSISR)
The SSISR is an 8-bit read-only status register used by the DSP to interrogate the status
and serial input flags of the SS\. When the SSISR is read to the internal data bus, the reg­
ister contents occupy the low-order byte of the data bus, and the high-order portion is zero
filled. The status bits are described in the following paragraphs.

6.4.2.3.1 SSISR Serial Input Flag 0 (IFO) Bit 0
The SSI latches data present on the SCO pin during reception of the first received bit after
frame sync is detected. IFO is updated with this data when the receive shift register is
transferred into the receive data register. The I FO bit is enabled only when SCDO is
cleared and SYN is set, indicating that SCO is an input and the synchronous mode is se­
lected (see Table 6-5); otherwise, IFO reads as a zero when it is not enabled. Hardware,
software, SSI individual, and STOP reset clear IFO.

6.4.2.3.2 SSISR Serial Input Flag 1 (IF1) Bit 1
The SSllatches data present on the SC1 pin during reception of the first received bit after
frame sync is detected. The IF1 flag is updated with the data when the receiver shift reg­
ister is transferred into the receive data register. The IF1 bit is enabled only when SCD1
is cleared and SYN is set, indicating that SC1 is an input and the synchronous mode is
selected (see Table 6-5); otherwise, IF1 reads as a zero when it is not enabled. Hardware,
software, SSI individual, and STOP reset clear IF1.

6.4.2.3.3 SSISR Transmit Frame Sync Flag (TFS) Bit 2
When set, TFS indicates that a transmit frame sync occurred in the current time slot. TFS
is set at the start of the first time slot in the frame and cleared during all other time slots.
If word-wide transmit frame sync is selected (FSLO=FSL 1), this indicates that the frame
sync was high at least at the beginning of the time slot if external frame sync is selected,
or high throughout the time slot if internal frame sync was selected. If bit-wide transmit
frame sync is selected (FSLOt:FSL 1), this indicates that the frame sync (either internal or
external) was high during the last Tx clock bit period prior to the current time slot, and that
the frame sync falling edge corresponds to the assertion of the first output data bit, as
shown below.

Bit-Length Fs --.ll ____________________ _

Word-Length Fs ------.J

Time slots Time slot #1 Time slot #2 Time slot #3

Tx shift clock

i TFS set here

Data written to the transmit data register during the time slot when TFS is set will be transmit­
ted (in network mode) during the second time slot in the frame. TFS is useful in network mode
to identify the start of the frame. This is illustrated in a typical transmit interrupt handler:

_DONE

MOVEP
JCLR

JMP

X:(R4)+,X:SSITx
#2,X:SSISR,_NoTFS;1 = FIRST TIMESLOT
;Do something
_DONE

;Do something else

Note: In normal mode, TFS will always read as a one when transmitting data because
there is only one time slot per frame - the "frame sync" time slot.

TFS, which is cleared by hardware, software, SSI individual, or STOP reset, is not
affected by TE.

6.4.2.3.4 SSISR Receive Frame Sync Flag (RFS) Bit 3
When set, RFS indicates that a receive frame sync occurred during reception of the word
in the serial receive data register. This indicates that the data word is from the first time
slot in the frame. If word-wide receive frame sync is selected (FSL 1=0), this indicates that
the frame sync was high at least at the beginning of the timeslot. If bit-wide receive fra.me
sync is selected (FSL 1 =1), this indicates that the frame sync (either internal or external)
was high during the last bit period prior to the current timeslot, and that the frame sync
falling edge corresponds to the assertion of the first output data bit, as shown below.

Bit-Length Fs --.1l'--___________________ _

Word-Length Fs ~

Time slots TIme slot #1 TIme slot #2 TIme slot #3

Ax shift clock

t RFS set here

When RFS is clear and a word is received, it indicates (only in network mode) that the
frame sync did not occur during reception of that word. RFS is useful in network mode to
identify the start of the frame. This feature is illustrated in a typical receive interrupt handler:

-

-

_DONE

MOVEP
JCLR

JMP

X:SSIRx,X:(R4)+
#3,X:SSISR,_NoRFS;1 = FIRST TIMESLOT
;Do something
_DONE

;Do something else

Note: In normal mode, RFS will always read as a one when reading data because there
is only one time slot per frame - the "frame sync" time slot.

RFS, which is cleared by hardware, software, SSI individual, or STOP reset, is not affect­
ed by RE.

6.4.2.3.5 SSISR Transmitter Underrun Error Flag (TUE) Bit 4
TUE is set when the serial transmit shift register is empty (no new data to be transmitted)
and a transmit time slot occurs. When a transmit underrun error occurs, the previous data
(which is still present in the TX) will be retransmitted.

In the normal mode, there is only one transmit time slot per frame. In the network mode,
there 'can be up to 32 transmit time slots per frame.

TUE does not cause any interrupts; however, TUE does cause a change in the interrupt
vector used for transmit interrupts so that a different interrupt handler may be used for a
transmit underrun condition. If a transmit interrupt occurs with TUE set, the transmit data
with exception status interrupt will be generated; if a transmit interrupt occurs with TUE
clear, the transmit data without errors interrupt will be generated.

Hardware, software, SSI individual, and STOP reset clear TUE. TUE is also cleared by
reading the SSISR with TUE set, followed by writing TX or TSR.

6.4.2.3.6 SSISR Receiver Overrun Error Flag (ROE) Bit 5
This flag is set when the serial receive shift register is filled and ready to transfer to the
receiver data register (RX) and RX is already full (Le., RDF=1). The receiver shift register
is not transferred to RX. ROE does not cause any interrupts; however, ROE does cause
a change in the interrupt vector used for receive interrupts so that a different interrupt han­
dier may be used for a receive error condition. If a receive interrupt occurs with ROE set,
the receive data with exception status interrupt will be generated; if a receive interrupt oc­
curs with ROE clear, the receive data without errors interrupt will be generated.

Hardware, software, SSI individual, and STOP reset clear ROE. ROE is also cleared by read­
ing the SSISR with ROE set, followed by reading the RX. Clearing RE does not affect ROE.

6.4.2.3.7 SSISR SSI Transmit Data Register Empty (TDE) Bit 6
This flag is set when the contents of the transmit data register are transferred to the trans­
mit shift register; it is also set for a disabled time slot period in network mode (as if data
were being transmitted after the TSR was written). Thirdly, it can be set by the hardware,
software, SSI individual, or STOP reset. When set, TOE indicates that data should be writ­
ten to the TX or to the time slot register (TSR). TOE is cleared when the DSP writes to the
transmit data register or when the DSP writes to the TSR to disable transmission of the
next time slot. If TIE is set, a DSP transmit data interrupt request will be issued when TOE
is set. The vector of the interrupt will depend on the state of the transmitter underrun bit.

6.4.2.3.8 SSISR SSI Receive Data Register Full (RDF) Bit 7
RDF is set when the contents of the receive shift register are transferred to the receive
data register. RDF is cleared when the DSP reads the receive data register or cleared by
hardware, software, SSI individual, or STOP reset. If RIE is set, a DSP receive data inter­
rupt request will be issued when RDF is set. The vector of the interrupt request will depend
on the state of the receiver overrun bit.

6.4.2.3.9 5S1 Receive Shift Register
This 24-bit shift register receives the incoming data from the serial receive data pin. Data
is shifted in by the selected (internal/external) bit clock when the associated frame sync
I/O (or gated clock) is asserted. Data is assumed to be received MSB first if SHFD equals
zero and LSB first if SHFD equals one. Data is transferred to the SSI receive data register
after 8, 12, 16, or 24 bits have been shifted in, depending on the word-length control bits
in the CRA (see Figure 6-47).

6.4.2.3.10 5S1 Receive Data Register (RX)
RX is a 24-bit read-only register that accepts data from the receive shift register as it be­
comes full. The data read will occupy the most significant portion of the receive data reg­
ister (see Figure 6-:-47). The unused bits (least Significant portion) will read as zeros. The
DSP is interrupted whenever RX becomes full if the associated interrupt is enabled.

6.4.2.3.11 5S1 Transmit Shift Register
This 24-bit shift register contains the data being transmitted. Data is shifted out to the se­
rial transmit data pin by the selected (internal/external) bit clock when the associated
frame sync I/O (or gated clock) is asserted. The number of bits shifted out before the shift
register is considered empty and may be written to again can be 8, 12, 16, or 24 bits (de­
termined by the word-length control bits in CRA). The data to be transmitted occupies the
most significant portion of the shift register. The unused portion of the register is ignored.
Data is shifted out of this register MSB first if SHFD equals zero and LSB first if SHFD
equals one (see Figure 6-48).

-

>
GOB)
D"

23 16 15 12 11 8 7

I !AX
~ ./,..

;

REC~~~~~I~~ [i ~.E~~~~~(I ~~.~~ttl ~.~~~It' ~.~~~~~~~
\ \ \ / ~O

8 BITS 12 BITS 16 BITS

(a) SHFD = 0

- >
GOB)
D"

23 16 15 12 11 8 7 0

I AX
:---- .-/,..

~~~~~~3.~J!~~.~:t~~.~=t~~~~~~.~j RECEIVE SHIFT ~ REGISTER 

SHFO= 1 

(b) SHFD = 1 

Figure 6-47 Receive Data Path 



~ 
GOB 

~~ 16 15 ~ 8 7 

~ 12: 11 
-r' 

.../ 
"... 

I 
; 

r ....... 

r ....... 

y 

~ • • • • i TRANSMIT SHIFT 
REGISTER 

SHFO= 0 

(a) SHFD = 0 

~ \~ -GOB 

~ 16 15 8 7 

I J 
~ J 12111 

"... 

.--r 
----

r ............. 

r """ 

~ 
TRANSMIT SHIFT I • I • ~ • ~ • REGISTER 

\ SHFO= 1 

8BIT 12 BIT 16 BIT 

(b) SHFD = 1 

Figure 6-48 Transmit Data Path 



.. 

6.4.2.3.12 SSI Transmit Data Register (TX) 
TX is a 24-bit write-only register. Data to·be transmitted is written into this register and is 
automatically transferred to the transmit shift register. The data written (8, 12, 16, or 24 
bits) should occupy the most significant portion of TX (see Figure 6-48). The unused bits 
(least significant portion) of TX are don't care bits. The DSP is interrupted whenever TX 
becomes empty if the transmit data register empty interrupt has been enabled. 

6.4.2.3.13 Time Slot Register (TSR) 
TSR is effectively a null data register that is used when the data is not to be transmitted 
in the available transmit time slot. For the purposes of timing, TSR is a write-only register 
that behaves like an alternative transmit data register, except that, rather than transmitting 
data, the transmit data pin is in the high-impedance state for that time slot. 

6.4.3 Operational Modes and Pin Definitions 
Table 6-12 and Table 6-13 completely describe the SSI operational modes and pin definitions 
(Table 6-5 is a simplified version of these tables). The operational modes are as follows: 

1. Continuous Clock 
Mode 1 - Normal with Internal Frame Sync 
Mode 2 - Network with Internal Frame Sync 
Mode 3 - Normal with External Frame Sync 
Mode 4 - Network with External Frame Sync 

2. Gated Clock 
Mode 5 - External Gated Clock 
Mode 6 - Normal with Internal Gated Clock 
Mode 7 - Network with Internal Gated Clock 

3. Special Case (Both Gated and Continuous Clock) 
Mode 8 - On-Demand Mode (Transmitter Only) 
Mode 9 - Receiver Follows Transmitter Clocking 

6.4.4 Registers After Reset 
Hardware or software reset clears the port control register bits, which configure all I/O as 
general-purpose input. The SSI will remain in reset while all SSI pins are programmed as 
general-purpose I/O (CC8-CC3=O) and will become active only when at least one of the 
SSII/O pins is programmed as not general-purpose I/O. Table 6-14 shows how each type 
of reset affects each SSI register bit. . 



Table 6-12 Mode and Pin Definition Table - Continuous Clock 

Control Bits Mode SCO 

MOD GCLK SYN SCD2 SCD1 SCDO SCKD DC4-
DCO 

TX RX In 

0 0 0 1 1 X X X 1 1 RXC 

0 0 1 1 X X X X 1 1 FO 

1 0 0 1 1 X X 1 2 2 RXC 

1 0 1 1 X X X 1 2 2 FO 

0 0 0 0 1 X X X 3 1 RXC 

0 0 0 1 0 X X X 1 3 RXC 

0 0 0 0 0 X X X 3 3 RXC 

0 0 1 0 X X X X 3 3 FO 

1 0 0 0 1 X X X 4 2 RXC 

1 0 0 1 0 X X 1 2 4 RXC 

1 0 0 0 0 X X X 4 4 RXC 

1 0 1 0 X X X X 4 4 FO 

1 0 0 1 1 X X 0 8 2 RXC 

1 0 1 1 X X X 0 8 9 FO 

1 0 0 1 0 X X 0 8 4 RXC 

DC4-DCO = 0 means that bits DC4 = 0, DC3 = 0, DC2 = 0, DC1 = 0, and DCO = 0 
DC4-DCO = 1 means that bits DC4-DCO~ 
TXC - Transmitter Clock 
RXC - Receiver Clock 
·XC - Transmitter/Receiver Clock (Synchronous Operation) 
FST - Transmitter Frame Sync 
FSR - Receiver Frame Sync 
FS· - Transmitter/Receiver Frame Sync (Synchronous Operation) 
FO -FlagO 
F1 -Flag 1 

Out 

RXC 

FO 

RXC 

FO 

RXC 

RXC 

RXC 

FO 

RXC 

RXC 

RXC 

FO 

RXC 

FO 

RXC 

SC1 SC2 

In Out In Out 

- FSR - FST 

F1 F1 - FS· 

- FSR - FST 

F1 F1 - FS· 

- FSR FST -
FSR - - FST 

FSR - FST -
F1 F1 FS· -

- FSR FST -

FSR - - FST 

FSR - FST -
F1 F1 FS· -

- FSR - FST 

F1 F1 - FS· 

FSR - - FST 

SCK 

In Out 

TXC TXC 

·XC ·XC 

TXC TXC 

·XC ·XC 

TXC TXC 

TXC TXC 

TXC TXC 

·XC ·XC 

TXC TXC 

TXC TXC 

TXC ~C 

·XC ·XC 

TXC TXC 

·XC ·XC -TXC TXC 



.. 

Table 6-13 Mode and Pin Definition Table - Gated Clock 

Control Bits Mode SCO 

MOD GCLK SYN SCD2 SCD1 SCDO SCKD DC4- TX 
DCO 

RX In Out 

0 1 0 X X 1 1 X 6 6 - Rxe 

0 1 1 X X X 1 X 6 6 FO FO 

0 1 0 X X 1 0 X 5 6 - RXe 

0 1 0 X X 0 0 X 5 5 RXe -

0 1 1 X X X 0 X 5 5 FO FO 

1 1 0 X X 1 1 0 8 7 - Rxe 

1 1 0 X X 0 1 0 8 5 RXe -
1 1 1 X X X 1 0 8 9 FO FO 

0 1 0 X X 0 1 X 6 5 RXe -

DC4-DCO=O means that bits DC4=O, DC3=O, DC2=O, DC1=O, and DCO=O. 
TXC - Transmitter Clock ' 
RXC - Receiver Clock 
*XC - Transmitter/Receiver Clock (Synchronous Operation) 
FST - Transmitter Frame Sync 

, FSR - Receiver Frame Sync 
FS* - Transmitter/Receiver Frame Sync (Synchronous Operation) 
FO-Flag 0 . 

F1 - Flag 1 
? - Undefined 

SC1 SC2 

In Out In Out 

? FSR ? FST 

FO F1 ? FS· 

? FSR ? ? 

? ? ? ? 

F1 F1 ? ? 

? FSR ? FST 

? ? ? FST 

F1 F1 ? FS· 

? ? ? FST 

SCK 

In Out 

- Txe 

- ~xe 

TXe -

TXe -

·xe -
- Txe 

- TXe 

- ·xe 

- TXe 



Table 6-14 SSI Registers After Reset 

Register Register Reset 
Bit Number 

Name Data HW Reset SW Reset Individual Reset ST Reset 

PSR 15 0 0 - -

CRA 
WL(2-Q) 13,14 0 0 - -
DC(4-Q) 8-12 0 0 - -
PM (7-Q) 0-7 0 0 - -

RIE 15 0 0 - -
TIE 14 0 0 - -
RE 13 0 0 - -
TE 12 0 0 - -

MOD 11 0 0 - -
CRB GCK 10 0 0 - -

SYN 9 O· 0 - -
FSL1 8 0 0 - -
FSLO 7 0 0 - -
SHFD 6 0 0 - -
SCKD 5 0 0 - -

SCD(2-Q) 2-4 0 0 - -
OF(1-Q) 0,1 0 0 - - -RDF. 7 0 0 0 0 

TDE 6 1 1 1 1 

ROE 5 0 0 0 0 

SSISR TUE 4 0 0 0 0 

RFS 3 0 0 0 0 

TFS 2 0 0 0 0 

IF(1-Q) 0,1 0 0 0 0 

RDR RDR (23-0) 23-0 - - - -

TDR TDR (23-0) 23-Q - - - -
RSR RDR (23-0) 23-0 - - - -
TSR RDR (23-0) 23-Q - - - -

NOTES: 
1. RSR - SSI receive shift register 
2. TSR - SSI transmit shift register 
3. HW - Hardware reset is caused by asserting the external pin RESET. 
4. SW - Software reset is caused by executing the RESET instruction. 
5. IR -Individual reset is caused by SSI peripheral pins (Le., PCC(3-8)) being configured as general-purpose 110. 
6. ST - Stop reset is caused by executing the STOP instruction. 



.. 

HARDWARE OR SOFTWARE REST 

PROGRAM CRAAND CRB 

SELECT PINS TO BE USED 
PORT C CONTROL REGISTER 

Figure 6-49 SSllnitialization Block Diagram 

6.4.5 SSllnitialization 
The correct way to initialize the SSI is as follows: 

1. Hardware, software, SSI individual, or STOP reset 

2. Program SSI control registers 

3. Configure SSI pins (at least one) as not general-purpose I/O 

During program execution, CC8-CC3 may be cleared, causing the SSI to stop serial activity 
and enter the individual reset state. All status bits of the interface will be set to their reset 
state; however, the contents of CRA and CRB are not affected. This procedure allows the 
DSP program to reset each interface separately from the other internal peripherals. 

The DSP program must use an SSI reset when changing the MOD, GCK, SYN, SCKD, 
SCD2, SCD1, or SCDO bits to ensure proper operation of the interface. Figure 6-49 is a 
flowchart illustrating the three initialization steps previously listed. Figure 6-50, Figure 
6-51, and Figure 6-52 provide additional detail to the flowchart. 



15 14 13 12 11 10 9 8 7 6 4 3 2 o 

I PSR I WL 1 I WLO I DC4 DC31 DC21 DC1 lOCO I PM71 PMSI PM5 I PM4 I PM31 PM21 PM1 I PMO I 
! '--I 

\" ./\... -;:;;-

J ? 
PRESCALER 

IF PSR = 1. THEN DIVIDE BY 8 I DIVIDEBY1 DIVIDE I I I IF PSR = O. THEN DIVIDE BY 1 I TO 256 BY2 I 1 fosc 

1 I DIVIDE I WL1 WLO BitslWord ~ 
Word Transfer Rate WordslFrame 

BY2 
DC4-DCO 

(See Note 1) (See Note 2) 

l 0 0 8 
Continuous Periodic On-Demand 

I SSI BIT RATE CLOCK 0 1 12 00000 (See Note 3) Data Driven 

1 0 16 00001 2 2 

1 1 24 
00010 3 3 

00011 4 4 

· · · I 

· · · · · · I 

1 1 1 1 1 32 32 1 
15 14 13 12 11 10 9 8 7· 6 4 2 o 

X:$FFED 
SSI CONTROL REGISTER B (CRB) 

~ __ ~ __ ~ __ ~ __ ~ __ ~ ____ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~~ __ ~ __ ~ __ ~ __ ~I(R~DmRITE) 

(SEE NOTES 1 AND 2) (SEE NOTE 3) 

NOTES: 
1. NORMAL - MOD = 0 
2. NETWORK - MOD = 1 
3. FSL1 = 1. FSLO = 0 Figure 6-50 SSI eRA Initialization Procedure 

I 



FRAME SYNC LENGTH 0 
FRAME SYNC LENGTH 1 0= RXANDTXSAME 

0= RX IS WORD LENGTH LENGTH 
1 = RX IS BIT LENGTH 1 = RXANDTX DIFFERENT 

LENGTH 

SYNCIASYNC CONTROL SHIFT DIRECTION 
0= ASYNCHRONOUS O=MSBFIRST 
1 = SYNCHRONOUS 1 =LSB FIRST 

GATED CLOCK CONTROL CLOCK SOURCE DIRECTION 
0= CONTINUOUS CLOCK 0= INPUT (EXTERNAL) 
1 = GATED CLOCK ' 1 = OUTPUT (INTERNAL) 

SERIAL CONTROL 
SSI MODE SELECT DIRECTION BITS 

0= NORMAL - - 0= INPUT 
1 = NETWORK 1 = OUTPUT 

15 14 13 12 I I 1 0 

- RIE I TIE I RE I TE I MOD I GCK I SYN I FSL11 FSLO I SHFD I SCKD I SCD2 SCD1 I SCDO I OF1 I OFO 

11 10 9 8 7 6 5 4 3 2 

TRANSMIT ENABLE OUTPUT FLAG 1 
0= DISABLE IF SYN = 1, SCD1 = 1 
1 = ENABLE OF1-tSC1 PIN 

RECEIVE ENABLE OUTPUT FLAG 0 

- 0= DISABLE IF SYN = 1, SCDO = 1 
1 = ENABLE OFO-tSCOPIN 

TRANSMIT INTERRUPT ENABLE 
0= DISABLE 
1 = ENABLE 

RECEIVE INTERRUPT ENABLE 
0= DISABLE 
1 = ENABLE 

Figure 6-51 SSI CRB Initialization Procedure 



23 o 

~~~~~~L-L-L-~~~~~~~~~~~~~~~~ 

P
o
R
T

C

ccx

0

1

SRD SC2 SCO

Function

GPIO

Serial Interface

pca ~
PCl 1+
PC2 ~

sca SERIAL CONTROL PIN a
SCl ~---~ SERIAL CONTROL PIN 1
SC2 SERIAL CONTROL PIN 2
SCK SERIAL CLOCK PIN
SRD SERIAL RECEIVE DATA PIN
STD SERIAL TRANSMIT DATA PIN

Figure 6-52 SSllnitialization Procedure

PORT C CONTROL
REGISTER (PCC)

Figure 6-52 shows the six control bits in the PCC, which select the six SSI pins as either
general-purpose I/O or as SSI pins. The STD pin can only transmit data; the SRD pin can
only receive data. The other four pins can be inputs or outputs, depending on how they
are programmed. This programming is accomplished by setting bits in CRA and CRB as
shown in Figure 6-46. The CRA (see Figure 6-50) sets the SSI bit rate clock with PSR and
PMO-PM7, sets the word length with WL 1 and WLO, and sets the number of words in a
frame with DCO-DC4. There is a special case where DC4-DCO equals zero (one word
per frame). Depending on whether the normal or network mode is selected (MOD=O or
MOD=1, respectively), either the continuous periodic data mode is selected, or the on-de­
mand data driven mode is selected. The continuous periodic mode requires that FSL 1
equals one and FSLO equals zero. Figure 6-51 shows the meaning of each individual bit
in the CRB. These bits should be set according to the application requirements.

Table 6-15 (a) and Table 6-15 (b) provide a convenient listing of PSR and PMO-PM7 set­
tings for the common data communication rates and the highest rate possible for the SSI
for the chosen crystal frequencies. The crystal frequency selected for Table 6-15 (a) is the
one used by the DSP56002ADS board; the one selected for Table 6-15 (b) is the closest
one to 40 MHz that divides down to exactly 128 kHz. If an exact baud rate is required, the
crystal frequency may have to be selected. Table 6-16 gives the PSR and PMO-PM7 set­
tings in addition to the required crystal frequency for three common telecommunication fre­
quencies.

-

..

Table 6-15 (a) SSI Bit Rates
for a 40-MHz Crystal

Bit Rate (BPS) PSR PM

1000 1 $4E1

2000 1 $270

4000 1 $138

8000 1 $98

16K 1 $40

32K 1 $26

64K 0 $98

128K 0 $40

10M 0 $00

BPS = fose + (4 x (7(PSR) +1) x (PM + 1)) where
fose=40 MHz

PSR = 0 or 1
PM = Oto $FFF

Table 6-15 (b) SSI Bit Rates
for a 39.936-MHz Crystal

Bit Rate (BPS) , PSR PM

1000 1 $40F

2000 1 $26F

4000 1 $137

8000 1 $98

16K 1 $40

32K 1 $26

64K 0 $98

128K 0 $40

9.984M 0 $00

BPS = fose + (4 x (7(PSR) + 1) x (PM + 1)) where
fose=39.936 MHz

PSR = 0 or 1
PM = 0 to$FFF

Table 6-16 Crystal Frequencies Required for Codecs .

Bit Rate (BPS) PSR PM

1.536M 0 $05

1.544M 0 $05

2.048M 0 $03

BPS = fose + (4 x (7(PSR) +1) x (PM + 1))
PSR = 0 or 1
PM =: 0 to $FFF

Crystal
Frequency

36.864 MHz

37.056 MHz

32.678 MHz

6.4.6 551 Exceptions
The SSI can generate four different exceptions (see Figure 6-53 and Figure 6-54):

1. SSI Receive Data - occurs when the receive interrupt is enabled, the receive
data register is full, and no receive error conditions exist. Reading RX clears
the pending interrupt. This error-free interrupt can use a fast interrupt service
routine for minimum overhead.

2. SSI Receive Data with Exception Status - occurs when the receive interrupt is
enabled, the receive data register is full, and a receiver overrun error has
occurred. ROE is cleared by first reading the SSISR and then reading RX.

3. SSI Transmit Data - occurs when the transmit interrupt is enabled,the trans­
mit data register is empty, and no transmitter error conditions exist. Writing to
TX or the TSR will clear this interrupt. This error-free interrupt may use a fast
interrupt service routine for minimum overhead.

4. SSI Transmit Data with Exception Status - occurs when the transmit interrupt
is enabled, the transmit data register is empty, and a transmitter underrun
error has occurred. TUE is cleared by first reading the SSISR and then writing
to TX or the TSR to clear the pending interrupt. ..

..

EXCEPTION
STARTING
ADDRESS

PROGRAM MEMORY SPACE

EXCEPTION SOURCE

$0000 HARDWARE~

$0002 STACK ERROR

$0004 TRACE

$0006 SWI (SOFTWARE INTERRUPT)

$0008 1ROA EXTERNAL HARDWARE INTERRUPT

$OOOA TROB EXTERNAL HARDWARE INTERRUPT

$OooC SSI RECEIVE DATA

$OooE SSI RECEIVE DATA WITH EXCEPTION STATUS

$0010 SSI TRANSMIT DATA

$0012 SSI TRANSMIT DATA WITH EXCEPTION STATUS

$0014 SCI RECEIVE DATA

$0016 SCI RECEIVE DATA WITH EXCEPTION STATUS

$0018 SCI TRANSMIT DATA

$001A SCI IDLE LINE

$001C SCI TIMER

$001E RESERVED

$0020 HOST RECEIVE DATA

$0022 HOST TRANSMIT DATA

$0024 HOST COMMAND (DEFAULT)

$0026 AVAILABLE FOR HOST COMMAND

$0028 AVAILABLE FOR HOST COMMAND

• •
•

$003A AVAILABLE FOR HOST COMMAND

$003C TIMER

$003E ILLEGAL INSTRUCTION

$0040 AVAILABLE FOR HOST COMMAND

• • •
$007E AVAILABLE FOR HOST COMMAND -- -

TWO WORDS PER VECTOR EXTERNAL INTERRUPTS

t f t
INTERNAL

INTERRUPTS

~ 1
EXTERNAL

INTERRUPTS

f
SYNCHRONOUS

SERIAL
INTERFACE

INTERNAL
INTERRUPTS

SERIAL
COMMUNICATIONS

INTERFACE

HOST INTERNAL
INTERFACE INTERRUPTS

Figure 6-53 SSI Exception Vector Locations

SSI CONTROL REGISTER (CRB)
X:$FFED (READIWRITE)

15 14 13 12 11 10 9 8

I I I I SYN I FSL1 I RE TE MOD GCK I RIE I -TI-E 'I--.--.--,-----,---"T'"-......
"--y--J

SSI
EXCEPTION

MASK

EXCEPTION
STARTING
ADDRESS

SSI EXCEPTION MASK

EXCEPTION VECTOR TABLE

$0000 bt=======--------_-J-;
-

$OOOC SSI RECEIVE DATA

$OOOE SSI RECEIVE DATA WITH EXCEPTIONS STATUS

$0010 SSI TRANSMIT DATA

$0012 SSI TRANSMIT DATA WITH EXCEPTION STATUS

....

-

-

SSI STATUS REGISTER (SSISR)
X:$FFFE (READ ONLY)

7 6 5 4 3 2 1 0

I RDF I TDE I ROE I TUE I RFS I TFS I IF1 I IFO

\....
'V'

,/

SS I STATUS BITS

I

RECEIVE
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN
RIE= 1. RDF= 1.AND ROE=O.

2. PENDING INTERRUPT IS CLEARED
BY READING RX.

RECEIVE WITH EXCEPTION STATUS
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN
RIE= 1. RDF= 1.AND ROE = 1.

2. ROE IS CLEARED BY READING
SSISR FOLLOWED BY:

3. READING RX TO CLEAR PENDING
INTERRUPT.

4. APPLICATION-SPECIFIC CODE.

TRANSMIT
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN
TIE = 1. TDF = 1.ANDTUE = O.

2. PENDING INTERRUPT IS CLEARED
BY WRITING TO TX OR TSR.

TRANSMIT WITH EXCEPTION STATUS
'--- INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN
TIE= 1. TDF= 1.ANDTUE= 1.

2. TUE IS CLEARED BY READING
SSISR FOLLOWED BY:

3. WRITING TO TX OR TSR TO CLEAR
PENDING INTERRUPT.

4. APPLICATION-SPECIFIC CODE.

Figure 6-54 SSI Exceptions

-

..

Table 6-17 SSI Operating Modes

Operating Serial TX,RX
Typical Applications

Format Clock Sections

Normal Continuous Asynchronous Single Asynchronous Codec; Stream-Mode Channel Interface

Normal Continuous Synchronous Multiple Synchronous Codecs

Normal Gated Asynchronous DSP-to-DSP; Serial Peripherals (AlD,D/A)

Normal Gated Synchronous SPI-Type Devices; DSP to MCU

Network Continuous Asynchronous TDM Networks

Network Continuous Synchronous TDM Codee Networks, TDM DSP Networks

On Demand Gated Asynchronous Parallel-to-Serial and Serial-to-Parallel Conversion

On Demand Gated Synchronous DSP to SPI Peripherals

6.4.7 Operating Modes - Normal, Network, and On-Demand
The 881 has three basic operating modes and many data/operation formats. These
modes can be programmed by several bits in the 881 control registers. Table 6-17 lists
the 881 operating modes and some of the typical applications in which they may be used .

The data/operation formats are selected by choosing between gated and continuous
clocks, synchronization of transmitter and receiver, selection of word or bit frame sync,
and whether the L8B is transferred first or last. The following paragraphs describe how to
select a particular data/operation format and describe examples of normal-mode and net­
work-mode applications. The on-demand mode is selected as a special case of the net­
work mode.

The 881 can function as an 8PI master or 8PI slave, using additional logic for arbitration,
which is required because the 881 interface does not perform 8PI master/slave arbitra­
tion. An 8PI master device always uses an internally generated clock; whereas, an 8PI
slave device always uses an external clock.

6.4.7.1 Data/Operation Formats
The data/operation formats available to the 881 are selected by setting or clearing control
bits in the CRB. These control bits are MOD, GCK, 8YN, F8L 1, F8LO, and 8HFD.

6.4.7.1.1 Normal/Network Mode Selection
Selecting between the normal mode and network mode is accomplished by clearing or set­
ting the MOD bit in the CRB (see Figure 6-55). For normal mode, the SSI functions with one
data word of I/O per frame (see Figure 6-56). For the network mode, 2 to 32 data words of

I/O may be used per frame. In either case, the transfers are periodic. The normal mode is
typically used to transfer data to/from a single device. Network mode is typically used in time
division multiplexed (TOM) networks of codecs or OSPs with multiple words per frame (see
Figure 6-57, which shows two words in a frame with either word-length or bit-length frame
sync). The frame sync shown in Figure 6-55 is the word-length frame sync. A bit-length
frame sync can be chosen by setting FSL 1 and FSLO for the configuration desired.

6.4.7.1.2 Continuous/Gated Clock Selection
The TX and RX clocks may be programmed as either continuous or gated clock signals
by the GCK bit in the CRB. A continuous TX and RX clock is required in applications such
as communicating with some codecs where the clock is used for more than just data
transfer. A gated clock, in which the clock only toggles while data is being transferred, is
useful for many applications and is required for SPI compatibility. The frame sync outputs
may be used as a start conversion signal by some AID and 0/ A devices.

Figure 6-58 illustrates the difference between continuous clock and gated clock systems.
A separate frame-sync signal is required in continuous clock systems to delimit the active
clock transitions. Although the word-length frame sync is shown in Figure 6-58, a
bit-length frame sync can be used (see Figure 6-59). In gated clock systems, frame syn­
chronization is inherent in the clock signal; thus a separate sync signal is not required (see
Figure 6-60 and Figure 6-61). The SSI can be programmed to generate frame sync out­
puts in gated clock mode but does not use frame sync inputs.

Input flags (see Figure 6-60 and Figure 6-61) are latched on the negative edge of the first
data bit of a frame. Output flags are valid during the entire frame.

6.4.7.1.3 Synchronous/Asynchronous Operating Modes
The transmit and receive sections of this interface may be synchronous or asynchronous
- i.e., the transmitter and receiver may use common clock and synchronization signals
(synchronous operating mode, see Figure 6-62) or they may have their own separate
clock and sync signals (asynchronous operating mode). The SYN bit in CRB selects syn­
chronous or asynchronous operation. Since the SSI is designed to operate either syn­
chronously or asynchronously, separate receive and transmit interrupts are provided.

Figure 6-63 illustrates the operation of the SYN bit in the CRB. When SYN equals zero, the
SSI TX and RX clocks and frame sync sources are independent. If SYN equals one, the SSI
TX and RX clocks and frame sync come from the same source (either external or internal).

-

I
15 14 13 12 11 10 9 8 7 6 5 4

X:$FFED

*
* NORMAL MOD = 0

FRAMESYNC~ - - 1'--________ ----1

t TRANSMITTER INTERRUPT AND FLAGS SET t
>-----_~_c ,~ SERIAL DATA~ DATA)~ RUPT AND RAGS SET t

~ - RECEIVER INTER t
NOTE: Interrupts occur and data is transferred once per frame sync.

* NETWORK MOD = 1

3 2 o

SSI CONTROL REGISTER B (CRB)
(READIWRITE)

FRAME SYNC-1 TRANSMITTER INTERRUPTS AND FLAGS SET

-I
L
___ _

t t t t ~t __
SERIAlDATAX SLOT' X SLOT' X SLOT. X SLOT' X SLOT' X

t t t t t
RECEIVER INTERRUPT AND FLAGS SET

NOTE: Interrupts occur every time slot and a word may be transferred.

Figure 6-55 CRB MOD Bit Operation

FRAME SYNC ___ ---J1
(FSLO = 0, FSL 1 = 0) \~--------------~I

FRAME SYNC ~'--______________ ----JI\L-____ _
(FSLO=O, FSL1 =1) - -

D~AOUT------~--------------C(X)OO(X)OC(

F~GS ------~(~ __________________ LX~ ____ __

------· I·I---SLOTO .1. WAIT -----....... I·~-SLOT 0--

Figure 6-56 Normal Mode, External Frame Sync (8 Bit, 1 Word in Frame)

-FRAME SYNC _______ ..J1
(FSLO = 0, FSL 1 = 0) \~-------------------~I

FRAME SYNC ~ ;-\
(FSLO=O, FSL1 =1) ,""-------------------' '-----

DATA _____ ---I

FLAGS

-------+l.I,..---SLOTo-r- SLOT 1 + SLOT 0 _I- SLOT 1 -

Figure 6-57 Network Mode, External Frame Sync (8 Bit, 2 Words in Frame)

15 14 13 12 11

X:$FFED

SERIAL CLOCK

FRAME SYNC

~

I
10 9 8 7

*

* CONTINUOUS CLOCK GCK = 0

DATA CHANGES
I

I
DATA STABLE

SSI CONTROL REGISTER B (CRB)
(READIWRITE)

SERIAL DATA ~ DATA > ~ ~>----------
NOTE: Frame sync is required to tell when data is present.

* GATED CLOCK GCK = 1

SERIAL CLOCK

DATA CHANGES
I

I
DATA STABLE

SERIAL DATA ~ ~>-----------

NOTES:
1. Word synchronization is inherent in the serial clock signal.
2. Frame Sync generation is optional.

Figure 6-58 CRB GCK Bit Operation

CONTINUOUS CLOCK

DATA OUT (FOR DC > 0)

DATA OUT (FOR DC = 0, OR
NETWORK MODES)

NOTES:

DATA IN IJ\TCHED

INPUT FIJ\GS IJ\TCHED

FRAME SYNC OUT:
FSLO = 0, FSL1 = 1

FSLO = 0, FSL1 = 0

OUTPUT FIJ\GS

FRAME SYNC IN:
FSLO = 0, FSL1 = 1

FSLO = 0, FSL1 = 0

DATA OUT FOR:
FSL1 = 0, FSLO = 0

OUTPUT FIJ\GS

7

~

0

x

~
7

6
/

x

!
'/ \\\\\\

!
11///1

t ...J t 7

f-< -< -«-< (
-.f I+-

DATA NOT DEFINED

XXX

6 5 4 3 2

~ ~ ~ ~
x

X

~ ~ ~ ~ ~
6 5 4 3 2

\\\\\ \\\\\ 1\\\\\ \\\\\\\\\\\

\\\\\ \\\\\ \\\\\ \\\\\\\\\\

l+-

1. For FSL 1 = 0 the frame sync is latched and enables the STD output buffer, but data may not be valid until the rising edge of the bit clock.
2. WL bit frame sync (FSLO = 0, FSL 1 = 0) is not defined for DC = 0 in continuous clock mode.
3. Data and flags transition after extemal frame sync but not before the rising edge of the clock.

1

~

~
1

\\\\\

\\\\\

Figure 6-59 Continuous Clock Timing Diagram (a-Bit Example)

I

0

~ 1"\-1 h

~
0

(DC=O)

(DC=O)

\\\\

GATED CLOCK
OUTPUT (DC>O)

DATA OUT
(DC>O)

GATED CLOCK
(DC=O)

DATA OUT
(DC=O)

DATA IN LATCHED

FRAME SYNC OUT:
FSLO = 0, FSL1 = 1

FRAME SYNC OUT:
FSLO = 0, FSL1 = 0

INPUT FLAGS LATCHED

OUTPUT FLAGS (DC> 0)

OUTPUT FLAGS (DC = 0)

I
7 6 5 4 3 2

,6

Figure 6-60 Internally Generated Clock Timing (a-Bit Example)

0

(DC=O)

NOTES:

GATED CLOCK
INPUT (DC>O)

DATA OUT
(DC>O)

GATED CLOCK
(DC=O)

DATA OUT
(DC=O)

DATA IN LATCHED

INPUT FLAGS LATCHED

1. Output enabled on rising edge of first clock input.
2. Output disabled on falling edge of last clock pulse.
3. t.:Jhgc is guaranteed by circuit design.

,b

4. Frame syncs (in or out) are not defined for external gated clock mode.

Figure 6-61 Externally Generated Gated Clock Timing {a-Bit

I

SERIAL CLOCK

START OF
FRAME

1-+------- ONE FRAME ------.-1
WORD TRANSFER FATE (=3)

3 WORDS PER FRAME

WORD WORD WORD

FRAME SYNC ~ 1

INTERNAL INTERRUPTS AND FLAGS

WORD

t TRANSMITTER EMPTY t
TRANSMIT DATA ----<: XMITDATA)>-------------« XMITDATA)>---

t RECEIVER FULL
): INTERNALINTERRUPTS AND FlAGS t

(REC DATA):>---RECEIVE DATA -----<: REC DATA

.... 1._----3-STATE ----~·I 1-3-STATE--

Figure 6-62 Synchronous Communication

Data clock and frame sync signals can be generated internally by the DSP or may be ob­
tained from external sources. If internally generated, the SSI clock generator is used to
derive bit clock and frame sync signals from the DSP internal system clock. The SSI clock
generator consists of a selectable fixed prescaler and a programmable prescaler for bit
rate clock generation and also a programmable frame-rate divider and a word-length di­
vider for frame-rate sync-signal generation.

Figures Figure 6-64 through Figure 6-67 show the definitions of the SSI pins during each
of the four main operating modes of the SSI I/O interface. Figure 6-64 uses a gated clock
(from either an external source or the internal clock), which means that frame sync is in­
herent in the clock. Since both the transmitter and receiver use ,the same clock (synchro­
nous configuration), both use the SCK pin. SCQ and SC1 are designated as flags or can
be used as general purpose-parallel 1/0. SC2 is not defined if it is an input; SC2 is the
transmit and receive frame sync if it is an output.

Figure 6-65 shows a gated clock (from either an external source or the internal clock), which
means that frame sync is inherent in the clock. Since this configuration is asynchronous, SCK
is the transmitter clock pin (input or output) and SCQ is the receiver clock pin (input or output).

X:$FF

SSI CONTROL REGISTER B (CRB)
(READIWRITE)

15 14 13 12 11

EXTERNAL TRANSMIT CLOCK

INTERNAL CLOCK

10 7

"ASYNCHRONOUS SYN = 0

TRANSMITTER

CLOCK
FRAME
SYNC

6 4 o

t---~STD

EXTERNAL TRANSMIT FRAME SYNC

INTERNAL FRAME SYNC

r:::::\ EXTERNAL RECEIVE CLOCK EXTERNAL RECEIVE FRAME SYNC ;:::::-,

~-------------~r--~------~-~---------------------~
CLOCK

RECEIVER

NOTE: Transmitter and receiver may have different clocks and frame syncs.

FRAME
SYNC

" SYNCHRONOUS SYN = 1

r::7\ EXTERNAL CLOCK
~~----------------------~o

SSIBIT
CLOCK

INTERNAL CLOCK

TRANSMITTER

CLOCK

CLOCK

RECEIVER

NOTE: Transmitter and receiver may have the same clock frame syncs.

FRAME
SYNC

FRAME
SYNC

... ---< SRD

t---~STD

EXTERNAL FRAME SYNC

INTERNAL FRAME SYNC < 0-------<

... ---< SRD

Figure 6-63 CRB SYN Bit Operation

SC2

..

•

PCB

PC?

PC6

SSI
SCQ

PC3
SC1

PC4
SC2

PC5

STO

SRD

SCK (TXC and RXC)

FLAGQ

FLAG 1

-----~.~ FSt and FSr

Figure 6-64 Gated Clock - Synchronous Operation

PCB

PC?

PC6

SSI
SCQ

PC3
SC1

PC4
SC2

PC5

STO

SRD

SCK(TXC)

RXC

FSr-----_

FSt-----_

Figure 6-65 Gated Clock - Asynchronous Operation

PCB

PC?

PC6

SSI

PC3
SCQ

SC1
PC4

SC2
PC5

STD

SRO

SCK (TXC and RXC)

FLAGQ

FLAG 1

FSrand FSt

Figure 6-66 Continuous Clock - Synchronous Operation

pca

PC?

PC6

SSI

PC3
SCQ

SC1
PC4

SC2
PC5

STO

SRD

SCK(TXC)

RXC

FSr

FSt

Figure 6-67 Continuous Clock - Asynchronous Operation

SC1 and SC2 are designated as receive or transmit frame sync, respectively, if they are se­
lected to be outputs; these bits are undefined if they are selected to be inputs. SC1 and SC2
can also be used as general-purpose parallel 1/0.

Figure 6-66 shows a continuous clock (from either an external source or the internal
clock), which means that frame sync must be a separate signal. SC2 is used for frame
sync, which can come from an internal or external source. Since both the transmitter and
receiver use the same clock (synchronous configuration), both use the SCK pin. SCO and
SC1 are designated as flags or can be used as general-purpose parallel 1/0.

Figure 6-67 shows a continuous clock (from either an external source or the internal
clock), which means that frame sync must be a separate signal. SC1 is used for the re­
ceive frame sync, and SC2 is used for the transmit frame sync. Either· frame sync can
come from an internal or external source. Since the transmitter and receiver use different
clocks (asynchronous configuration), SCK is used for the transmit clock, and SCO is used
for the receive clock.

6.4.7.1.4 Frame Sync Selection
The transmitter and receiver can operate totally independent of each·other. The transmit- .
ter can have either a bit-long or word-long frame-sync signal format, and the receiver can
have the same or opposite format. The selection is made by programming FSLO and FSL 1 _
in the CRB as shown in Figure 6-68.

1. If FSL 1 equals zero (see Figure 6-69), the RX frame sync is asserted during
the entire data transfer period. This frame sync length is compatible with
Motorola codecs, SPI serial peripherals, serial NO and D/A converters, shift
registers, and telecommunication PCM serial 1/0.

2. If FSL 1 equals one (see Figure 6-70), the RX frame sync pulses active for one
bit clock immediately before the data transfer period. This frame sync length is
compatible with Intel and National components, codecs, and telecommunica­
tion PCM serial 1/0.

The ability to mix frame sync lengths is useful in configuring systems in which data is re­
ceived from one type device (e.g., codec) and transmitted to a different type device ..

FSLO controls whether RX and TX have the same frame sync length (see Figure 6-68). If'
FSLO equals iero, RX and TX have the same frame sync length, which is selected by
FSL 1. If FSLO equals one, RX and TX have different frame sync lengths, which are se­
lected by FSL 1.

-

SSI CONTROL REGISTER B (CRB)
(READIWRITE)

15 14 13

X:$FFED

SERIAL CLOCK

RX, TX SERIAL DAT~

12 11 10 7

* WORD LENGTH: FSL 1 = 0, FSLO = 0

~ DATA

'------'

NOTE: Frame sync occurs while data is valid.

* ONE BIT: FSL1 = 1, FSLO = 0

SERIAL CLOCK

4 3 o

DATA

RX, TX FRAME SYNC n n
~ I~--------------------~ ~ ________ __

RX, TX SERIAL DAT~,-. __ DA_T_A_-,» ______________ --«· DATA » __ _
NOTE: Frame sync occurs for one bit time preceding the data.

* MIXED FRAME LENGTH: FSL 1 = 0, FSLO = 1

RX SERIAL DATA DATA DATA

TX FRAME SYNC

TX SERIAL DATA DATA) DATA)
* MIXED FRAME LENGTH: FSL 1 = 1, FSLO = 1

SERIAL CLOCK

RX~RAMESYNC ~ n
RX SERIAL DATA ---< DATA) < DATA >
TX FRAME SYNC -.--J I I I
TX SERIAL DATA ---< DATA > < DATA >

Figure 6-68 CRB FSLO and FSL 1 Bit Operation

15 14 13 12 11 10 9 a 7 6 4 3 2 o

X:$FFEC I PSR I 0 0 I SSI CONTROL REGISTER A (CRA)
(READIWRITE)

X:$FFEC

\.. WL1 V WLO) DC4 DC3 DC2 DC1
'- -...".--

a-BIT WORD LENGTH 3 WORD FRAME RATE

15 14 13 12 11 10 9

DCO
./

a 7 6 4 3 2

SCD2

o
SSI CONTROL REGISTER B (CRB)
(READIWRITE)

MOD
SSI MODE SELECT

0= NORMAL
SERIAL CONTROL 2 DIRECTION
1 = OUTPUT

GCK,----~

GATED CLOCK CONTROL
o = CONTINUOUS CLOCK

SYN-------~
SYNC/ASYNC CONTROL

1 = SYNCHRONOUS

SERIAL CLOCK

'------ SCKD
CLOCK SOURCE DIRECTION
1 = OUTPUT

L... _________ FSLO

FRAME SYNC LENGTH
0= SAME LENGTHS

'-------------- FSL1 FRAME
SYNC LENGTH
0= WORD CLOCK

FRAME SYNC --.-J I

TRANSMIT DATA
t ./ ' INTERNAL INTERRUPTS AND FLAGS t

INTERNAL INTERRUPTS AND FLAGS t
RECEIVE DATA

Figure 6-69 Normal Mode Initialization for FLS1 =0 and FSLO=O

I

t

X:$FFEC

X:$FFED

I
15 14 13 12 11 10 8 7 4 3 2 o

SSI CONTROL REGISTER A (CRA)
1....-_-1..._--" __ _.....&. __ _-"-__ 1....-_-1..._--" __ ..1-_-"-__ .1.-_-1..._--" __ ____ , (READiWRITE)

WL1 WLO DC4 DC3 DC2 DC1 DCO LL' I I I I CONTINUOUS PERIODIC

15 14 13 12 11 10 9 8 7 6 4 2 o
SSI CONTROL REGISTER B (CRB)

I....---I...---"--....... -.....&.~~ ~-"-~-I....-T_-I..._T--"--..I-~-"-~-.l.---I...---"--....... ----, (READiWRITE)

MOD
SSI MODE SELECT

0= NORMAL

GCK ____ ---J

GATED CLOCK CONTROL
o = CONTINUOUS

SYN------------J
SYNC/ASYNC CONTROL

1 = SYNCHRONOUS

SERIAL CLOCK

SCD2
SERIAL CONTROL 2 DIRECTION
1 = OUTPUT

I....-----SCKD
CLOCK SOURCE DIRECTION
1 = OUTPUT

L..-___________________ FSLO

FRAME SYNC LENGTH
0= DIFFERENT LENGTHS

..... ------------------ FSL1 FRAME
SYNC LENGTH
1 = WL CLOCK FOR RX

FRAME SYNC ~ n n n n IL
TRANSMIT AND RECEIVE

SERIAL DATA X DATA 1 X DATA 2 X DATA 3 X DATA 4 X DATA 5 ">C

Figure 6-70 Normal Mode Initialization for FSL 1=1 and FSLO=O

The SSI receiver looks for a receive frame sync leading edge only when the previous
frame is completed. If the frame sync goes high before the frame is completed (or before
the last bit of the frame is received in the case of a bit frame sync), the current frame sync
will not be recognized, and the receiver will be internally disabled until the next frame
sync. Frames do not have to be adjacent - i.e., a new frame sync does not have to imme­
diately follow the previous frame. Gaps of arbitrary periods can occur between frames.
The transmitter will be three-stated during these gaps.

6.4.7.1.5 Shift Direction Selection
Some data formats, such as those used by codecs, specify MSB first other data formats,
such as the AES-EBU digital audio, specify LSB first. To interface with devices from both
systems, the shift 'registers in the SSI are bidirectional. The MSB/LSB selection is made
by programming SHFD in the CRB.

Figure 6-71 illustrates the operation of the SHFD bit in the CRB. If SHFD equals zero (see
Figure 6-71 (a)), data is shifted into the receive shift register MSB first and shifted out of
the transmit shift register MSB first. If SHFD equals one (see Figure 6-71 (b)), data is shift­
ed into the receive shift register LSB first and shifted out of the transmit shift register LSB
first. '

6.4.7.2 Normal Mode Examples
The normal SSI operating mode characteristically has one time slot per serial frame, and
data is transferred every frame sync. When the SSI is not in the normal mode, it is in the
network mode. The MSB is transmitted first (SHFD=O), with overrun and underrun errors
detected by the SSI hardware. Transmit flags are set when data is transferred from the
transmit data register to the transmit shift register. The receive flags are set when data is
transferred from the receive shift register to the receive data register.

Figure 6-72 shows an example of using the SSI to ,connect an MC15500 codec with a
DSP56002. No glue logic is needed. The serial clock, which is generated internally by the
DSP, provides the transmit and receive clocks (synchronous operation) for the codec.
SC2 provides all the necessary handshaking. Data transfer begins when the frame sync
is asserted. Transmit data is clocked out and receive data is clocked in with the serial
clock while the frame sync is asserted (word-length frame sync). At the end of the data
transfer, DSP internal interrupts programmed to transfer data to/from will occur, and the
SSISR will be updated.

..

$FFED

15 14 13 12 11 10 9 7

I
6 5 4 3 2 o

SSI CONTROL REGISTER B (CRB)
(READIWRITE)

~--~----~--~----~--~----~--~----~--~----~--~----~--~----~--~--~
*

23 16 15 8 7 0

X:$FFEF RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE lOW BYTE SERIAL RECEIVE DATA REGISTER (RX)

~ ______ ~ ____ ~~~ ____ -. ______ ~~ ____ ~ ______ ~(READONl~

X:$FFEF

23

RECEIVE HIGH BYTE

23

RECEIVE HIGH BYTE

07 , 07 , 0

16 15 8 7 0

I :ECEIVE MIDDLE BYTE I RECEIVE lOW BYTE I SERIAL RECEIVE SHIFT REGISTER (RX)

07 "" "" 07 "" 0 "" 8 8 BIT 12 BIT 16 BIT 24 BIT

16 15 8 7

RECEIVE MIDDLE BYTE

o 7 o 7

o

RECEIVE lOW BYTE

o

SERIAL RECEIVE DATA REGISTER (RX)
(READONl~

23 • 16 15 • 8 7 o
TRANSMIT HIGH BYTE I TRANSMIT MIDDLE BYTE I TRANSMIT lOW BYTE SERIAL TRANSMIT SHIFT REGISTER

o 7

(a) SHFD = 0

Figure 6-71 CRB SHFD Bit Operation (Sheet 1 of 2)

23 16 15 8 7 o

X:$FFEF RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE

7 1 07 1 07 1 0

~ 0

o 7 o 7 o

23 16 15 8 7 o

SERIAL RECEIVE DATA REGISTER (AX)
(READ ONLy)

I SERIAL RECEIVE SHIFT REGISTER (AX)

X:$FFEF TRANSMIT HIGH BYTE TRANSMIT LOW BYTE J SERIAL TRANSMIT DATA REGISTER (TX)
(WRITE ONLy)

7 o

23 16 15 ~ 8 7 ~ 0

I TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE SERIAL TRANSMIT SHIFT REGISTER

l--= •
- - 0 7~~07~ o~ sm

8 BIT 12 BIT 16BIT 24 BIT 8

7

(b) SHFD=1

Figure 6-71 CRB SHFD Bit Operation (Sheet 2 of 2)

I

-

MC1550x DSP56002
CODEC FILTER

ANALOG
INPUT

TX1 TOO SRD
ROD STO
TOC SCK

ANALOG
ROC

OUTPUT
RXO TOE SC2

RCE
MSI

SERIAL CLOCK

SERIAL SYNC ~

TRANSMITDATA ---<: DSPDATA)~-----------<;(DSPDATA)>----

RECEIVEDATA ---<: CODECDATA)>-------------«CODECDATA)>----

6.4.7.2.1

Figure 6-72 Normal Mode Example

Normal Mode Transmit
The conditions for data transmission from the SSI are as follows:

I

1. Transmitter is Enabled (TE=1)
2. Frame sync (or clock in gated clock mode) is active

When these conditions occur in normal mode, the next data word will be transferred from
TX to the transmit shift register, the TDE flag will be set (transmitter empty), and the trans­
mit interrupt will occur if TIE equals one (transmit interrupt enabled.) The new data word
will be transmitted immediately.

The transmit data output (STD) is three-stated, except during the data transmission peri­
od. The optional frame sync output, flago~tputs, and clock outputs are not three-stated
even if both receiver and transmitter are disabled.

The optional output flags are always updated at the beginning of the frame, regardless of
TE. The state of the flag does not change for the entire frame.

Figure 6-73 is an example of transmitting data using the SSI in the normal mode with a
continuous clock, a bit-length frame sync, and 16-bit data words. The purpose of the pro­
gram is to interleave and transmit right and left channels in a compact disk player. Four
SSI pins are used:

1. SCO is used as an output flag to indicate right-channel data (OFO=1) or left-chan-
nel data (OFO=O)

2. SC2 is TX and RX frame sync out

3. STD is transmit data out

4. SCK clocks the transmit data out

Equates are set for convenience and readability. Test data is then put in the low X: mem­
ory locations. The transmit interrupt vector contains a JSR instruction (which forms a long
interrupt). The data pointer and channel flag are initialized before initializing CRA and
CRB. It is assumed that the DSP CPU and SSI have been previously reset.

At this pOint, the SSI is ready to transmit except that the interrupt is masked because the
MR was cleared on reset and Port C is still configured as general-purpose 1/0. Unmasking
the interrupt and enabling the SSI pins allows transmission to begin. A "jump to self' in­
struction causes the DSP to hang and wait for interrupts to transmit the data. When an
interrupt occurs, a JSR instruction at the interrupt vector location causes the XMT routine
to be executed. Data is then moved to the TX register, and the data pointer is increment­
ed. The flag is tested by the JSET instruction and, if it is set, a jump to left occurs, and the
code for the left channel is executed. If the flag is not set, the code for the right channel is
executed. In either case, the channel flag in XO and then the output flag are set to reflect
the channel being transmitted. Control is then returned to the main program, which will
wait for the next interrupt.

-

..

.*** ,
SSI and other 1/0 EQUATES*

.***

IPR
CRA
CRB
pec
TX
FLG

EQU
EQU
EQU
EQU
EQU
EQU
ORG
DC
DC
DC
DC

$FFFF
$FFEC
$FFED
$FFE1
$FFEF
$0010
X:O
$AAAAOO
$333300
$CCCCOO
$FOFOOO

.***

INTERRUPT VECTOR*
.***

ORG
JSR

P:$0010
XMT

.***

MAIN PROGRAM*

.***

ORG
MOVE
MOVE
MOVE
MOVE

P:$40
#O,RO
#3,MO
#O,XO
XO,X:FLG

.***

Initialize SSI Port*

.***

MOVEP
MOVEP

MOVEP

#$3000,X:1 PR
#$401 F,X:CRA

#$5334,X:CRB

;Data to transmit.

;Pointer to data buffer.
;Set modulus to 4.
;Initialize channel flag for SSI flag.
;Start with right channel first.

;Set interrupt priority register for SS!.
;Set continuous clock=5.12132 MHz
;word length=16.
;Enable TIE and TE; make clock and
;frame sync outputs; frame
;sync=bit mode; synchronous mode;
;make SCO an output.

Figure 6-73 Normal Mode Transmit Example (Sheet 1 of 2)

.*** ,
Init SSI Interrupt*

.*** ,
ANDI
MOVEP
JMP

#$FC,MR
#$01 F8,X:PCC
*

.*** , .

MAIN INTERRUPT ROUTINE*
.*** ,
XMT MOVEP

JSET

RIGHT BClR
MOVE
MOVE
RTI

lEFT BSET
MOVE
MOVE
RTI

END

X:(RO);pl,X:TX
#O,X:FlG,lEFT

#O,X:CRB
#>$01,XO
XO,X:FlG

#O,X:CRB
#>$OO,XO
XO,X:FlG

;Unmask interrupts.
;Turn on SSI port.
;Wait for interrupt.

;Move data to TX register.
;Check channel flag.

;Clear SCO indicating right channel data
;Set channel flag to 1 for next' data.

;Set SCO indicating left channel data.
;Clear channel flag for next data.

Figure 6-73 Normal Mode Transmit Example (Sheet 2 of 2)

6.4.7.2.2 Normal Mode Receive
If the receiver is enabled, a data word will be clocked in each time the frame sync signal
is generated (internal) or detected (external). After receiving the data word, it will be trans­
ferred from the SSI receive shift register to the receive data register (RX), RDF will be set
(receiver full), and the receive interrupt will occur if it is enabled (RIE=1).

The DSP program has to read the data from RX before a new data word is transferred
from the receive shift register; otherwise, the receiver overrun error will be set (ROE=1).

Figure 6-74 illustrates the program that receives the data transmitted by the program
shown in Figure 6-73. Using the flag to identify the channel, the receive program receives
the right- and left-channel data and separates the data into a right data buffer and a left
data buffer. The program shown in Figure 6-74 begins by setting equates and then using
a JSR instruction at the receive interrupt vector location to form a long interrupt. The
main program starts by initializing pointers to the right and left data buffers. The IPR,
CRA, and CRB are then. initialized. The clock divider bits in the CRA do not have to be
set since an external receive clock is specified (SCKD=O). Pin SCO is specified as an in­
put flag (SYN=1, SCDO=O); pin SC2 is specified as TX and RX frame sync (SYN=1,
SCD2=0). The SSI port is then enabled and interrupts are unmasked, which allows the

..

..

SSI port to begin data reception. A jump-to-self instruction is then used to hang the pro­
cessor and allow interrupts to receive the data. Normally, the processor would execute
useful instructions while waiting for the receive interrupts. When an interrupt occurs, the
JSR instruction at the interrupt vector location transfers control to the RCV subroutine.
The input flag is tested, and data is put in the left or right data buffer depending on the
results of the test. The RTI instruction then returns control to the main program, which
will wait for the next interrupt.

.*** ,
SSI and other liD EQUATES*

.***

IPR
SSISR
CRA
CRB
pce
RX
FLG

EQU
EQU
EQU
EQU
EQU
EQU
EQU

$FFFF
$FFEE
$FFEC
$FFED
$FFE1
$FFEF
$0010

.*** ,
INTERRUPT VECTOR*

.*** ,
ORG P:$OOOC
JSR RCV

.*** ,
MAIN PROGRAM*

.***

ORG
MOVE·
MOVE
MOVE
MOVE

P:$40
#O,RO

. #$08,R1
#1,MO
#1,M1

;Pointer to memory buffer for
;received data. Note data will be
;split between two buffers which are
;modulus 2.

Figure 6-74 Normal Mode Receive Example (Sheet 1 of 2)

.*** ,
Initialize SSI Port*

.***

MOVEP
MOVEP
MOVEP

#$3000,X:IPR
#$4000,X:CRA
#$A300,X:CRB

.*** ,
Init SSI Interrupt*

.*** ,
ANDI
MOVEP
JMP

#$FC,MR
#$01 F8,X:PCC
*

.*** ,
MAIN INTERRUPT ROUTINE*

.*** ,
RCV
LEFT

RIGHT

JSET
MOVEP
RTI
MOVEP
RTI
END

#O,X:SSISR, RIGHT
X:RX,X:(RO)+

X:RX,X:(R1)+

;Set interrupt priority register for SSI.
;Set word length = 16 bits.
;Enable RIE and RE; synchronous
;mode with bit frame sync;
;clock and frame sync are
;external; SCO is an output.

;Unmask interrupts.
;Turn on SSI port.
;Wait for interrupt.

;Test SCO flag.
;If SCO clear, receive data
;into left buffer (RO).
;If SCO set, receive data
;into right buffer (R1).

Figure 6-74 Normal Mode Receive Example (Sheet 2 of 2)

6.4.7.3 Network Mode Examples
The network mode, the typical mode in which the DSP would interface to a TDM codec
network or a network of DSPs, is compatible with Bell and CCITT PCM data/operation for­
mats. The DSP may be a master device (see Figure 6-75) that controls its own private
network or a slave device that is connected to an existing TDM network, occupying one
or more time slots. The key characteristic of the network mode is that each time slot (data
word time) is identified by an interrupt or by polling status bits, which allows the option of
ignoring the time slot or transmitting data during the time slot. The receiver operates in the
same manner except that data is always being shifted into the receive shift register and
transferred to the RX. The DSP reads the receive data register and uses or discards the
contents. Overrun and underrun errors are detected.

-

..

MASTER TRANSMIT

MASTER RECEIVE

DSP56002 MASTER DSP56002 SLAVE 1 DSP56002 SLAVE 2 DSP56002 SLAVE 3

STD - STD r-- STD r-- STD r--
SRD ~ SRD ~ SRD I- SRD f+--
SCK - SCK ~ SCK I- SCK f+--
SC2 - SC2 ~ SC2 f- SC2 ~

TIME SLOT 1 TIME SLOT 2 TIME SLOT 3 TIME SLOT 4

MASTER CLOCK

MASTER SYNC

Figure 6-75 Network Mode Example

The frame sync signal indicates the beginning of a new data frame. Each data frame is di­
vided into time slots; transmission or reception can occur in each time slot (rather than in
just the frame sync time slot as in normal mode). The frame rate dividers (controlled by DC4,
De3, DC2, DC1, and DCD) control the number of time slots per frame from 2 to 32. Time-slot
assignment is totally under software control. Devices can transmit on multiple time slots, re­
ceive multiple time slots, and the time-slot assignment can be changed dynamically .

A simplified flowchart showing operation of the network mode is shown in Figure 6-76.
Two counters are used to track the current transmit and receive time slots. Slot counter
one (SLOTCT1) is used to track the transmit time slot; slot counter two (SLOTCT2) is
used for receive. When the transmitter is empty, it generates an interrupt; a test is then
made to see if it is the beginning of a frame. If it is the beginning of a frame, SLOTCT1 is
cleared to start counting the time slots. If it is not the beginning of a frame, SLOTCT1 is
incremented. The next test checks to see if the SSI should transmit during this time slot.
If it is time to transmit, data is written to the TX; otherwise, dummy data is written to the
TSR, which prevents a transmit underrun error from occurring and three-states the STD
pin. The DSP can then return to what it was doing before the interrupt and wait for the next
interrupt to occur. SLOTCT1 should reflect the data in the shift registers to coincide with
TFS. Software must recognize that the data being written to TX will be transmitted in time
slot SLOTCT1 plus one.

CLEAR SLOT
NUMBER
SLOTCT1

WRITE DATA
TOTX

INCREMENT SLOT NUMBER
SLOTcn = SLOTcn + 1

WRITE
DUMMY DATA

TOTSR

CLEAR SLOT
NUMBER

SLOTCT2=O

KEEP DATA

Figure 6-76 TOM Network Software Flowchart

I

INCREMENT SLOT NUMBER
SLOTCT2 = SLOTCT2 + 1

DISCARD
DATA

..

The receiver operates in a similar manner. When the receiver is full, an interrupt is gener­
ated, and a test is made to see if this is the beginning of a frame. If it is the beginning of
a frame, SLOTCT2 is cleared to start counting the time slots. If it is not the beginning of a
frame, SLOTCT2 is incremented. The next test checks to see if the data received is in­
tended for this DSP. If the current time slot is the one assigned to the DSP receiver, the
data is kept; otherwise, the data is discarded, and the DSP can then return to what it was
doing before the interrupt. SLOTCT2 should reflect the data in the receive shift register to
coincide with the RFS flag. Software must recognize that the data being read from RX is
for time slot SLOTCT2 minus two.

Initializing the network mode is accomplished by setting the bits in CRA and CRS·as fol­
lows (see Figure 6-77):

1.

2.

3.

4.

5.

6.

7.

8.

The word length must be selected by setting WL 1 and WLO. In this example,
an 8-bit word length was chosen (WL 1=0 and WLO=O).

The number of time slots is selected by setting DC4-DCO. Four time slots
were chosen for this example (DC4-DCO=$03).

The serial clock rate must be selected by setting PSR and PM7-PMO (see
Table 6-15 (a), Table 6-15 (b), and Table 6-16) .

RE and TE must be set to activate the transmitter and receiver. If interrupts
are to be used, RIE and TIE should be set. RIE and TIE are usually set after
everything else is configured and the DSP is ready to receive interrupts.

The network mode must be selected (MOD=1).

A continuous clock is selected in this example by setting GCK=O.

Although it is not required for the network mode, synchronous clock control
was selected (SYN=1).

The frame sync length was chosen in this example as word length (FSL 1 =0)
for both transmit and receive frame sync (FSLO=O). Any other combinations
could have been selected, depending on the application.

9. Control bits SHFD, SCKD, SCD2, SCD1, SCDO, and the flag bits (OF1 and
OFO) should be set as needed for the application.

SSI CONTROL REGISTER A (CRA)
(READIWRITE)

15 14 13 12

X:$FFEC

WLl WLO DC4
'---v----J \.....

8-BIT WORD LENGTH

SSI CONTROL REGISTER B (CRB)
(READIWRITE)

15 14 13

X:$FFE

12

11 10 9

DC3 DC2 DCl

~
FOUR TIME SLOTS

11 10 9

8 7 6 5 4 3 2 0

DCO
~

8 7 5 4 3 2 o

SCD2 MOD
SSI MODE SELECT

1 = NETWORK

SERIAL CONTROL 2 DIRECTION
1 = OUTPUT (MASTER)

SERIAL
CLOCK

GCK-----.....
GATED CLOCK CONTROL
0= CONTINUOUS CLOCK

SYNI--------~
SYNC/ASYNC CONTROL

1 = SYNCHRONOUS

X:$FFEE

X:$FFEE

7

RDF

*

5

TOE ROE

* *

4

TUE

*

0= INPUT (SLAVE)

SCKD
CLOCK SOURCE DIRECTION
1 = OUTPUT (MASTER)
0= INPUT (SLAVE)

1---------. FLSO
FRAME SYNC LENGTH 0
0= TX, AX SYNC SAME LENGTH

...... --------- FSLl

3 2

RFS TFS IFl

* * *

o

IFO

*

FRAME SYNC LENGTH 1
0= WORD WIDTH

SSI STATUS REGISTER (SR)
(READ)

SSI TIME SLOT REGISTER B (TSR)
(WRITE)

FRAME..J
SYNC L

INTERNAL TX FLAGS AND INTERRUPTS

----------------------~----------------------r- -----.
t t t t ;--t_

SERIAt:DAT~ SLOT 1 X SLOT2 X SLOT 3 X SLOT 4 X SLOT 1 ~
t t t t t
'---------------------- -------------------~ ------INTERNAL RX FLAGS AND INTERRUPTS

Figure 6-77 Network Mode Initialization

-

..

6.4.7.3.1 Network Mode Transmit
When TE is set, the transmitter will be enabled only after detection of a new data frame
sync. This procedure allows the SSI to synchronize to the network timing.

Normal startup sequence for transmission in the first time slot is to write the data to be
transmitted to TX, which clears the TDE flag. Then set TE and TIE to enable the transmit­
ter on the next frame sync and to enable transmit interrupts.

Alternatively, the DSP programmer may decide not to transmit in the first time slot by.writ­
ing any data to the time slot register (TSR). This will clear the TOE flag just as if data were
going to.be transmitted, but the STO pin will remain in the high-impedance state for the
first time slot. The programmer then sets TE and TIE.

When the frame sync is detected (or generated), the first data word will be transferred from
TX to the transmit shift register and will be shifted out (transmitted). TX being empty will
cause TDE to be set, which will cause a transmitter interrupt. Software can poll TDE or use
interrupts to reload the TX register with new data for the next time slot. Software' can also
write to TSR to prevent transmitting in the next time slot. Failing to reload TX (or writing to
the TSR) before the transmit shift register is finished shifting (empty) will cause a transmitter
underrun. The TUE error bit will be set, causing the previous data to be retransmitted .

The operation of clearing TE and setting it again will disable the transmitter after comple­
tion of transmission of the current data word until the beginning of the next frame sync pe­
riod. During thaUime, the STD pin will be three-stated. When it is time to disable the trans­
mitter, TE should be cleared after TOE is set to ensure that all pending data is transmitted.

The optional output flags are updated every time slot regardless of TE.

To summarize, the network mode transmitter generates interrupts every time slot and re­
quires the' DSP program to respond to each time slot. These responses can be:

1. Write data register with data to enable transmission in the next time slot

2. Write the time slot register to disable transmission in the next time, slot

3. Do nothing - transmit underrun will occur the at beginning of the next time slot,
and the previous data will be transmitted

Figure 6-78 differs from the program shown in Figure 6-73 only in that it uses the network
mode to transmit only right-channel data. A time slot is assigned for the left-channel data,
which could be inserted by another DSP using the network mode. In the "Initialize SSI
Port" section of the program, two words per frame are selected using CRA, and the net­
work mode is selected by setting MOD to one in the CRB. The main interrupt routine,
which waits to move the data to TX, only transmits data if the current time slot is for the
right channel. If the current time slot is for the left channel, the TSR is written, which thre­
e-states the output to allow another DSP to transmit the left channel during the time slot.

.***

SSI and other 1/0 EQUATES*
.***

IPR
CRA
CRB
pec
TX
TSR
FLG

EQU
EQU
EQU
EQU
EQU
EQU
EQU
ORG
DC
DC
DC
DC

$FFFF
$FFEC
$FFED
$FFE1
$FFEF
$FFEE
$0010
X:O
$AAAAOO
$333300
$CCCCOO
$FOFOOO

.*** ,
INTERRUPT VECTOR*

.*** ,

ORG P:$0010
JSR XMT

.*** ,
MAIN PROGRAM*

.***

ORG
MOVE
MOVE
MOVE
MOVE

P:$40
#O,RO
#3,MO
#O,XO
XO,X:FLG

; Data to transmit.

;Pointer to data buffer.
;Set modulus to 4.
;Initialize user flag for SSI flag.
;Start with the right channel.

Figure 6-78 Network Mode Transmit Example Program (Sheet 1 of 2)

-

-

.***

Initialize SSI Port •
• ***

MOVEP #$3000,X:IPR
MOVEP #$411 F,X:CRA

MOVEP #$5B34,X:CRB

.***

Init SSI Interrupt •
. ***

ANDI #$FC,MR
MOVEP #$01 F8,X:PCC
JMP *

.***

MAIN INTERRUPT ROUTINE •
. ***

XMT

RIGHT

LEFT

JSET

BCLR

MOVEP
MOVE
MOVE
RTI

BSET
MOVEP
MOVE
MOVE
RTI

END

#O,X:FLG,LEFT

#O,X:CRB

X:(RO)+,X:TX
#>$01,XO
XO,X:FLG

#O,X:CRB
XO,X:TSR
#>$OO,XO
XO,X:FLG

;Set interrupt priority register for SSI.
;Set continuous clock=5.12132 MHz
;word length=16.
;Enable TIE and TE; make clock and
;frame sync outputs; frame
;sync=bit mode; synchronous mode;
;make SCO an output.

;Unmask interrupts.
;Turn on SSI port.
;Wait for interrupt.

;Check user flag.

;Clear SCO indicating right channel data

Move data to TX register.
;Set user flag to 1
;for next data.

;Set SCO indicating left channel data.
;Write to TSR register.
;Clear user flag
;for next data.

Figure 6-78 Network Mode Transmit Example Program (Sheet 2 of 2)

.***

SSI and other 1/0 EQUATES •

. ***

IPR EQU $FFFF
SSISR EQU $FFEE
CRA EQU $FFEC
CRB EQU $FFED
PCC EQU $FFE1
RX EQU $FFEF

.***

INTERRUPT VECTOR •

. ***

ORG
JSR

P:$OOOC
RCV

.***

MAIN PROGRAM •

• ***

ORG P:$40
MOVE #O,RO
MOVE #$08,R1
MOVE #3,MO
MOVE #3,M1

.***

Initialize SSI Port •

• ***

MOVEP
MOVEP
MOVEP

#$3000,X:IPR
#$4100,X:CRA
#$ABOO,X:CRB

;Pointer to memory buffer for
;received data. Note data will be
;split between two buffers which are
;modulus 4.

;Set interrupt priority register for SSI.
;Set word length = 16 bits.
;Enable RIE and RE; synchronous
;mode with bit frame sync;
;clock and frame sync are
;external; SCO is an input.

Figure 6-79 Network Mode Receive Example Program (Sheet 1 of 2)

-

..

.*** ,
Init SSI Interrupt •

• *** ,

ANDI
MOVEP
JMP

#$FC,MR
#$01 F8,X:PCC
*

.*** ,

MAIN INTERRUPT ROUTINE •

. *** ,

RCV
LEFT

RIGHT

JSET
MOVEP
RTI
MOVEP
RTI
END

#O,X:SSISR, RIGHT
X:RX,X:(RO}+

X:RX,X:(R1 }+

;Unmask interrupts.
;Turn on SSI port.
;Wait for interrupt.

;Test SCO flag.
;If SCO clear, receive data
;into left buffer (RO).
;If SCO set, receive data
;into right buffer (R1).

Figure 6-79 Network Mode Receive Example Program (Sheet 2 of 2)

6.4.7.3.2 Network Mode Receive
The receive enable will occur only after detection of a new data frame with RE set. The
first data word is shifted into the receive shift register and is transferred to the RX, which
sets RDF if a frame sync was received (Le., this is the start of a new frame). Setting RDF
will cause a receive interrupt to occur if the receiver interrupt is enabled (RIE=1).

The second data word (second time slot in the frame) begins shifting in immediately after
the transfer of the first data word to the RX. The DSP program has to read the data from
RX (which clears RDF) before the second data word is completely received (ready to
transfer to RX), or a receive overrun error will occur (ROE=1), and the data in the receiver
shift register will not be transferred and will be lost.

If RE is cleared and set again by the DSP program, the receiver will be disabled after re­
ceiving the current time slot in progress until the next frame sync (first time Slot). This
mechanism allows the DSP programmer to ignore data in the last portion of a data frame.

Note: The optional frame sync output and clock output Signals are not affected, even if
the transmitter and/or receiver are disabled. TE and RE do not disable bit clock and
frame sync generation.

To summarize, the network mode receiver receives every time slot data word unless the
receiver is disabled. An interrupt can occur after the reception of each data word, or the
programmer can poll RDF. The DSP program response can be

1. Read RX and use the data

2. Read RX and ignore the data

3. Do nothing - the receiver overrun exception will occur at the end of the current
time slot

4. Toggle RE to disable the receiver until the next frame, and read AX to clear RDF

Figure 6-79 is essentially the same program shown in Figure 6-74 except that this pro­
gram uses the network mode to receive only right-channel data. In the "Initialize SSI Port"
section of the program, two words per frame are selected using the DC bits in the CRA,
and the network mode is selected by setting MOD to one in the CRB. If the program in
Figure 6-78 is used to transmit to the program in Figure 6-79, the correct data will appear
in the data buffer for the right channel, but the buffer for the left channel will probably con­
tain $000000 or $FFFFFF, depending on whether the transmitter output was high or low
when TSR was written and whether the output was three-stated.

6.4.7.4 On-Demand Mode Examples
A divide ratio of one (DC=OOOOO) in the network mode is defined as the on-demand mode
of the SSI because it is the only data-driven mode of the SSI - i.e., data is transferred
whenever data is present (see Figure 6-80 and Figure 6-81). STD and SCK from DSP1
are connected to DSP2 - SRD and SCO, respectively. seo is used as an input clock pin
in this application. Receive data and receive data clock are separate from the transmit sig­
nals. On-demand data transfers are nonperiodic, and no time slots are defined. When
there is a clock in the gated clock mode, data is transferred. Although they are not neces­
sarily needed, frame sync and flags are generated when data is transferred. Transmitter
underruns (TUE) are impossible in this mode and are therefore disabled. In the on-de­
mand transmit mode, two additional SSI clock cycles are automatically inserted between
each data word transmitted. This procedure guarantees that frame sync will be low be­
tween every transmitted data word or that the clock will not be continuous between two
consecutive words in the gated clock mode. The on-demand mode is similar to the SCI
shift register mode with SSFTD equals one and SCKP equals one. The receiver should
be configured to receive the bit clock and, if continuous clock is used, to receive an exter­
nal frame sync. Therefore, for all full-duplex communication in on-demand mode, the
asynchronous mode should be used. The on-demand mode is SPI compatible.

-

-

DSP56002 DSP56002
DSP1 DSP2

STD SRD

SCK SCO

SRD STD

SCO SCK

Figure 6-80 On Demand Example

Initializing the on-demand mode for the example illustrated in Figure 6-81 is accomplished
by setting the bits in CRA and CRB as follows:

1.

2.

3.

4.

The word length must be selected by setting WL 1 and WLO. In this example, a
24-bit word length was chosen (WL 1 =1 and WLO=1).

The on-demand mode is selected by clearing DC4-DCO.

The serial clock rate must be selected by setting PSR and PM7-PMO (see
Table 6-15 (a), Table 6-15 (b), and Table 6-16).

RE and TE must be set to activate the transmitter and receiver. If interrupts
are to be used, RIE and TIE should be set. RIE and TIE are usually set after
everything else is configured and the DSP is ready to receive interrupts.

5. The network mode must be selected (MOD=1).

6. A gated clock (GCK=1) is selected in this example. A continuous clock exam­
ple is shown in Figure 6-78.

7. Asynchronous clock control was selected (SYN=O) in this example.

8. Since gated clock is used, the frame sync is not necessary. FSL 1 and FSLO
can be ignored.

9. SCKD must be an output (SCKD=1).

10. SCDO must be an input (SCDO=O).

11. Control bit SHFD should be set as needed for the application. Pins SC1 and
SC2 are undefined in this mode (see Table 6-13) and should be programmed
as general-purpose I/O pins.

SSI CONTROL REGISTER A (CRA)
(READIWRITE)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

X:$FFEC

WL1 WLO DC4 DC3 DC2 DCl DCO

'---v--J'--- -.....-- .-/
24-BIT WORD LENGTH ON-DEMAND

SSI CONTROL REGISTER B (CRB)
(READIWRITE)

15 14 13 12 11 10 9 8 7 6 4 0

X:$FFED

MOD
SSI MODE SELECT

1 = NETWORK

GCK
GATED CLOCK CONTROL SCKD

l=GATED CLOCK CLOCK SOURCE
DIRECTION

SYN 1 = OUTPUT
SYNC/ASYNC CONTROL

0= ASYNCHRONOUS

TRANSMIT CLOCK

TRANSMIT DATA ------~<:~ ____ 2_4_-B_I_T_D_A_T_A_F_R_O_M_D_S_P_1_T_O __ D_S_P2 ____ J:>~-------------

RECEIVE CLOCK

1- TWO SSI BIT CLOCKS (MIN.)

RECEIVE DATA DSP2 TO DSP1 24-BIT DATA FROM DSP2 TO DSP1

NOTE: Two SSI bit clock times are automatically inserted between each data word. This guarantees frame sync
will be low between every data word transmitted and the clock will not be continuous for two consecutive
data words.

Figure 6-81 On-Demand Data-Driven Network Mode

-

-

DATACHANGES

I
SERIAL CLOCK

I
DATA STABLE

FRAME SYNC ~ I ~------~I ~I -
SERIAL DATA -<) DATA ~--------------------~<: D~A)~----

(a) Cont~nuous

SERIAL CLOCK

SERIAL DATA --<) DATA ~--------------------~<: DATA)>-------
(b) Gated

Figure 6-82 Clock Modes

6.4.7.4.1 On-Demand Mode - Continuous Clock
This special case will not generate a periodic frame sync. A frame sync pulse will be gen­
erated only when data is available to transmit (see Figure 6-82(a)). The frame sync signal
indicates the first time slot in the frame. The on-demand mode requires that the transmit
frame sync be internal (output) and the receive frame sync be external (input). Therefore,
for simplex operation, the synchronous mode could be used; however, for full-duplex op­
eration, the asynchronous mode must be used. Data transmission that is data driven is
enabled by writing data into TX. Although the 881 is double buffered, only one word can
be written to TX, even if the transmit shift register is empty. The receive and transmit in­
terrupts function as usual using TDE and RDF; however, transmit and receive underruns
are impossible for on-demand transmission and are disabled. This mode is useful for in­
terfacing to codecs requiring a continuous clock.

6.4.7.4.2 On-Demand Mode - Gated Clock
Gated clock mode (see Figure 6-82(b)) is defined for on-demand mode, but the gated
clock mode is considered a frame sync source; therefore, in gated clock mode, the trans­
mit clock must be internal (output) and the receive clock must be external (input). For on­
demand mode, with internal (output) synchronous gated clock, output clock is enabled for

the transmitter and receiver when TX data is transferred to the transmit data shift register.
This SPI master operating mode is shown in Figure 6-83. Word sync is inherent in the
clock signal, and the operation format must provide frame synchronization.

Figure 6-84 is the block diagram for the program presented in Figure 6-85. This program
contains a transmit test program that was written as a scoping loop (providing a repetitive
sync) using the on-demand, gated, synchronous mode with no interrupts (polling) to trans­
mit data to the program shown in Figure 6-86. The program also demonstrates using
GPIO pins as general-purpose control lines. PC3 is used as an external strobe or enable
for hardware such as an AID converter.

The transmit program sets equates for convenience and readability. Test data is then writ­
ten to X: memory, and the data pointer is initialized. Setting MO to two makes the buffer
circular (modulo 3), which saves the step of resetting the pointer each loop. PC3 is con­
figured as a general-purpose output for use as a scope sync, and CRA and CRB are then
initialized. Setting the PCC bits begins SSI operation; however, no data will be transmitted
until data is written to TX. PC3 is set high at the beginning of data transmission;' data is
then moved to TX to begin transmission. A JCLR instruction is then used to form a wait
loop until TDE equals one and the SSI is ready for another data word to be transmitted.
Two more data words are transmitted in this fashion (this is an arbitrary number chosen
for this test loop). An additional wait is included to make sure that the frame sync has gone
low before PC3 is cleared, indicating on the scope that transmission is complete. A wait
of 100 NOPs is implemented by using the REP instruction before starting the loop again.

MASTER SLAVE

SHIFT REGISTER SHIFT REGISTER

SPI
CLOCK GENERATOR

DSP1 DSP2

. Figure 6-83 SPI Configuration

..

-

OSP56002 08P56002

PC3

SC2
SRO

STD

SCK I---~--~ SCK

15K

Figure 6-84 On-Demand Mode Example - Hardware Configuration

.***

SSI and other I/O EQUATES*

.***

CRA EQU $FFEC
CRB EQU $FFED
PCC EQU $FFE1
PCD EQU $FFE5
SSISR EQU $FFEE
TX EQU $FFEF
PCDDR EQU $FFE3

ORG x:O
DC $AAOOOO ;Data to transmit.
DC $330000
DC $FOOOOO

.***

MAIN PROGRAM*

.***

ORG P:$40

MOVE #O,RO
MOVE #2,MO

;Pointer to data buffer
;Length off buffer is 3

Figure 6-85 On-Demand Mode Transmit Example Program {Sheet 1 of 2}

, MOVEP #$08,X:PCDDR ;SCO (PC3) as general purpose output.

MOVEP #$001 F,X:CRA ;Set Word length=8, ClK=5.12/32 MHz.
MOVEP #$1 E30,X:CRB ;Enable transmitter, Mode=On- Demand,

;Gated clock on, synchronous mode,
;Word frame sync selected, frame
;sync and clock are internal and
;output to port pins.

MOVEP #$1 FO,X:PCC ;Set PCC for SSI and

lOOPO BSET #3,X:PCD ;Set PC3 high (this is example enable
;or strobe for an external device
:such as an ADC).

MOVEP X:(RO);pl,X:TX ;Move data to TX register
TDE1 JClR #6,X:SSISR,TDE1 ;Wait for TDE (transmit data register

;empty) to go high.
MOVEP X:(RO);pl,X:TX ;Move next data to TX.

TDE2 JClR #6,X:SSISR,TDE2 ;Wait for TDE to go high.
MOVEP X:(RO);pl,X:TX ;Move data to TX.

TDE3 JClR #6,X:SSISR,TDE3 ;Wait for TDE=1.

FSC JSET #5,X:PCD,FSC ;Wait for frame sync to go low. NOTE:
;State of frame sync is directly
;determined by reading PC5.

BClR #3,X:PCD ;Set PC310 (example external enable).

;anything goes here (Le., any processing)
REP #100
NOP
JMP lOOPO ;Continue sequence forever.
END

Figure 6-85 On-Demand Mode Transmit Example Program (Sheet 2 of 2)

Figure 6-86 is the receive program for the scoping loop program presented in Figure 6-85.
The receive program also uses the on-demand, gated, synchronous mode with no inter­
rupts (polling). Initialization for the receiver is slightly different than for the transmitter. In
CRB, RE is set rather than TE, and SCKD and SCD2 are inputs rather than outputs. After
initialization, a JClR instruction is used to wait for a data word to be received (RDF=1).

•

•

When a word is received, it is put into the circular buffer and loops to wait for another data
word. The data in the circular buffer will be overwritten after three words are received
(does not matter in this application) .

• *** ,
SSI and other I/O EQUATES*

.*** ,
CRA EQU $FFEC
CRB EQU $FFED
PCC EQU $FFE1
PCD EQU $FFE5
SSISR EQU $FFEE
RX EQU $FFEF
PCDDR EQU $FFE3

.*** ,
MAl N PROG RAM*

.*** ,
ORG P:$40

MOVE #O,RO
MOVE #2,MO

MOVEP #$001 F ,X:CRA
MOVEP #$1 E30,X:CRB

MOVEP #$1 FO,X:PCC

LOOP

;Pointer to data buffer
;Length of buffer is 3

;Set Word Length=8, CLK=5.12/32 MHz.
;Enable receiver, Mode=On-Demand,
;gated clock on, synchronous mode,
;Word frame sync selected, frame
;sync and clock are external.
;Set PCC for SSI

RDF1 JCLR #7,X:SSISR,RDF1 ;Wait for RDF (receive data register
;Full) go to high.

MOVEP X:RX,X:(RO)+ ;Read data from RX into memory.

JMP

END

LOOP ;Continue sequence forever.

Figure 6-86 On-Demand Mode Receive Example Program

6.4.8 Flags
Two SSI pins (SC1 and SCO) are available in the synchronous mode for use as serial I/O
flags. The control bits (OF1 and OFO) and status bits (IF1 and IFO) are double buffered
to/from SC1 and SCO. Double buffering the flags keeps them in sync with TX and RX. The
direction of SC1 and SCO is controlled by SCD1 and SCDO in CRB.

Figure 6-87 shows the flag timing for a network mode example; Initially, neither TIE nor
TE is set, and the flag outputs are the last flag output value. When TIE is set, a TDE in­
terrupt occurs (the transmitter does not have to be enabled for this interrupt to occur).
Data (01) is written to TX, which clears TDE, and the transmitter is enabled by software.
When the frame sync occurs, data (D1) is transferred to the transmit shift register, setting
TDE. Data (01) is shifted out during the first word time, and the output flags are updated.
These flags will remain stable until the next frame sync. The TDE interrupt is then serviced
by writing data (D2) to TX, clearing TDE. After the TSR completes transmission, the trans­
mit pin is three-stated until the next frame sync

Figure 6-88 shows a speaker phone example that uses a DSP56002 and two codecs. No
additional logic is required to connect the codecs to the DSP. The two serial output flags
in this example (OF1 and OFO) are used as chip selects to enable the appropriate codec
for I/O. This procedure allows the transmit lines to be ORed together. The appropriate out­
put flag pin changes at the same time as the first bit of the transmit word and remains sta­
ble until the next transmit word (see Figure 6-89). Applications include serial-device chip
selects, implementing multidrop protocols, generating Bell PCM signaling frame syncs,
and outputting status information.

Initializing the flags (see Figure 6-89) is accomplished by setting SYN, SCD1, and SCDO.
No other control bits affect the flags. The synchronous control bit must be set (SYN=1) to
select the SC1 and SCO pins as flags. SC01 and SCDO select whether SC1 and SCO are
inputs or outputs (input=O, output=1). The other bits selected in Figure 6-89 are chosen
for the speaker phone example in Figure 6-88. In this example, the codecs require that
the SSI be set for normal mode (MOD=O) with a gated clock (GCK=1) out (SCKO=1).

Serial input flags, IF1 and IFO, are latched at the same time as the first bit is sampled in
the receive data word (see Figure 6-90). Since the input was latched, the signal on the
input flag pin can change without affecting the input flag until the first bit of the next receive
data word. To initialize SC1 or SCO as input flags, the synchronous control bit in CRB must
be set to one (SYN=1) and SCD1 set to zero for pin SC1 , and SCDO must be set to zero
for pin SCO. The input flags are bits 1 and 0 in the SSISR (at X:$FFEE).

-

I
START

FRAME SYNC l 1--1 ,- -l'---__ _

TIE

TE

TDEINTERRUPTS

LOADTSR

DATA WORD

J
----.J

01 02 03
1 1_ _I

01 02

1 1

01

.L J TIME SLOT
~I 1-

F1 F2

OUTPUT FLAGS _~x· X'--___ _
NOTES:

1. Fn = flags associated with On data.
2. Output flags are double buffered with transmit data.
3. Output flags change when data is transferred from TX to the transmit data shift register.
4. Initial flag outputs (*) = last flag output value.
5. Data and flags transition after external frame sync but not before rising edge of clock.

Figure 6-87 Output Flag Timing

MC15500 SPEAKER PHONE

COOEC FILTER 1

TOO

MICROPHONE TXI ROD

TOC

W ROC

SPEAKER AXO
OFO OSP5002 TOE pOUTPUT SRO RCE FLAG 0

MSI STO

SCK

MC15500 SCO

COOEC FILTER 2
SC1

TOO

PHONE LINE INPUT TXI ROD

TOC

LJ ROC

PHONE LINE OUTPUT AXO
OF1

TOE t=j0lJTPUT
RCE FLAG 1

MSI -NOTE: sca and SC1 are output flag a and 1 used to software select either filter 1 or 2.

Figure 6-88 Output Flag Example

15 14 13

MOD
SSI MODE SELECT

0= NORMAL

12 11 10

GCK.------...I
GATED CLOCK CONTROL

1 = GATED CLOCK

9

SYN---------------...I
SYNCfASYNC CONTROL

1 = SYNCHRONOUS

I
8 7 6 5

SCKD----------------------------------~
CLOCK SOURCE DIRECTION

1 = OUTPUT

4 3 2

SCD1ANDSCDO--~--~
SERIAL CONTROL 1 AND 0 DIRECTION

1 = OUTPUT

TRANSMIT CLOCK

TRANSMIT DATA

OUTPUT FLAG J< VALID OUTPUT FLAG

t t
OFO AND LF1 ARE CLOCKED OUT ON THE
RISING EDGE OF THE TRANSMIT CLOCK.

OUTPUT FLAGS ARE ALWAYS VALID UNTIL
THE NEXT WORD TRANSMITTED.

Figure 6-89 Output Flag Initialization

0= FILTER 2

743

X:$FFEE I RDF I TDE I ROE I TUE I RFS TFS I IFl liFO I ~:~~~TUS REGISTER (SSISR)

'-v---I
INPUT FLAGS

RECEIVE CLOCK

RECEIVE DATA

INPUT FLA~/'X::X

t SAMPLE

Figure 6-90 Input Flags

6.4.9 Example Circuits
The OSP-to-OSP serial network shown in Figure 6-91 uses no additional logic chips for the
network connection. All serial data is synchronized to the data source (all serial clocks and
serial syncs are common). This basic configuration is useful for decimation and data reduc­
tion when more processing power is needed than one OSP can provide. Cascading OSPs
in this manner is useful in several network topologies including star and ring networks.

DSP56002 DSP56002 DSP56002 DSP56002

DATA DATA
IN OUT - SRD STD ~ SRD STD - SRD STD f-- SRD STD ~

SCK r-- SCK ~ SCK ~ SCK 1--
SC2 I- SC2 SC2 ~ SC2 ~

SERIAL CLOCK

SERIAL SYNC

Figure 6-91 SSI Cascaded Multi-DSP System

-

-

TDM networks are useful to reduce the wiring needed for connecting multiple processors.
A TOM parallel topology, such as the one shown in Figure 6-92, is useful for interpolating
filters. Serial data can be received simultaneously by all DSPs, processing can occur in
parallel, and the results are then multiplexed to a single serial data out line. This configu­
ration can be cascaded and/or looped back on itself as needed to fit a particular applica­
tion (see Figure 6-93). The serial and parallel configurations can be combined to form the
array processor shown in Figure 6-94. A nearest neighbor array, which is applicable to
matrix relaxation processing, ·is shown in Figure 6-95. To simplify the drawing, only the
center DSP is connected in this illustration. In use, all DSPs would have four three-state
buffers connected to their STD pin. The flags (SCQ and SC1) on the control master oper­
ate the three-state buffers, which control the direction that data is transferred in the matrix
(north, south, east, or west).

The bus architecture shown in Figure 6-96 allows data to be transferred between any two
DSPs. However, the bus must be arbitrated by hardware or a software protocol to prevent
collisions. The' master/slave configuration shown in Figure 6-97 also allows data to be
transferred between any two OSPs but simplifies network control.

DSP56002

SRD STD

SCK

SC2

DSP56002

SRD STD

SCK

SERIAL SC2 SERIAL
DATA IN DATA OUT

DSP56002

SRD STD ..
SCK

SC2

DSP56002

SRD STD

SCK

SC2

SERIAL SYNC

SERIAL CLOCK

Figure 6-92 5S1 TOM Parallel OSP Network

DSP56002 DSP56002

SRD STD SRD STD

SCK SCK

SC2 - SC2 f+--

DSP56002 DSP56002

SRD SrD SRD STD

SCK SCK

SC2 - SC2 f-

DSP56002 DSP56002

- SRD STD SRD STD

SCK SCK

SC2 f- SC2 ~

DSP56002 DSP56002

SRD SrD SRD STD

SCK SCK

SC2 f+-- SC2 f-

SERIAL CLOCK

FRAME SYNC

Figure 6-93 SSI TOM Connected Parallel Processing Array

DSP56002 DSP56002 DSP56002

~ SRD STD SRD STD SRD STD

SCK ----- SCK ~ SCK--
SC2 ---- SC2 :- SC2 -

DSP56002 DSP56002 DSP56002

- SRD STD SRD STD SRD STD
S ERIAL SE RIAL

IN OUT

---+ SCK -- SCK :-~ SCK -- r---
SC2 - SC2 ~ SC2 -

DSP56002 DSP56002 DSP56002

'---- SRD STD SRD STD SRD STD -
SCK -I-- SCK -I- SCK --
SC2 1- SC2 ~ SC2 -

DSP56002 DSP56002 DSP56002

- SRD STD SRD STD SRD STD

SCK 1- '""'- SCK -- SCK f- -
SC2 1- SC2 - SC2 ~

SERIAL CLOCK

SERIAL SYNC

Figure 6-94 SSI TOM Serial/Parallel Processing Array

DSP56002 DSP56002 DSP56002

----+ SRD STD SRD STD SRD STD

~ SCO SCK r----- SCK ..-- SCK f4-
~ SC1 SC2 r- SC2 - SC2 ~ f--

....
DSP56002 DSP56002 DSP56002

-"" SRD STD

~
SRD STD - -

- --~
~

L..---- ~ - SCK - 1-- SCK -
SC2 I-- SC2 - SC2 -f--

DSP56002 DSP56002 DSP56002 .. ----+ SRD STD SRD STD SRD STD

SCK I--- SCK -f-- SCK -
SC2 I-- SC2 - SC2 r- f--

SERIAL CLOCK

FRAME SYNC

Figure 6-95 S51 Parallel Processing - Nearest Neighbor Array

SERIAL SYNC
/

SERIAL CLOCK
h

SERIAL DATA BUS

DSP56002 DSP56002 DSP56002 DSP56002

STD ~ STD .. STD ~ STD ~
SRD ~ SRD ~ SRD • SRD I~

SCK - SCK ..- SCK ..- SCK 1"-
SC2 - SC2 ..- SC2 ~ SC2 1"-

Figure 6-96 SSI TOM Bus OSP Network

-

I
MASTER TRANSMIT

AI'

MASTER RECEIVE

j~ I' ~

DSP56002 DSP56002 DSP56002 DSP56002

MASTER SLAVE 1 SLAVE 2 SLAVE 3

STD f-- STD - sm l- sm I-

SRD
.

SRD
.

SRD ~~ SRD -.... ... -
SCK SCK -- SCK SCK
SC2 ~ SC2 SC2 ~ SC2
SC1 I- SC1 ~ SC1 I~ SC1 r+--
SCO I- SCO + SCO 1"- SCO r+-

" MASTER CLOCK
I

l' j
MASTER SYNC

r
FLAG 1

,It
FLAG 0

NOTE: Rags can specify data types: control, address, and data.

Figure 6-97 SSI TOM Master-Slave DSP Network

SECTION 7

DSP56002 TIMER AND
EVENT COUNTER

-

-

7.1 INTRODUCTION

This section describes the timer/event counter module *. The timer can use internal or ex­
ternal clocking and can interrupt the processor after a number of events (clocks) specified
by a user program, or it can signal an external device after counting internal events.

The timer connects to the external world through the bidirectional TIO pin. When TIO is
used as input, the module is functioning as an external event counter or is measuring ex­
ternal pulse width/signal period. When TIO is used as output, the module is functioning as
a timer and TIO becomes the timer pulse. When the TIO pin is not used by the timer mod­
ule it can be used as a general purpose I/O (GPIO) pin.

Note: When the timer is disabled, the TIO pin becomes three-stated. To prevent undes­
ired spikes from occurring, the TIO pin should be pulled up or down when it is not
in use.

7.2 TIMER/EVENT COUNTER BLOCK DIAGRAM
Figure 7-1 shows a block diagram of the timer module. It includes a 24-bit read-write Tim­
er Control and Status Register (TCSR), a 24-bit read-write Timer Count Register (TCR),
a 24-bit counter, and logic for clock selection and interrupt generation.

GDB

24

24-bit Timer ControV
Status Register (TCSR)

24-bit Counter

Timer interrupt

Figure 7-1 Timer/Event Counter Module Block Diagram

• The first version of the OSP56002 (mask number 041 G) did not have the timer/event counter. Later versions of the OSP56002 which have
different mask numbers do have the timer/event counter. This mask number can be found below the part number on each chip.

-

TIMER CONTROUSTATUS REGISTER (TCSR)
ADDRESS X:$FFDE
READIWRITE

TIMER ENABLE-------..
TIMER INTERRUPT ENABLE------,

I NVERTER-------,

TIMER CONTROL BITS

-------DIRECTION BIT

L...-----DATA INPUT

L...------DATA OUTPUT

I---'---'----L.---I-~ -.L.-L-I-...L...--'--.L.-------RESERVED

TIMER COUNT REGISTER (TCR)
ADDRESS X:$FFDF
READIWRITE

23

* - reserved, read as zero, should be written with zero for future compatibility

Figure 7-2 Timer/Event Counter Programming Model

o

The DSP56002 views the timer as a memory-mapped peripheral occupying two 24-bit
words in the X data memory space, and may use it as a normal memory-mapped periph­
eral by using standard polled or interrupt programming techniques.The programming
model is shown in Figure 7-2. .

7.3 TIMER COUNT REGISTER (TCR)
The 24-bit read-write TCR contains the value (specified by the user program) to be loaded

. into the counter when the timer is enabled (TE=1), or when the counter has been decre­
mented to zero and a new event occurs. If the TCR is loaded with n, the counter will be
reloaded after (n+ 1) events.

If the timer is disabled (TE=O) and the user program writes to the TCR, the value is stored
there but will not be loaded into the counter until the timer becomes enabled. When the
timer is enabled (TE=1) and the user program writes to the TCR, the value is stored there
and will be loaded into the counter after the counter has been decremented to zero and a
new event occurs.

In Timer Modes 4 and 5, however, the TCR will be loaded with the current value of the
counter on the appropriate edge of the TID input signal (rather than with a value specified

by the user program). The value loaded to the TCR represents the width or the period of
the signal coming in on the TIO pin, depending on the timer mode. See Sections 7.5.4
and 7.5.5 for detailed descriptions of Timer Modes 4 and 5.

7.4 TIMER CONTROUSTATUS REGISTER (TCSR)
The 24-bit read/write TCSR controls the timer and verifies its status. The TCSR can be
accessed by normal move instructions and by bit manipulation instructions. The control
and status bits are described in the following paragraphs.

7.4.1 Timer Enable (TE) Bit 0
The TE bit enables or disables the timer. Setting the TE bit (TE=1) will enable the timer,
and the counter will be loaded with the value contained in the TCR and will start decre­
menting at each incoming event. Clearing the TE bit will disable the timer. Hardware
RESET and software RESET (RESET instruction) clear TE.

7.4.2 Timer Interrupt Enable (TIE) Bit 1
The TIE bit enables the timer interrupts after the counter reaches zero and a new event
occurs. If TCR is loaded with n, an interrupt will occur after (n+ 1) events.

Setting TIE (TIE=1) will enable the interrupts.When the bit is cleared (TIE=O) the interrupts
are disabled. Hardware and software resets clear TIE.

7.4.3 Inverter (INV) Bit 2
The INV bit affects the polarity of the external signal coming in on the TID input and the
polarity of the output pulse generated on the TIO output.

If TIO is programmed as an input and INV=O, the 0-to-1 transitions on the TIO input pin
will decrement the counter. If INV=1 , the 1-to-0 transitions on the TIO input pin will decre­
ment the counter.

If TIO is programmed as output and INV=1, the pulse generated by the timer will be in­
verted before it goes to the TIO output pin. If INV=O, the pulse is unaffected.

In Timer Mode 4 (see Section 7.5.4 Timer Mode 4 (Pulse Width MeasurementMode»,
the INV bit determines whether the high pulse or the low pulse is measured to determine
input pulse width. In Timer Mode 5 (see Section 7.5.5 Timer Mode 5 (Period Measure­
ment Mode», the INV bit determines whether the period is measured between leading or
trailing edges.

In GPIO mode, the INV bit determines whether the data read from or written to the TIO
pin shall be inverted (INV=1) or not (INV=O).

INV is cleared by hardware and software resets.

-

-

Note: Because of its affect on signal polarity, and on how GPIO data is read and written,
the status of the INV bit is crucial to the timer's function; Change it only when the
timer is disabled (TE=O).

7.4.4 Timer Control (TCO-TC2) Bits 3-5

The three TC bits control the source of the timer clock, the behavior of the TIO pin, and
the timer mode of operation. Table 7-1 summarizes the functionality of the TC bits.

A detailed description of the timer operating modes is given in Chapter 3.

The timer control bits are cleared by hardware 'RESET and software RESET (RESET instruction).

Note 1: If the clock is external, the counter will be decremented by the transitions on the
TIO pin. The DSP synchronizes the external clock to its own internal clock. The
external clock's frequency should be lower than the maximum internal frequency
divided by 4 (CLKl4).

Note 2: The TC2-TCO bits should be changed only when TE=O (timer disabled) to ensure
proper functionality.

Table 7-1 Timer/Event Counter Control Bits

TC2 TC1 TCO TIO CLOCK MODE

0 0 0 GPIO* Internal Timer (Mode 0)

0 0 1 Output Internal Timer Pulse (Mode 1)

0 1 0 Output Internal Timer Toggle (Mode 2)

0 1 1 - - Reserved - Do Not Use

1 0 0 Input Internal Input Width (Mode 4)

1 0 1 Input Internal Input Period (Mode 5)

1 1 0 Input External Standard Time Counter (Mode 6)

1 1 1 Input External Event Counter (Mode 7)

* - the GPIO function is enabled only if TC2-TCO are all 0 (zero) and the GPIO bit is set.

7.4.5 General Purpose I/O (GPIO) Bit 6

If the GPIO bit is set (GPI0=1) and if TC2-TCO are all zeros, the TIO pin operates as a
general purpose 1/0 pin, whose direction is determined by the DIR bit. If GPIO=O the gen­
eral purpose 1/0 function is disabled. GPIO is cleared by hardware and software resets.

Note: The case where TC2-TCO are not all zero and GP10=1 is undefined and should not
be used

7.4.6 Timer Status (TS) Bit 7
When the TS bit is set, it indicates that the counter has been decremented to zero.

The TS bit is cleared when the TCSR is read. The bit is also cleared when the timer interrupt
is serviced (timer interrupt acknowledge). TS is cleared by hardware and software resets.

7.4.7 Direction (DIR) Bit 8

The OIR bit determines the behavior of the TIO pin when TIO acts as general purpose 1/0.
When OIR=O, the TIO pin acts as an input. When DIR=1, the TIO pin acts as an output.
OIR is cleared by hardware and software resets.

Note: The TIO pin can act as a general purpose 1/0 pin only when TC2-TCO are all zero
and the GPIO bit is set. If one of TC2, TC1 or TCO is not 0, the GPIO function is
disabled and the OIR bit has no effect.

7.4.8 Data Input (01) Bit 9
When the TIO pin acts as a general purpose I/O input pin (TC2-TCO are all zero and
OIR=O), the contents of the 01 bit will reflect the value the TIO pin. However, if the INV bit
is set, the data in 01 will be inverted. When GPIO mode is disabled or it is enabled in out­
put mode (0IR=1), the 01 bit reflects the value of the TIO pin,again depending on the
status of the INV bit. DI is set by hardware and software resets.

7.4.9 Data Output (DO) Bit 10
When the TIO pin acts as a general purpose 1/0 output pin (TC2-TCO are all zero and
0IR=1), writing to the 00 bit writes the data to the TIO pin. However, if the INV bit is set,
the data written to the TIO pin will be inverted. When GPIO mode is disabled,. writing to
the 00 bit will have no effect. 00 is cleared by hardware and software resets.

7.4.10 TCSR Reserved bits (Bits 11-23)
These reserved bits are read as zero and should be written with zero for future compatibility.

7.5 TIMER/EVENT COUNTER MODES OF OPERATION

This section gives the details of each of the timer modes of operation. Table 7-1 on page
7-6 summarizes the items which determine the timer mode, including the configuration of
the ti~er control bits, the function of the TIO pin, and the clock source.

7.5.1 Timer Mode 0 (Standard Timer Mode, Internal Clock, No Timer Output)

Timer Mode 0 is defined by TCSR bits TC2-TCO equal to 000.

With the timer enabled (TE=1), the counter is loaded with the value contained by the TCR. The
counter is decremented by a clock derived from the internal OSP clock, divided by two (CLKl2).

-

-

During the clock cycle following the point where the counter reaches 0, the TS bit is set and the
timer generates an interrupt. The counter is reloaded with the value contained by the TCR, and
the entire process is repeated until the timer is disabled (TE=O). Figure 7-3 illustrates Mode 0
with the timer enabled. Figure 7-4 illustrates the events with the timer disabled.

Note: It is recommended that the GPIO input function of Mode 0 only be activated with
the timer disabled. If the processor attempts to read the 01 bit to determine the
GPIO pin direction, it must read the entire TCSR register, which would clear the TS
bit and, thus, clear a pending timer interrupt.

7.5.2 Timer Mode 1 (Standard Timer Mode, Internal Clock, Output Pulse Enabled)
Timer Mode 1 is defined by TC2-TCO equal to 001.

With the timer enabled (TE=1), the counter is loaded with the value contained by the TCR. The
counter is decremented by a clock derived from the DSP's internal clock, divided by two (CLKl2).

Write Preload (N) First Event Last Event

t t
TE

Clock (CLKl2) r--l~ _____ ~ ______________ ~
TCR ____________________ ~~~_N _____________________________________ _____

TS

Interr,;;;,u.l:..pt:....-______________________________________ --'

Figure 7-3 Standard Timer Mode (Mode 0)

Stop Counting Preload (N) First Event

TE

Clock (CLKl2 -----------------~
TeR N

Count~_N_-_k ____ ~~;'_'_'_'_'_'_'_'_ _N~

TS

Interrupt

Figure 7-4 Timer/Event Counter Disable

During the clock cycle following the point where the counter reaches 0, the TS bit is set and
the timer generates an interrupt. A pulse with a two clock cycle width and whose polarity is
determined by the INV bit, will be put out on the TID pin. The counter is reloaded with the
value contained by the TCA. The entire process is repeated until the timer is disabled
(TE=O). Figure 7-5 illustrates Timer Mode 1 when INV=O, and Figure 7-6 illustrates Timer
Mode 1 when INV=1.

-

7.5.3 Timer Mode 2 (Standard Timer Mode, Internal Clock, Output Toggle Enabled)
Timer Mode 2 is defined by TC2-TCO equal to 010.

With the timer enabled (TE=1), the counter is loaded with the value contained by the TCA. The
counter is decremented by a clock derived from the DSP's intemal clock, divided by two (CLKl2).
During the clock cycle following the point where the counter reaches 0, the TS bit in TCSR is set
and, if the TIE is set, an interrupt is generated.The counter is reloaded with the value contained
by the TCR and the entire process is repeated until the timer is disabled (TE=O). Each time the
counter reaches 0, the TIO output pin will be toggled. The INV bit determines the polarity of the
TID output. Figure 7-7 illustrates Timer Mode 2.

Write Preload (N) First Event

t t
Last Event New Event

TE __ -.I

Clock (CLKl2) n II II II L....-----I L~~~~~~~. ~ L

TC~~N ____________________________________ _

Interrupt

TIO~,--_____________ ~----,

Figure 7-5 Standard Timer Mode, Internal Clock, Output Pulse Enabled (INV=O)

7.5.4 Timer Mode 4 (Pulse Width Measurement Mode)
Timer Mode 4 is defined by TC2-TCO equal 100.

In this mode, TIO acts as a gating signal for the DSP's internal clock. With the timer en­
abled (TE=1), the counter is driven by a clock derived from the DSP's internal clock divided
by two (CLKl2). The counter is loaded with 0 by the first transition occurring on the TIO
input pin and starts incrementing. When the first edge of opposite polarity occurs on TIO,
the counter stops, the TS bit in TCSR is set and, if TIE is set, an interrupt is generated.

Write Preload (N) First Event

t t
Last Event New Event

TE ---"

Clock (CLKl2) n'--____ Il II II . - I L r r r r r r r---.J ~ L

TC~_N ___________________ ___

CO~_N_-1 ____ >C · .. ···~_N_~1

Interrupt

2xCLK

=,"---_F
Figure 7-6 Standard Timer Mode, Internal Clock, Output Pulse Enabled (INV=1)

-

The contents of the counter is loaded into the TCR. The user's program can read the TCR,
which now represents the widths of the TID pulse. The process is repeated until the timer
is disabled (TE=O).The INV bit determines whether the counting is enabled when TID is
high (INV=O) or when TID is low (lNV=1). Figure 7-8 illustrates Timer Mode 4 when.INV=O
and Figure 7-9 illustrates Timer Mode 4 with INV=1.

7.5.5 Timer Mode 5 (Period Measurement Mode)
Timer ModeS is defined by TC2-TCO equal 1 01.

In Timer Mode 5, the counter is driven by a clock derived from the DSP's internal clock
divided by 2 (CLKl2). With the timer enabled (TE=1), the counter is loaded with the value
contained by the TCR and starts incrementing. On each transition of the same polarity
that occurs on TID, the TS bit in TCSR is set and, if TIE is set, an interrupt is generated.

Last Event First Event Last Event New Event

TE

TCR N

count_e_r ___ ~o X'-_N ____ ~ _- _- .-.-_~ N ____ ~1

Interrupt ____

TID

Figure 7-7 Standard Timer Mode, Internal Clock, Output Toggle Enable

The contents of the counter is loaded in the TCR. The user's program can read the TCR
and subtract consecutive values of the counter to determine the distance between TID
edges. The counter is not stopped and it continues to increment. The INV bit determines
whether the period is measured between 0-to-1 transitions of TID (INV=O), or between
1-to-0 transitions of TID (INV=1). Figure 7-10 illustrates Timer Mode 5 when INV=O, and
Figure 7-11 illustrates this mode with INV=1.

7.5.6 Timer Mode 6 (Standard Time Counter Mode, External Clock)
Time Mode 6 is defined by TC2-TCO equal 110.

With the timer enabled (TE=1) the counter is loaded with the 1 's complement of the value
contained by the TCR. The counter is incremented by the transitions on the incoming sig­
nal on the TID input pin. After each increment, the counter value is loaded into the TCR.

Start Event Stop Event Start Event

T~

_c_lock ____ n'--__ 1L u_

TCR ___ ~:><:~N __________ _

Interrup.;.,.t _______________________________ -----'

TIC ~
Figure 7-8 Pulse Width Measurement Mode (INV=O)

-

Thus, reading the TCR will give the value of the counter at any given moment. At the tran­
sition'following the point where the counter reaches 0, the TS bit in TCSR is set and; if
the TIE is,set, an interrupt is generated.The counter will wrap around and the process is
repeated until the timer is disabled (TE=O). The INV bit determines whether 0-to-1 tran­
sitions (INV=O) or 1-to-0 transitions (INV=1) will increment the counter. Figure 7-12
illustrates Timer Mode 6 when INV=O. Figure 7-13 illustrates Timer Mode 7 when INV=1;

Start Event Stop Event Start Event

t

T~

_C_I_OC_k __ ~r-l~ ______ ~~ __ _

TCR __ X_X_X ____________________________ --J:><:~N __________ _

Interru.a;;..pt~ ______________________________ ___1

T~
Figure 7-9 Pulse Width Measurement Mode (INV=1)

7.5.7 Timer Mode 7 (Standard Timer Mode, External Clock)

Timer Mode 7 is defined by TC2-TCO equal 111.

With the timer enabled (TE=1), the counter is loaded with the value contained by the TCR.
The counter is decremented by the transitions of the signal coming in on the TID input pin.
At the transition that occurs after the counter has reached 0, the TS bit in TCSR is set and,
if the TIE is set, the timer generates an interrupt. The counter is reloaded with the value
contained by the TCR, and the entire process is repeated until the timer is disabled
(TE=O). The INV bit determines whether 0-to-1 transitions (INV=O) or 1-to-0 transitions
(INV=1) will decrement the counter. Figure 7-14 illustrates Timer Mode 7 when INV=O,
and Figure 7-15 illustrates Timer Mode 7 when INV=1.

Periodic Event (First Event) Periodic Event

+
TE --......

TC_R __ N __ ----'X N + 1 X'--M ___ _

Interrupt

TID

Figure 7-10 Period Measurement Mode (INV=O)

-

7.6 TIMER/EVENT COUNTER BEHAVIOR DURING WAIT and STOP
During the execution of the WAIT instruction, the timer clocks are active and the timer ac­
tivity continues undisturbed. If the timer interrupt is enabled when the final event occurs,
an interrupt will be generated and serviced.

It is recommended that the timer be disabled before executing the STOP instruction be­
cause during the execution of the STOP instruction, the timer clocks are disabled and the
timer activity will be stopped. If, for example,. the TIO pin is used as input, the changes
that occur while in STOP will be ignored.

Periodic Event (First Event) Periodic Event

t
TE

------rL\lJLS
TC_R_N __ ---JX N + 1 X __ M __

Interrupt

TIO

Figure 7-11 Period Measurement Mode (INV=1)

7.7 OPERATING CONSIDERATIONS
The value 0 for the Timer Count Register (TCR) is considered a boundary case and af­
fects the behavior of the timer under the following conditions:

• If the TCR is loaded with 0, and the counter contained a non-zero value before the
TCR was loaded, then after the timer is enabled, it will count 224 events, generate an
interrupt, and then generate an interrupt for every new event.

• If the TCR is loaded with 0, and the counter contained a zero value prior to loading,
then after the timer is enabled, it will generate an interrupt for every event.

• If the TCR is loaded with 0 after the timer has been enabled, the timer will be loaded
with 0 when the current count is completed and then generate an interrupt for every
new event.

Write Preload (N) First Event Last Event

t
TE

TID (Event)

TCR ________ ~:><:~_N ________________ ~:><:~~N_+_1 _____ F_F~F~~~0 __ _

cou_n_te_r ____________ -.J:><:'-_N ____ --.,.----'>0·~· __ .' __ .~

Interr..;;,;u.,l;;,.pt.;;...-. __________________________________ _____

Figure 7-12 Standard Time Counter Mode, External Clock (INV=O)

-

7.8 SOFTWARE EXAMPLES

7~8.1 General Purpose 1/0 Input
The following routine can be used to read the TIO input pin:

,MOVEP #$000040,X:TCSR ;clear TC2-TCO, set GPIO
;and clear INV for GPIO input here

JSET #DI,X:TCSR,here ;Spih here until TID is set

Write Preload (N) First Event Last Event

t
TE

TIO (Event)

-
TCR ______ ~)x(~N _______________ ,~~ __ ~N_+_1 ____ F_F_F~~ __ ~O __ _

cou_n_te_r ______________ -"X'-_N ___ ~ ~~- ,- _-_-_'~

Interr.;;..uPL;..t~ ___________________ -,1

Figure 7-13 Standard Timer Mode, External Clock (INV=1)

7.8.2 General Purpose 1/0 Output
The following routine can be used to write the TIO output pin:

MOVEP #$000140,X:TCSR ;clear TC2-TCO, set GPIO and

BSET

NOP

NOP

BClR

;set DIR for GPIO output, set TIO to 0

#DO,X:TCSR ;set TIO to 1

#DO,X:TCSR ;setTIO to 0

This routine generates a pulse on the TIO pin with the duration equal to 8 ClK (assuming
no wait states, no external bus conflict, etc.)

Write Preload (N) First Event Last Event

t
TE

TIO (Event)

TCR ___________ ~~~_N ___ _____

cou_n_te_r ___________________________________ ~~~_N _______ ~~· ________ .X=

I nte rr.;;;;.up!;;..t~ __ __I

Figure 7-14 Standard Timer Mode, External Clock (INV=O)

-

7.8.3 Timer Mode 0, Input Clock, GPIO Output, and No Timer Output
The following program illustrates the standard timer mode with simultaneous GPIO. The
timer is used to activate an internal task after 65536 clocks; at the end of the task the TIO
pin is toggled to signal end of task.

TE

ORG

JSR

ORG

P:$3C

TASK

P:MAIN_BODY

;this is timer interrupt vector address

;go and execute task (long interrupt)

MOVEP #$000042,X:TCSR ;enable timer interrupts and enable GPIO

; (input!) and set DO =0 to have stable data

BSET #DIR,X:TCSR ;change DIR to output (clean 0, no spikes)

MOVEP #$OOFFFF,X:TCR ;Ioad 64k -1 into the counter

BSET #IPL,X:IPR ;enable IPL for timer

ANDI #$CF,MR ;remove interrupt masking in status register

BSET #TE,X:TCSR ; timer enable

Write Preload (N) First Event Last Event

t

TIO (Event)

TCR ________ ~)x(~_N __________________________________ __

cou_n_te_r ______________ --J)x('-_N _____ >0,- ,- ,- .. ,-~
Interr..;:;,u,t;,;pt:...-. __

Figure 7-15 Standard Timer Mode, External Clock (INV=1)

; application program

task

; task instructions

BSET

BClR
RTI

#DO,X:TCSR

#DO,X:TCSR

;set TIO to signal end of task

;clearTIO

;return to main program

7.8.4 Pulse Width Measurement Mode (Timer Mode 4)
The following program illustrates the usage of the timer module for input pulse width
measurement. The width is measured in this example for the low active period of the
input pulse on the TIO pin and is stored in a table (in multiples of the chip operating clock
divided by 2).

ORG X:$100
pulse_width DS $100

ORG P:$3C

MOVEP X:TCR,X:(rO)+
NOP

ORG P:MAIN_BODY

;define buffer in X memory internal

;measure up to 256 pulses

;this is timer interrupt vector address

;store width value in table

;second word of the short interrupt

MOVE #PULSE_WIDTH,rO ;rO points to start of table

MOVE #$FF,MO ;modulo 100 to wrap around on end of table

MOVEP #$000026,X:TCSR ;enable timer interrupts, mode 4 and set INV

BSET #IPL,X:IPR

ANDI #$CF,MR

BSET #TE,X:TCSR

; do other tasks

;to measure the low active pulse

;enable IPL for timer

;remove interrupt masking in status register

;timer enable

-

7.8.5 Period Measurement Mode (Timer Mode 5)
The following program illustrates the usage of the timer module for input period measure­
ment. The period is measured in this example between 0 to 1 transitions of the input signal
on TIO and is stored in a table (in multiples of the chip operating clock divided by 2).

ORG X:$100 ;define buffer in X memory internal

period DS $100 ;measure up to 256 pulses

temp DS $1 ;temporary storage

ORG P:$3C ;this is timer interrupt vector address

JSR MEASURE ;Iong interrupt to measure period

ORG P:MAIN_BODY

MOVE #O,X:TEMP ;clear temporary storage
MOVE #PERIOD,rO ;rO points to start of table

MOVE #$FF,MO ;modulo 100 to wrap around on end of table

MOVEP #$00002A,X:TCSR ;enable timer interrupts, mode 5
BSET #IPL,X:IPR ;enable IPLfortimer

ANDI #$CF,MR ;remove interrupt masking in status register
BSET #TE,X:TCSR ;timer enable

; do other tasks

measure
MOVEP X:TCR,A ;read new counter value

MOVE X:TEMP,XO ;retrieve former read value (initially zero)

SUB XO,A A,X:TEMP ;compute delta (Le. new -old) and store the

;new read value in temp

MOVE A,X:(RO)+ ;store period value in table

RTI

APPENDIX A

BOOTSTRAP CODE
(OPERATING MODES 1, 5, AND 6)

-

A.1 INTRODUCTION

This section presents the Bootstrap program contained in the DSP56002 64-word Boot
ROM. This program can load the internal program RAM starting at P:$O from an external
EPROM or the Host Interface, and may load any program RAM segment from the SCI
serial interface.

If MC:MB:MA=001, the program loads the internal program RAM from 1,536 consecutive
byte-wide P memory locations, starting at P:$COOO (bits 7-0). These will be packed into
512 24-bit words and stored in contiguous program RAM memory locations starting at
P:$O. After assembling one 24-bit word, the bootstrap program stores the result in inter­
nal program RAM memory. Note that the routine loads data starting with the least signifi­
cant byte of P:$O.

If MC:MB:MA=1 Ox, the program loads internal program RAM from the Host Interface, start­
ing at P:$O. If only a portion of the P memory is to be loaded, the Host Interface bootstrap
load program may be stopped by setting Host Flag 0 (HFO). This will terminate the boot­
strap loading operation and start executing the loaded program at location P:$O of the
internal program RAM.

If MC:MB:MA=11 x, the program loads program RAM from the SCI interface. The number
of program words to be loaded and the starting address must be specified. The SCI boot­
strap code expects to receive 3 bytes specifying the number of program words, 3 bytes
specifying the address in internal program RAM to start loading the program words and
then 3 bytes for each program word to be loaded. The number of words, the starting
address and the program words are received least significant byte first followed by the
mid and then by the most significant byte. After receiving the program words, program
execution starts at the same address where loading started. The SCI is programmed to
work in asynchronous mode with 8 data bits, 1 stop bit and no parity. The clock source is
external and the clock frequency must be 16x the baud rate. After each byte is received,
it is echoed back through the SCI transmitter.

The bootstrap program listing is shown in Figure A-1.
-

-

; BOOTSTRAP CODE FOR DSP56002 - (C) Copyright 1990 Motorola Inc.
; Revised October 24, 1990.

; Bootstrap through the Host Interface, External EPROM or SCI.

BOOT

PBC
HSR
HRX
PCC
SCR
SSR
SCCR
SRXL
STXL

START

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

ORG

MOVE

JCLR
JSET

$COOO

$FFEO
$FFE9
$FFEB
$FFE1
$FFFO
$FFF1
$FFF2
$FFF4
$FFP4

PL:$O,PL:$O

#<O,RO

#4,OMR,EPROMLD
#1,OMR,SCILD

; This routine loads from the Host Interface.
; MC:MB:MA=100 - reserved
; MC:MB:MA=101 - Host

HOSTLD BSET #O,X:PBC
DO #512,_LOOP3

_LBLA JCLR #3,X:HSR,_LBLB
ENDDO
JMP <_LOOP3

JCLR #O,X:HSR,_LBLA

MOVEP X:HRX,P:(RO)+

JMP <FINISH

; this is the location in P memory
; on the external memory bus
; where the external byte-wide
; EPROM would be located

; Port B Control Register
; Host Status Register
; Host Receive Register
; Port C Control Register
; SCI Control Register
; SCI Status Register
; SCI Clock Control Register
; SCI Receive Register Low
; SCI Transmit Register Low

; bootstrap code starts at $0

; default P address where prog
; will begin loading

. ; If MC:MB:MA=Oxx, go load from EPROM
; If MC:MB:MA=11x, go load from SCI

; Configure Port B as Host
; Load 512 instruCtion words
; if HFO=1, stop loading data.
; Must terminate the do loop

; Wait for HRDF to go high
; (meaning data is present).
; Store 24-bit data in P memo
; and go get another 24-bit word.
; finish bootstrap

Figure A-1 DSP56002 Bootstrap Program (Sheet 1 of 3)

; This routine loads from external EPROM.
; MC:MB:MA=001

EPROMLD MOVE #BOOT,R1
#512,_LOOP1
#3,_LOOP2
P:(R1)+,A2
#8

_LOOP1
FINISH

DO
DO
MOVEM
REP
ASR A

MOVEM A1,P:(RO)+
; and go get another 24-bit word.
MOVE #<O,R1
JMP <BOOTEND

; This routine loads from the SCI.
; MC:MB:MA=110 - external SCI clock
; MC:MB:MA=111 - reserved

SCILD MOVEP #$0302,X:SCR
JMP <EXTC
NOP

ORG PL:$100,PL:$100

EXTC MOVEP #$COOO,X:SCCR
MOVEP #7,X:PCC

DO #6,_LOOP6

JCLR #2,X:SSR,*
MOVEP X:SRXL,A2
JCLR #1,X:SSR,*
MOVEP A2,X:STXL
REP #8
ASR A

MOVE A1,RO
MOVE A1,R1
DO AO,_LOOP4

DO #3,_LOOP5
JCLR #2,X:SSR,*
MOVEP X:SRXL,A2
JCLR #1,X:SSR,*
MOVEP A2,X:STXL
REP #8
ASR A

MOVEM A1,P:(RO)+

; R1 = Ext address of EPROM
; Load 512 instruction words
; Each instruction has 3 bytes
; Get the 8 LSB from ext. P memo
; Shift 8 bit data into A 1

; Get another byte.
; Store 24-bit result in P memo

; finish bootstrap

; Configure SCI Control Reg
; go to next boot rom segment
; just to fill the last space

; starting address of 2nd 32-word bootstrap ROM

; Configure SCI Clock Control Reg
; Configure SCLK, TXD and RXD

; get 3 bytes for number of
; program words and 3 bytes
; for the starting address
; Wait for RDRF to go high
; Put 8 bits in A2
; Wait for TDRE to go high
; echo the received byte

; starting address for load
; save starting address
; Receive program words

; Wait for RDRF to go high
; Put 8 bits in A2
; Wait for TDRE to go high
; echo the received byte

; Store 24-bit result in P memo

Figure A-1 DSP56002 Bootstrap Program (Sheet 2 of 3)

-

-

; This is the exit handler that returns execution to normal
; expanded mode and jumps to the RESET vector.

BOOTEND ANDI #$EC,OMR

ANDI #$O,CCR

JMP (R1)

; Set operating mode to 0
; (and trigger an exit from
; bootstrap mode).
; Clear CCR as if RESET to O.
; Delay needed for Op. Mode change
; Then go to starting Prog addr.

; End of bootstrap code. Number of program words: 64

Figure A-1 DSP56002 Bootstrap Program (Sheet 3 of 3)

APPENDIX B

PROGRAMMING SHEETS
The following pages are a set of programming sheets intended to simplify programming the various
DSP560Q2 programmable registers. The registers are grouped between the central processing module

and each peripheral. Each register includes the name, address, reset value, and meaning of each bit. The
sheets provide room to write the value for each bit and the hexadecimal equivalent for each register.

-

-

Interrupt
Starting
Address IPL Interrupt Source

$0000 3 Hardware RESET
$0002 3 Stack Error
$0004 3 Trace
$0006 3 SWI
$0008 0-2 TROA
$OOOA 0-2 TROB
$OOOC 0-2 SSI Receive Data
$OOOE 0-2 SSI Receive Data with Exception Status
$0010 0-2 SSI Transmit Data
$0012 0-2 SSI Transmit Data with Exception Status
$0014 0-2 SCI Receive Data
$0016 0-2 SCI Receive Data with Exception Status
$0018 0-2 SCI Transmit Data
$001A 0-2 SCI Idle Line
$001C 0-2 SCI Timer
$001E 3 NMI
$0020 0-2 Host Receive Data
$0022 0-2 Host Transmit Data
$0024 0-2 Host Command (default)
$0026 0-2 Available for Host Command

• •
• •
• •

$003A 0-2 Available for Host Command
$003C 0-2 Timer
$003E 3 Illegal Instruction
$0040 0-2 Available for Host Command

• •
• • - • •

$007E 0-2 Available for Host Command

SLEUNZVC

ABS D (parallel move 1+mv 2+mv *******
ADC S,D ~parallel move 1+mv 2+mv ********
ADD S,D parallel move 1+mv 2+mv ********
ADDL S,D (parallel move 1+mv 2+mv * * * * * * ?*
ADDR S,D (parallel move 1+mv 2+mv ********
AND S,D (parallel move 1+mv 2+mv * * - - ? ?o-
AND(I) #xx,D · 1 2 ??? ?????
ASL D (parallel move~ 1+mv 2+mv * * * * * * ??
ASR D (parallel move 1 +mv 2+mv * * * * * * o?
BCHG #n,X:<aa> · 1+ea 4+mvb ????????

#n,X:<pp>
#n,X:<ea>
#n,Y:<aa>
#n,Y:<pp>
#n,Y:<ea>
#n,D
#n,X:<aa> 1+ea 4+mvb ???? ????
#n,X:<pp>
#n,X:<ea>
#n,Y:<aa>
#n,Y:<pp>
#n,Y:<ea>
#n,D
#n,X:<aa> 1+ea 4+mvb ??? ?????
#n,X:<pp>
#n,X:<ea>
#n,Y:<aa>
#n,Y:<pp>
#n,Y:<ea>
#n,D
#n,X:<aa> 1+ea 4+mvb - * - - - - -?
#n,X:<pp>
#n,X:<ea>
#n,Y:<aa>
#n,Y:<pp>
#n,Y:<ea>
#n,D

CLR D (parallel move) 1+mv 2+mv **?????-
CMP S1,S2 (parallel move ~ 1 +mv 2+mv ******** l1li CMPM S1,S2 (parallel move 1 +mv 2+mv ********
DEBUG ·•. 1 4 --------
DEBUGcc · 1 4 --------
DEC D · 1 2 *******
DIV S,D · 1 2 - * - - - - ??

Mnemonic Syntax Parallel Moves Instruction Osc.
Program Clock
Words Cycles SLEUNZVC

DO X:<ea>,expr 2 6+mv ------
X:<aa>,expr
Y:<ea>,expr
Y:<aa>,expr
#xxx,expr

ENDDO
S,expr

.................... 1 2 --------
EOR S,D (parallel move) 1 +mv 2+mv * * - - 770-
ILLEGAL 1 " 8 --------
INC D 1 2 *******
Jcc xxx 1+ea 4+jx --------
JCLR #n,X:<ea>,xxxx 2 6+jx ------

#n,X:<aa>,xxxx
#n,X:<pp>,xxxx
#n,Y:<ea>,xxxx
#n, Y:<aa>,xxxx
#n,Y:<pp>,xxxx
#n,S,xxxx

JMP xxxx 1+ea 4+jx --------
ea

JScc xxxx 1+ea 4+jx --------
ea

JSCLR #n,X:<ea>,xxxx 2 6+jx ------
#n,X:<aa>,xxxx
#n,X:<pp>,xxxx
#n,Y:<ea>,xxxx
#n, Y:<aa>,xxxx
#n, Y:<pp>,xxxx
#n,S,xxxx

JSET #n,X:<ea>,xxxx 2 6+jx ------
#n,X:<aa>,xxxx
#n,X:<pp>,xxxx
#n, Y:<ea>,xxxx
#n,Y:<aa>,xxxx
#n, Y:<pp>,xxxx
#n,S,xxxx

JSR xxx 1+ea 4+jx --------

Ell
ea

JSSET #n,X:<ea>,xxxx " 2 6+jx ------
#n,X:<aa>,xxxx
#n,X:<pp>,xxxx
#n,Y:<ea>,xxxx
#n,Y:<aa>,xxxx
#n,Y:<pp>,xxxx
#n,S,xxxx

LSL D (parallel move) 1 +mv 2+mv * * - - 7707
LSR D (parallel move) 1 +mv 2+mv * * - - 7707
LUA <ea>,D 1 4 --------
MAC (±)S2,S1,D (parallel move) 1+mv 2+mv *******

(±)S1,S2,D (parallel move)
(±)S,#n,D (no parallel move) 1 2

{±)S2,S1,0
{±)S1,S2,0
{±)S,#n,O

MOVE S,O
No parallel data move
Immediate short

data move
Register to register

data move
Address register update
X memory data move

X memory and register
data move

Y memory data move

Register and Y memory
data move

Long memory data move

XY memory data move

X:<ea>,01
X:<aa>,01
S1,X:<ea>
S1,X:<aa>
Y:<ea>,01
Y:<aa>,01
S1,Y:<ea>
S1,Y:<aa>
S1,02
S2,01
#XXXX, 01
#xx,01

(parallel move) 1+mv
(parallel move)
(no parallel move) 1
..................... 1+mv

(.....) mv
{)#xx,O mv

{)S,O mv

2+mv

2
2+mv

mv
mv

mv

I)ea mv mv
.....)X:<ea>,O mv mv
.....)X:<aa>,O

1
·····)S,x:<ea>
.....)S,X:<aa>
.....)#xxxxxx,O

{)X:<ea>,01
{ !S1 ,X:<ea>
{ #xxxxxx,01
{ A,X:<ea>
{)S,X:<ea>
{)Y:<ea>,O
{)Y:<aa>,O
{)S,Y:<ea>
{)S,Y:<aa>
{)#xxxxxx,O
{)S1,01

1
.....)S1 ,01
.....)S1,01
.....)YO,A

{ !YO,S

I L:<ea>,O
..... L:<aa>,O
.....)S,L:<ea>

{)S,L:<aa>

82,02 mv
S2,02
S2,02
XO,A
XC,S
.......... mv

Y:<ea>,02 . mv
S2,Y:<ea>
#xxxxxx,02
A,Y:<ea>
S,Y:<ea>
.......... mv

mv

mv

mv

mv

{)X:<eax>,01 .. Y:<eaY>,02. mv mv
{)X:<eax>,01 S2,Y:<eay>
{)S1 ,X:<eax> Y:<eay>,02
{)S1 ,X:<eax> S2,Y:<eay>

...................... 1+ea 2+mvc

SLEUNZVC

??? ?????

Mnemonic Syntax Parallel Moves

SLEUNZVC

MOVE(M) P:<ea>,D 1+ea 2+mvm ????????
S,P:<ea>
S,P:<aa>
P:<aa>,D

MOVE(P) X:<pp>,D
X:<pp>,X:<ea>

................... 1+ea 2+mvp ??? ?????

X:<pp>,Y:<ea>
X:<pp>,P:<ea>
S,X:<pp>
#xxxxxx,X:<pp>
X:<ea>,X:<pp>
Y:<ea>,X:<pp>
P:<ea>,X:<pp>
Y:<pp>,D
Y:<pp>,X:<ea>
Y:<pp>,Y:<ea>
Y:<pp>,P:<ea>
S,Y:<pp>
#xxxxxx,Y:<pp>
X:<ea>,Y:<pp>
Y:<ea>,Y:<pp>

MPY
P:<ea>,Y:<pp>
(±)82,S1,D (parallel move) 1+mv 2+mv *******
(±)81,82,D (parallel move)
(±)8,#n,D (no parallel move) 1 2

MPYR (±)82,S1,D (parallel move) 1+mv 2+mv *******
(±)81,82,D (parallel move)
(±)8,#n,D (no parallel move) 1 2

NEG D (parallel move) 1+mv 2+mv *******
NOP · 1 2 --------
NORM Rn,D · 1 2 - * * * * * ?-
NOT D (parallel move) 1+mv 2+mv * * - - ? ?o-
OR S,D (parallel move)•.. 1+mv 2+mv * * - - ? ?o-
ORI #xx,D · l' 2 ??? ?????
REP X:<ea> · 1 4+mv ??------

X:<aa>
Y:<ea>

Ell
Y:<aa>
S
#xxx

I INSTRUCTIONS

RESET
RND
ROL
ROR
RTI
RTS
SBe
STOP
SUB
SUBL
SUBR
SWI
Tcc

TableB~2 InstructionSetSumrnary~Sh~et5 of5

Parallel Moves Instruction Osc.
Program Clock
Words Cycles

· 1 4
D (parallel move) 1+mv 2+mv
D (parallel move~ 1+mv 2+mv
D (parallel move 1 +mv 2+mv

· 1 4+rx
· 1 4+rx

S,D (parallel move) ,1+mv 2+mv
· 1 n/a

S,D (parallel move) 1+mv 2+mv
S,D (parallel move) 1+mv 2+mv
S,D (parallel move) 1+mv 2+mv

· 1 8
S1,D1 · 1 2
S1,D1 S2,D2
S,D (parallel move) 1 +mv 2+mv
S (parallel move) 1+mv 2+mv

· 1 n/a

NOTATION:
- denotes the bit is unaffected by the operation.
* denotes the bit may be set according to the definition,

depending on parallel move conditions.
? denotes the bit is set according to a special definition.

See the instruction descriptions in Appendix A of the
DSP56000 Family Manual (DSP56KFAMUMIAD).

o denotes the bit is cleared.

SLEUNZVC

-.------

* * - - ?? O?
* * - - ? ?O?
????????

* * * * * * ?*

* * * * * * 0-
-.------

Application: ____________________ _ Date: ________ _

Programmer: _____ _

CENTRALPROCESSO

I
I

ICENTRAL PROCESSORI
HostlPL

'.·HPffiliPLOIEnablecrl iiPll1

Interrupt Priority
Register (IPR)

X:$FFFF ReadlWrite
Reset = $000000

I

TFm'AMode
IAl2Tirigger ·?lI<IAI..1?IALOIEnilbled IIPLI .. <.' < ,., ,., ..

en
:::T
(1)

~
I\)

a
U)

l>
"0
~
o·
a o·
~

""U 0
..... III o _

(Q (1)
@ ••

3
3
~

I
»
"0
"Eo o·
a o·
~

"1J 0
-. Q) o _

CO CD ii3 ••
3
3
~

I (CENTRAL PROCESSORI

t Dis~hlb'rl
I:

uring
I

1(~lnt

lr.nD1C~~~I ••• ~~·~~~
:... ~I

,"

[~~II
-OJ

-

SSI

I.LU

,·.1,

nglqQI
·'01

I::il

Dul

"1

nr
()(

~ri(

I1)l7r

\~~::I"~'~I?)\.··i>I •• il/<1 .~·~~~b~~m~~L~J::·~·~ 11 .•• · •••• · ••••• · •• ·•· ••••• ·.I}I~~~~md~~~7~0~l
1 # Eriable PLl..

PLL Control
Register (PCTL)

X:$FFFD ReadlWrite
Reset = $OXOOOO

I

II

.... ~~~~~~~~a

-u a
co
til
3
3
~

~
"0
"2-
o·
a o·
2

o
III

~

-

Application: ____________________ _

GP liD

Port B
Control Register (PBC)
X:$FFEO ReadlWrite
Reset = $000000

Port B
Data Register (PBD)
X:$FFE4 ReadlWrite
Reset = $000000

Date: _______ _

Programmer: ____ _

Sheet 1 of 2

Application: ___________________ _ Date: _______ _

Programmer: _____ _

Application: __________________ _ Date: _______ _

Programmer: ____ _

Sheet 1 of 5

-

Application: ___________________ _ Date: _______ _

Programmer: _____ _

Sheet 2 of 5

-

Application: ____________________ _ Date: ________ _

Programmer: _____ _

Sheet 3 of 5

Application: ____________________ _ Date: ________ _

Programmer:

-

»
"0
"!2.

C=)"
a
c)"
~

Application: ____________________ _

SCI Control Register *0
(SCR)
Address X:$FFFO
ReadlWrite

Date: ________ _

Programmer:

Sheet 1 of 3

Application: ____________________ _ Date: ________ _

Programmer:

Sheet 2 of 3

Application: ____________________ _ Date: ________ _

Programmer:
Sheet 3 of 3

_iii -

Application: ____________________ _ Date: ________ _

Programmer: _____ _

-

Application: -------- Date: -------
Programmer:

-

Application: __________________ _ Date: _______ _

Programmer: ____ _

Sheet 3 of 3

-

Application: ____________________ _ Date: ________ _

Jr

Timer Control and
Status Register (TCSR)
X:$FFDE (ReadlWrite)
Reset = $000200

, Timer Count Register (TCR)
• X:$FFDF (ReadlWrite)
. Unaffected by Reset

Sheet 1 of 1

" ···························1· c.

i, .. ,.tin., R 'A ...)

';TI/,)~I;,{'

. :=JI.~ :m

~ j ~ '~
DI I DIR TS I GPIO TC21 TCl TCO IINV I TIE I TE

..

DSP56002 User's Manual Trouble Report
DSP Applications Fax Number - (512) 891-4665

Dr. BuB Bulletin Board -891-DSP3 (8 data bits, no parity, 1 stop)

We welcome your comments and suggestions. They help us provide you with better prod­
uct documentation. Please send your suggestions/corrections to the Fax number or Email
address above or mail this completed form to:

Motorola Inc.
6501 Wm. Cannon Drive West
Austin, Texas 78735-8598
Attn: DSP Applications/Documentation
Mail Drop: OE314

1. Did you find errors in the manual? Please give page number and a description of
each error.

-

-

DSP56002 User's Manual Trouble Report

2. Did you find the manual clear and easy to use? Please comment on specific
sections that you feel need improvement.

3. What sections of this manual do you consider most importanVleast important?

INDEX

-----------------:::::-
-----------------~
------------------:::::
------------------:::::
-------------------:::::
-------------------:::::
-------------------:::::

--------------------:::::
--------------------=:::
---~ ----------------------~
--------------------~

~
~

INDEX

-A-
AO-A15 2-4
Architecture 1-4

-8-

BG 2-6,4-16
BN 2-5,4-16
Bootstrap Code A-4
Bootstrap from EPROM (Mode 1) 3-8
Bootstrap from Host (Mode 5) 3-11,5-50
Bootstrap from SCI (Mode 6) 3-12,6-71
Bootstrap ROM 3-3
BR 2-5,4-16
Break 6-30
BS 2-6,4-16
Bus Arbitration4":16, 4-18, 4-20
Bus Control Register (BCR) 4-13, B-10

-C-

CD11-GDO ; 6-25
Central Processing Module 1-4

components .. 1-4
CKOUT 2-14
CKP•........................ 2-14
CLGND 2-13
Clock Pins

crystal output (XT AL). 2-8
external clock/crystal input (EXTAL) 2-8

Clock Stabilization Delay 3-7
CLVcc 2-13
COD : 6-26
Command Vector Register (CVR) 5-26, B-18
CRA 6-87

bit 15 - prescaler range (PSR) ;. 6-88

bits 0-7 - prescale modulus select
(PMO-PM7) 6-87

bits 13,14 - word length control .
(WLO,WL 1) 6-87

bits 8-12 - frame rate divider control
(DCO-DC4) 6-87

CRB 6-88
bit 0 - serial output flag 0 (OFO) 6-88
bit 1 - serial output flag 1 (OF1) 6-88
bit 10 - gated control clock (GCK) 6-91
bit 11 - mode select (MOD) 6-92
bit 12 - transmit enable (TE) 6-92
bit 13 - receive enable (RE) 6-92
bit 14 - transmit interrupt enable (TI E) ... 6-93
bit 2 - serial control 0 direction (SCDO) .. 6-89
bit 3 - serial control 1 direction (SCD1) .. 6-89
bit 4 - serial control 2 direction (SCD2) .. 6-89
bit 5 - clock source direction (SCKD) 6-89
bit 6 - shift direction (SHFD) 6-91
bit 7,8 - frame sync length

(FSLO, FSL 1) 6-91
bit 9 - sync/async (SYN) 6-91
control bits 6-112
receive interrupt enable (RIE) 6-93

CVR 5-26
bit 0-5 - host vector (HV) 5-26
bit 6 - reserved 5-27
bit 7 - host command (HC) 5-27

-0-

DO-D23 2-4
Data Register (PBD) B-14
Data Transfer

DMA 5-54
DSP to host 5-17,5-51
HI host processor 5-34

host to DSP 5-17, 5-40 HAQ-HA2 5-31
polling/interrupt controlled 5-38 HACK 2-9, 5-32

Data Transmission 6-30 Hardware Reset
DC4--DCO 6-87 . OnCE pins and 2-12
DE 3-4,3-6 "HC 5-27
Debug Request Input (DR) 2-13 HCIE 5-14
Development Mode (Mode 3) 3-11 HCP 5-16,5-19
DMA 5-17,5-19,5-29 HCR 5-14

host to DSP 5-57 bit 0 - host receive interrupt enable
DMA Mode 5-23 (HRIE) 5-14
DMA Procedure bit 1 - host transmit interrupt enable

DSP to host 5-60 (HTIE) 5-14
DS 2-5 bit 2 - host command interrupt enable
D81/0S0 2-11 (HCIE) 5-14
D8CKlOS 1 2-12 bit 3 - host flag 2 (HF2) 5-14
D80 2-12 bit 4 - host flag 3 (HF3) 5-15
DSP to Host DMA Procedure 5-60 bits 5,6,7 - reserved 5-15
DSP to Host Internal Processing•. 5-59 HEN 2-9, 5-32
DSP56002 Features 1-4 HFO 5-16,5-19,5-23
DSP56K Central Processing Module reading during transition 5-19

central components 1-4 HF1 5-16,5-19,5-23
reading during transition ; 5-19

-E-
HF2 5-14,5-28
HF3 5-15,5-28

Exception (See Interrupt)
EXTAL 2-8
External Access Priority 4-3

HI•........ : 5-3,5-10
DSP viewpoint ~ 5-11
example circuits ' .. : 5-62
features 5-10
host processor viewpoint 5-19

-F- programming model : 5~20

FE 6-24
Features 1-4
Flags, SSI 6-153

servicing protocols 5-33
HI Application Examples , ... : 5~37

bootstrap from host 5-50
HI initialization 5-38

FSLO- 6-112
FSLO, FSL 1 6-91
FSL 1 6-112

host to DSP data transfer 5-40
polling/interrupt controlled

data transfer 5-38
Hllnterrupts 5-34

-G- DSP CPU 5-18
host processor ...•........... ; 5-18

GCK 6-91,6-112 HI Pins ' 2-8, 5-30
GPIO 'host acknowledge (HACK) 2-9, 5-32

configuration 5-4 host address (HAO-HA2) 2-9,5-31
programming port 8 5-5 host data bus pins (HO-H7)' . '. 2-8, 5-30
programming port C 6-6 host enable (HEN), 2-9, 5-32

, host read/write (HRIW) 2-9,5-32

-H-
host request (HREQ) 2-9, 5-32

HI Programming Model 5-12

HO-H7 . 2-8, 5-30
HAO-HA2 2-9

HM1 and HMO ; .. 5-23
Host Command Feature 5-20
Host Control Register (HCR) 5-14,8-16

Host Flag Operation 5-15
Host Interface (HI) 5-3,5-10
Host Port Usage Considerations -

DSP Side 5-18
Host Port Usage Considerations -

Host Side 5-65
Host Receive Data Register (HRX) ... 5-17,8-17
Host Registers After Reset

as seen by DSP 5-17
as seen by host processor 5-30

Host Status Register (HSR) 5-15,8-17
Host to DSP DMA Procedure 5-57
Host To DSP Internal Processing 5-56
Host Transmit Data Register (HTX) ... 5-17,8-17
HRIW 2-9, 5-32
HRDF 5-15,5-19
HREQ 8it 5-29
HREQ Pin 2-9, 5-22, 5-23, 5-32
HRIE 5-14
HRX 5-17
HSR 5-15

bit 0 - host receive data full (HRDF) 5-15
bit 1 - host transmit data empty

(HTDE) 5-15
bit 2 - host command pending (HCP) ... 5-16
bit 3 - host flag 0 (HFO) 5-16
bit4- host flag 1 (HF1) 5-16
bit 5,6 - reserved 5-17
bit 7 - DMA status (DMA) 5-17

HTDE 5-15,5-19
HTIE ... , 5-14
HTX 5-17
HV . 5-26, 5-46

-1-

ICR 5-20
bit 0 - receive request enable (RREQ) .. 5-22
bit 1 - transmit request enable (TREQ) .. 5-22
bit 2 - reserved 5-23
bit 3 - host flag 0 (HFO) 5-23
bit 4 - host flag 1 (HF1) 5-23
bit 5,6 - host mode control

(HM1, HMO) 5-23
bit 7 - initialize bit (INIT) 5-24

IDLE 6-23
IFO 6-94
IF1 6-94
ILIE 6-20, 6-39
INIT 5-24

Instruction Set Summary. • 8-5
Internal Processing

DSP to host 5-59
host to DSP•........... 5-56

INterrupt
Sources 8-4

Interrupt
host command 5-43
host receive data 5-43
host transmit data 5-43
SCI idle line 6-39
SCI receive data 6-37
SCI receive data with exception status .. 6-39
SCI timer 6-39
SCI transmit data 6-39
SSI receive data 6-109
SSI receive data with

exception status 6-109
SSI transmit data 6-109
SSI transmit data with

exception status 6-109
Starting Addresses 8-4

Interrupt Control Register (ICR) 5-20, 8-18
Interrupt Priority Register (IPR) ., 3-12, 8-11
Interrupt Status Register (ISR) 5-27, 8-19
Interrupt Vector Register (IVR) 5-29, 8-19
Interrupts

DMA 5-37
non-DMA 5-36

IPR 8-11
ISR 5-27

bit 0 - receive data register full (RXDF) .. 5-27
bit 1 - transmit data register empty

(TXDE) 5-28
bit 2 - transmitter ready (TRDY) 5-28
bit 3 - host flag 2 (HF2) 5-28
bit 4 - host flag 3 (HF3) 5-28
bit 5 - reserved ; 5-28
bit 6 - DMA status (DMA) 5-29
bit 7 - host request (HREQ) 5-29

IVR 5-29

-M-
MA, M8 3-6
MC 3-7
Memory Modules 3-3

program memory 3-3
X data memory 3-4
Y data memory 3-4

MFO-MF11 3-13
MOD 6-92,6-112
MODAlIROA 2-6
MODBIIROB•....... '" 2-7
MODC/NMI•............. 2-7
Multidrop•.• 6-55

address mode wakeup 6-61
example 6-61
idle line wakeup. 6-57
transmitting data and

address characters. 6-57
wired-or mode • . . . 6-57

Multiplication Factor•........... 3-13

-N-
Network Mode 6-135
Network Mode Receive 6-144
Network Mode Transmit 6-140
Normal Expanded Mode (Mode 2) 3-11
Normal Mode Receive .. ~ 6-133
Normal Mode Transmit 6-130

.-0-

OFO ~• ' ... 6-88
OF1• 6-88
OMR

chip operating mode (bit 4) :. 3-7
data rom enable (bit 1) :... 3-6
stop delay (bit 6)•........ 3-7
Y memory disable (bit 3) 3-6

OnCE Pins 2-11
debug request input (DR) 2~ 13
debug serial inpuVchip status 0

(DS1/0S0) 2-11
debug serial output (DSO) 2-12

On-chip Peripherals Memory Map B-3
Operating Mode Register (OMR) B-12
Operating Modes 3-3, 3-7

mode 0 - single chip mode 3-8
mode 1 - bootstrap from EPROM 3-8
mode 2 - normal expanded mode 3-11
mode 3 - development mode 3-11
mode 4 - reserved mode ; 3-11
mode 5 - bootstrap from host 3~'11
mode 6;. bootstrap from SCI 3-12
mode 7 - reserved mode 3-12
setting, changing . 3-7
summary .. 3-8

OR 6-23

-p~

PBC•...........•......... 5-4
PBD• 5-4
PBDDR 5-4
PCAP 2-13
PCC ~•.......... 6-4
PCD ~ 6-4
PCDDR 6-4
PE 6-23
PEN · 2-14
Peripheral Memory Map ;. B-3
PGND 2-13
PINIT 2-14
Pins (Signals) 2-3
PLL Control Register (PCTL) B-13
PLL Lock State 2-14
PLL Multiplication Factor 3-13
PLL Pins 2-13

analog PLL circuit ground (PGND) 2-13
. analog PLL circuit power (PVcc) 2-13
. CKOUT Ground (CLGND)•.... 2-13
CKOUT Polarity Control (CKP) 2-14
CKOUT power (CLVcc) ... : 2-13
output clock (CKOUT) 2-14
phase and frequency locked (PLOCK) .. 2-14
PLL filter off-chip capacitor (PCAP) 2-13
PLL initialization input (PINIT) 2-14

PLOCK , : .. 2-14
PM7-PMO 6-87
Polli!1g 5-35
Port A 4-3
Port A Address Pins 2-4, 4-3
Port A Bus Control Pins 2-4, 4-3

bus grant (BG) 2-6
bus needed (BN)· .•.....•...........• 2-5
bus request (BR)•• 2-5
bus strobe (BS) 2-6
bus wait (WT)•........• 2-6
data memory select (DS)• 2-5
program memory select (PS)•.....• 2-4
read enable (RD) 2-5
write enable (WR) 2-5
XIY select (XN) 2-5

Port A Data Bus Pins•.. 2-4, 4-3
Port A Interrupt and Mode Control Pins 2-6

MODAlIROA 2-6
MODBIIROB 2-7

MODC/NMI 2-7 RDRF 6-23
RESET 2-7 RE 6-92

Port A Signals 4-3
Port A Wait States 4-13

Receive 8yte Registers
(RXH, RXM, RXL) 5-29, 8-20

Port 8 Reset
Control Register (P8C) 8-14,8-16 register contents and 5-17
Data Direction Register (P8DDR) 8-14 RESET Pin 2-7
Data Register (P8D) 8-14 RFS 6-95
GPIO .. ~ 5-3 RIE 6-21,6-37,6-39,6-93
host interface (HI) 5-3 ROE 6-96
introduction 5-3 RREQ 5-22
pin control logic . 5-4 RWU 6-18

Port 8 Control Register (P8C) 5-4 RX 6-97
Port 8 Data Direction Register (P8DDR) 5-4 RXD 2-10,6-12
Port 8 Data Register (P8D) 5-4 RXDF 5-27
Port 8 GPIO RXH 5-29

timing 5-8 RXL 5-29
PortC RXM 5-29

Control Register (PCC) .. ' ... 8-15, 8-21, 8-24
Data Direction Register (PCDDR) 8-15
Data Register (PCD) 8-15 -5-
GPIO 6-3, 6-4
introduction 6-3
pin control logic 6-4
SCI 6-3
SSI 6-3

Port C Control Register (PCC) 6-4
Port C Data Direction Register (PCDDR) 6-4
Port C Data Register 6-4
PortC GPIO

timing 6-9
Power Pins

ground (GND) 2-8
power (Vcc) 2-8

Preamble 6-30
Program Memory 3-3
Programming Model

HI 5-12,5-20
SCI 6-12
SSI 6-83

PS , , 2-4
PSR 6-88
PVcc 2-13

S8K 6-18
SCO ., 2-10, 6-82
SC1 2-11,6-82
SC2 2-11,6-83
SCCR 6-24

bit 12 - clock out divider (COD) 6-26
bit 13 - clock prescaler (SCP) 6-26
bit 14 - receive clock mode source

(RCM) 6-26
bit 15 - transmit clock source (TCM) 6-26
bits 11-0 - clock divider (CD11-CDO) 6-25

SCDO 6-89
SCD1 '" 6-89
SCD2 6-89
SCI 6-3,6-11

example circuits 6-74
features 6-11
pins 6-11
programming model 6-12

SCI Asynchronous Data 6-44
multidrop 6-55
reception 6-45
transmission 6-48

-R- SCI Clock Control Register (SCCR) ... 6-24, 8-22
SCI Control Register (SCR) 6-14,8-21

R8 6-24 SCI Data Registers 6-26
RCM 6-26 receive registers (SRX) 6-26, 8-23
RD 2-5 transmit registers (STX, STXA) ... 6-28, 8-23
RDF .. ' 6-97 SCI Initialization 6-31

SCI Pins 2-10
receive data (RXD) 2-10, 6-12
SCI serial clock (SCLK) 2-10, 6-12
transmit data (TXD) 2-10, 6-12

SCI Registers after Reset 6-31
SCI Status Register (SSR) . ~ 6-22, 8-22
SCI Synchronous Data 6-39
SCI Timer ; 6-68
SCK 2-11,6-80
SCKD 6-89
SCKP 6-22
SCLK 2-10,6-12
SCP 6-26
SCR· 6-14

. bit 0-2 - word select
(WDSO,WDS1,WDS2) 6-14

bit 10 - idle line interrupt enable (ILlE) .. 6-20
bit 12 - transmit interrupt enable (TIE) .. 6-21
bit 13 - timer interrupt enable (TMIE) ... 6-21
bit 14 - timer interrupt rate (STIR) 6-21
bit 15 - clock polarity (SCKP) 6-22

. bit 3 - shift direction (SSFTD) 6-18
bit 4 - send break (S8K) 6~18
bit 4 - wakeup mode select (WAKE) 6-18
bit 6 - receiver wakeup enable (RWU) .. 6-18
bit 7 - wired-or mode select (WOMS) ... 6-19
bit 8 - receiver enable (RE) 6-19
bit 9 - transmitter enable (TE) 6-19
receive interrupt enable (RIE) 6-21

SD 3-7
Semaphores ~ '.' 4-22
Serial Communication Interface (SCI) .. 6-3,6-11
Shared Memory 4-16
SHFD 6-91,6-.112
Single Chip Mode (Mode 0) 3-8
Slow Memory Accommodation 4-13
SRD 2-11,6-80
SRX : 6-26
SSFTD 6-18
SSI 6-3, 6-76

features . 6-76
operational modes 6-100
pin definitions 6-100

S81 Control Register A (CRA) 6-87,8-24
SSI Control Register 8 (CR8) 6-88, 8-25
SSI Example Circuits ; 6-157
SSI Flags 6-153
SSllnitialization 6-104
SSI Operating Modes

network mode examples 6-135
normal 6-112
normal mode examples 6-127

normal/network 6-112
on-demand mode examples 6-145

SSI Pins 2-10,6-78
serial clock (SCK) : .. 6-80
serial clock zero (SCO) 2-10
serial control (SCO) 6-82
serial control (SC1) . ~ 6-82
serial control (SC2) ~ ; ... 6-83'
serial control one (SC1) 2-11
serial control two (SC2) '" .•......... 2-11
serial receive data (SRD) 6-80

, serial transmit data (STD) 6-78
SSI receive data (SRD)•...... 2-11
SSI serial clock (SCK) '" 2-11
SSI transmit data (STD) 2-11

SSI Programming Model 6-83
SSI Receive Data Register (RX) 6-97
SSI Receive Shift Register 6-97
SSI Registers After Reset 6-100
SSI Status Register (SSISR) 6-94, 8-26
SSI Transmit Data Register (TX) 6-100
SSI Transmit Shift Register " .. 6-97
SSISR 6-94

bit 0 - serial input flag 0 (IFO) 6-94
bit 1 - serial input flag 1 (IF1) 6-94
bit 2 - transmit frame sync flag (TFS) ... 6:-94
bit 3 - receive frame sync flag (RFS) ' 6-95
bit 4 - transmitter underrun error flag

(TUE) 6-96
bit 5 - receiver overrun error flag

(ROE) 6-96
bit 6 - transmit data register empty

(TDE) : . 6-97
bit 7 - receive data register full (RDF) ... 6-97

SSR 6-22
bit 0 - transmitter empty (TRNE) 6-22
bit 1 - transmit data register empty

(TDRE) 6-22
bit 2 - receive data register full (RDRF) .. 6-23
bit 3 - idle line flag (IDLE) 6-23
bit 4 - overrun error flag 6-23
bit 5 - parity error (PE) 6-23
bit 6 - framing error flag (FE) 6-24
bit 7 - received bit 8 address (R8) 6-24

Status Register (SR) 8-10
STD 2-11,6-78
STIR '" 6-21
STX ... , 6-28
STXA 6-28
SYN 6-91,6-112
Synchronous Serial Interface (SSI) 6-3

-T- TX 6-100

TCM 6-26
TXD 2-10,6-12
TXDE 5-28

TCSR
bit 0 - Timer Enable (TE) 7-5
bit 1 - Timer Interrupt Enable (TIE) 7-5
bit 10 - Data Output (DO) 7-7

TXH 5-30
TXL 5-30
TXM 5-30

bit 11-23 - TCSR ReseNed Bits 7-7
bit 2 - Inverter (INV) 7-5 -w-
bit 6 - General Purpose lID (GPIO) 7-6
bit 7 - Timer Status (TS) 7-7
bit 8 - Direction (DIR) 7-7
bit 9 - Data Input (DI) 7-7
bits 3-5 - Timer Control (TCO-TC2) 7-6

TDE 6-97
TDRE 6-22, 6-30
TE 6-19,6-92
TIE 6-21,6-39,6-93
Time Slot Register (TSR) 6-100

WAKE 6-18
WDSO 6-28
WDSO, WDS1, WDS2 6-14
WDS1 6-28
WDS2 6-28
WLO, WL1 6-87
WOMS 6-19
WR 2-5
WT 2-6,4-16

Timer
Block Diagram ... , 7-3
Disable 7-9 -x-
During STOP 7-16 X Data Memory , 3-4
During WAIT 7-16 XIV•........ 2-5
GPIO 7-18,7-19 XTAL 2-8
Mode 0 7-7, 7-8
Mode 0 Example 7-20
Mode 1 7-8 -y-
Mode 2 7-10
Mode4 7-11

Y Data Memory 3-4
Y data ram 3-4

Mode 4 Example 7-21 Y data rom 3-4
Mode 5 7-12
Mode 5 Example 7-22

YD 3-4,3-6

Mode 6 7-13
Mode 7 7-15
Operating Considerations 7-17
Period Measurement Mode .. 7-12,7-15, 7-16
Programming Model 7-4
PWM Mode 7-11,7-13,7-14
Timer ControVStatus Register

(TCSR) 7-5, B-27
Timer Count Register (TCR) 7-4, B-27

Timer/Event Counter Module Pin (TID) 2-14
TMIE 6-39
Transmit Byte Registers

(TXH, TXM, TXL) 5-30, B-20
TRDY 5-28
TREQ 5-22
TRNE 6-22
TSR 6-100
TUE 6-96

INTRODUCTION TO THE DSP56002

DSP56002 PIN DESCRIPTIONS _

MEMORY MODULES AND OPERATING MODES

PORTA

PORTB

PORTC

TIMER

APPENDIX A - BOOTSTRAP CODE _

APPENDIX B - PROGRAMMING SHEETS _

TROUBLE REPORT _

INDEX

INTRODUCTION TO THE DSP56002

_ DSP56002 PIN DESCRIPTIONS

.. MEMORY MODULES AND OPERATING MODES

_ PORTA

.. PORTB

.. PORTe

_ TIMER

_ APPENDIX A- BOOTSTRAP CODE

_ APPENDIX B - PROGRAMMING SHEETS

_ TROUBLE REPORT

INDEX

1ATX31270-1 Printed In USA 2194 BANTA CO. MOTa 18 7,500 DSP YGAVAA

