
Lisp Machine Manual

Second Preliminary Version

January 1979

Daniel Weinreb
David Moon

This n."pnn dt.~~~,:ribe::o. rc~ean.:h done at the Artificial Intelligence Laboratory of the ~la~~achu~etb
I n~titute of Technology. Support for the laboratory'~ artificial intelligence re!-earch i~ provid('d
in part by the Advanced Re~earch l)roject~ Agency of the Department of Defen~e under Office

of ~ (ivaI Rt'~t'arch Contract number !'00014-75-C-0643.

Preface

Thi~ i~ a prt·lilllinary ver:-ion of the Li:-p ~ta\.:hine manual, describing both the dialect of Li~p
u:-t~d by tlH.~, Li:-p ~lal.·hine, 'and the ~oftware environment of the Lbp Machine s)'~tem. Several
chaptl~r~ havt.~ not been written, due to the early ~tage of the software they describe; thi)
include:- chapter~ nn Graphic!'. the ~t()m,e, ~tenu!', the Eine editor, the network control program
and higher level network programs, and the file sy~tem. Some of the chapters that are included
de:-cribt.- ~oftwar~ that i~ ~till in a ~tate of flux, and are likely to change dra~ticall)' in the next
revi"inn of thi .. manual. The author~ aho plan to produce a document de!>cribing the internal
format:-. of data object~ and the in!'truction set of the machine.

Thi~ \'er~i(m of the Li~p machine manual contains only minor editorial corrections from the

ver:-ionof ~(l\'ember, 1 <J7S.

An~: commenb, ~ugge~tion:-. or critici~ms will be welcomed. The authors can be reached by
any of'he fnllowing communication paths:

U.s. ~tail to

Daniel L. \Veinreb or David A. ~loon
54~ Technolog)' Square
Cambridge, ~Ia~s. 02139

~UT ~fultic~ mail to \\'einreb.SIPB

Thl~ ~(,itwart~'\ d('~(:rjh('d herein wa~ written b)' the Li~p \Iachine Group, who~e current memb~rs
ar~ Alan Bawd('n, Bruce Edwards, Richard Greenblatt, Jack Holloway, Thoma!- Knight. ~ichael
~1c~lallf,.)n. David ~loon, ~tichael Patton, Richard Stallmant and Daniel Weinreb.

Thi:- d.'Ii;unwnt wa~ edited with the Emacs editor, and formatted by the Bolio text justifier. It
wa~ lJrinted on the \1IT A.I. Lab's Xerox Graphic Printer.

Preliminary Lisp Machine Manual Table of Contents

Table of Contents

1. Intr()duction ... 1
1.1 General I nf()rmatil)n _ .. 1
1.2 Structure (>f the Manual ...•.......•.• 1
1.3 ~otational Conventions and Helpful Notes 2
1.4 Data Types ...•........ 5
1.5 lanlbda Lists ..•.................... 6

2. J)redicates ..•..•.................. 9

3. Evaluati()n .. 13
3.1 Functions and Special Forms•.•...•........ 13
3.2 Multiple Value Returns•............. 19
3.3 Evalhook ... 20

4. Flo,,, of Control .. -. 22
4.1 Conditil)nals ...•...............•.. 22
4.2 Iteration ...•.................... 25
4.3 ~on-Iocal Exits•..•................. 32
4.4 !\1apping .. 35

5. ~ianipulating list Structure .. 38
5.1 C()n::;.es ..•...•••..•...••...... 38
5.2 li~ts ...••.•••.......•...... 40
5.3 Alteration of List Structure •..................................•......•....... 46
5.4 Cdr-Coding ...••....•..•.......... 48
5.5 Tables ...•...........•........ 48
5.6 Sorting ...•..•.•............ 55

6. Sytnbols ...••.•.....•...•..... 57
6.1 The Value Cell .. 57
6.2 Tile Function Cell ... 59
6.3 Tile I)r()perty List•.................... 62
6.4 The I'rint Name ... 64
6.5 The Creation and Interning of Symbols ... 65

7. N unlbers .. 68
7.1 Numeric I)redicates ... 69
7.2 Arithmetic ... · ..•.................. 71
7.3 Ran(l<.)m Functions ... 73
7.4 Logical Operations on Numbers ... 74
7.5 Byte Manipulation Functions ...•..... 76
7.6 24-Bit Numbers ..•............•.... 77
7.7 Double-Preci$ion Arithmetic ... 78

6-JAN-79

Table of Contents 2 Preliminary Lisp Machine Manual

8. Strings ... 0 • 0 •• 00' 0 0 0 0 0 • 000 •••• 0 ••• 0 79
8.1 String \1anipulation 0 ••••••• 0 ••••••••• ' •• 00 •••••••••• 79
8.2 \1acli~p-compatible Functions 0 ••••••• 0 •• 84
8.3 F()rmatted ()utput•........ 0 0 •••••••••••••• 85

9. Array~ ... ·.····················· 8~
9.1 \'v'hat Arrays Are 0 •• 0 •• 0 •••• 0 0 ••••• 0 • • ••••• 88
9.2 Ho\\' Array~ \\'·ork 0 0 •••• 0 0 0 0 0 ••••• 0 ••• 0 00' 90
9.3 Extra Feature~ of Arrays 0 •••••••• 0 ••• 0 • 0 •••••••• 91
9.4 Ba~ic Array Functions 0 •• 0 •••• 0 •• 0 ••• 93
9.5 ~ anle(l Structures ~ 0 ••••••••••••••••• 99
9.6 Array lea(iers ... 0 ••••••••••••••• 99
9.7 \facli~p Array Compatibility 0 ••••••••••• 100

10. Cl()sures · .. ·············· 0 •••••••••• 0 ••••••••• 102
10.1 \Vhat a Closure Is · .• ··•·•···•••··•··· 0 0 •••• 102
10.2 Example~ of the Use of Closures 0 •• 0 •••• 0 0 •••••• o ••• 0 •••••• 0 103
10.3 Function Descriptions 0 • 0 •• 0 • 0 •••• 0 • 0 •• 0 •• 104

11. Stack Groups .. 0 ••• 0.0 ••••• 0 ••• 0 ••• 105
11.1 \Vhat is Going On Inside 0 • 0 • 0 0 ••• 0 •••• 106

12. L~")catives ·.·················· 0 • 0 •••• 0 • 0 • 0 •••• 109
1.2.1 Cells an(1 Locatives• 0 •••• 0" ••• 0 ••••• 109
12.2 Functions \\,'hich Operate on locatives•.......... • 0 •• 00 •••••••• 109

13. Subprirnitives ················ 0 ••• 0 ••• 0 0 0 ••••• 0 •••••••• 0 • 111
13.1 Data Types•....................... 0.0 •••• 0 • 0 •••••••• 111
i 3.2 Creating ()bjects 0 ••••••••••• 0 •• 0 ••••••••••• 0 113
13.3 })ointer \·fanipulation 0 •• o ••••••••••• 0 0 ••••••••• 114
13.4 Special \1emory Referencing ... 115
13.5 The l'aging System••••.•... 0 0 ••• 0 ••• 118
13.6 \1 ic roco(le Variables 0 0 0 • 0 0 0 •• 0 •• 0 ••••••••••••• 0 119

14. Areas ···· 0 ••••••••• ;, ••••••••• 0" 0 0 •••• 0 • 0 •• 0 ••• 123

15. The C()mpiler 0 ••••••••••••• 0 • 0 ••••• 0 0 •• o ••••• o •••••••••••• 126
IS.1 The Basic Operations of the Compiler 0 ••• 0 ••••••••••• 0 •••• • 0 ••••• • 0 • 126
15.2 How to Invoke the Compiler. 0 0 •••• o ••••••• 0 •• 126
15.3 I nput to the Compiler 0 0 0 0 0 •• • • 0 0 • • •• 127
IS.4 C()lnpiler Declarations 0 •••••• 0 •• 0 ••• 130
IS.5 Compiler Source-Level Optimizers 0 •••••••••••••••• 133
15.6 Files that Maclisp Must Compile ················· 0 •••••••• 133

16. ~1acros ·.··················•· 0 0 0 ••• 0 ••••• 0 ••• 135
16.1 I ntroduction to Macros•............................ 0 • 0 •••••••• '. • ••• 135
16.2 Aids for Defining ~tacros ... 0 •••••••••••••••••••••••••••••• o •••• o •••••••• 0 • 137

16.2.1 Defmacro ·.··············· 0.0 •• 0 0 •••••••••••

137

16.2.2 Backquote /•. 00 •• 0 •••••• 138
16.3 Aids for Debugging Macros 0 •••• •• 0 0 •••• • ••••• 0 ••• 141
16.4 Displacing ~1acros .. 0 ••••••••• 141

6-JAN-79

Preliminary Li~p Machine Manual 3 Table of Contents

16.5 Advanced Features of Defmacro .. 143
16.6 Functions to Expand Macros ... 143

17. Def~truct ... 144
17.1 Introduction to Structure Macros ... 144
17.2 Setf ao(1 Locf .. 145
17.3 H.o\\' to Use Defstruct .. 147
17.4 Options to Defstruct ...•.......... 148
17.5 Using the Constructor Macro ...•.. 149
17.6 Grouped Arrays•........................ 150
17.7 The :include Option ..• 150

18. The I/O System ...•.... 151
18.1 The Character Set .. 151
18.2 Printed Representation ..•......... 154

18.2.1 What the Printer)roduces•............... 154
18.2.2 What The Reader Accepts .. 156
18.2.3 Sharp-sign Abbreviations .. 158
18.2.4 The Readtable '•.........•.......... 159
18.2.5 Reader !\-iacros ..•......... ISQ

18.3 Input Functions ... 159
18.4 Output Functions ...•.... "61
18.5 I/O Streams .. ' 164

18.5.1 What Streams Are ..•...... 164
18.5.2 General Purpose Stream Operations•.........•..... 164
18.5.3 Special Purpose Stream Operations .. 167
18.5.4 Standard Streams .. 168
18.5.5 ~laking Your Own Stream•............ 169

18.6 Accessing Files•... 171
18.6.1 Other File Operations•........................ 172
18.6.2 File Name Manipulation '•.•...•........... 173

18.7 Rubout Handling .. 173
18.8 Special I/O Devices .. 175

19. })ackages ...•............ 176
19.1 The !'eed for ~fultiple Contexts•.... 176
19.2 The Organization of Name Spaces•.................... 177
19.3 Shared I)rograms ... 178
19.4 Declaring Packages ... 179
19.5 Packages and Writing Code .. 181
19.6 Shado\\ling .. 182
19.7 Packages and Interning .. 183
19.8 Status Information .. 186
19.9 How Packages Affect Loading and Compilation 187
19.10 Subpackages .. 187
19.11 Initialization of the Package System ... 189
19.12 Initial I)ackages ... 190
19.13 Multiple Instantiations of a Program , 191

6-JA~-79

Table of Cnntent~ 4 Preliminary Lisp Machine Manual

20. File~ ..•....•...•.•...•..•.. 193
20.1 Functions for Loading Program~•.......••.....•. 193

20.1.1 Function~ for Loading Single File~•.•••.•..••.......•.. 193
20.1.2 Loading and Compiling Whole Packages 0 ••••• 0 0 0 0 •••• 0 0 ••• 0 0 • 194

21. Ilr(")ce~~e!' ... 0 ••••••••••••••••••••••• 195
21.1 Funuions for Manipulating Proce~se~ 0 • 0 0 •• 0 • 0 • 00 • 000 •••••••• 0 ••••••• 0 196
21.2 L(")ck~•....•...•..•• 0 ••••••••••••• 198

22. T\T()B~ an(1 Jobs ...• 0 •• 0 • 0 0 •••••••••• 199
22.1 I ntrnduction to the Concepts of This Chapter•....•.........•... 199
22.2 TVOB~ ..•..•...........•... 199
22.3 J0bs .. 202
22.4 C()ntr()lling Je)bs•. o •••••••••••••••••••••• 204
22.5 Functions for ~1anipulating TVOBs•••..•.•••••...• 205
22.6 Functions for Manipulating Jobs•...•.•...... 0 •••••• 209

23. The TV Display•..•.•.•.•.•....•••.•. 210
23.1 The Hard\\'are•.•...•......•..•...•..• 210.
23.2 Sc reens ..•...•.•..•.........•... 210·
23.3 Simple Bit ~fanipulation•.....•..•.........••.. 213
23.4 Font:'- ,•••.•.•.......... 213
23.5 TV()B!- ...•..•.....•..•. 215
23.(l Iljeces of }laper•....•.•....•...•....• 215

23.(l.1 Sirnple Typeout•......•....•..•...•... 218
23.6.2 Cursor ~()tion•......•.....•...••. 220
23.6.3 Erasing, etc•.............•.•••.•.. 22l
23.6.4 String Typeout•..•••••.••.•.....••••.. 222
23.6.5 \·i(lre }lrocessing 0 ••••• 0 ••• 0 0 0 0 0 ••• 0 ••••• 224
23.6.6 ALU Functions•.•... 0 224
23.6.7 Blinkers ... 0" ••••••••••••••• 225

23.7 GraphiC's. ...•....... 226
23.8 The \Vho Line ..• ~ •..•..... 227
23.9 ~·licr<.)code R()utines•..•...•••••••••••• 229
23.10 Opening a Piece of Paper.•..••••..••••.•••.•••. 230
23.11 Creating Pjece~ of Paper and Blinkers•...•.•.•.•.•••.....• 231
23.12 The Keyboard ...•• 0 •••••••••••• 234
23.13 Internal Special Variables•...••..••.••.•••.•••••• 236
23.14 Font Utility Routines•..•••••••••.••••.. 236
23.15 The Font C()mpiler•.••..••.•.••••.••••••••• 237

24. Errors and Debugging•.•.....•••••.•...•..• 238
24.1 The Error Sy~tem•.........•.•• 0 ••• 238

24.1.1 Conditions ...•.....•...•....••. 238
24.1.2 Error Conditions ..•.••• 0 •••••• 0 • 240
24.1.3 Signalling Errors•........••.••••......... 241
24.1.4 Standard Condition Names•••..•.•.•.... 245
24.1.5 Errset ..•.•.....••... · 247

24.2 The Debugger ..••....... 247

6-JAS-79

Preliminary Li:.-op Machine ~anual 5 Table of Contents

24.2.1 Entering the Debugger•......•....... 248
24.2.2 How to U~e the Debugger ~••...........•...•... 248
24.2.3 Debugger Commands•............ 249
24.2.4 Summary of Commands•..................... 251
24.2.5 ~li5cellany•.......................• 252

24.3 Trace•...••....••. 252
24.4 The Stepper•..............................•.....•.....•.•.•.. 25 S

24.4.1 How to Get Into the Stepper•.•...•...........• 2SS
24.4.2 How to Use the Stepper•.....•.•..••..... 2SS

24.5 The ~iAR ~•.......•.......... 257

25. Utility l)rograms•.•...•.•••.•..•........ 259
25.1 U!'eful Commands••..••••••••••.•.••..•.• 261
25.2 Querying the User•....•..•.....•.•...... 263
25.3 Stuff That Doesn't Fit Anywhere Else•.•........... 265
25.4 Statu5 and SStatus .. 266
25'.5 The Lisp Top Level•••...•....••.••..••...• 266
25.6 Logging In ..•.....••..•....... 268

Concept Index ..•....•...•.•.•••.....•.. 269
Variable Index•...................•......•.....•...••••.•..•..... 272
Function Index .•....................................••..•..•...•.•.•....•..... 275

6-JAN-79

Preliminary Lisp Machine Manual Introduction

1. Introduction

1.1 General Information

The Lisp !\1achineis a new computer system designed to provide a high performance
and eco·nomical implementation of the Lisp language. It is a personal computation system,
which means that processors and main memories are not time-multiplexed: each person gets
his own for the duration of the session. It is designed this way to relieve the problems of
the running of large Lisp programs on time-sharing systems. Everything on the Lisp Machine
is written in Lisp, including all system programs; there is never any need to program in
machine language. The system is highly interactive.

This document is intended to serve both as a User's Guide and as a Refer~nce Manual
for the language and the Lisp Machine itself. It is hoped that anyone with some previous

. programming experience (not necessarily in Lisp) could learn all about the Lisp language
and the lisp Machine from this manual.

This is a preliminary version of the Manual. The authors are well aware that several
sections are mISSIng. Some small sections were left out in the interest of publishing a
manual as quickly as possible. Several full chapters have not been written because the
corresponding software has not settled down enough for a meaningful document to be
written; these include chapters on the Chaos network, the mouse, and menus. Many more
major software changes are expected in both the language and the system; this manual is far
from the last word.

The Lisp Machine executes a new dialect of Lisp called Lisp Machine Lisp. developed
at the M.I.T. Artificial Intelligence Laboratory for ~ use in artificial intelligence research and
related fields. It is closely related to the Maclisp dialect, and attempts to maintain a good
degree of compatibility with Maclisp, while also providing many improvements and new
features. Maclisp, in turn, is based on Lisp 1.5.

1.2 Structure of the Manual

This manual attempts to document both the dialect of Lisp used on the Lisp !vtachine,
and the ~ystem itself. The manual starts out with an explanation of the language. Chapter 2
pre~ents some b~ic predicate functions, Chapter 3 explains the process of evaluation. and
Chapter 4 introduces the b~ic Lisp control structures.

~ext. in Chapters 4 through 12. various Lisp, data types are presented, along with
functions for manipulating objects of those types. These nine chapters discuss list structure,
symbols, numbers, strings, arrays, closures. stack groups, and locatives.

Chapter 13 explains the "subprimitive" functions, which are primarily useful for
implementation of the Lisp language itself and the Lisp Machine·s "operating system-.
Chapter 14 explains areas, which give the programmer control over storage and locality of

DSK:lMMAN;I.NTRO 28 6-JAN-79

Notational Conventions and Helpful Notes 2 Preliminary Lisp Machine Manual

reference.

Chapter 15 discusses the Lisp compiler, which converts Lisp programs into "machine
language". Chapter 16 explains the Lisp macro facility, which allows users to write their
own exten~ion~ to Lisp, and Chapter 17 goes into detail about one such extension that
provide~ structures.

Chapter 18 explains the Lisp Machine's Input/Output system, including streams and the
printed representation of Lisp objects. Chapter 19 describes the package system, which allows
many name spaces within a single Lisp environment. Chapter 20 talks about how files from
a fi Ie s)'stem are used from Lisp.

Chapter 21 discusses the job system, which allows shared access to the TV screen, and
multiple processes. Chapter 22 goes into detail on the TV display itself. Chapter 23
explains how exceptional conditions (errors) can be handled by programs, handled by users,
and debugged. Chapter 24 contains other miscellaneous functions and facilities.

1.3 Notational Conventions and Helpful Notes

There are ~everal conventions of notation, and various points that should be understood
before reading the manual, particularly the reference sections, to avoid confusion.

Most numbers ~hown are in octal radix (base eight). Spelled out numbers and numbers
followed by a decimal point are in decimal. This is because, by default, Lisp Machine Lisp
type~ out numbers in base 8; don't be surprised by this. To change it, see the
documentation on the symbols ibase and base (page 157).

The symbol " => .. will be used to indicate evaluatiori in examples. Thus, when you see
" foo => nil", this means the same thing as "the result of evaluating (00 is (or would have
been) nil".

All uses of the phra"e "Lisp reader", unless further Qualified, refer to the part of Lisp
whic.h reads characters from I/O streams (the read function), and not the person reading
this manual.

There are several terms which are used widely in other references on Lisp, but are not
used much in this document since they have become largely obsolete and misleading. For
the benefit of tho~e who may have seen them before, they are: "S-expression", which means
8 Li~p object: "Dotted pair", which means a cons, ~nd "Atom", which means, roughly,
symbols and numbers and sometimes other things, but not conses.

The characters acute accent (') (also called "single quote") and semicolon (;) have special
meanings when typed to Lisp; they are exampJes of what are called macro characters.
Though the mechanism of macro characters is not of immediate interest to the new user, it
is important to understand the effect of these two, which are used in the examples.

DSK:LMMAN:I.NTRO 28 6-JAN-79

Preliminary Lisp Machine Manual 3 Notational Conventions and Helpful Notes

When the Lisp reader encounters a "''', it 'reads in the next Lisp object and encloses it
in a quote ~pecial form. That is, 'foo-symbol turns into, (quote foo-symbol), and
'(cons 'a 'b) turns into (quote (cons (quote a) (quote b))). The reason for thi~ is that
"quote" would otherwise have to be typed in very frequently, and would look ugly.

The semicolon is used as a commenting character. When the Lisp reader sees one, the
remainder of the line is discarded.

The cl'laracter "j" is used for quoting strange characters so that they are not interpreted
in their usual way by the Lisp reader, but rather are treated the way normal alphabetic
characters are treated. So, for example, in order to give a "j" to the reader, you must type
"j j", the first "j" quoting the second one. When a character is preceeded by a "1M it is
said to be s lash ifted. Slashifying also turns off the effects of macro characters such as •••
and ";".

The following characters also have special meanings, and may not be used in symbols
without slashification. These characters are explained in detail in the section on printed
representation (page 156) .

..

String quote

Introduces miscellaneous reader macros

See'

Package prefix

List structure construction

Symbol quoter

Octal escape

All Lisp code in this manual is written in lower case. In fact, the reader turns all
symbols into upper-case, and consequently everything prints out in upper case. You may
write programs in whichever case you prefer.

By convention, all "keyword" symbols in the Lisp machine system have names starting
with a colon (:). The colon character is not actually part of the print name, but is a
package prefix indicating that the symbol belongs to the package with a null name, which
means the user package. If you are not using packages, that is, you are doing everything
in the user package, it is not necessary to type the colon. However, it is recommended
that you always put in the colon so that you will not have problems if you later put your
program into a package. But it is necessary to leave out the colon in programs that must
run in both Maclisp and Lisp Machine Lisp.. The colon can usually be omitted when you
are simply typing at the top-level of Lisp. since your typein is being read in the user
package. but it is better to type it so you will get used to it. In this manual the colon will
always be included.

DSK:LMMAN;I.NTRO 28 6-JAN-79

Notational Conventions and Helpful Notes 4 Preliminary. Lisp Machine Manual

Lisp Machine Lisp is descended from Maclisp, and a good deal of effort was gone
through to try to allow Maclisp programs to run in Lisp Machine Lisp. There is an
exten~i ve ~ection explaining the differences between the dialects, and how to convert
~.faclisp programs to work in the Lbp Machine. For the new user, it is important to note
that many functions herein exist solely for Maclisp compatibility; they should not be used in
new programs. Such functions are clearly marked in the text.

The Li~p Machine character set is not quite the same as that used on I.T.S. nor on
Multic~: it is described in all detail elsewhere in the manual. The important thing to note
for now is that the character "newline" is the same as "return", and is represented by the
number 215 octal.

When the text speaks of "typing Control-Q" (for example), this means to hold down the
CTRL key on 'the keyboard (either of the two), and, while holding it down, to strike the
"Q" key. Similarly, to type "Meta-P", hold down either of the META keys and strike "P",
To type "Control-Meta-T" hold down both CTRL and META. Unlike the PDP-10, there are
no "control characters" in the character set; Control and Meta are merely things that can be
typed on the keyboard.

Many of the functions refer to "areas", The area feature is only of interest to writers of
large systems, and can be safely disregarded by the casual user. It is described elsewhere.

DSK:LMMAN;I.NTRO 28 6-JAN-79

Prdiminary Li~p Machine Manual 5 Data Types

The re~t of this chapter explains more of the details of the Lisp Machine Lisp dialect.
This ~ection is abo suitable for the Maclisp user, as it goes into detail about important
ditference~ between the dialects. Those Maclisp users who have skipped the previous
!>eetions $hould definitely read this one.

1.4 Data Types

Thi~ section enumerates the various different types of objects in Lisp Machine Lisp. The
type~ explained below include symbols, conses, various types of numbers, two kinds of
compiled code object, locatives, arrays, stack groups, and closures. With each is given the
a:.s()(... iated symbolic name, which is returned by the function data-type· (page 111).

A symbol (these are sometimes called "atoms" or "atomic symbols" by other texts) has a

print name, a binding, a definition, a property list, and a package.

The lJrint name i~ a string. which may be obtained by the function get-pname (page
(5). Thi:. string serves a!' the printed representation (see page 154) of the symbol. The
binding (~ometimes also called the "value") may be any object. It is also referred to
~(lrtH:'(ime::. a-. the "contents of the value cell", since internally every symbol has a cell called
the value cdl which holds the binding. It is accessed by the symeval function (page 58).
and updated by the set function (page 57). (That is, given a symbol, you use symeval to
find out "'hat its binding i~, and use set to change its binding.) The definition may abo be
anyLi~p object. It i~ abo referred to as the "contents of the function cell", since internally
every ~ymb()l has a cell called the function cell which holds the definition. The definition
can be accessed by the fsymeval function (page 59), and updated with fset (page 59). The
III (Ipt.·lty list is a list of an even number of elements; it can be accessed directly by plist
(pagl" (4), and updated directly by setpHst (page 64). although usually the functions get,
put prop, and remprop (page 63) are used. The property list is used to associate any
nUlllb~r of additional attributes with a symbol-attributes not used frequently enough to
de'erve their cells as the value and definition do. Symbols also have a package cell, which
Indicates which "package" of names the s)'mbol belongs to. This is explained further in the
:.e~.:ti()n on packages and can be disregarded by the casual user .

. The primitive function for creating symbols is make-symbol (page 66) (currently named
m~ke-atom), although most symbols are created by read, intern, or fasload (who call
make-symbol themselves.)

A cons is an object that cares about two other objects, arbitrarily named the car and the
cdr. These objects can be accessed with car and cdr (page 38). and updated with rplaca
and rplacd (page 47). The primitive function for creating conses is cons (page 39).

There are several kinds of numbers in Lisp Machine Lisp. Fixnums represent integers in
the range of -2""23 to 2""23-1. Bignums represent integers of arbitrary size. with more
overhead than fixnums. The system automatically converts between fixnums and bignums as
r~quired. Flonums are floating-point numbers. Small-ftonums are another kind of floating
point number~, with less range and precision, but less computational overhead. Other types

DSK:LMMAN;I.LISP 30 6-JAN-79

/01'

Lambda Li!'ts 6 Preliminary Lisp Machine Manual

of numbers are likely to be added in the future. See page 68 for full details.

The usual form of compiled code is a Lisp object called a "Function Entry Frame" or
"FEF". A FEF contain~ the code for one function. This is analogous to what Maclisp calls
a "subr pointer". FEFs are produced by the Lisp Compiler (page 126), and are usually
found as the definitions of symbols. The printed representation of a FEF includes its name,
so that it can be identified.

Another Li~p object which represents executable code is a -micro-code entJ:y". These are
the microcoded primitive functions of the Lisp system, and user functions compiled into
microcode.

About the only useful thing to do with one of these objects is to apply it to arguments.
However. some functions are provided for examining such objects, for user convenience.
See ~arglist (page 61), args-info (page 61), describe (page 261), and disassemble (page
263).

A locative (see page 109) is a kind of a pointer to a single cell anywhere in the system.
The contents of this cell can be accessed by either car or cdr (both do the same thing for
a locative) (see page 38) and updated by either rplaca or rplacd (see page 47).

An array (see page 88) is a set of cells indexed by a tuple of integer subscripts. The
contents of cells may be accessed and changed individually. There are several types of
arrays. Some have cells which may contain any object, while others (numeric arrays) may
only contain small positive numbers. Strings are a type of array; the elements are 8-bit
positive numbers which encode characters.

1.5 Lambda Lists

Note: the examples in this section are examples of lambda-lists, not of Lisp forms!

A lambda-expression is the form of a user-defined function in Lisp. It looks like
(lambda lambda-list. body). The body may be any number of forms. In Mac1isp and Lisp
1.5, the lambda-list (aho called a bound-variable list) is simply a list of symbols (which act
like formal parameters in some other languages). When the lambda-expression is applied to
it~ arguments (which act like actual parameters in other languages), the symbols are bound
to the arguments, and the forms of the body are evaluated sequentially; the result of the
last of the~e evaluations is returned. If the number of arguments is not the same as the
length of the lambda-list. an error is generated.

In Lisp ~achine Lisp the same simple lambda-lists may be used, but there are additional
features accessible via certain keywords (which start with &) and by using lists as elements
of the lambda-list.

The principle weakness of the simple scheme is that any function must only take a
certain, fixed number of arguments. As we know. many very useful functions, such as list,
append, +, and so on, may take a varying number of arguments. Maclisp solved this

DSK:LMMAN:I.LISP 30 6-JAN-79

Preliminary Lisp Machine Manual 7 Lambda Lists

problem by the use of lexprs and Isubrs, which were somewhat inelegant since the
parameters had to be referred to by numbers instead of names (e.g. (arg 3». (For
compatibility reasons, Lisp Machine Lisp supports lexprs, but they should not be used in
new programs).

In general, a func.tion in Lisp Machine Lisp has zero or more required parameters,
followed by zero or more optional parameters, followed by zero or one rest parameter. This
means that the caller must provide enough arguments so that each of the required
parameters gets bound, but he may provide some extra arguments for each of the optional
parameters. Also, if there is a rest parameter, he can provide as many extra arguments as
he wants, and the rest parameter will be bound to a list of all these extras. Also, optional
parameters may have a default-form, which is a form to be evaluated to produce the default
argument if none is supplied.

Here is the exact explanation of how this all works. When apply matches up the
arguments with the parameters, it follows the following algorithm:

The first required parameter is bound to the first argument. apply continues to bind
successive required parameters to the successive arguments. If, during thb process, there
are no arguments left but there are still some required parameters which have not been
bound yet, then an error is caused ("too few arguments").

Next, after all required parameters are handled, apply continues with the optional
parameters, binding each argument to each successive parameter. If, during this process.
there are no arguments left, each remaining optional parameter's default-form is evaluated,
and the parameter is bound to it. . This is done one parameter at a time: that is, first one
default-form is evaluated, and then the parameter is bound to it, then the next default-form
is evaluated, and so on. This allows the default for an argument to depend on the previous
argument.

Finally, if there is no rest parameter and there are no remammg arguments, we are
finished. ,If there i5 no re5t parameter but there are still some arguments remaining, an error
is caused ("too many arguments"). But if there is a rest parameter, it is bound to a list of
all of the remaining arguments. (If there are no remaining arguments, it gets bound to nit)

The way you express which parameters are required, optional, and rest is by means of
~pecial1y recognized 5)'mbols, which are called &-keywords, in the lambda-list. All such
!'ymbob' print names begin with the character "&". A list of all such symbols is the value of
the symbol lambda-list-keywords.

The keywords used here are &optional and &rest. The way they are used is best
explained by means of examples; the following are typical lambda-lists, followed by
de~criptions of which parameters are required, optional. and rest.

(a be) a, b, and c are all required. This function must be passed three arguments.

(a b &optional c)
a and b are required, C is optional. The function may be passed either two

OSK:LMMAN;l.LISP 30 6-JAN-19

~:~: r t

~- -~~---~-~-~~-~--

Lambda Li~ts 8 Preliminary Lisp Machine Manual

or three arguments.

(&optional a b c)
a, b, and c are all optional. The function may be passed any number of
arguments between zero and three, inclusively.

(&res t a) a i~ a rest parameter. The function may be passed any number of arguments.

(a b &optional c d &rest e)
a and b are required, c and d are optional, and e is rest. The function
may be passed two or more arguments.

In all of the cases above, the default-forms for each parameter were nil. To specify
your own default forms, instead of putting a symbol as the element of a lambda-list, put in
a list whose first element is the symbol (the parameter itself) and whose second element is
the default-form. For example:

(a &optional (b 3»
The default-form for b is 3. a is a required parameter, and so it doesn't
have a default form.

(&optional (a /foo) b (c (symeval a» &rest d)
a's default-form is 'foo, b's is nil, and c's is (symeval a). Note that if the
function whose lambda-list this is were called on no arguments, a would be
bound to the symbol f 00, and c would be bound to the binding of the
symbol f 00: this illustrates the fact that each variable is bound immediately
after its default-form is evaluated, and so later default-forms may take
advantage of earlier parameters in the lambda-list. band d would be bound
to nil.

It is also possible to include, in the lambda-list, some other symbols which are bound to
the values of their default-forms upon entry to the function. These are not parameters, and
they are never bound to arguments: they are like "prog variables".

To include such symbols, put them after any parameters, preceeded by the &-keyword
&aux. Examples:

(a &optional b &rest c &aux d (e 5) (f (cons a e»)
d, e, and f are bound, when the function is called, to nit 5, and a cons
of the first argument and 5.

Note that aux-variables are bound sequentially rather than in parallel.

It is important to realize that the list of arguments to which a rest-parameter is bound is
not a "real" lbt. It is temporarily stored in the function-calling stack, and loses its validity
when the function returns. If a rest-argument is to be returned or made part of permanent
list-structure, it must first be copied (see append). The system will not detect the error of
omitting to copy a rest-argument; you will simply find that you have a value which seems to
change behind your back.

DSK:LMMAN;I.LISP 30 6-JAN-79

Preliminary Lisp Machine Manual 9 Predicates

2. Predioates

A predicate is a function which tests for some condition involving its arguments and
return~ the $)'mbol t if the condition is true, or the symbol nil if it is not true.

By convention, the names of predicates usually end in the letter .p" (which stands for
"predicate") .. (See [section on naming conventions]).

The following predicates are for testing data types. These predicates return t if the
argument is of the type indicated by the name of the function, nil if it is of some other

type.

symbolp arg
symbolp returns t if its argument is a symbol, otherwise nil.

nsymbolp arg
nsymbolp returns nil if its argument is a symbol, otherwise t.

listp arg
listp returns t if its argument is a cons, otherwise nil. (listp nil) is nil even though
nil is the empty list.

nlistp arg
nlistp returns t if its argument is anything besides a cons, otherwise nil. This is the
recommended predicate for terminating iterations or recursions on lists. It is, in
fact, identical to atom.

atom arg
. The predicate atom returns t if its argument is not a cons, otherwise nil.

fixp arg
fixp returns t if its argument is a fixnum or a bignum, otherwise nil.

floatp arg
floatp returns t if its argument is a lionum or a small ftonum, otherwise nil.

small-floatp arg
small-floatp returns t if arg is a small lionum, otherwise nil.

bigp arg
bigp returns t if arg is a bignum, otherwise nil.

DSK:LMMAN;FD.DTP 28 6-JAN-79

10
Preliminary Lisp Machine Manual

Predicates

numberp arg numberp returns t if its argument .is any kind of number, otherwise nil.

stringp arg
stringp returns t if its argument is a string, otherwise nil.

arrayp arg arrayp returns t if its argument is an array, otherwise nit. Note that strings are

arrays.

subrp arg subrp returns t if its argument is any compiled code object, otherwise nil. The
Li>p Machine system doesn't use the term ·subr", but the name of tbis function

comes from Maclisp.

closurep arg
closurep returns t if its argument is a closure, otherwise nil.

locativE'p arg
locativep returns t if its argument is a locative, otherwise nil.

typep arg t yPE'P .s not really a predicate, but it is explained here because it is used to
determine the datatype of an object. It returns a symbol describing the type of its

argument, one of the following:

:symbol

:fixnum

:flonum

:smaU-flonum

A ~ymbo1.

A fh(num.

A flonum.

A small flonum.

A bignum.

A cons.

A string.

:bignum

:list

:string

:array

:random

An array that is not a string.

Any built-in data type that does not fit into one of the above

100

categories.
An object of user-defined data-type 100 (any symbol). See Named

Structures, page 91.

See also data-type, page Ill.

6-JAN-79
DSK:LMMAN;FD.DTP 28

Preliminary Lisp Machine Manual 11 Predicates

The following functions are some other general purpose predicates.

eq x y
(eq x y) => t if and only if x and yare the same object. It should be noted that
things that print the same are not necessarily eq to each other. In particular,
numbers with the same value need not be eq, and two similar lists are usually not
eq.
Examples:

(eQ 'a 'b) => nil
(eQ ' a ' a) = > t
(eq (cons 'a 'b) (cons 'a 'b» => nil
(setQ x '(a. b» (eQ x x) => t

Note that in JJsP Machine Lisp equal fixnums are eq; this is not true in Maclisp.
Equality does not imply eq-ness for other types of numbers.

neq Macro
(neq x y) = (not (eq x y)). This IS provided simply as an abbreviation for typing
convenience.

equal x y
The equal predicate returns t if its arguments are similar (isomorphic) objects. (cf.
eq) Two numbers are equal if they have the same value (a flonum is never equal to
a fixnum though). Two strings are equal if they have the same length, and the
characters composing them are the same. Alphabetic case is ignored. For conses,
equal is defined recursively as the two carts being equal and the two cdr's being
equal. All other objects are equal if and only if they are eq. Thus equal could
have been defined by:

(defun equal (x y)
(or (eQ x y)

(and (numberp x) (numberp y) (= x y»
(and (stringp x) (stringp y), (string-equal x y»
(and (listp x)

(listp y)
(equal (car x) (car y»
(equal (cdr x) (cdr y»»)

As a consequence of the above definition, it can be seen that equal need not
terminate when applied to looped list structure. In addition, eq always implies
equal: that is, if (eq a b) then (equal a b). An intuitive definition of equal (which
is not quite correct) is that two objects are equal if they look the same when
printed out. For example: •

(setQ a '(1 2 3»
(setQ b '(1 Z 3»
(eQ a b) = > nil
(equal a b) => t
(equal ·Foo· ·foo U

) => t

DSK:LMMAN;FD.OP 23 6-JAN-79

Predicates 12 Preliminary Lisp Machine Manual

not x
null x

not return~ t if x is nil. ebe nil. null is the same as not; both functions are
included for the sake of clarity. Use null to check whether something is nil: use
not to invert the sense of a logical value. Even though Lisp uses the symbol nil to
represent fabeness. you shouldn't make understanding of your program depend on
this fortuitously. For example, one often writes:

(cond «not (null 1st» ...)
(... »

rather than
(cond (1st ...

(... »

There is no loss of efficiency, since these will compile into exactly the same
instructions.

DSK:LMMAN;FD.OP 23 6-JAN-79

Preliminary Lisp 'Machine Manual 13 Evaluation

3. Evaluation

The following is a complete description of the actions taken by. the evaluator, given a
form to evaluate.

If form is a number, the result is form.

If form is a string, the result is form.

If form is a symbol, the result is the binding of form. If form is unbound, an error is
signalled.

If form is not any of the above types, and is not a list, an error is signalled.

If form is a special form, indentified by a distinguished symbol as its car, it is handled
accordingly; each special form works differently. All of them are documented in this
manual.

If form is not a special form, it calls for the application of a function to arguments.
The car of the form is a function or the name of a function. The cdr of the form is a list
of forms which are evaluated to produce arguments, which are fed to the function.
Whatever results the function returns is the value of the original form.

[Here there should be the rest of the moby description of evaluation and application,
particularly multiple values. Explain the term "variables", also a very brief bit about locals
and specials (fluids and lexicals??). The nature of functions should be revealed; including
compiled-code, interpreted-code, arrays, stack-groups, closures, symbols. Discuss macros.
Talk about function-calling in compiled code, how this is essentially identical to the apply
function, and no need for (sstatus uuolinks) and the like.]

3.1 Functions and Special Forms

eva I x
(eval x) evaluates x, and returns the result.
Example:

(setq x 43 foo /bar)
(eval (list /cons x /foo»

=> (43 • bar)

It is unusual to explicitly call eval. since usually evaluation is done implicitly. If
you are writing a simple Lisp program and explicitly calling eval, you are probably
doing something wrong. eval is primarily useful in programs which deal with Lisp
itself, rather than programs about knowledge or mathematics or games.

DSK:LMMAN;FD.EVA 40 6·dAN-79

Functions and Special Forms 14 Preliminary Lisp Machine Manual

Abo, if you are only interested in getting at the value of a symbol (that is, the
contents of the symbol's value cell), then you should use the primitive function

symeval.

!'Jote: the actual name of the compiled code for eval is "si:*eval"; this is because
use of the eva/hook feature binds the function cell of eval. If you don't understand
this. you can safely ignore it.

~()te: unlike Maclisp, eval never takes a second argument; there are no 'binding
conteKt pointers" in Lisp Machine Lisp. They are replaced by Closures (see page

102).

apply In arglist
(apply In arglist) applies the function In to the list of arguments arglist. arglist
~hould be a list; In can be a compiled-code object, or a "lambda expression", i.e., 8

list whose car is the symbol lambda, or a symbol, in which case its definition (the
contents of its function cell) is used.
Examples:

(setQ f /+) (apply f /(1 2» => 3
(setQ f /_) (apply f /(1 2» => -1
(apply /cons /«+ 2 3) 4» =>

((+ 2 3) . 4) not (5 • 4)

Of course, orglist may be nil.

Note: unlike Mac1isp. apply never takes a third argument; there are no "binding
context pointers" in Lisp Machine Lisp.

Compare apply with funcall and eva I.

funcall I & rest orgs
(funcall I oJ 02... an) applies the function I to the arguments 01. 02 • ...• an. f
may not be a special form nor a macro; this would not be meaningful.

Example:
(cons 1 2) => (1 . 2)
(setQ cons /plus)
(funcall cons 1 2) => 3

lexpr-funcaU I & rest orgs
lexpr-funcall is like a cross between apply and funcall. (lexpr-funcall f al a2 ...
on list) applies the function I to the arguments oJ through on followed by the

elements of list.

DSK:LM~1AN;FD.EVA 40 6-JAN-79

Preliminary Lisp Machine Manual 15 Functions and Special Forms

Examples:
(lexpr-funcall /plus 1 1 1 /(1 1 1» => 6

(defun report-error (&rest args)
(lexpr-funcal1 (function format) error-output args»

Note: the Maclisp functions subrcall, Isubrcall, and arraycall are not needed on the
Lisp Machine; funcall is just as efficient.

quote Special Form
(quote x) simply returns x. It is useful because it takes the argument quoted, so
that it is not evaluated by eval. quote is used to include constants in a form.
Examples:

(quote x) => x
(setq x (quote (some list») x => (some list)

Since quote is so useful but somewhat cumbersome to type, the reader normally
converts any form preceded by a single quote (') character into a quote form.

For example,
(setq x /(some list»
is converted by read into
(setq x (quote (some list»)

(unction Special Form
(function x) is similar to quote, except that it implies to the compiler that x is a
function. In the interpreter, if x is a symbol (function x) returns XiS definition;
otherwise x itself is returned. Because of this, using function rules out the
possibility of later changing the function definition of x, including tracing it. Care is
required!

comment Special Form
comment ignores its form and returns the symbol comment.
Example:

(defun foo (x)
(cond «null x) 0)

(t (comment x has something in it)
(1+ (foo (cdr x»»»

Usually it is preferable to comment code using the semicolon-macro feature of the
standard input syntax. This allows the user to add comments to his code which are
ignored by the lisp reader.
Example:

(defun foo (x)
(cond «null x) 0)

(t (1+ (foo (cdr x»» ;x has something in it
))

DSK:LMMAN;FD.EVA 40 6-JAN-79

Functions and Special Forms 16 Preliminary Lisp Machine Manual

A problem with such comments is that they are discarded when the S-expression is
read into li~p. If the function is read into Lisp, modified, and printed out again,
the comment will be lost. However, this style of operation is hardly ever used;
usually the spurce of a function is kept in an editor buffer and any changes are
made to the buffer, rather than the actual list structure of the function. Thus, this is
not a real problem.

@,define ~"foero
Thi~ macro turns into nil. It exists for the sake of the @, listing generation program,
which u~es it to declare names of special forms which define objects (such as
function~) which ® should cross-reference ..

progn Special Form
A progn-form looks like (progn form I forml , ..), The forms are evaluated in order
from left to right and the value of the last one is the result of the progn. progn is
the primitive control structure construct for "compound statements", Although
lambda-expressions, cond-forms. do-forms, and many other control structure forms
use progn implicitly. that is, they allow multiple forms in their bodies, there are
occa!'ion~ when one needs to evaluate a number of forms for their side-effects and
make them appear to be a single form.
Example:

(foo (cdr a)

progl Special Form

(progn (setQ b (extract frob»
(car b»

(cadr b»

progl i~ ~imilar to progn, but it returns the value of its first form. It is most
commonly used to evaluate an expression with side effects, and re.turn a value which
mu~t be computed before the side effects happen.
Example:

(setq x (progl y (setq y x»)
which interchange~ the values of the variables x and y.

progt could have been defined as:
(defun progl (&rest values)

(car va 1 ues)) .
It i~ actually implemented as a macro which expands into a prol2.

prog2 Sprcial Form
prog2 j~ similar to progn and progl, but it returns its second argument. It is
included largely for Mac1isp compatibility. It has two i' . lOseS: to evaluate two
form~ sequentially, which can be done more generally WJtil proln, or to do what
progl is used for (c.f. progl above),

DSK:LMMAN:FD.EV A 40 6-JAN-79

I)reliminary Li~p Machine Manual 17 Functions and Special Forms

let Special Form
let is u~ed to bind some variables for some objects. A let form looks like

(let « varl vforml)
(vorl vforml)
...)

bforml
bforml
...)

When this form is evaluated, first the vforms are evaluated. Then the vars are
bound to the values returned by the corresponding vforllfs. Finally. the bforms are
evaluated sequentially and the result of the last one returned.

let is implemented as a macro which expands into a lambda-combination; however,
it i~ preferable to use let rather than lambda because the variables and the
corresponding forms appear textually close to each other, wh!ch increases readability
of the program.

See also let-globally, page 35.

progv Special Form
progv is a special form to provide the user with extra control over lambda-binding.
It binds a list of symbols to a list of values. and then evaluates some forms. The
lists of symbols and values are computed quantities; this is what makes progv
different from lambda, let, prog. and do.

(progv symbol-list value-list form I form] . ..)
fir~t evaluates symbol-list and value-list. Then the symbols are bound to the values.
In compiled code the symbo,ls must be special. since the compiler has no way of
knowing what symbols might appear in the symbol-list. If too few values are
supplied. the remaining symbols are bound to nil. If too many values are supplied.
the excess values are ignored.

After the symbols have been bound to the values. the forms are evaluated. and
finally the symbols' bindings are undone. The result returned is the value of the last
form. Note that the "body" of a progv is similar to that of progn. not that of prot.
Example:

(setQ a /foo b /bar)

(progv (list a b /b) (list b) (list a b foo bar»
=> (foo nil bar nil)

During the evaluation of the body of this progv. foo is bound to bar. bar is
bound to nil. b is bound to nil. and a remains bound to f 00.

See also bind (see page 118), which is a sUbprimitive which gives you maximal control
over binding.

DSK:LMMAN:FD.EV A 40 6-JAN-79

Function~ and Special Forms 18 Preliminary Lisp Machine Manual

The follnwing three functions (arg, setarg. and listify) exist only for compatibility with

Macli~p /exprs.

arg x
(arg niD, when evaluated during the application of a lexpr, gives the number of
argument!- ~upplied to that lexpr. This is primarily a debugging aid, since lexprs also
receive their number of arguments a5 the value of their lambda-variable.

(arg n. when evaluated during the application of a lexpr, gives the value of the i'th
argument to the lexpr. i must be a fixnum in this case. It is an error if ; is less than
1 or greater than the number of arguments supplied to the lexpr.
Example:

(defun foo nargs
(print (arg 2»
(+ (arg 1)

(arg (- nargs 1»»

;define a lexpr foo.
; print the second argument.
; return the sum of the first
; and next to last arguments.

setarg i x
setarg is used only during the application of a lexpr. (setarg ; x) sets the lexpr's
i'th argument to x. i must be greater than zero and not greater than the number of
argument!' pas~ed to the lexpr. After (setarg ; x) has been done, (arg ;) will return

x.

Iistify n
(listify n) manufactures a list of n of the arguments of a lexpr. With a posItIve
argument n, it returns a list of the first n arguments of the lexpr. With a negative
argument n, it returns a Ibt of the last (abs n) arguments of the lexpr. Basically, it
works as if defined as follows:

(defun listify (n)
(cond «minusp n)

(listifyl (arg nil) (+ (arg nil) n 1»)
(t
(listifyi n 1» »

(defun 1 istifyl (n m) ; auxiliary function.
(do «1 n (1- i»

(result nil (cons (arg i) result»)
«< i m) result) »

•

DSK:LMMAN:FD.EV A 40 6-JAN-79

Preliminary Lisp ~fachine Manual 19 Multiple Value Returns

3.2 Multiple Value Returns

multiple-value Special Form
(multiple-value var-list form) is a special form u~ed for calling a function which is
expected to return more than one value. var-list should be a list of variables. form
is evaluatedt and the variables in var-list will be set (not lambda-bound) to the values
returned by form. If more values are returned than there are variables in 'lor-list,
then the extra values are ignored. If there are more variables than values returned,
extra values of nil are supplied. It is allowed to have nil in the 'lor-list, which
means that the corresponding value is to be ignored (you can't use nil as a variable.)
Example:

(multiple-value (symbol already-there-p)
(intern "gOo"»

intern returns a second value. which is t if the symbol returned as the first value
was already on the obarray, or ebe nil if it just put it there. So if the symbol goo
was already on the obarray. the variable already-there-p will be set to tt else it
will be set to nil.

multiple-value is usually used for effect rather than for value, however its value is
defined to be the first of the values returned by form.

multiple-value-list Special Form
(multiple-value-list form) is another special form used on functions which may
return multiple values. {multiple-value-list form} evaluates form. and returns a
list of the values it returned.
Example:

(setq a (multiple-value-list (intern "goo")))
a =) (goo nil '(Package User»

This is similar to the example of multiple-value above; a will be set to a li~t of
three elements. the three values returned by intern. The first is the newly interned
~ymbol goo. the second is nil to indicate that it is newly-interned, and the third is
the package on which it was interned.

multiple..,.value-call Special Form
(multiple-value-call {function arg 1 arg} _.)) applies the function to the arguments,
and returns from the current function with the same values as junction returns. This
only works in compiled programs.

multiple-value-return Special Form
(multiple-value-return (function arg! arg2 •.. » applies the function to the
arguments. and returns from the current prog or do with the same values as
function returns.

DSK:LMMAN;FD.EVA 40 6-JAN-19

Evalhook 20 Preliminary Lisp Machine Manual

3.3 Evalhook

evalhook Variable
If the value of evalhook is non-nil, then special things happen in the evaluator.
When a form (even an atom) is to be evaluated, evalhook is bound to nil and the
function which was evalhook's value is applied to one argument-the form that was
trying to be evaluated. The value it returns is then returned from the evaluator.
This feature is used by the step program (see page 255).

f?valhook i~ bound to nil by hreak and by the error handler. and setq'ed to nil by
errors that g() back to top level and print * This provides the ability to escape from this
mode if ::-omething bad happens.

In order not to impair the efficiency of the Lisp interpreter, several restrictions are
impo~ed on evalhook. It only applies to evaluation· - whether in a read-eval-print loop,
internally in evaluating arguments in forms, or by explicit use of the function eva I. It ooes
not have any effect on compiled function references, on use of the function apply. or on
the "mapping" functions. (On the Li:-p \1achine, as opposed to Maclisp, it is not necessary
to do (*rset t) nor (sstatus evalhook t).)
(Also, \faclisp's special-case check for store is not implemented.)

evalhook form hook
evalhook is a function which helps exploit the evalhook feature. The form is
evaluated with evalhook lambda-bound to the functional form hook. The checking
of evalhook is bypassed in the evaluation of form itself. but not in any subsidiary
evaluation~, for instance of arguments in the form. This is like a "one-instruction
proceed" in a machine-language debugger.
Example:

:: Thi~ function evaluates a form while printing debugging information.
(de fun hook (x)

(terpri)
(evalhook x/hook-function»

:: Notice how this function calls evalhook to evaluate the form r,
:: so as to hook the sub-forms.
(defun hook-function (f)

(let «v (evalhook f /hook-function»)
(format t "form: -s-%value: -s-%" f v)
v))

The following output might be seen from (hook '(cons (car '(a. b» 'e»:

DSK:LMMAN:FD.EV A 40 6-JAN-7Q

Preliminary Li~p Machine Manual 21

form: (cons (car (Quote (a . b») (quote c»
form: (car (quote (a . b»)
form: (quote (a . b»
value: (a . b)
value: a
form: (quote c)
value: c
value: (a . c)

(a • c)

DSK:LMMAN;FD.EVA 40

Evalhook

6-JAN-79

Flow of Control 22 Preliminary Lisp Machine Manual

4. Flow of Control

Li~p provides a variety of qructures for flow of control.

Function application is the basic method for construction of programs. Operations are
written as the application of a function to its arguments. Usually, Lisp programs are written
a'\ a large collection of small functions, each of which implements a simple operation. These
function~ operate by calling one another, and so larger operations are defined in terms of
smaller ones.

A function may always call itself in Lisp. The calling of a function by itself is known as
recursion; it is analogous to mathematical induction.

The performing of an action repeatedly (usually with some changes between repetitions)
is called iteration. and is provided as a basic control structure in most languages. The do
statement of Pl/I, the for statement of AlGOL/60. and so on are examples of iteration
primitive~. Lisp provides a general iteration facility called do, which is explained below.

A conditional construct is one which allows a program to make a decision, and do one
thing or another based on some logical condition. Lisp provides and and or, which are
simple conditionals, and cond, which is a more general conditional.

~on-Iocal exits are similar to the leave, exit, and escape constructs in many modern
languages. They are similar to a return, but are more general. In Lisp, their scope is
determined at run-time. They are implemented as the catch and *throw functions.

Lisp Machine Lisp also provides a multiple-process or coroutine capability. This is
explaint-d in the section on stack-groups (page 105).

4.1 Conditionals

and Sp('cial Form
(and form] form] ...) evaluates the forms one at a time, from left to right. If any
form evaluates to nil. and immediately returns nil without evaluating the remaining
forms. If all the forms evaluate non-nil, and returns the value of the last form.
and can be used both for logical operations, where nil stands for False and t stands
for True, and as a conditional expression.
Examples:

(and x y)

(and (setQ temp (assQ x y»
(rplacd temp z»

(and (not error-p)
(prine "There was no error."»

Note: (and) => t, which is the identity for this operation.

DSK:LM'1AN;FD.FlO 61 6-JAN-79

~ ~"'; .. ~ .!

'.:~~i~',:"

Preliminary Lisp Machine Manual " 23 Conditionals

or Special Form
(or form J form2 ...) evaluates the form~ one by one from left to right. If a' form
evaluates to nil, or proceeds to evaluate the next form. If there are no more
forms, or returns nil. But if a form evaluates non-nil, or immediately returns that
value without evaluating any remaining forms. or can be used both for logical
operations, where nil stands for False and t for True, and as a conditional
expression.

Note: (or) => nil, the identity for this operation.

cond Special Form
The cond special form consists of the symbol cond followed by several clauses.
Each clause consists of a predicate followed by zero or more forms. Sometimes the
predicate is called the antecedent and the forms are called the consequents.

(cond (antecedent consequent consequent . ..)
(antecedent)
(antecedent consequent ..•)
. ..)

The idea is that each clause" represents a case which is selected if its antecedent IS

~atisfied and the antecedents of all preceding clauses were not satisfied. When a
clause is selected, its consequent forms are evaluated.

cond processes its clauses in order from left to right. First, the antecedent of the
current c1am.e is evaluated. If the result is nil, cond advances to the next clause.
Otherwise. the cdr of the clause is treated as a list of forms, or consequents, which
are evaluated in order from left to right. After evaluating the consequents, cond
returns without inspecting any remaining clauses. The value of the cond special
form is the value of the last consequent evaluated, or the value of the antecedent if
there were no consequents in the clause. If cond runs out of clauses, that is, if
every antecedent is nil, that is, if no case is selected, the value of the cond is nil.
Example:

(cond «zerop x)
(+ y 3»

)

DSK:LMMAN;FD.FLO 61

«null y)
(setq y 4)
(cons x z»

(z)

(t
105)

; First clause:
; (zerop x) is the antecedent.
; (+ y 3) is the consequent.
; A clause with 2 consequents:
; this
; and this.
; A clause with no consequents:
; the antecedent is just z.
; An antecedent of t
j is always satisfied.
; This is the end of the condo

6-JAN-79

Conditionals 24 Preliminary Lisp Machine Manual

if Macro
if allows a simple "if-then-else" conditional to be expressed as (if pred-form then-
form else-form). if is provided for stylistic reasons; some people think it looks nicer
than cond for the simple case it handles. (if x y z) expands into (cond (x y) (t

z».
selectq ~\lacro

\-tany programs require cond forms which check various specific values of a form.

A typical example:
(cond «eQ x /foo) ...)

«eQ x/bar) ...)
«memQ x /(baz QUux mum» ...)
(t ... »

The selectq macro can be u~ed for such tests. Its form is as follows:
(se 1 ectQ key-form

(pattern consequent consequent •••)
(pattern consequent consequent ..•)
(pattern consequent consequent ...)

...)
Its first "argument" is a form, which is evaluated (only once) as the first thing
selectq does. The resulting value is called the key. It is followed by any number
of clauses. The car of each clause is compared with the key, and if it matches, the
con~equents of this clause are evaluated, and selectq returns the value of the last
consequent. If there are no matches, selectq returns nil. Note that the patterns are
not evaluated; if you want them to be evaluated use select rather than selectq.

A pattern may be any of:

1) A symbol

2) A number

3) A list

4) t or otherwise

Example:
(selectQ x

(foo ...)
(bar ...)

If the key is eq to the symbol, it matches.

If the key is eq to the number, it matches. Only
small numbers (fixnums) will work.

If the key is eq to one of the elements of the list,
then it matches. The elements of the list should be
symbols or fixnums.

The symbols t and otherwise are special keywords
which match anything. Either symbol may be used. it
make~ no difference. t is accepted for compatibility
with Maclisp's caseq construct.

; This is the same as the cond example
; above.

«baz QUux mum) ...)
(otherwise ... »

DSK:LMMAN;FD.FLO 61
6-JAN-'79

Preliminary Lisp Machine Manual 25 Iteration

select ~"Iacro
select is the same 8!> selectq, except that the elements of the patterns are evaluated
before they are u~ed.
Example:

(select (frob x)
(foo 1)
«bar baz) 2)
(otherwise 3»

is equivalent to
(let «var (frob x»)

(cond «eq var fool 1)
«or (eq var bar) (eq var baz» 2)
(t 3»)

dispatch Macro
(dispatch byte-specifier n clauses ...) is the same as select (not selectq). but the key
is obtained by evaluating (ldb byte-specifier n). byte-specifier and n are both
evaluated.
Example:

(prine (dispatch 0202 cat-type
(0 "Siamese.")
(1 "Persian.")
(2 "Alley.")
(3 (ferror nil

"-5 1s not a known cat type."
cat-type»»

It is not necessary to include all possible values of the byte which will be dispatched
on. [This function may get flushed.]

4.2 Iteration

prog Special Form
prog is a special form which provides temporary variables, sequential evaluation of
forms, and a "goto" facility. A typical prog looks like:

(prog (var1var2 (var3init3) '1ar4 (var5init.S»
tag 1

statement1
statemen t2

tag2
statement2

)
vorl, var2, are temporary variables. When the prog is entered, the values of
these variables are saved. When the prog is finished, the saved values are restored.
The initial value of a variable inside the prog depends on whe·ther the variable had
an associated init form or not; if it did. then the init form is evaluated and becomes

DSK:LMMAN;FD.FLO 61 6-JAN-79

Iteration 26 Preliminary Lisp Machine Manual

the initial value of the corresponding variable. If there was no init form, the
variable is initialized to nil.
Example:

(prog « at) b (c 5) (d (car" "(zz . pp»»
<body>
)

The initial value of a is t, that of b is nil, that of c is the fixnum 5, and that of d
i~ the ~)'mbol II. The binding and initialization of the variables is done sequentially,
~o each one can depend on the previous ones.

The part of a prog after the variable list is called the body. An item in the body
may be a symbol or a number, in which case it is called a tog, or some other form
(i.e. a li~t), in which ca~e it is called a statement.

After prog bind~ the temporary variable~, it processes each form in its body
~equentially. tags are skipped over. Statements are evaluated, and their returned
values di~carded. If the end of the body is reached, the prog returns nil. However,
two ~pecial forms may be used in prog bodies to alter the ftow of control. If
(rflturn x) is evaluated, prog stops processing its body, evaluates x, and returns the
re~ult. If (go tag) is evaluated, prog jumps to the part of the body labelled with
the tag. tag is not evaluated. The "computed-go" (mis)feature of Maclisp is not
~upp()rted.

The compiler requires that go and return forms be lexically within the scope of the
prog: it is not possible for one function to return to a prog which is in progress in
it!' caller. Thi~ restriction happens not to be enforced in the interpreter. Thus, a
program which contains a go which i~ not contained within the body of a prog (or
a do, see below) cannot be compiled. Since virtually all programs will be compiled
at some time, the restriction should be adhered to.

Sometimes code which is lexically within more than one prog (or do) form wants to
return fr0m one of the outer progs. However, the return function normally
return~ from the innermost prog. In order to make returning from outer progs
more convenient, a prog may be given a name by which it may be referenced by 8

function called rEtturn-from, which is similar to return but allows a particular
prog to be ~pecified. If the first subform of a prog is a non-nil symbol (rather than
a variable li~t), it i::. the name of the prog. See the description of the return-from
~pecial form, on page 31.
Example:

(prog george (a b d)
(prog (c b)

DSK:LM\1AN:FD.FLO 61

(return-from george (cons b d»
...))

6-JAN-79

Preliminary Lisp Machine Manual 27 Iteration

If the symbol t is u~ed a!\ the name of a prog, then it will be made "invisible- to
returns; returns inside that prog will return to the next outermost level whose
name is not t. (return-from t ...) will return from a prog named t.

See also the do special form, which use5 a body similar to prog. The do. *catch,
and *throw special forms are included in Lisp Machine Lisp as an attempt to
encourage goto-Iess programming style. which often leads to more readable. more
ea~ily maintained code. The programmer is recommended to use these functions
instead of prog wherever reasonable.
Example:

(prog (x y z) ; x, y, z are prog variables • temporaries.
(setq y (car w) z (cdr w» ;w is a free variable.

loop
(cond «null y) (return x»

«null z) (go err»)
rejoin

err

do Special Form

(setq x (cons (cons (car y) (car z»
x))

(setq y (cdr y)
z (cdr z»

(go loop)

(break are-you-sure? t)
(setq z y)
(go rejoin»

The do special form provides a generalized iteration facility, with an arbitrary
number of "index variables" whose values are saved when the do is entered and
restored when it is left, i.e. they are bound by the do. The index variables are
used in the iteration performed by do. At the beginning, they are initialized to
specified values, and then at the end of each trip around the loop the values of the
index variables are changed according to specified rules. do allows the programmer
to specify a predicate which determines when the iteration will terminate. The value
to be returned as the result of the form may, optionally, be specified.

do comes in two varieties.

The newer variety of do looks like:
(do « var init repeat) ...)

(end-test exit-form . ..)
body ...)

The first item in the form is a list of zero or more index variable specifiers. Each
index variable specifier is a . list of the name of a variable var, an initial value ini"
which defaults to nil if it is omitted. and a repeat value repeat. If repeat is omitted,
the var is not changed between loops.

DSK:LMMAN;FD.FLO 61 6·JAN-79

Iteration 28 Preliminary Lisp Machine Manual

All a~~ignment to the index variables is done .in parallel. At the beginning of the
first iteration. all the inits are evaluated, then the vors are saved, then the vars are
set to the values of the init~. To put it another way, the vors are lambda-bound to
the values of the inits. Note that the inits are evaluated before the vors are bound,
i.e. lexically outside of the do. At the beginning of each succeeding iteration those
van. that have repeats get setq'ed to the values of their respective repeats. Note
that all the repeats are evaluated before any of the vars is changed.

The ~econd element of the do-form is a list of an end-testing predicate end-test, and
zer0 or more forms. called the exit-forms. At the beginning of each iteration, after
proce~sing of the repeats, the end-test is evaluated. If the result is nil, execution
proceed~ with the body of the do. If the result is not nil, the exit-forms are
evaluated from left to right and then do returns. The value of the do is the value
of the la~t exit-form. or nil (not the value of the end-test as you might expect) if
there were no exit-forms. Note that the second element of the do-form resembles a
cond clause.

If the ~econd element of the form is nil, there is no end-test nor exit-forms, and
the body of the do is executed only once. In this type of do it is an error to have
repeats. This type of do is a "prog with initial values."

If the second element of the form is (nill, the end-test is never true and there are
no exit-forms. The body of the do is executed over and over. The infinite loop
can be termin~ted by use of return or *throw.

The remainder of the do-form constitutes a prog-body: that is, go's and return
form~ are understood within the do body, as if it were a prog body. When the end
of the body is reached, the next iteration of the do begins. If a return form is
evaluated, do returns the indicated value and no more iterations occur.

The older variety of do is:
(do var ini, repeat end-test body ...)

The first time through the loop var gets the value of init; the remalOtng times
through the loop it gets the value of repeat, which is re-evaluated each time. Note
that init is evaluated before the value of var is saved, i.e. lexically outside of the do.
Each time around the loop, after var is set, end-test is evaluated. I(it is non-nil,
the do fini~hes and returns nil. If the end-test evaluated to nil, the body of the loop
is executed. The body is like a prog body. go may be used. If return is used, its
argument is the value of the do. If the end of the prog body is reached, another
loop begins.

DSK:LM!\-fAN:FD.FLO 61 6-JAN-79

Preliminary Li~p Machine Manual 29

Example~ of the older variety of do:
(setq n (array-length foo-array»
(do i 0 (1+ i) (= i n)

(aset 0 foo-array i» ;zeroes out the array foo-array

(do zz ~ (cdr zz) (or (null zz)
(zerop (f (car zz»»)

; thi~ applies f to each element of x
; continuously until f returns zero.
: Note that the do ha~ no body.

return forms are often u~eful to do simple searches:

(do i 0 (1+ i) (= in) ; Iterate over the length of foo-array.
(and (= (aref foo-array i) 5) ; If we find an element which

:equals 5.
(return i») ; then return its index.

Examples of the new form of do:

Iteration

(do « 1 0 (1+ i» ; This is just the same as the above example.
(n (array-length foo-array»)

((= in» ; but written as a new-style do .•
(aset 0 foo-array i»

; z starts as list and is cdr'ed each time. (do «z. list (cdr z»
(yother-list)
(x))

; y starts as other-list, and is unchanged by the do.
: x starts as nil and is not changed by the do.

(nil) ; The end-test is nil. so this is an infinite loop.
body)

(do «x) (y) (z» (nil) body)

is like

(prog (x y z) body)
except that when it runs off the end of the body,
do loops but prog returns nil.

On the other hand,

(do « x) (y) (z» nil body)

is identical to the prog above (it does not loop.)

The construction

DSK:LMMAN;FD.FLO 61 6-JAN-79

Iteration

(do «x e (cdr x»
(oldx x x»

«null x»

30

.t ... ;

Preliminary Lisp Machine Manual

body)
exploit~ parallel a~$ignment to index variables. On the first iteration, the value of
oldx is whatever value x had before the do was entered. On succeeding iterations,
old x c.ontain~ the value that x had on the previous iteration.

In either form of do, the body may contain no forms at all. Very often an iterative
algorithm can be most clearly expressed entirety in the repeats and exit-forms of a
new-style do, and the body is empty.

(do «x x (cdr x»
(y y (cdr y»
(z nil (cons (f x y) z») ; exploits parallel

«or (null x) (null y»
(nreverse z»

)

is like (mapl ist ,If x y).

; assignment.
; typical use of nreverse.
; no do-body required.

do-nam~d Special Form
do-named is just like do except that its first subform is a symbol, which is
interpreted as the name of the do. The return-from special form allows a return
from a particular prog or do-named when several are nested. See the description
of such name~ in the explanation of the prog special form on page 25, and that of
return-from on page 31.

go Special Form
The (go tag) special form is used to do a "go-to· within the body of a do or a
prog. The tag must be a symbol. It is not evaluated. go transfers control to the
point in the body labelled by a tag eq to the one given. If there is no such tag in
the body, the bodies of lexically containing progs and dos (if any) are examined as
well. If no tag is found, an error i~ signalled.

Note that the go form is a very ~pecial form: it does not ever return a value. A
go form may not appear as an argument to a regular function, but only at the top
level of a prog or do, or within certain special forms such as conditionals which are
within a prog or do. A go as an argument to a regular function would be not only
useless but possibly meaningless. The compiler does not bother to know how to
compile it correctly. return and *throw are similar.

DSK:LMMAN:FO.FLO 61 6-JAN-79

Preliminary lisp Machine Manual 31

Example:

return arg

(prog (x y z)
(setq x some frob)

loop
do something
(and 'somepredicate (go endtag»
do something more
(and (minusp x) (go loop»

endtag
(return z»

Iteration

return is used to return from a prog or a do. The value of return's argument is
returned by prog or do as its value. In addition, break recognizes the typed-in S
expression (return value) specially. If this form is typed at a break. value will be
evaluated and returned as the value of break. If not at the top level of ;l form
typed at a break, and not inside a prog or do, return will cause an error.
Example:

(do «x x (cdr x»
(n 0 (* n 2»)

((nu 11 x) n)
(cond «atom (car x»

(setq n (1+ n»)
«memq (caar x) /(sys boom bleah»
(return n»»

return IS, like go, a special form which does not return a value.

return can also be used to return multiple values from a prog or do, by giving it
multiple arguments. For example,

(defun assqn (x table)
(do «1 table (cdr 1»

(n 0 (1+ n»)
«null 1) nil)

(and (eq (caar 1) x)
(return (car 1) n»»

Thi:- function is like assq, but it returns an additional value which is the index in
the table of the entry it found. See the special forms multiple-value (page 1 Q) and
multiple-value-list (page 19).

return-f rom Special Form
A return-from form looks like (return-from name form] form2 form3). The
forms are evaluated sequentially, and then are returned from the innermost
containing prog or do-named whose name is name. See the description of prot
(page 25) in which named progs and dos are explained, and that of do-named
(page 30).

DSK:LMMAN;FD.FLO 61 6-JAN-79

Non-local Exits 32 Preliminary Lisp Machine Manual

return-list list
list mu~t not be nil. This function is like return except that the prol returns all of
the elements of list; if list has more then one element, the prot does a multiple
value return.

To direct the returned values to a prog or do-named of a specific name, use
(r~turn-from name (return-list list)).

defunp jlacro
Usually when a function uses prog, the prog form is the entire body of the
function: the definition of such a function looks like (defun name arglist (prot
varlist ...)). For cOJ')venience, the defunp macro can be used to produce such
definitions. A defunp form expands as follows:

(defunp fctn (args)
form 1
form2

formn)
expands into

(defun fctn (args)
(prog nil

4.3 Non-local Exi ts

*catch tag form

forml
form2

(return formn»)

*catch is the Li~p Machine Lisp function for doing structured non-local exits.
(*catch tag form) evaluates form and returns its value, except that if, during the
evaluation of form, (*throw tag y) should be evaluated, *catch immediately
returns y without further evaluating x. Note that the form argument is not
evaluated twice: the special action of *catch happens during the evaluation of its
arguments, not during the execution of *catch itself.

The tag's are used to match up *throw's with *catch's. <*catch 'foo form} will
catch a (*throw 'foo form) but not a (*throw 'bar form). It is an error if
*throw is done when there is no suitable *catch (or catch-all: see below).

The values t and nil for tag are special and mean that all throws are to be caught.
The~e are u~ed by unwind-protect and catch-all respectively. The only difference
between t and nil is in the error checking; t implies that after a -cleanup handler" is
executed control will be thrown again to the same tag. therefore it is an error if a
~pecific catch for this tag does not exist higher up in the stack.

DSK:LMMAN:FD.FLO 61 6-JAN-79

Preliminary Lbp Machine Manual 33 Non-local Exits

*catch returns up to four values: trailing null values are not returned for reasons
of microcode simplicity, however the values not returned will default to nil if they
are received with the multiple-value special form. If the catch completes normally.
the first value is the value of form and the second is nil. If a *throw occurs, the
first value is the second argument to *throw, and the second value is the first
argument to *throw, the tag thrown to. The third and fourth values are the third
and fourth arguments to *unwind-stack if that was used in place of *throw,
otherwise nil. To summarize. the four values returned by *catch are the value, the
tag. the active-irame-count, and the action.
Example

(*catch /negative
(mapcar (function (lambda (x)

y)

(cond «minusp x)
(*throw /negat1ve x»

(t (f x» »)

which returns a list of f of each element of y if they are all positive, otherwise the
first negative member of y.

Note: The Lisp Machine Lisp functions *catch and *throw are improved versions
of the ~laclisp functions catch and throw. The Maclisp ones are similar in purpose,
but take their arguments in reversed order, do not evaluate the tag, and may be
used in an older form in which no tag is supplied. Compatibility macros are
supplied so that programs using the Maclisp functions will work.

*throw tag value
*throw is used with *catch as a structured non-local exit mechanism.

(*throw tag x) throws the value of x back to the most recent *catch labelled with
tag or t or nil. Other *catches are skipped over. Both x and tag are evaluated,
unlike the Maclisp throw function.

The values t and nil for tag are reserved. nil may not be used. because it would
cau~e an ambiguity in the returned values of *catch. t invoke~ a special feature
whereby the entire stack is unwound. and then a coroutine transfer to the invoking
stack-group is done. During this process unwind-protects receive control, but
catch-ails do not. This feature is provided for the benefit of system programs which
want to completely unwind a stack. It leaves the stack-group in a somewhat
inconsistent state; it is best to do a stack-group-preset immediately afterwards.

See the description of *catch for further details.

DSK:LMMAN;FD.FLO 61 6-JAN-79

Non-local Exits 34 Preliminary Lisp Machine Manual

catch Macro
throw t.lacro

catch and throw are provided only for Maclisp compatibility. They expand as
follows:

(catch form tag) == > (*catch (quote tag) form)
(throw form tag) ==> (*throw (quote tag) form)

The forms of catch and throw without tags are not supported.

*unwind-stack tag value active-frame-count action
Thi~ i~ a generalization of *throw provided for program-manipulating programs such

as the error handler.

tag and value are the same as the corresponding arguments to *throw.

activ('-frame-count. if non-nil. is the number of frames to be unwound. If thb
count~ down to zero before a suitable *catch is found, the *unwind-stack
terminates and that frame returns value to whoever called it. This is similar to
~Iacli~p\ (return function.

If action is non-nil. whenever the *unwind-stack would be ready to terminate
(either due to active-frame-count or due to tag being caught as in *throw), instead,
a ~tack-group call is forced to the previous stack-group, generally the error handler.
The unwound stack-group is left in awaiting-return state, such that the value·
returned when the stack-group is resumed will become the value returned by the
frame, (i.e. the value argument to *unwind-stack will be ignored in this case, and
the value pa~sed to the stack group when it is resumed will be used instead.)

~ote that if both active-frame-count and action are nit *unwind-stack is identical

to *throw.

unwind-protect Macro
Sometimes it i~ nece~~ary to evaluate a form and make sure that certain side-effects
take place after the form is evaluated: a typical example is:

(progn
(turn-on-water-faucet)
(hairy-function 3 nil /foo)
(turn-off-water-faucet»

The non-local exit facility of Lisp creates a situation in which the above code won't
work, however: if hairy-function should do a *throw to a *catch which is
out~ide of the progn form, then (turn-off -water-faucet) will never be evaluated
(and the faucet will presumably be left running).

I n order to allow the above program to work, it can be rewritten using unwind
protect as follows:

DSK:LM~1AN;FD.FLO 61 6-JAN-79

I

I ,
t
!
¥

Preliminary Lisp ~1achine Manual 35

(unwind-protect
(progn (turn-on-water-faucet)

(hairy-function 3 nil /foo»
(turn-off-water-faucet»

Mapping

If hairy-function does a *throw which attempts to quit out of the evaluation of
the unwind-protect, the (turn-off -water-faucet) form. will, be evaluated in
between the time of the *throw and the time at which the *catch returns. If the
progn returns normally, then the (t.urn-of(-wat.er-faucet.) is evaluated, and the
unwind-protect returns the result of the procn. One thing to note is that
unwind-protect cannot return multiple values.

The general form of unwind-protect looks like
(unwi nd-protect protected-form

forml
form2
...)

prott'cted-form is evaluated, and when it returns or when it attempts to quit out of
th~ unwind-protect, the forms are evaluated.

let -globally It-facro
let-globally is similar in form to let (see page 17). The difference is that let
globally does not bind the variables; instead. it sets them, and sets up an unwind
protect (see page 34) to set them back. The important difference between let
globally and let is that when the current stack group (see page 105) cocalls some
other stack group, the old value:; of the variables are not restored.

catch-all Macro
(catch-all form) is like (*catch some-tag form) except that it will catch a *throw
to any tag at all. Since the tag thrown to is the second returned value, the caller of
catch-all may continue throwing to that tag if he wants. The one thing that
catch-all will not catch is a *throw to t.. cat.ch-all ·is a macro which expands
into *catch with' a tag of nil.

4.4 Mapping

map fen & rest lists
mapc fcn & rest lists
maplist fen &rest lists
mapcar fen & rest lists
mapcon fcn & rest lists
mapcan fcn & rest lists

Mapping is a type of iteration in which a function is successively applied to pieces
of a list. There are several options for the way in which the pieces of the list are
cho~en and for what is done with the results returned by the applications of the
function.

DSK:LMMAN;FD.FLO 61 6-JAN-79

Mapping 36 Preliminary Lisp Machine Manual

For example, mapcar operates on successive elements of the list. As it goes down
the list, it calls the function giving it an element of the list as its one argument:
first the car. then the cadr, then the caddr, etc., continuing until the end of the
list is reached. The value returned by mapcar is a list of the results of the
~uccessive calls to the function. An example of the use of mapcar would be
mapcar'ing the function abs over the list (1 -2 -4.5 6.0e15 -4.2), which would be
written as (mapcar (function abs) '(1 -2 -4.5 6.0e15 -4.2)). The result is (1 2 4.S
6.0~IS 4.2).

In general, the mapping functions take any number of arguments. For example,
(mapcar f xl x2 ... xn)

In this ca,e f must be a function of n arguments. mapcar will proceed down the
lists xl. x2, xn in parallel. The first argument to f will come from xl, the
se<.:ond from x2, etc. The 'iteration stops as soon as any of the lists is exhausted.

There are five other mapping functions besides mapcar. maplist is like mapcar
ex<.:ept that the function is applied to the list and successive cdr's of that list rather
than to successive elements of the list. map and mapc are like maplisl and mapcar
respectively, except that they don't return any useful value. These functions are
used when the function is being called merely for its side-effects, rather than its
returned values. mapcan and mapcon are like mapcar and maplist respectively.
except that they combine the results of the function using nconc instead of list.
That is.

(defun mapcon (f x y)
(apply /nconc (maplist f x y»)

Of course, this definition is less general than the real one.

Sometimes a do or a straightforward recursion is preferable to a map; however, the
mapping functions should be used wherever they naturally apply because this
increases the clarity of the code.

Often f will be a lambda-expression, rather than a symbol; for example,
(mapcar (function (lambda (x) (cons x something»)

some-list)

The functional argument to a mapping function must be acceptable to apply - it
cannot be a macro or the name of a special form. Of course, there is nothing
wrong with using functions which have optional and rest parameters.

DSK:LMMAN;FD.FLO 61 6-JAN-79

Preliminary Li~p Machine Manual 37

Here is a table showing the relations between
the six map functions.

returns

applies function to

successive
sublists

successive
elements

---------------+--------------+---------~-----+
its own
second

argument
map mapc

---------------+--------------+---------------+
list of the
function
results

maplist mapcar

---------------+--------------+---------------+
nconc of the

function
results

mapcon mapcan

---------------+--------------+---------------+

Mapping

There are also functions (mapa toms and mapatoms-all) for mapping over all
symbols in certain packages. See the explanation of packages (page 176).

DSK:LMMAN;FD.FLO 61 6-JAN-79

Manipulating List Structure 38 Preliminary Lisp Machine Manual

5. Manipulating List Structure

5.1 Conses

car x

cdr x

Return~ the car of x.
Example:

(car /(a be» => a

Returns the cdr of x.
Example:

(cdr /(a be» => (b c)

Officially car and cdr are only applicable to conses and locatives. However, as a matter
of conv~nience, a degree of control is provided over the action taken when there is an
attempt to apply one of them to a symbol or a number. There are four mode-switches
known a~ the car-number mode. cdr-number mode. car-symbol mode. and cdr-symbol mode.
Here are the meanings of the values of these mode switches:

car-number = 0

car-number = I

cdr-number = 0

cdr-number == I

car-symbol = 0

car-symbol = I

car-symbol = 2

car-symbol := 3

cdr-symbol = 0

cdr-symbol = 1

cdr-~ymbol = 2

cdr-symbol = 3

car of a number is an error. This is the default.

car of a number is nil.

cdr of a number is an error. This is the default.

cdr of a number is nil.

car of a symbol is an error.

car of nil is nil, but the car of any other symbol is an error. This is the
default.

car of any symbol is nil.

car of a symbol is its print-name.

cdr of a symbol is an error.

cdr of nil is nil, but the cdr of any other symbol is an error. This is the
default.

cdr of any symbol is nil.

cdr of nil is nil, cdr of any other symbol is its property list.

The values of the mode switches can be altered with the function set-error";mode (see
page 264). They are stored as byte fields in the special variable i.m-flags. The reason that
the nvo symbol modes default in that fashion is to allow programs to car and cdr off the
ends of lists without having to check, which is sometimes useful. A few system functions
depend on car and cdr of nil being nil, although they hadn't ought to, so things may
break if you change the~e modes.

DSK:LMMAN:FD.CON 85 6-JAN-79

Preliminary Lisp Machine Manual 39 Conses

The value of 3 for the symbol mode~ exists for compatibility with ancient versions of
~1ac1i::.p. and should not be used for any other reasons. (The appropriate functions are get
pname (see page 65) and plist (see page 64).) Note: unlike Maclisp, the values of the
symbols car and cdr are not used: the various mode switches above serve their purpose.
Abo unlike ~iaclisp. this error checking is always done. even in compiled code. regardless
of the value of *rset.

c ... r x
All of the composltlOns of up to four car's and cdr's are defined as functions in
their own right. The names of these functions begin with "c" and end with "r". ¥d
in between is a sequence of "a"'s and "d"'s corresponding to the composition
performed by the function.
Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x»»
The error checking for these functions is exactly the same as for car and cdr above.

cons x y
cons is the primitive function to create a new cons. whose car is x and whose cdr
is y.
Examples:

ncons x

(cons /a /b) => (a . b)
(cons /a (cons /b (cons /c nil») => (a b c)
(cons /a /(b cd» => (a b c d)

(ncons x) is the same as (cons x niO. The name of the function is from "nil-cons·.

)(cons x y
xcons ("exchanged cons") is like cons except that the order of the arguments is
reversed.
Example:

(xcons /a /b) => (b . a)

There are two reasons this exists: one is that you might want the arguments to cons
evaluated in the other order, and the other is that the compiler might convert calls
to cons into calls to xcons for efficiency. In fact, it doesn't.

cons-in-area x y area-number
This function creates a cons in a specific area. (Areas are an advanced feature of
storage management: if you aren't interested in them, you can safely skip all this
stuff). The first two arguments are the same as the two arguments to cons, and the
third is the number of the area in which to create the cons.
Example:

(cons-in-area /a /b my-area) => (a . b)

DSK:LMMAN;FD.CON 8S 6-JAN-79

List$ 40 Preliminary Lisp Machine Manual

ncons-in-area x area-numbl.'r
(ncons-in-area x area-number) = (cons-in-area x nil area-number)

xcons-in-area x y area-number
(xcons-in-area x y area-number) = (cons-in-area y x area-number)

The backquote reader macro facility is also generally useful for creating list structure,
especially mo~tly-con~tant li~t structure, or forms constructed by plugging variables into 8

template. It is documented in the chapter on Macros, see page 135.

car-location cons
car-location returns a locative pointer to the cell containing the car of cons.

l'ote: there is no 'cdr-Iocation function; it is difficult because of the cdr-coding
scheme.

5.2 Lists

The following ~ection explains some of the basic functions provided for dealing with
lists. There has been some confusion about the term list ever since the beginnings of the
language: for the purposes of the following descriptions, a list is the symbol nil. or a cons
whose cdr is a list. Note well that although we consider nil to be a list (the list of zero
elements). it is a symbol and not a cons, and the listp predicate is not true of it (but
perhaps listp will be changed in the future).

last list
last returns the la"t cons of list. If list is nil, it returns nil.
Example:

(setq x /(a b cd»
(last x) => (d)
(rplacd (last x) /(e f»
x => /(a b c d e f)

last could have. been defined by:
(defun last (x)

length list

(cond «atom x) x)
«atom (cdr x» x)
«last (cdr x») »

length returns the length of list. The length of 8 list is the number of top-level
con~es in it.
Examples:

(length nil) => 0
(length/(a bed» => 4
(length /(a (b c) d» => 3

Iftngth could have been defined by:

DSK:LM\iAN;FD.CON 85 6-JAN-79

~
f
i
J

t

I
I
I
I
t
I ,
\

.' ~~, ~

.-~:$ - :):\;{-:

Preliminary Lisp Machine Manual 41

first Jlacro
s~cond Macro
thi rd ~/acro

(defun length (x)
(cond «atom x) 0)

«1+ (length (cdr x»» »
or by:

(defun1ength (x)
(do «n 0 (1+ n»

(y x (cdr y»)
((a tom y) n) »

f ourth ~"Iacro
fifth Macro
sixth }dacro
seventh Macro

rt-stl ~/acro
rE'st2 J.lacro
rest3 Macro
rest4- Macro

(first x) ==> (car x)
(second x) ==> (cadr x)
(third x) ==> (caddr x)
(fourth x) ==> (cadddr x)

etc.

(restl x) ==> (cdr x)
(rest2 x) ==> (cddr x)
(rest3 x) ==> (cdddr x)
(rest4 x) ==> (cddddr x)

Lists

nth n list
<nth n list) returns the n'th element of list, where the zeroth element is the car of
the list.
Examples:

(nth 1 /(foo bar gack» => bar
(nth 3 /(foo bar gack» => nil

Note: this is not the same as the InterLisp function called nth. whose precise
equivalent is the function nthcdr. Also. some people have used macros and
functions called nth of their own in their Maclisp programs. which may not work
the same way; be careful.

nth could have been defined by:

DSK:L~t'MAN:FD.CON 85 6-JAN-19

Lists

(defun nth (n list)
(do «1 n (1- i»

42

(1 list (cdr 1»)
«zerop i) (car 1»»

Preliminary Lisp Machine· Manual

nthedr n list
{nthcdr n list} cdrs list n times, and returns the result.
Examples:

(nthcdr 0 /(a b c» => (a b c)
(nthedr 2 /(a be» => (e)

In other words, it returns the n'th cdr of the list. This is the same as InterLisp's
function nth. nthcdr is defined by:

(defun nthcdr (n list)

list &rest args

(do «i 0 (1+ i»
(list list (cdr list»)

«= i n) list»)

list construct::; and returns a list of its arguments.
Example:

(list 3 4 /a (car /(b . c» (+ 6 -2» => (3 4 a b 4)
list could have been defined by:

(defun list (&rest args)

list* & rest args

(let «list (make-list default-cons-area (length args»»
(do «1 list (cdr 1»

(a args (cdr a»)
«null a) list)

(rp1aca 1 (car a»»)

list* is like list except that the last cons of the constructed list is -dotted", It must
be given at least two arguments.
Example:

(list* /a /b /c /d) => (a b c . d)
This is like
(cons /a (cons /b (cons /c /d»)

list-in-area orca-number &rest args
list-in-area is exactly the same a~ list except that it takes an extra argument, an
area number, and creates the list in that area

make-list arca size
This creates and returns a list containIng size elements, each of which is nil. size
should be a fixnum. The list is allocated in the area specified; if you are not using
area." in any special way, just use the value of the symbol default-eons-area.

DSK:L~n\'fAN;FD.CON 85 6-JAN-79

t

Preliminary li~p Machine Manual 43 Lists

Example:
(make-list default-eons-area 3) => (nil nil nil)

Of cour~e, this function is not usually used when the value of the second argument
is a con~tant; if you want a list of three nils, it is easy enough to type (nil nil nil).
make-list is used when the number of elements is to be computed while the

program is being run.

make-list and cons are the two primitive list-creation functions which all the other
functions call. The difference is that make-list creates a cdr-coded list (see page

48).

circular-list & re~t args
circular-list constructs a circular list whose elements are arcs, repeated infinitely.
circular-list is the same as list except that the list itself is used as the last cdr.
instead of nil. circular-list is especially useful with mapcar, as in the expression

(mapcar (function +) foo (circular-list 5»
which adds each element of f 00 to 5.

append & re~t lists
The argumenb to append are li~b. The result is a list which is the concatenation of
the argument~. The arguments are not changed (cf. nconc).
Example:

(append /(a b c) /(d e f) nil /(g» => (a b c d e f g)
To make a copy of the top level of a list, that is, to copy the list but not its
elements, use (append x niD.

A ven.ion of append which only accept~ two arguments could have been defined by:
(defun append2 (x y)

(cond «null x) y)
«cons (car x) (append2 (cdr x) y» ~»

The generalization to any number of arguments (':ould then be made:
(defun append (&rest args)

(and args (append2 (car args)
(apply (function append) (cdr args»»)

The~e definition~ do not express the full functionality of append: the real definition
minimize~ storage utilization by cdr-coding the list it produces t using cdr-next except
at the end where a full node is used to link to the last argument, unless the last
argument was nil in which ca<>e cdr-nil is u~ed.

reverse list
reverse creates a new list whose elements are the elements of list taken in reverse
order. reverse does not modify its argument, unlike nreverse which is faster but

does modify its argument.

DSK:lMMAN;FD.CON 85 6-JAN-79

"'i"·I/:~'''·' ________ _

"r;

Lists 44 Preliminary Lisp Machine Manual

Example:
(reverse /(a b (e d) e» => (e (c d) b a)

reVE'rse could have been defined by:
(defun reverse (x)

(do « 1 x (cdr 1» ; scan down argument,
(r nil ; putting each element

(cons (car 1) r») ; into list, until
((nu 11 1) r») ; no more elements.

nconc & re:-t lists
nconc take:-- li~t~ a~ arguments. It returns a list which is the arguments concatenated
together. The arguments are changed, rather than copied. (cf. append, page 43)
Example:

(setQ x /(a be»
(setQ y /(d e f»
(ncone x y) =) (a bed e f)
x =) (a bed e f)

~()te that the value of x is now different, since its last cons has been rplacd'd to
the value of y. If the nconc form is evaluated again, it would yield a piece of
"circular" li:--t !'tructure. who!'e printed representation would be (a bed e f d e f d
e f .. '), repeating forever.

nconc could have been defined by:
(defun neone (x y)

(eond «null x) y)
; for simplicity, this definition
; only works for 2 arguments.

x) y) ; hook y onto x

nreVE'rse list

(t (rplacd (last
x))) ; and return the modified x.

nrE'v~rsE' reverses its argument, which should be a list. The argument is destroyed
by rplacd's all through the list (cf. reverse).
Example:

(nreverse /(a be» =) (e b a)
nreverse could have been defined by:

(defun nreverse (x)
(eond «null x) nil)

«nreverse} x nil»»

(defun nreversel (x y) ; auxiliary function
(eond «null (cdr x» (rplaed x y»

«nreversel (cdr x) (rp1acd x y»»)
; ; this last call depends on order of argument evaluation.

Currently, nreverse does something inefficient with cdr-coded lists. however this will
be changed. In the meantime reverse might be preferable in some cases.

DSK:L\i\1A~:FD.CON 85 6-JAN-79

Preliminary Li~p Machine Manual 45 Lists

nreconc x y
(nreconc x y) b exactly the ~ame as (nconc (nreverse x) y) except that it is more
efficient. Both x and y should be lists.

nreconc could have been defined by:
(defun nreconc (x y)

(cond «null x) y)
«nreversel x y» »

w.ing the same nreversel as above.

push Ma,'ro
The form is (push item place), where item is an arbitrary object and place is a
reference to a cell containing a list. Usually place is the name of a variable. item is

consed onto the front of the list.

The form
(push (hairy-function x y z) variable)

replaces the commonly-used construct
(setQ variable (cons (hairy-function x y z) variable»

and is intended to be more explicit and esthetic. In general, (push item place)
expands into (setf place (cons item place)). (See page 146 for an explanation of

setf.)

pop Macro
The form i~ (pop place). The result is the car of the contents of place, and as a
side-effect the cdr of the contents is stored back. into place.
Example:

(setQ x /(a be»
(pop x) => a
x => (b c)

In general, (pop place) expands into (progl (car place) (setf place (cdr place»)).'

(See page 146 for an explanation of setf.)

butlast list
This creates and returns a list with the same elements as list, excepting the last

element.
Examples:

(but1ast /(a bed» =) (a b c)
(butlast /«a b) (c d» => «a b»
(butlast /(a» => nil
(butlast nil) => nil

The name is from the phrase "all elements but the last".

DSK:LM!\·1AN;FD.CON 85 6-JAN-79

Alteration of Li~t Structure 46 Preliminary Lisp Machine Manual

nbutlast lisl

Thi~ i~ the de!'tructive version of butlast; it changes the cdr of the second-to-Iast
con~ 0f the Ii~t to nil. If there is no second-to-Iast cons (that is, if the list has fewer
than two eJemenb) it returns nil.
Example!':

firstn n lisl

(setQ foo /(a bed»
(nbutlast fool => (a b c)
foo = > (a be)
(nbut1ast /(a» => nil

fi rstn returns a list of length n. whose elements are the first n elements of list. If
list is fewer than n elements long, the remaining elements of the returned list will be
nil.
Example:

(firstn 2 /(a bed» => (a b)
(firstn 0 /(a bed» => nil
(firstn 6 /(a bed» => (a bed nil nil)

Idiff list sub/ist

list ~hould be a list, and sub/ist should be a sublist of list, i.e. one of the conses that
make up list. Idiff (meaning List Difference) will return a new list, whose elements
are tho~e element~ of list that appear before sublisl.
Examples:

(setQ x /(a bed e»
(setQ y (cdddr x» => (d e)
(ldiff x y) => (a b c)
but

(ldiff /(a bed) /(c d» => (a bed)
since the sublist was not eq to any part of the list.

5.3 Alteration of List Structure

The functions rplaca and rplacd are used to malee alterations in already-existing list
structu re: that i!', to change the cars and cdrs of existing conses.

The structure is not copied but is physically altered: hence caution should be exercised
when using the~e functions, as strange side-effects can occur if portions of list structure
become ~hared unbeknownst to the programmer. The ncone, nreverse, nreeonc, and
nbutlast functions already described, and the delq family described later, have the same
property. However, they are normally not used for this side-effect; rather, the list-structure
modification is purely for efficiency and compatible non-modifying functions are provided.

DSK:L\-f~fAN:FD.CON 85
6-JAN-79

I
I
f

I
f

I
J

I ,

Preliminary Lisp ~fachine Manual 47 Alteration of List Structure

rplaca x .v
(rplaca x y) changes the car of x to y and returns (the modified) x. x should be a
con!', but y may be any Lisp object.
Example:

rplacd x y

(setq 9 /(a be»
(rplaca (cdr g) /d) => (d c)
Now 9 => (a d c)

(rplacd x y) changes the cdr of x to y and returns (the modified) x. x should be a
cons, but y may be any Lisp object.
Example:

(setq x /(a be»
(rplacd x/d) => (a . d)
Now x = > (a • d)

Note to Maclisp users: rplacd should not be used to set the property list of a
symbol, although there is a compatibility mode in which it will work. See car (page
38). The right way to set a property list is with setplist (see page 64).

subst x y z

(subst x y z) substitute~ x for all occurrences of y in z, and returns the modified
copy of z. The original z is unchanged, as subst recursively copies all of z
replacing elements eq to y a, it goes. If x and yare nil, z is just copied, which is
a convenient way to copy arbitrary list structure.
Example:

(subst /Tempest /Hurricane

/(Shakespeare wrote (The Hurricane»)
=> (Shakespeare wrote (The Tempest»

subst could have been defined by:
(defun subst (x y z)

(eond «eq z y) x)
«atom z) z)
«cons (subst x

(subst x

; if item eq to y, replace.
; if no substructure, return argo
y (car z» ;otherwise recurse.
y (cdr z»»»

Note that this function is not "destructive"; that is, it does not change the car or cdr
of any already-existing list structure.

sublis alis! S -expression

sublis makes substitution!' for symbols in an S-expression (a structure of nested lists).
The first argument to sublis is an association list (see the next section). The second
argument i!' the S-expres~ion in which substitutions are to be made. sublis looks at
all !>ymbob in the S-expression: if a symbol appears in the association list occurrences
of it are replaced by the object it is associated with. The argument is not modified;
new conses are created where necessary and only where necessary, so the newly
created structure shares as much of its substructure as possible with the old. For
example, if no substitutions are made, the result is eq to the old S-expression.

DSK:LMMAN;FD.CON 85 6-JAN-79

Cdr-Coding 48

Example:
(sublis "«x. 100) (z . zprime»

"(plus x (minus g z x p) 4»

Preliminary Lisp Machine Manual

=) (plus 100 (minus g zprime 100 p) 4)

5.4 Cdr-Coding

There i~ an i~~ue which tho~e who must be concerned with efficiency will need to think
about. In the Li~p Machine there are actually two kinds of lists; normal lists and cdr-coded
list~. ~nrmal li~b take two words for each cons, while cdr-coded lists require only one
word for each cons. The ~aving is achieved by taking advantage of the usual structure of
lists to avoid ~toring the redundant cdrs which link together the conses which make up the
list. Ordinarily, rplacd'ing such a list would be impossible, since there is no explicit
repre~entation of the cdr to be modified. However, in the Lisp machine system it is merely
~ome\\'hat expen~ive; a 2-word ordinary cons must be allocated and linked into the list by
an invi~ible p(")inter. This is slower than an ordinary rplacd, uses extra space, and slows
down future acce~~ing of the list.

One ~h0Uld try to u~e normal lists for those data structures that will be subject to
rplacd ing operations, including nconc and nreverse, and cdr-coded lists for other
~tructures. The function~ cons, xcons, ncons, and their area variants make normal lists.
The functions list, list*, list-in-area, make-list, and append make cdr-coded lists. The
other li~t-creating functions, including read, currently make normal lists, but this should not
be relied upon. Some functions, such as sort, take special care to operate efficiently on
cdr-coded list~ (sort treats them as arrays). nreverse is rather slow on cdr-coded lists,
currently, since it simple-mindedly uses rplacd, however this will be changed.

It is currently not planned that the garbage collector compact ordinary lists into cdr
coded li5t5. (append x nil) is a suitable way to copy a list, converting it into cdr-coded
form.

5.5 Tables

Li~p \tachine Li~p includes several functions which simplify the maintenance of tabular
data ~tru<.~ture~ of ~everal varieties. The simplest is a plain list of items, which models
(approximately) the concept of a set. There are functions to add (cons), remove (delete,
delq, del. del-if, del-if -not, remove, remq, rem, rem-if, rem-if -not), and search for
(member, memq, mem) items ina list. Set union, intersection, and difference functions
are ea~ily written u~ing these.

Association lists are very commonly u~ed. An association list is a list of conses. The car
of each cons i~ a "key" and the cdr is a "datum", or a list of associated data. The functions
assoc, assq, ass, memass, and rassoc may be used to retrieve the data, given the key.

DSK:l~~AN:FD.CON 85 6-JAN-79

Preliminary Li~p Machine Manual 49 Tables

Structured records can be stored as assoCiation lists or as stereotyped cons-structures
where each element of the structure has a certain car-cdr path associated with it. However.
the~e are better implemented using structure macros (see page 144).

Simple li!'t-~tructure is very convenient, but may not be efficient enough for large data
ba~e~ becau~e it takes a long time to search a" long list. Lisp Machine lisp includes a hashing
function" (sxhash) which aids in the construction of more efficient, hairier structures.

memq itl'nl list
(memq item list) returns nil if item is not one of the elements of list. Otherwise. it
returns the portion of list beginning with the first occurrence of item. The
comparison is made by eq. list is searched on the top level only. Because memq
returns nil if it doesn't find anything. and something non-nil if it finds something, it
is often used as a predicate.
Examples:

(memq 'a '(1 2 34» => nil
(memq 'a '(g (x y) cad e a f» => (a d e a f)

~ote that the value returned by memq is eq to the portion of the list beginning
with a. Thus rplaca on the result of memq may be used, if JOU first check to make

sure memq did not return nil.
Example:

(*catch 'lose
(rplaca (or (memq x z)

(*throw 'lose nil»
y)

memq could have been defined by:
(defun memq (item list)

(cond «atom list) nil)
«eq item (car list» list)
«memq item (cdr list») »

memq is hand-coded in microcode and therefore especially fast.

member item list
member is like memq. except equal is used for the comparison, instead of eq.

member could have been defined by:
(defun member (item list)

(cond «null list) nil)

DSK:LM~A~:FD.CON 85

«equal item (car list» list)
«member item (cdr list») »

6-JAN-79

Table~ 50 Preliminary Lisp Machine Manual

mflm predicate item list
m~m i~ the ~ame as memq except that it takes an extra argument which should be a
p·redicate of two arguments, which is used for the comparison instead of eq. (mem
'~q a b) b the same as (memq a b). (mem 'equal a b) is the same as (member a
b)'

m~m is u~lIally u~ed with equality predicates other than eq ana equal, such as .,
char-~qual or string-~qual.

dfllq item list & optional n
(d~lq item list) returns the list with all top-level occurrences of item removed. eq is
used for the comparison. The argument list is actually modified (rplacd'ed) when
instance~ of item are ~pliced out. delq should be used for value, not for effect.
That is, u~e

(setQ a (delQ /b a»
rather than

(delQ /b a)
The latter is not equivalent when the first element of the value of a is b.

(d~lq item list n) is like (d~lq item list) except only the first n instances of item are
deleted. n i~ allowed to be zero. If n is greater than the number of occurrences of
item in the list, all occurrence:-; of item in the list will be deleted.
Example:

(delQ /a /(b a c (a b) d a e» => (b c (a b) d e)

dt-Iq could have been defined by:
(defun delQ (item list &optional (n 7777777» ;7777777 as infinity.

(cond «or (atom list) (zerop n» list)
«eQ item (car list»

(delQ item (cdr list) (1- n»)
«rplacd list (delQ item (cdr list) n»»)

delflte item list &optional n
dE-l~te IS the same as delq except that equal is used for the comparison instead of
~q.

del predicate item list & optional n
dE-I is the ~ame as delq except that it takes an extra argument which should be a
predicate of two arguments. which is used for the comparison instead of eq. (del
'E-q a b) is the same as (delq a b). (c.f. mem, page 50)

remq item list &optional n
rE-mq is similar to delq, except that the list IS not altered; rather, a new list is
returned. •

DSK:LM~iAN;FD.CON 85 6-JAN-79

Preliminary Li::\p Machine Manual 51

Example!-:
(setq x /(a bed e f»
(remq /b x) => (a c d e f)
x => (a bed e f)
(remq /b /(a b c b a b) 2) => (a c a b)

Tables

remo ve it('m list & optional n
remove i~ the ~ame as remq except that equal is used for the comparison instead of

eq.

rem predicate item list &optional n
rem is the ~ame as remq except that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instead of eq. (rem

'eq a b) is the ~ame as (remq a b). (c.f. mem page 50)

rem-if predicate list
predicate should be a function of one argument. rem-if makes a new list by
applying prc'dicate to all of the elements of list and removing the ones for which the
predicate return5 non-nil. The function's name means "remove if this condition is

true".

rem-if -not predicate list
predicate should be a function of one argument. rem-if -not makes a new list by
applying predicate to all of the elements of list and removing the ones for which the
predicate returns nil. The function's name means "remove if this condition is not
true": i.e. it keeps the elements for which predicate is true.

del-if pn'dicate list
del-if is just like rem-if except that it modifies list rather than creating a new list.

See rem-if.

del-if -not predicate list
del-if -not is ju~t like rem-if -not except that it modifies list rather than creating a

new list. See rem-if -not.

every list predicate &optional step-function
every returns t if predicate returns non-nil when applied to every element of list,
or nil if predicate returns nil for some element. If step-function is present, it
replaces cdr as the function used to get to the next element of the list.

some list predicate &optional step-function
some returns t if predicate returns non-nil when applied to some element of list, or
nil if predicate returns nil for every element. If step-function is present, it replaces
cdr as the function used to get to the next element of the list.

DSK:LMMAN;FD.CON 85
6-JAN-79

Tables 52 Preliminary Lisp Machine Manual

tailp sub/ist list
Returns t if sub/ist is 8 sublist of list (i.e. one of the conses that makes up list).
Otherwise returns nil.

sxhash S -('xprcssion
sxhash computes a hash code of an S-expression, and returns it as a fixnum, which
may be p0~itive or negative. A property of sxhash is that (equal x y) implies (=
(sxhash x) (sxhash y)). The number returned by sxhash is some possibly large
number in the range allowed by fixnums. It is guaranteed that:
1) sxhash f()r a ~)'mbol will always be positive.
2) sxhash of any particular expression will be constant in a particular implementation
for all time, probably.
3) sxhash (If any object of type random will be zero.
4) sxhash of a fixnum will = that fixnum.

Here is an example of how to use sxhash in maintaining hash tables of S-expressions:
(defun knownp (x) ; look up x in the table

(prog (i bkt)
(setQ i (plus 76 (remainder (sxhash x) 77»)

;The remainder should be reasonably randomized between
;-76 and 76, thus table size must be > 175 octal.

(setQ bkt (aref table i»
;bkt is thus a list of all those expressions that hash
;into the same number as does x.

(return (memQ x bkt»»

To write an "intern" for S-expressions, one could
(defun sintern (x)

assq item alist

(prog (bkt item)
(setQ bkt (aref table

(setq i (+ 2n-2 (\ (sxhash x) 2n-l»»)
;2n-l and 2n-2 stand for a power of 2 minus one and
;minus two respectively. This is a good choice to
;randomize the result of the remainder operation.

(return (cond «setq tern (memq x bkt»
(car tern»

(t (aset (cons x bkt) table i)
x)'»»

(assq item alist> looks up item in the association list (list of conses) a/ist. The value
is the fir~t cons whose car is eq to x, or nil if there is none such.

DSK:L~t\tAS;FD.CON 85 6-JAN-79

Preliminary Lbp Machine Manual 53 Tables

Example~:
(assq 'r ;'«a . b) (c . d) (r . x) (s . y) (r • z»)

=) (r. x)

(assq ;'fooo '«foo . bar) (zoo. goo») => nil

(assq 'b '«a b c) (b c d) (x y z») => (b c d)

It b okay to rplacd the result of assq as long as it is not nil, if your intention is to
"update" the "table" that was assq's second argument.

Example:
(setq values '«x. 100) (y . 200) (z. 50»)
(assq 'y values) =) (y . 200)
(rp1acd (assq 'y values) 201)
(assq 'y values) => (y . 201) now

A typical trick is to say (cdr (assq x y». Assuming the cdr of nil is guaranteed to
be nil, this)'ields nil if no pair is found (or if a pair is found whose cdr is nil.)

assq could have been defined by:
(defun assq (item list)

(cond «null list) nil)
«eq item (caar list» (car list»
«assq item (cdr list») »

assoc item a/ist
asso~ is like assq except that the comparison uses equal instead of eq.

Example:
(assoc '(a b) '«x. y) «a b) . 7) «c. d) .e»)

=) «a b) . 7)
assoc could have been defined by:

(defun assoc (item list)
(cond «null list) nil)

«equal item (caar list»
«assoc item (cdr list»)

•

(car list»
))

ass predicate item alist
ass is the same as assq except that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instead of eq. (ass
'eq a b) is the same as (assq a b). (c.f. mem page 50)

memass predicate item alist
memass searches alist just like ass, but returns the portion of the list beginning with
the pair containing item, rather than the pair itself. (car (memass x y z» -= (ass x

y z).

6-JAN-79
DSK:LMMAN;FD.CON 85

''ft.''

:i{\0;;;t~:::: :

Tables 54 Preliminary Lisp Machine Manual

rassoc item alist
r assoc means reverse assoc. It is like assoc, but it tries to find an element of a/ist
whose cdr (not car) is equal to item. rassoc is defined by:

(defun rassoc (item in-list)
(do 1 in -1 is t (cdr 1) (nu 11 1)

(and (equal item (cdar 1»
(return (car 1»»)

sassq itt'm a/ist fen
(sassq item alist fen) is like (assq item alist) except that if item is not found in a/ist,
instead of returning nil, sassq calls the function fcn with no arguments. sassq
could have been defined by:

(defun sassQ (item alist fcn)
(or (assQ item a1ist)

(apply fcn nil»)

sassq and sassoc (see below) are of limited use. These are primarily leftovers from
Lbp 1.5.

sassoc item alist fen
(sassoc item a/ist fcn) is like (assoc item alist) except that if item is not found in
alist. instead of returning nil, sassoc calls the function fen with no arguments.
sassoc could have been defined by:

(defun sassoc (item alist fen)
(or (assoc item a1ist)

(apply fen nil»)

pairlis cars cdrs
pairlis takes two lists and makes an asSOCIation list which associates elements of the
first li~t with corresponding elements of the second list.
Example:

(pairlis ~(beef clams kitty) /(roast fried yu-shiang»
=> «beef. roast) (clams. fried) (kitty. yu-shiang»

find-position-in-list item list
find-position-in-1ist looks down list for an element which is eq to item, like
memq. Ht,\wever, it returns the numeric index in the list at which it found the first
occurence of item, or nil if it did not find it at all.
Examples:

(find-position-in-1ist /a /(a be» => 0
(find-position-in-1ist /e /(a be» => 2
(find-position-in-1ist /e /(a be» => nil

DSK:LMMAN:FD.CON 85 6-JAN-79

Preliminary Lbp ~tachine Manual 55 Sorting

find-position-in-list":equal item list
find-position-in-list-equal is exactly the same as find-position-in-list, except
that the comparison is done with equal instead of eq.

5.6 Sorting

Several functions are provided for sorting arrays and lists. These functions use
algorithms which always terminate no matter what sorting predicate is used, provided only
that the predicate always terminates. The array sort is not necessarily stobie; that is, equal
items may not stay in their original order. However the list sort is stable.

After sorting, the argument (be it list or array) is rearranged internally so as to be
completely ordered. In the case of an array argument, this is accomplished by permuting
the element::. of the array, while in the list case, the list is reordered by rplacd's in the
same manner as nreverse. Thus if the argument should not be clobbered, the user must
!'ort a copy of the argument, obtainable by fillarray or append, as appropriate.

Should the comparison predicate cause an error, such as a wrong type argument error,
the state of the list or array being sorted is undefined. However, if the error is corrected
the ~ort will. of c,ourse. proceed correctly.

The sorting package is smart about cdr-coded lists.

sort table predicate
The first argument to sort is an array or a list. The second is a predicate. which
must be applicable to all the objects in the array or list. The predicate: should take
two arguments, and return non-nil if and only if the first argument is strictly less
than the second (in some appropriate sense).

The sort function proceeds to, sort the contents of the array or list under the
ordering imposed by the predicate, and returns the array or list modified into sorted
order. i.e. its modified first argument. Note that since sorting requires many
comparisons, and thus many calls to the predicate, sorting will be much faster if the
predicate is a compiled function rather than interpreted.
Example:

(defun mostcar (x)
(cond «symbolp x) x)

«mostcar (car x»»)

(sort "'fooarray
(function (lambda (x y)

(alphalessp (mostcar x) (mostcar y»»)
If (ooarray contained these items before the sort:

DSK:LMMAN;FD.CON 85 6-JAN-79

Sorting 56

(Tokens (The lion sleeps tonight»
(Carpenters (Close to you»
«Rolling Stones) (Brown sugar»
«Beach Boys) (I get around»
(Beatles (I want to hold your hand»

then after the ~ort f ooarray would contain:
«Beach Boys) (I get around»
(Beatles (I want to hold your hand»
(Carpenters (Close to you»
«Rolling Stones) (Brown sugar})
(Tokens (The lion sleeps tonight»

Preliminary Lisp Machine Manual

sortcar x prl'dicat~

sortcar is exactly like sort, but the items in the array or list being sorted should
all be conse~. sortcar takes the car of each item before handing two items to the
predicate. Thus sortcar is to sort as mapcar is to maplist.

The spelling of the names of the next two functions will be corrected at"some point.

sort-grouped-array array group-size predicate
sort-grouped-array considers its array argument to be composed of records of
group-size elements each. These records are considered as units, and are sorted with
respect to one another. The predicate i~ applied to the first element of each record:
so the first elements act as the keys on which the records are sorted.

sort-grouped-array-group-keyarray group-size predicate
This is like sort-grouped-array except that the predicate is applied to four
arguments: an array. an index into that array, a second array, and an index into the
second array. predicate should consider each index as a subscript of the first element
of a record in the corresponding array, and compare the two records. This is more
general than sort-grouped-array since the function can get at all of the elements
of the relevant records, instead of only the first element.

DSK:lMMAN;FD.CON 85

Preliminary Lbp Machine Manual 57 S),mbols

8. Symbols

6.1 The Value Cell

Each symbol has associated with it a value cell, which refers to one Lisp object. This
object is called the ~ymbol's binding or value, since it is what you get when),ou evaluate
the symbol. The binding of symbols to values allows symbols to be used as the
implementation of variables in programs.

The value cell can also be empty, referring to no Lisp object, in which case the symbol
is ~aid to be unbound. This is the initial state of a symbol when it is created. An attempt
to evaluate an unbound symbol causes an error.

The binding of a symbol can be changed either by lambda-binding or by. assignment.
The difference is that when a symbol is lambda-bound, its previous value is saved away. to
be restored later. whereas assignment discards the previous value.

The symbols nil and t are always bound to themselves; they may not be assigned nor
lambda-bound. (The error of changing the value of t or nil is not yet detected. but it will
be.)

When closures are in use, the situation is a little more complicated. See the section on
closures.

When a Lisp function is compiled, most of its variables are compiled into local variables,
which are not represented by means of symbols. However the compiler recognizes usage of
the setq special form, and of the set and value-cell-location functions with a quoted
argument, as referring to variables rather than symbols, and generates the appropriate code
to access the corresponding local variable rather than the symbol.

set symbol value
set is the pnmltlVe for assignment of symbols. The symbors value is changed to
value; value may be any Lisp object. set returns value.
Example:

(set (cond «eq a b) /c)
(t /d»

/foo)
will either set c to foo or set d to foo.

setq Special Form
The special form (setq var J form J var 2 form2 ...) is the "variable assignment
statement" of Lisp. First form J is evaluated and the result is assigned to var 1, using
set, then form2 is evaluated and the result is assigned to var 2, and so forth. setq
returns the last value assigned, i.e. the result of the evaluation of its last argument.

DSK:LMMAN;FD.SYM 43 6-JAN-79

:~f;" ,t·.
~;\ ;;~)'~'{L> ::'V(~·,,;:L.:

The Value Cell 58 Preliminary Lisp Machine Manual

Example:
(setQ x (+ 3 Z 1) y (cons x nil»

x is set to 6, y is set to (6), and the setq returns (6). Note that the first assignment
was performed before the second form was evaluated, allowing that form to use the
new value of x.

psetq ,,"'[aero
A psetq form is just like a setq form, except that the assignments happen in parallel:
first all of the forms are evaluated, and then the symbols are set to the resulting
values.
Example:

(setQ a 1)
(setQ b 2)
(psetq a b b a)

a => 2
b => 1

symeval sym
symeval is the basic pnmltlve for retrieving a symbols's value. (symeval sym)
returns sym's current binding. This is the function called by eval when it is given a
symbol to evaluate. If the symbol is unbound, then symeval causes an error.

boundp sym
boundp returns t if sym is bound: otherwise, it returns nil.

makunbound sym
makunbound causes sym to become unbound.
Example:

(setQ a 1)
a => 1
(makunbound /a)
a = > causes an error.

makunbound returns its argument.

value-cell-location sym
value-cell-location returns a locative pointer to sym's value cell. See the section
on locatives.

[Must explain about external vs internal value celt]

DSK:LMMAN;FD.SYM 43 6-JAN-79

Preliminary Lisp Machine Manual 59 The Function Cell

6.2 The Function Cell

Every symbol abo has associated with it a function cell. The function cell is similar to
the value cell: it refers to a lisp object. When a function is referred to by name, that is,
when a symbol is applied or appears as the car of a form to be evaluated, that symbol's
function cell is used to find its deft nition. the functional object which is to be applied. For
example; when evaluating (+ 5 6), the evaluator looks in +'s function cell to find the
definition of +, in this c~e a FEF containing a compiled program, to apply to 5 and 6.

Maclisp does not have function cells: instead, it looks for special properties on the
property list. This is one of the major incompatibilities between the two dialects.

Like the value cell, a function cell can be empty, and it can be lambda-bound or
assigned. The following functions are analogous to the value-cell related functions in the
previous section.

fsymeval sym
fsymeval returns sym's definition, the contents of its function cell. If the function
cell is empty, fsymeval causes an error.

fset sym x
fset stores x, which may be any Lisp object, into sym's function cell. It returns x.

fboundp sym
fboundp returns nil if sym's function cell is empty. i.e. sym is undefined.
Otherwise it returns t.

fmakunbound sym
fmakunbound causes sym's to be undefined, i.e. its function cell to be empty. It
returns sym.

function-cell-location sym
function-cell-location returns a locative pointer to sym's function cell. See the
~ection on locatives.

The u!'ual means of putting a function in a symbol's function cell (defining the symbol)
is by means of the defun special form. Macros are put in a symbol's function cell by means
of the macro special form.

defun Special Form
def un is used for defining functions. A defun form looks like:

(defun name type lambda-list
body)

The type is only for Maclisp compatibility, and is optional and usually absent. The
lambda-list is as de~cribed on page 6 and may contain ·&-keywords".

DSK:LMMAN:FD.SYM 43 6-JAN-79

The Function Cell 60 Preliminary Lisp Machine Manual

Examples:
(defun addone (x)

(1+ x»

(defun foo (a &opt10na1 (b 5) c &rest e &aux j)
(setQ j (+ a b»
(cond «not (null c»

(cons j e»
(t j»)

A list (lambda lambda-list. body) is left in the function cell of name.

For compatibility, the Macli~p types expr, fexpr, and macro, and Maclisp /exprs
(which have an atomic lambda-list) are recognized and the corresponding Lisp
~Iachine flavor of defun is ~sumed.

macro Special Form
macro is used for defining macros. Its form is:

(macro name (arg)
body)

Examples:
(macro addone (x)

(list '1+ (cadr x»)

(macro increment (x)
(list /setQ (cadr x) (list /1+ (cadr x»»

In the function cell of name is placed a cons whose car is the symbol macro, and
who!'e cdr is a lambda-expression of the form (lambda (arg). body).

~1uch of the time it is more convenient and clear to use a macro-defining macro
such as defmacro (see page 137) to define macros.

fset-carefully symbol definition &optional force-flag
This is the same 8!' (fset symbol definition) except that it makes some checks and
~ave~ the old definition. defun, macro, undefun, load, and the compiler call
fset-carefully when they define functions.

fset-carefully prints a message and asks the user if the current package (value of
package) is not allowed to redefine the symbol. Specifying force-flag non-nil
~uppresses this check.

The previous definition, if any, of symbol is saved on the :previous-definition
property. If it is a list, it is also saved on the :previous-expr-definition property_
These properties are used by the under un function (page 61), which restores the
previous definition, and the uncompile function (page 126), which restores the
previous interpreted definition.

DSK:lMMAN;FO.sYM 43 6-JAN-79

Preliminary Lisp Machine Manual 61 The Function Cell

If symbol is not a symbol, but a list (name prop), then the definition is put on
name's prop property, the package error check is not done, and the old definition is
not saved. This is used to implement the (defun (name prop) .•.) feature.

undefun symbol
If symbol has . a :previous-definition property, undefun interchanges it with
symbol's function definition. This undoes the effect of a defun, compile, etc.

arglist function
arglist is given a function, and returns its best guess at the nature of the functionts

lambda-list.

If function is a symbol, arglist of its function definition is used.

If the function is an actual lambda-expression t its cadr, the lambda-list. is returned.
But if function is compiled, arglist attempts to reconstruct the lambda-list of the
original definition, using whatever debugging information was saved by the compiler.
Sometimes the actual names of the bound variables are not available, and arglist
uses the symbol *unknown* for these. Also, sometimes the initialization of an
optional parameter is too complicated for arglist to reconstruct; for these it returns

the symbol *hairy*.

Since arglist cannot be relied upon to return the exactly correct answer, it is not
very useful in programs: it exists to be called by the user to get a little
documentation on how to call a function. For program-usable information, use the

function args-inf o.

args-inf 0 function
args-inf 0 returns a fixnum called the "numeric argument descriptor" of the function,
which describes the way the function takes arguments. The information in it is
stored in various bits and byte fields in the fixnum, which are referenced by the
symbolic names shown below. By the usual Lisp Machine convention, those starting
with a single "0/(," are bit-masks (meant to be loganded with the number), and those
starting with "0/('0/('" are byte descriptors (meant to be used with Idb).

Here are the fields:

i.arg-desc-quoted-rest
If this bit is set, the function has a "rest" argument. and it is "quoted".

Most special forms have this bit.

i.arg-desc-evaled-rest
If this bit is set, the function has a "rest" argument, and it is not

"quoted".

Y.arg-desc-f ef -quote-hair
If this bit is set, there are some quoted arguments other than the
"rest" argument (if any), and the pattern of quoting is toO
complicated to describe here. The ADL (Argument Description List)

DSK:LMMAN;FD.SYM 43
6-JAN-79

The l)roperty li~t 62 Preliminary Lisp Machine Manual

in the FEF should be consulted.

i.arg-desc-interpreted
This function is not a compiled-code object, and a numeric argument
descriptor cannot be computed. Usually args-info will not return
thi~ bit, although i.arts-inf 0 will.

i.arg-desc-fef -bind-hair
There is argument initialization, or something else too complicated to
de~cribe here. The ADL (Argument Description List) in the FEF
should be consulted.

i.i.arg-desc-min-args
This is the mlOimum number of arguments which may be passed to
this function, i.e., the number of "required- parameters.

i.i.arg-desc-max-args
Thb is the maximum number of arguments which may be passed to
this function, i.e., the sum of the number of -required" parameters
and the number of "optional" paramaters. If there is a rest argument,
this i~ not really the maximum number of arguments which may be
passed: an arbitrarily-large number of arguments is permitted. subject
to limitations on the maximum size of a stack frame.

~ote that i.arg-desc-quoted-rest and i.arg-desc-evaled-rest cannot both be set.

i.args-inf 0 function
This is an internal function of args-info; it is like args-info but only works for
compiled-code objects. It exists because it has to be in the microcode anyway, for
apply.

6.3 The Property List

Every symbol has associated with it a property list, which is a list used for associating
"attributes" with symbols. A property list has an even number of elements. Each pair of
elements constitutes a property; the first of the pair is a symbol called the indicator, and the.
~econd is a Lisp object called the value or, more loosely, the property. The indicator serves
as the name of the property, and the value 8!- the value of the property. Here is an
example of the property list of a symbol named bl which is being used by a program which
deal~ with blocks:

(color blue on b6 associated-wlth (b2 b3 b4»

There are three properties. and so the list has six elements. The first property's indicator
is the symbol color. and its value is the symbol blue. One says that "the value of bl's
color property is blue", or, informally, that "bl's color property is blue: The program is
probably repre:;enting the information that the block represented by bl is blue. Similarly, it
is probably representing in the rest of the property list that block bl is on top of block b6,
and that bl is a~sociated with blocks b2, b3, and b4.

DSK:LMMAN;FD.SYM 43

:, .",

Preliminary lisp Machine Manual 63 The Property List

When a symbol is created, its property list is initially nil.

Because of the existence of print-name, value, function, and package cells, none of the
!\-taclisp system property names (expr, fexpr, macro. array, subr, lsubr, fsubr. and in
former times value and pname) exist in Lisp Machine lisp. The compiler (see page 126)
and the editor use several properties, which are documented in those sections.

I t is abo pO!isible to have a "disembodied" property list, which is not associated with any
symbol. A disembodied property list is a cons. Its car may be used for any' purpose. The
property list resides in its cdr. The way to create a disembodied property list is with
(ncons nill. In all of the functions in this section, disembodied property lists may be used
as well as symbols: for brevity, the text speaks only of symbols.

get sym indicator
get looks up sym's indicator property. If it finds such a property, it returns the

value: otherwise, it returns nil.
Example: If the property list of Coo is (baz 3), then

(get /foo /baz) => 3
(get /foo /zoo) => nil

gett sym indicator-list
getl is like get, except that the second argument is a list of indicators. ged
searches down sym's property list for any of the indicators in indicator-list, until it
finds a property whose indicator is one of the elements of indicator-list.

getl returns the portion of sym's property list beginning with the first such property
which it found. So the car of the returned list is an indicator, and the cadr is the
property value. If none of the indicators on indicator-list are on the property list.

getl returns nil.
Example:

If the property list of foo were
(bar (1 2 3) baz (3 2 1) color blue height six-two)
then
(get1 /foo /(baz height»

=> (baz (3 2 1) color blue height six-two)

putprop sym x indicator
This gives sym an indicator-property of x. After this is done, (get sym indicator)

will return X.

Example:
(putprop /Nixon /not /crook)

If sym already has a property with the name indicator, then that property is removed
first: this insures that ged will always find the property that was added most recently.

DSK:LMMAN:FD.SYM 43
6-JAN-79

The Print Name 64 Preliminary Lisp Machine Manual

d@fprop Special Form
dE'fprop i~ a form of putprop with unevaluated arguments, which is sometimes more
convenient for typing.
Example:

(defprop foo bar next-to)
i~ t he ~ame 3!-

(putprop /foo /bar /next-to)

remprop sym indicator
Thi~ removes sym's indicator property, by splicing it out of the property list. It
returns that portion of sym's property list of which the former indicator-property was
the car.
Example:

If the property list of f 00 was
(color blue height six-three near-to bar)
then
(remprop /foo /height) => (six-three near-to bar)
and f oo's property list would be
(color blue near-to bar)

If sym ha~ no indicator-property, then remprop has no side-effect and returns nil.

plist sym
Thi~ returns the property list of sym.

setplist sym property-list
This ~ets the property list of sym to property-list. setplist is to be used with
caution, since property lists sometimes contain internal system properties, which are
used by many u~eful system functions. Also it is inadvisable, to have the property
lists of two different symbols be eq, since the shared list structure will cause
unexpected effects on one symbol if putprop or remprop is done to the other.

propert y-cell-Iocation sym
This returns a locative pointer to the location of symts property-list cell. See the
section on locatives.

6.4 The Print Name

Every symbol has an associated string called the print-name, or pname for short. This
string is u~ed as the external representation of the symbol: if the string is typed in to read,
it is read as a reference to that symbol (if it is interned), and if the' symbol is printed,
print types out the print-name. For more information, see the section on the reader (see
page 156) and printer (see page 154).

DSK:L~t~1AN:FD.SYM 43 6-JAN-79

. Preliminary Li~p Machine Manual 65 The Creation and Interning of Symbols

samepnamep sym 1 syml
Thb predicate returns t if the two symbols syml and syml have equal print-names:
that i$, if their printed representation is the same. Upper and lower case letters are
normally considered the same. If either or both of the arguments is a string instead
of a symbol, then that string is used in place of the print-name.
Examples:

(samepnamep /xyz (maknam /(x y z» => t

(samepnamep /xyz (maknam /(w x y» => nil

(samepnamep /xyz "xyz") => t

This is the same function as string-equal (see page 80).

get -pname sym
Thi$ returns the print-name of the symbol sym.
Example:

(get-pname /xyz) => "xyz"

print-name-cell-Iocation sym
Thi!' returns a locative pointer to the location of sym's print-name cell. See the
~ection on locatives. Note that the contents of this cell is not actually the print
name. but the symbol header, an object which may not be directly manipulated. Use
get -pname, the microcode primitive which knows how to extract the pname from
the symbol header.

6.5 ThE' Creation and Interning of Symbols

~ormal1y. one wants to refer to the same symbol every time the same print-name-like
!'tring b typed. So, when read sees such a character-string in the input to Lisp, it looks in
a table called the obarray for some symbol with that print-name. If it finds such a symbol,
then that b what it returns; otherwise, it creates a symbol with that print-name (using the
make-symbol function. see below), enters that symbol on the obarray. and returns it. The
sub-function of read which performs these functions is called intern, and when a symbol
has been entered on the obarray it is said to be interned.

A symbol can also be uninterned, indicating that it is not on the obarray and cannot be
referred to simply by typing its print name. Such symbols can be used as objects within a

. data-structure, but can cause trouble during debugging because they cannot be "typed in"
directly, yet they look ju~t like interned symbols when "typed out".

Actually there can be many obarrays; the Lisp Machine system includes a feature called
the package system (see page 176) which keeps t .. ack of multiple packages or name spaces
and their interrelationships, using separate obarrays for each package.

DSK:LMMAN;FD.SYM 43 6-JAN-79

\ .'
,I" ..

The Creation and Interning of Symbols 66 Preliminary Lisp Machine Manual

makp-symbol pname &optional value definition pl1st package
This creates a new un interned symbol, whose print-name is the string pname. You
may optionally supply the value binding, the function definition binding, the
property list. and the owning package. These default to unbound, unbound, nil,
and nil respectively. The package should be nil if the symbol is not going to be

interned.
Example~:

(setQ a (make-symbol "foo"» =) foo
(symeval a) =) ERROR!

(setQ a (make-symbol "foo" 'bar» =) foo
(symeval a) =) bar

Note that the symbol is not interned: it is simply created and returned.

copysymbol sym copy-p
This returns a new uninterned symbol with the same print·name as sym. If copy-p'is
non-nil. then the initial value and function-definition of the new symbol will be the
same as those of sym. and the property list of the new symbol will be a copy of
sym's. If copy-p is nil, then the new symbol will be unbound and undefined, and its

property list will be nil.

gensym &()ptional x
g~nsym invents a print-name, and creates a new symbol with that print-name. It

returns the new, uninterned symbol.

The invented print-name is a character prefix (the value of si:*gensym-prefix)
followed by the decimal representation of a number (the value ofsi:*gensym
counter), e.g. "gOOOI". The number is increased by one every tim~ tensym is

called.

If the argument x is present and is a fixnum, then si:*gensym-counter is set to, x.
If x is a string or a symbol. then si:*gensym-prefix is set to the firs~ character of
the string or of the print-name. After handling the argument, lensym creates a

symbol as it would with no argument.
Examples:

if (gensym) =) g0007
then (gensym /foo) =) f0008

(gensym 40) => f0032
(gensym) =) f0033

Note that the number is in decimal and always has four digits. and the prefix is

alwa)'~ one character.

gensym is usually used to create a symbol which should not normally be seen by the
user, and who~e print-name is unimportant, except to allow easy distinction by eye
between two such symbols. The optional argument is rarely supplied. The name
comes from "generate symbol". and the symbols produced by it are often called

DSK:LMMAN;FD.SYM 43
6-JAN-79

Preliminary Li~p f\iachine Manual 67 The Creation and Interning of Symbols

"gensyms".

package-cell-loca lion symbol
Returns a locative pointer to symbol's package cell, which contains the package (see

page 176) which owns symbol.

DSK:LMMAN;FD.SYM 43
6-JAN-79

, j)

Numbers 68 Preliminary Lisp Machine Manual

7. Numbers

Li~p \Iachine Li~p includes ~everal types of numbers, with different characteristics. Most
numeric functions will accept any type of numbers as arguments and do the right thing.
That i~ to ~ay, they are generic. In Maclisp, there are generic numeric functions (like plus)
and there are !'pedfic numeric function~ (like +) which only operate on a certain type. In
Li~p \1achine Li~p, this di~tinction does not exist; both function names exist for
compatibility but they are identical. The microprogrammed structure of the machine makes
it po~~ible to have only the generic functions without loss of efficiency.

The type~ of numbers in Lisp Machine Lisp are:

fixnum

bignum

flonum

~mall-flonum

Fixnum~ are 24-bit 2's complement binary integers. These are the "preferred,
mo~t efficient" type of number.

Bignums are arbitrary-precision binary integers.

Flonums are floating-point numbers. They have a mantissa of 32 bits and an
exponent of 11 bits, providing a precision of about 9 digits and a range of
about 10'"'300. Stable rounding is employed.

Small flonums are another form of floating-point number, with a mantissa of
18 bits and an exponent of 7 bits, providing a precision of about 5 digits
and a range of about 10" 1 9. Small flonums are useful because, like fixnums,
they don't require any storage. Computing with small flonums is more
efficient than with regular flonums.

~umbers are different from other objects in that they don't "have identity." To put it
another way, E'q does not work on them. Numbers do not behave "like objects." Fixnums
and small flonum~ are exceptions to this rule: some system code knows that eq works on
fixn u ms u~ed to represent characters or small integers, and uses memq or assq on them.

The Lisp machine automatically converts between fixnums and bignums as necessary
when computing with integers. That is, if the result of a computation with fixnums is too
large to be repre~ented as a fixnum, it will be represented as a bignum. If the result of a
computation with bignums is small enough to be represented as a fixnum, it will be.

The Li!'p machine never automatically converts between ftonums and small flonums,
since this would lead either to inefficiency or to unexpected numerical inaccuracies. The
user controls whether floating-point calculations are done in large or small precision by the
type of the original input data.

Integer computations cannot "overflow". except for division by zero, since bignums can
be of arbitrary ~ile. Floating-point computations can get exponent overflow or underflow, if
the result i~ too large or small to be represented. This will signal an error.

When an arithmetic function of more than one argument is given arguments of different
numeric types. uniform coercion rules are followed to convert the arguments to a common
type. which is aho the type of the result (for functions which return a number). When a

DSK:L\-f\iAN;FD.NUM 47 6-JAN-79

Preliminary Li~p Machine Manual 69 Numeric Predicates

fixnum meets a bignum, the result is (usually) a bignum. When a fixnum or a bignum meets
a small flonum or a ftonum, the result is a small ftonum or a flonum (respectively). When a
~mall flonum meets a regular flonum, the result is a regular ftonum.

Unlike ~1acli5p, Lisp Machine Lisp does not have number declarations in the compiler.
Note that because fixnums and small ftonums are "inums" (require no associated storage) they
are as efficient as declared numbers in Maclisp.

The different types of numbers are distinguished by their printed representations. A
leading or embedded decimal point, and/or an exponent separated by "eN, indicate~ a
flonum. If a number has an exponent separated by "s", it is a small ftonum. Small flonums
require a special indicator so that naive users will not be accidentally tricked into
computing with the lesser precIsion. Fixnums and bignums have similar printed
representations: the number is a bignum if it is too big to be a fixnum.

1.1 Numeric Predicates

zerop x
Returns t if x is' zero. Otherwise it returns nil. If x is not a number, zerop causes
an error.

plusp x
Returns t if its argument is a positIve number. strictly greater than zero. Otherwise
it returns nil. If x is not a number, plusp causes an error.

minusp x
Returns t if its argument is a negative number. strictly less than zero. Otherwise it
returns nil. If x is not a number. minusp causes an error.

oddp number
Returns t if number is odd, otherwise nil. If number is not a fixnum or a bignum.
oddp causes an error.

signp Special Form
signp is used to test the sign of a number. It is present only for Maclisp
compatibility, and is not recommended for use in new programs. (signp test x)
returns t if x is a number which satisfies the test, nil if it is not. test is not
evaluated, but x is. test can be one of the following:

I x < 0
Ie x ~ 0
e x=O
n x~O
ge x ~ 0
g x > 0

DSK:LMMAN;FD.NUM 47 6-JAN-79

i'.~~;,> -
/ ,,~~r{~~"~~ ~

~~:"

Numeric Predicate~ 70 Preliminary Lisp Machine Man·ual

Example~:
(signp 1e 12) => t
(signp n 0) => nil
(signp 9 /foo) => nil

See al~o the data-type predicate~ fixp, floatp, bigp, small-floatp, and numberp (page

9).

All of the~e functions require that their arguments be numbers, and signal an error if
given a non-number. They work on all types of numbers, automatically performing any

required coercions.

• x y
Return~ t if x and yare numerically equal.

greaterp x y & re~t more-args
grealerp compares its arguments from left to right. If any argument is not greater
than the next, greaterp returns nil. But if the arguments are monotonically strictly

> x y

decrea~ing, the. result is t.
Examples:

(greaterp 4 3) => t
(greaterp 4 3 2 1 0) => t
(greaterp 4 3 1 2 0) => nil

Returns t if x is strictly greater than y, and nil otherwise.

>- Macro
~ Macro

Returns t if x is greater than or equal to I, and nil otherwise.

lessp x y & rest more-args
lessp compares its arguments from left to right. If any argument is not less than the
next, lessp returns nil. But if the arguments are monotonically strictly increasing,

< x y

the result is t.
Example~:

(lessp 3 4) => t
(lessp 1 1) => nil
(lessp 0 1 2 3 4) => t
(lessp 0 1 3 2 4) => nil

Returns t if x is strictly less than y, and nil otherwise.

DSK:LMMAN:FD.NUM 47
6-JAN-79

Preliminary Lbp Machine Manual

<= ldacro
~ Macro

71

Returns t if x is less than or equal to)', and nil otherwise.

pi ltlacro

Returns 1 if x is not equal to 't and nil otherwise.

1.2 Arithmetic

Arithmetic

All of these functions require that their arguments be numbers, and signal an error if
given a non-number. They work on all types of numbers, automatically performing any
required coercions.

plus & rest args
+ &re~t args
+1 & rest args

Returns the sum of its arguments. If there are no arguments, it returns O~ which is
the identity for this operation.

difference arg &rest args
Returns its first argument minus all of the rest of its arguments ..

- arg & rest args
-I arg & rest args

With only one argument, - is the same as minus; it returns the negative of its
argument. With more than one argument, - is the same as difference; it returns its
first argument minus all of the rest of its arguments.

times & rest args
* &rest args
*1 & rest args

Returns the product of its arguments. If there are no arguments, it returns 1, which
is the identity for this operation.

quotient arg &rest args
Returns the first argument divided by all of the rest of its arguments.

/ / arg & rest args
/ / S arg & rest args

The name of this function is written / / rather than / because / is the quoting
character in Lisp syntax and must be doubled. With more than one argument, / / is
the same as quotient: it returns the first argument divided by all of the rest of its
arguments. With only one argument, (/ / x) is the same as (/ / 1 x).

DSK:LMMAN;FD.NUM 47 6-JAN-79

Arithmetic 72 Preliminary Lisp Machine Manual

Example~:
(II 3 2) = > 1 ;Fixnum division truncates.

addl x
1+ x
1+1 x

(II 3 2.0) => 1.5
(II 3 2.0s0) => 1.5s0
(II 4 2) => 2
(II 12. 2. 3.) => 2

(addl x) is the same as (plus xl).

subl x
1- x
1-1 .~

(subl x) is the same as (difference x I), Note that the short name may be
c()nfu~ing: (1- x) does not mean I-x; rather, it means x-I.

remainder x y
\ x y

Returns the remainder of x divided by y. x and y may not be ftonums nor small
flonums.

Icd x y
\\ x y

Returns the greatest common divisor of x and y. x and y may not be ftonums nor
~mall flonums.

expt x y
" x y
..... x y

Returns x raised to the y'th power. y must be a fixnum. [I guess this is
incompatible with Maclisp.]

max & rest orgs
max returns the largest of its arguments.
Example:

(max 1 3 2) => 3
max requires at least one argument.

min & rest args
min returns the smallest of its arguments.
Example:

(min 1 3 2) => 1
min requires at least one argument.

DSK:lMMAN;FD.NUM 47 6-JAN-79

Preliminary Li~p Machine Manual 73

abs x
~eturns lxl. the absolute value of the number x.

(defun abs (x)
(cond «minusp x) (minus x»

(t x»)

minus x
Returns the negative of x.
Examples:

(minus 1) =) -1
(minus -3) =) 3

Random Functions

• abs could have been defined by:

*dif x y
*plus x y
*quo x y
*times x Y

These are the internal micro-coded arithmetic functions. There is no re~on why
anyone ~hould need to refer to these explicitly, since the compiler knows how to
generate the appropriate code for. plus. +, etc. These names are only here for

Macli~p compatibility.

The following functions are provided to allow specific conversions of data types to be

forced. when desired.

fix x
Convert~ x to a fixnum.

flo~l x
Converts x to a flonum.

small-float x
Converts x to a small flonum.

1.3 Random functions

random &optional arg (array si:random-array)
(random) returns a random fixnum. positive or negative. If arg is present. a fixnum
between 0 and arg-l inclusive is returned. If array is present, the given array is
u:-ed in:-tead of the default one (~ee below). [The random algorithm should be

de!'cribed.)

si:random-create-array size offset seed &optional (area default-array-area)
Create$. initializes and returns a random-number-generator array. This is used for
more advanced applications of the pseudo-random number generator, in which it is
dt":-irable to have several different controllable resettable sources of random numbers.
For the exact meaning of the arguments. read the code.
siZt' l!' the size of the array. offset is an integer less than size, seed is 8 fixnum. This

OSK:LMMAN;FD.NUM 47
6-JAN-79

Logical Operations on Numbers 74 Preliminary Lisp Machine Manual

cal1~ si:random-initialize on the random array before returning it.

si:random-initialize array
array must be a random-number-generator array, such as is created by si:random
crf?ate-array. It reinitializes the contents of the array from the seed (calling
random changes the contents of the array and the pointers, but not the seed).

si:random-array Variable
The value of si:random-array is the default random-number-generator array. It is
created if random is called and si:random-array is unbound. A random-number
generator array has a leader which is a structure with the following elements:

si:r andom-fi II-pointer
The fill-pointer, the length of the array.

si:random-seed
The seed from which to initialize the contents.

si:random-pointer-l
The first pointer.

si:random-pointer-2
The second pointer.

1.4 Logical Operations on Numbers

Except for Ish and rot, these .functions operate on either fixnums or bignums. As a
compromise between consistency and Maclisp compatibility, there are some funny rules
about negative numbers. Normally these functions will not accept negative inputs and will
not produce negative results. However, if all the arguments to be logically combined are
fixnums. the result will always be a fixnum, and consequently may be negative. In this case
negative fixnums are accepted as input, and treated as the corresponding 24-bit 2's
complement representation.

IOlior & rest orgs
Returns the bit-wise. logical inclusi,e or of its arguments. A minumum of one
argument is required.
Example:

(logior 4002 67) => 4067

IOlxor & rest orgs
Returns the bit-wise logical exclusive or of its arguments. A minumum of one
argument is required.
Example:

(logxor 2531 7777) => 5246

DSK:LMMAN:FD.NUM 47

Preliminary Lisp Machine Manual 75 Logical Operations on Numbers

logand & re~t args
Returns the bit-wise logical and of its arguments. A minumum of one argument is
required.
Example:

(logand 3456 707) => 406

boole In &rest args
boole is the generalization of togand, logior, and logxor. In should be a fixnum
between 0 and 17 octal inclusive; it controls the function which is computed. If the
binary representation of In is abed (a is the most significant bit, d the least) then the
truth table for the Boolean operation is as follows:

y

1 0 1
-----.-.-

01 a c
x 1

11 b d

If boole has more than three arguments, it is associated left to right; thus,
(boole fn x y z) ~ (boole fn (boole fn x y) z)

With two arguments. the result of boole is simply its second argument. A minimum
of two arguments is required.
Examples:

(boole 1 x y) = (logand x y)
(boole 6 x y) = (logxor x y)

logand, logior, and logxor are usually preferred over boo Ie.

bit-test x y
bit-test is a predicate which returns t if any of the bits designated by the 1'5 in x
are I's in y. bit-test is implemented as a macro which expands as follows:

(bit-test x y) ==> (not (zerop (logand x y»)

Idb-test ppss y
Idb-test is a predicate which returns t if any of the bits designated by the byte
specifier ppss are 1'5 in y. That is, it returns t if the designated field is non-zero.
ldb-test is implemented as a macro which expands as follows:

(ldb-test ppss y) ==) (not (zerop (ldb ppss y»)

Ish x y
Returns x shifted left y bits if y is positive or zero, or x shifted right Iyl bits if y is
negative. Zero bits are shifted in (at· either end) to fill unused positions. x and y
must be fixnums.

DSK:LMMAN;FD.NUM 47 6-JAN-79

Byte Manipulation Functions

Examples:

rot x y

(lsh 4 1) =) 10
(lsh 14 -2) =) 3
(lsh -1 1) =) -2

76 Preliminary Lisp Machine Manual

;(octal)

Returns x rotated left)' bits if y is positive or zero, or x rotated right IYI bits if y is
negative. The rotation considers x as a 24-bit number (unlike Maclisp, which
con~iders x to be a 36-bit number in both the pdp-tO and Multics implementations).
x and y must be fixnums.
Examples:

haipart x n

(rot 1 2) =) 4
(rot 1 -2) =) 20000000
(rot -1 7) =) -I
(rot 15 24.) =) 15

Returns the high n bits of the binary representation of lxi, or the low InJ bits if n is
negative. x may be a fixnum or a bignum: note that if x is negative its absolute
val ue is used.

haulong x
This returns the number of significant bits in x. x may be a fixnum or a bignum.
The result does not depend on the sign of x. The result is the least integer not less
than the base-2 logarithm of Ixl+l.
Example$:

(haulong 0) => 0
(haulong 3) =) 2
(haulong -7) =) 3

'.5 Byte Manipulation Functions

Several functions are provided for dealing with an arbitrary-width field of contiguous bits
appearing anywhere in an integer (a fixnum or a bignum). Such a contiguous set of bits is
called a b.vt~. Note that we are not using the term byte to mean eight bits, but rather any
number of bits within a number. These functions use numbers called byte specifiers to
designate a specific byte position within any word. Byte specifiers are fixnums whose two
lowe~t octal digits represent the size of the byte, and whose higher (usually two, but
sometimes more) octal digit~ represent the position of the byte within a number, counting
from the right in bits. A po~ition of zero means that the byte is at the right end of the
number. For example, the byte-specifier 0010 (i.e., 10 octal) refers to the lowest eight bits
of a word, and the byte-specifier 1010 refers to the next eight bits. These byte·specifiers
will be ~tylized below as ppss. The maximum value of the ss digits is 30 (octal), since a
byte mu~t fit in a fixnum although bytes can be loaded from and deposited into bignums.
The format of byte-specifiers is taken from the pdp-tO byte instructions.

DSK:LMMAN;FD.NUM 47 6-JAN-79

..

Preliminary Lisp Machine Manual 77 24-Bit Numbers

ldb ppss num
ppss ~pecifie~ a byte of num, which is returned as a number, right-justified. The ss
bits of the byte starting at bit pp are the lowest ss bits in the returned value. and the
rest of the bits in the returned value are zero. The name of the function. ldb,
means "load byte".
Example:

(ldb 0303 567) :) 6

mask -field ppss num
This is similar to ldb: however, the specified byte of num is returned as a number in
position pp of the returned word, instead of position 0 as with ldb.
Example:

(mask-field 0303 567) :) 60

dpb byte ppss num
Returns a number which is the same as num except in the bits· specified by ppss.
The low ss bits of byte are placed in those bits. byte is interpreted as being right
justified. as if it were the result of ldb.
Example:

(dpb 2 0303 567) :) 527

deposit-field byte ppss num
This is like dpb. except that byte is not taken to be left-justified; the ppss bits of byte
are used for the ppss bits of the result. with the rest of the bits taken from num.
Example:

(deposit-field 20 0303 567) :) 527

i.logldb ppss fixnum
i.logldb is like (db except that it only loads out of fixnums and doesn't worry about
negative numbers.

i.logdpb byte ppss fixnum
i.logdpb is like dpb except that it only deposits into fixnums and doesn't worry
about negative numbers.

1.6 24-Bit Numbers

Sometimes it is desirable to have a form of arithmetic which has no overflow checking
(which would produce bignums). and truncates results to the word size of the machine. In
Lbp Machine Lisp. this is provided by the following set of functions. Their answers are
only correct modulo 2A24.

These functions should not be used for "efficiency"; they are probably less efficient than
the functions which do check for overflow. They are intended for algorithms which require
this ~ort of arithmetic, such as hash functions and pseudo-random number generation.

DSK:LMMAN;FD.NUM 47 6-JAN-79

Double-Preci!tion Arithmetic 78 Preliminary Lisp Machine Manual

X24-bit-plus x y
Returns the !tum of x and y modulo 2"'24. Both arguments should be fixnums.

Y.24-bit-difference x y
Returns the difference of x and y modulo 2"'24. Both arguments should be fixnums.

Y.24-bit-times x y
Returns the product of x and y modulo 2"'24. Both arguments should be fixnums.

7.7 Double-Precision Arithmetic

The~e peculiar functions are useful in programs that don't want to use bignums for one

reason or another.

Y.multiply-fractions numl num2
Returns bits 24 through 46 (the most significant half) of the product of numl and
num2. If you call this and Y.24-bit-times on the same arguments numl and num2.
regarding them as integers, you can combine the results into a double-precision
product. If numl and num2 are regarded as fractions, -1 ~ num < 1, Y.multiply
fractions returns 1/2 of their correct product as a fraction. (The name of this
function isn't too great.)

Xdivide-double dividend[24:46} dividend[O:23} divisor
Divides the double-precision number given by the first two arguments by the third
argument. and returns the single-precision quotient. Causes an error if division by
zero or if the quotient won't fit in single precision.

Xremainder-double dividend{24:46j dividend{O:23j divisor
Divides the double-precision number given by the first two arguments by the third
argument, and returns the remainder. Causes an error if division by zero.

Xnoat-double high24 low24
high24 and low14, which must be fixnums, are concatenated to produce a 48-bit
un~igned positive integer. A ftonum containing the same value is constructed and
returned. Note that only the 31 most-significant bits are retained (after removal of
leading zeroes.) This function is mainly for the benefit of read.

DSK:LMMAN:FD.NUM 47

Preliminary Lisp Machine Manual 79 Strings

8. Strings

Strings are a type of array which are constants (they self-evaluate) and have as their
printed representation a ~equence of characters enclosed in quote marks, for example "Coo
bar". Strings are the right data type to use for text-processing.

The functions de~cribed in this section provide a variety of useful operations on strings.
Several of the functions actually work on any type of I-dimensional array and may be useful
for other than string processing. art-16b arrays (arrays of 16-bit positive numbers) are often
u::-ed a." string~; the extra bits allow for an expanded character set.

In place of a string, most of these functions will accept a symbol or a fixnum as an
argument, and will coerce it into a string. Given a symbol, its print name, which is a
~tring. will be used. Given a fixnum, a 1 character long string containing the character
designated by that fixnum will be used.

Note that the length of a string is computed using array-active-Iength, so that if a
string has an array-leader, element 0 of the leader (called the fill pointer) will be taken as
the length.

Since strings are arrays, the usual array-referencing function aref is used to extract the
characters of the string as fixnums. For example.

(aref "frob" 1) => 162 ;lower-caser
It is abo legal to store into strings (using aset). As with rplaca on lists, this changes the
actual object: one must be careful to understand where side-effects will propagate to.

8.1 String Manipulation

character x
character coerces x to a single character, represented as a fixnum. If x is a
number, it is returned. If x is a string or an array, its first ~lement is returned. If oX

is a symbol, the first character of its pname is returned. Otherwise. an error occurs.

char-equal chI ch2
This is the primitive for comparing characters for equality; many of the string
fun~tions call it. chI and ch2 must be fixnums. The result is t if the characters are
equal ignoring case and font, otherwise nil. XXch-char is the byte-specifier for the
portion of a character which excludes the font information.

char-Iessp ch I ch2
Thb is the primitive for comparing characters for order; many of the string functions
call 'it. chI and ch2 must be fixnums. The result is t if chI comes before ch2
ign~ring case and font, otherwise nil.

DSK:LMMAN;FD.STR 41 6-JAN-79

String Manipulation 80 Preliminary Lisp Machine Manual

string x
string coerce~ x into a string. Most of the string functions apply this to their string
arguments. If x is a string or an array, it is returned. If x is a symbol, its pname is
returned. If x b a number, a I-character long string containing it is returned.
Otherwise, an error occurs.

string-length string
string-length returns the number of characters in string. This is I if string is a
number, the array-active-Iength (see page 100) if string is an array, or the
array-active-Iength of the pname if string is a symbol.

string-equal stringl string2 &optional (idxl 0) (idx2 0) lim] lim2
string-equal compares two strings, returning t if they are equal and nil if they are
not. The comparison ignores the extra "font" bits in 16-bit strings, ignores font
change and other formatting characters (characters with numeric values between 240
and 377), and ignores alphabetic case. equal calls string-equal if applied to two
strings.

The optional arguments idxl and idx2 are the starting indices into the strings. The
optional arguments liml and lim2 are the fi·nal indices: the comparison stops just
before the final index. liml and lim2 default to the lengths of the strings. These
arguments are provided so that you can efficiently compare substrings.
Examples:

(string-equal "Foo" "fooD) => t
(string-equal "fooD "bar") => nil
(string-equal "element" "select" 0 1 3 4) => t

string-Iessp string] string2
st ring-Iessp compares two strings using dictionary order. The result is t if stringJ
is the le~$er, and nil if they are equal or string2 is the lesser.

substring string start &optional end area
This extract~ a substring of string, starting at the character specified by start and
going up to but not including the character specified by end. start and end are 0-
origin indices. The length of the returned string is end minus start. If end is not
specified it defaults to the length of string. The area in which the result is to be
con~ed may be optionally specified.
Example:

(substring "Nebuchadnezzar" 4 8) =) ·chad-

nsubstring string start &optional end area
nsubstring is the same as substring except that the substring is not copied; instead
an indirect array (see page 92) is created which shares part of the argument string.
~fodifying one ~tring will modify the other.

DSK:LMMAN:FD.STR 47 6-JAN-79

Preliminary Lisp Machine Manual 81 String Manipulation

Note that nsubstring does not necessarily use less storage than substring; an
nsubstring of any length uses the same amount of storage as a substring 12
characters long.

string-append & rest strings
Any number of strings are copied and concatenated into a single string. With a
~ingle argument, string-append simply copies it. If the first argument is an array,
the result will be an array of the same type. Thus string-append can be used to
copy and concatenate any type of I-dimensional array.
Example:

(string-append 41 "foo N 41) => "!foo!"

string-trim chor-list string
This returns a substring of string, with all characters in char-list stripped off of the
beginning and end.
Example:

(string-trim /(40) H Dr. No ") => "Dr. No·

string-left-trim char-list string
This returns a substring of string, with all characters in char-list stripped off of the
beginning.

string-right-trim chor-list string
This returns a substring of string, with all characters in char-list stripped off of the
end.

char-upcase ch
If ch, which must be a fixnum, is a lower-case alphabetic character its upper-case
form is returned; otherwise, ch itself is returned. If font information is present it is
preserved.

char-downcase ch
If ch, which must be a fixnum, is a upper-case alphabetic character its lower-case
form is returned; otherwise. ch itself is returned. If font information is present it is
preserved.

string-upcase string
Returns a copy of string, with all lower case alphabetic characters replaced by the
corresponding upper case characters.

string-downcase string
Returns a copy of string, with all upper case alphabetic characters replaced by the
corresponding lower case characters.

DSK:LMMAN;FD.STR 47 6-JAN-79

. ~. ; t. ~

;L<

String Manipulation 82 Preliminary Lisp Machine Manual

string-rE'vflrse string
Returns a copy of string with the order of characters reversed. This will reverse a
I-dimen!>ional array of any type.

string-nrE'VE-rse string
Returns string with the order of characters reversed, smashing the original string,
rather than creating a new one. If string is a number, it is simply returned without
con~ing up a string. This will reverse a I-dimensional array of any type.

string-sE-arch-char char string &optional (from 0)
string-sE-arch-char searches through string starting at the index from, which
defaults to the beginning, and returns the index of the first character which is char
equal to char, or nil if none is found.
Example:

(string-search-char 101 "banana") => 1

string-sE-arch-not-char char string &optional (from 0)
string-search-not-char searches through string starting at the index from, which
default~ to the beginning, and returns the index of the first character which is not
char-E-qual to char, or nil if none is found.
Example:

(string-search-char 102 "banana") => 1

string-sE'arch key string &optional (from 0)
string-search searches for the string key in the string string. The search begins at
from, which defaults to the beginning of string. The value returned is the index of
the first character of the first instance of key, or nil if none is found.
Example: .

(string-search "an" "banana") => 1
(string-search "an" "banana" 2) => 3

string-search-set char-list string &optional (from 0)
string-search-set searches through string looking for a character which is in char
list. The search begin~ at the index from, which defaults to the beginning. It
returns the index of the first character which is char-equal to some element of
char-list, or nil if none is found.
Example:

(string-search-set /(116 117) "banana") => 2

string-search-not-st"t char-list string &optional (from 0)
string-search-not-set searches through string looking for a character which is not
in char-list. The search begins at the index from, which defaults to the beginning.
It returns the index of the first character which is not char-equal to any element of
char-list, or nil if none is found.
Example:

(string-search-not-set /(141 142) Mbanana M) => 2

DSK:LMMAN;FD.STR 47 6-JAN-79

Preliminary Lisp Machine Manual 83 String Manipulation

string-reverse-search-char char string &optional from
string-reverse-search-char searches through string in reverse order, starting from
the index one less than from, which defaults to the length of string, and returns
the "index of the first character which is char-equal to char, or nil if none is
found. Note that the index returned is from the beginning of the string, although
the search starts from the end.
Example:

(string-reverse-search-char 156 "banana") => 4

string-reverse-search-not-char char string &optional from
string-reverse-search-not-char searches through string in reverse order, starting
from the index one less than from, which defaults to" the length of string, and
returns the index of the first character which is not char-equal to char, or nil if
none is found. Note that the index returned is from the beginning of the string.
although the search starts from the end.
Example:

(string-reverse-search-not-char 101 "banana") => 4

string-reverse-search kt'Y string &optional from
string-reverse-search searches for the string key in the string string. The search
proceeds in reverse order, starting from the index one less than from, which
defaults to the length of string, and returns the index of the first (leftmost) character
of the first instance found. ~r nil if none is found. Note that the index returned is
from the beginning of the string, although the search starts from the end. The from
condition, restated, is that the instance of key found is the rightmost one whose
rightmost character is before the from'th character of string.
Example:

(string-reverse-search Una" "banana") => 4

string-reverse-search-set char-list string &optional from
string-reverse-search-set searches through string in reverse order, starting from
the index one less than from, which defaults to the length of string, and returns ..
the index of the first character which is char-equal to some element of char-list, or
nil if none is found. Note that the index returned is from the beginning of the
string, although the search starts from the end.

(st~ing-reverse-search-set '(141 142) "banana") => 5

string-reverse-search-not-set char-list string &optional from
string-reverse-search-not-set searches through string in reverse order, starting
from the index one "less than from, which defaults to the length of string, and
returns the index of the first character which is not char-equal to any element of
char-list, or nil if none is found. Note that the index returned is from the
beginning of the string, although the search starts from the end.

(string-reverse-search-not-set '(141 156) -banana-) => 0

DSK:LMMAN;FD.STR 47 6-JAN-79

Maclisp-compatible Functions 84 Preliminary Lisp Machine Manual

See abo intern (page 184), which given a string will return -the- symbol with that print
name.

8.2 Maclisp-compatible Functions

alphalessp sIring I string2
(alphalessp string I string2) is equivalent to (string-Iessp siring] string2).

getchar string index
Return~ the index'th character of string as a symbol. Note that I-origin indexing is
u~ed. This function is mainly for Maclisp compatibility; aref should be used to
index into ~trings (however aref will not coerce symbols or numbers into strings).

getcharn sIring index
Returns the index'th character of string as a fixnum. Note that I-origin indexing is
u~ed. This function is mainly for Maclisp compatibility; aref should be used to
index into strings (however are(will not coerce symbols or numbers into strings).

ascii x

ascii is like character, but returns a symbol whose printname is the character
instead of returning a fixnum.
Examples:

(ascii 101) => A
(ascii 56) => I.

The symbol returned is interned in the user package.

maknam char-list
maknam returns an uninterned symbol whose print-name is a string made up of the
characters in char-list.
Example:

(maknam /(a b 60 d» => abOd

implodE' char-list
implode is like maknam except that the returned symbol is interned in the current
package.

The samepnamep function is also provided: see page 65.

DSK:lMMAN:FD.STR 47 6-JAN-79

Preliminary Li~p ~iachine Manual 85 Formatted Output J

8.3 F ormattfld Output

format destination control-string & rest args
format is used to produce formatted output. format outputs the characters of
control-string. except that a tilde r) introduces a directive. The character after
the tilde, possibly preceded by arguments and modifiers, specifies what kind of
formatting is desired. Some directives use an element of arts to create their output.

The output is sent to destination. If destination is nil, a string is created which
contains the output. If destination is a stream, the output is sent to it. If destination
i~ t, the output is sent to standard-output.

A directive consists of a tilde, optional decimal numeric arguments separated l;ly
commas, optional colon {":") and atsign ("@.") modifiers, and a single character
indicating what kind of directive this is. The alphabetic case of the character is
ignored. Examples of control strings:

"_S" This is an S directive with no arguments.
"-3,4 :@s" This is an S directive with two arguments, 3 and 4,

and both the colon and atsign flags.

The kinds of directives will now be described. arg will be used to refer to the next
argument from args.

arg, a number, is printed as a decimal integer. "" nO uses a column
width of n; spaces are inserted on the left if the number requires
less than n columns for its digits and sign. If the number doesn't fit
in n columns, additional columns are used as needed. "" n,m 0 uses
m as the pad character instead of 40 (space).

This is just like 0 but prints in octal instead of decimal.

arg is printed in floating point. Not yet implemented nor fully
defined.

arg is printed in exponential notation. Not yet implemented nor
fully defined.

arg, any Lisp object. is printed witho~t slashification (like prine).
"" n A inserts spaces ori the right. if necessary, to make the column
width at least n. minco/, co/inc. minpad.padchor A is the full form of
..... A, which allows elaborate control of the padding. The string is
padded on the right with at least minpad copies of padchar; padding
characters are then inserted co/inc characters at a time until the total
width is at least mincol. The defaults are 0 for mincol, 1 for colinc
and minpad, and 40 '(space) for padchar.

This is just like A, but arg is printed with slashification (like prinl
rather than princ).

(character arg) is printed as a keyboard character, whose bits are
described by the y'y'kbd- fields (see page 152). Control and meta bits

DSK:lMMAN;FD.STR 47 6-JAN-79

·.',r . :.

.::~~(.»" ,I \

~t~~;~i~.;';";i

Formatted Output

-p

-&

-I
-x
-T

--
-[

""'. ,

86 Preliminary Lisp Machine Manual

are printed as a preceding alpha (control), beta (meta), or epsilon
(contro) and meta); the characters alpha, beta, epsilon, and
equivalence-~ign are preceded by an equivalence-sign to quote them.
With the colon flag (i.e. -:C). the control and meta bits, as well as
non-printing characters (tho~e in the 200 to 377 range) are spelled
out. With both colon and atsign, characters which are typed in using
the "TOP" key produce something like .. ~ (Top-S)".

If arg is not 1, a 10wer-c8$e s is printed.

arg is ignored. - n* ignores the next n arguments.

Output~ a newline. "" ni. outputs n newlines. No argument is used.

The :fresh-line operation is performed on the output stream. Unless
the stream knows that it is already at the front of a line, this outputs
a newline.

Outputs a formfeed. "" nl outputs n form feeds.

Outputs a space. - n X outputs n spaces.

Spaces over to a given column. "" n,mT will output sufficient spaces
to move the cursor to column n. If the cursor is already past
column n, it will output spaces to move it to column n+mk, for the
smallest integer value k possible. nand m default to 1. Without the
colon flag. nand m are in units of characters; with it, they are in
units of pixels. Note: this operation only works properly on streams
that support the :read-cursorpos and :sel-cursorpos stream
operations (see page 167). On other streams (and when r ormat is
creating a string), any -T operation will simply output two spaces.

Outputs a tilde. "" n"'" outputs n tildes.

"Goes to" the nth argument. ""eG goes back to the first argument in
args. Directives after a "" nG will take sequential arguments after the
one gone to.

Thi~ begins a set of alternative control strings. The alternatives are
separated by""; and the construct is terminated by "",1. For example,
"",,[Siamese "'-'jManx -jPersian "";Tortoise-Shell ""';Tiger ""'jYu
shiang ""] kitty". The argth alternative is selected: 0 selects the
first. If arg is out of range no alternative is selected. After the
selected alternative has been processed, the control string continues
after the -].

-:[false-jtrue-] selects the false control string if arg is nil, and
selects the true control string otherwise.

Separates alternatives after ",,[.

Ends a ""[construction.

DSK:LMMAN:FD.STR 47 6-JAN-79

Preliminary Lisp Machine Manual 87 Formatted Output

"",R org is printed ~ a cardinal English number, e.g. four. With the
colon modifier. org is printed as an ordinal number, e.g. fourth.
With the atsign modifier. org is printed as a Roman numeral. e.g.
IV. With both atsign and colon. org is printed as an old Roman
numeral. e.g. II II.

In . place of a numeric argument to a directive, you can put the letter V, which
take~ an argument from orgs as an argument to the directive. Normally this should
be a number but it doesn't really have to be. This feature allows variable column-

widths and the like.

The user can define his own directives. How to do this is not documented here;
read the code. Names of m,er-defined directives longer than one character may be
u~ed if they are enclosed in backslashes (e.g. ""'4,3\GRAPH\).
Examples:

(format nil "fooD) => "fooD
(setq x 5)
(format nil "The answer is -D." x) => "The answer is 5."
(format nil "The answer is -3~." x) => "The answer is 5."
(setq y "elephant")
(format nil "look at the -A!" y) => "look at the elephant'"
(format nil "The character -:@C is strange." 1003)

=> "The character Heta-~ (Top-X) is strange."
(setq n 3)
(format nil "-0 item-P found." n n) => "3 items found."
(format nil "-R dog-:[s are-; is-] here." n (= n 1»

=> "three dogs are here."

formal abo allows control-string to be a list of strings and lists, which is processed
ff()m left to right. Strings are interpreted as in the simple case. Lists are taken as
extt-nded directives: the first element is the directive letter, and the remaining
elements are the numeric arguments to the directive. If the car of a list is r

recognized directive. the list is simply evaluated as a form; anything it writes to .~
standard-output stream will appear in the result of format.

For formatting Lisp code (as opposed to text and tables), there is the Grind package.
Se~ <not-yet-written>.

DSK:lMMAN;FD.STR 47 6-JAN-79

Array~ 88 Preliminary Lisp Machine Manual

9. Arrays

9.1 What Arrays Are

An array i!' a li!'p object that consists of a group of cells, each of which may contain a
Li~p object. The individual cells are selected by numerical subscripts.

There are many types of arrays. Some types of arrays can hold Lisp objects of any type;
the other types of arrays can only hold fixnums. The array types are known by a set of
~ymbob ~ymbob whose names begin wit~ "art-" (for ARray Type).

array-types Variable
The value of array-types is a list of all of the array type symbols such as art-q,
art-4b. art~string and sO on.

arra y-t ypes array-type-code
An array of the array type symbols. indexed by their internal numeric codes.

arr a y-elements-per-q ~'ariable
array-elements-per-q is an aSSociatIOn list (see page 52) which associates each
array type symbol with the number of array elements stored in one word, for an
array of that type.

array-elements-per-q array-type-code
This is an array, indexed by the internal codes of the array types, containing the
number of array elements stored in one word, for an array of that type.

array-bits-per-element Variable
The value of array-bits-per-element is an asSOCiation list (see page 52) which
a~sociates each array type symbol with the number of bits of unsigned number it can
hold. or nil if it can hold Lisp objects. This can be used to tell whether an array
can hold Lisp objects or not.

array-bits-per-element array-type-code
This is an array, indexed by the internal codes of the array types, containing the
number of bits per cell for unsigned numeric arrays, and nil for full-Lisp"object
containing array.

array-talement-size array
Giveon an array, returns the number of bits that fit in an element of that array. For
non-numeric arrays, the result is 24., assuming you will be storing unsigned fixnums
in the array.

The most commonly used type is called art-q. An art-q array simply holds Lisp
objects of any type.

DSK:L~MAN:FD.ARR 74 6-JAN-79

Preliminary Lbp Machine Manual 89 What Arrays Are

Similar to the art-q type is the art-q-list. Like the art-q. its elements may be any
Lisp object. The difference is that the art-q-list array "doubles" as a list: the function g-I
p will take an art-q-list array and return a list object whose elements are those of the
array, and whose actual substance is that of the array. If you rplaca elements of the list,
the corre~ponding element of the array will change. and if you store into the array, the
corre!'ponding element of the list will change the same way.

There is a set of types called art-lb, art-2b, art-4b, art-8b and arl-16b: these
names are ~hort for "I bit", "2 bits", and so on. Each element of an art-lb array is a
fixnum, and only one bit (the least significant) is remembered in the array; all of the others
are discarded. Similarly, in an art-2b array, only the two least significant bits are
remembered. So if you store a 5 into an art-2b array, for example, and look at it later,
you will find a 1 rather than a 5.

The~e arrays are used when it is known beforehand that the fixnums which will be
stored are non-negative and limited in size to a certain number of bits. Their advantage
over the art-q array is that they occupy less storage, because more than one element of the
array is kept in a single machine word. (For exam~le, 32 elements (decimal) of an art-lb
array or 2 elements of an art-16b array will fit into one word).

Character strings are implemented by the art-string array type. This type acts similarly
to the art-Bb; its elements must be fixnums, of which only the least significant eight bits
are stored. However, many important s)'~tem functions, including read, print, and eval,
treat art-string arrays very differently from the other kinds of arrays. These arrays are
usually called strings. and an entire chapter of this manual deals with functions which
manipulate them.

There are three types of arrays which exist only for the purposes of stack groups; these
type~ are called art-stack-group-head, art-special-pdl and art-reg-pdl. Their elements
may be any Lisp object; their use is explained in the section on stack groups (see page 105).

There are also two array types which exist only for the TV output device; these are
called art-tvb and art-tvb-pixel. The former holds one bit of a fixnum (like an art-lb
array). and the latter is more complicated. Their use is described in the section on the TV
(see page 210).

DSK:LMMAN:FD.ARR 74 6-JAN-79

How Arrays Work 90 Preliminary Lisp Machine Manual

9.2 How Arrays Work

The dimensionality of an array (or, the number of dimensions which the array has) is the
number of ~ubscripts used to refer to one of the elements of the array. The dimensionality
may be any integer from one to seven, inclusively.

The lowest value for any subscript is zero; the highest value is a property of the array_
Each dimension has a size, which is the lowest number which is too great to be used as a
subscript. For example, in a one dimensional array of five elements, the size of the one
and only dimension is five, and the acceptable values of the subscript are zero, one, two,
three. and four.

The most basic pnmltlve subrs for handling arrays are: make-array, which is used for
the creation of arrays. aref, which is used for examining the contents of arrays, and aset,
which is used for storing into arrays.

An array is a regular Lisp object, and it is common for an array to be the binding of a
symbol, or the car or cdr of a cons, or, in fact, an element of an array_ Another way of
handling arrays. inherited froql ~iaclisp, is to treat them as functions. In this case each
array has a name, which is a symbol whose function definition is the array. The Lisp
machine supports this style by allowing an array to be applied to arguments, as if it were a
function. The arguments are treated as subscripts and the array is referenced appropriately.
The store special form (see page (01) is also supported. This form of array referencing is
considered to be obsolete, and should not be used in new programs.

Here are some issues of Maclisp compatibility:

Fixnum array~ do not exist (however, see the Lisp machine's small-positive-number
arrays). Flonum arrays do not (currently) exist. "Un-garbage-collected" arrays do not exist.
Readtables and obarrays are represented as arrays, but unlike Mac1isp special array types are
not u~ed. See the descriptions of read (page (59) and intern (page 184) for information
about read tables and obarrays (packages). There are no "dead" arrays, nor are Multics
"external" arrays provided.

Subscripts are always checked for validity, regardless of the value of *rset and whether
the code is compiled or not. However, in a multi-dimensional array, an error is only
cau~ed if the sub!'cripts would have resulted in a reference to storage outside of the array;
so if you have a 2 by 7 array and refer to an element with subscripts 3 and 1, no error
will be cau~ed despite the fact that the reference is invalid: but if you refer to element 1 by
100, an error will be caused. In other words, any subscript error which is not detected
will only refer to somewhere el~e in your array, and not to any other part of storage.

loadarrays and dumparrays are not provided. However, arrays can be put into
"QFASL" flIes: see the section on fasloading (page (94).

DSK:LMMAN:FD.ARR 74 6-JAN-79

Preliminary Lisp Machine Manual 91 Extra Features of Arrays

9.3 Extra Features of Arrays

Any array may have an array leader. An array leader is like a one-dimensional art-q
array which is attached to the main array. So an array which has a leader acts like two
array~ joined together. It can be stored in and examined by a special set of functions which
are analogous to those used for the main array: array-leader and store-array-leader.
The leader is always one-dimensional. and always can hold any kind of Lisp object.
regardless of the type or dimensionality of the array.

By convention, the zeroth element of the array leader of an array is used to hold the
number of elements in the array that are "active" in some sense. When the zeroth element is
u~ed thi~ way, it is called a fill pointer. Specifically, if a string (an array of type art
string) has seven elements, but it has a fill pointer of five, then only elements zero through
four of the string are considered to be "active"; the string's printed representation will be
five characters long, string-searching functions will stop after the fifth element. etc.

The second element is also used in conjunction with the Mnamed structure" feature; see

below ..

[~ote: The named-structure feature is going to be revised in the future, and the
following material will become incorrect.]

Any array may be a named structure. Several functions (currently the printer and
d~scrib~), when given an array, check to see if the array is a named structure and take
!\p~c.ial action accordingly.

\Vithin each named structure array there is a symbol called the named structure symbol.
If th array has a leader, then the symbol is found in element 1 of the leader; otherwise it
I~ found in element 0 of the array. (Note: if a numeric-type array is to be a named
~tr Udllre, it must have a leader, since a ~ymbol cannot be stored in any element of a
numeric array.)

The ~ymb()l should be defined as a function. The functions which know about named
~\(ut:ture:- will apply this function to several arguments. The first is a "keyword" symbol to
,dl'ntlfy the calling function, and the second is the named structure itself. The rest of the
iHgull1~nb pa~~ed depend on the caller; any named structure function should have a "&rest
~i.H umetcr to ab~orb any extra arguments that might be passed. Just what the function is
e)l.pl"d~d to do depends on the keyword it is passed as its first argument.

lh .. ing named structures, you can control the printed representation of your array, and
Jh() yc)U can control what a user gets if he tries to describe it. Currently, the keyword
will he :prinl for the printer, and :describe for describe. See the documentation on the
prlntl'r and on describe for explanations of what the named structure function should do.

The following explanation of displaced arrays is probably not of interest to a beginner;
th ~ct:ti()n may be passed over without losing the continuity of the manual.

DSt.:.:lMMA~;FD.ARR 74 6-JAN-19

Extra Features of Arrays 92 Preliminary Lisp Machine Manual

~ormall)'. an array consists of a small amount of header information, followed by the
contenb of the array. However, sometimes it is desirable to have the header information
removed from the actual contents. One such occasion is when the contents of the array
must be located in a special part of the Lisp Machine's address space, such as the area used
for the control of input/output devices. Displaced arrays are also used to reference certain
special system tables. whi'ch are at fixed addresses so the microcode can access them easily.

If you give make-array a fixnum as its fourth argument, it will create a displaced array
refering to that location of virtual memory. References to elements of the displaced array
will al'ce!'s that part of storage, and return the contents; the regular aref and aset
functions are used. If the array is one whose elements are Lisp objects, caution should be
used: if the region of address space does not contain typed Lisp objects, the integrity of
the ~torage system could be damaged by the garbage collector. If the array is one whose
elements are bytes (such as an art-4b type). then there is no problem. It is important to
know. in this case, that the elements of such arrays are allocated from the right to the left
within the 32-bit words. See the description of internal array formats on <not-yet-written>.

It is also possible to have an array whose contents, instead of being located at a fixed
place in virtual memory, are defined to be those of another array. Such an array is called
an indirect array, and is created by giving make-array an array as its fourth argument.
The effects of this are simple if both arrays have the same type; the two arrays share all
elements. An object stored in a certain element of one can be retrieved from the
corre~ponding element of the other. This, by itself, is not very useful. However, if the
array~ have different dimensionality, the manner of accessing the elements differs. Thus, by
creating a one-dimensional array of nine elements which was indirected to a second, two
dimen~ional array of three elements by three, then the elements could be accessed in either
a one-dimensional or a two-dimen~ional manner. Even more complex effects can be
produced if the new array is of a different type than the old array; see the description of
internal array formats on <not-yet-written>.

It is also possible to create a one-dimensional indirect array in such a way that when an
attempt is made to reference it or store into it, a constant number is added to the SUbscript
given. This number is called the index-offset, and is specified at the time the indirect array
is created, by giving a fixnum to make-array as its sixth argument. The nsubstrin,
function (see page 80) creates such arrays.

DSK:LMMAN:FD.ARR 74 6-JAN-79

'f'"

Preliminary Lisp Machine Manua'l 93 Basic Array Functions

9.4 Basic Array Functions

make-array area type dims &optional displaced-p leader index-offsl!t named-structure
This creates and r~turns an array, according to various specifications.

The area parameter specifies the area in which to allocate the array's storage; if you
are not concerned with areas, simply use the value of def auit-array-area. For
convenience, if area is nil, -default-array-area is used instead.

tyP(' should be a symbolic name of an array type; the most common of these is art
q. The elements of the array are initialized according to the type: if the array is of
a type whose elements may only be fixnums, then every element of the array will
initially be 0; otherwise, every element will initially be nil. See the description of
array types on page 88.

dims should be a list of fixnums which are the dimensions of the array: the length of
the list will be the dimensionality of the array. For convenience. if the
dimensionality should be one, the single dimension may be provided as a fixnum in
place of the list.
Examples:

(setq a (make-array nil ,. art-q 5» ; Create a one-d array
;of 5 elements.

(setq b (make-array nil ,. art-4b ,. (3 4») ; Create a four-bit two-d
;array,3 by 4.

If displaced-p is not nil, then the array will be a displaced array. displaced-p may
either be a fixnum, to create a regular displaced array which refers to a certain
section of virtual address space, or an array, to create an indirect array (see page
(2).

If leader is not nil, then the array will be given a leader. If leader is a fixnum, the
array's leader will be leader elements long, and its elements will be initialized to nil.
Leader may also be a list, in which case the length of the leader is equal to that of
the Ji~t, and the elements are initialized to the elements of the list, in reverse order
(i.e., the car of the list is stored in the highest-subscripted location in the leader).

If index-offset is present, displaced-p should be an array, and index-offset should be a
fixnum: it is made to be the index-offset of the created indirect array. (See page
92.)

If named-structure is not nil, it is a symbol to be stored in the named-structure cell
element of the array. The array created will be a named structure.

DSK:LMMAN:FD.ARR 74 6-JAN-79

~: ;:>-'~.~~.

'~~g\'~]f~

Ba.. .. ic Array Functions 94 Preliminary Lisp .Machine Manual

Examples:
(make-array nil /art-q 5 nil 3)
(setq a (make-array nil /art-Ib
(array-leader a 0) => nil
(array-leader a I) => t

;;leader 3 elements long.
100 n11 /(t nil»)

make-array returns the newly-created array, and also returns, as a second value,
the number of words allocated from area in the process of creating the array.

array-displaced-p array
array may be any kind of array. This predicate returns t if array is any kind of
di~placed array (including indirect arrays). Otherwise it returns nil.

array-indirect-p array
array may be any kind of array. This predicate returns t if array is an indirect
array. Otherwi~e it returns nil.

array-indexed-p array
array may be any kind of array. This predicate returns t if array is an indirect
array with an index-offset. Otherwise it returns nil.

adjust-array-size array new-size
array should be a one-dimensional array. Its size is changed to be new-size. If this
results in making array smaller, then the extra elements are lost: if array is made.
bigger, the new elements are initialized in the same fashion as make-array (see
page 93): either to nil or 0. [Currently there is a bug which causes initialization to·
zero not to work.]
Example:

(setQ a (make-array nil /art-Q 5»
(aset ... foo a 4)
(aref a 4) => foo
(adjust-array-size a 2)
(aref a 4) => ERROR

If the size of the array is being increased, adjust-array-size must allocate a new
array somewhere: it then alters array so that references to it will be made to the
new array jn~tead, by means of an "invisible pointer". adjust-array-siz@ will return
thi~ new array if it creates one, and otherwise it will return array. Be careful about
u~ing the returned result of adjust-array-size, because you may end up holding
two arrays which are not the same (i.e., not eq) which share the same contents.

return-array array
Return array to free storage. If it is displaced, this returns the pointer, not the data
pointed to. Currently does nothing if the array is not at the end of its area. This
will eventually be renamed to reclaim, when it works for other objects than arrays.

DSK:LM~fAN:FD.ARR 74 6-JAN-79

Preliminary Lisp Machine Manual 95 Basic Array Functions

a ref array & rest subscripts
Returns the element of array selected by the subscripts. The subscripts must be
fixnums and their number must match the dimensionality of array.

ar-l array i
array should be a one-dimensional array, and j should be a fixnum. This returns the
,'th element of array.

ar-2 array i j
array should be a two-dimensional array, and i and j should be fixnums. This
returns the i by j'th element of array.

ar-3 array i j k
array should be a three-dimensional array, and i, j, and k should be· fixnums. This
returns the i by j by k'th element of array.

aset x array & rest subscripts
Stores x into the element of array selected by the subscripts. The subscripts must be
fixnums and their number must match the dimensionality of array.

as-l x array i
array should be a one-dimensional array, and i should be a -fixnum. x may be any
object. x is stored in the ;'th element of array. as-l returns x.

as-2 x array i j
array should be a two-dimensional array, and i and j should be fixnums. x may be
any object. x is stored in the j by j'th element of array. as-2 returns x.

as-3 x array j j k
array should be a three-dimensional array, and i, j, and k should be fixnums. x
may be any object. x is stored in the j by j by k'th element of array. as-3 returns
x.

aloe array & rest subscripts
Returns a locative pointer to the element-cell of array selected by the subscripts.
The subscripts must be fixnums and t,heir number must match the dimensionality of
array.

ap-l array i
array should be a one-dimensional array whose elements contain Lisp objects, and ;
should be a fixnum. This returns a locative pointer to the ;'th element of array.
See the explanation of locatives, page 109.

DSK:LMMAN;FD.ARR 74 6-JAN-79

Ba~ic Array Functions 96 Preliminary Lisp Machine Manual

ap-2 array i i
array should be a two-dimensional array whose elements contain Lisp objects, and i
and i should be fixnums. This returns a locative pointer to the i by j'th element of
array. See the explanation of locatives. page 109.

ap-3 array i i k
array ~hould be a three-dimensional array whose elements contain Lisp objects, and
i, i, and k should be fixnums. This returns a locative pointer to the i by j by k'th
element of array. See the explanation of locatives, page 109.

The compiler turns ar~f into ar-l, ar-2, etc. according to the number of subscripts
specified, turn~ aset into as-I, 3s-2, etc., and turns aloc into ap-l, ap-2, etc. For arrays
with more than 3 dimensions the compiler uses the slightly less efficient form since the
special routine~ only exist for 1, 2, and 3 dimensions. There is no reason for any program
to call ar-l, as-I, ar-2, etc. explicitly; they are documented because there used to be
such a reason, and many existing programs use these functions. New programs should use
aref, aset, and aloc.

arraycall ignored array &rest subscripts
(arraycall nil array subl sub2 ...) is the same as (aref array subl sUb2_.). It exists
for ~faclisp compatibility.

get-list-pointer-into-array array-ref
The argument array-ref is ignored, but should be a reference to an art-q-list array
by applying the array to subscripts (rather than by aref). This returns a list object
which is a portion of the "list" of the array. beginning with the last element of the
array which ha~ been referenced.

I-I-p array
array should be an art-q-list array. This returns a list which shares the storage of
array. The art-q-list type exists so that I-I-p can be used.
Example:

(setq a (make-array nil /art-q-11st 4»
(arer a 0) => nil
(setq b (g-l-p a» => (n11 nil nil nil)
(rp1aca b t)
b => (t n11 n11 n11)
(aref a 0) => t
(aset 30 a 2)
b => (t nil 30 n11)

let-Iocative-pointer-into-array array-ref
get-Iocative-pointer-into-array is similar to cet-Iist-pointer-into-array,
except that it returns a locative, and doesn't require the array to be art-q-list .

•

DSK:LMMAN:FD.ARR 74 6-JAN-79

Preliminary Lbp Machine ~anual 97 Basic Array Functions

arraydims array
array may be any array; it also may be a symbol whose function cell contains an
array, for Mac1isp compatibility (see page 100). It returns a list whose first element
is the symbolic name of the type of array, and whose remaining elements are its
dimensions.
Example:

(setq a (make-array nil /art-q /(3 5»)
(arraydims a) => (art-q 3 5)

array-dimensions array
array-dimensions returns a list whose elements are the dimensions of array.
Example:

(setq a (make-array nil /art-q /(3 5»)
(array-dimensions a) => (3 5)

Note: the list returned by (array-dimensions x) is equal to the cdr of the list
returned by (arraydims x).

array-in-bounds-p array &rest subscripts
Thb function checks whether the subscripts are all legal subscripts for array, and
return~ t if they are; otherwise it returns nil.

array-length array
array may be any array. This returns the total number of elements in array. For a
one-dimensional array, this is one greater than the maximum allowable subscript.
(But if fill pointers are being used, you may want to use array-active-Iength (see
page 100».
Example:

(array-length (make-array nil /art-q 3» => 3
(array-length (make-array nil /art-q /(3 5»)

= > 17 :octal, which is 15. decimal

array-/ #-dims array
Returns the dimensionality of array. Note that the name of the function includes a
"#", which must be slashified if you want to be able to compile your program with
the compiler running in Mac1isp.
Example:

(array-Ii-dims (make-array nil /art-q /(3 5») => 2

array-dimension-n n array .
array may be any kind of array, and n should be a fixnum. If n is between 1 and
the dimensionality of array, this returns the n'th dimension of array. If n is 0, it
returns the length of the leader of array; if array has no leader it returns nil. If n
is any other value, it returns nil.

DSK:LMMAN:FD.ARR 74 6-JAN-79

Basic Array Function~ 98 Preliminary Lisp Machine Manual

Example~:

(setQ a (make-array nil /art-q /(3 5) nil 7»
(array-dimension-n 1 a) => 3
(array-dlmension-n 2 a) => 5
(array-dlmension-n 3 a) => nil
(array-dimension-n 0 a) => 7

array-t ype array
Returns the symbolic type of orroy.
Example:

(setQ a (make-array nil /art-q /(3 5»)
(array-type a) => art-q

fillarray array .l"

!\1ote: for the present, all arrays concerned must be one-dimensional.

array may be any type of array, or, for Maclisp compatibility, a symbol whose
function cell contain~ an array. There are two forms of this function, depending on
the type of x.

If x is a list, then fillarray fills up array with the elements of list. If x is too short
to fill up all of array, then the J~t element of x is used to fill the remaining
elements of array. If x is too long, the extra elements are ignored.

If x is an array (or, for Maclisp compatibility, a symbol whose function cell contains
an array), then the elements of array are filled up from the elements of x. If x is.
too small, then the extra elements of array are not affected.

fillarray returns array.

listarray array &optional limit
Note: for the present, all arrays concerned must be one-dimensional.

array may be any type of array, or, for Maclisp compatibility, a symbol whose
function cell contains an array. listarray creates and returns a list whose elements
are those of array. If limit is present, it should be a fixnum, and only the first limit
(if there are more than that many) elements of array are used, and so the maximum
length of the returned li~t is limit.

c:opy-array-contE-nts from to
from and to must be arrays. The contents of from is copied into the contents of to,
element by element. Presently the first subscript varies fastest in multi-dimensional
arrays (opposite from Maclisp). If to is shorter than from, the excess is ignored. If
from is shorter than to, the rest of to is filled with nil if it is a q-type array or 0 if
it is a numeric array. t is always returned.

DSK:l~MAN:FD.ARR 14 6-JAN-19

Preliminary Li~p Machine Manual 99 Named Structures

9.5 Named St ructures

Named ~tructures were introduced at the beginning of the chapter. This section presents
various functions which operate on named structures.

named-structure-p x
this predicate returns t if x is a named structure; otherwise it returns nil.

named-structure-symbol x
x should be a named structure. This returns x's named structure symbol: if x has an
array leader, element 1 of the leader is returned, otherwise element 0 of the array is

returned.

rnake-array-into-narned-strueture array
array is made to be a named structure, and is returned.

9.6 Array Leaders

Array leaders were introduced at the beginning of the chapter. This section presents
various functions which operate on array leaders.

array-has-leader-p array
array may be any array. This predicate returns t if array has a leader; otherwise it

returns nil.

array-leader-length array
array may be any array. This returns the length of array's leader if it has one? or
nil if it does not.

array-leader array i
array should be an array with a leader, and i should be a fixnum. This returns the
;'th element of array's leader. This is analogous to are£.

store-array-Ieader x array i
array should be an array with a leader, and i should be a fixnum. x may be any
object. x is stored in the i'th element of array's leader. store-array-leader
returns x. This is analogous to aset.

ap-Ieader array i
array should be an
locative pointer to
locatives, page 109.

DSK:LMMAN;FD.ARR 74

array with a leader, and i should be a fixnum. This returns a
the rth element of array's leader. See the explanation of
This is analogous to aloe.

6-JAN-79

Macli~p Array Compatibility 100 Preliminary Lisp Machine Manual

array-active-it-ngth array
If . array doe~ not have a fill pointer, then this returns whatever (array-length
array) would have. If array does have a fill pointer, array-active-length returns
it. See the general explanation of the use of fill pointers, which is at the beginning
of this ~ection.

array-push array x
array mu~t be a one-dimensional array which has a fill pointer, and x may be any
(")bject. array-push attempts to store x in the element of the array designated by
the fill pointer, and increa~e the fill pointer by one. If the fill pointer does not
de~ignate an element of the array (~pecifically. when it gets too big), it is unaffected
and array-push returns nil: otherwise, the two actions (storing and incrementing)
happen uninterruptibly, and array-push returns the former value of the fill pointer
(nne le~~ than the one it leaves in the array). If the array is of type art-q-Iist, an
()peration ~imilar to nconc has taken place, in that the element has been added to
the li~t by changing the cdr of the formerly last element.

array-push-t-xtend array x
array-push-extend is just like array-push except that if the fill pointer gets too
large. the array is grown to fit the new element: i.e. it never "fails" the way array
push doe~. and so never returns nil.

array-pop arro l •

array mu. " a one-dimensional array which has a fill pointer. The fill pointer is
decreased by one, and the array element designated by the new value of the fill
pointer is returned. If the new value does not designate any element of the array
(:-pecificaJly, if it has reached zero), an error is caused. The two operations
(decrementing and array referencing) happen uninterruptibly. If the array is of type
art-q-list, an operation similar to nbutlast has taken place.

copy-array-contt-nts-and-Ieader from to
Thi~ is just like copy-array-contents (see page 98), but the leaders of from and to
are also copied.

9.7 Maclisp Array Compatibility

Note: the function~ in this section should not be used in new programs.

In ~faclisp, arrays are usually kept on the array property of symbols, and the s}'mbols
are used in~tead of the arrays. In order to provide some degree of compatibility for this
manner of using arrays, the array, *array, and store functions are provided, and when
array~ are applied to arguments, the arguments are treated as subscripts and apply returns
the corresponding element of the array. However, the *rearray, loadarrays, and
dumparrays functions are not provided. Also, flonum, read table, and obarray type
arrays are not supported.

DSK:LMMAN;FD.ARR 74 6-JAN-79

Preliminary Lbp Machine Manual 101 Maclisp Array Compatibility

array "e symbol type &eval & rest dims
This creates an art-q type array in default-array-area with the given dimensions.
(That is, dims is given to make-array as its third argument.) type is ignored. If
symbol is nil, the array is returned: otherwise, the array is put in the function cell

. of symbol, and symbol is returned.

*array' symbol type &rest dims
This is just like array, except that all of the arguments are evaluated.

store "e array-ref x
x may be any object; array-ref should be a form which references an array. First x
is evaluated, then array-ref is evaluated, and then the value of x is stored into the
array cell which was referenced by the evaluation of array-ref.

xstore x array-ref
This is just like store, b~t it is not a special form; this is because the arguments are
in the other order. This function only exists for the compiler to compile the store
special form, and should never be used by programs.

DSK:LMMAN;FD.ARR 74 6-JAN-79

Closure!\ 102 Preliminary Lisp Machine Manual

10. Closures

A c/osurr is a type of Lisp functional object useful for implementing certain advanced
access and control structures.' Clo~ures give the programmer more explicit control over the
environment, by allowing him to "save up" the environment created by the entering of a
dynamic contour (i.e. a lambda, do, prol, progv, let, or any of several other special
forms), and then u!'e that environment elsewhere, even after the contour has been exited.

10.1 What a Closure Is

There is a view of lambda-binding which we will use in tttis section because it makes it
easier to explain ' ... ·hat closures do. In this view, when a variable is bound, a new value
cell is created for it. The old value cell is saved away somewhere and is inaccessible. Any
references to the variable will get the contents of the new value cell, and any setq's will
change the contents of the new value cell. When the binding is undone, the new value
cell goes away. and the old value cell, along with its contents, is restored.

For example, consider the following sequence of Lisp forms:
(setq a 3)

«lambda (a)
(print (+ a 6»)

10)

(print a)
Initially there b a value cell for a, and the setq form makes the contents of that value cell
be 3. Then the lambda-combination is evaluated. a is bound to 10: the old value cen,
which still contains a 3, is saved away, and a new value cell is created with 10 as its
contents. The reference to a inside the lambda expression evaluates to the current binding
of a, which is the contents of its current value cell, namely 10. So 16 is printed. Then the
binding is undone,. discarding the new value cell, and restoring the old value cell which
still contains a 3. The final print prints out a 3.

The form (closure 'lor-list function), where 'lor-list is a list of variables and function is
any function, creates and returns a closure. When this closure is applied to some
argument~, all of the value cells of the variables on 'lor-Jist are saved away, and the value
cetl~ that tho!-e variables had at the time closure was called are made to be the value cells
of the symbols. Then function is applied to the argument. (This paragraph is somewhat
complex, but it completely describes the operation of closures; if you don't understand itt
come back and read it again.)

Here is another, lower level explanation. The closure object stores several things inside
of it. First, it saves the function. Secondly, for each variable in 'lor-list, it remembers what
that variable's value cell was when the closure wa~ created. Then when the closure is called
as a function, it first temporarily restores the value cells it has remembered, and then
applies function to the same arguments to which the closure itself was applied.

DSK:lM~1AN;FD.CLO t 1 6-JAN-79

I)reliminary Li~p Machine Manual

Now, if we evaluate the form
(setQ a

«lambda (x)

103 Examples of the Use of Closures

(closure /(x) (function car»)
3»

what happens is that a new value cell is created for x, and its contents is a fixnum 3. Then
a clo~ure b created, which remembers the function car, the symbol x, and that value cell.
Finally the old value cell of x is re~tored, and the closure is returned. Notice that the new
value cell is still around, because it is still known about by the closure. When the closure
is applied, this value cell will be restored and the value of x will be 3.

Because of the way closures are implemented, the variables to be closed over must not
get turned into "local variables" by the compiler. Therefore, all such variables should be
declared special.

In the Lisp Machine's implementation of closures, lambda-binding never really allocates
any ~torage to create new value cells. Value cells are only created (sometimes) by the
closure function itself. Thus, implementors of large systems need not worry about storage
alloc.ation overhead from this mechanism if they are not using closures. See the section on
internal formats.

Lisp Machine closures are not closures in the true sense, as they do not save the whole
variable-binding environment; however, most of that environment is irrelevant, and the
explicit declaration of which variables are to be closed allows the implementation to have
high efficiency. They abo allow the programmer to explicitly choose for each variable
whether it is to be bound at the point of call or bound at the point of definition (e.g.,
creation of the closure), a choice which is not conveniently available in other languages. In
addition the program is clearer because the intended effect of the closure is made manifest
by listing the variables to be affected.

10.2 Examples of the Use of Closures

This section gives some examples of things that can be done easily and elegantly with
closures, which would be difficult to do without them.

We will start with a ~imple example of a generator. A generator is a kind of function
which is called successively to obtain successive elements of a sequence. We will implement
a function make-list-generator, which takes a list, and returns a generator which will
return successive element~ of the lbt. When it gets to the end it should return nil.

The problem is that in between calls to the generator, the generator must somehow
remember where it is up to in the list. Since all of its bindings are undone when it is
exited, it cannot save this information in a bound variable. It could save it in a global
variable, but the problem is that if we want to have more than one 1ist generator at a time,
they will all try to use the same global variable and get in each other's way.

DSK:LMMAN;FD.CLO 11 6-JAN-79

Function Descriptions 104 Preliminary Lisp Machine Manual

Here is how we can use closures to solve the problem:
(defun make-list-closure (1)

(closure "(1)
(function (lambda ()

(progl (car 1)
(setq 1 (cdr 1»»»)

Now we can make as many list generators as we like; they won~t get in each other's way
becau~e each ha!\ its own value cell for l. Each of these value cells was created when the
make-list -closure function was entered, and the value cells are' remembered by the
clo~ures.

10.3 Function Descriptions

closure .. 'or-list function
This create~ and returns a closure of function over the variables in vor-list. l'ote
that all variables on vor-list must be declared special if the function is to compile
correctly.

symeval-in-closure closure symbol
Thi~ returns the binding of symbol in the environment of closure; that is, it returns
what you would get if you restored the value cells known about by closure and then
evaluated symbol. This allows you to "look around inside- a closure.

set-in-closure closure symbol x
This sets the binding of symbol in the envorinment of closure to x; that is, it does
what would happen if you restored the value cells known about by closure and then
~et symbol tc) x. This allows you to change the contents of the value cells known
about by a closure.

let-closed Macro

When using closures, it is very common to bind a set of variables with initial values,
and then make a closure over those variables. Furthermore the variables must be
declared 8!' "special" for the compiler. let-closed expands into a form which does
all of this. It is best described by example:

(let-closed «a 5) b (c "x»
(function (lambda() ... »)

expands into

(local-declare «special a be»
(let «a 5) b (c "x»

(closure "(a b c)
(function (lambda () ... »»)

DSK:LMMAN;FD.CLO 11 6-JAN-79

Preliminary Lisp Machine Manual 105 Stack Groups

11. Stack Groups

A stack group (usually abbreviated "SG") is a type of Lisp object useful for
implementation of certain advanced control structures such as coroutines and generators. A
stack group represents a computation and its internal state, including the Lisp stack. At any
time, the computation being performed by the Lisp Machine is associated with One stack
group, ·called the current. or running stack group. The operation of making some stack
group be the current stack group is called a resumption or a stack group switch: the running
stack group is said to have resumed the new stack group. The resume operation has two
parts: first, the state of the running computation is saved away inside the current stack
group, and secondly the state saved in the new stack group is restored, and the new stack
group is made current. Then the computation of the new stack group resumes its course.

The stack group remembers all functions whi<;:h were active at the time of the
re~umption (that is, the running function, its caller, its caller's caller, etc.), and where in

. each function the computation was up to. In other words, the entire control stack (or
regular pdl) is saved. In addition, the bindings that were present are saved also; that is, the
environment sta~k (or special pdl) is saved. When the state of the current stack group is
~aved away. all of its bindings are undone. and when the state is restored. the bindings are
put back. Note that although bindings are temporarily undone, unwind-protect handlers are
not run (see let-globally).

There are several ways that a resumption can happen. First of all, there are several Lisp
functions, described below, which resume some other stack group. When some stack group
(call it c) calls such a function, it is suspended in the state of being in the middle of a call
to that function. When someone eventually resumes c, the function will return. The
argumenb to these functions and the returned values can therefore be used to pass
information back and forth between stack groups. Secondly, if an error is signalled, the
current ~tack group resumes an error handler stack group, which handles the error in some
way. Thirdly, a sequence break can happen, which transfers control to a special stack group
called the scheduler (see page 195).

Note: the following discussion of resumers is incomplete, and the way they work is
being changed anyway.

Each stack group has a resumer. c's resumer is some other stack group, which
e~~entially is the last stack group to resume c. This is not completely right, however,
because some resume-forms set the resumed stack group's resumer, and some don't. So c's
resumer is actually the last stack group to resume C by means of one of the types of resume
form which does set the resumer.

si :r.curren l-stack -group-previous-s tack -group Variable
The binding of this variable is the resumer of the current stack group.

There are currently four kinds of resume-forms:

DSK:LMMAN;FD.SG 38 6-JAN-79

What is Going On In~jde 106 Preliminary Lisp Machine Manual

1)

2)

3)

4)

If c calls s as a function with an argument x, then $ is resumed, and the
object transmitted is x. $'5 resumer is now c.

If c evaluates (stack-group-return x), then its resumer is resumed, and
the object transmitted is x. The resumer's resumer is not affected.

If c evaluates (stack-group-resume s xl, then c is resumed, and the object
tran~mitted is x. c's resumer is not affected. (This is not currently
implemented.)

If the initial function of c attempts to return a value x, the regular kind of
Lbp function return cannot take place, since the function did not have any
caller (it got there when the stack group was initialized). So instead of
returning, its resumer is resumed, and the value transmitted is x. The
resumer's resumer is not affected. c is left in a state from which it cannot
be resumed again: any attempt to resume it would signal-an error.

There is one other way· a stack group can be resumed. If the running stack group c gets
a microcode trap, then the error handler stack group is resumed. The object transmitted is
nil. and the error handler's resumer is set to c. This kind of resuming will only happen to
the error handler, sO regular programs should not see it.

11.1 What is Going On Inside

The stack group itself holds a great deal of state information. First of all, it c'ontains
the control stack, or "regular POL". The control stack is what you are shown by the
backtracing commands of the error handler (currently the Control-Band Meta-B commands);
it remembers the function which is running, its caller, its caller's caller, and so on, and
remembers the point of execution of each function (i.e. the -return addresses· of each
function). Secondly. it contains the environment stack, or "special PDL-. This contains all
of the values saved by lambda-binding. Finally, it contains various internal state
information (contents of machine registers and so on).

When one stack group resumes a second, the first thing that happens is that (some of)
the state of the processor is saved in the first stack group. Next, all of the bindings in
effect are undone: each stack group has its own environment, and the bindings done in one
stack group do not affect another stack group at all. Then the second stack group's bindings
are restored, its machine state is restored, and the second stack: group proceeds from where
it left off. While these things are happening, the transmitted object is passed into the
second stack group, and optionally the second stack group's resumer is made to be the first
stack group.

si:Y.current-stack-group Variable
The value of si:7.current-stack-group is the stack: group which is currently
funning. A program can use this variable to get its hands on its own stack group.

DSK:lMMAN:FD.SG 38 6-JAN-79

Preliminary Lisp Machine Manual 107 What is Going On Inside

nlake-stack-group name &optional options
This creates and returns a new stack group. name may be any symbol: it is used to
identify and print the stack group. Each option is a keyword followed by a value
for that option; any number of options may be given, including zero. The options
are not too us~ful; most calls to make-stack-group don't have any options at all.

• The options· are:

:sg-area The area in which to create the stack group structure itself. Defaults
to def ault-array-area.

:regular-pdl-area
The area in which to create the regular POL. Note that this may not
be any area; only certain areas may hold regular POL, because
accessing a regular POL as memory must So through special
microcode which checks an internal cache called the pd/ buffer.
Defaults to error-linear-pdl-area .

. :special-pdl-area
The area in which to create the special POL. Defaults to def ault
array-area.

:regular-pdl-size
Length of the regular POL to be created. Defaults to 3000.

:special-pdl-size
Length of the special POL to be created. Defaults to 400.

:car-sym-mode
The "error mode" which determines the action taken when there is an
attempt to apply car to a symbol. This, and the other "error mode·
options, are documented with the fucntions car and cdr. Defaults to
1.

:car-num-mode
As above, for applying car to a number. Defaults to O.

:cdr-sym-mode
As above, for applying cdr to a symbol. Defaults to 1.

:cdr-num-mode
As above, for applying cdr to a number. Defaults to O.

:swap-sv-on-call-out

:swap-sv-of -sg-that-calls-me

:trap-enable This determines what to do if a microcode error occurs. If it is 1
the system tries to handle. the error; if it is 0 the machine halts.
Defaults to 1.

:safe If 1 (the default), a strict call-return discipline among stack-groups is
enforced. If 0, no restriction on stack·group switching is imposed.

DSK:LMMAN;FD.SG 38 6-JAN-79

What is Going On Inside 108 Preliminary lisp Machine Manual

stack.-group-preset stack-group function &rest arguments
This sets up stack-group so that when it is resumed, function will be applied to
arguments within the stack group. Both stacks are made empty. stack-group
preset i~ u~ed to initialize a stack group just after it is made, but it may be done to
any ~tack group at any time.

stack-group-return x

Let s be the current stack, group's resumer; stack-troup-return will resume s,
tran~mitting the value x. s's resumer is not affected.

stack-group-resume s x

stack-group-resume will resume s, transmitting the object x. S'5 resumer is not
affected. This function is not currently implemented.

DSK:LMMAN:FD.SG 38

Preliminary Li~p Machine Manual 109 Locatives

12. Locatives

12.1 Cells and Locatives

A locative is a type of Lisp object used as a pointer to a cell. Locatives are inherently a
more "low level" construct than most Lisp objects; they require some knowledge of the
nature of the Lisp implementation. Most programmers will never need them.

A cell is a machine word which contains a (pointer to a) Lisp object. A symbol has five
celb: the print name cell, the value cell. the function cell, the property list cell, and the
package cell. The value cell holds (a pointer to) the binding of the symbol, and so on.
Also, an array leader of length n has n cells, and an array of n elements has n cells
provided the array is not a numeric array. However, a numeric array contains a different
kind of cell, which cannot be pointed to by a locative.

There are a set of functions which create locatives to cells; the functions are
documented with the kind of object to which they create a pointer. See ap-l, ap-Ieader,
car-location, value-cell-Iocation, etc. The macro Iocr (see page 146) can be used to
convert a form which accesses a cell to one which creates a locative pointer to that cell:
for example,

(locf (fsymeval x» ==) (function-cell-location x)

12.2 Functions Which Operate on Locatives

Either of the functions car and cdr (see page 38) may be given a locative, and will
return the contents of the cell at which the locative points.

For example,
(car (value-cell-location x»
is the same as
(symeval x)

Similarly, either of the functions rplaca and rplacd may be used to store an object into
the cell at which a locative points.

For example,
(rplaca (value-cell-location x) y)
is the same as
(set x y)

If you mix locatives and lists, then it matters whether you use car and rplaca or cdr
and rplacd. and care is required. For example, this function takes advantage of value
cell-location to cons up a list in forward order without special-case code. The first time
through the loop. the rplacd is equivalent to (setq res _); on later times through the loop
the rplacd tacks an additional cons onto the end of the list.

DSK:LMMAN;FD.LOC 13 6-JAN-79

Functions ,\Vhich Operate on Locatives 110

(defun sort-of-mapcar (fen 1st)
(do «1st 1st (cdr 1st»

(res nil)
(loc (value-cell-location /res»)

«null 1st) res)
(rp1acd loc

Preliminary Lisp Machine Manual

(setq loc (ncons (funca11 fen (car 1st»»»)
You might expect this not to work if it was compiled and res was not declared special,
since non-special compiled variables are not represented as symbols. However, the compiler
arranges for it to work anyway.

DSK:LMMAN;FD.LOC 13 6-JAS-79

Preliminary Li~p Machine Manual 111 Subprimitives

13. Subprimitives

Subprimitives are functions which are not intended to be used by the average program,
only by "sy~tem programs". They allow one to manipulate the environment at a level lower
than normal Lisp. Subprimitives usually have names which start with a % character. The
"primitiv.e~" described in other sections of the manual typically use subprimitives to
accomplish their work. The subprimitives take the place of machine language in other
sy~tt'ms, to some extent. SUbprimitives are normally hand-coded in microcode.

SUbprimitives by their very nature cannot do full checking. Improper use of
$ubprimitives can destroy the environment.

13.1 Data Types

data-type arg
data-type returns a symbol which is the name for the internal data-type of the
"pointer" which represents arg. Note that some types as seen by the user are not
distinguished from each other at this level, and some user types may be represented
by more than one internal type.

si:dtp-symbol
The object is a symbol.

si:dtp-fix The object is a fixnum; the numeric value is contained immediately
in the pointer field.

si:dtp-small-flonum
The object is an immediate small floating-point number.

si:dtp-extended-number
The object is a flonum or a bignum. This value will be used for
future numeric types.

si:dtp-list The object is a cons.

si:dtp-Iocative
The object is a locative pointer.

si:dtp-array-pointer
The Object is an array.

si:dtp-f e(-pointer
The object is a fef.

si:dtp-u-entry
The object is a microcode entry.

si:dtp-closure
The object is a closure.

DSK:LMMAN:FD.SUB 26 6-JAN-79

Data Type~ 112 Preliminary Lisp Machine Manual

si:dtp-stack-group
The object i~ a stack-group.

si:dtp-instance
The object is an "active object". These are not documented yet.

si:dtp-E'ntit y The same as dtp-closure except it is a kind of "active object".
These are not documented yet.

si:dtp-sE'lect-method
Another type associated with "active objects" and not documented
yet.

si:dtp-header An internal type used to mark the first word of 8 multi-word
structure.

si:dtp-array-htJader
An internal type used in arrays.

si:dtp-symbol-header
An internal type used to mark the first word of 8 symbol.

si:dtp-instance-header

si:dtp-null

si:dtp-trap

An internal type used to mark the first word of an instance.

Nothing to do with nil. This is used in unbound value and function
cells.

The zero data-type. which is not used. This hopes to detect
microcode errors.

si:dtp-free This type is used to fill free storage, to catch wild references.

si:dtp-external-value-cell-pointer
An "invisible pointer" used for external value cells. which are part of
the closure mechanism (see page 102). and used by compiled code
to address value and function cells.

si :dtp-header -f 0 rwa rd
An "invisible pointer" used to indicate that the structure containing it
has been moved elsewhere. The "header word" of the structure is
replaced by one of these invisible pointers. See the function
structure-forward (page 113).

si:dtp-body-f orward
An "invisible pointer" used to indicate that the structure containing it
has been moved elsewhere. This points to the word containing the
header-forward, which points to the new copy of the structure.

si:dtp-one-q-f orward
An "invisible pointer" used to indicate that the single cell containing
it has been moved elsewhere.

si:dtp-gc-f orward
This IS used by the copying garbage collector to flag old objects that

DSK:L\t\1AN:FD.SUB 26 6-JAN-79

Preliminary Lisp Machine Manual 113 Creating Objects

have already been copied.

q-data-types Variable
The value of q-data-types is a list of all of the symbolic names for data types
described above under data-type. ,(the symbols whose print names begin with "dtp-
U)

q-data-t ypes type-code
An array, indexed by the internal numeric data-type code, which contains the
corresponding symbolic names.

13.2 Creating Objects

make-list area size
This function makes a cdr-coded list of nils of a specified length in a specified area.
orca is which area to create it in, which may be either a fixnum or a symbol whose
value will be used. size is the number of words to be allocated. Each word has cdr
code cdr-next, except for the last which has cdr-nil.

This function is to be used only for making lists. If making a "structure" (any data
type that has a header), use one of the two functions below. This is because the
two classes of object must be created in different storage regions, for the sake of
system storage conventions and the garbage collector.

i.allocate-and-initialize data-type header-type header second-word area size
This is the subprimitive for creating most structured-type objects. area is the area in
which it is to be created. as a fixnum or a symbol. size is the number of words to
be allocated. The value returned points to the first word allocated, and has data
type data-type. Uninterruptibly, the words allocated are initialized so that storage
conventions are preserved at all times. The first word, the header, is initialized to
have header-type in its data-type field and header in its pointer ~eld. The second
word is initialized to second-word. The remaining words are initialized to nil. The
cdr codes are initialized as in make-list, currently.

Y.allocate-and-initialile-array header data-length leader-length area size
This is the ~ubprimitive for creating arrays, called only by make-array. It is
different from i.allocate-and-initialile because arrays have a more complicated

header structure.

structure-forward old-object new-object
This causes references to old-object to actually reference new-object, by storing
invisible pointers in old-object. It returns old-object.

DSK:LMMAN:FD.SUB 26 6-JAN-79

Pointer ~1anipulation 114 Preliminary Lisp Machine Manual

13.3 Pointer Manipulation

It ~hould again be emphasized that improper use of these functions can destroy the Lisp
environment. primarily because of interactions between the garbage collector and the illegal
pointers that can be created by these sub-primitives.

i.data-tvpe x
Returns the data-type field of x, as a fixnum.

i.pointer x
Returns the pointer field of x, as a fixnum. For most types, this is dangerous since
the garbage collector can copy the object and change its address.

i.make-pointer data-type pointer
This makes up a pointer. with data-type in the data-type field and pointer in the
pointer field, and returns it. This is most commonly used for changing the type of a
pointer. Do not use this to make pointers which are not allowed to be in the
machine, such as dtp-null, invisible pointers, etc.

i.make-pointer-off set data-type pointer offset
This returns a pointer with data-type in the data-type field, and pointer plus offset in
the pointer field. The types of the arguments are not checked, their pointer fields
are simply added together. This is useful for constructing locative pointers into the
middle of an object. However, note that it is illegal to have a pointer to untyped
data. such as the inside of a FEF or a numeric array.

i.pointer-diff tarence pointl.'r-l pointer-2
Returns a fixnum which is pointer-l minus pointer-2. No type checks are made.
For the re~ult to be meaningful, the two pointers must point into the same object,
so that their difference cannot change as a result of garbage collection.

i.find-st ructure-htaader pointer
This subprimitive finds the structure into which pointer points, by searching backward
for, a header. It is a basic low-level function used by such things as the garbage
collector. pointer is normally a locative, but its data-type is ignored .. Note that it is
illegal to point into an "unboxed" portion of a structure, for instance the middle of a
numeric array.

In structure space, the "containing structure" of a pointer is well-defined by system
~torage conventions. In list space, it is considered to be the contiguous, cdr-coded
segment of list surrounding the location pointed to. If a cons of the list has been
copied out by rplacd, the contiguous list includes that pair and ends at that point.

DSK:LM~fAN:FD.SUB 26 6-JAN-79

Preliminary Lisp Machine Manual 115 Special Memory Referencing

i.structure-boxed-size object
Returns the number of 'boxed Q's" in object. This is the number of words at the
front of the structure which contain normal Lisp objects. Some structures, for
example FEFs and numeric arrays, containing additional ·unboxed Q's" following

their "boxed Q's".

Y.structure-total-size object
Returns the total number of words occupied by the representation of object.

13.4 Special Memory Referencing

i.store-conditional pointer old new
Thi:> is the basic locking primitive. pointer points to a cell which is uninterruptibly
read and written. If the contents of the cell is eq to old, then it is replaced by new
and t is returned. Otherwise, nil is returned and the contents of the cell is not

changed.

The following four functions are for I/O programming.

%unibus-read address
Returns the contents of the register at the specified Unibus address, as a fixnum.
You must specify a full is-bit address. This is guaranteed to read the location only
once. Since the Lisp Machine Unibus does not support byte operations, this always
references a 16-bit word, and so address will normally be an even number.

i.unibus-write address data
Writes the 16-bit number data at the specified Unibus address, exactly once.

i.xbus-read io-offset
Returns a fixnum which is the low 24 bits of the contents of the register at the
specified Xbus address. io-offset is an offset into the I/O portion of Xbus physical
address space. This is guaranteed to read the location exactly once.

i.xbus-wri te io-offset data
Writes the pointer field of data, which should be a fixnum, into the register at the
~pecified Xbus address. The high eight bits of the word written ate always zero. io
offset is an offset into the I/O portion of Xbus physical address space. This is
guaranteed to write the location exactly once.

i.p-contents-offset base-pointer offset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, it adds offset to the
resulting forwarded base-pointer and returns the contents of that location.

DSK:LMMAN;FD.SUB 26 6-JAN-79

Special ~iemory Referencing 116 Preliminary Lisp Machine Manual

1.p-contents-as-locative pointer
Given a pointer to a memory location containing a pointer which isn't allowed to be
"in the machine" (typically an invisible pointer) this function returns the contents of
the location a~ a dtp-Iocative. I.e. it changes the disallowed data type to locative
so that),ou can safely look at it and see what it points to.

1.p-contents-as-locative-offset base-pointer offset
Thi~ checb the cell pointed to by base-pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, it adds offset to the
re!'ulting forwarded base-pointer, fetches the contents of that location, and returns it
with the data type changed to dtp-Iocative in ca.~ it was a type which isn't
allnwed to be "in the machine" (typically an invisible pointer1 This is used, for
example, to analyze the dtp-external-value-cell-pointer pointers in a FEF, which
are u~ed by the compiled code to reference value cells and function cells of
~)'mbol~.

i.p-stor~-cont~nts pointer value
value i~ stored into the data-type and pointer fields of the location addressed by
pointer. The cdr-code and flag-bit fields remain unchanged. value is returned.

1.p-store-contents-offset value base-pointer offset
This check~ the cell pointed to by base-pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, it adds offset to the
re~ulting forwarded base-pointer, and stores value into the data-type and pointer
fields of that location. The cdr-code and flag-bit fields remain unchanged. value is
returned.

i.p-store-tag-and-pointer pointer miscfields pntrfield
Create~ a Q by taking 8 bits from miscfields and 24 bits from pntrfield, and stores
that into the location addressed by pointer. The low 5 bits of miscfields become the
data-type, the next bit becomes the flag-bit, and the top two bits become the cdr
code. This is a good way to store a forwarding pointer from one structure to
another (for example).

1.p-ldb ppss pointer
This is like Idb but gets a byte from the location addressed by pointer. Note that
you can load bytes out of the data type etc. bits, not just the pointer field, and that
the word loaded out of need not be a fixnum. The result returned is always a
fixnum. unlike %p-contents and friends.

Xp-Idb-off set ppss base-pointer offset
This checb the cell pointed to by base-pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, the byte specified by
ppss is loaded from the contents of the location addressed by the forwarded base
pointer plus offset, and returned as a fixnum. This is the way to reference byte
fields within a structure without violating system storage conventions.

DSK:lM~fAN:FD.SUB 26

Preliminary li~p ~1achine Manual 117 Special Memory Referencing

i.p-dpb value ppss pointer
The value, a fixnum, is stored into the byte selected by ppss in the word addressed
by pointer. nil is returned. You can use this to alter data types, cdr codes, etc.

i.p-dpb-off set value ppss base-pointer offset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, the value is stored into
the byte specified by ppss in the location addressed by the forwarded base-pointer
plus offset. nil is returned. This is the way to alter unboxed data within a structure
without violating system storage conventions.

i.p-mask-fitald ppss pointer
This is similar to %p-Idb, except that the selected byte is returned in its original
position within the word instead of right-aligned.

i.p-mask -fitald-off set ppss base-pointer offset
This is similar to i.p-Idb-offset, except that the selected byte is returned in its
original position within the word instead of right-aligned.

i.p-deposit-field value ppss pointer
This is similar to %p-dpb, except that the selected byte is stored from the
corresponding bits of value rather than the right-aligned bits.

%p-deposit-field-offset value ppss base-pointer offset
This is similar to %p-dpb-off set, except that the selected byte is stored from the
corresponding bits of value rather than the ,right-aligned bits.

i.p-pointer pointer
Extracts the pointer field of the contents of the location addressed by pointer and
returns it as a fixnum.

%p-~ata-type pointer
Extracts the data-type field of the contents of the location addressed by pointer and
returns it as a fixnum.

%p-cdr-code pointer
Extracts the cdr-code field of the contents of the location addressed by pointer and
returns it as a fixnum.

I.p-flag-bit pointer
Extracts the flag-bit field of the contents of the location addressed by pointer and
returns it as a fixnum.

DSK:LMMAN;FD.SUB 26

The Paging System 118 Preliminary Lisp Machine Manual

Xp-store-pointer pointer value
Cl0bber~ the pointer field of the location addressed by pointet- to value, and returns
value.

i.p-store-data-t ype pointer value
Clobber~ the data-type field of the location addressed by pointer to value, and returns
value,

i.p-store-cdr-code pointer value
Clobbers the cdr-code field of the location addressed by pointer to value, and returns
value.

i.p-store-flag-bit pointer value
Clobber!' the flag-bit field of the location addressed by pointer to value, and returns
~·aIUl'.

i.s tack -f r a me-poi n ter
Returns a locative pointer to its caJler's stack frame. This function is not defined in
the interpreted Lisp environment; it only works from compiled code. Since it turns
into a "misc" instruction, the "caller's stack frame" really means "the frame for the
FEF that executed the %stack-frame-pointer instruction".

bind locative value

i.hah

[Thb will be renamed to %bind in the future.] Binds the cell pointed to by locative
to x, in the caller's environment. This function is not defined in the interpreted
Lisp environment: it only works from compiled code. Since it turns into an
instruction, the "caller's environment" really means "the binding block for the FEF
that executed the bind instruction",

Stops the machine.

13.5 The Paging System

[Someday this will discu~s how it worh.]

si:Y.change-page-status virtual-address swap-status access-status-and-meta-bits
The page ha~h table entry for the page containing virtual-address is found and altered
as ~pecified, t is returned if it wa" found, nil if it was not (presumably the page is
~wapped out.) swap-status and access-status-and-meta-bits can be nil if those fields are
not to be changed. This doesn't make any error checks: you can really screw things
up if you call it with the wrong arguments.

DSK:L~~1AN:FD,SUB 26 6-JAN-79

Preliminary Li~p Machine Manual" 119 Microcode Variables

si:%compute-page-hash virtual-address
Thi~ makes the ha~hing function for the page hash table available to the user.

si :%c rea te-ph ysical-page physical-address
This is used when adjusting the size of real memory available to the machine. It
adds an entry for the page frame at phYSical-address to the page h~h table. with
virtual addre~s -L swap ~tatus flushable. and map status 120 (read only). Thi~
doe~n't make error checks; you can really screw things up if you call it with the
wrong arguments.

si:%delete-physical-page phYSical-address
If there is a page in the page frame at phYSical-address, it is swapped out and its
entry is deleted from the page hash table. making that page frame unavailable for
swapping in of pages in the future. This doesn't make error checks; you can really
screw things up if you call it with the wrong arguments.

si:t.disk-restore high-16-bits low-16-bits
Loads virtual memory from the partition named by the catenation of the two 16-bit
arguments, and starts executing it. The name 0 refers to the default load (the one
the machine load~ when it is started up).

si:%disk-save phys(cal-mem-size h;gh-16-bits low-16-bits
Copies virtual memory into the partition named by the catenation of the two 16-bit
arguments (0 means the default), then restarts the world, as if it had just been
restored. The physical-mem-size argument should come from Y.sys-com-memory
size in system-communication-area.

13.6 Microcode Variables

The following variable~' values actually reside in the scratchpad memory of the
proce~~or. They are put there by dtp-one-q-f orward invisible pointers. The values of
the~e variables are used by the microcode.

I.microcode-version-number Variable
This is the version number of the currently-loaded microcode, obtained from the
ver~ion number of the microcode source file.

sys:i.number-of -micro-entries Variable
Size of micro-code-entry-area and related areas. Currently the data-type is
missing from this number.

default-cons-area Variable
The area number of the default area in which new data are to be consed. This is
normally working-storage-area.

DSK:LMMAN;FD.SUB 26 6-JAN-79

, .
"

Microcode Variables 120 Preliminary Lisp Machine Manual

si:Xinitial-f ef Variable
The function which is called when the machine starts up. Normally si:nsp-top
level.

Xerror-handler-stack-group Variable
The stack group which receives control when a microcode-detected error occurs.
Thi~ stack group cleans up, signals the appropriate condition, or enters the debugger.

si:Y.currEtnt-stack-group Variable
The ~tack group which is currently running.

Xinitial-stack-group Variable
The stack group in which the machine starts up.

si:i.cur rEtnt-stack -group-state Variable
The sg-stale of the currently-running stack group.

si:Y.currEtnt-stack-group-previous-stack-group Variable
The resumer of the currently-running stack group.

si:Y.cur rent -stack -group-calling-args-pointer Variable
The argument list of the currently-running stack group.

si:Y.current-stack-group-caliing-args-number Variable
The number of arguments to the currently-running stack group.

si:Xtrap-micro-pc Variable
The microcode address of the most recent error trap.

si:Y.count -first-Ievel-map-reloads Variable
The number of times the first-level virtual-memory map was invalid and had to be
reloaded from the page hash table.

si:Y.count-second-level-map-reloads Variable
The number of times the second-level virtual-memory map was invalid and had to be
reloaded from the page hash table.

si:Y.count -pdl-buff er-read-f aults Variable
The number of read references to the pdt buffer which happened as virtual memory
references which trapped.

si:Xcount -pdl-buff er-write-f aults Variable
The number of read references to the pdt butTer which happened as virtual memory
references which trapped.

DSK:L\i\1AN;fD.SUB 26 6-JAN-79

Preliminary Li~p Machine Manual 121 Microcode Variables

si:i.count-pdl-buffer-memory-fauhs Variable
The number of virtual memory references which trapped in case they should have
gone to the pdl buffer, but turned out to be real memory references after all (and
thereiore were needlessly slowed down.)

si:i.count -disk -page-reads Variable
The number of pages read from the disk.

si:%count-disk-page-writes Variable
The number of pages written to the disk.

si:t.count-disk-errors Variable
The number of recoverable disk errors.

si:t.count-f resh-pages Variable
The number of fresh (newly-consed) pages created in core, which would have
otherwise been read from the disk.

si:%aging-rate Variable
The number of age steps per disk read or write. This parameter controls how long a
page must remain unreferenced before it is evicted from main memory.

si:i.count-aged-pages Variable
The number of times the page ager set an age trap on a page, to determine whethe.r
it wa~ being referenced.

si:i.count -age-flushed-pages Variable
The number of times the page ager saw that a page still had an age trap and hence
made it "flushable", a candidate for eviction from main memory.

i.mar-Iow Variable
A fhmum which IS the inclusive lower bound of the region of virtual memory
subject to the MAR feature.

i.mar-high Variable
A fixnum which IS the inclusive upper bound of the region of virtual memory
subject to the MAR feature.

i.self Variable
The instance which has just been called. (See <not-yet-written>.)

'-method-class Variable
The class in which the current method was found. (See <not-yet-written>.)

DSK:LMMAN;FD.SUB 26 6-JAN-79

~iicrocode Variables 122 Preliminary Lisp Machine Manual

inhibit-scheduling-flag Variable
If non-nil, no proce~s other than the current process can run.

inhibit-scavenging-flag Variable
If non-nil. the scavenger is turned off. The scavenger is the quasi-asynchronous
portion of the garbage collector, which normally runs during consing operations.

DSK:lMMAN;FD.SUB 26 6-JAN-79

Preliminary li~p Machine Manual 123 Areas

14. Areas

[Note: this chapter will be completely rewritten in the next edition of thi~ manual. to
reflect the exbtence of the garbage collector. The present chapter is very incomplete.)

Storage in the Li~p machine is divided into areas. Each area contains related objects. of
any type. Areas are intended to give the user control over the paging behavior of his
program, among other things. By putting related data together, locality can be greatly
increased. \Vhenever a new object is created, for instance with cons, the area to be used
can optionally be specified. There is a default Working Storage area which collects those
objects which the user has not chosen to control explicitly.

Areas also give the user a handle to control the garbage collector. Some areas can be
declared to be "static", which means that they change slowly and the garbage collector
should not attempt to reclaim any ~pace in them. This can eliminate a lot of useless
copying. All pointers out of a static area can be collected into an "exit vector", eliminating
any need for the garbage collector to look at that area As an important example. an
Engli~h-Ianguage dictionary can be kept inside the Lisp without adversely affecting the speed
of garbage collection. A "static" area can be explicitly garbage-collected at infrequent
intervals when it is believed that that might be worthwhile.

Each area can potentially have a different storage discipline, a different p.aging algorithm,
and even a different data representation. The microcode will dispatch on an attribute of the
area at the appropriate times. The structure of the machine makes the performance co!'t of
the~e features negligible: information about areas is stored in extra bits in the memory
mapping hardware where it can be quickly dispatched on by the microcode. These
dispatches usually have to be done anyway to make the garbage collector work, and to
implement invisible pointers.

Since the garbage collector is not ye.t implemented. the features mentioned in the
previous two paragraphs are not either. Also, with the implementation of the garbage
l:ollector will come a new, more sophi~ticated area scheme. The two most visible effects of
the new scheme will be that garbage will be collected. and that areas will be able to shrink
and grow. When thi~ happens. it will be documented; stay tuned. Most of this chapter will
become inoperative at this time. so don't depend on it.

Each area has a name and a number. The name is a symbol whose value is the number.
The number is an index into various internal tables. Normally the name is treated as a
special variable, so the number is what is given as an argument to a function that takes an
area as an argument. Thus, areas are not Lisp objects.

The following variables hold the areas most often used:

DSK:LMMAN;AREAS 11 6-JAN-79

•

•

Areas 124 Preliminary Lisp Machine Manual

default -cons-area Variable
The value of this variable is the number of the area to which all of the creators of
con~e~ (cons, xcons, list, append, etc.) use by default. It is initially the number
of working-storage-area. Note that you can either bind this variable or use
function~ such as cons-in-area (see page 39) which take an area as an explicit
argument.

defau'lt-array-area Variable
The value of this variable is the number of the area which make-array uses by
default. It is initially the number of working-storage-area.

define-area name size
Create a new area whose name is the symbol name. The size of the area will be
size words, rounded up to the nearest multiple of the machine page size. define
area fills in all of the area tables appropriately, and returns the number of the
created area.

area-list Variable
The value of area-list is a list of the names of all existing areas. This Jist shares
storage with the inter~al area name table, so you should not change it.

Y.area-number pointl!r
Returns the number of the area to which pointer points, or nil if it does not point
within any known area. The data-type of pointer is ignored.

Y.region-number pointer
Returns the number of the region to which pointer points, or nil if it does not point
within any known region. The data-type of pointer is ignored. Regions will be
explained later.

We will now list those areas with which the user may need to be concerned. This
~ection will be expanded later.

area-name Variable
Indexed by area number. Contains the area's name (a symbol).

area-name
The function definition of area-name is an array of area names, indexed by area
numbers.

DSK:LM!\fAN;AREAS 17 6-JAN-79

Preliminary Lisp ~1achine Manual 125 Areas

working-storage-area Variable
This is the normal value of default-cons-area and default-array-area. Most
working data are consed in this area.

permanent-storage-area Variable
This is to be used for "permanent" data, which will (almost) never become garbage.
Unlike woring-storage-area, the contents of this area are not continually copied
by the garbage collector;

sys:p-n-string Variable
Print names are stored here.

sys:nr-sym Variable
Thb contains most of the symbols in the Lisp world, except t and nil.

macro-compiled-program Variable
FEFs are put here by the compiler and by f asload.

DSK:LMMAN;AREAS 17 6-JA!'-79

; ; -.•.. .' ~ .

The Com pi ler 126 Preliminary Lisp Machine Manual

15. The Compiler

IS.1 The Basic Operations of the Compiler

The purpo~e of the Lisp compiler is to convert Lisp functions into programs in the Lisp
Machine'~ in~truction set. so that they will run more quickly and take up less storage.
Compiled' functions are represented in Lisp by FEFs (Function Entry Frames), which
contain machine code a~ well as various other information. The format of FEFs and the
instruction set are explained in <not-yet-written>.

There are three ways to invoke the compiler from the Lisp }'1achine. First, you may
have an interpreted function in the Lisp environment which you would like to compile.
The function compile is used to do this. Second, you may have code in an editor buffer
which y u would like to compile. The EI~E editor has commands to read code into Lisp
and compile it. Third. you may have a program (a group of function definitions and other
forms) written in a file on the file system. The compiler can translate this file into a QFASL
file. Loading in the QF ASL file is like reading in the source file, except that the functions
in the source file will be compiled. The qc-file function is used for translating source files
into QFASL files.

15.2 How to Invoke the Compiler

compile symbol
symbol should be defined as an interpreted function (its definition should be a
lambda-expression). The compiler converts the lambda-expression into a FEF, saves
the lambda-expression as the :previous-expr-definition and :previous-definition
properties of symbol. and changes 5ymhofs definition to be the FEF. (See fset
carefully. page 60. (Actually. if symbol is not defined as a lambda-expression,
compile will try to find a lambda-expression in the :previous-expr-definition
property of symbol and use that instead.)

uncompile symbol
If 5ymbol i~ not defined as an interpreted function and it has a :previous-expr
definition property, then uncompile will restore the function cell from the value of
the property. This "undoes" the effect of compile.

qc-file fil<'name &optional output-jill' load-flag in-care-flag package
The file filename is given to the compiler, and the output of the compiler is written
to a file whose name is filename exc~pt with an FN2 of "QFASL". The input format
for files to the compiler is described on page 127. Macro definitions and special
dec1aration~ created during the compilation will be undone when the compilation is
finished.

DSK:LM\fAN:COMPIL 44 6-JAN-79

Preliminary Li~p Machine Manual 127 Input to the Compiler

The optional arguments allow certain modifications to this procedure. output-file lets
you change where the output is written. package lets you specify in what package
the ~ouree file is to be read. N~rmal1y the system knows, or asks interactively, and
you need not supply this argument. load-flag and in-core-flag are incomprehensible;
you don't want to use them.

qc-file-load filename
qc-file-load compiles a file and then loads it in.

See al~o the disassemble function (page 263). which lists the instructions of a compiled
function in symbolic form.

The compiler can abo be run in Maclisp on ITS. On the MIT-AI machine, type
:lISPM 1 :QC~ p. It will type out "READY" and leave you at a Maclisp top level. Then
type (qc-file filename), expressing filename in Maclisp form.
Example:

(qc-file /«lispm) foo »)

15.3 I nput to the Compiler

The purpose of qc-file is to take a file and produce a translated version which doe!' the
same thing as the original except that the functions are compiled. qc-file reads throubh the
input file. processing the form~ in it one by one. For each form, suitable binary output is
sent to the QFASL file so that when the QFASL file is loaded the effect of that source form
will be reproduced. The differences between source files and QF ASL files are that QF ASL
files are in a compressed binary form which reads much faster (but cannot be edited), and
that fune.tion definitions in QFASL files have been tr~nslated from S-expressions to FEFs.

So, if the !\ource contains a (defun .. .) form at top level, then when the QFASL file is
loaded, the function will be defined as a compiled function. If the source file contains a
form which is not of a type known specially to the compiler, then that form will be output
"directly" into the QFASL file, so that when the QFASL file is loaded that form will be
evaluated. Thus. if the source file contains (setq X 3), then the compiler will put in the
QF ASL file instructjo~s to set x to 3 at load time.

However, sometimes we want to put things in the file that are not merely meant to be
translated into QFASl form. One such occasion is top level macro definitions; the macros
mu!'t actually get defined within the compiler in order that the compiler be able to expand
them at compile time. So when a macro form is seen, it should (sometimes) be evaluated at
compile time. and should (sometimes) be put into the QFASL file.

Another thing we sometimes want to put in a file is compiler declarations. These are
form!' which should be evaluated at compile time to tell the compiler something. They
~hould not be put into the QF ASL file.

DSK:LMMAN:COMPIL 44 6-JAN-79

Input to the Compiler 128 Preliminary Lisp Machine Manual

Therefore. a faci1ityexi~ts to allow the user to tell the compiler just what to do with a
form. One might want a form to be:

Put into the QFASL file (translated), or not.

Evaluated ,t,ithin the compiler, or not.

Evaluated if the file is read directly into Lisp, or not.

Two forms are recognized by the compiler to allow this. The less general but Maclisp
compatible one is declare: the completely general one is ev~l-when.

An eval-when form looks like
(eva l-when times-list

form]
form 2
...)

The times-list may contain any of the symbols load, compile, or eva I. If load is present.
the forms are written into the QF ASL file to be evaluated when the QFASL file is loaded
(except that defun forms will put the compiled definition into the QFASL file instead). If
compile is present, the forms are evaluated in the compiler. If eval is present, the forms
are evaluated when read into Lisp; this is because eval-when is defined as a special form
in Lisp. (The compiler ignores eval in the timN-list.) For example, (eval-when (compile
eval) (macro (00 (x) (cadr x))) would define foo as a macro in the compiler and when
the file i~ read in interpreted, but not when the QFASL file is fasloaded.

For the rest of this section, we will use lists such as are given to eval-when, e.g.
(load eva!), {load compile). etc. to describe when forms are evaluated.

A declare form looks like (declare form] form2 ••.). declare is defined in Lisp as a
special form which does nothing: so the forms within a declare are not evaluated at eval
time. The compiler does the following upon finding form within a declare:· if form is a
call to either special or unspecial. form is treated as (load compile); otherwise it is
treated as (compile).

If a form is not enclosed in an eval-when nor a declare, then the times at which it
will be evaluated depend on the form. The following table summarizes at what times
evaluation will take place for any given form seen at top level by the compiler.

(eval-when times-list form] ...)
times-list

(declare (special .. .) or (declare (unspecial ... »
(load compile)

(declare anything-tt/se)
(compile)

(special ...) or (unspecial ...)
(load compile eval)

DSK:L~fMAN;COMPIL 44 6-JAN-79

Preliminary Lisp ~tachine Manual 129 Input to the Compiler

(macro ...) or (defstruct ...)
(load compile eval)

(comment .. .) Ignored

(begf ...) or (endf ...)
Ignored but may one day put something in the QFASL file.

(compiler-let « var valJ ...) body ...)
At (compile eval) time, processes the body with the indicated variable
bindings in effect. Does nothing at load time.

{local-declare (decl decl ...) body . ..}
Processes the body in its normal fashion, with the indicated declarations
added to the front of the list which is the value of local-declarations.

anything-clse (load eval)

Sometimes a macro wants to return more than one form for the compiler top level to
see (and to be evaluated). The following facility is provided for such macros. If a form

(progn (quote compile) forml form2 ...)
is seen at the compiler top level, all of the forms are processed as if they had been at
compiler top level. (Of course, in the interpreter they will all be evaluated, and the (quote
compile) will harmle~~ly evaluate to the symbol compile and be ignored.}

eval-when Special Form
An eval-when form looks like

(eva l-when times-list form 1 form2 ...)
If one of the element of times-list b the symbol eval, then the forms are evaluated;
otherwise eval-when does nothing.

But when seen by the compiler, this special form does the special things described
above.

declare Special Form
declare does nothing, and returns the symbol declare.

But when seen by the compiler, this special form does the special things described
above.

DSK:LMMAN:COMPIL 44 6-JAN-79

Compiler Declarations 130 Preliminary Lisp Machine Manual

15.4 Compiler Declarations

Thi~ ~ecti()n de~cribes functions meant to be called during compilation, and variables
meant to be ~et or bound during compilation, by using declare or local-declare.

local-declare Special Form
A local-declare form looks like

(local-declare (dedI decl1 ...)
form I
form1
...)

Each decl is consed onto the list local-declarations while the forms are being
ev~luate-d (in the interpreter) or compiled (in the compiler). There are two uses for
this. Fir~t, it can be used to pass information from outer macros to inner macros.
Sec0ndly. the compiler will specially interpret certain decls as local declarations,
which only apply to the compilations of the forms. It understands the following
forms:

(special vorl varl.o.)
The variables vorl, varl t etc. will be treated as special variables
during the compilation of the forms.

(unspecial vorl varl ...)
The variables var I, var l, etc. will be treated as local variables
during the compilation of the forms.

(macro name lambda (x) body)
name will be defined as a macro during the compilation of the
forms. Note that the cddr of this item is a function.

special Special Form
(special var I varl .. .) causes the variables to be declared to be "special" for the
compiler.

unspecial Special Form
(unspecial vorl vorl ...) removes any "special" declarations of the variables for the
compiler.

The next three declarations are primarily for Maclisp compatibility.

*expr Special Form
(*expr sym J syml ...) declares sym I , syml, etc. to be names of functions. In
addition it prevents these functions from appearing in the list of functions referenced
but not defined printed at the end of the compilation.

DSK:LM~AN;COMPIL 44 6-JAN-79

Preliminary Li~p Machine Manual 131 Compiler Declarations

*Iexpr Special Form
<*Ipxpr syml sym2 ...) declares syml, sym2, etc. to be names of functions. In
addition it prevents these functions from appearing in the list of functions referenced
but not defined printed at the end of the compilation.

*f expr Special Form
(*f expr sym 1 sym2 .. .) declares sym 1, sym2, etc. to be names of special forms. In
addition it prevenb these names from appearing in the list of functions referenced
but not defined printed at the end of the compilation.

There are some advertised variables whose compile-time values affect the operation of
the compiler. The user may set these variables by including in his file forms such as

(declare (setQ open-code-map-switch t»

run-in-maclisp-swit.ch Variable
If this 'variable is non-nil, the compiler will try to warn the user about any
con~tructs which will not work in Maclisp. By no means will all Lisp machine
sy~tem functions not built in to Maclisp be cause for warnings; only those which
could not be written by the user in Maclisp (for example, *catch, make-array,
value-cell-location, etc.). Also, lambda-list keywords such as &optional and
initialized prog variables will be mentioned. This switch also inhibits the warnings
for obsolete !\1aclisp functions. The default value of this variable is nil.

obsolet.e-function-warning-switch Variable
If this variable is non-nil, the compiler will try to warn the user whenever an
"obsolete" Maclisp-compatibility function such as maknam or samepnamep is used.
The default value is t.

allow-variables-in-function-position-switch Variable
If this variable is non-nil,· the compiler allows the use of the name of a variable &"

function po~ition to mean that the variable's value should be funcall'd. This is for
compatibility with old Maclisp programs. The default value of this variable is nil.

open-code-map-switch Variable
If this variable is non-nil, the compiler will attempt to produce inline code for the
mapping functions (mapc, mapcar, etc., but not mapatoms) if the function being
mapped is an anonymous lambda-expression. This allows that function to reference
the local variables of the enclosing function without .-the need for special
declarations. The generated code is also more efficient. The default value is T.

all-special-switch Variable
If this variable is non-nil, the compiler regards all variables as special, regardless of
how they were declared. This provides full compatibility with the interpreter at the
cost of efficiency. The default is nil. '

DSK:LMMAN:COMPIL 44 6-JAN-79

Compiler Declarations 132 Preliminary Lisp Machine Manual

inhibit -st ylta-warnings-switch Variable
If this variable is non-nil. all compiler ~tyle-checking is turned off. Style checking is
u~ed to issue obsolete function warnings and won't-run-in-Maclisp warnings, and
other sorts of warnings. The default value is nil. See also the inhibit-st yle
warnings macro. which acts on one level only of an expression.

retain-variable-names-switch Variable
This controls whether the generated FEFs remember the names of the variables in
the function; such information is useful for debugging (the arelist function uses it,
see page 61). but it increases the size of the QFASL file and the FEFs created. The
variable may be any of

nil No names are saved.

args Names of arguments are saved.

all Names of arguments and &aux variables are saved.
The default value of this symbol is args, and it should usually be left that way.

compiler-let J~acro
(compiler-let ((variable value) ...) body ...), syntactically identical to let, allows
compiler switches to be bound locally at compile time, during the processing of the
body forms.
Example:

(compiler-let «open-code-map-switch nil» .
(map (function (lambda (x) ... » fool)

will prevent the compiler from open-coding the map. When interpreted, compiler
let is equivalent to let. This is so that global switches which affect the behavior of
macro expanders can be bound locally.

inhibit-st yle-warnings Macro
(inhibit-style-warnings form) prevents the compiler from performing style-checking
on the top level of form. Style-checking will still be done on the arguments of
form. Both ob~olete function warnings and won't-run-in-Maclisp warnings are done
by means of the style-checking mechanism, so, for example,

(setQ bar (inhibit-style-warnings (value-cell-10cation roo»)
will not warn that value-cell-location will not work in Maclisp, but

(inhibit-style-warnings (setQ bar (va1ue-ce11-10cation foo»)
will warn, since inhibit-style-warnings applies only to the top level of the form
inside it (in this case, to the setq).

DSK:LMMAN;COMPIL 44 6-JAN-79

Prdiminary Li!-p Machine Manual 133 Compiler Source-Level Optimizers

15.5 Compilf:lr Source-Level Optimizers

The compiler ~tore~ optimizers for ~ource code on property lists so as to make it easy
for the u~er to add them. An optimizer can be u~ed to tran!\form code into an equivalent
but more efficient form (for example, (eq obj nil) is transformed into (null obj), which can
be compiled better). An optimizer can also be used to tell the compiler how to compile a
special form. For example, in the interpreter do is a special form, implemented by a
function which take~ quoted arguments and calls eval. In the compiler, do is expanded in
a macro-like way by an optimizer. into equivalent Lisp code using prog, cond, and go,
which the compiler understands.

The compiler finds the optimizers to apply to a form by looking for the
compiler:optimizers property of the symbol which is the car of the form. The value of
thi~ property should be a list of optimizers, each of which must be a function of one
argument. The compiler tries each optimizer in turn, passing the form to be optimized as
the argument. An optimizer which returns the original form unchanged (and eq to the
argument) has "done nothing", and the next optimizer is tried. If the optimizer returns
anything else. it has "done something", and the whole process starts over again. This is
somewhat like a Markov algorithm. Only after all the optimizers have been tried and have
done nothing is an ordinary macro definition processed. This is so that the macro
definitions, which will be seen by the interpreter. can be overridden for the compiler by an
optimizer.

15.6 Files that Madisp Must Compile

Certain programs are intended to be run both in Maclisp and in Lisp Machine Lisp.
The~e file~ need ~ome special conventions. For example, such Lisp Machine constructs as
&auK and &optional must not be used. In addition, eval-when must not be used, since
only the Lisp Machine compiler knows about it. All special declarations must be enclosed
in declare~, so that the Maclisp compiler will see them. It is suggested that you turn on
run-in-madisp-switch in such files, which will warn you about a lot of bugs.

The macro-character combination "#Q" causes the object that follows it to be visible
only when compiling for the Lisp Machine. The combination "#M" causes the following
object to be visible only when compiling for Maclisp. These work only on sUbexpressions of
the objecb in the file, however. To conditionalize top-level objects, put the macros if
(or-lispm and if -f or-madisp around them. (Y ou can only put these around a single
object.) The if -for-lispm macro turn~ off run-in-madisp-switch within its object,
preventing spurious warnings from the compiler. The #Q macro-character does not do this,
~ince it can be used to conditionalize any S-expression, not just a top-level form.

There are actually three possible c~es of compiling: you may be compiling on the Lisp
Machine for the Lisp Machine: you may be compiling in Maclisp for the Lisp Machine (with
:LISPM LQC~tP): or you may be compiling in Maclisp for Maclisp (with COMPLR). (You
can't compile for Maclisp on the Lisp Machine because there isn't a Lisp Machine Lisp
version of CO~PLR.) To allow a file to detect any of these conditions it needs to, the

DSK:LMMAN;COMPIL 44 6-JAN-79

" .

Files that Macli~p ~1ust Compile 134 Preliminary Lisp Machine Manual

following macro:\ are provided:

if -f or-lispm l.lacro
If (if-for-lispm form) is seen at the top level of the compiler, form is passed to
the compiler top level if the output of the compiler is a QFASL file intended for the
Li~p \1achine. If the Lisp Machine interpreter sees this it will evaluate form (the
macro expand~ into form).

if -f or-maclisp A\focro
If (if-for-maclisp form) i~ seen at the top level of the compiler, form is passed to
the compiler top level if the output of the compiler is a FASL file intended for
~facli~p (e.g. if the compiler is COMPLR). If the Lisp Machine interpreter sees this
it will ignore it (the macro expands into nil).

if -f or-maclisp-€,lse-lispm Macro
If (if -for-maclisp-else-lispm forml form]) is seen at the top level of the
compiler, forml is passed to the compiler top level if the output of the compiler is
a FASL file intended for Maclisp; otherwise form1 is passed to the compiler top
level.

if -in-lispm Macro •
On the Lisp Machine, (if -in-lispm form) causes form to be evaluated; in Maclisp,
form is ignored.

if -in-maclisp Macro
I n ~taclisp, (if -in-maclisp form) causes form to be evaluated; on the Lisp
\1achine, form is ignored.

When you have two definitions of one function, one conditionalized for one machine
and one for the other, indent the first "{defun" by one space, and the editor will put both
function definitions together in the same file-section.

In order to make sure that those macros and macro-characters are defined when reading
the file into the ~faclisp compiler, you must make the file start with a prelude, which will
have no effect when you compile on the real machine. The prelude can be found in "AI:
LMDOC: .COMPL PRELUO"; this will also define mO$t of the standard Lisp Machine
macros and reader macros in Maclisp, including defmaero and the back-quote facility.

Another u~eful facility is the form (status feature lis pm), which evaluates to t when
evaluated on the Lisp machine and to nil when evaluated in Maclisp.

DSK:lMMAN;COMl'IL 44 6-JAN-79

Preliminary Li~p Machine Manual 135 Macros

18. Macros

16.1 Introduction to Macros

If eval is handed a li~t whose car i~ a symbol, then eval inspects the definition of the
!\ymbol to find out what to do. If the definition is a cons, and the car of the cons is the
;ymbol macro, then the definition (i.e. that cons) is called a macro. The cdr of the cons
$hould be a function of one argument. eval applies the function to the form it was
originally given. Then it takes whatever is returned, and evaluates that in lieu of the
original form.

Here is a simple example. Suppose the definition of the symbol first is
(macro lambda (x)

(list /car (cadr x»)
This thing is a macro: it is a cons whose car is the symbol macro. What happens if we try
to evaluate a form (first '(a b c))? Well. eval sees that it has a list whose car is a symbol
(namely, first). so it looks at the definition of the symbol and sees that it is a cons whose
car i~ macro; the definition is a macro. eval takes the cdr of the cons, which is a lambda
expre~::-ion. and applies it to the original form that eval was handed. So it applies {lambda
(x) (list 'car (cadr x)) to (first '(a be}). x is bound to (first '(a be)). (cadr x)
evaluates to '(a b c), and (list 'car (cadr x)) evaluates to (car '(a be)). which is what the
functio~ returns. eval now evaluates this new form in place of the original form. (car '(a
b c» returns a, and so the result is that (first '(a b c)) returns a.

What have we done? We have defined a macro called first. What the macro does is
to translate the form to some other form. Our translation is very simple-it just translates
forms that look like (first x) into (car x), for any form x. We can do much more
intere~ting things with macros. but first we will show how to define a macro.

Macros are normally defined using the macro special form. A macro definition looks
like this:

(macr"o name (arg)
body)

To define our first macro, we would say
(macro first (x)

(list /car (cadr x»)

Here are ~ome more simple examples of macros. Suppose we want any form that looks
like (addone x) to be translated into (plus 1 x). To define a macro to do this we would
say

(macro addone (x)
(list /plus /1 (cadr x»)

Now say we wanted a macro which would translate (increment x) into (setq x (1+ x).
This would be:

DSK:LMMAN;MACROS 39 6-JAN-79

I ntrod uc tion to \facro~ 136 Preliminary Lisp Machine Manual

(macro increment (x)
(list /setQ (cadr x) (list /1+ (cadr x»»

Of c()ur~e, thi~ macro is of limited u~efulness. The reason is that the form in the codr of
the incr~m~nt form had better be a symbol. If you tried (increment (car x)), it would be
tran~lated into (S~lq (car x) (1+ (car x))), and setq would complain.

You can !'ee from this discussion that macros are very different from functions. A
function would not be able to tell what kind of subforms are around in a call to itself; they
get eval uated before the functions ever sees them. However, a macro gets to look at the
whole form and !'ee just what is going on there. Macros are not functions; if first is
defined as a macro, it is not meaningful to apply first to arguments. A macro does not
take arguments at all: it takes a Lisp form and turns it into another Lisp form.

The purpose of function~ is to compute: the purpose of macros is to translate. Macros
are used for 8 variety of purposes, the most common being extensions to the Lisp language.
For example. Lbp is powerful enough to express many different control structures, but it
does not provide €'very control structure anyone might ever .possibly want. Instead, if a
user wants s(lme kind of control structure with a syntax that is not provided, he can
translate it into ~ome form that Lisp does know about.

For example, someone might want 8 limited iteration construct which increments a
symbol by one until it exceeds a limit (like the FOR statement of the BASIC language). He
might want it to look like

(for a 1 100 (print a) (print (* a a»)
To get this, he could write a macro to translate it into

(do a 1 (1+ a) (> a 100) (print a) (print (* a a»)
A macro to do thi~ could be defined with

(macro for (x)
(cons "'do

(cons (cadr x)
(cons (caddr x)

(cons (list "'1+ (cadr x»
(cons (list "'> (cadr x) (cadddr x»

(cddddr x»»»)
Now he has defined his own new control structure primitive, and it will act just as if it
were a special form provided by Lisp itself.

DSK:LM~1AN:~iACROS 39 6-JAN-79

Preliminary Lbp ?\-iachine Manual 137 Aids for Defining Macr()s

16.2 Aids for Defining Macros

The main problem with the definition for the for macro is that it is verbose and clumsy.
If it i!' that hard to write a macro to do a simple specialized iteration construct, one would
wonder how anyone would write macros- of any real sophistication.

There are two things that make the definition so inelegant. One is that the programmer
must write things like "(cadr x)" and "(cddddr x)" to refer to the paris of the form he wants
to do things with. The other problem is that the long chains of calls to the list and cons
functions are very hard to read.

Two features are provided to solve these two problems. The defmacro macro so.lves
the former, and the "backquote" (" I to) reader macro solves the latter.

16.2.1 Def macro

Instead of referring to the parts of our form by "(cadr x)" and such, we would like to
give name~ to the various pieces of the form, and somehow have the (cadr x) automatically
generated. This is done by a macro called defmacro. It is easiest to explain what
defmacro does by showing an example. Here is how you would write the for macro using
defmacro:

(defmacro for (var lower upper . body)
(cons "do

(cons var
(cons lower

(cons (list /1+ var)
(cons (list /) var upper)

body»»»

The (var lower upper. body) is a pattern to match against the body of the macro (to
be more precise, to match against the cdr of the argument to the macro). defmacro tries
to match the two lists

(var lower upper . body)
and
(a 1 100 (print a) "(print (* a a»)

var will get bound to the symbol a, lower to the fixnum 1. upper to the fixnum 100. and
body to the list ((print a) (print (* a a))). Then inside the body of the defmacro, var,
lower J upper J and body are variables. bound to the matching parts of the macro form.

defmacro 1.lacro
defmacro is a general purpose macro-defining macro. A defmacro form looks like

(defmacro name pattern . body)

The pattern may be anything made up out of symbols and conses. It is matched
against the body of the macro form; both pattern and the form are carted and
cdr'ed identically, and whenever a symbol is hit in pattern. the symbol is bound to
the corresponding part of the form. All of the symbols in pattern can be used as

DSK:LMMAN;MACROS 39 6-JAN-79

Aid~ for De-fining ~1acro~ 138 Preliminary Lisp Machine Manual

variable~ within body. name is the name of the macro to be defined. body is
evaluated with the:-e bindings in effect, and is returned to the evaluator.

Note that the pattern need not be a list the way a lambda-list must. In the above
example. the pattern was a "dotted list", since the symbol body was supposed to matfh the
cddddr of the matro form. If we wanted a new iteration form, like for except that it our
example would look like

(for a (1 100) (print a) (print (* a a»)
Uust be<.'ause we thought that was a nicer syntax), then we could do it merely by modifying
the pattern of the defmacro above: the new pattern would be (var (lower upper) •
body}.

Here j~ how we would write our other examples using defmacro:
(defmacro first (the-list)

(list /car the-list»

(defmacro addone (form)
(list /plus /} form»

(defmacro increment (symbol)
(list /setQ symbol (list /}+ symbol»)

All of these were very simple macros and have very simple patterns, but these examples
show that we can replace the {cadr x} with a readable mnemonic name such as the-list or
symbol, which makes the program clearer.

There is another version of def macro which defines displacing macros (see page 141).
defmacro has other, more complex features: see page 143.

16.2.2 Backquote

~ow we deal with the other problem: the long strings of calls to cons and list. For
this we must introduce some reader macros. Reader macros are not the same as normal
macros, and they are not described in this chapter; see page 156.

The backquote facility is used by giving a backquote character ("~''', ASCII code 140
octal), followed by a form. If the form does not contain any use of the comma macro
character, the form will simply be quoted. For example,

/(a b c) ==> (a b c)
'(a b c) ==> (a b c)

So in the simple ca"es, backquote is just like the regular single-quote macro. The way to
get it to do interesting things is to include a use of the comma somewhere inside of the
form following the backquote. The comma is followed by a form, and that form gets
evaluated even though it is inside the backquote. For example,

DSK:lM~fAN:MACROS 39 6-JAl'-7Q

i ':

Preliminary Lisp Machine Manual

(setq b 1)
'(a b c) ==> (a b c)
'(a ,b c) ==) (a 1 c)

139 Aids for Defining Macros

In other words, backquote quotes everything except things preceeded by a comma; those
thing~ get evaluated.

\Vhen the reader sees the '(a ,b c) it is actually generating a form such as (list 'a b Ie).
The actual form generated may use list, cons, append, or whatever might be a good idea;
you ~hould never have to concern yourself with what it actually turns into. All you need
to care about is what it evaluates to.

This is generally found to be pretty confusing by most people; the best way to explain
further ~eems to be with examples. Here is how we would write our three simple macros
using both the defmacro and backquote facilities.

(defmacro first (the-list)
'(car ,the-list»

(defmacro'addone (form)
'(plus 1 ,form»

(defmacro increment (symbol)
'(setq ,symbol (1+ ,symbol»)

To finally demonstrate how easy it is to define macros with these two facilities, here is the
final form of the for macro.

(defmacro for (var lower upper . body)
'(do ,var ,lower (1+ ,var) (> ,var ,upper) • ,body»

Look at how much simpler that is than the original definition. Also, look how c1o~ely it
re~embles the code it is producing. The functionality of the (or really stands right out
when written this way.

If a comma im,ide a backquote form is followed by an "atsign" character ("@"), it has a
special meaning. The ",@." should be followed by a form whose value is a Jist; then each of
the elements of the list are put into the list being created by the backquote. In other words,
in~tead of generating a call to the cons function, backquote generates a call to append.
For example, if a is bound to (x y z), then '(1 ,a 2) would evaluate to (1 (x y z) 2), but
'(1 ,(~.a 2) would evaluate to '(1 x y Z 2).

Here is an example of a macro definition that uses the ",@" construction. Suppose you
wanted to extend Lisp by adding a kind of special form called repeat-(orever t which
evaluates all of its subforms repeatedly. One way to implement this would be to expand

(repeat-forever form] form2 form3)
into

DSK:LMMAN;MACROS 39 6-JAN-79

Aids for Defining ~1acros

(prog ()
a forml

form 2
form 3
(go a»

You could define the macro by
(macro repeat-forever body

'(prog ()
a ,@body

(go a»)

140 Preliminary Lisp Machine Manual

Advanced macro writers sometimes write "macro-defining macros": forms which expand
into form:. which. when evaluated, define macros. In such macros it is often useful to use
ne~ted backquote constructs. The following example illustrates the use of nested backquotes
In the writing of macro-defining macros.

Thi~ example i5 a very simple version of defstruct (see page 147). You should first
under~tand the ba~ic description of defstruct before proceeding with this example. The
defstruct below does not accept any options, and only allows the simplest kind of items:
that is. it only allows forms like

(defstruct (name)
item 1
item 2
item 3
itcm4
...)

We would like this form to expand into
(progn

(defmacro iteml (x)
"(aref ,x 1»

(defmacro item2 (x)
'(aref ,x 2»

(defmacro item3 (x)
"(aref , x 3»

(defmacro item4 (x)
'(aref ,x 4»

...)
Here is the macro to perform the expansion:

DSK:LMMAN:MACROS 39 6·JAN-79

Preliminary Li~p Machine ~anual 141 Aids for Debugging Macros

(defmacro defstruct «name) . items)
(do «item-list items (cdr item-list»

(ans nil)
(i 0 (1+ i»)

«null item-list)
(cons /progn (nreverse ans»)

(setq ans
(cons '(defmacro ,(car item-list) (x)

'(aref ,x ,/,i»
ans»»

The interesting part of this definition is the body of the (inner) defmacro form: '{a ref
,x ,',i l. In~tead of using this backquote construction, we could have written (list 'aref x ,il;
that is, the ",'," acts like a comma which matche~ the outer backquote, while the .,.
preceeding the "x" matches with the inner backquote. Thus, the symbol i is evaluated when
the def struct form is expanded, whereas the symbol x is evaluated when the accessor
mac ros are expanded.

Backquote can be useful in situations other than the writing of macros. Whenever there
is a piece of list structure to be consed up, most of which is constant, the use of backquote
can make the program considerably clearer.

16.3 Aids for Debugging Macros

mexp
mexp goes into a loop in which it reads forms and sequentially expands them,
printing out the result of each expansion. It terminates when it reads an atom
(anything that is not a cons). If you type in a form which is not a macro form,
there will be no expansions and so it will not type anything out, but just prompt
you for another form. This allows you to see what your macros are expanding into,
without actually evaluating the result of the expansion.

16.4 Displacing Macros

Every time the the evaluator sees a macro form, it must call the macro to expand the
form. If this expansion always happens the same way, then it is wasteful to expand the
whole form every time it is reached; why not just expand it once: A macro is passed the
macro form ibelf, and so it can change the car and cdr of the form to something ehe by
using rplaca and rplacd! This way the fir~t time the macro is expanded. the expansion will
be put where the macro form used to be, and the next time that form is seen, it will
already be expanded. A macro that does this is called a displacing macro, since it displaces
the macro form with its expansion.

DSK:LMMAN;MACROS 39 6-JAN-79

Di~placing ~facros 142

The major problem with this is that the Lisp form gets changed by its evaluation. If yoU
were to write a program which used such a macro, call grindef to look at it, then run tht
program and call grindef again, you would see the expanded macro the second tani ..
Pre~umably the rea~on the macro is there at all is that it makes the program look nicer; w.'
would like to prevent the unnecessary expansions, but still let grinder display the progra ..
in its more attractive form. This is done with the function displace.

displact' form expansion

form mu:-t be a Ibt. displace replaces the car and cdr of form so that it looks like:
(51 :di5placed original-form expansion)

original-form i~ equal to form but ha~ a different top-level cons so that the replacing i

mentioned above doe~n't affect it. si:displaced is a macro, which returns the caddr
of its own macro form. So when the si:displaced form is given to the evaluator. it_
"expan<b" to expansion. displace returns expansion.

The grinder know~ specially about si:displaced forms, and will grind such a form as if it
had ~een the original-form instead of the si:displaced form.

So if we wanted to rewrite our addone macro as a displacing macro, instead of writing
(macro addone (x)

(list "plus"} (cadr x»)
we would write

(macro addone (x)
(displace x (list /plus /1 (cadr x»»

Of cour~e, we really want to use defmacro to define most macros. Since there is no
way to get at the original macro form itself from inside the body of a de(macro, another'
version of it is provided:

defmacro-displace Macro

defmacro-displace is ju~t like defmacro except that it defines a displacing macro,
using the displace function.

Now we can write the displacing version of addone as
(defmacro-displace addone (form)

(list /plus /1 form»
All we have changed in this example is the defmacro into defmacro-displace. addone is
now a di~placing macro.

DSK:L\i\1AN:MACROS 39 6-JAN-79

.n

" ~ "_·'tL'.~':~2_, ~,_,.:~_,.!,~,,~~_.,~_, ~:';';""<'>~;':~;\~;'~;l..~~:l~:i~r~i{,:~'~::,:;~~~,,~

Preliminary Lisp Machine Manual 143 Advanced Features of Defmacro

16.5 Advanced Features of Defmacro

(To be supplied.)

(The basic matter is that you can use &optional and &rest with defmacro. The
interactions between &optional's initialization, and the fact that the "lambda-list" in
dE'f macro can be arbitrary li~t structure are not clear. If you need to use this feature. try
it out.)

16.6 Functions to Expand Macros

The following two functions are provided to allow the user to control expansion of
macro!': they are often useful for the writer of advanced macro systems.

macroexpand-1 form &optional compilerp
If form is a macro form, this expands it (once) and returns the expanded form.
Otherwise it just returns form. If ~ornpilerp is' t. macroexpand-l will search the
compiler's list of intenally defined ~acros (sys:macrolist) for a definition, as well as
the function cell of the car of form. compilerp defaults to nil.

macroexpand form &optional compilerp
If form is a macro form, this expands it repeatedly until it is not a macro form. and
returns the final expansion. Otherwise, it just returns form. compilerp has the same
meaning as in macroexpand-1.

DSK:L~tMAN;MACROS 39 6-JAN·79

Defstruct 144 Preliminary Lisp Machine Manual

17 . Defstruct

17.1 Introduction to Structure Macros

defstruct provides a facility in Lisp for creating and using aggregate datatypes with
named elemenb. The~e are like "structures" in PL/I, or "records" in PASCAL. In the last
chapter we ~aw how to use macros to extend the control structures of Lisp; here we see
how they can be u~ed to extend Lisp's data structures as well.

To explain the ba~ic ide~ assume you were writing a Lisp program that dealt with space
ship~. I n your program, you want to represent a space ship by a Lisp object of some kind.
The int~re~ting thing~ about a space ship, as far as your program is concerned, are its
po~itinn (X and Y), velocity (X and Y), and ma.~s. How do you represent a space ship'?

Well, the repre~entation could be a 5-1i!'t of the x-position, y-position, and so on.
Equally well it could be an· array of five elements, the zeroth being the x-position, the first
being the y-position, and so on. The problem with both of these representations --is that the
"elemenb" (such as x-position) occupy places in the object which are quite arbitrary, and
hard to remember (Hmm, was the mass the third or the fourth element of the array?). This
would make program~ harder to write and read. What we would like to see are names,
easy to remember and to understand. If the symbol (00 were bound to a representation of
a space ship. then

(ship-x-position foo)
could return it~ x-po~ition. and

(ship-y-position fool
its y-po~ition. and so forth. de(struct does just this.

defstruct it~elf is a macro which defines a structure. For the space ship example above,
we might define the structure by saying:

~defstruct (ship)
ship-x-position
shlp-y-position
ship-x-velocity
ship-y-velocity
ship-mass)

(This i~ a very ~jmpte case of defstruct; we will see the general form later.) The
evaluation of thi~ form does several things. First. it defines ship-x-position to be a macro
which expands into an are(form; that is, (ship-x-position fool would turn into (aref
f 00 0). All of the "elements" are defined to refer to sequentially increasing elements of the
array. e.g., (ship-mass fool would turn into (aref foo 4). So a ship is really implemented
as an array, although that fact i~ kept hidden. These macros are called the accessor macros,
as they are used to access elements of the structure.

DSK:L\1MAN;DEFSTR 26 6-JAN-79

Preliminary Li~p !\-fachine Manual 145 Setf and Locf

defstruct. will also define make-ship to be a macro which expands into a call to
make-array which will create an array of the right size (namely, 5 elements). So (selq x
(make-ship)) will make a new ship, and x will be bound to it. This macro i~ called the
constructor macro, because it constructs a new structure.

We abo want to be able to change the contents of a structure. To do this, we u~e the
self macro (see page 146), as follows (for example):

(setf (ship-x-position x) 100)
Here x i~ bound to a ship, and after the evaluation of the self form, the ship-x-posilion
of that ship will be 100. The way this works is that the self form expands into (asel 100 x
0); again. this is invisible to the programmer.

By itself. this simple example provides a powerful structure definition tool. But, in fact,
defstruct has many other features. First of all, we might want to specify what kind of Lisp
object to use for the "implementation" of the structure. The example above implemented a
"ship" as an array, but defstruct. can also implement structures as array-leaders and 85 lists.
(For array-leaders, the accessor macros expand into calls to array-leader, and for li~ts, to
car, cadr J caddr J and so on.)

Most structures are implemented as arrays. Lists take slightly less stor'age. but elements
near the end of a long list are slower to access. Array leaders allow you to have a
homogeneous aggregate (the array) and a heterogeneous aggregate with named elements (the
leader) tied together into one object.

defstruct. allows you to specify to the constructor macro what the various elements of
the structure should be initialized to. It also lets you give, in the defstrucl form, default
values for the initialization of each element.

11.2 Setf and Locf

In Lisp. for each function to access (read) any piece of information, there is almost
always a corresponding function to update (write) it as well. For example. symeval accesses
a ~ymbol's value cell, and set updates it. array-leader accesses the contents of an array
leader element, and store-array-leader updates it. The knowledge.of how these functions
correspond is accessible through a macro called setf.

setf is particularly useful in combination with structure-accessing macros. such as those
created with defslruct, because the knowledge of the representation of the structure is
embedded inside the macro, and the programmer shouldn't have to know what it is in order
to alter an element of the structure.

DSK:Lf..1MAN:DEFSTR 26 6-JAN-79

Setf and Locf 146 Preliminary Lisp Machine Manual

self ~~acro
stllf takes a form which accesses something, and "inverts" it to produce a
corre~ponding form to update the thing. The form for setf is

(set f access-form value)
It e~pands into an update form, which stores the result of evaluating the form value
into the place referenced by the access-form.
Examples:

(setf (array-leader foo 3) /bar)
===> (store-array-leader 'bar foo 3)

(setf a 3) ===> (setQ a 3)
(setf (plist 'a) /(foo bar» ===> (setplist 'a '(foo bar»
(setf (aref Q 2) 56) ===> (aset 56 Q 2)
(setf (cadr w) x) ===> (rplaca (cdr w) x)

locf J.lacro
locf takes a form which accesses some cell, and produces a corresponding form to
create a locative pointer to that cell. The form for Iocr is

(locf access-form)
Examples:

(locf (array-leader foo 3») ===> (ap-leader foo 3)
(locf a) ===> (value-cell-location 'a)
(locf (plist 'a» ===> (property-cell-location 'a)
(locf (aref q 2» ===> (aloe q 2)

Both self and locf work by means of property lists. When the form (setf (aref q 2)
56) is expanded. self looks for the setf property of the symbol aref. The value of the
set f property (\f a symbol should be a cons whose car is a pattern to be matched with the
access-form, and who~e cdr is the corresponding update-form, with the symbol si:val in the
place of the value to be stored. The setf property of aref is a cons whose car is (aref
array . subscripts) and whose cdr is (aset si:val array • subscripts). If the
transformation \vhich setf i~ to do cannot be expre~sed as a simple pattern, an arbitrary
function may be u~ed. When the form (setf (f 00 bar) baz) is being expanded, if the setf
property of f 00 is a ~ymbol, the function definition of that symbol will be applied to two
arguments. (foo bar) and bal, and the result will be taken to be the expansion of the setf.

Similarly. the Iocr function u~es the Iocr property, whose value is analogous. For
example, the Iocr property of aref is a cons whose car is (aref array. subscripts) and
who!oe cdr is (aloc array. subscripts). There is no si:val in the case of Iocr.

As a special case. setf and Iocr allow a variable as the reference. In this case they
turn into Sf'tq and value-cell-location, re~pectively.

For the ~ake of efficiency. the code produced by setf and locf does not preserve order
of evaluation of the argument forms. This is only a problem is the argument forms have
interacting side-effect!'. In additIon. the value produced by setf is dependant on the
structure type and is not guaranteed; setf should be used for side effect only.

DSK:LM\1AN;DEFSTR 26 6-JAN-79

l
I
t

Preliminary Lisp Machine Manual 147 How to U se Defs~ruct

17.3 How to Use Def struct

defstruct Macro
A call to defstruct looks like:

(defstruct (name option-l option-2 •••)
item-l J
item-2
...)

name must be a symbol: it is the name of the structure. It is used for ~any
different things, explained below.

option-n may be either a symbol (which should be one of the recognized option
names, listed below) or a lbt (whose car should be one of the option names and! the
rest of which should be "arguments" to the option).

item-n may be in any of three forms:
(1) item-name J
(2) (item-name default-init) J
(3) « item-name-l byte-spec-l default-init-l)

(item-name-2 byte-spec-2 default-init-2)
...)

itt·nt-name must always be a symbol, and each item-name is defined as an access
macro. Each item allocates one entry of the physical structure, even though in form
(3) ~everal access macros are defined.

In form (1). item-name is simply defined as a macro to return the corresponding
element of the structure. The constructor macro will initialize that entry to nil (or
o in a numeric array) by default. In form (2). the access macro is defined the same
way. but the default initialization is provided by the user of defstruct.

In form (3), several access macros are defined, and each one refers to the single
structure element allocated for this item. However, if byte-spec i~ a fixnum,! the
access macros will Idb that byte from the entry (see the function (db, page 77).
byte-spec may also be nil, in which case the usual form of access macro is detiped.
returning the entire entry in the structure. Note that it is possible to define tw4> or
more different overlapping byte fields. (If more than one of these has a default,-init
the results of initializing the entry are undefined and unpredictable.) For exam pi" if
the third item of a call to def struct were

«foo-high-byte 1010)
(foo-low-byte 0010)
(foo-who1e-thing nil»

then (foo-high-byte fool would expand to (ldb 1018 (aref foo 2».9 and (foo
whole-thing fool would expand to (aref foo 2).

6-JA~-79
I

i

Options to Defstruct 148 Preliminary Lisp ~achine ~anual

Form (3) can abo be used if you want to have an element with more than one
acce~~ macro. By putting ((foo nil) (bar nil)), both foo and bar will be defined
identically.

17.4 Options to Defstruct

li~t.
Note that opticms which take no arguments may be given as just a symbol, instead of a

The structure should be implemented as an array. This is the default. (No
arguments.)

:array-Ieader The structure should implemented as be an array-leader. (No arguments.)

~v :Iist The structure should be implemented as a list. (No arguments.)

:grouped-array
See page 150.

:times Used by grouped arrays. See page 150.

:size Take~ one argument, a symbol. The symbol gets set to the size of the
structure, at load-time (not compile-time).

:size-macro One argument. a symbol. The symbol gets defined as 1/ macro, which
expands into the size of the structure.

'/..... :constructor One argument, a symbol which will be the name of the constructor macro.
If the option is not present, the name of the constructor will be made by
concatenating "make-" with the name of the structure. If the argument is
nil. do not define any con~tructor macro.

'/. :named-structure

One optional argument. If present~ the argument is the named structure
symbol. If not, the named structure symbol will be the name of the
structure. This causes the constructor to create named structure arrays (and
thus may not be used with the :Iist option) and automatically allocate the
appropriate slot in the structure and put the symbol there.

:def ault -pointer

One argument. The access macros will be defined in such a way that if they
are called on no "arguments", the argument to the :default-pointer option
will be used instead. (Normally. access macros will signal an error if their
"argument" is missing.)

:make-array One argument. arguments to the make-array function. See below.

:include See page 150.

DSK:lMMAN;DEFSTR 26
6-JAN-79

Preliminary Li~p Machine \1anual 149 U~ing the Con~tructor \iacro

17.s Using the Constructor Macro

If the argument to the :constructor option is nil, no constructor macro is defined.
But otherwise, defstruct create~ a con~tructor macro, which will create an in~tance of the
structure. ·Thi~ ~ection explains how the constructor macro interprets its "arguments".

A call to a constructor macro, in general. has the form
(name-of-constructor-macro

symbol-l form-l
symbol-2 form-2
...)

Each symbol may be either a name of an item of the structure, or a specially recognized
keyword. All forms are evaluated.

If symbol i~ the name of an item, then that element of the created structure will be
initialized to the value of form. If no symbol is present for a given item, then the item
will be initialized in accordance with the default initialization specified in the call to
defstruct. If the defstruct itself abo did not specify any initialization, the element will be
initialized to nil, unless the structure is implemented by a numeric array, in which C3!'e it
will be initialized to 0. (In other words, the initialization specified to the constructor
overrides the initialization specified to def struct.)

There are two symbols which are ~pecially recognized by the constructor. One is
:make-array, which should only be used for array and array-leader type- 'Structure~. The
value of form is used a~ the argument iiq to the make-array function call created by the
con~tructor. This way, you can specify the area in which you wish the structure to be
created, the type of the array to be created, and ~o on. Of cour~e) if you provided all of
the argumenb to make-array, the con~tructor would not be able to do its job; - so t·he
con~truct()r override::- your ~pecification~ of certain elements. If the structure is array type,
your ~pecificati()n of the array's dimen~ion~ (the third argument to make-array) is ignored:
if it i~ of array-leader type, the array-leader argument (the fifth argument to make-array)
i~ ignored. Abo, in both cases the named-:)tructure argument (the seventh argument to
make-array) i~ ignored. They are ignored becau~e it is the constructor macro's job to fill
them in. If the list you provide is shorter than the number of arguments to make-array, it
will be as if you had given the missing elements as nil. Similarly, if your list is too long,
the extra element~ will be ignored. If you do not provide the :make-array keyword at all,
the arguments default from the value of the :make-array option to defstruct. If you did
not even provide that, the default argument lists are:

For arrays: (default-array-area 'art-q whatever nil nil nil whateyer)

For array-leaden.:
(default-array-area 'art-q 0 nil whateyer nil whateyer)

The second keyword recognized by the constructor is :times, which should only be
used for grouped-arrays. Its value is the number of repetitions of the structure in the
grouped-array. If :times is not provided, it defaults from the :times option of def strucl.

DSK:LMMAN;DEFSTR 26 6-JAN-79

Grouped Arrays 150 Preliminary Lisp Machine Manual

If you did not even provide that, the default is 1.

17.6 Gr'oupf*d Arrays

The grouped array feature allows you to store several instances of a structure side-by
side within an array. This feature is somewhat limited, and requires that the structure be
implemented as an array. that it not have any :include o~tion, and that it not be a named
structure.

The accessor macros are defined to take a "first argument" which should be a fixnum,
and i~ the index into the array of where this instance of the structure starts. It should be a
multiple ()f the ~ize of the structure, for things to make sense.

'ote that the "~ize" of the structure (as given in the :size symbol and the :size-macro)
is the number of elements in one in~.tance of the structure; the actual length of the array is
the prnduct of the ~ize of the structure and the number of instances. The number of
instances to be created by the creator macro is given as the argument to the :times or
:groupf*d-array option, or the :times keyword of the constructor macro (see below).

17.7 The :includE- Option.

(To be supplied)

DSK:L\i\1AN;DEFSTR 26 6-JAN-79

t

I
I
I

I
i

Preliminary Li~p Machine \1anual 151 The I/O Sy~tem

18. The I/O System

The Li~p !\1achine provide~ a powerful and flexible system for performing input and
output to peripheral device!-. To allow device independent I/O (that is, to allow programs
to be written in a general way so that the program's input and output may be connected
with any device), the Lisp ?-.1achine I/O sy~tem provides the concept of an "I/O stream-.
What ~treams are. the way they work, and the functions to create and manipulate streams,
are de~cribed in this chapter. This chapter also describes the Lisp "I/O" operations read and
print, and the printed representation they use for Lisp objects.

18.1 The Character Set

The Li~p !\1achine normally represents characters as fixnums. The mapping between these
number~ and the chara<;ter$ is li$ted here. The mapping is similar to ASCII, but somewhat
modified to allow the u~e of the so-called SAIL extended graphics, while avoiding certain
ambiguitie~ pre~ent in ITS. For a long time ITS treated the Backspace, Control-H, and
Lambda keys on the keyboard identically as character code 10 octal; this problem is avoided
from the ~tart in the Lisp Machine's mapping.

Fundamental characters are eight bits wide. Those less than 200 octal (with the 200 bit
off) and only those are printing graphics; when output to a device they are assumed to

print a character and move the "cur$or" one character position to the right. (All software
pr()vjde~ for variable-width fonts, so the term "character position" shouldn't be taken too
literally.)

Character~ in the range of 200 to 237 inclusive are used for special characters.
Character 200 is a "null character", and is not used for anything much. Characters 201 to

215 correspond to the special keys on the keyboard such as Form and Call. The rest of this
group is re~erved for future expansion.

The remaining characters are u~ed for control operations. The characters 240 to 247
inclusively mean "Switch to font 0". "Switch to font I", etc. The rest of thb group is
re~erved for future expansion.

In ~ome contexb. a fixnum can hold both a character code and a font number for that
character. The following byte specifiers are defined:

I.l.ch-char Variable
The value of %%ch-char is a byte specifier for the field of a fixnum character which
holds the character code.

DSK:LMMAN;IOS 95 6-JAN-79

... ~:: -'

"I

The Character Set 152 Preliminary Lisp Machine Manual

i.i.ch-f ont Variable
The val ue of i.i.ch-f ont j~ a byte specifier for the field of a fixnum character which
hold~ the font number.

Character~ read in from the keyboard include a character code and the Control and
Meta bit~. The following byte specifiers are provided:

i.i.kbd-char Variable
The value of i.%kbd-char is a byte specifier for the field of a keyboard character
whic h holds the normal eight-bit character code.

i.l.kbd-cont rol Variable
The value of i.i.l<bd-char is a byte specifier for the bit of a keyboard character
which is 1 if either Control key was held down.

i.l.kbd-meta Variable
The value of %%kbd-char is a byte specifier for the field of a keyboard character
which is 1 if either ~feta key was held down.

i.l.kbd-cont rol-meta Variable
The value of %%kbd-char is a byte specifier for the two-bit field of a keyboard
character whose low bit is the Control bit, and whose high bit is the Meta bit.

i.i.kbd-mouse Variable
The value of %i.kbd-mouse is a byte specifier for the bit in a keyboard character
which indicates that the character is not really a character, but a signal from the
mouse.

i.l.kbd-mousE'-button Variable
The value of %%I<bd-mouse-button is a byte specifier for the field in a mouse
signal which says which button was clicked. The value is 0, 1, or 2 (or the left,
middle, and right buttons, respectively.

i.i.kbd-mouse-n-clicks Variable
The value of i.i.kbd-mouse-n-clicks is a byte specifier for the field in a mouse
~ignal which says how many times the button was clicked. The value is one less than
the number of times the button was clicked.

Since the Control and '-leta bits are not part of the fundamental 8-bit character codes,
there i~ no way to express keyboard input in terms of simple character codes. However,
there is a convention which many programs accept for encoding keyboard input into
character codes: if a character has its Control bit on, prefix it with an Alpha; if a character
has its \feta bit on, prefix it with a Beta; if a character has both its Control and Meta bits
on, prefix it with an Epsilon. To get an Alpha, Beta, Epsilon, or Equivalence into the
string. quote it by prefixing it with an Equivalence.

DSK:LM\fAN:IOS 95 6-JAN-79

.'f.j':i":t,t't"" '\~~;~:~;~~t~;~~~;j~~~~lJ,{i1~~~~-~i,*.S£~WUMPW;""; ~l
F1(

Preliminary Li::.p Machine Manual 153 The Character Set

000 center-dot (.) 040 space 100 @ 140 "
001 down arrow (~) 041 101 A 141 a
002 alpha (a) 042 .. 102 8 142 b
003 beta (tJ) 043 II 103 C 143 c
004 and-sign (,,) 044 I 104 0 144 d
005 not-sign (....) 045 % 105 E 145 e
006 eps i 10n «() 046 & 106 F 146 f
007 pi (n) 047 ~ 107 G 147 9
010 1 ambda (A) 050 (110 H 150 h
011 gamma (v) 051) III I 151 i
012 delta (s) 052 * 112 J 152 j

013 uparrow (t) 053 + 113 K 153 k
014 plus-minus (±) 054 , 114 l 154 1
015 circle-plus (e) 055 - 115 M 155 m
016 in fin i ty (co) 056 . 116 N 156 n
017 partial delta (a) 057 I 117 0 157 0

020 left horseshoe (c) 060 0 120 P 160 p
021 right horseshoe (~) 061 1 121 Q 161 Q

022 up horseshoe (n) 062 2 122 R 162 r
023 down horseshoe (u) 063 3 123 S 163 s
024 universal Quantifier (V) 064 4 124 T 164 t
025 existential Quantifier (3) 065 5 125 U 165 u
026 circle-X (~) 066 6 126 V 166 v
027 double-arrow (~) 067 7 127 W 167 w
030 left arrow (+-) 070 8 130 X 170 x
031 right arrow (-t) 071 9 131 Y 171 y

032 not-equals (;ot) 072 132 Z 172 z
033 diamond (altmode) (*) 073 133 [173 {

034 1ess-or-eQual (~) 074 < 134 \ 174 I
035 greater-or-eQual (~) 075 = 135] 175 }
036 equivalence (=) 076) 136 A 176 -
037 or (v) 077 ? 137 177 J

200 null character 210 bs 240 switch to font 0
201 break 211 tab 241 switch to font 1
202 clear 212 1 i ne 242 switch to font 2
203 call 213 vt 243 switch to font 3
204 escape (NOT altmode!) 214 form 244 switch to font 4
205 backnext 215 return 245 switch to font 5
206 help 246 switch to font 6
207 rubout 247 switch to font 7
216-237 reserved for future special keys
250-377 reserved for future control operations

The lisp Machine Character Set

DSK:lMMAN;IOS Q5 6-JAN-19

Printed Representation 154 Preliminary Lisp Machine Manual

18.2 Printed Representation

People cannot deal directly with Li~p objects, because the objects live inside the
machine. In order to let us get at and talk about Lisp objects, lisp provides a
repre:-entatinn of object~ in the form of printed text: this is called the printed representation.
Thi~ is what you have been seeing in the examples throughout this manual. Functions such
as print, print and princ take a Lisp object, and send the characters of its printed
repre~entati()n to a ~tream. The:>e functions (and the internal functions they call) are known
as the printer. The read function takes characters from a stream, interprets them as a
printed repre~entation of a Lisp object. builds a corresponding object and returns it; it and
its subfunctions are known as the reader.

This ~ection describes in detail what the printed representation is for any lisp object,
and just what read does. For the rest of the chapter, the phrase "printed representation"
will be abbreviated as .. p.r. ...

18.2.1 What the Printer Produces

The printed representation of an object depends on its type. In this section, we will
consider each type of object and explain how it is printed.

Printing is done either with or without slashification. The non-slashified version is nicer
looking in general, but if you give it to read it won't do the right thing. The slashified
ver~i()n is carefully set up so that read will be able to read it in. The primary effects of
sla ... hification are that f-pecial characters used with other than their normal meanings (e.g., a
parenthe~i~ appearing in the name of a symbol) are preceeded by slashes or cause the name
of the ~ymbnl to be enclosed in vertical bars, and that symbols which are not from the
current package get printed out with their package prefixes (a package prefix looks like a
string followed by a colon).

For a fixnum: if the fixnum is negative. the printed representation begins with a minus
~ign {"-"). Then. the value of the variable base is examined. If base is a positive fixnum,
the number i~ printed out in that ba~e (base defaults to S); if it is a symbol with a :princ
function property_ the value of the property will be funcalled on two arguments: minus of
the fixnum to be printed, and the stream to which to print it; otherwise the value of base
is invalid.· This is a hook to allow output in Roman numerals and the like. Finally, if base
equals 10. and the variable *nopoint is nil. a decimal point is printed out. Slashification
does not affect the printing of fixnums.

base Variable
The value of base is a number which is the radix in which fixnums are printed, 0;- a
symbol with a :princ-function property. The initial value of base is 8.

DSK:LM~fAN:IOS 95 6-JAN-79

Preliminary Li~p Machine Manual. 15~ Printed Representation

*nopoint Variable
If the value of *nopoint is nil, a trailing decimal point is printed when a fixnum is
printed out in base 10. This allows the numbers to be read back in correctly even if
ibase is not 10. at the time of reading. If *nopoint is non-nil. the trailing decimal
poinb are suppressed. The initial value of *nopoint is nil.

For a ~)'rnbol: if slashification is off, the p.r. is simply the successive characters of the
print-.name of the symbol. If slashification is on. two changes must be made. Fir~t. the
symbol might require a package prefix in order that read work correctly, a!\suming that the
package into which read will read the symbol is the one in which it is being printed. See
the ~ection on packages (page 176) for an explanation of the package namp prefix.
Sel.:{)ndly, if the p.r. would not read in a'\ a symbol at all (that is, if the print looks
like a number, or contains special characters), then the p.r. must have some qL. dng for
th()se characters, either by the use of slashes ("/") before each special character, or by the
use of vertical bars el") around the whole name. The decision whether quoting is required
is d()ne u~ing the read table, so it is always accurate provided that readtable ha5 the same
value when the output is read back in as when it was printed.

For a string: if sla .. hification is off. the p.r. is simply the successive characters of the
string. If slashification is on, the string is printed between double quotes, and any
characters inside the string which need to be preceeded by slashes will be. ~ormally these
are just double-quote and slash. Incompatibly with Maclisp. carriage return is not ignored
in~ide strings and vertical bars.

For an array which is a named structure: if the named structure has a named structure
:-yrnbol which b defined as a function (which it always ought to). then that function is
called on four arguments: the symbol :print, the object ibelf, the current di'Pth of list
structure (see below), and whether ~la!'hification is enabled. A suitable printed
representati<.m should be sent to the value of standard-output, which the printer lambda
bind~ to the correct stream. This allows a user to define his own p.r. for his named
:-tructure:\: examples can be found in the named structure section (see page (1). If the
named structure is not "well formed" (if the symbol is undefined or not present), it is
handled a~ if it were not a named structure, a~ follows.

Other arrays: the p.r. starts with a number sign and a less-than sign. Then ·the "art-
:-ymbnl for the array type is printed. I"ext the dimensions of the array are printed.
separated by hyphens. This is followed by a space, the machine address of the array, and a
greater-than sign.

Conses: The p.r. for conses tends to favor lists. It starts with an open-parenthesis.
Then, the car of the cons is printed, and the cdr of the cons is examined. If it is nil. a
d()~e parenthesis i~ printed. If it is anything else but a cons, space dot space followed by
that object b printed. If it is a cons, we print a space and start all over (from the point
after we printed the open-parenthesis) using this new cons. Thus, a list is printed as an
open-parenthesis, the p.r.'s of its elements separated by spaces, and a close-parenthesis.

DSK:L!\f~1AN:IOS 95 6-JA~-79

.....

Printed Representation 156 Preliminary Lisp Machine Manual

Thu~. the ll~ual printed representations such as (a b ((00 bar) c) are printed.

The follnwing additional feature is provided for the p.r. of conses: as a list is printed,
print m<lint<lin~ the length of the list so far, and the depth of recursion of printing lists. If
the length exceed~ the value of the variable prinlength. print will terminate the printed
repre~entatinn of the li~t with an ellipsis (three periods) and a close-parenthesis. If the depth
of ret:ur~ion exceeds the value of the variable prinlevel, then the list will be printed as
" •• ". These two features allow a kind of abbreviated printing which is more concise and
suppre~~e~ detail. Of course. neither the ellipsis nor the " •• " can be interpreted by read.
since the relevant information is lost.

prinlevel Variable

prinlE'Vfll can be set to the maximum number of nested lists that can be printed
before the printer will give up and ju~t print a ".*". If it is nil, which it is initially,
any number of nested lists can be printed. Otherwise, the value of prinlevel must
be a fixnum.

prinlenglh Variable

prinlE'ngth can be set to the maximum number of elements of a list that will be
printed before the printer will give up and print a N. If it is nil, which it is
initially, any length list may be printed. Otherwise. the value of prinlength must be
a fixnum.

For any other data type: the p.r. start$ with a number sign and a less-than sign ("< ..). the
"dtp-" symbol for this datatype, a space, and the machine address of the object. Then, if
the object is a microcoded function, compiled function. or stack group, its name is printed.
Finally a greater-than ~ign ("Y') is printed.

None of the p.r.'s beginning with a' number sign can be read back in. nor, in general,
can anything produced by named structure functions. Just what read accepts is the topic of
the next ~ection.

18.2.2 What The Reader Accepts

The purpose of the reader i~ to accept characters, interpret them as the p.r. of a Lisp
object. and return a corre~ponding Lisp object. The reader cannot accept everything matI,
the printer produces: for example. the p.r.'s of arrays (other than strings), compiled code
object~. clo!'ure~, ~tack groups etc. cannot be read in. However, it has many features
which are not seen in the printer at all. such as more flexibility, comments, and convenient
abbreviations for frequently-used unwieldy constructs.

This section shows what kind of p.r:s the reader understands, and explains the readtable,
reader macros. and various features provided by read.

DSK:LM\fAN;IOS q5
6-JAN-79

Preliminary Li~p Machine Manual 157 Printed Repre~entation

The reader understands the p.r's of fixnums in a way more general than is employed by
the printer. Here is a complete de~cription of the format for fixnums.

Let a simple fixnum be a string of digits, optionally preceeded by a plus sign or a minus
~lgn, and optionally followed by a trailing decimal point. A simple fixnum will be
interpreted by read as a fixnum. If the trailing decimal point is present, the digits will be
interpreted in decimal radix; otherwise, they will be considered as a number whose radix is
the value of the variable ibase.

ibase Variable
The value of ibase is a number which IS the radix an which fixnums are read. The
initial value of ibase is 8.

read will also understand a simple fixnum, followed by an underscore <"_H) or a
circumflex C""), followed by another simple fixnum. The two simple fixnums will be
interpreted in the usual way, then the character in between indicates an operation to be
performed on the two fixnums. The underscore indicates a binary "left shift"; that is. the
fixnum to its left is doubled the number of times indicated by the fixnum to its right. The
circumflex multiplies the fixnum to its left by ibase the number of times indicated by the
fixnum to it!' right. Examples: 645_6 means 64500 (in octal) and 645 3 means 645000.

Here are some examples of valid representations of fixnums to be given to read:
4
23456.
-546
+45""+6
2 11

A string of letters, numbers, and "extended alphabetic" characters is recognized by the
reader as a symbol. provided it cannot be interpreted as a number. When the reader sees
one, it interns it on a package (see page 176 for an explanation of interning and the
package system). Symbols may start with digit~; you could even have one named "-34Sr:
rflad will accept this as a symbol without complaint. If you want to put strange characters
(s.uch a~ lower-ca~e letters, parentheses. or reader macro characters) inside the name of a
~ymbol, put a sla~h before the strange characters. If you want to have a symbol whose
print-name looks like a number, put a slash before some character in the name. You can
abo enclose the name of a symbol in vertical bars, . which quotes all characters inside.
except vertical bars and slashes, which must be quoted with slash.
Examples of symbols:

foo
bar/(baz/)
34w23
IFrob Salel

The reader will also recognize strings, which should be surrounded by double-quotes. If
you want to put a double-quote or a slash inside a string, preceed it by a slash.

DSK:LMMAN;IOS 95 6-JAN-79

" .' ... /f

Printed Representation 158 Preliminary Lisp Machine Manual

Examples of strings:
"This is a typical string."
"That is known as a I"cons cellI" in Lisp.u

When rt'ad sees an open parenthesis, it knows that the p.r. of a cons is coming, and
calls itself recur~ively to get the elements of the cons or the list that follows. Any of the
following are valid:

(foo . bar)
(foo bar baz)
(foo . (bar. (baz . nil»)
(foo bar. quux)

The ftr~t is a cons, whose car and cdr are both symbols. The second is a list, and the third
is exactly the ~ame as the second (although print would never produce it). The fourth is a
"dotted list'": the ,-dr of the last cons cell (the second one) is not nil, but quux.

Whenever the reader sees any of the above, it creates new cons cells; it never returns
existing li~t structure. This contrasts with the case for symbols, as very often read returns
symb0b that it found on the package rather than creating new symbols itself. Symbols are
the only thing that ' ... ·ork this way.

The dot that ~eparates the 2 elements of a dotted-pair p.r. for a cons is only recognized
if it i~ surrounded by delimiters. Thus dot may be freely used within print-names of symbols
and within numbers.

18.2.3 Sharp-sign Abbreviations

The reader's ~)'ntax includes several abbreviations introduced by sharp sign (#). These
take the general form of a sharp sign, a second character which identifies the syntax, and
following arguments. Here are the currently-defined sharp-sign constructs; more are likely to
be added In the future .

• /.l' reads in as the number which is the character code for the character x ..
For example, ./ a is equivalent to 141 but clearer in its intent. This is the
recommended way to include character constants in your code. Note that
the ~Ja~h cau~es this construct to be parsed correctly by the editors. Emacs
and Eine.

\ name reads in as the number which is the character code for the non
printing character symbolized by name. (In the Lisp-machine compatible
\1aclisp environment, Li:-p-machine character code is used if the file is being
compiled for the Li:-p machine, or ascii character code if the result is
intended to be used in MacJisp.)

The following character names are recognized: brk, clr, call, esc,
back-next, help, rubout, bs, tab, If, vt, ff, cr, sp. These are generally
self-explanatory; cr is the key marked return, sp is space, ff is the key
marked form.

DSK:LM\1A~:IOS Q5
6-JAN-79

Preliminary Li~p ~1achine Manual 159 Input Functions

••

.'foo is an abbreviation for (function fool. foo is the p.r. of any object.

#,foo evaluates foo (the p.r. of a Lisp form). at read time. unles::. the
compiler is doing the reading. in which case it is arranged that foo will be
evaluated when the QFASL file is loaded. This is a way. for example, to
include in your code complex list-structure constants which cannot be
written with quote. Note that the reader does not put quote in front of
the result of the evaluation. You must do this yourself if you want it.
typically by using the' macro-character .

• Q foo reads as foo if the input is being read by the Lisp machine or being
compiled to run on the Lisp machine, otherwise it reads as nothing (white

space).

#M/oo reads as 100 if the input is being read into Maclisp or compiled to
run in Maclisp, otherwise it reads as nothing (white space).

This is an obsolete form of #/. You write •• followed by a space, followed
by the character whose character code you want.

18.2.4 The Readtable

(To be supplied.)

18.2.5 Reader Macros

(To be supplied.)

18.3 Input Functions

read & optional stream eol-option
read reads in the printed representation of a Lisp object from stream, builds a
corresponding Lisp object. and returns the object. If the end-of-file is reached
before a valid object starts, it returns eof-option instead. If the end-of-file is reached
in the middle of an object. e.g. inside parentheses. an error is signalled. stream
defaults to the value of standard-input. and eof-option defaults to nil.

In order to allow compatibility with Maclisp, the arguments are interpreted in a
~lightly more complicated way. If the stream is nil. then the value of standard
input is used. If stream is t. the value of terminal-io is used.

~taclisp allow~ the two arguments to be interchanged, but the Lisp machine does
not.

There is an array called the readtable (see page 159) which is u~ed to control the
reader. It c()ntain~ infor mation about the syntax of each character. Initially it is set up to
give the standard Lisp meanings to all the characters. but the user can change them to make

DSK:LMMAN;lOS 95 6-JAN-79

Input Functions 160 Preliminary Lisp Machine Manual

the r~ader u~abl~ as a lexical analyzer for a wide variety of input formats or languages. It is
also prl~~ible to have several readtable~ describing different syntax and to switch from one to
anoth~r by binding the symbol readtable.

The f(")rmat of the rea(hable is not yet documented herein.

rEtadtable J'ariable
The value of readtable is the current readtable.

t yi & optional stream eof-option
t yi input!' one character from stream and returns it. The arguments are the same as
for read.

rE'adline & optional stream eof-option
readline reads in a line of text, terminated by a newline. It returns the line as a
character ~tring, without the newline character. This function is usually used to get a
line ()f input from the user. The arguments are the same as for read.

readch & optional stream eof-option
readch i~ ju~t like tyi, except that instead of returning a fixnum character, it
returns a ~ymbol whose print name is the character read in. This is just like a
~1aC\i~p "character object"'. The symbol is interned, on the user package. The
arguments are the same as for read.

t yipEtek & optional peek-type stream eof-option
\Vhat t yipeek does depends on the peek-type, which defaults to nil. With a peek
type of nil, t yipeek returns the next character to be read from stream, without
actually removing it from the input stream. The next time input is done from stream
the character will still be there; in general, (= (tyipeek) (tyi» is t.

If peck-type is a fixnum less than 1000 octal, then tyipeek reads characters from
stream until it gets one equal to peek-type. That character is not removed from the
input ~tream.

If pl'(,k-fype is t, then t yipeek skips over input characters until the start of the
printed repre~entation of a Lisp object is reached. As above, the last character (the
one that starts an object) is not removed from the input stream.

The form of tyipeek supported by Mac1isp in which peek-type is a fixnum not less
than 1000 octal j~ not supported, since the readtable formats of the Mac1isp reader
and the Li~p Machine reader are quite different.

The stream and eof-option arguments are the same as for read.

~()te that all 0f these functions will echo their input if used on an interactive stream
(one which support~ the :rubout-handler operation; see below.) The functions that input
more than one character at a time (read, readline) allow the input to be edited using

DSK:L~\1AN:IOS 95 6-JAN-79

Preliminary Lbp Machine \.1anual 161 Output Functions

rubout. t yip~tJk echoes all of the cha~acters that were skipped over if t yi would have
echoed them; the character not removed from the stream is not echoed either.

rfladlist char-list
char-list i~ a list of characters. The characters may be represented by anything that
the function character accepts: fixnums, strings. or symbols. The characters are
givt-n ~ucce~~ively to the reader, and the Lisp object built by the reader is returned.
~1ac fO characters and so on will all take effect.

rflad-from-string string
The characters of string are given successively to the reader, and the Lisp object
built by the reader is returned. Macro characters and so on will all take effect.
Example:

(read-from-string "(a be)") => (a b c)

18.4 Output Functions

prinl x &optional stream
prinl outputs the printed representation of x to stream, with slashification (see page
154). stream defaults to the value of standard-output. If stream is nil, the value
()f standard-output is used. If it is t, the value of terminal-io is used. If it is a
li~t of !'ueams, then the output is performed to all of the streams (this is not
implemented yet).

prinl-then-space x &optional stream
prinl-then-space is like prinl except that output is followed by a space.

print x &optional stream
print is just like prinl except that output IS preceeded by a newline and followed
by a space.

pnnc x &optional stream
prine is just like prinl except that the output is not slashified.

t yo char & optional stream
t yo outputs the character char to stream. The stream argument is the same as for
prinl.

terpri &optional stream
terpri outputs a newline character to stream. The stream argument is the same as
for prinl.

The format function (see page 85) is very useful for producing nicely formatted text.
It can do anything any of the above functions can do, and it makes it easy to produce
good looking mes~ages and such.

DSK:L}'-1MAN;IOS 95 6-JAN-79

. :for" .'

Output Functions 162 Preliminary Lisp Machine Manual

The grindef function is useful for formatting Lisp programs. See <not-Yet-written>.

cursorpos &optional arg / arg]

Thi~ function exi~t~ primarily for Maclisp compatibility. Usually it is preferable to
call the TV routines directly. eursorpos only operates on console-io-pc-ppr and
doe~ not work if a different font than the default is being used. The Maclisp Newio
feature \\!here one of the arguments to eursorpos can be a file is not supported.

(eursorpos) => (line. column), the current cursor position.

(eursorpos line column) moves the cursor to that position. It returns t if it
~ucceed~ and nil if it doesn-t.

(cursorpos op) perform~ a special operation coded by op, and returns t if it
succeed~ and nil if it doe~n·t. op is tested by string comparison, it is not a keyword.

F ~1oves one spat.:e to the right.
8 Moves one space to the left.
D ~,'foves one line down.

exploden x

U :Moves one line up.
C Clears the piece of paper.
T Homes up (moves to the top left corner).
E Clear from the cursor to the end of the piece of paper.
L Clear from the cursor to the end of the line.
K Clear the character position at the cursor.
X B then K.
Z Home down (moves to the bottom left corner).

exploden returns a list of characters (ae; fixnums) which are the characters that
would be tyred out by (prine x) (i.e. the unslashified printed representation of x).
Example:

(exploden '(+ 112 3» => (50 53 40 61 62 40 63 51)

explodee x

explodec returns a Jist of characters represented by character objects which are the
characters that would be typed out by (prine x) (i.e. the unslashified printed
representation of x).
Example:

(explodec /(+ 112 3» => (I(+ I 11 12 I 13 I))
(~ote that there are sla .. hified spaces in the above list.)

explode x

explode returns a Jist of characters represented by character objects which are the
characters that would be typed out by (print x) (i.e. the slashified printed
representation of x).

DSK:L\1\1A~:IOS 95
6-JAN-79

Preliminary Li~p Machine Manual 163 Output Functions

Example:
(explode /(+ 112 3» =) (I(+ I II 11 12 I 13 I))

(~ole that there are ~Iashified spaces in the above list.)

flatsize x
flat size returns the number of characters in the slashified printed representation of
x.

nate x
nate returns the number of characters in the unslashified printed representation of x.

stream-copy-until-eof from-stream to-stream & optional leader-size
stream-copy-until-eof inputs characters from from-stream and outputs them to 10-

stream, until it reaches the end-of-file on the from-stream. For example, if x is
bound to a stream for a file opened for input. then (stream-copy-until-eof x
terminal-io) will print the file on the console.

If from-stream supports the :Iine-in operation and to-stream supports the :line-out
operation, then stream-copy-until-eof will use those operations instead of :tyi
and :t yo, for greater efficiency. leader-size will be passed as the argument to the
:Iine-out operation.

DSK:LMt-.1AN;IOS 95 6-JAN·79

I/O Stream~
164 Preliminary Lisp Machine Manual

18.5 I/O Streams

18.5.1 What Streams Are

Many programs accept input characters and produce output characters. The method for
performing input and OUtput to one device is very different from the method for some
other device. We would like Our programs to be able to use any device available. but
without each program having to know about each device.

In order to solve this problem, we introduce the concept of a stream. A stream is a
source andlor sink· of characters. A set of operations is available with every stream:
operations include things like "output a character" and "input a character". The way to
perform an operation to a stream is the same for all streams, although what happens inside
the stream h very different depending on what kind of a stream it is. So all a program has
to know j~ how to deal with streams.

A stream is a functional object; that is, it is something that you can apply to arg\1ments.
The fir,t argument given to a stream is a symbol which is the name of the operation you
wish to perform. The rest of the arguments depend on what Operation you are doing.

Som .. streams can only do input, some can only do output, and some can do both
Some op .. rations are only supported by some streams. Also, there are some operations
which the ,tream may not support by itself, but will work anyway, albeit slowly, because the
"stream default handler" can handle them. If you have a stream, there is an operation called
;which-operations that will return a list of the names of all of the Operations that are
·sUpported "natively" by the stream. AI/ streams suppOrt :which-operations. and so it isn't in the Ji~t itself.

18.5.2 General Purpose Stream Operations

Here are some simple operations. Listed are the name of the operation, what arguments it takes. and what it does.

:tyo

:tyi

Takes one argument, which is a character. The stream will output that
character. For exampJe, if s is bound to a stream, then the form

(funcall s /:tyO 102)
will output a "B" to the stream.

Takes one optional argument, described later. The stream will input One
character and return it. For example, if the next character to be read in by
the stream is a "C", then the form

(funcall s /:tyi)

wi II retu rn 103. N otethat the :t yi operation will not "echo" the character in
any fashion; it just does the input. The tyi function (see page 160) will do
echoing When reading from the terminal. The argument to the :tyi
operation tells the stream what to do if it gets to the end of the file. If the

DSK:lM\fAN;IOS 95

6-JAN-79

Preliminary Li~p Machine Manual 165 I/O Streams

argument is not provided or is nil, the stream will return nil at the end of
file. Otherwise it will signal an error, and print out the argument as the
error me~sage.

:unt yi Takes one argument, which is a character. The stream will remember that
character, and the next time a character is input, it will return the saved
character. In other words, :unt yi means "stuff this character back into the
input ~ource". For example,

(funeall s /:untyi 120)
(funeall s /:tyi) ==> 120

This operation is u~ed by read, and any stream which supports :t yi must
support :untyi as well. Note that you are only allowed to :untyi one
character before doing a :tyi, and you aren't allowed to :untyi a different
character than the last character you read from the stream. Some streams
implement :unt yi by saving the character, while others implement it by
backing up the pointer to a buffer.

:which-operations
Takes no arguments. It returns a list of the operations supported "natively·
by the ~tream.
Example:

(funeall s /:which-operations)
==> (:tyi :tyo :untyi :line-out :listen)

Any stream must either support :tyo, or support both :tyi and :untyi. There are
~everal other, more advanced input and output operations which will work on an)' $tream
that can do input or output (respectively). Some streams support these operations
themselves: you can tell by looking at the list returned by the :which-operations
operation. Others will be handled by the "stream default handler" even if the stream does
not know about the operation itself. However, in order for the default handler to do one
of the more advanced output operations, the stream must support :tyo, and for the input
operation~ the stream must support :tyi (and :untyi).

Here is the list of such operations:

:listen

:f resh-line

:string-out

On an interactive device, the :listen operation returns non-nil if there are
any input characters immediately available, or nil if there is no immediately
available input. On a non-imeractive device, the operation always returns
nil, by virtue of the default handler. The main purpo!oe of :listen is to test
whether the user has hit a key, perhaps try~ng to stop a program in progress.

An output operation which takes no arguments. It tells the stream that it
t'hould pO!'ition itself at the beginning of a new line: if the stream is already
at the beginning of a fresh line it will do nothing, otherwise it will output 8

newline. For streams which don't support this. the default handler will
always output a newline.

An output operation which takes one required argument, a string to output.
The characters of the string are successively output to the stream. This
operation is provided for two reasons; first, it saves the writing of a loop

DSK:LMMAN:IOS 95 6-JAS-79

J~'~"';" ' ...
••

I/O Streams

:Iine-out

:Iine-in

:clear

:finish

:f orce-output

166 Preliminary Lisp Machine Manual

which is used very often. and second, some streams can perform this
operation much more efficiently than the equivalent :tyo operations. The
:st ring-out operation also takes two optional arguments, which are a range
of characters withing the string to output; the second argument is the index
of the first character to output (defaulting to 0), and the third is one greater
than the index of the last character to output (defaulting to the length of the
string). Callers need not pass these arguments. but all streams that handle
:st ring-out must check for them and interpret them appropriately. If the
stream doesn't support :string-out itself. the default hander will turn it into
a bunch of :t yos.

An output operation which takes one argument, a string. The characters of
the string t followed by a newline character, are output to the stream. If the
stream doesn't support :line-out itself, the default hander will turn it into a
bunch of :t yos.

An input operation which takes one argument. The stream should input one
line from the input source t and return it as a string with the newline
character stripped off. Many streams will have a string which is used as a
buffer for lines. If this string itself is returned, there would be problems
caused jf the caJler of the stream attempted to save the string away
somewhere, becam.e the contents of the string would change when the next
line was read in. In order to solve this problem, the string must be copied.
On the other hand, some streams don't reuse the string, and it would be
wa~teful to copy it on every :Iine-in operation. This problem is solved by
using the argument to :Iine-in. If the argument is nil, the stream will not
bother to copy the string, and the caJler should not rely on the contents of
that string after the next operation on the stream. If the argument is t, the
~tream will make a copy. If the argument is a fixnum, n, then the stream
will make a copy with an array leader n elements long. (This is used by the
editor, which represents lines of buffers as strings with additi9nal information
in their array-leaders, to eliminate an extra copy operation.) If the stream
reaches the end-of-file while reading in characters, it will return the
characters it has read in as a string, and return a second value of t. The
caller of the stream should therefore arrange to receive the second value,
and check it to see whether the string returned was a whole line or just the
trailing characters after the last newline in the input source.

Takes no arguments. The stream will clear any buffered input or output. If
the stream does not handle this, the default handler will ignore it. [To be
renamed to :clear-input and :clear-output.]

Takes no arguments. It returns when the currently pending I/O operation is
completed. It does not do anything itself; it is just used to await completion
of an operation. If the stream does not handle this, the default handler will
ignore it.

Takes no arguments. It causes any buffered output to be sent to the device.

DSK:L~f\1AN:IOS 95 6-JAN-7Q

; ~ .

Preliminary Lisp ~1achine Manual 167 I/O Streams

:close

If the stream does not handle this. the default handler will ignore it.

Takes no arguments. It causes the stream to be "closed", and no further
operations should be performed on it. However, it is all right to :close a
clo~ed stream. If the stream does not handle :close, the default handler will
ignore it.

:tyi-no-hang Just like :tyi eKcept that if it would be neccesary to wait in order to get the
character, returns nil instead. This lets the caller efficiently check for input
being availible and get the input if there is any.

18.5.3 Special Purpose Stream Operations

There are several other defined operations which the default handler cannot deal with;
if the stream does not support the operation itself, then an attempt to use it will signal an
error. The~e are:

:read-pointer This is supported by the file stream (see page 171). It takes no arguments.
and returns the position that the stream is up to in the file, as a number of
character~.

:name This is supported by the file stream. It returns the name of the file open on
the stream. as a string.

:rubout-handler

This is supported by interactive streams such as the tv-terminal-stream.
and is described in its own section below (see page 173).

:unt yo-mark This is used by grind if the output stream supports it. It takes no arguments.
The stream should return some object which indicates where (1). has

:untyo

:get -uniq ue-id

gotten up to in the stream.

This is used by grind in conjunction with :untyo-mark. It takes one
argument, which is something returned by the :unt yo-mark operation of
the stream. The stream should back up output to the point at which the
object wa'" returned.

This is supported by the file stream. It returns a string which identifies the
file which is open, including its full name, its length, and its creation date.

:read-cursorpos

This operation is supported by piece-of-paper streams (see tv-make-stream,
page 234). It returns two values: the current x and y positions of the
cursor. It takes one argument, which is a symbol indicating in what units x
and y should be; the symbols :pixel and :character are understot;d. This
operation, and :set-cursorpos, are used by the format """"T" request (see
page 86), which is why .. """T .. doesn't work on all streams. Any stream that
$upports this operation must support :set-cursorpos as well.

DSK:LMMAN;IOS 95
6-JA~-79

,,}i;;/:;~j ;~'
.. ;'~'·,S'iy.\
.. ~.

I/O Stream~ 168 Preliminary Lisp Machine Manual

:set-cursorpos
This operation is supported by the same streams that support :read
cursorpos. It sets the position of the cursor. It takes three arguments: 8

symbol indicating the units Gust like :read-cursorpos), the new x position,
and the new y position.

18.5.4 Standard Str~ams

There are several variables whose values are streams used by many functions in the Lisp
sy~tem. The~e variables and their uses are listed here. By convention, variables which are
expected to hold a !'tream capable of input have names ending with -input, and similarly
for output. Those expected to hold a bidirectional stream have names ending with -io.

standard-input Variable
In the normal Lisp top~level loop, input is read from standard-input (that is,
whatever ~tream i~ the value of standard-input). Many input functions, including
t yi and read, take a stream argument which defaults to standard-input.

standard-output Variable
In the normal Lisp top-level loop, output is sent to standard-output (that is.
whatever stream is the value of standard-output). Many output functions.
including t yo and print, take a stream argument which defaults to standard
output.

error-output Variable
The value of error-output is a stream to which error messages should be sent.
~ ormally this is the same ~ standard-output, but standard-output might be
bound to a file and error-output left going to the terminal. [This seems not be
used by things which ought to use it.]

query-io Variable
The value of query-io is a stream which should be used when asking questions of
the u~€'r. The question should be output to this stream, and the answer read from it.
The rea~on for this i~ that when the normal input to a program may be coming from
a file. que~tion$ such a" "Do you really want to delete all of the files in your
directory::" should be sent elsewhere (usually directly to the user). [This seems not
be u~ed by things which ought to use it.]

terminal-io Variable
The value of terminal-io is always the stream which connects to the user's console.
For ~orne()ne u~ing the Lisp Machine from its keyboard and TV, the value will be
tv-terminal-stream. The default values of the above four variables are streams
which ~imply take whatever operations they are given and pass them on to whatever
~tream is the value of terminal-io. No user program should ever change the value
of terminal-io. A program which wants (for example) to divert output to a file
~hou(d do so by binding the value of standard-output; that way error messages

DSK:LM\iAN;IOS 95 6-JAN-79

I;

Preliminary Li~p !\iachine Manual 169 I/O Streams

~ent to ttrror-output can still get to the user by going through terminal-jo, which
i~ u~ually what is desired.

make-syn-stream symbol
make-syn-stream create5 and returns a "~ynonym stream". Any operations sent to
this stream will be redirected to the stream which is the value of symbol.

standard-input, standard-ou~put, error-output, and query-io are initially
bound to synonym streams which use the value of terminal-io.

18.5.5 Making Your Own Stream

Here is a sample output stream. which accepts characters and conses them onto a list.
(defun list-output-stream (op &optional argl &rest rest)

(selectq op
(:tyo
(setq the-list (cons argl the-list»)

(:which-operations /(:tyo»
(otherwise
(multiple-value-call
(stream-default-handler (function list-output-stream)

op argl rest»»)

The lambda-list for a stream must always have one required parameter (op), one optional
parameter (argl). and a rest parameter (rest). This allows an arbitrary number of arguments
to be passed to the default handler. This is an output stream, and so it supports the :tyo
operation. Note that all streams must support :which-operations. If the operation i~ not
one that the stream understands (e.g. :string-out), it calls the stream-deC ault-handler.
The calling of the default handler is required. since the willingness to accept :t yo indicates
to the caller that :string-out will work. The multiple-value-call (see page 19) is used so
that if the default handler returns multiple values. the stream will return all of them.

Here is a typical input stream, which generates successive characters of a list.

DSK:LMMAN:IOS 95 6-JAN-79

,
'0

1/0 Streams 170 Preliminary Lisp Machine Manual

(defun list-input-stream (op &optional argl &rest rest)
(selectQ op

(: tyi
(cond «not (null untyied-char»

(prog} untyied-char (setq untyied-char nil»)
«null the-list)
(or arg}

(ferror nil "You got to the end of the stream.-»)
(t (progl (car the-list)

(:untyi
(setq the-list (cdr the-list»»»

(setq untyied-char argl»
(:which-operations /(:tyi :untyi»
(otherwise
(multiple-value-call
(stream-default-handler (function list-input-stream)

op argl rest»»)

The important things to note are that :untyi must be supported, and that the stream
mu~t check for having reached the end of the information, and do the right thing with the
argument to the :t yi operation.

The above stream u~es a free variable (the-list) to hold the list of characters, and
another one (untyied-char) to hold the :untyied character (if any). You might want to
have several instances of this type of stream, without their interfering with one another.
This is a typical example of the w.efulness of closures in defining streams. The following
function will take a list, and return a stream which generates successive characters of that
list.

(defun make-a-list-input-stream (list)
(let-closed «list list) (untyied-char n11»

(function list-input-stream»)

stream-def ault-handler stream op arg 1 rest

stream-default-handler tries to handle the op operation on stream, given
argument~ of argl and the elements of rest. The exact action taken for each of the
defined operations is explained with the documentation on that operation, above.:

DSK:LM'fAN:IOS 95
6-JAN-79

Preliminary Li~p Machine Manual 171 Accessing Files

18.6 Accessing Files

A~ of thb writing, the Lisp Machine u~es the A.I. PDP-IO's file sY5tem to read and
write file!'. The A.I. machine is acces~ed through the Chaos network. When the Lisp
~'tachine is started, it will tell you whether it has successfully connected to the file system.
The function si:file-use-chaos (not documented in this manual) allows you to initiate a
connection to the file t'ystem server, and to control which machine is used as a file system.

At present. there may be no more than one file open for reading and one file open for
writing at a time.

All of the functions herein are subject to change, and in general you shouldn
9

t belive
too much of this. However, it does describe the existing software.

[Blurb about "sectioned" file structure.]

open fi [('name options
This is the function for accessing files. It returns a stream which is connected to the
spec:ified file. Unlike Maciisp, the open function only creates streams for files; other
streams are created by other functions.

filename i~ the name of the file to be opened: it must be a string. Currently, files
are stored on ITS and filename must be an ITS file name. If an ITS error (such as
file not found) occurs when opening the file, a Lisp error is signalled.

options is either a single symbol or a (possibly-null) list of symbols. The following
option symbols are recognized:

:in, :read Select opening for input (the default).

:out, :write, :print
Select opening for output: a new file is to be created.

:fixnum Select binary mode, otherwise character mode is used. ~ ote that
fixnum mode uses 16-bit binary words and is not compatible with
Maclisp fixnum mode which uses 36-bit words.

:ascii The opposite of :fixnum. This is the default.

:single, :block
Ignored for compatibility with Maclisp.

For example, evaluating any of the forms
(open "info;dir)" ':in)
(open "INFO;OIR)" '(:read»
(open "OIR) INFO;" ':read)

will open the file "AI: INFO; DIR >'\ and return an input stream which will return
successive characters of the file, and support the following operations: :t yi, :unt yi J

:clear, :ciose, :name, :Iine-in, and :get-unique-id. When the caller is finished
with the stream, it should close the file by using the :close operation or the close
function.

DSK:LMMAN;IOS 95 6-JA~-79

Accessing Fileos 172 Preliminary Lisp Machine Manual

Opeoning a file output stream creates a new file with specified name (calling it
"_LSP~1_ OUTPUT" until it has been successfully closed) and returns a stream which
supports the following operations: :tyo, :close, :finish, :read-pointer, :name,
:Iin~-out, and :string-out.

clos~ str(~am

The close function simply performs the :close operation on stream.

18.6.1 Oth~r FilE' Operations

file-command & rest strings
This concatenateos all of the strings and sends the result as a command to the PDP-
10 FI LE job. It returns the string which is the FILE program's response, except that
if the response was empty, it returns nil. The returned string is special and will be
c1(,bbereod by the next file operation, so you should copy it (with string-append,
:-ee page 81) if you want to save it.

file-command-ca ref ul & rest strings
This is the same as file-command, but if the string returned from the FILE.
program is not empty. it signals an error, using that string as the error-message.

file-error Variable
When an error such as "File Not Found" or "No Such Directory· occurs, (i.e. errors
due to the current state of the file system), then instead of directly calling error,
the file-access functions apply the value of file-error to the arguments upon which
error would have been called. In fact, the default binding of file-error is to the
symbol error. However, this convention allows flexibility in such programs as
EINE, which may want to handle such errors specially.

This little feature is recognized as an inelegant kludge, which will be repaired when
the error ~ystem is more fully developed.

nle-E'rror-status filename
Thi~ tries to open the file filename. If it gets an error, it returns the ITS error
code, which will always be a small positive fixnum; otherwise it returns nil. In any
ca~e it leave~ the file closed.

nl@-mapp(?d-op~n filename &optional (write-p nil)
TeolJ~ the pdplO FILE program to map the specified file into its address space for
random acce~s. searching, etc. Thi~ is used in the present implementation of multi
~ectioned files. file-mapped-open returns a stream to read from the file if write-p is
nil. or write to it if write-p i~ t. The stream will apply only to the subrange of the
file ~et by the latest map set or finddef command given to the FILE job. On
reading, when you get to the end of the range, it is considered the end-of-file.
Giving another mapset or finddef command will make it start reading from a
different range. To skip the rest of a range, do another mapset or finddef and do

DSK:L~f\fAN:IOS 95 6-JAN-79

Preliminary Lbp ~1achine Manual 173 Rubout Handling

a :clear operation, on the stream. To set the range with mapset. do (file
command "mapset start size") where start and size are numbers converted to
decimal. To set the range to foo's definition, do (file-command "findder II "foo").

file-qf asl-p filename
If the file is a QFASL file. return t; otherwise return nil. This works by checking
the file itself, not the name; if opening the file gives an ITS error, an error is
~ignalled.

file-exists-p pathname
Return~ nil if the file path name does not exist. If it does exist, returns :qf asl if it is
a QF ASL file, and otherwise t.

18.6.2 File Name Manipulation

file-expand-pathname filename
This defaults the FN2 to ">", and any other unspecified components from the
current default filename. It then sets up the current default filename to be the
re~ulting filename. and returns it. This will always return the filename in a canonical
form.
Example:

(file-expand-pathname "lispm;foo") => HAl: IISP"; FOO)-

file-default-fn2 filename In2
If filename does not specify its FN2 component, this returns a filename whose FN2
is In2, and whose other components are from filename.
Example:

(file-default-fn2 "lispm;foo" "barA) =) -AI: IISP"; FOO BAR"

file-set-fn2 filename In2
Returns a filename whose FN2 is In2, and whose other components are from
filename.
Example:

(file-set-fn2 "lispm;foo)" "qfasl") => -AI: LISP"; FOO QFASL-

18.1 Rubout Handling

The rubout handler is a feature of all interactive streams, that is. streams which connect
to terminals. Its purpO$e is to allow the user to edit minor mistakes in typein. At the same
time. it is not supposed to get in the way: input is to be seen by Lisp as soon as a
syntactically complete form has been typed. The rubout handler also provide~ 8 few
commands to do things like clear the screen.

DSK:LMMAN:IOS 95 6-JAN-79

.;~.: .

Rubout Handling 174 Preliminary Lisp Machine Manual

The rubout handler will eventually provide the same editing commands as the editor.
but at thi~ writing they have not yet been conjoined.

The ba~ic way that the rubout handler works is as follows. When an input function that
reach an "object", ~uch as read or readline but not tyi, is called to read from a stream
which ha~ :rubout -handler in its :which-operations list, that function "enters" the rubout
handler. It then goe~ ahead :tyi'ing characters from the stream. Because control is inside
the rubout handler, the ~tream will echo these characters so the user can see what he is
typing. (~0rmally echoing is considered to be a higher-level function outside of the
province of ~tream~, but when the higher-level functio~ tells the stream to enter the rubout
handler it is abo handing it the respon~ibility for echoing). The rubout handler is also
saving all these characters in a buffer, for reasons disclosed in the following paragraph.
When the function, read or whatever, decides it has enough input, it returns and control
"leaves" the rubout handler. That was the easy case.

If the u~er types a rubout, a *throw is done, out of all recursive levels of read,
reader mal'ros, and so forth. back to the point where the rubout handler was entered. Also
the rubout is echoed by erasing from the screen the character which was rubbed out. Now
the read is tried over again, re-reading all the characters which had been typed and not
rubbed out, not echoing them this time. When the saved characters have been exhausted,
additional input is read from the user in the usual fashion.

The effect of this is a complete separation of the functions of rubout handling and
parsing, while at the same time mingling the execution of these two functions in such a way
that input is always "activated" at just the right time. It does mean that the parsing function
(in the usual ca~e, read and all macro-character definitions) must be prepared to be thrown
through at any time and should not have non-trivial side-effects.

If an error occurs while inside the rubout handler, the error message is printed and the
buffered input is redisplayed. The user can then type as he wishes; the input will be
repar~ed from the beginning in the usual fashion after he rubs out the characters which
caused the error.

The rubout handler also recognizes the special characters Clear and Form. Form clears
the screen and echoes back the buffered input. Clear is like hitting enough rubouts to flush
all the buffered input.

If a Control or ~1eta character is typed to the rubout handler, the character is not
echoed nor given to the program as input. The function which is the value of rubout
handIElr-control-character-hook is called. The default binding of this looks for control
Z and does a "Quit" if one is typed. This hook will go away when the rubout handler uses
Control and Meta characters for editor commands. Note that when not inside the rubout
handler, Control and Meta characters are passed through as input like ordinary characters.

DSK:lM~fAN;IOS 95 6-JAN-79

t

I
!

Preliminar)' Li!'p ~fachine \fanual 175 Special I/O Devices

rubout-handler-control-character-hook Variable
The value of this variable i5 a function called by the rubout handler when a Control
or \teta character is typed. The function ~hould take one argument, which is the
character.

The way that the rubout handler is entered is complicated, since a *catch must be
e~t(jblbhed. The variable si:rubout-handler is non-nil if the current process is inside the
rubout handler. Thb is used to handle recursive calls to read from inside reader macros
and the like. If si:rubout-handler is nil, and the stream being read from has :rubout
handler in its :which-operations, functions such as read send the :rubout-handler
operation to the stream with arguments of the function and its arguments. The rubout
handler initializes itself and establishes its *catch, then calls back to the specified function.
If you look at the code in read, you will see some magic hair which is used to make sure
that multiple values pass back through all this correctly. This will eventually become
unnece~sar)'.

si:rubout -handler Variable
t if control is inside the rubout handler in this process.

18.8 Special I/O Devices

-> pointers to separate chapter on TV. keyboard, and mouse.

-> pointer to separate chapter on Chaos net

-> how to use whatever else ought to go in here

DSK:L~1MAN:IOS 95 6-JAS-79

Packages 176 Preliminary Lisp Machine Manual

19. Packages

19.1 The Need for Multiple Contexts

A Lisp program is a collection of function definitions. The functions are known by their
name~. and so each must have its own name to identify it. Clearly a programmer must not
use the same name for two different functions.

The Li~p machine con$i~ts of a huge Li!'p environment. In which many programs must
coexi~t. All of the "operating system", the compiler. the EINE editor, and a wide variety of
programs are provided in the initial environment. Furthermore, every program which the
user u~es during his se!'sion must be loaded into the same environment. Each of these
programs is composed of a group of functions; apparently each fun~tion must have its own
distinct name to avoid conflicts. For example. if the compiler had a function named pull,
and the u~er loaded a program which had its own function named pull, the compiler's pull
would be redefined, probably breaking the compiler.

It would not really be possible to prevent these conflicts, since the programs are written
by many different people who could never get together to hash out who gets the privilege
of using a specific name such as pull.

~ ow, if we are to enable two programs to coexist in the Lisp world, each with its own
function pull, then each program must have its own symbol named "pull", because there
can't be two function definitions on the same symbol. This means that separate "name
spaces"-mappings between names and symbols-must be provided for them. The package
system b de!-igned to do just that.

Under the package system, the author of a program or a group of closely related
programs identifies them together as a "package". The package system associates a distinct
name !-pace with each package;

Here is an example: suppo~e there are two programs named chaos and arpa, for
handling the Chaos net and Arpanet respectively. The author of each program wants to
have a function called get-packet, which reads in a packet from the network (or
$omething). Also, each wants to have a function called allocate-pbuf, which allocates the
packet buffer. Each "get" routine first allocates a packer buffer. and then reads bits into the
buffer; therefore, each vefsion of get -packet should call the respective version of
allocate-pbuf.

Without the package system. the two programs could not coexist in the same Lisp
environment. But the package feature can be used to provide a separate name space for
each program. What is required is to declare a package named chaos to contain the Chaos
net program. and another package arpa to hold the Arpanet program. When the Chaos net
program is read into the machine, its symbols would be entered in the chaos package's
name ~pace. So when the Chaos net program's get-packet referred to allocate-pbuf, the
allocate-pbuf in the chaos name space would be found, which would be the allocate-

DSK:l~f\fA~;PACKD 63 6-JAN-79

Preliminary Lisp Machine Manual 177 The Organization of Name Space~

pbuf of the Chaos net program-the right one. Similarly, the Arpanet program's get
packet would be read in using the arpa package's name space and would refer to the
Arpanet program's allocate-pbuf.

An additional function of packages is to remember the names of the files which
con!-titute each program. making it easy to ask to load or recompile all of them at once.

To understand what is going on here. you should keep in mind how Lisp reading and
loading works. When a file is gotten into the Lisp machine, either by being read or by
being fasloaded, the file itself obviously cannot contain Lisp objects: it contains printed
representations of those objects. When the reader encounters a printed representation of a
symbol, it c.alb intern to look up that string in some name space and find a corresponding
symbol to return. The package system arranges that the correct name space is used
whenever a file is loaded.

19.2 The Organization of Name Spaces

''Ie could simply let every name space be implemented as one oharray, e.g. one big
table of symbols. The problem with this is that just about every name space wants to
include the whole Lisp language: car, cdr, and so on should be available to every
program. We would like to share the main Lisp system between several name spaces without
making many copies.

Instead of making each name space be one big array, we arrange packages in a tree.
Each package ha .. a "superpackage" or "parent". from which it "inherits" symbols. Also. each
package ha~ a table, or "obarray", of its own additional symbols. The symbols belonging to a
package are simply those in the package's own obarray. followed by those belonging to the
superpackage. The root of the tree of packages is the package called global, which h~ no
superpackage. global contains car and cdr and all the rest of the standard Lisp system. In
our example, we might have two other obarrays called chaos and arpa. each of which
would have global as its parent. Here is a picture of the resulting tree structure:

global
I

1----------------------------\
I I

chaos arpa

In order to make the sharing of the global package work, the intern function is made
more complicated than in b(l!.ic Lisp. In addition to the string or symbol to intern, it must
be told which package to do it in. First it searches for a symbol with the specified name in
the obarray of the specified package. If nothing is found there, intern looks at its
superpackage, and then at the superpackage's superpackage, and so on. until the name is
fou nd or a root package such as global is reached. When intern reaches the root package,
and doesn't find the symbol there either, it decides that there is no symbol known with that
name, and adds a symbol to the originally specified package.

DSK:LMMAN;PACKD 63 6-JAN-79

Shared Programs 178 Preliminary Lisp Machine Manual

Since you don't normally want to worry about specifying packages, intern normally uses
the "current" package, which is the value of the symbol package. This symbol serves the
purpo~e of the symbol obarray in Maclisp.

Here's how that works in the above example. When the Chaos net program is read into
the Lisp world. the current package would be the chaos package. Thus all of the symbols
in the Chao~ net program would be interned on the chaos package. If there is a reference
to ~orne well know,n global ~ymb()l such a:- append, intern would look for "append" on the
chaos pac kage, not find it, look for "append" on global, and find the regular Lisp append
~yrnbol. and return that. If. however, there i~ a reference to a symbol which the user made
up him~elf (say it i~ ('ailed get-packet), the first time he uses it, intern won't find it on
either chaos n()r global. So intern will make a new symbol named get-packet, and install
it on the chaos package. When get-packet is refered to later in the Chaos net program,
intern will find get-packet on the chaos package.

\Vhen the Arpanet program is read in, the current package would be arpa instead of
chaos. \Vhen the Arpa~et program refers to append, it gets the global one; that is, it
share:-. the ~ame one that the Chao!' net program got. Howevert if it refers to get-packet,
it will not get the ~ame one the Chaos net program got, because the chaos package is not
being ~earched. Rathert the arpa and global packages are getting searched. So intern will
create a new get-packet and install it on the arpa package.

So what has happened is that there are two get-packets: one for chaos and one for
arpa. The two programs are loaded together without name conflicts.

19.3 Shared Programs

Now, a very important feature of the Lisp machine is that of ·shared programs·; if one
per~on writes a function to, ~ay, print numbers in Roman numerals, any other function can
call it to print Roman numerals. This contrasts sharply with PDP-tO system programs, in
which Roman numerals have been independently reimplemented several times (and the ITS
filename par~er ~everal dOlen times).

For example, the routines to manipulate a robot arm might be a separate program,
re!'iding in a package named arm. If we have a second program called blocks (the blocks
world, of cour~e) which wanted to manipulate the arm, it would want to call functions
which are defined on the arm obarray, and therefore not in blocks's own name space.
Without ~pecial provi~ion, there would be no way for any symbols not in the blocks name
space to be part of any blocks functions.

The col<)n character (":") has a special meaning to the Lisp reader. When the reader
~ees a colon preceeded by the name of a package. it will read in the next Lisp object with
package bound to that package. The way blocks would call a function named go-up
defined in arm would be by 8."king to call arm:go-up, because "go-up would be interned
on the arm package. What arm:go-up means precisely is "The symbol named go-up in the
name space of the package arm."

DSK:L~\1AN:PACKD 63 6-JAN-79

I
i
f Preliminary Lisp ~'fachine Manual 179 Declaring Packages

Similarly, if the chaos program wanted to refer to the arpa program's allocate-pbuf
function (for some reason), it would simply call arpa:allocate-pbuf.

An impl)rtant question which should occur at this point is how the names of packages
are a~~()c.iated with their obarrays and other data. This is done by means of the "refname
albt" which each package has. Thi~ alist associates strings called reference names or
rcfnames with the packages they name. !':ormally, a package's refname-ali~t contains an
entry for each subpackage, a,sociating the subpackage with its name. In addition, every
package has its own name defined as a refname, referring to itself. However, the u~er can
add any other refnames, associating them with any packages he likes. This is useful when
multiple versions of a program are loaded into different packages. Of course. each package
inherits its superpackage's refnames just as it does symbols.

In our example, since arm is a subpackage of globat the name arm is on global's
refname-ali~t, a!\~ociated with the arm package. Since blocks is abo a subpackage of global.
when arm:go-up is seen the string "arm"is found on global's refname alist.

When you want to refer to a symbol in a package which you and your superpackages
have no refnames for-say, a subpackage named f 00 of a package named bar which is
under global-you can use multiple colons. For example, the symbol finish in that
package f 00 could be referred to as f oo:bar:hnish. What happens here is that the second
name. bar. is interpreted as a refname in the context of the package f 00.

19.4 DE'claring Packages

Before any package can be referred to or loaded, it must be declared. This is done
with the special form package-declare, which tells the package system all sorts of things.
including the name of the package, the place in the package hierarchy for the new package
to go, its e~timated size, the file~ which belong in it, and some of the symbols which belong
in it.

Here is a sample declaration:
(package-declare foo global 1000

«"lispm;foo Qfasl")
("lispm;bar Qfasl")
("lispm;barmac)" defs»

(shadow array-push adjust-array-s1ze)
(extern foo-entry»

What thi!> declaration says is that a package named f 00 should be created as an inferior
of global, the package which contains advertised global symbols. Its obarray should initially
be large enough to hold 1000 symbols, though it will grow automatically if that isn't enough.
Unless there is a specific reason to do otherwise, you should make all of your packages
direct inferiors of global. The size you give is increased slightly to be a good value for the
ha~hing algorithm used.

DSK:LMMAN;PACKD 63 6-JAS-79

Declaring Package~ 180 Preliminary Lisp Machine Manual

After the size comes the "file-ali~t". The files in the (00 package are "lispm;foo" and
"lispm~bar", both of which should be compiled, and "lispm;barmac", which should be read in
as a text file. In addition, "bar mac" is marked as a DEFS file, which means that the latest
ver~i()n (")f "barmac" must always be loaded before attempting to compile or load any of the
other file~. Typically a DEFS file contains macro definitions, compiler declarations,
structure definition~, and the like. All the source files should start with

(pkg-contained-in "foo")
to help detect proce~sing them in the wrong package. Soon it, will automatically cau~e them
to be prnce:-~ed in the right package, even if copied under strange names. (~OTE: pkg
contained-in IS ~OT l\fPLE\fESTED YET! DON'T USE IT!)

Finally. the f 00 package "shadows" array-push and adjust-array-size, and "externs"
foo-entry. \\'hat ~hadowing means is that the foo package should have its own version~ of
tho!-e symbob, rather than inheriting its superpackage's versions. Symbols by these names will
be added to the f 00 package even though there are symbols on global already with those
name~. This alk)\\'s the f 00 package to redefine those functions for itself without redefining
them in the global package for everyone ehe. What externing means is that the foo
package i~ allowed to redefine (oo-entry as inherited from the global package, so that it is
redefined for everybody. If foo attempts to redefine a function such as car which is
pre;-.ent in the global package but neither shadowed nor externed, confirmation from the
user will be reque~ted.

~ ote that externing doesn't actually put any symbols into the global package. It just
a~~erb permi~~inn to redefine symbols already there. This is deliberate: the intent is to
enable the maintainers of the global package to keep control over what symbols are present
in it. Bt'cau~e inserting a new symbol into the global package can cause trouble to
unsu~pecting programs which expect that symbol to be private. this is not supposed to be
done in a decentralized manner by programs written by one user and used by another
unsu~pecting user. Here is an example of the trouble that could be caused: if there were
two u~er prc)gram~. each with a function named move-square, and move-square were put
on the global package, all of a sudden the two functions would share the same symbol,
resulting in a name c,onfiict. While all the definitions of the functions in global are actually
supplied by ~ubpackages which extern them (global contains no files of its own), the list of
symbol names is centralized in one place. the file "ai: lispm2: global >", and this file is not
changed without notifying everyone. and updating the global documentation.

Certain other things may be found in the declarations of various internal system
package~. They are arcane and needed only to compensate for the fact that parts of those
package~ are actually loaded before the package system is. They should not be needed by
any user package.

Your package declarations should go into separate files containing only package
declarations. Group them however you like. one to a file or all in one file. Such files can
be read with load. It doesn't matter what package you load them into. so use user, since
that ha!> to be safe.

DSK:L\-f\fAN:PACKD 63 6-JA~-79

Preliminary Lbp Machine ~anual 181 Packages and Writing Code

If the declaration for a package is read in twice, no harm is done. If you edit the size
to replace it with a larger one, the package will be expanded. If you change the file-alist.
the new one will replace the old. At the moment, however, there is no way to change the
li~t of ~hadowing~ or externals; such changes will be ignored. Also. you can't change the
~uperpackage. If you edit the superpackage name and read the declaration in again. you
will create a new, di~tinct package without changing the old one.

pack~ge-dE»clare iWacro
The package-declare macro is used to declare a package to the package ~ystem. Its
form is:

(package-decl are name super package size file-alist option-J option-2 •••)
The interpretation of the declaration is complicated: see page 179.

19.5 Packages and Writing Code

The un~ophi~ticated u~er need never be aware of the existence of packages when writing
his program~. He should ju~t load all of his programs into the package user, which is also
what console type-in i~ interned in. Since all the functions which users are likely to need
are provided in the global package, which is user's superpackage. they are all available. In
thi~ manual, functions which are not on the global package are documented with colons in
their name:.-, so typing the name the way it is documented will work.

However, if you are writing a generally u~eful tool. you should put It In some package
other than user. so that its internal functions will not conflict with name~ other u~ers use.
Whether for this reason or for any other, if you are loading your programs into packages
other than user there are special constructs that you will need to know about.

One time when you as the programmer must be aware of the existence of package~ is
when you want to U~e a function or variable in another package. To do this, write the
name of the package, a colon, and then the name of the symbol. as in eine:ed-get
def aulted-file-name. You will notice that symbols in other packages print out that way_
too. Sometimes you may need to refer to a symbol in a package whose superior is not
global. When this happens, use multiple colons, as in f oo:bar:ugh, to refer to the symbol
ugh in the package named bar which is under the package named f 00.

Another time that package~ intrude is when you use a "keyword": when you check for
eqne!'~ against a constant symbol, or pass a constant symbol to someone ebe who will check
for it u~ing eq. This includes using the symbol as either argument to get. In such cases,
the usual convention is that the symbol should reside in the user package. rather than in
the package with which its meaning is 8!>sociated. To make it easy to specify user. a colon
before a symbol, as in :select, is equivalent to specifying user by name, as in user:select.
Since the user package has no subpackages, putting symbols into it will not cause name
conflicts.

DSK:L~{MAN:PACKD 63 6-JAN-79

Shadowing 182 Preliminary Lisp Machine Manual

Why i~ thb convention u~ed? Well, com.ider the function tv-define-pc-ppr, which
take~ any number of keyword arguments. For example,

(tv-define-pc-ppr "foo" (list tyfont) 'YSP 6 's1deways-p t)
~pe(·ifie:\. after the two peculiar mandatory arguments, two options with names vsp and
sideways-p and values 6 and t. The file containing this function's definition is in the
system-internals package, but the function is available to everyone without the use of a
colon prefix becau~e the ~)'mbol tv-define-pc-ppr is itself inherited from global. But all
the keyword name~, ~uch as vsp, are short and should not have to exist in global.
However, it would be a shame if all callers of tv-define-pc-ppr had to specify system
internals: before the name of each keyword. After all, those callers can include programs
loaded into user, which should by rights not have to know about packages at all. Putting
tho~e keyword~ in the user package solves this problem. The correct way to type the above
form w()uld be

(ty-define-pc-ppr "foo" (list tvfont) ':vsp 6 ':sideways-p t)

EXcKtly when ~hould a symbol go in user? At least, all symbols which the user needs
to be able to pa:-~ as an argument to any function in global must be in user if they aren't
them:-elve~ in global. Symbols used as keywords for arguments by any function should
usually be in user, to keep things consistent. However, when a program uses a specific
property name to a~sociate its own internal memoranda with symbols passed in from outside,
the prope-rty name should belong to the program's package, so that two programs using the
~ame prope-rty name in that way don't conflict.

19.6 Shadowing

Suppo!:-e- the u~er doesn't like the system nth function: he might be a former interlisp'
user. and expecting a completely different meaning from it. Were he to say (defun nth -
-) in his program (call it interloss) he would clobber the global symbol named "nth", and
so affe-ct the "nth" in everyone else's name space. (Actually, if he had not "externed" the
~ymbol "nth", the redefinition would be caught and the user would be warned.)

In order to allow the interloss package to have its own (defun nth ---) without
interfering with the rest of the Lisp environment, it must "shadow" out the global symbol
"nth" by putting a new symbol named "nth" on its own obarray. Normally, this is done by
writing (shadow nth) in the declaration of the interloss package. Since intern looks on
the ~ubpackage's obarray before global. it will find the programmer's own nth, and never
the global one. Since the global one is now impossible to see, we say it has been
··shad()",ed."

Having ~hadowE'd nth, if it is sometimes necessary to refer to the global definition, this
can be done by writing global:nth. This works because the refname global is defined in
the global package as a name for the global package. Since global is the superpackage of
the interloss package. all refnames defined by global, including "global''. are available in
inter loss.

DSK:L\-t\-tAN:l) ACKD 63 6-JAN-7Q

Preliminary li~p Machine ~anual 183 Packages and Interning

19.1 Packages and Interning

The function intern allows you to specify a package as 'the second argument. It can be
~pecified either by giving the package object itself, or by giving a string or symbol which is
the name of the package. intern returns three values. The first is the interned symbol.
The ~econd is t if the symbol is old (was already present, not just added to the obarray).
The third is the package in which the symbol was actually found. This can be either the
specified package or one of its superiors.

\\I'hen you don't specify the second argument to intern, the current package, which is
the value of the symbol package, is used. This happens, in particular, when you call read.
Bind the symbol package temporarily to the desired package, before calling things which
call intE'rn, when you want to specify the package. When you do this, the function pkg
find-package, which converts a strfng into the package it names, may be u:>eful. While
mo!-t functions that use packages will do this themselves, it is better to do it only once
when package is bound. The function pkg-goto sets package to a package specified by a
string. You shouldn't usually need to do this, but it can be useful to "put the keyboard
inside" a package when you are debugging.

package Variable
The value of package is the current package; many functions which take packages as
optional arguments default to the value of package, including intern and related
functions.

pkg-goto &optional pkg
pkg may be a package or the name of a package. pkg is made the current package.
It defaults to the user package.

pkg-bind J.lacro
The" form of the pkg-bind macro is (pkg-bind pkg. body). pkg may be a package
or a package name. The forms of the body are evaluated sequentially with the
variable package bound to pkg.
Example:

(pkg-bind "eine"
(read-from-string function-name»

There are actually four forms of the intern function: regular intern, intern-soft,
infern-Iocal, and intern-local-soft. -soft means that the symbol should not be added to
the package if there isn't already one; in that case, all three values are nil. -local means
that the superpackages should not be searched. Thus, intern-local can be used to cause
~hadowing. intern-local-soft is a good low-level primitive for when you want complete
control of what to search and when to add symbols. All four forms of intern return the
~ame three values, except that the soft forms return nil nil nil when the symbol isn't
found.

DSK:LMMAN;PACKD 63 6-JAN-79

~ "

, ,i~l;~;. ~

;:~ i~tt

Package:- and Interning 184 Preliminary Lisp Machine Manual

intern string &optlonal (pkg package)
intern ~earches pkg and its superpackages sequentially, looking for a symbol whose
print-name b equal to string. If it finds such a symbol, it returns three values: the
~ymbol, t, and the package on which the symbol is interned. If it does not find
()ne. it create~ a new symbol with a print name of string, and returns the new
~ymbol, nil, and pkg.

intE'rn-loeal string &optional (pkg package)
intern ~earches pkg (but not its ~uperpackages), looking for a symbol whose print
name is equal to string. If it finds such a symbol, it returns three values: the
~ymbol, t, and pkg If it does not find one, it creates a new symbol with a print
name of string, and returns the new symbol, nil, and pkg.

intern-soft string &optional (pkg package)
intern searches pkg and its superpackages sequentially, looking for a symbol whose
print-name is equal to string. If it find~ such a symbol, it returns three values: the
symbol. t, and the package on which the ~ymbol is interned. If it does not find
one, it returns nil, nil. and nil.

intern-local-soft string &optional (pkg package)
intern ~earches pkg (but not its superpackages), looking for a symbol whose print
name is equal to string. If it finds such a symbol, it returns three values: the
~ymbol, t, and pkg If it does not find one, it returns nil, nil, and nil.

Each symbol remembere~ which package it belongs to. While you can intern a symbol in
any number of packages. the symbol will only remmeber one: normally, the first one it was
interned in. unless you clobber it. This package is available as {cdr (package-cell-location
symbol)). If the value is nil, the symbol believes that it is un interned.

The printer abo implicitly uses the value of package when pnntlOg symbols. If
~la~hification i~ on. the printer tries to print something such that if it were given back to the
reader, the ~ame object would be produced. If a symbol which is not in the current name
space were just printed a~ its print name and read back in, the reader would intern it on
the wrong package. and return the, wrong symbol. So the printer figures out the right colon
prefix so that if the symbol's printed representation were read back in to the same package,
it would be interned correctly. The prefixes only printed if slaShification is on, i.e. prinl
print~ them and prine does not.

remob symbol & optional package
remob removes symbol from package (the names means "REMove from OBarray").
symbol itself is unaffected, but intern will no longer find it on package. remob is
always "local", in that it removes only from the specified package and not from any
superpackages. It returns t if the symbol was found to be removed. package defaults
to the contents of the symbol's package cell, the package it is actually in.
(Sometimes a symbol can be in other packages also, but this is unusual.)

DSK:LM?\1AN;PACKD 63 6-JAN-79

Preliminary Lisp ?\tachine Manual 185 Packages and Interning

mapa toms function & optional (package package) (superiors-p l)
function should be a function of one argument. mapa toms applies function to all of
the ~)'mbols in package. If superiors-p is t, then the function is aho applies to all
!'ymbob in package's superpackages. Note that the function will be applied to
shadowed symboh in the superpackages, even though they are not in package's name
~pace. If that is a problem, function can try applying intern in package on each
symbol it gets, and ignore it if it is not eq to the result of intern; this measure is
rarely needed.

mapa toms-all function &optional (package 'global")
function should be a function of one argument. mapa toms-all applies function to all
of the symbols in package and all of package's subpackages. Since package defaults to
the global package, this normally gets at all of the symbols in all packages. It is
used by such functions as apropos and who-calls (see page 261)
Example:

(mapatoms-all
(function

(1 ambda (x)
(and (alphalessp /z x)

(print x»»)

pkg-create-package name &optional (super package) (size 200)
pkg-create-package creates and returns a new package. Usually packages are
created by package-declare, but sometimes it is useful to create a package just to
use as a hash table for symbols, or for some other reason.

If name is a list, its fir~t element is taken as the package name and the second ~ the
program name; otherwise, name is taken as both. In either case, the package name
and program name are coerced to strings. super is the superpackage for this package;
it may be nil, which is useful if you only want the package as a hash table. and
don't want it to interact with the rest of the package system. size is the size of the
package; as in package-declare it is rounded up to a "good" size for the hashing
algorithm used.

pkg-kill pkg
pkg may be either a package or the name of a package. The package should have a
superpackage and no subpackages. pkg-kill takes the package off its superior's
subpackage list and refname alist.

pkg-find-package x &optional (create-p nil) (under 'global ")
pkg-find-package tries to interpret x as a package. Most of the functions whose
de~criptions say..... may be either a package or the name of a package" call pkg
find-package to interpret their package argument.

If x is a package, pkg-find-package returns it. Otherwise it should be a symbol or
string, which is taken to be the name of a package. The name is looked up on the
refname alists of package and its superpackages, the same as if it had been typed as

DSK:LMMAN;PACKD 63 6-JAN-79

· "1·i
,''':

',~ i
" ~'

Statu~ Information 186 Preliminary Lisp Machine Manual

part of a colon prefix. If this finds the package, it is. returned. Otherwise, create-p
controls what happens. If create-p is nil, an error is signalled. Otherwise, a new
package is created, and installed as an inferior of under.

pkl-map-rE'fnamE's function package
pkg-map-ref names is used by the printer to figure out the correct package prefix
for ~ymboh, when they are being printed with slashification. It is provided for
~ophi~ticated use of the package sy~tem. package should be the package of the
symbol to be printed. function should be a function of two arguments which will be
called succe~~ively on each reference name to be printed. The first argument to
function is the name (as a string), and the second is the number of reference name~
to be printed after this one (i.e., function is called on successive reference names, on
a decreasing fixnum which is 0 on the last call). Of course, function need not print
the reference names; it may do anything it wants with them.

A package i~ implemented as a structure, created by defstruct. The following accessor
macr()~ are available on the global package:

pkg-name The name of the package, as a string.

pkg-refname-alist The refname alist of the package, associating strings with packages.

pkg-super-package The superpackage of the package.

19.8 Status Information

The current package-where your type-in is being interned-is always the value of the
symbol packagE'. A package is a named structure which prints out nicely. so examining the
value of packagE' b the best way to find out what the current package is. Normally, it
should be user. except when inside compilation or loading of a file belonging to some
other pac kage.

To get more information on the current package or any other, use the function pkl
describe. Specify either a package object or a string which is a refname for the desired
package a~ the argument. This will print out everything except a list of all the symbols in
the package. If you want that. use (mapatoms 'print package nil). describe of a package
will call pkg-describe.

DSK:L\1MAN:PACKD 63 6-JAN-79

Preliminary Li~p Machine Manual 187How Packages Affect Loading and Compilation

19.9 How Packages Affect Loading and Compilation

It's obviou~ that every file h<l!' to be loaded into the right package to serve its purpose.
I t may not be so obvious that every file must be compiled in the right package, but it's just
as true. Luckily. this usually happens automatically.

When you have mentioned a file in a package's file-alist, requesting to compile that file
with qc-filt- or loading it with load automatically selects that package to perform the
operation. This is done by inverting the package-to-file correspondence described by the
file-alists and remembering the inversion in the form of :package properties on symboh in
the files package (the symbol representing the file is (int.ern (file-expand-pathname
filename) "filt-s"».

The system can get the package of a source file from its "editor property lis"'. For
instance. you can put at the front of your file a line such as .. ; -*- Mode:Lisp;
Package:System-lnternals -*-". The compiler puts the package into the QF ASL file. If a file
is not mentioned in a package's file-alist and doesn't have such a package specification in it,
the ~)'~tem loads it into the current package, and tells you what it did.

To compile or load all of the files of a package. you can use the pkg-Ioad function
(see page 194), which uses the file-alist from the package declaration.

19.10 Subpackages

Usually. each independent program occupies one package, which is directly under
global in the hierarchy. But large programs, such as Macsyma, are usually made up of a
number of sub-programs. which are maintained by a small number of people. We would like
each sub-program to have its own name space. since the program as a whole has too many
name~ for anyone to remember. So, we can make each sub-program into its own package.
However, this practice requires special care.

It b likely that there will be a fair number of functions and symbols which should shared
by all of the sub-programs of Macsyma. These symbols should reside in a package named
macsyma. which would be directly under global. Then, each pan of macsyma (which
might be called sin. risch, input. and so on) would have its own package, with the
macsyma package as its superpackage. To do this. first declare the macsyma package. and
then declare the risch, sin, etc. packages. specifying macsyma as the superpackage for
each of them. This way. each sub-program gets its own name space. All of these
declarations would probably be in a together in a file called something like "macpkg".

However, to avoid a subtle pitfall (de::.cribed in detail in the appendix), it is necessary
that the macsyma package itself contain no files: only a set of symbols specified at,

dec laration time. This list of symbols is specified using shadow in the declaration of the
macsyma package. At the same time, the file-alist specified in the declaration must be nil
(otherwi~e. you will not be allowed to create the subpackages). The symbols residing in the
macsyma package can have values and definitions, but these must all be supplied by files in

DSK:LMMAN;PACKD 63 6-JAN-79

Subpackages 188 Preliminary Lisp Machine Manual

macsyma \ !-ubpackages (which must "extern" those symbols as necessary). Note that this b
exactly the ~ame treatment that global receives: all its functions are actually defined in files
which are 10aded into system-internals (si), compiler, etc.

To demon~trate the full power and convenience of this scheme, suppose there were a
second huge program called owl which also had a subprogram called input (which,
presumably, does all of the inputting for owl), and one called database. Then a picture
of the hierarchy of packages would look like this:

I I I
(others)

global
I

1--------------------------------\
I I

macsyma owl
I I

risch sin input input database
I I I
(others)

N0W, the risch program and the sin program both do integration, and so it would be
natural for each to have a function called integrate, From inside sin, sin's integrate
would be referred to as "integrate" (no prefix needed), while risch's would be referred to
as "risch:integrate". Similarly, from inside risch, risch's own integrate would be called
"intflgrate", whereas sin's would be referred to as "sin:integrate".

If sin'~ intE'grate were a recursive function, the implementor would be referring to it
from within sin it~elf. and would be happy that he need not type out "sin:integrate" every
time: he can just ~ay "integrate",

From in~ide the macsyma package or any of its other' sub-packages, the two functions
would be referred to as "sin:intE'grate" and a~ "risch:integrate". From anywere else in the
hierarchy. they would have to be called "macsyma:sin:integrate" and
"macsyma:risch:integrate".

Similarly, assume that each of the input packages has a function called get-line. From
inside macsyma or any of macsyma's subprograms (other than input), the relevant
function would be called input:get-line, and the irrelevant one owl:input:get-line. The
conver!-e is true for owl and its SUb-programs. Note that there is no problem arising from
the fact that both owl and macsyma have subprograms of the same name (input).

You might also want to put Macsyma's get-line function on the macsyma package.
Then. from anywehere inside Macsyma. the function would be called get-line; from the
owl package and subpackages it could be referred to as macsyma:get-line.

DSK:L\f\1AN:PACKD 63 6-JAN-7q

I
f
t Preliminary Li~p ~1achine Manual 189 Initialization of the Package System

19.11 Initializ.ation of the Package System

This section describes how the package system is initialized when generating a new
software release of the Lisp ~1achine system; none of this should affect users.

\Vhen the world begins to be loaded, there is no package system. There is one
"obarra)''', whose format is different from that used by the package system. After sufficiently
much of the Lisp environment is present for it to be possible to initialize the package
~y~tem, that is done. At that time, it is necessary to split the symbols of the old-style
obarr a)' up among the various initial packages.

The- first packages created by initialization are the most important ones: global, system.
user. and system-internals. All of the symbols already present are placed in one of those
packages. By default, a symbol goes into system-internals. Only those placed on special
li~b go into one of the others. These lists are the file "AI: LISPM2; GLOBAL > .. of
symbols which belong in global, the file "AI: LISPM2; SYSTEM >" which go in system,
and the file "AI: LISPM2; K WDPKG >" of symbols which belong in user (at the moment.
the!-e are actually loaded into global, because not everything h& been converted to use
colons where necessary).

After the four basic packages exist, the package system's definition of intern is installed.
and packages exist. Then, the other initial packages format, compiler. eine, etc. are
declared and loaded using package-declare and pkg-load,in almost the normal manner.
The exception i~ that a few of the symbols present before packages exist really belong in
one of the~e packages. Their package declarations contain calls to forward and borrow,
which exi~t only for this purpose and are meaningful only in package declarations. and are
u~ed to move the symbols as appropriate. These declarations are kept in the file "AI:
LISPM: PKGDCL >".

globalize & rest symbols
Sometimes it will be discovered that a symbol which ought to be in global is not
there, and the file defining it has already been loaded. thus mistakenly creating a
symbol with that name in a package which ought just to inherit the one from global.
\Vhen this happens, you can correct the situation by doing (globalize II symbol
nam{'''). This function creates a symbol with the desired name in global, merges
whatever value. function definition, and properties can be found on symbols of that
name together into the new symbol (complaining if there are conflicts), and forwards
those slots of the existing symbols to the slots of the new one using one-q-forward
pointers, so that they will appear to be one and the same symbol & far as value.
function definition, and property list are concerned. They cannot all be made eq to
each other, but globalize does the next-be~t thing: it takes an existing symbol from
user, if there is one, to put it in global. Since people who check for eq are
normally supposed to specify user anyway, they will not perceive any effect from
moving the symbol from user into global.

DSK:L~1MAN;PACKD 63 6-JA~-79

Initial Package:- 190 Preliminary Lisp Machine Manual

If globalize i~ given a symbol instead of a string as argument, the exact symbol
~pecified i~ put into global. You can u~e this when a symbol in another package,
which ~hould have been inherited from global, is being checked for with eq-as
long as there are not two different packages doing so. But, if the symbol is supposed
to be in global, there usually should not be.

19.12 Initial PackagEts

The initially present packages include:

global Contains advertised global functions.

user Used for interning the user's type-in. Contains all keyword symbols.

sys or systEtm
Contains various internal global symbols used by various system programs.

si or system-internals

compilE'r

eine

chaos

supdup

peek

format

Contajn~ subroutine~ of many advertised system functions. si is a subpackage
of sys.

Contains the compiler and fasload. compiler is a subpackage of sys.

Contains the Eine editor.

Contains the Chaos net controller.

Contains the Supdup program.

Contains the Peek program.

Contains the function format and its associated subfunctions.

Packages which are used for special sorts of data:

fonts

files

format

Contains the names of all fonts.

Contains the file-symbols of all files. Many properties are kept on these
symbols to remember information about files which are in use.

Contains the keywords for format, as well as the code.

Here IS a picture depicting the inital package hierarchy:
global

I
I---~---------______ \
I I I I I I I I I

user eine chaos system supdup format fonts files peek
I

1--------------\
I I

system-internals compiler

DSK:LM~tAN;PACKD 63 6-JAN-79

Preliminary Lisp Machine Manual 191 Multiple Instantiations of a Program

19.13 Multiple Instantiations of a Program

This isn't fini~hed yet, which is why we don't say how to do any of this.

Suppose a maintainer of EI~E (the Lisp Machine editor) has made some changes to
EI~E. and would like to debug them. He has a problem: if he reads in the new ver!'ion,
which presumably may be full of bugs. then he will not be able to do any editing! This
would be annoying, ~ince the editor is very useful.

We '\-'ould like both the regular and the experimental versions of the editor to both be
loaded into the Lisp world. In order for two definitions of each editor function to coexist,
we need to load the new version into a separate package. which must have a different name
(not named "eine", like the package the original editor is in). If the test version's package is
called "test-eine", then the user can try it by calling (test-eine:ed), and edit it using (ed).

However. there is a problem to be faced. The editor redefines a few entry-point
functions (ed, edprop. etc) which reside in global. If the test editor redefined them, the
whole point of the separate package would be lost. So, the test-eine package must
shadow all the symbob which the regular eine package externs.

Further complications are needed to make it possible to test one program using another
instead of by hand. Suppose that there is a program named random residing in its own
package, and containing a function named number. Suppose that we have a debugged
program dp (Dissociated Press) which uses random:number. And now, we have written a
new ver~ion of random and want to test it using dp. without installing it and breaking
$y~tem tools which use random. What we want to do is to load in a test version of
random. t~st-random. and also a test-dp which will refer to it. to te~t it with.

This can be done if we can make the test-dp package take references to random as
reference~ to the test-random package. All this takes is an entry on test-dp's refname
ali~t. a:;\~ociating the name "random" with the test-random package. Then, when
random:number is seen in the course of reading in the old dp program into test-dp,
test-random:number will actually be used. Note that normally test-dp wouldn't have an
entry on its own refname-alist for "random"; it would inherit the association from global.
We are actually "shadowing" in test-dp the definition of "random" as a package refname
which is present in global. Here is what we will get.

("=>"

global [random -> random]
I •

1---\
I I I I

dp =) random test-dp =>
[random -) test-random]

indicates who calls whom; "->" indicates a refname).

test-random

So far, every package has had its own name as a refname for itself. A test package,
however. shouldn't have its actual name as a refname for itself, but the name its program
expects: "random", not "test-random". This is necessary to handle test packages with

DSK:LM~1AN;PACKD 63 6-JAN-79

-./

Multiple Instantiations of a Program 192 Preliminary Lisp Machine Manual

~ubpackage!' right. together with shadowing. In fact every package has a "program name" as
well a~ a "name". For ordinary packages, they are the same, but for a test package, the
program name i5 identical to that of the original package.

Supp()~e we have the ~facsyma program with all of its sub-packages as described above.
Further a~~ume that the input sub-program's author has his own symbol named simp, and he
calb macsyma:simp in variou~ places to get the one in the macsyma package. ~ow, say
someone want~ to load an experimental macsyma into the machine: he would name the
ne",: ('Ibarra), t~st-macsyma or something. In order to assure that the reference to
macsyma:simp is properly resolved, the refname-alist of test-macsyma must contain test
macsyma under the name macsyma. This, finally, is the reason why each package has a
reference to itself on its refname-alist.

DSK:LMMAN;PACKD 63
6-JA~-79

Preliminary Lbp Machine Manual 193 Files

20. Files

Thi~ chapter explains how the Lisp Machine system interacts with files and the file
~y~tem. I t explains how to keep your programs in files and how to get them into the Lisp
environment, how they relate to packages, how they are divided into sections, and how

they are ~een by EI~E (the editor).

Eventually, Li:.-p ~achines will be able to support their own file sytems, or use a special
purpo:-e "File Computer" over the Chaosnet. At the moment, the prototype Lisp Machine
uses the A.I. PDP-I0 file system. To allow it to access the PDP-lO (which is not yet
attached to the Chaosnet), a special program must be run on the PDP-IO, which is invoked

by typing :lmio;file to DDT.

A pathname or filename is a string of characters which identifies a file In the file system.

On the exi~ting file system, a pathname looks like

"device: directory: in 1 in2"

I t is a~~umed that the reader of this document is familiar with the meanings of these
pathname~, and the use of ">" as the in2 in a pathname. Unlike Maclisp, Lisp Machine
functions u~ually take filenames a, a character string, rather then as a list. Most functions
understand pathnames in which some components are not specified. For example, in the

string '~Iispm;qmod", the device and in2 are not specified.

20.1 Functions for Loading Programs

20.1.1 Functions for Loading Single Files

load pathname &optional pkg
Thi:- function loads the file pafhname into the Lisp environment. If the file is a
QFASL file, it calls fasload: otherwise it calls readfile. pkg should be a package or
the name of a package, and if it i:) given it is used as the current package when the
file i~ read in. Usually it is not given: when it is not supplied explicitly, load tries
to figure out what package to u~e by calling pkg-find-file-package. If the FS2 is
not specified in pathname. load first tries appending the in2 "qf as'''. and then tries
the in2 u>" if the nqfasl" file is not found.

readfile pafhname
readfile sequentially reads and evaluates forms from the file pathname, in the

current package.

DSK:lMMAN:FllES 16 6-JAN-79

Function:- for L0ading Programs 194 Preliminary Lisp Machine Manual

f as load pOfhname
f asload reads in and processes a QF ASL file, in the current package. That is, it
define~ functions and performs other actions as directed by the specifications inserted
in the file by the compiler.

20.1.2 Loading and Compiling Whole Packages

Becau~e each package has a file-alist, it is possible to request that the files of a package
be compiled or loaded, as needed. This is done with the pkg-load function, which takes as
argument~ a package and a list of keywords (or one keyword) specifying the precise nature
of the operation. For example, {pkg-Ioad "eine" ':compile} would recompile and reload
the files ()f the fline package. such a'\ require it.

pkg-Ioad package & optional keywords
This function loads and/or compiles the files of a package. package may be a
package or a package name: keywords should be one of the keyword symbols below
or a list of keywords. The keywords control what pkg-load does.

The keywords defined include:

Ask for confirmation before doing it (this is the default);

Don't ask for confirmation

Compile files before loading:

Do not compile (this is the default);

Load files (the default);

Don't load (but compile, if that was specified);

Ask about each file:

Don't ask about each file (the default);

Compile or load even files which appear not to need it;

:confirm

:noconfirm

:compile

:nocompile

:load

:noload

:selective

:complete

:reload

:noreload

:rf'cursive

Only process files which have newer versions on disk (the default);

Also process packages this one refers to;

:defs Process only DEFS files.

See also recompile-world (page 262) .

. DSK:L~tMAN:FILES 16 6-JAN-79

Preliminary Li~p ~1achine Manual 195 Processes

21. Processes

Processes are used to implement multi-processing. Several computations can be executed
"concurrently" by placing each in a separate process. A computation in a process may also
wait for something to happen, during which time it does not execute at all.

A proces~ is a Lisp structure with the following components:

process-name
The name of the proce~s, as a string. This string. IS only used for the
process's printed representation, and for programs to print out; it can be
anything reasonably mnemonic.

process -s tack -g ro up
The stack group currently associated with this process. .When the process is
run. this stack group will be resumed. See below.

process-wait -function
A function. applied to the argument list in the process's process-wait
argument-list to determine whether the process is runnable. The function
should return nil if the process is not ready to run.

process-wait-argument-list
The arguments to which the process-wait-function is applied.

process-whostate
The reason this process is waltmg, as a string. This is only used for display
by the who-line or various programs; it can be anything reasonably
mnemonic.

process- job The job associated with this process, or nil if the process IS not associated
with any job. See the chapter on jobs (page 199).

process -i ni tial-s tack -g roup
The function process-preset (see page 197) will make the process-stack
group be this stack group.

At any time there is a set of active processes. Each active process is either trying to run.
or waltmg for some condition to become true. The active processes are managed by a
~pecial stack group called the scheduler, which repeatedly cycles through the active
pr()l'e~~es, determining for each proce~s whether it is ready to be run, or whether it is
waiting. The scheduler determines whether a process is ready to run by applying the
prnces!\'~ wait-function to it!' wait-argument-list. If the wait-function returns a non-nil value.
then the proce!'s is ready to run; otherwise. it is waiting. If the proces!' is ready to run.
the ::-cheduler re::.ume~ the process-stack-group of the process. For example, if a process
were waiting for input from the keyboard, its wait-function might be kbd-char-available.
which returns non-nil if there is a character available from the keyboard. Since kbd-char
available take!' no arguments, the wait-argument-list of the process would be nil.

DSK:LMMAN;PROCES 2 6-JAN-79

Functions for Manipulating Proce~ses 196 Preliminary Lisp Machine Manual

When a process's wait-function returns non-nil, the scheduler will resume its stack group
and let it proceed. The process is now the current process, that is, the one process that is
running on the machine. The scheduler sets the variable current-process to it. It will
remain the current proce~s and continue to run until either it decides to wait, or a sequence
break occur~. A process can wait for ~ome condition to become true by calling process
wait (~ee page 1 (7), which will set up ib wait-function and wait-argument-Jist accordingly,
and resume the ~cheduler stack group. A sequence break is a kind of interrupt that is
generated by the Lisp system for any of a variety of reasons; when it occurs, the scheduler
is resumed. In either case, the scheduler will continue cycling through the active processes.
This way, each process that is ready to run will get its share of time in which to execute.

Note: Sequence breaks are not yet implemented, and so the scheduler only regains
control when the running process calls process-wait. Any process that simply computes
for a Inng time without waiting will keep all of the other processes from running. In the
future. seqence breaks will happen periodically and at interesting times when some process's
wait condition may have become true.

21.1 Functions for Manipulating Processes

process-create name job &rest options
process-create creates and returns a new process. nome may be any string, job is
usually t, and there are usually no options. The options are used in creating the
stack group which executes on behalf of this process.

The field~ of the new process are set up as follows:

process-name
nome, which should be a string.

process-job job. If job is t, the current job is used instead. Otherwise job
should be nil (meaning that the process is not associated with any
job), or a job.

process-stack-group
A newly created stack group. The options argument to process
create are the options passed to make-stack-group (see page 107)
used when creating this stack group.

process-initial-stack-group
The same as the process-stack-group.

The rest of the fields are set to nil; the process should not be enabled until
process-preset (see below) is called.

DSK:lMMAN:PROCES 2 6-JAN-79

Preliminary Lisp Machine Manual 197 Functions for Manipulating Processes

process-prf:lset process initial-function & re~t options
process-preset initializes the ~tate of a process. First, it restores the process
stack--group from the process-initial-stack-group. Then it presets the stack
group, pa~sing the initial-function and options arguments to stack-group-preset
(see page 108). Finally it sets the process-wait-function and process-argument
list to return t, so that the process will be ready to run. The process is now ready
to be enabled (see process-enable below).

process-kill process
This deactivates process if it is active, and dissociates it from its associated job (if
any).

process-f:lnable process
Enable process~ __ If process has no associated job. or if its job if process-enabled,
process is activated.

process-disable process
Disable proct~ss. If it was active. deactivate it.

process-wait whostate function & rest arguments
process-wait sets the current-proce~s's process-whostate. process-wait-function,
and process-wait-argument-list from its three arguments. which makes the current
proce~s wait until the application of function to arguments returns non-nil (at which
time process-wait returns). ~ote that function is applied in the environment of the
scheduler, not the environment of the process-wait. so bindings in effect when
process-wait was called will not be in effect when function is applied. Be careful
when using any free references in function.
Example:

;; Thls won't work.
«lambda (untll)

(process-walt "sleep" '(lambda () (> (time) until»»
500)

;; This ls the right way to do It.
(process-wait "sleep" '(lambda (until) (> (time) until» 500)

When running the process-wait-function. the scheduler sets the variables
current-process and current-job to the process being considered and its job, so
the process-wait-function can use them: for example:

;; Wait until I get the keyboard.
(process-wait "kbd" '(lambda () (eq kbd-job current-job»)

DSK:LMMAN;PROCES 2 6-JAN-79

Lock~ 198 Preliminary Lisp Machine Manual

process-sleep interval
Thb ~imply waits for interval sixtieths of a second. and then returns. It uses
process-wait.

p r oc ess - a 110 w -sc hed ule
Thi~ function simply waits for a condition which is always true; all other processes
will get a chance to run before the current process runs again.

21.2 Locks

A lock. is a ~oftware construct used for synchronization of two processes. A lock is
either held by some process, or is free. When a process tries to seize a lock, it waits until
the lock b free. and then it becomes the process holding the lock. When it is finished. it
~hould unlock the lock.

I n the Li~p ~fachine, a lock is a locative pointer to a cell. If the lock is free, the cell
contain~ nil; otherwise it contains the process that holds the lock. The process-lock and
process-unlock functions are written in such a way as to guarantee that two processes can
never both think that they hold a certain lock; only one process can ever hold a lock at a
time.

process-lock locative
Thi~ is used to seize the lock which locative points to. If necessary. process-lock
will wait until the lock becomes free. When process-lock returns. the lock has
bee n se i zed.

process-unlock locative
This is used to unlock the lock which locative points to. If the lock is free 'or was
locked by ~ome other process, an error is signaled. Otherwise the lock is unlocked.

It is a good idea to use unwind-protect to make sure that you unlock any lock that
you ~eize. For example, if you write

(unwind-protect
(progn (process-lock lock-3)

(function-I)
(function-2»

(process-unlock lock-3»
then even if function-lor function-2 does a *throw, lock-3 will get unlocked
correctly.

process-lock and process-unlock are written by use of a sub-primitive function called
i.store-conditional (see page 115), which is sometimes useful in its own right.

DSK:LMMAN:PROCES 2 6-JAN-79

I
~

Preliminary Li~p Machine Manual 199 TVOBs and Jobs

22. TVOBs and Jobs

[The subject of this chapter is currently being redesigned. The contents of this chapter
will be completely changed in the next edition of this manual.]

22.1 Introduction to the Concepts of This Chapter

TVOBs (TV OBjects) represent permission to use the TV screen. The TVOB mechanism
is provided to allow the TV to be shared between all of the activities the user may be
conducting, without those activities getting in each other's way.

A job is a collection of processes and TVOBs, grouped together for the user's
convenience. The processes can be started and stopped together, and the TVOBs can be
put on or taken off the TV together.

22.2 TVOBs

A TVOB (TV OBject) is a Lisp structure with the following components:

tvob-name

tvob-xl

tvob-yl

tvob-x2

tvob-y2

This is the name of the TVOB, as a string. It is only used for the TV08's
printed representation, and can be anything reasonably mnemonic.

The first (leftmost) column of the TVOB's area of the screen.

The first (highest) line of the TVOB's area of the screen. The tvob-xl and
tvob-yl are the co-ordinates of the upper-left-hand corner of the TV08's
rectangular area.

The first (leftmost) column to the right of the TVOB's area of the screen.

The first (highest) line below the TVOB's area of the screen. The t vob-x2
and t vob-y2 are the co-ordinates of the lower-right-handcorner of the
TVOB's rectangular area, with 1 added to each. Thus the height of the tvob
is the difference between its tvob-y2 and tvob-yl, and the width is the
difference between the tvob-x2 and tvob-xl.

tvob-handler A function, described below.

tvob-info This field may contain anything at all; it is meant to be used by the t vob
handler function.

tvob-job The job a'\sociated with this TVOB, or nil if there is no associated job.

tvob-priority
Either t or nil. If it i~ t. the functions which allocale area on the screen
(tvob-create and tvob-create-expandable, see page 206) will be
reluctant to allocate over this TVOBts area of the screen.

tvob-screen The screen on which this TVOB is displayed. See page 210.

DSK:LMMAN;JOBSYS 85 6-JAN-79

TVOBs 200 Preliminary Lisp Machine Manual

t vob-status This field is provided for the convenience of tvob-handler functions. It
contains one of the following symbols:

:selected The TVOB is the selected TVOB. Only one
TVOB will have this tvob-status.

:exposed

nil

The TVOB is not selected, but is On
exposed-tvobs. This means that this TVOB
is not covered by any other TVOB; its screen
area is fully exposed.

The TVOB is not on exposed-tvobs.
t vob-clobbered-p

This field is provided for the convenience of tvob-handler functions. It is
t if the TVOB h~ been sent a :clobber or :set-edges command more
recently than an :update command; otherwise it is nil.

t vob-mouse-handler

A function to call when the mouse enters this TVOB's screen region. This
allows the TVOB to take over control of the mouse. This field is nil if this
TVOB does not do anything special with the mouse.

t vob-mouse-action

tvob-plist

See mouse-def ault-handler «not-yet-written».

A di~embodjed property list. Use, for example, (get {locf (tvob-plist
tvob)) 'mumble).

It is often u~eful to divide the TV screen up into several parts, and do different things
in each part. Sometimes one program wants to split up the screen, as Eine does; sometimes
the u!'er wants tf) run several programs at once, and each program wants some space on the
screen. At any time, there is a set of active TVOBs (TV Objects) which are sharing the
~creen. Each TVOB has a rectangular piece of the screen on which it does its displaying; it
is not allowed to go outside its area.

It IS po!'sible for two active TVOB's regions of the screen to overlap. When this
happens. only one of them is exposed (fully visible): the other is partially or fully buried.
There is a ~ub!'et of the active TVOBs called the exposed TVOBs; no two exposed TVOBs
overlap. The TVOB~ act as if they were a bunch of rectangular sheets of paper on 8

de~kt()p: ~()me are up at the top, and others are partially buried. Various programs can
"pull" a non-expo5ed TVOB up to the top, making it exposed and making some other
TVOB(~) non-expo!'ed. Several functions of the job ~y~temt explained below, keep track of
and change which TVOB!' are active, and which are exposed.

The job s)'~tem also keeps track of one TVOB called the selected TVOB. Conceptually,
the selected TVOB is the one in which the user is interested at the moment, and it is
usually the one that is re~ponding to the keyboard. For example, when Eine is being used,
the TVOB of the window in which the user is editing is the selected TVOB. The selected
TVOB i~ always exposed. A TVOB's being selected, exposed but not selected. or not
expo~ed at all is called the TVOB's status.

DSK:L~f"fA~;JOBSYS 85
6-JAN-79

I
I
I

Preliminary Li~p Machine Manual 201 TVOBs

lI~ually a program will want certain actions to be taken when the status of a TVOB
change~. \Vhen the TVOB a~~ociated with an Eine window becomes expo~ed, Eine
generally wants to redisplay the window, and when the TVOB is selected. Eine starts
blinking the window\ blinkers and makes its buffer be the current buffer. In order to let ,
m·er program know that the status of a TVOB has changed, so that it can do these things,
there is a function called the handler a:-sociated with every TVOB. When the status of the
TVOB changes, its handler is applied to three arguments: the TVOB itself, a keyword
~ymbol indicating \\'hat kind of change of status is occurring, and a list of other information
who~e meaning is dependant on tl)e value of the second argument. The applications of this
function can be thought of as a "command" being sent to the TVOB. For example, when a
TVOB becomes selected, it is "sent a command" telling it so; that is, the handler is applied
to the TVOB, the keyword :select, and nil.

Here is a list of all of the keyword symbols (i.e. all of the kinds of commands) that are
u~ed. In addition to status changes, requests for the TVOB to update and reloca~e itself
cause the handler to be invoked.

:eKpose

:deeKpose

:select

:deselect

:clobber

:update

The TVOB is being made exposed. This command IS only sent when the
TVOB is active and not exposed.

The TVOB is no longer exposed. This command is only sent when the
TVOB is active and exposed.

The TVOB is now ~elected. This command is only sent when the TVOB IS

exposed and not selected.

The TVOB is no longer selected. This command is only sent when the
TVOB is selected.

Thb command means that for some reason, the TVOB's area of the screen
has been altered: future :update and :clean commands should not ~~ume
that the screen is as it was left. Most TVOBs will ignore this message, since
the information is saved in the tvob-clobbered-p element of the TVOB
(~ee below). Thi~ command is only sent when the TVOB is exposed.

This command is only sent when the TVOB is exposed. The TVOB should
assure that its area of the screen contains whatever it is supposed to contain.
Just what :update means depends on the program. Some programs can
remember the contents of what is on the TVOB and can refresh it at will:
others do not remember the contents, and cannot reconstruct them.

The former kind. upon receiving the :update command, should update
the TVOB. If the TVOB has not been clobbered, the handler can ~~ume
that whatever it last put there is still there, and it may be able to avoid
redi~playing. The t vob-clobbered-p field of the TVOB is set to t by the
job system after a :clobber or :set-edges command is sent, and to nil after
an :update or :clean command is sent. The handler can determine whether
or not its area of the screen has been clobbered by simply looking at the
tvob-clobbered-p.

DSK:LMMAN;JOBSYS 85 6-JA~-19

.~ , '

Jobs

:clean

:set-edg@s

202 Preliminary Lisp Machine Manual

The latter kind of TVOB cannot update, and should ignore the :update
command entirely.

:cl~an i5 like :update except that TVOB5 of the kind that cannot refresh
them~~lve~ should clear their areas instead of doing nothing. Like :update,
thb command is only sent when the TVOB is exposed. :clean is sent to all
expnsed TVOB~ when the u~er requests that the screen be cleaned up: for
in~tance when the FORt--i key is pressed 'in most programs.

The TVOB should change its area of the screen. This command takes four
argument~: the new left edge, top edge, bottom edge. and right edge, in
ra~ter units. The first two are inclusive, and the other two are exclusive.
The elements of the TVOB structure that hold the screen area (tvob-xl
etc.) will be updated automatically; the handler need not change them itself.
The handler should update any other associated information; for example. if
the TVOB ha~ an associated "piece of paper". it should call tv-redefine-pc
ppr (see page 233).

The t vob-inf 0 component of the TVOB is provided to give the handler somewhere to
put its internal state. It is usually some kind of structure. depending on what program
created the TVOB. For example, it might be a piece of paper (see page 215).

22.3 Jobs

A job is a Lisp structure with the following components:

job-nanle

job-tvobs

job-process~s

The name of the job, a~ a string. This is only used .lor the printed
representation of the job or for display by programs. and may be anything
reasonably mnemonic.

A list of all TVOBs associated with this job.

A 1i~t of all processes as!\ociated with this job.

job-enabled-tvobs
A Ii$t of this job'5 enabled tvobs. Each TVOB on this list is also on the
job-t vobs list. The order of the enabled tvobs list is nighest" first; this list
is sometimes pa..~sed to tvob-setup.

job-enabled-processes
A list of this job's enabled processes. This list is a subset of :the job
processes list.

job-t vob-enabled-p
If this i~ non-nil, this job is tvoh-enabled; its enabled TVOBs are active.

job-process-enabl~d-p
If this is non-nil, this job is process-enabled; its enabled processes are active.

DSK:LM~AN:JOBSYS 85 6-JAN-79

i
~I

Preliminary Lisp Machine Manual 203 Jobs

job-who-Hne-process
Whenever this job become~ the kbd-job, the process in this component
becomes the tv-who-line-process (The process whose process-whostate
is displayed in the who-line) (see page 228).

job-tvob-seleetor
nil, or a function which is called by tvob-setup (see page 207) when this
job is current and a new selected-tvob is needed. The function takes no
argument~ and doesn't return anything in particular. It isn't required to do
anything. but it normally should call tvob-select with an appropriate
TVOB.

job-f orced-input
If non-nil. a character or a string which is forced input for this job. This is
a character or characters which are pretending to come from the keyboard
but really originated from another process or the mouse. See the function
force-kbd-input (page 235).

job-f orced-input-index
Index into job-f oreed-input when it is a string.

At any time. the U5-er of the Lisp Machine may be conducting several different activities.
For example. he may want to temporarily stop editing in order to send some mail; he might
want to start up a file transfer. and while waiting for it to finish, continue editing.

Each such activity. in general. will want some processes to do computation. and some
piece~ of the ~creen (TVOBs) on whi,,:h to do output. When the user is not concerned with
some activity, he may want its proce~ses to stop. and/or its TVOBs to stop displaying. In
order to make it easy to deactivate a set of processes and TVOBs, such a set may be
grouped together as a job.

Every job has a set of processes and TVOBs; these sets are represented by the lists in
the job-processes and job-tvobs of the job. Of each set, there is a subset that is
enabled; the~e are the job-enabled-processes and job-enabled-tvobs of the job. A
proce~~'~ being enabled means that whenever the job is told that it may run, that process
will be made active. The same is true for TVOBs. When the job is told that it may run its
enabled proce!\~es. it is said to be process-enabled: when it is told that it may display its
enabled TVOB~. it is said to be tvob-enabled. A job can control which of its processes and
TVOBs are enabled by means of the functions process-enable, process-disable. tvob
enable. and tvob-disable. which are de~cribed below.

At any time there is one job which is said to ··own the keyboard"; this job is the value
of the variable kbd-job. When a function calls any of the keyboard input functions (such
a!' kbd-t yi). the function will wait until the current job is the kbd-job before returning.
The reason for this is that while the TV can be split up into areas so that several programs
can type on it at once, there is no similar way to split up the keyboard; if several jobs
want keyboard input, one of them will get what the user types, and the rest will wait until
they become the kbd-job.

DSK:LMMAN;JOBSYS 85 6-JAN-79

Controlling Job!' 204 Preliminary Lisp Machine Manual

When Lhp i~ initialized, one job is created and given the keyboard. The job is given a
single, active TVOB, the size of the screen, and a single, active process. It is both process
enabled and TVOB-enabled, so the process and TVOB are both active.

22.4 Cont rolling Jobs

It ~hou ld be made easy for the user to control which jobs are process-enabled and which
are TVOB-enabled. Unfortunately, the commands to allow easy control of these parameters
have not yet been fully developed. This section describes what has been implemented so
far, but this will pf()bably change.

The following two simple functions control whether a job is process-enabled or TVOB
enabled.

job-set -process-state job state
If state is non-nil, job is made process-enabled: otherwise, it is made process
disabled.

job-set-tvob-state job state
If state is non-nil, job is made TVOB-enabled: otherwise, it is made TVOB-disabled.
Since this function can change the set of active TVOBs, the caller should follow
with a call to t vob-setup (see page 207).

There is one job designated as the top-level job, from which other jobs are selected.
This job i~ the value of the variable si:top-job. When Lisp is initialized, si:top-job is set
to the initial job, and usually it is never set again. If this job wants to' Jet some other job
run, it uses the function job-select, which may be called directly by the user, or by 8

program's "command interface" function. (The functions ed, edval, and edprop serve this
purpose for Eine, and the function supdup for the Supdup program.)

job-select job
job-select ~hould be called from the top-level job to give the keyboard to job. The
top-level job is made proce~s-disabled and TVOB~disabled, and job is made process
enabled and TVOB-enabled, and is given the keyboard (made to be the kbd-job).

When the keyboard belongs to some job other than the top-level job, the "CALL" key is
interpreted ~pecially to mean "Return the keyboard to the top-level job." If the user types a
"CALL", the current kbd-job will be made process-disabled and TVOB-disabled. the top
level job will be made process-enabled and TVOB-enabled, and the top-level job will be
given the keyboard. The Control and Meta keys can be used with CALL: Control prevents
the current kbd-job from being made TVOB-disabled, and Meta stops it from being
process-disabled.

DSK:LM~1AN:JOBSYS 85

Preliminary lisp Machine Manual 205 Functions for Manipulating TVOBs.

22.5 Functions for Manipulating TVOBs.

The following four functions are all used to create TVOBs: they differ primarily in the
way the caller ~pecifies the TVOB's area of the screen. To fully specify the area.. use tvob
cr~ate-absolute. If you just want an area of a certain size. but don't care where the area
is, u!'e t vob-create. If you need at least a certain size but would accept a larger size if
the space is available, use tvob-create-expandable. If you have a pc ppr (piece of paper)
and want to make a TVOB for it, use tvob-create-for-pc-ppr.

tvob-create-absolute xl yJ x2 y2 &rest options
tvob-create-absolute creates and returns a new TVOB. Its fields are set up as
follows:

tvob-handler The value of the :handler option.

The value of the :inf 0 option. tvob-info

tvol»-job The value of the :job option. If it is t, the current job is used
instead: this is the default. Otherwise it should be nil (meaning that
the TVOB is not associated with any job). or a job.

tvob-priority
The value of the :priority option.

tvob-xl xl.

tvob-yl yl.

tvob-x2 x2.

tvob-y2 y2.

tvob-screen The value of the :screen option, which should be a screen. It
defaults to the value of tv-def .iult-screen.

tvob-status The value of the :status option.

t vob-clobbered-p
nil.

t vob-mouse-handler
The value of the :mouse-handler option. If the value is t, use the
default mouse handler.

The options to tvob-create-absolute are:

:handler The tvob-handler function.

:inf 0 The value to go in the t vob-inf 0 field.

:job The job with which the TVOB will be associated. t means the
current job and nil means no job. The default is the current job.

:mouse-handler
The tvob-mouse-handler function. nil means this TVOB doesn't

DSK:LMMAN:JOBSYS 85 6-JAN-79

',f

, .. '. ..' ,,':", , :'\i{i~;~~:/
.~*'~. '&'7""'~'I'&I:'~~~1:r,'~~"~t?t>1:~~(<?;~A' r\'WMJJlzt J' .'

, j'
') ,

Functions for Manipulating TVOBs. 206 Preliminary Lisp Machine Manual

:name

:priority

:screen

do anything ~pecial with the mouse,. and t means the mouse
default -handler should be used.

The print-name of the TVOB.

t to make this TVOB more tenacious of its place on the screen.

The ~creen on which the TVOB will appear. The default is t v
def ault-screen.

tvob-ereate x y &rest options
Thi~ allocates an area of the screen of width x and height y, and creates and
returns a TVOB with that area. The options are the same as for tvob-create
absolute. The screen area of the TVOB will be within the rectangular boundaries
de:-(-ribed by the screen-xl, screen-yl, screen-x2, and screen-y2 of the screen
0n which the TVOB is created. t vob-create tries to choose an area that will
overlap the fewest interesting TVOBs. Specifically, it tries to stay out of the area
u~ed by the exposed TVOB of the highest priority, then that of the exposed TVOB
of the ~econd-highest prior it)', etc. The way priority works is that the exposed tvobs
are divided into two groups: those with tvob-priority of t, and those with tvob
priori t y of nil; the former all have higher priority than the latter. Within these two
groups, thE' TVOBs are ordered by their ordering in the list active-tvobs. The
priority is remembered by the ordering of the list exposed-ivobs, of which the first
element is the TVOB of lowest priority, and the last is the TVOB of highest priority.

tvob-ereate-expandable min-x min-y &optional mox-x mox-y &rest options
Thi~ fir~t finds a min-x by min-y area of the screen, the same way tvob-create
doe~. Then it trie~ to make that area larger, up to max-x by mox-y, without
overlapping any other exposed TVOBs. Otherwise it is like tvob-create. mox-x

, default~ to the size of the area in which automatic allocation takes place: the
difference between the screen-x2 and screen-xl of. the screen. max-y defaults
~imilarly.

tvob-erE'atE'-(or-pc-ppr pc-ppr &rest options
If you want ,to use a pc ppr, you need an associated TVOB in order to get
permi~~jon for your pc ppr to u~e the screen. This function takes a pc ppr and
creates a TVOB,whose area of the screen is that of the pc ppr. The tvob-in(o
will be the pc ppr, the tvob-handler a function called si:pc-ppr-tvob-handler
(which doe~ the right thing for pieces of paper which don't remember what they are
di~playing and hence cannot :update), and the screen used will be the pc-ppr
serE'en of the pc ppr. If you give the :handler option, though, it will override the
si:pc-ppr-tvob-handler. The rest of the options are the same as in tvob-create
absolute.

DSK:LM~1AN;JOBSYS 85 6-JAN-79

Preliminary li~p !\tachine ~anual 207 Functions for Manipulating TVOBs.

tvob-kill tyab
This deactivates (vob if it is active, and dissociates it from its associated job (if any).

t vob-enable tvoh
Enable tvob. If tyoh has no associated job, or if its job is tvob-enabled, activate
tyah. After making some calls to tvob-enable· and tvob-disable, the caller should
call tvob-setup (see page 207).

tvob-disable tvob
Di~able tvab. If it was active, deactivate it. After making some calls to tvob
enable and tvob-disable, the caller should call tvob-setup (see page 207).

tvob-setup na-reselection & rest tvobs
Thi~ is the function in charge of keeping the state of the screen and the internal
databa~e consistent when tvobs are activated, deactivated, moved, etc. After a
program makes some calls to tvob-enable and tvob-disable, it may have changed
the set of active TVOBs, and it should call tvob-setup to make sure that the set of
exposed TVOBs is recomputed, and that the right messages are sent to all TVOBs. (If
t vob-enable etc. did that themselves, then unneccesary redisplay and computation
would be unavoidable.) The job-set-tvob-state function can aho change the set
of active TVOBs, and it too should be followed by a call to tvob-setup.

tvob-setup looks at its argument, tvobs, and at the list of active TVOBs and figures
out which TVOBs should be exposed.

First, t vob-setu~ examines the elements of tvobs, all of which should be active,
and rearrange!> the order of active-tvobs. The TVOBs in tvobs are moved to the
front of active-tvobs, and placed in the order they were given to tvob-setup.
The first TVOB in frobs is guaranteed to be first in active-tvobs. The remaining
active TVOBs are moved to the end of active-tvobs. Their relative order is not
changed. The job-enabled-t vobs lists of the TVOB's jobs are similarly reordered.

Next, tvob-setup figures out the new subset of the active TVOBs that should be
exposed, by walking down the active-t vobs list and taking every TVOB that
doe~n't overlap with some TVOB already on the new exposed-tvobs list. Since the
new Ibt starts out as nil, the first element of active-tvobs, which was the second
argument to tvob-setup, will always be exposed. The exposed list is kept in
reverse priority order, as explained under tvob-create (see page 206).

Having determined the new set of exposed tvobs, tvob-setup sends out :deselect.
:deexpose, and :expose commands as needed. It only sends :deselect if the
selected tvob would no longer be exposed: when it does this t it also sets selected
tvob to nil. At this point, exposed-tvobs is set to its new value. tvob-select
then sends :clobber and :update commands to all of the new exposed TVOBs.

DSK:LMMAN;JOBSYS 85 6-JAS-79

Function~ for Manipulating TVOBs. 208 Preliminary Lisp Machine Manual

Finally. if there is no selected-tvob, and no-reselection is nil, tvob-setup tries to
cllO()!'e a new selected-tvob by calling the job-tvob-selector function of the
kbd-job (if there is a kbd-job and it has a job-tvob-selector).

tvob-sE-lect tvqb

Thi$ makes tvoh be the selected-tvob. It makes sure that tvob's job is TVOB
enabled. and that tvoh is exposed. Then it deselects the current selected-tvob (if
any) and ~elects tvoh.

t vob-update
. If the variable tvob-complete-redisplay is non-nil, set it to nil and call tvob

complete-redisplay. Otherwise send an :update message to all exposed TVOBs.

tvob-conlplete-redisplay Variable

U~ed a~ a flag by tvob-update (see above): if non-nil, tvob-update should do a
t vob-complete-redisplay.

tvob-completE--rE-display
Clears the !-creen, outlines the screen area of partially-exposed enabled TVOBs, and
$ends :clobber and :update to all exposed TVOBs.

tvob-clean
Thi$ "cleans up" the screen. It sends a :clean message to all exposed TVOBs, and
clears portions of the screen not occupied by exposed TVOBs.

tvob-command command tvob & rest arguments
Sends command to tvob, with the given arguments. command should be one of the
symbols mentioned above (:set-edges, :clobber, etc.). After sending the command,
tvob-command updates the tvob's tvob-status, tvob-c1obbered-p, or the screen
area (t vob-xl et. a1.) a .. appropriate.

In order to preserve consistency, only the tvob-setup and tvob-select functions
~hould ~end any of the commands :select, :deselect, :expose, and :deexpose: you
should never send these yourself.

tvob-under-point x y &optional screen
Returns the TVOB under the point (x,y) on screen, or nil if there is none. If there
are several TVOBs at that point, the "top-most" one, i.e. the one which is actually
visible, is returned. screen defaults to tv-default-screen.

DSK:L"fMAN:JOBSYS 85 6-JAS-79

Preliminary Li~p Machine Manual 209 Functions for Manipulating Jobs.

22.6 Functions for Manipulating Jobs.

job-create name
Creates and returns a job, whose name is name. The job is created with no
processes and no TVOBs, and its initial job-process-enabled-p and job-t vob
enabled-p are both nil. job-create also puts the job on job-list.

job-kill job
Deactivates and kills all of job's processes and TVOBs, and removes job from the
job-list.

job-list Variable
A list of all jobs. See job-create and job-kill.

job-reset-processes job
Disables all of job's enabled processes, and unwinds those processes's stack groups.

job-select job
This is meant to be called from the top-level job, which should have the keyboard at
the time. It disables the kbd-job's processes and TVOBs, enables those of job, and
gives job the keyboard~

job-return
This is meant to be -called from jobs other than the top-level job. It disables the
current job's processes and TVOBs, enables those of the top-level job, and gives the
top-level job the keyboard. [The job calling it had better have the keyboard.]

DSK:LMMAN;JOBSYS 85 6~JAN-79

, . '~ .'\

, " ~

j ~ t '. J"'- c\r... t ~

"~'", , ;i~ :: ~.;~{,.;.

The TV Di~play 210 Preliminary Lisp Machine Manual

23. The TV Display

The principal output device of the Lisp Machine is the TV display system. It is used in
conjunction with the keyboard as an interactive terminal, and it can output printed text or
graphic~. This chapter describes the Lisp functions used to manipulate the TV.

23.1 Thf' Hardware

Th~ Lisp machine display system is a raster-scan, bit-map system. This means that the
screen i~ divided up rectangularly into points. The video signal that enters the TV comes
from a memory whic h has one bit for every point on the screen. This memory is directly
acc~~~ible to the program. allowing extremely flexible graphics.

The coordinate sy~tem normally used has the origin (0,0) at the top left corner of the
screen. X increase~ to the right, and Y increases downward.

Th~re are currently two TV controllers in use. The 16-bit controller, which is going
away, generate~ industry-standard composite video, allowing a screen size of 454. lines
from top to bottom with 576. points on each line. The newer, 32-bit controller, provides
various ()ption~. \\lith the CPT monitor it generates a black-and-white display of 896. lines
with 768. points on each line. Other monitors can also be supported.

One thing to be aware of is that the same fonts cannot be used with both controllers,
because the 16-bit controller has its bits reversed.

It i!' p0~~ible to have a di~play in which there is more than one bit per visible point,
allowing gray-scale or color. The set of all bits which contribute to a single point on the
scre~n is called a pixel. (The point on the screen itself is also sometimes called a pixel.)
Some of the ~oftware operates in terms of pixels. Pixels are implemented in an entirely
different way in the two controllers. This document doesn't really discuss them yet.

Becau~e of all these options, the Lisp machine system includes screen objects. A screen
object contains all the attributes of a particular TV controller and display monitor.

23.2 Sc r~ens

There b a type of Lisp object called a screen, which is the internal representation for a
physical display with someone looking at it. Both microcode and lisp functions look at
screen objects. A screen is a structure which contains the following fields:

screen-name An arbitrary character string which appears in the printed
representation of the screen-object.

scre~n-height

The total height of the screen in bits (raster lines, pixels).

DSK:L~t~AN;TV 74 6-JAN-79

Preliminary Lbp ~1achine Manual 211 Screens

screen-width The total width of the screen in bits (pixels).

screen-xl) screen-x2J screen-yl, screen-y2
The coordinates of a rectangle which is the portion of the screen in
which allocation of tvobs may occur. Usually this· is the whole
screen, but if there is a who-line it is excluded. There could be
other reserved areas of the screen.

screen-plane-mask
o if this screen is on a 32-bit controller.· If it is on a 16-bit
controller, one of the bits in this mask is on corresponding to the
memory "plane" which contains this screen. (For instance, for plane
o the value of this field would be 1.) Having more than one bit on
in this mask is not really supported.

screen-bits-per-pixel
The number of bits in a pixel.

sc reen-a t tribu tes
This is a list of keywords for special features of this screen.

:sideways

:color

:gray

The monitor is standjng on its left side. The
TV routines know how to draw characters on
such a screen, given a rotated font, so that
the text comes out in the normal orientation.

Has color (not yet implemented).

Has gray-scale.

screen-f ont-alist
An a-list that associates from font names to font objects. This is not

really used yet.

screen-def ault-f ont
The font to be used by default on this screen.

screen-buff er
The address in virtual memory of the video buffer for this screen.

screen-Iocations-per-line
The number of locations (containing 16 or 32 bits depending on the
controller) of the video buffer for a scan line.

scrt'en-buffer-pixel-array
A two-dimensional array of positive integers, which are pixel values.
The first subscript is the X coordinate and the second subscript is the

Y coordinate.

screen-buff er-halfword-array
A one-dimensional array of 16-bit words of video buffer. This is

DSK:LM~iAN:TV 74

provided to allow direct manipulation of the video buffer, bypassing
the usual microcode primitives. Note that on a 16-bit controller, the

6-JAN-79

.'
i

Screen~ 212 Preliminary .Lisp Machine Manual

bits in these words are reversed.

t v-dfl'f aull-scrfl'fI'n Variable

The value of t v-dfl'f ault-screen is the "normal" screen where text display happens.
Varinu!, functions that take a screen as an optional argument default to this.

t v-definfl-sc rflfln name & rest options

Create~ and returns a screen whose name is name (a string) and whose attributes are
controlled by the options. These attributes has better correspond to an existing
hardware screen. options is alternating keywords and arguments to those keywords.
The f0110wing keywords are accepted:

:planf?-mask The value of the scrfl'fI'n-plane-mask field. Defaults to 1. 0 for
screens on the 32-bit TV controller.

:hf.light The value of the screen-height field. Defaults to 454.

:width The value of the scretan-width field. Defaults to 576.

:xl The value of the screen-xl field. Defaults to O.

:yl The value of the screen-yl field. Defaults to O.

:x2 The value of the screen-x2 field. Defaults to the width.

:y2 The value of the screen-y2 field. Defaults to the height. unless the
:who-line-p option is specified, in which case one line of space is
left at the bottom of the screen for the Who-line.

:who-line-p t to leave space for a who-line, nil to make the entire· screen
available for TVOB allocation. Defaults to t.

:buff er A fixnum which is the address of the video buffer containing the bits
for this screen. Defaults to the address of the 16-bit TV buffer.

:locations-per-line

:bits-ptar-pixel

The value of the screen-Iocations-per-line field. Defaults from
the width, the bits per pixel, and the controller type . .,.

The value of the screen-bits-per-pixel field. Defaults to 1.

:attributes The value of the screen-attributes field. Deafults to nil.

:f ont -alist The value of the screen-font-alist field. Defaults to nil.

:default-font The value of the screen-default-font field. Defaults according to
the type of controller used.

DSK:LMMAN:TV 74
6-JAN-79

i
\
s:
I
.~

Preliminary Lbp Machine ~anual 213 Simple Bit Manipulation

23.3 Simple lJil Manipulation

Some arrays of numbers exist which allow acce~s to the TV memory. These are regular
Li~p arrays· and all array operations work on them. but they are set up so that their data
st0rage is actually in the TV memory. These arrays are normally found in fields of a screen
object.

scrElen-buffer-pixel-array is a two-dimensional array. Array element (x,y)
cone~ponds to the point whose coordinates are .x and y: if the array element is 0, the
point is illuminated. and if the element is L the point is dark. (The opposite is true when
the TV is in reverse-video mode: see below).

The elements of this array are single bits in the usual case, but they can be small
Pb~itive numbers in the c~e of gray-scale or color screens.

In the ca~e of a 16-bit TV, this array accesses whichever plane is currently selected.

screEln-buffer-halfword-array is a one-dimensional array of 16-bit elements, whose
exact interpretation depends on the type of TV screen. Certain programs use this to access
the TV buffer memory.

It is possible to do anything to a TV screen. albeit slowly, using the above two arrays.
However, for efficiency several microcode primitives are provided which perform certain
common operations at much higher speed. typically close to the maximum speed of the
memory. Most programs use these microcode primitives or the higher-level functions built
on them rather than accessing the TV buffer memory directly. The remainder of this
chapter describes these facilities.

23.4 Fonts

A font is a set of related characters. It is represented by an array (of type art-lb)
which contains the bit patterns used to actually draw the characters. The leader of that
array contains other required information such 8!\ character widths. height, bookkeeping
information, etc.

There is a microcode entry for drawing characters, which understands the structure of
fonts. It exbts so as to make character drawing 8!\ fast as possible. User functions do not
call the microcode entry directly, as it is rather kludgey, and handles only the easy cases.
In~tead the TV routines do all the necessary calls.

A font usually contains 128 characters, The widths may be variable. but the height is
always fixed (characters need not actually have ink all the way from the top to the bottom
of the height. but the distance between lines is fixed for each font). There are ~pecial
provi~ions for fixed-width fonts to save space and time. There is a thing called the baseline.
which is a certain vertical position in each character. For example. the baseline touches the
bottom of the legs of a capital A. and passes through the stem of a lower-case p. When
several fonts are used together. all the baselines are made to line up.

DSK:LM~iAN;TV 74 6-JA~-79

Font~ 214 Preliminary Lisp Machine Man ual

The way characters are drawn is a little strange (it is done this way for speed). There is
a thing call~d a roster element. which is a row of I-bits and O-bits. A character is drawn by
taking a column of raster elements. (making a rectangle) and OR'ing this into the bit-map
memory. A ra!'ter element can be at most 16 bits wide for hardware reasons, so for large
character~ it may take ~everal side-by-side columns to draw the character. The font is stored
with ~everal raster elements packed into each 32-bit word. The width of a raster element is
cho~en to give maximum packing. and depends on the font. The reason for the existence of
r8!'ter elements is to decrease the number of memory cycles by processing several bits at a
time.

The ~tructure of the array leader of a font is defined by defstruct macros. Here we
list the element names and what they are for. This structure is not guaranteed not to be
changed in the future, however the macros are automatically made available to user
program~.

font-name A symbol, in the fonts package, whose value is this font. This symbol also
appears in the printed representation.

f ont-char-height·
Height of the characters in this font (with a VSP of 0, this is how far apart
the lines would be.)

font -char-width
Width of the characters if this is a fixed-width font, i.e. how far apart
successive characters are drawn. Otherwise contains the width of "space".

font-raster-height
~umber of raster lines of "ink" in a character (often the same as font-char
height).

f ont-Taster-width
Width of a raster element.

f ont-rastflrs-per-word
Number of elements packed per word (used when accessing the font.)

f onl-words-per-char
l'umber of words needed to hold one column of elements.

fonl-basflline ~umber of r~ter lines down from the top of the character cell of the
position to align.

f ont-char-width-table
nil for fixed width fonts. Otherwise, contains the 128-lotlg array of
character widths.

font-left -kern-table
nil for non-kerned fonts. Otherwise, contains the 128-long array of left
kerns. This is the amount (positive or negative) to back up the X position
before drawing the character.

font -indexing-table
nil for narrow fonts which only take one column of raster elements to draw.

DSK:LM~fAN:TV 74 6-JAN-79

·1

Preliminary Lisp Machine Manual 215 TVOBs

Otherwise, contains a 129-10ng array which determines what columns of the
font to draw for that character as follows: for character i, draw columns
indexingtable(i) through indexingtable(i+l}-1 inclusive. Note that 2 of the
above 3 arrays only contain small positive numbers, so they are usually of
type art-16b or art-8b to save space.

font-next-plane
nil usually. For multi-plane fonts, contains the font for the next higher
plane. This field is obsolete and no longer supported.

font -blinker-width
Default width for blinkers.

font-blinker-height
Default height for blinkers.

The data part of a font array contains an integral number ~f words per character (per
column in the case of wide characters that need an indexing table). Each word contains an
integral number of raster elements, left adjusted and processed from left to right. All 32
bib of each element in this array are used. For easiest processing by Lisp programs, it
~hould be of art-lb array type.

The exact format of the data part of a font array depends on whether the font is
intended to be used with a 16-bit TV controller or a 32-bit controller. In the 32-bit case.
the bits are displayed from right to left. The maximum width of a raster element is 32. bits;
use of the font-indexing-table is required if characters are wider than this. If there is
more than one raster element per word, the elements are displayed from right to left. In
the 16-bit case, the bits and raster elements are displayed from left to right, and the
maximum width of a raster element is 16. bits.

23.5 TVOBs

[Here explain what TVOBs are, how they differ from pieces of paper. what you use
them for, and point to JOBSYS chapter.] Until this is written, see page 199.

23.6 Pieces of Paper

A piece of paper is something on which you draw characters. It is displayed on a certain
rectangular portion of a screen. It remembers what fonts to use, where to display the next
character. how to arrange margins and spacing, and what to do when certain special
conditions arise. It optionally displays a blinking cursor (or several of them).

All character-drawing in the Lisp Machine system is accomplished with pieces of paper .
. One thing to note is that pieces of paper do not remember the characters you draw on
them, except by making dots on the TV screen. This means that if one piece of paper
overlays another, or jf the screen is cleared, the contents of the first is lost. A higher-level
facility (e.g. editor buffers) must be used if the characters are to be remembered. The

DSK:LMMAN;TV 74 6-JAN-79

,f'

~~~~{~~~~~~~~~~~_j.:~~';t~I';1:~,,;r~";I1'I!/;'!o"""'t., ".~';\y!:'';~?~~'~~~f~''~~N •• JPI$'!MU~~~;. 



,I 

Piece~ of Paper 216 Preliminary Lisp Machine Manual 

abbreviation "pc ppr" is often used for "piece of paper". 

A piece of paper is represented as an ordinary array whose elements are named by the 
following acce~~or macros. The~e are automatically available to the user, but should not 
normally be u::.ed as they are not guaranteed to remain unchanged, and often contain" 
internal value!' which are made into more palatable form by the interface functions. All 
screen co()rdinates in this structure are absolute screen coordinates; the user interface 
function~ convert these into coordinates which are relative to the margins of the piece of 
paper. 

pc-ppr-name An arbitrary string which appears in the printed representation. 

pc-ppr-screen 
The screen-object representing the screen on which this pc ppr displays. 

pc-ppr-top The ra!'ter line number of the topmost screen line in this pc ppr. 

pc-ppr-top-margin 
The raster line number of the topmost screen line used to draw characters. 
The difference between pc-ppr-top-margin and pc-ppr-top is the size of 
the top margin. 

pc-ppr-bot tom 
The raster line number of the screen line just below this pc ppr. 

pc-ppr-bot tom-margin 
The raster line number of the screen line just below the bottommost point 
on which a character can be drawn. The difference between pc-ppr
bottom and pc-ppr-bottom-margin is the size of the bottom margin. 

pc-ppr-bot tom-limit 

pc-ppr-Ittft 

The lowest raster line to which the cursor may be positioned. This is a 
suitable value to prevent excursion below the bottom margin. 

The bit number of the leftmost bit in the pc ppr's sCreen area. 

pc-ppr-Ittft -margin 
The bit number of the leftmost bit used to draw characters. The difference 
between pc-ppr-Ieft-margin and pc-ppr-Ieft is the left margin. 

pc-ppr-right The bit number of the bit just to the right of the pc ppr's screen area 

pc-ppr-right-margin 
The bit number of the bit just to the right of the portion of the pc ppr in 
which characters may be drawn. The difference between pc-ppr-right and 
pc-ppr-right-margin is the right margin. 

pc - p p r - r i gh t -I i mit 
The rightmost bit position to which the cursor may be positioned. This is set 
to a suitable value to prevent excursion past the right margin. 

pc-ppr-current-x 
The X po!-ition of the left edge of the next character to be drawn, i.e. the 

DSK:LM~fAN:TV 74 6-JAN-79 



Preliminary Lisp Machine Manual 211 Pieces of Paper 

X coordinate of the cursor position. 

pc-ppr-current-y 
The Y position of the top edge of the next character to be drawn, i.e. the 
Y coordinate of the cursor position. 

pc-ppr-flags A fixnum containing various bit ftags. as follows: 

pc-ppr-sideways-p 
o normally. 1 if the pc ppr is on a sideways screen, so the X and Y 
coordinates should be interchanged before calling the microcode. , 

pc-ppr-exceptions 

pc-ppr-more-vpos 

Non-zero if any special conditions which prevent typeout are active. 
The conditions' are: 

pc-ppr-end-line-flag 
1 if pc-ppr-current-x is greater than pc-ppr-right-limit. 
The default response to this is to advance to the next line. 

pc-ppr-end-page-flag 
1 if pc-ppr-current-y is greater than pc-ppr-bottom
limit. The default response to this is to return to the top of 
the pc ppr. 

pc~ppr-more-f1ag 
1 if "more-processing" must happen before the next character 
can be output. The default response to this is to display 
"**MORE**" and await keyboard input. 

pc-ppr-output-hold-flag 
1 if some higher-level function has decided that output is not 
to be allowed on this pc ppr. For example. its region of the 
screen might be in use for something else. When this is seen 
a function specified when the pc ppr was created is called. 

Y passing here triggers "more processing" by setting pc-ppr-more-f1ag. Add 
100000 to this field to delay until after screen wraparound. Store nil here 
to inhibit more processing. 

pc-ppr-baseline 
The number of raster lines from the top of the character cell (pc-ppr
current-v) to the baseline. 

pc-ppr-f ont-map 
An array of fonts. Normally a font-change command specifies a code 
number, which is looked up in this array to find what font to actually u~e. 

Font 0 is the "principal" font. The array is usually 26. long. 

pc-ppr-current-font 
The font which is currently selected. 

DSK:LMMAN:TV 14 6-JAN-79 

, :', ~'.~\: J ;:.~( 
;'.<:,.,.~.\!( '.' ,'., , 



Pieces of Paper 218 Preliminary Lisp Machine Manual 

pc-ppr-basf\line-adj 
y off~et for current font to align baseline. This is the difference between 
the pc-ppr-baseline and the font's baseline. 

pc-ppr-line-height 
The number of raster lines per character line. 

pc-ppr-char-width 
A character width which is just used for old-style space/backspace/tab 
operations and for blinkers. 

pc-ppr-char-aluf 
ALU function for drawing characters. The default is the value of tv-alu
ior. 

pc-ppr-erase-aluf 
A L U function for erasing characters/lines/whole pc ppr. The default is the 
value of tv-alu-andea. 

pc-ppr-blinker-list 
(Possibly nUll) list of blinkers on this pc ppr. 

pc-ppr-end-line-f en 
Function called when typeout is attempted with pe-ppr-end-line-flag ,set. 
The default is to wrap around to the next line. 

pc-ppr-end-sereen-fen 
Function called when typeout is attempted with pe-ppr-end-page-flag set. 
The default is to wrap around to the top margin. 

pc-ppr -out pu t -hold -f en 
Function called when typeout is attempted with pc-ppr-output-hold-flaC 
set. The default is to wait for the flag to be cleared by some other process. 

pc-ppr-more-f en 
Function called when typeout is attempted with pe-ppr-more-flag set. The 
default is to type **MORE** and await typein. 

23.6.1 Simple Typeout 

tv-lyo pc-ppr char 

Draws a printing character, or executes a special format character. The character is 
drawn at the current cursor position, in the current font, and the cursor position is 
shifted to the right by the width of the character. The following format effectors are 
recognized: 

200 Null. Nothing happens. 

210 Backspace. The cursor is moved left the width of a space. At the beginning 
of a line it sticks. 

DSK:LM~1AN:TV 74 6-JAN-7q 



I , 
i 
I 

I 
I 
I 
I 
I 
I 
~ 

f , 
~ 

! 

Preliminary Lisp ~fachine Manual 219 Pieces of Paper 

211 Tab. The cur~or i~ moved right to the next multiple of 8 times the width of 
a space. 

215 Carriage return. The cursor is advanced to the beginning of the next line, 
and that line i~ erased. More-processing and screen wrap-around may be, 
triggered. 

240-241 
Font change. The low 3 bits are the font number. 

Other non-printing characters are displayed as their name enclosed in a box. These 
displays are quite wide and currently don't bother to respect the right margin. 

tv-b~(lp 

This function is used to attract the user's attention. It flashes the screen and beeps 
the beeper. Doesn't really have that much to do with TVs. 

tv-beep Variable 
If the value of tv-beep is non-nil, the tv-beep function doesn't flash the screen, it 
only sounds a beep. The initial value is nil. 

si:tv-move-bitpos pc-ppr delta-x delta-y 
~love current X, current Y on piece of paper, keeping inside boundaries. This 
function is called from many others. It is the central place to keep track of edges, 
automatic wrap-around, **MORE** processing, etc. It will set the pc-ppr
exceptions flags as necessary. 

si:t v-exception pc-ppr 
This function is called by various TV functions when. they encounter a pc-ppr
exceptions flag which they care about (for example, tv-crlf does not care about 
pc-ppr-end-line-flag). The appropriate function (stored in the pc ppr) is called. It 
is up to that function to correct the condition and clear the exception flag. 

If you want to supply your own exception-handling function for a piece of paper, you 
would be well-advised to read the corresponding system default function first. They need to 
do non-obvious things in some cases. 

si:tv-end-line-default pc-ppr 
This is the default end-of-line function, called if an attempt is made to display a 
character when the cursor is off the end of a line. It essentially just does a crlf. 

si:tv-end-screen-default pc-ppr 
This is the default end-of-screen function, called when an attempt is made to display 
a c.haracter when the cursor is off the bottom of the pc ppr. It wrap:> around to the 
top of the pc ppr. Note that more-processing is separate from and unrelated to end
of-screen processing. 

DSK:LMMAN;TV 74 6-JA!'J-79 



Piece~ of Paper 220 Preliminary Lisp Machine Manual 

si:tv-morfl-default pc-ppr 
Thi~ is the default more processor. It types out **MORE**, waits for input, and 
derides where the next "more" should happen. 

t v-notfl-input 
The purpo~e of t v-note-input i~ to prevent "more"s from happening during normal 
interactive u~age, since typeout is frequently pausing for user input anyway, and 
pre~umably the u~er i~ keeping up in his reading. This function is called by the 
keyb()ard handler when a process hangs waiting for input. tv-note-input arranges 
(on each active pc ppr) for a more not to happen until the current line is reached 
again; except. if this line is far from the bottom, we prefer to more at the bottom 
before wrapping around. This makes moreing usually happen at the bottom. 

23.6.2 Cursor Motion 

!'ote that the "cursor" is the x.y position where the top-left corner of the next character 
printed will be placed. (This is not strictly true because there is base-line adjustment and 
kerning.) The cur~or doesn't necessarily have a corresponding blinker: this is under the 
control of the u~er program. 

~Ian}' of the~e functions are not used by real Lisp Machine code, but are present for 
completene~s and to aid compatibility with ITS I/O. On the other hand, some are heavily 

used. 

tv-home pc-ppr 
Home up to the top-left corner. Usually you then want to do a tv-clear-eol. 

tv-home-down pc-ppr 
Home down the cursor to the bottom-left corner (the beginning of the last line in 
the pc ppr). 

tv-crlf pc-ppr 
Advance to the beginning of the next line, and erase its previous contents. 

tv-space pc-ppr 
Space forward. 

tv-backspac@ pc-ppr 
Space backward. Not too useful with variable-width fonts. 

tv-tab pc-ppr 
Tab. Spaces forward to the next multiple of 8 times the width of space. 

DSK:LM~fAN:TV 74 6-JAS-79 



Preliminary Li~p Machine Manual 221 Pieces of Paper 

tv-set-font pc-ppr font 
Thi~ i~ the common internal' routine for changing what font a piece of paper is to 
print with. It does some bookkeeping, such as adjusting the baseline. It is OK to 
~et the font to one which is not in the font map, however this won't change the 
line-spacing, which is initially set up according to the tallest font in the font map. 

tv-set~cursorpos pc-ppr x y 
Sets the "cursor" position of the piece of paper in raster units (not character units). 
x and yare relative to the margins of the pc ppr. 

tv-read-cursorpos pc-ppr 
Returns two values, the X and Y coordinates of the cursor. These are relative to 
the margins of the pc ppr. 

23.6.3 Erasing, etc. 

tv-clear-char pc-ppr 
Clear the current character pOSitIOn. In a variable-width font, the width of space is 
u~ed, which isn't likely to be the right thing. 

t v-clear-eol pc-ppr 
Clear from current position to end of line. 

tv-clear-eof pc-ppr 
Clear from current position to end of piecf' of paper. 

tv-clear-pc-ppr pc-ppr 
Clear whole piece of paper. 

t v-clear-pc-ppr-except-margins pc-ppr 
Clear all of pc-ppr except the margins, which are unaffected. This is useful if the 
margins contain decorative graphics such as outlines. 

tv-clear-screen &optional screen 
Clears the entire screen, and tells the who-line it has been clobbered. screen defaults 
to tv-default-screen. 

tv-delete-char pc-ppr &optional (char-count 1) 
Deletes the specified number of character positions immediately to the right of the 
cursor, on the current line. The remainder of the line slides to the left, and blank 
space slides in from the right margin. 

DSK:LMMAN;TV 74 6-JA~-79 

, 
< • ~L :;ie1J,·t:;! 

e',. !l 
Sf'~m'J::"'\""<""'~:"""~~""~'iV;~"'''~Y':iir'W~~{~~:z¥fF .;,e, 



Pieces of Paper 222 Preliminary Lisp Machine Manual 

tv-ins~rt-char pc-ppr &optional (char-cou'nt 1) 
In~erts the specified number of blank character posItIons immediately to the right of 
the cur~or, on the current line. The remainder of the line slides to the right, and 
anything that goe~ off the right margin is lost. 

tv-d~l~te-lin~ r· .' &optional (line-count 1) 
Delete~ the ~pecified number of lines immediately at and below the cursor.· The 
remaining lines of the piece of paper slide up, and blank spaces slides in from the 
bottom margin. 

tv-ins~rt-line pc-ppr &optional (line-count 1) 
In~erts the specified number of blank lines at the cursor. The remaining lines of the 
piece of paper slide down, and anything that goes off the bottom margin is lost. 

tv-black-on-white &optional screen 
~fake~ the hardware present the screen as black characters on a white background. 
(Pre~entl)', the screen argument can also be a plane-mask.} 

tv-white-on-black &optional screen • 
'fakes the hardware present the screen as white characters on a black background. 
(Pre~entl)', the screen argument can also be a plane-mask.} 

tv-compl~m~nt-bow-mode &optional screen 
'fakes the hardware pre~ent the screen in the reverse of its current mode. 
(Pre~ent1)'. the screen argument can also be a plane-mask.) 

tv-white-on-black-state &optional screen 
Returns :white if the screen is currently presented as white-on-black. or :black if it 
is currently presented as black-on-white. The screen argument can also be a plane
mask. If more than one bit is on in the plane-mask, and not all the planes are in 
the same state, :both is returned. 

23.6.4 St ring Typeout 

tv-string-out pc-ppr string &optional (start 0) end 
Print a string onto a piece of paper. Optional starting and ending indices may be 
supplied: if unsupplied, the whole string is printed. This is basically just iterated tv
t yo, except in the case of simple fonts it runs much faster by removing a lot of 
overhead from the inner loop. 

tv-line-out pc-ppr string &optionaJ (start 0) end 
This variant of t v-string-out is used by the editor's display routines to output one 
line. The argument is a string of either 8-bit or 16-bit characters (usually this is an 
EI ~ E "line", but the leader is not touched except for the fill pointer.) The high 8 
bits (i.i.ch-f ont) of each character are the index into the font map for the font in 
which that character is to be displayed. 8-bit chars use font O. There are optional 
starting and ending indices: if these are omitted the whole string is specified. If 

DSK:L\f\1AN:TV 74 6-JAS-79 



Preliminary Lbp Machine Manual 223 Pieces of Paper 

during printing the cursor runs off the end of the line, typeout stOps and the index 
of the next character to be output is returned. At this point, the pc-ppr-end-line
flag is 1 and the cursor is off the end of the line. If the whole string is successfully 
output, nil is returned. and the pc ppr is pointing somewhere in the middle of the 
line. 

tv-string-I~ngth pc-ppr string &optional (start 0) end stop-x 
Compute the display-length of a string, which is the sum of the widths of the 
printing characters in it. Newline characters are ignored. Tab characters act as if 
the ~tring starts at the left margin. pc-ppr is used mainly for its font map. start and 
end allow you to process a substring. stop-x, if non-nil, is a tv-length at which to 
~top. The index in the string of the character after the one which exceeded the 
stop-x is returned as the second value. 

The first returned value is the x-position reached, i.e. the tv-length of the string. 
The second returned value is the next index in the string. which is end if stop-x was 
not supplied. 

Contrast tv-compute-motion. which does a two-dimensional computation taking 
line-length into account. 

tv-compute-motion pc-ppr x y string &optional (start 0) end (cr-at-end-p nil) 
(stop-x 0) stop-y 

Compute the motion that would be caused by outputting a string. This is used by 
the editor to aid in planning its display, to compute indentations with variable width 
font~, to position the cursor on ,the current character, etc. Note that this does not 
u~e the "ca:-e shift" flavor of font hacking. Instead, it uses the 16-bit-character flavor 
that the editor uses. This means that if you give it an ordinary 8-bit string it will be 
a~sumed to be all in font O. 

The arguments are: the piece of paper, the X and Y position to start at (nils here 
use the current position of the pc ppr), the string, and optionally the starting and 
ending indices. a flag saying to fake a crlf at the end of the string, and two 
additional arguments which are the X and Y to stop at; if not given the~e default to 
the end of the screen. Returns 3 values: final-X. final- Y, and an indication of how 
far down the string it got. This is nil if the whole string (including the fake carriage 
return, if any) was processed without reaching the stopping point, or the index of 
the next character to be proce~$ed when the stopping point was reached, or t if the 
~topping point was reached after the fake carriage return. 

tv-char-width pc-ppr char 
Returns the width of the character, if displayed in the font current in the pc-ppr. 
The width of backspace is negative, the width of tab depends,.. on the pc ppr's cursor 
position, and the width of carriage return is zero. 

DSK:LMMA~:TV 74 6-JAN-79 



'. I 

,.t. 

.-'1 

l. 

Piece~ of Paper 224 Preliminary Lisp Machine Manual 

23.6.5 More Proctassing 

~fore proce!'~ing is a flow control mechanism for output to the user. Lisp machine more 
proce~!'ing i~ !'imilar to more processing in ITS. The problem that more processing solves is 
that di~played output tend~ to appear faster than the user can read it. The solution is to 
~top ju~t before output which ha~ not been read yet is wiped out, and display "**MORE**". 
The u::.er then reads the whole screen and hits space to allow the machine to continue 
output. ~1ore processing normally occurs one line above where the cursor was when the 
machine la"t waited for user input; however,' it tries to do an extra **MORE** at the 
bottom of the pc ppr, so as to get into a phase where the **MORE** always appears at the 
bottom, which i~ more aesthetic. 

23.6.6 ALU Functions 

Some TV operations take an argument called an ALU Function, which specifies how data 
being !-tored into the TV memory is to be combined with data already present. The ALU 
function is OR ted directly into a microinstruction, so specifying a value other than one of 
tho~e li!-t~d below may produce unexpected disa!'ters. The following special variables have 
numeric values which are useful ALU functions. 

tv-alu-ior Variable 
Inclusive-OR. Storing a 1 turns on the corresponding bit, otherwise the bit in TV 
memory is left unchanged. 

tv-alu-xor Variable 
Exclusive-OR. Storing a 1 complements the corresponding bitt otherwise the bit in 
TV memory is left unchanged. 

tv-alu-andca Variablt! 
A~D-with-complement. Storing a 1 turns off the corresponding bit, otherwise the bit 
in TV memory is left unchanged. 

tv-alu-sftta Variable 
Bits are ~imply stored, replacing the previous contents. With most functions, this is 
not useful since it clobbers unrelated bits in the same word as the bits being 
operated on. However. it is useful for bitblt. 

DSK:LM~1AN:TV 74 6-JAN-79 



Preliminary Li!'p Machine Manual 225 Pieces of Paper 

23.6.7 Blinkers 

A blinkt'r is an attention-getting mark on the ~creen. Often, but not always. it will 
blink. The most common type is a character-sized rectangle which blinks twice a second, 
but several other types exist. and it is easy for the user to define new ones. Often a piece 
of paper will have an associated blinker which shows where the next character will be 
drawn. A blinker can be on top of a character, and the character will still be visible. This 
done by XORing the blinker into the TV memory. Synchronization between pieces of paper 
and blinkers is provided so that when characters are being drawn on the screen, blinkers are 
turned off to prevent the picture from being messed up. (This is called "opening" a piece of 
paper, and should be invisible to the user.) 

A blinker is an array, described as follows: 

t v-blinker-x-pos 
X position of the left edge of the blinker. nil if the blinker should follow 
the t v-blinker-pc-ppr's current X and Y. 

tv-blinker-y-pos 
Y position of the top edge of the blinker. 

t v-blinker-pc-ppr 
Pc ppr the blinker is associated with. nil for a roving blinker, which can go 
anywhere. 

t v-blinker-scret'n 
The screen on which the blinker is displayed. 

t v-blinker-visibilit y 
nil invisible, t visible, blink blinking. 

tv-blinker-half -pt'riod 
Time interval in 60ths of a second between changes of the blinker. 

tv -·blinker-phase 
nil means not visible, anything else means visible in some form. A 
complementing blinker has only two phases. nil and t, but provision is made 
for blinkers which go through an elaborate sequence of states. 

t v-blinker-time-until-blink 
Time interval in 60ths of a second until the next change. The scheduler 
decrements this 60 times a second if the tv-blinker-visibility is blink. If 
it reaches zero. the blinker is blinked. If this field is nil, the blinker is not 
to be looked at by the scheduler. 

tv-blinker-function 
The function to call to blink the blinker. The next two fields are for its use. 
The arguments to the function are the blinker. an operation code, the tv
blinker-x-pos, and the tv-blinker-y-pos. The operation codes are nil to 
make the blinker invisible, t to make it visible, and blink to blink it. When 
this function is called, interrupts have been disallowed and the proper screen 

DSK:LMMAN;TV 74 6-JAN-79 

~\~~#)~~~~Xtt?:t~>~,·;:,~~,::.,~:~o" ~~_. 
: t· +.~.: ,~~ 



Graphic~ 226 Preliminary Lisp Machine Manual 

ha~ been ~elected. For additional conventions, read the function tv-blink. 

t v-blinkttr-width 

Width in bits of area to complement if tv-rectangular-blinker. For other 
blinker types, miscellaneous data. 

tv-blinkttr-height 

Height in ra~ter lines of area to complement if tv-rectangular-blinker. 
For other blinker types, miscellaneous data 

t v-blinkttr-sideways-p 

t => interchange X and Y before calling microcode. 

t V-SEtl -blinkEtr-cursorpos blinker x y 
Set the cur~or position of a blinker. If blinker is a roving blinker, x and yare 
ab~()lute coordinates. Otherwi~e, they are relative to the margins of blinker's piece 
of paper. If this blinker was following the pc ppr's cursor, it won't any more. 

tv-rttad-blinkttr-cursorpos blinker 
Read the cursor position of a blinker, returning two values, X and Y. If the blinker 
is not roving, these are relative to the margins of its piece of paper. 

t V-Sttt -blinker-visibilit y blinker type 
Carefully alters the visibility of a blinker. type may be nil (off), t (on), or blink. 

tv-set -blinkEtr-funclion blinker function &optional arg] arg2 
Carefully alters the function which implements a blinke~. arg] and arg2, if supplied, 
change tv-blinker-hEtight and tv-blinker-width, which are really just general 
argument~ to the function. 

tv-set-blinker-size blinker width height 
Carefully changes the size of a blinker, consulting the function which implements it 
if that function has 8 tv-set-blinker-size-function property. 

23.7 Graphics 

tv-draw-line xl yl xl yl alu screen 
Draw~ a straight line between the points (xl,yl) and (x2,y2), merging the line into 
the exi~tjng contents of the screen with the specified alu· function. This is a fast 
micro-coded function. 

bitblt alII K'id,h height from-array from-x from-y to-array IO-x to-y 
This function moves a portion of one two-dimensional numeric array into a portion 
of another, merging them under the control of a specified alu function. It has 
severa) applications, including shifting portions of the TV screen around (use the 
screen-buffer-pixel-array), saving and restoring portions of the TV screen, 
writing half-tone and stipple patterns into the TV screen, and general array-moving. 

DSK:L~f~fAN;TV 74 6-JAN-79 



t 

I 
t 
{ 

Preliminary Lisp Machine Manual 227 The Who Line 

bitblt ()perate~ on a rectangular region of to-array which starts at the coordinates 
(to-x.to-y) and has extent (abs width) in the X direction and (abs height) in the Y 
direction. An error occurs if this region does not fit within the bounds of to-array. 
Sote that the coordinates and the height and width are in terms of array elements, 
not bib, although the actual operation is done bitwise. from-array needn't be as big 
a~ the specified region: conceptually, bitblt replicates from-array a sufficiently-large 
number of time~ in both X and Y, then picks out a rectangular region containing 
the same number of bits as the destination region, starting at the coordinates (from
x.from-y). bitblt combines these two regions under control of DIu. The "A" 
operand is the from-array, thus an alu function of tv-alu-seta copies the from
array, ignoring the previous contents of the selected region of the to-array. 

The specified X and Y coordinates are always the upper-left corner (minimum 
coordinate values) of the selected region. 

bitblt normally works in a left-to-right and top-to-bottom order, that is with 
increasing coordinate values. When using overlapping from and to arrays, for 
instance when shifting a portion of the TV screen slightly, it may be necessary to 
work in one of the other three possible orders. This is done using the sign of the 
width and height arguments. If width is negative, decreasing X coordinates are used, 
and if height is negative, decreasing Y coordinates are used. 

For the sake of efficiency, bitblt requires that the from-array and to-array have 
word-aligned rows. This means that the first dimension of these arrays must be a 
multiple of 32. divided by the number of bits per array-element. All TV screen 
arrays are forced by hardware to satisfy this criterion anyway. 

23.8 The Who Line 

The who line is a line at the bottom of the screen which contains information on what 
the program is currently doing. The who line has its own pc ppr and is updated whenever 
the software goes into an I/O wait. In addition, there are two short line segments (called 
run lights) at the bottom of the screen which are controlled by the microcode and by the 
~cheduler. The one on the right lights up when the machine is running (not waiting 
not paging), and the one on the left lights up when the disk is running (paging). 

t v-who-line-update &optional state 
This function updates all fields of the who-line which have changed. It is called 
from various functions which change the "state of the machine" as perceived by the 
u~er. The optional argument, state, is a string to be displayed in the state field. If 
state is not specified. the value of tv-wllo-line-run-state is used, which is usually 
"RUN". 

DSK:LMMAN;TV 14 6-JA~-79 

("\,: .. 
!~;h t~{h\(: 



.! 

.. '/~' 

t.· 

The Who line 228 Preliminary Lisp Machine Manual 

tv-who-line-list Variable 
The v.alue of tv-who-line-list is a list of who-line fields. Each field is a list; the 
first four elements of the list constitute a structure containing the following 
component~: 

t v-who-line-i tem-f unction 
A function to call, given the field as its argument. The function is 
suppo~ed to update the field of the who-line if it has changed. The 
li~t elements of the field after the first four are for the use of this 
function. 

t v-who-line-item-state 
If nil, the who-line has been clobbered (e.g. by clearing of the 
screen) and the field must be updated. Otherwise, this is used by the 
function in an unspecified way to remember its previous state. 

t v-who-line-item-Ieft 
The bit position of the left edge of the portion of the who-li.ne 
containing this field. 

t v-who-line-item-right 
The bit position (+ 1) of the right edge of the portion of the who-line 
containing this field. 

The initial t v-who-line-Iist is set up to display the time, the name of the person 
logged-on to the machine, the current package, the "state" of a certain selected 
proce~s, and name and position of the current input file. 

tv-who-line-prepare-field field 
This is called by tv-who-line-item-functions in preparation for redisplay of 8 

who-line field. The portion of the screen on which the field displays is erased' and 
the t v-who-line-pc-ppr's cursor is set to the beginning of the field. 

t v-who-line-string field 
This i~ a useful function to put into' a who-line field. It displays the string which is 
the value of the !,ymbol which is the fifth element of the field. if it is not eq to the 
string previously displayed. 

tv-who-Iine-pc-ppr Variable 
The value ()f tv-who-line-pc-ppr is a piece of paper which is used to display the 
character~ in the who-line. 

tv-who-line-stream Variable 
The value of tv-who-line-stream is a stream whose output displays on the tv
who-line-pc-ppr. 

DSK:L~~1A~;TV 74 



I 
\ 

l 

Preliminary Li!'p ~1achine Manual 229 Microcode Routines 

tv-who-line-process Variable 
The value of tv-who-line-process is the process whose state is to be displayed in 
the who-line. process-wait calls tv-who-line-update if this is the current process. 
t v-who-line-process is normally the main process of the job which owns the 
keyboard. 

tv-who-line-run-state Variable 
~ormally the ~tring "RUN". This is what appears in the wholine when the machine 
isn't waiting for anything. 

tv-who-line-run-light-loc Variable 
U nibu!' address of the TV memory location used for the run-light. 

t¥-who-line-state Variable 
Thi~ is a special variable which exists inside of tv-who-line-update. 

23.9 Microcode Routines 

tv-select-screen j·creen 
This microcode primitive selects a screen for use by the tv-draw-char and tv
erase functions. It sets up microcode variables and hardware registers. ~ote that 
this state is not pre~erved through process switching, so this primitive should only be 
called with inhibit-scheduling-flag bound to t, which is normally de~ired for other 
reasons anyway. 

t v-select -screen should abo be used before referencing the TV arrays, such as the 
screen-buff er-pixel-ar ray, if a 16-bit TV controller is being used. 

tv-draw-char font-array char-code x-bit-pos y-bit-pos alu-func 
The ."<-bit-pos and y-bit-pos are of the top left corner of the character. (0,0) is the 
top left corner of the screen. tv-draw-char extracts the raster elements for one 
character (or one column of a wide character) and displays them at the indic: .ted 
address in the currently-!'elected plane, using the indicated ALU functi(- to 
combine them with the bits already there. Note that this function does not know 
anything about piece~ of paper: no pc ppr handling is in microcode. 

tv-erase width height x-bit-pos y-bit-pos alu-func 
This function is in microcode. width and height are in bits, and should be fixnums. 
A rectangle of the indicated size, of all Is, is created and merged into the rectangle 
of TV memory in the currently-selected plane whose top left corner is at (x-bit
pos,y-bit-pos), u~ing the specified alu-func. Usually the ANDCA function is used for 
erasing, but XOR is used for the blinking cursor etc. Note that width and height 
must be greater than zero. 

DSK:l~1MAN:TV 74 6-JAN-79 

, . 



Opening a Piece of Paper 230 Preliminary Lisp Machine Manual 

tv-draw-line xO yO xl yJ alu-func screen 
Thi~ function is in microcode. A straight line is drawn from the point (xO,yO) to 
the point (xJ.yJ). These points had better not lie outside the screen. The bits that 
form the line are merged into the screen with the ~pecified alu function. tv-select
scrf»f»n is applied to screen before the line is drawn. 

23.10 Opf»ning a Pif»ce of Paper 

Beinre a piece of paper can be manipulated, any blinkers which may intercept it must 
be turned off (i.e. their tv-blinker-phase must be nil). The operation of assuring this is 
called opening the piece of paper. Similarly, before a blinker's location, size, shape, 
visibility. ()r other attributes can be changed, it must be opened, that is made to have no 
visible effect on the screen. 

Once a blinker has been opened. we must make sure that the clock function, which 
implements the blinking, does not come in and turn the blinker back on. This is done in 
the ~jmple~t possible fashion, by binding the inhibit-scheduling-flag non-nil, which causes 
the microcode not to switch to another process. [In the present system processes are never 
interrupted. not even by the clock, and this variable is ignored.] This also prevents any 
other proce~s from coming in and messing up the piece of paper by trying to type on it at 
the same time. 

Once we are done with a blinker or piece of paper, and don't need to have it opened 
any more. we want the blinkers to reappear. It looks best if a blinker reappears right away. 
rather than at the next time it would have blinked. However, for efficiency we don't want 
to dbappear and reappear the blinker every time a TV operation is performed. Rather, if a 
program i~ doing several TV operations right in a row, the first one will turn off the 
blinkers. the $ucceeding ones will notice that the blinkers are already off, and then soon 
after the ~equence i~ completed the blinker will come back on." This is implemented by 
having the next clock interrupt after we get out of the TV code turn the blinker on. 

tv-prepare-pc-ppr Macro 
The form (t v-prepare-pc-ppr (pc-ppr) formJ form2 ... ) opens the piece of paper 
which i~ the value of the variable pc-ppr and evaluates the forms with it open. This 
macro contains all the knowledge of how to open a pc ppr, including disabling 
interrupt~. finding and opening the blinkers, and selecting the proper screen. 

t v-op@n-blinker blinker 
The specified blinker is temporarily turned off; the next clock interrupt when 
inhibit-schf»duling-flag is nil will turn it back on. 

DSK:LM~AN;TV 74 6-JAN-79 



1 
f 

I 
I 

I 
~ 

Preliminary li~p Machine Manual 231 Creating Pieces of Paper and Blinkers 

t v-opt-n-scretln 
Open~ all the vbible blinkers, preparatory to arbitrary munging of the screen, for 
in~tance picture drawing. 

tv-blink blinker type 
The function to blink a blinker. type is one of the symbols nil (off), t (on). or 
blink. tv-blink checks type, selects the proper screen, digs up the blinker position 
out of the pc ppr if necessary, and calls the blinker's function to do the actual' 
di~play. 

tv-rtlctangular-blink()r blinker type x y 
A tv-blinker-function function for rectangular blinkers (the default). Ignores type, 
just complements. 

tv-hollow-r~ctangular-blinker blinker type x y 
Function for hollow rectangles. 

tv-character-blinker blinker type x y 
Function for blinkers defined by a character. Argl (neighf') is the font. and arg2 
("width") is the character in the font. The character is XORed in and out as the 
blinker blinks. 

23.11 Creating Pieces or Paper and Blinkers 

tv-define-pc-ppr name font-map &rest options 
Thb function creates a returns a piece of paper. Keyword arguments allow the user 
to specify some of the many attributes of the piece of paper and leave the remainder 
to default. name is just a string which is remembered in the pc-ppr and appears in 
its printed representation. font-map may be either a list or an array of fonts; or it 
may be nil, which causes the font map to be taken from the screen's default. The 
remaining arguments are alternating keywords (which should be quoted) and values 
for those keywords. For example, 

(setq foo (tv-define-pc-ppr "foo" (list fonts:tvfont) 
/:top 300 
/:bottom 400» 

Valid .oPtion keywords are: 

:screen 

:top 

:bottom 

DSK:LMMAN;TV 74 

The screen on which the piece of paper is to display. The default is 
t v-default -screen. 

Raster line number of highest line in the pc ppr. Defaults to 

screen-yl of the specified screen, the top. 

Raster line number + 1 of lowest line in the pc ppr. Defaults to 
screen-y2 of the specified screen, just above the who line (if there 
is one) at the bottom of the screen. 

6-JA~-79 



Creating Pieces of Paper and Blinkers 232 Preliminary Lisp Machine Manual 

:If?ft 

:right 

:blinkf?r-p 

:activate-p 

R~ter point number of left edge of pc ppr. Defaults to screen-xl 
of the specified screen, the left edge. 

ler point number + 1 of right edge of the pc ppr. Defaults to 
~\. reen-x2 of the specified screen, the right edge. 

t if this pc ppr should have a blinker on its cursor, nil if the cursor 
should be invisible. Default is t. 

1 if this pc ppr should be initially active. Active means that its 
blinkers can blink. The default is t. 

:rflvflrsfl-video-p 
1 if this pc ppr should be in the inverse of the normal black-on-white 
mode. This works by changing pc-ppr-char-aluf and pc-ppr
flrase-aluf. Default is nil. 

:more-p t if this pc ppr should have more processing. Default is t. 

:vsp Number of ra"ter lines between character lines. This is added to the 
maximum height of the fonts in the font map to get the height of a 
line in this pc ppr. The default is 2. 

:If?ft -margin Amount of unused space at the left edge of the pc ppr. The default 
is O. 

:top-margin Amount of unused space at the top. The default is O. 

:righl-margin Amount of unused space at the right. The default is O. 

:bot tom-margin 
Amount of unused space at the bottom. The default is O. 

:end-line-fcn A function which is invoked when typeout reaches the end of a line. 
The default is one which wraps around to the next line. 

:end-screen-f cn 
A function which is invoked when typeout reaches the bottom of the 
pc ppr. The default is one which wraps around to the top. 

:output-hold-f cn 
A function which is invoked when typeout encounters the output-
hold flag. The default is one which waits for some other process to 
clear the flag. 

:more-f cn A function which is invoked when more processing is necessary. The 
default is one which types **MOR E** and waits for the user to hit 
a character, then ignores that character and continues typing. 

:blink-fcn The function to implement the blinker if :blinker-p is not turned 
off. The default is tv-rectangular-blinker. 

:sideways-p t means the monitor is standing on its left side instead of its bottom: 
change things around appropriately. The default comes from the 
specified ~creen. 

DSK:LM~1AN:TV 74 6-JA~-79 



\ 

I 

I 

I 
I 

I 

Preliminary Lbp !\1achine Manual 233 Creating Pieces of Paper and Blinkers 

:int~gral-p 

:font-map 

t mean~ that the piece of paper should be forced to be an integral 
numbt"r of lines high; it will be made slightly smaller than the 
specified ~ize if necessary. The default is nil. 

Set the font-map. This is intended to replace the passing in of the 
font-map as the second argument. 

t v-define-blinker pc-ppr & rest options 
Define a blinker on a piece of paper. The options are similar in syntax to those in 
tv-define-pc-ppr. Valid options are: 

:height Number of raster lines high. The default comes from the first font in 

:width 

:function 

:argl 

:arg2 

:visibility 

:follow-p 

:roving-p 

:act ivate-p 

:half -period 

:screen 

the pc ppr's font map. 

Number of raster points wide. The default comes from the first font 
in the pc ppr's font map. 

The function to implement the blinker. The default is tv
rectangular-blinker. 

Another name for :width. Use this with :Cunctions which don't 
interpret their first "argument" as a width. 

Another name for :height. Use this with :Cunctions which don't 
interpret their second "argument" as a height. 

Initial visibility, t. nil. or blink. Default is blink. 

t if this blinker should follow that pc ppr's cursor. Default is nil. 

t if this blinker is not confined to a single piece of paper. In tl--i" 

ca~e the pc ppr argument is ignored and should be nil. Defa\.A 
nil. 

t if this blinker should be initially active. The default is nil. 

Number of 60th5 of a second between changes in the blinker. 
Default is 15. 

The screen on which the blinker should appear. The default is to 
take it from the pc ppr. or from tv-default-screen in the case of a 
roving blinker. 

:sideways-p t to make the 'blinker be rotated 90 degrees. Default is to take it 
from the pc ppr. 

You may give nil as a pc-ppr, in which case you must specify :width and :height 
(or :argl and :arg2) since they will default to nil. You should give nil as pc-ppr if 
and only if you specify :roving-p. probably, since :roving-p means this blinker is 
not on a pc ppr. 

DSK:LMMAN:TV 74 6-JA~-79 

. il~} 
""'''.';., "', ..... ,:_,,,',~,'-,~,"f' .• "",' " ~" \' "'IOi,~."l'!til'!<~~'<1"".!i'~;+f·":;'".,;,",,<,,,,"t':' ·T'~l'.~~~ 



The Keyboard 234 Preliminary Lisp Machine Manual 

t v-rEtdE»finE»-pc-ppr pc-ppr & rest &eval options 
Redefine some of the parameters of a pc ppr. The allowed options are :top, 
:bottom, :left, :right, :top-margin, :bottom-margin, :left-margin, :right
margin, :vsp, :integral-p, :more-p, :screen, and :(onts. :(onts allows you to 
change the font map, which can change the line height. The size of the blinker will 
not be changed, but perhap~ it should be. 

t v-dEtactivate-pc-ppr pc-ppr 
Cau~e a piece of paper's blinkers to stop blinking. It is illegal to type out on a pc 
ppr \f,,'hich i~ deactivated. 

t v-activatE»-pc-ppr pc-ppr 
Cau~e blinker~ to blink again. 

tv-deactivate-pc-ppr-but-show-blinkers pc-ppr 
Cau!'e all blinkers on this piece of paper to be stuck in the blunk (t) state. I.e. 
mark place but don't flash. Deactivates so that they won't flash. Typing out on this 
piece of paper will cause blinkers to start blinking again. 

tv-ret urn-pc-ppr pc-ppr 
return-array all of a piece of paper. 

t v-make-st ream pc-ppr 
Return~ a stream which accepts output and displays it on pc-ppr, and reads input 
from the keyboard, echoing it on pc-ppr. 

23.12 The Keyboard 

Keyboard input can be done either by reading from the standard-input stream, which 
is preferred. or by calling these keyboard routines directly. 

The characters read by the functions below are in the Lisp Machine character set, with 
extra bits t() incicate the Control and Meta keys. Also, the characters may come from the 
forced-input mechanism (see page 235), and may be from the mouse. The byte fields which 
make up the fixnums returned by these functions have names beginning with "I.i.kbd-", and 
are explained on page 152. 

The special characters Break, Call, and Escape are normally intercepted by the keyboard 
routin€'~. Break causes the process which reads it to enter a break loop (see page 266). 
Call returns control to the top-level job, or enters a break loop if control is already in the 
top-level job. Control and Meta modifiers cause additional effects. See page 204 for details. 
Escape is a prefix for various commands, as in ITS. Commands consist of Escape. a'n 
optional numeric argument (in octal). and a letter, and do not echo. The commands that 
currently exist are: 

<esc>C Complement TV black-on-white mode. 

DSK:LM~1AN:TV 74 6-JAN-79 



Preliminary Li~p Machine Manual 235 

<esc.>nC 

<esc>nS 

<esc>M 

<esc>O~t 

<esc>lM 

Complement black-on-white mode of plane n. 

Select video-switch input n. 

Complement more-processing enable. 

Turn off more-processing. 

Turn on more-processing. 

kbd-tyi &optional (whostate "TYIIt) 

The Keyboard 

Thi!' is the main routine for reading from the keyboard. The optional argument is 
what to display as the program state in the who line (usually just "TYI") while 
awaiting typein. The value returned is a number which consists of a Lisp machine 
character code, augmented with bits for the control and meta keys. The character is 
not echoed. 

kbd-tyi-no-hang 
Returns nil if no character has been typed, or the character code as kbd-t yi would 
return it. 

kbd-char-available 
Return~ non-nil if there i~ a character waltmg to be read; otherwise returns nil. It 
does not read the character out. This function can be used with process-wait. 

kbd-suptar-image-p Variable 
If the value of kbd-super-image-p is non-nil, checking for the special characters 
Break, Call, and E~cape is di~abled. !\:ote that you cannot lambda-bind this variable. 
because it is looked at in different stack-groups. 

kbd-simulated-clock-fcn-list Variable 
Li~t of functions to be called every 60th of a second (while the machine is Walting 
for typein.) This is used to implement blinkers. [This variable should be renamed and 
moved to the scheduler section.] 

f orce-kbd-input job input 
This is used to make a job think it h~ keyboard input that was not actually typed by 
the user. The menu system, for example. u~es this. job is the job to receive the 
input. input is either a fixnum. representing a single character, or an array of 
characters (which mayor may not be a string). f orce-kbd-input waits until 
previous forced input has been read, then gives the new forced input to the job. 

DSK:LMMAN:TV 74 6-JAS-79 

'~I 

Ii£' 
; 



Internal Special Variables 236 Preliminary Lisp Machine Manual 

23.13 I ntE-rnal Special Variables 

tv-blinkE-r-list Variable 
Thi~ b a li~t of all blinkers which are visible (blinking or solidly on). It is used by 
the tv-blinkE'r-clock routine and by tv-open-screen. 

tv-roving-blinkE'r-list Variable 
This is a Jist of peculiar blinkers which don't stay on any single piece of paper. 
Whenever any piece of paper i~ opened, in addition to that piece of paper's own 
blinkers, all of the roving blinkers will be temporarily turned off. Only the visible 
ones are on this list. This is primarily for the mouse's blinker. 

t v-pc-ppr-list Variable 
Thi!' is a list of all the pieces of paper. Currently for no particular reason. 

tv-white-on-black-state Variable 
[:?] 

tv~b~~p-duration Variable 
Controls beeping. 

tv-beep-wavelEtngth Variable 
Controls beeping. 

tv-more-processing-global-enable Variable 
Thb flag controls whether "**MORE**"'s can happen. Complemented by <esc>M. 
The initial value is t. 

23.14 Font Utility Routines 

[Are these the latest word? I suspect not.] 

tv-get-font-pixE-1 font char row col 
Returns a number which is the pixel value of the specified point in the specified 
character in the specified font. This is 0 or I for normal fonts, or a gray-level value 
for multi-plane fonts. The value returned is zero if you address outside of the 
character raster. 

t v-store-f ont -pixel pixel font char row col 
This is similar to the above, but stores. It is an error to store outside of the 
character ra.o:.ter. 

DSK:LMMAN:TV 74 6-JAN-19 



I 
I 
1 

Preliminary Li~p Machine Manual 231 The Font Compiler 

tv-make-sideways-font font 
Return~ a new font which is the ~ame. except turned on its side in such a way that 
it works on pieces of paper created with the sideways-p t. option. 

tv-make-dbl-hor-font font 
Returns a new font with alternating bits split into two planes in such a way that it 
will work with doubled horizontal resolution (producing squished characters if the 
original font had a normal aspect ratio.) 

tv-make-gray-font fontl &optional (x-ratio 2) (y-ratio 2) (n-planes 2) 
Returns a new font which is the original font with areas x-ratio wide and y-ratio 
high converted into single points with an appropriate gray level value. n-planes 
determines the number of gray levels available. 

23.15 The Font. Compiler 

The Font Compiler is a lisp program which runs on the pdplO. It converts fonts 
represented 8!' AST files into QFASL files which can be loaded into the Lisp machine. 
When a font is loaded. a symbol in the fonts package is seiq'ed to the representation of 
that font. 

To run the font compiler, incant 
:lispml;qcmp 
(fasload (lmio)fcmp) 
(crunit dsk lmfont) ;Or whatever directory you keep fonts on 
(fcmp-l ,. input" output" fontname screen-type) 

input is the first-name of the AST file containing the font to be processed. output is the 
fir~t-name of the QFASL file to be produced. fontname is the name of the symbol in the 
fonts package whose value will be the font. This symbol will also appear in the f ont
name field of the font and in the printed representation of the font. screen-type is t if the 
font is to be used with the 32-bit TV controller, or nil if the font is to be used with the 
16-bit controller. 

[Here insert a catalog of fonts when things settle down a little more.1 

DSK:LMMAN;TV 74 6-JAN-79 



Errors and Debugging 238 Preliminary Lisp Machine Manual 

24. Errors and Debugging 

The first section of this chapter explains how programs can handle errors, by means of 
condition handler~. It also explains how a program can signal an error if it detects 
~omething it doesn't like. 

The ~econd explains how user~ can handle errors, by means of an interactive debugger: 
that is. it explains how to recover if you do something wrong. For a new user of the Lisp 
Machine. the second section is probably much more useful: you may want to skip the first. 

The remaining sections describe some other debugging facilities. Anyone who is going 
to be writing programs for the Lisp machine should familiarize himself with these. 

The trace facility provides the ability to perform certain actions at the time a function ·is 
called or at the time it returns. The actions may be simple typeout, or more sophisticated 

debugging function~. 

The SffP facility allows the evaluation of a form to be intercepted at every step so that 
the u~er may examine just what is happening throughout the execution of the form. 

The MAR facility provides the ability to cause a trap on any memory reference to a 
word (or a set of words) in memory. If something is getting clobbered by agents unknown, 
this can help track down the source of the cl obbe rage. 

24.1 The Error System 

24.1.1 Conditions 

Programmers often want to control what action is taken by their programs when errors 
or other exceptional situations' occur. Usually different situations are handled in different 
way~. and in order to express what kind of handling each situation should have, each 
situation must have an associated name. In Lisp Machine Lisp there is the concept of a 

. condition. Every condition has a name, which is a symbol. When an unusual situation 
occurs, ~ome C0ndition is s;gnalled, and a handler for that condition is invoked. 

When a condition is signalled. the system (essentially) searches up the stack of nested 
function invocations looking for a handler established to handle that condition. The handler 
is a function which gets called to deal with the condition. The condition mechanism itself 
is ju~t a convenient way for finding an appropriate handler function given the name of an 
exceptional situation. On top of this is built the error-condition system, which defines what 
arguments are passed to a handler function and what is done with the values returned by a 
handler function. Almost all current use of the condition mechanism is for errors, but the 
user may find other uses for the underlying mechanism. 

DSK:lMMAN;ERRORS 43 



Preliminary Li~p Machine Manual 239 The Error System 

The ~earch for an appropriate handler is done by the function signal: 

signal condition-name & rest args 
signal ~earches through all currently-established condition handlers t starting with the 
most recent. If it finds one that will handle the condition condition-name, then it 
calls that handler with a first argument of condition-name, and with args as the rest 
of the arguments. If the first value returned by the handler is nit signal will 
continue ~earching for another han4ler: otherwise, it will return the first two values 
returned by the handler. If signal doesn't find any handler that returns a non-nil 
value t it will return nil. 

Condition handlers are established through the condition-bind special form: 

condition-bind Special Form 
The condi lion-bind special form is used for establishing handlers for conditions. It 
looks like: 

(condition-bind «cond-I hand-I) 
(cond-l hand-l) 
... ) 

body) 
Each cond-n is either the name of a condition t or a list of names of conditions, or 
nil. If it is nil t a handler is set up for all conditions (this does not mean that the 
handler really ha~ to handle all conditions t but it will be offered the chance to do 
S0 t and can return nil for conditions which it is not interested in). Each hand-n is 
a form which is evaluated to produce a handler function. The handlers are 
established sequentially such that the cond-l handler would be looked at first. 
Example: 

(condition-bind «:wrong-type-argument /my-wta-handler) 
«lossage-l lossage-2) lossage-handler» 

(prine "Hello there.") 
(= t 69» 

Thi:- fir~t sets up the function my-wta-handler to handle the :wrong-t ype
argument condition. Then t it sets up the binding of the symbol lossage-handler to 
handle both the lossage-l and lossage-2 conditions. With these handlers set UPt it 
prints out a mes~age and then runs headlong into a wrong-type-argument error by 
calling the function = with an argument which is not a number. The condition 
handler my-wta-handler will be given a chance to handle the error. condition
bind makes use of ordinary variable binding, so that if the condition-bind form is 
thrown through t the handler5 will be di~established. This also means that condition 
handlers are established only within the current stack-group. 

DSK:LMMAN;ERRORS 43 6-JA~-79 



~' . ' 

The Error Sy~tem 240 Preliminary Lisp Machine Manual 

24.1.2 Error Conditions 

The u~e of the condition mechanism by the error system defines an additional protocol 
for what argument~ are pa~~ed to error-condition handlers and what values they may return. 

There are ba~ically four po~~ible re~ponses to an error: proceeding, restarting, throwing, 
or entering the debugger. The default action, taken if no handler exists or deigns to handle 
the error (returns non-nil), is to enter the debugger. A handler may give up on the 
exec:uti"n that produced the error by throwing (see *throw, page 33). Proceeding means to 
repair the error and continue execution. The exact meaning of this depends on the 
particular error, but it generally takes the form of supplying a replacement for an 
unac(:eptable argument to some function, and retrying the invocation of that function. 
Restarting mean~ throwing to a special standard catch-tag, error-restart. Handlers cause 
proceeding and restarting by returning certain special values, described below. 

Each error condition is signalled with some parameters, the meanings of which depend 
on the condition. For example, the condition :unbound-variable, which means that 
something tried to find the value of a symbol which was unbound, is signalled with one 
parameter. the unbound symbol. It is always all right to signal an error condition with extra 
parameter~. 

An error condition handler is applied to several arguments. The first argument is the 
name of the c,?ndition that was signalled (a symbol). This allows the same func~ion to 
handle ~everal different conditions, which is useful if the handling of those conditions is 
very !Ooimilar. (The first argument is al~o the name of the condition for non-error 
conditjon~.) The second argument i~ a format control ~tring (see the description of format, 
on page 85). The third argument is t if the error is proceedable: otherwise it is nil. The 
fourth argument is l if the error is restartable: otherwise it is nil. The fifth argument is the 
name of the function that signalled the error, or nil if the signaller can't figure out the 
correct name to pa .... s. The rest of the arguments are the parameters with which the 
condition was signalled. If the formal control string is used with these parameters, a 
readable English message should be produced. Since more information than just the 
parameter~ might be needed to print a reasonable message, the program signalling the 
condition is free to pass any extra parameters it wants to, after the parameters which the 
conditi0n i~ defined to take. This means that every handler must expect to be called with 
an arbitrarily high number of arguments, so every handler should have a &rest argument 
(see page 7). 

An error condition handler may return any of several values. If it returns nil, then it is 
stating that it doe~ not wish to handle the condition after all; the process of signalling will 
continue looking for a prior handler (established farther down on the stack) as if the 
handler which returned nil had not existed at all. (This is also true for non-error 
conditions.) If the handler does wish to handle the condition, it can try to proceed from 
the error if it is proceedable, or re~tart from it if it is restartable, or it can throw to a 
catch tag. Proceeding and restarting are done by returning two values. To proceed, return 
the symbol return as the first value, and the value to be returned by the function cerror 
as the second. To restart, return the symbol error-restart as the first value, and the value 

DSK:L~MAN:ERRORS 43 6-JAN-79 



Preliminary Lisp Machine Manual 241 The Error System 

to be thrown to the tag error-restart as the second. The condition handler mu~t not 
return any other !'ort of values. However, it can legitimately throw to any tag instead of 
returning at all. If a handler tries to proceed an unproceedable error or restart an 
unre:.-tartabJe one, an error is ~ignalled. 

~ote that if the handler returns nil, it is not said to have handled the error; rather, it 
ha~ decided not to handle it, but to "continue to signal" it so that someone else may handle 
it. If an error is signalled and none of the handlers for the condition decide to handle it, 
the debugger is entered. 

Here is an example of an excessively simple handler for the :wrons-type-argument 
condition. 

f,. This function handles the :wrong-type-argument condition, 
't' which takes two defined parameters: a symbol indicating 
;;; the correct type, and the bad value. 
(defun sample-wta-handler (condition control-string proceedable-flag 

restartab1e-f1ag function 
correct-type bad-value &rest rest) 

(prog () 
(format error-output u...,%There was an error in -S-%" function) 
(lexpr-funcal1 (function format) 

control-string correct-type bad-value rest) 
(cond «and proceedable-flag 

(yes-or-no-p Query-io "Do you want use nil instead?-» 
(return /return nil» 

(t (return nil»») ;don't handle 

24.1.3 Signalling Errors 

Some error conditioI1s are signalled by the Lisp system when it detects that something 
has gone wrong. Lisp programs can also signal errors, by using any of the functions f error, 
cerror, or error. f error is the most commonly used of these. cerror is used if the 
signaller of the error wi~hes to make the error be proceedable or restartable, or both. error 
l~ provided for Maclisp compatibility. 

A f error or cerror that doesn't have any particular condition to signal should use nil 
as the condition name. The only kind of handler that will be invoked by the signaller in 
this case is the kind that handles all conditions, such as is set up by 

(condition-bind «nil something) ... ) ••• ) 
In practice, the nil conditiol) is used a great deal. 

DSK;LM~1AN:ERRORS 43 6-JAN-79 



The Error Sy~tem 242 Preliminary Lisp Machine Manual 

f error condition-name control-string & re~t params 
f E'rror ~ignals the condition condition-name. Any handler(s) invoked will be passed 
condition-name and control-string as their first and second arguments, nil and nil for 
the third and fourth arguments (i.e. the error will be neither proceedable nor 
re~tartable). the name of the function that called ferror for the fifth argument, and 

params as the re~t of their argument~. 

~ote that condition-name can be nil, in which case no handler will probably be 

found and the debugger will be entered. 

Examples: 
(cond «> sz 60) 

(ferror nil 
"The size, -5, was greater then the maximum" 
sz» 

(t (foo sz») 

(defun func (a b) 
(cond «and (> a 3) (not (symbolp b») 

(ferror /:wrong-type-argument 
"The name, -IG-S, must be a symbol R 

/symbolp 
b) ) 

(t (func-interna1 a b»» 

cerror procccdablc-jlag rcstartable-fiag condition-name control-string &rest params 
CE'rror is just like f(»rror (see page 242) except that the handler is passed 
procc('dabh.'-/lag and rcstartable-/lag as its third and fourth arguments. If cerror is 
called with a non-nil proceedable-fiag. the caller should be prepared to accept the 
returned value of cerror and use it to restart the error. Similarly, if he passes 
CE'rror a non-nil restartable-ftag, he should be sure that there is a *catch above 

him for the tag error-restart. 

~ote: Many programs that want to signal restartable errors will want to use the 

error-restart special form: see page 243. 

Example: 
(do () 

«symbolp a» 
: Do this stuff until a becomes a symbol. 
(setq a (cerror t nil /:wrong-type-argument 

"The argument -2G-A was -IG-S, which is not -3G-A" 
/symbolp a /a "a symbol"») 

~ ote: the form in this example is so useful that there is a standard special form to 

do it, called check-arg (see page 244). 

DSK:L\i\tAN;ERRORS 43 
6-JAN-79 



Preliminary Li~p Machine ~anual 243 The Error System 

error message &optional object interrupt 
E'rror is provided for ~tac1isp compatibility. In ~faclisp, the functionality of error 
i~, e~sentially, that message gets printed, preceeded by object if present, and that 
interrupt, if present, is a w,er interrupt channel to be invoked. 

In order to fit thb definition into the Lisp Machine way of handling errors, error is 
defined to be: 

(cerror (not (nu 11 interrupt» 
nil 
(or (get interrupt /si :condition-name) 

interrupt) 
(cond «missing object) ;If no object given 

"-*_a") 
(t "_S -a"» 

object 
message) 

Here is what that means in English: first of all, the condition to be signalled is nil 
if interrupt is nil. If there is some condition whose meaning is close to that of one 
of the 1-.1 aclisp user interrupt channels, the name of that channel has an 
si:condition-name property, and the value of that property is the name of the 
condition to signal. Otherwise, interrupt is the name of the condition to signal; 
probably there will be no handler and the debugger will be entered. 

If interrupt is specified, the error will be proceedable. The error will not be 
restartable. The format control string and the arguments are chosen so that the 
right error message gets printed, and the handler is passed everything there is to 
pass. 

error-restart Jlacro 
error-restart is useful for denoting a section of a program that can be restarted if 
certain errors occur during its execution. An error-restart form looks like: 

(error-restart 
form-l 
form-2 
... ) 

The forms of the body are evaluated sequentially. If an error occurs within the 
evaluation of the body and is restarted (by a condition handler or the debugger), the 
evaluation resumes at the beginning of the error-restart's body. 

DSK:LMMAN;ERRORS 43 6-JA~-79 

"".~_!·/j ___ ', __ mM ..• ,." ",,' .' .~.~';" 



The Error Sy~tem 

Example: 
(error-restart 

(setQ a (* b d» 
(cond «> a maxtemp) 

244 Preliminary Lisp Machine Manual 

(cerror nil t /overheat 
tiThe frammistat will overheat by -D. degrees!" 
(- a maxtemp»» 

(setQ Q (cons a a») 
If the Cf»rror happen~, and the handler invoked (or the debugger) restarts the error, 
then evaluation will continue with the (setq a (* b d», and the condition (> a 
maxtemp) will get checked again. 

error-restart is implemented as a macro that expands into: 
(prog () 

loop (*catch /error-restart 
. (return (progn 

form-l 
form-2 
... » ) 

(go loop» 

check-arg ~"Iacro 
The ch~ck-arg form is useful for checking arguments to make sure that they are 

valid. A simple example is: 
(check-arg foo stringp tla string") 

f 00 is the name of an argument whose value should be a string. stringp is a 
predicate of one argument, which returns t if the argument is a string. "a string" is 
an English de~cription of the correct type for the variable. 

The general form of check-arg is 
(check-arg var-name 

predicate 
description 
type-symbol) 

var-name i~ the name of the variable whose value is of the wrong type. If the error 
is proceeded this variable will be setq'ed to a replacement value. predicate is a test 
for whether the variable is of the correct type. It can be either a symbol whose 
function definition takes one argument and returns non-nil if the type is correct, or 
it can be a non-atomic form which b evaluated to check the type, and presumably 
contains a reference to the variable var-name. description is a string-which expresses 
predicate in English, to be used in error messages. type-symbol is a symbol which is 
u:,ed by condition handlers to determine what type of argument was expected. It 
may be omitted if it is to be the same as predicate, which must be a symbol in that 

ca~e. 

The u~e of the type-symbol i~ not really well-defined yet, but the intention is that if 
it i~ numbf»rp (for example), the condition handlers can tell that a number was 
needed, and might try to convert the actual supplied value to a number and 

I DSK:L\t\tA~:ERRORS 43 6-JAN-79 

l%l!4:w.~~~~"'l"7'~;'r'n'~;t'!'.~':""'f"""'\(' ~'i ."" 



i 
1 

I 

j 

i 

, 
, 
, 
I 

Preliminary lisp Machine Manual 245 The Error Sy~tem 

proceed. 

[We need to establish a conventional way of "registering" the type-symbols to be used 
for various expected types. It might ~ well be in the form of a table right here.] 

The predicate is usually a symbol such a5 fixp. stringp, listp. or closurep, but 
when there isn't any convenient predefined predicate. or when the condition is 
complex. it can be a form. In this case you should supply a type-symbol which 
encodes the type. For example: 

(check-arg a 
(and (numberp a) (~ a 10.) (> a 0.» 
"a number from one to ten" 
one-to-ten) 

If this 'error got to the debugger. the message 
The argument a was 17, which is not a number from one to ten. 

would be printed. 

In general. what constitutes a valid argument is specified in three ways in a check
argo description is human-understandable. type-symbol is program-understandable. and 
predicate i!' executable. It is up to the user to ensure that these three specifications 
agree. 

check-arg u~es predicate to determine whether the value of the variable is of the 
correct type. If it is not, check-arg signals the :wrong-type-argument condition. 
with four parameters. First, type-symbol if it was supplied. or else predicate if it was 
atomic, or ebe nil. Second, the bad value. Third. the name of the argument (vor
name). Fourth. a string describing the proper type (description). If the error is 
proceeded, the variable is set to the value returned. and check-arg starts over, 
checking the type again. Note that only the first two of these parameters are defined 
for the :wrong-t ype-argument condition. and so :wrong-type-argument handlers 
should only depend on the meaning of these two. 

24.1.4 Standard Condition Names 

Some condition names are u~ed by the kernel Lisp system, and are documented below: 
~ince they are of global intere~t, they are on the keyword package. Program~ oUbide the 
kernel !.'y~tem are free to define their own condition names; it is intended that the 
de~cription of a function include a de~cription of any conditions that it may signal, so that 
people writing program!:' that call that function may handle the condition if they de~ire. 

When you decide what package your condition names should be in, you should apply the 
~ame criteria you would apply for determining which package a function name should be in; 
if a program define~ its own condition names, they should not be on the keyword package. 
For example, the condition names chaos:bad-packet-f ormat and arpa:bad-packet
format should be distinct. For further discussion, see page 116. 

DSK:LMMAN;ERRORS 43 6-JA~-79 



The Error S)'~tem 246 Preliminary Lisp Machine Manual 

The following table lists all standard conditions and the parameters they ·take; more will 
be added in the future. These are all error-conditions, so in addition to the condition 
name and the parameters, the handler receives the other arguments described above. 

:wrong-t ype-argument type-name value 
value is the offending argument, and type-name is a symbol for what type is 
required. Often, type-name is a predicate which returns non-nil if applied to 
an acceptable value. If the error is proceeded, the value returned by the 
handler should be a new value for the argument to be used instead of the 
one which was of the wrong type. 

:inconsistent -a rguments list-of-inconsistent-argument-values 
The~e arguments were inconsistent with each other, but the fault does not 
belong to any particular one of them. This is a catch-all, and it would be 
good to identify subcases in which a more specific categorization can be 
made. If the error is proceeded, the value returned by the handler will be 
returned by the function whose arguments were inconsistent. 

:wrong-number-of -arguments function number-of-args-supplied list-of-args-supplied 
function was invoked with the wrong number of arguments.' The elements of 

. list-of-args-supplicd have already been evaluated. If the error is proceeded, 
the value returned should be a value to be returned by function. 

:invalid-f unct ion function-name 
The name had a function definition but it was no good for calling. You can 
proceed, supplying a value to return as the value of the call to the function. 

:invalid-f orm form 
The so-called form was not a meaningful form for eval. Probably it was of 
a bad data type. If the error is proceeded, the value returned should be a 
new form: eva I will use it instead. 

:undefined-function function-name 
The symbol function-name was not defined as a function. If the error is 
proceeded, then the symbol will be defined to the function returned, and 
that function will be used to continue execution. 

:unbound-variable variable-name 
The symbol variable-name had no value. If· the error is proceeded, then the 
symbol will be set to the value returned by the handler, and that value will 
be u~ed to continue execution. 

Currently, errors detected by microcode do not signal conditions. Generally this means 
that errors in interpreted code signal conditions and some errors in compiled code do not. 
This will be corrected some time in the future. 

DSK:LM\fAN:ERRORS 43 6-JAN-19 



I 
~. 

I 

Preliminary Lisp Machine Manual 247 The Debugger 

24.1.5 Errset 

As in r..-taclisp, there is an ernet facility which allows a very simple form of error 
handling. If an error occurs inside an errset, and no condition handler handles it, i.e. the 
debugger would be entered. control is returned (thrown) to the errset. The errset can 
control whether or not the debugger's error message is printed. 

A problem with errset is that it is too powerful: it will apply to any unhandled error at 
all. If you are writing code that anticipates some specific error, you should find out what 
condition that error signals and set up a handler. If you use errset and some unanticipated 
error crops up, you may not be told-this can cause very strange bugs. 

errset Special Form 
The special form (errset form flag) catches errors during the evaluation of form. 
If an error occurs, the usual error message is printed unless flog is nil; then, 
control is thrown and the errset-form returns nil. flog is evaluated first and i~ 
optional, defaulting to t. If no error occurs, the value of the errset-form is a li~t of 
one element, the value of form. 

errset Variable 
If this variable is non-nil, errset-forms are not allowed to trap errors. The debugger 
b entered just as if there was no errset. This is intended mainly for debugging 
err~ets. The initial value of errset is nil. 

err Special Form 
This is for Maclbp compatibility. 

(err) is a dumb way to cause an error. If executed inside an errset. that errset 
returns nil, and no mes~age is printed. Otherwise an unseen throw-tag error occurs. 

(err form) evaluates form and causes the containing errset to return the result. If 
executed when not inside an errset, an unseen throw-tag error occurs. 

(err form flag), which exists in Mac1isp, is not supported. 

24.2 The Debugger 

When an error condition is signalled and no handlers decide to handle the error, an 
interactive debugger is entered to allow the user to look around and see what went wrong, 
and to help him continue the program or abort it. This section describes how to use the 
debugger. 

The user interface described herein is not thought too well of. and we hope to redesign 
it sometime soon. 

DSK:LMMAN;ERRORS 43 6-JAN-79 



The Debugger 248 Preliminary Lisp Machine Manual 

24.2.1 [nlE-ring the DE-bugger 

There are two kind$ of errors: those generated by the Lisp Machine's microcode. and 
tho~e generated by Li~p programs (by using ferror or related functions). When there is a 
microc()de error, the debugger prints out a message such as the following: 

»TRAP 5543 (TRANS-TRAP) 
The symbol FOOBAR is unbound. 
While in the function *EVAL ~ SI:LISP-TOP-LEVELI 

The first line of this error mes~age indicates entry to the debugger and contains some 
my~teri()us internal microcode information: the micro program address, the microcode trap 
name and parameters, and a microcode backtrace. Users can ignore this line in most cases. 
The ~ec()nd line contains a description of the error in English. The third line indicates 
where the error happened by printing a very abbreviated 'backtrace" of the stack (see 
beI0w); in the example, it is saying that the error was signalled inside the function *eval, 
which wa~ <:alled by si:lisp-top-Ievell. 

Here i~ an example of an error from Li~p code: 
»ERROR: The argument X was 1, which is not a symbol, 
While in the function { FERROR ~ } FOO ~ *EVAL 

Here the fir~t line contains the English description of the error message, and the second 
line contain~ the abbreviated backtrace. The backtrace indicates that the function which 
actually entered the error handler wa<> f error. but that function is enclosed in braces 
because it is not very important: the useful information here is that the function foo is 
what called f t'rror and thus signalled the error. 

There is not any good way to manually get into the debugger; the interface will 
someday be fixed so that you can enter it at any time if you want to use its facilities to 
examine the state of the Lisp environment and so on. In the meantime, just type an 
unbound symbol at Lisp top level. 

24.2.2 How to Use the Debugger 

Once in~ide the debugger, the u~er may give a wide variety of commands. This section 
describes how to give the commands, and then explains them in approximate order of 
usefulne~~. A summary is provided at the end of the listing. 

When the error hander is waiting for a command, it prompts with an arrow: 
-+ 

At thb point, you may either type in a Lisp expression, or type a command (a Control 
or Meta character is interpreted aC\ a command. whereas a normal character is interpreted as 
the first character of an expression). If you type a Lisp expression, it will be interpreted as 
a Li~p form. and will be evaluated in the context of the function which got the error. 
(That i~, all binding~ which were in effect at the time of the error will be in effect when 
your form i~ evaluated.) The result of the evaluation will be printed, and the debugger will 

DSK:L\tMAN:ERRORS 43 6-JAN-79 



Preliminary Lisp Machine Manual 249 The Debugger 

prompt again with an arrow. If, during the typing of the form. you change your mind and 
want to get back to the debugger's command level, type a Control-Z; the debugger will 
respond with an arrow prompt. In fact, at any time that typein is expected from you, you 
may type a Control-Z to flush what you are doing and get back to command level. This 
read-eval-print loop maintains the values of +, *. and - just as the top-level one does. 

Various debugger commands ask for Lisp objects, such as an object to return, or the 
name of a catch-tag. Whenever it tries to get a Lisp object from you, it expects you to 
type in a form: it will evaluate what you type in. This provides greater generality. since 
there are objects to which you might want to refer that cannot be typed in (such as arrays). 
If the form you type is non-trivial (not just a constant form), the debugger will show you 
the result ()f the evaluation, and ask you if it is what you intended. It expects a Y or N 
am·wer (see the function y-or-n-p, page 263). and if you answer negatively it will ask you 
f,")f another form. To quit out of the command. just type Control-Z. 

24.2.3 Debugger Commands 

All debugger commands are single characters, usually with the Control or Meta bits. 
The single most useful command is Control-Z, which exits from the debugger and throws 
back to the Lisp top level loop. ITS users should note that Control-Z is not Call. Often 
you are not interested in using the debugger at all and just want to get back to Lisp top 
level: sO you can do this in one character. This is similar to Control-G in Maclisp. 

Self-documentation is provided by the Help (top-H) or "r command, which types out 
~()me documentation on the debugger commands. 

Often you want to try to continue from the error. To do this. use the Control-C 
command. The exact way Control-C worb depends on the kind of error that happened. 
Fnr ~ome errors, there is no !"-tandard way to continue at all, and Control-C will ju~t tell 
you this and return to the debugger's command level. For the very common "unbound 
~ymbol" error, it will get a Lisp object from you, which it will store back into the symbol. 
Then it will continue as if the symbol had been bound to that object in the first place. For 
unbound-variable or undefined-function errors, you can also just type Lisp forms to set the 
variable or define the function, and then type Control-C; it will proceed without asking 
anything. 

Several commands are provided to allow you to examine the Lisp control stack (regular 
pdl). which keeps a record of all functions which are currently active. If you call f 00 at 
Li~p'!- top level, and it calls bar, which in turn calls baz, and baz gets an error, then a 
ba~.:ktrace (a backwards trace of the !"-tack) would show all of this information. The debugger 
ha::. two backtrace commands. Control-B ~imply prints out the names of the functions on the 
!-tack; in the above example it would print 

BAl ~ BAR ~ FOO ~ *SI:EVAL ~ SI:LISP-TOP-LEVELI ~ SI:LISP-TOP-LEVEL 
The arrows indicate the direction of calling. The Meta-B command prints a more extensive 
backtrace, indicating the names of the arguments to the functions and their current values, 
and abo the saved address at which the function was executing (in case you want to look at 

DSK:LMMAN;ERRORS 43 6-JA~-79 



The Debugger 250 Preliminary Lisp Machine Manual 

the code generated by the compiler); for the example above it might look like: 
FOO: (P.C. = 23) 

Arg 0 (X): 13 
Arg 1 (Y): 1 

BAR: (P.C. = 120) 
Arg 0 (ADDEND): 13 

and ~o (.In. This means that f 00 was executing at in~truction 23, and was called with two 
argument~, whose names (in the Lisp source code) are x and y. The current values of x 
and yare 13 and 1 respectively. 

The debugger knows about a "current stack frame", and there are several command~ 
which u~e it. The initially "current" stack frame is the one which signalled the error; either 
the nne which got the microcode error, or the one which called ferror or error. 

The C()rTlflHlOd Control-L (or Form) clears the screen, retypes the error message that w& 

initially printed when the debugger was entered, and then prints out a description of the 
current frame, in the format used by Meta-B. The Control-N command moves "down" to 
the "next" frame (that is, it changes the current frame to be the frame which called it), and 
print~ out the frame in this same format. Control-P moves "up" to the "previous" frame (the 
one which this one called), and prints out the frame in the same format. Meta-< moves to 
the top of the ~tack, and ~feta-> to the bottom; both print out the new current frame. 
Control-S a~ks you for a string, and searches the stack for a frame whose executing 
function'::. name contains that string. That frame becomes current and is printed out. These 
command~ are ea~y to remember since they are analogous to editor commands. 

:\-leta-L prints out the current frame in "full screen" format, which shows the arguments 
and their values, the local variables and their values, and the machine code with an arrow 
pointing to the next in~truction to be executed. ?\feta-S moves to the next frame and prints 
it out in ful1-~creen format, and 1\1eta-P moves to the previous frame and prints it out in 
full-~creen format. \feta-S is like 'Control-S but does a full-screen display. 

Contr(')l-A print~ out the argument list for the function of the current frame, as would 
be returned by the function arglist (see page 61). Control-R is used to return a value from 
the current frame: the frame that called that frame continues running as if the function of 
the current frame had returned. This command prompts you for a form, which it will 
evaluate: it returns the resulting value, po~sibly after confirming it with you. Meta-R is 
used to return multiple values from the current frame, but it is not currently implemented. 
The Control-T command does a throw to a given tag with a given value; you are prompted 
for the tag and the value. 

Commands such as Control-N and meta-N, which are meaningful to repeat, take a prefix 
numeric argument and repeat that many types. The numeric argument is typed by using 
Control- or Meta- and the number keys, as in the editor. 

DSK:LM\fAN;ERRORS 43 6-JAN-79 



Preliminary Lbp ~1achine Manual 251 The Debugger 

Control-~1eta-A take~ a numeric argument n, and prints out the value of the nth 
argument of the current frame. It leave~ * set to the value of the argument, so that you 
can u~e the Li~p read-eval-print loop to examine it. It also leaves + set to a locative 
pointing to the argument on the stack, so that you can change that argument (by calling 
rplaca or rplacd on the locative). Control-Meta-L is similar, but refers to the nth local 
variable of the frame. 

24.2.4 Summary of Commands 

Control-A 

Control-~1eta-A 

Control-B 

~1eta-B 

Control-C 

~feta-C 

Control-G 

Control-L 

~-teta-L 

Control-N 

~'feta-N 

Control-P 

~feta-P 

Control-R 

~'feta-R 

Control-S 

~-teta-S 

Control-T 

Control-Z 

? or Help 

~1eta-< 

~1eta-> 

Form 

Print argument list of function in current frame. 

Examine or change the nth argument of the current frame. 

Print brief backtrace. 

Print longer back trace. 

Attempt to continue. 

A ttem pt to restart. 

Quit to command level. 

Redisplay error message and current frame. 

Full-screen typeout of current frame. 

Move to next frame. \Vith argument, move down n frames. 

Move to next frame with full-screen typeout. With argument, move down n 
frames. 

Move to previous frame. With argument, move up n frames. 

Move to previous frame with full-screen typeout. With argument, move up 
n frames. 

Return a value from the current frame. 

Return several values from the current frame. (doesn't work) 

Search for a frame containing a specified function. 

Same as control-S but does a full display. 

Throw a value to a tag. 

Throw back to Lisp top level. 

Print a help message. 

Go to top of stack. 

Go to bottom of stack. 

Same as Control-L. 

DSK:LM~iAN:ERRORS 43 6-JAN-79 



Trace 

Line 

Return 

252 Preliminary Lisp Machine Manual 

~1ove to next frame. With argument, move down n frames. Same as 

Control-No 

\10ve to previous frame. With argument, move up n frames. Same as 

control-Po 

24.2.5 MiscE'lIany 

S<"'metime~. e.g. when the debugger is running, microcode trapping is "disabled": any 

attempt by the microcode to trap will cause the machine to halt. 

trapping-enablE'd-p 
Thi~ predicate returns t if trapping is enabled; otherwise it returns nil. 

enablE'-t rapping &optional (arg 1) 
) f arg is 1. trapping is enabled. If it is 0, trapping is disabled. 

24.3 TracE' 

The trace facility al10ws the u~er to trace some functions. When a function is traced. 
certain ~pecial actions will be taken when it is called, and when it returns. The function 

tracE' allows the m·er to specify this. 

The trace facility is closely compatible with Maclisp. Although the functions of the trace 
system whie h are presented here are really fun-ctions, they are implemented as special form!> 

because that is the way Maclisp did it. 

trace Special Form 
A t race form looh like: 

(trace spcc-l spcc-l ... ) 

A spC'c may be either a symbol, which is interpreted as a function name, or a list of 
the form (function-name option-l option-l ... ). If spec is a symbol, it is the same as 
giving the function name with no options .. Some options take "arguments". which 
should be given immediately following the option name. 

The following options exist: 

:break prcd Causes a breakpoint to be entered after pnntmg the entry trace information 
but before applying the traced function to its arguments, if and only if pred 
evaluates to non-nil. 

:exitbrf?ak pred 
This is just like break except that the breakpoint is entered after the 
function has been executed and the exit trace information has been printed, 

but before control returns . 

. DSK:LM~1AN:ERRORS 43 6-JAN-79 



Preliminary Lisp Machine Manual 253 Trace 

:stf!P Causes the function to be single-stepped whenever it is called. See the 
documentation on the step facility below. 

:~ntrycond pred 

:~xitcond pred 

:cond pred 

Cau~es trace information to be printed on function entry only if pred 
evaluates to non-nil. 

Causes trace information to be printed on function exit only if pred 
evaluates to non-nil. 

This specifies both exitcond and entrycond together. 

:wherein function 

:argpdl pd/ 

:entry list 

:exit list 

Causes the function to be traced only when called, directly or indirectly, 
from the specified function function. One can give several trace specs to 
t race, all specifying the same function but with different wherein options, 
so that the function is traced in different ways when called from different 
functions. 

This specifies a symbol pdf, whose value is initially set to nil by trace. 
When the function is traced, a list of the current recursion level for the 
function, the function's name, and a list of arguments is con sed onto the pd/ 
when the function is entered, and cdr'ed back off when the function is 
exited. The pdf can be inspected from within a breakpoint. for example. and 
used to determine the very recent history of the function. This option can 
be used with or without printed trace output. Each function can be given 
its own pdl, or one pdl may serve several functions. 

This specifies a list of arbitrary forms whose values are to be printed along 
with the usual entry-trace. The list of resultant values, when printed, is 
preceded by a \ \ to separate it from the other information. 

This is similar to entry, but specifies expressions whose values are printed 
with the exit-trace. Again, the list of values printed is preceded by \ \. 

:arg :value :both nil 
These ~pecify which of the usual trace printout should be enabled. If arg is 
specified. then on function entry the name of the function and the value~ of 
its arguments will be printed. If value is specified. then on function exit the 
returned value(s) of the function will be printed. If both is specified. both 
of the~e will be printed. If nil is specified, neither will be printed. If none 
of the~e four options are specified the default is to both. If any further 
options appear after one of these, they will not be treated as options! 
Rather, they will be considered to be arbitrary forms whose values are to be 
printed on entry and/or exit to the function, along with the normal trace 
information. The values printed will be preceded by a / /. and follow any 
values specified by entry or exit. Note that since these options "swallow· 
all following option~, if one is given it should be the last option specified. 

DSK:LMMA~;DB.A)D 34 6-JAN-79 

_.~.t:: 



Trace 254 Preliminary Lisp Machine Manual 

If the variable arglist is used in any of the expressions given for the cond, break, 
E-nt ry, or E-xi t options, or after the arg, value, both, or nil option, when those 
expre~~ion~ are evaluated the value of arglist will be bound to a list of the arguments given 
to the traced function. Thus 

(trace (foo break (null (car arglist»» 
would cau~e a break in (00 if and only if the first argument to foo is nil. arglist should 
have a colnn, but it i~ omitted because this is the name of a system function and therefore 
global. 

Similarly, the variable si:fnvalues will be a Jist of the resulting values of the traced 
function. For obvious rea~om;, this should only be used with the exit option. 

The trac.e ~pecifications may be "factored." For example. 
(trace «foo bar) wherein baz value» 

i~ equivalent to 
(trace (foo wherein baz value) (bar wherein baz value» 

This i~ not yet ~upported. 

All 0utput printed by trace can be ground into an indented. readable format. by simply 
setting the variable sprinter to t. Setting sprinter to nil changes the output back to use 
the ordinary print function, which is fa~ter and uses less storage but is less readable for 
large li~t ~tructure~. This is not yet supported. 

traCE- returns a~ its value a list of names of all functions traced; for any functions 
traced with the wherein option. say (trace (f 00 wherein bar», instead of putting just 
f 00 in the list it puts in a 3-Jist (f 00 wherein bar). 

If you attempt to specify to trace a function already being traced, trace calls untrace 
before ~etting up the new trace. 

It i~ p()~~ible to call trace with no arguments. (trace) evaluates to a list of aU the 
function~ currently being traced. 

untracE' Splxial Form 
unt race b u~ed to undo the effects of trace and restore functions to their normal, 
untraced ~tate. The argument to untrace for a given function should be what trace 
returned for it: Le. if trace returned foot use (untrace (00); if trace returned 
((00 whtarein bar) use (untrace (foo wherein bar». untrace will take multiple 
specifications. e.g. (untrace (00 quux (bar wherein baz) fuphoo). Calling 
unt race with no arguments will untrace all functions currently being traced. 

Unlike.~faclisp, if there is an error trace (or untrace) will invoke the error system and 
give an English message. instead of returning lists with question marks in them. Also. the 
remtrace function is not provided. since it is unnecessary. 

DSK:L\-tMAN:DB.AID 34 6-JAN-79 



Preliminary Li~p ~fachine Manual 255 The Stepper 

trace-compile-flag Variable 
If the value of trace-compile-flag is non-nil, the functions created by trace will 
get compiled, allowing you to trace special forms such as cond without interfering 
with the execution of the tracing functions. The default value of this flag is nil. 

24.4 The Stepper 

The Step facility provides the ability to follow every step of the evaluation of a form, 
and examine what is going on. It is analogous to a single-step proceed facility often found 
in machine-language debuggers. If your program is doing something strange. and it isn't 
obviou~ how it's getting into its strange state, then the stepper is for you. 

24.4.1 How to Get Into the Stepper. 

There are two ways to enter the stepper. One is by use of the step function. 

step form 
This evaluates form with single stepping. It returns the value of form. 

For example, if you have a function named foo, and typical arguments to it might be t 
and 3, you could ~ay 

(step /(foo t 3» 
and the form (foo t 3) will be evaluated with single stepping. 

The other way to get into the stepper is to use the step option of trace (see page 252). 
If a function is traced with the step option, then whenever that function is called it will be 
,si ngle stepped. 

~ote that any function to be stepped must be interpreted; that is, it must be a lambda
expre:-~ion. Compiled code cannot be stepped by the stepper. 

24.4.2 How to Use the Stepper 

\Vhen evaluation is proceeding with single stepping, before any form is evaluated, it is 
(partially) printed out, preceded by a forward arrow (-+) character \Vhen a macro is 
expanded, the expansion is printed out preceded by a double arrow (++) character. \Vhen a 
form returns a value, the form and the values are printed out preceded by a backwards 
arrow (+-) character: if there is more than one value being returned, an and-~ign (1\) 
character is printed between the values. 

Since the forms may be very long; the stepper does not print all of a form: it truncates 
the printed representation after a certain number of characters. Also. to show the recursion 
pattern of who calb ·whom in a graphic fashion, it indents each form proportionally to its 
level of recursion. 

DSK:Lr..fMAN;DB.AID 34 6-JA~-79 



, . 
· ! 

The Stepper 256 Preliminary Lisp Machine Manual 

After the ~tepper prints any of these things, it waits for a command from the user. 
The-re are ~everal commands to tell the stepper how to proceed, or to look at what is 

happening. The commands are: 

Control-~ (Next) 
Step to the ~ext thing. The stepper continues until the next thing to print 

Space 

Control-U (Up) 

out, and it accepts another command. 

Go to the next thing at this level. In other words, continue to evaluate at 
thi~ level, but don't step anything at lower levels. This is a good way to 
skip over parts of the evaluation that don't interest you. 

Continue evaluating until we go up one level. This is like the space 
command, only more so; it skips over anything on the current level as well 

as lower levels. 

Control-X (eXit) 
Exit; finish evaluating without any more stepping. 

Control-T (Type) 
Retype the current form in full (without truncation). 

Control-G (Grind) 
G rind (i.e. pretty print) the current form. 

Control-E (Editor) 
Editor escape (enter the Eine editor). 

Control-B (Breakpoint) 
Breakpoint. This command puts you into a breakpoint (i.e. a read-eval-print 
loop) from which you can examine the values of variables and other aspects 
of the current environment. From within this loop. the following variables 

are available: 

st~p-f orm which is the current form. 

step-valu~s which is the list of returned values. 

st~p-value which is the first returned value. 

Control-L 

If you change the values of these variables, it will work. 

Clear the screen and redisplay the 13$t 10. pending forms (forms which are 

being evaluated). 

Meta-L like Control-l, but doesn't clear the screen. 

Control-~leta-l 
Like Control-L, but redisplays all pending forms. 

? or Help Print~ documentation on these commands. 

It i~ ~trongly sugge~ted that you write some little function and try the stepper on it. If 
you get a feel for what the stepper does and how it works, you will be able to tell when it 

is the right thing to use to find bugs. 

DSK:L"1\1AN;DB.AID 34 
6-JAN-79 



Preliminary Li~p Machine Manual 257 The MAR 

24.S Thtl MAR 

The ~tAR facility allows any word or contiguous set of words to be monitored 
con~tantly, and can cause an error if the words are referenced in a specified manner. The 
name !\1AR is from the similar device on the ITS PDP-IO's; it is an acronym for "!\{emory 
Addre::-~ Register". The MAR checking is done by the Lisp Machine's memory management 
hardware, and so the speed of general execution when the MAR is enabled i~ not 
!'ignificantly ~lowed down. However, the speed of accessing pages of memory containing the 
locations being checked is slowed down, since every reference involves a microcode trap. 

These are the functions that control the MAR: 

set-mar loc'ation cycle-type &optional n-words 
The set-mar function clears any previous setting of the MAR, and sets the \fAR 
on n-words words, starting at location. location may be any object. n-words 
currently defaults to 1, but eventually it will default to the size of the object. cycle
type says under what conditions to trap. :read means that only reading the location 
should cause an error, :write means that only writing the location ~hould, t means 
that both should. To set the MAR on the value of a variable, use 

(set-mar (value-cell-1ocation symbol) :write) 

clear-mar 
This turns off the MAR. Restarting the machine disables the MAR but does not 
turn it off. i.e. references to the MARed pages are still slowed down. clear-mar 
does not currently speed things back up until the next time the pages are swapped 
out: this may be fixed some day. 

si:%mar-Iow Variable 
si:i.mar-high Variable 

The:-e two fixnums are the inclusive boundaries of the area of memory monitored by 
the MAR. The values of these variables live inside the microcode. 

mar-mode 
(mar-mode) returns a ~ymbol indicating the current state of the MAR. It returns 
one of: 

nil 

:read 

:write 

t 

The MAR is not set. 

The MAR will cause an error if there is a read. 

The MAR will cau~e an error if there is a write. 

The MAR will cause an error if there is any reference. 

"~ ~ote that u~ing the ~1AR makes the pages on which it is set considerably slower to 
at:cess, until the next time they are swapped out and back in again after the ~1AR is ::ohut 
off. Abo, U$e of the MAR currently breaks the read-only feature if those pages \,,'ere read· 
only. Currently it is not pos~ible to proceed from 8 MAR trrap. because ~ome machine 

DSK:L~1MAN:DB.A]D 34 6-JAl'-79 



The ~tAR 258 Preliminary Lisp Machine Manual 

state is lost. Eventually, most MAR traps will be continuable. 

DSK:L\1\1AN;DB.AID 34 
6-JAN-79 



Preliminary Li~p Machine Manual 259 Utility Programs 

25. Utility Programs 

ed & optional x 
ed is the main function for getting into the editor, Eine. Eine b not yet 
documented in thi~ manual. however the commands are very similar to Emac~. 

(ed) or (ed nil) simply enters Eine. leaving you 10 the same buffer as the l~t time 
Eine w& running. 

(ed t) puts you in a fresh buffer with a generated name (like BUFFER-4). 

(ed 'f 00) tries hard to edit the definition of the f 00 function. If there was a buffer 
named Faa already. it ~elects it. If f 00 is defined as an interpreted function (or if 
it wa~ compiled on the Lisp machine and the compiler saved the interpreted 
function) then that function is grindef'ed into a new buffer called FOO. If f 00 is 
not defined but has a value. it will edit that value in a buffer called FOO-V ALUE. 
Otherwise it will create a buffer called FOO and put in "(defun foo (OI so that you 

can type in the definition. 

If you call ed on a list, it will grindef that list into a new buffer. 

If you call ed on a buffer, or a string or symbol which is the name of a buffer, it 

will edit that buffer. 

edval sym 
Enters Eine. selecting a buffer called sym-VALUE. If that buffer did not previously 
exist, a setq of sym to its current value is grindef'ed into the buffer. 

edprop sym prop 
Enters Eine, selecting a buffer called sym-prop-I)ROPERTY. If that buffer did not 
previously exist. a putprop of sym to its current prop-property is grindef'ed into 

the buffer. 

peek &optional character 
peek is similar to the ITS program of the same name. It displays various information 
about the system, periodically updating it. Like ITS PEEK, it has several modes, 
which are entered by typing a single key which is the name of the mode. The initial 
mode is selected by the argument. character. If no argument is given, peek starts 

out in "N" mode. 

The currently implemented modes are: 

N (for Normal) 
Display all active. processes, showing their names and whostates (see 

page 195). 

M (for Memory) 
Display the amount of room left in all areas (this is the same as 

DSK:LMMAN:PROGS 15 6-JAN-79 



Utility Programs 260 Preliminary Lisp Machine Manual 

(room t) (see page 262). 

K (for Cham-net) 
Display various information about all open Chaosnet connections (see 
<not-yet-written> ). 

B (for Back) 

Q (for Quit) 

Space 

Give self-documentation. 

Go back to the previous mode. 

Exit from peek. 

Update the display immediately. 

At the top of the screen. peek displays the version number of the microcode, the 
time (as returned by (time), and the amount of room left in the working-storage
arfJa and macro-compiled-program areas. 

supdup & optional host window-size 
host may be a string or symbol, which will be taken as a host name, or a number, 
which wHI be taken as a host number. If no host is given, MIT-~iC is assumed. 
This function opens a connection to the host over the Chaosnet using the SUPDUP 
protocol. and allows the Lisp Machine to be used as a terminal for any ITS system. 

window-size should be a fixnum: it defaults to 3. Its value will be used as the 
window size of the Chaos net connection. 

To give commands to supdup, type a Break followed by one character. The 
commands are as closely compatible with ITS as possible. The characters currently 
implemented are: 

Call Enter a breakpoint. 

C (for Change) Change the escape character (normally Break) to something else. 

Q (for Quit) Close the connection and return. 

L (for Logout) Tell the foreign host to try to log out your process, then close the 
connection and return. 

Help or ? 

Rubout 

Document these commands. 

Do nothing (useful if you accidentally type Break). 

dribbl~-start filename 
dribble-start opens filename as a "dribble file" (also known as a "wallpaper file-). It 
rebinds standard-input and standard-output so that all of the terminal interaction 
i~ directed to the file a~ well as the" terminal. 

Currently. there can only be one output file open at a time; thus, while you are 
dribbling. you can't write files. 

DSK:L'-1\1AN:PROGS 15 6-JA~-79 



; 
1 
1 
i 

Preliminary Li!'p ~1achine Manual 261 Useful Commands 

dribble-end 
This closes the file opened by dribble-start and resets the I/O streams. 

25.1 Useful Commands 

who-calls x &optional package 
who-uses x &optional package 

x must be a symbol. who-calls tries to find all of the compiled functions in the 
Li!'p world which call x as a function, use x as a variable, or use x as a constant. 
(It won't find things that u~e constants which contain x, such as a list one of whose 
elements is x; it will only find it if x itself is used as a constant.) It tries to find all 
of the compiled code objects by searching all of the function cells of all of the 
symbols on package and package's decendants. package defaults to the global 
package, and sO normally all packages are checked. 

If who-calls encounters an interpreted function definition, it simply tells you if x 
appears anywhere in the interpreted code. 

who-uses is currently the same thing as who-calls. 

The symbol unbound-function is treated specially by who-calls. (who-calls 
'unbound-function) will search the compiled code Objects for any calls through a 
symbol which is not currently defined as a function. This is useful for finding errors. 

apropos string &optional package 
(apropos string) tries to find all symbols whose print-names contain string as a 
substring. Whenever it finds a symbol, it prints out the symbol's name; if the symbol 
is defined as a function and/or bound, it tells you so, and prints the function (if 
any). It finds the symbols on package and package's decendants. package defaults to 
the global package, so normally all packages are searched. 

where-is pname &optional package 
Prints the names of all packages which contain a symbol with the print-name pname. 
pname gets upper-ca~ed. The package package and all its sub-packages are searched; 
package defaults to the global package, which cau~es all packages to be searched. 

describe x 
describe trie~ to tell you all of the interesting information about any object x 
(except for array contents), describe knows about arrays. symbols, flonums. 
packages, ~tack groups, clo~ures, and FEFs, and prints out the attributes of each in 
human-readable form. Sometime~ it will describe something which it finds in~ide 

something ebe: such recursive description5 are indented appropriately. For instance, 
dE'scribe of a symbol will tell you about the symbol's value, its definition, and each 
of its properties. describe of a flonum (regular or small) will show you its internal 
representation 10 a way which is useful for tracking down roundoff errors and the 
like. 

DSK:LMMAN;PROGS 15 6-JA~-79 



Useful Commands 262 Preliminary Lisp Machine Manual 

If x is a named-structure, describe handles it specially. To understand this, you 
~h(')uld read the ~ection on named structures (see page 91). First it gets the named
~tructure ~)'mbol, and sees whether its function knows about the :describe operation. 
I f tie operation is known, it applies the function to two arguments: the symbol 
:d~scrib~, and the named-structure itself. Otherwise, it looks on the named
~tructure ~ymbol for information which might have been left by defstruct: this 
inf()rmation would tell it what the symbolic names for the entries in the structure 
are, and d~scrib~ knows how to use the names to print out what each field's name 
and content~ is. 

describ~-fil~ filename 
This print~ what the system knows about the file filename. It tells you what package 
it is in and what version of it is loaded. 

describe-package package-name 
(dttscribe-package package-name) is equivalent to {describe (pkg-find-package 
package-name)); that is. it describes the package whose name is package-nome. 

describ~-ar~a area 
ar('Q may be the name or the number of an area Various attributes of the area are 
printed. 

room & optional arg 
room tells you how much room is left in some areas. For each area it tells you 
about, it prints out the name of the area, the number of words used in the area, the 
size of the area, and the percentage of words which are used in the area 

If arg is not given, the value of room should be a list of area numbers and/or area 
names: room describes those areas. If arg is a fixnum, room describes that area. If 
arg is t, room describes all areas. 

room Variable 
The value of room is a Jist of area names and/or area numbers, denoting the areas 
which the function room will describe if given no arguments.· Its initial value is: 

(working-storage-area macro-compiled-program) 

set-mf?mory-sile n-K'ords 
set-m~mory-sile tells the virtual memory system to only use n-words words of 
main memory for paging. Of course, n-words may not exceed the amount of main 
memory on the machine. 

recompil~-world & rest keywords 
recompile-world is a rather ad-hoc tool for recompiling all of the Lisp Machine 
system packages. It works by calling the pkg-Ioad facility (see page 194). It will 
find all files that need recompiling from any of the packages: 

DSK:L\I\IA~;FD.HAC 48 6-JA~-79 



Preliminary Lisp ~fachine ~1anual 263 Querying the User 

system-internals format compiler 
chaos supdup peek eine 

keywords i!\ a list of keywords: u~ually it is empty. The useful keywords are: 

load 

noconfirm 

After compiling, load in any files which are not loaded. 

Don't ask for confirmation for each package. 

s~l~ctive A~k for confirmation for each file. 
Any of the other keywords accepted by pkg-load will also work. 

qld &optional rt'start-p 
qld is u~ed to generate a new Lisp Machine system after the cold-load i~ loaded in. 
If you don't know how to use this, you don't need it. If restart-p is non-nil, then 
it ignores that it has done anything, and starts from scratch. 

disassemble function 
function ~hould be a FEF, or a symbol which is defined as a FEF. This prints out a 
human-readable version of the macro-instructions in function. The macro-code 
in~truction set is explained on <not-yet-written>. 

print -disk -Iab~l 
TeJls you what is on the disk. 

set-cur rent-band band 
Sets which "band" (saved virtual memory image) is to be loaded when the machine is 
started. U~e with caution! 

set-current-microload band 
Sets which microload (MCR 1 or MCR2) is to be loaded when the machine is 
started. Use with caution! 

25.2 Querying the User 

y-or-n-p &optional stream message 
This is used for asking the user a que~tion who!\e am.wer is either "Yes" or "~o". It 
types out message (if any) and reads in one character from the keyboard. If the 
character is Y, T, or space, it returns t. If the character is N or rubout, it returns 
nil. Otherwise it prints out message (if any), followed by "(Y or N)", to stream and 
tries again. stream defaults to standard-output. 

y-or-n-p should only be used for que)tion~ which the u~er knows are coming. If 
the u~er is not going to be anticipating the que5tion (e.g., if the question is "Do you 
really want to delete all of your files?" out of the blue) then y-or-n-p ~hould not 
be used, because the user might type ahead a T~ Y, N, space, or rubout, and 
therefore accidentally answer the question. In such cases, use yes-or-no-p. 

DSK:LMMAN;FD.HAC 48 6-JAN-79 



Querying the U::-er 
264 Preliminary Lisp Machine Manual 

YE's-or-no-p &optional stream message Thi~ i::. u~ed for a~king the user a question whose answer is either "Yes" or "No". It 
type, out m('Ssage (if any) and reads in a line from the keyboard. If the line is the 
~tring"Ye~", it returns t. If the line is "No", it returns nil. (Case is ignored, as are 
leading and trailing spaces and tabs.) Otherwise it prints out message (if any), 
followed by 'Please type either "Yes" or "No'" to stream and tries again. stream 

default~ to standard-output. 

To allow. the user to am.wer a yes-or-no que~tion with a single character, use y-or
n-p. yes-or-no-p should be u~ed for unanticipated or momentous questions. 

setup-keyboard-dispatch-table array lists 
Several program~ on the Lisp \1achine accept characters from the keyboard and take 
a different action on each key. This function helps the programmer initialize a 

di!-patch table for the keyboard. 

array should be a two-dimensional array with dimensions (4 220). The first subscript 
to the array repre~ent~ the Control and Meta keys: the Control key is the low order 
bit and the ~teta key is the high order bit. The second subscript is the character 
typed. with the Control and ~eta bits stripped off. In other words, the first 
~ub~cript is the i.i.kbd-control-meta part of the character and the second is the 

i.i.kbd-char part. 

lists ~hould be a list of four lists. Each of these lists describes a row of the table. 
The elements of one of these lists are called items, and may be any of a number of 
thing!'. If the item i~ not a list, it is ~imply stored into the next location of the row. 
If the item is a list. then ib first element is inspected. If the first element is the 
symbol :rE'pE'at. then the second element should be a fixnum n, and the third 
element is ~tored into the next n locations of the row. If the first element is 
:rE'pfOat-fOval. it is treated as is :repeat except that the third element of the item is 

, a form which is evaluated before being put into the array_ The form may take 
advantage of the symbol si:rpcnt. which is set to 0 the first time the form is 
evaluated. and is increased by one every subsequent time. If the first element of an 
item i~ :eval, then the second element is evaluated, and the result is stored into the 
next location of the roW. Otherwise. the item itself is stored in the next location of 
the row. Altogether exactly all 220 locations of the row must be filled in, or else 

an error will be signalled. 

DSK:lM\iAN:FD.HAC 48 6-JAN-79 



., 
r 
t 

.j 

Preliminary Li~p ~tachine ~anual 265 Stuff That Doesn't Fit Anywhere Else 

25.3 Stuff That Doesn't Fit Anywhere Else 

time 
(time) returns a number which increases by 1 every 1/60 of a second, and wraps 
around at some point (currently after 18 bits' worth). The most important thing 
about time is that it is completely incompatible with Maclisp; this will get changed. 

defun-compatibility x 
Thi~ function is used by defun and the compiler to convert Maclisp-style defuns to 
Lisp ~tachine definitions. x should be the cdr of a (defun ... ) form. defun
compatibility will return a corresponding (defun •.. ) or (macro ... ) form, in the 

usual Lisp ~1achine format. 

set-error-mode &optional (car-sym-mode 1) (cdr-sym-mode 1) 
(car-num-mode 0) (cdr-num-mode 0) 

set-error-mode sets the four "error mode" variables. See the documentation of car 
and cdr (page 38) which explains what these mean. 

print-error-mode &optional mode stream 
This prints an English de!.'cription of the error-mode number mode onto the output 
stream stream. mode default!.' to the mode currently in effect, and stream defaults to 

standard-output. 

*rset flag 
Sets the variable *rset to flag. ~othing looks at this variable: it is a vestigial crock 

left over from ~1ac1isp. 

disk-restore &optional partition 
partition may be the name or the number of a disk partltlon contalOlOg a virtual-
memory load, or nil or omitted, meaning to use the default load. which is the one 
the machine loads automatically when it is booted. The specified partition is copied 
into the paging area of the disk and then started. Lisp-machine disks currently 
contain seven partitions on which copies of virtual-memory may be saved for later 

execution in this way. 

disk-restore asks the user for confirmation before doing it. 

disk-save partition 
partition may be the name or the number of a disk partltlOn contamlOg a virtual-
memory load. or nil. meaning to use the default load, which is the one the machine 
loads automatically when it is booted. The current contents of virtual memory are 
copied from main memory and the paging area of the disk into the specified 
partition, and then re~tarted as if it had just been reloaded. 

disk-save asks the user for confirmation before doing it. 

DSK:LMMAN;FD.HAC 48 
6-JAN-79 



Statu~ and SStatu~ 266 Preliminary lisp Machine Manual 

25.4 Status and SStatus 

The stat us and sstatus ~pecial forms exist for compatibility with Mac1isp. Programs that 
wish to run in both ~iaclisp and Lisp Machine Lisp can use status to determine which of 
the!'e they are running in. Also, (sstatus feature .J can be used as it is in Mac1isp. 

status Special Form 
(status fE'aturE's) returns a li~t of symbols indicating features of the lisp 
environment. The complete list of all symbols which may appear on this list, and 
their meanings, is given in the ~facli~p manual. The default list for the Lisp 
~ta(~hine i~: 

(sort fasload strings new;o roman trace grindef grind lispm) 
The value of this list will be kept up to date as features are added or removed from 
the Lisp \-Iachine system. ~tost important is the symbol Iispm, which is the last 
element of the list: this indicates that the program is executing on the Lisp Machine. 

(status fE'ature symbol) returns t if symbol is on the (status features) list. 
otherwise nil. 

(status nofE'ature symbol) returns t if symbol is not on the (status features) list, 
otherwise nil. 

(status status) returns a list of all status operations. 

(status sstatus) returns a list of all sstatus operations. 

sstatus Special Form 
(sstatus fE'ature symbol) adds symbol to the list of features. 

(sstatus nofeature symbol) removes symbol from the list of features. 

25.5 The Lisp Top Level 

The~e functions constitute the Lisp top level, and its associated functions. 

s'i :lisp- top -level 
Thi~ is the first function called in the initial Lisp environment. It calls lisp
reinitialize, clears the screen, and calls si:lisp-top-Ievell. 

lisp-reinitialize 
This function does a wide variety of things, such as resetting the values of various 
global constants and initializing the error system. 

DSK:L~tMAN:FD.HAC 48 6-JAN-79 



Preliminary Li~p ~iachine Manual 267 
The Lisp Top Level 

si:lisp-top-levell Thi, is the actual top level loop. It prints out ·"l0S FOOBAR" and then goes into a 
loop reading a form from standard-input. evaluating it. and printing the result 
(with slashification) to standard-output. If several values are returned by the form 
all of them will be printed. Also the values lof *. +. and - are maintained (see 

below). . 

break Special Form break is used to enter a breakpoint loop. which is similar to a Lisp top level loOp. 
(break tag) will always enter the loop: (break tag conditional-form) will evaluate 
conditional-form and only enter the break loop if it returns non-nil. If the break: 

loop is entered. break prints out 
;bkpt tag 

and then enters a loop reading. evaluating. and printing forms. A difference 
between a break loop and the top level loop is that after reading a form. break 
checks for the following special cases: if the symbol ~II is typed. break throws back 
to the Lisp top level. If ~p is typed. break returns nil. If (return form) is typed. 

break evaluates form and returns the result. 

- Variable While a form is being evaluated by a read-eval-print loop. - is bound to the form 

it~elf. 

+ Variable While a form is being evaluated by a read-eval-print loop. + is bound to the 

previous form that was read by the loop. 

* Variable While a form is being evaluated by a read-eval-print loop. * is bound to the result 
printed the last time through the loop. If there were several values printed (because 

of a multiple-value return), * is bound to the first value. 

lisp-initialization-list Variable The value of lisp-initialization-list IS a list of forms. which are sequentially 

evaluated by lisp-reinitialize. 

lisp-crash-list Variable The value of lisp-crash-list is a list of forms. lisp-reinitialize sequentially 

evaluates these forms, and then sets lisp-crash-list to nil. 

6-JAN-79 

DSK:lMMAN;TOPLEV 14 



Logging In 268 Preliminary Lisp Machine Manual 

25.6 logging In 

L0gging in tells the Lisp Machine who you are, so that other users c,an see who is 
logged in. you can receive messages, and your Ir-.;IT file can be run. An INIT file is a 
Lisp program which get~ loaded when you log in: it can be used to set up a personalized 
envirnnment. The init file is named user: .LlSPM (INIT) if you have a directory. 

\Vhen you log out, it should be possible to undo any personalizations you have made so 
that they do not affect the next user of the machine. Therefore, anything done by an I~IT 
file ~hould be undoable. In order to do this, for every form in the IN IT file, a Lisp form 
to undo it::- effects ~hould be added to the list which is the value of logout-list. The 
functions login-setq and login-eval help make this easy; see below. 

user-id Foriablt· 
The value of user-id is either the name of the logged in user, as a string, or else 
an empt), string if there is no user logged in. It appears in the ~ho-line. 

logout-list Variable 
The value of logout-list is a list of forms which are evaluated when a user logs 
out. 

• 
login name 

logout 

If anyone i~ logged into the machine, login logs him out. (See logout.) Then user
id is set from name. Finally login attempts to find your INIT file, It first looks in 
"user-id: .lISPM (INIT)", then in "(INIT): wer-id .lISI'M", and finally in the default 
init file "(I~IT): * .L]SPM". When it finds one of these that exists, it loads it in. 
login return~ t. 

Fir5t. logout evaluates the forms on logout-list. Then it tries to find a file to run, 
looking fir~t in "user-id: ,LSPM_ (IN IT)", then in "(IN IT); user-;d .LSPM_ lOt and 
finally in the default file "(INIT): * .LSPM_", If and when it finds one it these that 
exi~t~, it Joad~ it in. Then it sets user-id to an empty string and logout-list to nil, 
and returns t. 

IOlin-sE-tq Special Form 
login-setq i~ like setq except that it puts a setq form on logout-list to set the 
variabJe!- to their previous values. 

login-eval x 
login-eval is u~ed for functions which are "meant to be called" from ISIT files, 
such ~ eine:ed-redefine-keys, which conveniently return a form to undo what 
they did. login-eval adds the result of the form x to the logout-list. 

DSK:l~1MAN:TOPLEV 14 6-JAN-79 

I 
i 



Preliminary Lbp ~1achine Manual 269 Concept Index 

Concept Index 

~(··'7~,kbd fiel<is ........................................... ' .......•.............. 152 
area ...................................................................... 39. 123 
array ...................................................................... 10. 88 
array initialization ............................................................... 93 
array lea<ier ..........................................•.•.••.........•.•.. 91. 94, 99 
a!'~,)ciati<.)n lists ............................................•...•.....••...... 48, 52 
at()ln ................................................•........•..•..•......... 2, 9 
attribute ....................................................•......•..........• 62 
binding ...................................................•..•....•............ 5 
bl{)c k~ ........•....................................•.....•••.•.••.•..•...••... 62 
byte .......................................................................... 76 
byte ~pecifiers ......................................................•........... 76 
catch ...................................................... .; .................. 32 
cell ............................................................•...•......... 109 
character ()bject ........................................•......•............... 160 
character set ................................................•........•.••..... 151 
cleanup handlers ........... ' ..................................................... 34 
clo~ure ......................................................•...•......... 10. 102 
compiler ...................................................................•. 126 
c()ndition handler ................................... ' .. ~ ......................... 239 
con<iitional .............................................•...•.......•.......... 22 
con(iitions .................................................................... 238 
con~ ............................................................................ 9 
c()n~ v~ li~t ..................................................................... 40 
con~es ........................................................................ 37 
contr()l ~tructure ................................................................ 22 
data-type ..................................................................... 5, 9 
(iebuggt'r ..................................................................... 247 
dt',-~laring package~ ............................................................. 179 
definition .................................................................... 5. 59 
def~truct ...............................................•••..•..•.••.......... 144 
di!-embodied property list ...........................•............•..•............. 63 
di:-placed array .............................................................. 91. 93 
di~plac,ing macros .............................................................. 141 
d()tted list .................................................................... 158 
dcttted pair ..................................................................... 2 
eq versus equal ................................................................. 11 
error system .................................................................. 238 
evalhook ....................................................•................. 14 
evaluation .....................................................•............... 13 
exits ................................. ~ ........................................ 22 
fef ....................................................•.... ~ ..••••.•••••••.••• 6 
file .......................................................................... 193 

6-JAS-79 

, \\i., 
t'l,' < 

.. ~.~ 



Conct'pt Index 270 Preliminary Lisp Machine Manual 

fill p()inter ......................................••.....•...........•..•••...... 91 
flo,v ()f control ......................................•.....••...•.......••....•• 22 
f()nt ...................................................••....••..•.•.•••..... 213 
f 0 n t c () (11 pi I eo r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . • . . . . . . . . • . . . . . . . . . . • • . . . 237 

forrnatted output ..........................................•...•...••............ 85 
functi()n cell ............................................................•...... 59 
han(lIing c()nditions ........................................•....•..•.•..•.•.... 239 
han(t1ing t'rrors ...........................................•..•..•....•......... 238 
ha~ll tHhle ...................................................••..•••.•...•.••... 52 
index ()ff~et .......•...•••.••....••.•.••.•..•.•.••.•••••.•••••••••••••••••••• 92, 93 
indicator ............................................•...........•..•..•....... 62 
in<iirect array ...............................................•...•.•.•.. • .•.• 92, 93 
in(lirect array~ ..........................................••...•.•..•.......••.... 92 
in pu t an(l output .................................................•.••.......... 151 
input to tht' compiler ............... ~ ..........................................• 127 
intern ................ ' .........................................•.....•.....••.. 65 
iterati('In .........................................................•........•. 22, 25 
job .......................................................................... 199 
keyl)()ar(1 characters ......................................•....•..........•..... 152 
lanl bela li~ts ..........................................•..................••...... 6 
lexpr ..................................................................•.•••.... 18 
li~t~ ........................................................•...•........•.•... 37 
locative ..................................................•...............• 10, 109 
l(")ck ..................................................••...••.•.........••.••. 198 
macro (Iefining nlacros .......................................................••• 144 
macr()-defining macros ..................................•......•••..•...•.••...• 137 

macrfl~ ..................................................•......•.••..••..•... 135 
mapping .......................................................•••••.•.•....... 35 
multiple value ...........................................••....•.•..•.••.•..•••.. 19 
multiproce~:-ing ....... 0 • 0 •••••• 0 • 0 .0' •••••••• 0' ••••••••• 0 •••••• 0 ••••••••••••••• 195 
nanlE'(1 ~tructure ........ 0 •••••••• 00 ••••• 0 •••••• "0 •• 0 •••••••••••••••••••••••••••• 99 
namt'd-~tructure ........................................•..•.•.....•....••.•.•. 155 
namE'~ ~tructurE's ....................................•...•..•..••....•..••••.•.•. 91 
naming convention ............ 0 •••••••••••••••••••• 0 ••••••••••••••••••••••••••••• 9 
nil, u~e(l a~ a condition name ............ 0 ••••••••••••••••••••••••••••• • •••••••••• 241 
non-local E'xit ...................................•...•..•.••••.• • ••. • •.• • •• • • 22, 32 
number ..................... 0 •••••••••••••••••••••••••••• 0 ••••••••••••••••• 10, 68 
package ............................ 0 ••••••••••••••••••••••• 0 ••••••••••••••••• 176 
pac kage <lee larations ........ 0 •• 0 •• 0 ••••••••••••••••••••••• 0 •••••••••• 0 •••••••••• 179 
pc ppr ............... 0 •••••••• 0 •• 0 ••••••••••••••••• 0 ••••••••• 0 ••••••••••••••• 215 
piecE' of paper ................ 0 •••••••••••••••••••••• 0 ••••••••••••••••••••••••• 215 
pp~~ .................................................................... 0 ••••• 76 
prt'dicate ...................................................... 0 •••••••••••••••• 9 
print name .................... 0 ••••••••••••• 0 0 •••• 0 ••••••••••••••••• 0 •••••••• 5. 64 
printer ...................................... 0 ••••••• 0 ••••••• 0 ••••••••••••••• 0 154 
process ............................ 0 • 0 •••••••••••••••••••••••• 0 ••••••••••••••• 195 
property li~t .................................................................. 5, 62 

6-JAN-7q 



I ._! 

Preliminary Li!'p Machine Manual 271 Concept Index 

qu()te ...........................................................•............. 15 
reader ......................................................•................ 156 
re('ursion ..................................................••.•................ 22 
re~umer ................................................. ~ .................... 105 
returning multiple values ..................................•.....•..•............. 19 
S-expre~~i()n .............................................•..•.•..•.............. 2 
sche(luler ..........................................•............•............. 195 
~creen .......•...........................................•..•.........•.....• 210 
~et ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 48 
~ignaller .........................................•........•.......•..•....•... 239 
signalling conditions ..........................•...••••.•........•...•.•......... 239 
signalling error~ •....................•.......•...••••..••..•••• ~ ••.•••... ' ...... 241 
sla~hificati()n ....................................•.............••••..••••...•.. 154 
~orting .......................................•....•........••..••.••••.......• 55 
~tack .group ..........•............................•••..••..•.•.••••.•.• • .•. 89, 105 
string ........................................•...••....•••••.•...••••..••.. 10, 79 
structures. ' ..........................................•.•.•...•...•.•.......••.. 144 
~ubprimitives .............................................•.•.•......•.......... 111 
~ubscript ........................................•........•.................... 88 
::.ubstitution ...................................................•..........•..... 47 
symb()l .................................................................... 5. 9. 56 
thr()\v ................................................ ~ ........................ 32 
tv ..............................................................•......... 89,210 
tv()b ............................................•..............••............ 199 
types of arrays .................................................•..........•..... 88 
un \vind protection .................................•...•.............•.......... 34 
un \vinding a s.tack ................................................................ 34 
value cell. ...........................................••••.•••.••.•.....•..••... 57 
\vait .............................. ' .....................•..•.........•.•.•.... 195 

6-JAN-79 

! .' \ I 



, -t. 

I 

Variable Index 272 Preliminary Lisp Machine Manual 

Variable Index 

~~t;"cc h-c har .......... 0 • 0 • 0 0 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 ••• 0 • 0 0 • 0 ••••••••••••••••••••••••••• 151 
\'c·<;;,t: 11-f()n t . . . . . • • . . . . • . . . • . . • • • • . . . • • • . . • • • • . • . . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 152 
t;"r<";c·kb(l-,,-har ................ 0 ••••••••• ~ ••••••••••••••••••••••••••••••••••••••• 152 
~'\,;·kbd-control ............................ 0 ••••••••••••••••••••••••••••••••••• 152 
<;~,t;;·kbd-c()ntr<.)l-meta .................... 0 ••••••• 00 • 0 0 0 0 0 • 0 •••• 0 0 •••• 0 •••••••••• 152 
~~~rkb(I-lneta .......... 0 0 ••••• 0 0 •• 0 0 •••••• 0 0 • 0 • 0 •• 00' • 0 •••• 0 0 • 0 ••••••••• 0 •••••• 152 
<";~r,(·kb(l-In()u~e 0 • 0 •• 0 ••• 0 •• 0 0 0 0 •• 0 0 ••• 0 0 • 0 • 0 • 0 •• 0 • 0 ••••••••••• 0 ••••••••• 152
\'(·\,~'kb(1-n10u~e-butt()n 0 • 0 •• 0 • 0 • 0 0 • 0 • 0 0 • 0 •••• 0 • 0 ••••••••••••• 0 ••• 0 ••• 0 ••••••• 152
~r~·kb(l-Inou~e-n-clicks. 0 • 0 0 ••••••••••• 0 ••••••••••••• 152
~'err()r-han(ller-~tack-group. 0 ••• 0 •••••••••••••••••••••••• 0 0 0 ••••••• 0 • 0 • 0 ••••••••• 120
t;'rinitial-!-tack-group ... 0 ••• 0 0 • 0·, • 0 0 ••• 0 0 ••• 0 • 0 0 • 0 • 0 0 • 0 ••••••••• 0 0 ••••••• 0 ••••••• 120
\'c 111- fl a g ~ . . . 0 • • 0 • • • • • • • 0 • 0 • 0 0 0 0 0 0 0 0 0 • 0 0 • • 0 0 0 • • • 0 0 0 0 • 0 0 • 3 8
<:7crnar-high .. 0 ••• 121
<;'cmar-Jo\v 0 0 0 0 0 0 0 ••• 0 •••••••• 00. 00 ••••••••.••••• 0 ••• 0 •• 0 ••••• 121
t;1·method-class 0 0 0 0 0 •••• 0 •• 0 • 0 • 0 •••••••• 121
<:7cmicroc()de-ver~ion-number. 0 0 • 0 •• 0 •• 0 0 0 • 0 ••••• 0 000 •••• 0 0 • 0 0 0 0 ••••• 0 •••••••••••• 119
t;tc~elf 0 ••••••••••••••• ~ •••••• 0 •••••• 0 •••••••••••••••• 121
* 0 0 0 0 • 0 0 0 0 0 • 0 •• 0 0 0 • 0 • 0 • 0 ••••• 0 ••••••••••••••••••• 0 ••••••••••• 261
*nopoint 0 ••••••••••••••••••••••••••••••••• 0 •• 0 155
*rset 0 ••• 0 0 ••• 0 •• 0 ••• 39
+ 0 0 • 0 ••• 0 • 0 •••• 0 • 0 • 0 •• 0 •• 0 • 0 ••••• 0 ••••• 0 ••••••••• 267
- ••••••••• 0 ••• 0 ••• o. 0 0 0 • 0 • 0 •• 0 0 • 0 0 •••• 0 •• 0 • 0 •• 0 0 • 0 0 • 0 0 •••••••••• 0 ••••••••••••• 261
all-~pecial-::-\vitch 0 0 •• 0 ••••• 0 •••••• 00 •• 0.00.00 •••• 00 ••• 0.0.0 •••• 131
allow-variables-in-function-position-switch 0 ••• 0 0 • 0 • 0 0 0 • 0 •••••••••••••••••••• 0 0 •••••• 131
area-list 0 ••• 0 •••• 0 0 •••• 0 ••••••••••••••••••••••• 0 ••••••••••••••••••••••• 124
area-name .. 0 •••••• 0 • 0 •••• 0 0 • 0 0 0 •• 0 0 0 0 •••••••• 0 • 0 0 0 0 •••••••••••••••••••••••••• 124
array-bit!,-per-elernent. 0 •••••••• 0 0 0 0 • 0 •• 0 0 0 0 0 0 0 0 0 • 0 0 0 0 ••••••••••••••••• ' •• 0 •••••••• 88
array-elements-per-q 0 •••••••••••• 0 •••••• 0 •••••• 0 •• 0 •••• 0 • 0 ••••••••••• 0 ••••• 88
array-type~ ... 0 • 0 ••••••• 0 ••••••• 0 0 •••••••• 88
base 0 ••••••••••••••••••••• 0 •••••• 0 •••••••••••••••••••••••••••••••••• 154
car 0 ••••••••••••• 0 ••••••• 0 • 0 ••••••• 0 •• 0 0 • 0 • 0 0 ••••••••••••••••••••••••• 39
cdr 0 • 0 •••••• 0 • 0 0 ••••••••••• 0 •• 0 •••••••••• 0 •••••••••••••••••••••••••••••••••• 0 • 39
default-array-area ... 0 •••••••• 0 0000 •• 0 •• 0 0 •• 0 •••••• 0 0 •••••••• 0 '0' •••• 0 .00 •••• 000 124
<lefault-cons-area 0 •••• 0 • 0 ••• 0 •••••••••••••••••••••••••••• 0 • 0 • 0 ••• 0 0 • 119, 124
error-output ... 0 ••••• 0 •• 0 ••••••••• 0 •••••••••••••••••••••••• ~ • 0 ••••••••• 0 •••• 0 • 168
err~et 0 0 •• 0 •• 0 •••••••• 0 •••••• 241
evalll()()k . 0 ••••••••• 0 •••• 0 ••••••••••••• 0 •• 0 ••••• 0 ••••• 0 ••••••• 0 ••••• 0 ••••• 0 0 ••• 20
file-error 0 ••• 0 •••••••••• 0 ••••• 00 ••••••••••• 0 ••••••••••••••• 0 ••• 0. 0 ••••• 00 ••••• 172
iba.;;e 0 ••••••••••••••••••••••••••••••• 0 ••• 0 ••••••••••••••••••••••••••• 0 ••• 157
inhibit-~cavenging-flag .. 0 ••••••••• 0 • 0 •• 0 •••• 0 •••• 0 •••• 0 •••••••••• 0 ••••••••••• 0 •• 122
inhibit-scheduling-flag 0 •••••••••••••••••••••••••••••••••••••• 0 •••••••• 122
inhibit-style-warnings-switch•.... 0 ••••••••••••••• 132
job-list 0 ••••••••••••••• 0 •••••••••••••••••• 0 ••••••• 0 0 ••••• 0 ••••••••••• 209

~r'r"~:"':"""""''''''''~~''«''<J ."

Preliminary Li~p Machine Manual 273 Variable Index

kbd-:;.jlllulated-ciock-fcn-list '•................ 235
kbc}-:.-uper-image-p ...•.......... 235
li!'p-c ra~h-li~t•........••...............• 261
li~p-initialization-li$t ..•.......••........ 261
I()g()ut-li~t ...•....•....•.... 268
macf()-colnpiled-program••.•........•.............. 125
ob:.-olete-function-warning-switch ... 131
()p~n-c()(le-nlap-s\vitch•.•........•••......•... 131
package ...•.•.••....••...••.....••••. 183
pernlanent-storage-area ..•.............. 125
prinlength ..•.•..••......•.•.•........ 156
prinlevel ...•........•....•...••...... 156
q-data-type~•.......................................•..•...•.•...•...... 113
q uery-i<.) ..•...•..... 168
rea(ltable ...•...•..•..•............. 160
retain-variable-nanleS-s\vitch•••...•...•..•. 132
r()Olll ..••.•..•••••.....•. 262
rubout-handler-control-character-hook••...•.•....... 115
run-in-lnacli~p-s\vitch••.•.•.•.••.....•...... 131
si:t~'c--aging-rate ..•..••.•.....•...... 121
si:C-:~',c0unt-age-flushed-pages .. 121
si:<;'~·c()unt-aged-pages•........................ 121
si:<:';,c()unt-disk-errors ... 121
si:~;'count-di~k-page-reads•.•................. 121
si:<;(·count-di~k-page-'\frites••..........••...... 121
~i:~~'count-fir~t-Ievel-map-reloads•...................•...... 120
si:<;~·c()unt-fresh-pages•......................•... 121
$i:<;~'count-pdl-buffer-memory-faults .. 121
si:<;;-·count-pdl-buffer-read-faults ... 120
si:<;;'·count-pdl-butfer-write-faults .. 120
~i:<;'(,count-second-level-map-reloads•............. 120
~j:q,current·stack-group ...•....... 106, 120
~i:~;,current-stack-group-calling-args-number ... 120
!'i:~r·current-~tack-group-calling-arg~-pointer•......... 120
si:<;;·current-stack-group-previous-stack-group•..........•......... 105, 120
~i:<;(·current-stack-group-state ... 120
si:~f-.initial-fef .. 120
si:<7·('tnar-high ..•.....•.....•. 251
si:<;~·nlar-Io'\f•............................. 251
si:<;(·trap-micro-pc "•....•..•...•...... 120
::;.i:randoln-array•.••......••.•••.•..•..•....••. 74
si:rubout-handler ..•.. 175
standard-input ...•.........•..•.........• 168
standard-output ...•.............. 168
5>),5>:<;e:number-of-micro-entries .. 119
sy~:nr-sym ..•........•.•.........•.. 125
sys:p-n-string .. 125

6-JA~-79

Variable Index 274 Preliminary Lisp Machine Manual

terminal-io•...........•.......•..••••••.•••.•••••••.•• 168
trace-c()nlpile-flag•••..•••.•••.••••••••.• 255
tv-al u -an(lc a•...................•......•...••.•••.•••.•. 224
tv-alu-ior ..••..•••.•.•••.. 224
tv-alu-~eta•.•..•....•.......•••.••.•.•.••..•.•..••••• 224
tv-al u -x()r•...............................••••••.••••..•.. 224
tv-beep•...••......•............•.....••••••••.••....•. 219
tv-beep-(lur<lti()n•................•.•..•••••••••.••••••••••.•• 236
tv-bet>p-\vavelength•.....................•••..••.•.••••••.•••... 236
tv-b)inker-)i~t .. , " .••.•..•.••.• .; •.. ,236
tv-default-screen•.......................•...••.•.....••••••••••••• 212
tv-m()re- pr()l'essing-giobal-enable•...•...........•...•.••••••••••••••••..••.• 236
tv-pc-ppr-list ...•....•••••••.••••••••..•. 236
tv-roving-blinker-li~t••..•...••.••.••••••...••.••.•. 236
tv-\vhite-()n-black-~tate•........••...•.•...•...•.•••• 236
tv-\\'h()-line-list ...••.••...••.....•• 228
tv-\\'h()-line-pc-ppr•................•......•.••••••..•.••.••••. 228
tv-\\'h()-line-process•.•.•.•••.••.••..•••.••••• 229
tv-\,'h()-! ine-ru n-light-Ioe••••..•.•.••••.•••••..•• 229
tv-\\'11()-line-run-~tate ..•••••.••.••••..••.• 229
tv-\,,110-line-state ...•••••.••.•.••••••••. 229
tv-\vho-line-stream•.......................•.•.••••••••.••••.••••. 228
tvob-complete-redisplay•.....••..••••••...•••.••••• 208
user-id ... '••••••••..••••••••••••• 268
working-~torage-area•.•...•....••••.•••..•• 125

6-JAN-79

Preliminary Li~p ~1achine ~anual 215 Function Index

Function Index

:F •.......••.•••••••••••••••.••••..• 11
:$ •••..•.•.••••••••••••••••••••••••• 11
~ 10
t;;'24-bit-ditference 18
~('24-bit-plu:- 18
<;'~'24-bit-times 18
~;'allocate-and-initialile 113
~'allocate-and-initialize-array 113
~rarea-number ' 124
~·(",arg:--inf() 62
~(,data-type 114
q·divide-double 18
<;;,find-structure-header 114
~Hloat-d()uble 18
Cit'halt 118
~'~'l()g(lpb 11
<;~·logldb 11
~'make-pointer ~ 114
~·make-pointer-offset 114
~~'multipl)'-fractions 18
~('p-cdr-code 111
o/t,p-contents-as-locative 116
~'p-content5-as-locative-offset 116
q(O,p-contents-offset 115
~(,p-data-type 111
~(.p-depo~it-field 111
~·(·p-deposit-field-offset 111
~;'p-d pb ~ 111
~cp-dpb-ofhet 111
~cp-ftag-bit 111
~(-·p-l(lb 116
<;c·p-Idb-()ff~et. 116
<;;.p-ma~k-field 111
~'p-mask-field-offset 111
C:c'p-pointer 111
<;;"p-:-tore-cdr-code 118
<;;'p-~tore-contents 116
~cp-store-contents-offset. 116
q~'p-~tore-data-type 118
o/t,p-store-ftag-bit 118
o/cp-store-pointer 118
t;cp-!."tore-tag-and-pointer 116

%pointer 114
%pointer-ditference 114
%region-number 124
%remainder-double 7 8
%stack-frame-pointer 118
o/c·store-conditional. •................. 115
t;f.structure-boxed-size 115
%structure-total-size 115
%unibus-read•.•............. 115
o/cunibus-write i 15
qcxbus-read ,•...•.. 115
%xbus-write 115
* 71
*$•..•...•.•.•....... 71
*array•................ 101
*catch 32
*dif 73
*expr•................... 130
*fexpr 131
*lexpr•..•................. 131
*plus•.................. 73
*quo•.................... 73
*rset 265
*throw 33
*times 73
*unwind-stack 34
+ 71
+$•.•.....•.......... 71
- 71
-$••..•••............. 71
/ /•............. 71
/ /$ 71
1+••...•••••..•.•......•.... 72
1 +$•...........•............. 72
1- ••.••••••••••••••.••••...•••••.••• 72
1-$•.•...••..................• 72
:color 211
:exposed 200
:gray•.............•.. 211
:selected 200
:sideways•................... 211
<•................ 70

6-JAS-79

1

___ .l�Wl!

Function Index

<- 00000000000000000000. o. 000000000071
I: .00 .. 0 •. 0.0. 0.' 0 0 0 0 0 0 0.0.0000.0 ... 70
> 000.0 .. 00000.00. 0 0 0.00000000000.0.70
>= 00 .. 0 .. 0 0 0 0 0.0. 0 0000. 0 .. 0. 000000.70
C!!define. 0 00' 0 0 0 . 0 0 0 • 0 0 .0000 ..•. 0 0 •. 0 16
ab~ 000. 0 0 •. 0 .. 0 • 0 000000 •.. 0 .•••..... 73
adell ... 0 0 0 0 0 0 0 0 0 . 0 0 0 0"0 •••. 0 0 0 0 0 • 0 0 0 0 72
adju~t-array-~ize 0 0 0 0 0 • 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 94
al()c . 0 .. 0 0 •.. 0 0 •.. 0 0 0 • 0 0 0 . 0 0 0 . 0 . 0 0 •. 95
atphale:::.!'p 0 .•. 0 . 0 ..• 0 0 0 . 0 0 0 ..•.•••.•. 84
and 0 ... 0 . 0 0 0 0 00 ..• 0 0 0 . 00000. 0 0 0 • 22
ap-l 0 . 0 0 0 ... 0 0 •• 0 ••• 0 0 •.• 0 •• 0 ... 95
ap-2 0 .. 0 . 0 • 0 0 ..• 0 ...• 0 ••.• 00' 0 0 •.... 96
ap-3 0 ..•. 0 00.00 •.. 0 0 . 0 0 . 0 0 0 0 0 0 0 0 • 0 0 . 96
ap-leader 0 0 0 •.. 0 0 0 0 ••.... 0 ..•... 99
appen<l .. 0 .. 0 .. 0 .••.•. 0 .. 0 .••.. 0 0 ..• 0 43
apply •.....•••...• 0 0 • 0 . 0 • 0 •.. 0' 0 •. 0 0 14
apr0pC)~ . 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 • 0 . 261
ar-l •. 0 . 0 0 0 0 0 • 0 0 0 .•... 0 0 0 0 • 0 0 0 0 • 0 • 0 0 95
ar-2 . 0 0• 0 .• 0 • 0 • 00 0 • 0 0 0 0 . 0 0 0 •• 0 0 0 95
ar-3 .. 0 0 . 0 0 0 . 0 0 ..• 0 0 0 . 0 . 0 •• 0 . 0 0 ••• 0 . 95
area-narne 0 0 0 •••••..•••. 0 •••.••.•• 0 • 124
aref 0 .. 0 •••..• 0 •••••.• 0 0 0 0 0 0 •• 0 0 • 000 95
arg. 0 • 0 0 0 0 . 0 .. 0 .. 0 0 •• 0 0 • 0 0 0 0 0 000000. 18
argli~to •. 0 . 0 000 0 . 0 0 0 00000. 0 0 0 0 • 0 0 • 0 0 0 61
arg~-info .. 0 • 0 0 0 0 • 0 •• 0 •••.••• 0 ••••••• 61
array. 0 0 . 0 .•••• 0 ••••••••••.•••••••. 101
array-/#-dirn~ 0 ...•• 0 •••• 0 • 0 •••• 00' 0.097
array-acTive-length . 0 ••• 0 •••••.•••• 0 • 0 100
array-bit~-per-element. •••••• 0 •.•••••••• 88
array-dimen~ion-n 0 ••• 0 ••••• 0 • 0 •••••••• 97
array-dimen~jon~. 0 ••• 0 ••••.••••••••••• 97
array-di!-placed-p. 0 0 0 ••••.•• 0 • 0 •••••••• 94
array-elernent-~ize 0 •••••••••••••••••••• 88
array-element~-per-q •• 0 • 0 • 0 . 0 ••••• 0 ••• 0 88
array-ha~-Ieader-p 0 0 •• 0 0 0 0 ••. 0 0 ••••.•• 0 99
array-jn-bound~-p • 0 0 • 0 0 ••••. 0 0 ••••• 0 0 0 97
array-indexed-po 0 0 . 0 0 0 •• 0 0 . 0 •• 0 •• 0 •••• 94
array-indirect-po 0 •••• 0 • 0 ••.••••••••••• 94
array-leader .••••• 0 •••••••••• 0 ••.• 0 0 •• 99
array-leader-length 0 . 0 .• 0 0 0 • 0 0 •••.•.•• 0 99
array-length 0 .. 0 0 . 0 0 . 0 .••.. 0 0 •• 0 0 0 0 • 0 . 97
array-popo 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 • 0 0 0 • 100
array-pu~h .. 0 0 0 0 0 • 0 • 0 •••.• 0 • 0 •••. 0 0 0 100
array-pu~h-extend ..• 0 0 0 0 .• 0 0 0 0 0 • 0 0 0 0 0 100
array-type 0 0 0 0 0 0 0 0 . 0 . 0 0 0 0 •• 0 0 0 . 0 . 98

276 Preliminary Lisp Machine Manual

array-typeso •••••••••••••••••••••••••• 88
arraycall. • 0 0 0 •••• 0 •••••••••• 0 • 0 ••• 15, 96
arraydimso ••••••••• 0 ••••••• 0 •• 0 •••• 0 0 97
arrayp . 0 0 0 ••••• 0 ••• 0 •• 0 ••••••••••••• 10
as-I 0 ••••••••••••• ' •••••••••••••• 95
as-2 o. 0 0 •••••••••••••••••••••••• ' •••• 95
as-3 o. 0 •••••••• 0 •••• t •••••••••••• 0 ••• 95
a.<;cii •.•••••••• 0 •••••••••••••••••. 0 .• 84
aset .•••.••••••••••••••••••••••••.•• 95
ac;,s 0 • o ••••••••••••••••••••••••••• 0 •• 53
assoc•...•..•.••••..•......•...• 53
assq . 0 ••••••••••••••••••••••••••••• 0 52
atomo 0 0 •.••••••••••••••••••••••••••• 0 q

bigp 00 ••.•••••••••••••••••••••••••••• 9
bind 0 0 0 0 •••••••••••••••••••• o •••••• 118
bit-test. 0 ••••••••••••••••••••••• 0 ••• 0 75
bitblt 0 0 • 0 0 0 0 •••••• 0 •••••••••••••••• 226
boole 0 0000 0 ••••••••••••••••••••••••• 75
boundp ••••••••••••••••••••••••••••• 58
break 0 0 0 0 • 0 •••••• 0 ••••••• 0 '. 267
butla. .. t 0 • 0 ••••••••••••••••••••••••••• 45
C •• or •• 0 •••••••••••••••••••••••••••••• 39
caaaar •••••••••••••••••••••••••••••• 39
caaadr •••••••••••••••••••••••••••••• 39
caaar ..••••••••••••••••••••••••••••• 39
caadar •••••••••••••••.•••••••••••••• 39
caaddr 0 ••••••••••••••••••••••••••••• 39
caadr .• 0 .••••••••••••••••••••••••••• 39
caar 39
cadaar •••••••••••••••••••••••••••••• 39
cadadr 0 0 •••••••••••••••••••••••••••• 39
cadar ••••••••••••••••••••••••• ' .••••• 39
caddar •••••••••••••••••••••••••••••• 39
cadddr •••••••••••••••••••••••••••••• 39
caddr ••••••••••••••••••••••••••••••• 39
cadr. 0 • 0 •••••••••••••••••••••••••••• 39
car •• 0 •••.•••••••••••••••••••••••••• 38
car-location •••••••••••••••••••••••••• 40
catch ••••••••••••••••••••••••••••••• 34
catch-all. •••••••••••• ~ ••••••••••••••• 35
cdaaar •••••••••••••••••••••••••••••• 39
cdaadr •••••••••••••••••••••••••••••• 39
cdaar ••••••••••••••••••••••••••••••• 39
cdadar •••••••••••••••••• ! 39
cdaddr.· ••• 0 ••••••••••••••••••••••••• 39
cdadr ••••••••••••••••••••••••••••••• 39

6-JAS-79

Prt?liminary Lisp Machine Manual

cd'ar 39
cd(iaar 39
cddadr 39
cddar .•............................. 39
cdddar•...................... 39
cddddr•...................... 39
c(l(i(ir•................... 39
cddr 39
cdr. 38
cerr()r 242
char-downcase .•..................... 81
char-equal ',' ... 79
char-lessp 79
char-upcase•.... 81
character 79
check-argo•.................. 244
circular-list 43
clear-mar 257
clo~e•......................... 172
clo~ure 104
clo!.'urep 10
conlment .•.......................... 15
conlpile 126
compiler-let.•................. 132
cond 23
condition-bind .•.................... 239
cons 39
con~-in-area 39
copy-array-contents 98
copy-array-contents-and-Ieader .•....... 100
cop)'~ymbol 66
cursorpos 162
data-type III
declare 129
define-area 124
defmacro·.·•........ 137
defmacro-displace 142
defprop ...•........•................ 64
def~truct 147
defun•..... 59
defun-compatibility 265
defunp 32
del•...... 50
del-if 51
del-if-not 51
delete 50

277 Function Index

delq 50
deposit-field 77
describe 261
desctibe-area 262
describe-file 262
describe-package 262
difference 71
disassemble 263
disk-restore 265
disk-save 265
dispatch 25
displace 142
do 27
do-named , 30
dpb 77
dribble-end 261
dribble-start 260
ed 259
edprop 259
edval 259
enable-trapping 252
eq 11
equal•..................... 11
err 247
error 243
error-restart. ..•...........•......... 243
errset•...... 247
eval•...•....... 13
eval-when•...••..... 129
evalhook•..........•....... 14, 20
every•. 51
explode 162
explodec 162
exploden 162
expt•................ 72
fasload _ . 194
fboundp 59
ferror 242
fifth 41
file-command 172
file-command-careful 172
file-default-fn2 173
file-error-status 172
file-exists-p 173
file-expand-pathname 173
file-mapped-open 172

6-JA"-79

Function Index 278

file-qfasl-p 173
file-~t't-fn2 173
fillarray 98
find-p()~ition-in-li5t 54
find-po~ition-in-lbt-equal 55
first 41
fir~tn 46
fix 73
fixp 9
flate 163
flat~ize 163
float -............ 73
floatp 9
fmakunbound 59
font-ba::-eline 214
font-blinker-height 215
font-blinker-width 215
font-c har-height 214
font-e har-width 214
font-char-width-table 214
font-indexing-table 214
font-left-kern-table 214
font-name 214
font-nexT-plane 215
font-ra~ter-height 214
font-ra~ter-width 214
font-ra~ters-per-word 214
font-words-per-char 214
force-kbd-input 235
format 85
fourth 41
freturn : 34
fset 59
f~et-carefu l1y .•••....••••.•.•.•••.••.. 60
f~ymeval. 59
funeall•.... 14
function 15
function-cell-location 59
g-l-p 96
gcd 72
gensym 66
get 63
get-lbt-pointer-into-array 96
get-Iocative-pointer-into-array 96
get-pname 39, 65
getchar 84

Preliminary Lisp Machine Manual

getcharn••...•.• 84
getl.•......... , 63
globalize•.••••.••.• 189
go•••....••••••••••••••• 30
greaterp•.•..•.....•..••..••••.•. 70
haipart•.•..•••••...•....•.. 76
haulong•....•...•...•..•.. 76
if• 0 ••• 0 •• 0 ••••• 24
if-for-lispm•...•.........•..•... 134
if-for-maclisp•...•..•....•... 134
if-for-maclisp-else-lispm •......•....... 134
if-in-lispm•..•........... 134
if-in-maclisp 0 ••••• 134
implode•..... 84
inhibit-style-warnings 0 •••••••••• i 32
intern•.•.....• 0 ••••••••••• 184
intern-local•..••. 0 •• 0 ••••• 184
intern-local-soft. 0 •••••••••••• 0 •••• 0 • 0 184
intern-soft 0 ••••• 0 •• 0 0 •• 0 ••• 0 ••• 184
job-create•........ 0 •• 0 •• 0 •• 0 •• 209
job-enabled-processes 0 ••••••••• 202
job-enabled-tvobs••..•..... 202
job-forced-input 0 •••••••• 0 0 ••• 203
job-forced-input-index .. 0 •• 0 ••• 0 ••• 0 •• 203
job-kill•.... 0 • 0 ••••• 0 0 •••• 0 ••• 0 • 209
job-name 0 • 0 •••••••• 202
job-process-enabled-p ...••.. 0 ••••••• 0 0 202
job-processes•...• 0 •• 0 • 0 •••••• 0 •• 202
job-reseT-processes •....• 0 •••• 0 •• 0 •• 0 • 209
job-return•• 0 • 0 • 0 ••••••• 0 • 0 0 0 0 •• 209
job-select.•...•... 0 0 •••••• 204, 209
job-set-process-state 0 •••••••••• 0 •••••• 204
job-set-tvob-state• 0 ••••••••••••• 0 • 204
job-tvob-enabled-p 0 •••• 0 ••••••••••••• 202
job-tvob-selector 0 0 • 0 • 0 0 •••• 0 • 0 •• 203
job-tvob~•..... 0 202
job-who-line-process .•• 0 •••••••••••••• 203
kbd-char-available•........ 235
kbd-tyi o •••••••••••• o ••• 235
kbd-tyi-no-hang ..•....•.. 0 • 0 ••••••••• 235
last 0 •••••• 0 ••• 40
ldb 0 ••••• 0 •••••••••••• 25, 77
Idb-test•..•..•......•.•• 0 ••••••• 75
ldiff•....••...•.••....••... 46
length 0 •••••••••••••••••• 0 0 • 40
lessp 0 •••• 0 ••••• 0 ••••• 0 0 0 0 • 0 • 0 •• 70

6-JAN-79

Preliminary Lisp Machine Manual 279

let 17
let-do~ed 104
let-globally ' 35
lexpr-funcall 14
li~p-reinitialize 266
list 42
li~t* 42
list-in-area 42
li~tarray 98
li!-tify 18
li~tp 9
Ic)ad 193
local-declare 130
h)cativep 10
locf 146
l()gan(i 75
Ic)gin 268
login-eval 268
login-~etq 268
l()gi()r 74
l()£c.)ut 268
I()gxor 74
Ish 75
Isubrcall 15
Inacro 60
macroexpand 143
macrnexpand-l 143
rnake-array 93
make-array-into-named-structure 99
make-list 42, 113
make-stack-group 0 •• 0 •••••• 107
make-symbol 66
make-syn-stream 169
maknam 84
makunbound 58
rnap 35
mapatoms 185
mapatoms-all 185
rnape 35
mapcan 35
mapcar 35
fnapcon 35
maplist 35
nlar-nlode 257
mask-field 77
max 72

Function Index

mem 0 ••••• 50
memass 53
member 0 •••••••••••••• 0 ••••••••• 49
memq•.................. 49
mexp 0 ••••••• 0 •••• 0 ••••••••••• 141
min•............. 0 •• 0 • 0 •••• 72
minus 0 •••••••••••••••• 73
minusp•......... 69
multiple-value 0 •••••••••••••• 19
multiple-value-call 0 ••••••••••••••• 19
multiple-value-list .•.••....••..•....... 19
multiple-value-return ..•...••.......... 19
named-structure-p•.....•........ 99
named-structure-symbol ..•.•........... 99
nbutlast•........ 46
nconc o• 0 ••••••••••••• 44
ncons•.•.••... 0 •••• 39
ncons-in-area•••........ 40
neq 11
nil•.••..•......... 200
nlistp•....•...... 9
not•.......•... 12
nreconc 45
nreverse•.............. 44
nsubstring 0 • 0 •••• 0 ••• 0 0 • 80. 92
n~ymbolpo .•. 0 0 • 0 • 0 ••• 0 • 0 0 • 0 ••••••••• 0 9
nth 0 0 • 0 • 0 ••• 0 0 ••• 0 •••••• 0 0 • 0 41
nthcdr .00.0000 ••••• 0 •• 0 0 •••• 0 •• 0 •• 0 • 42
null 0 ••• 0 • 0 0 0 0 • 0 0 ••• 0 •• 0 0 ••• 0 ••• 0 0 •• 12
numberp 0 0 .0 ••• 0 •• 0 •••••••• 0 •••• 0 ••• 10
oddp 0.000.·0 •• 00 • 0 •• 0 •• 0 0 0 ••• 69
open 0 0 0 0 0 0 00. 0 •• 0 •• 0 0 • 0 0 • 0 ••• 171
or 0 •••• 0 ••••• 00 •••• 0.0 •• 0 23
package-cell-location 0 • 0 ••• 0 0 • 0 •••••••• 67
package-declare .. 0 •• 0 • 0 • 0 •••• 0 0 ••• 0 0 18 1
pairlis 0 0 ••••• 0 0 •• 0 0 0 ••• 0 0 •••• 0 0 • 54
pc-ppr-baseline ... 0 0 0 ••••• 0 •••• 0 0 0 ••• 21 7
pc-ppr-baseline-adj . 0 0 • 0 0 •• 0 0 • 0 ••••••• 218
pc-ppr-blinker-list .. 0 ••••• 0 0 0 0 0 •• 0 • 0 0 • 218
pc-ppr-bottom 0 0 • 0 • 0 0 •••• 0 0 0 0 • 0 0 0 •• 0 0 216
pc-ppr-bottom-limit. .. 0 • 0 0 •• 0 •••• 0 •• 0 • 216
pc-ppr-bottom-margin. 0 ••• 0 •• 0 •• 0 ••••• 216
pc-ppr-char-aluf ...•. 0 •••• 0 0 • 0 0 0 ••• 0 • 218
pc-ppr-char-width .. 0 ••••••••••• 0 0 • 0 0 • 218
pc-ppr-current-font .•. 0 0 • 0 •••••••••• 0 • 217
pc-ppr-current-x ... 0 • 0 •••••••• 0 •••••• 216

6-JA~-79

Functinn Index 280

pc-ppr-current-y 217
pc-ppr-end-line-fcn 218
pc-ppr-end-line-flag 217
pc-ppr-end-page-flag. j •••••••••••••••• 217
pe-ppr-end-~creen-fcn 218
pc- ppr·era~e-aluf. 218
pe-ppr·exl'eption~ 217
pe-ppr-flag~ 217
pc-ppr-!nnt-map 217
pe-ppr-l~ft 216
pc-ppr-left-margin 216
pc-ppr-line-height 218
pe-ppr-more-fcn 218
pc-ppr-more-flag 217
pc-ppr-more-vpo~ ' 217
pc-ppr-name 216
pc-ppr-0utput-hold-fcn 218
pc-ppr-output-hold-flag 217
pc-ppr-right 216
pe-ppr-right-limit 216
pc-ppr-right-rnargin 216
pc-ppr-~creen 216
pc-ppr-~ideways-p 217
pc-ppr-tf'p 216
pc-ppr-top-margin 216
peek 259
pkg-bind ' " 183
pkg-ereate-package 185
pkg-find-paekage 185
pkg-got() 183
pkg-kill. 185
pkg-Ioad 194
pkg-map-refnames•.......... 186
pkg-name 186
pkg-refname-ali~t 186
pkg-~uper-package 186
pli~t 39, 64
plu~ 71
plu~p 69
pop 45
prin 1 161
prin l-then-~pace 161
prine 161
print 161
print-di~k-label 263
print-error-mode 265

Preliminary Lisp Machine Manual

print-name-cell-Iocation 65
process-allow-schedule 198
process-create•...... 196
proce~s-disable • • • . . . 197
proce~s-enable•..•••...• 197
process-initial-stack-group•.... 195
process-job•..•.•.. 195
process-kill•••.•••....••.... 197
process-lock•....•..........• 198
process-name. • 195
process-preset. • 197
process-sleep 198
process-stack-group•........... 195
process-unlock 198
process-wait. • 197
process-wait-argument-Iist ...•......... 195
process-wait-function 195
process-whostate •.•.•......••.....•.. 1 Q5
prog•.•............... 25
prog 1 .•••.•••••••••••••••••••••••••• 16
prog2•.....•.••......••..•. 16
progn•.•..•............ 16
progv•..........•... 17
property-cell-location•............. 64
psetq••.•.......•. 58
push 45
putprop••.....•••.•••••• 63
q-data-types•..••..••..•. 113
qc-file•....•.••.••• 126
qc-file-load • . . . • • . • • • . . . • 127
qld••.•.•..••••••..•. 263
quote••...........•••••.•. 15
quotient•.••.•• 71
random••..•••.•• 73
ra~soc•..•.•.. 54
read•....•• 159
read-from-string•..•. 161
readch•• 160
readfile 193
readline•......... 160
readlist• 161
recompile-world 262
rem•....•........••...•. 51
rem-if•...... 51
rem-if-not•....•.. 51
remainder•......•.......•. 72

6-JAN-79

Preliminary Lisp Machine Manual 281

rernob 184
rem<)ve 51
rempr(.)p 64
r~lnq 50
re::-t 1 41
re:.;.t2 '0' ••••••••••••••••• 41
re~t3 41
re:.;.t4 41
return 31
return-array 94
return-from 31
return-li$t 32
rever!'e 43
rOc)Jll •••••••••••••••••••••••••••••• 262
rot 76
rplaca 47
rplacd 47
~alnepnamep 65
sa~~(")c 54
sa~sq 54
screen-attributes 211
~creen-bits-per-pixel 211
!'creen-buffer 211
screen-buffer-halfword-array 211
!'>creen-buffer-pixel-.array 211
~creen-default-font 211
~c reen-font-alist 211
screen-height. 210
!'creen-Iocations-per-line 211
sc reen -nanle 210
~creen-plane-mask 211
screen-width 211
screen-x 1, screen-x2, screen-y L screen-y2 211
second 41
select 25
~~Iectq 24
~et 57
set-l'urrent-band 263
set-current-microload 263
set-error-mode 38, 265
set-in-clo~ure 104
set-nlar 257
set-memory-size 262
setarg 18
setf 146
setplist 47, 64

Function Index

setq 57
setup-keyboard-dispatch-table 264
seventh 41
si:o/C'change-page-status . 0 •••••••••••••• 118
si:%compute-page-hash 119
si:%create-physical-page 11 q
si:%delete-physical-page 11 q
si:%disk-restore 119
si:o/C'disk-save•............. 119
si:lisp-top-level 266
si:lisp-top-level1•.......... 267
si:random-create-array•........... 73
si:random-fill-pointer•.......•... 14
si:random-initialize•.......... 74
si:random-pointer-l. 74
si:random-pointer-2 74
si:random-seed ~ 74
si:tv-end-line-default 219
~i:tv-end-screen-default 219
si:tv-exception 219
~i:tv-more-default 220
si:tv-move-bitpos 219
signal 239
~ignp 69
sixth 41
small-float 73
small-floatp 9
some 51
sort ~ 55
sort-grouped-array 56
sort-grouped-array-group-key 56
sortcar 56
special 130
s~tatus 266
stack-group-preset 108
stack-group-resume '.' 108
stack-group-return 108
status 266
step ' 255
store 101
store-array-leader 99
stream-copy-until-eof 163
stream-default-handler 170
string•..•................ 80
string-append 8 1
string-downcase 81

6-JA~-79

Functi()n Index 282

~tring-~qual 80
~tring-Ieft-trim 81
~tring-Iength 80
string-Ie ... 'p 80
~tring-nrever~e 82
string-rever~e 82
~tring-r~vt:'r~~-~ean;h 83
~tring-rever~e·-~earch-char. 83
~tring-re\'er~e-search-n()t-char 83
sui ng-revt'r~e-:-earch-not-set 83
~tring-rever~e-~earch-set 83
~tring-right-trim 81
string-~earl'h 82
~tring:"~t'ardl-char 82
string-~earch-not-char 82
string-~earch-not-set 82
string-~earch-set 82
string-trim 81
string-upcase 81
stringp 10

structure-forward 113
subl 72
sublis 47
subrcall 15
subrp 10
subst 47

sub~tring 80
supdup 260
sxhasll 52
symbolp ~ 9

sYlneval 14. 58
symeval-in-closure•..... 104

tailp•......... 52
terpri•................ 161
third•......... 41
tl1rO\v 34
time 265
time~ 71
trace 252
trapping-enabled-p 252
tv-activate-pc-ppr 234
tv-back~pace 220 .
tv-beep 219
tv-black-on-white 222
tv-blink 231
tv-blinker-function 225

11reliminary Lisp Machine Manual

tv-blinker-hatf-period 225
tv-blinker-height ...•....••......•.•.. 226
tv-blinker-pc-ppr•...••. 225
tv-blinker-phase•.....• 225
tv-blinker-screen 225
tv-blinker-sideways-p 226
tv-blinker-tirne-until-blink•........ 225
tv-blinker-visibility 225
tv-blinker-width 226
tv-blinker-x-pos ~ .. 225
tv-blinker-y-pos 225
tv-char-width 223
tv-character-blinker•........ 231
tv-clear-char 221
tv-clear-eof 221
tv-clear-eol 221
tv-clear-pc-ppr 221
tv-clear-pc-ppr-except-margins•... 221
tv-clear-screen 221
tv-cornplernent-bow-mode •.•.......... 222
tv-compute-motion•..•...•....•. 223
tv-crlf•.•....•.....•. 220
tv-deactivate-pc-ppr••..•........• 234
tv-deactivate-pc-ppr-but-show-blinkers •.. 234
tv-define-blinker .••...•.••....•....•. 233
tv-define-pc-ppr•.....•. 231
tv-define-screen ..••.....•.•••...•.•• 212
tv-delete-char ...•....•..•..•••••.••• 221
tv-delete-line•.•..••.•.•.••••••.• 222
tv-draw-char••...•.•...•••••• 229
tv-draw-line•.......••.• 226, 230
tv-erase•..........•....•... 22 q
tv-get-font-pixel ...•...•......•..•••• 236
tv-hollow-rectangular-blinker ...•••..•.• 231
tv-home•..........•.•..•.. 220
tv-horne-down ..•..••....•••.•..•...• 220
tv-insert-char•.....•......••.. 222
tV-insert-line•..•.... 222
tv-line-out•.......••...•.. 222
tv-rnake-dbl-hor-font••....• 237
tv-rnake-gray-font•......••.. 237
tv-rnake-~idcways-font.•......•.. 237
tv-make-stream•.. 234
tv-note-input•..... 220
tv-open-blinker•..... 230
tv-open-screen•.••..•••..... 231

6-JAN-79

Preliminary Li~p Machine Manual 283

tv-prepare-pc-ppr 230
tv-read-blinker-cur~orpo~ 226
tv-read-cur~orp()~ 221
tv-re(;tangular-blinker 231
tv-redefine-pc-ppr. 234
tv-return-pc-ppr 234
tv-~elect-~creen 229
tv-~et-blinker-cur~orpos 226
tv-~et-blinker-function 226
tv-~et-blinker-~ize •.................... 226
tv-!'et-blinker-vi~ibility 226
tv-~et-cur~orpo~ 221
tv-::-et-font 221
tv-::-pace 220
tv-~tore-font-pixel. 236
tv-~tring-length 223
tv-~tring-out 222
tv-tab 220
tv-t),() 218
tv-white-on-black 222
tv-white-on-black-~tate 222
tv-who-line-item-function 228
tv-who-line-item-Ieft 228
tv-who-line-item-right 228
tv-who-line-item-state 228
tv-who-line-prepare-field 228
tv-who-line-~tring 228
tv-who-line-update 227
tvob-clean 208
tvob-clobbered-p 200
tvob-command " 208
tvob-complete-redisplay 208
tvob-create 206
tvob-create-ab~olute 205
tvob-create-expandable 206
tvob-create-for-pc-ppr 206
tvob-disable 207
tvob-enable 207
tvob-handler 199
tvob-info 199
tvob-job 199
tvob-kill 207
tvob-mou~e-action 200
tvob-mouse-handler 200
tvob-name 199
tvob-plist 200

Function Index

tvob-priority•................. 1 Q9
tvob-screen•............... 199
tvob-select 208
tvob-setup 207
tvob-status 200
tvob-under-point 208
tvob-update 208
tvob-x 1•.......... 199
tvob-x2••.... ' ~ 99
tvob-y 1 1 q9
tvob-y2•................. 199
tyi•....•.... 160
tyipeek•.....•.... 160
tyo•.....•...•......•... 161
typep 10
uncompile•...... 126
undefun , 61
unspecial 130
untrace 254
unwind-protect 34
value-cell-location 58
where-is 261
who-calls. • . . . 261
who-uses•..••........ 261
xcons 39
xcons-in-area•...•............. 40
xs.tore 101
y-or-n-p•......•........ 263
yes-or-no-p 2t>4
zerop 69
\ 72
\ \•............. 72
"•....................•..... 72
"$ 72

6-J :\1'-79

I
"-t.

New \Vindow System 1

r-rable of Contents

1. Basic \Vindow features. . .
1.1 Flavor Naming Conventions
1.::: Creating a \Vindow. . . .
1.3 Relations Between Windows .
1.4 I)imcnsiolls and Margins. . .
1.5 I)isplaying in a Window . . .
1.6 I.owcr-Icvcl Display Primitives.
1.7 Ch~)ractcr Input
1.8 Thc Mouse
1.9 Notification. . . .
1.10 Self documentation.
1.11 l'vbrgins. Borders. Labels.

Function Index.
M cssagc Index.
Variablc Index.
\Vinuow Creation Options

Table of Contents

.1

.1

.2

.4
.10
.12
.17
.17
.18
.19
.20
.20

.23

.24

.27

.28

JO-MA)'-80

New \Vindow System Basic \Vindow Features

1. Basic \Vindolv r~eatures

This chapter describes the features provided by the window flavor, \\hich therefore apply to
most windows. Later chapters describe hairier features which are incorporated into some
windows. Most of the features are explained with a brief description followed by an
enumeration of the messages that you can send to invoke them, the instance-variables associated
with the feature, and the related window creation options (if any).

Most of the messages described in this chapter are essential to the workings of the system,
and should not have their primary methods redefined by the user. \-Vhen this is not the case.
the tcxt will say so explicitly. In any case, it is all right to put daemons on any message.

1.1 Flavor Naming Conventions

The following conventions are fo11owed for naming tlavors of windows. In this section the
word Jrobboz is used to stand for any feature, attribute. or class of windows that would appear
in a tla\or name (e.g. peek. lisp-listener, or delayed-redisplay·label). 'NJming conventions
arc different for inSlanliatable flavors (which arc complete and can suppt)rt instances of
thcmselves) and mixill flavors (which arc incomplete and only supply one particular aspect of
behavior).

frobboz ;\n instllltiatablc flavor whose most distinguishing characteristic is that it is a'
"frobboz". frobboz is prefcrred to frobboz-window except when it is necessary
to make a distinction.

frobboz·mixin A flavor which provides the "frobboz" feature when mixed into other flavors.
This generally has no explicit components, only included-flavors. Not
instantiatable by itself.

basic-frobboz '111c $(lme as frobboz-mix in except that it alters the "essential charactcr" of the
window. It does not work to mix two "basic" flavors together unless they know
about each other. In certain cases a basic-frobboz may be instantiatable without
othcr flavors. while in other cases it is more like a mixin .. md nol instantiatable.

essential· frobboz
essential- frobboz -mixin

Something which is needed in order to work.nlCSC are often but not always
componcnts of minimum-window. They are also lIsually internal things the user
docs not see.

minimum-frobboz

window

;\ simpler type of "frubboz" than frobboz or basic-frobboz, for the case where
those latter flavors want to be built out of components.

The simplest type of window. Almost all user-defined windows should be built
by adding mixins to the window flavor, altJl01lgh occasionally the need will

DSK:LM\VIND;BASWIN 4 JO-MA Y-SO

New Window System 3 Creating a Window

: edges-from source
Specifies that the window is to take its edges (position and size) from source. which can

be one of:

a string The inside-size of the window is made large enollgh to display the

string, in font O.

a list (left top right bottom)
Those edges. relative to the superior, are used.

:mouse The user is asked to point the mOllse to where the top-teft and bottom
right corners of the window should go.

a window That window's edges are copied.

:minimum-w1dth n-pixeis
: m 1 n 1 mum- he i gh t n-pixeis

In combination with the :edges·from ':mouse init option. these options specify the
minimum size of the rectangle accepted from the user.

: 1 eft x-position
: x x-position
: top yeposition
: Y Y"'Position
: right right-cdge-x-positioll
: bottom bollom-edge-y-posWon
: edges (left lop right bollom)
:w1 dth outside-width-in-pixe[s
: he 1 ght OUlside-height-in-pixe[s

These set the position and size of the window relative to its superior. 'Inc default if the
position is unspecified is (0,0). 111C default if the size is unspecified is the inside-size of

the superior. The right thing happens if you specify only some parts of this infonnatiorL

: character-width spec
This is another way of specifying the width. spec is either a number of characters or a
character string. Thc inside-width of the window is made to be wide enough to display

those characters in font O.

: character-hei ght spec
This is another way of specifying the height. spec is either a count of lines or a
character string containing a certain number of lines separated by carriage returns. The
inside-height of the window is made to be that many lines.

DSK:LMWIND;llASWIN 4 30-MAY-80

New Window System 5 Relations Between Windows

bits-actiull controls what happens to the hits which compose this window's display. The
allowed values are:

:restore

:clean

The bits are restored to what they used to be. That is, the window's
bits are moved from where they were automatically saved, into the
screen's physical bits.

The window is refreshed, that is. made blank for the most part.

:noop Nothing is done with the bits. The window's bits become set to
whatever was on that part of the screen previously.

bils-action defaults to :restore if that is possible (the window has a bit-save-array),
otherwise to :clean.

: deexpose &optional sal'e-bils-p screen-bils-action remore-from-superior
This is the opposite of :expose. This message is sent by the system when a window
needs to be removed from the screen. It is usually a mistake to send it yourself; unless
screen-management is delayed. the screen manager will immediately re-expose the
window, since it is not covered by anything. See the :bury message.

rf the window is currently selected. it is first deselected. since the selected window must
always be exposed.

The allowed values for save-bits-p are:

:default

:force

nil

TI1C bits are saved if a bit-save array exists. otherwise they are not
This is, of course, the default.

If a bit-save array does not exist, one is created. and the bits are saved.

The bits are not saved.

screen-bits-actioll controls what is done to the bits left behind on the screen. If this is a
temporary window, the supplied value is ignored and the bits belonging to the windows
underneath are restored from where they were temporarily saved. Otherwise the allowed
values are:

:noop

:clean

Leave them there (however. the screen man,lger will come along and
replace th~m with t.he bits of whatever window shows through). This is
the defaulL

Clear them out.

rcmove-jrom-superior is for internal usc, and should not be supplied.

DSK:LMWIND~BASWIN 4 30-MAY-80

New Window System 7 Relations Iletween Windows

:activata
Causes the window to be on its superior's list of in feriors. Active windows are visible to
the rest of the system for automatic exposure and screen management. When a window
is exposed, it will be automatically activated if it is not already.

:deact1vate

:1<:111

Causes the window to be deexposed and removed from its superior's list of inferiors.
The window system will not remember this window anywhere. so it can be garbage
collected.

Causes the window to become deactivated, with the intent that it will never be used
again. Distinct from :deactivate so that daemons can be placed on it to clean lip things
like proceSSes.

: S8 1 act &optional (save-selected t)
[fhe save-selected argument is obsolete and doesn't do anything now.]

Causes the window to become the selected window. which is the one that is allowed to
:tyi from the keyboard. It and all its superiors are automatically activ"ted and exposed
if they were not already. The currently selected window is sent a :desetect message
with argument nil. causing it to be remembered as the previollsly-selected window. The
wi~dow's blinkers arc made to blink if that is appropriate (sec <not-yet-written».

tv: se 1 ected-wi ndow Variable
This is nil or the currently-selected window.

: deselect &optiona} (restore-selected t)
Causes the window to no longer be the selected window. If restore-selected is t. then
the window that was selected before this one is selected again, and this window is put
on the end of the ring buffer of previously-selected windows. Otherwise this window' is
put on the front of ,the ring buffer and no window is selected. This window's blinkers
are set to their deselected-blinker-visibility; typically they stop blinking.

You don't normally want to send this message yourself with an argument of nil, since
the screen manager~ if not delayed, will automatically select a window, which may be
this one.

: mousa-select &optional (save-selected t)
This is used when you select a window by pointing to it with the mouse or by using the
select operation in the system menu. It represents a "stronger" fonn of selection. The
arguments are the same as for :select. Deexposes any temporary windows that lock the
window, copies any keyboard typeahead into {he currently scl~cted window's io-buffer,
and then sends a :select message to the window.

DSK:LMWIND;BASWIN 4 30-MAY-SO

New Window System 9 Relations Between Windows

:save-h1ts
:set-save-bits ~o~nil

Get or set whether the window saves its bits when it is deexposed.

: set-super1 or nelV"superior
Causes the superior of the window to be new-superior. Use ·this with caution! It doesn't
completely work for all cases.

:11sp-l1staner-p
Returns nil if the window is not a lisp Iistencr, :idle jf a lisp listener and not currently
cval'ing a form, or :busy if a lisp listener but currently evaring a fonn.

TIle' following instance variables are relevant to these issues and may be of interest to the
user. There are of course quite a few related instance variables which are internal and not
documented here [but perhaps they should be?]

tv: screen-array Variable
The two-dimensional array of bits on which a window's output is drawn. nil if the
window is deexposed and has no bit array~

tv: bit-array Variable .
The alray in which the window saves its bits when not exposed. or nil. if it docs not do
so. Several aspects of a window's behavior depend on whether or not this is null.

tv:super1or Variabk
The window within which this one appears. nil if this is top-level (typically a screen).

tv: restored-b1ts-p Variable
This is uscd for communication to the :after :refresh mcthods; if it is t the bits of the
window have been restored from the saved copy, but if it is nil they need to be

regenerated.

tv: nanla Variable
The name of the window. This string is the default thing displayed in the label and
appears in the printed-representation of the window.

tv:process Variabk
For a window that incorporates the process-mixin flavor. this is the process associated
with the window, or nil.

[Should the locking and temporary stuff be documented here. or assumed to be internal?]

Here are some relevant window-creation options.

DSK:LMWIND;BASWIN 4 3O-MAY-80

New Window System 11 Dimensions and Margins

:inside-edges
Like :edges, but returns the edges excluding the margins.

: set-edges new-left new-top new-right new-bollom &optional option
Changes the size and position of a window as specified by the first four arguments.
option may be :verify, in which case t is returned if the edges are accepwble, or nil if
they are not, and nothing is actually changed. Sends the :verify·new-edges message in
order to check the new edges. If not merely verifying, and not changing the size of the
window, th~n the window is moved without any furthur message transmission. On the
other hand, if the size is changing, then a :change-of-size·or-margins message is scnt
to the window.

: full-screen &optional option
. Sends a :set-edges message to the window making it the full inside size of its superior.

optioll is passed directly to the :set-edges message.

: set-s i Z9 new-width neu'-height &optional option
Sends a :set·edges message to the window setting it to the specified size without
moving its upper-left comer. option is passed directly to the :set·edges message.

:'Set-ins1de-s1ze new-width new-height &optional option
Sends a :set-edges message to the window setting it to the specified size not including
the margins. The upper-left corner does not move. option is passed directly to the :set·
edges message. .

:set-posit1on neW'x new-y &optional option
Sends a :set-edges message to the window setting its position to the specified place.
option is passed directly to the :set-edges message.

:center-around x y
Position~ the center of the window as close to x and y as is possible without hanging off
the edge of the superior.

: change-of-s ize-or-marg1 ns &rest options
This message is sent by' the system whenever the size of the inside part of a window, or
anything about its margins. is changed. The primary method actually docs the changes,
moves the inside bits around as necessary, and blanks out the margins. You can define
:after daemons for this message to do such things as modification of internal data
structures that depend on tlle number of tines that fit in the window. Normal code
should never redefine the primary method nor send the message directly. options is a
list of alternating keywords and values specifying what is changing, similar to the
options used when creating a window.

DSK:LMWIND:IlASWIN 4 30-MAY-80

New Window System 13 Displaying in a Window

: S tr i ng-out string &optional (start 0) (end nil)
Outputs string. start and end specify a substring of the string. More efficient than
character by character output.

: 11 ne-out siring &optional (start 0) (end nil)
Outputs string. followed by a newline. start and end specify a substring of the string.
More efficient than outputting the string character by character.

: cl ear-screen &optiona1 margins
Erases the window and homes its cursor. If margins is nil (the default). the inside of
the window is erased and the margins are left alone. If margins is t. the margins are
also erased.

: clear-eof
Erases from the current position of the cursor to the end of the window.

:c1ear-eol'
Erases from the current cursor position to the end of the line.

:clear-char
Erases the character position under the cursor. Tn case of multiple or variable width .
fonts, this may not be the actual width of th\! character there.

:home-cursor
Positions the cursor to the upper-leftmost character position in the window, inside (tie

'margins.

: read-cursorpos &optional (units ':pixel)
Returns the current cursor position as two values, x and y. The cursor position is
relative to the upper-left-hand corner of the window inside the margins. The units of
measurement may be specified as :pixel or :character.

: set-cursorpos x)' &optional· (units ':pixel)
Puts the cursor at the specified position. ullits the same as for :read·cursorpos.

:fresh-l1ne
If the cursor is not at the beginning of the line. advances to the next line. In either
case does a :clear·eol. '

: draw-rectang1 e width height x y alu
Makes a rectangle of I-bits of the specified dimensions, and merges it into the window
at the specified x.y position using the alu function supplied. rille position is relative to
the outside of the window, unlike the position returned by :read·cursorpos. This is
useful for erasing. darkening, and complementing rectangular areas of a window. The
rectangle is clipped if it would lie outside of the window.

DSK:LMWIND;BASWIN 4 30-tvtA y-gO

New Window System 15 Displaying in a \Vindow

:more-exception
Called when more-vpos is reached. Prompts with "more·· and waits for the user to

type a character before continuing. Resets more-vpos.

:note-input-wait
Called when :tyi hangs waiting for input Sets more·vpos appropriately.

:output-hold-exception
-Called when output is attempted on the window but either the output hold flag is set or
the window is locked by a temporary window. If the latter is true. then waits until the
window is no longer locked. I f the fonner. and the window is dcexposed then
deexposed-typeout-action is inspected (see (not-yet-written»). Always returns with the

window no longer output held.

: de 1 ete-l i ne &optional (n I)
Deletes lines at and below the current cursor position. fl specifies the number of lines
to delete. Lines below the deleted lines are shifted up, and blank lines are brought in

at the bottotn of the window.

: i nsert-l1 ne &optional (n I)
Makes 11 blank lines at the cursor by shifting Ule lines at and below the cursor down. n

lines at the bottom of the window arc lost

The fonowing instance variables are relevant.

tv: cursor-x Variable
tv: cursor-y Variable

The position at which to put the next character. These are relative to thc upper·left-
hand corner of the window outside the margin~ unlike the values returned by thc :read-

cursorpos message.

tv: more-vpoS Variable
The Y position at which a • ·more*· will happen, or 100000 plus the Y position if it is
to be deferred until after the bottom of the window has been reached, or nil if there is

no more-processing on this window.

tv: currant-font Variable
The currently selected font for character display.

tv: font-map Variable
An array of fonts. The O'th entry is the "standard" fimt.

DSK:LMWIND;BASWIN 4
30-MAY-80

New \Vindow System 17 Lower-level Display Primitives

: vsp vsp
Selects the number of blank rastcr lines betwecn charactcr lines. The dcfault is 2. The
line-height of a window is initialized from this and the hcight of the tallest font initially

speci.Jied.

: more-p t-or-nil
Enablcs or disables more-processing. The default is t, but many flavors change the

default to nil for their own purposes.

[Exactly what fonns of typeout arc controlled by these next two?]

:right-margin-character-flag ~o~nil
The default is nil. If t. if a tine is longer than the width of the window. when it wraps
around to the next line an 'T'is put in the right margin.

:truncate-l1ne-out-flag ~o~nil
The default is nil, but if t when a line is longer than the width of the window it is

truncated.

1.6 Lower-level Display Primitives

[H'ere will be explained prepare-sheet. thc microcode primitives. and maybe some or. all of
the sheet-mumble functions. Somewhere we are going to necd sections on blink-crs and fon~
also. Maybe here is a good place. Or maybc all the displaying-in-a-window stuff should be .
moved out in to its own chapter?]

1.7 ~haracter Input

Note that these operations are a superset of the standard stream protocol. Thus a window

may be used directly as a stream.

: ty 1 &optional eo!
Returns the next input character. Hangs until a character is available. The eo!
argument is ignored since kcyboards do not have end-or-file.

:ty1-no-hang
Retunls the ncxt input character if one is immediately available, else nil. Never hangs.

: unty1 ch
Returns ch to thc head of the input stream. It will be the next character read. Only
onc character may be untyi'cd at a time.

DSK:LMWIND;BASWIN 4
30-MAY-80

New Window System 19 Notification

: mouse-but tons buttons-down x y
If a button is pushed with the mouse over an exposed window that has a :mouse
buttons method. that window receives this message. BullollS-dowll is a bit-mask of the
buttons pushed. X and yare the coordinates of the mouse relative to this window. '!be
message is sent at the time the mouse button is first depressed. Encoding of double
clicks or deferring of command execution until the mouse button is released. if desired
must be done by this handler. It is a system convention that clicking the right-hand
mouse button twice nearly always gets you the system menu. It is also a system
convention that clicking the left-hand button on an unexposed mouse-selectable window
exposes and selects it.

:mouse-moves x y
When the mouse moves while over an exposed window that handles :mouse-moves, it
receives such a message with the window-relative coordinates of the mOllse as arguments.
The mouse-blinker must be moved by this method.

:handle-mouse
Sent in the mouse process to the window when the mOllse moves into the window's area
of influence. should track the mouse and send :mouse-moves and :mouse-buttons as
appropriate·. Usually calls lv:mouse-default-handler.

:set-mouse-pos1tion x y ~

Sets the mouse position to x, y, Coordinates arc relative to the window.·'

1.9 Notincation

Notification means telling the user about an unexpected occurrence, such as an error in a
background process, by printing a message in some suitable place. The system provides for
such messages to come out either on the selected window, if it agrees to accept them (Lisp
listeners do), ·or on a special window popped-up for that purpose.

: not i fy-stream &optional window-of interest
Sent to the selected window in order to get a stream via which to notify the user.

Windows like Lisp Listeners simply hand back themselves and ignore window-oftnlerest.
Windows which don't want to be corrupted by extraneous output though, usually
include the pop-up-notification-mixin flavor, which creates a pop-up window for use as
the stream, and also teUs it window-of interest, which is the window that tho output will
be on behalf of. 1\ pop-up-notification window arranges to select window-ofinteT'e$t
when it is selected (e.g. by clicking on it with the mouse). l11C pop-up-notification
mixin is included in the window flavor.

DSK:LMWIND;BASWIN 4 30-MAY"SO

New Window Syster.n

nil

t

a number

a symbol

21

No border here.

The default function with the default thickness.

The default function with the specified thickness.

That function with its default thickness.

Margins, Borders. Labels

a cons (jUnctiolt . thickness)
That function with that thickness.

a list (junction lefitop right bottom)
That function in the specified rectangular area. This is the internal form
that everything else turns into. but if you specify this from the outside
only the width and height implied by those four numbers will be paid
attention to; the position comes from the relationship with other parts of
the margin system.

The det:1ult (and currently only) border function is tv:draw·rectangular·border. Its
default width is 1.

: border-marg 1 n -wi dth n-pixels
The width of the white space in the margins between the borders °and the inside of the
windC"v. The default is 1: This ~oesn't do anything unless there are borders.

~ 1 abel spec
Controls the label. The default is t, which makes the label display the window's name
in the lower-left corner. Choices are:

nil

t

:top

:bottom

a string

a font

No label.

oA label with all the default characteristics.

Put it at the top of the window.

Put it at the bottom of the window. This is usually the default

The label is this string instead of the window's name.

Specifics what font to display the label in.

a list (/ef/lop right bottom/ont string)
Specifies all of the options. This is the internal form everything else is
turned into. Negative numbers mean up from the bottom or left from
the right. tv:compule·label-position is the function which understands
this. Externally you can control only the height and whether it goes at
the top of the bottom: the position is controlled by interaction with the
rest of the margin system.

The following messages arc relevant

DSK:LMWIND:RASWIN 4

New Window System 23 Function Index

Function Index

tv: window-create.2

New Window System

:tyi
:tyi-no-hang .
:tyo
:untyi . . .
:verify-new-edges .
:vsp

.17
· .17
· .12

.17
· .12
· .14

26 Message Index

New Window System 28

'Vindo\v Creation Options

:bit-array4
:blinkcr-dcsclcctcd-visibility . .16
:blinkcr-function16
:blinkcr-p.16
:bordcr-margin-width . .21
: borders20
:bottom.3
:charactcr-hcight.3
:charactcr-width.3
:dccxposcd-typcout-action.10
:cdges.3
:cdges-from3
:expose-p2
: font-map.16
:hcight3
:intcgral-p.4
: io-buffer.18
:label'. .21
:left . . • . . .3
:minimum-height3
:minimum-width.3
:more-p. . .17
:name10
: priority •10
:process.4
:revcrse-video-p.16
:right.3
: right-margin-character-fiag17
:rubout-handler-buffer.18
: save-bits .4
:supcrior.2
:top3
: truncatc-line-out-ftag17
:vsp.17
: width. .3
:x . . .3
:y3

\Vindow Creation Options

30-MAY-80

