DSP56002UM/AD
REV 1

DSP56002

Digital Signal Processor
User's Manual

y - .
—_——————— = ==

* =

— = -

@ MOTOROLA

INTRODUCTION TO THE DSP56002

DSP56002 PIN DESCRIPTIONS

MEMORY MODULES AND OPERATING MODES
PORT A

PORT B

PORT C

TIMER

APPENDIX A - BOOTSTRAP CODE

APPENDIX B - PROGRAMMING SHEETS
TROUBLE REPORT

INDEX

-
)

INTRODUCTION TO THE DSP56002

n DSP56002 PIN DESCRIPTIONS

n MEMORY MODULES AND OPERATING MODES

Y3l TIVER
“ APPENDIX A - BOOTSTRAP CODE
n APPENDIX B - PROGRAMMING SHEETS

II;3 TROUBLE REPORT

I noEx

DSP56002

DIGITAL SIGNAL PROCESSOR
USER’S MANUAL

Motorola reserves the right to make changes without further notice to any products herein to im-
prove reliability, function or design. Motorola does not assume any liability arising out of the appli-
cation or use of any product or circuit described herein; neither does it convey any license under its
patent rights nor the rights of others. Motorola products are not authorized for use as components
in life support devices or systems intended for surgical implant into the body or intended to support
or sustain life. Buyer agrees to notify Motorola of any such intended end use whereupon Motorola
shall determine availability and suitability of its product or products for the use intended. Motorola
and Mare registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Oppor-
tunity /Affirmative Action Employer.

OnCE™ is a trade mark of Motorola, Inc.

© MOTOROLA INC., 1993

TABLE OF CONTENTS

Paragraph _ Page

Number ' Title Number
SECTION 1
INTRODUCTION TO THE DSP56002
1.1 INTRODUCTION.............; 1-3
12 FEATUREScoininines e 144
1.3 DSP56K CENTRAL PROCESSING UNIT OVERVIEW. . s 1-4
1.4 MANUALORGANIZATIONttt 1-5
'SECTION 2
DSP56002 PIN DESCRIPTIONS

21 INTRODUCTION i, e e 2.3
22 SIGNALDESCRIPTIONSttt e 23 .
2.2.1 Port A Address and Data Bus. i 2-3 .
2211 Address (AQ-A15) e e 2-4
221.2 DataBus (DO-D23). ...t il Ll2-4
222 PortABusControlcoiiuiiiiiiiii e 2-4
22.2.1 Program Memory Select (PS) FE 2-4
2222 Data Memory Select (DS) A, PR 2-5
2223 XY Select (X/Y) o vi i i e e e 2-5
2224 Read Enable (RD) S e e 2-5
2225 Write Enable (WR) ... it e 2-5
22.2.6 BusNeeded (BN)ttt 2-5
2227 Bus Request (BR)ol iin i it iinennn 2-5
2228 Bus Grant (BG) e e e e 2-6
2229 Bus Strobe (BS) UPI A 2-6
22210 BusWait (WT) ...t it e e i e eens 2-6
223 Interruptand Mode Control. 2-6
2231 Mode Select A/External Interrupt Request A

: (MODA/IRQA)/STOP ReCOVEIY oi'ivinieie e rnnennennns 2-6
2232 Mode Select B/External Interrupt Request B (MODB/IRQB) 2-7

2233 Mode Select C/Non-Maskable Interrupt Request (MODC/NMI)2-7

Table of Contents (Continued)

Paragraph Page
Number Title Number
2234 Reset (RESET) N P 2-7
224 Powerand Clock.ttt i e e 2-8
2.2.41 Power (Vce), Ground (GND)ot ii i, 2-8
22.4.2 External Clock/Crystal Input (EXTAL) oo, 2-8
2243 Crystal OQutput (XTAL) ... oot e e i e e e .2-8
225 Hostinterface....................... e et aa 2-8
2251 HostDataBus (HO-H7) it 2-8
2252 Host Address (HA0O-HA2) e e 2-9
2253 Host Read/Write (HR/W) e 29
2254 HostEnable (HEN)ot iii e 2-9
2255 Host Request (HREQ), ...2-9
2.25.6 Host Acknowledge (HACK)cciviiiniii i, 2-9
2.26 Serial Communication Interface (SCI)coviiiineennnn.. 2-10
2.2.6.1 ~ Receive Data (RXD) P2410
2.26.2 TransmitData (TXD) PP 2-10
2.2.6.3 SCl Serial Clock (SCLK)t i ittt e i eee e 2-10
227 Synchronous Serial Interface (SSI) i, 2-10
22.741 Serial Clock Zero (SCO) ... vt vn i e 2-10
2272 Serial Control One (SC1) SR, e 2-11
22.7.3 Serial Control Two (SC2) ..ot 2-11
2274 SSI Serial Clock (SCK) .+ v vveeeieeeee e PR 2-11
2275 SSI Receive Data (SRD) P ceeso2-1
2.2.7.6 SSI Transmit Data (STD) P e S 2-11
2.3 ON-CHIP EMULATION (ONCE)PINS e 211
2.3.1 Debug Serial Input/Chip Status 0 (DSI/OS0)ot 2-11
23.2 Debug Serial Clock/Chip Status 1 (DSCK/OS1).t 2-12
23.3 Debug Serial Output (DSO) cov it i et 212
234 Debug Request Input (DR)........... [g 2-13
24 PLLPINS........coiiiiiiiiiiiiinnennn. et e 2-13
2.5 - TIMER/EVENT COUNTER MODULEPIN. R 2-14
SECTION 3
MEMORY MODULES
AND OPERATING MODES
3.1 MEMORY MODULES AND OPERATINGMODES. 3-3
3.2 'DSP56002 DATA AND PROGRAMMEMORYcoiiinnt.. 3-3
3.2.1 ProgramMemory e e ie i aieaaaa 3-3

3.2.2 X Data Memory...........: e e e a e e 3-4

Table of Contents (Continued)

Paragraph Page
Number Title Number
3.2.3 YDataMemory. ... oot e e 3-4
3.3 DSP56002 OPERATING MODE REGISTER(OMR).................. 3-4
3.3.1 Chip Operating Mode (BitsOand 1)c.coviiininn.... 3-6
332 Data ROMEnable (Bit2)ccviuiiiiii e, 3-6
3.3.3 Internal Y Memory Disable Bit (Bit3) oo at, 3-6
3.34 Chip OperatingMode (Bit4).cieiiiiiniii it 3-7
3.3.5 Reserved (Bit5)coiiii i e e 3-7
3.3.6 StopDelay (Bit6) ... covt it i e e e e 3-7
3.3.7 Reserved OMRBIits (Bits 7-23)o it 3-7
3.4 DSP56002 OPERATINGMODESciiiiii it 3-7
3.4.1 Single Chip Mode (Mode 0) ...ttt 3-8
3.4.2 Bootstrap From EPROM (Mode 1) ceeiiiiniii et 3-8
3.4.3 Normal Expanded Mode (Mode 2)c.cviiinnninen.... 3-11
3.4.4 Development Mode (Mode 3). iiiiininninnnns 3-11
3.45 Reserved (Mode 4).ot e e 3-11
3.4.6 Bootstrap From Host (Mode 5). oot 3-11
3.4.7 Bootstrap From SClI (Mode 6). oo it i i e s 3-12
3.4.8 Reserved (MOdE 7). . i ittt i e e e ettt 3-12
3.5 DSP56002 INTERRUPT PRIORITY REGISTER. 3-12

3.6 DSP56002 PHASE-LOCKED LOOP (PLL) MULTIPLICATION FACTOR. . 3-13

SECTION 4
PORT A
41 INTRODUCTION ...ttt e e e e et et et et i eaee s 4-3
42 PORTAINTERFACE i i e e et i e 4-3
43 PORTATIMINGt e e ettt e i 4-9
44 PORT AWAIT STATES. ... i e e e 4-13
45 BUSCONTROLREGISTER(BCR).....ccviiiiiii it i 4-13
46 BUSSTROBEANDWAITPINS it iieiienns 4-15
4.7 BUS ARBITRATION AND SHAREDMEMORY iiiiin... 4-16
4.71 Bus Arbitration Using Only BR and BG With Internal Control. 4-18
47.2 Bus Arbitration Using BN, BR, and BG With External Control 4-18

4.7.3 Bus Arbitration Using BR and BG, and WT and BS With No Overhead. 4-20
4.7.4 Signaling Using Semaphores. ...t inen.. 4-22

Table of Contents (Continued)

Paragraph Page
Number Title Number
SECTION 5
PORTB

5.1 INTRODUCTIONo it e i e e iaeane PR 5-3
52 GENERAL PURPOSE I/O CONFIGURATIONc........ 5-4
5.2.1 Programming General Purpose /Oo iieiniiiny 5-5
522 Port B General Purpose /O Timingc.vivveenieninnnnnnns 5-8
53 HOSTINTERFACE (HI). ... oot e i e e e e 5-10
5.3.1 Host Interface — DSP CPU Viewpoint.ty 5-11
53.2 Programming Model — DSP CPU Viewpoint. 5-12
5.3.2.1 Host Control Register (HCR)oiiiiiiiiiiiin et 5-14
5.3.2.1.1 HCR Host Receive Interrupt Enable (HRIE)Bit0 5-14
5.3.2.1.2 HCR Host Transmit Interrupt Enable (HTIE) Bit1 5-14
53.2.1.3 HCR Host Command Interrupt Enable (HCIE) Bit2 5-14
5.3.2.1.4 HCRHostFlag2 (HF2)Bit3 5-14
5.3.2.1.5 HCRHostFlag3 (HF3)Bit4ccoiiiien.... 5-15
53.2.1.6 HCR Reserved Control (Bits 5,6,and7) 5-15
53.2.2 Host Status Register (HSR) i, 5-15
53.2.2.1 HSR Host Receive Data Full (HRDF)Bit0 5-15
5.3.2.2.2 HSR Host Transmit Data Empty (HTDE)Bit1 5-15
5.3.2.2.3 HSR Host Command Pending (HCP)Bit2 5-16
53224 HSR HostFlagO0 (HFO)Bit3 ..o, 5-16
5.3.2.2.5 HSR HostFlag1 (HF1)Bit4 5-16 .
5.3.2.2.6 HSR Reserved Status (Bits5and6) 5-17
53.227 HSR DMA Status (DMA)Bit 7ciiiiiinan.. 5-17
53.2.3 Host Receive Data Register (HRX) it 5-17
5.3.24 Host Transmit Data Register (HTX)c.cov.... 5-17
5.3.2.5 Register Contents AfterReset, 5-17
5.3.2.6 Host Interface DSPCPU Interrupts it 5-18
53.27 Host Port Usage Considerations—DSP Side 5-18
5.3.3 Host Interface — Host Processor Viewpoint 5-19
5.3.3.1 Programming Model — Host Processor Viewpoint 5-20
5.3.3.2 Interrupt Control Register (ICR), 5-20
5.3.3.2.1 ICR Receive Request Enable (RREQ)Bit0 5-22
5.3.3.2.2 ICR Transmit Request Enable (TREQ) Bit1 5-22
5.3.3.23 ICRReservedBit(Bit2).........cooviiiiniiiiinnn, 5-23
53324 ICR HostFlag 0 (HFO)Bit3 e 5-23
5.3.3.2.5 ICRHostFlag1 (HF1)Bit4, 5-23
5.3.3.2.6 ICR Host Mode Control (HM1 and HMO bits) Bits 5and6.. 5-23
5.3.3.2.7 ICR Initialize Bit (INIT) Bit 7t 5-24

5.3.3.3 Command Vector Register (CVR) ..., 5-26

Table of Contents (Continued)

Paragraph Page
Number Title Number
5.3.3.3.1 CVR Host Vector (HV)Bits 05cccviiiiiintn. 5-26
5.3.3.3.2 CVRReservedBit(Bit6)covviiiiniiiennin... 5-27
5.3.3.3.3 CVR Host Command Bit (HC)Bit7 5-27
5.3.34 Interrupt Status Register (ISR) i, 5-27
5.3.3.4.1 ISR Receive Data Register Full (RXDF) Bit05-27
5.3.34.2 ISR Transmit Data Register Empty (TXDE)Bit1............. 5-28
5.3.34.3 ISR Transmitter Ready (TRDY) Bit2 5-28
5.3.344 ISRHostFlag2 (HF2)Bit3 oo, 5-28
5.3.34.5 ISRHostFlag3 (HF3)Bit4 ..., 5-28
5.3.3.4.6 ISR Reserved Bit (Bit5)oooviiiiiiiiiiiien., 5-28
5.3.34.7 ISR DMA Status (DMA)BIit6c.ccviiieneniinn... 5-29
5.3.34.8 ISR Host Request (HREQ) Bit7c.cion.n. 5-29
5.3.3.5 Interrupt Vector Register (IVR) it 5-29
5.3.3.6 Receive Byte Registers (RXH, RXM, RXL) 5-29
5.3.3.7 Transmit Byte Registers (TXH, TXM, TXL) 5-30
5.3.3.8 Registers AfterReset i il 5-30
5.34 HostiInterface Pins i e 5-30
5.3.41 HostData Bus(HO-H7)c. .o, 5-30
5.34.2 Host Address (HAO-HA2), 5-31
5343 Host Read/Write (HR/W) i 5-32
5344 HostEnable (HEN)o 5-32
5345 Host Request (HREQ)ottt 5-32
5.3.4.6 Host Acknowledge (HACK) i 5-32
56.3.5 Servicingthe HostInterface oo, 5-33
5.3.5.1 HI Host Processor Data Transferot 5-34
5.3.5.2 HI Interrupts Host Request (HREQ)coiit. 5-34
5.3.5.3 0] 1o 5-35
5.3.5.4 Servicing Non-DMA Interruptst ini i, 5-36
5.3.55 Servicing DMA INterruptsooiiin i e 5-37
5.3.6 HI Application Examples it 5-37
5.3.6.1 Hllnitialization i e e 5-38
5.3.6.2 Polling/Interrupt Controlled Data Transfer 5-38
5.3.6.2.1 HosttoDSP -Data Transfert 5-40
5.3.6.2.2 Hostto DSP —Command Vectorottt 5-43
5.3.6.2.3 Host to DSP - Bootstrap Loading Usingthe HI 5-50
5.3.6.2.4 DSPtoHostData Transferot 5-51
5.3.6.3 DMA DataTransferttt i 5-54
5.3.6.3.1 Host To DSP Internal Processingccovivinnnn 5-56
5.3.6.3.2 Hostto DSPDMA Procedurec.civiiiivniunans 5-57
5.3.6.3.3 DSP to Host Internal Processingo, 5-59
5.3.6.3.4 DSPtoHostDMAProcedureccoiiiiinenn. 5-60
5.3.6.4 Example Circuits o i 5-62

5.3.6.5 Host Port Usage Considerations —HostSide 5-65

Table of Contents (Continued)

Paragraph Page
Number Title Number
SECTION 6
PORTC

6.1 INTRODUCTION . ..ottt ittt it i et e e nnannnn 6-3

6.2 GENERAL-PURPOSEI/O(PORTC) [6-4

6.2.1 . Programming General Purpose /Oo, 6-6

6.2.2 Port C General Purpose /O Timingc.vivievinnennnan... 6-9

6.3 SERIAL COMMUNICATION INTERFACE(SCl).......covvvevian... 6-11
631 SCIHOPINS ..ttt e e it e et 6-11
6.3.1.1 Receive Data (RXD)ccviiiiii it e it ieanennns 6-12
6.3.1.2 TransmitData (TXD)oviiin i e e e e 6-12
6.3.1.3 SClSerial Clock (SCLK)ciiiiiii it eieennnns 6-12
6.3.2 SCl Programming Modelt 6-12
6.3.2.1 SCI Control Register (SCR)ciiiiiiiniiiieiannnnn. 6-14
6.3.2.1.1 SCR Word Select (WDS0, WDS1, WDS2) Bits 0, 1,and 2 6-14
6.3.2.1.2 SCR SCI Shift Direction (SSFTD)Bit3 6-18
6.3.2.1.3 SCRSendBreak (SBK)Bit4coiieiennnn.. 6-18
6.3.2.1.4 SCR Wakeup Mode Select (WAKE) Bit5 6-18
6.3.2.1.5 SCR Receiver Wakeup Enable (RWU)Bit6 6-18
6.3.2.1.6 SCR Wired-OR Mode Select (WOMS)Bit7 6-19
6.3.2.1.7 SCR Receiver Enable (RE)BIit8 6-19
6.3.2.1.8 SCR Transmitter Enable (TE)Bit9 6-19
6.3.2.1.9 "SCR Idle Line Interrupt Enable (ILIE)Bit10 6-20
6.3.2.1.10 SCR SCI Receive Interrupt Enable (RIE)Bit 11 6-21
6.3.2.1.11 SCR SCI Transmit Interrupt Enable (TIE) Bit12 6-21
6.3.2.1.12 SCR Timer Interrupt Enable (TMIE) Bit13 6-21
6.3.2.1.13 SCR SCI Timer Interrupt Rate (STIR) Bit14 6-21
6.3.2.1.14 SCR SCI Clock Polarity (SCKP) Bit15 6-22
6.3.2.2 SClI Status Register (SSR)coiiiiii it e 6-22
6.3.2.2.1 SSR Transmitter Empty (TRNE)BIitO 6-22
6.3.2.2.2 SSR Transmit Data Register Empty (TDRE) Bit1 6-22
6.3.2.2.3 SSR Receive Data Register Full (RDRF)Bit2 6-23
6.3.2.2.4 SSRidle Line Flag (IDLE)Bit3 6-23
6.3.2.2.5 SSR Overrun Error Flag (OR)Bit4 6-23
6.3.2.2.6 SSR Parity Error (PE)Bit5 oot 6-23
6.3.2.2.7 SSR Framing Error Flag (FE)Bit6 6-24
6.3.2.2.8 SSR Received Bit 8 Address (R8)Bit7 6-24
6.3.2.3 SCI Clock Control Register (SCCR)ccoiiiiien. 6-24
6.3.2.3.1 SCCR Clock Divider (CD11-CD0)Bits 11-0 6-25
6.3.2.3.2 SCCR Clock Out Divider (COD) Bit12 6-26

6.3.2.3.3 SCCR SCI Clock Prescaler (SCP)Bit13................... 6-26

Table of Contents (Continued)

Paragraph Page
Number Title Number
6.3.2.3.4 SCCR Receive Clock Mode Source Bit (RCM) Bit14 6-26
6.3.2.3.5 SCCR Transmit Clock Source Bit (TCM)Bit15.............. 6-26
6.3.2.4 SClDataRegisterscoiiiiiii ittt iei e 6-26
6.3.2.4.1 SCl Receive Registerst 6-26
6.3.2.4.2 SCl TransmitRegisters ...ttt 6-28
6.3.2.5 Preamble, Break, and Data Transmission Priority 6-30
6.3.3 Register Contents After Reset iiiiiiiiii i, 6-31
6.3.4 SClinitialization i 6-31
6.3.5 SCIEXCEPHONS. . .ottt e et 6-37
6.3.6 Synchronous Data i i e 6-39
6.3.7 Asynchronous Data ittt 6-44
6.3.7.1 Asynchronous Data Receptiono, 6-45
6.3.7.2 Asynchronous Data Transmissionc.cciiinnnn.. 6-48
6.3.8 Y TU L) o o7 o 3 6-55
6.3.8.1 Transmitting Data and Address Characters 6-57
6.3.8.2 Wired-ORModeot it 6-57
6.3.8.3 ldleLineWakeupviiit e e et e e e i e 6-57
6.3.8.4 Address Mode Wakeupcoiiiiiiiir i 6-61
6.3.8.5 Multidrop Exampleottt i i i e 6-61
6.3.9 SCITIMEr . oot e e e e e 6-68
6.3.10 Bootstrap Loading Through the SCI (Operating Mode 6)............ 6-71
6.3.11 Example Circuits.o e 6-74-
6.4 SYNCHRONOUS SERIAL INTERFACE(SSI)oiviiiii it 6-76
6.4.1 SSIDataand Control Pins i 6-78
6.4.1.1 Serial Transmit DataPin (STD)o, 6-78
6.4.1.2 Serial Receive DataPin (SRD), 6-80
6.4.1.3 Serial Clock (SCK)ot i e 6-80
6.4.1.4 Serial Control Pin (SCO) it 6-82
6.4.1.5 Serial Control Pin (SC1) ..o 6-82
6.4.1.6 Serial Control Pin (SC2)cciiiiiiiiiii i, 6-83
6.4.2 SSI Programming Model. 6-83
6.4.2.1 SSI Control Register A(CRA) . ..o vi i 6-87
6.4.2.1.1 CRA Prescale Modulus Select (PM7-PMO0) Bits0—7 6-87
6.4.2.1.2 CRA Frame Rate Divider Control (DC4-DCO0) Bits 8-12 6-87
6.4.2.1.3 CRA Word Length Control (WLO, WL1) Bits 13and 14 6-87
6.4.2.1.4 CRA Prescaler Range (PSR)Bit15..........cviutt. 6-88
6.4.2.2 SSI Control RegisterB(CRB)c.civiiiiiiiniiin... 6-88
6.4.2.2.1 CRB Serial Output Flag 0 (OF0)Bit0 6-88
6.4.2.2.2 CRB Serial Output Flag 1 (OF1)Bit1 6-88
6.4.2.2.3 CRB Serial Control 0 Direction (SCDO)Bit2 6-89
6.422.4 CRB Serial Control 1 Direction (SCD1)Bit3 6-89
6.4.2.2.5 CRB Serial Control 2 Direction (SCD2) Bit4 6-89

Table of Contents (Continued)

Paragraph Page
Number Title Number

6.4.2.2.6 CRB Clock Source Direction (SCKD)Bit5 6-89
6.4.2.2.7 CRB Shift Direction (SHFD)Bit6ccvovvuen.. 6-91
6.4.2.2.8 CRB Frame Sync Length (FSLO and FSL1) Bits7and 8 6-91
6.4.2.2.9 CRB Sync/Async (SYN)Bit9..........coviiiivnnnen.. 6-91
6.4.2.2.10 CRB Gated Clock Control (GCK) Bit10........... [P 6-91
6.4.2.2.11 CRB SS| Mode Select (MOD)Bit11 6-92
6.4.22.12 CRB SSI Transmit Enable (TE)Bit12 6-92 -
6.4.2.2.13 CRB SSI| Receive Enable (RE)Bit13 6-92
6.4.2.2.14 CRB SSI Transmit interrupt Enable (TIE) Bit146-93
6.4.2.2.15 CRB SSI Receive Interrupt Enable (RIE)Bit15 6-93
6.4.23 SS| Status Register (SSISR) oot e 6-94
6.4.2.3.1 SSISR Serial Input Flag 0 (IFO)Bit0 6-94
6.4.2.3.2 SSISR Serial Input Flag 1 (IF1)Bit1 6-94
6.4.2.3.3 SSISR Transmit Frame Sync Flag (TFS)Bit2 6-94
6.4.2.3.4 SSISR Receive Frame Sync Flag (RFS)Bit3 6-95
6.4.2.3.5 SSISR Transmitter Underrun Error Flag (TUE) Bit4 6-96
6.4.2.3.6 SSISR Receiver Overrun Error Flag (ROE)Bit5............. 6-96
6.4.2.3.7 SSISR SSI Transmit Data Register Empty (TDE)Bit6 6-97
6.4.2.3.8 SSISR SSI Receive Data Register Full (RDF) Bit7........... 6-97
6.4.2.3.9 SSI Receive ShiftRegister e 6-97 .
6.4.2.3.10 SSi Receive Data Register (RX) ..., 6-97
6.4.2.3.11 SSI Transmit Shift Register e 6-97
6.4.2.3.12 SSI Transmit Data Register (TX)coieeninn... 6-100
6.4.2.3.13 Time Slot Register (TSR) e 6-100
6.4.3 Operational Modes and Pin Definitions 6-100
6.4.4 Registers AfterReset o i 6-100
6.4.5 SSlInitialization e 6-104
6.4.6 SSIEXCEPHONS . . oottt e e 6-109
6.4.7 Operating Modes — Normal, Network, and On- Demand 6-112
6.4.7.1 Data/Operation Formats i, 6-112
6.4.7.1.1 Normal/Network Mode Selection 6-112
6.4.7.1.2 Continuous/Gated Clock Selection 6-113
6.4.7.1.3 Synchronous/Asynchronous Operatlng Modes 6-113
6.4.7.1.4 Frame Sync Selection it 6-123
6.4.7.1.5 Shift Direction Selectiono iiiiiinnnn.n. 6-127
6.4.7.2 Normal Mode Examplesottt inineineinnnnnn, 6-127
6.4.7.2.1 Normal Mode Transmito oo, 6-130
6.4.7.2.2 Normal Mode Receivecoviiiiiiiiiiinnnnnn, 6-133
6.4.7.3 Network Mode Examples e 6-135
6.4.7.3.1 Network Mode Transmit, 6-140
6.4.7.3.2 Network Mode Receiveoiiiiiiiinint, 6-144
6.4.7.4 On-Demand Mode Examplesc..iiiieenenn.. 6-145

Table of Contents (Continued)

Paragraph Page
Number Title Number
6.4.7.4.1 On-Demand Mode — Continuous Clock 6-148
6.4.7.4.2 On-Demand Mode — Gated Clock D P 6-148
6.4.8 = 10 1= 6-153
6.4.9 Example CircUits. oot it it i ittt 6-157
SECTION 7
DSP56002 TIMER AND
EVENT COUNTER

7.1 INTRODUCTION . .. i e e ettt e i e 7-3
7.2 TIMER/EVENT COUNTERBLOCKDIAGRAM.coo.... 7-3
7.3 TIMERCOUNTREGISTER(TCR)cviiiiiii it iiianeen e 7-4
7.4 TIMER CONTROL/STATUS REGISTER(TCSR)cciviiueani o 7-5
741 TimerEnable (TE)BitOot i 7-5
7.4.2 . TimerinterruptEnable (TIE)Bit1................... e 7-5
7.4.3 Inverter (INV)Bit 2 oo i i et e e aa s 7-5
7.4.4 Timer Control (TCO-TC2)Bits 3-5. ittt i e en 7-6
7.4.5 General Purpose /O (GPIO)Bit6 ..., 7-6
7.4.6 TimerStatus (TS) Bit 7.o i et et 7-7
747 Direction (DIR) Bit 8co ittt it e 7-7
7.4.8 Datalnput (D) Bit9ot i et ieaens 7-7
7.4.9 DataOutput (DO)Bit 10.ot e e e e 7-7
7.4.10 TCSRReservedbits (Bits 11-23)ot 7-7
7.5 TIMER/EVENT COUNTER MODES OF OPERATION 7-7
7.5.1 Timer Mode 0

(Standard Timer Mode, Internal Clock, No Timer Qutput) 7-7
752 Timer Mode 1

(Standard Timer Mode, Internal Clock, Output Pulse Enabled) 7-8
753 Timer Mode 2

(Standard Timer Mode, Internal Clock, Output Toggle Enabled}) 7-10
754 Timer Mode 4 (Pulse Width MeasurementMode) 7-11
755 Timer Mode 5 (Period MeasurementMode). 7-12
756 Timer Mode 6 (Standard Time Counter Mode, External Clock) 7-13
75.7 Timer Mode 7 (Standard Timer Mode, External Clock) 7-15
76 TIMER/EVENT COUNTER BEHAVIOR DURING WAIT and STOP 7-16
7.7 OPERATING CONSIDERATIONS. ittt ii i i ie et 7-17
78 SOFTWAREEXAMPLESttt it e 7-18
7.8.1 General Purpose /O Inputo i 7-18

7.8.2 General Purpose I/OOutput.ottt 7-19

Table of Contents (Continued)

Paragraph Page
Number Title Number

7.8.3 Timer Mode 0, Input Clock, GPIO Output, and No Timer Output. 7-20
7.8.4 Pulse Width Measurement Mode (TimerMode 4) 7-21
7.8.5 Period Measurement Mode (TimerMode 5)...................... 7-22

APPENDIX A

BOOTSTRAP

AND
ROM CODE

A1 INTRODUCTION . ..t e ettt cee e A-3

APPENDIX B

PROGRAMMING SHEETS

B.1 PERIPHERALADDRESSESccovuiin.. P B-3
B.2 INTERRUPT VECTORADDRESSESB4
B3 INSTRUCTIONS it et e e e e B-5
B4 CENTRALPROCESSOR e B-10
BS GPI/O ..o e e B-14
BB HOST ... e e e ...B-16
B.7 SOl e e B-21
B.8 S l L e B-24

B9 TIMER ... e e B-27

LIST of FIGURES

Figure Page
Number Title Number
1-1 DSP56002 Technical Literatureo iiiiiiiieennn.. 1-3
1-2 DSP56002 Block Diagramcevvunvnnn [1-6
2-1 DSP56002Signalscouiiiiiiiriiaiii i e 2-3
3-1 DSP56002Memory Mapsovviinnnrnnnnnnnnennnn P 3-5
3-2 OMRBREFOMMAL ...ttt it ittt e e it e e te st et ieeinenaanannn 3-6
3-3 PortABootstrap Circuit. e ... 39
3-4 DSP56002 Interrupt Priority Register (IPR) e 3-13
4-1 Port ASIgnalscoiiii i e e e, 4-4
4-2 External Program Spaceuutitiiniinn it 4-5
4-3 ExternalXandYDataSpaceccoiiiiiiiiviiiiniiiiiiian. 4-6
4-4 Memory Segmentation, e 4-7
4-5 Port A Bootstrap ROM with Xand YRAM 4-8
4-6 Port A Bus Operation withNoWaitStates 4-9
4-7 Port A Bus Operation with Two WaitStates 4-10
4-8 Mixed-Speed Expanded System, vees. 4412
4-9 BusControlRegisterttt i i i e e, 4-14
4-10 Bus Strobe/WaitSequenceot 4-15
4-11 Bus Request/Bus GrantSequencec.coviiiinvninannnnn 4-17
4-12 Bus Arbitration Using Only BR and BG with Internal Control 4-19
4-13 Two DSPs with External Bus Arbitration Timing 4-19
4-14 Bus Arbitration Using BN, BR, and BG with External Control 4-20
4-15 Bus Arbitration Using BR and BG, ‘ ‘
and WT and BSwithNoOverheado, 4-21
4-16 Two DSPs with External Bus Arbitration Timing PN 4-22
4-17 Signaling Using Semaphoresccoiiiiiiiiiininiiriniennn 4-23
5-1 PortBlinterface ..o s 5-3
5-2 ParallelPortBRegistersottt .. 54
5-3 Parallel PortBPinoutc.c00iiiiiiiii it 5-5
5-4 PortBI/OPinControl LOGiC -covviiiiiiiii it 5-6
5-56 On-Chip Peripheral MemoryMap e e 5-7

Instructions to Write/Read Parallel DatawithPortB 5-8

List of Figures (Continued)

Figure Page

Number Title Number
5-7 1/OPortBConfigurationc.cciiitiiiiiiinininaenannn. 5-9
5-8 HIBlock Diagramciiiiiieiin ittt itanaaaana, 5-12
5-9 Host Interface Programming Model — DSP Viewpoint 5-13
5-10 HostFlagOperation e 5-16
5-11. HSR-HCROperationcoitiiiiiiitiiie i ietnaaainnnn, 5-19
5-12 Host Processor Programming Model - HostSide 5-21
5-13 HIRegisterMapciiiitiiii it it ettt 5-22
5-14 Command VectorRegister i, 5-26
5-15 Host Processor Transfer Timingot .. 5-33
5-16 Interrupt Vector Register Read Timing 5-34
5-17 Hilnterrupt Structure i e e 5-36
5-18 DMA Transfer Logicand Timingcoviiiiiirneeennnn.n. 5-37
5-19 Hl Initialization Flowchart i, 5-38
5-20 HlInitialization—-DSP Sideottt ittt 5-39
5-21a HI Configuration~-HostSide o 5-40
5-21b Hl Initialization—Host Side, PollingMode 5-40
5-21c Hl Initialization—-Host Side, InterruptMode L. 5-41
5-21d Hl Initialization—Host Side, DMAMode, 5-42
5-22 HostModeand INITBItsottt it i 5-43
5-23 Bits Used for Host-to-DSP Transfer, 5-44
5-24 Data TransferfromHosttoDSP i i, 5-45
5-25 Receive Data from Host-Main Program 5-46
5-26 Receive Data from Host Interrupt Routine 5-46
5-27 HI Exception Vector Locationsc. i, 5-47
5-28 HostCommand it e e 5-48
5-29 Bootstrap Usingthe HI o i, ... 549
5-30 Transmit/Receive Byte Registers iiiiiiiiiaenn.. 5-50
5-31 BootstrapCode Fragment ittt 5-51
5-32 Bits Used forDSPtoHost Transfer 5-52
5-33 Data TransferfromDSPtoHosto, 5-53
5-34 Main Program - Transmit 24-Bit DatatoHost 5-54
5-35 TransmittoHIRoutine i 5-54

. 5-36 HlHardware-DMAModeottt 5-55
5-37 DMA Transferand HostInterrupts i viitt. 5-56
5-38 HostBitswith TREQandRREQottt 5-57
5-39 Host-to-DSP DMA Procedureociiieiiiiie i iiannnn 5-58
5-40 DSPtoHostDMAProcedureccciiiniiiniiiennnnennnn. 5-61
5-41 MC68HC11 to DSP56002 Host Interface e 5-62
5-42 MC68000 to DSP56002 Host Interfacecovivieeinn... 5-63
5-43 Multi-DSP Network Example i S 5-64

List of Figures (Continued)

Figure Page
Number Title Number

6-1 PortClnterface it i i e e i 6-3

62 PortCGPIOCoNtrolcciiiii it e i i i it 6-4

6-3 PotCGPIORegisterscoviiiiiiiiiiiii i ininnannns e 6-5

6-4 PortCl/OPINCONtrolLOgiC ... vvvin ittt i et e iiennen 6-6

6-5 On-Chip PeripheralMemoryMapcoiiiiiiiinininnanennnn 6-7

6-6 Write/Read Parallel DatawithPortC, 6-8

6-7 /OPortCConfigurationc.iiiiriiiii it iiiieeannnnn, 6-9

6-8 SCI Programming Model — Control and Status Registers 6-13
6-9 SClProgrammingModelttt 6-14
6-10 Serial Formats (Sheet10of2) i, 6-16
6-11 16xSerialClock e e e e 6-25
6-12 SClBaudRate Generatorcciiiiiitnnniiiinnnenenn. 6-27
6-13 Data PackingandUnpackingcciiiiiiiiiiiinnnnnnnnnn. 6-29
6-14 SCl Initialization Procedure ittt e 6-33
6-15 SCI General Initialization Detail — Step 2 (Sheet10f2) e 6-34
6-16 SCI Exception Vector Locations e 6-38
6-17 Synchronous Master P 6-40
6-18 Synchronous Slaveiuiiiiiiit it e e ianeaneennn, 6-42
6-19 Synchronous Timing e et it e e e 6-43
6-20 SCI Synchronous Transmit e et 6-44
6-21 SCISynchronous Receiveciviiiiiiiieninnneannenn. 6-45
6-22 Asynchronous SCI Receiver Initialization 6-46
6-23 SCl Character Receptionc..ciuiiiiiiiiiniiinnnnnnnnens 6-47
6-24 SCI Character Reception with Exception e eereiia. 6-49
6-25 Asynchronous SCI Transmitter [nitialization e 6-50
6-26 Asynchronous SCI Character Transmissionccunn.. 6-51
6-27 TransmittingMarksandSpaces i iiiiiiiiiiiiienn,. 6-52
6-28 SCI Asynchronous Transmit/Receive Example (Sheet10f3) 6-53
6-29 11-BitMultidropModeci i i i i i i e 6-56
6-30 Transmitting Data and Address Characters e 6-58
6-31 Wired-ORModettt ittt ieiannannens 6-59
6-32 IdleLine WaKeupciuiiiiiiii ittt it iienneann. 6-60
6-33 AddressMode Wakeupcoiiiiiii ittt i 6-62
6-34 Multidrop Transmit Receive Example (Sheet 1 of 4) [P 6-64
6-35 SCITimerOperationcooiiiiin it iiiieennnnenn, 6-69
6-36 SCI Timer Example (Sheet10of2) i i, 6-70
6-37 DSP56002 Bootstrap Example-Mode 6c.ccviiunn. 6-72
6-38 Bootstrap Code Fragmentt 6-73

6-39 Synchronous Mode Exampleccciiiiieiiiininnniennn 6-74

List of Figures (Continued)

Figure Page
Number Title Number

6-40 Master-Slave SystemExample i i e 6-75

6-41 Multimaster SystemExample it 6-75

6-42 SSI Clock Generator Functional Block Diagram 6-80

6-43 SSI Frame Sync Generator Functional Block Diagram 6-81

6-44 SSI| Programming Model — Control and Status Registers 6-84

6-45 SSI Programming Model (Sheet1o0of2) it 6-85

6-46 Serial Control, DirectionBitso i 6-90

6-47 Receive DataPath ittt 6-98

6-48 TransmitDataPath i i 6-99

6-49 SSlI Initialization Block Diagramc.iteiiiiieniniianan 6-104
6-50 SSI CRA Initialization Procedure iiiiiiiinnnn. 6-105
6-51 SSI CRB Initialization Procedure it 6-106
6-52 SSl Initialization Procedurettt e 6-107
6-53 SSI Exception Vector Locationst 6-110
6-54 SSIEXCEPHONS i e e e 6-111
6-55 CRBMODBItOperationottt iininenanaan, 6-114
6-56 Normal Mode, External Frame Sync (8 Bit, 1 Word in Frame) 6-115
6-57 Network Mode, External Frame Sync (8 Bit, 2 Words in Frame) 6-115
6-58 CRB GCKBitOperationco... ettt 6-116
6-59 Continuous Clock Timing Diagram (8-BitExample) 6-117
6-60 Internally Generated Clock Timing (8-Bit Example) 6-118
6-61 Externally Generated Gated Clock Timing (8-Bit Example) 6-119
6-62 Synchronous Communication i 6-120
6-63 CRBSYNBIitOperationccoiiiiiiiiiiiiiiiiiinin, 6-121
6-64 Gated Clock — Synchronous Operationo, 6-122
6-65 Gated Clock — Asynchronous Operationccovvrinenn.. 6-122
6-66 Continuous Clock — Synchronous Operationcoonn 6-122
6-67 Continuous Clock — Asynchronous Operation0.. 6-122
6-68 CRBFSLOand FSL1BitOperationo, 6-124
6-69 Normal Mode Initialization for FLS1=0and FSLO=0 6-125
6-70 Normal Mode Initialization for FSL1=1and FSLO=0 6-126
6-71 CRB SHFD Bit Operation (Sheet1of2) o ... 6-128
6-72 NormalMode Exampleottt it ieeanaaanenns 6-130
6-73 Normal Mode Transmit Example (Sheet10of2) 6-132
6-74 Normal Mode Receive Example (Sheet1of2) 6-134
6-75 NetworkMode Examplettt 6-136
6-76 TDM Network Software Flowchart oo, 6-137
6-77 Network Mode Initialization il 6-139
6-78 Network Mode Transmit Example Program (Sheet10f2) 6-141
6-79 Network Mode Receive Example Program (Sheet10f2) 6-143

List of Figures (Continued)

Figure Page
Number Title Number
6-80 OnDemand Examplecciiiiiinrnniiinninnnennnneenenn. 6-146
6-81 On-Demand Data-Driven Network Mode cooout. 6-147
6-82 ClockMOodesiiiiiieeeiiiieeennn. e 6-148
6-83 SPIConfigurationc.oiiiiiiii i e 6-149
6-84 On-Demand Mode Example — Hardware Configuration 6-150
6-85 On-Demand Mode Transmit Example Program (Sheet1of2) 6-150
6-86 On-Demand Mode Receive Example Program e 6-152
6-87 OutputFlagTimingc.iiiiiieviiiiniiiinnnnnn, e 6-154
6-88 Output FlagExamplecciiiiiiiniiiiiitiieienanennaana 6-155
6-89 Output Flag Initialization e 6-156
6-90 INPUEFIAgS ...t ittt i i i e e e e 6-157
6-91 SSI Cascaded Multi-DSP System, 6-157
6-92 SSITDM Parallel DSPNetwork, 6-159
6-93 SSI TDM Connected Parallel Processing Arrayc.o.oueeeeenan 6-160
6-94 SSI| TDM Serial/Parallel Processing Arraycoueeeinirvnnnn 6-161
6-95 SSI Parallel Processing — Nearest Neighbor Array 6-162
6-96 SSITDMBUSDSP Networkoiiieiinnn e iniinnens 6-163
6-97 SSITDM Master-Slave DSP Networko, 6-164
7-1 Timer/Event Counter Module Block Diagram 7-3
7-2 Timer/Event Counter Programming Model T e 7-4
7-3 Standard Timer Mode (Mode 0) P -

7-4 Timer/Event Counter Disable0... ... 0., .. 79

7-5 Standard Timer Mode, Internal Clock, Output Pulse Enabled (INV=0) 7-10
7-6 Standard Timer Mode, Internal Clock, Output Pulse Enabled (INV=1) 7-11
7-7 Standard Timer Mode, Internal Clock, Output Toggle Enable ". Ll 712
7-8 Pulse Width MeasurementMode (INV=0) oiiat. 7-13
7-9 Pulse Width MeasurementMode (INV=1) 7-14
7-10 Period MeasurementMode (INV=0) ciiiiiineaan.. 7-15
7-11 Period Measurement Mode (INV=1)oiioann. i... 716
7-12 Standard Time Counter Mode, External Clock (lNV-) ISP 7-17
7-13 Standard Timer Mode, External Clock (INV=1)t 7-18
7-14 Standard Timer Mode, External Clock (INV=0) 7-19
7-15 Standard Timer Mode, External Clock (INV=1) 7-20
A-1 DSP56002 Bootstrap Program (Sheet10of3) A-4

B-1 On-chip PeripheralMemoryMapc.coiiiiiiiinenenienenns B-3

B-2 StatusRegister (SR)t e e B-10
B-3 Bus Control Register (BCR)c.cviiiiiiiiiriiineneenann B-10
B-4 Interrupt Priority Register (IPR) i B-11

List of Figures (Continued)

Figure Page
Number Title Number

B-5 Operating Mode Register (OMR)coiiiiiiiiiii i B-12
B-6 PLL Control Register (PCTL) P B-13
B-7 Port B Control Register (PBC)coiiiiiiii.., e B-14

' B-8 Port B Data Direction Register (PBDDR)ccoiiiiiiiennt. B-14
"B-9 PortBDataRegister (PBD)coiieeiinan. e SN B-14
B-10 Port C Control Register (PCC) e e B-15
B-11 Port C Data Direction Register (PFCDDR}) e eB-15
B-12 Port C Data Register (PCD)ottt B-15
B-13 Port B Control Register (PBC) e B-16
‘B-14 Host Control Register (HCR) PO B-16
B-15 Host Transmit Data Register (HTX): e ... B17
B-16 Host Receive Data Register (HRX) e B-17
B-17 Host Status Register (HSR) i B-17
~B-18 Command Vector Register (CVR) it B-18
"B-19 Interrupt Control Register (ICR) A A B-18
B-20 Interrupt Status Register (ISR)couviiiniiiiiiiine . B-19
B-21 Interrupt Vector Register (IVR) e B-19
"B-22 Receive Byte Registersccoovunnn... P B-20
B-23 Transmit Byte Registers e e .. B-20
B-24 Port C Control Register (PCC) -....... S e B-21
B-25 SCI Control Register (SCR) P e B-21
B-26 SCI Clock Control Register (SCCR) [S B-22
B-27 SCI Status Register (SSR) et a e i B-22
B-28 SCl Receive Data Registers e e e B-23
B-29 SCI Transmit Data Registers e e B-23
B-380 SSI Control Register (PCC). e S B-24
B-31 SSI Control Register A (CRA) e e B-24
B-32 SSI Control RegisterB (CRB) T B-25
B-33 SSI Status Register (SSISR)cvviiiiieeinnnn e B-26
B-34 Timer Control and Status Register (TCSR) e B-27

B-35 Timer Count Register (TCR)cvuvuenutit it eiaeeaenennns B-27

List of Tables

Table Page
Number Title Number
2-1 Program and Data Memory SelectEncodingcoovvnnont, 2-4
3-1 MemoryModeBitst e 3-7
3-2 DSP56002 OperatingMode Summarycciviiiiiin .. 3-8
3-3 Organization of EPROM DataContents ot .. 3-10
3-4 Intermupt Vectors . ..ot e e 3-14
3-5 Exception Priorities Withinan IPL. 3-15
4-1 Program and Data Memory SelectEncodingcoo.t. 4-7
4-2 WaitState Control. e 4-13
4-3 BRandBG During WAIT i ittt ieei et 4-17
5-1 Host Registers after Reset-DSPCPUSidecoviiiena... 5-18
5-2 HREQPInDefinition. i e 5-23
5-3 HostMode Bit Definition i 5-24
5-4 HREQPIinDefinition...... ... 5-25
5-5 Host Registers after Reset (HostSide). oot 5-31
5-6 PortBPinDefinitionsiiiitiiiii e 5-32
B6-1 Word Formats.t i e e s 6-15
6-2 SCl RegistersafterReset. i 6-32
6-3a Asynchronous SCI Bit Rates fora40-MHz Crystal. 6-36
6-3b Frequencies for Exact Asynchronous SCIBitRates. 6-36
6-4a Synchronous SCI Bit Rates for a 32.768-MHz Crystal 6-37
6-4b Frequencies for Exact Synchronous SCIBitRates 6-37
6-5 Definition of SC0, SC1,S8C2,and SCK. ciiiiiiiiiiinn, 6-79
6-6 SSI Clock Sources, Inputs,and OQutputs.cvitiinenn .. 6-79
6-7 SSI Operation: FlagO0and RxClock.o, 6-82
6-8 SSI Operation: Flag1and RxFrame Sync. at. 6-83
6-9 SSI Operation: Txand RxFrame Sync.t 6-83
6-10 Numberof Bits/Word. i i e e e i et 6-87
6-11 Frame SyncLength. i i 6-91
6-12 Mode and Pin Definition Table — Continuous Clock 6-101
6-13 Mode and Pin Definition Table — Gated Clock 6-102
6-14 SS| Registers AfterReset.o i i i e 6-103
6-15aSSI Bit Ratesfora40-MHz Crystal. oottt 6-108
6-15b SSI Bit Rates fora 39.936-MHz Crystal 6-108
6-16 Crystal Frequencies RequiredforCodecs 6-108
6-17 SSlOperatingModescoiiiiii i i e 6-112

7-1 Timer/Event Counter Control Bits i e 7-6

List of Tables (Continued)

Table Page
Number Title Number
B-1 Interrupts Starting Addressesand Sources o, B-4

B-2 Instruction Set Summary —Sheet1of5............. oial. B-5

SECTION 1

INTRODUCTION TO THE DSP56002

1.1 INTRODUCTION

This manual describes the DSP56002 24-bit digital signal processor, its memory and op-
erating modes, and its peripheral modules. It is intended to be used with the DSP56K
Central Processing Unit Manual (DSP56KFAMUM/AD), which describes the central pro-
cessing unit, programming models, and includes details of the instruction set. The
DSP56002 Technical Data Sheet (DSP56002/D) provides tlmlng, pinout, and packaging

descriptions (see Figure 1-1).

This section presents the DSP56002 features.

DSP56002

DSP56000
Family Manual

DSPS6KFAMUM/AD

DSP56002
User’'s Manual

- # DSP56002UM/AD

ZTechnicaI Data
DSP56002/D

Products

Central Processor and
Instruction Manual

e central processor
¢ instruction set

_Device Manual

* peripherals
* memories

Specification

e electrical
¢ mechanical

Figure 1-1 DSP56002 Technical Literature

1.2 FEATURES

DSP56K Central Processing Unit (CPU) Features

e 20 Million Instructions per Second (MIPS) at 40 MHz

* Single-Cycle 24 x 24 Bit Parallel Multiply-Accumulator

* Highly Parallel Instruction Set with Unique DSP Addressing Modes
e Zero Overhead Nested DO Loops

¢ Fast Auto-Return Interrupts

¢ Fully Static Logic, Operation Frequency Down to DC

* Very Low-power CMOS Design

e STOP and WAIT Low-power Standby Modes

DSP56002 Features

* 512 x 24 Program RAM

¢ Two 256 x 24 Data RAM

¢ Two 256 x 24 Data ROM (Sine and Cosine Tables)

¢ Full Speed Memory Expansion Port with 16-bit Address and 24-bit Data Buses

* Byte-wide Host Interface with DMA Support

¢ Synchronous Serial Interface Port

¢ Serial Communication Interface (Asynchronous) Port

¢ 24 General Purpose I/O Pins

* 24-bit Timer/Event Counter’

¢ On-chip Emulator (OnCE™) for Unobtrusive, Full Speed Debugging

* Optional Program Security Feature Disables Unauthorized Program ROM and
OnCE Access

* PLL Based Clocking with Wide Input Frequency Range, Wide Range Frequency
Multiplication (1 to 4096) and Power Saving Clock Divider (2‘, i=0,...,15) to
Reduce Clock Noise

1.3 DSP56K CENTRAL PROCESSING UNIT OVERVIEW

The DSP56K series of 24-bit modular processors is built on a common central processing
unit (CPU). In the expansion area around the CPU, the chip can support various configu-
rations of memory and peripheral modules which may change between series members.

* The first version of the DSP56002 {mask number D41G) did not have the timer/event counter. Later versions of the DSP56002 which have
different mask numbers do have the timer/event counter. This mask number can be found below the part number on each chip.

The central components are:

* Data Buses

* Address Buses

+ Data Arithmetic Logic Unit (data ALU)

¢ Address Generation Unit (AGU)

* Program Control Unit (PCU)

* Memory Expansion (Port A)

Figure 1-2 shows a block diagram of the DSP56002, including the CPU and the expansion
area for memory and peripherals. The DSP56000 Family Manual (DSP56KFAMUM/AD)
presents the details of each of the above CPU components.

14 MANUAL ORGANIZATION
This manual includes the following sections:

SECTION 2 — PIN DESCRIPTIONS presents the DSP56002 pinout.

SECTION 3 — MEMORY MODULES AND OPERATING MODES presents the details of
the DSP56002 memory maps and explains the various operating modes that affect the
processor’s program and data memories.

SECTION 4 — PORT A describes the external memory port, its registers, and control sig-
nals.

SECTION 5 — PORT B describes the port B parallel I/O and the host interface, their reg-
isters, and their controls.

SECTION 6 — PORT C describes the port C parallel /0, the Synchronous Serial Inter-
face, the Synchronous Communication Interface, their registers, and their controls.

SECTION 7 — DSP56002 TIMER AND EVENT COUNTER describes the timer/counter
and its registers and controls.

APPENDIX A — BOOTSTRAP PROGRAM
APPENDIX B — PROGRAMMING SHEETS

TROUBLE REPORT — This trouble report is a form that allows the reader to notify the
factory of any errors or discrepancies discovered in this manual.

PROGRAM

512x24 RAM RAM RAM
256X24 256X24

BOOTSTRAP |

ssoarom || wAROM || SINEROM

X MEMORY Y MEMORY

256X24 256X24

ADDRESS ;ﬁf\g EXTERNAL
. GENERATION ADDRESS a
24'Blt 56K UNIT BUS /16 E
cPU swircH [/ §
‘ <
-}
BUS 10 8
|conTROL 4
1]
(&)
INTERNAL EXTERNAL "
DATA [— DATABUS [
BUS switcH (37 &
SWITCH ‘
sy [s § eene—-
. Yy
2 PLL | PROGRAM | "PROGRAM | | PROGRAM | DATAALU :
o | INTERRUPT (< DECODE te»t ADDRESS (|| 24X24+56—56-BIT MAC OnCE /4
GENE‘;%OH ICONTROLLER |(CONTROLLER! ~ 'GENERATOR|| Two 56-BIT ACCUMULATORS 7
Program Control Unit
% L
cLocK CONTROL — 16BITS
w— 24 BITS

Figure 1-2 DSP56002 Block Diagram

PORTA

SECTION 2

DSP56002 PIN DESCRIPTIONS

2.1 INTRODUCTION

This section introduces pins associated with the DSP56002. It divides the pins into their
functional groups and explains the role each pin plays in the operation of the chip. It acts
as a reference for following chapters which explain the chip’s peripherals in detail.

2.2 SIGNAL DESCRIPTIONS

The DSP56002 is available in a 132-pin grid array package or surface mount (Plastic Quad
Flat Pack, or PQFP). The input and output signals are organized into the functional groups
indicated in Section Figure 2-1. The signals are discussed in the paragraphs that follow.

Functional Group ":;;';?ne; DSP56002 HOH
Do-D23 = > g 7
DGND(5) —»FortA [—— HAO-HA2
Port A Data Bus 24 pveee) — . B<__' R
Port A ort —
AG-A15 HREQ
Port A Address 19 A | Address HOSTy_~ peg
DS — [€———— HGND(4)
Port A Bus Control 7 XY €— [HvCC(2)
AGND(5) —»| le—— RxD
AVECE) > Port G—— TXD
Port B Host Interface 15 % < . (o o
Port C Synchronous Comm. Interface 3 WR <—— Control —— svce
BR —» [€—— SGND(2)
Port C Synchronous Serial Interface 6 % <) > sco-sc2
BS <«— Port Cl¢—» scK
Interrupt and Mode Control 4 CGND — SSI¢—— sRD
cvcc —» 132 pins » STD
PLL and Clock 7 VoD le—>» DSCKIOST
- - MODB/RQE — once[$—% Dsvoso
On-chip Emulation (OnCE) 4 —> Dso -
MODA/RGA Interrupt/ —
RESET Mode DR
Power (VCC) 16 EXTAL —{ Control —— pvce
e :g&% _»‘— (__4—— PGND
PCAP
Ground (GND) 24 Qveciy) —> PLL [cxp
) —> PLOCK
Timer 1 TIO ¢——»| Timer “—— PINIT
Reserved 2 RESERVED (2) e 58
—» CcKouT
Total (for the PGA package) 132

Figure 2-1 DSP56002 Signals

2.21 Port A Address and Data Bus

The Port A address and data bus signals control the access to external memory. They are
three-stated during reset unless noted otherwise, and may require pull-up resistors to min-
imize power consumption and to prevent erroneous operation.

Note: All unused inputs should have pull-up resistors for two reasons: 1) floating inputs
draw excessive power, and 2) a floating input can cause erroneous operation. For

example, during reset, all signals are three-stated. Without pull-up resistors, the BR
and WT signals may become active, causing two or more memory chips to try to
simultaneously drive the external bus, which can damage the memory chips. A pull-
up resistor in the 50K-ohm range should be sufficient. Also, for future enhance-
ments, all reserved pins (see Section Figure 2-1) should be left unconnected.

2.2.1.1 Address (A0—-A15)

These three-state output pins specify the address for external program and data memory
accesses. To minimize power dissipation, AO—A15 do not change state when external
memory spaces are not being accessed. |

221.2 Data Bus (D0-D23)
These pins provide the bidirectional data bus for external program and data memory ac-
cesses. D0-D23 are in the high-impedance state when the bus grant signal is asserted.

222 Port A Bus Control |

The Port A bus control signals are discussed in the following paragraphs. The bus control
signals provide a means to connect additional bus masters (which may be additional
DSPs, microprocessors, direct memory access (DMA) controllers, etc.) through port A to
the DSP56002. They are three-stated during reset and may require pull-up I’eSlStOI'S to
prevent erroneous operation.

2.2.21 Program Memory Select (PS)
This three-state output is asserted only when external program memory is referenced
(see Table 2-1).

Table 2-1 Program and Data Memory Select Encoding

P5 | DS | XY External Memory Reference
1 1 1 No Activity
1 0 1 X Data Memory on Data Bus
1 0 0 Y Data Memory on Data Bus
0 1 1 Program Memory on Data Bus (Not Exception)
0 1 0 External Exception Fetch: Vector or Vector +1
(Development Mode Only)
0 0 X Reserved
1 1 0 Reserved

2222 Data Memory Select (DS)
This three-state output is asserted only when external data memory is referenced (see Table 2-1).

2223 X/Y Select (X/Y)
This three-state output selects which external data memory space (X or Y) is referenced
by DS (see Table 2-1).

2224 Read Enable (RD)
This three-state output is asserted to read external memory on the data bus (D0-D23).

2225 Write Enable (WR)
This three-state output is asserted to write external memory on the data bus (D0-D23).

2226 Bus Needed (BN)

The BN output pin is asserted whenever the chip requires the external memory expansion
port (Port A). During instruction cycles where the external bus is not required, BN is deas-
serted. If an external device has requested the bus by asserting the BR input and the DSP
has granted the bus (by asserting BG), the DSP will continue processing as long as no
external accesses are required. If an external access is required and the chip is not the
bus master, it will stop processing and remain in wait states until bus ownership is re-
turned. If the BN pin is asserted when the chip is not the bus master, this indicates that
processing has stopped and the DSP is waiting to acquire bus ownership. An external ar-
biter may use this pin to help decide when to return bus ownership to the DSP.

Note: The BN pin cannot be used as an early indication of imminent external bus access
because it is valid later than the other bus control signal BS.

During hardware reset, BN is deasserted.

2227 Bus Request (BR)

When the bus request input (BR) is asserted, the DSP56002 will always relinquish the bus
to an external device such as a processor or DMA controller. The external device will be-
come the new master of the external address and data buses while the DSP continues
internal operations using internal memory spaces. When BR is deasserted, the
DSP56002 will again assume bus mastership.

When BR is asserted, the DSP56002 will always release Port A, including A0-A15, DO-
D23, and the bus control pins (PS, DS, X/Y, RD, WR, and BS) by placing them in the high-
impedance state, after the execution of the current instruction has been completed.

Note: To prevent erroneous operation, the BR pin should be pulled up when itis not in use.

2228 Bus Grant (BG)
When this output is asserted, it signals to the external device that it has been granted the ex-
ternal bus (i.e. Port A has been three-stated).This output is deasserted during hardware reset.

2229 Bus Strobe (BS)

The BS output is asserted when the DSP accesses Port A. It acts as an early indication
of the state of the external bus access by the DSP56002. It may also be used with the bus
wait input, WT, to generate wait states, a feature which provides capabilities such as con-
necting asynchronous devices to the DSP, allowing devices with differing timing
requirements to reside in the same memory space, allowing a bus arbiter to provide a fast
multiprocessor bus access, and providing an alternative to the WAIT and STOP instruc-
tions to halt the DSP at a known program location and have a fast restart. This output is
deasserted during hardware reset.

2.2.2.10 Bus Wait (WT)

For as long as it is asserted by an external device, this input allows that device to force
the DSP56002 to generate wait states. If WT is asserted when BS is asserted, wait states
will be inserted: into the current cycle (see the DSP56002 Technical Data Sheet
(DSP56002/D) for timing details.

2.2.3 Interrupt and Mode Control
The interrupt and mode control pins select the chip’s operating mode as it comes out of
hardware reset, and they receive interrupt requests from external sources.

2.2.3.1 Mode Select A/External Interrupt Request A (MODA/IRQA)/STOP Recovery
This input pin has three functions. It works with the MODB and MODC pins to select the
chip’s operating mode, it receives an interrupt request from an external source, and it
turns on the internal clock generator, causing the chip to recover from the stop processing
state. Reset causes this input to act as MODA.

During reset, this pin should be forced to the desired state, because as the chip comes
out of reset, it reads the states of MODA, MODB, and MODC and writes the information
to the Operating Mode Register to set the chip’s operating mode. (Operating Modes are
discussed in SECTION 3 MEMORY MODULES AND OPERATING MODES.) After the
chip has left the reset state, the MODA pin automatically changes to external interrupt
request TRQA. .

TRQA receives external interrupt requests. It can be programmed to be level sensitive or
negative edge triggered. When the signal is edge triggered, triggering occurs at a voltage
level and is not directly related to the fall time of the interrupt signal. However, as the fall

time of the interrupt signal increases, the probability that noise on TRQA will generate mul-
tiple interrupts also increases.

2232 Mode Select B/External Interrupt Request B (MODB/IRQB)

This input pin works with the MODA and MODC pins to select the chip’s operating mode,
and it receives an interrupt request from an external source. Reset causes this input to act
as MODB.

During reset, this pin should be forced to the desired state, because as the chip comes
out of reset, it reads the states of the mode pins and writes the information to the Operat-
ing Mode Register, which sets the chip's operating mode. After the chip has left the reset
state, the MODB pin automatically changes to external interrupt request TRQB.

TRQB receives external interrupt requests. It can be programmed to be level sensitive or
negative edge triggered. When the signal is edge triggered, triggering occurs at a voltage
level and is not directly related to the fall time of the interrupt signal. However, as the fall
time of the interrupt signal increases, the probability that noise on TRQB will generate mul-
tiple interrupts also increases. ‘

2233 Mode Select C/Non-Maskable Interrupt Request (MODC/NMI)

This input pin works with the MODA and MODB pins to select the chip’s operating mode,
and it receives an interrupt request from an external source. Reset causes this input to act
as MODC.

During reset, this pin should be forced to the desired state, because as the chip comes out
of reset, it reads the states of the mode pins and writes the information to the Operating
Mode Register, which sets the chip’s operating mode. After the chip has left the reset state,
the MODC pin automatically changes to a nonmaskable interrupt request (NMI) input.

The negative-edge triggered NMI receives nonmaskable interrupt requests. Triggering
occurs at a voltage level and is not directly related to the fall time of the interrupt signal.
However, as the fall time of the interrupt signal increases, the probability that noise on NMI
will generate multiple interrupts also increases.

2234 Reset (RESET)
This Schmitt trigger input pin is used to reset the DSP56002. When RESET is asserted,

the DSP56002 is initialized and placed in the reset state. When RESET is deasserted,
the chip writes the mode pin (MODA, MODB, MODC) information to the operating mode

register, setting the chip’s operating mode. The chip also samples the PINIT pin and
writes its information into the PEN bit of the PLL Control Register, and it samples the CKP
pin to determine the polarity of the CKOUT signai. When the chip comes out of the reset
state, deassertion occurs at a voltage level and is not directly related to the rise time of
the RESET signal. However, the probability that noise on RESET will generate multiple
resets increases with increasing rise time of the RESET signal.

22.4 Power and Clock
The power and clock signals are presented in the following paragraphs.

22441 Power (Vcc), Ground (GND)

There are six sets of power and ground pins: a set of eight (four power, four ground) for
internal logic; a set of eight (three power, five ground) for the address bus output buffer;
a set of nine (three power, six ground) for the data bus output buffer; a set of eleven (four
power, seven ground) for ports B and C and for the OnCE; a set of one power and one
ground for the PLL; and a set of one power and one ground for the CKOUT pin. Refer to
the pin assignments in the Layout Practices section of the DSP56002 Technical Data
Sheet (DSP56002/D).

2.2.4.2 External Clock/Crystal Input (EXTAL)
The EXTAL input interfaces the internal crystal oscillator input to an external crystal or an
external clock. »

2243 Crystal Output (XTAL)

This output connects the internal crystal oscillator output to an external crystal. If an ex-
ternal clock is used, XTAL should not be connected. It may be disabled through software
control using the XTLD bit in the PLL control register.

2.2.5 Host lnterface ‘
The following paragraphs discuss the host interface signals, which provide a convenient
connection to another processor through Port B on the DSP56002.

2251 Host Data Bus (H0O-H7)

This bidirectional data bus transfers data between the host processor and the DSP56002
It acts as an input unless HEN is asserted and HR/W is high, making HO-H7 become out-
puts and allowing the host processor to read DSP56002 data. It is high impedance when
HEN is deasserted. H0—H7 can be programmed as general-purpose I/O pins (PB0-PB7)

when the host interface is not being used. These pins are configured as GPIO input pins
during hardware reset.

2.2.5.2 Host Address (HAO-HA2)

These inputs provide the address selection for each host interface register. HAO-HA2 can
be programmed as general-purpose I/O pins (PB8—PB10) when the host interface is not
being used. These pins are configured as GPIO input pins during hardware reset.

2.2,5.3 Host Read/Write (HR/W)

This input selects the direction of data transfer for each host processor access. If HR/W
is high and HEN is asserted, H0-H7 are outputs and DSP data is transferred to the host
processor. If HR/W is low and HEN is asserted, H0-H7 are inputs and host data is trans-
ferred to the DSP. HR/W is stable when HEN is asserted. It can be programmed as a
general-purpose 1/O pin (PB11) when the host interface is not being used, and is config-
ured as a GPIO input pin during hardware reset.

2254 Host Enable (HEN)

This input enables a data transfer on the host data bus. When HEN is asserted and HR/W
is high, HO—H7 become outputs and the host processor may read DSP56002 data. When
HEN is asserted and HR/W is low, HO—H7 become inputs. When HEN is deasserted, host
data is latched inside the DSP. Normally, a chip select signal derived from host address
decoding and an enable clock are used to generate HEN. HEN can be programmed as a
general-purpose I/O pin (PB12) when the host interface is not being used, and is config-
ured as a GPIO input pin during hardware reset.

2255 Host Request (HREQ)

This open-drain output signal is used by the host interface to request service from the
host processor, DMA controller, or a simple external controller. HREQ can be pro-
grammed as a general-purpose /0 (not open-drain) pin (PB13) when the host
interface is not being used.

2.2.5.6 Host Acknowledge (HACK)

This input has two functions. It provides a host acknowledge handshake signal for DMA
transfers and it receives a host interrupt acknowledge compatible with MC68000 Family
processors. When the port is defined as the host interface and neither of the HACK pin’s
two functions are being used, the user may program this input as a general-purpose 1/O pin.
For more details about the programming options for this pin, see Section 5.3.4.6 Host Ac-
knowledge (HACK). This pin is configured as a GPIO input pin during hardware reset.

Note: HACK should always be pulled high when it is not in use.

2.2.6 Serial Communication Interface (SCI)
The following signals relate to the SCI. They are introduced briefly here and described in
more detail in SECTION 6 - PORT C.

2.2.6.1 Receive Data (RXD) ‘

This input receives byte-oriented data and transfers the data to the SCI receive shift reg-
ister. Input data is sampled on the positive or the negative edge of the receive clock,
depending on how the SCI control register is programmed. RXD can be programmed as
a general-purpose I/O pin (PC0) when it is not being used as an SCI pin, and it is config-
ured as a GPIO input pin during hardware reset.

2.2.6.2 Transmit Data (TXD)

This output transmits serial data from the SCI transmit shift register. Data changes on the
negative edge of the transmit clock. This output is stable on the positive or the negative
edge of the transmit clock, depending on how the SCI control register is programmed.
TXD can be programmed as a general-purpose /O pin (PC1) when the SCI TXD function
is not being used, and it is configured as a GPIO input pin during hardware reset.

2.2.6.3 SCI Serial Clock (SCLK)

This bidirectional pin provides an input or output clock from which the transmit and/or re-
ceive baud rate is derived in the asynchronous mode, and from which data is transferred
in the synchronous mode. SCLK can be programmed as a general-purpose |/O pin (PC2)
when the SCI SCLK function is not being used, and it is configured as a GPIO input pin
during hardware reset.

2.2.7 Synchronous Serial Interface (SSl)

The SSI signals are presented in the following paragraphs.The SSI operating mode af-
fects the definition and function of SSI control pins SCO, SC1, and SC2. They are
introduced briefly here and are described in more detail in SECTION 6 - PORT C.

2.2.71 Serial Clock Zero (SCO0)

This bidirectional pin’s function is determined by whether the SCLK is in synchronous or
asynchronous mode. In synchronous mode, this pin is used for serial flag I/O. In asynchro-
nous mode, this pin receives clock /0. SCO can be programmed as a general-purpose
I/0 pin (PC3) when the SSI SCO function is not being used, and it is configured as a GPIO
input pin during hardware reset.

2.2.7.2 Serial Contro!l One (SC1)

The SSl uses this bidirectional pin to control flag or frame synchronization. This pin’s func-
tion is determined by whether the SCLK is in synchronous or asynchronous mode.In
asynchronous mode, this pin is frame sync I/O. For synchronous mode with continuous
clock, this pin is serial flag SC1 and operates like the SC0. SC0 and SC1 are independent
serial /O flags but may be used together for multiple serial device selection. SC1 can be
programmed as a general-purpose I/O pin (PC4) when the SSI SC1 function is not being
used, and it is configured as a GPIO input pin during hardware reset.

2.2.7.3 Serial Control Two (SC2)

The SSI uses this bidirectional pin to control frame synchronization only As W|th SCO0 and
SCi1, its function is defined by the SSI operating mode. SC2 can be programmed as a
general-purpose /O pin (PC5) when the SSI SC2 function is not being used, and it is con-
figured as a GPIO input pin during hardware reset. :

2274 SSI Serial Clock (SCK)

This bidirectional pin provides the serial bit rate clock for the SSI when only one clock is
being used. SCK can be programmed as a general-purpose /O pin (PC6) when it is not
needed as an SSI pin, and it is configured as a GPIO input pin during hardware reset.

2.2.75 SSI Receive Data (SRD)

This input pin receives serial data into the SSI receive shift register. SRD can be pro-
grammed as a general-purpose I/O pin (PC7) when it is not needed as an SSI pin, and it
is configured as a GPIO input pin during hardware reset.

22,76 SSI Transmit Data (STD)

This output pin transmits serial data from the SSI transmit shift register. STD can be pro-
grammed as a general-purpose /O pin (PC8) when it is not needed as an SSI pin, and it
is configured as a GPIO input pin during hardware reset.

2.3 ON-CHIP EMULATION (OnCE) PINS
The following paragraphs describe the OnCE pins associated with the OnCE controller
and its serial interface.

2.3.1 Debug Serial Input/Chip Status 0 (DSI/0S0)

Serial data or commands are provided to the OnCE controller through the DSI/OS0 pin
when it is an input. The data received on the DSI pin will be recognized only when the
DSP56K has entered the debug mode of operation. Data is latched on the falling edge of

the DSCK serial clock. Data is always shifted into the OnCE serial port most significant bit
(MSB) first. When the DSI/OS0 pin is an output, it works in conjunction with the OS1 pin
to provide chip status information (see Section 10 ON CHIP EMULATION (OnCE) in the
DSP56000 Family Manual). The DSI/OSO0 pin is an output when the processor is not in
debug mode. When switching from output to input, the pin is three-stated. During hard-
ware reset, this pin is defined as an output and it is driven low.

Note: To avoid possible glitches, an external pull-down resistor should be attached to this pin.

2.3.2 Debug Serial Clock/Chip Status 1 (DSCK/OS1)

The DSCK/OS1 pin supplies the serial clock to the OnCE when it is an input. The serial
clock provides pulses required to shift data into and out of the OnCE serial port. (Data is
clocked into the OnCE on the falling edge and is clocked out of the OnCE serial port on
the rising edge.) The debug serial clock frequency must be no greater than 1/8 of the pro-
cessor clock frequency. '

The pin is three-stated when it is changing from input to output. When itis an output, it works
with the OSO0 pin to provide information about the chip status (see SECTION 10 ON CHIP
EMULATION (OnCE) in the DSP56000 Family Manual). It is an output when the chip is not
in debug mode. During hardware reset, this pin is defined as an output and is driven low.

Note: To avoid possible glitches, an extemal pull-down resistor should be attached to this pin.

2.3.3 Debug Serial Output (DSO)

The DSP reads serial data from the OnCE through the DSO output pin, as specified by
the last command received from the external command controller. Data is always shifted
out the OnCE serial port most significant bit (MSB) first. Data is clocked out of the OnCE
serial port on the rising edge of DSCK.

The DSO pin also provides acknowledge pulses to the external command controller.
When the chip enters the debug mode, the DSO pin will be pulsed low to indicate (ac-
knowledge) that the OnCE is waiting for commands. After receiving a read command,
the DSO pin will be pulsed low to indicate that the requested data is available and the
OnCE serial port is ready to receive clocks in order to deliver the data. After receiving
a write command, the DSO pin will be pulsed low to indicate that the OnCE serial port
is ready to receive the data to be written; after the data is written, another acknowl-
edge pulse will be provided.

During hardware reset and when the processor is idle, the DSO pin is held high.

2.3.4 Debug Request Input (DR)

The debug request input (DR) allows the user to enter the debug mode of operation from
the external command controller. When DR is asserted, it causes the DSP to finish the
current instruction being executed, save the instruction pipeline information, enter the de-
bug mode, and wait for commands to be entered from the DSl line. While in debug mode,
the DR pin lets the user reset the OnCE controller by asserting it and deasserting it after
receiving an acknowledge. It may be necessary to reset the OnCE controller in cases
where synchronization between the OnCE controller and external circuitry is lost. Assert-
ing DR when the DSP is in the WAIT or the STOP state, and keeping it asserted until an
acknowledge pulse in the DSP is produced, sends the DSP into the debug mode. After
receiving the acknowledge, DR must be deasserted before sending the first OnCE com-
mand. For more information, see Section 10.6 METHODS OF ENTERING THE DEBUG
MODE in the DSP56000 Family Manual (DSP56KFAMUM/AD).

24 PLLPINS
The following pins are dedicated to the PLL operation:

* Analog PLL Circuit Power (PVCC)— The Vcc input is dedicated to the analog
PLL circuits. The voltage should be well regulated and the pin should be pro-
vided with an extremely low impedance path to the Vcc power rail. PVec should
be bypassed to PGND by a 0.1LF capacitor located as close as possible to the
chip package.

¢ Analog PLL Circuit Ground (PGND) — This GND input is dedicated to the an-
alog PLL circuits. The pin should be provided with an extremely low impedance
path to ground. PVce should be bypassed to PGND by a 0.1LF capacitor locat-
ed as close as possible to the chip package.

¢ CKOUT Power (CLVCC)— This input acts as VCC for the CKOUT output. The
voltage should be well regulated and the pin should be provided with an ex-
tremely low impedance path to the VCC power rail. CLVCC should be by-
passed to CLGND by a 0.1LF capacitor located as close as possible to the chip
package.

¢ CKOUT Ground (CLGND) — This input acts as GND for the CKOUT output.
The pin should be provided with an extremely low impedance path to ground.
CLVCC should be bypassed to CLGND by a 0.1tF capacitor located as close
as possible to the chip package. _

¢ PLL Filter Capacitor (PCAP) — This input is used to connect an external ca-
pacitor needed for the PLL filter. One terminal of the capacitor is connected to
PCAP while the other terminal is connected to PVCC. The capacitor value is
specified in the DSP56002 Technical Data Sheet (DSP56002/D).

* Output Clock (CKOUT) — This output pin provides a 50% duty cycle output
clock synchronized to the internal processor clock when the PLL is enabled and
locked. When the PLL is disabled, the output clock at CKOUT is derived from,
and has the same frequency and duty cycle as, EXTAL.

Note: If the PLL is enabled and the multiplication factor is less than or equal to
4, then CKOUT is synchronized to EXTAL. (For information on the
DSP56002’s PLL multiplication factor, see Section Section 3.6 PLL
MULTIPLICATION FACTOR.

* CKOUT Polarity Control (CKP) — This input pin defines the polarity of the CK-
OUT clock output. Strapping CKP through a resistor to GND will make the CK-
OUT polarity the same as the EXTAL polarity. Strapping CKP through a resistor
to Vee will make the CKOUT polarity the inverse of the EXTAL polarity. The CK-
OUT clock polarity is internally latched at the end of the hardware reset, so that
any changes of the CKP pin logic state after deassertion of hardware reset will
not affect the CKOUT clock polarity.

¢ PLL Initialization Input (PINIT) — During the assertion of hardware reset, the
value at the PINIT input pin is written into the PEN bit of the PLL control register.
The PEN bit enables the PLL by causing it to derive the internal clocks from the
PLL VCO output. When the bit is clear, the PLL is disabled and the chip’s inter-
nal clocks are derived from the clock connected to the EXTAL pin. After hard-
ware reset is deasserted, the PINIT pin is ignored.

¢ Phase and Frequency Locked (PLOCK) — The PLOCK output originates
from the Phase Detector. The chip asserts PLOCK when the PLL is enabled
and has locked on the proper phase and frequency of EXTAL. The PLOCK out-
put is deasserted by the chip if the PLL is enabled and has not locked on the
proper phase and frequency. PLOCK is asserted if the PLL is disabled. PLOCK
is a reliable indicator of the PLL lock state only after the chip has exited the
hardware reset state. During hardware reset, the PLOCK state is determined
by PINIT and by the PLL lock condition.

2.5 TIMER/EVENT COUNTER MODULE PIN

The bidirectional TIO pin is the pin that provides an interface to the timer/event counter mod-
ule. When the TIO is used as an input, the module functions as an external event counter,
or it measures external pulse width/signal period. When the TIO is used as an output, the
module functions as a timer and the signal on the TIO pin is the timer pulse. When the timer
module is not using the TIO pin, the TIO can act as a general purpose I/O pin.

SECTION 3

MEMORY MODULES
AND OPERATING MODES

3.1 MEMORY MODULES AND OPERATING MODES

The memory of the DSP56002 can be partitioned in several ways to provide high-speed
parallel operation and additional off-chip memory expansion. Program and data memory
are separate, and the data memory is, in turn, divided into two separate memory spaces,
X and Y. Both the program and data memories can be expanded off-chip. There are also
two on-chip data read-only memories (ROMSs) that can overlay a portion of the X and Y
data memories, and a bootstrap ROM that can overlay part of the program random-ac-
cess memory (RAM). The data memories are divided into two independent spaces to work
with the two address arithmetic logic units (ALUs) to feed two operands simultaneously to
the data ALU.

The DSP operating modes determine the memory maps for program and data memories
and the start-up procedure when the DSP leaves the reset state. This section describes
the DSP56002 Operating Mode Register (OMR), its operating modes and their associated
memory maps, and discusses how to set and reset operating modes. '

This section also includes details of the interrupt vectors and priorities and describes the
effect of a hardware reset on the PLL multiplication factor. ,

3.2 DSP56002 DATA AND PROGRAM MEMORY ;

The DSP56002 has 512 words of program RAM, 64 words of bootstrap ROM, 256 words
of RAM and 256 words of ROM for each of the X and Y internal data memories. The mem-
ory maps are shown in Section Figure 3-1 DSP56002 Memory Maps. -

3.2.1 Program Memory
The DSP56002 has 512 words of program RAM and 64 words of factory-programmed
bootstrap ROM.

The bootstrap ROM is programmed to perform the bootstrap operation from the memory
expansion port (port A), from the host interface, or from the SCI. It provides a convenient,
low cost method of loading the program RAM with a user program after power-on reset.
The bootstrap ROM activity is controlled by the MA, MB, and MC bits in the OMR (see
3.3 DSP56002 OPERATING MODE REGISTER (OMR) for a complete explanation of the
OMR and the DSP56002’s operating modes and memory maps).

Addresses are received from the program control logic (usually the program counter) over
the PAB. Program memory may be written using the program memory (MOVEM) instruc- ‘
tions. The interrupt vectors are located in the bottom 128 locations ($0000-$007F) of
program memory. Program memory may be expanded to 64K off-chip.

3.2.2 X Data Memory

The on-chip X data RAM is a 24-bit-wide, static |nterna| memory occupying the lowest 256
locations (0-255) in X memory space. The on-chip X data ROM occupies locations 256—
511 in the X data memory space and is controlled by the DE bit in the OMR. (See the ex-
planation of the DE bit in Section 3.3.2 Data ROM Enable (Bit 2). Also, see Figure 3-
1.)The on-chip peripheral registers occupy the top 64 locations of the X data memory
($FFCO-$FFFF). The 16-bit addresses are received from the XAB, and 24-bit data trans-
fers to the data ALU occur on the XDB. The X memory may be expanded to 64K off-chip.

3.2.3 Y Data Memory

The on-chip Y data RAM is a 24-bit-wide internal static memory occupying the lowest 256
locations (0-255) in the Y memory space. The on-chip Y data ROM occupies locations
256-511 in Y data memory space and is controlled by the DE and YD bits in the OMR.
(See the explanations of the DE and YD bits in Sections Section 3.3.2 Data ROM En-
able (Bit 2) and Section 3.3.3 Internal Y Memory Disable Bit (Bit 3), respectively. Also,
see Figure 3-1.) The 16-bit addresses are received from the YAB, and 24-bit data trans-
fers to the data ALU occur on the YDB. Y memory may be expanded to 64K off-chip.

Note: The off-chip peripheral registers should be mapped into the top 64 locations ($FFC0—
$FFFF) to take advantage of the move peripheral data (MOVEP) instruction.

3.3 DSP56002 OPERATING MODE REGISTER (OMR)

Operating modes determine the memory maps for program and data memones and the
start-up procedure when the DSP leaves the reset state. The processor samples the
MODA, MODB, and MODC pins as it leaves the reset state, establishes the initial operat-
ing mode, and writes the operating mode information to the Operating Mode Register.
When the processor leaves the reset state, the MODA and MODB pins become general-
purpose interrupt pins, TRQA and TRQB, respectively, and the MODC pin becomes the
nonmaskable interrupt pin NMI.

The OMR is a 24-bit register (only six bits are defined) that controls the current operating
mode of the processor. It is Ibcated’-in the DSP56002's Program Control Unit (described
in Section 5 of the DSP56000 Family Manual). The OMR bits are only affected by proces-
sor reset and by the ANDI, ORI, MOVEC, BSET, BCLR, and BCHG instructions, which
directly reference the OMR. The OMR format for the DSP56002 is shown in Figure 3-2
OMR Format. :

$FFFF
PROGRAM
MEMORY
SPACE
$7F
INTERRUPT
VECTORS
$0

OPERATING MODE DETERMINES
PROGRAM MEMORY AND RESET
STARTING ADDRESS

MODE 0 MODE 2 MODE 3
MC=0 MB=0 MA=0 MC=0 MB=1 MA=0 MC=0 MB=1 MA=1

$01FF|

INTERNAL INTERNAL
RAM RAM

$003F[1nrERRUPTS | $009F

b nenecsncan INTERRUPTS
go| RESET $0|
INTERNAL P: RAM INTERNAL P: RAM NO INTERNAL P: RAM
INTERNAL RESET EXTERNALRESET EXTERNAL RESET
ON-CHIP
INTERRUPT MAP PERIPHERAL MAP
$007F $FFFF|

INTERRUPT PRIORITY
BUS CONTROL
SCI INTERFACE
SSIINTERFACE

S004of 10T OOMANDS_

$003E[ILLEGAL INSTRUCTION INT.
$003C| TIMER INTERRUPT J

$003A A umaNne
50024|10ST COMMANDS

SCI INTERRUPTS HOST INTERFACE

SSI INTERRUPTS PARALLEL 110 INTERFACE
EXTERNAL INTERRUPTS TIMER

SWI INTERRUPT

$FFDE
TRACE INTERRUPT
STACK ERROR INTERRUPT RESERVED
$0000| RESET $FFCO

o)
$FFFF $FFFF,
X DATA Y DATA
MEMORY MEMORY
SPACE SPACE
$0 $0
DE and YD BITS IN THE OMR DETERMINE
THE X AND Y DATAMEMORY MAPS

DE=0
YD=0
$FFFF[TON-CHIP
$FFCO

$O1FF,

INTERNAL
Y ROM

N
SOT7FI INTERNAL | FULL
AR [siNe-wave

SOOFFI"INTERNAL | | INTERNAL | $90FF[INTERNAL | [INTERNAL
so| XRAM Y RAM so| XRAM Y RAM
DATA ROMS ENABLED DATA ROMS DISABLED
DE=1 DE=0
YD=1 YD=1

$FFFF[ON-CHIP
$FFCo| PERPHERALS

INTERNAL
+A-LAW/LIN
$O17F| INTERNAL
+MULAWLIN
$00FFI" INTERNAL $00FF,

X RAM INTERNAL
$0 $0]

NOTE: Addresses $FFCO-$FFFF in X data memory
are NOT available externally

Figure 3-1 DSP56002 Memory Maps

23 8 7 6 5

4 3 2 1 0
* ! * [SD| * ,MC’YDI DEIIAELMAI

OPERATING MODES A, B

DATA ROM ENABLE '
INTERNAL Y MEMORY DISABLE
OPERATING MODE C
RESERVED
STOP DELAY .
RESERVED
RESERVED

Figure 3-2 OMR Format

3.3.1 Chip Operating Mode (Bits 0 and 1)

The chip operating mode bits, MB and MA, together with MC, define the program mem- .
ory maps and the operating mode of the DSP56002. On processor reset, MB and MA are
loaded from the external mode select pins, MODB and MODA, respectively. After the
DSP leaves the reset state, MB and MA can be changed under software control.

3 3.2 Data ROM Enable (Bit 2)

The DE bit enables the two, on-chip, 256X24 data ROMs located between addresses
$0100-$01FF in the X and Y memory spaces. When DE is cleared, the $0100-$01FF
address space is part of the external X and Y data spaces, and the on-chip data ROMs
-are disa_bled. Hardware reset clears the DE bit. :

3.3.3 Internal Y Memory Disable Bit (Bit 3)

Bit 3is defined as Internal Y Memory Disable (YD). When set, all Y Data Memory address-
‘es are considered to be external, disabling access to internal Y Data Memory. When
cleared, internal Y Data Memory may be accessed according to the state of the DE control
bit. The content of the internal Y Data Memory is not affected by the state of the YD bit.

The YD bit is cleared during hardware reset. :

Figure 3-1 DSP56002 Memory Maps shows a graphic representation of the DE and YD
bit effects on the X and Y data memory maps. Table 3-1 also compares the DE and YD
effects on the memory maps.

Table 3-1 Memory Mode Bits

DE YD Data Memory

0 0 Internal ROMs Disabled and their addresses are part of -
External Memory

0 1 Internal X Data ROM is Disabled and is part of External
Memory. Internal Y Data RAM and ROM are Disabled and
are part of External Memory :

1 0 X and Y Data ROMs Enabled

1 1 Internal Y Data RAM and ROM are Disabled and are part of
External Memory. Internal X Data ROM Enabled.

3.3.4 Chip Operating Mode (Bit 4)

The MC bit, together with bits MA and MB, define the program memory map and the operating
mode of the chip. Upon reset, the processor loads this bit from the MODC external mode se-
lect pin. After the DSP leaves the reset state, MC can be changed under software control.

3.3.5 Reserved (Bit 5)
This bit is reserved for future expansion and will be read as zero dunng read operations.

3.3.6 Stop Delay (Bit 6)

The SD bit determines the length of the clock stabilization delay that occurs when the
processor leaves the stop processing state. If the stop delay bit is zero when the chip
leaves the stop state, a 64K clock cycle delay is selected before continuing the stop
instruction cycle. However, if the stop delay bit is one, the delay before continuing the
instruction cycle is long enough to allow a clock stabilization period for the internal clock
to begin oscillating and to stabilize. (See the DSP56002 Technical Data Sheet
(DSP56002/D) for the actual timing values.) When a stable external clock is used, the
shorter delay allows faster start-up of the DSP.

3.3.7. Reserved OMR Bits (Bits 7-23)
These bits are reserved for future expansion and will be read as zero durlng read operations.

3.4 DSP56002 OPERATING MODES

The user can set the chip operating mode through hardware by pulling high the MODC
MODB, and MODA pins appropriately, and then assert the RESET pin. When the DSP
leaves the reset state, it samples the mode pins and writes to the OMR to set the initial
operating mode.

Chip operating modes can also be changed using software to write the operating mode
bits (MC, MB, MA) in the OMR. Changing operating modes does not reset the DSP.

Note: The user should disable interrupts immediately before changing the OMR to pre-
vent an interrupt from going to the wrong memory location. Also, one no-operation
(NOP) instruction should be included after changing the OMR to allow for remap-
ping to occur. :

Table 3-2 DSP56002 Operating Mode Summary

Opn::’t;ng '\él th % Description
0 0 0 0 | Single-Chip Mode - P: RAM enabled, reset @ $0000
1 0 0 1 | Bootstrap from EPROM, exit in Mode 0
2 0 1 0 | Normal Expanded Mode - P: RAM enabled, reset @ $E000
3 0 1 1 | Development Mode - P: RAM disabled, reset @ $0000
4 1 0 0 | Reserved for Bootstrap
5 1 0 1 Bootstrap from Host, exit in Mode 0
6 1 1 0 | Bootstrap from SCI (external clock), exit in Mode 0
7 1 1 1 | Reserved for Bootstrap

3.4.1 Single Chip Mode (Mode 0)

In the single-chip mode, all internal program and data RAM memories are enabled (see
Figure 3-1). A hardware reset causes the DSP to jump to‘internal program memory loca-
tion $0000 and resume execution. The memory maps for mode 0 and mode 2 (see Figure
3-1) are identical. The difference between the two modes is that reset vectors to program
memory location $0000 in mode 0 and vectors to location $E000 in mode 2.

34.2 Bootstrap From EPROM (Mode 1)

The bootstrap modes allow the DSP to load a program from an inexpensive byte-wide
ROM into internal program memory during a power-on reset. On power-up, the wait-
state generator adds 15 wait states to all external memory accesses so that slow mem-
ory can be used. The bootstrap program uses the bytes in three consecutive memory
locations in the external ROM to build a single word in internal program memory.

In the bootstrap mode, the chip enables the bootstrap ROM and executes the bootstrap
program. (The bootstrap program code is shown in Appendix A.) The bootstrap ROM con-
tains the bootstrap firmware program that performs initial loading of the DSP56002
program RAM. Written in DSP56002 assembly language, the program initializes the pro-
gram RAM by loading from an external byte-wide EPROM starting at location P:$C000.

The EPROM is typically connected to the chip’s address and data bus.The data contents
of the EPROM must be organized as shown in Table 3-3 Organization of EPROM Data

Contents.

FROM OPEN

+5V

COLLECTOR [/
BUFFER

FROM

RESET >—

FUNCTION

FROM OPEN
COLLECTOR
BUFFER

ADDRESS OF EXTERNAL
BYTE-WIDE P MEMORY

P:$C000
P:$C001

. P:$C002

P:$CSFD
P:$CSFE
P:$C5FF

DR
ER DSP56002

Jracr
{wr
MODATRGA
2716
MODC/NNMT - ' '
ps———dcE
A0-A10}——<Lf Ac-At0
RESET
Do-D7|—<>— po-D7

MODB/IRQB

Notes: 1. *These diodes must be Schottky diodes.
. 2. All resistors are 15KQ unless noted otherwise.
3. When in RESET, TRQA, TRQB and NMT must
be deasserted by external peripherals.

CONTENTS LOADED
TO INTERNAL P: RAM AT:

P:$0000 LOW BYTE
P:$0000 MID BYTE
P:$0000 HIGH BYTE

P:$01FF LOW BYTE
P:$01FF MID BYTE
P:$01FF HIGH BYTE

Figure 3-3 Port A Bootstrap Circuit

Table 3-3 Organization of EPROM Data Contents

Address of External Contents Loaded to Internal

Byte-Wide Memory: Program RAM at:
P:$Co00° . P:$0000 low byte
P:$C001 P:$0000 - mid byte
P:$C002 P:$0000 ~ high byte
P:$C5FD | P:$OIFF . low byte
P:$C5FE P:$01FF mid byte
P:$C5FF P:$01FF high byte

After loading the internal memory, the DSP switches to the single-chip mode (Mode 0) and
begins program execution at on-chip program memory location $0000.

If the user selects Mode 1 through hardware (MODA, MODB, MODC pins), the following
actions occur once the processor comes out of the reset state.

~ 1. The control logic maps the bootstrap ROM into the internal DSP program mem-
ory space starting at location $0000.

2. The control logic causes program reads to come from the bootstrap ROM (only
address bits 5-0 are significant) and all writes go to the program RAM (all ad-
dress bits are significant). This condition allows the bootstrap program to load
the user program from $0000-$01FF.

3. Program execution begins at location $0000 in the bootstrap ROM. The boot-
strap ROM program loads program RAM from the external byte-wide EPROM
starting at P:$C000.

4. The bootstrap ROM program ends the bootstrap operation and begins executing
the user program. The processor enters Mode 0 by writing to the OMR. This ac-
tion is timed to remove the bootstrap ROM from the program memory map and
re-enable read/write access to the program RAM. The change to Mode 0 is
timed to allow the bootstrap program to execute a single-cycle instruction (clear
status register), then a JMP #<00, and begin execution of the user program at
location $0000.

The user can also getinto the bootstrap mode (Mode 1) through software by writing zero
to MC and MB, and one to MA in the OMR. This selection initiates a timed operation to
map the bootstrap ROM into the program address space (after a delay to allow execution
of a single-cycle instruction), and then a JMP #<00 to begin the bootstrap process de-
scribed previously in steps 1 through 4. This technique allows the user to reboot the
system (with a different program, if desired).

The code to enter the bootstrap mode is as follows
MOVEP - #0,X:$FFFF ;Disable mterrupts

MOVEC #1,0MR :The bootstrap ROM is mapped
o ' ;into the lowest 64 locations -
;in program memory.

NOP | ;Allow.one cycle delay for the
:) ;remapping.
JMP : <50 ;Begin bootstrap.

The code disables interrupts before executing the bootstrap code. Otherwise, an interrupt
could cause the DSP to execute the bootstrap. code out of sequence because the boot-
strap program overlays the interrupt vectors.

3.4.3 Normal Expanded Mode (Mode 2)

In this mode, the internal program RAM is enabled and the hardware reset vectors to lo-
cation $E000. (The memory maps for Mode 0 and Mode 2 are identical. The difference
for Mode 0 is that, after reset, the instruction at location $E000 is executed instead of the
instruction at $0000 — see Figure 3-1 and Table 3-2).

344 Development Mode (Mode 3)

In this mode, the mternal program RAM is dlsabled and the hardware reset vectors to lo-
cation $0000. Al references to program memory space are directed to external program
memory. The reset vector points to location $0000. The memory map for this mode is
shown in Figure 3-1 and Table 3-2.

3.4.5 . Reserved (Mode 4)
This mode is reserved for future definition. If selected it defaults to Mode 5

3.4.6 Bootstrap From Host (Mode 5)
In this mode, the Bootstrap ROM is enabled and the bootstrap program is executed. This is
similar to Mode 1 except that the bootstrap program loads internal P: RAM from the Host Port.

Note: The. difference between Modes 1 and 5 in the DSP56002 and Mode 1 in the
DSP56001 may be considered software incompatibility. A DSP56001 program that
reloads the internal P: RAM from the Host Port by setting MB-MA = 01 (assuming
external pull-up resistor on bit 23 of P:$3C000) will not work correctly in the
DSP56002. In the DSP56002, the program would trigger a bootstrap from the exter-
nal EPROM. The solution is to modify the DSP56001 program to set MC-MA = 101.

3.4.7 Bootstrap From SCI (Mode 6)

In this mode, the Bootstrap ROMis enabled and the bootstrap program is executed The
internal and/or external program RAM is loaded from the SCI serial interface. The number
of program words to load and the starting address must be specified. The SCI bootstrap
code expects to receive 3 bytes specifying the number of program words, 3 bytes speci-
fying the address from which to start loading the program words, and then 3 bytes for each
program word to be loaded. The number of words, the starting address and the program
words are received least significant byte first, followed by the mid-, and then by the most
significant byte. After receiving the program words, program execution starts at the ad-
dress where the first instruction was loaded. The SCI is programmed to work in
asynchronous mode with 8 data bits, 1 stop bit, and no parity. The clock source is external
and the clock frequency must be 16x the baud rate. After each byte is received, it is ech-
oed back through the SCI transmitter.

3.4.8 Reserved (Mode 7)
This mode is reserved for-future definition. If selected, the processor defaults to Mode 6.

3.5 DSP56002 INTERRUPT PRIORITY REGISTER
Section 7 of the DSP56000 Family Manual describes interrupt (exception) processing in
detail. It discusses interrupt sources, interrupt types, and interrupt priority levels (IPL).

Interrupt priority levels for each on-chip, peripheral device and for each external interrupt
source can be programmed under software control by writing to the interrupt priority reg-
ister. Level 3 interrupts are nonmaskable, and interrupts of levels 0-2 are maskable.

The DSP56002 Interrupt Priority Register (IPR) configuration is shown in Section Fig-
ure 3-4 DSP56002 Interrupt Priority Register (IPR). The starting addresses of interrupt
vectors in the DSP56002 are defined as shown in Section Table 3-4 Interrupt Vectors,
while the relative priorities of exceptions within the same IPL are defined as shown in
Section Table 3-5 Exception Priorities Within an IPL).

5 4 3 2 1 0
182 [1BL1 [1BLo [1ac2 | 1aLt | 1aLo]

TRQA MODE
TRQB MODE
RESERVED
HOST IPL

17 16 15 14 13 12
TiL1] Tofscui]scLofssti|sstol

SSIIPL
SCIIPL

TIMER IPL
RESERVED

Reserved, read as zero and should be written with zero for future compatibility.

Figure 3-4 DSP56002 Interrupt Priority Register (IPR)

3.6 DSP56002 PHASE-LOCKED LOOP (PLL) MULTIPLICATION FACTOR

Section 9 of the DSP56000 Family Manual discusses the details of the PLL. The multipli-
cation factor determines the frequency at which the Voltage Controlled Oscillator (VCO)
will oscillate. The user sets the multiplication factor by writing to the MFO-MF11 bits in the
PLL control register.

The DSP56002 PLL multiplication factor is set to 1 during hardware reset, which means
that the Multiplication Factor Bits MFO-MF11 in the PLL Control Register (PCTL) are set
to $000.

Table 3-4 Interrupt Vectors

Star:?l:gr;\ud':ltress IPL Interrupt Source
P:$0000 3 Hardware RESET
P:$0002 3 Stack Error
P:$0004 3 Trace
P:$0006 3 Swi
P:$0008 0-2 TRQA
P:$000A 0-2 IRCB
P:$000C 0-2 SSI Receive Data
P:$000E 0-2 | SSIReceive Data With Exception Status
P:$0010 0-2 [SSlTransmit Data
P:$0012 0-2 SS1 Transmit Data with Exception Status
P:$0014 0-2 | SCI Receive Data
P:$0016 0-2 SCI Receive Data with Exception Status
P:$0018 0-2 [SCITransmit Data
P:$001A - 0-2 SCl Idle Line
P:$001C 0-2 SCI Timer
P:$001E 3 NMI
P:$0020 0-2 | Host Receive Data
P:$0022 0-2 | Host Transmit Data
P:$0024 0-2 | Host Command (Default)
P:$0026 0-2 | Available for Host Command
e —
P:$003A 0-2 | Available for Host Command
P:$003C 0-2 Timer
P:$003E 3 llegal Instruction
P:$0040 0-2 Available for Host Command
-] |
P:3007E 0-2 | Available for Host Command

Table 3-5 Exception Priorities Within an IPL

Priority

Exception

Level 3 (Nonmaskable)

Highest

Hardware RESET

lllegal Instruction

NMI

Stack Error

Trace

Lowest

SWI

Levels 0, 1, 2 (Maskable)

Highest

TRQA (External Interrupt)

TRQB (External Interrupt)

Host Command Interrupt

Host Receive Data Interrupt

Host Transmit Data Interrupt

SSI RX Data with Exception [nterrupt

SSI RX Data Interrupt

SS| TX Data with Exception Interrupt

881 TX Data Interrupt

SCI RX Data with Exception Interrupt

SCI RX Data Interrupt

SCI TX Data with Exception Interrupt

SCI TX Data Interrupt

SCl Idle Line Interrupt

SClI Timer Interrupt

Lowest

Timer Interrupt

SECTION 4

PORT A

4.1 INTRODUCTION
Port A provides a versatile interface to external memory, allowing economical connection
with fast memories/devices, slow memories/devices, and multiple bus master systems.

Port A has two power-reduction features. It can access internal memory spaces, toggling
only the external memory signals that need to change, thereby eliminating unneeded
switching current. Also, if conditions allow the processor to operate at a lower memory
speed, wait states can be added to the external memory access to significantly reduce
power while the processor accesses those memories.

4.2 PORT A INTERFACE

The DSP56002 processor can access one or more of its memory sources (X data mem-
ory, Y data memory, and program memory) while it executes an instruction. The memory
sources may be either internal or external to the DSP. Three address buses (XAB, YAB,
and PAB) and four data buses (XDB, YDB, PDB, and GDB) are available for internal
memory accesses during one instruction cycle. Port A’s one address bus and one data
bus are available for external memory accesses.

If all memory sources are internal to the DSP, one or more of the three memory sources
may be accessed in one instruction cycle (i.e., program memory access or program mem-
ory access plus an X, Y, XY, or L memory reference). However, when one or more of the
memories are external to the chip, memory references may require additional instruction
cycles because only one external memory access can occur per instruction cycle.

If an instruction cycle requires more than one external access, the processor will make
the accesses in the following priority: X memory, Y memory, and program memory. It
takes one instruction cycle for each external memory access — i.e., one access can be
executed in one instruction cycle, two accesses take two instruction cycles, etc. Since the
external data bus is only 24 bits wide, one XY or long external access will take two instruc-
tion cycles. The 16-bit address bus can sustain a rate of one memory access per
instruction cycle (using no-wait-state memory which is discussed in 4.4 PORT A WAIT
STATES).

Figure 4-1 shows the port A signals divided into their three functional groups: address bus
signals (A0-A15), data bus signals (D0-D15), and bus control. The bus control signals can
be subdivided into three additional groups: read/write control (RD and WR), address
space selection (including program memory select (PS), data memory select (DS), and
X/Y select) and bus access control (BN, BR, BG, WT, BS).

The read/write controls can act as decoded read and write controls, or, as seen in Figure
4-2, Figure 4-3, and Figure 4-4, the write signal can be used as the read/write control, and
the read signal can be used as an output enable (or data enable) control for the memory.

16 - BIT INTERNAL
ADDRESS BUSES

X ADDRESS (XA)

\VAVAV

16
EXTERNAL

Z
/ ADDRESS BUS

EXTERNAL
Y ADDRESS (YA) ADDRESS BUS
SWITCH
PROGRAM ADDRESS (PA)
24- BIT INTERNAL
DATA BUSES
X DATA (XD} >
Y DATA(YD) EXTERNAL
DATABUS
SWITCH
PROGRAM DATA(PET>
GLOBAL DATA (GD) >
EXTERNAL
BUS CONTROL
Loaic

A0 - A15

24

EXTERNAL
DATABUS
DO - D23

BUS CONTROL SIGNALS

‘RD — READ ENABLE

WH — WRITE ENABLE

PS - PROGRAM MEMORY SELECT
DS — DATA MEMORY SELECT

X/Y — X MEMORY/Y MEMORY SELECT
BN — BUS NEEDED

BH - BUS REQUEST

BG — BUS GRANT

INT — BUS WAIT

»BS - BUS STROBE

Figure 4-1 Port A Signals

Vee Vss
+5V GROUND

[
]
16 PROGRAM MEMORY
ADDRESS BUS V4
A0-A15 / ADDRESS
>
24/
DATABUS
DO - D23 < / > DATA
—
DSP56002
BUS
CONTROL
RD oF 24 BIT x N WORDS
WR > AW —
5 TS —
5 ————
w p———
L2 B sa——
BR |t
BG P
wr fet——
BS |jp—————i

Figure 4-2 External Program Space

Decoding in such a way simplifies connection to high-speed random-access memories
(RAMSs). The program memory select, data memory select, and X/Y select can be consid-
ered additional address signals, which extend the directly addressable memory from 64K
words to 192K words total.

Since external logic delay is large relative to RAM timing margins, timing becomes more
difficult as faster DSPs are introduced. The separate read and write strobes used by the
DSP56002 are mutually exclusive, with a guard time between them to avoid an instance
where two data buffers are enabled simultaneously. Other methods using external logic
gates to generate the RAM control inputs require either faster RAM chips or external
data buffers to avoid data bus buffer conflicts.

Figure 4-2 shows an example of external program memory. A typical implementation of
this circuit would use three-byte-wide static memories and would not require any addi-
tional logic. The PS signal is used as the program-memory chip-select signal to enable
the program memory at the appropriate time.

ADDRESS BUS
A0 - A15

DATABUS
Do - D23

ADDRESS

' X.DATA
DSP56002 MEMORY
24 BITS x N WORDS

OE RW TS CE

ADDRESS
Y DATA

MEMORY
24 BITS x N WORDS

OE AW TS CE

3 3

BUS
CONTROL

CEREEEREEREE]

Il

Figure 4-3 External X and Y Data Space

Figure 4-3 shows a similar circuit using the DS signal to enable two data memories and
using the X/Y signal to select between them. The three external memory spaces (pro-
gram, X data, and Y data) do not have to reside in separate physical memories; a single
memory can be employed by using the PS, DS, and X/Y signals as additional address
lines to segment the memory into three spaces (see Figure 4-4). Table 4-1 shows how

the PS, DS, and X/Y signals are decoded.

If the DSP is in the development mode, an exception fetch to any interrupt vector location
will cause the X/Y signal to go low when PS is asserted. This procedure is useful for

debugging and for allowing external circuitry to track interrupt servicing.

PORT A INTERFACE

Table 4-1 Program and Data Memory Select Encoding

PS | DS | XY External Memory Reference

1 1 1 No Activity

1 0 1 X Data Memory on Data Bus
0 0 Y Data Memory on Data Bus

0 1 1 Program Memory on Data Bus (Not an Exception)

0 1 0 | External Exception Fetch: Vector or Vector +1
(Development Mode Only)

0 0 X | Reserved

1 1 0 Reserved

Vee Vss

+5V GROUND EXTERNAL
PROGRAM

X AND Y MEMORY

16 AO-A10
- $3FFF

ADDRESS BUS
AD - A15 //,

A15

CE
u1 4K
PROGRAM
24 MEMORY

A13
A4

DSP56002

DATABUS L
D0 - D23 /

BUS
CONTROL

OE $3000
$2FFF

2K
X DATA
Al12 MEMORY

Al $2800
$27FF

3
Al
— N 2
14~

| ——————— Y DATA
- MEMORY

e ——————
———— $2000
<— 24 BITS ~—»

Figure 4-4 Memory Segmentation

£33 3

DR DSP56002 pp

BACK WR
FROM OPEN N WT DS
COLLECTOR Ve I MODA/IRQA XY
BUFFER 11 10

ya L.
MODC/NMI AO-A10 7 7
7| v Y
MBD301" |A0-A9 A10 TS WE OF
FROM » CE A0-A10
RESET > RESET 2716 2018-55 (3)
FUNCTION
B D0-D7 D0-D23
MBD301
A
18 A4
FROM OPEN
COLLECTOR MODB/TRQB /
BUFFER D0-D23 | Notes: 1. *These diodes must bs Schottky diodes.
2. All resistors are 15KQ unless noted otherwise.
3. When in RESET, TRTA, TRQGB and NMI must

be deasserted by external peripherals.

Figure 4-5 Port A Bootstrap ROM with X and Y RAM

Figure 4-5 shows a system that uses internal program memory loaded from an external
ROM during power-up and splits the data memory space of a single memory bank into X:
and Y: memory spaces. Although external program memory must be 24 bits, external data
memory does not. Of course, this is application specific. Many systems use 16 or fewer bits
for A/D and D/A conversion and, therefore, they may only need to store 16, 12, or even eight
bits of data. The 24/56 bits of internal precision is usually sufficient for intermediate results.
This is a cost saving feature which can reduce the number of external memory chips.

43 PORT A TIMING

The external bus timing is defined by the operation of the address bus, data bus, and bus
control pins. The transfer of data over the external data bus is synchronous with the clock.
The timing A, B, and C relative to the edges of an external clock (see Figure 4-6 and Fig-
ure 4-7) are provided in the DSP56002 Advance Information Data Sheet (DSP56002/D).
This timing is essential for designing synchronous multiprocessor systems. Figure 4-6
shows the port A timing with no wait states (wait-state control is discussedin Section 4.4).
One instruction cycle equals two clock cycles or four clock phases. The clock phases,
which are numbered TO ~ T3, are used for timing on the DSP. Figure 4-7 shows the same
timing with two wait states added to the external X: memory access.

ONE INSTRUCTION CYCLE

ONE CLOCKCYCLE

INTERNAL CLOCK PHASES . TO T1 T2 T3 TO T1 T2 T3 TO T .-
Y/ W]
ADDRESS P'S,US,X/?—% X
h — Al
[wm : N
READ : '
CYCLE,

WA Jie—c—rl /
WRITE ;e C—
CYCLE
aor ()

Figure 4-6 Port A Bus Operation with No Wait States

-4———————-ONE INSTRUCTION CYCLE: - —

" Je——TWo waIT STATES—>

ONECLOCKCYCLE | oo
. INTEFINALCLOCKPHASES—\; TO T T2 T™W ™ ™ ™ T3 TO T1

/g VR o VY VS o G W

ADD;zEssPS,ﬁS,m_;}G . X

—Ale—

READ B Co ‘ :

CYCLE : :

| e QROQXXKXRXKXNRHXXN__ XXX

CYCLE] :
DATAOWe;—(;)_—

DATA LATCHED HERE

Figure 4-7 Port A Bus Operation with Two Wait States

Four TW clock phases have been added because one wait state adds two T phases and
is equivalent to repeating the T2 and T2 clock phases. The write signal is also delayed
from the T1 to the T2 state when one or more wait states are added to ease interfacing to
the port. Each external memory access requires the following procedure:

1. The external memory address is defined by the address bus (A0-A15) and the
memory reference selects (PS, DS, and X/Y). These signals change in the first
phase (T0) of the bus cycle. Since the memory reference select signals have
the same timing as the address bus, they may be used as additional address
lines. The address and memory reference signals are also used.to generate
chip-select signals for the appropriate memory chips. These chip-select sig-
nals change the memory chips from low-power standby mode to active mode
and begin the read access time. This mode change allows slower memories to
be used since the chip-select signals can be address based rather than read

- or write enable based. Read and write enable do not become-active until after
the address is valid. See the timing diagrams in the DSP56002 Advance Infor-
mation Data Sheet (DSP56002/D) for detailed timing information.

2. When the address and memory reference signals are stable, the data transfer
is enabled by read enable (RD) or write enable (WR). RD or WR is asserted to
“qualify” the address and memory reference signals as stable and to perform
the read or write data transfer. RD and WR are asserted in the second phase
of the bus cycle (if there are no wait states). Read enable is typically con-
nected to the output enable (OE) of the memory chips and simply controls the
output buffers of the chip-selected memory. Write enable is connected to the
write enable (WE) or write strobe (WS) of the memory chips and is the pulse
that strobes data into the selected memory. For a read operation, RD is
asserted and WR remains deasserted. Since write enable remains negated, a
memory read operation is performed. The DSP data bus becomes an input,
and the memory data bus becomes an output. For a write operation, WR is
asserted and RD remains deasserted. Since read enable remains deasserted,
the memory chip outputs remain in the high-impedance state even before write
strobe is asserted. This state assures that the DSP and the chip-selected
memory chips are not enabled onto the bus at the same time. The DSP data
bus becomes an output, and the memory data bus becomes an input.

3. Wait states are inserted into the bus cycle by a wait-state counter or by assert-
ing WT. The wait-state counter is loaded from the bus control register. If the
value loaded into the wait-state counter is zero, no wait states are inserted into
the bus cycle, and RD and WR are asserted as shown in Figure 4-6. If a value
W=0 is loaded into the wait state counter, W wait states are inserted into the
bus cycle. When wait states are inserted into an external write cycle, WR is
delayed from T1 to T2. The timing for the case of two wait states (W=2) is
shown in Figure 4-7.

4. When RD or WR are deasserted at the start of T3 in a bus cycle, the data is
latched in the destination device — i.e., when RD is deasserted, the DSP
latches the data internally; when WR is deasserted, the external memory
latches the data on the positive-going edge. The address signals remain sta-
ble until the first phase of the next external bus cycle to minimize power dissi-
pation. The memory reference signals (PS, DS, and X/Y) are deasserted (held
high) during periods of no bus activity, and the data signals are three-stated.
For read-modify-write instructions such as BSET, the address and memory
reference signals remain active for the complete composite (i.e., two leye)
instruction cycle.

PORT ABUS CONTROL REGISTER (BCR)

EXTERNAL EXTERNAL EXTERNAL EXTERNAL
X MEMORY Y MEMORY P MEMORY 1/0 MEMORY
15 12 |[11 sl[7 4113 ol
. X:$FFFE o0 | 1000 : | 1010 | . 1101 |
! : D/A AD
CONVERTER CONVERTER
D TS WR D TS
350 ns , \
(13 WAIT STATES)
A15
A0-A15 .
A15
D0-D23
& 6242- 15 2764 - 25 | 27256-30
2xk 622-15 | 2764-25 | 27256 - 30
=z [- .
Zo
@ = i 6242-15 2764 - 25 27256 - 30
zZ=3%
== 8K x24 8Kx24 32K x 24
e X RAM Y ROM P ROM
150 ns L 250 ns 300 ns
e Mtz 11| @warr states) (8 WAIT STATES) . 11 (towarr sTaTES)
Ccs TS WE OE CS OE CE OE
o { >
DS
WR
AD
=

Figure 4-8 Mixed-Speed Expanded System

Figure 4-8 shows an example of mixing different memory speeds and memory-mapped
peripherals in different address spaces. The internal memory uses no wait states, X: memory
uses two wait states, Y: memory uses four wait states, P: memory uses five wait states, and
the analog converters use 14 wait states. Controlling five different devices at five different
speeds requires only one additional logic package. Half the gates in that package are used
to map the analog converters to the top 64 memory locations in Y: memory.

44 PORT A WAIT STATES

The DSP56002 features two methods to allow the user to accommodate slow memory
by changing the port A bus timing. The first method uses the bus control register (BCR),
which allows a fixed number of wait states to be inserted in a given memory access to all
locations in each of the four memory spaces: X, Y, P, and I/O. The second method uses
the bus strobe (BS) and bus wait (WT) facility, which allows an external device to insert
an arbitrary number of wait states when accessing either a single location or multiple
locations of external memory or /O space. Wait states are executed until the external
device releases the DSP to finish the external memory cycle.

Table 4-2 Wait State Control

BCR WT Number of Wait States Generated
Contents
0 Deasserted | O
0 Asserted 2 (minimum)
>0 Deasserted | Equals value in BCR
>0 Asserted Minimum equals 2 or value in BCR.
Maximum is determined by BCR or WT,
whichever is larger.

45 BUS CONTROL REGISTER (BCR)

The BCR determines the expansion bus timing by controlling the timing of the bus inter-
face signals, RD and WR, and the data output lines. It is a memory mapped register
located at X:$FFFE. Each of the memory spaces in Figure 4-9 (X data, Y data, program
data, and 1/0) has its own 4-bit BCR, which can be programmed for inserting up to 15
wait states (each wait state adds one-half instruction cycle to each memory access —i.e.,
50 ns for a 20-Mhz clock). In this way, external bus timing can be tailored to match the
speed requirements of the different memory spaces. On processor reset, the BCR is
preset to all ones (15 wait states). This allows slow memory to be used for boot strap-
ping. The BCR needs to be set appropriately for the memory being used or the processor
will insert 15 wait states between each memory fetch and cause the DSP to run slow.

X'$F’FFE _EXTERNAL =~ EXTERNAL EXTERNAL EXTERNAL
i X MEMORY * © YMEMORY * P MEMORY * /0 MEMORY *
~— A A VA -/
$FFFF $FFFF $FFFF
BUS CONTROL REGISTER
$FFFE \ L EXTERNAL -
. EXTERNAL ON-CHIP PERIPHERALS
PROGRAM $FFCO
MEMORY $FFCO
$200 EXTERNAL EXTERNAL
X DATA YDATA
MEMORY MEMORY
INTERNAL - $200 | $200
PROGRAM
%‘f\M INTERNAL INTERNAL
$100 - X ROM $100 Y ROM
INTERNAL INTERNAL
X RAM Y RAM
0 0 0 -
PROGRAM X DATA - YDATA
MEMORY SPACE MEMORY MEMORY
SPACE . SPACE

* Zero to 15 wait states can be inserted into each external memory access.

Figure 4-9 Bus Control Register

Figure 4-9 illustrates which of the four BCR subregisters affect which external memory
space. All the internal peripheral devices are memory mapped, and their control registers
reside between X:$FFCO and X:$FFFF.

To load the BCR the way it is shown in Figure 4-8, execute a “MOVEP #$48AD,
X:$FFFE” instruction. Or, change the individual: bits in one of the four subregisters by
using the BSET and BCLR instructions which are detailed in the DSP56000 Family Man-
ual, SECTION 6 and APPENDIX A.

Figure 4-8 shows an example of mixing different memory speeds and memory-mapped
peripherals in different address spaces. The internal memory uses no wait states, X: mem-
ory uses two wait states, Y: memory uses four wait states, P: memory uses five wait states,
and the analog converters use 14 wait states. Controlling five different devices at five dif-
ferent speeds requires only one additional logic package. Half the gates in that package
are used to map the analog converters to the top 64 memory locations in Y: memory.

OPERATING MODE REGISTER
7 6 5 4 3 2 1 0

[em[so] o o] ofoe[me]mal
SETEM=1 ‘

Vec Vss

+5V GROUND.
TO T T2 W ™ ™W ‘TW T3 . TO
DSP56000/DSP56001 16 '
ADDRESS BUS ﬁ\ :X A0 - A15, DO - D23, PS, DS, XY x
A0 -A15 : g
24
DATABUS
DO - D23
BUS ' ' -
CONTROL o . WTIS WTIS WTI1S
: ’ SAMPLED SAMPLED SAMPLED
R [— o
WR |
Ps .
L e
XN - p————
W je—
o |ﬂ3¢|
= \ [\
Figure 4-10 Bus Strobe/Wait Sequence

Adding wait states to external memory accesses can substantially reduce power require-
ments. Consult the DSP56002 Technical Data Sheet (DSP56002/D) for specific power
consumption requirements.

4.6 BUS STROBE AND WAIT PINS

The ability to insert wait states using BS and WT provides a means to connect asynchro-
nous devices to the DSP, allows devices with differing timing requirements to reside in the
same memory space, allows a bus arbiter to provide a fast multiprocessor bus access, and
provides another means of halting the DSP at a known program location with a fast restart.

The timing of the BS and WT pins is illustrated in Figure 4-10. Every external access, BS
is asserted concurrently with the address lines in T0. BS can be used by external wait-

state logic to establish the start of an external access. BS is deasserted in T3 of each
external bus cycle, signaling that the current bus cycle will complete. Since the WT signal
is internally synchronized, it can be asserted asynchronously with respect to the system
clock. The WT signal should only be asserted while BS is asserted. Asserting WT while
BS is deasserted will give indeterminate results. However, for the number of inserted wait
states to be deterministic, WT timing must satisfy setup and hold timing with respect to the
negative-going edge of EXTAL. The setup and hold times are provided in the DSP56002
Advance. Information Data Sheet (DSP56002/D). The timing of WR is controlled by the
BCR and is independent of WT. The minimum number of wait states that can be inserted
using the WT pin is two. The BCR is still operative when using BS and WT and defines
the minimum number of wait states that are inserted. Table 4-2 summarizes the effect of
the BCR and WT pin on the number of wait states generated.

4.7 BUS ARBITRATION AND SHARED MEMORY ‘

The DSP56002 has five pins that control port A. They are bus needed (BN), bus request
(BR), bus grant (BG), bus strobe (BS) and bus wait (WT) and they are described in SEC-
TION 2 DSP56002 PIN DESCRIPTIONS. '

The bus control signals provide the means to connect additional bus masters (which may be
additional DSPs, microprocessors, direct memory access (DMA) controllers, etc.) to the port
A bus. They work together to arbitrate and determine what device gets access to the bus.

If an external device has requested the external bus by asserting the BR input, and the
DSP has granted the bus by asserting BG, the DSP will continue to process as long as it
requires no external bus accesses itself. If the DSP does require an external access but
is not the bus master, it will stop processing and remain in wait states until it regains bus
ownership. The BN pin will have been asserted, and an external device may use BN to
help “arbitrate”, or decide when to return bus ownership to the chip.

Four examples of bus arbitration will be described later in this section: 1) bus arbitration
using only BR and BG with internal control, 2) bus arbitration using BN, BR, and BG with
external control, 3) bus arbitration using BR, BG and WT, BS with no overhead, and 4)
signaling using semaphores.

The BR input allows an external device to request and be given control of the external bus
while the DSP continues internal operations using internal memory spaces. This allows a
bus controller to arbitrate a multiple bus-master system. (A bus master can issue
addresses on the bus; a bus slave can respond to addresses on the bus. A single device
can be both a master and a slave, but can only be one or the other at any given time.)

= : e ——
AO0-A15, DO - D23, F5, ' \
TS, X/¥, D, WR / /
DSP56002 ' ADIFFERENT DSP56002
BUS MASTER BUS MASTER " BUS MASTER

Figure 4-11 Bus Request/Bus Grant Sequence

Before BR is asserted, all port A signals are driven. When BR is asserted (see Figure 4-11), the
DSP will assert BG after the current extemal access cycle completes and will simultaneously
three-state (high-impedance) the port A signals (see the DSP56002 Technical Data Sheet
(DSP56002/D) for exact timing of BR and BG). The bus is then available to whatever extemal
device has bus mastership. The external device will return bus mastership to the DSP by deas-
serting BR. After the DSP completes the current cycle (an internally executed instruction with or
without wait states), BG will be deasserted. When BG is deasserted, the A0-A15, PS, DS, X/,
and RD, WR lines will be driven. However, the data lines will remain in three-state. All signals
are now ready for a normal external access.

During the wait state (see Section 7 in the DSP56000 Family Manual), the BR and BG
circuits remain active. However, the port is inactive - the control signals are deasserted,
the data signals are inputs, and the address signals remain as the last address read or
written. When BR is asserted, all signals are three-stated (high impedance). Table 4-3
shows the status of BR and BG during the wait state.

Table 4-3 BR and BG During WAIT

Soat | SHOER | uneR | Bl | Nemasme | AT
: (BG Deasserted)

PS Driven Three-state Three-state Driven ~ Driven
DS " Driven Three-state Three-state Driven Driven
XN ‘ Driven Three-state Three-state Driven Driven
RD Driven Three-state Three-state Driven Driven
WR Driven Three-state Three-state Driven Driven
Data Driven Three-state Three-state Three-state Driven
Address Driven Three-state Three-state Driven Driven

4.7.1 Bus Arbitration Using Only BR and BG With Internal Control

Perhaps the simplest example of a shared memory system using a DSP56002 is shown
in Figure 4-12. The bus arbitration is performed within the DSP#2 by using software. '
DSP#2 controls all bus operations by using I/O pin OUT2 to three-state its own port A
and by never accessing port A without first calling the subroutine that arbitrates the bus.
When the DSP#2 needs to use external memory, it uses I/O pin OUT1 to request bus
access and 1/O pin IN1 to read bus grant. DSP#1 does not need any extra code for bus
arbitration since the BR and BG hardware handles its bus arbitration automatically. The
protocol for bus arbitration is as follows:

At reset: DSP#2 sets OUT2=0 (BR#2=0) and OUT1=1 (BR#1=1), which gives DSP#1
access to the bus and suspends DSP#2 bus access.

When DSP#2 wants control of the memory, the following steps are performed (see Figure 4-13):
1. DSP# 2 sets OUT1=0 (BR#1=0). '

DSP# 2 waits for IN1=0 (BG#1=0 and DSP#1 off the bus).

DSP#2 sets OUT2=1 (BR#2=1 to let DSP#2 control the bus).

DSP#2 accesses the bus for block transfers, etc. at full speed.

o M 0D

To release the bus, DSP#2 sets OUT2=0 (BR#2=0) after the last external
access.

o

DSP#2 then sets OUT1=1 (BR#1=1) to return control of the bus to DSP#1.
7. DSP#1 then acknowledges mastership by deasserting BG#1.

4.7.2 Bus Arbitration Using BN, BR, and BG With External Control

Figure 4-14 can be implemented with external bus arbitration logic, which will save pro-
cessing capacity on the DSPs and can make bus access much faster at a cost of addi-
tional hardware. The bus arbitration logic takes control of the external bus by deasserting
an enable signal (E1, E2, and E3) to all DSPs, which will then acknowledge by granting
the bus (BG=0). When a DSP (DSP#1 in Figure 4-14) needs the bus, it will enter the
WAIT state with BN asserted. If DSP#1 has highest priority, the arbitration logic grants
the bus to DSP#1 by asserting E1 (E2 for DSP#2; E3 for DSP#3) to let the DSP know
that it can have the bus. DSP#1 will then deassert BG to tell the arbiter it has taken con-
trol of the bus. When the DSP no longer needs to make an external access it will deas-
sert BN and the arbiter deasserts E1, after which the DSP deasserts BG.

BR

BG

CONTROL

A0 -A15

DO - D23

BR

ouT2

ouTt

IN1

" CONTROL

A0 - A15

| J
A

- DO - D23

g

DSP56002 #1

|l

Cc A D

'MEMORY
BANK

DSPS56002 #2
BUS ARBITER

Figure 4-12 Bus Arbitration Using Only BR and BG with Internal Control

ouT1 AN

- INt

out2

N

— meslesccscmcadiaana

N wee -u-.--/

DATA
TRANSFERRED

*— HERE —>i

3

4

5

O) =sspamcanabacaan,

Figure 4-13 Two DSPs with External Bus Arbitration Timing

SYSTEM MEMORY

32K x 24 X DATA RAM
32K x 24 Y DATARAM
32K x 24 PROGRAM RAM
ADDRESS DATA CONTROL
A A A
ADDRESS ,16
I ¥ A l} 4 4’
B DATA 4 Y 2 '
A I Y4
CONTROL , 5
A A A
\]
A D C A D C A D C
DSP56002 #1 DSP56002 #2 DSP56002 #3
BG BR BN BG BR BN BG BR BN
A1 E1 BR1 A2 E2 BR2 A3 E3 BR3

BUS ARBITRATION LOGIC WITH PRIORITY ENCODER

Figure 4-14 Bus Arbitration Using BN, BR, and BG with External Control

4.7.3 Bus Arbitration Using BR and BG, and WT and BS With No Overhead
By using the circuit shown in Figure 4-15, two DSPs can share memory with hardware
arbitration that requires no software on the part of the DSPs. The protocol for bus arbitra-

tion in Figure 4-15 is as follows:

At RESET assume DSP#1 is not making external accesses so that BR#2 is deasserted.
Hence, BG of DSP#2 is deasserted, which three-states the buffers, giving DSP#2 control

of the memory.

MEMORY

D A C
4
DSP #1 THREE-STATE DSP #2
BUFFER
DO - D23 |-——-1 P-| DO-23
A0 -A15 > -t A0 - A15
D3, FS, XV DS, PS, XY
DIR
BS WT ENABLE BG BR

—

Figure 4-15 Bus Arbitration Using BR and BG,
and WT and BS with No Overhead

When DSP#1 wants control of the memory the following steps are performed (see Figure 4-16):

1. DSP#1 makes an external access, thereby asserting BS, which asserts WT
(causing DSP#1 to execute wait states in the current cycle) and asserts
DSP#2 BR (requesting that DSP#2 release the bus).

2. When DSP#2 finishes its present bus cycle, it three-states its bus drivers and
asserts BG. Asserting BG enables the three-state buffers, placing the DSP#1
signals on the memory bus. Asserting BG also deasserts WT, which allows
DSP#1 to finish its bus cycle.

3. When DSP#1’s memory cycle is complete, it releases BS, which deasserts
BR. DSP#2 then deasserts BG, three-stating the buffers and allowing DSP#2
to access the memory bus.

DATA TRANSFERRED

' H BETWEEN DSP#1 '
1 2 AND MEMORY HERE 3

Figure 4-16 Two DSPs with External Bus Arbitration Timing

4.7.4 Signaling Using Semaphores

Figure 4-17 shows a more sophisticated shared memory system that uses external arbi-
tration with both local external memory and shared memory. The four semaphores are
bits in one of the words in each shared memory bank used by software to arbitrate mem-
ory use. Semaphores are commonly used to indicate that the contents of the sema-
phore’s memory blocks are being used by one processor and are not available for use by
another processor. Typically, if the semaphore is cleared, the block is not allocated to a
processor; if the semaphore is set, the block is allocated to a processor.

Without semaphores, one processor may try to use data while it is being changed by
another processor, which may cause érrors. This problem can occur in a shared memory
system when separate test and set instructions are used to “lock” a data block for use by
a single processor.

The correct procedure is to test the semaphore and then set the semaphore if it was
clear to lock and gain exclusive use of the data block. The problem occurs when the sec-
ond processor acquires the bus and tests the semaphore after the first processor tests
the semaphore but before the first processor can lock the data block. The incorrect
sequence is:

1. the first processor tests the semaphore and sees that the block is available

2. the second processor then tests the bit and also sees that the block is available
3. both processors then set the bit to lock the data
4

. both proceed to use the data on the assumptlon that the data cannot be
changed by another processor

1 [SENAPHORE 3
BANK 3
° |SEMAPHOF1E 2
BANK 2
o [SEMAPHORE T
BANK 1
1 [SEMAPHORED
BANK 0
DSP56002 PROCESSOR
LOCAL LOCAL
MEMORY MEMORY
DSP56002 PROCESSOR
OR DMA
BUS BUS
ADDRESS BUFFER BUFFER ADDRESS
DATAAND DATAAND
CONTROL CONTROL
BUSES BUSES
ARBITRATION
LOGIC

Figure 4-17 Signaling Using Semaphores

The DSP56K processor series has a group of instructions designed to prevent this prob-
lem. They perform an indivisible read-modify-write operation and do not release the bus
between the read and write (specifically, AO-A15, DS, PS, and X/Y do not change state).
Using a read-modify-write operation allows these instructions to test the sema-
phore and then to set, clear, or change the semaphore without the possibility of
another processor testing the semaphore before it is changed. The instructions are
bit test and change (BCHG), bit test and clear (BCLR), and bit test and set (BSET).
(They are discussed in detail in the DSP56000 Family Manual.) The proper way to set
the semaphore to gain exclusive access to a memory block is to use BSET to test the
semaphore and to set it to one. After the bit is set, the result of the test operation will
reveal if the semaphore was clear before it was set by BSET and if the memory block is
available. If the bit was already set and the block is in use by another processor, the DSP
must wait to access the memory block.

SECTION 5

PORT B

5.1 INTRODUCTION

Port B is a dual-purpose I/O port. It performs as 15 general-purpose /O (GPIO) pins,
each configurable as output or input, to be used for device control. Or, it can perform as
an 8-bit bidirectional host interface (HI) (see Figure 5-1), where it provides a convenient
connection to another processor. This section describes both configurations, including
examples of how to configure and use the port.

DEFAULT
FUNCTION

'EXTERNAL ADDRESS
SWITCH

16
+> A0-A15

EXTERNAL DATA
SWITCH

24
|-€»&=>- D0-D23

[PS5

BUS
CONTROL

PORT | f———> D%
10 i
@ | ——>m
————WR
|—— BN
-¢————BR

MA
PARALLEL
INTERFACE

—: C]
[WT
e G5

8 8
|- PBO - PB7 i

SCI
INTERFACE

Ssl
INTERFACE

_ - PB8
¥ PB9
P%RT - PB10
0
) B2
‘ - PB13 -
PB14
PCO
- PC1
- PC2 >
P%RT PC3
gg PC4
PCS
[¢——— PC6 -
- PC7
Pcs

Figure 5-1 Port B Interface

ALTERNATE
FUNCTION

HO-H7

HA1
HA2
HRW

HACK or PB14

RXD
TXD
SCLK
sco
sc1
sc2
SCK
SRD
S§TD

52 GENERAL PURPOSE I/O CONFIGURATION

When it is configured as general-purpose I/O, Port B acts as three memory-mapped reg-
isters (see Figure 5-2) that control 15 I/O pins (see Figure 5-3). They are the Port B control
register (PBC), Port B data direction register (PBDDR), and Port B data register (PBD).

The software and hardware resets clear the PBC and PBDDR, which configures Port B
as general-purpose /O, with all 15 pins as inputs. (External circuitry connected to these
pins may need pullups until the pins are configured for operation.)

To select between general purpose I/0 and the HI, set PBC bits 0 and 1 as shown in Fig-
ure 5-2. Use the PBDDR to determine whether the corresponding bit in the PBD shall be
an input pin (bit is set to zero) or an output pin (bit is set to one).

If a pin is configured as a GPIO input (as shown in Figure 5-4) and the processor reads
the PBD, the processor sees the logic level on the pin. If the processor writes to the PBD,
the data is latched there, but does not appear on the pin because the buffer is in the high-
impedance state.

23 0

Bc|BC| PORT B CONTROL

XstFEoo00000000000000_00000001oREGISTER(PBC)

[
Y
BC1 | BCO Function
0 0 Parallel I/O (Reset Condition)
0 1 Host Interface
1 0 Host Interface (with HACK pin as GPIO)
1 1 Reserved
23 0
xsrrez] 0| olo]o]ofo]olo]o]eoeo]eo[eo]eo]eoeo[en]eoeo[en]eo]eofeo[en] PO Eon™
1a)13fref1n]1ofofsj7]e[s5]4]3]2]1]0]| Recister(PaoDR)
r__I
BDx Data Direction
0 Input (Reset Condition)
1 Output
23 0
PORT B DATA
wsrees o o[o [o[o] o oo [o [e[Rl e [s e e o]z e] resereien

Figure 5-2 Parallel Port B Registers

ENABLED BY DIRECTION INPUT/QUTPUT

BITS IN SELECTED BY DATA
X:$FFEQ X$FFE2 XSFFE4
PBO }e——— BCOBC1 BDO PBO
PBI {€———s BCO/BC1 BD1 PB1
PB2 f—— BCO/BCH BD2 PB2
PB3 |€———s BCO/BC1 803 PB3
P PB4 Je—— BCO/BCI BD4 PB4
O pB5 fe—— BCOBCT BD5 PBS
R pB6 [«——>BCOBCH BD6 PB6
PB7 |———» BCO/BC1 BD? PB7
g PBBf«——»BCOBC BD8 PB8
PB9 |e———» BCO/BC1 BD9 PB9
PB10 |t~ BCO/BCT BD10 PB10
PB11 je——— BCOBCH BD11 PB11
PB12 |————» BCO/BCT BD12 PB12
PB13 |———» BCO/BCH BD13 PB13
PB14 |s———» BCO/BCH BD14 PB14

Figure 5-3 Parallel Port B Pinout

If a pin is configured as a GPIO output and the processor reads the PBD, the processor
sees the contents of the PBD rather the logic level on the pin, which allows the PBD to be
used as a general purpose 15-bit register. If the processor writes to the PBD, the data is
latched there and appears on the pin during the following instruction cycle (see Section
5.2.2 Port B General Purpose I/0 Timing).

If a pin is configured as a host pin, the Port B GPIO registers can be used to help in
debugging the HI. If the PBDDR bit for a given pin is cleared (configured as an input), the
PBD will show the logic level on the pin, regardless of whether the HI function is using the
pin as an input or an output. ‘

If the PBDDR is set (configured as an output) for a given pin that is configured as a host
pin, when the processor reads the PBD, it sees the contents of the PBD rather than the
logic level on the pin - another case which allows the PBD to act as a general purpose
register.

Note: The external host processor should be carefully synchronized to the DSP56002 to
assure that the DSP and the external host will properly read status bits transmitted
between them. There is more discussion of such port usage considerations in sec-
tions Section 5.3.2.7 Host Port Usage Considerations — DSP Side and Section
5.3.6.5 Host Port Usage Considerations — Host Side.

5.2.1 Programming General Purpose I/O

Port B is a memory-mapped peripheral as are all of the DSP56002 peripherals (see
Figure 5-5). The standard MOVE instruction transfers data between Port B and a reg-
ister; as a result, MOVE takes two instructions to perform a memory-to-memory data

Port Control Data Direction " .
" N . " Pin Function
Register Bit Register Bit
0 . 0 Port Input Pin
0 1 Port Output Pin
1 X Alternate Function
PORT B DATA (PBD) “
—™ REGISTERBIT
(GPIO
POSITION)
—-0
DATA DIRECTION
PORT REGISTER (PBDDR) BIT
REGISTERS |
O
.| PoRTBCONTROL
~™| REGISTER (PBC) BIT - (INPUT
POSITION)
PORT INPUT DATA BIT
— HI OUTPUT DATABIT

PERIPHERAL _| Hi DATA DIRECTION BIT
’ LOGIC

HI INPUT DATA BIT

Figure 5-4 Port B I/O Pin Control Logic

transfer and uses a temporary holding register. The MOVEP instruction is specifically
designed for I/O data transfer as shown in Figure 5-6. Although the MOVEP instruc-
tion may take twice as long to execute as a MOVE instruction, only one MOVEP is
required for a memory-to-memory data transfer, and MOVEP does not use a tempo-
rary register. Using the MOVEP instruction allows a fast interrupt to move data to/from
a peripheral to memory and execute one other instruction or move the data to an abso-
lute address. MOVEP is the only memory-to-memory move instruction; however, one
of the operands must be in the top 64 locations of either X: or Y: memory.

The bit-oriented instructions that use 1/0 short addressing (BCHG, BCLR, BSET, BTST,
JCLR, JSCLR, JSET, and JSSET) can also be used to address individual bits for faster
I/0 processing. The digital signal processor (DSP) does not have a hardware data strobe
to strobe data out of the GPIO port. If a strobe is needed, it can be implemented using
software to toggle one of the GPIO pins.

X:$FFFF
X:$FFFE
X:$FFFD
X:$FFFC
X:$FFFB
X:$FFFA
X:$FFF9
X:$FFF8
X:$FFF7
X:$FFF6
X:$FFFS5
X:$FFF4
X:$FFF3
X:$FFF2
X:$FFF1
X:$FFFO
X:$FFEF
X:$FFEE
X:$FFED
X:$FFEC
X:$FFEB
X:$FFEA
X:$FFE9
X:$FFE8
X:3FFE7
X:$FFE6
X:$FFES
X:$FFE4
X:$FFE3
X:$FFE2
X:$FFE1
X:$FFEO
X:$FFDF
X:3FFDE

X:$FFCO

23

16 15

Read as random number; write as don’t care.

INTERRUPT PRIORITY REGISTER (IPR)

PORT A— BUS CONTROL REGISTER (BCR)

PLL CONTROL REGISTER

OnCE GDB REGISTER

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

SCI HI - REC/XMIT DATA REGISTER (SRX/STX)
SCI MID - REC/XMIT DATA REGISTER (SRX/STX)
SCI LOW - REC/XMIT DATA REGISTER (SRX/STX)
SCI TRANSMIT DATAADDRESS REGISTER (STXA)
SCI CONTROL REGISTER (SCCR)

SCI INTERFACE STATUS REGISTER (SSR)
SCIINTERFACE CONTROL REGISTER (SCR)

SSI RECIEVE/TRANSMIT DATA REGISTER (RXTX)
SSI STATUS/TIME SLOT REGISTER (SSISR/TSR)
SS! CONTROL REGISTER B (CRB)

SSI CONTROL REGISTER A (CRA)

HOST RECEIVE/TRANSMIT REGISTER (HRX/HTX)
RESERVED

HOST STATUS REGISTER (HSR)

HOST CONTROL REGISTER (HCR)

RESERVED

RESERVED

PORT C — DATA REGISTER (PCD)

PORT B — DATA REGISTER (PBD) I

PORT C — DATA DIRECTION REGISTER (PCDDR)

PORT B — DATA DIRECTION REGISTER (PBDDR) I

PORT C — CONTROL REGISTER (PCC)

PORT B — CONTROL REGISTER (PBC) I

TIMER COUNT REGISTER (TCR)
TIMER CONTROL/STATUS REGISTER (TCSR)

RESERVED

Figure 5-5 On-Chip Peripheral Memory Map

MOVE #3%0,X:$FFEO :Select Port B to be general-purpose 1/0

MOVE #3$7F00,X:$FFE2 ;Select pins PBO-PB7 to be inputs
U] ;and pins PB8-PB14 to be outputs

MOVEP #data_out,X:$FFE4 ;Put bits 8—14 of “data_out” on pins
;PB8—PB14 bits 0-7 are ignored
MOVEP X:$FFE4,#data_in ;Put PB0-PB?7 in bits 0-7 of “data_in"

Figure 5-6 Instructions to Write/Read Parallel Data with Port B

Figure 5-7 details the process of programming Port B as GPIO. Normally, it is not good
programming practice to activate a peripheral before programming it. However, reset acti-
vates the Port B general-purpose I/O as all inputs; the alternative is to configure Port B as
an HI, which may not be desirable. In this case, it is probably better to insure that Port B
is initially configured for general-purpose |/O, and then configure the data direction and
data registers. it may be better in some situations to program the data direction or the data
registers first to prevent two devices from driving one signal. The order of steps 1, 2, and
3 in Figure 5-7 is optional and can be changed as needed.

5.2.2 Port B General Purpose I/0 Timing
General purpose data written to Port B is synchronized to the central processing unit

(CPU) but delayed by one instruction cycle. For example, the instruction
MOVE DATA15X:PORTB DATA24,Y:EXTERN

1. writes 15 bits of data to the Port B register, but the output pins do not change
until the following instruction cycle

2. writes 24 bits of data to the external Y memory, which appears on Port A dur-
ing T2 and T3 of the current instruction

As aresult, ifitis desirable to synchronize Port A and Port B outputs, two instructions must
be used:

MOVE DATA15,X:PORTB
NOP DATA24,Y:EXTERN

The NOP can be replaced by any instruction that allows parallel moves. Inserting one or
more “MOVE DATA15,X:PORTB DATA24,Y:EXTERN?” instructions between the first and

second instruction effectively produces an external 39-bit write each instruction cycle with
only one instruction cycle lost in setup time:

MOVE DATA15,X:PORTB
MOVE DATA15X:PORTB DATA24,Y:EXTERN
MOVE DATA15X:PORTB DATA24,Y:EXTERN

MOVE DATA15X:PORTB DATA24,Y:EXTERN
NOP ' DATA24,Y:EXTERN

One application of this technique is to create an extended address for Port A by concate-
nating the Port A address bits (instead of data bits) to the Port B general-purpose output
bits. The Port B general-purpose 1/0 register would then work as a base address register,
allowing the address space to be extended from 64K words (16 bits) to two billion words
(16 bits +15 bits = 31 bits).

STEP 1. ACITIVATE PORT B FOR GENERAL - PURPOSE l/O:
SETBITS 0 AND 1 TO ZERO:

BC[BC| PORTB
1| 0 | CONTROL REGISTER (PBC)

XSFFEO) * | *) * | > | *x) *] =] *]| *] | *| *] *| *

STEP 2. SET INDIVIDUAL PINS TO INPUT OR OUTPUT:
BDxx=0 s INPUT

OR
BDxx=1 wp QUTPUT

. _ [Bo[eo[Bo]eo[o] eo]eo[eo[en]eo[E0 e [E0[B0]ED] PORT B DATA DIRECTION
X:$FFE2 1| 13| 2| 11| 10|l s|8]7|e6|5]4]3]|2]1]0|ReaisTER (PEDODR)

STEP 3. WRITE OR READ DATA:
PBxx = INPUTIFBDxx=0

OR
PBxx mp OUTPUTIF BDxx=1

15 : 0
] N EEEEEEEEEEEEEEE RN
X:$FFE4 14| 13] 12| 11]1ol el sl 7{6]|s]4|a]2]1]o]|RecisTER (PED)

*Reserved; write as zero.

Figure 5-7 1/O Port B Configuration

Port B uses the DSP CPU four-phase clock for its operation. Therefore, if wait states are
inserted in the DSP CPU timing, they also affect Port B timing. The result is that ports A
and B in the previous synchronization example will always stay synchronlzed regardless
of how many wait states are used. :

5.3 HOSTINTERFACE (HI)

The Hl is a byte-wide, full-duplex, double-buffered, parallel port which may be connected
directly to the data bus of a host processor. The host processor may be any of a number
of industry standard microcomputers or microprocessors, another DSP, or DMA hardware
because this interface looks like static memory. The HI is asynchronous and consists of
two banks of registers — one bank accessible to the host processor and a second bank
accessible to the DSP CPU (see Flgure 5- 8) A brief descrlptlon of the HI features is pre-
sented in the following listing:

Speed :
3.3 Million Word/Sec Interrupt Driven Data Transfer Rate (This is the maximum mterrupt
rate for the DSP56002 running at 40 MHz ~i.e., one interrupt every six instruction cycles.)

Signals (15 Pins)

Ho-H7 Host Data Bus
HAO-HA2 Host Address Select
HRW Host Read/Write Control
HEN Host Transfer Enable
HREQ Host Request

HACK Host Acknowledge

Interface — DSP CPU Side
Mapping: Three X: Memory Locations
Data Word: 24 Bits

Transfer Modes:
DSP to Host
Host to DSP
Host Command

Handshaking Protocols:
Software Polled
Interrupt Driven (Fast or Long Interrupts)
Direct Memory Access '

Instructions:
Memory-mapped reglsters allow the standard MOVE instruction to be used
Special MOVEP instruction provides for I/O service capability using fast interrupts
Bit addressing instructions (BCHG, BCLR, BSET, BTST, JCLR, JSCLR, JSET,
JSSET) simplify I/O service routines -
1/0 short addressing provides faster execution with fewer instruction words

Interface — Host Side
Mapping:
Eight Consecutive Memory Locations
Memory-Mapped Peripheral for Microprocessors, DMA Controllers, etc.

Data Word: Eight Bits

Transfer Modes:
DSP to Host
Host to DSP
Host Command
Mixed 8-, 16-, and 24-Bit Data Transfers

Handshaking Protocols:
Software Polled
Interrupt Driven and Compatible with MC68000
Cycle Stealing DMA with Initialization

Dedicated Interrupts:
Separate Interrupt Vectors for Each Interrupt Source
Special host commands force DSP CPU interrupts under host processor control,
which are useful for:
Real-Time Production Diagnostics
Debugging Window for Program Development
Host Control Protocols and DMA Setup

Figure 5-8 is a block diagram showing the registers in the HI. These registers can be
divided vertically down the middle into registers visible to the host processor on the left
and registers visible to the DSP on the right. They can also be divided horizontally into
control at the top, DSP-to-host data transfer in the middle (HTX, RXH, RXM, and RXL),
and host-to-DSP data transfer at the bottom (THX, TXM, TXL, and HRX).

5.3.1 Host Interface — DSP CPU Viewpoint

The DSP CPU views the Hl as a memory-mapped peripheral occupying three 24-bit
words in data memory space. The DSP may use the HI as a normal memory-mapped
peripheral, using either standard polled or interrupt programming techniques. Separate
transmit and receive data registers are double buffered to allow the DSP and host proces-
sor to efficiently transfer data at high speed. Memory mapping allows DSP CPU
communication with the Hl registers to be accomplished using standard instructions and
addressing modes. In addition, the MOVEP instruction allows Hi-to-memory and memory-
to-HI data transfers without going through an intermediate register. Both hardware and
software reset disable the HI and change Port B to general-purpose 1/O with all pins des-
ignated as inputs.

DSP CPU GLOBAL

xsrFEg DATABUS
50 | REGRUFT CONTROL o A HOST CONTROL REGISTER -
ICR [(READWRITE) ~,* HCR |31 (READWRITE)
Seo ’
Ss. T XSFFED
COMMAND VECTOR
st | REGISTER "~ | 1ien _ | HOST STATUS REGISTER
cVR | (READWRITE) 1 (READONLY)
....... FLECECTEREEEE. =
’l
’l
’
| 52 VinterrupTsTATUS
ISR | REGISTER
(READ ONLY) CONTROL
LoGIC
INTERRUPTVECTOR |
If}; REGISTER
HOST MPU (READWRITE)
DATABUS ¢
XS$FFEB
e o | FECEVEBYTE
5 | REGISTERS
“ o P (Ero ONLY)
. 24 HOST TRANSMIT
ol ” HTX | DATAREGISTER "
(WRITE ONLY),
$7
B RAXL
XSFFEB 24
TRANSMIT BYTE /
$5_| REGISTERS
TXH (WRITE ONLY)
con : HOST RECIEVE
o %6 z | HRX DATAREGISTER
XM 7 | (READONLY)
$7
XL ,

Figure 5-8 HI Block Diagram

53.2 Programming Model — DSP CPU Viewpoint

The HI has two programming models: one for the DSP programmer and one for the host pro-
cessor programmer. In most cases, the notation used reflects the DSP perspective. The HI -
DSP programming model is shown in Figure 5-9. There are three registers: a control register
(HCR), a status register (HSR), and a data transmit/receive register (HTX/HRX). These reg-
isters can only be accessed by the DSP56002; they can not be accessed by the host
processor. The Hl host processor programming model is shown in Figure 5-12.

X:$FFEB

X:$FFEB

DSP CPU HI FLAGS

NOTE: The numbers in parentheses are reset values.

HOST FLAG 3
HOST FLAG 2
7 0
HF3 | HF2 | HCIE| HTIE | HRIE | HOST CONTROL REGISTER (HCR)
:$FFE
XerFEel 0 L O L O Ly | 0 | @) @ | @ |wresomwrrs
INTERRUPT ENABLES
HOST RECEIVE
HOST TRANSMIT
HOST COMMAND
HOST HI FLAGS
HOST FLAG 1
HOST FLAG 0
7 : 0
DMA HF1 | HFO | HCP | HTDE | HRDF
X:$FFEQ ol o l? HOST STATUS REGISTER (HSR)
© © | © o] o | © |reabony
HOST RECEIVE DATA FULL
HOST TRANSMIT DATA EMPTY
HOST COMMAND PENDING
23 1615 87 0
- CEl T T
RECEIVEHIGHBYTE | RECEIVEMIDDLE BYTE | RECEVELOWBYTE | (g (eaooniey o
‘ RANSMIT DATA REGISTE
TRANSMIT HIGH BYTE | TRANSMIT MIDDLE-BYTE | TRANSMITLOWBYTE | s aeony oo o
7 07 07 0

Figure 5-9 Host Interface Programming Model — DSP Viewpoint

The following paragraphs describe the purpose and operation of each bit in each register
of the HI visible to the DSP CPU. The effects of the different types of reset on these reg-
isters are shown. A brief discussion of interrupts and operation of the DSP side of the HI
complete the programming model from the DSP viewpoint. The programming model from
the host viewpoint begins at Section 5.3.3. 1 Programmmg Model — Host Processor
Viewpoint. :

5.3.2.1 Host Control Register (HCR)

The HCR is an 8-bit read/write control register used by the DSP to control the Hl interrupts
and flags. The HCR cannot be accessed by the host processor. It occupies the low-order
byte of the internal data bus; the high-order portion is zero filled. Any reserved bits are
read as zeros and should be programmed as zeros for future compatibility. (The bit manip-
ulation instructions are useful for accessing the individual bits in the HCR.) The contents
of the HCR are cleared on hardware or software reset. The control bits are described in
the following paragraphs.

5.3.2.1.1 HCR Host Receive Interrupt Enable (HRIE) Bit 0

The HRIE bit is used to enable a DSP interrupt when the host receive data full (HRDF)
status bit in the host status register (HSR) is set. When HRIE is cleared, HRDF interrupts
are disabled. When HRIE is set, a host receive data interrupt request wnII occur if HRDF
is also set. Hardware and software resets clear HRIE.

5.3.2.1.2 HCR Host Transmit Interrupt Enable (HTIE) Bit 1

The HTIE bit is used to enable a DSP interrupt when the host transmit. data empty
(HTDE) status bit in the HSR is set. When HTIE is cleared, HTDE interrupts are disabled.
When HTIE is set, a host transmit data interrupt request will occur if HTDE is also set.
Hardware and software resets clear the HTIE.

53.2.1.3 HCR Host Command Interrupt Enable (HCIE) Bit 2

The HCIE bit is used to enable a vectored DSP interrupt when the host command pend-
ing (HCP) status bit in the HSR is set. When HCIE is cleared, HCP interrupts are dis-
abled. When HCIE is set, a host command interrupt request will occur if HCP is also set.
The starting address of this interrupt is determined by the host vector (HV). Hardware
and software resets clear the HCIE.

5.3.2.1.4 HCR Host Flag 2 (HF2) Bit 3

The HF2 bit is used as a general-purpose flag for DSP-to-host communication. HF2 may
be set or cleared by the DSP. HF2 is visible in the interrupt status register (ISR) on the
host processor side (see Figure 5-10). Hardware and software resets clear HF2.

5.3.21.5 HCR Host Flag 3 (HF3) Bit 4 ‘

The HF3 bit is used as a general-purpose flag for DSP-to-host communication. HF3 may
be set or cleared by the DSP. HF3 is visible in the ISR on the host processor side (see
Figure 5-10). Hardware and software resets clear HF3.

Note: There are four host flags: two used by the host to signal the DSP (HFO and HF1)
and two used by the DSP to signal the host processor (HF2 and HF3). They are
general purpose flags and are not designated for any specific purpose. The host
flags do not cause interrupts; they must be polled to see if they have changed.
These flags can be used individually or as encoded pairs. See Section 5.3.2.7

" Host Port Usage Considerations — DSP Side for additional information. An ex-
ample of the usage of host flags is the bootstrap loader, which is listed in the
DSP56001 Technical Data Sheet. Host flags are used to tell the bootstrap program
whether or not to terminate early.

5.3.2.1.6 HCR Reserved Control (Bits 5,6,and 7)
These unused bits are reserved for future expanswn and should be written with zeros for
upward compatibility.

5.3.2.2 Host Status Register (HSR)

The HSR is an 8-bit read-only status register used by the DSP to interrogate status and
flags of the HI. It can not be directly accessed by the host processor. When the HSR is
read to the internal data bus, the register contents occupy the low-order byte of the data
bus; the high-order portion is zero filled. The status bits are described in the following
paragraphs.

53.2.2.1 HSR Host Receive Data Full (HRDF) Bit 0

The HRDF bit indicates that the host receive data register (HRX) contains data from the
host processor. HRDF is set when data is transferred from the TXH:TXM:TXL registers
to the HRX register. HRDF is cleared when HRX is read by the DSP. HRDF can also be
cleared by the host processor using the initialize function. Hardware, software, individual,
and STOP resets clear HRDF.

5.3.2.22 HSR Host Transmit Data Empty (HTDE) Bit 1

The HTDE bit indicates that the host transmit data register (HTX) is empty and can be written
by the DSP. HTDE is set when the HTX register is transferred to the RXH:RXM:RXL regis-
ters. HTDE is cleared when HTX is written by the DSP. HTDE can also be set by the host
processor using the initialize function. Hardware, software, individual, and STOP sets HTDE.

5.3.2.2.3 HSR Host Command Pending (HCP) Bit 2

The HCP bit indicates that the host has set the HC bit and that a host command interrupt
is pending. The HCP bit reflects the status of the HC bit in the command vector register
(CVRY). HC and HCP are cleared by the DSP exception hardware when the exception is
taken. The host can clear HC, which also clears HCP. Hardware, software, individual,
and STOP resets clear HCP.

53.2.2.4 HSR Host Flag 0 (HF0) Bit 3

The HFO bit in the HSR indicates the state of host flag 0 in the ICR on the host processor
side. HFO can only be changed by the host processor (see Figure 5-10). Hardware, soft-
ware, individual, and STOP resets clear HFO.

5.3.2.2.5 HSR Host Flag 1 (HF1) Bit 4

The HF1 bit in the HSR indicates the state of host flag 1 in the ICR on the host processor
side. HF1 can only be changed by the host processor (see Figure 5-10). Hardware, soft-
ware, individual, and STOP resets clear HF1.

HOST TO DSP56002 STATUS FLAGS

7 0

INTERRUPT CONTROL REGISTER (ICR}
HOST $OI INIT | HM1 HMO I HF1 I HFO ' 0 |TREQ IRREQl(READNVRITE)

7 ‘ 0

pspseooz x:sFFEa| owa [o | o | wFr | wro | Hop [wroe [Heor H*:;TDSJQI%S REGISTER (HSR)

DSP56002 TO HOST STATUS FLAGS

7 0

: INTERRUPT STATUS REGISTER (ISR
HOST $2| HREQl DMA | 0 | HF3 I HF2 |TRDﬂTXDE |RXDF |(HEADONLY) (SR)

7 0

DSPS56002 X2$FFE8I 0 I 0 | 0 l HF3 | HF2 |HCIE I HTIE |HRIE |FF?;B$;;E?LREGISTER(HCR)

Figure 5-10 Host Flag Operation

5.3.2.2.6 HSR Reserved Status (Bits 5 and 6)
These status bits are reserved for future expansion and read as zero during DSP
read operations. :

53.2.2.7 HSR DMA Status (DMA) Bit 7

The DMA bit indicates that the host processor has enabled the DMA mode of the HI by
setting HM1 or HMO to one. When the DMA bit is zero, it indicates that the DMA mode is
disabled by the HMO and HM1 bits in the ICR and that no DMA operations are pending.
When the DMA bit is set, the DMA mode has been enabled if one or more of the host
mode bits have been set to one. The channel not in use can be used for polled or inter-
rupt operation by the DSP. Hardware, software, individual, and STOP resets clear the
DMA bit. ‘

5.3.2.3 Host Receive Data Register (HRX)

The HRX register is used for host-to-DSP data transfers. The HRX register is viewed as
a 24-bit read-only register by the DSP CPU. The HRX register is loaded with 24-bit data
from the transmit data registers (TXH:TXM:TXL) on the host processor side when both
the transmit data register empty TXDE (host processor side) and DSP host receive data
full (HRDF) bits are cleared. This transfer operation sets TXDE and HRDF. The HRX reg-
ister contains valid data when the HRDF bit is set. Reading HRX clears HRDF. The DSP
may program the HRIE bit to cause a host receive data interrupt when HRDF is set.
Resets do not affect HRX. '

5.3.24 Host Transmit Data Register (HTX)

The HTX register is used for DSP-to-host data transfers. The HTX register is viewed as a
24-bit write-only register by the DSP CPU. Writing the HTX register clears HTDE. The
DSP may program the HTIE bit to cause a host transmit data interrupt when HTDE is set.
The HTX register is transferred as 24-bit data to the receive byte registers
(RXH:RXM:RXL) if both the HTDE bit (DSP CPU side) and receive data full (RXDF) status
bits (host processor side) are cleared. This transfer operation sets RXDF and HTDE. Data
should not be written to the HTX until HTDE is set to prevent the previous data from being
overwritten. Resets do not affect HTX.

5.3.25 Register Contents After Reset

Table 5-1 shows the results of four reset types on bits in each of the Hl registers seen by
the DSP CPU. The hardware reset (HW) is caused by the RESET signal; the software
reset (SW) is caused by executing the RESET instruction; the individual reset (IR) is
caused by clearing PBC register bits 0 and 1, and the stop reset (ST) is caused by exe-
cuting the STOP instruction. ‘

Table 5-1 Host Registers after
Reset-DSP CPU Side

Reset Type
Register Register
Name Data HW sw IR ST
Reset | Reset | Reset | Reset
HF(3-2) 0 0 _ —
HCIE 0 0 — —
HCR
HTIE 0 [—_ —_
HRIE 0 0 - —_
DMA 0 0 0 0
HF(1 - 0) 0 0 0 0
HSR HCP 0 0 0 0
HTDE 1 1 1 1
HRDF 0 0 0 0
HRX HRX (23 - 0) — — — —
HTX HTX (23 - 0) - — - —

53.2.6 Host Interface DSP CPU Interrupts

The HI may request interrupt service from either the DSP or the host processor. The DSP
CPU interrupts are internal and do not require the use of an external interrupt pin (see Fig-
ure 5-11). When the appropriate mask bit in the HCR is set, an interrupt condition caused
by the host processor sets the appropriate bit in the HSR, which generates an interrupt
request to the DSP CPU. The DSP acknowledges interrupts caused by the host processor
by jumping to the appropriate interrupt service routine. The three possible interrupts are
1) receive data register full, 2) transmit data register empty, and 3) host command. The
host command can access any interrupt vector in the interrupt vector table although it has
a set of vectors reserved for host command use. The DSP interrupt service routine must
read or write the appropriate HI register (clearing HRDF or HTDE, for example) to clear
the interrupt. In the case of host command interrupts, the interrupt acknowledge from the
program controller will clear the pending interrupt condition.

53.2.7 Host Port Usage Considerations — DSP Side

Synchronization is a common problem when two asynchronous systems are connected,
and careful synchronization is required when reading multi-bit registers that are written by
another asynchronous system. The considerations for proper operation on the DSP CPU
side are discussed in the following paragraphs, and considerations for the host processor
side are discussed in Section 5.3.6.5 Host Port Usage Considerations — Host Side.

MASK
7 —"— o

X:$FFE| o [o I 0 I Hes | wr2 | noe | me | veie [Hor

DSP CPU INTERRUPTS

RECIEVE DATA FULL
P:$0020
] TRANSMIT DATA EMPTY
P:$0022

HOST COMMAND
D— P;(2xHV — $0000 - $007E)
RESET - HV = $0012 in CVR

7 0
X:$FFE| DMA | 0 I 2] ' HF1 | HF2 | HCP |HTDE IHRDF IHCB

STATUS

Figure 5-11 HSR-HCR Operation

DMA, HF1, HF0, HCP, HTDE, and HRDF status bits are set or cleared by the host pro-
cessor side of the interface. Thes_e bits are individually synchronized to the DSP clock.

The only system problem with reading status occurs if HF1 and HFQ are encoded as a
pair because each of their four combinations (00, 01, 10, and 11) has significance. There’
is a small possibility that the DSP will read the status bits during the transition and receive
“01” or “10” instead of “11”. The solution to this potential problem is to read the bits twice
for consensus (See Section 5.3.6.5 Host Port Usage Considerations — Host Side for
additional information). ‘

5.3.3 Host Interface — Host Processor Viewpoint

The HI appears to the host processor as eight words of byte-wide static memory. The host
may access the HI asynchronously by using polling techniques or interrupt-based tech-
niques. Separate transmit and receive data registers are double buffered to allow the DSP
CPU and host processor to transfer data efficiently at high speed. The HI contains a rudi-
mentary DMA controller, which makes generating addresses (HAO—HAZ2) for the TX/RX
registers in the HI unnecessary. ‘

5.3.3.1 Programming Model — Host Processor Viewpoint

The HI appears to the host processor as a memory-mapped peripheral occupying eight
bytes in the host processor address space (see Figure 5-12 and Figure 5-13). These reg-
isters can be viewed as one control register (ICR), one status register (ISR), three data
registers (RXH/TXH, RXM/TXM, and RXL/TXL), and two vector registers (IVR and CVR).
The CVR is a special command register that is used by the host processor to issue com-
mands to the DSP. These registers can be accessed only by the host processor; they
can not be accessed by the DSP CPU. Host processors may use standard host proces-
sor instructions (e.g., byte move) and addressing modes to communicate with the HI
registers. The Hl registers are addressed so that 8-bit MC6801-type host processors can
use 16-bit load (LDD) and store (STD) instructions for data transfers. The 16-bit
MC68000/MC68010 host processor can address the HI using the special MOVEP
instruction for word (16-bit) or long-word (32-bit) transfers. The 32-bit MC68020 host pro-
cessor can use its dynamic bus sizing feature to address the HI using standard MOVE
word (16-bit), long-word (32-bit) or quad-word (64-bit) instructions. The HREQ and
HACK handshake flags are provided for polled or interrupt-driven data transfers with the
host processor. Because the DSP interrupt response is sufficiently fast, most host micro-
processors can load or store data at their maximum programmed I/O (non-DMA)
instruction rate without testing the handshake flags for each transfer. If the full hand-
shake is not needed, the host processor can treat the DSP as fast memory, and data can
be transferred between the host processor and the DSP at the fastest host processor
data rate. DMA hardware may be used with the handshake flags to transfer data without
host processor intervention.

One of the most innovative features of the host interface is the host command feature.
With this feature, the host processor can issue vectored exception requests to the
DSP56002. The host may select any one of 64 DSP56002 exception routines to be exe-
cuted by writing a vector address register in the HI. This flexibility allows the host
programmer to execute up to 64 preprogrammed functions inside the DSP56002. For
example, host exceptions can allow the host processor to read or write DSP56002 regis-
ters (X, Y, or program memory locations), force exception handlers (e.g., SSI, SCI, TRQA,
TRQB exception routines), and perform control and debugging operations if exception rou-
tines are implemented in the DSP56002 to perform these tasks.

5.3.3.2 Interrupt Control Register (ICR)

The ICR is an 8-bit read/write control register used by the host processor to control the HI
interrupts and flags. ICR cannot be accessed by the DSP CPU. ICR is a read/write regis-
ter, which allows the use of bit manipulation instructions on control register bits. The
control bits are described in the following paragraphs.

MODES FLAGS
7 f__A_\ f_—A_‘\ 0]
INIT | HM1 | HMO | HF1 | HFO TREQ | RREQ | INTERRUPT CONTROL REGISTER (ICR)

%0 (0) 0) (0)) | (0) 0 (0) (0) | (READWRITE)

0 0 | Interrupt Mode (DMA Off)

0 1 24-Bit DMA Mode

1 0 | 16-Bit DMA Mode

1 1 8-Bit DMA Mode

7 5 0
. HC 0 HOST VECTOR COMMAND VECTOR REGISTER (CVR)
0) ($12) {READ/WRITE)
FLAGS STATUS
7 S
2 HREQ| DMA o HF3 | HF2 | TRDY | TXDE | RXDF | INTERRUPT STATUS REGISTER (ISR)
©) | 0 | 0 (1) | (1) | (0) | (READONLY)

7 , 0
s INTERRUPT VECTOR NUMBER INTERRUPT VECTOR REGISTER (IVR)
($0F) (READ/WRITE)
RECEIVE BYTE REGISTERS (RXH:RXM:RXL)
(READ ONLY)
31 $4 24 23 $5 16 15 $6 ‘8 7 $7 0
RXH RXM ‘ RXL
00000000 RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE
TXH . TXM XL
NOT USED TRANSMIT HIGH BYTE | TRANSMIT MIDDLE BYTE | TRANSMIT LOW BYTE

7 07 07 07 0

TRANSMIT BYTE REGISTERS (TXH:TXM:TXL)
(WRITE ONLY)

NOTE: The numbers in parentheses are reset values.

Figure 5-12 Host Processor Programming Model — Host Side

$0 ICR INTERRUPT CONTROL
$1 CVR COMMAND VECTOR
$2 ISR " | INTERRUPT STATUS
HOSTADDRESS ~ $3 IVR INTERRUPT VECTOR
HAO - HA2
84 00000000 UNUSED
$5 RXH/TXH
RECEIVE/TRANSMIT
$6 RXM/TXM BYTES
$7 RXL/TXL
HOST DATABUS
HO - H7

Figure 5-13 HI Register Map

53.3.21 ICR Receive Request Enable (RREQ) Bit 0
The RREQ bit is used to control the HREQ pin for host receive data transfers.

In interrupt mode (DMA off), RREQ is used to enable interrupt requests via the external
host request (HREQ) pin when the receive data register full (RXDF) status bit in the ISR
is set. When RREQ is cleared, RXDF interrupts are disabled. When RREQ is set, the
external HREQ pin will be asserted if RXDF is set.

In DMA modes, RREQ must be set or cleared by software to select the direction of DMA
transfers. Setting RREQ sets the direction of DMA transfer to be DSP to host and enables
the HREQ pin to request data transfer. Hardware, software, individual, and STOP resets
clear RREQ. ' ‘

5.3.3.2.2 ICR Transmit Request Enable (TREQ) Bit 1
‘The TREQ bit is used to control the HREQ pin for host transmit data transfers.

In interrupt mode (DMA off), TREQ is used to enable interrupt requests via the external
HREQ pin when the transmit data register empty (TXDE) status bit in the ISR is set. When
TREQ is cleared, TXDE interrupts are disabled. When TREQ is set, the external HREQ
pin will be asserted if TXDE is set.

In DMA modes, TREQ must be set or cleared by software to select the direction of DMA
transfers. Setting TREQ sets the direction of DMA transfer to be host to DSP and enables
the HREQ pin to request data transfer. Hardware, software, individual, and STOP resets
clear TREQ. '

Table 5-2 summarizes the effect of RREQ and TREQ on the HREQ pin.

Table 5-2 HREQ Pin Definition

TREQ RREQ HREQ Pin
Interrupt Mode
0 0 No Interrupts (Polling)
0 1 RXDF Request (Interrupt)
1 0 TXDE Request (interrupt)
1 1 RXDF and TXDE Request (Interrupts)
DMA Mode
0 0 No DMA
0 1 DSP to Host Request (RX)
1 0 Host to DSP Request (TX)
1 1 Undefined (lllegal)

5.3.3.2.3 ICR Reserved Bit (Bit 2) ,
This bit, which is reserved and unused, reads as a logic zero.

5.3.3.24 ICR Host Flag 0 (HFO) Bit 3 , . :

The HFO bit is used as a general-purpose flag for host-to-DSP communication. HFO may
be set or cleared by the host processor and cannot be changed by the DSP. HFO is visi-
ble in the HSR on the DSP CPU side of the HI (see Figure 5-10). Hardware, software,
individual, and STOP resets clear HFO.

5.3.3.2.5 ICR HostFlag 1 (HF1) Bit4

The HF1 bit is used as a general-purpose flag for host-to-DSP communication. HF1 may
be set or cleared by the host processor and cannot be changed by the DSP. Hardware,
software, individual, and STOP resets clear HF 1. ‘

5.3.3.2.6 ICR Host Mode Control (HM1 and HMO bits) Bits 5 and 6
The HMO and HM1 bits select the transfer mode of the HI (see Table 5-3). HM1 and HMO
enable the DMA mode of operation or interrupt (non-DMA) mode of operation.

When both HM1 and HMO are cleared, the DMA mode is disabled, and the TREQband

RREQ control bits are used for host processor interrupt control via the external HREQ out--

put pin. Also, in the non-DMA mode, the HACK input pin is used for the MC68000 Family
vectored interrupt acknowledge input.

Table 5-3 Host Mode Bit Definition

HM1 HMoO Mode
0 0 Interrupt Mode (DMA Off)
0 1 DMA Mode (24 Bit)
1 0 DMA Mode (16 Bit)
1 1 DMA Mode (8 Bit)

When HM1 or HMO are set, the DMA mode is enabled, and the HREQ pin is used to
request DMA transfers. When the DMA mode is enabled, the TREQ and RREQ bits select
the direction of DMA transfers. The HACK input pin is used as a DMA transfer acknowl-
edge input. If the DMA direction is from DSP to host, the contents of the selected register
are enabled onto the host data bus when HACK is asserted. If the DMA direction is from
host to DSP, the selected register is written from the host data bus when HACK is asserted.

The size of the DMA word to be transferred is determined by the DMA control bits, HMO
and HM1. The Hl register selected during a DMA transfer is determined by a 2-bit address
counter, which is preloaded with the value in HM1 and HMO. The address counter substi-
tutes for the HA1 and HAO bits of the HI during a DMA transfer. The host address bit (HA2)
is forced to one during each DMA transfer. The address counter can be initialized with the
INIT bit feature. After each DMA transfer on the host data bus, the address counter is
incremented to the next register. When the address counter reaches the highest register
(RXL or TXL), the address counter is not incremented but is loaded with the value in HM1
and HMO. This allows 8-, 16- or 24-bit data to be transferred in a circular fashion and elim-
inates the need for the DMA controller to supply the HA2, HA1, and HAO pins. For 16- or
24-bit data transfers, the DSP CPU interrupt rate is reduced by a factor of 2 or 3, respec-
tively, from the host request rate —i.e., for every two or three host processor data transfers
of one byte each, there is only one 24-bit DSP CPU interrupt. -

Hardware, software, individual, and STOP resets clear HM1 and HMO.

5.3.3.2.7 ICR Initialize Bit (INIT) Bit7
The INIT bit i |s used by the host processor to force initialization of the HI hardware. Inltlal-
ization consists of conflgurlng the HI transmit and receive control bits and loading HM1
and HMO into the internal DMA address counter. Loading HM1 and HMO into the DMA
address counter causes the HI to begin transferring data on a word boundary rather than
transferring only part of the first data word.

- Table 5-4 HREQ Pin Definition

. Transfer
TREQ RREQ After INIT Execution Direction
o ‘ : ’ Initialized
Interrupt Mode (HM1 = 0, HMO = 0) INIT Execution
0 0 INIT = 0; Address Counter = 00 None
0 1 INIT = 0; RXDF = 0; HTDE = 1; Address DSP to Host
_ Counter = 00 :
1 0 INIT = 0; TXDE = 1; HRDF = 0; Address Host to DSP
_ Counter = 00
1 1 INIT = 0; RXDF = 0; HTDE = 1; TXDE = Host to/from DSP
1; HRDF = 0; Address Counter = 00
DMA Mode (HM1 or HMO = 1) INIT Execution
0 -0 INIT = 0; Address Counter = HM1, HMO None
0 1 INIT = 0; RXDF = 0; HTDE = 1; Address DSP to Host
Counter = HM1, HMO
1 0 INIT = 0; TXDE = 1; HRDF = 0; Address Host to DSP
Counter = HM1, HMO -
1 1 Undefined (lllegal) . Undefined

There are two methods of initialization: 1) allowing the DMA address counter to be auto-
matically set after transferring a word, and 2) setting the INIT bit, which sets the DMA
address counter. Using the INIT bit to initialize the HI hardware may or may not be nec-
essary, depending on the software design of the interface.

The type of initialization done when the INIT bit is set depends on the state of TREQ and
RREQ in the HI. The INIT command, which is local to the Hl, is designed to conveniently
configure the HI into the desired data transfer mode. The commands are described in the
following paragraphs and in Table 5-4. The host sets the INIT bit, which causes the HI hard-
ware to execute the INIT command. The interface hardware clears the INIT bit when the
command has been executed. Hardware, software, individual, and STOP resets clear INIT.

INIT execution always loads the DMA address counter and clears the channel according
to TREQ and RREQ. INIT execution is not affected by HM1 and HMO. '

The internal DMA counter is mcremented with each DMA transfer (each FI7_C'K pulse) until
it reaches the last data register (RXL or TXL). When the DMA transfer is completed, the
counter is loaded with the value of the HM1 and HMO bits. When changing the size of the

DMA word (changing HMO and HM1 in the ICR), the DMA counter is not automatically
updated, and, as a result, the DMA counter will point to the wrong data register immedi-
ately after HM1 and HMO are changed. The INIT function must be used to preset the
internal DMA counter correctly. Always set INIT after changing HMO and HM1. However,
the DMA counter can not be initialized in the middle of a DMA transfer. Even though the
INIT bit is set, the internal DMA controller will wait until after completing the data transfer
in progress before executing the initialization. .

5.3.3.3 Command Vector Register (CVR)

The host processor uses the CVR to cause the DSP to execute a vectored interrupt. The
host command feature is independent of the data transfer mechanisms in the Hl. It can
be used to cause any of the 64 possible interrupt routines in the DSP CPU to be exe-
cuted. The command vector register is shown in Figure 5-14.

5.3.3.3.1 CVR Host Vector (HV) Bits 0-5

The six HV bits select the host command exception address to be used by the host com-
mand exception logic. When the host command exception is recognized by the DSP
interrupt control logic, the starting address of the exception taken is 2xXHV. The host can
write HC and HV in the same write cycle, if desired.

7 6 5 4 3 2 1 0
IHcl * |HV5|HV4|HV3|HV2|HV1|Hvo|

HOST VECTOR
RESERVED
HOST COMMAND

Figure 5-14 Command 'Vector‘ Registér.

The host processor can select any of the 64 possible exception routine startmg addresses
in the DSP by writing the exception routine starting address divided by 2 into HV. This
means that the host processor can force any of the existing exception handlers (SS!, SCI,
IRQA, IRQB, etc.) and can use any of the reserved or otherwise unused starting
addresses provided they have been preprogrammed in the DSP. HV is set to $12 (vector
location $0024) by hardware, software, individual, and STOP resets Vector Iocatlon_
$0024 is the flrst of 45 special host command vectors.

CAUTION

The HV should not be used with a value of zero because the reset location
is normally programmed with a JMP instruction. Doing so will cause an im-
proper fast interrupt.

5.3.3.3.2 .CVR Reserved Bit (Bit 6)
Reserved bit which.is unused and read by the host processor as zero.

5.3.33.3 CVR Host Command Bit (HC) Bit 7

The HC bit is used by the host processor to handshake the execution of host command
exceptions. Normally, the host processor sets. HC=1 to request the host command
‘exception from the DSP. When the host command exception is acknowledged by the
DSP, the HC bit is cleared by the HI hardware. The host processor can read the state of
HC to determine when the host command has been accepted. The host processor may
elect to clear the HC bit, canceling the host command exception request at any time
before it is accepted by the DSP CPU.

CAUTION

The command exception might be recognized by the DSP and executed be-
fore it can be canceled by the host, even if the host clears the HC bit.

Setting HC causes host command pending (HCP) to be set in the HSR. The host can write
HC and HV in the same write cycle if desired. Hardware, software, individual, and STOP
resets clear HC. '

53.34 Interrupt Status Register (ISR) ,

The ISR is an 8-bit read-only status register used by the host processor to interrogate the
status and flags of the HI. The host processor can write this address without affecting the
internal state of the HI, which is useful if the user desires to access all of the HI registers
by stepping through the HI addresses. The ISR can not be accessed by the DSP. The sta-
tus bits are described in the following paragraphs.

5.3.3.4.1 ISR Receive Data Register Full (RXDF) Bit 0 :

The RXDF bit indicates that the receive byte registers (RXH, RXM, and RXL) contain
data from the DSP CPU and may be read by the host processor. RXDF is set when the
HTX is transferred to the receive byte registers. RXDF is cleared when the receive data
low (RXL) register is read by the host processor. RXL is normally. the last byte of the
receive byte registers to be read by the host processor. RXDF can be cleared by the host
processor using the initialize function. RXDF may be used to assert the external HREQ

pin if the RREQ bit is set. Regardless of whether the RXDF interrupt is enabled, RXDF
provides valid status so that polling techniques may be used by the host processor.
Hardware, software, individual, and STOP resets clear RXDF.

5.3.3.4.2 ISR Transmit Data Register Empty (TXDE) Bit 1

The TXDE bit indicates that the transmit byte registers (TXH, TXM, and TXL) are empty
and can be written by the host processor. TXDE is set when the transmit byte registers
are transferred to the HRX register. TXDE is cleared when the transmit byte low (TXL)
register is written by the host processor. TXL is normally the last byte of the transmit byte
registers to be written by the host processor. TXDE can be set by the host processor
using the initialize feature. TXDE may be used to assert the external HREQ pin if the
TREQ bit is set. Regardless of whether the TXDE interrupt is enabled, TXDE provides
valid status so that polling techniques may be used by the host processor Hardware,
software, |ndIV|duaI and STOP resets set TXDE

53.3.4.3 ISR Transmitter Ready (TRDY) Bit 2
The TRDY status bit indicates that both the TXH,TXM,TXL and the HRX registers are empty

TRDY=TXDE e HRDF

When TRDY is set to one, the data that the host processor writes to TXH,TXM, and TXL
will be immediately transferred to the DSP CPU side of the HI. This has many applica-
tions. For example, if the host processor issues a host command which causes the DSP
CPU to read the HRX, the host processor can be guaranteed that the data it just trans-
ferred to the Hl is what is being received by the DSP CPU.

Hardware, software, individual, and STOP resets set TRDY.

5.3.3.4.4 ISR Host Flag 2 (HF2) Bit 3

The HF2 bit in the ISR indicates the state of host flag 2inthe HCR on the CPU side. HF2
can only be changed by the DSP (see Figure 5-10). HF2 is cleared by a hardware or
software reset.

5.3.3.4.5 ISR Host Flag 3 (HF3) Bit 4

The HF3 bit in the ISR indicates the state of host flag 3 in the HCR on the CPU snde HF3
can only be changed by the DSP (see Figure 5-10). HF3 i |s cleared by a hardware or
software reset.

5.3.3.4.6 ISR Reserved Bit (Bit 5)
This status bit is reserved for future expansion and will read as zero during host proces-
sor read operations.

5.3.3.4.7 ISR DMA Status (DMA) Bit 6

The DMA :status bit indicates that the host processor has.enabled the DMA mode of the
HI (HM1 or HMO0=1). When the DMA status bit is clear, it indicates that the DMA mode is
disabled (HM0=HM1=0) and no DMA operations are pending. When DMA is set, it indi-
cates that the DMA mode is enabled and the host processor should not use the active
DMA channel (RXH, RXM, RXL or TXH, TXM, TXL depending on DMA direction) to avoid
conflicts with the DMA data transfers. The channel not in use can be used for polled oper-
ation by the host and operates in the interrupt mode for internal DSP exceptions or poll-
ing. Hardware, software, individual, and STOP resets clear the DMA status bit.

5.3.3.4.8 ISR Host Request (HREQ) Bit7

'The HREQ bit indicates the status of the external host request output pin (HREQ). When
the HREQ status bit is cleared, it indicates that the external HREQ pin is deasserted and
no host processor interrupts or DMA transfers are being requested. When the HREQ sta-
tus bit is set, it indicates that the external HREQ pin is asserted, indicating that the DSP
is interrupting the host processor or that a DMA transfer request is occurring. The HREQ
interrupt request may originate from either or both of two sources — the receive byte reg-
isters are full or the transmit byte registers are empty. These conditions are indicated by
the ISR RXDF and TXDE status bits, respectively. If the interrupt source has been
enabled by the associated request enable bit in the ICR, HREQ will be set if one or more
of the two enabled interrupt sources is set. Hardware, software, individual, and STOP
resets clear HREQ.

5.3.35 Interrupt Vector Register (IVR) :

The IVR is an 8-bit read/write register which typically contains the exception vector num-
ber used with MC68000 Family processor vectored interrupts. Only the host processor
can read and write this register. The contents of IVR are placed on the host data bus
(HO-H7) when both the HREQ and HACK pins are asserted and the DMA mode is dis-
abled. The contents of this register are initialized to $0F by a hardware or software reset,
which corresponds to the uninitialized exception vector in the MC68000 Family.

5.3.3.6 Receive Byte Registers (RXH, RXM, RXL)

The receive byte registers are viewed as three 8-bit read-only registers by the host pro-
cessor. These registers are called receive high (RXH), receive middle (RXM), and receive
low (RXL). These three registers receive data from the high byte, middle byte, and low
byte, respectively, of the HTX register and are selected by three external host address
inputs (HA2, HA1, and HAOQ) during a host processor read operation or by an on-chip
address counter in DMA operations. The receive byte registers (at least RXL) contain

valid data when the receive data register full (RXDF) bit is set. The host processor may
program the RREQ bit to assert the external HREQ pin when RXDF is set. This informs
the host processor or DMA controller that the receive byte registers are full. These regis-
ters may be read in any order to transfer 8-, 16-, or 24-bit data. However, reading RXL
clears the receive data full RXDF bit. Because reading RXL clears the RXDF status bit, it
is normally the last register read dunng a 16- or 24-bit data transfer. Reset does not affect
RXH, RXM, or RXL. : :

5.3.3.7 Transmit Byte Registers (TXH, TXM, TXL)
The transmit byte registers are viewed as three 8-bit write-only registers by the host pro-
cessor. These registers are called transmit high (TXH), transmit middle (TXM), and
transmit low (TXL). These three registers send data to the high byte, middle byte and low
byte, respectively, of the HRX register and are selected by three external host address
inputs (HA2, HA1, and HAO) during a host processor write operation. Data may be written
into the transmit byte registers when the transmit data register empty (TXDE) bit is set.
The host processor may program the TREQ bit to assert the external HREQ pin when
_TXDE is set. This informs the host processor or DMA controller that the transmit byte reg-
isters are empty. These registers may be written in any order to transfer 8-, 16-, or 24-bit
data. However, writing TXL clears the TXDE bit. Because writing the TXL register clears
the TXDE status bit, TXL is normally the last register written during a 16- or 24-bit data
transfer. The transmit byte registers are transferred as 24-bit data to the HRX register
when both TXDE and the HRDF bit are cleared. This transfer operation sets TXDE and
HRDF. Reset does not affect TXH, TXM, or TXL.

5.3.3.8 Registers After Reset

Table 5-5 shows the result of four kinds of reset on bits in each of the HI registers seen
by the host processor. The hardware reset is caused by asserting the RESET pin; the
software reset is caused by executing the RESET instruction; the individual reset is
caused by clearing the PBC register bit 0; and the stop reset is caused by executing the
STOP instruction.

5.3.4 Host Interface Pins
The 15 HI pins are described here for convenience. Additional mformatlon including tim-
ing, is given in the DSP56002 Technical Data Sheet (DSP56002/D).:

5.3.4.1 Host Data Bus(H0-H7)

This bidirectional data bus transfers data between the host processor and the DSP56002.
It acts as an input unless HEN is asserted and HR/W is high, making HO-H7 become out-
puts and allowing the host processor to read DSP56002 data. It is high impedance when

HEN is deasserted. HO—H7 can be programmed as general-purpose /O pins (PB0-PB7)
when the host interface is not being used. These pins are configured as GPIO input pins
during hardware reset. '

'5.3.4.2 Host Address (HAO-HA?2)

These inputs provide the address selection for each host interface register. HAO—HA2 can
be programmed as general-purpose |/O pins (PB8-PB10) when the host interface is not
being used. These pins are configured as GPIO input pins during hardware reset.

Table 5-5 Host Registers after Reset (Host Side)

Reset Type
Register Register ‘
Name Data HW SwW IR ST
Reset | Reset | Reset | Reset
INIT 0 o | o 0
HM (1-0) 0 0 0 0
ICR TREQ 0 0 0 0]
RREQ 0 0 0 o
HF (1-0) 0 0 0 0
) HC 0 0 0 0
CVR -
HV (5-0) $12 $12- | $12 $12
HREQ 0 0 o] 0
DMA 0 0 0 0
HF (3-2) 0 0 — -
ISR
TRDY 1 1 1 1
TXDE 1 1 1 1
RXDF 0 0 0 0
IVR IV(7-0) $OF | $OF — —
RXH (23-16) | — — — —
RX RXM (15 - 8) — — — —
RXL (7 - 0) - — — -
TXH (23 - 21) — — — —
™ TXM (15 - 8) — — - —
TXL (7 - 0) - — — —

5.3.4.3 Host Read/Write (HR/W)

This input selects the direction of data transfer for each host processor access. If HR/W
is high and HEN is asserted, HO-H7 are outputs and DSP data is transferred to the host
processor. If HR/W is low and HEN is asserted, HO-H7 are inputs and host data is trans-
ferred to the DSP. HR/W is stable when HEN is asserted. It can be programmed as a
general-purpose 1/O pin (PB11) when the host interface is not being used, and is config-
ured as a GPIO input pin during hardware reset. '

53.4.4 Host Enable (HEN)

This input enables a data transfer on the host data bus. When HEN is asserted and HR/W
is high, HO-H7 become outputs and the host processor may read DSP56002 data. When
HEN is asserted and HR/W is low, HO-H7 become inputs. When HEN is deasserted, host
data is latched inside the DSP. Normally, a chip select signal derived from host address
decoding and an enable clock are used to generate HEN. HEN can be programmed as a
general-purpose |/O pin (PB12) when the host interface is not being used, and is config-
ured as a GPIO input pin during hardware reset.

5.3.4.5 Host Request (HREQ)

This open-drain output signal is used by the DSP56002 HI to request service from the host
processor, DMA controller, or a simple external controller. HREQ may be connected to an
interrupt request pin of a host processor, a transfer request of a DMA controller or a con-
trol input of external circuitry. HREQ is asserted when an enabled request occurs in the
hostinterface. HREQ is deasserted when the enabled request is cleared or masked, DMA
HACK is asserted, or the DSP is reset. HREQ may be programmed as a general purpose
I/0 pin (not open-drain) called PB13 when the HI is not being used.

5.3.4.6 Host Acknowledge (HACK)
The Port B Control register allows the user to program this input independently of the
other Host Interface pins. When the port is defined for general purpose I/O, this input acts

Table 5-6 Port B Pin Definitions

BCO | BC1 . Function

0 0 Parallel /0 (Reset Condition)

0 1 Host Interface

1 0 Host Interface (HACK is defined as general purpose I/0)

1 1 Reserved

as a general purpose /O pin called PB14. When the port is defined as the host interface,
the user may manipulate the Port B Control register to program this input as either PB14,
or as the HACK pin. The table below shows the Port B Control register bit configurations.

HACK may act as a data strobe for Hl DMA data transfers (See Figure 5-18). Or, if HACK
is used as an MC68000 host interrupt acknowledge, it enables the Hl interrupt vector reg-
ister (IVR) on the host data bus HO-H7 if HREQ is asserted (See Figure 5-16). In this case,
all other HI control pins are ignored and the state of the HI is not affected.

Note: HACK should always be pulled high when it is not in use.
5.3.5 Servicing the Host Interface
The HI can be serviced by using one of the following protocols:

1. Polling
2. Interrupts, which can be either ,

a. non-DMA
"b.DMA “
From the host processor viewpoint, the service consists of making a data transfer since
this is the only way to reset the appropriate status bits.

DSP56002

3
v R HRRRRX KRR A
HRW ——— / —| Hm

HO-H7

WRITE DATA READ

Ix
S
& &
1—W-o< T—Ml»—o< @

Figure 5-15 Host Processor Transfer Timing

5.3.5.1 HI' Host Processor Data Transfer

The HI looks like static RAM to the host processor. Accordingly, in order to transfer data

with the Hl, the host processor:

1. asserts the HI address (HAOQ, HA1, HA2) to select the register to be read or written

2. asserts HR/W to select the direction of the data transfer

3. strobes the data transfer using HEN. When data is being written to the HI by the
host processor, the positive-going edge of HEN latches the data in the HI register
selected. When data is being read by the host processor, the negative-going edge

of HEN strobes the data onto the data bus HO-H7

Figure 5-15 illustrates this process. The specified timing relationships are given in the

DSP56002 Technical Data Sheet.

5.3.5.2 HI Interrupts Host Request (HREQ)

The host processor interrupts are external and use the HREQ pin. HREQ is normally con-
nected to the host processor maskable interrupt (IPLO, IPL1 or IPL2 in Figure 5-16) input.

7 0
$3 I INTERRUPT VECTOR NUMBER

(READ/WRITE)

INTERRUPT VECTOR REGISTER (IVR)

MC68000 1. THE DSP56002 ASERTS AREQ TO INTERRUPT THE HOST PROCESSOR. 45V DSP56002

P2 1K%

PO femrere——— \ HREQ

PO .

2. THE HOS;r PROCESSOR ASSERTS HACK WITH ITS INTERRUPT
ACKNOWLEDGE CYCLE.

\ ——| AR
— KX
A1 -A31
- TARCR
FCo - FC2 > LOGIC
AS
3. WHEN HREGAND HATK ARE SIMULTANEOUSLY ASSERTED, THE $OF
CONTENTS OF THE IVR ARE PLACED ON THE HOST DATA BUS.
HO-H7 .
Do-D7 J

Figure 5-16 Interrupt Vector Register Read Timing

INTERRUPT
VECTOR
REGISTER
(IVR)

The host processor acknowledges host interrupts by executing an interrupt service rou-
tine. The most significant bit (HREQ) of the ISR may be tested by the host processor to
determine if the DSP is the interrupting device and the two least significant bits (RXDF
and TXDE) may be tested to determine the interrupt source (see Figure 5-17). The host
processor interrupt service routine must read or write the appropriate HI register to clear
the interrupt. HREQ is deasserted when1) the enabled request is cleared or masked, 2)
DMA HACK is asserted, or 3) the DSP is reset.

5.3.5.3 Polling

In the polling mode of operation, the HREQ pin is not connected to the host processor and
HACK must be deasserted to insure DMA data or IVR data is not being output on H0-H7
when other registers are being polled.

The host processor first performs a data read transfer to read the ISR (see Figure 5-17)
to determine, whether:

1. RXDF=1, signifying the receive data register is full and therefore a data read
should be performed '

2. TXDE=1, signifying the transmit data register is empty so that a data write can
be performed

3. TRDY=1, signifying the transmit data register is empty and that the receive
data register on the DSP CPU side is also empty so that the data written by
the host processor will be transferred directly to the DSP side

4. HF2 e HF3 # 0, signifying an application-specific state within the DSP CPU
has been reached, which requires action on the part of the host processor

5. DMA=1, signifying the HI is currently being used for DMA transfers. if DMA
transfers are possible in the system, deactivate HACK prior to reading the ISR
so both DMA data and the contents of ISR are not simultaneously output on
HO- H7

6. If HREQ=1, the HREQ pin has been asserted, and one of the previous five
conditions exists

Generally, after the appropriate data transfer has been made, the corresponding status
bit will toggle.

If the host processor has issued a command to the DSP by writing the CVR and setting
the HC bit, it can read the HC bit in the CVR to determine when the command has been
accepted by the interrupt controller in the DSP’s central processing module. When the
command has been accepted for execution, the interrupt controller will reset the HC bit.

- ~
,7 STATUS ™.
g ~,
7 . ." K_/__\o “‘ .
v .)
$2I HREQI DMA I 0 | HF3 I HF2 I TF:PY I TXDE | RXDF IISH:' EXCEPTION SOURCE
’

~ ”

~ -
-~ -
~ -

HREQ ASSERTED

7 0

$3| INIT | HM1 l HMO | HF1 l HFO I 0 ITREQ IﬁREQlICR

MASK

Figure 5-17 HI Interrupt Structure

5.3.5.4 Servicing Non-DMA Interrupts

When HM0=HM1=0 (non-DMA) and HREQ is connected to the host processor interrupt
input, the Hi can request service from the host processor by asserting HREQ. In the non-
DMA mode, HREQ will be asserted when TXDE=1 and/or RXDF=1 and the correspond-
ing mask bit (TREQ or RREQ, respectively) is set. This is depicted in Figure 5-17.

Generally, servicing the interrupt starts with reading the ISR, as described in the previous
section on poliing, to determine which DSP has generated the interrupt and why. When
multiple DSPs occur in a system, the HREQ bit in the ISR will normally be read first to
determine the interrupting'device The host processor interrupt service routine must read
or write the appropriate HI register to clear the interrupt. HREQ is deassened when the
enabled request is.cleared or masked.

In the case where the host processor is a member of the MC680XX Family, servicing the
interrupt will start by asserting HREQ to interrupt the processor (see Figure 5-17). The
host processor then acknowledges the interrupt by asserting HACK. While HREQ and
HACK are simultaneously asserted, the contents of the IVR are placed on the host data
bus. This vector will tell the host processor which routine to use to service the HREQ inter-
rupt.

The FHREQ pin is an open-drain output pin so that it can be wire-ORed with the AREQ pins
from other DSP56002 processors in the system. When the DSP56002 generates an inter-
rupt request, the host processor can poll the HREQ bit in each of the ISRs to determine
which device generated the interrupt. ‘ ‘

5.3.5.5 Servicing DMA Interrupts

When HM0#0 and/or HM1:£0, HREQ will be asserted to request a DMA transfer. Gener-
ally the HREQ pin will be connected to the REQ input of a DMA controller. The HA0-2,
HEN, and HR/W pins are not used during DMA transfers; DMA transfers only use the
HREQ and HACK pins after the DMA channel has been initialized. HACK is used to strobe
the data transfer as shown in Figure 5-18 where an MC68440 is used as the DMA con-
troller. DMA transfers to and from the HI are considered in more detail in Section 5.3.6 HI
Application Examples.

5.3.6 HI Application Examples
The following paragraphs describe examples of initializing the HI, transferring data with
the HI, bootstrapping via the HI, and performing DMA transfers through the HI.

TO IRQB .
DSP56002 1 MC68440
‘ A n
Y » +5V '
D al- RECO
Y an
A
AREG |'>
+5V
FACR % (ACKO
}— AOD
— Al
o— AS
o— OWN

RH?\—‘/ BURST /—

FAST INTERRUPT
oT TO TRANSFER 24-BIT WORD

HIGH MIDDLE Low / HIGH
H;\;CR/\BYTE%\BYTE/\BYTE/\ \BYTE,
DMAACK GATED OFF
1 DMA CYCLE = 8T = 4 DMA CLOCK CYCLES
MAX. MC68440 CLOCK = 10 MHz => T = 50 ns

Figure 5-18 DMA Transfer Logic and Timing

STEP1
THE DSP CPU INITIALIZES THE DSP SIDE OF
THE HI BY WRITING:
1) HCRAT X:$FFE8 AND
2) PBCAT X:$FFEQ

STEP2
THE HOST PROCESOR INITIALIZES THE
HOST SIDE OF THE HI BY WRITING:
1) ICRAT $0 AND/OR
2) CVRAT $1AND/OR
3) IVRATS$3

Figure 5-19 Hl Initialization Flowchart

5.3.6.1 HI Initialization

Initializing the HI takes two steps (see Figure 5-19). The first step is to initialize the DSP
side of the HI, which requires that the options for interrupts and flags be selected and then
the HI be selected (see Figure 5-20). The second step is for the host processor to clear
the HC bit by writing the CVR, select the data transfer method - polling, interrupts, or DMA
(see Figure 5-21 (d) and Figure 5-23), and write the IVR in the case of a MC680XX Family
host processor. Figure 5-19 through Figure 5-22 provide a general description of how to
initialize the HI. Later paragraphs in this section provide more detailed descriptions for
specific examples.These subsections include some code fragments illustrating how to ini-
tialize and transfer data using the HI.

5.3.6.2 Polling/Interrupt Controlled Data Transfer

Handshake flags are provided for polled or interrupt-driven data transfers. Because the
DSP interrupt response is sufficiently fast, most host microprocessors can load or store
data at their maximum programmed I/O (non-DMA) instruction rate without testing the
handshake flags for each transfer. If the full handshake is not needed, the host processor
can treat the DSP as fast memory, and data can be transferred between the host and DSP
at the fastest host processor rate. DMA hardware may be used with the external host
request and host acknowledge pins to transfer data at the maximum DSP interrupt rate.

The basic data transfer process from the host processor's view (see Figure‘5-15) is for
the host to:

Assert HREQ when the Hl is ready to transfer data

Assert HACK If the interface is using HACK

Assert HR/W to select whether this operation will read or write a register
Assert the HI address (HA2, HA1, and HAQ) to select the register to be read or written

S .

5. Assert HEN to enable the HI

6. When HEN is deasserted, the data can be latched or read as appropriate if the

7. HREQ will be deasserted if the operation is complete

X:$FFEO

timing requirements have been observed

STEP 1 OF HOST PORT CONFIGURATION

1.

N

®

-

o

X:i$FFE8I * I * I

6. SELECT PORT B FOR HOST PORT OPERATION:

15

ENABLE/DISABLE

HOST RECEIVE DATA FULL INTERRUPT
ENABLE INTERRUPT: BITO=1 "
DISABLE INTERRUPT. BIT0=0

ENABLE/DISABLE

HOST TRANSMIT DATA EMPTY INTERRUPT
ENABLE INTERRUPT: BIT 1=1

DISABLE INTERRUPT: BIT1=0

ENABLE/DISABLE

HOST COMMAND PENDING INTERRUPT
ENABLE INTERRUPT. BIT2=1
DISABLE INTERRUPT: BIT2=0

SET/CLEAR

HOST FLAG 2 (OPTIONAL)
ENABLE FLAG: BIT3=1
DISABLE FLAG: BIT3=0

. SET/CLEAR

HOST FLAG 3 (OPTIONAL)
ENABLE FLAG: BIT4=1
DISABLE FLAG: BIT4=0

7 6 5 4

3

2

\ 4
1 0

| HF3| HF2 | HCIE| HTIE| HRIE

*

w | w x| o]] x]x]x] x| x

BC

BC

* Reserved; write as zero.

NOTE The host ﬂags are general-purpose semaphores They are not required for host port operation

but may be used in some applications.

~Figure 5-20 Hl Initialization-DSP Side

HOST CONTROL REGISTER (HCR)

STEP 2 OF HOST PORT CONFIGURATION
1. CLEAR HOST COMMAND BIT (HC):

BIT7=0

7 6 5 . 0

COMMAND VECTOR REGISTER (CVR)
1
$ HC | * | HV (READ/WRITE)

*Reserved; write as zero.

2. OPTION 1: SELECT HOST VECTOR (HV)
(OPTIONAL SINCE HV CAN BE SET ANY TIME BEFORE THE HOST COMMAND IS EXECUTED. DSP INTERRUPT VECTOR = THE HOST
VECTOR MULTIPLIED BY 2. DEFAULT (UPON DSP RESET): HV = $12 — DSP INTERRUPT VECTOR $0024

Figure 5-21 (a) HI Configuration-Host Side

STEP 2 OF HOST PORT CONFIGURATION

2. OPTION 2: SELECT POLLING MODE FOR HOST TO DSP COMMUNICATION

INITIALIZE DSP
AND HOST PORT

DISABLE INTERRUPTS
BITO=0
BIT1=0

DMA OFF
BIT5=0
BIT6=0 | OPTIONAL I

— —
7 6 5 4 3 2 1 0

$0 | INITI Hm1 | HMO| HF1 | Hro [. |THEQIRREQ|

*Reserved; write as zero.

INTERRUPT CONTROL REGISTER (ICR)
(READ/WRITE)

FigUre 5-21 (b) HI Initialization-Host Side, Polling Mode

The previous transfer description is an overview. Specific and exact information for the Hi
data transfers and their timing can be found in Section 5.3.6.3 DMA Data Transfer and
in the DSP56002 Advance Information Data Sheet (DSP56002/D).

5.3.6.2.1 Host to DSP - Data Transfer

Figure 5-23 shows the bits in the ISR and ICR registers used by the host processor and the
bits in the HSR and HCR registers used by the DSP to transfer data from the host processor to
the DSP. The registers shown are the status register and control register as they are seen by
the host processor, and the status register and control register as they are seen by the DSP.

ENABLE
STEP 2 OF HOST PORT CONFIGURATION RECEIVE DATA FULL INTERRUPT
BITO=1
2. OPTION 3: SELECT INTERRUPT MODE FOR DSP TO HOST BIT1=0
OR |
ENABLE
TRANSMIT DATA EMPTY INTERRUPT
INITIALIZE DSP HOSTTO DSP SE ? z ?
INITIALIZE HI** =
BIT7=1 T
OR
ENABLE
DMA OFF DSP TO HOST RECEIVE DATA FULL INTERRUPT AND
BiIT5=0 AND TRANSMIT DATA EMPTY INTERRUPT
BIT6=0 - HOST TO DSP BITO=1
OPTIONAL BIT1=1
r—L'\ —

-7 6 - 5 4 3 2 1 0
50 | INIT I HM1 I HMO | HF1 IHFO [- ITREQlRREQI

INTERRUPT CONTROL REGISTER (ICR)
(READ/WRITE)

2. OPTION 4: LOAD HOST INTERRUPT VECTOR IF USING THE INTERRUPT MODE AND THE HOST PROCESSOR REQUIRES AN
INTERRUPT VECTOR.

7 6 5 4 3 2 1 0
$3 w7 [wve | s | wafwa | wva | v [ol

INTERRUPT VECTOR REGISTER (IVR)
(READ/WRITE)

*Reserved; write as zero.
**See Figure 10 - 23,

Figure 5-21 (¢) HI Initialization—Host Side, Interrupt Mode

Only the registers used to transmit data from the host processor to the DSP are
described. Figure 5-24 illustrates the process of that data transfer. The steps in Figure 5-
24 can be summarized as follows:

1. When the TXDE bitin the ISR is set, it indicates that the Hl is ready to receive
a data byte from the host processor because the transmit byte registers (TXH,
TXM, TXL) are empty.

The host processor can poll as shown in this step.

3. Alternatively, the host processor can use interrupts to determine the status of
this bit. Setting the TREQ bit in the ICR causes the HREQ pin to interrupt the
host processor when TXDE is set.

4. Once the TXDE bit is set, the host can write data to the HI. It does this by writ-
ing three bytes to TXH, TXM, and TXL, respectively, or two bytes to TXM and
TXL, respectively, or one byte to TXL.

5. Writing data to TXL clears TXDE in the ISR.

6. From the DSP’s viewpoint, the HRDF bit (when set) in the HSR indicates that
data is waiting in the HI for the DSP.

N

7. When the DSP reads the HRX, the HRDF bit is automatically cleared and
TXDE in the ISR is set. ,
8. When TXDE=0 and HRDF=0, data is automatically transferred from TBR to
HRX which sets HRDF.
9. The DSP can poll HRDF to see when data has arrived, or it can use interrupts.
10. If HRIE (in the HCR) and HRDF are set, exception processing is started using
interrupt vector P:$0020.

The code shown in Figure 5-25 is an excerpt from the Host I/O Port Technical Bulletin (in-
house document). The MAIN PROGRAM initializes the HI and then hangs in a wait loop
while it allows interrupts to transfer data from the host processor to the DSP. The first
three MOVEP instructions enable the HI and configure the interrupts. The following
MOVE enables the interrupts (this should always be done after the interrupt programs and
hardware are completely initialized) and prepares the DSP CPU to look for the host flag,
HF0=1. The JCLR instruction is a polling loop that looks for HFO=1, which indicates that
the host processor is ready. When the host processor is ready to transfer data to the DSP,
the DSP enables HRIE in the HCR, which allows the interrupt routine to receive data from
the host processor. The jump-to-self instruction that follows is for test purposes only, it can
be replaced by any other code in normal operation.

STEP 2 OF HOST PORT CONFIGURATION
2. OPTION 5: SELECT DMAMODE FOR

INITIALIZE DSP
INITIALIZE HI**
BIT7=1
24B-B|T DMA ENABLE
T65=1 RECEIVE DATA FULL INTERRUPT
BIT6=0 DSP TO HOST e =';
OR BIT1=0
16-BIT DMA
BIT5=0 OR |
BIT6=1 ENABLE
OR TRANSMIT DATA EMPTY INTERRUPT
OMAGHF HOST TO DSP BITO=0
BIT5=1 BIT1=1
BIT6=1 | OPTIONAL | l

7 6 5 4 3 2 1 0

%0 L | I | | I I I | INTERRUPT CONTROL REGISTER (ICR)
INIT | HM1 | HMO | HF1 HFO * TREQ| RREQ (READ/WRITE)

*Reserved; write as zero.
**See Figure 5-23.

Figure 5-21 (d) HI Initialization—Host Side, DMA Mode

MODES
7 / \ 0
HOST SETS INIT BIT -}l INIT | HM1 | HMO I HF1 | HFO I 0 ITREQIF!REQ'

INTERRUPT CONTROL REGISTER (ICR)
(READ/WRITE)

0 0 Interrupt Mode (DMA Off) |[«————— RESET CONDITION
0 1 24 Bit DMA Mode
1 0 16 Bit DMA Mode
1 1 8 Bit DMA Mode
" INTERRUPT MODE (DMA OFF) DMA MODE
TREQ | RREQ INIT Execution TREQ | RREQ INIT Execution
0 0 INIT = 0; Address Counter = 00 0 0 INIT = 0; Address Counter = HM1, HMO
0 1 INIT = 0; RXDF = 0; HTDE = 1; 0 1 INIT = 0; RXDF =0; HTDE = 1;
Address Counter = 00 : Address Counter = HM1, HMO
1 0 [INIT = 0; TXDE = 1; HRDF = 0; 1 0 |INIT=0; TXDE = 1; HRDF = 0;
Address Counter = 00 Address Counter = HM1, HMO
1 1 INIT = 0; RXDF = 0; HTDE = 1: TXDE = 1; 1 1 Undefined (lllegal)
HRDF = 0; Address Counter = 00

INIT is used by the HOST to force initialization of the HI hardware.
The HI hardware automatically clears INIT when the command is executed.
INIT is cleared by DSP RESET.

Figure 5-22 Host Mode and INIT Bits

The receive routine in Figure 5-26 was implemented as a long interrupt (the instruction at
the interrupt vector location, which is not shown, is a JSR). Since there is only one instruc-
tion, this could have been implemented as a fast interrupt. The MOVEP instruction moves
data from the Hi to a buffer area in memory and increments the buffer pointer so that the
next word received will be put in the next sequential location.

5.3.6.2.2 Host to DSP — Command Vector

The host processor can cause three types of interrupts in the DSP (see Figure 5-27).
These are host receive data (P:$0020), host transmit data (P:$0022), and host command
(P:$0024 - P:$007E). The host command (HC) can be used to control the DSP by forcing
it to execute any of 45 subroutines that can be used to run tests, transfer data, process
. data, etc. In addition, the HC can cause any of the other 19 interrupt routines in the DSP
to be executed. '

HOST : » DSP56002

(READ ONLY)

7 0 7
INTERRUPT STATUS HOST STATUS
s2 |Hrea| oma | o | HFa | HF2 | TRDY|TXDE |AxDF | FEGSTER®SH xsrree pma | o | o | W1 | HFo | Hop |uTDE | HROF | REGISTER (isR)
(READONLY)
TXDE — TRANSMIT DATA REGISTER EMPTY HRDF — HOST RECEIVE DATA FULL
1 = INDICATES THE TRANSMIT BYTE REGISTERS (TXH, TXM, TXL) ARE EMPTY. 1=THE HOST RECEIVE REGISTER {(HRX) CONTAINS DATA FROM THE
0= CLEARED BY WRITING TO TXL; TXDE GAN BE USED TO ASSERT THE HOST PROCESSOR.
HREQ PIN. 0 =HRX IS EMPTY. -
TRDY — TRANSMITTER READY = TXDE « HRDF DMA —INDICATES THE HOST PROCESSOR HAS ENABLED THE DMA MODE
1 =BOTH THE TRANSMIT BYTE REGISTERS AND THE HOST RECEIVE DATA 1=DMAON.
REGISTERS ARE EMPTY. 0= HOST MODE.
0= ONE OR BOTH REGISTERS ARE FULL.
MODES
—
7 O wrermuPT: 7

CONTROL
so [T [[Hmo | HF1 IHFO | 0 ITREQIRREQIREGW(DR) XSFFES | 0 | 0 | 0 | HFSI HF2 l HOIE | HTIElHRIEl

HRIE — HOST RECEIVE INTERRUPT ENABLE
ENABLES INTERRUPT AT P:$0020

0 0 Interrupt Mode (DMA Off) DSP INTERRUPT IS CAUSED BY HRDF = 1
- 1= INTERRUPT P:$0020 ENABLED.

] 1 24 Bit DMA Mode 0 = INTERRUPT P:$0020 DISABLED.

1 0 16 Bit DMA Mode

1 1 8 Bit DMA Mode

TREQ — TRANSMIT REQUEST ENABLE
USED TO ENABLE INTERRUPTS THAT COME FROM TXDE TO THE HOST
VIATHE HREQ PIN.
1 = TXDE INTERRUPTS PASS TO HREQ.
"0 =TXDE INTERRUPTS ARE MASKED.

Figure 5-23 Bits Used for Host-to-DSP Transfer

HOST CONTROL
REGISTER (HCR)
(READ/WRITE)

VIEW FROM HOST

= VIEW FROM DSP56002

1. WHEN TXDE = 1, TDR IS EMPTY.

6. IF DSP560022 HAS OLD DATA IN HRX, THEN HRDF = 1.
7. WHEN DSP56002 READS HRX, THEN HRDF = 0.

7 0
INTERRUPT STATUS 7 0
s2 (wRea[oma | o | wra | wr2 [TROY[1 [AxoF | Rgernen HOST STATUS
xsrreo | o [o | o | wrt | wro | mep [mmoe| o | RESSEA wen-
TXDE DMA
TRANSMIT DATA REGISTER EMPTY HRDF
HOST RECEIVE DATA FULL
2. HOST MAY POLL TXDE. ‘
7 _ 0
INTERRUPT CONTROL
so{wm [o | o |Hri]nro [o | | rREQ | ReasTER(cR)
HM1 . HMO
TREQ 8. WHEN TXDE = 0 AND HRDF = 0, THEN TRANSFER OCCURS.
TRANSMIT REQUEST ENABLE 23
HOST RECEIVE
. XSF DATA
3.IF TREQ = 1, THEN AREQ PIN IS ASSERTED TO INTERRUPT HOST. X.SFFEB HIGH BYTE MIDDLE BYTE LOWBYTE | recisTeR (R
AREQ L \ 9. THE TRANSFER SETS HRDF FOR THE DSP56002 TO POLL.
7 0
HOST CONTROL
4. HOST WRITES DATA TO TRANSMIT BYTE REGISTERS. X:$FFES I 0 | 0 | 0 | HF3 I HF2 I HCIE I HTIE I REGISTER (HCR)
5. WRITE TO TXL CLEARS TXDE IN ISR ‘ :
HRIE
7 0 HOST RECEIVE INTERRUPT ENABLE
85 TXH ,
TRANSFER 10. IF HRDF = 1 AND INTERRUPTS ARE ENABLED, THEN EXCEPTION
%6 ™M PROCESSING BEGINS.
LAST WRITE % $7 TXL
M
TRANSMIT BYTE
REGISTERS (TBR) [, P:50020 HOST RECEIVE DATA VECTOR

e T ———— e

FAST INTERRUPT
OR
LONG INTERRUPT

Figure 5-24 Data Transfer from Host to DSP

The process to execute a HC (see Figure 5-28) is as follows:

1. The host processor writes the CVR with the desired HV (the HV is the DSP’s

interrupt vector (IV) location divided by two - i.e. |f HV=$12, IV=$24).

The HC is then set.

3. The HCP bitin the HSR is set when HC is set. ,

4. If the HCIE bit in the HCR has been set by the DSP, the HC exception pro-
cessing will start. The HV is multipiied by 2 and the result is used by the DSP
as the interrupt vector.

5. When the HC exception is acknowledged the HC bit (and therefore the HCP
bit) is cleared by the HC logic. HC can be read by the host processor as a sta-
tus bit to determine when the command is accepted. Similarly, the HCP bit can
be read by the DSP CPU to determine if an HC is pending.

A

To guarantee a stable interrupt vector, write HV only when HC is clear. The HC bit and
HV can be written simultaneously. The host processor can clear the HC bit to cancel a
host command at any time before the DSP exception is accepted. Although the HV can
be programmed to any exception vector, it is not recommended that HV=0 (RESET) be
used because it does not reset the DSP hardware. DMA must be disabled to use the host
exception.

aEAKARAKRAKARAERKAAAARRKRKAAKARR AR AR Ak Ak hk

: MAIN PROGRAM... receive data from host -

akkkhhhkhkhkkkkhkhkhhkhkhkhkhkhhkhkhkhkkkkhkhhkhhikhkd
’

ORG P:$40

MOVE #0,R0

MOVE #3,M0

MOVEP #1,X:PBC ;Turn on Host Port '
MOVEP #0,X:HCR ;Turn off XMT and RCV mterrupts
MOVEP #$0C00,X:IPR ;Turn on host interrupt

MOVE #0,SR ;Unmask interrupts

JCLR #3,X:HSR,* ;Wait for HFO (from host) setto 1
MOVEP #$1,X:HGR ;Enable host receive interrupt
JMP * ;Now wait for interrupt

Figure 5-25 Receive Data from Host—Main Program

A kKA AE AR AK AR AR R AR KKK AAA R AT Ak kdkkkk
L

; Receive from Host Interrupt Routine ,

" Rov MOVEP X:HRX,X;(R0)+‘ ;Receive data.
RTI ‘

END

Figure 5-26 Receive Data from Host Interrupt Routine

EXCEPTION PROGRAM MEMORY SPACE
STARTING
ADDRESS

$0000
$0002
$0004
$0006
$0008
$000A
$000C
'$000E
- $0010
$0012
$0014
$0016
$0018
$001A
$001C
$001E

EXCEPTION SOURCE

| |

HARDWARE RESET

TWO WORDS PER VECTOR EXTERNAL INTERRUPTS

STACK ERROR

TRACE

SWI (SOFTWARE INTERRUPT)

f b

INTERNAL
l INTERRUPTS

TRQA EXTERNAL HARDWARE INTERRUPT

TRQB EXTERNAL HARDWARE INTERRUPT

EXTERNAL
INTERRUPTS

SSI RECEIVE DATA

SS| RECEIVE DATA WITH EXCEPTION STATUS

SSI TRANSMIT DATA

SSI TRANSMIT DATA WITH EXCEPTION STATUS

SYNCHRONOUS
SERIAL

INTERFACE

SCI RECEIVE DATA

SCI RECEIVE DATA WITH EXCEPTION STATUS

SCI TRANSMIT DATA

SCIIDLE LINE

SCITIMER

INTERNAL
INTERRUPTS

SERIAL
COMMUNICATIONS
INTERFACE

RESERVED

$0020
$0022
$0024
$0026
$0028

$003C
$003E
$0040
$0042

$007E

HOST RECEIVE DATA

HOST TRANSMIT DATA

HOST COMMAND (DEFAULT)

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

ILLEGAL INSTRUCTION

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

HOST INTERNAL
INTERFACE INTERRUPTS

_

Figure 5-27 HI Exception Vector Locations

VIEW FROM HOST VIEW FROM DSP56002
1. WRITE CVR WITH DESIRED HV. 3. HCP IS SET UNTIL EXCEPTION IS ACKNOWLEDGED.
2.SETHC=1.
7 0
7 5 0 HOST STATUS
ICOMM, VECTOR X:$FFE9 | DMA 0 0 HF1 | HFO 1 HTDE| HRDF
$1 I 1 I 0 I HOST VECTOR (HV) REGIS‘?I?F?(CE/R) | | ' I l l | L REGISTER (HSR)
1+ HCP
HC $12 — DEFAULT HOST COMMAND PENDING
HOST COMMAND

EXCEPTION VECTOR
ADDRESS =HVx2

P:$0000

P:$0024

5. WHEN THE HOST COMMAND EXCEPTION IS ACKNOWLEDGED, THE HC
BIT IS CLEARED BY THE HOST COMMAND LOGIC. HC CAN BE READ AS
A STATUS BIT.

P:$007E
7 5 0

COMMAND VECTOR
stlo | o HOST VECTOR (HV) REGISTER (GVFY)

HC — HOST COMMAND (STATUS)

4. HOST COMMAND IS MASKED UNTIL HCIE = 1.

7

0

xsres [0 | o | o | wra|wr2 | 1 |HmE [HRmE

HOST CONTROL
REGISTER (HCR)

HCIE
HOST COMMAND INTERRUPT ENABLE

EXCEPTION VECTOR TABLE

HOST COMMAND DEFAULT VECTOR

AVAILABLE FOR HOST COMMAND

———

—]

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

Figure 5-28 Host Command

FAST INTERRUPT
OR

LONG INTERRUPT

+5V

DSP56002

DR HEN ; F32A LDS

BR

HACK AS
FROM OPEN N WT
COLLECTOR MODA/IRQA
BUFFER 7 , ADDRESS ¢ Ad-A23

DECODE
MODC/NMI
MC68000
{12.5MHz)
FROM
RESET >—1—® * RESET
FUNCTION
MDB301" . HRW @l @ RW
HO-H7 |ag— 8 »| D0-D7
FROM OPEN HAO-HA2 g S A1-A3
COLLECTOR> ’ S MODB/IRQOB
BUFFER
Notes: 1. *This diode must be a Schottky diode.
2. All resistors are 15KQ unless noted otherwise.
3. When in RESET, TRQA, TRQB and NMT must
be deasserted by external peripherals.
7 HOST 0

$0 l INITI HM1 | HMO' HF1 l HFO l 0 ITREQl RREQ)|

| INTERRUPT CONTROL REGISTER (ICR)

(READ/WRITE)

SETTING HFO TERMINATES BOOTSTRAP LOADING AND STARTS
EXECUTION AT LOCATION P:$0000.

HOST ADDRESS
WRITTEN
4 (DUMMY)

e s NO WO

SET HFO FOR EARLY TERMINATION ———————— ¢

4 (DUMMY)
5
6
7

CONTENTS LOADED
TO INTERNAL P: RAM AT:

P:$0000 HIGH BYTE
P:$0000 MID BYTE
P:$0000 LOW BYTE

P:$01FF HIGH BYTE
P:$01FF MID BYTE
P:$01FF LOW BYTE

» Because the DSP56002 is so fast, host handshaking is generally not required.

Figure 5-29 Bootstrap Using the HI

5.3.6.2.3 Host to DSP - Bootstrap Loading Using the HI

- The circuit shown in Figure 5-29 will cause the DSP to boot through the HI on power up.
During the bootstrap program, the DSP looks at the MODC, MODB, and MODA bits. If the
bits are set at 101 respectively, the DSP will load from the HI. Data is written by the host
processor in a pattern of four bytes, with the high byte being a dummy and the low byte
being the low byte of the DSP word (see Figure 5-29 and Figure 5-30). Figure 5-30 shows
how an 8-,16-, 24-, or 32-bit word in the host processor maps into the HI registers. The HI
register at address $4 is not used and will read as zero. It is not necessary to use address
$4, but since many host processors are 16- or 32-bit processors, address $4 will often be
used as part of the 16- or 32-bit word. The low order byte (at $7) should always be written
last since writing to it causes the HI to initiate the transfer of the word to the HRX. Data is
then transferred from the HRX to the DSP program memory. If the host processor needs
to terminate the bootstrap loading before 512 words have been down loadéd, it can set
the HFO bit in the ICR. The DSP will then terminate the down load and start executing at
location P:$0000. Since the DSP56002 is typically faster than the host processor, hand
shaking during the data transfer is normally not required. :

HOST
TRANSMIT/RECEIVE
BYTE REGISTERS
. HOST BYTE
7 0 ADDRESS

00000000 |4

TXH/RXH 5
HIGH BYTE

TXM/RXM 6
MIDDLE BYTE

ACCESS TO
TXL/RXL 74— LOW BYTE
LOW BYTE INITIATES

Y TRANSFER

31 24 23 16 15 87 L 0

HOST READ - 00000000
DATA WRITE - XXXXXXXX HIGH MIDDLE LOW

IG—G-BIT TRANSFER—»]

| #———————— 16-BIT TRANSFER =i

24-BIT TRANSFER

32-BIT TRANSFER, LS 24 BITS ARE SIGNIFICANT

NOTE: Access low byte last

Figure 5-30 Transmit/Receive Byte Registers

dRAKAAKRKRRANKRRKRRKKRARAAKARRRAR KA ARk RN AR AR A A kkhhk

; This routine loads from the Host Interface.
; MC:MB:MA=100 - reserved
; MC:MB:MA=101 - Host

CRKIKRRRARAKRRAA A KK RRAAAKR AR AATARARA A AR AR AA Ak R K

HOSTLD BSET #0,X:PBC ;Configure Port B as Host

DO #512,_LOOP3 ;Load 512 instruction words
_LBLA JCLR #3,X:HSR,_LBLB ;If HFO=1, stop loading data.
ENDDO ;Must terminate the DO loop
JMP <_LOOP3 ;
_LBLB JCLR #0,X:HSR,_LBLA ;Wait for HRDF to go high
;(meaning data is present).
MOVEP X:HRX,P:(R0)+ ;Store 24-bit data in P memory
_LOOP3 . ;and go get another 24-bit word.
JMP - <FINISH ;finish bootstrap

Figure 5-31 Bootstrap Code Fragment

The actual code used in the bootstrap program is given in APPENDIX A. The portion of
the code that loads from the Ml is shown in Figure 5-31. The BSET instruction configures
Port B as the HI and the first JCLR looks for a flag (HFO) to indicate an early termination
of the download. The second JCLR instruction causes the DSP to wait for a complete
word to be received and then a MOVEP moves the data from the Hl to memory.

5.3.6.2.4 DSP to Host Data Transfer ,

Data is transferred from the DSP to the host processor in a similar manner as from the
host processor to the DSP. Figure 5-32 shows the bits in the status registers (ISR and
HSR) and control registers (ICR and HCR) used by the host processor and DSP CPU,
respectively. The DSP CPU (see Figure 5-33) can poll the HTDE bit in the HSR (1) to
see when it can send data to the host, or it can use interrupts enabled by the HTIE bit in
the HCR (2). If HTIE=1 and interrupts are enabled, exception processing begins at inter-
rupt vector P:$0022 (3). The interrupt routine should write data to the HTX (4), which will
clear HTDE in the HSR. From the host’s viewpoint, (5) reading the RXL clears RXDF in
the ISR. When RXDF=0 and HTDE=0 (6) the contents of the HTX will be transferred to
the receive byte registers (RXH:RXM:RXL). This transfer sets RXDF in the ISR (7),
which the host processor can poll to see if data is available or, if the RREQ bit in the ICR
is set, the HI will interrupt the host processor with HREQ (8).

The code shown in Figure 5-34 is essentially the same as the MAIN PROGRAM in Figure
5-25 except that, since this code will transmit instead of receive data, the HTIE bit is set
in the HCR instead of the HRIE bit.

DSP56002

HOST g
7 : 0 7
INTERRUPT STATUS HOST STATUS
s2 [nrea] oA | o | wrs | w2 | TROY] Tx0E| RxDF| REssTERGSR xsrreo [oMA] o | o | W1 | Hro | Hep [Hroe] HADF| REGISTER tsm)
(READONLY) (READ ONLY)
RXDF — RECEIVE DATA REGISTER FULL HTDE — HOST TRANSMIT DATA EMPTY
1 = INDICATES THE RECIEVE BYTE REGISTERS {RXH, RXM, RXL) 1 =HTX IS EMPTY AND CAN BE WRITTEN BY DSP.
CONTAIN DATA FROM THE DSP, 0 =HTXIS FULL.
0 =CLEARED BY READING RXL.
MODES 7
’ L HOST CONTROL
7 0 INTERRUPT X:$FFEB | o[oo | HF3 | HF2 I HClEl HTIEI HRIE | REGISTER (HCR)
CONTROL (READ/WRITE)
so | N [Hwmi [bvo | wEt | wro | o | TReQ|AREQ) ReisteR (on) ‘
(READWRITE) HTIE — HOST TRANSMIT INTERRUPT ENABLE

RREQ —RECEIVE REQUEST ENABLE (USED TO CONTROL THE AREQ PIN)
1= ENABLE INTERRUPT REQUESTS CREATED BY RXDF. ’
0 = DISABLE INTERRUPT REQUESTS.

1= ENABLE THE DSP INTERRUPT TO P:$0022.
0 = DISABLE THE DSP INTERRUPT TO P:$0022.
DSP INTERRUPT IS CAUSED BY HTDE =1

Figure 5-32 Bits Used for DSP to Host Transfer

VIEW FROM HOST VIEW FROM HOST
5.READ OF RXL BY HOST CLEARS BXDF IN ISR. 1.WHEN HTDE = 1, THEN HTX IS EMPTY.
6.WHEN RXDF = 0 AND HTDE = 0, THEN TRANSFER OCCURS. ; 0
7 0 xsrreo [DMA| o | o | et [Hro | Hor | 1 fHROF| RS iR
$5 RXH
HTDE
% RXM « HOST TRANSMIT DATA EMPTY
LAST READ mp 57 AXL
RECEIVE BYTE 2.DSP56002 MAY POLL HTDE.
REGISTERS (RER)
7 7 0
7.THE TRANSFER SETS AXDF FOR THE HOSTTOPOLL. - xsres| o | o | o | wra|wr2 [HoE] 1 [HRE SE’Z‘TS%”@%
7 : 0 .
INTERRUPT HTIE
s2 [wRea| oma [o | nrs | W2 JtRDv|TxDE[1 | smus HOST TRANSMIT INTERRUPT ENABLE
REGISTER(SR) v
RXDF 3.IF HTIE = 1, AND INTERRUPTS ARE ENABLED, THEN EXCEPTION
RECEIVE PROCESSING BEGINS.
DATA FULL
7 A—— P:50000 | |
so | T | Hm1 | Hvo | HF1 | HFo | o |TREQ| 1 Ioon : |
REGISTER(CR)) P ———— T
R'REQ i P:$0022 HOST TRANSMIT DATAVECTOR
RECEIVE SE——
REQUEST ENABLE e —
P:$007E AVAILABLE FOR HOST COMMAND I
8.IF RREQ = 1, THEN AIRET PIN IS ASSERTED TO INTERRUPT HOST.
i . FAST INTERRUPT
" om
HREQ | - LONG INTERRUPT
PN [\ :
-4,DSP56002 WRITES DATA TO HTX, WHICH CLEARS HTDE IN HSR.
2 HOST RECENVE
. xsFFEB | HIGHBYTE | MIDDLE BYTE LOWBYTE [DATA
. REGISTER (HSR)
Figure 5-33 Data Transfer from DSP to Host

AR EKIAERKAKRAAKKAN AR ARk ARk hkhhhkkrhhhkkkkhk

; MAIN PROGRAM... transmit 24-bit data to host

AREAEKEKERIIARKKKIARKRRIRKRKARKRARARRARAL
’

ORG P:$40

MOVEP #1,X:PBC ;Turn on Host Port

MOVEP #$0C00,X:IPR ;Turn on host interrupt :
MOVEP #0,X:HCR ;Turn off XMT and RCV mterrupts
MOVE - #0,SR ;Unmask interrupts

JCLR - #3,X:HSR,” ;Wait for HFO (from host) set to 1
AND X0,A

JEQ LOOP .

MOVEP #3$2X:HCR ;Enable host transmit'interrupt

JMP o ;Now wait for interrupt

Figure 5-34 Main Program - Transmit 24-Bit Data to Host

alekkhkhk kA kR Ihhhkhkhhkkhhhkhkhhhhkkhkhkhkdkk
’

;TRANSMIT to Host Interrupt Routine

sk kR h kA AR RAAAIR AR KA A hh AT AR A KA kA kk
’

XMT MOVEP #$123456,X:HTX ;Test value to transmit
MOVEP #0,X:HCR ;Turn off XMT Interrupt
RTI
END

Figure 5-35 Transmit to HI Routine

The transmit routine used by the code in Figure 5-34 is shown in Figure 5-35. The interrupt
vector contains a JSR, which makes it a long interrupt. The code sends a fixed test pattern
($123456) and then resets the HI for the next interrupt.

5.3.6.3 DMA Data Transfer

The DMA mode allows the transfer of 8-, 16- or 24-bit data through the DSP HI under the
control of an external DMA controller. The HI provides the pipeline data registers and the
synchronization logic between the two asynchronous processor systems. The DSP host

exceptions provide cycle-stealing data transfers with the DSP internal or external mem-
ory. This technique allows the DSP memory address to be generated using any of the
DSP addressing modes and modifiers. Queues and circular sample buffers are easily cre-
ated for DMA transfer regions. The host exceptions can be programmed as high priority
fast or long exception service routines. The external DMA controller provides the transfers
between the DSP HlI registers and the external DMA memory. The external DMA control-
ler must provide the address to the external DMA memory; however, the address of the
selected HI register is provided by a DMA address counter in the HI.

DMA transfers can only be in one direction at a time; however, the host processor can
access any of the registers not in use during the DMA transfer by deasserting HACK and
using HEN and HA0-HA2 to transfer data. The host can therefore transfer data in the other
direction during the DMA operation using polling techniques.

DMA) DSP56002
CONTROLLER 1K HOST INTERFACE
TRANSFER REQUEST HREQ

INTERNAL

ADDRESS

B . } COUNTER
ACRNOWLEDGE ACK :D

MEMORY Ho - H7

C .

CONTROL

> ADDRESS DATA <

Characteristics of Host DMA Mode

¢ The HREQ pin is NOT available for host processor interrupts.
 TREQ and RREQ select the d|rect|on of DMA transfer. .
—DMA to DSP56002
—DSP56002 to DMA
— Simultaneous bidirectional DMA transfers are not permitted.
* Host processor software polled transfers are permitted in the opposite direction of the DMA transfer.

® 8-, 16-, or 24-bit transfers are supported.
* 16-, or 24-bit transfers reduce the DSP mterrupt rate by a factor of 2 or 3, respectively.

Figure 5-36 HI Hardware-DMA Mode

DMA DSP560021
CONTROLLER

L oo 0@0 0@0 0@0 0@0 0@0 0@
peyes 0@0 0@0 0@0 0@0 0@0 0@_
e 0@0 0@0 0@0 0@0 0@0 X

FAST INTERRUPT ROUTINE
P:$0020 MOVE X:$FFE8.A READ HRX
P:30021 MOVE A, Y:(R7)+ ;AND PUT INTO Y MEMORY

Figure 5-37 DMA Transfer and Host Interrupts

53.6.31 Host To DSP Internal Processing
The following procedure outlines the steps that the HI hardware takes to transfer DMA
data from the host data bus to DSP memory (see Figure 5-35 and Figure 5-36).

HI asserts the HREQ pin when TXDE=1.

DMA controller enables data on HO-H7 and asserts HACK.

When HACK is asserted, the HI deasserts HREQ.

When the DMA controller deasserts HACK, the data on HO- H7 is latched into

the TXH, TXM, TXL registers.

if the byte register written was not TXL (i.e., not $7) the DMA address counter

internal to the HI increments and HREQ is again asserted. Steps 2-5 are then

" repeated.

6. If TXL ($7) was written, TXDE will be set to zero and the address counter in
the HI will be loaded with the contents of HM1 and HMO0. When TXDE=0, the
contents of TXH: TXM:TXL are transferred to HRX provided HRDF=0. After the
transfer to HRX, TXDE will be set to one, and HREQ will be asserted to start
the transfer of another word from external memory to the Hl.

7. When the transfer to HRX occurs within the HI, HRDF is set to one. Assuming

HRIE=1, a host receive exception will be generated. The exception routine

must read the HRX to clear HRDF.

POoNp=

o

HOST INTERFACE (HI

MODES
7 0
INTERRUPT CONTROL REGISTER (ICR)
%0 LINIT [bt | vmo| Wi [wro| o | Reql RREq] oS
0 0 | Interrupt Mode (DMA Off) f«—— RESET CONDITION
o | 1 | 24BitDMAMode 1
1 0 | 16 Bit DMA Mode
1 1 | 8Bit DMAMode J
INTERRUPT MODE (DMA OFF) DMA MODE
TREQ | RREQ HREQ PIN TREQ | RREQ HAREG PIN
0 0 No Interrupts (Polling) 0 0 No DMA
0 1 RXDF Request (Interrupt) 0 1 DSP to Host Request (RX)
1 0 XDE Request (Interrupt) 1 0 Host to DSP Request (TX)
1 1 XDF and TXDE Request (Interrupts) 1 1 Undefined (lllegal)
7 0
INTERRUPT STATUS
s2 [nreaf oma [o | wrs | w2 [TROY| Tx0E] nonl REGISTER(SR)
(READONLY)
7 0
HOST STATUS
X$FFEQ I oma| o | 0 I HF1 l HFO | HCP IHTDEIHHDFl REGISTER (HSR)
(READ ONLY)
‘ Figure 5-38 Host Bits with TREQ and RREQ
Note: The transfer of data from the TXH, TXM, TXL registers to the HRX register auto-

matically loads the DMA address counter from the HM1 and HMO bits in the DMA

host to DSP mode. This DMA address is used with the Hl to place the received
byte in the correct register (TXH, TXM, or TXL).

Figure 5-36 shows the differences between 24-, 16+, and 8-bit DMA data transfers. The
interrupt rate is three times faster for 8-bit data transfers than for 24-bit transfers. TXL is
always loaded last.

5.3.6.3.2 Host to DSP DMA Procedure
The following procedure outlines the typical steps that the host processor must take to
setup and terminate a host-to-DSP DMA transfer (see Figure 5-37).

HOST PROCESSOR DMA CONTROLLER DSP56002
1.PROGRAM DMA CONTROLLER.
— START ADDRESS
— BYTE COUNT
— TRANSFER DIRECTION
— START DMA CHANNEL
7 0
WRITE ICR INTERRUPT
2. INITIALIZE DSP56002 HOST INTERFACE. $0 I 1 ' 0 ' 1 I HF1 | HFO I 0 I 1 I oJ CONTROL
— MODE 24 BIT DMA - REGISTER (ICR)
— HOSTTO DSP INIT HM1 HMO TREQ RREQ
— USE INITBIT TO:
SET TXDE
CLEAR HRDF
LOAD DMA COUNTER , .
3.TELL DSP56002 xsrres| o | o [o | es | mR2 [HoE | HmE] 1 | ReREveRtom
— WHERE TO STORE DATA (i.e., PROGRAM
ADDRESS REGISTER R7). HRIE
— ENABLE INTERRUPT HRIE (CAN BE
DONE WITH A HOST COMMAND).
4. ASSERT HREQ TO START DMA TRANSFER.
5.HOST IS FREE TO PERFORM
OTHER TASKS (i.e., DSP TO HOST 6.DMA CONTROLLER PERFORMS WRITES. HREG
TRANSFER ON A POLLED BASIS). ~—{ FRX
01 TXH
8. TERMINATE DMA CHANNEL. st 10 TXM
. P:$0000 | EXCEPTION VECTOR TABLE
11 TXL
9. TERMINATE DSP DMA MODE BY o1 . - ,
CLEARING HM1, HMo, AND TREQ.
10 ™M P:$0020 | HOST RECEIVE DATA VECTOR
1 L /
m
) P:$007E AVAILABLE FOR HOST COMMAND |
.
. FAST INTERRUPT
01 TXH OR
10 M LONG INTERRUPT
1 L 7.DMA CONTROLLER INTERRUPTS HOST
I WHEN TRANSFERS ARE DONE.

Figure 5-39 Host-to-DSP DMA Procedure

1. Set up the external DMA controller (1) source address, byte count, direction,
and other control registers. Enable the DMA controller channel.

2. Initialize the HI (2) by writing the ICR to select the word size (HMO and HM1),
to select the direction (TREQ=1, RREQ=0), and to initialize the channel setting
INIT=1 (see Figure 5-38).

3. Initialize the DSP's destination pointer (3) used in the DMA exception handler
(an address register, for example) and set HRIE to enable the HRDF interrupt
to the DSP CPU. This procedure can be done with a separate host command
exception routine in the DSP. HREQ will be asserted (4) immediately by the HI
to begin the DMA transfer.

4. Perform other tasks (5) while the DMA controller transfers data (6) until inter-
rupted by the DMA controller DMA transfer complete interrupt (7). The DSP
interrupt control register (ICR), the interrupt status register (ISR), and RXH,
RXM, and RXL registers may be accessed at any time by the host processor
but the TXH, TXM and TXL registers may not be accessed until the DMA
mode is disabled. ‘

Terminate the DMA controller channel (8) to disable DMA transfers.

6. Terminate the DSP HI DMA mode (9) in the ICR by clearing the HM1 and HMO n

bits and clearing TREQ.

o

The HREQ will be active immediately after initialization is completed (depending on hard-
ware) because the data direction is host to DSP and TXH, TXM, and TXL registers are
empty. When the host writes data to TXH, TXM, and TXL, this data will be immediately
transferred to HRX. If the DSP is due to work in interrupt mode, HRIE must be enabled.

5.3.6.3.3 DSP to Host Internal Processing
The following procedure outlines the steps that the HI hardware takes to transfer DMA
data from DSP memory to the host data bus.

1. On the DSP side of the HI, a host transmit exception will be generated when
HTDE=1 and HTIE=1. The exception routine must write HTX, thereby setting
HTDE=0.

2. If RXDF=0 and HTDE=0, the contents of HTX will be automatically transferred
to RXH:RXM:RXL, thereby setting RXDF=1 and HTDE=1. Since HTDE=1
again on the initial transfer, a second host transmit exception will be generated
immediately, and HTX will be written, which will clear HTDE again.

3. When RXDF is set to one, the HI’s internal DMA address counter is loaded
(from HM1 and HM0) and HREQ is asserted.

4. The DMA controller enables the data from the appropriate byte register onto -
HO-H7 by asserting HACK. When HACK is asserted, HREQ is deasserted by
the HI.

5. The DMA controller latches the data presented on HO-H7 and deasserts

Note:

HACK. If the byte register read was not RXL (i.e:, not $7), the HI's internal
DMA counter increments, and HREQ is again asserted. Steps 3, 4, and 5 are
repeated until RXL is read.

If RXL was read, RXDF will be set to zero and, since HTDE=0, the contents of
HTX will be automatically transferred to RXH:RXM:RXL, and RXFD will be set
to one. Steps 3, 4, and 5 are repeated until RXL is read again.

The transfer of data from the HTX register to the RXH:RXM:RXL registers auto-
matically loads the DMA address counter from the HM1 and HMO bits when in the

DMA DSP-HOST mode. This DMA address is used within the HI to place the ap-
propriate byte on HO-H7.

53.6.3.4 DSP to Host DMA Procedure .
The following procedure outlines the typical steps that the host processor must take to
setup and terminate a DSP-to-host DMA transfer (see Figure 5-39).

1.

2.

Set up the DMA controller (1) destination address, byte count, direction, and
other control registers. Enable the DMA controller channel.

Initialize the HI (2) by writing the ICR to select the word size (HMO and HM1),
the direction (TREQ=0, RREQ=1), and setting INIT=1 (see Figure 5-39 for
additional information on these bits). ‘

Initialize the DSP's source pointer (3) used in the DMA exception handler (an
address register, for example), and set HTIE to enable the DSP host transmit
interrupt. This could be done by the host processor with a host command
exception routine. ‘

The DSP host transmit exception will be activated immediately after HTIE is
set. The DSP CPU will move data to HTX. The Hi circuitry will transfer the con-
tents of HTX to RXH:RXM:RXL, setting RXDF which asserts HREQ. Asserting
HREQ (4) starts the DMA transfer from RXH, RXM, and RXL to the host pro-
€essor.

Perform other tasks (5) while the DMA controller transfers data (6) until inter-
rupted by the DMA controller DMA complete interrupt (7). The DSP interrupt
control register (ICR), the interrupt status register (ISR), and TXH, TXM, and
TXL may be accessed at any time by the host processor but the RXH, RXM
and RXL registers may not be accessed until the DMA mode is disabled.
Terminate the DMA controller channel (8) to disable DMA transfers.
Terminate the DSP HI DMA mode (9) in the Interrupt Control Register (ICR) by
clearing the HM1 and HMO bits and clearing RREQ.

HOST PROCESSOR

1.PROGRAM DMA CONTROLLER.

DMA CONTROLLER DSP56002

— START ADDRESS

— BYTE COUNT

— TRANSFER DIRECTION
— START DMA CHANNEL

2, INITIALIZE DSP56002 HOST INTERFACE.
— MODE 24 BIT DMA
— HOSTTO DSP
— USEINITBITTO:
CLEAR TXDE
SET HRDF
LOAD DMA COUNTER

3. TELL DSP56002.

WRITE ICR

7 0
o] o [+ [o] o [o]+ Jeamot

REGISTER (ICR)
INIT HM1 HMo TREQ RREQ

7 0

— SOURCE POINTER ADDRESS
— ENABLE HTIE (CAN BE DONE
WITH AHOST COMMAND).

5.HOST IS FREE TO PERFORM
OTHER TASKS (i.e., DSP TO HOST
TRANSFER ON A POLLED BASIS).

8. TERMINATE DMA CHANNEL. sty

9. TERMINATE DSP DMA MODE BY
CLEARING HM1, HMo, AND TREQ.

xsrres| o | o | o | wrs| w2 [HoE| 1 | wmE |RRGERom
HRIE

4. ASSERT HREQ TO START DMA TRANSFER.

6.DMA CONTROLLER PERFORMS READS. \ HREG
ot

RXH
10 RXM
n RXL
o1 RXH

P:$0000 I EXCEPTION VECTOR TABLE

| RR———————
____"-——\
10 RXM

= P:$0022 HOST TRANSMIT DATA VECTOR
11 RXL —

M
P:$007E AVAILABLE FOR HOST COMMAND I

.

FAST INTERRUPT

o1 RXH OR
10 o LONG INTERRUPT
" RXL 7.DMA CONTROLLER INTERRUPTS HOST

I WHEN TRANSFERS ARE DONE.

Figure 5-40 DSP to Host DMA Procedure

5.3.6.4 Example Circuits

Figure 5-40, Figure 5-41, and Figure 5-42 illustrate the simplicity of the HI. The
MC68HC11 in Figure 5-41 has a multiplexed address and data bus which requires that
the address be latched. Although the HACK is not used in this circuit, it is pulled up. All
unused input pins should be terminated to prevent erroneous signals. When determining
whether a pin is an input, keep in mind that it may change during reset or while changing
Port B between general purpose 1/O and Hi functions. B

The MC68000 (see Figure 5-41) can use a MOVEP instruction with word and long-word
data size to transfer muitiple bytes. If an MC68020 or MC68030 is used, dynamic bus siz-
ing can be used to transfer multiple bytes with any instruction.

Figure 5-42 is a high level block diagram of a system using a single host to control multiple
DSPs. In addition, the DSPs use the SSi to network together the DSPs and muitiple
codecs. This system, as shown with four DSPs, can process 80 million instructions per
second at 40 MHz and can be easily expanded if more processing power is needed.

+5V

MCBBHC11 " DsP56002
Yy Loand FACE

(HOST ACKNOWLEDGE)

HREQ |
(HOST REQUEST)

ADDRESS

AB-A15 | 'DECODE
A
AEN .
E : , (HOST ENABLE)

' HRW
RW (HOST READ/WRITE)
A3-A7
AS LE A0 - A2 HAO - HA2
ADDRESS >
RS (HOST ADDRESS)
AO/DO - A7/D7 HO - H7
(HOST DATA)

Use LDA and STA for 8-Bit Transfers.
Use LDD and STD for 16-Bit Transfers.

Figure 5-41 MC68HC11 to DSP56002 Host Interface

MC68000

IPLO- IPL2

A4-A23

FCO-FC2

s
AS

A1-A3
DO-D7

INTERRUPT
ENCODER

+
AAN DOI
<

ADDRESS
DECODE

INTERRUPT
VECTOR
DECODE

111—1.,.

D,
D,

DTACK
TIMING

GENERATOR

<

MC68000 — USE MOVEP for multiple byte transfers.

MC68020 or MC68030 — Any Memory references will work due to dynamic bus sizing.

DSP56002 .

HRW
HAQ - HA2
HO-H7

Figure 5-42 MC68000 to DSP56002 Hdst Interface

HOST

ANALOG

CODEC

INPUT
l¢———

—

ANALOG

(5]
a g g
o 7)) > <
o« 3 /] o
w m o - X w -
E I <« g, @ 8, = =
E alalk S|1S|S12] G
o << a w uw [§] [TH w
RX
HOST ss
SELECT
DSP56002
™
RX
HOST ssl
SELECT
DATA DSP56002
ADDRESS .
RD/WR
REG 2P
RX
HoST ssl
SELECT
DSP56002
™
RX
HOST ssI
SELEGT
DSP56002

Figure 5-43 Multi-DSP Network Example

OUTPUT

ANALOG

CODEC

INPUT

f—

‘ ANALOG

OUTPUT

5.3.6.5 Host Port Usage Considerations — Host Side

Synchronization is a.common problem when two asynchronous systems are connected,
and careful synchronization is required when reading multi-bit registers that are written by
another asynchronous system. The considerations for proper operation are discussed
below.

1. Unsynchronized Reading of Receive Byte Registers:
When reading receive byte registers, RXH, RXM, or RXL, the host programmer
should use interrupts or poll the RXDF flag which indicates that data is avail-
able. This guarantees that the data in the receive byte registers will be stable.

2. Overwriting Transmit Byte Registers:
The host programmer should not write to the transmit byte registers, TXH, TXM,
or TXL, unless the TXDE bit is set, indicating that the transmit byte registers are
empty. This guarantees that the DSP will read stable data when it reads the
HRX register. ‘

3. Synchronization of Status Bits from DSP to Host:
HC, HREQ, DMA, HF3, HF2, TRDY, TXDE, and RXDF status bits are set or
cleared from inside the HI and read by the host processor. The host can read
these status bits very quickly without regard to the clock rate used by the DSP,
but there is a chance that the state of the bit could be changing during the read
operation. This possible change is generally not a system problem, since the
" bit will be read correctly in the next pass of any host polling routine.

However, if the host holds HEN for the minimum assertion time plus x clock
cycles (see “Host Port Usage Considerations” in the DSP56002 Technical Data
Sheet (DSP56002/D) for the minimum number of cycles), the status data is
guaranteed to be stable. The x clock cycles are used to synchronize the HEN
signal and block internal updates of the status bits. There is no other minimum
HEN assertion time relationship to DSP clocks. There is a minimum HEN deas-
sertion time so that the blocking latch can be updated if the host is in a tight
polling loop. This minimum time only applies to reading status bits.

The only potential problem with the host processor's reading of status bits
would be its reading HF3 and HF2 as an encoded pair. For example, if the DSP
changes HF3 and HF2 from “00” to “11”, there is a small possibility that the host
could read the bits during the transition and receive “01” or “10” instead of “11”.
If the combination of HF3 and HF2 has significance, the host processor could
potentially read the wrong combination. Two solutions would be to 1) read the
bits twice and check for consensus, or 2) hold HEN access for HEN + x clock
cycles so that status bit transitions are stabilized.

. Overwriting the Host Vector: ‘

The host programmer should change the host vector register only when the HC
bit is clear. This will guarantee that the DSP interrupt control logic will receive a
stable vector.

. Cancelling a Pending Host Command Exception:

The host processor may elect to clear the HC bit to cancel the host command
exception request at any time before itis recognized by the DSP. The DSP CPU
may execute the host exception after the HC bit is cleared because the host
processor does not know exactly when the exception will be recognized. This
uncertainty in timing is due to differences in synchronization between the host
processor and DSP CPU and the uncertainties of pipelined exception process-
ing. For this reason, the HV should not be changed at the same time the HC bit
is cleared. However, the HV can be changed when the HC bit is set.

. When using the HREQ pin for handshaking, wait until HREQ is asserted and
then start writing/reading data using the HEN pin or the HACK pin.

When not using HREQ for handshaking, poli the INIT bit in the ICR to make
sure it is cleared by the hardware (which means the INIT execution is com-
pleted). Then, start writing/reading data.

If using neither HREQ for handshaking, nor polling the INIT bit, wait at least 6T
after negation of HEN that wrote ICR, before writing/reading data. This wait
ensures that the INIT is completed, because it needs 3T for synchronization
(worst case) plus 3T for executing the INIT.

. All unused input pins should be terminated. Also, any pin that is temporarily
not driven by an output during reset, when reprogramming a port or pin, when
a bus is not driven, or at any other time, should be pulled up or down with a
resistor. For example, the HEN is capable of reacting to 2-ns noise spikes
when it is not terminated. Allowing HACK to float may cause problems even
though it is not needed in the circuit.

SECTION 6

PORT C

6.1 INTRODUCTION

Port C is a triple-function 1/0 port with nine pins (see Figure 6-1). Three of the nine pins
can be configured as general-purpose |/O or as the serial communication interface (SCI)
pins. The other six pins can also be configured as GPIO, or they can be configured as the

synchronous serial interface (SSI) pins.

When configured as general-purpose /O, port C can be used for device control. When the
pins are configured as serial interfaces, port C provides a convenient connection to other
DSPs, processors, codecs, digital-to-analog and analog-to-digital converters, and any of
several transducers. This section describes all three port C functions as well as examples

of how to configure and use each function.

DEFAULT
FUNCTION

EXTERNAL ADDRESS
SWITCH

EXTERNAL DATA
SWITCH

BUS
CONTROL

PORT

/0
(47)

HOST/OMA
PARALLEL
INTERFACE

16

gl AQ - A15
24

|ty DO - D23

l———>P35
}——e—DS
o X/Y
——RD
l—>WR
|———> BN
< BR
-_»BG
[WT
—-——-’B‘s

8

PBs

8

PB9

PB10

PB11

PB12

PB13

PB14

PCO

PC1

PC2
¢—— PC3
- PC4

PCs

PC6

PC7

PC8

Figure 6-1 Port C Interface

ALTERNATE
FUNCTION

[afmmanmlpe-- PEO - PB7 ~<tifmmle- HO - H7

HAO

HA1

HA2

HRW

HEN

HREQ

HATK or PB14

RXD
TXD
SCLK
Sco
SC1
SC2
SCK
SRD
STD

6.2 GENERAL-PURPOSE I/0 (PORT C)

When'it is configured as GPIO, Port C can be viewed as nine I/O pins (see Figure 6-2),
which are controlled by three memory-mapped registers. These registers are the Port C
control register (PCC), Port C data direction register (PCDDRY), and Port C data register
(PCD) (see Figure 6-3).

ENABLED BY DIRECTION INPUT/QUTPUT
BITS IN SELECTED BY DATAREGISTER

X:SFFE X:SFFE3 X:$FFES
PCO f——— cCo cDO PCO
PC1 fe———» cC1 D1 PC1

P PC2 |e———cC2 cD2 PC2

o PC3 fe—cC3 cD3 PC3

? PC4 fe—» CC4 cD4 PC4
PC5 |tem——»- CC5 cDs5 PC5

c PC8le——scCs cD6 PC6
PC7 je——»cC7 co7 PC7
PC8 |4~ CCB8 cDs pC8

Figure 6-2 Port C GPIO Control

Reset clears PCC and PCDDR to configure Port C as general-purpose 1/O with all nine pins
as inputs. (External circuitry connected to these pins may need pullups until the pins are
configured for operation.) Each Port C pin may be individually programmed as a gener-
al-purpose /O pin or as a dedicated on-chip peripheral pin under software control. Pin se-
lection between general-purpose 1/0 and SCI or SSl is made by setting the appropriate PCC
bit (memory location X:$FFE1) to zero for general-purpose /O or to one for serial interface.

The PCDDR (memory location X:$FFE3) programs each pin corresponding to a bitin the PCD
(memory location X:$FFES5) as an input pin (if PCDDR=0) or as an output pin (if PCDDR=1).

If a pin is configured as a GPIO input (as shown in Figure 6-4) and the processor reads
the PCD, the processor sees the logic level on the pin. If the processor writes to the PCD,
the data is latched there, but does not appear on the pin because the buffer is in the
high-impedance state.

23 0

cclcc|celcc|cc|ceclcc|cc|cc|PORT C CONTROL

X‘.$FFE1000000000000000876543210REGISTER(PCC)

STD
SRD
scK
ssl
CCx Function sc2
sct
o | apio sco
- : SCLK:
1 Serial Interface scl D
RXD
23 0
PORT C DATA
xsFrEsf ol o]ofolo]o|o]o]ofo|a]of o] o] o|CP|cO|cD]COlCDICDICOICDICON, e TN
si7]6ys)4)3f{2]1]09 |reaister(PcopR)

CDx Data Direction

0 Input
1 Qutput
23 . -0
PORT C DATA
xFFEs] o} ojojo]o|o]ofofo|lolofofofafo|PP|PRIPP|PP|PPiPP|PP|PPIPRIReGISTER (PCD)

NOTE: Hardware and software reset clears PCC and PCDDR.

Figure 6-3 Port C GPIO Registers

If a pin is configured as a GPIO output and the processor reads the PCD, the processor
sees the contents of the PCD rather the logic level on the pin, which allows the PCD to be
used as a general purpose 15-bit register. If the processor writes to the PCD, the data is
latched there and appears on the pin during the following instruction cycle (see 6.2.2).

If-a pin is configured as a serial interface (SCI or SSlI) pin, the Port C GPIO registers can
be used to help in debugging the serial interface. If the PCDDR bit for a given pin is
cleared (configured as an input), the PCD will show the logic level on the pin, regardless
of whether the serial interface function is using the pin as an input or an output. If the PCD-
DR is set (configured as an output) for a given serial interface pin, when the processor
reads the PCD, it sees the contents of the PCD rather than the logic level on the pin —
another case which allows the PCD to act as a general purpose register.

Port Control Data Direction .
Register Bit Register Bit Pin Function
0 0 Port Input Pin
0 1 Port Output Pin
1 X Alternate Function
[——»0

PORT C DATA (PCD) -
REGISTER BIT

f (GPIO
{ POSITION)

DATA DIRECTION
porr | ~""| REGISTER (PCDDR) BIT

REGISTERS |

PORT C CONTROL .
(PCC) REGISTER BIT (INPUT
POSITION)

PORT INPUT DATA BIT

- OUTPUT DATABIT

PERIPHERAL _{ . . DATA DIRECTION BIT
LOGIC :

INPUT DATABIT

Figure 6-4 Port C I/0 Pin Control Logic

6.2.1 Programming General Purpose I/O ‘ _
Port C and all the DSP56002 peripherals are memory mapped (see Figure 6-5). The stan-
dard MOVE instruction transfers data between Port C and a register; as a result, perform-
ing @ memory-to-memory data transfer takes two MOVE instructiohs and a register. The
MOVEP instruction is specifically designed for /O data transfer as shown in Figure 6-6.
Although the MOVEP instruction may take twice as long to execute as a MOVE instruc-
tion, only one MOVERP is required for a memory-to-memory data transfer, and MOVEP
does not use a temporary register. Using the MOVEP instruction allows a fast interrupt to
move data to/from a peripheral to memory and execute one other instruction or to move
the data to an absolute address. MOVEP is the only memory-to-memory move instruction;
however, one of the operands must be in the top 64 locations of either X: or Y: memory.
The bit-oriented instructions which use 1/0 short addressing (BCHG, BCLR, BSET, BTST,
JCLR, JSCLR, JSET, and JSSET) can also be used to address individual bits for faster
I/O processing.

X:$FFFF
X:$FFFE
X:$FFFD
X:$FFFC
X:$FFFB
X:$FFFA
X:$FFF9
X:$FFF8
X:$FFF7
X:SFFF6
X:$FFF5
X:$FFF4
X:$FFF3
X:$FFF2
X:$FFF1
X:$FFFQ
© XSFFEF
X:$FFEE
© X:$FFED
X:$FFEC
X:$FFEB
X:$FFEA
X:$FFEQ
X:$FFE8
X:$FFE7
X:$FFE6
X:$FFE5
X:3FFE4
X:$FFE3
X:$FFE2
X:$FFE1
X:$FFEO
X:$FFDF
X:$FFDE

X:$FFCO

INTERRUPT PRIORITY REGISTER (IPR)

PORT A— BUS CONTROL REGISTER (BCR)

PLL CONTROL REGISTER

OnCE GDB REGISTER

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

SCI HI - REC/XMIT DATA REGISTER (SRX/STX)
SC! MID - REC/XMIT DATA REGISTER (SRX/STX)
SCI LOW - REC/XMIT DATA REGISTER (SRX/STX)
SCI TRANSMIT DATAADDRESS REGISTER (STXA)
SC{ CONTROL REGISTER (SCCR)

SCI INTERFACE STATUS REGISTER (SSR)

SCI INTERFACE CONTROL REGISTER (SCR)

SSI RECIEVE/TRANSMIT DATA REGISTER (RX/TX)
SSI STATUS/TIME SLOT REGISTER (SSISR/TSR)
S8SI CONTROL REGISTER B (CRB)

SSI CONTROL REGISTER A (CRA)

HOST RECEIVE/TRANSMIT REGISTER (HRX/HTX)
RESERVED

HOST STATUS REGISTER (HSR)

HOST CONTROL REGISTER (HCR)

RESERVED

RESERVED

PORT C — DATA REGISTER (PCD) I

PORT B — DATA REGISTER (PBD)

PORT C — DATA DIRECTION REGISTER (PCDDH)I

PORT B — DATA DIRECTION REGISTER (PBDDR)

PORT C — CONTROL REGISTER (PCC) l

= Read as random number; write as dor't care.

Figure 6-5 On-Chip Peripheral Memory Map

PORT B — CONTROL REGISTER (P8C)
TIMER COUNT REGISTER (TCR)
TIMER CONTROL/STATUS REGISTER (TCSR)

RESERVED

MOVEP #$0,X:$FFE1 . ;Select Port C to be general-purpose /0
MOVEP #$01F0,X:$FFE3 ;Select pins PCO-PC3 to be inputs
: ;and pins PC4—PC8 to be outputs

MOVEP #data_out,X:$FFE5 ;Put bits 4-8 of “data_out” on pins

;PB4—PB8 bits 0—3 are ignored.

MOVEP X:$FFEOQ,#data_in ;Put PB0-PB3 in bits 0-3 of “data_in"

Figure 6-6 Write/Read Parallel Data with Port C

The DSP does not have a hardware data strobe to strobe data out of the GPIO port. If a data
strobe is needed, it can be implemented using software to toggle one of the GPIO pins.

Figure 6-7 shows the process of programming Port C as general-purpose 1/0. Normal-
ly, it is not good programming practice to activate a peripheral before programming it.
However, reset activates the Port C general-purpose |/O as all inputs, and the alter-
native is to configure the port as an SCI and/or SSI, which may not be desirable. In
this case, it is probably better to insure that Port C is initially configured for gener-
al-purpose I/0 and then configure the data direction and data registers. It may be bet-
ter in some situations to program the data direction or the data registers first to prevent
two devices from driving one signal. The order of steps 1, 2, and 3 in Flgure 6-7 is
optional and can be changed as needed. :

STEP 1. SELECT EACH PIN TO BE GENERAL-PURPOSE I/O OR AN ON-CHIP PERIPHERAL PIN:
CCx=0 ™ GENERAL- PURPOSE I/O
CCx=1 mp ON-CHIP PERIPHERAL

8 0

x:gFrE1 | CC|CC O CC| Cel CCCCICCICC] poRT C CONTROL REGISTER (PCC)
" B8l7|6]|5]4]|3|2)1]0

STEP 2. SET EACH GENERAL - PURPOSE VO PIN (SELECTED ABOVE) AS INPUT OR OUTPUT:
CDx=0 ®p INPUTPIN
OR
CDx=1 = OUTPUTPIN

cbjcpjcojco|cp|cojcojcp|co
X$FFE3| 5 (7 | 6 | s1a |3 |24 |o|PORTCDATADIRECTION REGISTER (PCDDR)

STEP 3. READ/WRITE GENERAL - PURPOSE I/O PINS: .
PCx = OUTPUT DATA IF SELECTED FOR GENERAL - PURPOSE /O AND OUTPUT IN STEPS 1 AND 2.
OR)
PCx = INPUT DATA IF SELECTED FOR GENERAL - PURPOSE /O AND INPUT IN STEPS 1 AND 2.

8 0

. 1 D R B R B A EE
X$FFES| g | 7 6|5 |4fa]2]1]o

PORT C DATAREGISTER (PCD)

Figure 6-7 1/O Port C Configuration

6.2.2 Port C General Purpose I/O Timing
Parallel data written to Port C is delayed by one instruction cycle. For example, the follow-

ing instruction:
MOVE DATA9,X:PORTC DATA24,Y:EXTERN

1. writes nine bits of data to the Port C register, but the output pins do not change
until the following instruction cycle

2. writes 24 bits of data to the external Y memory, which appears on Port A dur-
ing T2 and T3 of the current instruction

As aresult, if it is necessary to synchronize the Port A and Port C outputs, two instructions
must be used:

MOVE DATA9,X:PORTC
NOP DATA24,Y:EXTERN -

The NOP can be replaced by any instruction that allows parallel moves. Inserting one or
more “MOVE DATA15,X:PORTC DATA24,Y:EXTERN” instructions between the first and
second instruction produces an external 33-bit write each instruction cycle with only one
instruction cycle lost in setup time:

MOVE DATA9,X:PORTC
MOVE DATA9,X:PORTC DATA24,Y:EXTERN
MOVE DATA9,X:PORTC DATA24,Y:EXTERN

MOVE DATA9,X:PORTC DATA24,Y:EXTERN
NOP DATA24,Y:EXTERN

One application of this technique is to create an extended address for Port'A by concate-
nating the Port A address bits (instead of data bits) to the Port C general-purpose output
bits. The Port C general-purpose I/O register would then work as a base address register,
allowing the address space to be extended from 64K words (16 bits) to 33.5 million words
(16 bits+ 9 bits=25 bits).

Port C uses the DSP central processing unit (CPU) four-phase clock for its operation.
Therefore, if wait states are inserted in the DSP CPU timing, they also affect Port C timing.
As a result, Port A and Port C in the previous synchronization example will always stay
synchronized, regardless of how many wait states are used.

6.3 SERIAL COMMUNICATION INTERFACE (SCI)

The SCI provides a full-duplex port for serial communication to other DSPs, microproces-
sors, or peripherals such as modems. The communication can be TTL-level signals or,
with additional logic, RS232C, RS422, etc.

This interface uses three dedicated pins: transmit data (TXD), receive data (RXD), and
SCl serial clock (SCLK). It supports industry-standard asynchronous bit rates and proto-
cols as well as high-speed (up to 5 Mbps for a 40-MHz clock) synchronous data transmis-
sion. The asynchronous protocols include a multidrop mode for master/slave operation
with wakeup on idle line and wakeup on address bit capability.

The SCI consists of separate transmit and receive sections whose operations can be
asynchronous with respect to each other. A programmable baud-rate generator provides
the transmit and receive clocks. An enable vector and an interrupt vector have been in-
cluded so that the baud-rate generator can function as a general-purpose timer when it is
not being used by the SCI peripheral or when the interrupt timing is the same as that used
by the SCI. The following is a short list of SCI features:

¢ Three-Pin Interface:

TXD — Transmit Data

RXD - Receive Data

SCLK — Serial Clock _
* 625 Kbps NRZ Asynchronous Communications Interface (40-MHz System Clock)
* 5.0 Mbps Synchronous Serial Mode (40-MHz System Clock)
¢ Multidrop Mode for Multiprocessor Systems:

Two Wakeup Modes: Idle Line and Address Bit

Wired-OR Mode o
* On-Chip or External Baud Rate Generation/Interrupt Timer
¢ Four Interrupt Priority Levels
¢ Fast or Long Interrupts

6.3.1 SCI I/0 Pins _
The three SCI pins can be configured as either general-purpose I/O or as a specific SCI

pin. Each pin is independent of the other two, so that if only TXD is needed, RXD and
SCLK can be programmed for general-purpose 1/O. However, at least one of the three
pins must be selected as an SCI pin to release the SCI from reset.

SCl interrupts may be enabled by programming the SCI control registers before any of the
SCl pins are programmed as SCI functions. In this case, only one transmit interrupt can be
generated because the transmit data register is empty. The timer.and timer interrupt will
operate as they do when one or more of the SCl pins is programmed as an SCI function.

6.3.11 Receive Data (RXD)
This input receives byte-oriented serial data and transfers the data to the SCI receive shift

register. Asynchronous input data is sampled on the positive edge of the receive clock (1
X SCLK) if SCKP equals zero. See the DSP56002 Technical Data Sheet for detailed tim-
ing information. RXD may be programmed as a general-purpose I/O pin (PC0) when the
SCI RXD function is not being used.

6.3.1.2 Transmit Data (TXD)
This output transmits serial data from the SCI transmit shift register. Data changes on the

negative edge of the asynchronous transmit clock (SCLK) if SCKP equals zero. This out-
putis stable on the positive edge of the transmit clock. See the DSP56002 Technical Data
Sheet for detailed timing information. TXD may be programmed as a general-purpose /0
pin (PC1) when the SCI TXD function is not being used.

6.3.1.3 SCI Serial Clock (SCLK)
This bidirectional pin provides an input or output clock from which the transmit and/or re-

ceive baud rate is derived in the asynchronous mode and from which data is transferred
in the synchronous mode. SCLK may be programmed as a general-purpose I/0 pin (PC2)
when the SCI SCLK function is not being used. This pin may be programmed as PC2
when data is being transmitted on TXD since, in the asynchronous mode, the clock need
not be transmitted. There is no connection between programming the' PC2 pin as SCLK
and data coming out the TXD pin because SCLK is independent of SCI data I/O.

6.3.2 SCI Programming Model
The resources available in the SCI are described before discussing specific examples of

how the SCl is used. The registers comprising the SCI are shown in Figure 6-8 and Figure
6-9. These registers are the SCI control register (SCR), SCI status register (SSR), SCI
clock control register (SCCR), SCI receive data registers (SRX), SCI transmit data regis-
ters (STX), and the SCI transmit data address register (STXA). The SCI programming
model can be viewed as three types of registers: 1) control — SCR and SCCR in Figure
6-8; 2) status — SSR in Figure 6-8; and 3) data transfer — SRX, STX, and STXA in Figure
6-9. The following paragraphs describe each bit in the programming model.

23 16 15 14

13 12 1 10 9 8 7 6 5 4 3 2 1]
X:$FFFO o sckP | sTR|TMIE | TE | RE | ILE | TE | RE |woMs| RWU |WAKE | SBK |SSFTD|wDS2| wDS1|wDsSo | SCICONTROLREGISTER(SCR)
@1@log|lo|lo|lo]l]o]lo|lo|lo]|o|o| @] o] w©]®© | READWE
SCICLOCK POLARl:YIj H
TIMER INTERRUPT RATE L worpseLECTBITS
TIMER INTERRUPT ENABLE-——‘ SCI SHIFT DIRECTION
TRANSMIT INTERRUPT ENABLE SEND BREAK
RECEIVE INTERRUPT ENABLE- WAKEUP MODE SELECT
IDLE LINE INTERRUPT ENABLE: RECEIVER WAKEUP ENABLE
TRANSMITTER ENABLE WIRED - OR MODE SELECT
RECEIVER ENABLE
23 7 6 5 4 3 2 1 0
X:$FFF1 o R8 FE PE | OR | IDLE | RDRF | TDRE | TRNE | SCISTATUSREGISTER(SSR)
0) 0)) (0) 0 0) (1) (1) | READONLY)
RECEIVED BIT 8 l [__I
FRAMING ERROR FLAG TRANSMITTER EMPTY
PARITY ERROR FLAG TRANSMITTER DATA REGISTER EMPTY
OVERRUN ERROR FLAG: RECEIVE DATA REGISTER FULL
IDLE LINE FLAG
23 16 15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
X:$FFF2 ° TcM | RcM | scp | cop | cpit | cp1o| cpe | cps | ¢cb7 | cos | cbs | cpa | cb3 | cb2 | cp1 | cpo %‘;g(wm‘" oL
oOlojlo|lo|lolo|leo]l]o]jJ]ao]lo]| o] o] o] o] o] cows
TRANSMIT CLOCK SOURCE BITIj S~ B
RECEIVE CLOCK SOURCE BIT:
CLOCK PRESCALER: CLOCK DIVIDER BITS
CLOCK OUTPUT DIVIDER .

NOTE: The number in parentheses is the condition of the kit after hardware reset.

Figure 6-8 SCI Prograrhming Model — Control and Status Registers

23 16 15 8 7 0
SCI RECIEVE DATA REGISTER HIGH (READ ONLY)

X:$FFF6
X:$FFFS SCI RECIEVE DATAREGISTER MID (READ ONLY)
X:$FFF4 SCI RECEIVE DATA REGISTER LOW (READ ONLY)

SCI RECEIVE DATA SHIFT REGISTER

NOTE: SRX is the same register decoded at three different addresses.

(a) Receive Data Register

23 16 15 8 7 0

X:SFFF6 SCI TRANSMIT DATA REGISTER HIG (WRITE ONLY)
X:SFFF5 SCI TRANSMIT DATA REGISTER MiD (WRITE ONLY)
X:SFFF4 SCi TRANSMIT DATA REGISTER LOW (WRITE ONLY)
SCI TRANSMITDATA SHIFT REGISTER
X$FFF SCI TRANSMITDATA ADDRESS REGISTER
(WRITE ONLY)
NOTES:

1. Bytes are masked on the fly.
2. STXis the same register decoded at three different addresses.

(b) Transmit Data Register

Figure 6-9 SCI Programming Model

6.3.2.1 SCI Control Register (SCR)
The SCR is a 16-bit read/write register that controls the serial interface operation. Each

bit is described in the following paragraphs.

6.3.2.1.1 SCR Word Select (WDS0, WDS1, WDS2) Bits 0, 1, and 2

The three word-select bits (WDS0, WDS1, WDS2) select the format of the transmit and re-
ceive data. The formats include three asynchronous, one multidrop asynchronous mode,
and an 8-bit synchronous (shift register) mode. The asynchronous modes are compatible
with most UART-type serial devices and support standard RS232C communication links.

The multidrop asynchronous modes are compatible with the MC68681 DUART, the
M68HC11 SCl interface, and the Intel 8051 serial interface. ‘

The synchronous data mode is essentially a high-speed shift register used for /0 expan-
sion and stream-mode channel interfaces. A gated transmit and receive clock that is com-
patible with the Intel 8051 serial interface mode 0 accomplishes data synchronization. The
word formats are shown in Table 6-1 (also see Figure 6-10 (a) and (b)).

Table 6-1 Word Formats

wDS2 WDSH1 WDS0 Word Formats
0 0 0 8-Bit Synchronous Data (shift register mode)
0 0 1 Reserved
0 1 0 10-Bit Asynchronous (1 start, 8 data, 1 stop)
0 1 1 Reserved
1 0 0 11-Bit Asynchronous (1 start, 8 data, 1 even parity, 1 stop)
1 0 1 11-Bit Asynchronous (1 start, 8 data, 1 odd parity, 1 stop)
1 1 0 11-Bit Multidrop (1 start, 8 data, 1 data type, 1 stop)
1 1 1 Reserved

When odd parity is selected, the transmitter will count the number of bits in the data word.
If the total is not an odd number, the parity bit is made equal to one and thus produces an
odd number. If the receiver counts an even number of ones, an error in transmission has
occurred. When even parity is selected, an even number must result from the calculation
performed at both ends of the line or an error in transmission has occurred.

The word-select bits are cleared by hardware and software reset.

MODE 0
2 1 0
X:$FFFO I o | o | o | 8-BIT SYNCHRONOUS DATA (SHIFT REGISTER MODE)
WDSz WDS1 WDSO

- TX
(SSFTD =0) Do D1 D2 D3 D4 Ds D6 D7
ONE BYTE FROM SHIFT REGISTER e—__.|
MODE 2
2 1 0

xserrof o | 1] o |1oBiTASYNCHRONOUS (1 START, 8 DATA, 15TOR)
WDSz WDST WDS0

e TX . START D7 OR STOP
(ssFTp=0) .| BT | Do | ot o2 | o3 | o4 | os { pbe {oata | BT
TYPE
MODE 4
2 1 0
X:SFFFOI 1 |) | 0 —I 11-BIT ASYNCHRONOUS (1 START, 8 DATA, 1 EVEN PARITY, 1 STOP)
WDSZ WDST WDSo
-—TX START p7on | even | sToP
(SSFTD=0) gt | oo | D1 p2 | o3 | osa | os | os | pata |Pammy| BT
TYPE
MODES5
2 1 0

xserrol 1 | o [1 I11-BITASYNCHRONOUS (1 START, 8 DATA, 1 0DD PARITY, 1 STOP)
WDS2 WDS1 WDSo ’

«—TX . |stRT pron| oop | siop
sro=0y | BT | oo | ot | o2 | oa | oa | os | b | Data |pARTY| BT
TYPE
MODE 6
2 1 0
X:SFFFOI 1 | 1 | 0 | 11-BIT ASYNCHRONOUS MULTIDROP (1 STAAT, 8 DATA, 1 DATATYPE, 1 STOP)

WDS2 WDS1 WDSo

- TX START DATA STOP
(SSFTD =0) BIT Do D1 D2 D3 D4 D5 D6 07 TYPE BIT

Data Type: 1=Address Byte
0 = Data Byte

NOTES:
1. Modes1, 3, and 7 are reserved.

2. DO0=LSB;D7 =MSB
3. Datais transmitted and received LSB first if SSFTD = 0 or MSB first if SSFTD = 1.

(a) SSFTD =0

Figure 6-10 Serial Formats (Sheet 1 of 2)

SERIAL COMMUNICATION INTERFACE (30!)

MODE 0
i 2 1 0
xserrol o | o [o |smimsyncHronous baTa (sHiFT REGISTER MODE)
WDS2 WDS1 WDS0
(SSFTD=1) o7 | os | os p4 | oa | o2 | o1 | mo
e ONEBYTEFROMSHIFTREGISTER — |
MODE 2
2 1 0o
xserro| o | 1 | o | 10-8iT ASYNCHRONOUS (1 START, 8 DATA, 15TOP)
WDS2 WDS! WDS0
oy |TEEmenl oe | os | oe | oo | o2 | o1 | oo | HF
(SSFTD =1) DATA
MODE 4
2 1 1]
X:$FFFO| 1 | o | o |1BITASYNCHRONOUS (1 START, 8 DATA, 1 EVEN PARITY, 1 STOP)
WDSz WDS1WDS0
-— X START | D7 OR EveN | sTop
(SSFTD= 1) BT | pata | o | o5 | Da o3 | o2 | o1 oo |eammy| BT
TYPE
MODE 5
2 1 0
xsrrro] 1 [o 1 | 11-8IT ASYNCHRONOUS (1 START, 8 DATA, 100D PARITY, 1 STOP)
WDSz WDST WDS0
- TX START | D7OR opD | sTOP
SSFTD = 1 BIT | DATA | Ds D5 D4 D3 D2 D1 D0 |PARITY BIT
¢) TYPE
MODE 6
2 1 0
xsrrro| 1 | 0 | 11-BIT ASYNCHRONOUS MULTIDROP (1 START, 8 DATA, 1 DATA TYPE, 1STOP)
WDSZ WDS1_ WDSo
- TX START| DATA | ‘ STOP
(SSFTD =1) BIT TYPE D7 D6 D5 D4 D3 D2 D1 Do BIT

Data Type: 1=Address Byte
0 = Data Byte

NOTES:
1. Modes 1, 3, and 7 are reserved.

2. D0=LSB;D7=MSB
3. Datais transmitted and received LSB first if SSFTD = 0 or MSB first if SSFTD = 1.

(b) SSFTD = 1

Figure 6-10 Serial Formats (Sheet 2 of 2)

6.3.2.1.2 SCR SCI Shift Direction (SSFTD) Bit 3

The SCI data shift registers can be programmed to shift data in/out either LSB first if
SSFTD equals zero, or MSB first if SSFTD equals one. The parity and data type bits do
not change position and remain adjacent to the stop bit. SSFTD is cleared by hardware
and software reset.

6.3.2.1.3 SCR Send Break (SBK) Bit 4

A break is an all-zero word frame — a start bit zero, a character of all zeros (including any
parity), and a stop bit zero: i.e., 10 or 11 zeros depending on the WDS mode selected. If
SBK is set and then cleared, the transmitter completes transmission of any data, sends
10 or 11 zeros, and reverts to idle or sending data. If SBK remains set, the transmitter will
continually send whole frames of zeros (10 or 11 bits with no stop bit). At the completion
of the break code, the transmitter sends at least one high bit before transmitting any data
to guarantee recognition of a valid start bit. Break can be used to signal an unusual con-
dition, message, etc. by forcing a frame error, which is caused by a m|ssmg stop bit.
Hardware and software reset clear SBK.

6.3.2.1.4 SCR Wakeup Mode Select (WAKE) Bit 5

When WAKE equals zero, an idle line wakeup is selected. In the idle line wakeup mode,
the SCI receiver is re-enabled by an idle string of at least 10 or 11 (depending on WDS
mode) consecutive ones. The transmitter’'s software must provide this idle string between
consecutive messages. The idle string cannot occur within a valid message because each
word frame contains a start bit that is a zero.

When WAKE equals one, an address bit wakeup is selected. In the address bit wakeup
mode, the SCI receiver is re-enabled when the last (eighth or ninth) data bit received in a
character (frame) is one. The ninth data bit is the address bit (R8) in the 11-bit multidrop
mode; the eighth data bit is the address bit in the 10-bit asynchronous and 11-bit asyn-
chronous with parity modes. Thus, the received character is an address that has to be pro-
cessed by all sleeping processors — i.e., each processor has to compare the received
character with its own address and decide whether to receive or ignore all following char-
acters. WAKE is cleared by hardware and software reset.

6.3.2.1.5 SCR Receiver Wakeup Enable (RWU) Bit 6

When RWU equals one and the SCl is in an asynchronous mode, the wakeup function is
enabled — i.e., the SCI is put to sleep waiting for a reason (defined by the WAKE bit) to
wakeup. In the sleeping state, all receive flags, except IDLE, and interrupts are disabled.
When the receiver wakes up, this bit is cleared by the wakeup hardware. The programmer
may also clear the RWU bit to wake up the receiver.

RWU can be used by the programmer to ignore messages that are for other devices on a
multidrop serial network. Wakeup on idle line (WAKE=0) or wakeup on address bit
(WAKE=1) must be chosen.

1. When WAKE equals zero and RWU equals one, the receiver will not respond
to data on the data line until an idle line is detected.

2. When WAKE equals one and RWU equals one, the receiver will not respond
to data on the data line until a data byte with bit 9 equal to one is detected.

When the receiver wakes up, the RWU bit is cleared, and the first byte of data is received.
If interrupts are enabled, the CPU will be interrupted, and the interrupt routine will read the
message header to determine if the message is intended for this DSP.

1. If the message is for this DSP, the message will be received, and RWU will
again be set to one to wait for the next message.

2. If the message is not for this DSP, the DSP will irhmediately set RWU to one.
Setting RWU to one causes the DSP to ignore the remainder of the message
and wait for the next message. ‘

RWU is cleared by hardware and software reset. RWU is a don'’t care in the synchronous mode.

6.3.2.1.6 SCR Wired-OR Mode Select (WOMS) Bit 7

When the WOMS bit is set, the SCI TXD driver is programmed to function as an open-
drain output and may be wired together with other TXD pins in an appropriate bus config-
uration such as a master-slave multidrop configuration. An external pullup resistor is re-
quired on the bus. When the WOMS is cleared, the TXD pin uses an active internal pullup.
This bit is cleared by hardware and software reset.

6.3.2.1.7 SCR Receiver Enable (RE) Bit 8

When RE is set, the receiver is enabled. When RE is cleared, the receiver is disabled, and
data transfer is inhibited to the receive data register (SRX) from the receive shift register.
If RE is cleared while a character is being received, the reception of the character will be
completed before the receiver is disabled. RE does not inhibit RDRF or receive interrupts.
RE is cleared by a hardware and software reset.

6.3.2.1.8 SCR Transmitter Enable (TE) Bit 9
When TE is set, the transmitter is enabled. When TE is cleared, the transmitter will com-
plete transmission of data in the SCI transmit data shift register; then the serial output is

forced high (idle). Data present in the SCI transmit data register (STX) will not be trans-
mitted. STX may be written and TDRE will be cleared, but the data will not be transferred
into the shift register. TE does not inhibit TDRE or transmit interrupts. TE is cleared by a
hardware and software reset.

Setting TE will cause the transmitter to send a preamble of 10 or 11 consecutive ones (de-
pending on WDS). This procedure gives the programmer a convenient way to ensure that
the line goes idle before starting a new message. To force this separation of messages
by the minimum idle line time, the following sequence is recommended:

1. Write the last byte of the first message to STX

2. Wait for TDRE to go high, indicating the last byte has been transferred to the
transmit shift register

3. Clear TE and set TE back to one. This queues an idle line preamble to imme-
diately follow the transmission of the last character of the message (including
the stop bit)

4. Write the first byte of the second message to STX

In this sequence, if the first byte of the second message is not transferred to the STX prior
to the finish of the preamble transmission, then the transmit data line will simply mark idle
until STX is finally written.

6.3.2.1.9 SCR Idle Line Interrupt Enable (ILIE) Bit 10
When ILIE is set, the SCI interrupt occurs when IDLE is set. When ILIE is clear the IDLE
interrupt is disabled. ILIE is cleared by hardware and software reset.

An internal flag, the shift register idle interrupt (SRIINT) flag, is the interrupt request to the
interrupt controller. SRIINT is not directly accessible to the user.

When a valid start bit has been received, an idle interrupt will be generated if both IDLE
(SCI Status Register bit 3) and ILIE equals one. The idle interrupt acknowledge from the
interrupt controller clears this interrupt request. The idle interrupt will not be asserted
again until at least one character has been received. The result is as follows:

1. The IDLE bit shows the real status of the receive line at all times.

2. Idle interrupt is generated once for each idle state, no matter how long the idle
state lasts.

6.3.2.1.10 SCR SCI Receive Interrupt Enable (RIE) Bit 11

The RIE bit is used to enable the SCI receive data interrupt. If RIE is cleared, receive in-
terrupts are disabled, and the RDRF bit in the SCI status register must be polled to deter-
mine if the receive data register is full. If both RIE and RDRF are set, the SCI will request
an SCl receive data interrupt from the interrupt controller. -

One of two possible receive data interrupts will be requested:

1. Receive without exception will be requested if PE, FE, and OR are all clear
(i.e., a normal received character).

2. Receive with exception will be requested if PE, FE, and OR are not all clear
(i.e., a received character with an error condition).

RIE is clearéd by hardware and software reset.

6.3.2.1.11 SCR SCI Transmit Interrupt Enable (TIE) Bit 12

The TIE bit is used to enable the SCI transmit data interrupt. If TIE is cleared transmit
data interrupts are disabled, and the transmit data register empty (TDRE) bit in the SCI
status register must be polled to determine if the transmit data register is empty. If both
TIE and TDRE are set, the SCI will request an SCI transmit data interrupt from the inter-
rupt controller. TIE is cleared by hardware and software reset.

6.3.2.1.12 SCR Timer Interrupt Enable (TMIE) Bit 13

The TMIE bit is used to enable the SCI timer interrupt. If TMIE is set (enabled), the timer
interrupt requests will be made to the interrupt controller at the rate set by the SCI clock
register. The timer interrupt is automatically cleared by the timer interrupt acknowledge
from the interrupt controller. This feature allows DSP programmers to use the SCI baud
clock generator as a simple periodic interrupt generator if the SCI is not in use, if external
clocks are used for the SCI, or if periodic interrupts are needed at the SCI baud rate. The
SClinternal clock is divided by 16 (to match the 1 X SCI baud rate) for timer interrupt gen-
eration. This timer does not require that any SCI pins be configured for SCI use to operate.
TMIE is cleared by hardware and software reset.

6.3.2.1.13 SCR SCI Timer Interrupt Rate (STIR) Bit 14

This bit controls a divide by 32 in the SCI Timer interrupt generator. When this bit is
cleared, the divide by 32 is inserted in the chain. When the bit is set, the divide by 32 is
bypassed, thereby increasing the timer resolutlon by 32 times. This bit is cleared by hard-
ware and software reset.

6.3.2.1.14 SCR SCI Clock Polarity (SCKP) Bit 15

The clock polarity, sourced or received on the clock pin (SCLK), can be inverted using this
bit, eliminating the need for an external inverter. When bit 15 equals zero, the clock polar-
ity is positive; when bit 15 equals one, the clock polarity is negative. In the synchronous
mode, positive polarity means that the clock is normally positive and transitions negative
during data valid; whereas, negative polarity means that the clock is normally negative
and transitions positive during valid data. In the asynchronous mode, positive polarity
means that the rising edge of the clock occurs in the center of the period that data is valid;
negative polarity means that the falling edge of the clock occurs during the center of the
period that data is valid. SCKP is cleared on hardware and software reset.

6.3.2.2 SCI Status Register (SSR) :
The SSR is an 8-bit read-only register used by the DSP CPU to determine the status of

the SCI. When the SSR is read onto the internal data bus, the register contents occupy
the low-order byte of the data bus and all high-order portions are zero filled. The status
bits are described in the following paragraphs.

6.3.2.2.1 SSR Transmitter Empty (TRNE) Bit 0

The TRNE flag is set when both the transmit shift register and data register are empty to
indicate that there is no data in the transmitter. When TRNE is set, data written to one of
the three STX locations or to the STXA will be transferred to the transmit shift register and
be the first data transmitted. TRNE is cleared when TDRE is cleared by writing data into
the transmit data register (STX) or the transmit data address register (STXA), or when an
idle, preamble, or break is transmitted. The purpose of this bit is to indicate that the trans-
mitter is empty; therefore, the data written to STX or STXA will be transmitted next —i.e.,
there is not a word in the transmit shift register presently being transmitted. This proce-
dure is useful when initiating the transfer of a message (i.e., a string of characters). TRNE
is set by the hardware, software, SCI individual, and stop reset.

6.3.2.2.2 SSR Transmit Data Register Empty (TDRE) Bit 1

The TDRE bit is set when the SCI transmit data register is empty. When TDRE is set, new
data may be written to one of the SCI transmit data registers (STX) or transmit data ad-
dress register (STXA). TDRE is cleared when the SCI transmit data register is written.
TDRE is set by the hardware, software, SCI individual, and stop reset.

In the SCI synchronous mode, when using the internal SCI clock, there is a delay of up to
5.5 serial clock cycles between the time that STX is written until TDRE is set, indicating
the data has been transferred from the STX to the transmit shift register, There is a two to
four serial clock cycle delay between writing STX and loading the transmit shift register;

in addition, TDRE is set in the middle of transmitting the second bit. When using an exter-
nal serial transmit clock, if the clock stops, the SCI transmitter stops. TDRE will not be set
until the middle of the second bit transmitted after the external clock starts. Gating the ex-
ternal clock off after the first bit has been transmitted will delay TDRE indefinitely.

In the SCI asynchronous mode, the TDRE flag is not setimmediately after a word is trans-
ferred from the STX or STXA to the transmit shift register nor when the word first begins
to be shifted out. TDRE is set two cycles of the 16X clock after the start bit—i.e., two 16X
clock cycles into to transmission time of the first data bit.

6.3.22.3 SSR Receive Data Register Full (RDRF) Bit 2

The RDREF bit is set when a valid character is transferred to the SCI receive data register
from the SCI receive shift register. RDRF is cleared when the SCI receive data register is
read or by the hardware, software, SCI individual, and stop reset.

6.3.2.24 SSR Idle Line Flag (IDLE) Bit 3
IDLE is set when 10 (or 11) consecutive ones are received. IDLE is cleared by a start-bit
detection. The IDLE status bit represents the status of the receive line. The transition of
IDLE from zero to one can cause an IDLE interrupt (ILIE). IDLE is cleared by the hard-
ware, software, SCI individual, and stop reset.

6.3.2.2.5 SSR Overrun Error Flag (OR) Bit 4

The OR flag is set when a byte is ready to be transferred from the receive shift register to
the receive data register (SRX) that is already full (RDRF=1). The receive shift register
data is not transferred to the SRX. The OR flag indicates that character(s) in the receive
data stream may have been lost. The only valid data is located in the SRX. OR is cleared
when the SCI status register is read, followed by a read of SRX. The OR bit clears the FE
and PE bits — i.e., overrun error has higher priority than FE or PE. OR is cleared by the
hardware, software, SCI individual, and stop reset.

6.3.2.2.6 SSR Parlty Error (PE) Bit 5

In the 11-bit asynchronous modes, the PE bit is set when an mcorrect parity bit has been
detected in the received character. It is set simultaneously with RDRF for the byte which
contains the parity error — i.e., when the received word is transferred to the SRX. If PE is
set, it does not inhibit further data transfer into the SRX. PE is cleared when the SCI status
register is read, followed by a read of SRX. PE is also cleared by the hardware, software,
SCl individual, or stop reset. In the 10-bit asynchronous mode, the 11-bit multidrop mode,

and the 8-bit synchronous mode, the PE bit is always cleared since there is no parity bit
in these modes. If the byte received causes both parity and overrun errors, the SCI receiv-
er will only recognize the overrun error.

6.3.2.2.7 SSR Framing Error Flag (FE) Bit 6

The FE bitis set in the asynchronous modes when no stop bit is detected in the data string
received. FE and RDRE are set simultaneously — i.e., when the received word is trans-
ferred to the SRX. However, the FE flag inhibits further transfer of data into the SRX until
it is cleared. FE is cleared when the SCI status register is read followed by reading the
SRX. The hardware, software, SCI individual, and stop reset also clear FE. In the 8-bit
synchronous mode, FE is always cleared. If the byte received causes both framing and
overrun errors, the SCI receiver will only recognize the overrun error.

6.3.2.2.8 SSR Received Bit 8 Address (R8) Bit 7

In the 11-bit asynchronous multidrop mode, the R8 bit is used to indicate whether the re-
ceived byte is an address or data. R8 is not affected by reading the SRX or status register.
The hardware, software, SCI individual, and stop reset clear R8.

6.3.2.3 SCI Clock Control Register (SCCR)

The SCCR is a 16-bit read/write register which controls the selection of the clock modes
and baud rates for the transmit and receive sections of the SCI interface. The control bits
are described in the following paragraphs. The SCCR is cleared by hardware reset.

The basic points of the clock generator are as follows:

1. The SCI core always uses a 16 X internal clock in the asynchronous modes
and always uses a 2 X internal clock in the synchronous mode. The maximum
internal clock available to the SCI peripheral block is the oscillator frequency
divided by 4. With a 40-MHz crystal, this gives a maximum data rate of 625
Kbps for asynchonous data and 5 Mbps for synchronous data. These maxi-
mum rates are the same for internally or externally supplied clocks.

2. The 16 X clock is necessary for the asynchronous modes to synchronize the
SCl to the incoming data (see Figure 6-11).

3. For the asynchronous modes, the user must provide a 16 X clock if he wishes
to use an external baud rate generator (i.e., SCLK input).

4. For the asynchronous modes, the user may select either 1 X or 16 X for the
' output clock when using internal TX and RX clocks (TCM=0 and RCM=0).

10.

6.3.2.3.1

The transmit data on the TXD pin changes on the negative edge of the 1 X
serial clock and is stable on the positive edge (SCKP=0). For SCKP equals
one, the data changes on the positive edge and is stable on the negative
edge. i

The receive data on the RXD pin is sampled on the positive edge (if SCKP=0)
or on the negative edge (if SCKP=1) of the 1 X serial clock.

For the asynchronous mode, the output clock is continuous.

For the synchronous mode, a 1 X clock is used for the output or input baud
rate. The maximum 1 X clock is the crystal frequency divided by 8.

For the synchronous mode, the clock is gated.
For both the asynchronous and synchronous modes, the transmitter and
receiver are synchronous with each other.

SCCR Clock Divider (CD11-CD0) Bits 11-0

The clock divider bits (CD11-CDO0) are used to preset a 12-bit counter, which is decre-
mented at the I rate (crystal frequency divided by 2). The counter is not accessible to
the user. When the counter reaches zero, it is reloaded from the clock divider bits. Thus,
a value of 0000 0000 0000 in CD11-CDO produces the maximum rate of l¢yc, and a value
of 0000 0000 0001 produces a rate of l¢y/2. The lowest rate available is I¢,/4096. Figure
6-12 and Figure 6-35 show the clock dividers. Bits CD11-CDO are cleared by hardware
and software reset. '

SELECT 8-OR 9-BIT WORDS

IDLE LINE 0 1 2 3 4 5 6 7 8

AX, TX DATA
(SSFTD = 0)

x1 CLOCK

x16 CLOCK
(SCKP = 0)

START STOP START

Figure 6-11 16 x Serial Clock

6.3.2.3.2 SCCR Clock Out Divider (COD) Bit 12

Figure 6-12 and Figure 6-35 show the clock divider circuit. The output divider is controlled
by COD and the SCI mode. If the SCI mode is synchronous, the output divider is fixed at
divide by 2; if the SCI mode is asynchronous, and

1. If COD equals zero and SCLK is an output (i.e., TCM and RCM=0), the SCI
clock is divided by 16 before being output to the SCLK pin; thus, the SCLK out-
putis a 1 X clock

2. 1f COD equals one and SCLK is an output, the SCI clock is fed directly out to
the SCLK pin; thus, the SCLK output is a 16 X baud clock

The COD bit is cleared by hardware and software reset.

6.3.2.3.3 SCCR SCI Clock Prescaler (SCP) Bit 13 '

The SCI SCP bit selects a divide by 1 (SCP=0) or divide by 8 (SCP=1) prescaler for the clock
divider. The output of the prescaler is further divided by 2 to form the SCI clock. Hardware and
software reset clear SCP. Figure 6-12 and Figure 6-35 show the clock divider diagram.

6.3.2.3.4 SCCR Receive Clock Mode Source Bit (RCM) Bit 14

RCM selects internal or external clock for the receiver (see Figure 6-35). RCM equals zero
selects the internal clock; RCM equals one selects the external clock from the SCLK pin.
Hardware and software reset clear RCM.

6.3.2.3.5 SCCR Transmit Clock Source Bit (TCM) Bit 15

The TCM bit selects internal or external clock for the transmitter (see Figure 6-35). TCM
equals zero selects the internal clock; TCM equals one selects the external clock from the
SCLK pin. Hardware and software reset clear TCM.

6.3.2.4 SCI Data Registers
The SCI data registers are divided into two groups: receive and transmit. There are two

‘receive registers — a receive data register (SRX) and a serial-to-parallel receive shift reg-
ister. There are also two transmit registers — a transmit data register (called either STX or
STXA) and a parallel-to-serial transmit shift register.

6.3.2.4.1 SCI Receive Registers

Data words received on the RXD pin are shifted into the SCI receive shift register. When
the complete word has been received, the data portion of the word is transferred to the
byte-wide SRX. This process converts the serial data to parallel data and provides double

buffering. Double buffering provides flexibility and increased throughput since the pro-
grammer can save the previous word while the current word is being received.

The SRX can be read at three locations: X:$FFF4, X:$FFF5, and X:$FFF6 (see Figure
6-13). When location X:$FFF4 is read, the contents of the SRX are placed in the lower
byte of the data bus and the remaining bits on the data bus are written as zeros. Similarly,
when X:$FFF5 is read, the contents of SRX are placed in the middle byte of the bus, and
when X:$FFF6 is read, the contents of SRX are placed in the high byte with the remaining
bits zeroed. Mapping SRX as described allows three bytes to be efficiently packed into

TCM RCM TXClock | RXClock | SCLKPin : Mode

0 0 Internal Internal Output Synchronous/Asynchronous
0 1 Internal External Input Asynchronous Only
1 0 External Internal Input Asynchronous Only
1 1 | External External Input Synchronous/Asynchronous
f()SC
DIVIDE N DIVIDE
BY 2 12-BIT COUNTER PRESCALER: BY 2
ior8
CcD11- CbO scpP
INTERNAL CLOCK
DIVIDE ‘
BY 16 SCI CORE LOGIC
) USES DIVIDE BY 16 FOR
ASYNCHRONOUS
i USES DIVIDE BY 2 FOR
STR | SYNCHRONOUS
IF ASYNCHRONOUS
NPT oo || RUBRELLOR S
(STMINT) DIVIDEBY 2
fo ' *
BPS= 64 x(7(SCP)+1)xCD + 1)
where: SCP=0or1 SCKP=1mp -
CD =0to $FFF
TO SCLK

Figure 6-12 SCI Baud Rate Generator

one 24-bit word by “OR”-ing three data bytes read from the three addresses. The following
code fragment requires that RO initially points to X:$3FFF4, register A is initially cleared,
and R3 points to a data buffer. The only programming trick is using BCLR to test bit 1 of
the packing pointer to see if it is pointing to X:$FFF6 and clearing bit 1 to point to X:$FFF4
if it had been pointing to X:$FFF6. This procedure resets the packing pointer after receiv-
ing three bytes. ' ’

MOVE X:(R0),X0 ;Copy received data to temporary register

BCLR #$1,R0 ;Test for last byte
;reset pointer if it is the last byte

OR X0,A ;Pack the data into register A

MOVE (RO)+ ;and increment the packing pointer.

JCS FLAG ;Jump to clean up routine if last byte

RTI ;Else return until next byte is received
FLAG MOVE A,(R3)+ ;Move the packed data to memory

CLR A ;Prepare A for packing next three bytes

RTI . ;Return until the next byte is received

The length and format of the serial word is defined by the WDS0, WDS1, and WDS2 con-
trol bits in the SCI control register. In the synchronous modes, the start bit, the eight data
bits with LSB first, the address/data indicator bit and/or the parity bit, and the stop bit are
received in that order for SSFTD equals zero (see Figure 6-10 (a)). For SSFTD equals
one, the data bits are transmitted MSB first (see Figure 6-10(b)). The clock source is de-
fined by the receive clock mode (RCM) select bit in the SCR. In the synchronous mode,
the synchronization is provided by gating the clock. In either mode, when a complete word
has been clocked in, the contents of the shift register can be transferred to the SRX and
the flags; RDRF, FE, PE, and OR are changed appropriately. Because the operation of
the SCI receive shift register is transparent to the DSP, the contents of this register are
not directly accessible to the programmer.

6.3.2.4.2 SCI Transmit Registers

The transmit data register is one byte-wide register mapped into four addresses:
X:$FFF3, X:$FFF4, X:$FFF5, and X:$FFF6. In the asynchronous mode, when data is to
be transmitted, X:$FFF4, X:$FFF5, and X:$FFF6 are used, and the register is called STX.
When X:$FFF4 is written, the low byte on the data bus is transferred to the STX; when
X:$FFF5 is written, the middle byte is transferred to the STX; and when X:$FFF6 is writ-
ten, the high byte is transferred to the STX. This structure (see Figure 6-9) makes it easy
for the programmer to unpack the bytes in a 24-bit word for transmission. Location
X:$FFF3 should be written in the 11-bit asynchronous multidrop mode when the data is

an address and it is desired that the ninth bit (the address bit) be set. When X:$FFF3 is
written, the transmit data register is called STXA, and data from the low byte on the data
bus is stored in STXA. The address data bit will be cleared in the 11-bit asynchronous mul-
tidrop mode when any of X:$FFF4, X:$FFF5, or X:$FFF6 is written. When either STX or
STXA is written, TDRE is cleared. ’

The transfer from either STX or STXA to the transmit shift register occurs automatically,
but not immediately, when the last bit from the previous word has been shifted out —i.e.,
the transmit shift register is empty. Like the receiver, the transmitter is double buffered.
However, there will be a two to four serial clock cycle delay between when the data is
transferred from either STX or STXA to the transmit shift register and when the first bit
appears on the TXD pin. (A serial clock cycle is the time required to transmit one data bit).

o [& I |

23 l 16 15 l 8 7 l 0

X:$3FFF6 MOVE X0, X:$FFF6; TRANSMIT CHARACTER “A”

X:$FFF5 MOVE X0, X:$FFF5; TRANSMIT CHARACTER “B"
X:$FFF4 MOVE X0, X:$F‘FF4; TRANSMIT CHARACTER“C" n

NOTE: STX is the same register decoded at three different addresses.

(a) Unpacking -

23 16 15 87 0 v
X:$FFF6 | MOVE X0, X:$FFF6; RECEIVE CHARACTER “A"
X:$FFF5 | MOVE X0, X:$FFF5; RECEIVE CHARACTER 8"

X:$FFF4 MOVE X0, X:$FFF4; RECEIVE CHARACTER “C”

N S N S

NOTE: SRX is the same register decoded at three different addresses.

(b) Packing

Figure 6-13 Data Packing and Unpacking

The transmit shift register is not directly addressable, and a dedicated flag for this register
does not exist. Because.of this fact and the two to four cycle delay, two bytes cannot be
written consecutively to STX or STXA without polling. The second byte will overwrite the
first byte. The TDRE flag should always be polled prior to writing STX or STXA to prevent
overruns unless transmit interrupts have been enabled. Either STX or STXA is usually
written as part of the interrupt service routine. Of course, the interrupt will only be gener-
ated if TDRE equals one. The transmit shift register is indirectly visible via the TRNE bit
in the SSR. '

In the synchronous modes, data is synchronized with the transmit clock, which may have
either an internal or external source as defined by the TCM bit in the SCCR. The length
and format of the serial word is defined by the WDS0, WDS1, and WDS2 control bits in
the SCR. In the asynchronous modes, the start bit, the eight data bits (with the LSB first
if SSFTD=0 and the MSB first if SSFTD=1), the address/data indicator bit or parity bit, and
the stop bit are transmitted in that order (see Figure 6-10).

The data to be transmitted can be wntten to any one of the three STX addresses. If SCKP
equals one and SSHTD equals one, the SCI synchronous mode is equwalent to the SSI
operation in the 8-bit data on- demand mode. '

6.3.2.5 Preamble, Break, and Data Transmlssmn Prlonty
Itis possible that two or three transmission commands are set simultaneously:

1. A preamble (TE was toggled)
2. Abreak (SBK was set or was toggled).
3. There is data for transmission (TDRE=0)

After the current character transmission, if two or more of these commands are set, the
transmitter will execute them in the following priority:

1. Preamble
2. Break
3. Data

6.3.3 Register Contents After Reset
There are four methods to reset the SCI. Hardware or software reset clears the port con-

trol register bits, which configure all I/O as general-purpose input. The SCI will remain in
the reset state while all SCI pins are programmed as general-purpose I/0 (CC2, CC1, and
CC0=0); the SCI will become active only when at least one of the SCI |/O pins is pro-
grammed as not general-purpose |/O.

During program execution, the CC2, CC1, and CCO bits may be cleared (individual re-
set), which will cause the SCI to stop serial activity and enter the reset state. All SCI
status bits will be set to their reset state; however, the contents of the interface control
register are not affected, allowing the DSP program to reset the SCI separately from the
other internal peripherals.

The STOP instruction halts operation of the SCI until the DSP is restarted, causing the
SSR to be reset. No other SCI registers are affected by the STOP instruction. Table 6-2
illustrates how each type of reset affects each register in the SCI.

6.3.4 SCl Initialization
The correct way to initialize the SCl is as follows:

1. Hardware or software reset
2. Program SCI control registers
3. Configure SCI pins (at least one) as not general-purpose /O

Figure 6-14 and Figure 6-15 show how to configure the bits in the SCI registers. Figure
6-14 is the basic initialization procedure showing which registers must be configured. (1)
A hardware or software reset should be used to reset the SCI and prevent it from doing
anything unexpected while it is being programmed. (2) Both the SCl interface control reg-
ister and the clock control register must be configured for any operation using the SCI. (3)
The pins to be used must then be selected to release the SCI from reset and (4) begin
operation. If interrupts are to be used, the pins must be selected, and interrupts must be
enabled and unmasked before the SCI will operate. The order does not matter; any one
of these three requirements for interrupts can be used to finally enable the SCI.

Figure 6-15 shows the meaning of the individual bits in the SCR and SCCR. The figures
below do not assume that interrupts will be used; they recommend selecting the appropri-
ate pins to enable the SCI. Programs shown in Figures Figure 6-20, Figure 6-21, Figure
6-28, Figure 6-34, and Figure 6-36 control the SCI by enabling and disabling interrupts.
Either method is acceptable.

Table 6-2 SCI Registers after Reset

Register| ~ Bit | gy Number Reset Type
Bit | Mnemonic HW Reset | SW Reset | IRReset | ST Reset
SCKP 15 0) = =
STIR 14 0 0 - _
TMIE 13 0 0 - _
TIE 12 0 0 - _
RIE 11 0 0 - _
ILIE 10 0 0 - _
TE 9 0 0 - - _
. SCR | RE 8 0 0 - -
WOMS 7 0 0 - _
RWU 6 0 0 - _
WAKE 5 0 0 - -
SBK 4 0 0 - - _
SSFTD 3 0 0 - _
WDS (2-0) 20 0 0 - -
R8 7 0 0 0 0
FE 6 0 0 0 0
PE 5 0 0 0 0
SSR OR 4 0 0 0 0
IDLE 3 0 0 0 0
RDRF 2 0 0 0 0
TDRE 1 1 1 1 1
TRNE 0 1 1 1 1
TCM 15 0 0 - -
RCM 14 0 0 U
SCCR SCP . 13 0 0 = _
coD 12 0 0 - -
CD (11-0) 11-0 0 0 - -
SRX | SRX (23-0) | 23-16, 15-8, 70 - - - -
STX | STX (23-0) 230 - - - -
SRSH | SRS (8-0) 80 - - - -
STSH | STS (8-0) 80 - - - -

. NOTES:
SRSH — SCl receive shift register, STSH — SCI transmit shift register
HW — Hardware reset is caused by asserting the external RESET pin.
SW -~ Software reset is caused by executing the RESET instruction.
IR — Individual reset is caused by clearing PCC (bits 0-2) (configured for general purpose I/O).
ST - Stop reset is caused by executing the STOP instruction.
1 —The bit is set during the xx reset.
0 — The bit is cleared during the xx reset.
——The bit is not changed during the xx reset.

1. PERFORM HARDWARE OR SOFTWARE RESET.

2. PROGRAM SCI CONTROL REGISTERS:
a) SCIINTERFACE CONTROL REGISTER — X:$FFFO
b) SCICLOCK CONTROL REGISTER — X:$FFF2

3. CONFIGURE AT LEAST ONE PORT C CONTROL BIT AS SC!.

23 0

0 cclce|cc|celcc|cec|cc|cc|cc|PORT C CONTROL

X$FFE1jO|O]JO]JOJO|JOo]JojJojojojojo]o]oO REGISTER (PCC)

«©
~
o
[3,]
-
w
n
-
o

CCx Function
0 GPIO
1 Serial Interface

4. SCIIS NOWACTIVE.

Figure 6-14 SCI Initialization Procedure

Table 6-3 (a) through Table 6-4 (b) provide the settings for common baud rates for
the SCI. The asynchronous SCI baud rates show a baud rate error for the fixed os-
cillator frequency (see Table 6-3 (a)). These small-percentage baud rate errors
should allow most UARTSs to synchronize. The synchronous applications usually re-
quire exact frequencies, which require that the crystal frequency be chosen carefully
(see Table 6-4 (a) and Table 6-4 (b)).

An alternative to selecting the system clock to accommodate the SCI requirements is to
provide an external clock to the SCI. For example, a 2.048 MHz bit rate requires a CPU
clock of 32.768 MHz. An application may need a 40 MHz CPU clock and an external clock
for the SCI.

STEP 2a. SELECT SCI OPERATION:
FOR A BASIC CONFIGURATION, SET:

SCKP — BIT15=0 f ENABLE/DISABLE
STIR — BIT14=0 TRANSMIT INTERRUPT
TMIE — BIT13=0 ENABLE =1
ILE — BIT10=0 L DISABLE =0
RWU — BIT 6=0
WAKE — BIT 5=0 ENABLE/DISABLE .
SBK — BIT 4=0 f RECEIVE INTERRUPT
SSFTD — BIT 3=0 ENABLE =1
L DISABLE =0
f ENABLE/DISABLE
TRANSMIT DATA
L ENABLE =1
DISABLE =0
ENABLE/DISABLE
f RECEIVE DATA
ENABLE =1
L DISABLE =0
15 14 13 12 1" 10 9 8 7 6 "5 4 3 2 1 0
X:$FFFO I:CKP| STIR ITMIE I TIE | RIE l ILIE | TE I RE |wonEl RWU MKEI SBK lssnohvnsal wom'woso SCIINTERFACE CONTROL REGISTER (SCR)
(READWRITE)
~——

000 = 8-BIT SYNCHRONOUS DATA (SHIFT REGISTER MODE)

001 = RESERVED

010 = 10-BIT ASYNCHRONOUS (1 START, 8 DATA, 1 STOP)

011 = RESERVED

100 = 11-BIT ASYNCHRONOUS (1 START, 8 DATA, EVEN PARITY, 1 STOP)
101 = 11-BIT ASYNCHRONQUS (1 START, 8 DATA, ODD PARITY, 1 STOP)
110 = 11-BIT MULTIDROP (1 START, 8 DATA, EVEN PARITY, 1 STOP)

111 = RESERVED

WIRED - OR MODE

MULTIDROP =1
POINTTO POINT =0

Step 2a

Figure 6-15 SCI General Initializaiion Detail — Step 2 (Sheet 1 of 2)

STEP2b. SELECT CLOCK AND DATA RATE:
SET THE CLOCK DIVIDER BITS (CDO - CD11) ACCORDING TO TABLES 11-2 OR 11 - 3. .
SET THE SCI CLOCK PRESCALER BIT (SCP, BIT 13) ACCORDING TO TABLES 11-20R 11 - 3. -

SET

TRANSMIT CLOCK SOURCE
EXTERNALCLOCK =1
INTERNAL CLOCK =0

SET

RECEIVE CLOCK SOURCE
EXTERNAL CLOCK = 1
INTERNALCLOCK =0

SET

SCI CLOCK PRESCALER
DIVIDEBY 8=1
DIVIDEBY 1=0

SET

CLOCK OUT DIVIDER

IF SCLK PIN 1S AN OTUPUT AND
COD=1 SCLK OUTPUT = 16X
coD=0 SCLKOUTPUT = 1X

N W e

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

X:$FFF2 LTCM I Rcrvisctl cobD |CD11 Icmo' cD9 I 0081 cD7 I CD6 | CDs I CD4 | CcD3 rcoz | cD1 I cDo I SCICLOCK CONTROL REGISTER (SCCR)

Step 2b

Figure 6-15 SCI General Initialization Detail — Step 2 (Sheet 2 of 2)

Table 6-3 (a) Asynchronous SCI Bit Rates for a 40-MHz Crystal

Bit Rate SCP | Divider Bits Bit Rate
(BPS) Bit |[(CD0-CD11) | Error, Percent
625.0K 0 $000 0
56.0K 0 $00A +1.46
38.4K 0 $00F +1.72
19.2K 0 $020 -1.36
9600 0 $040 +0.16
8000 0 $04D +0.15
4800 0 $081 +0.15
2400 1 $020 -1.38
1200 1 $040 +0.08
600 1 $081 0
300 1 $103 0
BPS= f, =+ I1 (64X (7(SCP) + 1) X (CD + 1)); f,=40 MHz
SCP=0or 1
© CD=0 to $FFF

Table 6-3 (b) Frequencies for Exact Asynchronous SCI Bit Rates

“er) | SCPB | (CDo-cpt1) | Frequency
9600 0 $040 39,936,000
4800 0 $081 39,936,000
2400 0 $103 39,936,000
1200 0 $207 39,936,000
300 0 $822 39,993,000
9600 1 $007 39,321,600
4800 1 $00F 39,321,600
2400 1 $01F 39,321,600
1200 1 $040 39,360,000
300 1 $103 39,936,000

f0=BPS X 64X (7(SCP) + 1)X(CD + 1))
SCP=0or 1

CD=0 to $FFF

Table 6-4 (a) Synchronous SCI Bit Rates for a 32.768-MHz Crystal

Table 6-4 (b) Frequencies for Exact Synchronous SCI Bit Rates

" | sors | @ty | e
‘ Percent
4.096M 0 3000 5

128K 0 $01F 0
64K 0 $03F 0
56K 0 $048 0195
32K 0 $07F 0
16K 0 $OFF 0
8000 0 $1FF 0
4000 0 $3FF 0
2000° 0 $7FF 0
1000 0 $FFF 0

BPS= fo + (8 x (7(SCP) + 1) x (CD + 1)); £,=32.768 MHz

SCP=0or 1

CD=0 to $FFF

6.3.5

tions are as follows:

1. SCI Receive Data — caused by receive data register full with no receive error
conditions existing. This error-free interrupt may use a fast interrupt service
routine for minimum overhead. This interrupt is enabled by SCR bit 11 (RIE).

Bit Rate .. | Divider Bits Crystal
@ps) | SCPBit) cho cp11)| Frequency

2.048M 0 $001 32.768 MHz
1.544M 0 $002 37.056 MHz
1.536M 0 $002 36.864 MHz

f;=BPS x 8 x (7(SCP) + 1) x (CD + 1)

SCP=0or 1

CD=0 to $FFF

SCI Exceptions
The SCI can cause five different exceptions in the DSP (see Figure 6-53). These excep-

EXCEPTION ' PROGRAM MEMORY SPACE
STARTING
ADDRESS
EXCEPTION SOURCE l ‘
$0000 | HARDWARE RESET TWO WORDS PER VECTOR EXTERNAL INTERRUPTS
$0002 | STACK ERROR 1 1
INTERNAL
$0004 | TRACE INTERRUPTS
$0006 | SWI (SOFTWARE INTERRUPT) ; {
$0008 | TRGA EXTERNAL HARDWARE INTERRUPT EXTERNAL
$000A | TRGB EXTERNAL HARDWARE INTERRUPT INTERRUPTS
$000C | Sst RECEIVE DATA 1
$000E | SSI RECEIVE DATA WITH EXCEPTION STATUS SYNZE‘S&TOUS
$0010 | SSI TRANSMIT DATA INTERFACE
$0012 | SSI TRANSMIT DATA WITH EXCEPTION STATUS
INTERNAL
$0014 | SCI RECEIVE DATA ‘ INTERRUPTS
$0016 | SCI RECEIVE DATA WITH EXCEPTION STATUS SERIAL
$0018 | SCI TRANSMIT DATA COMMUNICATIONS
INTERFACE
$001A | SCIIDLE LINE
$00tc | scITIMER
$001E | RESERVED
$0020 | HOST RECEIVE DATA
$0022 | HOST TRANSMIT DATA
$0024 | HOST COMMAND (DEFAULT)
$0026 | AVAILABLE FOR HOST COMMAND
$0028 | AVAILABLE FOR HOST COMMAND
) [
[]
. HOST INTERNAL
INTERFACE INTERRUPTS
$003A | AVAILABLE FOR HOST COMMAND
$003C | TIMER
$003E | ILLEGAL INSTRUCTION
$0040 | AVAILABLE FOR HOST COMMAND
[]
[]
[]
$007E | AVAILABLE FOR HOST COMMAND

Figure 6-16 SCI Exception Vector Locations

2. SCI Receive Data with Exception Status — caused by receive data register full
with a receiver error (parity, framing, or overrun error). The SCI status register
must be read to clear the receiver error flag. A long interrupt service routine
should be used to handle the error condition. This interrupt is enabled by SCR
bit 11 (RIE).

3. SCI Transmit Data — caused by transmit data register empty. This error-free
interrupt may use a fast interrupt service routine for minimum overhead. This
interrupt is enabled by SCR bit 12 (TIE).

4. SCI Idle Line — occurs when the receive line enters the idle state (10 or 11 bits
of ones). This interrupt is latched and then automatically reset when the inter-
rupt is accepted. This interrupt is enabled by SCR bit 10 (ILIE).

5. SCI Timer — caused by the baud rate counter underflowing. This interrupt is
automatically reset when the interrupt is accepted. This interrupt is enabled by
SCR bit 13 (TMIE).

6.3.6 Synchronous Data
The synchronous mode (WDS=0, shift register mode) is designed to implement serial-to--

parallel and parallel-to-serial conversions. This mode will directly interface to 8051/8096
synchronous (mode 0) buses as both a controller (master) or a peripheral (slave) and is
compatible with the SSI mode if SCKP equals one. In synchronous mode, the clock is al-
ways common to the transmit and receive shift registers.

As a controller (synchronous master) shown in Figure 6-17, the DSP puts out a clock on
the SCLK pin when data is present in the transmit shift register (a gated clock mode). The
master mode is selected by choosing internal transmit and receive clocks (setting TCM
and RCM=0). The example shows a 74HC165 parallel-to-serial shift register and
74HC164 serial-to-parallel shift register being used to convert eight bits of serial 1/0 to
eight bits of parallel I/O. The load pulse latches eight bits into the 74HC165 and then
SCLK shifts the RXD data into the SCI (these data bits are sample bits 0-7 in the timing
diagram). At the same time, TXD shifts data out (B0-B7) to the 74HC164. When using the
internal clock, data is transmitted when the transmit shift register is full. Data is valid on
both edges of the output clock, which is compatible with an 8051 microprocessor. Re-
ceived data is sampled in the middle of the clock low time if SCKP equals zero or in the
middle of the clock high time if SCKP equals one. There is a window during which STX
must be written with the next byte to be transmitted to prevent a gap between words. This
window is from the time TDRE goes high halfway into transmission of bit 1 until the middle
of bit 6 (see Figure 6-19(a)).

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0o

xsFrro [soxp | sTr | TmE [TE | RE | we | TE | RE [woms| rwu |wake|sek [o [o | o] o
SSFTD WDS2 WDS1 WDSO
15 . 14 -13 12 1 10 9 8 7 6 5 4 3 2 1 0
X:$FFF2 l 0 I 0 ' scp I cop Icon |cmo I cDo | cDs l co7 I cs l D5 ' cD4 I cDs I cD2 I CD1 I cho
TCM RCM
(scP=0)
Tm’zggggﬂ; \ B X Bt X B2 X B3 Y B4 X Bs X B X 87 [
7 WRITE STX
RECEIVE DATA XXXXXXX

L

SAMPLE

[} 1

2

EXAMPLE: SHIFT REGISTER I/O

DSP56002 74HC165 . .
D |—————————— 3 PARALLEL INPUTS
RXD Q L}¢———— LOAD PULSE TLI™
_ CLK
SCLK _—_e
TXD p K Qe 8 PARALLEL OUTPUTS
74HC164
SIP

Figure 6-17 Synchronous Master

SCICONTROLREGISTER (SCR)
(READWRITE)

SCICLOCK CONTROL REGISTER (SCCR)
(READWRITE)

As a peripheral (synchronous slave) shown in Figure 6-18, the DSP accepts an input clock
from the SCLK pin. If SCKP equals zero, data is clocked in on the rising edge of SCLK,
and data is clocked out on the falling edge of SCLK. If SCKP equals one, data is clocked
in on the falling edge of SCLK, and data is clocked out on the rising edge of SCLK. The
slave mode is selected by choosing external transmit and receive clocks (TCM and
RCM=1). Since there is no frame signal, if a clock is missed due to noise or any other rea-
son, the receiver will lose synchronization with the data without any error signal being gen-
erated. Detecting an error of this type can be done with an error detecting protocol or with
external circuitry such as a watchdog timer. The simplest way to recover synchronization
is to reset the SCI.

The timing diagram in Figure 6-18 shows transmit data in the normal driven mode. Bit B7
is essentially one-half SCI clock long (Tgc/2 + 1.5 TextaL) The last data bit is truncated
so that the pin is guaranteed to go to its reset state before the start of the next data word,
thereby delimiting data words. The 1.5 crystal clock cycles provide sufficient hold time to
satisfy most external logic requirements. The example diagram requires that the WOMS
bit be set in the SCR to wired-OR RXD and TXD, which causes TXD to be three-stated
when not transmitting. Collisions (two devices transmitting simultaneously) must be avoid-
ed with this circuit by using a protocol such as alternating transmit and receive periods. In
the example, the 8051 is the master device because it controls the clock. There is a win-
dow during which STX must be written with the next byte to be transmitted to prevent the
current word from being retransmitted. This window is from the time TDRE goes high,
which is halfway into the transmission of bit 1, until the middle of bit 6 (see Figure 6-19(b)).
Of course, this assumes the clock remains continuous —i.e., there is a second word. If the
clock stops, the SCi stops.

The DSPis initially configured according to the protocol to either receive data or transmit data.
If the protocol determines that the next data transfer will be a DSP transmit, the DSP will con-
figure the SCI for transmit and load STX (or STXA). When the master starts SCLK, data will
be ready and waiting. If the protocol determines that the next data transfer will be a DSP re-
ceive, the DSP will configure the SCI for receive and will either poll the SCI or enable inter-
rupts. This methodology allows multiple slave processors to use the same data line. Selection
of individual slave processors can be under protocol control or by multiplexing SCLK.

Note: TCM=0, RCM=1 and TCM=1,RCM=0 are not allowed in the synchronous mode.
- The results are undefined.

The assembly program shown in Figure 6-20 uses the SCI synchronous mode to transmit
only the low byte of the Y data ROM contents. The program sets the reset vector to run
the program after a hardware reset, puts the MOVER instruction at the SCI transmit inter-
rupt vector location, sets the memory wait states to zero, and configures the memory
pointers, operating mode register, and the IPR.

15 14 13 12 1 10 9 8 7 6 5 4

X:$FFFO FSCKPI STIR ITM!E| TIE I RIEJ ILIE I TE | RE Iwomsl RWU |WAKEI SBK I 0 I I | memm(m
SSFTD WDS2 WDS1 WDSO

15 14 18 12 1 1 9o 8 7 s 5 4 a2 1 o .
X:$FFF2 I 1 | 1 Lscp |coo |co11 Icmol cpe | cos | co7 | cD6 I cDs I cD4 | cD3 | cp2 I D1 Fno SCICLOCK CONTROL REGISTER (SCCR)
(READWRITE)
TCM RCM -
CLOCK INPUT
(SKP = 0)

TRAl\(lssglgg:Té; Bo B X B2 X B3 W Ba X B X 6 X g7 [

RECEIVE DATA XXXXXX XX . XX M XX X%X XX XX X:
1 2 3 ‘4 5 6

SAMPLE ¢

EXAMPLE: INTERFACE TO SYNCHRONOUS MICROCOMPUTER BUSES -

DSP56002
RXD > P3.0
] : 8051
XD OR
8096
SCLK | P31

Figure 6-18 Synchronous Slave

SYNCHRONOUS MODE, INTERNAL CLOCK (MASTER)

SERIAL h
CLOCK
(INT)
STX |ee—e————— STX WRITE RANGE) STX WRITE RANGE FOR NO __..I
WRITE TX WRITE RAN GAP BETWEEN WORDS 1AND 2
RANGE ___l———MAX 5.5 SERIAL CLOCK CYCLES———]

moe \ / NANNNNNNNNANNN | /

TDREM 0 BY STX WRITE
@D
a'RAhIIDsAA%r\g X BITO x amm BIT2 x BIT3 x BIT4 x B[TSX BITG_X BIT7 xana X ij BIT2X X
I FIRST WORD SECOND WORD

NOTE: Ininternal clock mode, if data 2 is written after the middle of bit 6 of data 1, then a gap of at least two serial bits is inserted
between word 1 and word 2. The gap is bigger as STX is written later.

(a) Master
SYNCHRONOUS MODE, INTERNAL GLOCK (SLAVE)
SERIAL , :
cLock :
(EXT)
sTX ,
WRITE Je——————— STXWRITE RANGE STXWRITE RANGE ———]
RANGE
oe N\ /N AN NANNNNANNN /
TDREM 0 BY STX WRITE
™D
(TRANSMIT
DATA) X BITO X BIT 1 X BIT2 X BIT3 (Bm X BIT;X BITGX BIT7 X BITOX BITLX BIT2 X X
| FIRST WORD SECOND WORD

NOTE: In external clock mode, if data 2 is written after the middle of bit 6 of data 1, then the previous data is retransmitted and
data 2 is transmitted after the retransmission of data 1.
(b) Slave

Figure 6-19 Synchronous Timing

ORG P:0 ;Reset vector

JMP $40 ; :

ORG P:$18 ;SCI transmit interrupt vector

MOVEP Y:(RO)+X:$FFF4 ;Transmit low byte of data

ORG P:$40

MOVEP #0,X:$FFFE ;Clear BCR

MOVE #$100,R0 :Data ROM start address

MOVE #$FF,M0 ;Size of data ROM - Wraps around at $200
MOVEC #6,0MR ;Change operating mode to enable data ROM

MOVEP #$C000,X:$3FFFF ;Interrupt priority register
MOVEP #$1200,X:$FFF0 ;8-bit synchronous mode

MOVEP #7,X:$FFE1 ;Port C control register — enable SCI
MOVEC #0,SR , ;Unmask interrupts
LABO JMP LABO ;Wait in loop for interrupts

Figure 6-20 SCI Synchronous Transmit

The SCl is then configured and the interrupts are unmasked, which starts the data trans-
fer. The jump-to-self |nstruct|on (LABO JMP LABO) i is used to wait while interrupts transfer
the data. .

The program shown in Figure 6-21 is the program for receiving data from the program pre-
sented in Figure 6-20. The program sets the reset vector to run the program after hard-
ware reset, puts the MOVEP instruction to store the data in a circular buffer starting at
$100 at the SCI receive interrupt vector location, puts another MOVEP instruction at the
SCl receive interrupt vector location, sets the memory wait states to zero, and configures
the memory pointers and IPR. The SC! is then configured and the interrupts are un-
masked, which starts the data transfer. The jump-to-selif instruction (LABO JMP LABO) is
used to wait while interrupts transfer the data.

6.3.7 Asynchronous Data

Asynchronous data uses a data format with embedded word sync, which allows an un-
synchronized data clock to be synchronized with the word if the clock rate and number of
bits per word is known. Thus, the clock can be generated by the receiver rather than re-
quiring a separate clock signal. The transmitter and receiver both use an internal clock
that is 16 X the data rate to allow the SCI to synchronize the data. The data format re-
quires that each data byte have an additional start bit and stop bit. In addition, two of the
word formats have a parity bit. The multidrop mode used when SCls are on a common
bus has an additional data type bit. The SCI can operate in full-duplex or half-duplex

ORG P:0 :Reset vector

JMP $40 ;

ORG P:$14 ;SCl receive data vector

MOVEP X:$FFF4,Y:(R0)+ ;Receive low byte of data

NOP ;Fast interrupt response

MOVEP X:$FFF1,X0 ;Receive with exception. Read status register
MOVEP X:$FFF4,Y:(R0)+ ;Receive low byte of data

ORG P:$40

MOVEP #0,X:$FFFE ;:Clear BCR

MOVE #$100,R0 - ;Data ROM start address

MOVE #$FF,M0 ; Size of data ROM — wraps around at $200

MOVEP #$C000,X:$FFFF ;Interrupt priority register
MOVEP #$900,X:$FFF0 ; 8-bit synchronous mode receive only
MOVEP #$C000,X:$FFF2 ;Clock control register external clock

MOVEP #7 X:$FFE1 ;Port C control register — enable SCI
MOVEC #0,SR ;Unmask interrupts
LABO JMP LABO ;Wait in loop for interrupts

Figure 6-21 SCI Synchronous Receive

modes since the transmitter and receiver are independent. The SCI transmitter and re-
ceiver can use either the internal clock (TCM=0 and/or RCM=0) or an external clock
(TCM=1 and/or RCM=1) or a combination. If a combination is used, the transmitter and
receiver can run at different data rates.

6.3.7.1 . Asynchronous Data Reception
Figure 6-22 illustrates initializing the SCI data receiver for asynchronous data. The first

step (1) resets the SCI to prevent the SCI from transmitting or receiving data. Step two (2)
selects the desired operation by programming the SCR. As a minimum, the word format
(WDS2, WDS1, and WDSO0) must be selected, and (3) the receiver must be enabled
(RE=1). If (4) interrupts are to be used, set RIE equals one. Use Table 6-3 (a) through
Table 6-4 (b) to set (5) the baud rate (SCP and CD0-CD11 in the SCCR). Once the SCI
is completely configured, it is enabled by (6) setting the RXD bit in the PCC.

The receiver is continually sampling RDX at the 16 X clock rate to find the idle-start-bit
transition edge. When that edge is detected (1) the following eight or nine bits, depending
on the mode, are clocked into the receive shift register (see Figure 6-23). Once a com-
plete byte is received, (2) the character is latched into the SRX, and RDRF is set as well
as the error flags, OR, PE, and FE. If (3) interrupts are enabled, an interrupt is generated.

1. HARDWARE OR SOFTWARE RESET
2. PROGRAM SCR WITH DESIRED MODE AND FEATURES.
3. TURN ON RECEIVER (RE = 1).
4. OPTIONALLY ENABLE RECEIVER INTERRUPTS (RIE = 1).
5 14 18 12 1 10 9 8 7 6 5 4 3 2 1 0
X:$FFFO [SCKPI STIR LTMlEI TE l 1 I ILE | TE l 1 IWOMSI RWU |WAKE| SBK ISSFI'DI woszlwos1|woso| SCICONTROL REGISTER(SCR)
(READWRITE)
RIE RE

§. SET THE BAUD RATE BY PROGRAMMING THE SCCR.

15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 0

X:$FFF2 |TCM | RCM I ScP | cob |CD11 ‘cmo' cDo | cDs I cD7 | cDs [cos I cD4 | cD3 | cD2 I cD1 l cDo |mn&zasrm(socﬂ)

N _

PRESCALER DIVIDEBY 1
IF SCP = 1, THEN DIVIDE BY 8 TO 4096
IF SCP =0, THEN DIVIDE BY 1

6. SET THE RXD BIT IN PCC TO ENABLE THE SCI RECEIVER SYSTEM.] scl
23 9 8 7 6 5 4 3 2 1 0
X:$FFE1 L 0 | ccs | ccr | cce | ces l cml cca l ccz I cet I 1 Ipoqrcmm_REGls‘lm(P(xz)
" RXD
CCx Function
0 GPIO
1 Serial Interface
NOTE: IiREiscIsaredwhilsavaiid haracter is being i "‘,the ption of the character will be completed before the receiver is disabled.

Figure 6-22 Asynchronous SCI Receiver Initialization

1. THE RECEIVER IS IDLE UNTILA CHARACTER IS RECEIVED IN THE DATA SHIFT REGISTER.

CLLITTTITTTT

2. TRANSFERRING THE RECEIVED CHARACTER INTO SRX SETS RDRF IN THE SSR.

7 6 5 4 3 2 1 0
xserr1[R8 | FE [PE [OR [IDLE | 1JTDRETTRNElggg%ﬁf&;swmssm
RORF

3. IFRIE=1IN SCR, THEN AN INTERRUPT IS GENERATED.

: X:$FFF6
INTERRUPT
& 5
VECTOR X:$FFF
TABLE . X:$FFF4
RECEIVE
INTERRUPT
— SERVICE ~
— ROUTINE
. X CLEARS RDRF IN THE SSR.
P:$0014 | SCI RECEIVE DATA 5. READING SR

"_/

4. THE RECEIVE INTERRUPT SERVICE ROUTINE READS THE RECEIVED CHARACTER.

Figure 6-23 SCI Character Reception

The interrupt service routine, which can be a fast interrupt or a long interrupt, (4) reads
the received character. Reading the SRX (5) automatically clears RDFR in the SSR and
makes the SRX ready to receive another byte.

If (1) an FE, PE, or OR occurs while receiving data (see Figure 6-24), (2) RDRF is set be-
cause a character has been received; FE, PE, or OR is set in the SSR to indicate that an
error was detected. Either (3) the SSR can be polled by software to look for errors, or (4)
interrupts can be used to execute an interrupt service routine. This interrupt is different
from the normal receive interrupt and is caused only by receive errors. The long interrupt
service routine should (5) read the SSR to determine what error was detected and then
(6) read the SRX to clear RDRF and all three error flags.

6.3.7.2 Asynchronous Data Transmission
Figure 6-25 illustrates initializing the SCI data transmitter for asynchronous data. The first

step (1) resets the SCI to prevent the SCI from transmitting or receiving data. Step two (2)
selects the desired operation by programming the SCR. As a minimum, the word format
(WDS2, WDS1, and WDS0) must be selected, and (3) the transmitter must be enabled
(TE=1). If (4) interrupts are to be used, set TIE equals one. Use Table 6-3 (a) through Ta-
ble 6-4 (b) to set (5) the baud rate (SCP and CD0-CD11 in the SCCRY). Once the SCl is
completely configured, it can be enabled by (6) setting the TXD bit in the PCC. Transmis-
sion begins with (7) a preamble of ones.

if polling is used to transmit data (see Figure 6-26), the polling routine can look at either
TDRE or TRNE to determine when to load another byte into STX. If TDRE is used (1), one
byte may be loaded into STX. If TRNE is used (2), two bytes may be loaded into STX if
enough time is allowed for the first byte to begin transmission {see 6.3.2.4.2). If interrupts
are used (3), then an interrupt is generated when STX is empty. The interrupt routine,
which can be a fast interrupt or a long interrupt, writes (4) one byte into STX. If multidrop
mode is being used and this byte is an address, STXA should be used instead of STX.
Writing STX or STXA (5) clears TDRE in the SSR. When'the transmit data shift register
is empty (6), the byte in STX (or STXA) is latched into the transmit data shift register,
TRNE is cleared, and TDRE is set.

There is a provision to send a break or preamble. A break (space) consists of a period of
zeros with no start or stop bits that is as long or longer than a character frame. A preamble
(mark) is an inverted break. A preamble of 10 or 11 ones (depending on the word length
selected by WDS2, WDS1, and WDSO0) can be sent with the following procedure (see Fig-
ure 6-27). (1) Write the last byte to STX and (2) wait for TDRE equals one. This is the byte
that will be transmitted immediately before the preamble. (3) Clear TE and then again set
it to one. Momentarily clearing TE causes the output to go high for one character frame.

1. ACHARACTER IS RECEIVED WITH AT LEAST ONE OF THE FOLLOWING ERRORS:
— FRAMING ERROR (FE = BIT 6 IN SSR
— PARITY ERROR (PE = BIT 5 IN SSR)
— OVERRUN ERROR (OR = BIT 4 IN SSR)

SERIAL STRING OF BAD DATA

CLLTTTTTTT] 0

2. THIS SETS RDRF AND SET OR, PE, OR FE IN SSR.

3. SSRCAN BE POLLED BY SOFTWARE.

7 6 5 4 3 2 1 0
TER (SSR
xseFF1| R | FE | PE | OR [IDLE] 1 | TORE] TANE] meaponiy o oo
RDRF
AT LEAST ONE BIT SET
4. IFRIE = 1IN SCR, THEN AN INTERRUPT WITH ERROR IS GENERATED.
7 6 5 4 3 2 1 0
xsFFF1[R8 | FE | PE | OR | IDLE| 1 | TDRE|TRNE] (S:E'Asg’gﬁéf‘EG'STER (SSR)
RDRF
—
23 16 15 8 7 0
X:$FFF6
X:$FFF5
RIE
RECEIVE WITH X:$FFF4
> EPTION
INTERRUPT FXCERTION
VECTOR INTERRUPT WITH SERVICE
TABLE EXCEPTION ROUTINE
5. READSSR
e — | ’ 6. READ SRX. THIS CLEARS RDRF IN THE SSR AND CLEARS THE OR, PE, AND
— — FE FLAGS.
P:$0016 SCI RECEIVE DATA
- e —

Figure 6-24 SCI Character Reception with Exception

1. HARDWARE OR SOFTWARE RESET

2. PROGRAM SCR WITH DESIRED MODE AND FEATURES.

3. TURN ON TRANSMITTER (TE = 1).

4. OPTIONALLY ENABLE TRANSMITTER INTERRUPTS (TIE = 1).

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

X:$FFFO |SCKP I STIR |TMIE | 1 I RIE | ILE | 1 | RE Iwomsl RWU |WAKE| SBK Issr-ml wnszl WDS1 Lwnsol SCI CONTROL REGISTER(SCR)
(READMWRITE)
‘ TIE TE

5. SET THE SCI CLOCK PRESCALER BIT AND THE CLOCK DIVIDER BITS IN THE SCCR.
6. SET THE TXD BIT IN PCC TO ENABLE THE SCI TRANSMITTER SYSTEM.

scl
23 9 8 7 6 5 4 3 2 1 0
X:$FFE1 0 | CccCs l CC7 I CCse I CCs | CC4 | cC3 I cc2 I 1 | cco |PORTCO(J\ITROLHEGISTER(PCE)
XD
CCx Function
0 GPIO
1 Serial Interface

7. THE TRANSMITTER WILL FIRST BROADCAST A PREAMBLE OF ONES BEFORE BEGINNING DATA TRANSMISSION:
10 ONES WILL BE TRANSMITTED FOR THE 10-BIT ASYNCHRONOUS MODE.
11 ONES WILL BE TRANSMITTED FOR THE 11-BIT ASYNCHRONOUS MODE.

NOTE: I TE is cleared while transmitting a character, the transmission of the character will be completed before the transmitter is disabled.

Figure 6-25 Asynchronous SCI Transmitter Initialization

1 10 9 8 7 .6 5 4 3 2 1 0

15 14 13 12
X:$FFF1 Lo Lo I 0 | 0 I 0 l 0 | 0 I 0 'halFEIpelonlloLelnonF|) l 1| SISTATUSREGSTER (SSR)

(READWRITE)

TDRE TRNE
1. WHEN STX IS EMPTY, THEN TDRE = 1.
2. WHEN STX IS EMPTY AND THE TRANSMIT DATA SHIFT REGISTER IS EMPTY THEN TRNE = 1.
3. IFTIE=1INSCRAND TDRE = 1IN SSR, THEN AN INTERRUPT IS GENERATED.

INTERRUPT VECTOR TABLE TRANSMIT
INTERRUPT
L | SERVICE
_ ROUTINE
—————-_’_
P:30018 SCI TRANSMIT DATA |—>-
- 4, STORE ONE
—_——
CHARACTER — J/
| AVAILABLE FOR HOST COMMAND | INTO STX (A)

TDRE IN SSR.

wares] []
_ —J

6. THE CHARACTER IN STX IS COPIED INTO TRANSMIT DATA SHIFT REGISTER.
TRNE IS CLEARED.
TDRE IS SET.
GO TO STEP 2.

Figure 6-26 Asynchronous SCI Character Transmission

15 14 13 12 1"

10 9 8 7 6 5 4 3 2

1 0

X:$FFFO ISCKPI STIR ITMIEI TIE | RIE I ILE LTE | RE Iwomsl RWU |WAKE| SBK |ssr—‘ro| wosz| wos1|wosol SCIINTERFACE CONTROL REGISTER (SCR)

TOGGLE (1-0-1) TO SENDA
CHARACTER TIME OF ALL
ONES (MARKS)

TOGGLE (0- 1-0) TO SENDA
CHARACTER TIME OF ALL
ZEROS (SPACES)

® 10 OR 11 ONES/ZEROS WILL BE SENT DEPENDING ON THE WORD LENGTH SPECIFIED BY WDS2, WDS1, WDSO.

MARKS (ONES)

WRITE THE LAST BYTE TO STX.
WAIT FOR TRDE = 1. THE LAST BYTE IS NOW IN THE TRANSMIT SHIFT REGISTER.

3. CLEAR TE AND SET BACK TO ONE. THIS QUEUES THE PREAMBLE TO FOLLOW THE LAST BYTE.
4. WRITE THE FIRST BYTE TO FOLLOW THE PREAMBLE INTO SRX.
LAST CHARACTER PREAMBLE OF 10 ONES FIRST CHARACTER
[T I A I , g
|STIDoquDlealD4|DS|D6|D7lSTOE IDLE LINE IST|9|1Ig|3|4|5|e|7ls‘|’ops‘r|#

!

SPACES (ZEROS)

A STOP BIT AT THE END OF THE BREAK WILL BE INSERTED

BEFORE THE NEXT CHARACTER STARTS

SBK=0 SBK =1 ‘ SBK =1 SBK =1 SBK=0
, [1]1213]4]5]6]7]8|9lto]1]2[[e]10]1]2]|3]4]|5]6]7]|8]9lt0 ,
% I D4| DSI Ds | D7 FTOP . STOPI sT | Do I D1 D’L%
/' CHARACTER ENDS 1} 77 ﬂ /
BEFORE BREAK BEGINS. FIRST
: CHARACTER
o BREAK PERIOD IS AN EXACT MULTIPLE OF SGR' | AFTERBREAK
BREAK CHARACTERTIMES. BREAK

Figure 6-27 Transmitting Marks and Spaces

If TE remains cleared for a longer period, the output will remain high for an even number
of character frames until TE is set. (4) Write the first byte to follow the preamble into SRX
before the preamble is complete and resume normal transmission. Sending a break fol-
lows the same procedure except that instead of clearing TE, SBK is set in the SCR to send
breaks and then reset to resume normal data transmission.

The example presented in Figure 6-28 uses the SCl in the asynchronous mode to transfer
data into buffers. Interrupts are used, allowing the DSP to perform other tasks while the
data transfer is occurring. This program can be tested by connecting the SCI transmit and
receive pins. Equates are used for convenience and readability.

The program sets the reset vector to run the program after reset, puts a MOVEP instruc-
tion at the SCI receive interrupt vector location, and puts a MOVEP and BCLR at the SCI
transmit interrupt vector location so that, after transmitting a byte, the transmitter is dis-
abled until another byte is ready for transmission. The SCl is initialized by setting the in-
terrupt level, which configures the SCR and SCCR, and then is enabled by writing the
PCC. The main program begins by enabling interrupts, which allows data to be received.
Data is transmitted by moving a byte of data to the transmit register and by enabling in-
terrupts. The jump-to-self instruction (SEND JMP SEND) is used to wait while interrupts
transfer the data. :

PEAR AR AR AR A AR AR R AR A AR AR AR TR R R AT AR AR RN AR AR R R AR AR AR AR AR AR AR KR AARARAR R AR A KRR R AR AR AR AKX
’

; SCI ASYNC WITH INTERRUPTS AND SINGLE BYTE BUFFERS-

ARARIEKKRRKAIIRKARKARRARERARARRRATARRRRRA AR AR ARKRAARRR KRR KRR RRAR KRR AR AARARARRAARRR AR ARRR R AR R
’

dERKRKATIARKRKEAAKRKAAAAARR R AR KRR R I A AR AR AR Rk hddd
’

: SCI and other EQUATES-

ARKAARRKIR AR RRATK AR AAARARR AR A AR IRk hd ok ddkkhdkddkik

START EQU $0040 = ;Start of program

PCC EQU $FFE1 ;Port C control register

SCR EQU $FFFO . ;SCl interface control register
SCCR EQU - $FFF2 - ;8ClI clock control register
SRX EQU - $FFF4 ;SClI receive register

STX EQU $FFF4 .- ;SCl transmit register

BCR EQU $FFFE ;Bus control register

IPR EQU- $FFFF ;Interrupt priority register
RXBUF EQU . - $100 ;Receive buffer

TXBUF EQU $200 ~;Transmit buffer

Figure 6-28 SCI Asynchronous Transmit/Receive Example (Sheet 1 of 3)

aKA KKK RRRRRIRKI KT A IIAAKR AR AR RA AR RRA AR AR hhhhdkd
b

; RESET VECTOR-

AREAEA K ARAARRRKR AR AR KRR R ARRKR KRNI RRRKRA KA A RA R A AR A KA K

ORG
JMP

P:$0000
START

akkIKERRKARIA AR KA AARA AT hAkkhkkkhkhhkhkhkkkhkkhkhkkhkkhkhhkkk

; SCI RECEIVE INTERRUPT VECTOR-

skkkkkhkhkhkhkhkhkkkhhkhkhkhkkhhkhkhhkhkhkhkhkkhkhkkhkhkkhkkkkhkkhhkhkhkkkhk

ORG
MOVEP

P:$0014 ;Load the SCI RX interrupt vectors

X:SRX,Y:(R0)+ ;Put the received byte in the receive
;buffer. This receive routine is
;implemented as a fast interrupt..

aREIIREIKIAKRIKRRKI A IR A KA IAARR AR h IRk R Ak kh ke hhdkdk

; SCI TRANSMIT INTERRUPT VECTOR.

akkkhkkk kAR AAAAAA KRR AXRAR Ak hh kA A kkkkhkhkhkkdhrhkdhhkk

ORG
MOVEP

- P:$0018 ;Load the SCI TX interrupt vectors

X:(R3)+,X:STX ;Transmit a byte and

' ;increment the pointer in the
;transmit buffer.

#12,X:SCR ;Disable transmit interrupts

n ARAKEK AR AR KRR IAARARRAKRRR AR ARRARRARARRA AR AR A A A AR R AR ARk h ok khkhhkk ke kkdkkhkkhkkhhkhkhkhhkhkkkdhkdhk

; INITIALIZE THE SCI PORT AND RX, TX BUFFER POINTERS-
ORG P:START ;Start the program at location $40
ORI #$03,MR ;Mask interrupts temporarily
MOVEP #$C000,X:IPR ;Set interrupt priority to 2
MOVEP #$0B02,X:SCR ;Disable TX, enable RX interrupts

;Enable transmitter, receiver
;Paint to point.
;10-bit asynchronous
;(1 start, 8 data, 1 stop)
MOVEP #$0022,X:SCCR;Use internal TX, RX clocks
, ;9600 BPS
MOVEP #>$03,X:PCC ;Select pins TXD and RXD for SCI
MOVE RXBUF,R0 ;Initialize the receive buffer
MOVE TXBUF,R3 ;Initialize the transmit buffer

Figure 6-28 SCI Asynchronous Transmit/Receive Example (Sheet 2 of 3)

AR ERRARARKAKRA AR R RARRARKR AT TN AR AR A AR A AT ARk kA kkkk
3

; MAIN PROGRAM-

ARARRRAKIAKRAKRFEARNKRRARERR AR I RARRA RN AR AR AR kA hkkkd

ANDI #$FC,MR :Re-enable interrupts
MOVE #>%$41,X:(R3) ;Move a byte to the transmit buffer
MOVE R0,X:(R3)
BSET #12,X:SCR ;and enable interrupts so it
;will be transmitted

SEND - JMP SEND ;Normally something more useful
_ ;would be put here.
END ;End of example.

Figure 6-28 SCI Asynchronous Transmit/Receive Example (Sheet 3 of 3)

6.3.8 - Multidrop
Multidrop is a special case of asynchronous data transfer. The key difference is that a pro-

tocol is used to allow networking transmitters and receivers on a single data-transmission
line. Interprocessor messages in a multidrop network typically begin with a destination ad-
dress. All receivers check for an address match at the start of each message. Receivers
with no address match can ignore the remainder of the message and use a wakeup mode
to enable the receiver at the start of the next message. Receivers with an address match
can receive the message and optionally transmit an acknowledgment to the sender. The
particular message format and protocol used are determined by the user's software.
These message formats include point-to-point, bus, token-ring, and custom configura-
tions. The SCI multidrop network is compatible with other leading microprocessors.

Figure 6-29 shows a multidrop system with one master and N slaves. The multidrop mode
is selected by setting WDS2 equals one, WDS1 equals one, and WDSO0 equals zero. One
possible protocol is to have a preamble or idle line between messages, followed by an ad-
dress and then a message. The idle line causes the slaves to wake up and compare the
address with their own address. If the addresses match, the slave receives the message.
If the addresses do not match, the slave ignores the message and goes back to sleep. It
is also possible to generate an interrupt when an address is received, eliminating the need
for idle time between consecutive messages and addresses. It is also possible for each
slave to look for more than one address, which allows each slave to respond to individual
messages as well as broadcast messages (e.g., a global reset).

1

2 1

0

1 l 110 ISCIOONIROLREGISTER(S@R)
(READWRITE)

15 14 3 12 1 10 9 8 7 6 5 4 3
X:$FFFO IECKPI STIR ITMIEI TIE [RIE I ILIE I TE I RE lWOMSI RWUWAKEI SBK SSFTDI

HEADER

—

WDS2 WDS1 WDSO0

IDLE LINE I ADDRESS 1 I LONG MESSAGE FOR MPU 1 IDLE LINE °
TXD .
DSP56002
Y
RXD
RXD RXD RXD : OTHER
DSP56002 DSP56002 MC68HC11 [] [) SERIAL
ADDRESS 1 ADDRESS 2 ADDRESS 3 DEVICE
ADDRESS N
DEVICE RECEIVING " DEVICES IGNORING MESSAGES
MESSAGE o :
RECEIVER INTERRUPT RECEIVER INTERRUPT
DOES
HEADER EQUALNS. .. NO__ . NO
MY AD?DRESS
1 YES IGNORE REST
H OF MESSAGE.
RECEIVE REST OF ' DISABLE RECEIVER

MESSAGE; DO NOT
MASK INTERRUPTS.

EXIT .

7 AN%II::I'S INTERRUPTS BY

TTING RWU =1.

EXIT

Figure 6-29 11-Bit Multidrop Mode

6.3.8.1 Transmitting Data and Address Characters
Transmitting data and address when the multidrop mode is selected is shown in Figure

6-30. The output sequence shown is idle line, data/address, and the next character. In
both cases, an “A” is being transmitted. To send data, TE must be toggled to send the idle
line, and then “A” must be sent to STX. Sending the “A” to the STX sets the ninth bit in the
frame to zero, which indicates that this frame contains data. If the “A” is sent to STXA in-
stead, the ninth bit in the frame is set to a one, which indicates that this frame contains an
address.

6.3.8.2 Wired-OR Mode
Building a muitidrop bus network requires connecting multiple transmitters to a common

wire. The wired-OR mode allows this to be done without damaging the transmitters when
the transmitters are not in use. A protocol is still needed to prevent two transmitters from
simultaneously driving the bus. The SCI multidrop word format provides an address field
to support this protocol. Figure 6-31 shows a multidrop configuration using wired-OR (set
bit 7 of the SCR). The protocol shown consists of an idle line between messages; each
message begins with an address character. The message can be any length, depending
on the protocol. Each processor in this system has one address that it responds to al-
though each processor can be programmed to respond to more than one address.

6.3.8.3 Idle Line Wakeup
A wakeup mode frees a DSP from reading messages intended for other processors. The

usual operational procedure is for each DSP to suspend SCI reception (the DSP can con-
tinue processing) until the beginning of a message. Each DSP compares the address in
the message header with the DSPs address. If the addresses do not match, the SCi again
suspends reception until the next address. If the address matches, the DSP will read and
process the message and then suspend reception until the next address.

The idle line wakeup mode wakes up the SCI to read a message before the first character
arrives. This mode allows the message to be in any format.

Figure 6-32 shows how to configure the SCI to detect and respond to an idle line. The
word format chosen (WDS2, WDS1, and WDSO0 in the SCR) must be asynchronous. The
WAKE bit must be clear to select idle line wakeup, and RWU must be set to put the SCI
to “sleep” and enable the wakeup function. RIE should be set if interrupts are to be used
to receive data. If processing must occur when the idle line is first detected, ILIE should
be set. The current message is followed by one or more data frames of ones (10 or 11 bits
each, depending on which word format is used), which are detected as an idle line. If the
word format is multidrop (an 11-bit code), after the 11 ones, the receiver determines the
line is idle and (1) clears the RWU, enabling the receiver. The IDLE bit (2) and an internal
flag SRIINT (3) are set, indicating the line is idle. The SCI is now ready to receive mes-
sages; however, nothing more will happen until the next start bit unless (4) ILIE is set.

“A” ’ DATA

$41
01000001
23 16 15 8 7 [}
X:$FFF6 SCI TRANSMIT DATA REGISTER HIGH (WRITE ONLY)
X:$FFF5 SCI TRANSMIT DATA REGISTER MID (WRITE ONY)
X:$FFF4 SCI TRANSMIT DATA REGISTER LOW (WRITE ONLY)

NEXT
CHARACTER

T T B O T A

SCI TRANSMIT DATA SHIFT REGISTER -

T

DATA

16 15,

X:$FFF3

: 23 S 1815 8 7) 0) ADDRESS -
X:SFFF6
X:$FFF5-
X:SFEF4
NEXT
CHARACTER
[Y T I I O |
eune | sT| 1] 0o o ¢ 0 o|1|ol1sropsr
X:$FFF3 B ’

'SCI TRANSMIT DATA REGISTER (WRITE ONLY) . ADDRESS

Figure 6-30 Transmitting Data and Address Characters

5 14 18 12 un 1 9 8 7 6 5 4 s 2 1 0
X:$FFFO IiCKil STIR]TMIEJ TIE T RIE l ILIE I TE I RE l 1—[RWU IWAKE SBK IssnoT1 I 1 I o | SCICONTROLREGISTER(SCR)
I (READWRITE)
WOMS WDS2 WDST WDS0
DSP56002 DSP56002 OTHER DSP56002 DSP56002
SCI PORT SCI PORT SERIAL PORT SCI PORT SCI PORT
ADDRESS 1 ADDRESS 2 ADDRESS 3 ADDRESS N-1 ADDRESS N
XMIT REC XMIT REC XMIT REG XMIT REC XMIT REC

E = ==

A2| MESSAGE A |A3| MESSAGE CI |A1I MESSAGE B |
I IDLE | ¢
IDLE LINE WAKEUP
AND/OR INTERRUPT

AN | MESSAGE D

ADDRESS CHARACTER WAKEUP
AND/OR INTERRUPT

FIRST CHARACTER ! SECOND CHARACTER ———>|<—TH|RD CHARACTER
IDLE [no] | ne|no|ws[ns|we|wr| +] | oo or|oe]pafos]os|sfor| o] | | oof o1 |
ADDRESS N ~———————p FIRST CHARACTER OF MESSAGE D — ECOND CHARACTER
. OF MESSAGE D

INDICATES AN ADDRESS CHARACTER INDICATES A DATA CHARACTER

Figure 6-31 Wired-OR Mode

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

x:sFFFo | scke| sTr [TmiE | TIE | 1 1 | & | R {woms| 1 o | sBk |ssFrp| wpsz|wps1 |wbso

RIE ILIE RWU WAKE

SCICONTROLREGISTER(SCR)

| A1 l MESSAGEA I I A2 I MESSAGE B I

LINE IS IDLE FOR 10 OR 11 STOP BITS ——’I - f—

1. RWU IS CLEARED; THE RECEIVER IS ENABLED.
2. IDLE IS SET IN SSR, INDICATING THE LINE IS IDLE.
3. AN INTERNAL FLAG SRIINT IS GENERATED ONCE EACH IDLE STATE, NO MATTER HOW LONG IT LASTS.

IDLE LINE
INTERRUPT SERVICE
ROUTINE
(FAST OR LONG)

7 6 5 4 3 2 1 0
SCI STATUS REGISTER (SSR)
. 0
xsrere| R8 | FE | Pﬂ R | 1 |rorr| Toref TRNE| O
IDLE (SRIINT)
INTERAUPT
o VECTOR
TABLE
4. IFILIE =1 IN SCR, THEN AN SCI IDLE LINE INTERRUPT IS PENDING.
5. WHEN IDLE LINE INTERRUPT 1S ACCEPTED, SRIINT IS AUTOMATICALLY CLEARED.
P$001A] sclIDLELINE
/’—\./

Figure 6-32 Idle Line Wakeup

If ILIE is set, an SCI idle line interrupt will be recognized as pending. When the idle line
interrupt is recognized (5), SRIINT is automatically cleared, and the SCI waits for the first
start bit of the next character. Since RIE was set, when the first character is received, an
SClI receive data interrupt (or SCI receive data with exception status interrupt if an error
is detected) will be recognized as pending. When the receiver has processed the mes-
sage and is ready to wait for another idle line, RWU must be set to one again.

6.3.8.4 Address Mode Wakeup
The purpose and basic operational procedure for address mode wakeup is the same as

idle line wakeup. The difference is that address mode wakeup re-enables the SCI when
the ninth bit in a character is set to one (if cleared, this bit marks a character as data; if
set, an address). As a result, an idle line is not needed, which eliminates the dead time
between messages. If the protocol is such that the address byte is not needed or is not
wanted in the first byte of the message, a data byte can be written to STXA at the begin-

" ning of each message. It is not essential that the first byte of the message contain an ad-
dress; it is essential that the start of a new message is indicated by setting the ninth bit to
one using STXA. :

Figure 6-33 shows how to configure the SCI to detect and respond to an address charac-
ter. The word format chosen (WDS2, WDS1, and WDSO0 in the SCR) must be an asyn-
chronous word format. The WAKE bit must be set to select address mode wakeup and
RWU must be set to put the SCI to “sleep” and enable the wakeup function. RIE should
be set if interrupts are to be used to receive data. (1) When an address character (ninth
bit=1) is received, then R8 is set to one in the SSR, and RWU is cleared. Clearing RWU
re-enables the SClI receiver. Since (2) RIE was set in this example, when the first charac-
ter is received, an SCI receive data interrupt (or SCI receive data with exception status
interrupt if an error is detected) will be recognized as pending. When the receiver is ready
to wait for another address character, RWU must be set to one again.

6.3.8.5 Multidrop Example)
The program shown in Figure 6-34 configures the SCI as a multidrop master transmitter

and slave receiver (using wakeup on address bit) that uses interrupts to transmit data from
a circular buffer and to receive data into a different circular buffer. This program can be run
with the 1/O pins (RXD and TXD) connected and with a pullup resistor for test purposes.

The program starts by setting equates for convenience and clarity and then points
the reset vector to the start of the program. The receive and transmit interrupt vec-
tor locations have JSRs forming long interrupts because the multidrop protocol and
circular buffers require more than two instructions for maintenance. Byte packing
and unpacking are not used in this example. The SRX and STX registers are equat-
ed to $FFF4, causing only the LSB of the 24-bit DSP word to be used for SCI data.

.15 14 13 12

o : , " 10 9 8 7, & -5 4 3 2 10
X:$FFFO ISCKPI STIR ITMIE I TIE I 1—l ILIE I TE I RE lWOMSl 1 I 1 I SBK ISSFTD wos2 WDS1LWDSEI
: RIE

RWU WAKE

SCI CONTROL REGISTER (SCR)
(READ/WRITE)

l At I MESSAGE A l A2 | MESSAGE B—I A3 lMESSAGE c l A4 I MESSAGE D | S

1. WHEN ADDRESS CHARACTER IS RECEIVED, THEN R8 = 1 IN SSR AND RWU IS CLEARED. THE RECEIVER WAKES UP.

7 : 0
xserri[_1 | FE | PE | OR | 1 | RORF] TORE[TRNE] prl SVTCRRECISTER (SSR)
R8
I] INTERRUPT
i : VECTOR
2. IFRIE = 1IN SCR, THEN AN SCI RECEIVE DATA INTERRUPT IS PROCESSED. TABLE

RECEIVE DATA
INTERRUPT SERVICE
ROUTINE
(FAST OR LONG)

P:$0014 SCI RECEIVE DATA

e

Figure 6-33 Address Mode Wakeup

The SCI is then initialized as wired-OR, multidrop, and using interrupts. The SCI
is enabled but the interrupts are masked, which prevents the SCI from transmitting
or receiving data at this time.

The circular buffers used have two pointers. The first points to the first data byte; the sec-
ond points to the last data byte. This configuration allows the transmit buffer to act as a
first-in first-out (FIFO) memory. The FIFO can be loaded by a program and emptied by the
SClinreal time. As long as the number of data bytes never exceeds the buffer size, there
will be no overflow or underflow of the buffer. Registers M0-M3 must be loaded with the
buffer size minus one to make pointer registers R0-R3 work as circular pointers. Register
N2 is used as a constant to clear the receive buffer empty flag.

The main program starts by filling the transmit buffer with a data packet. When the trans-
mit buffer is full, it calls the subroutine that transmits the slave’s address and then jumps
to self (SEND jmp SEND), allowing interrupts to transmit and receive the data.

The receive subroutine first checks each byte to see if it is address or data. If it is an ad-
dress, it compares the address with its own. If the addresses do not match, the SCl is put
back to sleep. If the addresses match, the SCl is left awake, and control is returned to the
main program. If the byte is data, it is placed in the receive buffer, and the receive buffer
empty flag is cleared. Although this flag is not used in this program, it can be used by an-
other program as a simple test to see if data is available. Using N2 as the constant $0
allows the flag to be cleared with a single-word instruction, which can be part of a fast in-
terrupt.

The transmit subroutine transmits a byte and then checks to see if the transmit buffer is
empty. If the buffer is not empty, control is returned to the main program, and interrupts
are allowed to continue emptying the buffer. If the buffer is empty, the transmit buffer emp-
ty flag is set, the transmit interrupt is disabled, and contro! is returned to the main program.

The wakeup subroutine transmits the slave’s address by writing the address to the STXA
register and by enabling the transmit interrupt to allow interrupts to empty the transmit
buffer. Control is then returned to the main program.

; MULTIDROP MASTER/SLAVE WITH INTERRUPTS AND CIRCULAR BUFFERS-

.**ﬁ*t**

A KEAKKKKIKKAKNKKARAKEAKIERRERRRRRRRRARA AR RRI R AR R AR R IR R KRR A Rk hkk kA kA hk kA kRkhhhhhkhhhkhdkkhkkkhdhkk

. SCI and other EQUATES-

aREAIARAAARKEAAR KRR TRk A AR R IR AR Rk hkhhhkhkhhhdkh ki

START

EQU

TX_BUFF EQU
RX_BUFF EQU

B_SIZE

TX_MTY
RX_MTY
PCC
SCR
SCCR
STXA
SRX
STX
BCR
IPR

3

; RESET VECTOR-

EQU

EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU

$0040
$0010

-$0020

$000E

$0000

$0001

$FFET
$FFFO
$FFF2
$FFF3
$FFF4
$FFF4
$FFFE
$FFFF

eKEARKERRRA A ARRRARRREI KRR RARRAIR AR KA AAARR AR AR AAXKX

;Start of program

;:Transmit buffer location
‘Receive buffer location -
;Transmit and receive buffer size
;(don't allow the TX buffer and RX
;buffers to overlap).

;Transmit buffer empty

;Receive buffer empty

;Port C control register -

;SCI interface control register
;SCI clock control register

;SCI transmit address register
;SCI receive register '
;SCI transmit register

;Bus control register

;Interrupt priority register

AR AARARIRAKR I ER A KRR RKR KA ARR AR AR KRR K AR KRRk A ARk Ak k&

ekkkkhhkhkhkhhkkhhkhkhkhkhhkkkhkhhhkhkhdhhkkhhrhhhkdhhhhrhkdk

ORG
JMP

P:$0000
START

R T T Sy T Rt T

; SCI RECEIVE INTERRUPT VECTOR-

AR EKAAERAK AT AR K AR AR AR A AR AR KA AR KRR A AR AR A R A kR Kk

y

ORG
JSR

NOP

P:$0014
RX

;Load the SCI RX interrupt vectors

;Jump to the receive routine that puts
;data packet in a circular buffer if it is for
;this address.

;Second word of fast interrupt not needed

Figure 6-34 Multidrop Transmit Receive Example (Sheet 1 of 4)

ORG P:$0016 ;This interrupt occurs when data is
;received with errors. This example

NOP ;does not trap errors so this

NOP ;interrupt is not used.

CRAAKRRKRAREIAKAARK IR AAAARR R AR AR A R AR AR T I Ak Rk A rkhh
E

; SCI TRANSMIT INTERRUPT VECTOR-

akkRkkAh AR AR RRRAR KA AKRARARAR A AR AR A KA R A AR R AR KA kK
)

ORG P:$0018 ;Load the SCI TX interrupt vectors
JSR TX ;Transmit next byte in buffer
NOP

akkA AR RK AR AAK AR KA AARRAIRRAR KA IR RA KR AR AR KA ARAA
’

; INITIALIZE THE SCI PORT-

aEKAKIAKAK KKK ANKARKARIA R KA AR KRR AR AR I A ARk Ak khhhhkh
’

ORG P:.START ;Start the program at location $40
ORI #$03,MR ;Mask interrupts temporarily
MOVEP #$C000,X:IPR :Set interrupt priority to 2

MOVEP #30BE6,X:SCR ;Disable TX, enable RX interrupts

;Enable transmitter and receiver,
;Wired-OR mode, Rec. wakeup
;mode,11-bit multidrop (1 start,
;8 data,1 data type, 1 stop)
MOVEP #$0000,X:SCCR ;Use internal TX, RX clocks
;625K BPS at 40 MHz
MOVEP #-$03,X:PCC ;Select pins TXD and RXD for SCI

ARKAI KA A ARK AR AR AR KA AARKKRARAA KA AR KA R AR AR I AR AR AN

;INITIALIZE INTERRUPTS, REGISTERS, ETC.-

R AR RK KA AARKA R AR KRR AR RRR AR AR A ARk hhhhkhkkkkkhkhkkhk
] .

MOVEP #$0,X:BCR ;No wait states

MOVE #TX_BUFF,R0 ;Load start pointer of transmit buffer
MOVE #TX_BUFF,R1 ;Load end pointer of transmit buffer
MOVE #RX_BUFF,R2 ;Load start pointer of receive buffer
MOVE #RX_BUFF,R3 ;Load end pointer of receive buffer
MOVE #>$41,R5 ;Init data register... R5 contains

;the data that will be sent in this
;example; it is initialized to an ASCII A.

Figure 6-34 Multidrop Transmit Receive Example (Sheet 2 of 4)

; MAIN PROGRAM-

akkAAARARERIAA R AR ARk A Ak khhhhkhhhkhhkkhkhhhkhkkhkhdhkk

LOOP

SND_BUF
SEND

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVEP

ANDI
MOVE

MOVE
MOVE
MOVE
CMP
JEQ
MOVE

MOVE
MOVE

JMP
JSR
JMP

#B_SIZE,MO
#B_SIZE,M1
#B_SIZE,M2
#B_SIZE,M3
#>$1,NO
#>$1,N1
#0,N2

X:SRX,X:(R0)

akkkhhhAkhkAAARARkATAAAAA A ARk hk kA Ak hhkkhkhkrkkhkkhkhkk

#$FC,MR
(R1)+

R1,A
(R1)-
RO,B

AB
SND_BUF
R5,X:(R1)+

(R5)+
(R1)+

LOOP
WAKE_UP
SEND

;Load transmit buffer size
;Load transmit buffer size
;Load receive buffer size
;Load receive buffer size
;Load receive address
;Load first slave address
;Load a constant (0) into N2
;Clear receive register

;Re-enable interrupts

;Temporarily increment the tail pointer
;Build a packet

;Check to see if the TX buffer is full
;(fix tail pointer now that we've used it)
;by comparing the head and tail pointers
;of the circular transmit buffer.

;if equal, transmit completed packet

;if not, put next character in

;transmit buffer and

;increment the pointers.

;Temporarily increment the tail
;pointer to test buffer again

;Wake up proper slave and send packet

.;and allow interrupts to drain

;the transmit buffer.

Figure 6-34 Multidrop Transmit Receive Example (Sheet 3 of 4)

R AR E R AR AR R R A AR AR IR AT RR AT KK RARK AN AR AR AR AR AR R R AR R A Ak RA Rk kh Ak khk kA Ak ko hkhk

; SUBROUTINE TO READ SCI AND STORE IN BUFFER USING A LONG INTERRUPT-

CRAR A AR AAA AR A KA AR KRR RN AR R KA AT AR AT R AAAA AR AA AR AR AR AR AR AR AR AR AR RN R Tk ok dkkkhhik
L

RX JCLR #7,X:$FFF1’,RX_DATA ;Check if this is address or data.

MOVEP X:SRX,A ;Compare the received address

MOVE N1,B 'with the slave address.

CMP AB

JEQ END_RX ;If address OK, use interrupts to Rx

;packet

BSET #6,X:$FFF0 ;if not, go back to sleep

JMP END_RX ;and return to previous program.
RX_DATA MOVEP X:SRX,X:(R3)+ ;Put data in buffer,

MOVE N2,X:RX_MTY ;and clear the Rx buffer empty flag
END_RX RTI ;Return to previous program

ARTRRAREIRRA AT KA AR RERRIARRR AR A I AR RAR KRR A RRR AR R KA KR RN ARR AR IR RARAAR KR AR KRR AR AR AR AR KRR KA hkk
’

; SUBROUTINE TO WRITE BUFFER TO SCI USING A LONG INTERRUPT-

aRRRAIREERKAAARRARRRRARR AR ARRR AR R AR AR R A AR AR AR AR AR A AR AR R AAAR A A AR R AN AR A AR Ak kAR kb kkkhhhdk
3

TX MOVEP X:(R0)+,X:STX ;Transmit a byte and increment the

‘ ;pointer

MOVE RO,A ;Check to see if the TX buffer is

;empty

MOVE R1,B

CMP AB

JNE END_TX ;If not, return to main

MOVE #3$000001,X0 ;Ifitis, set the TX buffer empty flag

MOVE X0, X:TX_MTY

BCLR #12 X:SCR ;disable transmit interrupts, and
END_TX RTI ;return to main

AR AR AR AR AR R I R I AR A AR A AR R AR A AR A AR A IR AR R I AR AR R T AR KRR AAR AR AR KA R A I AR AR AR AR AR AR R A hKk
b

; SUBROUTINE TO WAKE UP THE ADDRESSED SLAVE-

AR KEIAKRAK AR A AR KA AR I AR R AR AR AT A R AR A AA R AR AR I AR AR KA A AA AR AT AR AR AR R A A A AR KA ARk khkddk

WAKE_UP MOVEP N1,X:STXA ;Transmit slave address using STXA
;not STX
BSET #12 X:SCR ;Enable transmit interrupts to send
;packet
AWAKE RTI
END ;End of example.

Figure 6-34 Multidrop Transmit/Receive Example (Sheet 4 of 4)

6.3.9 - SCI Timer : : ‘
The SCI clock determines the data transmission rate and can also be used to establish a periodic

interrupt that can act as an event timer or be used in any other timing function. Figure 6-35 illus-
trates how the SCI timer is programmed. Bits CD11-CDO0, SCP, and STIR in the SCCR work to-
gether to determine the time base. The crystal oscillator f, is first divided by 2 and then divided
by the number CD11-CDO in the SCCR. The oscillator is then divided by 1 (if SCP=0) or eight
(if SCP=1). This output is used as is if STIR = 1 or, if STIR = 0, it is divided by 2 and then by 16
before being used. If TMIE in the SCR = 1 when the periodic timeout occurs, the SCI timer inter-
rupt is recognized and pending. The SCI timer interrupt is automatically cleared when the inter-
rupt is serviced. This interrupt will occur every time the periodic timer times out. If only the timer
function is being used (i.e., PC0, PC1, and PC2 pins have been programmed as GPIO pins), the
transmit interrupts should be turned off (TIE=0). Under individual reset, TDRE will remain set and
the timer will continuously generate interrupts. |

Figure 6-35 shows that an external clock can be used for SCI receive and/or transmit, which
frees the SCI timer to be programmed for a different interrupt rate. In addition, both the SCI timer
interrupt and the SCI can use the internal time base if the SCI receiver and/or transmitter require
the same clock period as the SCI timer.

The program in Figure 6-36 configures the SCI to interrupt the DSP at fixed intervals. The pro-
gram starts by setting equates for convenience and clarity and then points the reset vector to the
start of the program. The SCI timer interrupt vector location contains “move (R0)+”, incrementing
the contents of RO, which serves as an elapsed time counter.

The timer initialization consists of enabling the SCI timer interrupt, setting the SCI baud rate
counters for the desired interrupt rate, setting the interrupt mask, enabling the interrupt, and then
enabling the SCI state machine.

SC! CONTROL REGISTER (SCCR)
(READ/WRITE)

15

14

13 12 1 10

9

8

7

6 5 4

3 2 1 0

X:$FFF2 |‘TCM I RCM I scpP | COD| CD11 I CQIOl CD9 | CDBI CD7I CD6| CDs I CD4| CDGl CD2 | CD1| cbo I

/
y
PRESCALER
ovioE | | \rscpo1 THEN DIVIDE BY 8 |< DIVIDEBY 1 DIVIDE fose
BY2 IF SCP =0, THEN DIVIDE BY 1 TO 4096 BY2
- SCKP
OUTPUT DIVIDER
IF SYNC, THEN DIVIDE BY 2 N
IF ASYNG THEN: !) I SCLKY
cop —| coD=1, DIVIDEBY 1
| COD =0, DIVIDE BY 16 SCKP £
N X
T RCM T
E TeM __—:.j > c
n oM N
A TRANSMIT CONTROL 1 A
L IF ASYNG, THEN DIVIDE BY 16] TRANSMIT CLOCK ¢ L
IF SYNG THEN: ~————— 0~
c MASTER, DIVIDE BY 2 o ¢
SLAVE, DIVIDE BY 1 o
o o
c c
K K
" RECEIVE CONTROL 1
IF ASYNC, THEN DIVIDE BY 16 RECEIVE CLOCK
IF SYNG THEN: «————————— 0~
PERIODIC TIMER MASTER, DIVIDEBY2 |- oI
DIVIDE BY 16 SLAVE, DIVIDE BY 1)
SCI CONTROL REGISTER (SCR)
(READ/WRITE)
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

xsrrro| o [o | 1]
SCKP .~ STIR TMIE

TIE | RIE I ILIE I TE | RE IWOMSI RWUlWAKEl SBKI 0 |WDSZ|WDS||WDSO|

-

INTERRUPT
VECTOR
-TABLE

E——

T ~—
SCITIMER

P:$001C

e —

——

SCI TIMER
INTERRUPT
SERVICE
ROUTINE
(FAST OR LONG)

SSFTD

. WHEN PERIODIC TIMEOUT OCCURS AND TMIE = 1 IN SCR, THEN AN SCI TIMER EXCEPTION IS TAKEN.

2. PENDING TIMER INTERRUPT IS AUTOMATICALLY CLEARED WHEN INTERRUPT IS SERVICED.

Figure 6-35 SCI Timer Operation

shRRARAERKAAERAT AR AR A A AR AR I TR AAEARAR TR AR I AR AR AR AT R IR ARk ke hhkkhdkhkhkhhkkbhhhkkkhd
’

; TIMER USING SCI TIMER INTERRUPT-

skkkkkddkkhhkkhkhhkhkhkkhkhkhhdkhhhkdhhkdhhkhkdhhdhhhhkhhhhhkhhhrhkhhhhhhkdkkbhbkhkkhdbkhhhddhhbbbdhhis
1

akkkkkhkhkhkkhhkhkhhhhkhkhkhkhkkkhkhkhkhhkkhrrhrkhkhkhkkhkikkhk
’ .

; SCI and other EQUATES-

skkkhkkhkdhkhhhhhkhhhhkdhhhkhhkdhhhkhrhhhdidhkhhhhhhhdkid
)

START EQU $0040 ;Start of program

SCR EQU $FFFO ;SCI control register
SCCR EQU $FFF2 ;SCI clock control register
IPR EQU $FFFF ;Interrupt priority register

ARRAARKKKKRRKARR AN R ARARAARARRARRARR R AR R R AR AR Ak kdek
y

; RESET VECTOR-

aREEARREARAAARAAARRR A A AR AKX IR AR R ARk kA h Ak hhhkkk

ORG P:$0000
JMP START

ekkkkhhkhkhkhhkhhkhhhhkhhkkhkkhkhkhkrRkkkkkkkkhkrkrhhkkhkhhhkikr
?

; SCI TIMER INTERRUPT VECTOR-

m kAT hAARRAAEAAAAAK LKA A AA R A A AR AR AR AL hkhhhkhhdddhk
’
ORG P:$001C ;Load the SCI timer interrupt vectors

MOVE (RO)+ ;Increment the timer interrupt counter
NOP ;This timer routine is implemented
;as a fast interrupt

akkkkkkARA AR ARk hkhhkhkhkhhhhhkhhkhkhkkkhkdkkhkhhhhhihkh
’

; INITIALIZE THE SCI PORT-

e REEARRRR AR AAA A AR A AR AIRRRRAARRARAA A A A AR R ARk k

ORG P.START ;Start the program at location $40

MOVE #0,R0 ;Initialize the timer interrupt counter

MOVEP #$2000,X:SCR - ;Select the timer interrupt

MOVEP #$013F,X:SCCR;Set the interrupt rate at 1 ms
;(arbitrarily chosen)
;Interrupts/second =
;fosc/(64X(7(SCP)-+1)X(CD+1))
;Note that this is the same equation
;as for SCI async baud rate

Figure 6-36 SCI Timer Example (Sheet 1 of 2)

;For 1 ms, SCP=0,

;CD=0001 0011 1111.
MOVEP #$C000,X:IPR ;Set the interrupt priority level-

;application specific.

ANDI #$FC,MR ;Enable interrupts, set MR bits 11 and
;10=0
END JMP END ;Normally something more useful
;would be put here.
END ;End of example.

Figure 6-36 SCI Timer Example (Sheet 2 of 2)

6.3.10 Bootstrap Loading Through the SCI (Operating Mode 6)
_ When the DSP comes out of reset, it looks at the MODC, MODB, and MODA pins and

sets the corresponding mode bits in the OMR. If the mode bits are set to 110 respec-
tively, the DSP will load the program RAM from the SCI. Figure 6-37 shows how the SCI
is configured for receiving this code and Figure 6-37 shows the segment of bootstrap
code that is used to load from the SCI. The complete code used in the bootstrap program
is given in APPENDIX A. This program (1) configures the SClI, (2) loads the program
size, (3) loads the location where the program will begin loading in program memory, and
(4) loads the program.

First, the SCI Control Register is set to $0302 (see Figure 5-2) which enables the trans-
mitter and receiver and configures the SCI for 10 bits asynchronous with one start bit,
8 data bits, one stop bit, and no parity. Next, the SCI Clock Control Register is set to
$CO000 which configures the SCI to use external receive and transmit clocks on the
SCLK pin. This clock must be 16 times the serial data rate.

The next step is to receive the program size and then the starting address to load the
program. These two numbers are three bytes each loaded least significant byte first.
Each byte will be echoed back as it is received. After both numbers are loaded, the pro-
gram size is in A0 and the starting address is in A1.

The program is then loaded one byte at a time, least significant byte first. After loading
the program, the operating mode is set to zero, the CCR is cleared, and the DSP begins
execution with the first instruction that was loaded.

+5V

< < DSP56002
<
< o
DR
BR
HACK
FROM OPEN WT RXD
COLLECTOR MODA/RQA
BUFFER
MODC/NMI TXD
SCLK
FROM N
RESET D RESET
FUNCTION
FROM OPEN
COLLECTOR MODB/IRQB
BUFFER

Serial
Bootstrap
Loader

(1 start,
. 8 data,
&—1 1 stop,
no parity,
LSB first)

[y
|

16xCLK

Notes:

1. *These diodes must be Schottky diodes.

2. All resistors are 15KQ unless noted otherwise.

3. When in RESET, TRQA, TRQE and NMI must
be deasserted by external peripherals.

Figure 6-37 DSP56002 Bootstrap Example - Mode 6

; This routine loads from the SCI.
; MC:MB:MA=110 - external SCI clock
; MC:MB:MA=111 - reserved

SCILD

EXTC

_SCI1

_LOOP6

_LOOPS5

_LOOP4

MOVEP
JMP
NOP

ORG

MOVEP
MOVEP

DO

JCLR
MOVEP
JCLR
MOVEP
REP
ASR

MOVE
MOVE
DO

DO
JCLR
MOVEP
JCLR
MOVEP
REP
ASR

MOVEM

#$0302,X:SCR ; Configure SCI Control Reg
<EXTC ; go to next boot rom segment
; just to fill the last space

PL:$100,PL:$100 ; starting address of 2nd ROM
#$C000,X:SCCR ; Configure SCI Clock Control Reg
#7,X:PCC ; Configure SCLK, TXD and RXD
#6,_LOOP6 ; get 3 bytes for number of

; program words and 3 bytes
; for the starting address

#2 X:SSR,* - Wait for RDRF to go high

X:SRXL,A2 ; Put 8 bits in A2

#1 X:SSR,* ; Wait for TDRE to go high
~ A2 X:STXL ; echo the received byte

#8

A

A1,R0O ; starting address for load

A1,R1 ; save starting address

AO,_LOOP4 ; Receive program words

#3,_LOOP5

#2,X:SSR,* ; Wait for RDRF to go high

X:SRXL,A2 ; Put 8 bits in A2

#1,X:SSR,* ; Wait for TDRE to go high

A2, X:STXL ; echo the received byte

#8

A

A1,P:(RO)+ ; Store 24-bit result in P memory

Figure 6-38 Bootstrap Code Fragment

6.3.11 Example Circuits

The SCI can be used in a number of configurations to connect multiple processors. The
synchronous mode shown in Figure 6-39 shows the DSP acting as a slave. The 8051 pro-
vides the clock that clocks data in and out of the SCI, which is possible because the SCI
shift register mode timing is compatible with the timing for 8051/8096 processors. Trans-
mit data is changed on the negative edge of the clock, and receive data is latched on the
positive edge of the clock. A protocol must be used to prevent both processors from trans-
mitting simultaneously. The DSP is also capable of being the master device.

A multimaster system can be configured (see Figure 6-41) using a single transmit/receive
line, multidrop word format, and wired-OR. The use of wired-OR requires a pullup resistor
as shown. A protocol must be used to prevent collisions. This scheme is physically the
simplest multiple DSP interconnection because it uses only one wire and one resistor.

The master-slave system shown in Figure 6-40 is different in that it is full duplex. The clock
pin is not required; thus, it is configured as a GPIO pin. Communication is asynchronous.
The slave’s transmitters must be wire-ORed because more than one transmitter is on one
line. The master’s transmitter does not need to be wire-ORed.

—-i 1.5 Coye
TRANSMIT DATA \-.Bo X B1 X B2 X B3 X B4 X B5 X B6 Km /

RECEIVE DATA XXXXXX .@.m.@'@.m.m'@. XXXXXXX

SAMPLE 0 1 2 3 4 5 6 7

DSP56002 8051

RXD | P3.0

TXD

SCLK P3.1

Figure 6-39 Synchronous Mode Example

MASTER RECEIVE

MASTER TRANSMIT
" -MCB8HC11 " DSP56002 DSP56002 DSP56002
MASTER SLAVE SLAVE SLAVE
RXD e RXD RXD RXD
XD TXD TXD TXD
PC2 [— PC2 PC2 [—— PC2
Figure 6-40 Master-Slave System Example
4
DSP56002 DSP56002
MASTER MASTER
TXD > TXD >
RXD = RXD j=
pC2 —— pc2 [———

Figure 6-41 Multimaster System Example

6.4 SYNCHRONOUS SERIAL INTERFACE (SSlI)

The synchronous serial interface (SSI) provides a full-duplex serial port for serial commu-
nication with a variety of serial devices including one or more industry-standard codecs,
other DSPs, microprocessors, and peripherals which implement the Motorola SPI.

The user can independently define the following characteristics of the SSI: the number of
bits per word, the protocol, the clock, and the transmit/receive synchronization.

The user can select among three modes: normal, on-demand, and network. The normal
mode is typically used to interface with devices on a regular or periodic basis. The dat-
a-driven on-demand mode is intended to be used to communicate with devices on a non-
periodic basis. The network mode provides time slots in addition to a bit clock and frame
synchronization pulse.

The SSI functions with a range of 2 to 32 words of I/O per frame in the network mode. This
mode is typically used in star or ring time division multiplex networks with other DSP56K
processors and/or codecs. The clock can be programmed to be continuous or gated.
Since the transmitter and receiver sections of the SSI are independent, they can be pro-
grammed to be synchronous (using a common clock) or asynchronous with respect to
each other.

The SSI requires up to six pins, depending on its operating mode. The most common mini-
mum configuration is three pins: transmit data (STD), receive data (SRD) and clock (SCK).

The SSI consists of independent transmitter and receiver sections and a common SS|
clock generator. Three to six pins are required for operation, depending on the operating
mode selected.

The following is a short list of SSI features:

¢ Three-Pin Interface:
TXD ~ Transmit Data
RXD — Receive Data
SCLK - Serial Clock

* A 10 Mbps at 40 MHz (fysc/4) serial interface
* Double Buffered

¢ User Programmable

» Separate Transmit and Receive Sections

* Control and Status Bits

* Interface to a Variety of Serial Devices, Including:
Codecs (usually-without additional logic)

MC145502

MC145503

MC145505

MC145402 (13-bit linear codec)

MC145554 Family of Codecs

MC145532

- Serial Peripherals (A/D, D/A)
Most Industry-Standard A/D, D/A
DSP56ADC16 (16-bit linear A/D)

DSP56K to DSP56K Networks
Motorola SPI Peripherals and Processors
Shift Registers

* Interface to Time D|V|S|on Multlplexed Networks without Additional Logic

* Six Pins:
STD SSI Transmit Data
SRD SSI Receive Data
SCK SSI Serial Clock
SCO0 Serial Control 0 (defined by SSI mode)
SC1 Serial Control 1 (defined by SSI mode)
.SC2 Serial Control 2 (defined by SSI mode)

* On-chip Programmable Functions Include:
Clock — Continuous, Gated, Internal, External
Synchronization Signals — Bit Length and Word Length
TX/RX Timing — Synchronous, Asynchronous
Operating Modes — Normal, Network, On- Demand
Word Length — 8, 12, 16, 24 Bits :
Serial Clock and Frame Sync Generator

* Four Interrupt Vectors:
Receive
Receive with Exception
Transmit
Transmit with Exception

This interface is descriptively named “synchronous” because all serial transfers are syn-
chronized to a clock. Additional synchronization signals are used to delineate the word
frames. The normal mode of operation is used to transfer data at a periodic rate, but only
one word per period. The network mode is similar in that it is also intended for periodic
transfers; however, it will support up to 32 words (time slots) per period. This mode can
be used to build time division multiplexed (TDM) networks. In contrast, the on-demand
mode is intended for nonperiodic transfers of data. This mode can be used fo transfer data
serially at high speed when the data becomes available. This mode offers a subset of the
SPI protocol.

6.4.1 SSI Data and Control Pins

The SSI has three dedicated I/0 pins (see Figure 6- 1) Wthh are used for transmit data
(STD), receive data (SRD), and serial clock (SCK), where SCK may be used by both the
transmitter and the receiver for synchronous data transfers or by the transmitter only for
asynchronous data transfers. Three other pins may also be used, depending on the mode
selected; they are serial control pins SC0, SC1, and SC2. They may be programmed as
S8l control pins in the Port C control register. Table 6-5 shows the definition of SC0, SC1,
SC2, and SCK in the various configurations. The following paragraphs describe the uses
of these pins for each of the SSI operating modes. Figure 6-42 and Figure 6-43 show the
internal clock path connections in block diagram form. The receiver and transmitter clocks
can be internal or external depending on the SYN, SCDO, and SCKD bits in CRB.

6.4.1.1 Serial Transmit Data Pin (STD)
STD is used for transmitting data from the serial transmit shift register. STDis an output

when data is being transmitted. Data changes on the posmve edge of the bit clock. STD
goes to high impedance on the negative edge of the bit clock of the last data bit of the
word (i.e., during the second half of the last data bit period) with external gated clock, re-
gardless of the mode. With an internally generated bit clock, the STD pin becomes high
impedance after the last data bit has been transmitted for a full clock period, assuming
another data word does not follow immediately. If a data word follows immediately, there
will not be a high-impedance interval. :

Codecs label the MSB as bit 0; whereas, the DSP labels the LSB as bit 0. Therefore, when
using a standard codec, the DSP MSB (or codec bit 0) is shifted out first when SHFD=0, and
the DSP LSB (or codec bit 7) is shifted out first when SHFD=1. STD may be programmed
as a general-purpose pin called PC8 when the SSI STD function is not being used.

Table 6-5 Definition of SC0, SC1, SC2, and SCK

Asynchronous (SYN=0) Synchronous (SYN=1)
SSI Pin Name =
(Control Bit Name) | Continuous Clock | Gated Clock | Continuous Clock | Gated Clock
(GCK=0) (GCK=1) -(GCK=0) (GCK=1)
S§CO0=0 (in) RXC External RXC External Input FO Input FO
SCO0=1 (out) RXC Internal RXC Internal Output FO Output FO
(SCDO) '
SC1=0 (in) FSR External Not Used Input F1 Input F1
SC1=1 (out) FSR Internal FSR Internal Output F1 Output F1
(SCD1)
SC2=0 (in) FST External Not Used FS* Externa! Not Used
SC2=1 (out) FST Internal FST Internal FS* Internal FS* Internal
(SCD2)
SCK=0 (in) TXC External TXC External *XC External *XC External
SCK=1 (out TXC Internal TXC Internal) *XC Internal *XC Internal
(SCKD) . :
TXC - Transmitter Clock FSR - Receiver Frame Sync
RXC - Receiver Clock FS* - Transmitter/Receiver Frame Sync
*XC - Transmitter/Receiver Clock (synchronous operation)
(synchronous operation) FO—-Flag 0
FST - Transmitter Frame Sync F1-Flag 1
Table 6-6 SSI Clock Sources, Inputs, and Outputs
y Y R Clock | RX Clock
SYN | SCKD SCDO Source out T Clock Source | TX Clock Out
Asynchronous
0 0 0 EXT, SCO - EXT, SCK -
0 0 1 INT SCo EXT, SCK -
0 1 0 EXT, SCO - INT SCK
0 1 1 INT SCo INT SCK
Synchronous
1 0 0 [EXT, SCK - EXT, SCK -
1 0 1 EXT, SCK - EXT, SCK -
1 1 0 INT SCK INT SCK
1 1 1 INT SCK INT SCK

EXT - External Pin Name
INT - Internal Bit Clock

FLAGO OUT FLAGO IN
(SYNC MODE) (SYNC MODE)

WL1, WLO

{

RX WORD RXWORD

l SCDO=0 LENGTH DIVIDER [> CLOCK
SYN=1 SYN=0
@ RX SHIFT REGISTER
______. RCLOCK
SYN=0 SCDO =
Do =1 I SYN=1 WL1, WLO

t

INTERNAL BIT CLOCK TCLOCK TX WORD TX WORD
» LENGTH DIVIDER [——"cL0oCK
SCKD
TX SHIFT REGISTER

SCDO

PRESCALE DIVIDER
DIVIDE L DIVIDE BY 1 DIVIDE BY 1 DIVIDE
BY2 OR L‘\ TODIVIDE [| BY2
DIVIDE BY 8 BY 256
Fosc PSR PMO - PM7

Figure 6-42 SSI Clock Generator Functional Block Diagram

6.4.1.2 Serial Receive Data Pin (SRD)

SRD receives serial data and transfers the data to the SSI receive shift register. SRD may
be programmed as a general-purpose 1/O pin called PC7 when the SSI SRD function is
not being used. Data is sampled on the negative edge of the bit clock.

6.4.1.3 Serial Clock (SCK) '

SCK is a bidirectional pin providing the serial bit rate clock for the SSl interface. The SCK
is a clock input or output used by both the transmitter and receiver in synchronous modes
or by the transmitter in asynchronous modes (see Table 6-6).

Note: Although an external serial clock can be independent of and asynchronous to the
DSP system clock, it must exceed the minimum clock cycle time of 8T (i.e., the sys-
tem clock frequency must be at least four times the external SSI clock frequency).
The SSI needs at least four DSP phases (DSP phase=T) inside each half of the
serial clock.

DCO-DC4 FSLO, FSL1

RX WORD l ' l
cLocK
RECEIVER INTERNAL RX FRAME CLOCK
FRAME RATE SYNC
DIVIDER TYPE SCD1
SCD1=1 SYN=0
o—o
SYN=0 ——@
RECEIVE RECEIVE
CONTROL | r*
LOGIC FRAME SYNC ‘ SCD1=0 SYN< 1
— ®
SYN=1
FLAG1 IN FLAG10OUT
DCO - DC4 FSLO, FSL1 (SYNC MODE) (SYNC MODE)

TX WORD l sev2
cLOCK
TRANSMITTER INTERNAL TX FRAME CLOCK
SYNC
FRAME RATE e > —@
DIVIDER. - ‘

TRANSMIT TRANSMIT

INTR!
Coee [Framesvne

Figure 6-43 SSI Frame Sync Generator Functional Block Diagram

6.4.1.4 Serial Control Pin (SC0)

The function of this pin is determined solely on the selection of either synchronous or
asynchronous mode (see Table 6-5 and Table 6-6). For asynchronous mode, this pin will
be used for the receive clock I/0. For synchronous mode, this pin is used for serial flag
1/0. A typical application of flag 1/0 .would be multiple device selection for addressing in
codec systems. The direction of this pin is determined by the SCDO bit in the CRB as de-
scribed in Table 6-7. When configured as an output, this pin will be either serial output flag
0, based on control bit OF0 in CRB, or a receive shift register clock output. When config-
ured as an input, this pin may be used either as serial input flag 0, which will control status
bit IFO in the SSISR, or as a receive shift register clock input.

Table 6-7 SSI Operation: Flag 0 and Rx Clock

SYN GCK SCDo Operation
Synchronous | Continuous Input Flag O Input
Synchronous | Continuous Output Flag 0 Output
Synchronous Gated Input Flag O Input
Synchronous Gated Output Flag 0 Output

Asynchronous | Continuous Input Rx Clock - External
Asynchronous | Continuous Output Rx Clock — Internal
Asyhchronous Gated Input Rx Clock — External
Asynchronous Gated Output Rx Clock — Internal

6.4.1.5 Serial Control Pin (SC1)
The function of this pin is determined solely on the selection of either synchronous or

asynchronous mode (see Table 6-5 and Table 6-8). in asynchronous mode (such as a sin-
gle codec with asynchronous transmit and receive), this pin is the receiver frame sync /0.
For synchronous mode with continuous clock, this pin is serial flag SC1 and operates like
the previously described SC0. SCO and SC1 are independent serial I/O flags but may be
used together for multiple serial device selection. SC0 and SC1 can be used unencoded
to select up to two codecs or may be decoded externally to select up to four codecs. The
direction of this pin is determined by the SCD1 bit in the CRB. When configured as an out-
put, this pin will be either a serial output flag, based on control bit OF1, or it will make the
receive frame sync signal available. When configured as an input, this pin may be used
as a serial input flag, which will control status bit IF1 in the SSI status register, or as a re-
ceive frame sync from an external source for continuous clock mode. In the gated clock
mode, external frame sync signals are not used.

6.4.1.6

6.4.2

Table 6-8 SSI Operation: Flag 1 and Rx Frame Sync

SYN GCK SCD1 Operation
. Synchronous | Continuous Input Flag 1 Input
Synchronous | Continuous Output Flag 1 Output
Synchronous Gated Input Flag 1 Input
Synchronous Gated Output Flag 1 Output
"Asynchronous | Continuous Input RX Frame Sync — External
Asynchronous | Continuous Output RX Frame Sync - Internal
Asynchronous Gated Input -
Asynchronous Gated Output RX Frame Sync - Internal

Serial Control Pin (SC2)
This pin is used for frame sync /O (see Table 6-5 and Table 6-9). SC2 is the frame sync for

both the transmitter and receiver in synchronous mode and for the transmitter only in asyn-
chronous mode. The direction of this pin is determined by the SCD2 bitin CRB. When config-
ured as an output, this pin is the interally generated frame sync signal. When configured as
an input, this pin receives an external frame sync signal for the transmitter (and the receiver
in synchronous operation). In the gated clock mode, external frame sync signals are not used.

Table 6-9 SSI Operation: Tx and Rx Frame Sync

SYN GCK SCD2 Operation
Synchronous | Continuous Input TX and RX Frame Sync
Synchronous | Continuous Output TX and RX Frame Sync
Synchronous Gated Input -
Synchronous Gated Output TX and RX Frame Sync
Asynchronous | Continuous Input TX Frame Sync — External
Asynchronous | Continuous Output TX Frame Sync — Internal
Asynchronous Gated Input -
Asynchronous Gated Output TX Frame Sync - Internal

SSI Programming Model

The SSI can be viewed as two control registers, one status register, a transmit register, a
receive register, and special-purpose time slot register. These registers are illustrated in
Figure 6-44 and Figure 6-45. The following paragraphs give detailed descriptions and op-
erations of each of the bits in the SSI registers. The SSI registers are not prefaced with

an “S” (for serial) as are the SCI registers.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

X:$FFEC PSR | WL1 | WLo| DC4| DC3| DC2]| DC1] DCo | PM7 | PMé | PM5| PM4| PM3} PM2 | PM1 | PMO

©) 0) 0 (V)] (0) ()]) () (V] (0) 0)) (9)) 0 (V]
. e\) N— _
PRESCALE I el
WORD-LENGTH FRAME RATE DIVIDER ~ PRESCALE MODULUS SELECT
CONTROL CONTROL

RESET VALUE = $0000

15 14 13 10 8 7 6 5 4 3 2

v RIE TIE MOD | GCK | SYN | FSL1 | FSLO | SHFD | SCKD | SCD2 | SCD1| SCD0 | OF1 | OF0
X$FFED | (o) | (0) (0) (0)

() .| (0) | ©) | (0) (0) (0) (0) ©) | ©
. -

] I N —
RECEI\)E INTERRUPT EN A‘BLE 1 SERIAL CONTROL DIRECTION OUTPUT FLAGS
TRANSMIT INTERRUPT ENABLE SHIFT DIRECTION
RECEIVER ENABLE ———— FRAME SYNG LENGTH 0 (MIXED BIT/WORD)
TRANSMITTER ENABLE FRAME SYNG LENGTH (BITWORD)
MODE SELECT (NETWORK/NORMAL) SYNC/ASYNC CONTROL -
i GATED CLOCK CONTROL

RESET VALUE = $0000

7 6 5 4 3 2 1 [

X:SFFEE| + | wrme)

551 CONTROL REGISTER A (CRA)
(READWRITE)

SSI CONTROL REGISTER B (CRB)
(READ/WRITE)

SSITIME SLOT REGISTER (TSR)

X:$FFEE RDF | TDE | ROE | TUE | RFS | TFS IF1 IFO | 8SI STATUS REGISTER (SSISR)

@1 m]lo] @] @110/ ©]©@ [RAD)

RECEIVE DATA REGISTER FULL -—l INPUT FLAGS
TRANSMIT DATA REGISTER EMPTY TRANSMIT FRAME SYNC
RECEIVER OVERRUN ERROR FLAG . RECEIVE FRAME SYNC

RESET VALUE = $40

Figure 6-44 SS! Programming Model — Control and Status Registers

TRANSMITTER UNDERRUN ERROR FLAG

23 16 15 8 7 0

SERIAL RECEIVE DATA
X:3FFEF| RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE (RX) REGISTER
(READ ONLY)
7 Y 0 7 07 0
23 16 15 87 0
SERIAL
RECEIVE RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE
“SHIFT
REGISTER 24 BIT
7)7 047 0
16 BIT
-
12 BIT R __-
8BIT -
WL, WLO —»
MSB LSB
|l«— 8BITDATA »] 0 0 0 LEAST SIGNIFICANT
| ZEROFILL
MSB LSB
le———— 12-BITDATA ——————»)
MsB) LS8
e———————— 16-BITDATA —— ;|
MSB LSB
24-BIT DATA
NOTES:

1. Datais received MSB first if SHFD = 0.
2. Compatible with fractional format.

(a) Receive Registers for SHFD =0 n

SERIAL RECEIVE SHIFT REGISTER

23 : 16 15 8 7 : 0
SERIAL TRANSMIT DATA
X:$FFEF TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE (TX) REGISTER
(WRITE ONLY)
7 0 7 07 0
23 16 15 8 7 0
TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE SERIAL TRANSMIT
STD b . SHIFT REGISTER
7 o 7 07 0
MSB LSB
l«—— 8-BITDATA le— 0 0 0 »| LEAST SIGNIFICANT
| A ZEROFILL
MSB LB
je————— 12-BITDATA =i
MSB . LsB
}l¢——oro--u— 16BITDATA ——]
MSB) LsB
24-BIT DATA
NOTES:

1. Datais sent MSB first if SHFD = 0.
2. Compatible with fractional format.

(b) Transmit Registers for SHFD =0

Figure 6-45 SSI Programming Model (Sheet 1 of 2)

23

16 15 8 7 0
SERIAL RECEIVE DATA
X:$FFEF RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE - RECEIVE LOW BYTE (RX) REGISTER
(READ ONLY)
7 0 7 07 0
23 16 15 87 . 0
m RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE - RECEIVE LOW BYTE SERIAL RECEIVE
SHIFT REGISTER
7 o7 07 0
MSB " LSB, -
e B.BITDATA l 0 0 0 LEAST SIGNIFICANT
ZEROFILL
MSB LSB
| ¢————— 12-BIT DATA ———e——p]
MsB LsB
}ernonr-——oo 16-BITDATA ——eeeeeeeeeoe |
MsB LSB
24-BIT DATA
NOTES:
1. Data s received LSB firstif SHFD = 1.
2. Compatible with fractional format.
(c) Receive Registers for SHFD = 1
23 16 15 8 7 .0
SERIAL TRANSMIT DATA
X:$FFEF TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE) TRANSMIT LOW BYTE (TX) REGISTER
M "~ (READ ONLY)
7 0 7 07 0
23 16 15 8 7 0
TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE .~ TRANSMIT LOWBYTE SERIAL TRANSMIT/SHIFT
REGISTER
7 o7 S LA 9 \asmr
16 BIT ‘
12 BIT _ STD
8 BIT o
WL1, WLo
MSB LsB
l«—— 8-BITDATA' 1 0 0 0 »| LEAST SIGNIFICANT
ZEROFILL
MSB LSB
| 12-BIT DATA sl
MSB LsB
je———c—o—" 16-BITDATA ——p{
MSB LS8
24-BIT DATA
NOTES:

1. Datais received LSB first if SHFD =

2. Compatible with fractional format.

1.

(d) Transmit Registers for SHFD = 1
Figure 6-45 SSI Programming Model (Sheet 2 of 2)

6.4.2.1 SSI Control Register A (CRA)
CRA is one of two 16-bit read/write control registers used to direct the operation of the

SSI. The CRA controls the SSI clock generator bit and frame sync rates, word length, and
number of words per frame for the serial data. The high-order bits of CRA are read as ze-
ros by the DSP CPU. The CRA control bits are described in the following paragraphs.

6.4.2.1.1 CRA Prescale Modulus Select (PM7-PM0) Bits 0-7

The PM0-PM7 bits specify the divide ratio of the prescale divider in the SSI clock generator.
A divide ratio from 1 to 256 (PM=0 to $FF) may be selected. The bit clock output is available
at the transmit clock (SCK) and/or the receive clock (SCO0) pins of the DSP. The bit clock
output is also available internally for use as the bit clock to shift the transmit and receive
shift registers. Careful choice of the crystal oscillator frequency and the prescaler modulus
will allow the industry-standard codec master clock frequencies of 2.048 MHz, 1.544 MHz,
and 1.536 MHz to be generated. Hardware and software reset clear PMO-PM?7.

6.4.2.1.2 CRA Frame Rate Divider Control (DC4~DCO0) Bits 8-12

The DC4-DCO bits control the divide ratio for the programmable frame rate dividers used
to generate the frame clocks (see Figure 6-43). In network mode, this ratio may be inter-
preted as the number of words per frame minus one. In normal mode, this ratio deter-
mines the word transfer rate. The divide ratio may range from 1 to 32 (DC=00000 to
11111) for normal mode and 2 to 32 (DC=00001 to 11111) for network mode.

A divide ratio of one (DC=00000) in network mode is a special case (see 6.4.7.4). In nor-
mal mode, a divide ratio of one (DC=00000) provides continuous periodic data word trans-
fers. A bit-length sync (FSL1=1, FSL0=0) must be used in this case. Hardware and soft-
ware reset clear DC4-DCO.

6.4.2.1.3 CRA Word Length Control (WLO, WL1) Bits 13 and 14
The WL1 and WLO bits are used to select the length of the data words being transferred via the
SSI. Word lengths of 8, 12, 16, or 24 bits may be selected according to Table 6-10.

Table 6-10 Number of Bits/Word

wL1 WLO Number of Bits/Word
0 0 8
0 1 12
1 0 16
1 1 24

These bits control the number of active clock transitions in the gated clock modes and
control the word length divider (see Figure 6-42 and Figure 6-43), which is part of the
frame rate signal generator for continuous clock modes. The WL control bits also control
the frame sync pulse length when FSLO and FSL1 select a WL bit clock (see Figure 6-42).
Hardware and software reset clear WLO and WLA1.

6.4.2.1.4 CRA Prescaler Range (PSR) Bit 15

The PSR controls a fixed divide-by-eight prescaler in series with the variable prescaler.
This bit is used to extend the range of the prescaler for those cases where a slower bit
clock is desired (see Figure 6-42). When PSR is cleared, the fixed prescaler is bypassed.
When PSR is set, the fixed divide-by-eight prescaler is operational. This allows a 128-kHz
master clock to be generated for MC14550x series codecs.

The maximum internally generatéd bit clock frequency is fosc/4, the minimum internally
generated bit clock frequency is fosc/4/8/256=fosc/8192. Hardware and software reset
clear PSR.

6.4.2.2 SSI Control Register B (CRB)
The CRB is one of two 16-bit read/write control registers used to direct the operation of
the SSI. CRB controls the SSI multifunction pins, SC2, SC1, and SCO, which can be used
as clock inputs or outputs, frame synchronization pins, or serial /O flag pins. The serial
output flag control bits and the direction control bits for the serial control pins are in the
SSI CRB. Interrupt enable bits for each data register interrupt are provided in this control
register. When read by the DSP, CRB appears on the two low-order bytes of the 24-bit
word, and the high-order byte reads as zeros. Operating modes are also selected in this
register. Hardware and software reset clear all the bits in the CRB. The relationships be-
tween the SS| pins (SC0, SC1, SC2, and SCK) and some of the CRB bits are summarized
'in Tables Table 6-5, Table 6-12, and Table 6-13. The SSI CRB bits are described in the
following paragraphs.

6.4.22.1 CRB Serial Output Flag 0 (OF0) Bit 0

When the SSl is in the synchronous clock mode and the serial control direction zero bit
(SCDO0) is set, indicating that the SCO pin is an output, then data present in OF0 will be
written to SCO at the beginning of the frame in normal mode or at the beginning of the next
time slot in network mode. Hardware and software reset clear OF0.

6.4.2.2.2 CRB Serial Output Flag 1 (OF1) Bit 1
When the SSI is in the synchronous clock mode and the serial control direction one

(SCD1) bitis set, indicating that the SC1 pin is an output, then data present in OF1 will be
written to the SC1 pin at the beginning of the frame in normal mode or at the beginning of
the next time slot in network mode (see 6.4.7).

The normal sequence for setting output flags when transmitting data is to poll TDE (TX
empty), to first write the flags, and then write the transmit data to the TX register. OF0 and
OF1 are double buffered so that the flag states appear on the pins when the TX data is
transferred to the transmit shift register (i.e., the flags are synchronous with the data).
Hardware and software reset clear OF1.

Note: The optional serial output pins (SC0, SC1, and SC2) are controlled by the frame
timing and are not affected by TE or RE.

6.4.2.2.3 CRB Serial Control 0 Direction (SCDO0) Bit 2

SCDO controls the direction of the SCO I/O line. When SCDO is cleared, SCO is an input;
when SCDO is set, SCO is an output (see Tables Table 6-5 and Table 6-6, and Figure
6-46). Hardware and software reset clear SCDO.

6.4.2.2.4 CRB Serial Control 1 Direction (SCD1) Bit 3

SCD1 controls the direction of the SC1 1/O line. When SCD1 is cleared, SC1 is an input;
when SCD1 is set, SC1 is an output (see Tables Table 6-5 and Table 6-6 and Figure
6-46). Hardware and software reset clear SCD1.

6.4.2.2.5 CRB Serial Control 2 Direction (SCD2) Bit 4

SCD2 controls the direction of the SC2 I/O line. When SCD2 is cleared, SC2 is an input;
when SCD2 is set, SC2 is an output (see Tables Table 6-5 and Table 6-6, and Figure
6-46). Hardware and software reset clear SCD2.

6.4.2.2.6 CRB Clock Source Direction (SCKD) Bit 5

SCKD selects the source of the clock signal used to clock the transmit shift register in the
asynchronous mode and both the transmit shift register and the receive shift register in
the synchronous mode. When SCKD is set, the internal clock source becomes the bit
clock for the transmit shift register and word length divider and is the output on the SCK
pin. When SCKD is cleared, the clock source is external; the internal clock generator is
disconnected from the SCK pin, and an external clock source may drive this pin. Hard-
ware and software reset clear SCKD.

5 14 18 12 1 1 9 8 76 5 4 3 2 1 0
y scKD | scpz | scpt ['scoo $SI CONTROL REGISTER B (CRB)
X:$FFED I RIE | TIE I RE I TE l MODI GCK| SYN IFSL1 IFSLO | sHeD | °y | | o) I @ | oFt | OF0 | (aEADWRITE)
- —
1=0OUTPUT
0=INPUT
DIRECTION
CONTROLLED BY BASIC FUNCTION
p sco SCDO RECEIVE CLOCKFLAG 0
o sc1 SCD1 RECEIVE FRAME SYNG/FLAG 1
R sc2 sco2 TRANSMIT FRAME SYNC/TX AND RX FRAME SYNG
T SCK SCKD TRANSMIT CLOCK/TX AND RX CLOCK
c SRD — SSI RECEIVE DATA
sTD - SSI TRANSMIT DATA

NOTE: Parentheses indicate RESET condition.

Figure 6-46

Serial Control, Direction Bits

6.4.2.2.7 CRB Shift Direction (SHFD) Bit 6

This bit causes the transmit shift register to shift data out MSB first when SHFD equals
zero or LSB first when SHFD equals one. Receive data is shifted in MSB first when SHFD
equals zero or LSB first when SHFD equals one. Hardware reset and software reset clear
SHFD.

6.4.2.2.8 CRB Frame Sync Length (FSLO and FSL1) Bits 7 and 8

These bits select the type of frame sync to be generated or recognized (see Table 6-11).
If FSL1 equals zero and FSLO equals zero, a word-length frame sync is selected for both
TX and RX that is the length of the data word defined by bits WL1 and WLO. If FSL1 equals
one and FSLO equals zero, a 1-bit clock period frame sync is selected for both TX and RX.
When FSLO equals one, the TX and RX frame syncs are different lengths. Hardware reset
and software reset clear FSLO and FSL1.

Table 6-11 Frame Sync Length

FSL1 FSLO Frame Sync Length
0] 0 WL bit clock for both TX/RX
0 1 One-bit clock for TX and WL bit clock for RX
1 0 One-bit clock for both TX/RX
1 1 One-bit clock for RX and WL bit clock for TX

6.4.2.2.9 CRB Sync/Async (SYN) Bit 9

SYN controls whether the receive and transmit functions of the SSI occur synchronously
or asynchronously with respect to each other. When SYN is cleared, asynchronous mode
is chosen and separate clock and frame sync signals are used for the transmit and receive
sections. When SYN is set, synchronous mode is chosen and the transmit and receive
sections use common clock and frame sync signals. Hardware reset and software reset
clear SYN.

6.4.2.2.10 CRB Gated Clock Control (GCK) Bit 10

GCK is used to select between a continuously running data clock or a clock that runs only
when there is data to be sent in the transmit shift register. When GCK is cleared, a con-
tinuous clock is selected; when GCK is set, the clock will be gated. Hardware reset and
software reset clear GCK.

Note: For gated clock mode with externally generated bit clock, internally generated
frame sync is not defined.

6.4.2.2.11 CRB SSI Mode Select (MOD) Bit 11

MOD selects the operational mode of the SSI. When MOD is cleared, the normal mode is
selected; when MOD is set, the network mode is selected. In the normal mode, the frame
rate divider determines the word transfer rate — one word is transferred per frame sync
during the frame sync time slot. In network mode, a word is (possibly) transferred every
time slot. For more details, see 6.4.3. Hardware and software reset clear MOD.

6.4.2.2.12 CRB SSI Transmit Enable (TE) Bit 12

TE enables the transfer of data from TX to the transmit shift register. When TE is set and
a frame sync is detected, the transmit portion of the SSl is enabled for that frame. When
TE is cleared, the transmitter will be disabled after completing transmission of data cur-
rently in the SSI transmit shift register. The serial output is three-stated, and any data
present in TX will not be transmitted (i.e., data can be written to TX with TE cleared; TDE
will be cleared, but data will not be transferred to the transmit shift register).

The normal mode transmit enable sequence is to write data to TX or TSR before setting
TE. The normal transmit disable sequence is to clear TE and TIE after TDE equals one.

In the network mode, the operation of clearing TE and setting it again will disable the
transmitter after completing transmission of the current data word until the beginning of
the next frame. During that time period, the STD pin will remain in the high-impedance
state. Hardware reset and software reset clear TE.

The on-demand mode transmit enable sequence can be the same as the normal mode,
or TE can be left enabled. =

Note: TE does not inhibit TDE or transmitter mterrupts TE does not affect the generatlon
of frame sync or output flags.

6.4.2.2.13 CRB SSI Receive Enable (RE) Bit 13

When RE is set, the receive portion of the SSI is enabled. When this bit is cleared, the
receiver will be disabled by inhibiting data transfer into RX. If data is being received while
this bit is cleared, the remainder of the word will be shlfted in and transferred to the SSI
receive data register.

RE must be set in the normal mode and on-demand mode to receive data. In network
mode, the operation of clearing RE and setting it again will disable the receiver after re-
ception of the current data word until the beginning of the next data frame. Hardware and
software reset clear RE.

Note: RE does not inhibit RDF or receiver interrupts. RE does not affect the generation

of a frame sync.

6.4.22.14 CRB SSI Transmit Interrupt Enable (TIE) Bit 14

The DSP will be interrupted when TIE and the TDE flag in the SSI status register is set.
(In network mode, the interrupt takes effect in the next frame synch, not in the next time
slot.) When TIE is cleared, this interrupt is disabled. However, the TDE bit will always in-
dicate the transmit data register empty condition even when the transmitter is disabled
with the TE bit. Writing data to TX or TSR will clear TDE, thus clearing the interrupt. Hard-
ware and software reset clear RE.

There are two transmit data interrupts that have separate interrupt vectors:

1. Transmit data with exceptions — This interrupt is generated on the following
condition:
TIE=1, TDE=1, and TUE=1

2. Transmit data without exceptions — This interrupt is generated on the following
condition:
TIE=1, TDE=1, and TUE=0

See SECTION 7 PROCESSING STATES in the DSP56000 Family Manual for more in-
formation on exceptions.

6.4.2.2.15 CRB SSI Receive Interrupt Enable (RIE) Bit 15

When RIE is set, the DSP will be interrupted when RDF in the SSI status register is set.
(In network mode, the interrupt takes effect in the next frame synch, not in the next time
slot.) When RIE is cleared, this interrupt is disabled. However, the RDF bit still indicates
the receive data register full condition. Reading the receive data register will clear RDF,
thus clearing the pending interrupt. Hardware and software reset clear RIE.

There are two receive data interrupts that have separate interrupt vectors:

1. Receive data with exceptions — This interrupt is generated on the following
condition:
RIE=1, RDF=1, and ROE=1

2. Receive data without exceptions — This interrupt is generated on the following
condition:
RIE=1, RDF=1, and ROE=0

See SECTION 7 PROCESSING STATES in the DSP56000 Family Manual for more in-
formation on exceptions.

6.4.2.3 SSI Status Register (SSISR)
The SSISR is an 8-bit read-only status register used by the DSP to interrogate the status

and serial input flags of the SSI. When the SSISR is read to the internal data bus, the reg-
ister contents occupy the low-order byte of the data bus, and the high-order portion is zero
filled. The status bits are described in the following paragraphs.

6.4.2.3.1 SSISR Serial Input Flag 0 (IF0) Bit 0

The SSI latches data present on the SCO pin during reception of the first received bit after
frame sync is detected. IFO is updated with this data when the receive shift register is
transferred into the receive data register. The IFO bit is enabled only when SCDO is
cleared and SYN is set, indicating that SCO is an input and the synchronous mode is se-
lected (see Table 6-5); otherwise, IFO reads as a zero when it is not enabled. Hardware,
software, SSI individual, and STOP reset clear IFO.

6.4.2.3.2 SSISR Serial Input Flag 1 (IF1) Bit 1

The SSl latches data present on the SC1 pin during reception of the first received bit after
frame sync is detected. The IF1 flag is updated with the data when the receiver shift reg-
ister is transferred into the receive data register. The IF1 bit is enabled only when SCD1
is cleared and SYN is set, indicating that SC1 is an input and the synchronous mode is
selected (see Table 6-5); otherwise, IF1 reads as a zero when it is not enabled. Hardware,
software, SSI individual, and STOP reset clear IF1.

6.4.2.3.3 SSISR Transmit Frame Sync Flag (TFS) Bit 2

When set, TFS indicates that a transmit frame sync occurred in the current time slot. TFS
is set at the start of the first time slot in the frame and cleared during all other time slots.
If word-wide transmit frame sync is selected (FSLO=FSL1), this indicates that the frame
sync was high at least at the beginning of the time slot if external frame sync is selected,
or high throughout the time slot if internal frame sync was selected. If bit-wide transmit
frame sync is selected (FSLO#FSL1), this indicates that the frame sync (either internal or
external) was high during the last Tx clock bit period prior to the current time slot, and that
the frame sync falling edge corresponds to the assertion of the first output data bit, as
shown below.

Bit-Length Fs I
Word-Length Fs | L
Time slots [Timeslot#1] Timeslot#2 | Tmeslot#3 |

Tx shift clock |]l | H |[|H|| || H | |[||| | HHH”H”

TTFS set here

Data written to the transmit data register during the time slot when TFS is set will be transmit-
ted (in network mode) during the second time slot in the frame. TFS is useful in network mode
to identify the start of the frame. This is illustrated in a typical transmit interrupt handler:

MOVEP X:(R4)+,X:SSITx

JCLR #2,X:SSISR,_NoTFS;1 = FIRST TIMESLOT
;Do something
JMP _DONE
_NoTFS ‘
;Do something else
_DONE

Note: In normal mode, TFS will always read as a one when transmitting data because
there is only one time slot per frame — the “frame sync” time slot.

TFS, which is cleared by hardware, software, SSI individual, or STOP reset, is not
affected by TE.

6.4.2.3.4 SSISR Receive Frame Sync Flag (RFS) Bit 3

When set, RFS indicates that a receive frame sync occurred during reception of the word
in the serial receive data register. This indicates that the data word is from the first time
slotin the frame. If word-wide receive frame sync is selected (FSL1=0), this indicates that
the frame sync was high at least at the beginning of the timeslot. If bit-wide receive frame
sync is selected (FSL1=1), this indicates that the frame sync (either internal or external)
was high during the last bit period prior to the current timeslot, and that the frame sync
falling edge corresponds to the assertion of the first output data bit, as shown below.

Bit-Length Fs ﬂ

Word-Length F's | |

Time slots [Timeslot#1 | Timeslot#2 | Tmeslot#3 |

1 A T A T
T RFS set here

When RFS is clear and a word is received, it indicates (only in network mode) that the
frame sync did not occur during reception of that word. RFS is useful in network mode to
identify the start of the frame. This feature is illustrated in a typical receive interrupt handler:

MOVEP ~ X:SSIRx,X:(Rd)+

JCLR #3,X:SSISR,_NoRFS;1 = FIRST TIMESLOT
‘ ;Do something
JMP _DONE
_NoRFS :
' ;Do something else
_DONE

Note: In normal mode, RFS will always read as a one when reading data because there
is only one time slot per frame — the “frame sync” time slot.

RFS, which is cleared by hardware, software, SSI individual, or STOP reset, is not affect-
ed by RE.

6.4.2.3.5 SSISR Transmitter Underrun Error Flag (TUE) Bit 4

TUE is set when the serial transmit shift register is empty (no new data to be transmitted)
and a transmit time slot occurs. When a transmit underrun error occurs, the previous data
(which is still present in the TX) will be retransmitted.

In the normal mode, there is only one transmit time slot per frame. In the network mode,
there can be up to 32 transmit time slots per frame.

TUE does not cause any interrupts; however, TUE does cause a change in the interrupt
vector used for transmit interrupts so that a different interrupt handler may be used for a
transmit underrun condition. If a transmit interrupt occurs with TUE set, the transmit data
with exception status interrupt will be generated; if a transmit interrupt occurs with TUE
clear, the transmit data without errors interrupt will be generated.

Hardware, software, SSI individual, and STOP reset clear TUE. TUE is also cleared by
reading the SSISR with TUE set, followed by writing TX or TSR.

6.4.2.3.6 SSISR Receiver Overrun Error Flag (ROE) Bit 5

This flag is set when the serial receive shift register is filled and ready to transfer to the
receiver data register (RX) and RX is already full (i.e., RDF=1). The receiver shift register
is not transferred to RX. ROE does not cause any interrupts; however, ROE does cause
achange in the interrupt vector used for receive interrupts so that a different interrupt han-
dler may be used for a receive error condition. If a receive interrupt occurs with ROE set,
the receive data with exception status interrupt will be generated; if a receive interrupt oc-
curs with ROE clear, the receive data without errors interrupt will be generated.

Hardware, software, SSI individual, and STOP reset clear ROE. ROE is also cleared by read-
ing the SSISR with ROE set, followed by reading the RX. Clearing RE does not affect ROE.

6.4.2.3.7 SSISR SSI Transmit Data Register Empty (TDE) Bit 6

This flag is set when the contents of the transmit data register are transferred to the trans-
mit shift register; it is also set for a disabled time slot period in network mode (as if data
were being transmitted after the TSR was written). Thirdly, it can be set by the hardware,
software, SSl individual, or STOP reset. When set, TDE indicates that data should be writ-
ten to the TX or to the time slot register (TSR). TDE is cleared when the DSP writes to the
transmit data register or when the DSP writes to the TSR to disable transmission of the
next time slot. If TIE is set, a DSP transmit data interrupt request will be issued when TDE
is set. The vector of the interrupt will depend on the state of the transmitter underrun bit.

6.4.2.3.8 SSISR SSI Receive Data Register Full (RDF) Bit 7

RDF is set when the contents of the receive shift register are transferred to the receive
data register. RDF is cleared when the DSP reads the receive data register or cleared by
hardware, software, SSl individual, or STOP reset. If RIE is set, a DSP receive data inter-
rupt request will be issued when RDF is set. The vector of the interrupt request will depend
on the state of the receiver overrun bit.

6.4.2.3.9 SSI Receive Shift Register

This 24-bit shift register receives the incoming data from the serial receive data pin. Data
is shifted in by the selected (internal/external) bit clock when the associated frame sync
I/0 (or gated clock) is asserted. Data is assumed to be received MSB first if SHFD equals
zero and LSB first if SHFD equals one. Data is transferred to the SSI receive data register
after 8, 12, 16, or 24 bits have been shifted in, depending on the word-length control bits
in the CRA (see Figure 6-47).

6.4.2.3.10 SSI Receive Data Register (RX)

RX is a 24-bit read-only register that accepts data from the receive shift register as it be-
comes full. The data read will occupy the most significant portion of the receive data reg-
ister (see Figure 6-47). The unused bits (least significant portion) will read as zeros. The
DSP is interrupted whenever RX becomes full if the associated interrupt is enabled.

6.4.2.3.11 SSI Transmit Shift Register

This 24-bit shift register contains the data being transmitted. Data is shifted out to the se-
rial transmit data pin by the selected (internal/external) bit clock when the associated
frame sync I/O (or gated clock) is asserted. The number of bits shifted out before the shift
register is considered empty and may be written to again can be 8, 12, 16, or 24 bits (de-
termined by the word-length control bits in CRA). The data to be transmitted occupies the
most significant portion of the shift register. The unused portion of the register is ignored.
Data is shifted out of this register MSB first if SHFD equals zero and LSB first if SHFD
equals one (see Figure 6-48).

SRD
SHFD =0

RECEIVE SHIFT
REGISTER

/
A
K4
0
y
_
$
0
!
S
=

16 BITS

8
0

8

]
-
Y
> |
=1

12 BITS

|
(b) SHFD

GDB

!

‘/:

\i

i
(a) SHFD
GDB

|

.

8BITS

1

| —

N\
16 15

16 15

Figure 6-47 Receive Data Path

ys
3
/
23
-
—
—
::/,
—
[-
ya
\
V4
23
-
:/
Eﬁ

REGISTER
1

RECEIVE SHIFT |

SHFD

, /
¢ GDB \
/ 4
3 16 15 ll 8 7 0
l | |] | ™
N 1231 : ;
N J' : i
;¥ —
: A
y Y
" ™ '
— ~
— ~| TRANSMIT SHIFT
STD { < | —] - | - 1 peaiser
SHFD =0
(a) SHFD =0
L / '
GoB Y
4
23 16 15 8 7 0
C 1 I I™
N v 12811 : :
— Y
T b o
TRANSMIT SHIFT
ARGISTER | > | > | > | - -sm ,
\ \ SHFD = 1
8BIT 12BIT 16 BIT
(b) SHFD =1

Figure 6-48 Transmit Data Path

6.4.2.3.12 SSI Transmit Data Register (TX)

TX is a 24-bit write-only register. Data to be transmitted is written into this register and is
automatically transferred to the transmit shift register. The data written (8, 12, 16, or 24
bits) should occupy the most significant portion of TX (see Figure 6-48). The unused bits
(least significant portion) of TX are don't care bits. The DSP is interrupted whenever TX
becomes empty if the transmit data register empty interrupt has been enabled.

6.4.2.3.13 Time Slot Register (TSR)

TSR is effectively a null data register that is used when the data is not to be transmitted
_in the available transmit time slot. For the purposes of timing, TSR is a write-only register
that behaves like an alternative transmit data register, except that, rather than transmitting
data, the transmit data pin is in the high-impedance state for that time slot.

6.4.3 Operational Modes and Pin Definitions
Table 6-12 and Table 6-13 completely describe the SSI operational modes and pin defi nitions

(Table 6-5 is a simplified version of these tables). The operational modes are as follows:

1. Continuous Clock
Mode 1 — Normal with Internal Frame Sync
Mode 2 — Network with Internal Frame Sync
Mode 3 — Normal with External Frame Sync
Mode 4 — Network with External Frame Sync

2. Gated Clock
Mode 5 — External Gated Clock
Mode 6 — Normal with Internal Gated Clock
Mode 7 — Network with Internal Gated Clock

3. Special Case (Both Gated and Continuous Clock)
Mode 8 — On-Demand Mode (Transmitter Only)
Mode 9 — Receiver Follows Transmitter Clocking

6.4.4 Registers After Reset
Hardware or software reset clears the port control register bits, which configure all I/O as

general-purpose input. The SSI will remain in reset while all SSI pins are programmed as
general-purpose 1/O (CC8-CC3=0) and will become active only when at least one of the
SSI /0 pins is programmed as not general-purpose |/O. Table 6- 14 shows how each type
of reset affects each SSI register bit. .

Table 6-12 Mode and Pin Definition Table — Continuous Clock

Control Bits Mode SCO0 SC1 SC2 SCK
MOD |GCLK| SYN | SCD2|SCD1{SCD0(SCKD %((::?). TX ﬁx In {Out| In |Out| In [Out| In | Out
0 0 0 1 1 X X X 1 1 |RXC |RXC| — [FSR| — | FST | TXC | TXC
0 0 1 1 X X | X X 1 1 FO | FO | F1 | F1 | — | F8* | *XC | *XC
1 0 0 1 1 X X 1 2 | 2 |RXC|RXC| — |FSR| — | FST | TXC | TXC
1 0 1 1 X X X 1 2|2 | FO|FO|F1|F1 | —|FS*|*XC|*XC
0 0 0 0 1 X X X 3|1 |Rxc|Rxc| — {FSR|FsT| — [Txc|TxC
0 0 0 1 0 X X X 1 3 | RXC |RXC |FSR} — | — | FST | TXC | TXC
0 0 0 0 0 X X X 3| 3 |RXC|RXC|FSR| — |FST| — |TXC|TXC
0 0 1 0 X X X X 33| FO| Fo [F1] F1|FS*| — |*XC|*XC
1 0 0 0 1 X X X 4| 2 |RXC|RXC| — |FSR|FST| — [TXC|TXC
1 0 0 1 0 X X 1 2 | 4 |RXC|RXC|FSR| — | — | FST|TXC|TXC
1 0 0 0 0 X X X 4 | 4 |RXC[RXC|[FSR| — |FST| — |TXC|TXC
1 0 1 0 X X X X 4| 4 FO Fo | F1 F1 | FS*| — | *XC | *XC.
1 0 0 1 1 X X 0 8 (2 |RXC|RXC{ — [FSR| — | FST|TXC | TXC
1 0 1 1 X X X 0 89| FO| FO[F1 | F1 | —|FS[*XC]|*XC
1 0 0 1 0 X X 0 8 [4 | RXC |RXC [FSR| — | — | FST | TXC | TXC

DC4-DCO = 0 means that bits DC4 =0, DC3=0,DC2=0,DC1=0,and DCO=0
DC4-DCO = 1 means that bits DC4-DC0=0

TXC — Transmitter Clock

RXC — Receiver Clock

*XC — Transmitter/Receiver Clock (Synchronous Operation)

FST — Transmitter Frame Sync

FSR — Receiver Frame Sync

FS* — Transmitter/Receiver Frame Sync (Synchronous Operation)

FO —Flag0

F1 —Flag1

Table 6-13 Mode and Pin Definition Table — Gated Clock

Control Bits Mode SCo SC1 SC2 SCK
MOD |GCLK| SYN | SCD2|SCD1]SCD0|SCKD %‘é‘g TX|RX| In [out| In |Out| In |Out| In |oOut
0 1 0 X X 1 1 X 6 6 | — [RXC| ? |FSR| ? |FST| — | TXC
0 1 1 X X X 1 X 6 6 FO { FO | FO F1 ? FS*| — .| *XC
0 1 0 X X 1 0 X 5 6 — |RXC| ? |FSR| ? ?2 {TXC| —
0 1 0 X X 0 0 X 5 5 [RXC{ — ? ? ? ? |TXC| —
0 1 1 X X X 0 X 5 5| FO| FO| Ft F1 ? ?. *XC | —
1 1 0 X X 1 1 0 8 7 — |IRXC| ? |FSR| ? |FST| — |[TXC
1 1 0 X X 0 1 0 8 5 |RXC| — ? ? ? |FST| — | TXC
1 1 1 X X X 1 0 8 9 FO | FO| F1 F1 | 2 |Fs*| — |*xC
.0 1 0 X X 0 1 X 6 5 |[RXC| — ? ? ? |FST{ — [TXC

DC4-DC0=0 means that bits DC4 =0, DC3=0, DC2=0, DC1=0, and DCO=0.
TXC — Transmitter Clock
RXC ~ Receiver Clock
*XC - Transmitter/Receiver Clock (Synchronous Operatlon)
FST ~ Transmitter Frame Sync
-FSR - Receiver Frame Sync
FS* —- Transmitter/Receiver Frame Sync (Synchronous Operation)
FO—-Flag0 .
~Flag 1
? — Undefined

Table 6-14 SSI Registers After Reset

Register Register . Reset

N%me Dgata Bit Number HW Reset | SW Reset | Individual Reset | ST Reset

PSR 15 0 0 - -

cra | WHE0) 13,14 0 0 - -

DC(4-0) 8-12 0 0 - -

PM(7-0) 0-7 0 0 - -

RIE 15 0 0 - -

TIE 14 0 0 - -

RE 13 0 0 - -

TE 12 0 0 - -

MOD 11 0 0 - -

CRB GCK 10 0 0 - -

SYN 9 0 0 - -

FSL1 8 0 (4] - -

FSLO 7 0 0 - -

SHFD 6 0 0 - -

SCKD 5 0 0 - -

scD(-0) | 24 0 0 - -

OF(1-0) 0.1 0 0 - -

RDF . 7 0 0 0 0

TDE 6 1 1 1 1

ROE 5 0 0 0 0

SSISR _TUE 4 0 0 0 0

RFS 3 0 0 0 0

TFS 2 0 0 0 0

IF(1-0) 0,1 0 0 0 0

RDR RDR (23-0) 230 - -

TDR TDR (23-0) 23-0 - - - -

RSR | RDR (23-0) | 230 - Z Z -

TSR | RDR (230) | 23-0 Z - - -

NOTES:

1. RSR - SSiI receive shift register
2. TSR - SSI transmit shift register
3. HW — Hardware reset is caused by asserting the external pin RESET.
4. SW - Software reset is caused by executing the RESET instruction.

5. IR - Individual reset is caused by SSI peripheral pins (i.e., PCC(3-8)) being configured as general-purpose 1/O.

6. ST — Stop reset is caused by executing the STOP instruction.

HARDWARE OR SOFTWARE REST

PROGRAM CRA AND CRB

SELECT PINS TO BE USED
PORT C CONTROL REGISTER

Figure 6-49 SSI Initialization Block Diagram

6.4.5 SSl Initialization
The correct way to initialize the SSl is as follows:

1. Hardware, software, SSI individual, or STOP reset
2. Program SSI control registers
3. Configure SSI pins (at least one) as not general-purpose 1/0

During program execution, CC8—CC3 may be cleared, causing the SSI to stop serial activity
and enter the individual reset state. All status bits of the interface will be set to their reset
state; however, the contents of CRA and CRB are not affected. This procedure allows the
DSP program to reset each interface separately from the other internal peripherals.

The DSP program must use an SSI reset when changing the MOD, GCK, SYN, SCKD,
SCD2, SCD1, or SCDO bits to ensure proper operation of the interface. Figure 6-49 is a
flowchart illustrating the three initialization steps previously listed. Figure 6-50, Figure
6-51, and Figure 6-52 provide additional detail to the flowchart.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

. I SSI CONTROL REGISTER A (CRA)
X:$FFEC IPSR I WL1 I WLo DC4| DCal DCZI DC1 I DCO| PM7I PMG] PMSI PM4| PMSI PM2| PM1 I PMo | (READWRITE)

r T
PRESCALER
IF PSR = 1, THEN DIVIDE BY 8 DIVIDE BY 1 DIVIDE | fosc
IF PSR = 0, THEN DIVIDE BY 1 TO 256 BY2
y y
DIVIDE wL1 | wLo Bits/Word Word Transfer Rate Words/Frame
BY2 == DC4-DCO (See Note 1) (See Note 2)
0 0 8 : Continuous Periodic On-Demand
SSI BIT RATE CLOCK 0 1 12 00000 (See Note 3) Data Driven
1 0 16 00001 2 2
1) o4 00010 3 3
00011 4 4
. . .
. L] .
. . .
11111 32 32
15 14 13 12 1 10 9 8 7 - 6 5 4 3 2 1 0
) . SSI CONTROL REGISTER B (CRB)
X:$FFED | RIE LTIE J Hlil TE | MoD | Gek | SYN | FSL1 | FsLo SHFD—I scxo] SCD2 | SCD1 I scool OF1 | OF0 |\ oF AOWRITE)
(SEE NOTES 1AND 2) (SEE NOTE 3)

NOTES:
1.NORMAL—MOD=0
2. NETWORK —MOD = 1) e
3a.Fsli=1,FSlo=0 . : ~Figure 6-50 SSI CRA Initialization Procedure

FRAME SYNC LENGTH 1

1=RXISBITLENGTH

0=RXISWORDLENGTH

SYNC/ASYNC CONTROL
0=ASYNCHRONOUS
1=SYNCHRONOUS

GATED CLOCK CONTROL
0=CONTINUOUS CLOCK
1=GATED CLOCK

SSI MODE SELECT
0=NORMAL
1=NETWORK

15 14 13 12

FRAME SYNC LENGTH 0
0= RXAND TX SAME
LENGTH
1= RXAND TX DIFFERENT
LENGTH

SHIFT DIRECTION
0=MSBFIRST,
1=LSBFIRST

CLOCK SOURCE DIRECTION
0=INPUT (EXTERNAL})
1=0UTPUT (INTERNAL)

SERIAL CONTROL

DIRECTIONBITS
0=INPUT
1=0UTPUT

0

Ile l TIE I RE I TE | MOD| GCK
1 1

0

| I 1
SYNI FSL1| FSLO SHFDI SCKDI SCD2 SCDiSCDO' OF1 | OF0 I
9 8 7 6 5 4 3

2

TRANSMIT ENABLE OUTPUT FLAG 1
0=DISABLE IFSYN=1,SCD1=1
1=ENABLE OF1MpSC1 PIN

RECEIVE ENABLE OUTPUT FLAG 0
0=DISABLE IFSYN=1,SCDO=1
1=ENABLE OFOMPSCO PIN

TRANSMIT INTERRUPT ENABLE
0= DISABLE
1=ENABLE

RECEIVE INTERRUPT ENABLE
0= DISABLE
1=ENABLE

Figure 6-51 SSI CRB Initialization Procedure

23 : 0
CC|Ccc|cc|cClcclcClcCjCC|CC| PORT C CONTROL
af7|e|s]a]3]2]1 REGISTER (PCC)
STD l SCK I sc1 |

SRD SC2 SCo

X:3FFE1| 0J 0J 0JOjJO|JOo|jOjJOjOojOojJoOjojojojo

o

CCx Function
0 GPIO
1 Serial Interface
PCO |
PC1 |-~
PC2 te=-- >

SCO pt———————— SERIAL CONTROL PIN 0
SC1 > SERIAL CONTROL PIN 1

SC2 {a—————— SERIAL CONTROL PIN 2
SCK [SERIAL CLOCK PIN

SRD fe———————— SERIAL RECEIVE DATAPIN
STD f=————————>SERIAL TRANSMIT DATA PIN

D070

(o]

Figure 6-52 SSlI Initialization Procedure

Figure 6-52 shows the six control bits in the PCC, which select the six SSI pins as either
general-purpose /O or as SSI pins. The STD pin can only transmit data; the SRD pin can
only receive data. The other four pins can be inputs or outputs, depending on how they
are programmed. This programming is accomplished by setting bits in CRA and CRB as
shown in Figure 6-46. The CRA (see Figure 6-50) sets the SSI bit rate clock with PSR and
PMO-PM?7, sets the word length with WL1 and WLO, and sets the number of words in a
frame with DCO-DC4. There is a special case where DC4-DCO equals zero (one word
per frame). Depending on whether the normal or network mode is selected (MOD=0 or
MOD=1, respectively), either the continuous periodic data mode is selected, or the on-de-
mand data driven mode is selected. The continuous periodic mode requires that FSL1
equals one and FSLO equals zero. Figure 6-51 shows the meaning of each individual bit
in the CRB. These bits should be set according to the application requirements.

Table 6-15 (a) and Table 6-15 (b) provide a convenient listing of PSR and PMO-PM7 set-
tings for the common data communication rates and the highest rate possible for the SSI
for the chosen crystal frequencies. The crystal frequency selected for Table 6-15 (a) is the
one used by the DSP56002ADS board; the one selected for Table 6-15 (b) is the closest
one to 40 MHz that divides down to exactly 128 kHz. If an exact baud rate is required, the
crystal frequency may have to be selected. Table 6-16 gives the PSR and PM0-PM7 set-
tings in addition to the required crystal frequency for three common telecommunication fre-
guencies.

Table 6-15 (a) SSI Bit Rates Table 6-15 (b) SSI Bit Rates

for a 40-MHz Crystal for a 39.936-MHz Crystal
Bit Rate (BPS) PSR PM Bit Rate (BPS) PSR PM

1000 1 $4E1 1000 1 $4DF
2000 1 $270 2000 1 $26F
4000 1 $138 4000 1 $137
8000 1 $98B 8000 1 $9B
16K 1 $4D 16K 1 $4D
32K 1 $26 32K 1 $26
64K 0 $9B 84K 0 $98B
128K 0 $4D 128K 0 $4D
10M 0 $00 - 9.984M 0 $00

BPS = fos; + (4 X (7(PSR) +1) x (PM + 1)) where BPS = fogc + (4 X (7(PSR) +1) x (PM +1)) where

fosc=40 MHz fosc=39.936 MHz
PSR=0o0r1] PSR=0o0r1

PM=0to $FFF ° = PM = 0 to $FFF

Table 6-16 Crystal Frequencies Required for Codecs

 BitRate(BPS) | PSR | PM F::;VUS::LV
1.536M 0 $05 36.864 MHz,
1.544M 0 $05 37.056 MHz
2.048M 0 $03 32.678 MHz

* BPS = fog + (4 x (7(PSR) +1) X (PM +1))
PSR=0or1
PM =0 to $FFF

6.4.6

SSI Exceptions

The SSI can generate four different exceptions (see Figure 6-53 and Figure 6-54):

. SSI Receive Data — occurs when the receive interrupt is enabled, the receive

data register is full, and no receive error conditions exist. Reading RX clears
the pending interrupt. This error-free interrupt can use a fast interrupt service
routine for minimum overhead.

. SSI Receive Data with Exception Status — occurs when the receive interrupt is

enabled, the receive data register is full, and a receiver overrun error has
occurred. ROE is cleared by first reading the SSISR and then reading RX.

. SSI Transmit Data — occurs when the transmit interrupt is enabled, the trans-

mit data register is empty, and no transmitter error conditions exist. Writing to
TX or the TSR will clear this interrupt. This error-free interrupt may use a fast
interrupt service routine for minimum overhead.

. S8l Transmit Data with Exception Status — occurs when the transmit interrupt
is enabled, the transmit data register is empty, and a transmitter underrun
error has occurred. TUE is cleared by first reading the SSISR and then writing
to TX or the TSR to clear the pending interrupt.

EXCEPTION PROGRAM MEMORY SPACE
STARTING

ADDRESS

$0000
$0002
$0004
$0006
$0008
$000A

EXCEPTION SOURCE

|

|

HARDWARE RESET

TWO WORDS PER VECTOR

EXTERNAL INTERRUPTS

STACK ERROR

TRACE

SWI (SOFTWARE INTERRUPT)

=

t 1
INTERNAL

‘ INTERRUPTS

TROA EXTERNAL HARDWARE INTERRUPT

TRQB EXTERNAL HARDWARE INTERRUPT

EXTERNAL
INTERRUPTS

$000C
$000E
$0010
$0012

SSI RECEIVE DATA

SSI RECEIVE DATAWITH EXCEPTION STATUS

SSI TRANSMIT DATA

SS! TRANSMIT DATA WITH EXCEPTION STATUS

SYNCHRONOUS
SERIAL
INTERFACE

$0014
$0016
$0018
$001A
$001C
$001E
$0020
$0022
$0024
$0026
$0028

$003A
$003C
$003E
$0040

$007E

SCI RECEIVE DATA

SCI RECEIVE DATA WITH EXCEPTION STATUS

SCI TRANSMIT DATA

SCI IDLE LINE

SCI TIMER

SERIAL
COMMUNICATIONS
INTERFACE

f

INTERNAL
INTERRUPTS

RESERVED

HOST RECEIVE DATA

HOST TRANSMIT DATA

HOST COMMAND (DEFAULT)

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

TIMER

ILLEGAL INSTRUCTION

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

" HOST
INTERFACE

INTERNAL
INTERRUPTS

Figure 6-53 SSI Exception Vector Locations

SYNCHRONOUS SERIAL INTERFACE (SSI

SSI CONTROL REGISTER (CRB)
X:$FFED (READ/WRITE)

15 14 13 12 i 10 9 8

I RlEl TIEI REl TE IMODIGCKI SYNIFSL1I

N

ssl
EXCEPTION
MASK

SSI EXCEPTION MASK
EXCEPTION
STARTING
ADDRESS EXCEPTION VECTOR TABLE

$0000

N
%

$000C | SSI RECEIVE DATA —J

$000E | SSI RECEIVE DATAWITH EXCEPTIONS STATUS e’

$0010 | SSI TRANSMIT DATA

RECEIVE
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN
RIE =1, RDF = 1, AND ROE = 0.

2. PENDING INTERRUPT IS CLEARED
BY READING RX.

RECEIVE WITH EXCEPTION STATUS
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN
RIE=1,RDF=1,ANDROE =1.

2. ROE IS CLEARED BY READING
SSISR FOLLOWED BY:

3. READING RX TO CLEAR PENDING
INTERRUPT.

4. APPLICATION-SPECIFIC CODE.

$0012 | SSI TRANSMIT DATAWITH EXCEPTION STATUS

SSI STATUS REGISTER (SSISR)
X:$FFFE (READ ONLY)

7 6 5 4 3 2 1 0
| RDF| TDEI ROEI TUEI RFS | TFSI IFt | IFo |

-

SSI STATUS BITS

TRANSMIT
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN
TIE=1,TDF=1,ANDTUE=0.

2. PENDING INTERRUPT IS CLEARED
BY WRITING TO TX OR TSR.

TRANSMIT WITH EXCEPTION STATUS
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN
TIE=1,TDF=1,ANDTUE=1.

2. TUEIS CLEARED BY READING

SSISR FOLLOWED BY:

3. WRITING TO TXOR TSR TO CLEAR
PENDING INTERRUPT.

4. APPLICATION-SPECIFIC CODE.

Figure 6-54 SSI Exceptions

Table 6-17 SSI Operating Modes

Cpraen | Serl | DR
‘Normal | Continuous | Asynchronous | Single Asynchronous Codec; Stream-Mode Channel Interface
Normal | Continuous| Synchronous Multiple Synchronous Codecs
Normal Gated | Asynchronous DSP-to-DSP; Serial Peripherals (A/D,D/A)
Normal Gated Synchronous SPI-Type Devices; DSP to MCU
Network | Continuous | Asynchronous TDM Networks
Network |Continuous| Synchronous TDM Codec Networks, TDM DSP Networks
On Demand| Gated |Asynchronous Parallel-to-Serial and Serial-to-Parallel Conversion
On Demand| Gated Synchronous DSP to SPI Peripherals
6.4.7 Operating Modes — Normal, Network, and On-Demand

The SSI has three basic operating modes and many data/operation formats. These
modes can be programmed by several bits in the SSI control registers. Table 6-17 lists
the SSI operating modes and some of the typical applications in which they may be used.

The data/operation formats are selected by choosing between gated and continuous
clocks, synchronization of transmitter and receiver, selection of word or bit frame sync,
and whether the LSB is transferred first or last. The following paragraphs describe how to
select a particular data/operation format and describe examples of normal-mode and net-
work-mode applications. The on-demand mode is selected as a special case of the net-
work mode.

The SSI can function as an SPI master or SPI slave, using additional logic for arbitration,
which is required because the SS! interface does not perform SPI master/slave arbitra-
tion. An SPI master device always uses an internally generated clock; whereas, an SPI
slave device always uses an external clock.

6.4.71 Data/Operation Formats
The data/operation formats available to the SSI are selected by setting or clearing control

bits in the CRB. These control bits are MOD, GCK, SYN, FSL1, FSLO, and SHFD.

6.4.7.1.1 Normal/Network Mode Selection

Selecting between the normal mode and network mode is accomplished by clearing or set-
ting the MOD bit in the CRB (see Figure 6-55). For normal mode, the SSI functions with one
data word of I/O per frame (see Figure 6-56). For the network mode, 2 to 32 data words of

IO may be used per frame. In either case, the transfers are periodic. The normal mode is
typically used to transfer data to/from a single device. Network mode is typically used in time
division multiplexed (TDM) networks of codecs or DSPs with multiple words per frame (see
Figure 6-57, which shows two words in a frame with either word-length or bit-length frame
sync). The frame sync shown in Figure 6-55 is the word-length frame sync. A bit-length
frame sync can be chosen by setting FSL1 and FSLO for the configuration desired.

6.4.7.1.2 Continuous/Gated Clock Selection

The TX and RX clocks may be programmed as either continuous or gated clock signals
by the GCK bit in the CRB. A continuous TX and RX clock is required in applications such
as communicating with some codecs where the clock is used for more than just data
transfer. A gated clock, in which the clock only toggles while data is being transferred, is
useful for many applications and is required for SPI compatibility. The frame sync outputs
may be used as a start conversion signal by some A/D and D/A devices.

Figure 6-58 illustrates the difference between continuous clock and gated clock systems.
A separate frame-sync signal is required in continuous clock systems to delimit the active
clock transitions. Although the word-length frame sync is shown in Figure 6-58, a
bit-length frame sync can be used (see Figure 6-59). In gated clock systems, frame syn-
chronization is inherent in the clock signal; thus a separate sync signal is not required (see
Figure 6-60 and Figure 6-61). The SSI can be programmed to generate frame sync out-
puts in gated clock mode but does not use frame sync inputs.

Input flags (see Figure 6-60 and Figure 6-61) are latched on the negative edge of the first
data bit of a frame. Output flags are valid during the entire frame.

6.4.7.1.3 Synchronous/Asynchronous Operating Modes

The transmit and receive sections of this interface may be synchronous or asynchronous
- i.e., the transmitter and receiver may use common clock and synchronization signals
(synchronous operating mode, see Figure 6-62) or they may have their own separate
clock and sync signals (asynchronous operating mode). The SYN bit in CRB selects syn-
chronous or asynchronous operation. Since the SSl is designed to operate either syn-
chronously or asynchronously, separate receive and transmit interrupts are provided.

Figure 6-63 illustrates the operation of the SYN bit in the CRB. When SYN equals zero, the
SSI TX and RX clocks and frame sync sources are independent. If SYN equals one, the SSI
TX and RX clocks and frame sync come from the same source (either external or internal).

15 14 13 . 12 1 10 9 8 7 6 5 4 3 2 1 o

X:$FFED RIE TIE | RE | TE MODI GCK | SYN | FsL1 | Fsto| sHrD SCKD| SCD2| SCD1| SCDo} OFt | OFo0

*

* NORMALMOD =0

SSI CONTROL REGISTER B (CRB)
SERIAL CLOCK (READ/WRITE)
FRAME SYNC | I ’ | I

4 TRANSMITTER INTERRUPT AND FLAGS SET 4
SERIAL DATA / \\
DATA < DATA >
} RECEIVER INTERRUPT AND FLAGS SET }

NOTE: Interrupts occur and data is transferred once per frame sync.

* NETWORKMOD =1

FRAME SYNC | . | I I

TRANSMITTER INTERRUPTS AND FLAGS SET

RECEIVER INTERRUPT AND FLAGS SET

NOTE: Interrupts occur every time slot and a word may be transferred.

Figure 6-55 CRB MOD Bit Operation

FRAME SYNC —/—\

—

(FSLO = 0, FSL1 =0)

FRAME SYNC / \

/\

(FSLO=0, FSL1=1)

AKRXXK

FLAGS _<

X

WAIT

SLOT O

Figure 6-56 Normal Mode, External Frame Sync (8 Bit, 1 Word in Frame)

FRAME SYNC / \
(FSLO=0, FSL1=0)

—

FRAME SYNC / \

(FSLO =0, FSL1 =1)

/SN

X X

SLOT 1

SLOTO

SLOT 1 —

SLOT 0 I

Figure 6-57 Network Mode, External Frame Sync (8 Bit, 2 Words in Frame)

. SSI CONTROL REGISTER B (CRB)
TE | MOD| GCK | SYN| FSL1| FSLOj SHFD| SCKD{ SCD2{ SCDt1| SCDo(OF1 | OF0 (READWRITE)

X:$FFED RIE TIE ‘RE

*

* CONTINUOUS CLOCK GCK =0

DATA CIHANGES

SERIAL CLOCK |||||||||||||||||||”||||”||”“||””|||”|“|””“H”””||””||””||”““|||||”|
. 1

DATA STABLE

FRAME SYNGC I———l : l____‘
SERIAL DATA —@ < DATA >

NOTE: Frame sync is required to tell when data is present.

* GATED CLOCK GCK =1
DATA CHANGES
SERIAL CLOCK ””l”””””l ”””ml”””
|
DATA STABLE
SERIAL DATA —@ < DATA >

NOTES:
1. Word synchronization is inherent in the serial clock signal.

2. Frame Sync generation is optional.

Figure 6-58 CRB GCK Bit Operation

CONTINUOUSCLOCK /~_ /=~ _/ -/ oS SV /[A/

DATAOUT (FORDC>0) +——— K X X X X K (
DATA OUT (FOR DC = 0, OR
NETWORK MODES) X K K . X X X ((

~N—-—
0>
-—
B
AP
N —

e
O-—

DATA IN LATCHED

INPUT FLAGS LATCHED ‘)éx (0C=0)

FRAME SYNC OUT: — — __ . 4 \
FSLO=0,FSL1=1 4 4
FSLO=0,FSL1=0 o/ - ')

OUTPUT FLAGS X X
(0C=0)

FRAME SYNC IN:

Fotomo pstr ey 47 \SSSITUTTRTTIRTTTTRTTTTVRTRRRRTTTTVIRRTTY

FSLo=0,FSLi =0 L1110l NAANNNANNNNNNNNNNANNNNNNNNNNRNNNNNANNNNN

1t 7 |
DATA OUT FOR: "’I T
FsL1=0,Fsto=0 . T~ CX X

o

DATA NOT DEFINED

OUTPUT FLAGS _ XXX

NOTES: ’
1. For FSL1 = 0 the frame sync is latched and enables the STD output buffer, but data may not be valid until the rising edge of the bit clock.
2. WL bit frame sync (FSLO = 0, FSL1 = 0) is not detined for DC = 0 in continuous clock mode.
3. Data and flags transition after external frame sync but not before the rising edge of the clock.

Figure 6-59 Continuous Clock Timing Diagram (8-Bit Example)

<
=
2]
X
0
o]
=
(o]
ot
v
m
>

7 6 5 4 3 2 1 0
GATED CLOCK
OUTPUT (DC>0) S/ N f 4 4 S/ 1T\
O oo 0) XX X X K
GATED CLOCK
oc=g 4 M " o NS S S~V [A
RN « X X C ¢ X X -
DATA IN LATCHED 7 6 5 4 3 2 1 0
(©C=0)
FRAME SYNG OUT: —
FSLo=0,FSLi=1 - 4 A\ 4
FRAME SYNC OUT:) J
FSLO=0, FSL1 =0
INPUT FLAGS LATCHED x'ix
OUTPUT FLAGS (DG >0))
OUTPUT FLAGS (DC = 0) Y y

Figure 6-60 Internally Generated Clock Timing (8-Bit Example)

0
INPUT (DC>0) ._/__/__/__/__/__/'—_/__/_‘{

GATED CLOCK
-]
DATA OUT b tihgc 25 ns
00> 0) X X X (X X }
GATED CLOCK
(0C=0) /__/__/1_/—_/—_/__/'__/__/__/_>_/ \
0

DATAOUT |
oc=0 Ko X

N-—
-

7N
n-—

>
-—

€
00—

><
N -—

<
- -
o«[e

o

>€

DATAIN LATCHED

INPUT FLAGS LATCHED xéx

NOTES:
1. Output enabled on rising edge of first clock input.
2. Output disabled on falling edge of last clock pulse.
3. tynge is guaranteed by circuit design.
4. Frame syncs (in or out) are not defined for extemnal gated clock mode.

Figure 6-61 Externally Generated Gated Clock Timing (8-Bit

START OF
FRAME

ONE FRAME
WORD TRANSFER FATE (=3)
[3 WORDS PER FRAME —_—
WORD | WORD I WORD WORD |

FRAME SYNC | | | |

T TRANSMITTER EMPTY 1

INTERNAL INTERRUPTS AND FLAGS

TRANSMIT DATA XMIT DATA XMIT DATA

1 RECEIVER FULL 1

INTERNAL INTERRUPTS AND FLAGS

RECEIVE DATA REC DATA REC DATA
I‘——— 3-STATE 4-| |4—3-STATE—>

Figure 6-62 Synchronous Communication

Data clock and frame sync signals can be generated internally by the DSP or may be ob-
tained from external sources. If internally generated, the SSI clock generator is used to
derive bit clock and frame sync signals from the DSP internal system clock. The SSI clock
generator consists of a selectable fixed prescaler and a programmable prescaler for bit
rate clock generation and also a programmable frame-rate divider and a word-length di-
vider for frame-rate sync-signal generation.

Figures Figure 6-64 through Figure 6-67 show the definitions of the SSI pins during each
of the four main operating modes of the SSI I/O interface. Figure 6-64 uses a gated clock
(from either an external source or the internal clock), which means that frame sync is in-
herent in the clock. Since both the transmitter and receiver use the same clock (synchro-
nous configuration), both use the SCK pin. SC0 and SC1 are designated as flags or can
be used as general purpose-parallel /0. SC2 is not defined if it is an input; SC2 is the
transmit and receive frame sync if it is an output.

Figure 6-65 shows a gated clock (from either an external source or the internal clock), which
means that frame sync is inherent in the clock. Since this configuration is asynchronous, SCK
is the transmitter clock pin (input or output) and SCO is the receiver clock pin (input or output).

SSI CONTROL REGISTER B (CRB)
(READ/WRITE)

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

X:$FF RIE TE| RE } TE | MOD| GCK | SYN | FSL1| FSLO | SHFD | SCKD | SCD2 | SCD1| SCD0O | OF1 | OF0

*ASYNCHRONOUS SYN =0

TRANSMITTER
STD

FRAME

CLOCK SYNC

EXTERNAL TRANSMIT CLOCK EXTERNAL TRANSMIT FRAME SYNC
scK o\l V (sc2 I
ssiBT \ INTERNAL CLOCK o o INTERNAL FRAME SYNC /
cLock / \
EXTERNAL RECEIVE CLOCK EXTERNAL RECEIVE FRAME SYNC
S§CO O SC1

CLOCK FRAME

SYNC
SRD
RECEIVER
NOTE: Transmitter and receiver may have different clocks and frame syncs.
* SYNCHRONOUS SYN = 1
TRANSMITTER
STD

FRAME

CLOCK SYNC

EXTERNAL CLOCK ‘ EXTERNAL FRAME SYNC
SCK O O sc2
ssiBT \ INTERNAL CLOCK J_ INTERNAL FRAMESYNG 7
clock / o AN

CLOCK FRAME

SYNC -
RECEIVER

NOTE: Transmitter and receiver may have the same clock frame syncs.

Figure 6-63 CRB SYN Bit Operation

pPC8 [—————> STD

PC7 pe————————— SRD

PC6 |<t—mermee——————— SCK (TXC and RXC)

ss|

SCO

PC3 (e—————> FLAGO

SC1

PC4 | FLAG1

PCS

PC8

PC7

PCé
SSI

PC3

PC4

PC5

SC2
?

FStand FSr

Figure 6-64 Gated Clock — Synchronous Operation

———————— sTD
e SRD

| ————————» SCK(TXC)

SCo

| ¢——————> RXC

IR i E— FSt —————————
SC2

l— 7 FSt

Figure 6-65

Gated Clock — Asynchronous Operation

| ¢-———————» SCK ({TXC and RXC)

SCO
- 4¢————————» FLAG 0

SC1
- —————ep- FLAG 1

<—-—L> FSrand FSt

Continuous Clock — Synchronous Operation

ot Wl e ——— 1 10)

PC7 j4———————— SRD

PC6 | ————e— SCK(TXC)

SCO

PC3 j#—————> RXC

SC1

PC4 e FS7

sc2

PC§5 je¢————————p FSt

PC8

PC7

. PCé
Ssi

PC3

PC4

PC5

Figure 6-66
SSi

Figure 6-67

Continuous Clock — Asynchronous Operation

SC1 and SC2 are designated as receive or transmit frame sync, respectively, if they are se-
lected to be outputs; these bits are undefined if they are selected to be inputs. SC1 and SC2
can also be used as general-purpose parallel I/0.

Figure 6-66 shows a continuous clock (from either an external source or the internal
.clock), which means that frame sync must be a separate signal. SC2 is used for frame
sync, which can come from an internal or external source. Since both the transmitter and
receiver use the same clock (synchronous configuration), both use the SCK pin. SC0 and
SC1 are designated as flags or can be used as general-purpose parallel 1/O.

Figure 6-67 shows a continuous clock (from either an external source or the internal
clock), which means that frame sync must be a separate signal. SC1 is used for the re-
ceive frame sync, and SC2 is used for the transmit frame sync. Either frame sync can
come from an internal or external source. Since the transmitter and receiver use different
clocks (asynchronous configuration), SCK is used for the transmit clock, and SCO is used
for the receive clock.

6.4.7.1.4 Frame Sync Selection

The transmitter and receiver can operate totally independent of each other. The transmit-

ter can have either a bit-long or word-long frame-sync signal format, and the receiver can
have the same or opposite format. The selection is made by programming FSLO and FSL1
in the CRB as shown in Figure 6-68. :

1. If FSL1 equals zero (see Figure 6-69), the RX frame sync is asserted during
the entire data transfer period. This frame sync length is compatible with
Motorola codecs, SPI serial peripherals, serial A/D and D/A converters, shift
registers, and telecommunication PCM serial I/O.

2. If FSL1 equals one (see Figure 6-70), the RX frame sync pulses active for one
bit clock immediately before the data transfer period. This frame sync length is
compatible with Intel and National components, codecs, and telecommunica-
tion PCM serial I/O. ‘

The ability to mix frame sync lengths is useful in conflgunng systems in which data is re-
ceived from one type device (e.g., codec) and transmitted to a different type device.

FSLO controls whether RX and TX have the same frame sync length (see Figure 6-68). If-
FSLO equals zero, RX and TX have the same frame sync length, which is selected by
FSL1. If FSLO equals one, RX and TX have different frame sync lengths, which are se-
lected by FSL1.

SSI CONTROL REGISTER B (CRB)
(READWRITE)

15

14 13 12 1"
X:$FFED| RIE ‘nq RE] TE |MOD GCK | SYN I FSL1| FSLO SHFDISCKDISCDZ SCD1 scnol OF1 ropo

* *

* WORD LENGTH: FSL1=0,FSL0O=0

SERIAL CLOCK ||“””””””||””””””””||”““””||””””””””””””””
RX, TX FRAME SYNC | | o | I

RX, TX SERIAL DATA
. DATA DATA

NOTE: Frame sync occurs while data is valid.

*ONE BIT: FSL1=1,FSL0=0

RX, TX FRAME SYNC |—] | I

RX, TX SERIAL DATA .
DATA DATA

NOTE: Frame sync occurs for one bit time preceding the data.

* MIXED FRAME LENGTH: FSL1=0,FSLO=1 -

SERIAL CLOCK ”””””””“““””””””””””“”””””””””|”||”””|””
RX FRAME SYNC I I , ' I I

RX SERIAL DATA oD <—DATA>_—
TX FRAME SYNC I | I_I

TX SERIAL DATA DATA - DATA

* MIXED FRAME LENGTH: FSL1 =1, FSLO =1

SERIAL CLOCK ||”|”“””||””””|||””””””||”“””“”””””“””I”l”””
RX FRAME SYNG || |_I S

RX SERIAL DATA DATA DATA
X FRAME SYNG I c I I ' I

TX SERIAL DATA DATA DATA

Figure 6-68 CRB FSLO and FSL1 Bit Operation

4 8 7 6 5 4 3 2 i 0

15 1413 12 1 10 9
SSI CONTROL REGISTER A (CRA)
X:$FFEC IPSFLl 0 I 0 | 0 I oJ 0 T 0 I 0 I PM7| PM6| pMs | PMa | PM3 | PM2 | PM1 | PMO | (READWRITE)
WL1 WL pc3 DC2 DGt

L DC4 DCo
L v
8-BIT WORD LENGTH 3 WORD FRAME RATE
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
- SSI CONTROL REGISTER B (CRB)
X:$FFEC | RIE I TIE l RE I TE l 0 I 0] 1 l 0 | 0 SHFD| 1 l 1 l SCD1 l SCDO I OF1 I OF0 | (READWRITE)
MOD scp2
SSI MODE SELECT SERIAL CONTROL 2 DIRECTION
0 = NORMAL 1=0UTPUT
GCK SCKD
GATED CLOCK CONTROL CLOCK SOURCE DIRECTION
0 = CONTINUOUS CLOCK 1=OUTPUT
SYN. FSLo
SYNC/ASYNC CONTROL FRAME SYNC LENGTH
1= SYNCHRONOUS ‘ 0= SAME LENGTHS
FSL1 FRAME
SYNC LENGTH

0=WORD CLOCK

SERIAL CLOCK ”||||”||||||||””|||””|“”””””””””||”|||””|||||||||||“”l
FRAME SYNGC I I l I -

T INTERNAL INTERRUPTS AND FLAGS T
TRANSMIT DATA DSP DATA " DSP DATA
- ' INTERNAL INTERRUPTS AND FLAGS t
RECEIVE DATA CODEC DATA CODEC DATA

| Figure 6-69 Normal Mode Initialization for FLS1=0 and FSL0=0

: $SI CONTROL REGISTER A (CRA)
X$FFEC | PSR | o 0 0 0 0 0 o | PM7| PMe [Pus | pma| pma | pm2 | pmr [Pmo | oE Rl

WLt wwo Dc4 DC3 DC2 DC1 DCO
| CONTINUOUS PERIODIC

8-BIT WORD LENGTH

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 [
SSI CONTROL REGISTER B (CRB)
X$FFED | RE | TE | RE| TE] o 0 1 1 o |sHrD| 1 1 | sco1| scpo| oF1 | oFo | (ReADMWRITE)
MOD : L sepe .
SSI MODE SELECT . SERIAL CONTROL 2 DIRECTION
0= NORMAL 1=OUTPUT
GCK L _sckp
GATED CLOCK CONTROL CLOCK SOURCE DIRECTION
0= CONTINUOUS 1=0UTPUT
SYN FSLo
SYNC/ASYNC CONTROL FRAME SYNC LENGTH
1= SYNCHRONOUS 0 = DIFFERENT LENGTHS
FSL1 FRAME
SYNC LENGTH

1=WLCLOCKFORRX

FRAME SYNC || |_]

TRANSMIT AND RECEIVE

SERIAL DATA >< DATA 1 >< DATA2>< DATA3 >QATA4 >< DATAS ><

Figure 6-70 Normal Mode Initialization for FSL1=1 and FSL0=0

The SSI receiver looks for a receive frame sync leading edge only when the previous
frame is completed. If the frame sync goes high before the frame is completed (or before
the last bit of the frame is received in the case of a bit frame sync), the current frame sync
will not be recognized, and the receiver will be internally disabled until the next frame
sync. Frames do not have to be adjacent —i.e., a new frame sync does not have to imme-
diately follow the previous frame. Gaps of arbitrary periods can occur between frames.
The transmitter will be three-stated during these gaps.

6.4.7.1.5 Shift Direction Selection

Some data formats, such as those used by codecs, specify MSB first other data formats,
such as the AES-EBU digital audio, specify LSB first. To interface with devices from both
systems, the shift registers in the SSI are bidirectional. The MSB/LSB selection is made
by programming SHFD in the CRB.

Figure 6-71 illustrates the operation of the SHFD bit in the CRB. If SHFD equals zero (see
Figure 6-71(a)), data is shifted into the receive shift register MSB first and shifted out of
the transmit shift register MSB first. If SHFD equals one (see Figure 6-71(b)), data is shift-
ed into the receive shift register LSB first and shifted out of the transmit shift register LSB
first..

6.4.7.2 Normal Mode Examples

The normal SSI operating mode characteristically has one time slot per serial frame, and
data is transferred every frame sync. When the SSl is not in the normal mode, it is in the
network mode. The MSB is transmitted first (SHFD=0), with overrun and underrun errors
detected by the SSI hardware. Transmit flags are set when data is transferred from the
transmit data register to the transmit shift register. The receive flags are set when data is
transferred from the receive shift register to the receive data register.

Figure 6-72 shows an example of using the SSI to connect an MC15500 codec with a
DSP56002. No glue logic is needed. The serial clock, which is generated internally by the
DSP, provides the transmit and receive clocks (synchronous operation) for the codec.
SC2 provides all the necessary handshaking. Data transfer begins when the frame sync
is asserted. Transmit data is clocked out and receive data is clocked in with the serial
clock while the frame sync is asserted (word-length frame sync). At the end of the data
transfer, DSP internal interrupts programmed to transfer data to/from will occur, and the
SSISR will be updated.

15 14 13 12 1 10 9 8 7 6 5 4 - 3 2 1 0

~] SSICONTROL REGISTER B (CRB)
¢sFFeD | RiE | TE | Re | TE | mop| ack| syn| FsLi] Fsio| sHFD scml SCD2 scml scoo| oF1 IOFO (READWRITE)

*

23 16 15 87 0
XSFFEF| RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEVELOWBYTE | SERUALRECEIVE DATAREGISTER (RX)
(READ ONLY)
7 Y 0 7 07 0
23 16 15 8 7 0
RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE

SERIAL RECEIVE SHIFT REGISTER (RX)

. 0 7\\0 7\ |
. SRD

8BIT 12BIT 16 BIT . 24 BIT
23 . 16 15 . 8 7 0
- SERI IVE DATA REGISTER
X:$FFEF RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE AL RECEIVE RE X
(READ ONLY)
7 0o 7 07 0
23 16 15 8 7 V)
STD . TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE SERIAL TRANSMIT SHIFT REGISTER
7 o 7 07 1]
(a) SHFD =0

Figure 6-71 CRB SHFD Bit Operation (Sheet 1 of 2)

23

16 15 8 7

X:$FFEF RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE
7 [07 0
23 16 15 8 7 0
SRD RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE - RECEIVE LOW BYTE
7 0 7 07]
23 16 15 87 0
X:$FFEF TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE
7 0o 7 07 0
23 16 15 8 7 0
TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE
7 0

SERIAL RECEIVE DATA REGISTER (RX)
(READ ONLY)

SERIAL RECEIVE SHIFT REGISTER (RX)

SERIAL TRANSMIT DATA REGISTER (TX)
(WRITE ONLY)

SERIAL TRANSMIT SHIFT REGISTER

NN N

12BIT

(b) SHFD=1

16 BIT

STD
24 BIT

Figure 6-71 CRB SHFD Bit Operation (Sheet 2 of 2)

MC1550x DSP56002
CODEC FILTER

™1 TDD SRD
RDD STD
TDC SCK

ANALOG RDC

OUTPUT ~+—— RX0 TDE | lo7]

ANALOG
INPUT

RCE
MSI

SERIAL SYNC | I I I

TRANSMIT DATA —@ DSP DATA
RECEIVE DATA CODEC DATA - ‘ CODEC DATA

Figure 6-72 Normal Mode'Examvae

6.4.7.2.1 Normal Mode Transmit
The conditions for data transmission from the)SSI’ are as follows:

1. Transmltter is Enabled (TE=1)
2. Frame sync (or clock in gated clock mode) is actlve

When these conditions occur in normal mode, the next data word will be transferred from
TX to the transmit shift register, the TDE flag will be set (transmitter empty), and the trans-
mit interrupt will occur if TIE equals one (transmit interrupt enabled) The new data word
will be transmitted immediately. :

The transmit data output (STD) is three-stated, except during the data transmission peri-
od. The optional frame sync output, flag outputs, and clock outputs are not three-stated
even if both receiver and transmitter are disabled.

The optional output flags are always updated at the beginning of the frame, regardless of
TE. The state of the flag does not change for the entire frame.

Figure 6-73 is an example of transmitting data using the SSI in the normal mode with a

continuous clock, a bit-length frame sync, and 16-bit data words. The purpose of the pro-
gram is to interleave and transmit right and left channels in a compact disk player. Four
SSI pins are used:

1. SCO0is used as an output flag to indicate right-channel data (OF0=1) or left-chan-
nel data (OF0=0)

2. SC2is TX and RX frame sync out
3. STD is transmit data out
4, SCK clocks the transmit data out

Equates are set for convenience and readability. Test data is then put in the low X: mem-
ory locations. The transmit interrupt vector contains a JSR instruction (which forms a long
interrupt). The data pointer and channel flag are initialized before initializing CRA and
CRB. It is assumed that the DSP CPU and SSI have been previously reset.

At this point, the SSI is ready to transmit except that the interrupt is masked because the
MR was cleared on reset and Port C is still configured as general-purpose /0. Unmasking
the interrupt and enabling the SSI pins allows transmission to begin. A “jump to self’ in-
struction causes the DSP to hang and wait for interrupts to transmit the data. When an
interrupt occurs, a JSR instruction at the interrupt vector location causes the XMT routine
to be executed. Data is then moved to the TX register, and the data pointer is increment-
ed. The flag is tested by the JSET instruction and, if it is set, a jump to left occurs, and the
code for the left channel is executed. If the flag is not set, the code for the right channel is
executed. In either case, the channel flag in X0 and then the output flag are set to reflect
the channel being transmitted. Control is then returned to the main program, which will
wait for the next interrupt.

shAkRkKkIhkkIAAAAkkAkkhRAkkA kA hkkhkhhkkhkkhkhkkhkhhkhrd
H

; SSI and other I1/0 EQUATES-

wdedede ks dedod g dod dedode oo de vk de oo ok e de g ek ke e de sk de e ek de e ek ke ke e

IPR EQU $FFFF
CRA EQU $FFEC
CRB EQU $FFED
PCC EQU $FFET
T EQU $FFEF
FLG EQU $0010
ORG X:0 ‘
DC " $AAAAQ0 ;Data to transmit.
DC $333300
DC - $ccccoo
DC $FOF000
; - INTERRUPT VECTOR.
ORG ~ P:$0010-
JSR XMT

AR ARAAKAAKRAAKR KA AAAKRKRAIARR AR IR AR AR R ARk *
, .
;.. MAIN PROGRAM-

CRKERKIRIARARKKIKRKARARARKARKRARARK AR KRR KRR AR AR KKK Ik Rk k
’

ORG P:$40 R
- MOVE #0,R0 ;Pointer to data buffer.
MOVE - #3,M0 :Set modulus to 4.
MOVE #0,X0 ;Initialize channel flag for SSi flag.
MOVE XO0,X:FLG ;Start with right channel first.

ek RRRKAAAKARKRKA KKK AAKAKKAIRARAARARAR KKK ARk h kT kk k&

' Initialize SSI Port.

ARARKAKIAKARKAARAKRRKAAATRR KRR A AR AR AR RR AR ARk
’

MOVEP #$3000,X:IPR ;Set interrupt priority register for SSI.

MOVEP #$401F X:CRA ;Set continuous clock=5.12/32 MHz
;word length=16.

MOVEP #$5334,X:CRB ;Enable TIE and TE; make clock and

;frame sync outputs; frame
;sync=bit mode; synchronous mode;
;make SCO an output.

Figure 6-73 Normal Mode Transmit Example (Sheet 1 of 2)

akKRAkKhhIRAAKRRRARRIKhhhkhRIhh AR A KAk kkhhhhkkhhhrkkhh

; Init SSI Interrupt-

ARERARAIARAAKEEKKRRRREAA R AT RARARA AR AR KRR AR R ARk Ak
’ .

ANDI #$FC,MR ;Unmask interrupts.
MOVEP #$01F8,X:PCC . ;Turn on SSI port.
JMP * ;Wait for interrupt.

.***********i******************ﬁ***it*****?*******

: MAIN INTERRUPT ROUTINE.

AR ARRKAIARAAKRKRAAAARAAATA NI A ARAT AR AR AN AR R A kA A kk
1

XMT MOVEP X:(RO);pl,X:TX ;Move data to TX register.
JSET #0,X:FLG,LEFT ;Check channel flag.

RIGHT BCLR #0,X:CRB ;Clear SCO indicating right channel! data
MOVE #>$01,X0 ;Set channel flag to 1 for next data.
MOVE X0,X:FLG
RTI

LEFT BSET #0,X:CRB ;Set SCO indicating left channel data.
MOVE #>$00,X0 ;Clear channel flag for next data.
MOVE X0,X:FLG
RTI
END

Figure 6-73 Normal Mode Transmit Example (Sheet 2 of 2)

6.4.7.2.2 Normal Mode Receive

If the receiver is enabled, a data word will be clocked in each time the frame sync signal
is generated (internal) or detected (external). After receiving the data word, it will be trans-
ferred from the SSI receive shift register to the receive data register (RX), RDF will be set
(receiver full), and the receive interrupt will occur if it is enabled (RIE=1).

The DSP program has to read the data from RX before a new data word is transferred
from the receive shift register; otherwise, the receiver overrun error will be set (ROE=1).

Figure 6-74 illustrates the program that receives the data transmitted by the program
shown in Figure 6-73. Using the flag to identify the channel, the receive program receives
the right- and left-channel data and separates the data into a right data buffer and a left
data buffer. The program shown in Figure 6-74 begins by setting equates and then using
a JSR instruction at the receive interrupt vector location to form a long interrupt. The
main program starts by initializing pointers to the right and left data buffers. The IPR,
CRA, and CRB are then initialized. The clock divider bits in the CRA do not have to be
set since an external receive clock is specified (SCKD=0). Pin SCO0 is specified as an in-
put flag (SYN=1, SCD0=0); pin SC2 is specified as TX and RX frame sync (SYN=1,
SCD2=0). The SSI port is then enabled and interrupts are unmasked, which allows the

SSi port to begin data reception. A jump-to-self instruction is then used to hang the pro-
cessor and allow interrupts to receive the data. Normally, the processor would execute
useful instructions while waiting for the receive interrupts. When an interrupt occurs, the
JSR instruction at the interrupt vector location transfers control to the RCV subroutine.
The input flag is tested, and data is put in the left or right data buffer depending on the
results of the test. The RTI instruction then returns control to the main program, which
will wait for the next interrupt.

shkkkkkhkkkhhkhkkkhhkhkhhkhkkhkhkrdhhhkhhhhhkkhkhhkhrkdkhhhhr

; SSl and other I/O EQUATES-

akKKARKAAKKIIKAKE A KKK A KRR K AR A IR AE AR AR AR R ARk ko khhd

IPR = EQU $FFFF

SSISR EQU $FFEE
CRA EQU $FFEC
CRB EQU $FFED
PCC EQU . $FFE1
RX EQU $FFEF
FLG EQU $0010

ehREIRRKKIKTARRRRKRA AR IR KKRRkAIIARhI IRk khhhdkkhhhkd

; INTERRUPT VECTOR-

B g T L S L 2 2 Lt]

ORG P:$000C
JSR RCV

akkkhIRERAAAA KKK AKAAR KA KAk Ak kkhkkhhkhkhkhkhhhkkk
’ B § . I
; MAIN PROGRAM-

ek A hk AR RAR A KRR AIARARRAEA KA AR IR AR AR AR A kA Rk kkhkk
y .

ORG P:$40

MOVE- #0,R0 X ;Pointer to memory buifer for
MOVE - . #$08,R1 . ;received data. Note data will be
MOVE #1,M0 ;split between two buffers which are
MOVE #1,M1 ’ ;modulus 2. ‘

Figure 6-74 Normal Mode Receive Example (Sheet 1 of 2)

AR RAEAKRARRAARAK KRR AAR AR AARAR AR AR AR AR RRAR R AR A Ak K

: Initialize SSI Port.

MOVEP #$3000,X:IPR ;Set interrupt priority register for SSI.
MOVEP #$4000,X:CRA ;Set word length = 16 bits.
MOVEP #$A300,X:CRB ;Enable RIE and RE; synchronous

;mode with bit frame sync;
;clock and frame sync are
;external; SCO is an output.

aRKRAAKRRIRRRKAAARRRRK A KKK KRR AAR AR AR KA AR KRR Ak Kk

: it SSI Interrupt.

o T e e e ok e e e e e o o ok e ok ok ok ke ke 2k ok ke e ok ok ok ok e e vk ok ok vk e sk o ke o e ke e e ok
?

ANDI #$FC,MR ;Unmask interrupts.
MOVEP #$01F8,X:PCC ;Turn on SSI port.
JMP * ;Wait for interrupt.

KA KAKAKKARAKRKAAKRKAR KK AARR AR A AR R KA AR A AR ARk Ak kdkkk

; - MAIN INTERRUPT ROUTINE-

a kAR AARKR AR EARIA AR IR A KRR AR AR AR R RAR R A AR ARk khkk
)

RCV JSET #0,X:SSISR, RIGHT ;Test SCO flag.
LEFT MOVEP X:RX,X:(RO)+ ;If SCO clear, receive data
RTI ;into left buffer (RO).
RIGHT MOVEP X:RX,X:(R1)+ ;If SCO set, receive data
RTI ;into right buffer (R1).
END
Figure 6-74 Normal Mode Receive Example (Sheet 2 of 2)
6.4.7.3 Network Mode Examples

The network mode, the typical mode in which the DSP would interface to a TDM codec
network or a network of DSPs, is compatible with Bell and CCITT PCM data/operation for-
mats. The DSP may be a master device (see Figure 6-75) that controls its own private
network or a slave device that is connected to an existing TDM network, occupying one
or more time slots. The key characteristic of the network mode is that each time slot (data
word time) is identified by an interrupt or by polling status bits, which allows the option of
ignoring the time slot or transmitting data during the time slot. The receiver operates in the
same manner except that data is always being shifted into the receive shift register and
transferred to the RX. The DSP reads the receive data register and uses or discards the
contents. Overrun and underrun errors are detected.

MASTER TRANSMIT

MASTER RECEIVE
DSP56002 MASTER DSP56002 SLAVE 1 DSP56002 SLAVE 2 | DSP56002 SLAVE 3
STD STD STD STD
SRD SRD SRD SRD
SCK SCK SCK [+ SCK
SC2 [SC2 [sc2 SC2 [
TIME SLOT 1 TIME SLOT 2 TIMESLOT 3 ‘T TIME SLOT 4
MASTER CLOCK
MASTER SYNC

Figure 6-75 Network Mode Example

The frame sync signal indicates the beginning of a new data frame. Each data frame is di-
vided into time slots; transmission or reception can occur in each time slot (rather than in
just the frame sync time slot as in normal mode). The frame rate dividers (controlled by DC4,
DC3, DC2, DC1, and DCO) control the number of time slots per frame from 2 to 32. Time-slot
assignment is totally under software control. Devices can transmit on multiple time slots, re-
ceive multiple time slots, and the time-slot assignment can be changed dynamically.

A simplified flowchart showing operation of the network mode is shown in Figure 6-76.
Two counters are used to track the current transmit and receive time slots. Slot counter
one (SLOTCTH) is used to track the transmit time slot; slot counter two (SLOTCT2) is
used for receive. When the transmitter is empty, it generates an interrupt; a test is then
made to see if it is the beginning of a frame. If it is the beginning of a frame, SLOTCT1 is
cleared to start counting the time slots. If it is not the beginning of a frame, SLOTCT1 is
incremented. The next test checks to see if the SSI should transmit during this time slot.
If it is time to transmit, data is written to the TX; otherwise, dummy data is written to the
TSR, which prevents a transmit underrun error from occurring and three-states the STD
pin. The DSP can then return to what it was doing before the interrupt and wait for the next
interrupt to occur. SLOTCT1 should reflect the data in the shift registers to coincide with
TFS. Software must recognize that the data being written to TX will be transmitted in time
slot SLOTCT1 plus one.

RECEIVER
FULL

INTERRUPT

TRANSMITTER
EMPTY
READ DATA
INTERRUPT FROM RX

YES TESTFOR
FRAME SYNC

TFS=1?

NO YES TESTFOR
FRAME SYNC

RFS=1?

NO

C';,ESSBSELF? T INCREMENT SLOT NUMBER CLEARSLOT INCREMENT SLOT NUMBER

. NUMBER i
SLOTCTS SLOTCT1 = SLOTCT1 + 1 SLOTCT220 SLOTCT2 = SLOTCT2 + 1

1S DATA
FOR ME?
SLOTCT2 =

TO TRANSMIT?
SLOTCT1 =

MYSLOT? MYSLOT?
WRITE DATA WRITE ' DISCARD
DUMMY DATA
TOTX TOTSR KEEP DATA DATA
EXIT EXIT

Figure 6-76 TDM Network Software Flowchart

The receiver operates in a similar manner. When the receiver is full, an interrupt is gener-
ated, and a test is made to see if this is the beginning of a frame. If it is the beginning of
aframe, SLOTCT2 is cleared to start counting the time slots. If it is not the beginning of a
frame, SLOTCT2 is incremented. The next test checks to see if the data received is in-
tended for this DSP. If the current time slot is the one assigned to the DSP receiver, the
data is kept; otherwise, the data is discarded, and the DSP can then return to what it was
doing before the interrupt. SLOTCT2 should reflect the data in the receive shift register to
coincide with the RFS flag. Software must recognize that the data being read from RX is
for time slot SLOTCT2 minus two.

Initializing the network mode is accomplished by setting the bits in CRA and CRB as fol-
lows (see Figure 6-77): '

1. The word length must be selected by setting WL1 and WLO. In this example,
an 8-bit word length was chosen (WL1=0 and WL0=0).

2. The number of time slots is selected by setting DC4-DCO. Four time slots
were chosen for this example (DC4-DC0=$03).

3. The serial clock rate must be selected by setting PSR and PM7-PMO (see
Table 6-15 (a), Table 6-15 (b), and Table 6-16).

4. RE and TE must be set to activate the transmitter and receiver. If interrupts
are to be used, RIE and TIE should be set. RIE and TIE are usually set after
everything else is configured and the DSP is ready to receive interrupts.

5. The network mode must be selected (MOD=1).
6. A continuous clock is selected in this example by setting GCK=0.

7. Although it is not required for the network mode, synchronous clock control
was selected (SYN=1).

8. The frame sync length was chosen in this example as word length (FSL1=0)
for both transmit and receive frame sync (FSL0=0). Any other combinations
- could have been selected, depending on the application.

9. Control bits SHFD, SCKD, SCD2, SCD1, SCDO0, and the flag bits (OF1 and
OF0) should be set as needed for the application.

SSI CONTROL REGISTERA (CRA)

(READ/WRITE)
5 14 13 12 #H 1 9 8 .7 8 5 4 3 2 1 0
X$FFEC) psp | o 0 0 0 0 1 1 | emz| pme| Pms | pma| pma | Pm2 | PM1 | Pmo
WLI WLo_ DC4 DC3 DC2 DG DCO
8-BIT WORD LENGTH FOUR TIME SLOTS

SSI CONTROL REGISTER B (CRB)

(READ/WRITE)
15 14 13w i 10 9 8 7 6 5 4 3 2 1 0
XisFFEDI RIE I TIE | RE | TE I 1 | 0 l 1T 0] 0 |SHFD|SCKDI scozl scml scool OF1 | OF(d
MOD. SCD2
SERIAL CONTROL 2 DIRECTION
ssl “12"5;%53; 1=0UTPUT (MASTER)
0=INPUT (SLAVE)
GCK J
GATED CLOCK CONTROL —— SCKkD
0= CONTINUOUS CLOCK CLOCK SOURCE DIRECTION
1= OUTPUT (MASTER)
SYN 0= INPUT (SLAVE)
SYNC/ASYNC CONTROL . FLso
= N .
1= SYNCHRONOUS . FRAME SYNC LENGTH 0
0=TX, RX SYNC SAME LENGTH
FSL1
FRAME SYNC LENGTH 1
0=WORD WIDTH

SS| STATUS REGISTER (SR)
x$rFEE | ROF | TDE | ROE | TUE | RFs | TFs | F1 | 1F0 | (ReaD)

SSI TIME SLOT REGISTER B (TSR)
(WRITE) :

SERIAL
CLOCK
FRAME
SYNC

INTERNAL TX FLAGS AND INTERRUPTS

XS$FFEE | * . . . *

*
*
*

{4 b
SERIAL DATA}QLOT 1 >< SLOT 2 >< SLOT3 . >< SLOT 4
{1 f

SLOT 1 >€

t
-

D,

INTERNAL RX FLAGS AND INTERRUPTS

Figure 6-77 Network Mode Initialization

6.4.7.3.1 Network Mode Transmit
When TE is set, the transmitter will be enabled only after detection of a new data frame
sync. This procedure allows the SSI to synchronize to the network timing.

Normal startup sequénce for transmission in the first time slot is to write the data to be
transmitted to TX, which clears the TDE flag. Then set TE and TIE to enable the transmit-
ter on the next frame sync and to enable transmit interrupts.

Alternatively, the DSP programmer may decide not to transmit in the first time slot by writ-
ing any data to the time slot register (TSRY). This will clear the TDE flag just as if data were
going to be transmitted, but the STD pin will remain in the high-impedance state for the
first time slot. The programmer then sets TE and TIE.

* When the frame sync is detected (or generated), the first data word will be transferred from
TX to the transmit shift register and will be shifted out (transmitted). TX being empty will
cause TDE to be set, which will cause a transmitter interrupt. Software can poll TDE or use
interrupts to reload the TX register with new data for the next time slot. Software can also
write to TSR to prevent transmitting in the next time slot. Failing to reload TX (or writing to
the TSR) before the transmit shift register is finished shifting (empty) will cause a transmitter
underrun. The TUE error bit will be set, causing the previous data to be retransmitted.

The operation of clearing TE and setting it again will disable the transmitter after comple-
tion of transmission of the current data word until the beginning of the next frame sync pe-
riod. During that time, the STD pin will be three-stated. When it is time to disable the trans-
mitter, TE should be cleared after TDE is set to ensure that all pending data is transmitted.

The optional output flags are updated every time slot regardless of TE.

To summarize, the network mode transmitter generates interrupts every time slot and re-
quires the'DSP program to respond to each time slot. These responses can be:

1. Write data register with data to enable transmission in the next time slot
2. Write the time slot register to disable fransmission in the next time slot

3. Do nothing — transmit underrun will occur the at beginning of the next time slot,
and the previous data will be transmitted

Figure 6-78 differs from the program shown in Figure 6-73 only in that it uses the network
mode to transmit only right-channel data. A time slot is assigned for the left-channel data,
which could be inserted by another DSP using the network mode. In the “Initialize SSI
Port” section of the program, two words per frame are selected using CRA, and the net-
work mode is selected by setting MOD to one in the CRB. The main interrupt routine,
which waits to move the data to TX, only transmits data if the current time slot is for the
right channel. If the current time slot is for the left channel, the TSR is written, which thre-
e-states the output to allow another DSP to transmit the left channel during the time slot.

ARKEREARAN AR RN RKRAKNAARK AR KR IR KT A AR I AR KT T I A Ak dd

: sSland other /O EQUATES-

AREARARK KRR KRR RAARAA AR R AR A A AR ARk Ak kdh ko khk
’

IPR EQU $FFFF
CRA EQU $FFEC
CRB EQU $FFED
PCC EQU $FFEA1

TX EQU $FFEF
TSR EQU $FFEE
FLG EQU $0010

ORG X0
DC $AAAAQ00 ;Data to transmit.
DC $333300
DC $CCCC00
DC $FOF000
: INTERRUPT VECTOR-

ekdkkkkhkAhk kA kA hkkkkhkk Ak hkhhhhkhkkhhhhhhhhhhhkhkkkhk
]

ORG P:$0010
JSR XMT

ARKEKAIARKEKRAKRARAKARKAR KR A AR I ARA IR ARAAR A AR h Ak hkk kK

: MAIN PROGRAM-

ek kEAAKAKAAAAAR AR AA AR AR I A I A ARk kA Rk kAR hkk bk kh
’

ORG P:$40

MOVE #0,R0 ;Pointer to data buffer.

MOVE #3,M0 ;Set modulus to 4.

MOVE #0,X0 ;Initialize user flag for SSI flag.
MOVE = X0,X:FLG ;Start with the right channel.

Figure 6-78 Network Mode Transmit Example Program (Sheet 1 of 2)

A KERAREARRAR KA RRRARRA A AA AR RN AR AR AR Ak kA hhhhhhk

! Initialize SSI Port.

akkkkdkkkkkkkhkkkhkhhkhkhhkhhkkhkkhhkhhkhkkkhkkkhhkhkkhkrhkkk

’ MOVEP #$3000,X:IPR
MOVEP #5411F X:-CRA

MOVEP #$5B34,X:CRB

dRARAIRARKRKRAKARARAAKAAR KA AR AR AR ARA KA A ARk Ak hhhhk

; Init SSI Interrupt-

KK ARKAARARIAIIAKXRAK AN KR AE AR A AT A AR A AR KA A ARk

' ANDI #$FC,MR
MOVEP #8$01F8,X:PCC
MP

aRKKIAIARAKRAARARR KA AR AR KA I AR AR ARRA A A ARk kA hhkhkd

; MAIN INTERRUPT ROUTINE-

dRRKKIIAKKRRRIR AR AKX ARA AR KK AAA AR I AR AR A I h Ak khhhhhkd
’

XMT
JSET #0,X:FLG,LEFT

RIGHT BCLR #0,X:CRB

MOVEP X:(RO)+X:TX
MOVE #-$01,X0
MOVE XO0,X:FLG
RTI

LEFT BSET #0,X:CRB
MOVEP XO0,X:TSR
MOVE #>%00,X0
MOVE XO,X:FLG
RTI

END

;Set interrupt priority register for SSI.
;Set continuous clock=5.12/32 MHz
;word length=16. '

;Enable TIE and TE; make clock and
;frame sync outputs; frame

;sync=bit mode; synchronous mode;
;make SCO an output.

;Unmask interrupts.
;Turn on SSI port.
;Wait for interrupt.

;Check user flag.
;Clear SCO indicating right channel data

Move data to TX register.
;Set user flag to 1
;for next data.

;Set SCO indicating left channel data.
;Write to TSR register.

;Clear user flag

;for next data.

Figure 6-78 Network Mode Transmit Example Program (Sheet 2 of 2)

AKEERRKI AR KRR IARKIRAAT AR AR TR AR A AR AR A A Ak kkhkdk
)

; SSI and other /O EQUATES-

K EAARKKAKRRARIKRRRERRARKRRRKRAAARR AR AN RAR AN A AR RA N AR Ak

IPR EQU $SFFFF

SSISR EQU $FFEE

CRA EQU $FFEC

CRB EQU $FFED

pPCC EQU $FFE1

RX EQU $FFEF

; INTERRUPT VECTOR-
ORG P:$000C
JSR RCV

Ak AKRAAIKRAAAIKR AR KA AIR AR AAR AR AR AAR A AR AN Ak hhkhkhhk
’

; MAIN PROGRAM.

aREIARAAKKKKARAK AR A XA AR KA AR AR A AR AR KA KA hhhkkhkkdhKk
’

ORG P:$40
MOVE #0,R0 ;Pointer to memory buffer for
MOVE #%$08,R1 ;received data. Note data will be
MOVE #3,M0 ;split between two buffers which are
MOVE #3,M1 ;modulus 4.

. Initialize SSI Port:
MOVEP #$3000,X:IPR ;Set interrupt priority register for SSI.
MOVEP #%4100,X:CRA ;Set word length = 16 bits.
MOVEP #$AB00,X:CRB ;Enable RIE and RE; synchronous

;mode with bit frame sync;
;clock and frame sync are
;external; SCO is an input.

Figure 6-79 Network Mode Receive Example Program (Sheet 1 of 2)

dRRERRIKAKARK KRR AR R AAIKI AR AR R AT Ak Ak khkhkkhhkhkkkk ki
’

; Init SSI Interrupt-

B T 2 R a2 T T T T T R T T T P Y
’

ANDI #$FC,MR ;Unmask interrupts.
MOVEP #%$01F8,X:PCC ;Turn on SSi port.
JMP * ;Wait for interrupt.

akkkhkkhkhkhkhkhkkhkkhkkhkkhkkhhkhkhkhkkkkhhkhhkkhkkhkhkhkhkkhkhhkhhhkhhkk
’

; MAIN INTERRUPT ROUTINE-

aRhIA AR AR AA KR AR AR IRAAKN AR I KRR A AR ARARA AR AR RNk
’

RCV JSET #0,X:SSISR, RIGHT ;Test SCO flag.

LEFT MOVEP X:RX,X:(RO)+ ;If SCO clear, receive data
RTI ;into left buffer (RO).
RIGHT MOVEP X:RX,X:(R1)+ ;If SCO set, receive data
RTI ;into right buffer (R1).
END

Figure 6-79 Network Mode Receive Example Program (Sheet 2 of 2)

6.4.7.3.2 Network Mode Receive

The receive enable will occur only after detection of a new data frame with RE set. The
first data word is shifted into the receive shift register and is transferred to the RX, which
sets RDF if a frame sync was received (i.e., this is the start of a new frame). Setting RDF
will cause a receive interrupt to occur if the receiver interrupt is enabled (RIE=1).

The second data word (second time slot in the frame) begins shifting in immediately after
the transfer of the first data word to the RX. The DSP program has to read the data from
RX (which clears RDF) before the second data word is completely received (ready to
transfer to RX), or a receive overrun error will occur (ROE=1), and the data in the receiver
shift register will not be transferred and will be lost.

If RE is cleared and set again by the DSP program, the receiver will be disabled after re-
ceiving the current time slot in progress until the next frame sync (first time slot). This
mechanism allows the DSP programmer to ignore data in the last portion of a data frame.

Note: The optional frame sync output and clock output signals are not affected, even if
the transmitter and/or receiver are disabled. TE and RE do not disable bit clock and
frame sync generation.

To summarize, the network mode receiver receives every time slot data word unless the
receiver is disabled. An interrupt can occur after the reception of each data word, or the
programmer can poll RDF. The DSP program response can be

1. Read RX and use the data
2. Read RX and ignore the data

3. Do nothing — the receiver overrun exception will occur at the end of the current
time slot

4. Toggle RE to disable the receiver until the next frame, and read RX to clear RDF

Figure 6-79 is essentially the same program shown in Figure 6-74 except that this pro-
gram uses the network mode to receive only right-channel data. In the “Initialize SSI Port’
section of the program, two words per frame are selected using the DC bits in the CRA,
and the network mode is selected by setting MOD to one in the CRB. If the program in
Figure 6-78 is used to transmit to the program in Figure 6-79, the correct data will appear
in the data buffer for the right channel, but the buffer for the left channel will probably con-
tain $000000 or $FFFFFF, depending on whether the transmitter output was high or low
when TSR was written and whether the output was three-stated.

6.4.74 On-Demand Mode Examples
A divide ratio of one (DC=00000) in the network mode is defined as the on-demand mode

of the SSI because it is the only data-driven mode of the SSI - i.e., data is transferred
whenever data is present (see Figure 6-80 and Figure 6-81). STD and SCK from DSP1
are connected to DSP2 — SRD and SCO, respectively. SCO is used as an input clock pin
in this application. Receive data and receive data clock are separate from the transmit sig-
nals. On-demand data transfers are nonperiodic, and no time slots are defined. When
there is a clock in the gated clock mode, data is transferred. Although they are not neces-
sarily needed, frame sync and flags are generated when data is transferred. Transmitter
underruns (TUE) are impossible in this mode and are therefore disabled. In the on-de-
mand transmit mode, two additional SSI clock cycles are automatically inserted between
each data word transmitted. This procedure guarantees that frame sync will be low be-
tween every transmitted data word or that the clock will not be continuous between two
consecutive words in the gated clock mode. The on-demand mode is similar to the SCI
shift register mode with SSFTD equals one and SCKP equals one. The receiver should
be configured to receive the bit clock and, if continuous clock is used, to receive an exter-
nal frame sync. Therefore, for all full-duplex communication in on-demand mode, the
asynchronous mode should be used. The on-demand mode is SPI compatible.

DSP56002 DSP56002
DSP1 DsP2
STD —>»| SRD
SCK » SCO
SRD STD
SCo [SCK

Figure 6-80 On Demand Example

Initializing the on-demand mode for the example illustrated in Figure 6-81 is accomplished
by setting the bits in CRA and CRB as follows: ‘

1.

10.
11.

The word length must be selected by setting WL1 and WLO. In this example, a
24-bit word length was chosen (WL1=1 and WLO=1).

The on-demand mode is selected by clearing DC4-DCO.

The serial clock rate must be selected by setting PSR and PM7-PMO (see
Table 6-15 (a), Table 6-15 (b), and Table 6-16).

RE and TE must be set to activate the transmitter and receiver. If interrupts
are to be used, RIE and TIE should be set. RIE and TIE are usually set after
everything else is configured and the DSP is ready to receive interrupts.

The network mode must be selected (MOD=1).

A gated clock (GCK=1) is selected in this exampie. A continuous clock exam-
ple is shown in Figure 6-78. :

Asynchronous clock control was selected (SYN=0) in this example.

Since gated clock is used, the frame sync is not necessary. FSL1 and FSLO
can be ignored.

SCKD must be an output (SCKD=1).
SCDO must be an input (SCD0=0).

Control bit SHFD should be set as needed for the application. Pins SC1 and
SC2 are undefined in this mode (see Table 6-13) and should be programmed
as general-purpose I/O pins.

SSI CONTROL REGISTER A (CRA)

(READ/WRITE)
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
X$FFEC! psR 1 1 0 0 0 0 0 PM7 | PMe | PMs | Pm4 | PM3 | PM2 | PM1 | PMO

WLT WLO DC4 DC3 DC2 DCt DCo
—

24-BIT WORD LENGTH ON-DEMAND

SSI CONTROL REGISTER B (CRB)

(READ/WRITE)
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
X:SFFED[RIE I TIEJ RE I TE I 1 | 1 | 0 | FSL1 I FSLO l SHFD | 1 I SCDZI SCD1 I 0 | OF1 I OF0 I
. MOD SCDO
SSI MODE SELECT SERIAL CONTROL 2
1=NETWORK DIRECTION
0=INPUT
GCK——ono—_|
GATED CLOCK CONTROL ——————————— SCKD
1=GATED CLOCK CLOCK SOURCE
DIRECTION
SYNeeororoo—o— .1 1=0UTPUT
SYNC/ASYNC CONTROL

0=ASYNCHRONCUS

wsuresaoc —— LU

TRANSMIT DATA —< 24-BIT DATA FROM DSP1 TO DSP2 >

RECEIVE CLOCK

- |=— TWO SSI BIT CLOCKS (MIN.)

RECEIVEDATA, DSP2 TO DSP1 24-BIT DATA FROM DSP2 TO DSP1 >—

NOTE: Two SSI bit clock times are automatically inserted between each data word. This guarantees frame sync
will be low between every data word transmitted and the clock will not be continuous for two consecutive
data words. - :

Figure 6-81 On-Demand Data-Driven Network Mode

DATA CHANGES

SERIAL CLOCK ||||””””””|||”|”|||”|||”||”||”””“”””ﬂ”””||||||||”II”

DATA STABLE

FRAME SYNC I I | |
SERIAL DATA
DATA DATA

(a) Continuous

SERIAL DATA
DATA DATA

(b) Gated

Figure 6-82 Clock Modes

6.4.7.4.1 On-Demand Mode - Continuous Clock

This special case will not generate a periodic frame sync. A frame sync pulse will be gen-
erated only when data is available to transmit (see Figure 6-82(a)). The frame sync signal
indicates the first time slot in the frame. The on-demand mode requires that the transmit
frame sync be internal (output) and the receive frame sync be external (input). Therefore,
for simplex operation, the synchronous mode could be used; however, for full-duplex op-
eration, the asynchronous mode must be used. Data transmission that is data driven is
enabled by writing data into TX. Although the SSI is double buffered, only one word can
be written to TX, even if the transmit shift register is empty. The receive and transmit in-
terrupts function as usual using TDE and RDF; however, transmit and receive underruns
are impossible for on-demand transmission and are disabled. This mode is usefu! for in-
terfacing to codecs requiring a continuous clock.

6.4.7.4.2 On-Demand Mode — Gated Clock

Gated clock mode (see Figure 6-82(b)) is defined for on-demand mode, but the gated
clock mode is considered a frame sync source; therefore, in gated clock mode, the trans-
mit clock must be internal (output) and the receive clock must be external (input). For on-
demand mode, with internal (output) synchronous gated clock, output clock is enabled for

the transmitter and receiver when TX data is transferred to the transmit data shift register.
This SPI master operating mode is shown in Figure 6-83. Word sync is inherent in the
clock signal, and the operation format must provide frame synchronization.

Figure 6-84 is the block diagram for the program presented in Figure 6-85. This program
contains a transmit test program that was written as a scoping loop (providing a repetitive
sync) using the on-demand, gated, synchronous mode with no interrupts (polling) to trans-
mit data to the program shown in Figure 6-86. The program also demonstrates using
GPIO pins as general-purpose control lines. PC3 is used as an external strobe or enable
for hardware such as an A/D converter.

The transmit program sets equates for convenience and readability. Test data is then writ-
ten to X: memory, and the data pointer is initialized. Setting MO to two makes the buffer
circular (modulo 3), which saves the step of resetting the pointer each loop. PC3 is con-
figured as a general-purpose output for use as a scope sync, and CRA and CRB are then
initialized. Setting the PCC bits begins SSI operation; however, no data will be transmitted
until data is written to TX. PC3 is set high at the beginning of data transmission; data is
then moved to TX to begin transmission. A JCLR instruction is then used to form a wait
loop until TDE equals one and the SSI is ready for another data word to be transmitted.
Two more data words are transmitted in this fashion (this is an arbitrary number chosen
for this testloop). An additional wait is included to make sure that the frame sync has gone
low before PC3 is cleared, indicating on the scope that transmission is complete. A wait
of 100 NOPs is implemented by using the REP instruction before starting the loop again.

MASTER H : SLAVE

SHIFT REGISTER fat— . 3 SHIFT REGISTER
i :
: :
:
SPI ° i :

CLOCK GENERATOR

DSP1 i DSP2

- Figure 6-83 SPI Configuration

Figure 6-84 On-Demand Mode Example — Hardware Configuration

DSP56002

PC3

STD

SCK

sC2 |

—
o

15K

' DSP56002

SRD

SCK

akkk kA kAR AR A A A AR AR AT AR IR R AR AR AR AR KRR AR KA K

SSI and other /O EQUATES-

ek A EA KRR RAEIARARA KA RRA KA AR AR A A Ak h kA kkkkhhkkk

CRA

- EQU
CRB EQU
PCC EQU
PCD EQU
SSISR EQU
TX EQU
PCDDR EQU
ORG

DC

DC

DC

$FFEC
$FFED

© $FFET

$FFE5
$FFEE
$FFEF
$FFE3
X:0
$AA0000
$330000
$F00000

;Data to transmit.

C R IR AIAKRKRRKRK KKK KAKARAR AR RAR AR IR ARk Ah Rk kA Xk *

MAIN PROGRAM-

B s e e T s s T

ORG
MOVE
MOVE

Figure 6-85 On-Demand Mode Transmit Example Program (Sheet 1 of 2)

- P:$40

#0,R0
#2,M0

;Pointer to data buffer
;Length off buffer is 3

- MOVEP

MOVEP
MOVEP

#$08,X:PCDDR ;SCO (PC3) as general purpose output.

#$001F,X:CRA ;Set Word Length=8, CLK=5.12/32 MHz.
#$1E30,X:CRB ;Enable transmitter, Mode=On- Demand,
;Gated clock on, synchronous mode,
;Word frame sync selected, frame
;sync and clock are internal and

;output to port pins.
MOVEP #$1F0,X:PCC ;Set PCC for SSI and
LOOPO BSET #3,X:PCD ;Set PC3 high (this is example enable
;or strobe for an external device
:such as an ADC).
MOVEP X:(RO);pl,X:TX ;Move data to TX register
TDE1 JCLR #6,X:SSISR,TDE1 ;Wait for TDE (transmit data register
;empty) to go high.
MOVEP X:(RO);pl,X:TX ;Move next data to TX.
TDE2 JCLR #6,X:SSISR,TDE2 ;Wait for TDE to go high.
MOVEP X:(RO);pl,X:TX ;Move data to TX.
TDE3 JCLR #6,X:SSISR,TDE3 ;Wait for TDE=1.
FSC JSET #5,X:PCD,FSC ;Wait for frame sync to go low. NOTE:
;State of frame sync is directly
;determined by reading PC5.
BCLR ~ #3,X:PCD ;Set PC3 lo (example external enable).
;anything goes here (i.e., any processing)
REP #100
NOP
JMP LOOPO ;Continue sequence forever.
END

Figure 6-85 On-Demand Mode Transmit Example Program (Sheet 2 of 2)

Figure 6-86 is the receive program for the scoping loop program presented in Figure 6-85.
The receive program also uses the on-demand, gated, synchronous mode with no inter-
rupts (polling). Initialization for the receiver is slightly different than for the transmitter. in
CRB, RE is set rather than TE, and SCKD and SCD2 are inputs rather than outputs. After
initialization, a JCLR instruction is used to wait for a data word to be received (RDF=1).

When a word is received, it is put into the circular buffer and loops to wait for another data
word. The data in the circular buffer will be overwritten after three words are received
(does not matter in this application).

K AKEAKR KA AR KRR AKRARKRKR KA AR AR ARRKN AR AR AR AR Ak hhkhkk
y N

; SSI and other /O EQUATES-

ekARk Rk KAk Ak hkhhhhkhdkhhhhhdkhhkdhhhhkhhdkhdhkhkkdhhhhkddk

CRA EQU $FFEC
CRB EQU $FFED
PCC EQU $FFE1

PCD EQU $FFE5

SSISR EQU $FFEE
RX EQU $FFEF
PCDDR EQU $FFE3

akRRKKAKRKK KRR KRKRARAIA I AR Ihk IR hhhhRhhkhhkkhkhkhhhhhhd
’

; MAIN PROGRAM-

AREAK AR EAKR AR KRR RA A AR AR AR AR AR A R A Ak kkkkhkkhkkk
’

ORG P:$40
m MOVE #0,R0 ;Pointer to data buffer
MOVE #2,M0 ;Length of bufferis 3

MOVEP #$001F,X:CRA ;Set Word Length=8, CLK=5.12/32 MHz.

MOVEP #$1E30,X:CRB ;Enable receiver, Mode=On-Demand,
;gated clock on, synchronous mode,
;Word frame sync selected, frame
;sync and clock are external.

MOVEP #$1F0,X:PCC ;Set PCC for SSI

LOOP

RDF1 JCLR #7,X:SSISR,RDF1 ;Wait for RDF (receive data register
;Full) go to high.

MOVEP X:RX,X:(R0)+ ;Read data from RX into memory.
JMP LOOP ;Continue sequence forever. _
END : \

Figure 6-86 On-Demand Mode Receive Example Program

6.4.8 Flags
Two SSI pins (SC1 and SCO0) are available in the synchronous mode for use as serial I/0

flags. The control bits (OF1 and OF0) and status bits (IF1 and IF0) are double buffered
to/from SC1 and SCO. Double buffering the flags keeps them in sync with TX and RX. The
direction of SC1 and SCO is controlled by SCD1 and SCDO0 in CRB.

Figure 6-87 shows the flag timing for a network mode example: Initially, neither TIE nor
TE is set, and the flag outputs are the last flag output value. When TIE is set, a TDE in-
terrupt occurs (the transmitter does not have to be enabled for this interrupt to occur).
Data (D1) is written to TX, which clears TDE, and the transmitter is enabled by software.
When the frame sync occurs, data (D1) is transferred to the transmit shift register, setting
TDE. Data (D1) is shifted out during the first word time, and the output flags are updated.
These flags will remain stable until the next frame sync. The TDE interruptis then serviced
by writing data (D2) to TX, clearing TDE. After the TSR completes transmission, the trans-
mit pin is three-stated until the next frame sync

Figure 6-88 shows a speaker phone example that uses a DSP56002 and two codecs. No
additional logic is required to connect the codecs to the DSP. The two serial output flags
in this example (OF1 and OFO0) are used as chip selects to enable the appropriate codec
for I/O. This procedure allows the transmit lines to be ORed together. The appropriate out-
put flag pin changes at the same time as the first bit of the transmit word and remains sta-
ble until the next transmit word (see Figure 6-89). Applications include serial-device chip
selects, implementing multidrop protocols, generating Bell PCM signaling frame syncs,
and outputting status information.

Initializing the flags (see Figure 6-89) is accomplished by setting SYN, SCD1, and SCDO.
No other control bits affect the flags. The synchronous control bit must be set (SYN=1) to
select the SC1 and SCO pins as flags. SCD1 and SCDO select whether SC1 and SCO are
inputs or outputs (input=0, output=1). The other bits selected in Figure 6-89 are chosen
for the speaker phone example in Figure 6-88. In this example, the codecs require that
the SSI be set for normal mode (MOD=0) with a gated clock (GCK=1) out (SCKD=1).

Serial input flags, IF1 and IF0, are latched at the same time as the first bit is sampled in
the receive data word (see Figure 6-90). Since the input was latched, the signal on the
input flag pin can change without affecting the input flag until the first bit of the next receive
data word. To initialize SC1 or SCO0 as input flags, the synchronous control bitin CRB must
be set to one (SYN=1) and SCD1 set to zero for pin SC1, and SCDO must be set to zero
for pin SCO. The input flags are bits 1 and 0 in the SSISR (at X:$FFEE).

START

—
]

TIE
TE
D1 D2 D3
TDE INTERRUPT_S L J i |
- D1) D2
LOAD TSR |) I
D1 ' D2 :

. WORD
TIME
lc—————— TIME SLOT _____.I
K1 .F2

OUTPUT FLAGS X , X

NOTES:
1. Fn = flags associated with Dn data.
2. Output flags are double buffered with transmit data. .)
3. Output flags change when data is transferred from TX to the transmit data shift register.
4. Initial flag outputs (*) = last flag output value.
5. Data and flags transition after extemal frame sync but not before rising edge of clock.

Figure 6-87 Output Flag Timing

:SYNC}HRONdU?SISERIAL NTERFACE (SSI

MC15500 SPEAKER PHONE
CODEC FILTER 1
00
MICROPHONE ————] TXI 0D b
TDC
RDC <—J
SPEAKER g——— RXO T0E OF0 pr——.
QUTPUT
RCE } FLAG 0 SRD
MSI [STD
SCK
MC15500 sCo
CODEC FILTER 2
sC1
TDD
PHONE LINE INPUT =] TXI RDD
TDC
RDC 4—]
PHONE LINE QUTPUT <e———{ RXO TDE | OF1
OUTPUT
RCE FLAG 1
MSI

NOTE: SCO and SC1 are output flag 0 and 1 used to software select either filter 1 or 2.

Figure 6-88 Output Flag Example

15 14 1" 10 9 3 2 1 0

13 12 8 7 6 3 4
IRIEITIEI REJ TE| 0 | 1 | 1 IFSL1|FSLOTSHFDF1 ,;CD2| 1 | 1 |0F1 IOFOl

0 1=FILTER 1
1 0=FILTER2

MOD
SSI MODE SELECT
0 = NORMAL

GCK:
GATED CLOCK CONTROL
1= GATED CLOCK

SYN.
SYNC/ASYNC CONTROL
1= SYNCHRONOUS

SCKD
CLOCK SOURCE DIRECTION
1=0UTPUT

SCD1 AND SCDo
SERIAL CONTROL 1 AND 0 DIRECTION
1=0UTPUT

TRansMiTDATA — B7 X B6 X B5 X B4 X B3 X B2 X B1 XBO

outpuT FLAG __)_VALID OUTPUT FLAG

OF0 AND LF1 ARE CLOCKED OUT ON THE OUTPUT FLAGS ARE ALWAYS VALID UNTIL
RISING EDGE OF THE TRANSMIT CLOCK. THE NEXT WORD TRANSMITTED.

Figure 6-89 Output Flag Initialization

7 6 5 4 3 2 1 0
X:$FFEE| RDF | TDE | ROE | TUEJ RFS I TS I IF1 | IFO J f;é:;;‘TUSREG'STER(SS'SR’

——

INPUT FLAGS

RECEIVE CLOCK I I | | I | | | | I I | I | | I

Receve DATA — B7 X B6)X B5 X B4)X B3 X B2 X BT X BO)

INPUT FLAG'”)D(

f SAMPLE

Figure 6-90 Input Flags

6.4.9 Example Circuits
The DSP-to-DSP serial network shown in Figure 6-91 uses no additional logic chips for the

network connection. All serial data is synchronized to the data source (all serial clocks and
serial syncs are common). This basic configuration is useful for decimation and data reduc-
tion when more processing power is needed than one DSP can provide. Cascading DSPs
in this manner is useful in several network topologies including star and ring networks.

DSP56002 DSP56002 DSP56002 DSP56002
DATA DATA
IN out
——»{ SRD STD SRD STD SRD STD SRD STD
SCK SCK SCK SCK
Ssc2 Sc2 sC2 SC2 |y
SERIAL CLOCK
SERIAL SYNC

Figure 6-91 SSI Cascaded Multi-DSP System

TDM networks are useful to reduce the wiring needed for connecting multiple processors.
A TDM parallel topology, such as the one shown in Figure 6-92, is useful for interpolating
filters. Serial data can be received simultaneously by all DSPs, processing can occur in
parallel, and the results are then multiplexed to a single serial data out line. This configu-
ration can be cascaded and/or looped back on itself as needed to fit a particular applica-
tion (see Figure 6-93). The serial and parallel configurations can be combined to form the
array processor shown in Figure 6-94. A nearest neighbor array, which is applicable to
matrix relaxation processing, is shown in Figure 6-95. To simplify the drawing, only the
center DSP is connected in this illustration. In use, all DSPs would have four three-state
buffers connected to their STD pin. The flags (SC0 and SC1) on the control master oper-
ate the three-state buffers, which control the direction that data is transferred in the matrix
(north, south, east, or west).

The bus architecture shown in Figure 6-96 allows data to be transferred between any two
DSPs. However, the bus must be arbitrated by hardware or a software protocol to prevent
collisions. The master/slave configuration shown in Figure 6-97 also allows data to be
transferred between any two DSPs but simplifies network control.

DSP56002

SRD STD

SCK

SC2

DSP56002

SRD STD

SCK

SERIAL sC2 SERIAL

DATAIN DATAOUT
—— .

DSP56002

SRD S§TD

SCK

Sc2

DSP56002

»{ SRD STD

SCK

Sc2

SERIAL SYNC

SERIAL CLOCK

Figure 6-92 SSI TDM Parallel DSP Network

DSP56002 ’ DSP56002
SRD STD »1 SRD STD
SCK - SCK
SsC2 SC2 e
DSP56002 DSP56002
SRD STD SRD STD
SCK SCK
SC2 SC2 |
DSP56002 DSP56002
SRD STD SRD STD
SCK | SCK
sC2 SsC2
DSP56002 DSP56002
SRD STD - SRD STD
SCK SCK
sC2 SC2 |
SERIAL CLOCK
FRAME SYNC

Figure 6-93 SSI TDM Connected Parallel Processing Array

DSP56002 DSP56002 DSP56002
SRD STD SRD STD SRD STD
SCK SCK | SCK et
SC2 fio SC2 ‘T SC2 |et—y
DSP56002 DSP56002 DSP56002
SRD STD SRD STD SRD STD
SERIAL SERIAL
IN out
i SCK SCK SCK —
SC2 |- SC2 fg— SC2 |a—i
DSP56002 DSP56002 DSP56002
SRD STD SRD STD SRD STD
SCK SCK SCK
SC2 |t SC2 | 8C2 QJ
DSP56002 DSP56002 DSP56002
SRD STD SRD STD SRD STD
SCK SCK i SCK
SC2 |t SC2 | SC2 fe—
SERIAL CLOCK
SERIAL SYNC

Figure 6-94 SSI TDM Serial/Parallel Processing Array

DSP56002 DSP56002 DSP56002
SRD STD SRD STD SRD STD
Sco SCK SCK SCK
SC1 sc2 sc2 sC2
<
<%
DSP56002 DSP56002 DSP56002
SRD S§TD u P> SRD STD
fewne] /
SCK SCK SCK
sc2 sc2 SC2
i
<
DSP56002 DSP56002 DSP56002
SRD S§TD SRD STD —» SRD STD
SCK SCK SCK
Sc2 SC2 SC2
SERIAL CLOCK
FRAME SYNC

Figure 6-95 SSI Parallel Processing — Nearest Neighbor Array

SERIAL SYNC

SERIAL CLOCK

SERIAL DATABUS

N

DSPS6002

STD

SRD

SCK

DSP56002

DSP56002

Figure 6-96 SSI TDM Bus DSP Network

DSP56002

WY |

MASTER TRANSMIT 7y L —Q—
MASTER RECEIVE ®
A A A
DSP56002 DSP56002 DSP56002 DSP56002
MASTER SLAVE 1 SLAVE 2 SLAVE 3
ST [— STD STD STD
SRD |- SRD |————— SRD |[wf————— SRD |-e—
SCK SCK [SCK [SCK [
sC2 SC2 |t SC2 |- SC2 |-t
SC1 SC1 |t SC1 |-ty SC1 |a—
SCO | SCO |-af— SCO |u— SCO |euttmy
MASTER CLOCK y ‘
MASTER SYNC y ® &
FLAG 1 Y ® ®
FLAG 0 v @ L y
NOTE: Flags can specify data types: control, address, and data.
Figure 6-97 SSI TDM Master-Slave DSP Network

SECTION 7

DSP56002 TIMER AND
EVENT COUNTER

7.1 INTRODUCTION

This section describes the timer/event counter module”. The timer can use internal or ex-
ternal clocking and can interrupt the processor after a number of events (clocks) specified
by a user program, or it can signal an external device after counting internal events.

The timer connects to the external world through the bidirectional TIO pin. When TIO is
used as input, the module is functioning as an external event counter or is measuring ex-
ternal pulse width/signal period. When TIO is used as output, the module is functioning as
a timer and TIO becomes the timer pulse. When the TIO pin is not used by the timer mod-
ule it can be used as a general purpose 1/0 (GPIO) pin.

Note: When the timer is disabled, the TIO pin becomes three-stated. To prevent undes-
ired spikes from occurring, the TIO pin should be pulled up or down when it is not
in use.

7.2 TIMER/EVENT COUNTER BLOCK DIAGRAM

Figure 7-1 shows a block diagram of the timer module. It includes a 24-bit read-write Tim-
er Control and Status Register (TCSR), a 24-bit read-write Timer Count Register (TCR),
a 24-bit counter, and logic for clock selection and interrupt generation.

GDB 24
24 24
[24-bit Timer Count
24-bit Timer Control/ :
Status Register (TCSR) [Register (TCR)
24
3
24-bit Counter
Clock select -4
CLKIZ? tTIO Y Timer interrupt

Figure 7-1 Timer/Event Counter Module Block Diagram

* The first version of the DSP56002 (mask number D41G) did not have the timer/event counter. Later versions of the DSP56002 which have
ditferent mask numbers do have the timer/event counter. This mask number can be found below the part number on each chip.

TIMER ENABLE
TIMER INTERRUPT ENABLE!

TIMER CONTROL/STATUS REGISTER (TCSR) INVERTER

ADDRESS X:$FFDE TIMER CONTROL BITS
READWRITE - : :
23 0

Do| b1 { DIR| Ts|GPio[Tc2| TC1[TCO] INV| TIE| TE
0] (1] @] ()] (O] ©] (@] (9)} (0] (0)) (O)

A A A | LGENERAL‘PURPOSEIO
TIMER STATUS

I 2R R AR E R R AR EZEE EE ER S K]

A

DIRECTION BIT
DATA INPUT
DATA OUTPUT
RESERVED

TIMER COUNT REGISTER (TCR)

ADDRESS X:$FFDF

READWRITE

23 0

* - reserved, read as zero, should be written with zero for future compatibility

Figure 7-2 Timer/Event Counter Programming Model

The DSP56002 views the timer as a memory-mapped peripheral occupying two 24-bit
words in the X data memory space, and may use it as a normal memory-mapped periph-
eral by using standard polled or interrupt programming techniques.The programming
model is shown in Figure 7-2. '

7.3 TIMER COUNT REGISTER (TCR)
The 24-bit read-write TCR contains the value (specified by the user program) to be loaded

_into the counter when the timer is enabled (TE=1), or when the counter has been decre-

mented to zero and a new event occurs. If the TCR is loaded with n, the counter will be
reloaded after (n+1) events.

If the timer is disabled (TE=0) and the user program writes to the TCR, the value is stored
there but will not be loaded into the counter until the timer becomes enabled. When the
timer is enabled (TE=1) and the user program writes to the TCR, the value is stored there
and will be loaded into the counter after the counter has been decremented to zero and a
new event occurs.

In Timer Modes 4 and 5, however, the TCR will be loaded with the current value of the
counter on the appropriate edge of the TIO input signal (rather than with a value specified

by the user program). The value loaded to the TCR represents the width or the period of
the signal coming in on the TIO pin, depending on the timer mode. See Sections 7.5.4
and 7.5.5 for detailed descriptions of Timer Modes 4 and 5.

7.4 TIMER CONTROL/STATUS REGISTER (TCSR)

The 24-bit read/write TCSR controls the timer and verifies its status. The TCSR can be
accessed by normal move instructions and by bit manipulation instructions. The control
and status bits are described in the following paragraphs.

7.41 Timer Enable (TE) Bit 0

The TE bit enables or disables the timer. Setting the TE bit (TE=1) will enable the timer,
and the counter will be loaded with the value contained in the TCR and will start decre-
menting at each incoming event. Clearing the TE bit will disable the timer. Hardware
RESET and software RESET (RESET instruction) clear TE.

7.4.2 Timer Interrupt Enable (TIE) Bit 1
The TIE bit enables the timer interrupts after the counter reaches zero and a new event
occurs. If TCR is loaded with n, an interrupt will occur after (n+1) events.

Setting TIE (TIE=1) will enable the interrupts.When the bitis cleared (TIE=0) the interrupts
are disabled. Hardware and software resets clear TIE.

7.4.3 Inverter (INV) Bit 2
The INV bit affects the polarity of the external signal coming in on the TIO input and the
polarity of the output pulse generated on the TIO output.

If TIO is programmed as an input and INV=0, the 0-to-1 transitions on the TIO input pin
will decrement the counter. If INV=1, the 1-to-0 transitions on the TIO input pin will decre-
ment the counter.

If TIO is programmed as output and INV=1, the pulse generated by the timer will be in-
verted before it goes to the TIO output pin. If INV=0, the pulse is unaffected.

In Timer Mode 4 (see Section 7.5.4 Timer Mode 4 (Pulse Width Measurement Mode})),
the INV bit determines whether the high pulse or the low pulse is measured to determine
input pulse width. In Timer Mode 5 (see Section 7.5.5 Timer Mode 5 (Period Measure-
ment Mode)), the INV bit determines whether the period is measured between leading or
trailing edges.

In GPIO mode, the INV bit determines whether the data read from or written to the TIO
pin shall be inverted (INV=1) or not (INV=0).

INV is cleared by hardware and software resets.

Note: Because of its affect on signal polarity, and on how GPIO data is read and written,
the status of the INV bit is crucial to the timer's function. Change it only when the
timer is disabled (TE=0).

7.4.4 Timer Control (TCO-TC2) Bits 3-5
The three TC bits control the source of the timer clock, the behavior of the TIO pin, and
the timer mode of operation. Table 7-1 summarizes the functionality of the TC bits.

A detailed description of the timer operating modes is given in Chapter 3.
The timer control bits are cleared by hardware RESET and software RESET (RESET instruction).

Note 1: If the clock is external, the counter will be decremented by the transitions on the
TIO pin. The DSP synchronizes the external clock to its own internal clock. The
external clock’s frequency should be lower than the maxumum mternal frequency
divided by 4 (CLK/4).

Note 2: The TC2-TCO bits should be changed only when TE=0 (timer disabled) to ensure
proper functionality.

Table 7-1 Timer/Event Counter Control Bits

TC2 TC1 TCO TIO CLOCK : MODE
0 0 0 GPIO* Internal Timer (Mode 0)
0 0 1 Output Internal Timer Pulse (Mode 1)
0 1 0 Output Internal Timer Toggle (Mode 2)
0 1 1 —] — Reserved - Do Not Use
1 0 0 Input Internal Input Width (Mode 4)
1 0 1 Input Internal Input Period (Mode 5)
1 1 0 Input External Standard Time Counter (Mode 6)
1 1 1 Input External Event Counter (Mode 7)

* - the GPIO function is enabled only if TC2-TCO are all 0 (zero) and the GPIO bit is set.

7.4.5 General Purpose I/O (GPIO) Bit 6

If the GPIO bit is set (GPIO=1) and if TC2-TCO are all zeros, the TIO pin operates as a
general purpose /O pin, whose direction is determined by the DIR bit. If GPIO=0 the gen-
eral purpose /O function is disabled. GPIO is cleared by hardware and software resets.

Note: The case where TC2-TCO are not all zero and GPIO=1 is undefined and should not
be used

7.4.6 Timer Status (TS) Bit 7
When the TS bit is set, it indicates that the counter has been decremented to zero.

The TS bit is cleared when the TCSR is read. The bit is also cleared when the timer interrupt
is serviced (timer interrupt acknowledge). TS is cleared by hardware and software resets.

7.4.7 Direction (DIR) Bit 8

The DIR bit determines the behavior of the TIO pin when TIO acts as general purpose 1/0.
When DIR=0, the TIO pin acts as an input. When DIR=1, the TIO pin acts as an output.
DIR is cleared by hardware and software resets.

Note: The TIO pincanactasa general purpose I/O pln only when TCZ-TCO are all zero
and the GPIO bit is set. If one of TC2, TC1 or TCO is not 0, the GPIO function is
disabled and the DIR bit has no effect

7.4.8 Data Input (DI) Bit 9

When the TIO pin acts as a general purpose I/O input pin (TC2-TCO are all zero and
DIR=0), the contents of the DI bit will reflect the value the TIO pin. However, if the INV bit
is set, the data in DI will be inverted. When GPIO mode is disabled or it is enabled in out-
put mode (DIR=1), the DI bit reflects the value-of the TIO pin, ‘again depending on the
status of the INV bit. DI is set by hardware and software resets.

7.4.9 Data Output (DO) Bit 10

When the TIO pin acts as a general purpose 1/O output pin (TC2-TCO are all zero and
DIR=1), writing to the DO bit writes the data to the TIO pin. However, if the INV bit is set,
the data written to the TIO pin will be inverted. When GPIO mode is disabled, writing to
the DO bit will have no effect. DO is cleared by hardware and software resets.

7.4.10 TCSR Reserved bits (Bits 11-23) ‘
These reserved bits are read as zero and should be written with zero for future compatibility.

7.5 TIMER/EVENT COUNTER MODES OF OPERATION

This section gives the details of each of the timer modes of operation. Table 7-1 on page
7-6 summarizes the items which determine the timer mode, including the configuration of
the timer control bits, the function of the TIO pin, and the clock source.

7.5.1 Timer Mode 0 (Standard Timer Mode, Internal Clock, No Timer Output)
Timer Mode 0 is defined by TCSR bits TC2-TCO0 equal to 000.

With the timer enabled (TE=1), the counter is loaded with the value contained by the TCR. The
counter is decremented by a clock derived from the internal DSP clock, divided by two (CLK/2).

During the clock cycle following the point where the counter reaches 0, the TS bitis set and the
timer generates an interrupt. The counter is reloaded with the value contained by the TCR, and
the entire process is repeated until the timer is disabled (TE=0). Figure 7-3 illustrates Mode 0
with the timer enabled. Figure 7-4 illustrates the events with the timer disabled.

Note: It is recommended that the GPIO input function of Mode 0 only be activated with
the timer disabled. If the processor attempts to read the DI bit to determine the
GPIO pin direction, it must read the entire TCSR register, which would clear the TS
bit and, thus, clear a pending timer interrupt.

7.5.2 Timer Mode 1 (Standard Timer Mode, Internal Clock, Output Pulse Enabled)
Timer Mode 1 is defined by TC2-TCO equal to 001.

With the timer enabled (TE=1), the counter is loaded with the value contained by the TCR. The
counter is decremented by a clock derived from the DSP’s intemal clock, divided by two (CLK/2).

Write Preload (N) First Event : Last Event

I R o

TE

Clock (CLK/2) _I_ ______________
TCR >< N
Counter)< w 0 ><N

TS

Interrupt

Figure 7-3 Standard Timer Mode (Mode 0)

- Stop Counting Preload (N) First Event

¢ vy

TE

Clock (CLK/2) : | _________________ ___I_ |

Tcr N
Counter >< N-k Nk N-k-1 N N-1

TS

Interrupt

Figure 7-4 Timer/Event Counter Disable

During the clock cycle following the point where the counter reaches 0, the TS bit is set and
the timer generates an interrupt. A pulse with a two clock cycle width and whose polarity is
determined by the INV bit, will be put out on the TIO pin. The counter is reloaded with the
value contained by the TCR. The entire process is repeated until the timer is disabled
(TE=0). Figure 7-5 illustrates Timer Mode 1 when INV=0, and Figure 7-6 illustrates Timer
Mode 1 when INV=1.

7.5.3 Timer Mode 2 (Standard Timer Mode, Internal Clock, Output Toggle Enabled)
Timer Mode 2 is defined by TC2-TCO0 equal to 010.

With the timer enabled (TE=1), the counter is loaded with the value contained by the TCR. The
counter is decremented by a clock derived from the DSP’s intemnal clock, divided by two (CLK/2).
During the clock cycle following the point where the counter reaches 0, the TS bitin TCSR is set
and, if the TIE is set, an interrupt is generated.The counter is reloaded with the value contained
by the TCR and the entire process is repeated until the timer is disabled (TE=0). Each time the
counter reaches 0, the TIO output pin will be toggled. The INV bit determines the polarity of the
TIO output. Figure 7-7 illustrates Timer Mode 2.

Write Preload (N} First Event Last Event New Event

vy

TE

Clock (CLK/2) \ |
TCD< N

Interrupt

2xCLK

TIO—\ '

Figure 7-5 Standard Timer Mode, Internal Clock, Output Pulse Enabled (INV=0) '

7.5.4 Timer Mode 4 (Pulse Width Measurement Mode)
Timer Mode 4 is defined by TC2-TCO equal 100.

In this mode, TIO acts as a gating signal for the DSP’s internal clock. With the timer en-
abled (TE=1), the counter is driven by a clock derived from the DSP’s internal clock divided
by two (CLK/2). The counter is loaded with 0 by the first transition occurring on the TIO
input pin and starts incrementing. When the first edge of opposite polarity occurs on TIO,
the counter stops, the TS bit in TCSR is set and, if TIE is set, an interrupt is generated.

Write Preload (N) First Event Last Event New Event

L

TE

Clock (CLK/2) I I
TCFE:>< N

Interrupt

2xCLK

TIO / —»] [«—

Figure 7-6 Standard Timer Mode, Internal Clock, Output Pulse Enabled (INVV=1)

The contents of the counter is loaded into the TCR. The user’s program can read the TCR,
which now represents the widths of the TIO pulse. The process is repeated until the timer
is disabled (TE=0).The INV bit determines whether the counting is enabled when TIO is
high (INV=0) or when TIO is low (INV=1). Figure 7-8 illustrates Timer Mode 4 when INV=0
and Figure 7-9 illustrates Timer Mode 4 with INV=1.

7.5.5 Timer Mode 5 (Period Measurement Mode)
Timer Mode 5 is defined by TC2-TCO equal 101.

In Timer Mode 5, the counter is driven by a clock derived from the DSP’s internal clock
divided by 2 (CLK/2). With the timer enabled (TE=1), the counter is loaded with the value
contained by the TCR and starts incrementing. On each transition of the same polarity
that occurs on TIO, the TS bitin TCSR is set and, if TIE is set, an interrupt is generated.

Last Event First Event Last Event New Event

¢ # I

TE

Clock (CLK/2) —|_ B ____L) _—l_

TCR N

Counter (>< N >@I o 0 N-1

Interrupt

TIO

Figure 7-7 Standard Timer Mode, Internal Clock, Output Toggle Enable

The contents of the counter is loaded in the TCR. The user's program can read the TCR
and subtract consecutive values of the counter to determine the distance between TIO
edges. The counter is not stopped and it continues to increment. The INV bit determines
whether the period is measured between 0-to-1 transitions of TIO (INV=0), or between
1-to-0 transitions of TIO (INV=1). Figure 7-10 illustrates Timer Mode 5 when INV=0, and
Figure 7-11 illustrates this mode with INV=1.

7.5.6 Timer Mode 6 (Standard Time Counter Mode, External Clock)
Time Mode 6 is defined by TC2-TCO equal 110.

With the timer enabled (TE=1) the counter is loaded with the 1’s complement of the value
.contained by the TCR. The counter is incremented by the transitions on the incoming sig-
nal on the TIO input pin. After each increment, the counter value is loaded into the TCR.

Start Event Stop Event Start Event

' ' ¢

TE

Clock —L _’_
Counter >< 0 >< 1 o N-1 N >< 0

Interrupt

TIO

Figure 7-8 Pulse Width Measurement Mode (INV=0)

Thus, reading the TCR will give the value of the counter at any given moment. At the tran-
sition following the point where the counter reaches 0, the TS bit in TCSR is set and, if
the TIE is set, an interrupt is generated.The counter will wrap around and the process is
repeated until the timer is disabled (TE=0). The INV bit determines whether 0-to-1 tran-
sitions (INV=0) or 1-to-0 transitions (INV=1) will increment the counter. Figure 7-12
illustrates Timer Mode 6 when INV=0. Figure 7-13 illustrates Timer Mode 7 when INV=1.

Start Event ‘ Stop Event Start Event

|]

TE

Clock —L f
TCR XXX ‘ : ><N

Interrupt

TIO

‘Figure 7-9 Pulse Width Measurement Mode (INV=1)

7.5.7 Timer Mode 7 (Standard Timer Mode, External Clock)
Timer Mode 7 is defined by TC2-TCO equal 111.

With the timer enabled (TE=1), the counter is loaded with the value contained by the TCR.
The counter is decremented by the transitions of the signal coming in on the TIO input pin.
At the transition that occurs after the counter has reached 0, the TS bitin TCSR is set and,
if the TIE is set, the timer generates an interrupt. The counter is reloaded with the value
contained by the TCR, and the entire process is repeated until the timer is disabled
(TE=0). The INV bit determines whether 0-to-1 transitions (INV=0) or 1-to-0 transitions
(INV=1) will decrement the counter. Figure 7-14 illustrates Timer Mode 7 when INV=0,
and Figure 7-15 illustrates Timer Mode 7 when INV=1.

Periodic Event (First Event) Periodic Event

' !

TE

ook] B

TCR N ><N+1 XM
Counter Net N N+2 @<M ><M+1 >@+2><

Interrupt

TIO

Figure 7-10 Period Measurement Mode (INV=0)

7.6 TIMER/EVENT COUNTER BEHAVIOR DURING WAIT and STOP

During the execution of the WAIT instruction, the timer clocks are active and the timer ac-
tivity continues undisturbed. If the timer interrupt is enabled when the final event occurs,
an interrupt will be generated and serviced. '

It is recommended that the timer be disabled before executing the STOP instruction be-
cause during the execution of the STOP instruction, the timer clocks are disabled and the
timer activity will be stopped. If, for example,.the TIO pin is used as mput the changes
that occur while in STOP will be ignored.

Periodic Event (First Event) Periodic Event

i R

LI

Gtock _ L] T

X XX X KEXFN

Interrupt

TIO

Figure 7-11 Period Measurement Mode (INV=1)

7.7 OPERATING CONSIDERATIONS
The value 0 for the Timer Count Register (TCR) is considered a boundary case and af-
fects the behavior of the timer under the following conditions:

¢ If the TCR is loaded with 0, and the counter contained a non-zero value before the
TCR was loaded, then after the timer is enabled, it will count 224 events generate an
interrupt, and then generate an interrupt for every new event.

¢ |f the TCR is loaded with 0, and the counter contained a zero value prior to loading,
then after the timer is enabled, it will generate an interrupt for every event.

¢ |f the TCR is loaded with 0 after the timer has been enabled, the timer will be loaded
with 0 when the current count is completed and then generate an interrupt for every
new event.

Wirite Preload (N) First Event Last Event

' ooy

TE

TIO (Event)

TCR >(N | ><N+1 F FF><0
Counter ' >< N >< N+t1 ~~~~~ FF 0

Interrupt

Figure 7-12 Standard Time Counter Mode, External Clock (INV=0)

7.8 SOFTWARE EXAMPLES

7.8. 1 General Purpose I/O Input -
The following routine can be used to read the TIO mput pin:

-.MOVEP #$000040,X:TCSR ;clear TC2-TCO, set GPIO
oo ;and clear INV for GPIO input here
JSET #DI,X:TCSR,here

;spin here until TIO is set

Write Preload (N)

|

Last Event

'

First Event

:

TE
TIO (Event)

>< N ><N+1 FFFRY0
TCR :
Counter >C\I >@-1 ‘ lFFF 0
Interrupt

Figure 7-13 Standard Timer Mode, External Clock (INV=1)

7.8.2 General Purpose I/O Output
The following routine can be used to write the TIO output pin:

MOVEP #$000140,X:TCSR ;clear TC2-TCO, set GPIO and
;set DIR for GPIO output, set TIO to 0

BSET #DO,X:TCSR ;set TIO to 1
NOP
NOP
BCLR #DO,X:TCSR ;setTIOto 0

This routine generates a pulse on the TIO pin with the duration equal to 8 CLK (assuming
no wait states, no external bus conflict, etc.)

Write Preload (N) First Event Last Event

' oy i

TE

TIO (Event)

Counter >< N >@1 ~~~~ 0 >< N

Interrupt

Figure 7-14 Standard Timer Mode, External Clock (INV=0)

7.8.3 Timer Mode 0, Input Clock, GPIO Output, and No Timer Output

The following program illustrates the standard timer mode with simultaneous GPIO. The
timer is used to activate an internal task after 65536 clocks; at the end of the task the TIO
pin is toggled to signal end of task.

ORG P:$3C ;this is timer interrupt vector address
JSR TASK ;go and execute task (long interrupt)
ORG P:MAIN_BODY
MOVEP #$000042,X:TCSR ;enable timer interrupts and enable GPIO

; (input!) and set DO =0 to have stable data
BSET #DIRX:TCSR ;change DIR to output (clean 0, no spikes)
MOVEP #$00FFFF . X:TCR ;load 64k -1 into the counter

BSET #IPL,X:IPR ;enable IPL for timer
ANDI #$CF,MR ;remove interrupt masking in status register
BSET #TE,X:TCSR ; timer enable

Write Preload (N) First Event Last Event

' ' '

TE

TIO (Event)

TCR >< N
Counter >< N ><E—1 ‘‘‘‘‘ 0 >< N

Interrupt

Figure 7-15 Standard Timer Mode, External Clock (INV=1)

; task instructions

;Hd_of_task ,
BSET #DO,X:TCSR ;set TIO to signal end of task
BCLR #DO,X:TCSR = ;clearTIO
RTI ;return to main program

7.8.4 Pulse Width Measurement Mode (Timer Mode 4)

The following program illustrates the usage of the timer module for input pulse width
measurement. The width is measured in this example for the low active period of the
input pulse on the TIO pin and is stored in a table (in multiples of the chip operating clock
divided by 2).

ORG X:$100 ;define buffer in X memory internal
pulse_width DS $100 ;measure up to 256 pulses

ORG P:$3C ;this is timer interrupt vector address

MOVEP X:TCR,X:(r0)+ ;store width value in table

NOP ;second word of the short interrupt

ORG P:MAIN_BODY

MOVE #PULSE_WIDTH,r0 ;r0 points to start of table

MOVE #$FF,M0 ;modulo 100 to wrap around on end of table

MOVEP #$000026,X:TCSR ;enable timer interrupts, mode 4 and set INV
;to measure the low active pulse

BSET #IPLX:IIPR ;enable IPL for timer
ANDI #$CF MR ;:remove interrupt masking in status register
BSET #TE,X:TCSR ;timer enable

7.8.5

Period Measurement Mode (Timer Mode 5)

The following program illustrates the usage of the timer module for input period measure-
ment. The period is measured in this example between 0 to 1 transitions of the input signal
on TIO and is stored in a table (in multiples of the chip operating clock divided by 2).

period
temp

measure

ORG X:$100 ;define buffer in X memory internal
DS $100 ;measure up to 256 pulses

DS $1 ;temporary storage

ORG P:$3C ;this is timer interrupt vector address
JSR MEASURE ;long interrupt to measure period

ORG P:MAIN_BODY

MOVE #0,X:TEMP ;clear temporary storage

MOVE #PERIOD,r0 ;r0 points to start of table

MOVE #$FF,M0 ;modulo 100 to wrap around on end of table
MOVEP #$00002A,X:TCSR ;enable timer interrupts, mode 5

BSET #IPL,X:IPR ;enable IPL for timer

ANDI #3CF,MR ;remove interrupt masking in status register
BSET #TEX:TCSR ;timer enable

MOVEP X:TCR,A ;read new counter value

MOVE X:TEMP,XO0 ;retrieve former read value (initially zero)

SUB X0,A AXTEMP ;compute delta (i.e. new -old) and store the
;new read value in temp

MOVE AX:(RO)+ ;store period value in table

RTI

APPENDIX A

BOOTSTRAP CODE
(OPERATING MODES 1, 5, AND 6)

Al INTRODUCTION

This section presents the Bootstrap program contained in the DSP56002 64-word Boot
ROM. This program can load the internal program RAM starting at P:$0 from an external
EPROM or the Host Interface, and may load any program RAM segment from the SCI
serial interface.

If MC:MB:MA=001, the program loads the internal program RAM from 1,536 consecutive
byte-wide P memory locations, starting at P:$C000 (bits 7-0). These will be packed into
512 24-bit words and stored in contiguous program RAM memory locations starting at
P:$0. After assembling one 24-bit word, the bootstrap program stores the result in inter-
nal program RAM memory. Note that the routine loads data starting with the least signifi-
cant byte of P:$0.

If MC:MB:MA=10x, the program loads internal program RAM from the Host Interface, start-
ing at P:$0. If only a portion of the P memory is to be loaded, the Host Interface bootstrap
load program may be stopped by setting Host Flag 0 (HFO0). This will terminate the boot-
strap loading operation and start executing the loaded program at location P:$0 of the
internal program RAM.

If MC:MB:MA=11x, the program loads program RAM from the SCI interface. The number
of program words to be loaded and the starting address must be specified. The SCI boot-
strap code expects to receive 3 bytes specifying the number of program words, 3 bytes
specifying the address in internal program RAM to start loading the program words and
then 3 bytes for each program word to be loaded. The number of words, the starting
address and the program words are received least significant byte first followed by the
mid and then by the most significant byte. After receiving the program words, program
execution starts at the same address where loading started. The SCI is programmed to
work in asynchronous mode with 8 data bits, 1 stop bit and no parity. The clock source is
external and the clock frequency must be 16x the baud rate. After each byte is received,
it is echoed back through the SCI transmitter.

The bootstrap program listing is shown in Figure A-1.

; BOOTSTRAP CODE FOR DSP56002 - (C) Copyright 1990 Motorola Inc.
; Revised October 24, 1990.

; Bootstrap through the Host Interface, External EPROM or SCI.

BOOT EQU $C000 ; this is the location in P memory
' ; on the external memory bus
; where the external byte-wide
; EPROM would be located

PBC EQU $FFEO ; Port B Control Register
HSR EQU $FFE9 ; Host Status Register
HRX EQU $FFEB ; Host Receive Register
PCC EQU $FFE1 ; Port C Control Register
SCR EQU $FFFO ; SCI Control Register
SSR EQU $FFF1 ; SCI Status Register
SCCR EQU $FFF2 ; SCI Clock Control Register
SRXL EQU $FFF4 ; SCI Receive Register Low
STXL EQU $FFF4 ; SCI Transmit Register Low
ORG PL:$0,PL:$0 ; bootstrap code starts at $0
START MOVE #<0,R0 ; default P address where prog
; will begin loading
JCLR #4,0MR,EPROMLD " If MC:MB:MA=0xx, go load from EPROM

JSET #1,0MR,SCILD ; If MC:MB:MA=11x, go load from SCI

; This routine loads from the Host Interface.
; MC:MB:MA=100 - reserved
; MC:MB:MA=101 - Host

HOSTLD BSET #0,X:PBC ; Configure Port B as Host
DO #512,_LOOP3 ; Load 512 instruction words
_LBLA JCLR #3,X:HSR,_LBLB ; if HFO=1, stop loading data.
ENDDO ; Must terminate the do loop
JMP < LOOP3
_LBLB JCLR #0,X:HSR,_LBLA ; Wait for HRDF to go high
; (meaning data is present).
MOVEP X:HRX,P:(R0)+ ; Store 24-bit data in P mem.
_LOOP3 ; and go get another 24-bit word.
JMP <FINISH ; finish bootstrap

Figure A-1 DSP56002 Bootstrap Program (Sheet 1 of 3)

; This routine loads from external EPROM.

; MC:MB:MA=001
EPROMLD MOVE #BOOT,R1 ; R1 = Ext address of EPROM
DO #512,_LOOP1 ; Load 512 instruction words
DO #3,_LLOOP2 ; Each instruction has 3 bytes
MOVEM P:(R1)+A2 ; Get the 8 LSB from ext. P mem.
REP #8 ; Shift 8 bit data into A1
ASR A
_LOOP2 ; Get another byte.
MOVEM A1,P:(RO)+ ; Store 24-bit result in P mem.
_LOOP1 ; and go get another 24-bit word.
FINISH MOVE #<0,R1
JMP <BOOTEND ; finish bootstrap
; This routine loads from the SCI.
; MC:MB:MA=110 - external SCI clock
; MC:MB:MA=111 - reserved
SCILD MOVEP #$0302,X:SCR ; Configure SCI Control Reg
JMP <EXTC ; go to next boot rom segment
NOP ; just to fill the last space
ORG PL:$100,PL:$100 ; starting address of 2nd 32-word bootstrap ROM
EXTC MOVEP #$C000,X:SCCR ; Configure SCI Clock Control Reg
MOVEP #7,X:PCC ; Configure SCLK, TXD and RXD
_SCi1 DO #6,_LOOP6 ; get 3 bytes for number of
; program words and 3 bytes
; for the starting address
JCLR #2,X:SSR,” ; Wait for RDRF to go high
MOVEP X:SRXL,A2 ; Put 8 bits in A2
JCLR #1,X:SSR,* ; Wait for TDRE to go high
MOVEP A2,X:STXL ; echo the received byte
REP #8
ASR A
_LOOP6
MOVE A1,RO ; starting address for load
MOVE A1,R1 ; save starting address
DO A0,_LOOP4 ; Receive program words
DO #3,_LOOP5
JCLR #2,X:SSR,” ; Wait for RDRF to go high
MOVEP X:SRXL,A2 ; Put 8 bits in A2
JCLR #1,X:SSR,” ; Wait for TDRE to go high
MOVEP A2X:STXL ; echo the received byte
REP #8
ASR A
_LOOP5
MOVEM A1,P:(RO)+ ; Store 24-bit result in P mem.
_Loor4

Figure A-1 DSP56002 Bootstrap Program (Sheet 2 of 3)

; This is the exit handler that returns execution to normal
; expanded mode and jumps to the RESET vector.

BOOTEND ANDI #$EC,OMR ; Set operating mode to 0
; (and trigger an exit from
; bootstrap mode).

ANDI #$0,CCR) ; Clear CCR as if RESET to 0.
; Delay needed for Op. Mode change
JMP (R1) ; Then go to starting Prog addr. -

; End of bootstrap code. Number of program words: 64

Figure A-1 DSP56002 Bootstrap Program (Sheet 3 of 3)

APPENDIX B

PROGRAMMING SHEETS

The following pages are a set of programming sheets intended to simplify programming the various
DSP56002 programmable registers. The registers are grouped between the central processing module
and each peripheral. Each register includes the name, address, reset value, and meaning of each bit. The
sheets provide room to write the value for each bit and the hexadecimal equivalent for each register.

[PERIPHERAL ADDRESSES

[INTERRUPT VECTOR ADDRESSES]

Interrupt
Starting

Address IPL

Interrupt Source

$0000
$0002
$0004
$0006
$0008
$000A
$000C
$000E
$0010
$0012
$0014
$0016
$0018
$001A
$001C
$001E
$0020
$0022
$0024
$0026

3
3
3
3
0-2
0-2
0-2
0-2

Hardware RESET
Stack Error
Trace
SWi
TRQA
TRGB
SSI Receive Data
SSI Receive Data with Exception Status
SSI Transmit Data
SSI Transmit Data with Exception Status
SCI Receive Data
SCI Receive Data with Exception Status
SCI Transmit Data
SCl Idle Line
SCI Timer
NMI
Host Receive Data
Host Transmit Data
Host Command (default)
Available for Host Command
[]
L]
[]
Available for Host Command
Timer
lllegal Instruction
Available for Host Command

[]
Available for Host Command

INSTRUCTIONS|

Parallel Moves

Instruction Osc.

Program
Words

Clock
Cycles

SLEUNZVC

[wlolelvlv)

DBDNNO

gocg
=]

x
A
I
2
v

#n,Y:<pp>
#n,Y:<ea>
#n,D
#n,X:<aa>
#n,X:<pp>
#n,X:<ea>
#n,Y:<aa>
#n,Y:<pp>
#n,Y:<ea>
#n,D
#n,X:<aa>
#n,X:<pp>
#n,X:<ea>
#n,Y:<aa>
#n,Y:<pp>
#n,Y:<ea>
#n,D
#n,X:<aa>
#n,X:<pp>
#n,X:<ea>
#n,Y:<aa>
#n,Y:<pp>
#n,Y:<ea>
#n,D

D

S$1,82
S$1,82

D
S,D

(parallel move
parallel move
parallel move
parallel move

iparallel move
parallel move

(parallel move
(parallel move

parallel move

(parallel move
parallel move

2+mv
2+mv
2+mv
2+mv
2+mv
2+mv
2
2+mv
2+mv
4+mvb

LR R
* ok Kk k ok kR
LR R R
*EE KK EOR

LRI N

*+..290-

*®k * x KOO

LRI AR N Y]

299922277

2?77?7277

I EEREEEE]

LR R EEE]

INSTRUCTIONS

Mnemonic Syntax Parallel Moves Instruction Osc.
Program Clock
Words Cycles

DO X:<ea>,expr .. 2 6+mv
X:<aa>,expr
Y:<ea>,expr
Y:<aa>,expr
#xxx,expr
S,expr

S,D

D

XXX

#n,X:<ea>,Xxxx

#n,X:<aa>,Xxxx

#n,X:<pp>,XXXX

#n,Y:<ea> xxxx

#n,Y:<aa> xxxx

#n,Y:<pp>,XXXX

#n,S,xxxx

XXXX

ea

XXXX

ea

#n,X:<ea>,xxxx

#n,X:<aa> Xxxx

#n,X:<pp> XXXX

#n,Y:<ea>,xxxx

#n,Y:<aa>,xxxx

#n,Y:<pp>,XXXx

#n,S,XXXX

#n,X:<ea>,xxxx

#n,X:<aa>xXxxx

#n,X:<pp>,XXXX

#n,Y:<ea>,XxXxx

#n,Y:<aa>,xxxx

#n,Y:<pp>,xxxx

#n,S,XxxX

XXX . cee.. . 14e2
ea
#n,X:<ea>,Xxxx
#n,X:<aa> XxXxx
#n,X:<pp>,XxXxx
#n,Y:<ea>,xxxx
#n,Y:<aa>Xxxx
#n,Y:<pp>,XXXX
#n,S,XxXXX

D (parallel move *r. - 2207
parallel move)1+mv

(

(parallel move)1+mv A
parallel move)

no parallel move)

INSTRUCTIONS|

Mnemonic Syntax Parallel Moves Instruction Osc.
Program Clock
Words Cycles SLEUNZVC

MACR (+)S2,51,D (parallel move 1+mv 2+mv TERAEEY.
$¢ S$1,82,D (parallel move
+)S,#n,D (no parallel move) 2
MOVE S,D 2+mv
No parallel data move mv
Immediate short mv
data move
Register to register > mv
data move
Address register update mv
X memory data move : mv

X memory and register
data move

Y memory data move

Register and Y memory Y:<ea>,D2 . mv
data move S S2,Y:<ea>
#xxxxxx,D2
AY:<ea>
B,Y:<ea>
Long memory data move

XY memory data move 2 : . Y:<eay>,D2. mv
X:<eax>,D1 S2,Y:<eay>
S1,X:<eax> Y:<eay>,D2
S1,X:<eax> S2,Y:<eay>
MOVE(C) X:<ea>,D1 g
X:<aa>,D1
S1,X:<ea>
S1,X:<aa>
Y:<ea>,D1
Y:<aa>,D1
S1,Y.<ea>
S1,Y:<aa>

S$1,D2

S2,D1
#xxxx,D1

#xx,D1

1+ea 2+mvc ?2??72227??

NSTRUCTIONS

Mnemonic Syntax Parallel Moves Instruction Osc.

Program Clock
Words Cycles SLEUNZVC

MOVE(M)

MOVE(P)

P:<ea>,D 2+mvm ?2?2?22?27?7?

S,P:<ea> :

S,P:<aa>

P:<aa>,D

X:<pp>,D . . 2+mvp ?2??27777?

X:<pp>,X:<ea>

X:<pp>,Y:<ea>

X:<pp>,P:<ea>

S, X:<pp>

#XXXXXX, X:<pp>

X:<ea>,X:<pp>

Y:<ea>,X:<pp>

P:<ea>,X:<pp>

Y:<pp>,D

Y:<pp>,X:<ea>

Y:<pp>,Y:<ea>

Y:<pp>,P:<ea>

S,Y:<pp>

Hxxxxxx,Y:<pp>

X:<ea>,Y:<pp>

Y:<ea>,Y:<pp>

P:<ea>,Y:<pp>
parallel move) . ..
parallel move)

(no parallel move)
parallel move) . ..
parallel move
no parallel move). . .
parallel move)

(parallel move)
(parallel move)

[INSTRUCTIONS]

Instruction Set Summary —Sheet 50f5

Parallel Moves Instruction Osc.

Program Clock
Words Cycles SLEUNZVC
.................... 4 ceeaccaa
RND D (parallel move) 1+mv 2+mv AR R E N
ROL D (parallel move) 1+mv 2+mv **--270?
ROR . D (parallel move) 1+mv 2+mv *r--27207?
RTI e 1 4+1x ?2?22272727?
RTS e 1 441X m e m e e
SBC S,D (parallelmove)1+4mv 2+my *rr R e
STOP e 1 nfa @ --ee----
sSuB S,D parallel move) 1+mv 2+mv A
SuBL S,D parallel move) 1+my 24my o
SUBR S.D parallel move) 1+my 24my r R R res
SWI e 1 8 cemmme--
Tce S1,D1 e 1 2 eeee---

S1,D1 82,D2

TFR S, (parallel move) 1+mv 2+mv L
TST S (parallel move) 1+mv 2+mv FrEEwrQ

NOTATION:

- denotes the bit is unaffected by the operation.

* denotes the bit may be set according to the definition,
depending on parallel move conditions.

? denotes the bit is set according to a special definition.
See the instruction descriptions in Appendix A of the
DSP56000 Family Manual (DSP56KFAMUM/AD).

0 denotes the bit is cleared.

Application: ' Date:
Programmer:

Sheet 1 of 3

15 14 13 12
Status Register (SR) LF]OM[T [%
Read/Write) 0
Reset = $0300

Port A

Bus Control Register
(BCR)

X:$FFFE Read/Write

EXTERNAL EXTERNAL EXTERNAL EXTERNAL
X MEMORY Y MEMORY P MEMORY V0 MEMORY

ENTRAL PROCESSO

Interrupt Priority
Register (IPR)

X:$FFFF Read/Write

Reset = $000000 -

23 22 21 20 19 18 17 16 15 14 13 12

11 10

* | %] %] %% | % | % | % [SCLscLossLisSsLo
0o/0/0/0|0[0]|0]0

HPL1JHPLO|

$0

€40 2198y

JlowwesBbold

:uoneoyddy

eeqg

uoneo|ddy

aeq

Operating Mode ' 1:8 1:3 v * *
Register (OMR) 0

Read/Write

Reset = $000000

1swwelbold

‘£jo0evdysg

ck Source Bit (CKOS)

23 22 21 20

19 18 17 16

15 14 13 12

PLL Control % [oros
Register (PCTL) 0

XTLD

DF3 | DF2 | DF1 | DFo

X:$FFFD Read/Write
Reset = $0X0000

} 0 | 193ys

Jlswwesbold

:uoneolddy

|leq

Application:

Date:

Port B

Control Register (PBC)
X:$FFEO Read/Write
Reset = $000000

Port B
Data Direction

Register (PBDDR)
X:$FFE2 Read/Write
Reset = $000000

Port B

Data Register (PBD)
X:$FFE4 Read/Write
Reset = $000000

Programmer:

Sheet 1 of 2

23 ***15 14 13 12

11 10 9 8

*
0

BD14

BD13

BD12

BODt1

BD10

BDY

BDS

PB13

PB12

Application:

Date:

Programmer:

Sheet 2 of 2

. PortC

. Control Register (PCC)
. X:$FFE1 Read/Write
Reset = $000000

PortC

Data Direction
Register (PCDDR)
X:$FFE3 Read/Write
Reset = $000000

PortC

Data Register (PCD)
X:$FFES Read/Write
Reset = $000000

rt C Pin Control
-0 = General Purpo.
Peripheral Pi

Application: Date:
Programmer:

Sheet 1 0f 5

Port B

Control Register (PBC)
X:$FFEO Read/Write
Reset = $000000

32 1 0
Host Control Register (HCR) HCIE[HTIE
X:$FFE8 Read/Write
Reset = $00

Application: Date:

Programmer:

Sheet2 of 5

Host Receive Data Full
O T Wait: 1]'I Head .

Host Status Register (HSR)
X:$FFE9 Read Only
Reset = $000002

:$FFEB Read Only

RECEIVE MIDDL| RECEIVE

RANSMIT

Application: Date:

Programmer:

Sheet 3 of 5

Interrupt Control Register (ICR)
$0 Read/Write
Reset = $00

Command Vector Register (CVR)
$1 Read/Write :
Reset = $12

Application: Date:

Programmer:

Sheet4of5

PROCESSOR SIDE

| 5 32 1

. Interrupt Status Register (ISR) FREQ[OMA] % | AF3 | HF2 [TROY|TXDE]RXDF]
~ $2 Read/Write 0

. Reset = $06

Interrupt Vector Register (IVR)
$3 Read/Write
Reset = $0F

Byte Reg
$7, $6, $5, $4 Read Only
. Reset = $00

|
RECEIVE HIGH BYTE

g
7, $6, $5, $4 Write Only
Reset = $00

TRANSMIT MIDDLE BYTE

TRANSMIT HIGH BYTE

Flior USED i

§jo Gieays

Jswwesboid

:uoneo)ddy

:8jeQ

Application:

Date:

Programmer:

Port C

Control Register (PCC)
X:$FFE1 Read/Write
Reset = $000000

SCl Control Register 6

(SCR)
Address X:$FFF0
Read/Write

Sheet 1 of 3

?on C P,fn Couifql'r Wi
- 0= General Purp

ose 1/0 Pin

|21 =PeripheralPin =

STIR

WAKH

SBK

]
SSFTO

Application: Date:

Programmer:

Sheet2 of 3

g) 3 2
Address X:$FFF1 RDRA
Read Only
Reset = $000003

SCI Clock Control ' 23 **°*15 14 13 12|11 10 9 8
Register (SCCR) [][TCMRCM] sCP]cOD|CD11]CD10] CDY | CDE
Address X:$FFF2
Read/Write

Reset = $000000

Application: Date:

Programmer:
Sheet 3 of 3

SCI Transmit Data Registers
Address X:$FFF4 —- X:$FFF6 Read/Write
Reset = xxxxxx

NOTE: STX is the same register decoded at three different addresses.

SCI Receive Data Registers
Address X:$FFF4 - X:$FFF6 Read/Write
Reset = xxxxxx

NOTE: SRX is the same register decoded at three different addresses

Application:

Port C

Control Register (PCC)
X:$FFE1 Read/Write
Reset = $0000

SSI

Control Register A (CRA)
X:$FFEC Read/Write
Reset = $000000

Date:

Programmer:

Sheet 1 of 3

Application: Date:

Programmer:
Sheet2 of 3

ial Control Direction Bits
CDx=0

FSLO [SHFD|SCKD|SCD2[SCD1

Application: Date:

Programmer:
Sheet 3 of 3

SSI Status Register (SSISR)
X:$FFEE (Read)
Reset = $000040

Application: Date:

Sheet 1 of 1

. TlMER N t version of thé DSP56002 (mask number D41G) did not havethe 'timer/q'?
: event counter. Later versions of the DSP56002 which have different mask numbers

do have the timer/event counter. This mask number can be found below the part
number on each chip.

Timer Interrupt Enable B
Intarrupts Disabled

Timer Control and
Status Register (TCSR)
X:$FFDE (Read/Write)
Reset = $000200

23 |

Timer Count Register (TCR)
X:$FFDF (Read/Write)

Unaffected by Reset

DSP56002 User’s Manual Trouble Report
DSP Applications Fax Number — (512) 891-4665
Dr. BuB Bulletin Board —891-DSP3 (8 data bits, no parity, 1 stop)

We welcome your comments and suggestions. They help us provide you with better prod-
uct documentation. Please send your suggestions/corrections to the Fax number or Email
address above or mail this completed form to:

Motorola Inc.

6501 Wm. Cannon Drive West

Austin, Texas 78735-8598

Attn: DSP Applications/Documentation
Mail Drop: OE314

1. Did you find errors in the manual? Please give page number and a description of
each error.

DSP56002 User’s Manual Trouble Report

2. Did you find the manual clear and easy to use? Please comment on specific
sections that you feel need improvement.

3. What sections of this manual do you consider most important/least important?

INDEX

INDEX

—A—

AO-A1S L. s 2-4
Architecture e 1-4
—B—

BG 2-6, 4-16
BN .o 2-5,4-16
BootstrapCodecoiviiiin... A-4
Bootstrap from EPROM (Mode 1)3-8
Bootstrap from Host (Mode 5) 3-11, 5-50
Bootstrap from SCI (Mode 6) 3-12, 6-71
BootstrapROM ee...33
BR..... 2-5,4-16
Breakiiiiiiiiiiiii, 6-30
BS .. e e 2-6, 4-16
Bus Arbitration 4-16, 4-18, 4-20
Bus Control Register (BCR) 4-13, B-10
—C—

CD11-CDO ..ot iiiianenennns 6-25
Central ProcessingModule 1-4

componentsiii i 1-4
CKOUT .o 2-14
CKP 2-14
CLGND e 2-13
Clock Pins o

crystal output (XTAL) ~................ 2-8

external clock/crystal input (EXTAL) 2-8
Clock Stabilization Delay 3-7
L0 Y o 2-13
COD .ot 6-26
Command Vector Register (CVR) 5-26, B-18
CRA e 6-87

bits 0-7 - prescale modulus select

(PMO-PM7) ...t 6-87
bits 13,14 - word length control
(WLOWL1) ..o, 6-87
bits 8-12 - frame rate divider control
(DCO-DC4)ccvvevnrnnn. 6-87
CRB .. e 6-88
bit O - serial output flag 0 (OF0) 6-88
bit 1 - serial outputflag 1 (OF1) 6-88
bit 10 - gated control clock (GCK) 6-91
bit 11 - mode select (MOD) 6-92
bit 12 - transmit enable (TE) 6-92
bit 13 - receive enable (RE) 6-92

bit 14 - transmit interrupt enable (TIE) ... 6-93
bit 2 - serial control O direction (SCDO) .. 6-89
bit 3 - serial control 1 direction (SCD1) .. 6-89
bit 4 - serial control 2 direction (SCD2) . . 6-89
bit 5 - clock source direction (SCKD) 6-89

bit 6 - shift direction (SHFD) 6-91
bit 7,8 - frame sync length
(FSLO,FSL1)coivvnt.. 6-91
bit 9 - sync/async (SYN) 6-91
controlbitso, 6-112
receive interrupt enable (RIE) 6-93
CVR .t i s 5-26
bit 0-5 - hostvector (HV) 5-26
bit6-reservedl 5-27
bit 7 - host command (HC) 5-27
—D—
DO-D23 ... ittt it 2-4
Data Register (PBD)cooun. B-14
Data Transfer
DMA ..t 5-54
DSPtohost 5-17,5-51
Hl hostprocessor 5-34

hosttoDSPccvuvee, 5-17, 5-40

polling/interrupt controlled 5-38

Data Transmissioncovuunn 6-30
DCA-DCO ...voirie et inieenenns 6-87
DE ... 3-4,3-6
Debug Request Input (DR) 2-13
Development Mode (Mode 3) 3-11
DMA 5-17, 5-19, 5-29

hosttoDSPcvvviiieiiine, 5-57
DMAModecovveniiiiiii i 5-23
DMA Procedure

DSPtohostcoiiiiiiat, 5-60
DS e i e e 2-5
DS1/0S0 ...ttt 2-11
DSCK/OST .. oottt 2-12
DSO ..t e 2-12
DSP to Host DMA Procedure 5-60
DSP to Host Internal Processing 5-59
DSP56002 Featuresccvvunen.. 1-4
DSP56K Central Processing Module

centralcomponentsoviennn 1-4
Exception (See Interrupt)

EXTAL Lot 2-8
External Access Priorityc...... 4-3
—F—

FE oot i i i e i 6-24
Featurescooiiiiiiiiiiiinnnan 1-4
Flags, SSI ... oo 6-153
FSLO ..ovvii i S 6-112
FSLO,FSLT ...t 6-91
FSLT o i 6-112
—G—

GCK .. 6-91, 6-112

GPIO
configuration 5-4
programmingportB 5-5
programmingportC 6-6
—H—
HO-H7 e e 2-8, 5-30
HAO-HA2 2-9

HAO-HA2 5-31
HACK .. i 2-9, 5-32
Hardware Reset
OnCEpinsandoovenns 2-12
HC .. e 5-27
HCIE ... e 5-14
HCP ... it 5-16, 5-19
HCR . it as 5-14
bit O - host receive interrupt enable
HRIE)oi it 5-14
bit 1 - host transmit interrupt enable
HTIE) o oveei i 5-14
bit 2 - host command interrupt enable
HCIE) ... vii it 5-14
bit3-hostflag2 (HF2) 5-14
bit4 - hostflag3 (HF3) 5-15
bits 5,6,7-reserved 5-15
HEN ..o i ieees 2-9,5-32
HFO ..o e 5-16, 5-19, 5-23
reading during transition 5-19
HF1 e 5-16, 5-19, 5-23
reading during transition 5-19
HF2 i 5-14,5-28
HF3 .o e 5-15, 5-28
Hlo e 5-3, 5-10
DSP viewpoint s e 5-11
example circuits [5-62
featuresc.couunnn. DI 5-10
host processor viewpoint 5-19
programmingmodel 5-20
servicing protocolsooeen... 5-33
HI Application Examples "5-37
bootstrap fromhost 5-50
Hlinitialization 5-38
host to DSP data transfer 5-40
polling/interrupt controlled
datatransfer 5-38
Hilnterrupts e e v....5-34
DSPCPU........cvvvunnt. L...i...5-18
host processoroc0..u 5-18
HIPins........ eesr et v...2-8,5-30
‘host acknowledge (HACK) 2-9,5-32
host address (HAO-HA2) 2-9, 5-31
host data bus pins (H0-H7) 2-8, 5-30
host enable (HEN) 2-9,5-32
" host read/write (HRW) 2-9,5-32
host request (HREQ) 2-9, 5-32
Hl ProgrammingModel 5-12
HMiandHMO P S 5-23
Host Command Feature 5-20
Host Control Register (HCR)........ .5-14, B-16

Host Flag Operation 5-15

HostInterface (HI) 5-3, 5-10
Host Port Usage Considerations -

DSPSidecccevinnnn 5-18
Host Port Usage Considerations -

HostSidecot.. 5-65

Host Receive Data Register (HRX) ...5-17,B-17
Host Registers After Reset

asseenbyDSP 5-17

as seen by host processor 5-30
Host Status Register (HSR) 5-15, B-17
Host to DSP DMA Procedure 5-57
Host To DSP Internal Processing 5-56
Host Transmit Data Register (HTX) ... 5-17, B-17
HRW 2-9, 5-32
HRDF ... ittt 5-15, 5-19
HREQBitcovviiiiiiiiiiininnnnnns 5-29
HREQPin............... 2-9, 5-22, 5-23, 5-32
HRIE ... i i 5-14
HRX i e e 5-17
HSR . e 5-15

bit O - host receive data full (HRDF) 5-15
bit 1 - host transmit data empty

(HTDE) ... vivieiieeaant 5-15

bit 2 - host command pending (HCP) ... 5-16
bit3-hostflagO (HFO) 5-16

bit4 -hostflag1 (HF1) 5-16
bits56-reserved 5-17

bit 7 - DMA status (DMA) e 5-17
HTDE ...t ii e 5-15, 5-19
HTIE .. i i 5-14
HTX e 5-17
HV . s 5-26, 5-46

bit O - receive request enable (RREQ). .. 5-22
bit 1 - transmit request enable (TREQ) .. 5-22

bit2-reserved 5-23
bit3-hostflagO (HFO) 5-23
bit4-hostflagt (HF1) 5-23

bit 5,6 - host mode control
HM1,HMO) ...l 5-23
bit 7 - initialize bit (INIT) 5-24
IDLE .. e e 6-23
IFO i i i i e i e 6-94
| O 6-94
P 6-20, 6-39
INIT i i it e e 5-24

Instruction Set Summary B-5
Internal Processing
DSPtohostc.ivviiiiin, 5-59
hosttoDSPccovveviiiennnnn, 5-56
INterrupt
SOURCES .« v vvvivii i ieeiinnnrannans B-4
Interrupt
hostcommand 5-43
hostreceivedata 5-43
host transmitdata 5-43
SClidlelinecooviieiiinennnn, 6-39
SClreceivedata 6-37
SCl receive data with exception status .. 6-39
SCItimeroviveiiiiinenennnn, 6-39
SCltransmitdata 6-39
SSlreceivedata 6-109
SSl receive data with
exception status 6-109
SSltransmitdata 6-109
SSI transmit data with o
exceptionstatus 6-109
~ Starting Addresses B-4
Interrupt Control Register (ICR) 5-20, B-18
Interrupt Priority Register (IPR) 3-12, B-11
Interrupt Status Register (ISR) 5-27, B-19
Interrupt Vector Register (IVR) 5-29, B-19
Interrupts
DMA e 5-37
non-DMA i, 5-36
PR i i e B-11
ISR . e 5-27

bit O - receive data register full (RXDF) .. 5-27
bit 1 - transmit data register empty

(TXDE) v v i eeeenes 5-28

bit 2 - transmitter ready (TRDY) 5-28
bit3-hostflag2 (HF2) 5-28
bit4-hostflag3 (HF3) 5-28
bitS-reserved.............. 0l 5-28

bit 6 - DMA status (DMA) 5-29

bit 7 - host request (HREQ) 5-29
IVR e 5-29

—M—

MALMB ... 3-6
MC . s 37
MemoryModuleso i, 3-3
programmemorycoeeuennen. 3-3
Xdatamemory e 3-4

Ydatamemorycc0iiiann 3-4

MFO-MF11 P 3-13
MODoi i 6-92, 6-112
MODA/IRQA ...ttt ittt iiienns 2-6
MODB/ARQBcoviiiiiiininnnnnnes 2-7
MODC/NMI ...ttt ine e 2-7
Multidropoovveii P 6-55
address modewakeup 6-61
example.............. ol 6-61
idlelinewakeup..............covutn 6-57
transmitting data and
address characters 6-57
wired-ormode e 6-57
Multiplication Factor e 3-13
—N—
NetworkModeccvvun... 6-135
Network Mode Receive 6-144
Network Mode Transmit6-140
Normal Expanded Mode (Mode 2) 3-11
Normal Mode Receive 6-133
Normal Mode Transmit,...6-130
—o—
L0 .6-88
OF T o i s 6-88
OMR ,
chip operating mode (bit4) 37
. datarom enable (bit1) 3-6
stop delay (bit6)ccunen. 3-7
Y memory disable (bit3) 3-6
OnCEPINS ...ooviiiiiiiniiieieennn, 2-11
debug request input (DR) 2-13
debug serial input/chip status 0
. (DS1/080)ccvvvvenant. 2-11
debug serial output (DSO) 2-12
On-chip Peripherals Memory Map B-3
Operating Mode Register (OMR) B-12
OperatingModes 33,37
mode 0 - single chipmode 3-8
mode 1 - bootstrap from EPROM 3-8
mode 2 - normal expanded mode 3-11
mode 3 - developmentmode 3-11
mode 4 -reservedmode 3-11
mode 5 - bootstrap fromhost 3-11
mode 6 - bootstrap fromSCI 3-12
mode 7 -reservedmode 3-12
setting,changing 37

summary [3-8

OR .t e 6-23
—P—

PBC .. e e e 5-4
PBD .ot e e 5-4
PBDDR i 5-4
PCAP .. il 2-13
PCC .. e 6-4
PCD .. e 6-4
PCDDR ...t 6-4
PE [PN 6-23
PEN......... e i 2-14
Peripheral MemoryMap "................. B3
PGND ...ttt iiiiiienees 2-13
PINIT .o e e 2-14
Pins (Signals) e 2-3
PLL Control Register (PCTL) B-13
PlLLockStatecovvviiiinnt, 2-14
PLL Multiplication Factor 3-13
e I 2-13
analog PLL circuit ground (PGND) 2-13
~analog PLL circuit power (PVcc) 2-13
CKOUT Ground (CLGND) 2-13
CKOUT Polarity Control (CKP) 2-14

" CKOUT power (CLVce) «.onvennenn... 2-13
output clock (CKOUT) 2-14
phase and frequency locked (PLOCK) .. 2-14
PLL filter off-chip capacitor (PCAP) 2-13
PLL initialization input (PINIT) 2-14
PLOCK ..ottt ee..l.2-14
PM7-PMO ... 6-87
Polling ...ovvivn i 5-35
POtA . e 4-3
Port AAddressPins 2-4,4-3
Port ABus ControlPins 2-4, 4-3
busgrant(BG)iiveiiiiininn.. 2-6
busneeded (BN) et 2-5
busrequest(BR) 2-5
bus strobe (BS) RPN —
buswait(WT)oiiiviiniennn 2-6
data memory select(DS) 2-5
program memory select (PS): 2-4
readenable(RD)coovunn 2-5
‘write enable (WR) e 2-5
X¥select(XIY) coviviiiiiiiiii e, 2-5
Port A Data Bus Pins erasesvans 2-4,4-3
Port A Interrupt and Mode Control Pins 2-6
MODA/IRQAt 2-6
MODB/IRQBccvivivnnnn. 27

MODC/NMI ... oottt 2-7

RESET ..ot 2-7
PortASignalsooiiiilL 4-3
Port AWaitStates 4-13
Port B

Control Register (PBC) B-14, B-16

Data Direction Register (PBDDR) B-14

Data Register(PBD) B-14

GPIO .. 5-3

hostinterface (HI) 5-3

introduction 0 5-3

pin controllogic 5-4
Port B Control Register (PBC) 5-4
Port B Data Direction Register (PBDDR) 5-4
Port B Data Register (PBD) 5-4
Port B GPIO

timing ...t e 5-8
Port C

Control Register (PCC)B-15, B-21, B-24

Data Direction Register (PCDDR) B-15

Data Register (PCD) B-15

GPIO ... 6-3, 6-4

introduction, 6-3

pincontrollogicc.couunnt, 6-4

150 6-3

S8l e 6-3
Port C Control Register (PCC) 6-4
Port C Data Direction Register (PCDDR) 6-4
PortC DataRegisterc...... 6-4
Port C GPIO

timing. ... 6-9
Power Pins

ground (GND) .. .ooniiiiiiinnnenns 2-8

power (VCC) .o vveiieiiiienineenns 2-8
Preamble i, 6-30
ProgramMemoryot 3-3
Programming Model

HE 5-12, 5-20

] 6-12

SSI 6-83
PS i 2-4
PSR .. 6-88
PVee ..o 2-13

—R—
RB .. e 6-24
RCM . 6-26
RD 2-5

RDRF .t it 6-23
RE i i e e 6-92
Receive Byte Registers
(RXH, RXM, RXL) 5-29, B-20
Reset
registercontentsand 5-17
RESETPIn ...voiiiiiiiiiiiiiineiaennns 2.7
RFS .o s 6-95
] 6-21, 6-37, 6-39, 6-93
T 6-96
RREQ ...iiiiiiiiii i iiiin e 5-22
L 6-18
BX o e 6-97
BXD .ttt i 2-10, 6-12
BXDF vt 5-27
[5-29
RXL e 5-29
RXM 5-29
—_——
SBK .t i e e 6-18
SCO ittt ittt 2-10, 6-82
SC1 ..ol e 2-11,6-82
SC2 it i e 2-11, 6-83
£ 07 0 = 6-24
bit 12 - clock out divider (COD) 6-26
bit 13 - clock prescaler (SCP) 6-26
bit 14 - receive clock mode source
(RCM) ..oiiiiiiiiiie it 6-26

bit 15 - transmit clock source (TCM) 6-26
bits 11-0 - clock divider (CD11-CDO) 6-25

£ o P 6-89
£ 6-89
SCD2. .ttt et e 6-89
SCl L e 6-3, 6-11
examplecircuits ..ot 6-74
featurescooiiiiiiiiinnn 6-11
PINS ittt e 6-11
programmingmodel 6-12
SCIl AsynchronousData 6-44
multidrop o i 6-55
receptiono, 6-45
transmissioncciiiiiienn., 6-48
SCI Clock Control Register (SCCR) . ..6-24, B-22
SCI Control Register (SCR) 6-14, B-21
SClDataRegistersccovvnnt.. 6-26
receive registers (SRX) 6-26, B-23
transmit registers (STX, STXA) ... 6-28, B-23
SCl Initialization 6-31

SCIPiNScou... e 2-10

receive data (RXD) 2-10, 6-12
SCl serial clock (SCLK) 2-10, 6-12
transmit data (TXD) 2-10, 6-12
SCl Registers after Reset 6-31
SCI Status Register (SSR) 6-22, B-22
SCI SynchronousData 6-39
SCITIMEr ..ttt enans 6-68
SCK e, 2-11, 6-80
SCKD .ottt e 6-89
SCKP e 6-22
SCLK .. 2-10, 6-12
SCP 6-26
SCR e e e e 6-14
- bit 0-2 - word select :
(WDSO0,WDS1 WDSZ) 6-14

bit 10 - idle line interrupt enable (ILIE) .. 6-20
bit 12 - transmit interrupt enable (TIE) .. 6-21
bit 13 - timer interrupt enable (TMIE) ... 6-21

bit 14 - timer interrupt rate (STIR) 6-21
bit 15 - clock polarity (SCKP) 6-22
_bit 3 - shift direction (SSFTD) 6-18
bit 4 - send break (SBK) 6-18

bit 4 - wakeup mode select (WAKE) 6-18
bit 6 - receiver wakeup enable (RWU) .. 6-18
bit 7 - wired-or mode select (WOMS) ... 6-19

bit 8 - receiver enable (RE) 6-19
bit 9 - transmitter enable (TE) 6-19
receive interrupt enable (RIE) 6-21
1575 A 3-7
Semaphorescoiiiiiinn e .4-22
Serial Communication Interface (8Cl). .. 6-3, 6-11
SharedMemoryo, 4-16
SHFD ...t 6-91, 6-112
Single Chip Mode (Mode 0) e 3-8
Slow Memory Accommodation 4-13
SRD .. 2-11, 6-80
SRX e6-26
SSFTD ..ttt s 6-18
SOl e 6-3, 6-76
features " 6-76
operationalmodes 6-100
pin definitions 6-100
S8l Control Register A (CRA) 6-87, B-24
SSI Control Register B (CRB) 6-88, B-25
SSI Example Circuitsooutn. 6-157
SSIFlagsoovviviiiiiiiiiiian, ,..6-153
SSl Initialization 6-104
SSI Operating Modes
network mode examples 6-135
normal ... 6-112

normal mode examples 6-127

normal/network 6-112
on-demand mode examples 6-145
SSIPINS . ittt ii i 2-10, 6-78
serialclock (SCK)6-80
serial clock zero (SCO) 2-10
serial control (SCO) 6-82
serial control (SC1) i, 6-82
serial control (8C2) SN 6-83
serial controlone (SC1) 2-11
serial control two (SC2) 2-11
serial receive data (SRD) 6-80
- serial transmitdata (STD) 6-78
SSl receive data (SRD) P 2-11
SSl serial clock (SCK) 2-11
SSl transmitdata (STD) 2-11
SSI ProgrammingModel 6-83
SS! Receive Data Register (RX) 6-97
SSI Receive Shift Register 6-97
SSI| Registers After Reset e 6-100
SSI Status Register (SSISR) 6-94, B-26
SSI Transmit Data Register (TX) 6-100
SSI Transmit Shift Register6-97
SSISR ..t e 6-94
bit 0 - serial input flag0 (IF0) 6-94
bit 1 - serial inputflag1 (IF1) 6-94

bit 2 - transmit frame sync flag (TFS) ... 6-94
bit 3 - receive frame sync flag (RFS) 6-95
bit 4 - transmitter underrun error flag

(TUE) ..evviiiiii it 6-96
bit 5 - receiver overrun error flag
(R0 = 6-96
bit 6 - transmit data register empty
(TDE) ..evvviviiieenh ... 897
bit 7 - receive data register full (RDF) ... 6-97
SOR i e e e 6-22
bit 0 - transmltter empty (TRNE) 6-22
bit 1 - transmit data register empty o
: (TDRE) ..o.iviiiiiii e 6-22
- bit 2 - receive data register full (RDRF) .. 6-23
bit 3 - idle line flag (IDLE) 6-23
bit4 - overrunerrorflag 6-23
bit5 - parity error (PE) 6-23
bit 6 - framing error flag (FE) 6-24
bit 7 - received bit 8 address (R8) 6-24
Status Register (SR) B-10
STD iit i e 2-11,6-78
STIR it i e i 6-21
5 10, 6-28
STXA i6-28
SYN ittt 6-91, 6-112
Synchronous Serial Interface (SSI) 6-3

TCM i i e 6-26
TCSR
bit 0 - Timer Enable (TE) 7-5
bit 1 - Timer Interrupt Enable (TIE) 7-5
bit 10 - Data Output (DO) 7-7
bit 11-23 - TCSR Reserved Bits 7-7
bit2-Inverter (INV) 7-5
bit 6 - General Purpose I/0 (GPIO) 7-6
bit 7 - Timer Status (TS) 7-7
bit 8 - Direction (DIR) 7-7
bit9-Datalnput(DI)................. 7-7
bits 3-5 - Timer Control (TCO-TC2) 7-6
TDE ittt i, 6-97
TORE .. oiiii i iii e i nnes 6-22, 6-30
TE o e 6-19, 6-92
TE .. 6-21, 6-39, 6-93
Time Slot Register (TSR) 6-100
Timer
BlockDiagramccvvuiiiaannn. 7-3
Disablecoovviiiiiiiiinn... 7-9
DuringSTOPcoiiiiiiennannn. 7-16
DuringWAITciiiivan.n. 7-16
GPIO ... 7-18,7-19
ModeO 7-7,7-8
ModeOExample 7-20
Mode1coiiiiiiiiiiiiint, 7-8
Mode2coiiviiiiiiiiinnen 7-10
Moded4cccviiiiiiiiiiint, 7-11
Mode4Example 7-21
Mode5o, 7-12
Mode5Examplec.o.ut 7-22
Mode6cciiiiiiiiiinnnn, 7-13
Mode7ciiiiiiiiiiii e 7-15
Operating Considerations 7-17
Period Measurement Mode .. 7-12, 7-15, 7-16
ProgrammingModel 7-4
PWMMode 7-11,7-13,7-14
Timer Control/Status Register
(TCSR) ...cvvviian... 7-5, B-27
Timer Count Register (TCR) 7-4, B-27
Timer/Event Counter Module Pin (TIO) 2-14
TMIE .. e 6-39

Transmit Byte Registers
(TXH, TXM, TXL) 5-30, B-20

1 S 6-100

TXD oovi it e 2-10,6-12

LI, 5-28

TXH e e 5-30

L% 5-30

TXM o i e 5-30

—W—

WAKE ... it i 6-18

WDSO .ttt it e 6-28

WDSO,WDS1,WDS2olht. 6-14

WDST . ittt i e 6-28

WDS2 ...ttt i it 6-28

WLO,WLT ..o 6-87

WOMS ...ttt e ey 6-19

WR e e e, 2-5

Wl o i i e 2-6, 4-16

—X—

XDataMemoryccoiiiiiiinnnnn 3-4

XY e e e i s 2-5

XTAL L i i i e e 2-8

—_Y—

YDataMemorycoiiiiiiiat, 3-4
Ydataramcciiiiiinnn... 3-4
Ydataromcooiviiiiiiinnn, 3-4

D (e 3-4, 3-6

INTRODUCTION TO THE DSP56002

DSP56002 PIN DESCRIPTIONS

MEMORY MODULES AND OPERATING MODES
PORT A

PORT B

PORT C

TIMER

APPENDIX A - BOOTSTRAP CODE

APPENDIX B - PROGRAMMING SHEETS
TROUBLE REPORT

INDEX

-
oy

INTRODUCTION TO THE DSP56002
n DSP56002 PIN DESCRIPTIONS

n MEMORY MODULES AND OPERATING MODES

n APPENDIX A - BOOTSTRAP CODE
n APPENDIX B - PROGRAMMING SHEETS

;3 TROUBLE REPORT

- INDEX

1ATX31270-1 Printed in USA 2/94 BANTA CO. MOTO 18 7,500 DSP YGAVAA

S

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong.

| @ MOTOROLA

DSP56002UM/AD

RN T OO 0000

