
CODING

for the

MIT-IBM 704 COMPUTER

F. Helwig, editor

Prepared' at the MIT Computation Center

by

D. Arden J. McCarthy

S. Be'st A. Siegel

F. Corbato F. Verzuh

F. Helwig M. Watkins

M. Weinstein

The Technology Press
Massachusetts Institute of Technology

Cambridge 39, Mass.

Copyright @) 1957
Massachus etts Institute of Technology

October, 1957

TABLE OF CONTENTS

Preface

Erra ta

Introduction

I An Introduction to the 704

II Floating-Point Arithmetic in the 704

III The Control Instructions

IV Indexing: Counting and Address Modification

V The SHARE Assembly Program

VI The MIT Post-Mortem Program

VII Subroutines

VIII Fixed-Point Arithmetic in the 704

IX The Shifting Instructions

X The Logical Instructions

XI Input and Output

XII Overflow, Underflow, and Miscellaneous Topics

Appendixes

A Description of the SHARE Assembly Program for
the IBM 704 Computer

B A User's Abstract of the Post-Mortem Program

C The IBM-704 Instructions

D Revised and Updated Index of Available SHARE
704 Subroutines

PRRFACE

This is a new and slightly revised edition of a set of
notes prepared by staff members of the M.I.T. Computation
Center spec1.fically to serve as a basis for a two-week course
in coding for the IBM 704 given at the M.I.T. Computation
Center during August, 1957. The notes are a drastic revision
of a similar set of notes prepared by the staff for use during
August, 19,6. They are being issued in their present (rather
unpolished) form as the result of a large demand for such
material at the Computation Center.

The notes are written for the novice and do not assume
any previous knowledge of digital computers. It is not in- .
tended, however, that these notes replace the IBM 704 Manual
of Operation. Indeed certain topics, such as input and out
put, are treated briefly in the notes, and the manual must be
referred to for complete descriptions.

Basically our topic is coding, and since there is more
to coding than description of a digital computer, we have
provided the reader with many illustrative examples of codes.
We have also included material describing the operational
systems presently available at the M.I.T. 704. This includes
a brief description of the SHARE organization; descriDtions
of the SHARE assembly program, which provides a common language
for 704 users; and a description of a post-mortem program
written at M.I.T. for SHARE distri.bution.

A listing of subroutines distributed by the SHARE organi
zation is also included. This list was reasonably complete
at the time of publjcation, but will certainly become incomplete
as new subroutines are developed by SHARE members.

In addition, the reader's attention is called to the
FORTRA.N programming system which is already described in IBM
publications. These include the FORTRAN Programmer's Reference
Manual and the new FORTRAN Introductory Programmer's Manual,
which is to be published shortly.

Frank C. HelWig

17 October, 19,7

ERRATA

Page " I - 8, line 8: should read "numerical addresses whenevero 0 0 "

instead of "numerical adress whenever. 0 • "

II - 4, line 6:
line 7:

comment should read "x - C(MQ)o "
comment should read "x - C(101)o "

II - 9, line 7: comment should reaq. "a/b - C(R)o "
line 10: comment should read" c/ d - C(MQ)o "
line 12: comment should read "(a/b) (c/d) -C(R)o"

II - 10, line 8: comment should read "(a
3
x+a

2
) x ~ a

1
- C(R)o "

II - 11, line 1: replace "DVP" by "FDPo"
line 3 from bottom: replace "DVP CIt by "FDP C. "

IV - 12~ line 9: replace "-8190" by "-8191."
line 10: replace "-8191" by "8192."

v - 4~ line 14: insert the following sentence: "Columns 8 to 10 make
up the operation fieldo "

v - 5~ line 9 from bottom: replace "assmelby" by "assembly. "

'V - 8~ line 6 from bottom: there should be no blanks after the
commas, so that it should read:
B DEC' 23178195, -251 + 251,48

v - 13~ line 9: delete the word "heo "

line 15: replace "one" by "once. "

VI - 3~ line 10: replace "location" by "variable. "

'VIII - 5~ line 8 from bottom: replace "if" by "ito"

x - 7 ~ line 16: comment should read "C(NUM) / C(DENOM) - C(MQ)o "

XII - 7~ line 12: should read "AMTST TQO* + 1" instead of
"AMTST TQO + 1. "

XII - 10~ last line: should read "reenter the trapping mode again after
the transfer o " instead of "reenter the trapping mode. "

A.ppendix B Page 1, line 4 from bottom: replace "is" by "andiso "

Appendix C

ERRATA (Continued)

Page 2, line 9: The following instruction should be inserted as
a new line between "Store Logical Word" (line 9)
and "Store Left-Half MQ"

Instruction: Store Zero

Mnemonic Code: S TZ ex, {3

Octal Value: +0600

AC A' =A

MQ M' =M

IR{3 I' = I

R w' = a
(no comments)

7th entry in column headed "mnemonic code" should
be "CAD ex, {3" instead of " CPA a, {3"

14th entry in column headed "Octal Value" should be
+0761 instead of -0761

Page 3, line 18 from bottom: octal value for REW i should read
"+0772 ••• 200+i. "

Page 3, line 17 from bottom: octal value for WEF i should read
"+0770. It It 200+i. "

Page 3" line 16 from bottom: octal value for EST i should read
"+0764 ••• 200+i. "

Page 4, line 3 from bottom:

The following instruction should be inserted between
"Leave Trapping Mode" and "Redundancy Tape Test"

Instruction: End of ,!ape ,!est

Mnemonic Code: ETT

Octal Value: -0760 •• It 011

Comments: L' = L+2 if tape indicator is off,
tape must still be selected ..

INTRODUCTION

The MIT Computation Center, which was established

in July, 1956, is an interdepartmental activity located in
the new Karl T. Compton Laboratory (Building 26). The

principal objective of the Center' is to increase the number
~f students, staff members, and scientists qualified to use

modern computing machines to further their research efforts.

The Computation Center is an activity which has
many assets: qualified staff, modern computing equipment,
and a brand new physical planto The participating
personnel in the Center program are located at MIT, IBM, or
one of the participating New England Colleges or Universities. ,
Specifically, the Center represents a cooperative activity

involving MIT, the IBM Corporation and, at present, 25 New
England Colleges and Universities.

Participating Colleges

The following New England Colleges and Universities
I

in addition to MIT -- are currently participating in this
program:

Amherst College
Bates College
Bennington College
Boston College
Boston University
Bowdoin College
Brandeis University
Brown University
Connecticut, University of
Dartmouth College
Harvard University
Maine, University of
Massachusetts, University of
Middlebury College
Mount Holyoke College
New Hampshire, University of"

Participating.Colleges (Cont~nued)

Northeastern University
Rhode Island, University of
Tufts University
Vermont, University of
Wellesley College
Wesleyan College
Williams College
Worcester Polytechnic Institute
Yale University

An active participating by the staffs of the New
England Colleges in the Computation Center program was
initiated by the appointment of 24 Research Assistants and
Associates at these institutions during the academic year

1956-1957- These appointees provide active liaison between
the staff at the Center and the students 'and staff at their

individual institutions. Appointments of this type will be

made each year -- to insure a widespread and dynamic
participating program.

Physical Plant

ii

The physical plant of the MIT Computation Center

consists of 18,000 square feet located in the recently
erected Karl T. Compton Laboratory. Specifically, the Center
occupies part of the basement, the entire first floor, and

part of the second floor of the Compton Laboratory~ In -- .
addition, a two-story annex is used to house the IBM Type

704 Electronic Data Processing Machine (EDPM) and the
associated Electr'ic Accounting Machine (EAM) equipment"

The first floor contains adequate space for the
headquarters staff, the operations staff (analysts, pro

grammers, machine operators, etc$)' IBM Institutional
Representatives, New England University ,Research ,ASSistants
and ASSOCiates, MIT Research ASSistants and ASSOCiates,
classroom and seminar room, as well as the 704 computer.
The basement provides space for the EAM machines, the systems

iii

research laboratory, dark room facilities, the electrical
power plant, and the air conditioning equipment. The second
floor provides space for the programming research staff, the
visiting professors, and the library and document room.

All this area has been furnished in a first-class
manner to facilitate the progress of research at the Center.

The 704 Computer and Associated Equipment

The computational facilities in the Center are
.. supported in large measure by the IBM Corporation. Specifically,

IBM is providing the 704 computer, the associated EAM equip
ment, and the associated maintenance personnel on a gratis

basis. The following machine complement is available in the
Center:

MACHINE COMPLEMENT IN THE MIT COMPUTATION CENTER

Quantity

1

1

1

1

1

1

2

1

1

1

1

10
1

Type

704
711
716

'.721
733
736
737
740
741
746
753
727
780

Description

Analytical Control Unit
Punched Card Reader
Alphabetic Printer
Punched Card Recorder
Magnetic Drum Unit (8192 words)
Power Frame No. 1
Magnetic Core Storage (8192 words)
CRT Output Recorder
Power Frame No. 2
Power Distribution Unit
Magnetic Tape Control Unit
Magnetic Tape Units

CRT Display Unit

iv

Off-Line Equipment

Quantity Type ,Descript ion

I 714 Card Reader
I 717 Alphabetic Printer
1 722 Card Punch

2 727 Magnetic Tape Units
1 757 Printer Control Unit
1 758 Punch Control Unit
1 759 Card Reader Control Unit

Auxiliary Machines

1 024 Key Punch

5 ·026 Key Punches

3 056 Verifiers
1 066 Printing Card Unit)Data Transceiver

1 068 Telephone Signal Unit)and Receiver

1 077 Collator
1 082 Sorter
1 407 Accounting Machine

1 519 Reproducer
1 552 Interpreter

The actual location of the machines in the 704 Room is
shown on the attached physical layout sheet.

o

o I]

Q ~
llicl

759
PR I

736

75'7
J -PR

Glass

I- 746 1 I 741 I

1737 I
[737 1

v

Customer
Engineering

26-160

Reception

Room

26-152

Dispat6h, Schedule

OFF~CE

vi

Additional Description of 704 Components.

The Type 66-6S IBM Transceiver equipment will per~lt
remote programming for the Type 70¥computer. Specifically,

I

the Type 6~ Pr~nting Card UnL~ will r~ceive approximately
14 card columns of information per second over telephone
lines. The received informat~on is simultaneously printed
along the top of the card while it is being punched into
the same card. At this transmission speed an average of ten
(10) fully-punched 8-column cards may be received each
minute -- more if fewer than 30 columns are punched in each
card.

Four independe,nt tr~nsmissions can be made simul
taneously over the same telephone wires, provided each
independent transmltter;has its own transceiver at each
end of the line. Simultaneous tra~smisSlon is acco~plished
by use of the fol~owing four channel frequencies: 800, 1300,
1800, and 2~OO cycles per second.

Initially, the MIT Computation Center w~ll use only

one transceiver. operating at 1300 cycles per second on a

4-wire signal unit. The initial telephone circuit will
connect the 704 Computer itistallation at Poughkeepsie,
New York to the Center in Cambridge, Massachusetts s

Use of Dual-Purpose Equipment

There are only 12 magnet~~ tape units at the Center
and ten (10) of these are directly connected to the main
frame and, are available to thep'rogrammer. Since there
are three (3) additional sets of peripheral or off-line
equipment, namely:

1. Magnetic tape-to-punched card converter"
2. Magnetic tape-to-printer converter,
3. Punched ,card-to-m~gnetic tape converter,

there is need for dual use of one of the magnetic tape units.

vii

Accordingly, the physical layout of the equipment and cables
has been designed to permit use of tape unit No. 10 on a
dual basis, either as on-line tape unit No .. 10, or as an
off-line unit with the off-line card punch Type 722~ (The
change from on-line to off-line usage is effected by
manually changing the signal cable connector on tape unit

No" 10.)

Personnel at the Center

The personnel of the Computation Center may be
roughly classified into the following groups:

1. Administrative and Supervisory Staff,

2. Members of the Teaching Staff,
Members of the Operations Unit,
Members of the Programming Research Unit,
Members of the IBM Research and Associate ,Program.

The core of the above groups was obtained by selecting key

individuals from the staff of the Office of Statistical
Services and the staff of the Scientific and Engineering
Calculation Group at the Digital Computer Laboratoryo

The composition of the IBM Research Assistant and
Associate program will naturally vary from time to time,
since these appointments are made on an annual basiso Some
of these appointments- are renewed for a second year; however,
the principal purpose of the appointment -- that of indoc-
~ination in computer application and programming -- is
accomplished the first year.. At the end of the first
year, these men are well-qualified to transmit their
knowledge to other students and staff at their respective
universities ..

I-I

CHAPTER I

AN INTRODUCTION TO THE 704

The modern computer is really a large, but element-

~ry device at least in principJ.e. An understanding of

~ computer ii perhaps best given by listing the majdr

components of a particular computer, the IBM 704, and then

d~acribing how these components interact with each other~

Br~efly, these components are:

1. A large, fast-access memory or information

storage device

2~ An arithmetic element

3. An electronic control element

4. Input and output equipment

5. Auxiliary memory devices to supplement

items 1 and 4.

The first item, a large memory unit, is a device

capable of storing (although not necessarily all at once)

all the information required to perfo~m a computation.

This information is stored in convenient units by words.

Thus in the IBM 704 computer at MIT there is an 8192 word

high-speed magnetiQ core memory. Although it need not

unduly concern the user at present each word consists of
. .

36 binary digits' (bits), each bit capable of having a

value of one or zero. Finally each of the one~word storage

1 .. 2

locations in the memory unit, (often called a register or

cell), has an arbitrary numerical address from 0 to 8191

which is permanently wired into the machine. In effect

then the memory unit of the computer is a collection of

labelled pigeon holes which will hold all the numerical

values of a problem before, during, and after computation.

The second item, the Arithmetic Element, consists of

several special registers: the Accumulator Register (AC)

the Multiplier-Quotient Register (MQ) and a Storage Register

(SR). Each of these registers can contain one word and will

r~spond to signals from the Control Element, described

shortly. Usually the SR will contain a word which is to

be combined in some definite manner with a word in the AC

or the MQ according to signals sent from the Control

Element. For example the simple addition of two numbers,

one in the AC and the other in the SR, will result in the

sum being left in the AC.

The third item, the Control Element,is analogous to

a "central nervous system" in the computer. An important

part of this system is two registers: the Instruction

Location Counter (ILC) and the Instruction Register (IR)o

Having established in this way the more important

terms , it is now possible to clarify theirme.aning.by con

sidering the process of computer operation. The most

basic operation consists, in general, of information being

brought from memory to the arithmetic' unit, processed by

I-3

mea~s of a standard operation and the resultant infor

mation perhaps being stored in the memory; to accomplish

this operation an instruction, (i.e. a number code for the

process desired) is given to the Control Element which

then selects from the memory the specified information

and places it in the SR, impulses the Arithmetic Element

to perform the operation and then stores the result when

ever the instruction so specifies.

Now clearly if instructions were to be given to

the Control Element by a human machine operator, the

execution of a sequence of instructions could be no

faster than the human operator. A possible solution

would be to 'prepare the sequence of instructions in a

loop of perforated coded paper tape, but this too would

be limited by the speed of mechanical rotation and reading

of the tape; (some of the earlier computers did just thiS).

An ingenious solution to .this problem is to place the

sequence of number-coded instructions in the memory unit

of the computer itself, for then the execution of the

instructions is only limited by the speed of the electronic

circuitry and suffers from neither mechanical nor human

inter~~ntion. This latter concept, often called that of

the stored-program, is one of the important distinctions

of the modern high-speed digital computer. A second

distinction and a very important feature of a stored

program computer is that since both the instructions and

I-4

data are stared in the same memory unit, it is quite

possible for sequences of instructions to actually

modify themselves. The ramifications of this second

distinction will be explored in later chapters.

Let us consider as an example the execution of an

elementary sequence of instructions arbitrarily located

in memory locations 127, 128, etc.

Location Operation Address
(of word to be operated -- .. --

127 CLA 199
128 ADD 198
129 STO 200

130 TRA 353
. . . .

198 (Contains value of x)

199 (Contains value of y)

200 (Contains value of sum)

As implied here, the 704 computer is a single-

on)

address computer so that each instruction consists of an

operation, (usually abbreviated by 3 letters) and an

address referring to one word in the memory. (Many other

computers for reasons of design efficiency use multi-

address instructions) 0 A second implication in the

example shown is that the Control Element performs the

instructions in the sequence of their location in memory~

There are a few instructions, which cause exceptions to

this rule, but these discrepancies are considered part of

the instruction definition. In fact these exceptional

1-5

instructions which cause jumps in the instruction

execution sequence will be seen in later chapters to

playa vital role in the decision and repetition capabil

ities of the computer.

Returning to the example given, the computer

operation now will be traced to ensure that the basic

concepts are established. The assumption made is that

the Control Element is manually started with the Instruc

tion Location Counter (ILC) preset to the value 127.

The first step the C~ntrol Element performs is to copy

thG instruction in memory location 127 into the instruc

tion register (IR)o Examination by the Control Element

of the address section of the IE reveals that the word

located at address 199 is to be operated on so this word

is copied into the Storage Register (SR)~ Next the

Control Element carries out the operation indicated by

that section of the instruction in the IR. In the

particular example here, CLA means "clear and add (to·

the AC)" so the effect of the operation is to copy the

contents of the SR into the AC. The final step performed

by the Control Element is to increase the ILCby one (to

128 in thi~ case), and then repeat the pattern described

by placing the instruction located in 128 in the IR,

placing the word stored at location 198 in the SR and so

forth. It should be clear from this description that the

computer can operate at high speeds in a fully automatic

1-6

fashion. It should also be clear that all sequences of

instructions were pre-arranged inside the computer. The

practical use of a computer hinges on this latter accom

plishment which is called programming if it involves the

totality of computer operation or coding if it concerns

only the sequences of instructionsu

Having completed the basic operating description

of a computer it is now possible to finish discussing the

major computer components. The fourth item listed

previously, input-and-output equipment, serves to transmit

information to-and-from the outside world and the memory

unit. Thus for input devices on the 704 computer there

are a card-reader or magnetic tape units. Similarly for

output equipment there is a printer, a card punch, mag

netic tape units and a photographing oscilloscope. It is

an important feature that all the input and output devices

can be actuated and controlled whenever special instruc

tions are executed in the computer; thus the devices are

said to be under "program control.1f

The auxiliary storage devices mentioned previously

as item five are of two types. The first is the use of

magnetic tape also as a supplement to the storage capacity

of the memory unit. The second device is a rotating

magnetic drum. The drum units on the MIT 704 offer another

8192 words of storage, any word of which may be brought

into the main core memory unit in a time bounded by that

I-7

of one drum rotation. Thus for some purposes the drum as

a storage device is inferior to core memory but superior

to magnetic tape where the time required to bring a word

into core memory depends on the position of the word on

the tape.

This concludes the broad brush-stroke description

of a computer. The remaining chapters will discuss various

aspects of the essential details. As a general introduc

tion,though,a quick survey will be made of some of the

conventions involving computer words.

It was already noted earlier that there were two

broad categories of words used in the 704. These were

instructions and data words, each composed of 36 binary

bits and indistinguishable except by usage. However there

are several convenient word usage conventions which are

strongly favored by the instruction codes available on the

704. Thus the binary bits of an instruction are divided

into standard sections. In.most of the instructions, the

first 18 bits give the operation code, the next 3 bits

the tag value (the use of this is described under the

chapter on indexing), and the last 15 bits give the

address section of the word that the instruction refers

to. In a few instructions the first 18 bits of the

operation section are further divided into a 3 bit prefix

and a 15 bit decrement section, again described in the

chapter on indexing.

1-8

No attempt has been made to describe in any detail

the binary nature ~f the computer because in practice

there are standard "translation" procedures always

available. Hence when a person writes down CLA as an

instruction, this when read into the computer is trans

lated into an 18 bit operation code; An additional and

similar convenience is to be able to avoid the use of
ct.J,: ..: < '

numerical afrfrres~whenever writing down sequences of

instructions. This is done by using what are known as

symbolic locations or more generally symbols. These are

merely arbitrary 5-character (or less) names for specific

locations or addresses. Thus the previous example of

coding might have been written as:

Location Instruction Address

START CLA y

ADD X
STO ARG

TRA NEXT

0 0 " •

x (Contains value of x)
y (Contains value of y)
ARG (Contains value of sum)

It is important to realize that this algebra-like.

convenience produces exactly the same numerical values for

instructions and locations inside the computer as the

previous numerical example; all that has changed is the

convention for describing these instructions and locations v

r-9

The other major category of words used in the

704 is that of words used to represent arithmetic quantites.

There are two major types, those for fixed-point numbers

and those for floating-point numbers. Again it should be

emphasized that these conventions are only useful because

there are explicit 704 instructions which manipulate words

according to these conventions. In fixed-point words, the

first bit is used to describe the sign (0 is positive,

1 is negative) and the remaining 35 bits give the magnitude

of the significant figures. Inasmuch as the binary point

is not a tangible thing inside the computer, a fixed-

point number can either be an integer or a fraction

depending on whether one interprets the binary point as

being at the left-hand end or the right-hand end of the

magnitude.

In a similar way, floating-point numbers} that

is, numbers which are represented by a fraction multiplied

by 2 raised to a power, are represented in the following

way: The first bit is the sign of the fraction, the next

8 bits are the always-positive characteristic (by

definition, the exponent plus 128), and the remaining 27

bits are the magnitude of the fraction.

Just as in the instructions, where the convenient

abbreviations and symbols are translated whenever instruc

tions are placed in the computer, there are convenient

ways of writing fixed-and floating~point numbers in normal

1-10

decimal form for the computer. For example, simply

writing down the pseudo-instruction DEC -5, will trans

late (because there is no decimal point) into the

computer as the tixed~point integer minus five.

Similarly DEC -5,translates (because there is a decimal

point) into a floating-point minus five, and DEC -.5B

translates (because there is a B) into the fixed-point

fraction minus one-half. Further discussion of this

translation process (often misleadingly called assembly)

and the translation syntax or rules are given in the

chapter describing the SHARE Assembly Program.

The foregoing chapter briefly describes the

basic word structure used in the 704 computer. For

clarification of details and definitions the IBM 704

manual will be found useful as a reference. In particu

lar binary arithmetic and conversion are described in an

Appendix.

11-1

CHAPTER II

FLOATING POINT ARITHMETIC IN THE 704

In this chapter we will show how the 704 can be

made to evaluate simple numerical expressions, as for

example (a + b)c.

Some Conventions

The reader already knows that in order to have

the computer do any computations a program must be

written in terms of the elementary instructions which

the machine can obey. When we write programs down on

paper, we represent the instructions by three letter

abbreviations wnich are derived from the name of the

instruction. Clear and add is represented by the abbre

viation CLA. Such abbreviations we call operation codeso

In general, the instruction will have an address.

Usually the address determines which storage location the

instruction refers to, and accordingly it may be the

integer number of that storage location. For example:

CLA 100 refers to storage location 100.

We will more often want to write some symbol

instead of an integer with the understanding that the

symbol rep.resents an integer. For example:

CLA A

where A stands for a permissible integer.

Furthermore it is often convenient to write

II-2

comments on the same line with the instruction to

'explain its purpose or define it, like this:

CLA, A This is a 704 instruct~on

When composing a program, we arrange the

instructions in a vertical column and imagine that the

computer obeys them in sequence reading down. Thus:

CLA
STO

CLA
STO

A

B

C

D

First this one
then this one
then this one
etc.

Conventions Used in Comments and Definitions

The two most important registers in the arith-

meticelement~ the accumulator and the multiplier-quotient

regist,-ers, we will abbreviate by (AC) and (MQ) respec':"

tively.

Often we will want to talk about the contents of

a certain storage location. We will write

C(lOO)

for "the contents of storage location 100,11 and

C (A) , C (AC)

for "the contents of storage location A" and "the contents '

of the accumulator ll respectively. Also we will use the

symbol "~,, to mean "replaces. It Thus

C(A) ~ C(AC)

will mean lithe contents of storage location A replaces

the contents of the accumulator. 1t

II-3

Now we are ready to -begin.

The Administrative Instructions

First we will consider some instructions, which

do no computing, but are very important. They are used

to transmit words between storage and arithmetic element.

We call them administrative instructions. They are:

1. Clear and Add

CLA A

2. Load MQ

LDQ A

3. Store
STO A

4. Store MQ

STQ A

Some Simple Examples of Programs

Definition

C(A)-+C(AC)

C(A)~C(MQ)

C(AC)~C(A)

C(MQ)~C(A)

We will write the following computer instruction

at the end of sample programs which w~ exhibit:

5. Halt and Proceed

HPR causes computer to halt;
it will proceed to the
next instruction if then
starteo manually.

Example I: If C(lOO) = x, then either of the

following programs may be used to place x in location

101.

OPER

CLA
STO
HPR

or
LDQ
STQ

HPR

Address

100

101

100

101

Comments

x --+C (AC)
x ~C(lOl)

HALT

X ---? C(MQ)

x -7 C(lOl)

HALT

II-4

In both cases C(lOO) remains undisturbed so that

x ends up in both locations 100 and 101.

Example II: Suppose it is desired to exchange

C(A) and C(B), Let:

C(A) = x . C(B) = y ,

LDQ A x ~C(MQ)
CLA B y ~C(AC)
STO A Y ~C(A)
STQ B x ~C(B)
HPR halt, x and yare inter-

changed

Next, we ·shall consider how the administrative

instructions can be combined with arithmetic instruc-

tions to do simple calculations; but first we will

briefly discuss a kind of number that the 704 is designed

to deal with.

Floating Point Numbers

In many of the computational problems that

arise in the sciences and engineering one encounters

numbers that vary greatly in magnitude. To save

writing and to save paper such numbers are usually

wr~tten, for example, in this way:

-6 5.213 x 10 3.213 x 10
10

rather than in the equivalent forms:

.000005213 , 32130000000.

II-5

The first way of writing these numbers is an

example of what we shall call floating point notation.

As a convenience for doing calculations where the

magnitudes of the numbers do vary widely, the 704 has

instructions which do arithmetic with numbers of a

similar form. We call numbers of this kind floating

point numbers. Since the 704 is a binary machine, these

numbers are of the form

i N = x·2

(rather than X.IO i). The integer i is called the

exponent and is restricted to lie in the range

and x is called the fraction and is restricted to lie

in the range

-l(.x(l.

If x also satisfies either of the two conditions

1
'2 ~lxl<l or x = 0

then we say that N = X·2 i is a normalized floating

point number. In what follows, we shall assume that

'II-6

all floating point numbers are normalized unless a specific

statement to the contrary is made.

The fraction, x, is not a . continuous variable but

can assume only integral multiples of the n~mber 2-27. This

fact we usually express by saying that x (and therefore N)

has a precision of 27 binary digits'. This is a precision

slightly greater than 8 decimal digits.

How Floating Point Numbers are Written When Programming

When we are writing a program, we may write floating

point numbers in ordinary decimal notation since there is

an assembly program which can translate this notation into

the internal binary floating point numbers of the 704.

To be specirlc, if we wanted to have the number

.51 x 10+2 stored as a floating point number, we would

write on our coding sheet:

IDECJ 51.

(The decimal point is essential because we wish to reserve

the notation

to mean something quite different). However, we may also

write:

IDEcl .51E+2 notice E+2 means 102

Now it may be helpful to restate two properties of

the 704's floating point numbers in decimal notation.

1. The absolute value of a floating point
number must either be 0 or must lie between

II-7

the approximate limits (10-38, 10+38).

2. The maximum precision of a floating point
number is slightly more than 8 decimal digits.

Thus we see from (1) that the number 5.0 x 10-41

cannot be stored as a floating point number because its

magnitude is too small; and from (2) we see that it would

be silly to write

IDECI -1.234567890l23E+2

because nothing beyond the 9th signlficant":',digit 'could

possibly affect the stored result.

The Floating Arithmetic Instructions

We are now ready to introduce the four basic

floating arithmetic instructions. In every case, if the

operands are normalized floating point numbers, the

results will be also*

1. Floating Add

FAD B

2. Floating Subtract

FSB B

C (AC) + C(B) --7 C (AC)

C (AC) - C (B) ~ C (AC)

'~The 704 also has some floating-point instructions which

do not produce normalized results. In practice these

instructions (UFA,UFS,and UFM) are used only rarely and in

rather tricky and obscure ways. The interested reader may

consult the IBM 704 Manual under the topic of "Fixing a

Floating-Point Number.1t We advise him to first study the

704 fixed point instructions, however.

1I-8-

3. Floating'Multiply

FMP B C(MQ)*C(B) ~ C(AC)

4. Floating Divide or Proceed

FDP B if C (B) 10; C (AC) Ic (B) ~ C (MQ)

The instructions FAD, FSB, and FMP do not leave the

MQ undisturbed. \ In fact, these instructions leave a value

in the MQ such that the number

C(AC) + C(MQ)

is a better approximation to the true result than C(AC) is.

In "single ·precision" work, however,' the C(MQ) is' ignored.

The instruction FDP leaves the remainder in the

AC. This is also usually ignored.

Examples of Programs Using the Floating Arithmetic Tnstructions

Example lIT: r:r

¢(A) ? a and C(B) = b

then the following program computes

3a -2b.
~ ...-'/I."

and stores the result in location C:

CLA

~l FA])
FAD
~ _.. ", 1

;]
\, FSB

FSB
STO

3a ~ C(AC)

HPR

1I-9

Example IV: If locations A,B,C, and D contain the

'''numberss,b,c, and d respectlvely,·then the 'following pro-

gram computes
(a/b) (o/d)

and letores it in location R: .
CLA

: J, FDP a/b-~ C(R)
STQ

CLA

~l FDP c/d-"""> C(MQ)

FMP :J ' STO (a,lb)(c/d) ~C(R)
HPR

.,. i '

The following equivalent.program requiring fewer

instructions can also be used:

CLA

FDP
FMP

~, FDP I~ f' :,;~.!
.; STQ

HPR

.EXample. V:

:]
C

~]

alb ---+ C'(MQ)

(alb)e ~ C(AC)

«a/b)e)/d-+ C(R)

Suppose that

. C (A3) =.a3
C(A2) == 8 2 .

C(AI) :== a . I
C(AO) == a .. 0

'-utX) . = x

then the following program evaluates the polynomial
. 3 .' 2 a3x + 8 2X. + a1x +.80 = «8,X + a2) x + al)x + 8 0

11-10

and stores it in location R:

LDQ A3
FMP X

FAD A2
STO R

LDQ R

FMP X

FAD Al
STO R

LDQ R

FMP X

FAD AO

STO R

HPR

Underflow, Overflow, and Division' by Zero .
If during the course of a floating pOin~ calculation

an attempt is made to compute a result whose magnitude is

too large or too small i.e. lies outside the approximate

range

then ~ very wrong answer will result~·

In this chapter, we have been and will continue to

ignore this complication. /We only remark that there are

two lights on the 704 console, the AC Overflow light and

the MQ Overflow light, which are turned on by an overflow

(or underflow) in. the AC or MQ, and that there are 704

instructions which can be used to determine whether these

lights are on.

II-II

puP

AlsO, if division by zero is attempted, the~-

instruction turns on the D~vide Check light and goes on to

the next instruction leaving C(AC) unchanged 0

We will have more to say about these things later.

Some Instructions with only One Operand

The arithmetic instructions that we have just been

considering each had two operands~ That is, they combined

two numbers by an arithmetic process to obtain a resulto

Now we wish to consider a few instructions which have only

~ operand.

1. Clear and Subtract

CLS

2. Change Sign

CHS

A

3. Set Sign Plus

SSP

4. Set Sign Minus

SSM

-C(A) ~ C(AC)

-C(AC) ~C(AC)

+IC(Ac)l~ C(AC)

Notice that CHS, SSP, and SSM do not have addresseso

Example: If locations A and C contain the numbers

a and c, then the following program computes

-a/c
and stores the result in R

CLS
FDP

-f1ltp-

STQ
HPR

A

~]
-a ~ C(AC)

-a/c ~C(R)

III-I

CHAPTER' III

THE CONTROL INSTRUC~IONS

If the 704 could execute only the' instructions 'which

we'c·oufridere'd in the las·t chapter,itwould"n-ot 'be any more

useful·than a desk calculator. For if we" .. had··· .. only· the' a,ri:t;h-,

metic'and"-admini'strative 'instructions ,·t'here 'would be no way . , ,
we' could caus·e".the computer to -execute ,the"same- instructions

more'than'once. Thus for every addition, subtraction, mul-

tiplication or division we might wish the computer to per-

form, we would have to write one or more instructionsj and it

probably takes more time to write down a 704 instruction than

it does to do a multiplication on a desk calculator Q In

this chapter we will introduce some of the, instructions with

which we can cause the 704 to profitably execute the same

instructions many times and with which we can program the
I '

computer to make deciSions. We will call them control in-

structions.

Normal Sequence in Wbioh the 704 Obeys Instructions

Let us first review briefly some basic facts about

the computer. , Both!,~~he, numbers with which it computes and the

instructions which it executes are stored i~ the memory. The

instructions a~e stored one to a storage-Iopation. When the

computer has just finished executing an instruction in a

certain storage location, say location N, it normally pro

ceeds to next execute the instruction in th~ next storage

location, i.e., locationN+I.

III-2

As a matter of fact, there is a special register in

the control mechanism of the 704 which always contains the

location .of the next instruction to be executed. This regis-

ter is called the instruction locat-ion counter, abbreviated

(ILC). Now what we just said about the normal sequ¢nce in

whic·h instructions are executed can be illustrated by this

diagram·: J,
Execute instruction
contained in C(lLC)

C(ILC)+I~C(ILC) I-

Normal Sequencing

The Control Instructions

Any instruction which can cause the 704 to select

some instruction for execution other than the one in the

next storage location following the instruction it last

executed, that is, any instruction which can change the

normal sequence of execution just described, we will call a

control instructiono The control instructions are of two

types: unconditional control instructions and 'conditional

control instructions

The Transfer Inatrttbtions '

(1) Transfer

TRA A

is an unconditional control instructiono The next instruc-

tion the computer will obey after obeying this one is the

instruction in·~locationA. That is, the TRA instruction

III~3

affects the contents of the instruction location counter.

We summarize this as follows:

TRA A A~C(ILC)

There are several conditional transfer instructions.

Each of these has associated with it a condition which, if

satisfied, causes the computer to take the next instruction

from a specified storage location. If the condition is not

satisfied, the computer takes the next instructio~ from the

next storage location in normal sequence •

. (2) Transfer on Minus

TMI A

causes the computer to take ~ts next instruction· from loca

tion A if the contents of the accumulator is negative and

otherwise to execute the next instruction in normal sequence o

We can summarize this as follows:

TMI A if (C(AC) negative) then
A~C(ILC)

Some other conditional transfer instructions are:

(3) Transfer on Plus

TPL A if (~C(AC) positive) then
A~C(ILC)

(4) Transfer on MQ Plus

TQP A if (C(MQ) positive) then
A~C (ILC)

(5) Transfer on Low MQ

TLQ'A ff ('~ C (MQ) <. C (A C)) ·then

A~C(ILC)

1II-4

If the C(AC) = 0 or C(MQ) = 0, the behavior of these

conditional transfer instructions is indeterminant~ For

the case where C(AC) = 0, we have the following conditional

transfer instructions:

(6) Transfer on Zero

TZE A if (C (AC)= zero) then A ~ C (ILC)

(7) Transfer on No Zero

TNZ A if (C (AC) + zero) then A -- C (ILC)

None of the control instructions affect C(AC) or C(MQ)~

Origin Pseudo-Instructions; Symbolic Locations

Up until now we have not worried about where in memory

our little example programs were to be stored. We now adopt

the convention that writing the operation code ORG with an

integer address, say A, at the top of a program. means that

that program is to be stored in locations A, A+l, 00. For

example, if we wrote

ORG 50

.LDQ A

CLA B

STO A

STQ B

HPR

Put this program in:50i etc~

• This arises 'because ther·e are two representations of zero
in the 704, +0 and -0, which have zero magnitude but differ
in sign. Either zero may be obtained' as a result'of arith
metic computations. The usual rule of signs holds for results
obtained by multiplication or division, but a zero obtained
by addition or subtraction has the same sign ,as the original
contents of the accumulator. The reader should also note
that the computer considers +0 to be larger than -0 whenever
the question arises.

we would mean that our little interchange program was to be

stored in loca~ions 50 through 54. The ORG is not a 704 in-: .

struction; we call it the origin pseudo-instruction.

Example 1:

Suppose C(A) = a

C (B) = b

then the following program comp'utes

and stores it in R:

ORG 50

LDQA

STQ R

CLA B

min(a,b)

a~C(R)

TLQ:J5 -"
STO R if b'- a then b~C (R)

HPR ,

Notice that our program is dependent upon where it is

stored. It obviously wouldnlt work if we ch~nged the origin

instruction to ORG:·IOQ. The trouble is that the TLQ has an
"

absolute integer for an addresse Let us instead use a symbol:

STOP

ORG 50

LDQA

STQ R

CLA B

TLQ, :JTOP ,
STO R

HPR

III .. 6

We call the symbol, STOP, written to left of the HP;R

a symbolic location, and it serves to indicate that we are

letting the symbol, STOP, represent the ~. storage·.,.address>,<,:

a.t. :.:which the HPR is stored Q With this und~rs tand ing, our

program will work wherever we choose to put ito For example:

ORG 1000

LDQA

STQ R

CLA B

TLQ STOP

STO R

STOP HPR

This program will work!

A 11.ere is " a

B here is b

R here will be min(a,b)

Here· we have indicated that a,b, and the result are to be in

the 3 storage locations following the HPR.

Example 2:

Suppose we desire to compute

and

+l.O/C(A)

+1.oxi038
if C (A) =1= 000

if C (A) = 0.0

and store the result in ANSWER

CIA A

TZE Z

~: :NEJ

C(A)~C(AC)

if C(AC)=O, then Z~C(ILC)

1.0/C (A) -+C (MQ)

z
STaR

ONE

LARG

A

R

TRA STaR

LDQ LARG

STQ R

HPR

DEC loa

DEC 1.OE38

1038~C(MQ)

C(MQ)~C(R)

constants

here is the argument

here is the result.

1II-7

The Skipping Type Control Instructions

Some of the conditional control instructions do not

transfer control to an arbitrarily specified location under

certain conditions, but rather they skip one or more instruc

tions under certain conditions. We will introduce one of

them here and others will come up during a discussion of

input-output and elsewhere.

(8) Compare Accumulator with Storage

CAS A if C(AC» C(A), go to the next
. instruction

if C(AC) = C(A), skip one instruction*

if C (AC)' C (A), skip two instructions

For convenience, we also will introduce this instruction:

(9) No Operation

Nap Do nothingj go to the next instruction

The Nap instruction has an address but it is ignored •

.. Recall the previous footnote concerning +0 and -0.

III-8

Example 3:

Let us write another little program to compute

min (C(A), C(B))

and put it in R:

CLA A

CAS B

CLA B

NOP

STO R

HPR

A

B

C (A) -l) C (AC)

if C(B)< C(AC) then C(B)~C(AC)

they are equal

store the. minimum

Arguments

R Result

Other Control Instructions

We shall meet other control instructions in the next

chapter on indexing instructions; others will be discussed

under miscellaneous topics and one or two may .not get dis~

cussed at all. For these, consult the 704 Manualo

IV-l

CHAPTER IV

INDEXING: COUNTING, ADDRESS MODIFICATION

The instructions which we shall consider in this Chap-

ter are called indexing instructions and are' extremely useful

for coding repetitive computations. They help in two ways:

first, they help in address modification, that is, they help

in making a sequence of inst~uctions operate on different

numbers each time they are executed. Secondly, they help in

counting 0 A typical example 6f a computation where the in-'

dexing instructions are useful would be' the formation of the

scalar product of two vectorso We will use this as an

exampl,e lateto

Index Registers

The 704 has· three registers in its control element

each of which is capable of storing any, of the integers

0, 1, 2, eoo, 8-1 where 8 is the number of storage locations

in 'th:e memory q,* These registers are referred to as index

registers 1, 2, and 4; or for short, IRl, IR2, and IR4g

Tag; Effective Address

To see how the index registers can help us in address

modification, we must consider tagged instructionso Every

704 i~struction may' be-tagged; and by this we mean that it

may have appended to it, as a·sort of second address, the

~. This number varies froIn one 704 to another, but is ,always
one of the powers of two: 212, 213, 214, 215. At present

at MIT it is 213 = 8192, but it may be increased later.

IV ... 2

number of one of the three index registers-·G The following

instruction is an example of an instruction with a tag of 4:

CLA A,4 C (A-C (IR4)) ~ C (AC)

The comment shows symbolically what the effect of the tag iso

The contents of the index register with which the instruction

is tagg~d is subtracted from the address of the instruction

before the instruction is executed e Thus the instruction

acts as if, 'it ~/ha"t. an addre.ss of·

A - C (IR4),

This value we call the effective address~ All the instruc-

tions that we have considered ln the last two chapters and

which· have addresses behave in the same wayo Such instruc~

tions are called indexable instructions~

It is now easy to see that if we change the contents

of an index register, we at the same time change the effec

tive address of every instruction tagged with that index

register~ This would then provide us with the promised ad

dress modification facilityo

Decrements
!

Before we can describe the indexing instructions, it

is necessary to explain what a decrement is. Some of the

indexing instructions have what amounts to still another

address which we write separated from the tag by a comma o

For example:

TXI A,2,100

Here A is the address, 2 is the t~g and 100 is the decrement o

In the decrement of such ~.n instruction, we can store any

IV-3

integer that-' could 'be- stored in an address; that is, any of

0 , 1,2, 0 Q ~; '32767 0 The, de'crement is used' to change-' or te s t

the value contained 'in an'inde~ register, and does not nor

mally refer to a -storag~-'location4

When we are writing a program,- we will often'f±nd it

necessary to have constants with integer values in the ad

dresses and decrements'. For this we use the plus ~

operation code o For exam.ple:

PZE 1000, 0, 10

represents a 704 word with 1000 in the address and 10 in the

decrement 0

The Administrative Instructions for Index Registers

We have describe~ a group of instructions which we

called the administrative instructions and which did nothing

more than move numbers in and out of the AC and the MQo

Now we are going to discuss some instructions which move inte~

gers in and out of the index registers. We will let K stand

for any of 1, 2, or 40

There are two instructions which,move integers from

storage locations to index registers:

(1) Load Index from Address

LXA A,K

This instruction loads into index register K the in

teger found in the address of storage locati0n Ao We can

symbolize this as follows:

C(address of A~C(IRK)

Iv-4

(2) Loau' 'Index' from-De'crement

LXD A,K ::C (decrement· 'of A)'~,C (IR;K)

Th~re'-"1s' only one ; ins~ruetion whl'ch moves an integer

from 'an index "r~-gi"~ter-~ .. tq ,:a .·f)t'~:rag~ .10cation:

(3) Store. Index-in, Decrement·

SXD A,K C(IR~)~C(decrement of A)

Only the decrem.entof A is: disturbed by this instruc-
,

tion; the' rest of th:e ,word is.unchangedf),

The:re'is,·.a ... 5im.11ar set of three' instructions for

moving integers between the accum.u1ator and the index

registers:

(4) P1acre~,:',Address in Index

PAX O,K ·C(address of' AC)'~C(IRK)

(5) Place Decrement.in ·Index

PDX.O~K C (d~cremen.t of' AC) ~ C (IRK) ..

(6)' Place Index in De~rement

PXD O,K Clear the AC; then'
C (IRK)~ C (decrement of' AC)

This last instruct1pn has the interesting property

that if it has no tag (i.e 0,' if ,K is zero), .. then it clears

the AC; that is:

PXD '+.O~C{AC)

In these three "place',' ins,tructionS the address is

ignored ...

It may be well to note· that the pair of ins'tructions

CLA A

PAX· 0,1

C(A)~C(AC)

.C(address ~f AC)~C(~l)

IV-5

puts the same number into IRI that this single instruction

does:

C(addr~ss of A)~C(IRl)

Counting With the TIX Instruction

We said that the index reg±sters would be a help in

counting 0 To prove our pOint, we now introduce the most

popular indexing instruction which is used to count. It both

changes (subtracts. from) the contents of the index register

and acts as a conditional transfer. Here it is:

~(1) Transfer on Index

TIX A,K,N

The action of this instruction depends upon C(IRK).

If C(IRK);>N, then it decrements IRK by N and transfers con- '

trol to A 0 Sym.bolically: if C (IRK) > Nj) then C (IRK) -N -+ C (IRK)

and A·~C(ILC) 0 However, if C(IRK)~Np it, does not change

C(IRK) and it does not transfer control; it goes on to the

next instruction in seque~ce without changing anythin~o

, Example 1:

As an example, suppose we wish to write a pro-,

gram to evaluate the sc'alar product of two 3-dimensional vec-

tors: A 0' B = AlBl+A2B2+A3B3. Suppose Al ,A2J)A3 are stored

in sto~age,locations ,~TA'1:VECTA+1,~ VECTA~2; ,and,BI ", ,B2, B~':

are st6red in'trnC'l'B and following locationso Then ,the' fo1.

lowing, program will ,compute the scalar product and leave the'

result in ANSWER:

LXA COUNT, 1 '.

LOOP IillQ VECTA+ 3', 1'-

FMP VECTB+3,1, .

FAD ANSWER

STO ANSWER

TIX LOOP, 1, 1·

,i-t~' HPR
"\~

COUNT

ANSWER

PZE 3

Instructions
Executed
LXA' COUNT,l

.LDQ VECTA+3,1
FMPVECTB;-3,1
FAD ANSWER
STO ANSWER

LDQ VECTA+ 3, 1
FMP VECTB+ 3, 1
FAD ANSWER
STO ANSWER

TIX LOOP~lJ)l

LDQ VECTA+ 39 1
FMP VECTB+ 3:1 1
FAD ANSWER'
STO ANSWER

TIX LOOP,?IJ'l

HPR

IRI

'3

2

1

1

1

FIGURE. IV-l

IV-6

, +3""" C(IRl)

Count to 3

a constant

Originally contains 0 .. '-

Effective Address

VECTA+3-3 = VECTA
VECTB;-3-3 = VECTB .

(since 3 >1, we index and
go back)

VECTA+3-2 = VECrr'A+l
VECTB+3-2 = VECTB+l

(since 2> 1, we index and
, go back)

VECTA+3-1 = VECTA+2
VECTB+3-1 = VECTB;-2

(since 1 = 1, we do not
index; we proceed)'

stop

IV-7

Figure IV-I shows a step~by~s'tep~history of this

program 0 Notice'" ho~r the effective address"'C'hange'swith' the

contents of the index reg1ster'o The instructions themselves"

of course9"rema1n"unchangedoT~is simple program illustrates

several pOints woptn,·reniembering about such uTIX loops ":

Car The· index register 1s set to the number of

elements to be processed o

(b) . The tagged ins'tructions have an address equal

to the sum. of the location of the, first element 'in the block,

to which th~y refer and the nUllll?er of el~ments in the blocko

(~) The effective address moves forward through

the block c
.... :.:. .. ~ ..

'(dr'.: The instructions themselves don't change; only

their effective addresse~change.
'- -..::.-::.:;.

The TIX instruction has a backward twin which acts

exactly like the TIX except that it goes to the next instruc

tion where the TIX would transfer and transfers :control

where the TIX would go to the next instruction:

(8) Transfer on No Index
J I

TNXA9K,N

If.C{IRK»N, tpen C(mK)~N-+C(IRK) and go to next
instruction

a-/'Lc((!... (it- c.)-1- 1 -> C. (']; L c...)
If C(IRK)'N, then it leaves '!RK alone,and A~C(ILC)o

!Xflm.~ Ie 2 c)

We can contrive "to use the TNX instruction in :

our previous example o

Iv-8

LXA COUNT, I +4 ~C(IRI)

LOOP TNX STOP,l,l count

LDQ VECTA+3,1

FMP VECTB+3,1

FAD ANSWER

STO ANSWER

TRA LOOP

STOP HPR

COUNT PZE 4

ANSWER

The reader should note that in this example the in

dex register is set to one plus the number of elements to be

processed~ Another characteristic of this program is that

counting and testing are done before the loop is entered.

The above example is somewhat forced; however, TNX

does have some valid applicatio"ns. In more complicated pro

grams the number of times a loop is executed may be. a variable

computed by the program. If zero is an admissible value for

this variable it may be possible to write neater loops usi~g

TNX than can be written using TIX.

In such program dependent loops, however, further

complications arise" in gonnection with the addresses of tagged

instructions. In example 1 ~e noted that a tagged instruc

tion must have an address equal to the sum of the location of

the first element in the block and the number of elements in"

IV-9

the blocko For a program dependent loop this 'means that the

addresses of all tagged instructions must be altered before

executiono The physica'l modification of 704 instructions, is

possible (we do not know how to do it yet) but can be avoided

in this case by an artiface: namely, instead of assigning a

symbol to the location of the first element of the block we

assign a symbol to· the location of the last element of the

block (or better still to this location plus I).

Thus if we store AI' A2, and A3 in VECTA-3,VECTA-2

VECTA-l, respectively, and we sto,re Bl ,B2, and B3 in VECTB-3,

VECTB-2 and VECTB-l, re.~pectively, then scalar multiplication

could be performed by the following variation on example 1:

ExamEle 2

LXA COUNT, 1 +3~C(IRl)

LOOP LDQ VECTA,l

FMP VECTB,l

FAD ANSWER

STO ANSWER

TIX LOOP,l,l Count

HPR

COUNT PZE 3

ANSWER

It is suggested that the reader- devise a.similar

variation on example 2.

There are two other conditional transfer instruc

tions involving index registers:

lV~lO,

(9) Transfer on~-Index.' High

TXH A,K,N if" fC (IRK).> N) ,th~n A-+ C(lLC)

(10) Transfer on Index Low, or Equal,
, i

?:,XL A,K;.N if, (C(lRK)~N),thenA~~(lLC)

These two inst~u~tions act exa,ctly like 'rIX anq. TNX

respectively except that they don't change the.index register.

One furtheru,nco'nd1tiona1' transr~,r instruction will

round out the: pictureo
ow ..' ,

.(11), ,T'rans:fer With Index "Inc~e'ased , , .'

TXl AiK,N

Some Remarks About Notation

C{IRK)+N~C(IRK) and, A~c(iLC)

The reader ,may. hav~ noticedtliat:

a) All the indexing 1nat~uc,tions have an X in their

3-,letter operation codes., .
. " . , '~" , " ' ,

b) Trans~ission 'of 'information, from. storage to

the index registers is de'signate,d by' 'an initial ~o' (Load),.

We'have LXA and LXDo

c) ,Transmission,of inform4t1on from. the index

registers to storage is designated by an initial S. (Store)o

We have S,XPbut' not SXA •
. '." ------.,,~. ~ .

d) TranstI1i~s1on qf ,information in~,ithep direction

between the,AO, ,~rtq,'it:ld~~:, .. ':p~~g'~'f?t,er6";1S~,,:,~e.s,;tgna',ted by 'an in1 tial
.... •••• :.., •••• 1 ••• '\ ".' • ., •••• ,' •

P. (p1a'c~)~; W~ha ve 'pxD'~ ':'~Df~;~'~:'~~i:, :btit !!.£i PXA 0

e.) Transfer of control'1s ciesignated as usual by

an initial T~ 'We have .'four c'6nd1~1onal transfers involving
. . . .". 4 .

index .reg1sters" 'fIX,. TNX" TXH, . and TXL, and one 'uncpndi";

t1,onal transf~r1 ,TXl*"
, ' , * One m.ore, T.SX, will be d1seus-sedunder subject of subroutines.

IV-II

-Arithmetic in the Index Registers and Machine Size
Since the index registers can only holcf positive int·e~

gers less than S, ~he number of words in th~ memory; and ~ince
S.may be l~ss.than the largest integer whi~h can be stored, in
the address or. decrement of an instruction.!' the following pair
of instructions ~ight change the integer in the decrement of
A:

LXD ' A, 1
SXD A,· 1
In fact our description of the instructions, which

move integers into the index registers, was not quite correct.
For example, the description of LXD ought to have been:

Load Index from Decrement
LXD A, K G(decrement of ,A) (mod S)--1C(IRK)

where S is the number of words in..the.memory, sometimes called
the machine size, and

X (mod S)
means the remainder obtained after dividing X by So

AlSO, ()ur description of the conditional transfer in
structions suffer from the same defecto Apre~ise description
of TXH would be:

Transfer on Index High
if (C (IRK) > N (mod S)),

then A-1C (ILC) .'
TXH A, K, N

Tl1l.ere is a common convention according to which a ne
gative integer, say -N, written in the address or decr~ment of
an instruction is taken as,an abbreviation for the positive
integer:

215 ... N = 32768-N
For the case, N~C(IRl), this can bel justified by the follqw1ng
equation: : .

. [(215 - 'N) + C (IRI ~ (mod S) = C (IRl) - N
which holds because S is always a factor of 215. It follows
that the instruction~

TXI A, .~, ... -N .

IV-12
acts as if it were adding a negative number to index reg~ster

1"
The address spectrum for the 8192 word machine is il

lustrated be10w~
Binary

11000<)000011
110000<)00010
o 0 0 " 0 0 0 0 0 000
000.00000001
00 0000000000

Decimal
8191 or
8190 or

1 or
o or

For example, if C(IR1);>1, then the instruction
TXI A, 1, ... 1

acts exactly as the following instruction would
TIX A, 1, 1

Our convention for negative numbers leads us to a rather
peculiar algebra, however, in connection with the TXH and TXL
instruct,ions 0, The usual algebra,' applies when we are comparing
two numbers of like sign, however,' if' num.bers of unlike sign
are being compared we see from the table that negative' numbers
are frequently larger than p,0sitive nUffi:bers.

Thus, ,for example, the instructions:
TXL A, 1, ,-1 and'TNX A, 1, -1

would be unconditional~con:trol instructions.
Example 4. We rewrite example 1 to illustrate the~~

points.

LOOP

TEST

COUNT
ANSWER

LXA
LDQ
FMP
FAD
STO
TXI
TXH
HPR
PZE

COUNT, 1
VECTA +3, 1

VECTA +3, 1
ANSWER
ANSWER,
TEST, 1, -1 Decrease C(IR1) by 1

LOOP p 1, 0

3

' .. " .. .
" •• ""t ;. .. .

·'IV-l3

Example 5. We again rewrite example 1~0 illustrate
a powerful technique for 'writing pro"gram dependent loopso

LXA COUNT, 1
LOOP LDQ VECTA, 1

TEST

COUNT
ANSWER

FMP
FAD
STO
TXI
TXH
HPR
PZE

·~CTB, 1
ANSWER
ANSWER
TEST, I,

. LOOP, 1,

0

-1 "L

-3

The next example may take some study, but it illus
trates the fact that coding loops in terms of the TXI and TXL
or TXH instructions maybe more cQp,venient than using th.e.TIX.

Example 6. Suppose we have 10 numbers stored in loca
tions A + 1, A + 2, ~ •• , A + 10. Then the following rather
complicated routine will sort these numbers in order of in
creasing size. It does it by the so-called interchange method.
First it scans through the list interchanging adjacent numbers
if they are out of order. When it gets to the end of the list,
the largest element is in last place. Then it repeats the pro-
cess for the other 9 numbers,

LXA CaNST, 2
Pass LXD SKIP, 1

SXD TEST, 2
NEXT LDQ A, 1

CLA A + 1, 1
TLQ SKIP
STO A» 1
STQ A + I, 1

SKIP TXI SKIP + 1, 1,
TEST TXH NEXT, 1, -
Q TXI Q + 1, 2, 1

TXL PASS, 2, -2
HPR

CaNST PZE - 10

etco

-1

Set count of no. of passes
ConSider 1st pair
Set test for end of pass.

is ·the pair out-of-order?
yes, interchange them

Consider next pair
go to NEXT if not end of pass
Prepare for next pass
Go back for next pass, or
stop
Address has 215_10 = 32758

IV-14
Some Pathological Points about the Index Registers

Any of the indexing instructions may be written without
a tag. If this occurs the instruction behaves as if there were
an imaginary index register,\? numbered 0 by convention, whose
contents is always 0 0 An application for

PXD 0.1'0

has already been described o Another useful case is the in
struction

which now becomes an unconditional control instruction and
can almost always be used in place of TRAD The advantage in
dOing so is that TXL can have a decrement and decrements are
useful for storing integers needed in the program. (What is
the point in ever using TRA?)

An indexable instruction may also (in a certain sense)
refer to more than a single index registero For an explanation
of this the reader is referred to pll of the 704 manual;and to
,the definition of SXD as given on p260 Such multiple reference
is indeed tricky' and must be done with care. The following two
examples illustrate some uses for reference to m.ultiple index
registers 0 The reader'may,\? if he wishes,defer study of these
exam.ples until he has a better teel for the binary nature of
the machinee

Example 8. Here

A = (ai'j)
B = (bij)

to obtain the matrix

we multiply two n by n matrices

i, j = 1,9 0 0 • .9 n

i, j = l,9.oo,n

C = (Cij) i,9 j = 1, 0 0 O,\? n
We assume that the matrices are stored in "row by row" form,

a ij is in 'register MATA + (1-l)n + (j-l)
bij,iS 1n register MATB + (i~l)n +-(:1-1)
0ij appear~s in register MATC + (i-l)n.+ (j-l)

The rule for matrix multiplication is

Cij = ~k aikbkj
1· "- .

i.

IV-15
The program follows:

LXA SETUP, 7 n2~ C(IRl), C(I~2), C(IR4)
1 LOOP 'PXD

STO MATC+N#N~4 NiitN means N2

LOOP LDQ MATA+N~N, 1
FMP MA TB+NJffN, 2
FAD MATC+N*N,4 Form Cij
STO· MATC+N.-N,4
TXI NEXT,l,-l

NEXT TIX LOOP,2,N
TNX STOP,4,91] StOP when finished
TNX 2 LOOP, 2, 1 1 Count within row
TXI 1 NEXT,l,N J Same row

1 NEXT TXI 1 LOOP,2,N*N- .
2 LOOP TXI :1 LOOP,9 2,N*N-l] New Row
STOP HPR
SETUP PZE N*M

An interesting exercise for the reader would be to
extend this program to handle arbitrary conformable matrices.

Example 90 Here we sort n numbers

aO' al,ooo~an_l

which are stored in registers DATA, DATA +1,000, DATA +n~l
respectively into ascending ordero We do this by a variation
of the interchange method as follows: First we compareC(DATA)
with C (DATA+l), C (DATA+2), etc 0 and place the smalle's t number
in DATA. Next we compare C(.DATA+l) with C(DATA+2), C(DATA+3)
etco, and ·place the next smallest number in DATA +10 We re
peat the process n-2 more times and sort the numbers 0

LOOP

SKIP
NEXT

LXA

CLA
LDQ
TLQ
STQ
STO
TXI
TXH

COUNT,9 3
DATA +n,'2
DATA +n,l
SKIP
DATA +n,2
DATA +n,l

NEXT. 2. -j
LOOP, 2, 0

Exchange if. necessary

Count one pass through data
data

TIX LOOP, 3, 1

HPR

COUNT PZE n

IV-16

Count passes.

V-I

CHAPTER V

The SHARE Assembly Program (SAP)o

This introduction contains enough information to en
able, one to write programs in the SAP language that will be
correctly translated by SAP. Not all of the features of SAP
are described since some of them are useful mainly to the
experienced programmer, but the more important features are
described more fully than in the main writeup.

It is assumed that the reader has been introduced to
most of the 704 instructions and also to the basic idea of
coding with symbolic addresses.

V-2

The Purpose of SAP
The purpose of the SHARE assembly program is to translate

programs written in the SHARE symbolic language to a binary form
which can be obeyed by the IBM 704. This symbolic language is
standard for 704 1 s throughout the country, and p~ograms exchanged
between 704 computing centers will usually be in this form.

SAP was written by Roy Nutt of the United Aircraft
Corporation to the specifications of the SHARE organization
and became available around the beginning of 1956. A revised
version has been written at United Aircraft and will replace
the original version although all programs written for the ori
ginal will be correctly translated by the new version. A
complete description of the new program is not yet available
so this introduction is mainly based on the older version which
contains all the most important features of the language. We

/

shall mention some features of the new SAP, and when we do so
will. indicate that they belonE to the new SAP.

What SAP Does
SAP takes a program written in the language to be des

cribed and punched onto cards and does the following things
to it:

1. Starting at a register specified by the programmer in
the program it assigns numerical addresses to the symbolic
addresses written by the programmer.

2. It translates the mnemonic operation codes (like eLA)
written by the programmer into the binary code which can be
obeyed by the 704.

30 It translates numbers written in decimal form by the
programmer into binary fixed or floating point numbers.

4. It incorporates into the program routines taken from
the library tape •.

50 It does not run the program it translates.
6. It punches a deck of absolut~ binary cards with

22 in~tructions per card. (The original language is written
. one instruction per card.)

V-3
This deck can be loaded into the 704 if prefixed with a
loading program (furnished by the machine operato"r)0 The last
binary card punched by SAP gives the address of the first in
struction to be obeyed in the program. There are other optional
forms of output which we will not discuss in this introduction.

7. It provides an assembly listing which describes the
translation performed in printed form. This listing also tells
about any mistakes in your program which SAP has detected.

80 It also punches a symbol table giving the numbers
assigned to symbols. This is useful for making additions to
the program.

How to Use SAP
I. Write your program in the SAP language and punch it

on cards. The deck of cards produced is called the symbolic
deck.

20 Give the symbolic deck to the scheduler with a
performance request form asking for SAP assembly.

You will get back the binary deck, the assembly listing
and the symbol table.

3. Examine the listing to see if SAP has found any
errors in your program. If there are errors correct them in
ways to be described later. This mayor may not require a new
assembly.

4. Give the corrected binary deck to the scheduler with
a performance request asking that the problem be run.

5. Look at the answers.
(When the MIT operator program is available there will

be some changes in this procedure.)

The SAP Language~
In order to be translatable by SAP a program must be

punched on cards in a particular form. To facilitate punching

*This language is not used in the 704 manual which was
written before SAPo In the back of the manual another assembly
program (NYAPl) is described Which is not in general use.

v-4
it is usual to write the program on a "SHARE symbolic coding

form", pads of which are available in the computing center.
After cards have been punched a printed listing may be

made on the 407 accounting machine. This is useful for
checking the key punchingo

Each line of the coding form is punched onto a single
card and represents either 704 words or an instruction to SAP
on how to make the assembly.

Each time a key on the punch is struck certain holes are
punched in one of the 80 columns of the card and the punch
~aces to the next column. The set of columns of the card is
divided into fields for the purposes of this language. Co
lumns 1 to 6 make up the location field (column 1 has an
additional special sign~ficance). Columns 7 and 11 are not
used o Columns 12 to 72 make up the variable field. Finally,
columns 73 to 80 make up the identification field which has no J , ,"

programming significance. tl' C(r" ,',' ':: -I ('I / () ,i, (1,'" I I ,', ,>""! ,'-' ,-
The way a card is interpreted by the compiler is de

termined by the 3 letter operation field. Now we describe
the meaning of the various 3 letter codes in the operation
field.

REM (Remarks)

If the operation code is REM the assembly program ignores
the card except that the contents of the variable field of such
a card appears in the assembly listing. It is a good idea to
put an REM card with onels name on it at the beginning of the
symbolic deck so that the operator will deliver the listing
to the right person. Otherwise REM cards are used to label
sections of program and should be used liberally as aids to
onels memory in re-reading the program. The letters REM
themselves are suppressed in the assembly listing.

ORG (Origin)
This card is used at the beginning of every program to

specify the register at which the program begins. This

V-5
number must be large emough so that there is room at the be-
ginning of memory for the loading program which brings the bi
nary cards into the ~achine,o The space required varies from
about 30 registers to several hundred depending on the feature
of the loader but if the programmer is not pressed for memory
space 512 = 1000S is'a good register to start in. The earlier
registers: can be used,'for' in:i.ermediatereslilts since'it does
not matter if they overlay the loader after it has served
its purpose o

The address at which the program is to start is written
(as a decimal integer) starting in column 12.

An ORG card can also o~cur in the middle of the program.
In this case one writes an expression starting in column 12

each symbol of which must have previously been defined.
(ThiS aast sentence will be clear when we describe what symbols
and expressions are and what it means for the symbols of an
expression to be defined.)

704 Instructions
a. Operation field; A 704 instruction is written with

the 3 letter SHARE nmemonic code (e.g. CLA) in the operation
field. The 3 letter SHARE codes include those of the 704 manual
but some additional ways are provided for writing input-
output selection and sense instructions that place less bur-
~en on, the memory of the programmer.

b. Location field: If the instruction is not referred to
by other instructions the. location field should be left
blank to save assmebly time. If the instruction is to be
referred to a symbol should be written in the location field.

Symbols:. A 'sy1n.b'ol ,may be 'any,~ c,ombinat~on ,of' 6 or, fewer
Hollerith characters none of which are the special characters:

+-'*/,$
and not all of which are digits. The Hollerith characters
are,: the capital letters, the digits 0 thru 9, and the
following special characters:

+ -*/ 1$. () =

v-6
There are two - signs on the keypunch, and the one on the key
also marked SKIP (which gives rise to an Ilpunh~) .is used
in SAP. The one on the same key with the = sign is not usedo

The above list does not agree with that given in the 704
manual which gives the characters used for commercial purposes.

Examples of legal symbols are A, AB, COMMON~ START,

DONE, 3.4, A40. The. symbols .~.~.PJ:~.N:T,. A+B, 17~ .:;lr.~ illegal.
If the symbol has fewer than b charac~ers it llY be placec~
anywhere in the location field Q

Co The variable field: If the instruction has an address,
tag, and decrement these are written in that order starting
in column 12 and separated by commas with no intervening
blanks. Examples of "the way 704 instructions are vlritten
are the following:

B CLA A

AB CLA
4.1 CLA

TIX
PAX
TXL

1

TXL
TXL
HPR

A,l

382
B,l,l

9,·1
A

A,l,l
A,O,l

Notice that if the instruction has no decrement part no
thing need be written for it. This is the reason why SAP
instructions are written with the address, tag and decrement
in a different order from the order of these parts in a 704
word~ The first blank after column 12 signals the end of
the instruction to SAP. Anything beyond this blank is ignored
in the translation but is reproduced verbatim in the listing
so it is usual to put comments about the instruction after
the blank. It is recommended. that the program be liberally
sprinkled with comments.

Expressions

In the address, tag, an~ deorement fields one can write
not only integers and symbols, but certain arithmetic com
binations of integers and symbols called ,expressions~ In
these expressions the, char~ct~rs +, -,~, and / stand for ad
diti6n, subtraction, multiplication and division respectively.
Examples of expressions are A+3, A+B, A+B". C, . '~1.AB+A" B,
-A and ~B + AtC + ~D.No parentheses are allowed., The ari
thmetic involved is integer modulo 215 so that, for example, -1
is the same as 32767 and 32769 is the same as 10 This ,arithmetic
1s more fully described in the' SAP writeup but the information
in. the above paragraph should be sufficient for most purposes.

It is im};>ortant to note that .the arithmetic involved has
to do with the addresses and not with their contents (in contrast
with FORTRAN). Thus if register goo is assigned ~o the symbol
A, the expression A+9 refers to register 909.

The new SAP provides the additional feature that the
symbol~,can be used to refer to the location of the current
instructiono Thus TXI~+ 1,' 1, ... 1 refers to a TXI to the
register following the TXI inst:ruction o It turns out that no
ambiguity results from using the same character for a multipli
cation sign and 'also to refer',to th~ current locatiohG

Data Storage
If one wants to reserve a register for an intermediate

1 or final result, one merely writes a symbol to name the register
in the location field and leaves the operation 'ancL varlabTe:
fields blank?

END (End of Program)
Tpe last card in any program, has END as its 'operation

parto This is very important because if the END card is omitted
your assembly may be mixed up with the next man's and he is
unlikely to be gratefulo '

. .
The variable field of an END card contains an expression

which tells the. assembly program, tne address from which the

v-8
first instruction is to be taken, when the program is run 0

SAP uses this information to punch as the last card in your
program a transfer card which tells the loader ·j~:.r· .. ' ',,~." .

the register to which it should transfer control when it has
finished loading the program into memory.

Data Numbers
If a program is to be run with only one set of data or

if certain data are to be included with all runs of a program
it is simplest to assemble the data into the program 0 SAP
is capable of converting various kinds of data into the binary
form used by the 7040

DEC (Decimal Data)
This pseudo operation causes the decimal numbers in the

variable field to be converted to binary and stored in re

gf.sterss··ta~ting 'a~t :·;tbe .il>ti1~t:.:·~n ;:;-~l:l,e pr~gram'.~e"re ~t:~e:~EQ.~::<~:~r(:l .
appears. The first data word may be referred to by putting
a symbol in the location field of the card.

The numbers to be converted are written starting in co~
lumn 12 separated by commas and with no blanks. Whether the
conversion is to fixed or floating binary depends on the way
the numbers are written. We now describe these ways:

a. Integers: If a positive or negative decimal integer
is written with no ·decimal point, it is converted to a binary
ihtegeroThe + sign is optional with positive integers~ Of
course, the absolute value of the integer must be less than
235 ,.

Examples',.of.:decimal.'cards .;with integers .are,:

A DEC 17
B DEC 23178195, ~25l~ +251, 48

The number of integers that can be put on a card depends on
their size but they must not extend beyond column 720

b o Floating Point Numbers: If a decimal number like
30481, -2.0 or even -2. is written, it is converted to floating
binary 0

V-9

Numbers can also be written in a floating decimal
notation: 304EIO is equivalent to 304xIOIO and -3.4E-IO is
equivalent to -3.4xIO- IO

o These numbers are converted to
floati~g binary and must of course be of a size that allows
them to be represented as normalized floating binary numberso

Co There is another notation for producing fixed point
numbers which is desc~ibed in the main SAPwrit~p. The first
blank (as·.usual) indicates that all punching to the right is

'a remarko
JeT (Octal Data)

For some purposes, in part~cular fbr describing masks
to be used in logical operations, it may be convenient for the

'programmer to think of his data in binary form. However,
since it 1s hard to copy even 36 consecutive binary bits
without error it is customary to write binary data in octal.
(Each 3 bits are summarized into one octal digito)

If OCT appears in the operation field then the octal
numbers written on the card starting in column 12 and separa
ted by commas are converted· to binary integers 0 If the word
has 12 digits the first b~t may be regarded either as a sign
or as part'of the leftmost digit so that -0 = 4, -1 = 5, -2 = 6
~nd -3 = 7~ Either form may be us~do

The first blank to the r'ight of column 12 indicates that
all punching to the rig?t is to be considered a remark.
BCD~ (Hollerith Data or.:Binary-Coded-Decimal)

The 60 columns, 13-72.1 are regarded as conSisting .. of
10 six-character wordso If column 12 contains a digit
V (O~ V ~ 9).9 the first V words are converted to binary and
assigned to .V successive registers o If column 12 is blank or
contains some other character, 10 words are converted 0 The
words converted may contain blanks.
Data Having the Format of an Instruction

It is of ten 'desirable to include in a program words
for which the addr~ss, tag, decrement, and prefix are ·de
scribed~ (Th~ prefix is the first three pits.) This is done

as follows~ the address, tag, and decrement are written as

in 704 instructions and may be expressionso If the operation
f~eld is left blank the prefix will be zero o To give i~'

another value one writes one of the following operation codes o

Code Name First 3 bits -
MZE Minus zero 100 or -00
MON Minus one 101 or -01
MTW Minus two 110 or -10
MTH Minus three III or -11
PZE Plus zero 000 or +00

PON. Plus one 001 or +01

PTW Plus two 010 or +10

PTH Plus three 011 or +11

FOR Four 100 or -00

FVE Five 101 or -01

SIX Six 110 or -10
SVN Seven III or -11

BSS {Block Started bl 51mbol~: and BES {Block Ended bl Symbol
It is frequently necessary to reserve a block of con-

secutive storage reglst~rs for an· array of intermediate or
final results o This can be done by either the BSS or BES
hpe'ratj;on:W1;thi~:a n~; :a:dd'~e'_~3"; :g~1r~.::.t~:: ,number' ;'~f -ir.e g.iS -: . .' .: ."5(;.~

ters to be reservedo The difference. is that if the pseudo
operatio~ is BSS, the symbol in the location field refers to
the first of the registers reserved while if BES is the
pseudo-operation, the symbol refers to the register right
after ~he last of the reserved blocko

For examp'le., if we have a program beginning
ORa 1000

COMMON BSS 60

START CLA COMMON+5
the symbol COMMON is assigned the' ~a-lue .1.000 and START is·
assigned the value' 10600

On the other hand in the program
ORG 1000

COMMON BES 60
START CLA COMMON-60

both COMMON and START are assigned the value 1060.

V-Il

When the program is loaded nothing is stored in the
block of registers reserved by BSS or BES o Thus these regis
ters will contain whatever was in them previouslyo

If we write, BSS 0, a symbol is assigned but no regis
l:;;er is reserved 0

One can write ,symbolic expressions as well as constants
in the variable field of a ESS or BES instru'ctiono The symbols
occurring in such an expression must have previously ~een de
fi~ed 0 (We discuss this in connection " with the next section.r

SYN (Synonym) and EQU (Equals)
A symbol (placed in the location field) may be assigned

the vGllue of an expression (placed in the variable field) by
using either of the pseudo-operations SYN or EQU. The symbols
occurring in the expression must have been previously defined.

Thus
N EQU 20

assigns N the value 20 and
ORG 1000

A BSS 0
!,

B SYN A
assigns B the value 1000 0

The dist:J.nction·between SYN and EQU is somewhat diffi
cult to describe 0 It arises only when a, coder requests SAP

,to punch out a v~ry special type of binary card (called relo
catable binary) ~hich. is deacri~ed in the SAP-write-up in
cluded as an appendix o Tpe casual coder need not concern
himself with thisd1stinctiono

V-12
When A Symbol Is Defined

In order to understand this question it i~ necessary to
know something about how the assembly ,program works 0 Itg'oes
over the program twice o The first time is for the single
purpose of assigning values to sym.bols. It sets a location
counter equal to the value of the first ORG card and increases
the counter by one for each instruction read. Eyery time 'it
encounters a symbol in the location ,field of an instruction'
it makes an entry in the symbol table which assigns the cur
rent value of the location counter to the symbol 0 Naturally,
the location is increased for DEC, OCT, and BCD cards by an'
amount equal to the number of words, on the card and for BSS
and BES cards by the value of the expression in the variable
field. A SYN orEQU pseudo-operation also causes an entry
to be made in.!, the symbol table 0 In order for this to be
possible the ~ymbols in the expression in the variable field
must already be in, the symbOl table~ or, to use the customary
terminology, must have been previously defined. This wIll be'
the case only if the', symbol has previously appeared in, a lo
cation field~:' The symbols appearing in the variable field
expression of an ORG, BES, or BSS pseudo-operation must have
been previously defined so the assembler can change the ~o ...
cation 90unter properly. If'such a symbol is undefl,ned

. ,

w:hen the assembler .encounters it, it is--:taken to have the
value zero although if it is later defined subsequ~nt uses
of it will have the correct value. In the second pass over
the program the assembler evaluates,' the expressions occurring
in the variable field of 704 instructions translate~ the
operation codes, punches the binary cards and prints the
listing.

- . .. ,

LIB (Library Search)
A list of the· subrQutines which are on the-library

tape is available in the compUting center. To incorporate
one of these subroutines 'it is only necessary 'to include a
card in the program with the operation code tIB and the

V-13

name of the subroutine in the location field. This name must

be written and placed in the location field exactly as it

appears in the list of available routines.

The routine will appear in the program wherever the
LIB card occurs o

Additional Pseudo-Operations

The above are not all the pseudo-operations available
with SAP 0 However, the programmer' who has had some experience

~lith the use of those so far defined :tro will probably prefer

the condensed style of the regular writeup to the wordiness

of this introduction,

Error Detection and Correction

The assembly program generally detects certain errors

and misprintso First of all it prints at the head of each
ONC.lZ

program any symbol that is defined more than~. Secondly,

whenever a symbol or operation code is undefined it leaves a

blank in the octal translation. Finally it prints at the

end of the program a list of the undefined symbols. The new

SAP has additional error detection features.

There are four main ways of correctlng errors detected

at assembly time o Which one should be used depends on the

extent of the error.

10 Replace incorrect decimal cards and re-assemble.

If the errors are very extensive this is desirable.

2. Make binary correction cards and include them
before the transfer card when the program is loaded. Method

3 is preferred to thi$o

30 Make octal corre~tion cards as follows:

The octal equivalents of the symbolic addresses in the

SAP language program can be obtained from the assembly listing.

The octal correction cards are placed after the program to be

corrected and before the transfer card. The loader first loads

the uncorrected program and then puts the numbers from the

v-14
correction cards in the registers specified,replacing the
erroneous instructions~ A correction card may have up to
four corrections on it which are punched in the following
format:

Columns

1-5

6..,17
19-23
24-35
37-41
42-53
55~59

60-71

location where first correction is to
be stored
corrected word (12 octal digits)
iocation of second correction (if any)
second correction (if any)
location of third correction (if any)
thj.rd· correction (if any)
location of fourth correctio.n (if any)
fourth correction (if any)

Leave all other columns blank except that 73-80 are
ignored. If there are fewer than four corrections, fields
can be left blank except that the first field cannot be left
blank or else the whole card will be ignored by the loadero

The loader which loads absolute binary cards and octal
correction cards is NYBOLI. It is described in SHARE
distribution 215.

4. It is also possible ,to assemble corrections bY..:
using the symbol table df"~h.~~r.C?r~,~nal a~sembly·. ~

VI-l

THE MIT POST-MORTEM PROGRAM

Program Debugging

The first time
it will probably failo

that a program is tried on the computer,
It can fail in any of the following ways:

(1)
(2)

It can stop on a computer alarmo
It can stop on an improper halt instruction (i~eo not

the halt instruction on which the coder planned to stop)o
(3) It can stop on the proper halt instruction and yield

wrong answers o
Cases (1) and (2) can be recognized by the computer operator and
he will (as a matter of course) copy whatever information about
the failure can be obtained from the console lights 0 This will
include the location of the instruction on which the machine stop
ped; the contents of: the AC, MQ and index registers; and the con
dition of the various alarm lig~ts. In some cases the error can
be deduced from this informationo

If the coder cannot deduce his error from the consbl~
lights he must then resort to more powerful diagnostic techniques 0

Perhaps the simplest of these is the post-mortem program. A post
mortem program prints the contents of specified storage registers
after the program failure has occured. By examining such records
the coder· can almost always find his errorso The coder is urged
to restrict his post-mortem requirements whenever possible since
computer time is used to produce the post-mortem resultso

In certain cases however, the coder may not be able to de
duce his error from post-mortems obtained after the failure o He
may then have to modify his program to store certain critical re
sults (which he can obtain via post-mortems after failure) or
insert instructions (called blocking instructions) at intermediate
points in his program (so that he can obtain intermediate results

VI-2

via post-mortems) 0 The clever coder will try to anticipate
errors and will build such features into his program when he
writes it originallyo Such error anticipation features can
be removed when the program is finally debuggedo

For the latter (most difficult) case the coder also has a
vailable a class of programs (called tracing programs) which
can be used to print out quantities (eogo contents of storage
registers, C(AC), etc o) during the time that his program is opera
tingQ ~Such programs may be selective (ioe. print out information

only at selected instructions in the program called break points)

or non-selective (ioeo print out information for every instruc
tlon executed) 0 Tracing programs ,(particularly non-selective

ones) use a lot of computer time and should be used only as, a
last resorto S~veral tracing programs have been written by mem

bers of SHARE and are described in the SHARE distribution ma
terial.

A final word of warning: too much information can be
almost as bad as too little information 0 The coder is urged to
be selective in obtaining data for diagnostic purposes.

The MIT Post-Mortem Program
The MIT post-mortem program allows the coder to print

arbitrary ranges of storage in specified forms. The forms allowed
as output are exactly those forms allowed as input in SAP lan

guage (ioec instructions, floating-point numbers, fixed-point
numbers, integers, octal numbers and BCD).

For each range of storage required the coder must prepare
a request cardo The deck of request cards should be prepared be

fore the program is run and submitted to the operator along with
tne main program decko The coder should tell the operator on the
performance request that a post-mortem deck is included since'

the operator mus~ set up certain magnetic tape units which are
used by the post-mortem programo

The output of the post-mortem program looks exactly like
SAP language 0 Thus if a coder understands SAP language he under
stands post-mortem results o

VI-3

, The coder may request that post-mortem results be recorded
directly on the printer, dire~tly on the punch or on a magnetic
tape unit for printing or punching later ono (We shall have more
to say about such off-line operation) 0 In.all cases the ,output
obtained is the same (ioeo if punched output is printed on an a~
counting machine it looks exactly like output printed directly) 0

Request cards
Every memory range requires a request card which has the

'same format as a SAP card and is identified by the letters, PMR
(Post-Mortem Requ~st), in'the operation fieldo The loe!Zt'~1.3J~£
field must contain four expressions separated by commas with no
intervening blank columns o

, The first two expressions define the initial and final
addresses of the range in memory to be recordedo Any legal SAP
expressions are allowed here and symbols may be used if requiredo

The l,ast two'expressions designate the mode in which words
are to be r~corded (instructions, etc';) and the output device to
be used (printer, etco)o These are designated by certain mnemonic
3 letter abbreviatiorts defined ~n an, appendix:

Some examples of request cards are:

PMR 150, 200, FLO, NPR
which means I1record the contents of registers 150 to 200 (in
clusive) as floating-point numbers on the printer which is directly
connected to the computer l1 and:

PMR AI, BI + 5, SYM, NPU
which means Itrecord the contents of registers Al to Bl + 5 as in
structio~s with symbolic addresses on the punch which is directly
connected to the computer 0

, '

Any characters punched in the, variable field following
the terminating blank column are not considered part of the re
quest but are instead recorded ,as a re~ark preceding the request 0

In addition, sp~cial request cards.(identified by the letters,
REM, in their operation field.) may be used to 'associate remarks

VI-4

(punched in their variable field) with PMR requests 0 The REM
card must immediately precede the PMR cardo

The end of a request deck is signaled by a termination
cardo A suitable termination card would be one having the 704
instruction, HTR, punched in its operation fieldo Some others
are mentioned in the appendixo

An example of a complete post-mortem request deck is the
following:

REM THIS BELONGS TO JONES
PMR AI, Al +5, FLO, NPR FIRST REQUEST
PMR 100, Cl, FLO, NPR SECOND REQUEST
HTR

Symbolic Requests
The coder may use symbols in specifying core memory ranges

and he may also request that the words in a range be recorded as
instructions with symbolic addresses o In either case a symbol
table must be made available to the post-mortem programo This

c
can be done by preceding the request deck with the binary symbol
table produced by SAP during it~ assembly of the main program
decko Since both the symbol table and the request deck are read
into the computer by the post-mortem program they shou~ not be
preceded by a binary loadero

The Machine Conditions
The post-mortem will record the contents of the var~ous

registers and alarm lights~in the arithmetic element as remarks
preceding the first post-mortem requesto The program cannqt how
ever record Q(MQ) and,C(ILC) since these and storage registers 0-4
are used in loading the post-mortem program itselfo

CHAPTER VII,

SUBROUTINES

It often happens in a large program that a particular
computation must be done many timeso For example, the

squar~ root function or sin function ~~st be evaluated
several times or the scalar product of two vectors must
be calculated repeatedlyo In such cases it is clearly
desirable to program and code the routine for such a
computation only once. It is also usu~lly but 'not always
advantageous to have the instructions which perform the

computation stored in the memory, only once. Such a gro~p
of instructions which are used repeatedly by a given
program or perhaps by any particular program only once but

in many distinct programs, is called a subrout,ine. In fact

a skilled programmer very often designs his program so that
it is built out or subr~utines by breaking the'problem up

into unitS which occur repeatedly or may· in subsequent

revis iQ,ns C?f the program be used repea tedly.

Closed Subroutines

As a part of a larger program we may wish to tabulate

the following function

f(x) = sin x + cos (sin x)

for a set of values of the independent variable, x. If some
how we have written programs for evaluating sin x and cos x
we can evaluate f(x) by the following sequence of stepso

l~ Compute z = sin x
2~ Compute y = cos Z

34 Compute f(x) = z + y

The functions, sin x and cos x, are required only once
in this sequence.

A slightly different function, say

g(x) = sin x + .sin (cos x)

would, however, give rise to the sequence

l~ Compute z = sin x
2. Compute y = cos x

3. Compute w = sin y
4. Compute g(x) = z + w

VII-2

in which the function, sin x, is required at two different
places.

Since programs for evaluating sin x and sin y will
differ only slightly we can reduce our storage requirements
by writing one program to do both jobs. Whenever we wish to
compute a sine we will transfer control to this program. We
must, however, convey two pieces of information to the sine
program, namely

1. The location of the argument whose sine is to be
evaluated.

2. The location in the main program to which control
should be returned once the sine has been evaluated.

This can be done in many ways, the most convenient
of which uaes the following indexing instruction:

TSX x, t : Transfer and Set Index

The instruction, TSX x, t, copies -C(ILC) into index register
t~ and then transfers control to register x.

'!'sx x, t: -C(ILC)~C(IRt), x~C(ILC).

Let us suppose now that we have written a program
(beginning in register SIN) which forms sin C(AC)

SIN sin C(AC) ~ C(AC)

~ More precisely, TSX copies 32768 - C(ILC) modulo machine
size into index register t.

VII-3
If we agree to enter this program by the instruction

MAIN TSX SIN,4

then we can make it a closed subroutine merely by terminating
the program with the instruction'

TRA 1,4

which returns control to register MAIN +1 with the required
sine in the ACo

The program for computing sin x is called a closed
subroutine since it is stored separate from the main
sequence of, control, but is entered from the main sequence
and returns to the main sequence. The argument of the
subroutine (C(AC) in this case) differs from use to use of the
subroutine and is called a program parameter.

The program parameter and the TSX instruction
required to link the subroutine to the main program are
referred to as a calling sequence for the subroutine.

Closed Subroutines having Many Program Parameters

If a closed subroutine has only one program parameter
it can be stored in the AC (or even the MQ). If a closed
subroutine has more than two program parameters the AC and
MQ no longer suffice o The most convenient solution in this
case is to store the program parameters in the registers
following the TSX instructions used to enter the subroutine.
Within the subroutine we can refer to these registers by
instructions of the form:

CLA 1,4
CLA 2,4 etc.

Before giving an example let us introduce two new 704
instructions which will be useful in interpreting calling
sequences.

VII-4

The read~r is already aware of an indexing

instruction, PDX, which copies the decrement of the AC into

an index register. There also exist 704 instructions which
copy the address and decrement of the AC to storage registers,
namely

STA x

STD x

Store address

Store decrement

The instruction, STA x, copies the address of
the AC into the address of storage register x.

STA x : C (address of AC)·~ C (address of x)

The instruction, STD x, copies the decrement of
the AC into the decrement of storage register x.

STD x : C(decrement of AC)-->C(decrement of x)

The reader should note that STA (STD) affects
only the address (decrement) of x and does not disturb any
other part of C(x) or C(AC).

Thus, for example, the sequence

PXD 0,4
STD X

has the same effect on C(x) as the single instruction

SXD X,4

An example of a subroutine requiring more than
. one program parameter, is the following subroutine which

forms the scalar product of two vectors. The program para
meters required are the location of the vectors in question
and the number of components. The result is stored in the

AC. It is most convenient to identify the location of the
vectors by specifying the a~dresses of the registers
immediately following the last component of each.vector.

This routine can be entered by the call~ng

VII-5

sequence

SXD TEMP, 4 Save C (IR4)
TSX ENTRY, 4 Enter Subroutine
PZE Al -\ Addresses of vectors

'-

PZE A2
..,.;

PZE N Number of components.
LXD TEMP, 4 The subroutine returns control

to here and we restore C(IR4)

The program parameters' (AI, _ A2 and N) are stored in
the addresses of the registers immediately following the
TSX instruction.

The subroutine itself is given below~

ENTRY CLA 1,4

STA LDQ

Set addresses of vectors.

CLA 2,4
STA FMP
SXD SAVE, 1 Save C(IRl)
CLA 3,4 Set to count in IRI

LDQ

PAX 0,1
PXD
STO PROD
LDQ 0,1

FMP FMP 0,1
FAD PROD
STO PROD
TIX
LXD
TRA

PROD PZE
SAVE PZE

LDQ,l,l
SAVE, 1
4,4

Set C(PROD) to zero

Form scalar product.

Restore C(IRl)
Return to program - .!

An Example of a Subroutine USing ~ Interlude

I,: ;0

It often occurs in practi6al routines that some program

VII-6

parameters are changed infrequently while others differ for
every entry to the subroutine. For example, in the scalar
product subroutine it is usually true that the number of
components changes infrequently while at least one vector
location changes with every reference to the subroutine. In

- this case, it is wasteful to include the final program
parameter in the calling sequence every time the routine is
enterede

Situations of this type are often handled by inter
~ludes. For example the calling sequence would be

SXD TEMP,4 Save C(IR4)
TSX ORDER, 4 Enter interlude
PZE Al Addresses of vectors.
PZE A2
LXD TEMP, 4 Return here and restore C(IR4)

At ORDER would be stored the interlude

ORDER TRA ENTRY Enter subroutine
PZE N Number of components

The subroutine would then be modified to

ENTRY SXD SAVE, 1 Save C(IR1)
CLA 0,4 Obtain number of components
STA CLA from interlude and set to count
LXA SAVE, 1

CLA CLA 0,1
PAX 0,1
CLA 1,4 Set addresses of vectorso
STA LDQ
CLA 2,4
STA FMP
PXD Set C(PROD) to zero
STO PROD

VII-7

LDQ LDQ 0,1 Form scalar product
FMP FMP 0,1

FAD PROD
STO PROD
TIX LDQ,l,l
LXD SAVE, 1 Restore C(IR1)
TRA 3,4 Return to program.

PROD PZE
SAVE PZE -1

I The SHARE Library of Subroutines

The nicest feature about using subroutines is that
they may have been written (and debugged) by someone else.
Having this in mind every computer instal~ation begins
immediately to assemble a collection of pre-tested programs

into a subroutine library. Among 704 owners the SHARE
organization serves as a collection and distribution agency
for 704 subroutines.

A very important feature of a library subroutine is a
detailed write-up describing exactly how to use it. Also
very important to the library is the adoption of a certain

. set of conventions to prevent coders from working at cross
purposes. There follows a partial list of SHARE subroutine
conventions which has been abstracted from the SHARE ref~rence
manual:

1. Subroutines shall always be entered by a calling

ffiqu~nce using IR4 as linkage.

2. The point transferred to shall always be the

first instruction in the subroutine.
3. Index registers and sense lights when used by a

subroutine shall always be restored to their original contents
within the subroutine before exiting.

4. The six letter symbol, COMMON, is reserved for
subroutines to represent temporary storage (i.e. a block

VII-B

of registers used during operation of the subroutine but

whose initial values do not matter to the subroutine.)

5. All other symbols used in the subroutine
normally contain 5 or fewer characters (so that they can
be headed).

Conventions having been established the SHARE
organization has proceeded to generate an extensive library
of subroutines which is described in the SHARE distribution
materialo This material should be consulted by the coder
before he begins coding. To aid in this we have enclosed
(as an appendex) an index to this material. If a coder
finds a useful subroutine he can include the symbolic
cards in his deck by requesting these at the Computation
Center.

A certain small number of very useful subroutines

have been recorded on a magnetic tape unit and can be
automatically included in a program during assembly by

using the (previously defined) LIB pseudo-operation.
The list of subroutines-available in this fashion will of

course vary from installation to installation and even
from time to time.

A word of warning: subroutines as submitted.to
SHARE can be as fully general in their symbol structure as
programs. In using a subroutine a coder-must carefully
check what symbols are assigned within it and avoid con
flicts (i.e. duplicate symbols). If he wishes the coder
may avoid trouble by placing a unique heading character
in front of each subroutine he uses.

In order to further clarify the above concepts we
shall now describe in detail a particular SHARE subroutine,
UABDCI, which can be used for printing floating-point and
fixed-point numbers~

VII-9

704 Generalized Print Program, UABDCl

UABDCl is a subroutine which converts floating binary
or integral binary numbers to binary-coded-decimal numbers
arranged in a rather arbitrary format. It is described in

SHARE distribution No. 72.

Using UABDCl the coder may specify that a block of
numbers (whose initial and final addresses may ~e specified)
be printed according to a rather arbitrary format. Both
these addresses and the format are program parameters of
the subroutine. A format statement consists of a string
of BCD characters formed according to certain rules which
we shall omit here since they are exactly the same as the
rules for forming FORMAT statements in FORTRAN language
(see page 26 of the FORTRAN programmers reference manual).

To program a format specification uSing UABDCl the
coder must write an interlude of the form

SYMBOL TRA
BCD

BLOCK
VF

where F denotes an arbitrary format statement ending in
at least one blank, V is the word count required by the
BCD pseudo-operation, BLOCK is a particular. symbol
assigned at the beginning of UABDCl and SYMBOL denotes
an arbitrary symbol assigned by the coder.

A format specification interlude can be referred
to from the main program by a calling sequence of the
form

MAIN TSX SYMBOL, 4
PZE A,O,B

~ where A and B are the initial and final addresses of the
words to be printed.

UABDCl occupies 405 storage registers and requires

VII-IO

60 or more additional registers of COMMON storage (i.e. a
block of registers tagged at the beginning by the symbol,

COMMON). If a column width, W)30, appears in a format
speriifica~ion then W-30 additional registers of COMMON storage
must be provided in the locations COMMON-I, COMMON-2 ••• ,
COMMON -. W+30.

UABDCl is not complete in itself and requires a
satellite subroutine (i.e. a subroutine which it uses) for
a~tual printing. Two compatable subroutines are available:

1. UASTHI
2. UASPHI

which records for off-line printing.
which, records for on-line printing.

Both of these subroutines are described in SHARE
distribution No. 72. They are linked to UABDCl by a symbol
(namely WOT), which is used in UABDCl and assigned in
UASTHI or UASPHI.

UASTHI occupies 15 storage register's and requires
no COMMON storage. UASPHI occupies 109 storage registers
and.requires 33 registers of COMMON storage.

Since UABDCl defines many symbols internally it is
recommended that it and its satellite be prefixed by a heading
card.

VIII-l

CHAPTER VIII

FIXED-POINT ARITHMETIC IN THE 704'

Introduction
In the preceding chapters we have been describing

7P4 instructions which perform computations on floating
point numbers. These numbers are extremely convenient for
solving 'most scientific problems. However, in many problems
one encounters data which cannot conveniently be expressed

, ' ,

in this form. Inde~~ this situation arises in almost every
problem since, as 'we shall see, coding for the input-output
devices connected to the computer cannot be done in terms of
floating-point numbers,. a

In the ne~t three chapters we sha~l describe sqme
704 instructions which are ~ designed for deal~ng with
floating-point numbers. It should be emphasized, however,
that all 704 instructions deal indiscrimanently with 36 bi
nary digit words an~ have no way of telling what the coder
means by these digits. Thus any of the instructions we are
about to describe can operate formally on floating-point
numbers, however the results obtained are di:('.ficult to des
cribe in terms of such numbers. Such usage of these intruc
tions is most often an error but may, in rare cases, be an
ingenious move on the coder 1 s part.

VIII-2
Fixed-Point Numbers

The 704 instructions defined in this chapter deal
primarily with fixed-point numbe~s. In such numbers the entire
36 digits of the storage word are used,to represent a single
binary number. The 'sign digit is ,used to designate the sign-,
of the' number (with the convention' .tha t 0 denotes +) and the
'remaining 35 binary digits are used "to represent' the, magni?

" , ..

tude of the number. As we shall see, the binary point can be
construed to lie anywhere within the number, however, for pur
poses of describing the instructions it is most convenient to
assume that the binary point lies to the' left of digit 1

(fixed-point fractions). Some examples of fixed-point frac
tions are given below:

S I 2

0 I 0
1 0 1

(I'i 0 0
0 0 0
1 0 0

34
'Q~, •••••• , ••• D

.~ ••••• <t •••• D

4 Ii4 " •••• til •••• D

o ,ff ••• 'IJ

•• ~ •••• ~.o,..D

35"'
0
0

II) ~ -

0
0

+2-1 = 1/2
_2"'2 ~-1/4
_2-35

+0

-0

The reader should again note the exi~tance of two
zeros which differ only in the sign digit~ Fixed-point frac
tions are available in the 704 register for expressing all
int~gral multiples of 2-35 in the range:

-1 + 2-35'~ x <+1 _' 2-35

'The Fixed-Point Accumulator
In describing the fixed-point instructions, it is

no longer convenient to gloss over the binary nature of the
machine 0 The reader is already familiar with the fact that
704 registers can be used to store 36 digit binary numbers.
We shall label these digits from:left to right by the symbols:

S, 1,2,00.,35
For convenience we introduce the notation:

VIII-3

C(X)i

to denote the "contents of digit i in register x"o. For example:

c(x)s

An obvious extension of this notation is:

C(X)1,2,5-7

to denote the contents of digits 1, 2 and 5 through 7 of re
gister Xo

The MQ register in the 704 is exactly like a storage
registero

The AC, however~ contains two extra digits which
are important to the fixed-point instructions o These are
called the Q bit and the P bito The ordering of bits in the
AC is as follows:

S, Qi Pi 1,000,35
The Q and P bits' are cleared by CLA and CLS. They are not
transmitted to storage by STOo They may be affected by the
floating-point arithmetic instructions but this need not
concern us for the presento

The Ambidextrous Instructions
Certain of the instructitins already introduced can

be us.ed in dealing with either fixed-point numbers or floating-
,point numberso Proving. this assertion requires a knowledge
of exactly how floating-point numbers are stored in the 704.
The reader is urged to acquire this knowledge from the 704
manual (p8) 0

For the sake of completeness these instructions
are redefined below in terms of the notation of the preceding
sectiono

Administrative' Instructions:

(1) CLA x C(x)~C(AC)S,1_35i O~C(AC)Q,p

(2) LDQ x C(x)~C(MQ)
~./'

(3) STO x C(AC)S,1_35~C(x)

(4) STQ x

Control Instructions:
(1) TRA x

(2) TMI x

(3) TPL x

(4) TNZ x

(5) TZE x

(6) TQP x

(7) TLQ x

(8) CAS x

VIII-4
C(MQ)~C(x)

x7C(ILC)

C (AC) S = 1 =} x--.?1C (.ILC)

C (AC ls = O=#x~C (ILC)

C(AC)Q,P,1_35 I O=9x~C(ILC)
C(AC)Q,P,1_35 = O~x~C(ILC)

C (MQ)S = O~x~C (ILC)

C (MQ) t.. C (AC)=>x~C (ILC) ..

C (AC) > C (x):;>C (ILC) +l~C (ILC)
C(AC) = C(x)~C(ILC) +2~C(ILC)
C (AC)<. C (x)~C (ILC) + 3~ (ILC)

Arithmetic Instructions:

(1) CLS x· : C(x)1_35-)C(AC,)1_35' 'GTXTS-:)C(AC)S'

O~ C (AC)Q, p"*'
(2) SSP O~C(AC)S

(3) SSM l~C(AC)S

(4) CHS C(AC)S~C(AC)S

If we consider the effect of the instruction, CLAx
where register x contains a fixed-point fraction we set
that w~ must construe the binary point of the AC to lie between
digits P and 10 The ACcan thus be used to store any in-
teger multiple of 2-35 in the ~ange:

-4 + 2-35~ x~ + 4 - 2-35

-* The notation, C(x)i' is defined by the equations:
o = 1 and T = 0

VIII-5
F~xed-P6int Addition and Subtraction

The following instructions can be used to add and
subtract fixed-point fractions:

(1) ADD x Add
(2) ADM x Add Magnitude

(3) SUB x . Subtract ..
(4) SBM x Subtract Magnitude

(1) The instruction, ADD x, algebraically adds
C(x) to C(AC) and places the sum in the AC:

ADD x : C(AC) + C(x}-7C(AC)
(2) The instructions, ADM x, algebraically adds

the magnitude of C(x). to C(AC) and places the sum·in the AC.

ADM x : C (AC) + I C (x) I ~ C (AC)
The magnitude of a number st~red in the sign-magnitude conven
tion may be, obtained by setting its sign digit to 0 0

(3) The instruction, SUB x, algebraically subtracts
C(x) from C(AC) and places the difference in the AC·.

SUB x : C(AC) ,- C(x)~C(AC)

(4) The1nstruct1on, SBM x,' subtracts the magni
tude of C(x) from C(AC) and places the differ~nce in the AC.

SBM x : C (AC) - I C (x) I ~ C (AC)
None of the above instructions d1.stur.bs C (x) •
If a sum or difference obtained using the above

instructions is zero, its sign is the same as the sign of
the original contents of the AC.

Overflows

The sum or difference of two fixed-point fractions,
,"I

may exceed unit Yo When this occurs ~ cannot be represented
by 36 digit,s and thus cannot be placed in a stC?rage register
by the instruction:

STO x·

which does not transm~t the P and Q bitso Such a sittiation
is called an overflow and the coder may have to know that it
has oC,cured to correctly interpret hisresul ts~o The detec
tion of overflows by the 704 is simplified by. the presence

VIII-6
. of an AC overflow light which is turned on (by certain in
structions) whenever a digit, 1, passes between digits 1 and
P of the AC. In fixed-point addition and subtraction this is
caused by carries and borrows.

The AC overflow light can be sensed and turned off
by either of the following conditional control instructions:

(1) TOV x : Transfer on Overflow
(2) TNO x : Transfer on No Overflow

(1) The instruction, TOV x, directs the computer
to turn off the AC overflow light and to take its next in
struction from register x if the AC overflow light, was on.

TOV x : ACOV on=;\x~C(ILC) and ACOV off •.
(2) The instruction, TNO x, directs the computer

to turn off the AC overflow light, and to take its next in
strudtion from register x if the AC overflow light was off.

TNO x : ACOV off.x~C(ILC) and ACOV off
The instructions, TOV and TNOJ are the only means

by which a program can turn off the AC overflow light. Thus
if a coder wishes to detect that an 'overflow occured in a
particul~r instruction he must turn off the overflow light
immediately before executing the instruction and sense the
overflow light immed'iately after executing tr,e instruction
(or at least before executing any other instruction' which might

turn the overflow light on)o
In performing fixed-point additions and subtractions

carries (borrows) can also occur between bits P and Q of the
AC or out of bit Qo Such carries do not affect the status
of the AC overflow light. Indeed carries out of the Q bit are
simply lost to the computer so that numerical results obtained
in such a case must b~ carefully inte~preted.

Fixed-Point Multiplication
The following instructions can be used to multiply

~rixed-point fractions:
(1) MPY x

(2) MPR x
Multiply
Mu~tip1y and ~ound

VIII-7

(1) The instruction, MPY x, multiplies C(x) by
C(MQ) and stores the result (a 70 digit exact product) in the
AC and MQ. The 35 most significant digits of the product
appear in AC l -

35
and the 35 least significant digits of the

product appear in MQl-35. The sign digit of the product ap
pears both in ACS and MQS • ACQ and AC p are set to zero.

The MPY instruction does not affect the status of
the AC over flow light (since the product of two fractions is
a fraction).

MPY x: C (MQ) • C (x) ~ C (AC+MQ)

C(AC)S = C(MQ)S

O~C(AC)Q,p

Before describing the instruction, MPR x, we intro
duce the following instruction:

RND: Round·
which cannot have an address section.

The instruction, RND, increases the magnitude of the
fixed-point number in the AC by 2-35 provided that C(MQ)l = 1.

If C(MQ)l = 0 nothing happens. In neither case is C(MQ) or
C(AC)S affected by the instruction. The instruction can thus
be used to round off a 72 digit number in the AC and MQ to a
37 digit number in the AC.

RND: C (MQ) 1 = 1 =9 C (AC) Q, P , 1-35 + 2 - 35 ~ C (AC) Q, P , 1-35 •

The reader should verify that in certain cases the
RND instruction will turn on the AC overflow light.

(2) The instruction, MPR x, is equivalent to the
following sequence of instructions

MPY x

RND , 1

The reader should verify that the MPR instruction
cannot affect the status of the AC overflow light.

VIII-B

Fixed-Point Division
The following instructions can be used to divide fixed

point fractions:
(1) DVH x : Divide or Halt
(2) DVP x : Divide or Proceed

(1) The instruction, DVH x, considers C(AC) and C(MQ)1-35

to be a 72 digit signed dividend (C.(MQ)SiS ignored) and C(x)
to be a 35 digit signed divisor.

If \C(AC)\ ~ Ic(x)1 then division does not occur since the
quotient in '"this case is not a fraction.*' The computer turns on
a light called the divide-check light and stops. The dividend
remains undisturbed in the AC and MQ.

If Ie (AC)I <.) 0 (x)' the quotient is a fra9tion and division
occurs o The instruction forms a 35 digit signed quotient, q,
which replaces C(MQ) and a 35 digit signed remainder, r, which re

places C(AC)S,1_35 (recall that C(AC)p = C(AC)Q = O)~ q and r
are fractions having the following properties:

(a) The following equation holds exactly
C (A C + MQ) = q ~ C (x) + r $ 2 - 3 5 0 ~ \ r', C (x)

(b) The s.gn of the remainder, r, is the same as the
~ign of the dividend, C(AC+MQ).

The reader should verify property (b) guarantees that the
magnitude of q is less than or equal to the magnitude of the true
quot1enta This means that 35 additional digits of the true
quotient can be obtained if one divides r by C(x)~

(2) The instruction, DVP x, executes a division as just

described if I C (AC)I (, (C (x)\. If IC (AC)I ~ IC (x)1 the divide
check light is turned on and the computer proceeds to the next
instruction without disturbing C(AC) and C(MQ).

The divide-check light can be sensed and turned off by
the following conditional control instruction:

* The reader should note that this automatically occurs unless
C(AC)Q = C(AC)p = 0 so that describing the dividend as a 72-
digit number is f1ction~

DCT : Divide-Check Test
which cannot have an address section.

VIII-9

The instruction, DCT, direqts the computer to turn off
the divide-check light and to skip one in~truction if the
divide-ch~ck light was off.

DCT : DVCK off~C(ILC)+2 ~C(ILC) and DVCK off.
The DCT instruction is the only means by which a program

can turn off the divide-check light.

":'.' .

IX-l

CHAPTER IX'

THE SHIFTING INSTRUCTIONS

Introduction

The shifting instructions are used to move the digits
in the AC and MQ to the right or left of their original positions.
They can be split into two classes: the numerical shifting instruc
tions and the logical shifting instructions.

In the numerical shifting instructions the sign digits are
not shifted and zeros are brought into digit positions whicL are
vacated by shifting. Thus in most cases these instructions can
be interpreted as multiplication or division by a power of two
when the AC and MQ contain fixed-point fractions.

In the logical shifting instructions the slgn digit may
be shifted along with the numerical digits. A numerical inter
pretation in this case becomes difficult and the best viewpoint
would seem to be that which regards the contents of a register
as an array of binary digits. \o,Je shall have more to say of this
later on.

The address section of a 'shifting instruction does not
refer to a register in storage but instead specifies the number
of positions that digits are to be shifted. The upper limit,
255, is placed on the number of positions that digits can be shif
ted but since the combined length of the AC and MQ is 74 digits
this is more than adequate. We can state precisely what happens
as follows; if n denotes the address of a shifting instruction,
then .:the number of digit shifts implied· by the instruction is n
mod 256 (i.e. the remainder obtalned when n is divided by 256.)

The Numerical Shifting Instructions
There are fqur numerical shifting instructions:

(1) ALS n AC Left Shift
(2) ARS n AC Right Shift

.. (3) LLS n Long Left Shift
(4) LRS n Long Right Shift

IX-2

(1) The instruction, .. ALS n, shifts C(AC)Q,P,1_35 to
the left n mod 256 positions. Digits shifted from the Q bit
are lost and zeros are introduced into di~it 35 to fill .digit
positions vacated by shifting. C(AC)S fnd C(MQ) are unaffected.

The AC overflow light will be turned on if a 1 is shifted into
or through the P bit.

ALS n : C(AC) • 2n mod 256 ~ C(AC)

(2) The instruction, ARS n, shifts C(AC)Q,P,1_35 to
the right n mod 256 positions. Digits shifted from digit 35
are lost and zeros are introduced into the Q bit to fill digit
positions vacated by shifting. C(AC)S and C(MQ) are unaffected.

Zeros
~----""-=4

ARS n : C(AC) 0 2-(n mod 256) ~ C(AC)

(3) The instruction, LLS n, copies C(MQ)S into AC S and

shifts C(AC)Q,P,1_35 and C(MQ)1_35 to the left n mod 256 posi~
tions. Digits shifted from ACQ are lo~t and zeros are intro-
duced into MQ

35
to fill digit positions vacated by shifting.

C(MQ)c is unaffected.
u

IX-3

1 ,~
MQ I Zeros

The AC overflow light will be turned on if a 1 is shifted into
or through the P bito

LLS n : C (AC + MQ) .• 2n mod 256 ~C (AC + MQ)

C (MQ) S --7 C (AC) S

(4) The instruction, LRS n, copies C(AC)S into MQS and

shifts C(AC)Q,P,1_35 and C(MQ)1-35 to the right n mod 256 posi
tions. Digits shifted from MQ

35
are lost and zeros are intro-

duced into the Q bit to fill digit positions vacated by sl1.ifting.
C(AC)S is unaffected.

t---~----" S

Zeros AC

LRS n :

l=~~
MQ .

C(AC + MQ) It 2-(n mod 256) -~C(AC -l MQ)

C(AC)S ~C(MQ)S

The reader is urged to consider the effects of these in
structions for·the case nmod 256, = o.

The Logical Shifting Instructions
There are two logical shifting instructions:

(1) LGL n : Logical Left
(2) RQL n : Rotate MQLeft

(1) The instruction, LGL n, shifts C(AC)Q,~,1_35and
C(MQ)S,1-35 to the left n mod 256 positions. Digits shifted
from the Q bit are lost and zeros are introduced into MQ

35
to

fill digit positions vacated by shifting. C(AC)s is unaffectedo
This instruction differs from L~S since'MQS is shifted like any
of the numerical digits, i.e. digits shifted. from MQ1 enter MQS
and digits shifted from MQS enter AC

35
-

P 1 ~_~ S 11 r-=~
AC MQ ---- Izeros

The AC overflow light will be turned on if a 1 is shifted
into or through the P bit.

(2) The instruction, RQL n, rotates C(MQ)S,1-35 to
the left n mod 256 positions, i~e., digits shifted from MQl
enter MQS and digits shifted from MQS enter MQ

35
0

qs 11' -w
MQ

Integer Arithmetic
The restricting of fixed-point numbers to be fractions is

largely artificial and was adopted to simplify the explanatiob
of the fixed-point instructions. As far as addition and sub
traction are concerned, any consistent assumption for the loca
tion of the binary point yields correct results (provided, of
course, the binary point of the result is construed to be in
the same location)o In cases where the binary points of the
operands are not consistent they can easily be made consistent
by using a shifting instructiona The coder must be careful,
however, not to lose significant digits in the process.

In multiplication and division the locations of the
binary points of the operands need not be consistent. The

l'

coder, however, must memorize certain rules for determining the
location of the binary point in the resulto These rules are
easily derived o

(1) Multiplication: Consider a fixed-point number, A,
having n digits to the left of its binary point and a fixed
point number,B, having m digits to the left of its binary
point 0 This means that

A • 2-n and B • 2-m

are fractions which if multiplied using MPY yield the fraction
p'= AB • 2-(n+m)

Since the true product is
AB = P • 2n+m

the product has n+m digits to the left of its binary pointe
(2) Division: If the above fractions are divided

using DVH or DVP we obtain a quotient, q, and a remainder, r,

where A • 2-
n = q+ r .. _2-35

B • 2-m B • 2-m

IX-5
Since· t~e true quotient and remainder are

n
A = q • 2n- m + r • 2 ~ 2-35
B B

the quotient has n-m digits to the left of its binary point and
the remainder has n digits to the left of its binary point.

For integer multiplication we let n=m=35. The binary
point of the product is thus located at the right-hand end of
the MQ, e • go,

LDQ X

MPY Y
STQ PROD C (X),. C (Y)~ C (PROD)

suffices provided that C(X) • C(Y) can be expressed as a 35-
digit integer.

For integer division we let n=70 and m=35 and obtain an
integer quotient and remainder. The integer dividend must be
placed in the MQ; however, in doing so the coder must guarantee
that the AC contains a zero having the sign of the dividend
(since C(MQ)S is ignored in division). The following program
would suffice

CLA X

LRS 35
DVP Y
STO REM
STQ QUOT

X/Y
r~C(REM)

q-.C(QUOT)

How Fixed-Point Numbers Are Written When Programming
The Share Assembly Program provides a fairly general

notation for writing fixed-point numbers. Their most general
form is the following

DEC NEe lOBe2
where N denotes any mixed number (+ signs and decimal pOints
are optional), e lO denotes any integer and

e2 = 0,1,2, •• 0,35
The notation NEe lOBe2 stands for the fractional part of the
number e -e

N • 10 10. 2 2

Ix-6

rounded off to 35 binary digits.
The decimal scale-factor, Ee lO ' is optional and may be

omitted. The binary scale-factor, Be2, must, however, always
appear so that these numbers can be distinguished from floating
point ,numbers. ,If e2=0, however, it may be omitted yielding

DEC NEe lOB
Thus the fraction, 1/10, may be written in any-of the following
forms

~lB = IE-IB = 10E-2B
I~ e =35 is used we obtain integers

2

DEC IB35 = 1 • 2-35

DEC 2B35 = 2 • 2-35

• • • • • • • • •
DEC lElB35 = 10 • 2-35

Since integers occur frequently they have been made a special
case by SAP which allows integers to be denoted by simply
writing their integer value,

DEC 1
DEC 2

6 • • • • •

DEC 10
Integers are characterized by the fact that neither -E nor B
nor a decimal point appears in their definition.

The binary ,scale-factor, e2, may also be interpreted
as specifying the number of binary places between the left
hand end of the register and the binary point of the fixed
point number o

X-I

CHAPTER X

THE LOGICAL INSTRUCTIONS

The ·Logical Word

The logical word in some ways is the simplest of
words since all of its digits are treated the same. In
storage (of course) the logical word occupies digits Sand
1-358 In the AC the logical word will normally occupy digits

P and 1-35.

f~6TI[~b51
.. L . ,.)

Logical AC

ThuS· the CLA instruction will not suffice for copying a
logical word from storage to the logical AC.

Logical words are of great importance in ~roblems which
are primarily non-numerical. The casual coder may, however, .
have little use for them except in programming for the input
output units (a job most often handled by library ~ubroutines).

The Logical Administrative Instructions

The logical administrative instructions are the
following:

(1) CAL x Clear and Add Logical
(2) SLW x Store Logical Word
(3) STP x Store Prefix
(4) STD x Store Decrement
(5) STA x Store Address

(1) The instruction, CAL x, copies C(x) into the logical

AC~ C(x)s is copied into AC p • Zeros are copied into C(AC)S,Q.
C(x) is unaffected.

(2)
register x.

CAL x C(X)--7C(AC)P,1_35

o ---., C(AC)S,Q

X-2

The instruction, SLW x, copies the logical AC into
C(AC)p is copied into C(x)S. C(AC) is unaffected.

SLW x C (AC)p, 1-35 -?C (x)

The instruction, STP x, copies C(AC)p 1 2 into , ,
C(AC) and C(X)3-35 are unaffected.

STP x C(AC)P,1,2 --7C(x)S,1,2

(4) The instruction, STD x, copies C(AC)3_17 into

C(x)3_17. C(AC) and C(x)S,1,2,18-35 are unaffected.

STD x C (AC)3-17 -~ C (x)3-17

The instruction, STA x, copies C(AC)21_35 into

C(AC) and ,C(x)S,1_20 are unaffected ..

STA x C(AC)21_35-' C(X)21-35

The Logical Arithmetic Instructions

. The logical arithmetic instructions are the following:

(1) ANA x
(2) ANS x
(3) ORA x

(4) ORS x
(5) COM
(6) CLM
(7) ACL x

And to AC
And to Storage
Or to AC
Or to Storage
Complement Magnitude
Clear Magnitude
Add and Carry Logical

(1) The instruction, ANA x, compares each digit in
the logical AC with the corresponding digit in C(x). If both
of these digits are 1, then a 1 replaces the corresponding digit

X-3

in the AC, otherwise a 0 is placed in this digit. C(AC)S,Q
are cleared.

ANA x C(AC)i!\ C(x)i 4C(AC)i

0-7C(AC)S,Q

i = p(S),1-35

The table of combinations for the "and ll function is given below;

o 1

o o o

1 o 1

(2) The instruction, ANS x; is like ANA except that
C(AC) is undisturbed and register x gets the result which ANA
would have placed in the logical AC.

i = p(S),1-35

(3) The instruction, ORA x, compares each digit in the
logical AC with the corresponding dig·it in C.(x). If either or
both of these digits are 1, then a 1 replaces the corresponding

digit in the AC, otherwise a 0 is placed in this digit. C(AC)S,Q
are unaffected.

i = p(S),1-35

The table of combinations for the liar" function is given below.

o 1

o~
1 \1 1

(4) The instruction, ORS x, is like ORA except that
C(AC) is undisturbed and.register x gets the result which ORA
would have placed in the logical AC.

x-4
i = p(S),1-35

(5) The instruction, COM, cannot have an address
section and affects only'C(AC) as follows: every a in

C(AC)Q,P,1_35 is replaced by a 1 and every 1 in C(AC)Q,P,1_35
is replaced by a o. C(AC)S is unaffected.

COM i = Q,P,1-35

(6) The instruction, CLM, cannot have an address
section. It affects only C(AC) and places zeros in

C(AC)Q,P,1_35. C(AC)S is unaffected.

CLM a '~C (AC)Q,'P, 1-35

(7) The instruction, ACL x, adds C(x) to the
contents of the logical AC. (c(x)S is added to C(AC)p like
any other numerical digit.) A carry out of the P bit does
not, however, get added into the Q bit. Instead it is added

into AC35 . C(AC)S,Q are unaffected.

C(x)

C(AC)

A use for the ACL instruction will be described in
the chapter on input-output equipment.

The Logical Control Instructions

The logical control instructions are t~e following

(1) PET
(2) LET

P Bit Test
Low Bit Test

(1) The instruction, PBT, causes the computer to skip
the next instruction in sequence if C(AC)p = 1.

PBT: C (AC) P = 1 ~ C (ILC) + 2.-, C (ILC)

The PBT instruction cannot have an address section.

(2) The instruction, LBT, causes the computer to

skip the next instruction in sequence if C(AC)35 = 1.

LET : C (AC)35 = 1 =9 C (ILC) + 2-"7C (ILC)

Octal Numbers

The logical word is frequently interpreted as an
array of binary digits. For this reason a SAP notation

X-5

has been provided by means of which a coder can write binary
numbers in his program. Since the binary notation would be

I

cumbersome (36 digits required per word) SAP provided a means

for writing octal (base 8) numbers instead.

The conversion between binary and octal is trivial
and is based entirely on the following table which can
easily be memorized:

Octal

a
1

2

3
4

5
6

7

Binary

000
001
010

all
100
101
110
111

from binary To make the conversion to octal the coder breaks
up the 36 digit binary word into 12 groups of 3 digits and
writes down the octal digits corresponding in the table.

The notation used for octal numbers is the.
following

OCT N

x-6
where N denotes a 12 digit octal integer~ The coder may
also write octal integers with algebraic signs and drop
insignificant zeros. In this case the integer can contain

at most 12 digits~ If it contains exactly 12 digits then

the leading digit should be 0,1,2 or 3 since one binary
digit is used up by the algebraic signo

Instruction Arithmetic

A significant feature (probably the significant

feature) of the digital computer is the fact that instruc
tions are placed in the storage element and can be

operated on by the computer~ The importance of being able
to change effective addresses with index registers has

already been made clearo By using the fixed-point and

logical instructions the coder may perform arbitrary arith
metic on his program 0 To do so however he should know
exactly how instructions appear in the storage register

(see page 7 of the 704 manual)~

The significant point involved is that an instruction
will be considered to be a positive or negative number
according to a rather arbitrary array of digits which define
its operation sections As an example of a possible dif
ficulty suppose that register INST contains an instruction
and register INT contains an integer, and that we wish to
increase the address of C(INST) by C(INT)G We may be
tempted to use the sequence

CLA INST

ADD INT

STO INST

This would work as long as C(INST) were an instruction with

a 0 sign digit (eog~, CLA). If, however, it had a 1 in the
sign digit (eogo MPR) we would decrease (rather than increase)
the address by C(INT). This is a consequence of the sign
magnitude convention used by the 7040

The above difficulty could have been avoided by!
using the sequence

or the sequence

CAL INST
ADD INT
SLW INST

CLA INC
ADM INST
STA INST

Some Examples Using the Logical Instructions

Example 1: An integer division can be performed
using the following program

LDQ

CLM

LLS

DVH DENOM

Place 0 in AC having same

sign as C(NUM) ,

X-7

Example 2: The "or" f:unction formed by ORA and
ORS is called an inclusive or. An equally important
function is the exclusive or which produces 1 in the AC

whenev~r C(AC)i = 1 and C(X)i = 1 but not both. This can
be done by the following program

SL\1 TEMPI
ANA X

.'
COM "

SLW TEMP2
CAL TEMPI
ORA X
ANA TEMP2

Readers familiar with Boolean algebra will recognize the

·x-8

function, (A + X) (AX)'. An easy way to check the program
however is to try it out for the four possible cases.

Example 3: The following program inverts the
digits of the binary number in register BIN, i.e.

i.e .. , C(BIN)3S--7C(BIN)S' C(BIN)34--7C(BIN)1"
C(BIN)33~C(BIN)2' etc.

LXA COUNT, 1
LDQ BIN
RQL 1

LOOP RQL
34 J Loop forms inverted

(I
" I LGL 1 word one digit at a

TIX LOOP,l,l in the AC.

SL'~ BIN

COUNT HPR 36

time

Example 4: The "and" instructions can be used to
extract a group of digits from a logical word. This is
done by Handing" together the logical word and a special
constant (sometimes called a mask) which contains Its in
the digit positi6ns corresponding to the group and O's
elsewhere. For 'example, if we desire to know if digits
30-35 of register BIN contain the bina,ry number

101101

we can write the following program

CAL BIN]' Extract required digits
-

ANA MASK to AC
CAS NUM
TXL NO Exit to YES if
TXL YES
TXL NO C(BIN)30_35 = 101101

MASK OCT 77
NUM OCT 55
BIN

X-9

Care must be exercised in mixing arithmetic
instructions (like CAS) with logical instructions o Suppose,
for example, the coder desired to ask the above question
about digits S, 1-5 of register BIN. He might be tempted
to repeat the above program with

C(MASK) = OCT 770000000000

and

C(NUM) = OCT 550000000000

but this would not work~ (Can you say why and can you
correct the program?)

Example 5: The "and" and "or" instructions can be
used to store a binary number in a selected group of digits
of a register without disturbing the other digits of the
registero For example, if we desire to store the binary
number

101101

in digits 30-35 of register BIN we could write the following
program

CAL MASK
ANS BIN
CAL NUM
ORS BIN
HPR

MASK OCT -377777777700

NUM OCT 55
BIN

or alternatively
CAL MASK
ANA BIN
ADD NUM
SLW MASK
HPR

X-10

Example 6: In an earlier chapter it was mentioned
that the integer, -n" when it occurred in an address was a
shorthand notation for the positive integer, 32768 - n = 2l5_n.
It may occur in a program that given n, we must compute -no
If n is in IRl we could do this with the follo~ing program

PXD 0,1

COM
ADD DECR
PDX 0,1

HPR
DECR PZE 0,0,1

This program works since 'when a 15 digit integer is comple
mented and then added to its original value, the result
is a 15 digit number consisting entirely of l1s, i.e. the
number,' 215 - 1. If index registers are ,involved the
above holds modulo machine size.

Two equivalent alternative programs follow:

TXI A,l,-l PXD 0,1

A PXD 0,1 COM
COM PDX 0,1

PDX ° '1 , TXI A,l,l
HPR A HPR

The simplest program obtainable, however, is the
following

PXD 0,1

SUB A
PDX 0,1

HPR
A PaN

r

CHAPTER XI

INPUT AND OUTPUT'

In the following chapter we shall briefly d~scribe the
input and output devices associated with the computer. We
shall not go into many of the" details' of coding for these

de~ices. The reader can consult the 704 m~n~~l. for these.
In many cases the coder will be able to'completely avoid
contact with these devices by using subroutine~.

The Input-Output:Devices

The' m~in f~ame of the computer~consists of the ar~th-
_.. . ~ . I

metic and control elements and the h1:gh-sp~ed". memory fAll
communication between t~e main frame ,andthe-~~~t of the
uni,verse comes under' in-~ (~O).IO therefore includes
input, output, and auxilia~y storage (the preservation of·
binary computer words outside t-he main frame} 10 equipment

1 '

is classified as ,on-line if it is under the direct control
of the main frame. ,Off-line or peripheral eqUipment may be
operated independently. I

At the Co~putation Center there are a cathode ray tube
(CR~) unit, a magnetic drum unit, a card reader, a punch, a
printer, and up to ten magnetic tape units on l~ne. A card

I

reader, a punch, and a printer comprise the off line comple-, ,

XI-I

mente Each of these peripheral units has a"magnetic tape unit
associated with it, but the tape unit for the off-line punch
may be connected on-line as a tenth unit. The console lights
and switches, ·although part of 19~ are not covered her~.

10 Programming
-r-
\ 10 programming has two parts. One, obviously, consist~

of the actual t~ansfer of data between the main frame and

the desired unit. The other is the manipulation of the
data befor~ output or after input, Since meaningful words

XI-2

inside the main frame are not readily int.elligible by

human beings or the electrical accounting machines (EAM).
Even to use the CRT properly some manipulation is necessary
to prepare the data for display.

The basic 10 instructions are

1) RDS n

2) WRS n

3) Cpy x

Read Select
Write·Select

Copy

RDS selects the on-line unit whose identifying numbe~ is n
in the input mode. WRS selects a unit in the output mode.
A table of identifying numbers appears on page 27 of the
704 manual. The coder, however, need not remember these
numbers since SAP-provides mnemonic pseudo-operations for
each unit. Both RDS and WRS can have tags -but rarely do.
All the·words transferred between one select instruction
and the next comprise a record. A collection of records

I

terminated in a special way is called a file.

A CPY instruction usually transfers one word between
core memory at the location effectively addres·sed and the

uni t currently selected. The word passes through the MQ,·
which is used as a buffer for 10. If no unit is- currently

selected, the 704 stops with the Read-Write Check Light on.
There is no instruction which deselects~a unit; a unit is
automatically disconnected. if a certain time has el&psed
since the last CPY or if the maximum number of CPY instruc

tions for the record have already been executed.

When reading magnetic tape or from the card reader,

records and fifes are well-defined. If a CPY is given
after the last word of a record has been read, core memory
is unchanged and control is transferred to the third
instruction beyond the CPY. This feature facilitates
reading records whose lengths are not kriown or records
of know~ length without having to count words. When an

XI-3

end-of-file condition has been estap~ish~d, the first CPY given
after an RDS causes the ILC to be increased by two, skipping
one instruction-and transferring control to the instruction
two registers beyond the CPY.

It is often desirable to compute and record check-sums
with auxilia~y storage records so that when the record is read
a new check-sum can be formed and compared with the recorded
one. This process if facilitated by the instruction

CAD x: Copy and Add

which does everything CPY does and in addition logically adds+
the word being transferred and C(AC). It is thus, possible to
transfer data and form a check-sum simultaneously. CAD is

not described in the 704 man~al.

Every uriit but. the card reader has some special instructions.

associated with it. These will be described with the unit.

Coding for the Cathode Ray Tube

The complete CRT ~nit haS two oscillo~copes, a larg~
scope for visual display and a 7-inch CRT opti~aily connected
to'. a 35 ml)1. camera for perma-nent recording, on film. For most
program~ers'the display CRT is just a ch~ck that infotmation
is being recorded .on film. TheC,RT has a theoretical raster

size of 1024· by 1024. However spo~ size and the limitat~ons
of the system reduce this to an effective size of 256 by 256.

The CRT is selected by the SAP instruction

WTV
Note: all of the SAP WRS pseudo-instructions begin with Wand
all of the RDS.psetido-instruQtions begin with"R. The CRT is'
unique in that it has no timing problem. It remains selected
until some other 10 unit is selected no matter when the CPY
instructions are given. There.is a minimum time between CPY's

+ See the description of the instruction, ACL.

XI-4

but if this time is not used in computing the 704 will wait
until the CRT is ready to accept more information.

The SAP instruction

CFF: Change Film Frame
advances the film and exposes a neW fra~e. This should always
be done before displaying points on the CRT.' After CFF is
given a half-second must elapse before the'next Cpy to"the CRT
can be executed.

The point to be displayed on the CRT is determined by

the word transferred by the CPY. The x-coordinate is specified
by the rightmost 10 digits of the' decrement. The y-coordinate
is specified by the rightmost 1,0 digits of the'address. The

digits of the prefix (Ys' YI' Y2) have the fo~lowing meanings:

Yl = Y2 = 0 display point at (x,y)

Ys = 0 display with normal intensity

y = 1 display with hig0 intensity s

Yl = 1, Y2 = 0 display horizontal axis through (x,y)
.

Yl= O'Y2 = 1 display vertical axis through (x, y),

For example, the
the center of the CRT

COORD

following program displays

vlTV

CPY COORD
HPR

PZE 512,0,512

a point in

The CRT is normally used to plot curves. Alphanumeric,

information may be written on film (by plot~ing it pOint,by
point) but it is preferable to use the off-line printer for

large amounts of alphanumeric' information.

Cod ing for the Magnet 1c Drurr~

The MIT 704 has four logical drums each capable of
storing 2048 words. These are purely auxiliary storage
devices.

While the access time for the first Word transferred

XI-5

averages 12 ms, the rate at which subsequent words are trans

ferred is 96,fi s per v-Iord. '1'0 attain this speed CPY instruc

tions must not be more than 36)L s apart. If a loop of the
form

Z CPY Y, 1

'1' IX Z, 1, 1

is used, then the TIX instruction uses 24 of the allowabl~

36~s so that no other instructions can be done in the copy
leop.

The drum is selected for reading and writing by the SAP
instructions

vJDR n

RDR n

Write Drum

Read Drum

where n"= 1,2,3 or 4 specifies the number of the logical drum
being selected. The instruction

LDA x, t

is used (following the WDR or RDR) to select the register on
the drum to which the first CPY will refer •. ' This address is

specified by the" right most 11 digits of the word effectively

addressed by the LDA (and not by the address section of the

LDA itself). If drum address zero is desired the LDA may be

omitt~d. The drum remains selected indefinitely after vIDR or

RDR waiting for an LDA. Once the LDA is given, however, a CPY

must follow within 36j{ s. If more than 36A.s elapses without

a CPY being given the drum deselects.

The CAD instruction is usually used in drum copy leaps

since the drum has no internal checking devices. Thus check-sums

XI-6

should be formed by the coder to guard against errors. In
the following example we write 100 words on a drum. The 'first
99 words are data words and the last word is a check Sum. The
read~r should note that the final data word must be handled'
separately from th~ ma~ri copy loop to avoid deselecting th~
drum.

WDR 1 Select drum ,'I

DA PXD 200 Prepare to form check-sum
LDA DA Select locatton 200

, LXA 'N,l Set for 98: cycles
"

CAD CAD DA'l'A,l C(DA'l'A-98)J .. ,'"C(D,h'1'A-l)

TIX CAD" 1, 1

CAD DATA C (DAtrA)
SLH rIEUl?

CPY rrEMP Record checl<:-sum on drum' • I

N PZE 98
TEMP PZE

The block of data can be read back into the' computer and
checked by the following program

RDR
DA PXD

, LDA
LXA

CAD ,CAD

TIX
Cpy

SLW
CLA
CAS
HTR
HTR
HTR

N PZE
TEMP 'PZE

TEMP1 PZE

1 Select drum 1

200, Prepare to. form check sum
DA Select loc~tion:200

N,l 0et for 99 cycles
DATA+l,l C(DATA-98), .•• ,C(DATA)
CAD, 1,1

TEMP
TEMPI
TEMPI
TEMP
ERROR
GOOD,
ERROR
99 '

Check-sum from drum
Compare it with computed check-sum

Coding for the Card Reader

The card reader is selected by the SAP instruction

RCD

XI-7

It provides a natural iritroduction to the card im3ge (see

fig. 24 on page 40 of the 704 manual). Like all units which
process 'card image type data it has a plug board, The SHARE

organization has adopted ~ standard plugboard with which' the

f~rBt 72 columns of a card may be read, by half-rows, into
the computer. 'Ilh(~ last 8 columns of the card. may not be
read.

Since each half-row can be construed as a 36 digit binary
number it is convenient to read binary cards with ,the card·

reader. If Hollerith (BCD) data is punched on the card,

however, the characters appear in the columns of the card.
If these are read by the card reader the coder is presented

with ~ trem~ndous unscrambling problem. Fortunately there

are subroutines for doing this and moreover-it can.bedone

during the time that the card is being read by the computer.

A record for the card reader is a single· card. A new ReD
is needed for each card to be read~ If an RCD is. followed by

25 CPY instructions the 25th CPY produces an end-of-record
skip (skipping two instructions after the CPY). An end-of

file condition can also be produced in the card ~eader by
retting the card hopper empty. If this occurs the computer
stops (still selecting the card reader). Pressing the start
button on the reader at this time causes the q0mputer to
read the remaining cards in the reader. After the last card
has been read the next RCD sets up an end-of-file condition

and the fir~t CPY following produces an end-of-file skip.

The card reader will deselect if the cod~r waits too

long between CPY instructions or between the last CPY instruc

tion required for a card and the ReD required for the new
card. The timing is given in the manual.

Coding for the Card Punch

The card punch is essentially the inverse of the card
reader. It is selected by the SAP instruction

vIPU

The following SAP instructions

SPU n: Signal Punch Hub n = 1,2

produce pulses at the plugboax'd but the SHARE standard
board for the punch has not been wired to' use these pulses.

If more than 24 CPY instructions follow a WPU a read
write check stop occurs in the 704. A WPU instruction is
required for each card to be punched. If too much time

elapses between CPY instructions the punch will deselect.

The following program reads a card from the card reader
and punches it on the card punch.

LXA HTR, 1 0~C(IR1)

RCD Read Card
CPYl CPY CARDIM,l

TXI CPYl, 1,-1
HTR HTR End-of-file skip

WPU End-of-record skip

CPY2 Cpy CARDIM-24,1 Punch Card

TXI NEXT,l,-l
NEXT TXH CPY2,1,-48

HTR

Coding for the Printer
The printer. can be selected by either of the SAP

instructions

WPR
RPR

The latter on is less often used and selects the printer
with echo checking, In this mode 24 CPY's provide a card

XI-8

XI-9

image as for WPR or WPU but there are also an additional

22 CPY's which read back into memory the echo pulses from

the print wheels. A printer card image must consist of

Hollerith charadters unlike the r~ader and punch which
accept binary card images. There are standard subroutines

for translating BCD characters into card image form.

The following special instructions are associated
with the printer

SPR n
SPT

Signal Printer Hub
Sense Printer Test

1 n 10

The SPR instruction causes a pulse to appear at the specified
exit hub of the printer plug board. The SPT instruction
causes the computer to skip one instruction if a pulse is
being applied to the sense entry hub of the printer plug
board. In SHARE standard board 2 the SPR instructions have
the following meaning:

SPR 1: skip to channel 1, i.e. restore the paper form

SPR 2:

SPR 3:
SPR l~ :

SPR 5:
SPR 7:
SPR 8:

to the top of a page.
skip to channel 2

extra space (after printing)
double space'

suppress spacing before printing
send pulse to be tested ~y SPT for board check.
suppress overflow, used with SPR9 to print 120
characters per line. This sense exit must always
be pulsed during the first print cycle for a line.

SPR 9: suppress spacing and set so that next image
goes into columns 73-120 from 1-48 with 49-72
in place, so as to be able to print 120 characters
per line.

The follo~ing program will print a 120 character line with
double spacing. We assume .72 characters in card image form in

. .

registers LEFT-24, ••• ,LEFT-1 and 48 characters in card i~age
form in RIGHT-24, ... ,RIGHT-1 (thus bits 12 t~rough 35 of
RIGHT-23, RIGHT-21, ..• must be 0).

XI-IO

LXA HrrR, 3 2!t~ C (IRl) and C(IR2)
WPR Select 'for left side"
SPR "8 Prevent overflow skip.

CPYI CPY LEF'J\ I Left side image
TIX CPYl,l,l
SPR 9 Prepare to print on right
WPR Select for right sid,e

CPY2 CPY RGHT,,2 Right side image

TIX CPY'2 2 1 ., ,
SPR 4 Double space

HTR HTR 24

Coding for the Magnetic Tape 'Units

In using magnetic tape a new difficulty is presented:

the MQ may ,not be.used between CPY instructions and for a time

after 'the last C~Y. This restriction also applied to the
drum but in that cas~ the time between CPY's 'wa~~so short that

the MQcould hardly have been used anyway. There are at most
28 machine cycles available for computation between CPY's while
writing and 24 while reading. 42 cycles afte~ the last
eff'ective CPY the MQ becomes available. The SAP instruction

rOD In-Out Delay
~ ~~ven after the ltist effective CPY will delay the computer
long enough to make the MQ available.

For auxiliary storage the tape is used in the binary mode.
The, instructions for uSing tape are:

RTB n Read Tape Binary

WTB n Write'Tape" Binary

REW n· Rewind'

BST n Back space Tape

RTT Redundancy Tape 'Test

ETT End of Tape'Test'

Here l~ n=lO selects one of the ten logical tape addresses.

XI-II

An ETT instruction mu::t be given whiln a tape is selected.

The end-of-tape indicator which it tests can be turned on only
duri~g writing operations with the tape and may be turned off
by a REW or BST.

The RTT instruction tests a light whi"ch is turned on
whenever a line of tape is read which has a wrong lateral

redundancy bit or whenever 'a record from tape is read which has

a wrong longitudinal redundancy bit. RTT may be given after
the tape unit has been deselected. A delay must be inserted

between the last effective CPY and the RTT in order to

give the tape unit time to compute the longitudinal redundancy
bits. The coder may provide this delay if he wishes by giving

the HTT immediately after the next RTB. In this case, however,
he will require two BST's to return to the Br~oneous block.

The tape units are also used for input an~ output in
connection with the off-line equipment. The following
instructions are provided for this mode

RTD n
WTD n

Read Tape Decimal
Write"Tape-Decimal

The off-line card reader with the standard SHARE plug
board reads all 80 columns of a card and produces" 14 BCD
words, the last four characters of the last word being "

blanks. Each card produces a record on tape. An end-of-file
gap can be written at the end of the deck. A d~6imal tape

of this type may be used to punch cards with the off-line card
punch. The off-line printer can be used to print records up
to 20 words long (cont~ining "120 characters). A switch sets

the printer to single or double space, or to program control~

In the latter case the first character is not printed but is
used to control spacing on the printer.

XI-12

Subroutines for Input and Output.

Coding for the input and output devices is undoubtedly
the most difficult aspect of 704 coding. Many subroutines
for handling input and output are described in the SHARE
distribution literature. The coder is urged to use them
whenever possible.

CIU-I.prrER XII
OVERFLOW, UNDERPLOltl; AND MISCELLANEOUS rrOPICS

OverfloVl~ Underflow and You

It is an important feature of the 704 computer that a
program normally halts only when either of two explicit
instructions (HTR or HPR) is executed. There are three
exceptions, however.

The first exception is the "dynamic stop." (An
extreme example of the dynamic stop is an unconditional
transfer instruction which has its own location as an
effective address.)

The second exception is that the computer may stop,
- ,

on a read-write check. This occurs when a program instructs
input or output equipment to read or write at imp~oper times.

The third ~xception is the fixed-and floating-point
divide-or-hal t instructions (DVH and FDH) ~lhich stop the
computer whenever the dividend and divisor do not satisfy
certain conditions (e.g. the divisor must not .be zero).

The divide-or-halt instructions adequately protect the
programmer from making an incorrect or meaningless division.

Instructions, like DVH and FDH, which contain a pro
tective (alarm) stop provide examples of-what arithmetic
instructions in most older computers were like. Thus in
many computers a fixed-poInt addition yieldin'g too large
a result caused a computer stop (called- an overflow alarm).
Clearly this type of instruction might be desirable if
absolutely no overflow' should ever occur in a problem.

Alternatively there are programs in which overflows
can be ignored or in which, when overflows occur, an
alternative procedure can be provided. In this case an
ala.rm stop is just what the programin'er does not want. The

_ 704 allows the coder this more general facility through the
mechanism of the overflow lights and ,the transfer-on-overflow

instructions. In doing so, however, it shifts a heavy
burden of responsibility from itself.,to the coder. The
computer can compute wrong answers at a very rapid rate.

If all coders were to follow every 704 arithmetic
instruction by an alarm test instruction then clearly no
undetected erroneous arithmetic could be done 'by the 704.

XII-2

But to begin with, this is inefficient and besides, experience
has shown that coders dislike to use twoinst~uctions when
they suspect that one will do. Moreover, thi naile coder will
argue that no tests are needed for unexpected alarms since

any oversights will turn up in checking-out the program.
Unfortunately nothing could be further from the truth, for
unlike the usual coding mistake which produces an easily

noticeable discrepancy in nearly all of the results, an
undetected overflow condition may only occur sporadically

and perhaps not at all for the chosen test cases. Thus if
the coder neglects to query the computer about alarm con
ditions his 'later results can be completely wrong. In fact

one would wonder why he went to so much trouble, took so
much time, and used such an expensive machine only to get
some meaningless numbers. Needless to say the situation
is aggravated if the numerical results are used as the basis
of an article in a research journal.

As it may have been suspected, the purpose of the
preceding paragraph has been to thoroughly jolt the reader
into realizing that the non-stop instructions of the 704
create serious coding complications. However by 'clear
thinking and orderly procedures, which'will be described in
the remainder of this section, it will-be seen that these '

problems can be minimized.

The fundamental philosophy which every good coder must

follow is_not to gamble needlessly with the computer. This 1s
not to say that using a computer does not involve manY'risks

XII-3

but the goal should be to keep all risks calculated and

limited. In particular, the calculated risks are: the

reliability of the computer instructions performing as

specified; the reliability of card readers, tape units, drum

units, punches and printers; the possib1ity of a mistake in

programming (i.e. method); the possibility of a mistake in

coding. The important thing to note is that iri all of these

risks, the probabilities can be estimated and can always be

kept within desired bounds by a multitude of strategems.

(Normally these probabilities are not" explicitly discussed by

coders but "instead are replaced by descriptions of the various

double-checks and tests which the careful worker uses to

convince.himse1f and his audience that he is doing a correct

calculation.) Thus the role of the good coder bears an

analogy to that of the good laboratory experimenter who must

similarly suspect his own equipment until he convinces himself

of its worth.

Having spent so much time exposing the problems of

undetected arithmetic mistakes, it is now pertinent to discuss

the techniques of dealing with these problems on the 704.
Treating first the fixed-point jnstructions, there are only

two possible arithmetic mistakes, both of whi6h have already

been casually mentioned. These are the overflow and the

divide-error conditions which are associated with the AC
overflow light and the divide-check light,. respectively.

These indicators may be queried and turned off by means of

the test instructions TOV,.· TNO and DCT.

Every fixed point calculation can be decomposed into

seqUences of instructions which· correspond to" three cases:

1) Alarm conditions are not meaningful and should

be ignored.
2) Alarm conditions may occur and require special

treatment.
3) Alarm conditions should 'never occur but if they do,

the program should be stopped.

The first case is trivial in that nothing need be done.

In the second and third cases the pertinent indicator lights

should be turned off before the sequence of instructions in

question and after the sequence the indicators should be

queried so that appropriate action is taken if alarm conditions

occured. Thus the treatment of alarm conditions with fixed

point instructions is straightforward. It is worthy of

note that there is only one fixed-point divide instruction
which turns on the divide-check indicator (and does not
stop the computer), DVP, and there are only 8 fixed-point
instructions which can turn on the AC overflow indicator:

ADD, ADM, SUB, SBM, RND, ALS, LLS, LGL.

We finally consider the alarm conditions associated with

the floating-point instructions. These are more difficult to
deal with. The electronics of the 704 are so arranged that
it is not possible for the fractional part of a floating

point result to overflow since the exponent is always adjusted

to prevent this; however the characteristic (i.e. the

expon~nt of 2 plus 128) has only 8 bits allotted to it and

thus has a limited r:ange. In particular, a characteristic

ttJhich is too large ("~255) is called an- overflow and one which

is,. too small «0) is called an underflow. Inasmuch as all of

the 8 floating-point instructions produce a double-re~ister
result~ it is possible to get a wide variety of possibilities.

The indications of these possibilities are left in an extra~

ordinarily clumsy form in the arithmetic element and the
situation represents a major weakness in the 704 design.
(The situation is usualaly referred to as Itthe,underflow-

.'
overflow problem" and has been a topic of ' protracted dis-

~cussion among 704 users.)

The alarm indicators wbich are turned on by floating

point instructions are three: the d~vide-check light, the
AC overflow light and thE> MQ overflow light. ' The divide
check light works as it did for the fixed-point instructions.

XII-5

The AC and MQ overflow lights indicate that the AC or MQ

register, respectively contain an incorrect resultQ The

exact conditions are given by the following two charts. It

is assumed that all indicators were off before each instruction

and that on and off are signified by one and ~ero, respectively.

Instructions FAD, UFA, FSB, UFS, FME, UFM

Condition of:
AC Indicator MQ Indicator Q bit in AC AC MQ

0 0 0 ok ok
0 1 0 ok underflow
1 0 0 overflow ok
1 1 0 overflow overflow
1 1 1 underflow underflow

Instructions: FDH, FDP

Range of Condition of:
AC Indicator MQ Indicator Characteristic 'AC . MQ

inMQ
0 0 o - 255 ok ok
1 0 o - 154 underflow ok

1 1 129 - 255 underflow underflow

0 1 129 255 ok underflow

0 1 o - 128 ok overflow

The remainder of ~his section will deal with three pro-
cedures for utilizing the information in the above tables 0 ••

The first procedure and by far the simplest is to consider
all floating-point overflows and underflows to be cause for
stopping the program. In this case, the program need only be
analyzed into' sections where the sequence of floating-point

instructions is uninterrupted by any of ~he 8 fixed-point
instructions which might turn on the AC indicator~ Then for
each sequence, it is only necessary to be sure that both the

XII-6

AC and MQ indicators are off before the sequence and that the

prog~am is stopped if either indicator is on after the

sequence. This is done with. the instructions TOV, TNO and

TQO.

It is to be emphasized that the above procedure is the

minimum that should be done for any floating-point program.

Unfortunately the procedure is often inadequate £or the

following reason. Most problems are described in a way which

biases the exponents of the intermediate results. Thus a

power series which converges well for all x less than a fixed

value, will for small x contain terms which are extemely small.
For example, in the polynomial

x x2 x3 x4
f (x) = 1 + I! + 21 + 3! + LIT

-11 46 for x = 10 ,the last term is approximately 10- . In

computing the last term an underflow would be obtained, so

that it is clear that the appropriate corrective procedure

(if the calculation were d9ne this way) is to set the last

term to zero. (It is tempting to ignore the mean~ngless

underflowed term but because of the way the 704 was designed,

an underflowed register when stored beco~es a very large

number which yields a gross error.) With this bias in mind,

the most frequently desired case is single-register precision

(i.e o the result is in the MQ after FDH or FDPand in the AC

for all other f~oating-point in~tructions) where if overflow

occurs, the program is sto~ped, and if underflow occurs,

the result is replaced by zero. This prescription forms the

basis of the next corrective procedure.

Again one analyses the program into sequences of

instructions that contain no fixed-point instructions which

might turn on the AC overflow light. At the beginning of

each sequence both ·the AC and MQ overflow lights are turned

of~ for example, by the instruction TSX RESET, 4, where the

subroutine RESET is:

RESET TQO * +1
TOV ~ +1
TRA

XII-7

(Here the asterisk in an instruction address designates the
location of the instruction itself.) ('After every floating
point division instruction, '(i.e. FDH, FDP), one uses the
instruction, TSX DVTST, 4; similarly"after'every other
floating-point instruction, (i.e. FAD, UFA, FSB, UFS, FMP, UFM),

,
one uses the instruction, TSX AMTST,4. Two subroutines suit-
able for single-register precision'arithmetic are the
following:

AMT~T

DVTST

DV1

DV2

DV3
DV4

TQO
TNO
ARS
PBT
TRA
PXD
TRA
TQO
TNO
TRA
TOV,

,

~i~+l

1,4
, 1

ALARM
0,0

1,4
DVl
1,4
1'4 ,
DV2

~ ~ . .'~

PXD 0,0

LLS 8-
SSP
SUB DV3
TMI
LDQ
TRA
PZE
PZE

ALARM
Dv4
1,4
129

ALARM HTR' ALARM

Normal return

Overflow

Underflow return

Normal return
MQ ok return

Overflow

Underflow return
Integer 129

Zero ..
Overflow stop

XII-B

There are several features ,to be noted about the above

procedure. First, the. two indi'cators are:automat1:'cal~y turned
off after each floating-point operation iri anticipation of

the next instruction. Second, the normal ~ase of neither
underflow nor overflow requires three operating instructions
which raises the minimum floating.:-point operation times
from 7, 17, and 18 to 13, 23, and 24 machine cycles. Third,
the above procedure uses a vaiuableindex register which
may require further slowing down of the program.

The third and final overflow-underflow procedure
accomplishes the same corrective action as the second pro
cedure just described. However by a clever use of 'the
trapping mode, the use of an index register is eliminated
and the normal overflow-underflow test time is reduc~d
from 6 to 2 machine cy~les.

The 704 trapping mode is a special state of the
,compute~ (entered and left by the instructions ETM and LTM,
respectively) in ~hich all instructions perform as usual'
except for the transfer pa.rt of all transfer it:lstructions •.
In the latter case, the location of the transfer instruction
is set into the address section of location 0 and the computer
control is transferred to location 1. (One transfer instruc-

. tion, TTR, is immune to the trapping mode.) The usual use
of the trapping mode is to trace the flow of control by
means of diagnostic programs for trouble-shooting incorrect
programs. In the present application, however, the trapping
mode serves as'a device to save the return point when control
is transfe:,rreq due to the AC or MQ overflow lights being on
after a floating-point instruction.

The procedure again consists of first analysing the
instructions into sequences where the indicators are not
turned on except by ,floating-point instructions. Somewhere
before the first sequence, a brief initlalizingprogram must
be given.

XII-9

This is

CLA \~ORD

STO 1 Initialize analysis transfer
where

WORD TTR TEST

Now it is not necessary to turn off both the indicators before
entry into each sequence. This foliows from the fact that

for single-register precision the 'condition of the MQ indi-
ca tor and the characteristic, of the MQ are sufficient for
testing the result of division, whereas the AC indicator and
the Q bit are sufficient for testing the non-division instruc
tions. Thus all that is required is that before every run of
non-division floating-point instructions (i.e. no intervening
divisions) the AC indicator is turned off and similarly bef9re
'a run of division instructions the MQ indicator is turned off.
This is done, of' course, by either TOV *' +1 or TQO,*- +1.

Finally after every floating point division one gives the

instruction, TQO TSTDV, and correspondingly after the non ...
division instruc·tions, TOV TSTAM, where both instructions
should be executedin'the trapping mode. Inasmuch as these

instructions will not trap unless there was an underflow or
overflow, the ·increase in time of normal floa ting point
operations is only 2 machine cycles. In addition one' places

somewhere in the program the following analysis subroutine:

TEST STO

ARS
SLW
CAL
STA
ACL
STA

TI CAL
STA
CLA

T2 TTR

T5
I
T6
0

TI

T9
T4

T2

T5

Save AC

Save Q bit

Set pick-up

Set return
Pick-up·transfer instruction

Restore AC less P,Q bits
Execute analysis or transfer

XII-IO

The subroutines for alarm testing are the following:

TSTAM LTM
CLA T6
TPL ALARM
PXD 0,0

Q bit in S bit position

I TRA T3
TSTDV LTM

PXD 0,0
LLS ,08
SSP
SUB T7

Overflow
Clear. AC
To return

TMI ALARM Overflow
LDQ T8

T3 ETM
T4

T5
T6

T7
T8
T9

TTR

PZ.E
PZE 1

PZE 129
PZE
PZE· 1

Underflow return

AC store
Q bit store
Integer 129
Zero
Integer 1

ALARM HTR ALARM Overflow stop

Inspection of the above analysis'routine reveals ~hat
any transfer instruction encountered while in the trapping
mode w1l1 be. interpreted correctly (except an indexed trans':'
fer, e .'g. TRAl,4) although its execution time will be
multiplied by a. factor of 13. (The P and Q bits will also
be cleared but this usually does not affect' anything.)
Consequently any conditional transfer instruction which is
unl~keiy to meet th~,conditions of transfer may, if it is
convenient, be executed in the trapping.mode 'without any

.. '
great los~ in program operating speed; otherWise, it is
desirable to l~a~e' the trapping mode before a probable
transfer and reenter the· trapping mode a..d~"u a..f'~ JttUJ

./':bt CviU_ <I:!&V j
j'

XII-II
Finally the following sample program is given to

illustrate the technique of th~ last procedure. 'Here it is
assumed 'that DATAl through DATA7 are the initial addresses of
data blocks which along with the analysis subroutln~s just
described are available elsewhere in the program. The sequence'
of control transfers will be left as an exercise for the reader

START CLA WORD
STO 1
TRA WORD+l

WORD TTR TEST
LXA COUNT,l

LOOP CLA DATAl+lOO,l
TOV ~+l
FAD DATA2+100,1
ETM
TOV TSTAM
FSB DATA3+100,1
TOV TSTAM
LTM

TMI SKIP
ETM
TQO ;l{-+l
FDH DATA4+l00,1
TQO TSTDV

, TOV ~+l

SKIP ETM
FMP DATA5+100,1
TOV TSTAM
TQO .+1
FDH DATA6+100,1
TQO TSTDV
LTM
STQ DATA7+100, 1
TIX LOOP,l,l

END HTR END
COUNT PZE 100

Initialize in location 1
trap transfer to analysis
routine

Turn-off probably-on AC
indicator

Enter trapping mode for test
Trap if underflow or overflow

Trap if underflow or overflow
Leave trapping mode for
probable transfer

Enter trapping mode for test
Turn-off probably-off MQ
indicator

Trap if underflow or overflow
Turn~off probably-off AC
indicator
Enter trapping mode in case came
from TMI

Trap if underflow or overflow
Turn-off probably-off MQ
indicator

Trap if underflow or overflow
Leave trapping mode for
probable transfer

XII-12

A subroutine for: dealing with floating-point overflows

and underflows (CLOUD1) has been distributed by SHARE

(distribution No. 248)~

The Sense Switches
There are"six switches on the operator's console

(numbered from left to right by the digits 1 to 6) whose
positions (either up or down) can be sensed by using the

instructions

SWT n: Sense Switch Test n= 1, ••• ,6

Sense switches can be used by the computer operator
to modify the effect of a program while it.is running.

Both the SHARE Assembly Program and. the MIT Post-Mortem

Program us~ sense switches. For example, SAP will read-
in the symbolic dedk from the card reader if'sense switch 1
is· down but will read it in from a magnetic tape unit if

sense switch 1 is up.

Th~ Sense- Light~

. There are four 'l~ghts (numbered from left to right

by the digits 1 to 4) on the operator's console which can
be turned on and off, or teste~, by means of the following

instructions:
1) SLN n: Sense Light On n = 1,2,3,4
2) SLF Sense L:tghts Off

3) SLT n: Sense Light Test n = 1,2,3,4

1) ;The instructions, SLN n, turns on the sense light
numbered n.

2) .The instruction, SLF, turns off all of the
sense light~s.

3) The instruction, .SLT n, turns off the sense
light numbered n and skips one instr~ction if it was on.

SLT n: Sense light off and
Sense light n on =;C (ILC) +2 ---;;) C (ILC).

XII-13

The sense lights can be used as a visible means to

convey information to the operator about the state of the
program;. . The MIT:' Post-M9rtem Program uS,es a. sense light as
follows: By using certain sense switches an operator ,can

stop the post-mortem program and insert manual post-mortem
requests into the MQ register· which the program will then,
execute. If, however, the operator inserts an illegal
request the program will detect this illegality and return
to the original stopping point with a sense light on.

Example: The following example·considers the four

sense lights to be a four digi~ binary count~r (with the
convention ·that a sense light being on denotes a 1). The
example is a subroutine which increases the contents of

this counter by 1 each time it is entered.

COUNTR SLT 4
TRA FOUR
SLT 3
TRA THREE
SLT 2

TRA TWO
SLT 1

TRA ONE
TRA 1,4

ONE SLN 1
TRA 1,4

TWO SLN 2

TRA 1,4
THREE SLN 3

TRA 1,4
FOUR SLN 4

TRA 1,4

A Quick Look at the Console -----
The operator's console on the 704 contains an assort-

ment of switches, buttons and lights most of which rarely

XII-14

concern the coder. A detailed description of the console may

be found in the·704 manual on pp. 13-15. A few of the buttons
are important to the coder, however and are briefly described
below.

The. Clear Button: When a binary deck is loaded into
the 704 words are'placed· in registers specified by the coder.

If the coder does not specify the contents of a register it

will not be changed (and will contain whatever the previous
user left in it). It is thus important that a coder fill all
registers whose initial values affect his program.

The clear·button (if pressed by the operato~ before
loading begins) enables the coder to start with memory in a
known state (nam&ly all zeros). This button also resets
all of the registers and alarm lights in the arithmetic
~ement·.+ It is re60mmended that the coder clear memory when
ever possible since this will make simpler the interpretation
of post-mortem results.

The Start Button: The start button can be pushed by
the operator after the computer has stopped on one of the
following instructions

HPR, HTR, DVH, FDH

With HPR, DVH, and FDH its effect to start the computer on
the next··instruction in se4uence. An exception is provided
by the instruction

HTR x : Halt and Transfer

This instruction stops the computer in such a way that if the

start button is .subsequently pressed then the ~omputer begins

with the instruction in register x.

+- .Another button, the rese~ but~on, . clears the arithmetic
element but does not change memory.

XII-15

The Load Buttons: There are three buttons; called

the load tape button, the load card button and the load

drum button; which are used to initlallybring information
into core memory (e.g. after core memory has been cleared).

These (when pushed by the operator) start the computer a,nd
cause it to initially execute one of the following sequences
of instructions:

Load Tape Load Card Load Drum

RTB l~]D ~DR 1

CPY 0
Cpy 1

TTR 0

The sequence thus places words (from the outside world) into

registers 0 and 1 and transfers control to the first of these.
This simple sequence suffices to bring in more ,complicated

loaders which can read binary cards into memory. In the
next section we describe one such loader.

A Binary Loader

The bina~y cards produced by SAP during asembly can
be described as, follows

1. Data Cards
a) The decrement of the 9 left row contains

the number of words on the card (call this n).
b) The addr~ss of the 9 left row contains the

the location of the first word (call this x)
c) The 9 right row contains the check sum (which

• is the logical sum of all other words on the
card) .

d) Rows 8 left, 8 right, •.• contain the n words

to be stored in locations x,x+l, .•• x+n.

XII-16

2. Transfer Cards

'a) Transfer cards are characterized by the

fact that the decrement of the 9 left row

is zero.

b) The address of the 9 left row contains the

starting address of the program.

Many more or less complicated loaders have been

written by SHARE members and are described in the SHARE

distribution material. The one listed below (NYBL1) is a

relatively simple one which consists of a single card.

A

9R

9L

RCD

ORG 0

LXA

CPY

TXI

1
PZE

1
RCD

CPY

LLS
PAX
ADD

Oj4 J These words are copied to ° and 1 by
2,4 the load card sequence

A,4, -D Thls copy loop brings the rest of the

card to.core memory and terminates on

the end-of-record skip

9L

17
0,4
9L

] Used~to store 9 l~ft row.

jJ vie lea ve the trapping mode (just in case)

and enter the loader proper. The TXI in

register 9R is right in any case.

,] Read binary card

J x and n to 9L and

n from MQ to AC - T
.J.

] n to IR4

MQ

STA TRA
STA Cpy

x + n to TRA, CPY and ACL

STA ACL

TRA TXL 0,4
Cpy 9R

J exit to x if transfer card

] Check sum to 9R

CAL 9L
Cpy Cpy 0,4
ACL ACL 0,4

"' I' vlords to x, x+l, ••• , x+n-l
, Form a new check sum

T IX C py , 4 , JJ'

XII-17

SLW 9L] New check sum to 9L
CLA 9L
SUB 9R
TZE ReD Stop if checks sums disagree
HTR RCD
END

Subject:

To:

From:

Date:

MoI.T. Computation Center
Massachusetts Institute of Technology

Cambridge 39, Massachusetts

DESCRIPTION OF THE SHARE ASSEMBLY PROGRAM
FOR THE I.B.M. 704 COMPUTER

Prof. Philip M~ Morse, Director
,/

Dr. Fernando J. Corbato

April 15, 1957

PREFACE

The following memorandum is a description of the
standard coding language and carresponding translation (i.e.,
assembly) program agreed upon by all members of the SHARE
organization, an organization consisting of most of the
users of the I.B.M. 704 computer. The memorandum is basi
cally a copy of one written by Roy Nutt of the United Air
craft Corporation, dateo March 22, 1956, which may be found
in the appendix section of the SHARE Reference Manual. How
ever, in the present version several minor clarifications
and corrections have been added as well as a major revision
made of the section on arithmetic expressions. In addition,
an introduction has been added for those not familiar with
the purpose of an assembly program. For convenience, a list
of the acceptable instruction codes is included since some
of the allowable input-output instruction abbreviations (as
well as the CAC and STZ instructions) are not yet given in
the current IoB.M. 704 manuals. Finally, a description is
included of the format used for the absolute and relocatable
binary cards which are produced as output by the assembly
program.

f~J.~
Fernando J. Corbato

Page 2 of 25

INTRODUCTION

The SHARE Assembly Program (SAP) is a program ,which en
ables one to use the I.B.M. 704 computer as a. special-purpose
translation machine. This translation process consists of
transforming ordinary 704 computer programs from a convenient
coding language to the explicit binary number language that
the 704 computer truly uses. It is the exact form and rules
of this coding language that will be described in the follow
ing sections. The binary number conventions and nomenclature
that are to be used are those described in the I.B.M. 704
Manual of Operation.

The manner in which SAP is used is the following: The
programmer first prepares his program in symbolic cards
using an I.B.M. k~y punch (with the 'special characters re
quired by the"704 system) / and th,e conventions described in
this memo. This symbolic program is then processed on a
704 computer using SAP. The resultant output of this
processing consists-of binary cards which (at the discretion
of the programmer) essentially may be of two possible forms:
absolute or relocatable. The binary cards ~ay then be read
into a 70~ computer very simply by means of anyone of several
binary card loader programs.

An absolute binary card loader program can normally be
assumed to be available at the computer so that the loader
program need not concern the programme~except in that it
will occupy in the order of the first 100 cells of core
memory storage. Thus J as a normal practice a programmer should
never attempt to place a program in the first few hundred cells'
of core memory storage.

Relocatable binary cards, which are similar to absolute
binary cards, are used whenever there are several applications
for a piogram (or a portion of a program), and it is desired
to locate the program (or portion) at different stofage lo
cations in the 'different applications without translating more
than once. The most frequent case is that of subr~utines which
may be used in many different programs. It should be pointed
out that it is not necessary ever t6 use relocatable binary
cards' as l6rig as' one always translates an entire p~ogram from
symbolic cards to absolute'binary card's. In other words, relo
catable binary cards merely offer a short cut, the efficiency
of which depends on the manner in which a given 704 instal
lation is normally operated.

The coding language which SAP'accepts consists of three
letter instruction abbreviations with references (i.e.,
addresses, tags and decrements), which are arithmetic ex
pressions composed of symbols and/or decimal integers. The
exact instruction abbreviations are those agreed upon by SHARE
(usually the same as those of the I.B.M. 704 Manual) and are

Page 3 of 25

given in the appendix.

The symbols, which are used in making references, are
intege~ quantities, essentially arbitrarily labelled by the
programmer by means of combinations of letters and numbers
which must be uniquely defined at some place in a given
program 0 Symbols are usually used for two purposes:
1) to designate the location of a particular instruction
in a program to which reference is to be made; and 2) to
flexibly designate a frequently-referred-to parameter which
is unchanged during the operation of a program but which may
change with different applications of a program (e.g., the
order of a matrix in a matrix multiplication program, or the
number of an index register in the tag section of an in
struction). In the parameter usage of symbols, of course, a
new translation (i.~~, assembly) has to be made in order to
change the values of the parameters involved.

Page 4 of 25

The SHARE'Aseembler

Consisting of Programs: UA SAP 1 and UA SAP 2

by

Roy Nutt
United Aircraft Corporation

with minor revisions by

F. J. Corbato
M.I.T. Computation Center

704 instructions to be assembled by this program are
written with references expressed as arithmetic combinations
of symbols and/or decimal integers. A variable field format
is used in which th~ parts of the instruction are given in .
the order: address ,\ tag and decrement. In addi tion to in
structions, data in deCimal, octal or Hollerith (BCD) form
may be assembled, and library routines written in the same
symbolic form may be conveniently incorporated into the
program being assembled.

A program to compute

N i+j=N

j=o i=o

is used as an example of the use of this assembler and of the
printed program listing which is an output of the assembler~
(See page 18.)

In order to describe the use of this assembly program,
let us conSider first a simplified explanation of symbolic
assembly operation.

The assembly procedure is divided into two parts; in the
first, the UA SAP 1 program examines the particular program
to be assembled in order to define each symbol used in writing
the program. In the second part, the UA SAP 2 program pre
pares the actual machine language program, punches it in
binary form on cards and produces a printed copy of the

Page 5 of 25

program in symbolic form together with the corresponding
printed octal machine language programo

During the first part, a counter is used to specify the
absolute location of each word in the program ° Call this lo
cation counter L. L is set initially to an integer supplied
to the assembly program by the program being assembled; hence
forth L is increased by one for each word to be used by the
programe

Simultaneously with this counting procedure a table is
constructedp Each entry in this table defines a symbol used
in the program as being equivalent to some integer. Entries
to the table are made in two ways~

1. A symbol appears as the ilsymbolic location" of a
word in the program being assembled and is assigned the value
of L.

2. A symbol is defined by a pseudo operation. (All
symbol values are taken modulo 215 0 If a symbol is defined
as a negative value, the 2~s complement, modulo 215 will re
sult, e.go, if N is defined as -6, a value of N=215-6 will
be used in assemblyo)

It is important to note that the order of the absolute
instructions produced by symbolic assembly is determined
solely by the order in which the symbolic instructions are
read by the assembly program (ioeo, by the physical order of
the symbolic cards) 0

During the second part of the assembly process, L is
computed in exactly the same manner as it was during the first
part. In additio~ all symbols in the symbolic program are
replaced by the integer equivalences given in the table formed
during the first part, thus producing an absolute program.

Note that this operation requires 'that each symbol be
uniquely definedo

For use in the assembly program, the following defi
nitions are made:

Symbol: Any combination of not more than 6 (but
usually not more than 5) Hollerith
characters, none of which 1s,.+ -.*./~ $ and
at least one of which is non-numeric.
(Note: For this purpose, any chara~ter
without a zone punch is numeric. Thus
the = (8-3 punch) and the - (8-4 punch)
are numeric.)

Integer: (with respect to instructions)
Any decimal integer less than 1,000,000.

Page 6 of 25

Tne operation part of each instruction is specified by
the standard "SHAREII abbreviation of 3 alphabetic characters.

Ordinarily a storage cell location should be identified
by a symb'ol (l1 symbolic location") if and only if it is neces
sary to refer to this location in the program.

The address, tag and decrement parts of symbolic in-'
structions are given in that order. In some cases the decre
ment, tag or address parts are not necessary; therefore the
following combinations where OP represents the instruction
abbreviation are permissible!

OP
OP Address
OP Address, Tag
OP Address, Tag, Decrement

Examples of the last three types occur in the illustrative
problem at P3, P3+2, and P3+3, respectively.

Note that the tag, if present, must be separated from
the address by a comma and, similarly, the decrement, if
present, must be separated from the tag by a comma. For
the few instructions which require a tag ~ut no address,
the address zero should be used; for example:

PDX 0,4

Similarly, where a decrement is required with no tag, a zero
tag should be used, as in

TXL A,O,B

Th~ following card format is used by the assembly
program:

Columns Contents

1-6 Symbol or blank

7 Blank

8-10 Abbreviated operation or blank

11 Blank

12-72 Variable field

73-80 Not used

Expressions defining the address, tag and decrement are
punched without blanks from column 12 ano The first blank
to the right of column 12 defines the end of':the instruction.
All punching to the right of su'ch a blank. is considered to
be a remark made by the programmer for his personal con
venience and has no effect on the assembly process.

Page 7 of 25

If an instruction requires a s~mbolic location, the
symbol used is punched in column 1-6.

Arithmetic expressions

As stated before, the references which may be used in in
structions can consist of arithmetic expressions of symbols
and/or decimal integers. The arithmetic operations allowed
in these expressions are addition, subtraction, multipli
cation, and division designated by + (12 punch), - (11 punch), * , and /, respectively. However, no parentheses are
allowed, so that it is necessary to specify how the-evalu
ation of an expression is done.

All of the arithmetic operations are done with 35 binary
place integral arithmetic (i.eo, modulo 235). In the case of
division, only the integral quotient is retained, and the
non-integral remainder (of the same sign as the quotient) is
discarded. The evaluation of an arithmetic expression then
proceeds as follows: Each segment of the expression where
a segment is that portion of the expression from a + or -
sign (or the beginning of the expression) to the next + or
~ sign (or the end of the expression) is separately evalu
ated from left to right with the consecutive multiplications
and divisions being performed as specified; as each segment
of the expression is evaluated, they are combined from left
to-right as indicated by the connective + and - signs.

As an example of the above procedure, the expression

A+200/15/6* l5-B/C* D

is taken to have a meaning of

~200~ []
A +L~J x 15 - ~ x D

where the brackets denote the integer division described a
bove.

Finally, if the result of an expression is to be ex
pressed in n binary places, its magnitude is computed modulo
2n. This quantity is taken to be the result unless the ex
pression is negative, in which case the 2 Vs complement is
taken as the resulto

Hence, if v is the value of an expression, r is the
result used and

r =

. then

m
m = I v J mod 2D

v .~ 0

n 2 ~ m v <. 0

Page 8 of 25

For example, the instruction at location P3+3 in the
illustration has a decrement part of -1. Here m=l, v=-l,
n=15, so that

15 r=2 -1.

Consider also the tag part of instruction P4-l where

v=J+K=1+4=5

m=5, n=3
so that r=5

The decimal integers which are allowed in constructing
expressions are-,llmited to values less than 1,000,000. The
sYmbol values which are allowed are those integers less than
215, all larger values being taken modulo 215.

If symbol is given a negative value, it is "negative"
in the sense that the 2's complement (modulo 215) is taken
of the magnitude of the value. For example, if one states
that N= -6, then the value that SAP will use for the symbol
N will be 215_6.

PSEUDO-OPERATIONS

In the following descriptions, a pre-defined expression
is an arithmetic expression in which all the symbols used
must have been previously defined, i.~ appeared in the
symbol field, columns 1-6, of some preceding instruction or
pseudo-instruction card. .

Origin specification: ORG

The location counter L is set to the value of the pre
defined expression appearing in the variable field.

If no origin specification is given for a program, the
initial value of L will be zero.

Origin specification instructions may be used at will.

Equals: EQU

The symbol appearing in 1-6 is assigned the integer
value given by the pre-defined expression appearing in the
variable field.

Note that the pseudo operation EQU is to be used only
in those cases where the symbol appearing in columns J.:.-6
specifies a preset parameter such as the order of a matrix,
the degree of a polynomial, the number of items in a group,
or any other quantity which is invariant with respect to

Page 9 of 25

the location of the program in storage. If the symbol
specifies the location of a piece of data or an ,instruction,
the pseudo operation SYN should be used. The reason for
this distinction is that symbols must be distinguishable
as non-relocatable and relocatable whenever, relocatable
binary cards are produced as an output by the assembler.

Synonym~ SYN

The symbol appearing in columns 1-6 is assigned the
integer value given by the pre-defined expression appearing
in the variable field.

Note that the pseudo operation SYN is to be used only
in those cases where the symbol appearing in columns 1-6
specifies the location of a piece of data, the location of
an instruction, or any other quantity whose value depends
upon the location of the program in storagee If the symbol
specifies a preset parameter, the pseudo operation EQU
should be used.

Decimal data: DEC

The decimal data beginning in column 12 is converted
to binary and assigned to consecutive locations L, 1+1, 0 ••

Successive words of data on a card are separated by
commas, and the first blank to the right of column 12
indicates that all punching to the right of this blank is
a remark 0

Signs are indicated by + or - (12 or 11 punch) pre
ceding the number, the exponent or the binary scale factor.
However, it is not necessary to use the + sign.

The symbol or absolute location appearing in columns
1-6 specifies the location of the first decimal data word
on the card; the remaining data words are located consecu
tively after the first data word. If no symbol or abso-
lute location appears in columns 1-6, the data words are
located consecutively after the previous word'of the program.
(Note: the current version of SAP makes a mistake if an
absolute location is used in, columns 1-6 on a multiple word
cirdo This mistake will be rectified.)

Briefly, binary integers (i.e., hinary point just to
the right of the 35th bit) may be denoted by just the
integer values. For example: +7, -3, 7. Binary fractions
with the binary point between the sign and the 1st bit are
given in the form: +o23B, -o34B, .45B. Floating point
numbers may be denoted by just writing the number in the
ordinary way but with a decimal point as in the examples:
+8., -9o, lao Since the exact rules for decimal numbers
used by the assembler allow greater generality, they are

Page 10 of 25

now given.

If none of the characters . E or B appear in a decimal
data word, the word is converted as a binary integer with the
binary point at the right-hand end of the word.

If either of the characters E or . or both appear in a
decimal data word and the character B does not appear, the
word is converted to a 704 type floating binary quantity.
The decimal exponent used in this conversion is the number
which follows immediately after the character E. If the
character E does not appear, the exponent is assumed to be
zero. If the decimal point does not appear, it is assumed
to be at the right-hand end. For example, 120345, +12.345,
1.2345El, 1234~5E-2, and 12345E-3 are all equivalent repre
sentations of the same floating point word.

If the character B appears in a decimal data word, the
word is converted as a fixed point binary quantity. The
binary scale factor used in this conversion is the number
which follows immediately after the character B; this number
being the number of binary places between the left-hand end
of the storage cell and the binary.point of the fixed point
binary result. If the decimal point does not appear in the
decimal data word, it is assumed to be at the right-hand endo
The decimal exponent used in this conversion is the number
which follows immediately after the character E. The order of
Band E is not significant. For example, 120345B4, +1.Z345ElB4,
and l2345B4E-3 are all equivalent representations of the same
fixed point quantity.

It should be noted that in all cases decimal input which
is t~o small and out-of-range (e.g., IE-50) is replaced by
zeroi However, there is currently a mistake in SAP for ex
ponents of ten from E-42 to E-49. This mistake will be fixed.

Octal data: OCT

The octal data beginning in column 12 is taken in binary
integer form, the binary point considered to be on the right
hand end of a 704 word, and assigned to consecutive storage
locations L, L+l, ...

SucceSsive words are separated by commas and the first
blank to the right of column 12 indicates that all punching
to the right is to be considered a remark.

The symbol or absolute location appearing in columns 1-6
specifies the locatio,n of the first octal data word on the
card; !the remainitig data words are located consecutively
after the first da ta word. If np',symbol or absolute lo
cation appears in column 1-6, the data ,words are l~cated
consecutively after the previous word of the program. (Note:
the current version of SAP makes a mistake if an absolute lo
cation is used in columnS 1-6 on a multiple word card. This

Page 11 of 25

mistake will be rectified.)

In the case of 12 digit octal numbers, the following
equival~nces exist with respect to the high order digit:

-0 == 4 -1 == 5 -2 == 6 -3 == 7
i

Either forw may be used in coding for the assembly.

Hollerith data: BCD

Normally the 10 six-character words of Hollerith infor
mation from columns 13-72 are read and assigned to locations
L, L+l, 0 •• , L+9. If however, less than 10 BCD words are
desired, a word count v (0 ~ v ~ 9) is punched in column 12,
in which case v words are read and assigned to locations L,
L+l, .. 0, L+v-l.

The symbol or absolute location appearing in columns 1-6
specifies the location of the first Hollerith word on the
card; the remaining words are located consecutively after the
first wordo If no symbol or absolute location appears in
columns 1-6, the words are located consecutively after the
previous word of the program. (Note: the current version of
SAP makes a mistake if an absolute location is used in columns
1-6 on a multiple word card. This mistake will be rectified.
In addition, a BCD card of zero words currently creates a
mistake during assembly" These SAP mistakes will be elimi
nated")

Block started by symbol: BSS

The block of storage extending from L to J~N-l, where N
is the value of the pre-defined expression beginning in column
12, is reserved by this pseudo operation"

If a symbol is punched in columns 1-6, it is assigned the
value L, corresponding to the first word of the block re
served.

Finally, L is replaced by L+N.

Block ended by symbol~ BES

.This pseudo operation is exactly the same as BSS, except
that the value assigned to any symbol appearing ,in columns
1-6 is L+N, corresponding to the location of the first word
following the block reserved~

Repeat: REP

Two pre-defined expressions, the first beginning in
column 12 and separated from the second by a comma, define
two integers M and N. The block of instructions and/or data
preceding the REP operation in locations L, L+l, ••. ,L+M-l is

Page 12 of 25

repeated N times, the repeated information being assigned to
loca tions L+M, L+f'.1+1, , L+M~ N+M-l. For example, if N is
1, then one obtains two identical blocks, the original block
and the repeated block. Only one word of information may
appear on each card which is part of a repeated block.

Library search: LIB

The library routine identified by the symbol in
columns 1-6 is obtained from a library tape and inserted in
the program being assembled. If the library routine required
k words of storage, it will occupy locations L, L+l,.o.~
L+k-l. The identification symbol is not entered in the table
of symbols, but any symbols appearing in the library routine
are entered and properly defined.

The first set of information on the library tape is an
ordered list of the subroutines which are on the tape. The
assembly program always keeps track of the position of the
library tape and makes use of the information in the ordered
list of subroutines in order to directly pick up the subroutines
in the sequence that they are requested. by a program. (The
library tape is not rewound between library requests.)

Tape searching time may be minimized both by recording
the most frequently used subroutines at the beginning of the
tape and by specifying that the subroutines to be incorpo
rated into any particular program are called for in the order
in which they appear on the tape.

Heading: HED

It is often convenient to combine several programs into
one program. Two difficulties immediately arise. First, the
symbolic references to data common to the several programs may
differ in the individual programs. This can be easily cor
rected by the use of synonyms which equate the proper symbols~

Second, it may be that two' or more of the individual
programs use the same symbols for references which should be
unique. In order to restore uniqueness, it is necessary to
change the symbols in each program in some way. The heading
pseudo operation accomplishes this result in the following
manner.

The heading card supplies to the assembly program a single
character (punched in column I of the HED card). Any Hollerith
character is permissible except zero, comma, plus, minus,
asterisk, slash, or dollar sign. Each symbol in the program
following the HED pseudo operation is prefixed by this charac
ter except when a special indication to cancel the prefixing
operation is given. A new heading pseudo operation card will
replace the prefix character. Thus several programs having
non-unique symbols may be combined by giving the heading

Page 13 of 25

pseudo operation with a unique character before each program.
If a nUmerical heading is used, then some non~numeric charac
ter must be punched in 2-6 of the heading card. (Note:
Currently SAP does not function properly if the heading
character is a numerical digitG This mistake will be fixed.)

It is, however, sometimes necessary to make cross
references between the individual programs. To accomplish
this, such references must be written in the following way_
Let H be a heading character and K be the symbol in the
block headed by H to which reference is to be made. To refer
to K (ioe., to use the value represented by K in an address,
tag or decrement) in a part of the program not headed by H
but by, say, J, write

. H $ K

The special character $ indicates to the assembly program that
K is to be prefixed by H instead of by the prefix J given on
the last heading card.

It is important to note that if use 1s to be made of the
heading feature, all symbols used throughout the program will
usually be restricted to five or fewer characters. If any
six-character symbols (such as the erasable storage desig
nation COMMON) are used, these symbols will not be headed.

Some additional remarks are that:

1) A $ B is not the same as AB.

2) A $ BCDEF is the same as ABCDEF.

3) OOOA, where 0 is zero, is the same as OA is the same
as A.

4) A symbol in an unheaded portion of a program cannot
be referred to from a headed portion of the program
by the $ notation. Hence, in general the rule:
head everything or nothingo

Define: DEF

If there exist in the program symbols not defined in
accordance with the normal rules, such symbols may be defined
in a different manner by use of the pseudo operation DEFo
This pseudo operation causes the first such symbol encountered
in an address, tag or decrement to be assigned the value given
by the expression (which need not be pre-defined) beginning in
column 12 of the DEF card. Successive undefined symbols are
then given successive values until either a new DEF is given
(in which case a new assignment is begun) or until the capacity
of the symbol taple is exceeded 0 A common application of
this pseudo instruction is td reserve temporary storage lo~
cations j.n An automatic manner without having to explicitly

Page 14 of 25

assign each location. However, when this pseudo operation
is used, the symbols so defined will still be included in
the list of "undefined symbols" given by the assembler at
the end of the program listing output.

Note that the pseudo operation DEF cannot be used to de
fine an otherwise undefined symbol if this symbol occurs in
the address, tag or decrement of an instruction which pre
cedes the DEF card. The pseudo operation DEF defines only
those otherwise undefined symbols which are first encountered
after the DEF card itself has been encountered.

Similarly, if two DEF cards are used, and if an other
wise undefined symbol occurs both in instructions which ap
pear between the two DEF cards as well as in instructions
which follow the second DEF card, then the definition which
will be used throughout is the one established by the first
DEF card. The second DEF card has in such a case no effect
on the already-established definition.

Remarks: REM

Any Hollerith punching in columns 12-72 will be re
produced in the printed listing of the assembly without other
wise affecting the assembly in any way. This is a useful
feature for labeling and describing blocks of program since as
many REM cards can be used as desired.

End of program: END

This pseudo operation must be the last read by the
assembly program. The value of the expression beginning in
column 12 is punched as the transfer address in a 704 binary
correction transfer card.

Operation Code

Among the standard 3-letter operation codes adopted by
S}ffiRE, this assembly program recognizes the following codes
which may be used to assign arbitrary values to the prefix
and sign of calling sequence words:

A12habetic Code Name Octal Code

fvlZE Minus zero -0000
MON Minus one -1000
MTvJ Minus, two -2000
MTH Minus three -3000
PZE Plus zero +0000
PON Plus one +1000
PTW Plus two +2000
PTH Plus three +3000
FOR Four -0000
FVE Five -1000
SIX Six -2000
SVN Seven -3000

Page 15 of ~~5

In coding symbolic instructions which have CFF,CHS,
eLM, COM, DCT, ETM, IOD, LTM, LBT, PET, RCD, RPR,RTT, RND,
SLF, SPT, SSM, SSP, HTV, vJPR, or \1PU as their operation part,
the address part should be blank or zero, since the assembly
program automatically introduces the correct address.

In coding symbolic instructions which have BST, RDR, RTB,
RTD, REv.], SLN, SLT, SPR, SPU, SvlT, \'IDR, 'WEF, 1:-JTB, 1:-lTD, or vlTS
as their operation part, the address part should be the unit
number (in decimal). For instance, BST 2 implies Back Space
-Tape No.2, SPR 9 implies Sense Printer Exit Noo 9, \'!DR 3
impl ies vIri te Drum No.3, and so on. The assembly program
automatlcally computes the correct octal address (222, 371,
and 303, respectively, in the foregoing examples).

Location counter

If an absolute decimal location (ioeo,: one containing
no non-numeric characters) is punched in columns 1-6 of any
card in the assembly, the location counter L will be set to
that value. The effect of absolute decimal punching in these
columns is therefore identically the same as if the card in
question were to be placed immediately behind an ORG card
having the exact same absolute decimal location punched in its
variable fieldo

Operational features

As an aid to the programmer this assembly program gives
some indications of erroneously prepared programs.

If a symbol used in the program is not defined, address,
tag or decrement parts containing this symbol are left blank
in the printed assembly, and zero is used for the corresponding
address, tag or decrement parts in the binary instruction decko
In the case of pseudo operations involving undefined symbols,
any expressions containing such symbols are evaluated using
zero as the value of the undefined symbol 0 A list of all un=
defined symbols will be printed at the end of the assemblyo
(Included in this list will also be any symbols which have been
defined by means of the pseudo operation DEF.) .

If a non-existent operation code is used, the prefix part
of the corresponding instruction is left blank in the printed
assembly, and zero is used as the operation code in~he binary
deck. .

A list of duplicated symbols is printed prior to the
printing of the program 0 This list gives the symbol duplicated
and the integer values ass~gned to it. .

Other convenient features are:

Printing of the entire program listing may be suppressed

Page 16 of 25

or printing of the subroutines copied from the library
may be suppressed.

Single or double spacing of the program listing is
optional.

Assembly may be made from either a BCD tape (i.e.,
off-line operation) or from cards (i.e., on-line oper
a tion) .

Binary punching is available in either absolute or relo
eatable format. (Currently there are several mistakes
in SAP concerning the creation of relocatable binary
cardso These mistakes, which are included in the
appendix and were described in a United Aircraft Corpor
ation memo of December 6, 1956, distributed at the
December 1956 SHARE meeting, will be fixed.)

Capacity of the symbol table

Sufficient space has been set aside in a 4096-word core
storage in order to permit the assembler to construct a symbol
table containing 1097 entries. In cases where the program to
be assembled makes use of the library tape, however, the maxi
mum number of symbols which the assembler can handle is some
what reduced. This follows from the fact that the entire
ordered list of subroutines which forms the first set of infor
mation on the library tape is copied into the upper end of the
symbol table area at the time that the first LIB card is en
countered. Hence, if the library tape is used during an as
sembly, the effective symbol table size becomes 1097 minus
the number of library subroutines on the tape.

In connection with the capacity of the symbol table, it
should also be noted that any unassigned symbols are also
recorded in this symbol table area preparatory to printing the
list of unassigned symbols at the end of the assembly. Hence,
if a case arises where the number of assigned symbols plus
the number of subroutines in the tape library (if used) plus
the number of unassigned symbols should total more than 1097,
then the list of unassigned symbols printed at the end of the
assembly will include only enough symbols to make up the 1097
total. The rest of the unassigned symbols can only be de
tected by noting blank addresses, tags or decrements in the
printed output.

Reassembly features

Additions to a program which has been assembled are easily
accomplished if the table of symbols which was punched during
the initial assembly process has been saved. It is then neces
sary only to reload this table and assemble the new parts of
the program. The original program need not be reloaded.

Furthermore, any change to the original program which

Page 17 of 25

does not involve relocation of any part of the program, or
any reassignment of symbols, may be made by assembly of only
those parts of the program which are to be changed.

Enlarged core storage

The assembler has been so written as to permit it to be
used, without change, in 704's with enlarged core storage 0

For each additional two words of core storage beyond
the minimum of 4096, the assembler automatically provides for
one additional symbol in the symbol table o (Note: Currently
when SAP is used in a 4096-word machine, it produces a symbol
table which cannot be used for correct reassembly in a 8192-
word machine. This incompatability will be removed.)

Page 18 of 25

Example of a Program Listing Obtained from SAP

04000 ORG 2048
04000 -0 53400 5 04011 LXD PI, J+K INITIALIZE INDEX

REGISTERS
04001 -0 63400 4'04020 p4 SXD P2,K STORE K
04002 o 50000 1 04022 CLA A+~, J OBTAIN FIRST ELEMENT
04003 1 77777 1 04004 TXI P6,J,-1 X

04004 -2 00001 4 04017 p6 TNX P5,K,1 X
04005 0 76500 0 00043 P3 LRS 35 FORM POLYNOMIAL
04006 0 26000 0 04046 FMP X IN X

·04007 o 30000 1 04022 FAD A+1,J X

04010 1 77777 1 04011 TXI P1,J,-1 STEP COEFFICIENT
04011 2 00001 4 04005 PI TIX P3,K,1 TEST REDUCED K
04012 0 60100 0 04051 STO S STORE PARTIAL SUM
04013 0 56000 0 04050 LDQ Z FORM POLYNOMIAL
04014 0 26000 0 04047 FMP Y IN Y
04015 o 30000 0 040511 FAD:.~·!$· X

04016 -3 77754 1 TXL OUT,
-R/2+1

J, X

04017 0 60100 0 04050 P5 STO Z X
04020 1 00000 4 04001 P2 TXI P4,K X

00005 N EQU 5
00052 R EQU N*N+3*N+2
04021 A BSS R/2

.04046 0 00000 0 00000 X Note that the aij's
04047 0 00000 a 00000 y

are stored in the
04050 0 00000 a 00000 Z

order a05 ' a 14' a04'
04051 a 00000 0 00000 S

a 23 , a13 , a03 '···' 00001 J EQU 1 a OO from location A
00004 K EQU 4 on.
04000 END P4-1
00000 OUT

APPENDIX

Page 19 OJ+'-'o ~,;
t. .. :J

The follot'1ing is essentially an abstract from the SH.A.RE
Reference Manual, Section 03.1, Programming Standardso

B. Card formats

1. All cards (on-line or off-line) which contain 72
columns of information and 8 columns of identification
are to be punched with the information in columns
1-72 and the identification in columns 73-806

2. Relocatable ~inary information format

For convenience, we shall use an abbreviated desig
nation for various parts of the card. For example,
the 13th bit position of the word in the left half of
the 6th row would be denoted by 6L13 0 The decrement
field of the same word 'Would be 6LDo P, T and A
stand, respectively, for prefix, tag and address.
The sign bit is denoted by S.

The 9L word is always the control word and the 9R
word is always the 36 bit ACL check sum (denoted by
CKS)o The following list contains the various types
of binary cards usedo

~l
d)

Absolute Data
Relocatable Data
Correction and/or Transfer
Origin Table

Detailed descriptions of these card types follow:

a) Absolute Data

Bits 9L13 to 9L17 contain the word count Va
9L21 to 9L35 contain the initial location R. All
other positions in 9L are ordinarily blank. 8L,
8R, 7L, 7R,o .. contain the absolute data. The
maximum word count is 220 If 9L2 is punched, the
CKS is meant to be ignored, and no check is to
be made against it. This applies also to a com
pletely blank CKS.

b) Relocatable Data

9Ll is punched 0 9L13 to 9L17 contain the word
count Vo 9L2l to 9L35 contain the nominal ini
tial location Ro All other positions in 9L are
ordinarily blanko If 9L2 is punched, the CKS
is to be ignored,as in the case of a completely
blank CKS~ The indicator bits are in the 8th

Page 20 of 25

row, starting from the left. The following one
and two-bit codes are used to indicate the type
of field:

o a~sDlute field
10 relocatable direct field
11 relocatable complemented field

"Direct ft here means uncomplemented. The string
of these codes starts at 8LS and proceeds con
tinuously to the right until it terminates.
7L, 7R, 6L, 6R, ... contain the relocatable data
words.

Let us, for illustration, suppose that 7LD is
absolute, 7LA is relocatable direct, 7RD is
absolute, 7RA is relocatable and complemented,
6LD is relocatable direct, 6LA is absolute,
6RD is absolute, and 6RA is relocatable comple
mented. Then the indicator bit pattern would
be:

o 10 o 11 10 o o 11

This may be condensed into:

010011100011

and this pattern is to be punched into the 8th
row beginning with 8LS.

c) Correction and/or Transr'er

(1) Correction

Rows 8 through 12 contain corrections which
are entered in the following manner: The
nominal location is punched in the LA field
and the correction word itself in the right
hand word of the same row. If the location
is to be adjusted by an increment (i.eo,
the correction word is to be relocated),
then the L1 bit is punched. (Note that the
L1 bit always indicates relocation). If a
row is completely blank, it is ignored.
The indicator bits for the decrement and
address fields of the correction word are
punched in the L3 to· L5 bit pOSitions,
using the indicator scheme outlined in
section (b). The sequence of co~rection
entries is assumed to ·be from the 8th row
upwards. If the L20 bit (LT3) is punched,
then the nominal location is assumed to
be 1 more than the preceding one& Hence,

Page.2l of 25

it is not necessary to punch every nominal lo
cation in a consecutive block, If this punch
(L20) appears in the 8th row~ however, it means
that the nominal location is the one actually
punched in 8LA. Hence, it is possible to load
absolute zero at location zero.

If 9L2 is punched, the CKS is ignored 0 No
punches at all need appear in the 9L word, or
in the 9R word if there Is to be no CKS com
parison.

(2) Transfer

The contents of the 9LA field are taken to be
the location to which control is to be trans
ferred after all corrections have been loaded.
If 9Ll is punched, then this nominal location
is to be relocated in the usual manner.

d) Origin Table

Bit 9Ll2 is punched. If 9L2 is punched, the CKS
is ignored as usual. Starting with the 8th row,
the card contains a table of origins in the follow
ing format:

In each row, the nominal location which begins a
region is punched in the LA fieldo The operating
location (i.e., the final location of an in
struction when it is actually to be executed) is
punched in the RA field. If there is a loading
location distinct from the operating location,
this is punched in the RD field. If there is no
loading location, then the operating location is
used in place of it. The entries need not be
punched in order of ascending nominal locations.
If a row is completely blank, or if the L2 bit is
punched in a row, then that row will be ignored.
If L20 is punched in an otherwise blank row~ then
nominal zero will be set to absolute zero.

A general binary loader which fulfills these
specifications if PKCSB4.

3. Symbolic instruction card - See main body of this memo
randum or SAP description in appendix of SHARE. Reference
Manual (Section 10.03).

C~ SHARE mnemonic operation codes

ACL
ADD
ADM
ALS
ANA
ANS
ARS
BST

'* CAC
CAD
CAL
CAS
CHS
CLA
CLM
CLS
COM
CPY
DCT
DVH
DVP
ETH

1f ETT
FAD
FDH
FDP
FMP
FSB
HPR
HTR
LBT
LDA
LDQ
LGL
LLS
LRS
LTM
LXA
LXD
MPR
T'wlPY
fllSE
NOP
ORA
ORS
PAX
PBT
PDX

/

Add and Carry Logical Word
Add
Add Magnitude
Accumulator Left Shift
And to Accumulator
And to Storage
Accumulator Right Shift
Backspace Tape
Copy Add and Carry

If II " 11

Clear and Add Logical Word
Compare Accumulator with Storage
Change Sign
Clear and Add
C lear ~Ilagni tude
Clear and Subtract
Complement Magnitude
Copy or Skip
Divide Check Test
Divide or Halt
Divide or Proceed
Enter Trapping Mode
End of Tape Test
Floating Add
Floating Divide or Halt
Floating Divide or Proceed
Floating Multiply
Floating Subtract
Halt and Proceed
Halt and Transfer
Low Order Bit Test
Locate Drum Address
Load MQ
Logical Left
Long Left Shift
Long Right ·Shift
Leave Trapping Mode
Load Index from Address
Load Index from Decrement
Multiply and Round
rllul tiply
Minus Sense
No Operation
Or to Accumulator
Or to Storage
Place Address in Index
P Bit Test
Place Decrement in Index

Page 22 of 25

0631
0400
0401
0767

-0320
0320
0771
0764

-0700
-0700
-0500

0340
0760,002
0500
0760,000
0502
0760,006
0700
0760,012
0220
0221
0760,007

-0760,011
0300
0240
0241
0260
0302
0420
0000
0760,001
0460
0560

-0763
0763
0765

-0760,007
0534

-0534
-0200

0200
-0760

0761
-0501
-0602

0734
-0760,001
-0734

* Not accepted by current version of SAP; SAP will be
corrected to do so.

Page 23 of 25

PSE Plus Sense 0760
PXD Place Index in Decrement -0751~
RDS Read Select 0762
REv! Rewind 0772
RND Round 0760,010
RQL Rotate MQ Left -0773
RTT Redundancy Tape Test -0760,012
SBM Subtract Magnitude -0400
SLQ Store Left-Half l\1Q -0620
SLVl Store Logical Word 0602
SSM Set Sign Minus -0760,003
SSP Set Sign Plus 0760,003
STA Store Address 0621
STD Store Decrement 0622
STO Store 0601
STP Store Prefix 0630
STQ Store MQ -0600

"* STZ Store Zero 0600
SUB Subtract 0402
SXD Store Index in Decrement -0634
TIX Transfer on Index 2000
TLQ . Transfer on Low MQ 0040
TMI Transfer on Minus -0120
TNO Transfer on No Overflow -0140
TNX Transfer on No Index -2000
TNZ Transfer on No Zero -0100
TOV Transfer on Overflow 0140·
TPL Transfer on Plus 0120
TQO Transfer on MQ Overflow 0161
TQP Transfer on MQ Plus 0162
TRA Transfer 0020
TSX Transfer and Set Index 0074
TTR Trap Transfer 0021
TXH Transfer on Index High 3000
TXI Transfer with Index Incremented 1000
TXL Transfer on Index Low or Equal -3000
TZE Transfer on Zero 0100
UFA Unnormalized Floating Add -0300
UFM Unnormalized Floating Multiply -0260
UFS Unnormalized Floating Subtract -0302
vlEF Write End of File 0770
\~lRS Vlrite Select 0766

~ Not accepted by current version of SAP; SAP will be
corrected to do so.

,.

READ

RCD
RDR
RPR
RTB
RTD

WRITE

WDR
'VJPR
\VPU
lIJTB
WTD
\!JTS
lIITV

SENSE

SLF
SLN
SLT
SPR
SPT
SPU
SWT

OTHER

CFF
rOD

Extended Operations List

Read Card Reader
Read Drum
Read Printer
Read Tape - Binary
Read Tape - Decimal

Write Drum
Write Printer
Write Punch
Write Tape - Binary
Write Tape - Decimal
Write Tapes - Simultaneously
vlrite CRT

Sense Lights orr
Sense Light On
Sense Light Test
Sense Printer
Sense Printer Test
Sense Punch
Sense Switch Test

Change Film Frame
Input-Output Delay

Page 24 of 25

0762,321
0762,301-310
0762,361
0762,221-232
0762,201-212

0766,301-310
0766,361
0766,341
0766,221-232
0766,201-212
0766,321-325
0766,030

0760,140
0760,141-144

-0760,141-144
0760,361-372
0760,360
0760,341-342
0760,161-166

0760,030
0766,333

Page 25 of 25

The following paragraphs c0ncerning mistakes made by SAP
in producing relocatable binary cards are abstracted from the
United Aircraft Corporation memorandum dated December 6, 1956,
which was distributed at the December 1956 SHARE meeting:

The transfer card produced at the end of a relo
catable binary deck lacks the necessary relo
catable control puncho This will be fixed.

In computing the value of a compound address such
as Y-3, where Y is relocatable and its equivalence
happens to be 2, the Assembler indicates that the
result (the complement of one) is to be relocated
in complement fashion. CorrespondinglYf-3-Y comes
out as one, relocatable directo This is, of course,
not correct~ This error arises because the As-
sember uses the sign of the computed value of the
compound address to determine whether relocatability
is direct or complement. And, in general, this
usually leads to a correct determination. There
is already available to the Assembler, however, a
quantity whose sign always correctly indicates whether
relocatability should be direct or complement.
This 1s the test quantity (RBITS) which is computed'
in order to determine whether the compound address
in question is of such form as to permit of relo
cation at all. If this test quantity turns out to
be +1, the address is relocatable direct; if -1,
it is relocatable complement; if any other value,
relocation is impossible. The Assembler will be
changed to take advantage of this fact. As a result,
in the above example, Y-3 will come out as the
complement of one, relocatable direct, and 3-Y will
come out as one, relocatable complement.

In assembling onto relocatable cards, instructions
referring to sense switches are not correctly
tested for relocatability. Instead, they are in
each case given the same relocatable bits as the
instruction which they follow. This will be fixed.

At present it is not possible to obtain a correct
relocatable binary deck for a program whose origin
is at location zero, unless an ORG 0 card is used.
This will be changed in such manner t~at the ORG 0
card will not be nece~sary, although it will of
course cause no trouble if it is included 0

CC-33-l

TO:

FROM:

DATE:

SUBJECT:

COMPUTATION CENTER

Massachusetts Institute of Technology

Cambridge 39, Massachusetts

704 Users

F$ C. Helwig

July 24, 1957
A USERS' ABSTRACT OF THE POST-MORTEM PROGRAM

Introduction

1

The MIT post-mortem program is a selective memory

print-out or punch-out routinee The core memory ranges to

be recorded and the word-forms to be produced are specified
using either symbolic request cards or the computer console ..

This memo describes only request cardsc+

The post-mortem program is recorded on the systems

magnetic tape unit (MT1) and is entered by the load tape

button or by a programmed load tape sequence:

(REW 1)
RTB 1

Cpy 0

CPY 1

TTR 0

This initiates a self-loading sequence which brings the post

mortem program to memory and which saves (on MT5) the previous

contents of the memory registers required for the post-mortem

program~ C(MQ), C(ILC) and the contents of memory registers

0-4 are destroyed by this process.

The deck of request cards to be processed must have

been placed in the on-line card reader is read in by the
post-mortem program.

+ Control of the program from the computer console is

described in CC-23.

I (1) MT2 is required if results for off-line printing
are produced.

(2) ~T3 is required if results for off-line punching
are produced 0

The post-mortem program does not rewind MT2 or MT3 so
that post~mortem results can be ganged with other output
from a users' program.

Request Cards

2

The SHARE card format is used for request cards which
are identified by the letters, PMR, in their operation field o

The variable field of the card must contain four expressions
separated by commas and terminated by a blank column.

The first two expressions give the initial and final
addresses of the range in memory to be printed or punchede
These can consist of any legal SAP expressions and may
include symbolso+ The user may also specify octal integers
in such expressions by immediately preceding the integer
with a division sign, eggo,

/1000 = lOaDS = 51210

The user should note that this facility does not exist in SAP
languageG

The third expression designates the mode in which words
are to be recorded and must be one of the following abbrevia
tions

FLO Floating-point numbersn
FIX Fixed-point numberso
INT Integers (decimal) 0

SYM Instructions with symbolic addresses 0

ABS Instructions with absolute addresses a

+ The symbol,~ , which in the new SAP may stand for the
current location may not be uocd (1n that sense).

OCT Octal numbers

BCD Binary-£oded-decimal~

BIN Absolute binary cards.

The output format implied by these various modes is
identical to the input language used by the SHARE Assembly
Program.

3

The fourth expression specifies the output device to
be used in recording the words and must be one of the following
c..i.bbrevia tions

NPR On-line printer

NPU On-line punch
FPR Off-+ine printer
FPU Off-line 'punch

The output produced on these devicesowill be identical in the
sense that punched output will, if printed on an accounting
machine, be identical to printed output.

If binary cards (BIN) are requested, they may, of course,

be produced only by the on-line punch (NPU)_

Scaling Fixed-Point Numbers

If fixed-point numbers (FIX) are requested the, user
may specify (if he wishes) a decimal scale-factor, x, and a
binary scale-factor, y, where O!:. y;35,by writing

FIXExBy

to designate the mode. In this case the post-mortem program
multiplies each number by

before recording it and appends a suitable correction factor

which in SHARE notation would be

ExBy

4

Thus the fraction, F, appears in the form

The special case

x = 0 and y = 35

is detected by the program and such numbers appear as SAP integers~

Remarks Cards

Any information following the terminating blank column
in the variable field of a PMR card is cor.sidered to be a
remark and will appear as such immediately preceding the £irst
line of output resulting from the request.)

The user may also insert remarks cards (specified by
the letters, REM, in the operai?ion field) before ·PMR cards in
the request deck. Each REM card is recorded just preceding
the first line of output from the next PMR card in the request
deck~

Remarks cards can be used to label results~

Termination Cards

Request decks must be terminated by a termination card
conSisting of one of the SAP instruction~

TRA x x~5

TTR x X2.5

HTR x

where x denotes any' legal SAP expression ~ +

These cards cause the post-mortem program to restore
core memory and the machine registers to their original contents
(except for the MQ register, the ILC, and registers 0-4 of core

, memory) and to execute the deSignated transfer instr~ction.

+ See previous footoote~

5

Symbol Tables

If symbolic request cards are used or if instructions
with symbolic addresses (SYM) are request~d, 'a symbol table
must be made available to the post-mortem program. This is

',"done by preceding the request deck with the binary symbol
table ,produced by SAPo Since these cards are read in by the
post-mortem program they should not be preceded by a loader.

The Machine Conditions

The contents of the registers and indicators of the
arithmetic element (except for the MQ and ILC) are recorded
(as remarks cards) immediately preceding the first line of
output associated with the first p~ request executed. If no
PMR request is executed they are recorded on the on-line printero

Error Detection

If an error occurs in a request card the post-mortem
program produces a remark describing the nature of the 'error.
In certain cases this causes the program to stop reading
request cards and to execute only those requests already trans

lated~

THE mM-704 INSTRUCTIONS

Notation:
o ~a ~ 215 -1 = 32767

Instruction

AC = Accumulator
MQ = Multiplier-Quotient Register
ILC = Instruction Location Counter
IRtJ = IDdex Register tJ
R = Register a-lor Register a
P = P-bit of AC = A

= Initial contents of AC; A' final contents
= Initial contents of MQ; M' final contents
= Initial contents of ILC; V final contents
= Initial contents of IRtJ; I' final contents
= Initial contents of R; lol' final contents

o ~ tJ ~ 23-1 = 7
Os"'(s 215_1 = 32767

= ith bit of Word Y, 0:;; i S 35; for Y 10 A, Yo = ~ign bit; Ao = P0-1 = Q
Q = Q-bit of AC = A

0

-1
= Bits i through j inclusive of Word Y Y

i
= 0 if Y

i
= 1; Y

i
= 1 if Y

i
= 0 (Complement)

For Floating Point Numbers: Y
c

= Y
1

-
8

= Characteristic

For Fixed Point Numbers: Y
m

= Y
l

-
35

= Magnitude

YF = Y9- 35 = Fraction

Y
s

= Sign

For Instructions: Y = Y = Prefix
p 0-2 Yn = Y 3-17 = Decrement

In General: L' = a + 1 R = Register a-I Execution time is 2 cycles = 24 I-Isec.

Y
A

= Y
21

-
35

= Address

If otherwise, such will be stated.

If tJ=O, 1=0. If tJ=l, 2 or 4 a single Index Register is selected. If tJ = 3, 5, 6. or 7 more than one Index Register is selected and I is
formed by a Boolean "OR" of the conte~ts of these registers. If the operation loads the Index, then the same number is placed in each index
sel~cted.

The first 5 instructions have decrements. All other instructions do not.

Mnemonic
Code Octal Value AC MQ IRS R Comments

!ransfer with Inde~.!ncremented TXIa.tJ."'(+1000 A'=A M'=M 1'=1+ "'(w'=w *L' = a, 1+ "'(taken mod 2
15

!ransfer on .!nde~ TIXa,tJ,,,,(+2000 A'=A M'=M r=I-"'(} w'=w tv =a 1- "'(> 0
'=1 L' = L + 1 I - "'(~O

!ransfer on ~o lnde,!. TNXa.tJ."'(-2000 A'=A M'=M h'-I
}

w' =", rv =a I - "'(~O
'=1-"'(L' = L + 1 1-",(>0

!ransfer on Inde~ !?gh TXHa,tJ,"'(+3000 A'=A M'=M 1'=1 ",'=w *L' .. a if 1>",(

!ransfer on lnde~ bow TXLa,tJ."Y -3000 A'=A M'=M 1'=1 w'=w *L' =a ifl~'Y

~alt and !ransfeE HTRa,tJ, +0000 A'=A M'=M 1'=1 w'=w Computer Stops *L' =a-I

Transfer TRAa,tJ +0020 A'=A M'=M 1'=1 w'=w *L' = a - I
!rap Transfer TTRa,tJ +0021 A'=A' M'=M 1'=1 w'=w L' = a - I

!ransfer on bow Mg TLQa,tJ +0040 A'=A M'=M 1'=1 w'=w *L' =a-I ifA>M

!ransfer and Eet Inde~ TSXa.tJ +0074 A'=A M'=M 1'=2
15

-L W'=W *L' =a

Transfer on Zero AC TZEa,tJ +0100 A'=A M'=M 1' ''1 W';::'WI *LI = a - I if Am = 0
!ransfer on ~on-!.ero AC TNZa,tJ -0100 A'=A M'=M 1'=1 ",'=W *L' =a-I if Am" 0

Transfer on AC Plus TPLa,tJ +0120 A'=A M'=M 1'=1 w'=w *L' = a - I if A ·0 (+)
!ransfer on AC Minus TMI~tJ -0120 A'=A M'=M 1'=1 ",'=W *L' =a-I if AS = 1 (-)

s
Transfer on AC Overflow TOVa,a +0140 A'=A M'=M 1'=1 w'=w *V = a - I if AC overflow light on
Transfer on No AC Overflow TNOa,tJ -0140 A'=A M'=M 1'=1 ",'=w *L' = a - I if AC overflow light off - --
Transfer on MQ Overflow TQOa.tJ +0161 A'=A M'=M 1'=1 W'=W *L' =a-I if MQ overflow light on
!ransfer on M9 -~lus TQPa,tJ +0162 A'=A M'=M 1'=1 w'=w *L' = a - I ifM =0

**
**

**

~ompare !}.C with ~torage CASa,tJ +0340 A'=A M'=M 1'=1 w'=w L' = L + 2 if A = "'~ L' = L + 3 if A<' w

*If in trapping mode L' = 1 and L replaces the address part of register O. **Light is turned off if it ~as on before test.

3 cycles

Mnemonic
Instruction Code Octal Value

Clear and Add CLAa,fJ +0500
flear and ~dd !-<>gical Word CALa,fJ -0500
£lear and ~ubtract CLSa,fJ +0502

!-<>a!! M~ LDQa,fJ +0560

Load Index from Address LXAa,fJ +0534
boad Inde~ from pecrement LXDa.fJ -0534

Store MQ STQa.l3 -0600
Store AC STOa,fJ +0601
~tore bogical ~ord SLWa,fJ +0602

~tore beft-Hall M~ SLQa,fJ -0620
Store Address STAa.fJ +0621
§!ore j?ecrement STDa,fJ +0622
§!ore grefix STFaft +0630

~ore Inde~ in Qecrement SXDa,fJ -0634

Place Address in Index PAXa,fJ +0734
Place Decrement in I~ex PDXa,fJ -0734

Elace Inde~ in pecrement PXDa.fJ -0754

~alt and Proceed HPRa,fJ +0420

OR to AC ORAa.fJ -0501
OR to §:torage ORSa,fJ -0602

filiD to !!,.C ANAa.fJ -0320
AND to ~torage ANSa.fJ +0320

Add ADDa,fJ +0400
Subtract SUBa.fJ +0402
Add Magnitude ADMa.fJ +0401
~~tract Magnitude SBMa.fJ -0400

~dd and farry bOgical ACLa,fJ +0361

~ulti.El1: MPYa,fJ +0200
MultiEly and ~ound MPRa,fJ -0200

Divide or Halt DVHa.fJ +0220
Di;ide or Proceed DVPa.fJ . +0221 - - -
floating Add FADa,fJ +0300
floating ~u£tract FSBa,fJ +0302

!!nnormalized floating ~dd UFA~fJ -0300
!!nnormalized floating ~ubtract UFSa.fJ -0302

THE IBM-704 INSTRUCTIONS (Continued)

AC MQ mfJl R

A' =""Q' =P'=O M'=M 1'=1 ",'=",

A'0-35="'0-35' A~=Q'=O M'=M 1'=1 ""=",
A' =-"', Q'=P'=O M'=M 1'=1 ""= '"
A'=A M'=", 1'=1 ""= '"
A'=A M'=M 1'='" ""= '"
A'=A M'=M 1'= ",A

""= '" D
A'=A M'=M 1'=1 ""=M
A'=A M'=M 1'=1 ""=A
A'=A M'=M 1'=1 "'b-35=Ao - 35
A'=A M'=M 1'=1 "'~-17=Mo-17
A'=A M'=M 1'=1 "'A=AA
A'=A M'=M 1'=1 ""D=AD
A'=A M'=M 1'=1 ""p=Ap

A'=A M'=M 1'=1 ""D=I

A'=A M'·=M I'=AA ""='"
A'=A M'=M I'=AD ""= '"
A' = 0 but AD = I M'=M 1'=1 ""='"

A'=A M'=M 1'=1 ""= '"

A~=Ai (+)"'i M'=M 1'=1 ""= '"
A'=A M'=M 1'=1 "'~ 1 =~ (+)"'i

A~=Ai(X)c.Ji M'=M 1'=1 c.J=c.J
A'=A M'=M 1'=1 "'i =1\ (x) "'i

A'=A+'" M'=M 1'=1 ""='"
A'=A-", M'=M 1'=1 ",'=",
A'=A+I"'I M'=M 1'=1 ""='"
A'=A-I"'l M'=M 1'=1 ""='"

A'=A+"'\0_35 Q' = 0 M'=M 1'=1 ""= '"

-35
A'+2 . M'=",·M 1'=1 ""='"

A'=A"+Ml IM'-M"/I'=1 ",'=",

M'a"'+A'=A+2-3~ IMI 1'=1 ",'=w
M'.",+A'=A+2-3!l IMI 1'=1 ""=w

! I
A'+M'=A+'" 1'=1 Io)I=W

A'+M'=A-'" 1'=1 Io)I=W

I
A'+M'=A+'" 1'=1 ""=W
A'+M'=A-'" 1'=1 1iI=w

A' = '" means A~ = "'s' Ai-35 .. "'1-35

A' = -III means Ai_35 = "'1-35

R is Register a
R is Register a

A' =w
s s

"" = A means "'~ = As "'i-35 = A l - 35

}

The rest of '" is {'''is-35 = "'lS-35
unchanged in "'b-20 = "'0-20
e~ch of t~ese "'~ = "'P _ "'lS-35 = "'lS-35

mstruchons "'3-35 - "'3-35

wi> = "'P "'is-35 = "'lS-35 R is register a 3 cycles

PXD with fJ' = 0 clears AC

Computer Stops

}
A and Q unchanged 0 = i:; 35
A~ (+) "'i = 1 unless Ai = "'i = 0 when Ai (+) "'i = 0

A~ = Q' = 0 3 cycles } 0 ~ i ~ 35 Ai (x) "'i = 0
A~ = As Q' = Q 4 cycles unless Ai = "'i = 1 when Ai (x) "'i .. 1

}

OverflOW possible if there is a carry into P.
"'1-35 added to Al-35. A zero result
has the sign of A
Carry out of Q is lost. Fixed Point operation.

No overflo..y light possible. "'0-35 added to AO- 35 ' A
carry out of P added to A35' Carry from Q lost.

AI; = Ml; } Fixed point operation
A" + 2- 35M" = '" • M . 20 cycles

Stops Computer on Divide Check } Ms ignored. As = As 20 cycles
Does Nothing on Divide Check A' = 2-35, A in order of magnitude
Divide Check if AM ~ "'M' A' = A. M' = M on Divide Check

~ If AF ~ 0, AC - 27 = MC. 1> Ai<' ~ 1/2; if Ai;- = 0,
) At:: = MC = 0 and A~ = As if AC ~ "'C. otherwise As

= :tws; AC overflow light only means overflow. MQ
light means underflow 7 cycles min. 35 cycles max

}
Ab = Max (AC' "'C) + c c = [Af±lJfJ
AFmaybe<1/2 andAF = 0, Ab ~O possible. Overflow
indications are the same as FAD and FSB but AC
underflow is impossible (MQ and AC lights both on).
7 cycles min 2S cycles max

THE IBM-704 INSTRUCTIONS (Continued)

Mnemonic
Instruction Code Octal Value AC

!:loating !lult~ly FMPa,/3 +0260

.!!nnormalizedXloating Multiply UFMa,/3 -0260

!:loating ,!?ivide or ~alt FDHa,/3 +0240
!:loating.!?ivide or ~roceed FDPa./3 +0241

.!:-ocate prum ~ddress LDAa,/3 +0460 A'=A

fON or Skip cpya,/3 +0700 A'=A

fo,.py and ~dd and Carry Logical Or CPAa,/3 -0700 A'=A+w'
Skip

I MQ IR/3 R
I

AI+M'=M·w 1'=1 W'=W

A'+M'jMO" 1'=1 W'=W

M'·W+A'=A 1'=1 W'=W
M'·w+A'=A 1'=1 W'=W

M'=M 1'=1 w'=w
M'=? 1'=1 w'={~

M'=? 1'-1 w'={~

Comments

At: -27 = MC if AF \ 0) AF~ 1/2,if MF' wF~ 1/4
if Ai<- = 0, AC = Me = 0 } Ab = Mli; If AC
AC - 27 = MC Ai<- ~ 112 if MF • wF~ 1/2 overfiow light only
overflow; MQ light only, underflow; bothughts on,
QI = 0 means overflow. QI = 1 means underflow~ 17 cycles

Computer stops on Divide CheCk} Divide Check if AF ~ 2wF.
Does nothmg on Divide Check As = As MF~ 1/2 if 4AF > wF
If AF = 0, A' = M' = 0, 3 cyc1es;AF \ 0, 18 cycles At: + 26 ~ AC
AC overfiow light means underflow, MQ light only is
overflow if MC ~ 128. underfiow if Me > 128

Set so CPY refers to drum address of w25-36

Z is Word Read In, otherwise w is written out Min. 2 cycles
MQ may not be used at certain times in the CPY loop
If in read mode V = L + 2 if end of file condition,
V = L + 3 if end of record condition is met Min. 2 cycles
Same as CPY, except word transferred is added to AC
in the manner of ACL Min. 2 cycles

The following instructions do not refer to storage. The effective address a-I taken modulo 256 is in fact part of the operation code.
a-I = n (mod 256) 0 ~ n < 256 Certain of these instructions cannot have an address. Others take a small absolute integer designated by i
None affect storage or index registers.

Long Left Shift
~0!lic~l bclt Shift

bong ~ight §.hift

AC Left Shift
~C ~ight ~hift

~otate M~ beft

No QEeration

Rewind Tape Unit
~rite End of Eile on Tape
~ack §pace :!,ape

~ea~ §.elect
Read Tape in BCD
~ead !ape in ~in-;'ry
~ead Drum
~eadfar~
~ead Printer

Write Select
-Writ; on Cathode Ray Tube
~rite Iape in BCQ
~rite Tape in ~inary
Write on Drum
~rite on .!ape ~imultaneously
!.n-Qut Qelay
:\yrite On ~nch
y!:rite on Printer

LLSa,/3 +0763 A!=A.
LGLa /3 -0763 A~=A~+m

, J J+m
LRSa,/3 +0765 Aj=Aj _

m
ALSa,/3 +0767 A'=A
ARSa,/3 +0771 A~=A~+m

J J-m
RQLa,/3 -0773 A' =A

NOPa./3 -0761

REW i +0772 220+i
WEF i +0770 220+i
BST i +0764 220+i

RDS a,/3 +0762
RTDi +0762 200+i
RTB i +0762 220+i
RDR i +0762 300+i
RCD +0762 321
RPR +0762 361

WRSa,/3 +0766
WTV +0766 030
WTDi +0766 200+i
WTBi +0766 220+i
WDRi +0766 300+i
WTSi +0766 320+i
IOD +0766 333
WPU +0766 341
WPR +0766 361

Mj=Mj+m *Al; = MIl ., Ms for j+n > 35. Mj = 0, At = ~+n-35 } AC overflow if a 1
Mj=~+m *As = As Ml; = Mfi fe'." j+n > 35 ~ = Ii Aj = ~+n-36 is shifted into or through P

Mj=Mj _m *Ab = M!J = As j-n'.: -I, Aj = 0i j-n < I, Mj = Aj - n +35
M'=M
M'=M

*Ab = As j+n > 35.. AI = 0 AC overflow if a 1 shifted into or through P
*Ab = As j-n.: -1 .. Aj = 0

*j+n taken modulo 36 *2 + ~;9 cycles min. 2 ~ max. 23

Does Nothing

~
1 ~ i ~ 10 selects cnp. of

ten tape units
I = A,M' =M MQ available.

{

Max 1.2 minutes J May be delayed
50 msec. on tape if tape is not
Min 50 msec. ready

Separate Instruction for each mode

}
1:: i:: 10 for one of ten tape units may be delayed if·tape

M' = 0 not ready
1 5 i ~ 8 for one of eight logical drums

Actually writes, but with echo check.

Separate Instruction for each mode

1 S 15 10 may be delayed if tape is not ready.

1 ~ i·:: 8
1 ~ i ~ 4 Select one of first four tapes, may be delayed

Delays Computer until MQ is available after reading tape

Instruction

Plus Sense
- Cle-;;' Magnitude

how Hit Iest
Change IDgn
.set .Sign .Elus
!&mplement Magnitude
E,.nter J:.rapping ,Mode
jiound
Qivide £.heck Iest
£.hange Eilm .E.rame
.§.ense L.ights Olf
.§.ense hight 0B.
.§.ense S~tch Iest
Sense Punch

.§..ense Printer I.,est

.§..ense Printer

M,.inus Sense
P Bit Test
~t §.igi; Minus
Leave ,Irapping Mode
.!tedundancy 1:ape 1:est
.§.ense .hight I.est

Mnemonic
Code

PSEa.13
CLM
LBT
CHS
SSP
COM
ETM
RND
OCT
CFF
SLF
SLN i
SWT i
SPU i
SPT
SPR i

MSEa.13
PBT
SSM
LTM
RTT
SLT i

Octal Value

+0760
+0760 000
+0760 001
+0760 002
+0760 003
+0760 006
+0760 ..•.. 007
+0760 ...•. 010
+0760 ...•. 012
+0760 030
+0760 140
+0760 140+i
+0760 ..•.. 160+i
+0760 340+i
+0760 ..•.. 360
+0760 360+i

-0760
-0760 001
-0760 003
-0760 007
-0760 ...•. 012
-0760 140+i

THE IBM-704 INSTRUCTIONS (Continued)

Comments

Separate Instruction for each rt

A~ = As . Aj = 0 .. - 1 ~j ~ 35
L' = L+2 if A35 = 1
AI =-A
AI = IAI
A~=As Aj=Aj -1~j ~35
See *Note to transfer instructions
AI = A + 2- 35 Ml AC overflow possible
L' = L+2 if No Divide Check; Light is turned off if found on
Index Camera connected to Cathode Ray tube
Turns all sense lights off
1 ~ i ~ 4 Turn on one of four lights
L' = L+2 if ith switch is down (on) 1 ::: i :: 6
l!O i ~2 Send impulse to hub i on punch control panel
L' = L+2 If there is impulse on entry hub of printer panel
1.5 i 5.10 Send impulse to hub i on printer panel

Separate Instruction for each n
LI = L+2 if P = 1
AI = -IAI
See *Note to transfer instructions
L' = L+2 if Tape Check Light is off; Light turned off if found on.
L' = L+2 if Sense Light i is on, Light turned off if found on 1 ~ i ~ 4

CC-40

To:

From:

MIT COMPUTATION C"ENTER
Massachusetts Institute of Technology

Cambridge 39" Massachusetts

MEMORANDUM

Page 1 of 23

Computation Center Staff

F. M. Verzuh

Date: October 1" 1957

Subject: Revised and Up-Dated Index of Available Share 704 Subroutines

The purpose of this memorandum is to provide a revised and up-dated index
of the Share-distributed 704 subroutines which are available in the MIT Computa~ion
Center as of October I" 1957. This memorandum is a revision of the previously
issued memorandum CC-34~ which contains a list of punched card routines.

This index presents the available subroutines in the manner defined as the
Share catalogue classification which was approved at the 7th Share meeting in Decem
ber" 195 60 Specifically~ the attached list consists of five parts:

1. A Share catalogue classification of 704 programs"
2. An index of the 704 library of punched card subroutines"
3. A listing of the subroutines available on the MIT Library Tape"
4. A listing of new subroutines and cards received~
5. A listing of addended and superseded subroutines ..

The particular format used in Part 2 contains the following information (reading from
left to right):

a. Share catalogue code classification"

b.. Two-letter Share membership code -- on a Share membership basis"

c. The identification code number of the subroutine employed by the
originating Share member"

d. Name or title of subroutine~

e. The Share distribution number (3-digit number)"

f. A write-up is available unless there is an asterisk in place of the
distribution number indicating no write -up"

g. A listing is available unless there is an asterisk indicating no
listing"

h. The letter S indicates that symbolic cards are available at MIT"

i. The letter B indicates that absolute binary cards are ayailable
in- the MIT library.

j.- The letter R indicates that relocatable binary cards are available
in the MIT library"

CC-40 Page 2 of 23

Part 3 contains a list of the subroutines which are available on the Library
Tape (logical tape 3). The following subroutines are available on the MIT Library
Tape:

NA34.1 Lm Square root
UAS+Cl LIB Sine and Cosine
UABDCl Lm Generalized Print Program
UASTHl LIB BCD Tape Writing Program
UASPHl LIB BCD Output Program
LAS820 Lm Floating Natura! Logarithm
LAS816 LIB Floating Exponential
CLASCl LIB Arcsine and Arc Cosine
LAS840 LIB Arctangent
CLTANl LIB Tangent
WH03 LIB Arctangent of AI B
NA05.1 LIB Floating to Fixed
NA06.1 LIB Fixed to Floating
UAINVl LIB Matrix Inversion
GMMEQl LIB GeneraJ.ized Matrix Equation
UADBCl LIB Decima!l Octall BCD Loader
UATSM2 LIB Read Tape with Redundancy Checking
UACSH2 LIB Read BCD Tape or On-Line Card Reader
GELAG LIB Lagrangian Interpolation
PKPOWR LIB Real Power Evaluator

END

NOTE: For WH03 1 blanks must be in column 5 and 6
For GELAG1 blank must be in column 6
Letter 0 in PKPOWR

LIB cards must be punched as shown in this listing and may be inserted anywhere
in a SAP symbolic deck. (See Share material for specifications.)

When using the MIT system l mount reel number 103 as logical tape 3.

The attached index of distributed programs "will be revised periodically
to keep the index reasonably up to date.

nb
F." M. Verzuh
Assistant Director

CC-40

COMPUTATION CENTER

Massachusetts Institute of Technology
Cambridge 39" Massachusetts

REVISED SHARE CATALOGUE CLASSIFICATION

Page 3 of 23

At the 7th Share meeting on December 13-14" 1956" the Share program
catalogue classification was extended and modified as follows:

A. Programmed Arithmetic
1. Real
2. Complex
3. Decimal

Eo Elementary Functions
1. Trigonometric
2. Hyperbolic
3. Exponential and Logarithmic
4. Roots and Powers

C. Polynomials and Special Functions
1. Evaluation of Polynomials
2. Roots of Polynomials
3. Evaluation of Special Functions

D. Operations on Functions and Solutions of Differential Equations
1. Numerical Integration
2. Numerical Solutions of Ordinary Differential Equations
3. Numerical Solutions of Partial Differential Equations
4. Numerical Differentiations

E. Interpolation and Approximations
1. Table Look-up and Interpolation
2. Curve Fitting
3. Smoothing

F. Operations on Matrices" Vectors" and Simultaneous Linear Equations
1. Matrix Operations
2. Eigenvalues and Eigenvectors
3. Determinants
4. Simultaneous Linear Equations

G. Statistical Analysis and Probability
1. Data Reduction
2. Correlation and Regression Analysis
3. Sequential Analysis
4. Analysis of Variance
5.0 Random· Number Generators

CC-40

H.

I.

J.

Operations Research and Linear Programming

Input
1.
2.
3.
4.

Binary
Octal
Decimal
BCD

50 Composite

Output
1. Binary
2. Octal
3. Decimal
4. BCD
5. Analog
6. Composite

K. Internal Information Transfer
1. Read Write Drum
2. Relocation

L. Executive Routines
1. Assembly
2. Compiling

M. Information Processing
1. Sorting
2. Conversion
3. Collating and Merging

N. Debugging Routines
1. Tracing~ Trapping
2. Dump
3. Search
4. Breakpoint Print

O. Simulation Programs
1. Peripheral Equipment Simulators

P. Diagnostic Programs

Q. Service Programs
1. Clear~ Reset Programs
2. Check Sum Programs

Page 4 of 23

Restore" Rewind" Tape Mark" Load Button Programs

Zo All Other s

Al CL
Al CL
Al CL
Al GL
Al GL
Al MU
Al NA
Al NA
Al NA
Al .NA
Al NA
Al NA
Al NA
Al NA
Al NA
Al NA
Al NA
Al NA
Al NA
Al NA
Al NA
Al NA
Al NA
Al RS
Al WB
Al WB
Al WB

DPAI
DPD1
DPM1
DPPA
DPA1
DPA2
018
88.1
89.1
90.5
91.3
92.1
92.3
93 .• 1
94.0
95.1
96.1
97.1
98.1
99.0
107.
108.
122.
0005
DPA1
DPD1
DPM1

A2 CL DPCI
A2 CL DPC2
A2 GE CPX
A2 NA 019
A2 NA 62.1
A2 NA 63.1
A2 NA 64.1
A2 NA 65.1
A2 NA 66.1
A2 NA 67.0
A2 NA 68.1
A2 ·NA 69.1

SHARE DISTRIBUTED PROGRAMS

OCTOBER 1, 1957

A. PROGRAMMED ARITHMETIC

Al REAL

DOUBLE PRECISION FLOATING ADD
DOUBLE PRECISION FLOATING DIVIOE
DOUBLE PRECISION FLOATING MULTIPLY
DOUBLE-PLUS PRECISION ARITHMETIC (FLOATING POINT
DOUBLE PRECISION FLOATING POINT ABSTRACTION
MURA DOUBLE PRECISION ADDITION (FIXED POINT)
DOUBLE PRECISION ARITHMETIC ABSTRACTION
DouALE PRECISION CLA,CLS, LDQ
DOUBLE PRECISION STO, STQ
DOUBLE PRECISION FLOATING ADD AND SUBTRAcT
DOUBLE PRECISION FLOATING MULTIPLY
DOUBLE PRECISION FLOATING DIVIDE
DOUBLE PRECISION FLOATING DIVIDE
DOUBLE PRECISIONCHS
DOUBLE PRECISION ABSTRCTN FOR INTERPRETIVE ROUTINE
DOUBLE PRECISION TRA
DOUBLE PRECISION TPL
DOUBLE PRECISION TZE
DOUBLE PRECISION SQUARE ROOT
DOUBLE PRECISION ABSTRACTION EXIT
DOUBLE PRECISION TMN
·DOUBLE PRECISION TRANSFER ON NO ZERO
ERROR DETECTION ROUTINE
DOUBLE PRECISION FLOATING BINARY ARITHMETIC
DOUBLE PRECISION FAD AND FSB
DOUBLE PRECISION FLOATING DIVIDE
DOUBLE PRECISION FMP

A2 COMPLEX

DOUBLE PRECISION COMPLEX FAD AND FMP
DOUBLE PRECISION COMPLEX FAD, FMP,· AND FDP
COMPLEX ARITHMETIC INTERPRETIVE SYSTEM
COMPLEX ARITHMETIC ABSTRACTION FLO
COMPLEX SIN AND COS RADIANS FLO
COMPLEX N TH ROOT FLO
COMPLEX EXP, FLO
COMPLEX SINH AND COSH RADIANS, FLO
COMPLEX LN, FLO.
COMPLEX ABSTRACTION FOR INTERPRETIVE ROUTINE
COMPLEX CLA, CLS, LDQ, FLO
COMPLEXSTO AND STQ, FLO

W
223
223
223
237
110
256
096
096
096
169
169
096
149
096
096
096
096
096
096
096
096
096
096
047
198
198
198

223
223
III
087
087
087 .
087
087
087
087
087
087

L

*

S
S
S
S
S

5

S R

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

061 S

*

S
S
S

S
S
S
S
S
S
S
S

A2 NA 70.1 COMPLEX ADD AND SUB. FLO
A2 NA 70.3 COMPLEX ADD AND COMPLEX SUBTRACT
A2 NA 71.1 COMPLEX MPY, FLO
A2 NA 72.1 COMPLEX DIV, FLO
A2 NA 73.1 COMPLEX RECIPROCAL. FLO
A2 NA 74.1 COMPLEX CHS
A2 NA 75.1 COMPLEX TRANSFER ON IMAGINARY PLUS
A2 NA 76.1 COMPLEX TRANSFER ON REAL PLUS
A2 NA 77.1 COMPLEX TRANSFER ON REAL ZERO
A2 NA 78.1 COMPLEX TNZ
A2 NA 79.1 COMPLEX TRANSFER ON IMAGINARY ZERO
A2 NA 80.1 COMPLEX TRA
A2 NA 81.1 COMPLEX CONJUGATE
A2 NA 82.1 COMPLEX EXIT ABSTRACTION
A2 NA 83.0 COMPLEX DEBUG (ERROR DETECTION ROUTINE)
A2 NA 84.1 COMPLEX NOP
A2 NA 85.1 COMPLEX SCALAR MPY, FLO
A2 NA 86.1 COMPLEX POLAR TO RECTANGULAR CONVERSION., RADIANS, FLO
A2 NA 87.1 COMPLEX RECTANGULAR TO POLAR CONVERSION, RADIANS. FLO
A2 NA 1930 SQUARE ROOT OF A COMPLEX NUMBER

B1 AS AS09
B1 CL ASCI
B1 CL TANI
B1 CS ART2
B1 GE ARCT
81 GE SIN2
B1 LA S840
B1 NA 0196
B1 NA 0198
B1 NA 30.3
B1 NA 33.1
01 NA 1353
B1 RL 0021
B1 RL 0029
B1 RL 0041
Bl RL 0052
81 RL 0115
81 RS 0083
81 UA ATNI
B1 UA 5+C1
B1 WH 03

A3 DEC H1AL

B. ELEMENTARY FUNCTIONS

Bl TRIGONOMETRIC

SINE-COSINE,FLOATING
ARC SINE AND ARC COSINE, FLO
TANGENT, RADIANS, FLO
ARCTANGENT
ARCTANGENT SUBROUTINE (FLO, RADIANS)
SINE-COSINE (RADIANS, FLO)
ARCTAN ROUTINE FLOATING POINT
FIXED POINT ARCTANGENT SUBROUTINE
SIN COS SUBROUTINE FIXED POINT
SINE-COSINE SUBROUTJNE RADIANS FLO
ARCTANGENT RADIANS FLO
ARC SINE - ARC COSINE SUBROUTINE
SINE COSINE RADIANS DEGREES CIRCLES FIX
TANGENT COTANGENT RADIAN FIX
ARCTANGENT FIXED POINT RADIANS DEGREES CIRCLE
ARC SINE ARC COSINE FIXED POINT
TANGENT, COTANGENT RADIANS FIX
ARCSINE ARC-COSINE FLOATING POINT RADIANS
ARC TANGENT SUBROUTINE RADIAN FLO
SINE AND COSINE SUBROUTINE RADIANS FLO
ARCTAN AlB FLO

6

087 S
190 087
087 S
087 S
087 S
087 S
087 5
087 S
087 S
087 S
087 S
087 S
087 S
087
087 S
087 S
087 S
087 S
087 S
211 S

224
116
116
092
055
033
069
194
194
104
051
246
046
046
046
046
125

* 004
013
049

S
S
S
S

SB
S
S
S
S
S
S
S
S
S
S
S
S
S
S

7

82 HYPERBOLIC

B2 AS AS33 HYPERBOLIC SINE-COSINE, FLOATING 224 S
B2 BA Fl13 TANH X FLO 016 S

B3 EXPONENTIAL AND LOGARITHMIC

B3 AS AS03 EXPONENTIAL,FLOATING 224 S
B3 SA Fl12 EXPONENTIAL FLO 012 S
B3 BA F114 LN X FLO 027 S
83 GE EXP EXPONENTIAL SUBROUTINE FLO 003 S
B3 GE EXP2 EXPONENTIAL SUBROUTINE FLO 020 S
B3 GE LN NATURAL LOGARITHM FLO 003 S
B3 LA S816 FLOATING EXPONENTIAL FLO 069 S
B3 LA S820 NATURAL LOGARITHM FLOATING 069 S
B3 NA 31.3 NATURAL LOGARITHM FLO 104 S
B3 NA 31.5 NATURAL LOGARITHM 189 S
83 NA 32.3 EXPONENTIAL SUBROUTINES 104 S
B3 RL 0037 E TO - X FIXED POINT 021 S
83 RL 0038 LOGARITHM FIXED POINT 106 S
B3 UA EXP1 EXPONENTIAL SUBROUTINE FLO 010 S
B3 UA LN 1 NATURAL LOGARITHM SUBROUTINE FLO 010 S
83 UA LN 2 NATURAL LOGARITHM SUBROUTINE FLO 010 S
B3 ~vB EXP1 DOUBLE PRECISION FLOATING POINT EXPONENTIAL SUBROUTINE 205 S

B4 ROOTS AND POWERS

B4 CL SQR2 SQUARE ROOT FLO 8 S
B4 CL SQR3 SQUARE ROOT FLO 8 S
B4 GE SQR SQUARE ROOT FLO * 3 S
B4 MU EXP1 MURA EXPONENTIAL, BASE E 256 S R
B4 ~~U EXP2 MURAEXPONENTIAL, BASE 2 256 S R
B4 NA 34.1 SQUARE ROOT FLO 051 S
B4 PK POVJR REAL POWER EVALUATOR 164 203 S R
64 RL 0022 SQUARE ROOT FIXED POINT 018 S
64 RL 0056 FIXED POINT SQUARE ROOT 046 S
B4 UA SQRl SQUARE ROOT SUBROUTINE FLO 002 S
B4 UA SQR2 SQUARE ROOT SUBROUTINE FLO 002 S
84 UA SQR3 SQUARE ROOT SUBROUTINE FLO 004 S
B4 UA SQR4 SQUARE ROOT SUBROUTINE FLO 004 S

C. POLYNOMIALS AND SPECIAL FUNCTIONS

C CS BSLS BESSEL FUNCTIONS, ALL ORDERS FOR ONE ARGUMENT 177 S
C GE BPY BIVARIATE POLYNOMINAL FLO 003 S
C GE BSL BESSEL FUNCTIONS III S
C GL ROPI ROOTS OF POLYNOMIALS NEWTONS METHOD 110 S
C GM POLl ~OLYNOMIAL EVALUATION FLO 043 SB
C NA 152 GSMtvlS FUNCTION 155 S
CO CL AEQ1 ROOTS OF A POLYNOMIAL FLO 116 S

CO NA 152 GSMMS FUNCTION
CO CL RANI RANDOM NUMBER GENERATOR

C1 EVALUATION OF POLYNOMIALS

C1 AS ASI4 POLYNOMIAL COEFFICIENT REDUCTION
C1 GE BPY BIVARIATE POLYNOMINAL FLO
C1 GM POLl POLYNOMIAL EVALUATION FLO

C2 ROOTS OF POLYNOMIALS

C2 CL AEQl ROOTS OF A POLYNOMIAL FLO
C2 CL AEQ2 POLYNOMIAL WHERE THE COEFFICIENTS ARE EITHER REAL
C2 GL ROPI ROOTS OF POLYNOMIALS NEWTONS METHOD
C2 GM ZERI ZEROS OF A COMPLEX POLYNOMIAL

C3 EVALUATION OF SPECIAL FUNCTIONS

C3 GE BSL BESSEL FUNCTIONS
(3 GM CFRI CONTINUED FRACTION SUBROUTINE
C3 GM IEFl INCOMPLETE ELLIPTIC INTEGRALS

D. OPERATIONS ON FUNCTIONS AND SOLUTIONS OF
DIFFERENTIAL EQUATIONS

DO CL SMDI SMOOTH AND DIFFERENTIATE DATA POINTS

01 CL INTI
01 CL INT2
01 CL INT3
Dl CL INT4
01 CL INT4
01 GL GAUS
Dl LA 5888
D1 NO SIG
Dl PK HEQl

01 NUMERICAL INTEGRATION

INTEGRAL EVAL., TRAPEZ. RULE (EQU. INTERVALS)
INTEGRAL EVAL., TRAPEZ. RULE (UNEQU. INTERV.)
INTEGRAL EVAL., SIMPSONS RULE (EQU. INTERV.)
INTEGRAL EVAL., SIMPSONS RULE (UNEQU. INTERV.)
INTEGRAL EVAL., SIMPSONS RULE (UNEQU. INTERV.)
INTEGRATION SUBROUTINE, GAUSS QUADRATURE METHOD
GAUSS INTEGRATION OF MULTIPLE INTEGRALS.
SIMULTANEOUS MULTIPLE fNTEGRATION, FLOATING PT
POINT HERMITE-GAUSS QUADRATURE INTEGRATION

D2 NUMERICAL SOLUTIONS OF
ORDINARY DIFFERENTIAL EQUATIONS

D2 AT TPI TWO POINT BOUNDRY CONDITION DIFFERENTIAL EQUATIR
D2 CL DEQ DIFFERENTIAL EQUATIONS ROUTINE
D2 GM DEQ1 DIFFERENTIAL EQUATION FLO
D2 LA S887 INTEGRATION OF SPECIAL FORM OF 2ND ORDER EQU.
D2 PK NIDA DIFFERENTIAL EQUATION SOLVJNG SYSTEM

D3 NUMERICAL SOLUTIONS OF
PARTIAL DIFFERENTIAL EQUATIONS

155
139

224
'003
043

116
223
110
225

III
225
225

139

116
116
116
116
2'22
237
141
240
175

8

S
S

SB
S
5B

s
s
S
S

5
S
S

S

S
S :,,2;:::
S '.:

S
S
S
S
S
S

238 S
248 S
063 S
141 S
144 203 SBR

D3 AT MGl MESH GENERATOR

D4 NUMERICAL DIFFERENTIATIONS

D4 CL SMDl SMOOTH AND DIFFERENTIATE DATA POINTS

El BA F016
E1 CL DD12
E1 CL DDT1
E1 GE LAG
El GM DINl
E1 GM HVPl
El GM HVT1
E 1 G~1 PVH 1
El G~~ PVTl
E1 GM TINl
E 1 GM T I N2
E1 GM TVH1
E1 GM TVPl
E1 LA S880
El NA 04.1
E1 PK ANIP
E1 UA BPEl
E1 UA BPE3
E1 WK LIN1

E. INTERPOLATION AND APPROXIMATIONS

E1 TABLE LOOK-UP AND INTERPOLATION

TABLE LOOK UP AND FAMILY INTERPOLATION FIX
TABL~ LOOK UP DIVIDED DIFFERENCE INTERPOLATION
DIVIDED DIFFERENCE TABLE FORMATION
LAGRANGIAN INTERPOLATION SUBROUTINE FLO
DOUBLE INTERPOLATION FLo
AIR TAaLE SUBPROGRAM
AIR TABLE SUBPROGRAM
AIR TABLE SUBPROGRAM
AIR TABLE SUBPROGRAM
TABLE INTERPOLATION FLO
INTERPOLATION SUBROUTINE
AIR TABLE SUBPROGRAM
AIR TABLE SUBPROGRAM
TABLE LOOK UP BINARY LINEAR INTERPOLATION FLO
BINARY SEARCH ROUTINE
AITKENS INTERPOLATION FOR N EQUAL INTERVALS FLO
BIVARIATE POLYNOMIAL EVALUATION SUBROUTINE
BIVARIATE TABLE INTERPOLATION
LAGRANGIAN INTERPOLATION

E2 CURVE FITTING

E2 CL LSQ1 LEAST SQUARES POLYNOMIAL FIT
E2 CL PIN1 PARABOLIC INTERPOLATION
E2 CL PIN2 BIVARIATE PARABOLIC INTERPOLATION
E2 GM HAS1 HARMONIC ANALYSIS SUBROUTINE
E2 GM ITR.1 ITERATION SUBROUTINE
E2 GM ITRI ITERATION SUBROUTINE
E2 G~ LSQ1 GENERAL LEAST SQUARES CURVE FITTING ROUTINE
E2 GM SL30 SMOOTHING WEIGHT TABLE SL30
E2 GM S~31 SMOOTHING WEIGHT TABLE SL31
E2 GM SL32 SMOOTHING WEIGHT TABLE SL32
E2 GM SMTI SMOOTHING SUBROUTINE FLO
E2 LA S872 GENERAL LEAST SQUARES
E2 NA 0197 FIXED POINT FOURIER ANALYSIS
E2 NY FSC1 FIXED POINT FOURIER COEFFICIENTS
E2 PK 4EA1 FOURIER SERIES COEFFICIENT SUBROUTINE
E2 SC CUF1 CURVE FITTING PROGRA~

233

139

007
116
116
003
043
121
121
121
121
043
259
121
121
069
051
122
010
081
197

9

5

S

039 S
S
S
S
SB
S
S
S
S
5B
S
S
S
S
S
S R
S
5
S

116 S
248 S
248 S
121 S
121 S
225 S
121 S
156 121 S
156 121 S
156 121 S
121 S
141 S
194 S
250 S R
175 S I~

201 SB

F GE SMQ
F GL DEV1
F GM MEQl
F NY CRV1
F NY CSM2
F NY FMAl
F NY MXL1
F PK C Ii'v1X
F PK FLIP
FO .CL DEll
FO CL DET2
Fa CL FSCI
FO CL FSRI
FO CL LSQ2
FO CL LSQ3
FO CL MADl
FO CL MBHI
FO CL t~CP 1
FO CL r-1CR 1
FO CL MEXI
FO CL MINI
Fa CL MIV1
FO CL MKOI
FO CL MLDI
FO CL MLPI
FO CL MMPI
FO CL MPRl
FO CL MSB1
FO CL MSMl
FO CL MSTl
FO CL MTRI
FO CL MTXl
FO CL SMEl
FO CL S~~E 1
FO CL SME2
FO CL SME3
FO LA S885
FO MB MTX1
FO PK CIMX
FO PK FLIP
FO UA INVI

E3 SMOOTHING

F. OPERATIONS ON MATRICES,
VECTORS AND SIMULTANEOUS LINEAR EQUATIONS

SIMULTANEOUS EQUATION SOLUTION
DETERMINANT EVALUATION
GENERALIZED MATRIX EQUATION
CHARACTERISTIC ROOTS AND VECTORS
CHANGE SIGNS OF MATRIX ELEMENT
FLOATING POINT, SINGLE PRECI·SION MATRIX ADDITION
MATRIX CONVERSION FIT
COMPLEX ELEMENT MATRIX INVERSION
COMPLEX ELEMENT NATRIX INVERSION
DETERMINANT AND EIGENVECTOR FOR REAL MATRIX
DETERMINANT AND EIGENVECTOR FOR COMPLEX MATRIX.
FRACTION SERIES SOLUTION COMPLEX
FRACTION SERIES SOLUTION, REAL
LEAST SQUARES SOL~ OF SIMULTANEOUS EQUATIONS
LEAST SQUARES SOL. OF SIMULTANEOUS EQUATIONS
MATRIX ADDITION
MATRIX HEADING REMOVAL
r-1ATR I X PUNCH
MATRIX CARD READ
MATRIX EXPAND
MATRIX INTERCHANGE OF ROWS AND COLUMNS
MATR I X. INVERSE
TIMES UNIT MATRIX
LOAD MATRIX TO c.S. FROM DRUM OR TAPE
MATRIX LOOP TEST
MATRIX MULTIPLICATION
MATRIX PRINT
MATRIX SUBTRACTION
SCALAR MATRIX MULTIPLICATION
STORE MATRIX FROM C.S. TO C.S., DRUM, OR TAPE
MATRIX TRANSPOSE
INTERPRETATION MATRIX ABSTRACTION
SIMULTANEOUS REAL EQUATIONS, DETERMINANT
SIMULTA~EOUS REAL EQUAT)ONS, DETERMINANT
SIMULTANEOUS EQUATIONS COMPLEX
SIMULTANEOUS REAL EQUATIONS
SOLUTION OF GENERAL MATRIX EQUATION AX = B.
GENERALIZED MATRIX ABSTRACTION, REAL COMPLEX
COMPLEX ELEMENT MATRIX INVERSION
COMPLEX ELEMENT MATRIX INVERSION
MATRIX INVERSION

\

Fl MATRIX OPERATIONS

" FI CL MADl MATRIX ADDITION

003
110
043
148
178
170
173
122
122
116
116
139
139
116
116
085
085
085
085
085
085
085
085
085
085
085
085
085
085
085
085
085
116
222
116
116
141
138
122
122
058

085

10

S
S
5 R

B
S R
S R
S R
S R
5B
S
5
S
5
S
5
5
S
5
5
5
5
S
5
5
5
5
5
S
5
5
5
5
5
5
5
5
5
5
5
5B
5

5

Fl CL MBHl MATRIX HEADING REMOVAL
Fl CL MCPl MATRIX PUNCH
Fl CL MCRI MATRIX CARD READ
Fl CL MEXI MATRIX EXPAND
Fl CL MINI MATRIX INTERCHANGE OF ROWS AND COLUMNS
Fl CL MIVI MATRIX INVERSE
Fl CL MIV2 INVERSE, RE~L
Fl CL MIV3 INVERSE, REAL OR COMPLEX.
Fl CL MKOI TIMES UNIT MATRIX
Fl CL MLDI LOAD MATRIX TO C.S. FROM DRUM OR TAPE
Fl CL MLPI MATRIX LOOP TEST
Fl CL MMPI MATRIX MULTIPLICATION
Fl CL MNRI NORMALIZE MATRIX
Fl CL MNR3 NORMALIZE MATRIX BY COLUMNS.
Fl CL MPRI MATRIX PRINT
Fl CL MSBI MATRIX SUBTRACTION
Fl CL MSMI SCALAR MATRIX MULTIPLICATION
Fl CL MSTI STORE MATRIX FROM C.S. TO C.S., DRUM, OR TAPE
Fl CL MST2 STORE SUBMATRICES IN A LARGE MATRIX
Fl CL MST3 STORE ROW MATRICES INTO A LARGE MATRIX
Fl CL MTRI MATRIX TRANSPOSE
Fl CL MTRI MATRIX TRANSFER
Fl CL MTXl 1NTERPRETATION MATRIX ABSTRACTION
Fl CL MVPl VECTOR DOT PRODUCT
Fl CL PMCI EIGENVALUE SOLUTION, COMPLEX
Fl LA S885 SOLUTION OF GENERAL MATRIX EQUAT+ON AX = B.
Fl MB MTXl"GENERALIZED MATRIX ABSTRACTION, REAL COMPLEX
Fl NY CMII COMPLEX ~ATRIX INVERSION
Fl NY DMII MATRIX INVERSION
Fl UA INVI MATRIX INVERSION

F2 EIGENVALUES AND EIGENVECTORS

F2 CL DETl DETERMINANT AND EIGENVECTOR FOR REAL MATRIX
F2 CL FSCl FRACTION SERIES SOLUTION COMPLEX
F2 NY CRVI CHARACTERISTIC ROOTS AND VECTORS
F2 NY CRV3 CHARACTERISTIC ROOTS AND VECTORS
F2 GM EIG2 EIGENVALUE SUBROUTINE

F3 DETERMINANTS

F3 CL DET2 DETERMINANT AND EIGENVECTOR FOR COMPLEX MATRIX.
F3 CL DET3 DETERMINANT AND EIGENVECTOR, REAL
F3 CL SMD2 SMOOTH AND DIFFERENTIATE DATA POINTS
F3 CL MDTl DETERMINANT AND EIGENVECTOR EVALUTION
F3 GL DEVl DETERMINANT EVALUATION

F4 SIMULTANEOUS LINEAR EQUATIONS

F4 CL SMEI SIMULTANEOUS REAL EQUATIONS, DETERMINANT

085
085
085
085
085
085
223
223
085
085
085
085
223
236
085
085
085
085
223
223
085
223
085
223
248
141
138
185
232
058

116
139
148
218
225

116
223
223
223
110

116

11

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

B
S
S

s
S

B
B

S

s
s
s
s
s

s

12

F4 CL SME2 SIMULTANEOUS EQUATIONS COMPLEX 116 S
F4 CL SME3 S IrvJUL TANEOUS REAL EQUATIONS 116 S
F4 CL SIv1E4 SIMULTANEOUS EQUATIONS, REAL 223 S
F4 CL SME5 SIMULTANEOUS EQUATIONS, REAL 223 S
F4 GE SMQ SIMULTANEOUS EQUATION SOLUTION 003 S
F4 Gf'.1 MEQI GENERALIZED MATRIX EQUATION 043 S R

G. STATISTICAL ANALYSIS AND PROBABILITY

G NY MR1 MULTIPLE REGRESSION AND CORRELATION ANALYSIS 151 B

G1 DATA REDUCTION

G2 CORRELATION AND REGRESSION ANALYSIS

G2 NY MR1 MULTIPLE REGRESSION AND CORRELAT+ON ANALYSIS 151 B

G3 SEQUENTIAL ANALYSIS

G4 ANALYSIS OF VARIANCE

G5 RANDOM NUMBER GENERATORS

G5 CL RANI RANDOM NU~1BER GENERATOR 139 * S

H. OPERATIONS RESEARCH AND LINEAR PROGRAMMING

HO RS LPS1 LINEAR PROGRAMMING SYSTEM 108
H RS LNPl LINEAR PROGRAMMING PROGRAM 161 108
Hl RS LPS1 LINEAR PROGRAMMING SYSTEM 108

I. INPUT

II BINARY

II DM CSBl ONE CARD ABSOLUTE BINARY LOADER 137 B
II DS CBLl CHINESE BINARY ON-LINE LOADER 162 SB
11 GL BULl ONE CARD ABSOLUTE BINARY UPPER LOADER 028 B
11 GL BUL2 ONE CARD ABSOLUTE BINARY UPPER LOADER 044 B
I 1 MU LBL3 MURA LOWER BINARY LOADER (ONE CARD) 251 SB
I 1 MU UBL1 MURA UPPER BINARY LOADER (ONE CARD) 251 SB
I 1 NY BL1 * i~ B
I 1 NY RBLl RELOCATABLE BINARY LOADER 183 B
11 PK CSBl ABSOLUTE BINARY CARD + TRANSFER CAR~ LOADER 019 B
I 1 PK CSB2 ABSOLUTE BINARY + CORRECTION CARD LOADER 019 B
I 1 PK CSB3 RELOCATING BINARY LOADER, LOWER 208 5B
II PK CS84 GF-NERAL BINARY CARD LOADER 019 B
II PK CSBR RELOCATING BINARY LOADER, UPPER 208 5B
I 1 RA BCSC BINARY LOADER AND CHECK SUM CORRECTOR (LBLCSC) 082 B
I 1 RL 0058 ABSOLUTE BINARY LOADER 106 B

11 UA CSE1 ABSOLUTE BINARY LOADER
11 UA CSB2 ABSOLUTE BINARY LOADER
11 UA RWTl BINARY READ-WRITE TAPE PROGRAM
11 WK Tl1 AUTOMATIC TAPE LOADER-TQ WRITE A SELF-LOADING R
11 UA TSB3 LOAD BINARY CARD IMAGES FROM TAPE

12 OCTAL

12 DM OCHG 704 ONE-CARD OCTAL LOADER
12 RS 112X AND 112Y ONE CARD OCTAL CORRECTORS
12 WH 02 SEQUENTIAL DATA INPUT-VARIABLE FIELD

13 DECIMAL

13 NO INP VARIABLE FIELD DECIMAL INPUT
13 MU RDII MURA READ DECIMAL INTEGER ROUTINE
13 NO VNPT A VARIABLE FIELD PERIPHERAL INPUT
13 NY BlI1 BASIC LOOP INITIALIZER
13 NY BLUI BASIC LOOP UPDATER
13 NY DCR2 DIRECT CARD READER
13 NY DLI DECIMAL DATA INPUT PROGRAM
13 NY INS1 INTEGER TO NUMBER SCALER
I 3 NY L vJ R 1 'L 0 CAT ION TOW 0 R K SPA C ERE T R I EVE R
13 NY NFS2 NUMBER TO FRACTION SCALER
13 NY PCR2 PERIPHERAL CARD READER
13 RS 0001 CARD TO QUASI BCD
13 RS 0046 FLOATING POINT + FIXED POINT DECIMAL INPUT.

14 GL
14 NA
14 NA
14 NY
14 NY
14 RS
14 UA
I 4 ~vH

14 \!JH

19 EL
19 GL
19 GS
19 NY
19 NY
19 NY
19 UA
19 UA
19 WH

IN4
0180
1801
DBDI
ISC1
0001
DBCl
001
02

BOLl
FILE
IN2
BOLl
INPI
INP2
CSH2
DBCl
001

14 BCD

BCD TAPE INPUT PROGRAM
CARD PROGRAMMED CONVERTER
CARD PROGRAMMED CONVERTER
HOLLERITH TO BCD CONVERSION
INPUT SCALER
CARD TO QUASI BCD
DECIMAL, OCTAL, BCD LOADER
CARD DATA INPUT-VARIABLE FIELD
SEQUENTIAL DATA INPUT-VARIABLE

19 COMPOSITE

FIELD

TWO CARD SELF LOADING PROGRAM TO LOAD OBSOLUTE BINARY
COMPOSITE INPUT PROGRAM
SCHENECTADY DECIMAL INPUT PROGRAM-VARIABLE FORMAT
BINARY OCTAL LOADER
INPUT PROGRAM UNDER SENSE SWITCH CONTROL
INPUT PROGRAM UNDER SENSE LIGHT CONTROL
READ BCD TAPE OR ON-lINE CARD READER
DECIMAL, OCTAL, BCD LOADER
OCTAL DATA INPUT VARIABLE FIELD

066
066
120
214
119

101
249
134

241
256
209
145
145
145
152
145
145
145
145
018
040

182
150
245
235

* 018
073
057
134

182
181
204
215
206
206
073
073
057

13

SB
S
S
SB
SB

B
B

S R

S
S R
S
S R

R
S R
SB
S R
S R
S R
S R
S
S

S
S
S
S R
S R
S
S
S R
2

S
S
S

B
S R
S R
S
S
S R

14

19 UA T5M2 READ TAPE WITH REDUNDANCY CHECKING 073 5

J. OUTPUT

J Grvl CAP1 COMMENT ATTACHED PRINTER 121 5
JO CL PLT1 POINT PLOT 131 5

J1 BINARY

Jl LA A720 REPRODUCE BINARY CARD5 WITH CORRECT CHECK SUM. 069 5B
J1 r-.1U BPUl MURA BINARY PUNCH ROUTINE 256 5 R
Jl rv1U BPU2 MURA BINARY PUNCH ROUTINE 256 5 R
J1 NA 03.1 ABSOLUTE BINARY CARD PUNCH 051 S
J1 NY BPUI BINARY PUNCH 075 S R
-.11 NY BPU3 BINARY PUNCH 075 5 R
J1 NY BPU4 BINARY PUNCH PROGRAM 212 5B
J1 NY BPU5 BINARY PUNCH PROGRAM 212 5B
J1 NY BTD1 BINARY TAPE OR DRUM DUMP 075 5 R
Jl NY RTD2 BINARY TAPE OR DRUM DUMP 075 5 R

J2 OCTAL

J2 NA 12.1 ABSOLUTE OCTAL CARD PUNCH 051 5
J2 NA 12.2 AB50LUTE OCTAL CARD PUNCH 150
J2 RL 0010 PRINT TAPE IN OCTAL 018 S
J2 RL 0065 OCTAL TAPE PRINT 106 B

J3 DECIMAL

J3 GM CAPl CO~MENT ATTACHED PRINTER 121 S
J3 LA SIlO PRINT FLOATING DECIMAL DATA 069 S
J3 LA 5111 PRINT FLOATING DECIMAL DATA 069 S
J3 ~~u PIFI MURA VARIABLE COLUMN INTEGER-FRACTION PRINT 258 S R
J3 MU PRFl MURA VARIABLE COLUMN FRACTION PRINT 258 5 R
J3 tv1U PRF2 MURA 5IX COLUMN FRACTION PRINT 258 S R
J3 MU PRF3 MURA VARIABLE COL. AND DIGIT ROUNDED FRACTION P 258 S R
J3 ~1U PRI1 MURA VARIABLE COLUMN INTEGER PRINT 258 S R
J3 NA 0117 WRITE 6-DIGIT DECIMAL INTEGER ON CRT 150 S
J3 NY BLII BASIC LOOP INITIALIZER 145 S R
J3 NY BLUl BASIC LOOP UPDATER 145 R
J3 NY D801 FIXED POINT OUTPUT FOR ATTACHED PRINTER 152 S R
J3 NY DCP2 DIRECT CARD PUNCHER 145 5 R
J3 NY DLP2 DIRECT LINE PRINTER 145 S R
J3 NY FPOl FLOATING POINT OUTPUT - ATTACHED PRINTER 075 5. R
J3 NY FP02 FLOATING POINT OUTPUT - ATTACHED PUNCH 075 5 R
J3 NY FP03 FLOATING POINT OUTPUT - PERIPHERAL PRINTER 075 5 R
J3 NY FP04 FLOATING POINT OUTPUT - PERIPHERAL PUNCH 075 S R
J3 NY NFS2 NUMBER TO FRACTION 5CALER 145 S R
J3 NY PCP2 PER r PHERAL. CARD PUNCHER 145 S R
.J3 NY PLP2 PERIPHERAL LINE PRINTER 145 S R

15

J3 NY WLDI WORKSPACE TO LOCATION DISPERSER 145 S R
J3 RL 0007 NORMALIZED FLOATING POINT PRINT 018 S
J3 RL 0020 FRACTIONAL FIXED POINT PRINT 018 S
J3 RL 0023 NORMALIZED FLOATING PO.JNT PRINT 021 S
J3 RL 0063 FLOATING POINT TAPE PRINT 106 B
J3 RS 0006 RCD TO PRINTER OR PUNCH 018 S
J3 RS 0129 FLOATING POINT DECIMAL PUNCH 257 S
J3 WB SPFI DOUBLE PRECISION FLOATING POINT PRINT 205 S

J4 BCD

J4 GL OUTI GENERAL PURPOSE OUTPUT PROGRAM 084 S
J4 GL OUT2 GENERAL PURPOSE OUTPUT PROGRAM 084 S
J4 GM GPRI GENERAL PRINT PROGRAM 070 B
J4 GM GPR2 GENERAL PRINT PROGRAM 070 B
J4 GM GPR3 GENERAL PRINT PROGRAM 070 B
J4 GM GPR4 GENERAL PRINT PROGRAM 070 B
J4 GM GPR5 GENERAL PRINT PROGRAM 070 8
J4 NA 0109 WRITE A SINGLE BCD CHARACTER ON CRT 150 S
J4 NA 0110 WRITE BCD CHARACTES STORED· IN N-704 WORDS ON CRT 150 S
J4 NA 0111 PLOT PT. GIVEN BY SET OF COORDINATES IN FL. PT. 150 S
J4 NA 0112 GENERATE GRID ON CRT 150 S
J4 NA 1391 CONVERT BINARY CARDS TO OCTAL CARDS 150 S
J4 NY CIG1 CARD IMAGE GENERATOR * S R
J4 NY DHLI BCD TO HOLLERITH 235 S R
J4 NY OSCI OUTPUr SCALER 174 S R
J4 NY PCP2 PERIPHERAL CARD PUNCHER 145 S R
,)4 NY PLP2 PERIPHERAL LINE PRINTER 145 S
J4 NY TRCI BCD RECORD TO CARD IMAGE * S R
J4 NY TRGI BCD TAPE RECORD GENERATOR * S R
J4 RS 0006 BCD TO PRINTER OR PUNCH 018 S
J4 UA BDCl GENERALIZED PRINT PROGRAM 072 S R
J4 UA STHI BCD TAPE WRITING PROGRAM 072 S

J5 ANALOG

J5 CL PLT2 POLAR PLOT 236 S

J9 COMPOSITE

J9 GL OUTl GENERAL PURPOSE OUTPUT PROGRAM 084 S
J9 GL OUT2 GENERAL PURPOSE OUTPUT PROGRAM 084 S
J9 GM GPRI GENERAL PRINT PROGRAM 070 B
J9 Gr-1 GPR2 GENERAL PRINT PROGRAM 070 B
J9 GM GPR3 GENERAL PRINT PROGRAM 070 B
J9 GM GPR4 GENERAL PRINT PROGRAM 070 B
J9 GM GPR5 GENERAL PR I NT PROGRArvl 070 B
J9 GS OUTR GENERAL PURPOSE OUTPUT PROGRAM 204 S
J9 NS 006 BINARY PROGRAM LISTER 102 SB
J9 NY OUTl DECIMAL OUTPUT PROGRAM UNDER SENSE SWITCH CONTROL 206 S R

16

J9 NY OUT2 DECIMAL OUTPUT PROGRAM UNDER SENSE LIGHT CONTROL 206 S R
J9 UA BDCl GENERALIZED PRINT PROGRAM 072 S
J9 UA SPHI BCD OUTPUT PROGRAM 072 S

K. INTERNAL INFORMATION TRANSFER

K RL 0044 TAPE.COPY 106 B
K RL 0059 BINARY CHECK SUM CORRECTOR 106 B
K RL 0080 WORD INSERTION 106 S
K RL 0081 ECHO ·CHECK PRINTER COpy LOOP 106 S
K RL 0116 CHECK SUM TAPE CQPY 133 R
K RS 0075 AOJlJST TAPE 091 SB
K RS 0077 REVERSE TAPE 091 SB
KO NO RWT READ WRITE TAPE SUBROUTINE. 209 S
KO NY TFDI TAPE FILE DUPLICATOR 255 SB
KO NY TFD2 TAPE FILE DUPLICATOR 255 S R
KO UA (CB1 BINARY CHECK SUM CORRECTOR 010 B
KO UA CSH2 READ BCD TAPE OR ON-LINE CARD READER 073 S
KO UA (TH1 OFF-LINE CARD READER SIMULATOR 024 SB
KO UA RWD2 READ-WRITE DRUM PROGRAM 080 S
KO UA RWT1 BINARY READ-WRITS TAPE PROGRAM 120 S
KO UA SPHl BCD OUTPUT PROGRAM 072 S
KO UA STHl BCD TAPE WRITING PROGRAM 072 S
KO UA TCHI OFF-LINE PUNCH SIMULATOR 071 SB
KO UA TPHI OFF-LINE PRINTER SIMULATOR 071 SB
KO UA TSB3 LOAD BINARY CARD IMAGES FROM TAPE 119 SB
KO UA TSrv12 READ TAPE WITH REDUNDANCY CHECKING 073 S

Kl READ WRITE DRUM

Kl "NY BTD4 BINARY TAPE OR DRUM DUMP 213 S R
Kl UA R\-JDl READ-WRITE DRUM 054 S
Kl UA RWD2 READ WRITE DRUM PROGRAM 080 S

K2 RELOCATION

L. EXECUTIVE ROUTINES

LO CW DISl RELOCATABLE TO SYMBOLIC DISASSEMBLER 153 B
LO PK DSMB BINARY CARD DISASSEMBLY PROGRAM 158 *
LO RS 0128 DE RELATIVIZE PROGRAM 230 SB

. L 1 ASSEMBLY

Ll NA PREA PRE-ASSEMBLY PROGRAM 176 SB
Ll NA SAP1 SYMBOLIC ASSEMBLY PROGRAM 176 SB
Ll NA SAP2 SYMBOLIC ASSEMBLY PROGRAM NAA VERSION 176 SB
Ll NA 1780 WRITE BINARY LIBRARY TAPE 176 SB
Ll RN 019 701-704 SYMBOLIC ASSEMBLY PROGRAM - 1 FRArv1 014
Ll UA SAPl SHARE ASSEMBLER 056 036 SB

17

L2 COMPILING

M. I N FOR tv1 A T ION PROCESSING

M1 SORTING

Ml NA 20.1 SORTING,MINIMUM SPACE 051 5
M1 NO SORT A MEMORY-SORT SUBROUTINE 209 S
~~ 1 NS MRGI r-1ERGE PROGRA~1 129 SB
M1 NS SRT1 SORT PROGRAM 129 SB

M2 CONVERSION

M2 NA 05.1 FLOATING TO FIXED 051 5
M2 NA 06.1 FIXED TO FLOATING 05°1 5
M2 NA 07.1 FIXED INPUT OUTPUT SCALING SUBROUTINE 051 5
~~ 2 NA 15.1 FLOATING INPUT SCALING 051 5
M2 NA 16.1 FLOATING OUTPUT SCALING SUBROUTINE 051 5
M2 NO BCDI PACKED BCD TO INTEGER BINARY SUBROUTINE. 209 5
M2 NO FCD FLOATING NUMBER TO PACKED BCD SUBROUTINE. 209 5
(\12 NY CrG1 CARD IMAGE GENERATOR * 5 R
(\12 NY OSCI OUTPUT SCALER 174 5 R
M2 NY TRC1 BCD RECORD TO CARD IMAGE * 5 R
M2 NY TRG1 BCD TAPE RECORD GENERATOR * 5 R
~4 2 RS 0002 PACKED BCD TO INTEGER BINARY 018 5
t--12 RS 0003 POSITIVE BINARY INTEGER TO UNPACKED BCD 018 5
r-12 RS 0009 POSITIVE BINARY INTEGER TO UNPACKED BCD 018 5
~'12 UA CT01 OUADOCTAL TAPE WRITING PROGRAM 221 56
r42 UA TSQ1 QUADOCTAL TAPE READING PROGRAM 221 56

M3 COLLATING AND MERGING

N. DEBUGGING ROUTINES

NO LA 0481 TRAP DECIMAL OR OCTAL MEMORY PRINT 095 * 6
NO NS 006 BINARY PROGRAM LISTER 102 SB
NO UA SPM1 TRAP DECIMAL MEMORY PRINT 113 SB

Nl TRACING, TRAPPING

N1 GS HEJ TRAPPING MODE CONTROL SUBROUTINES. 204 5
N1 LA 0080 LOGIC TRACE 069 SB
N1 LA 0081 LOGIC TRACE WITH PARTIAL PRINT 069 S6
N1 LA 0481 DYNAMIC PRINT MONITOR 095 *
N1 ~1U EAS2 MURA EFFECTIVE ADDRESS SEARCH ROUTINE 253 56
N1 MU TTV1 MURA TRANSFER TEST (VISUAL) 253 SB
Nl NS TRC1 TRACE PROGRAM, SUPERCEDES NS001 129 6
N1 NY FTRl HIGH-SPEED FLOW TRACE 147 56
Nl UA SP02 FLOW TRACE 026 56

N1 \~K BP

N2 GA
N2 LA
N2 LA
N2 MU
N2 NS
r~2 PK
N2 RS
N2 UA

VALT
A420
D770
FRD1

005
SPOA
0071
SP01

LEVELS OF BREAKPOINT PRINTING

N2 DUMP

STATUS STORING ROUTINE
DUMP MEMORY ON A SELECTED LOGICAL DRUM
MEMORY PRINT OUT
MURA FRACTION DUMP
MEMORY VERIFICATION PROGRAM
PRINT AND RESTORE CONSOLE
PUNCH CONSOLE
CONTROL PANEL PRINT + OCTAL MEM. PRINT (SCOOP)

N3 SEARCH

N3 LA D620 TRANSFER SEARCH PROGRAM
N3 LA D621 SEARCH MEMORY
N3 NS 005 MEMORY VERIFICATION PROGRAM

N4 BREAKPOINT PRINT

N4 UA SPM1 TRAP DECIMAL MEMORY PRINT

O. SIMULATION PROGRAMS

o EL TEST 36 SIMULATED LOGICAL SWITCHES

01 PERIPHERAL EQUIPMENT SIMULATORS

01 NY PCVl PERIPHERAL CARD VERIFIER
01 UA CTHl OFF-LINE CARD READER SIMULATOR
01 UA TCH1 OFF-LINE PUNCH SIMULATOR
01 UA TPH1 OFF-LINE PRINTER SIMULATOR

P. DIAGNOSTIC PROGRAMS

Q. SERVICE PROGRAMS

Q1 CLEAR, RESET PROGRAMS

Q1 CL OUDl OVERFLOW, UNDERFLOW, AND DIVIDE CHECK TEST
Q1 UA ZCS1 CLEAR CORE STORAGE AND MAIN FRAME
01 UA ZCS2 SET CORE STORAGE. TO ZERO
Q1 UA ZDR1 CLEAR N DRUMS

Q2 CHECK SUM PROGRAMS

Q2 NY BL2 BINARY LOADER AND ZERO CHECKSUM CORRECTOR
Q2 NY BL3 BINARY LOADER AND CHECKSUM CORRECTOR
Q2 UA CCBl BINARY CHECK SUM CORRECTOR
Q2 RL 0059 BINARY CHECK SUM CORRECTOR

154

112
069
069
253
102
208
067
029

069
069
102

113

220

262
024
071
071

248
04.8
119
065

* *
* * 010

106

18

S

S
B
B

SB
SB
S R
SB
SB

B
SB
SB

SB

S

S R
SB
SB
SB

S
SB
SB
S

B
B
B
B

19

02 RL 0116 CHECK'SUM TAPE COPY 133
02 UA PCS1 PUNCH DRUM CHECK SUM VERIFIER 065 S
02 UA VCS1 VERIFY DRUM CHECK SUM 065 S

03 RESTORE, REWIND, T.APE MARK, LOAD BUTTON PROGRAMS.

03 NY PLB3 NY BOLl TRANSITION * * B
03 RS 0075 ADJUST TAPE 91 SB
03 RS 0077 REVERSE TAPE 091 SB
03 UA OTM2 TAPE REWIND CONTROL 064 SB

Z. ALL OTHERS

ZO CL REL RELATIVIZE SYMBOLIC DECK 116 B
ZO MU 704R MURA REFLECTIVE 704 253 SB

Z CL THA1 THERMAL ANALYZER 248 B
Z GL FIDO UTILITY PACKAGE. FUNCTIONS, INPUT, DIAGNOSTICS, OUTPUT 181 SB
Z NA 011 ASSEMBLY TRANSLATOR - NYAPI TO UA SAPI 001 * B
Z NY BLI1 BASIC LOOP INITIALIZER 145 S R
Z NY BLUl BASIC LOOP UPDATER 145 R
Z NY INSl INTEGER TO NUMBER SCALER 145 S R
Z NY L\'JR 1 LOCATION TO WORKSPACE RETRIEVER 145 S R
Z NY NFS2 NUMBER TO FRACTION SCALER 145 S R
Z NY WLD1 WORKSPACE TO LOCATION DISPERSER 145 5 R
Z PK DSMB BINARY CARD DISASSEMBLY PROGRAM 158 * Z RL 0079 TAPE COMPARE 106 B
Z RS 0076 TEST TAPE FOR READABILITY (COUNT RECORDS) 091 SB
Z RS 0084 COUNT RECORDS FOR TAPE READABILITY 091 127 SB
ZO CL REL RELATIVIZE SYMBOLIC DECK 236 B
ZO UA Otr~2 TAPE REWIND CGNTROL 064 SB
ZO UA OTM4 TAPE REWIND CONTROL 097 SB
ZO UA PCS1 PUNCH DRUM CHECK SUM VERIFIER 065 S
ZO UA R\~D 1 READ-WRITE DRUM 054 S
ZO UA VCS1 VERIFY DRUM CHECK SUM 065 S
ZO UA ZCSl CLEAR CORE STORAGE AND MAIN FRM~E 048 5B
ZO UA ZCS2 SET CORE STORAGE TO ZERO 119 SB
ZO UA ZDR1 CLEAR N DRU~1S 065 S

CC-40 Page 20 of 23

NEW SUBROUTINE CARDS RECEIVED

DIST. DIST.
NAME NO. CLASS NAME NO. CLASS

AT MG1 233 D3 MU RDl1 256 13

AT TPI 238 D2 MU DPA2

1
A1

AS 03 224 B3 MU EXP1&2 o B4

AS 09

1
B1 MU BPU1&2 J1

AS 14 C1 MU PRF1" 2, &3 258 J3

AS 33 B2 NO FCD 231 M2

CL DPA1&2 223 A1 NO SIG 240 D1

CL DPD1 A1 NO INP 241 13

CL DPC1 A2 NA 135~ 3 246 B1

CL DET3 F3 NA 180.1 245 14

CL SMD2 F3 NY DMI1 232 F1

CL SME2" 4" 5 F4 NY DBDI 235 14

CL MVP1 F1 NY DHL1 235 J4

CL MIV3 F1 NY PCV1 262 01

CL MST3 F1 NY PLV1 262 01

CL MTR1 F1 NY TFD1&2 255 KO

CL MRT1 Q3 NY FSC1 250 E2

CL MNR3 236 F1 RS 0128 230 LO

CL ELl&2 ! ZO RS 0129 230 J3

CL PLT2 J5 RS 112X 249 12

GL DPPA 237 A1 RS 112Y 249 12

GL GAUS 237 D1 MU PIF 258 J3

GM CFR1 225 C3 GM ZER1 ~ C2

GM EIG2

1
F2 CL THA1 248 Z

GM lEFt C3 CL OUD1 Q1

GM ITRl E2 CL PIN1&2 E2

GM TIN2 247 E1 CL DEQ D2

MU LBL3 251 11 CL PMC1 F1

MU UBL1 251 n GM DIN1 239 E1

MU TTV1 253 °Nl NA 1891 260 F2

MU PRIl 258 J3 MU LBL4 263 11

CC-40

NAME

MU RAT1

MU FRD1

MU EAS2

MU 704R

MU RDI2

AS 0049

NO INTP

NA 65.1

PK EDIT

PK HILO

GI DBUG

CL SME6

CL MMD1

CL MMP2

RS 0140

NAME

MU SBL2

MU CSC2

MU OCD1

MU IND1

WB CFT2

DIST.
NOo

253

!
263

264

265

266

267

267

270

273

273

273

274

NEW

DIST.
NOo

251

NY SNAP 275

Page 21 of 23

DIST.
CLASS NAME NO. CLASS

K2 MU RON1 263 12

N2 MU BPU3 263 J1

Nl MU SQR2 263 B4

ZO MU ATN1 263 B1

13

Nl

E1

A2

J9

QO

N1

F4

F1

F1

11

WRITE- UPS WITH NO CARDS

Since the New England Colleges" other than MIT, do not receive

Share letters concerning changes and corrections, the following information is parti

cularly for their benefit. These changes have been noted in the MIT SHARE Library.

CC-40 Page 22 of 23

SHARE DIST. S WHICH ARE ADDENDED BY LATER DIST. S

WH 001 #57 see #118, 126

GM GPR2 #70 see #163

CL MLD1 1185 see #187

NA 086.1 #87 see #191

NA 087.1 #87 see #191

RS 0077 #91 see #127

NY OSC1 #79 see #174

CL SME1 #116 see #222

CL INT4 #116 see #222

CL LSQ2 #116 see #146, 187

PK NIDA #144, 203 see #195

CL RAN1 #139 see #187

NA 092. 3 #149 see #192

NA 090.3 #149 see #169 - superseded"by 90 0 5

NA 090.5 #169 see #192

NA 091 .. 3 #169 see #192

NA 098.1

1
see #192

NA 700 3 see #190

PK POWR see #203

NY MR1 #151 see #217

UA TSM2

J
see #78

UA SPHl see #86

NY BPU3 #75 see #88

CL AEQ1 J see #167

NY PCP2 #145 see #188

NY PLP2 #145 see #188

GE ARCTN #3 superseded by #55

UA EDC1

J
see #99

NY CrG! see #109

NY TRG1 see #109

CC-40 Page 23 of 23

LETTERS ABOUT CORRECTIONS OR CHANGES

c- 4 C-22 C-32 C-48

6 23 35 50

7 24 38 54

12 25 41 55

13 28 44 56

14 29 47 57

58 74 88 98

60 77 89 99

61 78 90 100

68 79 92 112

70 80 96 113

71 86 97 114

C-125

C-131

SUPERSEDED ROUTINES

NA 0300 1 So So by NA 300 3 #104

NA 31. 1 s. s. by NA 31 0 3 #104

NA 32. 1 So So by NA 32.2 #104

RL 0039 S. s. by RL 0078 #106
&

RL 0115 #125

RL 0042 So So by RL 0065 #106

RS 0004 s. s. by RS 0004 #40

NA 012 s. s. by NA 012.2 #150

NA 90. 3 s. s. by NA 9005 #169

RS 0083 s. s. by RS 0083 #179

GE ARCTN s. s. by GE ARCTN #55

GE SIN2 s. s. by GE SIN2 #33

UA TSMl s. s. by UADBCl #73

CS AR TNl s. s. by CS ART2 #92

NA 91. 1 s. s. by 91.3 #169

NA 920 1 s. s. by 92.3 #149

NA 90.1 s. s. by 91.5 #169

RS 0084 So So by RS 0084 #127

