2 UNITED COMPUTER
e e oLoaiEs MIC g

&A’SSOCIATES

8333 Clairemont Mesa Blvd., Suite 102
San Diego, CA 92111
(619) 279-0420

1982/83 Z80
DESIGNERS GUIDE

1982/1983
Z80 DESIGNERS GUIDE

Copyright © 1982 Mostek Corporation (All rights reserved)

Trade Marks Registered ®

Mostek reserves the right to make changes in specifications at any time and without notice. The information furnished by
Mostek in this publication is believed to be accurate and reliable. However, no responsibility is assumed by Mostek for its use;
nor for any infringements of patents or other rights of third parties resulting from its use. No license is granted under any
patents or patent rights of Mostek.

PRINTED IN USA June 1982

1982/1983 Z80 DESIGNERS GUIDE

@) Table of Contents

@ General Information

s

7N
é\é%) Z80 Family Technical Manuals

w’

g@ﬁ MDL Family Technical Manual

/|

0

Mm

;

) Z80 Microcomputer Application Notes

=

v.

TABLE OF CONTENTS

Table of Contents

FUNCHONAI INAEX .« vttt ittt ettt it i i et ettt et e et e et e e e ananennnns 1-1
General Information

Mostek Profilet e -1
Package DesCriptioNSuuuttttet et eetttene it eneeeneentenneeneeneonnennennneannenns -5
Order INformation . .. o\ v ittt et et e e e e e e -7
U.S. and Canadian Sales OffiCeScuuuenenenunterne et eeeneeenerenennnenss -9
U.S. and Canadian RepreSentativesvueutenterenn e nrenneeerneeneneeraneenennns -10
U.S. and Canadian Distributors.vuunttire ettt et e eeeeeneneeraneanenins I-11
International Marketing OffiCesouuueunuereivreieniieiieeteenenraenenrnennnnnn. -13

Z80 Family Technical Manuals

MK3880 CPU Central ProcessingUnitc.ouiieninneniininninenennennnnns -1
MK3881 PIO Parallel /O Controller.oevee et ie i e enenennss 11-89
MK3882 CTC Counter Timer CirCUitvvevrevrenrennennerneennenneennsn -123
MK3883 DMA Direct Memory Access CONrollero.vvvnrvennnernneeennnnns -159
MK3884/5/7 SIO Serial I/0 Controlleroviuiinininen it iniinennennnns m-177
MK3801 STI Serial Timer Interrupt Controllero.vviirininnenrnnnnnn. 11-249
MDL Technical Manual

1 - T 1T V-1
280 Microcomputer Application Notes

Add Serial Communication Capability to the 8086,/8088 Family Using the Z80 SIO V-1
Z80 Interfacing Techniques for Dynamic RAMoitintvtin i in et e eeeneennanens V-7
Applying the Z80 SIO in Asynchronous Data Communicationsoueeeenrenenennnnnn. V-23
Using the MK3807 VCU in a Microprocessor ENVIronmentovueeininenenenennnnnnns V-29
Use of the MK3805 CIOCK/RAMttt iiiet it tie et ee s eeeneaneananes V-49
CMOS MK3805 Provides Real Time Clock/Calendarto aZ80BUScovvvverennan.n. V-105

1982/1983 Z80 DESIGNERS GUIDE

(9 Table of Contents

@) General Information

| £80 Family Technical Manuals

) MDL Family Technical Manual

| Z80 Microcomputer Application Notes

/

Mostek - Technology For Today And Tomorrow

TECHNOLOGY

From its beginning, Mostek has been an
innovator. From the developments of the 1K
dynamic RAM and the single-chip calculator
in 1970 to the current 64K dynamic RAM,
Mostek technological breakthroughs have
proved the benefits and cost-effectiveness of
metal oxide semiconductors. Today, Mostek
represents one of the industry’s most
productive bases of MOS/LSI technology,
including Direct-Step-on-Wafer processing
and laser implemented redundant circuitry.

The addition of the Microelectronics
Research Center in Colorado Springs adds a
new dimension to Mostek circuit design
capabilities. Using the latest computer-aided
design techniques, center engineers will be
keeping ahead of the future with new
technologies and processes.

QUALITY

The worth of a product is measured by
how well it is designed, manufactured and

-1

tested and by how well it works in your
system.

In design, production and testing, the
Mostek goal is meeting specifications the
first time on every product. This goal requires
a collective discipline from the company as
well as individual efforts. Discipline, coupled
with very personal pride, has enabled
Mostek to build in quality at every level of
production.

PRODUCTION CAPABILITY

The commitment to increasing production
capability has made Mostek the world's
largest manufacturer of dynamic RAMs. We
entered the telecommunications market in
1974 with a tone dialer, and have shipped
millions of telecom circuits since then.
Millions of our MK3870 single-chip
microcomputers are in use throughout the
world. Recent construction in Dallas, Ireland
and Colorado Springs has added some
50 percent to the Mostek manufacturing
capacity. '

THE PRODUCTS

Telecommunications Products

Mostek is the leading supplier of tone
dialers, pulse dialers, and CODEC devices.
As each new generation of telecom-
munications systems emerges, Mostek is
ready with new generation components,
including PCM filters, tone decoders,
repertory dialers, new integrated tone
dialers, and pulse dialers.

These products, many of them using
CMOS technology, represent the most
modern advancements in telecom-
munications component design.

Industrial Products

Mostek’s line of Industrial Products offers
a high degree of versatility per device. This
family of components includes various
microprocessor-compatible A/D converters,
a counter/time-base circuit for the dIVISIon
of clock signals, and combined
counter/display decoders. As a result of the
low parts count involved, an economical
alternative to discrete logic systems is
provided.

-2

Memory Products

Through innovations in both circuit design,
wafer processing and production, Mostek
has become the industry’s leading supplier
of dynamic RAMs.

Examples of Mostek leadership are
families of x1 and x8 high performance static
RAMs and our extremely successful 64K
ROMs with more codes processed than any
other mask-ROM in the industry. Another
performance and density milestone is our
256K ROM, the MK38000. In MOS Dynamic
RAMs, Mostek led the way as the world’s
leading supplier of 16K devices.

Our MK4564 64K dynamic RAM uses
advanced circuit techniques and design to
enhance manufacturability to satisfy the
demands of a huge marketplace.

Microcomputer Components

Mostek’s microcomputer components
cover the entire spectrum of microcomputer
applications.

Our MK68000 16-bit microprocessor is
designed for high-performance, memory-
intensive systems.

Our Z80 is today's industry-standard 8-bit
microprocessor. The Mostek 3870 family of
single-chip microcomputers offers upgrade
options in ROM, RAM, and I/0—all in the
same socket. The MK38P70 EPROM
piggyback microcomputer emulates the
entire family and is ideal for low-volume
applications.

Development systems include the
RADIUS™ remote development station that
lets you use your host minicomputer to
develop the applications software. The
program is then downloaded into the
RADIUS which then lets you perform real-
time in-circuit emulation and debug. The
Mostek Matrix™ Development System is a
stand-alone hardware and software debug
and integration system.

Microcomputer Systems

Mostek is the world's leading manufac-
turer of Z80-based STD BUS system
components. A new line of microsystems
utilizing the VME BUS and based on the
MK®68000 will be available soon.

Computer systems include our Matrix line
which utilize STD BUS cards to let you
custom-design your own system.

Military Products

An extension of the high quality in
fabrication and design inherent in Mostek’s
product line allows many of our ICs to be
made available screened to MIL-STD-883. In
addition, select parts are qualified to the

11-3

rigors of MIL-M-38510 and are processed on
our QPL certified lines.

The MKB product line begins with the
complete Memory Products offering, and
extends into microprocessors and gate
arrays. Leadless Chip Carrier packaging and
prepared customer SCDs address the
particular needs of the military community.

Memory Systems

Taking full advantage of our leadership in
memory components technology, Mostek
Memory Systems offers a broad line of
products, all with the performance and
reliability to match our industry-standard
circuits. Mostek Memory Systems offers add-
in memory boards for popular DEC, Data
General, and Perkin-Elmer minicomputers.

Mostek also offers special purpose and
custom memory boards for special applications.

Gate Arrays

Utilizing the technology developed by
United Technologies Microelectronic
Research Center, Mostek plans to market
custom gate array circuits in the second half
of 1982.

s .

ek -
oy b
[HEDE

MOSTEK.

MICROCOMPUTER PRODUCTS
Package Descriptions

Plastic Dual-In-Line Package (N) ez
40 Pin

3

C

2 “©
800

NOM.

—T T
! —

asot.010
010 % .002
018] r
.0184,003 8501080
080+ 318 ¢
l-—— 19 EQUAL SPACES @ .100 — =
wNore:

Ceramic Dual-In-Line Package (P)

40Pn : DH :

G20 Min
f —+l=-.010% 002

le——— 645+ 055——=f

018 ¢ 003

(3 ks
19 tauat spaces 102,010
w o feomron
AN e Wala)
% %
14w om.
540
NOM.

-

180£.010

1010 ¢ .002

-

w1

13EQUAL SPACES @ .100——={
NOTE:

080 +.010
:j\l

Ceramic Dual-In-Line Package (P)
28 Pin

2 - b

6103 018
5953 015
.
T v
—{ j*—os0%.015 "

s W_L :

—lle—oteso0s o
L’——— 645 + .085———]
T

EQUAL SPACES

Plastic Dual-In-Line Package (N)

16 Pin
o o)) . -j}o—mogmo
i Renannnn
- [e]
d
(VAAVAvAvAvAvAS)
760 MAX. .

30010 l "] l

120
018 . MIN.
MIN.
.0182,003
010
- 080+ 012
- 7 EQUAL SPACES o
@.100

NOTE: Overall length includes .010 flash on sither end of package

Plastic Dual-In-Line Package (N)
89“ ‘ ‘ V.
' €
Y

fe—— 425 MAX.——

3 EQUAL
SPACES @ ,100

NOTE: Overall length includes .010 flash on sither and of package

-6

ORDERING INFORMATION

Factory orders for parts described in this book should include a four-part number as explained below:

Example: MKji4167P -|3f
1. Dash Number

2. Package

3. Device Number

4. Mostek Prefix
1. Dash Number

One or two numerical characters defining specific device performance characteristics and operating
temperature range.

2. Package

- Gold side-brazed ceramic DIP

- Epoxy DIP (Plastic)

- Tin side-brazed ceramic DIP
Ceramic DIP with transparent lid
- Ceramic leadless chip carrier

- Dual density RAM-PAC

- Flat pack

mMom—4 X2 710
'

3. Device number

1XXX or 1IXXXX - Shift Register, ROM

2XXX or 2XXXX - ROM, EPROM

3XXX or 3XXXX - ROM, EPROM

38XX - Microcomputer Components

4XXX or 4XXXX - RAM

BXXX or BXXXX - Counters, Telecommunication and Industrial
7XXX or 7XXXX - Microcomputer Systems

4. Mostek Prefix

MK - Standard Prefix

n-7

U.S. AND CANADIAN SALES OFFICES

CORPORATE HEADQUARTERS

Mostek Corporation
1215 W. Crosby Rd.
P.0.Box 169
Carroliton, Texas 75006

REGIONAL OFFICES

Northeastern Area
Mostek

49 W. Putnam, 3rd Floor
Greenwich, Conn. 06830
203/622-0955

TWX 710-579-2928

Northeast U.S.

Mostek

29 Cummings Park, Suite #426
Woburn, Mass. 01801

617/935-0635

TWX 710-348-0459

Southeastern Area

Mostek

40018 Greentree Executive Campus
Route #73

Mariton, New Jersey 08053
603/596-9200

TWX 710-940-0103

Soutmm us.

13907 N. Dale Mabry Highway
Suite 201

Tampa, Florida 33618
813/962-8338

TWX 810-876-4611

Upstate NY Region
Mostek

4651 Crossroads Park Dr., Suite 201
Liverpool, NY 13088
315/457-2160

TWX 710-945-0255

Chicago Region

Mostek .

Two Crossroads of Commerce
Suite 360

Rolling Meadows, I1l. 60008
312/577-9870

TWX 910-291-1207

North Central U.S.
Mostek

6101 Green Valley Dr.
Bloomington, Mn. 55438
612/831-2322

TWX 910-576-2802

Michigan

Mostek

Orchard Hill Place
21333 Hagnerty Road
Suite 321

Novi, Ml 48050
313/348-8360

TWX 810-242-1471

Central U.S.
Mostek

4100 McEwen Road
Suite 151

Dallas, Texas 75234
214/386-9340
TWX 910-860-5437

Southwest Region
Mostek

4100 McEwen Road
Suite 237

Dallas, Texas 75234
214/386-9141

TWX 910-860-5437

Chevy Chase #4

7715 Chevy Chase Dr., Suite 116
Austin, TX 78752
512/458-5226

TWX 910-874-2007

Western Region
:l;nhern California

lostek
1762 Technology Drive
Suite 126
San Jose, Calif. 95110
408/287-5080
TWX 910-338-2219

Soam. Region
Moste

1107 Nonh East 45th St.
Suite 411

Seattle, WA 98105
206/632-0245

TWX 910-444-4030

aomhom California

18004 Skvpark Circle
Suite 1

Irvine, Cahf 92714
714/549-0397

TWX 910-595-2513

Amon- Region

2150 East Highland Ave.
Suite 101

Phoenix, AZ 86016
602/954-6260

TWX 910-957-4581

U.S. AND CANADIAN REPRESENTATIVES

ALABAMA

Conley & Associates, Inc.
3322 Memorial Pkwy., S.W.
Suite 17

Huntsville, AL 35801

205.

TWX 810-726-2159

ARIZONA

Sum it Sal

7825 E Redfleld Rd.
Scottsdale, AZ 86260
602/998-4850

TWX 910-950-1283

CALIFORNIA
Harvey King, Inc.
8124 Miramar Road
San Diego, CA 92126
714/566-5252

TWX 910-335-1231

COLORADO
Waugaman Associates*
Van Gordon
Wheat Ridge, CO 80033
303/423-1020 .
TWX 910-938-0750

CONNECTICUT

New England Technical Sales.

240 Pomeroy Ave.
Meriden, CT 06450
203/237-8827
TWX 710-461-1126

FLORIDA
Conley & %s:ociates, Inc.*

TWX 810—856 3620

Conley & Associates, Inc.
4021 W. Waters

Suite 2

Tampa, FL 33614
813/885-7658

TWX 810-876-9136

Conley & Associates, Inc.
P.O. Box

1612 N.W. 2nd Avenue
Boca Raton, FL 33432

305/395-6108
TWX 510-953-7548

*Home Office

GEORGIA

onley & Associates, Inc.
3951 Pleasantdale Road
Suite 201
Doraville, GA 30340
414/447-6992
TWX 810-766-0488

ILLINOIS

Carlson Electronic Sales*
600 East Higgins Road

Elk Grove Village, IL 60007
312/956-8240

TWX 910-222-1819

INDIANA

Rich Electronic Marketing®
599 Industrial Drive
Carmel, IN 46032
317/844-8462

TWX 810-260-2631

Rich Electronic Marketing
3448 West Taylor St.

Fort Wayne, IN 46804
219/432-6553
TWX810-332-1404

I0OWA :
REP Associates
980 Arica Ave.
Marion, 1A 52302
319/393-0231

KANSAS

Rush & West Associates”
107 N. Chester Street
Olathe, KN 66061
913/764-2700

Wichita 316/683-0206
TWX 910-749-6404

KENTUCKY

Rich Electronic Markatmg
8819 Roman Court
P.0.Box 91147
Loulsvulle. KY 40291
502/499-7808

TWX 810-536-37567

MARYLAND

Arbotek Associates
3600 St. Johns Lane
Ellicott City, MD 21043
301/461-1323

TWX 710-862-1874

MASSACHUSETTS

New England Technical Sales*
135 Cambridge Street
Burlington, MA 01803
617/272-0434

TWX 710-332-0435

Computer Marketing

241 Crescent St. /2nd Floor
Waltham, MA 02164
617/894-7000

. 710-324-1503

MICHIGAN

Action Components
21333 Haggerty. Road
Suite 201

Novi, MI 48050
313/349-3940

MINNESOTA

Cahill, Schmitz & Cahill, Inc.*

315 N. Pierce

St. Paul, MN 55104
2/646-7217

TWX 910-563-3737

Micro Resources, Inc.
2700 Chowen Avenue South
Minneapolis, MN 65416

MISSOURI

Rush & West Associates
481 Melanie Meadows Lane
Ballwin, MO 63011
314/394-7271

NORTH CAROLINA
Conley & Associates, Inc.
4050 Wake Forest Road
Suite 102

Raleigh, NC 27609
919/876-9862

TWX 610-928-1829

NEW JERSEY
Tritek Sales, Inc.

1 E. Euclid Ave.
Haddonfield, NJ 08033
609/429-1551
215/627-0149 (Philadelphia Line)
TWX 710-896-0881

NEW MEXICO
Waugaman Associates
P.0. Box 14894
Albuquerque, NM 87111

or
9004 Menaul NE
Suite 7
Albuquerque, NM 87112
505/294-143

505/294-1436 (Ans. Service)

n-10

NEW YORK

ERA Inc.

354 Veterans Memorial Highway
Commack, NY 11726
516/543-0510

TWX 510-226-1485

{New Jersey Phone #
800/645-5500, 5501)

Precision Sales Corp.

5 Arbustus Ln., MR-97
Binghamton, NY 13901
607/648-3686
607/648-8833

Pracision Sales Corp.*

Liverpool, NY 13008
315/451-3480
TWX 710-545-0260

Precision Sales Corp.
3594 Monroe Avenue
Pittsford, NY 14634
716/381-2820

Precision Sales Corp.
Drake Road .
Pleasant Valley, NY 12569
914/636-3233

OHIO

The Lyons Corp.
4812 Fredsnek Rd.
Dayton, Ohio 45414
513/278-0714
TWX 810-459-1754

The Lyons Corp.

4615 N. Streetsboro Rd.
Richfield, Ohio 44286
216/669-9224

TWX 810-427-9103

' OREGON

Northwest Marketing Assoc.
9999 S.W. Wilshire St.
Suite 124

Portland OR 97225
503/297-2681

TELEX 910-464-5157
TENNESSEE

Conley & Associates, Inc.
1128 Tusculum Bivd.
Suite D

Greenville, TN 37743
615/639-3139

TWX 810-576-4597

UTAH

Waugaman Associates
10332 South 1640 W
South Jordan, UT 84065
801/ 254 -0570

801 254-05
TWX 910-925-4073

WASHINGTON

Northwest Marketing Assoc.*
12835 Bellevue-Redmond Rd.
Suite 2

Bellevue, WA 98005
206/455-5846

TWX 910-443-2445

WISCONSIN

Carlson Electronic Sales
Northbrook Executive Ctr.
10701 West North Ave,
Suite 209

Milwaukee, WI 53226
414/476-2790

TWX 910-222-1819

CANADA

Cantec Representatives Inc.*
1573 Laperriere Ave.
Ottawa, Ontario

TWX 610-562-8967

Cantec Representatives Inc.
15 Charles Street, East
Kitchener, Ontario

Canada N2G2P3

/744-6341
TWX 610-492-2683 (Toronto)

Cantec Representatives inc.
8 Strathearn Ave, Unit 18
Brampton, Ontario

Canada L6T4L8
416/791-5922

TWX 610-492-2683
Cantec Representatives Inc.
3639 Sources Bivd.

Suite 116

Dollard Des Ormeaux, Quebec
Canada H9B2K4
514/683-6131

TWX 610-422-3985

U.S. AND CANADIAN DISTRIBUTORS

ARIZONA

Kierulff Electronics

4134 E. Wood St.

Phoenix, AZ 8!

602/243-4101

TWX 810/961-1650

Kierulff Electronics
1806 W. Grant Rd.

Suite 102

Tumn AZ 85705

602/62

TWX 910/952 1119

CALIFORNIA
Arrow Electronics
4029 Westerly Place’
ng 15, Unit 113
Newport Beach, CA 92660
(714) 851-8961
TWX 910/595-2861
Arrow Electronics
19748 Dearborn St.
Chatsworth, CA 91311
(213) 701-7500
TWX 910-493-2086
Arrow Electronics
9511 Ridgehaven Court
San Diego, CA 92123
(714) 565-4
TWX 910/335-1195
Arrow Electronics
621 Weddell Dr.
Sunnyvale, CA 94086
408

/7451
TWX 910/339-9371
Kierulff Electronics
2585 Commerce Way
Los Angeles, CA 90040
213/725-0326
TWX 910/580-3106
Kierulff Electronics

415/968-6292
Kierulff Electronics
8797 Balboa Avenue
San Diego, CA 92123
714/278-2112

TWX 910/335-1182
Kierulff Electronics
14101 Franklin Avenue
Tustin, CA 92680
714/731-5711

TWX 910/595-2599
Schweber Electronics
17811 Gillette Avenue
Irvine, CA 92714
714/556-3880

TWX 910/595-1720
Schweber Electronics
3110 Patrick Henry Dr.
Santa Clara, CA 95050
408/496-0200
Zeus/West, Inc.

1130 Hawk Circle
Anaheim, CA 92807
714/632-6880

TWX 910/691-1961

COLORADO

(303) 768-2100

TWX 910/931-0552
Kierulff Electronics
10890 E. 47th Avenue
Denver, CO 80239
303/371-

TWX 910/932-0169

CONNECTICUT
Arrow Electronics

12 Beaumont Rd.
Woualll ovd, CT 06492

2
TWX 710/47601 62
Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury, CT 06810
203/792-3500
TWX 710/456-9405

FLORIDA

Arrow Electronics

1001 N.W. 62nd St.
Suite 108

Ft. Lauderdale, FL 33309
305/776-7790

TWX 510/955-9456
Arrow Electronics

TWX 610-969-6337
Diplomat Southland
2120 Cal
Clnrwaler, FL 33515
813/443-4514

TWX 810/866-0436
Kierulff Electronics
3247 Tech Drive

St. Patersbu FL 33702
813/576-191

TWX 81 0/083 65625

GEORGIA

Arrow Electronics

2979 Pacific Drive

Norcross, GA

404/449-8252

TWX 810/766-0439
Schweber Electronics

303 Research Drive, Suite 210
Norcross, GA 30092
404/449-9170

ILLINOIS
Arrow Electronics
492 Lunt Avenue
P. 0. Box 94248
Schaumburg, IL 80193
312/893-
TWX 910/291-3644
Kierulff Elecwomcl
1636 Landmeier R
Elk Grove Village, IL 60007
312/640-0200
TWX 910/222-0351
Schweber Electronics
904 Cambridge Dr.
Elk Grove Village, IL 60007
312/364-3750
INDIANA
Advent Electronics

6 Moller

lndlanapolls, IN 46268
31 7/872-4910

TWX 810/341-3228
Arrow Electronics
2718 Rand Road
Indianapolis, IN 46241
317/243-9353

TWX 810/341-3119
Pioneer Electronics
6408 Castleplace Drive
Indianapolis, IN 46250
317/849-7300

TWX 810/260-1794

IOWA

Advent Electronics

682 58th Avenue

Court South West
Cedar Rapids, IA 52404

319/363-0221

TWX 910/526-1337

Arrow Electronics

1930 St. Andrews Dr., NE

Cedar Rapids, IA 52402

(319) 395-7230

-1

MARYLAND
Arrow Electronics

1 Benson Avenue
Baltimore, MD 21227
301/247-6200
TWX 710/236-3005
Pioneer Electronics
9100 Gaither Road
Gaithersburg, MD 20877
301/948-0710
TWX 710/828-0545
Schweber Electronics
218 Gaither Rd.
uanhersburg, MD 20877

301/
TWX 71 0/ 828-9749

MASSACHUSETTES
Arrow Electronics

TWX 710/393-6770
Kierulff Electronics

13 Fortune Drive
Billerica, MA 01865
617/935-5134

TWX 710/390-1449
Lionex Corpormon

1 North A

Buvlmgton, MA 01803
617/272-1660

TWX 710/332-1387
Schweber Electronics
25 Wiggins Avenue
Bedford, MA 01730
617/275-6100

TWX 710/326-0268
Zeus/New England, Inc.
25 Adams Street
Burlington, MA 01803
617/273-0753

TWX 710/322-0716

MICHIGAN

Arrow Electronics
3810 Varsity Drive
Ann Arbor, Ml 48104
313/971-8220

TWX 810/223-6020
Pioneer Electronics
13485 Stamford

TWX 91 0/242 3271
Schweber Electronics
10260 Hubbard Ave.
Livonia, Mi 48150
313/525-8100

TWX 810/242-2983

MINNESOTA
Arrow Electronics
5230 W. 73rd Street
Edina, MN 56435
612/830-1800
TWX 810/576-3125
Kierulff Electronics
7667 Cahill Rd.
Edina, MN 55435
612/941-7500
TWX 910/576-2721

MISSOURI

Arrow Electronics
2380 Schuetz Road

St. Louls, MO 6314
314/567-6!

TWX 910/764 0882
Olive Electronics

9910 Page Bivd.

St. Louis, MO 63132
314/426-4500

TWX 910/763-0720
Semiconductor Spec
3805 N. Oak Trafficway
Kansas City, MO 64116
816/452-3900

TWX 910/771-2114
NEW HAMPSHIRE
Arrow Electronics

1 Perimeter Rd.
Manchester, NH 03103
603/668-6968

TWX 710/220-1684

NEW JERSEY

Arrow Electronics
Pleasant Valley Avenue
Morrestown, NJ 08057
609/235-1900

TWX 710/897-0829
Arrow Electronics

285 Midland Avenue
Saddlebrook, NJ 07662
201/797-5800

TWX 710/988-2206
Kieruiff Electronics

3 Edison Place
Fairfield, NJ 07006
201/675-6750

TWX 710/734-4372
Schweber Electronics
18 Madison Road
Fairfield, NJ 07006
201/227-7880

TWX 710/734-4305

U.S. AND CANADIAN DISTRIBUTORS

NEW MEXICO

Arrow Electronics

2460 Alamo Ave. S.E.
Albuquerque, NM 87106
505/243-4566

TWX 910/989-1679

NEW YORK
Add Electronic
7 Adier Drive |
E. Syracuse, NY 13057 %
315/437-0300
Arrow Electronics
900 Broad Hollow Rd.
Farmingdale, LI, NY 11735
516/694-6800
TWX 510/224-6494
Arrow Electronics
7705 Maltlage Drive

Box -

TWX 71 0/ 545-0230
Arrow Electronics
3000 S. Winton Road
Rochester, NY 14623
716/275-0300

TWX 510/253-4766
Arrow Electronics

20 Oser Ave.
Hauppauge, NY 11787
516/231-1000

TWX 510/227+ 6623
Lionex Corporation

TWX 51 0/ 227-1042
Schweber Electronics
3 Town Line Circle
Rochester, NY 14623
716/424-2222
Schweber Electronics
Jericho Turnpike
Westbury, NY 11590
516/334-7474
TWX'610/222-3660
Zeus/Long Island

401 Broad Hollow Rd.
Melville, NY 11746
516/752-9551

TWX 710/567-1248

Zeus Components Components, Inc.

100 Midland Avenue .
Port Chester, NY 10573
914/937-7400

TWX 710/567-1248

NORTH CAROLINA
Arrow Electronics

938 Burke St.

Winston Salem, NC 27102
919/725-8711

TWX 510/931-3169
Arrow Electronics

3117 Poplarwood Court
Suite 123, P.O. Box 95163
Raleigh, NC 27625

TWX 919/876-3132
Hammond Electronics
2923 Pacific Avenue
Greensboro, NC 27406
919/275-6391

TWX 510/925-1094

*Franchised for USA and Canada excluding California for military products

OHIO

Arrow Electronics
7620 McEwen Road
Centerville, OH 45459
513/435-56563

TWX 810/459-1611
Arrow Electronics

6238 Cochran Road
Solon, OH 44139
216/248-3990

TWX 81074279409
Pioneer Electronics
4800 East 131st Street
Cleveland, OH 44105
216/587-3600 *

TWX 810/422-2211
Pioneer Electronics
4433 Interpoint Bivd.
Dayton, OH 45424
513/236-9900

TWX 810/459-1622
Schweber Electronics *
23880 Commerce Park Road
Beachwood, OH 44122
216/464-2970

TWX 810/427-9441

OKLAHOMA

Quality Components
9934 East 21st South:
Tulsa, OK 74129 - -
918/664-8812: -

OREGON

Kierulff Electronics
4273 NW Science Park

Portland, OR 97229

503/641-9150

TWX 910/467-8753

PENNSYLVANIA
Arrow Electronics

650 Seco Rd.
Monroeville, PA 15146
412/856-7000
Pioneer Electronics
560 Alpha Drive
Pittsburgh, PA 15238
412/782-2300

TWX 710/795-3122
Pioneer Electronics
261 Gibraltar
Horsham, PA 19044
215/674-4000

TWX 510/665-6778.
Schweber Electronics
101 Rock Road
Horsham, PA 19044
215/441-0600

SOUTH CAROLI NA
Hammond Electronics
1035 Lowndes Hill Rd.
Greenville, SC 29602
803/233-4121

TWX 810/281-2233

TEXAS

Arrow Electronics
10125 Metropolitan Dr.
Austin, TX 78758
512/835-4180

Arrow Electronics
13715 Gamma Road

TWX 910/860-5377
Arrow Electronics
10700 Corporate Drive
Suite 1

Stafford, TX 77477
713/491-4100
TWX 910/880-4439
Quality Components
4257 Kellway Circle
Addison, TX 76001
214/387-4949
TWX 910/860-5459
Quality Components
2427 Rutland Drive

TWX 910/874-1377
Quality Components
6126 Westline
Houston, TX 77036
713/772-7100
Schweber Electronics
10625 Richmond, Smta 'IOO
Houston, TX 77042
713/784-3600

TWX 910/881 4836
Zeus/Dallas, Inc.
14001 Goldmark Dr.
Suite 250

TWX 910/867-9422

-12

UTAH
Arrow Electronics

4980 Amelia Earhart Dr. _

Salt Lake City, UT 84116
(801) 539-1135

Kierulff Electronics

2121 South 3600 West
Salt Lake City, UT 84119
801/973-6913

WASHINGTON
Arrow Electronics
14320 NE 21st
Bellevue, WA 98005
(206) 643-4800
TWX 910/444-2017
Kierulff Electronics
1053 Andover Park East
Tukwila, WA 98188
206/575-4420

TWX 910/444-2034
Zeus/West

23701 150th S.E.
Monroe, WA 98279

WISCONSIN

Arrow Electronics
434 Rawson Avenue
Oak Creek, WI 53164
414/764-6600

TWX 910/262-11 93
Kierulff Electronics
2212 E. Moreland Bivd.
Waukesha, Wi 53186
414/784-8160

TWX 910/265-3653

CANADA
Prelco Electronics
2767 Thames Gate Drive
Mississauga, Ontano
Toronto LAT 1G5
416/678-0401
TWX 610/492-8974
Prelco Electronics,
480 Port Royal St.
Montreal 357 P.Q. H3L 289 ¢
514/389-8051
TWX 610/421-3616
Prelco Electronics
1770 Woodward Drive
Ottawa, Ontario K2C 0P8
613/226-3491
Telex 05-34301
R.AE. Industrial
3455 Gardner Coutt

. V6G 447

TWX 61079293065
Zentronics
141 Catherine Street
Ottawa, Ontario

2P 1C3
613/238-6411
Zentronics
8 Tilbury Court
Brampton, Ontario
L6T3T4 (Toronto) ¥
416/451-9600
Telex 06-97678
Zentronics
505 Locke St.
St. Laurent, Quebec

HA4T IX7
514/735-5361
Telex 058-27535
Zentronics

590 Berry Street

St. James, Manitoba
R2H

vl
204/775-8661
Zentronics
480 “A” Dutton Drive -
Waterloo, Ontario
N2L 4C6 *
519/884-5700
R.A.E. Industrial
11680 170th St.
Edmonlon, Alberta T5S 1J7

51-4001
Telex 03-72653
Zentronics
550 Cambie St.
Vancouver, B.C. V6B 2N7
604/688-2533 -
Telex 04507789
Zentronics N
3651 21st Street, N.E.
Calgary, Alberta T2E 6T5
403/230-1422
Zentronics
9224 27th Avenue'
Edmonton, Alberta TN 182
403/463-3014
Zentronics
30 Sommonds Drive, Unit B
Dartmouth, N.S. B3B1R3 -
902/463-8411

INTERNATIONAL MARKETING OFFICES

EUROPEAN HEAD OFFICE
Mostek International

Av de Tervuren 270-272 Bte 21
B-1150 Brussels/Belgium
02/762.18.80

Telex: 62011

FRANCE

Mostek France s.ar.l.
30 Rue du Morvan
SILIC 505

F-84623 Rungis Cedex
(1)687 34.14

Telex: 204049

GERMANY
PLZ1-5

Mostek GmbH
Friedlandstrasse 1
D-2085 Quickborn
(04106) 2077/78
Telex: 213685

PLZ6-7

Mostek GmbH
Schurwaldstrasse 15
D-7303 Neuhausen/Filder
(07158) 66.45

Telex: 72.38.86

PLZ8

Mostek GmbH
Zaunkonigstr. 18
D-8012 Ottobrunn
(089) 95.10.71
Telex: 5216516

ITALY

Mostek italia SRL

Via F.D. Guerrazzi 27
120145 Milano

(02) 318.6337/349.2696
and 34.23.89

Telex: 333601

JAPAN

Mostek Japan KK
Sanyo Blidg. 3F

1-2-7 Kita-Aoyama
Minato-Ku, Tokyo 107
(03) 404-7261

Telex: J23686

SWEDEN

Mostek Scandinavia AB
Spjulvagen 7

S-17561 Jérfélla
Sweden

08-36.2820

Telex: 12997

UNITED KINGDOM
Mostek UK. Ltd.
Masons House,

1-3 Valley Drive
Kingsbury Road
London, NW.9
01-204 9322

Telex: 25940

FAR EAST

Mostek Asia Ltd.

Kam Chung Commercial Bldg.
19 Hennessy Rd. 11/FL

P.O. Box 10786 Hong Kong
Phone: 5.296.886

Telex: 78072585 MKHK

INTERNATIONAL SALES REPRESENTATIVES/DISTRIBUTORS

ARGENTINA

Rayo Electronics S.R.L.
Belgrano 990, Pisos 6y2
1092 Buenos Aires
(38)-1779, 37-9476
Telex - 122153

AUSTRALIA

Amtron Tyree Pty.Ltd.
176 Botany Street
Waterloo, N.SW. 2017
(61) 69-89.666

Telex - 25643

AUSTRIA

Transistor Vertriebsges, mbH
Auhofstrasse 41 A

A-1130 Vienna

(0222) 82 9451, 83 9404
Telex - 0133738

BRASIL

Cosele, Ltd.

Rua da Consolacao, 867

Conj. 31

01301 Sao Paulo

(55) 11-257.35.35/258.43.25
Telex - 1130869

BELGIUM

Sotronic

14 Rue Pere De Deken
B-1040 Brussels

02 736.10.07

Telex - 26141

DENMARK

Semicap APS

Gammel Kongevej 148
DK-1850 Copenhagen
01-22.15.10

Telex - 15987

FINLAND

Insele Oy
Kumpulantie 1
SF-00520 Helsinki 52
0735774

Telex: 122217

FRANCE

Copel

Rue Fourny, Z.I.

B.P. 22, F-78 5630 BUC
(1) 956 1018

Telex: 69379

Facen

110 Av de Flandre
F59290 Wasquehal. Nord
(2)98.92.15

Branch Offices in
Chalon/Saone, Lille,
Nancy, Rouen, Strasbourg

Mecodis

2 Rue Pasteur
F-94380 Bonneuil
(1) 339.20.20
Telex: 250303

PEP.

4 Rue Barthelemy
F-92120 Montrouge
(1)-735.33.20
Telex: 204 534

Scaib

80 Rue d'Arcueil

SiLIC 137

F-94523 Rungis Cedex
(1)-687.23.12

Telex: 204674

Sorhodis

150-152, Rue A. France
F69100 Villeurbanne
(78) 850044

Telex: 380181

GERMANY

Dr Dohrenberg
Bayreuther Strasse 3
D-1000 Berlin 30
(030) 213.80.43
Telex: 0 184860

Neye Enatechnik GmbH
Schillerstrasse 14
D-2085 Quickborn
(04106) 612-1

Telex: 0 213.690

Branch offices in: Berlin, Hannover,
Dusseldorf, Darmstadt, Stuttgart,
Munchen

Raffel-Electronic GmbH
Lochnerstrasse 1
D-4030 Ratingen 1
(2102) 280.24

Telex: 8585180

Siegfried Ecker
Koenigsberger Strasse 2
D-6120 Michelstadt
(6061) 2233

Telex: 4191630

Matronic GmbH
Lichtenberger Weg 3
D-7400 Tuebingen
(7071) 24331

Telex: 7262879

Dema-Electronic GmbH
Bluetenstrasse 21
D-8000 Munchen 40
(089) 288018/19
Telex: 05-29345

HONG KONG
Cet Limited

THE NETHERLANDS
Nijkerk Elektronika BV
Di aat 7

1402 Tung Wah
199-203 Hennessy Road
‘Wanchai, Hong Kong
(6)-72.93.76

Telex - 856148

ISRAEL

Telsys Ltd.

12, Kehilat Venetsia St.
Tel Aviv. Israel
482126/7/8

Telex: 032392

ITALY

Comprel s.r.l.

V.le Romagna. 1

1-20092 Cinisello B. (M)
(02) 61.20.641/2/3/4/5
Telex: 332484

Branch offices in
Bologna, Firenze,
Lavagna, Loreto,
Padova, Roma, Torino,
Vicenza, Bari

Emesa S.P.A.

Via L. da Viadana, 9
1-20122 Milano
(02) 869.0616
Telex: 335066

Branch offices in
Torino, Bologna, Roma

JAPAN

Systems Marketing, Inc.
4th Floor, Shindo Blgd.
3-12-5 Uchikanda,
Chiyoda-Ku,

Tokyo, 100

(81) 3-254.27.51

Telex - 25761

Teijin Advanced Products Corp.
1-1 Uchisaiwai-Cho

2-Chome Chiyoda-Ku

Tokyo, 100

(81) 3-506.46.73

Telex - 23548

KOREA

Vine Overseas Trading Corp.

Room 308 Korea Electric
Association Bldg.

11-4 Supyo-Dong Jung-Ku

Seoul

(82) 2-66-1663

I-13

NL - 1083 HK Amsterdam
(020) 428. 933
Telex: 11625

NEW ZEALAND

E.C.S. Div. of Airspares
P.0. Box 1048

Airport Palmerston North
(77)-047

Telex - 3766

NORWAY

Hefro Teknisk A/S
Postboks 6596
Rodelokka, Oslo 5
02-38.02.86
Telex: 16205

PORTUGAL
Digicontrole LDA
Av. de Roma 105
Sexto Esquerdo
1700 Lisboa
19.682.428
Telex: 15084

SINGAPORE

Dynamar International, LTD.
Suite 526, Cuppage Road
Singapore 0922

SOUTH AFRICA
Radiokom

P.O. Box 66310
Pinegowrie

2123,

Transvaal
789-1400

Telex - 8-0838 SA

SPAIN

Comelta S.A.

Emilio Munoz 41, ESC 1
Planta 1 Nave 2
Madrid-17

01-754 3001/3007
Telex: 42007

Branch Office
Diputacion, 79
Entio 1
Barcelona-15
32570 62
3257575
Telex: 519 34

SWEDEN

TRACO AB, Box 32
$-12221 Enskede
08-13 21 60
Telex: 10 689

Lagercrantz Elektronik AB
Box 48

$-19421 Upplands Vasby
0760 861 20

Telex: 11275

SWITZERLAND
Memotec AG
Gaswerkstrasse, 32
CH-4801 Langenthal
063-28.11.22

Telex: 68636

TAIWAN

Dynamar Taiwan Limited
P.0. Box 67-445

2nd Floor, No. 14, Lane 164
Sung-Chiang Road

Taipei

5418251

Telex - 11064

UNITED KINGDOM
Celdis Limited

37-39 Loverock Road
Reading

Berks RG 31 ED
0734-58.51.71

Telex: 848370

Lock Distribution Ltd.
Neville Street
Chadderton

Oldham

Lancashire

OL9 6LF
061-652.04.31
Telex: 669971

Pronto Electronic Systems Ltd.
466-478 Cranbrook Road,
Gants Hill liford

Essex 1G2 6LE

01-554 6222

Telex: 895 4213

VS| Electronics (UK) Ltd.
Roydondury Industrial Park
Horsecroft Rd.

Harlow

Essex CM19 5BY

(0279) 35477

Telex: 81387

Thame Components Ltd.
Thame Park Road
Thame, Oxon OX9 3XD
084 4213146

Telex: 837917

1982/1983 Z80 DESIGNERS GUIDE

- @ Table of Contents

)} General Information

@D) Z80 Family Technical Manuals

@3 MDL Family Technical Manual

Z80 Microcomputer Application Notes

f .

MOSTEK.

Z80 MICROCOMPUTER DEVICES

Technical Manual

MK3880

- CENTRAL
PROCESSING
UNIT

IIIII

w2

TABLE OF CONTENTS

CHAPTER PAGE
B0 T 1T 1T (T PN -5
2.0 ZB0-CPU AIChItBCIUIE ot ittt vt tnt it eneanaonasnnonnrasesasensenenssan -7
3.0 Z80-CPUPINDESCriPtioN .. .v.uv vttt ennearernnennrenesissensanearannaraeens n-11
L o T U T 77V -15
5.0 Z80-CPU INStruction Set.......oovvivriierrennnnnnnnneererosennaaesens veeees. 123
(=0T = T V- P n-43
7.0 Summary of OP Codes and Execution Timescvvvvennnn s e, -47
8.0 INtErrUPt RESPONSE .. vveveeterurrennessnneeeonanesnseessnnesanssnnnsnnnes 1-59
9.0 Hardware Implementation Examplescoiiiiiiiiiiiiiiiierieaneriaens -65
10.0 Software Implementation EXamplesooviii i iiiiiiiiieniininereieeeienens n-71
11.0 Electrical SpecifiCationsccvuieirereeriereeernriiiiesssssestonearennns mn-77
12.0 Z80 Instruction Breakdown by MachineCyclecoiviiiiiiiveennnnns ool A1-81
13.0 Ordering INformation.oovvutentenniane it inearieeieeneassoeroonesncs-88

-3

n-4

1.0

INTRODUCTION

The term “microcomputer” has been used to describe virtually every type of small computing device
designed within the last few years. This term has been applied to everything from simple
“microprogrammed” controllers constructed out of TTL MSI to low end minicomputers with a portion of the
CPU constructed out of TTL LSI “bit slices.” However, the major impact of the LS| technology within the last
few years has been with MOS LSI. With this technology, it is possible to fabricate complete and very
powerful computer systems with only a few MOS LS| components.

The Mostek Z80 family of components is a significant advancement in the state-of-the-art of
microcomputers. These components can be configured with any type of standard semiconductor memory
to generate computer systems with an extremely wide range of capabilities. For example, as few as two LS|
circuits and three standard TTL MSI packages can be combined to form a simple controller. With additional
memory and 1/0 devices, a computer can be constructed with capabilities that only a minicomputer could
previously deliver. This wide range of computational power allows standard modules to be constructed by a
user that can satisfy the requirements of an extremely wide range of applications.

The major reason for MOS LSI domination of the microcomputer market is the low cost of these few LSl
components. For example, MOS LS| microcomputers have already replaced TTL logic in such applications
as terminal controllers, peripheral device controllers, traffic signal controllers, point of sale terminals,
intelligent terminals and test systems. In fact the MOS LS| microcomputer is finding its way into almost
every product that now uses electronics and it is even replacing many mechanical systems such as weight
scales and automobile controls.

The MOS LSI microcomputer market is already well established and new products using microcomputer
devices are heing developed at an extraordinary rate. The Mostek Z80 component set has been designed to
fit into this market through the following factors:

1. The Z80 is fully software compatible with the popular 8080A CPU offered from several sources.
Existing designs can be easily converted to include the Z80 as a superior alternative.

2. The Z80 component set is superior in both software and hardware capabilities to any other 8-bit
microcomputer system on the market. These capabilities provide the user with significantly lower
hardware and software development costs while also allowing him to add additional features in his
system.

3. Acomplete development and OEM system product line including full software support is available to
enable the user to develop new products easily.

Microcomputer systems are extremely simple to construct using Z80 components. Any such system
consists of three parts:

1. CPU (Central Processing Unit)
2. Memory
3. Interface circuits to peripheral devices

The CPU is the heart of the system. Its function is to obtain instructions from the memory and perform the
desired operations. The memory is used to contain instructions and in most cases data that is to be
processed. For example, a typical instruction sequence may be to read data from a specific peripheral
device, store itin a location in memory, check the parity, and write it out to another peripheral device. Note
that the Mostek component set includes the CPU and various general purpose |/0 device controllers, as
well as a wide range of memory devices. Thus, all required components can be connected together in a very
simple manner with virtually no other external logic. The user’s effort then becomes primarily one of
software development. That is, the user can concentrate on describing his problem and translatingitinto a
series of instructions that can be loaded into the microcomputer memory. Mostek is dedicated to making

- this step of software generation as simple as possible. A good example of this dedication is our assembly

language in which a simple mnemonic is used to represent every instruction that the CPU can perform. This

105

language is self documenting in such a way that, from the mnemonic, the user can understand exactly
what the instruction is doing without constantly checking back to a complex cross listing.

2.0 Z80-CPU ARCHITECTURE

A block diagram of the internal architecture of the Z80-CPU is shown in Figure 2.0-1. The diagram shows
all of the major elements in the CPU and it should be referred to throughout the following description.

Z80-CPU BLOCK DIAGRAM

Figure 2.0-1
8-BIT
DATA BUS
DATA BUS
CONTROL
<: :;‘Esg INTERNAL DATA BUS ALU
INSTRUCTION
DECODE
&
= cpu
CONTROL cPu
CPU AND
SYSTEM U REGISTERS
CONTROL CONTROL
SIGNALS
ADDRESS
CONTROL
+5V GND & 16BIT
: ADDRESS BUS
2.1 CPU REGISTERS

The Z80-CPU contains 208 bits of R/W memory that are accessible to the programmer. Figure 2.0-2
illustrates how this memory is configured into eighteen 8-bit registers and four 16-bit registers. All
Z80 registers are implemented using static RAM. The registers include two sets of six general
purpose registers that may be used individually as 8-bit registers or in pairs as.16-bit registers. There
are also two sets of accumulator and flag registers.

Special Purpose Registers

1. Program Counter (PC). The program counter holds the 16-bit address of the current
instruction being fetched from memory. The PC is automatically incremented after its contents
have been transferred to the address lines. When a program jump occurs, the new value is
automatically placed in the PC, overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current top of a stack
located anywhere in external system RAM memory. The external stack memory is organized as
a last-in first-out (LIFO) file. Data can be pushed onto the stack from specific CPU registers or
popped off the stack into specific CPU registers through the execution of PUSH and POP
instructions. The data popped from the stack is always the last data pushed onto it. The stack
allows simple implementation of multiple level interrupts, unlimited subroutine nestlng and
simplification of many types of data manipulation. ‘

3. Two Index Registers (IX & IY). The two independent index registers hold a 16-bitbase address
that is used in indexed addressing modes. In this mode, an index register is used as a base to
point to a region in memory from which data is to be stored or retrieved. An additional byte is
included in indexed instructions to specify a displacement from this base. This displacement is
specified as a two’s complement signed integer. This mode of addressing greatly simplifies
many types of programs, especially where tables of data are used.

-7

Z80-CPU REGISTER CONFIGURATION

Figure 2.0-2
MAIN REG SET . ALTERNATE REG SET
ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A F
B c B c
GENERAL
) E D e PURPOSE
REGISTERS
H L W L
INTERRUPT MEMORY
VECTOR REFRESH
1 R,
INDEX REGISTER IX
SPECIAL
INDEX REGISTER IY . B RS
STACK POINTER SP
PROGRAM COUNTER PC

4. Interrupt Page Address Register (). The Z80-CPU can be operated in a mode where an indirect
call to any memory location can be achieved in response to an interrupt. The | Register is used
for this purpose to store the high order 8-bits of the indirect address while the interrupting
device provides the lower 8-bits of the address. This feature allows interrupt routines to be
dynamically located anywhere in memory with absolute minimal access time to the routine.

5. Memory Refresh Register (R). The Z80-CPU contains a memory refresh counter to enable
dynamic memories to be used with the same ease as static memories. This 7-bit register is
automatically incremented after each instruction fetch. The data in the register is automatically
incremented after each instruction fetch. The data in the refresh counter is sent out on the lower

" portion of the address bus along with a refresh control signal while the CPU is decoding and
executing the fetched instruction. This mode of refresh is totally transparent to the programmer
and does not slow down the CPU operation. The programmer can load the R register for testing
purposes, but this register is normally not used by the programmer.

Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators and associated 8-bit flag registers. The
" accumulator holds the results of 8-bit arithmetic or logical operations while the flag register
indicates specific conditions for 8 or 16-bit operations, such as indicating whether or not the result of
an operation is equal to zero. The programmer selects with a single exchange instruction the
‘accumulator and flag pair that he wnshes to work with so that he may easily work wnth either pair.

General Purpose Registers

There are two matched sets of general purpose registers, each setcontaining six 8-bit registers that
may be uUsed individually as 8-bit register or as 16-bit register pairs by the programmer. One set is
called BC, DE, and HL while the complementary set is called BD’, DE' and HL'. At any one time the
programmer can select either set of registers to work with through a single exchange command for
“the entire set. In systems where fast interrupt response is required, one set of general purpose
registers and an accumulator/flag register may be reserved for handling this very fast routine. Only
a simple exchange command need be exectited to go between the routines. This command greatly
reduces interrupt service time by ellmunatmg the requirement for saving and retrieving register
contents in the external ‘stack during mterrupt or subroutine processing. These general purpose
registers are used for a wide range of applications by the programmer. They also simplify

2.2

23

programming, especially in ROM based systems where little external read/write memory is
available.

ARITHMETIC & LOGIC UNIT (ALU)
The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU. Internally the ALU

communicates with the registers and the external data bus on the internal data bus. The type of
functions performed by the ALU includes:

Add Left or right shifts or rotates (arithmetic and logical)
Subtract Increment

Logical AND Decrement

Logical OR Set bit

Logical Exclusive OR Reset bit

Compare Test bit
INSTRUCTION REGISTER AND CPU CONTROL
As each instrution is fetched from memory, it is placed in the instruction register and decoded. The
control section performs this function, then generates and supplies all of the control signals

necessary to read or write data from or to the registers, controls the ALU and provides all required
external control signals.

m-10

3.0 = Z80-CPU PIN DESCRIPTION

The Z80-CPU is packaged in an industry-standard 40 pin Dual In-Line Package. The |/0 pins are shown in
Figure 3.0-1 and the function of each is described below.

280 PIN CONFIGURATION

Figure 3.0-1
W N
o 19 32 "
MREQ - 5 M2
SYSTEM iOR0 -— ™ A3
CONTROL Y RD - T. Ay
WR 22 ——» Ag
. g
AFSH a2t A
.__?i.._’ Ag BUS
FALT -] -2 - A9
L» A|0
WAIT = 280 cPU ; = A
cPy . " MK 3880 = 2
CONTROLﬁ INT — MK3880-4 —4. A3
i — MK3880-6 L Ay
2% L5 = A5
RESET ——»
CcPU BUSRQ —25 g
BUS 23
CONTROL | BUSAK -&— 1
t—— D
LAY D,
6 12
® -—"b 4——8-—> D,
+5V — ™ ik D3 DATA
GND — f—— D, BUS
‘9_> [)5
DI
jt———» D,
Ag-Ags Tri-state output, active high. Ag-A;5 constitute a 16-bit address bus. The
(Address Bus) address bus provides the address for memory (up to 64K bytes) data exchanges
and for I/0 device data exchanges. /0 addressing uses the 8 lower address
bits to allow the user to select up to 256 input or 256 output portsdirectly. Ay is
the least significant address bit. During refresh time, the lower 7 bits containa
valid refresh address.
Do - Dy Tri-state input/output, active high. Dy-D5 constitute an 8-bit bidirectional data
(Data Bus) bus. The data bus is used for data exchanges with memory and I/0 devices.
M, Output, active low. M indicates that the current machine cycle is the OP code

(Machine Cycle one)

MREQ
(Memory Request)

IORQ
(Input/Output Request)

fetch cycle of an instruction execution. Note that during execution of 2-byte
op-codes, W is generated as each op code byte is fetched. These two byte
op-codes always begin with CBH, DDH, EDH, or FDH. K/I_1 also occurs with
TORQ to indicate an interrupt acknowledge cycle.

Tri-state output, active low. The memory request signal indicates that the
address bus holds a valid address for a memory read or memory write opera-
tion. . i

Tri-state output, active low. The IORQ signal indicates that the lower half of the

address bus holds a valid 1/0 address for an I/0 read or write operation. An
IORQ signal is also generated with an M, signal when an interrupt is being

n-11

RD
(Memory Read)

WR
(Memory Write)

RFSH
(Refresh)

HALT
(Halt state)

WAIT*
(Wait)

INT
(Interrupt Request)

P

BUSRQ
(Bus Request)

acknowledged to indicate that an interrupt response vector can:be placed.on
the data bus. Interrupt Acknowledge operations occur durmg M, nme while
1/0 operations never occur durlng My:time. : -

Tri-state output, active low 'R'D indicates that the CPU wants toread data from
memory or an I/0 device. The addressed |1/0 device or memory should use
this signal to gate data onto the CPU data bus.

Tri-state output, active low. WR indicates that the CPU data bus holds valid data
to be stored in the addressed memory or 1/0 device.

- Output, active low. RFSH indicates that the lower 7 bits of the address bus

contain a refresh address for dynamic memories and current MREQ signal
should be used to do a refresh read to all dynamic memories. A5 is a logic zero

-and the upper 8 bits of the Address Bus contain the | Register.

Output, active low. HALT Indicates that the CPU has executed a HALT software
instruction and is awaiting either a non maskable or a maskable interrupt (with
the mask enabled) before operation can resume. While halted, the CPU
executes NOP’s to maintain memory refresh activity.

Input, active low. WAIT indicates to the Z80-CPU that the addressed memory
or1/0 devices are not ready for a data transfer. The CPU continues to enter
wait states for as long as this signal is active. This signal allows memory or /0
devices of any speed to be synchronized to the CPU.

Input, active low. The Interrupt Request signal is generated by /0 devices. A
request will be honored at the end of the current instruction if the internal
software controlled interrupt enable flip-flop (IFF)is enabled and if the BUSRQ
signal is not active. When the CPU accepts the interrupt, an acknowledge
signal (IORQduring M, time) is sent out at the beginning of the next instruction
cycle. The CPU can respond to an interrupt in three different modes that are
described in detail in section 8.

Input, negative edge triggered. The non maskable interrupt request line has a
higher priority than INT and is always recognized at the end of the current
instruction, independent of the status of the interrupt enable flip-flop. NMT
automatically forces the Z80-CPU to restart to location 0066,,. The program
counter is automatically éaved in the external stack so that the user can return
to the program that was interrupted. Note that continuous WAIT cycles can
prevent the current instruction from ending, and that a BUSRQ will override a

NI

Input, active low. RESET forces the program counter to zero and |n|t|a||zes the
CPU. The CPU mmallzatlon will:

1) Disable the interrupt enable flip-flop
. 2) Set Register | = 004
. 3) Set Register R=00,

4) Set interrupt Mode O

During reset timé, the address bus and data bus go to a high impedance state
and all control output signals go to the inactive state. No refresh occurs. -

Input, active low. The bus request signal is used to request the CPU address
bus, data bus and tri-state output control signals to go to a high impedance
state so that other devices can control these buses When BUSRQ is activated, -
the CPU W|II set these buses toahigh 1mpeda nce state as. soon as the current
CPU machme cycle is termlnated

m-12

BUSAK*
(Bus Acknowledge)

L4

Output, active low. Bus acknowledge is used to indicate to the requesting
device that the CPU address bus, data bus and tri-state control bus signals

have been set to their high impedance state and the external device can now
control these signals.

Single phase system clock.

*While the Z80-CPU is in either a WAIT state or a Bus Acknowledge condition, Dynamic Memory Refresh

will not occur.

-13

o om1a

4.0 CPUTIMING

The Z80-CPU executes instructions by stepping through a very precise set of a few basic operations. These
include:

Memory read or write
1/0 device read or write
Interrupt acknowledge

All instructions are merely a series of these basic operations. Each of these basic operations can take from
three to six clock periods to complete or they can be lengthened to synchronize the CPU to the speed of
external devices. The basic clock periods are referred to as T states and the basic operations are referred to
as M (for machine) cycles. Figure 4.0-Oillustrates how a typical instruction will be merely a series of specific
M and T cycles. Notice that this instruction consists of three machine cycles (M1, M2 and M3). The first
machine cycle of any instruction is a fetch cycle which is four, five, or six T states long (unless lengthened by
the wait signal which will be fully described in the next section). The fetch cycle (M1)is used to fetch the OP
code of the next instruction to be executed. Subsequent machine cycles move data between the CPU and
memory or 1/0 devices, and they may have anywhere from three to five T cycles (again they may be
lengthened by wait states to synchronize the external devices to the CPU). The following paragraphs
describe the timing which occurs within any of the basic machine cycles. In section 7, the exact timing of
each instruction is specified.

BASIC CPU TIMING EXAMPLE
Figure 4.0-0

T State

Machine Cycle
w1 [m2 | M3
(OP Code Fetch) {Memory Read) (Memory Write)

Instruction Cycle

All CPU timing can be broken down into a few very simple timing diagrams as shown in Figure 4.0-1
through 4.0-7. These diagrams show the following basic operations with and without wait states (wait
states are added to synchronize the CPU to slow memory or 1/0 devices).

4.0-1. Instruction OP code fetch (M1 cycle)

4.0-2. Memory data read or write cycles

4.0-3. 170 read or write cycles

4.0-4. Bus Request/Acknowledge Cycle

4.0-5. Interrupt Request/Acknowledge Cycle

4.0-6. Non maskable Interrupt Request/Acknowledge Cycle
4.0-7. Exit from a HALT instruction

-15

INSTRUCTION FETCH

Figure 4.0-1 shows the timing during an-M1 cycle (OP code fetch). Notice that the PC is placed on:the
address bus at the beginning of the M1 cycle. One half clock time later the MREQ signal goes active. At this
time the address to the memory has had time to stabilize so that the falling edge of MREQ can be used
directly as a chip enable clock to dynamic memories. The RD line also goes active to indicate that the
memory read data should be enabled onto the CPU data bus. The CPU samples the data from the memory
on the data bus with the rising edge of the clock of state T3 and this same edge is used by the CPU to turn off
the RD and MREQ signals. Thus the data has already been sampled by the CPU before the RD signal
becomes inactive. Clock state T3 and T4 of a fetch cycle are used to refresh dynamic memories. (The CPU
uses this time to decode and execute the fetched instruction so that no other operation could be performed
at this time). During T3 and T4, the lower 7 bits of the address bus contain a memory refresh address and
the RFSH signal becomes-active to indicate that a refresh read of all dynamic memories should be
accomplished. Notice that an RD signal is not generated during refresh time to prevent data from different
memory segments from being gated onto the data bus. The MREQ signal during refresh time should be
used to perform a refresh read of all memory elements. The refresh signal cannot be used by itself since the
refresh address is only guaranteed to be stable during MREQ time.

INSTRUCTION OP CODE FETCH
Figure 4.0-1

M1 Cycle
T T2 T3 Ta T

AO ~ A15 | l - REFRESH ADDR. M
weea |\ I N J R W
5 T\ I
L W) S [W S S B
L | -
DO — b7 TN}
AFSn L —

Figure 4.0-1A illustrates how the fetch cycle is delayed if the memory activates the WAIT line. During T2
and every subsequent Tw, the CPU samples the WAIT line with the falling edge of ®. If the WAIT line is
active at this time, another wait state will be entered during the following cycle. Using this technique, the
read cycle can be lengthened to match the access time of any type of memory device.

m-16

INSTRUCTION OP CODE FETCH WITH WAIT STATES

Figure 4.0-1A
MI Cyel
T T, Ty Tw T3 Ta

R [U B \ \ ! QN
AO ~ A15 Y PC M REFRESH ADDR. 1
wREa | L I
D T\ » I

DO - D7 E'\F

i L

S e VA s 0 WY A U) EO
RFSH I

MEMORY READ OR WRITE

Figure 4.0-2 illustrates the timing of memory read or write cycles other than an OP code fetch (M1 cycle).
These cycles are generally three clock periods long unless wait states are requested by the memory via the
WAIT signal. The MREQ signal and the RD signal are used the same as in the fetch cycle. In the case of a
memory write cycle, the MREQ also becomes active when the address bus is stable so that it can be used
directly as a chip enable for dynamic memories. The WR line is active when data on the data bus is stable so
that itcan be used directly as a R/W pulse to virtually any type of semiconductor memory. Furthermore, the
WQR signal goes inactive one half T state before the address and data bus contents are changed so that the
overlap requirements for virtually any type of semiconductor memory type will be met.

MEMORY READ OR WRITE CYCLES
Figure 4.0-2

| Memory Read Cycle Memory Write Cycle ——————==
T T2 T3 Ty -T2 T3
e _\ \ W e W pas W o W o
AD ~ A5 MEMORY ADDR. I MEMORY ADDR.)
mREG |\ T —r
s T\ I T ;
WA J S Y e
%‘gfggf {iv)- {" DATAOUT }—
" 4

S i i T.___J_;__

Figure 4.0-2A illustrates how a WAIT request signal will lengthen any memory read or write operation. This
operation is identical to that previously described for a fetch cycle. Notice in this figure that a separate read
and a separate write cycle are shown in the same figure although read and write cycles can never occur
simultaneously.

MEMORY READ OR WRITE CYCLES WITH WAIT STATES

Figure 4.0-2A
T T2 Tw Tw T3 Tq
@ S \ \ \ \ \
A0 ~ A15 1 MEMORY ADDR. M
VMREQ | \ |
RD \ J READ
DATA BUS) CYcLe
(D0-D7) L
WR \ J }wanz
CYCLE
(DDAJA g;;)s — 1 DATA OUT e
war o YT TIA A [T T T T —Z

INPUT OR OUTPUT CYCLES

Figure 4.0-3 illustrates an /0 read or /0 write operation. Notice that during /0 operations a single wait
state is automatically inserted. The reason for this is that during |/0 operations, the time from when the
TORQ signal goes active until the CPU must sample the WAIT line is very short and, without this extra state,
sufficient time does not exist for an 1/0 port to decode its address and activate the WAIT line if a wait is
required. Also, without this wait state, itis difficult to design MOS 1/0 devices that can operate at full CPU
speed. During this wait state time, the WAIT request signal is sampled. During a read |/0 operation, the RD
line is used to enable the addressed port onto the data bus just as in the case of memory read. For |/0 write
operation, the WR line is used as a clock to the 170 port, again with sufficient overlap timing automatically
provided so that the rising edge may be used as a data clock.

Figure 4.0-3A illustrates how additional wait states may be added with the WAIT line. The operation is
identical to that previously described. :

BUS REQUEST/ACKNOWLEDGE CYCLE

Figure 4.0-4 illustrates the timing for a Bus Request/Acknowledge cycle. The BUSRQ signal is sampled by
the CPU with the rising edge of the last clock period of any machine cycle. If the BUSRQO signal is active, the
CPU will set its address, data and tri-state control signals to the high impedance state with the rising edge of
the next clock pulse. At that time any external device can control the buses to transfer data between
memory and |70 devices. (This is generally known as Direct Memory Access [DMA] using cycle stealing).
The maximum time for the CPU to respond to a bus request is the length of a machine cycle and the external
controller can maintain control of the bus for as many clock cycles as is desired. Note, however, that if very
long DMA cycles are used, and dynamic memories are being used, the external controller must also
perform the refresh function. This situation only occurs if very large blocks of data are transferred under
DMA control. Also note that during a bus request cycle, the CPU cannot be interrupted by either an NMi or
an INT signal. :

11-18

INPUT OR OUTPUT CYCLES

Figure 4.0-3

T T2 Tw' T3 T

4 — \ \ \ \ L.

A0 ~ A7) PORT ADDRESS b {

ioRG L /

RD AN 1 } Read

Cycle

DATA BUS UW }

J— —— s —— e — — b - —— e el e —

WAIT Y I - N I

B
WR \ J }Wnte
Cycle
DATA BUS —t——d{" ouT
*Inserted by Z8U CPY
INPUT OR OUTPUT CYCLES WITH WAIT STATES
Figure 4.0-3A
T T2 Tw' Tw T3

4] \ \ 1 \ 1 | .
A0 ~ A7 1 PORT ADDRESS
ioRQ \ /
DATA BUS “ IN ‘, READ
- 1 — CYCLE
e IO [T T
DATA BUS =—fmeed ouT wiie
- — CYCLE

*Inserted by Z80 CPU

n-19

BUS REQUEST/ACKNOWLEDGE CYCLE
Figure 4.0-4

Any M Cycl Bus Available States ————————»|
Last T State Tx Tx Tx T

® —J 1\ T\ | S A G W
BUSRQ \ . - | /

Sample —% Sample
BUSAK \ I
A0~ A15 —_— ,_______.__.__._:
DO~ D7 —— — —_—'——F‘—_——""
MREQ, RD, }Yy————t—_———
WR, iORQ g Floating -(:

‘ INTEhRUPT REQUEST/ACKNOWLEDGE CYCLE

Figure 4.0-5 illustrates the timing associated with an interrupt cycle. The interrupt signal {INT)is sampled by
the CPU with the rising edge of the last clock at the end of any instruction. The signal will not be accepted if
the internal CPU software controlled interrupt enable flip-flop is not set or if the BUSRQ signal is active.
When the signal is accepted, a special M1 cycle is generated. During this special M1 cycle, the IORQ signal
becomes active (instead of the normal MREQ) to indicate that the interrupting device can place an 8-bit
vector on the data bus. Notice that two wait states are automatically.added to this cycle. These states are.
added so that a ripple priority interrupt scheme can be easily implemented. The two wait states allow

sufficient time for the ripple signals to stabilize and identify which 1/0 device must insert the response - ~

vector. Refer to section 8.0 for details on how the interrupt response vector is utilized by the CPU.

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

Figure 4.0-5
Last-M Cycle) i
: of Instruction
Last T State | T1 | Te Tw" T3
e _ \ L U e VS ps W WY e W
e o VI i o i AU S B
A0~ A15 - ‘ 1 k PC - KREFRESH
i I
[' T\ I
DATA BUS E)
[z s G S SO EOS N S
RD

<1-20

Figure 4.0-5A illustrates how additional wait states can be added to the interrupt response cycle. Again the
operation is identical to that previously described.

INTERRUPT REQUEST/ACKNOWLEDGE WITH WAIT STATES
Figure 4.0-5A

Mi

T T2 Tw" Tw* Tw T3 Ta
@ — L \ \ L A \ \ _

A0 ~ A15 PC X REFRESH ADDR.

LS s S WY A W i i

Mode O shown

NON MASKABLE INTERRUPT RESPONSE

Figure 4.0-6 illustrates the request/acknowledge cycle for the non-maskable interrupt. A pulse on the NMi
input sets an internal NMI latch which is tested by the CPU at the end of every instruction. This NMl latch is
sampled at the same time as the interrupt line, but this line has priority over the normal interrupt, and it
cannot be disabled under software control. Its usual function is to provide immediate response to important
signals such as an impending power failure. The CPU response to a non maskable interrupt is similar to a
normal memory read operation, the only difference being that the content of the data bus is ignored while
the processor automatically stores the PC in the external stack and jumps to location 0066,. The service
routine for the non maskable interrupt must begin at this location if this interrupt is used.

HALT EXIT

Whenever a software halt instruction is executed, the CPU begins executing NOP’s until an interrupt is
received (either a non-maskable or a maskable interrupt while the interrupt flip flop is enabled). The two
interrupt lines are sampled with the rising clock edge during each T4 state, as shown in Figure 4.0-7. If a
non-maskable interrupt has been received or a maskable interrupt has been received and the interrupt
enable flip-flop is set, then the halt state will be exited on the next rising clock edge. The following cycle will
then be an interrupt acknowledge cycle corresponding to the type of interrupt that was received. if both are
received at this time, then the non maskable one will be acknowledged since it was highest priority. The
purpose of executing NOP instructions while in the halt state is to keep the memory refresh signals active.
Each cycle in the halt state is a normal M1 (fetch) cycle except that the data received from the memory is
ignored and an NOP instruction is forced internally to the CPU. The halt acknowledge signal is active during
this time to indicate that the processor is in the halt state.

n-21

NON MASKABLE INTERRUPT REQUEST OPERATION

Figure 4.0-6
Last M Cycle Porat: i < M2, M3*
Last T Time T T2 Ts Ta Ty
® Y \ \ \ \ \ |
L VO I U Iy A AN NS B
AO ~ A15 1 PC) {) REFRESH
™ \ /
MREG \ / \ /
A5 \ L/
RFSH \ l
*M2 and M3 are stack write operations
HALT EXIT
Figure 4.0-7
M M1 - M
Ta T T2 T3 Ta T T2
o 4 1 1\ \ \ \ 1 n
RALT \ /
W T I oty W st St Syt
NV .

HALT INSTRUCTION
IS RECEIVED
DURING THIS
MEMORY CYCLE

m-22

6.0 Z80-CPU INSTRUCTION SET

The Z80-CPU can execute 158 different instruction types including all 78 of the 8080A CPU. The
instructions can be broken down into the following major groups:

5.1

Load and Exchange

Block Transfer and Search
Arithmetic and Logical

Rotate and Shift

Bit Manipulation (set, reset, test)
Jump, Call and Return
Input/Output

Basic CPU Control

INTRODUCTION TO INSTRUCTION TYPES

The load instructions move data internally between CPU registers or between CPU registers and
external memory. All of these instructions must specify a source location, from which the data is to
be moved, and a destination location. The source location is not altered by a load instruction.
Examples of load group instructions include moves between any of the general purpose registers,
such as a move of the data to Register B from Register C. This group also includes load immediate to
any CPU register or to any external memory location. Other types of load instructions allow transfer
between CPU registers and memory locations. The exchange instructions can trade the contents of
two registers.

A unique set of block transfer instructions is provided in the Z80. With a single instruction a block of
memory of any size can be moved to any other location in memory. This set of block moves is
extremely valuable when large strings of data must be processed. The Z80 block search instructions
are also valuable for this type of processing. With a single instruction, a block of external memory of
any desired length can be searched for any 8-bit character. Once the character is found the
instruction automatically terminates. Both the block transfer and the block search instructions can
be interrupted during their execution so as not to occupy the CPU for long periods of time.

The arithmetic and logical instructions operate on data stored in the accumulator and other general
purpose CPU registers or external memory locations: The results of the operations are placed in the
accumulator and the appropriate flags are set according to the result of the operation. An example of
an arithmetic operation is adding the accumulator to the contents of an external memory location.
The results of the addition are placed in the accumulator. This group also includes 16-bit addition
and subtraction between 16-bit CPU registers.

The bit manipulation instructions allow any bit in the accumulator, any general purpose register or
any external memory location to be set, reset or tested with a single instruction. For example, the
most significant bit of register H can be reset. This group is especially useful in control applications
and for controlling software flags in general purpose programming.

The jump, call and return instructions are used to transfer an address between various locations in
the user’s program. This group uses several different techniques for obtaining the new program
counter address from specific external memory locations. A unique type of jump is the restart
instruction. This instruction actually contains the new address as a part of the 8-bit OP code. This
type of jJump is possible since only 8 separate addresses located in page zero of the external memory
may be specified. Program jumps may also be achieved by loading register HL, IX or IY directly into
the PC, thus allowing the jump address to be a complex function of the routine being executed.

The input/output group of instructions in the Z80 allows for a wide range of transfers between
external memory locations or the general purpose CPU registers, and the external I/0 devices. In
each case, the port number is provided on the lower 8 bits of the address bus during any I/0
transaction. One instruction allows this port number to be specified by the second byte of the
instruction, while other Z80 instructions allow it to be specified as the content of the C register. One
major advantage of using the C register as a pointer to the /0 device is that it allows different /0

1-23

5.2

ports to share common software driver routines. This capability is not possible when the:address is
part of the OP code if the routines are stored in ROM. Another feature of these input instructions is
that they set the flag register automatically so that additional operations are not required to
determine the state of the input data (for example its parity). The Z80-CPU includes single
instructions that can move blocks or data (up to 256 bytes) automatically to or from any 1/0 port
directly to any memory location. In conjunction with the dual set of general purpose registers, these
instructions provide for fast 1/0 block transfer rates. The value of this 1/0 instruction set is
demonstrated by the fact that the Z8BO-CPU can provide all required floppy disk formatting (i.e., the
CPU provides the preamble, address, and data, and enables the CRC codes) on double density floppy
disk drives on an interrupt driven basis.

Finally, the basic CPU control instructions allow various options and modes. This group includes
instructions such as setting or resetting the interrupt enable flip flop or setting the mode of interrupt
response.

ADDRESSING MODES

Most of the Z80 instructions operate on data stored in the internal CPU registers, the external
memory, or in the /0 ports. Addressing refers to how the address of this data is generated in each
instruction. This section gives a brief summary of the types of addressing used in the Z80 while
subsequent sections detail the type of addressing available for each instruction group.

Immediate.-In this mode of addressing, the byte following the OP code in memory contains the
actual operand.

OP Code } one or 2 bytes

Operand

An example of this type of instruction would be to load the HL register pair (16-bit register) with 16
bits (2 bytes) of data.

Immediate Extended. This mode is merely an extension of immediate addressing, in that the two
bytes following the op codes are the operand.

OP Code one or 2 bytes

Operand low order

Operand high order

An example of this type of instruction would be to load the HL register pair (16-bit register) with 16
bits (2 bytes) of data.

Modified Page Zero Addressing. The Z80 has a special single byte call instruction to any of 8
locations in page zero of memory. This instruction (which is referred to as arestart) sets the PCto an
effective address in page zero. The value of this instruction is that it allows a single byte to specify a
complete 16-bit address where commonly called subroutines are located, thus saving memory
space.

OP Code one byte

b, doy Effective address is (00bgb4b3000)

n-24

Relative Addressing. Relative addressing uses one byte of data following the OP code to specify a
displacement from the existing program to which a program jump can occur. This displacement is a
signed two’s complement number that is added to the address of the OP code of the following
instruction. ‘

OP Code Jump relative (one byte OP code)

Operand 8-bit two’s complement displacement added to Address (A+2)

The value of relative addressing is that it allows jumps to nearby locations while only requiring two
bytes of memory space. For most programs, relative jumps are by far the most prevalent type of jump
owing to the proximity of related program segments. Thus, these instructions can significantly
reduce memory space requirements. The signed displacement can range between +127 and -128
from A + 2. This allows for a total displacement of +129 to -126 from the jump relative OP code
address. Another major advantage is that it allows for relocatable code.

Extended Addressing. Extended Addressing provides for two bytes (16 bits) of address to be
included in the instruction. This data can be an address to which a program can jump oritcan be an
address where an operand is located.

OP Code % one or two bytes

Low Order Address or Low order operand

High Order Address or High order operand

Extended addressing is required for a program to jump from any location in memory to any other
location, or load and store data in any memory location.

When extended addressing is used to specify the source or destination address of an operand, the
notation (nn) will be used to indicate the content of memory at nn, where nn is the 16-bit address
specified in the instruction. This means that the two bytes of address nn are used as a pointer to a
memory location. The use of the parentheses always means that the value enclosed within them is
used as a pointer to a memory location. For example, (1200) refers to the contents of memory at
location 1200.

Indexed Addressing. In this type of addressing, the byte of data following the OP code contains a
displacement which is added to one of the two index registers (the OP code specifies which index
register is used) to form a pointer to memory. The contents of the index register are not altered by this
operation.

OP Code

two byte OP code
OP Code

Displacement | Operand added to index register to form a pointer to memory.

An example of an index instruction would be to load the contents of the memory location (Index
Register + Displacement) into the accumulator. The displacement is a signed two’s complement
number. Indexed addressing greatly simplifies programs using tables of data since the index register
can point to the start of any table. Two index registers are provided since, very often, operations
require two or more tables. Indexed addressing also allows for relocatable code.

The two index registers in the Z80 are referred to as IX and IY. To indicate indexed addressing, the
notation:

(IX+d) or (IY+d)

n-25

5.3

is used. Here d is the displacement specified after the OP code. The parentheses indicate that this
value is used as a pointer to external memory. :

Register Addressing. Many of the Z80 OP codes contain bits of information that specify which CPU
register is to be used for an operation. An example of register addressing would be to load the data in
register B into register C. :

Implied Addressing. Implied-addressing refers to operations where the OP code automatically
implies one or more CPU registers as containing the operands. An example is the set of arithmetic
operations where the accumulator is always implied. to be the destination of the results.

Register Indirect Addressing. This type of addressing specifies a 16-bit CPU register pair (such as
HL)to be used as a pointer to any location in memory. This type of instruction is very powerful and it
is-used in a wide range of applications.)

OP Code } one or two bytes

An example of this type of instruction would be to load the accumulator with the data in the memory
location pointed to by the HL register contents. Indexed addressing is actually a form of register
indirect addressing except that a displacement is added with indexed addressing. Register indirect
addressing allows for very powerful but simple to implement memory accesses. The block move and
search commands in the Z80 are extensions of this type of addressing where automatic register
incrementing, decrementing and comparing have been added. The notation for indicating register
indirect addressing is to put parentheses around the name of the register that is to be used as the
pointer. For example, the symbol

(HL)

specifies that the contents of the HL register are to be used as a pointer to a memory location. Often
register indirect addressing is used to specify 16-bit operands. In this case, the register contents
point to the lower order portion of the operand while the register contents are automatically
incremented to obtain the upper portion of the operand.

Bit Addressing. The Z80 contains a large number of bit set, reset and test instructions. These
instructions allow any memory location or CPU register to be specified for a bit operation through
one of three previous addressing modes (register, register indirect and indexed), while three bits in
the OP code specify which of the eight bits is to be manipulated.

ADDRESSING MODE COMBINATIONS

Many instructions include more than one operand (such as arithmetic instructions or loads). In these
cases, two types of addressing may be employed. For example, load can use immediate addressing

to specify the source, and register indirect or indexed addressing to specify the source, and register

indirect or indexed addressing to specify the destination.
INSTRUCTION OP CODES

This section describes each of the Z80 instructions and provides tables listing the OP codes for every
instruction. In eachof these tables, the shaded OP codes are identical to those offered in the 8080A
CPU. Also shown is the assembly language mnemonic that is used for each instruction. All
instruction OP codes are listed in hexadecimal notation. Single byte OP codes require two hex
characters while double byte OP codes require four hex characters. The conversion from hex to
binary is repeated here for convenience.

1-26

Hex Binary Decimal Hex Binary Decimal

0 = 0000 = 0 8 = 1000 = 8
1 = 0001 = 1 9 = 1001 = 9
2 = 0010= 2 A = 1010= 10
3 = 0011 = 3 B = 1011 = 1
4 = 0100= 4 C = 1100 = 12
5 = 0101 = 5 D = 1101 = 13
6 = 0110= 6 E = 1110= 14
7 = 0111 = 7 F = 1111 = 15

Z80 instruction mnemonics consist of an OP code and zero, one or two operands. Instructions in
which the operand is implied have no operand. Instructions which have only one logical operand or
those in which one operand is invariant (such as the Logical OR instruction) are represented by a one
operand mnemonic. Instructions which may have two varying operands are represented by two
operand mnemonics.

LOAD AND EXCHANGE

Table 5.3-1 defines the OP code for all of the 8-bit load instructions implemented in the Z80-CPU.
Also shown in this table is the type of addressing used for each instruction. The source of the data is
found on the top horizontal row while the destination is specified by the left hand column. For
example, load register C from register B uses the OP code 48H. In all of the tables the OP code is
specified in hexadecimal notation and the 48H (=0100 1000 binary) code is fetched by the CPU from
the external memory during M1 time, is decoded and then the register transfer is automatically
performed by the CPU.

The assembly language mnemonic for this entire group is LD, followed by the destination, followed
by the source (LD DEST., SOURCE). Note that several combinations of addressing modes are
possible. For example, the source may use register addressing and the destination may be register
indirect, as in the case of loading the memory location pointed to by register HL with the contents of
register D. The OP code for this operation would be 72. The mnemonic for this load instruction would
be as follows: LD (HL), D

The parentheses around the HL mean that the contents of HL are used as a pointer to a memory
location. In all Z80 load instruction mnemonics, the destination is always listed first, with the source
following. The Z80 assembly language has been defined for ease of programming. Every instruction
is self documenting and programs written in Z80 language are easy to maintain.

Note in Table 5.3-1 that some load OP codes that are available in the Z80 use two bytes. This is an
efficient method of memory utilization, since 8, 16, 24 or 32 bit instructions are implemented in the
Z80. Thus often utilized instructions such as arithmetic or logical operations are only 8-bits which
result in better memory utilization than is achieved with fixed instruction sizes such as 16-bits.

All load instructions using indexed addressing for either the source or destination location actually
use three bytes of memory with the third byte being the displacement d. For example, a load register
E, with the operand pointed to by IX with an offset of +8, would be written: LD E, (IX + 8).

The instruction sequence for this in memory would be:

Address A DD
¢ OP Code
A+1 5F
A+2 08 | Displacement operand

The two extended addressing-instructions are also three byte instructions. For example the
instruction to load the accumulator with the operand in memory location 6F32H would be written
as: ; :

LD A, (6F 32H)

and its instruction sequence would be:

Address A 3A | OP Code
A+1 32 | low order address
A+2 6F | high order address

Notice that the low order portion of the address is always the first operand.

The load-immediate instructions for the general purpose 8-bit registers are two-byte instructions.
The instruction load register H with the value 36H would be written as:

LD H, 36H

and its sequence would be:.

Address A 26 | OP Code

A+1 - 36 | Operand

Loading a memory location using indexed addressing for the destination and immediate addressing
for the source requires four bytes. For example,

LD (IX - 15), 21H

would appear as:

Address A DD

OP Code
A+1 36
A+2 F1 | displacement (-15 in -
: signed two’s complement)
A+3 21 | operand to load

Notice that with any indexed addressing the displacement always follows directly after the OP code.

Table'5.3-2 specifies the 16-bit load operations. This table is very similar to Table 5.3-1. Notice'that
the extended addressing capability covers all register pairs. Also notice that register indirect
operations specifying the stack pointer are the PUSH. and. POP Instructions. The mnemonics for
these instructions are. "PUSH" and “POP"’. These instructions differ from other 16-bit loads in that
the stack pointer is automatically decremented and incremented as each byte is pushed onto or
popped from the stack respectively. For example, the instruction

PUSH AF

is a single byte instruction with the OP code of F5H. When this instruction is executed the following
sequence is generated: :

n-28

Decrement SP
LD (SP), A

Decrement SP

LD (SP), F
Thus the external stack now appears as follows:
(SP) F | Top of stack
(SP+1) A
. .
. .

8 BIT LOAD GROUP

Table 5.3-1
SOURCE
MP REGISTER | meginoweer - | ipexen
1 [o ¢ [8c) | o8 Jux+afovea] on) [o |
A D
57
B
c
REGISTER | D
3
H
L
DESTINATION (HL)
REG
INDIReCT | (BC)
(DE)
o0 | oo | oo | oo | oo | oo | oo o
(1x+d) 77| 0| n | 2| 13| 4 | 75 3
d d d d d d d n
INDEXED s
FD| FD]| FO | FD | FD | FD | FD 5
(¥+d) 7w | 0| | 2| 3| | s 3
d d d d d d d M
EXT. ADDR | (nn)
] ED
a7
IMPLIED
R £0
aF

m-29

Rl

The POP instruction is the exact reverse of a PUSH. Notice that all PUSH and POP instructions utilize
a 16-bit operand and the high order byte is always pushed first and popped last.
That is:

PUSH BC is PUSH B then C
PUSH DE is PUSH D then E
PUSH HL is PUSH H then L
POP HL is POP L then H

The instruction using extended immediate addressing for the source obviously requires 2 bytes of
data following the OP code. For example:

LD DE, 0659H
will be:
Address A 11 | OP Code
A+1 59 | Low order operand to register E
A+2 06 | High order operand to register D

In all extended immediate or extended addressing modes, the low order byte always appears first
after the OP code.

Table 5.3-3 lists the 16-bit exchange instructions implemented in the Z80. OP code O8H allows the
programmer to switch between the two pairs of accumulator flag registers while D9H allows the
programmer to switch between the duplicate set or six general purpose registers. These OP codes
are only one byte in length to minimize the time necessary to perform the exchange absolutely, so
that the duplicate banks can be used to effect very fast interrupt response times.

BLOCK TRANSFER AND SEARCH

Table 5.3-4 lists the extremely powerful block transfer instructions. All of these instructions operate
with three registers:

HL points to the source location
DE points to the destination location.
BC is a byte counter.

After the programmer has initialized these three registers, any of these four instructions may be
used. The LDI(Load and Increment) instruction moves one byte from the location pointed to by HL to
the location pointed to by DE. Register pairs HL and DE are then automatically incremented and are
ready to point to the following locations. The byte counter (register pair BC) is also decremented at
this time. This instruction is valuable when blocks of data must be moved, but other types of
processing are required between each move. The LDIR (load, increment and repeat) instruction is an
extension of the LDl instruction. The same load and increment operation is repeated until the byte
counter reaches the count of zero. Thus, this single instruction can move any block of data from one
location to any other.

Note that since 16-bit registers are used, the size of the block can be up to 64K bytes (1K = 1024)
long, and it can be moved from any location in memory to any other location. Furthermore the blocks
can be overlapping since there are absolutely no constraints on the data that is used in the three
register pair.

The LDD and LDDR instructions are very similar to the LDl and LDIR. The only difference is that

register pairs HL and DE are decremented after every move so that a block transfer starts from the
highest address of the designated block rather than the lowest.

-30

BIT LOAD GROUP ‘LD’ ‘PUSH’ and ‘POP’

Table 5.3.-2
SOURCE
IMM. | EXT. | REG.
REGISTER EXT. | ADDR.| INDIR.
AF BC DE HL SP IX 1y nn (nn) (SP)
AF
BC
R DE
E
G
's HL
DESTINATION | T
E
R s)
F9
IX
1y
EXT. ?g
apooR,| n
n
PUSH > REG. (sP) DD FD
INSTRUCTIONS IND. ES ES
NOTE: The Push & Pop Instructions adjust POP
the SP after every execution INSTRUCTIONS

CHANGES ‘EX’ and ‘EXX’
Table 5.3-3

IMPLIED ADDRESSING
AF |BC,DE &HL | HL | Ix %

AF 08

DE
& D9

HL

IMPLIED)

DE

REG. (sP) DD FD
INDIR. E3 E3

BLOCK TRANSFER GROUP

Table 5.3-4

‘LDI’ — Load (DE)=e—(HL)
Inc HL & DE, Dec BC

‘LDIR,” — Load (DE)=—(HL)
Inc HL & DE, Dec BC, Repeat until BC=0

REG.
DESTINATION |,npig | (DE)

DD’ — Load (DE)=w—(HL)
c HL & DE, Dec BC

ED ‘LDDR’ - Load (DE)=e—(HL)
B8 Dec HL & DE, Dec BC, Repeat until BC = 0

Reg HL points to source
Reg DE points to destination
Reg BC s byte counter

Table 5.3-5 specifies the OP codes for the four block search instructions. The first, CPl (compare and
increment) compares the data in the accumulator, with the contents of the memory location pointed
to by register HL. The result of the compare instruction is stored in one of the flag bits (see section 6.0
for a detailed explanation of the flag operations) and the HL register pair is then incremented and the
byte counter (register pair BC) is decremented.

The instruction CPIR is merely an extension of the CPl instruction in which the compare is repeated
until either a match is found or the byte counter (register pair BC) becomes zero. Thus, this single
instruction can search the entire memory for any 8-bit character.

The CPD (Compare and Decrement) and CPDR (Compare, Decrement and Repeat) are similar
instructions, their only difference being that they decrement HL after every compare instruction so
that they search the memory in the opposite direction. (The search is started at the highest location
in the memory block).

It should be emphasized again that these block transfer and compare instructiorjs are extremely
powerful in string manipulation applications.

ARITHMETIC AND LOGICAL

Table 5.3-6 lists all of the 8-bit arithmetic operations that can be performed with the accumulator;
also listed are the increment (INC) and decrement (DEC) instructions. In all of these instructions,
except INC and DEC, the specified 8-bit operation is performed between the data in the accumulator
and the source data specified in the table. The result of the operation is placed in the accumulator
with the exception of compare (CP) that leaves the accumulator unaffected. All of these operations
affect the flag register as a result of the specified operation. (Section 6.0 provides all of the details on
how the flags are affected by any instruction type). INC and DEC instructions specify a register or a
memory location as both source and destination of the result. When the source operand is
addressed using the index registers, the displacement must follow directly. With immediate
addressing the actual operand will follow directly. For example, the instruction

AND O7H
would appear as:

Address A E OP Code
A+1 Operand

1-32

BLOCK SEARCH GROUP

Table 6.3-6

SEARCH
LOCATION
REG.
INDIR.
(HL)
ED ‘CPI’
Al inc HL, Dec BC
ED .| ‘CPIR’, Inc HL, Dec BC
B1 repeat until BC = 0 or find match
ED o .
A9 'CPD’ Dec HL & BC
ED ‘CPDR’ Dec HL & BC
B9 Repeat until BC = 0 or find match

HL points to location in memory
to be compared with accumulator
contents

BC is byte counter

Assuming that the accumulator contained the value F3H, the result of 03H would be placed in the
accumulator:

Acc before operation 11110011 =F3H
Operand 00000111 =07H
Result to Acc 0000 0011 = O3H

The Add instruction (ADD) performs a binary add between the data in the source location and the
data in the accumulator. The subtract (SUB) does a binary subtraction. When the add with carry is
specified (ADC) or the subtract with carry (SBC), then the carry flag is also added or subtracted
respectively. The flags and decimal adjustinstruction (DAA)in the Z80 (fully described in section 6.0)
allow arithmetic operations for:

multiprecision packed BCD numbers
multiprecision signed or unsigned binary numbers
multiprecision two’s complement signed numbers

Other instructions in this group are: logical and (AND); logical or (OR); exclusive or (XOR), and
compare (CP).

There are five general purpose arithmetic instructions that operate on the accumulator or carry flag.
These five are listed in Table 5.3-7. The decimal adjust instruction can adjust for subtraction as well
as addition, thus making BCD arithmetic operations simple. Note that to allow for this operation, the
flag N is used. This flag is set if the last arithmetic operation was a subtract. The negate accumulator
(NEG) instruction forms the two’s complement of the number in the accumulator. Finally, notice that
a reset carry instruction is not included in the Z80 since this operation can be easily achieved
through other instructions such as a logical AND of the accumulator with itself.

Table 5.3-8 lists all of the 16-bit arithmetic operations between 16-bit registers. There are five
groups of instructions, including add with carry and subtract with carry. ADC and SBC affect all of
the flags. These two groups simplify address calculation operations or other 16-bit arithmetic
operations.

m-33

8 BIT ARITHMETIC AND LOGIC
Table 5.3-6

SOURCE

REGISTER ADDRESSING

REG.
INDIR.

INDEXED

IMMED.)

‘ADD’

ADD w CARRY
‘ADC’

SUBTRACT
‘SUB’
SUB w CARRY
'SBC’
‘AND’
‘XOR’
‘OR’

COMPARE
‘P

INCREMENT
‘INC’

DECREMENT
‘DEC’

(HL)

(IX+d) | (1Y+d)

GENERAL P‘URPOSE AF OPERATIONS
Table 5.3-7

Decimal Adjust Acc, ‘DAA’ 27
Complement Acc, ‘CPL’ 2F
Negate Acc, ‘NEG’ ED
(2's complement) 44
anplement Carry Flag, ‘CCF’ 3F
Set Carry Flag, ‘SCF’ 37

11-34

16 BIT ARITHMETIC

Table 6.3-8 SOURCE
BC | DE | HL | sp | X %
HL
‘ADD’ X oD | DD oD | DD
09 19 9 | 29
% FD | FD FD FD
DESTINATION i 19 » »
ADDWITHCARRYAND | HL | ED | ED | ED | ED
SET FLAGS ‘ADC’ 4A | 5A | 6A | 7A
SUBWITH CARRY AND | HL
SET FLAGS ‘SBC’
INCREMENT “INC. FD
23
DECREMENT 'DEC’ FD
8
ROTATE AND SHIFT

A major capability of the Z80 is its ability to rotate or shift data in the accumulator, any general
purpose register, or any memory location. All of the rotate and shift OP codes are shown in Table
5.3-9. Also included in the Z80 are arithmetic and logical shift operations. These operations are
useful in an extremely wide range of applications including integer multiplication and division. Two
BCD digit rotate instructions (RRD and RLD) allow a digit in the accumulator to be rotated with the
two digits in a memory location pointed to by register pair HL. (See Figure 5.3-9). These instructions
allow for efficient BCD arithmetic.

BIT MANIPULATION

The ability to set, reset, and test individual bits in a register or memory location is needed in almost
every program. These bits may be flags in a general purpose software routine, may be indications of
external control conditions, or may be data packed into memory locations to make memory
utilization more efficient.

The Z80 has the ability to set, reset, or test any bitin the accumulator, any general purpose register
or any memory location with a single instruction. Table 5.3-10 lists the 240 instructions that are
available for this purpose. Register addressing can specify the accumulator or any general purpose
register on which the operation is to be performed. Register indirect and indexed addressing are
available to operate on external memory locations. Bit test operations set the zero flag (Z) if the tested
bit is a zero. (Refer to section 6.0 for further explanation of flag operation).)

JUMP, CALL, AND RETURN

Figure 5.3-11 lists all of the jump, call and return instructions implemented in the Z80 CPU. A jump
is a branch in a program where the program counter is loaded with the 16-bit value as specified by
one of the three available addressing modes (Immediate Extended, Relative, or Register Indirect).
Notice that the jump group has several different conditions that can be specified to be met before the
jump will be made. If these conditions are not met, the program merely continues with the next
sequential instruction. The conditions are all dependent on the data in the flag register. (Refer to
section 6.0 for details on the flag register). The immediate extended addressing is used to jump to
any location in the memory. This instruction requires three bytes (two to specify the 16-bit address)
with the low order address byte first followed by the high order address byte.

111-36

ROTATES AND SHIFTS

Table 6.3-9

TYPE
OF
ROTATE
OR
SHIFT

Source and Destination

H Rotate
A e c o E H L (HL) {x +d){0Y +d) ’ b, < bo| Left Circular
)
A | 8| o8 cs | ca| | oca| cofocs % o H
o | o | o 03 | o 6 | d Rotate
rc'| c8 | c8 | c8 | ca | c8 | ce | c8 | ce | 3| ch
of | G | o | oa| o8 |oc| oo |0 | g | H
| oe | Rotate
o | & o
ar | cs | ce | c8 |ca| o8| ca| ce| cs |C8 | ca 4 Lett
7 10 " 12 13 14 15 16 ? s ?s
I - . Rot:
AR | c8 | c8 | c8 | o8 | c8 | c8 | ca | c8 | 28 | £ R?,::'
w | 8| | talw | ic| | |d |4
1€ 1E
- 00 | FD Shife
sta| c8 | o8 | ca | ce | ce | 8| ca|ce | &5 | EB n)
27 | 20 | 2| 2| 23 | 24| 25 |2 |d) Left arithmatic
% | %
o0
sra'| c8 | c8 | ca | cs | c8 | ce | ca|ca |8 | & Shife
| m | s || B | x| o|x |4 |4 > Right Arithmetic
o0 =
sl | cs | ca|ocs|oce | ocaioce | cs |G &8
F | 3 | 3 | 3 | & |d |4 i
S | S [1 Rtosen
AL’ ° o
— T Rotate Digit
RO : €0 [[ea=no] by~ ba[by-bo] s ¢
7 acc
l I | | (L) Rotate Digit
= Right
Acc Q

For 'example an unconditional Jump to memory location 3E32H would be:

Address A C3 | OP Code
A+1 32 | Low order address
A+2 3E | High order address

The relative jump instruction uses only two bytes; the second byte is a signed two’s complement
displacement from the existing PC. This displacement can be in the range of +129 to-126 and is
measured from the address of the instruction OP code.

Three types of register indirect jumps are also included. These instructions are implemented by
loading the register pair HL or one of the index registers IX or IY directly into the PC. This capability
allows for program jumps to be a function of previous calculations.

A call is a special form of a jump where the address of the byte following the call instruction is
pushed onto the stack before the jump is made. A return instruction is the reverse of a call because
the data on the top of the stack is popped directly into the PC to form a jump address. The call and
return instructions allow for simple subroutine and interrupt handling. Two special return
instructions have been included in the Z80 family of components. The return from interrupt
instruction (RETI) and the return from non-maskable interrupt (RETN) are treated in the CPU as an
unconditional return identical to the OP code C9H. The difference is that (RETI) can be used at the
end of an interrupt routine and all Z80 peripheral chips will recognize the execution of this
instruction for proper control of nested priority interrupt handling. This instruction coupled with the
Z80 peripheral devices’ implementation simplifies the normal return from nested interrupt. Without
this feature, the following software sequence would be necessary to inform the interrupting device
that the interrupt routine has been completed:

111-36

BIT MANIPULATION GROUP
Table 56.3-10

REG.
REGISTER ADDRESSING INDIR. INDEXED
A B c) 13 H L {HL) | (1X+d) | (1'Y+d)
BIT
o0 | FD
0 cB8 cBe c8 c8 cB cB cB cB gB gB
47 41 42
40 a w4 |6 4|4
] F
1 cB cB cB c8 CB cB =] cB CBD Eg
d
4 | a8 | 49 aa | a8 | ac | ap | aE de de
D | FD
2 | 8| ce|ce |c8 | ce|ce|cea|ce | OB e
d
57 50 51 52 53 54 55 56 % 6
3 |8 |ceice |c8 |c8|ce|c|ca |20 | &
TEST 5F 58 59 5A 58 sC 5D SE gE gE
BT 5
¢« | o |co|cs |cafcs|co|ca|oca §8
& |60 |6 |62 |63 |6 |65 | 65 | g | d
5 | c8 | c8 [cs [c8 | ca|ce |ca|ca | B0 | &R
6F 68 69 6A 6B 6C 60 6E d d
6 | 6F
D
6 cB cs cB cB cB CcB cB cB gBD CcB
77 70 n 72 73 74 7% 76 d d
7 |
7 | 8 |ca|ce |cs|ce|ce|ca|ce |20 |8
7F 78 79 7A 7. 7C 70 7€ d d
7E 7E
0
o | o8 |ce|ce |c8 | cs|ca|c|ce |8 | &R
87 |80 |8 | & 85 | 8 | d d
B 8 | 8
1 | e8| ce|ce |8 |ce|cs | cs|ce | B8 |8
8 | 8 |8 |s8x | s |8c | 80 | 8 | d d
8E 8E
2 c8 cs c8 cB c8 c8 cB c8 (?BD (F)g
7 91 d d
97 | % @ |9 | o | % | |d | g
3 CcB cB CB cB cB CcB cB cB (D)BD (F:g
RESET oF | 98 | 99 | oa | 98 | oc | oo | s | g d
BIT S | S
: F
RES' | 4 | e |ce|ce | cea |c|cs |ca|ca | B | &
A7 A0 Al A2 A3 A4 AS A8 d d
26 | As
5 | c8 |"cs | ce |cea | ce|ca|ca| s | 2D | &
AF A8 A9 AA AB AC AD AE d d
AE AE
6 | c8 | c8|ce |ce|ce|ca|ce|c |2 |8
B7 BO B1 B2 B3 B85 d d
84 % 18 | 8
F
7 | ce|ce|c | e8| ce|[ce|ca|ce |20 &8
BF B8 B9 BA BB BC BD BE d d
Be | BE
oD | FD
o |8 fcefce fcs | cefce|ce o |cs | ocB
|| | || {c |c |d | &
DD | FD
1 || ca|ces |cs|ce|ce|ca|ce| B |G
cF | c8a | c |ca|c |cc|oo|ce|d |g
oD | FD
2 | o8| ca|cs|ca|ce|cs|ce | e |Co
D7 Do D1 D2 D3 D4 Ds D6 B6 Ds
oD | FD
3 | 8| c8|ce|ce |ca|[cs|ca|[ca|cE|cB
SET OF D8 D9 | DA DB DC oD | DE d d
BIT be | Be
. D FD
SET | 4 c8 | c8 [ce |c8 | c8 |c [cB | cB §° g
& | B | €1 | E2 | & |6 | 65 | &8 | & | &
DD | FD
5 | c8 | ce|ce|ce | ce|ce|c|ca | cB[ce
EF E8 E9 EA EB EC ED | EE d d
Ee | Ee
oD | fD
6 | o8 |ca|cejcalcefcm|cefca|Cs|ocm
F1 | Fo | P | F2 | Fs | Fa | Fs | Fe | g | g
o | FD
7 | 8| cs| cea|ca| ce|cea|ce|ce| & |ER
FF F8 F9 FA F8 FC FD FE g E dF £

n-37

Disable Interrupt

LD An
OUTn, A

Enable Interrupt

Return

— prevent interrupt before

routine is exited.

— notify peripheral that service
routine is complete

This seven byte sequence can be replaced with the three byte El RETI instruction sequence in the

Z80. This is important since interrupt service time often must be minimized.

To facilitate program loop control, the instruction DUNZ e can be used advantageously. This two byte,
relative jump instruction decrements the B register, and the jump occurs if the B register has not
been decremented to zero. The relative displacement is expressed as a signed two’s complement
number. A simple example of its use might be:

Address
N,N+1
N+2 to N+9

N+10, N+11
N+12

Instruction
LD B,7

(Perform a sequence
of instructions)

DJUNZ

-10

(Next Instruction)

Comments

; set B register to count of 7

; loop to be performed 7 times
;tojumpfromN+ 12toN+2

JUMP, CALL, AND RETURN GROUP

Table 5.3-11

CONDITION

UN-
COND.

CARRY

NON
CARRY

ZERO

NON
ZERO

PARITY
EVEN

PARITY
0oDD

SIGN
NEG

SIGN
POS

REG
B+#0

INT ‘RETN’

JUMP “JP* IMMED. an
EXT.
JUMP R’ RELATIVE | PC+e
JUMP P’ (HL)
JUMP P’ REG. (1X)
INDIR.
JUMP gP’)
‘CALL® IMMED. | nn
EXT.
DECREMENT B,
JUMP IF NON | RELATIVE | PC+e
ZERO ‘DINZ’
RETURN REGISTER | (SP)
‘RET’ INDIR. (sP+1)
RETURN FROM | REG. (sP)
INT ‘RETI INDIR, | (sP+1)
RETURN FROM
NON MASKABLE | REG. (SP) ED
INDIR. [(sP+1) | 45

NOTE—CERTAIN
FLAGS HAVE MORE
THAN ONE PURPOSE.
REFER TO SECTION
6.0 FOR DETAILS

138

Table 5.3-12 lists the eight OP codes for the restart instruction. This instruction is a single byte call to
any of the eight addresses listed. The simple mnemonic for these eight calls is also shown. The value
of this instruction is that frequently used routines can be called with this instruction to minimize
memory usage.
RESTART GROUP
Table 5.3-12
0000,, ‘RST 0’
0008, ‘RST &'
< | vor0, ‘RST 16
L
L
A | 9018 ‘RST 24
D
D
B | o020, ‘RST 32"
S
s
0028, ‘RST 40°
0030, ‘RST 48"
0038, ‘RST 56’
INPUT/OUTPUT
The Z80 has an extensive set of Input and Output instructions, as shown in table 5.3-13 and table
5.3-14. The addressing of the input or output device can be either absolute or register indirect, using
the Cregister. Notice that in the register indirect addressing mode, data can be transferred between

the 170 devices and any of the internal registers. In addition eight block transfer instructions have
been implemented. These instructions are similar to the memory block transfers except that they
use register pair HL for a pointer to the memory source (output commands) or destination (input

* commands), while register B is used as a byte counter. Register C holds the address of the port for
which the input or output command is desired. Since register B is eight bits in length, the 1/0 block
transfer command handles up to 256 bytes.

In the instructions IN A, n and OUT n, A, an |/0 device address n appears in the lower half of the
address bus (Ag-Ay) while the accumulator content is transferred in the upper half of the address
bus. In all register indirect input output instructions, including block 1/0 transfers, the content of
register C is transferred to the lower half of the address bus (device address) while the content of
register B is transferred to the upper half of the address bus.

-39

INPUT GROUP
Table 5.3-13 -
PORT ADDRESS

IlMMED. REG.
INDIR.

n ()

ED
78

B ED
40

Cc ED
48

INPUT ‘IN’

ED
50

E ED |
58

QZ2=NLormIO0O> OMD
o

INPUT
DESTINATION H ED

60

L ED
68

‘INF — INPUT & ED
Inc HL, Dec B A2

‘INIR’—INP, Inc HL, . ED
Dec B, REPEAT IF B#0 B2
REG, | (HL) > BLOCK INPUT

INDIR MAND:
‘IND’-INPUT & ED COMMANDS

Dec HL, Dec B AA

‘INDR’—INPUT, Dec HL, ED
Dec B, REPEAT IF B#0 BA

CPU CONTROL GROUP

The final table, table 5.3-15, illustrates the six general purpose CPU control instructions. The NOP is
a do-nothing instruction. The HALT instruction suspends CPU operation until a subsequent
interrupt is received, while the DI and El are used to lock out and enable interrupts. The three
interrupt mode commands set the CPU into any of the three available interrupt response modes as
follows. If mode zero is set, the interrupting device can insert any instruction on the data bus and
allow the CPU to execute it. Mode 1 is a simplified mode where the CPU automatically executes a
restart (RST) to location O038H so that no external hardware is required. (The old PC content is
pushed onto the stack). Mode 2 is the most powerful inthat it allows for an indirect call to any
location in memory. With this mode, the CPU forms a 16-bit memory address where the upper 8-bits
are the content of mode, the CPU forms a 16-bit memory address where the upper 8-bits are the
content of register |, and the lower 8-bits are supplied by the interrupting device. This address points
to the first of two sequential bytes in a table where the address of the service routine is located. The
CPU automatically obtains the starting address and performs a CALL to this address.

l@— Pointer to Interrupt table. Reg.
| is upper address,
Peripheral supplies lower address

Address of interrupt
service routine

-40

OUTPUT GROUP
Table 5.3-14

SOURCE
REG.
REGISTER IND.
c D E H L (HL)
IMMED.| n
‘ouT’
REG. [() | ED | ED | ED | ED | ED | ED | ED
IND. 79 | @ 49 | 51 | s9 | 61 | 69
‘OUTI* — OUTPUT REG. | (C) ED
Inc HL, Dec b IND. A3
‘OTIR’ — OUTPUT, IncHL, | REG. | (C) ED
Dec B, REPEAT IF B#0 IND. 83 BLOCK
OUTPUT
‘OUTD’ — QUTPUT REG. | (O) ED COMMANDS
Dec HL & B IND. AB
‘OTDR’ — OUTPUT, Dec HL | REG. [(C) ED
& B, REPEAT IF B0 IND. B8
H_/
PORT
DESTINATION
ADDRESS
MISCELLANEOUS CPU CONTROL
Table 5.3-16
‘NOP*
‘HALT’

DISABLE INT ‘(D1)’

ENABLE INT ‘(El)’

SET INT MODE 0
‘IMO°

SET INT MODE 1 ED
‘M1’ 56
SET INT MODE 2 ED
‘M2 SE

8080A MODE

CALL TO LOCATION 0038,

INDIRECT CALL USING REGISTER
1 AND 8 BITS FROM INTERRUPTING
DEVICE AS A POINTER.

1n-41

IIF42

6.0 FLAGS

Each of the two Z80-CPU Flag registers contains six bits of information which are set or reset by various
CPU operations. Four of these bits are testable; that is, they are used as conditions for jump, call, or return
instructions. For example, a jump may be desired only if a specific bit in the flag register is set. The four
testable flag bits are:

1) Carry Flag (C) — This flag is the carry from the highest order bit of the accumulator. For example, the
carry flag will be set during an add instruction where a carry from the highest bit of the accumulator is
generated. This flag is also set if a borrow is generated during a subtraction instruction. The shift and
rotate instructions also affect this bit.

2) Zero Flag (Z) — This flag is set if the result of the operation loaded a zero into the accumulator.
Otherwise the flag is reset.

3) Sign Flag (S) — This flag is intended to be used with signed numbers, and it is set if the result of the
operation was negative. Since bit 7 (MSB) represents the sign of the number (A negative number has a
1 in bit 7), this flag stores the state of bit 7 in the accumulator.

4) Parity/Overflow Flag (P/V) — This dual purpose flag indicates the parity of the result in the
accumulator when logical operations are performed (such as AND A, B) and it represents overflow
when signed two’s complement arithmetic operations are performed. The Z80 overflow flag indicates
that the two's complement number in the accumulator is in error since it has exceeded the maximum
possible (+127) or is less than the minimum possible (-128) number that can be represented by two’s
complement notation. For example consider adding:

+120 = 0111 1000
+105 = 01101001

c =0 1110 0001 = -95 (wrong) Overflow has occurred

Here the result is incorrect. Overflow has occurred and yet there is no carry to indicate an error. For this
case, the overflow flag would be set. Also consider the addition of two negative numbers.

-5 = 1111 1011
-16 = 1111 0000

Cc =1 1110 1011 = -21 correct

Notice that the answer is correct, but the carry is set so that this flag cannot be used as an overflow
indicator. In this case, the overflow would not be set.

For logical operations (AND, OR, XOR), this flag is set if the parity of the result is even, and the flag is reset if
it is odd.

There are also two non-testable bits in the flag register. Both of these are used for BCD arithmetic. They are:

1) Half carry (H) — This is the BCD carry or borrow result from the least significant four bits of operation.

When using the DAA (Decimal Adjust Instruction) this flag is used to correct the result of a previous
packed decimal add or subtract.

2) Add/Subtract Flag (N) — Since the algorithm for correcting BCD operations if different for addition or

subtraction, this flag is used to specify what type of instruction was executed last so that the DAA

operation will be correct for either addition or subtraction.

The Flag register can be accessed by the programmer, and its form is as follows:

D7 DO
[(s[z[xX[H[X]PV]N]C]

n-43

Table 6.0-1 lists how each flag bit is affected by various CPU instructions. In this table, ‘®’ indicates that the
instruction does not change the flag; an "X’ means that the flag goes to an indeterminate state; an ‘0’ means
that it is reset; a ‘1’ means that it is set, and the symbol. } indicates that itis set for reset according to the
previous discussion. Note that any instruction not appearing in this table does not affect any of the flags.

Table 6.0-1 includes a few special cases that must be described for clarity. Notice that the block search
instruction sets the Z flag if the last compare operation indicated a match between the source and the
accumulator data.-Also, the parity flag is set if the byte counter (register pair BC) is not equal to zero. This
same use of the parity flag is made with the block move instructions. Another special case is during block
inputor output instructions. Here the Z flag is used to indicate the state of register B which is used as a byte
counter. Notice that when the 1/0 block transfer is complete, the zero flag will be reset to a zero (i.e. B=0),
while in the case of a block move command, the parity flag is reset when the operation is complete. A final
caseoccurs when the refresh or | register is loaded into the accumulator, because interrupt enable flip flop
is then loaded into the parity flag so that the complete state of the CPU can be saved at any time.

n-44

SUMMARY OF FLAG OPERATION
Table 6.0-1
D7 DO
P/
Instruction S (2 H V[N [C | Comments
ADD As;ADC As Py Ix |y (x| v]o |} | 8bitadd oradd with carry
SUB,s; SBCAs; CP,s; NEG 4 bIx [bix| v { | 8bit subtract, subtract with carry, compare and negate accumulator
AND s $ blX 1|X|Plo {0 } . .
ORs; XOR's tliIx|olx|rplo]|o Logical operations
INCs Pl Ix [4 x|v|o |e [8&bitincrement
DECs t 1t x| bIx| v]1 |e [8bitderement
ADD DD, SS e | (X [X|Xi® |0 } 16-bit add
ADC HL, SS { b IX | X|{X|Vvi|o { 16-bit add with carry
SBC HL, SS by X | X[X]| V|1t |t | 16bitsubtract with carry
RLA; RLCA; RRA; RRCA e |o X |0 |X|® [0 |} | Rotateaccumulator
RLs; RLCs; RRs; RRCs; t 131X |0 [X]| P |0 |} | Rotateandshift locations

SLAs; SRAs; SRLs

RLD; RRD b |4 1X | 0!X]| P |0 |e | Rotatedigit left and right
DAA 1y X |t |X| P e |} | Decimaladjustaccumulator
CPL o o [X |1 [X|[e® |1 e | Complement accumulator
SCF e | e | X |0 |X]|® |0 |1 | Setcarry
CCF e | I X | X|X|® |0 |} | Complementcarry
INT, (C) 1Y X 0| X]| P[0 |e® | Inputregisterindirect
INI; IND; QUTI; OUTD X1V IX [XIX| X1 X }Bluck input and output
INIR; INDR; OTIR; OTDR X [V [X [X[{X]|X]|1 |X (JZ=0ifB*0otherwise Z= 1;ifbit7=1N=1
LDI; LDD X {X|X |0 |X|{]|o |e }Bluck transfer instructions
LDIR; LDDR X | X|X |0 iX]| 0|0 |e |JP/V=1if BC+ 0, otherwise P/V =0
CPI; CPIR; CPD; CPDR tis Y x x| 417 | e | Block search instructions
Z=1if A=(HL), otherwise Z =0
P/V =1if BC# 0, otherwise P/V =0
LDA I;LDAR f |4 |X [0 |X|IFF|0 |e | Thecontent of the interrupt enable flip-flop (IFF) is copied into
the P/V flag
BITbh, s X |4 | X |1 |X]| X|0 |e | Thestate of bit b of location s is copied into the Z flag
The following notation is used in this table:
SYMBOL OPERATION
C Carry/link flag. C=1 if the operation produced a carry from the MSB of the operand or resuit.
z Zero flag. Z=1 if the result of the operation is zero.
S Sign flag. S=1 if the MSB of the result is one.
P/V Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations affect this flag with

the parity of the result, while arithmetic operations affect this flag with the overflow of the resulit. if P/V holds
parity, P/V=1 if the result of the operation iseven, P/V=0 if resultis odd. If P/V holds overflow, P/V= if the
result of the operation produced an overflow.

Half-carryflag. H=1 if the add or subtract operation produced a carry into or borrow from bit 4 of the accumula-

tor.

Add/Subtract flag. N=1 if the previous operation was a sub

Hand N flags are used in conj ion with the decimal adjustinstruction (DAA) to correct properly the resuit
into packed BCD format following addition or sut ion using op ds with packed BCD format. The flag
is affected according to the result of the operation.

The flag is unchanged by the operation

The flag is reset by the operation.

The flag is set by the operation.

The flag is a “‘don’t care”.

P/V flag affected according to the overflow result of the operation.

P/V flag affected according to the parity resuit of the operation.

Any one of the CPU registers A, B, C, D, E, H, L.

Any 8-bit | ion for all the add ing d Il d for the particular instruction.
Any 16-bit location for all the addressing modes all: d for that i i
Any one of the two index registers IX or IY.

Refresh counter.

8-bit value in range <0, 265>

16-bit value in range <0, 655635>

g:m::gm-v<x.a°o

111-45

11-46

7.0

SUMMARY OF OP CODES AND EXECUTION TIMES

The following section gives a summary of the Z80 instruction set. The instructions are logically arranged
into groups as shown on Tables 7.0-1 through 7.0-11. Each table shows the assembly language mnemonic
OP code, the actual OP code, the symbolic operation, the content of the flag register following the execution
of each instruction, the number of bytes required for each instruction as well as the number of memory
cycles and the total number of T states (external clock periods) required for the fetching and execution of
each instruction. Care has been taken to make each table self-explanatory without requiring any cross
reference with the text or other tables.

111-47

8-BIT LOAD GROUP

Table 7.0-1
Symbolic Flags Op-Code No. of |No.of M |No.of T
Mnemonic Operation | S H P/IV C {76 543 210 Hex Bytes | Cycles | States C
LDr,s r-s . X|o|[X|e o 101 r s 1 1 4 |rns Reg.
LOr,n r-—n o X|o®o|X|e e 100 r 110 2 2 7 000 B
- n - 001 C
LD, (HL) r—(HL) . X|eo| X e ® 101 r 110 1 2 010 D
LD r, {I1X+d) r—(IX+d) | ® X|o | X e e 111 011101 DD 3 5 19 011 E
01 r 110 100 H
-~ d - 101 L
LOr, (1Y+d) r—(1Y+d) | @ X|® | X |e e 111 111101 FD 3 5 19 1 A
01 r 110
- d -
LD (HL), r (HL) -r . X X | e e (01 110 r 1 2 7
LD (IX+d),r [(IX+d)=r | @ X X |e e 111 011101 DD 3 5 19
01 110 r
~ d -
LD (IY+d), r [(IY+d)=r | @ X|®iX|e e 11 111101 FD 3 5 19
01110 r
- d -
LD (HL), n (HL)=-n |e X|e®|[X|e e 100 110110 36 2 3 10
-— N -
LD (iX+d),n [(IX+d)~n | e X|o|X|e e 11 011101 DD | 4 5 19
00 110110 36
- d -
-— N -
LD(1Y+d),n |(IY+d)=n |® X|o|X|e e 11 111101 FD 4 5 19
00 110110 36
- d -~
~n -
LD A, (BC) A—(BC) |e X|® X | e |00 001010 0A 1 2 7
LD A, (DE) A-(DE) |e X|oiX | e e |00 011010 1A 1 2 7
LD A, (nn) A ~(nn) . X|® | X |e. ® 100111010 3A 3 4 13
- n -
- n -
LD (BC), A (BC)--A . X|®|X|e e 100 000010 02 1 2 1
LD (DE), A (DE)--A . X|e|X|e e |00 G10010 12 1 2 7
LD (nn), A (nn) A . X|e®|X|e e 100 110010 32 3 4 13
-— N -
- n -
LDA, I A~ H X |0 |X |IFF e 11 101101 ED 2 2 9
01 010 111 57
LDA R A-R ! X |0 |X|IFF e 111 101101 ED 2 2 9
01 011111 5F
LDI, A I —-A . X|®|X|e e 11 101101 ED 2 2 9
01 000 111 47
LDR,A R-A . X|o|X |e e 111 101101 ED 2 2 9
01 001111 4F

Notes: r, s means any of the registers A, B, C, D, E, H, L
IFF the content of the interrupt enable flip-flop (IFF) is copied into the P/V flag

Flag Notation: ®= flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
= flag is affected according to the result of the operation.

1i-48

16-BIT LOAD GROUP

Table 7.0-2
Symbolic Flaas 0p-Code No. of |No.ofM|No.of T
M Operati P/V C | 76 543 210{ Hex Bytes | Cycles | States C
LD dd, nn dd - nn X[{o | X|e ® | 00 dd0 001 3 3 10 dd Pair
- n - 00 BC
- n - 01 DE
LD IX, nn IX = nn X|o | X}e e | 11 011 101 sl 4 4 14 10 HL
00 100 001 21 1 SP
- n -
- n -
LD 1Y, nn IY - nn X|eo|X|e® e 11 111101 FD 4 4 14
00 100 001 | 21
-— n -
-~ n -
LD HL, (nn) H = (nn+1) Xjo [X}e e | 00 101 010| 2A 3 5 16
L - (nn) - n -
- n -
LD dd, (nn) ddy - (nn+1) X|® | X e e 11101 101 ED 4 6 20
ddy -(nn) 01 dd1 011
- N -
- n -
LD tX, (rn) IXH~ (nn+1) X| o | X |e e | 11 011 101 DD 4 6 20
IXL~(nn) 00 101 010 | 2A
- n -
- n -
LDIY, (n) | IYH=(nn+1) X|e|x|e e|11 111101 FD |4 6 |20
1Y(~(nn) 00 101 010| 2A
- n -
- n -
LD (nn), HL | (nn+1) = H X|e|X|e® e | 00100010 22 3 5 16
(nn) =L - n - ‘
- n -
LD (nn), dd (nn+1) - ddy X o |X|e® e | 11101 101 ED 4 6 20
{nn)~dd_ 01 ddo 011
- N -
- n -
LD (nn), IX (nn+1) - IXy X|®o |X|e e | 11 011 101 DD 4 6 20
(nn)~IX| 00 100 010 | 22
- n -
- n -
LD (nn), 1Y (nn+1) - 1YQ X|1® | X |e e 11111101 FD 4 6 20
(nn) =Y 00 100 010 22
- n -
- -
LD SP, HL SP - HL X|o X | ® 11 111.001 F9 1 1 6
LD SP, IX SP - IX Xje |X|e® e | 11 011 101 DD 2 2 10
11 111 001 F9
LD SP, 1Y SP = 1Y Xi{eo X |e e | 11 111 101 FD 2 2 10
11 111 001 F9 4q Pair
PUSH qq (SP-2) = qq X|olx|e e | 11 gq0 101 1 1 00 BC
(8P-1) - qay 01 DE
PUSH IX (SP-2) - IX X|e X |e® e | 11011 101 DD 2 4 15 10 HL
(SP-1) = IXy 11 100 101 | E5 11 AF
PUSH 1Y (SP-2) — 1YL Xje | X |e e 11 111 101 FD 2 4 15
(SP-1) = 1YQ 11 100 101 E5
POP qq qqH = (SP+1) X|o |X|e® ® | 11 qq0 001 1 3 10
qq ~(SP)
POP IX IXH~(SP+1) Xjo | X |e® e |11 011 101 DD 2 4 14
1Xp =(SP) 11 100 001 E1
POPIY 1YH ~(SP+1) X|® [X|e® * 11 111101 FD 2 4 14
1Y _~(SP) 11 100 001 E1

Notes: dd is any of the register pairs BC, DE, HL, SP
qq is any of the register pairs AF, BC, DE, HL
(PAIR) Y, (PAIR) | refer to high order and low order eight bits of the register pair respectively.
eg. BCp =C AFy=A
Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
flag is affected according to the result of the operation.

EXCHANGE GROUP AND BLOCK TRANSFER AND SEARCH GROUP

Table 7.0-3
Symbolic Flags Op-Code No. of |No.of M{No.of T
Mnemonic Operation | § | Z H P/V| N | C |76 543 210| Hex | Bytes | Cycles | States | Comments
EX DE, HL | DE+-HL e e X |® | X|®|e® |@®]i1101011]| EB 1 1 4
EX AF, AF' | AF --AF' e (e | X |® [X|e|e | e 00001 000/ 08 1 1 4
EXX BC-BC’ e o | X |® | X|e® | e | e 11011001 D9 1 1 4 Register bank and
<DE-—DE'> auxiliary register
HL=-HL' bank exchange
EX(SP), HL| H <(SP+1) |® | e | X |® | X | e e | e |11100 011 E3 1 5 19
L --(SP)
EX(SP), IX [IXH~~(SP+1)|® | e | X |® | X | ® | e | @ 17011 101| DD 2 6 23
. 1X <~(SP) 11 100 011 E3
EX(SP), 1Y | IYy~-{SP+1)| e | @ | X |® | X | e | @ | @ |11111 101| FD 2 6 23
1Y =~{(SP) 11 100 011 | E3
@
LDI (DE)=(HL) o [® | X [0 |X| }]|0}|e [11101 101 ED 2 4 16 Load (HL) into
DE - DE+1 10 100 000| AO (DE), increment the
HL = HL+1 pointers and
BC - BC1 decrement the byte
counter (BC)
LDIR (DE)=(HL) |® |® | X | O X | 0| 0]|e [171101101| ED 2 5 21 IfBC+0
DE - DE+1 10 110 000 BO 2 4 16 IfBC=10
HL = HL+1 '
BC - BC-1
Repeat until
BC=0
®
LDD (DE)~(HL) |® o | X [0 X |} |0 |e 11101101 ED 2 4 16
DE -~ DE-1 10 101 000| A8
HL = HL-1
BC - BC1
LDDR (DE)=(HL) |e |® | X |0 [X | 0|0 |e 11101101 ED |2 5 21 IfBC+#0
DE - DE1 10 111 000| B8 2 4 16 IfBC =0
HL = HL1
BC - BC-1
Repeat until
BC=10
@ @®
CPi A—(HL) Pl IX by x] {1 |epi0t101] ED |2 4 16
HL - HL+1 10 100 001 | A1l
BC - BC-1 .
@ @
CPIR A—(HL) b x |t x| 41 |epr101101] ED 2 5 21 IfBC+ 0and A#(HL)
HL = HL+1 10 110 001 | B1 2 4 16 1fBC=00rA=(HL)
BC - BC-1
Repeat until
A=(HL or
BC=0
@ @
cPD A—(HL) b x | bIx b1 jepr101101| ED |2 4 16
HL = HL1 10 101 001 A9
BC - BC-1
) @ ,
CPDR A—(HL) bipbix b x [d |1 |eprtoti01| ED |2 5 21 IfBC#0and A #(HL)
HL < HL1 10 111 001 | B9 2 4 16 IfBC=00or A=(HL)
BC - BC-1
Repeat until
A=(HL) or
BC=10

Notes: (D P/V flag is 0 if the result of BC-1 = 0, otherwise P/V = 1
@ Zflagis 1if A= (HL), otherwise Z = 0. ;

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
=flag is affected according to the result of the operation.

_1lI-80.

8-BIT ARITHMETIC AND LOGICAL GROUP

Table 7.0-4
Symbolic Flags 0p-Code No.of {No.ofM{No.of T
Mnemonic Operation S |z H P/V| N | C [76 543 210| Hex | Bytes |[Cycles |States | Comments
ADDA,r A-A+r plyI X[y x|vi]o 101[000] r 1 1 4 r Reg.
ADD A, n A ~A+n t v x| v x|v]|o]| ! |11[@00]110 2 2 7 000 B
- n - 001 c
: 010 0
ADDA,(HL) [A<~A+HL | 4 [4| X[4 [x|V |0/} |10[000]110 1 2 7 on E
ADD A, (IX+d) |A=A+(IX+d) | 4 | 4 [X] 4 | X|{Vv |0 |4t [11 011101 DD |3 5 19 100 H
10 (000]110 101 L
- d - m A
ADD A, (1Y+d) | A=A+(1Y+d) bl X| s x|ivio|4 1ot FD |3 5 19
10 [000]110
- d -

ADCA, s A~ A+s+CY bl xXisxjiviojt sisany ofr, n,

SUB's A-A-s b Xt xivirid [670] (HL), (IX+d),

SBCA,s A<A-s-CY | tib x| x|v|t]} [CEKN] (1Y+d) as shown for

AND s A~A s tlyi x| v ixiplo]o ADD instruction.

ORs A-Avs tl i x|olxiplolo [0 The indicated bits

XORs A~A®s flyixj{olx|Pj0o|oO [io7T] replace the in

CPs A-s plb x| b x (vt [LEKN] the ADD'set above.

INCr r=r+1 Pyl x|y xivio|e oo r 1 1 4

INC (HL) (HO=HU+1 [{3 x| 4| x| v |0 |e |00 1100100 1 3 1

INC (1X+d) (IX+d) ~ 4 $bI X 4| XV |0]|e |11011101| DD |3 6 23

(1X+d)+1 00 110[700]
- d -
INC (1Y+d) (1Y+d) = Pldix gl x|iv]o|e 1t1on| fFo |3 6 23
(1Y+d)+1 00 110(700)
-~ d -

DECs s~s-1 Pl X[x|Vvil]|e 1 1 4 sisany of r, (HL),
(1X+d), (1Y+d) as
shown for INC.
DEC same format
and states as INC.
Replace with
[i01)in OP Code.

Notes: The V symbol in the P/V flag column indicates that the P/V flag contains the overflow of the result of the
operation. Similarly the P symbol indicates parity. V = 1 means overflow, V = 0 means not overflow, P = 1
means parity of the result is even, P = 0 means parity of the result is odd.

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown.
} = flag is affected according to the result of the operation.

n-51

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Table 7.0-6
Symbolic Flags 0p-Code No. of |No.of M [No.of T
Mnemonic | Operation S| Z H P/V] N | C [76 543 210] Hex Bytes | Cycles | States Comments
DAA Convertsacc, | § [| X[§ | X|P [| } {00100 111 27 1 1 4 Decimal adjust
content into accumulator
packed BCD
following add
or subtract
with packed
BCD operands .
cPL A-RA e e | X| 1| X|®| 1| e 00101 111 2F 1 1 4 Complement
accumulator
) (One's complement)
NEG A<RA+1 [H b x| x|v |1l {pr1o101 ED |2 2 8 Negate acc, (two's
: 01 000 100 44 complement)
CCF cY-CTY e e | X|X|X|®|0/| tjo0o11 111 3F 1 1 4 "Complement carry
flag
SCF CY-1 ® e | X|0 | X|e®)0| 100110111 37 1 1 4 Set carry flag
NOP No operation| ® (e | X |e | X | e | e | e |00 000 000 00 1 1 4
HALT CPUhalted | ® |® | X e | X| ® | e | e |01 110 110| 76 1 1 4
DI* IFF <0 |® e | X e | X|®| e/ e 171110011 F3 |1 1 4
EI* IFF = 1 oo | X|® | X|e® e | e 11111011 FB 1 1 4
IMO Setinterrupt | ® |® | X |® | X | ® | e | @ 11 101 101 ED 2 V3 8
mode 0 01 000 110 46
IM1 Setinterrupt (@ |® | X |e | X | e | e | e 171 101 101| ED 2 2 8
mode 1 ~ |01 010 110| 56
M2 Setinterrupt | ® (e | X e | X | e e | 11 101 101| ED 2 2 8
mode 2 01 011 110| 5E
Notes: |FF indicates the interrupt'enable flip-flop

CY indicates the carry flip-flop.

Flag Notation: ® = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
} = flag is affected according to the result of the operation.

*Interrupts are not sampled at the end of El or DI

mn-s2

16-BIT ARITHMETIC GROUP
Table 7.0-6
Symbolic Flags Op-Code No.of [No.ofM{No.of T|
Mnemonic Operation S H P/V] N | C[76 543 210 Hex | Bytes |Cycles | States | Comments
ADD HL,ss | HL = HL+ss ® |® (X | X[X |®]| 0| }4][00ss1 001 1 3 n ss Reg.
00 BC
ADCHL,ss |[HL<~HL+ss#CY[} |} | X | X|X | V] O]|} (111001101 ED |2 4 15 01 DE
01 sst 010 10 HL
" SP
SBC HL, ss HL<HLssCY | | | X | X{X | V] 1] }[111001101 ED |2 4 15
01 ss0 010
ADD IX,pp |IX =IX+pp e o | X | X|X|®]| 0]} (11011101 DD |2 4 15 pp Reg.
00 pp1 001 00 BC
01 DE
10 I1X
1 SP
ADD 1Y, rr 1Y = 1Y +rr e e [X | X|X|e 0|} 11111101 FD |2 4 15 r Reg.
00 rr1 001 0o BC
01 DE
10 Y
1 SP
INCss ss = ss+1 e (o X |® | X |®| e e 00s0 011 1 1 6
INCIX IX = IX+1 e (e | X e | X |e | e e 11011101 DD |2 2 10
00 100 011| 23
INCIY 1Y = 1Y +1 o (o | X |®|X |® | e]e 11111101 FD |2 2 10
00 100 011 23
DECss ss - ss-1 e e | X |®|X |e® | e e 00ss1 011 1 1 6
DEC IX IX «1X-1 e (e X e X |® e e 11011101 DD |2 2 10
00 101 011| 2B
DECIY Y <1Y-1 e |o X e X |® | e e 11111101 FD |2 2 10
00 101 011 2B

Notes: ssis any of the register pairs BC, DE, HL, SP
pp is any of the register pairs BC, DE, IX, SP
rr is any of the register pairs BC, DE, 1Y, SP.

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown.
} = flag is affected according to the result of the operation.

111-63

[

ROTATE AND SHIFT GROUP

Table 7.0-7
Symbolic Flags Op-Code No.of|No.of |No.of
Tp7 MI|T
M Operation S H V| N |C |76543210 | Hex |Bytes|Cycles|States| C
RLCA [7—0)<] 0jX|e|0]4|0o0o000111| 07 1 1 4 Rotate left circular
A accumulator
RLA 7-—0] 0|X|el0]|}j00010 11117 1 1 4 Rotate left
A accumulator
RRCA .. U 0{X|e |0/t 00001 11| OF [1 1 4 Rotate right circular
A accumulator
RRA =0 -ty . ofx|e|ol¥jooort 111 1F (1 |1 |4 |Rotateright
A accumulator
RLCr $ 0|X|{P|0O]|4 11001 011] CB ;2 2 8 Rotate left circular
00 [000] r register r
RLC (HL) [O(X|P |04][11001011|CB.;2 4 15 |r Reg
00 [000] 110 000 B
001 c
RLC (IX+d) | > | 7=—a1- } 0/X|P|O|fj11011101| DD!4 (6 (23 |010 D
r,(HL), (1X+d),(1Y+d) 11 001 011 CB on E
-d - 100 H
00 [000] 110 101 L
11 A
RLC (1Y+d) 4 O|X|P|O|} 11111101 FD |4 6 23
11 001 011 CB
~d -
00 [000] 110
RLs) o(x|pP|o]} Instruction format and
s =r,(HL), (1X+d), (1 Y+d) states are as shown for
RLC's. To form new
RRCs 7T—10]-L-CY } 0|X|P|o|4]| [@07]) 0Op-Code replace [000]
s =r,(HL), (1X+d), (1Y+d) of RLC's with shown
code
RRs 4 0|Xx|Pjoj}
s=r,(HL), (1X+d),(1Y+d)
SLAs [CY]e—{T=—0]=0 H o(x|P|o|t
s =r,(HL),(1X+d),(1Y+d)
SRAs =20 ! o(x|Plolt
s=r,(HL), (1X+d),(1Y+d)
SRLs 0-T—0]—-{Y] ! of(x|plolt| @M
s =r,(HL),(1X+d),(1Y+d)
RLD A .(HL H 0 |X|P 0| ej11101 101 | ED |2 5 18 Rotate digit left and
— 01 101 111 | 6F right between the
accumulator
— and location (HL).
RRD A .(HL) 4 0 (X |P|O]|e11101101| ED |2 5 18 | The content of the
{01 100 111 | 67 upper half of the
accumulator is
unaffected

Flag Notation:

© = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

{ = flag is affected according to the result of the operation.

1-54

BIT SET, RESET AND TEST GROUP

Table 7.0-8
Symbolic Flags Op-Code No. of [No.ofM|No.of T
M Operati s|Z H P/V] N [C |76 543 210] Hex |Bytes |Cycles |States | Comments
BIT b, r Z-+Tp X| ¢ X| V| X|X|{0][|ei11001 011 CB |2 2 8 T Reg.
01 b r 000 B
BITh, (HL) |Z ~THL) X[4] X{ 1| X|X]|0]|e]|1100 011 CB |2 3 12 001 c
01 b 110 010 D
BITh, (IX+d)p (Z~{1X+d)p | X| | X| 1| X|X |0 |e|t1 011101 DD |4 5 20 on E
11 001 011| CB 100 H
- d - 101 L
01 b 110 m A
b Bit Tested
BITb, (1Y+d)y (Z~(IY+d)y | X | § | X| 1| X|X | O |e 11111101 FD |4 5 20 000 0
11 001 011| CB 001 1
- d - 010 2
01 b 110 on 3
100 4
101 5
110 6
m 7
SETb,r p -1 e | o X|®| X|e®|e e 11001011 CB |2 2 8
i b
SET b, (HL) (HL)p ~ 1 el e X|®| X|e® | e e 11001011 CB |2 4 15
i b 110
SETb, (1X+d) [(IX+d)p~1 |® | ®| X| @ | X | ® | e | ®i11 011 101| DD |4 6 123
11 001 011] CB
- d -
[b 110
SETb, (1Y+d) ({(IY+d)p~1 | e | | X| @ | X | @ e | e 11111101 FD |4 6 23
11 001 011| CB
- d -
M) b 110
RESb, s sp - 0 ele|x| e/ x|eo|e e To form new Op-
s=r, (HL), Code replace (T1]
(1X+d), of SET b, s with
(1Y+d) [10]. Fags and time
states for SET
instruction

Notes: The notation sp indicates bit b (0 to 7) or location s.

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
}= flag is affected according to the result of the operation.

JUMP GROUP

Table 7.0-9
Symbolic Flags ‘Op-Code No.of | No.of M|No.of T
M ic Operation S|z H P/V] N | C |76 543 210] Hex | Bytes | Cycles | States | C
JPnn PC ~ nn e e | X|® | X|® |e e 11000011 C3 |3 3 10
- n -
= n - cc Condition
JPcc, nn If conditioncc [® o | X |® | X | |® e (11 cc 010 3 3 10 000 | NZ non zero
is true PC - nn, i - n - 001 | Z zero
otherwise - n - 010 | NC non carry
continue 011 |C carry
100 | PO parity odd
101 | PE parity even
110 |P sign positive
JRe PC+PC+e @ e X|® | X|e e e 00011000 18 |2 3 12 111 | M sign negative
- 9'2 -
JRC, e IfCc=0, e & | X|® | X|® |e e (00111000 38 |2 2 7 If condition not met
continue - e2 -
ifC=1, 2 3 12 If condition is met
PC - PC+e
JRNC, e ifCc=1, e o X|e | X|® |e e (00110000 30 |2 2 7 If condition not met
continue - e2 -
1fC=0, 2 3 12 If condition is met '
PC - PC+e
JRZ e fZ=0 @ e X|® | X|e® | e e 00101000 28 |2 2 7 If condition not met
. continue - e2 -
fZ=1, 2 3 12 If condition is met
PC = PC+e
JRNZ e 1fZ=1, e e X|® | X|® |® 'e 001000000 20 |2 2 7 If condition not met
continue 1 - e2 -
fZ2=0, 2 3 12 If condition is met
PC = PC+e
JP(HL) PC = HL ele | X|e | X|e e e 11101001 E3 |1 1 4
JP (1X} PC - IX (e ' X|® | X|® |e e 111011101 DD | 2 2 8
11 101 001 E9
JP(IY) PC ~ 1Y e (e | X (o | X|® |® e 111111101 FD |2 2 8
- 11 101 001} E9
DINZ, e B - B1 e X {® | X|e | e e /00010000 10 |2 2 8 IfB=0
1fB=0, - e2 -
continue
IfB#0, 2 3 13 IfB#0
PC - PC+e

Notes: e represents the extension in the relative addressing mode.
e is a signed two's complement number in the range <126, 129>

e-2 in the op-code provides an effective address of pc+e as PC is
incremented by 2 prior to the addition of e.

Flag Notation: ® = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
{ = flag is affected according to the result of the operation.

111-56

CALL AND RETURN GROUP
Table 7.0-10
Symbolic Flags Op-Code No. of [No.ofM|No.of T
Mnemonic | Operation S|Z H P/V] N | C |76 543 210] Hex | Bytes |Cycles |States | Comments
CALLnn [(SP-1) ~PCyi ® [® | X | ® [X[e e |e][11001 101 CO |3 5 17
(SP-2) - PC|_ -« n -
PC - nn - n -
CALLcc, nn|lfcondition [® (e | X | ® | X| e | e | e (11 cc 100 3 3 10 If cc is false
cc is false - n -
continue, - n - 3 5 17 If cc is true
otherwise
same as
CALLnn
RET PC_~(SP) |[e | e | X|® | X| e e |@e]1700100] C9 |1 3 10
PCy - (SP+1)
RET cc If condition |® | e | X | e | X| e |e | e 11 ¢cc 000 1 1 5 If cc is false
cc is false
continue, 1 3 n If cc is true
otherwise cc__| Condition
same as 000 | NZ non zero
RET 0012 zero
010 | NC non carry
RETI Returnfrom | ® (e | X | ® | X | e e | ® |11 101 101| ED |2 4 14 0nnjc carry
interrupt 01 001 101| 4D 100 | PO parity odd
RETN! Returnfrom |® [e | X (e | X | e | e [o (11101 101| ED |2 4 14 101 | PE parity even
non maskable 01 000 101| 45 1Mo | P sign positive
interrupt MM sign negative
RSTp (SP-1) =PCy| ® | o | X|® ' X|o o [ol11 t 1M 1 3 n
(8P-2) - PCy.
PCy - 0
PCL - p
t p
000 | 0OH
001 | 08H
010 | 10H
011 | 18H
100 | 20H
101 | 28H
110 | 30H
111 | 38H

TRETN loads IFFy ~ IFFq

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
} = flag is affected according to the result of the operation.

n-87

INPUT AND OUTPUT GROUP

Table 7.0-11
Symbolic Flags Op-Code No.of [No.of M |No.of T
M ic | Operation Z H P/V 76 543 210] Hex Bytes |Cycles [States | C
IN A, (n) A~ (n) . e (X | ® 11 011 011} DB |2 3 " ntoAg ~ Ay
- n - Acc to Ag ~ Ay
INL(© [r = (0 ! pix| P 11101101 €D |2 3 12 CtoAg~ Ay
ifr=110only : 01 r -000 Bto Ag~ Ayg
the flags will
be affected
@
INI (HL) - (C) i XiX| X 11 101 101 ED |2 4 16 Cto Ag~ Ay
B~B-1 10 100 010] A2 Bto Ag ~ Aqg
HL < HL+1
INIR (HL) - (C) 1 XX X 11101 101} ED 2 5 21 Cto AO"‘A-]
B~ B-1 10 110 010| B2 (1B #0) Bto Ag~ Aqg
HL = HL+1 2 4 16
Repeat until (1f B = 0)
B=0
[©)
IND (HL) - (C) $ X1 X| X 11 101 101 €D |2 4 16 Cto Ag~ Ay
B-B-1 10 101 010] AA Bto Ag~ Aqg
HL = HL-1
INDR (HL) = (C) 1 X|X| X 11 101 101} ED 2 5 21 Cto A0~A7
B~B-1 10111 010] BA (1 8#0) BtoAg~ Ajg
HL - HL-1 2 4 16
Repeat until (1f B=0)
B=0
OUT (n), A | (n)=A . ® | X| e 11 010 011] D3 2 3 1 ntoAg~ Az
Acc to Ag ™~ Aqg
ouT(C),r |(C) = . e (X | e 11.101:101| ED |2 3 12 Cto Ag~ A7
01 r 001 Bto A3~A15
®
ouTl B-B-1 1 XX | X 11101 101] ED |2 4 16 Cto Ag™ A;
(C} = (HL) 10 100 011 A3 Bto Ag~ Aqg
HL = HL+1
OTIR B~ B-1 1 X XX 11 101 101| ED |2 5 21 Cto Ag~ Ay
() ~ (HL 10 110 011] B3 (1f B #0) Bto Ag~ Aqg
HL - HL+1 2 4 16
Repeat until (1f B =0)
B=0
O]
ouTD (C) = (HL) { X | X | X 11101 101] ED |2 4 16 Cto Ag~ Ay
B-B-1 10 101 011| AB Bto Ag ™~ Aqg
HL - HL-1
OTDR (C) = (HL) 1 X |X| X 11 101 101] ED |2 5 21 CtoAg~ Ay
B-B-1 10111011| BB (1B #0) Bto Ag~ Aqg
HL - HL-1 2 4 16
Repeat until (If B=0)
B=0

Notes: (D If the result of B - 1 is zero the Z flag is set, otherwise it is reset.

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

} = flag is affected according to the result of the operation.

1-58

8.0

INTERRUPT RESPONSE

The purpose of an interrupt is to allow peripheral devices to suspend CPU operation in an orderly manner
and force the CPU to start a peripheral service routine. Usually this service routine is involved with the
exchange of data, or status and control information, between the CPU and the peripheral. Once the service
routine is completed, the CPU returns to the operation from which it was interrupted.

INTERRUPT ENABLE — DISABLE

The Z80-CPU has two interrupt inputs, a software maskable interrupt and a non-maskable interrupt. The
non-maskable interrupt (NMI) cannot be disabled by the programmer, and it will be accepted whenever a
peripheral device requests it. This interrupt is generally reserved for very important functions that must be
serviced whenever they occur, such as with an impending power failure. The maskable interrupt (INT)can
be selectively enabled or disabled by the programmer. This allows the programmer to disable the interrupt
during periods where his program has timing constraints that do not allow it to be interrupted. In the
Z80-CPU there is an enable flip flop (called IFF) that is set or reset by the programmer using the Enable
Interrupt (El) and Disable Interrupt (DI) instructions. When the IFF is reset, an interrupt cannot be accepted
by the CPU.

Actually, for purposes that will be subsequently explained, there are two enable flip flops, called IFF; and
IFF,.

Actually disables interrupts Temporary storage location
from being accepted. for IFF;.

The state of IFF, is actually used to inhibit interrupts, while IFF, is used as a temporary storage location for
IFF,. The purpose of storing the IFF; will be subsequently explained.

A reset to the CPU will force both IFF, and IFF, to the reset state so that interrupts are disabled. They can
then be enabled by an Elinstruction at any time by the programmer. When an El instruction is executed, any
pending interrupt request will not be accepted until after the instruction following El has been executed.
This single instruction delay is necessary for cases when the following instruction is a return instruction
and interrupts must not be allowed until the return has been completed. The El instructions set both IFF,
and IFF, to the enable state. When an interrupt is accepted by the CPU, both IFF; and IFF, are automatically
reset, inhibiting further interrupts until the programmer wishes to issue a new El instruction. Note that for
all of the previous cases, IFF, and IFF, are always equal.

The purpose of IFF, is to save the status of IFF; when a non-maskable interrupt occurs. When a
non-maskable interrupt is accepted, IFF, is reset to prevent further interrupts until these are reenabled by
the programmer. Thus, after a non-maskable interrupt has been accepted, maskable interrupts are
disabled, but the previous state of IFF, has been saved so that the complete state of the CPU just prior to the
non-maskable interrupt can be restored at any time. When a Load Register A with Register | (LD A, 1)
instruction or a Load Register A with Register R(LD A, R)instruction is executed, the state of IFF, is copied
into the parity flag where it can be tested or stored.

A second method of restoring the status of IFF, is through the execution of a Return From Non-Maskable
Interrupt (RETN) Instruction. Since this instruction indicates that the non-maskable interrupt service
routine is complete, the contents of IFF, are now copied back into IFF4, so that the status of IFF, just prior to
the acceptance of the non-maskable interrupt will be restored automatically.

N-69

Figure 8.0-1 is a summary of the effect of different instructions on the two enable flip flops.

INTERRUPT ENABLE/DISABLE FLIP FLOPS

Figure 8.0-1
Action - IFF, IFF,
CPU Reset [¢] 0
DI [¢]
El 1 1
LDAI . * IFF, — Parity flag
LD AR . * IFF, — Parity flag
Accept NMI 0 .
RETN IFF, * IFF, —IFF,
Accept INT 0 0
RETI J .

ragrr
®

indicates no change

CPU RESPONSE
Non-Maskable

A non-maskable interrupt will be accepted at all times by the CPU. When this occurs, the CPU ignores the
next instruction that it fetches and instead does a restart to location 0066H. Thus, it behaves exactly as if it
hadreceived a restart instruction, but itis to a location that is not one of the 8 software restart locations. A
restart is merely a call to a specific address in page O memory.

Maskable
The CPU can be programmed to respond to the maskable interrupt in any one of three possible modes.
Mode O

This mode is identical to the 8080A interrupt response mode. With this mode, the interrupting device can
place any instruction on the data bus and the CPU will execute it. Thus, the interrupting device provides the
next instruction to be executed instead of the memory. Often, this instruction will be a restart instruction,
since the interrupting device only need supply a single byte instruction. Alternatively, any other instruction,
such as-a 3 byte call to any location in memory, could be executed by issuing a restart to the 3 byte op code.

The number of clock cycles necessary to execute this instruction is 2 more than the normal number for the
instruction. This execution occurs since the CPU automatically adds 2 wait states to an interrupt response
cycle to allow sufficient time to implement an external daisy chain for priority control. Section 4.0 illustrates
the detailed timing for an interrupt response. After the application of RESET, the CPU will automatically
enter interrupt Mode O.

Mode 1

When this mode has been selected by the programmer, the CPU will respond to an interrupt by executing a
restart to location 0038H. Thus the response is identical to that for a non-maskable interrupt except that the
call location is 0036H instead of 0066H. Another difference is that the number of cycles required to
complete the restart instruction is 2 more than normal due to the two added wait states.

Mode 2

This mode is the most powerful interrupt response mode. With a single 8-bit byte from the user, an indirect
call can be made to any memory location.

With this mode, the programmer maintains a table of 16 bit starting addresses for every interrupt service
routine. This table may be located anywhere in memory. When an interrupt is accepted, a 16 bit pointer

1i-60

must be formed to obtain the desired interrupt service routine starting address from the table. The upper 8
bits of this pointer are formed from the contents of the | register. The | register must have been previously
loaded with the desired value by the programmer: i.e. LD |, A. Note that the CPU reset clears the | register so
that it is initialized to zero. The lower eight bits of the pointer must be supplied by the interrupting device.
Actually, only 7 bits are required from the interrupting device, as the least bit must be a zero. This is required
since the pointer is used to get two adjacent bytes to form a complete 16 bit service routine starting address,
and the addresses must always start in even locations.

INTERRUPT SERVICE ROUTINE STARTING ADDRESS TABLE

Figure 8.0-2 ,

DESIRED STARTING ADDRESS
POINTED TO BY:

INTERRUPT

SERVICE —

ROUTINE ¢ [-OWORDER 1 REG 7 BITS FROM

STARTING) [HIGH ORDE CONTENTS | PERIPHERAL

ADDRESS

TABLE

The first byte in the table is the least significant (low order) portion of the address. The programmer must
obviously fill this table in with the desired addresses before any interrupts are to be accepted.

Note that this table can be changed at any time by the programmer (if it is stored in Read/Write Memory) to
allow different peripherals to be serviced by different service routines.

Once the interrupting device supplies the lower portion of the pointer, the CPU automatically pushes the
program counter onto the stack, obtains the starting address from the table and does a jump to this address.
This mode of response requires 19 clock periods to complete (7 to fetch the lower 8 bits from the
interrupting device, 6 to save the program counter, and 6 to obtain the jump address.)

Note that the Z80 peripheral devices all include a daisy chain priority interrupt structure that automatically
supplies the programmed vector to the CPU during interrupt acknowledge. Refer to the Z80-PI0, Z80-SIO
and Z80-CTC manuals for details.

-61

INTERRUPT REQUEST ACKNOWLEDGE CYCLE

Figure 8.0-3
Last M Cycle) _ Mi
of Instruction
Last T State T T2 Tw" ™ T3
/ \ / \ / \ / / \
® — / / / /
|NT — e o —— | g e ——— ——————————————— ——————————] ———— — ————————— —
O D /A N ISR N
A0-A15
PC XREFRESH
mi /——
i
MREQ I
, -
|
IQRQ
i M- /
}
! o
DATA BUS . IN
WAIT e o e e o e e e =t e o P ettt Bttt f_.j_ — o [- ——
S) B I S S 00 Y/ Wl
!
RD | :
! Daisy Chain 1 Vector Placed
] Priority Frozen] onto Data Bus
| |

Z80 INTERRUPT ACKNOWLEDGE SUMMARY

1) PERIPHERAL DEVICE REQUESTS INTERRUPT. Any device requesting an interrupt can pull the
wired-or line INT low.

2) CPU ACKNOWLEDGES INTERRUPT. Priority status is frozen when M1 goes low during the Interrupt
Acknowledge sequence. Propagation delays down the |EI/IEO daisy chain must be settled out when
IORQ goes low. If IElis HIGH, an active Peripheral Device will place its Interrupt Vector on the Data Bus
when IORQ goes low. That Peripheral then releases its hold on INT allowing interrupts from a higher
priority device. Lower priority devices are inhibited from placing their Vector on the Data Bus or
Interrupting because |EO is low on the active device.

3

INTERRUPT IS CLEARED. An active Peripheral device (IEI=1, IEO=0) monitors OP Code fetches for an
RETI (ED 4D) instruction which tells the peripheral that its Interrupt Service Routine is over. The
peripheral device then re-activates its internal Interrupt structure as well as raising its IEO line to
enable lower priority devices.

1-62

INTERRELATIONSHIP OF INT, NMI, AND BUSRQ
The following flow chart details the relationship of three control inputs to the Z80-CPU. Note the following
from the flow chart.

1. INT and NMI are always acted on at the end of an instruction.

2. BUSRQ is acted on at the end of a machine cycle.

3. While the CPU is in the DMA MODE, it will not respond to active inputs on INT or NMI.

4. These three inputs are acted on in the following order of priority: a) BUSRQ b) NMi C) INT

[Z80-CPU INTERRUPT SEQUENCE
Figure 8.0-4

LAST
STATE OF
MACHINE
CYCLE

NO

YES
BUSRQ

SET BUSRQ F/F

L
INSTRUCTION
SET NMI F/F
BUSRG
BUSRQ =1
SET INT. F/F >

RESET
BUSRQ F/F

'—NON T

MASKABLE
INTERRUPT

e —

—
NO MASKABLE

INTERRUPT
MODE

. =

1-63

9.0

HARDWARE IMPLEMENTATION EXAMPLES
This chapter is intended to serve as a basic introduction to implerﬁenting systems with the Z80-CPU.
MINIMUM SYSTEM

Figure 9.0-1 is a diagram of a very simple Z80 system. Any Z80 system must include the following five
elements:

1) Five volt power supply
2) Oscillator

3) Memory devices

4) 1/0 circuits

5) CPU

MINIMUM 280 COMPUTER SYSTEM

Figure 9.0-1

+5 VOLT
osc POWER SUPPLY

» Vo
AG-A10 45V GND

ADDRESS
IN

MREQ dCE, MK 34000
RD CE, 16K BIT ROM
MK 3880
Y 280 DATA BUS
cru kK&
RESET iORQ
MK 3881 B/Aje——Ag

)

i 280-PI0 ol A
PORT A PORT B
ouTPUT INPUT
DATA DATA

Since the Z80-CPU only requires a single 5 volt supply, most small systems can be implemented using only
this single supply.

The oscillator can be very simple since the only requirement is that it be a 6 volt square wave. For systems
not running at full speed, a simple RC oscillator can be used. When the CPU is operated near the highest
possible frequency, a crystal oscillator is generally required because the system timing will not tolerate the
drift or jitter that an RC network will generate. A crystal oscillator can be made from inverters and a few
discrete components or monolithic circuits are widely available.

The external memory can be any mixture of standard RAM, ROM, or PROM. In this simple example we have
shown a single 16K bit ROM (2K bytes) being utilized as the entire memory system. For this example we
have assumed that the Z80 internal register configuration contains sufficient Read/Write storage so that
external RAM memory is not required.

111-65

Every computer system requires |/0 circuits to allow it to interface to the “real world.” In this simple
example, it is assumed that the output is an 8 bit control vector and the input is an 8 bit status word. The
input data could be gated onto the data bus using any standard tri-state driver while the output data could
be latched with any type of standard TTL latch. For this example we have used a Z80-PIO for the I/0 circuit.
This single circuit attaches to the data bus as shown and provides the required 16 bits of TTL compatible
170. (Refer to the Z80-PIO manual for details on the operation of this circuit.) Notice in this example that
with only three LS| circuits, a simple oscillator and a single 5 volt power supply, a powerful computer has
been implemented.

ADDING RAM

Most computer systems require some amount of external Read/Write memory for data storage and to
implement a ““stack’’. Figure 9.0-2 illustrates how 256 bytes of static memory can be added to the previous
example. In this example, the memory space is assumed to be organized as follows:

ROM & RAM IMPLEMENTATION EXAMPLE

Figure 9.0-2
ADDRESS
000OH
2K bytes
ROM _ fo7rrH
256 bytes 0800H
RAM JogFFH
{ ADDRESS BUS {
Ao Ao Ag-A7
RD —
AL CE, MK2 240800 RD oD 256 X 8 TE, MREQ
—U_qce X WE
MREG C_Ei ROM WRIR/W RAM cen} A
Do-D7 Do -D7
{ DATA BUS !

In this diagram the address space is described in hexadecimal notation. For this example, address bit A,
separates the ROM space from the RAM space so that it can be used for the chip select function. For larger
amounts of external ROM or RAM, a simple TTL decoder will be required to form the chip selects.

MEMORY SPEED CONTROL

For many applications, it may be desirable to use slow memories to reduce costs. The WAIT line on the CPU
allows the Z80 to operate with any speed memory. By referring back to section 4 you will notice that the
memory access time requirements are most severe during the M1 cycle instruction fetch. All other memory
accesses have an additional one half of a clock cycle to be completed. For this reason it may be desirable in
some applications to add one wait state to the M1 cycle so that slower memories can be used. Figure 9.0-3
is an example of a simple circuit that will accomplish this task. This circuit can be changed to add a single
wait state to any memory access as shown in Figure 9.0-4.

111-66

ADDING ONE WAIT STATE TO AN M1 CYCLE

Figure 9.0-3
WAIT
+5V M1
l [Tl T2l T T3 | Ta
m [: o MU
D Q D Q
7474
o 7474 i B W) ——
c ol —c Q
R R
T T WAIT \ /
+5V +5V

ADDING ONE WAIT STATE TO ANY MEMORY CYCLE
Figure 9.0-4

WAIT
+5V +5V 7400
l l T | T2 | Tw
MREQ s S b
D Q D Q
® 7474 | 7474 | VREQ —\
c af— c Q
WAIT \ /

INTERFACING DYNAMIC MEMORIES

This section is intended only to serve as a brief introduction to interfacing dynamic memories. Each
individual dynamic RAM has varying specifications that will require minor modifications to the description
given here, and no attempt will be made in this document to give details for any particular RAM.

Figure 9.0-5 illustrates the logic memory to interface 8K bytes of dynamic RAM using 16-pin 4K dynamic
memories. This Figure assumes that the RAM's are the only memory in the system so that A, , is used to
select between the two pages of memory. During refresh time, all memories in the system must be read.
The CPU provides the proper refresh address on lines A through Ag. To add additional memory to the
system, itis necessary only to replace the two gates that operate on A, , with a decoder that operates on all
required address bits. For larger systems, buffering for the address and data bus is also generally required.

An application note entitled “'Z80 Interfacing Techniques for Dynamic RAM" is available from your Mostek
representative which describes dynamic RAM design techniques.

11-67

INTERFACING DYNAMIC RAMs

Figure 9.0-5
MREQ DELAY DELAY
CAS
4Kx8 DYNAMIC PAGE |
R/W RAM MEMORY (1000 to IFFF)
e ARRAY °
[—RAS
g, T { >
y DATA
p— AoAs BUS
A
comdRoL ° 4Kx8 DYNAMC
R/W RAM MEMORY (ggoeg'?oprr)
s ARRAY
ADDRESS Yy A\ ADDRESS
BUS l y MULTIPLEXER
© NO REFRESH ADDRESS MULTIPLEXER REQUIRED
® MREQ INITIATES MEMORY CYCLE
_ © RFSH SELECTS REFRESH CYCLE
WR

280-CPU DESIGN CONSIDERATIONS: CLOCK CIRCUITRY

Proper Z80 clock circuitry design is of paramount importance when designing a Z80 system. Parameters
such as clock rise and fall times, min./max. clock high and low times, and max clock over and under shoot
should be closely adhered to. Violation of these specs will result in unreliable and unpredictable
CPU/peripheral behavior. Several manufacturers offer a wide variety of combination oscillator/drivers
housed in 14 pin DIP packages. The following is a suggested source of reliable oscillators/drivers currently

available.

Vendor) Function Part No.
Motorola Oscillator/Driver K1160 series
Motorola Oscillator K1114

MF Electronics Oscillator MF1114
Hybrid House Driver HH3006A

Figure 9.0-6 illustrates a schematic recommended for driving the Z80 CPU, as well as other Z80
peripherals. This configuration meets the 30 ns rise and fall time while driving up to a 150 pf. load. Note the
divide by two input flip flop to provide a 50 percent duty cycle clock. This stage may be omitted if the
oscillator is guaranteed to be within the specifications.

Figure 9.0-6
33pf. T
74574
S / T i i A uF

D Q 5 |

4 82Kka 2N2907A =
24 — '
ck @ {>- . AA— -
74504 220

RESET CIRCUITRY

The Z80-CPU has the characteristic that, if the RESET input goes low during T2 or T4 of a cycle, then the
MREQ signal will go to an indeterminate state for one T-State approximately 3 T-States later. If there are
dynamic memories in the system, this action could cause an aborted or short access of the dynamic RAM,

which could cause destruction of data within the RAM. If the contents of RAM are of no concern after
RESET, then this characteristic is no problem, as the CPU always resets properly. If RAM contents mustbe
preserved, then the falling edge of the RESET input must be synchronized by the falling edge of M1.

The circuitry of Figure 9.0-7 does this synchronization as well as providing a one-shot to limit the duration of
the CPU RESET pulse. The CPU RESET signal mustbe a pulse, even though the EXTERNAL RESET button is
held closed in order to avoid suspending the CPU refresh of dynamic RAM for a time long enough to destroy
data in the RAM.

MANUAL AND POWER-ON RESET CIRCUIT

Figure 9.0-7
+65
+5
+5 10K
s
D Q B
m)—c{>—>c.< CPU RESET
+5
A T :B > ©
EXTERNAL 10K R . ’ 74132 7404
RESET 7474 jf L 74121

2200
D1 T C{?

i

ADDRESS LATCHING

In order to guarantee proper operation of the Z80-CPU with dynamic RAMs the upper 4 bits of the address
should be latched as shown in Figure 9.0-8. This action is required because the Z80-CPU does not
guarantee that the Address Bus will hold valid before the rising edge of MREQ on an OP Code Fetch.

This action does not directly affect dynamic memories because they latch addresses internally. The problem
comes from the address decoder which generates RAS. If the address lines which drive the decoder are
allowed to change while MREQ is low, then a ““glitch”’ can occur on the RAS line or lines, which may have
the effect of destroying one row of data within the dynamic RAM.

n-69

ADDRESS LATCH
Figure 9.0-8

74LS75
A12 »— 11D 1, A2
A13 2D 20, a1z DYNAMIC
Z80-CPU DECODING
A14 » __ J3D 3Qf——5 A4 CIRCUITRY
A5 » 14D aQl___, AI5
G G
WVREG » > TO RAS DECODE

RAS TIMING WITH AND WITHOUT ADDRESS LATCH
Figure 9.0-9

MREQ OP CODE FETCH / \ REFRESH ADDRESS

x VALID MEMORY ADDRESS X VALID REFRESH ADDRESS

— WITHOUT ADDRESS LATCH
RAS ———

RAS WITH ADDRESS LATCH / ‘ \

n-70

10.0 SOFTWARE IMPLEMENTATION EXAMPLES

10.1 METHODS OF SOFTWARE IMPLEMENTATION

Several different approaches are possible in developing software for the Z80 (Figure 10.1). First of
all, Assembly Language or a high level language may be used as the source language. These
languages may then be translated into machine language on a commercial time sharing facility
using a cross-assembler or cross-compiler, or, in the case of assembly language, the translation can
be accomplished on a Z80 Development System using a resident assembler. Finally, the resulting
machine code can be debugged either on a time-sharing facility using a Z80 simulator or on a Z80
Development System which uses a Z80-CPU directly.

SOFTWARE GENERATION TECHNIQUES

Figure 10.1

SOURCE
LANGUAGE TRANSLATION DEBUGGING
RESIDENT ASSEMBLER
ASSEMBLY DEVELOPMENT
LANGUAGE SYSTEM
X MACHINE
CROSS ASSEMBLER N CUAGE
HIGH LEVEL SIMULATOR
_l——| CROSS COMPILER

In selecting a source language, the primary factors to be considered are clarity and ease of
programming versus code efficiency. A high level language with its machine independent
constraints is typically better for formulating and maintaining algorithms, but the resulting machine
code is usually somewhat less efficient than what can be written directly in assembly language.
These tradeoffs can often be balanced by combining high level language routines, by identifying
those portions of a task which must be optimized, and by writing them as assembly language
subroutines.

Deciding whether to use a resident or cross assembler is a matter of availability and short-term
versus long-term expense. While the initial expenditure for a development system is higher than
that for a time-sharing terminal, the cost of an individual assembly using a resident assembler is
negligible while the same operation on a time-sharing system is relatively expensive, and in a short
time this cost can equal the total cost of a development system.

Debugging on a development system versus a simulator is also a matter of availability.and expense
combined with operational fidelity and flexibility. As with the assembly process, debugging is less
expensive on a development system than on a simulator available through time-sharing. In addition,
the fidelity of the operating environment is preserved through real-time execution on a Z80-CPU and
by connecting the 1/0 and memory components which will actually be used in the production
system. The only advantage to the use of a simulator is the range of criteria which may be selected
for such debugging procedures as tracing and setting breakpoints. This flexibility exists because a
software simulation can achieve any degree of complexity in its interpretation of machine
instructions while development system procedures have hardware limitations such as the capacity
of the real-time storage module, the number of breakpoint registers and the pin configuration of the
CPU. Despite such hardware limitations, debugging on a development system is typically more
productive than on a simulator because of the direct interaction that is possible between the
programmer and the authentic execution of his program.

n-71

10.2 SOFTWARE FEATURES OFFERED BY THE Z80-CPU

The Z80 instruction set provides the user with a'large and flexible repertoire of operations with
which to formulate control of the Z80-CPU.

The primary, auxiliary, and index registers can be used to hold the arguments of arithmetic and
logical operations, or to form memory addresses, or as fast-access storage for frequently used data.

Information can be moved directly from register to register; from memory to memory; from memory
to registers, or from registers to memory. In addition, register contents and register/memory
contents can be exchanged without using temporary storage. In particular, the contents of primary
and auxiliary registers can be completely exchanged by executing only two instructions: EX and
EXX. This register exchange procedure can be used to separate the set of working registers between
different logical procedures or to expand the set of available registers in a single procedure.

Storage and retrieval of data between pairs of registers and memory can be controlled on a last-in
first-out basis through PUSH and POP instructions which utilize a special stack pointer register, SP.
This stack register is available both to manipulate data and to store and retrieve addresses for
subroutine linkage automatically. When a subroutine is called, for example, the address following
the CALL instruction is placed on the top of the pushdown stack pointed to by SP. When a subroutine
returns to the calling routine, the address on the top of the stack is used to set the program counter
for the address of the next instruction. The stack pointer is adjusted automatically to reflect the
current “top” stack position during PUSH, POP, CALL and RET instructions. This stack mechanism
allows pushdown data stacks and subroutine calls to be nested to any practical depth because the
stack area can potentially be as large as memory space.

The sequence of instruction execution can be controlled by six different flags (carry, zero, sign,
parity/overflow, add-subtract, half-carry) which reflect the results of arithmetic, logical, shift and
compare instructions. After the execution of an instruction which sets a flag, that flag can be used to
control a conditional jump or return instruction. These instructions provide logical control following
the manipulation of single bit, eight-bit byte (or) sixteen-bit data quantities.

Afull set of logical operations, including AND, OR, XOR (exclusive —OR), CPL (NOR) and NEG (two's
complement) are available for Boolean operations between the accumulator and 1) all other
eight-bit registers, 2) memory locations, or 3) immediate operands.

In addition, a full set of arithmetic and logical shifts in both directions is available and operate on the
contents of all eight-bit primary registers or directly on any memory location. The carry flag can be
included or simply set by these shift instructions to provide both the testing of shift results and to link
register/register or register/memory shift operations.

10.3 EXAMPLES OF USE OF SPECIAL Z80 INSTRUCTIONS
A. Letus assume that a string of data in memory starting at location “DATA" is to be moved into

another area of memory starting at location “BUFFER’* and that the string length is 737 bytes.
This operation can be accomplished as follows:

LD HL, DATA ;START ADDRESS OF DATA STRING

LD DE, BUFFER ;START ADDRESS OF TARGET BUFFER
LD BC, 737 ;LENGTH OF DATA STRING

LDIR ;MOVE STRING — TRANSFER MEMORY

;POINTED TO BY HL INTO MEMORY
;LOCATION POINTED TO BY DE INCREMENT
;HL AND DE, DECREMENT BC PROCESS
;UNTIL BC=0.

11 bytes are required for this operation and each byte of data is moved in 21 clock cycles.

mn-72.

B. Assume thata string in memory starting at location “DATA" is to be moved into another area of
memory starting at location “BUFFER"” until an ASCII $ character (used as string delimiter) is
found. Also assume that the maximum string length is 132 characters. The operation can be
performed as follows:

LD HL, DATA ;STARTING ADDRESS OF DATA STRING
LD DE, BUFFER ;STARTING ADDRESS OF TARGET BUFFER
LD BC, 132 ;MAXIMUM STRING LENGTH
LD A ;STRING DELIMITER CODE
LOOP: CP (HL) ;,COMPARE MEMORY CONTENTS WITH DELIMITER
JR Z END—$;GOT TO END IF CHARACTERS EQUAL
LDI ;MOVE CHARACTER (HL) TO (DE)
;INCREMENT HL AND DE, DECREMENT BC
JP PE, LOOP ;GO TO “LOOP’ IF MORE CHARACTERS
END: ;OTHERWISE, FALL THROUGH

:NOTE: P/V FLAG IS USED
;TO INDICATE THAT REGISTER BC WAS
;DECREMENTED TO ZERO.

19 bytes are required for this operation.
C. Let us assume that a 16-digit decimal number represented in packed BCD format (two BCD

digits;/byte) has to be shifted as shown in the Figure 10.2 in order to mechanize BCD
multiplication or division. The operation can be accomplished as follows:

LD HL DATA ;ADDRESS OF FIRST BYTE
LD B, COUNT ;SHIFT COUNT
XOR A ;CLEAR ACCUMULATOR
ROTAT: RLD ;ROTATE LEFT LOW ORDER DIGIT IN ACC
;WITH DIGITS IN (HL)
INC HL ;/ADVANCE MEMORY POINTER
DJNZ ROTAT—$;DECREMENT B AND GO TO ROTAT IF

;B IS NOT ZERO, OTHERWISE FALL THROUGH

BCD DATA SHIFTING
11 bytes are required for this operation.
Figure 10.2

|

Fanaoa0e

11 bytes are required for this operation.

D. Assume that one number is to be subtracted from another and (a) that they are both in packed
BCD format; b) that they are of equal but varying length, and c) that the result is to be stored in a
location of the minuend. The operation can be accomplished as follows:

LD HL, ARG1 ;ADDRESS OF MINUEND
LD DE, ARG2 ;ADDRESS OF SUBTRAHEND
LD B, LENGTH ;LENGTH OF TWO ARGUMENTS
AND A ;CLEAR CARRY FLAG
SUBDEC: LD A, (DE) ;SUBTRAHEND TO ACC
SBC A, (HL ;SUBTRACT (HL) FROM ACC
DAA ;ADJUST RESULT TO DECIMAL CODED VALUE
LD (HL), A ;STORE RESULT
INC HL ;ADVANCE MEMORY POINTERS
INC DE
DJNZ SUBDEC—$;DECREMENT B AND GO TO “SUBDEC” IF B

;NOT ZERO, OTHERWISE FALL THROUGH
17 bytes are required for this operation.
10.4 EXAMPLES OF PROGRAMMING TASKS

A. The following program sorts an array of numbers each in the range <0,255> into ascending
order using a standard exchange sorting algorithm.

01/22/76 11:14:37 BUBBLE LISTING
LOC OBJCODE STMT SOURCE STATEMENT

1 ; *** STANDARD EXCHANGE (BUBBLE) SORT ROUTINE***
2 ;

3 ; AT ENTRY: HL CONTAINS ADDRESS OF DATA

4 . C CONTAINS NUMBER OF ELEMENTS TO BE SORTED
5 ¥ (1<C<256)

6 H

7 ; AT EXIT: DATA SORTED IN ASCENDING ORDER

8 ;

9 ; USE OF REGISTERS

10 ;

1 ; REGISTER CONTENTS

12 ;

13 ;A TEMPORARY STORAGE FOR CALCULATIONS
14 ; B COUNTER FOR DATA ARRAY

15 ; C LENGTH OF DATA ARRAY

16 ; D FIRST ELEMENT IN COMPARISON

17 . E SECOND ELEMENT IN COMPARISON

18 ; H FLAG TO INDICATE EXCHANGE

19 ;L UNUSED

20 ;o IX POINTER INTO DATA ARRAY

21 ;Y UNUSED

22 H

n-74:

01/22/76 11:14:37 BUBBLE LISTING (Cont'd.)

LOC OBJCODE STMT SOURCE STATMENT
0000 222600 23 SORT: LD (DATA), HL ;SAVE DATA ADDRESS

0003 CB84 24 LOOP: RES FLAG, H JINITIALIZE EXCHANGE FLAG
0005 41 25 LD B,C JINITIALIZE LENGTH COUNTER
0006 05 26 DEC B ;ADJUST FOR TESTING
0007 DD2A2600 27 LD IX, (DATA) JINITIALIZE ARRAY POINTER
0008 DD7E00 28 NEXT: LD A, (1X+0) ;FEIRST ELEMENT IN COMPARISON
000E 57 29 LD D, A ;TEMPORARY STORAGE FOR ELEMENT
000F DDS5EO1 30 LD E, (IX+1) ;SECOND ELEMENT IN COMPARISON
0012 93 31 SuUB E ;,COMPARISON FIRST TO SECOND
0013 3808 32 JR C, NOEX-$;IF FIRST> SECOND, NO JUMP
0015 DD7300 33 LD (1X), E ;EXCHANGE ARRAY ELEMENTS
0018 DD7201 k) LD (1X+1), D
001B CBC4 35 SET FLAGH ;RECORD EXCHANGE OCCURRED
001D DD23 36 NOEX: INC IX ;POINT TO NEXT DATA ELEMENT
001F 10EA 37 DINZ NEXT-$ JCOUNT NUMBER OF COMPARISONS
;REPEAT IF MORE DATA PAIRS
0021 CB44 39 BIT FLAG, H ;DETERMINE IF EXCHANGE OCCURRED
0023 20DE 40 JR NZ, LOOP-$;CONTINUE IF DATA UNSORTED
00256 C9 41 RET JOTHERWISE, EXIT
42 ;
0026 43 FLAG: EQU O ;DESIGNATION OF FLAG BIT
0026 44 DATA: DEFS 2 ;STORAGE FOR DATA ADDRESS
45 END
B. The following program multiplies two unsigned 16-bit integers and leaves the result

in the HL register pair.

01/22/76 11:32:36 MULTIPLY LISTING
LOC OBJCODE STMT SOURCE STATEMENT

0000 1 MULT:; UNSIGNED SIXTEEN BIT INTEGER MULTIPLY.
2 ON ENTRANCE: MULTIPLIER IN HL.
3 MULTIPLICAND IN DE.
4
5 ON EXIT: RESULT IN HL.
6
7 REGISTERS USES:
8
9
10 H HIGH ORDER PARTIAL RESULT
1 ; L LOWORDER PARTIAL RESULT
12 D HIGH ORDER MULTIPLICAND
13 E LOWORDER MULTIPLICAND
14 B COUNTER FOR NUMBER OF SHIFTS
1% C HIGH ORDER BITS OF MULTIPLIER
16 A LOW ORDER BITS OF MULTIPLIER
17
0000 0610 18 LD B, 16; NUMBER OF BITS—INITIALIZE
0002 4A 19 LD C,D; MOVE MULTIPLIER
0003 7B 20 LD AE;
0004 EB 21 EX DE,HL; MOVE MULTIPLICAND
0005 210000 22 LD HL,0; CLEAR PARTIAL RESULT
0008 CB39 23 MLOOP: SRL C; SHIFT MULTIPLIER RIGHT
000A 1F 24 RR A; LEAST SIGNIFICANT BIT IS
IN CARRY.
0008 3001 26 JR NC, NOADD-$ IF NO CARRY, SKIP THE ADD.

-75

01/22/76 11:32:36 MULTIPLY LISTING (Cont'd.)

LOC OBJCODE STMT SOURCE STATMENT

000D 19 27 " ADD HL, DE; ELSE ADD MULTIPLICAND TO
‘ PARTIAL RESULT. ,
O00E EB 29 NOADD: EX DEHL; SHIFT MULTIPLICAND LEFT.
000F 29 .30 ADD HLHL; BY MULTIPLYING IT BY TWO.
0010 EB 31 EX DEHL; ; : .
0011 10F§ 32 . DINZ MLOOPS; REPEAT UNTIL NO MORE BITS.
0013 C9 33 RET; »
34 . END;

n-76

11.0 ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Biasottt iiiiiiiiiiiiiiiiee e Specified Operating Range
StOrage TeMPEIAtUNE« vt ieeeeee e e e ee et sannesseasessosssassssansnesasasansnnnns -65°C to +150°C
Voltage on Any Pin with Respect to Ground .. -03Vto+7V
POWET DiSSIPAtION . .o vttt ittt it ittt etseennanaeeeessasonnsnssaoossoreronnannans 15wW

All ac parameters assume a load capacitance of 50 pF max.

D.C. CHARACTERISTICS
Ta = 0°Cto 70°C, V¢ = 5 V £ 5% unless otherwise specified

SYMBOL | PARAMETER MIN TYP MAX UNITS | TEST CONDITIONS

ViLe Clock Input Low Voltage -0.3 0.8 \%

ViHe Clock Input High Voltage Vee--6 Veet3 \%

Vi Input Low Voltage -03 08 \%

Vi Input High Voltage 20 Vee \)

VoL Output Low Voltage 04 \ oL = 1.8 mA

Vox Output High Voltage 24 \% oH = —250 A

lec Power Supply Current 150* mA

I Input Leakage Current +10 uA Viy=0to Ve

o Tri-State Output Leakage +10 KA Vour =04 Vito Ve
Current in Float

*200 mA for -4, -10 or -20 devices
NOTE: All outputs are rated at one standard TTL load.

CAPACITANCE
Ta = 25°C, f = 1 MHz unmeasured pins returned to ground

SYMBOL | PARAMETER ' MAX UNIT
(of) Clock Capacitance _ 35 pF
Cin Input Capacitance 5 pF
Cout Output Capacitance 10 pF

*Stresses above those listed under ‘*Absolute Maximum Ratings’’ may cause permanent damage to the device. This is a stress rating only and functional
operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

m-77

e e M <

MK3880, -4, -6, -10 Z80-CPU

AC CHARACTERISTICS
=0°C to 70°C, V¢ = +5 V £ 5%, Unless Otherwise Noted

3880 3880-4 3880-6
SIGNAL|SYMBOL |[PARAMETER MIN | MAX | MIN | MAX | MIN | MAX
(ns) (ns) (ns) (ns) (ns) (ns)
te Clock Period 400 | [12] | 250 | [12] 1656 | [12]
t{®H) |Clock Pulse Width, Clock High 180 (D) 110 (D) 65 | (D)
o t(®L) Clock Pulse Width, Clock Low 180 | 2000 | 110 | 2000 | 65 | 2000
t Clock Rise and Fall Time 30 30 20
tp(AD) Address Output Delay 145 110 90
trAD) Delay to Float 110 920 80
tacm Address Stable Prior to MREQ (Memﬂ Cycle) [1] [13] [24]
Agis [taci Address Stable Prior to IORQ, RD or WR [2] [14] [25]
(170 Cycle) -
tea Address Stable From _FE WEORQ or MREQ [3] [15] [26]
toaf Address Stable From RD or WR During Float [4] [16] [27}
top) Data Output Delay 230 150 130
trD) Delay to Float During Write Cycle 90 90 80
tsaD) Data Setup Time to Rising Edge of Clock During 50 35 30
M1 Cycle
Do.7 tsHD) Data Setup Time to Falling Edge at Clock During | 60 50 40
M2 to M5 .
taem Data Stable Prior to WR (memory Cycle) 5] 7] [28]
tyci Data Stable Prior to V WR (/0 Cycle) [6] [18] [29]
- tegs Data Stable from WR [7] [19] [30]
ty Input Hold Time 0 0 0
tOLHMR) REQ Delay From Falling Edge of Clock, 20 100 20 85 20 70
REQ Low
tongmr) |MREQ Delay From Rising Edge of Clock, 100 85 70
MREQ High
MREQ |tpyzmer) |MREQ Delay From Falling Edge of Clock, 100 85 70
MREQ High
twivAr) | Pulse Width, MREQ Low [8] [20] [20]
twivan) | Pulse Width, MREQ High [91 [21] [21]
tOLa(R) TORQ Delay From Rising Edge of Clock, 90 75 65
__IORQ Low
_ torzm) |IORQ Delay From Falling Edge of Clock, 110 85 70
IORQ I0RQ Low :
toHegr) |IORQ Delay From Rising Edge of Clock, 100 85 70
__IORQ High
toudr) |[IORQ Delay From Falling Edge of Clock 110 . 85 70
Clock, IORQ High
toLerp) | RD Delay From Rising Edge of Clock, RD Low 100 85 70
— tDLHRD) RD Delay From Falling Edge of Clock, RD Low 130 | - 95 80
RD tpHHRD) RD Delay From Rising Edge of Clock, RD High 15 100 15 85 15 70
tpHHBD) RD Delay From Falling Edge of Clock, RD High 110 85 70
toLawr) |WR Delay From Rising Edge of Clock, WR Low 80 65 60
R to,Hwr) |WR Delay From Falling Edge of Clock, WR Low 90 80 70
WR ltpuzwr) |WR Delay From Falling Edge of Clock, WR High 100 1 so 70
twwrr) | Pulse Width, WR Low [10] [22] [22]

NOTES:

A. Data should be enabled onto the CPU data bus when RD is active. During

interrupt acknowledge data should be enabled when M1 and IORQare both

active.

[Cont’d on next page]

-78

B. The RESET signal must be active for a minimum of 3 clock cycles.

MK3880, -4, -6, -10 Z80-CPU
3880 3880-4 3880-6
SIGNAL{SYMBOL |PARAMETER MIN | MAX | MIN | MAX | MIN | MAX
(ns) | (ns) | (ns) [(ns) | (ns) | (ns)
. toym1) [M1 Delay From Rising Edge of Clock M1 Low 130 100 80
M1 tonm1) |[M1 Delay From Rising Edge of Clock M1 High 130 100 80
RFSH |toyr RFSH Delay From Rising Edge of Clock, 180 130 110
RFSH Low
tOHRR) RFSH Delay From Rising Edge of Clock, 150 120 100
RFSH High
WAIT ltgw WAIT Setup Time to Falling Edge of Clock 70 70 60
HALT [topm HALT Delay Time From Falling Edge of Clock 300 300 260
INT Jtym INT Setup Time to Rising Edge of Clock 80 80 70
NMI tw(NMI) Pulse Wldth, NMI Low 80 80 70
BUSRQ |tggq) BUSRQ Setup Time to Rising Edge of Clock 80 50 50
BUSAK [tpyga) BUSAK Delay From Rising Edge of Clock, 120 100 90
BUSAK Low
tonea) |BUSAK Delay From Falling Edge of Clock, 110 100 920
BUSAK High
RESET |typs) RESET Setup Time to Rising Edge of Clock 90 60 60
trc) Delay to/from Float (MREQ, IORQ, RD and WR) 100 80 70
tmr M1 Stable Prior to IORQ (Interrupt Ack.) [11] [23] [31]
(11 tacM = tw(®H) +t-75 7] tgem = te-170 LOAD CIRCUIT FOR OUTPUT
Figure 11.0-1 v
[2] taej=1tc-80 [18] tggi = tw (®L) + t, - 170 cc
31 tca =ty (®L) +1t,-40 [19] tegf = tw (BL) +t, - 70
—_— TEST POINT R. = 1.91KQ
@] teaf = tw (L) + 1 - 60 [20] t,, (MRD) =1, - 30 !
151 tgem = tc-210 [21] ty (MRH) = t,, ($H) + t¢ - 20 Sz%hgno_:’gs"#" .
[6] tggj = tw (®L) + 1, - 210 [22] t, (WR) =t - 30 J» ‘
[7] tegf = tw (®L) + 1, - 80 [23] tmp = 2t + tyy (@H) + 1 - 65 c
_ L ? R, = 9.53K0
[8] tw(MRL)=t.-40 [24] tacm = tw (®H) + 15 - 50
8] ty (MRH) =ty (®H) + t;-30 [25] taqj =tc-55
[10] ty (WR) =t - 40 [26] tca =ty (L) +t, - 50 = = =
[11] tyr =21t +ty (®H) + 4 -80 [27] teaf = ty (PL) +1,-45
[12] te =ty (BH) + tyy (BL) + t, +t¢ [28] tgem =tc- 140
[13] taem = ty (BH) + tf - 65 [29] tgci = tw (BL) + t, - 140

14
[15]

[16]

taci =tc - 70
tea = tw (PL) + t, -50

teaf = tw (BL) + t, 46

[30] tegs = tw (BL) + t; - 55 C.

[31] tmp = 2t +tyy (PH) + t5 - 50

NOTES (Cont’d.)
Output Delay vs. Load Capacitance

Tao=70°CVec=5V 5%

Add 10 nsec delay for each 50 pF increase in load up to a maximum of 200 pF

for the data bus and 100 pF for address and control lines.
D. Although static by design, testing guarantees t,,, (®) of 200 usec maximum.

1-79

A.C. TIMING DIAGRAM

Timing measurements are made at the following voltages, unless otherwise specified:

Figure 11.0-2
" “gr
) CLOCK Vge—6 8V
OUTPUT 20V 8V
et INPUT 20V 8V
WOH), FLOAT, AV 05V
. J z J 5] Y
¢ | | o
h ' (AD)
e T
Ao-a1s >
'0 (AD)
T L ———
\, ’ S, rd
Ao-15 X X) X
. 1S& (D) e
S (D)
———n] s —ttey s,d.
N "k ' ._.L..){" £NL
0.7 Tl D (D =T s o)
- spoi= | " oy
out N { 1N
4
‘oL (mn) tOH (M1)— I—— g 1 teat
i I ﬂ‘ /F = Yea
OH (RF) . e tedf
D1 (RF)—=] -—qg‘
: R (c) '
RFSH /1 — - In—
T . ‘s
=1 ot b ma) {DHMRI—~] - OH BRI {DH (MR)—~ }—
) o
MRE ! ! <t ‘wuv'm_ny[L V. R N 4
1l W (M T
. ~+—={'0L%® (RD) "DH (RD)—— . (i 'DHG (RD)—~ w/—i— :
RD ; W e/
T .
oL (WR)| . }Jm«p(wn)
— . 'y
WR Ll — tgem -Ew (WRL) % doo/
’ oL@ R DLBUR) T
'OHG (IR —= "OHP (1R)];~
157G I ™,
t & N
o— tmr p ot tacy = 1 -
- ‘oud(ro) 1 4
'DHp (RD)-={ ;F--
— s
RD Medaa
« a /
tordwR) 7T
[ng 'DHP (WR)~] -
o,
WR Nod-/
SwT) (| Yo b
G
WATT }g _5(\ ‘
d - D (HT) 0HT)
PR
HALT
'Sun|{ ™ S
iNT "
> 4
NMmi L
W (PM
BUSRQ
'0H (BA)
'L (BA)
BUSAK
'S (RS)| | '
RESET N }(
~

i)

111-80

12.0 Z80 INSTRUCTION BREAKDOWN BY MACHINE CYCLE

This section tabulates each Z80 instruction type and breaks each instruction down into its machine cycles
and corresponding T States. The different standard machine cycles (OP Code Fetch, Memory Read, Port
Read, etc.) are described in Section 4.0 of this manual. This chart will allow the system designer to predict
what the Z80 will do on each clock cycle during the execution of a given instruction. The instruction types
are listed together by functions and in the same order as the Tables in Section 7.

The best way to learn how to use these tables is to look at a few examples. The first example is to register
exchange instructions (LD r, s) where r,s can be any of the following CPU Registers: B,C,D,E,H,L, or A. The
instruction breakdown table shows this instruction to have one machine cycle (M1) four T States long
(number in parenthesis), which is an OP Code Fetch. Referring to Figure 4.0-1, one sees the standard form
for an OP Code Fetch and the state of the CPU bus during these four T-States. Taking the next instruction
shown (LD r, n) which loads one of the previous registers with data or immediate value “n”’ one finds the
breakdown to be a four T-State OP Code Fetch followed by a three T-State Operand Data Read. An Operand
Data Read takes the form of the Standard Memory Read shown in Figure 4.0-2.

After these two simple examples, a more complex one is in order. The LD r, (IX+d) is the firstdouble byte OP
Code shown and executes as follows: First there are two M1 cycles (and related memory refreshes)
followed by an Operand Data Read of the displacement “d”. Next M3 consists of a five T-State Internal
Operation which is the calculation of the Indexed address (IX+d). The last machine cycle (M4) consists of a
Memory Read o{ the data continued in address IX+d and the loading of register “r”’ with that data.

The LD dd, (nn) instruction loads an internal 16-bit register pair with the contents of the memory location
specified in the Operand Bytes of the instruction. This instruction is four bytes long (two bytes of OP Code +
two bytes of Operand Address). As shown, there are two M1 cycles to fetch the OP code and then two
Machine Cycles to read the Operand Addresses, low order byte first. Machine cycle 4 is a read of memoryto
obtain the data for the low order register (e.g., C of BC, E of DE, and L of HL) followed by a read of the data for
the high order register.

The first instruction to use the Stack Register is the PUSH qq instruction which executes as follows:
Machine cycle 1 is extended by one cycle, and the Stack Pointer is decremented in the extra T-State to point
to an empty location on the Stack. Machine cycle 2 is a write of the high byte of the referenced register tothe
address contained in the Stack Pointer. The Stack Pointer is again decremented and a write of the low byte
of the referenced register is made to the Stack in Machine Cycle 3. Note that the Stack Pointer is left
pointing to the last data referenced on the Stack. The block transfer instruction such as LDl and LDIR are
very similar. LDl is 16 T-States long and is composed of a double byte OP Code Fetch (two memory
refreshes) followed by a memory read and a memory write. The memory write is 5 T-States long to allow
updating of the block length counter —BC. The repetitive form of this instruction (LDIR) has an additional
Machine Cycle (M4) of 5 T-States to allow decrementing of the Program Counter by two (PC-2) which
results in refetching of the OP Code (LDIR). Each movement of data by this instruction is 21 T-States long
(except the last) and the refetching of the OP Codes results in memory refresh occurring as well as the
sampling of interrupts and BUSRQ.

The NMI Interrupt sequence is 11 T-States long with the first M1 being a dummy OP Code Fetch of 5
T-States long. The Program Counter is not advanced, the OP Code on the data bus is ignored and an internal
Restart is done to address 66 H. The following two Machine cycles are a write of the Program Counter to the
Stack.

TheINT Mode O is the 8080A mode and requires the user to place an instruction on the data bus for the CPU
to execute. If a RST instruction is used, the CPU stacks the Program Counter and begins execution at the
Restart Address. If a CALL instruction is used, the CALL Op Code is placed on the data bus during the INTA
cycle(M1). M2 and M3 are normal Memory Read cycles (not INTA cycles) of the CALL addresses (low byte
first). Program Counter is stacked in M4 and M5.

1n-81

Mode 2 is used by the Z80 System Peripherals and operates as follows: During the INTA cycle (M 1), a Vector
is sent in from the highest priority interrupting device. M2 and M3 are used to Stack the Program Counter.
The Vector (low byte) and an internal Interrupt Register (1) form a pointer to a table containing the addresses
of Interrupt Service Routines. During M4 and M5, the Service Routines’ address is read from this table into
the CPU. The next M1 cycle will fetch an OP Code from the address received in M4 and M5.

11-82

LEGEND
10 — Internal CPU Operation

MR — Memory Read ODL — Operand Data Read of Low Byte

MRH — Memory Read of High Byte PR — Port Read

MRL — Memory Read of Low Byte PW — Port Write

MW — Memory Write SRH — Stack Read of High Byte

MWH — Memory Write of High Byte SRL — Stack Read of Low Byte

MWL — Memory Write of Low Byte SWH — Stack Write of High Byte

OCF — Op Code Fetch SWL — Stack Write of Low Byte

ODH — Operand Data Read of High Byte () — Number of T-States in that. Machine Cycle
280 INSTRUCTION BREAKDOWN BY MACHINE CODE

MACHINE CYCLE
INSTRUCTION
TYPE BYTES M1 M2 M3 M4 M5
LDr,s 1 OCF (4)
LDr, n 2 OCF (4) oD (3)
LD r, (HL) 1 OCF (4) MR (3)
LD (HL), r OCF (4) MW (3)
LD r, (IX+d) 3 OCF (4)/OCF (4) 0D (3) 10 (5) MR (3)
LD (IX+d), r OCF (4)/OCF (4) OD (3) 10 (5) MW (3)
LD (HL), n 2 OCF (4) oD (3) MW (3)
BC
LD A, (DE) 1 OCF (4) MR (3)
LD (gg), A OCF (4) MW (3)
LD A, (nn) 3 OCF (4) ODL (3) ODH (3) MR (3)
LD (nn), A OCF (4) ODL (3) ODH (3) MW (3)
LD A,F" 2 OCF (4)/OCF(5)
|
LDR, A
LD dd, nn 3 OCF (4) ODL (3) ODH (3)
LD IX, nn 4 OCF (4)/OCF (4) ODL (3) ODH (3)
LD HL, (nn) 3 OCF (4) ODL (3) ODH (3) MRL (3) MRH (3)
LD (nn), HL OCF (4) ODL (3) ODH (3) MWL (3) MWH (3)
LD dd, (nn) 4 OCF (4)/OCF (4) ODL (3) ODH (3) MRL (3) MRH (3)
LD (nn), dd OCF (4)/OCF (4) ODL (3) ODH (3) MWL (3) MWH (3)
LD IX, (nn) OCF (4)/OCF (4) ODL (3) ODH (3) MRL (3) MRH (3)
LD (nn), IX OCF (4)/OCF (4) ODL (3) ODH (3) MWL (3) MWH (3)
LD SP, HL 1 OCF (6)
LD SP, IX 2 OCF (4)/OCF (6)
PUSH qq 1 OCF (5) SWH (3) SWL (3)
SP-1 - SP-1
PUSH IX 2 OCF (4)/OCF (5) SWH (3) SWL (3)
SP-1 SP-1 _
POP qq 1 OCF (4) SRH (3) SRL (3)
SP+1 _ SP+1
POP IX 2 OCF (4)/OCF (4) SRH (3) SRL (3)
SP+1 SP+1_

EX DE, HL 1 OCF (4)
EX AF, AF’ 1 OCF (4)

1-83

MACHINE CYCLE

INSTRUCTION
TYPE

BYTES

M1

M2

M3

M4

M5

EXX
EX (SP), HL

EX (SP), IX

LDI
LDD
CPI
CPD

LDIR
LDDR
CPIR
CPDR

ALUAr
ADD ADC
SUB SBC
AND OR
XOR CP

ALUA,n
ALU A, (HL)
ALU A, (IX+d)

DEC
INCr

DEC
INC (HL)

DEC
INC (IX+D)

DAA
CPL
CCF
SCF
NOP
HALT
DI

El

NEG
IMO
M1
M2

OCF (4)
OCF (4)

OCF (4)/OCF (4)

OCF (4)/OCF (4)

OCF (4)/OCF (4)

OCF (4)

OCF (4)
OCF (4)
OCF (4)/OCF (4)

OCF (4)
OCF (4)

OCF (4)/OCF (4)
OCF (4)

OCF (4)/OCF (4)

SRL (3)

SRL (3)

MR (3)

MR (3)

0D (3)
MR (3)
0D (3)

MR (4)

0D (3)

SP+1

SP+1

SRH (4)

SRH (4)

-) .
MW (5)

MW (5)

10 (5)

MW (3)

10 (5)

SWH (3)
SP-1

SWH (3)
SP-1

10 (5)*
*only ifBC£ 0

MR (3)

MR (4)

SWL (5)

>
SWL (5)

>

MW (3)

Hi-84

MACHINE CYCLE

INSTRUCTION
TYPE

BYTES

M1

m2

M3

M4

M5

ADD HL, ss

ADC HL, ss
SBC HL, ss
ADD IX, pp

INC ss
DEC ss

DEC IX
INC IX

RLCA
RLA,
RRCA
RRA

RLCr
RL
RRC
RR
SLA
SRA
SRL

RLC (HL)
RL

RRC

RR

SLA

SRA

SRL

RLC (I1X+d)
RL

RRC

RR

SLA

SRA

SRL

RLD
RRD

BITb, r
SET
RES

OCF (4)

OCF (4)/OCF (4)

OCF (6)
OCF (4)/OCF (6)

OCF (4)

OCF (4)/OCF (4)

OCF (4)/OCF (4)

OCF (4)/OCF (4)

OCF (4)/OCF (4)

OCF (4)/OCF (4)

10 (4)

10 (4)

MR (4)

0D (3)

MR (3)

10 (3)

10 (3)

MW (3)

10 (5)

10 (4)

MR (4)

MW (3)

MW (3)

111-85

MACHINE CYCLE

INSTRUCTION BYTES M1 M2 M3 M4 M5
TYPE
BIT b, (HL) 2 OCF (4)/OCF (4) MR (4)
SET b, (HL) 2 - OCF (4)/OCF (4) MR (4) MW (3)
RES
BIT b, (IX+d) 4 OCF (4)/OCF (4) oD (3) 10 (5) MR (4)
SET b, (IX+d) 4 OCF (4)/OCF (4) 0D (3) 10 (5) MR (4) MW (3)
RES
JP nn 3 OCF (4) ODL (3) ODH (3)
JP cc, nn
JRe 2 OCF (4) 0D (3) 10 (5)
JRC,e 2 OCF (4) oD (3) 10 (5)*
JRNC, e * If condition is met
JRZ e
JRNZ, e
JP (HL) 1 OCF (4)
JP (IX) 2 OCF (4)/OCF (4)
DJINZ, e 2 OCF (5) oD (3) 10 (5)*
*1fB£O
CALLnn 3 OCF (4) oDL (3) ODH (4) SWH (3) SWL (3)
CALL cc, nn SP-1 SP-1 o
cc true -
CALLcc, nn 3 OCF (4) ODL (3) ODH (3)
cc false

RET 1 OCF (4) SRL (3) SRH (3)

SP+1 _ SP+1
RET cc 1 OCF (5) SRL (3)* SRH (3)*

* If ccis true

SP+1 _ SP+1
RETI 2 OCF (4)/OCF (4) SRL (3) SRH (3)
RETN SP+1 SP+1
RST p 1 OCF (5) SWH (3) SWL (3)

SP-1 SP-1 N

- 11-86

MACHINE CYCLE

INSTRUCTION BYTES M1 M2 M3 M4 M5
TYPE
IN A, (n) 2 OCF (4) oD (3) PR (4)
IN T, (c) 2 OCF (4)/OCF (4) PR (4)
INI 2 OCF (4)/OCF (5) PR (4) MW (3)
IND
INIR 2 OCF (4)/OCF (5) PR (4) MW (3) 10 (6)
INDR
OUT (n), A 2 OCF (4) 0D (3) PW (4)
OuT (C), r 2 OCF (4)/OCF (4) PW (4)
ouTI 2 OCF (4)/OCF (5) MR (3) PW (4)
QuUTD
OTIR 2 OCF (4)/OCF (5) MR (3) PW (4) 10 (5)
OTDR
INTERRUPTS
NMI - OCF (5) * SWH (3) SWL (3) *Op Code lgnored
SP-1 SP-1 o
INT
MODE 0O - INTA (6) ODL (3) ODH (4) SWH (3) SWL (3)
(CALL INSERTED) SP-1 > SP-1 o
- INTA (6) SWH (3) SWL. (3)
(RST INSERTED)
SP-1 - SP-1 o
MODE 1 INTA (7) SWH (3) SWL (3)
(RST 38H
INTERNAL)
SP-1 L se1 .
MODE 2 - INTA (7) SWH (3) SWL (3) MRL (3) MRH (3)
(VECTOR
SUPPLIED)
SP-1 . SR s

13.0 ORDERING INFORMATION

'MAX CLOCK

PART NO. PACKAGE TYPE FREQUENCY TEMPERATURE RANGE
MK3880N Z80-CPU Plastic 2.5 MHz

MK3880P Z80-CPU Ceramic 2.5 MHz

MK3880N-4 Z80-CPU Plastic 4.0 MHz 0° to + 70°C

MK3880P-4 Z80-CPU Ceramic 4.0 MHz

MK3880P-10 280-CPU Ceramic 2.5 MHz -40°C to +85°C

MOSTEK.

Z80 MICROCOMPUTER DEVICES

Technical Manual

MK3881
PARALLEL 1/0
CONTROLLER

-89

TABLE OF CONTENTS

SECTION PAGE
1.0 INTRODUCTIONttt ittt eeiiaeaes -93
20 ARCHITECTUREttt iii it et eenaeeaianaanaeennnennnnns 11i-95
3.0 PINDESCRIPTION ...ttt ittt ittt ittt eeanneeeneennns -97
4.0 PROGRAMMINGTHEPIOoiiiiiiiii ittt ianaas n-101
BO TIMING ...t it ittt ittt ittt e et ranaaeeaaennns i-105
6.0 INTERRUPTSERVICINGc0tiittitiiiieiiiit it iieiteatennennnaananans n-111
7.0 APPLICATIONSttt it it et iaaaaaniiaanaaann m-113
8.0 PROGRAM SUMMARY ... ittt ittt iiite i etaneeannneennnnss n-117
9.0 ELECTRICAL SPECIFICATIONSiiiiiiiii ittt ittt aannas m-119
10.0 ORDERING INFORMATIONttt ittt niieeans -122

n-91

-92

1.0

INTRODUCTION

The Z80 Parallel /0 Circuit is a programmable, two port device which provides a TTL compatible interface
between peripheral devices and the Z80-CPU. The CPU can configure the Z80-PIO to interface with a wide
range of peripheral devices with no other external logic required. Typical peripheral devices that are fully
compatible with the Z80-PIO include most keyboards, paper tape readers and punches, printers, PROM
programmers, etc. The Z80-PIO utilizes N channel silicon gate depletion load technology and is packaged in
a 40 pin DIP. Major features of the Z80-PIO include:

e Two independent 8 bit bidirectional peripheral interface ports with ‘handshake’ data transfer
control

® Interrupt driven ‘handshake’ for fast response
* Any one of four distinct modes of operation may be selected for a port including:

Byte output
Byte input
Byte bidirectional bus (Available on Port A only)
Bit control mode
All interrupt controlled handshake

* Daisy chain priority interrupt logic included to provide for automatic interrupt vectoring without
external logic

® Eight outputs are capable of driving Darlington transistors
e All inputs and outputs fully TTL compatible

® Single 5 volt supply and single phase clock required

One of the unique features of the Z80-PIO that separates it from other interface controllers is that all data
transfer between the peripheral device and the CPU is accomplished under total interrupt control. The
interrupt logic of the PIO permits full usage of the efficient interrupt capabilities of the Z80-CPU during 1/0
transfers. All logic necessary to implement a fully nested interrupt structure is included in the PIO so that
additional circuits are not required. Another unique feature of the PIO is that it can be programmed to
interrupt the CPU on the occurrence of specified status conditions in the peripheral device. For example, the
PIO can be programmed to interrupt if any specified peripheral alarm conditions occur. This interrupt
capability reduces the amount of time that the processor must spend in polling peripheral status.

n-93

Hn-94

2.0 PlO ARCHITECTURE

A block diagram of the Z80-PI0 is shown in figure 2.0-1. The internal structure of the Z80-PIO consists of a

Z80-CPU bus interface, internal control logic, Port A 1/0 logic, Port B 1/0 logic, and interrupt control logic.

The CPU bus interface logic allows the PIO to interface directly to the Z80-CPU with no other external logic.

- However, address decoders and/or line buffers may be required for large systems. The internal control

‘ logic synchronizes the CPU data bus to the peripheral device interfaces (Port A and Port B). The two 1/0
ports (A and B) are virtually identical and are used to interface directly to the peripheral devices.

PIO BLOCK DIAGRAM

Figure 2.0-1
. GJ::D I
8 3
INTERNAL PORT DATA OR CONTROL
CONTROL A
S Ho }HANDSHAKE
—=>
8
pATAEYS sus PERIPHERAL
cPU BUS INTERNAL BUS)muauce
INTERFACE L 1/0
PIO CONTROL
LINES .
poRT —7—>DATA OR CONTROL
&ETRR%UL" 8
ve HANDSHAKE
F——b

INTERRUPT CONTROL LINES

The Port1/0 logic is composed of 6 registers with ““handshake’ control logic as shown in figure 2.0-2. The
registers include: an 8-bit data input register, an 8-bit data output register, a 2-bit mode control register, an
8-bit mask register, an 8-bit input/output select register and a 2-bit mask control register.

PORT |I/0 BLOCK DIAGRAM
Figure 2.0-2

INPUT/OUTPUT
'—:> SELECT REG
B8ITS)

MODE

CONTROL OUTPY’
REG ENABLE
(2817S)

i i DATA
INTERNAL BUS b OgTPU‘I’

REG
{8BITS)

L 1:1ig
PERIPHERAL

:> DATAOR
CONTROL BUS

MASK K™ 7 oara
] — Ak INPUT
REG (8 BITS) | REG
(2817s) k inPUTDATA | (8EITS)

’ READY

HANDSHAKE ‘——‘91

INTERRUPT 4 onTaanK HANDSHAKE
REQUESTS LoGIc STROBE | Lines

= v L R e e —

The 2-bit mode control register is loaded by the CPU to select the desired operating mode (byte output, byte
input, byte bidirectional bus, or bit control mode). All data transfer between the peripheral device and the
CPU is achieved through the data input and data output registers. Data may be written into the output
register by the CPU or read back to the CPU from the input register at any time. The handshake lines
associated with each port are used to control the data transfer between the PIO and peripheral device.

The 8-bit mask register and the 8-bit input/output select register are used only in the bit control mode. In
this mode any of the 8 peripheral data control bus pins can be programmed to be an input or an output as
specified by the select register. The mask register is used in this mode in conjunction with a special
interrupt feature. This feature allows an interrupt to be generated when any or all of the unmasked pins
reach a specified state (either high or low). The 2-bit mask control register specifies the active state desired
(high or low) and whether the interrupt should be generated when all unmasked pins are active (AND
condition) or when any unmasked pin is active (OR condition). This feature reduces the requirement for CPU
status checking of the peripheral by allowing an interrupt to be automatically generated on specific
peripheral status conditions. For example, in a system with 3 alarm conditions, an interrupt may be
generated if any one alarm condition occurs or if all three occur.

The interrupt control logic section handles all CPU interrupt protocol for nested priority interrupt structures.
The priority of any device is determined by its physical location in a daisy chain configuration. Two lines are
provided in each PIO to form this daisy chain. The device closest to the CPU has the highest priority. Within a
PIO, Port A interrupts have higher priority than those of Port B. In the byte input, byte output, or bidirectional
modes, an interrupt can be generated whenever a new byte transfer is requested by the peripheral. In the
bit control mode an interrupt can be generated when the peripheral status matches a programmed value.
The PIO provides for complete control of nested interrupts. That is, lower priority devices may not interrupt
higher priority devices that have not had their interrupt service routine completed by the CPU. Higher
priority devices may interrupt the servicing of lower priority devices.

When an interrupt is accepted by the CPU in mode 2, the interrupting device must provide an 8-bit interrupt
vector for the CPU. This vector is used to form a pointer to a location in the computer memory where the
address of the interrupt service routine is located. The 8-bit vector from the interrupting device forms the
least significant 8 bits of the indirect pointer while the | Register in the CPU provides the most significant 8
bits of the pointer. Each port (A and B) has an independent interrupt vector. The least significant vector is
automatically set to a O within the PIO since the pointer must point to two adjacent memory locations for a
complete 16-bit address.

The PIO decodes the RETI (Return from interrupt) instruction directly from the CPU data bus so that each

PIO in the system knows at all times whether it is being serviced by the CPU interrupt service routine
without any other communication with the CPU.

1-96

3.0

PIN DESCRIPTION

A diagram of the Z80-PIO pin configuration is shown in figure 3.0-1. This section describes the function of
each pin.

D4-Dg Z80-CPU Data Bus (bidirectional, tristate)
This bus is used to transfer all data and commands between the Z80-CPU and the Z80-PIO.
Dy is the least significant bit of the bus.

B/A Sel Port B or A Select (input, active high)
This pin defines which port will be accessed during a data transfer between the Z80-CPU
and the Z80-PIO. A low level on this pin selects Port A while a high level selects Port B.
Often Address bit A, from the CPU will be used for this selection function.

C/D Sel Control or Data Select (input, active high)
This pin defines the type of data transfer to be performed between the CPU and the PIO. A
high level on this pin during a CPU write to the PIO causes the Z80 data bus to be interpreted
as a command for the port selected by the B/A Select line. A low level on this pin means
that the Z80 data bus is being used to transfer data between the CPU and the PIO. Often
Address bit A; from the CPU will be used for this function.

CE Chip Enable (input, active low)
A low level on this pin enables the PIO to accept command or data inputs from the CPU
during a write cycle or to transmit data to the CPU during a read cycle. This signal is
generally a decode of four 1/0 port numbers that encompass port A and B, data and control.

[System Clock (input)
The Z80-PIO uses the standard Z80 system clock to synchronize certain signals internally.
This is a single phase clock.

™M1 Machine Cycle One Signal from CPU (input, active low)
The signal from the CPU is used as a sync pulse to control several internal PIO operations.
When MT is active and the RD signal is active, the Z80-CPU is fetching an instruction from
memory. Conversely, when | M1 is active and TORQ is active, the CPU is acknowledging an
interrupt. In addition, the M1 signal has two other functions within the Z80-PIO.

1. M1 synchronizes the PIO interrupt logic.

2. When M1 occurs without an active RD or IORQ signal, the PIO logic enters a reset
state.

IORQ Input/Output Request from Z80-CPU (input, active low) o

The IORQ signal is used in conjuction with the B/A Select, C/D Select, CE, and RD signals
to transfer commands and data between the Z80-CPU and the Z80-PI0. When CE, RD and
I0RQ are active, the port addressed by B/A will transfer data to the CPU (a read operation).
Conversely, when CE and TORQ are active but RD is not active, then the port addressed by
B/Awill be written into from the CPU with either data or control information as specified by
the C/D Select signal. Also if IORQ and M1 are active simultaneously, the CPU is
acknowledging an interrupt and the interrupting port will automatically place its interrupt
vector on the CPU data bus if it is the highest device requesting an interrupt.

RD Read Cycle Status from the Z80-CPU (input, active low)
If RD is active a MEMORY READ or 1/0 READ operation is in progress. The RD signal is
used with B/A Select, C/D Select, CE andIORQ signals to transfer data from the Z80-PIO to
the Z80-CPU.

IEl Interrupt Enable In (input, active high)
This signal is used to form a priority interrupt daisy chain when more than one interrupt
driven device is being used. A high level on this pin indicates that no other devices of higher
priority are being serviced by a CPU interrupt service routine.

111-97

IEO

A STB

A RDY

By-B,

B STB

B RDY

Interrupt Enable Out (output, active high)

The IEO signal is the other signal required to form a daisy chain priority scheme. It is high
only if IEl is high and the CPU is not servicing an interrupt from this PIO. Thus this signal
blocks lower priority devices from interrupting while a higher priority device is being
serviced by its CPU service routine.

Interrupt Request (output, open drain, active low)
When INT is active the Z80-PIO is requesting an interrupt from the Z80-CPU.

Port A Bus (bidirectional, tristate)
This 8 bit bus is used to transfer data and/or status or control information between Port A or
the Z80-PIO and a peripheral device. A, is the least significant bit of the Port A data bus.

Port A Strobe Pulse from Peripheral Device (input, active low)
The meaning of this signal depends on the mode of operation selected for Port A as follows:

1) Output mode: The positive edge of this strobe is issued by the peripheral to
acknowledge the receipt of data made available by the PIO.

2) Inputmode: The strobe isissued by the peripheral to load data from the peripheral
into the Port A input register. Data is loaded into the PIO when this signal is active.

3) Bidirectional mode: When this signal is active, data from the Port A output register
is gated onto Port A bidirectional data bus. The positive edge of the strobe
acknowledges the receipt of the data.

4) Control mode: The strobe is inhibited internally.

Register A Ready (output, active high)
The meaning of this signal depends on the mode of operation selected for Port A as follows:

1) Outputmode: This signal goes active to indicate that the Port A output register has
been loaded and the peripheral data bus is stable and ready for transfer to the
peripheral device.

2) Input mode: This signal is active when the Port A input register is empty and is
ready to accept data from the peripheral device.

3) Bidirectional mode: This signal is active when data is available in.Port A output
register for transfer to the peripheral device. In this mode data is not placed on the
Port A data bus unless A STB is active.

4) Control mode: This signal is disabled and forced to a low state.

Port B Bus (bidirectional, tristate)

This 8 bit bus is used to transfer data and/ or status or control mformatlon between Port B of
the PIO and a peripheral device. The Port B data bus is capable of supplying 1.56ma @ 1.5V
to drive Darlington transistors. By, is the least significant bit of the bus.

Port B Strobe Pulse from Peripheral Device (input, active low)

The meaning of this signal is similar to that of A~ STB with the following exceptlon
In the Port A bidirectional mode this signal strobes data from the peripheral device into
the Port A input register.

Register B Ready (output, active high)

The meaning of this signal is similar to that of A Ready with the following exception:
In the Port A bidirectional mode this signal is high when the Port A input register is empty
and ready to accept data from the peripheral device.

111-98

PIO PIN CONFIGURATION

Figure 3.0-1
19 15 A .
(Do > lat——— Ag
4
01— 2 2
Dz<——1-> <——13—-> A2
40 12
cPU D3 ———>} j«—» A3
DATA < 39 10
BUS D4 t—> lt—— A4
38 9
D5 <———p] la«—» A5 > TORT A
D— 2 Ag
| 07— L A7
¢ PORT B/A SEL ———% 3! 18 ARDY
CONTROL/DATA 5 , Z80PIO 16 ASTe]
SEL . MK 3881
PIO CHIP ENABLE ——— 7
CONTROL § — 37 25 3
[V JR—L 28
JR— 36 [<&—— B
{ORQ ————» 29
— 35 l——p B2
\ RD iy 30 B3
+5V _i.> <——3-:,'__—>B4
GND —-—-1—1-—.. <_§£_> Bs :’/!‘J’RT B
33
25 <t——— Bg
[34
la—B7
rm‘«-—”——- ”
INTERRUPT J T ENABLE IN—22] L » BRDY
CONTROL 17 —
INT ENABLE ou-r<—22— j¢—— BSTB J

n-99

n-100

4.0 PROGRAMMING THE PIO

4.1

RESET

The Z80-PIO automatically enters a reset state when power is applied. The reset state performs the
following functions:

1) Both port mask registers are reset to inhibit all port data bits.

2) Portdata bus lines are set to a high impedance state and the Ready “handshake” signals are
inactive (low). Mode 1 is automatically selected.

3) The vector address registers are not reset.
4) Both port interrupt enable flip flops are reset.
5) Both port output registers are reset.

In addition to the automatic power on reset, the PIO can be reset by applying an M1 signal without
the presence of a RD or IDRQ signal. If no RD or IORQ is detected during M1 the PIO will enter the
reset state immediately after the M1 signal goes inactive. The purpose of this reset is to allow a
single external gate to generate a reset without a power down sequence. This approach was
required owing to the 40 pin packaging limitation. It is recommended that in breadboard systems
with a “Reset” push button that M1 reset be implemented for the PIO.

7408

CPU RESET ' —
— PIO M1
CPUM1

4.2

A software RESET is possible as described in Section 4.4; however, use of this method during early
system debug may not be desirable because of non-functional system hardware (bus buffers or
memory for example).

Once the PIO has entered the internal reset state it is held there until the PIO receives a control word
from the CPU. : :

LOADING THE INTERRUPT VECTOR

The PIO has been designed to operate with the Z80-CPU using the mode 2 interrupt response. This
mode requires that an interrupt vector be supplied by the interrupting device. This vector is used by
the CPU to form the address for the interrupt service routine of that port. This vector is placed on the
Z80 data bus during an interrupt acknowledge cycle by the highest priority device requesting service
at that time. (Refer to the Z80-CPU Technical Manual for details on how an interrupt is serviced by
the CPU). The desired interrupt vector is loaded into the PIO by writing a control word to the desired
port of the PIO with the following format:

D7 D6 D5 Da D3 D2 D1 DO

V7 V6 V5 V4 V3 V2 4

signifies this control word
_is an interrupt vector

1-101

el e .

43

DO is used in this case as a flag bit which when low causes V7 through V1 to be loaded into the
vector register. At interrupt acknowledge time, the vector of the interrupting port will appear on the

Z80 data bus exactly as shown in the format above.
SELECTING AN OPERATING MODE

Port A of the PIO may be operated in any of four distinct modes: Mode O (output mode), Mode 1 (input
mode), Mode 2 (bidirectional mode), and Mode 3 (control mode). Note that the mode numbers have
been selected for mnemonic significance; i.e. 0 = Out, 1 =In, 2 = Bidirectional. Port B can operate in
any of these modes except Mode 2.

The mode of operation must be established by writing a control word to the PIO in the following
format:

D7 D6 D5 D4 D3 D2 D1 Do

M1 MO0 X X 1 1 1 1 X=unused bit

\ - /
-F' - /

mode word signifies mode word to be set

Bits D7 and D6 form the binary code for the desired mode according to the following table:

D7 D6 MODE

0 0 O (dutput)

0 1 1 (input)

1 0 2 (bidirectional)
1 1 3 (control)

Bits D5 and D4 are ignored. Bits D3-DO must be set to 1111 to indicate “Set Mode”.

Selecting Mode O enables any data written to the port output register by the CPU to be enabled onto
the port data bus. The contents of the output register may be changed at any time by the CPU simply
by writing a new data word to the port. Also the current contents of the output register may be read
back to the Z80-CPU at any time through the execution of an input instruction.

With Mode O active, a data write from the CPU causes the Ready handshake line of that port to go
high to notify the peripheral that data is available. This signal remains high until a strobe is received
from the peripheral. The rising edge of the strobe generates an interrupt (if it has been enabled) and
causes the Ready line to go inactive. This very simple handshake is similar to that used in many
peripheral devices.

Selecting Mode 1 puts the port into the input mode. To start handshake operation, the CPU merely
performs an input read operation from the port. This activates the Ready line to the peripheral to
signify that data should be loaded into the empty input register. The peripheral device then strobes
data into the port input register using the strobe line. Again, the rising edge of the strobe causes an
interrupt request (if it has been enabled) and deactivates the Ready signal. Data may be strobed into
the input register regardless of the state of the Ready signal if care is taken to prevent a data overrun
condition.

Mode 2 is a bidirectional data transfer mode which uses all four handshake lines. Therefore only
Port A may be used for Mode 2 operation. Mode 2 operation uses the Port A handshake signals for

m-102

output control and the Port B handshake signals for input control. Thus, both A RDY and B RDY
may be active simultaneously. The only operational difference between Mode O and the output
portion of Mode 2 is that data from the Port A output register is allowed on to the port data bus only
when A STB is active in order to achieve a bidirectional capability.

Mode 3 operation is intended for status and control applications and does not utilize the handshake
signals. When Mode 3 is selected, the next control word sent to the PIO must define which of the
port data bus lines are to be inputs and which are to be outputs. The format of the control word is
shown below:

D7 D6 D5 D4 D3 D2 D1 DO

1/07 | 1/0g 10/5 | 1/04 | 1/03 | 1/02 1/01 1/0¢g

44

If any bit is set to a one, then the corresponding data bus line will be used as an input. Conversely, if
the bit is reset, the line will be used as an output.

During Mode 3 operation the strobe signal is ignored and the Ready line is held low. Data may be
written to a port or read from a port by the Z80-CPU at any time during Mode 3 operation. (An
exception to this is when Port A is in Mode 2 and Port B is in Mode 3). When reading a port, the data
returned to the CPU will be composed of input data from port data bus lines assigned as inputs plus
output register data from those lines assigned as outputs.

SETTING THE INTERRUPT CONTROL WORD

The interrupt control word for each port has the following format:

D7 D6 D5 D4 D3 D2 D1 Do

Enable AND/ High/ Masks 0 1 1 1
Interrupt] QR Low follows
(. /' \em J

-V v
used in Mode 3 only signifies interrupt control word

If bit D7 = 1, the interrupt enable flip flop of the port is set and the port may generate an interrupt.
Ifbit D7 = O, the enable flag is reset and interrupts may not be generated. If an interrupt occurs while
D7 =0, then it will be latched internally by the PIO and passed onto the CPU when PIO Interrupts are
Re-Enabled (D7 = 1). Bits D6, D5 and D4 are used mainly with Mode 3 operation; however, setting
bit D4 of the interrupt control word during any mode of operation will cause a pending interruptto be
reset. These three bits are used to allow for interrupt operation in Mode 3 when any gpup ofthel/O
lines go to certain defined states. Bit D6 (AND/OR) defines the logical operation to be performed in
port monitoring. If bit D6 = 1, an AND function is specified and if D6 =0, an OR function is specified.
For example, if the AND function is specified, all bits must go to a specified state before an interrupt
will be generated while OR function will generate an interrupt if any specified bit goes to the active
state.

Bit D5 defines the active polarity of the port data bus line to be monitored. If bit D5 = 1, the port data
lines are monitored for a high state, while if D5 = O, they will be monitored for a low state.

Hi-103

- If bit D4 = 1 the next control word sent to the PIO must define a mask as follows:

D7 D6 D5 D4 D3 D2 D1 DO

MB7 | MBg | MBs | MBg | MB3 | MBz | MBq | MBg

Only these port lines whose mask bit is zero will be monitored for generating an interrupt.

The interrupt enable flip flop of a port may be set or reset without modifying the rest of the interrupt
control word by using the following command:

Int
Enable

If an external Asynchronous interrupt could occur while the processor is writing the disable word to
the PIO (O3H) then a system problem may occur. If interrupts are enabled in the processor, it is
possible that the Asynchronous interrupt will occur while the processor is writing the disable word
to the PIO. The PIO will generate an INT and the CPU will acknowledge it; however, by this time, the
PIO will have received the disable word and deactivated its interrupt structure. The result is that the
PIO will not send in its interrupt vector during the interrupt acknowledge cycle because it is disabled
and the CPU will fetch an erroneous vector resulting in a program fault. The cure for this problemis
to disable interrupts within the CPU with the DI instruction just before the PIO is disabled and then
re-enable interrupts with the El instruction. This action causes the CPU to ignore any faulty
interrupts produced by the PIO while it is being disabled. The code sequence would be:

LD A03H

DI ' ; DISABLE CPU
OUT (PID)A _ : DISABLE PIO

El ‘ ; ENABLE CPU

-104

5.0 TIMING

5.1

OUTPUT MODE (MODE 0)

Figure 5.0-1a illustrates the timing associated with Mode O operation. An output cycle is always
started by the execution of an output instruction by the CPU. AWR* pulse is generated by the PIO
during a CPU I/0 write operation and is used to latch the data from the CPU data bus into addressed
port’s (A or B) output register. The rising edge of the WR* pulse then raises the READY line after the
next falling edge of ® to indicate that data is available for the peripheral device. In most systems, the
rising edge of the READY signal can be used as a latching signal in the peripheral device. The READY
signal will remain active until a positive edge is received from the STROBE line indicating that the
peripheral has taken the data shown in Figure 5.0-1a. If already active, READY will be forced low 12
& cycles after the falling edge of IORQ if the port’s output register is written into. READY will return
high on the first falling edge of ® after the rising edge of IORQ as shown in Figure 5.0-1b. This action
guarantees that READY is low while port data is changing and that a positive edge is generated on
READY whenever an Output instruction is executed.

MODE 0 (OUTPUT) TIMING MODE 0 (OUTPUT) TIMING

Figure 56.0-1a

L4

WR*

Figure 6.0-1b

T2 ™ T3 m ™ w T3 m

/|

L=

PORT OUTPUT

PORT OUTPUT
(8 BITS)

) & / [N\ 8 BITS) \)Y

READY

R N

STROBE "1,

STROBE

INT

‘WR*=RD: CE- C/D - IORG

INT 17

WR* =RD - CE - C/D * IORQ

By connecting READY to STROBE, a positive pulse with a duration of one clock period can be created
as shown in Figure 5.0-1c. The positive edge of READY/STROBE will not generate an interrupt
because the positive portion of STROBE is less than the width of M1 and as such will not generate
an interrupt due to the internal logic configuration of the PIO.

If the PIO is not in a reset status (i.e. a control mode has been selected), the output register may be
loaded before Mode O is selected. This allows port output lines to become active in a user defined
state. For example, assume the outputs are desired to become active in a logic one state. The
following would be the initialization sequence:

a) PIO RESET

b) Load Interrupt Vector

c) Select Mode 1 (input) (automatic due to RESET)
d) Write FF to Data Port

e) Select Mode O (Outputs go to “1s”)

f) Enable Interrupt if desired

-106

MODE 0 (OUTPUT) TIMING - READY TIED TO STROBE
Figure 5.0-1¢

@

WR*) /
pensatig)) A
READY/STROBE

= ‘

INT nqe

WR'=RD - CE - C/D - I0RQ

5.2

INPUT MODE (MODE 1)

Figure 5.0-2 illustrates the timing of an input cycle. The peripheral initiates this cycle using the
STROBE line after the CPU has performed a data read. A low level on this line loads data into the port
input register and the rising edge of the STROBE line activates the interrupt request line (INT) if the
interrupt enable is set, and this is the highest priority requesting device. The next falling edge of the
clock line (@) will then reset the READY requesting line to an inactive state signifying that the input
register is full and further loading must be inhibited until the CPU reads the data. The CPU will, in the
course of its interrupt service routine, read the data from the interrupting port. When this occurs, the
positive edge from the CPU RD signal will raise the READY line with the next low going transition of
&, indicating that new data can be loaded into the PIO.

Since RESET causes READY to go low, adummy Input instruction may be needed in some systems
to cause READY to go high the first time in order to start “handshaking”.

MODE 1 (INPUT) TIMING MODE 1 (INPUT) TIMING (NO STROBE INPUT)

Figure 5.0-2a

P

STROBE

PORT INPUT
(8 BITS)

READY

Figure 5.0-2b

PORT INPUT
(88ITS) \ DATAIN \ X NEW DATA IN

RD* = RD - CE C/D - IORG

MODE 1 {INPUT) TIMING (NO STROBE INPUT)

If already active, READY will be forced low one and one-half ® periods following the falling edge of
I0RQ during a read of a PIO port as shown in Figure 5.0-2b. If the user strobes data into the PIO only
when READY is high, the forced state of READY will prevent input register data from changing while
the CPU is reading the PIO. READY will go high again after the rising edge of the TORQ as previously
described.

-106

5.3 BIDIRECTIONAL MODE (MODE 2)

This mode is merely a combination of Mode O and Mode 1 using all four handshake lines. Since it
requires all four lines, it is available only on Port A. When this mode is used on Port A, Port B must be
setto the Bit Control Mode. The same interrupt vector will be returned for aMode 3 interrupt on Port
B and an input transfer interrupt during Mode 2 operation of Port A. Ambiguity is avoided if Port B is
operated in a polled mode and the Port B mask register is set to inhibit all bits. Furthermore,
interrupts from Port B (Mode 3) will not be generated when Port A is programmed for Mode 2, as
BSTB would have to be active (low) in order to generate interrupts. (BTSB is normally high).

Figure 5.0-3 illustrates the timing for this mode. It is almost identical to that previously described for
Mode O and Mode 1 with the Port A handshake lines used for output control and the Port B lines
used for input control. The difference between the two modes is thatin Mode 2, data is allowed out
onto the bus only when the A STROBE is low. The rising edge of this strobe can be used to latch the
data into the peripheral since the data will remain stable until after this edge. The input portion of
Mode 2 operates identically to Mode 1. Note that both Port A and Port B must have their interrupts
enabled to acheive an interrupt driven bidirectional transfer.

-~

PORT A, MODE 2 (BIDIRECTIONAL) TIMING
Figure 5.0-3

o P S N

ASTB

PORT A {oatam ¥ /

DATA BUS {_oatacur }
SAMPLE
INT ; (4
B STB Q

B RDY \

\
s
= e

The peripheral must not gate onto a port data bus while ASTB is active. Bus contention is avoided if
the peripheral uses B STB to gate input data onto the bus. The PIO uses the B STB low level to
sample this data. The PIO has been designed with a zero hold time requirement for the data when
latching in this mode so that this simple gating structure can be used by the peripheral. That is, the
data can be displayed from the bus immediately after the strobe rising edge. Note that if ASTB is low
during a read operation of Port A (in response to a B STB interrupt) the data in the output register will
be read by the CPU instead of the correct data in the data input register. The correct data is latched in
the input register; it just cannot be read by the CPU while ASTBis low. If the ASTB signal should go
low during a CPU Read, it would be blocked from reaching the A STB input of the PIO while BRDY is
low (the CPU read will occur while BRDY is low as the RD signal returns BRDY high).

m-107

5.4 BIT CONTROL MODE (MODE 3)

The bit control mode does not utilize the handshake signals.and a normalport write or port read can be
executed at any time. When writing, the data will be latched into output registers with the same
timing as Mode 0. A RDY will be forced low whenever Port A is operated in Mode 3. B RDY will be
held low whenever Port B is operated in Mode 3 unless Port A is in Mode 2. In the latter case, the
state of B RDY will not be affected.

When reading the PIO, the data returned to the CPU will be composed of output register data from
those port data lines assigned as outputs and input register data from those port data lines assigned
as inputs. The input register will contain data which was present immediately prior to the falling
edge of RD. See Figure 5.0-4.

MODE 3 TIMING
Figure 5.0-4a

Tq T2 Tw* T3

Uy uyowuruys

PORT
DATA BUS X

DATA WORD 1 X DATA WORD 2 x

iNT \
DATA MATCH OCCURS HERE 45

iORO) /

Dg-Dy { oatain)

Z DATA WORD 1 PLACED ON BUS

*Timing Diagram Refers to Bit Mode Read

An interrupt will be generated if interrupts from the port are enabled and if the data on the port data
lines satisfies the logical equation defined by the 8-bit mask control registers. Another interrupt will
not be generated until a change occurs in the status of the logical equation. A Mode 3 interrupt will
be generated only if the result of a Mode 3 logical operation changes from false to true. For example,
assume that the Mode 3 logical equation is an “OR” function. An unmasked port data line becomes
active and an interrupt is requested. If a second unmasked port data line becomes active
concurrently with the first, a new interrupt will not be requested since a change in the result of the
Mode 3 logical operation has not occurred. Note that port pins defined as outputs can contribute to
the logical equation if their bit positions are unmasked.

If the result of a logical operation becomes true immediately prior to or during M1, an interrupt will

be requested after the trailing edge of M1, provided the logical equation remains true after mi
returns high.

n-108

Figure 5.0-4b is an example of Mode 3 interrupts. The port has been placed in Mode 3 with OR logic
selected and signals defined high. All but bits AO and A1 are masked out and are not monitored
thereby creating a two input positive logic OR gate. In the timing diagram, AO is shown going high
and creating an interrupt (INT goes low) and the CPU responds with an Interrupt Acknowledge cycle
(INTA). The PIO port with its interrupt pending sends in its Vector, and the CPU goes off into the
Interrupt Service Routine. AQ is shown going inactive either by itself or perhaps as a result of action
taken in the Interrupt Service Routine (making the logical equation false). An arrow is shown at the
point in time where the Service Routine issues the RETI instruction which clears the PIO interrupt
structure. A1 is next shown going high, making the logical equation true and generating another
interrupt. Two important points need to be made from this example:

1) A1 must not go high before AO goes low or else the logical equation will not go false
-a requirement for A1 to be able to generate an interrupt.

2) Inorderfor A1 to generate an interrupt it must be high after the RETl issued by AO’s
Service Routine clears the PIO’s Interrupt structure. In other words, if A 1 were a
positive pulse that occurred after AO went low (to make the equation false) and went
low before the RETI had cleared the Interrupt Structure, it would have been missed.
The logic equation must become false after the INTA for AQ’s service and then must
be true or go true after RETI clears the previous interrupt for another interrupt to
occur.

MODE 3 EXAMPLE
Figure 5.0-4b

EQUATION TRUE

A0
LOGICAL
EQUATION
GOES FALSE EQUATION TRUE
A1l I
J
RET! ISSUED HERE
MODE 3 INTERRUPT CLEARED

INT :?:D——-INTERRUPT
VECTOR IN VECTOR IN
INTA N/

m-110

6.0 INTERRUPT SERVICING

Some time after an interrupt is requested by the PIO, the CPU will send out an interrupt acknowledge (M1
and IORQ). During this time the interrupt logic of the PIO will determine the highest priority port which is
requesting an interrupt. (This is simply the device with its Interrupt Enable Output low). To insure that the
daisy chain enable lines stabilize, devices are inhibited from changing their interrupt request status when
M1 is active. The highest priority device places the contents of its interrupt vector register onto the Z80 data
bus during interrupt acknowledge.

Figure 6.0-1 illustrates the timing associated with interrupt requests. During M1 time, no new interrupt
requests can be generated. This gives time for the Interrupt Enable signals to ripple through up to four PIO
circuits. The PIO with |El high and IEO low during INTA will place the 8-bit interrupt vector of the appropriate
port on the data bus at this time.

If an interrupt requested by the PIO is acknowledged, the requesting port is ‘under service'. IEO of this port
will remain low until a return from interrupt instruction (RETI) is executed while IEl of the port is high. If an
interrupt request is not acknowledged, IEQO will be forced high for one M1 cycle after the PIO decodes the
opcode ‘ED’. This action guarantees that the two byte RETI instruction is decoded by the proper PIO port.
See Figure 6.0-2.

INTERRUPT ACKNOWLEDGE TIMING
Figure 6.0-1 LAST T
STATE T T2 w* W T3
P
—_— SAMPLE INT
INT
—_ 10RO AND M1
IORQ INDICATE
INTERRUPT
ACKNOWLEDGE
- (INTA)
M1 ’
7
IEO
1E1"1”
RETURN FROM INTERRUPT CYCLE
Figure 6.0-2 T1 T2 T3 Ta T T2 T3 T4 T1
[
RD \ , \ ’
Dg - D7 1 ED ' \ 4D '
3] - 1EO of higher priority PIO going high to
_______ allow lower priority device to decode RETI.
- - - Higher priority device is not under service. =~ =~ — — — — — — — —=
IEO J

m-111

DAISY CHAIN INTERRUPT SERVICING
Figure 6.0-3

HIGHEST PRIORITY PORT

e PORT 1A PORT 1B PORT 2A PORT 2B

I HI HI Hi HI Hi
IEI IEO IEI 1IEO 1EI IEO IEl |EO

1. PRIORITY INTERRUPT DAISY CHAIN BEFORE ANY INTERRUPT OCCURS.

g UNDER SERVICE

| HI HI HI Lo 4 Lo
IEl IEO IEl IEO IEI IEO IEl iEO

2. PORT 2A REQUESTS AN INTERRUPT AND IS ACKNOWLEDGED.

e UNDER SERVICE SERVICE SUSPENDED
I HI HI Lo LO Lo
13] IEO IEI IEO IEl IEO IEI IEO
3. PORT 1B INTERRUPTS, SUSPENDS SERVICING OF PORT 2A.
o SERVICE COMPLETE SERVICE RESUMED
| HI Hi HI Lo LO
IEl IEO IEI IEO IEl IEO 1EI IEO

4. PORT 1B SERVICE ROUTINE COMPLETE, "RETI” ISSUED, PORT 2A SERVICE RESUMED.

e SERVICE COMPLETE

Hi HI HI HI HI
lIEl IEO IEI IEO IEl [EO IEl IEO

5. SECOND "RETI"” INSTRUCTION ISSUED ON COMPLETION OF PORT 2A SERVICE ROUTINE.

Figure 6.0-3 illustrates a typical nested interrupt sequence that could occur with four ports connected in the
daisy chain. In this sequence Port 2A requests and is granted an interrupt. While this port is being serviced,
a higher priority port(1B) requests and is granted an interrupt. The service routine for the higher priority port
is completed and RETl instruction is executed to indicate to the port that its routine is complete. At this time
the service routine of the lower priority port is completed.

m-112

7.0 APPLICATIONS

71

EXTENDING THE INTERRUPT DAISY CHAIN

Without any external logic, a maximum of four Z80-PIO devices may be daisy chained into a priority
interrupt structure. This limitation is required so that the interrupt enable status (IEO) ripples
through the entire chain between the beginning of M1, and the beginning of IORQ during an
interrupt acknowledge cycle. Since the interrupt enable status cannot change duringM1, the vector
address returned to the CPU is assured to be from the highest priority device which requested an

interrupt.

If more than four PIO devices must be accommodated, a ““look-ahead" structure may be used as
shown in Figure 7.0-1. With this technique more than thirty PIO s may be chained together using

standard TTL logic.

A METHOD OF EXTENDING THE INTERRUPT DAISY CHAIN

Figure 7.0-1
- D
_J
+Vv
0 0 IE|
Z80-
[-
cPu DATA BUS
7.2 1/0 DEVICE INTERFACE

In this example, the Z80-PIO is connected to an I/0 terminal device which communicates over an
8-bit parallel bidirectional data bus as illustrated in Figure 7.0-2. Mode 2 operation (bidirectional) is
selected by sending the following control word to Port A:

EXAMPLE I/0 INTERFACE

Figure 7.0-2

D7 D6 = D5

D4 D3 D2 D1 DO

\'4
MODE CONTROL

m-113

e SRR L

EXAMPLE I/0 INTERFACE

A RDY >C
ASTB
B RDY >C
BSTB l
D D D
S R R
T aQ ¢
B Y,
Z80-PIO D
PORT DATA BUS
MK3881
— 1/0
B/A C/D CE TERMINAL

Figure 7.0-2
DATA BUS
280-cPU 10R0 >
MK3880 M1 >
INT
<
ADDRESS
ADDRESS BUS
BUS

DECODER

<>0 |-

Next, the proper interrupt vector is loaded (refer to CPU Manual for details on the operation of the

interrupt).

V7 V6

Vb6

V4

V3

V2

V1

Interrupts al_'e_'ihen enabled by the'yrising edge of the first M1 after the interrupt mode word is set
unless that M1 defines an interrupt acknowledge cycl_e._ If a mask follows the interrupt mode word,
interrupts are enabled by the rising edge of the first M1 following the setting of the mask.

Data can now be transferrred between the peripheral and the CPU. The timing for this transfer is as
described in Section 5.0

7.3 CONTROL INTERFACE

A typical control mode application is illustrated in Figure 7.0-3. Suppose an industrial process is to
be monitored. The occurrence-of any abnormal operating condition is to be reported to a Z80-CPU

based control system. The process control and status word have the following format:

n-114

D7 D6 D5 D4 D3 D2 D1 DO

f Turn Power | Halt Temp Pressur-
Srr::;:ml On Failure | Process- Z?;'ﬁ] Heaters | ize Z"Iis::'e
Power | Alarm | ing Oon System
CONTROL MODE APPLICATION
Figure 7.0-3
PORT A
BUS

A7 SPEC. TEST
Ag TURN ON PWR.
As PWR. FAIL ALM.

-
A

4 HALT INDUSTRIAL
280-CPU < D7-D0 > 280-P10 PROCESSING
MK3380 i MK3881 A3 TEMP. ALM. SYSTEM

>

Az >C HTRS. ON
I

Aq PRESS. SYS.

0 PRESS. ALM.

-

B/A C/D CE

T

A0-A15 g ADDRESS

——— DECODER

The PIO may be used as follows. First Port A is set for Mode 3 operation by writing the following
control word to Port A.

D7 D6 D5 D4 D3 D2 D1 DO

1 1 X X 1 1 1 1

Whenever Mode 3 is selected, the next control word sent to the port must be an 1/0 select word. In
this example we wish to select port data lines A5, A3, and AO as inputs and so the following control
word is written:

D7 D6 D5 D4 D3 D2 D1 Do

m-115

Next the desired interrupt vector must be Ibaded (refer to the CPU manual for details);

D7 D6 D5 D4 D3 D2 D1 DO

vi | ve | vs | va]|val|vza]| vi]|vo

An interrupt control word is next sent to the port:

D7 D6 D5 D4 D3 D2 D1 DO

1 0 1 1 0 1 1 1

Enable OR Active Mask V
Interrupts Logic High Follows Interrupt Control

The mask word following the interrupt mode word is:

D7 D6 D5 D4 D3 D2 D1 DO
1 1 0 1 0] 1 1 0

Selects A5, A3 and A0 to be monitored

Now, if a sensor puts a high level on line A5, A3 or AQ, an interrupt request will be generated. The
mask word may select any combination of inputs or outputs to cause an interrupt. For example, if the
mask word above had been:

D7 D6 D5 D4 D3 D2 D1 DO

then an interrupt request would also occur if bit A7 (special Test) of the output register was set.
Assume that the following port assignments are to be used:

EOQy = Port A Data
E1y = Port B Data
E2,, = Port A Control
E3y = Port B Control

All port numbers are in hexadecimal notation. This particular assignment of port numbers is
convenient since A, of the address bus can be used as the Port B/A Select and A of the address bus
can be used as the Control/Data Select. The Chip Enable would be the decode of CPU address bits
A5 through A, (111000). Note that if only a few peripheral devices are being used, a Chip Enable
decode may not be required since a higher order address bit could be used directly.

n-116

8.0

PROGRAMMING SUMMARY
8.1 LOAD INTERRUPT VECTOR

vi|ve|lvs|{valva|v2a]wvi| o
8.2 SET MODE
M1 MO X X 1 1 1 1
MODE NUMBER M; M, MODE
0 0 0 Output
1 (0] 1 Input
2 1 0 Birdirectional
3 1 1 Bit Control

When selecting Mode 3, the next word to the PIO must set the I/0 Register:

1/07 | 1/0g| 1/05 | 1/04 | 1/03 | 1/02

1101 | 1709

1/0 = 1 Sets bit to Input
1/0 = 0 Sets bit to Output

8.3 SET INTERRUPT CONTROL

Int AND/ | High/ | Mask o 1 1 1
Enable | OR Low | Follows
\ v A
USED IN MODE 3 ONLY

n-117

If the “mask follows" bit is high, the next control word written to the PIO must be the mask:

MB7 | MBg | MBs | MB4 | MB3 | MB3 | MBq | MBg

MB = 0, Monitor bit
MB = 1, Mask bit from being monitored

Also the interrupt enable flip flop of a port may be set or reset without modifying the rest of the
interrupt control word by using the following command:

Int
Enable|

n-118

9.0 ELECTRICAL SPECIFICATIONS

9.1

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias..........oviiuneeiiiiiiiiieereeerinnnnnnnns Specified operating range
SOrage TEMPEIALUIE . . o o oottt ee e eeneeennneeeeenonnnnnonsassoaesoaannns -65°3C to +150°C
Voltage On Any PInWith ...ttt ittt itiiiaeneaeeearaaannns -03Vto+7V
Respect to Ground

POWET DiSSIPatION .ottt t ittt ittt et e it e et i 06w

Stresses above those listed under “Absolute Maximum Ratings’ may cause permanent damage to the device. This is a stress rating only and functional operation of
the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.

All ac parameters assume a load capacitance of 100 pF max. Timing references between two output signals assume a load
difference of 50 pF max. -

9.2 D.C. CHARACTERISTICS
Ta =0°C to 70°C, Ve = 5 V £ 5% unless otherwise specified
SYMBOL | PARAMETER MIN MAX UNIT | TEST CONDITION
ViLe Clock Input Low Voltage -03 0.80
Vine Clock Input High Voltage Vee-6 | Ve t.3 \")
Vi Input Low Voltage -03 08 \
Viy Input High Voltage 20 Vee \Y/
VoL Output Low Voltage 04 \ loL =20 mA
VoH Output High Voltage 24 \% lon = -250 A
lec Power Supply Current 70* mA
Iy Input Leakage Current +10 MA | Viy=0to V(e
I oH Tri-State Output Leakage Current in Float 10 vA | Vour =24 to Ve
oL Tri-State Output Leakage Current in Float -10 VA | Vour =04V
) Data Bus Leakage Current in Input Mode +10 MA 1 0=V)y SV
lonp Darlington Drive Current -15 mA | Vgu=15V
Port 8 Only
*150 mA for -4, -10, and -20 devices.
9.3 CAPACITANCE
To=25°C, f=1MHz
SYMBOL | PARAMETER MAX UNIT TEST CONDITION
Co Clock Capacitance 10 pF Unmeasured Pins
Cin Input Capacitance 5 pF Returned to Ground
Cout Output Capacitance 10 pF

n-119

e SR

9.4 A.C. CHARACTERISTICS MK3881, MK3881-10, MK3881-20, Z80-PIO
Ta =0°C to 70°C, V¢ = +5 V £ 5%, unless otherwise noted
3881 3881-4
SIGNAL | SYMBOL | PARAMETER MIN | MAX | MIN | MAX | UNIT
t, Clock Period 400 1 250 1] nsec
® tWaH) Clock Pulse Width, Clock High 170 | 2000 | 105 | 2000 | nsec
twiaL) Clock Pulse Width, Clock Low 170 | 2000 | 105 | 2000 | nsec
t. Clock Rise and Fall Times 30 30 | nsec
t, Any Hold Time for Specified Set-Up Time 0 0 nsec
C/D SEL | tgecg) Control Signal Set-up Time to Rising Edge of 280 145 nsec
CE ETC. & During Read or Write Cycle
toR(D) Data Output Delay from Falling Edge of RD 430 380 | nsec
tsa(D) Data Set-up Time to Rising Edge of & During 50 50 nsec
Do - Dy Write or M1 Cycle
toyp) Data Output Delay from Falling Edge of IORQ 340 250 | nsec
During INTA Cycle
D) Delay to Floating Bus (Output Buffer Disable Time) 160 110 | nsec
IEI tsgen IEl Set-Up Time to Falling Edge of IORQ During 140 140 nsec
INTA cycle
toHi0) IEO Delay Time from Rising Edge of IEI 210 160 | nsec
IEO ooy IEO Delay Time from Falling Edge of IEI 190 130 | nsec
tom(io) IEO Delay from Falling Edge of M1 (Interrupt 300 190 | nsec
Occurring Just Prior to M1) See Note A.
IORQ Sa(R) I0RQ Set-Up Time to Rising Edge of ® During 250 115 nsec
Read or Write Cycle
M1 ts i) M1 Set-Up Time to Rising Edge of & During 210 90 nsec
INTA or M1 Cycle. See Note B.
RD t5a(RD) RD Set-Up Time to Rising Edge of & During 240 115 nsec
Read or M1 Cycle
ts(pD) Port Data Set-Up Time to Rising Edge of 260 230 nsec
STROBE (Mode 1)
tps(PD) Port Data Output Delay from Falling Edge of 230 210 | nsec
Ag- Ay STROBE (Mode 2)
By - B trPD) Delay to Floating Port Data Bus from Rising 200 180 | nsec
Edge of STROBE (Mode 2)
toipp) Port Data Stable from Rising Edge of IORQ 200 180 | nsec
During WR Cycle (Mode 0)
ASTB twisT) Pulse Width, STROBE 150 150 nsec
BSTB [4] 4] nsec
INT tom) INT Delay Time from Rising Edge of STROBE 490 440 | nsec
toaT3) INT Delay Time from Data Match During 420 380 | nsec
Mode 3 Operation
ARDY . R [.t
toH (RY) Ready Response Time from Rising Edge of IORQ 460 410 | nsec
BRDY oL RY) Ready Response Time from Rising Edge of t.t+ t+ | nsec
STROBE 400 360

-120

A. 2.5 t¢ > (N-2)tpL(10)+tDM(10) *ts(IEIN)* TTL Buffer Delay, if any. [3] [Increasetp(p)by 10 nsec for each 50 pF increase in loading up to 200 pF
max.

B. M1 must be active for a minimum of 2 clock periods to reset the PIO.

] o= tW(@H) ¥ WBL + 1+t 141 ForMode 2:tw (s> ts(PD)

(21 Increase tpp(p) by 10 nsecfor each 50 pF increase in loading up to 200 pF [6] Increase these values by 2 nsec for each 10 pF increase in loading up to

max 100 pF max.
OUTPUT LOAD CIRCUIT TEST POINT Vee
Figure 9.4-1 }
Riz 20K
FROM OUTPUT 11 CR4-CRg IN914 OR EQUIVALENT
UNDER TEST 1N
CRq CL= 50pF on Dg:D7
CR, Cp= 50pF on All Others
cL 25040 CR3
CRg
9.5 TIMING DIAGRAM
Timing measurements are made at the following voltages, unless otherwise specified:
T2 T3/TW T4/T3 T
AYaYAVAW
irqer gy

' onics o s o cLock a2v 08V
_— OUTPUT 20v o8V
cE INPUT 20v 08V
[T . FLOAT AV = 0BV

- L R

= t5y(D) | —» |e=te(D), tygr(D)

007
(D)
oy
W,,(m)’-— e
[t (M 1}—s-|
mi /
tom(10)—>| [~

1E1 \
sl j [==tou(t0)

1E0

| tpL (10} |

——— e

Ag-Ag \

By—B.)‘
07 X e

|+—tpy(PD)—>

READY
(ARDY OR
BRDY)
[*=tp (RY:

= tou(RY) |=
STROBE
(A'STB OR BSTE)
(sT)
W
(MODE 2) \
/ 4
—
—>| tpg(PD) [=— e
a——n —
Ag-Ag. \ /
(MODE 1) X
898y £
4o le-tytPD)
e t5(PD)—»]
MODE 3)
| tp (1 T3)—>
iNT
|t 1T)——|

m-121

BRNUEL. ¥

10.0 ORDERING INFORMATION

PART NO. DESIGNATOR PACKAGE TYPE MAX CLOCK FREQUENCY TEM;ER&EURE
MK3881N Z80-PIO Plastic 2.5 MHz

MK3881P Z80-PIO * Ceramic 2.5 MHz

MK3881N-4 Z80A-PIO Plastic 4.0 Mhz 0° to 70°C
MK3881P-4 Z80A-PIO - Ceramic 4.0 MHz

MK3881P-10 Z80-PIO Ceramic 4.0 MHz -40° to +85°C

n-122

MOSTEK.

Z80 MICROCOMPUTER DEVICES

Technical Manual

- MK3882
COUNTER TIMER
CIRCUIT

n-124

TABLE OF CONTENTS

SECTION PAGE
1.0 INTRODUCTION . ..ttt ettt et et ee e et e e n-127
20 CTCARCHITECTURE. ...ttt et etee e eteette e eenneinreneenanen, -129
3.0 CTCPINDESCRIPTIONttt e ttetttiae ettt e et eenieennennnnnas -133
40 CTCOPERATING MODESvtuiinnenietnenennreneineeeenenneennnnn -137
50 CTCPROGRAMMINGiiiiiiiitetinttiineiin et eeiineiannnnnns -139
60 CTCTIMINGoiiittiitt ittt ie e ettt et iee s i-145
7.0 CTCINTERRUPTSERVICINGuuetntieeniieeiiineinineeinneeneennnnns i-149
8.0 ELECTRICAL SPECIFICATIONSviiuritieeeiiniieeeinseineenannnnns 1-153
9.0 ORDERING INFORMATION\ttt tiiee et eiiieeiaeennnnas -157

H-125

T T S

n-126

1.0

INTRODUCTION

The Z80-Counter Timer Circuit (CTC) is a programmable component with four independent channels that
provide counting and timing functions for microcomputer systems based on the Z80-CPU. The CPU can
configure the CTC channels to operate under various modes and conditions as required to interface with a
wide range of devices. In most applications, little or no external logic is required. The Z80-CTC utilizes
N-channel silicon gate depletion load technology and is packaged in a 28-pin DIP. The Z80-CTC requires
only a single-5 volt supply and a one-phase 5 volt clock. Major features of the Z80-CTC include:

All inputs and outputs fully TTL compatible.
Each channel may be selected to operate in either Counter Mode or Timer Mode.
Used in either mode, a CPU-readable Down Counter indicates number of counts-to-go until zero.

A Time Constant Register can automatically reload the Down Counter at Count Zero in Counter and
Timer Mode.

Selectable positive or negative trigger initiates time operation in Timer Mode. The same input is
monitored for event counts in Counter Mode.

Three channels have Zero Count/Timeout outputs capable of driving Darlington transistors.
Interrupts may be programmed to occur on the zero count condition in any channel.

Daisy chain priority interrupt logic included to provide for automatic interrupt vectoring without external
logic.

n-128

2.0 CTC ARCHITECTURE

21

OVERVIEW

A block diagram of the Z80-CTC is shown in Figure 2.0-1. The internal instruction of the Z80-CTC
consists of a Z80-CPU bus interface, Internal Control Logic, four sets of Counter/Timer Channel
Logic, and Interrupt Control Logic. The four independent counter/timer channels are identified by
sequential numbers from O to 3. The CTC has the capability of generating a unique interrupt vector
for each separate channel (for automatic vectoring to an interrupt service routine). The 4 channels
canbe connected into four contiguous slots in the standard Z80 priority chain with channel number
0 having the highest priority. The CPU bus interface logic allows the CTC device to interface directly
to the CPU with no other external logic. However, port address decoders and/or line buffers may be

required for large systems.

Z80-CTC BLOCK DIAGRAM

Figure 2.0-1

DATA =»s{ CPU

+5V GND &

P

INTERNAL
CONTROL

LOGIC

8 BUS INTERNAL BUS

CHANNEL 0

— ZERO COUNT/TIMEOUT 0

t«— CLOCK/TRIGGER 0

CONTROL—= 10 J L

INTERRUPT
CONTROL
LOGIC

fa
INTERRUPT

CONTROL
LINES

CHANNEL 1

— ZERO COUNT/TIMEOUT 1

fs— CLOCK/TRIGGER 1

CHANNEL 2

—=ZERO COUNT/TIMEOUT 2

le—CLOCK/TRIGGER 2

i

CHANNEL 3

je—CLOCK/TRIGGER 3

2.2 STRUCTURE OF CHANNEL LOGIC
The structure of one of the four sets of Counter/Timer Channel Logic is shown in Figure 2.0-2. This
logic is composed of 2 registers, 2 counters and control logic. The registers are an 8-bit Time
Constant Register and an 8-bit Channel Control Register. The counters are an 8-bit CPU-readable
Down Counter and an 8-bit Prescaler.
CHANNEL BLOCK DIAGRAM
Figure 2.0-2 CHANNEL

CONTROL
REGISTER
AND LOGIC
(8BITS)

TIME
CONSTANT
REGISTER

(8 BITS)

INTERNAL BUS

PRESCALER
b = (gBITS)

EXTERNAL CLOCK/TIMER TRIGGER

DOWN
COUNTER
(8 BITS)

ZERO COUNT/
TIMEOUT

nm-129

2.21

THE CHANNEL CONTROL REGISTER AND LOGIC

The Channel Control Register (8-bit) and Logic is written to by the CPU to select the modes
and parameters of the channel. Within the entire CTC device there are four such registers,
corresponding to the four Counter/Timer Channels. Which of the four is being written to
depends on the encoding of two channel select input pins: CSO and CS1 (usually attached
to AO'and A1 of the CPU address bus). This is illustrated in the truth table below:

Ccs1 CSso
ChO 0 0
Ch1 0 1
Ch2 1 0
Ch3 1 1

In the control word written to program each Channel Control Register, bit O is always set,
and the other 7 bits are programmed to select alternatives on the channel’s operating
modes and parameters, as shown in the diagram below. (For a more complete discussion
see section 4.0: “CTC Operating Modes" and section 5.0: “CTC Programming.”)

CHANNEL CONTROL REGISTER

Figure 2.0-3
D7 De Dsg D4 D3 D2 D1 Do
P LOAD
INTERRUPT] \JODE | RANGE | SLOPE | Triceer |rime RESET | 1
CONSTANT
USED IN
TIMER MODE ONLY

2.2.2 THE PRESCALER
Used in the Timer Mode only, the Prescaler is an 8-bit device which can be programmed by
the CPU via the Channel Control Register to divide its input, the System Clock (%), by 16 or
256. The output of the Prescaler is then fed as an input to clock the Down Counter, which
initially, and every time it clocks down to zero, is reloaded automatically with the contents of
the Time Constant Register. In effect this again divides the System Clock by an additional
factor of the time constant. Every time the Down Counter counts down to zero, its output,
Zero Count/Timeout (ZC/TO), is pulsed high.

2.2.3 THE TIME CONSTANT REGISTER

The Time Constant Register is an 8-bit register, used in both Counter Mode and Timer
Mode, programmed by the CPU just after the Channel Control Word with an integer time
constant value of 1 through 256. This register loads the programmed value into the Down
Counter when the CTC isfirst initialized and reloads the same value into the Down Counter
automatically whenever it counts down thereafter to zero. If a new time constant is loaded
into the Time Constant Register while a channel is counting or timing, the present down
count will be completed before the new time constant is loaded into the Down Counter. (For
details of how a time constant is written to a CTC channel, see section 5.0: “CTC
Programming.”)

-130

2.24 THE DOWN COUNTER

The Down Counter is an 8-bit register used in both Counter Mode and Timer Mode loaded
initially, and later when it counts down to zero, by the Time Constant Register. The Down
Counter is decremented by each external clock edge in the Counter Mode, or in the Timer
Mode, by the clock output of the Prescaler. At any time, by performing a simple |/0 Read at
the port address assigned to the selected CTC channel, the CPU can access the contents of
this register and obtain the number of counts-to-zero. Any CTC channel may be
programmed to generate an interrupt request sequence each time the zero count is
reached.

Inchannels O, 1, and 2, when the zero count condition is reached, a signal pulse appears at
the corresponding ZC/TO pin. Owing to package pin limitations, however, channel 3 does
not have this pin and so may be used only in applications where this output pulse is not
required.

2.3 INTERRUPT CONTROL LOGIC

The Interrupt Control logic ensures that the CTC acts in accordance with Z80 system interrupt
protocol for nested priority interrupting and return from interrupt. The priority of any system device is
determined by its physical location in a daisy chain configuration. Two signal lines (IEl and IEO) are
provided in CTC devices to form this system daisy chain. The device closest to the CPU has the
highest priority; within the CTC, interrupt priority is predetermined by channel number, with
channel O having highest priority down to channel 3 which has the lowest priority. The purpose of a
CTC-generated interrupt, as with any other peripheral device, is to force the CPU to execute an
interrupt service routine. According to Z80 system interrupt protocol, lower priority devices or
channels may not interrupt higher priority devices or channels that have already interrupted and
have not had their interrupt service routines completed. However, high priority devices or channels
may interrupt the servicing of lower priority devices or channels.

A CTC channel may be programmed to request an interrupt every time its Down Counter reaches a
count of zero. (To utilize this feature requires that the CPU be programmed for interrupt mode 2.)
Some time after the interrupt request, the CPU will send out an interrupt acknowledge, and the
CTC's Interrupt Control Logic will determine the highest-priority channel which is requesting an
interrupt within the CTC device. Then if the CTC's IEl Input is active, indicating that it has priority
within the system daisy chain, it will place an 8-bit Interrupt Vector on the system data bus. The
high-order 5 bits of this vector will have been written to the CTC earlier as part of the CTC initial
programming process; the next two bits will be provided by the CTC's Interrupt Control Logic as a
binary code corresponding to the highest-priority channel requesting an interrupt; finally the
low-order bit of the vector will always be zero according to a convention described below.

INTERRUPT VECTOR
Figure 2.0-4 D7 D¢ Ds Dg D3 D2 D1 Do
vy Ve Vs Vg V3 X X 0

1 1
0 0 CHANNEL 0
0 1 CHANNEL 1
1 1] CHANNEL 2
1 1 CHANNEL 3

This interrupt vector is used to form a pointer to a location in memory where the address of the
interrupt service routine is stored in a table. The vector represents the least significant 8 bits, while
the CPU reads the contents of the | register to provide the most significant 8-bits of the 16-bit pointer.
The address in memory pointed to will contain the low-order byte, and the next highest address will
contain the high-order byte of an address which in turn contains the first opcode of the interrupt
service routine. Thus in mode 2, a single 8-bit vector stored in an interrupting CTC can resultin an
indirect call to any memory location.

n-131

Z80 16-BIT POINTER (INTERRUPT STARTING ADDRESS)

Figure 2.0-5
| REG 7BITSFROM | o
CONTENTS | PERIPHERAL
\ VECTOR
2.3 INTERRUPT CONTROL LOGIC (Cont'd)

There is a Z80 system convention that all addresses in the interrupt service routine table should
have their low-order byte in an even location in memory, and their high-order byte in the next
highest location in memory, which will always be odd so that the least significant bit of any interrupt
vector will always be even. Hence the least significant bit of any interrupt vector will always be zero.

The RETI instruction is used at the end of any interrupt service routine to initialize the daisy chain
enable line IEO for proper control of nested priority interrupt handling. The CTC monitors the system
data bus and decodes this instruction when it occurs. Thus the CTC channel control logic will know
when the CPU has completed servicing an interrupt, without any further communication with the

CPU being necessary.

-132

3.0

CTC PIN DESCRIPTION

A diagram of the Z80-CTC pin configuration is shown in Figure 3.0-1. This section describes the function of
each pin.

D7 - DO
Z80-CPU Data Bus (bi-directional, tri-state)

This busis used to transfer all data and command words between the Z80-CPU and the Z80-CTC. There are
8 bits on this bus, of which DO is the least significant.

CS1-CsoO
Channel Select (input, active high)

These pins form a 2-bit binary address code for selecting one of the four independent CTC channels for an
1/0 Write or Read (See truth table below.)

Cs1 Cso
Cho 0 0
Ch1 0 1
Ch2 1 0
Ch3 1 1

CE
Chip Enable (input, active low)

A low level on this pin enables the CTC to accept control words, Interrupt Vectors, or time constant data
words from the Z80 Data Bus during an /0 Write cycle, or to transmit the contents of the Down Counter to
the CPU during an 1/0 Read cycle. In most applications this signal is decoded from the 8 least significant
bits of the address bus for any of the four |/0 port addresses that are mapped to the four Counter/Timer
Channels.

Clock (P)
System Clock (input)

This single-phase clock is used by the CTC to synchronize certain signals internally.

M1
Machine Cycle One Signal from CPU (input, active low)

When M1 is active and the RD signal is active, the CPU is fetching an instruction from memory. When M1 is
active and the IORQ signal is active, the CPU is acknowledging an interrupt, alerting the CTC to place an
Interrupt Vector on the Z80 Data Bus if it has daisy chain priority and one of its channels has requested an
interrupt.

IORQ
Input/Output Request from CPU (input, active low)

The IORQ signal is used in conjunction with the CE and RD signals to transfer data and Channel Control
Words between the Z80-CPU and the CTC. During a CTC Write Cycle, IORQ and CE must be true and RD
false. The CTC does not receive a specific write signal, instead generating its own internally from the
inverse of a valid RD signal. In a CTC Read Cycle, IORQ, CE and RD must be active to place the contents of
the Down Counter on the Z80 Data Bus. If IORQ and M1 are both true, the CPU is acknowledging an
interrupt request, and the highest-priority interrupting channel will place its Interrupt Vector on the Z80
Data Bus.

-133

3.0

CTC PIN DESCRIPTION (CONT'D)

RD ,
Read Cycle Status from the CPU (input, active low)

The RD signal is used in conjunction with the TORQ and CE signals to transfer data and Channel Control
Words between the Z80-CPU and the CTC. During a CTC Write Cycle, IORQ and CE must be true and RD
false. The CTC does not receive a specific write signal, instead generating its own internally from the
inverse of a valid RD signal. In a CTC Read Cycle, IORQ, CE and RD must be active to place the contents of
the Down Counter on the Z80 Data Bus.

IEl
Interrupt Enable In (input, active high)

This signal is used to help form a system-wide interrupt daisy chain which establishes priorities when more
than one peripheral device in the system has interrupting capability. A high level on this pin indicates that
no other interrupting devices of higher priority in the daisy chain are being serviced by the Z80-CPU.

IEO
Interrupt Enable Out (output, active high)

The IEO signal, in conjunction with IEl, is used to form a system-wide interrupt priority daisy chain. IEQ is
high only if IEl is high and the CPU is not servicing an interrupt from any CTC channel. Thus this signal
blocks lower priority devices from interrupting while a higher priority interrupting device is being serviced
by the CPU.

INT
Interru<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>