SYSTEM 2400

SOFTWARE

MACHINE CODE AN
ASSEMBLY LANGUAG

m U

MOHAWK DATA SCIENCES CORP.

SYSTEM 2400

MACHINE CODE AND
ASSEMBLY LANGUAGE

(Level 03, Revision 03 Only)

SECOND EDITION

CORPCRATE HEADGUARTERS UTICA, NEW YORK 13503

*Trademark of Mohawk Data Sciences Corp., Utica, N.Y.. Mohawk Data Sciences—Canada, Ltd. Registered User. |
Form No. | 44-1774% ‘Mohawk Data Sciences Corp. Printed in U.S.A.

REVISION PAGE

igg&ﬁNDLM QSQAEE%-ESR OF FORM NUMBER SOFTWARE LEVEL
NUMBER AFFECTED AND DATE SUPPORTED
EDITION 1 | m;meeeee- M-1948-1271 Unknown
ADDENDUM 1 | —mmemeemo 1M-1948-0372 Unknown
ADDENDUM 2 | cemmeee- M-1948-1072 Unknown
ADDEHDUM 3 | emmmmeee- M-1948-0173 03.00
ADDENDUM 4 | cmemmeees M-1948-0673 03.00
ADDEHDUM 5 6 M-1948-1173 03.02
EDITION 2 | —eceeeee- PM-1948-0774 03.03

REASON FOR CURRENT ADDENDUM/EDITION:

This edition combines edition 1 of this manual and edition 1 of the
2408 Instruction Set, Form No. PM-2571.

.
! “hange nars ndicate the fatest additions and corrections. &n asterisk 1) AcCompany ng the Charqe har

" nacates a deletinn,

TABLE OF CONTENTS

Forward . . . « « « ¢« v o o v . . . e e e e e e e e e e e e e e e e
Abbreviations And Conventions ¢ . v v 0 i 0 e e e . .
Summary Of Instructions By Function o . .. - . .
Summary Of Instructions By Octal Sequence

SECTION I. INTRODUCTION

Functions and Operations

Format for Inétruétidn Descriptions. .

Format for Instructions. « . e e e e

Condition Designators. « « &

Binary Number Signs. o ..

Decimal Number Signs

Functions and Operations

Data Move. v ¢« ¢ v o o 0w e e e e

Branching. e e e e e e e e e e

Compare. « .« ¢« v v v h e e e e e e e e e e e e

Test « v v v v v v v e v e e L

Input/Output« . ¢ v o 000w e

General Purpose. . . v v v v v e h e e e e e e e e e e

Logical. & v v v v e e e e e e e e e e e e e e .

Binary Arithmetic. . . v v v v v v v v v e v v e e

Decimal Arithmetic e e e e e e e e e e e

Sequential Editing e e e e e e e e e e

Interrupt. .« .« ¢ 0 0 s s e e e e e e

External Execute Instruction Set

Multiply/Divide Instructions

Instruction Expansion Modu]es (General).
Channel Assignments . . . « « v ¢« v « « v o o . .
Information Transfer. o o o o o ..

Instruction Zxpansion “odule A {General) .

Program Zall. .

LJ .

Instruction Zxpansion “Moaule 3 'General) .

e
_tnal et

:/\TCV‘ ':A'OY‘Q

PAGE
IT1

VI
X111

1-1
1-1
1-1
1-1
1-2
1-3

1-6
1-18
1-46
1-51
1-59
1-71
1-83
1-88
1-93
1-98
1-116
1-125
1-126
1-144
1-145
1-145
1-147
1-149
1-153
1-161

SECTION ITI.

APPENDIX A.

APPENDIX B.

APPENDIX C.

APPENDIX D.

APPENDIX E.

TABLz OF CONTZNTS
fcont'c

SYSTEY 2400 ASSEMBLER LANGUAGE

Introductic: © o o o o o o oo oL oL
Coding Instructions. +« ..
Symbolic Names« v « v v « « o
Basic Instructions C e e
Linkage Macros+« « «
Operand Formats. . . +« « « « ¢« « v « « o .
Permissable Operands « . . .
Definition of Constants.
Assembler Directives « . .« o ..
Editing Source Input
Relocatability o o ..
Error Flags In Listings
Modes of Operation
Operating The Assembler
Device Configuration o e o e
Object Code Map [P

INTERRUPT PROGRAMMING

Software Interrupt Linkage
Worker/Executive State C e e e
Enable/Disable Interrupts

Set/Clear Interrupt Lockout

Save Condition Designators & Tally Counter .

Class 1 - Monitor Interrupts
Class 2 - Service Interrupts
Class 3 - Special Interrupts .

PROGRAMMING ACTIVE RECORDS

EBEDIC CODE

TALLY COUNTER

INSTRUCTION EXECUTION TIMES & PROCESSOR MODELS

Il

ooooooo

ooooooo

nnnnnn

ooooooo

ooooooo

oooooo

. . © .

ooooooo

ooooooo

oooooo

ooooooo

ooooooo

.....

ooooooo

ooooooo

ooooooo

oooooo

ooooooo

ooooooo

ooooooo

ooooo

TABLE OF CONTENTS

(cont'd)
PAGE

APPENDIX F. OCTAL NOTATION RULES

Octal/Decimal Conversion Procedure F-1

Tri-Octal Notation ¢« ¢« o o . ¢ o v o .. F-3
APPENDIX G. SNAP P ADAPTER

Capture P. o i e e e e e e e e e e e e e e G-1

Interrupt L G-2
APPENDIX H. UTILITY ADAPTER

General. . . . & i v it e e e e e e e e e e e e e e H-1

Command Codes v v v v v v v v 4 & 0 4 o e e H-2

Logical Set Feature ¢« . ¢ ¢ ¢ ¢ v o o 0 0 . H-3

CRC Set . . . & ¢ i e e e e e e e e e e e e e e e e e H-5

Load Utility Adapter « ¢ v v « ¢« ¢ v ¢ « . H-6

Command Byte Modifiers (X) e e e e e e e H-6

Real Time Clock. e e e e e e e e H-6

LIST OF ILLUSTRATIONS

Figure 1-1. SYSTEM 2400 Processor Instruction Expansion Modules. 1-144
Figure 1-2. Instruction Expansion Modules - Channel Configuration. 1-145
Figure 1-3. Information Transfer ¢ ¢ ¢« o v v e e ¢ 0 0 o o o & 1-145
Figure 2-1. Use of SDAT and IDT & ¢« ¢ ¢ ¢ ¢ v v v o « v o o« o & 2-29
Figure 2-2. Object Code Map. . . v v ¢ v v v v v v e o o v o e 0 o o o o . 2-32
Figure A-1. 2408 Processor - Program Control Block A-2
Figure A-2. Tally Counter. v o v v v v v v v v v v v i v v e o A-5
Figure A-3. Monitor Interrupt Processing Flow Diagram (Example) A-7
Figure A-4, Service Interrupt Processing Flow Diagram (Example) A-9
Figure A-5. Special Interrupt Processing Flow Diagram (Example) A-11
Figura G-1. 0TS, ITEM 2, Shrce Bytes« v« v v v v v v v v e, G-3
Figure 5-2. 0TS, ITEM 2, Byte 2 Bit Assianments G-3
“igure 5-3, 0TS, ITEM 2, Byte 3 Bit Assignments Ce e e e G-4
rigure 5-4, INS, ITEM 2 Bytes. v v v v v v v e e e e e e G-4
Tiies 025, TNS, ITEM 2, Syte 3 Bit Assignments T .. G5

I11

Figure G-6.
Figure G-7.
Figure G-8.
Figure G-9.
Figure G-10.

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

2-1
2-2
2-3

2-5
E-1

E-3
F-1
F-2

LIST OF ILLUSTRATIONS

(cont'd)

Page
INS, ITEM 2, Byte 4 Bit Assignments. G-5
INS, ITEM 2, Byt:z 5 Bit Assignments. « « . . . G-6
Interrupt Processing Sequence... . . . v v v 4 o v v 4 e s o0 G-7
A Sample Restore Designators Routine « « . . G-8
Quick-Reference Data Sheet ¢ o o v oo o G-9

LIST OF TABLES

Basic Instructions v . ¢ . ¢ o vt e 0 e e e e e e 2-4
Summary of Operands ¢ ¢ v v o i 4 e e 4 e e e e e 2-11
Assembler Syntax Error Flags ¢ « v ¢ ¢ ¢ v ¢ ¢ o« o & 2-33
Use of Lights and Switches in Assembler 2-35
Assembler Configurations ¢« « ¢« v ¢ ¢ v ¢ v ¢ ¢ o o ¢ o 2-36
Formular for Execution Times of 501A Processor E-2
Formular for Execution Times of 502 Processors E-6
Instruction Set and Processor Model. « . .. E-10
Binary/Octal Equivalents ¢« v ¢ ¢ ¢« ¢ ¢ ¢ v o o « o « & F-1
Decimal/Octal Conversion Table A 4

Iv

FOREWORD

This manual describes the instruction repertoire, format, and detailed infor-
mation for programming the SYSTEM 2400 Processors in Machine Code and SYSTEM 2400
Assembly Language. For conventional purposes, the user should always program
SYSTEM 2400 applications in Mohawk Data Language (MDL) or RPG II, both of which
are fully supported by MDS.

This manual provides in-depth informafion to the experienced user regarding
the machine-code instruction repertoire for the SYSTEM 2400 Processors. The
Software Manual SYSTEM 2400 Processor Programming in Machine Code (Form No. M-2269)
is prerequisite reading to this document. For the effective use of this manual,
familiarity with the following publications will also be particularly helpful:

SYSTEl! 2400 Processor Overator Control Panels Hardware Manual
(Form No. M-2268)

2406 Systems Console Hardware Manual (Form No. M-1940)

The reader should be familiar with compatible data processing equipments and

associated programming systems.

Users that elect to include the 2406 Systems Console within their system and to
program applications without using MDL or RPG II can function satisfactorily with
the set of machine-level instructions described herein. This document contains the
instruction formats and detailed steps for their use within the following function-

al categories:

Data move
Branching

Compare

Test

Input/output
General Purpose
Logical

Binary Arithmetic
Decimal Arithmetic

Sequential Editing

Interrupt
External Execute
Instruction Expansion Module A

Instruction Expansion Module B

As a general rule, instructions preceded by an asterisk (*) may only be used
with a 502 Processor. While the instructions not preceded by an asterisk may be
used with a 501 or 502 Processor. For detailed information on which processor

can execute each instructions, see Appendix E.

VI

ABBREVIATIONS AND CONVENTIONS

The following abbreviations and conventions are used when describing the
instruction format and presenting typical examples:

AR Active Record

B Buffer

1 Item

f Denotes an "off" condition
IDT Item Descriptor Table

Li Literal to be ignored

Lf Fill Titeral

LS Sentinel literal

LSD Least significant digit

M Mask

MSB Most significant bit

MSBY Most significant byte

n Null

0 Denotes an "on" condition '
0C Operation Code

0P1-4 Operands 1 through 4
PBIAS Program Bias

PCB Program Control Block

Pa Pointer after an execution

Pb Pointer before an execution.
R Record

s Space

SDAT Storage Descriptor Area Table
z Zero

= Equals

¥ Not equal to

> Greater than

A

Less Than

Equal to or Greater Than
Equal to or Less Than
Plus ‘

- Minus

+ 1A 1V

VI

SUMMARY OF IHSTRUCTIONS

BY FUNCTION

Op Code Page Format
[Octal Mnem. No. Instruction -0C 0P1 0P2 0P3 0P4
000 M 1-7 Move Item, Left- 000 | AR/I | AR/I
Align, No Fill
001 MR 1-8 Move Item, Right- 001 | AR/I | AR/I
Align, No Fill
003 MED 1-9 Move Item, Edit 003 | AR/I| AR/I | AR/I L
004 MF 1-10 Move Item, Left- 004 | AR/T | AR/I L
Align, Fill
005 MRF 1-11 Move Item, Right- 005 | AR/I | AR/I L
< Align, Fill
e
< | 006 MJ 1-12 Move Item, Left- 006 | AR/I | AR/I L
= Justify, Fill
(=]
007 MRJ 1-13 Move Item, Right- 007 | AR/TI | AR/I L
Justify, Fill
050 MPK 1-14 Move, Pack 050 | AR/I | AR/I
052 MUP 1-15 Move, Unpack 052 | AR/I | AR/I
140 TRL.} 1-16 Translate Code - 140 | AR/I | AR/I | AR/I
141 ML 1-17 Move Literal 141 | AR/I L
020 NOP 1-19 No Operation 020 address
021 GGT | 1-20 GOTO Greater Than 021 adﬁress
022 GLT 1-21 GOTQ Less Than 022 address
023 GNE- | 1-22 GOTO Not Equal 023 address
o | 024 GE 1-23 | GOTO Equal 024 addlr'ess
=z
g 025 GNL 1-24 GOTO Not Less Than 025 address
=
= | 026 GNG | 1-25 | GOTO Not Greater 026 address
e Than ‘
027 G 1-26 GOTO Unconditionally| 027 address
030 GD 1-27 GOTO On Designators | 030 | M address
031 GS 1-28 GOTO On Switches 031 | M adﬂress

* 502 Mode only

VIII

SUMMARY OF INSTRUCTIONS

BY FUNCTION

(continued)
Op Code Page Format
Octa) Mnem. No. Instruction 0C 0P1 0opP2 0P3 0P4
061 GBG 1-29 GOTO Binary Greater 061 | AR/I address
Than
062 GBL 1-30 |GOTO Binary Less Than| 062 | AR/I address
|
063 GBN 1-31 |GOTO Binary Non-Zero | 063 { AR/I address
064 GBZ 1-32 |GOTO Binary Zero 064 | AR/1 address
065 GGBE 1-33 |GOTO Binary > Zero 065 | AR/I address
: !
066 GLBE 1-34 |GOTO Binary < Zero 066 | AR/I add{ess
071 GDG 1-35 |GOTO Decimal Greater | 071 AR/1 address
Than l
2
=1 072 GDL 1-36 |GOTO Decimal Less 072 | AR/I address
= Than
= _
1 073 GDN 1-37 |GOTO Decimal Non-Zero| 073 { AR/I address
_ _ |
074 GDZ 1-38 |GOTO Decimal Zero 074 | AR/I address
: |
075 GGDE 1-39 |GOTO Decimal > Zero 075 | AR/I address
|
076 | GLDE | 1-40 |GOTO Decimal < Zero 076 | AR/I address
A |
170 GCT 1-41 |[GOTO On Count 170 | AR/1 address
172 GTB 1-42 |GOi0 Table 172 | AR/I| AR/I L
(Indirect Branch) '
173 GRT 1-44 |GOTO Return (Branch) | 173 | B
176 GSB 1-45 |GOTO Subroutine 176 B address
‘ (Branch)
044 CB 1-47 |Compare Binary 044 | AR/I| AR/I
y 046 CD 1-48 {Compare Decimal 046 | AR/I| AR/I
=2 4
% 142 CAN . 1-49 |Compare Alphanumerics| 142 | AR/I}| AR/I
(&%)
144 CL 1-50 |Compare Literal 144 | AR/1 L

* 502 Mode only

IX

SUMMARY OF TH{STRUCTIONS

BY FUNCTION
(continued)

I Op Code Page Format
loctal | Mnem. | o, Instruction oc | orr] or2 | op3| opa
040 TBS 1-52 [Test Binary Sign 040 | AR/I
042 TDS 1-53 |Test Decimal Sign 042 | AR/I
= 1 150 TI 1-54 |Test Item 150 | AR/I | AR/I
L
’-—
151 TL 1-55 [Test Literal 151 | AR/I L
152 ™ 1-56 [Test Mask 152 | AR/1 M
*153 TIM 1-57 [Test Item Mask 153 | AR/T | AR/I
100 INS 1-60 [Special In 100 | AR/T | AR/I
104 EF 1-61 [External Function On | 104 | AR/I AR/I | AR/I
Channel
105 0TS 1-62 [Special Out 105 | AR/T1 | AR/I
*106 EFS 1-63 |External Function 106 | AR/T | AR/I | AR/I
' Special
107 GA 1-64 |GOTO On Active 107 | AR/I address
Channel
110 STC 1;65 Store Channel Control| 110 | AR/I | AR/I
— Register
5
5 f*111 STR 1-66 |Store Channel Reverse| 111 | AR/I | AR/I
o
Efx112 | INR | 1-67 [Initiate Input 112 | AR/I| B
= Reverse
114 N 1-68 |Initiate Input On 114 | AR/I| B
: Channel
115 ouT 1-69 |Initiate Output On 115 | AR/I B
Channe]
*116 0TR 1-70 |Initiate Output 116 | AR/I| B
Reverse
000 RN 1-72 |Rename 000 | B/R B/R
—d L
% 124 STD 1-73 [Store Designators 124 | AR/I
=
s 5¥¥126 LD 1-74 Joad Designators 126 | AR/I

* 502 Mode only

X

SUMMARY OF IHSTRUCTIONS

BY FUNCTION

(continued)
Op Code Page Format
Octal Mnem. No. Instruction 0C 0Pl 0P2 0P3 0P4

134 STT 1-75 |Store Tally Counter 134 | AR/I

136 LT 1-76 Load Tally Counter 136 | AR/1

143 H 1-77 [Halt 143

146 SDI 1-78 |Set Display 146 | AR/1

Indicators

147 GAP 1-79 |No Operation-Leave 147
w Gap
2 4 ~
& | 156 | CDI 1-80 |Clear Display 156 | AR/I
o Indicators
- .
= | 161 LSP 1-81 |Load Storage 161 | SDP
wl . .
= Descriptor Pointer
(3]

165 LR1 1-82 |{Load Active Record 1 | 165 R

171 LR2 1-82 |Load Active Record 2 | 171 R

175 LR3 1-82 |Load Active Record 3 | 175 R

160 X 1-84 {OR (Exclusive) 160 | AR/I | AR/I | AR/I
[162 RCK 1-85 JLongitudinal 162 | AR/T | AR/I
§ Redundancy Check
= .
S| 164 0 1-86 JOR (Inclusive) 164 | AR/I | AR/I | AR/I

166 N 1-87 |Logical AND 166 | AR/1 | AR/I1 | AR/I
Sjosa | ns 1-89 |Add Binary 041 | AR/T| AR/I | AR/I
Ll
% 045 SB 1-90 {Subtract Binary 045 | AR/I| AR/I | AR/I
= 1 051 ALB 1-91 |Add Literal Binary | 051 | AR/I| AR/I| L
-~ _
S| 055 SLB 1-92 |Subtract Literal 055 | AR/I| AR/I L
E ' Binary

* 502 Mode only

XI

SUMMARY OF IHSTRUCTIONS

BY FUNCTION

(continued)
Op Code Page Format
Octal Mnem. No. Instruction .0C 0P1 P2 0P3 0P4
E; 043 A "1-94 |Add Decimal 043 | AR/I| AR/I | AR/I
LLI B
% 047 S 1-95 [Subtract Decimal. 047 | AR/I| AR/I | AR/I
é% 053 AL 1-96 {Add Literal Decimal 053 | AR/I} AR/I L
I .
=] 057 SL 1-97 |Subtract Literal 057 | AR/I| AR/I | L
o Decimal ' .
= _
014 cpP 1-100 }Compress Item, Left- | 014 | AR/I| AR/I Li Lf
Align, Fill ' .
015 CPR 1-107 |Compress Item, Right-| 015 | AR/I| AR/I Li Lf
Align, Fill
120 APR 1-102 {Append, Right- 120 | AR/I B L
Eliminate :
2
=1 121 APA 1-103 |Append, Advance 121 | AR/I B
= 122, APE 1-105 |Append, Left- 122 | AR/I B L
= ' Eliminate :]
=113 | Exv | 1-107 |Extract variable 130 B | AR/I| L | L
2 Length Item, Fill
Ll
1 131 EXP 1-111 {Extract Previous Item| 131 B AR/1
132 EX 1-112 Extract Item 132 B | AR/I
133 EXA 1-114 |Extract Item, Advance| 133 | B AR/1
113 GSI 1-117 GOTO On Service 113 | AR/I address
Requést I
117 GCI 1-118 [GOTO On Channel 117 | AR/I address
- Interrupt
=i 154 SWS 1-119 |Swap States 154
=
o .
et 155 SIL 1-120 {Set Interrupt Lockout] 155
|__
S11s7 | ciL | 1-121 [Clear Interrupt 157
Lockout
174 IM 1-122 |Interrupt Mask 174 | AR/I
177 GIR 1-124 |Interrupt Branch GOTO| 177 B

* 502 Mode only

XI1I

SUMMARY OF THSTRUCTIONS

BY FUNCTION

(continued)
Op Code Page Format
l0ctal Mnem. No. Instruction 0ocC 0P1 or2 0P3 0oP4
004 LC 1-127 |Load Delta Clock 004 | AR/I | === | -==--
014 SEE 1-128 | Store External 014 | ---~- | ---= | AR/I
: Instruction Error
015 SCE 1-131 | Store Channel 015} -=-- | -=-- JAR/I
Parity Error
020 MB 1-132 |Multiply Binary 020 AR/T1 | AR/TI | AR/I
wi021 | MWMLB 1-133 [Multiply Literal 021 | AR/T | ---- | AR/I L
= Binary
' .
Q 022 DB 1-134 |Divide Binary 022 | AR/TI | AR/T | AR/I
023 DLB 1-135 |Divide Literal 023 | AR/I | -=--- | AR/I L
2 Binary
8 »
‘ g 024 MD 1-136 |[Multiply Decimal 024 | AR/I | AR/I | AR/I
2 .
51025 MLD 1-137 |Multiply Literal 025 | AR/I-| ---- | AR/I L
= Decimal
» .
% 026 DD 1-138 |Divide Decimal 026 | AR/1 | AR/I | AR/I
d ’ B
Shoz7 DLD 1-139 |Divide Literal 027 | AR/TI { ---- | AR/I L
- Decimal
= .
é 030 BTD 1-140 ({Binary to Decimal 030 | AR/I | ---- | AR/I
>< : ' ,
= 1031 DTB 1-14] Decimal to Binary 031 | AR/I | ---- | AR/I
03¢ | SDR | 1-142 |Store Decimal 034 | === | === | AR/T
Remainder
035 SBR 1-143 |Store Binary 035 ---- | ---- | AR/I
'Remainder

* 502 Mode only

Xi11

SUMMARY OF INSTRUCTIONS

BY FUNCTION

(continued)
Op Code Page - Format
Octal Mnem. No. Ins:ruction 0C 0P1 0pP2 0P3 0P4

%i 105 SVP 1-149 | Save (P) 105 | AR/I | AR/I
- = or 002 002
== SAP
5
=& 100 SRP 1-150 | Store (P) 100 | AR/T | AR/I
X% 002
=Z
— <

105 ORE 1-153 {OR (Exclusive) 105 | AR/I | AR/I

001 001
105 AND 1-154 |Logical AND 105} AR/I | AR/1
001 002

S
o § 105 ORI 1-156 |OR (Inclusive) 105 AR/I | AR/I
= 001 | 004
<o -
w2105 LRC 1-158 | Longitudinal Re- 105 | AR/T | AR/I
= = dundancy Check 001 001
s
S ' .
e 105 EMA 1-160 | Enter Module 105| AR/I | AR/I
2 Accumulator 001 050

100 SMA 1-161 | Store Module 100 | AR/1 | AR/I

1 Accumulator 001

* 502 Mode only

X1V

SUMMARY OF INSTRUCTIONS

BY OCTAL SEQUENCE

Octal Mnemonic Page Instruction
No.

000 RN 1-72 Rename

000 M 1-7 Move Item, Left-Align, No Fill
001 MR 1-8 Move Item, Right-Align, No Fill
003 MED 1-9 Move Item, Edit

004 MF . 1-10 Move Item, Left-Align, Fill

005 MRF 1-11 Move Item, Right-Align, Fill
006 MJ 1-12 Move Item, Left—Justify, Fill
.007 MRJ 1-13 Move Item, Right-Justify, Fill
014 P 1-99 Compress Item, Left-Align, Fill
015 CPR 1-10 . Compress Item, Right-Align, Fill
020 NOP 1-19 No Operation

021 GGT 1-20 GOTO Greater Than

022 GLT 1;21 GOTO Less Than

v023 GNE 1-22 'GOTO Not Equal

024 GE 1-23 6OTO Equal

025 GNL 1-24 © GOTO Not Less Than

026 GNG 1-25 GOTO Not Greater Than

027 G 1-26 GOTO Unconditionally

030 GD 1-27 GOTO On Designators

031 GS i-28 GOTO On Switches

040 TBS 1-52 Test Binary Sign

041 AB ’1-89 Add Binary

042 TDS 1-53 Test Decimal Sign

043 A 1-94 Add becima]

* 502 Mode only.

Xy

SUMMARY OF INSTRUCTIONS
BY OCTAL SEQUENCE

(continued)

Octal Mnemonic Page Instruction
No.

044 CB 1-47 Compare Binary

045 SB 1-90 Subtract Bihary

046 CD 1-48 Compare Decimal

047 S 1-95 Subtract Decimal
*050 MPK - 1-14 Move, Pack

051 ALB 1-91 Add Literal Binary

*052 MUP 1-15 Move, Unpack

QSé AL 1-96 Add Literal Decimal

055 SLB 1-92 Subtract Literal Binary

057 SL 1—97 Subtract Literal Decimal
%061 GBG 1-29 GOTO Binary Greater Than
*062 GBL 1-30 GOTO Binary Less Than
*063 GNB 1-31 GOTO Binary Non-Zero
*064 GBZ 1-32 ‘GOTO Binary Zero
*065 GGBE 1-33 GOTO Binary > Zero
*066 GLBE 1-34 GOTO Binary»g_Zero

*071 GDG 1-35 GOTO Decimal Greater Than
*072 ~ GDL 1-36 GOTO Decimal Less Than
*073 GDN 1-37 GOTO Decimal Non-Zero
*074 GDZ 1-38 GOTO Decimal Zero
*075 GGDE 1-39 GOTO Decimal > Zero

*076 GLDE 1-40 .GOTO Decimal < Zero

100 INS 1-60 Special In

100 SRP 1-150 Store (P)

"* 502 Mode only.

XVI

SUMMARY (OF INSTRUCTIONS
BY OCTAL SEQUENCE

(continued)
Octal Mnemonic Page Instruction
No.
100 SMA 1-161 Store Module Accumulator
104 EF 1-61 External Function On Channel
105 0TS 1-62 Special Out
105 SAP or SVP 1-149 Save (P)
105 ORE 1-153 OR (Exclusive)
105 AND 1-154 Logical AND
105 ORI 1-156 OR (Inclusive)
"105 LRC 1-158 Longitudinal Redundancy Check
105 EMA 1-160 Enter Module Accumulator
*106 EFS 1-63 External Function Special
107 GA 1-64 GOTO On Active Channel
110 STC 1-65 Store Channel Control Regisker
*111 SfR 1-66 Store Channel Reverse
*112 INR 1-67 ‘Initiate Input Reverse
*113 GSI 1-117 GOTO On Service Request
114 IN 1-68 Initiate Inpuf On Channel
115 ouT 1-69 Initiate -Output On Channel
*116 0TR 1-70 Initiate Outpﬁt Reverse
*117 GCI 1-118 GOTO On Channel Interrupt
120 APR 1-102 Append, Right-Eliminate
121 APA - 1-103 Append, Advance
122 APE 1-105 Append, Left-Eliminate

* 502 Mode only.

XVI1

SUMMARY OF INSTRUCTIONS
BY OCTAL SEQUENCE

(continued)
Octal Mnemonic Page Instruction
No.

124 STD 1-73 Store Designators

126 LD 1-74 Load Designators

130 EXV 1-107 Extract Variable Length Item, Fill
131 EXP 1-111 Extract Previous Item

132 EX 1-112 Extract Item

133 EXA 1-114 Extract Item, Advance

134 STT 1-75 Store Tally Counter

136 LT 1-76 Load Tally Counter

140 TRL 1-16 Translate Code

141 ML 1-17 Move Literal

142 CAN 1-49 Compare Alphanumerics

143 H 1-77 Halt

144 CL 1-50 Compare Literal
*145 LC 1-127 "Load Delta Clock

(004)
*145 SEE 1-128 Store External Instruction Error
(014) '
*145 SCE 1-131 Store Channel Parity Error
(015) _
*145 MB 1-132 Multiply Binary

(020) 4

*145 MLB 1-133 Multiply Literal Binary

(021)

*145 DB 1-134 Divide Binary

(022))
*145 DLB 1-135 Divide Literal Binary

(023)

* 502 Mode only.

XVIII

SUMMARY OF INSTRUCTIONS
BY OCTAL SEQUENCE

(continued)
Octal Mnemonic Page Instruction
No.
*145 MD 1-136 Multiply Decimal
(024) '
*145 MLD 1-137 Multiply Literal Decimal
(025)
*145 DD 1-138 Divide Decimal
(026) :
*145 DLD 1-139 Divide Literal Decimal
(027)
*145 BTD 1-140 Binary to Decimal
(030)
*145 DTB 1-141 Decimal to Binary
(031) '
*145 SDR 1-142 Store Decimal Remainder
(034)
%145 SBR 1-143 Store Binary Remainder
(035) '
146 SDI 1-78 Set Display Indicators
*147 GAP 1-79 No Operation-Leave Gap
150 TI 1-54 Test Item
151 TL 1-55 Test Literal
152 ™ 1-56 Test Mask
*153 TIM 1-57 Test Item Mask
*154 SWS 1-119 Swap States
%155 SIL 1-120 Set Interrupt Lockout
156 CDI 1-80 Clear Display Indicators
*157 CIL 1-121 Clear Interrupt Lockout
*160 X 1-84 OR (Exclusive)
*161 LsP 1-81 Load Storage Descriptor Pointer

* 502 Mode only.

XIX

SUMMARY OF INSTRUCTIONS
BY OCTAL SEQUENCE

(continued)
Octal Mnemonic Pﬁge Instruction
0.

*162 RCK 1-85 Longitudinal Redundancy Check
*164 0 1-86 OR (Inclusive) |
165 LR1 1-82 Load Active Record 1
*166 N 1-87 Logical AND
*170 GCT 1-41 GOTO On Count

171 LR2 1-82 Load Active Record 2
*172 GTB 1-42 GOTO Table (Indirect Branch)
*173 GRT 1-44 GOTO Return (Branch)
*173 IM 1-122 Interrupt Mask

175 LR3 1-82 Load Active Record 3
*176 6SB 1-45 60TO Subroutine (Branch)
*177 GIR 1-124 Interrupt Branch GOTO

* 502 Mode only.

XX 7

SECTION T
SYSTEM 2400 NMACHINE CODE

This section describes the total SYSTEM 2400 machine - level instruction set.
Each instruction has a variable-length format, with

e an op code, to specify the operation to be performed,
and
e zero-to-four operands, to specify the records, items, buffers, etc., to

be operated upon.

The op code and operands are each l-byte long, with the op code first,

hiaie S -—T=<r--=-n"

Op Code | OPL | OP2 | OP3 | OP4 |

{
- - e o - - - o b o e = wd

followed by the operands arranged in the prescribed sequence for a given instruction.
Op codes and operands are expressed in octal notation.

CONDITION DESIGNATORS

Condition Designators denote

and

e arithmetic and abnormal-edit errors.

The Compare and the Test instructions establish conditions and set the appro-
priate internal condition designators, which are used by the Branching instructions
to branch from the instruction execution sequence. Many of the Sequential Editing
instructions set the Equal designator to indicate when the end of a data trnasfer
to or from a working buffer has occurred. They also set the abnormal-edit designa-
tor to indicate when the receiving area in a data transfer is too small. Both the
arithmetic overflow and the arithmetic error designators denote errors caused by a
Binary or a Decimal Arithmetic instruction.

1-1

The designators remain set throughout program execution until they are reset
- by subsequent instructions.

BINARY NUMBER SIGNS

The sign of a binary number is indicated by the most significant bit (MSB) of
the most significant byte (MSBY) of the item: 0 =+ and 1 = -.

MSBY;

byte byte byte
00111100 11010101 11110000 3-byte positive
binary number
‘QL-MSB = +
MSBY;
byte byte
00000111 10011100 2-byte positive binary number
QL-MSB = +
MSBY
byte byte
11111000 01100100 2-byte negative binary nﬁmber

é—-MSB = -

A1l the negative binary numbers coded into the binary-oriented instructions
must be in the two's complement form. To convert a binary number

00101010 into two's complement notation,
change each bit 11010101 to its opposite state (- one's complement)
and add 1 1 to produce its

two's complement. 11010110

1-2

DECIMAL NUMBER SIGNS

In decimal arithmetic, the sign of a number is indicated by the sign of the

least significant digit, as shown below.

byte byte byte

10 l6 | 2 | +9] 3-byte positive decimal number
t .

The plus sign for the digit is expressed as "1111" in the sign zone (left
half) of the LSD (910) byte (position 7654).

+629

76 54 3 2 10

[1 1 1 1 1 0 0 1] bit configuration for 9.0

()

sign zone digit zone

For a minus number, such as

-629

10 6 | 2 | -9 | 3-byte negative decimal number,

The minus sign for the digit is expresséd as 1101 in the sign zone of the LSD

byte, as shown below.

76 5 4 3 2 10

1 1 01 1 0 0 1| bit configuration for -910

- 9

In the SYSTEM 2400 EBCDIC character set, the negative numbers correspond to
the binary configurations for the Tetters J. through R, as noted below.

1-3

Binary or Octal = Humber and Corresponds to

1101 0001 321 -1 J
1101 0010 322 -2 K
1101 0011 323 -3 L
1101 0100 324 -4 M
1101 0101 325 -5 N
1101 0110 326 -6 0
1101 0111 327 -7 p
1101 1000 330 -8 Q
1101 1001 331 -9 R

FUNCTIONS AND OPERATIONS

Each machine-code instruction is functionally categorized into one of the
following:

e Data Move (1-6): transfer a copy of a complete data string.

Branching (1-18): conditional or unconditional branching from the normal
program sequence.

Compare (1-46): compare data strings.

Test (1-51): test for the sign or identity of an item.
Input/Qutput (1-59): idnitiate and control input/output operations.
General Purpose (1-71): perform various operational functions.
Logical (1-83): AND, OR, or Exclusive OR.

Binary Arithmetic (1-88): add and subtract in binary

Decimal Arithmetic (1-93): add and subtract in decimal.

Sequential Editing (1-98): manipulate data as it is transferred be tween
peripherals.

e Interrupt (1-116): interpret, control and process events that divert the
processor from main program execution.

e External Execute (1-125): dnstructions added by hardware expansion modules
. to provide the following functions:

Multiply and Divide

Delta Clock

a
b. Binary/Decimal Conversion

c

d. Channel Parity Error Determination

e Instruction Expansion tlodules A and B (1-144).

1-4

Individual instructions are described as follows:

FUNCTIONAL CATEGORY
Descriptive Name of Instruction

Mnemonic Op Code = ABC
Octal Op Code = 123
PURPQSE : Brief explanation of what the instruction does.

FORMAT : Format of the instruction.
OPERATION: Operation of the instruction and the programming details.

EXAMPLE : Typical example that uses the instruction.

1-5

DATA MOVE

The Data Move instructions move a copy of OP1l item to OP2 item, character-by-
character; OPl1 item remains unchanged. The move is terminated when all of OP1 item
is copied or when OPZ item is full. When OPZ item is longer than OP1 item, the
excess positions are unchanged by the move operation, unless a fill operation is
‘specified.

Left-justification means omit copying the leading nulls, spaces, and zeros and
left-align the entry into the O0P2 item with a character fill.

» Right-justification means omit copying the trailing spaces and nulls (not
zeros) and right-align the entry into the OP2 item with a character fill.

The Data Move instructions include the following:

Move Item, Left Align, No Fill (1-7)
Move Item, Right Align, No Fill (1-8)
Move Item, Edit (1-9)

Move Item, Left Align, Fill (1-10)
Move Item, Right Align, Fill (1-11)
Move Item, Left Justify, Fill (1-12)
Move Item, Right Justify, Fill (1-13)
Move, Pack (1-14)

Move, Unpack (1-15)

Translate Code (1-16)

Move Literal (1-17)

1-6

DATA MOVE
Move Item, Left-Align, ilo Fill
Mnemonic Op Code =11
Octal Op Code = 000

PURPOSE : To copy the data from one item to another, with the content of the
receiving item left-aligned. '

FORMAT: 0C Uil P2

000 AR/1 AR/1

OPERATION: A copy of the contents of the OP1l item is moved left-aligned into the
OP2 item. If OP2 is larger than OPl, the remaining characters are
unaffected. If OP1 is larger than OP2, the extra OP1l characters at
the right are truncated.

EXAMPLES: No. 1 0C 0P1 oP2

000 102 211

0P1 AsBCDEF Item 2 of Active Record 1

oP2 RICHARDsG Item 11 of Active Record 2
oP2 AsBCDEFsG Item 11 of Active Record 2
after ,
0P1 AsBCDEF Item 2 of Active Record 1
after

No. 2 0C 0P1 oP2

000 102 211

0P1 Item 2 of Active Record 1
0p2 Item 10 of Active Record 2
0P2 Item 10 of Active Record 2
after ’

0P1 AsBCDEF Item 2 of Active Record 1

after

PURPOSE:

FORMAT :

QPERATION:

EXAMPLES:

DATA MOVE
NMove Item. Right-Align, o Fill
"nemonic Op Code = MR
Octal Op Code = 001

To copy the data from one item to another, with the content of the
receiving item right-aligned.

0c OP1 OP2

001 AR/ 1 AR/1

A copy of the contents of the OPl item is moved right-aligned into the
OP2 item. If OP2 is larger than OPl, the remaining characters are
unaffected. If OP1l is larger than OP2, the extra OPl characters at
the left are truncated.

No. 1 0C 0P1 0oP2

001 102 211

0P1 AsBCDEF Item 2 of Active Record 1
op2 RICHARDsG Item 11 of Active Record 2
0P2 RIAsBCDEF Item 11 of Active Record 2
after

OP1 AsBCDEF Item 2 of Active Record 1
after :

No. 2 ocC 0P1 0oP2

001 102 210

0Pl : Item 2 of Active Record 2
0P2 Item 10 of Active Record.?
0p2 Item 10 of Active Record 2
after .

OE Item 2 of Active Record 1
arter

1-8

PURPQOSE:

FORMAT:

OPERATION:

EXAMPLE :

DATA MOVE
love, Edit
Mtnemonic Op Code
Qcta] Op Code

MED
*003

To copy the data from one item right-aligned to another item under
the control of a third mask item. Any remaining characters are
replaced with the specified fill character.

0C 0P1 QP2 0P3 OP4

003 [ArR/I] AR/T] AR/I[L

A copy of the contents of the OPl item is moved right-aligned into the
0P3 item under control of the OPZ mask item. Every OP2 mask character
that is equal to a null allows an OPl item character to be moved into
O0P3. Every QP2 character that is not a null is itself moved to the OP3
item. After the move of all OP1l characters, leading zeros, spaces,
commas, and nulls in the OP3 item are replacéd by the fill literal
specified in OP4. The low-order digit of the result has its four bits
replaced with all ones (positive sign conventibn), The abnormal edit
designator is set if the OP2 or OP3 item is smaller than the OP1 item.

0c 0P1 0P2 0P3 0P4
foo3 | 101 | 102 | 212 | 134

0P1 000499842} Item 1 of Active Record 1
0P2 Innn,nnn,nnn.nnj Item 2 of Active Record 1
0P3 XXX X XXX XX X] Item 12 of Active Record 2
before)

0P4 Literal asterisk (134 in EBCDIC)

0P3 {**4 998, 42] Item 12 of Active Record 2
after

1-9

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

DATA MOVE
Move Item, Left-Align, Fill
Mnemonic Op Code = MF
Octal Op Code = 004

To copy the data from one item to another, with the contents of the
receiving item left-aligned and any remaining characters replaced by
a specified fill character.

0oC 0P1 oP2 0oP3
L |

A copy of the contents of the OP1 item is moved left-aligned into the
0P2 item.
right are replaced by the OP3 character.

004 | AR/1 | AR/I |

If OP2 is larger than OPl, the remaining characters at the
If OP1 is larger than OP2,
the extra OP1 characters at the right are truncated.

oc oPL OP2 OP3

004 124 215 000

op
o7

Item 24 of Active Record 1
Item 15 of Active Record 2

Item 15 of Active Record 2

after
0P1 GHIJ Item 24 of Active Record 1
after

1-10

PURPQOSE :

FORMAT:

QPERATION:

EXAMPLE :

DATA MOVE
Move Item, Right-Align, Fill
Inemonic Op Code = MRF
Octal Op Code = 005

To copy the data from one item to another, with the contents of the
receiving item right-aligned and any remaining characters replaced by
a specified fill character.

0cC OP1 0P2 OP3

005 AR/ I AR/ L

A copy of the contents of the OP1 item is moved right-aligned into

the OP2 item. If OP2 is larger than OP1l, the remaining characters at
the left are replaced by the OP3 character. If OP1l is larger than 0P2,
the extra OP1 characters at the left are truncated.

0C 0P1 0P2 0P3

005 125 215 133

0Pl Item 25 of Active Record 1

opP2 I******l Item 15 of Active Record 2
0P2 $54.50 Item 15 of Active Record 2
after o B
0P1 Item 25 of Active Record 1
after .

1-11

PURPOSE :

FORMAT :

QPERATION:

EXAMPLE:

DATA MOVE
Move Item, Left-Justify, Fill
Mnemonic Op Code = MJ
Octal Op Code = 006

To copy the data from one item to another, with the content of the
receiving item left-justified and any remaining characters replaced
by a specified fill character. '

0cC 0P1 0pP2 oP3
toos | Ar/1 | AR/ [LU

A copy of the contents of the OP1 item is moved into the OP2 item and
left-justified. Left-justification means that the leading (leftmost)
nulls, spaces, and zeros in the OPl item are not moved to the OP2 item
and the remaining characters are left-aligned. Any remaining charac-
ters at the right of OP2 are replaced by the OP3 character. If OPl is
larger than 0P2, the extra characters at the right are truncated.

0cC 0P1 opP2 OP3

006 | 117 | 212 116

0P1 Item 17 of Active Record 1

0P2 [123456789123 | Item 12 of Active Record 2

0P2 [AsBCn+++++++] Item 12 of Active Record 2

after
oP1 Item 17 of Active Record 1
after

1-12

PURPOSE:

FORMAT :

OPERATION:

EXAMPLE:

DATA 11QVE
Move Item, Right Justify, Fill
Mnemonic Op Code = MRJ
Octal Op Code = 007

To copy the data from one item to another, with the content of the
receiving item right-justified and any remaining characters replaced
by a specified fill character.

0C oP1 -~ 0P2 0P3

007 AR/ 1 AR/1 L

A copy of the contents of the OP1 item is moved into the OP2 item and
right-justified. Right-justification means that the trailing (right-
most) nulls and spaces in the OPl item are not moved to the OP2 item
and the remaining characters are right-aligned. Any remaining charac-
ters at the left of OP2 are replaced by the OP3 character. If OP1 is
larger than OP2, the extra characters at the right are truncated.

0C 0P1 QP2 0P3

007 120 212 116

oP1 InsAB.Csznns | Item 20 of Active Record 1

0pP2 1123456789123 | Item 12 of Active Record 2

op2 [++++nsAB.Csz] Item 12 of Active Record 2
after

.0P1 [ﬁsAB.Csznns Item 20 of Active Record 1

after

1-13

DATA MOVE

Move, Pack
Mnemonic Op Code = MPT
Octal Op Code = *050
PURPOSE : To extract the digit portions from a source item and pack them into a

destination item, eliminating the sign zones of all source bytes ex-
cept the rightmost. Any remaining destination item positions are
filled with binary zeros.

FORMAT : 0cC 0P1 0P2
[050 | AR/I | AR/I |

OPERATION: The decimal information contained in OPl is moved into OP2. The sign
zone changes place with the digit zone and the resultant byte is moved
right-aligned into OP2. The following transfers move only the digit
zone into OP2, thereby packing the digit zones of two source bytes into
one destination byte. After the contents of OP1l are packed into OP2,
any remaining OP2 bytes are filled with binary zeros.

EXAMPLES: ocC 0Pl op2

050 321 102

Item 21 of Active Record 3

OP1 1111000111111001 O] 1111011 1J
+ + +

Item 2 of Active Record 1

0opP2 1111110011 00000111111000 i]
before

Item 2 of Active Record 1

0P2 00000000{00010010fJ01111111]|
after V‘W — —— Y T
fill byte 1 2 7 +

1-14

DATA MOVE
Move, Unpack
Mnemonic Op Code = MUP
Octal Op Code = *052

PURPOSE: To unpack packed decimal information from a source item right-aligned
into a destination item. Data is moved into the destination item in
zoned form. Any remaining OP2 jtem positions are filled with binary
Zeros.

FORMAT : 0C OP1 opP2

052 | AR/1 | AR/I

OPERATION: The OP1 item contains packed decimal data. The numerics and the sign
of the rightmost OP1 byte are stored into the rightmost OP2 byte after
the sign zone and the digit zone have been switched around. For the
second OP1 byte, the four zone bits are added to the four lower bits
and stored into 0P2. Then four zone bits are added to the remaining
upper four bits and stored into OP2. In this way, each 0Pl byte
produces two OP2 bytes. After the contents of OPL are unpacked into
0P2, any remaining byte positions in OP2 are filled with binary zeros.

EXAMPLE : 0c 0Pl 0P2
052 | 301 314 |

Item 1 of Active Record 3

0P1 fooooooo01f10010111}J0110111 1}
fil1 1 9 7 6 +

Item 14 of Active Record 3

0P2 [6 0000000f0000000 0]00000000]0000D00O
before

Item 14 of Active Record 3

0P2 fi1110001f11111001f11110111]111101
zone 1 zone 9 zone 7 + 6

1-15

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

DATA MOVE

Translate Code

Mnemonic Op Code
Octal Op Code

TRL
140

To convert characters from one code, such as EBCDIC, to ancther code,
such as USASCII. '

- ocC

0P1

opP2

0P3

140

AR/1

AR/ 1

AR/1 |

Each character of the OP1 item is sequentially translated into its

equivalent binary code from the table of character codes in OP2 and

sequentially entered into the OP3 item. The example below illustrates

the translation process.

ocC

OP1

oP2

0P3

140

110

201

322

Item 10 of Active Record 1 is translated jnto Item 22 of Active Record

3 by means of the conversion table in Item 1 of Active Record 2.

0P1

opP2

0P3

Ay Gy Ty
R, By C, oo I, .
AZ CZ TZ * %k kxk

The OP1 item contains the characters
ACT in code 1.

The binary value for each OPl charac-
ter is added to the first location of
0P2, giving the location of the
equivalent character in binary of
code 2, which is then transferred

to OP3.

The code 2 equivalent is left-aligned
and any extra characters are un-
affected.

DATA MOVE
i'cve Literal

Mnemonic Op Code = ML
Neta]l Op Code = 141
PURPQSE : To fill an item with a specified character.

FORMAT : ~ocC 0P1 0P2

141 AR/ 1 L

OPERATION: The OP2 literal is eiitered into each position of the OP1 item.

EXAMPLE:: 0C 0P1 0P2

[141 | 103 | 133

0OP1 ABCDEF Item 3 of Active Record 1
0P2]i[

0P1 S§S§SSSS Item 3 of Active Record 1
after

Literal Character: EBCDIC 133 = §
(See Appendix C)

1-17

BRANCHING

PROGRAM STARTING ADDRESS (P-BIAS)

A1l addresses referenced in the "branch to" operands are relative to the
first address of the program instructions. Core-memory assignments are made after
the program is written and the starting address of the program is stored in the
PCB. The relative address of each branching instruction is added to the program
starting address (P-Bias) during instruction execution.

The Branching instructions include the following:

o Operation (1-19)

GOTO Greater Than (1-20)

GOTO Less Than (1-21)

GOTO Not Equal (1-22)

GOTO Equal (1-23)

GOTO Not Less Than (1-24)
GOTO Not Greater Than (1-25)
GOTO Unconditionally (1-26)
GOTO On Designators (1-27)
GOTO On Switches (1-28)

GOTO Binary Greater Than (1-29)
GOTO Binary Less Than (1-30)
GOTO Binary WNon-Zero (1-31)
GOTO Binary Zero (1-32)

GOTO Binary > Zero (1-33)
GOTO Binary < Zero (1-34)
GOTO Decimal Greater. Than (1-35)
GOTO Decimal Less Than (1-36)
GOTO Decimal Non-Zero (1-37)
GOTO Decimal Zero (1-38)

GOTO Decimal > Zero (1-39)
GOTO Decimal < Zero (1-40)
GOTO On Count (1-41)

GOTO Table (1-42)

GOTO Return (Branch) (1-44)

GOTO Subroutine (Branch) (1-45)
1-18

PURPOSE :

FORMAT :

OPERATION:

BRANCHING
No Operation

NOP
020

Mnemonic Op Code
Octal Op Code

i

No operation. The instruction sequence is not changed.

] Branch to

020 | Address

When the instruction is executed, no change to indicator lights, desig-
nators, data, or instruction sequence is made.

This instruction may be used temporarily in a sequence of instructions,
where it will have no effect. The actual op code may be changed later
to 'G', 'GE', 'GNE', 'GLT', or 'GGT', so that subsequent execution of
the instruction may actually cause a branch to the specified address.

1-19

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

BRANCHING
GOTO Greater Than
Mnemonic Op Code = GGT
Octal Op Code = 021

To cause a branch from the instruction execution sequence when a
"greater than" condition exists.

- 0C Branch to

021 Addréss

When this instruction is executed and the GREATER THAN condition
designator 7s set and the EQUAL condition designator <s not set, the
instruction execution sequence is transferred to the "branch to"
address; otherwise, the execution sequence continues with the next
instruction. The designators are set by the execution of other
instructions.

0C Branch to

021 001 234 P-Bias = 010-000

Location 010-162 contains the above instruction and it is being
executed. If conditions are met, then execution is resumed at
location 011-234; otherwise, it continues with 010-165.

1-20

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

BRANCHIIIG

GOTO Less Than
Mnemonic Op Code
Octal Op Code

6LT
022

To cause a branch from the instruction execution sequence when a
"less than" condition exists.

0C Branch to

{ 022 | Address

When this instruction is executed and the GREATER THAN and the EQUAL
condition designators are not set, the instruction execution sequence
is transferred to the "branch to" address; otherwise, the execution
sequence continues with the next instruction. The designators are set
by the execution of other instructions.

0cC Branch to

{ 022 [oo1 | 234 | P-Bias = 010-000

Location 010-162 contains the above instruction and it is being executed.
If conditions are met, then execution is resumed at location 011-234;
otherwise, it continues with 010-165.

1-21

PURPOSE :

FORMAT :

OPERATION :

EXAMPLE :

BRANCHING

GOTO Not Equal
Mnemonic Op Code
0cta1‘0p Code

GNE
023

1]

To cause a branch from the instruction execution sequence when a
"not equal" condition exists.

] Branch to

{ 023 | Address |

When this instruction is executed and the EQUAL condition designator
is not set, the instruction execution sequence is transferred to the
"branch to" address; otherwise, the execution sequence continues with
the next instruction. The designators are set by the execution of
other instructions.

] Branch to

{o23 {oo1 | 234 P-Bias = 010-000

Location 010-162 contains the above instruction and it is being
executed. If conditions are met, then execution is resumed at
location 011-234; otherwise, it continues with 010-165.

1-22

BRANCHING
GOTO Equal

Mnemonic Op Code = GE
Octal Op Code = 024
PURPOSE : To cause a branch from the instruction execution sequence when an

"equal" condition exists.

FORMAT : oc Branch to

| 024 | Address

OPERATION: When this instruction is executed and the EQUAL designator <s set, the
instruction execution sequence is transferred to the "branch to"
- address; otherwise, the execution sequence continues with the next
instruction. The designators are set by the execution of other

instructions.
EXAMPLE : 0cC Branch to
024 001 234 P-Bias = 010-000

Location 010-162 contains the above instruction and it is being
executed. If conditions are met, then execution is resumed at loca-
tion 011-234; otherwise, it continues with 010-165.

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

BRANCHIIIG

GOTO Not Less Than
Mnemonic Op Code
Octal ‘Op Code

GNL
025

"

To cause a branch from the instruction execution sequence when a "not

less than" condition exists.

oC Branch to

{025 | Address |

When this instruction is executed and the EQUAL condition designator
is set, or the EQUAL condition designator is not set and the GREATER
THAN condition designator is set, the instruction execution sequence
is transferred to the "branch to" address; otherwise, the execution
sequence continues with the next instruction. The designators are set
by the execution of other instructions.

[Branch to

025 | 001 234 P-Bias = 010-000

Location 010-162 contains the above instruction and it is being
executed. If conditions are met, execution is resumed at location
011-234; otherwise, it continues with 010-165. '

1-24

BRANCHING
GOTO Mot Greater Than
Mnemonic Op Code = GNG
Octal Op Code = 026

PURPOSE : To cause a branch from the instruction execution sequence when a '"not
 greater than" condition exists.

FORMAT : 0C Branch to

| 026 | Address |

OPERATION: When this instruction is executed and the EQUAL condition designator
is set, or both the EQUAL and GREATER THAN condition designators are
not set, the instruction execution sequence is transferred to the
"branch to" address; otherwise, the execution sequence continues with
the next instruction. The designators are set by the execution of
other instructions.

EXAMPLE : 0C Branch to

026 | 001 234 P-Bias = 010-000

Location 010-162 contains the above instruction and it is being executed.
If conditions are met, execution is resumed at location 011-234; other-
wise, it continues with 010-165.

1-25

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

BRANCHING
GOTO Unconditionally
G
027

Mnemonic Op Code
Octal Op Code

To cause a branch from the instruction execution sequence when this

instruction is executed.

0C Branch to

| 027 | Address |

When this instruction is executed, the instruction execution sequence
is transferred to the "branch to" address.

0C Branch to

027 001 234 P-Bias = 010-000

Location 010-162 contains the above instruction and it is being
executed. Execution is resumed at location 011-234,

1-26

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

Abnormal edit error

BRANCHTIIG
GOTO On Designators
GD
030

Mnemonic Op Code
Octal Op Code

To cause a branch from the instruction execution sequence when a con-
dition designator condition is matched in the bit configuration of the
specified mask.

0C 0P1 Branch to

{oso0 | m [Address |

When the instruction is executed and a bit in the OP1 binary configura-
ticen is matched with one in the designators, the instruction execution
seguence is transferred to the "branch. to" address; otherwice. the
execution sequence continues with the next instruction. The designators
are set by the execution of other instructions.

[7 6 5 4 3 2 1 0] Bitpositions
: of mask witn

respect to

designators.

I/0 parity

Memory parity

Arithmetic error

Arithmetic overflow
DMA parity
ot used

Equal

0C 0P1 Branch to

030 | 002 | 001 | 234 P-Bias = 010-000

Location 010-162 contains the above instruction and it is being executed.

OP1 00000010 bit configuration of 002
00000011 ABHWORMAL EDIT ERROR and EQUAL condition

designators are set
set
e position 1 is matched, regardless of other designator settings,
roooion s pesumed 2t Jocation 011-234.

BRANCHING
GOTO On Switches
Mnemonic Op Code = GS
Octal Op Code = 031

PURPOSE : To cause a branch from the instruction execution sequence when any of
the operator panel GOTO switch settings is matched by the bit configura-
tion of the specified mask. '

FORMAT :] OP1 Branch to

[031 M | Address |

OPERATION: When the instruction is executed and any of the operator panel switch
settings matches the bit configuration of OP1l, the instruction execution
sequence is transferred to the "branch to" address; otherwise, the
execution sequence continues with the next instruction. The settings
are manually activated.

EXAMPLE :] 0P1 Branch to

031 120 001 234 - P-Bias = 010-000

Location 010-162 contains the above instruction and it is being
executed. Switch setting B on the operator panel was manually set.

7 6 5 4 3 2 1 0

oP1 f0 1 0 1 0 0 0 0] Position 6 and setting B
I match, which satisfies the
B

requirement of any one

position matching any one
setting. Execution is
resumed at location 011-234.

\

1-28

BRANCHING
GOTO Binary Greater Than

Mnemonic Op Code = GBG
Nctal Op Code = *061
PURPQOSE : To cause a branch f- . the instruction execution sequrrce when a

"greater than binary zero" condition exists.

FORMAT : 0C 0P1 Branch to

[061 l AT] Address]

OPERATION: When the instruction is executed and the contents of OP1l are greater
than binary zero, the instruction execution sequence is transferred to
the "branch to" address; otherwise, the execution sequence continues
with the next instruction. The designators are set as follows:

OP1 = Binary @ (GT) = 1

(=) =1
OP1 > Binary ® (GT) = 1 Branch

(=) =0 performed

OP1 < Binary @ (GT) =0

(=) =0

EXAMPLE : 0C 0P1 Branch to
061 | 221 | ool | 060 P-Bias = 010-000

Location 010-122 contains the above instruction and it is being
executed. If conditions are met, execution is resumed at location
011-060; otherwise, it continues with 010-126.

PURPQSE :

FORMAT :

OPERATION:

EXAMPLE :

EPANCHILG

GOTO Binary Less Than

Mnemonic Op Code
Octal Op Code

GBL
*062

To cause a branch from the instruction execution sequence when a

"less than binary zero" condition exists.

- oc

0P1

Branch to

[062 | AR/

}

Address !

(SR

When the instruction is executed and the contents of 0Pl are less than

binary zero, the instruction execution sequence is transferred to the

"branch to" address; otherwise, the execution sequence continues with

the next instruction.

The designators are set as follows:

OP1 = Binary 8 (GT) =1
(=) 1
OP1 > Binary @ (GT) =1
(=) =0
OP1 < Binary § (GT) = 0 Branch
(=) 0 performed
0C 0P1 Branch to
062 | 221 | o001 | 060] P-Bias = 010-000

Location 010-122 contains the above instruction and it is being

executed. If conditions are met, execution is resumed at location
011-060; otherwise, it continues with 010-126.

1-30

BRANCHING
GOTO Binary Non-Zero
Mnemonic Op Code = GBN
Octal Op Code = *063

PURPQSE : To cause a branch from the instruction execution sequence when a
“binary non-zero" condition exists.

FORMAT : 0C 0P1 Branch to

063 | AR/T | Address

OPERATION: When the instruction is executed and the contents of OP1 are not equal
to biﬁary zero, the instruction execution sequence is transferred to
the "branch to" address; otherwise, the execution sequence continues wit
with the next instruction. The designators are set as follows:

OP1 = Binary @ (GT) =1
(=) =1
OP1 > Binary # (GT) = 1 Branch
(=) =0 performed
OP1 < Binary § (GT) =0 Branch
(=) =0 performed
EXAMPLE : 0C OPL Branch to
063 | 221 | 001 | 060 P-Bias = 010-000

Location 010-122 contains the above instruction and it is being
executed. If conditions are met, execution is resumed at location
011-060; otherwise, it continues with 010-126.

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

BRANCHING
GOTO Binary Zevo
Mnemonic Op Code = GBZ
- Octal Op Code = *064

To cause a branch from the instruction execution sequence when a
"binary zero" condition exists.

oC OP1 Branch to

064 AR/1 Address

When the instruction is executed and the contents of OPl are equal to
binary zero, the instruction execution sequence is transferred to the
"branch to" address; otherwise, the execution sequence continues with
the next instruction. The designators are set as follows:

OP1 = Binary @ (GT) = 1 Branch
(=) =1 performed
0P1 > Binary § (GT) =1
(=) =0
OP1 < Binary @ (GT) = 0
(=) =0

ocC OP1 Branch to

064 221 001 000 P-Bias = 010-000

Location 010-122 contains the above “nstruction and it is being
executed. If conditions are met, execution is resumed at location
011-060; otherwise, it continues wi*h (010-126.

1-32

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

BRANCHING
GOTO Binary > Zero
Mnemonic Op Code = GGBE
Octal Op Code = *065

To cause a branch from the instruction execution sequence when an
"equal to or greater than binary zero" condition exists.

0ocC 0P1 Branch to

065 | AR/1 | Address |

When this instruction is executed and the contents of 0Pl are equal
to or greater than binary zero, the instruction execution sequence is
transferred to the "branch to" address; otherwise, the execution
sequence continues with the next instruction. The designators are
set as follows:

OP1 = Binary @ (GT) = 1 Branch
(=) =1 performed
OP1 > Binary @ (GT) = 1 Branch
(=) =0 performed
OP1 < Binary @ (GT) =0
(=) =0

0ocC 0P1 Branch to

065 | 221 | oo1 | o060 'P-Bias = 010-000

- Location 010-122 contains the above 1nstruction’and it is being

executed. If conditions are met, execution is resumed at Tocation
011-060; otherwise, it continues with 010-126.

1-33

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

BRANCHING
GOTO Binary < Zero
Mnemonic Op Code = GLBE
Octal Op Code = *066

To cause a branch from the instruction execution sequence when an
"equal to or less than binary zero" condition exists.

ocC 0P1 Branch to

foe6 | AR/I | Address |}

When this instruction is executed and the contents of OPl are equal
to or less than binary zero, the instruction execution sequence is
transferred to the "branch to" address; otherwise, the execution
sequence continues with the next instruction. The designators are
set as follows: ‘

OP1 = Binary @ (GT) = 1 Branch
(=) =1 performed

OP1 > Binary @ (GT) =1
(=) =0

0Pl < Binary @ (GT) = 0 Branch
(=) =0 performed

] OP1 Branch to

066 | 221 | o001 | 060 | P-Bias = 010-000

Location 010-122 contains the above instruction and it is being
executed, If conditions are met, execution is resumed at location
011-060; otherwise, it continues with 010-126.

1-34

PURPOSE:

FORMAT :

OPERATION:

EXAMPLE :

BRANCHING
GOTO Decimal Greater Than
Mnemonic Op Code = GDG
Octal Op Code = *071

To cause a branch from the instruction execution sequence when a
“greater than decimal zero" condition exists.

0ocC oP1 Branch to

071 AR/1 Address

When the instruction is executed and the contents of OPl are greater
than decimal zero, the instruction execution sequence is transferred
to the "branch to" address; otherwise, the execution seguence con-
tinues with the next instruction. The designators are as follows:

OP1 = Decimal @ (GT) =1
(=) =1
OP1 > Decimal @ (GT) = 1 Branch
(=) =0 performed
OP1 < Decimal @ (GT) =0
(=) =0

0cC OP1 Branch to

{071 | 221 | 001 { 060] P-Bias = 010-000

Location 010-122 contains the above instruction and it is being
executed. If conditions are met, execution is resumed at location
011-060; otherwise, it continues with 010-126.

1-35

PURPOSE :

FORMAT :

OPERAT ION :

EXAMPLE :

BRANCH TG
GOTO Decimal Less Than
GDL
*072

Mnemonic Op Code
Octal Op Code

1)

To cause a branch from the instruction execution sequence when a
"less than decimal zero" condition exists. '

- 0C 0P1 Branch to

Foz2 | AR/1 | Address

When the instruction is executed and the contents of OP1 are less than
decimal zero, the instruction execution sequence is transferred to the
"branch to" address; otherwise, the execution sequence continues with
the next instruction. The designators are set as follows:

OP1 = Decimal @ (GT) =1
(=) =1
OP1 > Decimal @ (GT) =1
» (=) =0
0P1 < Decimal § (GT) = 0 Branch
(=) =0 performed

0C 0Pl Branch to

072 | 221 { o001 | o060 P-Bias = 010-000

Location 010-122 contains the above instruction and it is being
executed. If conditions are met, execution is resumed at location
011-060; otherwise, it continues with 010-126.

1-36

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

BRANCHING
GOTO Decimal Non-Zero
GDN
*073

Mnemonic Op Code
Octal Op Code

To cause a branch from the instruction execution sequence when a
"decimal non-zero" condition exists.

oc 0P1 Branch to

{073 | AR/1 | Address

When the instruction is executed and the contents of 0Pl are not equal
to decimal zero, the instruction execution sequence is transferred

to the "branch to" address; otherwise, the execution sequence continues
with the next instruction. The designators are set as follows:

OP1 = Decimal @ (GT) =1
(=) =1

OP1 > Decimal @ (GT) = 1 Branch
(=) =0 performed

OP1 < Decimal @ (GT) = 0 Branch
(=) =0 performed

0cC 0P1 Branch to

073 AR/1 001 060 P-Bias = 010-000

Location 010-122 contains the above instruction and it is being executed.
If conditions are met, execution is resumed at location 011-060; other-
wise, it continues with 010-126.

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

BRANCHING
GOTO Decimal Zero
Mnemonic Op Code = GDZ
Octal Op Code = *074

To cause a branch from the instruction execution sequence when a
"decimal zero" condition exists.

0C OP1 Branch to

074 | AR/1 | Address |

When the instruction is executed and the contents of OPl are equal

to decimal zero, the instruction execution sequence is transferred to
the "branch to" address; otherwise, the execution sequence continues
with the next instruction. The designators are set as follows:

OP1 = Decimal @ (GT) = 1 Branch
(=) =1 performed
OP1 > Decimq] g (GT) =1
(=) =0
OP1 < Decimal ¢ (GT) =0
(=) =0

0oC 0P1 Branch to

1074 | 221 | oo1 | 060 P-Bias = 010-000

Location 010-122 contains the above instruction and it is being
executed. If conditions are met, execution is resumed at location
011-060; otherwise, it continues with 010-126.

1-38

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

BRANCHING
GOTO Decimal > Zero
Mnemonic Op Code = GGDE
Octal Op Code = *075

To cause a branch from the instruction execution sequence when an
"equal to or greater than zero" condition exists.

0C 0P1 Branch to

075 AR/1I Address

When this instruction is executed and the contents of OPl are equal to

or greater than decimal zero, the instruction execution sequence is
transferred to the "branch to" address; otherwise, the execution sequence
continues with the next instruction. The designators are set as follows:

OP1 = Decimal § {(G6T) = 1 Branch
(=) =1 performed
OP1 > Decimal @ (GT) = 1 Branch
(=) =0 performed
OP1 < Decimal @ (GT) =0
(=) =0

0C 0P1 Branch to

075 221 001 060 P-Bias = 001-000

Location 010-122 contains the above instruction and it is being
executed. If conditions are met, execution is resumed at location
010-060; otherwise, it continues with 010-125.

1-39

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

BRANCHING
GOTO Decimal < Zero
GLDE
*076

Mnemonic Op Code
Octal Op Code

To cause a branch from the instruction execution sequence when an
"equal to or less than zero" condition exists.

0C 0P1 Branch to

076 AR/ 1 Address

When this instruction is executed and the contents of OP1l are equal
to or less than decimal zero, the instruction execution sequence is
transferred to the "branch to" address; otherwise, the execution

~sequence continues with the next instruction. The designators are

set as follows:

OP1 = Decimal @ (GT) = 1 Branch
(=) =1 performed

OP1 > Decimal ¢ (GT) =1
(=) =0

OP1 < Decimal @ (GT) = 0 Branch
(=) =0 performed

oC 0P1 Branch to

076 221 001 060 P-Bias = 001-000

Location 010-122 contains the above instruction and it is being executed.
I1f conditions are met, the execution is resumed at location 011-060;
otherwise, it continues with 010-125.

1-40

PURPOSE :

FORMAT :

OPERATION:

EXAMPLES:

BRANCHING
GOTO On Count
Mnemonic Op Code = GCT
Octal Op Code = *170

To provide timing-loop or count-down capabilities by testing the
OP1 item for binary zero.

0C 0P1 Branch to

170 AR/1 Address

‘When the instruction is executed and the contents of OP1 are equal

to binary zero, the instruction execution sequence continues with

the next instruction. If the contents of OPl are not equal to binary
zero, a binary 1 is subtracted from OP1 and the execution sequence

is transferred to the "branch to" address.

] 0P1 Branch to

170 202 004 005 |. P-Bias = 001-000

Location 001-000 contains the above instruction and it is being

executed.

No. 1 0P1 372 Item 2 of
before Active Record 2
0P1 371 Item 2 of
after Active Record 2

Branch to location 005-005.

0P1 000 Item 2 of
before Active Record 2
0P1 000 Item 2 of
after Active Record

Continue with 001-004..

1-41

O

-

PURPOSE :

FORMAT :

OPERATION :

EXAMPLES:

e | bole?
VL %w(dWBRANCHING

GOTO Table (Indirect Branch)
GTB
*072

Mnemonic Op Code
Octal Op Code

To find a "branch to" address by using an index number which leads
to the branch address in a table that makes up OP2. OP3 contains the
upper table limit.

e OP1 op2 oP3

172 AR/1 AR/I L

index table upper
Timit
The OP2 item is a table of two-byte addresses. The OPl index number
is multiplied by two and added to the beginning 0P2 address. The
resultant address and the resultant address + 1 form the "branch to"
address. When the instruction is executed, the execution sequence is
transferred to this "branch to" address.

OP1 x 2 +agg$ess = TJocation of upper address

location of upper address + 1 = location of lower address.

If the OP1 index is greater than the 0P3 literal (upper limit of
table), the branch is not made and the execution sequence continues
with the next instruction.

Ne. 1 ocC 0P1 op2 0P3

172 103 307 004 P-Bias = 001-000

Location 001-000 contains the above instruction and it is being executed.

0OP1 002 [tem 3 of Active Record 1

0P2 002-000 XXX } y N
-001 XXX adr. @
-002 C L xxx
-003 XXX } adr. 1
:88g gg? } adr. 2 » Item 7 of Active Record 3
-006 XXX } ;
-007 XXX adr. 3
-010 XXX
-011 XXX } adr. 4 J

1-42

0P3 004 upper limit: address 004 of OP2 table

opP2
address

002 x 2 + 002-000

"

OP1 x 2 + location of upper address

002-004 = location of upper address = 005 (from
table)

upper address (002-004) + 1 = lower address (002-005) = 221 (from table)

"branch to" address 005-221
+ P-Bias 001-000
-next instruction 006-221

Branch to location 006-221.

No. 2 0C OP1 0p2 0P3

172 214 107 004 P-Bias = 001-000

Location 001-000 contains the above instruction and it is being executed.

OP1 005 Item 14 of Active Record 2
0P2 002-000 XXX N
-001 XXX } adr. @
-002 XXX
-003 XXX } adr. 1
-004 005 } adr. 2 ~
-005 221) > Item 7 of Active Record 1
-006 016
-007 117 } adr. 3
-010 XXX
-011 XXX } adr. 4
-012 1 any
: data
7
0P3 004 upper 1imit: address 004 of OP2 table
0P1 x 2 +a3g§ess = location of upper address

005 x 2 + 002-000 = 002-012 = illegal address (beyond the limit of
table, specified in OP3)

Continue with 001-004.

1-43

BRANCHING
GOTO Return (Branch)

Mnemonic Op Code = GRT
Octal Op Code = *173
PURPOSE : To return from a subroutine to a main routine return address. The

P-address is read from a push-down stack buffer. See the GSB instruc-
tion on the preceding page.

FORMAT : 0C OP1
173 B

OPERATION: OP1 defines a push-down stack buffer which contains the return address.
The push-down stack buffer consists of a set of two-byte entries which
define return addresses. The P-address for the return address is
located at the current buffer pointer address minus one and minus two.
After retrieving the return address, the current buffer pointer is
decremented by two. A branch is made to the return address. P-bias
is not added to the return address prior to the branch.

EXAMPLE : 0cC OP1

173 | o001 P-Bias = 012-000

P-address before = 013-077

) SDAT Entry
0P1 001 010-002 010-377 PUSH-DOWN BUFFER DESCRIPTOR
before :
PUSH-DOWN BUFFER

Pa 010-000 012-265
Pb 010-002 XXX=XXX

010-376 XXX XXX

SDAT Entry 7

0P1 001 020-000 010-377 PUSH-DOWN BUFFER DESCRIPTQOR
after .

P-address after = 012-265

1-44

PURPOSE :

FORMAT :

OPERATION :

EXAMPLE :

after

BRANCHING
GOTO Return (Branch)
Mnemonic Op Code = GSB
Octal Op Code = *176

To branch to a subrc:tine and save the return main rouftine P-address
in a push-down stack buffer. The limitation on nesting is determined
by the size of the push-down stack buffer.

oC OP1 Branch to

176 B Address

OP1 defines a push-down stack buffer. When this instruction is executed,
the P-address of the next instruction .is placed in the current push-

down buffer pointer address and current push-down buffer pointer plus
one. The push-down buffer consists of two-byte entries (return ad-
dresses). The current buffer pointer address is advanced by two and a
branch is made to the designated subroutine.

ocC 0P1 Branch to

176 001 001 000 P-Bias = 012-000
. ' L = 001-000
P-address before = 012-261 P-after f_013-000
P-address return = 012-265 ¥
013-000 0C OP1. . . OPn
f subroutine
| 013-077 GRT B
SDAT Entry
0P1 001 | 010-000 010-377 PUSH-DOWN BUFFER DESCRIPTOR

before

PUSH-DOWN BUFFER

Pb 010-000 012-265
Pa 010-002 XXX=XXX

010-376 XXX-XXX

0P1 001 SDAT Entry

010-002 010-377 PUSH-DOWN BUFFER DESCRIPTOR

1-45

COMPARE

ESTABLISH CONDITIONS

The Compare instructions establish relational conditions by setting appropriate
internal condition designators, which are utilized by the Branching instructions as
branching conditions.

The Compare instructions include the following:

Compare Binary (1-47)

Compare Alphanumeric (1-49)

(3
e Compare Decimal (1-48)
(]
e Compare Literal (1-50)

1-46

PURPOSE :

FORMAT :

OPERATION:

COMPARE

Compare Binary

Mnemonic Op Code
Gcetal Op Code

To compare two binar:
nation of equality: >, =, or <.

0C 0Pl op2

044 AR/T AR/1

The OP1 item is compared to the QP2
indicated by the internal condition

GREATER THAN is set when OP1
EQUAL is set when 0P1
Both are not set when OP1

1-47

= CB
= 044

mbers and thereby establish a c:ndition desig-

item, and their relationship is
designator settings below:

> QP2
opP2
< 0P2

COMPARE
Compare Decimal

Mnemonic Op Code = CD
Octal Op Code = 046
PURPOSE : To compare two decimal numbers and thereby establish a condition

designation of equality: >, =, or <.

FORMAT : - 0C 0P1 0P2

046 AR/1 AR/I

QPERATION: The OP1 item is compared to the OP2 item, and their relationship is
indicated by the internal condition designator settings below:

GREATER THAN is set when OP1 > OPZ
EQUAL is set when OP1 = 0OP2
Both are not set when OP1 < QP2

1-48

COMPARE

Compare Alphanumerics

Mnemonic Op Code
Octal Op Code

CAN
142

PURPQSE: - To compare all the characters in one item with those of another item
and thereby establish a condition designation of equality: = or %.
FORMAT : 0C OFl 0pP2
142 AR/1 AR/1
OPERATION: A1l the characters of OP1 and OP2 are compared, starting with the
leftmost character ot each item. HNull characters are considered
equivalent to any alphanumeric. OP1l can be larger than OP2, but not
the reverse. The result of the comparison is indicated by the con-
dition designators below:
EQUAL is set when OP1 = 0OP2
EXAMPLES: No. 1
OP1 ABCnX7
OP1 and OP2 are equal because the n and the 5
are equivalent for this comparison.
opP2 ABC5X7
No. 2
OP1 ABCnX7
OP1 and OP2 are equal; OPl can be >, but
4 not the reverse.
0pP2 ABC {.
No. 3 .
0P1 ABC .
, OP1 and OP2 are not equal, since 0P2 > OP1.
0P2 ABCnX7

1-49

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

COMPARE
Compare Literal
Mnemonic Op Code = CL
Octal Op Code = 144

To determine whether all of the characters in an item are the same as
a specified literal and thereby establish a condition designation of
equality: = or %.

0C OP1 0pP2

144 AR/1 L

A11 the characters in the OP1 item are compared to the specified literal
character to establish whether they are all the same as the literal or
the Null character. The result of the comparison is indicated by the
condition designator below:

EQUAL 1is set when OPl = Lorn
0P1 *kkpn* OP1 and OP2 are equal because the n and
0P2 * the asterisk are equivalent for this

comparison.

1-50

TEST

ESTABLISH CONDITIONS

The Test instructions establish

e The sign of a binary or a decimal number
or

e The occurrence of a given character
or

e A bit correspondence.

The Test instructions are utilized by the Branching instructions as branching
conditions.

"The Test instructions include the following:

Test Binary Sign (1-52)
Test Decimal Sign (1-53)
Test Item (54)

Test Literal (1-55)

Test Mask (1-56)

Test Item Mask (1-57)

1-51

TEST
Test Binary Sign
Mnemonic Op Code = TBS
Octal Op Code = 040

PURPOSE : To examine the sign of a given binary number and thereby establish a

+ or - condition designation.

FORMAT : - 0C 0P1

040 AR/ 1

OPERATION: The sign of the OP1 item (binary number) is examined to determine
whether it is + or -. The sign is indicated by a 0 (+) or a 1 (-)
in the MSB of the MSBY, and the condition designator is set accordingly:

GREATER THAN 1is set when the MSB = 0 (which means +)

EXAMPLES: No. 1

MSBY

0P1 |01101111(00011001 2-byte item

t-——MSB indicates a + binary number

No. 2

MSBY

Okl 111011110001 1001 2-byte item

t—--MSB indicates a - binary number

1-52

TEST
Test Decimal Sign
Mnemonic Op Code = TDS
Octal Op Code = 042

PURPQSE : To examine the sign of a given decimal number and thereby establish a
+ or - condition designation. '

FORMAT : ocC oP2

042 AR/I

OPERATION: The sign of the OP1 item (decimal number) is examined to determine
whether it is + or -. The sign is indicated by the sign zone of the
least significant digit of the number, and the condition designator is
set accordingly: '

GREATER THAN 1is set when the number is positive.

EXAMPLES: No. 1

bit configuration of LsD is 1111 0011
;-— g

0P1 71213 a 3-digit (or 3-byte) positive number

No. 2

{———-bit configuration of LSD is 1101 0011

0P1 71213 a 3-digit (or 3-byte) negative number

1-93

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

TEST

Test Item
Mnemonic Op Code = TI
Octal Op Code = 150

To determine whether the first character in one item appears in any
positions of another item and thereby establish a condition desig-
nation. '

0C 0P1 oP2

150 | AR/I | AR/I

The OP2 item is tested for the occurrence of the leftmost character of
the OP1 item, and the condition designator is set accordingly:

EQUAL is set when OPZ2 contains at least one character corresponding
to the first character of OP1.

0P1 ABC oP2 FZA45

t | | |

1-54

PURPOSE :

FORMAT :

OPER

EXAMPLE :

ATION:

TEST
Test Literal
Mnemonic Op Code = TL
Octal Op Code = 151

To determine whether an item contains a specified literal and thereby
establish a condition designation.: '

0C 0Pl 0r2

151 AR/1 L

The OP1 item is tested Tor the cccurrence of the specified literal,

and the condition designator is set accordingly:

EQUAL is set when OP1 contains the literal at least once.

OP1 ABBDBE op2 B

t , A

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

TEST
Test Mask
Mnemonic Op Code
Octal Op Code

™
152

To determine whether the leftmost character of an item has a bit in any
position corresponding to the bits in the mask, and thereby establish
a condition designation.

0C 0P1 op2

152 AR/1 M

The bit configuration of the leftmost character of the 0Pl item is
compared with the bit configuration of the specified mask. If there
is a bit correspondence with any of the character bit positions, then
the condition designator is set accordingly:

EQUAL is set when a bit correspondence exists.

0P1 01101101 character character
i $
opP2 00100001 Either correspondence would be sufficient

1-56

PURPOSE :

FORMAT :

OPERATION:

EXAMPLES :

TEST
Test [tem Mask
Mnemonic Op Code = T[M
Octal Op Code = *153

To scan an item of unknown contents with an item of pre-determined
contents and look for a one-bit compare in any bit position.

oc OP1 0p2
[153 "] AR/1 AR/I]

The leftmost OP1 item character is compared against the QP2 item charac-

ters. If any "onc<” bit in the OP1 scan character matches a "one" bit
position in the OP2 character, the instruction is terminated. Other-
wise, the instruction is terminated at the end of the 0P2 item. EQUAL
is set when any "one" bit in the OP1 scan character matches a "one" bit

position in the OP2 character.

0C 0P1 opP2

153 204 377
No. 1
0P1 342 114 Item 4 of Active Record 2
0P2 001 020 034 Item 77 of Active Record 3
scan character disregarded
342 114
0P1 [1 1100010[({01001100
scan 1 scan 2 scan 3
0oP2 IO 000000110001 0000]00011100
no compare no compare no compare, end of
0P2, instruction
is terminated
No. 2
0P1 342 114 Item 4 of Active Record 2
opP2 001 040 034 Item 77 of Active Record 3

1-57

scan character disregarded -

342 114
0P1 11:00010(01001100
scar 1 scan 2

opP2 00000001|00100000|00011100

no compare compare not scanned

matched bit position,
instruction is ter-
minated and EQUAL

is set.

1-58

INPUT/OUTPUT

INTERACTION

The I/0 instructions initiate, control, and direct the I/0 operations and
interaction with the peripherals. This activity takes place between the input
and output buffers and the I/0 channel and its associated peripherals.

GENERAL I1/0 OPERATIONS

The Initiate Input On Chinnel and the Initiate Cutput On Channel instructions
are used to initiate the standard input and output operations on a specified I/0
Selector Channel and designate the appropriate buffer and peripherals. Hardware
registers temporarily store and maintain the count of the characters into and out
of the I/0 buffers. Channel dosignators indicate appropriate active or inactive
conditions on the specified channel.

RELATED I/O OPERATIONS AND STATUS

The External Function On Channel instruction is used to transmit operational
commands (such as read) to a peripheral and to determine the operational status of
the peripheral. GOTO On Active Channel is a branch instruction that is used to
branch away from the normal instruction execution sequence if a specified channel
is active. The Store Channel Control Register is used to store the current charac-
ter address derived during the general I/0 operations.

SPECIAL 1/0 OPERATIONS

The Special In and the Special Out instructions are used to perform the I/0
operations on the DMA channels.

REVERSE I/0 OPERATIONS

The reverse buffering capabilities are used to buffer input/output data in
reverse when the connected I/0 device is reading or writing in reverse.

The Input/Output instructions include the following:

Special In (1-60) Store Channel Reverse (1-66)
External Function On Channel (1-61)
Special Out (1-62)

External Function Special (1-63)
GOTO On Active Channel (1-64)

Store Channel Control Register (1-65)

Initiate Input Reverse (1-67)
Initiate Input On Channel (1-68)
Initiate Output On Channel (1-69)
Initiate Output Reverse (1-70)

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

INPUT/QUTPUT

Special In
Mnemonic Cp Code = INS
Octal Op Code = 100

To direct the input data to a given storage area when using a DMA
channel.

0cC 0P1 opP2

100 AR/1 AR/1

The input data received through the specified DMA channel interface
module in OP1 is stored in the OP2 item, Teft-aligned.

OP1 item specifies the DMA channel number connected to the DMA inter-
face module.

0P2 item is to receive the input data.

The documentation for the specific interface module provides detailed
information concerning the input data.

0C 0P1 opP2

100 241 304

OP1 Item 41 of Active Record 2 contains the DMA channel number.

0pP2 Item 4 of Active Record 3 is to receive the input data.

1-60

PURPOSE :

FORMAT :

OPERATION:

- EXAMPLE :

INPUT /QUTPUT
External Function On Channel
Mnemonic Op Code = EF
Octal Op Code = 104

To transmit operational commands (such as READ EBCDIC) to a peripheral
device and determine its status. '

0C OP1 opP2 0P3

106 | AR/I | AR/T| AR/I

The External Function Code in the OP2 item is transmitted over the I/0
channel specified in the OP1 item to the peripheral device, which
replies with a status code that is placed in the OP3 item. If the
status is not reccived within a specific time period, one null charac-
ter is stored in the first status byte and the next instruction is
executed. The meciiings for the External Function and the status codes
are dependent upon the type of peripheral.

NULL characters are sent as command bytes after the end of the 0P2 item
when OP2 < OP3. The next instruction is executed when OP3 ends.

No status bytes are stored in the status area after the end of the OP3
item when 0P2 > OP3. The next instruction is executed when QP2 ends.

Both the function request (FRQ) control Tine and the data request (DRQ)
control line are active on the first command byte. Only the FRQ is
active on each succeeding command byte of the 0OP2 item.

For a complete explanation, see PROCESSOR PROGRAMMING IN MACHINE CODE,
Form No. M-2269. ’

0C 0P1 op2 0P3

104 103 104 110

The items are all located in Active Record 1.

0pP1 Item 3 contains the channel number for the peripheral.

0P2 - Item 4 contains the External Function code for a specific
peripheral. '

0P3 Item 10 is to store the status ccde from the périphera1.

1-61

PURPQSE :

FORMAT :

OPERATION :

EXAMPLE :

INPUT/QUTPUT
Special Out

n

0TS
105

Mnemonic Op Code
Cctal Op Code

To direct output data from a given storage area when using a DMA
channel.

0C OP1 0P2

105 AR/1 AR/1

The output data from the OP2 item is sent to the DMA channel interface
module specified in OP1.

OP1 item specifies the DMA channel number connected to the DMA inter-
face module.

OP2 item contains the output data.

The documentation for the specific interface module provides detailed
information concerning the output data.

0Pl op2

0C
{" 105 120 212

OP1 Item 30 of Active Record 1 contains t*e DMA channel number.

opP2 Item 12 of Active Record 2 contains the output data.

1-62

PURPOSE :

FORMAT :

OPERATION:

INPUT/QUTPUT
External Function Special
Mnemonic Op Code = EFS

Octal Op Code = *106

To prevent issue of a data request for I/0 devices that do not require
such a signal; otherwise, this instruction is the same as EF.

0C 0P1 oP2 0P3

106 AR/1 AR/1 AR/I

The EFS dinstruction prevents the issue of DRQ for I/0 devices that may
function improperly on receiving such a signal. This instruction
guarantees 2408 compatibility via software for all I/0 applications
that do not require the above signal.

PURPOSE :

FORMAT :

QPERATION:

EXAMPLE :

INPUT /OUTPUT
GOTO On Active Channel
GA
107

Mnemonic Op Code
0ctal Op Code

n

To cause a branch from the instruction execution sequence when the
specified channel is active.

0C 0Pl Branch to

107 AR/I Address

If the channel specified in OP1 is active, then the instruction execu-
tion sequence is transferred to the "branch to" address; otherwise, the
execution sequence is continued.

107 001 001 234 P-Bias = 010-000

Location 010-162 contains the above instruction and it is being execu-
ted. If channel 001 (OP1) is active, then execution is resumed at
location 011-234; otherwise, it continues with 010-166.

1-64

PURPOSE :

FORMAT :

OQPERATION:

EXAMPLE :

INPUT/QUTPUT
Store Channel Control Register
STC
110

Mnemonic-Op Code
Octal Op Code

To store the contents of the channel control register.

0C OP1 op2

110 AR/ 1 AR/1

Stores in the OP2 item the "current character address" of the channel
control register specified by the OP1 item. See the operation descrip-
tions of the IN and OUT instructions for the meaning of the "current
character address."

0C 0Pl 0P2

110 117 212

0P1 Item 17 of Active Record 1 contains the channel number in binary.
opP2 Item 12 of Active Record 2 is to receive the current character
address.

1-65

INPUT/OUTPUT
Store Channel Reverse

Mnemonic Op Code = STR
Octal Op Code = *111
PURPOSE : To store the last address buffer control work for a specified channel.

FORMAT : 0C OP1 0pP2
111 AR/1 AR/I

OPERATION: The last address buffer control word for the channel specified by OP1
is stored into the item specified by 0P2.

NOTE

The 2408 has two buffer control addresses for each
individual selector channel. One buffer address is
used for forward buffering of data. The other buffer
address is used for reverse buffering. Thus, the
last address buffer control word is being decremented
for every character that is transferred between the
I/0 device and the processor during reverse buffering.
A1l reverse buffering instructions are mainly used to
enable the processor to receive data from a magnetic
tape unit reading backwards.

EXAMPLE : 0C 0P1 QP2
111 201 202

OP1 006 Item 1 of Active Record 2
Channel 6
0P2 000 000 Item 2 of Active Record 2
before
127 322 control memory
. = address 35
0P2 [127 322]
after ‘

1-66

PURPOSE :

FORMAT :

OPERATION:

INPUT/QUTPUT
Initiate Input Reverse
Mnemonic Op Code = INR

Octa]IOp Code = *112

To store data reverse into a specified buffer through a specified
channel. '

0cC 0P1 opP2

112 AR/1 B

0P2 specifies an input buffer, where the last address is used as the
current address, always being decremented after each character transfer.
The loading of the buffer is terminated and the channel designator is
reset when the first address of the buffer is reached. Data is received
through the channel specified in the OP1l item. OP2 defines the buffer
in the following manner:

BCW First address 2 bytes
BCW Last address 2 bytes
NOTE

The 2408 has two buffer control word addresses for

each individual selector channel. One buffer address

is used for forward buffering of data. The other buf-
fer address is used for reverse byffering. Thus, the
last address buffer control is being decremented for
every characﬁer that is transferred between the I/0
device and the processor-during reverse buffering. All
reverse buffering instructions are mainly used to enable
the processor to receive data from a magnetic tape unit
reading backwards.

The 1/0 parity designator is set if a parity error is
detected on the input data.

1-67

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

INPUT/OUTPUT
Initiate Input On Channel
Mnemonic Op Code = IN

Octal Op Code = 114

To initiate input on a specific channel and designate the input buffer area.

0C OP1 opP2

114 AR/1 B

Initiates an input of data from a peripheral device, using the channel
specified in the OP1 item and storing the data in the buffer area speci-
fied in the OP2 item, which is defined in the SDAT by its first address
and last address. The 0P2 buffer descriptor is transferred to a channel
control register and a channel designator is set to ACTIVE. In the chan-
nel control register, the first and Tast addresses are entered in the
current address register and the Tast address register, respectively.

The next instructions are executed while the characters are received from
the peripheral device and stored in the buffer. After each character is
stored in the buffer, the current address register is compared to the last
address register and then incremented by one. When they are equal, the in-
put operation is terminated and the channel designator is set to INACTIVE.

Upon termination, the current address register = last character address
+ 1, and the last address register = last address.

The channel designator is also set to INACTIVE when a Function Acknow-
ledge is received from the peripheral.

The 1/0 parity condition designator is set when an odd-parity error is
detected on input data.

For a complete explanation, see PROCESSOR PROGRAMMING IN MACHINE CODE,
Form No. M-2269.

oC . 0P1 0p2

114 241 303

0P1 Item 41 of Active Record 2 contains the channel number.
0pP2 Item 3 of Active Record 3 contains the input buffer limits.

1-68

PURPOSE :

FORMAT :

QPERATION:

EXAMPLE :

INPUT/OUTPUT
Initiate Output On Channel
Mnemonic Op Code = OUT

Octal Op Code = 115

To initiate output on a specific channel and designate the output buffer

area.

0C 0OP1 0P2

115 AR/ 1 B

Initiates an output of data from the output buffer specified in OP2 to a
peripheral device on the channel specified in the OP1 item. The OP2 buf-
fer is defined in the SDAT by its first address and last address + 1.
During execution of this instruction, these addresses are transferred to

a channel control register and a channel designator is set to ACTIVE.

The first and last + 1 addresses are entered in the current address regis-
ter and the last address register, respectively, of the channel control
register.

The next instructions are executed, while the characters are transferred
from the buffer to the peripheral, with an odd-parity bit generated for
each byte. Before each character transfer, the current address register
is compared to the last address register and then incremented by one.
When they are equal, the operation is terminated and the channel designa-
tor is set to INACTIVE. |

The channel designator is also set to INACTIVE when a Function Acknow-
ledge is received from the peripheral. The channel control register is
then:

last address + 2
last address + 1

current address register

last address register

oC 0Pl OP2

115 145 114

0P1 Item 45 of Active Record 1 contains the channel number.

- 0P2 Item 14 of Active Record 1 contains the output buffer Timits.

1-69

PURPOSE :

FORMAT :

OPERATION:

INPUT/OUTPUT
Initiate Output Reverse
Mnemonic Op Code = OTR

Octal Op Code = *116

To initiate output reverse on a specific channel and to designate the
output buffer area.

0cC OP1 op2

116 AR/ 1 B

0P2 specifies an output buffer. Data output through the channel
specified by OP1 is initiated. After each character transfer to the
peripheral, the last address of the channel buffer control word is
decremented until the first address - 1 and last address match.
Operations are then terminated by resetting the channel designator.
0P2 defines the buffer the same way as in the INR dinstruction.

1-70

GENERAL PURPOSE

The General Purpose instructions include the following:

Rename (1-72)

Store Designators (1-73)

Load Designators (1-74)

Store Tally Counter (1-75)

Load Tally Counter (1—76)'

Halt (1-77)

Set Display Indicators (1-78)

No Operation - Leave Gap (1-79)
Clear Display Indicators (1-80)
Load Storage Descriptor Pointer (1-81)
Load Active Record 1, 2 or 3 (1-82)

1-71

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

GENERAL PURPOSE
RENAME

Mnemonic Op Code

Octal Op Code

RN
000

To change or reset a record or buffer address descriptor in the SDAT.

0cC 0P1 0P2 0C 0P1 opP2

000 R R or 000 B B

The address descriptor in the SDAT for the 0P2 record or buffer is re-
placed by the OP1 record or buffer address descriptor. This instruction
is used to restore a buffer descriptor to its original contents follow-
ing an Extract or Append type of instruction, since the starting ad-
dress of the descriptor is incremented to maintain a current address
pointer during the execution of these instructions and is therefore no
longer available. Note that a data move to or from an SDAT entry acts

as if the SDAT entry is a 4-byte data item.

0cC oP1- opP2
000 002 010 When this instruction is executed,
/‘\— (‘\
SDAT ~ SDAT
Before After
000 300 Buffer 2 descriptor 000 300
000 357 000 357
will
| =
change
__?gp_f?zu_ Buffer 10 descriptor to read ___999_?9?_
000 357 000 357

thereby restoring (renaming) it to its original value.

1-72

PURPOSE :

FORMAT :

OPERATION:

* EXAMPLE:

GENERAL PURPOSE
Store Designators

Mnemonic Op Code
Octal Op Code

STD
*124

To store the status of the condition designators into a specified item.

oc

0P1

124

AR/1

One byte of data, representing the present status of the designators,
is written into the leftmost byte of the item specified by OP1.

71615413 12}1}0 Bit positions
of condition
designators

1/0 Parity

Memory Parity —
Arithmetic Error
Arithmetic Overf

low

BDMA Parity

Greater Than
Abnormal Edit Er

ror

Equal

0ocC . 0P1
124 317
0P1 327
before
0P1 101
after

Item 17 of Active Record 3

Item 17 of Active Record 3

-assuming the Equal and Memory Parity
designators are set.

1-73

PURPOSE :

FORMAT:

OPERATION:

EXAMPLE:

GENERAL PURPOSE
Load Designators

Mnemonic Op Code = LD

Octal Op Code = *126

To set the condition designators according to the bit pattern of the

specified item.

0C

0P1

126

AR/ 1

The Teftmost item of OP1 forces the designators to an identical bit

pattern.

I/0 Parity

Memory Parity
Arithmetic Error
Arithmetic Overflow
BDMA Parity
Greater Than
Abnormal Edit Error

Equal
0C 0P1
126 320
0P1 060
before
Designators ,
after

Item 20 of Active Record 3

27 26 25 24 23 22 21 20

06 0060 0 O0 0 O

0011 000O0

Bit positions
of condition
designators

The Arithmetic Error and Arithmetic Overflow designators are set.

1-74

PURPOSE :

FORMAT:

OPERATIOM:

EXAMPLE:

 Tally Counter = | 137 | 276

GENERAL PURPOSE
Store Tally Counter
STT
*134

Mnemonic Op Code
Octal Op Code

To store the contents of the tally counter into a specified item.

oc 0P1

134 AR/1

The 16 bit positions of the tally counter are stored into the leftmost
two bytes of the OP1 item. See Appendix D for the effect of instruc-
tion execution on Tally Counter.

oc 0P1

134 107

0P1 224 | 011 |377 Item 7 of Active Record 1
before '
0P1 137 | 276 {377

after

1-75

PURPOSE :

FORMAT:

OPERATION:

EXAMPLE :

GENERAL PURPOSE
Load Tally Counter

Mnemonic Op Code = LT
Octal Op Code = *136

To set the tally counter according to the bit pattern of specified item.

0C

OP1

136

AR/1

The leftmost two bytes of the item specified by OP1 force the tally
counter to an identical bit pattern. See Appendix D for the effect

of instruction execution on Tally Counter.

OP1

Item 21 of Active Record 2

Tally Counter

0cC 0P1
136 221
131 246 012
before
after

1-76

0 00 0 00

PURPOSE:

FORMAT:

OPERATION:

GENERAL PURPOSE
HALT
Mnemonic Op Code
Octal Op Code

1]
X

143

To stop the execution of instructions.

0c

143

Halts the execution of instructions, but the I/0 operations can continue
until the buffer terminates. The STOP indicator on the PROCESSOR STATUS
panel is illuminated. The instruction execution sequence can be resumed
by pressing the RUN switch on the control panel.

1-77

GENERAL PURPOQSE
Set Display Indicators

Mnemonic Op Code = SDI
Octal Op Code = 146
PURPOSE : To turn on one or more display indicators.
FORMAT: 0C OP1
146 AR/I

OPERATION: The display indicators are turned on by the presence of a one ("1")
bit in the corresponding position of the 1-byte item of OPl.

EXAMPLE : ffoofffo Display indicators before
10101101 OP1 item
ofoooofo Display indicators after
T ?T ‘ Turned on

1-78

GENERAL PURPOSE
HNo Operation - Leave Gap
Mnemonic Op Code = GAP
Octal Op Code = *147

PURPOSE : To allow a program delay.

FORMAT : oC

147

OPERATION: The program is delayed by 1 microsecond (thé time it takes to go through
a P-sequence).

1-79

GENERAL PURPOSE
Clear Display Indicators
CDI
156

Mnemonic Op Code
Octal Op Code

PURPOSE: To turn off one or more display indicators.

FORMAT: 0C 0P1

156 AR/1

OPERATION: The display indicators are turned off by the presence of a one ("1")
bit in the corresponding position of the 1-byte item of OP1.

ffoofffo Display indicators before

10110010 OP1 item

fffffffo Display indicators after
1T Turned off

1-80

GENERAL PURPOSE
Load Storage Descriptor Pointer
Mnemonic Op Code = LSP
Octal Op Code = 161

PURPOSE : To declare another SDAT active.

FORMAT : 0C 0P1

161 SDP

OPERATIOMN: The OP1 storage descriptor pointer is loaded over the current pointer
in address 000-000 and 000—0018, thereby activating a new SDAT.

1-81

GENERAL PURPOSE
Load Active Record 1, 2, or 3
Mnemonic Op Code = LR1, LR2, or LR3
Octal Op Code = 165, 171, or 175

PURPOSE: To declare a record active.
FORMAT:] OP1
165,171 R
or 175

OPERATION: Loads the active record register with the OP1 record number, which is
an item in the SDAT and contains the record descriptor for the record
area in storage. A record must be declared active before it can be
referenced by any other instructions. Records continue to be "active"
until a succeeding LR instruction activates another record in its
place (1, 2, or 3).

Appendix B, Programming Active Records, provides additional information
for using the Load Active Record instructions.

EXAMPLE : 0cC 0P1

171 011

ocC 171 Load Active Record 2

0P1 011 with record 11 of the SDAT, which indicates
the first address of the record in storage and
the first address of its IDT.

1-82

LOGICAL

The logical instructions include the following:

OR (Exclusive) (1-84)

Longitudinal Redundancy Check (1-85)
OR (Inclusive)(1-86)

Logical AND (1-87)

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

LOGICAL SET
OR (Exclusive)
Mnemonic Op Code
Octal Op Code

n

X
*160

To logically OR (Exclusive) two strings of data and store the result
into a defined item. ' '

0cC 0P1 0pP2 OP3

160 AR/I AR/1 AR/1

An Exclusive OR function is performed between the data contained in the
leftmost bytes of the OP1 and OP2 items. The result is stored left-
aligned into the OP3 item. This function continues until one of the
three operands is ended. ‘

Exclusive OR Operation: 1100
1010

0110

0c oP1 0P2 0P3

160 201 202 203

0P1 305 11000101 Item 1 of Active Record 2
oP2 147 01100111 Item 2 of Active Record 2
oP3 377 11111111 Item 3 of Active Record 2
before
0P3 242 10100010 Item 3 of Active Record 2
after

1-34

PURPQSE :

FORMAT :

OPERATION:

EXAMPLE :

LOGICAL SET
Longitudinal Redundancy Check
Mnemonic Op Code = RCK

Octal Op Code = *162

To perform successive Exclusive OR operations to a string of data and
to store the result into a defined item.

0C 0P1 0pP2

162 AR/1 AR/1

An Exclusive OR function is performed between the leftmost byte of the
OP1 item and the second leftmost byte. An Exclusive OR is then per-
formed between this result and the third leftmost byte‘of the OP1 item.
This function continues until the end of the OP1 item is reached. The
result is then stored into the OP2 item.

Exclusive OR Operation: 1100
1010
0110

0c 0P1 0P2

162 302 207

0Pl 247 367 Item 2 of L—---1 0100111
T Active Record 3 r—-l 1110111
. —» 01010000
opP2 000 Item 7 of
before Active Record 2
[
op2 120 Item 7 of
after . Active Record 2

1-85

LOGICAL SET

OR (Inclusive)
Mnemonic Op Code

Octal Op Code

0
*164

PURPOSE : To logically OR (Inclusive) two strings of data and store the result
into a defined item.

FORMAT : 0C 0P1 opP2 0P3

164 AR/ AR/1 AR/1

OPERATION: A Logical OR function-is performed between the data contained in the
leftmost bytes of the OP1l and OP2 items. The result is stored left-
aligned into the OP3 item. This function continues until one of the
three operands is ended.

Inclusive OR Operation: 1100
1010
1110
EXAMPLE : 0cC 0P1 0P?2 0P3
164 301 202 107
OP1 362 11110010| Item1 of Active Record 3
opP2 203 10000011 Item 2 of Active Record 2
0P3 227 10010111 Item 7 of Active Record 1
before
0P3 363 11110011 Item 7 of Active Record 1
after

1-86

LOGICAL SET
Logical AND
Mnemonic Op Code
Octal Op Code

N
*166

PURPOSE : To logically AND two strings of data and store the result into a
' defined item. '

FORMAT : ' 0cC 0Pl oP2 0P3

166 AR/1 AR/1 AR/1

OPERATION: A logical AND operation is performed between the data contained in
the leftmost bytes of the OP1 and OP2 items. The result is stored
left-aligned into the OP3 item. This function continues until one of
the three operands is ended.

Logical AND Operation: 1100

1010
1000
EXAMPLE: 0cC 0Pl 0pP2 0P3

166 | 102 | 203 | 306 |

0P1 lo110101 1} Item 2 of Active Record 1
0P2 [f1101101] Item 3 of Active Record 2
0P3 [foooo0000] Item 6 of Active Record 3
before

0P3 151 lo1101001] Item 6 of Active Record 3
after _

1-87

BINARY ARITHMETIC

During binary arithmetic operations, one of two error indicators may be illumi-
nated on the operator panel and the corresponding condition designator set:

o Arithmetic overflow - when the receiving item is 1 byte too small and the
sign of the number is lost (condition designator bit 4).
e Arithmetic Error - when the receiving item is 1 or more bytes too small

for the operation (condition designator bit 5).

Whenever either of these conditions occurs, the arithmetic operation is
immediately terminated.

Negative binary numbers must be coded in two's complement form.

The sign of a binary number is indicated by a 0 (for +) or a 1 (for -) in
the MSB of the MSBY.

The Binary Arithmetic instructions include the following:

Add Binary (1-89)

Subtract Binary (1-90)

Add Literal Binary (1-91)
Subtract Literal Binary (1-92)

1-88

BINARY ARITHMETIC
Add Binary

Mnemonic Op Code = AB
Octal Op Code = 041
PURPOSE: To add two binary numbers.
FORMAT: 0C 0pP1 oP2 0P3

041 AR/I AR/1 AR/I

OPERATION: The OP1 item is added to the OP2 item and the sum stored in the OP3
item.
Condition Designators:

Arithmetic overflow is set when the OP3 item is too small by one
byte and the sign bit is lost.

Arithmetic error is set when the add operation cannot be completed
for all bytes in the OP1 or OP2 items because the OP3 item is

too small.
EXAMPLE : 0P1 01111111 11001110
op2 01001101 A ,
0P3 00000000 | 10000000 | 00011011 after the addition

1-39

BINARY ARITHMETIC
Subtract Binary

Mnemonic Op Code = SB
Octal Op Code = 045
PURPOSE : To subtract one binary number from another.

FORMAT : 0C 0Pl 0pP2 0P3

045 AR/I AR/1 AR/1

OPERATION: The OP2 item is subtracted from the OPl item and the difference is
stored in the OP3 item.

Condition Designators:

Arithmetic overflow is set when the OP3 item is too small by one
byte and the sign bit is lost.

Arithmetic error is set when the subtract operation cannot be
completed for all bytes in the OP1 and OP2 item because the 0OP3
item is too small.

EXAMPLE: 0P1 00001101 | 01011101
oP2 01110111
0P3 00001100 | 11100110 aftef the subtraction

1-90

PURPOSE :

FORMAT:

OPERATION:

EXAMPLE:

BINARY ARITHMETIC
Add Literal Binary

Mnemonic Op Code =

Octal Op Code =

ALB
051

To add a binary number contained in the instruction itself (literal)

to a binary number in core storage.

0C

0P1

opP2

0P3

051

AR/1

AR/1

L

The OP3 binary number is added to the OP1 item and the sum stored in
the O0P2 item.

Condition Designators:

0P1
0P2
0P3

Arithmetic overflow is set when the OP2 item is too small by one

byte and the sign bit is lost.

Arithmetic error is set when the add operation cannot be completed

for all bytes in OP1l item because the OP2 item is too small.

00000001 | 11001110
01001101
00000010 | 00011011

after the addition

PURPOSE :

FORMAT:

OPERATION:

EXAMPLE :

BINARY ARITHMETIC
Subtract Literal Binary

Mnemonic Op Code
Octal Op Code

SLB
055

To subtract a binary number contained in the instruction itself

(literal) from a binary number in core storage.

0cC 0P1

0p2

0P3

055 AR/1

AR/I

L

The OP3 binary number is subtracted from the OP1 item and the dif-

ference stored in the

Condition Designators:

OP2 item.

Arithmetic overflow is set when the 0P2 is too small by one byte

and the sign is 1

ost.

Arithmetic error is set when the subtract operation cannot be
completed for all bytes in the OP1 item because the OP2 item is

too small.
OP1 00000001 11101110
opP2 00110110
0P3 00000001 10111000

1-92

~after the subtraction

DECIMAL ARITHMETIC

During decimal arithmetic operations, one of two error indicators may be
illuminated on the operator panel and the corresponding condition designator set:

o Arithmetic overflow - when the receiving item is 1 byte too small and the
carry is lost (condition designator bit 4).

e Arithmetic error - when the receiving item is 1 or more bytes too small
for the operation (condition designator bit 5).

Whenever either of these conditions occurs, the arithmetic operation is
immediately terminated, and the results in the receiving item may not be represented
in "absolute values" but in "ten's complement" notation. Normally, the sign of the
number is corrected and the decimal digits changed to their absolute value after
the add operation. A ten's complement number is obtéined by:

e subtracting the absolute value
from
e 10 raised to a power equal to the number of digits in the absolute value.

For example, the ten's complement for 456 is 103 = 1000, and then

1000 - 456 = 544.

The sign of a number is indicated by the sign zone of the least significant
digit. ' |

The Decimal Arithmetic instructions include the following:

Add Decimal (1-94)

Subtract Decimal (1-95)

Add Literal Decimal (1-96)
Subtract Literal Decimal (1-97)

1-93

DECIMAL ARITHMETIC
Add Decimal

Mnemonic Op Code

Octal Op Code

1]
=

043
PURPOSE: To add two decimal numbers.

FORMAT : 0cC 0P1 0pP2 0P3

043 AR/1 AR/1 AR/1

OPERATION: The contents of the OP1 item are added to the contents of the OP2 item
and the sum is stored in the OP3 item. The numbers in the OP1 and 0OP2
items are represented in decimal form.

Condition Designators:

Arithmetic overflow is set when the OP3 item is too small by one
byte and the carry is lost. '

Arithmetic error is set when the add operation cannot be completed
for all bytes in the OP1 or OP2 item because the OP3 item is too

small.
EXAMPLE: OP1 7 1 +4
opP2 4 +3
0P3 - 0 7 5 | 47 after the addition

1-94

DECIMAL ARITHMETIC
Subtract Decimal

Mnemonic Op Code = S
Octal Op Code = 047
PURPOSE: To subtract one decimal number from another.
FORMAT : 0C 0P1 oP2 0P3

047 AR/1 AR/1 AR/1

OPERATION: The contents of the OP2 item are subtractedrfrom the OP1 item and the
difference is stored in the OP3 item. The numbers in the OP1 and OP2
items are represented in decimal form.

Condition Designators:
Arithmetic overflow is set when the OP3 item is too small by one
byte and the carry is lost.
Arithmetic efror is set when the subtract operation cannot be
completed for all bytes in the OP1 and OP2 item because the 0OP3
item is too small.

EXAMPLE : OP1 6 -3
opP2 8 +3
0P3 0 1 4 -6 after the subtraction

1-95

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE:

DECIMAL ARITHMETIC
Add Literal Decimal
Mnemonic Op Code = AL

Octal Op Code = 053

To add a decimal number contained in the instruction itself (literal)
to a decimal number in core storage.

0c 0P1 0P2 0P3

053 | AR/T | AR/I L

The contents of the OP3 literal are added to the contents of the OP1
item, and the sum is stored in the 0P2 item. The OP1l item and OP3
literal are decimal numbers.

Condition Designators:

Arithmetic overflow is set when the OP2 item is too small by one
byte and the carry is lost.

Arithmetic error is set when the add operation cannot be comp]eted
for all bytes of the OP1 item because the OP2 item is too small.

0P1 4 +3
0P3
0op2 0 4 +8 after the addition

1-96

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

0P1 4 +6

DECIMAL ARITHMETIC
Subtract Literal Decimal
Mnemonic Op Code = SL

Octal Op Code = 057

To subtract a decimal number contained in the instruction itself
(1iteral) from a decimal number in core storag.e

0c 0Pl opP2 0P3

057 | AR/I | AR/I | L

The contents of the OP3 Tliteral are subtracted from the contents of

the OP1 item, and the difference is stored in the QP2 item. The OP1

item and OP3 literal are decimal numbers.

Conditional Désignators:

Arithmetic overflow is set when the OP2 item is too small by one

byte and the carry is lost.

Arithmetic error is set when the subtract operation cannot be
completed for all bytes in the OP1 item since the OP3 item is
too small. '

0P3 ' [Eé::

opP2 0 4 +2 after the subtraction

1-97

SEQUENTIAL EDITING

EDIT IN TRANSMIT

The Sequential Editing instructions can edit large volumes of data as they are
transferred from peripheral to peripheral and when the units of data:
e Consist of more than 256 characters (the maximum record size),
e Cannot be assigned a predetermined number of charécters,
e Consist of sub units of data that must be handled sequentially,
or |
® Are reduced in size by reﬁoving special characters during editing.
The Sequential Editing instructions consist of three groups, which:

0 Compréss data into smaller groups after eliminating nulls and specified
characters, ‘

® Append portions of data to the build-up of a larger block, and

® Extract portions from large data blocks.

COMPRESS

The Compress instructions sequentially copy all of the contents of one record
item into another, while excluding null characters and the character specified in
the literal operand during the copying operation. In addition, they either left-
or right-align the copied characters into the receiving item and, fill in the
remaining item locations with the character specified in the second literal operand.

APPEND

The Append instructions sequentially copy record items or all of a record into
a buffer, and two of them provide for excluding nulls and a specified character
during the copying operation. These instructions are very useful for the construc-
tion or build-up of large blocks of data from smaller, well-structured items, such
as when writing onto magnetic tape.

EXTRACT

The Extract instructions sequentially copy part or all of a buffer area into
a record item, with the fill-in of a specified character in one of the instructions.
These instructions are primarily used for extracting record-size portions from the
input buffer containing a large data block, such as received from magnetic tape input.
1-93

The Sequential Editing instructions include the following:

e Compress Item, Left-Align, Fill (1-100)
Compress Item, Right-Align, Fill (1-101)
Append, Right Eliminate (1-102)

Append, Advance (1-103)

Append, Left Eliminate (1-105)

Extract Variable Length Item, Fill (1-107)
Extract Previous Item (1-111)

e Extract Item (1-112)

e Extract Item, Advance (1-114)

L]

®*® e & o

1-99

PURPOSE :

FORMAT :

OPERATION:

EXAMPLE :

SEQUENTIAL EDITING
Compress Item, Left-Align, Fill
Mnemonic Op Code = CP

Octal Op Code = 014

To eliminate the null and a specified character during the copying of
one item into another, with left-alignment and character fill.

0c 0P1 op2 oP3 OP4

014 AR/1 AR/I Li Lf

A copy of the contents of the OP1 item is moved left-aligned into the
0P2 item. The null characters and characters which match the 0OP3
literal character are not transferred. Any remaining locations of OP2
are filled with the OP4 literal character. The operation terminates
when either all of OP1 is transferred or OP2 becomes full.

No. 1
0P1 $XYZn$ES
0P2 7772171
0P3 5]

oP4 [*]

0P2 XYZE***
after

No. 2

0Pl $XYZn$ES
0pP2 77

oP3 [5]

0p4 [+]

0P2 XY

after

1-100

PURPOSE :

FORMAT:

OPERATION:

SEQUENTIAL EDITING
Compress Item, Right-Align, Fill
Mnemonic Op Code = CPR

Octal Op Code = 015

To eliminate the null and a specified character during the copying
of one item into another, with right-alignment and character fill.

ocC 0pP1 0pP2 0P3 oP4

015 AR/1 AR/I Li Lf

A copy of the contents of the OP1l item is moved right-aligned, into
the OP2 item. The null characters and characters which match the OP3
literal character are not transferred. Any remaining locations of 0OP2
are filled with the OP4 Titeral character. The operation terminates
when either all of OP1 is transferred or OP2 becomes full.

EXAMPLE :

No. 1
OP1 $XYZnSES
0oP2 " 127171171

oP3 5]
0p4]

0P2 **kYXYZE
after

No. 2

0P1 $XYZn$ES
0pP2 Y4

0P3 5]
OP4 <]

opP2 ZE)
after

1-101

PURPOSE :

FORMAT:

OPERATION:

EXAMPLE :

SEQUENTIAL EDITING
Append, Right-Eliminate
Mnemonic Op Code = APR

Octal Op Code = 120

To select a record item and copy the data into a buffer.

ocC OP1 0P2 0P3

120 AR/1 B L

The trailing characters of the OPl item that match the literal are
eliminated. The remainder of OP1l is copied into the OP2 buffer, left-
aligned, starting at the current address pointer of the buffer. The
current address pointer for the buffer is incremented by the number of
characters transferred. -

Condition Designators:

EQUAL is set when the end of the 0P2 buffer is reached concurrently
with the end of the OP1 item. The current address pointer is
advanced. The execution of another Append instruction will noz
set the EQUAL or the ABNORMAL EDIT designations.

ABNORMAL EDIT is set when there are more characters from 0Pl to
be transferred than the 0P2 buffer can hold. The current ad-
dress pointer is not advanced. OP2 contains the partial transfer.

OP1 ABC$$
0P2 QRST*****
Pb
oP3 5]
oP2 QRSTABC**
after '
A
Pa Normal operations: wno designators are set

1-102

SEQUENTIAL EDITING
Append, Advance

APA
121

Mnemonic Op Code
Octal Oo Code

PURPOSE :. To copy the data from a record item into a buffer.

FORMAT: - ' oc 0P1 opP2

121 AR/1 B

OPERATION: A copy of the OP1 item is moved into the OP2 buffer. The current ad-
dress pointer for the buffer is incremented by the number of characters
transferred.

Condition Designa®ors:

EQUAL is set when the end of the OP2 buffer has been reached con-
currently with the end of the OP1 item. The current address
pointer is advanced. The execution of another Append instruction
will not set the EQUAL or the ABNORMAL EDIT designations.

ABNORMAL EDIT is set when there are more characters from 0Pl to
be transferred than the 0P2 buffer can hold. The current address
pointer is not advanced. OP2 contains the partial transfer.

EXAMPLES: No. 1

0P1 ABC
0oP2 okkk ke
Py
P2 ABC****
after t-
Pa Normal operation: no designators are set
No. 2
0P1 12345678
0P2 ABC*******‘*
L,
0pP2 ABC12345678 End of buffer operation: EQUAL is set. Pa
- after A points to the location after that of the
P "8" character.

a
- 1-103

No. 3

0P1
0P2

0opP2
after

GHI

ABCDEF**

L

ABCDEFGH

L

Abnormal operation: ABMORMAL EDIT is
set. The entire OP1 item cannot be
moved into the remaining OP2 buffer
space.

SEQUENTIAL EDITING
Append, Left-Eliminate
Mnemonic Op Code = APE

Octal Op Code = 122

]

To select a record item and copy the data into a buffer.

PURPOSE :
FORMAT : 0oC 0P1 oP2 0P3
122 AR/I B L
OPERATION: The leading characters of the OP1 item that match the literal are
eliminated. The remainder of 0Pl is copied left-aligned into the OP2
buffer. The current address pointer for the buffer is incremented by
the number of characters transferred.
Condition Designators:
EQUAL is set when the end of the OP2 buffer is reached concurrently
with the end of the OP1 item. The current address pointer is
advanced. The execution of another Append instruction will not
set the EQUAL or the ABNORMAL EDIT designations.
ABHORMAL EDIT is set when there are more characters from OP1 to
be transferred than the OP2 buffer can hold. The current address
pointer is not advanced. O0P2 contains the partial transfer.
EXAMPLES: No. 1
0P1 $$$ABSC
0P2 QRST*******
Ph
0P3 $
oP2 QRSTAB$C***
after]
Lo

1-105

No. 2

0P1
op2

0P3

opP2
after

$$588S

ABCDEF

L

Py

$

ABCDEF

Lr,

Both are normal operations:

no designators

. are set.

1-106

PURPOSE :

FORMAT:

OPERATION:

SEQUENTIAL EDITING
Extract Variable Length Item, Fill
Mnemonic Op Code = EXV
Octal Op Code = 130

To select a portion of a buffer, as indicated by a sentinel character,
and copy the data into a record item with a character fill.

ocC oP1 0pP2 OP3 0P4

130 B AR/1 LS Lf

A copy from the OP1 buffer area is moved left-aligned into the OP2

item starting at the location in the current address pointer of the
buffer and continuing up to the location before the "sentinel" literal
(Ls)' The remaining locations of OP2 are filled with the literal (Lf).
The current address pointer of the buffer is incremented to the address
following the sentinel literal. The sentinel is not transferred. If
the sentinel is the last byte in the buffer, the current address
pointer is advanced only to the address of the sentinel itself.

- Condition Designators:

EQUAL is set when the end of the OP1 buffer is reached by the time
the OP2 item is filled. The current address pointer of the buffer
is not advanced. The remdining positions of the OP2 item are
filled-in with the 0P4 literal.

ABNORMAL EDIT 1is set when no sentinel is encountered in the 0Pl

buffer by the time the O0P2 item is filled. The current address

pointer of the buffer is not advanced. O0OP2 contains the charac-
ters already transferred.

NOTE .

When EQUAL alone is set, the current
 address pointer is at the last byte of
“the buffer, which is a sentinel. O0P2
will contain only the fill character.
Further Extract-Variable instructions

will have the same result.

1-107

EXAMPLES:

When ABNORMAL EDIT alone is set,

OP2 is too short to receive all
characters in OP1 before the sentinel
character. OP2 contains the partial
transfer.

When both the EQUAL and the
ABNORMAL EDIT designators are

set, OP1 did not have any re-
maining sentinel characters in 1ti

No. 1

0Pl ABC,1234,, XY
Pb Pa
OP2 *kkkkkk
oP3 R
0P4 [::J
0P2 ABCnnnn Normal operation: no designators
after are set. The OPl pointer is mqved

one location past the comma.

For the follwoing examples, OP3 = |, | and OP4 = | n

No. 2
0P1 ABC,1234,,XY
*- P
Pb = Pa
0P2 *kk
0P2 123 Abnormal operation: ABNORMAL EDIT
after is set. The OP1 pointer is not

moved. The end of QP2 is reached
prior to finding a comma in OPl.

1-108

No. 3

0Pl

op2

0oP2
after

OP1

oP2

op2
after

No. 5
0P1

oP2

op2
after

ABC,1234,,XY

L Lo
b a

*kkk

1234

ABC,1234,,XY

L,

*%

ABC,1234,,XY,
L,

* %k

XYn

a

1-1na

Normal operation: no designators
are set. The OP1 pointer is moved
one location past the first comma
encountered.

Normal operation: no designators
are set. WNo characters are trans-
ferred from OP1 to OP2, since the
comma is found immediately. The
OP1 pointer is moved one position
past the comma.

Normal operation: no designators
are set. The pointer is at the
comma, since it is the last charac-
ter in OP1.

No. 6

0P1

opP2

8] 24
after

No. 7

0P1

opP2

opP2
after

ABC,1234,,XY,

*kk

nnn

ABC,1234,XY

1

Pb =

Jedkk

XYnn

pa
End of buffer operation: EQUAL is
set. This implies that all of the
characters have been copied from
OP1. The pointer is not moved.

Pa

Abnormal operation: EQUAL and
ABNORMAL EDIT are set. No comma
was found at the end of OP1.

1-110

PURPOSE :

FORMAT:

OPERATION:

~ EXAMPLE:

SEQUENTIAL EDITING
Extract Previous Item
Mnemonic Op Code = EXP

Octal Op Code = 131

To select a portion of a buffer and copy the data into a record item.

0c 0P1 opP2

131 B AR/1

A copy from the OP1 buffer area is moved right-aligned intc the QP2
item and starting from the current address pointer-1 and decrementing
it to the 1ast character transferred. The oneration is terminated
when 0P2 is full. No designators ares set.

0P1 ABCsDEs
i
Pa— tpb
OPZ * %k
opP2 sDE
after

1-111

PURPOSE :

FORMAT:

OPERATION:

EXAMPLES:

SEQUENTIAL EDITING
Extract Item
Mnemonic Op Code = EX

Octal Op Code = 132

To copy the characters from a buffer area into a record item, without
incrementing the current address pointer. A

0C 0P1 0pP2

132 B AR/1

A copy of the OP1 buffer, from the Tocation {n the current address
pointer, is moved left-aligned into the OP2 item. The current address
pointer is not changed: Pa = Pb‘ The operation is terminated when
the end of OP1 or OP2 is reached.

Condition Designators:

EQUAL 1is set when the end of the OP1 buffer is reached concurrently
with the end of the 0OP2 item.

ABNORMAL EDIT is set when the end of the OP1 buffer is reached
prior to the end of the OP2 item.

No. 1
0P1 ABCDEF
Pb = Pa
0P2 Fokk
0P2 ABC Normal operation: no designators
after are set.
No. 2
0P1 ABCDEF
k
P ! p
b = "a
0p2 * k%
0P2 DEF ‘ EQUAL is set.
after

1-112

No. 3

0P1 ABCDE
Pb = Pa
0P2 ******
0P2 ABCDE* ABNORMAL EDIT is set. There are
after not enough characters in OP1 to

fill op2.

1-113

PURPOSE:

FORMAT:

OPERATION:

EXAMPLES:

SENUENTIAL EDITING
Extract Item, Advance
Mnemonic Op Code = EXA
Octal Op Code = 133

To copy the characters from a buffer area'infd_a"record item.

0C 0P1 0P2

133 B AR/1

A copy of the OP1 buffer, from the location in the current address
pointer, is moved leff-aligned into the OP2 item. The current address
pointer of the buffer is incremented to the location following the
last character transferred. The operation is terminated when either
the end of the OP1 buffer is reached or the OP2 item is full.

Condition Designators:

EQUAL is set when the end of the OP1 buffer is reached concurrently
with the end of the OP2 item. The current address pointer is
advanced. The execution of another Extract Item, Advance
instruction will not set the EQUAL or ABNORMAL EDIT designators.

ABNORMAL EDIT 1is set when the end of the OP1 buffer is reached
prior to the end of the OP2 item.

No. 1
OP1 ABCsDEs
LN
Pb Pa
0P2 * k%
0P2 ABC
after

1-114

No. 2

opP

0pP2

oP2
after

No. 3

OP1

0pP2

opP2
after

ABCsDEs

3

b

*kkk

sDEs

REGABC

%k kk

ABC*

1-115

End of buffer operation: EQUAL is
set. The pointer is adjusted to
one more than the last location in
OP1.

Abnormal operation: ABNORMAL EDIT
is set. There are not enough
characters in OP1 to fill OP2.

INTERRUPT

Interrupt-related instructions are used to interpret, control and process
events (interrupts) that divert tr2 processor from main program execution. The
Interrupt instructions include the following:

GOTO on Service Request (1-117)
GOTO on Channel Interrupt (1-118)
Swap States (1-119)

Set Interrupt Lockout (1-120)
Clear Interrupt Lockout (1-121)
Interrupt Mask (1-122)

Interrupt Branch GOTO (1-124)

® € 0 © ©o o o

Refer to Appendix A, Interrupt Processing, for a detailed description for
using the interrupt set of instructions.

1-116

PURPOSE :

FORMAT:

OPERATION:

EXAMPLE :

INTERRUPT
GOTO On Service Request
Mnemonic Op Code = GSI
Octal Op Code = *113

To branch to a subroutine if a service request for a specified channel
has been raised prior to this instruction.

oc OP1 Branch to

113 AR/1 address

OP1 specifies the channel that is checked for a service request (see
page A-6). If a service request is stored in its service request
storage and the channel specified by 0Pl matches the réquested one,
the execution of the GSI instruction forces a branch to the address
specified in OP2 and OP3. If a request is not present, the following
instruction is executed.

0C 0OP1 Branch to

113 234 002 | 300 P-Bias = 010-000

0P1 00000110 Item 34 of Active Record 2

Location 010-070 contains the above instruction and it is being
executed. If a service request is stored for channel 6, execution
is resumed at location 012-300; otherwise, it continues with 010-074.

1-117

INTERRUPT

GOTO On Channel Interrupt
(Monitor Interrupt)

Mnemonic Op Code = GCI
Octal Op Code = *117

PURPOSE : To branch to a specified address if a channel interrupt for a
specified channel has been monitored.

FORMAT: oc OP1 Branch to

117 AR/1 address

OPERATION: If a‘channel interrupt has been monitored prior to this instruction on
a channel specified in OP1l, the interrupt is cleared and program
~ execution resumes at the specified address.

Otherwise, the next program instruction is executed. The channel
interrupt is set whenever the channel goes inactive, such as when a
buffer is terminated.

EXAMPLE: oc 0P1 Branch to
117 104 006 | 230 P-Bias = 010-000
0OP1 00000100 Item 4 of Active Record 1

Location 011-224 contains the above instruction and it is being
executed. If a monitor interrupt is stored for channel 4, execution
is resumed at location 016-230 and the monitor interrupt is cleared;
otherwise, execution continues with 011-230.

INTERRUPT

Swap States
Mnemonic Op Code
Octal Op Code

SWS
*154

"

PURPOSE : To chahge the processor from worker state to executive state or from
executive state to worker state.

FORMAT: oc

, o 154

i
}

OPERATION: The 502 Processor has two general states which are reflected in two
different sets of Active Records. The worker state uses core memory
locations 000-000 through 000-017 and the executive state uses 000-040
through 000-057 to store the Active Records. '

In both states, the Program Control Block is the image of the state's
hardware set of Active Records. A Swap States instruction forces the
image of the alternate-state core Active Reccrds into the hardware
Active Records, thereby eliminating the need to>have two different
sets of hardware Active Records.

A Swap States instruction is executed immediately if the prasent state
is the worker state. If the present state is the exscutive state, tha
SWS instruction i- not executed until the instruction foilowing the

SWS instruction is performed, so that informaticn can be retrieved from
the executive sta'.: (such as an interrupt return address).

The hardware keeps track of its current state automatically. The
software keeps track by its design. Any power-up, restart, or P-start
forces the processor to the worker state.

1-119

PURPOSE :

FORMAT:

OPERATION:

INTERRUPT
Set Interrupt Lockout
Mnemonic Op Code = SIL
Octal Op Code = *155

To lockout all interrupts.

0C

155

This instruction causes all interrupts to be locked out. This condition
may only be cleared by a Clear Interrupt Lockout instruction or an
Interrupt Branch GOTO instruction. The stiorage of incoming interrupts
of any type is, however, not affected by this instruction.

1-120

INTERRUPT
Clear Interrupt Lockout
Mnemonic Op Code = CIL

Octal Op Code = *157

PURPOSE : To enable interrupts.

FORMAT: 0cC

157

OPERATION: Thé interrupt lockout is cleared in the hardware. However, all in-
terrupts locked out prior to this instruction by an Interrupt Mask
instruction remain locked out. |

-1-121

PURPOSE :

FORMAT:

OPERATION:

INTERRUPT
Interrupt Mask
Mnemonic Op Code = IM
Octal Op Code = *174

To selectively enable or disable interrupts by a specified mask.

0cC 0P1

174 AR/1

The OP1 item defines a three-byte item mask; Monitor, Service and

Special interrupts. Each byte is bit encoded. A "zero" bit enables

the processor to honor the interrupt. A "one" bit causes the pro-
cessor to ignore the interrupt. The normal instruction sequence to
change the mask is:

SIL
M desired-mask

The byte and associated bit assignments are as follows:

BIT MONITOR SERVICE SPECIAL
POSITION BYTE 1 BYTE 2 BYTE 3
(MSBY) (LSBY)

P 1/0 Channel § | I/0 Channel P | MNon-Operational Sub-Op Code
1 I/0 Channel 1 | I/0 Channel 1 | Not assigned

2 I/0 Channel 2 | I/0 Channel 2 | Delta Clock

3 1/0 Channel 3 | I/0 Channel 3 | Not assigned

4 I/0 Channel 4 | I/0 Channel 4 | Not assigned

5 I/0 Channel 5 | I/0 Channel 5 | Machine Interrupt
6 I/0 Channel 6 | 1I/0 Channel 6 | BDMA Channel 6

7 I/0 Channel 7 | I/0 Channel 7 | BDMA Channel 7

1-122

EXAMPLE :

0P1

0cC oprl

174 201

7654321076543

21076543210

11000111Jj1 00101101 0011010
307 226 132
MONITOR INTERRUPTS Enabled Disabled
Channel 3 Channel 0
Channel 4 Channel 1
Channel 5 Channel 2
Channel 6
Channel 7
SERVICE INTERRUPTS Enabled Disabled
Channel 9 Channel 1
Channel 3 Channel 2
Channel 5 Channel 4
Channel 6 Channel 7
SPECIAL INTERRUPTS Enabled

'Disabled

Non-Operational

Sub-0p Code
Delta Clock
Machine Interrupt

BDMA Channel 6

1-123

BDMA Channel 7

Binary
Octal

Item 1 of
Active
Record 2

PURPOSE :

FORMAT:

OPERATION:

EXAMPLE :

- i - -

TrTeryrme Qvoe-a L
FRARS Ul z

GIR
*177

Mnemonic Op Code
Octal Op Code

To return from an interrupt subroutine to the routine prior to the
branch, or back into a required routine, while also restoring the P-
address needed for program execution. This P-address is read from a
push-down stack defined by OP1. The GIR instruction is normally pre-
ceded by a Swap States instruction. This instruction is similar to

the GRT instruction except interrupts are enabled with this instruction.
Only those interrupts which are allowed by the interrupt mask are enabled

0C 0P1

177 B

OP1 defines a push-down stack that contains the return address. Push-
down buffer locations are two bytes long and contain the desired return
address. It is located at the current buffer address minus 1 and minus 2

oc 0P1
177 001 P-Bias = 012-000
P-address before = 013-077
P-address after = 012-265
SDAT Entry
0Pl 001 010-002 010-377 PUSH-DOWN BUFFER
before DESCRIPTOR
PUSH-DOWN
BUFFER
Pa 010-000 012-265 |
Pb 010-002 XX X= XXX
010-376 XXX=XXX
SDAT Entry
0P1 001 010-000 010-377 PUSH-DOWN BUFFER
after . DESCRIPTOR

1-124

EXTERNAL EXECUTE INSTRUCTION SET

The oprogrammable functiions of tne 502B Processor are expanded by incorporating

additional hardware modules.

Multiply and Divide Deci

v e ®© e o

These functions are implemented by using the Exterha1 Execute instruction.

mal

Parity Error Determinatis:n

s
T

o Binary
Binary-to-Decimal and Decimal-to-%inary conversion .
Delta Clock (interruptine i.terval timer)

External Execute Instruction Error Detection

fodules avs available fer the following functions:

This instruction contains a sub-op code in addition to the normal operational code

(175). The format of the External Execute instruction is as follows:
0C SUB-0P 0P1 opP2 0P3 0P4
i |
145 XXX AR/ 1 AR/ 1 AR/ .E-j

The External Execute instructions include the following:

Page

Mnemonic | Operation Code (0C) | Sub-Op Code Instruction
145 004 Load Delta Clock 1-127
145 014 Store External Instruction Error 1-128
145 015 Store Channel Parity Error 1-131-
145 020 Multiply Binary 1-132
vie3 145 021 Multiply Literal Binary 1-133
DB 145 022 Divide Binary 1-134
DLB 145 023 Divide Literal Binary 1-135
MD 145 024 Multiply Decimal 1-136
MLD 145 025 Multiply Literal Decimal 1-137
DD 145 026 Divide Decimal 1-138
DLD 145 027 Divide Literal Decimal 1-139
BTD 145 030 Binary to Decimal 1-140
DTB 145 031 Decimal to Binary 1-141
SDR 145 034 Store Decimal Remainder 1-142
SBR 145 035 Store Binary Remainder 1-143

MULTIPLE/DIVIDE INSTRUCTIONS

The operation of multiply and divide instructions is criticai reqarding overe
sizes, since no indication is given if the storage item for the result is too smal..
The programmer must, therefore, make certain that the storage item has sufficient
length.

The following formulas may be used to determine the operand size:

For Multiply:

maximum number + maximum number - number of digits
of digits in OP1 of digits in OP2 in product

For Divide:
maximum number _ ragkimum number of 41 = number of diqits
of ‘digits in OP1 digits in 0P2 (after oot ent
eliminating leading q
zeros)

UNUSED OPERANDS

Unused operand must specify valid operands because the processor generates the
addresses for these operands, even though they are not used. A value of 000 is
always valid.

1-126

EXTERNAL EXECUTE
Load Delta Clock

Mnemonic Op Code = LC
Octal Op Code = *145
Octal Sub-Op Code = 004

PURPOSE: To load the Delta Clock with a time interval.

FORMAT: 0c SUB-0C OP1 0oP2 0P3
145 004 AR/I --- “--
OP1 = 2-byte item containing an initial time interval (in binary)
0P2 = Not used '
0P3 = Not used

OPERATION: When this instruction is executed, the 2-byte time interval (OP1 item)
is loaded into the Delta Clock. The loading of the clock initializes
the clock and the time interval is decremented by one every 100 micro-
seconds (+ 0.5%). ‘Vlhen the time interval has decremented to zero, a
class 3 interrupt occurs and the clock is deactivated. The Delta Clock
has a time range of 100 microseconds to 6.5536 seconds. The clock may
be deactivated at any time by loading it with a 2-byte binary zero; no
interrupt will occur.

1-127

EXTERNAL EXECUTE
Store External Instruction Error

Mnemonic Op Code = SEE
Octal Op Code = *145
Octal Sub-Op Code = 014

PURPQSE : To obtain and store the status and error data of Class 3 type interrupts.

FORMAT : 0C SUB-QP 0P1 0P2 0P3
145 014 --- -—- AR/1

OP1 = Not used

0P2 = Hot used
0OP3 = 14-byte storage item for interrupt status

OPERATION: When this instruction is executed, a 14-byte item containing class 3
type interrupt status and associated error data is stored in the OP3
item as shown below:

MSBY LSBY

0P3 Byte 1 Byte 2 |+ |Byte 14

0P3 Item Contents

1 (MSBY) Sub-0p Code of instruction

2 Interrupt Status byte

3 OP1 Lower Address Limits (bits 8-15)
4 OP1 Lower Address Limits (bits 0-7)
5 OP1 Upper Address Limits (bits 38-15)
6 OP1 Upper Address Limits (bits 0-7)
7 OP2 Lower Address Limits (bits 8-15)
8 0P2 Lower Address Limits (bits 0-7)
9 OP2 Upper Address Limits (bits 8-15)

10 OP2 Upper Address Limits (bits 0-7)
11 0OP3 Lower Address Limits (bits.38-15)
12 OP3 Lower Address Limits (bits 0-7)
13 OP3 Upper Address Limits (bits 8-15)
14 (LSBY) OP3 Upper Address Limits (bits 0-7)

1-128

Byte 2 (Interrupt Status Byte) specifies the type of class 3 interrupt
that has occurred. The class 3 type interrupts are described as
follows:

BYTE 2
Bit Position Contents

0 Non-operational Sub-Op Code

Not assigned

Delta Clock Interrupt

Not assigned

Not assigned

Machine Check Interrupt

Direct Memory Access Channel (DMA) 6 Interrupt
Direct Membry Access Channel (DMA) 7 Interrupt

~N Oy O W NN =

Non-operational Sub-0Op Code (20) - This bit is set under the following

two conditions:

1. The Sub-0Op Code in the instruction causing the interrupt was not.
in the processor's repertoire of instructions (an illegal instruc-
tion) and therefore cannot be executed, or

2. The required hardware modules are not in the processor to execute
the Sub-Op Code (unavailable instruction).

In either event, the Sub-Op code is contained in byte 1 and bytes 3
through 14 contain the absolute beginning and ending addresses for the
OP1, OP2 and OP3 items of the instruction that caused the interrupt.

The programmer, by software methods, can determine which of the above
two conditions caused the interrupt (contents of byte 1) and in turn
take appropriate action. If the instruction cannot be executed due to
lack of hardware modules, the nrogrammer may elect to include software
to perform the same operations as the External Instruction that could
not be executed. The recovery from this condition is simplified in

that the Sub-Op Code and the absolute address limits of the OPl, QP2

and OP3 items are defined for the instruction that could not be executed.

1-129

CAUTION

A unique condition exists when an Execute External
instruction containing four operands cannot be exe-
cuted. This condition causes the Program Pointer
(P) to be off by one byte which must be corrected
by adding one (+1) to the value of P. See Appendix
A, Interrupt Programming for a detailed description
of this condition (Class 3 - Special Interrupts).
Delta Clock (2%) - This bit is set when the Delta Clock counts down
“to zero (see the Load Delta Clock instruction).

Machine Check (25) - This bit is set when a memory, I/0 Selector
channel or BDMA channel parity error occurs.

BDMA Channel 6 (26) - This bit is set by the device attached to BDMA
channel 6 when it requires service from the processor.

BDMA Channel 7 (27) - This bit is set by the device attached to BDMA
channel 7 when it requires service from the processor.

NOTE

Byte 1 of OP3 contains the sub-op code of this
instruction (014), unless the interrupt type
was a Non-Operational Sub-Op Code (bit 20 set
in byte 2).

1-130

EXTERNAL EXECUTE
Store Channel Parity Error
Mnemonic Or Code = SCE
Octz1 Jpo Code = *145
Octal Suob-Cp Code = 015

]

PURPOSE : To obtain and store I/7 znd DMA channel parity error status.

FORMAT : 0C SuUB-0C 0P1 0pP2 0P3
145 015 --- --- AR/1
O0P1 = Not used
0P2 = Not used ‘
OP3 = 1-byte storage item for channel parity error status

OPERATION: When this instruction is executed, a 1-byte item containing 1/0 and
DMA channel parity error status is stored in the OP3 item. The con-
tents of the 1-byte item is bit encoded as follows:

Bit
Position Meaning

Specifies the I/0 channel on which
g the parity error occurred

Not assigned
| 1102
1112

BDMA channel 6 parity error

BDMA channel 7 parity error

NIy oy Wi = O

BDMA data or status parity erro

- O
1]

BDMA address parity error

1-131

PURPQSE:

FORMAT :

OPERATION:

0P3

EXTERNAL EXECUTE

Multiply Binary
Mnemonic Op Code = MB

Octal Op Code = *145
Octal Sub-Op Code = 020

To multiply a binary number by another.

0cC SUB-0C 0P1 oP2 0P3

145 020 AR/1 AR/1 AR/I
OP1 = MULTIPLICAND - 1- to 5-byte binary item
OP2 = MULTIPLIER - 1- to 5-byte binary item
= PRODUCT - 1- to 10-byte binary item

The contents of the OP1 item (multiplicand) are multiplied by the
contents of the OP2 item (multiplier) and the product is stored into
the OP3 item. The sign of the product is computed a1gebkaica11y and
extended to the MSB of the OP3 item. If the OP3 item is too small to
contain the product of OP1 and OP2, the result is indeterminate.

1-132

PURPOSE :

OPERATION:

EXTERNAL EXECUTE
Multiply Literal Binary
Mnemonic Op Code = MLB

Octal Cp Code = *145

Octal Sub-3p Code = 021

To multiply a binary aumber in core storage by a binary number con-
tained in the instruction itself.

ocC SUB-0C OP1 0p2 OP3 oP4

145 021 AR/1 --- AR/1 L
OP1 = MULTIPLICAND - 1- to 5-byte binary item
0P2 = Not used
OP3 = PRODUCT - 1- to 6-byte binary item
OP4 = MULTIPLIER - 1-byte binary literal

The contents of the OP1 item (multiplicand) are multiplied by the
contents of the OP4 item (multiplier) and the product is stored into-
the OP3 item. The sign of the product is computed algebraically and
extended to the MSB of the OP3 item. If the OP3 item is too small to
contain the product of OP1 and OP4, the result is indeterminate.

1-133

PURPOSE:

FORMAT:

OPERATION:

EXECUTE EXECUTE
Divide Binary

Mnemonic Op Code = DB
Octal Op Code = *145
Octal Sub-Op Code = 022

To divide a binary number by another.

0P1
0p2

0P3

The
the
The
MSB

oC SuUB-0C 0P1 0pP2 0P3

145 022 AR/1 AR/1 AR/1

DIVIDEND - 1- to 10-byte (not counting ieading zeros) binary item
DIVISOR - 1- to 5-byte binary item

QUOTIENT - 1- to 5-byte binary item

REMAINDER - see Store Binary Remainder (SBR) instruction.

contents of the OP1 item (dividend) are divided by the contents of
0P2 item (divisor) and the quotient is stored into the OP3 item.
sign of the quotient is computed algebraically and extended to the
of the OP3 item. If the OP3 item is too small to contain the

quotient of OP1 divided by OP2, the result is indeterminate.

The
the

"remainder" of a divide binary operation may be obtained by using
Store Binary Remainder (SBR) instruction.

1-134

PURPOSE :

FORMAT:

OPERATION:

EXTERNAL EXECUTE
Divide Literal Binary

Mnemonic Op Code = DLB
Octal Op Code = *145
Octal Sub-Op Code = 023

To divide a binary number in core storage by a binary number contained
in the instruction itself.

0cC SuB-0P 0P1 0P2 0P3 0P4

145 023 AR/1 --- AR/1 L

GP1 = DIVIDENT - 1- to 6-byte (not counting leading zeros) binary item
0P2 = Not used
0P3 = QUOTIENT - 1- to 5-byte binary item
OP4 = DIVISOR - 1- binary literal
REMAINDER - see Store Binary Remainder (SBR) instruction.

The contents of the OP1 item (dividend) are divided by the contents of
the OP4 item (divisor) and the gquotient is stored into the OP3 item.
The sign of the quotient is computed algebraically and extended to the
MSB of the OP3 item. If the OP3 item is too small to contain the
quotient of OPl divided by OP4, the result is indeterminate.

The "remainder" of a divide literal binary operation may be obtained by
using the Store Binary Remainder (SBR) instruction.

1-135

PURPOSE :

FORMAT:

OPERATION:

EXTERNAL EXECUTE
Multiply Decimal
Mnemonic Op Code = MD
Octal Op Code = *145
Octal Sub-0Op Code = 024

To multiply a decimal number by another.

0C SUB-0P 0P1 oP2 0P3

145 024 AR/1 AR/1 AR/1
OP1 = MULTIPLICAND - 1- to 12-byte unpacked decimal item
OP2 = MULTIPLIER - 1- to 12-byte unpacked decimal item
OP3 = PRODUCT - 1- to 24-byte unpacked decimal item

The contents of the OP1 item (multiplicand) are multiplied by the con-
tents of the OP2 item (multiplier) and the product is stored into the
OP3 item. The sign of the product is computed algebraically and is

set into the sign zone of the LSBY of OP3. If the OP3 item is too
small to contain the product of OP1l and OP2, the result is indeterminate.

1-136

PURPOSE :

FORMAT:

OPERATION:

EXTERMAL EXECUTE
Multiply Literal Decimal

Mnemonic Op Code = MLD
Octal Op Code = *145
= 025

Octal Sub-0Op Code

To mu]fip]y a decimal number in core storage by a decimal number con-
tained in the instruction itself. ‘

0C SUB-0P OP1 oP2 0P3 0oP4

145 025 AR/1 --- AR/I L
OP1 = MULTIPLICAND - 1- to 12-byte unpacked decimal item
0P2 = Not used
OP3 = PRODUCT - 1- to 13-byte unpacked decimal item
0P4 = MULTIPLIER - 1-byte unpacked decimal literal

The contents of the OP1 item (multiplicand) are multiplied by the con-
tents of the OP4 item (multiplier) and the product is stored into the
OP3 item. The sign of the product is computed algebraically and is set
into the sign zone of the LSBY of OP3. If the OP3 item is too small to
contain the product of OP1 and OP4, the result is indeterminate.

1-137

PURPOSE :

FORMAT:

OPERATION:

EXTERMAL EXECUTE
Divide Decimal

Mnemonic Op Code = DD
Octal Op Code = *145
Octal Sub-Op Code = 026

‘To divide a decimal number by another.

0C SUB-OC OP1 OP2 _ OP3
145 026 AR/I AR/1 AR/ 1
OP1 = DIVIDEND - 1- to 24-byte (not counting leading zeros) unpacked
decimal item)
0P2 = DIVISOR - 1- to 12-byte unpacked decimal item
OP3 = QUOTIENT - 1- to 12-byte unpacked decimal item

REMAINDER - see Store Decimal Remainder (SDR) instruction.

The contents of the OP1 item (dividend) are divided by the contents of
the OP2 item (divisor) and the quotient is stored into the OP3 item.
-The sign of the quotient is computed algebraically and is set into the
sign zone of the LSBY of OP3. If the OP3 item is too small to contain

the quotient of OP1 divided by OP2, the result is indeterminate.

The "remainder" of a divide decimal operation may be obtained by using

the Store Decimal Remainder (SDR) instruction.

1-138

PURPOSE :

FORMAT :

OPERATION:

EXTERMAL EXECUTE
Divide Literal Decimal

Mnemonic Op Code = DLD
Octal Op Code = *145
Octal Sub-0Op Code = 027

To divide a decimal number in core storage by a decimal number con-
tained in the instruction itself.

0C SUB-0C OP1 op2 0P3 oP4

145 027 AR/I --- AR/1 L

OP1 = DIVIDEND - 1- to 13-byte (not counting leading zeros) unpacked
decimal item

0P2 = Not used

0P3 = QUOTIENT - 1- to 12-byte unpacked decimal item

OP4 = DIVISOR - 1-byte unpacked decimal item

REMAINDER - see Store Decimal Remainder (SDR) instruction.

The contents of the OP1 item (dividend) are divided by the contents of
the OP4 item (divisor) and the quotient is stored in the OP3 item.

The sign of the quotient is computed algebraically and is set into the
sign zone of the LSBY of OP3. If the OP3 item is too small to contain
the quotient of OP1 divided by OP4, the result is indeterminate.

The "remainder" of a divide literal decimal operation mav be obtained
by using the Store Decimal Remainder (SDR) instruction.

1-139

PURPOSE :

FORMAT :

OPERATION:

EXTERNAL EXECUTE
Binary to Decimal

Mnemonic Op Code = BTD
Octal Op Code = *145
= 030

Octal Sub-0Op Code

To convert a binary number to an unpacked decimal number.

0cC SUB-0C 0P1 oP2 0P3

145 030 AR/1 --- AR/1
OP1 = 1- to 10-byte binary item
0P2 = Not used
0P3 = 1- to 24-byte unpacked decimal item

The contents of the OP1 item are converted to an unpacked decimal
number and stored in the OP3 item. The sign of the OPI item is set
in the sign zone of the LSBY of OP3. If the OP3 item is too small
to contain the converted number, the result is indeterminate.

1-140

EXTERMNAL EXECUTE
Decimal to Binary

Mnemonic Op Code = DTB
Octal Oo Code = *145
Octal Sub-Op Code = 031
PURPOSE: To convert an unpacked decimal number to a binary number.
FORMAT : 0c SUB-0C 0P1 0pP2 0P3
145 031 AR/1 --- AR/I
OP1 = 1- to 24-byte unpacked decimal item
0P2 = Not used
OP3 = 1- to 10-byte binary item

OPERATION: The contents of the OP1 item are converted to a binary number and
stored in the OP3 item. The sign of the OP1 item is extended to the
MSB of the OP3 item. If the OP3 item is too small to contain the
converted number, the result is indeterminate.

1-141

PURPOSE :

FORMAT:

OPERATION:

EXTERNAL EXECUTE
Store Decimal Remainder

Mnemonic Op Code = SDR
Octal Op Code = *145
Octal Sub-0Op Code =

034

To obtain and store the remainder resulting from a decimal divide
operation.

0cC SUB-0C 0Pl oP2 0P3

145 034 -— 1 --- AR/1
OP1 = Not used
0P2 = Not used
OP3 = 1- to 12-byte unpacked decimal item

When this instruction is executed, the remainder, resuTting from a
decimal divide operation, is stored in the OP3 item. This instruction
should immediately follow the execution of the Divide Decimal instruc-
tion to insure validity of the remainder. The sign of the remainder
is the same as the dividend (see The Divide Decimal instruction) and
is set in the LSBY of the remainder. If the OP3 item is too small to
contain the remainder, the result is indeterminate.

1-142

PURPOSE :

FORMAT :

OPERATION:

EXTERNAL EXECUTE
Store Binary Remainder

Mnemonic Op Code = SBR
Octal Op Code = *145
Octal Sub-0p Code = 035

To obtain and store the remainder resulting from a binarv divide

operation.
oC SUB-0C 0P1 op2 0P3
145 | 035 ——- --- AR/ T
0P1 = Not used
0P2 = Not used
0P3 = 1- to 5-byte binary item

When this instruction is executed, the remainder, resulting from a
binary divide operation, is stored in the 0OP3 item. This instruction
should immediately follow the execution of the Binary Divide instruc-
tion to insure validity of the remainder. The sign of the remainder
is the same as the dividend (see the Binary Divide instruction) and
is extended to the MSB of the remainder. If the OP3 item is too small
to contain the remainder, the result is indeterminate.

1-143

INSTRUCTION EXPANSION MODULES
GENERAL

The programmable functions of the SYSTEM 2400 Processor are expanded by in-
corporating additional hardware modules. These modules are integrated within the
main chassis of the Processor and interface with the logic via the Direct Memory
Access (DMA) channels.

Two hardware modules are available with the Processor and are referred to as
Instruction Expansion Module A and B (see Figure 1-1).

SYSTEM :> Instruction

2400 : Expansion
Processor Module A
(Main Logic) <: Logic

:> Instruction
Expansion
Module B

<: Logic

Figure 1-1. SYSTEM 2400 Processor Instruction Expansion Modules

Instruction Expansion Module A (SNAP P Adapter) provides the programmer with
a set of instructions to abort the main program, jump to a subroutine, and return
to the main program at the point of exit.

Instruction Expansion Module B (Utility Adapter) provides the programmer with
a set of instructions to perform the following logical operations:

Exclusive OR/LRC (Longitudinal Redundancy Check)
Logical AND, and

Inclusive OR.

16 Bit CRC

12 Bit CRC

Load Utility Adapter

1-144

CHANNEL ASSIGNMENTS

Instruction Expansion Modules A and B are connected to Direct Memory Access
(DMA) channels 2 and 1, respectively, as shown in Fiqure 1-2.

SEEBEM oM Instruction
Processor < j:> Expansion
(Main Logic) Channel 2 Module A
DA Instruction
<: V:) Expansion
Channel 1 Module B

Figure 1-2. Instruction Expansion Modules - Channel Configuration

INFORMATION TRANSFER

The transfer of data and commands between the Processor and connected
Instruction Expansion Modules is accomplished using the Special In and Special Out
instructions. These instructions are used to transfer information over the DMA

Channels (see Figure 1-3).

Special Out

SYSTEM
2400 COMMAND/DATA Instruction
Processor Expansion

Module

Special In

RESULTS

Figure 1-3. Information Transfer

The Special Out instruction transfers the command (functions to be performed)
and the data to be operated upon by the connected Instruction Expansion Module.

1-145

The format of the Special Out instruction is shown below:

oc OP1 op2

105 AR/1 AR/I

0C = Operational code for the Special Out instruction.
OP1 = Operand 1, a l1-byte item containing the DMA channel number over
which the data specified by the 0P2 item is transferred.
OP2 = Operand 2, a 1- or multi-byte item containing:

o The command code byte (instruction) specifying the function
to be performed. The command code must be the first-byte
transferred in the OP2 item.

o Data bytes conveying the information to be operated upon by
the Instruction Expansion Module as specified by the command
code byte.

The Special In instruction is used to retrieve and store the results (contents)
from the Instruction Expansion Module following an operation directed by the com-

mand code in a Special Out instruction. The format of the Special In instruction
is shown below:

0cC 0P1 op2

100 AR/1 AR/1

0C = QOperational code for the Special In instruction.
OP1 = Operand 1, a 1-byte item containing the DMA channel number over
which the data is to be received.
OP2 = Operand 2, a multi-byte item into which the contents of the

Instruction Expansion Module is to be stored.

Although the format of the Special Out and Special In instructions remains
the same for the various functions performed by the Instruction Expansion Modules,
special commands are used to jdentify each function.

1-146

[RSTRUCTION EXPANSION MODULE A

GENERAL

Instruction Expansion Module A (SNAP P Adapter)! enables the orogrammer to
leave the main program, mump to a subroutine, and return to the main program at the
point of exit. This programmed return/jump capability requires that the address
of the next instruction (contents of the P-Register) to be executed in main memory
be saved before an exit is made to a subroutine.

The contents of the P-Register (saved address) is saved by the Instruction
Expansion Module upon execution of the Save P instruction. Execution of the Store
P instruction will obtain the saved address and store it in main memory.

The SYSTEM 2400 Assembler provides the macros 'RTN' and 'MDL' to accomplish
subroutine linkage without using a DMA channel.

Programmed steps required to implement the return/jump feature via expansion
module A are as follows:

Main Program

® Executes a Save P instruction which instructs the Instruction Expansion
Module to save the contents of the P-Register.

e Execute a GOTO instruction to jump to the subroutine.

Subroutine

o Execute a Store P instruction to obtain and store the saved address in
main memory as the address in a GOTO instruction.

e Execute the subroutine processing instructions.

® Execute a GOTO instruction to exit from the subroutine to a fixed location
in memory.

Main Memory

o Execute an instruction to subtract P-bias from the stored return address.

e Execute an instruction tovincrease the stored return address by plus 3.

I Appendix G gives an in-depth coverage for users implementing this expansion.

1-147

e Execute the GOTO instruction containing the adjusted return address.
Return will be to the instruction following the GOTO instruction used to
exit from the main program.

The module A instructions include the following:

e Save (P) (1-149)
e Store (P) (1-150)

1-148

PURPQSE :

FORMAT:

DMA CHANNEL

CODE:

COMMAND
CODE:

OPERATION:

EXAMPLE :

PROGRAM CALL
Save (P)
Mnemonic Code = SAP or SVP
Octal OP Code = 105

To obtain and save the contents of the program control register (P).

0c 0P1 0pP2

105 AR/1 AR/1

002

002

The output data from the OP2 item is sent to the Instruction Expansion
Module connected to the DMA channel specified in OP1.

OP2 is a 1-byte item containing the command code: 002.

The Instruction Expansion Module, upon receipt of the command code,
obtains and saves the contents of the P-register. The P-register
contains the address of the next instruction to be executed in the
program.

0C orP1 opP2

105 103 104
0Pl Item 3 of Active Record 1 contains the DMA channel number.
opP2 Item 4 of Active Record 1 contains the command code.

1-149

PURPOSE :

FORMAT:

DMA CHANNEL

CODE:

OPERATION:

EXAMPLE:

PROGRAM CALL
Store (P)
Mnemonic Code = SRP
Octal OP Code = 100

To obtain the contents of the P-register from the Instruction Ex-

pansion Module and store it in main memory.

002

The

0C 0P1 oP2

100 AR/1 AR/1

input data received from the Instruction Expansion Module is

received via the DMA channel specified in OP1.

oP2

The
and

item is to receive the input data.

input data consists of a 2-byte address. This address is obtained
saved by the Instruction Expansion Module as a result of executing

the Save P instruction.

OP1
0P2

0oc OPl P2

100 241 101

Item 41 of Active Record 2 contains the DMA channel number.

Item 1 of Active Record 1 is to receive the input data.

1-150

INSTRUCTION EXPANSION MODULE B

GENERAL

Instruction Expansion Module B (Utility Adapter)! provides the programmer with
a logical set of instructions: exclusive OR, inclusive OR, and AND functions. The
logical functions may be performed on two data characters or on a string of data
characters (as is the case when computing an LRC character for a string of data
characters). The l-byte result of a logical operation resides in the module
accumulator.

Instruction Expansion Module B is able to transfer the data in its 1-byte
accumulator to the SYSTEM 2400 Processor via the Store Module Accumulator instruction.

The command codes used in the instructions to direct the Instruction Expansion
Module to perform a specific function contain two modifier bits, as shown below:

Byte

Command Code 716({51413]2]1]0

Command
Code Bits

1 = Save-Module-Accumulator Bit

0 = Enable Instruction
Expansicon Module

Save Module Accumulator Bit (26) - Informs the Instruction Expansion Module to save

the contents of the accumulator. This feature permits logical operations on strings
of data characters in excess of 255 bytes (the maximum number of data bytes trans-
ferred with a single instruction is 256 with the first byte being the command code)
or on a group of single bytes or strings of bytes located in different part of
memory. For example, an LRC operation on a string of data characters greater than
255 bytes would require that bit 26 be set to a "1" in all subsequent instructions
conveying data during this operation. In addition, the contents of the module ac-
cumulator may be stored in main memory using the Store Module Accumulator instruction
and may be returned to the accumulator in the Instruction Expansion Module using the

! Appendix H gives an in-depth coverage for users implementing this expansion.
' 1-151

Enter Module Accumulator instruction, thus allowing more than one subroutine in the
main program to utilize the features of the Instruction Expansion Module.

Enable Instruction Expansion Module Bit (27) - Bit 27 set to a "0" in a command

code enables the Instruction Expansion Module and informs the other connected
peripherals to deselect it.

The module B instructions include the following:

OR (Exclusive) 1-153)

Logical AND (1-155)

OR (Inclusive) (1-157) 4
Longitudinal Redundancy Check (1-159)
Enter Module Accumulator (1-161)
Store Module Accumulator (1-162)

PURPOSE :

FORMAT:

DMA CHANNEI.
CODE:

COMMAND
CODE:

OPERATION:

RESTRICTION:

LOGICAL SET

OR (Exclusive)
Mnemonic Code = ORE
Octal Op Code = 105

To logically OR (Exclusive) two or more data characters.

ocC 0P1 oP2

105 AR/T AR/1

001

001

With save-module-accumulator-modifier bit: 101

The output data from the OP2 item is sent to the Instruction Expansion
Module connected to the DMA channel specified in OP1.

0P2 is a multi-byte item containing the command code as the leftmost
byte in the item, followed by data characters (255 bytes maximum).

The Instruction Expansion Module, upon receipt of the first byte (com-
mand code) of the OP2 item, resets its logic and prepares for an ex-
clusive OR operation. The first data character (byte 2 of 0P2) is
stored in the accumulator. The next data character received is OR'ed
with the contents of the accumulator, with the result residing in the
accumulator. This procedure is repeated for all data characters in the
OP2 item. The result of the exclusive OR operation is obtained and
stored in main memory using the Store Module Accumulator instruction.

Exclusive OR Operation: 1100
1010
0110

A maximum of 255 data characters may be OR'ed with a single instruc-
tion. UWhen operating on data strings greater than 255 data characters,
the save-module-accumulator-modifier bit of the command code must be
set to a "1" in subsequent instructions to prevent the Instruction Ex-
pansion Module from resetting its accumuiator, thereby destroying its
contents.

1-153

EXAMPLE : Two-byte OR (Exclusive) operation.

0cC 0P1 0pP2
105 241 302
0P1 001 Item 41 of active record 2
op2
b1 b2 b3
001 145 114 Item 2 of active record 3
by = Command code (exclusive OR)
b2 = 01100101
' b3 = 01001100
Result = 00101001

1-154

PURPOSE :

FORMAT:

DMA CHANNEL
CODE:

COMMAND
CODE:

OPERATION:

RESTRICTION:

LOGICAL SET
Logical AND
Mnemonic Code = AND
Octal Op Code = 105

To logically AND two or more data characters.

0cC 0P1 opP2

105 AR/1 AR/I

001

002

With save-module-accumulator-modifier bit: 102

The output data from the OP2 item is’sent to the Instruction Expansion
Module connected to the DMA channel specified in OP1.

0P2 is a multi-byte item containing the command code as the leftmost
byte in the item, followed by data characters (255 bytes maximum).

The Instruction Expansion Module, upon receipt of the first byte (com-
mand code) of the OP2 item, resets its logic and prepares for a logical
AND operation. The first data character (byte 2 of OP2) is stored in
the accumulator. The next data character received is AND'ed with the
contents of the accumulator, with the result residing in the accumulator.
This procedure is repeated for all data characters in the OP2 item. The
result of the logical AND operation is obtained and stored in main
memory using the Store Module Accumulator instruction.

Logical AND operation: 1100
1010
1000

A maximum of 255 data characters may be AND'ed with a single instruc-
tion. When operating on data strings greater than 255 data characters,
the save-module-accumulator-modifier bit of the command code must be
set to a "1" in subsequent instructions to prevent the Instruction

1-155

Expansion Module from resetting its accumulator, thereby destroying
its contents.

EXAMPLE: Two-byte logical AND operation.

oC 0P1 oP2
105 241 304
0P1 1001 Item 41 of active record 2
opP2
b1 b2 b3
002 145 114 Item 4 of active record 3
b1 = Command code (logical AND)
b2 = (01100101
b3 = 01001100
Result = 01000100

1-156

PURPOSE:
PURPOSE :

FORMAT:

DMA CHANNEL
CODE:

COMMAND
CODE:

OPERATION:

RESTRICTION:

LOGICAL SET
OR (Inclusive)
Mnemonic Code = ORI
Octal Op Code = 105

To logically OR (Inclusive) two or more data characters.

0cC OP1 opP2

105 AR/1 AR/1

001

004

With save-module-accumulator-modifier bit: 104

The output data from the OP2 item is sent to the Instruction Expansion
Module connected to the DMA channel specified in OP1.

OP2 is a multi-byte item containing the command code as the leftmost
byte, followed by data characters (255 bytes maximum).

The Instruction Expansion Module, unon receipt of the first byvte (com-
mand code) of the OP2 item, resets its logic and prepares for an
inclusive OR operation. The first data character (Byte 2 of OP2) is
stored in the module accumulator. The next data character received

is OR'ed with the contents of the accumulator, with the result residing
in the accumulator. This procedure is repeated for all data characters
in the OP2 item. The result of the inclusive OR operation is obtained
and stored in main memory using the Save Module Accumulator instruction.

For a complete explanation, see PROCESSOR PROGRAMMING IN MACHINE CODE,
Form No. M-2269.

Inclusive OR Operation: 1100
1010
1110

A maximum of 255 data characters may be OR'ed with a single instruc-
tion. Uhen operating on data strings greater than 255 data characters,

1-157

EXAMPLE :

the save-module-accumulator-nodifier bit of the command code must be
set to a "1" in subsequent instructions to prevent the Instruction
Expansion Module from resetting its accumulator, thereby destroying
its contents.

Two-byte OR (inclusive) operation.

ocC orP1 0oP2
105 241 303
0oP1 001 Item 41 of active record 2
opP2
by b, by
004 145 114 Item 3 of active record 3
b1 = Command code (inclusive OR)
b2 = 01100101
b3 = 01001100
Result = 01101101

1-153

PURPOSE :

FORMAT :

DMA CHANNEL
CODE:

COMMAND
CODE:

OPERATION:

RESTRICTION:

LOGICAL SET
Longitudinal Redundancy Check
| LRC
105

i

Mnemonic Code
Octal Op Code

To generate a longitudinal parity number on a string of data characters
(exclusive OR).

0C 0P1 opP2

105 AR/1 AR/1
001

001

With save-module-accumulator-modifier bit: 101

The output data from the OP2 item is sent to the Instruction Expansion
Module connected to the DMA channel specified in OP1.

OP2 is a multi-byte item containing the command code as the leftmost.
byte in the item, followed by data characters (255 bytes maximum).

The Instruction Expansion Modu]e, upon receipt of the first byte (com-
mand code) of the OP2 item, resets its logic and prepares for an LRC
(exclusive OR) operation. The first data character (byte 2 of OP2) is
stored in the module accumulator. The next data character received is
OR'ed with the contents of the accumulator, with the result residing

in the accumulator. This procedure is repeated for all data characters
in the OP2 item. The result of the LRC operation is obtained and
stored in main memory using the Store Module Accumulator instruction.

A maximum of 255 data characters may be operated upon using a single
LRC instruction. When performing an LRC operation on data strings
larger than 255 data characters, the save-module-accumulator-modifier
bit of the command code must be set to a "1" in subsequent instructions
to prevent the Instruction Expansion Module from resetting its accumu-
lator, thereby destroying its contents.

1-159

EXAMPLE : Multi-byte LRC operation.

0cC 0Pl oP2
105 241 101
0P1 |o001 Item 41 of active record 2
opP2
b1 b2 b3 b4
001 145 114 165

b, = Command code (LRC)
b2 = 01100101
b3 = 01001100

Result = 00101001
b4 = XXXXXXXX

New Result = XXXXXXXX

b5 =

etc.
. 10011001
b = 01110101

n
Total Result = 11101100
In Accumulator

1-160

ENTER/STORE
Enter Module Accumulator
Mnemonic Code = EMA
Octal Op Code = 105

PURPOSE : To enter the accumulator of Instruction Expansion Modu]e B with a 1-
byte number. : |

FORMAT : ocC OP1 op2

105 AR/1 AR/1

DMA CHANNEL

CODE: 001
COMMAND
CODE: 050

OPERATION: The output data from the OP2 item is sent to the Instruction Expansion
Module connected to the DMA channel specified in OP1.

0P2 is always a 3-byte item formatted as follows:

1 2 3
0P2 001 XXX XXX
b1 = Command Code (EMA)
b2 = The 1-byte value to be re-entered into the accumulator.
b3 = A dummy byte (any value) to position b2 within the

accumutator.

The primary function of this instruction is to re-enter the result of
a logical operation which was terminated prior to completion (usually
due to other requirements imposed on the Instruction Expansion Module
by the program).

RESTRICTION: After the current result of a logical operation has been re-entered
in the module accumulator, the operation may be continued. Since the
accumulator now contains a value to be operated upon, all subsequent
instructions conveying data to the Instruction Expansion Module must
have the save-module-accumulator-modifier bit (26) set in the command
code to avoid.-clearing of the accumulator.

1-161

ENTER/STORE
Store Module Accumulator
Mnemonic Code = SMA
Octal Op Code = 100

PURPOSE : To obtain and store the contents of the Instruction Expansion Module
accumulator in main memory.

FORMAT : 0cC 0Pl 0P2

100 AR/I AR/1

DMA CHANNEL
CODE: 001

OPERATION: The input data from the Instruction Expansion Module is received via
the DMA channel specified in OP1.

OP2 item is to receive the input data.

The input data from the module accumulator of the Instruction Expansion
Module is a l-byte item for all logical set instructions.

1-162

SECTION II
SYSTEM 2400 ASSEMBLER LANGUAGE

INTRODUCTION

The Assembler language is a symbolic programming language that includes:

e Basic Instructions that provide mnemonics that correspond to machine-
language operation codes, and

e Assembler Directives that direct the assembler to perform certain tasks.

In machine-language instructions, octal numbers snecify on codes and operands.

In the Assembler language, mnemonics specify the operation codes and symbolic names
to specify the records, items, buffers, addresses, and literals.

Below is an example written in Assembler language and in machine languaqe:

Assembler language MR ACCNT1,ACCNT2 REPLACE ACCNT NBR
Machine language 001110204

In this example, the mnemonic "MR" should bring to mind the Move Right-Aligned,
No Fill instruction. Data is moved from "ACCNT1" to "ACCNT2". The comment following
the instruction states the purpose of this instruction in the program.

In the machine-language instruction, however, one nust consult a table to tell
that "001" is the Move Right-Aligned, No Fill instruction. Further, one could not
readily discern that item 10 of active record 1 is being moved to item 4 of active
record 2. The intent or purpose of the instruction is not clear. '

The Assembler language is used as follows:
e To easily define EBCDIC, USASCII, tri-octal, and address constants.

e To assign symbolic names to values which may be changed prior to assembly.

e To reserve unused areas within memory for reference during program execution.
(An earlier program may place data into such an area, for example.)

e To provide a self-documented program listing.

e To facilitate program and subroutine linkages (MDL and RTH macro instruc-
tions), and '
2-1

e To reassign a program to any part of memory (relocatability).

Once the program has been written in Assembler lanauage, the program must be
coriverted to equivalent machine coding before it can be executed. This conversion
(assembly) process is done by the Assembler program.

The Assembler performs three basic functions:

® Converts the Assembler instructions to their machine-language equivalents.

¢ Prints a listing of the Assembler instructions with their machine-lanquage
equivalents and flags any syntax errors found.

e lrites the machine-language coding on a magnetic tape for "“collection"” or
immediate program loading and execution.

CODING CONVENTIONS

Assembler instructions are coded in 80-character records for punched card
compatibility. Each instruction must be coded as follows:

e Columns 1-9 contain the label field.

e Columns 10-15 contain the op-code field.

e Columns 16-35 contain the operand field.

e Columns 36-71 contain the comment field.

e Column 72 is reserved for editing.

e Columns 73 to 80 are not checked, but may contain sequence numbers or

comments.

A label, if present, must start in column 1. At least one space must separate
the label (or start-of-card) and op-code fields, the op-code and operand fields,
and the operand and comments fields.

NOTE

If an asterisk (*) is coded in column 1, the
record is considered a comment and is therefore
not translated into machine code. A comment

is simply printed on the Assembler listing.

2-2

SYMBOLIC NAMES

The Assembler uses symbolic names for:

® © © ¢ ® O

Buffers

Mnemonic op codes;

Locations (addresses) of 1n§tructions;
Locations of data;

Records;

Items within records; and

Symbolic names must follow these rules:

1. A name must contain from 2 to 6 characters.

2. The characters of a name must be the letters of the alnhabet (A-Z) or
the digits (0-9), in any combination. -

3. The first character of a name mustlbe alphabetic.

4. The names SPACE? MULL, HICORE, NXCORE, SDAPE, PBIASE are reserved for
special use. (SPACE is octal 100; MNULL is octal 000; for others, see
"Relocatability", page

Examp]es:‘

A123BC
PAYIN
50UT

C -
PSS

Valid

~Valid

Invalid; first character must be alphabetic
Invalid; must contain from 2 to 6 characters
Invalid; characters must be alphabetic or digits

Programmers should not utilize the Tower area of core memory in Assembler

language programs.

Core locations below 100 are currently assigned or reserved

for future use as follows:

LIST OF RESERVED MEMORY LOCATIONS

Address (octal) Content
000,001 SDAT pointer
002,003 I/0 function table address
004,005 Address of data record, ACTIVE RECORD 1
006,007 Address of item descrintor table, ACTIVE RECORD 1
010,011 Address of data record, ACTIVE RECORD 2

2-3

012,013 Address of item descriptor table, ACTIVE RECORD 2

014-015 Address of data record, ACTIVE RECORD 3

016-017 Address of item descriptor table, ACTIVE RECORD 3
020-021 P-BIAS (program start/restart address)

022-023 Real-time clock

024-037 Interruot

040-057 Interrupt state SDAT pointer and active registers
060-077 Reserved for future use

BASIC INSTRUCTIONS

For each Peripheral Processor machine 1n$truction there is a corresponding
Assembler instruction. Each instruction has from zero to four operands within it,
and each instruction may optionally have a label attached to it. The label must
start in column 1.

In Table 2-1 below, the basic instructions are grouped according to number
and type of operands. Operands are separated by commas with no intervening spaces.
If a 2-byte operand is coded where a l1-byte operand should be, the Assembler flags
the statement with an "I" (invalid) and uses the rightmost byte only. If the
wrong number of operands is coded, the Assembler flags the statement with a "W"
(warning) and uses nulls (000) in place of missing operands.

Table 2-1. Basic Instructions

INSTRUCTION TYPE MNEMONIC INSTRUCTION NAME
Type I Instructions With No H 143 Halt |
?g%;??d (One Byte RAP 147 No Operation - Leave Gan
SWS 154 Swap States ‘
SIL 155 Set Interrupt Lockout
CIL 157 Clear Interruot Lockout
Type II Instructions Wi%h One TBS 040 Test Binary Sign
1-Byte Operand (Two . .
Bytes Total) TDS 042 Test Decimal Sign
STD 124 Store Designators
LD 126 Load Designators
STT 134 Store Tally Counter
LT 136 Load Tally Counter
SDI 146 Set Display Indicators

2-4

Table 2-1. Basic Instructions (Continued)

INSTRUCTION TYPE MNEMONIC INSTRUCTION HAME
CDI 156 Clear Display Indicators
LSP 161 Load Storage Descriptor Pointer
LRl 165 Load Active Record 1
LR2 171 Load Active Record 2
GRT 173 GOTO Return (Branch)
IM 174 Interrupt Mask
LR3 175 Load Active Record 3
GIR 177 Interrupt Branch GOTO
Type IIT Instructions With One NOP 020 No Operation
S;Eg:enggqﬁnd (Three GGT 021 GOTO Greater Than
GLT 022 GOTO Less Than
GNE 023 GOTO Not Equal
GE 024 GOTO Equal
GNL 025 GOTO Not Less Than
GNG 026 GOTO Mot Greater Than
G 027 GOTO Unconditionally
Type IV Instructions With One GD 030 GOTO On Designators
é;iygﬁBgigrgggrggg &S 031 GOTO On Switches
(Four Bytes Total) GBG 061 GOTO Binary Greater Than
’ GBL 062 GOTO Binary Less Than
GBN 063 GOTO Binary Non-Zero
GBZ 064 GOTO Binary Zero
GGBE 065 GOTO Binary _ Zero
GLBE 066 GOTO Binary _ Zero
GDG 071 GOTO Decimal Greater Than
GDL 072 GOTO Decimal Less Than
GDN 073 GOTO Decimal Non-Zero
GDZ 074 GOTO Decimal Zero
GGDE 075 GOTO Decimal _ Zero
GLDE 076 GOTO Decimal _ Zero
GA 107 GOTO On Active Channel
GST 113 GOTO On Service Request
GCI 117 GOTO On Channel Interrupt
GCT 170 GOTO On Count
GSB 176 GOTO Subroutine (Branch)

2-5

Tyne V

Type VI

Table 2-1. Basic Instructions (Continued)

INSTRUCTION TYPE

Instructions With Two
1-Byte Operands
(Three Bytes Total)

Instructions With
Three 1-Byte

Operands (Four

Bytes Total)

MNEMONIC

M
RN
MR
CB
CD
MPK
MUP
INS
0TS
STC
STR
INR
IN
ouT
0TR
APA
EXP
EX
EXA
ML
CAN
CL
TI
TL
™
TIM
TCK

MF
MRF

MR
AB

SB

000
000
001
044
046
050
052

100-

105
110
111
112
114
115
116
121
131
132
133
141
142
144
- 150
151
152
153
162
004
s
N7
041
043
045

2-6

INSTRUCTION NAME

Move Item, Left-Align, Mo Fill
Rename

Move Item, Right-Align, No Fill
Compare Binary

Compare Decimal

Move, Pack

Move, Unpack

Special In

Special Out

Store Channel Control Register
Store Channel Reverse
Initiate Input Reverse
Initiate Input On Channel
Initiate Output On Channel
Initiate Output Reverse
Append, Advance

Extract Previous Item

Extract Item

Extract Item, Advance

Move Literal

Compare Alphanumerics

Compare Literal

Test Item

Test Literal

Test Mask

Test Item Mask

P'ongitudinal Redundancy Check

Jdove Item, Left-Align, Fill
Move ltem, Right-Align, Fill
Move Item, Left-Justify, Fill
Move Item, Right-Justify, Fill
Adad Binary

Add Decimal

Subtract Binary

Type VI

Type VIII

Table 2-1. Basic Instructions (Continued)

INSTRUCTION TYPE ~ MNEMONIC

S
ALB
AL
SLB
SL
EF
EFS
APR
APE
TRL
X
0
N
GTB
Instructions With CP
Four 1-Byte CPR

Operands (Five
Bytes Total) EXV

047
051
053
055
057
104
106

120

122
140
160
164
166
172

014
015
130

INSTRUCTION NAME

Subtract Decimal

Add Literal Binary

Add Literal Decimal

Subtract Literal Binary
Subtract Literal Decimal
External Function On Channel
External Function Special
Append, Right-Eliminate
Append, Left-Eliminate
Translate Code

OR (Exclusive)

OR (Inclusive)

Logical AND

GOTO Table (Indirect Branch)

Compress Item, Left-Align, Fill
Compress Item, Right-Align, Fill

Extract Variable Length Item,
Fill

EXPANSTIOH MODULE INSTRUCTIONS

Instructions with SRP
Two 1-Byte SMA
Operands (Three
Bytes Total) SAP

SVP
ORE
AND
ORI
LRC
EMA

100
100
105
105
105
105
105
105
105

2-7

Store (P)

Store Module Accumulator

Save (P)

Store (P)

OR (Exclusive)

Logical AND

OR {Inclusive)

Longitudinal Redundancy Check
Enter Module Accumulator

Table 2-1. Basic Instructions (Continued)

INSTRUCTION TYPE MNEMONIC INSTRUCTION NAME

EXTERNAL EXECUTE INSTRUCTIONS

Type IX Instructions With LC 145 004 Load Delta Clock
One Sub-0p-Code And
One 1-Byte Operand
(Three Bytes Total)

Instructions With SEE 145 014 Store External Instruction Error
One Sub-0Op-Code And .

Three 1-Byte SCE 145»015 Store Channel Parity Error
Operands (Five MB 145 020 Multiply Binary

Bytes Total) DB 145 022 Divide Binary

MD 145 024 Multiply Decimal

DD 145 026 Divide Decimal

BTD 145 030 Binary to Decimal

DTB 145 031 Decimal to Binary

SDR 145 034 StoreADecima1 Remainder
SBR 145 035 Store Binary Remainder

Instructions With MLB 145 021 Multiply Literal Binary
One Sub-0Op-Code And - . .

Four 1-Byte DLB 145 023 Divide Literal Binary
Operands (Six MLD 145 025 Multiply Literal Decimal

Bytes Total) DLD 145 027 Divide Literal Decimal

Operands in basic instructions may be in the following formats:

A. A tri-octal character string at least two digits long between 000 and 377
for 1-byte operands, or between 000-000 and 377-377 for 2-byte operands.
As shown, a minus sign may be used to separate the digits of each byte.

B. A label format, with the value limitations as in A above.

C. A label + nnnmn format, where "nnnnn" is a decimal value between 0 and
99999, with the value 1imitations as in A above.

D. A label - nnnnn format, where "nnnnrn" is a decimal value between 0 and
99999, with the value limitations as in A above.

E. An n/label format, where "n" is a decimal value indicating an active
record (see below), and Label is a tri-octal value between 0 and 77.

2-3

i

SDAT Pointer
Active Record 1.

i

Active Record 2.

w N = O
i

1

Active Record 3.

An n/77 format, where "n" indicates an active record (as in E above), and
"ii" is a 1- or 2-byte octal number between 0 and 77. (For 1l-byte operands
only.)

A single character (except space, +, *, or comma) may be used as a literal
(1-byte operand). The Assembler will translate the character to its cor-
responding EBCDIC code.

NOTE

The first operand cannot be in this
format.

A defined character (EBCDIC, USASCII, Decimal or Octal) may be used as a
literal (1-byte operand) in a valid instruction operand field or as a
constant (1-byte operand) in directives which require operands. The
format of the operand is as follows: ‘

U'u' where U indicates that the character between the apostrophes
is an USASCII character and is translated into its
USASCIT code equivalent.

u = USASCIT character.

C'c' where C indicates that the character between the apostrophes
is an EBCDIC character and is translated into its
EBCDIC code equivalent.

¢ = EBCDIC character.

D'ddd' where D indicates that the number between the apostrophes
is a decimal number and is translated into its
binary equivalent.

ddd

decimal number (0-255)

0'oo0' where 0 indicates that the number between the apostrophes
' is an octal number and is translated into its binary
equivalent.

H

000 = octal number (0-377)

2-9

Example 1: TL FLAG,C'A'
Example 2: RES 0'2pp'
I. Labels may be chained up to a maximum of 28 characters in the operand

field. The plus (+) and minus (-) signs are valid arithmetic operators
within the chain. '

NOTE

If a constant is used, it must be located at the end
of the chain. Only one constant may be used in a
chain.

Example: G GET+GOT-PUT+0'100'

The operand in the example contains 13 characters.

A single asterisk (*) may be used in place of a label in formats B, C, and
D. The asterisk is equal to the address of the op-code of the instruction. The
value so generated is a 2-byte operand.

An asterisk used in a GO instruction is equal to the op-code address minus
the PBIAS.

The permissible Assembler operands and operand formats are summarized in
Table 2-2.

LINKAGE MACROS

The Assembler has two linkage macros available which can simulate the "catch-P"
function (executing an out-of-line subroutine) or pass parameter addresses between
subroutines. Each may optionally have a label.

Move Double Literal (MDL) Macro Statement

Mnemonic: MDL

The MDL statement has two operands:

1. A 1l-byte "active-record/item-number" (Formats A, B, C, D, E, F, G, H in
Table 2-2).

2. A 2-byte address (Formats A, B, C, D in Table 2-2).

2-10

Table 2-2. Summary of Operands

OPERAND FORMATS

A.

— I MO M m O O

(i). Self-defining tri-octal: 0 to 377. |

(i1). Self-defining tri-octal: O to 377. (Dashes allowed)

Label (e.g. "ABC123", or "*").

Label+nnnnn (where "nnnnn" is decimal, 0 to 99999).

Label-nnnnn (where "nnnnn" is decimal, O to 99999). L
n/LABEL (where "n" = 0, 1, 2, or 3, and "LABEL" = 0 to 77 tri-octal).
n/ii (where "n" =0, 1, 2, or 3, and "ii" = 0 to 77 tri-octal).

x (where "x" is a single charactér except "+", "*" space, or ",").

A defined character: EBCDIC, USASCII, Decimal, or Octal.

Labels may be joined in an algebraic expression with nlus (+) and minus
(-) signs. Only one constant may -e used and it must be the last term
in the expression.

PERMISSIBLE OPERANDS

a.

o W
. .

K e

For Type II basic instructions (see Table 2-1). ‘
Operand Types: A(i), B, C, D, E, F (Values 0 to 377)

For Type III basic instructions (see Table 2-1).
Operand Types: A(ii), B, C, D

For Type IV basic instructions (see Table 2-1).
First Operand: A(i), B
Second Operand: A(ii), 8, C, D

For Type V and VI basic instructions (see Table 2-1).
First Operand: A(i), B, C, D, E, F
Subsequent Operands: A(ii), B, C, D, E, F, G

For MDL and RTN Linkage Macros.
First Operand: A(i), B, C, D, E. F
Second Operand: A(ii), B, C, D

For constants in 'DC' when defining addresses (Y or A) and in 'SD'.
A(ii), B, C, D

For BUFF and RES Assembler Directives. B, C, D, H

For END and LOAD Assembler Directives. A(ii), B, C, D

For ENTRY and EXTRN Assembler Directive. B

For EQU Assembler Directive. A(i), A(ii), B, C, D, E, F, G
For constants in 'DCF' Assembler Directive. A(i). H, I.

2-11

The 2-byte address is moved into the item defined by the first onerand. The
item is assumed to be two bytes long. The MDL statement is effected by the "141"
and "051" (or "055") machine instructions.

Both operands may be external labels.

Example:

To move the address of "DATA" to the 2-byte field "PARM", code the following
statement:

MDL PARM,DATA

Return (RTN) Macro Statement

Mnemonic: RTN
The RTN statement has the same format as the MDL statement.

The P-BIAS is subtracted from the 2-byte address and the resu]f is moved
into the item defined by the first operand. The item is assumed to be two bytes
long.

Typically, the first operand of an RTN statement describes the 2-byte operand
of a "G" instruction. Linkage to a routine called "MULT" may be accomplished by
the following statements:

RTN MUEXIT,RETURN
G MULT
RETURN ALB COUNT,COUNT, 001

The routine "MULT" exits by executing the "G" instruction whose operand. is
defined by "MUEXIT". Control is returned to the original routine at the instruction
- labeled "RETURN".

Both operands may be external labels.

DEFINITION OF CONSTANTS

Data used by the program may be defined by the DC (Define Constant) statement.
Seven types of operands may be associated with the DC statement. Only one operand
may anpear in each DC statement. Ontionally, the DC statement may be labeled.

2-12

bDefinition of Tri-0Octal Constant

First byte of operand must be the letter "0Q".

Optionally, a length may be specified as 'Lnn', where 'nn' is a decimal number
from 1 to 99. If no length is specified, the length is calculated from the constant
specified. '

The constant itself is specified as (tri-octal) digits enclosed in single
quotes. o .cadability, minus signs may be interspersed with the'digits. The
constant specified is Yight-a]igned in the constant area. Extra digits in the area
are made to be nulls.

“Exampleo:

3

DC 0L3'010-224" _

Generates a 3-byte constant with the tri-octal value '000-010-224'.

BC 0'112-253-364-111" | | |

Generates a 4-byte constant wi;h the tri-octal value '112-253-364-111".

NOTE

If no constant is specified, the whole
constant area is filled with nulils.

Definition of EBCDIC Character Constant

First byte of operand must be the letter "C".
Optionally, a length may be specified, as above for tri-octal constant.

The constant itself is specified as (EBCDIC) characters enclosed in $1ngle
quotes. The constant specified is left-aligned in the constant area. Extra bytes
in the area are assumed to be spaces.

Examples:

DC CL5'PAGE'

Generates a 5-byte constant with the tri-octal value '327-301-307-305-100'
("P-A-G-E-space").

DC C'HDG'

Generates a 3-byte constant with the tri-.octal value '310-304-307" ("H-D-G").

NOTE

If no constant is specified, the whole area is
filled with EBCDIC spaces.

Definition of USASCII Character Constant

First byte of operand must be the letter "U".
Optionally, a length may be specified as above for tri-octal constant.

The constant itself is specifind as characters enclosed in sinale quotes. Each
character is translated to ite (i, 0y equivalent and Toft-aligned in e constant
area. Extra bytes in the area are assumed to be USASCII spaces.

Examples:

DC UL5'PAGE'

Generates a 5-byte constant with the tri-octal value '020-001-007-005-040"
(USASCIT "P-A-G-E-space").

DC U'HDG'

Generates a 3-byte constant with the tri-octal value '010-004-007' (USASCII
llH_D_Gn) .

NOTE

If no constant is specified, the whole area
is filled with USASCII spaces.

Definition of Binary Constant

First byte of operand must be the letter "D".
Optionally, a length may be specified as above for tri-octal constant.
~ The constant itself is specified as (decimal) characters enclosed in single
quotes. The constant ("nnn") is a decimal number from O to 255. The constant
specified is right-aligned in the constant area. Extra bytes in the area are made
to be nulls.
Example:

DC pL 1'128'

2-14

Generates a l-byte constant with the tri-octal value '200' (12810).

DC DL6'9!

Generates a 6-byte constant with the tri-octal value '000-000-C00-000-000-011"

DC D'255' |
Generates a 1-byte constant with the tri-octal value '377' (25510).

Definition of Address Constant

First byte of operand must be the letter "A" or "Y',
Optionally, a length may be specified, as follows:

"L2" indicates one address constant is to be generated.
"L4" indicates two address constants are to be generated.

One or two address constants follow, each in one of the A, B, C, or D formats
(see Table 2-2), enclosed by single quotes or brackets. If two constants are
specified, a comma separates them.

Examples:

DC A(AXD4+3)

Generates one 2-byte address constant pointing to the label "AXP4" plus three
bytes.

DC YL4(HERE,THERE)

Generates two 2-byte address constants, the first constant being an address
pointing to the label "HERE", the second being an address pointing to the label
“THERE". ‘

Definition of Biased Address Constant

The first byte of the operand must be the letter "B" or "J".

Optionally, a length may be specified, as follows:
"L2" indicates one biased address constant is to be generated.

"L4" indicates two biased address constants are to be generated.

» 2-15

One or two address constants follow, each in one of the A, B, C, or D formats
(see Table 2-2), enclosed by single quotes or brackets. If two constants are speci-
fied, a comma separates them.

“Biased" addresses are identical to ordinary addresses, except that the program
P-BIAS has been subtracted from them. A common use for this type of address is as
entries in a "jump-table".

Examples:

DC B(AXP4+3)

Generates one 2-byte constant of an address pointing to the label "AXp4",
plus three bytes, relative to the P-BIAS address.

DC BLA4(HERE,THERE)

Generates two 2-byte constants, the first constant being an address pointing
to the label "HERE", the second being an address pointing to the label "THERE",
both relative to the P-BIAS address.

Definition of Constant Fill

Fill space in memory.
A label may be used optionally.

The Define Constant Fill (DCF) directive allows the programmer to fill a
designated number of memory locations with a specific constant (character or
number). Four types of operands may be associated with the DCF statements:

Operand Constant Type
DLnn'ddd’ , Decimal
CLnn'C' EBCDIC
OLnn'000" Octal
ULnn'u' USASCII
where: nn = specifieé a constant length from 1-99.

ddd = specifies a decimal number, 0 to 255.
000 = specifies a octal number, 0 to 377.
u = specifies a USASCII character.

2-16

Examples:

DCF DL80'100 - fills the next 80 locations with the octal value 144.
DCF CL2'A" - fills two locations with the octal value 301.

DCF 0L3'123' - fills three locations with the octal value 123.

DCF UL10'B' - fills ten locations with the octal value 102.

)

ASSEMBLER DIRECTIVES

The Assembler directives prcvide additional information durihg-assemb]y of the
program. MNote that if each directive requires an operand, the operand must be self-
defining (i.e., numeric) or previously defined (if a label). When this rule is
broken, the statement is printed during phase 1 of assembly with a "U" flag to
denote that the operand is undefined.

The Assembler directives include the following:

e BUFF - Define buffer for logical I0CS

e DBL - ‘Double-space listing

e EJECT - Start a new page in listing

e END - End assembly

e ENTRY - Specify entry point

o EQU or = - Equate or define label

e EXTRN - Specify external label

e LOAD - Set value of current address pointer

e O0BJ - Generate object code

e NOBJ - Generate no object code

e PUNCH - Punch operand into object code

e REPRO - Reproduce next statement into object code
¢ RES - Reserve space in memory

e SDP - Define SDAT pointer

@ SGL - Single-space listing

o SPACE - Leave a space in listing

e START - Start assembly]

e TITLE - Specify a title for the assembly

e NOGEN - Inhibit second and following print lines
o GEN - Cancel .previous NOGEN directive

e COM - Sbecify entry point for AR/I information
¢ INC - Include operand (library subroutine)

o LIST - Generate listing output

2-17

o NLIST - Generate no listing output
e PAGE - Set address pointer to start of next page

BUFF Directive

Define buffer for logical I0CS.
A label is not allowed with this directive.
One operand is required.

Example:
"BUFF 2pp"
Reserve 2pP bytes for I0CS buffer..

NOTE

If the operand is self-defining, it must be a
decimal number.

This statement should appear only once in an assembly. Its operand is con-
verted to tri-octal and placed in the object output 'UCORE' record. (The Collector
reserves this space and provides the necessary linkage parameter to I10CS.) If this
directive is omitted, 300 bytes are provided for I0CS. This directive may appear
before the START directive. The BUFF statement is meaningless in non-relocatable
assemblies.

DBL Directive

Double-space 1isting.
A label or operand is not allowed with this directive.

. This statement starts a new page on the assembly listing. Subsequent state-
ments are double-spaced. This directive may appear before the START statement.

NOTE

When DBL has not been specified, statements are
single-spaced on the listing. The DBL statement
itself does not appear on the listing.

2-18

Inal

JECT Directive

1

New page on listing.
A label or operand is not allowed with this directive.

This statement starts a new paue on the assembly listing. This directive
‘may appear before the START stateront.

NOTE

The EJECT statement itself does not appear
on the listing.

END Directive

End assembly.
A label is not allowed with this directive.

One operand is required: the address of the first instruction to be exucuted
in the program. (This operand may be a tri-octal, self-defining term, or a label.)

This cperand is placed into memory locations 20 and 21 and used as the program
P-BIAS. (The P-BIAS is also placed in the 'UCORE' record by the Assembler.)

ENTRY Directive

Specify entry point.
A label is not allowed with this direntive.
One operand is recuired: it muct be a label, aisewhere uetined.

Each ENTRY statement must follow the START statement and must precede all basic
instructions, DC statements, and EXTRM statement. [his statement writes 4
"IZZZENTRY Y vccord in the object output, enabling the specified label to be re-
ferenced in another assembly as a Z-byte address value. Also, this statement may
be used only in relocatable programs (see "Relocatability", page

EQU (or =) Directive

Equate or define label.
A label =ust be used with this directive.

2-19

One operand is required: it may be in any of the formats A, B, C, D, E, F, or
G (see Table 2-2). '

The label is assigned the value of the operand. The EQU directive may appear
before the START statement.

EXTRN Directive

Specify external label.
A label is not allowed with this directive.
One operand is required: it must be a label.

The EXTRN statement may appear anywhere between the START and END statements,
but must appear after any ENTRY statements. This statement enables the programmer
to use the specified label elsewhere in the program as if it were an already-Defined
address (2-byte value) or AR/I information (l-byte value). The Collector later
determines the value of the label and inserts that value in the objéct coding where
that label is used. This statement may be used only in relocatable programs (see
"Relocatability", page 2-31.

LOAD Directive

Set value of current address pointer.
A label is not allowed with this directive.

One operand is required: it may be in any of the formats A, B, C, or D
(see Table 2-2).

The LOAD statement resets the current address pointer to the value specified
by the operand. The next statement starts at that address. This directive is
ignored if it occurs before the START statement of the program.

0BJ Directive

Generate object code. (This directive {s neéded, only if "NOBJ" was snecified
earlier.)

A label or operand is not allowed with this directive.

The OBJ statement writes object coding on tape (unless sﬂppressed by Sense
switches, see "Operating the Assembler" on page 2-34.

2-20

NOBJ DirectﬁVe

Generate no object codz.
A label or operand is not allowea with this directive.
The NOBJ statement causes object coding to cease being written on tape.

NOTE

When NOBJ has not been specified, object coding
is written on tape (un]ess suppressed by Sense
switches, see "Operating the Assembler" on page 2-34

PUNCH Directive

Punch operand into object code.
A label is not allowed with this directive.
One operand is required: any character string, enclosed in single quotes.

The operand is left-aligned, padded with spaces, and placed on the object
tape as an 80-byte record (unless suppressed by Sense switches, see “Operating the
Assembler" on page 2-34 . This directive may appear before the START statement.

Example:
PUNCH '22ZZPROGA"

REPRO Directive

Reproduce next statement into object code.
A label or operand is not allowed with this directive.

This statement places columns 1 through 74 of the next statement as an 80-byte
record on the object tape (unless suppressed by Sense switches, see "Operating the
Assembler" on page 2-34 . The next statement is not processed by the Assembler as an
instruction. Bytes 75 to 80 of the object record are a check-sum and sequence
number, assigned by the Assembler.

RES Directive

Reserve space in memory.
2-21

A label may be used optionally.
One operand is required: the length of the field to be reserved at this address.

NOTE

If the operand is self-defining, it must be a
decimal number.

This statement increases the current address counter by the value of the operand.
No data will be loaded into the reserved area. When the program is loaded at execu-
tion time, the memory areas reserved by RES statements contain data and instructions
left from the previous program. ‘

NOTE

The next instruction that produces object coding
starts a new object record. Therefore, RES state-
ments should not be interspersed with DC state-
ments in the program data areas unless necessary.

The RES statement is <gnored if it appears before the START statement.

SDP Directive

Define SDAT pointer.
A label is not allowed with this directive.

One operand is required: the address of the initial SDAT in the program, in
any of the formats A, B, C, or D (see Table 2-2).

This operand is placed into memory locations and 1 and used as the program
SDAP (SDAT Pointer) or Active Record §. This statement should appear only once in
an assembly. Its operand is converted to tri-octal and placed in the object output
‘UCORE' record. This statement is ignored if it appears before the START statement.

The operand may be an external label.

SGL Directive

Single-space listing. (This directive is needed only if double-spacing was
specified earlier.)

2-22

A label or operand is not allowed with this directive.

This statement stores a new page on the assembly listing. Subsequent state-
ments are single-spaced. This directive may appear before the START statement.

SPACE Directive

Leave a space on listing.
A label or operand is not allowed with this directive.

This statement causes a blank line to be left on the assembly listing. This
directive may appear before the START statement.

NOTE
The SPACE statement itself does not appear
on the Tisting.

START Directive

Start assembiy.
A label is not allowed with this directive.

If this is to be a relocatable assembly, one of the following operands must be
used:

REL - ZZZZUCORE record is generated.
REL,p - This operand sets the LO ahd HI fields in the ZZZZUCORE record to zero,
%

regardless of program size.

Basic instructions (and certain directives) are <gnored when they appear
before the START statement. This statement must appear once (and only once) in each
assembly and indicates to the Assembler that basic instructions are to be converted
to object code from this point on until the END card is reached.

TITLE Directive

Specify a title for the assembly.
A label is not allowed with this directive.
One wperand is required: any character string enclosed in sirngle quotes.

2-23

This operand (up to 50 characters) is used as a title for the program listing.
This statement causes a new page with the specified title to begin. This title
is printed at the top of each page of the listing until changed by another TITLE
statement. This statement may appear before the START statement.

Example:

TITLE '"PROGRAM A - - WRITTEN BY J. DOE'

NOTE

The TITLE statement itself does not appear
in the assembly listing.

NOGEN Directive

Inhibit second and following print lines.
A label or operand is not allowed with this directive.

This statement suppresses the additional print lines associated with a par-
ticular statement. Only the first line is printed. It may also be used to suppress
the second and following print lines of an RTN or MDL pseudo-op or the additional
lines associated with a "DC" command.

GEN Directive

Cancel previous NOGEN directive.
A label or operand is not allowed with this directive.
This statement inhibits the effect of any previous NOGEN directive.

COM Directive

Specify entry point for AR/I information.
A label is not allowed with this directive.
One operand is required: it must be a label, elsewhere defined.

This statement is like an ENTRY statement, except COM is used to make active
record information or a record number within an SDAT available to other programs.
This causes the Collector to pass a l-byte, unbiased parameter. COM should appear

2-24

after the START directive and must precede all basic instructions, DC statements,
and EXTRN statements. This statement may be used only in relocatable orogrms (see
"Entry" directive, page 2-19). (See also "Relocatability", page 2-31.

INC Directive

Includes operand (1ibrary subroutine).
A label is not allowed with tiis directive.
One operand is required; it must be an ENTRY name. .

This statement generates an EXTRN object record with a special flag. During
the collection phase, this record directs the collector program to include the
specified subroutine (ENTRY name) on to the object program tape being collected.

LIST Directive

Generate listing output (This directive is needed only if "NLIST" was specified
earlier).

A 1abel or operand is not allowed with this directive.

The LIST statement directs the assembier to.begin transfer of the 1listing
output to the device specified via the Sense switches (see "Operating the Assembler"
on page 2-34,

NLIST Directive

Generate no listing output.
A label or operand is not allowed with this directive.

The NLIST statement directs the assembler to terminate transfer of the listing
output to the device specified via the Sense switches (see "Operating the Assembler"
on page 2-34, ‘

NOTE

When NLIST has not been specified, the listing output
is generated unless suppressed via the Sense switches
(see "Operating the Assembler", page 2-34.

2-25

PAGE Directive

Set current address pointer to starting address of the next page.
A label or operand is not allowed with this directive.

NOTE

Each page reoresents 3778 bytes of memory.
Page boundaries are defined as follows:

Page Bytes

1 000-000 through 000-377
2 001-000 through 001-377
3

002-000 through 002-377

GENERATING A STORAGE DESCRIPTOR AREA TABLE (SDAT)

Each entry in an SDAT consists of two addresses. Any entry can be defined by
the SD instruction. A storage descriptor area table (or portion thereof) is started
by the SSDT directive. Except for comment cards or EQU statements, no statements .
can be interspersed with SD statements. '

SSDT Directive (Start Storage Descriptor Table)

A label is optional on this directive. (Normally, this label is the operand in
the SDP directive.) '

A self-defining octal constant between P and 77 is the only operand. (lormally,
this constant is P.)

_ The value of the operand is the value assigned to the label of the first SD
statement following the SSDT directive. Thereafter, each SD statement has a value
one greater than the previous value assigned to its label.

SD Directive (Storage Descriptor)

A label is optional. The value assigned tc the label is a record number between
0 and 77 (octal) one greater than that of the previous SD statement. (If the pre-
vious statement was an SSDT, the value of the label will be that of the operand of
the SSDT.)

2-26

Two operands appear in the SD statement: each in one of the formats A, B, C,
or D (see Table 2-2).

The SD instruction will generate two 2-byte addresses, as specified by the
operands.

GENERATING AN ITEM DESCRIPTOR TABLE (IDT)

Each entry in an SDAT consists of two 1-byte "relative displacements" from a
record area describinb the start and end bytes of a field. An entry can be defined
by the ID instruction. An item descriptor table (or portion thereof) is started by
the SIDT directive. Except for comment cards or EQU statements, no statements can
be interspersed with ID statements. Figure 2-1 demonstrates the relationship of
Nlabels in the SDAT, IDT, and record area, and their use in the executable instruc-
£ion section.

 SIDT Directive (Start Item Descriptor Table)

A label is optional on this directive. (Normally, this label is referenced as
the second address in an SD instruction.)

The first operand is the address of the record being described bv this table.
(Normally, this address is the first address in the associated SD instruction.)
This operand may be in one of the formats A, B, C, or D (see Table 2-2).

The second operand is the "active record/item" number to be assigned to the
first item described in the table. Thereafter, each item in the table will have a
value, one greater than the previous, assigned to the label of the ID defining it.

1D Directive (Item Descriptor)

The four types of ID operands, are described under separate headings below.

GAP DEFINER

A label is not allowed with a "gap" definer.

Two operands, separated by commas, are used:

1. The first is a minus sign;

2. The second is a decimal number defining the length of the gap.

This typé of ID does not generate an item descriptor. It signifies that the

next item descriptor will have, as its "start" byte, a value reflecting the existence

2-27

of the gap defined by this descriptor. The gap is considered to start at the byte
immediately after the "end" byte of the previous item (or at @ if the SIDT statement
preceded).

REDEFINE AND LEAVE GAP

A label is not allowed with this type of ID.

" Two operands, separated by commas, are used:
1. The first operand is the letter R (redefine).

2. The second operand is a decimal number defining the length of the gap (it
may be "p").

This type of ID does #not generate an item descriptor. It signifies that the
next item descriptor will have, as its "start" byte, a value reflecting the existence
of the gap‘defined by this descriptor. The gap is considered to start at the "start"
byte of the previous item (or at P if the SIDT statement preceded).

DEFINE START AND LENGTH OF ITEM

A label must be used with this type of ID. The value assigned to this label is
one more than the value assigned to the previous item. (If this is the first ID in
the table to describe an item, the value assigned'to the label is that of the second
operand of the SIDT defining the start of the table.)

Two operands, separated by commas, are used:

1. The first operand defines the start of the item. It may be a label (format
B, C, or D, see Table 2-2) or a decimal number indicating the displacement
from the start of the recird (from § to 255). If a label is used, the
displacement is caluclated by subtracting from its value that of the first
operand of the SIDT statement starting the table.

2. The second operand is a self-defining decimal number from 1 to 256
specifying the length of the item being described.

This type of ID generates a 2-byte item descriptor.

DEFINE LENGTH OF ITEM

A label must be used with this type of ID. The value assigned to this label is
one more than the value assigned to the previous item. (If this is the first ID in
the table to describe an item, the value assigned to the label is that of the
second operand of the SIDT défining the start of the table.)

2-28

1) The SDP instruction points to- the SSDT directive.

r—— = g r——————————- .
I sop SDAT SDAT SSDT) |
L = J4] BUFF1 sD HERE ,HERE+2D |

| CARDSD D COREC, CDIDT |

2) The first operand of a record SD points to the actual data area; the
second points to the SIDT directive; the label is used in the "load
active record »". instruction.’

______________ -
|
ClcARDSD] ~ b [COREC], [CDIDT] |
e
l
N G G B O S _
: . I
: CDIDT SIDT CDREC,2/ |
' ID "93 l
| coLa 1D 1
| 1D R, l
| COL45 ID 2 |
| . ID . ‘974 l
| COLEND 1D 1

3) The first operand of the SIDT directive points to the actual data area:
the second operand specifies the active record into which the cor-
responding SD will be loaded. '

r’ ___________ -
| cDIDT SIDT [corec] , [2/0) !
| 1D =3 g — — = — — — -
| coL4 1D 1 [CARDSD |
| ID R,D I ML , X1
1D 2 b e — T —— J
ID "974 .
L_COeNo 1D __ 1 __ _ _]_J
A= = — ——
| [CDREC] RES 8P|
e e -

4) Labels defined in the IDT (by ID instructions) are used as l-byte
. operands in instructions. (In this example, 'COL45" will have a value of
"201" and describe columns 4 and 5 of the record in "CDREC".)

Figure 2-1. Use of SDAT and IDT

2-29

EDITING SOURCE INPUT

So that anticipated modifications to source programs may be coded but not assembled,
the Assembler provides an editing feature. Based on the value of a code in column
72, the Assembler will either treat a particular statement as a comment or as a
statement to be assembled. Two types of editing are supported, as described below.

Normal Editing (Switch H)

A, Edit Switch OFF:
A11 statements will be assembled, except those with "+" (plus sign) in
column 72,

B, Edit Switch ON:
A11 statements will be assembled, except those with "-" (minus sign) in
column 72.

The programmer should write his program such that anticipated deletions are coded
with a minus sign, while anticipated additions are coded with a plus sign. Turning
on the Edit switch during assembly gives him the "anticipated" program with all
changes.

Three-Pfqgfam Editing (Switches G and H)
Using this method, "+" or "-" should not appear in column 72.

A. Switch G and H OFF: A1l statements will be assembled.

B. Switch G ON, H OFF: Al1 statements will be assembled, except those with the
digits 1,3,5 or 7 in column 72.

C. Switch GO OFF, H ON: A1l statements will be assembled, except those with thé
digits 2, 3, 6, or 7 in column 72,

D. Switch G ON, H ON: A1l statements will be assembled, except those with the
digits 4,5,6 or 7 in column 72.

Conceptually, this method allows the programmer to have three different "versions"

of a program with one source input. Column 72, in each case, contains a number
representint the decimal sum of the "version numbers" in which the statement will not
appe?r. The versions are numbered: 1 (G OFF; H ON); 2 (G ON; H OFF); and 4 (G ON;

H ON).

The following tables indicate whether a particular statement will be assembled (A)
or not (N) under the various switch settings.

2-30

]l NORMAL EDITING
CONTENT OF
COLUMN 72
Other, except
+ - | 1 through 7)
H OFF N A A
H ON : A N A

THREE PROGRAM EDITING
CONTENT OF COLUMN 72

(Other, except
112 3 4 5 6 7 + or -)

G OFF; H OFF alalalalalala A

F OFF; H ON
(Version 1) A LN N A A N N A

G ON; H OFF
(Version 2) N A N A N A N A_

F ON; H ON
(Version 4) ALA A N N N N A

RELOCATABILITY
Predefined External Labels

When writing a relocatable program (see START directive), certain special predefined
external labels may be used:

The address of the highest byte of core.

NXCORE - The address of the next unused byte of core after collection of all
modules.

PBIASE - The P-BIAS of the main (first) module in a collection.

SDAPE - The SDAT-POINTER of the main (first module in a collection.

T

—

(]

o

o

m
1

EXTRN statements for these names must not be written. Reference to external labels
~(both predefined and those defined by EXTRN statements) must be made to the label
only, not with "plus" or "minus" notation.

EXTRN, ENTKY and COM Statements

EXTRN statements in an assembly refer to labels defined in other modules. Such
labels are referenced by ENTRY and COM statements in the modules in which they are
defined.

The collector wf]] gather together all modules with matching EXTRN and ENTRY or COM
labels and substitute the proper addresses for each occurrence.
'22Z2ZUCORE' Card-Image

The assembler will produce a 'ZZZZUCORE' card-image in every relocatable assembly
to communicate to the Collector miscellaneous information about the Assembler's use
of core memory.

- ERROR FLAGS IN LISTINGS

Each statement in the source program is checked for syntax while being assembled.
If an error is found, a letter indicating the type of error is printed on the right
side of the Tisting on the same 1ine as the statement in error. The left side of
the Tisting (where machine coding is printed) will have asterisks printed in the
same line as any syntax error. Table 2-3 lists syntax error flags and their re-
spective meanings. o

Absolute Non-relocatable Address

Absolute non-relocatable addresses will be generated by the assembler for address
type operands by either using a constant or preceding the label or constant with an
equal (=) sign in the operand field.

MODES OF OPERATION

The SYSTEM 2400 Assembler provides for both single file and multi-file assembly pro-
cessing, Sense switch E is used to select the mode of operation:

Switch E ON - Selects multi-file assembly.
Switch E OFF - Selects single file assembly.

Single File Assembly

Single file processing can be performed using source input from punched cards or
magnetic tape and requires operator attention between each assembly.

Multi-File Assembly

Multi-file processing can only be performéd using source 1nput'ffom magnetic tape
The card reader will be used to read the f11e contro] cards necessary to control the
multi-file assembly process :

FILE CONTROL

The assembler uses SCOD records for f11e selection and two consecut1ve tape marks to
indicate the end of tape.

FILE CONTROL DIRECTIVES

The assembler will recognize three File Control directives. These directives are
always provided to the assembler via card input. The three directives are described
below.

2-32

Table 2-3., Assembler Syntax Error Flags

FLAG

MEANING

PHAC """ ERROR:

1. On END card, different number of card-images read in the two phases.
2. Label on this card disagrees with its location in Phase 1.

ENTRY ERROR:

ENTR" -~ard found after crher Assembler instructions (in Phase 1 as well).

FORMAT FRROR:

1. Label is too long.

2. Operation code is too long.

3. Invalid SD or ID instruction, ,

4. EATRY or EXTRN directive used in unrelocatable program.

INVALID OPERAND:

1. Incorrectly specified operand. ta
2. Incorrect number of operands,

ILLEGAL LABEL

MULTI-DEFINED LABEL:

1. Label on statement is defined elsewhere,
2. Operand contains reference to multi-defined label.

ILLEGAL OPERATION CODE

UNDEFINED:

1. Operand contains reference to undefined label.
2. Operand in Assembler directive was not previously defined (in Phase 1).

OVERFLOW

Label on statement not saved or given value because of overflowing core
(in Phase 1).

Label on rejected statement also rejected (Phase 2 only).

WARNING: e

1. {perand value truricated to one byte,
2. Negative address generated.

3. Invalid ID specification in operand.
4, Invalid use of a literal.

EXTRN LOST
Because of overflowing core.

ILLEGAL ADDRESS-TYPE DC
Length must be 2 or 4 bytes.

2-33

Select File Call

The Selective File Call directive is used to identify a file to be assembled
from magnetic tape input. The card contains the name (XXXXXX) that appears in
the $$$$CODXXXXXX record. The name (up to six characters) must be left-justi-
fied on the input card starting in column one, The cards identifying the
files to be assembled must be ordered in the same manner as their respective
files are ordered on the magnetic tape. For information on the $$$$SCOD re-
cords, see the Librarian program in the SYSTEM 2400 Utilities Manual, Form No.
PM-2601. '

Multi-File Call

This directive is used to assemble all files on the magnetic tape, or all re-
maining files following the last file specified by a Select File Call direc-
tive. The card contains a plus sign (+) left-justified in column one.

End

This directive directs the assembler to cease communications with the card
reader and must be the last card in the File Control card deck. The card con-

- tains the "/*" symbols (slant and asterisk) left-justified in column one.

OPERATING THE ASSEMBLER

The program is executed in two phases:

PHASE 1:

- Source statements are read.
- The Assembler constructs a table of labels used in the program.

In PHASE 2:

- Source statements are read again.
- The Assembier produces object coding and a listing.

To execute the Assembler:

1.
2.
3.

Load the Assembler into cord.
Turn on any Sense switches needed.
If a multi-file assembly, place file control card deck in card reader.

Press the RUN switch.

If source statements are being read from a card reader, the Assembler will
halt at the end of Phase 1. The operator must p]ace the source statements
back into the input hopper, make sure the reader is ready, then press the RUN
switch to execute Phase 2.

If subsequent assemblies are wanted, return to step 2.

Use of Sense switches and indicator lights is detailed in Table 2-4,

2-34

TABLE 2-4. Lights and Switches Used by Assembler

USE OF LIGHT NAME USE OF SENSE SWITCH
OFF: Normal
ON, mount new list tape A ON: ' Restart Assembler
OFF: Listing on 'LP' Device
ON, if in listing routine B ON: Listing on 'MT' Device1
OFF: Input on 'Ml'' Device
ON, if in input routine o ON: Input on 'CR' Device
OFF: Object Output on 'MT' Device
ON, if in object routine D ON: Object Output Suppressed
OFF: Single File Assembly
ON, if 1/0 error occurs E ON: Multi-File Assembly
OFF: Normal
ON during assembly F ON: Listing Suppressed
OFF: Normal or Edit PGM2
ON during Phase 2 G ON: Edit PGM1 or Edit PGM 4
OFF: Normal or Edit PGMI
ON during Phase 1 H ON: Edit PGM2 or Edit PGM 4
LP = LINE PRINTER
CR = CARD READER
MT = MAGNETIC TAPE
1/0 ERROR: If an I/0 error occurs light E is illuminated as well as C, or D
to indicate which operation failed. Press RUN to continue the
assembly operation and bypass the error condition.
ERROR COUNT: The total number (binary) of errors encountered during the

assembly run is displayed in the indicator lights (A-H).

]With switch B on, when an end-of-tape is detected, two tapemarks are written,
the tape is rewound, and the program halts. Mount another 1ist tape and press
RUN to complete the assembly. ‘ ‘

DEVICE CONFIGURATION
Input - May be on card reader or magnetic tape.

Object Output - May be on magnetic tape or suppressed.
Listing - May be on line printer or magnetic tape or suppressed.

Files on magnetic tape are assigned at the commencement of the run, depending on
sense switch settings (to select devices) and the system configuration. First, the
listing, if on tape, is assigned to MT3 or next-highest available drive. Then, ob-
ject output, if produced, is assigned to MT2 or next-highest available drive.
Finally, the input, if on tape, is assigned to MT1 or next-highest available drive.

The card reader and line printer are both device "§" in their respective c1as$es,
when used. "

Unless all tape drives are needed for the execution of the Assembler, "MTP" is not
used, leaving MTP free for the master program tape.

If more tape drives are required than exist in the system configuration, the Assem-
bler, having determined this, will return to Step Z of the operating instructions
above.

A11 possible Assembler configurations are summarized in Table 2-5.

TABLE 2-5. Assgmb]er Configurations

SYSTEM CONFIGURATIONS
SENSE
SWITCHES 4 (or more) MT's 3 MT's 2 MT's 1 MT
BJC|D}F| CRAILPAIMT@|MTY|MT2|MT3| CR|LPEIMTA|MT1|MT2| CRB|LPAIMTR IMT1| CRR|LPRIMTH
giojpio i | L | M 0 i|JL|M oji|JL{MjOoijLIoO
gigleig i M 0 i M 0] i MO i 0
piplijpl 1 | L | M i|L}IM ifLiMiofifLM
I M i M i M i M
pliipie LiM|i]o LIM[i]O Liif{of > *(*
piijen Mji|o MIijo 1[0 *p x| *
\ plije LiM[i LMl LM L]
! sl AR Ml M i
: 1(018(0§ i M oLy MO i O Ly x| *x|*
1plof i M 0 i M i MO i 0
g i M Ly i M L] i ML L
118} i M i M i M i M
AN Mii]JOjL TLO L) *p x| x| xf x| x|
; LA Ml1ilo Mlijo POy x| *]*
! e R L TRERIE N e
: 1ih 1[Ml M M i
LEGEND: i = Input (source)
0 = Output (object)
L = Listing .
M = Master Program Tape (MPT)
CR = Card Reader
LP = Line Printer
MT = Magnetic Tape
* = Not enough tape drives; program will restart

2-36

ORJLCT COE MAP

Figure 2-2 reflects the laycut of an object program on object tape.

RELOCATABLE 2ROGRAM ONLY:

ZZZZENTRY
Carc- *uages, input to Collector, naming and
defining entry-points in the assembled

program.

ZZZZUCORE RELOCATABLE PROGRAM ONLY:

' Single card-image, input to Collector,
giving information for use of core, P-BIAS,
SDAT-Pointer, and I0CS buffer use.

ALL PROGRAMS:
Actual unrelocated program. If no external
labels are required, this portion of the
object deck is executable by hardware load.
OBJECT . If program is not relocatable, this is first
PROGRAM on the object tape.

RELOCATABLE PROGRAM ONLY:
| ZEZZEXTRN Card-images, input to Collector, indicating

PO p—

i ‘ places in object program where external
labels are used.

ALL PROGRAMS:
Single tape merk after eacn program file

orn a multi-program tape. Two tape marks

after the last program file on tape.

Fiqure 2-2. Object Couz Map
2-37 |

APPENULX A

CINTERRUPT PROGRAMMING

Provisions have been made within the 502 Processor to interrupt the main pro-
gram hy events which occur asynchronously with main program execution. The follow-
ing events can interrupt the processor:

CLASS 1 - Monitor interrupts: associated with input and output buffering
fui »

on 1/0 Selector Channals. The intorrupt occurs, if enabled,
when an active input or outpul buficr qoes from the active
state to tno inactive state indicating that the buffer is
filled or emptied.

CLASS 2 - Service interrupts: asscciated with the peripheral devices

connected to an I/0 Selector Channel. The interrupt occurs, if
enabled, when the peripheral device sets its interrupt line to
the processor indicating service is required by the device.

CLASS 3 - Special interrupts: primarily associated with the processor

hardware itself; machine checks, illegal instructions, and

add on hardware modules. The interrupt occurs, if enabled,
when a unique condition or an error is detected by the hardware
indicating that some action must be taken by the software.

- SOFTWARE INTERRUPT LINKAGE

Software interrupt linkage is provided for in the design of the processor’s
Program Control Block (PCB) (see Figure A-1). When an interrupt occurs, the cur-
rent instruction being executed in the main program is completed and then the
program location pointer (P) is forced to a fixed memory location in the PCB; one
for each class of interrupt. Each of the locations in the PCB reserve four bytes
for an interrupt linkage instruction which, when executed, provides a branch to an
appropriate interrupt handling routine. The interrupt linkage instruction nor-
mally is a GOTO Subroutine (GSB) instruction. Execution of the GSB instruction
causes P, the return address to the main program, to be saved in a push-down stack
buffer as specified by the OP1 1item. A |

A~1

ADDRESS
000-000
000-004
000-010

000-014

000-020
000-022
000-024
000-030
000-034
000-040
000-044
000-050
000-054
000-060

PCB

ARO (SDAT)

AR1

AR2

AR3

>

PROGRAM POINTER

REAL TIME CLOCK

CLASS 1 INTERRUPT

CLASS 2 INTERRUPT

CLASS 3 INTERRUPT

ARO (SDAT)

AR1

AR2

AR3

¢

M

WORKER STATE
ACTIVE RECORDS

EXEC STATE
ACTIVE RECORDS

Figure A-1. 2408 Processor-Program Control Block.

A-2

Raturn to the main proaram from the interrupt handling routine normally is
accoir Tished by the exacucion of an Tnterrupl Return 0070 (GIR) instruction, which
extracis the return address as specified by the CP1 item from the push-down stack
buffer and places it in the P register. This return addross is the nexi instruc-
tion cxecuted in the main program.

WORKER/EXECUTIVE STATE

The procassor has twn states f operation: the Worker State and the Executive
State. Fach state has a separate set of Active Rocerds in the Program Control
Block {(soo Figure A-1). Address 000-000 through CU0C-017 contain the Active Records
for iue Worker Stato; addreosses 000-040 througn 000-057 contain the Active Records

for the Executive State,

On power-up, restart, and P-start, thc processor is forced to the Worker
State. The processor is switched to the Executive State by either of the following
methods:

Swap States (SWS) Instruction: This instruction switches the processor

from its current operating state to the other state.

Interrupt: An interrupt automatically forces the processor to the
Executive State.

The swap states condition is effective immediately when the SWS instruction
is executed while in the Worker State. However, in the Executive State, one ad-
ditional instruction is executed before the processor switches to the Worker State
to allow the execution of an Interrupt Return GOTO (GIR) instruction which references
an AR/I item. For example, the normal exit from an interrupt handling subroutine
is the execution of a SWS instruction followed by the GIR instruction.

ENABLE/DISABLE INTERRUPTS

Any or all interrupts may be selectively enabled or disabled by using the
Interrupt Mask (IM) instruction. This instruction is normally used at the beginning
of the program to enable only those interrupts that will be used by the program.

A1l disabled 1nterrupts’are ignored.

SET/CLEAR INTERRUPT LOCKOUT
Interrupt lockout is a condition associated with program instruction execution.

When the interrupt Tockout condition prevails, interrupis that occur are saved in
hardware logic aznd only when the interrupt Teckout condition is cleared does the
program honcy these interrupts. The interrupt Tockout condition may be caused by

A-3

any one of the following:

e When power is applied to the processor.

@ When a RESTART-RUN operation is initiated.

e When an interrupt (Class 1, 2, or 3) occurs.

e When the Sct Interrupt Lockout (SIL) instruction is executed.

If the program is to use interrupts, a Clear Interrupt Lockout (CIL) in-
struction m7st be executed.

The execution of this instruction allows only fhose interrupts enabled by the
Interrupt Mask (IM) instruction to be honored by the processor. All other in-
- terrupts are ignored. When an interrupt does occur, the processor automatically
locks out all other interrupts until the interrupt lockout condition is cleared.
Normally, -interrupt lockout is automatically cleared when exiting the interrupt
routine by using the Interrupt Return GOTO instruction. The interrupt lockout con-
dition may also be cleared by executing the Clear Interrupt Lockout (CIL) instruc-
tion. If the CIL instruction is used within an interrupt handling routine, the
routines must be nested properly and associated designators stored to insure proper
operation. Usually the CIL instruction is used following a Set Interrupt Lockout
(SIL) dinstruction. The SIL instruction is used when a portion of the program must
be run without interruption. When completed, the CIL instruction clears the in-
terrupt lockout cendition, allowing interrupts to be honored.

SAVE CONDITION DESIGNATORS & TALLY COUNTER
Upon entering an interrupt handling routine, the Store Tally Counter (STT)
and the Store Designators (STD) instructions are normally the first instructicns
to be executed. These two instructions save the condition of the tally counter and
the designators prior to executing instructions to determine the cause of the

interrupt. The interrupt handling routine may use instructions which affect the
condition of the tally counter and designators, thereby destroying their content
as pertaining to main program (worker state) operation. Prior to exiting the in-
terrupt handling routine, the Load Designators and Load Tally Counter instructions
are executed to restore the tally counter and designators to their original con-
dition under the worker state.

Condition Designators
The condition designators are contained within a 1-byte item and are listed

as follows:

A-4

Bit 2° = 1/0 Parity Error
2”7 = Memory Parity Error

25 = Arithmetic Error

2% = Arithmetic Overflow Error
23 = BDMA Parity Error

2? = Greater Than Designator

2 = Abnormal Edit Error
20 = Equal Designator

The GOTO on Designators (GD) instruction may be used to test the individual
bits except for bit 22 - -Greater Than Designator Set.

Tally Counter
The tally counter is a 2-byte binary counter (see Figure A-2) which counts the

number of data bytes moved or compared by instructions accessing AR/I type operands.
Only the actual data transferred or compared is counted. Character fills or char-
acter eliminates are not. Note that any instruction that affects the tally resets
the counter to zero before execution of the instruction. See Appendix D for a |
detailed 1list of the instructions that affect the tally counter.

MSBY LSBY

TALLY COUNTER 2

Figure A-2. Tally Counter

CLASS 1 - MONITOR INTERRUPTS
Monitor interrupts are associated with data buffering on I/0 Selector channels.

A monitor interrupt occurs when an input or output buffer on an I/0 Selector channel
switches from the active to the inactive state (filled or emptied), provided that
monitor interrupts have been enabled and are not locked out. The monitor interrupt
can be generated by any one of the eight I/0 Selector channels.

“When a monitor interrupt occurs, it forces a branch to address 000-024 which
normally contains a GSB instruction. This instruction, when executed, saves P
and brarniches to the interrupt handling routine. In the interrupt routine, a series
of GOTO On Channel Interrupt (GCI) instructions may be used to determine which I/0
Selector channel caused the interrupt. The GCI instruction also clears the in-
terrupt condition for the I/0 Selector channel tested.

A-5

Figure A-3 gives an example of a Monitor Interrupt handling subroutine. Upon
entry, the contents of the tally counter and designators are stored and the I/0
Selector channels are tested to determine which channel had a buffer terminate.
Upon detecting a channel whose buffer terminated, a branch is made to the process-
ing portion of the subroutine. When processing is completed, the subroutine re-
stores the tally count and designators, swaps states, and returns to the main pro-
gram.

This subroutine example shows the channels being tested in order of channel
priority; channel 7, then channel 6, etc. Any order may be used, but the channels
should be tested in an order which gives priority to high-speed buffering devices.
For example, if a disk is connected to channel 4, a magnetic tape unit to channel 6
and a card reader to channel 2, then channel 4 should be tested first, channel 6
second and channel 2 third to effectively service the speeds of the three devices.

Note that once an input or output buffer is initiated on a channel, it runs
asynchronously with the main program. With a number of buffers initiated on vari-
ous channels, it is possible to get one interrupt (assume channel 4) that forces the
program to the interrupt routine, but prior to testing channel 4, channel 6 also
interrupts. Although interrupts are locked out, if channel € is tested before
channel 4, the interrupt on channel 6 will be honored first. In this case, the
channel 6 interrupt is cleared, but not the channel 4 interrupt. On return to the
main program, one instruction is executed and then the channel 4 interrupt is
honored.

CLASS 2 - SERVICE INTERRUPTS
Class 2 service interrupts are generated by peripheral devices connected to

I/0 Selector channels. Eight of these interrupts, one for each I/0 Selector chan-
nel, are available for connected devices. Service interrupts allow a device to
interrupt the processor when it requires special action to be performed by the
processor. To generate a service interrupt, the peripheral device must be able to
set the service request line in the 1/0 cable connecting it to the I/0 Selector
channel. If more than one device capable of generating an interrupt is connected
to the same I/0 cable (channel, the programmer must then request status from the
devices to determine which one caused the ir:errupt.

When a service inferrupt occurs, it forces a branch to address 999-030 which
normally contains a GSB instruction (see Figure A-1). This instruction, when
executed, saves P and branches to.the interrupt handling routine. The interrupt

A-6

ENTER FROM ADDRESS 000-024
INTERRUPTS ARE LOCKED OUT

STORE TALLY
COUNT

(STT)

|

STORE
DESIGNATORS

(STD
:R‘

N PROCESS
INTERRUPT > CHANNEL 7
iy INTERRUPT
N~ PROCESS
TERRUPT CHANNEL 6
INTERR INTERRUPT C

CH. ONUYES PROCESS
INTERRUPT > | CHANNEL 0)
(6C1) INTERRUPT

RESTORE
TALLY COUNT

(LT)
i

RESTORE
DESIGNATORS

(LD)
l
SWAP STATES

(SWS)

EXIT -- REMOVE INTERRUPT LOCKOUT
GIR RETURN TO MAIN PROGRAM

Figure A-3. Monitor Interrupt Precessing Flow Diagram (example).

A-7

routine should be designed to identify the interrupting device by executing a
series of GSI instructions (see Figure A-4), similar to the interrupt routine used
for monitor interrupts.

If more than one device on a given channel can generate the service interrupt,
the interrupting device is identified by requesting status from each device. When
status is requested from the interrupting device, the service request status bit in
the status reply will be set and the device will clear its service request on the
I/0 cable. Class 2 service interrupts are handled similar to monitor interrupts
and can be selectively enabled or disabled using the IM instruction.

CLASS 3 - SPECIAL INTERRUPTS
Class 3 interrupts arc generated by special conditions internal to the pro-

cessor itself. Provisions have been made to detect up to eight class 3 interrupts.
The interrupt sources are bit position encoded within a 8-bit byte and are obtained
by using the Store External Instruction Error (SEE) dinstruction. The interrupt
sources currently being used are as follows:

BIT_POSITION INTERRUPT SOURCE
0

Do

Non-0Operation Sub-Op Code

2'I Not assigned
22 Delta Clock

23 Not assigned
24 Not assigned
25 Machine Check
26 BDMA Channel 6
2/ BDMA Channel 7

When a class 3 interrupt occurs, it forces a branch to address 000-034 which
normally contains a GSB instruction (see Figure A-1). This instruction, when
executed, saves P and branches to the interrupt handling subroutine.

Figure A-5 gives an example of a Special Tt ~:rrupt handling subroutine. Upon
entry the contents of the tally counter and designators are stored and then the SEE
instruction is executed to obtain the Class ? Interrupt status which always con-
sists of a 14-byte item as follows:

A-8

ENTER

FROM ADDRESS 000-030
INTERRUPTS ARE LOCKED OUT

STORE TALLY

COUNT
(STT)
]
STORE
DESIGNATORS
(STD)
,H‘ 5 | PROCESS
. YES CHANHEL 7
INTERRUPT
(6C1) VINTERRUPT
G Ny PROCESS
- / CHANNEL 6
INTERRUPT >==——1 [yTeprupT [Q)
NO
) |
| !
| |
PROCESS
CHANNEL 0 4
INTERRUPT)

RESTORE
TALLY COUNT

(LT)

|

RESTORE
DESIGNATORS

(LD)

SWAP STATES
(SWS)

EXIT
(GIR)

Figure A-4,

--. REMOVE INTERRUPT LOCKOUT
RETURN TO MAIN PROGRAM

Service Interrupt Processing Flow Diagram (example).

A..Q

MSBY LSBY
0P3 [Byte T[Byte 2| o v o i v v i et .. Byte 14 |

Byte two contains the bit-encoded interrupt source and is tested by using a
series of GOTO On Designator (GD) instructions to determine the type of interrupt
that had occurred. The order of testing these bits is a function of program
design. ' ‘ ’

Non-Operational Sub-Op Code (20)
Assuming a Non-Operation Sub-Op Code error (bit 2

0 set), a check must first

be made to determine if an illegal sub-op code was detected or if the processor
lacks the hardware module to execute the instruction. This check can be done by
testing the contents of byte 1 in the status item. It contains the sub-op code
that could not be cxecuted. If the sub-op code is'i]1nga1, error indicators may
be displayed and the program halted while still in the interrupt handling routine.
Return to the main program at this time without positively identifying what the
sub-op was supposed to be may cause program instruction execution to be indeter-
minate. This point will become apparent in the following discussion relating to
lack of hardware modules.

If the sub-op code is legal but cannot be executed due to lack of hardware,
the programmer may then include additional software to perform the same operation
as the unexecutable sub-op code. The recovery from this condition is simplified
in that the sub-op code and the absolute address limits of the OP1, OP2 and OP3
jtems are defined in the status item (OP3 of SEE instruction). In addition, the
return address stored in the push-down stack buffer (see GSB instruction) prior to
entering this interrupt handling routine points to the absolute address of the
literal for those instructions (sub~op) having four operands. The Titeral may be
obtained by using this address and the return address must then be advanced by 1,
such that on return to the main program, instruction execution sequence is in sync
with instruction op codes. This situation can hest be explained by describing in
general what the processor is doing when it executes an Execute External (145)
instructipn with a sub-op code. Assume the fo]]dwing Execute External instruction
is to be executed.

FROM ADDRESS 000-034
INTERRUPTS ARE

LOCKED OUT =
ENTER RETURN
(: :) ADR_FROM N CIHEDR
RETURN STACK [~—] N NUMERIC
BUFFER DISPLAY
STORE
TALLY COUNT .
(sTT)
SET FLAG TO SN
1 Do _8Y PROCESS SUB- | ITERAL NO
STORE SOFTWARE OP CODE IN WITH
DESIGNATORS MAIN PROGRAM INSTR
(sTD) YES
L GET LITERA
GET_CLASS 3 CLEAR FLAG TO L
INTERRUPT PROCESS SUB- | (op4)
STATUS P CODE IN
(SEE) MAIN PROGRAM
20 : ADD 1 TO
. RETURN ADR
XNSTéEERROR R R
STACK BUFFER
PROCESS DELTA r[\
CLOCK et
INTERRUPT T
PROCESS
BOMA CH. 6 | (Y
INTERRUPT
PROCESS
BOMA CH. 7)
INTERRUPT

RESTORE
TALLY COUNT GET CHANNEL
(LT) . PARITY ERROR
STATUS
l (SCE)
RESTORE
DESIGNATORS PROCESS
MEMORY~_ YES | CLEAR BIT 26 MEMORY
(L0) PARITY IN DESIGNATOR PARITY
' RROR BYTE INTERRUPT
NO
SWAP STATES 0CESS
PROCES
(SHS) 70 CH: CLEAR BIT 2/ 1/0 CH. 5
PARITY IN DESIGNATOR PARITY §
ERROR BYTE INTERRUPT
N — PROCESS
BOMA CH. CLEAR BIT 2 ¢
Y .
<:::PARITY ES} N DESIGNATOR B)
ERROR BYTE INTERRUPT
jﬁo J

EXIT REMOVE INTERRUPT LOCKOUT °
(GIR) RETURN TO MAIN PROGRAM

Figure A-5. Special Interrupt Processing Flow Diagram (example).
A-11

Multiple Literal Decimal Instruction

0C SUB-0P OP1 opP2 0P3 OP4
145 025 AR/1 - AR/1 L 0C
of next
instruction
Py P Py Ps Py Ps Pe

Pb - Program Pointer points to beginning of instruction. 0C-145 when read
specifies an External Instruction, Advance to P].

P, - Read SUB-OP code (ML.D in this example). Advance to P,.

P2 - Read OP1 and generate the beginning and ending addresses for operand 1
item. Advance to P3, '

P3 - Read OP2 and generate the beginning and ending addresses.for operand 2
item. Note: This step takes place even though OP2 is not used by the
instruction. Advance to P4.

P4 - Read OP3 and generate the beginning and ending addresses for operand 3
item. Advance to PS‘

P5 - At this point the processor passes control to the multiply/divide hard-
ware module. The module reads OP4 (literal) from the instruction and
performs the multiply operation. When finished the program pointer is
setting at P6 and controi is returned to the processor.

P6 - The processor reads up the next instruction (0C) to execute, etc.

The execution of an illegal or unavéi]ab]e instruction is essentially the same
as described above except for the following:

1. An illegal instruction is detected when the SUB-OP code is read (P]).
Instruction execution continues and the beginning and ending addresses for
operands OP1, OP2 and OP3 are generated advancing the program pointer to

P5. At this time the class 3 interrupt occurs. Operand OP4 is not read.

2. An unavailable instruction (hardware module missing) is detected after
operand OP3 has been read and its beginning and ending addresses generated.
The program pointer is at P5. At this time thc class 3 interrupt occurs.
Operand 0P4 is not read.

A-12

When the class 3 interrupt occurs, the contents of the program pointer (now
at P5 in example) is saved. The processor switches to the Executive State and the
program pointer is forced to 000-034: the location of the next instruction to
execute. At address 000-034, the programmer should have a GOTO Subroutine (GSB)
instruction. This instruction, when executed, causes the program (worker state)
return address (PS) to be stored into the Push Down Stack Buffer and a branch is
made to the programmer's subroutine to determine the cause of the class 3 inter-
rupt Return (GIR) instruction is used. This instruction, when executed, takes
the Tast program pointer address (P5) from the Push Down Stack Buffer and forces
it in the P register as the address of the next instruction to be executed in the
worker state. With regard to the example above, the processor uses OP4 as the
operation code (0C) for the next instruction to be executed. As a result, the
instruction execution sequence is indeterminate.

To recover from the above situation, the programmer must add one (+1) to the
return address (P5) Tocated in the Push Down Stack Buffer prior to return to the
main program (worker state). In essence, the program pointer must be advanced to
P6 in the example above.

Although the primary function of being able to detect an illegal or unavailable
sub-op code is program recovery, the feature may also be used by the programmer to
obtain absolute addresses for specific AR/I operands. A1l that is required is to
execute an Execute External (145) instruction with an illegal sub-op code (i.e.,

176 or 177) and specifying up to three AR/I operands. The interrupt handling sub-
routine executes the SEE instruction to obtain the absolute addresses for the
specified AR/I operands. The above technique may also be used to switch the pro-
cessor from the Worker to the Executive state.

Delta Clock (22)

This bit if set indicates that the Delta Clock has counted down to zero (see
LC instruction).

Machine Check (25)

A machine check interrupt occurs if the processor detects a parity error under
the following conditions:

Memory Parity - A parity error was detected while reading a byte from

core memory.

A-13

1/0 Channel Parity - A parity error was detected whiie receiving a data

or status byte from the peripheral device connected
to an I/0 Selector channel.

BDMA Channel Parity - A parity error was detected while receiving a data

or status byte from the peripheral device connected
to a BDMA channel, or a parity error was detected in
the address furnished by the device connected to

the BDMA channel in either a read or write memory
cycle.

A GOTO On Designator (GD) instruction may be used to distinguish between the
above parity errors. If an I/0 or BDMA channel parity error, the Store Channel
Parity Error (SCE) instruction may be executed to obtain additional status as to
which I/0 or BDMA channel caused the interrupt. In addition, the BDMA channel
parity error is categorized as a data or status byte parity error or as an address
parity error. '

NOTE:

1. The following rule must be adhered to when processing
a Machine Check interrupt:

Clear the corresponding bit in the designator
byte prior to exiting the interrupt sub-
routine (see Figure A-5).

If the bit is not cleared, the processor, upon return
to the Worker state, will detect the bit set and auto-
matically generate another class 3 interrupt, forcing
the program back to the interrupt handling subroutine.

2. The 1/0 PAR CK indication on the Processor Panel for
the 2408 Processor indicates that a parity error has
been detected on a processor I/0 channel or a BDMA
channel during a status or data transfer from a peri-
pheral device. An address with bad parity transferred
from a peripheral device on a BDMA channel also lights
the indicator. The programmer, via software methods,
may determine the exact cause of the parity error as

described above. :
A-14

APPENDIX B
PROGRAMMING ACTIVE RECORDS

The inherent design of address generation for Active Record Items in the
processor logic allows the programmer to load one or more Active Records (AR's)
with the execution of one Load Active Record instruction.

Existing documentation describes the Load Active Record instructions on a
one-for-one basis:

LR1 Loads Active Record 1 (AR1)

LR2 Loads Active Record 2 (AR2)

LR3 Loads Active Record 3 (AR3) and

LSP Loads the Storage Descriptor Area Pointer (ARO)

The format for the above instructions consists of an op code and one operand
which specifies a four-byte item in the Storage Descriptor Area Table (SDAT). The
lTocation of the SDAT table is defined by the contents of ARO which is loaded during
initial program load. Active Records 1, 2 and 3 are then loaded from the SDAT
table using the LR1, LR2 and LR3 instructions. The SDAP table, whose location is
specified by the contents of ARO (bytes 0 and 1), does not require an Item Descrip-
tor Table (IDT), since ARO when used as an operand in an instruction always
specifies a four-byte item (hardware design). As a result, the LR1, LR2, LR3 and
LSP instructions can only load one AR in the PCB if the operand specifies ARO as
the Active Record.

Basically, the LR1, LR2, LR3 and LSP instructions are a move riqht-a]igned :
instruction. The Operation Code (0OC) specifies the beginning location into which

the first byte of the item specified by OP1 is moved. The number of bytes moved
is determined by the following factors:

If OP1 specifies ARO in OP1, then only four bytes are moved.

If OP1 specifies AR1, AR2 or AR3, then the item length determines the
number of bytes moved.

Assume the following instruction is being executed:

B-1

0C 0P1

LR3 R - where R specifies an item in the SDAT table.
175 005
SDAT - PCB :
001-000 : 000-000 | 001 | 000 ARP
- Item 9 (SDAT Printer)
| XXX | XXX
(|
1]
’ :} Item 1 " :} AR1
! |
(|
I I
| :} Item 2 , :} AR2
[} {
| |
| 001 | 000
' Item 3 > b AR3
| A 005 | 000
1 |
! i} Item 4)
I !
t |
001 ! 000 {
l Item 5 l
005 + 000 .
i
— (

When the above instruction is executed, item 5 (Record Descriptor) in the
SDAT table is moved right-aligned into AR3 of the PCB. Since the OP1 item in the
above instruction specified ARO as the active record, only 4 bytes are moved.

Assume the next-instruction to be executed is also an LR3 instruction and the
following conditions exist:
e The record described by item 5 in the SDAT overlays the SDAT itself.

® The IDT for record 5 is located at address 005-000 and contains the
item descriptors as illustrated (item'O through 12), and

® The programmer wishes to load ARO, AR1, AR2, and AR3 with different values
(item 6 of record 5) using the one LR3 instruction.

B-2

0C OP1

LR3 | AR/I - where AR/I specifies Active Fcord 3 and

175 | 306 item 6 of record 5.

When the instruction is executed, item 6 of record 5 is moved right-aligned
into the PCB until address 000-000 is filled, and the remaining four bytes (AAA,

MMM AAR AMAY zre moved to the last four bytes of memory (37/-374 through 377-377
in a 65K memory). :
Record 5 PCB (before)
,Ltems
001-000 |AAA | AAA 0 000-000 {001 ; 000 ARO
AAA | AAA N S22 XXX D XXX
BBB ! BBB 1 1 4 [XXX_! XXX ARL
BBB ; BBB >10 6 |XXX ! XXX
cccd cec |\, E> 6) 10 [XXX 1 XXX R2
cccy cce p 12 |XXX 1 Xxx
| DR ON
Doby DOD | L 4 S) 14 |001 } 000 AR3
DD | DDD 10 16 005 | 000
EEE | EEE 4 |
eeey eee |) 0 S
001 } 000 5
005 ! 000
: PCB (after)
|
000-000 |BBB ;, BBB ARO
2 |BBB ! BBB
4 |ccc ! ccc ARI
6 |ccct ccc
1
10 |oobp ! DOD ARD
12 [DbD ! DDD
14 |EEE ! EEE ARS
16 |EEE ! EEE
20 '
]
[}
e
377-374 |AAA | AAA
377-376 [AAA ! AAA

B-3

In general, the above philosophy allows loading one or more AR's with one
Load Record instruction as follows.

Instruction Record Item AR's Loaded
Length (bytes)

LR3 4 AR3
LR3 10 © AR3, AR2
LR3 148 AR3, AR2, ARI
LR3 208 AR3, AR2, AR1, ARO
LR2 a4 AR2
LR2 108 AR2, ARl
LR2 144 AR2, AR1, ARO
LR1 4 AR1 '
LR1 108 AR1, ARO
LSP 4 ARO

The above discussion was directed toward the processor Worker State. The
same philosophy applies to the Exec State.

The above discussion also jllustrated the SDAT table with a record overlay.
This need not be, it may be a different record or records as long as the overall
programming architecture of the processor is followed.

B-4

APPENDIX C - EBCDIC CODE

Bit Octal Bit Octal
Char. 7654 3210 Code | Char. 7654 3210 Code
A 1100 0001 301 6 1111 0110 366
B 1100 0010 302 7 1111 0111 367
c 1100 0011 303 8 1111 1000 370
D 1100 0100 304 9 1111 1001 371
E 1100 0101 305 Space 0100 0000 100
F 1100 0110 306 ¢‘j) 0700 1010 112
G 1100 0111 307 . 0100 1011 113
H 1100 1000 310 < 0100 1100 114
I 1100 1007 311 (0100 1101 115
J 1101 0001 321 + 0100 1110 116
K 1101 0010 322 1@ 0100 1111 117
L 1101 0011 323 & 0101 0000 120
M 1101 0100 324 1@ 0101 1010 132
N 1103 0101 325 $ 0101 1011 133
0 1101 0110 | 326 * 0101 1100 134
p 1101 0111 327) 0101 1101 135
Q 1101 1000 330 3 0101 1110 136
R 1101 1001 331 _§> 0101 1111 137
S 1110 0010 342 - 0110 0000 140
T 1110 0011 343 / 01106 0001 141
v 117170 0100 | 344 ; 0110 1011 153
v 1110 0107 345 % 0110 1100 154
W 1110 0110 346 — 0110 1107 155
X 1110 0111 | 347 > 0110 1110 156
Y 1110 1000 | 350 ? 0110 1111 | 157
z 1110 1001 351 : 0111 1010 172
0 1111 0000 360 # 0111 1011 173
1 1111 0001 361 @ 0111 1100 174
2 11711 0010 362 ' 0111 1101 175
3 1111 0011 363 = 0111 1110 176
4 1111 0100 364 " 0111 1111 177
5 11711 0101 365 * 1710 0000 340
Null 0000 0000 000
+ Sign 1111 xxXxXx Substitute Codes
- Sign 1101 x "X C}] C%

APPENDIX.D
TALLY COUNTER -

INSTRUCTION EXECUTION

TALLY COUNTER -
INSTRUCTION EXECUTION

Op Code - Tally Counter
Octal Mnem. Instruction Clear & Count Ciear Only
000 M Move, Left-Align, X
No Fill -
001 MR Move, Right-Align, X
No Fill ‘
*003 MED Move, Edit X
004 MF Move, Left-Align, X
Fill
w || 005 MRF Move, Right-Align, X
S Fill
=1 006 MJ Move, Left-Justify X
3 Fill
007 MRJ Move, Right-Justify X
Fill
140 TRL Translate Code X
141 ML Move Literal X
*050 MPK Pack X
*052 MUP Unpack X
021 GGT GOTO Greater Than - -
022 GLT GOTO Less Than - -
023 GNE GOTO Not Equal - -
o i 024 GE GOTO Equal - -
=
§ 025 GNL GOTO If Not Less Than - =
=
&1l 026 GNG GOTO If Not Greater - -
Than
027 G GOTO Unconditionally - -
030 GD GOTO On Designators - -
031 GS GOTO On Switches - -

* 502 Mode Only

D-2

TALLY COUNTER -
INSTRUCTION EXECUTION

(continued)
Op Code Tally Counter
Octal Mnem. Instruction Clear & Count Clear Only
*061 GBG GOTO Binary Greater - -
Than

*062 GBL GOTO Binary Less Than - -
*063 GBN GOTO Binary Non Zero - -
*064 GBZ GOTO Binary Zero - -
*065 GGBE GOTO Binary Zero - -
*066 GLBE GOTO Binary Zero - -

[&>) -

E *071 GDG GOTO Decimal Greater - -

= Than

=

o 1 *072 GDL GOTO Decimal Less Than - -
*073 GDN GOTO Decimal Non Zero - -
*074 GDZ GOTO Decimal Zero - -
*075 GGDE GOTO Decimal Zero - -
*076 GLDE GOTO Decimal Zero - -
*170 GCT GOTO On Count - -
*172 GTB GOTO Table - -

(Indirect Branch)

*173 GRT Return GOTO - -
*176 GSB GOTO Subroutine - -
044 CB Compare Binary X

& || 046 cB Compare Decimal X

<C

;%) 142 CAN Compare Alphanumerics X
144 CL Compare Literal X

* 502 Mode Only

TALLY COUNTER -
INSTRUCTION EXECUTION

(continued)
Op Code Tally Counter
Octal Mnem. ' Instruction Clear & Count Clear Only
040 TBS Test Binary Sign , X
042 TDS Test Decimal Sign : X
- 150 TI Test Item X
=15 TL Test Literal X
152 ™ Test Mask X
*153 TIM Test Item Mask X
100 INS Special In - -
104 EF External Function On - -
Channel .
105 0TS Special Qut - -
*106 EFS External Function - -
Special
107 GA GOTO On Channel Active - -
— 110 STC Store Channel Control - -
2 Register
5
e | *111 STR Store Channel Reverse - -
[—-
§ *112 INR Initiate Input Reverse - -
114 IN Initiate Input On - -
Channel
115 ouT Initiate Output On - -
v Channel
*116 0TR Initiate Output ‘ - -
Reverse
000 RN - Rename X
—4
<L) N
co | 020 NOP No Operation - -
=5
Ca) *24 STD Store Designators - -

* 502 Mode Only
D-4

TALLY COUNTER -

INSTRUCTION EXECUTION

(continued)
Op Code Tally Counter
Octal Mnem. Instruction Clear & Count Clear Only
014 cp Compress Item, Left- X
Align, Fill
015 CPR Compress Item, Right- X
Align, Fill
o 120 APR Append, Right- X
= Eliminate
= ,
Q| 121 APA Append, Advance: X
o |
g 122 APE Append, Left-Eliminate X
=
S 130 EXV Extract Variable X
e Length Item, Fill
w
131 EXP Extract Previous Item X
132 EX Extract Item X
133 EXA Extract Item, Advance X
*160 X Exclusive OR - -
*162 RCK Longitudinal - -
E§ Redundancy Check
8 ||*164 0 Logical OR - -
-)
*166 N Logical AND - -
*113 GSI GOTO On Service - -
Request
*117 GCI GOTO On Channel - -
Interrupt
= *154 SWS Swap States - -
s]
§:j *155 SIL Set Interrupt Lockout - -
—
= |[*157 CIL Clear Interrupt Lockout - -
*174 IM Interrupt Mask - -
*177 GIR Interrupt Branch GOTO - -

* 502 Mode Only

D-5

TALLY COUNTER -
INSTRUCTION EXECUTION

(continued)
Op Code Tally Counter
Octal Mnem. Instruction Clear & Count Clear Only
*126 LD Load Designators - -
*134 STT Store Tally Counter - -
*136 LT Load Tally Counter - -
143 H Halt - -
146 SDI Set Display X -
Indicators
(S8) .
8 [*147 GAP No Operation Leave - -
& Gap
o
oo
- 156 CDI Clear Display X
= Indicators
=
& {*161 LSP Load Storage - -
Descriptor Pointer
*165 LR1 Load Active Record 1 - -
*171 LR2 Load Active Record 2 - -
o *175 LR3 Load Active Record 3 - -
g 041 AB Add Binary X
a
E 045 SB Subtract Binary X
<
= 051 ALB Add Literal Binary X
=
= | 055 SLB Subtract Literal X
@ Binary
QO
E 043 A Add Decimal X
=
EE 047 S Subtract Decimal X
o
= | o053 AL Add Literal Decimal X
% 057 SL Subtract Literal X
L Decimal

* 502 Mode Only

D-6

TALLY COUNTER -
INSTRUCTION EXECUTION

(continued)
Op Code Tally Counter
Octal Mnem. Instruction ~ Clear & Count Clear Only
*004 LC Load Delta Clock X
*014 SEE | . Store External X
Instruction Error
*015 SCE Store Channel X
Parity Error ‘
. [I*020 MB Multiply Binary X
<t
— {1*021 MLB Multiply Literal X
! Binary
u .
(e)
9 *022 DB Divide Binary X
[a>]
— |1*023 DLB Divide Literal X
S Binary
=
% *024 MD Multiply Decimal X
e |1 *025 MLD Multiply Literal X
3 Decimal
-
j *026 DD Divide Decimal X
<C
£ |[*027 DLD Divide Literal X
= Decimal
o
*030 BTD Binary to Decimal X
*031 DTB Decimal to Binary X
*034 SDR Store Decimal X
Remainder
*035 SBR Store Binary X
Remainder

* 502 Mode Only

D-7

APPENDIX E

INSTRUCTION ECUTION TIMES AND PROCESSOR MODELS

The instructicn execution times vary, 1t upon the instruction and the number
of data bytes manipulated. Table E-% .iv~s the formulae for calculating the exe-
cution time of the instructions wheir = %1% processor is used.

The following

A
B
C

S(p,q)

L(p,q)

symbology is used “ table:

Number of bytes .n the space described by operand A.

Number of bytes in the space described by operand B.

Number of bytes in the space described by operand C.

Number of bytes in the shorter of the spaces described by

operands "p" and "q".

Number of bytes in the longer of the spaces described by

operands "p" and "q".

Number of bytes to be eliminated in operand A (in APR, APE
instructions).

Number of bytes compared or tested (in CAN, CL, T1, TL instructions)

In CAN: If equal, X=B; ,
If unequal,X=the number of bytes in 'B' compared until
inequality is established.

In T1 or TL:If equal,X=the number of bytes in 'A' compared until
value is found.
If unequal, X=A.

In CL: If equal, X=A.

~ If unequal,X=the number of bytes in 'A' compared until

inequality is established.

Table E-1.

Formulae for Execution Times of the 501A Processor

0P CODE

OCT MNE EXECUTION TIMES (in microseconds)
DATA MOVE

000 | M 30 + 4*S(A,B)

001 MR 30 + 4*S(A,B)

004 MF 32 + 2*S(A,B) + 2*B

005 MRF 32 + 2*S(A,B) + 2*B

006 MJ 32 + 2*S(A,B) + 2*B

007 MRJ 32 + 2*S(A,B) + 2*B

140 TRL 44 + 8*S(A,B)

141 | M 18 + 2%A |
BRANCHING

020 NOP 6 (no jump possible)

021 GGT 10 if jump, 6 if no jump

022 GLT 107 1f jump, 6 if no jump

023 GNE 10 if jump, 6 if no Jjump

024 GE 10 if jump, 6 if no jump-

025 GNL 10 if jump, 6 if no jump

026 GNG 10 if jump, 6 if no jump

027 G 10 .

030 GD 1s if jump, 8 if no jump

031 GS 12 if jump, 8 if no jump
COMPARE

044 cB 30 + 2%S(A,B) + 4*L(A,B)

046 cD If signs are alike, 30 + 2*S(A,B) + 4*L(A,B)

If signs are unlike, 36
142 CAN 30 + 4*X
144 CL 18 + 2*X

E-2

Table E-1. Formuiae for Lxecution Times of the 501A Processor

{continued)
OP CODE o
oCT MNE EXECUTIOH TIMES (in microseconds)
TEST
040 TBS 18
042 TDS |- 18
150 T1 32 + 2*X
151 TL 18 + 2*X
152 ™ ' 20
INPUT/QUTPUT
100 | INS 32+ 2B
104 EF 46 + 8*B
105 0TS 32 + 2*B
107 GA 26 if jump, 22 if no jump
110 STC 38
114 iN 36
115 ouT 36
GENERAL
000 RN 46
143 H 2
146 | sDI 18
156 CD1 18
161 | LSP 32
165 LR1 32
171 LR2 32
175 LR3 32

E-3

Table E-1.

Formulae for Execution Times of the 501A Processor

(continued)
0P CODE
oCT MNE EXECUTION TIMES (in microseconds)
BINARY ARITHMETIC .
041 AB 44 + 2*S(A,C) + 2*S(B,C) + 2*C
045 SB 44 + 2*S(A,C) + 2*S(B,C) + 2*C
051 ALB 36 + 2*A + 2*B
055 SLB 36 + 2*A + 2*B
DECIMAL ARITHMETIC -
043 A If signs are alike, 44 + 2*S(A,C) + 2*S(B,C) + 2*C
If signs are unlike, 46 + 2*S(A,C) + 2*S(B,C) + 6*C
047 S If signs are unlike, 46 + 2*S(A,C) + 2*S(B,C) + 6*C
053 AL If signs are alike, 36 + 2*A + 2*B
If signs are unlike, 38 + 2*A + 6*B
057 SL If signs are unlike, 38 + 2*A + 6*B
SEQUENTIAL EDITING
014 | CP 34 + 2*%S(A,B) + 2*B
015 CPR 34 + 2*S(A,B) + 2*B
120 APR If all source bytes are eliminated, 36 + 2*%A
If designators are set, 38 + 4*S(A,B) - 2*N
If designators are not set, 44 + 4*S(A,B) - 2*N
121 APA If designators are set, 34 + 4*S(A,B)
If designators are not set, 40 + 4*S(A,B)
122 APE If all source bytes are eliminated, 36 + 2*A
If designators are set, 36 + 4*S(A,B) - 2*N
If designators are not set, 42 + 4*S{A,B) - 2*N
130 EXV If no designators are set, 46 + 2*S(A,B) + 2*B
If 'EQUAL' is set, 40 + 2*B |
If 'ABN EDIT' is set, 40 + 4*B
If '"EQUAL' and 'ABN EDIT' are set, 38 + 4*S(A,B)
131 EXP 42 + 4*S(A,B)
132 EX 34 + 4*S(A,B)
133 EXA 40 + 4*S(A,B)

E-4

Table E-2 gives the formulae for calculating the execution time of the
instructions when a 502, 50ZA or 502B is :perating in ihe processor. 1 - micro-
When the 502, 5024 or 502B processor is operating in the 2 -

second cycle time.
The same symbology is

microsecond cycle time, the calculated %im2 are doubled.

used az in table E-1.

E-5

Table E-2. Formulae for Execution Times of 502, 502A & 502B Processors

Op Code
Octal | Mnem. EXECUTION TIMES (in microseconds)
000 M 7 + 2 S(A,B)
001 MR 7 + 2 S(A,B)
*003 MED , 12+ N+ 2(X-N) + M+ C
004 MF - 8+ S(A,B) + B
005 | MRF 8 + S(A,B) + B
006 MJ 8 + S(A,B) + B
= 007 | MRJ 8 + S(A,B) + B
= || *050 | MPK 7+25S(AB) +C
< || %052 | Mup 7+S(AB)+2¢C
*140 TRL 10 + 4 S(A,B)
141 ML 5+A
020 NOP 1
021 GGT 5 if jump, 3 if no jump
022 GLT 5if jump, 3 if no jump
023 GNE 5 if jump, 3 if no jump
024 GE 5 if jump, 3 if no jump
025 GNL 5 if jump, 3 if no jump
026 GNG 5 if jump, 3 if no jump
027 G 5 if jump, 3 if no jump
030 GD 6 if jump, 4 if no jump
031 GS 6 if jump, 4 if no jump
*061 GBG -8+ A if jump, 6 + A if no jump
*062 GBL 8 + A if jump, 6 + A if no jump
- *063 GNB 8 + A if jump, 6 + A if no jump
= || *064 | GBZ 8 + A if jump, 6 + A if no jump
Z || *065 |GGBE 8+ A if jump, 6 + A if no jump
& || *066 |GLBE 8 + A if jump, 6 + A if no jump
*071 GDG 8 + A if jump, 6 + A if no jump
*072 GDL 8 + A if jump, 6 + A if no jump
*073 GDN 8 + A if jump, 6 + A if no jump
*074 GDZ 8 +A if jump 6 + A if no jump
*075 |GGDE 8 + A if jump, 6 + A if no jump
*076 |GLDE 8 + A if jump, 6 + A if no jump
*170 | GCT 10 if jump, 8 if no jump
*172 GTB 14 if jump, 9 if no jump
*173 | GRT 12
*176 GSB 16

* 502 Mode Only . E-6

Table E-2. Formulae for Execution Times of 502, 502A and 502B Processors

(continued)
Op Code
Octal | Mnem. EXECUTION TTEES {in microseconds)
044 | CB 7 + S(A,B) + 2 L(A,B)
" 046 | €D If signs are alike, 7 + S(A,B) + 2 L(A,B)
s If signs are unlike, 10
s 142 | CAN 74+ 2 X
144 | CL 5+ X
040 | TBS 5
042 | TDS 5
= 150 | TI 8 + X
et 151 | TL 5+ X
152 | ™ 6
*153 | TIM 8+ X
100 | INS 8 + B
104 | EF 11+ 48
105 | 0TS 8 +B
. 106 | EFS 8 +B
& 107 | GA 7 if jump, 9 if no jump
3 110 | S
S lan s |
[~ 18
= [*112 | INR 10
114 | IN 10
115 | ouT 10
*116 | OTR 10
000 | RN 15
*124 | STD 5
*126 | LD 5
*
R O I
2 143 | H 1
Q.
|
2 e o |
&
S 156 | CDI 5
*161 | LSP 1
*165 | LRI 11
*171 | LR2 11
*175 | LR3 1

* 502 Mode Only E-7

Table E-Z. Formulae for Execution Times of 502, 502A and 502B Processors

(continued)
Op Code
Octal| Mnem. EXECUTION TIMES (in microseconds)
*160 | X 10 + 3 S(A,B,C)
% |*162 | RCK 8 + S(A,B) 4
‘ g *164 | 0 10 + 3 S(A,B,()
- *166 | N 10 + 3 S(A,B,C)
E 041 | AB 10 + S(A,B) + L(A,B) + C
E% 045 | SB 10 + S(A,B) + L(A,B) + C
‘5‘5 051 | ALB 8+A+8B
@< 055 | SLB 8+A+8B
043 | A If signs are alike, 10 + S(A,B) + L(A,B) + C
o If signs are unlike, 11 + S(A,B) + L(A,B) + 3 C
_JES 047 | S If signs are unlike, 11 + S(A,B) + L(A,B) + 3 C
== 053 | AL If signs are alike, 8 + A + B
O If signs are unlike, 9+ A+ 3 B
o= 057 | SL If signs are unlike, 9 + A+ 3 B
014 | CP 9 + S(A,B) +B
015 | CPR 9 + S(A,B) + B
120 | APR If all source bytes are eliminated, 10 + A
If designators are set, 11 + 2 S(A,B) - N
If designators are not set, 14 + 2 S(A,B) - N
121 | APA If designators are set, 9 + 2 S(A,B)
If designators are not set, 12 + 2 S(A,B)
% 122 | APE If all source bytes are eliminated, 10 + A
= If designators are set, 10 + 2 S(A,B) - N
a If designators are not set, 13 + 2 S(A,B) - N
=2 130 | EXV If no designators are set, 15 + S(A,B) + B
= If 'EQUAL' is set, 12 + B
= If 'ABN EDIT' is set, 12 + B :
= If "EQUAL' and 'ABN EDIT' is set, 11 + 2 S(A,B)
& 131 | EXP 13 + 2 S(A,B)
132 | EX 9 + 2 S(A,B)
133 | EXA 12 + 2 S(A,B)

* 502 Mode Only

E-8

Table E-2. Formulae for Execution Times of 502, 502A & 502B Processors

(continued
Op Code

Octal Mnem. EXECUTIC:H TINES (in microseconds)

*113 GSI 7 if jump, 9 if no jump

*117 GCI 7 if jump, 9 if no jump
= *154 SWS 34
g ||*55 | SIL 2
= *157 CIL
- *174 IM 5

*177 GIR 15

*004 LC 12
< |l *014 | SEE 24
' *015 SCE 1
S || *020 MB 31 + 2 L(A,B) + 2 S(A,B) + 2 C
2 | *021 | MLB 33+2L(AB) +28B
= || *022 | DB 30 + 2 [L(A,B) + S(A,B) + C]
= | *023 DLB 32 + 2 [L(A,B) + B]
2 | *024 | MD 79 + 2 [L(A,B) + S(A,B) + C
L *025 MLD 81 + 2 L(A,B) + B
S | *026 | DD 54 + 2 [L(A,B) + S(A,B) + C
o *027 DLD 56+ 2 L(A,B) + B
= || *030 | BTD 58 + 2 L(A,B) + B
wo [l %031 | DTB 10 + 2 [L(A,B) + B]
o | *034 SDR 39 + A

*035 SBR 15+ 2 A

* 501 Mode Only

Table E-3 indicates the processor that can execute each instruction.
ing processors are listed.

* 501
* 502
* 502A
* 5028

Currently, the correlation of System to Processor is as follows:

Sys tems Processor
2404 502
2405 501A or 502
2408 502A or 502B
2409-1 5028 '

An "X" in Table E-3 indicates that the processor can execute.the instr

Table E-3. Instruction Set and Processor Model

The follow-

uction.

OP Code Processor
OCT | MNE Instruction 50TA | 502 | 502A | 502D
000 | M Move, Left-Align, No Fill X X X X
001 | MR Move, Right-Align, No Fill X X X X
003 | MED | Move, Edit ' NO X X X
| 004 | MF | Move, Lift-Align, Fill X X X
é; 005 | MRF | Move, Right-Align, Fill X X X
= 006 | MJ Move, Left-Justified, Fi]] X X X
S | 007 | MRJ | Move, Right-Justified, Fill X X X
050 | MPK | Move, Pack | NO X X X
052 | MUP | Move, Unpack NO X X X
140 | TRL | Translate Code | X X X
141 | ML Move Literal X X X

Table E-3. Instruction Set and Processor Model
(continued)
OP Code Processor
OCT | MNE Instruction 501A 1 502 | 502A | 502B
020 | NOP No Operation X X X X
021 | GGT GOTO Greater Than X X X X
022 | GLT | GOTO Less Than X X X X
023 | GNE GOTO Not Equal X X X X
024 | GE GOTO Equal X X X X
025 | GNL GOTO Not Less Than X X X X
026 | GNG GOTO Not Greater Than X X X X
027 | G GOTO Unconditionally X X X X
030 | GD GOTO on Designators X X X X
. 031 | GS GOTO on Switches X X X X
= | 061|GBG | GOTO Binary Greater Than Zero NO X | X X
= | 062 [GBL | GOTO Binary Less Than Zero NO X X X
& | 063 |GBN | GOTO Binary Non Zero NO X X X
064 | GBZ GOTO Binary Zero NO X X X
065 | GGBE | GOTO Binary Equal/Greater Than Zero| NO X X X
066 | GLBE | GOTO Binary Equal/Less Than Zero NO X X X
071 | GDG GOTO Decimal Greater Than Zero NO X X X
072 | GDL GOTO Decimal Less Than Zero NO X X X
073 | GDN GOTO Decimal Non Zero NO X X X
074 | GDZ GOTO Decimal Zero NO X X X
075 | GGDE | GOTO Decimal Equal/Greater Than NO X X X
Zero
170 | GCT GOTO on Count 1 NO X X X
172 | GTB GOTO Table NO X X X
173 | GRT Return GOTO NO X X X
176 | GSB GOTO Subroutine NO X X X

M
i

—
-

Table E-3. Instruction Set and Processor Model

(continued)
OP Code Processor
" OCT | MNE Instruction 501A| 502 | 502A | 502B
Eg 044 | CB Compare Binary X X X X
§ 046 | CD Compare Decimal X X X X
142 | CAN Compare Alphanumerics X X X X
144 | CL Compare Literal X X X X
040 | TBS Test Binary Sign X X X X
042 | TDS Test Decimal Sign X X X X
150 | TI Test Item X X X X
& 151 | TL Test Literal X X X X
= 152 | T™ Test Mask X X X X
153 | TIM Test Item Mask NO X X X
100 | INS Special In X X X X
— 104 | EF External Function on Chan. X X X X
& 105 | OTS | Special Out X X | X X
3 106 | EFS | External Function Special NO X X X
5 107 | GA GOTO on Channel Active X X X X
= 110 | STC | Store Chan. Control Register X X X
111 | STR Store Channel Reverse NO X X X
112 | INR Initiate Input Reverse NO X X X
114 | IN Initiate Input on Chan. X X X
115 | OUT | Initiate Output on Chan. X | X X
116 | OTR Initiate Output Reverse NO X X X
145 | - Execute External Instruction NO X X X
000 | RN Rename X X X X
" 124 | SID Store Designators NO - X X - X
é% 126 | LD Load Designators NO X X X
= 134 | STT | Store Tally Counter N | XX X
2 136 | LT Load Tally Counter NO X X X
] 143 | H Halt X X | X X
e 146 | SDI | Set Display Indicators X X X X
147 | GAP No Operation (1 Byte) NO X X X
156 | CDI Clear Display Indicators X X X X
161 | LSP Load Storage Desc. Pointer X X X X
165 | LRI Load Active Record 1 X X X X
171 | LR2 Load Active Record 2 X X X X
175 |LR3 | Load Active Record 3 X X | x X

E-12

Table E~3. Instruction Set and Processor Model

(continued)
0P Code Processor
OCT| MNE Instruction 501A | 5021 502A| 5028
» *160] X Exclusive OR , NO X X X
‘§' *162|RCK | Longitudinal Redundancy Check NO X X X
§ *164(0 Logical OR NO | X X X
*166| N Logical AND NO X X X
(&5]
=
(49}
=
X .
E 041]|AB Add Binary X X X
j 045|SB Subtract Binary X X X
g 055|SLB Subtract Literal Binary X X X
E
(&)
5
E
E 0431A 'Add Decimal X X X X
j 04715 Subtract Decimal X X X X
g 053 |AL Add Literal Decimal X X X X
é 057|SL Subtract Literal Decimal X X X X
014 |CP Compress Item, Left Align, Fill X X X X
w 015|CPR Compress Item, Right Align, Fill X X X X
= | 120|APR| Append, Right Eliminate X X X X
D | 121|APA| Append, Advance X X X X
=< | 122|APE | Append, Left Eliminate Xl x| X X
g 130|EXV | Extract Variable, Fill X X X X
§ 131 [EXP Extract Previous Item X X X X
1 132|EX Extract Item X X X X
133|EXA Extract Item, Advance X X X X

Table E-3. Instruction Set and Processor Model

(continued)
OP Code Processor
OCT | MNE Instruction 501A | 502 | 502A | 5028B
113 | GSI GOTO on Service Request NO X - X X
=1 117§ GCI GOTO on Channel Interrupt NO X X X
2 | 154 | SWS | Swap States N x| X X
E 155 | SIL Set Interrupt Lockout NO X X X
T 1 157} CIL| Clear Interrupt Lockout N[X | X X
174 | IM Interrupt Mask NO X X X
177 | GIR Interrupt Return GOTO NO X X X
- 004 | LC Load Delta Clock NO NO NO X
014 | SCE Store External Instruction Error NO NO X X
015 | SLE Store Channel Parity Error NO NO X
020 | MB Multiply Binary NO NO NO X
E | 021 |MLB | Multiply Literal Binary NO | NO | NO | X
& | 022|DB | Divide Binary NO | NO | NO | X
“ | 023|DLB | Divide Literal Binary NO | NO | N0 | X
= | 024 MD | Multiply Decimal NO | NO | N0 | X
£ | 025|MLD | Multiply Literal Decimal NO | NO | NO | X
“ | 026 LD | Divide Decimal NO [N0 NOO| X
027 | DLD Divide Literal Decimal NO NO NO X
030 | BTD Binary to Decimal NO NO NO X
031 | DTB Decimal to Binary NO NO NO X
034 | SDR Store Decimal Remainder NO NO NO X
035 | SBR Store Binary Remainder NO NO NO X

APPENDIX F
OCTAL NOTATION RULES
Octal notation is a convenient shorthand wethod of writing pure binary numbers.

In programming it is used to represent such binary values as memory addresses, I/0
control characters, constants, etc. '

If a binary value is divided into groups'of three bits, proceeding from right to
left, each group may be replaced by its octal equivalent as indicated in Table F-1.

Table F-1. Binary/Octal Equivalents

3-BIT BINARY OCTAL
GROUP EQUIVALENT
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7
Example 1: Example 2:
The binary value The binary value
011111000101001110 1010100111010

when divided into three-bit groups when divided into three-bit groups

011 111 000 101 001 110 1 010 100 111 010
has an octal equivalent of has an octal equivalent of
370516 ‘ 12472

OCTAL/DECIMAL CONVERSION PROCEDURE (See Table F-2)

Consider the decimal number to be converted as a base and an increment. Locate the
base (the next Tower number which is evenly divisible by 200) in the margin of the
lower chart and the increment in the body of the upper chart. The intersection of
the row and column thus defined contains the high-order digits of the octal equiva-
lent. The Tow-order digit appears in the margins of the upper chart opposite the

F-1

Table F-2. Decimal/Octal Conversion Table

DECIMAL INCREMEN!

HIGH-ORDER OCTAL DIGITS

i
& S 0] 000 008 016 024 032 040 048 036 064 072 080 088 096 104 112 120 120 136 144 152 160 168 176 184 192 | o 8 o
oz 1| 001 009 017 025 033 04l 049 057 065 073 081 089 097 105 I3 121 129 1§37 145 153 161 169 177 188 193 |1 5 F
g_‘ 2] 002 010 018 026 034 042 030 058 066 O74 082 090 098 106 114 122 130 138 146 156 162 170 178 186 19¢ |2 6
? 2 3] 003 o011 019 027 035 043 051 039 067 075 083 091 099 107 115 123 131 139 147 155 163 171 119 187 19s |3 o ®
E 3 4| 004 012 020 028 036 044 052 060 068 O76 084 092 100 108 116 124 132 140 148 156 164 172 180 188 196 |« a°
ot é; S| 005 013 021 029 037 045 053 061 069 077 085 093 101 109 117 125 133 el 169 137 16 173 181 189_ 197 |s =3
6| 006 o0l¢ 022 030 038 046 0S4 06Z 070 078 086 094 102 110 118 126 13¢ 142 1500 158) 180 ’T?o"l’ﬂ"n’ﬁ)"ﬁi"[:g =
7| 007 o015 023 031 039 047 055 063 071 079 087 095 103 111 119 127 135 14})S) LIARELANC e inm e
0000 [T 3 4 5 6 7 1o 1t 12 1y 14 18 16 11 20 21 22] 23] 24 25 26 27 30 | o000
0200 | 31 32 33 34 35S 36 37 40 41 42 43 44 45 46 47 50 St 82 syi s¢} 55 s& ST 60 61 |o0z00
0400 | 62 63 64 S 66 67 0 12 13 74 1S 16 7T 100 101 102 103 104] tos| 106 107 110 11v 112 | 0400
0600 | 113 14 A15 116 117 120 121 122 123 124 128 126 327 430 131 132 133 136 13s| 136 137 140 141 162 143 | 0600
0800 | 144 145 146 147 150 1SI 152 153 154 155 156 1ST 160 161 162 163 164 165 166] 167] 170 171 172 173 1714 | omoo
1000 | 175 176 177 200 201 202 203 204 205 206 207 210 211 212 213 214 218 216 217 220} 221 222 223 224 225 | 1000
1200 | 226 227 230 231 232 233 234 235 236 237 240 241 242 243 244 245 246 247 2s0] 251 252 253 254 255 256 | 1200
1400 | 257 260 261 262 263 264 265 266 267 270 27F 272 27 274 .27% 276 277 300 01| 302) 303 304 305 306 307 | 1400
1600 | 310 311 312 313 304 31S 36 3T 320 321 322 323 324 32 326 327 330 330 332| 33 334 33 3% 337 340 | 160n
1800 | 341 342 343 344 345 346 347 350 351 352 353 IS4 35S 356 3ST 360 361 362 363) 364| 365 366 367 370 371 | 1m00
2000 | 372 373 374 375 376 377 400 401 402 403 404 405 406 407 410 411 412 413 «14] 1] €16 417 420 421 422 | 2000
2200 | 423 424 425 426 427 430 431 432 433 434 435 436 437 440 44l 442 443 444 445) 446} 447 450 451 452 453 | 2200
2400 | 45¢ 455 456 457 460 461 462 463 464 465 466 467 470 471 472 473 474 475 476| 477] s00 s0I 502 503 S04 | 2400
2600 | sos so6 S07 S10 S1! 512 SI3 SK4 SIS SI6 517 520 S21 S22 523 S24 525 526 s27| ssof 531 s32 53y s34 535 | 2600
2800 | $36 537 540 S41 542 543 S44 545 546 547 550 551 552 553 554 SS5 556 557 S60] S61| S62 563 S64 565 566 | 2800
3000 | s67 570 STI S72 ST3 S74 575 576 S77 600 601 602 603 .604 605 606 607 610 611] 612] 613 6r4 615 616 617 | 3000
3200 | 620 621 622 623 624 625 626 627 630 631 632 633 63¢ 635 636 637 640 641 642 643 644 645 646 647 650 | 3200
3400 | 651 652 6S3 654 655 656 657 660 661 662 663 664 665 666 667 670 871 672 673 674) 675 676 677 700 701 | 3400
3600 | 702 703 704 705 706 07 P10 7il. TN2 TI3 Tia 715 716 1T 120 721 72& 7323 724 725} 726 127 730 31 732 | ve00
3800 | 733 734 735 736 TIT 240 741 T42, P43 T44 745 746 747 7% 151 752 753 7S 75| 756| 757 760 761 762 7163 | 3m00
4000 | 764 765 266 767 770 770 772 773 174 ITS 776 777 1000 1001 1002 100) 1004 1005 1006]1007{1010 1011 1012 1013 1014 | 4000
4200 | 1015 1016 1017 1020 1021 1022 1023 1024 1025 1026 1027 1030 1031 1032 £033 1034 1035 1036 1037|1040}1041 1042 1043 1044 1045 | 4200
4400 | 1046 1047 1050 1051 1052 1053 1054 1055 1056 1057 1060 1061 1062 1063 1064 1065 1066 1067 1070{1071}1072 1073 1074 1075 1076 | 4400
4600 | 1077 1100 1101 1102 1103 1104 1105 1106 1107 1110 1111 1112 1113 1114 1115 1116 1117 1120 1127 {1122}1123 1124 1125 1126 1127 | 4600
4800 | 1130 1131 1132 1133 1134 1135 1136 2137 1140 1141 1142 1143 1144 1145 1146 1147 1150 1151 1852[1153[2154 1155 1156 1157 1160 | 4800
5000 | 1061 1162 1163 1064 1165 1166 1167 1170 1171 1172 1173 1174 1175 1176 1177 1200 1201 1202 1203 [1204]1205 1206 1207 1210 1211 | S000
$200 | 1212 1213 1214 1215 1216 1217 1220 1221 1222 122) 1224 1225 1226 1227 1230 1231 1232 1233 1234 11235]1236 1237 1240 1241 1242] 5200
5400 | 1243 1244 1245 1246 1247 1250 1251 1252 1253 1254 1255 1256 1257 1260 1261 1262 1263 1264 1265[1266|1267 1270 1271 1272 1273 | 5400
5600 | 1274 1275 1276 1277 1300 1301 1302 1303 1304 1305 1306 1307°1310 1311 1312 1313 1314 1315 1316 }1317{1320 1321 1322 1323 1324 | 5600
5800 | 1325 1326 1327 1330 1331 1332 1333 1334 1335 1336 1337 1340 1341 1342 1343 1344 1345 1346 1347]1350f1351 1352 1353 1354 1355 | sRoo
6000 | 1356 1357 1360 1361 1362 1363 1364 1365 1366 1367 1370 1371 1372 1373 1374 1375 1376 1377 1400 [1401[1402 1403 1404 1405 1406 | 6000
6200 { 1407 1410 1411 1412 1413 1414 1415 1416 1417 1420 1421 1422 1423 1424 1425 1426 1427 1430 1430143201433 1434 1435 1436 1437 | 6200
6400 | 1440 1441 1442 1443 1444 1445 1446 1447 1450 1451 1452 145) 1454 1455 1456 1457 1460 1401 1462 [1463] 1464 1465 1466 1467 1470 | n400
6600 | 1471 1472 1473 1474 1475 1476 1477 1500 1501 1502 1503 1504 1505 1506 1507 1510 1511 1512 1513 (114|515 1516 1517 1520 1521 | #hao
O 6800 | 1522 1523 1524 1525 1526 1527 1530 1531 1532 1533 1534 1535 1536 1537 1540 1541 1542 1543 1544 11545/ 1546 1547 1550 1651 1552 | 6800 o
Z 7000 | 1553 1554 1555 1556 1557 1560 1561 1552 1563 1564 1565 1566 1567 1570 1571 1572 1573 1574 1575 [1576[1577 1600 1601 1602 1603 | 7000 m
W 7200 | 1604 1605 1606 1607 1610 1611 1612 1613 1614 1615 3616 1617 1620 1621 1622 1623 1624 1625 1626 J1627[1630 1631 1632 1633 1634 | 7200 Q
4 7400 | 1635 1636 1637 1640 1641 1642 1643 1644 1645 1646 1647 1650 1651 1652 1653 1654 1655 1656 1657 [1660]1661 1662 1663 1664 1665 | 7400 z
[¢s] 7600 | 1666 1667 1670 1671 1672 1673 1674 1675 1676 1677 1700 1701 1702 1703 1704 1705 1706 1707 1790 [i71if1712 1713 1714 1715 176 7600 "_’
- 7800 | 1717 1720 1721 1722 1723 1724 1725 1726 1727 1730 1731 1732 1733 1734 1735 1736 1737 1740 1741 [1742]7745 T744 1745 1746 1747 J7won]
; 8000 | 1750 1751 1752 1753 1754 1755 1756 1757 1760 1761 1762 1763 1764 1765 1766 1767 1770 1771 1772 1773 1774 1775 1776 1777 2000 | 8000 >
~ 8200 | 2001 2002 2003 2004 2005 2006 2007 2010 2011 2012 2013 2014 2015 2016 2017 2020 202} 2022 2023 2024 2025 2026 2027 2030 2031 | 8200 4
& 8400 | 2032 2033 2034 2035 2036 2037 2040 2041 2042 2043 2044 2045 2046 2047 2050 2051 2052 2053 2054 2055 2056 2057 2060 2061 2062 | 8400 2
o 8600 | 2063 2064 2065 2066 2067 2070 2071 2072 2073 2074 2075 2076 2077 2100 2101 2102 2103 2104 2105 2106 2107 2110 2111 2112 2113 | 8600 3
8800 | 2114 2115 2116 2117 2120 2121 2122 2123 2124 2125 2126 2127 2130 2131, 2132 2133 2134 2135 2136 2137 2140 2141 2142 2143 2144 | ggoo
9000 | 2145 2146 2147 2150 2151 2152 2153 2154 2155 2156 2157 2160 2161 2162 2163 2164 2165 2166 2167 2170 2171 2172 2173 2174 2175 | qano
9200 | 2176 2177 2200 2201 2202 2203 2204 2205 2206 2207 2210 2211 2212 2213 2214 2215 2216 2217 2220 2221 2222 222} 2224 2225 222% 2200
9400 | 2227 2230 2231 2232 2233 2234 2235 2236 2237 2240 2241 2242 2243 2244 2245 2246 2247 2250 2251 2252 225) 2254 2255 2256 2257 { 9400
9600 | 2260 2261 2262 2263 2264 2265 2266 2267 2270 2271 2272 2273 2274 2275 2276 2277 2300 2301 2302 2303 2304 2305 2306 2307 2310 | ano
9800 | 2311 2312 2313 2314 2315 2316 2317 2320 2321 2322 2323 2324 2325 2326 2327 2330 2331 2332 2333 2334 2335 2136 2337 2340 2341 | agoo
10,000 | 2342 2343 2344 2345 2346 2347 2350 2351 2352 2353 2354 2355 2356 2357 2360 2361 2362 2363 2364 2365 2366 2367 2370 2371 2372 | 10,000
10,200 | 2373 2374 2375 2376 2377 2400 2401 2402 2403 2404 2405 2406 2407 2410 2411 2412 2413 2414 2415 2416 2417 2420 2421 2422 2423 | 10,200
10,400 | 2424 2425 2426 2427 2430 2431 2432 2433 2434 2435 2436 2437 2440 2441 2442 2443 2444 2445 2446 2447 2450 2451 2452 2453 2454 [10, 400
10,600 | 2455 2456 2457 2460 2461 2462 2463 2464 2465 2466 2467 2470 2471 2472 2473 2474 2475 2476 2477 2500 2501 2502 2503 2504 2505 | 10,600
10,800 | 2506 2507 2516 2511 2512 2513 2514 2515 2516 2517 2520 2521 2522 2523 2524 2525 2526 2527 2530 2531 2532 2533 2534 2535 2536 10, 800
11,000 | 2537 2540 2541 2542 2543 2544 2545 2546 2547 2550 2551 2552 2553 2554 2555 2556 2557 2560 2561 2562 2563 2564 2565 2566 2567 | 11,000
11,200 | 2570 2571 2572 2573 2574 2575 2576 2577 2600 2601 2602 2603 2604 2605 2606 2607 2610 2611 2612 2613 2614 2615 2616 2617 2620 | 11, 200
11,400 | 2621 2622 2623 2624 2625 2626 2627 2630 2631 2632 2633 2634 2635 2636 2637 2640 2641 2642 2643 2644 2645 2646 2647 2650 2651 | 11, 400
11,600 | 2652 2653 2654 2655 2656 2657 2660 2661 2662 2663 2664 2665 2666 2667 2670 2671 2672 2673 2674 2675 2676 2677 2700 2701 2702 | 11,600
11,800 | 2703 2704 2705 2706 2707 2710 2711 2712 2713 2714 2715 2716 2717 2720 2721 2722 2723 2724 2725 2726 2727 2730 273) 2732 2733 | 11,800
12,000 | 2734 2735 2736 2737 2740 2741 2742 2743 2744 2745 2746 2747 2750 2751 2752 2753 2754 2755 2756 2757 2760 2761 2762 2763 2764 | 12,000
12,200 | 2765 2766 2767 2770 2771 2772 2773 2774 2775 2776 2TT7 3000 3001 3002 3003 3004 3005 3006 3007 3010 3011 3012 3013 3014 3015 | 12,200
12. 400 | 3016 3017 3020 3021 3022 3023 3024 3025 3026 3027 3030 3031 3032 3033 3034 3035 3036 3037 3040 3041 3042 3043 3044 3045 3046 | 12,400
12,600 | 3047 3050 3051 3052 3053 3054 3055 3056 3057 3060 3061 3062 3063 3064 3065 3066 3067 3070 3071 3072 3073 3074 3075 3076 3077 | 2 600
12,800 | 3100 3101 3102 3103 3104 3105 3106 3107 3110 3111 3112 3113 3114 3115 3116 3117 3120 3121 3122 3123 3124 3125 3126 3127 3130 | 12,800
13,000 | 3131 3132 3133 3134 3135 3136 3137 3140 3141 3142 3143 3144 3145 3146 3147 3150 3151 3152 3153 3154 3185 1156 3157 3160 3161 | 13, 000
13,200 | 3162 3163 3164 3165 3166 3167 3170 3171 3172 3173 3174 3175 3176 3177 3200 3201 3202 3203 3204 3205 3206 3207 3210 321) 3212 | 13, 200
13,400 | 3213 3214 3218 3216 3217 3220 3221 3222 3223 3224 3225 3226 3227 3230 3231 3232 323) 3234 3235 3236 3237 1240 3241 3242 3243 | 13 400
13,600 | 3244 3245 3246 3247 3250 3251 3252 3253 3254 3255 3256 3257 3260 3261 3262 3263 3264 3265 3266 3267 3270 3271 3272 3273 3274 | 13,600
13,800 | 3275 3276 3277 3300 3301 3302 3303 3304 3305 3306 3307 3310 3311 3312 3313 3314 3315 3316 3317 3320 332) 3322 3323 3324 IS | 13, 800
14,000 | 3326 3327 3330 3331 3332 3333 3334 3335 3336 3337 3340 3341 3342 3343 3344 3345 3346 1347 3350 3351 3382 3353 3154 3355 3366 14,000
14,200 | 3357 3360 3361 3362 3363 3364 3365 3366 3367 1370 3371 3372 3373 3374 3375 3376 3377 3400 1401 3402 3403 3404 1405 3406 1407 | 1¢, 200
14,400 | 3410 3411 3412 3413 3414 3415 3616 3417 3420 3421 3422 3423 3424 3425 3426 3427 3430 343 432 3433 3454 1415 3436 3437 3440 | 14, 400
14,600 | 3441 3442 3443 3444 D445 3446 3447 3450 3451 3452 3453 3454 3455 3456 3457 3460 34h1 34b2 1461 3464 3465 1466 VKT 14TN MTE | o1g 600
14,800 | 3472 3473 3474 3475 3476 3477 3500 3501 3502 3S0) 3504 3505 3506 3507 3510 3511 3512 3513 3514 3825 3516 3517 3520 4871 IS22 | 44 A0D
15,000 | 3523 3524 3525 3526 3527 3530 3531 3532 3533 3534 3535 3536 3537 3540 3541 3542 3543 3544 3545 3546 3547 3550 3551 3552 3553 |} 15, 000
15,200 | 3554 3555 35%6 3557 3560 3561 3562 3563 3564 3565 3566 3567 3570 3571 3572 3573 3574 3575 3576 3577 3600 3601 3602 3601 3604 | 15,200
15,400 | 3605 3606 3607 3610 3611 3612 3613 3614 3615 3616 3617 3620 3621 3622 3623 3624 3625 3626 3627 3630 3631 3632 3633 3634 3635 | 15 400
15,600 | 3636 3637 3640 3641 3642 3643 3644 3645 3646 3647 3650 3651 3652 3653 3654 3655 3656 3657 3660 3661 3662 3663 3664 3665 3666 | 15, 600
15.800 | 3667 3670 3671 3672 3673 3674 3675 3676 3677 3700 3701 3702 3703 3704 3705 3706 3707 3710 3711 3712 3713 1714 3715 3TI6 3717 1 15, 800
16,000 | 3720 3721 3722 3723 3724 372% 3726 3727 3730 3731 3732 3733 3734 3735 31736 3737 3740 3741 3742 3743 1744 3745 V246 1747 3750, 16 000
16,200 | 3751 3752 3753 3754 3755 3756 3757 3760 3761 3762 3763 1764 3765 3766 3767 3770 3771 3772 3773 3774 3775 3776 3777 4000 4001 | 16,200
16,400 | 4002 4003 4004 4005 4006 4007 4010 4011 4012 4013 4014 4015 4016 4017 4020 4021 4022 €023 4024 4025 4026 4027 4030 4031 4032 | 16,400

F-2

increment. For example, to convert 7958 to octal, the base is 7800 and the incre-
ment is 158. Locate 158 in the upper chart and read down this column to the 7800
row below. The high-order octal result is 1742. Then read out to the margin of
the upper chart to obtain the low-order digit of 6. Append (do not add) this
digit to 1742 for an octal equivalent of }7,426.

To convert an octal number to decimal, iocate the high-order digits in the body
of the lower chart and the low-orcs= digit in the margin of the upper chart. Then
perform the converse of the above operation.

TRI-OCTAL NOTATION

In SYSTEM 2400 programming concepts, "tri-octal" notation is used to describe the
contents of bytes. Tri-octal is simply a slight variation on octal notation (base
eight).

1. To describe in tri-octal notation the value of an eight-bit byte: the
first two bits are given an octal value between @ and 3; the next three
bits are given an octal value between @ and 7; the last three bits are
given an octal value between @ and 7.

P11234|567
BITS: gl1i11pip1p
"TRI-OCTAL: 1 6 2

2. To describe the value of more than one byte, the area is first divided
into bytes; then each byte is divided as above. In tri-octal notation,
each group of three digits will describe eight bits (one byte).

3. To convert decimal to tri-octal.

a. Write down the decimal number to be converted.

b. MWrite below it the value divided by two; ignore any remainder.

c. Write below this second value its "half", as before, and con-
tinue until the final value is "1".

d. In a column to the right of this column of numbers, write a "1"
beside each odd result, and a "p" beside each even result.

e. The binary representation of the decimal number now appears as
this second column, with the Zeust significant bit at the top.

f. Group the binary representation into bytes, then translate into
tri-octal as above.

F-3

BINARY ~ TRI-OCTAL

DECIMAL: 423 0DD 1
211 oDD 1 7
105 0DD 1
52 EVEN 0
26 EVEN 0 4
13 0DD]
6 EVEN 0)
3 . oDD 1
1 0DD 1 1 (next byte)

FINAL RESULT: 423 decima]>= 001-247 tri-octal

To convert tri-octal to decimal:

Values of each tri-octal column of a 2-byte number is shows:

BYTE ¢ BYTE 1
DECINAL VALUE 16384 2048 256 64 8 1
EXAMPLE : 1 0 3 2 7 6

16384 0 768 128 56 6

(1x16384) (Ox2048) (3x256)(2x64) (7x8) (6x1)

16384 + 0 + 768 + 128 + 56 + 6 = 17342 decimal

Notes about tri-octal:

a.

Most operands in SYSTEM 2400 instructions used the firsf two bits

of the byte to refer to an "active record". In tri-octal notation,

the first digit (of the three) describing the byte will be "g", "1",
2", or "3" - this is the "active record" being used.

Numbers with a leading tri-octal digit of "2" of "3" are negative
binary values, and will be so treated by the binary arithmetic in-
structions (ALB, SLB, AB, SB) and binary compare instructions (CB, TBS).

F-4

APPENDIX G
SNAP P ADAPTER

The SNAP P adapter is connected to DMA channel 2 and comprises two functions:
Capture P
Interrupt

CAPTURE P

Upon a command (via a Special Out Instruction), the Adapter captures the address of
the next instruction to be executed. The address is held by the Adapter until
called for by a Special In instruction. Interrupts are locked out by the Capture

P function and remain locked out until enabled by an Enable Interrupts command

(via Special Out instruction). |

A Special In instruction causes the Adapter to transmit the saved address to the
specified item space.

Command Formats

0TS (Item 1), (Item 2)
where: Item 1 is a 1-byte field equal to 002(8)
Item 2 is a 1-byte field equal to 002(8)

INS (Item 1), (Item 2)
where: Item 1 ib a 1-byte field equal to 002(8)
Item 2 is a 2-byte input field reserved for storage of the saved
address.

Programming Restrictions

Since the "Capture P" function records the absolute value of the instruction fol-
lowing the execution of the "Capture P" request, each subroutine must subtract the
P-bias from the saved address and must add 3 to the result in order to return to
the calling program.

G-1

Example:
Jump - 0TS Capture P
GOTO Exit to subroutine

Return from INS Get saved address - Store at Exit +1
Subroutine SB Subtract 208, 218 (P Bias)
| ALB Plus 003

Exit GOTO (Saved address)

INTERRUPT

The interrupt package on the SYSTEM 2400 Pfocessor resides on DMA Channel # 2 and
provides a facility for generating, sensing, and processing channel monitor and
service request interrupts. In addition to the eight channel interrupts, the
package is capable of accepting up to four auxiliary external interrupt request
inputs. From a user's (software) point of view, the package provjdes a means of:

e Linking to and returning from.the interrupt routine.

o Enabling and disabling all or individual interrupts.

e Preserving the integrity of the worker program state by prov1d1ng an alternate
set of Active Records (AR) Tlocations and a means of saving the program de-
signators.

* Capturing and identifying'up to 16 major interrupting conditions.

Use of the Ihterrupt Feature

Before interrupts can be utilized, the program must 1link interrupt occurance to the
interrupt processing routine and establish interrupt Tockouts so that only desired
interrupts are recognized.

Monitor interrupts are initialized when the channel active designator goes from the
active to inactive state; therefore, caution must be exercised in initializing
interrupts to clear any residual interrupts. This may be done by executing.

INS ITEM 1, ITEM 2
When ITEM 1 = DMA channel 2
and ITEM 2 = 5-byte status area

Linkage to the interrupt processing routine may be provided by a GOTO instruction
at location 248.

G-2

Interrupt lockouts may be established by executing
0TS ITEM 1, ITEM 2
where ITEM 1 contains the Interrupt Adapter ID and by convention is equal to

2. ITEM2 is a 3-byte item with the byte meaning as depicted in Figure G-1.

BYTE 1 BYTE 2 » BYTE 3

Chan. Interrupt
Lockout

Snap P Functions Interrupt Lockout

Figure G-1. 0TS, ITEM2, Three Bytes

Byte 1 assignments are as follows:

001 - Enable Interrupts or Remove Interrupt Lockout (RIL) - Interrupts are held
locked out for one instruction following the OTS and then disabled when in
the EXEC (interrupt) state.

002 - Capture P and lockout interrupts - Since the Capture P does not cause a
transfer of control by itself, it can be used as a programmable disable of
interrupts.

Figure G-10 provides a quick-reference data sheet for those who have SYSTEM 2400
experience.

Figure G-2 depicts byte 2 with a bit position lockout of the interrupts in byfe 3
of the INS. A one (1) in memory sets the lockout; a zero (@) clears the lockout.

7 6 5 4 3 2 1 0

Ch3 CH2 CH1 CHO CH3 Chz Chl ChO

- - J
Moni tor Chan;él
Interrupt Service
Lockouts ‘Request

Lockouts

Figure G-2. 0TS, ITEM2, Byte 2 Bit Assignments

Figure G-3 depicts byte 3 with a bit position lockout of the interrupts in byte 5
of the INS. A one (1) in memory sets the lockout; a zero (Q} clears the lockout.

G-3

Figure G-3 depicts byte 3 with a bit position lockout of the interrupts in byte 5
of the INS. A one (1) in memory sets the lockout; a zero (f) clears the Tockout.

7 6 5 4 3 2 1 0

Int Int Int Int Int Int Int Int
7 6 5 4 3 2] 0

Figure G-3. OTS, ITEM2, Byte'3 Bit Assignments

Interrupt Execution

Upon interrupt, the instruction at location 248 is executed. Further interrupts
are locked out until enabled with an 0TS with RIL to the interrupt adapter.
Furthermore, a different set of Active Records (AR's) are used while in the inter-
tupt routine. They are assigned to storage 1ocatibns_0408 to 05787 The worker
state AR's (000-0178) are used immediately following the execution of the enable
interrupts. : '

To remove interrupt lockout, only byte 1 in Figure G-1 is required.

The event sequence for processing interrupts is shown in Figure G-8. The following
paragraphs describe the event sequence depicted in Figure G-8 and in the order in-
dexed (A through G) in the right margin.

A. Link to interrunt Proaram - This is generally a simple GOTO instruction.

B. Capture Return Address, Interrupt Status, and Program Designators - This is
accomplished with one Special In instruction as follows:

INS - ITEMI, ITEM2

where ITEMI contains the Channel Number and by convention is equal to 2. ITEM2
is a 5-byte item with the byte meanings as depicted in Figure G-4.

BYTE 1 BYTE 2 BYTE 3 BYTE 4 : BYTE 5
Channel Interrupt Condition
Return Address Status Designators Interrupt Status

Figure G-4. INS, ITEMZ Bytes

G-4-

Figure G-5 provides a snapshot of channel interrupt status of each bit in byte 3
at the time of interrupt. 7he monitor interrupt status must be serviced or saved
following the snapshot. The channel service request interrupts will be cleared
when the generating source has been service.

CH3 CHZ CH1 <¢CHO CH3 CH2 CH1 Cho
\

_J (. -

ag s

Monitor Interrupts Channel Service
Requests

Figure G-5. INS, ITEM2, Byte 3 Bit Assignments

Figure G-6 bits show the status of the condition designators of byte 4 just prior
to the interrupt. Only those conditions which are disturbed by the interrupt
routine and are important to the proper operation of the worker program need to
be restored.

Equal
ABN Edit
Greater

Arith Overflow
Arith Error
Memory Parity
I/0 Parity

Figure G-6. INS, ITEM2, Byte 4 Bit Assignments

Figure G-7 depicts byte 5 of ITEM2 and the interrupt status bit assignment.

G-5

7 6 5 4 3 2 1 0

Int Int Int Int Int Int Int Int
7 6 5 4 3 2 1 0

Figure G-7. INS, ITEM2, Byte 5 Bit Assignments

NOTE -
This interrupt register is not assigned in the
SYSTEM 2400 Processors. It could be used for Real
Time Clock or other such interrupt conditions.’

These requests are cleared when the generating
source has been serviced.

Determine Cause(s) of Interrupt - This is accomplished by a sequence of TEST
MASK and GOTO instruction pairs. ' '

Process Interrupts - This is unique to the individual programs. It may consist

of swapping buffers and initiating an I/0 or, on the other hand, it may simply
involve setting a flag. If the interrupting condition requires a different

set of interrupt lockouts, they must be established by the use of an 0TS in-
struction to the interrupt package with ITEM2, byte 1 conditioned to capture

P and disable interrupts, and bytes 2 and 3 selecting the desired lockouts. If
no change to interrupt lockouts is desired, the OTS instruction is unnecessary.

Restore Condition Designators - This is accomplished by executing instructions

which cause the Condition Designators to be set to the state existing prior to
the interrupt. A sample restore designators routine is depicted in Figure G-9.
This routine restores all designators. A typical path taken through this
routine requires 232 usec. The worst case path requires 258 usec.

Enable Interrupts - This is accomplished by executing

0TS ITEMI, ITE

where ITEM1 contains the Interrupt Adapter ID and by convention is equal to 2.
ITEM2 is a 1-byte item equal to 1.

Return to Interrupted Program - This GOTO instruction must immediately follow

the Enable Interrupt to insure that interrupt return linkage is not lost.

0244

Go To Interrupt Program

Capture Return Address,
Interrupt Status, and
Program Designators

Determine cause(s) of
Interrupt

I

L

1

Process Interrupt

T

w=====-~---4Pprocess Interrupt

!

]

~|Restore Program Designators

Enable Interrunt

Return

Figure G-8. Interrupt Processing Sequehce

G-7

ABED
ATEST

ARER

NOSET
GTEST

GREAT
SETG

SB
™
GE
EX

EX
™
GNE
™
- GE
“ALB

ALB

ALB
™
GE
ML

ML
TBS
- TM
QTS

SAVP, EXOUT
EXOUT, BIAS, EXOUT
DSG, 002

ABED .
ABUF, BYTE1 .-
ATEST

ABUF, BYTE2
DSG, 060
NOSET

DSG, 040

ARER

ARITH1, RESULT, 177

GTEST
ARITH2, RESULT, 000
GTEST |
ARITH1, RESULT, 000
DSG, 004

GREAT

RESULT, 200

SETG

RESULT, 000

RESULT

DSG, 001

ADP, ABLE

RETURN

'Séi up Return

Check ABN Edit
Clear ABN Edit

Set ABN Edit

Test for Arith Conditions
If None set, Jump, Else
Test for Arith Error

If Error, Jump, Else

Set Overflow

To Greater Test

Set Arith Error

Clear Arith Conditions
Test for Greater

Yes, Jump

Set Negative

Set Positive

Set (or Clear) Greater
Restore Equal

Enable Interrupts

Figure G-9. A Sample Restore Designators Routine

G-8

Interrupt Adapter - 002

0TS Functions - 3 Bytes
BYTE 1 BYTE 2 . BYTE 3
Capture P Functions Chahne] Interrupt Interrupt Lockout
Lockout |
Locked Service Lockout Add on
Request Ch 0-3 in Interrupts Bit 0-7
Bits 0-3

Lockout Monitors
Ch 0-3 in Bits 4-7

Capture P and Disable Interrupts - 002

Enable Interrupts or RIL - 001
INS Status - 5 Bytes

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5

Channel Interrupt Condition

Return Address | Return Address Interrupt Status

Status Designators
! 1
Service Request Same as GD Add ont’nterrupt
CHO-3 in Bits 0-3 Instruction Bits 0-7
l except
Monitor ChO-3 greater than
in Bits 4-7 in Bit 2

Figure G-10. Quick-Reference Data Sheet

Linkage

On interrupt, go to 0248 and execute GOTO instruction. Interrupt set of AR's is
located at 0408 - 0578. Hence, AR's need not be saved or restored. A common P-Bias
is assumed. To return from the interrupt routine, simple Enable Interrupts to

again utilize worker AR set.

G-9

APPENDIX H
JTILITY ADAPTER

GENERAL

The SYSTEM 2400 Utility Adapter accommodates special input and output functions
which are not easily accomplished in tha Control Unit and enhances the programmable
capabilities ci the 2400 Processors. It is configured to be on DMA Channel No. 1
(thereafter referred to as Adapter Channel No. 1 (1018) and is accessed via Special
In (INS) and Special Out (OTS) instructions. ‘

The utility adapter comprises several of the Processor's complement of logic modules.
Although the adapter is a standard hard-wired feature of the Processor, its oper-
ator/function is strictly under program control. Operationally, it is implemented
to accommodate special programmable functiuns and parameters that will vary from
system to system. '

Due to the adanter's inherent variable programmables and requirements, the SYSTEM
24900 Mohawk Data Language do2s not include the software documentation normally
afforede with che standard sysiem coftware. However, related documentation is pro-
vided within this manual and SYSTEM 2400 Processcr Programming in Machine Code
(Form No. M-2269).

The Utility Adapter provides the following programmable functions:

e Logical instructions
e CRC Calculations
o Real Time Clock capability

These functions are controlled via the Special In and Special Qut instructions. The
formats utilized by the instructions are as follows:

Special Out
0TS (Item 1), (Item 2)

where: Item 1 is equal to (001) which is the DMA address of the Utility
Adapter.
Item 2 is a multi-byte field comprising one command byte and X data
bytes. The command byte is the first byte of the field and is further
described under "Command Codes."
The data fisid can be from 1 to 255 bytes and is operated on by Utility

Adapter hyte-serial as defined by the command code.
-

If more than 255 bytes of data are to be transferred to the Adapter or if the data
is to be transmitted with more than one Special Qut instruction for a single oper-
ation, the Command code of all subsequent Special Out instructions must have the 26
bit set. This conditions the Adapter to save the result of the computation and
proceed with the operation using the saved result.

Special In

Format:
INS (Item 1), (Item 2)
where: Item 1 is equal to (001) which is the DMA address of the Utility
Adapter. Item 2 describes a receiving field for information from the
Utility Adapter.

The purpose of the input function is to 1nput the result of the computation from
the Logical and CRC feature.

Upon being initiated by a Special In instruction, the Adapter will respond with up
to two bytes. ’

If the program wishes only the results of the Logical Set, one byte is enough, while
two bytes are required for the result of the CRC as shown below:

: Contains the result
Contain the result [1st byte of a LRC or AND

of a CRC function or OR function

2nd byte

COMMAND CODES

The command codes used in the instructions to direct the Utility Adapter to perform
a specific function contain two modifier bits, as shown below:
_ Byte
Conmand Code |7 | 6 [5|4 [3] 21110

Command Code Litn

—_—
i

Save~Module~Accumulateor Bit

fe»)
"

Enable Utility Adapter

H-2

Utility adapter commands are:

X0lg - Exclusive "OR"/LRC ‘
X024 - Logical "AND" b Logical Set
X048 - Inclusive "OR" J
X10g - 16-Bit CRC . 1 cre set
: 0408 - k2-Bit CRC
0508 - Load Utility Adapter

Command byte modifiers are:

Bit 27 - P-Enable Utility Adapter
Bit 26 - k-Save Accumulator

060 - Clear Real Time Clock (RTC)

LOGICAL SET FEATURE

The Logical Set Feature consists of the OR (exclusive), AND, plus.OR (inclusive)
functions.

A. OR (exclusive)
The primary requirement for this function is to compute the Longitudinal
Redundancy Check (LRC) character for a string of data characters.

The Adapter will accept a string of characters and compute the LRC character.

B. AND
The Adapter will logically AND two bytes of data.

C. OR (inclusive)
The Adapter will logically OR two bytes of data.

Logical Instructions

To execute Logical Instructions, perform the following:

0TS - Item 1, Item 2
INS Item 1, Item 3

where, Item 1 is numerically equal to 1 (adapter channel number), Item 2 contains
the logical command byte followed by the data to be operated upon, and Item 3 is a
1-or 2-byte item where the results will be placed.

H-3

The command byte must be the first byte of Item 2 and equal to one of the following:

001 or
002 or
004 or
010 or
040 or

101
102
104
110
140

y

EXCLUSIVE OR
AND

INCLUSIVE OR
CRC (16 bit) |

p Generate 1-byte result

Generate 2-byte result

CRC (12 bit)

J

In each case, the first command type (e.g., 001) operates only on the bytes of
Item 2; the second command type (e.g., 101) utilizes the prior result as well as

all bytes of Item

2.

In each case, the logical operator applies sequentially to all bytes of Item 2
following the command byte. ’ ' ' ‘

Examples of each logical operation are given below for two data bytes. :The_process
is accumulative for items with more than two data bytes. ST

Exclusive OR/LRC

Command Code:

Example:
01100101
01001100
00101001

Logical AND

Command Code:

Example:
01100101
01001100
01000100

Inclusive OR

Command Code:

Example:
01100101
01001100
01101101

0018

First

data byte

Second data byte

Results o I

002

First

data byte

Second data byte

Results

004

First

data byte

Second data byte

Results

H-4

CRC SET

The CRC Feature is a Cyclic Redundancy Check. There are two types, CRC-16 and

CRC-12.

The adapter will accept a string of data characters and compute the CRC. The CRC

result is two bytes in length.

Cyclic Redundancy Check (CRC)

The Utility Adapter performs cyclic redundancy checks.
The following two checking polynominals are implemented.

12-Bit CRC - X'2+x .. . +x34x%4xi

16-Bit CRC - X'G+x1+. .. +x24x+]

Results of the checking operation are contained in two bytes.

checking operations are given below:

16-Bit CRC
Command Tede: 0108
Example:
00000111 First data byte
000000171 Second data byte
Rosults -
0:000070 Least significant byte
00110001 Most significant byte
12-Bit CRC
Command Code: _ 0408
Example:
T—I“‘ These bits are ignored by the Tility Adapter
XX 000111 First data byte
XX 001111 Second data byte
Results -
00 011010 Least significant byte
00 100001 . Most significant byte

These bits are always zeros

H-5

Examples for both

LOAD UTILITY ADAPTER

A "preset" value may be sent to the adapter with a Load Adapter (050) command byte.
Example: | '
0TS ITEM 1, ITEM 2

Where Item 1 is numerically equal to one and Item 2 is
050 XXX YYY

~ where XXX YYY represents the 2-byte preset value to be loaded into the adapter.
Two bytes should always be loaded. Byte XXX is loaded into the adapter register
associated with one byte logical results (which is also used for the most signifi-
cant byte for CRC). Byte YYY is loaded into the adapter register used for the
least significant byte of CRC.

COMMAND BYTE MODIFIERS(X)

Save Module Accumulator Bit (26)

This bit directs the Utility Adapter to save the contents of the accumulator.

This feature permits logical operations on strings of data characters in excess of
255 bytes (the maximum number of data bytes transferred with a single instruction
is 256 with the first byte being the command code) or on a group of single bytes
or strings of bytes located in different parts of memory. For example, an LRC
operation on a string of data characters greater than 255 bytes would require that
bit 2
operations. In addition, the contents of the module accumulator may be stored in

be set to a "1" in all subsequent instructions conveying data during this

main memory using the Store Module Accumulator instruction and may be returned to
the accumulator in the Utility Adapter using the Enter Module Accumulator instruc-
tion, thus allowing more than one subroutine in the main program to utilize the
features of the Utility Adapter.

Enable Utility Adapter Bit (27)
7

Bit 2
other connected peripheral to deselect.

set to a "0" in a command code enables the Utility Adapter and informs the

REAL TIME CLOCK

The RTC consists of a 16-binary counter, free running oscillator, and adapter
channel control logic. The 16-bit counter is incremented by the oscillator

H-6

frequency of 256HZ+ 2,5HZ. FEach time the counter is incremented, the RTC makes a
memory cycle request to tiv: Processcr. When the request is granted, the most
significant eight bits are stored in memory location 0028, and the least signifi-

cant {2 bits are stored in locatizcn G23..

¥ 3
Clear Real Time Clock Command (0608)

This ccmmand presets the clock to a value of 000 0008. - Sending this command to the
Utility Adapter via the Special 7:t instruction forces the 16-bit counter in the
Adapter to be cleared, which in turn clears memory locations 0228 and 0238.

Command Format

0TS (Item 1), (Item 2)

where: Item 1 is a l-byte field with a value of 0018.
Item 2 is a 1-byte Tield with a value of 0608.
(UtiTity Adapier Command Code).

Programming Restrictions

The Real Time Clock loads addrecses 228 and 238 by stealing memory cycles. It is
possible for the RTC to increment “he count in the middle of a program instruction
which is manipulating addresses 228 and 238‘ kiien the program is utilizing both
bytes of the RTC, it must take precautions to insure that this has not occurred
(i.e., that the 16-bit count does not consist of one incremented byte and one non-

incremented byte.)

The RTC counts from OOOOOO8 to 3773778. When the count becomes all ones, the:
counter automatically "wraps back around" to 0000008. No overflow indication is

set.

The RTC oscillator runs asynchronous relative to the Processor. Execution of the
clear RTC command does not cause the oscillaltor to be reset. It is possible,
therefore, for the RTC to increment address 023 from 0008 to 0018 between a clear
command and any instruction testing addross 023 for zero.

H-7

D - . - =

PO D A Gr S D PGS G G S D G GE AP P WS D WP TS ED D UL GP WGP ED D AR P U R WD TP W

READER'S COMMENT SORM

Machine Code and Assemblv Language - Edition 2
Form No. PM-1345

" Please restrict remarks to the publication itself, qiving specific page and line references with your comments
when appropriate. This form will be sent to the pubiication’s author for appropriate action. All comments and
suggestions become the property of MDS.

Requests for System assistance or publications should be directed to your MDS representative or to the MDS
Branch Office serving your area.

ERRORS NOTED:

SUGGESTIONS FOR IMPROVEMENT:

How do you use this document? , ' Do you wish a reply?
DA: an operator’s Reference Manual : ’ DYes
DAS an introduction to the subject ' : []No
DAs an aid to instruction in a class ' '
DAS a student text book

DFor advanced knowledge of subject

Your Name Date

Occupation

Company

Address

Street City] State Zip Code

Form Mo. ivi-1453-0873 . . Proorr ity s

THE T‘HRDUGHF’UT SPECIALISTS

8.

MOHAWK DATA
SCIENCES CORP.

PALISADE STREET - H»ERKIMER, NEW YORK 13350

	00001
	00002
	00003
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	1-001
	1-002
	1-003
	1-004
	1-005
	1-006
	1-007
	1-008
	1-009
	1-010
	1-011
	1-012
	1-013
	1-014
	1-015
	1-016
	1-017
	1-018
	1-019
	1-020
	1-021
	1-022
	1-023
	1-024
	1-025
	1-026
	1-027
	1-028
	1-029
	1-030
	1-031
	1-032
	1-033
	1-034
	1-035
	1-036
	1-037
	1-038
	1-039
	1-040
	1-041
	1-042
	1-043
	1-044
	1-045
	1-046
	1-047
	1-048
	1-049
	1-050
	1-051
	1-052
	1-053
	1-054
	1-055
	1-056
	1-057
	1-058
	1-059
	1-060
	1-061
	1-062
	1-063
	1-064
	1-065
	1-066
	1-067
	1-068
	1-069
	1-070
	1-071
	1-072
	1-073
	1-074
	1-075
	1-076
	1-077
	1-078
	1-079
	1-080
	1-081
	1-082
	1-083
	1-084
	1-085
	1-086
	1-087
	1-088
	1-089
	1-090
	1-091
	1-092
	1-093
	1-094
	1-095
	1-096
	1-097
	1-098
	1-099
	1-100
	1-101
	1-102
	1-103
	1-104
	1-105
	1-106
	1-107
	1-108
	1-109
	1-110
	1-111
	1-112
	1-113
	1-114
	1-115
	1-116
	1-117
	1-118
	1-119
	1-120
	1-121
	1-122
	1-123
	1-124
	1-125
	1-126
	1-127
	1-128
	1-129
	1-130
	1-131
	1-132
	1-133
	1-134
	1-135
	1-136
	1-137
	1-138
	1-139
	1-140
	1-141
	1-142
	1-143
	1-144
	1-145
	1-146
	1-147
	1-148
	1-149
	1-150
	1-151
	1-152
	1-153
	1-154
	1-155
	1-156
	1-157
	1-158
	1-159
	1-160
	1-161
	1-162
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	C-01
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	replyA
	xBack

