

-

REP Repeat Next Instruction REP

Instruction Format:
REP S

Opcode:

23 16 15 6 7 o
10 0 0 0 0 1 1 o 11 1 d d d d d dl 0 o 1 0 0 0 0 01

Instruction Fields:
S

S dddddd S/L S dddddd
XO 000100 no RO - R7 o 1 0 n n n
X1 000101 no NO - N7 o 1 1 n n n
YO 000110 no MO- M7 100nnn
Y1 000111 no SR 1 1 1 0 0 1
AO 001000 no OMR 1 1 1 0 1 0
80 001001 no SP 1 1 1 0 1 1
A2 001010 no SSH 111100
82 001011 no SSL 1 1 1 1 0 1
A1 001100 no LA 1 1 1 1 1 0
81 001101 no LC 1 1 1 1 1 1
A 001110 yes (See Notes on page A-255)
B 001111 yes (See Notes on page A-255)

where "nnn" = Rn number (RO - R7)
Nn number (NO - N7)
Mn number (MO - M7)

REP Repeat Next Instruction REP

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.5 CON­
DITION CODE COMPUTATION)

2. The accumulator value is scaled according to the scaling mode bits SO
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited
to the maximum positive or negative saturation constant, and the L bit is
set.

4. The LS 16 bits of the resulting 24 bit value is loaded into the loop
counter (LC). The original contents of A or B are not changed.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read.

Timing: 4 oscillator clock cycles

Memory: 1 program word

-

RESET Reset On-Chip Peripheral Devices

Operation:
Reset the interrupt priority register

and all on-chip, peripherals

Assembler Syntax:
RESET

RESET

Description: Reset the interrupt priority register and all on-chip peripherals. This is a
software reset which is NOT equivalent to a hardware reset since only on-chip peripher­
als and the interrupt structure are affected. The processor state is not affected, and exe­
cution continues with the next instruction. All interrupt sources are disabl,ed except for
the trace, stack error, NMI, illegal instruction, and hardware reset interrupts.

Restrictions: A RESET instruction cannot be the last instruction in a DO loop (at LA).

Example:

RESET ;reset all on-chip peripherals and IPR

Explanation of Example: The execution of the RESET instruction resets all on-chip
peripherals and the interrupt priority register (IPR).

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I: I DM I T 1** JR 81 I 80 I 11 I :1.8 I liE I u 1 N I z I v I ~I

The condition codes are not affected by this instruction

RESET Reset On-Chip Peripheral Devices

Instruction Format:
RESET

Opcode:

23 16 15 8 7

la a a a a a a ala a a a a a a al1

Instruction Fields:
None

Timing: 4 oscillator clock cycles

Memory: 1 program word

RESET

a
a a a a 1 a al

RND Round Accumulator RND

Operation: Assembler Syntax:
D+r -+ D (parallel move) RND D (parallel move)

Description: Round the 56-bit value in the specified destination operand D and store the
result in the MSP portion of the destination accumulator (A 1 or 81). This instruction uses
a convergent rounding technique. The contribution of the LS bits of the result (AO and
80) is rounded into the upper portion of the result (A 1 or 81) by adding a rounding con­
stant to the LS bits of the result. The MSP portion of the destination accumulator con­
tains the rounded result which may be read out to the data buses.

The value of the rounding constant added is determined by the scaling mode bits SO and
51 in the system status register (SR). A "1" is added in the rounding position as shown
below:

Rounding Rounding Constant
S1 SO Scaling Mode Position 55-25 24 23 22 21 - 0

0 0 No Scaling 23 0 0 0 1 0 0 0

0 Scale Down 24 0 0 1 0 0 0 0

0 Scale Up 22 0 0 0 0 0 0

Normal or "standard" rounding consists of adding a rounding constant to a given
number of L5 bits of a value to produce a rounded result. The rounding constant
depends on the scaling mode being used as previously shown. Unfortunately, when
using a twos-complement data representation, this process introduces a positive bias in
the statistical distribution of the roundoff error.

RND Round Accumulator RND

Convergent rounding differs from "standard" rounding in that convergent rounding
attempts to remove the aforementioned positive bias by equally distributing the round-off
error. The convergent rounding technique initially performs "standard" rounding as previ­
ously described. Again, the rounding constant depends on the scaling mode being used.
Once "standard" rounding has been done, the convergent rounding method tests the
result to determine if all bits Including and to the right of the rounding position are
zero. If, and only if, this special condition is true, the convergent rounding method will
clear the bit immediately to the left of the rounding position. When this special condition
is true, numbers which have a "1" in the bit immediately to the left of the rounding posi­
tion are rounded up; numbers with a "0" in the bit immediately to the left of the rounding
position are rounded down. Thus, these numbers are rounded up half the time and
rounded down the rest of the time. Therefore, the roundoff error averages out to zero.
The LS bits of the convergently rounded result are then cleared so that the rounded
result may be immediately used by the next instruction.

Example:

RND A #$123456,X1 B,Y1 ;round A accumulator into A 1, zero AO

Before Execution After Execution

Case I: A 1 __ $_00_:1_23_4_56_:7_89_AB_C __ AI $00: 123456 :000000

Case II: A 1-1 __ $0_0:_12_34_5_6:8_0_00_00 __ AI $00:123456:000000

Case III: A 1 __ $0_0:_12_34_5_6:8_0_00_00 __ AI $00:123456:000000

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:123456:789ABC for Case I, the value $00:123456:800000 for Case II, and the
value $00:123455:800000 for Case III. The execution of the RND A instruction rounds
the value in the A accumulator into the MSP portion of the A accumulator (A1), using
convergent rounding, and then zeros the. LSP portion of the A accumulator (AO). Note
that Case II is the special case that distinguishes convergent rounding from standard or
biased rounding. -

-

RND Round Accumulator RND

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I LF I DM I T I ** I 81 I 80 I 11 I 10 I s I LIE I u I N I z I v I c I
.... MR CCR ..,.

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result

Note: The definitions of the E and. U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

RND Round Accumulator

Instruction Format:
RND D

Opcode:
23 8 7

DATA BUS MOVE FIELD
1

00

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
D D
A 0
B 1

Timing: 4 oscillator clock cycles

Memory: 1 program word

RND

4 3 o
o 1 I d o 0

-

ROL Rotate Left ROL

47 24

Operation: r c.-I,-_ ... _____ b(parallel move)

Assembler Syntax: ROL D (parallel move)

Description: Rotate bits 47-24 of the destination operand D one bit to the left and store
the result in the destination accumulator. Prior to instruction execution, bit 47 of D is
shifted into the carry bit C, and, prior to instruction execution, the value in the carry bit C
is shifted into bit 24 of the destination accumulator D. This instruction is a 24-bit opera­
tion. The remaining bits of the destination operand D are not affected.

Example:

ROL A1 #314,N2 ;rotate A1 one left bit, update N2

Before Execution After Execution

A 1~ ___ $_O_o:_oo_oo_oo_:o_oo_o_oo_~ A 1~ ___ $_O_O:O_O_OO_01_:0_00_OO_0 __ ~

SR 1L-_________ $O_3_01 __ --' SR 1~ ________ $O_30_0 __ ~

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:000000:000000. The execution of the ROL A instruction shifts the 24-bit value
in the A1 register one bit to the left, shifting bit 47 into the carry bit C, rotating the carry bit
C into bit 24, and storing the result back in the A 1 register.

ROL Rotate Left ROL

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 LF 1 DM 1 T I.. I s, I so I 11 I lois 1 L E I U N I z v
1:1 CCR ... MR

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move
N - Set If bit 47 of A or B result Is set
Z - Set if bits 47-24 of A or B result are zero
V - Always cleared
C - Set if bit 47 of A or B was set prior to instruction execution

Instruction Format:
ROL D

Opcode:

23 8 7

DATA BUS MOVE FIELD I 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
o d
A 0
B

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

4 3

1 I d

o

ROR Rotate Right ROR

47 24

Operation: c: c~ I-----·-b (parallel move)

Assembler Syntax: ROR D (parallel move)

Description: Rotate bits 47-24 of the destination operand D one bit to the right and
store the result in the destination accumulator. Prior to instruction execution, bit 24 of D
is shifted into the carry bit C, and, prior to instruction execution, the value in the carry bit
C is shifted into bit 47 of the destination accumulator D. This instruction is a 24-bit opera­
tion. The remaining bits of the destination operand D are not affected.

Example:

ROR B1 #$1234,R2 ;rotate B1 right one bit, update R2

Before Execution After Execution

B ~I __ $0_0:_00_00_0_1:2_~_2_~_~ B ~I __ $_O_o:o_o_oo_oo_:~_~_~ __ -,-,

SR 1 _____ $_03_00_---' SRI _____ $0_3_05_~

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the
value $00:000001 :222222. The execution of the ROR B instruction shifts the 24-bit value
in the B1 register one bit to the right, shifting bit 24 into the carry bit C, rotating the carry
bit C into bit 47, and storing the result back in the B1 register.

ROR Rotate Right ROR

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I LF I OM I T I ** I 81 I 80 I 11 10 I s I L E I U N Z

.. MR --".*'-~!---- CCR

S - Computed according to the definition in A.S CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move
N - Set if bit 47 of A or B result is set
Z - Set if bits 47-24 of A or B result are zero
V - Always cleared
C - Set if bit 24 of A or B was set prior to instruction execution.

Instruction Format:
ROR D

Opcode:

23 8 7

DATA BUS MOVE FIELD 1 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
o d
A 0
B

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

4 3

o Id
o

RTI Return from Interrupt RTI

Operation: Assembler Syntax:
SSH ~ PC; SSL ~ SR; SP-1 ~ SP RTI

Description: Pull the program counter (PC) and the status register (SR) from the system
stack. The previous program counter and status register are lost.

Restrictions: Due to pipelining in the program controller and the fact that the RTI
instruction accesses certain program controller registers, the RTI instruction must not be
immediately preceded by any of the following instructions:

Imm~dlately before RTI MOVEC to SR, SSH, SSL, or SP
MOVEM to SR, SSH, SSL, or SP
MOVEP to SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR or ANDI CCR
ORI MR or ORI CCR

An RTI instruction cannot be the last instruction in a DO loop (at LA).

An RTI instruction cannot be repeated using the REP instruction.

Example:

RTI ;pull PC and SR from system stack

Explanation of Example: The RTI instruction pulls the 16-bit program counter (PC) and
the 16-bit status register (SR) from the system stack and updates the system stack
pointer (SP).

RTI Return from Interrupt

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 Il. I OM I T I·· I 81 I 80 I 11 I 10 I s I l I E I u
~ MR • I11III(CCR

S - Set according to the value pulled from the stack
L - Set according to the value pulled from the stack
E - Set according to the value pulled from the stack
U - Set according to the value pulled from the stack
N - Set according to the value pulled from the stack
Z - Set according to the value pulled from the stack
V - Set according to the value pulled from the stack
C - Set according to the value pulled from the stack

Instruction Format:
RTI

Opcode:

23 16 15 8 7

10 0 0 0 0 0 0 0100 0 0 0 00 0\ 0

Instruction Fields:
None

Timing: 4+rx oscillator clock cycles

Memory: 1 program word

RTI

3 2 o
N I z v

o
o 0 0 0 1 0 01

RTS Return from Subroutine RTS

Operation: Assembler Syntax:
SSH -+ PC; SP-1 -+ SP RTS

Description: Pull the program counter (PC) from the system stack. The previous pro­
gram counter is lost. The status register (SR) is not affected.

Restrictions: Due to pipelining in the program controller and the fact that the RTS
instruction accesses certain controller registers, the RTS instruction must not be immedi­
ately preceded by any of the following instructions:

Immediately before RTS MOVEC to SSH, SSL, or SP
MOVEM to SSH, SSL, or SP
MOVEP to SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

An RTS instruction cannot be the last instruction in a DO loop (at LA).

An RTS instruction cannot be repeated using the REP instruction.

Example:

RTS ;pull PC from system stack

Explanation of Example: The RTS instruction pulls the 16-bit program counter (PC)
from the system stack and updates the system stack pointer (SP).

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 LF 10M 1 T 1** 1 81 1 80 1 11 1 10 1 8 I LIE I u I N I z v I :.1
.~ MR •. l1li(CCR _.

The condition codes are not affected by this instruction.

RTS Return from Subroutine

Instruction Format:
RTI

Opcode:

23 16 15

10 0 0 0 0 0 0 0100 0 0

Instruction Fields:
None

Timing: 4+rx oscillator clock cycles

Memory: 1 program word

8 7

o 0 0 0 I 0

RTS

o
o 0 0 1· 1001

SBC Subtract Long with Carry sec

Operation: Assembler Syntax:
o-s-c -+ 0 (parallel move) SBC S,D (parallel move)

Description: Subtract the source operand S and the carry bit C of the condition code
register from the destination operand D and store the result in the destination accumula­
tor. Long words (48 bits) may be subtracted from the (56-bit) destination accumulator.

Note: The carry bit is set correctly for multiple-precision arithmetic using long-word oper­
ands if the extension register of the destination accumulator (A2 or B2) is the sign exten­
sion of bit 47 of the destination accumulator (A or B).

Example:

MOVE L:<$O,X
MOVE L:<$1 ,A
MOVE L:<$2,Y
SUB X,A L:<$3,B
SBC YB A10,L:<$4
MOVE B10,L:<$5

Before Execution

AI $00:000000:000000

xl $800000:000000

BI $00:000000:000003

vi $000000 :000001

;get a 48-bit LS long-word operand in X
;get other LS long word in A (sign ext.)
;get a 48-bit MS long-word operand in Y
;sub. LS words; get other MS word in B
;sub. MS words with carry; save LS dif.
;save MS difference

After Execution

AI $00:800000:000000

xl $800000:000000

BI $00:000000:000001

vi $000000:000001

/

sec Subtract Long with Carry sec

Explanation of Example: This example illustrates long-word double-precision (96-bit)
subtraction using the SBe instruction. Prior to execution of the SUB and SBe instruc­
tions, the 96-bit value $000000:000001 :800000:000000 is loaded into the Y and X regis­
ters (X:y) , respectively. The other double-precision 96-bit value
$000000:000003:000000:000000 is loaded into the B and A accumulators (B:A), respec­
tively. Since the 48-bit value loaded into the A accumulator is automatically sign
extended to 56 bits and the other 48-bit long-word operand is internally sign extended to
56 bits during instruction execution, the carry bit will be set correctly after the execution
of the SUB X,A instruction. The SBe Y,B instruction then produces the correct MS 56-bit
result. The actual 96-bit result is stored in memory using the A10 and B10 operands
(instead of A and B) because shifting and limiting is not desired.

SBC Subtract Long with Carry SBC

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I: I OM I T I·· JR S1 I so I 11 I '~ 1 .. 9 I LIE I U JR N I z I v I : 1
S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero

'V - Set if overflow has occurred in A or B result
C - Set if a carry (or borrow) occurs from bit 55 of A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

sec

Instruction Format:
SBe S,D

Opcode:

23

Instruction Fields:
S,D Jd

X,A 00
X,B 01
V,A 1 0
V,B 11

Subtract Long with Carry

8 7

DATA BUS MOVE FIELD I 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

sec

4 3 o
J I d o 1

STOP Stop Instruction Processing STOP,

Operation: Assembler Syntax:
Enter the stop processing state and STOP

stop the clock oscillator

Description: Enter the STOP processing state. All activity in the processor is suspended
until the RESET or IRQA pin is asserted. The clock oscillator is gated off internally. The
STOP processing state is a low-power standby state.

During the STOP state, port A is in an idle state with the control signals held inactive (Le.,
RD=WR=Vcc etc.), the data pins (DO-D23) are high impedance, and the address pins
(A 1-A 15) are unchanged from the previous instruction. If the bus grant was asserted
when the STOP instruction was executed, port A will remain three-stated until the DSP
exits the STOP state.

If the exit from the STOP state was caused by a low level on the RESET pin, then the
processor will enter the reset processing state. The time to recover from the STOP state
using RESET will depend on the oscillator used. Consult the DSP56001 Advance Infor­
mation Data Sheet (ADI1290) for details.

If the exit from the STOP state was caused by a low level on the IRQA pin, then the pro­
cessor will service the highest priority pending interrupt and will not service the IRQA
interrupt unless it is highest priority. The interrupt will be serviced after an internal delay
counter counts 65,536 clock cycles (or a three clock cycle delay if the stop delay bit in
the OMR is set to one) plus 17T (see the DSP56001 Technical Data Sheet (ADI1290) for
details). During this clock stabilization count delay, all peripherals and external interrupts
are cleared and re-enabled/arbitrated at the start of the 17T period following the count
interval. The processor will resume program execution at the instruction following the
STOP instruction that caused the entry into the STOP state after the interrupt has been
serviced or, if no interrupt was pending, immediately after the delay count plus 17T. If the
IRQA pin is asserted when the STOP instruction is executed, the clock will not be gated
off, and the internal delay counter will be started.

STOP Stop Instruction Processing

Restrictions:
A STOP instruction cannot be used in a fast interrupt routine.

A STOP instruction cannot be the last instruction in a DO loop (Le., at LA).

A STOP instruction cannot be repeated using the REP instruction.

Example:

STOP ;enter low-power standby mode

STOP

Explanation of Example: The STOP instruction suspends all processor activity until the
processor is reset or interrupted as previously described. The STOP instruction puts the
processor in a low-power standby state.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 I LF I DM I T I" I 81 I 80 I 11 I 10 I 8 I L E I u
CCR

The condition codes are not affected by this instruction.

Instruction Format:
STOP

Opcode:

23 16 15 8 7

10 0 0 0 0 0 0 0100 0 0 0 00 011

Instruction Fields:
None

3 2 o
N I z

o
o 0 O' 0 1 1 1 I

Timing: The STOP instruction disables the internal clock oscillator and internal distribu­
tion of the external clock.

Memory: 1 program word

SUB Subtract SUB

Operation: Assembler Syntax:
O-S -4 D (parallel move) SUB S,D (parallel move)

Description: Subtract the source operand S from the destination operand 0 and store
the result in the destination operand O. Words (24 bits), long words (48 bits), and accu­
mulators (56 bits) may be subtracted from the destination accumulator.

Note: The carry bit is set correctly using word or long-word source operands if the exten­
sion register of the destination accumulator (A2 or B2) is the sign extension of bit 47 of the
destination accumulator (A or B). The carry bit is always set correctly using accumulator
source operands.

Example:

SUB X1 ,A X:(R2)+N2,RO ;24.;bit subtract, load RO, update R2

Before Execution After Execution

Xi 1~ _________ $_OO_O_OO_3 __ ~ Xii ~ _________ $_O_OO_OO_3 __ ~

A 1~ ___ $_OO_:O_OO_05_8_:24_2_42_4 __ --' A~I ____ $_OO_:O_OO_05_5_:24_2_42_4 __ ~

Explanation of Example: Prior to execution, the 24-bit X1 register contains the value
$000003, and the 56-bit A accumulator contains the value $00:000058:242424. The
SUB instruction automatically appends the 24-bit value in the X1 register with 24 LS
zeros, sign extends the resulting 48-bit long word to 56 bits, and subtracts the result from
the 56-bit A accumulator. Thus, 24-bit operands are subtracted from the MSP portion of
A or B (A 1 or B1) because all arithmetic instructions assume a fractional, twos comple­
ment data representation. Note that 24-bit operands can be subtracted from the LSP por­
tion of A or B (AO or BO) by loading the 24-bit operand into XO or YO, forming a 48-bit
word by loading X1 or Y1 with the sign extension of XO or YO, and executing a SUB X,A
or SUB Y,A instruction.

SUB Subtract SUB

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I: I OM I T I ** JR 51 I SO I 11 I '~ I: I LIE I U ClR N I z I v I ~ I
S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result
C - Set if a carry (or borrow) occurs from bit 55 of A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUB S,D

Opcode:

23 8 7 4 3

DATA BUS MOVE FIELD I 0 J J J I d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S,D J J J d

B,A 001 0
A,B 001 1
X,A 01 00
X,B 0 1 01
V,A 01 1 0
V,B 0 1 1 1

S,D J J J d

XO,A 1 000
XO,B 1 001
VO,A 1 010
VO,B 1 0 1 1
X1,A 1 100
X1,B 1 1 0 1

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

S,D J J J d

V1,A 1 1 1 0
V1,B 1 1 1 1

o
o 0

SUBL Shift Left and Subtract Accumulators SUBL

Operation: Assembler Syntax:
2* O-S 0 (parallel move) SUBL SO (parallel move)

Description: Subtract the source operand S from two times the destination operand 0
and store the result in the destination accumulator. The destination operand 0 is arith­
metically shifted one bit to the left, and a zero is shifted into the LS bit of 0 prior to the
subtraction operation. The carry bit is set correctly if the source operand does not over­
flow as a result of the left shift operation. The overflow bit may be set as a result of either
the shifting or subtraction operation (or both). This instruction is useful for efficient divide
and decimation in time (OIT) FFT algorithms.

Example:

SUBL A,B Y:(R5+N5),R7 ;2*B-A B, load R7, no R5 update

Before Execution After Execution

AI $00:004000:000000 AI $00:004000:000000

BI $00:005000:000000 BI $00:006000:000000

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:004000:000000, and the 56-bit B accumulator contains the value
$00:005000:000000. The SUBL A,B instruction subtracts the value in the A accumulator
from two times the value in the B accumulator and stores the 56-bit result in the B accu­
mulator.

SUBL Shift Left and Subtract Accumulators SUBL

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I OM I T I·· I S1 I SO I 11 I 10 I s I L I E I u I N I z
~ MR ~~ CCR

S_- Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result or if the MS bit of the destination

operand is changed as a result of the instruction's left shift
C - Set if a carry (or borrow) occurs from bit 55 of A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUBL S,D

Opcode:

23 8 7 4 3

DATA BUS MOVE FIELD I 0 0 o 1 I d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S,D d

B,A 0
A,B

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

o
o

SUBR Shift Right and Subtract Accumulators SUBR

Operation: Assembler Syntax:
0/2-S ~ D (parallel move) SUBR S,D (parallel move)

Description: Subtract the source operand S from one-half the destination operand 0
and store the result in the destination accumulator. The destination operand 0 is arith­
metically shifted one bit to the right while the MS bit of 0 is held constant prior to the sub­
traction operation. In contrast to the SUBL instruction, the carry bit is always set
correctly, and the overflow bit can only be set by the subtraction operation, and not byan
overflow due to the initial shifting operation. This instruction is useful for efficient divide
and decimation in time (DIT) FFT algorithms.

Example:

SUBR B,A N5,Y:-(R5) ;Al2-B ~ A, update R5, save N5

Before Execution After Execution

A~I ____ $8_0_:00_o_00_0:2_4_68_A_C __ ~ A~I ____ $_co_:o_oo_oo_o_:oo_o_oo_o __ ~

B~I ____ $_oo_:o_oo_OO_O_:12_3_45_6 __ ~ B~I ____ $_oo_:o_oo_OO_O_:12_3_45_6 __ ~

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $80:000000:2468AC, and the 56-bit B accumulator contains the value
$00:000000:123456. The SUBR B,A instruction subtracts the value in the B accumulator
from one-half the value in the A accumulator and stores the 56-bit result in the A accu­
mulator.

SUBR Shift Right and Subtract Accumulators SUBR

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I LF I DM I T I ** I S1 I SO I 11 I 10 I s I L E I u N I z
CCR

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z -Set if A or B result equals zero
V - Set if overflow has occurred in A or B result
C - Set if a carry (or borrow) occurs from bit 55 of A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUBR S,D

Opcode:

23 8 7 4 3

DATA BUS MOVE FIELD I 0 0 o 0 J d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S,D d

B,A 0
A,B

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

o
o

SWI Software Interrupt SWI

Operation: Assembler Syntax:
Begin SWI exception processing SWI

Description: Suspend normal instruction execution and begin SWI exception process­
ing. The interrupt priority level (11,10) is set to 3 in the status register (SR) if a long inter­
rupt service routine is used.

Restrictions:
An SWI instruction cannot be used in a fast interrupt routine.

An SWI instruction cannot be repeated using the REP instruction.

Example:

SWI ;begin SWI exception processing

Explanation of Example: The SWI instruction suspends normal instruction execution
and initiates SWI exception processing.

SWI Software Interrupt

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4

I"F I DM I T I" I 81 I 80 I 11 10 I 8 I l E I u
~ MR --".*,-~I--

The condition codes are not affected by this instruction.

Instruction Format:
SWI

Opcode:

CCR

23 16 15 8 7

10 0 0 0 0 0 0 0100 0 0

Instruction Fields:
None

Timing: 8 oscillator clock cycles

Memory: 1 program word

o 0 0 0 I 0

SWI

3 2 o
N I z

o
o 0 0 0 1 1 01

-

-

Tee Transfer Conditionally Tee

Operation: Assembler Syntax:
If cc, then S1 ~ 01 Tcc S1,01

If cc, then S1 ~ 01 and S2 ~ 02 Tcc S1 ,01 S2,02

Description: Transfer data from the specified source register S1 to the specified desti­

nation accumulator 01 if the specified condition is true. If a second source register S2
and a second destination register 02 are also specified, transfer data from address reg­
ister S2 to address register 02 if the specified condition is true. If the specified condition
is false, a NOP is executed. The term "cc" may specify the following conditions:"

CC (HS)
CS (LO)
EC
EQ
ES
GE
GT
LC
LE
LS
LT
MI
NE
NR
PL
NN

where

"cc" Mnemonic
- carry clear (higher or same)
- carry set (lower)
- extension clear
- equal
- extension set
- greater than or equal
- greater than
-limit clear
- less than or equal
-limit set
-less than
- minus
- not equal
- normalized
-plus
- not normalized

o denotes the logical complement of U,
+ denotes the logical OR operator,
- denotes the logical ANO operator, and
EB denotes the logical Exclusive OR operator

Condition
C=O
C=1
E=O
Z=1
E=1
N E9 V=O
Z+(N E9 V)=O
L=O
Z+(N EB V)=1
L=1
N E9 V=1
N=1
Z=O
Z+(O'-E)=1
N=O
Z+(O-E)=0

When used after the CMP or CMPM instructions, the Tcc instruction can perform many

useful functions such as a "maximum value," "minimum value," "maximum absolute
value," or "minimum absolute value" function. The desired value is stored in the destina-

Tee Transfer Conditionally Tee

tion accumulator D1 . If address register S2 is used as an address pointer into an array of
data, the address of the desired value is stored in the address register D2. The Tec
instruction may be used after any instruction and allows efficient searching and sorting
algorith ms.

The Tcc instruction uses t~e internal data ALU paths and internal address ALU paths.
The Tce instruction does not affect the condition code bits.

Note: This instruction is considered to be a move-type instruction. Due to instruction
pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed with this instruction, the
new contents may not be available for use until the second following instruction. See the
restrictions discussed in A9.6 - R, N, and M Register Restrictions on page A-31 O.

Example:

CMP XO,A
TGT XO,A RO,R1

;compare XO and A (sort for minimum)
;transfer XO -. A and RO -. R1 if XO<A

Explanation of Example: In this example, the contents of the 24-bit XO register are
transferred to the 56-bit A accumulator, and the contents of the 16-bit RO address regis­
ter are transferred to the 16-bit R1 address register if the specified condition is true. If the
specified condition is not true, a NOP is executed.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I LF I DM I T I ** I S1 I SO I 11 I 10 I s I L I E I u N I z
~ MR ~ ~ CCR

The condition codes are not affected by this instruction.

Tee Transfer Conditionally Tee

Instruction Format:
Tcc S1,01

.Opcode:

23 16 15 8 7 0

10 0 o 0 0 0 1 ole c c c 0 0 0 01 0 J J J 000 01

Instruction Fields:
cc=4=bit condition code=CCCC

81,D1 J J J D Mnemonic CCCC Mnemonic CCCC
B,A 0 0 0 0 CC (HS) o 000 CS (LO) 0 o 0
A,B 0 0 0 1 GE o 0 0 1 LT 0 o 1
XO,A 1 0 0 0 NE 001 0 EQ 0 1 0
XO,B 1 0 0 1 PL o 0 1 1 MI 0 1 1
X1,A 1 1 0 0 NN o 1 0 0 NR 1 o 0
X1,B 1 1 0 1 EC o 1 0 1 ES 1 o 1
YO,A 1 0 1 0 LC o 1 1 0 LS 1 1 0
YO,B 1 0 1 1 GT o 1 1 1 LE 1 1 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

Timing: 2 oscillator clock cycles

Memory: 1 program word

Tee Transfer Conditionally Tee

Instruction Format:
Tcc S1,D1 S2,02

Opcode:
23 16 15 870

10 0 0 0 0 0 1 11c c C COt t

Instruction Fields:
cc=4=bit condition code=CCCC

81,01 J J J 0 82 t t t Mnemonic C C C C
B,A 0 0 0 0 Rn n n n CC (HS) 0 0 0 0
A,B 0 0 0 1 GE 0 0 0 1
XO,A 1 0 0 0 NE 0 0 1 0
XO,B 1 0 0 1 PL 0 0 1 1
X1,A 1 1 0 0 02 T T T NN 0 1 0 0
X1,B 1 1 0 1 Rn n n n EC 0 1 0 1
VO,A 1 0 1 0 LC 0 1 1 0
VO,B 1 0 1 1 GT 0 1 1 1
V1,A 1 1 1 0
V1,B 1 1 1 1

where "nnn"=Rn number (RO-R?)

Timing: 2 oscillator clock cycles

Memory: 1 program word

Mnemonic
CS (LO)
LT
EQ
MI
NR
ES
LS
LE

ecce
1 0 o 0
1 0 o 1
1 0 1 0
1 0 1 1
1 1 o 0
1 1 o 1
1 1 1 0
1 1 1 1

TFR Transfer Data ALU Register TFR

Operation: . Assembler Syntax:
S4D (parallel move) TFR S,D (parallel move)

Description: Transfer data from the specified source data ALU register S to the speci­
fied destination data ALU accumulator D. TFR uses the internal data ALU data paths;
thus, data does not pass through the data shifter/limiters. This allows the full 56-bit con­
tents of one of the accumulators to be transferred into the other accumulator without
data shifting and/or limiting. Moreover, since TFR uses the internal data ALU data paths,
parallel moves are possible. The TFR instruction only affects the L condition code bit
which can be set by data limiting associated with the instruction's parallel move opera­
tions.

Example:

TFR A,B A,X1 Y:(R4+N4),YO ;move A to B and X 1 , update YO

Before Execution After Execution

A~I ___ $_O_1:2_3_45_67_:8_9A_B_C_D __ ~ A~I ____ $O_1:_23_45_67_:8_9_AB_C_D __ ~

B ~I ___ $_FF_:F_F_FF_F_F:F_F_FF_F_F __ ~ B~I ____ $O_1:_23_45_67_:8_9_AB_C_D __ ~

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $01 :234567:89ABCD, and the 56-bit B accumulator contains the value
$ff:FFFFFF:FFFFFF. The execution of the TFR A,B instruction moves the 56-bit value in
the A accumulator into the 56-bit B accumulator using the internal data ALU data paths
without any data shifting and/or limiting. The value in the B accumulator would have
been limited if a MOVE A,B instruction had been used. Note, however, that the parallel
move portion of the TFR instruction does use the data shifter/limiters. Thus, the value
stored in the 24-bit X1 register (not shown) would have been limited in this example.
This example illustrates a triple move instruction.

TFR Transfer Data ALU Register TFR

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I: I OM I T I ** J:' I so I 11 I : I .. s I LIE I U clR N I z I v I :1
S - Computed according to the definition in A.S CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move

Instruction Format:
TFR S,D

Opcode:

23 8 7 4 3 o
DATA BUS MOVE FIELD I 0 J J J I d 001

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

S,D J J J D
B,A 0 0 o 0
A;B 0 0 o 1
XO,A 1 0 o 0
XO,B 1 0 o 1
X1,A 1 1 o 0
X1,B 1 1 o 1
YO,A 1 0 1 0
YO,B 1 0 1 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words -

-

TST Test Accumulator TST

Operation: Assembler Syntax:
, s-o (parallel move) TST S (parallel move)

Description: Compare the specified source accumulator S with zero and set the condi­
tion codes accordingly. No result is stored although the condition codes are updated.

Example:

TST A #$345678,B ;set CCR bits for value in A, update B

Before Execution After Execution

AI
~--------------~

$01 :020304:000000 A~I ____ $0_1_:02_0_30_4:_00_00_00 __ ~

CCR 1-1 __________ $0_3_00 __ ----' CCRI~ __________ $0_33_0 __ ~

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $01 :020304:000000, and the 16-bit condition code register contains the value
$0300. The execution of the TST A instruction compares the value in the A register with
zero and updates the condition code register accordingly. The contents of the A accumu­
lator are not affected.

Condition Codes:

15 14 13 12 11 -10 9 8 7 6 5 4 3 2 0

I LF I OM I T I ** I 81 I 80 I 11 I 10 I 8 I LIE I U N I z I v I : I
.... MR CCR _.

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Always cleared

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

TST Test Accumulator

Instruction Format:
TST S

Opcode:

23 8 7 4 3

DATA BUS MOVE FIELD too o 0 I d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S d

A 0
B

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

TST

o
o

WAIT Wait for Interrupt WAIT

Operation:
Disable clocks to the processor core and

enter the WAIT processing state.

Assembler Syntax:
WAIT

Description: Enter the WAIT processing state. The internal clocks to the processor core
and memories are gated off, and all activity in the processor is suspended until an
unmasked interrupt occurs. The clock oscillator and the internal I/O peripheral clocks
remain active. If WAIT is executed when an interrupt is pending, the interrupt will be pro­
cessed; the effect will be the same as if the processor never entered the WAIT state and
three NOPs followed the WAIT instruction. When an unmasked interrupt or external
(hardware) processor RESET occurs, the processor leaves the WAIT state and be,gins
exception processing of the unmasked interrupt or RESET condition. The BRlBG circuits
remain active during the WAIT state. The WAIT state is a low-power standby state. The
processor always leaves the WAIT state in the T2 clock phase (see the DSP56001
Advance Information Data Sheet (ADI1290)). Therefore, multiple processors may be
synchronized by having them all enter the WAIT state and then interrupting them with a
common interrupt.

Restrictions: A WAIT instruction cannot be used in a fast interrupt routine.

A WAIT instruction cannot be the last instruction in a DO loop (at LA).

A WAIT instruction cannot be repeated using the REP instruction.

Example:

WAIT ;enter low power mode, wait for interrupt

Explanation of Example: The WAIT instruction suspends normal instruction execution
and waits for an unmasked interrupt or external RESET to occur.

WAIT Wait for Interrupt WAIT

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I LF I OM I T I ** I S1 I SO I 11 I 10 I s I L E I u N I z
GGR

The condition codes are not affected by this instruction.

Instruction Format:
WAIT

Opcode:
23 16 15 870

10 0 0 0 0 0 0 0100 0 0 0 00 01100001101

Instruction Fields:
None

Timing: The WAIT instruction takes a minimum of 16 cycles to execute when an internal
interrupt is pending during the execution of the WAIT instruction

Memory: 1 program word

-

-

A.a INSTRUCTION TIMING
This section describes how to calculate DSP56K instruction timing manually using the
tables provided. Three complete examples illustrate the "layered" nature of the tables.

Alternatively, the user can determine the number of instruction program words and the
number of oscillator clock cycles required for a given instruction by using the DSP56K
simulator. This method of determining instruction timing information is much faster and
much simpler than using the tables. This powerful software package is available for the
IBM*1M PC and SUN workstation.

• Table A-6 gives the number of instruction program words and the number of oscillator
clock cycles for each instruction mnemonic.

• Table A-7 gives the number of additional (if any) instruction words and additional (if
any) clock cycles for each type of parallel move operation.

• Table A-a gives the number of additional (if any) clock cycles for each type of
MOVEC operation.

• Table A-9 gives the number of additional (if any) clock cycles for each type of
MOVEP operation ..

• Table A-10 gives the number of additional (if any) clock cycles for each type of bit
manipulation (BCHG, BClR, BSET, and BTST) operation.

• Table A-11 gives the number of additional (if any) clock cycles for each type of jump
(Jcc, JClR, JMP, JScc, JSClR, JSET, JSR, and JSSET) operation.

• Table A-12 gives the number of additional (if any) clock cycles for the RTI and RTS
instructions.

• Table A-13 gives the number of additional (if any) instruction words and additional (if
any) clock cycles for each effective addressing mode.

• Table A-14 gives the number of additional (if any) clock cycles for external data,
external program, and external 110 memory accesses.

The number of words per instruction is dependent on the addressing mode and the type
of parallel data bus move operation specified. The symbols used reference subsequent
tables to complete the instruction word count.

The number of oscillator clock cycles per instruction is dependent on many factors,

*IBM is a trademark of International Business Machines.
SUN is a trademark of Sun Microsystems, Inc.

including the number of words per instruction, the addressing mode, whether the instruc­
tion fetch pipe is full or not, the number of external bus accesses, and the number of wait
states inserted in each external access. The symbols used reference subsequent tables
to complete the execution clock cycle count.

All tables are based on the following assumptions:

1. All instruction cycles are counted in oscillator clock cycles.

2. The instruction fetch pipeline is full.

3. There is no contention for instruction fetches. Thus, external program instruc­
tion fetches are assumed not to have to contend with external data memory
accesses.

4. There are no. wait states for instruction fetches done sequentially (as for non­
change-of-flow instructions), but they are taken into account for change-of-flow
instructions which flush the pipeline such as JMP, Jcc, RTI, etc.

To help the user better understand and use the timing tables, the following three exam­
ples illustrate the tables' "layered" nature. (Remember that it is faster and simpler to use
the DSP56K simulator to calculate instruction timing.)

Example 16: Arithmetic Instruction with Two Parallel Moves

Problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction

where

MACR -XO,XO,A X1,X:(R6)- YO,Y:(RO)+

Operating Mode Register (OMR)
Bus Control Register (BCR)
R6 Address Register
RO Address Register

= $02 (normal expanded memory map),
=$1135,
= $0052 (internal X memory), and
= $0523 (external Y memory).

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol­
lowing operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

According to Table A-6, the MACR instruction will require (1 +mv) instruction program
words and will execute in (2+mv) oscillator clock cycles. The term "mv" represents the
additional (if any) instruction program words and the additional (if any) oscillator clock

-

-

cycles that may be required over and above those needed for the basic MACR instruc­
tion due to the parallel move portion of the instruction.

2. Evaluate the "mv" term using Table A-7.

The parallel move portion of the MACR instruction consists of an XV memory move.
According to Table A-7, the parallel move portion of the instruction will require mv=O
additional instruction program words and mv=(ea+axy) additional oscillator clock cycles.
The term "ea" represents the number of additional (if any) oscillator clock cycles that are
required for the effective addressing move specified in the parallel move portion of the
instruction. The term "axy" represents the number of additional (if any) oscillator clock
cycles that are required to access an XV memory operand.

3. Evaluate the "ea" term using Table A-13.

The parallel move portion of the MACR instruction consists of an XV memory move
which uses both address register banks (RO-R3 and R4-R7) in generating the effective
addresses of the XV memory operands. Thus, the two effective address operations
occur in parallel, and the larger of the two "ea" terms should be used. The X memory
move operation uses the "postdecrement by 1" effective addressing mode. According to
Table A-13, this operation will require ea=O additional oscillator clock cycles. The V
memory move operation uses the "postincrement by 1" effective addressing mode.
According to Table A-13, this operation will also require ea=O additional oscillator clock
cycles. Thus, using the maximum value of "ea", the effective addressing modes used in
the parallel move portion of the MACR instruction will require ea=O additional oscillator
clock cycles.

4. Evaluate the "axy" term using Table A-14.

The parallel move portion of the MACR instruction consists of an XV memory move.
According to Table A-14, the term "axy" depends upon where the referenced X and V
memory locations are located in the DSP56K memory space. External memory
accesses require additional oscillator clock cycles according to the number of wait states
programmed into the DSP56K bus control register (SCR). Thus, assuming that the 16-bit
bus control register contains the value $1135, external X memory accesses require wx=1
wait state of additional oscillator clock cycle while external Y memory accesses require
wy=1 wait state or additional oscillator clock cycle. For this example, the X memory refer­
ence is assumed to be an Internal reference; the V memory reference is assumed to be
an external reference. Thus, according to Table A-14, the XV memory reference in the
parallel move portion of the MACR instruction will require axy=wy=1 additional oscillator
clock cycle.

5. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 1 , the instruction

MACR -XO,XO,A X1,X:(R6)- YO,Y:(RO)+

will require

and will execute in

(1 +mv)
= (1 +0)
= 1

= (2+mv)
= (2+ea+axy)
= (2+ea+wy)

instruction program word

= (2+0+1) oscillator clock cycles.
3

Note that if a similar calculation were to be made for a MOVEC, MOVEM, MOVEP, or
one of the bit manipulation (BCHG, BClR, BSET, or BTST) instructions, the use of Table
A-7 would no longer be appropriate. For one of these cases, the user would refer to
Table A-a, Table A-9, or Table A-1 0, respectively.

Example 17: Jump Instruction

Problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction

JlC (R2+N2)

where Operating Mode Register (OMR)
Bus Control Register (BCR)
R2 Address Register
N2 Address Register

= $02 (normal expanded memory map),
= $2246,
= $1000 (external P memory), and
= $0037.

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol­
lowing operations:

1. look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

According to Table A-6, the Jcc instruction will require (1 +ea) instruction program words
and will execute in (4+jx) oscillator clock cycles. The term "ea" represents the number of

-

-

additional (if any) instruction program words that are required for the effective address of
the Jcc instruction. The term "jx" represents the number of additional (if any) oscillator
clock cycles required for a jump-type instruction.

2. Evaluate the "jx" term using Table A-11.

According to Table A-11, the Jcc instruction will require jx=ea+(2 * ap) additional oscilla­
tor clock cycles. The term "ea" represents the number of additional (if any) oscillator
clock cycles that are required for the effective addressing mode specified in the Jcc
instruction. The term "ap" represents the number of additional (if any) oscillator clock
cycles that are required to access a P memory operand. Note that the "+(2 * ap)" term
represents the two program memory instruction fetches executed at the end of a one­
word jump instruction to refill the instruction pipeline.

3. Evaluate the "ea" term using Table A-13.

The JLC (R2+N2) instruction uses the "indexed by offset Nn" effective addressing mode.
According to Table A-13, this operation will require ea=O additional instruction program
words and ea=2 additional oscillator clock cycles.

4. Evaluate the "ap" term using Table A-14.

According to Table A-14, the term "ap" depends upon where the referenced P memory
location is located in the DSP56K memory space. External memory accesses require
additional oscillator clock cycles according to the number of wait states programmed into
the DSP56K bus control register (8CR). Thus, assuming that the 16-bit bus control regis­
ter contains the value $2246, external P memory accesses require wp=4 wait states or
additional oscillator clock cycles. For this example, the P memory reference is assumed
to be an external reference. Thus, according to Table A-14, the Jcc instruction will use
the value ap=wp=4 oscillator clock cycles.

5. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 2, the instruction

will require

and will execute in

JLC (R2+N2)

= (1 +ea)
= (1 +0)
= 1

= (4+jx)

instruction program word

= (4+ea+(2 * ap»
= (4+ea+(2 * wp»
= (4+2+(2 * 4» oscillator clock cycles.
= 14

Example 18: RTll!lstruction

problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction

where

RTI

Operating Mode Register (OMR)
Sus Control Register (SCR)
Return Address (on the stack)

= 02 (normal expanded memory map),
= $0012, and,
= $0100 (internal P memory).

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol­
lowing operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

According to Table A-6, the RTI instruction will require one instruction program word and
will execute in (4+rx) oscillator clock cycles. The term "rx" represents the number of addi­
tional (if any) oscillator clock cycles required for an RTI or RTS instruction.

2. Evaluate the "rx" term using Table A-12.

According to Table A-12, the RTI instruction will require rx=(2 * ap) additional oscillator
clock cycles. The term "ap" represents the number of additional (if any) oscillator clock
cycles that are required to access a P memory operand. Note that the term "(2 * ap)" rep­
resents the two program memory instruction fetches executed at the end of an RTI or
RTS instruction to refill the instruction pipeline.

-

-

3. Evaluate the "ap" term using Table A-14.

According to Table A-14, the term "ap" depends upon where the referenced P memory
location is located in the DSP56K memory space. External memory accesses require
additional oscillator clock cycles according to the number of wait states programmed into
the DSP56K bus control register (BCR). Thus, assuming that the 16-bit bus control regis­
ter contains the value $0012, external P memory accesses require wp=1 wait state or
additional oscillator clock cycles. For this example, the P memory reference is assumed
to be an Internal reference. This means that the return address ($0100) pulled from the
system stack by the RTI instruction is in internal P memory. Thus, according to Table A-
14, the RTI instruction will use the value ap=O additional oscillator clock cycles.

4. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 3, the instruction

will require

and will execute in

RTI

(4+rx)

= (4+(2 * ap»
= (4+(2 * 0»

instruction program word

4 oscillator clock cycles

Table A-6 Instruction Timing Summary (see Note 3)

Instruction Osc. Instruction Osc.
Mnemonic Program Clock Notes Mnemonic Program Clock

Words Cycles Words Cycles

ABS 1 + mv 2+mv lSR 1 + mv 2+ mv
ADC 1 + mv 2+mv LUA 1 4

ADD 1 + mv 2+mv MAC 1 + mv 2+mv

ADDl 1 + mv 2+mv MACR 1 + mv 2+mv

ADDR 1 + mv 2+mv MOVE 1 + mv 2+mv

AND 1 + mv 2+mv MOVEC 1 + ea 2+ mvc

ANDI 1 2 MOVEM 1 + ea 6 + ea+ ap

ASl 1 + mv 2+mv MOVEP 1 + ea 2+ mvp

ASR 1 + mv 2+mv MPY 1 + mv 2+mv

BCHG 1 + ea 4+ mvb MPYR 1 + mv 2+mv

BClR 1 + ea 4+ mvb NEG 1 + mv 2+mv

BSET 1 + ea 4+ mvb NOP 1 2

BTST 1 + ea 4+ mvb NORM 1 2

ClR 1 + mv 2+mv NOT 1 + mv 2+mv

CMP 1 + mv 2+mv OR 1 + mv 2+mv

CMPM 1 +mv 2+mv ORI 1 2

DEBUG 1 4 REP 1 4+mv

DEBUGee 1 4 RESET 1 4

DEC 1 2 RND 1 + mv 2+mv

DIV 1 2 ROl 1 + mv 2+mv

DO 2 6+mv ROR 1 + mv 2+mv

ENDDO 1 2 RTI 1 4+ rx

EOR 1 +mv 2+mv RTS 1 4+ rx

INC 1 2 SBC 1 + mv 2+mv

Jee 1 + ea 4+jx STOP 1 nfa

JClR 2 6+jx SUB 1 + mv 2+mv

JMP 1 + ea 4+jx SUBl 1 + mv 2+mv

JScc 1 + ea 4+jx SUBR 1 + mv 2+mv

JSCLR 2 6+jx SWI 1 8

JSET 2 6+jx Tee 1 2

JSR 1 + ea 4+jx TFR 1 + mv 2+mv

JSSET 2 6+jx TST 1 + mv 2+mv

lSl 1 + mv 2+mv WAIT 1 nfa

Note 1: The STOP instruction disables the intemal clock oscillator. After clock tum on, an internal counter counts
65,536 clock cycles ~f bit 6 in the OMR is clear) before enabling the clock to the internal DSP circuits. If
bit 6 in the OMR is set, only six clock cycles are counted before enabling the clock to the external
DSP circuits.

Note 2: The WAlT instruction takes a minimum of 16 cycles to execute when an internal interrul1 is pending
during the execution of the WAIT instruction.

Note 3: If assumption 4 is not applicable, then to each one-word instruction timing, a "+ap" term should be
added, and, to each two-word instruction, a • +(2*ap)" term should be added to account for the program
memory wait states spent to fetch an instruction word to fill the pipeline.

Notes

1

2 -

-

Table A-7 Parallel Data Move Timing

Parallel Move Operation
+mv +mv

Comments
Words Cycles

No Parallel Data Move 0 0
I Immediate Short Data 0 0

R Register to Register 0 0

U Address Register Update 0 0

X: X Memory Move ea ea+ ax See Note 1

X:R X Memory and Register ea ea+ ax See Note 1

Y: Y Memory Move ea) ea+ ay See Note 1

R:Y Y Memory and Register ea ea+ ay See Note 1

L: Long Memory Move ea ea + axy

X:Y: XV Memory Move 0 ea+ axy

LMS(X) LMS X Memory Moves 0 ea+ ax See Notes 1 ,2

LMSM LMS Y Memory Moves 0 ea+ ay See Notes 1 ,2

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA.
Note 2: The ea term does not apply to ABSOLUTE ADDRESS and IMMEDIATE DATA.

Table A-a MOVEC Timing Summary (see Note 2)

MOVEC Operation
+mvc

Comments
Cycles

Immediate Short 4 Register 0
Register +-+ Register 0

X Memory+-+ Register ea+ax See Note 1

Y MemoryB Register ea + ay See Note 1

P Memory+-+ Register 4+ ea+ ap

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA.
Note 2: If assumption 4 is not applicable, then to each one-word instruction timing, a "+ ap" term should

be added, and to each two-word instruction, a "+ (2 * ap)" term should be added to account for
the program memory wait states spent to fetch an instruction word to fill the pipeline.

Table A-9 MOVEP Timing Summary (see Note 2)

MOVEP Operation +mvp
Comments

Cycles

Register+-+ Peripheral aio See Note 3

Register+-+ Peripheral 2+aio See Note 4
X Memory-0- Peripheral 2 + ea + ax + aio See Note 1

Y Memory+-+ Peripheral 2 + ea + ay + aio See Note 1

P Memory+-+ Peripheral 4 + ea + ap + aio

Note 1: The" 2+ax" or "2+ay" terms do not apply to MOVE IMMEDIATE DATA.
Note 2: If assump:ion 4 is not applicable, then to each one-word instruction timing,a "+ ap" term should be

added, and to each two-word instruction, a "+ (2 * ap)" term should be added to account for the
program memory wait states spent to fetch an instruction word to fill the pipeline.

Note 3: "Register" refers to DATA_ALU register
Note 4: "Register" refers to non DATA_ALU register

Note that the "ap" term in Table A-a and Table A-9 for the P memory move represents
the wait states spent when accessing the program memory during DATA read or write
operations and does not refer to instruction fetches.

Table A-10 Bit Manipulation Timing Summary (see Note 2)

Bit Manipulation Operation
+mvb

Comments
Cycles

Bxxx Peripheral 2 * aio See Note 1

Bxxx X Memory ea + (2 * ax) See Note 1

Bxxx Y Memory ea+ (2 * ay) See Note 1

Bxxx Register Direct 0 See Note 1

BTST Peripheral aio

BTST X Memory ea+ ax

BTST Y Memory ea+ ay

Note 1: Bxxx = BCHG, BCLR, or BSET.
Note 2: If assumliion 4 is not applicable, then to each one-word instruction timing,

a"+ ap" term should be added, and to each two-word instruction, a"+ (2 * ap)"
term should be added to account for the program memory wait states spent to
fetch an instruction word to fill the pipeline.

Table A-11 Jump Instruction Timing Summary

Jump Instruction Operation +Jx
Cycles

Jbit Register Direct 2 * ap
Jbit Peripheral aio + (2 * ap)

JbitXMemory ea+ ax+ (2 * ap)

JbitYMemory ea+ ay+ (2 * ap)

Jxxx

Note 1: Jbit = JCLR, JSCLR, JSET, and JSSET
Note 2: Jxxx = Jcc, JMP, JScc, and JSR

ea + (2 * ap)

Comments

See Note 1
See Note 1

See Note 1

See Note 1

See Note 2

All one-word jump instructions execute TWO program memory fetches to refill the pipe­
line, which is represented by the "+(2 * ap)" term.

All two-word jumps execute THREE program memory fetches to refill the pipeline, but
one of those fetches is sequential (the instruction word located at the jump instruction
2nd word address+ 1), so it is not counted as per assumption 4. If the jump instruction
was fetched from a program memory segment with wait states, another "ap" should be
added to account for that third fetch.

-

Table A-12 RTIIRTS Timing Summary

Operation
+ rx

Cycles

RTI 2 * ap
RTS 2 * ap

The term "2 * ap" comes from the two instruction fetches done by t~e RTI/RTS instruc­

tion to refi II the pipeline.

Table A-13 Addressing Mode Timing Summary

Effective Addressing +ea +ea
Mode Words Cycles

Address Register Indirect
No Update 0 0

Postincrement by 1 0 0

Postdecrement by 1 0 0

Postincrement by Offset Nn 0 0

Postdecrement by Offset Nn 0 0

Indexed by Offset Nn 0 2

Predecrement by 1 0 2

Special

Immediate Data 1 2

Absolute Address 1 2

Immediate Short Data 0 0

Short Jump Address 0 0

Absolute Sort Address 0 0

1/0 Short Address 0 0

Implicit 0 0

Table A-14 Memory Access Timing Summary

Access XMem YMem PMem
Type Access Access Access

X: Int - -
X: Ext - -
Y: - Int -
Y: - Ext -
P: - - Int

P: - - Ext
liD: - - -
liD: - - -
L:XY: Int Int -
L:XY: Int Ext -
L:XY: Ext Int -
L:XY: Ext Ext -

Note 1: wx = external X memory access wait states
wy = external Y memory access wait states
wp = external P memory access wait states
wio = external 110 memory access wait states

I/O +ax +ay +ap
Access Cycle Cycle Cycle

- 0 - -
- wx - -
- - 0 -
- - wy -
- - - 0

- - - wp

Int - - -
Ext - - -
- - - -
- - - -
- - - -
- - - -

+alo
Cycle

-
-
-
-
-
-
0

wio

-
-
-
-

Note 2: wx, wy, wp, and wio are programmable from 0 - 15 wait states in the port A bus control register (BCR).

A.9 INSTRUCTION SEQUENCE RESTRICTIONS

+axy
Cycle

-
-
-
-
-
-
-
-
0

wy

wx

2+wx+wy

Due to the pipelined nature of the DSP56K central processor, there are certain instruc­
tion sequences that are forbidden and will cause undefined operation. Most of these
restricted sequences would cause contention for an internal resource, such as the stack
register. The DSP assembler will flag these as assembly errors.

Most of the following restrictions represent very unusual operations which probably
would never be used but are listed only for completeness.

Note: The DSP56K macro assembler is designed to recognize all restrictions and flag
them as errors at the source code level. Since many of these are instruction sequence
restrictions, they cannot be flagged as errors at the object code level such as when using
the DSP56K simulator's single-line assembler. Therefore, if any changes are made at
the object code level using the simulator, the user should always re-assemble his pro­
gram at the source code level using the DSP56K macro assembler to verify that no
restricted instruction sequences have been generated. -

-

A.9.1 Restrictions Near the End of DO Loops
Proper DO loop operation is not guaranteed if an instruction starting at address LA-2,
LA-1, or LA specifies one of the program controller registers SR, SP, SSL, LA, LC, or
(implicitly) PC as a destination register. Similarly, the SSH register may not be specified
as a source or destination register in an instruction starting at address LA-2, LA-1, or
LA. Additionally, the SSH register cannot be specified as a source register in the DO
instruction itself, and LA cannot be used as a target for jumps to subroutine (Le., JSR,
JScc, JSSET, or JSCLR to LA). The following instructions cannot begin at the indicated
position(s) near the end of a DO loop:

At LA-2, LA-1, and LA

At LA

DO
BCHG LA, LC, SR, SP, SSH, or SSL
BCLR LA, LC, SR, SP, SSH, or SSL
BSET LA, LC, SR, SP, SSH, or SSL
BTSTSSH
JCLRlJSET/JSCLRlJSSET SSH
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
MOVEC to LA, LC, SR, SP, SSH, or SSL
MOVEM to LA, LC, SR, SP, SSH, or SSL
MOVEP to LA, LC, SR, SP, SSH, or SSL
ANDI MR
ORIMR

any two-word instruction *
Jcc
JMP
JScc
JSR
REP
RESET
RTI
RTS
STOP
WAIT

*This restriction applies to the situation in which the DSP56K simulator's single-line
assembler is used to change the last instruction in a DO loop from a one-word instruc­
tion to a two-word instruction. All changes made using the simulator should be reassem­
bled at the source code level using the DSP56K macro assembler to verify that no
restricted instruction sequences have been generated.

Other Restrictions DO SSH,xxxx
JSR to (LA) whenever the loop flag (LF) is set
JScc to (LA) whenever the loop flag (LF) is set
JSCLR to (LA) whenever the loop flag (LF) is set
JSSET to (LA) whenever the loop flag (LF) is set

Note: Due to pipelining, if an address register (RO-R7, NO-N7, or MO-M7) is changed
using a move-type instruction (LUA, Tcc, MOVE, MOVEC, MOVEM, MOVEP, or parallel
move), the new contents of the destination address register will not be available for use
during the following instruction (Le., there is a single instruction cycle pipeline delay).
This restriction also applies to the situation in which the last instruction in a DO loop
changes an address register and the first instruction at the top of the DO loop uses that
same address register. The top instruction becomes the following instruction because
of the loop construct. The assembler will generate a warning if this condition is detected.

A.9.2 Other DO Restrictions
Due to pipelining, the DO instruction must not be immediately preceded by any of the
following instructions:

Immediately before DO

A.9.3 ENDDO Restrictions

BCHG LA, LC, SSH, SSL, or SP
BCLR LA, LC, SSH, SSL, or SP
BSET LA, LC, SSH, SSL, or SP
MOVEC to LA, LC, SSH, SSL, or SP
MOVEM to LA, LC, SSH, SSL, or SP
MOVEP to LA, LC, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

Due to pipelining, the ENDDO instruction must not be immediately preceded by any of
the following instructions:

-

Immediately before ENDDO BCHG lA, lC, SR, SSH, SSl, or SP
BClR lA, lC, SR, SSH, SSl, or SP
BSET lA, lC, SR, SSH, SSl, or SP
MOVEC to LA, lC, SR, SSH, SSl, or SP
MOVEM to lA, lC, SR, SSH, SSl, or SP
MOVEP to lA, lC, SR, SSH, SSl, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR
ORIMR
REP

A.9.4 RTI and RTS Restrictions
Due to pipelining, the RTI and RTS instructions must not be Immediately preceded by
any of the following instructions:

Immediately before RTI

Immediately before RTS

BCHG SR, SSH, SSl, or SP
BClR SR, SSH, SSl, or SP
BSET SR, SSH, SSl, or SP
MOVEC to SR, SSH, SSl, or SP
MOVEM to SR, SSH, SSl, or SP
MOVEP to SR, SSH, SSl, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR or ANDI CCR
ORI MR or ORI CCR

BCHG SSH, SSl, or SP
BClR SSH, SSl, or SP
BSET SSH, SSl, or SP
MOVEC to SSH, SSl, or SP
MOVEM to SSH, SSl, or SP
MOVEP to SSH, SSl, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

A.9.S SP and SSH/SSL Manipulation Restrictions
In addition to all the above restrictions concerning MOVEC, MOVEM, MOVEP, SP, SSH,
and SSl, the following MOVEC, MOVEM, and MOVEP restrictions apply:

Immediately before MOVEC from SSH or SSL BCHG to SP
BClR to SP
BSETto SP

Immediately before MOVEM from SSH or SSL BCHG to SP
BClR to SP
BSETto SP

Immediately before MOVEP from SSH or SSL BCHG to SP
BClR to SP
BSETto SP

Immediately before MOVEC from SSH or SSL MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before MOVEM from SSH or SSL MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before MOVEP from SSH or SSL MOVEC to SP
MOVEM toSP
MOVEP to SP

Immediately before JCLR #n,SSH or SSL,xxxx MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before JSET #n,SSH or SSL,xxxx MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before JSCLR #n,SSH or SSL,xxxx MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before JSSET #n,SSH or SSL,xxxx MOVEC to SP
MOVEM toSP
MOVEP to SP

Immediately before JCLR #n,SSH or SSL,xxxx

Immediately before JSET #n,SSH or SSL,xxxx

BCHG to SP
BClR to SP
BSETto SP

BCHG to SP
BClR to SP
BSETto SP

-

-

Immediately before JSCLR from SSH or SSL,xxxx BCHG to SP
BCLR to SP
BSET to SP

Immediately before JSSET from SSH or SSL,xxxx BCHG to SP
BCLR to SP
BSETto SP

Also, the instruction MOVEC SSH,SSH is illegal.

A.9.G R, N, and M Register Restrictions
Due to pipelining, if an address register Rn is the destination of a MOVE-type instruction
except MOVEP (MOVE, MOVEC, MOVEM, LUA, Tcc) , the new contents will not be
available for use as an address pointer until the second following instruction cycle.

Likewise, if an· offset register Nn or a modifier register Mn is the destination of a MOVE­
type instruction except MOVEP, the new contents will not be available for use in address
calculations until the second following instruction cycle.

However, if the processor is in the No Update addressing mode (where Mn and Nn are
ignored) and register Mn or Nn is the destination of a MOVE instruction, the next instruc­
tion may use the corresponding Rn register as an address pointer. Also, if the processor
is in the Postincrement by 1, Postdecrement by 1, or Predecrement by 1 addressing
mode (where Nn is ignored), a MOVE to Nn may be immediately followed by an instruc­
tion that uses Rn as an address pointer.

Note: This restriction also applies to the situation in which the last instruction in a DO
loop changes an address register using a move-type instruction and the first instruction
at the top of the DO loop uses that same address register. The top instruction becomes
the following instruction because of the loop construct. The DSP assembler will gener­
ate a warning if this condition is detected.

A.9.7 Fast Interrupt Routines
The following instructions may not be used in a fast interrupt routine:

In a fast interrupt rou~ine DO MOVEM from SSH
ENDDO MOVEP from SSH
RTI ORI MR or ORI CCR
RTS ANDI MR or ANDI CCR

STOP
SWI
WAIT

, MOVEC to LA, LC, SSH, SSL, SP, or SR
MOVEM to LA, LC, SSH, SSL, SP, or SR
MOVEP to LA, LC, SSH, SSL, SP, or SR
MOVEC from SSH

A.9.S REP Restrictions
The REP instruction can repeat any single-word instruction except the REP instruction
itself and any instruction that changes program flow. The following instructions are not
allowed to follow an REP instruction:

Immediately after REP DO
Jcc
JCLR
JMP
JSET
JScc
JSCLR
JSR
JSSET
REP
RTI
RTS
STOP

'SWI
WAIT
ENDDO

Also, an REP instruction cannot be the last instruction in a DO loop (at LA).

A.10 INSTRUCTION ENCODING
This section summarizes instruction encoding for the DSP56K instruction set. The
instruction codes are listed in nominally descending order. The symbols used in decod­
ing the various fields of an instruction are identical to those used in the Opcode section of
the individual instruction descriptions. The user should always refer to the actual instruc­
tion description for complete information on the encoding of the various fields of that
instruction.

Section A.10.1 gives the encodings for (1) various groupings of registers used in the
instruction encodings, (2) condition code combinations, (3) addressing, and (4) address­
ing modes.

Section A.10.2 gives the encoding for the parallel move portion of an instruction. These
16-bit partial instruction codes may be combined with the 8-bit data ALU opcodes listed
in Section A.1 0.3 to form a complete 24-bit instruction word.

Section A.10.3 gives the complete 24-bit instruction encoding for those instructions
which do not allow parallel moves.

-

-

Section A.10.4 gives the encoding for the data ALU portion of those instructions which
allow parallel data moves. These a-bit partial instruction codes may be combined with
the 16-bit parallel move opcodes listed in Section A.10.1 to form a complete 24-bit
instruction word.

A.10.1 Partial Encodings for Use in Instruction Encoding

Table A-15 Single-Bit Register Encodings

Code d* e f Where:

0 A XO YO d = 2 Accumulators in Data ALU

1 B X1 Y1 e = 2 Registers in Data ALU

f = 2 Registers in Data ALU

• For class II encodings for R:Y and X:R, see Table A-16

Table A-16 Single-Bit Special Register Encodings

d X:R Class II Opcode R:Y Class II Opcode

0 A ~ X:<ea> XO ~ A YO ~ AA ~ Y:<ea>

1 B ~ X:<ea> XO ~ B YO ~ B B ~ Y:<ea>

Table A-17 Double-Bit Register Encodings

Code DD ee

00 XO XO

01 X1 X1

10 YO A

11 Y1 B

Where: DD = 4 registers in data ALU
ee = 4 XDS registers in data ALU
ff = 4 YDS registers in data ALU

ff

YO
Y1

A

B

Table A-18 Triple-Bit Register Encodings

Code DDD LLL FFF NNN TTT GGG

000 AO A10 MO NO RO *
001 BO B10 M1 N1 R1 SR

010 A2 X M2 N2 R2 OMR

011 B2 Y M3 N3 R3 SP

100 A1 A M4 N4 R4 SSH

101 B1 B M5 N5 R5 SSL

110 A AB M6 N6 R6 LA

111 B BA M7 N7 R7 LC

* Reserved
Where: DOD: 8 accumulators in data ALU

LLL: 8 extended-precision registers in data ALU; LLL field is encoded as LOLL
FFF: 8 address modifier registers in address ALU
NNN: 8 address offset registers in address ALU
TTT: 8 address registers in address
FFF: 8 program controller registers

Table A-19(a) Four-Bit Register Encodings for 12 Registers in Data ALU

D D D D Description

0 0 X X Reserved

0 1 D D Data ALU Register

1 D D D Data ALU Register

Table A-19(b) Four-Bit Register Encodings for 16 Condition Codes

Mnemonic C C C C Mnemo'nic C C C c
CC(HS) 0 0 0 0 CS(LO) 1 0 0 0

GE 0 0 0 1 LT 1 0 0 1

NE 0 0 1 0 EQ 1 0 1 0

PL 0 0 1 1 MI 1 0 1 1

NN 0 1 0 0 NR 1 1 0 0

EC 0 1 0 1 ES 1 1 0 1

LC 0 1 1 0 LS 1 1 1 0

GT 0 1 1 1 LE 1 1 1 1

-

Table A-20 Five-Bit Register Encodings for
28 Registers in Data ALU and Address ALU

e e e e e
or

d d d d d

0 0 0 0 X
0 0 0 1 X

0 0 1 D D

0 1 D D D

1 0 T T T

1 1 N N N

Where: eeeee = source
ddddd = destination

Description

Reserved

Reserved

Data ALU Register

Data ALU Register

Address ALU Register

Address Offset Register

Table A-21 Six-Bit Register Encodings
for 43 Registers On-Chip

d d d d d d Description

0 0 0 0 X X Reserved

0 0 0 1 D D Data ALU Register

0 0 1 D D D Data ALU Register

0 1 0 T T T Address ALU Register

0 1 1 N N N Address Offset Register

1 0 0 F F F Address Modifier Register

1 0 1 X X X Reserved

1 1 0 X X X Reserved

1 1 1 G G G Program Controller Register

Table A-22 Write Control Encoding

W Operation

0 Read Register or Peripheral

1 Write Register or Peripheral

Table A-23 Memory Space Bit Encoding

S Operation

0 X Memory

1 Y Memory

Table A-24 Program Control Unit Register Encoding

E E Register

0 0 MR Mode Register

0 1 CCR Condition Code Register

1 0 OMR Operating Mode Register

1 1 - Reserved

Table A-25 Condition Code and Address Encoding

Code Code Definition

ecce 16 Condition Code Combinations

b bbbb 5-Bit Immediate Data

iiii iiii 8-Bit Immediate Data (int, trac, mask)

iiii iiii xxxx hhhh 12-Bit Immediate Data (iiii iiii hhhh)

aa aaaa 6-Bit Absolute Short (Low) Address

pp pppp 6-Bit Absolute I/O (High) Address

aaaa aaaa aaaa 12-Bit Fast Absolute Short (Low) Address

Table A-26 Effective Addressing Mode Encoding

M2 M1 MO R2 R1 RO Code Definition

0 0 0 r r r Post - N

0 0 1 r r r Post + N

0 1 0 r r r Post -1

0 1 1 r r r Post + 1

1 0 0 r r r No Update

1 0 1 r r r Indexed + N

1 1 1 r r r Pre - 1

1 1 0 0 0 0 Absolute Address

1 1 0 1 0 0 Immediate Data

MMM = three bits M2, M1, MO determine mode

RRR = three bits R2, R1 , RO determine which address register number where rrr refers to the
binary representation of the number

Notes:
(1) R2 is 0 for low register bank and 1 for the high register bank.
(2) M2 is 0 for all post update modes and 1 otherwise.
(3) M1 is 0 for update by register offset and no update and 1 otherwise.
(4) MO is 0 for minus and 1 for plus, except for predecrement which is also 1.
(5) For X:Y: parallel data moves, bits 14 and 13 of the opcode are a subset of the above RRR

and are labelled rr. See the XY parallel data move description for a detailed explanation.
(6) For X:Y: parallel data moves, bits 21 and 20 of the opcode are a subset of the above MMM

and are labelled mm. See the XY parallel data move description for a detailed explanation

-

A.10.2 Instruction Encoding for the Parallel Move Portion of an Instruction

X: V: Parallel Data Move

23 16 15 87 o
1Wmmee f f WrrMMRRR INSTRUCTION OPCODE

X: Parallel Data Move

23 16 15 87 o
01 ddOddd W1MMMRRR INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

o 1 d dOd d d W 0 a a a a a a INSTRUCTION OPCODE

V: Parallel Data Move

23 16 15 87 o
01 dd1ddd W1MMMRRR INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 87 o
01 dd1ddd WOaaaaaa INSTRUCTION OPCODE

L: Parallel Data Move

23 16 15 87 o
01 OOLOLL W1MMMRRR INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 87 0

o 1 0 0 L 0 L L W 0 a a a a a a INSTRUCTION OPCODE

- I: Immediate Short Parallel Data Move

23 16 15 87 o
o 0 d d d d d INSTRUCTION OPCODE

R: Register to Register Parallel Data Move

23 16 15 87 o
o 0 OOOee eeeddddd INSTRUCTION OPCODE

U: Address Register Update Parallel Data Move

23 16 15 87 0

o 0 o 0 0 0 0 0 10M M R R R INSTRUCTION OPCODE

Parallel Data Move NOP

23 16 15 87 0

o 0 o 0 0 0 0 i 0 0 0 0 0 0 0 0 i INSTRUCTION OPCODE

R:Y Parallel Data Move

(Class I)

23 16 15 87 0

o 0 0 1 d e f f W 1 M M M R R R INSTRUCTION OPCODE

(Class II)
23

o 0 0 0 1

X: R Parallel Data Move

(Class I)

OPTIONAL EFFECTIVE ADDRESS EXTENSION

16 15 8 7 0

00 di10M M M R R R i INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 87 0

o 0 0 1 f f d f W 0 M M M R R R INSTRUCTION OPCODE

(Class II)
23

o 0 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

16 15 8 7 0

M M R R R I INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

A.10.3 Instruction Encoding for Instructions Which Do Not Allow Parallel Moves

Note: For following bit class instructions bbbbb = 11 bbb is reserved:
JSSET, JSClR, JSET, JClR, BTST, BCHG, BSET, and BClA.

JScc xxx
23 16 15 87 0

I 0 0 0 0 1 1 1 1 C C C C a a a a I a a a a a a a a I

Jcc XXX

23 16 15 87 0

I 0 0 0 0 1 1 1 o I C C C C a a a a I a a a a a a a a I

JSR XXX

23 16 15 87 0

I 0 0 0 0 1 1 0 1 I 0 0 0 0 a a a a I a a a a a a a a I

JMP XXX

23 16 15 87 0

I 0 0 0 0 1 1 0 0 0 0 0 0 a a a a I a a a a a a a a I

JScc ea

23 16 15 87 0

0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

JSR ea
23 16 15 87 0

0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Jcc ea
23 16 15 87 0

0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

JMP ea
23 16 15 87 0

0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

JSSET
JSSET

JSCLR
JSCLR

JSET
JSET

JCLR
JCLR

JSSET
JSSET

JSCLR
JSCLR

#n,X:pp,XXXX
#n,Y:pp,xxxx

23 16 15 87

00001011

#n,X:pp,XXXX
#n,Y:pp,XXXX

10pppppp

ABSOLUTE ADDRESS EXTENSION

o
1 S 1 b b b b b

23 16 15 87 0

00001011

#n,X:pp,XXXX
#n,Y:pp,XXXX

10pppppp 1S0bbbbb

ABSOLUTE ADDRESS EXTENSION

23 1615 87 0

00001010 10pppppp 1S1 bbbbb

#n,X:pp,XXXX
#n,Y:pp,XXXX

ABSOLUTE ADDRESS EXTENSION

23 16 15 87 0

00001010 10pppppp 1S0bbbbb

#n,X:ea,xxxx
In, Y:ea,xxxx

ABSOLUTE ADDRESS EXTENSION

23 16 15 87

00001011

#n,X:ea,xxxx
In, Y:ea,xxxx

01MMMRRR 1S1 bbbbb

ABSOLUTE ADDRESS EXTENSION

o

23 16 15 87 0

00001011 01MMMRRR 1S0bbbbb

ABSOLUTE ADDRESS EXTENSION

JSET
JSET

JCLR
JCLR

JSSET
JSSET

JSCLR
JSCLR

JSET
JSET

JCLR
JCLR

#n,X:ea,xxxx
#n,Y:ea,xxxx

23 16 15 87

00001010 01MMMRRR 1S1

23

#n,X:ea,xxxx
In, Y:ea,xxxx

ABSOLUTE ADDRESS EXTENSION

16 15 87

b b b b b

00001010 01MMMRRR 1S0bbbbb

23

#n,X:aa,xxxx
#n,Y:aa,xxxx

0000101

#n,X:aa,xxxx
In, Y:aa,xxxx

ABSOLUTE ADDRESS EXTENSION

16 15 87

1 0 Oaaaaaa 1S1 b b b b b

ABSOLUTE ADDRESS EXTENSION

o

o

o

23 16 15 87 0

00001011 OOaaaaaa

23

#n,X:aa,xxxx
#n,Y:aa,xxxx

ABSOLUTE ADDRESS EXTENSION

16 15 87

0000101000aaaaaa

23

#n,X:aa,xxxx
In, Y:aa,xxxx

ABSOLUTE ADDRESS EXTENSION

16 15 87

0000101000aaaaaa

ABSOLUTE ADDRESS EXTENSION

1S0bbbbb

o
1 S 1 b b b b b

o
1S0bbbbb

JSSET #n,S,xxxx

23 16 15 87 0

00001011 11dddddd 001 bbbbb

ABSOLUTE ADDRESS EXTENSION

JSCLR #n,S,xxxx

23 16 15 87 0

00001011 11dddddd OOObbbbb

ABSOLUTE ADDRESS EXTENSION

JSET #n,S,xxxx

23 16 15 87 0

00001010 11dddddd 001 bbbbb

ABSOLUTE ADDRESS EXTENSION

JCLR #n,S,xxxx

23 16 15 87 o
00001010 11dddddd OOObbbbb

ABSOLUTE ADDRESS EXTENSION

BTST #n,X:pp
BTST #n,Y:pp

23 16 15 87 0

0 0 0 0 1 0 1 1 1 0 P P P P P P I 0 S 1 b b b b b

BCHG #n,X:pp
BCHG #n,Y:pp

23 16 15 87 0

I 0 0 0 0 1 0 1 1 I 1 0 P P P P P P I 0 S 0 b b b . b b I

BSET #n,X:pp
BSET #n,Y:pp

23 16 15 87 0

I 0 0 0 0 1 0 1 0 1 0 P P P P P P I 0 S 1 b b b b b I

BCLR
BCLR

BTST
BTST

BCHG
BCHG

BSET
BSET

BCLR
BCLR

BTST
BTST

23

#n,X:pp
#n,Y:pp

I 0 0 0 0

#n,X:ea
#n,Y:ea

16 15 87 0

101010ppppp plOSObbbbb

23 16 15 87 0

00001011 01MMMRRR OS1 bbbbb

#n,X:ea
#n,Y:ea

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 87 0

00001011 01MMMRRR OSObbbbb

#n,X:ea
#n,Y:ea

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 87 0

00001010 01MMMRRR OS1 bbbbb

#n,X:ea
#n,Y:ea

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 87 0

00001010 01MMMRRR OSObbbbb

#n,X:aa
#n,Y:aa

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 87 0

1 00 00 1 01 1 I 00 a a a a a a lOS 1 b b.b b b I

BCHG #n,X:aa
BCHG #n,Y:aa

23 16 15 87 0

I 0 0 0 0 1 0 1 1 0 0 a a a a a a I 0 s 0 b b b b b

BSET #n,X:aa
BSET #n,Y:aa

23 16 15 87 0

I 0 0 0 0 1 0 1 o I
0 0 a a a a a a I 0 S 1 b b b b b I

BClR #n,X:aa
BelR #n,Y:aa

23 16 15 87 0

I 0 0 0 0 1 0 1 o I
0 0 a a a a a a I 0 s 0 b b b b b I

BTST #n,O

23 16 15 87 0

I 0 0 0 0 1 0 1 1
I

1 1 d d d d d d I 0 1 b b b b b I

BCHG #n,O

23 16 15 87 0

I 0 0 0 0 1 0 1 1 I 1 1 d d d d d d I 0 1 0 b b b b b I

BSET #n,O

23 16 15 87 0

I 0 0 0 0 1 0 1 o I 1 1 d d d d d d I 0 1 b b b b b

BCLR #n,O
23

0 0 0 0 1 0

MOVEP X:ea,X:pp
MOVEP V:ea,X:pp
MOVEP #XXXXXX,X:pp
MOVEP X:pp,X:ea
MOVEP X:pp,V:ea
MOVEP X:ea,V:pp
MOVEP V:ea,V:pp
MOVEP #XXXXXX,V:pp
MOVEP V:pp,X:ea
MOVEP V:pp,V:ea

23

0 0 0 0

MOVEP P:ea,X:pp
MOVEP X:pp,P:ea
MOVEP P:ea,V:pp
MOVEP V:pp,P:ea

23

1 0

16 15 87

1 o \ 1 1 d d d d d d \ 0 1 0 b b b b b

16 15 87

0 S W 1 M M M R R R 1 s P P P P P P

OPTIONAL EFFECTIVE ADDRESS EXTENSION

16 15 87

0000100S W1MMMRRR 01 pppppp

MOVEP S,X:pp
MOVEP X:pp,O
MOVEP S,V:pp
MOVEP V:pp,O

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0

0

o

23 16 15 87 0

\ 0 0 0 0

MOVE(M)
MOVE(M)

S,P:ea
P:ea,O

1 00S\W1dd d d d d\OOpppppp\

23 16 15 87 0

00000111 W1MMMRRR 10dddddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOVE(M) S,P:aa
MOVE(M) P:aa,D

23 16 15 87 0

I 0 0 0 0 0 1 1 1 IW 0 a a a a a a I 0 0 d d d d d d I

REP #XXX

23 16 15 87 0

1
0 0 0 0 0 1 1 o 1 11 0 1 0 h h h h I

REP S

23 16 15 87 0

I 0 0 0 0 0 1 1 o I 1 1 d d d d d d I 0 0 1 0 0 0 0 0

REP X:ea
REP Y:ea

23 16 15 87 0

1
0 0 0 0 0 1 1 o I 0 1 M M M R R R 1 0 s 1 0 0 0 0 0

REP X:aa
REP Y:aa

23 16 15 87 0

1
0 0 0 0 0 1 1 0

1
0 0 a a a a a a 1 0 s 1 0 0 0 0 o I

DO #xxx,expr

23 16 15 87 0

0 0 0 0 0 1 1 0 i i 1 0 0 0 h h h h

ABSOLUTE ADDRESS EXTENSION

DO S,expr

23 16 15 87 0

0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION

-

DO X:ea,expr
DO V:ea,expr

23 16 15 87 0

00000110 01MMMRRR OSOOOOOO

ABSOLUTE ADDRESS EXTENSION

DO X:aa,expr
DO V:aa,expr

23 16 15 87 o
00000110 OOaaaaaa OSOOOOOO

ABSOLUTE ADDRESS EXTENSION

MOVE(C) #xx,01
23 16 15 87 0

1000001011

MOVE(C)
MOVE(C)
MOVE(C)
MOVE(C)
MOVE(C)

23

X:ea,01
S1,X:ea
V:ea,01
S1,V:ea
#xxxx,01

16 15 87

00000101 W1MMMRRR Os1ddddd

MOVE(C)
MOVE(C)
MOVE(C)
MOVE(C)

X:aa,D1
S1,X:aa
V:aa,01
S1,V:aa

OPTIONAL EFFECTIVE ADDRESS EXTENSION

o

23 16 15 87 0

MOVE(C)
MOVE(C)

00000101 WOaaaaaa Os1 ddddd

S1,02
S2,01

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 87 0

o 0 .0 0 0 1 0 0 W 1 e e e e eel 1 0 1 d d d d d

LUA ea,O

23 16 15 87 0

I 0 0 0 0 0 1 0 0 I 0 1 o M M R R R I 0 0 0 1 d d d d I

Tee S1,01 S2,02

23 16 15 87 0

I 0 0 0 0 0 0 1 1 C C C C 0 t t I 0 J J J 0 T T TI

Tee S1,01

23 16 15 87 0

0 0 0 0 0 0 1 o I c c c c 0 0 0 o I 0 J J J 0 0 0 0

NORM Rn,O

23 16 15 87 0

I 0 0 0 0 0 0 0 1 I 1 1 0 1 1 R R R I 0 0 0 1 d 1 0 1

OIV S,O
23 16 15 87 0

I 0 0 0 0 0 0 0 1 I 1 0 0 0 0 0 0 o I 0 1 J J d 0 0 o I

MAC (±)S,#n,O

23 16 15 8 7 0

1
0 0 0 0 0 0 0 1 10 0 0 s s s s s I 1 Q Q d k 1 o 1

MACR (±)S,#n,O

23 16 15 8 7 0

1
0 0 0 0 0 0 0 1 1 0 0 0 s s s s s 11 Q Q d k 1 11

MPY (±)S,#n,O

23 16 15 8 7 0 -1
0 0 0 0 0 0 0 1 1 0 0 0 s s s s s 11 Q Q d k 0 o I

MPYR (±)S,#n,D

23 16 15 8 7 0

1
0 0 0 0 0 0 0 1 10 0 0 s s s s s I 1 Q Q d k 0 11

DEBUGcc
23 16 15 87 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 1 1 I 0 0 0 0 c c c c I

DEBUG
23 16 15 87 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 1 o I 0 0 0 0 0 0 0 o I

OR(I) #xx,D

23 16 15 87 0

0 0 0 0 0 0 0 o I 1 1 0 E E I

AND(I) #xx,D
23 16 15 87 0

0 0 0 0 0 0 0 o 1 11 0 1 0 E E 1

-

ENDDO

23 16 15 87 0

0 0 0 0 0 0 0 o 1 0 0 0 0 0 0 0 o 11 0 0 0 1 0 o 1

STOP
23 16 15 87 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 1 1 0 0 0 0 1

WAIT
23 16 15 87 0

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

RESET
23 16 15 87 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

RTS
23 16 15 87 0

1
0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 0 0 0 0 0 1 0 o I

DEC
23 16 15 87 0

0 1 d

INC
23 16 15 87 0

0 d

SWI
23 16 15 87 0

1
0 0 0 0 0 0 0 0 0 '0 0 0 0 0 0 0 0 0 0 0 0 0 -

-

ILLEGAL

23 16 15 87 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 01 0 0 0 0 0 1 0 1

RTI

23 16 15 87 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 o I 0 0 0 0 0 1 0 o I

NOP

23 16 15 87 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 o I

A.10.4 Parallel Instruction Encoding of the Operation Code

The operation code encoding for the instructions which allow parallel moves is divided
into the multiply and non multiply instruction encodings shown in the following subsection.

Multiply Instruction Encoding

The a-bit operation code for multiply instructions allowing parallel moves has different
fields than the nonmultiply instruction's operation code.

The a-bit operation code=1 aaa dkkk whereQQQ=selects the inputs to the multiplier
kkk = three unencoded bits k2, k1, kO
d = destination accumulator
d=O-+A
d=1-+B

Table A-27 Operation Code KO-2 Decode

Code k2 k1 kO

0 positive mpyonly don't round

1 negative mpy and ace round

Table A-28 Operation Code QQQ Decode

Q Q Q S1 S2

0 0 0 xo xo

0 0 1 YO YO

0 1 0 X1 xo
0 1 1 Y1 YO

1 0 0 XO Y1

1 0 1 YO XO

1 1 0 X1 YO

1 1 1 Y1 X1

NOTE: S1 and S2 are the inputs to the multiplier.

MACR 851 ,52,0
MACR 52,51,0

23 87 43 0

DATA BUS MOVE FIELD

MAC B 51,82,0
MAC 52,51,0

23 87 43 0

DATA BUS MOVE FIELD

MPYR B 51,52,0
MPYR 52,81,0

23 87 43 0

DATA BUS MOVE FIELD

MPY () 51,52,0
MPY () 82,51,0 -23 87 43 0

DATA BUS MOVE FIELD

-

Nonmultlply Instruction Encoding

The a-bit operation code for instructions allowing parallel moves contains two 3-bit fields
defining which instruction the operation code represents and one bit defining the destina­
tion accumulator register.

The a-bit operation code = OJJJ Dkkk where JJJ=1/2 instruction number
kkk=1/2 instruction number
0=0'-' A
0=1 .-. B

Table A-29 Nonmultlply Instruction Encoding

JJJ

000

001

0102

011 2

0102

011 2

100

101

110

111

NOTES:

D=O D =1
Src Src

Oper Oper 000

B A MOVE'
B A ADD
B A -
B A -

X1XO X1XO ADD
Y1YO Y1YO ADD
XO_O XO_O ADD
YO_O YO_O ADD
X1_0 X1_0 ADD
Y1_0 yeO ADD

• = Reserved
1 = Special Case 11 (See Table A-30)
2 = Special Case f2 (See Table A-31)

001

TFR
RND
-
-

ADC
ADC
TFR
TFR
TFR
TFR

kick

010 011 100 101 110

ADDR TST * CMP SUBR
ADDL CLR SUB * SUBL
ASR LSR - - ABS
ASL LSL - - NEG
- - SUB SBC

- - SUB SBC
OR EOR SUB CMP AND
OR EOR SUB CMP AND
OR EOR SUB CMP AND
OR EOR SUB CMP AND

111

CMPM
NOT
ROR
ROL

CMPM
CMPM
CMPM
CMPM

Table A-30 Special Case #1

0 P E R CO D E Operation

0 0 0 0 0 0 0 0 MOVE

0 0 0 0 1 0 0 0 ReseNed

For JJJ=01 0 and 011, k1 qualifies source register selection:

Table A-31 Special Case #2

0 J J J d k k k Operation

0 0 1 0 x x 0 x Selects X1 XO

0 0 1 1 x x 0 x Selects Y1YO

0 0 1 x x x 1 x Selects NB

CMPM 81,82

23 87 43 0

DATA BUS MOVE FIELD

AND 8,D

23 87 43 0

DATA BUS MOVE FIELD

CMP 81,82

23 87 43 0

DATA BUS MOVE FIELD

SUB 8,D

23 87 43 0

DATA BUS MOVE FIELD

EOR S,D
23 87 43 0

DATA BUS MOVE FIELD

OR S,D
23 87 43 0

DATA BUS MOVE FIELD

TFR S,D

23 87 43 0

DATA BUS MOVE FIELD

ADD S,D
23 87 43 0

DATA BUS MOVE FIELD

SBC S,D

23 87 43 0

DATA BUS MOVE FIELD

ADC S,D

23 87 43 0

DATA BUS MOVE FIELD

ROL ° 23 43 0

DATA BUS MOVE FIELD

NEG D

23 87 43 0

DATA BUS MOVE FIELD

LSL D

23 87 43 0

DATA BUS MOVE FIELD

ASL D

23 87 0

DATA BUS MOVE FIELD

ROR D
23 87 43 0

DATA BUS MOVE FIELD

ABS D

23 87 43 0

DATA BUS MOVE FIELD

LSR D

23 87 43 0

DATA BUS MOVE FIELD

ASR D

23 87 43 0

DATA BUS MOVE FIELD

NOT D

23 87 43 0

DATA BUS MOVE FIELD

SUBL S,D
23 87 43 0

DATA BUS MOVE FIELD

CLR D
23 87 43 0

DATA BUS MOVE FIELD

ADDL S,D
23 87 43 0

DATA BUS MOVE FIELD

RND D
23 87 43 0

DATA BUS MOVE FIELD

SUBR S,D

23 87 43 0

DATA BUS MOVE FIELD

TST D

23 87 43 0

- DATA BUS MOVE FIELD

ADDR S,D

23 87 43 o
DATA BUS MOVE FIELD

MOVE S,D

23 87 43 o
DATA BUS MOVE FIELD

-

APPENDIX B
BENCHMARK PROGRAMS

-

lEI

B.1 INTRODUCTION
Table 8-1 provides benchmark numbers for 18 common DSP programs implemented on
the 27-MHz DSP56001.

The four code examples shown in Figures 8-1 to B-4 represent the benchmark programs
shown in Table B-1.

B.2 BENCHMARK PROGRAMS
Figure 8-1 is the code for the 20-tap FIR filter shown in Table 8-1. Figure B-2 is the code
for an FFT using a triple nested DO LOOP. Although this code is easier to understand
and very compact, it is not as fast as the code used for the benchmarks shown in Table
8-1, which are highly optimized using the symmetry of the FFT and the parallelism of the
DSP. Figure B-3 is the code for the 8-pole cascaded canonic biquad IIR filter, which uses
four coefficients (see Table B-1). Figure 8-4 is the code for a 2N delayed least mean
square (LMS) FIR adaptive filter, which is useful for echo cancelation and other adaptive
filtering applications.Thecode example shown in Figure 8-5 represents the Real FFT
code for the DSP56002, based on the Glenn Bergland algorithm.

The code for these and other programs is free and available through the Dr. 8uB elec­
tronic bulletin board.

Table 8-1 27-MHz Benchmark Results for the DSP56001 R27
Sample Rate Memory Number of

Benchmark Program (Hz) or Size Clock
Execution Time (Words) Cycles

20 - Tap FIR Filter 500.0 kHz 50 54

64 - Tap FIR Filter 190.1 kHz 138 142

67 - Tap FIR Filter 182.4 kHz 144 148

8 - Pole Cascaded Canonic
540.0 kHz 40 50 Siquad IIR Filter (4x)

8 - Pole Cascaded Canonic
465.5 kHz 45 58

Siquad IIR Filter (5x)

8 - Pole Cascaded Transpose
385.7 kHz 48 70

Siquad IIR Filter

Dot Product 444.4 ns 10 12

Matrix Multiply 2x2
1.556p..s 33 42

times2x2

Matrix Multiply 3x3
1.259 p..s 29 34 times 3x1

M-to-M FFT
98.33 p..s 489 2655 64 Point

M-to-M FFT
489.8 p..s 1641 13255

256 Point

M-to-M FFT
2.453 ms 6793 66240 1024 Point

P-to-M FFT
92.56 p..s 704 2499 64 Point

P-to-M FFT
347.9 p..s 2048 9394

256 Point

P-to-M FFT
1.489 ms 7424 40144 1024 Point

page 132,66,0,6
opt rc

.**************** •••• ************************************
I

;Motorola Austin DSP Operation June 30, 1988
.**
I

;DSP56000f1
;20 - tap FI R filter
;File name: 1-56.asm
.***
I

Maximum sample rate: 379.6 kHz at 20.5 MHzf500.0 kHz at 27.0 MHz
Memory Size: Prog: 4+6 words; Data: 2x20 words
Number of clock cycles: 54 (27 instruction cycles)
Clock Frequency: 20.5 MHzf27.0 MHz
Instruction cycle time: 97.6 nsf74.1 ns

.***
I

This FIR filter reads the input sample
from the memory location Y:input
and writes the filtered output sample
to the memory location Y:output

The samples are stored in the X memory
I The coefficients are stored in the Y memory
**

X MEMORY

X(n)

X(n-1)

X(n-k+1) X(n+1)

C(O)
x(n)

FIR

Y MEMORY

c(O)

c(1)

c(k-1)

G yen)
81---~

y(n)

k-l

Lc(p)x(n-p)

p=O

Figure 8-1 20-Tap FIR Filter Example (Sheet 1 of 2) -

.*._---*-----*-------**-------.... *_ .. * •••• _ •••••••••• * •••••• * •• -*.* •••• * •••• -.-•• -_ •• __ ••• _ •••• -* ••••• _-•• -* ••••• __ •• ,

initialization
-* •• _ ••••••••• -.* •••.••••.•••••... _* •••••

n
start
wddr
cddr
input
output

equ
equ
equ
equ
equ
equ

org
move
move
move
move

20
$40
$0
$0
$ffeO
$ffe1

p:start
#Wddr;rO
#cddr,r4
#n-1,mO
mO,m4

opt cc
filter loop :8+(n-1) cycles

;rO - samples
;r1 - coefficients
;set modulo arithmetic
;for the 2 circular buffers

.*_if_if •••• * ••••••• _ ••••• * ••••••••••• _.*_._*._ .. _* •• _ •• 'ltif*if •••• _._* .. _* _ ... _._ ... _ _. __ _*.* •• * ••• *_ •• ,
movep y:input,x: (rO) ;input sample in memory
elr a x:(rO)+,xO y: (r4)+,yO

rep #n-1
mac xO,yO,a x:(rO)+,xO y:(r4)+,yO
macr xO,xO,a (rO)-

movep a,y:output ;output filtered sample .*. __ ••• _ •••• _*_ .. __ _ _ ... * ••••• _ ••••• __ * ••• _*.if_*_ .•• * •• _.*_* .. __ _* •••• ** •• _* •••••••••• _ ••• _**.'It*.'It'ltif •••• ,
end

Figure 8-1 20-Tap FIR Filter Example (Sheet 2 of 2)

;This program originally available on the Motorola DSP bulletin board.
;It is provided under a DISCLAIMER OF WARRANlY available from
;Motorola DSP Operation, 6501 William Cannon Drive, Austin, TX, 78735

;Radix-2, In-Place, Decimation-In-Tlme FFT (smallest code size).

;Last Update 30 Sep 86

fftr2a
fftr2a

macro
ident

Version 1.1

points,data,coef
1,1

;Radix-2 Decimation-In-Time In-Place FFT Routine

Complex input and output data
Real data in X memory
Imaginary data in Y memory

Normally ordered input data
Bit reversed output data

Coefficient lookup table
-Cosine values in X memory
-Sine values in Y memory

;Macro Call - ffr2a points,data,coef

points
data
coef

number of points (2-32768, power of 2)
start of data buffer
start of sine/cosine table

;Alters Data ALU Registers
x1 xO
a2 a1
b2 b1

;Alters Address Registers

y1
aO
bO

rO nO mO
r1 n1 m1

n2

r4
r5
r6

n4
n5
n6

'Alters Program Control Registers
pc sr

;Uses 6 locations on System Stack

m4
m5
m6

yO
a
b

Figure 8-2 Radix 2, In-Place, Decimation-In-Time FFT (Sheet 1 of 2)

-

;Latest Revision - September 30, 1986

move #points/2,nO
move #1,n2
move #points/4,n6
move #-1,mO
move mO,m1
move mO,m4
move mO,m5
move #0,m6

;initialize butterflies per group
;initialize groups per pass
;initialize C pointer offset
;initialize A and B address modifiers
;for linear addressing

;initialize C address modifier for
;reverse carry (bit-reversed) addressing

;Perform all FFT passes with triple nested DO loop

do
move
move
lua
move
lua
move
move
move

do
move

move
move

do
mac

macr
subl
mac
macr
subl

_end_bfy
move
move

_end-9rp
move
Isr
lsi
move

_end-pass
endm

#@cvi (@log(points)/@log(2)+0.5),_end-pass
#data,rO ;initialize A input pointer
rO,r4 ;initialize A output pointer
(rO)+nO,r1 ;initialize B input pointer
#coef,r6 ;initialize C input pointer
(r1)-,r5 ;initialize B output pointer
nO,n1 ;initialize pointer offsets
nO,n4
nO,n5

n2,_end-9rp
x:(r1),X1 y:(r6),yO

x:(r5),a y:(rO),b
x:(r6)+n6,xO

nO,_end_bfy
x1,yO,b y:(r1)+,y1

-xO,y1,b
b,a
-x1,xO,b
-y1,yO,b
b,a

a,x:(r5)+
x:(rO),b
x:(rO)+,a
x:(r1),x1
b,x:(r4)+

y:(rO),a
b,y:(r4)
a,y:(r5)

y:(rO),b

a,x:(r5)+n5
x:(rO)+nO,x1

y:(r1)+n1 ,y1
y:(r4)+n4,y1

;Iookup -sine and
; -cosine values
;preload data
;update C pointer

;Radx20lT
;butterfly kernel

;update A and B pointers

nO,b1
b n2,a1

;divide butterflies per group by two
;multiply groups per pass by two

a b1,nO
a1,n2

Figure B-2 Radix 2, In-Place, Decimatlon-In-Time FFT (Sheet 2 of 2)

page 132,66,0,6
opt rc _ .. __ _ ... __ *-_ ... _ .. * •••••• _ •••••••• _-••••• ,

;Motorola Austin DSP Operation June 30, 1988
._ ••••• * ••• _ ••••• _ •• _ •• _ ••• _._--------_.--_. __ •••• _._-•••••

;DSP56000/1
;8-pole 4-multiply cascaded canonic IIR filter
;File name: 4-56.asm .•••• _. __ • ___ •••• _ •• _. ___ • ___ • _____ • _____ ._ •• __ • ___ ._ •• *_ •• _*._ _ ___ ._._. __ .. ____ *_ •• ___ •• __ ••• ___ *'It'lt •• _____ •

,
Maximum sample rate: 410.0 kHz at 20.5 MHz/540.0 kHz at 27.0 MHz
Memory Size: Prog: 6+10 words; Data: 4(2+4) words
Number of clock cycles: 50 (25 instruction cycles)
Clock Frequency: 20.5 MHz/27.0 MHz

, Instruction cycle time: 97.5 nsn4.1 ns
.***.*'It'lt'lt __ •• __ .** __ ._* ______ __ ._. ______ _.*._ 'It'lt'lt'lt'lt_._ •••

This IIR filter reads the input sample
from the memory location Y:input
and writes the filtered output sample
to the memory location Y:output

The samples are stored in the X memory
The coefficients are stored in the Y memory

The equations of the filter are:
w(n)= x(n)-ai1 *w(n-1)-ai2*w(n-2)
y(n)= w(n)+bi1 *w(n-1)+bi2*w(n-2)

wen)

x(n}/----(-)/----------1---+-1.,--------(+ }----- yen)

z w(n-1)

~ai1+bi1~
z-1 w(n-2)

f-o_--- ai2 __ -,----..._....Ll--l._--- bi2---__ -l

Figure 8-3 a-Pole 4-Multlply Cascaded Canonic IIR Filter (Sheet 1 of 2)

All coefficients are divided by 2:
w(n)/2=x(n)/2-ai 1/2*w(n-1)-ai2/2*w(n-2)
y(n)/2=w(n)/2+bi 1/2*w(n-1)+bi2/2*w(n-2)

X Memory Organization Y Memory Organization
b1 N/2 Coef. + 4*nsec - 1

wN(n-1) Data + 2*nsec - 1
wN(n-2)

w1 (n-1)
RO'" w1 (n-2) Data

b2N/2
a1N/2
a2N/2

b11/2
b2112
a11/2

R4.. a21/2 Coef.

.*** ,
initialization

.************************************* ,
nsec equ 4
start equ $40
data equ 0
coef equ 0
input equ $ffeO
output equ $ffe1
igain equ 0.5

ori #$08,mr ;set scaling mode
move #data,rO ;point to filter states
move #coef,r4 ;point to filter coefficients
move #2*nsec -1 ,mO
move #4*nsec -1 ,m4
move #igain,y1 ;y1 =initial gain

opt cc
filter loop: 4*nsec + 9

.*** ,

movep y:input,yO
mpy yO,y1,a x:(rO) +,xO y:(r4)+,yO

do #nsec,end_cell
mac -xO,yO,a x:(rO) -,x1 y:(r4) +,yO
macr -x1,yO,a x1 ,x:(rO) + y:(r4) +,yO
mac xO,yO,a a,x:(rO)+ y:(r4) +,yO
mac x1,yO,a x:(rO) +,xO y:(r4) +,yO

end_cell

;getsample
;xO=1st section w(n-2),yO=ai2/2

;do each section
;x1 =w(n-1),yO=ai1/2
;push w(n-1) to w(n-2),yO=bi2/2
;push w(n) to w(n-1),yO=bi1/2
;next iter:xO=w(n-2),yO=ai2/2

rnd a ;round result
movep a,y:output ;output sample

.** ,
end

Figure 8-3 8-Pole 4-Multiply Cascaded Canonic IIR Filter (Sheet 2 of 2)

page 132,60,1,1
;newlms2n.asm
; New Implementation of the delayed LMS on the DSPS6000 Revision C
;Memory map:
; Initial X H
; x(n) x(n-1) x(n-2) x(n-3) x(n-4) hx hO h1 h2 h3
;]]]
; ~ ~ ~
;hx is an unused value to make the calculations faster.

opt cc
ntaps equ 4
input equ $FFCO
output equ $FFC1

org x:$O
state ds S

org y:$O
coef ds 5

org p:$40
move #state,~
move #2,nO
move #ntaps,mO
move #ooef + 1,r4
move #ntaps,m4
move #ooef,rS
move m4,mS

_smploop
movep
move

;error signal is in y1
a,x:(rO)

;start of X

;modS
;coefficients
;modS
;coefficients
;modS

y:input,a

;FIR sum in a=a+h(k) old*x(n-k)
;h(k)new in b=h(k)old + error*x(n-k-1)

cir a x:(rO)+,xO
move x:(rO)+,x1 y:(r4)+,yO
do #taps/2,Jms
mac xO,yO,a yO,b b,y:(rS)+
macr x1,y1,b x:(rO)+,xO y:(r4)+,yO

mac x1,yO,a yO,b b,y:(r5)+
macr xO,y1,b, x:(rO)+,x1 y:(r4)+,yO

Ims -
move b,y:(rS)+
move (rO) -nO

,
;get input sample
;save input sample

;xO=x(n)
;x1 =x(n-1),yO=h(O)
,
;a=h(O)*x(n),b=h(O)
;b=h(0)+e*x(n-1)=h(O)new
;xO=x(n-2) yO=h(1)
;a=a+h(1)*x(n-1) b=h(1)
;b=h(1)+e*x(n-2)
;x1 =x(n-3) yO=H(2)

;save last new c()
;pointer update

;(Get d(n), subtract fir output (reg a), multiply by "u", put
;the result in y1. This section is application dependent.)

movep a,y:output ;outputfir if desired
jmp _smploop
end

Prog
word

1

1
1
2
1
1

Totals: 11

Figure 8-4 LMS FIR Adaptive Filter

Icyc

1
1
3
1
1

2N+8 -

Real input FFT based on Glenn Bergland algorithm

; Normal order input and normal order output.

; Since 56001 does not support bergland addressing, extra instruction cycles are needed
; for converting bergland order to normal order. It has been done in the last pass by
; looking at the bergtable.
; The micro 'bergsincos' generates SIN and COS table with size of points/4, COS in Y, SIN in X
; The micro 'bergorder' generates table for address conversion, the size of twiddle factors is half
; of FFT output's.
; The micro 'norm2berg' converts normal order data to bergland order.
; The micro 'rfft-56b' does FFT.

; Real input data are split into two parts, the first part is put in X, the second in Y.
; Real output data are in X, imaginary output data are in Y.
; The bergland table for converting berglang order to normal order is stored in output buffer.
; In the last pass the FFT output overwrites this table.
; The first real output plus the first imaginary output is DC value of the spectrum.
; Note that only DC to Nyquist frequency range is calculated by this algorithm.
; After twiddle factors and bergtable are generated, you may overwrite 'bergorder',
; 'norm2berg' by 'rfft-56b' for saving P memory.

Real input data points
64
128
256
512
1024

Performance

Clock cycle
1686
3846
8656
19296
49776

,--

P memory
87

Memory (word)

X memory
points/2 (real input) +
points/4 (SIN table) +
points/2 (real output) +
points/2 (bergtable)

Y memory
pOints/2 (imaginary input)
points/4 (COS table)
points/2 (imaginary output)

,---

rfft56bt ident 1,3
page 132,60
opt nomd,nomex,loc,nocex,mu
include 'bergsincos'
include 'bergorder'
include 'norm2berg'
include 'rfft-56b'

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 1 of 8)

,
; Main program to call the rfft-56b macro

Argument list
,
; Latest modifying date - 4-March-92

reset
start
points
binlogsz
idata
odata
bergtable
twiddle

bergsincos

bergorder
norm2berg
order
bergorder
rifft

bergsincos
bergsincos

pi
freq

sincos -

points -
coef -

equ 0
equ $40
equ 512
equ 9
equ $000
equ $400
equ $600
equ $800

points,odata ;generate normal order twiddle factors with size of points/4

opt mex
org p:reset
jmp start

org p:start
movep #O,x:$fffe
points/4,bergtable,odata
points/4,bergtable, twiddle

;0 wait states
;generates bergland table for twiddle factor
;converting twiddle factor from normal order to bergland

points/2,bergtable,odata ;table for final output
points,binlogsz,idata,odata,twiddle,bergtable
end

macro points,coef
ident 1,2

macro to generate sine and cosine coefficient
lookup tables for Decimation in lime FFT
twiddle factors.

number of points (2 - 32768, power of 2)
base address of sine/cosine table

negative cosine value in X memory
negative sine value in Y memory

equ 3.141592654
equ 2.0*pi/@cvf(points)

Figure 8-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 2 of 8)

count

ount

count

count

org y:coef
set 0
dup points/4
dc @cos(@cvf(count)*freq)
set count+ 1
endm

org x:coef
set 0
dup points/4
dc @sin(@cvf(count)*freq)
set count+ 1
endm

endm ;end of bergsincos macro

bergorder macro points,bergtable,offset
bergorder ident 1,3
;bergorder generates bergland order table

generated

move #>4,a
move #points,r4 ;points=number of points of bergtable to be

move #>points/4,b ;nitial pointer
move #bergtable,rO ;table resides in
move b,nO ;init offset
move #>O,xO
move xO,x:(rO)+nO ;seeds
move #>2,xO
move xO,x:(rO)+nO
move #>1,xO
move xO,x:(rO)+nO
move #>3,xO
move xO,x:(rO)
move #bergtable,nO ;Iocation of bergtable
do #@cvi(@log(points/4)/@log(2)),_endl
move b,xO ;xO=i+i
Isr b ;b=i
move b,rO ;rO=i
nop
move a,x:(rO+nO)
lsi a
move a,y1
move r4,a
cmp xO,a

;k-> bergtable
;k=k*2
;save A content
;r4=# of points
;xO=j, if j< points, cont

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 3 of 8)

jle -'oop
move xO,rO
move y1,a
move x:(rO+nO),yO
sub yO,a
move b,x1
move rO,yO
add yO,b
move b,rO
nop
move a,x:(rO+nO)
add x1,b
move b,xO
move x1,b
jmp _star

-'oop move y1,a
_endl

move #>offset,a
move #bergtable,rO
do #points,_add_offset
move x:(rO),B
add A,B
move B,x:(rO)+

_add_offset
endm ;end of sincos macro

;convert normal order to berg lang order
norm2berg macro points,bergtable,twiddle
;points is actual size of table to be converting

move #bergtable,rO
move #twiddle,r2
move r2,r6
do #points,data_temp
move x:(rO)+,r3
move r3,r7
move x:(r3),a
move y:(r7),b
move a,x:(r2)+ b,y:(r6)+

endm

;rO=i+i=j,b=i
;recover A=k
;yO=bergtabl[j]
;k-bergtablU]
;save b, x1 =i
;yO=j=i+i
;b=j+i
;rO=j+i

;store bergtablU+i]
;b=j+i+i
;save b
;recover b=i

;recover a

;offset is the location of output data or twiddle

;rO=pointer of bergland table
;r2=twiddle pointer for X
;r6=twiddle pointer for Y

;get index

;get value
;write back

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 4 of 8)

; Real-Valued FFT for MOTOROLA DSP560001112
,
; based on Glenn Bergland's algorithm

,
rifft macro points,binlogsz,idata,odata, twiddle,bergtable

move #idata,rO
move #points/4,nO
move #twiddle+ 1,r7
lua (rO)+nO,r1
move rO,r4
move r1,r5
move #1,r3
move x:(rO),A y:(r4),yO

do nO,pass1

First Pass -- W(n) = 1

A---\ I---A'= Re[A + jB + (C + jD)] = A + C
B----'--L/----B'= Im[A + jB + (C + jD)] =j(D + B)
C----/I \----C'= Re[A + jB - (C + jD)] = A - C
D---I \---D'= Im[-A - jB + (C + jD)] =j(D - B)

, ---

sub yO,A x:(r1),xO y:(r5),B
add xO,B A,x:(r1)+ y:(r5),A
sub xO,A x:(rO)+,B B,y:(r4)+
add yO,B x:(rO)-, A A,y:(r5)+
move B,x:(rO)+ y:(r4),yO

pass 1

move #idata,rO

do #binlogsz-3,end-pass
move r7,r2
move r2,r6
move nO,A
Isr Ar3,B
lsi A,nO
move B,r3
lua (rO)+nO,r1
move rO,r4
move r1,r5
lua (r3)-,n2
move x:(rO),A y:(r4),yO

;rO = ptr to a
;bflys in ea group, half at ea pass
;r7 always points to start location of twiddle
;r1 = ptr to b
;r4 points to c
;r5 points to d,with predecrement
;group per pass, double at ea pass
;A=a,yO=c

;first pass is trivial, no multiplications

;A=a-c=c' ,B=d,xO=b,
;B=d+b=b', A=d,PUT c' to x:b
;A=d-b=d',B=a,PUT b' to y:c
;B=a+C=a', A=next a,PUT d'
;yO=next c, PUT a'

;rO = ptr to a

;do all passes except first and last
;r2 points to real twiddle
;r6 points to imag twiddle
;half bflys per group
;double group per pass

;r3 is temp reg.
;r1 = ptr to b
;r4 points to c
;r5 points to d
;n2=group per pass -1
;A=a, yO=c

Figure 8-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 5 of 8)

do nO,FirstGrouplnPass
sub yO, A x:(r1),xO y:(r5),B
add xO,B A,x:(r1)+ y:(r5),A
sub xO,A x:(rO)+,B B,y:(r4)+
add yO,B x:(rO)-,A A,y:(r5)+
move B,x:(rO)+ y:(r4),yO

FirstGrouplnPass

do n2,end_group
move r5,rO
move rO,r4
lua (rO)+nO,r1
move r1,r5

;first group in a pass
;A=a-c=c',B=d,xO=b,
;B=d+b=b', A=d,PUT c' to x:b
;A=d-b=d',B=a,PUT b' to y:c
;B=a+c=a', A=next a,PUT d'
;yO=next c, PUT a'

;rest groups in this pass
;rO ptr to next group a
;r4 ptr to next group c
;r1 ptr to next group b
;r5 ptr to next group d

Intermediate Passes -- W(n) < 1

A---\ /---A'= Re[A + jC + (B - jO)W(k) 1 = A+BWr+OWi=A+ T1
B----'-L/----B'= Im[A + jC - (B - jO)W(k) 1 = C+OWr-BWi= T2+C
C----/ I \----C'= Re[A + jC - (B - jO)W(k) 1 = A-(BWr+OWi)=A-T1
0---/ \---0'= Im[-A - jC - (B - jO)W(k)] = -C+OWr-BWi= T2-C

end_bfly

end_group

endJ)ass

move x:(r2)+,xO y:(r6)+,yO
move x:(r1)-,x1 y:(r5),y1
move x:(r1),B

do nO,end_bfly
mpy -x1,xO,B B,x:(r1)
mac yO,y1,B y:(r4),A
sub A,B
addl B,A x:(r1)+,B B,x:(r5)+
mpy -x1,yO,B x:(rO),A A,y:(r4)+
mac -xO,y1,B x:(r1)-,x1
sub B,A
addl A,B A,x:(rO)+ y:(r5),y1

move B,x:(r1)+

move #idata,rO

;xO=Wi, yO=Wr
;x1 =b,y1 =d
;for pointer reason

;nO bfly in this group
;B=-bWi, PUT c' to x:b
;B=dWr-bWi= T2, A=c
;B= T2-c=d'

;A= T2+c=b', PUT d'
;B=-bWr, A=a, PUT b' to y:c
;B=-bWr-dWi=-T1, x1=next b
;A=a+T1=a'
;B=a-T1 =c', y1 =next d, PUT a'

;PUT last b'

;rO = ptr to a

;the last pass converts bergland order to normal order by calling bergtable
move r7,r2 ;r2 points to real twiddle
move r2,r6 ;r6 points to imag twiddle
move rO,r4 r4 points to c
move #bergtable,r3 ;r3=pointer of bergland table
move #(points/4)-1,n2 ;n2=group per pass -1
move x:(r3)+,r7 ;get first index
move x:(r3)+,r1 ;get second index
move #2,n4

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 6 of 8)

; first group in the last pass
move x:(rO)+,A y:(r4)+,B
sub B,A x:(rO)+,xO y:(r6)+,yO
addl A,B A,x:(r1) y:(r4),A
sub xO,A B,x:(r7)
move y:(r4)+,B
add xO,B A,y:(r1)
move x:(rO)+,A B,y:(r7)

move x:(r2)+,xO y:(r4)+,B

do n2,endJastg

Intermediate Passes -- W(n) < 1

;A=a, B=c
;A=a-c=c',xO=b, yO=Wr for next bfly
;B=a+C=a', A=d,PUT c' to x:b
;A=d-b=d',PUT a' to x
;B=d
;B=d+b=b', A=next a,PUT d'
;A=next a, PUT b'

;xO=Wi,B=next c

;rest groups in the last pass

A---\ /---A'= Re[A + jC + (B - jO)W(k)] = A+BWr+OWi=A+ T1
B----\-'-'----B'= Im[A + jC - (B - jO)W(k)] = C+OWr-BWi= T2+C
C----/I \----C'= Re[A + jC - (B - jO)W(k)] = A-(BWr+OWi)=A-T1
0---/ \---0'= Im[-A - jC - (B - jO)W(k)] = -C+OWr-BWi= T2-C

move x:(rO)+,x1 y:(r4)-,y1
mpy x1 ,yO,B x:(r3)+,r7
mac xO,y1,B x:(r3)+,r1
sub B,A
addl A,B A,x:(r1)
mpy y1 ,yO,A B,x:(r7)
mac -x1,xO,A y:(r4)+n4,B
sub B,A x:(r2)+,xO y:(r6)+,yO
addl A,B A,y:(r1)
move x:(rO)+,A B,y:(r7)
move y:(r4)+,B

endm

; Real input FFT based on Glenn Bergland algorithm

; Normal order input and normal order output.

;x1 =b, y1 =d, r4 ptr back to c
;A=bWr,
;B=bWr +dWi= T1 , get first index
;A=a-T1=c', get second index
;B=a+ T1 =a', PUT c' to x:b
;B=dWr, B=c PUT a'
;A=dWi-bWr= T2, B=c, r4 ptr to next c
;A= T2-c=d',xO=next Wi, yO=next Wr
;B= T2+c=b', update r4, A=next a, PUT d'
;PUT b', A=next a
;B=nextc

; Since 56001 does not support Bergland addressing, extra instruction cycles are needed
; for converting Bergland order to normal order.lt has been done in the last pass by
; looking at the bergtable.
; 'bergsincos' generates sin and cos table with size of points/4,COS in Y, SIN in X
; 'bergorder' generates table for address conversion, the size of twiddle factors is half
; of FFT output's
; 'rfft-56b' does FFT .
; Normal order input and normal order output.

Figure 8-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 7 of 8)

; Real input data are split into two parts, the first part is put in X, the second in Y.
; Real output data are in X, imaginary output data are in Y.
; The first real output is DC
; The first imaginary output is the Nyquist frequency.
; Note that only DC to Nyquist frequency range is calculated by this algorithm
; After twiddle factors and bergtable are generated, you may overwrite 'bergorder',
; 'norm2berg' by 'rfft-56b' for saving P memory.

Performance
,-- - -----------------

Real input data points
64
128
256
512
1024

Memory (word)
, --

P memory
87

Clock cycle
1686
3846
8656
19296
49776

X memory
points/2+ (real input)
points/4+ (SIN table)
points/2+ (real output)
points/2 (bergtable)

Ymemory
points/2+ (imaginary input)
points/4+ (COS table)
pOints/2 (imaginary output)

Figure 8-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 8 of 8)

-A-
A Accumulator ' 3-7
Aborted Instructions 7-25
ABS A-22
Absolute Address 6-14
Absolute Short 6-14
Accumulator 6-5
Accumulator Shifter 3-9
Accumulators, A and B 3-7
ADC A-24
ADD A-26
ADDl A-28
ADDR A-30
Address AlU 4-5
Address Bus Signals (AO-A 15) 8-3, 8-5
Address Buses 2-3, 2-4
Address Generation Unit (see AGU) 4-3
Address Modifier Arithmetic Types 4-14

linear modifier 4-16
modulo modifier . 4-18
reverse-carry modifier 4-22
summary 4-25

Address Operands 6-1 0
table A-6

Address Register Files 4-7
R, N, and M register restrictions A-31 0

Addressing Modes 4-3, 4-8, 6-12, A-10
address register direct 6-13
address register indirect 4-9
operators table A-8
register direct 6-13
special . 6-14
timing summary A-304

AGU
address AlU 4-5
address output multiplexers 4-6
address register 4-3, 4-7
address register restrictions 7-10
architecture 4-3
modifier register 4-5, 4-8
modifier register restrictions 7-10
offset register 4-4,4-7
offset register restrictions 7-10
register restrictions 7-10
registers 6-7
registers operands table A-5

AND A-32
ANDI A-34
Application Development System 11-6
Applications 1-7

Arithmetic Instructions 6-22
ASl A-36
ASR A-38
Assembler/Simulator 11-4
Assistance 11-16

-8-
B Accumulator 3-7
BCHG A-40
BClR A-48
Benchmark Programs B-3
Binary Operators A-7
Bit Manipulation Instructions 6-24
Bit Reverse 4-22
Bit Weighing 3-12
BSET A-56
BTST A-64
Bus Control Signals 8-3, 8-5
Buses

address 2-4
data 2-3
transfers between 2-5

Byte, length of 6-5

-c-
Carry Bit , 5-10, A-18
C-Compiler Features 11-5
CCR 5-9
CKOUT 9-10

considerations 9-13
synch with EXT Al 9-14

CKP , 9-10
ClGND 9-10
Clock Stabilization Delay 7-38
CLR A-70
ClVCC 9-10
CMP A-72
CMPM ' A-74
Condition Code Computations (table) A-19
Condition Code Register (CCR) 5-9, A-15

carry (bit 0) 5-10, A-18
extension (bit 5) 5-11, A-16
limit (bit 6) 5-11, A-16
negative (bit 3) 5-10, A-17
overflow (bit 1) 5-10, A-17
scaling (bit 7) 5-11, A-16
symbols table A-8
unnormalized (bit 4) 5-10, A-17

zero (bit 2) 5-10, A-17 memory expansion port (port A) 2-6
Condition Codes A-3 on-chip emulator (OnCE) 2-6
Convergent Rounding 3-6 phase-locked loop (PLL)

based clocking 2-6

-0-
program control unit 2-5

DataALU
double precision multiply mode 3-16

-E-
MAC 3-13 Edge Sensitive 7-16
MAC and logic unit 3-6 Edge Triggered 5-6
programming model 3-19 Electronic Bulletin Board 11-7
summary 3-19 Encodings A-311

Data ALU Accumulator Registers 3-7 condition code and address A-315
Data ALU components 3-3 double-bit register A-312
Data ALU Registers 3-3,6-6 effective addressing mode A-315

input registers 3-5 five-bit register A-314
operands table A-5 four-bit register A-313

Data Arithmetic Logic Unit (see Data ALU) ... 3-3 memory space bit A-314
Data Bus Move Field 6-5 no parallel move A-318
Data Bus Signals (00-015) 8-3, 8-5 nonmultiply instruction A-332
Data Buses 2-3 parallel instruction opcode A-330
Data Conversion 3-11 parallel move A-316
Data Organization 6-6, 6-9 program control unit registers A-315
Data Shifter/Limiter 3-9 single-bit register A-312
DEBUG A-76 six-bit register A-314
Debug Mode triple bit register A-313

entering .. 10-14 write control .. A-314
Debug Request Input (DR) 10-6 ENDDO A-98
Debug Serial Output (DSO) 10-5 ENDDO Instruction Restrictions 7-9
DEBUGcc A-78 EOR A-100
DEC A-80 Exception (Interrupt) Priorities 7-12
Design Verification Support 11-3 Exception Processing State 7-10
DFO-DF3 9-12 EXTAL
DIV A-82 synch w/CKOUT 9-14
DO A-88 Extension Bit 5-11 , A-16
DO Instruction Restrictions 7-8 External Interrupt Request Pins 5-6
DO loop control 2-5
Double Precision Multiply Mode 3-16

algorithm examples 3-16 -F-
Double Precision Multiply Mode Bit 5-13
Dr. BuB 11-7
DSP Applications 1-7
DSP Functions 1-7
DSP News 11-16
DSP56K Central Architecture

central components 2-3

Fast Interrupt 7-10,7-12
Fast Interrupt Execution 7-26
FFT Code ;..... B-3
FIR Filter B-3
Frequency Multiplication 9-3
Frequency Multiplier 9-5

address buses 2-4
address generation unit 2-5 -G-
data ALU . 2-5
data buses 2-3 Global Data Bus (GOB) 2-3

-H- fast 7-26

Hardware DO Loop 6-24, A-88
Hardware Interrupt 7-11
Hardware Interrupt Sources 7-16

IROA , 7-16
IROB 7-16
NMI 7-16
RESET 7-16

Hardware Reset
OnCE pins and 10-5

Helpline 11-16

long 7-29
Interrupt Instruction Fetch 7-24

instructions preCeding 7-25
Interrupt Masks 5-12
Interrupt Priority Levels (IPL) 5-6, 7-14
Interrupt Priority Register 7-14
Interrupt Priority Structure , 7-12
Interrupt Processing State 7-10
I nterrupt Sources 7-16

hardware 7-16
other 7-22
software 7-17

-1- trace 7-22
Interrupt Types 7-12

IIR Riter B-3 IPL 7-14
ILLEGAL A-102 IROA , ' , ... 5-6
Illegal Instruction Interrupt (III) 7-17 IRQB 5-6
Immediate Data•........ 6-14
Immediate Short 6-14
INC A-104 -J-
Instruction Descriptions A-21
Instruction Encoding A-311

Jcc A-106
JCLR A-110

Instruction Format 6-3, A-3
Instruction Groups 6-20
Instruction Guide A-3
Instruction Pipeline 5-6, 7-3

JMP '" A-116
JScc A-118
JSCLR ' A-122
JSET , A-130

restrictions . 7-8
Instruction Sequence Restrictions : .A-305
Instruction Syntax 6-3

JSR , , A-136
JSSET . A-138

Instruction Timing A-294
Instruction Timing Summary A-301 -L-
Instruction Timing Symbols A-9
Instructions

arithmetic 6-22
bit manipulation . 6-24
logical 6-23
loop 6-24
move , ... 6-26
program control . 6-27

Interrupt
fast 7-12
hardware 7-11
long 7-12
restrictions . 7-1 0
sources 7-11

Interrupt Arbitration 7-24
Interrupt Control Pins 2-6
Interrupt Controller 7-24
Interrupt Delay Possibilities 7-25
Interrupt Execution 7-26

LA 5-5, 5-17
LC 5-5,5-17
Level Sensitive 5-6, 7-16
Limit Bit 5-11 A-16
Limiting (Saturation Arithmetic)' .. 3-9
Linear Arithmetic4-14
Linear Modifier 4-16
Lock, PLL, loss of 9-13
Logic Unit 3-6
Logical Instructions 6-23
Long Interrupt 7-12
Long Interrupt Execution 7-29
Long Word 6-5
Loop Address (LA) Register 5-5, 5-17
Loop Counter (LC) Register 5-5, 5-17
Loop Flag Bit 5-13
Loop Instructions 6-24
Low Power Divider 9-3

Low Power Divider (LPD) 9-5 -0-
LSL A-144
LSR A-146
LUA A-148

Offset Reg isters4-4
OnCE 2-6, 10-3

using the OnCE 10-20
OnCE Bit Counter .. " 10-8

-M- OnCE Commands 10-19

MAC 3-6,3-13
MAC Instruction A-150
MACR A-154
Memory Breakpoint Control Bits 10-9
Memory Breakpoint Occurrence Bit 10-11
Memory Upper Limit Register 10-12
MFO-MF11 9-12
MODAlIROA 5-6
MODBIIROB 5-6
MODC/NMI 5-6
Mode Control Pins 2-6
Mode Register (MR) 5-9

double precision multiply mode (bit 14) .. 5-13
interrupt masks (bits 8 and 9) 5-12
loop flag (bit 15) 5-13
scaling mode (bits 10 and 11) 5-12
symbols table A-8
trace mode (bit 13) 5-13, 7-22

Modulo Arithmetic 4-14
Modulo Modifier 4-18

linear addressing 4-18
multiple wrap-around addressing 4-21

MOVE A-158
Move Instructions 6-26
MOVE(C) A-206
MOVE(M) A-214
MOVEP A-220
MPY A-228

OnCE Controller 10-6
OnCE Decoder 10-9
OnCE Memory Breakpoint 10-11
OnCE Pins 10-3
OnCE Serial Interface 10-6
OnCE Status and Control Register 10-9
On-Chip Emulator (OnCE) 2-6
Opcode '" 6-3
Opcode Field 6-5
Operands ; 6-3

accumulator 6-5
byte 6-5
long word 6-5
miscellaneous A-7
short word 6-5
symbols for 6-9
word 6-5

Operating Mode Register (OMR) 5-5, 5-14
stop delay (SO) bit 7-38

Operation Word 6-3
Operators

table, binary A-7
table, unary A-7

Optional Effective Address Extension Word ... 6-3
OR A-244
OR(I) " A-246
Overflow Bit 5-10, A-17
Overflow Protection 3-8

MPYR A-232
-p-

-N- Parallel Move Descriptions A-20, A-160

NEG A-236
Negative Bit 5-10, A-17
NMI 5-6,7-17
Nonmaskable Interrupt (NMI) " 7-17
NOP A-238
NORM A-240
Normal Processing State 7-3
NOT A-242

address register update A-172
immediate short data move A-164
long memory data move A-198
no parallel data move A-162
register and Y memory data move A-192
register to register data move A-168
X memory and register data move A-180
X memory data move A-17 4
XY memory data move A-202
Y memory data move A-186

PC " .. '" '" 5-5
PCAP 9-10

PGND 9-9
Phase Detector 9-4
Phase-Locked Loop (PLL) 2-6, 9-3
PINIT 9-10
PLL . 2-6, 9-3

frequency multiplier 9-5
hardware reset and 9-11
introduction 9-3
loss of lock 9-13
low power divider 9-5
operating frequency 9-11
operation while disabled 9-12
phase detector 9-4
PLL control register 9-5
stop processing state and 9-13
voltage controlled oscillator (VCO) 9-5

PLL Control Register 9-5
division factor bits 9-12
multiplication factor bits 9-12

PLL Pins 9-9
ckout 9-10
ckp '. 9-10
clgnd 9-10
clvcc 9-10
pcap 9-10
pgnd 9-9
pinit 9-10
plock 9-10
pvcc 9-9

PLOCK 9-10
Port A 2-6, 8-3
Port A Interface 8-3
Port A Signals 8-3

bus control 8-5
data bus 8-5
Port A address 8-5

Port A Wait States 8-6
Power Consumption 7-37
Processing States 7-3

interrupt (exception) 7-10
normal , 7-3
stop 7-37
wait , " ., '" 7-36

Program Address Bus (PAB) 2-4
Program Address Generator (PAG) 5-5
Program Control Instructions 6-27
Program Control Registers

OMR and SR 6-8
Program Control Unit 5-3

loop address (LA) 2-6
loop counter (LC) 2-6

operating mode register (OMR) 2-6
program address generator 2-5, 5-5
program counter (PC) 2-6
program decode controller. 2-5, 5-5
program interrupt controller 2-5, 5-6
registers operands table A-6
stack pointer (SP) 2-6
status register (SR) 2-6
system stack 2-5, 5-3

. Program Counter (PC) 5-5, 5-8
Program Data Bus (PDB) 2-3
Program Decode Controller 5-5
Program Interrupt Controller 5-6
Programming Model

AGU 4-6
data ALU 3-19
program control unit 5-8
summary 5-17

PVCC 9-9

-R-
Read/Write Controls 8-5
References

memory 6-11
operand 6-11
program 6-11
register 6-11
stack 6-11

Register Direct 6-13
Register Indirect4-8
Register References 6-11
REP Instruction 5-5, A-248
RESET Instruction A-256
RESET Pin 5-6
Reset Processing State

entering 7-33
leaving 7-33
PLL and 9-11

Reverse-Carry Arithmetic 4-14
Reverse-Carry Modifier4-22
RND A-258
ROL A-262
ROR A-264
Rounding 3-10
RTI A-266
RTI and RTS Instruction Restrictions 7-9
RTS A-268

-5-
Saturation Arithmetic 3-9
SBC A-270
Scaling 3-10
Scaling Bit 5-11, A-16
Scaling Mode Bits 5-12
SD Bit " 7-38
Short Jump 6-14
Short Word 6-5
Sign Extension 3-8
Simulator Features 11-5
Software Debug Occurrence Bit 10-11

. Software Interrupt Sources 7-17
illegal instruction (III) 7-18
SWI 7-17

SP 5-5,5-15
SS '" ... " .. 5-5
Stack Pointer (SP) Register 5-15

restrictions . 7-10
Stack Pointer Register (SP) 5-5
Status Register (SR) 5-5, 5-9

condition code register 5-9
mode register 5-9

Stop Cycles 7 -3~
Stop Delay Bit 7-38
STOP Instruction 7-37, A-274
Stop Processing State 7-37

debug request during 10-15
PLL and 7-41,9-13

SUB A-276
SUBL A-278
SUBR A-280
Support 11-3
SWllnstruction A-282
Syntax 6-3
System Stack (SS) 5-3, 5-5, 5-14

system stack high (SSH) 5-14
system stack high (SSH) restrictions ... 7-10
system stack low (SSL) 5-14
system stack low (SSL) restrictions 7-10

-T-
Tcc A-284
Tech nical Assistance 11-16
TFR " A-288
Timing Calculations A-294
Timing Skew 9-3
Trace Mode Bit 5-13,10-10
Trace Occurrence Bit 10-11

Tracing
OnCE trace logic 1 0-13

Tracing (DSP56000/56001 only) 7-22
Training 11-17
TST A-290

-u-
Unary Operators A-7
Unnormalized Bit 5-10, A-17
User Support 11-3

-v-
V-bit A-17
Voltage Controlled Oscillator (VCO) 9-5

-w-
WAIT Instruction 7-36, A-292
Wait Processing State 7-36

debug request during 10-15
PLL and 9-14

Word
length of 6-5
operation 6-3
optional effective address extension 6-3

-x-
X Address Bus (XAB) 2-4
X Data Bus (XDB) 2-3

-y-

Y Address Bus (YAB) 2-4
Y Data Bus (YDB) 2-3

-z-
Zero Bit 5-1 0, A-17

DSP56K FAMILY INTRODUCTION

DSP56K CENTRAL ARCHITECTURE OVERVIEW _

DATA ARITHMETIC LOGIC UNIT

ADDRESS GENERATION UNIT

PROGRAM CONTROL UNIT

INSTRUCTION SET INTRODUCTION

PROCESSING STATES

PORTA

PLL CLOCK OSCILLATOR

ON-CHIP EMULATION (OnCE) _

ADDITIONAL SUPPORT _

INSTRUCTION SET DETAILS

BENCHMARK PROGRAMS

INDEX

DSP56K FAMILY INTRODUCTION

_ DSP56K CENTRAL ARCHITECTURE OVERVIEW

DATA ARITHMETIC LOGIC UNIT

ADDRESS GENERATION UNIT

_ PROGRAM CONTROL UNIT

_ INSTRUCTION SET INTRODUCTION

_ PROCESSING STATES

PORTA

_ PLL CLOCK OSCILLATOR

_ ON-CHIP EMULATION (OnCE)

ADDITIONAL SUPPORT

INSTRUCTION SET DETAILS

BENCHMARK PROGRAMS

INDEX
1ATX31154-0 Prin1ed in USA 10/1192 BANTA CO. MOTa #13 20,000 DSP YGAVAA

