

LS L Logical Shift Left LS L

47 24
Operation: C= !Aﬁ |<—0 {parallel move)
Assembler
Syntax: LSL D (parallel move)

Description: Logically shift bits 47-24 of the destination operand D one bit to the left
and store the result in the destination accumulator. Prior to instruction execution, bit
47 of D is shifted into the carry bit C, and a zero is shifted into bit 24 of the destination
accumulator D. This instruction is a 24-bit operation. The remaining bits of the des-
tination operand D are not affected. If a zero shift count is specified, the carry bit is
cleared. The difference between LSL and ASL is that LSL operates on only A1 or B1
and always clears the V bit.

Example:
LSL B #$7F,RO ;shift B1 one bit to the left, set up RO
Before Execution ‘ After Execution)
B | - $00:F01234:135798. | B | s$00:E02468:135798 |
sk | $0300 | SR | s0309 |
Explanation of Example: Prior to exectition, the 56-bit B accumulator contains the value

$00:F01234:13579B. The execution of the LSL B instruction shifts the 24-bit value in
the B1 register one bit to the left and stores the result back in the B1 register.

Condition Codes:

5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
o] el s lsof][] L]JeJufn]z]v]ec
— MR = — CCR —

L — Set if data limiting has occurred during parallel move

N — Set if bit 47 of A or B result is set

Z — Set if bits 47-24 of A or B result are zero

V — Always cleared _

C — Set if bit 47 of A or B was set prior to instruction execution

A-106 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

LS L Logical Shift Left LS L

Instruction Format:
LSL D

Opcode:

23) 8 7 43 0
DATA BUS MOVE FIELD 0 0 1t & 0 1 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
D d
A0
B 1

Timing: 2+ mv oscillator clock cycles

Memory: 1+mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-107

LS R ‘ Logical Shift Right . LSR

47 24 ‘
Operation: O—>C (parallel move)
Assembler
Syntax: LSR D (parallel move)

Description: Logically shift bits 47-24 of the destination operand D one bit to the right
and store the result in the destination accumulator. Prior to instruction execution, bit
24 of D is shifted into the carry bit C, and a zero is shifted into bit 47 of the destination
accumulator D. This instruction is a 24-bit operation. The remaining bits of the des-
tination operand D are not affected.

Example:
LSRA A1,N4 ;shift A1 one bit to the right, set up N4
Before Execution After Execution
A | $37:444445:828180 | A | $37:222222:828180 |
sR | s0300 | sR | $0301 |
Explanation of Example: Prior to execution, the 56-bit A accumulator contains the

value $37:444445:828180. The execution of the LSR A instruction shifts the 24-bit value
in the A1 register one bit to the right and stores the result back in the A1 register.

Condition Codes:

5 14 13 12 M 10 9 8 7 6 5 4 3 2 1 0
o] v]eelsi]sofm ol c]e]uln]z]v]ec
— MR R = CCR —>

L — Set if data limiting has occurred during parallel move

N — Always cleared

Z — Set if bits 47-24 of A or B result are zero

V — Always cleared

C — Set if bit 24 of A or B was set prior to instruction execution

A-108 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

LSR Logical Shift Right LSR

Instruction Format:

LSR D
Opcode:
2 8 7 43 0
DATA BUS MOVE FIELD fo o 1 ofa o 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
D d
A0
B 1

Timing: 2+ mv oscillator clock cycles

Memory: 1+mv program words

MOTOROLA _ DSP56000/DSP56001 USER'S MANUAL A-109

LUA Load Updated Address LUA

Operation: Assembler Syntax:
eapd LUA eaDD

Description: Load the updated address into the destination address register D. The
source address register and the update mode used to compute the updated address
are specified by the effective address (ea). Note that the source address register
specified in the effective address is not updated. All update addressing modes may
be used. '

NOTE: This instruction is considered to be a move-type instruction. Due to pipelining,
the new contents of the destination address register (R0-R7 or NO-N7) will not be
available for use during the following instruction (i.e., there is a single instruction cycle
pipeline delay).

Example:
LUA (RO)+NO,R1 ;update R1 using (RO) + NO
Before Execution After Execution
RO | $0003 | RO | $0003 [
No | $0005 | NO | $0005 |
R1 | $0004 | Rl | $0008 |
Explanation of Example: Prior to execution, the 16-bit address register RO contains

the value $0003, the 16-bit address register NO contains the value $0005, and the 16-
bit address register R1 contains the value $0004. The execution of the LUA (R0) + NO,R1
instruction adds the contents of the RO register to the contents of the N0 register and
stores the resulting updated address in the R1 address register. The contents of both
the RO and NO address registers are not affected. :

Condition Codes:

5 M 13 12 1 10 9 8 7 6 5 4 3 2 1 0
el T]si]solnwl[=] o]e]uln]z]v]ec
< MR —— - CCR —>

The condition codes are not affected by this instruction.

A-110 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

LUA Load Updated Address LUA

Instruction Format:

LUA eaD

Opcode:
3 ' 16 15 8 7 0
fo 0o 0 0 0o 1 0 ofo 1 0o Mm Mm R R R[o 0 0 1 ¢ ¢ d d

Instruction Fields:
ea =5-bit Effective Address=MMRRR,
D =4-bit destination address register=dddd

Effective)

Addressing Mode MMRRR Dest. Addr. Reg.D dddd
(Rn)—Nn 0O0rrr RO-R7 Onnn
(Rn)+Nn 01rrr NO-N7 1nnn
(Rn)— 10rrr i
(Rn)+ 11rrr

where “rrr'’* refers to a source address register RO-R7
where “nnn" refers to a destination address register RO-R7 or NO-N7

Timing: 4 oscillator clock cycles

Memory: 1 program word

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-111

MAC Signed Multiply-Accumulate MAC

Operation: ' Assembler Syntax:
D+=S1xS2 # D (parallel move) MAC (=)S1,52,D (parallel move)
D=S1xS2 ¢ D (parallel move) MAC (%)S2,51,D (parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2 and add/subtract
the product to/from the specified 56-bit destination accumulator D. The “—"' sign
option is used to negate the specified product prior to accumulation. The default sign
option is “+"'. '

Example:

MAC X0,X0,A X:(R2)+N2,Y1 ;square X0 and store in A, update Y1 and R2

Before Execution After Execution
xo | $123456 | xo | $123456 |
A | $00:100000:000000 - | A | s00:1296CD:9619c8 |
Explanation of Example: ~ Prior to execution, the 24-bit X0 register contains the value

of $123456 (0.142222166), and the 56-bit A accumulator contains the value
$00:100000:000000 (0.125). The execution of the MAC X0,X0,A instruction squares the
24-bit signed value in the X0 register and adds the resulting 48-bit product to the
56-bit A accumulator (X0*X0+A=0.145227144519197 approximately=
$00:1296CD:9619C8=A).

Condition Codes:

514 13 12 1 109 8 7 6 5 4 3 2 1 0
w e[v fex]sifso]mw]=] o]eluln|[z]v]ec
- MR J—— CCR —>

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result in use

U — Set if A or B result is unnormalized

N — Set if bit 55 of A or B result is set

Z — Set if A or B result equals zero

V — Set if overflow has occurred in A or B resuit

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

A-112 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MAC Signed Multiply-Accumulate MAC

Instruction Format:
MAC (=x)S1,82,D
MAC (=+)S2,51,D

Opcode:

23 s 8 7 43 0
DATA BUS MOVE FIELD 1 0 0 a l d k 1 0
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

§$1*s2 QaQaQ Sign k

X0 X0 000 + 0
YOY0 001 - 1
X1 X0 010 '
YIY0 011
X0Y1T 100
Yo X0 101

110

111

o> O
-0 o

X1 Y0
Y1 X1

NOTE: Only the indicated S1*S2 combinations are valid. X1*X1 and Y1*Y1 are not valid.
Timing: 2+ mv oscillator clock cycles

Memory: 1+ mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-113

MACR Signed Multiply-Accumulate MACR

and Round
Operation: Assembler Syntax:
D=S1%S2+r » D (parallel move) MACR ({+)S1,52,D {paraliel move)
D+S1+S2+r»D (para]lel move) MACR {+)S2,51,D (parallel move)

Description: Mulitiply the two signed 24-bit source operands S1 and S2, add/subtract
the product to/from the specified 56-bit destination accumulator D, and then round
the result using convergent rounding. The rounded result is stored in the destination
accumulator D. The "~ sign option is used to negate the specified product prior to
accumulation. The default sign option is ““+". The contribution of the LS bits of the
result is rounded into the upper portion of the destination accumulator (A1 or B1) by
adding a constant to the LS bits of the lower portion of the accumulator (A0 or BO).
The value of the constant added is determined by the scaling mode bits SO and S1 in
the status register. Once rounding has been completed, the LS bits of the destination
accumulator D (A0 or B0) are loaded with zeros to maintain an unbiased accumulator
value which may be reused by the next instruction. The upper portion of the accu-
mulator (A1 or B1) contains the rounded result which may be read out to the data
buses. Refer to the RND instruction for more complete information on the convergent
rounding process.

Example:

MACR X0,Y0,B B,X0 Y:(R4)+N4,YO ;X0«YO+B # B, rnd B, update X0,Y0,R4

Before Execution After Execution
xo | $123056 | xo | $100000 |
vo | $123456 | vo | $987654 |
B | $00:100000:000000 | B | $00:1296CE:000000 |
Explanation of Example: Prior to execution, the 24-bit X0 register contains the value

$123456 (0.142222166), the 24-bit YO register contains the value $123456 (0.142222166),
and the 56-bit B accumulator contains the value $00:100000:000000 (0.125). The ex-
ecution of the MACR X0,Y0,B instruction multiples the 24-bit signed value in the X0
register by the 24-bit signed value in the YO register, adds the resulting product to the
56-bit B accumulator, rounds the result into the B1 portion of the accumulator, and
then zeros the BO portion of the accumulator (X0*Y0+B=0,145227144519197
approximately =$00:1296CD:9619C8, which is rounded to the value
$00:1296CE:000000=0.145227193832397 =B). ‘

A-114 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MACR Signed Multiply-Accumulate MACR

and Round
Condition Codes:
B ¥ 13 12 10 9 8§ 7 6 5 4 3 2 1 0
e[t s so]ln o] c]JeJuln]z]v]e
«— MR — CCR —>

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use

U — Set if A or B result is unnormalized

N — Set if bit 55 of A or B result is set

Z — Set if A or B result equals zero

V — Set if overflow has occurred in A or B result

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
MACR (+x)S1,82,D
MACR (+)S2,S51,D

Opcode:
23 : 8 7 43 0

DATA BUS MOVE FIELD 1 0 0 afd k 1 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

$1*S2 QaQaQ Sign k D d
X0 X0 000 + 0 A0
YOY0O 001 . 1 B 1
X1 X0 010
Y1Y0 011
X0Y1 100
YO X0 101
X1Y0 110
Y1 X1 111

NOTE: Only the indicated S1*S2 combinations are valid. X1*X1 and Y1*Y1 are not valid.
Timing: 2+ mv oscillator clock cycles

Memory: 1+mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-115

MOVE Move Data MOVE

Operation: Assembler Syntax:

S»D MOVE S,D

Description: Move the contents of the specified data source S to the specified desti-

nation D. This instruction is equivalent to a data ALU NOP with a parallel data move.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits SO and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator exten-
sion register is in use and the data is to be moved into a 24- or 48-bit destination, the
value stored in the destination D is limited to a maximum positive or negative satu-
ration constant to minimize truncation error. Limiting does not occur if an individual
24-bit accumulator register (A1, A0, B1, or BO) is specified as a source operand instead
of the full 56-bit accumulator (A or B). This limiting feature allows block floating-point
operations to be performed with error detection since the L bit in the condition code
register is latched.:

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-
bit source data to be moved into that accumulator is automatically extended to 56 bits
by sign extending the MS bit of the source operand (bit 23) and appending the source
operand with 24 LS zeros. Similarly, any 48-bit source data to be loaded into a 56-bit
accumulator is automatically sign extended to 56 bits. Note that for 24-bjt source
operands both the automatic sign-extension and zeroing features may be disabled by
specifying the destination register to be one of the individual 24-bit accumulator reg-
isters (A1 or B1). Similarly, for 48-bit source operands, the automatic sign-extension
feature may be disabled by using the long memory move addressing mode and spec-
ifying A10 or B10 as the destination operand.

Example:

MOVE X0,A1 ;move X0 to A1 without sign ext. or zeroing’

Before Execution . After Execution
xo | $234567 | xo | $234567 |
Al $FF:FFFFFF:FFFFFF | A | $FF:234567:FFFFFF [

A-116 DSP56000/DSP56001-USER'S MANUAL MOTOROLA

MOVE Move Data MOVE

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $FF:FFFFFF:FFFFFF, and the 24-bit X0 register contains the value $234567. The
execution of the MOVE X0,A1 instruction moves the 24-bit value in the X0 register
into the 24-bit A1 register without automatic sign extension and without automatic
zeroing.

Condition Codes:

5 M 13 12 1 10 9 8 7 6§ 5 4 3 2 1 0
wle]t]ex]si)sofn][]elu]ln]z]v]ec

L — Set if data limiting has occurred during parallel move

Instruction Format:
MO_VE S.D

Opcode:

23 . 8 7 4 3 0
DATA BUS MOVE FIELD 0 0 0 0jo 0 0 0
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields: _
See Parallel Move Descriptions for data bus move field encoding.

Timing: 2+ mv oscillator clock cycles

Memory: 1+mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-117

MOVE Move Data MOVE

Parallel Move Descriptions: Thirty of the sixty-two instructions provide the capability
to specifiy an optional parallel data bus movement over the X and/or Y data bus. This
allows a data ALU operation to be executed in parallel with up to two data bus moves
during the instruction cycle. Ten types of parallel moves are permitted, including
register to register moves, register to memory moves, and memory to register moves.
However, not all addressing modes are allowed for each type of memory reference.
Addressing mode restrictions which apply to specific types of moves are noted in the
individual move operation descriptions. The following section contains detailed de-
scriptions about each type of parallel move operation.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits SO0 and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator exten-
sion register is in use and the data is to be moved into a 24- or 48-bit destination, the
value stored in the destination D is limited to a maximum positive or negative satu-
ration constant to minimize truncation error. Limiting does not occur if an individual
24-bit accumulator register (A1, AQ, B1, or BO) is specified as a source operand instead
of the full 56-bit accumulator (A or B). This limiting feature allows block floating-point
operations to be performed with error detection since the L bit in the condition code
register is latched. '

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-

bit source data to be moved into that accumulator is automatically extended to 56 bits

by sign extending the MS bit of the source operand (bit 23) and appending the source

operand with 24 LS Zeros. Similarly, any 48-bit source data to be loaded into a 56-bit

accumulator is automatically sign extended to 56 bits. Note that for 24-bit source

operands both the automatic sign-extension and zeroing features may be disabled by

specifying the destination register to be one of the individual 24-bit accumulator reg-

isters (A1 or B1). Similarly, for 48-bit source operands, the automatic sign-extension -
feature may be disabled by using the long memory move addressing mode and spec-

ifying A10 or B10 as the destination operand.

Note that the symbols used in decoding the various opcode fields of an instruction
or parallel move are completely arbitrary. Furthermore, the opcode symbols used in
one instruction or parallel move are completely independent of the opcode symbols
used in a different instruction or parallel move.

A-118 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

No Parallel Data Move

Operation: o Assembler Syntax:
(R) (.....)
where (.....) refers to any arithmetic or logical instruction which allows parallel
moves.

Description: ~ Many (30 of the total 62) instructions in the DSP56000/DSP56001 instruction
set allow parallel moves. The parallel moves have been divided into 10 opcode cat-
egories. This category i$ a parallel move NOP and does not involve data bus move

activity.
Example:
ADD X0,A ;add X0 to A (no paralle!l move)
Explanation of Example: This is an example of an instruction which allows parallel

moves but does not have one.

Condition Codes:

5 14 13 12 11 10 9 .8 7 6 5 4 3 2 1 0

Els [v e si]solulw]=]c]e]uln]zfv]ec
l— MR e CCR —>

The condition codes are not affected by this type of parallel move.

Instruction Format:

Opcode:
23 16 15 8 7 0
h 0 1 0 0 0 0 O | 00 0 0 0 0 0 O INSTRUCTION OPCODE

Instruction Fields:
(defined by instruction)

- Timing: mv oscillator clock cycles

Memory: mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-119

Immediate Short Data Move I

Operation: Assembler Syntax:
(.....), #xx » D R (P) #xx,D
where (.....) refers to any arithmetic or logical instruction which allows parallel
moves

Description: Move the 8-bit immediate data value (#xx) into the destination operand D.

If the destination register D is A0, A1, A2, BO, B1, B2, R0-R7, or NO-N7, the 8-bit
immediate short operand is interpreted as an unsigned integer and is stored in the
specified destination register. That is, the 8-bit data is stored in the eight LS bits of
the destination operand, and the remaining bits of the destination operand D are
zeroed.

If the destination register D is X0, X1, Y0, Y1, A, or B, the 8-bitimmediate short operand
is interpreted as a signed fraction and is stored in the specified destination register.
That is, the 8-bit data is stored in the eight MS bits of the destination operand, and
the remaining bits of the destination operand D are zeroed.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may
not be specified as a destination D in the parallel data bus move operation. Thus, if
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as
its destination, the parallel data bus move portion of the instruction may not specify
A0, A1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the
instruction specifies the 56-bit B accumulator as its destination, the parallel data bus
move portion of the instruction may not specify B0, B1, B2, or B as its destination D.
That is, duplicate destinations are NOT allowed within the same instruction.

NOTE: This parallel data move is considered to be a move-type instruction. Due to
pipelining, if an address register (R or N) is changed using a move-type instruction,
the new contents of the destination address register will not be available for use during
the following instruction (i.e., there is a single instruction cycle pipeline delay).

Example:

ABS B #$18,R1 ;take absolute value of B, #$18 » R1

Before Execution After Execution

R1 | $0000 | R $0018 |

A-120 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

I Immediate Short Data Move I

Explanation of Example: Prior to execution, the 16-bit address register R1 contains
the value $0000. The execution of the parallel move portion of the instruction, #$18,R1,
moves the 8-bit immediate short operand into the eight LS bits of the R1 register and
zeros the remaining eight MS bits of that register. The 8-bit value is interpreted as an
unsigned integer since its destination is the R1 address register.

Condition Codes:

5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
el v o] silso]n]wof*=]] e]uln]z]v]e
— MR — CCR

The condition codes are not affected by this type of parallel move.

Instruction Format:

(..v..) #xx,D

Opcode:
23 16 15 8 7 0
[o 0 1 d d d d di i i i i i i i INSTRUCTION OPCODE

Instruction Fields:

D D
D ddddd Sign Ext Zero
X0 00100 no no
X1 00101 no. no
YO 00110 no no
Y1 00111 no no
A0 01000 no no
BO 01001 no no
A2 01010 no no
B2 01011 no no
Al 01100 no no
B1 01101 no no
A 01110 A2 A0
B 01111 B2 BO
RO-R710rrr :

NO-N711nnn
where “rrr” =Rn number
where “nnn"” =Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-121

R : Register to Register Data Move R

Operation: Assembler Syntax:
(.....); S#D « (..o) S.D
where (.....) refers to any arithmetic or logical instruction which allows parallel
moves. ‘ :
Description: Move the source register S to the destination register D.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may
not be specified as a destination D in the parallel data bus move operation. Thus, if
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as
its destination, the parallel data bus move portion of the instruction may not specify
A0, A1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the
instruction specifies the 56-bit B accumulator as its destination, the parallel data bus
move portion of the instruction may not specify B0, B1, B2, or B as its destination D.
That is, duplicate destinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in
the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation.
That is, duplicate sources are allowed within the same instruction.

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS
bits of the 24-bit source operand are stored in the 16-bit destination register. When a
16-bit source operand is moved into a 24-bit destination register, the 16 LS bits of the
destination register are loaded with the contents of the 16-bit source operand, and
the eight MS bits of the 24-bit destination register are zeroed.

NOTE: The MOVE A,B operation will result in a 24-bit positive or negative saturation
constant being stored in the B1 portion of the B accumulator if the signed integer
portion of the A accumulator is in use.

NOTE: This parallel data move is considered to be a move-type instruction. Due to
pipelining, if an address register (R or N) is changed using a move-type instruction,
the new contents of the destination address register will not be available for use during
the following instruction (i.e., there is a single instruction cycle pipeline delay).

A-122 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

R Register to Register Data Move R

Example:
MACR -X0,Y0,A Y1,N5 ;—X0*YO+A » A, move Y1 » N5
Before Execution After Execution
v | $001234 | v | $001234 |
Ns | $0000 | N5 | $1234 |
Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value

$001234 and the 16-bit address offset register N5 contains the value $0000. The ex-
ecution of the parallel move portion of the instruction, Y1,N5, moves the 16 LS bits
of the 24-bit value in the Y1 register into the 16-bit N5 register.

Condition Codes:

5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
F et]e]si]so[n[w[=*]c]efuln]z]v]ec
[<— MR e CCR _—

L — Set if data limiting has occurred during parallel move

MOTOROLA DSP56000/DSP56001 USER'S MANUAL : A-123

R

Instruction Format:

Register to Register Data Move

(vo...) SD
Opcode
23 16 15 8 7 0
I 0 0 1 0 0 0 e eje e e d d d d dI *INSTRUCTION OPCODE
Instruction Fields:
eeeee S D D
SorDddddd S/L Sign Ext Zero
X0 00100 no no no
X1 00101 no no no
Y0 00110 no no no
Y1 00111 no no no
A0 01000 no no no
BO 01001 no no no
A2 01010 no no no
B2 01011 no no no
A1 01100 . no no no
B1 01101 no no no
A 01110 yes A2 A0
B 01111 yes B2 BO
RO-R710rrr

NO-N711nnn

where “rrr'” =Rn number
where “nnn” =Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

A-124

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

U Address Register Update U

Operation: Assembler Syntax:
(oon..); ea » Rn (.....) ea
where (.....) refers to any arithmetic or logical instruction which allows parallel
moves.

Description: Update the specified address register according to the specified effective
addressing mode. All update addressing modes may be used.

Example:
RND B (R3)+N3 ;round value in B into B1, R3+ N3 » R3
Before Execution After Execution
R3 | $0007 | R3 | $0008 |
N3 | $0004 | N3 | $0004 |
Explanation of Example: Prior to execution, the 16-bit address register R3 contains

the value $0007, and the 16-bit address offset register N3 contains the value $0004.
The execution of the parallel move portion of the instruction, (R3)+ N3, updates the
R3 address register according to the specified effective addressing mode by adding
the value in the R3 register to the value in the N3 register and storing the 16-bit result
back in the R3 address register.

Condition Codes:

5 14 13 12 1 10 9 8 7 6 5 4 3 2 1'0
w et {e]sifso]nfw]=*]c[e]ulnfjz]v]c
— MR — > CCR ' —>

The condition codes are not affected by this type of parallel move.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-125

U : Address Register Update U

Instruction Format:

(.....) ea

Opcode
23 16 15 87 0
{o 0o 1 0 0 0 o ofo 1 o Mm m & B R| insTRUCTION oPCODE |

Instruction Fields:
ea = 5-bit Effective Address=MMRRR

Effective
Addressing Mode MMRRR
(Rn)—Nn 00rrr
(Rn)+Nn 01rrr
(Rn)— 10rrr
(Rn) + 11rrr

where “rrr”’ refers to an address register RO-R7

Timing: mv oscillator clock cycles

Memory: mv program words

A-126 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

X . X Memory Data Move X .

Operation: Assembler Syntax:
(.....); X:ea# D (.....) X:eaD
(o0); X:aa®p D (..... } X:aa,D
(...,); S X:ea (.....) S,X:ea
(...,); S# X:aa : (.....) S,X:aa
(.....); #XXXXXX B D (.....) #xxxxxx,D
where (.....) refers to any arithmetic or logical instruction which allows parallel
moves.

Description: Move the specified word operand from/to X memory. All memory ad-
dressing modes, including absolute addressing and 24-bit immediate data, may be
used. Absolute short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may
not be specified as a destination D in the paraliel data bus move operation. Thus, if
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as
its destination, the parallel data bus move portion of the instruction may not specify
A0, A1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the
instruction specifies the 56-bit B accumulator as its destination, the parallel data bus
move portion of the instruction may not specify B0, B1, B2, or B as its destination D.
That is, duplicate destinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in
the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation.
That is, duplicate sources are allowed within the same instruction.

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS
bits of the 24-bit source operand are stored in the 16-bit destination register. When a
16-bit source operand is moved into a 24-bit destination register, the 16 LS bits of the
destination register are loaded with the contents of the 16-bit source operand, and
the eight MS bits of the 24-bit destination register are zeroed.

NOTE: This parallel data move is considered to be a move-type instruction. Due to
pipelining, if an address register (R or N) is changed using a move-type instruction,

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-127

X: :

X Memory Data Move X .

the new contents of the destination address register will not be available for use during
the following instruction (i.e., there is a single instruction cycle pipeline delay).

Example:
ASL A R2X:-(R2) ;A*2 » A, save updated R2 in X:(R2)
Before Execution After Execution
Rz | $1001 | R2 | $1000 |
X:$1000 | $000000 | x:$1000 | $001000 |
Explanation of Example: Prior to execution, the 16-bit R2 address register contains

the value $1001, and the 24-bit X memory location X:$1000 contains the value $000000.
The execution of the parallel move portion of the instruction, R2,X: —(R2), predecre-
ments the R2 address register and then uses the R2 address register to move the
updated contents of the RZ address register into the 24-bit X memory location X:$1000.

Condition Codes:

5 W 138 12 1 0 8 B 7 8§ 5 4 3 2 1 0
vl r]=]si]so]ulw][e=]c]eJu]n]z]v]ec
MR - CCR —

L — Set if data limiting has occurred during parallel move

NOTE: The MOVE A, X:ea operation will result in a 24-bit positive or negative satu-

ration constant being stored in the specified 24-bit X memory location if the signed
integer portion of the A accumulator is in use.

A-128 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

X: X Memory Data Move X .

Instruction Format:

(.....) X:ea,D
(.....) S, X:ea
[) #xxxxxx,D
Opcode
23 16 15 87 0
0 1 d d 0 d d d{W1MMMEBR R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENS!ON

Instruction Fields:
ea=6-bit Effective Address=MMMMRRR

Effective

Register W Addressing Mode MMMRRR
Read S 0 (Rn)—Nn 000rrr
Write D 1 (Rn) +Nn 001rrr

(Rn)— 010rrr

(Rn)+ 011rrr

(Rn) 100rrr

(Rn+Nn) 1017rrr

—(Rn) 111rrr

Absolute address 110000

Immediate data 110100

S D D S D D
SD ddddd S/L SignExtZero SD ddddd S/L Sign ExtZero
X0 00100 no no no B2 01011 no no no
X1 00101 no no no Al 01100 no no no
YO 00110 no no no B1 01101 no no no
Y1 00111 no no no A 01110 yes A2 A0
A0 01000 no no no B 01111 yes B2 BO
BO 01001 no no no RO-R7 10rrr
A2 01010 NO-N711nnn

where “rrr”” =Rn number
where “nnn"” =Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-129

X Memory Data Move X:

Instruction Format:

23

, 16 15

0

fo 1 d d 0 d d d|w o a a

8 7
a a a a| INSTRUCTION OPCODE |

Instruction Fields: ‘
aa=6-bit Absolute Short Address =aaaaaa

Register W Absolute Short Address aaaaaa
Read S 0 000000
Write D 1 .
111111

S D D
SD ddddd S/ SignExt Zero
X0 00100 no no no
X1 00101 no no no
YO 00110 no no no
Y1 00111 no no no
A0 01000 no no no
BO 01001 no no no
A2 01010 no no no
B2 01011 no no no
A1l 01100 no no no
B1 01101 no no no
A 01110 yes A2 A0
B 01111 vyes B2 BO
RO-R710rrr
NO-N711nnn

where “rrr” =Rn number
where “nnn’"=Nn number

Timing:

mv oscillator clock cycles

Memory: mv program words

A-130

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

X: R X Memory and Register Data Move X . R

Operation: Assembler Syntax:
Class | Class |
(.....); X:ea # D1; S2 » D2 N) X:ea,D1 S2,D2
(.....); S1 9 X:ea; S2 » D2 {(.....) S1,X:ea S2,D2
(.....); #xxxxxx § D1; S2 § D2 (.....) #xxxxxx,D1 $2,D2
Class Il Class Il
{(.....); Ap Xiea; XOp A (.in..) AX:ea X0A
(...,); B¥» X:ea; XO» B (oo...) B, X:ea XO0,B
where (.....) refers to any arithmetic or logical instruction which allows parallel
moves.

Description: Class |I: Move a one-word operand from/to X memory and move another
word operand from an accumulator (S2) to an input register (D2). All memory ad-
dressing modes, including absolute addressing and 24-bit immediate data, may be
used. The register to register move (S2,D2) aliows a data ALU accumulator to be
moved to a data ALU input register for use as a data ALU operand in the following
instruction.

Class Il: Move one-word operand from a data ALU accumulator to X memory and
one-word operand from data ALU register X0 to a data ALU accumulator. One effective
address is specified. All memory addressing modes, excluding long absolute address-
ing and long immediate data, may be used.

For both Class | and Class Il X:R parallel data moves, if the arithmetic or logical opcode-
operand portion of the instruction specifies a given destination accumulator, that same
accumulator or portion of that accumulator may not be specified as a destination D1
in the parallel data bus move operation. Thus, if the opcode-operand portion of the
instruction specifies the 56-bit A accumulator as its destination, the parallel data bus
move portion of the instruction may not specify A0, A1, A2, or A as its destination D1.
Similarly, if the opcode-operand portion of the instruction specifies the 56-bit B ac-
cumulator as its destination, the parallel data bus move portion of the instruction may
not specify B0, B1, B2, or B as its destination D1. That is, duplicate destinations are
NOT allowed within the same instruction.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL ‘ A-131

X . R X Memory and Register Data Move X: R

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1
and/or S2 in the parallel data bus move operation. This allows data to be moved in
the same instruction in which it is being used as a source operand by a data ALU
operation. That is, duplicate sources are allowed within the same instruction. Note
that S1 and S2 may specify the same register.

Class | Example:

CMPM Y0,A AX:$1234 AYO ;compare A,Y0 mag., save A, update YO

Before Execution After Execution
A | s00:800000:000000 | A | $00:800000:000000 |
X:$1234 | $000000 | x:$1234 | STFFFFE |
vo | $000000 | vo | STFFFFF |

Explanation of the Class | Example: Prior to execution, the 56-bit A accumulator contains
the value $00:800000:000000, the 24-bit X memory location X:$1234 contains the value
$000000, and the 24-bit YO register contains the value $000000. The execution of the
parallel move portion of the instruction, A X:$1234 A,Y0, moves the 24-bit limited
positive saturation constant $7FFFFF into both the X:$1234 memory location and the
YO register since the signed portion of the A accumulator was in use.

Class Il Example:

MAC X0,Y0,A B,X:(R1)+ X0,B ;multiply X0 and Y0 and accumulate in A
: ;move B to X memory location pointed to
;by R1 and postincrement R1
;move X0 to B

A-132 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

X . R X Memory and Register Data Move X . R

Before Execution Atter Execution
xo | $400000 | xo | $a00000 |
vo | $600000 | vo | $600000 |
A | $00:000000:000000 | A | s00:300000:000000 |
B | sFr7FFFFF:000000 | B | $00:400000:000000 |

x:$1234 | $000000 | x:$1234 | $800000 |
1| $1234 | R1 | $1235 |

Explanation of the Class Il Example: Prior to execution, the 24-bit registers X0 and YO
contain $400000 and $600000, respectively. The 56-bit accumulators A and B contain
the values $00:000000:000000 and $FF:7FFFFF:000000, respectively. The 24-bit X
memory location X:$1234 contains the value $000000, and the 16-bit R1 register con-
tains the value $1234. Execution of the parallel move portion of the instruction
(B,X:(R1)+ XO0,B) moves the 24-bit limited value of B ($800000) into the X:$1234
memory location and the X0 register ($400000) into accumulator B1 ($400000), sign
extends B1 into B2 ($00), and zero fills BO ($000000). It also increments R1 to $1235.

Condition Codes:

5 13 12 1 10 9 8 7 6 5 4 3 2 1 0
et]si]sofu]w]e] cle]Juln]z]v]ec
«— MR — CCR '

L — Set if data limiting has occurred during parallel move.

MOTOROLA DSP56000/DSP56001 USER’S MANUAL A-133

X:R

X Memory and Register Data Move

Class | Instruction Format:

(...) X:eaD1 S2,D2
(.....) S1,X:ea S2,D2
(...) #xxxxxx, $2,02
Opcode
23 16 15 8 7
© 0 0 1 f f d f|W O0OMMMGR R R| INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea =6-bit Effective Address=MMMRRR

Register W

Read S1 0
Write D1 1

S1D1 f f
X0 00
X1 01
A 10
B 11

Effective

Addressing Mode MMMR R R
{Rn) —Nn 000rrr
{Rn)+Nn 001rrr
(Rn) — 010rrr
(Rn)+ 011rrr
(Rn) 100rrr
{Rn+Nn) 101rrr
—{Rn) 1T11rrr
Absolute address 110000
Immediate data 110100

where “rrr”’ refers to an address register R0-R7

X:R

S1 D1 D1 82 D2 D2
S/L Sign Ext Zero S2 d SiL D2 f Sign Ext Zero
no no no A 0 yes YO 0 no no
no no no B 1 ves Y1 1 no no
yes A2 A0
yes B2 BO

Timing: mv oscillator clock cycles

Memory: mv program words

A-134

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

X . R X Memory and Register Data Move X . R

Class Il Instruction Format:
(vo0..) ApXiea XOBA
(T) BbX:ea XO»B

Opcode
23 16 15 8 7 . 0
0 0 0 01 00 df0 0 M M MRRHR INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea=6-bit Effective Address= MMMRRR

Effective

Addressing Mode MMMRRR
{Rn)—Nn 000rrr
(Rn)+Nn 001rrr
(Rn) - 010rrr
(Rn)+ 011rrr
(Rn) 100rrr
(Rn+Nn) 101 rrer
—(Rn) 111rrr
Absolute address 110000
Immediate data 110100

where “rrr”’ refers to an address register RO-R7

.] D D
S,D S/L Sign Ext Zero d MOVE Opcode
X0 no N/A N/A 0 A#Xiea X0pA
Yo no N/A N/A 1 B#Xea X0»B
A yes A2 A0
B yes B2 BO

Timing: mv oscillator clock cycles

Memory: mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-135

Y: Y Memory Data Move Y:

Operation: ; Assembler Syntax:
{(.....); Yiea® D (.....) Y:eaD
(.....); Y:aap D (.....) Y:aa,D
(..... }; S#Y:ea (...,) S,Y:ea
(.....); S#VY:aa (oo...) S,Y:aa
(.....); #xxxxxx » D (.....) #xxxxkx,D
where (..... } refers to any arithmetic or logical instruction which allows parallel
moves.

Description: Move the specified word operand from/to Y memory. All memory address-
ing modes, including absolute addressing and 24-bit immediate data, may be used.
Absolute short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may
not be specified as a destination D in the parallel data bus move operation. Thus, if
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as
its destination, the parallel data bus move portion of the instruction may not.specify
A0, A1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the
instruction specifies the 56-bit B accumulator as its destination, the parallel data bus
move portion of the instruction may not specify B0, B1, B2, or B as its destination D.
That is, duplicate destinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in
the parallel data bus move operation. This allows data to be ‘r"noved in the same
instruction in which it is being used as a source operand by a data ALU operation.
That is, duplicate sources are allowed within the same instruction.

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS
bits of the 12-bit source operand are stored in the 16-bit destination register. When a
16-bit source operand is moved into a 24-bit destination register, the 16 LS bits of the
destination register are loaded with the contents of the 16-bit source operand, and
the eight MS bits of the 24-bit destination register are zeroed.

NOTE: This parallel data move is considered to be a move-type instruction. Due to
pipelining, if an address register (R or N) is changed using a move-type instruction,

A-136 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Y: Y Memory Data Move Y .

the new contents of the destination address register will not be available for use during
the following instruction (i.e., there is a single instruction cycle pipeline delay).

Example:
EOR .XO,B #$123456,A ;exclusive OR X0 and B, update A accumulator
| Before Execution After Execution
A { SFF:FFFFFR:FFFFFF | A | $00:123456:000000 |
Explanation of Example: ~ Prior to execution, the 56-bit A accumulator contains the

value $FF:FFFFFF:FFFFFF. The execution of the parallel move portion of the instruction,

#$123456,A, moves the 24-bit immediate value $123456 into the 24-bit A1 register,

then sign extends that value into the A2 portion of the accumulator, and zeros the
- lower 24-bit AO portion of the accumulator.

Condition Codes: ,
5 14 13 12 1 10 9 8 1 6 5 4 3 2 1 @

et]]si]sofnfw[=[c]eluln]z]v]ec
< MR —>l— R —]

L — Set if data limiting has occurred during parall'el move
NOTE: The MOVE A,Y:ea operation will result in a 24-bit positive or negative satu-

ration constant being stored in the specified 24-bit Y memory location if the signed
integer portion of the A accumulator is in use.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-137

Y:

Instruction Format:

Y Memory Data Move

(..... } Y:eaD
(.....)} S)Y:ea
(.....) #xxxxxx,D
Opcode
23 16 15 8 7
0 1 d d 1 d d d|/W 1 M M M R R R| INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:)
ea =6-bit Effective Address=MMMRRR .

Effective .
Register W Addressing Mode MMMRRR
ReadS 0 (Rn)—Nn 000Tr
Write D 1 (Rn)+Nn 001
(Rn)— 010r
(Rn)+ 011r
(Rn) 100r
(Rn+Nn) 101r
—{Rn} 111r
Absolute address 1100
Immediate data 1101

where “rrr” refers to an address register RO-R7

SD

X0
X1
Y0
Y1
A0
‘B0
A2

ddddd

S
SiL

no
no
no
no
no
no
no

where “rrr’” =Rn number

where “nnn”=Nn number

D D
Sign Ext Zero

no no
no no
no no
no no
no no
no no
no no

Timing: mv oscillator clock cycles

Memory: mv program words

A-138

CO= 1A

OO A=

DSP56000/DSP56001 USER'S MANUAL

S/L

no
no
no
yes
yes

D

D
Sign Ext Zero
no no
no no
no no
A2 A0
B2 " BO

MOTOROLA

Y: Y Memory Data Move Y .

Instruction Format:

(...,) Y:aaD
(.....) S,Y:aa
Opcode
3 16 15 87 : 0
ﬁ 1 d d 1 d d d[W 0 a a a a a a INSTRUCTION OPCODE

Instruction Fields:
aa=6-bit Absolute Short Address =aaaaaa

Register W Absolute Short Address aaaaaa
Read S 0 000000
Write D 1 .
111111
S D D
S,D ddddd S/iL Sign Ext Zero
X0 00100 no no no
X1 00101 no no no
i (] 00110 no no no
Y1 00111 no no no
A0 01000 no no no
BO 01001 no no no
A2 01010 no no no
B2 01011 no no no
A1l 01100 no no no
B1 01101 no no no
A 01110 yes A2 A0
B 01111 yes B2 BO
RO-R7 10rrr
NO-N7 11nnn

where “rrr” =Rn number
where “nnn” =Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-139

R . Y Register and Y Memory Data Move R . Y

Operation: Assembler Syntax:
Class | Class |
(.....); S19D1; Y:ea» D2 (.....) S1,D1 Y:ea,D2
(.....); S19#D1; S2p Y:ea (R) S1,D1 S2,Y:ea
(.....); S1 8 D1; #xxxxxx » D2 {(.....) S1,D1 #xxxxxx,D2
Class Il Class Il
(.....); YOBA; Ap Y:ea (.....) YO,A AY:ea
(.....); YO B; By Y:ea (.....) YO,B B,Y:ea
where (.....) refers to any arithmetic or logical instruction which allows parallel
moves.

Description: Class I: Move a one-word operand from an accumulator (S1) to an input
register (D1) and move another word operand from/to Y memory. All memory ad-
dressing modes, including absolute addressing and 24-bit immediate data, may be
used. The register to register move (S1,D1) allows a data ALU accumulator to be
moved to a data ALU input register for use as a data ALU operand in the following
instruction.

Class Il: Move one-word operand from a data ALU accumulator to Y memory and
one-word operand from data ALU register YO to a data ALU accumulator. One effective
address is specified. All memory addressing modes, excluding long absolute address-
ing and long immediate data, may be used. Class |l move operations have been added
to the R:Y parallel move (and a similar feature has been added to the X:R parallel
move) as an added feature available in the first quarter of 1989.

For both Class | and Class || R:Y parallel data moves, if the arithmetic or logical opcode-
operand portion of the instruction specifies a given destination accumulator, that same
accumulator or portion of that accumulator may not be specified as a destination D2
in the parallel data bus move operation. Thus, if the opcode-operand portion of the
" instruction specifies the 56-bit A accumulator as its destination, the parallel data bus
move portion of the instruction may not specify A0, A1, A2, or A as its destination D2.
Similarly, if the opcode-operand portion of the instruction specifies the 56-bit B ac-
cumulator as its destination, the parallel data bus move portion of the instruction may
not specify B0, B1, B2, or B as its destination D2. That is, duplicate destinations are
NOT allowed within the same instruction. '

A-140 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

R . Y Register and Y Memory Data Move R . Y

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1
and/or S2 in the parallel data bus move operation. This allows data to be moved in
the same instruction in which it is being used as a source operand by a data ALU
operation. That is, duplicate sources are allowed within the same instruction. Note
that S1 and S2 may specify the same register.

Class | Example:

ADDL B,A B,X1 Y:(R6)—N6,B ;2*A+B » A, update X1,B and R6

Before Execution After Execution
B | $80:123456:789ABC | B | $00:654321:000000 |
x| $000000 | x| $800000 |
R6 | $2020 | R6 | $2000 |
Ne | s0020 | Ne | $0020 |

v:$2020 | 654321 | vis2020 | $654321 |

Explanation of the Class | Example: Prior to execution, the 56-bit B accumulator contains
the value $80:123456:789ABC, the 24-bit X1 register contains the value $000000, the
16-bit R6 address register contains the value $2020, the 16-bit N6 address offset register
contains the value $0020 and the 24-bit Y memory location Y:$2020 contains the value
$654321. The execution of the parallel move portion of the instruction, B,X1
Y:(R6)— N6,B, moves the 24-bit limited negative saturation constant $800000 into the
X1 register since the signed integer portion of the B accumulator was in use, uses the
value in the 16-bit R6 address register to move the 24-bit value in the Y memory
location Y:$2020 into the 56-bit B accumulator with automatic sign extension of the
upper portion of the accumulator {B2) and automatic zeroing of the lower portion of
the accumulator (B0), and finally uses the contents of the 16-bit N6 address offset n
register to update the value in the 16-bit R6 address register. The contents of the N6
address offset register are not affected.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-141

R . Y Register and Y Memory Data Move R . Y

Class Il Example:

MAC X0,Y0,A YO0,B B,Y:(R1)+ ;multiply X0 and Y0 and accumulate in A
;move B to Y memory location pointed to
;by R1 and postincrement R1
;move Y0 to B

Before Execution After Execution
xo | $400000 | xo | $400000 |
vo | $600000 | vo | $600000 |
A | $00:000000:000000 | A | $00:300000:000000 |
B | $00:800000:000000 | B | $00:600000:000000 |
vis123a | $000000 | v:s1234 | syFRRFE |
R | $1234 | R1 | $1235 |

Explanation of the Class Il Example:Prior to execution, the 24-bit registers, X0 and YO,
contain $400000 and $600000, respectively. The 56-bit accumulators A and B contain
the values $00:000000:000000 and $00:800000:000000 (+1.0000), respectively. The
24-bit Y memory location Y:$1234 contains the value $000000, and the 16-bit R1 register
contains the value $1234. Execution of the parallel move portion of the instruction
(Y0,B B,Y:(R1)+) moves the YO register ($600000) into accumulator B1 {$600000), sign
extends B1 into B2 ($00), and zero fills BO ($000000). It also moves the 24-bit limited
value of B ($7FFFFF) into the Y:$1234 memory location and increments R1 to $1235.

Condition Codes:

5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
e]si]so]ln]u]=] c]e]u]n]z]v]ec
— MR —le— CCR —>

L — Set if data limiting has occurred during parallel move

- A-142 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

R . Y Register and Y Memory Data Move R . Y

Class | Instruction Format:
(.....) S1,D1 Y:ea,D2
(.....) S1,D1 S2)Y:ea
(.....) S1,D1 #xxxxxx,D2

23 16 15 8 7 0
0 0 0 1 d e f ffW 1 MMMABR RI INSTRUCTION OPCODE
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective

Register W Address Mode MMMR R R

Read S2 0 (Rn)—Nn 000rrr

Write D2 1 {Rn)+Nn 001rrr

(Rn}~ 010rrr

(Rn}+ 0Ot11rrr

(Rn} 100rrr

(Rn+Nn) 101rrr

~{(Rn) 111rrr

Absolute address 110000

Immediate data 110100

where “rrr”’ refers to an address register RO-R7

S1 D1 D1 ' 82 D2 D2
S1 d SiL D1 e Sign Ext Zero S$2,D2 ff SL Sign Ext Zero
A 0 vyes X0 0 no no YO 00 no no no
B 1 vyes X1 1 no no Y1 01 no no no
A 10 vyes A2 A0
B 11 vyes B2 BO

Timing: mv oscillator ciock cycles

Memory: mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-143

R:Y

Class |l Instruction Format:
) YOBA AdY:ea
) YO»B B VY:ea

23 16 15 8

Register and Y Memory Data Move

R:Y

7

0 0 0 0 1 00 d[1 oM M MGRRGS

INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTEN:!

SION

Instruction Fields:
ea=6-bit Effective Address= MMMRRR

Effective

Addressing Mode MMMRRR
(Rn)—Nn 000rrr
(Rn)+Nn 001rrr
(Rn) - 010rrr
(Rn)+ 011rrr
(Rn) 100rrr
(Rn+Nn) 101rrr
—(Rn) 111rrr
Absolute address 110000
Immediate data 110100

where “rrr” refers to an address register R0O-R7

SRC DEST DEST
SD S/L Sign Ext Zera
X0 no - N/A N/A
YO no N/A N/A
A yes A2 -A0
B yes B2 BO

Timing: mv oscillator clock cycles

Memory: mv program words

A-144

d
0 YOMPA AwVYea

DSP56000/DSP56001 USER'S MANUAL

MOVE opcode

1 YO»B B#Y:ea

MOTOROLA

L: Long Memory Data Move L:

Operation: Assembler Syntax:
(...,); X:ea » D1; Y:ea » D2 (.....) L:ea,D
(vonnn); X:aa $ D1; Y:aa $ D2 (.....) L:aa,D
(...,); S1 9 X:ea; S2 » Y:ea (.....) S,L:ea
(...,); S1 % X:aa; S2 ¢ Y:aa (.....) S,L:aa
where (.....) refers to any arithmetic or logical instruction which allows parallel
moves.

Description: Move one 48-bit long-word operand from/to X and Y memory. Two data
ALU registers are concatenated to form the 48-bit long-word operand. This allows
efficient moving of both double-precision (high:low) and complex (real:imaginary)
data from/to one effective address in L (X:Y) memory. The same effective address is
used for both the X and Y memory spaces; thus, only one effective address is required.
Note that the A, B, A10, and B10 operands reference a single 48-bit signed (double-
precision) quantity while the X, Y, AB, and BA operands reference two separate (i.e.,
real and imaginary) 24-bit signed quantities. All memory alterable addressing modes
may be used. Absolute short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may
not be specified as a destination D in the parallel data bus move operation. Thus, if
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as
its destination, the parallel data bus move portion of the instruction may not specify
A, A10, AB, or BA as destination D. Similarly, if the opcode-operand portion of the
instruction specifies the 56-bit B accumulator as its destination, the parallel data bus
move portion of the instruction may not specify B, B10, AB, or BA as its destination
D. That is, duplicate destinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in
the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation.
That is, duplicate sources are allowed within the same instruction.

NOTE: The operands A10, B10, X, Y, AB, and BA may be used only for a 48-bit long
memory move as previously described. These operands may not be used in any other
type of instruction or parallel move.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-145

L: Long Memory Data Move L:

Example:
CMP Y0,B A,L:$1234 ;compare YO0 and B, save 48-bit A1:A0 value
Before Execution After Execution
A | $01:234567:89ABCD | A | so1:234567:89aBCD |
x:$1234 | $000000 | Xx:$1234 | STFEFFE |
v:$1234 | $000000 | vis1234 | SFFFFFF |
Explanation of Example: Prior to execution, the 56-bit A accumulator contains the

value $01:234567:89ABCD, the 24-bit X memory location X:$1234 contains the value
$000000, and the 24-bit Y memory location Y:$1234 contains the value $000000. The
execution of the parallel move portion of the instruction, A,L:$1234, moves the 48-bit
limited positive saturation constant $7FFFFF:FFFFFF into the specified long memory
location by moving the MS 24 bits of the 48-bit limited positive saturation constant
($7FFFFF) into the 24-bit X memory location X:$1234 and by moving the LS 24 bits
of the 48-bit limited positive saturation constant ($FFFFFF) into the 24-bit Y memory
location Y:$1234 since the signed integer portion of the A accumulator was in use.

Condition Codes:

5 14 13 12 1 1 9 8 7 6§ 5 4 3 2 1 0
e[t [eTsiso]nlwle=] cTeluln]z]v]e
— MR - CCR —

L — Set if data limiting has occurred during parailel move

NOTE: The MOVE A, L:eaoperation will result in a 48-bit positive or negative saturation
constant being stored in the specified 24-bit X and Y memory locations if the signed
integer portion of the A accumulator is in use. The MOVE AB,L:ea operation will result
in either one or two 24-bit positive and/or negative saturation constant(s) being stored
in the specified 24-bit X and/or Y memory location(s) if the signed integer portion of
the A and/or B accumulator(s) is in use.

A-146 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Instruction Format:

(.....) L:ea,D
(.....) S,L:ea
Opcode

23

Long Memory Data Move

16 15 8 7

0 1 00 Lo L L{W1MMMERERER|

INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

ea=6-bit Effective Address=MMMRRR

Effective

Register W Addressing Mode MMMRRR
ReadS 0 (Rn}—Nn 000rrr
Write D 1 (Rn}+Nn 001rrr
(Rn)— 010rrr

(Rn)+ 0O11rrr

(Rn) 100rrr

(Rn+Nn) 101rrr

—(Rn) 110rrr

Absolute address 110000

where “rrr”’ refers to an address register RO-R7
S

S S1 S2 S/L D D1
A10 Al A0 no A10 At
B10 B1 BO no B10 B1
X X1 X0 no X X1
Y Y1 Y0 no Y Y1
A A1l A0 yes A A1l
B B1 BO yes B B1
AB A B yes AB A
BA B A yes BA B

Timing: mv oscillator clock cycles

Memory: mv program words

MOTOROLA

D2

A0
BO
X0
YO
A0
BO
B

A

D
Sign Ext

no
no
no
no
A2
B2
A2,B2
B2,A2

DSP56000/DSP56001 USER'S MANUAL

D
Zero

no
no
no
no
no
no
A0,BO
B0,A0

__ = L OO0

- O0O=0=0=-=0 r~

H

- —_ 00 = =00 r

A-147

L: Long Memory Data Move

Instruction Format:

(.....) L:aa,D
(.o,) S,L:aa
Opcode
23 16 15 87 0

[o 1 o 0o L oL LJw 0 a a a a a a| INsTRUCTION OPCODE |

Instruction Fields:
aa==6-bit Absolute Short Address=aaaaaa

Register W Absolute Short Address aaaaaa
ReadS 0 000000
Write D 1 .
11111
S D D
S S1 S2 S/L D D1 D2 Sign Ext Zero
A10 Al A0 no A10 Al A0 no no
B10 B1 BO no B10 B1 BO no no
X X1 X0 no X X1 X0 no no
Y Y1 Yo no Y Y1 Y0 no no
A Al A0 yes A Al A0 A2 no
B B1 BO yes B B1 BO B2 no
AB A B yes AB A B A2,B2 A0,BO
BA B A yes BA B A B2,A2 BO0,A0

Timing: mv oscillator clock cycles

Memory: mv program words

A-148 DSP56000/DSP56001 USER'S MANUAL

— w0000 M
- a20O0-s 00O
— o000 —-0 r

MOTOROLA

X . Y: XY Memory Data Move X: Y:

Operation: Assembler Syntax:
(vonn.); X:<eax> » D1; Y:<eay> » D2 (..... } X:i<eax>,D1 Y:<eay>,D2
(.....); X:<eax> » D1; S2 p Y:<eay> (.....)} X:<eax>D1 S2)Y:<eay>
(.....); 819 Xi<eax>; Y:<eay> » D2 (..... } S1,X:<eax> Y:<eay>D2
(...,); S1h Xi<eax>; S2 » Y:<eay> (.....) S1,X:<eax> S2,Y:<eay>
where (.....) refers to any arithmetic or logical instruction which allows parallel
moves.

Description: Move a one-word operand from/to X memory and move another word
operand from/to Y memory. Note that two independent effective addresses are spec-
ified (<eax> and <eay>) where one of the effective addresses uses the lower bank
of address registers {R0-R3) while the other effective address uses the upper bank of
address registers (R4-R7). All parallel addressing modes may be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may
not be specified as a destination D1 or D2 in the parallel data bus move operation.
Thus, if the opcode-operand portion of the instruction specifies the 56-bit A accu-
mulator as its destination, the parallel data bus move portion of the instruction may
not specify A as its destination D1 or D2. Similarly, if the opcode-operand portion of
the instruction specifies the 56-bit B accumulator as its destination, the parallel data
bus move portion of the instruction may not specify B as its destination D1 or D2.
That is, duplicate destinations are NOT allowed within the same instruction. D1 and
D2 may not specify the same register.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1
and/or S2 in the parallel data bus move operation. This allows data to be moved in
the same instruction in which it is being used as a source operand by a data ALU
operation. That is, duplicate sources are allowed within the same instruction. Note
that S1 and S2 may specify the same register.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL ’ A-148

X . Y: XY Memory Data Move

Example:

MPYR X1,Y0,A X1,X:(R0)+ YO,Y:(R4)+N4

Before Execution

After Execution

;X1*Y0 » A,save X1 and YO

x| $123123 | x| $123123 |
vo | $456456 [vo | $456456 |
RO | $1000 | RO | $1001 |
Ra | $0100 | Ra | $0123 |
Na | $0023 | Na | sz |
x:$1000 | $000000] xs1000 | $123123 B
viso100 [$000000 | v:s0100 | $456456 -
Explanation of Example: Prior to execution, the 24-bit X1 regiéter contains the value

X:Y:

$123123, the 24-bit YO register contains the value $456456, the 16-bit RO address
register contains the value $1000, the 16-bit R4 address register. contains the value
$0100, the 16-bit N4 address offset register contains the valué $0023, the 24-bit X
memory location X:$1000 contains the value $000000, and the 24-bit Y memory lo-
cation Y:$0100 contains the value $000000. The execution of the parallel move portion
of the instruction, X1,X:(R0) + Y0,Y:(R4)+ N4, moves the 24-bit value in the X1 register
into the 24-bit X memory location X:$1000 using the 16-bit R0 address register, moves
the 24-bit value in the YO register into the 24-bit Y memory location Y:$0100 using
the 16-bit R4 address register, updates the 16-bit value in the RO address register, and
updates the 16-bit R4 address register using the 16-bit N4 address offset register. The
contents of the N4 address offset register are not affected.

Condition Codes:

5 14 13 12 1M 10 8§ 8 7 6§ 5 4 3 2 1 0
st]si]so]nfw][=*]cTe]Juln]z]v]ec
— MR - - CCR —

L — Set if data limiting has occurred during parallel move

NOTE: The MOVE A, X:<eax> B,Y:<eay> operation will result in one or two 24-bit
positive and/or negative saturation constant(s) being stored in the specified 24-bit X

A-150 DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

X:Y:

XY Memory Data Move X: Y:

and/or Y memory location(s) if the signed integer portion of the A and/or B accumu-

lator{s} is in use.

Instruction Format:

(I) X:<eax>,D1 Y:<eay>,D2

(..on..) X:i<eax>,D1 8S2)Y:<eay>

(oo...) S1,X:<eax> Y:<eay>,D2

(.....) S1,X:<eax> 82,Y:<eay>
Opcode

2 16 15

8 7 0

[t wmmeet t[werremMBRER|

INSTRUCTION OPCODE I

Instruction Fields:

X:<eax>=6-bit X Effective Address=WMMRRR (R0-R3 or R4-R7)
X:<eay>=5-bit Y Effective Address=wmmrr (R4-R7 or R0-R3)

X Effective
Addressing Mode MMR RR
(Rn)+Nn 01sss
(Rn)— 10sss
(Rn)+ 11sss
(Rn) 00sss

where “‘sss”’ refers to an address register RO-R3 or R4-R7

Register W S1.D1 ee
Read S1 0 X0 00
Write D1 1 X1 01
A 10
B 11

S1
S/L

no
no

yes
yes

D1

Sign Ext

no
no
A2
B2

D1 Y Effective
Zero Addressing Mode mmr r
no (Rn)+Nn 01¢tt
no (Rn)— 10tt
" A0 (Rn)+ 11ttt
BO {Rn) 00tt

where “tt” refers to an address register R4-R7 or R0-R3 which is in the opposite address register bank
from the one used in the X effective address, previously described

S2 D2 D2
Register W S2D2 ff S/L SignExt Zero
Read S2 0 . YO 00 no no no
Write D2 1 Y1 01 no no no
A 10 vyes A2 A0
B 11 vyes B2 BO
Timing: mv oscillator clock cycles
Memory: mv program words
MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-151

MOVEC Move Control RegisteAr ' M OVEC

Operation: . Assembler Syntax:
X:ea » D1 MOVE(C) X:ea,D1
X:aa » D1 MOVE(C) X:aa,D1
S1» X:ea MOVE(C) S1,X:ea
S1» X:aa MOVE(C) S1,X:aa
Y:ea » D1 MOVE(C) Y:ea,D1
Y:aa » D1 MOVE(C) Y:aa,D1
S1» VY:ea MOVE(C) S1,Y:ea
S1#»VY:aa MOVE(C) S1,Y:aa
S1#D2 MOVE(C) S1,D2
S2» D1 MOVE(C) S2,D1
#xxxx p D1 MOVE(C) #xxxx,D1
#xx b D1 MOVE(C) #xx,D1

Description: Move the contents of the specified source control register S1 or S2 to the
specified destination or move the specified source to the specified destination control
register D1 or D2. The control registers S1 and D1 are a subset of the S2 and D2
register set and consist of the address ALU modifier registers and the program con-
troller registers. These registers may be moved to or from any other register or memory
space. All memory addressing modes, as well as an immediate short addressing mode,
may be used.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack
register SSH is specified as a destination operand, the system stack pointer (SP) is
preincremented by 1 before SSH is written. This allows the system stack to be effi-
ciently extended using software stack pointer operations.

When a 56-bit accumulator (A or B) is specified as a source operand, the accumulator
value is optionally shifted according to the scaling mode bits SO and S1 in the system

A-152 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MOVEC Move Control Register MOVEC

status register (SR). If the data out of the shifter indicates that the accumulator exten-
sion register is in use and the data is to be moved into a 24-bit destination, the value
stored in the destination is limited to a maximum positive or negative saturation
constant to minimize truncation error. If the data is to be moved into a 16-bit destination
and the accumulator extension register is in use, the value is limited to a maximum
positive or negative saturation constant whose LS 16 bits are then stored in the 16-
bit destination register. Limiting does not occur if an individual 24-bit accumulator
register (A1, A0, B1, or B0) is specified as a source operand instead of the full 56-bit
accumulator (A or B). This limiting feature allows block floating-point operations to
be performed with error detection since the L bit in the condition code register is
latched.

When a 56-bit accumulator (A or B) is specified as a destination operand, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits
by sign extending the MS bit of the source operand (bit 23} and appending the source
operand with 24 LS zeros. Whenever a 16-bit source operand is to be moved into a
24-bit destination, the 16-bit value is stored in the LS 16 bits of the 24-bit destination,
and the MS 8 bits of that destination are zeroed. Similarly, whenever a 16-bit source
operand is to be moved into a 56-bit accumulator, the 16-bit value is moved into the
LS 16 bits of the MSP portion of the accumulator (A1 or B1), the MS 8 bits of the MSP
portion of that accumulator are zeroed, and the resulting 24-bit value is extended to
56 bits by sign extending the MS bit and appending the result with 24 LS zeros. Note
that for 24-bit source operands both the automatic sign-extension and zeroing features
may be disabled by specifying the destination register to be one of the individual 24-
bit accumulator registers (A1 or B1).

NOTE: Due to pipelining, if an address register (R, N, or M) is changed using a move-
type instruction, the new contents of the destination address register will not be
available for use during the foilowing instruction (i.e., there is a single instruction cycle
pipeline delay). -

Restrictions: NOTE: The following restrictions represent very unusual operations, which
probably would never be used but are listed only for completeness.

A MOVEC instruction used within a DO loop which specifies SSH as the source operand
or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at the address
LA-2, LA—1, or LA within that DO loop.

A MOVEC instruction which specifies SSH as the source operand or LA, LC, SSH, SSL,
or SP as the destination operand cannot be used immediately before a DO instruction.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-153

MOV EC Move Control Register M OV EC

A MOVEC instruction which specifies SSH as the source operand or LA, LC, SR, SSH,
SSL, or SP as the destination operand cannot be used immediately before an ENDDO
instruction. :

A MOVEC instruction which specifies SSH as the source operand or SR, SSH, SSL, or
SP as the destination operand cannot be used immediately before an RTI instruction.

A MOVEC instruction which specifies SSH as the source operand or SSH, SSL, or SP
as the destination operand cannot be used immediately before an RTS instruction.

A MOVEC instruction which specifies SP as the destination operand cannot be used
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH
or SSL as the source operand.

A MOVEC SSH,SSH instruction is illegal and cannot be used.

Example:
MOVEC LC,X0 ;move LC into X0
Before Execution After Execution
c | $0100 | e | $0100 |
xo | $123456 | xo | $000100 |
Explanation of Example: Prior to execution, the 16-bit loop counter (LC) register con-

tains the value $0100, and the 24-bit X0 register contains the value $123456. The
execution of the MOVEC LC,X0 instruction moves the contents of the 16-bit LC register
into the 16 LS bits of the 24-bit X0 register and zeros the 8 MS bits of the X0 register.

Condition Codes:

54 13 12 1 10 9 8 7 6 5 4 3 2 1 0
e[r e {sifso]n]w[=[c[elv]n]z]v]ec
— MR Sl CCR —]

For D1 or D2=SR operand:

L — Set according to bit 6 of the source operand
E — Set according to bit 5 of the source operand
U — Set according to bit 4 of the source operand
N — Set according to bit 3 of the source operand

A-154 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

M OVEC Move Control Register M OVEC

Z — Set according to bit 2 of the source operand
V — Set according to bit 1 of the source operand
C — Set according to bit 0 of the source operand

For D1 and D2 # SR operand:

L — Set if data limiting has occurred during move

Instruction Format:
MOVE(C) X:ea,D1
MOVE(C) S1,X:ea
MOVE(C) VY:ea,D1
MOVE(C) S1,Y:ea
MOVE(C) #xxxx,D1

Opcode:
P 16 15 87 0
0 0 0 00 1 0 1JW 1 MMMGBRRROs 1 ddddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea =6-bit Effective Address=MMMRRR

- Effective
Register W Addressing Mode MMMRRR
Read S1 0 (Rn)—Nn 000rrr
Write D1 1 (Rn)+Nn 001rrr
(Rn)— 010rrr
(Rn)+ 0O11trrr
(Rn) 100rrr
(Rn+Nn) 101rrr
—{(Rn}) 1T11rrr
Absolute address 110000
Immediate data 110100

where “rrr” refers to an address register RO-R7

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-155

M OVEC Move Control Register - M OVEC

Memory Space s S$1,D1 ddddd
X Memory 0 MO0-M7 00nnn
Y Memory 1 SR 11001
OMR 11010
SP 11011
SSH 11100
SsL 11101
LA 11110
LC 11111
where “nnn” =Mn number (M0-M7)
Timing: 2+ muvc oscillator clock cycles
Memory: 1+ea program words
Instruction Format:
MOVE(C) X:aa,D1
MOVE(C) S1,X:aa
MOVE(C) Y:aa,D1
MOVE(C) S1,Y:aa
Opcode:
23 16 15 8 7 0
Jo o 0 0 0 1 0 1|w o0 a aaaaalos 1 dd dd d

Instruction Fields:
aa=6-bit Absolute Short Address =aaaaaa

Register W Absolute Short Address aaaaaa

ReadS 0 000000

Write D 1 .

111111

Memory Space s S$1,D1 ddddd

X Memory 0 MO-M7 00nnn

Y Memory 1 SR 11001
OMR 11010
SP 11011
SSH 11100
SSL 11101
LA 11110
LC 11111

where “nnn’ =Mn number (M0-M7)

A-156 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MOVEC Move Control Register

Timing: 2+ mvc oscillator clock cycles
Memory: 1+ ea program words
Instruction Format:

MOVE(C) §1,D2
MOVE(C) S2,D1

MOVEC

Opcode:
3 16 15 87 0
lo 0 0 0 0 1 0 oflw 1 e e e e e et 01 d d
Instruction Fields:
Register w $1,D1 ddddd
Read S1 0 MO-M7 ‘0 Onnn
Write D1 1 SR 11001
OMR 11010 !
SP 11011
Memory Space s SSH 11100
X Memory 0 SSL 11101
Y Memor 1 LA 11110
v LC 11111

where “nnn” =Mn number (M0-M7)

S2 D2 D2

S2D2 eeeeee S/L Sign ExtZero S2D2 eececee
X0 000100 no no no RO-R7 010nnn
X1 000101 no no no NO-N7 011nnn
YO 000110 no no no MO-M7 100nnn
Y1 000111no no no SR 111001
A0 001000 no no no) OMR 111010
BO 001001 no no no SP 111011
A2 001010 no no no SSH 111100
B2 001011 no no no SSL 111101
Al 001100 no no no LA 111110
B1 001101 no no no LC 111111

A 001110 yes A2 A0

B 001111 yes B2 " BO

where “‘nnn"’ =Rn number (R0O-R7)
Nn number (NO-N7)
Mn number (M0-M7)

MOTOROLA . DSP56000/DSP56001 USER'S MANUAL

A-157

MOVEC Move Control Register MOVEC

Timing: 2+ mvc oscillator clock cycles
Memory: 1+ea program words

Instruction Format:
MOVE(C) #xx,D1

Opcode:
23 16 15 8 7 0
fo o 0 0 o 1 o o]i i i i i i i |t o1 4 a a ¢ df

Instruction Fields:

D1 ddddd
MO-M700nnn
SR 11001
OMR 11010
SP 11011
SSH 11100
SSL 11101
LA 11110
LC 11111

where “nnn” =Mn number (M0-M7)
Timing: 2+ mvc oscillator clock cycles

Memory: 1+ea program words

A-158 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MOVEM | Move Program Memory MOVEM

Operation: Assembler Syntax:
S » P:ea .MOVE(M) S,P:ea
S » P:aa MOVE(M) S,P:aa
P:ea® D MOVE(M)} P:ea,D

P:aa® D MOVE(M) P:aa,D

Description: Move the specified operand from/to the specified program (P) memory
location. This is a powerful move instruction in that the source and destination registers
S and D may be any register. All memory alterable addressing modes may be used
as well as the absolute short addressing mode.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the sytem stack
register SSH is specified as a destination operand, the system stack pointer (SP) is
preincremented by 1 before SSH is written. This allows the system stack to be effi-
ciently extended using software stack pointer operations.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits SO and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator exten-
sion register is in use and the data is to be moved into a 24-bit destination, the value
stored in the destination is limited to a maximum positive or negative saturation
constant to minimize truncation error. If a 24-bit source operand is to be moved into
a 16-bit destination register D, the 8 MS bits of the 24-bit source operand are discarded,
and the 16 LS bits are stored in the 16-bit destination register. Limiting does not occur
if an individual 24-bit accumulator register (A1, A0, B1, or BO) is specified as a source
operand instead of the full 56-bit accumulator (A or B). This limiting feature allows
block floating-point operations to be performed with error detection since the L bit in
the condition code register is latched.

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-
bit source data to be moved into that accumulator is automatically extended to 56 bits
by sign extending the MS bit of the source operand (bit 23) and appending the source
operand with 24 LS zeros. Whenever a 16-bit source operand S is to be moved into
a 24-bit destination, the 16-bit source is loaded into the LS 16 bits of the destination
operand, and the remaining 8 MS bits of the destination are zeroed. Note that for 24-
bit source operands, both the automatic sign-extension and zeroing features may be
disabled by specifying the destination register to be one of the individual 24-bit ac-
cumulator registers (A1 or B1).

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-159

MOVEM Move Program Memory MOVEM

NOTE: Due to pipelining, if an address register (R, N, or M) is changed using a move-
type instruction, the new contents of the destination address register will not be
available for use during the following instruction (i.e., there is a single instruction cycle
pipeline delay).

Restrictions: NOTE: The following restrictions represent very unusual operations, which
probably would never be used but are listed only for completeness.

A MOVEM instruction used within a DO .loop which specifies SSH as the source
operand or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at
the address LA—2, LA-1, or LA within that DO loop. .

A MOVEM instruction which specifies SSH as the sourée operand or LA, LC, SSH, SSL,
or SP as the destination operand cannot be used immediately before a DO instruction.

A MOVEM instruction which specifies SSH as the 's;)urce operand or LA, LC, SR, SSH,
SSL, or SP as the destination operand cannot be used immediately before an ENDDO
instruction. ‘

A MOVEM instruction which specifies SSH as the source operand or SR, SSH, SSL,
or SP as the destination operand cannot be used immediately before an RTlinstruction.

A MOVEM instruction which specifies SSH as the source operand or SSH, SSL, or SP
as the destination operand cannot be used immediately before an RTS instruction.

‘A MOVEM instruction which specifies SP as the destination operand cannot be used
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH
or SSL as the source operand.

Example:

MOVEM P:(R5+ N5),LC ;move P:(R5+N5) into the loop counter (LC)

n Before Execution) After Execution
P:(R5+N5) | $000116 | Pursens) | 5000116 |

c | $0000 | e $0116 |

Explanation of Example: Prior to execution, the 16-bit loop counter (LC) register con-
tains the value $0000, and the 24-bit program (P) memory location P:(R5+ N5) contains
the value $000116. The execution of the MOVEM P:(R5+ N5),LC instruction moves the
16 LS bits of the 24-bit program (P) memory location P:(R5+N5) into the 16-bit LC
register.

A-160 DSP56000/DSP56001 USER’S MANUAL - MOTOROLA

MOVEM Move Program Memory MOVEM

Condition Codes:

5 14 13 12 1 10 8 8 1 6 5 4 3 2 1 0
w et s]si]so|ln o= L]JeJuln]z]v]c
— MR R CCR —

For D= SR operand:

L — Set according to bit 6 of the source operand
E — Set according to bit 5 of the source operand
U — Set according to bit 4 of the source operand
N — Set according to bit 3 of the source operand
Z — Set according to bit 2 of the source operand
V — Set according to bit 1 of the source operand
C — Set according to bit 0 of the source operand

For D# SR operand:
L — Set if data limiting has occurred during move

Instruction Format:
MOVE(M) S,P:ea
MOVE(M) P:ea,D

Opcode:
23 16 15 8 7 0
0 0 0 0 01 1 1/W1MMM®RRARR[1I 0ddddadd

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Register W Addressing Mode MMMR RR
ReadS 0 (Rn)=Nn 000rrr
Write D 1 (Rn)+Nn 001rrr
(Rn)— 010rrr
(Rn)+ Otirrr
(Rn) 100rrr
(Rn+ Nn) 101rrr
—(Rn) 111rrr
Absolute address 110000

where ““rrr” refers to an address register RO-R7

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-161

MOVEM Move Program Memory MOVEM

S D D
SD dddddd S/L Sign ExtZero S,D dddddd
X0 000100 no no no RO-R7 010nnn
X1 000101 no no no NO-N7 011nnn
YO 000110 no no no MO-M7 100nnn
Y1 000111 no no no SR 111001
A0 001000 no no no OMR 111010
BO 001001 no no no SP 111011
A2 001010 no no no SSH 111100
B2 001011 no no no SSL 1711101
Al 001100 no no no LA 111110
Bl 001101 no no no LC 111111

A 001110vyes A2 A0
B 001111 yes B2 BO

where “nnn"” =Rn number (R0-R7)

Nn number (NO-N7)
Mn number (M0-M7)

Timing: 2+ mvm oscillator clock cycles
Memory: 1+ea program words
Instruction Format:

MOVE(M)} S,P:aa
MOVE(M) P:aa,D

Opcode:
3 16 15 8 7 0

[o 0 o 0o o 1 1 1]w o aaaaaalo 0o d dddd d

Instruction Fields:
aa=6-bit Absolute Short Address =aaaaaa

Register W Absolute Short Address aaaaaa
Read S 0 000000
Write D 1 .

1M1

A-162 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MOVEM Move Program Memory MOVEM

S D D
SD dddddd S/L Sign ExtZero S,D dddddd
X0 000100 no no no R0O-R7 010nnn
X1 000101 no no no NO-N7 011nnn
YO 000110 no no no M0-M7 100nnn
Y1 000111 no no no SR 111001
A0 001000 no no no OMR 1711010
BO 001001 no no no SP 111011
A2 001010 no no no SSH 111100
B2 001011 no no no SSL 111101
A1l 001100 no no no LA 111110
B1 001101 no no no LC 111111

A 001110yes A2 A0
B 001111yes B2 BO

where “nnn"” =Rn number (R0O~R7)
Nn number (NO-N7)
Mn number {(M0-M7)

Timing: 2+ mvm oscillator clock cycles

Memory: 1+ea program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-163

MOVEP

Operation:

X:pp# D

X:pp # X:ea
X:pp # Y:ea
X:pp » P:ea

S Xipp
FXXXXXX § X:pp
X:ea » X:pp
Y:ea » X:pp
P:ea » X:pp
Y:pp#D

Y:pp » X:ea

Yipp # Y:ea

Y:pp » P:ea
S»Y:pp
#XXXXXX § Y:pp
X:ea » Y:pp
Y:ea » Y:pp

P:ea Y:pp

Move Peripheral Data

MOVEP

Assembler Syntax:

MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP

MOVEP

X:pp.D
X:pp.X:ea
X:pp.Y:ea
X:pp.P:ea

S X:pp
FXXXXXX,X:pp
X:ea X:pp
Y:ea,X:pp
P:ea,X:pp
Y:pp,D
Y:pp,X:ea
Y:pp,Y:ea
Y:pp,P:ea
S.Y:pp
#xXXXXX,Y:pp
X:ea,Y:pp
Y:ea,Y:pp

P:ea,Y:pp

Description: Move the specified operand from/to the specified X or Y I/O peripheral.

The I/O short addressing mode is used for the 1/0 peripheral address. All memory
addressing modes may be used for the X or Y memory effective address; all memory
alterable addressing modes may be used for the P memory effective address.

A-164

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MOVEP Move Peripheral Data MOVEP

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack
register SSH is specified as a destination operand, the system stack pointer (SP) is
preincremented by 1 before SSH is written. This allows the system stack to be effi-
ciently extended using software stack pointer operations.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits SO and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator exten-
sion register is in use and the data is to be moved into a 24-bit destination, the value
stored in the destination is limited to a- maximum positive or negative saturation
constant to minimize truncation error. If a 24-bit source operand is to be moved into
a 16-bit destination register D, the 8 MS bits of the 24-bit source operand are discarded,
and the 16 LS bits are stored in the 16-bit destination register. Limiting does not occur
if an individual 24-bit accumulator register (A1, A0, B1, or BO) is specified as a source
operand instead of the full 56-bit accumulator (A or B). This limiting feature allows
block floating-point operations to be performed with error detection since the L bit in
the condition code register is latched.

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-
bit source data to be moved into that accumulator is automatically extended to 56 bits
by sign extending the MS bit of the source operand (bit 23) and appending the source
operand with 24 LS zeros. Whenever a 16-bit source operand S is to be moved into
a 24-bit destination, the 16-bit source is loaded into the LS 16 bits of the destination
operand, and the remaining 8 MS bits of the destination are zeroed. Note that for 24-
bit source operands both the automatic sign-extension and zeroing features may be
disabled by specifying the destination register to be one of the individual 24-bit ac-
cumulator registers (A1 or B1).

NOTE: Due to pipelining, if an address register (R, N, or M) is changed using a move-
type instruction, the new contents of the destination address register will not be
available for use during the following instruction (i.e, there is a single instuction cycle
pipeline delay). “

Restrictions: NOTE: The following restrictions represent very unusual operations, which
probably would never be used but are listed only for completeness.

A MOVEP instruction used within a DO loop which specifies SSH as the source operand

or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at the address
LA—2, LA—1, or LA within that DO loop.

MOTOROLA DSP56000/DSP56001 USER’S MANUAL A-165

MOV E P Move Peripheral Data M OVE P

A MOVEP instruction which specifies SSH as the source operand or LA, LC, SSH, SSL,
or SP as the destination operand cannot be used immediately before a DO instruction.

A MOVEP instruction which specifies SSH as the source operand or LA, LC, SR, SSH,
SSL, or SP as the destination operand cannot be used immediately before an ENDDO
instruction.

A MOVEP instruction which specifies SSH as the source operand or SR, SSH, SSL, or
SP as the destination operand cannot be used immediately before an RTI instruction.

A MOVEP instruction which specifies SSH as the source operand or SSH, SSL, or SP
as the destination operand cannot be used immediately before an RTS instruction.

A MOVEP instruction which specifies SP as the destination operand cannot be used
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH
or SSL as the source operand.

Example:
MOVEP #$1113,X:<<$FFFE ;initialize Bus Control Register wait states
Before Execution After Execution
X:$FFFE $FFFF X:$FFFE $1113
(BCR) L (BCR)
Explanation of Example: Prior to execution, the 16-bit, X memory-mapped, 1/0'bus

control register (BCR) contains the value $FFFF. The execution of the MOVEP
#$1113,X:<<$FFFE instruction moves the value $1113 into the 16-bit bus control
register X:$FFFE, resulting in one wait state for all external X, external Y, and external
program memory accesses and three wait states for all external I/0O accesses.

Condition Codes:

5 14 13 12 1 1 9 8 7 6 5 4 3 2 1 0
el r]e]si]so[n o= Teluln]z]v]ec
< MR —le— CCR —

For D=SR operand:

L — Set according to bit 6 of the source operand
E — Set according to bit 5 of the source operand
U — Set according to bit 4 of the source operand

A-166 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MOVEP Move Peripheral Data

N — Set according to bit 3 of the source operand
Z — Set according to bit 2 of the source operand
V — Set according to bit 1 of the source operand
C — Set according to bit 0 of the source operand

For D+ SR operand:
L — Set if data limiting has occurred during move

Instruction Format (X: or Y: Reference):
MOVEP X:ea,X:pp
MOVEP Y:ea X:pp
MOVEP #xxxxxx,X:pp
MOVEP X:pp,X:ea
MOVEP X:pp,Y:ea
MOVEP X:ea,Y:pp
MOVEP Y:ea,Y:pp
MOVEP #xxxxxx,Y:pp
MOVEP Y:pp,Y:ea
MOVEP Y:pp,Y:ea

Opcode:

23 16 15 8 17

MOVEP

0 000 0 1 0 0 s|W1MMMGBRRGE [T S p p

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea = 6-bit Effective Address=MMMRRR,
pp = 6-bit I/0 Short Address=pppppp

Effective

Memory Space S Addressing Mode MMMRRR
X Memory 0 (Rn)—Nn 000rrr
Y Memory 1 (Rn)+Nn 001rrr

(Rn)— 010rrr
Peripheral Space s (Rn)+ 011rrr
X Memory 0 (Rn) 100rrr
Y Memory 1 (Rn+Nn) 101rrr

—(Rn) 111rrr
Peripheral w Absolute address 110000
Read 0 Immediate data 1710100
Write 1

where “’rrr’”’ refers to an address register RO-R7

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

A-167

MOVEP Move Peripheral Data MOVEP

Timing: 4+ mvp oscillator clock cycles

Memory: 1+ea program words

Instruction Format (P: Reference): N
MOVEP .P:ea,X:pp
MOVEP X:pp,P:ea
MOVEP P:ea,Y:pp
MOVEP Y:pp,P:ea

Opcode:
23 16 15 817 0
0 0 0 01 00 S{W1 MMMRBRARBIR|O1T p p p p p p

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea =6-bit Effective Address=MMMRRR,
pp = 6-bit /0 Short Address=pppppp

: Effective

Peripheral Space S Addressing Mode MMMRRR
X Memory 0 {Rn)—Nn 000rrr
Y Memory 1 (Rn)+ Nn 001rrr

(Rn) - 010rrr
Peripheral w (Rn)+ 011rrr
Read 0 (Rn) 100rrr
Write 1 (Rn+Nn) 101rrr

—{Rn) 1T11rrr

Absolute address 110000

where ‘‘rrr”’ refers to an address register RO-R7

“ Timing: 4+ mvp oscillator clock cycles

Memory: 1+ea program words

A-168 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MOVEP Move Peripheral Data MOVEP

Instruction Format (Register Reference):
MOVEP S,X:pp
MOVEP X:pp,D
MOVEP S,Y:pp

MOVEP Y:pp,D

Opcode:
P 16 15 87 ‘ 0
[o 0 0 0 1 0 0 s[w 1 d ¢ d ¢ d dflo 0 p p p b p bl

Instruction Fields:
pp =6-bit I/O Short Address =pppppp

Peripheral Space S Peripheral W

X Memory 0 Read 0

Y Memory 1 Write 1

S D D

SD dddddd S/L Sign ExtZero SD dddddd
X0 000100 no no no RO-R7 010nnn
X1 000101 no no no : NO-N7 011nnn
YO 000110 no no no MO-M7 100nnn
Y1 000111 no no no SR 111001
A0 001000 no no no OMR 111010
BO 001001 no no no SP 111011
A2 001010 no no no SSH 111100
B2 001011 no no no SSL 111101
Al 001100 no no no LA 111110
B1 001101 no no no LC 111111

A 001110yes A2 A0
B 001111yes B2 BO

where “nnn”’=Rn number (R0-R7)
Nn number (NO-N7)
Mn number (M0-M7)

Timing: 4+ mvp oscillator clock cycles

Memory: 1+ ea program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-169

M P Y Signed Multiply M PY

Operation: Assembler Syntax:

+81«S2 » D (parallel move) MPY (+)S1,52,D (parallel move)
+S1«S2 » D (parallel move) MPY (=*)S2,51,D (parallel move)

Description: Multiply the two signed 24-bit source operands St and S2 and store the
resulting product in the specified -56-bit destination accumulator D. The “—" sign
option is used to negate the specified product. The default sign option is “+"'.

Example:
MPY —X1,Y1,A #8$543210,Y0 ;—(X1xY1) b A, update YO
 Before Execution : After Execution
x| $800000 | x| ss00000 |
vi | . $C00000 | v | $C00000 |
A | s00:000000:000000 | A | $FF:C00000:000000 |
Explanation of Example: Prior to execution, the 24-bit X1 register contains the value

$800000 (- 1.0), the 24-bit Y1 register contains the value $C00000, (—0.5), and the 56-
bit A accumulator contains the value $00:000000:000000 (0.0). The execution of the
MPY —X1,Y1,A instruction multiples the 24-bit signed value in the X1 register by the
24-bit signed value in the Y1 register, negates the 48-bit product, and stores the result
in the 56-bit A accumulator (—X1xY1= —0.5=%$FF:C00000:000000=A).

Condition Codes:

514 13 12 1 10 9 8 7 6 5 4 32 1 0
wfe b]si]soluw]o]cTe]Juln]z]v]e
f— MR — CCR ——

L — Set if data limiting has occurred during parallel move

E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result in unnormalized

N — Set if bit 55 of A or B result is set

Z — Set if A or B result equals zero

V — Always cleared

A-170 DSP56000/DSP56001 USER'S MANUAL _ MOTOROLA

M PY Signed Multiply M PY

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
MPY (=%)S1,S2,D
MPY (%)S2,51,D

Opcode:

23 8 7 43 0

DATA BUS MOVE FIELD 1 0 0 Qajd k 0 0
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

§1*S2 QQaQ Sign k Dd

X0 X0000 + 0
YO YO 001 - 1 B 1
X1 X0010

NOTE: Only the indicated S1*¥S2 combinations are valid. X1*X1 and Y1*Y1 are not valid.
Timing: 2+ mv oscillator clock cycles

Memory: 1-+mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A1

M PYR Signed Multiply and Round MPYR

Operation: . Assembler Syntax:
+S1+S2+r » D (parallel move) MPYR (=)S1,52,D (parallel move)
+S1%S2+r » D (parallel move) MPYR (=*)S2,51,D (parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2, round the result
using convergent rounding, and store it in the specified 56-bit destination accumulator
D. The *“—"" sign option is used to negate the product prior to rounding. The default
sign option is “+". The contribution of the LS bits of the resuit is rounded into the
upper portion of the destination accumulator (A1 or B1) by adding a constant to the
LS bits of the lower portion of the accumulator (A0 or BO). The value of the constant
added is determined by the scaling mode bits SO and S1 in the status register. Once
the rounding has been completed, the LS bits of the destination accumulator D (A0
or BO) are loaded with zeros to maintain an unbiased accumulator value which may
be reused by the next instruction. The upper portion of the accumulator (A1 or B1)
contains the rounded result which may be read out to the data buses. Refer to the
RND instruction for more complete information on the convergent rounding process.

Example:
MPYR —Y0,Y0,B (R3)-N3 ;square and negate Y0, update R3
Before Execution After Execution
vo | $654321 | vo | $654321 |
B [s00:000000:000000 | B | SFF:AFE3ED:000000 |
Explanation of Example: Prior to execution, the 24-bit YO register contains the value

$654321 (0.791111112), and the 56-bit B accumulator contains the value
$00:000000:000000 (0.0}. The execution of the MPYR —Y0,Y0,B instruction squares
the 24-bit signed value in the YO register, negates the resulting 48-bit product, rounds
the result into B1, and zeros BO (—Y0+Y0= —0.625856790961748 approximately =
$FF:AFE3EC:B76B7E, which is rounded to the value $FF:AFE3ED:000000=
—0.625856757164002 = B).

A-172 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MPYR Signed Multiply and Round M PYR

Condition Codes:

5 M 13 12 1 10§ 8 7 8§ 5 4 3 2 1 0
o]t o] s [sofnfw[=]]eflv]n]z]v]c
< MR Sl CCR —

L — Set if data limiting has occurred during parallel move

E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized

N — Set if bit 55 of A or B result is set

Z — Set if A or B result equals zero

V — Always cleared

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
MPYR (+)S1,52,D
MPYR (+)S2,51,D

Opcode:
3 8 7 43 0

DATA BUS MOVE FIELD 1 Q0 0 afd k 0 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

S§1*S2 aQQ Sign k

X0 X0000 + 0
YOY0O 001 - 1
X1 X0010

w>» O
o o

NOTE: Only the indicated S1*S2 combinations are valid. X1*X1 and Y1*Y1 are not valid.
Timing: 2+ mv oscillator clock cycles

Memory: 1-+mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-173

N EG Negate Accumulator N EG

Operétion: Assembler Syntax:
0—-D » D (parallel move) NEG D (parallel move)

Description: Negate the destination operand D and store the result in the destination
accumulator. This is a 56-bit, twos-complement operation.

Example:

NEG B X1,X:(R3)+ Y:(R6)—-,A ;0—B #» B, update A, X1,R3,R6

Before Execution After Execution
B [$00:123456:789ABC | B l $FF:EDCBA9:876544 |
Explanation of Example: Prior to execution, the 56-bit B accumulator contains the value

$00:123456:789ABC. The NEG B instruction takes the twos complement of the value
in the B accumulator and stores the 56-bit result back in the B accumulator.

Condition Codes:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
=] e=]si[sofufw[=] Je]Juln]z][v]c
[€— MR —> CCR ——

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B is in use

U — Set if A or B result is unnormalized

N — Set if bit 55 of A or B result is set

Z — Set if A or B result equals zero

V — Set if overflow has occurred in A or B result

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

A-174 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

N EG Negate Accumulator N EG

Instruction Format:
NEG D

Opcode:

2 87 43 0
DATA BUS MOVE FIELD o 0 1 1a 1 1 0
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

D d
A 0
B 1

Timing: 2+ mv oscillator clock cycles

Memory: 1+mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-175

N 0 P No Operation N 0 P

Operation: Assembler Syntax:
PC+1#PC NOP
Description: Increment the program counter (PC). Pending pipeline actions, if any, are

completed. Execution continues with the instruction following the NOP.

Example:
NOP ;increment the program counter
Explanation of Example: The NOP instruction increments the program counter (PC)

and completes any pending pipeline actions.

Condition Codes:

5 14 13 121 10 9 8 7 6 5 4 3 2 1 0
el r]e]si[sofu]w [leJuln][z]v]ec
— MR —>le— CCR —>

The condition codes are not affected by this instruction.

Instruction Format:
NOP
Opcode:

23 15 15 81 4 0
o o 0 0o 0o 0 0 olo o o o o o 0o ofo o 0o 0o 0 0 0 of

Instruction Fields:
None

Timing: 2 oscillator clock cycles

Memory: 1 program word

A-176 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

N 0 RM Normalgze Accumulator Iteration N 0 R M

Operation: Assembler Syntax:
If EeUeZ=1,then ASLD and Rn—1 » Rn NORM Rn,D
else if E=1, then ASR D and Rn+1 » Rn
else NOP o

where E denotes the logical complement of E, and
where ® denotes the logical AND operator '

Description: Perform one normalization iteration on the specified destination operand
D, update the specified address register Rn based upon the results of that iteration,
and store the result back in the destination accumulator. This is a 56-bit operation. If
the accumulator extension is not in use, the accumulator is unnormalized, and the
accumulator is not zero, the destination operand is arithmetically shifted one bit to
the left, and the spebified address register is decremented by 1. If the accumulator
extension register is in use, the destination operand is arithmetically shifted one bit
to the right, and the specified address register is incremented by 1. If the accumulator
is normalized or zero, a NOP is executed and the specified address register is not
affected. Since the operation of the NORM instruction depends on the E, U, and Z
condition code register bits, these bits must correctly reflect the current state of the
destination accumulator prior to executing the NORM instruction. Note that the L and
V bits in the condition code register will be cleared unless they have been improperly
set up prior to executing the NORM instruction. '

Example:
REP #$2F ;maximum number of iterations needed
NORM R3,A ;perform 1 normalization iteration
Before Execution After Execution
Al $00:000000:000001 | A | $00:400000:000000 |
R3 | 0000 | R3 | sFFD2 |
Explanation of Example: Prior to execution, the 56-bit A accumulator contains the

value $00:000000:000001, and the 16-bit R3 address register contains the value $0000.
The repetition of the NORM R3,A instruction normalizes the value in the 56-bit accu-
mulator and stores the resulting number of shifts performed during that normalization
process in the R3 address register. A negative value reflects the number of left shifts
performed; a positive value reflects the number of right shifts performed during the
normalization process. '

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-177

NORM Normalize Accumulator Iteration NORM

Condition Codes:

5 14 13 12 1 10 9 8§ 7 6 5 4 3 2 1 0
el vl]si]so[nfw][=] L]e]uln]z]v]c
[<— MR — CCR —>

L — Set if overflow has occurred in A or B result

E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized

N — Set if bit 55 of A or B result is set

Z — Set if A or B result equals zero

V — Set if bit 55 is changed as a result of a left shift

NOTE: The definitidn of the E and U bits varies accbrding to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:

NORM' Rn,D
Opcode:

px} 16 15 8 7 0
fo 0o 0 0 00 0 1]t 1 01 1 R R ARl O 0 1 4 1 0 1

Instruction Fields:

D d Rn RRR

A0 Rn nnn
B 1
where “nnn” =Rn number

Timing: 2 oscillator clock cycles

Memory: 1 program word

A-178 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

N OT Logical Complement N OT

Operation: Assembler Syntax:
D[47:24] » D[47:24] (parallel move) NOT D (parallel move)
where “—"" denotes the logical NOT operator

Description: - Take the ones complement of bits 47-24 of the destination operand D and
store the result back in bits 47-24 of the destination accumulator. This is a 24-bit
operation. The remaining bits of D are not affected.

Example:
NOT A AB,L:(R2)+ ;save A1,B1, take the ones complement of A1

Before Execution After Execution

A | $00:123456:789ABC | A | soo:EpcBAgi7ssaBc |

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:123456:789ABC. The NOT A instruction takes the ones complement of bits
47-24 of the A accumulator (A1) and stores the result back in the A1 register. The
remaining bits of the A accumulator are not affected.

Condition Codes:

5 14 13 12 1 1 9 8 7 6 5 4 3 2 1 0
vl r]=]si]sofu]w][=>[c]e]u]n]z]v]c
— MR Sle— CCR —

L — Set if data limiting has occurred during parallel move
N — Set if bit 47 of A or B result is set

Z — Set if bits 47-24 of A or B result are zero

V — Always cleared

MOTOROLA DSP56000/DSP56001 USER'S MANUAL ; A-179

NOT Logical Complement NOT

Instruction Format:
NOT D

Opcode:

23 8 7 43 0
DATA BUS MOVE FIELD 0 0 0 1fd 1 1 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

w>» O
- o a

Timing: 2+ mv oscillator clock cycles

Memory: 1+ mv program words

A-180 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

0 R Logical Inclusive OR 0 R

Operation: Assembler Syntax:
S+D[47:24] ¢ D[47:24] (parallel move) OR S,D (parallel move)
where + denotes the logical inclusive OR operator

Description: Logically inclusive OR the source operand S with bits 47-24 of the desti-
nation operand D and store the result in bits 47-24 of the destination accumulator.
This instruction is a 24-bit operation. The remaining bits of the destination operand
D are not affected.

Example:
OR Y1,B BA,L:$1234 ;save A1,B1, OR Y1 with B
Before Execution After Execution
vi | SFFO000 | vi | $FFO000 |
B | s00:1234s6:789ABC | B | $00:FF3456:789ABC |
Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value

$FF0000, and the 56-bit B accumulator contains the value $00:123456:789ABC. The
OR Y1,B instruction logically ORs the 24-bit value in the Y1 register with bits 47-24
of the B accumulator {(B1) and stores the result in the B accumulator with bits 55-48
and 23-0 unchanged.

Condition Codes:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
w1 [=[si s n]o[*=*[t]elulnlzfv]c
— MR A - CCR —>

L — Set if data limiting has occurred during parallel move
N — Set if bit 47 of A or B result is set
Z — Set if bits 47-24 of A or B result are zero

V — Always cleared

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-181

OR Logical Inclusive OR OR

Instruction Format:
OR SD

Opcode:
P

8 7
DATA BUS MOVE FIELD |0 1 J Jjd 0 1t 0
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

s JJ D d
X0 00 A0
X1 10 B 1
Yo 01
Y1 11

T'iming: 2+ mv oscillator clock cycles

Memory: 1+ mv program words

A-182 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

ORl OR Immédiate with Control Register ORI

Operation: Assembler Syntax:
#xx+D#» D OR(l) #xx,D
where + denotes the logical inclusive OR operator

Description: Logically OR the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register.
The condition codes are affected only when the condition ‘code register is specified
as the destination operand.

Restrictions: The ORI #xx,MR instruction cannot be used immediately before an ENDDO
or RTl instruction and cannot be one of the last three instructions in a DO loop (at
LA-2, LA—1, or LA). '

Example:
OR #$8,MR ;set scaling mode bit S1 to scale up
' Before Execution After Execution
MR | $03] MR | $0B |
Explanation of Example: Prior to execution, the 8-bit mode register (MR) contains the

value $03. The OR #$8,MR instruction logically ORs the immediate 8-bit value $8 with
the contents of the mode register and stores the result in the mode register.

Condition Codes:

5 4 13 12 1M 10 9 8 7 6 5 4 3 2 1 0
wle]t lsifsofun]w]=]o]e]luln]z]v]ec
MR —> e CCR —>

For CCR operand:

L — Set if bit 6 of the immediate operand is set
E — Set if bit 5 of the immediate operand is set
U — Set if bit 4 of the immediate operand is set
N — Set if bit 3 of the immediate operand is set
Z — Set if bit 2 of the immediate operand is set
V — Set if bit 1 of the immediate operand is set
C — Set if bit 0 of the immediate operand is set

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-183

ORI OR Immediate with Control Register ORI

For MR and OMR operands:
The condition codes are not affected using these operands.

Instruction Format:

OR(l) #xx,D

Opcode:
3 18 15 8 7 0
fo o 0 0 0 0 o0 ofi i i i i i i [t 111 0 € g

Instruction Fields:

D EE

MR 00
CCR 01
OMR 10

Timing: 2 oscillator clock cycles

Memory: 1 program word

A-184 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

R E P . Repeat Next Instruction R E P

Operation: : Assembler Syntax:
LC » TEMP; X:ea » LC REP X:ea
Repeat next instruction until LC=1
TEMP » LC

LC » TEMP; X:aa » LC REP X:aa
Repeat next instruction until LC=1
TEMP » LC

LC » TEMP; Y:ea» LC REP Y:ea
Repeat next instruction until LC=1
TEMP » LC

LC » TEMP; Y:aa» LC REP Y:aa
Repeat next instruction until LC=1
TEMP » LC

LC » TEMP; S» LC REP S
Repeat next instruction until LC=1
TEMP » LC

LC » TEMP; #xxx » LC REP #xxx
Repeat next instruction until LC=1
TEMP » LC

Description: Repeat the single-word instruction immediately following the REP instruc-
tion the specified number of times. The value specifying the number of times the given
instruction is to be repeated is loaded into the 16-bit loop counter (LC) register. The
single-word instruction is then executed the specified number of times, decrementing
the loop counter (LC) after each execution until LC=1. When the REP instruction is in
effect, the repeated instruction is fetched only one time, and it remains in the instruc-
tion register for the duration of the loop count. Thus, the REP instruction is not n
interruptible (sequential repeats are also not interruptible). The current loop counter
(LC) value is stored in an internal temporary register. If LC is set equal to zero, the
instruction is repeated 65,536 times. The instruction’s effective address specifies the
address of the value which is to be loaded into the loop counter (LC). All address
register indirect addressing modes may be used. The absolute short and the immediate
short addressing modes may also be used. The four MS bits of the 12-bit immediate
value are zeroed to form the 16-bit value that is to be loaded into the loop counter
(LC).

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-185

R E P Repeat Next Instruction R E P

If the A or B accumulator is specified as a source operand, the accumulator value is
optionally shifted according to the scaling mode bits S0 and S1in the system status
register (SR). If the data out of the shifter indicates that the accumulator extension is
in use, the value to be loaded into the loop counter (LC) register will be limited to a
24-bit maximum positive or negative saturation constant to minimize the error due to
truncation. The LS 16 bits of the resulting 24-bit value are then stored in the 16-bit
loop counter {LC) register. : ,

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read.

Restrictions: The REP instruction can repeat any single-word instruction except the REP
instruction itself and any instruction that changes program flow. The following in-
structions are not allowed to follow an REP instruction:

Immediately after REP

DO JSSET
Jee REP
JCLR RTI
JMP RTS
JSET STOP
JScc SWiI
JSCLR WAIT
JSR

- Also, a REP instruction cannot be the lastinstruction ina DO loop (at LA). The assembler
will generate an error if any of the previous instructions are found immediately fol-
lowing an REP instruction.

-Example:

REP X0 ;repeat (X0) times
MAC X1,Y1,A X:(R1)+,X1 Y:(R4)+,Y1;X1«Y1+A » A, update X1,Y1

Before Execution After Execution
xo | $000100 | xo | $000100 |

tc | $0000 | e | $0000 |

A-186 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

R E P Repeat Next Instruction R E P

Explanation of Example: Prior to execution, the 24-bit X0 register contains the value
$000100, and the 16-bit loop counter (LC) register contains the value $0000. The ex-
ecution of the REP X0 instruction takes the 24-bit value in the X0 register, truncates
the MS 8 bits, and stores the 16 LS bits in the 16-bit loop counter (LC) register. Thus,
the single-word MAC instruction immediately following the REP instruction is repeated
$100 times.

Condition Codes:

5 14 13 12 1M 10 9 8 7 6§ 5 4 3 2 1 0
E e[t]s]si[sofuw[=*] o]eJuln]z]v]e
< MR JE - CCR —

L — Set if data limiting occurred using A or B as source operands

Instruction Format:

REP X:ea
REP Y:ea
Opcode:
23 16 15 8 7 0
[o. 0 0 0 0 111 olo 1 m m m R RR[O s 1 0 0 0 0 o]

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective

Addressing Mode MMMRRR Memory Space s
{Rn)—Nn 000rrr X Memory 0
(Rn}+Nn 001rrr Y Memory 1
(Rn) - 010rrr
(Rn)+ 011rrr
(Rn) 100rrr
(Rn+Nn) 101rrr
—(Rn}) T11rrr

where “rrr”’ refers to an address register RO-R7
Timing: 4 + mv oscillator clock cycles

Memory: 1 program word

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-187

R E P Repeat Next Instruction | R E P

Instruction Format:

REP X:aa
REP Y:aa
Opcode:
23 16 15 87 0
[0 0o 0 0 0o 1 1 0Jo 0 a a aaaalos 1 0000 o

Instruction Fields:
aa=6-bit Absolute Short Address =aaaaaa

Absolute Short Address aaaaaa Memory Space s
000000 X Memory 0
. Y Memory 1

111111
Timing: 4+ mv oscillator clock cycles
Memory: 1 program word

Instruction Format:

REP #xxx

Opcode:
23 15 15 8 7 0
[o 0o 0 0o o 1 v ofi i i i i i i @[t o1 0o h onon on]

Instruction Fields:

000000000000

NN
Timing: 4+mv oscillator clock cycles

Memory: 1 program word

A-188 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

R E P Repeat Next Instruction R E P

Instruction Format:

REP S
Opcode:

23 16 15 8 7 0

fo 0o 0 0o o 1 1 oft 1 4 d d d.d dlo 0 1 0 0 0 0 0
Instruction Fields:

S

S dddddd SL S dddddd

X0 000100 no RO-R7 010nnn

X1 000101 no NO-N7 011nnn

Yo 000110 no M0-M7 100nnn

YI 000111 no SR 111001

A0 001000 no OMR 111010

BO 001001 no SP 111011

A2 001010 no SSH 111100

B2 001011 no SSL 111101

Al 001100 no LA 1711110

Bt 001101 no LC 111111

A 001110 vyes

B 001111 yes

where “nnn" =Rn number (R0-R7)
Nn number (NO-N7)
Mn number (M0-M7)

Timing: 4 oscillator clock cycles

Memory: 1 program word

MOTOROLA ‘DSP560001D8P56001 USER’S MANUAL A-189

RES ET Reset On-Chip RES ET

Davinhavral Navinace
rCi Ta: wCVICES

Operation: Assembler Syntax:
Reset the interrupt priority register RESET
and all on-chip peripherals

Description: Reset the interrupt priority register and all on-chip peripherals. This is a
software reset which is NOT equivalent to a hardware reset since only on-chip pe-
ripherals and the interrupt structure are affected. The processor state is not affected,
and execution continues with the next instruction. All interrupt sources are disabled
except for the trace, stack error, NMI, illegal instruction, and hardware reset interrupts.

Restrictions: A RESET instruction cannot be the last instruction in a DO loop (at LA).

Example:
RESET ;reset all on-chip peripherals and IPR
Explanation of Example: The execution of the RESET instruction resets all on-chip

peripherals and the interrupt priority register (IPR).

Condition Codes:

5 W 13 12 1 10 9 8 7 6 5 4 3 2 1 0
wle] e lsilsolun]w]=] o] e]uln]z]v]c
MR —>re— CCR —>

The condition codes are not affected by this instruction.

Instruction Format:

RESET
Opcode:

23 15 15 8 7 0
[o 0o 0 0o 0o 0o 0 ofo 0o o 0o 0 0 0 oft 0 0o 0 0 1 0 o]

Instruction Fields:
None

Timing: 4 oscillator clock cycles

Memory: 1 program word

A-190 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

RND Round Accumulator RND

Operation: Assembler Syntax:
D+r # D (parallel move) RND D (parallel move)

Description: Round the 56-bit value in the specified destination operand D and store
the resultin the MSP portion of the destination accumulator (A1 or B1). This instruction
uses a convergent rounding technique. The contribution of the LS bits of the result
(A0 and BO) is rounded into the upper portion of the result (A1 or B1) by adding a
rounding constant to the LS bits of the result. The MSP portion of the destination
accumulator contains the rounded result which may be read out to the data buses.

The value of the rounding constant added is determined by the scaling mode bits S0
and S1 in the system status register (SR). A “1"" is added in the rounding position as
shown below:

Rounding Rounding Constant
S1 S0 Scaling Mode Position 55-25 24 23 22 21-0
0 0 No Scaling 23 0....0 0 1 0 0...0
0 1 Scale Down 24 0....0 1 0 0 0...0
1. 0 ScaleUp 22 0...0 0 0 1 0...0

Normal or “standard” rounding consists of adding a rounding constant to a given
number of LS bits of a value to produce a rounded result. The rounding constant
depends on the scaling mode being used as previously shown. Unfortunately, when
using a twos-complement data representation, this process introduces a positive bias
in the statistical distribution of the roundoff error. :

Convergent rounding differs from “standard” rounding in that convergent rounding
attempts to remove the aforementioned positive bias by equally distributing the round-
off error. The convergent rounding technique initially performs “standard” rounding
as previously described. Again, the rounding constant depends on the scaling mode
being used. Once “standard” rounding has been done, the convergent rounding method
tests the result to determine if all bits including and to the right of the rounding
position are zero. i, and only if, this special condition is true, the convergent rounding
method will clear the bit immediately to the left of the rounding position.'When this
special condition is true, numbers which have a /1" in the bit immediately to the left
of the rounding position are rounded up; numbers with a “0” in the bit immediately
to the left of the rounding position are rounded down. Thus, these numbers are
rounded up half the time and rounded down the rest of the time. Therefore, the
roundoff error averages out to zero. The LS bits of the convergently rounded resuit
are then cleared so that the rounded result may be immediately used by the next
instruction.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-191

R N D Round Accumulator RN D

Example:
RND A #%$123456,X1 B,Y1 ;round A accumulator into A1, zero A0
Before Execution After Execution
Casel: A | $00:123456:789ABC | A | - $00:123456:000000 . |
Casell: A | $00:123456:800000 | A | $00:123456:000000 |
Casell: A | $00:123455:800000 | A | $00:123456:000000 |
Explanation of Example: Prior to execution, the 56-bit A accumulator contains the

value $00:123456:789ABC for Case |, the value $00:123456:800000 for Case Il, and the
value $00:123455:800000 for Case lll. The execution of the RND A instruction rounds
the value in the A accumulator into the MSP portion of the A accumulator (A1), using
convergent rounding, and then zeros the LSP portion of the A accumulator (A0). Note
that Case |l is the special case that distinguishes convergent rounding from standard
or biased rounding.

Condition Codes:

% 14 13 12 1n 1 9 8 7 6 5 4 3 2 1 0

Elel v]siso[n []eJuln]z]v]ec
«— MR — >l CCR —>]

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use

U — Set if A or B result is unnormalized

N — Set if bit 55 of A or B result is set

Z — Set if A or B result equals zero

V — Set if overflow has.occurred in A or B result

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

A-192 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

R N D Round Accumulator R N D

Instruction Format:
RND D

Opcode:

23 8 7 43 0
DATA BUS MOVE FIELD rO 0 0 {d 0 0 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

D D
A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+ mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-193

RO L Rotate Left ' RO L

47 24
Operation: FC (parallel move)
Assembler ‘
Syntax: ROL D (parallel move)

Description: Rotate bits 47-24 of the destination operand D one bit to the left and store
the result in the destination accumulator. Prior to instruction execution, bit 47 of D is
shifted into the carry bit C, and, prior to instruction execution, the value in the carry
bit C is shifted into bit 24 of the destination accumulator D. This instruction is a 24-
bit operation. The remaining bits of the destination operand D are not affected.

Example:

ROL A #$314,N2 ;rotate A1 left one bit, update N2

Before Execution After Execution

A | $00:000000:000000 | A | $00:000001:000000 |

SR | 0301 | sR | s0300 |

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:000000:000000. The execution of the ROL A instruction shifts the 24-bit
value in the A1 register one bit to the left, shifting bit 47 into the carry bit C, rotating
the carry bit C into bit 24, and storing the result back in the A1 register.

Condition Codes:

5.1 13 12 1 10 9 8
o] 1)ex]si|so]ln]w **ILIE]U]N]ZIVTC
< VR Sl CCR

L — Set if data limiting has occurred during parailel move

N — Set if bit 47 of A or B result is set

Z — Set if bits 47-24 of A or B result are zero

V — Always cleared

C — Set if bit 47 of A or B was set prior to instruction execution

A-194 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

RO L Rotate Left

Instruction Format:
ROL D

Opcode:

23 8 7 4 3

0

DATA BUS MOVE FIELD 0 0 1 lld‘ 1

1

1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

D d
A 0
B 1

Timing: 2-+mv oscillator clock cycles

Memory: 1+ mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

ROL

A-195

ROR Rotate Right ROR

47 24
Operation: r’C —">—| (parallel move)

Assembler
Syntax: ROR D (parallel move)

Description: Rotate bits 47-24 of the destination operand D one bit to the right and
store the result in the destination accumulator. Priorto instruction execution, bit 24
of D is shifted into the carry bit C, and, prior to instruction execution, the value in the
carry bit C is shifted into bit 47 of the destination accumulator D. This instruction is a
24-bit operation. The remaining bits of the destination operand D are not affected.

Example:

ROR B #%$1234,R2 ;rotate B1 right one bit, update R2

Before Execution After Execution

B | $00:000001:222222 | B | $00:000000:222222 I

SR | $0300 | SR | $0305 |

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the value
$00:000001:222222. The execution of the ROR B instruction shifts the 24-bit value in
“the B1 register one bit to the right, shifting bit 24 into the carry bit C, rotating the carry

bit C into bit 47, and storing the result back in the B1 register.

Condition Codes:

514 13 12 1 0 9 8 7 6 5 4 3 2 1 0
vl e[t fa]sofnTwl=]cTe]uln]z]v]e
< MR — - CCR —

L — Set if data limiting has occurred during parallel move

N — Set if bit 47 of A or B result is set

Z — Set if bits 47-24 of A or B result are zero

V — Always cleared

C — Set if bit 47 of A or B was set prior to instruction execution

A-196 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

RO R Rotate Right RO R

Instruction Format:
ROR D

Opcode:

23 8 7 43 0
DATA BUS MOVE FIELD 0 0 1 0fd 1 1 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
D
A
B 1

Timing: 2+ mv oscillator clock cycles

Memory: 1+mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-197

RTI Return from Interrupt RTI

Operation: Assembler Syntax:
SSH » PC; SSL » SR; SP—1» SP RTI

Description: Pull the program counter (PC) and the status register (SR) from the system
stack. The previous program counter and status register are lost.

Restrictions: - Due to pipelining in the program controller and the fact that the RTI in-
struction accesses certain program controller registers, the RTI instruction must not
be immediately preceded by any of the following instructions:

Immediately before RTI MOVEC to SR, SSH, SSL, or SP
MOVEM to SR, SSH, SSL, or SP
MOVEP to SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR or ANDI CCR
ORI MR or ORI CCR

An RTI instruction cannot be the last instruction in a DO loop {(at LA).

An RTl instruction cannot be repeated using the REP instruction.

Example:
RTI ;pull PC and SR from system stack
Explanation of Example: The RTl instruction pulls the 16-bit program counter (PC) and

the 16-bit status register (SR) from the system stack and updates the system stack
pointer (SP).

A-198 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

RTI Return from Interrupt RTI

Condition Codes:

5 14 13 12 1 1 9 8§ 7 6 5 4 3 2 1 0
vl e o] si]so]n]w]=[c]e]Juln]z]v]ec
l<«— MR — Pt — CCR

L — Set according to the value pulled from the stack
E — Set according to the value pulled from the stack
U — Set according to the value pulled from the stack
N — Set according to the value pulled from the stack
Z — Set according to the value pulled from the stack
V — Set according to the value pulled from the stack
C — Set according to the value pulled from the stack

Instruction Format:
RTI

Opcode:

23 16 15 8 7 0
I000000000000000000000100

Instruction Fields:
None

Timing: 4+ rx oscillator clock cycles

Memory: 1 program word

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-189

RTS Return from Subroutine RTS

Operation: Assembler Syntax:
SSH#» PC; SP—-1» SP RTS

Description: Pull the program counter (PC) from the system stack. The previous program
counter is lost. The status register (SR) is not affected.

Restrictions: Due to pipelining in the program controller and the fact that the RTS in-
struction accesses certain controller registers, the RTS instruction must not be im-
mediately preceded by any of the following instructions:

Immediately before RTS MOVEC to SSH, SSL, or SP
MOVEM to SSH, SSL, or SP
MOVEP to SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

An RTS instruction cannot be the last instruction in a DO loop (at LA).

An RTS instruction cannot be repeated ysing the REP instruction.

Example:
RTS ;pull PC from system stack
Explanation of Example: The RTS instruction pulls the 16-bit program counter (PC)

from the system stack and updates the system stack pointer (SP).

Condition Codes:

5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
ot o] s]sofn]w]=[c]efuln]z]v]ec
< MR Sl— CCR >

The condition codes are not affected by this instruction.

A-200 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

RTS Return from Subroutine RTS

Instruction Format:

RTS

Opcode:
2 15 15 8 7 0
fo o 0 o 0o o o ofo 0o o 0o 0o 0 0 ofc 0 0 0 1 1 0 0

Instruction Fields:
None

Timing: 4+rx oscillator clock cycles

Memory: 1 program word

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-201

SBC Subtract Long with Carry SBC

Operation: Assembler Syntax:

D—S—C » D (parallel move) SBC S,D (parallel move)

Description: Subtract the source operand S and the carry bit C of the condition code

register from the destination operand D and store the result in the destination accu-
mulator. Long words (48 bits) may be subtracted from the (56-bit) destination accu-
mulator. :

NOTE: The carry bit is set correctly for multiple-precision arithmetic using long-word
operands if the extension register of the destination accumulator (A2 or B2} is the sign
extension of bit 47 of the destination accumulator (A or B).

Example:
MOVE L:<$0,X ;get a 48-bft LS long-word operand in X
MOVE L:<$1,A ;get other LS long word in A (sign ext.)
MOVE L:<$2Y ;get a 48-bit MS long-word operand in Y
SUB XA L:<$%$3,B ;sub. LS words; get other MS word in B
SBC YB A10,L:<%$4 ;sub. MS words with carry; save LS dif.
MOVE B10,L:<$5 ;save MS difference
Before Execution After Execution
A | $00:000000:000000 | A | $00:800000:000000 |
x | $800000:000000 | x | $800000:000000 |
B | $00:000000:000003 | B | $00:000000:000001 |
v | $000000:000001 | v | $000000:000001 |
Explanation of Example: This example illustrates long-word double-precision (96-bit)

subtraction using the SBC instruction. Prior to execution of the SUB and SBC instruc-
tions, the 96-bit value $000000:000001:800000:000000 is loaded into the Y and X
registers (X:Y), respectively. The other double-precision 96-bit value
$000000:000003:000000:000000 is loaded into the B and A accumulators (B:A), re-
spectively. Since the 48-bit value loaded into the A accumulator is automatically sign
extended to 56 bits and the other 48-bit long-word operand is internally sign extended
to 56 bits during instruction execution, the carry bit will be set correctly after the

A-202 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

SBC Subtract Long with Carry SBC

execution of the SUB X,Ainstruction. The SBCY,B instruction then produces the correct
MS 56-bit result. The actual 96-bit result is stored in memory using the A10 and B10
operands (instead of A and B) because shifting and limiting is not desired.

Condition Codes:

5 14 13 12 N 10 9 8 7 6 5 4 3 2 1 0
w{e] r]elsisofunfw]=]]e]uln]z]v]ec

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if signed integer portion of A or B result is in use

U — Set if A or B result is unnormalized

N — Set if bit 55 of A or B result is set

Z — Set if A or B result equals zero

V — Set if overflow has occurred in A or B result

C — Set if a carry (or borrow) occurs from bit 55 of A or B result

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SBC S,D

Opcode:

23 : . 8 7 43 0
DATA BUS MOVE FIELD 0 0 1 Jjd 1 0 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
SDb Jd

XA 00
X,B 01
YA 10
YB 11

' Timing: 2+ mv oscillator clock cycles

Memory: 1+mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-203

STO P Stop lnstructionr Processing STO P

Operation: Assembler Syntax:

Enter the STOP processing state and STOP
stop the clock oscillator

Description: Enter the STOP processing state. All activity in the processor is suspended

until the RESET or IRQA pin is asserted. The clock oscillator is gated off internally.
The STOP processing state is a low-power standby state.

During the STOP state, port A is in an idle state with the control signals held inactive
(i.e., RD=WR=V((etc.), the data pins (D0-D23) are high impedance, and the address
pins (A1-A15) are unchanged from the previous instruction. If the bus grant was
asserted when the STOP instruction was executed, port A will remain three-stated
until the DSP exits the STOP state.

If the exit from the STOP state was caused by a low level on the RESET pin, then the
processor will enter the reset processing state. The time to recover from the STOP
state using RESET will depend on the oscillator used. Consult the DSP56001 Advance
Information Data Sheet (ADI1290) for details.

If the exit from the STOP state was caused by a low level on the IRQA pin, then the
processor will service the highest priority pending interrupt and will not service the
IRQA interrupt unless it is highest priority. The interrupt will be serviced after an
internal delay counter counts 65,536 clock cycles (or a three clock cycle delay if the
stop delay bit in the OMR is set to one) plus 17T (see the DSP56001 Advance Infor-
mation Data Sheet (ADI1290) for details). During this clock stabilization count delay,
all peripherals and external interrupts are cleared and re-enabled/arbitrated at the start
of the 17T period following the count interval. The processor will resume program
execution at the instruction following the STOP instruction that caused the entry into
the STOP state after the interrupt has been serviced or, if no interrupt was pending,
immediately after the delay count plus 17T. If the IRQA pin is asserted when the STOP
instruction is executed, the clock will not be gated off, and the internal delay counter
will be started.

Restrictions: A STOP instruction cannot be used in a fast interrupt routine.

A STOP instruction cannot be the last instruction in a DO loop (i.e., at LA).

A STOP instruction cannot be repeated using the REP instruction.

A-204 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

STO P Stop Instruction Processing STO P

Example:
STOP ;enter low-power standby mode
Explanation of Example: The STOP instruction suspends all processor activity until

the processor is reset or interrupted as previously described. The STOP instruction
puts the processor in a low-power standby state.

Condition Codes:

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
et]silso]n]w|[o] c]le]Jouln][z]v]ec
«— MR Sl CCR

The condition codes are not affected by this instruction.

Instruction Format:
STOP

Opcode:

23 16 15 8 7 0
[000000000000000010000111

Instruction Fields:
None

Timing: The STOP instruction disables the internal clock oscillator and internal distri-
bution of the external clock.

Memory: 1 program word

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-205

SUB Subtract SUB

Operation: Assembler Syntax:
D—-S » D {parallel move) SUB S,D {parallel move)

Description: - Subtract the source operand S from the destination operand D and store
the result in the destination operand D. Words (24 bits), long words (48 bits), and
accumulators (56 bits) may be subtracted from the destination accumulator.

NOTE: The carry bit is set correctly using word or long-word source operands if the
extension register of the destination accumulator (A2 or B2) is the sign extension of
bit 47 of the destination accumulator (A or B). The carry bit is always set correctly
using accumulator source operands.

Example:

SUB X1,A X:(R2)+N2,R0 ;24-bit subtract, load RO, update R2

Before Execution After Execution
x1 | $000003 | x| $000003 |
A | $00:000058:242424 | A | $00:000085:242424 |
Explanation of Example: Prior to execution, the 24-bit X1 register contains the value

$000003, and the 56-bit A accumulator contains the value $00:000058:242424. The
SUB instruction automatically appends the 24-bit value in the X1 register with 24 LS
zeros, sign extends the resulting 48-bit long word to 56 bits, and subtracts the result
from the 56-bit A accumulator. Thus, 24-bit operands are subtracted from the MSP
portion of A or B (A1 or B1) because all arithmetic instructions assume a fractional,
twos complement data representation. Note that 24-bit operands can be subtracted
from the LSP portion of A or B (A0 or B0) by loading the 24-bit operand into X0 or
YO, forming a 48-bit word by loading X1 or Y1 with the sign extension of X0 or YO,
and executing a SUB X,A or SUB Y,A instruction.

A-206 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

SUB

Subtract
Condition Codes:
5 W 13 12 1 10 9 8§ 7 6 5 4 3 2 1 0
el e fsifsofn]w]=]c]eluln]z]v]ec
MR e CCR —>

SUB

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result-is in use

U — Set if A or B result is unnormalized

N — Set if bit 55 of A or B result is set

Z — Set if A or B result equals zero

V — Set if overflow has occurred in A or B result

C — Set if a carry (or borrow) occurs from bit 55 of A or B result

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:

SUB S,D
Opcode:
23 8 7 43 0
DATA BUS MOVE FIELD 0 J J Jfd 1 0 o
OPTIONAL EFFECTIVE ADDRESS EXTENSION
Instruction Fields:
SD JJJd SD JJJd sD JJJd
BA 0010 X0A 1000 YL,A1110
AB 0011 X0B 1001 YiB 1111
XA 0100 YOA 1010
XB 0101 YoB 1011
YA 0110 X1T,A 1100
YB 0111 X1,B 1101
Timing: 2+ mv oscillator clock cycles
" Memory: 1+ mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-207

S U B L Shift Left and Subtract Accumulators S U B L

Operation: Assembler Syntax:
2xD—S » D (parallel move) SUBL S,D (parallel move)

Description: Subtract the source operand S from two times the destination operand D
and store the result in the destination accumulator. The destination operand D is
arithmetically shifted one bit to the left, and a zero is shifted into the LS bit of D prior
to the subtraction operation. The carry bit is set correctly if the source operand does
not overflow as a result of the left shift operation. The overflow bit may be set as a
result of either the shifting or subtraction operation (or both). This instruction is useful
for efficient divide and decimation in time (DIT) FFT algorithms.

Example:
SUBL A,B Y:(R5+N5),R7 ;2+B—A » B, load R7, no R5 update
Before Execution » After Execution
A | $00:004000:000000 | A | $00:004000:000000 |
B | $00:005000:000000 | B | $00:006000:000000 |
Explanation of Example: Prior to execution, the 56-bit A accumulator contains the

value $00:004000:000000, and the 56-bit B accumulator contains the value
$00:005000:000000. The SUBL A,B instruction subtracts the value in the A accumulator
from two times the value in the B accumulator and stores the 56-bit result in the B
accumulator.

Condition Codes:

15 14 13 122 1" 1 9 8

7 6 5 4 3 2 1 0
el r)ex]si]sofn[w][=]]e]uln]z]v]ec
«— MR —l— CCR
n L — Set if limiting (parallel move) or overflow has occurred in result

E — Set if the signed integer portion of A or B result is in use

U — Set if A or B result is unnormalized :

N — Set if bit 55 of A or B result is set

Z — Set if A or B result equals zero

V — Set if overflow has occurred in A or B result or if the MS bit of the destination
operand is changed as a result of the instruction’s left shift

C — Set if a carry {or borrow) occurs from bit 55 of A or B result

A-208 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

S U B L Shift Left and Subtract Accumulators S U B L

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUBL S,D

Opcode:

23 8 7 4 3 0
DATA BUS MOVE FIELD 0 0 0 1jd 1 1 0
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

S.D d
B.A ?
AB

Timing: 2+ mv oscillator clock cycles

Memory: 1+mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-209

s U BR Shift Right and Subtract Accumulators S U B R

Operation: : Assembler Syntax:
D/2—-S » D (parallel move) ‘ SUBR S,D (parallel move)

Description: Subtract the source operand S from one-half the destination operand D
and store the result in the destination accumulator. The destination operand D is
arithmetically shifted one bit to the right while the MS bit of D is held constant prior
to the subtraction operation. In contrast to the SUBL instruction, the carry bit is always
set correctly, and the overflow bit can only be set by the subtraction operation, and
not by an overflow due to the initial shifting operation. This instruction is useful for
efficient divide and decimation in time (DIT) FFT algorithms.

Example:

SUBR B,A N5,Y:—(R5) ;A/2—-B » A, update R5, save N5

Before Execution After Execution

A [sso:000000:24688C | A | $C0:000000:000000 |

B | $00:000000:123456 | B [$00:000000:123456 |

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $80:000000:2468AC, and the 56-bit B accumulator contains the value
$00:000000:123456. The SUBR B,A instruction subtracts the value in the B accumulator
from one-half the value in the A accumulator and stores the 56-bit result in the A
accumulator.

Condition Codes:

5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

el v]el s [sofn o= [e]o][n]z]v]c
<— MR —> CCR —>
“ L — Set if limiting (parallel move) or overflow has occurred in result

E — Set if the signed integer portion of A or B result is in use

U — Set if A or B result is unnormalized

N — Set if bit 55 of A or B result is set

Z — Set if A or B result equals zero

V — Set if overflow has occurred in A or B result

C — Set if a carry (or borrow)} occurs from bit 55 of A or B result

A-210 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

S U BR Shift Right and Subtract Accumulators S U BR

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUBR S,D

Opcode:

3 5 7 43 0
DATA BUS MOVE FIELD 0 0 0 ofd 1 1 o0
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

sD d
B,A ?
AB

Timing: 2+ mv oscillator clock cycles

Memory: 1+mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-211

SWI | Software Interrupt SWI

Operation: Assembler Syntax:
Begin SWI exception processing Swi

Description: Suspend normal instruction execution and begin SWI exception process-
ing. The interrupt priority level (I1,10) is set to 3 in the status register (SR) if a long
interrupt service routine is used.

Restrictions: An SWI instruction cannot be used in a fast interrupt routine.

An SWI instruction cannot be repeated using the REP instruction.

Example:
SWI ;begin SWI exception processing
Explanation of Example: The SWI instruction suspends normal instruction execution

and initiates SWI exception processing.

Condition Codes:

15 14 13 12 N 10 9 8 7 6 5 4 3 2 1 0
el re]sisofn[w[e] JeJuln]z]v]ec
< MR e CCR —]

The condition codes are not affected by this instruction.

Instruction Format:

Swi
Opcode:

23 16 15 8 7 0
o0 o 0 0 0 o ofo 0o 0o 0o 0 o 0 ofo 0 0 0 0 1 1 o

Instruction Fields:
None

Timing: 8 oscillator clock cycles

Memory: 1 program word

A-212 DSP56000/DSP56001 USER'S MANUAL v MOTOROLA

ch Transfer Conditionally ch

Operation: Assembler Syntax:
If cc, then S1 9 D1 Tcc S1,D1
If cc, then S1 9 D1 and S2 » D2 Tcc S1,D1 S2,D2

Description: Transfer data from the specified source register S1 to the specified des-
tination accumulator D1 if the specified condition is true. If a second source register
S2 and a second destination register D2 are also specified, transfer data from address
register S2 to address register D2 if the specified condition is true. If the specified
condition is false, a NOP is executed. The term “‘cc”” may specify the following con-

ditions:

“cc’” Mnemonic Condition
CC (HS) — carry clear (higher or same) C=0
CS (LO) - carry set {lower) C=1
EC — extension clear E=0
EQ — equal Z=1
ES — extension set E=1
GE — greater than or equal N®V=
GT — greater than Z+(N® V)=0
LC — limit clear L=0
LE — less than or equal Z+(N® V)=1
LS — limit set L=1
LT — less than N®V=1
MI — minus N=1
NE — not equal Z=0
NR — normalized Z+{UeE)=1
PL — plus N=0
NN — not normalized Z+{UeE)=0
where

U denotes the logical complement of U

+ denotes the logical OR operator

e® denotes the logical AND operator

@ denotes the logical Exclusive OR operator

When used after the CMP or CMPM instructions, the Tcc instruction can perform many
useful functions such as a “maximum value,” ““minimum value,” “maximum absolute
value,” or “minimum absolute value” function. The desired value is stored in the
destination accumulator D1. If address register S2 is used as an address pointer into

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-213

ch Transfer Conditionally _ ch

an array of data, the address of the desired value is stored in the address register D2.
The Tcc instruction may be used after any instruction and allows efficient searching
and sorting algorithms.

The Tcc instruction uses the internal data ALU paths and internal address ALU paths.
The Tcc instruction does not affect the condition code bits.

NOTE: This instruction is considered to be a move-type instruction. Due to pipelining,
if an address register (R0-R7) is changed using a move-type instruction, the new
contents of the destination address register will not be available for use during the
following instruction (i.e., there is a single instruction cycle pipeline delay).

Example:
CMP X0,A ;compare X0 and A (sort for minimum)
TGT X0,A RO,R1 ;transfer X0 » A and RO » R1 if X0<A
Explanation of Example: In this example, the contents of the 24-bit X0 register are

transferred to the 56-bit A accumulator, and the contents of the 16-bit RO address
register are transferred to the 16-bit R1 address register if the specified condition is
true. If the specified condition is not true, a NOP is executed.

Condition Codes:

5 W 13 12 1 1 9 8 7 6 5 4 3 2 1 0
w1 [l so]ulw|[=]c[e]ulnfz]v]ec
< MR Sl CCR —

The condition codes are not affected by this instruction.

Instruction Format:
Tec S1,D1
Opcode:

23 16 15 8 7 0
[0 o o 0o 0 01 ofc c ccooooflo g s s oo o

A-214 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

ch | Transfer Conditionally ch

Instruction Fields:
cc=4-bit condition code=CCCC

S1.D1 JJJD Mnemonic CCCC Mnemonic CCCC
BA 0000 CC (HS) 0000 CS (LO) 1000
AB 0001 GE 0001 LT 1001
X0A 1000 NE 0010 EQ 1010
X0B 1001 PL 0011 Mi 1011
X1L,A 1100 NN 0100 NR 1100
X1,B 1101 EC 0101 ES 1101
YOO A 1010 LC 0110 LS 1110
YOB 1011 GT 0111 LE 1111
Y1L,A, 1110
Yi,8 1111

Timing: 2 oscillator clock cycles

Memory: 1 program word

Instruction Format:
Tec S1,D1 S2,D2

Opcode:
23 16 15 87 0
lo 0o 0 o 0 o 1+ 1]c c ccotttJod JgsgoDTITT

Instruction Fields:
cc=4-bit condition code=CCCC
$1,01 JJJD S2 ttt Mnemonic CCCC Mnemonic CCCC
BA 0000 Rn nnn - CC(HS) 0000 CS(LO) 1000
AB 0001 GE 0001 LT 1001
X0A 1000 NE 0010 EQ 1010
X0B 1001 PL 0011 M 1011
X1,A 1100 D2 TTT NN 0100 NR 1100
X1B 1101 Rn nnn EC 0101 ES 1101
YOA 1010 LC 0110 LS 1110
YoB 1011 GT 0111 LE 1111
YL, A 1110
YiB 1111

where “nnn" =Rn number (R0-R7)
Timing: 2 oscillator clock cycles

Memory: 1 program word

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-215

TFR Transfer Data ALU Register ‘ TFR

Operation: Assembler Syntax:
S » D (parallel move) TFR S,D (parallel move)

Description: Transfer data from the specified source data ALU register S to the specified
destination data ALU accumulator D. TFR uses the internal data ALU data paths; thus,
data does not pass through the data shifter/limiters. This allows the full 56-bit contents
of one of the accumulators to be transferred into the other accumulator without data
shifting and/or limiting. Moreover, since TFR uses the internal data ALU data paths,
parallel moves are possible. The TFR instruction only affects the L condition code bit,
which can be set by data limiting associated with the instruction’s parallel move
operations.

Example:

TFR A,B A,X1\ Y:(R4+N4),YO ;move A to B and X1, update YO

Before Execution After Execution
A | $01:234567:89ABCD | A | $01:234567:89ABCD |
B | SFEFFFFFR:FFFFFE | B | $01:234567:89ABCD |
Explanation of Example: Prior to execution, the 56-bit A accumulator contains the

value $01:234567:89ABCD, and the 56-bit B accumulator contains the value
$FF:FFFFFF:FFFFFF. The execution of the TFR A,B instruction moves the 56-bit value
in the A accumulator into the 56-bit B accumulator using the internal data ALU data
paths without any data shifting and/or limiting. The value in the B accumulator would
have been limited if a MOVE A,B instruction had been.used. Note, however, that the
parallel move portion of the TFR instruction does use the data shifter/limiters. Thus,
the value stored in the 24-bit X1 register (not shown) would have been limited in this
example. This example illustrates a triple move instruction.

Condition Codes:

5 14 13 12 1 1 9 8 1 6 5 4 3 2 1 0
el 1o fsailso]un]w]=]o]e]uln]z]v]ec
l«——— MR — < CCR

L — Set if data limiting has occurred during parallel move

A-216 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

TF R Transfer Data ALU Register TFR

Instruction Format:
TFR S.D

Opcode:

23 8 7 4 3 0
DATA BUS MOVE FIELD 0 J J J|d 0 0 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields':

SD JJJd
B.A 0000
AB 0001
X0A 1000
X0B 1001
X1,A 1100
X1,B 1101
YOOA 1010
Yo,B 1011
YL, A. 1110
Y1,B 1111

Timing: 2+ mv oscillator clock cycles

Memory: 1+ mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A A-217

TST Test Accumulator TST

Operation: Assembler Syntax: .
S -0 (parallel move) TST S (parallel move)

Description: Compare the specified source accumulator S with zero and set the con-
dition codes accordingly. No result is stored although the condition codes are updated.

Example:

TSTA #$345678,B ;set CCR bits for value in A, update B

Before Execution After Execution

A | $01:020304:000000 | A | s01:020304:000000 |

ccr | $0300 | cer | $0330 |

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $01:020304:000000, and the 16-bit condition code register contains the value
$0300. The execution of the TST A instruction compares the value in the A register
with zero and updates the condition code register accordingly. The contents of the A
accumulator are not affected.

Condition Codes:

51 13 12 1 10 9 8 7 6 5 4 3 2 1 0
el v s st sofm[w[=]L]efuv[n]z]v]c
— MR e CCR —

L — Set if data limiting has occurred during parallel move

E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized

N — Set if bit 55 of A or B result is set

Z — Set if A or B result equals zero

V — Always cleared

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

A-218 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

TST Test Accumulator TST

Instruction Format:
TST S

Opcode:
8 7 43 0

23
0 0 0 0jd 0 1 1

DATA BUS MOVE FIELD
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

S d
A 0
B 1

Timing: 2+ mv oscillator clock cycles

Memory: 1+mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-219

WAIT Wait for Interrupt WAIT

Operation: Assembler Syntax:

Disable clocks to the processor core and WAIT
enter the WAIT processing state.

Description: Enter the WAIT processing state. The internal clocks to the processor core

and memories are gated off, and all activity in the processor is suspended until an
unmasked interrupt occurs. The clock oscillator and the internal I/0 peripheral clocks
remain active. If WAIT is executed when an interrupt is pending, the interrupt will be
processed; the effect will be the same as if the processor never entered the WAIT
state and three NOPs followed the WAIT instruction. When an unmasked interrupt or
external (hardware) processor RESET occurs, the processor leaves the WAIT state and
begins exception processing of the unmasked interrupt or RESET condition. The BR/
BG circuits remain active during the WAIT state. The WAIT state is a low-power standby
state. The processor always leaves the WAIT state in the T2 clock phase (see the
DSP56001 Advance Information Data Sheet {ADI1290)). Therefore, multiple processors
may be synchronized by having them all enter the WAIT state and then interrupting
them with a common interrupt.

Restrictions: A WAIT instruction cannot be used in a fast interrupt routine.

A WAIT instruction cannot be the last instruction in a DO loop (at LA).

A WAIT instruction cannot be repeated using the REP instruction.

Example:
WAIT ;enter low power mode, wait for interrupt
Explanation of Example: The WAIT instruction suspends normal instruction execution

and waits for an unmasked interrupt or external RESET to occur.

Condition Codes:

1% 14 13 12 n 10 9 8 7 6 5 4. 3 2 1° 0
o] r e lsilso[n[w[e]cTeluvln]z]v]c
MR B CCR —>

The condition codes are not affected by this instruction.

A-220 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

WAIT Wait for Interrupt WAIT

Instruction Format:

WAIT

Opcode:
23 16 15 8 7 0
[0 0 0o 0 0o 0 0 ofo 0o 0 0 0 0 0 oft 0 0 0 0o 1 1 o]

Instruction Fields:
None

Timing: The WAIT instruction takes a minimum of 16 cycles to execute when an internal
“interrupt is pending during the execution of the WAIT instruction.

Memory: 1 program word

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-221

A.7 INSTRUCTION TIMING

This section describes how one can calculate DSP56000/DSP56001 instruction timing man-
ually using the tables provided in this section. Three complete examples are presented to
illustrate the “layered’ nature of the tables. Alternatively, the user can obtain the number
of instruction program words and the number of oscillator clock cycles required for a given
instruction by using the DSP56000/DSP56001 simulator. This method of determining in-
struction timing information is much faster and much simpler than using the aforemen-
tioned tables. This powerful software package is available for the IBM@ PC, VAX® (BSD
4.2 or VMS), and SUN-3® workstation.

Table A-6 gives the number of instruction program words and the number of oscillator
clock cycles for each instruction mnemonic. Table A-7 gives the number of additional (if
any) instruction words and additional (if any) clock cycles for each type of parallel move
operation. Table A-8 gives the number of additional (if any) clock cycles for each type of
MOVEC operation. Table A-9 gives the number of additional (if any) clock cycles for each
type of MOVEP operation. Table A-10 gives the number of additional (if any) clock cycles
for each type of bit manipulation (BCHG, BCLR, BSET, and BTST) operation. Table A-11
gives the number of additional (if any) clock cycles for each type of jump (Jcc, JCLR, JMP,
JScc, JSCLR, JSET, JSR, and JSSET) operation. Table A-12 gives the number of additional
(if any) clock cycles for the RTI and RTS instructions. Table A-13 gives the number of
additional (if any) instruction words and additional (if any) clock cycles for each effective
addressing mode. Table A-14 gives the number of additional (if any) clock cycles for external
data, external program, and external I/0O memory accesses.

The number of words per instruction is dependent on the addressing mode and the type
of parallel data bus move operation specified. The symbols used reference subsequent
tables to complete the instruction word count.

The number of oscillator clock cycles per instruction is dependent on many factors, in-
cluding the number of words per instruction, the addressing mode, whether the instruction
fetch pipe is full or not, the number of external bus accesses, and the number of wait states
inserted in each external access. The symbols used reference subsequent tables to com-
plete the execution clock cycle count.

All tables are based on the following assumptions.

Assumptions:
1. All instruction cycles are counted in oscillator clock cycles.

2. The instruction fetch pipeline is full.

IBM is a trademark of International Business Machines
VAX is a trademark of Digital Equipment Corporation
SUN-3 is a trademark of Sun Microsystems, Inc.

A-222 DSP56000/DSP56001 USER'S MANUAL MOTOROLA -

3. There is no contention for instruction fetches. Thus, external program instruction
fetches are assumed not to have to contend with external data memory accesses.

4. There are no wait states for instruction fetches done sequentially (as for non-change-
of-flow instructions), but they are taken into account for change-of-flow instructions
which flush the pipeline such as JMP, Jcc, RTI, etc.

To better understand and use the aforementioned tables, three examples are presented
prior to the actual tables. These examples attempt to illustrate the “layered’’ nature of the
tables. :

Example 1: Arithmetic Instruction with Two Parallel Moves

Problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction

MACR - X0,X0,A X1,X:(R6)— Y0,Y:(RO) +

where Operating Mode Register (OMR)—$O2 (normal expanded memory map)

Bus Control Register (BCR) =$1135,
R6 Address Register =$0052 (internal X memory), and
RO Address Register =$0523 (external Y memory).

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol-
lowing operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

According to Table A-6, the MACR instruction will require (1+mv) instruction program
words and will execute in (2+mv) oscillator clock cycles. The term “mv’’ represents the
additional (if any) instruction program words and the additional (if any) oscillator clock
cycles that may be required over and above those needed for the basic MACR instruction
due to the parallel move portion of the instruction.

2. Evaluate the “mv’’ term using Table A-7.

The parallel move portion of the MACR instruction consists of an XY memory move.
According to Table A-7, the parallel move portion of the instruction will require mv=0
additional instruction program words and mv = (ea + axy) additional oscillator clock cycles.
The term “ea” represents the number of additional (if any) oscillator clock cycles that are
required for the effective addressing move specified in the parallel move portion of the
instruction. The term “axy’” represents the number of additional (if any) oscillator clock
cycles that are required to access an XY memory operand.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-223

3. Evaluate the “ea” term using Table A-13.

The parallel move portion of the MACR instruction consists of an XY memory move which
uses both address register banks (R0-R3 and R4-R7) in generating the effective addresses
of the XY memory operands. Thus, the two effective address operations occur in parallel,
and the larger of the two “ea’’ terms should be used. The X memory move operation uses
the “postdecrement by 1" effective addressing mode. According to Table A-13, this op-
eration will require ea=0 additional oscillator clock cycles. The Y memory move operation
uses the “postincrement by 1” effective addressing mode. According to Table A-13, this
operation will also require ea=0 additional oscillator clock cycles. Thus, using the maxi-
mum value of “ea”, the effective addressing modes used in the parallel move portion of
the MACR instruction will require ea=0 additional oscillator clock cycles.

4. Evaluate the “axy” term using Table A-14.

The parallel move portion of the MACR instruction consists of an XY memory move.
According to Table A-14, the term “axy” depends upon where the referenced X and Y
memory locations are located in the DSP56000/DSP56001 memory space. External memory
accesses require additional oscillator clock cycles according to the number of wait states
programmed into the DSP56000/DSP56001 bus control register (BCR). Thus, assuming that
the 16-bit bus control register contains the value $1135, external X memory accesses require
wx =1 wait state of additional oscillator clock cycle while external Y memory accesses
require wy = 1 wait state or additional oscillator clock cycle. For this example, the X memory
reference is assumed to be an internal reference; the Y memory reference is assumed to
be an external reference. Thus, according to Table A-14, the XY memory reference in the
parallel move portion of the MACR instruction will require axy =wy = 1 additional oscillator
clock cycle.

5. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 1, the instruction

MACR —-X0,X0,A X1,X:(R6)— YO,Y:(RO)+

will require
(1+mv)
=(1+0)
= 1 instruction program word

and will execute in
(2+mv)
=(2+ea+axy)
=(2+ea+wy)
=(2+0+1) oscillator clock cycles.
L= 3

A-224 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Note that if a similar calculation were to be made for a MOVEC, MOVEM, MOVEP, or one
of the bit manipulation (BCHG, BCLR, BSET, or BTST) instructions, the use of Table A-7
would no longer be appropriate. For one of these cases, the user would refer to Table A-
8, Table A-9, or Table A-10, respectively.

Example 2: Jump Instruction

Problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction

JLC (R2+N2)

where Operating Mode Register (OMR)=$02 (normal expanded memory map),

Bus Control Register (BCR) =$2246,
R2 Address Register =$1000 (external P memory), and
N2 Address Register =$0037.

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol-
lowing operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

According to Table A-6, the Jcc instruction will require (14 ea) instruction program words
and will execute in (4 +jx) oscillator clock cycles. The term “‘ea’ represents the number of
additional (if any) instruction program words that are required for the effective address of
the Jcc instruction. The term “jx" represents the number of additional (if any) oscillator
clock cycles required for a jump-type instruction.

2. Evaluate the “jx" term using Table A-11.

Accordingto Table A-11, the Jcc instruction will require jx=ea +(2 * ap) additional oscillator
clock cycles. The term “ea’” represents the number of additional (if any) oscillator clock
cycles that are required for the effective addressing mode specified in the Jcc instruction.
The term “ap” represents the number of additional (if any) oscillator clock cycles that are
required to access a P memory operand. Note that the “+(2 * ap)” term represents the
two program memory instruction fetches executed at the end of a one-word jump instruc-
tion to refill the instruction pipeline.

3. Evaluate the “ea’” term using Table A-13.

The JLC (R2 + N2) instruction uses the “indexed by offset Nn" effective addressing mode.
According to Table A-13, this operation will require ea=0 additional instruction program
words and ea=2 additional oscillator clock cycles.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-225

4. Evaluate the “ap” term using Table A-14.

According to Table A-14, the term ““ap” depends upon where the referenced P memory
location is located in the DSP56000/DSP56001 memory space. External memory accesses
require additional oscillator clock cycles according to the number of wait states pro-
grammed into the DSP56000/DSP56001 bus control register (BCR). Thus, assuming that
the 16-bit bus control register contains the value $2246, external P memory accesses require
wp =4 wait states or additional oscillator clock cycles. For this example, the P memory
reference is assumed to be an external reference. Thus, according to Table A-14, the Jcc
instruction will use the value ap=wp =4 oscillator clock cycles.

5. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 2, the instruction

JLC (R2+N2)

will require
{1+ea)
=(1+0)
= 1 instruction program word
and will execute in
{(4+jx)

=(4+ea+(2 * ap))

=(4+ea+(2 * wp))

={4+2+(2*4)) oscillator clock cycles.
= 14

Example 3: RTI Instruction

Problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction

RTI

where Operating Mode Register (OMR)=%$02 (normal expanded memory map),
Bus Control Register (BCR) =$0012, and
Return Address (on the stack) =$0100 (internal P memory).

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol-
lowing operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

A-226 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

According to Table A-6, the RTl instruction will require one instruction program word and
will execute in (4+rx) oscillator clock cycles. The term “rx” represents the number of
additional (if any) oscillator clock cycles required for an RTI or RTS instruction.

2. Evaluate the “rx” term using Table A-12.

According to Table A-12, the RTI instruction will require rx=(2 * ap) additional oscillator
clock cycles. The term ““ap’’ represents the number of additional (if any) oscillator clock
cycles that are required to access a P memory operand. Note that the term ‘(2 * ap)”
represents the two program memory instruction fetches executed at the end of an RTl or
RTS instruction to refill the instruction pipeline.

3. Evaluate the “ap” term using Table A-14.

According to Table A-14, the term “ap’ depends upon where the referenced P memory
location is located in the DSP56000/DSP56001 memory space. External memory accesses
require additional oscillator clock cycles according to the number of wait states pro-
grammed into the DSP56000/DSP56001 bus control register (BCR). Thus, assuming that
the 16-bit bus control register contains the value $0012, external P memory accesses require
wp=1 wait state or additional oscillator clock cycles. For this example, the P memory
reference is assumed to be an internal reference. This means that the return address ($0100)
pulled from the system stack by the RTl instruction is in internal P memory. Thus, according
to Table A-14, the RTl instruction will use the value ap =0 additional oscillator clock cycles.

4. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 3, the instruction

RTI
will require
1 instruction program word
and will execute in
‘ (4+rx)

=(4+(2 * ap))

=(4+(2+0))

= 4 oscillator clock cycles.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-227

Table A-6. Instruction Timing Summary (see Note 3)

instruction Osc. iistruciion Csc.

Mnemonic Program Clock Notes | Mnemonic Program Clock Notes

Words Cycles Words Cycles
ABS 1+mv 2+mv MAC 1+mv 2+mv
ADC 1+myv 2+mv MACR 1+mv 2+mv
ADD 1+mv 2+mv MOVE 1+myv 2+mv
ADDL 1+mv 2+mv MOVEC 1+ea 2+mve
ADDR 1+mv 2+mv MOVEM 1+ea 6+ea+ap
AND 1+mv 2+mv MOVEP 1+ea 4+mvp
AND! 1 2 - MPY 1+mv 2+mv
ASL 1+mv 2+mv MPYR T+mv 2+mv
ASR 1+mv 2+mv NEG 1+mv 2+mv
BCHG 1+ea 4+mvb NOP 1 2
BCLR 1+ea 4+mvb NORM 1 2
BSET 1+ea 4+mvb’ NOT 1+mv 2+mv
BTST 1+ea 4+mvb OR 1+mv 2+mv
CLR 1+mv 2+mv ORI 1 2
CMP 1+mv 2+mv REP 1 4+ mv
CMPM 14+ mv 2+mv RESET 1 4
DIV 1 2 RND 1+mv 2+mv
DO 2 6+mv : ROL 1+mv 2+mv
ENDDO 1 2 ROR 1+mv 2+mv
EOR 1+mv 2+mv RTI 1 4+rx
Jee 1+ea 4+ijx RTS 1 4+rx
JCLR 2 6+jx SBC 1+mv 2+mv
JMP 1+ea 4+jx STOP 1 n/a 1
JScc 1+ea 4+ijx SuB 1+mv 2+mv
JSCLR 2 6+jx SUBL 1+mv 2+mv
JSET 2 6+jx SUBR 1+mv 2+my
JSR 1+ea 4+jx SWI 1 8
JSSET 2 6+jx Tec 1 2
LSL 1+mv 2+mv TFR 1+myv 2+myv
LSR 1+mv 2+mv TST 1+mv 2+mv
LUA 1 4 WAIT 1 n/a 2

Note 1: The STOP instruction disables the internal clock oscillator. After clock turnon, an internal counter counts
65,536 clock cycles {if bit 6 in the OMR is clear) before enabling the clock to the internal DSP circuits.
If bit 6 in the OMR is set, only six clock cycles are counted before enabling the clock to the external
DSP circuits.

“Note 2: The WAIT instruction takes a minimum of 16 cycles to execute when an internal interrupt is pending

during the execution of the WAIT instruction.

Note 3: If assumption 4 is not applicable, then to each one-word instruction timing, a” +ap” term should be
added, and, to each two-word instruction, a"” +(2*ap)"’ term should be added to account for the program
memory wait states spent to fetch an instruction word to fill the pipeline.

A-228 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table A-7. Parallel Data Move Timing

; +mv Fmv Comments
Parallel Move Operation Words Cycles

No Parallel Data Move 0 0
| Immediate Short Data 0 0
R Register to Register 0 0
U Address Register Update 0 0
X: X Memory Move ea ea+ax See Note 1
X:R X Memory and Register ea ea+ax See Note 1
Y: Y Memory Move ea ea+ay See Note 1
R:Y Y Memory and Register ea eat+ay See Note 1
L: Long Memory Move ea ea+axy
X:Y: XY Memory Move 0 ea+axy
LMS(X) LMS X Memory Moves 0 ea+ax See Notes 1, 2
LMS(Y) LMS Y Memory Moves 0 ea+ay See Notes 1, 2

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA.
Note 2: The ea term does not apply to ABSOLUTE ADDRESS and IMMEDIATE DATA.

Table A-8. MOVEC Timing Summary (see Note 2)

MOVEC Operation gv';:: Comments
Immediate Short § Register 0
Register ¢ Register 0
X Memory ¢ Register ea+ax See Note 1
Y Memory 4 Register ea+ay See Note 1
P Memory 4 Register 4+ea+ap

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA.

Note 2: If assumption 4 is not applicable, then to each one-word instruction
timing, a “+ap’’ term should be added, and to each two-word in-
struction, a “+(2 « ap)”’ term should be added to account for the
program memory wait states spent to fetch an instruction word to
fill the pipeline.

Note that the “ap” term present in Table A-8 for the P memory move entry represents the
wait state spent when accessing the program memory during DATA read or write and does
not refer to instruction fetches.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-229

Table A-9. MOVEP Timing Summary (see Note 2)

MOVEP QOneration :y't';l‘;‘s’ Comments
Register 4# Peripheral aio
X Memory ¢# Peripheral ea+ax+aio See Note 1
Y Memory 4# Peripheral ea+ay+aio See Note 1
P Memory ¢ Peripheral 2+ea+ap+aio

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA.

Note 2: If assumption 4 is not applicable, then to each one-word instruction
timing, a “+ap” term should be added, and to each two-word in-
struction, a “+(2 * ap)”” term should be added to account for the
program memory wait states spent to fetch an instruction word to
fill the pipeline.

Note that the “ap’’ term present in Table A-9 for the P memory move entry represents the
wait states spent when accessing the program memory during DATA read or write oper-
ations and does not refer to instruction fetches.

Table A-10. Bit Manipulation Timing Summary
(see Note 2)

Bit Manipulation Operation " éy';:: Comments
. Bxxx Peripheral 2 « aio See Note 1
Bxxx X Memory ea+(2 « ax) See Note 1
Bxxx Y Memory ea+(2 « ay) See Note 1
Bxxx Register Direct 0 See Note 1
BTST Peripheral aio
BTST X Memory ea+ax
BTST Y Memory eat+ay

Note 1: Bxxx=BCHG, BCLR, or BSET

Note 2: If assumption 4 is not applicable, then to each one-word instruction
timing, a “+ap” term should be added, and to each two-word in-
struction, a ““+(2 * ap)” term should be added to account for the
program memory wait states spent to fetch an instruction word to
fill the pipeline. '

Table A-11. Jump Instruction Timing Summary

Jump Instruction Operation C;-(:jl:s Comments
Jbit Register Direct 2 xap See Note 1
Jbit Peripheral aio+(2 « ap) ’ See Note 1
Jbit X Memory ea+ax+(2 « ap) See Note 1
Jbit Y Memory ea+ay+(2 « ap) See Note 1
JIxxx ea+(2 « ap) See Note 2

Note 1: Jbit=JCLR, JSCLR, JSET, and JSSET
Note 2: Jxxx=Jcc, JMP, JScc, and JSR

A-230 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

All one-word jump instructions execute TWO program memory fetches to refill the pipeline,
which is represented by the ' +(2 * ap)’ term.

All two-word jumps execute THREE program memory fetches to refill the pipeline, but one
of those fetches is sequential {the instruction word located at the jump instruction 2nd
word address+ 1), so it is not counted as per assumption 4. If the jump instruction was
fetched from a program memory segment with wait states, another “ap” should be added
to account for that third fetch.

Table A-12. RTI/RTS Timing

Summary
. +rx
Operation Cycles
RTI 2*ap
RTS 2*ap

The term “2 * ap’” come from the two instruction fetches done by the RTI/RTS instruction
to refill the pipeline.

Table A-13. Addressing Mode Timing

Summary
Effective Addressing Mode V\-It) f:s C-;;:s
Address Register Indirect
No Update 0 0
Postincrement by 1 0 0
Postdecrement by 1 0 0
Postincrement by Offset Nn 0 0
Postdecrement by Offset Nn 0 0
Indexed by Offset Nn 0 2
Predecrement by 1 0 2
Special
- Immediate Data 1 2
Absolute Address 1 2
Immediate Short Data 0 0
Short Jump Address 0 0
Absolute Short Address 0 0
1/0 Short Address 0 0
Implicit 0 0

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-231

Table A-14. Memory Access Timing Summary

Access XMem | YMem | PMem 10 +ax +ay +an +aio +axy
Type A A A A Cycle Cycle Cycle Cycle Cycle

X: Int — — —_ 0 — — — —
X: Ext — — — wx = — —_ —
Y: — Int — — — 0 — — —
Y: — Ext - - — wy —_ — —
P: - — Int — - - 0 — —
P: — — Ext — — —_ wp —_ —
1/0: — — — Int - — — 0 —
1/0: — — — Ext — — — wio —
L: XY: Int Int — — — — — —_ 0
L: XY: Int Ext — — — —_ —_ — wy
L: XY: Ext Int — — — — — — WX
L: XY: Ext Ext — — — - — — 2+ wx+wy

Note 1: wx=external X memory access wait states
wy =external Y memory access wait states
wp = external P memory access wait states
wio = external /O memory access wait states

Note 2: wx, wy, wp, and wio are programmable from 0-15 wait states in the port A bus control register (BCR).

A.8 INSTRUCTION SEQUENCE RESTRICTIONS

Due to the pipelined nature of the DSP core processor, there are certain instruction se-
quences that are forbidden and will cause undefined operation. Most of these restricted
sequences would cause contention for an internal resource, such as the stack register. The
DSP assembler will flag these as assembly errors.

Most of the following restrictions represent very unusual operations which probably would
never be used but are listed only for completeness.

NOTE: The DSP56000/DSP56001 macro assembler is designed to recognize all restrictions
and flag them as errors at the source code level. Since many of these are instruction
sequence restrictions, they cannot be flagged as errors at the object code level such as
when using the DSP56000/DSP56001 simulator’s single-line assembler. Therefore, if any
changes are made at the object code level using the simulator, the user should always re-
assemble his program at the source code level using the DSP56000/DSP56001 macro as-
sembler to verify that no restricted instruction sequences have been generated.

A.8.1 Restrictions Near the End of DO Loops

Proper DO loop operation is not guaranteed if an instruction starting at address LA—2,
LA—1, or LA specifies one of the program controller registers SR, SP, SSL, LA, LC, or

A-232 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

(implicitly) PC as a destination register. Similarly, the SSH register may not be specified
as a source or destination register in an instruction starting at address LA—2, LA—1, or
LA. Additionally, the SSH register cannot be specified as a source register in the DO
instruction itself, and LA cannot be used as a target for jumps to subroutine (i.e., JSR,
JScc, JSSET, or JSCLR to LA). The following instructions cannot begin at the indicated
position(s) near the end of a DO loop:

AtLA-2,LA-1, and LA DO
BCHG LA, LC, SR, SP, SSH, or SSL
BCLR LA, LC, SR, SP, SSH, or SSL
BSET LA, LC, SR, SP, SSH, or SSL
BTST SSH .
JCLR/JSET/JSCLR/JSSET SSH
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
MOVEC to LA, LC, SR, SP, SSH, or SSL
MOVEM to LA, LC, SR, SP, SSH, or SSL
MOVEP to LA, LC, SR, SP, SSH, or SSL
ANDI MR
ORI MR

At LA any two-word instruction*
Jec
JMP
JScc
JSR
REP
RESET
RTI
RTS
STOP
WAIT

*This restriction applies to the situation in which the DSP56000/DSP56001 simulator’s
single-line assembler is used to change the last instruction in a DO loop from a one-word
instruction to a two-word instruction. All changes made using the simulator should be
reassembled at the source code level using the DSP56000/DSP56001 macro assembler to
verify that no restricted instruction sequences have been generated.

Other Restrictions DO SSH,xxxx
JSR to {LA) whenever the loop flag (LF) is set
JScc to (LA) whenever the loop flag (LF) is set
JSCLR to (LA) whenever the loop flag (LF) is set
JSSET to (LA) whenever the loop flag (LF) is set

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-233

NOTE: Due to pipelining, if an address register (R0O-R7, NO-N7, or M0-M7) is changed
using a move-type instructiori (LUA, Tcc, MOVE, MOVEC, MOVEM, MOVEP, or parallel
move), the new contents of the destination address register will not be avaiiabie for use
during the following instruction (i.e., there is a single instruction cycle pipeline delay). This
restriction also applies to the situation in which the last instruction in a DO loop changes
an address register and the first instruction at the top of the DO loop uses that same
address register. The top instruction becomes the following instruction because of the
loop construct. The assembler will generate a warning if this condition is detected.

A.8.2 Other DO Restrictions

Due to pipelining, the DO instruction must not be immediately preceded by any of the
following instructions:

Immediately before DO BCHG LA, LC, SSH, SSL, or SP
' BCLR LA, LC, SSH, SSL, or SP
BSET LA, LC, SSH, SSL, or SP
MOVEC to LA, LC, SSH, SSL, or SP
MOVEM to LA, LC, SSH, SSL, or SP
MOVEP to LA, LC, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

A.8.3 ENDDO Restrictions

Due to pipelining, the ENDDO instruction must not be immediately preceded by any of the
following instructions:

Immediately before ENDDO BCHG LA, LC, SR, SSH, SSL, or SP
BCLR LA, LC, SR, SSH, SSL, or SP
BSET LA, LC, SR, SSH, SSL, or SP
MOVEC to LA, LC, SR, SSH, SSL, or SP
MOVEM to LA, LC, SR, SSH, SSL, or SP
MOVEP to LA, LC, SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR

-ORI MR

A-234 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

A.8.4 RTI and RTS Restrictions

Due to pipelining, the RTl and RTS instructions must not be immediately preceded by any
of the following instructions:

Immediately before RTI BCHG SR, SSH, SSL, or SP
BCLR SR, SSH, SSL, or SP
BSET SR, SSH, SSL, or SP
MOVEC to SR, SSH, SSL, or SP
MOVEM to SR, SSH, SSL, or SP
MOVEP to SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR or ANDI CCR
ORI MR or ORI CCR

Immediately before RTS BCHG SSH, SSL, or SP
BCLR SSH, SSL, or SP
BSET SSH, SSL, or SP
MOVEC to SSH, SSL, or SP
MOVEM to SSH, SSL, or SP
MOVEP to SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

A.8.5 SP and SSH/SSL Manipulation Restrictions

In addition to all the above restrictions concerning MOVEC, MOVEM, MOVEP, SP, SSH,
and SSL, the following MOVEC, MOVEM, and MOVEP restrictions apply:

Immediately before MOVEC from SSH or SSL BCHG to SP
BCLR to SP
BSET to SP

Immediately before MOVEM from SSH or SSL BCHG to SP
BCLR to SP
BSET to SP

Immediately before MOVEP from SSH or SSL BCHG to SP
BCLR to SP
BSET to SP

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-235

Immediately before MOVEC from SSH or SSL

Immediately before MOVEM from SSH or SSL

Immediately before MOVEP from SSH or SsL

Immediately before JCLR #n, SSH or SSL,xxxx

Immediately before JSET #n, SSH or SSL,xxxx

Immediately before JSCLR #n, SSH or SSL,xxxx

Immediately before JSSET #n, SSH or SSL,xxxx

Immediately before JCLR #n, SSH or SSL,xxxx

Immediately before JSET #n, SSH or SSL,xxxx

Immediately before JSCLR from SSH or SSL,xxxx.

Immediately before JSSET from SSH or SSL,xxxx

Also, the instruction MOVEC SSH,SSH is illegal.

MOVEC to SP
MOVEM to SP

AMVIED s~ QD
MOVEP to SP

MOVEC to SP
MOVEM to SP
MOVEP to SP

MOVEC to SP
MOVEM to SP
MOVEP to SP

MOVEC to SP
MOVEM to SP
MOVEP to SP

MOVEC to SP
MOVEM to SP
MOVEP to SP

MOVEC to SP
MOVEM to SP
MOVEP to SP

MOVEC to SP
MOVEM to SP
MOVEP to SP

BCHG to SP
BCLR to SP
BSET to SP

BCHG to SP
BCLR to SP
BSET to SP

BCHG to SP
BCLR to SP
BSET to SP

BCHG to SP
BCLR to SP
BSET to SP

A-236 DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

A.8.6 R, N, and M Register Restrictions

If an address register (R0-R7, NO-N7, or M0-M?7) is changed with a move-type instruction
(LUA, Tcc, MOVE, MOVEC, MOVEM, MOVEP, or parallel move), the new contents of the
destination address register will not be available for use as a pointer during the following
instruction (i.e., there is a single instruction cycle pipeline delay). This does not apply to
address registers that are updated as part of an addressing mode update.

NOTE: This restriction also applies to the situation in which the last instruction in a DO
loop changes an address register using a move-type instruction and the first instruction
at the top of the DO loop uses that same address register. The top instruction becomes
the following instruction because of the loop construct. The DSP assembler will generate
a warning if this condition is detected.

A.8.7 Fast Interrupt Routines
The following instructions may not be used in a fast interrupt routine:

In a fast interrupt routine DO
ENDDO
RTI
RTS
MOVEC to LA, LC, SSH, SSL, SP, or SR
MOVEM to LA, LC, SSH, SSL, SP, or SR
MOVEP to LA, LC, SSH, SSL, SP, or SR
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ORI MR or ORI CCR
ANDI MR or ANDI CCR
STOP
Swi
WAIT

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-237

A.8.8 REP Restrictions

The REP instruction can repeat any single-word instruction except the REP instruction itself
and any instruction that changes program flow. The following instructions are not allowed
to follow an REP instruction: '

Immediately after REP DO
Jce
JCLR
JMP
JSET
JScc
JSCLR
JSR
JSSET
REP
RTI
RTS
STOP
SwWi
WAIT

Also, an REP instruction cannot be the last instruction in a DO loop (at LA).

A.9 INSTRUCTION ENCODING

This section summarizes instruction encoding for the DSP56000/DSP56001 instruction set.
The instruction codes are listed in nominally descending order. The symbols used in de-
coding the various fields of an instruction are identical to those used in the Opcode section
of the individual instruction descriptions. The user should always refer to the actual in-
struction description for complete information on the encoding of the various fields of that
instruction. ‘ ‘

Section A.9.1 gives the encodings for (1) various groupings of registers used in the in-
struction encodings, (2) condition code combinations, (3} addressing, and (4) addressing
modes.

Section A.9.2 gives the encoding for the parallel move portion of an instruction. These 16-
bit partial instruction codes may be combined with the 8-bit data ALU opcodes listed in
Section A.9.3 to form a complete 24-bit instruction word.

Section A.9.3 gives the complete 24-bit instruction encoding for those instructions which
do not allow parallel moves.

A-238 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Section A.9.4 gives the encoding for the data ALU portion of those instructions which allow
parallel data moves. These 8-bit partial instruction codes may be combined with the 16-
bit parallel move opcodes listed in Section A.9.1 to form a complete 24-bit instruction word.

Section A.9.5 contains instruction encodings for nonsensical instructions {(called insane
instructions) for which encodings exist but which cause problems such as writing two
sources to one destination.

A.9.1 Partial Encodings for Use in Instruction Encoding

Table A-15. Single-Bit Register Encodings

Code d* e f Where:
0 A X0 Y0 d=2 Accumulators in Data ALU
1 B X1 Y1 e=2 Registers in Data ALU
v f=2 Registers in Data ALU

*For class Il encodings for R:Y and X:R, see Table A-16.

Table A-16. Single-Bit
Special Register Encodings

d X:R Class Il Opcode R:Y Class Il Opcode
Ap X:<ea> X0 » A YOR AAPY:<ea>
1 B# X:<ea>X0¥B YO » BB Y:i<ea>

Table A-17. Double-Bit Register

Encodings
Code DD ee ff
00 X0 X0 YO
01 X1 1 X1 Y1
10 Yo A A
1 Y1 A B

Where: DD =4 registers in data ALU
ee=4 XDB registers in data ALU
ff=4 YDB registers in data ALU

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-239

Table A-18. Triple-Bit Register Encodings

Code DDD LLL -| FFF NNN TTT GGG
000 AD A10 Mo NO RO *
001 BO B10 M1 N1 R1 SR
010 A2 X M2 N2 R2 OMR
011 B2 Y M3 N3 R3 SP
100 Al A M4 N4 R4 SSH
101 B1 B M5 N5 R5 SSL
110 A AB Mé N6 R6 LA
m B BA M7 N7 R7 LC

*Reserved

Where: DDD: 8 accumulators in data ALU
LLL: 8 extended-precision registers in data ALU; LLL field is
encoded as LOLL .
FFF: 8 address modifier registers in address ALU
NNN: 8 address offset registers in address ALU
TTT: 8 address registers in address
GGG: 8 program controller registers

Table A-19(a). Four-Bit Register
Encodings for 12 Registers in

Data ALU
D b D D Description
0 0 X X |Reserved
0 1 D D [Data ALU Register
1 D D D |DataALU Register

Table A-19(b). Four-Bit Register Encodings
for 16 Condition Codes

Mnemonic cC ¢ ¢ ¢C Mnemonic cC CcC c¢c C
CC (HS) 0 0 0 0 |CS(LO) 1 0 0 0O
GE 0 0 0 1]LT 1.0 0 1
NE 0 0 1 0|EQ 1.0 1 0
PL 0o 0 1 1 |Ml 1 0 1 1
NN 0 1 0 O0/|NR 1 1 0 0
EC 0 1 0 1][ES 11 0 1
LC 0 1 1 0]LS 1 1 1 0
GT o 1 1 1 |LE T 101

A-240 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table A-20. Five-Bit Register Encodings
1, for 28 Registers in Data ALU and

Address ALU

e e e e e

or
d d d d d Description
0 0 0 0 X [Reserved
0 0 0 1 X |Reserved
0 0 1 D D [Data ALU Register
0 1 D D D |DataALU Register
1 0 T T T |Address ALU Register
1 1 N N N |Address Offset Register

Where: eeeee=source
ddddd =destination

Table A-21. Six-Bit Register Encodings for
43 Registers On-Chip

d d d d d d Description

0 0 0 0 X X |Reserved

0 0 0 1 D D |DataALU Register

0 0 1 D D D |Data ALU Register

0 1 0 T T T |Address ALU Register

0 1 1 N N N [Address Offset Register

1 0 0 F F F |Address Modifier Register

1 0 1 X X X |Reserved

1 1 0 X X X |Reserved

1 1 1 G G G |Program Controller Register

Table A-22. Write Control Table A-23. Memory Space “
Encoding Bit Encoding

w Operation . : S Operation
0 |Read Register or Peripheral 0 | X Memory
1 | Write Register or Peripheral 1 |Y Memory

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-241

A-242

Table A-24. Program Controller
Register Encoding

E E Register

0 0 |MR Mode Register

0 1 |CCR Condition Code Register
1 0 [OMR Operating Mode Register
11 —_ Reserved

Table A-25. Condition Code and Address Encoding

Code Code Definition

¢ ¢ ¢ ¢ |16 Condition Code Combinations

b b b b b |5-Bit Immediate Data

[i i i i |8-BitImmediate Data {int, frac, mask)

P X X X X

h h h h | 12-Bit Immediate Data {iiii iiii hhhh)

aa a a a a |6-Bit Absolute Short (Low) Address

pp p p p p |6-Bit Absolute /O (High) Address

aaaa aaaa a a a a | 12-Bit Fast Absolute Short (Low) Address
Table A-26. Effective Addressing

Mode Encoding

M M M R R R Effective Addressing Mode

0 0 0 r r r [Post-N

0 0 1 r r r |Post+N

0 1. 0 r r r [Post-1

0 1 1t r r r |Post+1

1 0 0 r r r |NoUpdate

1 0 1 r r r |Indexed +N

1 1 1 r r r |Pre-1

1 1 0 0 r r |Absolute Address

11 0 r r {Immediate Data

RRR =three unencoded bits RO, R1, R2

MMM =three unencoded bits M0, M1, M2
NOTES:

(1) R2 is 0 for low register bank and 1 for the high register
bank.

(2) M2 is 0 for all post update modes and 1 otherwise.

(3) M1 is 0 for update by register offset and 1 for update by
one.

(4) MO is 0 for minus and 1 for plus.

(5) For X and Y moves, rr is a subfield or rrr with equations:
r2 :=R2.

(6) For rr field, r1 is bit 14; r0 is bit 13.

(7) For X and Y moves, mm is a subfield of mmm with equa-
tions: M2 :=(M1 v M0) m2 :=(m1 v m0}.

(8) For mm field, m1 is bit 21; m0 is bit 20. For MM field, M1
is bit 12; MO is bit 11.

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

A.9.2 Instruction Encoding for the Parallel Move Portion of an Instruction

X: Y: Parallel Data Move

23 16 15 87 0
Il W m m e e f le rr M MR R R INSTRUCTION OPCODE

X: Parallel Data Move

23 16 15 8 7 0
0 1 d d 0 d d d|W 1 M MMRBRRBRR INSTRUCTION DPCODE
OPTIONAL EFFECTIVE ADDRESS EXTENSION

7 16 15 R ' 0
[0 1 ¢ ¢ 0 d d d[w o aaaaa a INSTRUCTION OPCODE

23 16 15 8 7 0
0 1 d d 1t d d d I W1 MMMRBRRRBR INSTRUCTION 0PCODE
OPTIONAL EFFECTIVE ADDRESS EXTENSION

16 15 8 7 0

23

[0+ ¢ ¢ 1 ¢ o afw 0 a a a a a a| INSTRUCTION OPCODE
L: Parallel Data Move

3 16 15 8 7 0

01 0 0 L O L LIW1TMMMIRBRR RI INSTRUCTION OPCODE
OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0
fo 1 0 0ot ot Lw o a a aa a al InsTRUCTIONOPCODE |

I: Immediate Short Parallel Data Move

23 16 15 8 7 0
[o 0o + ¢ ¢ ¢ a ali i i i i i i i instRucionopcope |

R: Register to Register Parallel Data Move

23 16 15 8 7 0
o 0 1 0o 0 0 ¢ ele e e d a o d d INSTRUCTION OPCODE

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-243

U: Address Register Update Parallel Data Move

23 16 15 8 7 0
[0 o 1 o o o o oflo 1 o M M R R R| INSTRUCTION OPCODE

Parallel Data Move NOP

23 16 15 8 7 0
|ll 0 1 0 0 0 0 OID 0 0 0 0 0 0 O INSTRUCTION OPCODE

R:Y Parallel Data Move

23 16 15 8 7 0
0 0 0 1 d e f f I W1 MMMR RRBRR INSTRUCTION OPCODE
OPTIONAL EFFECTIVE ADDRESS EXTENSION

X:R Parallel Data Move

23 16 15 8 7 0
0 0 0 1 f f d fflWOMMMRTR RR INSTRUCTION OPCODE
OPTIONAL EFFECTIVE ADDRESS EXTENSION

A.9.3 Instruction Encoding for Instructions Which Do Not Allow Parallel Moves

NOTE: For following bit class instructions bbbbb=11bbb is reserved:
JSSET, JSCLR, JSET, JCLR, BTST, BCHG, BSET, and BCLR.
JScc xxx

23 1615 - 8 17 0
|00001111CCCCaaaaaaavaaaaa

Jee XXX

JMP XXX

23 16 15 8 17 0
|00001100|0000aaaa|aaaaaaaal

A-244 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

JScc ea

23 18 15 81 0
00 0 0 1 0 1 1/1 1 M MM®RBRR®RB[T 0 10¢CCCC
OPTIONAL EFFECTIVE ADDRESS EXTENSION

JSR ea

23 16 15 8 7 0
¢ 000101 1| 1T M MMHRBRRIR|T 00 0 00 0 0
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Jce ea N

23 16 15 8 7 0
0 0 0 0 10 1 Of1t 1 M MMHRBRARR{1010CCC C
OPTIONAL EFFECTIVE ADDRESS EXTENSION

JMP ea

23 16 15 817 0
00 0 0 1t 0 1 Of" 1T M MMHRBRRAR|T 00 0 0 0 0 0
OPTIONAL EFFECTIVE ADDRESS EXTENSION

JSSET #n,X:pp,xxxx
JSSET #n,Y:pp,xxxx

23 . 16 15 87 | 0
0 0 0 0 1 0 111 0 p p p p p p|t 8§ 1 b b b b b
ABSOLUTE ADDRESS EXTENSION

JSCLR #n,X:pp,XxXxx
JSCLR #n,Y:pp,xxxx

23 16 15 8 7 0
0 0 0 0 1 0 1 1[1 0 p pppp pft S0 b b b b b
' ABSOLUTE ADDRESS EXTENSION

JSET ##n,X:pp,Xxxx
JSET #n,Y:pp,xxxx

3 16 15 87 0
0 0 0 0 1 0 1 0|1 0 p p pop pplt S 1 b b b b b
ABSOLUTE ADDRESS EXTENSION

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-245

JCLR
JCLR

23

#n,X:pp,xxxx
#n,Y:pp,xxxx

16 15 87

0

ol o » p p p p bt

ABSOLUTE ADDRESS EXTENSION

JSSET
JSSET

23

#n,X:eaxxxx
#n,Y:ea,xxxx

16 15 8 7

1Jo 1 m M M R R B[

ABSOLUTE ADDRESS EXTENSION

JSCLR
JSCLR

23

#n,X:ea,xxxx
#n,Y:ea,xxxx

16 15 8 7

1{o 1 M Mm M R R R

ABSOLUTE ADDRESS EXTENSION

JSET
JSET

23

#n,X:ea,xxxx
#n,Y:ea,xxxx

16 15 8 7

ofo 1+ M M M R R RJ|I

ABSOLUTE ADDRESS EXTENSION

JCLR
JCLR

23

#n,X:ea,xxxx
#n,Y:ea,xxxx

16 15 8 7

olo 1 m m M R R R[

ABSOLUTE ADDRESS EXTENSION

JSSET
JSSET

23

#n,X:aa,xxxx
#n,Y:aa,xxxx

16 15 8 7

0 0 0 0 1 01 1J]0 0 a a a a a a|l

ABSOLUTE ADDRESS EXTENSION

A-246

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

JSCLR #n,X:aa,Xxxx
JSCLR #n,Y:aa,xxxx

23 16 15 8 7 0
0 0 0 001 0 1 1J0 0 a a a a a aJl § 0 b b b b b
ABSOLUTE ADDRESS EXTENSION

JSET #n,X:aa,xxxx
JSET #n,Y:aa,xxxx

23 16 15 8 7 0
0 0 0 0 1 0 1 0J0O 0 a a a a a afll 8§ 1 b b b b b
ABSOLUTE ADDRESS EXTENSION

JCLR #n,X:aa,xxxx
JCLR #n,Y:aa,xxxx

23 16 15 .\ 8 7 0
0 0 0 01 0 1 0|0 0 a a a a a aft S 0 b b b b b
ABSOLUTE ADDRESS EXTENSION

JSSET #n,S,xxxx

23 16 15 8 7 0
0 00 0 1 0 1 1|1t 1 d d d d d dj0 0 1 b b b b b
ABSOLUTE ADDRESS EXTENSION

JSCLR #n,S,xxxx

23 16 15 87 0
00 0 0 1 0 1 1)1 1 d d d d d dfjo 0'0 b b b b b
ABSOLUTE ADDRESS EXTENSION

JSET #n,S,xxxx

23 16 15 8 7 0
0 0 0 0,1 0 1 0|1 1 d d d d d dj0 0 1 b b b b b
ABSOLUTE ADDRESS EXTENSION

JCLR #n,S,xxxx

23 16 15 8 7) 0
0 0 0 0 1t 0 1 o}1 1t d d d d d djo 0 0 b b b b b
ABSOLUTE ADDRESS EXTENSION

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-247

BTST #n,X:pp
BTST #n,Y:pp

23

16 15 87

fo 0 0 0 1

11anpppp|031b

BCHG #n,X:pp
BCHG #n,Y:pp

23

16 15 8 7

[0 0 0 0 1

11 0o p p p p p plo s 0 b

BSET #n,X:pp
BSET #n,Y:pp

23

16 15 8 7

[0 0 0 0 1

BCLR #n,X:pp
BCLR #n,Y:pp

3 16 15 87 0
[0 0 0 0 1 1 0|1 0 p p p p p plo 5 0 b b
BTST #n,X:ea
BTST #n,Y:ea
3 16 15 87 0
00 0 0 1 1 1/o 1 M M M R R RO S 1 b b
OPTIONAL EFFECTIVE ADDRESS EXTENSION
BCHG #n,X:ea
BCHG #n,Y:ea
3 16 15 87 0
00 0 0 1 1 101 M M M R R RO S 0 b b
OPTIONAL EFFECTIVE ADDRESS EXTENSION
BSET #n,X:ea
BSET #n,Y:ea
3 16 15 87 0
08 0 0 1 ojo 1 m M MR R RO S 1 b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

A-248

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

BCLR #n,X:ea
BCLR . #n,Y:ea

23 16 15 8 17 0
0000 10 1 0/01 M MMA®BRA BROS 0 b b b b b
OPTIONAL EFFECTIVE ADDRESS EXTENSION

BTST #n,X:aa
BTST #n,Y:aa

23 16 15 8 7 0

BCHG #n,X:aa
BCHG #n,Y:aa

23 16 15 817 0
[o 0 0 0 1 0 1 1[0 0 a a a a a alJo S 0 b b b b b

BSET #n,X:aa
BSET #n,Y:aa

23 16 15 8 7 0

BCLR #n,X:aa
BCLR #n,Y:aa

23 16 15 87 0
fo 0o o o 1 0o 1 o0fo 0 a a a a a alo 5 0 b b b b b

BTST #n,D

BSET #n,D

23 18 15 8 7 0
[0 0 0o o 1 o v oft 1 ¢ ¢ d d ddlo 1 1 b b bbb

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-249

BCLR #n,D

3 16 15 8 7 0
[0 0 0o 0o 1 0o 1 of1 1 ¢ ¢ ¢ ¢ d dlo 1 0 b b b b b

MOVEP X:ea,X:pp
MOVEP Y:ea,X:pp
MOVEP #xxxxxx,X:pp
MOVEP X:pp.X:ea
MOVEP X:pp.Y:ea
MOVEP X:ea,Y:pp
MOVEP Y:ea,Y:pp
MOVEP #xxxxxx,Y:pp
MOVEP Y:pp,X:ea
MOVEP Y:pp,Y:ea

P 16 15 8 7 : 0
0 0 0 01 00 S|wWi1MMMRRR[t s ppopop p p
OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOVEP P:ea,X:pp
MOVEP X:pp,P:ea
MOVEP P:ea,Y:pp
MOVEP Y:pp.P:ea

23 16 15 8 7 0
0 0 0 0 1 00 S|W 1 MMMRGRBGRIO T p popop p p
OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOVEP S, X:pp
MOVEP X:pp,D
MOVEP S.Y:pp
MOVEP Y:pp.D

2 15 15 8 7 0
[o 0 o 0 1 0 o sfw 1 d ¢ d d d dlo 0 p » » p » b

MOVE(M) S,P:ea
MOVE(M) P:ea,D

23 16 15 8 7 0
0 ¢ 0 0 0 1 1 1 I W1!tMMMABARBRABI[I 0 d d d d d d
OPTIONAL EFFECTIVE ADDRESS EXTENSION

A-250 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MOVE(M) S,P:aa
MOVE(M) P:aa,D

23 16 15 8 7 0
[0 0 0 0o 0o 1 1 1|w 0 a a a aaalo 0 d d dd dd

REP #xxx
23 15 15 87 0
fo o 0o 0.0 1 1 ofi i i i i i i it o 1 0 h h b on
REP S

3 16 15 8 7 0
fo 0 o 0o 0o 1 1 of1 1 ¢ ¢ ¢ ¢ d dlo 0 1 0 0 0 0 0

REP X:ea
REP Y:ea

23 18 15 8 7 0
[o 0 0 0o o 1 1 oJo 1t m m m R R Rlo s 1 0 0 0 0 o

REP X:aa
REP Y:aa
23 16 15 87 0
LT. 0 0 0 0 1 1 0]0 0 a a a a a af0 s 1 0 0 0 0 ©
DO #xxx,expr
23 16 15 8 7 0
0 0 0 0 0 t 1 ofi i i i i i i.i[t 0 0 0 h h h h

ABSOLUTE ADDRESS EXTENSION

DO S,expr

< 16 15 8 7 0
0o 0.0 0 0 1 1 0of1 1 0 b DD D oDfo 00 0 0 0 0 0
ABSOLUTE ADDRESS EXTENSION

DO X:ea,expr
DO Y:ea,expr

x| 16 15 8 7 0
0 00 0 0 1 1 ofo 1t M M MR RGROS 00 0 0 00
ABSOLUTE ADDRESS EXTENSION

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-251

DO X:aa,expr
DO Y:aa,expr

23 16 15 ; 8 7 0
00 0 0 0 1 1 0{0 0 a a a a a al0 0 0
ABSOLUTE ADDRESS EXTENSION
MOVE(C) #xx,D1
23 16 15 ‘ 87 0
o 0 0 0 0 1 0 i i i i i i i i d d|
MOVE(C) X:ea,D1
-MOVE(C) S$1,X:ea
MOVE(C) Y:ea,D1
MOVE(C) S1,Y:ea
MOVE(C) #xxxx,D1
23 16 15 8 7 0
0 0 00 0 1 0 1|W 1 MMMRBRRBR RO s 1t d d d d d
OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOVE(C) X:aa,D1
MOVE(C) $1,X:aa
"MOVE(C) Y:aa,D1
MOVE(C) $1,Y:aa
B 16 15 87 0
fo 0 0 0 0 1 0 t]w o aaaaa alo 4 d|
MOVE(C) $1,D2
MOVE(C) S$2,D1
n 16 15 3 7 0
[00000100IWIeeeeee1 di]
LUA eaD
23 16 -15 87 0
[0 o 0 0 0o 1 0 ofo 1 0o Mm m R R R[0 d d]
Tce $1,D1 S$2,D2
23 16 15 37 0

fo 0 0 000 1 1Jcccocoztttfo

A-252

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

Tce S$1,.D1

3 18 15 8 7 0
[0 0 0 0 0o 0o 1 ofc c cc oo oofo J Jy gD o oo

NORM Rn,D

23 16 15 8 7 0
I000000011101IHRROUOIdIUI

DIv.SD

23 16 15 87 0
[o 0 o 0o o o o 11 0 o 0o 0 o 0 ofc 1t 4 4 d 0 0 0

OR(I) #xx,D

16 15 8 7 0

23
o 0 0 0 0 0 o0 ofi i i i i i i [t 1 1 1 1 0 EE

AND(l) #xx,D

23 16 15 8 7 0

23 16 15

23 16 15 8 7 0

23 15 15 87 0
[0 o 0 0o 0 0 o oJo o 0 0 0 0 0 oft 0 0 0 0 1 1 o]

RESET

23 16 15 : 8 7 0
lUDOOOﬂOOlOOOOOOOUIOOUOI00

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-253

RTS

» 16 15 8 7 0
{o o o 0o o 0o o ofo 0o 0 0o 0o 0 0 ofc 0 0 0 1 1 0 o0
Swi
3 16 15 8 7 0
fo o 0o 0o 0o o 0o ofo 0o 0o 0o 0o 0o o0 ofo 0 0 0 0 1 1 of
RTI
7 16 15 87 , 0
|0 0 0 0 0 0O 0 OJO 0 O 0 O O O UIU 0o 0o 0 1 0 O
NOP
23 , 16 15 8 7 0

[0 0o o 0o 0o 0o 0 oo o o 0o 0o o 0o ofo 0o 0 0 0 0 o of

A.9.4 Parallel Instruction Encoding of the Operation Code

The operation code encoding for the instructions which allow parallel moves is divided
into the multiply and nonmuitiply instruction encodings shown in the following subsection.

Multiply Instruction Encoding

The 8-bit operation code for multiply instructions allowing parallel moves has different
fields than the nonmultiply instruction’s operation code.

The 8-bit operation code =10QQ dkkk where QQQ = selects the inputs to the multiplier
kkk = three unencoded bits k2, k1, kO
d = destination accumulator
d=0#»A
d=1»8B

Table A-27. Operation Code K0-2 Decode

Code k2 k1 kO
0 positive mpy only don’t round
1 negative mpy and acc round

A-254 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table A-28. Operation Code

QQQ Decode
Q Q Q S1 s2
0 0o o X0 X0
0 0 1 Y0 Y0
0 1 0 X1 X0
0 1 1 Y1 YO
1 0 0 X0 Y1
1 0 1 Y0 X0
1 1 0 X1 \
1 1 1 Y1 X1

NOTE: S1 and S2 are the inputs to the multiplier

MACR (%)S1,S2,D
MACR (*)S2,S1,D

23 43

(=]
o

8 7
DATA BUS MOVE FIELD ' 1 0 Q

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MAC (%)81,82,D
MAC (%)S2,S1,D

23 8 7 43

DATA BUS MOVE FIELD I 1 0 Q (lli

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MPYR (+)81,52,D
MPYR (%)82,81,D

23) 8 7

DATA BUS MOVE FIELD 1.0 0 Q h

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MPY (+£)S1,52,D
MPY (x)S2,81.D

23 8 7

43
DATA BUS MOVE FIELD 1. 0 Q Qb k

0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

Nonmultiply Instruction Encoding

The 8-bit operation code for instructions allowing parallel moves contains two 3-bit fields
defining which instruction the operation code represents and one bit defining the desti-
nation accumulator register.

The 8-bit operation code =0JJJ Dkkk where JJJ = 1/2 instruction number

Il

kkk = 1/2 instruction number
D = destination accumulator
D=0»A
D=1#B

Table A-29. Nonmultiply Instruction Encoding

D=0 D=1 kkk
JJJ Src Src

Oper Oper 000 001 010 o1 100 | 101 110 1
000 B A MOVE! | TFR ADDR | TST * CMP | SUBR CMPM
001 B A ADD RND | ADDL CLR | SuB * SUBL NOT
0102 B A — — ASR LSR — — ABS ROR
0112 B A — — ASL LSL — - NEG ROL
0102 X1X0 X1X0 ADD ADC — — SUB | SBC
0112 Y1Y0 Y1Y0 ADD ADC — — | suB | SBC
100 X0-0 | Xo0-0 ADD TFR OR EOR | SUB | CMP AND CMPM
101 Y0_0 Y0_0 ADD TFR OR EOR | SuB | CmP AND CMPM
110 X1.0 X1-0 ADD TFR OR EOR | suB | cmP AND CMPM
m Y1-0 Y10 ADD TFR OR EOR | SUB | CMP AND CMPM

NOTES:

* =Reserved
1=_Special Case #1 {See Table A-30)
2=Special Case #2 (See Table A-31)

Table A-30. Special Case #1

OPERCODE Operation
00000000 MOVE
00001000 Reserved

For JUJ=010 and 011, k1 qualifies source register selection:
Table A-31. Special Case #2

0JJJdkkk Operation

0010xx0x Selects X1X0
0011xx0x Selects Y1Y0
001 xxx1x Selects A/B

A-256 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

CMPM S1, 82

23 8 7 43 0
DATA BUS MOVE FIELD Cdoow o e o]
OPTIONAL EFFECTIVE ADDRESS EXTENSION
AND SD
n 8 7 43 0
DATA BUS MOVE FIELD 0 1 4 Jfd 1 1 0
OPTIONAL EFFECTIVE ADDRESS EXTENSION
CMP 81, S2
23 8 7 43 0
DATA BUS MOVE FIELD o vy ula 1 0
OPTIONAL EFFECTIVE ADDRESS EXTENSION
SUB S,D
23 § 7 43 0
DATA BUS MOVE FIELD Cfoououufe 1 00
OPTIONAL EFFECTIVE ADDRESS EXTENSION
EOR S.D
B 8 7 43 0
DATA BUS MOVE FIELD oo ufe 0 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION
OR SD
3 87 43 0
DATA BUS MOVE FIELD oo 1 0 ula 0 1 0
OPTIONAL EFFECTIVE ADDRESS EXTENSION
TFR SD
23 87 43 0
DATA BUS MOVE FIELD lo o o ufd 0 0
OPTIONAL EFFECTIVE ADDRESS EXTENSION
ADD S,D
23 8 7 43 0
DATA BUS MOVE FIELD lo v o ufs 0 0 o

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-257

SBC SD
3 87 43
DATA BUS MOVE FIELD o R
OPTIONAL EFFECTIVE ADDRESS EXTENSION
ADC SD
3 8 7 43
DATA BUS MOVE FIELD 0 FI
OPTIONAL EFFECTIVE ADDRESS EXTENSION
ROL D
3 81 43
DATA BUS MOVE FIELD Jo KK
OPTIONAL EFFECTIVE ADDRESS EXTENSION
NEG D
3 87 43
DATA BUS MOVE FIELD 0 1Ja
OPTIONAL EFFECTIVE ADDRESS EXTENSION
LSL D
2 8 7 43
DATA BUS MOVE FIELD [0 1{d o
OPTIONAL EFFECTIVE ADDRESS EXTENSION
ASL D
23 8 7 43
DATA BUS MOVE FIELD 0 ifa o
OPTIONAL EFFECTIVE ADDRESS EXTENSION
ROR D
23 8 7 43
DATA BUS MOVE FIELD lo ofd 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION
ABS D
23 81 43
DATA BUS MOVE FIELD 0 old 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION
A-258 DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

ISR D

2 87 43
DATA BUS MOVE FIELD 0 ofd 0 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION
ASR D
2 87 43
DATA BUS MOVE FIELD [0 old o 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION
NOT D
23 81 43
DATA BUS MOVE FIELD [o 1fa 14
OPTIONAL EFFECTIVE ADDRESS EXTENSION
SUBL S,D
23 8 1 43
DATA BUS MOVE FIELD o 1la 11
OPTIONAL EFFECTIVE ADDRESS EXTENSION
CLR D
23 87 43
DATA BUS MOVE FIELD o 1la 0 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION
ADDL SD
3 87 43
DATA BUS MOVE FIELD [o 1fa 0 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION
RND D
23 8 7 43
DATA BUS MOVE FIELD o 1ld o0 o
OPTIONAL EFFECTIVE ADDRESS EXTENSION
SUBR S.D -
2 8 7 43
DATA BUS MOVE FIELD [o ofd 1 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER'S MANUAL

A-259

TST D

23 8 7 43 0
DATA BUS MOVE FIELD 0 0 0 o0fjd 0 1 1
OPTIONAL EFFECTIVE ADDRESS EXTENSION

ADDR S.D
2 87 43 0
DATA BUS MOVE FIELD o o 0 ofda 0 1 0
OPTIONAL EFFECTIVE ADDRESS EXTENSION
ILLEGAL
23 16 15 8 7 43 0
[0 0 0 0 o 0o 0 ofo 0o 0o 0 0o 0o o ofo 0o 0 ofo 1 o 1]
MOVE S.D
23 81 43 0
DATA BUS MOVE FIELD 0o 0 0 ofo 0o 0 o

OPTIONAL EFFECTIVE ADDRESS EXTENSION

A.9.5 Insane Instructions

Some instructions have legal operation codes but try to perform nonsensical operations.
These instructions are called insane instructions. An example of an insane instruction is:

T1xx 1117 1xxx xxxX yyyy Xxyyy X:eap B & Y:eap B

Both parallel moves write to the same register (register B) which puts an indeterminant
resultin B. These instructions are flagged as errors by the assembler. However, it is possible
to produce illegal or insane instructions with the assembler using the DC command.

For the following insane instructions, let the operation code yyyy dyyy equal any combi-
nation of OPER CODE except:

1. 0000 0000 MOVE

2. 0000 1000 reserved

3. 0000 0100 RTI

4. 0000 1100 RTS

A-260 DSP56000/DSP56Q01 USER'S MANUAL MOTOROLA

Also, no operation code is allowed that results in writing to a destination if there is a parallel
move to that same destination. In each of the following tables, a duplicate destination is

specified, which makes that specific case of the instruction an insane instruction.

Table A-32. Insane X: and Y: Parallel Move

23 16 15 87 0 Parallel Instruction
TwmmXXYYWr rMMRRROPERCODE X:ea, XX and Y:ea,YY
1T1Txx1T1T111TxxxXXXXYyyyyxyyy|XeapB&Y:eadB
TTxx10101 xxxxxxXyyyyxyyy|XeapA&VYieadA
Txxx1T1xx1TxxXxXxXXXXyyyylyyy|Xea#B & ACCH»B
TIxxXxX1T1IXXXXXXXXYYYYylyyy Y:ead B& ACC # B
Txxx1T0xx1TXxXXXxXXXXYyyyOyyy|XearA & ACCH» A
TITxxxx1TO0XXXXXXXXYYyyyOyyy Y:eah A& ACCH A
Table A-33. Insane X: or Y: Parallel Move
23 16 15 87 0 Parallel Instruction
0101SDDDWxxxxxxxOPERCODE X:xx,DDD or Y:xx,DDD
0101 xxx11XxXXXXXXXYYyylyyy X:Xx'BorY:xx)B&ACCtB
0101xxx01xxxxxxxyyyy0yyy XixxpAorYixx p A& ACCH A
Table A-34. Insane L: Parallel Move
23 16 15 87 0 Parallel Instruction
0100LOLLWXxxxxxxxOPERCODE Lixx,LLL
01000001 1TxxxxXxXXYyyyylyyy|[Lxx®pB10&ACCHB
010000001 xxxXxXXXYyyyyOyyy]|LxxpA10&ACChA
01001001 TxxxxxXXyyyylyyy|Lxx$B &ACC»B
010010001 xxxxXxXXXyyyyOyyy|LxxoeA &ACCHA
01007101711 xxXxXX XXYYYyXxyyy|Lxx#B.A&ACCHAoOrB
010010101 XxXXXXXXYYyyyxyyy|LxxsABS&ACCHAorB
Table A-35. Insane I: Parallel Move
23 16 15 87 0 Parallel Instruction
00101DDDiiiiiiiiOPERCODE iiiiiiii # DDD
00101 xxTXxXXXXXXXXYYyylyyy|[ImmpB&ACCH»B
00101 xx0xXxXxXXXXXYyyyoOyyy|ImmpA&GACCPA

MOTOROLA

DSP56000/DSP56001 USER'S MANUAL

A-261

Table A-36. Insane R: Parallel Move

23
0010

16 15 87 0
00dddddDDDDDOPERCODE

Parallel Instruction
ddddd » DDDDD

0010

00xxxxx01xx1yyyylyyy

Reg# B& ACC#»B

0010

00xxxxx01xx0yyyyOyyy

Regd» A& ACCH A

Table A-37. Insane R:Y Parallel Move

23
0001

16 15 87 0
dXYYWIMMMRRROPERCODE

Parallel Instruction
d # X and Y:ea,YY

0001

XX1T111xXXXXXYyyyylyyy

Y:ea$ B& ACCH B

0001

XxX1T011TxxxxxxyyyyoOyyy

Y:eadb A&ACCHA

Table A-38. Insane X:R Parallel Move

23
0001

16 15
XXdYWOMMMRRROPERCODE

87 ol

Parallel Instruction
X:ea,XXandd» Y

0001

1T1Txx1T0xxxxxxyyyylyyy

X:eap B& ACC» B

000

-

10xx1T0xXxxxxXxXxXyyyyOoyyy

X:ead A&ACCHA

Table A-39. Insane R:Y and X:R Parallel Move

23
000

16 15 87 0
100ds OMMMRRROPERCODE

Parallel Instruction
R:Y & X:R Class Il MOVES

000

100000xxXxXXXYyyyoyyy

AP Xea& XO0pAJACCHA

000

100100xxxxxxyyyylyyy

B X:ea& XOBB&ACCHB

o|jo |0 |©

000

100010xxxxxxyyyyOyyy

YORA&ADYiea ACCHA

0000

100110xxXxXXxXXYyyylyyy

YOsB&B#Yiea& ACCHB

DSP56000/DSP56001 USER'S MANUAL

A.9.6 Reserved Instruction Codes

The instruction codes shown in Table A-40 are reserved for future use and attempting to
execute them will cause an illegal instruction interrupt.

Table A-40. Reserved Operation Codes

0010000001 1TMMRRROPERCODE
0010000000xxxxxxOPERCODE (xxxxxx # 000000)
000001T1T1Tx1xxxXxXX0xXxXxXXXX
00000111 Xx0xXxXXXX1TXXXXXXX
0000011010 xxxXxXxXX0x1xXXXX
0000011010 xxxxxx0x0xXxxXxX
000007100xxxxxxxXx0x1xxxXxX
0000001TxxxXXXXXXTXXXXXXX
00000001TxxxxXxxxx1xxxDxxx
000000010 xxxxxxx0xxxDxxx
00000000 XxxxxxXxXxx0x1xxxxXx

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-263

A-264 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

APPENDIX B
BENCHMARK PROGRAMS

Tables B-1 and B-2 provide benchmark numbers for 18 common DSP programs. The two
tables are identical except that Table B-1 is for the 20.5-MHz DSP56001 and Table B-2 is
for the 27-MHz DSP56001. The following four code examples (Figures B-1 to B-4) are
representative of the benchmark programs shown in Tables B-1 and B-2. The code for
these and other programs is free and available through the Dr. BuB electronic bulletin
board. Figure B-1 is the code for the 20-tap FIR filter shown in Tables B-1 and B-2. Figure
B-2 is the code for an FFT using a triple nested DO LOOP. Although this code is easier to
understand and very compact, it is not as fast as the code used for the benchmarks shown
in Tables B-1 and B-2, which are highly optimized using the symmetry of the FFT and the
parallelism of the DSP. Figure B-3 is the code for the 8-pole cascaded canonic biquad IIR
filter, which uses four coefficients (see Tables B-1 and B-2). Figure B-4 is the code for a 2N
delayed least mean square (LMS) FIR adaptive filter, which is useful for echo cancelation
and other adaptive filtering applications.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL B-1

Table B-1. 20.5-MHz Benchmark Results for the DSP56001R20

Sample Rate Memory Number of
Benchmark Program {Hz) or. Size Clock
Execution Time (Words) Cycles
20-Tap FIR Filter 379.6 kHz 50 54
64-Tap FIR Filter 144.4 kHz 138 142
67-Tap FIR Filter 138.5 kHz 144 148
8-Pole Cascaded Canonic 410.0 kHz 40 50
Biquad (IR Filter {4x) .
8-Pole Cascaded Canonic 353.5 kHz 45 58
Biquad IIR Filter (5x)
8-Pole Cascaded Transpose 292.9 kHz 48 70
. Biquad [IR Filter
Dot Product 585.4 ns 10 12
Matrix Multiply 2x2 2.049 ps 33 42
times 2x2
Matrix Multiply 3x3 1.659 ps .29 34
times 3x 1
M-to-M FFT 129.5 ps 489 2655
64 Point :
M-to-M FFT 645.1 ps 1641 13255
256 Point
M-to-M FFT 3.231 ms 6793 66240
1024 Point
P-to-M FFT 121.9 ps 704 2499
64 Point
P-to-M FFT 458.2 us 2048 9394
256 Point
P-to-M FFT 1.958 ms 7424 40144
1024 Point
B-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table B-2. 27-MHz Benchmark Results for the DSP56001R27 .

Sample Rate Memory Number of
Benchmark Program {Hz) or Size Clock
Execution Time {Words) Cycles
20-Tap FIR Filter 500.0 kHz 50 54
64-Tap FIR Filter 190.1 kHz 138 142
67-Tap FIR Filter : 182.4 kHz 144 148
8-Pole Cascaded Canonic 540.0 kHz 40 50
Biquad IIR Filter (4%}
8-Pole Cascaded Canonic 465.5 kHz 45 58
Biquad IIR Filter (5%})
8-Pole Cascaded Transpose 385.7 kHz 48 70
Biquad IR Filter .
Dot Product 4444 ns 10 12
Matrix Multiply 2x2 1.556 ps 33 42
times 2x2 .
Matrix Multiply 3x3 1.259 ps 29 34
times 3x1)
M-to-M FFT 98.33 ps 489 : 2655
64 Point
M-to-M FFT 489.8 us 1641 13255
256 Point
M-to-M FFT 2.453 ms 6793 66240
1024 Point
P-to-M FFT 92.56 ps 704 2499
64 Point
P-to-M FFT 347.9 ps 2048 9394
256 Point .
P-to-M FFT 1.489 ms 7424 40144
1024 Point ’

MOTOROLA DSP56000/DSP56001 USER'S MANUAL B-3

page 132,66,0,6
opt rc

o REEEEXEREEERRREREEERAXRRREFRRKERERRRRRRRERKR
’

;Motorola Austin DSP Operation
;**
;DSP56000/1

;20-tap FIR filter

;File name: 1-56.asm

KRR R KRR REEREEREREEEER TR RRHRERHHEERERHRHRRLERX R ERERERARRERERXEARRRRRERRRRRRRSE

N e S mE N Ns Se e e NE e NE Na o me Ne NE NE NA NS NE NS NS NE o Ne Ne Ne Ne Ne e NI N N Ns o NE Ne NS NS NS NS Ne NS Ne Ne we Na we N

B-4

June 30, 1988

Maximum sample rate: 379.6 kHz at 20.5 MHz/500.0 kHz at 27.0 MHz

Memory Size: Prog: 4+6 words; Data: 2 x 20 words

Number of clock cycles: 54 (27 instruction cycles)
Clock Frequency: 20.5 MHz/27.0 MHz
Instruction cycle time: 97.6 ns/74.1 ns

This FIR filter reads the input sample
from the memory location Y:input
and writes the filtered output sample

to the memory location Y:output

The samples are stored in the X memory
The coefficients are stored in the Y memory

#**

HERERERF AR KRR R RRELERERER R XXX ERERE R AKX EEEREXEXERRERRERXAAERERXXRRRXXRR NN

X MEMORY Y MEMORY
RO
T) w0
X(n—1) c(1)
o »X(n—k+1) Xin+1) e clk—1)
clo)

x(n}

Figure B-1. 20-Tap FIR Filter Example (Sheet 1 of 2)

o]
L

Ci1):

=]
I__J<>:<>

2

-]
l_li%

CiK-1)

> +
-
|

%

FIR

y(n)

yin) =Z clpix(n—p)
p=0

DSP56000/DSP56001 USER'S MANUAL

EREEEREEEERERERRERRREE R EERRERAXAERLEREARRXE XXX RXERRRERRERERER LXK A XXX RRRAKR

IR PRI

initialization
(2222 T LT IS LTSI L L L T

equ 20

start equ $40

wddr equ $0

cddr equ $0

input equ $ffe0

output equ $ffel
org p:start
move #wddr,ro ;r0 » samples
move #cddr,rd4 ;r1 ¥ coefficients
move #n—1,m0 ;set modulo arithmetic
move m0,m4 ;for the 2 circular buffers
opt cc

; filter loop :8+(n—1) cycles

CEEREEERRERERERERERERERERER R R EERERRXRRREEEXEERRERR XL RREEERERAREREEEERRRRERRRRRER XK
'

movep y:input,x: {r0) ;input sample in memory

clr a x:(r0) +,x0 y: (rd)+,y0

rep #n-1

mac x0,y0,a x:(r0) +,x0 y: (r4)+,y0

macr x0,x0,a (ro)—

movep a,y:output ;output filtered sample
;***

end

Figure B-1. 20-Tap FIR Filter Example (Sheet 2 of 2)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL B-5

;This program originally available on the Motorola DSP bulletin board.
;It is provided under a DISCLAIMER OF WARRANTY available from
;Motorola DSP Operation, 6501 William Cannon Drive, Austin, Tx., 78735.

;Radix-2, In-Place, DJecimation-In—Time FFT {smallest code size).
;Last Update 30 Sep 86 vVersion 1.1

fftr2a macro points,data,coef
fftr2a ident 11

;Radix-z Decimation-In-Time In-Place FFT Routine

Complex input and output data
Real data in X memory
Imaginary data in Y memory

Normally ordered input data

Bit reversed output data
Coefficient lookup table
—Cosine values in X memory
—Sine vaues in Y memory

Ne Ne me Ne Ns Ne Ne Ne Se S

;Macro Call — fftr2a points,data,coef

; points number of points (2-32768, power of 2)
; data start of data buffer
; coef : start of sine/cosine table

;Alters Data ALU Registers

; x1) x0 y1 yo
; a2 al . a0 a
; b2 b1 b0 b
;Alters Address Registers

; r0 n0 - 'm0

; r1 ni m1

H n2

; r4 n4 m4

; r5 nb5 mb5

; 6 n6é mé6

;Alters Program Control Registers
: pc sr

;Uses 6 locations on System Stack

’

Figure B-2. Radix 2, In-Place, Decimation-In-Time FFT (Sheet 1 of 2)

B-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

;Latest Revision — September 30, 1986

’
move
move
move
move
move
move
move
move

#points/2,n0
#1,n2
#points/4,n6
#-1,m0
m0,m1
mO0,m4
m0,m5
#0,m6

;initialize butterflies per group
;initialize groups per pass

;initialize C pointer offset

;initialize A and B address modifiers
;for linear addressing

;initialize C address modifier for
;reverse carry (bit-reversed) addressing

;Perform all FFT passes with triple nested DO loop

H
do
move
move
lua

move -

lua

move
move
move

do
move

move
move

do
mac

macr
subl
mac
macr
. subl
—end-bfy
move
move
—end—grp
move
Isr
Isl|
move
—end-pass
endm

#@cvi (@log(points)/@log(2) + 0.5),—end—pass
;initialize A input pointer
;initialize A output pointer
;initialize B input pointer
;initialize C input pointer
;initialize B output pointer
;initialize pointer offsets

#data,r0
r0,r4
(r0)+n0,r1
#coef,ré
(r1)—,r5
no,n1
n0,n4
n0,n5

n2,—end-grp
x:(r1),X1

x:(rb),a
x:(r6)+n6,x0

n0,—end-bfy
x1,y0,b

-x0,y1,b
b,a
—x1,x0,b
-y1y0,b
b,a

~a,x:(rb)+n5.

x:(r0) +n0,x1

n0,b1
b n2,al
a b1,n0
al,n2

y:(r6),y0

y:(r0),b

y:(r1)+.y1

a,x:(r5)+ y:(r0),a
x:{r0),b b,y:(rd4)
x:(r0)+,a a,y:(r5)
x:(r1),x1

b,x:(r4)+ y:(r0),b

y:Ar1)+n1,y1
y:(r4)+n4,y1

;lookup —sine and
; —cosine values
;preload data

;update C pointer

;Radx 2 DIT
;butterfly kernel

;update A and B pointers

;divide butterflies per group by two
;multiply groups per pass by two

Figure B-2. Radix 2, In-Place, Decimation-In-Time FFT (Sheet 2 of 2)

MOTOROLA

DSP56000/DSP56001 USER’S MANUAL B-7

page 132,66,0,6

opt rc
@ EEEEREXRERRRRRREERARERERRRREERRRENRREKRXER®
I’

;Motorola Austin DSP Operation June 30, 1988
; HREEREEREREEEKEEREREREREEXXERERRXRRRREXXXR
;DSP56000/1 :
;8-pole 4-multiply cascaded canonic lIR filter
;File name: 4-56.asm
@ EEEREREERE KL EREREEREREEEEREREREEEX R RREERERRRERRERRXERRR XX XX RAXERXRRERERXRNNRX
Maximum sample rate: 410.0 kHz at 20.5 MHz/540.0 kHz at 27.0 MHz
Memory Size: Prog: 6+ 10 words; Data: 4(2+4) words
Number of clock cycles: 50 {25 instruction cycles)
Clock Frequency: 20.5 MHz/27.0 MHz
Cycle time: 97.5 ns/74.1 ns
HRKREEEEEEAERREREXAEEREREEREEERAEREREXSEREEREXREARRRRRRERRERRRHRFXEXEEEFRNRR SRR RNN
This lIR filter reads the input sample
from the memory location Y:input
and writes the filtered output sample
to the memory location Y:output

The samples are stored in the X memory
The coefficients are stored in the Y memory

The equations of the filter are:

w(n)= x(n) —ail*w({n— 1) —ai2*w(n —2)
y(n)= . w(n)+bil*w(n — 1)+ bi2*w(n—2)
' wi(n)
x(n) {-) . »—1» (+) yln)
A 3
\z win—1)
Y
- ail < bit :
173 win-2)
——————ai2 - + >- bi2 >

Nt e s ma me me NE Ne NE N NE NE o Ne ms Ns Ne N Ne NE NE Ne me Ne NE NE NE Ne NE NE we Ne we wa e NE N o we e w

Figure B-3. 8-Pole 4-Multiply Cascaded Canonic IIR Filter (Sheet 1 of 2)

B-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

All coefficients are divided by 2:

i win)2=x(n)/2-ail/2*w(n—1)—ai2/2*w(n - 2)
i y{ny2=w(n)/2+bil/2*w{n — 1)+ bi2/2*w(n - 2)
; X Memory Organization Y Memory Organization
; b1N/2 Coef. +4*nsec—1
; b2N/2
H alN/2
H a2N/2
; wN(n-1) Data+2*nsec—1 .
H wN(n-2) .
; . b11/2
; . b21/2
; wl(n—1) a11/2
; RO »| wi(n-2) Data R4 »| a21/2 Coef.
;***
; initialization
;*****************************
nsec equ 4
start equ $40
data equ 0
coef equ 0
input equ $ffe0
output equ $ffet
igain equ 0.5
ori #$08,mr ;set scaling mode
move #data,r0 ;point to filter states
move #coef,rd4 ;point to filter coefficients
move #2*nsec—1,m0 !
move #4*nsec—1,m4
move #igain,y1 ;y1=initial gain
opt cc

; filter. loop: 4*nsec+9
AL IE LTI I LI IS LIS L LSS LA LI LIS LSS LSS S L L L LS LR LR L L Lk
I

movep y:input,y0 © ;get sample

mpy yoyla x:r0)+,x0 vy:(rd}+,y0 ;x0=1st section w(n—2),y0=2a12/2

do #nsec,end—cell o ;do each section

mac -x0,y0,2 x:(r0)—,x1 vy:(rd)+,y0 ;x1=w(n—1),y0=ai1/2

macr -x1,y0,2 x1,x:(r0)+ vy:(r4)+,y0 ;push w(n—1)to w(n-2),y0=bi2/2

mac x0,y0,a ax:(ro)+ y:(rd4)+,y0 ;push w(n) to w(n—1),y0=bi1/2

mac x1,y0,a x:(r0)+,x0 y:(rd4)+,y0 ;nextiter:x0=w(n—2),yo=ai2/2
end—_cell

rnd a ;round result

movep a,y:output ;output sample

RS2 2T L L LTS E LIS ELEL I L LI LSS ST L L EE RS AL ELE LS L k]
end

Figure B-3. 8-Pole 4-Multiply Cascaded Canonic IIR Filter (Sheet 2 of 2)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL B-9

page 132,60,1,1
;newlms2n.asm
; New Implementation of the delayed LMS on the DSP56000 Revision C
;Memory map:
; Initial X H
7 x(n) x(n—1) x(n-2) x(n-3) x(n—4) hx h0 h1 h2 h3
vl]]

;10 5 r4
;hx is an unused value to make the calculations faster.
opt cc
ntaps equ 4
input equ $FFCO
output equ - $FFC1
org x:$0
state ds 5
org y:$0
coef ds 5
org p:$40
move #state,r0 ;start of X
move #2,n0
move #ntaps,m0 ;mod 5
move #coef+1,r4 ;coefficients
move #ntaps,m4 ;mod 5
move #coef,rd ;coefficients
move m4,m5 ;mod 5
—smploop ;
movep y:input,a ;get input sample

move a,x:(r0) ;save input sample
;error signal is in y1
;FIR sum in a=a+h(k) old*x(n—k)
;hik)new in b=h(k)old +error*x(n—k—1)

clr a x:(r0) +,x0 ;x0=x(n)
move x:(r0)+,x1 y:{rd)+,y0 ;x1=x{n—1),y0=h(0)
do #taps/2,-Ims ; g
mac x0,y0,a y0,b b,y:(r5)+ ;a=h(0)*x(n),b=h(0)
macr x1,y1,b x:(r0)+,x0 y:(rd)+,y0 ;b=h(0)+e*x(n—1)=h(0)new
v ;X0=x(n—2) y0=h(1)
mac x1,y0,a v0,b b,y:r5)+ ;a=a+h(1)*x(n—1) b=h(1)
macr x0,y1,b x:(r0)+,x1 y:(rd)+,y0 ;b=h(1)+e*x(n-2)
; . ;x1=x{n-3) y0=H(2)
=lms) .
move b,y:(r5)+ ;save last new c()
move (r0)—n0 ;pointer update

;(Get d(n), subtract fir output (reg a), multiply by “u”, put
;the result in y1. This section is application dependent.)

movep a,y:output ;output fir if desired -
imp -smploop
end ;
H : Totals:

Figure B-4. LMS FIR Adaptive Filter

B-10 DSP56000/DSP56001 USER'S MANUAL

Prog lcyc

word
1 1

__m N -
QNN X N Y

1
1
11
11
11 2N+8

MOTOROLA

APPENDIX C

ADDITIONAL SUPPORT

User support from the conception of a design through completion is available from Motorola
and third-party companies as shown in the following list:

Design

Prototyping

Design
Verification

MOTOROLA

Motorola

Data Sheets
Application Notes
Application Bulletins
Software Examples
Simulator

Assembler
Linker
C Compiler
Simulator
Application Development
- System (ADS)
In-Circuit Emulator
Cable for ADS

Applica_t'ion Development

System (ADS)
In-Circuit Emulator
Simulator

Third Party

Data Acquisition Packages
Filter Design Packages
Operating System Software

Logic Analyzer with
DSP56000/DSP56001 ROM Packages

In-Circuit Emulators

Data Acquisition Cards

DSP Development System
Cards

Operating System Software

Debug Software

Data Acquisition Packages
Logic Analyser with
DSP56000/DSP56001 ROM Packages
Data Acquisition Cards
DSP Development System
Cards
Application-Specific
Development Tools
Debug Software

DSP56000/DSP56001 USER'S MANUAL C-1

The following is a partial list of the support available for the DSP56000/DSP56001. Additional
information can be obtained through Dr. BuB or the appropriate support telephone service.

Motorola DSP Product Support

DSP56000CLASx Design-In Software Package which includes:
Relocatable Macro Assembler
Linker
Simulator (simulates single or multiple DSP56000/DSP56001S)
Librarian

DSP56KCCx Full Kernighan and Ritchie C Compiler
DSP320to56001 Translator Software

DSP56000/DSP56001 Applications Development System (ADS)
Support Integrated Circuits

DSP Bulletin Board (Dr. BuB)

Motorola DSP Newsletter

Motorola Field Application Engineers (FAEs)

See your local telephone directory for the Motorola Semlconductor Sector sales

office telephone number.

Design Hotline

Applications Assistance

Marketing Information

Third-Party Support Information

University Support Information

DSP56000CLASx Assembler/Simulator

The macro cross assembler and simulator run on:
1. IBM® PC, XT, and AT under DOS 2.x and 3.x
2. Macintosh® Il under MAC OS 4.1 or later
3. SUN-3® under UNIX® BSD 4.2
4. VAX® under VMS® 4.5 or later
5. NeXT® under Mach

IBM is a trademark of International Business Machines.
Macintosh is a trademark of Apple Computer, Inc.

SUN-3 is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.
VAX and VMS are trademarks of Digital Equipment Corp.
NeXT is a trademark of NeXT, Inc.

C-2 DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

Macro Cross Assembler Features:

® Production of relocatable object modules compatible with linker program when in
relocatable mode

® Production of absolute files compatible with simulator program when in absolute mode

® Supports full instruction set, memory spaces, and parallel data transfer fields of the
DSP56000/DSP56001

® Modular programming features: local labels, sections, and external definition/refer-
ence directives

o Nested macro processing capability with support for macro libraries
o Complex expression evaluation including boolean operators

e Built-in functions for data conversion, string comparison, and common transcendental
math functions

o Directives to define circular and bit-reversed buffers

® Extensive error checking and reporting

Simulator Features:
e Simulation of DSP56001 (default) or DSP56000
o Simulation of multiple DSP56000/DSP56001s

o Linkable object code modules:
—Nondisplay simulator library
—Display simulator library

o C language source code for:
—Screen management functions
—Terminal I/O functions
—Simulation examples

Single stepping through object programs

Up to 99 conditional or unconditional breakpoints

Program patching using a single-line assembler/disassembler
Instruction, clock cycle, and histogram counters

Session and/or command logging for later reference

ASCIl input/output files for peripherals

Help-file and help-line display of simulator commands
Loading and saving of files to/from simulator memory

Macro command definition and execution

Display enable/disable of registers and memory

Hexadecimal/decimal/binary calculator

MOTOROLA DSP56000/DSP56001 USER'S MANUAL C-3

C Language Compiler

DSP56KCCx C Language Compiler Features:
Full Kernighan and Ritchie C
Structures/Unions

[J
® Floating Point

® In-line assembler language code compatibility
.

Full function preprocessor for:
—Macro definition/expansion
—File inclusion
—Conditional compilation

Full error detection and reporting

DSP320t056001 Translator

DSP320t056001 Translator Features:
® Translates any TMS32010 linked object code to DSP56001 source assembler code

© Two modes of operatlon
—Translates to DSP56001 source assembler code for optimization and assembly
using DSP56000CLASX
—Translates and runs “as is”’ directly and |mmed|ately on the DSP56000ADSX

® Clanguage DSP320t056001 source code is provided in addition to IBM PC/XT/AT object
code to allow:
—User modification for TMS32020 or TMS320C25 translation
—User compilation to accommodate different host platforms

DSP56600ADSx Application Development System

DSP56000ADS Application Development System Hardware Features:
Full-speed 20.48-MHz operation (upgradable to 27 MHz)

Multiple application development module (ADM) support with programmable ADM
addresses

® 8K/32Kx24 user-configurable RAM for DSP56000/DSP56001 code development
® 1K %24 monitor ROM expandable to 4K x 24
.
°

96-pin Euro-card connector making all DSP56001 pins accessible

In-circuit emulation capabilities when used with the DSPS6KEMULTRCABL cable
Separate berg bin connectors for alternate accessing of serial or host/DMA ports
® ADM can be used in standalone configuration

® No external power supply needed when connected to a host platform

C-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

DSP56000ADSx Application Development System Software Features:

Single/multiple stepping through DSP56000/DSP56001 object programs
Up to 99 conditional or unconditional breakpoints

Program patching using a single-line assembler/disassembler

Session and/or command logging for later reference

Loading and saving files to/from ADM memory

Macro command definition and execution

Display enable/disable of registers and memory

Debug commands supporting mu]tiple ADMs
Hexadecimal/decimal/binary calculator

Host operating system commands from within ADS user interface program
Multiple OS 1/0 file access from DSP56000/DSP56001 object programs
Fully compatible with the DSP56000CLASx design-in software package
On-line help screens for each command and DSP56000/DSP56001 register

Support Integrated Circuits:

8K x 24 Static RAM (available Q4, 1989)
DSP56ADC16 16-bit, 100-kHz analog-to-digital Converter

 Dr. BuB Electronic Bulletin Board

Dr. BuB is an electronic bulletin board providing free source code for a large variety of
topics that can be used to develop applications with Motorola DSP products. The software
library includes approximately 100 files including FFTs, FIR filters, IIR filters, lattice filters,
matrix algebra routines, companding routines, floating-point routines, a software debug
monitor, and others. In addition, the latest product information and documentation (in-
cluding information on new products and improvements on existing products) is posted.
Questions concerning Motorola DSP products posted on Dr. BuB are answered promptly.
Access to Dr. BuB is through the following phone numbers:

(212A — 300/1200 Baud) (512) 891-DSP1
(V.22 — 1200 Baud) (512) 891-DSP2
{V.22bis — 2400 Baud) (512) 891-DSP3
Format: 7 data bits, even parity, 1 stop bit
User ID=guest

MOTOROLA DSP56000/DSP56001 USER'S MANUAL C-5

The following is a partial list of the software available on Dr. BuB.

Document ID Version Synopsis | Size |
Codec Routines:
loglin.asm 1.0 Companded CODEC to linear PCM data 4572
conversion
loglin.hlp Help for loglin.asm 1479
loglint.asm 1.0 Test program for loglin.asm 2184
loglint.hip Help for loglint.asm 1993
linlog.asm 1.1 Linear PCM to companded CODEC data 4847
conversion ‘
linlog.hip Help for linlog.asm 1714
Fast Fourier Transforms:
sincos.asm 1.2 Sine-Cosine Table Generator for FFTs 1185
sincos.hlp Help for sincos.asm 887
sinewave.asm 1.1 Full-Cycle Sinewave Table Generator 1029
Macro
sinewave.hlp Help for sinewave.asm 1395
fftr2a.asm 1.1 Radix 2, In-Place, DIT FFT {smallest) 3386
fftr2a.hlp Help for fftr2a.asm 2693
fftr2at.asm 1.1 Test Program for FFTs (fftr2a.asm) 999
fftr2at.hlp Help for fftr2at.asm 563
fftr2b.asm 1.1 Radix 2, In-Place, DIT FFT (faster) 4290
fftr2b.hlp Help for fftr2b.asm 3680
fftr2c.asm 1.2 Radix 2, In-Place, DIT FFT (even faster) 5991
fftr2c.hlp Help for fftr2c.asm 3231
fftr2d.asm 1.0 Radix 2, In-Place, DIT FFT 3727 (using 3727
DSP56001 sine-cosine ROM tables)
fftr2d.hlp Help for fftr2d.asm 3457
fftr2dt.asm 1.0 Test program for fftr2d.asm 1287
fftr2dt.hlp Help for fftr2dt.asm 614
c6 MOTOROLA

DSP56000/DSP56001 USER'S MANUAL

Document ID Version Synopsis Size]
fftr2e.asm 1.0 1024 Point, Non-In-Place, FFT (3.39ms} 8976
fftr2e.hlp Help for fftr2e.asm 5011
fftr2et.asm 1.0 Test program for fftr2e.asm 984
fftr2et.hlp Help for fftr2et.asm 408
dctl.asm 1.2 Discrete Cosine Transform using FFT 5471
dct1.hlp 1.1 Help file for dct1.asm 970
fftr2cc.asm 1.0 Radix 2, In-place Decimation-in-time 6524

complex FFT macro
fftr2cc.hlp 1.0 Help file for fftr2cc.asm 3533
fftr2cn.asm 1.0 Radix 2, Decimation-in-time Complex FFT 6584
macro with normally ordered
input/output
fftr2cn.hlp 1.0 Help file for fftr2cn.asm 2468
fftr2en.asm 1.0 1024 point, not-in-place, complex FFT 9723
macro with normally ordered
- input/output
fftr2en.hlp 1.0 Help file for fftr2en.asm 4886
dhit1.asm 1.0 Routine to compute Hilbert transform in 1851
the frequency domain
Filters:
firasm 1.0 Direct Form FIR Filter 545
fir.hlp Help for fir.asm 2161
firt.asm 1.0 Test program for fir.asm 1164
iirl.asm 1.0 Direct Form Second-Order All-Pole 656
IR Filter h
iirl.hip Help for iirl.asm 1786
iirlt.asm 1.0 Test program for iirl.asm 1157
iir2.asm 1.0 Direct Form Second-Order All-Pole IIR 801
Filter with Scaling
iir2.hlp Help for iir2.asm 2286
MOTOROLA DSP56000/DSP56001 USER'S MANUAL C-7

‘Document ID Version Synopsis Size |
iir2t.asm 1.0 Test program for iir2.asm 1311
iir3.asm 1.0 Direct Form Arbitrary-Order All-Pole 776

IIR Filter
iir3.hlp Help for iir3.asm 2605
iir3t.asm 1.0 Test program for iir3.asm 1309
iird.asm 1.0 Second-Order Direct Canonic IIR Filter 713
(Biguad IIR Filter) ‘
iird.hlp Help for iird.asm 2255
iirdt.asm 1.0 Test program for iird.asm 1202
iir5.asm 1.0 Second-Order Direct Canonic IIR Filter with 842
Scaling (Biquad IR Filter)
iir5.hlp Help for iir5.asm 2803
iirbt.asm 1.0 Test program for iir6.asm 1289
iir.asm 1.0 Arbitrary-Order Direct Canonic IR Filter 923
iir6.hip Help for iir6.asm 3020
iirét.asm 1.0 Test program for iir6.asm 1377
iir7.asm 1.0 Cascaded Biquad IIR Filters 900
iir7.hip Help for iir7.asm 3947
jir7t.asm 1.0 Test program for iir7.asm 1432
Ims.hlp 1.0 LMS Adaptive-Filter Algorithm 5818
transiir.asm 1.0 Impiements the transposed IIR filter 1981
transiir.hlp 1.0 Help ﬁ‘le for transiir.asm 974
Floating-Point Routines: ;
fpdef.hlp 2.0 Storage format and arithmetic 10600
representation definition
fpcalls.hip 2.1 Subroutine calling conventions 11876
fplist.asm 2.0 Test file that lists all subroutines 1601
fprevs.hlp 2.0 Latest revisions of floating pt. lib 1799
c-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Document ID Version Synopsis Size J
fpinit.asm 2.0 Library initialization subroutine 2329
fpadd.asm 2.0 Floating-point add 3860
fpsub.asm 2.1 Floating-point subtract 3072
fpcmp.asm 2.1 Floating-point compare 2605
fpmpy.asm 2.0 Floating-point multiply 2250
fpmac.asm 2.1 Floating-point multiply-accumulate 2712
fpdiv.asm 2.0 Floating-point divide 3835
fpsqrt.asm 2.0 Floating-point square root 2873
-fpneg.asm 2.0 Floating-point negate 2026
fpabs.asm 2.0 Floating-point absolute value 1953
fpscale.asm 2.0 Floating-point scaling 2127
fpfix.asm 20 Floating to fixed-point conversion 3953
fpfloat.asm 2.0 Fixed to floating-point conversion 2053
fpceil.asm 2.0 Floating-point CEIL subroutine 1771
durbin.asm 1.0 Solution for LPC coefficients 5615
durbin.hlp 1.0 Help file for DURBIN.ASM 2904
fpfrac.asm 2.0 Floating-point FRACTION subroutine 1862

Functions:

log2.asm 1.0 Log base 2 by polynomial approximation 1118
log2.hlp Help for log2.asm 719
log2t.asm 1.0 Test program for log.asm 1018

log2nrm.asm 1.0 Normalizing base 2 logarithm macro 2262
log2nrm.hlp Help for log2nrm.asm 676
log2nrmt.asm 1.0 Test program for log2nrm.asm 1084
exp2.asm 1.0 Exponential base 2 by polynomial 926

approximation

exp2.hlp Help for exp2.asm 759
exp2t.asm 1.0 Test program for exp2.asm 1019
sqrt1.asm 1.0 Square Root by polynomial 991
approximation 7-bit accuracy .
sqrt1.hlp Help for sqrt1.asm 779

MOTOROLA DSP56000/DSP56001 USER'S MANUAL C-9

L Document ID Version Synopsis J Size J
sgrtit.asm 1.0 Test program for sqrt1.asm 1065
sgrt2.asm 1.0 Square Root by polynomial 899

approximation 10-bit accuracy
sqrt2.hlp Help for sqrt2.asm 776
sqrt2t.asm 1.0 Test program for sqrt2.asm 1031
sgrt3.asm 1.0 " Full precision Square Root Macro 1388
sqrt3.hlp Help for sqrt3.asm 794
sqgrt3t.asm 1.0 Test program for sqrt3.asm 1053

t li.asm 1.1 Linear table lookup/interpolation routine = 3253

for function generation

t li.hlp 1.1 Help for tli.asm 1510
bingray.asm 1.0 Binary to Gray code conversion macro 601
bingrayt.asm 1.0 Test program for bingray.asm 991
randl.asm 1.1 Pseudo Random Sequence Generator 2446
rand1.hlp Help for rand1.asm 704

Lattice Filters:
latfirl.asm 1.0 Lattice FIR Filter Macro 1156
latfir1.hlp Help for latfirl.asm 6327
latfirit.asm 1.0 Test program for latfirl.asm 1424
latfir2.asm 1.0 Lattice FIR Filter Macro (modified modulo 1174

count)
latfir2.hip Help for latfir2.asm 1295
latfir2t.asm 1.0 Test program for latfir2.asm 1423
latiir.asm 1.0 Lattice IIR Filter Macro 1257
latiir.hlp Help for latiir.asm 6402
Vlatiirt.asm 1.0 Test program for latiir.asm 1407
C-10 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Document ID I Versioﬂ Synopsis Size |
latgen.asm 1.0 Generalized Lattice FIR/IIR Filter Macro 1334
latgen.hlp Help for latgen.asm 5485
latgent.asm 1.0 Test program for latgen.asm 1269
latnrm.asm 1.0 Normalized Lattice lIR Filter Macro 1407
latnrm.hip Help for latnrm.asm 7475
latnrmt.asm 1.0 Test program for latnrm.asm 1595

Matrix Operations: : v
matmull.asm 1.0 [1x3][3x3]=[1x%3] Matrix Multiplication 1817
matmul1.hlp Help for matmull.asm 527
matmul2.asm 1.0 General Matrix Multiplication, C=AB 2650
matmul2.hlp Help for matmul2.asm 780
matmul3.asm 1.0 General Matrix Multiply-Accumulate, 2815
C=AB+Q
matmul3.hlp 1.0 Help for matmul3.asm 865
Reed-Solomon Encoder:
readme.rs 1.0 Instructions for Reed-Solomon coding 5200
rscd.asm 1.0 Reed-Solomon coder for DSP56000 5822
simulator
newc.c 1.0 Reed-Solomon coder coded in C 4075
table1.asm 1.0 Include file for R-S coder 7971
table2.asm 1.0 Include file for R-S coder 4011
Sorting Routines:
sortl.asm 1.0 Array Sort by Straight Selection 1312
sort1.hlp Help for sort1.asm 1908
sort1t.asm 1.0 Test program for sort1l.asm 689
sort2.asm 1.1 Array Sort by Heapsort Method 2183
sort2.hip Help for sort2.asm 2004
sort2t.asm 1.0 Test program for sort2.asm 700
MOTOROLA DSP56000/DSP56001 USER'S MANUAL C-11

Document ID TVersion I Synopsis | Size |
Speech:
Igsol1.asm 2.0 Leroux-Gueguen solution for PARCOR 4861
(LPC) coefficients
Igsol1.hlp Help for Igsol1.asm 3971
durbinl.asm 1.2 Durbin Solution for PARCOR (LPC) 6360
coefficients »
durbin1.hlp Help for durbinl.asm 3616
Standard I/0 Equates:
ioequ.asm 1.1 Motorola Standard I/0 Equate File - 8774
ioequlc.asm 1.1 Lower Case Version of ioequ.asm 8788
intequ.asm 1.0 Standard Interrupt Equate File 1082
intequlc.asm 1.0 Lower Case Version of intequ.asm 1082

Motorola DSP News

The Motorola DSP News is a quarterly newsletter providing information on new products,
application briefs, questions and answers, DSP product information, third-party product
news, etc. This newsletter is free and is available upon request by calling the marketing
information phone number listed below.

Motorola Field Application Engineers

Information and assistance for DSP applications is available through the local Motorola
field office. See your local telephone directory for telephone numbers or call (512)

891-2030.

Design Hotline — 1-800-521-6274

This is the Motorola number for information pertaining to any Motorola product.

C-12 DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

Applications Assistance — (512} 891-3230

Design assistance for specific DSP applications is available by calling this number.

Marketing Information — (512) 891-2030

Marketing information including brochures, application notes, manuals, price quotes, etc.
for Motorola DSP-related products are available by calling this number.

Third-Party Support Information — (512) 891-3098

Information concerning third-party manufacturers using and supporting Motorola DSP
products is available by calling this number. Third-party support includes:

Filter design software

Logic analyzer support

VME boards, IBM-PC/XT/AT boards, MACII boards

Development systems

Data conversion cards

Operating system software

Debug software
Additional information is available on Dr. Bub and in DSP News.

University Support — (512) 891-3098

Information concerning university support programs and university discounts for all
Motorola DSP products is available by calling this number.

Training Courses — (602) 897-8665

There are two courses available for the DSP56000 Family:

1. Introduction to the DSP56000/DSP56001 (MTTAB) which is a 4.5-hour audio-tape course
on the DSP56000/DSP56001 architecture and programming.

2. Introduction to the DSP56000/DSP56001 (MTT31) which is a four-day instructor-led
course and laboratory covering the details of the DSP56000/DSP56001 architecture
and programming. ' :

Additional information is available by writing:

Motorola SPS Training and Technical Operations

Mail Drop HW68

P. O. Box 21007

Phoenix, Arizona 85036
or by calling the number above. A technical training catalog is available which describes
these courses and gives the current training schedule and prices.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL C-13

Text Books

A list of DSP-related books is included here as an aid for the engineer who is new to the
field of DSP. This is a partial list of DSP references intended to help the new user find
useful information in some of the many areas of DSP applications. Many books could be
included in several categories but are not repeated.

General DSP:

ADVANCED TOPICS IN SIGNAL PROCESSING
Jae S. Lim and Alan V. Oppenheim
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

APPLICATIONS OF DIGITAL SIGNAL PROCESSING
A. V. Oppenheim
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978

DESCRETE-TIME SIGNAL PROCESSING
A. V. Oppenheim and R. W. Schafer
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1989

DIGITAL PROCESSING OF SIGNALS THEORY AND PRACTICE
Maurice Bellanger _
New York, NY: John Wiley and Sons, 1984

DIGITAL SIGNAL PROCESSING
Alan V. Oppenheim and Ronald W. Schafer
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975

DIGITAL SIGNAL PROCESSING: A SYSTEM DESIGN APPROACH
David J. DeFatta, Joseph G. Lucas, and William S. Hodgkiss
New York, NY: John Wil_ey and Sons, 1988

FOUNDATIONS OF DIGITAL SIGNAL PROCESSING AND DATA ANALYSIS
J. A. Cadzow
New York, NY: MacMillan Publishing Company, 1987

HANDBOOK OF DIGITAL SIGNAL PROCESSING
D. F. Elliott ‘
" San Diego, CA: Academic Press, Inc., 1987

INTRODUCTION TO DIGITAL SIGNAL PROCESSING

John G. Proakis and Dimitris G. Manolakis
New York, NY: Macmillan Publishing Company, 1988

C-14 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MULTIRATE DIGITAL SIGNAL PROCESSING
R. E. Crochiere and L. R. Rabiner
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983

SIGNAL PROCESSING ALGORITHMS
S. Stearns and R. Davis
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

SIGNAL PROCESSING HANDBOOK
C.H. Chen
New York, NY: Marcel Dekker, Inc., 1988

SIGNAL PROCESSING — THE MODERN APPROACH
James V. Candy
New York, NY: McGraw-Hill Company, Inc., 1988

THEORY AND APPLICATION OF DIGITAL SIGNAL PROCESSING
Rabiner, Lawrence R., Gold and Bernard
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975

Digital Audio and Filters:

ADAPTIVE FILTER AND EQUALIZERS
B. Mulgrew and C. Cowan
Higham, MA: Kluwer Academic Publishers, 1988

ADAPTIVE SIGNAL PROCESSING
B. Widrow and S. D. Stearns
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985

ART OF DIGITAL AUDIO, THE
John Watkinson
Stoneham. MA: Focal Press, 1988

DESIGNING DIGITAL FILTERS
Charles S. Williams
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986

DIGITAL AUDIO SIGNAL PROCESSING AN ANTHOLOGY
John Strawn
William Kaufmann, Inc., 1985

DIGITAL CODING OF WAVEFORMS
N. S. Jayant and Peter Noll
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

MOTOROLA DSP56000/DSP56001 USER'S MANUAL C-15

DIGITAL FILTERS: ANALYSIS AND DESIGN
Andreas Antoniou
New York, NY: McGraw-Hill Company, Inc., 1979

DIGITAL FILTERS AND SIGNAL PROCESSING
Leland B. Jackson '
Higham, MA: Kluwer Academic Publishers, 1986

DIGITAL SIGNAL PROCESSING
Richard A. Roberts and Clifford T. Mullis
New York, NY: Addison-Welsey Publishing Company, Inc., 1987

INTRODUCTION TO DIGITAL SIGNAL PROCESSING
Roman Kuc
New York, NY: McGraw-Hill Company, Inc., 1988

INTRODUCTION TO ADAPTIVE FILTERS
Simon Haykin
New York, NY: MacMillan Publishing Company, 1984

MUSICAL APPLICATIONS OF MICROPROCESSORS (Second Edition)
H. Chamberlin
Hasbrouck Heights, NJ: Hayden Book Co., 1985

Controls:

ADAPTIVE CONTROL
K. Astrom and B. Wittenmark
New York, NY: Addison-Welsey Publishing Company, Inc., 1989

ADAPTIVE FILTERING PREDICTION & CONTROL
G. Goodwin and K. Sin
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

AUTOMATIC CONTROL SYSTEMS
B. C. Kuo
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987

COMPUTER CONTROLLED SYSTEMS: THEORY & DESIGN
K. Astrom and B. Wittenmark
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL CONTROL SYSTEMS

B. C. Kuo
New York, NY: Holt, Reinholt, and Winston, Inc., 1980

C-16 DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

DIGITAL CONTROL SYSTEM ANALYSIS & DESIGN
C. Phillips and H. Nagle
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

ISSUES IN THE IMPLEMENTATION OF DIGITAL FEEDBACK COMPENSATORS
P. Moroney
Cambridge, MA: The MIT Press, 1983

Graphics:

CGM AND CGl
D. B. Arnold and P. R. Bono
New York, NY: Springer-Verlag, 1988

COMPUTER GRAPHICS (Second Edition)
D. Hearn and M. Pauline Baker
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986

FUNDAMENTALS OF INTERACTIVE COMPUTER GRAPHICS
J. D. Foley and A. Van Dam
Reading MA: Addison-Wesley Publishing Company Inc., 1984

GEOMETRIC MODELING
Michael E. Morteson
New York, NY: John Wiley and Sons, Inc. -

GKS THEORY AND PRACTICE
P. R. Bono and I. Herman (Eds.)
New York, NY: Springer-Verlag, 1987

ILLUMINATION AND COLOR IN COMPUTER GENERATED IMAGERY
Roy Hall
New York, NY: Springer-Verlag

POSTSCRIP LANGUAGE PROGRAM DESIGN
Glenn C. Reid - Adobe Systems, Inc.
Reading MA: Addison-Wesley Publishing Company, Inc., 1988

MICROCOMPUTER DISPLAYS, GRAPHICS, AND ANIMATION
Bruce A. Artwick
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985

PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS

William M. Newman and Rogert F. Sproull
New York, NY: McGraw-Hill Company, Inc., 1979

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS
David F. Rogers
New York, NY: McGraw-Hill Company, Inc., 1985

RENDERMAN INTERFACE, THE
Pixar
San Rafael, CA. 94901

Image Processing:

DIGITAL IMAGE PROCESSING
William K. Pratt
New York, NY: John Wiley and Sons, 1978

DIGITAL IMAGE PROCESSING (Second Edition)
Rafael C. Gonzales and Paul Wintz
Reading, MA: Addison-Wesley Publishing Company, Inc., 1977

DIGITAL IMAGE PROCESSING TECHNIQUES
M. P. Ekstrom
New York, NY: Academic Press, Inc., 1984

DIGITAL PICTURE PROCESSING
Azriel Rosenfeld and Avinash C. Kak
New York, NY: Academic Press, Inc., 1982

SCIENCE OF FRACTAL IMAGES, THE
M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H. O. Peitgen,
D. Saupe, and R. F. Voss
New York, NY: Springer-Verlag

Numerical Methods:

ALGORITHMS (THE CONSTRUCTION, PROOF, AND ANALYSIS OF PROGRAMS)
P. Berliout and P. Bizard
New York, NY: John Wiley and Sons, 1986

MATRIX COMPUTATIONS

G. H. Golub and C. F. Van Loan
John Hopkins Press, 1983

C-18 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

NUMERICAL RECIPES IN C - THE ART OF SCIENTIFIC PROGRAMMING
William H. Press, Brian P. Flannery,
Saul A. Teukolsky, and William T. Vetterling
Cambridge University Press, 1988

NUMBER THEORY IN SCIENCE AND COMMUNICATION
Manfred R. Schroeder
New York, NY: Springer-Verlag, 1986

Pattern Recognition:

PATTERN CLASSIFICATION AND SCENE ANALYSIS
R. O. Duda and P. E. Hart
New York, NY: John Wiley and Sons, 1973

CLASSIFICATION ALGORITHMS
Mike James
New York, NY: Wiley-Interscience, 1985

Spectral Analysis:

STATISTICAL SPECTRAL ANALYSIS, A NONPROBABILISTIC THEORY
William A. Gardner
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS
E. Oran Brigham
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS
R. N. Bracewell
New York, NY: McGraw-Hill Company, Inc., 1986

Speech:

ADAPTIVE FILTERS — STRUCTURES, ALGORITHMS, AND APPLICATIONS
Michael L. Honig and David G. Messerschmitt
Higham, MA: Kluwer Academic Publishers, 1984

DIGITAL CODING OF WAVEFORMS

N. S. Jayant and P. Noll
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

MOTOROLA DSP56000/DSP56001 USER'S MANUAL C-18

. DIGITAL PROCESSING OF SPEECH SIGNALS
Lawrence R. Rabiner and R. W. Schafer
Englwood Cliffs, NJ: Prentice-Hall, Inc., 1978

LINEAR PREDICTION OF SPEECH
J. D. Markel and A. H. Gray, Jr.
New York, NY: Springer-Verlag, 1976

SPEECH ANALYSIS, SYNTHESIS, AND PERCEPTION
J. L. Flanagan
New York, NY: Springer-Verlag, 1972

SPEECH COMMUNICATION — HUMAN AND MACHINE
D. O’Shaughnessy
Reading, MA: Addison-Wesley Publishing Company, Inc., 1987

Telecommunications:

DIGITAL COMMUNICATION
Edward A. Lee and David G. Messerschmitt
Higham, MA: Kluwer Academic Publishers, 1988

DIGITAL COMMUNICATIONS

John G. Proakis
New York, NY: McGraw-Hill Publishing Co., 1983

C-20 DSP56000/DSP56001 USER'S MANUAL

"MOTOROLA

— A —
A-law, 2-5
Aborted Instructions, 8-18
ABS, A-14

Absolute Address, 7-11
Absolute Short, 7-13
Accumulator Shifter, 4-6
Adaptive Filter, B-1
Adaptive Filters, 1-2
ADC, A-16
ADD, A-18
Additional Support
Applications Assistance, C-13
C Language Compiler, C-4
Codec Routines, C-6
Design Hotline, C-12
Dr. BuB Electronic Bulletin Board, C-5
DSP320to56001 Translator, B-4
DSP56000ADSx Application Development
System, B-4
DSP56000CLASx Assembler/Simulator, B-2
Fast Fourier Transforms, C-6
Filters, C-7
Floating Point Routines, C-8
Functions, C-9
Lattice Filters, C-10
Marketing Information, C-13
Matrix Operations, C-11
Motorola DSP News, C-12
Motorola DSP Product Support, B-2
Motorola Field Application Engineers, C-12
. Reed-Solomon Encoder, C-11
Sorting Routines, C-11
Speech, C-12
Standard /0O Equates, C-12
Text Books, C-14
Third Party Support Information, C-13
Training Courses, C-13
University Support, C-13
ADDL, A-20
ADDR, A-22
Address (A0-A15), 2-9
Address ALU, 5-3
Address ALU Registers, A-7
Address Buses, 2-3
Address Generation Unit, 2-5, 5-1
Address Generation Unit Registers, 7-4
Address Modifier
Linear Modifier, 5-12
Modulo Modifier, 5-13

MOTOROLA

DSP56000/DSP56001 USER’'S MANUAL

INDEX

Address Modifier, Continued
Reverse-Carry Modifier, 5-17
Summary, 5-19

Address Modifier Types, 5-11

Address Operands, A-7

Address Output Multiplexers, 5-4

Address Register
Indexed by Offset Nn, 5-10
No Update, 5-7
Postdecrement by 1, 5-8
Postdecrement by Offset Nn, 5-9
Postincrement by 1, 5-8
Postincrement by Offset Nn, 5-9
Predecrement by 1, 5-11
Register Indirect, 5-6

Address Register Direct, 7-11

Address Register Indirect Mode, 5-6, 7-11

Address Registers, 2-5, 5-2, 5-5

Addressing Mode Encoding, A-8

Addressing Mode Modifiers, A-8

Addressing Mode Operators, A-8

Addressing Modes, 5-5, 5-6, 7-10, A-6

Addressing Modes Summary, 7-18

Analog-to-Digital Converter, 1-2

AND(l), A-26

Antialias Filter, 1-2

Applications, 1-5

Arbitration, 9-16, 9-18

Architecture, 1-1, 2-1

Arithmetic Instructions, 7-19

ASL, A-28

Assembler, 8-2

Assembler Syntax and Operation, A-1

Assembly Language, 7-1

—B—

BCHG, 9-21, A-32

BCLR, 9-21, A-37

BCR, 2-7, 9-10
Benchmarks, 1-4, B-1
Binary Operators, A-4

Bit Manipulation Instructions, 7-20
Bit Manipulation Unit, 2-3
Bit Reversed, 5-18

Block Data Moves, 6-3
Bootstrap Mode, 2-6
Bootstrap ROM, 2-6
BR/BG, 8-36, 8-38

INDEX-1

BSET, 9-21, A-42

BTST, A-47

Bus Arbitrator, 2-3

Bus Control Register, 9-10, 9-12

Bus Grant/Wait (BG/WT), 2-11

Bus Request/Bus Grant {BR/BG), 6-14, 9-15
Bus Request/Bus Strobe (BR/BS), 2-10

Bus Strobe/Wait, 9-12

Bus Switch, 2-3

—C—

Carry Bit, 6-9, A-9

Central Processor, 4-1

Circular Buffer, 5-14, 11-56

Clock Cycles, 9-8

Clock Oscillator, 6-7, 8-38

Clock Phases, 8-2, 9-8

Clock Stabilization Delay, 8-38

CLR, A-52

CMP, A-54

CMPM, A-56

Coefficients, 4-11

Condition Code Computation, A-9
Condition Code Register, 6-8
Condition Code Register (CCR) Symbols, A-5
Condition Codes, A-1

Convergent Rounding, 2-4, 4-5, 4-11
Crystal Output (XTAL), 2-12

—D—

Data (D0-D23), 2-10

Data ALU, 2-4, 4-3

Data ALU Accumulator Registers, 4-5
Data ALU Input Registers, 4-3, 4-5
Data ALU Programming Model, 4-11
Data ALU Registers, 4-5, 7-4, A-2
Data ALU Summary, 4-11

Data Buses, 2-3

Data Memory Select (DS), 2-10
Data or Control Register Direct, 7-11
Data Organization in Memory, 7-7
Data Organization in Registers, 7-4
Data Representation, 4-8

Data ROM Enable, 6-13

Data Shifter/Limiter, 4-6

Data Shifters, 4-8

Digital Filters, 4-11
Digital-to-Analog Converter, 1-3
DIV, A-58

DMA, 2-7

DO, A-63

DO Instruction Restrictions, 8-6

DO Loop Control, 6-1

INDEX-2 DSP56000/DSP56001 USER'S MANUAL

Dot Product, B-2

Dr. BuB, B-1

DSP Applications, 1-5

DSP Functions, 1-4

DSP56000 Memory Spaces, 3-1
Development Mode, 3-3, 3-5
Mode 0, 3-4
Mode 1, 3-4
Mode 2, 3-4
Mode 3, 3-5
Normal Expanded, 3-3, 3-4
Operating Mode Register, 3-1
Operating Modes, 3-3
Program Memory, 3-3
Security ROM DSP56000 Version, 3-5
Single Chip, 3-3, 3-4
X Data RAM, 3-1
X Data ROM, 3-1
Y Data RAM, 3-2
Y Data ROM, 3-2

DSP56001 Memory Spaces, 3-1
A-law Expansion Tables, 3-7
Bootstrap Mode, 3-8, 3-9, 3-11
Bootstrap ROM, 3-8, 3-12
Chip Operating Modes, 3-8
Development Mode, 3-9, 3-12
Mode 0, 3-9
Mode 1, 3-9
Mode 2, 3-12
Mode 3, 3-13
Mu-law Expansion Tables, 3-7
Normal Expanded Mode, 3-9, 3-12
Operating Mode Register, 3-6
Program Memory, 3-8
Sine Wave Table, 3-8
Single-Chip Mode, 3-9
Special Bootstrap Mode, 3-9
X Data RAM, 3-7
X Data ROM, 3-7
Y Data RAM, 3-8
Y Data ROM, 3-8

Dynamic Range, 2-4

—E—

Edge Sensitive, 6-5, 8-9
Edge-Triggered, 6-5, 8-19
Encodings
Condition Code and Address Encoding, A-242
Double-Bit Register, A-239
Effective Addressing Mode, A-242
Five-Bit Register, A-241
Four-Bit Register A-240
Insane Instructions, A-260
Memory Space Bit, A-241
Multiply Instruction, A-254
No Parallel Move, A-244

MOTOROLA

Encodings, Countined
Nonmultiply Instruction, A-256
Operation Code, A-254
Parallel Move, A-243
Program Controller Register, A-242
Reserved Instruction Codes, A-263
Single-Bit Register, A-239
Single-Bit Special Register, A-239
Six-Bit Register, A-241
Triple-Bit Register, A-240
Write Control, A-241
ENDDO, A-71
ENDDO Instruction Restrictions, 8-7
ENDDO Restrictions, A-234
EOR, A-73
Exception Priorities within an IPL, 8-17
Exception Processing, 6-1, 8-8
Exception Processing State, 8-8
Exceptions, 11-92
Execution Units, 1-8, 2-3, 4-1, 6-1
Expansion Port, 2-7
EXT:MSP:LSP, 4-4
EXTAL, 6-7
Extension Bit, 6-10, A-9
External Clock/Crystal Input (EXTAL), 2-12
External Interrupts, 8-9
External Memory Access, 6-13
Fast Interrupt, 6-5, 8-19, 8-24
Fast Interrupt Restrictions, A-237
Fetch, 8-20
Fetch-Decode-Execute, 8-1
FFT, 3-8, 4-8, 5-4, 5-18, B-2
FIFO, 11-56
FIR Filter, B-2, B-4
Floating Point, 4-8
Fractional, 4-8, 4-10
Fractional Arithmetic, 4-7
Functions, 1-1, 1-4

— G —
General-Purpose 1/0, 2-6, 2-7, 10-2
Port B, 10-1
Port C, 11-1
Global Data Bus, 6-6
Ground (GND), 2-12
—H—

Hardware Interrupt Sources, 8-9

Hardware RESET, 6-6

Harvard Architecture, 1-7

Host Interface, 10-7
Command Vector Register, 10-14
DMA Controller, 10-16, 10-20
DMA Counter, 10-22

Host Interface, Continued

DMA Data Transfer, 10-48

DMA Interrupts, 10-31

DMA Status, 10-14, 10-24

DSP-to-Host Data Transfer, 10-44
DSP-to-Host DMA Procedure, 10-54
DSP-to-Host Internal Processing, 10-53
Example Circuits, 10-54

Host Address 0-2 (HAQ,HA1,HA2), 10-26
Host Command, 10-15, 10-18, 10-22
Host Command Interrupt Enable, 10-12
Host Command Pending, 10-12, 10-14
Host Command Vector Register, 10-22
Host Control Register, 10-11

Host Data Bus (HO-H7), 10-26

Host Enable (HEN), 10-27

Host Flag 0, 10-14, 10-20

Host Flag 1, 10-14, 10-20

Host Flag 2, 10-12, 10-24

Host Flag 3, 10-12, 10-24

Host Interface Interrupts, 10-28

Host Mode Control, 10-20

Host Processor Data Transfers, 10-28
Host Read/Write (HR/W), 10-27

Host Receive Data Full, 10-13

Host Receive Data Register, 10-14
Host Receive Interrupt Enable, 10-12
Host Request, 10-24

Host Request (HREQ), 10-27

Host Status Register, 10-13 |

Host to DSP — Bootstrap Loading, 10-43
Host to DSP — Command Vector, 10-40
Host to DSP — Data Transfer, 10-35
Host-to-DSP DMA Procedure, 10-50 *
Host-to-DSP Internal Processing, 10-49
Host Transmit Data Empty, 10-12, 10-13
Host Transmit Data Register, 10-13
Host Transmit Interrupt Enable, 10-12
Host Transmit Register, 10-14

Host Vector, 10-22

INIT, 10-20, 10-21

Initialization, 10-31

Interrupt Control Register, 10-18
Interrupt Status Register, 10-23
Interrupt Vector Register, 10-25
Interrupt-Driven Data Transfers, 10-31
Interrupts, 10-15

MC68000, 10-20, 10-25, 10-56
MC68000/10, 10-17

MC68020, 10-18, 10-56

MC68030, 10-56

MC68HC11, 10-54

Non-DMA Interrupts, 10-30

Polling, 10-30, 10-31

Programming Model, 10-10, 10-17
Receive Byte Registers, 10-25

Receive Data from Host, 10-37
Receive Data Register Full, 10-23

MOTOROLA DSP56000/DSP56001 USER'S MANUAL INDEX-3

Host Interface, Continued —d —
Receive Request Enable, 10-19

Reset, 10-15, 10-25 Jee, A-77
RXH:RXM:RXL, 10-13, 10-14, 10-23 JCLR, A-81
Termination, 10-60 JMP, A-85
Transmit 12-Bit Data to Host, 10-48 JScc, A-87
Transmit Byte Registers, 10-25 JSCLR, A-90
Transmit Data Register Empty, 10-23 JSET, A-95
Transmit Request Enable, 10-19 JSR, A-100
Transmitter Ready, 10-23 JSSET, A-101

TXH:TXM:TXL, 10-13, 10-14
Host Acknowledge (HACK), 2-13, 10-27
Host Address 0-2 (HA0,HA1,HA2), 2-12

Host Command, 2-8 —L —

Host Data Bus (H0-H7), 2-12

Host Enable (HEN), 2-12 L Memory References, 7-9

Host Interface, 2-6, 2-7, 10-2) Least Mean Square (LMS), B-1, B-10
Host Read/Write (HR/W), 2-12 Limit Bit, 6-10, A-9

Host Request (HREQ), 2-12 ' Limiting, 4-6, 4-7

Linear Arithmetic, 5-4

Logical Instructions, 7-19
Long Interrupt, 6-5, 8-18, 8-24
Loop Address, 2-6

— 11— Loop Address Register, 6-14

’ Loop Count, 2-6
IO Short, 7-13 Loop Counter, 6-14
IIR Filter, B-2, B-8 : Loop Flag (LF), 6-11
ILLEGAL, A-75 Loop Instructions, 7-20
lllegal Instruction, 8-11 LSL, A-107
Illegal Instruction Interrupt, 8-11 LSR, A-108
Immediate Data, 7-11 LUA, A-110
Immediate Short, 7-11
Implicit Reference, 7-13
Input/Output, 2-6)
Insane Instructions, A-260 — M —
Instruction Decoding, 6-1
Instruction Descriptions, A-11 MA, 6-13
Instruction Encoding, A-238 MAC, 1-6, 4-3, A-112
Instruction Format, 7-3, A-1 MACR, A-114
Instruction Latch, 6-3 Matrix Multiply, B-2
Instruction Memory Requirements, A-2 MB, 6-13
Instruction Pipeline, 6-6, 8-1 MC680XX, 10-31
Instruction Sequence Restrictions, A-232 Memory Ready, 9-12
Instruction Timing, A-2, A-222 Memory Ready Strobe, 9-12
Instruction Timing Symbols, A-5 Memory References, 7-9
Integer, 4-10 MODA, 6-6, 6-13
Internal Interrupts, 8-9 MODA/IRQA, 2-11
Interrupt, 8-4 MODB, 6-6, 6-13
Interrupt Arbitration, 8-19 MODB/IRQB, 2-11
Interrupt Instruction Execution, 8-20 Mode Register, 6-8
Interrupt Mask, 6-10 Mode Register (MR} Symbols, A-5
Interrupt Priority Level, 6-3, 6-10, 8-9, 8-16 Modifier Registers, 2-5, 5-2, 5-3, 5-5
Interrupt Priority Register, 8-16 Modulo Arithmetic, 5-4
Interrupt Processing, 8-8 MOVE, A-116
Interrupt Sources, 8-9 Move Instructions, 7-22
Interrupt Types, 8-18 MOVE(C), A-152
Interrupts, 10-15 MOVE(M), A-159
IRQA, 6-5, 8-9 MOVEP, A-167
IRQB, 6-5, 8-9 MPY, A-170

INDEX-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MPYR, A-172

Mu-law, 2-5

Muttiplier/Accumulator, 1-6
Multiply-Accumulator (MAC), 2-4, 4-3

— N —
NEG, A-174
Negative Bit, 6-10, A-9
NMI, 8-9
Nonmaskable Interrupt, 6-5, 8-11
NOP, A-176
NORM, A-177
Normal Processing State, 8-1
NOT, A-179
Notation, A-2

—_ 00—

Offset Registers, 2-5, 5-2, 5-3, 5-5
OMR Bit-7, 2-10, 2-11

Opcode Field, 7-3

Operand References, 7-8
Operand Size, 7-3

Operands, 7-1, A-2

Operating Mode, 2-6, 6-13
Operating Mode Register, 2-6, 3-6, 6-11
Operation Code, A-254

OR, A-181

OR(l), A-183

Overflow Bit, 4-7, 6-9, A-9

—P —

Parallel Data Moves, 7-22

Parallel Move, 7-22
Address Register Update, A-125
Descriptions, A-118
Immediate Short Data Move, A-120
Instruction Coding, A-243
Long Memory Data Move, A-145
No Parallel Data Move, A-119
Register and Y Memory Data Move, A-140
Register to Register Data Move, A-122
X Memory and Register Data Move, A-131
X Memory Data Move, A-127
XY Memory Data Move, A-149
Y Memory Data Move, A-136

Parallel Move Descriptions, A-11

Parallel Processing, 7-24

Pipeline, 6-2

MOTOROLA

Pipeline Effect, 8-2
Pipelining, 7-22
Port A, 2-6, 9-1
Access Priority, 9-1
Base Address Register, 10-7
Boot ROM, 9-6
Bus Arbitration, 9-15
DS, 9-4
Extended Address, 10-7, 11-8
External Memory Access, 9-9
Peripherals, 9-3
PS, 9-4
Pullup, 9-8
Read and Write Strobes, 9-3
Reduced Data Size, 9-6
Timing, 9-8
Wait States, 9-10
XN, 9-4
Port B, 2-6, 10-1
Extended Address, 10-7
General-Purpose 1/0, 10-2
HI Description, 10-8
HI Programming Model, 10-10
Parallel /0 Timing, 10-4
Port B Control Register, 10-2
Port B Data Direction Register, 10-2
Port B Data Register, 10-2
Programming Parallel I/0, 10-4
Port C, 2-6, 11-1
Extended Address, 11-8
General-Purpose /0, 11-1
Parallel /0 Timing, 11-6
Programming Parallel /0, 11-1
Power, 2-12, 9-1, 9-10
Power Consumption, 8-36
Power Dissipation, 2-9
Priority Structure, 8-17
Processing States, 6-2, 8-1
Program Address Generation, 6-1
Program Address Generator, 6-2, 6-3
Program Control Instructions, 7-24
Program Contro! Registers, 7-5, A-3
Program Controller, 2-6, 6-1
Program Counter, 2-6, 6-8
Program Decode Controller, 6-2
Program Interrupt Controiler, 6-2, 6-3
Program Memory, 2-6
Program Memory Select {PS), 2-10
Program References, 7-9
Programming Model
Address Generation Unit, 5-4
Host Interface, 10-10, 10-17
Data Arithmetic Unit, 4-11
Program Controller, 6-7
SCl, 11-9
SSI, 11-72
Summary, 6-17
Pullup, 9-8, 11-16, 11-64

DSP56000/DSP56001 USER’'S MANUAL INDEX-5

—R—

R, N, and M Register Restrictions, A-237
Read Enable (RD), 2-10
Read-Modify-Write, 5-5, 9-21
Receive Data (RXD), 2-8, 2-13
Register Direct Mode, 7-10
Register Indirect, 5-6
Register Indirect Mode, 7-10
Register References, 7-9
REP, 6-3, 8-27, A-185
REP Restrictions, A-238
Reserved Instruction Codes, A-263
RESET, 2-11, 8-9, A-190
Host Interface, 10-15
SCl, 11-25
SSl, 11-88
Reset Processing State, 8-27
Restrictions Near the End of DO Loops, A-232
Reverse Carry, 5-3
Rn, Nn, and Mn Register Restrictions, 8-8
RND, A-191
ROL, A-195
ROR, A-197
Round to Nearest (Even), 4-11
Rounding, 4-8, 4-11, 6-11
RTI, A-198
RTI and RTS Instruction Restrictions, 8-7, A-235
RTS, A-200

—_S—

Saturation Arithmetic, 2-4, 4-6
SBC, A-202
Scaling, 4-8
Scaling Mode, 6-10, 6-11
SCI
4X Internal Clock, 11-20
1X Clock, 11-20
.2X Internal Clock, 11-20
8051, 11-12
Address Mode Wakeup, 11-15, 11- 53
Asynchronous Data, 11-39
Asynchronous Data Reception, 11-39
Asynchronous Datd Transmission, 11-41
Asynchronous Transmit/Receive Example, 11-47
Break, 11-25, 11-41
Circular Buffers, 11-56
Clock Divider, 11-21
Clock Out Divider, 11-21
Common Baud Rates, 11-26
Data Transmission Priority, 11-25
Example Circuits, 11-64
Exceptions, 11-28
Features, 11-8
FIFO, 11-56
Framing Error Flag, 11-20

INDEX-6

DSP56000/DSP56001 USER'S MANUAL

SCl, Continued
Idle Line Flag, 11-19
Idle Line Interrupt Enable, 11-16
Idle line Wakeup, 11-15, 11-53
Initialization, 11-26
Interrupts, 11-41
MC68681, 11-12
MC68HC11, 11-12
Multidrop, 11-47
Multidrop Example, 11-56
Multidrop Transmit/Receive Example, 11-61
Overrun Error Flag, 11-19
Parity Error, 11-19
Polling, 11-41
Preamble, 11-16, 11-25, 11-41
Programming Model, 11-9
Receive Clock Mode Source Bit, 11-22
Receive Data (RXD), 11-9
Receive Data Register Full, 11-19
Received bit 8 (address bit), 11-20
Receiver Enable, 11-16
Receiver Wakeup Enable, 11-15
Reset, 11-25
SClI Clock Control Register (SCCR), 11-9, 11-20
SCI Clock Polarity, 11-18
SCI Clock Prescaler, 11-22
SCI Control Register (SCR), 11-9, 11- 1
SCI Data Registers, 11-23
SCI Receive Data Registers (SRX), 11-9
SCI Receive Interrupt Enable, 11-17
SCI Receive Registers, 11-23
SCI Serial Clock (SCLK), 11-9
SCI Shift Direction, 11-12
SCI Status Register (SSR), 11-9, 11-18
SCI Timer, 11-61
SCI Timer Example, 11-64
SCI Transmit Data Address Register (STXA), 11-9
SCI Transmit Data Registers (STX), 11-9
SCI Transmit Interrupt Enable, 11-17
SCI Transmit Registers, 11-24
Send Break, 11-12
SRIINT, 1117
Synchronous Data, 11-32
Synchronous Master, 11-32
Synchronous Mode, 11-38
Synchronous Receive, 11-39
Synchronous Slave, 11-35
Synchronous Transmit, 11-38
Timer Interrupt Enable, 11-17
Transmit Clock Source Bit, 11-22
Transmit Data (TXD), 11-9
Transmit Data Register Empty, 11-18
Transmitter Empty, 11-18
Transmitter Enable, 11-16
Transmitting Data and Address Characters, 11-49
Wakeup Mode Select, 11-15 :
Wired-OR Mode, 11-53
Wired-OR Mode Select, 11-16
Word Select, 11-11

MOTOROLA

SCI Serial Clock (SCLK), 2-8, 2-13
Security ROM DSP56000 Version, 1-1, 3-1, 3-5, 6-13
Semaphores, 9-20
Serial Communication Interface, 2-6, 2-8, 2-13
Serial Control One (SC1), 2-13
Serial Control Two (SC2), 2-14
Serial Control Zero (SC0), 2-13
Shared Memory, 9-16
Shifter/Limiter, 2-4, 6-11 -
Short Jump Address, 7-13
Sign Extension, 4-5
Signal Description, 2-9
Signaling, 9-20
Simulator, 8-27
Software Interrupt, 8-11
SP and SSH/SSL Manipulation Restrictions, A-235
Special Addressing Mode, 7-11
SSI| .
Asynchronous, 11-104
Baud Rates, 11-92
CCITT, 11-118
Circular Buffer, 11-131
Clock Source Direction, 11-79
Codec, 11-113, 11-118, 11-136
Compact Disk Player, 11-114
Continuous Clock, 11-87, 11-104, 11-128
Continuous/Gated Clock Selection, 11-96
Data/Operation Formats, 11-96
Double Buffered, 11-128
Example Circuits, 11-138
Exceptions, 11-92
Features, 11-66
Flags, 11-133
Frame Rate Divider Control, 11-76
Frame Sync, 11-99, 11-107
Frame Sync Length, 11-79
Gated Clock, 11-87, 11-99, 11-104, 11-128
Gated Clock Control, 11-79
Initialization, 11-88
Input Flags, 11-99
MC15500, 11-113
Multidrop, 11-136
Network, 11-93
Network Mode, 11-67, 11-76, 11-119
Network Mode Examples, 11-118
Network Mode Receive, 11-124
Network Mode Transmit, 11-122
Normal, 11-93
Normal Mode, 11-67, 11-76
Normal Mode Examples, 11-107
Normal Mode Receive, 11-114
Normal Mode Transmit, 11-113
Normal/Network Mode Selection, 11-36
On-Demand Mode, 11-67, 11-76, 11-93, 11-128
On-Demand Mode Example, 11-127
Operational Modes, 11-87
Output Flags, 11-99, 11-114
Prescale Modulus Select, 11-72

MOTOROLA

DSP56000/DSP56001 USER'S MANUAL

SSI, Continued

Prescaler Range, 11-76
Programming Model, 11-72
Receive Data Register, 11-84
Receive Frame Sync Flag, 11-82
Receive Shift Register, 11-83
Receiver Overrun Error Flag, 11-83
Reset, 11-88
SCo, 11-71
SC1, 1-71
SC2, 11-72
SCK, 11-69
Serial Control 0 Direction, 11-77
Serial Control 1 Direction, 11-77
Serial Control 2 Direction, 11-77
Serial Input Flag 0, 11-81
Serial Input Flag 1, 11-82
Serial Qutput Flag 0, 11-77
Serial Output Flag 1, 11-77
Shift Direction, 11-79, 11-107
Speaker Phone, 11-136
SPI, 11-96
SRD, 11-69
SSI Control Register A (CRA), 11-72
SSI Control Register B (CRB), 11-76
SSI| Mode Select, 11-80
SSI Receive Data Register Full, 11-83
SSI Receive Enable, 11-80
SSI Receive Interrupt Enable, 11-81
SSI Status Register (SSISR), 11-81
SSI Transmit Data Register Empty, 11-83
SSI Transmit Enable, 11-80
SSI Transmit Interrupt Enable, 11-81
Start Conversion Signal, 11-99
STD, 11-68
Sync/Async Control, 11-79
Synchronous, 11-67, 11-99, 11-104
Synchronous/Asynchronous Operating Modes,
11-99

Time Division Multiplex, 11-96
Time Slot Register, 11-84, 11-122
Transmit Data Register, 11-84
Transmit Frame Sync Flag, 11-82
Transmit Shift Register, 11-84
Transmitter Underrun Error Flag, 11-82
Word Length Control, 11-76

SSI Receive Data (SRD), 2-14

SSI Serial Clock (SCK), 2-14

SSI Transmit Data (STD), 2-14

Stack Error, 8-14

Stack Error Flag (SE), 6-16

Stack Pointer (SP), 2-6, 6-16

Stack Pointer Register, 6-15

Stack References, 7-9

Status Register, 2-6, 6-8

STOP, A-204

Stop Delay, 6-13

Stop Processing State, 8-38

INDEX-7

Strobe/Wait, 9-10
SUB, A-206
SUBL, A-208
SUBR, A-210
Summary
Additional Support, C-1-C-20
Address Modifier, 5-19
Addressing Modes, 7-18
Benchmark, 1-1, B-2, B-3
Data ALU, 4-11
DSP Advantages, 1-3
DSP56000 Family Features, 1-7
Host Interface, 10-8
Programming Model, 6-17
SCI, 11-8
SSI, 11-66
Pipeline-Related Restrictions, 8-6
SWI, 6-6, A-212
Synchronous Serial Interface (SSl), 2-6, 2-8, 2-13
Syntax, 7-1
System Stack, 6-2, 6-15
System Stack High (SSH), 6-15
System Stack Low (SSL), 6-15
System Stack Memory, 2-6

—_T—

Tcc, A-214

Text Books
Controls, C-14
Digital Audio and Filters, C-14
Division, A-453
General DSP, C-14
Graphics, C-17
Image Processing, C-18
Numerical Methods, C-18
Pattern Recognition, C-19
Spectral Analysis, C-19
Speech, C-19
Telecommunications, C-120

TFR, A-216

Three-state, 9-15

Trace, 6-6, 8-14

INDEX-8

DSP56000/DSP56001 USER'S MANUAL

Trace Mode Bit (T), 6-11
Transmit Data (TXD), 2-8, 2-13
TST, A-220

—U—
Unary Operators, A-4

Underflow Flag (UF), 6-16
Unnormalized Bit, 6-10, A-9

—_V —
Vectored Interrupt, 8-9

—_W —

WAIT, A-220
Wait Processing State, 8-36
Wait States, 8-36, 9-10

Bus Strobe/Wait, 9-10
Write Enable (WR), 2-10

X —
X Data Memory, 2-5
X Memory References, 7-9
XOR — see EOR

X/7Y Select (X/Y), 2-10
XY Memory References, 7-9

—_Y —

Y Data Memory, 2-5
Y Memory References, 7-9

—_Z—

Zero Bit, 6-10, A-9

MOTOROLA

— NOTES —

— NOTES —

— NOTES —

— NOTES —

Introduction

Architectural Overview and Bus Structure
Memory Spaces

Data Arithmetic Logic Unit

Address Generation Unit and'Address Modes
Program Controller

Instruction Set Introduction

Processing States

Port A

Port B

Port C

Instruction Set Detailé

Benchmark Programs

Additional Support

Index

“lel=1=1:=R:z0-1=1~1-1-1-1-1"]-]

EHEESEOERREER0E

Introduction

Architectural Overview and Bus Structure
Memory Spaces

Data Arithmetic Logic Unit

Address Generation Unit and Address Modes
Program Controller |

Instruction Set Introduction

Processing States

Port A

Port B

Port C

Instruction Set Details

Benchmark Programs

Additional Support

Index

A19562-12 PRINTED IN USA 7/91 EVANS PRESS EMTR 2003 10,000 DSP YGAVAA

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.

ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong.

“ @ MOTOROLA

