
.. --~

lJednesday, February 21, 1979 00:34:22 AI:LMOOC;FORMAT 77 Page 1

Lisp Machine Internal Storage Formats:

Q formats, SYMBOL formats, ARRAV formats, POL formats, LINEAR BINDING POL format9.
STACK GROUP formats·, FEF formats, AREA forlllats, CALLING CONVENTIONS, and ADI formats-. . -

_Unsatisfied ~ith the structure of normal
computers, they ~re building at MIT's Al fab a
computer ~hose native language is LISP. It uill
have 32 bi ts wi th virtual Memory. -and _execute
LISP like a bat out of hell.

In a refreshing rversal of trends, it uill
be for one user at a time. "Time sharing is an
idea ~hose time has gone," chuckles one parti
cipant. (Project MAC, uhere time-sharing grew
up, ·~as there.)·

Ted Nelson, Computer Lib/Dream Machines

. The formats are not in exactly this order. Also. it is hard to understand the
macro-code instruction set uithout first understanding the FEF format, and ·vice-versa;
they are very closely related. It is assumed that the reader of this document has read
the MACROCOOE document (for the fEF formats) and is at least some~hat familiar ~ith
the uorkings of the CONS machine.

Lisp objects in the LISP machine are stored in the following
form:

I 2 111 5 24
------------------~---~--~-------~----~--------------------~----

I
COP r:nOE--! I
USER CONTROL:" I

I
I -r
I

I ,
I
I

DATA TVPE------------I I
POINTER---I

CDR CODE field (2 bits). - This field sho",s ",here the COR of this object is:
e - COR NORMAL: The CDR is contained in the a follo",lng this one~

This is the "t",o pointers" form used by most Lisps_
1 - COR NIL: The CDR of this node is NIL.
2 - COR NEXT: The COR is the next o.
3 - COR ERROR: It is an error to take the COR of this location. since

this is the second half of a full (COR NORMAL) node.

The codes ar~ set up this ",ay so that a list of N elements can be stored-
in N consecutive a·s using -CDR NEXT and CDR NIL. This results in high storage density __
The functions APPENO and LIST form these compact lists. CONS and friends as
of no~ al~ays create full nodes (COR NORMAL. COR ERROR). Note that to RPLACA_
an element ofa COR NEXT list, you simply clObber the contents of the: location,
but RPLACOing is more difficult. The LISP machine does this by using the -
CAR-COR Invisible pointer (see belo",).

,; Wednesday. February 21, 1979 00:34:22 AI:LMDOC;FORMAT 77 Page 1.1

USER CONTROL BIT field (1 bit) - This bit is not used by the system in normal lIst
structure, and is thus avai lable for use by the user. In cells which 'are not
part of nor~al list ~tructure, though •. the system ~ay use the bit. (For example.
it is used in indexed-offset arrays.)

DATA TVPE (5 bits) ~ This field deterMjnesthe ~ata type' of the O. Since
each Q has a separate da~a type field • .-ther.e is no need for ·f.ixnu •. 8pa~e,·
" I. i st ·s·pace," etc. The datatypes are:

. NUMBER NAME .. USE

---=-- ---- ._-
o DTP-TRAP Any attempt to reference this cell wi II cause a trap.

This is Mostly for error checking 'Maybe also for debugge
1 'DTP-NUlL This datatype is used for various things to mean -nothing

For example, an unbountr atom has one of :these as '1 ts valli
Thepoint~r fiel~ points back at the atom, for'
ease ih debugging. '.

2 ·DTP-FREE This cell h~ free unallocated .storage." .The user should n
see this t60 often. " .

3 DTP-SYMBOL This is a non-numeric atom. The' poin·ter points to a four
C Ratom header" (see SYMBOL formats).

4 . DTP-FIX. A FIXNUM (fixed point number). The pointeri 8 not
really a pointer; It Is the actual value of the number.
so FIX numbers "'i th' the same value ..,i II a1ways be Ea. unl
PDP-10 MACLISP.

5 DTP-EXTENDED-NUMBER Any type of number other than FiXnums. Not In yet.
S DTP-INVOKE· This has the peculiar property that if anything tries to

perform a fundamen'taloperatlon on it (such as CAR. CDR,
RPLACA, RPLACD, or CHECK-DATA-TVPE) the invoke pointer
gets called as a function~ This feature is not yet
fully developed, so stay tuned for further developments.

7 .DTP-GC-FORWARD The forwarding address left behind by the garbage collect
10 DTP-SVMBOL-COMPONENT-FORWARD This causes indirection ~hen used by operat

which operate on symbol components.
11 OTP-Q-FORWARD Forwards only the Q that it is in, not the ~hole structur
12 01~-FORWAHD Forwarding address left behind by anything which copies

something other than the garbage collecto~.
13 OTP-MEM-POINTER (going away. only used on simulator)
14 DTP-LOCATIVE-TO-LIST
15 DTP-LOCATIVE-INTO-STRUCTURE
16 DTP-LOCATI VE-INTO-SVMBOL
17 DTP-LIST The pointer points to a list (actually, to a node).
29 OTP-LIST-INTO-STRUCTURE
21 OTP-LIST-INTO-SVMBOL
22 DTP-U-ENTRY The pointer points to a micro-coded function. The"

pointer field is actually an index into the 'MICRO-CODE
ENTRV-AREA, uhich contains a pointer .to the actual code.

23 DTP-MESA-ENTRY The pointer points to a mesa-compiled rotitine~ "
.24 DTP-FEF-POINTER Points to a FEF-HEADER. "
25 OTP-FEF-HEADER Header of a Function Entry Frame (see belou)
26 DTP-ARRAV-POINTER The pointer points to the ARRAY HEADER uord of an array

This is the equivalent of an "array object."
27 DTP-ARRAY-HEADER There is an array header for each array. The pointer fi

holds various encoded information'about the array (see th
section on ARRAY formats).

39 DTP-ARRAY-LEAOER This datatype is used for the a at the head of an array
leader (see ARRAY formats).

f..

; Wednesday, February 21, 1979 00:34:22 Al:LMDOC;FORMAT 77 Page 1.2

31 DTP-STACK-GROUP See STACK GROUP formats.
32 DTP-CLOSURE Super win!!!
33-37 Not used at present.

'POINTER (24 bits) - The use is determined by the datatype of the Q. Usually
it points to some other object in memory. Sometimes it just contains·miscellaneous
data.

Note that_some of the datatypes are useful ~ostly for their meaning
in "function context" (see SYMBOL formats).

; The invisible pointer datatype is a one of the LISP machine's
;unique neu feat~res. They are like indirect addressing where instead of the
; instruction specifying the indirectness, the data referenced does! Thus if ".
;yo-u tak~ the CAR of a Q which is an Invisible pointer, you will really be-given
;the CAR of what the pointer POINTS TO. The possibility of implementi~g .
;invisible p6inters from the system design point of view depends on the fact .th~t this
; is an INTEGRATED system. For example, in a conventional machine, it would clearly ..
;be un~cceptable to have a range of numbers such that when they are added
; together uith the ADD instruction, what gets added is not these instru~tions
;themselves. but the contents of the memory location they point t9- Here, that
;is exactly what happens. - "

Some of the proposed uses for invisible pointers arte describea in
the paper "The LISP Machine" JGrenblatt 74, A.I. Woking Paper 79] and in the
LISP machine progress report (~hatever].

{

Wednesday, February 21, 1979 00:34:22 AI:LMOOC;FORMAT 77 ~age 2

SYMBOL FORMATS:

A symbol i's stored as a a of datatype OTP-SYM uhose pointer -points to -a four
Q "atom header.· The four ~ords are:

NAME USE ---- __ D

PRINT-NAME-CELL This cell holds a ~ord of datatype ARRAV-POINTER-pointlng'
to a STRING-array uhich Ie the PNAME for the symbol. (See
ARRAY formats).-

_ VALUE-CELL This cell holds the 'value of the symbol, and so can be of
any datatype. "

FUNCTION-CELL This cell holds -the ·functional property· of the' 6ymbol~
If the symbol- is called as a function, the contents-~f thIs
cell will be analyzed to,determine what function to perform. _
Note that this replaces the purpose of the "EXPR." "SUBR" ,etc.
properties in Maclisp. -

PROPERTY-CELL This cell contains the property list. Properties are not_
used by the basic system at all, so this is likely to be NIL.

When a symbol is initially created~ the value and function cells
contain ,null data type.

The functions PRINT-NAME-CELL-LOCATION, VAlUE-CElL-LOCATION" etc.,
can be used to obtain DTP-LOCATIVE pointers to these locations (see LMNUC)
and the contents can, of course, be gotten by taking the CAR of the
pointers thus obtained.

When a list of the form «symbol> <args ••• » is evaluated, EVAL looks at
the contents of <symbol>'s FUNCTION CELL to decide ho~ to evaluate the function.
The ~ay EVAL uses the contents of the FUNCTION CELL is called the interpretation
of the datum in "function conte~t." When a symbol is used as the destination
of a CALL instruction, or the first argument to APPLY. its FUNCTION CELL is- I ikewiee
examined and the conten1s considered in function context.
Here is uhat some of the datatypes mean In function contextl

DATA TYPE MEAN I NG 1 N FUNCT I Ol~ CONT':I<,·
======== ===========_===_c==_=== ___ _
LIst' This should be handled by the interpreter~ Usually

the list is a LAMBDA expression. It can also be a
MACRO expression.

SYMBOL ~This means that the contents of the function cell of th~
specified symbol should be used as the function.

FRAME POINTER This function is macro compiled, so use the FEF pointed
to (see FEF formats)~

MICRO-CODE-ENTRV This function is micro-compiled.
MESA-CODE-ENTRY This function is MESA compiled, do that _stuff.
ARRAY-pOINTER This function is an array. Array referencing is handled

by the microcode, so there is no ·code" associated with an
array ..

STACK-GROUP Transfer control to the designated stack group.

• Wednesday, February 21, 1979 e9:34:22 AI:LMDOC;FORMAT 77 Page 3

ARRAY FORMATS:

Every array has an ARRAY HEADER word. The pointer field Is divided into fields
which hold various information about the array. The array may optionally have an
ARRAY LEADER uhich is formed of. a number of words BEFORE the array header. If
there is a leader, then the Q immediately before the header uo~d is a FIXNUM Q
holding th~ number of array leader words. Then before that are the array leader.
words~ uhich may have any datatype (since an~ object can be storedthe~e).· and
before that is a word of datatype ARRAY LEADER IoIhich is a sel f-relativ~ poirit~r
to the ARRAY HEADER. The presence of the ARRAV-LEADER 0 is necessary for such
routines as the garbage colleeter IoIhich scan through Memory in the usual
direction. The presence or absence of the leader is determined by a· bit in the
array header. __ _

If the -array has more than one dimension, then there is a block of
<number of dims>-1 O'S immediately after the array headero.holding the size
of each dimension. Note that only <number of dims>-l are needed because
one can compute the total index length from the array header itself. .

If the index length of the array (number of data elementsl is too
big to fit in the fie I d a II oeated for it in the array header Cf' an e)(tra
Q is inserted betueen the header and the dimensions, which h~s data type
FIXNUM and contains the index length. A bit in the header C is on
to indicate the presence of this extra C.

Nou all that is left are the actual storage cells of the array. An array
may optionally be "displaced,A according to a bit in the header. ·If the array
is not displaced. then the data a's follow thereafter (in a I-dimensional non~

. d i sp I aced array,. the data fo II O&.lS i mmed i ate I y .af ter the header). HOI-Jever, i f
the ar~ay is displ~ced, then the uord uhich would be the first data 0 is actually
a pointer to the data cells. Thus, a displaced array can be used to point at the
beginning of an area (this is done often, in fact). Follo~ing the displacement
.... ord. in I-Jhat I-JOU I d have been the SECOND data cell, is the I engthof the datai n Q9 s
for the array. 'This is used instead of the normal index length, since that ui II
be 2 (or 3) to indicate the length of the pointer. This SECOND data cell is used
as the length even in the case of indirect arrays, unless that would cause a.
reference off' the end of the array indirected to.

Further hair is provided as follo&.ls: if th~ array is displ~ced and 'the uord
which I-Jould be the pointer has datatype ARRAY POINTER, then it p~ints to anoth~r
array header! This is called an INDIRECT array. If that isn't hairy enough, get
this: If the USER CONTROL bit of the indirect array pointer is set, then .
this array has an INDEX-OFFSET from the array pointed to. This means that uhenever
this array is referenced, it is as if that array were referenced, but
.... ith an index <n> higher. The <n> is ·the offset, and is stored as a FIXNUM.in
what ~ould be the THIRD data cell if this array uere non-displaced. The offset
is e~pressed in elements (not a's), and is aluays 1 dimensional (it is added after
all the dimensions have been multiplied out). (Note that the length ~f the array
being poirited at is also stored, in that arrays· header, etc. When a reference
is made to an INDIRECT array, an error check is performed to make sure the
reference is not out of bounds.) .

The format of the pointer field of the header word is as folious:

5 1111111113 11111 10.

I I I I I
ARRAY TVPE--I I I I I I I
HIGH SPARE BIT-I I I I I I

C

J Wednesday, February 21. 1979 00:34:22 AIsLMOOC;FORMAT 77

HAS LEAOER-------J , I I I I
DISPLACED--------II I I I I
FLAG 8IT-------------- I I I I .
NUMBER OF DIMENSIONS-----I I I I

·LONG LENGTH FLAG--~----------- I I
NAMED-STRUCTURE FLAG--~--------- I .
INDEX LENGTH OF ARRAV--------------------------

The FLAG BIT. in the case ofa string array, Is 1 to- Indicate that
this strlng may _be relied upon to contain only ordinary printing
charact~rs. Its use with other array types is not yet defined.
(THIS IS AN EFFICIENCY HACK, WHICH IS·CURRENTLV IGNORED).

The %%ARRAV-NAMED-STRUCTURE-FLAG is 1 to indicate that ·this

Page 3.1

array is· an instance of a NAMED-STRUCTURE (probably defined with DEFSTRUCT with
the NAMED-STRUCTURE option, etc). The structure name is found in array leader~.

- element 1 if %%ARRAV-LEADER-BIT is set, other~i6e array element e •
. Named structures may be vie~ed as i~plementing a sort of user defined

data typjng facility. Certain system primitives, if handed a NAMED-STRUCTURE.
will obtain the name and obtain from that a function to apply, ACTOR like. to
perform the primitive. One can see that there is some potential

The only one of these fields ~hich has not yet been mentirined is the
ARRAY TYPE !ield. The options are:

NUMBER TYPE USE
__ ==__ ==__ .aa

e ART-ERROR This is al~ays an error, to prevent randomness~
1 ART-IB Each element is one bit, and 32 are stored per ~ord.
2 ART-2B Analogous.
3 ART-4B Analogous.
4 ART-8B Analogous.
5 ART-1GB Analogous.
6 ART-32B Analogous. Since FIXNUM datatype is supplied

24 bits of data are retrievable. . .
7 ART-a Each element is a a, that is. it has·s datatype and

a pointer field. -
8 ART-a-LIST Same as a, but the elements also form a list.

By using GET-LIST-POINTER-INTO-ARRAY and G-L-P.
you can get pointers into the beginning or even
the ~iddle of such an array.

S ART-STRING This is stored the same ~ay as an 8 BIT array.
lB. ART-STACK-GROUP-HEAO (see STACK "GRUDP FORMATS)
11. ART-POL-SEGMENT (see STACK GROUP FORMATS)
12. ART-TVa TV Buffer
13. ART-TVa-PIXELS TV Buffer in pixel mode.

Note: the elements of ,arrays (those ~hich are smaller than 32 bits) are
stored right-to-Ieft (i.e •• ·the first element of a 4 BIT ARRAY ~ould be
stored right-justified, including the ieast significant bit).

- .
However. TV buffer arrays (ART-TV9) are DIFFERENT, for hardware reasons.
Only' the bottom IS bits of each ~ord are used, and the bits are stored
left tq right. -

TV-BUFFER-PIXEL arrays have a plane mask in array leader element 0. 1 bits
in the plane mask correspond to active tv-buffer planes, 0 bits to inactive;

Wednesday, February 21, 1979 09:34:22 AI:LMDOC;FORMAT 77

planes. Each time a active plane 15 encountered on a store, the lo~ order
bit is stored in that plane (a la ART-TVB), and the remaining bits shifted
right one.

Page 3.2

STRING arrays are s~ored the same way as Q-·ARRAYs, and STACK-CROUP-HEAD
and STACK-SEGMENT arrays are stored .the same as Q-ARRAYs are. The reason for ..
supporting both array types is so that programs c.an easily tell apart those .
8-bit arrays used for strings, etc. Strings,although like 8-BIT arrays at Jow level9~
are treated differently at higher levels, such as by READ, EVAL, and PRINT.

•

Wedhesday, February 21, 1979 00:34:22 AI:LMDOC;FORMAT 77 Page 4-

POL FORMATS:

The stack- in the LISP Machine Is stored In Main meMory, with the
top kept in the POL BUFFER memory of the CONS Machine. (The POL Buffer
acts as a sor~ of lK cache uhich greatly spe·eds up alblost all references to·
the stack. The ·s&.lapping· is done in micro-code, invisibly to the Macro-code
and all higher levels.)

For each function call, ·a·CALL BLOCK Is stored on the POL. The-format
of a ca I I block is:

Possible additional I·<--·numerically lo ... est address
informatlon I

-----------~-------~-I
. CALL state 1

---------------------1
EXIT state I

ENTRY state

FUNCTION object <-- Argument pointer

. arg~

l
. 1---------------------
1 local block
I
I .
1---------------------
I intermediate
I result stack <--' Stack pointer

The "possible addi tional information" (ADI) .is used by certain hairy
types of calls ~h'ch need to convey more information.

- .

The first four &.lords contain various information used by the microcode ~hich performs
cal Is to and returns from functions. ·The arguments appear uhen instructions uith
destinations "TO NEXT" and "TO LAST" .are eKecuted. Uhen the block·is activated
(see belo~) space is reserved for that block 9 s local variables (i.e. PROG and
00 var i ab I es) •

. ,

Each CALL instruction creates a ne ... open block, and stores in its CALL state
~ord the delta (offset) to the ACTIVE block'at the time of the CALL (i.e~, the function
a.Jhich calJed it) in the 10 ... 8 bits. This is used to restore M-AP ~hen leaving the
function. It·also stores a delta-to the previous OPEN block ..
(just· the previous block on the stack) in the neKt 8 bits~ The CALL instruction
also reserves t~o ~ords for the EXIT arid ENTRY state ~ords, and then pushes the
FUNCTION object, ~hich is typically a FEF poi.nter {DTP-FRAME, that is}
(a.Jhen a macro-compiled function is being called). Further, CALL stores its
OESTINATION field in a three bit field in the CALL state ~ord, so that ~hen
the called function returns~ its result can be stored in the correct placie.

W~en something is stored in destination "TO LAST,· the current open call
block (the last block pushed) is ACTIVATED. The currently active block's PC
is stored in the EXIT PC (the return address) in that block's
EXIT- state ,",ord, and the PC is set to the stcirtingaddress of the neI.J function

-.

· t
" Wednesday. February 21, 1979 e0:34:22 AI:LMOOC;FORMAT 77 Page 4.1

(see FEF formats). Also stored in the EXIT state word Is the BINOS-PUT-ON-BINOING-PDL
bit (see LINEAR-BINDING-POL formats). Then the new block is entered, and 1nthe

"10&.1 8 bi ts of the new call block's ENTRY ord, the relative location of the LOCAL
BLOCK is stored. Also, in the next S bits of the ENTRY word is stored the number
of args supplied to the new function.

"Uhen something is stored in destination "TO RETURN," the current b.lock is
finished &.lith. The micro code follows the pointer stored in the dying block's
CALL state &.lord to find its &.lay back to the previous active call block, and th~n
restore~ the PC from that block's EXIT state &.lord ... here It ... as saved at exit time.

Note that the &.lay the stack and "the macro-instruction' set are set up,"" .
to refer to its args the function need never reference indexed "negatively off the stack
pointer." 'That is, a function ... ith five args doesn't refer to it~ "second arg by
-3(SP). Thus any function does refer to its second arg by 2(AP) regardless of
the total number of args the fu~ction.takes. ".

There are also some other useful bits among the CALL state, EXIT state,
and ENTRY state &.lords, ... hich are not necessari~y related to calling, exiting.
or entering: they were basically put ... herever" they fit. Her~ are the exact formats
of the &.lords: ""

In the CALL state &.lord: (~%LP-CLS-)
CLOSURE-BINDING-BlOCK-PUSHED": An extra binding block was pushed because

this ... as a closure invocation.
AOI-PRESENT: There is ADI present (see AOI "formats).
DOWNWARD-CLOSURE-PUSHED:
MACRO-SAVED-DESTINATION (3): Saved DESTINATION field of the CALL instruction.
OELTA-TO-OPEN-BlOCK (S): Delta on stack to previous open block.
DELTA-TO-ACTIVE-8LOCK: ditto

In the EXIT state &.lord (~%LP-EXS-)
BINDING-BLOCK-PUSHED (1): The QBBFL bit In M-FLAGS
and either
EXfT-PC (17): The saved PC, if &.Ie are macro code. or
RETURN-MICRO-PC (14): if &.Ie are micro code

In the ENTRY state ~ord (~%LP-ENS-)
NUM-ARGS-SUPPLIEO (S): Number of args passed to us.
And "either
MACRO-LOCAL-BLOCK-ORIGIN (8): Offset from call state to local ~Iock? M-QLOCO.

or . U-MICRO-STACK-XFER-COUNT (8): Number of words transferred form ustack to epecpdl
before this call.

Histbri~al note: In the "LISP Machine" paper (W.P. 79) there is much ~alk of
POL Frames and Frame Pushdo~n List mode. This feature has not been implemented,
and probably will not be. The original datatype FRAME' POINTER ~ould have been
used for these POL frames as ~ell as Function Entry Frames (FEFs) and others.
each of ~hich ~ould have been a page long. Ho~ever, this does not reflect the current
state of implementation. "

..
lJedMesday, Februar.y 21, 1979 00:34:22 'AI:LMOOC,FOAMAT 77

FEF FORMATS:

Uhen a fu~ction is macro-compiled, the macrocompiler produces a
Function Entry Frame (FEFJ. The FEF contains various. things including
random information abo~t the function, and the macrocode itself.
One of the things ~hichmust be kept handy is the manner in uhich the'

Page 5

function interprets its arguments. There Must be provision for storing very
cOhlplex, hairy speci fi"cations, such as uhether eath arg is to be EVALed or not,
.... hether it is REQUIRED, OPTIONAL, or REST, ..,hether I't is SPECIAL or LOCAL, etc.
Ho~ever, for simple functions a great deal of efficiency uould be lost if such
a general, hairy format were al..,ays used. The solution to the problem is that
si~ple functions use only a '"Numeric Argument Description- word and a
·Special Variable Bit map" (the third and fo~rth words in the FEF) to store this
information, while more complicated functlon~ use the more general -Argument
Descriptor List" (ADL)" NO.te that the ADL Is, conf~singly. sometiMes c;alled the
"Binding Descriptor List" or BOL; this should ev~ntually be fixed.

The exact (ha hal ..,ay this works is as follo..,s: '
There is one bi t in the FEF which tells whether the ADL is present. If rt
is not present,' then (of course) it is not used, and presumably the format is
simple enough to be conveyed through the information in the Numeric'arg description
and the S.V. Bit map word. Even if the ADL is present, it may not be used (and only

, be there for debugging). .
, There is a bit specifying that there are special variables being bound

by this function. If this bit is set, then the information about hich args
and/or locals are special ~ill be found either in the S.V. Bit map word, or
in the ADL, as follo~s:
. The S.V. Bit map ~ord contains one bit telling ~hether it Is actlve, and
also (if it is indeed active) 22 bits of bit map. If there are speciat variables bound
by this function, but the word is not active,
it is either because (1) there are more than 22 arguments+local vars, or
(2) There is a &REST ,arg and so it is not clear how much room ..,ill be'allocated
on the stack for args, and therefore not clear uhere the local variables will end
up_ Therefore in this case, the information on uhether various args and locals
are special must be obtained from the ,ADL. .

If the S. V. bit map word IS acti~e, it is·interpret~d by considerinQ it ,as
(of course) a bit map, in which the lea~t significant bit corresponds to the
first variable, etc. (??? fraid its the most significant. This is se~i-inconsistant
with usual convention, but probably not ..,orth changing.). If the bit ,for a pdl-slot Is
set, then that pdl-slot corresponds to a special variable.

,In all FEFs, the Numeric Arg~ment Description Li~t ~ill be present and",
accurat~ [he hel. I t has the, fo II o~i ng fie Ids:
QUOTED-REST: (1 bit) There is a &REST arg, and it is quoted •.
,EVALEO-REST: (1 bit) There is a &REST arg. and it is EVALed.

Note: These t..,o may not be on together, of course.
FEF-QUOTE-HAIRt (1 bit) There is hairy quoting, the FEF must be checked by

EVAL.
INTERPRETED: (1 bit) This is an interpreted function •.

Note: This,..,ill never be on in the FEF, but other 'kinds
of functions use this format also. '

FEF-BINO-HAIR: (1 bit) There is hairy binding, the AOL must be checked by the lInear
enter routine (don't ..,orry about what that is) •

. MIN-ARGS: (S bits) The minimum number of required args.
MAX-ARGS: (S bits) The maximum number of required + optional args.

Note that neither of these t~o six-bit fields inclUde the
rest arg, if any; it ~as covered by the f1rst t~o bJts.

Wednesday. February 21, 1979 00:34:22 AI:LMDOC;FORMAT 77 Page S.1

When the AOL is used: .
If the FEF-QUOTE-HAIR bit is set, or the FEF-BINO-HAIR bit is set, or
if the "S.V. bit map active" bit is clear and the Special Variabl~s Present bit Is
set, then the AOL must be present. (It may be present anyuay for debugging
purposes.) Also, there is a random bit In the FEF called FAST-ARGUMENT-OPT.ON-ACTIVE
which is semi-historical. If it is set, it Is a guarantee <ho ~o> that the ADL
can be safely ignor~d. . - ..

AI so, note that the macro-compi ler aluays generates ~n ADL. and never. the·
Numeric Arg Description word or the S.V. bit map uord; the LAP program tooks
at the-ADL, and determines uhat the Numeric Arg Description Word should be,
and possibly creates an S.V. Bit map and possibly doesn't actually generate the ADL.

The format of the AOL is as follo,",s:
For each argument and each local variable there are either one, tuo, or-three a's
in the ADL. The first Q is numeric, and specifies just about everythin~ about the
variable in an encoded format. The second uord is optional (presence indicat~d by a
bit in the first 0), and stores the name of the variable (usually a pointer .to a
IISP atom) •. None of the code uses this; It is for debugging purposes only.
The third Q~ if present, -is used to initialize the variable, under the ~ontrol of
various options specified by the first Q.

- The fields of the first a are:
NAME-PRESENT: (1 bitl There is a second word containing the name of this variable.
SPECIAL-BIT: (1 bit) This variable is special; get a pointer to its value cell from

the next entry in the S.V. Value Cell Pointer List. and
save the value in the Local block of thePDL.

DES-DT: (4 bits) Desired datatype for this variable, ~hich may be (in numeric
order starting ~ith zero)

DT-OONTCARE We don't care ~hat ~e get.
OT-NUMBER Any number.
DT-FIXNUM Only FIXNUM.
DT-SYM Only SYMBOL.
DT-ATOM Any number or symbol.
OT-LIST Only_LIST.
OT-FRAME Only FRAME (i.e. FEF. This is

pretty random •••)

QUOTE-STATUS: (2 bi ts) The desired quotage/evalage of the argum"ent, which
may be: (not imp I emented in any case) .

QT-DONTCARE ~e don't care ~hat ~e get.
OT-EVAL Should be EVALed.
aT-aT Should be QUOTEd (not EVALed).
OT-BREAKOFF Should be the name of a function

compiled from a quoted lambda expression.

ARG-SYNTAX: (3 bits) The desired arg syntax, which may be:
ARG-REQ Requlred.

. .

;'

ARG-OPT Optional. May be initialized if arg not present.
,ARG-REST Rest arg. (There may on I y be one.)

be'o~ here, they're ·not really arguments 0

ARG-AUX Prog-variable. May be initialized.
belou here, they're ignored by the function entry operation

ARG-FREE Variable is referenced free. Included merely
because this might be a nice thing to be able
to determine sometime. Totally -unnecessary
to actual execution of function.'

ARG-INTERNAL cell used to pass an argument to an internal
LAMBDA.

· Wednesday, February 21, 1979 09:34:22 AIILMDOC:FORMAT 77 Page 5.2

ARG-INTERNAL-AUX cell used by an internal PROG.

INIT-OPTioN: (4 bits) The desired initialization of this variable, ~hich may be:
.INI-NONE Do not Initial ize hili equl ed a gs have this.)

INI-NIL Initialize to NIL. (The defaultfo locale.)
INI-PNTR Initialize variable to 3rd Q •.
INI-C-PNTR Inl tial ize variable to what 3 d Q points' at •.
INI-OPT-SA Optional starting address. Start function here

If ·thls optional arg IS supplied. (Code between
.norma·1 starting address and here ina t'lallzes
variable if It Is not supplied and thus Must be
I nit i a I i zed. f .

INI-COMP-C Variable initialized by compiled code.
Initia'~ation too hairy to be done by above
.echanis~s. . .

INI-EFF-ADR Int.erpret 3rd Q as macro-code effective address
(i.e. 3 bit register, S'bit del·ta). Reference tha
adrand initialize variable to.~hat you get.
(This is used to compile

(LAMBDA (A &OPTIONAL (B A)) ••)
uith'A and B local, for eKample.)

INI-SELF Initialize to self. used for
(LAMBDA (&OPTIONAL (FOD FOO)) •• 1

uhich isn't reasonable unless FOO is special •

. When the macrocode refers to special variables, the actual code compiled
wi II refer to an area in the FEF called the Special Variable Value Cell Pointer List
(the effective addresses of the functions use the FEF "register" (or FEF+lee or FEF+2ee
etc.»). The pointer list contains invisible pointers to the value cells of
the special variables themselves.

When a special varlable is given as a local variable (a PROG or 00
or &AUX variable) it must be bound. Instead of binding it by saving it on the
Linear Binding POL (see ~ay below), the old values are saved in the slots
in the Local Block on the main POL, uhich uould otheruise be unused. This
is done for greaier efficiency (sort of~ Additional flavor would perhaps be a better
descr i pt ion) •

. If the macro-compiled program use~ constarits, the code gerterated will
be either of two things; if the constant is one of a fe~ ~hich many programs
use, 'such as NIL~ T, and some small numbers, it may be on the Constants page;
and the code addresses it with the Constants page "register." But if
it is a constant most likely only used by this function, the constant
~ill be placed in the FEF'in an area following the ADL. The macro-compiler
~ill~ in both cases, generate a reference called QUOTE-VECTOR; it is the LAP
program which actually decides whether to reference the Constants pag~. or .to
create a new constant in the FEF and reference it instead.

And now, here is the FEF format:

. There are first seven words of various information about·
the function. The first word contains the initial PC. relative to the .
top of the FEF (i.e. itself). which points to the macrocode for the function,
which is stored at the end 'of the FEF. It also contains three one-bit
fields which have already been discussed:
The NO-AOL-PRESENT bit~ the FAST-ARGUMENT-OPTION-ACTIVE bit~ and the
SPECIAL-VARIABLES-PRESENT bit.

The second word is:the function name. This is only here for debugging.
The third word is the Numeric Argument Description word, and the fourth

Wednesday, February 21, 1979 e0:34:22 AI:lMDOC;FORMAT 77 Page 5.3

is the S •. V. bit map ~ord.
The fifth ~ord has three fields:

The lo~ 7 bits: The size of the Local block. (When the function is activated,·
this many words will be reserved on the POL.)

The next 8 bits: The location of the AOLrelatlve to the start of the FEF •.
The. next 8 bits: The number of entries on the AOL (the number of variables

described; there may be one or two words per variable).
The sixth ~ord has one 8 bit field which holds the maximum length of .

the local block plus any pushing the function might do. This is here for use
by the microcode ~hich suaps the POL in and out of the main memory, so that .. -
it can assure that there will be room for execution of the function.

The seventh ~ord contains. the total size of the FEF.
Then, after these seven words, are the S. V. Value Cell Pointer Llst.

(if any), the AOL (if any), the space for random consta~ts used by the· program·
(if any), and finally, the macrocode itself, packed t~o instructions per ~ord.

.
· Wednesday, February 21, 1979 00:34:22 AI:LMOOC;FORMAT 77 Page 6

LINEAR BINDING POL· formats:

The LINEAR· BINDING POL (LBP) corresponds fairly cl.osely wi th the SPECPDL
in PDP-1e MACLISP. The LISP machine uses shallo~-binding, so the current·

-value of any symbol ·is at~ays ~ound in thesymbol~s value cell, and when a
symbol is bound, its previous value is saved on the linear binding POL, and'
the nea.i va I ue is p I aced in the va I ue c.e II. " (Note, hO&.lever, that the use
of 1he linear binding pdt is bypassed in the simple cases through the
mechanisms described on the preceding page.)

The LBP also serves some other functions. Uhen a MICRO-TO~CRO call
is made, the "MICRO-POL" of the Cons Inachine is stored there. (this Is
needed because the hard~are micro-POL Is only 32 words long).

Note: When discussing the LBP, "first" means the location with
the numerically highest address, and thus the LAST word pushed.
word is actually the FIRST pushed. Oh, well •••

..
The "last"

The LBP is block oriented. The bl~cks are delimited by setting
the USER CONTROL bit in the last Q in each block (i.e. the first one
pushed). The datatype of the first word of each block determines what ..
kind of block the block is, as follo~s:

· , · , · •
• ,
· ,

DATATVPE USE
~======= ~==

LOCATIVE
FIXNUM

MESA ENTRY

The block is a norma1 binding block.
This is a block transferred from the CONS machine
micro-stack (SPC). Each word in the block should
be a fixnum containing the old contents of the SPC.
Only the active part of the stack is transferred.
This is a MESA code leave block. The block
should be 2 Q's long; the first one (the MESA ENTRY
type Q) is a pointer to the MESA-FEF left, and the second Ie
the saved MESA-PC. (the return address). (See MESA-CODE
formats.)

A normal binding block·is stored as a pair of Q's for each" binding;
the first a is a LOCATIVE pointer to the bound location, and the second
is the saved contents of the location. Note that any location can be bound;
usually these locations ~ill be the value cells of symbols, but th~y can
also be array elements, etc. (only of arrays af type Q-LIST).

The SPC blo~ks and the MESA code leave blocks are al~ay~ pushed onto
the LBP all at once, and so are never "open." However, the" normal binding blocks
are created one pair at a time. To keep track of this, ~hen a mac~ocompiled
function is running, the "OBBFL" bit in the "PC status" flags is turned on if"a binding
block has been opened on the LBP. Th is ·b 1 tis saved dur i ng MACRO-TO-MACRO ca '-I s·
(see CALLING conventions) on the regular POL in the EXIT state ~ord (see POL formats)
so that ~hen a MACRO-compiled function is done, a binding block ~ill get popped off the
LBP. If the bit is not on, it means that not even one pair has yet been pushed.

Micro-to-micro calls can also c~use bin~ings, and in order to keep THAT straight~
a bit on the SPC is set to iridicate that a block was bound. This is all very hair~;
anyone uho is very, very interested is invited to read UCONS and/or (MI.

The LBP is pointed to by the location OLBNDP in LMl, and by

Wednesday. February 21. 1979 00:34:22 AI:LMDOC;FORMAT 77

A-OLBNOP in the real machine. In the current setup there 'is an area
devoted to storinQ the LBP called LINEAR-POL-AREA •

•

Page G.l

• Wed~esday, February 21, 1979 00:34:22 AI:LMOOC;FORMAT 77

AREA formats:

_. Area~ don~t have much of a format,· mostly, but there are still
some interesting things to say about them.

Page 7

There are several areas uhich are important to the basic k~eping·
track of th~ other areas; in the nuclear system, the atoms wlth th~ir names
have as their properties arrays uhich point at the areas, 60 that they can be
easily referred to. These are: AREA-NAME, AREA-ORIGIN,AREA-LENGTH,
AREA-FREE-POINTER, AREA-PARTIALLY-FREE-PAGE, AREA-FREE-STORAGE-MODE,
and AREA-FREE-PAGE-LIST. The uses 'of these are documented in LMNUC,
sections 3.S.X. Each area has a number (simply numbered e and on up) which
is used to index into theses areas.

There are several &.lays free space may b'e, allocated "It thin an area:
for each area the storage alocation ~ode is given by the area's entry in the
AREA-FREE-STORAGE-MODE area. The ones currently implemented are LINEARLY-ALLOCATED,
FREE-LIST, and PAGE-ALLOCATED. All depend on the area's Item in the AREA-FREE-POINTER
area. I n a LI NEARLY-ALLOCATED area, the as are a II ocated 11 near I y;' that Is, .
one at a time sequentially. The FREE-POINTER points to the next free a, and so every tim,
one is al located, 1 is added to the FREE-POINTER. In order to reclaim storage, .
the garbage collec~or uould have to compactify. In a FREE-LIST allocated area,
the free as are kept in a linked list (they have datatype OlP-FREE) and'the 23 bit
poi"nter field points to the next free element. Here a garbage collector
,",ould have no need to compactify. In a PAGE-ALLOCATED area, allocation is done
one ~h~le page at a time. (A page is 2e0 (octal) ~ords Ibng.) The FREE-POINTER
points to the first ~ord of the first page, and the firstuords of the pages,
form a linked list.

.. Wed;'esday, February 21. 1979 00: 34: 22· . AJ:lMDOC;FORMAT 77

stack groups, calling convs, adi.
remember: shou ho~ Numeric Arg Description Word is used by other than MACRO.
STACK GROUP formats:

A siack-group is the data structure ~ehind the implementation'of

Page 8

a "process" in the LISP machine. Interrupt conte~t-suitching. co-routines, and
"generators" are facilitated by the use of stack groups •.

At all times, there is e~actly one "active" stack-group,·which'corresponds.
to the "process currently being run" on a time~sharing system. Although th~r
is no time-sharJng betuen users on the LISP machine, it is still useful for"
system-hacking purposes to be able to support multiple processes; for" example, " "
~hen a message is received from the CHAOSnet.some other stack-group ~ould be
activated to h~ndle it. Stack-groups are als~~useful for certain control structureSI
"a solution ~o ,the "same-fringe" pro~lem was wrftten using them.

A stack group is a pointer of datatyp"e DTP-STACK-GROUP, uhich, points
to an array header ... ord the same wayan ARRAY-POINTER ... ould; the reason for
using an additional datatype is so that any'~outine ... ill al ... ays ~e able to
distinguish a st"ack group array from all other arrays. The array also has
its o~n array type, ART-STACK~GROUP-HEAD, for the same reason.

The data section of the array holds the main POL for the stack group, and
the array leader holds many other relevant data including a pointer to another array
holdin~ the linear-binding-pdl (q. v.) for the stack group, the pdl pointers
for both POLs, various micro-code variables, etc. '

There is provision (although not initially implemented) for"
allo~ing the t~o POLs to be stored as a chain of linked arrays rather than just one
(so that getting a POL overflo~ ~ould not require reallocating a bigger array and copying
such an array ~ould be of type ART-POL-SEGMENT. Both of these t~o array types"
are treated by the lo~-Ievel routines the same as ART-Q arrays.

A useful feature is that by binding appropriate special variables,
the default cons area, etc, and error and invoke handler can be Made a function
of ~hich stack group is active; each may have its o~n.

, The elements of the array leader are:

NAME

SG-POL-POL-POINTER

SG-POL-STORAGE-ARRAY

USE

Saved POL pointer, stored as a fixnum offset
from SG-POL-STORAGE-ARRAY.
This points to the the array in the chain ~hich
... e are no~ using. .

SG-LINEAR-BINOING-ARRAV Points to array for lBP. (??? ~hich is ART-~hat?)
SG-LB-PDL-POINTER POL pointer tolBP, stored as a fi~num offset

SG-POL-OVFL-SECTION
SG-LB-OVFL-SECTION
SG-U-STACK-QS

from SG-lINEAR-B"INDING-ARRAV.
POL overflow section chain (???)
Bindin POL overflo~ section chain (???)
Number of as transferred to micro-stack
on s~itchout (?1?)

SG-INITIAL-FCTN-INOEX Position in SGBA (~hich is what???) of
the topmost function pointer cell. This is
normally 3, but May difer if ADI is present.

SG-UCODE Used someho~ (not in yet) to indicate "hat ~icrocode
packages this stack group requires to be loaded.

The "fol lo~ing Qs "hol~ the state" acro~s macro-instructio~ boundaries:
SG-AP Points to currently running block on the stack in this 91

SG-IPMARK
group, stored as a fixnum offset to SG-POL-STORAGE-ARRAV.
Points to currenlt open block on the stack. Stored the ~

..
Wednesday. February 21. 1979 00:34:22 AI:LMOOC;FORMAT 77 Page 8.1

SG-SAVEO-QLARYH
SG-SAVEO-QLARYL
SG-SAVED-NARGS

&.Jay.
(i~e. the last array referenced.)
(i.e. the "last element of an array re.erenc~d.)
(I.e. number of args.) This enables one to compute
how much of the POL beyond SG-IPMARKo is eveluated args,

. and how Much is temp storage. .
SG-SAVED-INDICATORS (i.e. PC flags, condition codes, etc.)

The following as have to do with CALL-STACK-GROUP (see below)
SGSTAT The STACK-GROUP state. This has a field of the lo~ six

bi ts which may hold: (contents are given symbollcallYI
SGNERR-e, SGNACT-1 etc.)

CONTENTS
---=--==--
SGNERR
SGNACT

. SGNINT
SGNIND
SGNINC
SGNAER
SGNAEO
SGNAEC
SGNART
SGNACL
SGNAIC
SGNAGC
SGNEXH

NAME
c==_
SGSHLT
Sr,SSVD

SGSSWI

SGSNSP

SGSSTO
SGSSCO
SGSSCI

MEANING
c=== __ •

MEANING
_ ... ----
Error (for·the usual reason).
Active.
I nterr.upte9. . .
Interropted dirty.
Interrupt~d cleansed.
Awaiting error recovery.
Awaiting error ·recovery dirty.
Awaiting error recovery cleansed.
Awaiting return.
Awa i t i ng ca I I •
Awaiting 1nitial call.
Awaiting garbage collection.
E)(hausted.

It also has the fol-lol-ling 1-bit fields
(numbering from 2.3 down to 1.7)

Halt if there is an attempt to ~error out" of thi~ stack group (~
Thp special variables in this SG are swapped ~ut (this Is
a non-runnable state)
A special variable swap is in progress. This should not be on ur
in the middle of the sl-lapper. If some error occurs and. the swap
is not completed, this bit wi II be left on; the stack group· is tt
screwwed fatally. °

This SG binds no spe~ial variables at all, and it uill therefore
an error if 1t tries.
Swap special variables on trap-out.
Swap special .variables on callout.
Swap special variab1es of the SG which is previous .to me
when about to enter me.

SG-PREVIOUS-STACK-GROUP Pointer to SG which called be or was
interrupted "for" me. (so that I could be run)·

SG-CALLING-ARGS-POINTER Pointer to argument-block which last called me.
SG-CALLING-ARG-NUMBER Number of args in above block.
SG-FOLLOWING-STACK-GROUP Pointer to SG I called or was interrupted to run.

: f

SGAAS
SGAAJ
SGAAI
SGAAQ

These ·1 ocat ions are used to save the states of some of tt
locations in the CONS M-memory.· (It is OK for these

cells to have DTP-TRAP).

•
Wednesday, February 21, 1979 00:34:22

SGAAR
SGAAT
SGAAE
SGAAD
SGAAC
SGAAB
SGAAA
SGAAZR

AI:LMDOC;FORMAT 77_ Page 8.2

SGSVMA - Saved VMA regi ster. Note that the MRD and MLJD are NOT s

_This ends the elements of the array-leader of the ART-STA~K-GROUP array. The leader
of an.ART-PDL-SEGMENT array are:

NAME -MEANING __ a_ - ______ _
PSGPRV Pointer to previous segment in chain.
PSGFOL Pointer to follouing segment In chain.
FSGHDP Pointer to the ART-STACK-GRO~P array.

I
. i

I
!

