












































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































JSSET 

Instruction Format: 
JSSET #n,S,xxxx 

Opcode: 

23 16 15 

Jump to Subroutine 
if Bit Set 

B 7 

o 0 0 0 1 0 1 01 1·0 0 0 0 0 DO 0 1 b b b b b 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
#n = bit number= bbbbb, 
S = source register= DDDDDD, 
XXXX = 16-bit Absolute Address in extension word 

Destination Register 

4 registers in Oata ALU 
8 accumulators in Oata ALU 
8 address registers in AGU 
8 address offset registers in AGU 
8 address modifier registers in AGU 
8 program controller registers 

DDDDDD 

000100 
001000 
010TTT 
011NNN 
100 F F F 
111 GGG 

Bit Number bbbbb 

00000 

10111 

JSSET 

See A.9 Instruction Encoding and Table A-18 for specific register encodings. 

Timing: 6 + jx oscillator clock cycles 

Memory: 2 program words 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-105 

• 



• 

LSL 

Operation: 

Assembler 
Syntax: 

Logical Shift Left LSL 

47 24 

c~I,. ... ---- j,.-o (parallel move) 

LSL D (parallel move) 

Description: Logically shift bits 47-24 of the destination operand D one bit to the left 
and store the result in the destination accumulator. Prior to instruction execution, bit 
47 of D is shifted into the carry bit C, and a zero is shifted into bit 24 of the destination 
accumulator D. This instruction is a 24-bit operation. The remaining bits of the des­
tination operand D are not affected. If a zero shift count is specified, the carry bit is 
cleared. The difference between LSL and ASL is that LSL operates on only A 1 or B1 
and always clears the V bit. 

Example: 

LSL B #$7F,RO ;shift B1 one bit to the left, set up RO 

Before Execution After Execution 

8 I $00:F01234:135798 8 I $00:E02468: 135798 

SR I $0300 SR I $0309 

Explanation of Example: Prior to execLition, the 56-bit B accumulator contains the value 
$00:F01234:13579B. The execution of the LSL B instruction shifts the 24-bit value in 
the B1 register one bit to the left and stores the result back in the 81 register. 

Condition Codes: 

15 14 13 12 11 10 8 7 4 3 1 0 

~ **1 T 1**1 S1 I so I 11 I 10 '** I 
CCR 

z I v cq U N 

L - Set if data limiting has occurred during parallel move 
N - Set if bit 47 of A or B result is set 
Z - Set if bits 47-24 of A or B result are zero 
V - Always cleared , 
C - Set if bit 47 of A or B was set prior to instruction execution 

A-106 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



LSL 

Instruction Format: 
LSL D 

Opcode: 

23 

Instruction Fields: 
o d 
A 0 
B 1 

Logical Shift Left 

B 7 

DATA BUS MOVE FIELD 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

LSL 

• 

A-107 



• 

LSR 

Operation: 

Assembler 
Syntax: 

Logical Shift Right LSR 

47 24 

04L--___ )1 ...... I~c (parallel move) 

LSR D (parallel move) 

Description: Logically shift bits 47-24 of the destination operand D one bit to the right 
and store the result in the destination accumulator. Prior to instruction execution, bit 
24 of D is shifted into the carry bit C, and a zero is shifted into bit 47 of the destination 
accumulator D. This instruction is a 24-bit operation. The remaining bits of the des­
tination operand D are not affected. 

Example: 

LSR A A 1 ,N4 ;shift A 1 one bit to the right, set up N4 

Before Execution After Execution 

A 1~ __ $_37_:4_44_4_45_:8_2_81_80 __ ~ A 1~ ___ $_37_:2_2_22_22_:8_2_81_80 __ ~ 

SR $0300 SR $0301 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $37:444445:828180. The execution ofthe LSR A instruction shifts the 24-bit value 
in the A 1 register one bit to the right and stores the result back in the A 1 register. 

Condition Codes: 

15 14 13 12 11 10 8 7 1 0 

1iJ"1 T 1··1 S11 so 111 110 1"ll I 
MR )I C GGR 

L - Set if data limiting has occurred during parallel move 
N - Always cleared 
Z - Set if bits 47-24 of A or B result are zero 
V - Always cleared 
C - Set if bit 24 of A or B was set prior to instruction execution 

A-108 DSP56000/DSP56~01 USER'S MANUAL MOTOROLA 



LSR 

Instruction Format: 
LSR D 

Opcode: 

23 

Instruction Fields: 
D d 
A 0 
B 1 

Logical Shift Right 

8 7 

DATA BUS MOVE FIELD 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

4 3 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

LSR 

III 

A-109 



LUA 

Operation: 
ea. d 

Load Updated Address LUA 

Assembler Syntax: 
LUA ea,D 

Description: Load .the updated address into the destination address register D. The 
source address register and the update mode used to compute the updated address 
are specified by the effective address (ea). Note that the source address register 
specified in the effective address is not updated. All update addressing modes may 
be used. 

NOTE: This instruction is considered to be a move-type instruction. Due to pipelining, 
the new contents of the destination address register (R0-R7 or NO-N7) will not be 
available for use during the following instruction (i.e., there is a single instruction cycle 
pipeline delay). 

Example: 

LUA (RO) + NO,R1 ;update R1 using (RO) + NO 

Before Execution After Execution 

RO $0003 RO $0003 

NO $0005 NO $0005 

Rl $0004 Rl $0008 

Explanation of Example: Prior to execution, the 16-bit address register RO contains 
the value $0003, the 16-bit address register NO contains the value $0005, and the 16-
bit address register R1 contains the value $0004. The execution ofthe LUA (RO) + NO,\R1 
instruction adds the contents of the RO register to the contents of the NO register and 
stores the resulting updated address in the R1 address register. The contents of both 
the RO and NO address registers are not affected. 

Condition Codes: 

15 14 13 12 11 10 8 7 1 0 Ill" I T I " I s, I so I 11 I 10 1** I l I E I u I N z 
MR .. • CCR 

The condition codes are not affected by this instruction. 

A-110 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



LUA Load Updated Address LUA 

Instruction Format: 
LUA ea,D 

Opcode: 

23 16 15 8 7 

10 0 0 0 0 1 0 010 10M M R R Rio 0 0 1 

Instruction Fields: 
ea = 5-bit Effective Address = MMRRR, 
D = 4-bit destination address register = dddd 

Effective 
Addressing Mode MMRRR Dest. Addr. Reg. D dddd 

(Rn)-Nn o 0 r r r RO-R7 o n n n 
(Rn)+Nn o 1 r r r NO-N7 1 n n n 
(Rn)- 1 0 r r r 
(Rn)+ 1 1 r r r 

where "rrr" refers to a source address register RO-R7 
where "nnn" refers to a destination address register RO-R7 or NO-~7 

Timing: 4 oscillator clock cycles 

Memory: 1 program word 

III 

MOTOROLA DSP56000/DSP56001· USER'S MANUAL A-111 



• 

MAC Signed Multiply-Accumulate MAC 

Operation: Assembler Syntax: 
D±ShS2. D (parallel move) MAC (± )S1,S2,D (parallel move) 

D±ShS2. D (parallel move) MAC (± )S2,S1,D (parallel move) 

Description: Multiply the two signed 24-bit source operands S1 and S2 and add/subtract 
the product to/from the specified 56-bit destination accumulator D. The" -" sign 
option is used to negate the specified product prior to accumulation. The default sign 
option is "+". 

Example: 

MAC XO,XO,A X:(R2) + N2,Y1 ;square XO and store i~ A, update Y1 and R2 

Before Execution After Execution 

xol ~ _________ ·$1_2_34_56 __ ~ xo $123456 

A ~1 ___ $_00_:1_0_00_oo_:0_0_00_0_0 __ ~ A ~1 ___ $_00_'1_29_6_CD_:_96_19_C_8 __ ~ 

Explanation of Example: Prior to execution, the 24-bit XO register contains the value 
of $123456 (0.142222166), and the 56-bit A accumulator contains the value 
$00:100000:000000 (0.125). The execution of the MAC XO,XO,A instruction squares the 
24-bit signed value in the XO register and adds the res~lting 48-bit product to the 
56-bit A accumulator (XO*XO + A = 0.145227144519197 approximately = 
$00: 1296CD:9619C8 = A). 

Condition Codes: 

15 14 13 12 11 10 B 7 

~ ** I T I ** I s. I so I 11 I 10 I ** I U N 

CCR 

L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result in use 
U -:- Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Set if overflow ras occurred in A or B result 

NOTE: The definition of the E and U bits varies according to the scaling mode being 
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details. 

A-112 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



MAC Signed Multiply-Accumulate 

Instruction Format: 
MAC ( ± )S 1 ,S2,D 
MAC (±)S2,S1,D 

Opcode: 

23 

DATA BUS MOVE FIELD 

Instruction Fields: 

51*52 aaa 5ign k 

XO XO 000 + 0 
YO YO o 0 1 1 
X1 XO 010 
Y1 YO o 1 1 
XO Y1 100 
YO XO 1 0 1 
X1 YO 1 1 0 
Y1 X1 1 1 1 

o d 

A 0 
B 

B 7 

NOTE: Only the indicated 51 *52 combinations are valid. X1 *X1 and Y1 *Y1 are not valid. 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

MAC 

III 

A-113 



• 

MACR 

Operation: 

Signed Multiply-Accumulate 
and Round 

Assembler Syntax: 

MACR 

D±S1*S2+r. D (parallel move) MACR (± )S1 ,S2,D (parallel move) 

D±S1*S2+r. D (parallel move) MACR (± )S2,S1,D (parallel move) 

Description: Multiply the two signed 24-bit source operands S1 and S2, add/subtract 
the product to/from the specified 56-bit destination accumulator D, and then round 
the result using convergent rounding. The rounded result is stored in the destination 
accumulator D. The" -" sign option is used to negate the specified product prior to 
accumulation. The default sign option is "+". The contribution of the LS bits of the 
result is rounded into 'the upper portion of the destination accumulator (A 1 or B1) by 
adding a constant to the LS bits of the lower portion of the accumulator (AO or BO). 
The value of the constant added is determined by the scaling mode bits SO and 51 in 
the status register. Once rounding has been completed, the LS bits of the destination 
accumulator D (AO or BO) are loaded with zeros to maintain an unbiased accumulator 
value which may be reused by the next instruction. The upper portion of the accu­
mulator (A 1 or B1) contains the rounded result which may be read out to the data 
buses. Refer to the RND instruction for more complete information on the convergent 
rounding process. 

Example: 

MACR XO,YO,B B,XO Y:(R4) + N4,YO ;XO* YO + B • B, rnd B, update XO,YO,R4 

Before Execution After Execution 

XO $123456 XO $100000 

YO $123456 YO $987654 

B ~1 ___ $_00_:1_0_00_oo_:o_0_00_0_0 __ ~ B ~I ___ $_OO_:1_29_6_CE_:0_0_oo_o_o __ ~ 

Explanation of Example: Prior to execution, the 24-bit XO register contains the value 
$123456 (0.142222166), the 24-bit YO register contains the value $123456 (0.142222166), 
and the 56-bit B accumulator contains the value $00: 1 00000:000000 (0.125). The ex­
ecution of the MACR XO,YO,B instruction multiples the 24-bit signed value in the XO 
register by the 24-bit signed value in the YO register, adds the resulting product to the 
56-bit B accumulator, rounds the result into the B1 portion of the accumulator, and 
then zeros the BO portion of the accumulator (XO*YO+B=0,145227144519197 
approximately = $00: 1296CD:9619C8, which is rounded to the value 
$00: 1296CE: 000000 =0.1452271 ~3832397 = B). 

A-114 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



MACR 

Condition Codes: 

Signed Multiply-Accumulate 
and Round 

15 14 13 12 11 10 8 7 

L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 

MACR 

NOTE: The definition of the E and U bits varies according to the scaling mode being 
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details. 

Instruction Format: 
MACR ( ± )S 1 ,S2,0 
MACR (± )S2,S1,0 

Opcode: 

23 8 7 

DATA BUS MOVE FIELD 1 Q 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 

51*52 QQQ 5ign k D d 

XO XO 000 + 0 A 0 
YO YO o 0 1 B 1 
Xl XO 010 
Yl YO o 1 1 
XO Y1 100 
YO XO 1 0 1 
X1 YO 1 1 0 
Yl Xl 1 1 1 

4 3 

NOTE: Only the indicated 51 *52 combinations are valid. X1 *X1 and Y1 *Yl are not valid. 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-115 

• 



• 

MOVE Move Data MOVE 

Operation: Assembler Syntax: 
S.D MOVE S,D 

Description: Move the contents of the specified data source S to the specified desti-
nation D. This instruction is equivalent to a data ALU NOP with a parallel data move. 

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator 
value is optionally shifted according to the scaling mode bits SO and S1 in the system 
status register (SR). If the data out of the shifter indicates that the accumulator exten­
sion register is in use and the data is to be moved into a 24- or 48-bit destination, the 
value stored in the destination D is limited to a maximum positive or negative satu­
ration constant to minimize truncation error. Limiting does not occur if an individual 
24-bit accumulator register (A1, AO, B1, or BO) is specified as a source operand instead 
of the full 56-bit accumulator (A or B). This limiting feature allows block floating-point 
operations to be performed with error detection since the L bit in the condition code 
register is latched. 

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-
bit source data to be moved into that accumulator is automatically extended to 56 bits 
by sign extending the MS bit of the source operand (bit 23) and appending the source 
operand with 24 LS zeros. Similarly, any 48-bit source data to be loaded into a 56-bit 
accumulator is automatically sign extended to 56 bits. Note that for 24-b,it source 
operands both the automatic sign-extension and zeroing features may be disabled by 
specifying the destination register to be one of the individual 24-bit accumulator reg­
isters (A 1 or B1). Similarly, for 48-bit source operands, the automatic sign-extension 
feature may be disabled by using the long memory move addressing mode and spec­
ifying A10 or B10 as the destination operand. 

Example: 

MOVE XO,A1 ;move XO to A1 without sign ext. or zeroing 

Before Execution After Execution 

xo $234567 xo $234567 

A I~ __ $_FF_:F_F_FF_FF_:F_F_FF_F_F __ ~ A 1~ ___ $_FF_:2_3_45_67_:F_F_FF_F_F __ ~ 

A-116 DSP56000/DSP56001·USER'S MANUAL MOTOROLA 



MOVE Move Data MOVE 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $FF:FFFFFF:FFFFFF, and the 24-bit XO register contains the value $234567. The 
execution of the MOVE XO,A 1 instruction moves the 24-bit value in the XO register 
into the 24-bit A 1 register without automatic sign extension and without automatic 
zeroing. 

Condition Codes: 

15 14 13 12 11 10 8 7 iiJ .. I T I·· I SI I SO I 11 I 10 I ** I L I E I u I N 
MR • 4( GGR 

L - Set if data limiting has occurred during parallel move 

Instruction Format: 
MOVE S,D 

Opcode: 

23 8 7 4 3 

DATA BUS MOVE FIELD 

Instruction Fields: 
See Parallel Move Descriptions for data bus move field encoding. 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-117 

Ell 



MOVE Move Data MOVE 

Parallel Move Descriptions: Thirty of the sixty-two instructions provide the capability 
to specifiy an optional parallel data bus movement over the X and/or Y data bus. This 
allows a data ALU operation to be executed in parallel with up to two data bus moves 
during the instruction cycle. Ten types of parallel moves are permitted, including 
register to register moves, register to memory moves, and memory to register moves. 
However, not all addressing modes are allowed for each type of memory reference. 
Addressing mode restrictions which apply to specific types of moves are noted in the 
individual move operation descriptions. The following section contains detailed de­
scriptions about each type of parallel move operation. 

When a 56-bit accumulator (A or 8) is specified as a source operand 5, the accumulator 
value is optionally shifted according to the scaling mode bits 50 and 51 in the system 
status register (5R). If the data out of the shifter indicates that the accumulator exten­
sion register is in use and the data is to be moved into a 24- or 48-bit destination, the 
value stored in the destination D is limited to a maximum positive or negative satu­
ration constant to minimize truncation error. Limiting does not occur if an individual 
24-bit accumulator register (A 1, AO, 81, or 80) is specified as a source operand instead 
of the full 56-bit accumulator (A or 8). This limiting feature allows block floatin'g-point 
operations to be performed with error detection since the L bit in the condition code 
register is latched. 

When a 56-bit accumulator (A or 8) is specified as a destination operand D, any 24-
bit source data to be moved into that accumulator is automatically extended to 56 bits 
by sign extending the M5 bit of the source operand (bit 23) and appending the source 
operand with 24 LS zeros. Similarly, any 48-bit source data to be loaded into a 56-bit 
accumulator is automatically sign extended to 56 bits. Note that for 24-bit source 
operands both the automatic sign-extension and zeroing features may be disabled by 
specifying the destination register to be one of the individual 24-bit accumulator reg­
isters (A 1 or 81). Similarly, for 48-bit source operands, the automatic sign-extension 
feature may be disabled by using the long memory move addressing mode and spec­
ifying A10 or 810 as the destination operand. 

Note that the symbols used in decoding the various opcode fields of an instruction 
or parallel move are completely arbitrary. Furthermore, the opcodesymbols used in 
one instruction or parallel move are completely independent of the opcode symbols 
used in a different instruction or parallel move. 

A-118 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Operation: 
( ..... ) 

No Parallel Data Move 

Assembler Syntax: 
( ..... ) 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel 
moves. 

Description: Many (30 of the total 62) instructions in the DSP56000/DSP56001 instruction 
set allow parallel moves. The parallel moves have been divided into 10 opcode cat­
egories. This category is a parallel move NOP and does not involve data bus move 
activity. 

Example: 

ADD XO,A ;add XO to A (no parallel move) 

Explanation of Example: This is an example of an instruction which allows parallel 
moves but does not have one. 

Condition Codes: 

15 14 13 12 11 10 8 7 1 0 IlJ ** I T I ** I S1 I SO I 11 I 10 I ** I L I E I U I N I z I v ~ CCR MR ~ .. 
The condition codes are not affected by this type of parallel move. 

Instruction Format: 
( ..... ) 

Opcode: 

23 16 15 8 7 

I 0 0 1 0 0 0 0 010 0 0 0 0 0 0 01 INSTRUCTION OPCODE 

Instruction Fields: 
(defined by instruction) 

. Timing: mv oscillator clock cycles 

Memory: mv program words 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-119 

III 



• 

I Immediate Short Data Move I 

Operation: Assembler Syntax: 
( ..... ), #xx. D ( ..... ) #xx,D 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel 
moves. 

Description: Move the 8-bit immediate data value (#xx) into the destination operafld D. 

If the destination register D is AO, A 1, A2, BO, B1, B2, RO-R7, or NO-N7, the 8-bit 
immediate short operand is interpreted as an !Jnsigned integer and is stored in the 
specified destination register. That is, the 8-bit 'data is stored in the eight LS bits of 
the destination operand, and the remaining bits of the destination operand Dare 
zeroed. 

If the destination register D is XO, X1, YO, Y1, A, or B, the 8-bit immediate short operand 
is interpreted as a signed fraction and is stored in the specified destination register. 
That is, the 8-bit data is stored in the eight MS bits of the destination operand, and 
the remaining bits of the destination operand D are zeroed. 

If the arithmetic or logical opcode-operand portion of the instruction specifies a given 
destination accumulator, that same accum~'ator or portion of that accumulator may 
not be specified as a destination D in the parallel data bus move operation. Thus, if 
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as 
its destination, the parallel data bus move portion of the instruction may not specify 
AO, A 1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the 
instruction specifies the 56-bit B accumulator as its destination, the parallel data bus 
move portion of the instruction may not specify BO, B1, B2, or B as its destination D. 
That is, duplicate destinations are NOT allowed within the same instruction. 

NOTE: This parallel data move is considered to be a move-type instruction. Due to 
pipelining, if an address register (R or N) is changed using a move-type instruction, 
the new contents of the destination address register will not be available for use during 
the following instruction (i.e., there is a ~ingle instruction cycle pipeline delay). . 

Example: 

ABS B #$18,R1 ;take absolute value of B, #$18. R1 

Before Execution After Execution 

R1 $0000 R1 $0018 

A-120 DSP56000/0SP56001 USER'S MANUAL MOTOROLA 



I Immediate Short Data Move I 

Explanation of Example: Prior to execution, the 16-bit address register R1 contains 
the value $0000. The execution ofthe parallel move portion ofthe instruction, #$18,R1, 
moves the 8-bit immediate short operand into the eight LS bits of the R1 register and 
zeros the remaining eight MS bits of that register. The 8-bit value is interpreted as an 
unsigned integer since its destination is the R1 address register. 

Condition Codes: 
15 14 13 12 11 10 8 7 3 0 iiJ ** I T I ** I S1 I SO I 11 1 10 ,**1 L I E I U I N Z I vl~ 

CCR MR ... 
The condition codes are not affected by this type of parallel move. 

Instruction Format: 
( ..... ) #xx,D 

Opcode: 
23 

I 0 0 

Instruction Fields: 

16 15 

#xx = 8-bit Immediate Short Data = iiiiiiii 
D D 

D ddddd 
XO o 0 1 00 
X1 00 1 0 1 
YO o 0 1 1 0 
Y1 o 0 1 1 1 
AO o 1 000 
80 o 1 0 0 1 
A2 o 1 0 1 0 
82 o 1 0 1 1 
A1 o 1 1 0 0 
81 o 1 1 0 1 
A o 1 1 1 0 
8 o 1 1 1 1 
RO-R7 1 0 r r r 
NO-N71 1 n n n 

Sign Ext 
no 
no. 
no 
no 
no 
no 
no 
no 
no 
no 
A2 
82 

where "rrr" = Rn number 
where "nnn" = Nn number 

Zero 
no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
AO 
80 

Timing: mv oscillator clock cycles 

Memory: mv program words 

8 7 

INSTRUCTION OPCODE 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-121 

III 



• 

R Register to Register Data Move R 

Operation: Assembler Syntax: 
( ..... ) S,D ( ..... ); s. D 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel 
moves. 

Description: Move the source register S to the destination register D. 

If the arithmetic or logical opcode-operand portion of the instruction specifies a given 
destination accumulator, that same accumulator or portion of that accumulator may 
not be specified as a destination D in the parallel data bus move operation. Thus, if 
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as 
its destination, the parallel data bus move" portion of the instruction may not specify 
AD, A 1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the 
instruction specifies the 56-bit B accumulator as its destination, the parallel data bus 
move portion of the instruction may not specify BO, B1, B2, or B as its destination D. 
That is, duplicate destinations are NOT allowed within the same instruction. 

If the opcode-operand portion of the instruction specifies a given source or destination 
register, that same register or portion of that register may be used as a source S in 
the parallel data bus move operation. This allows data to be moved in the same 
instruction in which it is being used as a source operand by a data ALU operation. 
That is, duplicate sources are allowed within the same instruction. 

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS 
bits of the 24-bit source operand are stored in the 16-bit destination register. When a 
16-bit source operand is moved into a 24-bit destination register, the 16 LS bits of the 
destination register are loaded with the contents of the 16-bit source operand, and 
the eight MS bits of the 24-bit destination register are zeroed. 

NOTE: The MOVE A,B operation will result in a 24-bit positive or negative saturation 
constant being stored in the B1 portion of the B accumulator if the signed integer 
portion of the A accumulator is in use. 

NOTE: This parallel data move is considered to be a move-type instruction. Due to 
pipelining, if an address register (R or N) is changed using a move-type instruction, 
the new contents of the destination address register will not be available for use during 
the following instruction (i.e., there is a single instruction cycle pipeline delay). 

A-122 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



R Register to Register Data Move R 

Example: 

MACR -XO,YO,A Y1,N5 ; -XO*YO+A. A, move Y1 • N5 

Before Execution After Execution 

Yl $001234 Yl $001234 

N5 $0000 N5 $1234 

Explanation of Example: Prior to execution, the 24~bit Y1 register contains the value 
$001234 and the 16-bit address offset register N5 contains the value $0000. The ex­
ecution of the parallel move portion of the instruction, Y1,N5, moves the 16 LS bits 
of the 24-bit value in the Y1 register into the 16-bit N5 register. 

Condition Codes: 

15 14 13 12 11 10 8 7 0 

/10 ** I T I .. J. SI I so I 11 I 10.1;* I LIE I u c!: I z I v CQ 
L ~ Set if data limiting has occurred during parallel move 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-123 

III 



III 

R Register to Register Data Move 

Instruction Format: 
( ..... ) S,D 

Opcode: 

23 16 15 

I 0 0 1 0 0 0 e ele e e d d d d 

Instruction Fields: 

e e e e e S D D 
S or D d d d d d S/L Sign Ext Zero 

XO o 0 1 0 0 no no no 
X1 o 0 1 0 1 no no no 
VO o 0 1 1 0 no no no 
V1 o 0 1 1 1 no no no 
AO o 1 000 no no no 
80 o 1 0 0 1 no no no 
A2 o 1 0 1 0 no no no 
82 o 1 0 1 1 no no no 
A1 o 1 100 no no no 
81 o 1 1 0 1 no no no 
A o 1 1 1 0 yes A2 AO 
8 o 1 1 1 1 yes 82 80 
RO-R7 1 0 r r r 
NO-N71 1 n n n 

where "rrr" = Rn number 
where "nnn" = Nn number 

Timing: mv oscillator clock cycles 

Memory: mv program words 

8 7 

INSTRUCTION OPCODE 

A-124 DSP56000/DSP56001 USER'S MANUAL 

R 

MOTOROLA 



u Address Register Update u 
Operation: Assembler Syntax: 

( ..... ) ea ( ..... ); ea. Rn 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel 
moves. 

Description: Update the specified address register according to the specified effective 
addressing mode. All update addressing modes may be used. 

Example: 

RND 8 (R3)+N3 ;round value in 8 into 81, R3+N3. R3 

Before Execution After Execution 

R3 $0007 R3 $0008 

N3 $0004 N3 $0004 

Explanation of Example: Prior to execution, the 16-bit address registerR3 contains 
the value $0007, and the 16-bit address offset register N3 contains the value $0004. 
The execution of the parallel move portion of the instruction, (R3) + N3, updates the 
R3 address register according to the specified effective addressing mode by adding 
the value in the R3 register to the value in the N3 register and storing the 16-bit result 
back in the R3 address register. 

Condition Codes: 

15 14 13 12 11 10 8 7 5 1 0 

j.'D ** I T I ** I SI I SO I 11 I 10 I ** I l I E U N z 
CCR 

The condition codes are not affected by this type of parallel move. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-125 



III 

u Address Register Update 

Instruction Format: 
( ..... ) ea 

Opcode: 

23 16 15 8 7 

I a a 1 a a a a 010 10M M R R RI 

Instruction Fields: 
ea = 5-bit Effective Address = MMRRR 

Effective 
Addressing Mode MM R R R 

(Rn)-Nn 
(Rn)+Nn 
(Rn)­
(Rn)+ 

o 0 r r r 
o 1 r r r 
1 0 r r r 
1 1 r r r 

where " rrr" refers to an address register RO-R7 

Timing: mv oscillator clock cycles 

Memory: mv program words 

INSTRUCTION OPCODE 

A-126 DSP56000/DSP56001 USER'S MANUAL 

u 

MOTOROLA 



X: X Memory Data Move X: 

Operation: Assembler Syntax: 
( ..... );X:ea. D ( ..... ) X:ea,D 

( ..... ); X:aa. D ( ..... ) X:aa,D 

( ..... ); S. X:ea ( ..... ) S,X:ea 

( ..... ); S. X:aa ( ..... ) S,X:aa 

( ..... ); #xxxxxx. D ( ..... ) #xxxxxx,D 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel 
moves. 

Description: Move the specified word operand from/to X memory. All memory ad-
dressing modes, including absolute addressing and 24-bit immediate data, may be 
used. Absolute short addressing may also be used. 

If the arithmetic or logical opcode-operand portion of the instruction specifies a given 
destination accumulator, that same accumulator or portion of that accumulator may 
not be specified as a destination D in the parallel data bus move operation. Thus, if 
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as 
its destination, the parallel data bus move portion of the instruction may not specify 
AD, A 1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the 
instruction specifies the 56-bit B accumulator as its destination, the parallel data bus 
move portion of the instruction may not specify BO, B1, B2, or B as its destination D. 
That is, duplicate destinations are NOT allowed within the same instruction. 

Ifthe opcode-operand portion ofthe instruction specifies a given source or destination 
register, that same register or portion of that register may be used as a source S in 
the parallel data bus move operation. This allows data to be moved in the same 
instruction in which it is being used as a source operand by a data ALU operation. 
That is, duplicate sources are allowed within the same instruction. 

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS 
bits of the 24-bit source operand are stored in the 16-bit destination register. When a 
16-bit source operand is moved into a 24-bit destination register, the 16 LS bits of the 
destination register are loaded with the contents of the 16-bit source operand, and 
the eight MS bits of the 24-bit destination register are zeroed. 

NOTE: This parallel data move is considered to be a move-type instruction. Due to 
pipelining, if an address register (R or N) is changed using a move-type instruction, 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-127 



X: X Memory Data Move X: 

the new contents ofthe destination address register will not be available for use during 
the following instruction (i.e., there is a single instruction cycle pipeline delay). 

Example: 

ASL A R2,X: - (R2) ;A*2 • A, save updated R2 in X:(R2) 

Before Execution After Execution 

R2 $1001 R2 $1000 

X:$1000 $000000 X:$1000 $001000 

Explanation of Example: Prior to execution, the 16-bit R2 address register contains 
the value $1001, and the 24-bit X memory location X:$1 000 contains the value $000000. 
The execution of the parallel move portion of the instruction, R2,X: - (R2), predecre­
ments the R2 address register and then uses the R2 address register to move the 
updated contents ofthe R2 address register into the 24-bit X memory location X:$1000. 

Condition Codes: 

15 14 13 12 11 10 8 7 IlJ --I T 1--JR S1 1 so 1 11 '$1 l 1 u I N z 
eeR 

L - Set if data limiting has occurred during parallel move 

NOTE: The MOVE A,X:ea operation will result in a 24-bit positive or negative satu­
ration constant being stored in the specified 24-bit X memory location if the signed 
integer portion of the A accumulator is in use. 

A-128 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



X: X Memory Data Move X: 

Instruction Format: 
( ..... ) X:ea,D 
( ..... ) S,X:ea 
( ..... ) #xxxxxx,D 

Opcode: 

23 16 15 8 7 

Old dOd d d W 1 M M M R R R INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea =6-bit Effective Address= MMMMRRR 

Effective 
Register W Addressing Mode MMMRRR 

Read S 0 (Rn) - Nn 000 r r r 
Write D 1 (Rn)+Nn 001 r r r 

(Rn)- 010rrr 
(Rn)+ 011rrr 
(Rn) 100 r r r 
(Rn+Nn) 1 0 1r r r 
-(Rn) 111rrr 
Absolute address 110000 
Immediate data 110100 

S D D S D D 
S,D ddddd S/L Sign Ext Zero S,D ddddd S/L Sign Ext Zero 

XO o 0 1 0 0 no no no 82 o 1 0 1 1 no no no 
X1 00101 no no no A1 o 1 1 0 0 no no no 
YO o 0 1 1 0 no no no 81 o 1 1 0 1 no no no 
Y1 o 0 1 1 1 no no no A o 1 1 1 0 yes A2 AO 
AO o 1 0 a a no no no 8 o 1 1 1 1 yes 82 80 
80 o 1 0 0 1 no no no RO-R7 1 0 r r r 
A2 o 1 0 1 0 NO-N7 ) 1 n h n 

where "rrr" = Rn number 
where "nnn" = Nn number 

Timing: mv oscillator clock cycles 

Memory: mv program words 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-129 



X: X Memory Data Move 

Instruction Format: 
( ..... ) X:aa,D 
( ..... ) S,X:aa 

Opcode: 

23 16 15 8 7 

10 1 d dOd dlw 0 a a a a a al 

Instruction Fields: 
aa = 6-bit Absolute Short Address = aaaaaa 

Register W 

Read S 0 
Write D 1 

Absolute Short Address aaaaaa 

000000 

111111 

S D D 
S,D ddddd S/L Sign Ext Zero 

XO 00100 no no no 
X1 00101 no no no 
YO o 0 1 1 0 no no no 
Y1 00111 no no no 
AO o 1 000 no no no 
80 o 1 0 0 1 no no no 
A2 o 1 010 no no no 
82 o 1 0 1 1 no no no 
A1 o 1 100 no no no 
81 o 1 1 0 1 no no no 
A o 1 1 1 0 yes A2 AO 
8 o 1 1 1 1 yes 82 80 
RO-R7 1 0 r r r 
NO-N71 1 n n n 

where "rrr" = Rn number 
where "nnn" = Nn number 

Timing: mv oscillator clock cycles 

Memory: mv program words 

INSTRUCTION OPCODE I 

A-130 DSP56000/DSP56001 USER'S MANUAL 

X: 

MOTOROLA 



X:R X Memory and Register Data Move X:R 

Operation: Assembler Syntax: 
Class I Class I 

( ..... ); X:ea • 01; S2 • 02 ( ..... ) X:ea,01 S2,02 

( ..... ); S1 • X:ea; S2 • 02 ( ..... ) S1,X:ea S2,02 

( ..... ); #xxxxxx. 01; S2. 02 ( ..... ) #xxxxxx,01 S2,02 

Class II Class II 
( ..... ); A • X:ea; XO • A ( . ; ... ) A,X:ea XO,A 

( ..... ); 8 • X:ea; XO • 8 ( ..... ) 8,X:ea XO,8 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel 
moves. 

Description: Class I: Move a one-word operand from/to X memory and move another 
word operand from an accumulator (S2) to an input register (02). All memory ad­
dressing modes, including absolute addressing and 24-bit immediate data, may be 
used. The register to register move (S2,02) allows a data ALU accumulator to be 
moved to a data ALU input register for use as a data ALU operand in the following 
instruction. 

Class II: Move one-word operand from a data ALU accumulator to X memory and 
one-word operand from data ALU register XO to a data ALU accumulator. One effective 
address is specified. All memory addressing modes, excluding long absolute address­
ing and long immediate data, may be used. 

For both Class I and Class II X:R parallel data moves, ifthe arithmetic or logical opcode­
operand portion ofthe instruction specifies a given destination accumulator, that same 
accumulator or portion of that accumulator may not be specified as a destination D1 
in the parallel data bus move operation. Thus, if the opcode-operand portion of the 
instruction specifies the 56-bit A accumulator as its destination, the parallel data bus 
move portion of the instruction may not specify AO, A 1, A2, or A as its destination 01. 
Similarly, if the opcode-operand portion of the instruction specifies the 56-bit 8 ac­
cumulator as its destination, the parallel data bus move portion of the instruction may 
not specify 80, 81, 82, or 8 as its destination 01. That is, duplicate destinations are 
NOT allowed within the same instruction. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-131 



1& 

X:R X Memory and Register Data Move X:R 

If the opcode-operand portion of the instruction specifies a given source or destination 
register, that same register or portion of that register may be used as a source S1 
and/or S2 in the parallel data bus move operation. This allows data to be moved in 
the same instruction in which it is. being used as a source operand by a data ALU 
operation. That is, duplicate sources are allowed within the same instruction. Note 
that S1 and S2 may specify the same register. 

Class I Example: 

CMPM YO,A A,X:$1234 A,YO ;compare A,YO mag., save A, update YO 

Before Execution After Execution 

A ~1 ___ $_00_:8_0_00_00_:0_0_00_0_0 __ ~ AI ~ ___ $_00_:8_0_00_00_:_00_00_0_0 __ ~ 

X:$1234 $000000 X:$1234 $7FFFFF 

YO $000000 YO $7FFFFF 

Explanation of the Class I Example: Prior to execution, the 56-bit A accumulator contains 
the value $00:800000:000000, the 24-bit X memory location X:$1234 contains the value 
$000000, and the 24-bit YO register contains the value $000000. The execution of the 
parallel move portion of the instruction, A,X:$1234 A,YO, moves the 24-bit limited 
positive saturation constant $7FFFFF into both the X:$1234 memory location and the 
YO register since the signed portion of the A accumulator was in use. 

Class II Example: 

MAC XO,YO,A B,X:(R1) + XO,B ;multiply XO and YO and accumulate in A 
;move B to X memory location pointed to 
;by R1 and postincrement R1 
;move XO to B 

A-132 DSP56000/DSP560~1 USER'S MANUAL MOTOROLA 



X:R X Memory and Register Data Move X:R 

Before Execution After Execution 

XO $400000 XO $400000 

YO $600000 YO $600000 

A $00: 000000: 000000 A $00: 300000: 000000 

B $FF:7FFFFF:000000 B $00 :400000: 000000 

X:$1234 $000000 X:$1234 $800000 

R1 $1234 R1 $1235 

Explanation of the Class II Example: Prior to execution, the 24-bit registers XO and YO 
contain $400000 and $600000, respectively. The 56-bit accumulators A and B contain 
the values $00:000000:000000 and $FF:7FFFFF:000000, respectively. The 24-bit X 
memory location X:$1234 contains the value $000000, and the 16-bit R1 register con­
tains the value $1234. Execution of the parallel move portion of the instruction 
(B,X:(R1) + XO,B) moves the 24-bit limited value of B ($800000) into the X:$1234 
memory location and the XO register ($400000) into accumulator B1 ($400000), sign 
extends B1 into B2 ($00), and zero fills BO ($000000). It also increments R1 to $1235. 

Condition Codes: 

15 14 13 12 11 10 8 7 

L - Set if data limiting has occurred during parallel move. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-133 

III 



III 

X:R X Memory and Register Data Move X:R 

Class I Instruction Format: 
( ..... ) X:ea,01 S2,02 
( ..... ) S1,X:ea S2,02 
( ..... ) #xxxxxx, S2,02 

Opcode: 

23 16 15 8 7 

o 0 0 1 f f d f W 0 M M M R R R INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea =6-bit Effective Address= MMMRRR 

Register W 

Read 51 0 
Write D1 1 

S1,01 f f 

XO o 0 
X1 o 1 
A 1 0 
B 1 1 

Effective 
Addressing Mode MMM R R R 

(Rn) -Nn 
(Rnl+ Nn 
(Rn)­
(Rn)+ 
(Rn) 
(Rn+ Nn) 
-(Rn) 
Absolute address 
Immediate data 

OOOrrr 
001 r r r 
010rrr 
011rrr 
100rrr 
101rrr 
111rrr 
110000 
110100 

where "rrr" refers to an address register RO-R7 

S1 01 01 52 
S/L Sign Ext Zero S2 d S/L 

no no no A 0 yes 
no no no B 1 yes 
yes A2 AO 
yes B2 BO 

Timing: mv oscillator clock cycles 

Memory: mv program words 

02 

YO 
Y1 

A-134 DSP56000/DSP56001 USER'S MANUAL 

02 02 
f Sign Ext Zero 

0 no no 
1 no no 

MOTOROLA 



X:R X Memory and Register Data Move X:R 

Class II Instruction Format: 
( ..... ) A. X:ea XO. A 
( ..... ) B. X:ea XO. B 

Opcode: 

23 16 15 8 7 

o 0 0 0 1 0 0 d 0 0 M M M R R R INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea = 6-bit Effective Address = MMMRRR 

Effective 
Addressing Mode MMMRRR 

(Rn)-Nn 000 r r r 
(Rn)+Nn 001 r r r 
(Rn)- o 1 0 r r r 
(Rn)+ 011rrr 
(Rn) 100 r r r 
(Rn+Nn) 101rrr 
-(Rn) 111rrr 
Absolute address 110000 
Immediate data 110100 

where "rrr" refers to an address register RO-R7 

5 D D 
s,D s/L Sign Ext Zero d MOVE Opcode 

XO no N/A N/A 0 A. X:ea XO. A 
YO no N/A N/A 8. X:ea XO.8 
A yes A2 AO 
8 yes 82 80 

Timing: mv oscillator clock cycles III 
Memory: mv program words 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-135 



• 

V: Y Memory Data Move V: 
Operation: Assembler Syntax: 

( ..... ); Y:ea. D ( ..... ) Y:ea,D 

( ..... ); Y:aa • D ( ..... ) Y:aa,D 

( ..... ); S. Y:ea ( ..... ) S,Y:ea 

( ..... ); S. Y:aa ( ..... ) S,Y:aa 

( ..... ); #xxxxxx. D ( ..... ) #xxxxxx,D 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel 
moves. 

Description: Move the specified word operand from/to Y memory. All memory address-
ing modes, including absolute addressing and 24-bit immediat.e data, may be used. 
Absolute short addressing may also be used. 

If the arithmetic or logical opcode-operand portion of the instruction specifies a given 
destination accumulator, that same accumulator or portion of that accumulator may 
not be specified as a destination D in the parallel data bus move operation. Thus, if 
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as 
its destination, the parallel data bus move portion of the instruction may not.specify 
AO, A 1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the 
instruction specifies the 56-bit B accumulator as its destination, the parallel data bus 
move portion of the instruction may not specify BO, B1, B2, or B as its destination D. 
That is, duplicate destinations are NOT allowed within the same instruction. 

If the opcode-operand portion of the instruction specifies a given source or destination 
register, that same register or portion of that register may be used as a source S in 
the parallel data bus move operation. This allows data to be moved in the same 
instruction in which it is being used as a source operand by a data ALU operation . 
That is, duplicate sources are allowed within the same instruction. 

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS 
bits of the 12-bit source operand are stored in the 16-bit destination register. When a 
16-bit source operand is moved into a 24-bit destination register, the 16 LS bits of the 
destination register are loaded with the contents of the 16-bit source operand, and 
the eight MS bits of the 24-bit destination register are zeroed. 

NOTE: This parallel data move is considered to be a move-type instruction. Due to 
pipelining, if an address register (R or N) is changed using a move-type instruction, 

A-136 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



V: Y Memory Data Move V: 
the new contents of the destination address register will not be available for use during 
the following instruction (Le., there is a single instruction cycle pipeline delay). 

Example: 

EOR XO,8 #$123456,A ;exclusive OR XO and 8, update A accumulator 

Before Execution After Execution 

A _I ___ $_FF_:F_F_FF_FF_:_FF_FF_F_F __ ~ A _1 __ ~$_OO_:1_2_34_56_:0_0_00_0_0 __ ~ 

Explanation of Example:· Prior to execution, the 56-bit A accumulator contains the 
value $FF:FFFFFF:FFFFFF. The execution ofthe parallel move portion of the instruction, 
#$123456,A, moves the 24-bit immediate value $123456 into the 24-bit A1 register, 
then sign extends that value into the A2 portion of the accumulator, and zeros the 
lower 24-bit AO portion of the accumulator. 

Condition Codes: 

15 14 13 12 11 10 8 7 2 0 

u I N 

~ MR ... CCR 

L - Set if data limitin9 has occurred during parallel move 

NOTE: The MOVE A,Y:ea operation .will result in ·a 24-bit positive or negative satu­
ration constant being stored in the specified 24-bit Y memory location if the signed 
integer portion of the A accumulator is in use. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-137 

III 



V:. Y Memory Data Move 

Instruction Format: 
( ..... ) Y:ea,D 
( ..... ) S,Y:ea 
( ..... ) #xxxxxx,D 

Opcode: 

23 16 15 B 7 

Old d 1 d d d W 1 M M M R R R INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea = 6-bit Effective Address = MMMRRR 

Effective 
Register W Addressing Mode MMMRRR 

Read S 0 (Rn)-Nn 000 r r r 
Write D (Rn)+Nn 001 r r r 

(Rn)- o i 0 r r r 
(Rn)+ o 1 1 r r r 
(Rn) 100rrr 
(Rn+Nn) 1 0 1 r r r 
-(Rn) 111rrr 
Absolute address 1 000 0 
Immediate data 110100 

where "rrr" refers to an address register RO-R7 

S 
S,D ddddd S/L 

XO o 0 1 0 0 no 
X1 o 0 1 0 1 no 
YO o 0 1 1 0 no 
Y1 o 0 1 1 1 no 
AO o i 000 no 
80 o 1 0 0 1 no 
A2 o 1 010 no 

where "rrr" = Rn number 
where "nnn" = Nn number 

D 
Sign Ext 

no 
no 
no 
no 
no 
no 
no 

Timing: mv oscillator clock cycles 

Memory: mv program words 

D 
Zero 

no 
no 
no 
no 
no 
no 
no 

S,D 

82 
A1 
B1 
A 
B 
RO-R7 
NO-N7 

ddddd 

o 1 011 
o 1 100 
o 1 1 0 1 
o 1 1 1 0 
o 1 1 1 1 
1 0 r r r 
1 1 n n n 

A-138 OSP56000/0SP56001 USER'S MANUAL 

S 
S/L 

no 
no 
no 
yes 
yes 

V: 

D D 
Sign Ext Zero 

no no 
no no 
no no 
A2 AO 
82 80 

MOTOROLA 



V: Y Memory Data Move 

Instruction Format: 
( ..... ) Y:aa,D 
( ..... ) S,Y:aa 

Opcode: 

23 16 15 8 7 

I Old d 1 d d dlw 0 a a a a a al 

Instruction Fields: 
aa = 6-bit Absolute Short Address = aaaaaa 

Register W Absolute Short Address aaaaaa 

Read S 0 000000 
Write D 1 

111111 

S D D 
S,D ddddd S/L Sign Ext Zero 

XO 00100 
X1 00101 
YO 001 1 0 
Y1 001 1 1 
AO 01000 
80 01001 
A2 0101 0 
82 01 01 1 
A1 01100 
81 01 101 
A 01 1 1 0 
8 o 1 1 1 1 
RO-R7 1 0 r r r 
NO-N7 11 n n n 

where "rrr" = Rn number 
where "nnn" = Nn number 

no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
yes 
yes 

Timing: mv oscillator clock cycles 

Memory: mv program words 

no no 
no no 
no no 
no no 
no no 
no no 
no no 
no no 
no no 
no no 
A2 AO 
82 80 

INSTRUCTION OPCODE 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

V: 

• 

A-139 



II 

R:Y Register and Y Memory Data Move R:Y 

Operation: Assembler Syntax: 
Class I Class I 

( ..... ); S1 • 01; Y:ea • 02 ( ..... ) S1,01 Y:ea,02 

( ..... ); S1 • 01; S2 • Y:ea ( ..... ) S1,01 S2,Y:ea 

( ..... ); S1 .01; #xxxxxx. 02 ( ..... ) S1,01 #xxxxxx,02 

Class II Class II 
( ..... ); YO. A; A. Y:ea ( ..... ) YO,A A,Y:ea 

( ..... ); YO. 8; 8 • Y:ea ( ..... ) YO,8 8,Y:ea 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel 
moves. 

Description: Class I: Move a one-word operand from an accumulator (S1) to an input 
register (01) and move another word operand from/to Y memory. All memory ad­
dressing modes, including absolute addressing and 24-bit immediate data, may be 
used. The register to register move (S1 ,01) allows a data ALU accumulator to be 
moved to a data ALU input register for use as a data ALU operand in the following 
instruction. 

Class II: Move one-word operand from a data ALU accumulator to Y memory and 
one-word operand from data ALU register YO to a data ALU accumulator. One effective 
address is specified. All memory addressing modes, excluding long absolute address­
ing and long immediate data, may be used. Class II move operations have been added 
to the R:Y parallel move (and a similar feature has been added to the X:R parallel 
move) as an added feature available in the first quarter of 1989. 

For both Class I and Class II R:Y parallel data moves, if the arithmetic or logical opcode­
operand portion ofthe instruction specifies a given destination accumulator, that same 
accumulator or portion of that accumulator may not be specified as a destination 02 
in the parallel data bus move operation. Thus, if the opcode-operand portion of the 
instruction specifies the 56-bit A accumulator as its destination, the parallel data bus 
move portion of the instruction may not specify AO, A 1, A2, or A as its destination 02. 
Similarly, if the opcode-operand portion of the instruction specifies the 56-bit 8 ac­
cumulator as its destination, the parallel data bus move portion of the instruction may 
not specify 80, 81, 82, or 8 as its destination 02. That is, duplicate destinations are 
NOT allowed within the same instruction. 

A-140 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



R:Y Register and Y Memory Data Move R:Y 

If the opcode-operand portion of the instruction specifies a given source or destination 
register, that same register or portion of that register may be used as a source S1 
and/or S2 in the parallel data bus move operation. This allows data to be moved in 
the same instruction in which it is being used as a source operand by a data ALU 
operation. That is, duplicate sources are allowed within the same instruction. Note 
that S1 and S2 may specify the same register. 

Class I Example: 

ADDL B,A B,X1 Y:(R6) - N6,B ;2*A+B. A, update X1,B and R6 

Before Execution After Execution 

B $80: 123456:789ABC B $00:654321 :000000 

X1 $000000 X1 $800000 

R6 $2020 R6 $2000 

N6 $0020 N6 $0020 

Y:$2020 $654321 Y:$2020 $654321 

Explanation of the Class I Example: Prior to execution, the 56-bit B accumulator contains 
the value $80: 123456:789ABC, the 24-bit X1 register contains the value $000000, the 
16-bit R6 address register contains the value $2020~ the 16-bit N6 address offset register 
contains the value $0020 and the 24-bit Y memory location Y:$2020 contains the value 
$654321. The execution of the parallel move portion of the instruction, B,X1 
Y:(R6) - N6,B, moves the 24-bit limited negative saturation constant $800000 into the 
X1 register since the signed integer portion of the B accumulator was in use, uses the 
value in the 16-bit R6 address register to move the 24-bit value in the Y memory 
location Y:$2020 into the 56-bit B accumulator with automatic sign extension of the 
upper portion of the accumulator (B2) and automatic zeroing of the lower portion of 
the accumulator (BO), and finally uses the contents of the 16-bit N6 address offset 
register to update the value in the 16-bit R6 address register. The contents of the N6 
address offset register are not affected. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-141 

• 



II 

R:Y Register and Y Memory Data Move R:Y 

Class II Example: 

MAC XO,YO,A YO,B B,Y:(R1) + ;multiply XO and YO and accumulate in A 
;move B to Y memory location pointed to 
;by R1 and postincrement R1 
;move YO to B 

Before Execution After Execution 

XO $400000 XO $400000 

YO $600000 YO $600000 

A $00: 000000: 000000 A $00: 300000: 000000 

B $00: 800000: 000000 B $00: 600000: 000000 

Y:$1234 $000000 Y:$1234 $7FFFFF 

R1 $1234 R1 $1235 

Explanation of the Class II Example: Prior to execution, the 24-bit registers, XO and YO, 
contain $400000 and $600000, respectively. The 56-bit accumulators A and B contain 
the values $00:000000:000000 and $00:800000:000000 (+ 1.0000), respectively. The 
24-bit Y memory location Y:$1234 contains the value $000000, and the 16-bit R1 register 
contains the value $1234. Execution of the parallel move portion of the instruction 
(YO,B B,Y:(R1) +) moves the YO register ($600000) into accumulator B1 ($600000), sign 
extends B1 into B2 ($00), and zero fills BO ($000000). It also moves the 24-bit limited 
value of B ($7FFFFF) into the Y:$1234 memory location and increments R1 to $1235. 

Condition Codes: 

15 14 13 12 11 10 B 7 3 

!:f1**1 T 1**1 "I sol 11 110 1**1 L IE I U IN 
MR .. • CCR 

L - Set if data limiting has occurred during parallel move 

A-142 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



R:V Register and Y Memory Data Move R:V 

Class I Instruction Format: 
( ..... ) 81,01 Y:ea,02 
( ..... ) 81,01 82,Y:ea 
( ..... ) 81,01 #xxxxxx,02 

Opcode: 

23 16 15 B 7 

000 e f f W 1 M M M R R R INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea = 6-bit Effective Address = MMMRRR 

Effective 
Register W Address Mode MMMRRR 

Read 52 0 (Rn)- Nn 000 r r r 
Write D2 1 (Rn)+Nn 001 r r r 

(Rn)- o 1 0 r r r 
(Rn)+ o 1 1 r r r 
(Rn) 100 r r r 
(Rn+Nn) 1 0 1 r r r 
-(Rn) 1 1 1 r r r 

Absolute address 1 1 0 0 0 0 
Immediate data 1 1 0 1 0 0 

where "rrr" refers to an address register RO-R7 

S1 01 01 52 02 02 

51 d SIL 01 e Sign Ext Zero 52.02 f f 5/L Sign Ext Zero 

A 0 yes XO 0 no no YO o 0 no no no 
8 yes X1 1 no no Y1 o 1 no no no 

A 1 0 yes A2 AO 

8 11 yes 82 80 -Timing: mv oscillator clock cycles 

Memory: mv program words 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-143 



R:Y Register and Y Memory Data Move R:V 

Class II Instruction Format: 
( ..... ) YO. A A. Y:ea 
( ..... ) YO. B B. Y:ea 

Opcode: 

23 16 15 8 7 

o 0 0 0 1 0 0 d 10M M M R R ~ INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea = 6-bit Effective Address = MMMRRR 

Effective 
Addressing Mode MMMRRR 

(Rn)-Nn 000 r r r 
(Rn)+Nn 001 r r r 
(Rn)- 010rrr 
(Rn)+ 011rrr 
(Rn) 100rrr 
(Rn+Nn) 101rrr 
-(Rn) 111rrr 
Absolute address 110000 
Immediate data 110100 

where "rrr" refers to an address register RO-R7 

SRC DEST DEST 
S,D S/L Sign Ext Zero d MOVE opcode 

XO no N/A N/A 0 YOtA At Y:ea 
YO no N/A N/A 1 YO t B B t Y:ea 
A yes A2 ·AO 
B yes B2 BO 

III Timing: mv oscillator clock cycles 

Memory: mv program words 

A-144 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



L: Long Memory Data Move L: 

Operation: Assembler Syntax: 
( ..... ); X:ea. D1; V:ea. D2 ( ..... ) L:ea,D 

( ..... ); X:aa • D1; V:aa • D2 ( ..... ) L:aa,D 

( ..... ); S1 • X:ea; S2 • V:ea ( ..... ) S,L:ea 

( ..... ); S1 • X:aa; S2 • V:aa ( ..... ) S,L:aa 

where ( ..... ) refers to any arithmetic or logical instruction which allows p~rallel 
moves. 

Description: Move one 48-bit long-word operand from/to X and V memory. Two data 
ALU registers are concatenated to form the 48-bit long-word operand. This allows 
efficient moving of both double-precision (high:low) and complex (real:imaginary) 
data from/to one effective address in L (X:V) memory. The same effective address is 
used for both the X and V memory spaces; thus, only one effective address is required. 
Note that the A, B, A10, and B10 operands reference a single 48-bit signed (double­
precision) quantity while the X, V, AB, and BA operands reference two separate (i.e., 
real and imaginary) 24-bit signed quantities. All memory alterable addressing modes 
may be used. Absolute short addressing may also be used. 

If the arithmetic or logical opcode-operand portion of the instruction specifies a given 
destination accumulator, that same accumulator or portion of that accumulator may 
not be specified as a destination D in the parallel data bus move operation. Thus, if 
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as 
its destination, the parallel data bus move portion of the instruction may not specify 
A, A 10, AB, or BA as destination D. Similarly, if the opcode-operand portion of the 
instruction specifies the 56-bit B accumulator as its destination, the parallel data bus 
move portion of the instruction may not specify B, B10, AB, or BA as its destination 
D. That is, duplicate destinations are NOT allowed within the same instruction . 

If the. opcode-operand portion of the instruction specifies a given source or d~stination 
register, that same register or portion of that register may be used as a source S in 
the parallel data bus move operation. This allows data to be moved in the same 
instruction in which it is being used as a source operand by a data ALU operation. 
That is, duplicate sources are allowed within the same instruction. 

NOTE: The operands A 10, B10, X, V, AB, and BA may be used only for a 48-bit long 
memory move as previously described. These operands may not be used in any other 
type of instruction or parallel move. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-145 

• 



III 

L: Long Memory Data Move L: · 

Example: 

CMP YO,B A,L:$1234 ;compare YO and B, save 48-bit A 1 :AO value 

Before Execution After Execution 

A I $01 :234567:89ABCD A I $01 :234567:89ABCD 

X:$1234 I $000000 X:$1234 I $7FFFFF 

Y:$1234 $000000 Y:$1234 $FFFFFF 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $01 :234567:89ABCD, the 24-bit X memory location X:$1234 contains the value 
$000000, and the 24-bit Y memory location Y:$1234 contains the value $000000. The 
execution of the parallel move portion of the instruction, A,L:$1234, moves the 48-bit 
limited positive saturation constant $7FFFFF:FFFFFF into the specified long memory 
location by moving the MS 24 bits of the 48-bit limited positive saturation constant 
($7FFFFF) into the 24-bit X memory location X:$1234 and by moving the LS 24 bits 
of the 48-bit limited positive saturation constant ($FFFFFF) into the 24-bit Y memory 
location Y:$1234 since the signed integer portion of the A accumulator was in use. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 

CCR 
vcq 

L - Set if data limiting has occurred during parallel move 

NOTE: The MOVE A,L:ea operation will result in a 48-bit positive or negative saturation 
constant being stored in the specified 24-bit X and Y memory locations if the signed 
integer portion of the A accumulator is in use. The MOVE AB,L:ea operation will result 
in either one or two 24-bit positive and/or negative saturation constant(s) being stored 
in the specified 24-bit X and/or Y memory location(s) if the signed i'nteger portion of 
the A and/or B accumulator(s) is in use. 

A-146 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



L: Long Memory Data Move L: 

Instruction Format: 
( ..... ) L:ea,D 
( ..... ) S,L:ea 

Opcode: 

23 16 15 8 7 

o 1 0 0 l 0 l l W 1 M M M R R R INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea = 6-bit Effective Address = MMMRRR 

Effective 
Register W Addressing Mode MMMRRR 

Read 5 0 (Rn)-Nn OOOrrr 
Write 0 1 (Rn)+Nn 001 r r r 

(Rn)- o 1 0 r r r 
(Rn)+ 011rrr 
(Rn) 100 r r r 
(Rn+Nn) 101rrr 
-(Rn) 110rrr 
Absolute address 110000 

where "rrr" refers to an address register RO-R7 

5 D D 
5 51 52 S/L D D1 D2 Sign Ext Zero L L L 

A10 A1 AO no A10 A1 AO no no 0 0 0 
810 81 80 no 810 81 80 no no 0 0 1 
X X1 XO no X X1 XO no no 0 0 
Y Y1 YO no Y Y1 YO no no 0 1 
A A1 AO yes A A1 AO A2 no 0 0 
8 81 80 yes 8 81 80 82 no 
A8 A 8 yes A8 A 8 A2,82 AO,80 
8A 8 A yes 8A 8 A 82,A2 80,AO 

0 1 
1 0 Ell 

Timing: mv oscillator clock cycles 

Memory: mv program words 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-147 



L: Long Memory Data Move L: 

Instruction Format: 
( ..... ) L:aa,D 
( ..... ) S,L:aa 

Opcode: 

23 16 15 8 7 0 

I 0 1 0 0 L 0 L L I w 0 a a a a a a I INSTRUCTION OPCODE I 

Instruction Fields: 
aa = 6-bit Absolute Short Address = aaaaaa 

Register W Absolute 5hort Address aaaaaa 

Read 5 0 000000 
Write D 1 

111111 

5 D D 
5 51 52 5/L D D1 D2 5ign Ext Zero L L L 

A10 A1 AO no A10 A1 AO no no 0 0 0 
B10 B1 BO no B10 B1 BO no no 0 0 1 
X X1 XO no X X1 XO no no 0 0 
Y Y1 YO no Y Y1 YO no no 0 1 1 
A A1 AO yes A A1 AO A2 no 0 0 
B B1 BO yes B B1 BO B2 no 0 1 
AB A B yes AB A B A2,B2 AO,BO 0 
BA B A yes BA B A B2,A2 BO,AO 1 

Timing: mv oscillator clock cycles 

Memory: mv program words 

III 

A-148 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



X: V: XV Memory Data Move X: Y: 

Operation: Assembler Syntax: 
( ..... ); X:<eax> • 01; Y:<eay> • 02 ( ..... ) X:<eax>,01 Y:<eay>,02 

( ..... ); X:<eax> • 01; S2 • Y:<eay> ( ..... ) X:<eax>,01 S2,Y:<eay> 

( ..... ); S1 • X:<eax>; Y:<eay> • 02 ( ..... ) S1,X:<eax> Y:<eay>,02 

( ..... ); S1 • X:<eax>; S2 • Y:<eay> ( ..... ) S1,X:<eax> S2,Y:<eay> 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel 
moves. 

Description: Move a one-word operand from/to X memory and move another word 
operand from/to Y memory. Note that two independent effective addresses are spec­
ified «eax> and <eay» where one of the effective addresses uses the lower bank 
of address registers (RO~R3) while the other effective address uses the upper bank of 
address registers (R4-R7). All parallel addressing modes may be used. 

If the arithmetic or logical opcode-operand portion of the instruction specifies a given 
destination accumulator, that same accumulator or portion of that accumulator may 
not be specified as a destination 01 or 02 in the parallel data bus move operation. 
Thus, if the opcode-operand portion of the instruction specifies the 56-bit A accu­
mulator as its destination, the parallel data bus move portion of the instruction may 
not specify A as its destination 01 or 02. Similarly, if the opcode-operand portion of 
the instruction specifies the 56-bit B accumulator as its destination, the parallel data 
bus move portion of the instruction may not specify B as its destination 01 or 02. 
That is, duplicate destinations are NOT allowed within the same instruction. 01 and 
02 may not specify the same register. 

Ifthe opcode-operand portion of the instruction specifies a given source or destination 
register, that same register or portion of that register may be used as a source S1 
and/or S2 in the parallel data bus move operation. This allows data to be moved in 
the same instruction in which it is being used as a source operand by a data ALU 
operation. That is, duplicate sources are allowed within the same instruction. Note 
that S1 and S2 may specify the same register. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-149 

iii 



II 

X:. V: XV Memory Data Move X: V: 

Example: 

MPYR X1,YO,A X1,X:(RO)+ YO,Y:(R4)+ N4 ;X1*YO. A,save X1 and YO 

Before Execution After Execution 

Xl $123123 Xl $123123 

YO $456456 YO $456456 

RO $1000 RO $1001 

R4 $0100 R4 $0123 

N4 $0023 N4 $0023 

X:$1000 $000000 X:$1000 $123123 

Y:$0100 $000000 Y:$0100 $456456 

Explanation of Example: Prior to execution, the 24-bit X1 register contains the value 
$123123, the 24-bit YO register contains the value $456456, the 16-bit RO address 
register contains the value $1000, the 16-bit R4 address register contains the value 
$0100, the 16-bit N4 address offset register contains the value $0023, the 24-bit X 
memory location X:$1000 contains the value $000000, and the 24-bit Y memory lo­
cation Y:$01 00 contains the value $000000. The execution of the parallel move portion 
of the instruction, X1,X:(RO) + YO,Y:(R4) + N4, moves the 24-bit value in the X1 register 
into the 24-bit X memory location X:$1000 using the 16-bit RO address register, moves 
the 24-bit value in the YO register into the 24-bit Y memory location Y:$0100 using 
the 16-bit R4 address register, updates the 16-bit value in the RO address register, and 
updates the 16-bit R4 address register using the 16-bit N4 address offset register. The 
contents of the N4 address offset register are not affected. 

Condition Codes: 

15 14 13 12 11 10 B 2 0 

u I N 

CCR 

L - Set if data limiting has occurred during parallel move 

NOTE: The MOVE A,X:<eax> B,Y:<eay> operation will result in one or two 24-bit 
positive and/or negative saturation constant(s) being stored in the specified 24-bit X 

A-150 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



X: V: XV Memory Data Move X: V: 

and/or Y memory location(s) if the signed integer portion of the A and/or B accumu­
lator(s) is in use. 

Instruction Format: 
( ..... ) X:<eax>,D1 
( ..... ) X:<eax>,D1 
( ..... ) S1,X:<eax> 
( ..... ) S1,X:<eax> 

Opcode: 

Y:<eay>,D2 
S2,Y:<eay> 
Y:<eay>,D2 
S2,Y:<eay> 

23 16 15 8 7 

11 w m m e e t tlw r r M M R R RI 

Instruction Fields: 

INSTRUCTION OPCODE 

X:<eax>=6-bit X Effective Address=WMMRRR (RO-R3 or R4-R7) 
X:<eay> = 5-bit Y Effective Address =wmmrr (R4-R7 or RO-R3) 

X Effective 
Addressing Mode MM R R R 

(Rn)+Nn 
(Rn)­
(Rn)+ 
(Rn) 

o 1 s s s 
1 0 s s s 
1 1 s s s 
o 0 s s s 

where "sss" refers to an address register RO-R3 or R4-R7 

51 01 01 
Register W 51,01 e e 5/L 5ign Ext Zero 

Read 51 0 XO 00 no no no 
Write D1 1 X1 o 1 no no no 

A 1 0 yes A2 . AO 

8 1 1 yes 82 80 

Y Effective 
Addressing Mode 

(Rn)+Nn 
(Rn)-
(Rn)+ 
(Rn) 

mm r r 

o 1 t t 
1 0 t t 
1 1 t t 
o 0 t t 

where "tt" refers to an address register R4-R7 or RO-R3 which is in the opposite address register bank 
from the one used in the X effective address, previously described 

52 02 02 
Register W 52,02 f f 5/L 5ign Ext Zero 

Read 52 0 YO 00 no no no 
Write D2 1 Y1 o 1 no no no 

A 1 0 yes A2 AO 
8 1 1 yes 82 80 

Timing: mv oscillator clock cycles 

Memory: mv program words 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-151 

-



III 

MOVEC Move Control Register MOVEC 

Operation: Assembler Syntax: 
X:ea.01 MOVE(C) X:ea,01 

X:aa.01 MOVE(C) X:aa,01 

S1 • X:ea MOVE(C) S1,X:ea 

S1 • X:aa MOVE(C) S1,X:aa 

Y:ea.01 MOVE(C) Y:ea,01 

Y:aa.01 MOVE(C) Y:aa,01 

S1 • Y:ea MOVE(C) S1,Y:ea 

S1 • Y:aa MOVE(C) S1,Y:aa 

S1 .02 MOVE(C) S1,02 

S2.01 MOVE(C) S2,01 

#xxxx.01 MOVE(C) #xxxx,01 

#xx.01 MOVE(C) #xx,01 

Description: Move the contents of the specified source control register S1 or S2 to the 
specified destination or move the specified source to the specified destination control 
register 01 or 02. The control registers S1 and 01 are a subset of the S2 and 02 
register set and consist of the address ALU modifier registers and the program con­
troller registers. These registers may be moved to orfrom any other register or memory 
space. All memory addressing modes, as well as an immediate shortaddressing mode, 
may be used. 

If the system stack register SSH is specified as a source operand, the system stack 
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack 
register SSH is specified as a destination operand, the system stack pointer (SP) is 
preincremented by 1 before SSH is written. This allows the system stack to be effi­
ciently extended using software stack pointer operations. 

When a 56-bit accumulator (A or B) is specified as a source operand, the accumulator 
value is optionally shifted according to the scaling mode bits SO and S1 in the system 

A-152 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



MOVEC Move Control Register MOVEC 

status register (SR). If the data out of the shifter indicates that the accumulator exten­
sion register is in use and the data is to be moved into a 24-bit destination, the value 
stored in the destination is limited to a maximum positive or negative saturation 
constant to minimize truncation error. If the data is to be moved into a 16-bit destination 
and the accumulator extension register is in use, the value is limited to a maximum 
positive or negative saturation constant whose LS 16 bits are then stored in the 16-
bit destination register. Limiting does not occur if an individual 24-bit accumulator 
register (A 1, AD, 81, or 80) is specified as a source operand instead of the full 56-bit 
accumulator (A or 8). This limiting feature allows block floating-point operations to 
be performed with error detection since the L bit in the condition code register is 
latched. 

When a 56-bit accumulator (A or 8) is specified as a destination operand, any 24-bit 
source data to be moved into that accumulator is automatically extended to 56 bits 
by sign extending the MS bit of the source operand (bit 23) and appending the source 
operand with 24 LS zeros. Whenever a 16-bit source operand is to be moved into a 
24-bit destination, the 16-bit value is stored in the LS 16 bits of the 24-bit destination, 
and the MS 8 bits of that destination are zeroed. Similarly, whenever a 16-bit source 
operand is to be moved into a 56-bit accumulator, the 16'::bit value is moved into the 
LS 16 bits of the MSP portion of the accumulator (A 1 or 81), the MS 8 bits of the MSP 
portion of that accumulator are zeroed, and the resulting 24-bit value is extended to 
56 bits by sign extending the MS bit and appending the result with 24 LS zeros. Note 
that for 24-bit source operands both the automatic sign-extension and zeroing features 
may be disabled by specifying the destination register to be one of the individual 24-
bit accumulator registers (A 1 or 81). 

NOTE: Due to pipelining, if an address register (R, N, or M) is changed using a move­
type instruction, the new contents of the destination address register will not be 
available for use during the following instruction (i.e., there is a single instruction cycle 
pipeline delay). : 

R~strictions: NOTE: The following restrictions represent very unusual operations, which 
probably would never be used but are listed only for completeness. 

A MOVEC instruction used within a DO loop which specifies SSH as the source operand 
or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at the address 
LA - 2, LA -1, or LA within that DO loop. 

A MOVEC instruction which specifies SSH as the source operand or LA, LC, SSH, SSL, 
or SP as the destination operand cannot be used immediately before a DO instruction. 

MOTOROLA DSPS6000/DSPS6001 USER'S MANUAL A-153 

• 



• 

M.OVEC Move Control Register MOVEC 

A MOVEC instruction which specifies SSH as the source operand or LA, LC, SR, SSH, 
SSL, or SP as the destination operand cannot be used immediately before an ENDDO 
instruction. 

A MOVEC instruction which specifies SSH as the source operand or SR, SSH, SSL, or 
SP as the destination operand cannot be used immediately before an RTI instruction. 

A MOVEC instruction which specifies SSH as the source operand or SSH, SSL, or SP 
as the destination operand cannot be used immediately before an RTS instruction. 

A MOVEC instruction which specifies SP as the destination operand cannot be used 
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH 
or SSL as the source operand. 

A MOVEC SSH,SSH instruction is illegal and cannot be used. 

Example: 

MOVEC LC,XO ;move LC into XO 

Before Execution After Execution 

LC $0100 LC $0100 

xo $123456 xo $000100 

Explanation of Example: Prior to execution, the 16-bit loop counter (LC) register con-
tains the value $0100, and the 24-bit XO register contains the value $123456. The 
execution ofthe MOVEC LC,XO instruction moves the contents of the 16-bit LC register 
into the 16 LS bits of the 24-bit XO register and zeros the 8 MS bits of the XO register. 

Condition Codes: 

15 14 13 12 11 10 8 7 0 IiJ ** I T I ** I SI I SO I 11 I 10 I ** I liE I u I N I z I v ~ 
MR •. 0( CCR 

For 01 or 02=SR operand: 

L - Set according to bit 6 of the source operand 
E - Set according to bit 5 of the source operand 
U - Set according to bit 4 of the source operand 
N - Set according to bit 3 of the source operand 

A-154 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



MOVEC Move Control Register 

Z - Set according to bit 2 of the source operand 
V - Set according to bit 1 of the source operand 
C - Set according to bit 0 of the source operand 

For 01 and 02'4= SR operand: 

L - Set if data limiting has occurred during move 

Instruction Format: 
MOVE(C) X:ea,D1 
MOVE(C) S1,X:ea 
MOVE(C) Y:ea,D1 
MOVE(C) S1,Y:ea 
MOVE(C) #xxxx,D1 

Opcode: 

23 16 15 8 7 

MOVEC 

D D D D D 1 D 1 W 1 M M M R R RD s 1 d d d d d 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea == 6-bit Effective Address = MMMRRR 

Effective 
Register W Addressing Mode MMMRRR 

Read S1 0 (Rn)-Nn OOOrrr 
Write 01 1 (Rn)+Nn 001 r r r 

(Rn)- 010rrr 
(Rn)+ 011rrr 
(Rn) 100 r r r 
(Rn+Nn) 101rrr 
-(Rn) 111rrr 
Absolute address 110000 
Immediate data 110100 

where "rrr" refers to an address register RO-R7 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-155 



III 

MOVEC 

Memory Space s 

X Memory 
Y Memory 

o 
1 

51,01 

MO-M7 
SR 
OMR 
SP 
SSH 
SSL 
LA 
LC 

Move Control Register 

ddddd 

o 0 n n n 
1 1 00 1 
1 1 0 1 0 
1 1 0 1 1 
1 1 1 0 0 
1 1 1 0 1 
1 1 1 1 0 
1 1 1 1 1 

where "nnn" = Mn number (MO-M7) 

Timing: 2 + mvc oscillator clock cycles 

Memory: 1 + ea program words 

Instruction Format: 
MOVE(C) X:aa,D1 
MOVE(C) S1,X:aa 
MOVE(C) Y:aa,D1 
MOVE(C) S1,Y:aa 

Opcode: 

23 16 15 8 7 

MOVEC 

.100000 1 0 llw 0 a a a a a alo sId d d d dl 

Instruction Fields: 
aa = 6-bit Absolute Short Address = aaaaaa 

Register W 

Read S 0 
Write D 1 

Memory Space s 

X Memory 0 
Y Memory 

Absolute Short Address aaaaaa 

000000 

111111 

51,01 ddddd 

MO-M7 OOnnn 
SR 1 1001 
OMR 1 1 01 0 
SP 1 1 01 1 
SSH 1 1 1 00 
SSL 1 1 1 0 1 
LA 1 1 1 1 0 
LC 1 1 1 1 1 

where "nnn" = Mn number (MO-M7) 

A-156 DSP56000/DSP56()01 USER'S MANUAL MOTOROLA 



MOVEC Move Control Register 

Timing: 2 + mvc oscillator clock cycles 

Memory: 1 + ea program words 

Instruction Format: 
MOVE(C) S1,02 
MOVE(C) S2,01 

Opcode: 

23 16 15 8 7 

MOVEC 

10 0 0 0 0 1 0 olw 1 e e e e e ell o 1 d d d d dl 

Instruction Fields: 

Register W S1,01 

Read S1 0 MO-M7 
Write 01 SR 

OMR 
SP 

Memory Space s SSH 

X Memory 0 
SSL 
LA 

Y Memory 
LC 

where "nnn" = Mn number (MO-M7) 

S2 02 02 
S2,02 e e e e e e S/L Sign Ext Zero 

XO 00·0100 no no no 
X1 000101 no no no 
YO 000110 no no no 
Y1 000111 no no no 
AO 001000 no no no 
80 001001 no no no 
A2 001010 no no no 
82 001011 no no no 
A1 001100 no no no 
81 001101 no no no 
A 001 1 1 0 yes A2 AO 
8 001 1 1 1 yes 82 80 

where " nnn"' = Rn number (RO-R7) 
Nn number (NO-N7) 
Mn number (MO-M7) 

ddddd 

\oonnn 
1 1 001 
11010 I 

1 1 01 1 
1 1 1 00 
1 1 1 0 1 
1 1 1 1 0 
1 1 1 1 1 

S2,02 eeeeee 

RO-R7 010nnn 
NO-N7 011nnn 
MO-M7 100nnn 
SR 111001 
OMR 111010 
SP 111011 
SSH 111100 
SSL 111101 
LA 1 1 1 1 1 0 
LC 111111 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-157 



MOVEC Move Control Register MOVEC 

Timing: 2 + mvc oscillator clock cycles 

Memory: 1 + ea program words 

Instruction Format: 
MOVE(C) #xx,D1 

Opcode: 

23 16 15 

10 0 0 0 0 

Instruction Fields: 
#xx = 8-bit Immediate Short Data = iii iii i i 

01 d d d d d 
MO-M7 00 n n n 
SR 1 1001 
OMR 11010 
SP 1 1 01 1 
SSH 11 100 
SSL 1 1 1 01 
LA 11110 
LC 1 1 1 1 1 

where "nnn" = Mn number (MO-M7) 

Timing: 2 + mvc oscillator clock cycles 

Memory: 1 + ea program words 

8 7 0 

dl Old d d d dl 

A-158 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



MOVEM 

Operation: s. P:ea 

S. P:aa 

P:ea. D 

P:aa. D 

Move Program Memory MOVEM 

Assembler Syntax: 
. MOVE(M) S,P:ea 

MOVE(M) S,P:aa 

MOVE(M) P:ea,D 

MOVE(M) P:aa,D 

Description: Move the specified operand from/to the specified program (P) memory 
location. This is a powerful move instruction in that the source and destination registers 
Sand D may be any register. All memory alterable addressing modes may be used 
as well as the absolute short addressing mode. 

If the system stack register SSH is specified as a source operand, the system stack 
pointer. (SP) is postdecremented by 1 after SSH has been read. If the sytem stack 
register SSH is specified as a destination operand, the system stack pointer (SP) is 
preincremented by 1 before SSH is written. This allows the system stack to be effi­
ciently extended using software stack pointer operations. 

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator 
value is optionally shifted according to the scaling mode bits SO and S1 in the system 
status register (SR). If the data out of the shifter indicates that the accumulator exten­
sion register is in use and the data is to be moved into a 24-bit destination, the value 
stored in the destination is limited to a maximum positive or negative saturation 
constant to minimize truncation error. If a 24-bit source operand is to be moved into 
a 16-bit destination register D, the 8 MS bits ofthe 24-bit source operand are discarded, 
and the 16 LS bits are stored in the 16-bit destination register. Limiting does not occur 
if an individual 24-bit accumulator register (A 1, AO, B1, or BO) is specified as a source 
operand instead of the full 56-bit accumulator (A or B). This limiting feature allows 
block floating-point operations to be performed with error detection since the L bit in 
the condition code register is latched. 

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-
bit source data to be moved into that accumulator is automatically extended to 56 bits 
by sign extending the MS bit of the source operand (bit 23) and appending the source 
operand with 24 LS zeros. Whenever a 16-bit source operand S is to be moved into 
a 24-bit destination, the 16-bit source is loaded into the LS 16 bits of the destination 
operand, and the remaining 8 MS bits of the destination are zeroed. Note that for 24-
bit source operands, both the automatic sign-extension and zeroing features may be 
disabled by specifying the destination register to be one of the individual 24-bit ac­
cumulator registers (A 1 or B1). 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-159 



-

MOVEM Move Program Memory MOVEM 

NOTE: Due to pipelining, if an address register (R, N, or M) is changed using a move­
type instruction, the new contents of the destination address register will not be 
available for use during the following instruction (Le., there is a single instruction cycle 
pipeline delay). 

Restrictions: NOTE: The following restrictions represent very unusual operations, which 
probably would never be used but are listed only for compJ.eteness. 

A MOVEM instruction used within a DO .Ioop which specifies SSH as the source 
operand or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at 
the address LA-2, LA-1, or LA within that DO loop. , 

A MOVEM instruction which specifies SSH as the source operand or LA, Le, SSH, SSL, 
or SP as the destination operand cannot be used imm·ediately before aDO instruction. 

A MOVEM instruction which specifiesSSH as the source operand or LA, LC, SR, SSH, 
SSL, or SP as the destination operand cannot be used immediately before an ENDDO 
instruction. 

A MOVEM instruction which specifies SSH as the source operand or SR, SSH, SSL, 
or SP as the destination operand cannot be used immediately before an RTI instruction. 

A MOVEM instruction which specifies SSH as the source operand or SSH, SSL, or SP 
as the destination operand cannot be used immediately before an RTS instruction. 

A MOVEM instruction which specifies SP as the destination operand cannot be used 
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH 
or SSL as the source operand. . 

Example: 

MOVEM P:(R5+ N5),LC ;move P:(R5+ N5) into the loop counter (LC) 

Before Execution After Execution 

P:(R5+ N5) $000116 P:(R5 +I'~5) $000116 

LC $0000 LC $0116 

Explanation of Example: Prior to execution, the 16-bit loop counter (LC) register con-
tains the value $0000, and the 24-bit program (P) memory location P:(R5 + N5) contains 
the value $000116. The execution of the MOVEM P: (R5 + N5),LC instruction moves the 
16 LS bits of the 24-bit program (P) memory location P: (R5 + N5) into the 16-bit LC 
register. 

A-160 DSP56000/DSP56901 LlSER'S MANUAL MOTOROLA 



MOVEM Move Program Memory 

Condition Codes: 

15 14 13 12 11 10 8 7 4 jlJ ** I T I ** I SI I SO I 11 I 10 I ** I l I E I u I N 
MR ~ i( CCR 

For D=SR operand: 
L - Set according to bit 6 of the source operand 
E - Set according to bit 5 of the source operand 
U - Set according to bit 4 of the source operand 
N - Set according to bit 3 of the source operand 
Z - Set according to bit 2 of the source operand 
V - Set according to bit 1 of the source operand 
C - Set according to bit 0 of the source operand 

For D:f= SR operand: 
L - Set if data limiting has occurred during move 

Instruction Format: 
MOVE(M) S,P:ea 
MOVE(M) P:ea,D 

Opcode: 

23 16 15 8 7 

0000011 lW1MMMRRR10 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea = 6-bit Effective Address= MMMRRR 

Effective 
Register W Addressing Mode MMMRRR 

Read S 0 (Rn)-Nn OOOrrr 
Write D 1 (Rn)+Nn 001 r r r 

(Rn)- o 1 0 r r r 
(Rn)+ 01irrr 
(Rn) 100 r r r 
(Rn+Nn) 101rrr 
-(Rn) 111rrr 
Absolute address 110000 

where "rrr" refers to an address register RO-R7 

MOVEM 

1 0 

z 

d d d d d d 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-161 



MOVEM Move Program Memory 

S D D 
S,D d d d d d d S/L Sign Ext Zero 

XO 000100 no no no 
X1 000101 no no no 
YO 000110 no no no 
Y1 000111 no no no 
AO 001000 no no no 
80 001001 no no no 
A2 001010 no no no 
82 001011 no no no 
A1 001100 no no no 
81 001101 no no no 
A 001 1 1 0 yes A2 AO 
8 001 1 1 1 yes 82 80 

where "nnn" = Rn number (RO-R7) 
Nn number (NO-N7) 
Mn number (MO-M7) 

Timing: 2 + mvm oscillator clock cycles 

Memory: 1 + ea program words 

Instruction Format: 
MOVE(M) S,P:aa 
MOVE(M) P:aa,D 

Opcode: 

S,D 

RO-R7 
NO-N7 
MO-M7 
SR 
OMR 
SP 
SSH 
SSL 
LA 
LC 

23 16 15 8 7 

dddddd 

010nnn 
011nnn 
100nnn 
111001 
1 1 1 010 
111011 
111100 
111101 
111110 
1 11 1 11 

MOVEM 

I a a a a a 1 llwa a a a a a ala add d d d dl 

Instruction Fields: 
aa = 6-bit Absolute Short Address = aaaaaa 

Register W 

Read S 0 
Write D 1 

A-162 

Absolute Short Address aaaaaa 

000000 

111111 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



MOVEM Move Program Memory MOVEM 

S D D 
S,D d d d d d d S/L Sign Ext Zero S,D dddddd 

XO 000100 no no no RO-R7 010nnn 
X1 000101 no no no NO-N7 011nnn 
YO 000110 no no no MO-M7 100nnn 
Y1 000111 no no no SR 111001 
AO 001000 no no no OMR 111010 
80 001001 no no no SP 111011 
A2 001010 no no no SSH 1 1 1 1 00 
82 001011 no no no SSL 111101 
A1 001100 no no no LA 1 1 1 1 1 0 
81 001101 no no no LC 111111 
A 001 1 1 0 yes A2 AO 
8 001 1 1 1 yes 82 80 

where "nnn" = Rn number (RO-R7) 
Nn number (NO-N7) 
Mn number (MO-M7) 

Timing: 2 + mvm oscillator clock cycles 

Memory: 1 + ea program words 

III 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-163 



-

MOVEP Move Peripheral Data MOVEP 

Operation: Assembler Syntax: 
X:pP. D MOVEP X:pp,D 

X:pP. X:ea MOVEP X:pp,X:ea 

X:pP. Y:ea MOVEP X:pp,Y:ea 

X:pP. P:ea MOVEP X:pp,P:ea 

S. X:pp MOVEP S,X:pp 

#xxxxxx. X:pp MOVEP #xxxxxx,X: pp 

X:ea. X:pp MOVEP X:ea,X:pp 

Y:ea. X:pp MOVEP Y:ea,X:pp 

P:ea. X:pp MOVEP P:ea,X:pp 

Y:pP. D MOVEP Y:pp,D 

Y:pP. X:ea MOVEP Y:pp,X:ea 

Y:pP. Y:ea MOVEP Y:pp,Y:ea 

Y:pP. P:ea MOVEP Y:pp,P:ea 

S. Y:pp MOVEP S,Y:pp 

#xxxxxx. Y:pp MOVEP #xxxxxx,Y:pp 

X:ea. Y:pp MOVEP X:ea,Y:pp 

Y:ea. Y:pp MOVEP Y:ea,Y:pp 

P:ea. Y:pp MOVEP P:ea,Y:pp 

Description: Move the specified operand fromlto the specified X or Y 1/0 peripheral. 
The 1/0 short addressing mode is used for the I/O peripheral address. All memory 
addressing modes may be used for the X or Y memory effective address; all memory 
alterable addressing modes may be used for the P memory effective address. 

A-164 DSP56000/DSP56~01 USER'S MANUAL MOTOROLA 



MOVEP Move Peripheral Data MOVEP 

If the system stack register SSH is specified as a source operand, the system stack 
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack 
register SSH is specified as a destination operand, the system stack pointer (SP) is 
preincremented by 1 before SSH is written. This allows the system stack to be effi­
ciently extended using software stack pointer operations. 

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator 
value is optionally shifted according to the scaling mode bits SO and S1 in the system 
status register (SR). If the data out of the shifter indicates that the accumulator exten­
sion register is in use and the data is to be moved into a 24-bit destination, the value 
stored in the destination is limited to a maximum positive or negative saturation 
constant to minimize truncation error. If a 24-bit source operand is to be moved into 
a 16-bit destination register 0, the 8 MS bits ofthe 24-bit source operand are discarded, 
and the 16 LS bits are stored in the 16-bit destination register. Limiting does not occur 
if an individual 24-bit accumulator register (A 1, AO, B1, or BO) is specified as a source 
operand instead of the full 56-bit accumulator (A or B). This limiting feature allows 
block floating-point operations to be performed with error detection since the L bit in 
the condition code register is latched. 

When a 56-bit accumulator (A or B) is specified as a destination operand 0, any 24-
bit source data to be moved into that accumulator is automatically extended to 56 bits 
by sign extending the MS bit of the source operand (bit 23) and appending the source 
operand with 24 LS zeros. Whenever a 16-bit source operand S is to be moved into 
a 24-bit destination, the 16-bit source is loaded into the LS 16 bits of the destination 
operand, and the remaining 8 MS bits of the destination are zeroed. Note that for 24-
bit source operands both the automatic sign-extension and zeroing features may be 
disabled by specifying the destination register to be one of the individual 24-bit ac­
cumulator registers (A 1 or B1). 

NOTE: Due to pipelining, if an address register (R, N, or M) is changed using a move­
type instruction, the new contents of the destination address register will not be 
available for use during the following instruction (i.e, there is a single instuction cycle 
pipeline delay). 

Restrictions: NOTE: The following restrictions represent very unusual operations, which 
probably would never be used but are listed only for completeness. 

A MOVEP instruction used within a DO loop which specifies SSH as the source operand 
or LA, Le, SR, SP, SSH, or SSL as the destination operand cannot begin at the address 
LA - 2, LA -1, or LA within that DO loop. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-165 

• 



III 

M·OVEP Move Peripheral Data MOVEP 

A MOVEP instruction which specifies SSH as the source operand or LA, LC, SSH, SSL, 
or SP as the destination operand cannot be used immediately before a DO instruction. 

A MOVEP instruction which specifies SSH as the source operand or LA, LC, SR, SSH, 
SSL, or SP as the destination operand cannot be used immediately before an ENDDO 
instruction. 

A MOVEP instruction which specifies SSH as the source operand or SR, SSH, SSL, or 
SP as the destination operand cannot be used immediately before an RTI instruction. 

A MOVEP instruction which specifies SSH as the source operand or SSH, SSL, or SP 
as the destination operand cannot be used immediately before an RTS instruction. 

A MOVEP instruction which specifies SP as the destination operand cannot be used 
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH 
or SSL as the source operand. 

Example: 

MOVEP #$1113,X:«$FFFE ;initialize Bus Control Register wait states 

X:$FFFE 
(BCR) 

Before Execution 

$FFFF X:$FFFE 
(BCR) 

After Execution 

$1113 

Explanation of Example: Prior to execution, the 16-bit, X memory-mapped, I/O' bus 
control register (BCR) contains the value $FFFF. The execution of the MOVEP 
#$1113,X:«$FFFE instruction moves the value $1113 into the 16-bit bus control 
register X:$FFFE, resulting in one wait state for all external X, external V, and external 
program memory accesses and three wait states for all external I/O accesses. 

Condition Codes: 

15 14 13 12 11 10 8 7 

eeR 

For D=SR operand: 

L - Set according to bit 6 of the source operand 
E - Set according to bit 5 of the source operand 
U - Set according to bit 4 of the. source operand 

vcq 

A-166 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



MOVEP Move Peripheral Data 

N - Set according to bit 3 of the source operand 
Z - Set according to bit 2 of the source operand 
V - Set according to bit 1 of the source operand 
C - Set according to bit 0 of the source operand 

For D#;SR operand: 
L - Set if data limiting has occurred during move 

Instruction Format (X: or Y: Reference): 
MOVEP X:ea,X:pp 
MOVEP Y:ea,X:pp 
MOVEP #xxxxxx,X:pp 
MOVEP X:pp,X:ea 
MOVEP X:pp,Y:ea 
MOVEP X:ea,Y:pp 
MOVEP Y:ea,Y:pp 
MOVEP #xxxxxx,Y:pp 
MOVEP Y:pp,Y:ea 
MOVEP Y:pp,Y:ea 

Opcode: 

23 16 15 8 7 

MOVEP 

0000100 s W 1 M M M R R Rl S P P P P P P 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea = 6-bit Effective Address = MMMRRR, 
pp = 6-bit liD Short Address = pppppp 

Effective 
Memory Space S Addressing Mode MMMRRR 

X Memory 0 (Rn)-Nn OOOrrr 
Y Memory (Rn)+ Nn 001 r r r 

(Rn)- 010rrr 
Peripheral Space s (Rn)+ 011rrr 
X Memory 0 (Rn) 100rrr 
Y Memory 1 (Rn+Nn) 101rrr 

-(Rn) 111rrr 
Peripheral W Absolute address 110000 
Read 0 Immediate data 110100 
Write 1 

where " rrr" refers to an address register RO-R7 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-167 

• 



III 

MOVEP Move Peripheral Data 

Timing: 4+ mvp oscillator clock cycles 

Memory: 1 + ea program words 

Instruction Format (P: Reference): 
MOVEP . P:ea,X:pp 
MOVEP X:pp,P:ea 
MOVEP P:ea,Y:pp 
MOVEP Y:pp,P:ea 

Opcode: 

23 16 15 8 7 

MOVEP 

0000100 S WI M M M R R RO 1 P P P P P P 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea = 6-bit Effective Address = MMMRRR, 
pp = 6-bit liD Short Address = pppppp 

Effective 
Peripheral Space S Addressing Mode 

X Memory 0 (Rn)-Nn 
Y Memory 1 (Rn)+Nn 

(Rn)-
Peripheral W (Rn)+ 
Read 0 (Rn) 
Write 1 (Rn+Nn) 

-(Rn) 
Absolute address 

where "rrr" refers to an address register RO-R7 

Timing: 4+ mvp oscillator clock cycles 

Memory: 1 + ea program words 

MMMRRR 

OOOrrr 
001 r r r 
010rrr 
011rrr 
100rrr 
101rrr 
111rrr 
110000 

A-168 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



MOVEP Move Peripheral Data 

Instruction Format (Register Reference): 
MOVEP S,X:pp 
MOVEP X:pp,O 
MOVEP S,Y:pp 
MOVEP Y:pp,O 

Opcode: 

23 16 15 B 7 

MOVEP 

I 0 0 0 0 1 o 0 slw 1 d d d d d dlo o p p p p p pi 

Instruction Fields: 
pp = 6-bit I/O Short Address = pppppp 

Peripheral Space S Peripheral W 

X Memory 
Y Memory 

o Read 
Write 

S D D 
S,D d d d d d d SIL Sign Ext Zero 

XO 0001 00 no no no 
X1 000101 no no no 
YO 0001 1 0 no no no 
Y1 0001 1 1 no no no 
AO 001 000 no no no 
80 001001 no no no 
A2 00101 0 no no no 
82 001 01 1 no no no 
A1 001 100 no no no 
81 001 1 01 no no no 
A 001 1 1 0 yes A2 AO 
8 001 1 1 1 yes 82 80 

where "nnn'" = Rn number (RO-R7) 
Nn number (NO-N7) 
Mn number (MO-M7) 

Timing: 4+ mvp oscillator clock cycles 

Memory: 1 + ea program words 

o 

S,D dddddd 

RO-R7 010nnn 
NO-N7 011nnn 
MO-M7 100nnn 
SR 111001 
OMR 111010 
SP 111011 
SSH 111100 
SSL '111101 
LA 111110 
LC 111111 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-169 

III 



III 

MPY Signed Multiply MPY 

Operation: Assembler Syntax: 
± 51 *52 • D (parallel move) MPY (± )51 ,52,D (parallel move) 

± 51 *52 • D (parallel move) MPY (± )52,51,D (parallel move) 

Description: Multiply the two signed 24-bit source operands 51 and 52 and store the 
resulting product in the specified 56-bit destination accumulator D. The" -" sign 
option is used to negate the specified product. The default sign option is "+ ". 

Example: 

MPY -X1,Y1,A #$543210,YO ; -(XhY1). A, update YO 

Before Execution After Execution 

X1 $800000 X1 $800000 

Y1 I $COOOOO Y1 $COOOOO 

A I $00: 000000': 000000 A I $FF: COOOOo: 000000 

Explanation of Example: Prior to execution, the 24-bit X1 register contains the value 
$800000 (-1.0), the 24-bit Y1 register contains the value $COOOOO, (- 0.5), and the 56-
bit A accumulator contains the value $00:000000:000000 (0.0). The execution of the 
MPY - X1 ,Y1,A instruction multiples the 24-bit signed value in the X1 register by the 
24-bit signed value in the Y1 register, negates the 48~bit product, and stores the result 
in the 56-bit A accumulator (-XhY1 = -0.5=$FF:COOOOO:000000=A). 

Condition Codes: 

15 14 13 12 11 10 8 7 1 0 idQ •• I T I .. I SI I so I 11 I 10 I ** I L I E I u I N 
MR )I II( GGR 

L - 5et if data limiting has occurred during parallel move 
E - 5et if the signed integer portion of A or B result is in use 
U - 5et if A or B result in unnormalized 
N - 5et if bit 55 of A or B result is set 
Z - 5et if A or B result equals zero 
V - Always cleared 

A-170 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



MPY Signed Multiply MPY 

NOTE: The definition of the E and U bits varies according to the scaling mode being 
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details. 

Instruction Format: 
MPY (±)S1,S2,O 
MPY (±)S2,S1,O 

Opcode: 

23 

DATA BUS MOVE FIELD 

Instruction Fields: 

51*52 QQQ 

XO XO 0 0 0 
YO YO 0 0 1 
X1 XO 0 1 0 
Y1 YO 0 1 1 
XO Y1 1 0 0 
YO XO 1 0 1 
X1 YO 1 1 0 
Y1X1 1 1 1 

Sign k 

+ 0 

D d 

A 0 
8 1 

8 7 4 3 

NOTE: Only the indicated 51*52 combinations are valid. X1 *X1 and Y1 *Y1 are not valid. 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-171 

D 



• 

MPYR Signed Multiply and Round MPYR 

Operation: Assembler Syntax: 
±ShS2+r. D (parallel move) MPYR (± )S1,S2,D (parallel move) 

± S1 *S2 + r • D (parallel move) MPYR (± )S2,S1,D (parallel move) 

Description: Multiply the two signed 24-bit source operands S1 and S2, round the result 
using convergent rounding, and store it in the specified 56-bit destination accumulator 
D. The" -" sign option is used to negate the product prior to rounding. The default 
sign option is "+". The contribution of the LS bits of the result is rounded into the 
upper portion of the destination accumulator (A 1 or B1) by adding a constant to the 
LS bits of the lower portion of the accumulator (AO or BO). The value of the constant 
added is determined by the scaling mode bits SO and S1 in the status register. Once 
the rounding has been completed, the LS bits of the destination accumulator D (AO 
or BO) are loaded with zeros to maintain an unbiased accumulator value which may 
be reused by the next instruction. The upper portion of the accumulator (A 1 or B1) 
contains the rounded result which may be read out to the data buses. Refer to the 
RND instruction for more complete information on the convergent rounding process. 

Example: 

MPYR - YO,YO,B (R3) - N3 ;square and negate YO, update R3 

Before Execution After Execution 

YO $654321 YO $654321 

B I~~$_oo_:o_oo_o_oo_:o_o_oo_oo __ ~ B 1~ __ $F_F_:A_FE_3_ED_:_OO_oo_o_o __ ~ 

Explanation of Example: Prior to execution, the 24-bit YO register contains the value 

A-172 

$654321 (0.791111112)" and the 56-bit B accumulator contains the value 
$00:000000:000000 (0.0). The execution of the MPYR - YO,YO,B instruction squares 
the 24-bit signed value in the YO register, negates the resulting 48-bit product, rounds 
the result into B1, and zeros BO (-YO*YO= -0.625856790961748 approximately= 
$FF:AFE3EC:B76B7E, which is rounded to the value $FF:AFE3ED:000000 = 
- 0.625856757164002 = B). 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



MPYR Signed Multiply and Round 

Condition Codes: 

15 14 13 12 11 10 8 7 

L - Set if data limiting has occurred during parallel move 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Always cleared 

MPYR 

NOTE: The definition of the E and U bits varies according to the scaling mode being 
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details. 

Instruction Format: 
MPYR (±)S1,S2,D 
MPYR (±)S2,S1,D 

Opcode: 

23 8 7 

DATA BUS MOVE FIELD 1 Q 

Instruction Fields: 

51*52 000 

XO XO 000 
YO YO 0 0 1 
X1 XO 0 1 0 
Y1 YO 0 1 1 
XO Y1 1 0 0 
YO XO 1 0 1 
X1 YO 1 1 0 
Y1 X1 1 1 1 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Sign k 

+ 0 

D d 

A 0 
B 1 

NOTE: Only the indicated S1 *S2 combinations are valid. X1 *X1 and Y1 *Y1 are not valid. 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-173 

• 



• 

NEG Negate Accumulator NEG 

Operation: Assembler Syntax: 
0- D • D (parallel move) NEG D (parallel move) 

Description: Negate the destination operand D and store the result in the destination 
accumulator. This is a 56-bit, twos-complement operation. 

Example: 

NEG B X1,X:(R3) + Y:(R6)-,A ;0 - B • B, update A,X1,R3,R6 

Before Execution After Execution 

B ~I ___ $O_O_:1_23_4_56_:7_89_A_B_C __ ~ BI ~ ___ $F_F_:E_D_CB_A_9_:87_6_54_4 __ ......I 

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the value 
$00: 123456:789ABC. The NEG B instruction takes the twos complement of the value 
in the B accumulator and stores the 56-bit result back in the B accumulator. 

Condition Codes: 

15 14 13 12 11 10 8 7 4 3 2 1 0 

IJD .. I T I ** I S1 I SO 1 11 I 
10 1**1 L I E I u N Z v I~ GGR MR • I( 

L - Set if limiting (parallel move) or oyerflow has occurred in result 
E - Set if the signed integer portion of A or B is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 

NOTE: The definition of the E and U bits varies according to the scaling mode being 
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details. 

A-174 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



NEG Negate Accumulator NEG 

Instruction Format: 
NEG 0 

Opcode: 

23 8 7 

DATA BUS MOVE FIELD 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 

D d 

A 0 
B 1 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program worq~ 

III 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-17S 



NOP No Operation NOP 

Operation: Assembler Syntax: 
PC+ 1 • PC Nap 

Description: Increment the program counter (PC). Pending pipeline actions, if any, are 
completed. Execution continues with the instruction following the Nap. 

Example: 

Nap ;increment the program counter 

Explanation of Example: The NOP instruction increments the program counter (PC) 
and completes any pending pipeline actions. 

Condition Codes: 

15 14 13 12 11 10 876 i!J ** I T 1 **1 SI 1 So 1 11 10 ,**1 L z I v 
MR CCR 

The condition codes are not affected by this instruction. 

Instruction Format: 
NOP 

Opcode: 

23 16 15 870 

I 0 0 o 0 0 0 0 010 0 0 0 0 0 0 010 0 0 0 0 0 0 01 

Instruction Fields: 

11.1 
None 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 

A-176 DSP56000/DSP560.01 USER'S MANUAL MOTOROLA 



NORM Normalize Accumulator Iteration NORM 

Operation: 
If 
else if 
else NOP 

E • U • Z = 1, then' ASL D and Rn - 1 • Rn 
E = 1.' then ASR D and Rn + 1 • Rn 

where E de!1otes the logical complement of E, and 
where. denotes the logical AND operator 

Assembler Syntax: 
NORM Rn,D 

Description: Pe'rform one' normalization iteration on the specified destination operand 
D, update the specitred address register Rn based upon the results of that iteration, 
and store the result back in the destination accumulator. This is a 56-bit operation. If 
the accumulator' extension is not in use, the accumulator is unnormalized, and the 
accumulator is not zero, the destination operand is arithmetically shifted one bit'to 
the left, and the speCified ~ddress register is decremented by 1. If the accumulator 
extension register is in use,·the destination operand is arithmetically shifted on~ bit 
to the right, and the specified address register is incremented by 1. If the accumulator 
is normalized or 'zero, a' NOP is executed and the specified address register is riot 
affected. Since the operation of the NORM instruction depends on the E, U, and Z 
condition code register bits, these bits must correctly reflect the current state of the 
destination accumulator prior to executing the NORM instruction. Note that the Land 
V bits in the condition code register will be cleared unless they have been improperly 
set up prior to executing the NORM instruction. 

Example: 

REP #$2F 
NORM R3,A 

A 

R3 

I 
I 

;maximum number of iterations needed' 
; perform 1 normalization iteration 

Before Execution After Execution 

$00: 000000: 00000 1 A I $00 :400000: 000000 

$0000 R3 I $FFD2 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $00:000000:000001, and the 16-bit R3 address register contains the value $0000. 
The repetition of the NORM R3,A instruction normalizes the value in the 56-bit accu­
mulator and stores the resulting number of shifts performed during that normalization 
process in the R3 address register. A negative value reflects the number of left shifts 
performed; a positive value reflects the number of right shifts performed during the 
normalization process. 

MOTOROLA OSP56000/0SP56001 USI=R'S MANUAL A-177 

• 



• 

NORM Normalize Accumulator Iteration 

Condition Codes: 

15 14 13 12 11 10 8 7 3 IiJ ** I T I ** I " I so I II 
MR 

101**lll'luIN z 
~ III( eeR 

L - Set if overflow has occurred in A or B result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Set if bit 55 is changed as a result of a left shift 

NORM 

NOTE: The definition of the E and U bits varies according to the scaling mode being 
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details. 

Instruction Format: 
NORM Rn,D 

Opcode: 

23 16 15 870 

I 0 0 o 0 0 0 0 ,j1 1 0 1 1 R R Rio 0 0 1 d 1 0 11 

Instruction Fields: 

o d Rn R R R 

A 0 Rn n n n 
B 1 

where "nnn" = Rn number 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 

A-178 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



NOT Logical Complement NOT 

Operation: Assembler Syntax: 
D[47:24] • D[47:24] (parallel move) NOT D (parallel move) 
where "_" denotes the logical NOT operator 

Description: Take the ones complement of bits 47-24 of the destination operand D and 
store the result back in bits 47-24 of the destination acc,umulator. This is a 24-bit 
operation. The remaining bits of D are not affected. 

Example: 
NOT A AB,L:(R2)+ ;save A1,B1, take the ones complement of A1 

Before Execution After Execution 

A 1~ __ $O_O_:1_23_4_56_:7_89_A_B_C __ ~ A I $OO:EDCBA9:789ABC 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $OO:123456:789ABC. The NOT A instruction takes the ones complement of bits 
47-24 of the A accumulator (A 1) and stores the result back in the A 1 register. The 
remaining bits of the A accumulator are not affected. 

Condition Codes: 

15 14 13 12 11 10 8 7 IiJ ** 1 T 1*' 1 S1 1 SO 1 11 1 10 1** 1 
MR • 0( CCR 

z 1 v Lq I U N 

L - Set if data limiting has occurred during parallel move 
N - Set if bit 47 of A or B result is set 
Z - Set if bits 47-24 of A or B result are zero 
V - Always cleared 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-179 

III 



III 

NOT 

Instruction Format: 
NOT D 

Opcode: 

23 

Instruction Fields: 

o d 

A 0 
B 1 

Logical Complement 

8 7 

DATA BUS MOVE FIELD 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

4 3 

A-180 OSP56000/0SP56Q01 USER'S MANUAL 

NOT 

MOTOROLA 



OR Logical Inclusive OR OR 

Operation: Assembler Syntax: 
S + 0[47:24] • D[47:24] (parallel move) OR S,D (parallel move) 
where + denotes the logical inclusive OR operator 

Description: Logically inclusive OR the source operand S with bits 47-24 of the desti-
nation operand 0 and store the result in bits 47-24 of the destination accumulator. 
This instruction is a 24-bit operation. The remaining bits of the destination operand 
D are not affected. 

Example: 

OR Y1,B BA,L:$1234 ;save A1,B1, OR Y1 with B 

Before Execution After Execution 

Y1 IL.....-___ --.,;..$F_FO_O_OO_----I Y1 IL.....-___ --.,;..$F_FO_O_OO_---' 

B 1L.....-_$O_O_:1_23_4_56_:7_89_A_BC_~ B 1~ __ $O_O_:F_F3_4_56_:7_89_A_B_C_~ 

Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value 
$FFOOOO, and the 56-bit B accumulator contains the value $00: 123456:789ABC. The 
OR Y1,B instruction logically DRs the 24-bit value in the Y1 register with bits 47-24 
of the B accumulator (B1) and stores the result in the B accumulator with bits 55-48 
and 23-0 unchanged. 

Condition Codes: 

15 14 13 12 11 10 8 7 

GGR 

L - Set if data limiting has occurred during parallel move 
N - Set if bit 47 of A or B result is set 
Z - Set if bits 47-24 of A or B result are zero 
V - Always cleared 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-181 

• 



OR Logical Inclusive OR OR 

Instruction Format: 
OR S,D 

Opcode: 

23 

DATA BUS MOVE FIELD 

Instruction Fields: 

5 J J 0 d 

XO o 0 A 0 
X1 1 0 B 
YO o 1 
Y1 1 1 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

• 

A-182 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



ORI OR Immediate with Control Register 

Operation: 
#xx+D. D 
where + denotes the logical inclusive OR operator 

Assembler Syntax: 
OR(I) #xx,D 

ORI 

Description: Logically OR the 8-bit immediate operand (#xx) with the contents of the 
destination control register D and store the result in the destination control register. 
The condition codes are affected only when the condition ·code register is specified 
as the destination operand. 

Restrictions: The ORI #xx,MR instruction cannot be used immediately before an ENDDO 
or RTI instruction and cannot be one of the last three instructions in a DO loop (at 
LA- 2, LA-1, or LA). 

Example: 

OR #$8,MR ;set scaling mode bit S1 to scale up 

Before Execution After Execution 

MR $03 MR ~I _______ $_OB ______ ~ 

Explanation of Example: Prior to execution, the 8-bit mode register (MR) contains the 
value $03. The OR #$8,MR instruction logically DRs the immediate 8-bit value $8 with 
the contents of the mode register and stores the result in the mode register. 

Condition Codes: 

15 14 13 12 11 10 8 7 

u I N 

CCR 

For CCR operand: 

L - Set if bit 6 of the immediate operand is set 
E - Set if bit 5 of the immediate operand is set 
U - Set if bit 4 of the immediate operand is set 
N - Set if bit 3 of the immediate operand is set 
Z - Set if bit 2 of the immediate operand is set 
V - Set if bit 1 of the immediate operand is set 
C - Set if bit 0 of the immediate operand is set 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

1 0 

A-183 

III 



III 

ORI OR Immediate with Control Register 

For MR and OMR operands: 
The condition codes are not affected using these operands. 

Instruction Format: 
OR(I) #xx,D 

Opcode: 

23 16 15 

I 0 0 o 0 0 0 0 Oli 

Instruction Fields: 
#xx = a-bit Immediate Short Data = iii iii i i 

D EE 

MR 00 
CCR 0 1 
OMR 1 0 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 

B 7 0 

d1 1 1 1 1 0 E E\ 

A-184 DSP56000/DSP560P1 USER'S MANUAL 

ORI 

MOTOROLA 



REP Repeat Next Instruction 

Operation: 
LC • TEMP; X:ea • LC 
Repeat next instruction until LC = 1 
TEMP. LC 

LC • TEMP; X:aa • LC 
Repeat next instruction until LC = 1 
TEMP. LC 

LC • TEMP; Y:ea • LC 
Repeat next instruction until LC = 1 
TEMP. LC 

LC • TEMP; Y:aa • LC 
Repeat next instruction until LC = 1 
TEMP. LC 

LC • TEMP; S • LC 
Repeat next instruction until LC = 1 
TEMP. LC 

LC • TEMP; #xxx. LC 
Repeat next instruction until LC = 1 
TEMP. LC 

Assembler Syntax: 
REP X:ea 

REP X:aa 

REP Y:ea 

REP Y:aa 

REP S 

REP #xxx 

REP 

Description: Repeat the single-word instruction immediately following the REP instruc-
tion the specified numberoftimes. The value specifying the number oftimes the given 
instruction is to be repeated is loaded into the 16-bit loop counter (LC) register. The 
single-word instruction is then executed the specified number of times, decrementing 
the loop counter (LC) after each execution until LC = 1. When the REP instruction is in 
effect, the repeated instruction is fetched only one time, and it remains in the instruc­
tion register for the duration of the loop count. Thus, the REP instruction is not 
interruptible (sequential repeats are also not interruptible). The current loop counter 
(LC) value is stored in an internal temporary register. If LC is set equal to zero, the 
instruction is repeated 65,536 times. The instruction's effective address specifies the 
address of the value which is to be loaded into the loop counter (LC). All address 
register indirect addressing modes may be used. The absolute short and the immediate 
short addressing modes may also be used. The four MS bits of the 12-bit immediate 
value are zeroed to form the 16-bit value that is to be loaded into the loop counter 
(LC). 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-185 

III 



• 

REP Repeat Next Instruction REP 

If the A or 8 accumulator is specified as a source operand, the accumulator value is 
optionally shifted according to the scaling mode bits SO and S1 in the system status 
register (SR). If the data out of the shifter indicates that t~e accumulator extension is 
in use, the value to be loaded into the loop counter (LC) register will be limited to a 
24-bit maximum positive or negative saturation constant to minimize the error due to 
truncation. The LS 16 bits of the resulting 24-bit value are then stored in the 16-bit 
loop counter (LC) register. 

If the system stack register SSH is specified as a source operand, the system stac~ 
pointer (SP) is postdecremented by 1 after SSH has been read. 

Restrictions: The REP instruction can repeat any single-word instruction except the REP 
instruction itself and any instruction that changes program flow. The following in­
structions are not allowed to follow an REP instruction: 

Immediately after REP 
DO 
Jcc 
JCLR 
JMP 
JSET 
JScc 
JSCLR 
JSR 

JSSET 
REP 
RTI 
RTS 
stop 
SWI 
WAIT 

Also, a REP instruction cannot be ~he last instruction in a DO loop (at LA). The assembler 
will generate an error if any of the previous instructions are found immediately fol­
lowing an REP instruction. 

Example: 

REP XO ; repeat (XO) times 
MAC X1,Y1,A X:(R1)+,X1 Y:(R4)+,Y1 ;XhY1 +A. A, update X1,Y1 

Before Execution After Execution 

xo $000100 xo $000100 

LC $0000 LC $0000 

A-186 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



REP Repeat Next Instruction REP 

Explanation of Example: Prior to execution, the 24-bit XO register contains the value 
$000100, and the 16-bit loop counter (LC) register contains the value $0000. The ex­
ecution of the REP XO instruction takes the 24-bit value in the XO register, truncates 
the MS 8 bits, and stores the 16 LS bits in the 16-bit loop counter (LC) register. Thus, 
the single-word MAC instruction immediately following the REP instruction is repeated 
$100 times. 

Condition Codes: 

15 14 13 12 11 10 B 7 3 2 1 0 !:flU I T 1**1 "I so 111 110 1**1 U N Z 
MR • ~ CCR 

L - Set if data limiting occurred using A or B as source operands 

Instruction Format: 
REP X:ea 
REP Y:ea 

Opcode: 

23 

10 0 0 0 0 

Instruction Fields: 

16 15 B 7 

1 1 010 1 M M M R R Rio 

ea = 6-bit Effective Address = MMMRRR 

Effective 
Addressing Mode MMMRRR Memory Space s 

(Rn)-Nn OOOrrr X Memory 0 
(Rn)+Nn 001 r r r Y Memory 
(Rn)- 010rrr 
(Rn)+ 011rrr 
(Rn) 100 r r r 
(Rn+Nn) 101rrr 
-(Rn) 111rrr 

where "rrr" refers to an address register RO-R7 

Timing: 4 + mv oscillator clock cycles 

Memory: 1 program word 

s 1 0 0 0 0 01 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-187 



III 

REP Repeat Next Instruction 

Instruction Format: 
REP X:aa 
REP Y:aa 

Opcode: 

23 

10 0 0 0 0 

Instruction Fields: 

16 15 

1 1 010 0 a a a a a 

aa = 6-bit Absolute Short Address = aaaaaa 

B 7 

s 1 0 0 0 0 01 

Absolute Short Address aaaaaa Memory Space s 

000000 

111111 

Timing: 4+ mv oscillator clock cycles 

Memory: 1 program word 

Instruction Format: 
REP #xxx 

Opcode: 

23 16 15 

10 0 0 0 0 

Instruction Fields: 

X Memory 
Y Memory 

o 

B 7 0 

d1 0 1 0 h h h hi 

#xxx = 12-bit Immediate Short Data = hhhh iii iii i i 

Immediate Short Data hhhh iii iii i i 

000000000000 

111111111111 

Timing: 4 + mv oscillator clock cycles 

Memory: 1 program word 

A-188 DSP56000/DSP56001 USER'S MANUAL 

REP 

MOTOROLA 



REP Repeat Next Instruction REP 

Instruction Format: 
REP S 

Opcode: 

23 16 15 8 7 

10 0 0 0 0 110111 d d d d·d dlo o 1 0 0 0 0 01 

Instruction Fields: 

5 
5 dddddd S/L 5 dddddd 

XO 000100 no RO-R7 010nnn 
X1 000101 no NO-N7 011nnn 
YO 000110 no MO-M7 1 0 0 n n n 
Y1 000111 no SR 1 1 1 0 0 1 
AO 001000 no OMR 111010 
80 001001 no SP 111011 
A2 001010 no SSH 1 1 1 1 0 0 
82 001011 no SSL 1 1 1 1 0 1 
A1 001100 no LA 111110 
81 001101 no LC 1 1 1 1 1 1 
A 001110 yes 
8 001111 yes 

where "nnn" = Rn number (RO-R7) 
Nn number (NO-N7) 
Mn number (MO-M71 

Timing: 4 oscillator clock cycles 

Memory: 1 program word 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-189 



RESET Reset On-Chip 

Operation: 
Reset the interrupt priority register 

and all on-chip peripherals 

Assembler Syntax: 
RESET 

RESET 

Description: Reset the interrupt priority register and all on-chip peripherals. This is a 
software reset which is NOT equivalent to a hardware reset since only on~chip pe­
ripherals and the interrupt structure are affected. The processor state is not affected, 
and execution continues with the next instruction. All interrupt sources are disabled 
except for the trace, stack error, NMI, illegal instruction, and hardware reset interrupts. 

Restrictions: A RESET instruction cannot be the last instruction in a DO loop (at LA). 

Example: 

RESET ;reset all on-chip peripherals and IPR 

Explanation of Example: The execution of the RESET instruction resets all on-chip 
peripherals and the interrupt priority register (IPR). 

Condition Codes: 

15 14 13 12 11 10 8 7 3 

\dU«ITI«ls1Isolnl"I«lll ElulN 
MR ~ 01( CCR 

The condition codes are not affected by this instruction. 

Instruction Format: 
RESET 

Opcode: 

23 16 15 8 7 

I 0 0 o 0 0 0 0 010 0 0 0 0 0 0 011 o 0 0 0 1 0 01 

Instruction Fields: 
None 

Timing: 4 oscillator clock cycles 

Memory: 1 program word 

A-190 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



RND Round Accumulator RND 
Operation: Assembler Syntax: 

D + r • D (parallel move) RND D (parallel move) 

Description: Round the 56-bit value in the specified destination operand D and store 
the result in the MSP portion of the destination accumulator (A 1 or 81). This instruction 
uses a convergent rounding technique. The contribution of the LS bits of the result 
(AO and 80) is rounded into the upper portion of the result (A 1 or 81) by adding a 
rounding constant to the LS bits of the result. The MSP portion of the destination 
accumulator contains the rounded result which may be read out to the data buses. 

The value of the rounding constant added is determined by the scaling mode bits SO 
and S1 in the system status register (SR). A "1" is added in the rounding position as 
shown below: 

Rounding Rounding Constant 
S1 SO Scaling Mode Position 55-25 24 23 22 21-0 

0 0 No Scaling 23 0 .... 0 0 1 0 0 ... 0 
0 1 Scale Down 24 0 .... 0 1 0 0 0 ... 0 

0 Scale Up 22 0 .... 0 0 0 1 0 ... 0 

Normal or "standard" rounding consists of adding a rounding constant to a given 
number of LS bits of a value to produce a rounded result. The rounding constant 
depends on the scaling mode being used as previously shown. Unfortunately, when 
uSing a twos-complement data representation, this process introduces a positive bias 
in the statistical distribution of the roundoff error. 

Convergent rounding differs from "standard" rounding in that convergent rounding 
attempts to remove the aforementioned positive bias by equally distributing the round­
off error. The convergent rounding technique initially performs "standard" rounding 
as previously described. Again, the rounding constant depends on the scaling mode 
being used. Once "standard" rounding has been done, the convergent rounding method 
tests the result to determine if all bits including and to the right of the rounding 
position are zero. If, and only if, this special condition is true, the convergent rounding 
method will clear the bit immediately to the left of the rounding position.'When this 
special condition is true, numbers which have a "1" in the bit immediately to the left 
of the rounding position are rounded up; numbers with a "0" in the bit immediately 
to the left of the rounding position are rounded down. Thus, these numbers are 
rounded up half the time and rounded down the rest of the time. Therefore, the 
roundoff error averages out to zero. The LS bits of the convergently rounded result 
are then cleared so that the rounded result may be immediately used by the next 
instruction. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-191 



RND Round Accumulator RND 
Example: 

RND A #$123456,X1 B,Y1 ;round A accumulator into A1, zero AO 

Before Execution After Execution 

Case I: A I $00: 123456:789ABC A I $00:123456:000000 

Case II: A I $00: 123456: 800000 A I $00:123456:000000 

Case III: A I $00: 123455: 800000 A I $00:123456:000000 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $00:123456:789ABC for Case I, the value $00:123456:800000 for Case II, and the 
value $00:123455:800000 for Case III. The execution of the RND A instruction rounds 
the value in the A accumulator into the MSP portion of the A accumulator (A 1), using 
convergent rounding, and then zeros the LSP portion of the A accumulator (AO). Note 
that Case II is the special case that distinguishes convergent rounding from standard 
or biased rounding. 

Condition Codes: 

15 14 13 12 11 10 8 7 1 0 

eeR 

L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is un normalized 
N - Set if bit 55 of A or B resu It is set 
Z - Set if A or B result equals zero 
V - Set if overflow hasoc~urred in A or B result 

NOTE: The definition of the E and U bits varies according to the scaling mode being 
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details. 

A-192 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



RND 
Instruction Format: 

RND D 

Opcode: 

23 

Instruction Fields: 

D D 

A 0 
B 1 

Round Accumulator 

8 7 

DATA BUS MOVE FiElD a 
OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 

RND 

A-193 



ROL 

Operation: 

Assembler 
Syntax: 

Rotate Left ROL 

47 24 

rC~L....~----h (parallel movel 

ROL D (parallel move) 

Description: Rotate bits 47-24 of the destination operand D one bit to the left and store 
the result in the destination accumulator. Prior to instruction execution, bit 47 of D is 
shifted into the carry bit C, and, prior to instruction execution, the value in the carry 
bit C is shifted into bit 24 of the destination accumulator D. This instruction is a 24-
bit operation. The remaining bits of the destination operand D are not affected. 

Example: 

ROL A #$314,N2 ; rotate A1 left one bit, update N2 

Before Execution After Execution 

A 1L.... __ ~$_00_:0_0_00_00_:0_0_00_00 __ ~ AI L.... __ ~$_00_:0_0_00_0_1:_00_00_0_0 __ ~ 

SR $0301 SR $0300 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $00:000000:000000. The execution of the ROL A instruction shifts the 24-bit 
value in the A 1 register one bit to the left, shifting bit 47 into the carry bit C, rotating 
the carry bit C into bit 24, and storing the result back in the A 1 register. 

Condition Codes: 

15 14 13 12 11 10 8 7 1 0 po .. I T I" I S1 I so I 11 I 10 1** I liE I u I N I z I v I~ 
MR •• 11( GGR 

L - Set if data limiting has occurred during parallel move 
N - Set if bit 47 of A or B result is set 
Z - Set if bits 47-24 of A or B result are zero 
V - Always cleared 
C - Set if bit 47 of A or B was set prior to instruction execution 

A-194 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



ROL 

Instruction Format: 
ROL D 

Opcode: 

23 

Instruction Fields: 

D d 

A 0 
B 1 

DATA BUS MOVE FIELD 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

Rotate Left 

4 3 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

ROL 

III 

A-195 



ROR 

Operation: 

Assembler 
Syntax: 

Rotate Right ROR 

47 24 r c ~ ....... I ___ -----II+] (parallel move) 

ROR D (parallel move) 

Description: Rotate bits 47-24 of the destination operand D one bit to the right and 
store the result in the destination accumulator. Prio'(to instruction execution, bit 24 
of D is shifted into the carry bit C, and, prior to instruction execution, the value in the 
carry bit C is shifted into bit 47 of the destination accumulator D. This instruction is a 
24-bit operation. The remaining bits of the destination operand D are not affected. 

Example: 

ROR B #$1234,R2 ;rotate B1 right one bit, update R2 

Before Execution After Execution 

B ~1 ___ $_00_:0_0_00_01_:2_2_22_2_2 __ ~ B ~1 ___ $_00_:0_0_00_00_:_22_22_2~2 __ ~ 

SR $0300 SR $0305 

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the value 
$00:000001 :222222. The execution of the HOR B instruction shifts the 24-bit value in 
the B1 register one bit to the right, shifting bit 24 into the carry bit C, rotating the carry 
bit C into bit 47, and storing the result back in the B1 register. 

Condition Codes: 

15 14 13 12 11 10 8 7 IiJ ** I T I ** I SI I SO I 11 I 10 I ** I L I E I U N 
MR .. ... CCR 

L - Set if data limiting has occurred during parallel move 
N - Set if bit 47 of A or B result is set 
Z - Set if bits 47-24 of A or B result are zero 
V - Always cleared 
C - Set if bit 47 of A or B was set prior to instruction execution 

A-196 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



ROR 

Instruction Format: 
ROR D 

Opcode: 

23 

Instruction Fields: 

D d 

A 0 
B 1 

Rotate Right 

8 7 

DATA BUS MOVE FIELD 0 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 

ROR 

III 

A-197 



III 

RTI Return from Interrupt RTI 

Operation: Assembler Syntax: 
SSH. PC; SSL. SR; SP-1 • SP RTI 

Description: Pull the program counter (PC) and the status register (SR) from the system 
stack. The previous program counter and status register are lost. 

Restrictions: Due to pipelining in the program controller and the fact that the RTI in-
struction accesses certain program controller registers, the RTI instruction must not 
be immediately preceded by any of the following instructions: 

Immediately before RTI MOVEC to SR, SSH, SSL, or SP 
MOVEM to SR, SSH, SSL, or SP 
MOVEP to SR, SSH, SSL, or SP 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 
ANDI MR or ANDI CCR 
ORI MR or ORI CCR 

An RTI instruction cannot be the last instruction in a DO loop (at LA). 

An RTI instruction cannot be repeated using the REP instruction. 

Example: 

RTI ;pull PC and SR from system stack 

Explanation of Example: The RTI instruction pulls the 16-bit program counter (PC) and 
the 16-bit status register (SR) from the system stack and updates the system stack 
pointer (SP),. 

A-198 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



RTI Return from Interrupt 

Condition Codes: 

15 14 13 12 11 10 8 7 0 i1J ** I T I ** I S1 I SO I 11 I 10 I ** I liE I u I N I z I v ~ 
MR .-1( eeR 

L - Set according to the value pulled from the stack 
E - Set according to the value pulled from the stack 
U - Set according to the value pulled from the stack 
N - Set according to the value pulied from the stack 
Z - Set according to the value pulled from the stack 
V - Set according to the value pulled from the stack 
C - Set according to the value pulled from the stack 

Instruction Format: 
RTI 

Opcode: 

23 16 15 870 

I 0 0 o 0 0 0 0 010 0 0 0 0 0 0 010 0 0 0 0 1 0 01 

Instruction Fields: 
None 

Timi.ng: 4 + rx oscillator clock cycles 

Memory: 1 program word 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

RTI 

• 

A-199 



• 

RTS Return from Subroutine RTS 

Operation: Assembler Syntax: 
SSH • PC; SP -1 • SP RTS 

Description: Pull the program counter (PC) from the system stack. The previous program 
counter is lost. The status register (SR) is not affected. 

Restrictions: Due to pipelining in the program controller and the fact that the RTS in-
struction accesses certain controller registers, the RTS instruction must not be im­
mediately preceded by any of the following instructions: 

Immediately before RTS MOVEC to SSH, SSL, or SP 
MOVEM to SSH, SSL, or SP 
MOVEP to SSH, SSL, or SP 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 

An RTS instruction cannot be the last instruction in a DO loop (at LA). 

An RTS instruction cannot be repeated 4sin9 the REP instruction. 

Example: 

RTS ;pull PC from system stack 

Explanation of Example: The RTS instruction pulls the 16-bit program counter (PC) 
from the system stack and updates the system stack pointer (SP). 

Condition Codes: 

15 14 13 12 11 10 8 7 IiJ ** I T I ** I S1 I SO I 11 I 10 I ** I l I E I U N 
MR ~ 0( eeR 

z I v I~ 

The condition codes are not affected by this instruction. 

A-200 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



RTS Return from Subroutine RTS 

Instruction Format: 
RTS 

Opcode: 

23 16 15 8 7 

I 0 0 o 0 0 0 0 010 0 0 0 0 0 0 010 0 0 0 1 1 0 0 I 

Instruction Fields: 
None 

Timing: 4+ rx oscillator clock cycles 

Memory: 1 program word 

III 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-201 



III 

SBC Subtract Long with Carry SBC 

Operation: Assembler Syntax: 
D-s-e. D (parallel move) SBe S,D (parallel move) 

Description: Subtract the source operand S and the carry bit e of the condition code 
register from the destination operand D and store the result in the destination accu­
mulator. Long words (48 bits) may be subtracted from the (56-bit) destination accu­
mulator. 

NOTE: The carry bit is set correctly for multiple-precision arithmetic using long-word 
operands if the extension register of the destination accumulator (A2 or B2) is the sign 
extension of bit 47 of the destination accu"mulator (A or B). 

Example: 

MOVE L:<$O,X 
MOVE L:<$1,A 
MOVE L:<$2,Y 
SUB X,A L:<$3,B 
SBe YB A10,L:<$4 
MOVE B10,L:<$5 

;get a 48-bit LS long-word operand in X 
;get other LS long word in A (sign ext.) 
;get a 48-bit MS long-word operand in Y 
;sub. LS words; get other MS word in B 
;sub. MS words with carry; save LS dif. 
;save MS difference 

Before Execution After Execution 

A $00: 000000: 000000 A $00: 800000: 000000 

x $800000: 000000 x $800000: 000000 

B $00: 000000: 000003 B $00: 000000: 00000 1 

y $000000: 00000 1 y $000000: 00000 1 

Explanation of Example: This example illustrates long-word double-precision (96-bit) 
subtraction using the SBe instruction. Prior to execution of the SUB and SBe instruc­
tions, the 96-bit value $000000:000001 :800000:000000 is loaded into the Y and X 
registers (X:Y), respectively. The other doubie-precision 96-bit value 
$000000:000003:000000:000000 is loaded into the B and A accumulators (B:A), re­
spectively. Since the 48-bit value loaded into the A accumulator is automatically sign 
extended to 56 bits and the other 48-bit long-word operand is internally sign extended 
to 56 bits during instruction execution, the carry bit will be set correctly after the 

A-202 DSP56000/DSP5600.1 USER'S MANUAL MOTOROLA 



SBe Subtract Long with Carry SBe 
execution ofthe SUB X,A instruction. The SBe V,B instruction then produces the correct 
MS 56-bit result. The actual 96-bit result is stored in memory using the A10 and B10 
operands (instead of A and B) because shifting and limiting is not desired. 

Condition Codes: 

15 14 13 12 11 10 8 7 ilJ .. I T I ** I SI I SO I 11 I 10 I ** I l I E I " I N 
MR • ... CCR 

L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result. 
e - Set if a carry (or borrow) occurs from bit 55 of A or B result 

NOTE: The definition of the E and U bits varies according to the scaling mode being 
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details. 

Instruction Format: 
SBe S,D 

Opcode: 

23 

Instruction Fields: 
S,D Jd 

X,A 00 
X,B 01 
V,A 10 
V,B 11 

DATA BUS MOVE FIELD 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

8 7 4 3 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-203 

• 



• 

STOP Stop Instruction Processing 

Operation: 
Enter the STOP processing state and 

stop the clock oscillator 

Assembler Syntax: 
STOP 

STOP 

Description: Enter the STOP processing state. All activity in the processor is suspended 
until the RESET or IROA pin is asserted. The clock oscillator is gated off internally. 
The STOP processing state is a low-power standby state. 

During the STOP state, port A is in an idle state with the control signals held inactive 
(i.e., RD = WR = VCC etc.), the data pins (DO-D23) are high impedance, and the address 
pins (A1-A15) are unchanged from the previous instruction. If the bus grant was 
asserted when the STOP instruction was executed, port A will remain three-stated 
until the DSP exits the STOP state. 

If the exit from the STOP state was caused by a low level on the RESET pin, then the 
processor will enter the reset processing state. The time to recover from the STOP 
state using RESET will depend on the oscillator used. Consult the DSP56001 Advance 
Information Data Sheet (ADI1290) for details. 

If the exit from the STOP state was caused by a low level on the IROA pin, then the 
processor will service the highest priority pending interrupt and will not service the 
IROA interrupt unless it is highest priority. The interrupt will be serviced after an 
internal delay counter counts 65,536 clock cycles (or a three clock cycle delay if the 
stop delay bit in the OMR is set to one) plus 17T (see the DSP56001 Advance Infor­
mation Data Sheet (ADI1290) for details). During this clock stabilization count delay, 
all peripherals and external interrupts are cleared and re-enabled/arbitrated at the start 
of the 17T period following the count interval. The processor will resume program 
execution at the instruction following the STOP instruction that caused the entry into 
the STOP state after the interrupt has been serviced or, if no interrupt was pending, 
immediately after the delay count plus 17T. If the IROA pin is asserted when the STOP 
instruction is executed, the clock will not be gated off, and the internal delay counter 
will be started . 

Restrictions: A STOP instruction cannot be used in a fast int~rrupt routine. 

A STOP instruction cannot be the last instruction in a DO loop (i.e., at LA). 

A STOP instruction cannot be repeated using the REP instruction. 

A-204 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



STOP Stop Instruction Processing STOP 

Example: 

STOP ;enter low-power standby mode 

Explanation of Example: The STOP instruction suspends all processor activity until 
the processor is reset or interrupted as previously described. The STOP instruction 
puts the processor in a low-power standby state. 

Condition Codes: 

15 14 13 12 11 10 8 7 IiJ ** I T I ** I 51 I $0 I 11 I 10 I ** I L I E I u I N 
MR • II( CCR 

The condition codes are not affected by this instruction. 

Instruction Format: 
STOP 

Opcode: 

23 16 15 8 7 

I 0 0 o 0 0 0 0 010 0 0 0 0 0 0 011 o 0 0 0 1 

Instruction Fields: 
None 

Timing: The STOP instruction disables the internal clock oscillator and internal distri­
bution of the external clock. 

Memory: 1 program word 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-205 

• 



• 

SUB Subtract SUB 

Operation: Assembler Syntax: 
D - S • D (parallel move) SUB S,D (parallei move) 

Description: Subtract the source operand S from the destination operand D and store 
the result in the destination operand D. Words (24 bits), long words (48 bits), and 
accumulators (56 bits) may be subtracted from the destination accumulator. 

NOTE: The carry bit is set correctly using word or long-word source operands if the 
extension register of the destination accumulator (A2 or B2) is the sign extension of 
bit 47 of the destination accumulator (A or B). The carry bit is always set correctly 
using accumulator source operands. 

Example: 

SUB X1,A X:(R2) + N2,RO ;24-bit subtract, load RO, update R2 

Before Execution After Execution 

X1 $000003 X1 $000003 

A ~I ___ $_00_:0_0_OO_58_:2_4_24_24 __ ~ A ~1 ___ $_OO_:O_O_OO_55_:_24_24_2_4 __ ~ 

Explanation of Example: Prior to execution, the 24-bit X1 register contains the value 
$000003, and the 56-bit A accumulator contains the value $00:000058:242424. The 
SUB instruction automatically appends the 24-bit value in the X1 register with 24 LS 
zeros, sign extends the resulting 48-bit long word to 56 bits, and subtracts the result 
from the 56-bit A accumulator. Thus, 24-bit operands are subtracted from the MSP 
portion of A or B (A 1 or B1) because all arithmetic instructions assume a fractional, 
twos complement data representation. Note that 24-bit operands can be subtracted 
from the LSP portion of A or B (AO or BO) by loading the 24-bit ope'rand into XO or 
VO, forming a 48-bit word by loading X1 or V1 with the sign extension of XO or VO, 
and executing a SUB X,A or SUB V,A instruction . 

A-206 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



SUB Subtract 

Condition Codes: 

15 14 13 12 11 10 8 7 0 

III ** I T I ** I S1 I so I 11 I 10 I ** I liE I u I N I z I v 'lI 
MR •• ,. CCR 

L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 
C - Set if a carry (or borrow) occurs from bit 55 of A or B result 

SUB 

NOTE: The definition of the E and U bits varies according to the scaling mode being 
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details. 

Instruction Format: 
SUB S,D 

Opcode: 

23 

Instruction Fields: 

S,D JJJd 

8,A 001 0 
A,8 o 0 1 1 
X,A o 1 0 0 
X,8 o 1 0 1 
Y,A o 1 1 0 
Y,8 o 1 1 1 

8 7 

DATA BUS MOVE FIELD 0 J 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

S,D JJJd 

XO,A 1 000 
XO,8 1 0 0 1 
YO,A 1 0 1 0 
YO,8 1 0 1 1 
X1,A 1 1 0 0 
X1,8 1 1 0 1 

S,D J J J d 

Y1,A 1 1 1 0 
Y1,81 1 1 1 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-207 

III 



III 

SUBL Shift Left and Subtract Accumulators SUBL 

Operation: Assembler Syntax: 
2*D - S • D (parallel move) SU8L S,D (parallel move) 

Description: Subtract the source operand S from two times the destination operand D 
and store the result in the destination accumulator. The destination operand D is 
arithmetically shifted one bit to the left, and a zero is shifted into the LS bit of D prior 
to the subtraction operation. The carry bit is set correctly if the source operand does 
not overflow as a result of the left shift operation. The overflow bit may be set as a 
result of either the shifting or subtraction operation (or both). This instruction is useful 
for efficient divide and decimation in time (DIT) FFT algorithms. 

Example: 

SU8L A,8 Y:(R5 + N5),R7 ;2*8 - A • 8, load R7, no R5 update 

Before Execution After Execution 

A ~1 ___ $_00_:0_0_40_00_:0_0_00_0_0 __ ~ A ~1 ___ $_00_:0_0_40_00_:0_0_00_0_0 __ ~ 

B ~I ___ $_00_:0_0_50_00_:0_0_00_0_0 __ ~ B ~1 __ ~$_00_:0_0_60_00_:0_0_00_0_0 __ ~ 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $00:004000:000000, and the 56-bit 8 accumulator contains the value 
$00:005000:000000. The SU8L A,8 instruction subtracts the value in the A accumulator 
from two times the value in the 8 accumulator and stores the 56-bit result in the 8 
accumulator. 

Condition Codes: 

15 14 13 12 11 10 8 7 1 0 IiJ ** I T I ** I S1 I SO I !1 I 10 I ** I l I E I u I N z vCQ 
MR • ... CCR 

L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or 8 result is in use 
U - Set if A or 8 result is unnormalized 
N - Set if bit 55 of A or 8 result is set 
Z - Set if A or 8 result equals zero 
V - Set if overflow has occurred in A or B result or if the MS bit of the destination 

operand is changed as a result of the instruction's left shift 
C - Set if a carry (or borrow) occurs from bit 55 of A or 8 result 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



SUBL Shift Left and Subtract Accumulators SUBL 

NOTE: The definition of the E and U bits varies according to the scaling mode being 
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details. 

Instruction Format: 
SUBL S,D 

Opcode: 

23 

Instruction Fields: 
S,D d 

B,A 
A,B 

o 

DATA BUS MOVE FIELD 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

8 7 4 3 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-209 

III 



• 

SUBR Shift Right and Subtract Accumulators SUBR 

Operation: Assembler Syntax: 
D/2 - S • D (parallel move) SUBR S,D (parallel move) 

Description: Subtract the source operand S from one-half the destination operand D 
and store the result in the destination accumulator. The destination operand D is 
arithmetically shifted one bit t6 the right while the MS bit of D is held constant prior 
to the subtraction operation. In contrast to the SUBL instruction, the carry bit is always 
set correctly, and the overflow bit can only be set by the subtraction operation, and 
not by an overflow due to the initial shifting operation. This instruction is useful for 
efficient divide and decimation in time (DIT) FFT algorithms. 

Example: 

SUBR B,A N5,Y: - (R5) ;A/2 - B • A, update R5, save N5 

Before Execution After Execution 

A 1~ __ $_80_:0_00_0_00_:2_46_8_AC __ ~ 

B 1~ __ $_OO_:O_O_OO_OO_:1_2_34_56 __ ~ 

A ~I ___ $_CO_:O_O_OO_OO_:_OO_OO_O_O __ ~ 

BI ~ ___ $_OO_:O_O_OO_OO_:_12_34_5_6 __ ~ 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $80:000000:2468AC, and the 56-bit B accumulator contains the value 
$00:000000: 123456. The SUBR B,A instruction subtracts the value in the B accumulator 
from one-half the value in the A accumulator and stores the 56-bit result in the A 
accumulator. 

Condition Codes: 

15 14 1312 11 10 8 7 

L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 
C - Set if a carry (or borrow) occurs from bit 55 of A or B result 

A-210 DSP56000/[)SP56001 USER'S MANUAL MOTOROLA 



SUBR Shift Right and Subtract Accumulators SUBR 

NOTE: The definition of the E and U bits varies according to the scaling mode being 
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details. 

Instruction Format: 
SUBR S,D 

Opcode: 

23 

Instruction Fields: 
S,D d 

B,A 
A,B 

o 
1 

B 7 

DATA BUS MOVE FIELD 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Timing: 2 + mv oscillator clock cycles 

Memory:. 1 + mv program words 

4 3 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-211 

III 



• 

SWI Software . Interrupt SWI 

Operation: Assembler Syntax: 
Begin SWI exception processing SWI 

Description: Suspend normal instruction execution and begin SWI exception process-
ing. The interrupt priority level (11,10) is set to 3 in the status register (SR) if a long 
interrupt service routine is used. 

Restrictions: An SWI instruction cannot be used in a fast interrupt routine. 

An SWI instruction cannot be repeated using the REP instruction. 

Example: 

SWI ;begin SWI exception processing 

Explanation of Example: The SWI instruction suspends normal instruction execution 
and initiates SWI exception processing. 

Condition Codes: 

15 14 13 12 11 10 8 7 

I{J .. I T I" I sd so I 11 I ro 1** I 
CCR 

u I N 

The condition codes are not affected by this instruction. 

Instruction Format: 
SWI 

Opcode: 

23 16 15 8 7 

I 0 0 o 0 0 0 0 010 0 0 0 0 0 0 010 0 0 0 0 1 1 0 I 

Instruction Fields: 
None 

Timing: 8 oscillator clock cycles 

Memory: 1 program word 

A-212 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Tee Transfer Conditionally Tee 
Operation: Assembler Syntax: 

If cc, then S1 • 01 Tcc S1,01 

If cc, then S1 • 01 and S2 • 02 Tcc S1,01 S2,02 

Description: Transfer data from the specified source register S1 to the specified des-
tination accumulator 01 if the specified condition is true. If a second source register 
S2 and a second destination register 02 are also specified, transfer data from address 
register S2 to address register 02 if the specified condition is true. If the specified 
condition is false, a Nap is executed. The term "cc" may specify the following con­
ditions: 

cc (HS) 
CS (La) 
EC 
EQ 
ES 
GE 
GT 
LC 
LE 
LS 
LT 
MI 
NE 
NR 
PL 
NN 

where 

"cc" Mnemonic 
- carry clear (higher or same) 
- carry set (lower) 
- extension clear 
- equal 
- extension set 
- greater than or equal 
- greater than 
- limit clear 
- less than or equal 
-limit set 
-less than 
- minus 
- not equal 
- normalized 
-plus 
- not normalized 

TI denotes the logical complement of U 
+ denotes the logical OR operator 
• denotes the logical ANO operator 
EB denotes the logical Exclusive OR operator 

Condition 
C=O 
C=1 
E=O 
Z=1 
E=1 

N EB V=O 
Z+ (N EB V)=O 

L=O 
Z+(N EB V)= 1 

L=1 
NEB V= 1 

N=1 
Z=O 

Z+(U. E)= 1 

N=O 
Z+(U. E)=O 

When used after the CMP or CMP.M instructions, the Tcc instruction can perform many 
useful functions such as a "maximum value," "minimum value," "maximum absolute 
value," or "minimum absolute value" function. The desired value is stored in the 
destination accumulator 01. If address register S2 is used as an address pointer into 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-213 

1.11 



• 

Tee Transfer Conditionally Tee 

an array of data, the address of the desired value is stored in the address register D2. 
The Tcc instruction may be used after any instruction and allows efficient searching 
and sorting algorithms. 

The Tcc instruction uses the internal data ALU paths and internal address ALU paths. 
The Tcc instruction does not affect the condition code bits. 

NOTE: This instruction is considered to be a move-type instruction. Due to pipelining, 
if an address register (RO-R7) is changed using a move-type instruction, the new 
contents of the destination address register will not be available for use during the 
following instruction (i.e., there is a single instruction cycle pipeline delay). 

Example: 

CMP XO,A 
TGT XO,A RO,R1 

;compare XO and A (sort for minimum) 
;transfer XO • A and RO • R1 if XO<A 

Explanation of Example: In this example, the contents of the 24-bit XO register are 
transferred to the 56-bit A accumulator, and the contents of the 16-bit RO address 
register are transferred to the 16-bit R1 address register if the specified condition is 
true. If the specified condition is not true, a NOP is executed. 

Condition Codes: 

15 14 13 12 11 10 8 7 6 432 iii ** 1 T 1 ** J. S1 1 so 1 11 1$1 l U N Z 

eeR 

The condition codes are not affected by this instruction. 

Instruction Format: 
Tcc 51,D1 

Opcode: 

23 16 15 8 7 

I 0 0 o 0 0 0 1 ole e e e 0 0 0 010 J J J 0 0 0 01 

A-214 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Tee Transfer Conditionally Tee 
Instruction Fields: 

cc = 4-bit condition code = ecce 
51,01 JJJO Mnemonic C C C C Mnemonic C C C C 

S,A 0000 CC (HS) 0000 CS (LO) 1 000 
A,S 000 1 GE 000 1 LT 1 0 0 1 
XO,A 1 000 NE o 0 1 0 EO 101 0 
XO,S 1 0 0 1 PL o 0 1 1 MI 1 0 1 1 
Xl,A 1 1 0 0 NN o 1 0 0 NR 1 1 0 0 
Xl,S 1 1 0 1 EC o 1 0 1 ES 1 1 0 1 
YO,A 101 0 LC o 1 1 0 LS 1 1 1 0 
YO,S 1 0 1 1 GT o 1 1 1 LE 1 1 1 1 
Yl,A, 1 1 1 0 
Yl,S 1 1 1 1 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 

Instruction Format: 
Tcc 51,D1 52,D2 

Opcode: 

23 16 15 8 7 0 

10 0 0 0 0 o 1 de c ceo t t do J J JOT T TI 

Instruction Fields: 
cc = 4-bit condition code = ecce 
51,01 JJJO 52 t t t Mnemonic C C C C Mnemonic C C C C 

S,A 0000 Rn n n n CC (HS) o 0 0 0 CS (LO) 100 0 
A,S 000 1 GE 000 1 LT 1 0 0 1 
XO,A 1 000 NE 001 0 EO 101 0 
XO,S 1 0 0 1 PL o 0 1 1 MI 1 0 1 1 

&I X1,A 1 1 0 0 02 TTT NN o 1 0 0 NR 1 1 00 
X1,S 1 1 0 1 Rn n n n EC o 1 0 1 ES 1 1 0 1 
YO,A 1 0 1 0 LC o 1 1 0 LS 1 1 1 0 
YO,S 1 0 1 1 GT o 1 1 1 LE 1 1 1 1 
Yl,A 1 1 1 0 
Yl,S 1 1 1 1 

where "nnn" = Rn number (RO-R7) 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-215 



iii 

TFR Transfer Data ALU Register TFR 

Operation: Assembler Syntax: 
S • D (parallel move) TFR S,D (parallel move) 

Description: Transfer data from the specified source data ALU register S to the specified 
destination data ALU accumulator D. TFR uses the internal data ALU data paths; thus, 
data does not pass through the data shifter/limiters. This allows the full 56-bit contents 
of one of the accumulators to be transferred into the other accumulator without data 
shifting and/or limiting. Moreover, since TFR uses the internal data ALU data paths, 
parallel moves are possible. The TFR instruction only affects the L condition code bit, 
which can pe set by data limiting associated with the instruction's parallel move 
operations. 

Example: 

TFR A,B A,X1 Y:(R4+ N4),YO ;move A to Band X1, update YO 

Before Execution After Execution 

A I $01 :234567:89ABCD A I $01 :234567:89ABCD 

B I $FF: FFFFFF: FFFFFF B I $01 :234567:89ABCD 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $01 :234567:89ABCD, and the 56-bit B accumulator contains the value 
$FF:FFFFFF:FFFFFF. The execution of the TFR A,B instruction moves the 56-bit value 
in the A accumulator into the 56-bit B accumulator using the internal data ALU data 
paths without any data shifting and/or limiting. The value in the B accumulator would 
have been limited if a MOVE A,B instruction had been. used. Note, however, that the 
parallel move portion of the TFR instruction does use the data shifter/limiters. Thus, 
the value stored in the 24-bit X1 register (not shown) would have been limited in this 
example. This example illustrates a triple move instruction. 

Condition Codes: 

15 14 13 12 11 10' 8 7 0 \i1 ** I T I ** I s" so I 11 I 10 I ** I LIE I u I N I z I v cq 
MR )I. '" CCR 

L - Set if data limiting has occurred during parallel move 

A-216 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



TFR Transfer Data ALU Register TFR 

Instruction Format: 
TFR S,D 

Opcode: 

23 

DATA BUS MOVE FIELD 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 

S,D J J J d 

B,A 0000 
A,B 000 1 
XO,A 1 0 0 0 
XO,B 1 0 0 1 
X1,A 1 1 0 0 
X1,B 1 1 0 1 
YO,A 1 0 1 0 
YO,B 1 0 1 1 
Y1,A 1 1 1 0 
Y1,B 1 1 1 1 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

III 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-217 



• 

TST Test Accumulator TST 

Operation: Assembler Syntax: 
S - o (parallel move) TST S (parallel move) 

Description: Compare the specified source accumulator S with zero and set the con-
dition codes accordingly. No result is stored although the condition codes are updated. 

Example: 

TST A #$345678,8 ;set CCR bits for value in A, update 8 

Before Execution Aftel' Execution 

A ~1 ___ $_01_:0_2_03_04_:_00_00_0_0 __ ~ A ~I ___ $_01_:0_2_03_04_:0_0_00_0_0 __ ~ 

CCR $0300 CCR $0330 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $01 :020304:000000, and the 16-bit condition code register contains the value 
$0300. The execution of the TST A instruction compares the value in the A register 
with zero and updates the condition code register accordingly. The contents of the A 
accumulator are not affected. 

Condition Codes: 

15 14 13 12 11 10 8 7 3 0 Ifl ** I T I ** I 51 I so I 11 I 10 I ** I 

L - Set if data limiting has occurred during parallel move 
E - Set if the signed integer portion of A or 8 result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A fIB result is set 
Z - Set if A or B result equals zero 
V - Always cleared 

NOTE: The definition of the E and U bits varies according to the scaling mode being 
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details. 

A-218 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



TST Test Accumulator TST 

Instruction Format: 
TST S 

Opcode: 

23 8 7 

DATA BUS MOVE FIELD 0 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
S d 

A 0 
B 1 

Timing: 2 + mv oscillator clock cycles 

Memory: 1 + mv program words 

-

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-219 



lEI 

WAIT Wait for Interrupt 

Operation: 
Disable clocks to the processor core and 

enter the WAIT processing state. 

Assembler Syntax: 
WAIT 

WAIT 

Description: Enter the WAIT processing state. The internal clocks to the processor core 
and memories are gated off, and all activity in the processor is suspended until an 
unmasked interrupt occurs. The clock oscillator and the internal liD peripheral clocks 
remain active. If WAIT is executed when an interrupt is pending, the interrupt will be 
processed; the effect will be the same as if the processor never entered the WAIT 
state and three NOPs followed the WAIT instruction. When an unmasked interrupt or 
external (hardware) processor RESET occurs, the processor leaves the WAIT state and 
begins exception processing of the unmasked interrupt or RESET condition. The SRI 
SG circuits remain active during the WAIT state. The WAIT state is a low-power standby 
state. The processor always leaves the WAIT state in the T2 clock phase (see the 
DSP56001 Advance Information Data Sheet (ADI1290)). Therefore, multiple processors 
may be synchronized by having them all enter the WAIT state and then interrupting 
them with a common interrupt. 

Restrictions: A WAIT instruction cannot be used in a fast interrupt routine. 

A WAIT instruction cannot be the last instruction in a DO loop (at LA). 

A WAIT instruction cannot be repeated using the REP instruction. 

Example: 

WAIT ;enter low power mode, wait for interrupt 

Explanation of Example: The WAIT instruction suspends normal instruction execution 
and waits for an unmasked interrupt or external RESET to occur. 

Condition Codes: 

15 14 13 12 11 10 8 7 4· l' 0 IlJ ** I T I ** I S1 I So I 11 I 10 I ** I l I E I u N 

MR • I( CCR 

The condition codes are not affected by this instruction. 

A-220 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



WAIT Wait for Interrupt WAIT 

Instruction Format: 
WAIT 

Opcode: 

23 16 15 8 7 

I 0 0 o 0 0 0 0 010 o 0 0 0 0 0 011 o 0 0 0 1 1 0 I 

Instruction Fields: 
None 

Timing: The WAIT instruction takes a minimum of 16 cycles to execute when an internal 
. interrupt is pending during the execution of the WAIT instruction. 

Memory: 1 program word 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-221 



A.7 INSTRUCTION TIMING 

This section describes how one can calculate DSP56000/DSP56001 instruction timing man­
ually using the tables provided in this section. Three complete examples are presented to 
illustrate the "layered" nature of the tables. Alternatively, the user can obtain the number 
of instruction program words and the number of oscillator clock cycles required for a given 
instruction by using the DSP56000/DSP56001 simulator. This method of determining in­
struction timing information is much faster and much simpler than using the aforemen­
tioned tables. This powerful software package is available for the IBM@ PC, VAX@ (BSD 
4.2 or VMS), and SUN-3@ workstation. 

Table A-6 gives the number of instruction program words and the number of oscillator 
clock cycles for each instruction mnemonic. Table A-7 gives the number of additional (if 
any) instruction words and additional (if any) clock cycles for each type of parallel move 
operation. Table A-8 gives the number of additional (if any) clock cycles for each type of 
MOVEC operation. Table A-9 gives the number of additional (if any) clock cycles for each 
type of MOVEP operation. Table A-10 gives the number of additional (if any) clock cycles 
for each type of bit manipulation (BCHG, BCLR, BSET, and BTST) operation. Table A-11 
gives the number of additional (if any) clock cycles for each type of jump (Jcc, JCLR, JMP, 
JScc, JSCLR, JSET, JSR, and JSSET) operation. Table A-12 gives the number of additional 
(if any) clock cycles for the RTI and RTS instructions. Table A-13 gives the number of 
additional (if any) instruction words and additional (if any) clock cycles for each effective 
addressing mode. Table A-14 gives the number of additional (if any) clock cycles for external 
data, external program, and external liD memory accesses. 

The number of words per instruction is dependent on the addressing mode and the type 
of parallel data bus move operation specified. The symbols used reference subsequent 
tables to complete the instruction word count. 

The number of oscillator clock cycles per instruction is dependent on many factors, in­
cluding the number of words per instruction, the addressing mode, whether the instruction 
fetch pipe is full or not, the number of external bus accesses, and the number of wait states 
inserted in each external access. The symbols used reference subsequent tables to com­
plete the execution clock cycle count. 

All tables are based on the following assumptions. 

Assumptions: 

1. All instruction cycles are counted in oscillator clock cycles. 

2. The instruction fetch pipeline is full. 

IBM is a trademark of International Business Machines 
VAX is a trademark of Digital Equipment Corporation 
SUN-3 is a trademark of Sun Microsystems, Inc. 

A-222 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



3. There is no contention for instruction fetches. Thus, external program instruction 
fetches are assumed not to have to contend with external data memory accesses. 

4. There are no wait states for instruction fetches done sequentially (as for non-change­
of-flow instructions), but they are taken into account for change-of-flow instructions 
which flush the pipeline such as JMP, Jcc, RTI, etc. 

To better understand and use the aforementioned tables, three examples are presented 
prior to the actual tables. These examples attempt to illustrate the "layered" nature of the 
tables. 

Example 1: Arithmetic Instruction with Two Parallel Moves 

Problem: Calculate the number of 24-bit instruction program words and the number of 
oscillator clock cycles required for the instruction 

MACR -XO,XO,A X1,X:(R6)- YO,Y:(RO)+ 

where Operating Mode Register (OMR) = $02 (normal expanded memory map), 
Bus Control Register (BCR) =$1135, 
R6 Address Register = $0052 (internal X memory), and 
RO Address Register = $0523 (external Y memory). 

Solution: To determine the number of instruction program words and the number of 
oscillator clock cycles required for the given instruction, the user should perform the fol­
lowing operations: 

1. Look up the number of instruction program words and the number .of oscilla,tor clock 
cycles required for the opcode-operand portion of the instruction in Table A-6. 

According to Table A-6, the MACR instruction will require (1 + mv) instruction program 
words and will execute in (2 + mv) oscillator clock cycles. The term "mv" represents the 
additional (if any) instruction program words and the additional (if any) oscillator clock 
cycles that may be required over and above those needed for the basic MACR instruction 
due to the parallel move portion of the instruction. 

2. Evaluate the "mv" term using Table A-7. 

The parallel move portion of the MACR instruction consists of an XY memory move. 
According to Table A-7, the parallel move portion of the instruction will require mv=O 
additional instruction program words and mv = (ea + axy) additional oscillator clock cycles. 
The term "ea" represents the number of additional (if any) oscillator clock cycles that are 
required for the effective addressing move specified in the parallel move portion of the 
instruction. The term "axy" represents the number of additional (if any) oscillator clock 
cycles that are required to access an XV memory operand. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-223 

Ell 



III 

3. Evaluate the "ea" term using Table A-13. 

The parallel move portion of the MACR instruction consists of an XY memory move which 
uses both address register banks (RO-R3 and R4-R7) in generating the effective addresses 
of the XV memory operands. Thus, the two effective address operations occur in parallel, 
and the larger of the two "ea" terms should be used. The X memory move operation uses 
the "postdecrement by 1" effective addressing mode. According to Table A-13, this op­
eration will require ea = 0 additional oscillator clock cycles. The V memory move operation 
uses the "postincrement by 1" effective addressing mode. According to Table A-13, this 
operation will also require ea = 0 additional oscillator clock cycles. Thus, using the maxi­
mum value of "ea", the effective addressing modes used in the parallel move portion of 
the MACR instruction will require ea = 0 additional oscillator clock cycles. 

4. Evaluate the "axy" term using Table A-14. 

The parallel move portion of the MACR instruction consists of an XV memory move. 
According to Table A-14, the term "axy" depends upon where the referenced X and V 
memory locations are located in the DSP56000/DSP56001 memory space. External memory 
accesses require additional oscillator clock cycles according to the number of wait states 
programmed into the DSP56000/DSP56001 bus control register (BCR). Thus, assuming that 
the 16-bit bus control register contains the value $1135, external X memory accesses require 
wx = 1 wait state of additional oscillator clock cycle while external Y memory accesses 
require wy = 1 wait state or additional oscillator clock cycle. For this example, the X memory 
reference is assumed to be an internal reference; the V memory reference is assumed to 
be an external reference. Thus, according to Table A-14, the XV memory reference in the 
parallel move portion ofthe MACR instruction will require axy=wy= 1 additional oscillator 
clock cycle. 

5. Compute final results. 

Thus, based upon the assumptions given for Table A-6 and those listed in the problem 
statement for Example 1, the instruction 

will require 

and will execute in 

A-224 

MACR -XO,XO,A X1,X:(R6)- VO,V:(RO)+ 

(1 +mv) 
=(1 +0) 
= 1 instruction program word 

(2+mv) 
=(2+ea+axy) 
=(2+ea+wy) 
=(2+0+ 1) oscillator clock cycles. 

3 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Note that if a similar calculation were to be made for a MOVEC, MOVEM, MOVEP, or one 
of the bit manipulation (BCHG, BCLR, BSET, or BTST) instructions, the use of Table A-7 
would no longer be appropriate. For one of these cases, the user would refer to Table A-
8, Table A-9, or Table A-10, respectively. 

Example 2: Jump Instruction 

Problem: Calculate the number of 24-bit instruction program words and the number of 
oscillator clock cycles required for the instruction . 

JLC (R2+N2) 

where Operating Mode Register (OMR) =$02 (normal expanded memory map), 
Bus Control Register (BCR) = $2246, 
R2 Address Register = $1 000 (external P memory), and 
N2 Address Register =$0037. 

Solution: To determine the number of instruction program words and the number of 
oscillator clock cycles required for the given instruction, the user should perform the fol­
lowing operations: 

1. Look up the number of instruction program words and the number of oscillator clock 
cycles required for the opcode-operand portion of the instruction in Table A-6. 

According to Table A-6, the Jcc instruction will require (1 + ea) instruction program words 
and will execute in (4 + jx) oscillator clock cycles. The term "ea II represents the number of 
additional (if any) instruction program words that are required for the effective address of 
the Jcc instruction. The term "jx" represents the number of additional (if any) oscillator 
clock cycles required for a jump-type instruction. 

2. Evaluate the "jx" term using Table A-11. 

According to Table A-11, the Jcc instruction will require jx = ea + (2 * ap) additional oscillator 
clock cycles. The term "ea" represents the number of additional (if any) oscillator clock 
cycles that are required for the effective addressing mode specified in the Jcc instruction. 
The term "ap" represents the number of additional (if any) oscillator clock cycles that are 
required to access a P memory operand. Note that the "+ (2 * ap)" term represents the 
two program memory instruction fetches executed at the end of a one-word jump instruc­
tion to refill the instruction pipeline. 

3. Evaluate the "ea" term using Table A-13. 

The JLC (R2 + N2) instruction uses the "indexed by offset Nn" effective addressing mode. 
According to Table A-13, this operation will require ea = 0 additional instruction program 
words and ea = 2 additional oscillator clock cycles. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-225 



III 

4. Evaluate the "ap" term using Table A-14. 

According toTable A-14, the term "ap" depends upon where the referenced P memory 
location is located in the DSP56000/DSP56001 memory space. External memory accesses 
require additional oscillator clock cycles according to the number of wait states pro­
grammed into the DSP56000/DSP56001 bus control register (BCR). Thus, assuming that 
the 16-bit bus control register contains the value $2246, external P memory accesses require 
wp =4 wait states or additional oscillator clock cycles. For this example, the P memory 
reference is assumed to be an external reference. Thus, according to Table A-14, the Jcc 
instruction will use the value ap=wp=4 oscillator clock cycles. 

5. Compute final results. 

Thus, based upon the assumptions given for Table A-6 and those listed in the problem 
statement for Example 2, the instruction 

will require 

JLC (R2+ N2) 

(1 +ea) 
=(1 +0) 
= 1 instruction program word 

and will execute in 
(4+ jx) 

=(4+ea+(2 * ap)) 
=(4+ea+(2 * wp)) 
=(4+2+(2 * 4)) oscillator clock cycles. 

14 

Example 3: RTllnstruction 

Problem: Calculate the number of 24-bit instruction program words and the number of 
oscillator clock cycles required for the instruction 

RTI 

where Operating Mode Register (OMR) =$02 (normal expanded memory map), 
Bus Control Register (BCR) = $0012, and 
Return Address (on the stack) =$0100 (internal P memory). 

Solution: To determine the number of instruction program words and the number of 
oscillator clock cycles required for the given instruction, the user should perform the fol­
lowing operations: 

1. Look up the number of instruction program words and the number of oscillator clock 
cycles required for the opcode-operand portion of the instruction in Table A-6. 

A-226 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



According to Table A-6, the RTI instruction will require one instruction program word and 
will execute in (4 + rx) oscillator clock cycles. The term "rx" represents the number of 
additional (if any) oscillator clock cycles required for an RTI or RTS instruction. 

2. Evaluate the "rx" term using Table A-12. 

According to Table A-12, the RTI instruction will require rx = (2 * ap) additional oscillator 
clock cycles. The term "ap" represents the number of additional (if any) oscillator clock 
cycles that are required to access a P memory operand. Note'that the term "(2 * ap)" 
represents the two program memory instruction fetches executed at the end of an RTI or 
RTS instruction to refill the instruction pipeline. 

3. Evaluate the "ap" term using Table A-14. 

According to Table A-14, the term "ap" depends upon where the referenced P memory 
location is located in the DSP56000/DSP56001 memory space. External memory accesses 
require additional oscillator clock cycles according to the number of wait states pro­
grammed into the DSP56000/DSP56001 bus control register (BCR). Thus, assuming that 
the 16-bit bus control register contains the value $0012, external P memory accesses require 
wp = 1 wait state or additional oscillator clock cycles. For this example, the P memory 
reference is assumed to be an internal reference. This means that the return address ($0100) 
pulled from the system stack by the RTI instruction is in internal P memory. Thus, according 
to Table A-14, the RTI instruction will use the value ap = 0 additional oscillator clock cycles. 

4. Compute final results. 

Thus, based upon the assumptions given for Table A-6 and those listed in the problem 
statement for Example 3, the instruction 

will require 

and will execute in 

MOTOROLA 

RTI 

(4+rx) 
=(4+(2 * ap)) 
=(4+(2 * 0)) 

4 

instruction program word 

oscillator clock cycles. 

DSP56000/DSP56001 USER'S MANUAL A-227 

Ell 



-

Table A-G. Instruction Timing Summary (see Note 3) 

instruction usc. 
1. __ Jll._ •• _.&.! __ n •• 
III=-UU\';LlUII v.:t .... 

Mnemonic Program Clock Notes Mnemonic Program Clock Notes 
Words Cycles Words Cycles 

ABS 1+mv 2+mv MAC 1+mv 2+mv 

ADC 1+mv 2+mv MACR 1+mv 2+mv 

ADD 1+mv 2+mv MOVE 1+mv 2+mv 

ADDL 1+mv 2+mv MOVEC 1 +ea 2+mvc 

ADDR 1+mv 2+mv MOVEM 1 +ea 6+ea+ap 

AND 1+mv 2+mv MOVEP 1+ea 4+mvp 

ANDI 1 2 . MPY 1+mv 2+mv 

ASL 1+mv 2+mv MPYR 1+mv 2+mv 

ASR 1+mv 2+mv NEG 1+mv 2+mv 

BCHG 1 +ea 4+mvb NOP 1 2 

BCLR 1 +ea 4+mvb NORM 1 2 

BSET 1 +ea 4+mvb· NOT 1+mv 2+mv 

BTST 1 +ea 4+mvb OR 1+mv 2+mv 

CLR 1+mv 2+mv ORI 1 2 

CMP 1+mv 2+mv REP 1 4+mv 

CMPM 1+mv 2+mv RESET 1 4 

DIV 1 2 RND 1+mv 2+mv 

DO 2 6+mv ROL 1+mv 2+mv 

ENDDO 1 2 ROR 1+mv 2+mv 

EOR 1+mv 2+mv RTI 1 4+rx 

Jcc 1 +ea 4+jx RTS 1 4+rx 

JCLR 2 6+jx SBC 1+mv 2+mv 

JMP 1 +ea 4+jx STOP 1 nfa 1 

JScc 1 +ea 4+jx SUB 1+mv 2+mv 

JSCLR 2 6+jx SUBL 1+mv 2+mv 

JSET 2 6+jx SUBR 1+mv 2+mv 

JSR 1 +ea 4+jx SWI 1 8 

JSSET 2 6+jx Tcc 1 2 

LSL 1+mv 2+mv TFR 1+mv 2+mv 

LSR 1+mv 2+mv TST 1+mv 2+mv 

LUA 1 4 WAIT 1 nfa 2 

Note 1: The STOP instruction disables the internal clock oscillator. After clock turnan, an internal counter counts 
65,536 clock cycles (if bit 6 in the OMR is clear) before enabling the clock to the internal DSP circuits. 
If bit 6 in the OMR is set, only six clock cycles are counted before enabling the clock to the external 
DSP circuits. 

Note 2: The WAIT instruction takes a minimum of 16 cycles to execute when an internal interrupt is pending 
during the execution of the WAIT instruction. 

Note 3: If assumption 4 is not applicable, then to each one-word instruction timing, a" + ap" term should be 
added, and, to each two-word instruction, a" + (2*ap)" term should be added to account forthe program 
memory wait states spent to fetch an instruction word to fill the pipeline. 

A-228 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Table A-7. Parallel Data Move Timing 

+mv +mv Comments 
Parallel Move Operation Words Cycles 

No Parallel Data Move 0 0 

I Immediate Short Data 0 0 

R Register to Register 0 0 

U Address Register Update 0 0 

X: X Memory Move ea- ea+ax See Note 1 

X:R X Memory and Register ea ea+ax See Note 1 

Y: Y Memory Move ea ea+ay See Note 1 

R:Y Y Memory and Register ea ea+ay See Note 1 

L: Long Memory Move ea ea+axy 

X:Y: XY Memory Move 0 ea+axy 

LMS(X) LMS X Memory Moves 0 ea+ax See Notes 1, 2 

LMS(Y) LMS Y Memory Moves 0 ea+ay See Notes 1, 2 

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA. 
Note 2: The ea term does not apply to ABSOLUTE ADDRESS and IMMEDIATE DATA. 

Table A-S. MOVEC Timing Summary (see Note 2) 

MOVEC Operation +mvc Comments 
Cycles 

Immediate Short. Register 0 

Register .. Register 0 

X Memory •• Register ea+ax See Note 1 

Y Memory •• Register ea+ay See Note 1 

P Memory •• Register 4+ea+ap 

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA. 
Note 2: If assumption 4 is not applicable, then to each one-word instruction 

timing, a "+ ap" term should be added, and to each two-word in­
struction, a "+ (2 * ap)" term should be added to account for the 
program memory wait states spent to fetch an instruction word to 
fill the pipeline. 

Note that the lIapll term present in Table A-8 for the P memory move entry represents the 
wait state spent when accessing the program memory during DATA read or write and does 
not refer to instruction fetches. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-229 

III 



III 

Table A·9. MOVEP Timing Summary (see Note 2) 

MOVEP OnMRtinn +mvp Cnmml>ntc:: -, -- ----- Cycles -- ----------

Register" Peripheral aio 

X Memory •• Peripheral ea+ax+aio See Note 1 

Y Memory •• Peripheral ea+ay+aio See Note 1 

P Memory •• Peripheral 2 + ea + ap + aio 

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA. 
Note 2: If assumption 4 is not applicable, then to each one-word instruction 

timing, a "+ ap" term should be added, and to each two-word in­
struction, a "+ (2 * ap)" term should be added to account for the 
program memory wait states spent to fetch an instruction word to 
fill the pipeline. 

Note that the "ap" term present in Table A-9 for the P memory move entry represents the 
wait states spent when accessing the program memoryduring DATA read or write oper­
ations and does not refer to instruction fetches. 

A-230 

Table A·10. Bit Manipulation Timing Summary 
(see Note 2) 

Bit Manipulation Operation +mvb Comments 
Cycles 

Bxxx Peripheral 2 * aio See Note 1 

Bxxx X Memory ea+(2 * ax) See Note 1 

Bxxx Y Memory ea+(2 * ay) See Note 1 

Bxxx Register Direct 0 See Note 1 

BTST Peripheral aio 

BTST X Memory ea+ax 

BTST Y Memory ea+ay 

Note 1: Bxxx = BCHG, BClR, or BSET 

Note 2: If assumption 4 is not applicable, then to each one-word instruction 
timing, a "+ ap" term should be added, and to each two-word in­
struction, a "+ (2 * ap)" term should be added to account for the 
program memory wait states spent to fetch an instruction word to 
fill the pipeline. 

Table A·11. Jump Instruction Timing Summary 

Jump Instruction Operation +jx 
Cycles 

Jbit Register Direct 2 ~ ap 

Jbit Peripheral aio+(2 * ap) 

Jbit X Memory ea+ax+(2 * ap) 

Jbit Y Memory ea+ay+(2 * ap) 

Jxxx ea+(2 * ap) 

Note 1: Jbit=JClR, JSClR, JSET, and JSSET 
Note 2: Jxxx=Jcc, JMP, JScc, and JSR 

Comments 

See Note 1 

See Note 1 

See Note 1 

See Note 1 

See Note 2 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



All one-word jump instructions execute TWO program memory fetches to refill the pipeline, 
which is represented by the" + (2 * ap)" term. 

All two-word jumps execute THREE program memory fetches to refill the pipeline, but one 
of those fetches is sequential (the instruction word located at the jump instruction 2nd 
word address + 1), so it is not counted as per assumption 4. If the jump instruction was 
fetched from a program memory segment with wait states, another "ap" should be added 
to account for that third fetch. 

Table A-12. RTI/RTS Timing 
Summary 

Operation 
+rx 

Cycles 

RTI 2 * ap 

RTS 2 * ap 

The term "2 * ap" come from the two instruction fetches done by the RTI/RTS instruction 
to refill the pipeline. 

MOTOROLA 

Table A-13. Addressing Mode Timing 
Summary 

Effective Addressing Mode +ea +ea 
Words Cycles 

Address Register Indirect 

No Update 0 0 

Postincrement by 1 0 0 

Postdecrement by 1 0 0 

Postincrement by Offset Nn 0 0 

Postdecrement by Offset Nn 0 0 

Indexed by Offset Nn 0 2 

Predecrement by 1 0 2 

Special 

Immediate Data 1 2 

Absolute Address 1 2 

Immediate Short Data 0 0 

Short Jump Address 0 0 

Absolute Short Address 0 0 

1/0 Short Address 0 0 

Implicit 0 0 

DSP56000/DSP56001 USER'S MANUAL A-231 

III 



II 

Table A-14. Memory Access Timing Summary 

Access XMem VMem PMem I/O +ax +ay +ar + <IiI) +a~v 
Type Access Access Access Access Cycle Cycle Cycle Cycle Cycle 

X: Int - 0 

X: Ext wx 

V: Int 0 

V: Ext wy 

P: Int 0 

P: Ext wp 

110: Int 0 

1/0: Ext wio 

L: XV: Int Int 0 

L: XV: Int Ext wy 

L: XV: Ext Int wx 

L: XV: Ext Ext 2+wx+wy 

Note 1: wx = external X memory access wait states 
wy = external V memory access wait states 
wp = external P memory access wait states 
wio = external 1/0 memory access wait states 

Note 2: wx, wy, wp, and wio are programmable from 0-15 wait states in the port A bus control register (BeRI. 

A.S INSTRUCTION SEQUENCE RESTRICTIONS 

Due to the pipelined nature of the DSP core processor, there are certain instruction se­
quences that are forbidden and will cause undefined operation. Most of these restricted 
sequences would cause contention for an inter'1al resource, such as the stack register. The 
DSP assembler will flag these as assembly errors. 

Most of the following restrictions represent very unusual operations which probably would 
never be used but are listed only for completeness. 

NOTE: The DSP56000/DSP56001 macro assembler is designed to recognize all restrictions 
and flag them as errors at the source code level. Since many of these are instruction 
sequence restrictions, they cannot be flagged as errors at the object code level such as 
when using the DSP56000/DSP56001 simulator's single-line assembler. Therefore, if any 
changes are made at the object code level using the simulator, the user should always re­
assemble his program at the source code level using the DSP56000/DSP56001 macro as­
sembler to verify that no restricted instruction sequences have been generated. 

A.S.1 Restrictions Near the End of DO Loops 

Proper DO loop operation is not guaranteed if an instruction starting at address LA-2, 
LA -1, or LA specifies one of the program controller registers SR, SP, SSL, LA, Le, or 

A-232 OSP56000/0SP560P1 USER'S MANUAL MOTOROLA 



(implicitly) PC as a destination register. Similarly, the SSH register may not be specified 
as a source or destination register in an instruction starting at address LA-2, LA-1, or 
LA. Additionally, the SSH register cannot be specified as a source register in the DO 
instruction itself, and LA cannot be used as a target for jumps to subroutine (Le., JSR, 
JScc, JSSET, or JSCLR to LA). The following instructions cannot begin at the indicated 
position(s) near the end of a DO loop: 

At LA-2, LA-1, and LA 

At LA 

DO 
BCHG LA, LC, SR, SP, SSH, or SSL 
BCLR LA, LC, SR, SP~ SSH, or SSL 
BSET LA, LC, SR, SP, SSH, or SSL 
BTST SSH 
JCLR/JSET/JSCLR/JSSET SSH 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 
MOVEC to LA, LC, SR, SP, SSH, or SSL 
MOVEM to LA, LC, SR, SP, SSH, or SSL 
MOVEP to LA, LC, SR, SP, SSH, or SSL 
ANDI M~ 
ORI MR 

any two-word instruction* 
Jcc 
JMP 
JScc 
JSR 
REP 
RESET 
RTI 
RTS 
STOP 
WAIT 

*This restriction applies to the situation in which the DSP56000lDSP56001 simulator's 
single-line assembler is used to change the last instruction in a DO loop from a one-word 
instruction to a two-word instruction. All changes made using the simulator should be 
reassembled at the source code level using the DSP56000/DSP56001 macro assembler to 
verify that no restricted instruction sequences have been generated. 

Other Restrictions 

MOTOROLA 

DO SSH,xxxx 
JSR to (LA) whenever the loop flag (LF) is set 
JScc to (LA) whenever the loop flag (LF) is set 
JSCLR to (LA) whenever the loop flag (LF) is set 
JSSET to (LA) whenever the loop flag (LF) is set 

DSP56000/DSP56001 USER'S MANUAL A-233 

III 



III 

NOTE: Due to pipelining, if an address register (RO-R7, NO-N7, or MO-M7) is changed 
using a move-type instruction (LUA, Tcc, MOVE, MOVEC, MOVEM, MOVEP, or parallel 
move), the new contents ot the destination address register wiii not be avaiiabie for use 
during the following instruction (i.e., there is a single instruction cycle pipeline delay). This 
restriction also applies to the situation in which the last instruction in a DO loop changes 
an address register and the first instruction at the top of the DO loop uses that same 
address register. The top instruction becomes the following instruction because of the 
loop construct. The assembler will generate a warnihg if this condition is detected. 

A.S.2 Other DO Restrictions 

Due to pipelining, the DO instruction must not be immediately preceded by any of the 
following instructions: 

Immediately before DO 

A.S.3 ENDDO Restrictions 

BCHG LA, LC, SSH, SSL, or SP 
BCLR LA, LC, SSH, SSL, or SP 
BSET LA, LC, SSH, SSL, or SP 
MOVEC to LA, LC, SSH, SSL, or SP 
MOVEM to LA, LC, SSH, SSL, or SP 
MOVEP to LA, LC, SSH, SSL, or SP 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 

Due to pipelining, the ENDDO instruction must not be immediately preceded by any of the 
following instructions: 

Immediately before ENDDO BCHG LA, LC, SR, SSH, SSL, or SP 
BCLR LA, LC, SR, SSH, SSL, or SP 
BSET LA, LC, SR, SSH, SSL, or SP 
MOVEC to LA, LC, SR, SSH, SSL, or SP 
MOVEM to LA, LC, SR, SSH, SSL, or SP 
MOVEP to LA, LC, SR, SSH, SSL, or SP 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 
ANDIMR 
ORI MR 

A-234 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



A.8.4 RTI and RTS Restrictions 

Due to pipelining, the RTI and RTS instructions must not be immediately preceded by any 
of the following instructions: 

Immediately before RTI 

Immediately before RTS 

BCHG SR, SSH, SSL, or SP 
BCLR SR, SSH, SSL, or SP 
BSET SR, SSH, SSL, or SP 
MOVEC to SR, SSH, SSL, or SP 
MOVEM to SR, SSH, SSL, or SP 
MOVEP to SR, SSH, SSL, or SP 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 
ANDI MR or ANDI CCR 
ORI MR or ORI CCR 

BCHG SSH, SSL, or SP 
BCLR SSH, SSL, or SP 
BSET SSH, SSL, or SP 
MOVEC to SSH, SSL, or SP 
MOVEM to SSH, SSL, or SP 
MOVEP to SSH, SSL, or SP 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 

A.8.S SP and SSH/SSL Manipulation Restrictions 

In addition to all the above restrictions concerning MOVEC, MOVEM, MOVEP, SP, SSH, 
and SSL, the following MOVEC, MOVEM, and MOVEP restrictions apply: 

Immediately before MOVEC from SSH or SSL 

Immediately before MOVEM from SSH or SSL 

Immediately before MOVEP from SSH or SSL 

BCHG to SP 
BCLR to SP 
BSET to SP 

BCHG to SP 
BCLR to SP 
BSET to SP 

BCHG to SP 
BCLR to SP 
BSET to SP 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-235 

• 



• 

Immediately before MOVEC from SSH or SSL 

Immediately before MOVEM from SSH or SSL 

Immediately before MOVEP from SSH or SSL 

Immediately before JCLR #n, SSH or SSL,xxxx 

Immediately before JSET #n, SSH or SSL,xxxx 

Immediately before JSCLR #n, SSH or SSL,xxxx 

Immediately before JSSET #n, SSH or SSL,xxxx 

Immediately before JCLR #n, SSH or SSL,xxxx 

Immediately before JSET #n, SSH or SSL,xxxx 

Immediately before JSCLR from SSH or SSL,xxxx 

Immediately before JSSET from SSH or SSL,xxxx 

Also, the instruction MOVEC SSH,SSH is illegal. 

MOVEC to SP 
MOVEM to SP 
I\/ln"cn .. _ c-n 
IVIV v 1-1 LV vr 

MOVEC to SP 
MOVEM to SP 
MOVEP to SP 

MOVEC to SP 
MOVEM to SP 
MOVEP to SP 

MOVEC to SP 
MOVEM to SP 
MOVEP to SP 

MOVEC to SP 
MOVEM to SP 
MOVEP to SP 

MOVEC to SP 
MOVEM to SP 
MOVEP to SP 

MOVEC to SP 
MOVEM to SP 
MOVEP to SP 

BCHG to SP 
BCLR to SP 
BSET to SP 

BCHG to SP 
BCLR to SP 
BSET to SP 

BCHG to SP 
BCLR to SP 
BSET to SP 

BCHG to SP 
BCLR to SP 
BSET to SP 

A-236 DSP56000/DSP56001 ,USER'S MANUAL MOTOROLA 



A.S.G R, N, and M Register Restrictions 

If an address register (RO-R7, NO-N7, or MO-M7) is changed with a move-type instruction 
(LUA, Tcc, MOVE, MOVEC, MOVEM, MOVEP, or parallel move), the new contents of the 
destination address register will not be available for use as a pointer during the following 
instruction (i.e., there is a single instruction cycle pipeline delay). This does not apply to 
address registers that are updated as part of an addressing mode update. 

NOTE: This restriction also applies to the situation in which the last instruction in a DO 
loop changes an address register using a move-type instruction and the first instruction 
at the top of the DO loop uses that same address register. The top instruction becomes 
the following instruction because of the loop construct. The DSP assembler will generate 
a warning if this condition is detected. 

A.S.7 Fast Interrupt Routines 

The following instructions may not be used in a fast interrupt routine: 

In a fast interrupt routine DO 
ENDDO 
RTI 
RTS 
MOVEC to LA, LC, SSH, SSL, SP, or SR 
MOVEM to LA, LC, SSH, SSL, SP, or SR 
MOVEP to LA, Lt, SSH, SSL, SP, or SR 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 
ORI MR or ORI CCR 
ANDI MR or ANDI CCR 
STOP 
SWI 
WAIT 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-237 

• 



1.1 

A.S.S REP Restrictions 

The REP instruction can repeat any single-word instruction except the REP instruction itself 
and any instruction that changes program flow. The following instructions are not allowed 
to follow an REP instruction: 

Immediately after REP DO 
Jcc 
JCLR 
JMP 
JSET 
JScc' 
JSCLR 
JSR 
JSSET 
REP 
RTI 
RTS 
STOP 
SWI 
WAIT 

Also, an REP instruction cannot be the last instruction in a DO loop (at LA). 

A.9 INSTRUCTION ENCODING 

This section summarizes instruction encoding for the DSP56000/DSP56001 instruction set. 
The instruction codes are listed in nominally descending order. The symbols used in de­
coding the various fields of an instruction are identical to those used in the Opcode section 
of the individual instruction descriptions. The user should always refer to the actual in­
struction description for complete information on the encoding of the various fields of that 
instruction. 

Section A.9.1 gives the encodings for (1) various groupings of registers used in the in­
struction encodings, (2) condition code combinations, (3) addressing, and (4) addressing 
modes. 

Section A'.9.2 gives the encoding for the parallel move portion of an instruction. These 16-
bit partial instruction codes may be combined with the 8-bit data ALU opcodes listed in 
Section A.9.3 to form a complete 24-bit instruction word. 

Section A.9.3 gives the complete 24-bit instruction encoding for those instructions which 
do not allow parallel moves. 

A-238 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



Section A.9.4 gives the encoding forthe data ALU portion ofthose instructions which allow 
parallel data moves. These 8-bit partial instruction codes may be combined with the 16-
bit parallel move opcodes listed in Section A.9.1 to form a complete 24-bit instruction word. 

Section A.9.S contains instruction encoqings for nonsensical instructions (called insane 
instructions) for which encodings exist but which cause problems such as writing two 
sources to one destination. 

A.9.1 Partial Encodings for Use in Instruction Encoding 

MOTOROLA 

Table A-1S. Single-Bit Register Encodings 

Code d* e f Where: 

0 A XO YO d=2 Accumulators in Data ALU 

1 B Xl Yl e = 2 Registers in Data ALU 

f=2 Registers in Data ALU 

*For class" encodings for R:Y and X:R, see Table A-16. 

d 

0 

1 

Table A-16. Single-Bit 
Special Register Encodings 

X:R Class" Opcode R:Y Class" Opcode 

A. X:<ea> XO. A YO. A A. Y:<ea> 

B • X:<ea> XO • B YO. B B • Y:<ea> 

Table A-17. Double-Bit Register 
Encodings 

Code DD ee ff 

00 XO XO YO 

01 Xl n Xl Yl 

10 YO A A 

11 Yl A B 

Where: DD=4 registers in data ALU 
ee=4 XDB registers in data ALU 
ff=4 YDB registers in data ALU 

DSP56000/DSP56001 USER'S MANUAL A-239 

-



• 

A-240 

Table A-18. Triple-Bit Register Encodings 

Code DOD LLL FFF NNN TIT GGG 

000 AD Al0 MO NO RO * 
001 BO Bl0 Ml Nl Rl SR 

010 A2 X M2 N2 R2 OMR 

011 B2 Y M3 N3 R3 SP 

100 Al A M4 N4 R4 SSH 

101 Bl B M5 N5 R5 SSL 

110 A AB M6 N6 R6 LA 

111 B BA M7 N7 R7 LC 

*Reserved 
Where: DDD: 8 accumulators in data ALU 

LLL: 8 extended-precision registers in data ALU; LLL field is 
encoded as LOLL 

FFF: 8 address modifier registers in address ALU 
NNN: 8 address offset registers in address ALU 
Tn: 8 address registers in address 
GGG: 8 program controller registers 

Table A-19(a). Four-Bit Register 
Encodings for 12 Registers in 

Data ALU 

0 0 0 0 Description 

0 0 X X Reserved 

0 1 D D Data ALU Register 

,1 D D D Data ALU Register 

Table A-19(b). Four-Bit Register Encodings 
for 16 Conditi(m Codes 

Mnemonic C C C C Mnemonic C C C 

CC (HS) 0 0 0 0 CS (LO) 1 0 0 

GE 0 0 0 1 LT 1 0 0 

NE 0 0 1 0 EQ 1 0 1 

PL 0 0 1 1 MI 1 0 1 

NN 0 1 0 0 NR 1 1 0 

EC 0 1 0 1 ES 1 1 0 

LC 0 1 1 0 LS 1 1 1 

GT 0 1 1 1 LE 1 1 1 

OSP56000/0SP56001 USER'S MANUAL 

C 

0 

1 

0 

1 

0 

1 

0 

1 

MOTOROLA 



W 

0 

1 

Table A-20. Five-Bit Register Encodings 
I • for 28 Registers in Data ALU and 

Address ALU 

e e e e e 
or 

d d d d d Description 

0 0 0 0 X Reserved 

0 0 0 1 X Reserv.ed 

0 0 1 D D Data ALU Register 

0 1 D D D Data ALU Register 

1 0 T T T Address ALU Register 

1 1 N N N Address Offset Register 

Where: eeeee=source 
ddddd = destination 

Table A-21. Six-Bit Register Encodings for 
43 Registers On-Chip 

d d d d d d Description 

0 0 0 0 X X Reserved 

0 0 0 1 D D Data ALU Register 

0 0 1 D D D Data ALU Register 

0 1 0 T T T Address ALU Register 

0 1 1 N N N Address Offset Register 

1 0 0 F F F Address Modifier Register 

1 0 1 X X X Reserved 

1 1 0 X X X Reserved 

1 1 1 G G G Program Controller Register 

Table A-22. Write Control 
Encoding 

Table A-23. Memory Space 
Bit Encoding 

Operation S Operation 

Read Register or Peripheral 0 X Memory 

Write Register or Peripheral 1 Y Memory 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 

II 

A-241 



i i i i 

II 

A-242 

E E 

0 0 

0 1 

1 0 

1 1 

Table A-24. Program Controller 
Register Encoding 

Register 

MR Mode Register 

CCR Condition Code Register 

OMR Operating Mode Register 

- Reserved 

Table A-25. Condition Code and Address Encoding 

Code Code Definition 

c c c c 16 Condition Code Combinations 

b b b b b 5-Bit Immediate Data 

i i i i i i i i 8-Bit Immediate Data (int, frac, mask) 

i i i i x x x x h h h h 12-Bit Immediate Data (iiii iiii hhhh) 

a a a a a a 6-Bit Absolute Short (Low) Address 

p p p p p P 6-Bit Absolute I/O (High) Address 

a a a a a a a a a a a a 12-Bit Fast Absolute Short (Low) Address 

M M 

a a 
a a 
a 1 

a 1 

1 0 

1 a 
1 1 

1 1 

1 1 

Table A-26. Effective Addressing 
Mode Encoding 

M R R R Effective Addressing Mode 

a r r r Post -N 

1 r r r Post +N 

a r r r Post -1 

1 r r r Post + 1 

0 r r r No Update 

1 r r r Indexed +N 

1 r r r Pre -1 

a 0 r r Absolute Address 

a 1 r r Immediate Data 

RRR=three unencoded bits RO, R1, R2 

MMM =three unencoded bits MO, M1, M2 
NOTES: 

(1) R2 is a for low register bank and 1 for the high register 
bank. 

(2) M2 is a for all post update modes and 1 otherwise. 
(3) M1 is a for update by register offset and 1 for update by 

one. 
(4) MO is 0 for minus and 1 for plus. 
(5) For X and Y moves, rr is a subfield or rrr with equations: 

r2 :=R2. 
(6) For rr field, r1 is bit 14; rO is bit 13. 
(7) For X and Y moves, mm is a subfield of mmm with equa­

tions: M2 :=(M1 v MO) m2 :=(m1 v mO). 
(8) For mm field, m1 is bit 21; mO is bit 20. For MM field, M1 

is bit 12; MO is bit 11. 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



A.9.2 Instruction Encoding for the Parallel Move Portion of an Instruction 

X: Y: Parallel Data Move 

23 16 15 8 7 0 

11 W m m e e t tlw r r M M R R RI INSTRUCTION OPCODE I 

X: Parallel Data Move 

23 16 15 8 7 

0 1 d d 0 d d d W 1 M M M R R R INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

23 16 15 8 7 0 

I 0 1 d d 0 d d d I w 0 a a a a a a I INSTRUCTION OPCODE I 

Y: Parallel Data Move 

23 16 15 8 7 

0 1 d d 1 d d d W 1 M M M R R R INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

23 16 15 8 7 

I 0 1 d d 1 d d d I w 0 a a a a a a I INSTRUCTION OPCODE 

L: Parallel Data Move 

23 16 15 8 7 

0 1 0 0 L 0 L L W 1 M M M R R R INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

23 16 15 8 7 

10 1 0 0 L 0 L o a a a a a INSTRUCTION OPCODE • I: Immediate Short Parallel Data Move 

23 16 15 8 7 

10 0 1 d d d d INSTRUCTION OPCODE 

R: Register to Register Parallel Data Move 

23 16 15 8 7 

10 0 1 0 0 0 e ele e e d d d INSTRUCTION OPCODE 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-243 



U: Address Register Update Parallel Data Move 

23 16 15 8 7 

10 0 1 0 0 0 0 o I 0 1 0 M M R R R I INSTRUCTION OPCODE 

Parallel Data Move NOP 

23 16 15 8 7 0 

I 0 0 1 0 0 0 0 o I 0 0 0 0 0 0 0 o I INSTRUCTION OPCODE I 

R:Y Parallel Data Move 

23 16 15 8 7 

0 0 0 1 d e f f W 1 M M M R R R INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

X:R Parallel Data Move 

23 16 15 8 7 

0 0 0 1 f f d f W 0 M M M R R R INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

A.9.3 Instruction Encoding for Instructions Which Do Not Allow Parallel Moves 

NOTE: For following bit class instructions bbbbb = 11 bbb is reserved: 
JSSET, JSCLR, JSET, JCLR, BTST, BCHG, BSET, and BCLR. 

JScc xxx 

23 16 15 8 7 0 

I 0 0 0 0 1 1 1 dc C C C a a a a I a a a a a a a a I 

Jcc XXX 

• 23 16 15 8 7 0 

10 0 0 0 1 1 1 olc C C C a a a a I a a a a a a a a I 

JSR XXX 

23 16 15 8 7 0 

I 0 0 0 0 1 1 0 do 0 0 0 a a a a I a a a a a a a a I 

JMP xxx 

23 16 15 8 7 0 

I 0 0 0 0 1 1 0 o I 0 0 0 0 a a a a I a a a a a a a a I 

A-244 DSP56000/0SP56()01 USER'S MANUAL MOTOROLA 



JScc ea 

23 16 15 8 7 

0000101 l11MMMRRR10 1 0 C C C C 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

JSR ea 

23 16 15 8 7 

0000101111 M M M R R RIO 0 0 0 0 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Jcc ea 

23 16 15 8 7 

0000101011 M M M R R RIOlO C C C C 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

JMP ea 

23 16 15 8 7 

0000101011 M M M R R RIO 0 0 0 0 0 0 

JSSET 
JSSET 

23 

#n,X: pp,XXXX 
#n, V: pp,XXXX 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

16 15 8 7 

0000101110 P P P P P pI SIb b b b 

JSCLR 
JSCLR 

23 

#n,X:pp,XXXX 
#n, V: pp,XXXX 

0000101 

JSET 
JSET 

23 

#n,X:pp,XXXX 
#n, V: pp,XXXX 

ABSOLUTE ADDRESS EXTENSION 

16 15 8 7 

110ppppppl SOb b b b b 

ABSOLUTE ADDRESS EXTENSION 

16 15 8 7 

0000101010 P P P P P pI SIb b b b 

ABSOLUTE ADDRESS EXTENSION 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

II 

A-245 



JCLR 
JCLR 

23 

#n,X:pp,XXXX 
#n,V:pp,xxxx 

16 15 8 7 

0000101010 P P P P P pI SOb b b b b 

JSSET 
JSSET 

#n,X:ea,xxxx 
#n,V:ea,xxxx 

ABSOLUTE ADDRESS EXTENSION 

23 16 15 8 7 

0000101101 M M M R R Rl SIb b b b b 

JSCLR 
JSCLR 

23 

#n,X:ea,xxxx 
#n,V:ea,xxxx 

ABSOLUTE ADDRESS EXTENSION 

16 15 8 7 

0000101101 M M M R R Rl SOb b b b 

JSET 
JSET 

23 

#n,X:ea,xxxx 
#n,V:ea,xxxx 

ABSOLUTE ADDRESS EXTENSION 

16 15 8 7 

0000101001 M M M R R Rl SIb b b b b 

JCLR 
JCLR 

23 

#n,X:ea,xxxx 
#n, V: ea,xxxx 

o 0 0 0 .1 o 1 

JSSET 
JSSET 

23 

#n,X:aa,xxxx 
#n,V:aa,xxxx 

ABSOLUTE ADDRESS EXTENSION 

16 15 8 7 

001MMMRRRI SOb b b b b 

ABSOLUTE ADDRESS EXTENSION 

16 15 8 7 

0000101100 a a a a a al SIb b b b b 

ABSOLUTE ADDRESS EXTENSION 

A-246 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



JSCLR 
JSCLR 

23 

#n,X:aa,xxxx 
#n,Y:aa,xxxx 

16 15 8 7 

o 0 0 0 1 100 a a a a a al SOb b b b b 

JSET 
JSET 

JCLR 
JCLR 

23 

#n,X:~a,xxxx 

#n, Y: aa,xxxx 

ABSOLUTE ADDRESS EXTENSION 

16 15 8 7 

000 0 01000 a a a a a al S 

23 

#n,X:aa,xxxx 
#n, Y: aa,xxxx 

ABSOLUTE ADDRESS EXTENSION 

16 15 8 7 

b b b b 

o 0 0 1 0 1 o a a a a a al SOb b 

ABSOLUTE ADDRESS EXTENSION 

JSSET #n,S,XXXX 

23 16 '15 8 7 

o 0 0 0 0111 d d d d d dO 0 b b b b 

ABSOLUTE ADDRESS EXTENSION 

JSCLR #n,S,XXXX 

23 16 15 8 7 

0 0 0 0 1 0 1 1 1 1 d d d d d d 0 o '0 b 

ABSOLUTE ADDRESS EXTENSION 

JSET #n,S,XXXX 

23 16 15 8 7 

0 0 0 1 0 1 0 1 d d d d d d 0 0 b b b b 

ABSOLUTE ADDRESS EXTENSION 

JCLR #n,S,XXXX 

23 16 15 8 7 

0 

b 

0 

b 

0000101011 d d d d d dO 0 0 b b b 

ABSOLUTE ADDRESS EXTENSION 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

III 

A-247 



BTST #n,X:pp 
BTST #n,Y:pp 

23 16 15 8 7 a 
I a a a a 1 a 1 111 a p p p p p p I a S 1 b b b b b I 

BCHG #n,X:pp 
BCHG #n,Y:pp 

23 16 15 8 7 a 

I a a a a 1 a 1 dl a p p p p p p I a S a b b b b b I 

BSET #n,X:pp 
BSET #n,Y:pp 

23 16 15 8 7 a 

I a a a a 1 a 1 a 11 a p p p p p pia S 1 b b b b b I 

BCLR #n,X:pp 
BCLR #n,Y:pp 

23 16 15 8 7 a 
I a a a a 1 a 1 a 11 a p p p p p p I a S a b b b b b I 

BTST #n,X:ea 
BTST #n,Y:ea 

23 16 15 8 7 

a a a a 1 a 1 1 a 1 M M M R R R a S 1 b b b b b 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

BCHG #n,X:ea 
BCHG #n,Y:ea 

• 23 16 15 8 7 

a a a a 1 a 1 1 a 1 M M M R R R a S a b b b b b 

OPTIONAL EFFECTIVE ADDRESS EXTENS"ION 

BSET #n,X:ea 
BSET #n,Y:ea 

23 16 15 8 7 

a 9 a a 1 a 1 a a 1 M M M R R R a S 1 b b b b b 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

A-248 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



BCLR #n,X:ea 
BCLR #n,V:ea 

23 16 15 8 7 

0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 0 b b b b b 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

BTST #n,X:aa 
BTST #n,V:aa 

23 16 15 8 7 0 

I 0 0 0 0 1 0 1 do 0 a a a a a a 10 S 1 b b b b b I 

BCHG #n,X:aa 
BCHG #n,V:aa 

23 16 15 8 7 0 

I 0 0 0 0 1 0 1 1 I 0 0 a a a a a a 10 S 0 b b b b b I 

BSET #n,X:aa 
BSET #n,V:aa 

23 16 15 8 7 0 

I 0 0 0 0 1 0 1 o I 0 0 a a a a a a 10 S 1 b b b b b I 

BCLR #n,X:aa 
BCLR #n,V:aa 

23 16 15 8 7 0 

I 0 0 0 0 1 0 1 o I 0 0 a a a a a a 10 S 0 b b b b b I 

BTST #n,O 

23 16 15 8 7 0 

I 0 0 0 0 1 0 1 111 1 d d d d d d 10 1 1 b b b b b I • BCHG #n,O 

23 16 15 8 7 0 

I 0 0 0 0 1 0 1 dl 1 d d d d d d 10 1 0 b b b b b I 

BSET #n,O 

23 16 15 8 7 0 

I 0 0 0 0 1 0 1 o 11 1 d d d d d d 10 1 1 b b b b b I 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-249 



• 

BCLR 

23 

I 0 

MOVEP 
MOVEP 
MOVEP 
MOVEP 
MOVEP 
MOVEP 
MOVEP 
MOVEP 
MOVEP 
MOVEP 

23 

0 

MOVEP 
MOVEP 
MOVEP 
MOVEP 

0 

0 

#n,O 

16 15 8 7 

0 0 1 0 1 o 11 1 d d d d d dlo 

X:ea,X:pp 
Y:ea,X:pp 
#XXXXXX,X:pp 
X:pp,X:ea 
X:pp,Y:ea 
X:ea,Y:pp 
Y:ea,Y:pp 
#XXXXXX, Y: pp 
Y:pp,X:ea 
Y:pp,Y:ea 

16 15 8 7 

0 0 1 0 0 S W 1 M M M R R R 1 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

P:ea,X:pp 
X:pp,P:ea 
P:ea,Y:pp 
Y:pp,P:ea 

23 16 15 8 7 

0 

1 0 b b b b b I 

s p p p p p P 

0000100 S W 1 M M M R R RO 1 P P P P P P 

MOVEP 
MOVEP 
MOVEP 
MOVEP 

23 

I 0 0 

MOVE(M) 
MOVE(M) 

23 

S,X:pp 
X:pp,O 
S,Y:pp 
Y:pp,O 

0 0 1 0 

S,P:ea 
P:ea,O 

0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

16 15 8 7 0 

S I W 1 d d d d d d 10 0 p p p p p pi 

16 15 8 7 

00000111 W 1 M M M R R R1 0 d d d d d d 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

A-250 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



MOVE(M) S,P:aa 
MOVE(M) P:aa,D 

23 16 15 8 7 0 

I 0 0 0 0 0 1 1 llw 0 a a a a a a 10 0 d d d d . d dl 

REP #xxx 

23 16 15 8 7 0 

I 0 0 0 o . 0 1 1 o I i dl 0 1 0 h h h h 1 

REP S 

23 16 15 8 7 0 

I 0 0 0 0 0 1 1 o 11 1 d d d d d d 10 0 1 0 0 0 0 01 

REP X:ea 
REP Y:ea 

23 16 15 8 7 0 

I 0 0 0 0 0 1 1 o I 0 1 M M M R R Rio s 1 0 0 0 0 o 1 

REP X:aa 
REP Y:aa 

23 16 15 8 7 0 

I 0 . 0 0 0 0 1 1 o I 0 0 a a a a a a 10 s 1 0 0 0 0 o 1 

DO #xxx,expr 

23 16 15 8 7 0 

0 0 0 0 0 1 1 0 i 1 0 0 0 h h h h 

ABSOLUTE ADDRESS EXTENSION 

DO S,expr 

23 16 15 8 7 0 

0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 0 0 0 0 0 

ABSOLUTE ADDRESS EXTENSION 

DO X:ea,expr 
DO Y:ea,expr 

23 16 15 8 7 

0 0 0 0 0 1 1 0 0 1 M M M R R R O. S 0 0 0 0 0 0 

ABSOLUTE ADDRESS EXTENSION 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-251 



III 

00 X:aa,expr 
00 Y:aa,expr 

23 16 15 B 7 

0000011000aaaaaaOSOO 0000 

MOVE(C) #xx,01 

23 

10 0 0 0 0 1 

MOVE(C) 
·MOVE(C) 
MOVE(C) 
MOVE(C) 
MOVE(C) 

X:ea,01 
81,X:ea 
Y:ea,01 
81,Y:ea 
#xxxx,01 

ABSOLUTE AODRESS EXTENSION 

16 15 B 7 0 

dl Old d d d dl 

23 16 15 B 7 

00000101 WI M M M R R RO sId d d d d 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

MOVE(C) X:aa,01 
MOVE(C) 81,X:aa 
MOVE(C) Y:aa,01 
MOVE(C) 81,Y:aa 

23 16 15 B 7 0 

I 0 0 0 0 0 1 0 llw 0 a a a a a a 10 s 1 d d d d d I 

MOVE(C) 81,02 
MOVE(C) 82,01 

23 16 15 B 7 0 

I 0 0 0 0 0 1 0 o I W 1 e e e e e e 11 0 1 d d d d d I 

LUA ea,O 

23 16 15 B 7 0 

I 0 0 0 0 0 1 0 o I 0 1 0 M M R R Rio 0 0 1 d d d d I 

Tee 81,01 82,02 

23 16 15 B 7 0 

I 0 0 0 0 0 0 1 1 I C C C C 0 t t do J J J D T T TI 

A-252 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Tee S1,D1 

23 16 15 8 7 0 

I 0 0 0 0 0 0 1 o I c c c c 0 0 0 o 10 J J J D 0 0 o I 

NORM Rn,D 

23 16 15 8 7 0 

I 0 0 0 0 0 0 0 dl 1 0 1 1 R R Rio 0 0 1 d 1 0 d 

DIV S,D 

23 16 15 8 7 0 

I 0 0 0 0 0 0 0 111 0 0 0 0 0 0 o I 0 1 J J d 0 0 o I 

OR(I) #xx,D 

23 16 15 8 7 0 

I 0 0 0 0 0 0 0 o I i dl 1 1 1 1 0 E E I 

AND(I) #xx,D 

23 16 15 8 7 0 

10 0 0 0 0 0 0 o I i dl 0 1 1 1 0 E d 

ENDDO 

23 16 15 8 7 0 

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 o 11 0 0 0 1 1 0 o I 

STOP 

23 16 15 8 7 0 

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 o 11 0 0 0 0 1 1 d 

WAIT 

23 16 15 8 7 0 

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 o 11 0 0 0 0 1 1 o I 

RESET 

23 16 15 8 7 0 

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 o 11 0 0 0 0 1 0 o I 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-253 



RTS 

23 16 15 B 7 0 

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 o I 0 0 0 0 1 1 0 o I 

SWI 

23 16 15 B 7 0 

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 o I 0 0 0 0 0 1 1 o I 

RTI 

23 16 15 B 7 0 

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 010 0 0 0 0 1 0 o I 

NOP 

23 16 15 B 7 0 

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 010 0 0 0 0 0 0 01 

A.9.4 Parallel Instruction Encoding of the Operation Code 

The operation code encoding for the instructions which allow parallel moves is divided 
into the multiply and nonmultiply instruction encodings shown in the following subsection. 

Multiply Instruction Encoding 

The 8-bit operation code for multiply instructions allowing parallel moves has different 
fields than the nonmultiply instruction's operation code. 

The 8-bit operation code = 1QQQ dkkk where QQQ = selects the inputs to the multiplier 
kkk = three unencoded bits k2, k1, kO 

d = destination accumulator 
d=O.A 
d= 1 • B 

Table A-27. Operation Code KO-2 Decode 

Code k2 k1 kO 

0 positive mpyonly don't round 

1 negative mpy and ace round 

A-254 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Table A-28. Operation Code 
QQQ Decode 

Q Q Q 51 52 

0 0 0 XO XO 

0 0 1 YO YO 

0 1 0 X1 XO 

0 1 1 Y1 YO 

1 0 0 XO Y1 

1 0 1 YO XO 

1 1 0 X1 YO 

1 1 1 Y1 X1 

NOTE: S1 and S2 are the inputs to the multiplier 

MACR 
MACR 

23 

(±)S1,S2,D 
(±)S2,S1,D 

DATA BUS MOVE FIELD 

MAC (± )S1,S2,D 
MAC (±)S2,S1,D 

23 

MPYR 
MPYR 

23 

DATA BUS MOVE FIELD 

(±)S1,S2,D 
(±)S2,S1,D 

DATA BUS MOVE FIELD 

MPY (±)S1,S2,D 
MPY (± )S2,S1,D 

23 

8 7 

8 7 

8 7 

8 7 

DATA BUS MOVE FIELD 1 Q 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

4 3 

4 3 

4 3 

4 3 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 

III 

A-255 



III 

Nonmultiply Instruction Encoding 

The 8-bit operation code for instructions allowing parallel moves contains two 3-bit fields 
defining which instruction the operation code represents and one bit defining the desti­
nation accumulator register. 

The 8-bit operation code = OJJJ Dkkk where JJJ = 1/2 instruction number 
kkk = 1/2 instruction number 

D = destination accumulator 
D=O.A 
D=1.8 

Table A-29. Nonmultiply Instruction Encoding 

0=0 0=1 
JJJ Src Src 

Oper Oper 000 

000 B A MOVE' 

001 B A ADD 

0102 B A -

011 2 B A -

0102 X1XO X1XO ADD 

011 2 Y1YO Y1YO ADD 

100 XO_O XO_O ADD 

101 YO_O YO_O ADD 

110 XLO XLO ADD 

111 YLO YLO ADD 

NOTES: 
* = Reserved 
1 = Special Case #1 (See Table A-30) 
2 = Special Case #2 (See Table A-31) 

kkk 

001 010 011 

TFR ADDR TST 

RND ADDL CLR 

- ASR LSR 

- ASL LSL 

ADC - -

ADC - -

TFR OR EOR 

TFR OR EOR 

TFR OR EOR 

TFR OR EOR 

Table A-30. Special Case #1 

o P E·R coo E Operation 

00000000 MOVE 

o 000 1 000 Reserved 

100 

* 
SUB 

-

-

SUB 

SUB 

SUB 

SUB 

SUB 

SUB 

For JJJ = 010 and 011, k1 qualifies source register selection: 

Table A-31. Special Case #2 

OJJJdkkk Operation 

001 0 x x 0 x Selects X1XO 

0011xxOx Selects Y1YO 

001xxx1x Selects AlB 

101 

CMP 

* 
-

-

SBC 

SBC 

CMP 

CMP 

CMP 

CMP 

110 

SUBR 

SUBL 

ABS 

NEG 

AND 

AND 

AND 

AND 

111 

CMPM 

NOT 

ROR 

ROL 

CMPM 

CMPM 

CMPM 

CMPM 

A-256 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



CMPM 51,52 

23 B 7 

DATA BUS MOVE FIELD 

OPTIONAL EFFECTIVE ADORESS EXTENSION 

AND 5,0 

23 B 7 4 3 

DATA BUS MOVE FIELD 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

CMP 51,52 

23 B 7 4 3 

DATA BUS MOVE FIELD 0 J 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

5UB S,D 

23 4 3 

DATA BUS MOVE FIELD 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

EOR S,D 

23 4 3 

DATA BUS MOVE FIELD 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

OR S,D 

23 4 3 

DATA BUS MOVE FIELD 

TFR S,D 

23 B 7 

DATA BUS MOVE FIELD 0 J 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

ADD S,D 

23 B 7 

DATA BUS MOVE FIELD 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-257 



SBC S,D 

23 

DATA BUS MOVE FIELD 

ADC S,D 

23 8 7 4 3 

DATA BUS MOVE FIELD 

ROL D 

23 8 7 

DATA BUS MOVE FIELD 

NEG D 

23 8 7 4 3 

DATA BUS MOVE FIELD 

LSL D 

23 8 7 4 3 

DATA BUS MOVE FIELD 

ASL D 

23 8 7 

DATA BUS MOVE FIELD 

ROR D 

23 8 7 

DATA BUS MOVE FIELD 

ABS D 

23 8 7 4 3 

DATA BUS MOVE FIELD 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

A-258 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



LSR D 

23 8 7 4 3 

DATA BUS MOVE FIELD 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

ASR D 

23 8 7 

DATA BUS MOVE FIELD 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

NOT D 

23 4 3 

DATA BUS MOVE FIELD 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

SUBL S,D 
23 

DATA BUS MOVE FIELD 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

CLR D 

23 4 3 

DATA BUS MOVE FIELD 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

ADDL S,D 
23 8 7 4 3 

DATA BUS MOVE FIELD 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

RND D 1.11 
23 4 3 

DATA BUS MOVE FIELD 

SUBR S,D 

23 8 7 4 3 

DATA BUS MOVE FIELD 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-259 



TST D 

23 8 7 4 3 

DATA BUS MOVE FIELD 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

ADDR S,D 

23 8 7 4 3 

DATA BUS MOVE FIELD 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

ILLEGAL 

23 16 15 8 7 4 3 0 

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 010 0 0 010 11 

MOVE S,D 

23 8 7 4 3 

DATA BUS MOVE FIELD 

A.9.5 Insane Instructions 

Some instructions have legal operation codes but try to perform nonsensical operations. 
These instructions are called insane instructions. An example of an insane instruction is: 

11xx 1111 1xxx xxxx yyyy xyyy X:ea • B & Y:ea • B 

Both parallel moves write to the same register (register B) which puts an indeterminant 
result in B. These instructions are flagged as errors by the assembler. However, it is possible 
to produce illegal or insane instructions with the assembler using the DC command. 

For the following insane instructions, let the operation code yyyy dyyy equal any combi­
nation of OPER CODE except: 

1. 0000 0000 MOVE 
2. 0000 1000 reserved 
3. 0000 0100 RTI 
4. 0000 1100 RTS 

A-260 DSP56000/DSP56Q01 USER'S MANUAL MOTOROLA 



Also, no operation code is allowed that results in writing to a destination if there is a parallel 
move to that same destination. In each of the following tables, a duplicate destination is 
specified, which makes that specific case of the instruction an insane instruction. 

Table A-32. Insane X: and Y: Parallel Move 

23 16 15 8 7 0 Parallel Instruction 
1wmmXXYYWr rMMRRROPERCODE X:ea,XX and Y:ea,YY 

1 1 x x 1 1 1 1 1 x x x x x x x y y y y x y y y X:ea • B & Y:ea • B 

1 1 x x 1 a 1 a 1 x x x x x x x y y y y x y y y X:ea • A & Y:ea • A 

1 x x x 1 1 x x 1 x x x x x x x y y y y 1 y y y X:ea. B & ACC. B 

1 1 x x x x 1 1 x x x x x x x x y y y y 1 y y y Y:ea • B & ACC • B 

1 x x x 1 a x x 1 x x x x x x x y y y yay y y X:ea. A &ACC. A 
1 1 x x x x 1 a x x x x x x x x y y y yay y y Y:ea. A & ACC. A 

Table A-33. Insane X: or Y: Parallel Move 

23 16 15 8 7 0 Parallel Instruction 
0101SDDDWxxxxxxxOPERCODE X:xx,DDD or Y:xx,DDD 

a 1 a 1 x x x 1 1 x x x x x x x y y y Y 1 Y Y Y X:xx. B or Y:xx • B & ACC • B 

a 1 a 1 x x x a 1 x x x x x x x y y y yay y y X:xx. A or Y:xx. A & ACC. A 

Table A-34. Insane L: Parallel Move 

23 16 15 8 7 0 Parallel Instruction 
0100LOLLWxxxxxxxOPERCODE L:xx,LLL 

a 1 a a a a a 1 1 x x x x x x x y y y y 1 y y y L:xx.Bla&ACC.B 

a 1 a a a a a a 1 x x x x x x x y y y yay y y L:xx. Ala & ACC. A 

a 1 a a 1 a a 1 1 x x x x x x x y y y y 1 y y y L:xx. B & ACC. B 

a 1 a a 1 a a a 1 x x x x x x x y y y yay y y L:xx. A & ACC. A 
a 1 a a 1 a 1 11 xxxxx xxyyyyxyyy L:xx • B_A & ACC • A or B 

a 1 a a 1 a 1 a 1 x x x x x x x y y y y x y y y L:xx • A..B & ACC • A or B 

Table A-3S. Insane I: Parallel Move 

23 16 15 8 7 0 Parallel Instruction 
001 0 1 D D D i i i i i i i iOPERCODE iiiiiiii. DDD 

a a 1 a 1 x x 1 x x x x x x x x y y y y 1 y y y Imm • B & ACC • B 

a a 1 a 1 x x a x x x x x x x x y y y yay y y Imm • A & ACC • A 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-261 

III 



Table A-3S. Insane R: Parallel Move 

23 16 15 8 7 0 Parallel Instruction 
o 01 0 0 0 d d d d d D D D D D 0 PER COD E ddddd • DDDDD 

o 0 1 000 x x x x x 0 1 x x 1 y Y Y Y 1 Y Y Y Reg. B & ACC • B 

001 0 0 0 x x x x x 0 1 x x 0 y y y y 0 y y y Reg. A & ACC • A 

Table A-37. Insane R:Y Parallel Move 

23 16 15 8 7 0 Parallel Instruction 
0001dXVVW1MMMRRROPERCODE d. X and V:ea,VV 

o 0 0 1 x x 1 1 1 1 x x x x x x y y y y 1 Y Y Y Y:ea • B & ACC • B 

o 0 0 1 x x 1 0 1 1 x x x x x x y yy y 0 y y y Y:ea • A & ACC • A 

Table A-3S. Insane X:R Parallel Move 

23 16 15 8 7 0 Parallel Instruction 
0001XXdVWOMMMRRROPERCODE X:ea,XX and d • V 

o 0 0 1 1 1 x x 1 o x x x x x x y y y y 1 Y Y Y X:ea. B & ACC. B 

o 0 0 1 lOx xl 0 x x x x x x y y y y 0 y y y X:ea • A & ACC • A 

Table A-39. Insane R:Y and X:R Parallel Move 

23 16 15 87 0 Parallel Instruction 
0000100dsOMMMRRROPERCODE R:V & X:R Class II MOVES 

o 0 0 0 1 o 000 0 x x x x x x y y y y 0 y y y A. X:ea & XO • A & ACC • A 

o 0 001 001 0 0 x x x x x x y y y y 1 Y Y Y B • X:ea & XO • B & ACC • B 

o 0 0 0 1 o 0 0 1 o x x x x x x y y y y 0 y yy YO. A & A. Y:ea & ACC. A 

o 0 0 0 1 001 lOx x x x x x y y y y 1 y y y YO • B & B • Y: ea & ACC • B 

iii 

A-262 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



A.9.S Reserved Instruction Codes 

The instruction codes shown in Table A-40 are reserved for future use and attempting to 
execute them will cause an illegal instruction interrupt. 

MOTOROLA 

Table A-40. Reserved Operation Codes 

o 0 1 000 000 1 1 MM R R R 0 PER COD E 
001 000 0 0 0 0 x x x x x x 0 PER COD E 
o 0 000 1 1 1 x 1 x x x x x x 0 x x x x x x x 
00000111xOx_xxxxx1xxxxxxx 
o 0 0 0 0 1 101 0 x x x x x x 0 x 1 x x x x x 
o 0 000 1 101 0 x x x x x x 0 x 0 x x x x x 
o 0 000 1 0 0 x x x x x x x x 0 x 1 x x x x x 
o 0 0 000 1 x x x x x x x x x 1 x x x x x x x 
o 0 0 0 0 0 0 1 x x x x x x x x 1 x x x D x x x 
o 0 0 0 0 0 0 1 0 x x x x x x x 0 x x x D x x x 
o 0 0 0 0 0 0 0 x x x x x x x x 0 x 1 x x x x x 

(xxx xxx f. 000000) 

OSP56000/0SP56001 USER'S MANUAL A-263 

III 



• 

A-264 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



APPENDIX B 
BENCHMARK PROGRAMS 

Tables 8-1 and 8-2 provide benchmark numbers for 18 common DSP programs. The two 
tables are identical except that Table 8-1 is for the 20.5-MHz DSP56001 and Table 8-2 is 
for the 27-MHz DSP56001. The following four code examples (Figures 8-1 to 8-4) are 
representative of the benchmark programs shown in Tables 8-1 and 8~2. The code for 
these and other programs is free and available through the Dr. 8u8 electronic bulletin 
board. Figure 8-1 is the code for the 20-tap FIR filter shown in Tables 8-1 and 8-2. Figure 
8-2 is the code for an FFT using a triple nested DO LOOP. Although this code is easier to 
understand and very compact, it is not as fast as the code used for the benchmarks shown 
in Tables 8-1 and 8-2, which are highly optimized using the symmetry of the FFT and the 
parallelism of the DSP. Figure 8-3 is the code for the 8-pole cascaded canonic biquad IIR 
filter, which uses four coefficients (see Tables 8-1 and 8-2). Figure 8-4 is the code for a 2N 
delayed least mean square (LMS) FIR adaptive filter, which is useful for echo cancelation 
and other adaptive filtering applications. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-1 



Table B-1. 20.S-MHz Benchmark Results for the DSP56001R20 

Sample Rate Memory Number of 
Benchmark Program (Hz) or Size Clock 

Execution Time (Words) Cycles 

20-Tap FIR Filter 379.6 kHz 50 54 

64-Tap FIR Filter 144.4 kHz 138 142 

67-Tap FIR Filter 138.5 kHz 144 148 

8-Pole Cascaded Canonic 410.0 kHz 40 50 
Biquad IIR Filter (4 x) 

8-Pole Cascaded Canonic 353.5 kHz 45 58 
Biquad IIR Filter (5 x) 

8-Pole Cascaded Transpose 292.9 kHz 48 70 
. Biquad IIR Filter 

Dot Product 585.4 ns 10 12 

Matrix Multiply 2 x 2 2.049 IJ.S 33 42 
times 2x2 

Matrix Multiply 3 x 3 1.6591J.s 29 34 
times 3x1 

M-to-M FFT 129.5 IJ.S 489 2655 
64 Point 

M-to-M FFT 645.1 IJ.S 1641 13255 
256 Point 

M-to-M FFT 3.231 ms 6793 66240 
1024 Point 

P-to-M FFT 121.9 IJ.s 704 2499 
64 Point 

P-to-M FFT 458.2 IJ.s 2048 9394 
256 Point 

P-to-M FFT 1.958 ms 7424 40144 
1024 Point 

8-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Table B-2. 27-MHz Bimchniark Results for the DSP56001R27 

Sample Rate Memory Number of 
Benchmark Program (Hz) or Size Clock 

Execution Time (Words) Cycles 

20-Tap FIR Filter 500.0 kHz 50 54 

64-Tap FIR Filter 190.1 kHz 138 142 

67-Tap FIR Filter 182.4 kHz 144 148 

8-Pole Cascaded Canonic 540.0 kHz 40 50 
Biquad IIR Filter (4 x) 

8-Pole Cascaded Canonic 465.5 kHz 45 58 
Biquad IIR Filter (5 x) 

8-Pole Cascaded Transpose 385.7 kHz 48 70 
Biquad IIR Filter 

Dot Product 444.4 ns 10 12 

Matrix Multiply 2 x 2 1.556 f.LS 33 42 
times 2x2 

Matrix Multiply 3 x 3 1.259 f.LS 29 34 
times3x1 

M-to-M FFT 98.33 f.LS 489 2655 
64 Point 

M-to-M FFT 489.8 f.Ls 1641 13255 
256 Point 

M-to-M FFT 2.453 ms 6793 66240 
1024 Point 

P-to-M FFT 92.56 f.LS 704 2499 
64 Point 

P-to-M FFT 347.9 f.LS 2048 9394 
256 Point 

P-to-M FFT 1.489 ms 7424 40144 
1024 Point 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-3 



• 

page 132,66,0,6 
opt rc 

· ****************************************** , 
; Motorola Austin DSP Operation June 30, 1988 
· ****************************************** , 
; DSP56000/1 
;20-tap FIR filter 
;File name: 1-56.asm 
· *********************************************************************************** , 

Maximum sample rate: 379.6 kHz at 20.5 MHz/500.0 kHz at 27.0 MHz 
Memory Size: Prog: 4+6 words; Data: 2x20 words 
Number of clock cycles: 54 (27 instruction cycles) 
Clock Frequency: 20.5 MHz/27.0 MHz 
_Ir~struction cycle time: 97.6 ns/74.1 ns 

· *********************************************************************************** , 

, 

This FIR filter reads the input sample 
from the memory location Y:input 
and writes the filtered output sample 
to the memory location Y:output 

The samples are stored in the X memory 
The coefficients are stored in the Y memory 

; *********************************************************************************** 

8-4 

X MEMORY 

X(n) 

X(n-1) 

X(n-k+l) X(n+l) 

x(n) 
C(O) 

FIR 

Y MEMORY 

c(O) 

c(1) 

c(k-l) 

yIn) 

k-l 

yIn) = I c(p)x(n - p) 

p=O 

Figure 8-1. 20-Tap FIR Filter Example (Sheet 1 of 2) 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



, 
· *********************************************************************************** , 

, initialization 
· ***************************** , 
n 
start 
wddr 
cddr 
input 
output 

equ 
equ 
equ 
equ 
equ 
equ 

org 
move 
move 
move 
move 

20 
$40 
$0 
$0 
$ffeO 
$ffe1 

p:start 
#wddr,rO 
#cddr,r4 
#n-1,mO 
mO,m4 

opt cc 
; filter loop :8+(n-1) cycles 

; rO • samples 
;r1 • coefficients 
;set modulo arithmetic 
;for the 2 circular buffers 

· *********************************************************************************** , 
movep y:input,x: (rO) ;input sample in memory 
clr a x:(rO)+,xO y: (r4)+,yO 

rep #n-1 
mac xO,yO,a x:(rO)+,xO y: (r4)+,yO 
macr xO,xO,a (rO)-

movep a,y:output ;output filtered sample 
· *********************************************************************************** , 

end 

Figure 8-1. 20-Tap FIR Filter Example (Sheet 2 of 2) 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 8-5 

III 



a 

;This program originally available on the Motorola DSP bulletin board. 
;It is provided under a DISCLAIMER OF WARRANTY available from 
;Motorola DSP Operation, 6501 William Cannon Drive, Austin, Tx., 78735. 

;Radix-2, In-Place, Decimation-In-Time FFT (smallest code size). 
; ) 

; Last Update 30 Sep 86 Version 1.1 

fftr2a 
fftr2a 

macro 
ident 

points,data,coef 
1,1 

;Radix-2 Decimation-In-Time In-Place FFT Routine 

Complex input and output data 
Real data in X memory 
Imaginary data in Y memory 

Normally ordered input data 
Bit reversed output data 

Coefficient lookup table 
-Cosine values in X memory 
-Sine vaues in Y memory 

; Macro Call - fftr2a poi nts,data,coef 

points 
data 
coef 

number of points (2-32768, power of 2) 
start of data buffer 
start of sine/cosine table 

;Alters Data ALU Registers 
x1 xO y1 yO 
a2 a1 aO a 
b2 b1 bO b 

;Alters Address Registers 
rO nO mO 
r1 n1 m1 

n2 

r4 n4 m4 
r5 n5 m5 
r6 n6 m6 

;Alters Program Control Registers 
pc sr 

; Uses 6 locations on System Stack 

Figure 8-2. Radix 2, In-Place, Decimation-In-Time FFT (Sheet 1 of 2) 

B-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



;Latest Revision - September 30, 1986 

move #points/2,nO 
move #1,n2 
move #points/4,n6 
move #-1,mO 
move mO,m1 
move mO,m4 
move mO,m5 
move #0,m6 

;initialize butterflies per group 
;initialize groups per pass 
;initialize C pointer offset 
;initialize A and 8 address modifiers 
;for linear addressing 

;initialize C address modifier for 
;reverse carry (bit-reversed) addressing 

;Perform all FFT passes with triple nested DO loop 

do #@cvi (@log(points)/@log(2) + 0.5),-end-pass 
move #data,rO ;initialize A input pointer 
move rO,r4 ;initialize A output pointer 
lua (rO) + nO,r1 ;initialize 8 input pointer 
move #coef,r6 ;initialize C input pointer 
lua (r1) - ,r5 ;initialize 8 output pointer 
move nO,n1 ;initialize pointer offsets 
move nO,n4 
move nO,n5 

do 
move 

move 
move 

do 
mac 

macr 
subl 
mac 
macr 
subl 

move 
move 

move 
Isr 
lsi 
move 

endm 

n2,_end_grp 
x:(r1),X1 

x:(r5),a 
x:(r6)+n6,xO 

nO.-end-bfy 
x1,y0,b 

-xO,y1,b 
b,a 
-x1,xO,b 
-y1,yO,b 
b,a 

a,x:(r5)+n5, 
x:(rO) + nO,x1 

nO,b1 
b n2,a1 
a b1,nO 
a1,n2 

y:(r6),y0 

y:(rO),b 

y:(r1) + ,y1 

a,x:(r5) + 
x:(rO),b 
x:(rO) +,a 
x:(r1 ),x1 
b,x:(r4)+ 

y:(rO),a 
b,y:(r4) 
a,y:(r5) 

y:(rO),b 

y:(r1)+n1,y1 
y: (r4) + n4,y1 

;Iookup -sine and 
; - cosine values 
;preload data 
;update C pointer 

;Radx 2 DIT 
;butterfly kernel 

;update A and 8 pointers 

;divide butterflies per group by two 
;multiply groups per pass by two 

Figure B-2. Radix 2, In-Place, Decimation-In-Time FFT (Sheet 2 of 2) 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

• 
8-7 



• 

page 132,66,0,6 
opt rc 

. ****************************************** , 
;Motorola Austin DSP OperationJune 30, 1988 
; ****************************************** 
; DSP56000/1 
;8-pole 4-multiply cascaded canonic IIR filter 
;File name: 4-56.asm 
; *********************************************************************************** 

Maximum sample rate: 410.0 kHz at 20.5 MHzl540.0 kHz at 27.0 MHz 
Memory Size: Prog: 6+ 10 words; Data: 4(2+4) words 
Number of clock cycles: 50 (25 instruction cycles) 
Clock Frequency: 20.5 MHzl27.0 MHz 
Cycle time: 97.5 ns04.1 ns 

; *********************************************************************************** 

8-8 

This IIR filter reads the input sample 
from the memory location Y:input 
and writes the filtered output sample 
to the memory location Y:output 

The samples are stored in the X memory 
The coefficients are stored in the Y memory 

The equations of the filter are: 
w(n) = x(n) - ail*w(n -1) - ai2*w(n - 2) 
y(n) = w(n) + bil*w(n -1) + bi2*w(n - 2) 

wIn) 
xln) --I -) -------------.; .... +--J~--------

...... l----- ail 1-1 ---.-+-J----

....... f-----ai2 ---.... .........., .... ---

Figure 8-3. 8-Pole 4-Multiply Cascaded Canonic IIR Filter (Sheet 1 of 2) 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



All coefficients are divided by 2: 
w(n)/2 = x(n)/2 - aiI/2*w(n -1) - ai2/2*w(n - 2) 
y(n)/2 = w(n)/2 + biI/2*w(n -1) + bi2/2*w(n - 2) 

X Memory Organization 

wN(n-1) 
wN(n-2) 

w1(n-1) 
RO. w1(n-2) 

Data + 2*nsec-1 

Data 

Y Memory Organization 
b1N/2 Coef.+4*nsec-1 
b2N/2 
a1N/2 
a2N/2 

b1112 
b2112 
a11/2 

R4. a21/2 Coef. 

; *********************************************************************************** 

, initialization 
. ***************************** , 
nsec 
start 
data 
coef 
input 
output 
igain 

equ 
equ 
equ 
equ 
equ 
equ 
equ 
ori 
move 
move 
move 
move 
move 

4 
$40 
o 
o 
$ffeO 
$ffe1 
0.5 
#$08,mr 
#data,rO 
#coef,r4 
#2*nsec - 1,mO 
#4*nsec-1,m4 
#igain,y1 

opt cc 
; filter loop: 4*nsec+9 

;set scaling mode 
;point to filter states 
;point to filter coefficients 

;y1 = initial gain 

;**************************************************************** 

movep y:input,yO ;get sample 
mpy yO,y1,a x:(rO)+,xO y:(r4)+,yO ;xO=1st section w(n-2),yO=a12/2 

do #nsec,end_cell ;do each section 
mac -xO,yO,a x:(rO) - ,x1 y:(r4) +,y0 ;x1 =w(n-1),yO=ai1/2 
macr -x1,yO,a x1,x:(rO) + y:(r4) +,y0 ;push w(n-1) to w(n-2),y0=bi2/2 
mac xO,yO,a a,x:(rO) + y:(r4)+,yp ;push wIn) to w(n-1),yO=bi1/2 
mac x1,yO,a x:(rO)+,xO y:(r4)+,yO ;next iter:xO = wIn - 2),yo = ai2/2 

end_cell 
rnd a ;round result 
movep a,y:output ;output sample 

.**************************************************************** 

end 

Figure B-3. 8-Pole 4-Multiply Cascaded Canonic IIR Filter (Sheet 2 of 2) 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-9 

&I 



page 132,60,1,1 
;newlms2n.asm 

New Implementation of the delayed LMS on the DSP56000 Revision C 
;Memory map: 

Initial X H 
; x(n) x(n -1) x(n -2) x(n -3) x(n -4) hx hO h1 h2 h3 

] ] ] 
~ ~ ~ 

;hx is an unused value to make the calculations faster. 

opt cc 
ntaps equ 4 
input equ $FFCO 
output equ $FFC1 

org x:$O 
state ds 5 

org y:$O 
coef ds 5 

org p:$40 
move #state,rO ;start of X 
move #2,nO 
move #ntaps,mO ;mod 5 
move #coef+ 1,r4 ;coefficients 
move #ntaps,m4 ;mod 5 
move #coef,r5 ;coefficients 
move m4,m5 ;mod 5 

-smploop , Prog Icyc 
movep y:input,a 
move a,x:(rO) 

;error signal is in y1 
;FIR sum in a=a+h(k) old*x(n-k) 
; h(k)new in b = h(k)old + error*x(n - k -1) 

;get input sample 
;save input sample 

word 
1 

clr 
move 
do 
mac 
macr 

a x:(rO)+,xO ;xO=x(n) 1 

, 

mac 
macr 

-Ims 
move 
move 

x:(rO)+,x1 y:(r4)+,yO ;x1=x(n-1),yO=h(0) 1 
#taps/2,-lms 2 
xO,yO,a yO,b b,y:(r5) + ;a = h(O)*x(n),b= h(O) 1 
x1,y1,b x:(rO)+,xO y:(r4)+,yO ;b=h(0)+e*x(n-1)=h(0)new 1 

;xO=x(n-2) yO=h(1) 
x1,yO,a yO,b b,y:(r5)+ ;a=a+h(1)*x(n-1) b=h(1) 
xO,y1,b x:(rO)+,x1 y:(r4)+,y0 ;b=h(1)+e*x(n-2) 

(rO) - nO 

;x1 = x(n - 3) yO = H(2) 

b,y:(r5) + ;save last new c( ) 
;pointer update 

;(Get d(n), subtract fir output (reg a), multiply by "u", put 
;the result in y1. This section is application dependent.) 

movep a,y:output ;output fir if desired 
jmp -smploop 
end 

1 
1 
3 
1 
1 

Totals: 11 2N +8 

Figure 8-4. LMS FIR Adaptive Filter 

8-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



APPENDIX C 
ADDITIONAL SUPPORT 

User support frol1l the conception of a design through completion is available from Motorola 
and third-party companies as shown in the following list: 

Design 

Prototyping 

Design 
Verification 

MOTOROLA 

Motorola 
Data Sheets 
Application Notes 
Application Bulletins 
Software Examples 
Simulator 

Assembler 
Linker 
C Compiler 
Simulator 
Application Development 

System (ADS) 
In-Circuit Emulator 

Cable for ADS 

Application Development 
System (ADS) 

In-Circuit Emulator 
Simulator 

Third Party 
Data Acquisition Packages 
Filter Design Packages 
Operating System Software 

Logic Analyzer with 
DSP56000/DSP56001 ROM Packages 

In-Circuit Emulators 
Data Acquisition Cards 
DSP Development System 

Cards 
Operating System Software 
Debug Software 

Data Acquisition Packages 
Logic Analyser with 

DSP56000/DSP56001 ROM Packages 
Data Acquisition Cards 
DSP Development System 

Cards 
Application-Specific 

Development Tools 
Debug Software 

OSP56000/0SP56001 USER'S MANUAL C-1 

III 



l1li 

The following is a partial list ofthe support available forthe DSP56000/DSP56001. Additional 
information can be obtained through Dr. BuB or the appropriate support telephone service. 

Motorola DSP Product Support 

• DSP56000CLASx Design-In Software Package which includes: 
Relocatable Macro Assembler 
Linker 
Simulator (simulates single or multiple DSP56000/DSP56001s) 
Librarian 

• DSP56KCCx Full Kernighan and Ritchie C Compiler 

• DSP320to56001 Translator Software 

• DSP56000/DSP56001 Applications Development System (ADS) 

• Support Integrated Circuits 

• DSP Bulletin Board (Dr. BuB) 

• Motorola DSP Newsletter 

• Motorola Field Application Engineers (FAEs) 
See your local telephone directory for the Motorola Semiconductor Sector sales 
office telephone number. 

• Design Hotline 

• Applications Assistance 

• Marketing Information 

• Third-Party Support Information 

• University Support Information 

DSP56000CLASx Assembler/Simulator 

The macro cross assembler and simulator run on: 
1. IBM@) PC, XT, and AT under DOS 2.x and 3.x 
2. Macintosh@) II under MAC as 4.1 or later 
3. SUN-3@) under UNIX@) BSD 4.2 
4. VAX@) under VMS@) 4.5 or later 
5. NeXT@) under Mach 

IBM is a trademark of International Business Machines. 
Macintosh is a trademark of Apple Computer, Inc. 
SUN-3 is a trademark of Sun Microsystems, Inc. 
UNIX is a registered trademark of AT&T Bell laboratories. 
VAX and VMS are trademarks of Digital Equipment Corp. 
NeXT is a trademark of NeXT, Inc. 

C-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 

/ 



Macro Cross Assembler Features: 

• Production of relocatable object modules compatible with linker program when in 
relocatable mode 

• Production of absolute files compatible with simulator program when in absolute mode 

• Supports full instruction set, memory spaces, and parallel data transfer fields of the 
DS P56000/DS P5600 1 

• Modular programming features: local labels, sections, and external definition/refer-
ence directives 

• Nested macro processing capability with support for macro libraries 

• Complex expression evaluation including boolean operators 

• Built-in functions for data conversion, string comparison, and common transcendental 
math functions 

o Directives to define circular and bit-reversed buffers 

• Extensive error checking and reporting 

Simulator Features: 

• Simulation of DSP56001 (default) or DSP56000 

o Simulation of multiple DSP56000/DSP56001 s 

o Linkable object code modules: 
-Nondisplay simulator library 
-Display simulator library 

• C language source code for: 
-Screen management functions 
-Terminal I/O functions 
-Simulation examples 

o Single stepping through object programs 

o Up to 99 conditional or unconditional breakpoints 

• Program patching using a single-line assembler/disassembler 

• Instruction, clock cycle, and histogram counters 

o Session and/or command logging for later reference 

• ASCII input/output files for peripherals 

o Help-file and help-line display of simulator commands 

• Loading and saving of files to/from simulator memory 

• Macro command definition and execution 

• Display enable/disable of registers and memory 

• Hexadecimal/decimal/binary calculator 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL C-3 

Ell 



l1li 

C Language Compiler 

DSP56KCCx C Language Compiler Features: 

• Full Kernighan and Ritchie C 

• Structures/Unions 

• Floating Point 

• In-line assembler language code compatibility 

• Full function preprocessor for: 
-Macro definition/expansion 
-File inclusion 
-Conditional compilation 

• Full error detection and reporting 

DSP320to56001 Translator 

DSP320to56001 Translator Features: 

• Translates any TMS32010 linked object code to DSP56001 source assembler code 

• Two modes of operation: 
-Translates to DSP56001 source assembler code for optimization and assembly 

using DSP56000CLASx 
-Translates and runs lias is" directly and immediately on the DSP56000ADSx 

• C language DSP320t056001 source code is provided in addition to IBM PC/XT/AT object 
code to allow: 

-User modification for TMS32020 or TMS320C25 translation 
-User compilation to accommodate different host platforms 

DSP56000ADSx Application Development System 

DSP56000ADS Application Development System Hardware Features: 

• Full-speed 20.48-MHz operation (upgradable to 27 MHz) 

• Multiple application development module (ADM) support with programmable ADM 
addresses 

• 8K132Kx24 user-configurable RAM for DSP56000/DSP56001 code development 

• 1 K x 24 monitor ROM expandable to 4K x 24 

• 96-pin Euro-card connector making all DSP56001 pins accessible 

• In-circuit emulation capabilities when used with the DSP56KEMUL TRCABL cable 

• Separate berg pin connectors for alternate accessing of serial or hostiDMA ports 

• ADM can be used in standalone configuration 

• No external power supply needed when connected to a host platform 

C-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



DSP56000ADSx Application Development System Software Features: 

• Single/multiple stepping through DSP56000/DSP56001 object programs 

• Up to 99 conditional or unconditional breakpoints 

• Program patching using a single-line assembler/disassembler 

• Session and/or command logging for later reference 

• Loading and saving files to/from ADM memory 

• Macro command definition and execution 

• Display enable/disable of registers and memory 

• Debug commands supporting multiple ADMs 

• Hexadecimal/decimal/binary calculator 

• Host operating system commands from within ADS user interface program 

• Multiple as I/O file access from DSP56000/DSP56001 object programs 

o Fully compatible with the DSP56000CLASx design-in software package 

• On-line help screens for each command and DSP56000/DSP56001 register 

Support Integrated Circuits: 

• 8K x 24 Static RAM (available Q4, 1989) 

• DSP56ADC16 16-bit, 100-kHz analog-to-digital Converter 

Dr. BuB Electronic Bulletin Board 

Dr. BuB is an electronic bulletin board providing free source code for a large variety of 
topics that can be used to develop applications with Motorola DSP products. The software 
library includes approximately 100 files including FFTs, FIR filters, IIR filters, lattice filters, 
matrix algebra routines, companding routines, floating-point routines, a software debug 
monitor, and others. In addition, the latest product information and documentation (in­
cluding information on new products and improvements on existing products) is posted. 
Questions concerning Motorola DSP products posted on Dr. BuB are answered promptly. 
Access to Dr. BuB is through the following phone numbers: 

(212A - 300/1200 Baud) (512) 891-DSP1 
(V.22 - 1200 Baud) (512) 891-DSP2 
(V.22bis - 2400 Baud) (512) 891-DSP3 
Format: 7 data bits, even parity, 1 stop bit 
User ID=guest 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL C-5 

• 



The following is a partial list of the software available on Dr. BuB. 

Document ID Version Synopsis Size 

Codec Routines: 
loglin.asm 1.0 Companded CODEC to linear PCM data 4572 

conversion 
loglin.hlp Help for loglin.asm 1479 

loglint.asm 1.0 Test program for loglin.asm 2184 
loglint.hlp Help for loglint.asm 1993 

linlog.asm 1.1 Linear PCM to companded CODEC data 4847 
conversion 

linlog.hlp Help for linlog.asm 1714 

Fast Fourier Transforms: 
sincos.asm 1.2 Sine-Cosine Table Generator for FFTs 1185 
sihcos.hlp Help for sincos.asm 887 

sinewave.asm 1.1 Full-Cycle Sinewave Table Generator 1029 
Macro 

sinewave.hlp Help for sinewave.asm 1395 

fftr2a.asm 1.1 Radix 2, In-Place, DIT FFT (smallest) 3386 
fftr2a.hlp Help for fftr2a.asm 2693 

fftr2at.asm 1.1 Test Program for FFTs (fftr2a.asm) 999 
fftr2~t. hlp Help for fftr2at.asm 563 

fftr2b.asm 1.1 Radix 2, In-Place, DIT FFT (faster) 4290 
fftr2b.hlp Help for fftr2b.asm 3680 

fftr2c.asm 1.2 Radix 2, In-Place, DIT FFT (even faster) 5991 
fftr2c.hlp Help for fftr2c.asm 3231 

fftr2d.asm 1.0 Radix 2, In-Place, DIT FFT 3727 (using 3727 
DSP56001 sine-cosine ROM tables) 

fftr2d.hlp Help for fftr2d.asm 3457 

III fftr2dt.asm 1.0 Test program for fftr2d.asm 1287 
fftr2dt.hlp Help for fftr2dt.asm 614 

C-6 DSP56000/DSP56001 USER'S MANUAL 



Document 10 Version Synopsis Size 

fftr2e.asm 1.0 1024 Point, Non-In-Place, FFT (3.39ms) 8976 
fftr2e.hlp Help for fftr2e.asm 5011 

fftr2et.asm 1.0 Test program for fftr2e.asm 984 
fftr2et.hlp Help for fftr2et.asm 408 

dct1.asm 1.2 Discrete Cosine Transform using FFT 5471 
dct1.hlp 1.1 Help file for dct1.asm 970 

fftr2cc.asm 1.0 Radix 2, In-place Decimation-in-time 6524 
complex FFT macro 

fftr2cc.hlp 1.0 Help file for fftr2cc.asm 3533 

fftr2cn.asm 1.0 Radix 2, Decimation-in-time Complex FFT 6584 
macro with normally ordered 
input/output 

fftr2cn.hlp 1.0 Help file for fftr2cn.asm 2468 

fftr2en.asm 1.0 1024 point, not-in-place, complex FFT 9723 
macro with normally ordered 

- input/output 
fftr2en.hlp 1.0 Help file for fftr2en.asm 4886 

dhit1.asm 1.0 Routine to compute Hilbert transform in 1851 
the frequency domain 

Filters: 
fir.asm 1.0 Direct Form FIR Filter 545 
fir.hlp Help for fir.asm 2161 

firt.asm 1.0 Test program for fir.asm 1164 

iir1.asm 1.0 Direct Form Second-Order All-Pole 656 
IIR Filter 

iir1.hlp Help for iir1.asm 1786 

iir1t.asm 1.0 Test program for iir1.asm 1157 • iir2.asm 1.0 Direct Form Second-Order All-Pole IIR 801 
Filter with Scaling 

iir2.hlp Help for iir2.asm 2286 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL C-7 



Document ID Version Synopsis Size 

iir2t.asm 1.0 Test program for iir2.asm 1311 

iir3.asm 1.0 Direct Form Arbitrary-Order All-Pole 776 
IIR Filter 

iir3.hlp Help for iir3.asm 2605 

iir3t.asm 1.0 Test program for iir3.asm 1309 

iir4.asm 1.0 Second-Order Direct Canonic IIR Filter 713 
(Biquad IIR Filter) 

iir4.hlp Help for iir4.asm 2255 

iir4t.asm 1.0 Test program for iir4.asm 1202 

iir5.asm 1.0 Second-Order Direct Canonic IIR Filter with 842 
Scaling (Biquad IIR Filter) 

iir5.hlp Help for iir5.asm 2803 

iir5t.asm 1.0 Test program for iir5.asm 1289 

iir6.asm 1.0 Arbitrary-Order Direct Canonic IIR Filter 923 
iir6.hlp Help for iir6.asm 3020 

iir6t.asm 1.0 Test program for iir6.asm 1377 

iir7.asm 1.0 Cascaded Biquad IIR Filters 900 
iir7.hlp Help for iir7.asm 3947 

iir7t.asm 1.0 Test program for iir7.asm 1432 

Ims.hlp 1.0 LMS Adaptive-Filter Algorithm 5818 

transiir.asm 1.0 Impiements the transposed IIR filter 1981 

transiir.hlp 1.0 Help file for transiir.asm 974 

Floating-Point Routines: 

l1li fpdef.hlp 2.0 Storage format and arithmetic 10600 
representation definition 

fpcalls.hlp 2.1 Subroutine calling conventions 11876 
fplist.asm 2.0 Test file that lists all subroutines 1601 
fprevs.hlp 2.0 Latest revisions of floating pt. lib 1799 

C-8 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



Document 10 Version Synopsis Size 

fpinit.asm 2.0 Library initialization subroutine 2329 
fpadd.asm 2.0 Floating-point add 3860 
fpsub.asm 2.1 Floating-point subtract 3072 
fpcmp.asm 2.1 Floating-point compare 2605 
fpmpy.asm 2.0 Floating-point multiply 2250 
fpmac.asm 2.1 Floating-point multiply-accumulate 2712 
fpdiv.asm 2.0 Floating-point divide 3835 
fpsqrt.asm 2.0 Floating-point square root 2873 

·fpneg.asm 2.0 Floating-point negate 2026 
fpabs.asm 2.0 Floating-point absolute value 1953 
fpscale.asm 2.0 Floating-point scaling 2127 
fpfix.asm 2.0 Floating to fixed-point conversion 3953 
fpfloat.asm 2.0 Fixed to floating-point conversion 2053 
fpceil.asm 2.0 Floating-point CEIL subroutine 1771 

durbin.asm 1.0 Solution for LPC coefficients 5615 
durbin.hlp 1.0 Help file for DURBIN.ASM 2904 

fpfrac.asm 2.0 Floating-point FRACTION subroutine 1862 

Functions: 
log2.asm 1.0 Log base 2 by polynomial approximation 1118 
log2.hlp Help for log2.asm 719 

log2t.asm 1.0 Test program for log.asm 1018 

log2nrm.asm 1.0 Normalizing base 2 logarithm macro 2262 
log2nrm.hlp Help for log2nrm.asm 676 

log2nrmt.asm 1.0 Test program for log2nrm.asm 1084 

exp2.asm 1.0 Exponential base 2 by polynomial 926 
approximation 

exp2.hlp Help for exp2.asm 759 

exp2t.asm 1.0 Test program for exp2.asm 1019 

sqrt1.asm 1.0 Square Root by polynomial 991 
approximation 7-bit accuracy 

sqrt1.hlp Help for sqrt1.asm 779 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL C-9 



Document ID Version Synopsis Size 

sqrt1t.asm 1.0 Test program for sqrt1.asm 1065 

sqrt2.asm 1.0 Square Root by polynomial 899 
approximation 10-bit accuracy 

sqrt2.hlp Help for sqrt2.asm 776 

sqrt2t.asm 1.0 Test program for sqrt2.asm 1031 

sqrt3.asm 1.0 Full precision Square Root Macro 1388 
sqrt3.hlp Help for sqrt3.asm 794 

sqrt3t.asm 1.0 Test program for sqrt3.asm 1053 

ILasm 1.1 Linear table lookup/interpolation routine 3253 
for function generation 

ILhlp 1.1 Help for tlLasm 1510 

bingray.asm 1.0 Binary to Gray code conversion macro 601 

bi ng rayt.asm 1.0 Test program for bingray.asm 991 

rand1.asm 1.1 Pseudo Random Sequence Generator 2446 
rand1.hlp Help for rand1.asm 704 

lattice Filters: 
latfir1.asm 1.0 Lattice FIR Filter Macro 1156 
latfir1.hlp Help for latfir1.asm 6327 

latfir1t.asm 1.0 Test program for latfir1.asm 1424 

latfir2.asm 1.0 Lattice FIR Filter Macro (modified modulo 1174 
count) 

latfir2.hlp Help for latfir2.asm 1295 

latfir2t.asm 1.0 Test program for latfir2.asm 1423 

latiir.asm 1.0 Lattice IIR Filter Macro 1257 
latiir.hlp Help for latiir.asm 6402 

latiirt.asm 1.0 Test program for latiir.asm 1407 

C-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Document ID Version Synopsis Size 

latgen.asm 1.0 Generalized Lattice FIR/IIR Filter Macro 1334 
latgen.hlp Help for latgen.asm 5485 

latgent.asm 1.0 Test program for latgen.asm 1269 

latnrm.asm 1.0 Normalized Lattice IIR Filter Macro 1407 
latnrm.hlp Help for latnrm.asm 7475 

latnrmt.asm 1.0 Test program for latnrm.asm 1595 

Matrix Operations: 
matmul1.asm 1.0 [1 x 3][3 x 3] = [1 x 3] Matrix Multiplication 1817 
matmul1.hlp Help for matmul1.asm 527 

matmul2.asm 1.0 General Matrix Multiplication, C=AB 2650 
matmul2.hlp Help for matmul2.asm 780 

matmul3.asm 1.0 General Matrix Multiply-Accumulate, 2815 
C=AB+Q 

matmul3.hlp 1.0 Help for matmul3.asm 865 

Reed-Solomon Encoder: 
readme.rs 1.0 Instructions for Reed-Solomon coding 5200 
rscd.asm 1.0 Reed-Solomon coder for DSP56000 5822 

simulator 
newc.c 1.0 Reed-Solomon coder coded in C 4075 
table1.asm 1.0 Include file for R-S coder 7971 
table2.asm 1.0 Include file for R-S coder 4011 

Sorting Routines: 
sort1.asm 1.0 Array Sort by Straight Selection 1312 
sort1.hlp Help for sort1.asm 1908 

sort1t.asm 1.0 Test program for sort1.asm 689 

sort2.asm 1.1 Array Sort by Heapsort Method 2183 
sort2.hlp Help for sort2.asm 2004 

sort2t.asm 1.0 Test program for sort2.asm 700 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL C-11 



Document ID Version Synopsis Size 

Speech: 
Igsol1.asm 2.0 Leroux-Gueguen solution for PARCOR 4861 

(LPC) coefficients 
Igsol1.hlp Help for Igsol1.asm 3971 

durbin1.asm 1.2 Durbin Solution for PARCOR (LPC) 6360 
coefficients 

durbin1.hlp Help for durbin1.asm 3616 

Standard 1/0 Equates: 
ioequ.asm 1.1 Motorola Standard 110 Equate File 8774 

ioequlc.asm 1.1 Lower Case Version of ioequ.asm 8788 

intequ.asm 1.0 Standard Interrupt Equate File 1082 

intequlc.asm 1.0 Lower Case Version of intequ.asm 1082 

Motorola DSP News 

The Motorola DSP News is a quarterly newsletter providing information on new products, 
application briefs, questions and answers, DSP product information, third-party product 
news, etc. This newsletter is free and is available upon request by calling the marketing 
information phone number listed below. 

Motorola Field Application Engineers 

Information and assistance for DSP applications is available through the local Motorola 
field office. See your local telephone directory for telephone numbers or call (512) 
891-2030. 

Design Hotline - 1-800-521-6274 

This is the Motorola number for information pertaining to any Motorola product. 

C-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Applications Assistance - (512) 891-3230 

Design assistance for specific DSP applications is available by calling this number. 

Marketing Information - (512) 891-2030 

Marketing information including brochures, application notes, manuals, price quotes, etc. 
for Motorola DSP-related products are available by calling this number. 

Third-Party Support Information - (512) 891-3098 

Information concerning third-party manufacturers using and supporting Motorola DSP 
products is available by calling this number. Third-party support includes: 

Filter design software 
Logic analyzer support 
VME boards, IBM-PC/XT/AT boards, MACII boards 
Development systems 
Data conversion cards 
Operating system software 
Debug software 

Additional information is available on Dr. Bub and in DSP News. 

University Support - (512) 891-3098 

Information concerning university support programs and university discounts for all 
Motorola DSP products is available by calling this number. 

Training Courses - (602) 897-8665 

There are two courses available for the DSP56000 Family: 
1. Introduction to the DSP56000/DSP56001 (MTTA5) which is a 4.5-hour audio-tape course 

on the DSP56000lDSP56001 architecture and programming. 
2. Introduction to the DSP56000/DSP56001 (MTT31) which is a four-day instructor-led 

course and laboratory covering the details of the DSP56000/DSP56001 architecture 
and programming. 

Additional information is available by writing: 
Motorola SPS Training and Technical Operations 
Mail Drop HW68 
P. O. Box 21007 
Phoenix, Arizona 85036 

or by calling the number above. A technical training catalog is available which describes 
these courses and gives the current training schedule and prices. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL C-13 

III 



• 

Text Books 

A list of DSP-related books is included here as an aid for the engineer who is new to the 
field of DSP. This is a partial list of DSP references intended to help the new user find 
useful information in some of the many areas of DSP applications. Many books could be 
included in several categories but are not repeated. 

General DSP: 

C-14 

ADVANCED TOPICS IN SIGNAL PROCESSING 
Jae S. Lim and Alan V. Oppenheim 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988 

APPLICATIONS OF DIGITAL SIGNAL PROCESSING 
A. V. Oppenheim 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978 

DESCRETE-TIME SIGNAL PROCESSING 
A. V. Oppenheim and R. W. Schafer 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1989 

DIGITAL PROCESSING OF SIGNALS THEORY AND PRACTICE 
Maurice Bellanger 
New York, NY: John Wiley and Sons, 1984 

DIGITAL SIGNAL PROCESSING 
Alan V. Oppenheim and Ronald W. Schafer 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975 

DIGITAL SIGNAL PROCESSING: A SYSTEM DESIGN APPROACH 
David J. DeFatta, Joseph G. Lucas, and William S. Hodgkiss 
New York, NY: John Wiley and Sons, 1988 

FOUNDATIONS OF DIGITAL SIGNAL PROCESSING AND DATA ANALYSIS 
J. A. Cadzow 
New York, NY: MacMillan Publishing Company, 1987 

HANDBOOK OF DIGITAL SIGNAL PROCESSING 
D. F. Elliott 
San Diego, CA: Academic Press, Inc., 1987 

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 
John G. Proakis and Dimitris G. Manolakis 
New York, NY: Macmillan Publishing Company, 1988 

DSP56000/DSP56()01 USER'S MANUAL MOTOROLA 



MULTIRATE DIGITAL SIGNAL PROCESSING 
R. E. Crochiere and L. R. Rabiner 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983 

SIGNAL PROCESSING ALGORITHMS 
S. Stearns and R. Davis 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988 

SIGNAL PROCESSING HANDBOOK 
C.H. Chen 
New York, NY: Marcel Dekker, Inc., 1988 

SIGNAL PROCESSING - THE MODERN APPROACH 
James V. Candy 
New York, NY: McGraw-Hili Company, Inc., 1988 

THEORY AND APPLICATION OF DIGITAL SIGNAL PROCESSING 
Rabiner, Lawrence R., Gold and Bernard 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975 

Digital Audio and Filters: 

ADAPTIVE FILTER AND EQUALIZERS 
B. Mulgrew and C. Cowan 
Higham, MA: Kluwer Academic Publishers, 1988 

ADAPTIVE SIGNAL PROCESSING 
B. Widrow and S. D. Stearns 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985 

ART OF DIGITAL AUDIO, THE 
John Watkinson 
Stoneham. MA: Focal Press, 1988 

DESIGNING DIGITAL FILTERS 
Charles S. Williams 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986 

DIGITAL AUDIO SIGNAL PROCESSING AN ANTHOLOGY 
John Strawn 
William Kaufmann, Inc., 1985 

DIGITAL CODING OF WAVEFORMS 
N. S. Jayant and Peter Noll 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

• 
C-15 



DIGITAL FILTERS: ANALYSIS AND DESIGN 
Andreas Antoniou 
New York, NY: McGraw-Hili Company, Inc., 1979 

DIGITAL FILTERS AND SIGNAL PROCESSING 
Leland B. Jackson 
Higham, MA: Kluwer Academic Publishers, 1986 

DIGITAL SIGNAL PROCESSING 
Richard A. Roberts and Clifford T. Mullis 
New York, NY: Addison-Welsey Publishing Company, Inc., 1987 

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 
Roman Kuc 
New York, NY: McGraw-Hili Company, Inc., 1988 

INTRODUCTION TO ADAPTIVE FILTERS 
Simon Haykin 
New York, NY: MacMillan Publishing Company, 1984 

MUSICAL APPLICATIONS OF MICROPROCESSORS (Second Edition) 
H. Chamberlin 
Hasbrouck Heights, NJ: Hayden Book Co., 1985 

Controls: 

C-16 

ADAPTIVE CONTROL 
K. Astrom and B. Wittenmark 
New York, NY: Addison-Welsey Publishing Company, Inc., 1989 

ADAPTIVE FILTERING PREDICTION & CONTROL 
G. Goodwin and K. Sin 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984 

AUTOMATIC CONTROL SYSTEMS 
B.C. Kuo 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987 

COMPUTER CONTROLLED SYSTEMS: THEORY & DESIGN 
K. Astrom and B. Witten mark 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984 

DIGITAL CONTROL SYSTEMS 
B.C. Kuo 
New York, NY: Holt, Reinholt, and Winston, Inc., 1980 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



DIGITAL CONTROL SYSTEM ANALYSIS & DESIGN 
C. Phillips and H. Nagle 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984 

ISSUES IN THE IMPLEMENTATION OF DIGITAL FEEDBACK COMPENSATORS 
P. Moroney 
Cambridge, MA: The MIT Press, 1983 

Graphics: 

CGM AND CGI 
D. B. Arnold and P. R. Bono 
New York, NY: Springer-Verlag, 1988 

COMPUTER GRAPHICS (Second Edition) 
D. Hearn and M. Pauline Baker 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986 

FUNDAMENTALS OF INTERACTIVE COMPUTER GRAPHICS 
J. D. Foley and A. Van Dam 
Reading MA: Addison-Wesley Publishing Company Inc., 1984 

GEOMETRIC MODELING 
Michael E. Morteson 
New York, NY: John Wiley and Sons, Inc .. 

GKS THEORY AND PRACTICE 
P. R. Bono and I. Herman (Eds.) 
New York, NY: Springer-Verlag, 1987 

ILLUMINATION AND COLOR IN COMPUTER GENERATED IMAGERY 
Roy Hall 
New York, NY: Springer-Verlag 

POSTSCRIP LANGUAGE PROGRAM DESIGN 
Glenn C. Reid - Adobe Systems, Inc. 
Reading MA: Addison-Wesley Publishing Company, Inc., 1988 

MICROCOMPUTER DISPLAYS, GRAPHICS, AND ANIMATION 
Bruce A. Artwick 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985 

PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS 
William M. Newman and Rogert F. Sproull 
New York, NY: McGraw-Hili Company, Inc., 1979 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

III 

C-17 



III 

PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS 
David F. Rogers 
New York, NY: McGraw-Hili Company, Inc., 1985 

RENDERMAN INTERFACE, THE 
Pixar 
San Rafael, CA. 94901 

Image Processing: 

DIGITAL IMAGE PROCESSING 
William K. Pratt 
New York, NY: John Wiley and Sons, 1978 

DIGITAL IMAGE PROCESSING (Second Edition) 
Rafael C. Gonzales and Paul Wintz 
Reading, MA: Addison-Wesley Publishing Company, Inc., 1977 

DIGITAL IMAGE PROCESSING TECHNIQUES 
M. P. Ekstrom 
New York, NY: Academic Press, Inc., 1984 

DIGITAL PICTURE PROCESSING 
Azriel Rosenfeld and Avinash C. Kak 
New York, NY: Academic Press, Inc., 1982 

SCIENCE OF FRACTAL IMAGES, THE 
M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H. O. Peitgen, 
D. Saupe, and R. F. Voss 
New York, NY: Springer-Verlag 

Numerical Methods: 

C-18 

ALGORITHMS (THE CONSTRUCTION, PROOF, AND ANALYSIS OF PROGRAMS) 
P. Berliout and P. Bizard 
New York, NY: John Wiley and Sons, 1986 

MATRIX COMPUTATIONS 
G. H. Golub and C. F. Van Loan 
John Hopkins Press, 1983 

DSP56000/DSP560q1 USER'S MANUAL MOTOROLA 



NUMERICAL RECIPES IN C - THE ART OF SCIENTIFIC PROGRAMMING 
William H. Press, Brian P. Flannery, 
Saul A. Teukolsky, and William T. Vetterling 
Cambridge Uni,(ersity Press, 1988 

NUMBER THEORY IN SCIENCE AND COMMUNICATION 
Manfred R. Schroeder 
New York, NY: Springer-Verlag, 1986 

Pattern Recognition: 

PATTERN CLASSIFICATION AND SCENE ANALYSIS 
R. O. Duda and P. E. Hart 
New York, NY: John Wiley and Sons, 1973 

CLASSIFICATION ALGORITHMS 
Mike James 
New York, NY: Wiley-Interscience, 1985 

Spectral Analysis: 

STATISTICAL SPECTRAL ANALYSIS, A NON PROBABILISTIC THEORY 
William A. Gardner 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988 

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS 
E. Oran Brigham 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988 

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS 
R. N. Bracewell 
New York, NY: McGraw-Hili Company, Inc., 1986 

Speech: 

ADAPTIVE FILTERS - STRUCTURES, ALGORITHMS, AND APPLICATIONS 
Michael L. Honig and David G. Messerschmitt 
Higham, MA: Kluwer Academic Publishers, 1984 

DIGITAL CODING OF WAVEFORMS 
N. S. Jayant and P. Noll 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

II 

C-19 



DIGITAL PROCESSING OF SPEECH SIGNALS 
Lawrence R. Rabiner and R. W. Schafer 
Englwood Cliffs, NJ: Prentice-Hall, Inc., 1978 

LINEAR PREDICTION OF SPEECH 
J. D. Markel and A. H. Gray, Jr. 
New York, NY: Springer-Verlag, 1976 

SPEECH ANALYSIS, SYNTHESIS, AND PERCEPTION 
J. L. Flanagan 
New York, NY: Springer-Verlag, 1972 

SPEECH COMMUNICATION - HUMAN AND MACHINE 
D. O'Shaughnessy 
Reading, MA: Addison-Wesley Publishing Company, Inc., 1987 

Telecommunications: 

C-20 

DIGITAL COMMUNICATION 
Edward A. Lee and David G. Messerschmitt 
Higham, MA: Kluwer Academic Publishers, 1988 

DIGITAL COMMUNICATIONS 
John G. Proakis 
New York, NY: McGraw-Hili Publishing Co., 1983 

DSP56000/DSP56001 USER'S MANUAL . MOTOROLA 



-A-
A-law, 2-5 
Aborted Instructions, 8-18 
ABS, A-14 
Absolute Address, 7-11 
Absolute Short, 7-13 
Accumulator Shifter, 4-6 
Adaptive Filter, B-1 
Adaptive Filters, 1-2 
ADC, A-16 
ADD, A-18 
Additional Support 

Applications Assistance, C-13 
C Language Compiler, C-4 
Codec Routines, C-6 
Design Hotline,'C-12 
Dr. BuB Electronic Bulletin Board, C-5 
DSP320to56001 Translator, B-4 
DSP56000ADSx Application Development 

System, B-4 
DSP56000CLASx Assembler/Simulator, B-2 
Fast Fourier Transforms, C-6 
Filters, C-7 
Floating Point Routines, C-8 
Functions, C-9 
Lattice Filters, C-10 
Marketing Information, C-13 
Matrix Operations, C-11 
Motorola DSP News, C-12 
Motorola DSP Product Support, B-2 
Motorola Field Application Engineers, C-12 

. Reed-Solomon Encoder, C-11 
Sorting Routines, C-11 
Speech, C-12 
Standard I/O Equates, C-12 
Text Books, C-14 
Third Party Support Information, C-13 
Training Courses, C-13 
University Support, C-13 

ADDL, A-20 
ADDR, A-22 
Address (AO-A 15), 2-9 
Address ALU, 5-3 
Address ALU Registers, A-7 
Address Buses, 2-3 
Address Generation Unit, 2-5, 5-1 
Address Generation Unit Registers, 7-4 
Address Modifier 

Linear Modifier, 5-12 
Modulo Modifier, 5-13 

INDEX 

Address Modifier, Continued 
Reverse-Carry Modifier, 5-17 
Summary, 5-19 

Address Modifier Types, 5-11 
Address Operands, A-7 
Address Output Multiplexers, 5-4 
Address Register 

Indexed by Offset Nn, 5-10 
No Update, 5-7 
Postdecrement by 1, 5-8 
Postdecrement by Offset Nn, 5-9 
Postincrement by 1, 5-8 
Postincrement by Offset Nn, 5-9 
Predecrement by 1, 5-11 
Register Indirect, 5-6 

Address Register Direct, 7-11 
Address Register Indirect Mode, 5-6, 7-11 
Address Registers, 2-5, 5-2, 5-5 
Addressing Mode Encoding, A-8 
Addressing Mode Modifiers, A-8 
Addressing Mode Operators, A-8 
Addressing Modes, 5-5, 5-6, 7-10, A-6 
Addressing Modes Summary, 7-18 
Analog-to-Digital Converter, 1-2 
AND(I), A-26 
Antialias Filter, 1-2 
Applications, 1-5 
Arbitration, 9-16, 9-18 
Architecture, 1-1, 2-1 
Arithmetic Instructions, 7-19 
ASL, A-28 
Assembler, 8-2 
Assembler Syntax and Operation, A-1 
Assembly Language, 7-1 

-8-

BCHG, 9-21, A-32 
BCLR, 9-21, A-37 
BCR, 2-7, 9-10 
Benchmarks, 1-4, B-1 
Binary Operators, A-4 
Bit Manipulation Instructions, 7-20 
Bit Manipulation Unit, 2-3 
Bit Reversed, 5-18 
Block Data Moves, 6-3 
Bootstrap Mode, 2-6 
Bootstrap ROM, 2-6 
BR/BG, 8-36, 8-38 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

• 
INDEX-1 



a 

BSET, 9-21, A-42 
BTST, A-47 
Bus Arbitrator, 2-3 
Bus Control Register, 9-10, 9-12 
Bus GrantiWait (BGIWT), 2-11 
Bus Request/Bus Grant (BR/BG), 6-14, 9-15 
Bus Request/Bus Strobe (BR/BS), 2-10 
Bus StrobelWait, 9-12 
Bus Switch, 2-3 

-c-
Carry Bit, 6-9, A-9 
Central Processor, 4-1 
Circular Buffer, 5-14, 11-56 
Clock Cycles, 9-8 
Clock Oscillator, 6-7, 8-38 
Clock Phases, 8-2, 9-8 
Clock Stabilization Delay, 8-38 
CLR, A-52 
CMP, A-54 
CMPM, A-56 
Coefficients, 4-11 
Condition Code Computation, A-9 
Condition Code Register, 6-8 
Condition Code Register (CCR) Symbols, A-5 
Condition Codes, A-1 
Convergent Rounding, 2-4,4-5,4-11 
Crystal Output (XTAL), 2-12 

Data (DO-D23), 2-10 
Data ALU,2-4, 4-3 

-D-

Data ALU Accumulator Registers, 4-5 
Data ALU Input Registers, 4-3, 4-5 
Data ALU Programming Model, 4-11 
Data ALU Registers, 4-5, 7-4, A-2 
Data ALU Summary, 4-11 
Data Buses, 2-3 
Data Memory Select (DS), 2-10 
Data or Control Register Direct, 7-11 
Data Organization in Memory, 7-7 
Data Organization in Registers, 7-4 
Data Representation, 4-8 
Data ROM Enable, 6-13 
Data Shifter/Limiter, 4-6 
Data Shifters, 4-8 
Digital Filters, 4-11 
Digital-to-Analog Converter, 1-3 
DIV, A-58 
DMA,2-7 
DO, A-63 
DO Instruction Restrictions, 8-6 
DO Loop Control, 6-1 

Dot Product, B-2 
Dr. BuB, B-1 
DSP Applications, 1-5 
DSP Functions, 1-4 
DSP56000 Memory Spaces, 3-1 

Development Mode, 3-3, 3-5 
Mode 0,3-4 
Mode 1,3-4 
Mode 2, 3-4 
Mode 3, 3-5 
Normal Expanded, 3-3, 3-4 
Operating Mode Register, 3-1 
Operating Modes, 3-3 
Program Memory, 3-3 
Security ROM DSP56000 Version, 3-5 
Single Chip, 3-3, 3-4 
X Data RAM, 3-1 
X Data ROM, 3-1 
Y Data RAM, 3-2 
Y Data ROM, 3-2 

DSP56001 Memory Spaces, 3-1 
A-law Expansion Tables, 3-7 
Bootstrap Mode, 3-8, 3-9, 3-11 
Bootstrap ROM, 3-8, 3-12 
Chip Operating Modes, 3-8 
Development Mode, 3-9, 3-12 
Mode 0, 3-9 
Mode 1, 3-9 
Mode 2, 3-12 
Mode 3, 3-13 
Mu-Iaw Expansion Tables, 3-7 
Normal Expanded Mode, 3-9, 3-12 
Operating Mode Register, 3-6 
Program Memory, 3-8 
Sine Wave Table, 3-8 
Single-Chip Mode, 3-9 
Special Bootstrap Mode, 3-9 
X Data RAM, 3-7 
X Data ROM, 3-7 
Y Data RAM, 3-8 
Y Data ROM, 3-8 

Dynamic Range, 2-4 

-E-
Edg~ Sensitive, 6-5, 8-9 
Edge-Triggered, 6-5, 8-19 
Encodings 

Condition Code and Address Encoding, A-242 
Double-Bit Register, A-239 
Effective Addressing Mode, A-242 
Five-Bit Register, A-241 
Four-Bit Register A-240 
Insane Instructions, A-260 
Memory Space Bit, A-241 
Multiply Instruction, A-254 
No Parallel Move, A-244 

INDEX-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Encodings, Countined 
Nonmultiply Instruction, A-256 
Operatio'n Code, A-254 
Parallel Move, A-243 
Program Controller Register, A-242 
Reserved Instruction Codes, A-263 
Single-Bit Register, A-239 
Single-Bit Special Register, A-239 
Six-Bit Register, A-241 
Triple-Bit Register, A-240 
Write Control, A-241 

ENDDO, A-71 
ENDDO Instruction Restrictions, 8-7 
ENDDO Restrictions, A-234 
EOR, A-73 
Exception Priorities within an IPL, 8-17 
Exception Processing, 6-1, 8-8 
Exception Processing State, 8-8 
Exceptions, 11-92 
Execution Units, 1-8, 2-3, 4-1, 6-1 
Expansion Port, 2-7 
EXT:MSP:LSP,4-4 
EXTAL,6-7 
Extension Bit, 6-10, A-9 
External Clock/Crystal Input (EXTAL), 2-12 
External Interrupts, 8-9 
External Memory Access, 6-13 
Fast Interrupt, 6-5, 8-19, 8-24 
Fast Interrupt Restrictions, A-237 
Fetch, 8-20 
Fetch-Decode-Execute, 8-1 
FFT, 3-8, 4-8, 5-4, 5-18, B-2 
FIFO, 11-56 
FIR Filter, B-2, B-4 
Floating Point, 4-8 
Fractional, 4-8, 4-10 
Fractional Arithmetic, 4-7 
Functions, 1-1, 1-4 

-G-
General-Purpose 1/0, 2-6, 2-7, 10-2 

Port B, 10-1 
Port C, 11-1 

Global Data Bus, 6-6 
Ground (GND), 2-'12 

-H-
Hardware Interrupt Sources, 8-9 
Hardware RESET, 6-6 
Harvard Architecture, 1-7 
Host Interface, 10-7 

Command Vector Register, 10-14 
DMA Controller, 10-16, 10-20 
DMA Counter, 10-22 

Host Interface, Continued 
DMA Data Transfer, 10-48 
DMA Interrupts, 10-31 
DMA Status, 10-14, 10-24 
DSP-to-Host Data Transfer, 10-44 
DSP-to-Host DMA Procedure, 10-54 
DSP-to-Host Internal Processing, 10-53 
Example Circuits, 10-54 
Host Address-0-2 (HAO,HA1,HA2), 10-26 
Host Command, 10-15, 10-18, 10-22 
Host Command Interrupt Enable, 10-12 
Host Command Pending, 10-12, 10-14 
Host Command Vector Register, 10-22 
Host Control Register, 10-11 
Host Data Bus (HO-H7), 10-26 
Host Enable (HEN), 10-27 
Host Flag 0, 10-14, 10-20 
Host Flag 1, 10-14, 10-20 
Host Flag 2, 10-12, 10-24 
Host Flag 3, 10-12, 10-24 
Host Interface Interrupts, 10-28 
Host Mode Control, 10-20 
Host Processor Data Transfers, 10-28 
Host ReadlWrite (HRIW), 10-27 
Host Receive Data Full, 10-13 
Host Receive Data Register, 10-14 
Host Receive Interrupt Enable, 10-12 
Host Request, 10-24 
Host Request (HREQ), 10-27 
Host Status Register, 10-13 , 
Host to DSP - Bootstrap Loading, 10-43 
Host to DSP - Command Vector, 10-40 
Host to DSP - Data Transfer, 10-35 
Host-to-DSP DMA Procedure, 10-50 \ 
Host-to-DSP Internal Processing, 10-49 
Host Transmit Data Empty, 10-12, 10-13 
Host Transmit Data Register, 10-13 
Host Transmit Interrupt Enable, 10-12 
Host Transmit Register, 10-14 
Host Vector, 10-22 
INIT, lQ-20, 10-21 
Initialization, 10-31 
Interrupt Control Register, 10-18 
Interrupt Status Register, 10-23 
Interrupt Vector Register, 10-25 
Interrupt-Driven Data Transfers, 10-31 
Interrupts, 10-15 
MC68000, 10-20, 10-25, 10-56 
MC68000/10, 10-17 
MC68020, 10-18, 10-56 
MC68030, 10-56 
MC68HCll, 10-54 
Non-DMA Interrupts, 10-30 
Polling, 10-30, 10-31 
Programming Model, 10-10, 10-17 
Receive Byte Registers, 10-25 
Receive Data from Host, 10-37 
Receive Data Register Full, 10-23 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

II 
INDEX-3 



II 

Host Interface, Continued 
Receive Request Enable, 10-19 
Reset, 10-15, 10-25 
RXH:RXM:RXL, 10-13, 10-14, 10-23 
Termination, 10-60 
Transmit 12-Bit Data to Host, 10-48 
Transmit Byte Registers, 10-25 
Transmit Data Register Empty, 10-23 
Transmit Request Enable, 10-19 
Transmitter Ready, 10-23 
TXH:TXM:TXL, 10-13, 10-14 

Host Acknowledge (HACK), 2-13, 10-27 
Host Address 0-2 (HAO,HA 1 ,HA2), 2-12 
Host Command, 2-8 
Host Data Bus (HO-H7), 2-12 
Host Enable (HEN), 2-12 
Host Interface, 2-6, 2-7, 10-2 
Host ReadIWrite (HRIW), 2-12 
Host Request (HREO), 2-12 

I/O Short, 7-13 
IIR Filter, B-2, B-8 
ILLEGAL, A-75 

-1-

Illegal Instruction, 8-11 
Illegal Instruction" Interrupt, 8-11 
Immediate Data, 7-11 
Immediate Short, 7-11 
Implicit Reference, 7-13 
Input/Output, 2-6 
Insane Instructions, A-260 
Instruction Decoding, 6-1 
Instruction Descriptions, A-11 
Instruction Encoding, A-238 
Instruction Format, 7-3, A-1 
Instruction Latch, 6-3 
Instruction Memory Requirements, A-2 
Instruction Pipeline, 6-6, 8-1 
Instruction Sequence Restrictions, A-232 
Instruction Timing, A-2, A-222 
Instruction Timing Symbols, A-5 
Integer, 4-10 
Internal Interrupts, 8-9 
Interrupt, 8-4 
Interrupt Arbitration, 8-19 
Interrupt Instruction Execution, 8-20 
Interrupt Mask, 6-10 
Interrupt Priority Level, 6-3, 6-10, 8-9, 8-16 
Interrupt Priority Register, 8-16 
Interrupt Processing, 8-8 
Interrupt Sources, 8-9 
Interrupt Types, 8-18 
Interrupts, 10-15 
IROA, 6-5, 8-9 
IROB, 6-5, 8-9 

Jcc, A-77 
JCLR, A-81 
JMP, A-85 
JScc, A-87 
JSCLR, A-90 
JSET, A-95 
JSR, A-100 
JSSET, A-101 

-J-

-L-
L Memory References, 7-9 
Least Mean Square (LMS), B-1, B-10 
Limit Bit, 6-10, A-9 
Limiting, 4-6, 4-7 
Linear Arithmetic, 5-4 
Logical Instructions, 7-19 
Long Interrupt, 6-5, 8-18, 8-24 
Loop Address, 2-6 
Loop Address Register, 6-14 
Loop Count, 2-6 
Loop Counter, 6-14 
Loop Flag (LF), 6-11 
Loop Instructions, 7-20 
LSL, A-107 
LSR, A-108 
LUA, A-110 

MA,6-13 
MAC, 1-6, 4-3, A-112 
MACR, A-114 
Matrix Multiply, B-2 
MB,6-13 
MC680XX, 10-31 

-M-

Memory Ready, 9-12 
Memory Ready Strobe, 9-12 
Memory References, 7-9 
MODA, 6-6, 6-13 
MODAlIROA,2-11 
MODB, 6-6, 6-13 
MODB/IROB, 2-11 
Mode Register, 6-8 
Mode Register (MR) Symbols, A-5 
Modifier Registers, 2-5, 5-2, 5-3, 5-5 
Modulo Arithmetic, 5-4 
MOYE, A-116 
Move Instructions, 7-22 
MOYE(C), A-152 
MOYE(M), A-159 
MOYEP, A-167 
MPY, A-170 

INDEX-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



MPYR, A-172 
Mu-law,2-5 
Multiplier/Accumulator,1-6 
Multiply-Accumulator (MAC), 2-4, 4-3 

-N-
NEG, A-174 
Negative Bit, 6-10, A-9 
NMI,8-9 
Nonmaskable Interrupt, 6-5, 8-11 
NOP, A-176 
NORM, A-177 
Normal Processing State, 8-1 
NOT, A-179 
Notation, A-2 

-0-

Offset Registers, 2-5, 5-2, 5-3, 5-5 
OMR Bit-7, 2-10, 2-11 
Opcode Field, 7-3 
Operand References, 7-8 
Operand Size, 7-3 
Operands, 7-1, A-2 
Operating Mode, 2-6, 6-13 
Operating Mode Register, 2-6, 3-6, 6-11 
Operation Code, A-254 
OR, A-181 
OR(I), A-183 
Overflow Bit, 4-7, 6-9, A-9 

-p-

Parallel Data Moves, 7-22 
Parallel Move, 7-22 

Address Register Update, A-125 
Descriptions, A-118 
Immediate Short Data Move, A-120 
Instruction Coding, A-243 
Long Memory Data Move, A-145 
No Parallel Data Move, A-119 
Register and Y Memory Data Move, A-140 
Register to Register Data Move, A-122 
X Memory and Register Data Move, A-131 
X Memory Data Move, A-127 
XY Memory Data Move, A-149 
Y Memory Data Move, A-136 

Parallel Move Descriptions, A-11 
Parallel Processing, 7-24 
Pipeline, 6-2 

Pipeline Effect, 8-2 
Pipelining, 7-22 
Port A, 2-6, 9-1 

Access Priority, 9-1 
Base Address Register, 10-7 
Boot ROM, 9-6 
Bus Arbitration, 9-15 
DS,9-4 
Extended Address, 10-7, 11-8 
External Memory Access, 9-9 
Peripherals, 9-3 
PS,9-4 
Pullup,9-8 
Read and Write Strobes, 9-3 
Reduced Data Size, 9-6 
Timing, 9-8 
Wait States, 9-10 
X/Y,9-4 

Port B, 2-6, 10-1 
Extended Address, 10-7 
General-Purpose 1/0, 10-2 
HI Description, 10-8 
HI Programming Model, 10-10 
Parallel 110 Timing, 10-4 
Port B Control Register, 10-2 
Port B Data Direction Register, 10-2 
Port B Data Register, 10-2 
Programming Parallel 1/0, 10-4 

Port C, 2-6, 11-1 
Extended Address, 11-8 
General-Purpose 1/0, 11-1 
Parallel 1/0 Timing, 11-6 
Programming Parallel 1/0, 11-1 

Power, 2-12, 9-1, 9-10 
Power Consumption, 8-36 
Power Dissipation, 2-9 
Priority Structure, 8-17 
Processing States, 6-2, 8-1 
Program Address Generation, 6-1 
Program Address Generator, 6-2, 6-3 
Program Control Instructions, 7-24 
Program Control Registers, 7-5, A-3 
Program Controller, 2-6, 6-1 
Program Counter, 2-6, 6-8 
Program Decode Controller, 6-2 
Program Interrupt Controller, 6-2, 6-3 
Program Memory, 2-6 
Program Memory Select (PS), 2-10 
Program References, 7-9 
Programming Model 

Address Generation Unit, 5-4 
Host Interface, 10-10, 10-17 
Data Arithmetic Unit, 4-11 
Program Controller, 6-7 
SCI, 11-9 
SSI,11-72 
Summary, 6-17 

Pullup, 9-8, 11-16, 11-64 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

III 
INDEX-5 



a 

-R-
R, N, and M Register Restrictions, A-237 
Read Enable (RD), 2-10 
Read-Modify-Write, 5-5, 9-21 
Receive Data (RXD), 2-8, 2-13 
Register Direct Mode, 7-10 
Register Indirect, 5-6 
Register Indirect Mode, 7-10 
Register References, 7-9 
REP, 6-3, 8-27, A-185 
REP Restrictions, A-238 
Reserved Instruction Codes, A-263 
RESET, 2-11, 8-9, A-190 

Host Interface, 10-15 
SCI, 11-25 
SSI, 11-88 

Reset Processing State, 8-27 
Restrictions Near the End of DO Loops, A-232 
Reverse Carry, 5-3 
Rn, Nn, and Mn Register Restrictions, 8-8 
RND, A-191 
ROL, A-195 
ROR, A-197 
Round to Nearest (Even), 4-11 
Rounding, 4-8, 4-11, 6-11 
RTI, A-198 
RTI and RTS Instruction Restrictions, 8-7, A-235 
RTS, A-200 

-s-
Saturation Arithmetic, 2-4, 4-6 
SBC, A-202 
Scaling, 4-8 
Scaling Mode, 6-10, 6-11 
SCI 

4X Internal Clock, 11-20 
1 X Clock, 11-20 

"2X Internal Clock, 11-20 
8051, 11-12 
Address Mode Wakeup, 11-15, 11-53 
Asynchronous Data, 11-39 
Asynchronous Data Reception, 11-39 
Asynchronous Data Transmission, 11-41 
Asynchronous Transmit/Receive Example, 11-47 
Break, 11-25, 11-41 
Circular Buffers, 11-56 
Clock Divider, 11-21 
Clock Out Divider, 11-21 
Common Baud Rates, 11-26 
Data Transmission Priority, 11-25 
Example Circuits, 11-64 
Exceptions, 11-28 
Featu res, 11-8 
FIFO, 11-56 
Framing Error Flag, 11-20 

SCI, Continued 
Idle Line Flag, 11-19 
Idle Line Interrupt Enable, 11-16 
Idle line Wakeup, 11-15, 11-53 
Initialization, 11-26 
Interrupts, 11-41 
MC68681, 11-12 
MC68HC11,11-12 
Multidrop, 11-47 
Multidrop Example, 11-56 
Multidrop Transmit/Receive Example, 11-61 
Overrun Error Flag, 11-19 
Parity Error, 11-19 
Polling, 11-41 
Preamble, 11-16, 11-25, 11-41 
Programming Model, 11-9 
Receive Clock Mode Source Bit, 11-22 
Receive Data (RXD), 11-9 
Receive Data Register Full, 11-19 
Received bit 8 (address bit), 11-20 
Receiver Enable, 11-16 
Receiver Wakeup Enable, 11-15 
Reset, 11-25 
SCI Clock Control Register (SCCR), 11-9, 11-20 
SCI Clock Polarity, 11-18 
SCI Clock Prescaler, 11-22 
SCI Control Register (SCR), 11-9, 11-11 
SCI Data Registers, 11-23 
SCI Receive Data Registers (SRX), 11-9 
SCI Receive Interrupt Enable, 11-17 
SCI Receive Reg isters, 11-23 
SCI Serial Clock (SCLK), 11-9 
SCI Shift Direction, 11-12 
SCI Status Register (SSR), 11-9, 11-18 
SCI Timer, 11-61 
SCI Timer Example, 11-64 
SCI Transmit Data Address Register (STXA), 11-9 
SCI Transmit Data Registers (STX), 11-9 
SCI Transmit Interrupt Enable, 11-17 
SCI Transmit Registers, 11-24 
Send Break, 11-12 
SRIINT,11-17 
Synchronous Data, 11-32 
Synchronous Master, 11-32 
Synchronous Mode, 11-38 
Synchronous Receive, 11-39 
Synchronous Slave, 11-35 
Synchronous Transmit, 11-38 
Timer Interrupt Enable, 11~17 
Transmit Clock Source Bit, 11-22 
Transmit Data (TXD), 11-9 
Transmit Data Register Empty, 11-18 
Transmitter Empty, 11-18 
Transmitter Enable, 11-16 
Transmitting Data and Address Characters, 11-49 
Wakeup Mode Select, 11-15 
Wired-OR Mode, 11-53 
Wired-OR Mode Select, 11-16 
Word Select, 11-11 

INDEX-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



SCI Serial Clock (SCLK), 2-8, 2-13 
Security ROM DSP56000 Version, 1-1,3-1,3-5,6-13 
Semaphores, 9-20 
Serial Communication Interface, 2-6, 2-8, 2-13 
Serial Control One (SC1), 2-13 
Serial Control Two (SC2), 2-14 
Serial Control Zero (SCO), 2-13 
Shared Memory, 9-16 
Shifter/Limiter, 2-4, 6-11 
Short Jump Address, 7-13 
Sign Extension, 4-5 
Signal Description, 2-9 
Signaling, 9-20 
Simulator, 8-27 
Software Interrupt, 8-11 
SP and SSH/SSL Manipulation Restrictions, A-235 
Special Addressing Mode, 7-11 
SSI 

Asynchronous, 11-104 
Baud Rates, 11-92 
CCITT, 11-118 
Circular Buffer, 11-131 
Clock Source Direction, 11-79 
Codec, 11-113, 11-118, 11-136 
Compact Disk Player, 1 f~114 
Continuous Clock, 11-87, 11-104, 11-128 
Continuous/Gated Clock Selection, 11-96 
Data/Operation Formats, 11-96 
Double Buffered, 11-128 
Example Circuits, 11-138 
Exceptions, 11-92 
Features, 11-66 
Flags, 11-133 
Frame Rate Divider Control, 11-76 
Frame Sync, 11-99, 11-107 ' 
Frame Sync Length, 11-79 
Gated Clock, 11-87, 11-99, 11-104, 11-128 
Gated Clock Control, 11-79 
Initialization, 11-88 
Input Flags, 11-99 
MC15500,11-113 
Multidrop, 11-136 
Network, 11-93 
Network Mode, 11-67, 11-76, 11-119 
Network Mode Examples, 11-118 
Network Mode Receive, 11-124 
Network Mode Transmit, 11-122 
Normal, 11-93 
Normal Mode, 11-67, 11-76 
Normal Mode Examples, 11-107 
Normal Mode Receive, 11-114 
Normal Mode Transmit, 11-113 
Normal/Network Mode Selection, 11-96 
On-Demand Mode, 11-67, 11-76, 11-93, 11-128 
On-Demand Mode Example, 11-127 
Operational Modes, 11-87 
Output Flags, 11-99, 11-114 
Prescale Modulus Select, 11-72 

SSI, Continued 
Prescaler Range, 11-76 
Programming Model, 11-72 
Receive Data Register, 11-84 
Receive Frame Sync Flag, 11-82 
Receive Shift Register, 11-83 
Receiver Overrun Error Flag, 11-83 
Reset, 11-88 
SCO, 11-71 
SC1, 11-71 
SC2, 11-72 
SCK,11-69 
Serial Control 0 Direction, 11-77 
Serial Control 1 Direction, 11-77 
Serial Control 2 Direction, 11-77 
Serial Input Flag 0, 11-81 
Serial Input Flag 1, 11-82 
Serial Output Flag 0, 11-77 
Serial Output Flag 1, 11-77 
Shift Direction, 11-79, 11-107 
Speaker Phone, 11-136 
S'PI, 11-96 
SRD,11-69 
SSI Control Register A (CRA), 11-72 
SSI Control Register B (CRB), 11-76 
SSI Mode Select, 11-80 
SSI Receive Data Register Full, 11-83 
SSI Receive Enable, 11-80 
SSI Receive Interrupt Enable, 11-81 
SSI Status Register (SSISR), 11-81 
SSI Transmit Data Register Empty, 11-83 
SSI Transmit Enable, 11-80 
SSI Transmit Interrupt Enable, 11-81 
Start Conversion Signal, 11-99 
STD, 11-68 
Sync/Async Control, 11-79 
Synchronous, 11-67, 11-99, 11-104 
Synchronous/Asynchronous Operating Modes, 

11-99 
Time Division Multiplex, 11-96 
Time Slot Register, 11-84, 11-122 
Transmit Data Register, 11-84 
Transmit Frame Sync Flag, 11-82 
Transmit Shift Register, 11-84 
Transmitter Underrun Error Flag, 11-82 
Word Length Control, 11-76 

SSI Receive Data (SRD), 2-14 
SSI Serial Clock (SCK), 2-14 
SSI Transmit Data (STD), 2-14 
Stack Error, 8-14 
Stack Error Flag (SE), 6-16 
Stack Pointer (SP), 2-6, 6-16 
Stack Pointer Register, 6-15 
Stack References, 7-9 
Status Register, 2-6, 6-8 
STOP, A-204 
Stop Delay, 6-13 
Stop Processing State, 8-38 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL INDEX-7 

II 



• 

StrobelWait,9-10 
SUB, A-206 
SUSL, A-208 
SUBR, A-210 
Summary 

Additional Support, C-1-C-20 
Address Modifier, 5-19 
Addressing Modes, 7-18 
Benchmark, 1-1, B-2, B-3 
Data ALU, 4-11 
DSP Advantages, 1-3 
DSP56000 Family Features, 1-7 
Host Interface, 10-8 
Programming Model, 6-17 
SCI, 11-8 
SSI,11-66 
Pipeline-Related Restrictions, 8-6 

SWI, 6-6, A-212 
Synchronous Serial Interface (SSI), 2-6, 2-8, 2-13 
Syntax, 7-1 
System Stack, 6-2, 6-15 
System Stack High (SSH), 6-15 
System Stack Low (SSL), 6-15 
System Stack Memory, 2-6 

Tcc, A-214 
Text Books 

Controls, C-14 

-T-

Digital Audio and Filters, C-14 
Division, A-453 
General DSP, C-14 
Graphics, C-17 
Image Processing, C-18 
Numerical Methods, C-18 
Pattern Recognition, C-19 
Spectral Analysis, C-19 
Speech, C-19 
Telecommunications, C-120 

TFR, A-216 
Three-state, 9-15 
Trace, 6-6, 8-14 

Trace Mode Bit (T), 6-11 
Transmit Data (TXD), 2-8, 2-13 
TST, A-220 

-u-
Unary Operators, A-4 
Underflow Flag (UF), 6-16 
Unnormalized Bit, 6-10, A-9 

-v-
Vectored Interrupt, 8-9 

-w-
WAIT, A-220 
Wait Processing State, 8-36 
Wait States, 8-36, 9-10 

Bus StrobelWait, 9-10 
Write Enable (WR), 2-10 

-x-
X Data Memory, 2-5 
X Memory References, 7-9 
XOR -see EOR 
X/y Select (XIV), 2-10 
XV Memory References, 7-9 

-v-
V Data Memory, 2-5 
V Memory References, 7-9 

-z-
Zero Bit, 6-10, A-9 

INDEX-8 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



-NOTES-



-NOTES-



-NOTES-



-NOTES-

/ 



Introduction II 
Architectural Overview and Bus Structure lEI 

Memory Spaces B 
Data Arithmetic Logic Unit II 

Address Generation Unit and'Address Modes II 
Program Controller II 

Instruction Set Introduction III 
Processing States Ell 

PortA III 
Port B 1m 
Port C III 

Instruction Set Details a 
Benchmark Programs II 

Additional Support II 
Index II 



II Introduction 

II Architectural Overview and Bus Structure 

II Memory Spaces 

II Data Arithmetic Logic Unit 

II Address Generation Unit and Address Modes 

a Program Controller 

II Instruction Set Introduction 

II Processing States 

II PortA 

III Port B 

III Port C 

III Instruction Set Details 

Ell Benchmark Programs 

B Additional Support 

a Index 

A19562-12 PRINTED IN USA 7/91 EVANS PRESS EMTR 2003 10,000 DSP YGAVAA 






