PDP-1 COMPUTER
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02139

PDP-30
POSSIBLE

December, 1965

POSSIBIE

Intvroduction

Programming for a digital computer is writing the precilsege
fequence of instructlons and data which is required to preform
a given computation. The purpose of an assembly program 1is
to facllitate programming by translating a source language,
vhich is convenlient for the programmer to use, into a numerical
representation or object program which is convenient for the
computer hardware to deal with. A symbolic assembly program
such as POSSIBLE permits the programsmer to use mnemonic
symbols to represent instructions, locations, and cther
quantities with vhich he may be working. The use of symbolic
labels or address tags permit the programmer to refer to
instruetions and data without actually knowing or caring what
specific location in the computer memory they may oceupy.

A POSSIBLE source porgram may be prepared using the
standard FIO-DEC Flexowriter with the concied II1 typeface
as'given in the Appendix, or using an on-line editing program
such as Expenslive Typewriter, The source program Eonsists
of one or more parts, each with a title, a body, and a start
pseudo-instruction. The title is the first non-empty line
and 1s terminated by a carriage return. The body is the
storage words, macros, paraneter assignments, ete., which
make up the substance of the program. The start pseudo
instruction denotcs the end cof the source program. See figure 4.

sum

n=100

100/

a, law tab
dap b
dzm s

b, lac.
add s
dac s
idx b
sas ¢
Jmp b
hit

tab, tab+n/

8, o)

c, lac tab+n

start a

Figure 1 -~ A POSSIBLE SOURCE PROGRAM

POSSIBLE is a two ~ pass aséemblerf that 18, it normally
processes the source program twice. During the first pass,
it enters all sybbol definitions encountered into 1is symbol

table, which it then uses on Pass 2 to generate the complete
object program. POSSIPLE will either punch a binary tape of
the objeet program or assemble the program directly onto drum
field 1 during pass 2 of an assembly.

II. PCSSIBLE_SOURCE LANGUAGE

A. Notation
For clarity the following symbols are assigned to the
invisible flexo characters vhen needed in examples of
source program expressions:

carriage return <
tabulatlion -»>|

The abbreviations tab and ¢r will be used for tabulation
and carriage return respectively in format description.

B. Syllables and Expressions

The body of a POSSIBLE scurce program consists of a
sequence of expressions which may be instructions,

data, or both. An expression is denoted in the

source program by one or more syllables separated by
sultable combining operators, and terminated by a

tab, c¢r, slash, comma, or equals., A syllable may be
defined as being the smallest element of the syllable
programning language which has a numerical or operational
value. The following are two of the forms syllables

can take:

1. Symbols - A symbol is a string of
letters and digits containing at least
one letter. Symbols may be of arbitmry
length, but are recognized by their
first three characters and a test on the
existence of any others. Exambpe: sin,.
sine, and since are all legal symbols, but
willdoe recognized as only two distinct
symbols sin and sin-,

4 L v

2. Integers - An inveger is a stering of the dicuite
see Ge The value of an integer is the
1é~b1t representztion of the integer. Thus, the
largest lnteger taken as its face value is

777'1”"! in Octal or
262343 , in decimsl.

The value 8f an integer abuve these limits is taken
modulo [21%-1]. If the integer is immediately

followed by » period [.), then that number is taken as decimal
regardless of thé current radix.
Note: Perlod aprzaring anywhere within an integer
produces unexyecled results,

C. Operators
Syllables nay obe combined by use of the following operators:

1. + or space means additions, modulo 218-1 [onets complement]
A line containing nothing but a phus sign or space will
not generate a storage word.

2. - meaas subtraction of the syllable. Minus signs
count out properly- thus, -+0 = -0 = ---035 -0.
A line containing nothing but a minus sign will
genera e a -0 storage word.

Product Operators:

4. V means logical union [inclusive or]

2. A means logical intersection {logical and]}

3. ~ means logical inequivalence [exclusive or])
X means integer multiply. It performs ones
complem:nt multiplication - that is, the result
will be the same as that obtained by repeated
additlo ile

5. > means integer division. Division by 0 is
equl¥alent to division by 1.

6. < means get remainder of integer division.
Division by 0O will leave 2 remalnder cf 0.

..5...

POSSIBLE computes the value of an expression by combining
the values of 1its component syllables.

Operater Priority
Operations of the same pribriby [on the same line,
below) get perfromed from left to right. Operaticns
of different priorities get perfromed in the order
listed, from top to bottom.

unary - VA Y x 2 <

-

() These vanish in pairs: priority only
[] important to things inside them.
repeat

>0

»/

The symbols open and close brackets, [,], are used for
evaluating an expression before applying other operators;

the expression inslde is computed before the outside operations
.are performed. Redundant additlve operators are examined

and computed from left to right. Redundant product operators
are taken as having zero [0] between them and are then
computed from left to right. The following examples of
symbolic expressions on the left have the value listed on the
right. [All numbers are assumed to be octal unless followed
by a decimal point.]

Expressilon Value
2 2
243 5
2-3 177776
2x3 6
2v3 3
2A3 2
23 i
-273 777776
543 2
13>5 2
7-2v2 4
add 40 . 400040
claVema , 761200
+=4 177773
) i
-+3 CTTTTTY
++2 2
3xx2 - 0

Other Operators

1.

[.] center dot is a null operator that simply
gets eliminated from an expression whenever

it is seen within a macro definition. - Outside

a macro definition, a center dot is simply
ignored. It may be used, for example, with
the~pseudeo=ubstirystudh_cgavacter-wusghd

the pseudo- instruction character within a macro
definition to allow g dummy symbol argument to
appear. See the macro definition part for further
explanation. '

Example+ define dispatch a,b
char le.a+b
terminate

.gL
2, [*] single quote is a null operator like center
dot but gets eliminated from an expression
whenever it 1s assembled. This is the most
natural way to concatenate two symbols within
the definition of a macro.

D. Use of Expeessions

Thd meaning of an expression to POSSIBLE is determined
by the context in which it appears in the source program;
the character immddiately following the expression usually
:ndicates its use, _

1. Storasge VWords - An expression rolgowed immddiately
by a tab or cr is a storage word.

Examplest+ Jmp ret "
lac abe~}

The 18:bit number representing the value of the
word is assigned a location in memoryy this
location 1s determined by a location counter in
POSSIBLE. After each word is assigned, the
locgtion counter is advanced by one. Note+$

A storage vord may be an instruction forming part
gfta program, a constant used by the program, or
ata.

2.

8-

location Assignment -~ An expression immediately
followed by a slash is a locatlon assignment.

Examples: 100/
tab+120/
The current location 1s set equal to the address
portion of the value of the expression.

Example: 100/+|sza
T >|Jmp 10qz
4 ,

In the source program, the above instructions
wlll cause the instruction sza to be placed at
register 100 in the object program, and the
instruction Jjmp 100 will be found in register
101, Note: If, on Passi, a location assignment
contains any undefined symbol, the definition
of address tags 1s inhibited until the: location
again becomes definite by means of a defined
location assignment. On Pass 2, an undefined
symbol will result in an error message [usw].
The undeflned symbol 1s taken as zero, and the
location remains definite..

3.

[) Jok

Symbolic Address Tags - An expression followed
imnmediately by a comma 1s an gddress tag.

Examples: ¢ab,
100,
t£ab+299,

If the tag is a single undefined symbol, it will
be defined with numerical value equal to the
present value of the location counter. If the
tag 18 a defined symbol or number, the value

of the expression is compared with the current
location, and a disagreement will cause an

error comment [mdt]. If the tag is any other
symbolic expression which contains other than one
undefined symbol, an error printout [i11t] occurs.
Use of a defined symbol as an address tag cannot
change the value of the symbol. Also the current
location cannot be changed by a symbolic address
example could be written as:

100/%2,+lsza o
Jmp a

The programmer should note that location assignments
and symbollic address tags, in themselves, have
no effect on the object progrém, but rather direct
the process of assembly. Also, he should observe
their inverse character. The location assignment
sets the current location counter to the value
of an expression, while the address tag sets the
value of a symbol equal to the current 1ocation.

-1.0~

Hence the sequences:

. 100/82,bz,
and 100/ 32, B
bz i

each assign 100 as the value of both symbols a2

. and bz, A sequence such as

1900/tab,
. tab+n/

1s frequently used to reserve a block of registers
for a table of data or computed results. In the
above example, the block starts at register 1000,
is named by the symbol tab, and contains a number
of registers given by the value of the symbol g.’

Symbolic Parsmeter Assignment - A symbol immediately
followed by an equal sign, an expression, and a

tab or a ¢r is a pgrametier gssignment. It assigns
the symbol to the left of the equal sign a .
numerical value given by the expression bo the
right, i1f the latter is defined. If the expression

is undefined, no action is taken.

Examples: n=100Q
: Sha=sz2a il
cai=claVvell
t=t+t

-441-

Parameter assignment may be used to set table
slzes, define new operation codes, or prepare a
set of instructions for an ihterpretivc program.
Note: If equal aign [=] is immediately preceded
by a number, POSSIBLE complains. An expression
such as 23+k9=yB defines the symbol k9 with the
value of symbol y8 and generates a storage word
z3+k9; it does not cause the symbol y8 to be
evaluated as z3+k9. The expression k9=z3=y8, if
¥y8 is defined, assigns both symbol k9 and symbol
X9 and symbol z3 the numerical value of symbol y8.

Comments
Trhe character slash,/& when not preceded by an expression,
.denotes the beglnning of a comment, Characters following
it are lgnored by POSSIBLE until the next carriage

return.

Current Iocation Counter

The POSSIBLE location counter records the assignment
location for each word in the obJject program. It

is set to 4 at the beginning of each pass, and counts
Lupﬂard ‘modulo momory size. As was explained earlier,
the location counter may be set to any value by a
location assignment expression. The character period
[.] when not preceded by & number, is a special
~syllable whose vaiue 1s equal to the current location.

Hence,
sza
Jmp .4
is an alternate way of writing
a2,+|sza o
Jmp a

Radiz 50 sqoze Code

The character double quote ["] can be used to generate

a radiz 50 sqoze code for the first three characters of
prededing symbol. If ther are more than three. characters

in the syllable, bit 1 is set to 1.

1
H. Pseudo-Instructions

Normally an assembly program produces one machine
language instruction for each instruction of the source
program. However, some lines in the source program, lnown
as pscudo-instructions, are directions to the assembler and
do not directly produce instructions in the object program.
These instructions govern the way in which subsequent
information in the source program is prdcessed;

A pseudo-instruction is a string of at least four letters
and digits, in which at least one of the characters is a letter.
The string 1s terminated by an operator. A pseudo-instruction
may alvays be shortened to four charagters. ’ '

The pseudo-instructions of POSSIBLE are described below:
1. End of Source Progrem - The pseudo-instruction

start denotes the end of the source language
program. The expression following start gives
the address of the instruction in the object
program which is to be executed first. POSSIBLE
stores this address and if a binary tape of the
object program is produced, POSSIBLE will include
an appropriate start block in the binary program
tape. ' ’

Example: start beg+2

This line will terminate scanning of the source
program and if the object program is being punched
then the word Jjmp begt+? will be punched for the

- start block of the binary tape. Yhen the binary
tape is read into the PDP-1 in read-in mode control
will go: to register beg+2 after the start block
is read. ‘ .

2,

3.

—~13~

- 40 e

decimal, and radix control the current nuneric

base for evaluation of integer syllables. The
pseudo-instruction octal located anywhere in the

source program indicates all integers following .

it [unless specifically denoted as decimzl by a

period (.)] are interpreted as octal numbers

until a next appearance of the pseudo-instruction
decimal or radix. The word decimal indicates

all integers following it are interpr:ted as .

decimal numbers until the next ahpearance of the , ,
pseudo-instruction octgl or radix. The pseudo-imtruction
radix takes any expression following (until the

next tab or_cr) as the new radix. Numbers used

as the argument of radix are sssumed to be decimal.

If the radix is not defined, 1t is taken as octal,

Note: The largest integer taken at its face value

is 2621&310 or TTTT77g-

Sﬁorgge of Character Codes - The pseudo-instructicns
character, flexo, and text are provided to the
programmer as a convenient means of storing

character codes for printout by his program, or

for comparison against slphanumeric data accepted

by his program. For reference, the six-bit codes

for the concise III character set used with the

PDP-1 are included in the Appendix of this memorandum.

(a) The pseudo-instruction character is-used
to placé a character code in ﬁhe left
(bits C-5), middle (bits 6-11), or right
(bits 12-17) portion of the word. The

 word gharacter is followed by space, then
by a r, m, or 1 according to the position
desired, and then the character whose code
is wanted. "

Examples: VALUE
char ra 000061
char mb 006200
char lc 630000

H

The above are pseudo-instructions syllables,
and may be used in the -same manner as symbols

_or integers in forming expressions.

Examples: : YALUE
~char ra 777716

(b) The pseudo-instruction flexo is used to
compile three character codes into one
eighteen bit word.

Example: VAIUE
flex abc 616263
This 1s equivalent to:)
" char la + char mb + char rc

{¢) The pseudo-instruction fext is used to
assemble a long string of characters by groups
of three into successive words in the object
program,~ The string to be assembled 1s enclosed
between two appearance of the same character
and is preceded by the word text. The character’
selected as a delimiter cannot sppear in the

string itself.

Examples: _ VT

4. text .message. Lugsez
226167
650000
This is equivalent to:
flexo mes
flexo sag
char le
2, text /%his is printed/ 237071
220071.
'2200&7
507145
236554
vhich is equivalent to:
flexo thi
flexo 8 1
flexo s p-
flexo rin
flexo ted

Any expression before the text“ES'édded to

the first word of the text; any expression:
 immediately follouing the range of a text’

is added into the - last word of the text
unless the number of characters in the
range of the text, modulo 3, 1s zero. In
this case, the expression 1s assembled into

a word of its own. This is useful, for
example, when one wishes to type an expression
in red and so needs to introduce red and black
shifts into the text. Thus, ' _

350000+text . this gets printed-in red. +34

assembles a red shift apd a black shift into
" the text.

-1H-

4. Repeat Pscudo-Instviction -~ The reveat pseude- instruction
provides a convenient way of placing & sequence of similar
expressions in a block of the objecl program. The pseudo-

comma (operator with priority higher than tab may be used),
and the range of the repeat. The latter contains all the
material from the comma Lo {and including) the next carriage
return. This pseudo-instruction causes POSSIBLE to scan
and assemble the rangs .a number of “imes equal to the value
of the expression immediately following repeat. The
symbolic expression muat be defined when the repeat 1is
encountered during pass 1 and cannot have a value greater
than 400000g; 1if it is negative or zero, the range of
the_repest 1s ignored. The range of the repeat can be
storage words, parameter assignments, macro calls (if not
containing carriage return in an argument), other repeats,
or anything else. If repeal is used in the range of a
repeat, both repeats will end on the same carrlage return.
However, open and close brackets may be used to enclose
the range of the inner repeat and thus, allow cr to

appear within the range. Arithmetic brackets may not

be used in the range of a repeat unless the entire range
is enclosed by bracketsy the number of open and closed
brackets must be the same. Regegt'mey be used in macros;
dummy arguments may appear elther in the range or the
count of the repeat, or both.

-1~

Exemple: 1. repeat 3, ril 68 | tyo
' Hiil assenmtle the following
instructlions: '
il 6s
tyo
ril 68
tyo
ikl 63
tyo
2. rapeat 2, [5 »| repeat 2,3
‘]| 4 ' 2
0 .
will assemble the following:

P WWwy P W W

'5. Conditiongl Assembly - It 1s often useful, particularly
in macro 1nstructions; to be able to test the value
of an exgression, and to make part of the assembly
dependent on the result of this test., For this
purpose the pseudo-instruction whenever is provided.
Followlng the.pseudo-inatruction there is a symbolic
expression, a comma, and the range. The latter
contains all the material from the corma to (and
including) the next carriage return. This pseudo-
instruction causes POSSIBLE to evaluate.the symbolic
expression followling the repeat and if its value
is zero, the range will be assembled once. The
symbolic expression must be defined when the whenever
is encounted during pass 1; an undefined symbol is
taken as zero. The range of the whenever can be
storage:uords, parameter assignments, macro calls
(1f not containing carriage return in an argument),
repeat pseudo-instructions, or anything else.

To

-18.-

F S ot oy e e o

and regeat DS stdo-instructions will end on the
same carriage return.

Examplc: whenever n, lac %ab
If n=0, this will assemble the storage

word, lac tab, once. Thus, this instruction

g would be equivalent to
repeat 3., lac tab

~ Special Tape Format -~ For fabricating special
. tape’ fonmats or punohing start blocks without

stopping the assembly, the pseudo~instruction
word is provided. It takes one argument ended
by a tab or carriage return; this argument is
punched directly onto the object program tape

‘during pass 2, The location counter is not
affected by this pseudo-instruction.

Informative Printouts - The pseudo-instructions
printx and value can be'used’to generate
informative printouts during an assembly. ;ggintx
takes an argument whose format 1s exactly like
the'pseudo~instruction text, During an assemhly,
POSSIBLE will print out this argument on line,
The pseudo-instruction value takes an argument
which 1s an arithmetic expression.and prints

out its octal value during an assembly.

UTOMATIC STORAGE ASSIGNMENT

i Ty v 8 et S0

Several features have been provided in the
POSSIBLE assembly program which automatically
assign storage locations for the constants used
by a program and the variables and tables manip-
ulated by the program. These features reduce the
amount of typing required to prepore a oomplete
source progrsm, simplify edlt!mg, and make the
source program typesoript more readable.

1. Constants : An expressicn enclosed in parentheses
is a constant syliable and may appear as a ayllable
in storage words and parameter sssignment. _
POSSIBLE will compute the value of the expression
enclosed and place it in a constants area of
the obJject program as explained below. .The
value of a constant syllable is the address
where the enclosed word is placed by POSSIBLE.

The location at which constant words are placed
is determined by the next appearance of pseudo-
instruction constants,following the constant
syllable. When the pseudo-~instruction constants
is scanned by POSSIBLE, the constant expressions
assembled since the last use of the pscudo-in-
struction constagﬁg, or since the beginning of
the program, are placed in the object program
starting at the current location. Constant words
having the same numerical value are entered only
once, The current location is advanced to an
address somewhat beyond the register in which
the last constant is placed, leaving a small gap
of unused registers‘between the constants area
and any following portion of the program. This
gap arises because POSSIBLE reserves one location .
for each symbolic and each unique numeric cnnstant
during the first pass but may be able to do some .
combination on pass 2. '

2.

Note: The close parenthesis may be omitted from
constant syllables immediately followed by one
of the terminating characters comma, tab, close
bracket, or cr. Recursive use of constant s8yllsbles
is permitted: that is, a constant syllable may
appear .within an expression forming a new constpat
syllable. '
Example: - Thus, the sequence
' ' lac [lac tab
dap .+1
o850

Sonstents
is equilvalent to =~ " 7

lac abe

dap .+1

a2, 0

abc, lac tab.

Yariables - A symbol typed with a bar over at
least one of its characters at any appearance

in the source program is a yariahle. A1l symbols
identified as variables become defined on the
subsequent appearance of the pseudo-instruction

-varlables. The pseudo- instruction vapriahles

must follow all defining appearance of variables.

The yariahles are assigned to sequéntial locations
starting at the location of the pseudo-instruction
variables. Their initlal contents is indefinite.

3-

21

Example: The sequence

lac a%
add b
dac aég
bz, O
az,'o.

in equivalent to
lac S!
add bz
dac a2
variables

except that the contents of registers
a and bz of the obJect program will
be zeor in the first case, and unknown
in the secocnd.

Talles - Blocks of registers may be reserved for tables

by means of the dimension pseudo-instructilon.

Example: dimension x[n], y(m], z[mn]
T™is string reserves three blocks of lengths given by the 4)
vilues of the expressions n, m, and m+n. The first address
¢’ each block is assigned as the value of the symbols X, y, and 2.
T)e reserved blocks are placed at the location in the object
p:ogram specified by the yarlables pseudo-instruction. The
s:itial contents of the reserved blocks is indefinite in the
¢.ject prégram. Theefollowing rules apply:
' {al

Expression given as lengths of

blocks in a dimension pseudo-

instruction must be definite

when scanned on the first pass.

-22-~

[b] The symbols assigned to blocks by a dimenzion
" statement must be previously undefined.

The use of dimension, variables, and constants in a
complete POSSIBLE source program 3s illustrated in
figure 2. This program willl produce exactly the same
obJect program as the introductory example on page 2
except that the initial contents of reglster s 1s
gero in the earlier version and undefined here.

sum
n=100
dimension tab [n])
100/
a2, Jaw tab
dap
dzm
b, lac .
adm s
idx b
sas {lac tabxn
Jmp b
hlt
variables
constant
start a

nl o

Figure 2

-23-

J. Macro Instructions
Often certain character sequences appear several times

throughout a program in almost identical form. The following
example illustrates such a repeated sequénce.

lac
add
. dac
lac
add
dac

- Q0 0P

The sequence:

lac X
add y
dac z

4s the model upon which the repcated sequencé is based. This
‘model can be defined as a macro instruction and given a name.
The characters X, y, and z are called dummy arguments, and
are identified as such by being listed immediately following
the macro name when the macro instruction is defined. Other
characters, called arguments, are substituted for the dummy
arguments each time the mode is used. The appearance of a
macro-instruction name in the source program is referred to
as a call. The arguments are listed immediately following
-the macro name when the macro instruction is called. VWhen .
a macro instruction is célled,'POSSIBLE reads out the
characters which forn the macro-instruction definition,
substitutes the characters of the arguments for the dummy
arguments and assembles the resulting characters into the
object program.

~2h~

Examples: define absolute
spa
cma
terminate
define move a, b
lac a
dac b
terminate

Note: If an argument expression is omitted, then the null
.string (no character) is inserted for that dummy argument.
Thie differs from MACRO; the arguments are not evaluated but
are substituted as text strings. '

1. Defining a Macro-Instruction - A macro-instruction
consist of four parts; the pseudo-~instruction
define, the macro-instruction name and dummy
symbol 1ist, the body, and thé pseudo-instruction
termingte. Each part is followed by at least
one tabulation or carriage returﬂ, The macro
instruction nahe has the same form as a pseudo-
instruction - a string of letters and digits of
which at least one of the first six characters
1s a letter. The name is terminated by a space,
or if there is no dummy .symbol list by a cr or
‘tab. The first six characters of a macro
instruction name must distinguish that name from
‘all other macro names and from all pseudo-instructions.
If a name is three or less characters long, it
must be spelled out 1n full but if it is longer,
it may be abbreviated, like a pseudo-instruction,
to four cheracters. The dummy symbol list conslsts
of up tor138 or 1110 distinct dummy symbols, separated
from each other by commas, and from the macro
name by a space. Since dummy symbols have no
meaning outside of a macro definition, the same
symbols may be used in many definitions without

harm.

I

25

s e e ot

sequence of expressions in which any dummy symbol
list may appear as a syllable. All the pseudo-
instructions can be used within the body of a macro
definition. This includes the pseudo-instruction
define which must have its own terminate
psuedo-instruction. The body may also contain
macro calls, including calls to the macro itself,

- Example: The definition and use of a’
' macro instruction is illustrated
by a program to store zeros
in a block of register. This
program can be assigned the
name clear by the definition:

Define clear a,n
- law a
"~ dap .+1
dzm
iéx .-1
sas [dzm a+n
Jmp .-3
terminate
¥hen the line
' clear tab,100
appears later in the source
program, the instruction sequence

law tab
dap .+1
dzm
idx .-1
sas [dzm tab+100
Jmp .-3
is inserted into the object program.
The resulting sequence will clear
a hundred registers starting with

register tab.

26~

K. Format :
POSSIBLE has few requirements on format. The user should

be awarc of the following:

1.

2.

3.

al

Carriage returns and tabs are ejulvalent except
in the title, in the range of a repeat, in a
comment, and after start. Extra tabs or carriage

-returns are ignored.

Backspace, D, §, », % _, |, red, black, and

unused characters of the flexo code are lllegal .
except in arguments of flexo code pseudo-instructions,
titles, and comments.

Stop codes are lgnored except in arguments of
flexo code pseudo-instructions. Apostrophes
are similarly igncred when not in macro calls
or definitions.

Deleted characters are always ignored.

Many programmers have found that adherence to a falrly
rigid format is of help in writing and correcting programs.
The following suggestion have been found useful in this '

respect

Place address tags at the left margin, and run
instructions vertically douwn the page indented
one teb stop from the left margin.

Use only a singlc carriage rebturn between instructions,
except where there is a logical break in the flow '
of the program. Then put in an‘éxtra carriage
return.

3.

4.

5.

27

Forget Lhat you ever learned to count higher
than thres; let POSSIBLE count for you. Do not
say dac_.+16; use an sddress tag. This will save
grielf when correctlions are required.

Have the typescript handy vhen assembling or
debugglrg a program, and note correctlons in
pencil thereon as soon as you find them.

As macro instructlons must be defined before
they are used, put these definitions at the
beginning of the program.

If the pseudo:instructions constants and varisbles
are used, they should be placed before the start
at the end of the program. ‘

o
-l

II1I. ' POSSIBLE ASSEHDLY .

POSSIBLE 1s a two pass assembler; that is, 1t normally
processes the source progrem twice. During the first pass,
it enters all symbol definitions encountered into 1ts Symbol
table, whlch it then uses on pass 2 to generate the complete
object program. POSSIBIE was written for time-sharing mode;
its commands are typed through the ccnsole. The assembler
may be used out-of-time sharing also bty typing commands,

POSSIBLE may get the source progrsm directly from
expensive typewriter's text buffer or from the paper fape
reader. A resulting program is}either assembled on {(drum)
field 1 or punched out as a binary tape. (It is also possible
to do an assembly without any output just to check for errors.)
The symbol table formed during the assembly may be typed or
punched out in numeric or alphabetic order. Also the area
used for storing constants and wariables may be typed out.

It is possible to fabricate tapes with special formats
‘such as a Jjump block replacing the input routine or several
‘titles and input routines on one tape.

The programmer may lesave POSSIBLE to g> to ID, the
debugger program, or to the Editor, to ¢orrect errors in
the source program found during asaembly.

A. Possible Assembly Control Characters
' The control of the POSSIBLE assembly procedure is by ‘
typed -in conmands. The following tables indicate the commands
fhat are available and what they mean:

29—
COMMANDS
INPUT SOURCE:
e

8]

OutPut_ MEDIUM:
d
t
w
COMMAND MODIFIERS:
g
X
SPECIAL FORMAT:
[g,x] 1
(gsx] J
]Sax] 1
ASSEMBLY CONTROL
s

N

I0 EQUIPMENT CONTROL

fg,x} r

(g.,x] p
SYMBOLS

S v mvwe——

MEANINGS

expensive typewriter text buffer
gsource

off-line source [reader]

Drum assembly
gapelassembly
without output

get
cancel [exchange]

input routine

Jump block
Label [Title])

start new pass [also usdd to sup-
press punching after error printou’
gontinue pass [also used to continu
punching after error printout)

pass 1)

pass 2

forget everything [initiallze
symbol table] :

reader [initialize reader buffer
non ts mode
punch

alphabetic symbols
numeric symbols
konstants areas and variables areac

back to ID or ADM RT
meliorate source program [?auk to
ET

S’dnh LITCH _USAGHE
POSuIBLL uses sense switches during an assembly to
provide the following special features:

SENSE _SWITCH USE
1 ‘ type-out characters cispatched on.
y o ‘eontinue assembly without stopping’
' after any error printouts,
5 listen for input from typewriter.
6 ‘ suppress checking for parity error.

The symbol package for POSSIBLE also uses sense swiltches
to indicate additional information. :

suppress punching and typing
2 down - punch out symbols

up -~ type outisymbols
3 down - input format

ex. tab=105)
‘up-1listing format
ex. tab »| 105

I POSSIBLE is entered from Expensive Typéwriter by the
command N (nightmare versicn of POSSIBLE) or M (merging version
of POSSIBLE), POSSIBLE is initially set up to accept source
from expensive typewriter and to place the resulting binary
objecb program onto (pseudo) drum field 1. Otherwise, POSSIBLE
will expect input source from the paper tape reader (off-line)
and will punch a paper tape of the object program. These
conditions may be altered by using ‘the appropriate commands’

e" (for source from expensive typewriter's text buffer), "o"
- (off-1ine reader used for source program), "d" (assemble onto
drum field 1), "t" (assemble onto paper tape), and "u" (without
~ output; Just check for errors). o

If the input source program is expezted from the rc:dcr;
POSSIBAT will automaticalliy sssign the resder at the start
cf each pass. If the readzr 1s busy, an “r" 1is type out.
Typing "s" gets the reader if it 1s no longer busy and starts
the pass again. WTyping "gr" 1is uscd to initialize the reader
buffer. If on pass 2, a tape 1s to be punched and POSSIBLE
i3 unable to get the punch assignment, a "p* will be typed.
Typing "s" will get the punch if it 15 no longer busy and
will start the pass again, '

If a binary object program is punched during pass 2 of
an assembly, it will contain a title in readable characters,
consisting of the viaible characters in the title up to but
excluding a.center dot. Next will be punched an input routine,
vwhich 1s a loader that reads in the rest of the tape,
anrd which may itself be read in by the PDP-1 ggggfin mode,
The binary output from the body of the sounce program is
punched in blocks of up to 100 registers. The end of the
binary tape is denoted by a start block, which 13 produced
by typing "s" after pass 2 is completed. The suart block
causes the input routine to transfer at once to the address
specified by the pseudo-instruction start. The argument of
the start has the value of the address to which control is
" to be transferred.

For fabricating speclal tape format, the controi
characters "4", "j", and "1" may be used. Typing "gi" will-
cause an4input routine to be punched vhen the next tape is
assembled during pass 2. Typing "xi" suppresses the
punching of an input routine when the next tape is'assembled.
Typing "gJ" causes & jJump block (jmp 7753-input routine) to
be punched when the next tape is assembly during pass 2. Typing
"xJ" cancels and "gJj" command. Typing "gl" causes a title in
readable format to be punched when the next tape is assembled
during pass 2., Typing "x1" causes no title "o be punched during
the assembly. A ' - '

B. u_aaa,.&*gsmklx_zzggsguzs
4. To begin pass 1 on the source program, type "s",

POSSIHLE will stop shortly after encountering
the gy wller fhe pseudo~instvuctlon start at the
end of the tape. -

2, To procesa uach addltional tape after the first,
type ltcl! :) ,

3. Begin pass 2 Ly Lyping "s", At this point, if
" POSSIBLE is to produce a hingry tape, it punches

some blank %ape, the title at the beginning of
the taps inm readable form, & binary input routine
in regd-in mode, and then begins to punch the |
birary version of the program in blocks of 100
vords (or less). POSSIBLE, as on ‘pass 1, will
stop after encountering the stgr at the end of
the tape. ~

L, mTo process each additional tape during pase 2,
type c ll .

5. If a binary tape 1is.being produced by the assembly,
an "s" should be typed to punch the start block
at the end of the tape. .

Thls completes the assembly process.

C. Error Comments During A Possible Assembly
Upon detecting an error, POSSIBLE will print out a line

in the following format;
| aaa bbbb ccc dddd eee
where aaa 1is the three letter code indicating the error, bbbb
. 18 the octal address at which the error occurred, ccc is the
‘symbolic address at which the error occurred, dddd is the name
of the last pseudo-instiruction encountered. In the case of
an error caused by a symbol, eee will be that symbbl. Following
is the 1list of error indications in POSSIBIE: '

-3l

Error Meaning
neca NO CONSTANYS AREA

The pseudo-op constants 1s needed.
112 - YLLEGAL FORMAT

11t ILILEGAIL TAQG
' Tag which 18 not a single symbol is
not equal to current location.
ex. .£00+10, # current location

mdt MULTIPLY DEFINED TAG
Tag consisting of .a single defined
symbol is not equal to current loca-
tion. Symbol is not redefined.

usw. UNDEFINED SYMBOL

A symbol which has not been defined
in program is encountered. Symbol
is given the value of zeRO if
assembly 1s continued.

cld CONSTANTS LOCATION DIFFERENT
' The «¢onstant pseudo-op appears in
different locatlon on passaZ2. No
recovery can be made,

vld VARIABLES LOCATION DIFFERENT
Same as cld .but for variables. Often
poasible to recover by ignoring this,

ila JLLEGAL DEFINITION
Program attempts to redefine pseudo-op
or previocusly desined‘symbol. Redefine
pseudo--op or symbol if assembly con-
tinued. '

Sce SToRAGE CAPACITY EXCEEDED
Storage of macro definitions, macro
arguments, repeat ranges, numerical
constants [pass 1], unique constants
[pass 2], symbols, or macro names has
been filled. No recovery can be made.

ERROR

pce

tme

mdd

tmt

ids

ich

...35_.

MEANING

PUSH DOWN CAPACITY EXCEEDED

Macro, repeat, or constant nesting is
too deep or too complicated arithmetic
statements are used., No recovery can
be made.

Total number of constants and variables
pseudo-ops 1s 208. No recovery can be made.

MULTIPLY DEFINED DIMENSION

Symbol representing first location in
dimension of array is already defined.
The old . symbol definition 1s retained
if assembly is continued.

TOO MANY TERMINATE PSEUDO~OPS

There exist more.terminate instructions
than define instructions. - The terminate
is ignored if assembly is continued.

ILLEGAL DIMENSION SIZE

Specified dimension size is negative.
Dimension size 1s set to zero if assembly
continued. '

ILLEGAIL CHARACTER

Input source has an i1llegal flexo code

or character. Number typed is the illegal
character; if the number is in the 400ts-
it is an upper case character. Continuing
assembly will ignore the character.

Alphanureric Codes By Characier

CHARACTER FIO-DEL CONCIGE CHARACTER FIO-DEC CONCISE
LOWER UPPER (CUDE oY LOWER UPPER CODE CODE
a A 6l 61 4] ~p (right arrow) 20 20
b B He 6 1 " (double quotes) 01 01
¢ C AR 43 2 ' {single quote) 02 02
] ‘D 6. 64 3 ~ (not) 203 03
. E 764 (5 4 D (imphes) 04 04
{ F 266 66 8 vV (o)) 205 05
s (] Gl 67 6 A (and) 206 06
h H 70 74 7 <& (Joss than) - 07 o7
|] 271 S 4 | a > (mroster than) 10 16
| J 244 - 4] 9 & (up arrow) . 211 1
k K 242 42 ([57 57
! t 43 T 43)] 255 85

m .M ‘244 T =) (nronspecing
n N 45 48 overstrike and
° O . 46 46 vertical) 256 86
p P 247 - 4 - + (minus and plus) 54 54
q Q 250 8o » - (nNON-spacing
r R 51 51 middie dot ’
s s 222 22) and underline) 40 40
t T 23 23 ' .= . 233 a3
u U 224 24 . X (period and
v v 25 25 multiply) 73 73
w W 26 26 / ? 221 21
x X 227 27
y -Y 23 30
* : 31 FIO-DEC CONCISE
CODE .CODE

Lower Case 272 B ¥ 4

Upper Case 274 - 74

Space 200 00

Backspace 75 75

Teb 236 36

Carrisge Return 277 77

Tepe Feed 00 00

Red* . — 35

Black® : — M

Stop Cods 13 -—

Delote 100 ——

*Used on Type-Out only, not on keyboard

	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	33
	34
	35
	36

