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Abstract

must possess the capability to introspect, learn, and improve their expertise.
truly intelligent program must be able to create procedures and to modify them
gathers information from its experience. [Sussman, 1975] produced such a system
"mini-world"; but truly intelligent programs must be considerably more complex.
crucial stepping stone in Al research is the development of a system which can

zfrtit’icial Intelligence research involves the creation of extremely complex programs
as it

und mstand complex programs well enough to modify them.

' makj
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a

l'here is also a complexity barrier in the world of commercial software which is
g the cost of software production and maintenance prohibitive. Here too a
which is capable of understanding complex programs is a necessary step. The
mmer's Apprentice Project [Rich and Shrobe, 76] is attempting to develop an

interdctive programming tool which will help expert programmers deal with the

com

exity involved in engineering a large software system.

This report describes REASON, the deductive component of the programmer’s
ntice.  REASON is intended to help expert programmers in the process of
tionary program design.  REASON utilizes the engineering techniques of
ling, decomposition, and analysis by inspection to determine how modules

rious sources of knowledge by using a dependency-directed structure which
ds the justification for each deduction it makes. Once a program has been
zed these justifications can be summarized into a teleological structure called a
which helps the system understand the impact of a proposed program

ification.
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Chapter 1: The Importance of Program Understanding

There is a fundamental distinction between running a program to do something
and asking it to understand how it accomplishes that very same task. Even huge
programs, like MACSYMA [Macsyma 1975), lack the ability to introspect, to examine
their own procedures. But, lacking the ability to introspect, they also lack the ability
to describe their own behavior, to modify their behavior, or to rationally plan the
allocation of internal resources among competing tasks. To do such tasks, a program
must understand itself.

To understand itself a program must be able to understand programs.  Artificial
Intelligence programs are large and complex; they maintain large knowledge-bases, use
multiple layers of interpreters, and frequently employ advanced control structures.
This thesis attempts to formalize and represent some of the knowledge necessary to
understand and explain such programs. It is incomplete and exploratory; more
questions are raised than answered.  However, I believe that several important
advances are made, and hope that this work may serve as a bridge from past
exploratory work of [Minsky, 1968], [McCarthy, 1968] and [Sussman, 1975] to future
work on truly self-conscious systems such as proposed in [Doyle, 1978}

How can a program understand another program? In a step towards this,
Sussthan [Sussman, 1975] introduced a paradigm of how an intelligent computer
program can acquire new skills. In this paradigm, a planning program first attempts
to combine old ones procedures to form a “first order" approximation to a desired
complex goal. This new procedure is then executed in a "careful mode", maintaining
a record of the process. If one of several ire-defined kinds of "bugs" is recognized,

the system attempts to analyze the bug and to debug its procedure so as to achieve
the desired goal.

Why is it not enough for a program just to understand its subject matter? What
makes us want to have it "understand itself* as well? Even among the earliest works
of Al the issue of self-consciousness was raised. McCarthy's proposal for the "Advice
Taker" [McCarthy, 1968] was in essence a proposal to develop a system which
understands its procedures well enough to be told how to employ them effectively, ie.
to tdke advice. Although many of McCarthy's original plans fell short of the mark
there were many seminal ideas present as well. Similarly Minsky's Matter, Mind and
Modgls [Minsky, 1968] raised many of these issues. Sussman's Hacker was the first
substantially detailed system to exhibit a serious approach to self-conscious acquisition




2 The Importance of Program Understanding
of knowledge.

HACKER could be considered introspective in a limited sense. It knew what it
had done, why it had done it, and what higher leve. goal each action was intended to

achieve.  Finally, it could examine the procedure it had coded and modify this
procedure's code.

But HACKER was very limited in its expertise. It knew only about the blocks
world, a mimworld with a one armed robot, a collection of blocks, and simple goals
like building a tower. Such simplicity is crucial in the initial stages of scientific
exploration; and HACKER remains an important milestone. However, to progress we
must be capable of engineering a system which can understand procedures of
complexity greater than those of HACKER. We need a system with greater expertise
about programs!

Follow-up work, unfortunately, has not developed very far in this direction, until
recently. Goldstein [Goldstein, 1974], in his MYCROFT system attempted to present
a more sophisticated taxonomy of procedures and bugs, but he also worked in a mini-
world, the domain of graphics programs written by elementary school children.
Sacerdoti [Sacerdoti, 1975] and Waldinger [Waldinger, 1977] both did further work on
the simultaneous sub-goal problem, the most studied bug in HACKER's repertoire.
However, none of these systems would meet the criterion of being experts at
programming.

This thesis will investigate the expertise needed to represent and understand Al
programs. It will also present a reasoning system which knows what it is doing at
each step and which uses this information in deciding what to do next. This seems to
me to be a basic step toward systems which are capable of modifying and changing
their own procedures.  [Doyle, 1978b] proposes to investigate such architecture
thoroughly. My work should be seen as attacking some of the preliminary technical

matters of the investigation; it is not a solution, but merely a stepping stone along the
route to self-conscious systems.

What is needed? Here is an example of an episode in which I described - to
myself (and my tape recorder) - a plan for developing a certain system:

Dependency Directed Reasoning



1 The Importance of Program Understanding 3

"This program is going to be doing a network type search. So the
main feature of the implementation will be a Conniver-like data-base
which in this case doesn't need contexts. There will be a demon feature
where we will allow arbitrary number of patterns in each demon. An
assertion will be a nested list structure; most of them will be simple.
They'll describe the various kinds of relations.

The data-base will take an assertion and regard it as a treelike
structure, moving through the structure with the standard tree traversal
until it reaches each terminal node. Each terminal will be indexed by a
combination of its unique identifier (the MacLisp function Maknum) and
its position in the list structure. Indexing means calculating a bucket to
put the assertion into. Position is calculated by bit patterns which Tll
describe later. These two numbers are combined to form one number and
this is used to calculate an index into the array. You do :his for each
terminal node and insert the assertion in each bucket you get. The bucket
will be in increasing order, so the insert will be an ordered-splice-in."

hat expertise and knowledge are involved in understanding this description?
Certh nly one must know something about hash-tables, arrays, list structure, recursion
etc. |But what about these structures is it important to know? One has to reason
the behavior of such objects. Evidently, I do this by making references to
rd kinds of procedures like oroereo-seiice-in and Tree-Traversa.. What are these
? They seem to be more than just particular patterns of code, they are talked

about| as if they have a more abstract quality. How can we represent these "abstract
proceflures"? What are the rules for their combination? Certainly any system which
hopes| to understand complex procedures must have answers to some of these questions.

Scien¢e and the computer industry as well  The rapidly growing power of
tational hardware, has led to new demands for qualitatively more complex
re. Commercial software production is reaching a “"complexity barrier"
[Winggrad, 19731 1 believe that this barrier can only be escaped by using the
iter as an intelligent and sophisticated support system for the expert programmer.

For Complex Program Understanding
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4 The Importance of Program Understanding

Section 1.1: The Problem of Program Maintenance
Notes of A Beleaguered Systems Programmer

Software and “software maintenance", has become the major expense of
computation. As machines grew larger, faster, and cheaper, the programs which run
on those machines have grown more ambitious and complex But the programmer's
tools for maintaining software have not kept pace with this growth.

Why has "maintenance" become so important? The word is probably a misnomer
which covers up the real issue: the evolutionary nature of the programmer - user
relationship.  Specifications for large systems are frequently incomplete and unclear;
the user doesn't know exactly what he wants. Given fuzzy criteria the designer does
the best he can, guessing here, making temporary choices there.

Once a program reaches the stage of initial implementation new desiderata are
almost always discovered: "This report should have these 3 extra fields; that one
provides extraneous information." New hardware becomes available resulting in
changes in the requirements and new opportunities for improvements. In addition, the
currently available features suggest new ones which could be implemented if only
certain modifications were made.

So while the first implementation is running, work is started on adding features
and reworking the last implementation. Running experience reveals the existence of
some new bugs which force additional redesign. In this process the programmer again
and again finds himself trying to remember whether it is safe to "smash the record"
before it is stored, whether any module is using the second bit of the dispatch queue
entry, etc. In general he is forced to consider all possible places which might be

affected by any proposed change. Of course, one does what one can and version two
eventually appears.

At this point, the user and the programmer notice that there are new features, a
brand new terminal which would allow real time interaction, and of course the
inevitable bugs. So while version two is being run, the design evolves again; version
three is laid out on the drawing board. And so on...

Dependency Directed Reasoning



1.1 The Problem of Program Maintenance §

If the production of software is not to be halted by these problems, new help
must| be found. Computer science currently has two types of solutions; we shall
prodc se a third.  The first type of solution, disciplined programming, consists of
imprgvements which avoid an automation of intelligent human skills. These include
langJ%Eges such as CLU [Liskov, et. al, 1977, ALPHARD [Wulf, et. al, 1976} etc.

which attempt to reflect the programmer's intent in the code and to modularize the
system so that dependencies are localized. In this kind of programming methodology,
errory are minimized and some modifications of the software become simpler. Other
effoi} s short of automation of human skills include the editors, debugging tools, and
like which systems like INTERLISP [Teitelman, 1975,77) and The Programmer's
kbench [Dolotta, 1976] have packaged into integrated language support facilities.

t the other extreme is the proposal to automate the programming process itself,
remoying the programmer from all but the most high-level design decisions. Automatic
prognamming [Balzer, 1973], however, assumes a highly intelligent computer program

which is skilled in the problem domain, algorithmic analysis, data structure selection,
etc. Some success has been achieved [Green, 1977}, [Barstow, 1977],
[Manpa and Waldinger, 19771 But a realistic appraisal would suggest that automatic

mming systems will not be practically successful without the development of

would guess that no truly proficient automatic programming system can exist
is not capable of introspection and self-modification, ie. of skill acquisition,
vement and development. Once a deep theory of such skills is developed, it
might become possible to build automatic programmers which, given advice from an
expan human programmer, will improve their skills with practice.

will present here yet a third approach, called the Programmers Apprentice
[Rich and Shrobe, 1976], [Smith and Hewitt,1975] which is intended to serve as an
intelligent assistant to the expert programmer during a program's evolution The
app‘ ntice has only limited skills: it is not yet expert in areas of program design or
efficiency, but it does contain a large body of knowledge about programs and fairly
sophisticated reasoning capabilities.

For %Complex Program Understanding




6 The Importance of Program Understanding

To use the apprentice one should not be required to provide such a large degree
of details that the system would lose all practical utility. Instead I imagine the
programmer providing the apprentice with approximately the same volume and type of
information that is now supplied as background documentation and in-line
commentary. Given this information the apprentice should be able to:

(1) Modularize the code into appropriate segments each of which has logical coherence
and an easily described behavior.

(2) Derive an explanation of how the behavior of the segments interact to achieve the
desired goals of the whole program.

(3) Deduce which features of the program are crucial and which are gratuitous.

(4) Relate this program to commonly used techniques of programming,

(5) Help the programmer decide whether a proposed method could, in fact, achieves
the desired goals and whether its sub-units can be fitted together in a coherent
manner.

(5) Detect coding errors as failures of the written code to correspond to the design.

(6) Index this information for ease of use in program explanation. The apprentice
should be able to explain a program in high-level human-like terms.

(7) Reason about the effect of proposed modifications to the code without having to
analyze the entire program starting from scratch.

Our apprentice system is set apart from verification systems like those of
[Deutsch, 1973], [King, 1969] [Igarashi, et. al, 1975] by its central focus on the
evolutionary character of the program design process. As I will explain later, this has
led me away from a concern for "proving programs correct”. Instead, I have been
more interested in building a system which will interact with a programmer during the
period of design evolution and which can converse with the programmer in terms
which an experienced software engineer would find natural and familiar, The
apprentice's goal is to interact with the programmer to develop reasonable designs
which meet the engineer's criterion of “"good enough" (as opposed the mathematicians
criterion of provably correct). The apprentice should be able to analyze program
designs at varying degrees of detail. During an initial interactive session it should be
able to analyze the program sufficiently to catch obvious bugs. The information
obtained by this analysis should be saved so that the apprentice can help assess the
effects of changes which the programmer might want to make in the future. Finally,
when the cost and time is merited the apprentice should be able to conduct a more
thorough analysis and to verify properties of the program.

Dependency Directed Reasoning



1.2 An Imagined Scenario 7
Section 1.2: An Imagined Scenario

| An Idealized Example of Using an Apprentice
}
A typical interaction between the apprentice and a programmer building an
assocjative retrieval system would look something like the following (Note: as usual the
use of English dialogue is a convenient fiction whose only purpose is to make the
presentation more comprehensible. Natural language understanding and generation are
beyond the scope of this work.) A similar scenario was presented as a "wish list" in
[Floyd, 1971]; at the end of the scenario I will indicate how much of my wish list is
met by the current system and its foreseeable development.

Programmer: 1 want to make an associative retrieval system which will be something
like the one in CONNIVER. It will store each assertion in each bucket hashed to by

one of its leaf nodes. I'm going to start by coding the insert routine for this data-
base.| Here's the code:

(defun insert (assertion table size)

(do ((assert assertion (cdr assert))
(index 1 (plus 1 (times index 2)))
(car-assert nil))

((Nu1) assert))
(setq car-assert (car assert))
{cond

((atom car-assert)
(bucket-insert array (hash car-assert index size) assertion))
(t (insert car-assert table size)))))

Note: The code above is written in MACLISP. The oo function used
|above is an iteration construct. The first s-expression following the oo is a
set of clauses controlling the iteration. Each clause begins with a variable
name which is bound locally by the oo. If there is an s-expression
following the variable name then the variable is initialized to have the
value of this expression; otherwise the variable is initialized to ni.. If there
is a third s-expression in the clause, then each time the loop is repeated
the variable is assigned the value of this expression. If there are several
loop variables, the assignments of their values is done in parallel

For Complex Program Understanding




8 The Importance of Program Understanding

The second s-expression following the vo is a list of s-expressions.
The first of these is a termination test which is evaluated at the beginning
of each loop repetition. If this s-expression evaluates to a non-niL value,
execution of the loop terminates. The following s-expressions in the
termination clause are evaluated; the value of the last s-expression is the
value of the whole oo expression.

All succeeding s-expressions are the body of the loop and are executed

each time the loop is repeated. A return expression in the body of the

loop terminates loop execution. return takes one argument. The value of

this expression is the value of the whole loop .
Apprentice: I'm not sure I understand this code completely. It appears that you're
doing a ftree-traversal through the assertion and filtering for the terminal nodes which
are the atoms. But I don't understand what the purpose of inoex is, nor do I
understand why wuasH takes inoex as an argument. The wash I know about takes a
single object and an array-range and computes an index of that array.

Programmer: In this system wash takes two arguments: (1) An atom which appears in
the assertion; (2) A number, called ivoex, which indicates the position of the atom in
the assertion, given that the assertion is viewed as a tree. If the same atom appears
twice in the assertion then it will have more than one index; this allows us to
distinguish the two occurrences.

Apprentice: I still don't understand. Explain the numbering scheme to me please.

Programmer: The idea is that every node, except for the root, is the immediate child
of some other node. Number the root node 1 and then each child is numbered as
follows: If the node is the left child of its parent, its number is twice its parent's; if
it is the right child of its parent its number is twice its parent's plus 1.

Apprentice: The way you wrote the code when you make the recursive call for the
car (i.e. the left child when the assertion is viewed as a tree) you don't pass the index
of the current node as an argument, so it starts counting from 1 again.

Programmer: You're right. Tll have to change that; that means that the routine will

have to take the index as an argument, which means that there should be an
initialization function to call from the outside. I'll recode it

Dependency Directed Reasoning
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(defun insert-1 (assertion table size index)
(do ((assert assertion (cdr assert))
(index index (plus 1 (times index 2)))
(car-assert nil))
((Null assert))
(setq car-assert (car assert))
(cond
((atom car-assert)
{bucket-insert array (hash car-assert index size)
assertion))
(t (insert-1 car-assert table size (times index 2))))))

(defun insert (assertion table size)
(insert-1 assertion table size 1))

ntice: One further question. I assume, given its name, that suckeT-INserT inserts

its third argument into the bucket indexed by its second argument. You're inserting
asserTion on each call, which is not the same object all the time. My understanding of

this
hash
the qL

the

pe of hash-table is that an assertion should be in each bucket that its terminals
o. But when you make the recursive call for the left nodes, assertion becomes
irrent sub-tree of the assertion

Programmer: You're right again. I should make the whole assertion an argument to
procedure as well Can you make that change?

Appfcntice; Yes, consider it done. How about the sucket-insert routine; would you like

to d#

sign  that now?

Progiammer: OK. In this design, buckets will be ordered lists of assertions. sucker-
inserT| will fetch the bucket indexed by its second argument and then do a vList-Inserr.

This
its
impl
I'll s
AppF
smal

will be the standard rrailing-pointer-enumeration which tests each item to see if
1QUE-1DENTIFIER is larger than that of the assertion. Tll use LISP's maxnum to

ent the unique identifier. When the first larger member of the list is found,
lice in the new assertion.

entice: I understand the design, but there is a mistake. If the new assertion is
rr than any element, then it can't be spliced in.

Prognammen In that case, cons it onto the front of the list.

For ((

lomplex Program Understanding




10 The Importance of Program Understanding

Apprentice: That won't work either, since you want the assertion to be a member of
the bucket indexed by the hash you've calculated. But if you just cons this new
assertion onto the front of the list it won't be in the list pointed to by the table.
The item of the table in that position will still be the old list which is the cor of the
one which contains the new item.

Programmer: OK. If this case is reached we'll not only cons the element on, but we'll
also store this new list in the appropriate position of the table.

Apprentice: The design now is correct.

Programmer: Here's the code:

(defun bucket-insert (array index item)
(do ((current (arraycall array index)(cdr current))
(previous nil current)
(unique-id (maknum item)))
((null current)
(cond ((null previous)
(array-store array index (1list item)))
(t (rplacd previous (1list item)))))
(cond
((> (maknum (car current)) unique-id)
(cond ((null previous)
(arraystore array index (cons item current)))
(t (rplacd previous (cons item current))))
{return t)))))

Programmer: Now TI'd like to do the rooxue. I just realized that rookur is very similar to
insert, It also does a tree-traversal through the list structure, calculating indices and
fetching buckets. I think that this ought to be modularized so that there will only be
one place where this indexing is done. I guess what I'd like to do is write a
subroutine called inoex which takes an assertion, the table and the size and the returns
the list of buckets which this assertion indexes to.

Apprentice: The current 1nsert routine is a tree-traversal which produces a sequence
of indices which are handed to sucker-inserr. Each occurrence of sucket-insert fetches
the bucket.  You can re-arrange things so that moex will do the vree-TRavERSAL,
producing the sequence of indices; each of these is fed to sucket-retch to get the
bucket, and each of these can then be fed to a list-accumulator to produce a list of

Dependency Directed Reasoning



1.2 An Imagined Scenario 11

buckets. Here's the code:

(defun index-1 (assertion table size index bucket-1ist)
(do ((assert assertion (cdr assert))
(index index {plus 1 (times index 2)))
(car-assert nil))
((Null assert) bucket-list)
(setq car-assert (car assert))
(cond
((atom car-assert)
(setq bucket-1ist
{(cons {arraycall array
(hash car-assert index size))
bucket-1ist)))
(t (setqg bucket-list
(index-1 car-assert table size
(times index 2) bucket-1ist))))))

(defun index (assertion table size)
(index-1 assertion table size 1 nil))

Progrpmmer: Can you fix isert to call moex, rather than doing the indexing itself?

App#entice: It would seem so. Since 1noex produces a list of all the correct buckets, if

I do

a standard list-enumeration of these TI'll produce a sequence of buckets to be

ham#e:d one at a time to sucket-insert. So the general plan is still the same. But,

BUCKE
inde

Prog}

-inserT will have to be changed since it now expects its input to be an array
not a bucket.

ammer: Change it to make it expect the bucket.

Apprentice: Now you've got problems. In the special case where the item being
inseﬁted is smaller than any presently in the bucket, we had to store the new bucket

back
the b

into the table. But sucker-insert in this new version doesn't have the index of
ncket.

ProgLrammer- Oh well! Actually, I wanted to change the representation of the buckets
a little anyhow. I want the first item of the bucket to be a count field and then the

list o

' members to be the rest of the list. I think if you'll check, it will turn out that

this femoves the problem since the item to be inserted will always have to come after

For Complex Program Understanding




12 The Iinportance of Program Understanding

the count field; you can always do this by side-effect. The vist-inserT routine will
have to be initialized differently, starting with the erevious pointer pointing at the
whole bucket including the count field and the cureent pointer pointing at the cor of
this list which is the part with all the items in it.

Apprentice: Yes, that will work, except that I can't prove that the table will always
have such a structure in each slot. Arrays are initialized to nil, not buckets as you
just described them.

Programmer: 1 will write an initialization routine later which will set up the table to
have empty buckets in each slot.

Apprentice: What should be in the count field of the bucket? There is no code to
maintain it yet.

. and so on
[Note: this dialogue was extracted from a transcript of several coding sessions}

This scenario clearly is more ambitious than anything currently implemented. In
particular, the language and discourse expertise implicit in this scenario are not even
part of my current research goals. However, the basic facilities in this system are
now under development. The apprentice system I have shown consists of four main
facilities.  First, the programmer proposes designs which the apprentice checks for
logical consistency. In chapter 7 I show an example of such an analysis which was
conducted by the first implementation of REASON. In the case where a design is
incorrect, however, the scenario shows REASON framing high-level descriptions of the
problem. This facility is not yet developed.

The second facility shown in the scenario is the ability to determine whether the
actual code corresponds to the design. This facility is not part of REASON at all; in
[Rich & Shrobe, 1976] we described an initial design of a recognition system which
could conduct such an analysis.

The third facility shown in the scenario is the use of pre-proven fragments to
analyze a program's behavior. This is coupled with the use of temporal collections to
segmment the system into these fragments. Chapters 8 and 9 present a detailed
formalism for this kind of analysis. [Waters, 1978] reports on an implemented system
which conducts such an analysis for mathematical FORTRAN programs. The use of

Dependency Directed Reasoning



1.2 An Imagined Scenario 13

plan ifragments to guide the logical analysis is not yet implemented in my system.

The final facility is shown in reasoning about program modifications. This is

discussed in chapter 13. My current system is only part of the way to being able to
handl¢ such reasoning. As the system makes deductions it records the logical
dependencies used in each step. Furthermore, once it has conducted a complete proof
it andlyzes these into a summarized form called purpose links. These, together with

the j
the

mplete proof are the basis for further reasoning about modification. However,
hniques for using these representations are still being developed.

hroughout the scenario, the apprentice exhibits considerable expertise about data

structures and side effects. In Chapters 11 and 12 I discuss the techniques used to
conduct such an analysis. The basic framework shown in these chapters is now well

worked out, but is still in the process of implementation. The earlier version of
REAJS ON could conduct similar side effect analysis, but was far less robust and
flexible.

that
imple

For K

In general, the reader should remember that the above scenario is a wish list and

the remainder of this thesis is a progress report on the research required to
ment the facilities of the wish list.
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Section 1.3: The Research Content of This Thesis

The apprentice represents a practical, medium term research goal in which many
of the issues of program understanding can be explored. The representation of
programs, the ability to understand the underlying logic of a program and to reason
about the effect of program modifications are crucial prerequisites to the development
of a self-conscious system capable of serious skill acquisition. I will develop in this
thesis a representation called plans for the logical structure of programs and a
reasoning system which follows a discipline of explicit representation of its control
strategies. This will allow the system to examine its own control state and to chose
what to do next based on that examination.

Throughout the scenario above we saw the apprentice and the programmer
referring to a shared body of knowledge about standard program structure. The
apprentice talked about tree-traversal, list-accumulation, filtering certain elements.
The middle section of this document will develop the plan formalism for representing
such notions and will present examples of some useful standard plans. Influenced by
the work in [Waters, 1977] this formalism has been extended from that in
[Rich and Shrobe, 1976] to allow plan fragments which produce and consume
sequences of objects distributed in time. The importance of this notion can be seen
in the scenario above where the apprentice develops the code for noex from that for
insert.  Having done this the apprentice notices that inex produces a list of buckets
which is the same sequence of values as that produced by the internal rree-TrRAvERSAL
and sucker-retck fragments which were internal to ivex  When grouped appropriately,
a call to moex followed by a standard vist-enumeration is identical to the internal
fragments of ivoex In the last section of the thesis I will consider how to analyze the
effects of such program modifications and how to maintain consistency as procedures
evolve through the design process. I will show how the analysis of programs into plan
fragments can greatly reduce the complexity of understanding modifications.

The programs which I present in this thesis involve side-effects on complex and
shared structures. Analyzing this kind of program is a very tedious process which
people simplify using many heuristics. In chapters 11 and 12 I will show how the
reasoning system can analyze side-effects at varying levels of detail which correspond
to the levels which people seem to use. This will allow the system to develop an
understanding of what the program is intended to do, before it is forced to determine
what it actually does in all the possible "screw-ball" cases. The system is capable of
going back and being more careful in its analysis, using the information from the first
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analysis to guide the second. The use of dependency information and non-monotonic
logic [Doyle, 1978] to conduct side-effect analysis is unique to this thesis.

The work reported on here is part of an ongoing project to develop a working
Programmer's Apprentice.  Charles Rich and I began in this work in 1974; many of
the ideas presented here were developed jointly. It is hard to identify all those places
in this thesis which have been influenced by Rich's [Rich, 1977] ideas. @ The
Programmer's Apprentice project was later joined by Richard Waters who used many
of our initial ideas to analyze numerical FORTRAN programs [Waters, 1976] Waters
found it very convenient to think of loops as being built up by a series of Plan
Building Methods. In his view a loop consists of a nucleus which produces a sequence
of values. Embedded in this nucleus are various augmentations which consume the
sequence of values produced by the nucleus. Augmentations can be made to operate
on a| restricted sequence by including a filter to eliminate certain elements from
consideration.

Waters' ideas find their way into this thesis as a more general notion of
temparal-collections which may serve as the outputs and inputs of segments. Any
recurgive program can be viewed in at least two ways, involving two distinct
segmentationss  One of these called the temporal-viewpoint involves a cascade of
segmjnts passing such temporal collections; the other, called the surface-viewpoint, is
simp{ly an aggregation of the code into modules. Some features of the program are
made| clear by the temporal viewpoint while others are seen more easily in the surface
viewpoint.

The program REASON reported on in this thesis has gone through several
incarpations. As part of my earlier work with Rich, an initial version of REASON
was designed and reported on in our Master's Thesis [Rich and Shrobe, 1976} That
version was completely coded and worked as reported. However, the earlier version
was frather cumbersome and ill-suited to the recognition tasks for which it was
intended.  During the later part of the development period of the first version of
REABON ([Stallman and Sussman, 1976] introduced the use of dependency networks in
their | electronic circuit analysis program EL. The dependency network was then
extended and built into a separate package called the Truth Maintenance System in
[Doyle, 1978] Although the first version of REASON maintained dependencies, it did
. not have a truth maintenance system which used these to any advantage. Doyle and
others, however, built a simple problem solving language, called AMORD
[DeKleer, et. al, 1977] which did interact with the TMS.
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The current version of REASON is being developed as a program written in a
variant of AMORD. I have had enough experience with the first implementation and
the partially completed new version to report on this work with confidence.

In the chapters 14 and 15, I will attempt to evaluate this admittedly partial work
and to compare it to other, more developed systems for program understanding. I
hope that the reader will find the tedium of working through this document rewarded
by at least an occasional glimpse of something promising.
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Chapter 2: An Engineering Theory of Evolutionary Design

he scenario of the last chapter emphasizes the evolutionary character of the
design process. I believe that the key to supporting such an evolutionary interaction is
the development of powerful techniques for program analysis. Analysis is the process
of defomposing a program into coherent modules such that the behavior of the whole
artifact can be understood in terms of the behavior of its parts.

he dominant form of analysis in current computer science research is the
Floyd-Hoare verification techniques, especially as developed by [Igarashi, et.
al, 19731 In this technique the basic unit of decomposition is the programming

mming language primitive into a pre-condition (or vice-versa). Verification
proceeds by stating a pre-condition and a post-condition for an entire program.
are combined using a process known as Verification Condition Generation
(VCQ@). VCG passes the post-condition back over each language primitive of the
m in turn; the statement arrived at when the modified predicate is finally passed
over [the first primitive of the program has the property that it must be true on
progk am entrance if the original post-condition is to be true on program exit. Finally,
an implication is formed from the pre-condition of the whole program and this new
statement. If this implication can be proven, then the program must exhibit the
behavior specified by the pre- and post-conditions.

Given the attention paid to verification techniques in recent years, one might
think| that they are sufficiently powerful to help manage the problems of evolutionary
design. I feel that such a conclusion is unwarranted. Program proving techniques will
playlrm important, but limited role in supporting incremental design and evolutionary
progkamming. It is my feeling that the techniques now in existence have been
designed with a particular kind of program - namely algorithms - in mind and that
theri are a large number of distinctions between such programs and the software
systems which I am interested in. This difference of concern has lead to a difference
in perspective and methodology which underlies this entire document.

1. Much of this material was originally written as part of a prdposal to the National
Scienge Foundation. I acknowledge and appreciate the extensive editing by Charles
Rich jand Richard Waters which went into those sections.
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Section 2.1: Type of Programs -- Algorithms vs. Systems

We can identify two different kinds of programs: algorithms and systems which
differ along a number of dimensions. Each kind of program is valid and important to
computer science, but they present different demands and requirements. I believe that
program proving is most useful and necessary for the domain of algorithms while the
techniques I introduce in this document are more useful for the analysis of systems.

Typically, an algorithm is a relatively short program which can be precisely and
concisely specified. Specifications for an algorithms often are much shorter than the
program text. For example, the Euclidean GCD algorithm occupies about 7 lines of
code in any recursive language; its specification is of about the same length: the
answer divides both inputs and it also is divisible by any other common divisor of the
inputs.  The Knuth-Morris-Pratt or the Boyer-Moore string matching algorithms
occupy roughly 100 lines of code but have a very short specification: the answer
returned is the position of the first string in the text which matches the input pattern.

A second feature characterizing algorithms is that they exhibit a clever underlying
logic which requires proof. The intricacies of either of the string matchers mentioned
above would lead one to doubt whether they worked unless a rigorous proof were
presented. Indeed, the cleverness underlying any particular algorithm makes its code
quite different than of other algorithms. Thus, one finds few familiar cliche's in the
code. Instead one must work hard to find an explanation for the function of each
line. In addition, since algorithms are meant to be used as components of other

programs, it is crucial that they be known to be correct; a single mistake could have
thousands of repercussions.

Algorithms are built to satisfy a precisely stated specification which has general
utility. The specification is not subject to change or reinterpretation. An algorithm
is not an evolutionary program. Euclid's and Pingala's algorithms have survived in
essentially unchanged form for more than a millennium.

A final point about an algorithm is that it frequently represents an extremely
optimized method for achieving a very common task. This optimization is achieved
through clever and often obscure techniques. But in the case of an algorithm this is
allowable and even desirable. The algorithm is published with an explanation; it is not
intended to be modified and therefore intricacy is appropriate if it leads to an
improvement over previous techniques.
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One might be inclined to think of a system as nothing more than a large
collegtion of algorithms. However, the description above should make it clear that the
whole is more than just the sum of its parts. Each of the characterizing aspects of
algorithms are in fact untrue of systems. Software systems are large programs with
specitications and other related documentation exceeding the size of the code by an
order| of magnitude. The specifications are not crisp, well defined, or permanent.
Indeed, they often are tied to social and institutional practices which change for
reasons having nothing to do with computation. Financial and management systems
are dependent on tax codes, business practices, etc. Military related systems depend
on the arms technology and defense strategies of the world powers. When specifying
systems which function within such a nexus, it is impossible to state precisely what is
to be done; one instead states some criteria which must be met and others which are
tive of less crucial but desired behavior. In any event these criteria change, and

Even in the most careful of system designs the product passes through many
ions of design and coding before something acceptable is developed. In the next
sectign I will present an argument for why this must be the case.

Systems also differ from algorithms in the degree to which they involve clever
and intricate logic. Typically a system of programs is made up of a large number of
relatively small modules, each of which involves routine and mundane code. There is
a vacabulary of cliche's out of which such code is built and the experienced
programmer can analyze such routine coding patterns by inspection.  Occasionally
something idiosyncratic is thrown in but even these are usually simple to understand.
Even| at higher levels of the system, sub-modules are combined in routine ways.
Verifjcation of such modules would be conducted mainly as a method of isolating
coding mistakes such as fencepost errors and typos.

The complexity of a system does not primarily arise from the use of locally
- intridate stratcgies, but rather from the sheer number of interactions between modules.
These make it difficult to assess the effect of a proposed change to the system since
each |module may enter into purposeful relationships with many others. Systems tend
to reach a point where the volume of these interactions overwhelm unaided human

For Complex Program Understanding
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abilities to manage the complexity. Once this point is reached changes to the system
produce more harm than good. Rather than continuing to evolve, the system is
frozen and a new system is commissioned.

In summary, we may distinguish between algorithms and systems along two major
dimensions.  Algorithms are permanent, almost mathematical objects, which are not
subject to frequent modification of either code or specification. Systems are
impermanent, evolutionary programs of little mathematical interest. The complexity of
an algorithm is largely due to the use of locally intricate and clever strategies; the
complexity of a system is due primarily to the sheer volume and number of
interactions between modules.

These distinctions lead one to see the need for different kinds of automated
design tools. The designer of algorithms needs the use of proof checkers, theorem
provers and verification systems. While these serve a useful role for the systems
designer as well, they are not his bread and butter. Instead he needs tools to help
him modify current designs to meet incrementally new requirements. Given the size
of a software system, one cannot tolerate the delay and expense of a completely new
analysis every time such an evolutionary modification is desired. One instead requires
incremental processing in which a small change in the design should require only a
small amount of reprocessing to achieve an adequate analysis.

Even if a program can be proven correct, and even if this can be done in an
incremental fashion, there is still a problem. The sheer volume of information
developed during the proof of a software system renders the information useless unless
the analysis structures the information so that it is comprehensible to a human. When
a system designer sets out to make a modification, only a tiny fraction of the
information is actually relevant; the system designer needs tools which can produce

just this information and no more. My work is directed towards the production of
such tools.

Section 2.2: What Characterizes Evolutionary Change?
As we saw in the scenario of the last chapter, the user repeatedly proposes
designs and then debugs these designs until he is convinced that they achieve the

desired goal. In some cases he even goes so far as to reorganize the program,
breaking down some module boundaries and erecting new ones in their stead. For
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example, the code for indexing an assertion is extracted from the insert code, modified
and ‘1hen made into a module which is called from the tookuer routine. At another
point|the user decides to change the structure of the suckers.

[n each of these cases the proposed modifications have ramifications which reach
beyond the boundaries of any modules apparent in the code, yet the programmers
clearly thinks of them as incremental or evolutionary changes. I wish to contrast
these| evolutionary changes with the situation in which the programmer cannot

modate whatever change he is considering within his current conceptualization of
system and so redesigns “"from scratch”. In an evolutionary change, the main

experjenced programmer will think of as evolutionary. The received wisdom in
programming methodology is the principle of the modularization.  This principle
is the computer science version of "a place for everything and everything in its

choice to a single module then all evolutionary changes can be handled by local
es to a small number of modules. However, there are clearly evolutionary
chaq es which do not fit into this paradigm. As I have already mentioned, the
scenario contains examples of the programmer making modifications in which the
modk le boundaries are rearranged, yet these changes are clearly thought of as
evolutionary.

The principle of modularization suggests that evolutionary changes are those
whidh are local to a module. Although, I believe that this notion is overly rigid, I do
beli#we that the notion of locality within a decomposition is the crucial idea which
chanﬂtterizes those changes which can be treated as evolutionary modifications. In the
next several sections I will develop the following thesis: Engineering analysis consists of
the yse of partially accurate models to allow a system to be decomposed into multiple,
overlapping, tangled hierarchies. A modification will be perceived as evolutionary
if there is at least one decomposition such that within its segmentation
structure the effect of the modification appears local.
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Section 2.3: Why Is Evolutionary Design Necessary?

Why don't we just design correct programs to begin with and dispense with the
expense of design iterations, debugging, and evoluticn? There are those, for example
[Dijkstra, 1976} who believe that such a fault-free methodology is both desirable and
possible. In this view, one would start with specifications for a program's behavior
and refine these in a top-down step-wise manner until a correct program had been
reached. It is claimed that by carefully stating the invariants (for example on loops)
before they are coded, one can assure a high degree of reliability for the code
produced. This may be summarized by saying that one should have a proof of
correctness in mind when one begins to code.

As far as this goes it presents little to argue with; however the methodology
provides little concrete guidance as to how one should develop the design and proof of
correctness to begin with. I suspect that if this approach is suitable at all, it is only
useful for the creation and implementation of algorithms.  As I have observed, the
process of algorithm development is quite different than that used for the design of
large software systems. Algorithms are the result of months (or years) or research;
when a researcher has the insight for a new algorithm, he can then proceed through a
top down design process in which his insight is elaborated into a design for the
coding. This can and should include specifications for the sub-modules of the
algorithm.  Such careful specification and elaboration of the algorithm's design can
then lead to a correct or nearly correct coding of the program.

The design and construction of large software systems is quite different. I have
already observed that systems are evolutionary by nature. One reason for this is
external; the design of a system often depends on social and institutional practices
which change quite frequently. However, there is also an internal, cognitive reason
why systems are designed incrementally, namely that the cognitive complexity of the
task allows no other approach. The designing of a software system is, in my view, a
form of problem solving not very different from that used in a conventional
engineering disciplines such as electrical engineering or even in common sense
reasoning. . The overriding goal of such forms of reasoning is to manage and reduce
the complexity of the design task to the point where human cognitive powers are
adequate to produce a reasonable solution. Much of Artificial Intelligence research on
problem solving has consisted of the development of paradigms which account for this
type of reasoning. These center around the related ideas of decomposition, modeling,
and debugging as intrinsic parts of the planning process.
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Common sense reasoning and engineering problem solving share a need to limit
the complexity of the planning space. In both these domains if all possibly relevant
details were to be considered at once they would overwhelm human cognitive capacity.
Thus, rather than trying to guarantee a perfect answer from the start, one works for
an angswer which is close enough and then modifies this to fit the actual needs. If
one does not take this approach but rather insists on perfection from the start, the
plannjng process would stall out at the first step.

he goal of a problem solver is to piece together a collection of actions which
will achieve a specified set of goals. Typically, the problem solver only has to achieve
these|goals given that certain conditions hold in the initial world state. This collection
of actions is called a "plan" and consists of several forms of information: First, a set
of sub-steps and their behavioral descriptions; Second, a set of constraints on the
orderjng of sub-step execution; Third a means of propagating information between the
sub-steps. Finally, and most importantly, the plan includes an explanation of how the
segd nts interact to achieve the desired goals.  Notice, however, that the sub-steps
are not necessarily primitive actions; the problem solver may have to attempt their
solutipn recursively.

he earliest planning systems used the paradigm of heuristic search in which the
problem solver repeatedly tries to take a single step from its current world state to
r state which is hopefully closer to the goal This approach was used in
systems like GPS [Newell &et. al, 1959] and STRIPS [Fikes & Nilsson, 1971};

he key insight in PLANNER is that a reasonably knowledgeable problem solver
often recognize the form of the answer; having done so it can propose a partially
instantiated plan immediately. Such plans are used as the starting point of the

eps by recognize the form of their answer. This method of problem solving
Planning by Recognition of The Form of The Answer) was formalized in the

A4
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Within particular domains of expertise the paradigm of Planning by Recognition
of the form of the answer is facilitated by the development of an engineering
vocabulary which conveniently captures the abstract form of most problems. In
particular, within programming domains one often can identify an “intermediate
vocabulary” of programming abstractions which constitute the building blocks out of
which a large percentage of the known techniques of particular domains are built.

When viewed from the perspective of analysis, the Recognition Paradigm takes
the form of Analysis by Inspection. As a planning paradigm Recognition decomposes
the problem into a pattern of sub-steps by recognizing the form of the problem. As
an analytic technique, Inspection reconstructs the form of the problem by recognizing
the pattern of sub-steps in the device. Both of these rely on the existence of a
powerful body of "standard plans" which reflect the common ways of achieving those
goals whose form is understood. The existence of this body of knowledge reduces the
heavy cognitive cost of heuristic search to the much less burdensome price of searching
a "plan library".

However, even the paradigm of Planning by Recognition does not adequately
model human problem solving behavior on very complex tasks. Yet another paradigm,
- that of Planning In an Abstraction Space [Sacerdoti, 1973] must be added. In this
paradigm we add to the above notions a further idea, that of modeling. An
abstraction space is a model of the real world in which some important details are
intentionally (or otherwise) omitted.  Planning is first attempted in such an
Abstraction Space. If a completely developed plan is formed in the abstraction space,

then the process advances to an attempt to modify the plan to function in a less
abstract space.

Notice that this recursion of planning and refining in a hierarchy of abstraction
spaces is a different recursion than the recursive invocation of the problem solver on
the subgoals. In the later recursion the metric is the size of the task, in the former it
is the accuracy of the modeling space. An important consequence of this paradigm is
that as one proceeds through increasingly accurate models, a new plan is formed by
-incremental modification of the plan produced by the preceding stage. One
implementation of this paradigm was embodied in the Abstrips program
[Sacerdoti, 1973], a descendant of Strips. Comparisons between the two programs
showed that Abstrips could outperform Strips by a factor of 4; as the problems grew
harder the difference between the two systems became even more pronounced.
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Abstrips, however, had only a very weak method of modeling the real world; its
only |abstraction consisted of weakening the preconditions of its built-in operations.
Thus, its only debugging technique consisted of splicing set-up steps into the abstract
plan,

Bussman's Hacker also identified a second reason for the indispensability of
debdgging. Suppose that a problem solver is presented with a goal for which it has no
plan jn its library. In this case, the problem solver should attempt to reformulate the
protJl em statement so that it can be decomposed into parts whose solutions can be
found by Recognition. However, when this decomposition is made there is always the
possi ility of destructive interference between the plans for the various sub-parts.
Furthermore, until one has found plans for each sub-goal separately, one cannot tell
whether they interact. Inherently one is faced with the need to debug the total
solution to remove destructive interference between the sub-plans.

believe that these paradigms explain the mechanisms used by people to manage
the domplexity of planning in large and complex domains. One first constructs a
mental model of the domain in which many details have been omitted. This produces
a search space of considerably smaller size in which it is computationally feasible to
derive a plan. This plan, like every other, has a "proof of correctness" (or an
expl.’# ation of how it achieves its goals); however, this "proof of correctness" might
actually be incorrect since it depends upon assumptions in the model which may
e facts in the real world. Nevertheless, these fictions in the modeling process are
ely valuable; without them the complexity of the problem would prevent one
tfronﬂ building a plan at all This "almost right" plan is refined by developing a more
accurpte model of the situation and then using the current "proof of correctness" to
guide| the debugging process. As the Abstrips program indicated, developing the plan
in an| abstraction space and then debugging it is a computationally cheaper option than
attempting to develop a correct plan directly. It is for this cognitive reason that
softwpre must be designed in an incremental, evolutionary manner.

If computer based design aids are to be of assistance to software system
designers, they must take cognizance of the nature of the design process which I have
outlined. Design aids must satisfy two criteria: First, they must be able to reason
about abstract plans and their hierarchical structure. Given any world model the
design aid must be able to check whether a proposed design will achieve its goal
Since| the plan development process is a recursive one in which the sub-steps of a plan
are themselves candidates for plan synthesis, the design aid must be able to understand
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a proposed plan even if its sub-steps have not yet been designed. However, the
constraints imposed on these sub-steps must be remembered so that they can be
checked when the plans for the sub-steps are formulated.

The second major criterion that such a system must meet is its ability to deal
with plan editing, modification, and debugging. A plan is initially developed to work
under the assumptions of the abstract model; when these assumptions are revised to
more closely correspond to the real environment or when the environment itself
changes, the logic of the original plan must be examined to see what dependencies are
no longer valid. Thus, the design aid must be a dependency based reasoning system
capable of sophisticated belief revision processing,

The problem of managing evolutionary design faces engineers in all disciplines.
But it is particularly acute in computer science for two reasons. First, computer
science is a young field without the maturity and experience of civil, mechanical or
electrical engineering. 1In a sense there is as yet no engineering discipline. Secondly,
software engineers deal with a peculiar problem in that the major constraints one deals
with are not physical but social. Since social phenomena are more transient than
physical laws, the modeling process in software system design is unusually hard and
inaccurate. This suggests that software engineering should look to the more mature
engineering sciences which have developed sophisticated techniques for managing the
complexity of their fields ~We will see that the paradigms of problem solving
developed in Artificial Intelligence research have their counterparts within *hese mature
engineering domains.

Section 2.4: What Do Engineers Do?

One might think that engineering is mainly concerned with the optimization of
numerical parameters within physical systems. If so, computer science would have
little to gain from the study of the methodologies used in engineering. Indeed,
engineers do conduct such activity, but this is only a small part of what engineering is
about.  Engineering is mainly concerned with limiting the complexity of analysis.
[Bose & Stevens, 1965] give the following account of the engineering exploit:
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A physical problem is never analyzed exactly. This is a consequence
both of our inability to describe a physical situation completely and of the
‘lincreasing complexity of the analysis as greater accuracy is demanded. A
problem that involves events in the real world is always approached by
making simplifying assumptions that hold only approximately, thereby
forming a model of the events under study. The problem then reduces to
that of analyzing the model If the assumptions by means of which the
physical situation was reduced to the model are reasonable, then our
analysis should produce results that correspond to observed events, and the
same type of analysis should be useful in predicting the behavior for other
similar physical situations.

[ have identified three areas of technique which seem to be common to all
enginF:ring disciplines and which provide fruitful starting points for the development
|
a

of a fimilar technology for software engineering. These areas are (i) The construction
of "almost accurate” models which reduce the complexity of a pure physical analysis
by introducing tolerable inaccuracies; (ii) The decomposition of complex systems into
several possibly overlapping almost hierarchical organizations in which aspects of the
behavior of the whole artifact may be simply inferred from the behavior of the
sub-systems. (i) The development of a vocabulary of characteristically useful
intem&ediate constructs which allow analysis by inspection.

Engineering models reduce the complexity of an analysis by omitting details not
/ant  to the task at hand Electncal engineers, for example, use models of

to be operating within a certain range of frequencies and power. Such models
will, [however, produce grossly mcorrect result when used outside the range of thelr
appli

n the domain of programming one also needs to model the behavior of various
5|of a system. Richard Waters and I have developed a modeling technique, called
ral abstraction, in which some aspects of a system's behavior are made quite

pler non-recursive programs in which sequences of data are communicated in

j el between sub-segments. I will give an overview of this technique later in this
r and will present in thoroughly in Chapter 8. In the temporal model of the
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program some ordering constraints are omitted. Thus, a second model corresponding
more closely to the surface features of a program is also needed.

Engineering modeling makes a trade off between accuracy and ease of analysis.
In order to be able to make the analysis the engineer is willing to introduce "tolerable
inaccuracies”.  Engineers don't have to be perfectly correct, only "close enough".
However, when a model is used inappropriately conclusions can be reached which
exceed the threshold of tolerable errors. One must, therefore, maintain a record of
how each conclusion was reached so that a debugging process can be invoked to
identify the source of the error and to substitute a more appropriate model. I will
present a program reasoning system which uses the Truth Maintenance System
[Doyle, 1978] to maintain this information. This allows our system to incrementally

reanalyze a program when its original models were found to be too sweeping in their
omission of details.

A second area of technique common to many engineering disciplines is the
decomposition of larger systems into a (possibly overlapping) hierarchy of sub-systems.
Each sub-system is given a simple description which describes only those aspects of its
behavior which are relevant to other sub-systems. We may then regard the whole
artifact as a loosely coupled network in which the behavior of the whole system may
be deduced from the descriptions of each subsystem. Often, however, it is necessary
to decompose a system in more  than one way in order to derive convenient
explanations for all of its behavior. In electrical circuit analysis, for example, one
makes one decomposition to facilitate the DC analysis and a second decomposition for
the AC analysis. A single component may be present in both decompositions playing
different roles depending on which decomposition it is viewed from.

Engineering decomposition techniques include some of the most elegant analytical
methods of all science. Norton and Thevenin's equivalence theorems for electrical
networks allow one to decompose any electrical network into a collection of

two-terminal devices which are accurately modeled by a single source and a single
impedance.

Perhaps because decomposition is such a basic strategy, it is also a relatively
advanced technique in computer science. The use of sub-routines as procedural
abstractions which are described by their input-output behavior is well established.
Data abstraction techniques allow a second type of decomposition. Typically, these
techniques are embodied in the features of a programming language. While I
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recognize the significance of such efforts I also note a drawback. Analysis frequently
reqqn es multiple decompositions of a single system; however, a programming language
requires that the system be represented by a single decomposition which is most often
correlated with the imperative structure of the system.

he third major type of engineering methodology involves techniques to facilitate
analysis by inspection. For each design problem an engineer must establish the form
answer. Frequently the most powerful aspects of an engineering discipline exist
ilitate analysis by inspection. In electrical engineering, for example, the notion
of camplex impedance allows the inspection techniques which were first developed for
resistive circuits to be applied to circuits involving inductances and capacitances as
well | Thus, a single set of abstract forms, such as the notion of a voltage divider,
can bpe applied to a much broader class of circuits. Without this technique, the far
more| complicated methods of differential equations would be required.

Given such techniques it becomes possible to catalogue the various forms of
problems and their typical solutions. This is done by developing a craft or engineering
disci line with an associated vocabulary of macroscopic constructs. Although there are
virtually an infinite number of combinations of the primitive objects of any discipline,
most| of these are not useful. However, a much smaller set of combinations turn out
to have sweeping power within particular domains. These form the "standard plans"
of a domain; they are the terms of the engineering vocabulary. Lisp programmers, for
example, have a relatively rich vocabulary including ideas like "cdring down a list",
"tree| traversal”, “"searching a sequence of values", “"consing up an answer”, etc. In
chapter 9, I will discuss the process of analysis by inspection; chapter 10 will present a
brief | catalogue of some useful data structures and chapter 13 (in passing) will present
a déscription of some typical procedural plans.

An engineering approach works with such higher level notions since such
descrjptions reduce the complexity of making sense of a device.  The various
techjn iques which have been mentioned so far interact to allow an analysis to
decompose the system into components whose behavior conveniently explains the
behéwor of the whole. For example, the construction of a temporal model allows the
systefn to be decomposed in a manner which separates the process of generating a
colle¢tion of objects from the process which consumes these objects.  Once this
decc)mposntmn is performed, it frequently becomes trivial to analyze the components by
inspegtion. In this case, we have an interaction between modeling, decomposition and
recognition. In chapters 12 and 13 I will show another modeling technique which
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similarly reduces the complexity caused by allowing side effects on shared data
structures.

By using these techniques, it becomes possible to impose a very rich structure on
a program. This structure includes: several decompositions with mappings between
them, simplifying modeling assumptions, and recognition mappings which explain how a
particular fragment corresponds to a prototype from the plan library. This vast
quantity of information is unified by the use of a dependency based reasoning system
which records all logical dependencies which it discovers in a special data base. These
dependencies may then be consulted at any time to discover the possible ramifications
of any proposed modification. My thesis is that the techniques outlined above
facilitate an analysis in which any change which a programmer would regard as
evolutionary is localized within the module boundaries of at least one decomposition.
Once a modification is localized within some decomposition the task of assessing the
impact of the change becomes cognitively manageable since the decomposition renders
irrelevant all but a small fraction of the information.

In the remainder of this chapter I will present a somewhat more detailed
overview of the techniques which I have developed along these lines.

Section 2.5: Plans and Teleology

Whether designing or analyzing a device, an engineer must have a
representational system within which it is possible to utilize and coordinate information
derived through the techniques described above. In most engineering disciplines there
is a notion of the "design plan" which forms a skeleton around which all of this
information is arranged. Of all the issues discussed so far, the design plan is the one
least well addressed by other current work in computer science.

In traditional engineering or software engineering, the behavior of a device can
be described in two ways. Some properties of a device are independent of its context
of use. These properties constitute the intrinsic description of the device The LISP
function areeno can be described intrinsically by its input-output behavior of returning
the concatenation of its arguments. A device may also be -escribed by its role or
purpose in the plan for a larger mechanism. This is its extrinsic description. appeno,

for example, may be used to produce the union of two disjoint sets represented as
lists.
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A\ single part may have several extrinsic descriptions corresponding to multiple
that it satisfies in the larger mechanism. A copying garbage collector such as
Ky, 1963] uses the same array of space as both the destination for reclaimed cells
5 a queue in a breadth first tree traversal of the space of used cells There may
e several plans for a given device, describing its structure in different dimensions.

In this situation, each part has the potential for one or more roles in each plan.

This

The essence of understanding a mechanism is knowing the purposes of each part.

nvolves building a description of the mechanism which matches each part with
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s in the appropriate plans. Each role in each plan must be filled by some part
mechanism and the intrinsic properties of that part must satisfy the extrinsic
ties of its roles.

ertain plans or plan fragments can appear as part of the plans for many
nt devices. For example, the depth first tree traversal plan fragment appears in
of the modules coded in the scenario. However, understanding the teleological
aire of a plan fragment (which may be very difficult) need only happen once.
properties of the plan fragment which can be discovered, are known to hold

ver the plan is used. These common plan fragments serve as an "engineering
nlary"”.

Section 2.6: Representing Plans

upporting a programmer during design evolution requires the apprentice to
about program designs before they have been committed to code. This requires
prentice to have a program representation which is independent of the choice of
mming  language. In our Master Thesis;, Charles Rich and I
& Shrobe, 1976] presented such a representation for abstract programs which we
plans. We reasoned that programs like other engineered artifacts should have a
underlying conceptual structure consisting of a decomposition into parts and

means for communication between these parts. When we specialized this observation
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pgrams, we observed that the functions performed by programming language
jves fall into two categories which might be called “actions® and "connective
Actions are modules which operate on a set of input data objects, yielding a

new and modified output objects. Connective tissue arranges the flow of data
pntrol between the actions.
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We then designed a formalism based on this observation. The formalism consists
of segments, control-flow links, data-flow links, and abstract data objects  An
abstract program is represented as a set of segments connected by data and
control-flow links which specify how information prcpagates between the segments and
which partially constrain the execution of the sub-segments. Segments are actions;
they are used to represent the sub-steps of the program. Segments may be nested one
within the other yielding a super-segment and sub-segment relationship.

Each segment has a set of local names for its input object and a second set of
local names for its output objects; these names may be thought of as "ports". A
Data-flow link is a directed connection between the ports of two segments. Typically
the connection is made between the output port of one sub-segment and the input
port of a second sub-segment, indicating the output object named by the first
sub-segment's port will flow to the input port of the second sub-segment. A dataflow
link may also connect the input port of a super-segment to the input port of one of
its sub-segments; finally a dataflow link may connect the output port of a sub-segment
to the output port of its super-segment. Data-flow links imply an ordering of
execution; a segment which terminates a data flow link cannot begin execution until
the datum is available at the initiating port of the segment. Control-flow links are
directed connections between two segments, implying that the first segment must
terminate before the second segment may begin. A plan consisting of segments and
these two types of flow links may not completely constrain the ordering of
sub-segment execution. Thus, as observed in [Sacerdoti, 1975] plans are non-linear.
They are inherently a two dimensional structure the linearization of which accounts
for most of the complication of language design.

The plan formalism is intended to represent designs; however, these designs
eventually turn into code in some particular language. A technique called surface flow
analysis was developed to bride the gap between the two forms of analysis. Primitives
such as 1r-THeN-ELSE, wHILE, variables assignment, argument passing, etc. which are
concerned solely with ordering and communication are translated into data and control
flow links. Other primitives such as arithmetic operations, cows, car, cor, etc. are
translated into segments. Such surface flow analyzers have been developed for LISP
[Rich & Shrobe, 1976] and FORTRAN [Waters, 1978}
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During design a segment represents one step of a problem decomposition.

Therefore, a means is required to specify abstractly what a segment does. This is
done| by stating the segment's specs which consists of: (i) a set of input names (ii) a set
of preconditions which must hold immediately prior to program execution (iii) A set of

following the segment's execution. Alternatively, one can specify what a segment does

byd

outp}E names (iv) A set of post-conditions which are guaranteed to hold immediately

ting its plan, ie. by presenting its decomposition into sub-segments.

Segments may have a conditional structure which is stated by breaking the

‘segments up into cases. Each case is applicable under certain circumstances which are
stated in the segment's specs. Control flow links can be attached to a particular case
of a| segment; the segment which terminates such a link is executed only if the
parti¢ular case is applicable. This creates mutually exclusive control paths which can

be united by a join segment.

The plan formalism can be interpreted by a symbolic evaluator which is in many

regards quite similar to a LISP interpreter. However, the symbolic interpreter uses
typical or symbolic data as input. Therefore, it must explore all control paths. In
additjon it must use a reasoning system to deduce whether the pre-conditions of each
segment are satisfied. The symbolic evaluator is described in chapter 6.

will often present plans using a graphical formalism. The symbols in this

formlflism are shown below.

TEST1
SEG-1
! JOIN1
A l;lj]mal A Segment A Join Data Control
Se ignt with Cases Segment Flow Flow
Main Main
Seg Seg
Subl Subll | g
Sub-Segment Recursive
Nesting Nesting
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As an example of how this formalism is used consider a programmer designing
the symbol table for a block-structured language like ALGOL-60. A hash table
might be used to store and retrieve the symbols efficiently. Each symbol is given a
new entry in the table when it is first encountered; as the symbol is encountered in
new blocks, the entry is marked with the stock-10 of the new block.

To achieve a simple action such as marking a symbol with a block identifier
(sLock-10) several other operations such as HasH-TABLE-LOOKUP, SORTED-INSERT, RPLACA, €tC. are
called upon. These sub-actions interact to achieve the desired goal of having the
symbol table indicate that the specified symbol is defined in the indicated block. This
is done as follows: First, wasu-tase-Lookup is called to see if the symbol is defined in
the table. If it is, the entry returned by wasw-TasLE-LOOKUP is passed tO ORDERED- INSERT
which inserts the siock-10 of the specified block into the entry’s list of sLock-10's. If
the symbol has no entry in the table, new-entry is called to build a new hash-table
entry; the new entry is created with a siock-10 list including exactly the specified sLock-
10. This new entry is passed to wasu-tasLe-1nserT, which inserts it into the table.

This can be diagrammed as follows:
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| symbol table block-id
| : B a—
: hash-table-lookup Mark
‘ Present
‘ present absent
| £ block
entry § i id
= ‘ "’! symka-id
ordered-insert
New Entry
§ entry
3
: 3 Hash Table
Insert
Join-Table updated|table
! updatedltable
|

Plan Diagram For Mark Present Operation

HAsH.TaBLE-LoOKUP has a case structure; it performs a test and splits control into several
patﬁ depending on the result of the test. The two control paths are rejoined by the
join segment Jjoin-tase.  Notice that crossed lines show the flow of control between
segments; normal lines shows the flow of specific data objects.

Notice that many of the modules used to build marx-resent will eventually have
interpal structure of their own. oroereo-insert, for example, will probably consist of a
searcH-Loopr, a cons, and a retaco. The hash-table routines will involve steps such a wasw,
BUCKEY-FETCH, etc.  Thus, the structure given above is a layered one nesting boxes within
boxeg until one finally reaches programming language primitives.

ach segment in the plan above can be thought of as promising that certain
conditions will hold after its execution as long as its preconditions are satisfied. Such
9f promises are stated using the specs formalism. As mentioned above, specs have
four iclauses. Two of these, inputs and outputs provide a list of input and output
es which are bound to the actual inputs of the segment. The other two clauses
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are the expect and 7ssert clauses which state the pre-conditions and the post-conditions
of the segment. A typical set of specs looks like:

{(defspecs fetch-bucket
(Inputs: table-1 index-1)
(Expect: (object-type table-1 hash-table)
(index table-1 index-1))
(Outputs: bucket-1)
(Assert: (bucket table-1 index-1 bucket-1)))

which states that, given a well-formed hash-table and an index of that table, revch-
suckeT will return the bucket of the table indexed by the input inpex-1.

Notice that since the specs for a segment only refer to the segment's I/O
behavior, it can apply to any segment which accomplishes the behavior required.
Thus, a specs is a type applying to different algorithms for the same function. The
square root specs describe a program using Newton's method as well as one which uses
the halving method. It is also important to understand that the specs formalism is a
local and intrinsic description, saying what a segment does, not why it does it. Specs
have no notion of method or purpose within them.

However, for an engineered device to function properly, it is necessary that the
pattern of interactions between sub-modules guarantees that every module's
expectations be satisfied at the time of its invocation  Further, the pattern of
interactions must guarantee that the desired behavior of the whole device will result
from the behaviors of the parts. It is only within this more global and extrinsic
description that a notion of purpose is found. For example, in a hashing system we
can talk about the purpose of the hashing step: it computes the index of the bucket in
which the desired object should be found, eliminating the need to search through
other buckets which cannot contain the object. Similarly, in a Hasu-TABLE-INSERT routine
the purpose of the List-nsert routine is to splice the element into the appropriate
bucket so that it will be a member of the table.

A plan consists of a pattern of sub-segments connected together by data and
control flow links. Two kinds of requirements are found in a plan. First there are
the requirements that each sub-segment's expect conditions must be satisfied; this is
called a pre-requisite requirement. Second is the requirement that the overall goals of
the main segment must be satisfied; this is called an achieve requirement. The first of
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these| requirements is indicated by the expect clauses of the sub-segment's specs; the
d is indicated by the assert clauses of the main segment's specs. If the plan

nts interact to satisfy these requirements. It is possible to summarize such an
lent so that it only refers to basic units of description, the spec clauses of those
gments involved in guaranteeing that the requirement is satisfied.  These
summharized arguments are called purpose links.

Consider the following diagram for a was-1asLe-INsERT routine. wasw is called with
the table and the object to be inserted as arguments and calculates an index of the
tabley Fetch bucket is called with this index and the table, producing a bucket of the
table; the bucket must be a linked list. Finally, the bucket and the object are passed
to LisT-1nsert which side-effects the list, inserting the object into the list. This causes
a detived side effect to the table; since one of its parts is side effected, the table is as
well| The updated table is returned as an output of wasu-Tasie-1nsert The pre-requisite
and pchieve conditions are indicated on the side of the diagram.

tabﬁ—

Hash

l ) Index

Hash-Table
Insert

Pre-requisite: calculates a valid
index so that bucket fetch
can function properly

Fetch
Bucket
List]
Achieve: Insert the object in the
correct bucket so that it will be
List a valid member of the table and
Insert so that the table will continue to

be well formed.

T 1 Updated-Table
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Diagram For Hash-Table Insert Routine

We can look at the specs of the sub-segments to see how the purpose links are
developed. The specs for vasu are:

(defspecs hash
(inputs: the-table the-object)
(expect: (object-type the-table hash-table))
(outputs: the-index)
(assert: (object-type the-index number)
(index the-table the-index)))

We have already seen the specs for retcu-sucker above. Notice that the second assert
clause of wasw, implies that the second expect clause of rercu-sucker is satisfied. Now
let us look at the specs for wAsH-TABLE-INSERT ’

(defspecs hash-table-insert

(inputs: an-object the-table)

(expect: (object-type the-table hash-table))

{outputs: ((the-updated-table id-to the-table)))

{assert: (side-effect the-table (member the-updated-table an-object))))

The use of 10-10 in an outeuts clause indicates that the output THe-uppaTep-TaBLE is the
same object as the input the-tasLe. The side-effect assert clause indicates that Tre-TasLE
is changed to include an-ossect as a member. If we look at the specs for List-insert
we will see how this clause is satisfied.

(defspecs list-insert
(inputs: an-object the-list)
(expect: (object-type the-1ist 1ist))
(outputs: ((the-updated-list id-to the-1ist)))
(assert: (side-effect the-l1ist (member the-updated-1ist an-object))))

Clearly, the assert clause of vist-insert indicates that the assert of HasH-TABLE-INSERT iS
satisfied; however, it does so only in interaction with the assert clauses of FevcH-sucker
and wasw which indicate that ax-ossect is inserted in the list into which it hashes. The
satisfaction of the assert clause of wasi-tasLe-insert depends on assert clauses from each
of these sub-segments.
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|[v‘\’e call these logical links between sub-segment behavior purpose-links, those links
which explain how a sub-module's expectations are met are called pre-requisite links,
those| which explain how the overall intentions of the main segment are met are called
achiefe links. The pattern of purpose links, together with the data- and control-flow
links, and the various sub-segment's specs is what we term a plan. Plans play a
centrpl role in the work of the programmer's apprentice because they explain the
teleé!ﬁygical structure of the program: the reason why each module is present and the
logic [of how the modules' configuration achieves the overall goal.

‘[The addition of purpose links transforms the plan formalism from an abstract
programming language to a design representation which includes not only a set of
actidms to be performed but also a statement of their teleological structure. Since the
sub—Fegments of a plan may be specified at a high level of abstraction it turns out
that the plan formalism can easily represent abstract teleological structures. As I've
men{t oned, there is a craft discipline among programmer's consisting of a repertoire of
stanfbrd methods for achieving certain types of goals. There are standard ways to
travefse a tree or a list structure, and standard methods for accumulating items into a
set. |These standard methods can be conveniently represented as standard plans, using
the abstraction powers of the plan formalism to capture the significant generalities of
a programming domain. The plan formalism has the added virtue of representing
these| techniques in a manner which is independent of the particular programming
langtiage being used.

Let me explain this a bit more before going on. Suppose I had a set of objects
represented by some data structure and I wished to build a a collection of all
members of this data structure which satisfy some criterion. One standard technique
for accomplishing this is what I term the filtered-accumulation plan. This plan
consists of three sub-plans. The first is an enumeration plan which generates the
eleménts of the original data-structure; if this data structure is a list then this plan
have a familiar pattern of “"cdring down" the list; if the data structure is a
tree, the enumerator would have the structure of "car cdr" recursion. The
sub-plan is a filter plan which tests the elements produced by the first
sub-glan selecting those which satisfy the criterion ~ The final sub-plan is an
ulation plan which builds a new data structure containing those elements which
passefl through the filter. If the final data structure is to be a list, this sub-plan
wou@ have the familiar pattern of "consing up" a list.
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Now consider the code for two versions of this idea. In the first version (written
in ALGOL) the original and final data structure are arrays; the second version (in
LISP) uses a binary tree and a list.

integer array A[0:100], B[0:100];
integer 1,j;
J =0
for i := 8 step 1 until 190 do
if Criterion (A[1])

then begin
3 =3+ 1; B[j] := A[i]
end

(defun fil-acc (tree) (fil-acc-1 tree nil))

(defun fil-acc-1 (tree acc)
(cond ((Criterion (value tree)) (setq acc (cons (value tree) acc))))
(cond ((terminal tree) acc)
(t (fit-acc-1 (left tree)
(fil-acc-1 (right tree) acc)))))

Even ignoring the language differences, there is clearly quite a bit of difference
between the two programs, yet I have already claimed that they are actually instances
of the same general technique, filtered-accumulation. The plan formalism captures
this generality using remporal abstraction. Temporal abstraction looks at the history of
the computation, grouping together occurrences of segments of like type.  For
example, in the LISP program there are recursive invocations of fiL-acc-1 producing
several occurrences of segments of this type. Similarly in the ALGOL program the
loop executes repeatedly producing several occurrences of the loop.  Temporal
Abstraction aggregates all these occurrences into a single new, abstract segment which
is called the enumerator. Each of the occurrence within the enumerator produces an
output object. In the ALGOL program the output is the contents of the ith array
slot; in the LISP program, the output is the value part of the current tree node.
These outputs are aggregated into a new, abstract data structure called a temporal
collection (since the objects are produced one by one, the collection exists across time,
rather than as a single unified data-structure).
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We may similarly observe that in each program there are repeated occurrences of
CriTerIon test.  These may be aggregated into the filter sub-segment. We may
that each program has a repeated accumulation step. In the ALGOL program
Consists of the two steps of adding one to s and then storing a quantity into the
lot of the array s; in the LISP program the accumulation is performed by the
Again, the repeated occurrences of these steps can be aggregated into a segment.
this is done, we can notice that the filter segment will contain a number of
ical test segments which have no data flow between them. However, from the

succgssful casc of each test segment there is a data flow to a sub-segment of the

accu
accy
previ
whic
final
" view

nulation plan.  Internally, the accumulation plan is a cascade of identical set-
nulators, each of which takes two inputs (1) a set which is input from the
ous accumulator and (2) a new element; the accumulator produces a new set
h includes all the previous elements plus the new one. The set output by the
accumulator is the output of the whole filtered-accumulation plan. From this
point both programs have the following common structure.

] input object

ENUMERATOR

. temporal collection ...

test test
. FILTER .

. restricted sequence ...

Empty 1
|Set
| Acc Acc ... ACCUMULATION ... Acc

=/ S

final accumulation
Temporal View of Filtered Accumulation
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Notice that at this level of description we have left many features unspecified.
For example, we have not said what type of object is input to the enumerator nor
how it works internally. In spite of this, we do know that this pattern of interactions
(Le. this p/an) produces a set whose members are a subset of the elements contained
in the enumerated object. Furthermore, we know that this subset consists of exactly
those members which satisfy the criterion of the filter. Indeed, this general pattern of
segments is so common that one ought to recognize it where it occurs and immediately
infer that the output is exactly this subset. Languages such as CLU
[Liskov, 1974,77] and ALPHARD [Wulf, 1974,76] have introduced iterators and
generators to make it easier to capture these and similar notions.  Temporal
abstraction will be discussed in detail in chapters 8 and 9.

The Apprentice approach to program understanding is distinct from the approach
of program verification systems like [King, 1969], [Deutsch, 1973}, [Igarashi
et. al, 19751 In the Apprentice, although we require the usual logical techniques we
do not focus our attention on the primitives of the programming language in an
attempt to write axioms for their behavior. Instead, we abstract away from the
language as rapidly as possible, building up higher levels of abstraction until a standard
plan such as filtered accumulation can be recognized.

The apprentice has several distinct components which are involved in
understanding a program. The first of these is the library of standard programming
techniques, called the plan-library. Plans, as we have seen are stated in a language
involving data- and control-flow, rather than the primitives of any particular
programming languages. Thus, a surface-flow-analyzer must translate the source code
of a program into the internal language of data- and control-flow. This
representation is grouped into segments in an attempt to recognize the various standard
plans present in the program. Work on recognition is reported on in [Waters, 1978]
where  plan-building-methods provide initial clues to segmentation and in

[Rich, 1977,78] where a plan-library is used to guide a heuristic component of the
recognition system.
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The recognition systems, however, must call on a reasoning system from time to
to see whether their proposed recognition of the code is feasible. In later
ters as I present the deductive component more carefully we will see the use of a
agenda and an explicit recording of dependencies. These are the methods by
h the deductive component communicates with other parts of the system.

The deductive component of the system plays a second role in the apprentice
h I refer to as plan-verification. The apprentice requires a large library of
ard plans whose properties have already been analyzed and recorded. While it is
poretical possibility that such complete analyses could be produced by hand, i

practical terms this is prohibitive. Instead, the deductive component of the system is

used
In k

to show that a plan (stated at any level of abstraction) satisfies certain properties.
his use, REASON is presented with a plan-diagram consisting of data- and

contrrol flow links and specifications for the sub-segments used in the diagram. It is

then
set ¢
comp
lost.
sumf
plan

asked to show that certain properties hold; often it is useful to give REASON a
f lemmas to be proven first which will structure the proof and make it more
rehensible. REASON is also allowed to ask for help if it feels that it is getting
As the system develops the proof, it records all its deductions. These are then
parized into the pre-requisite and achieve links of the plan which is filed in the
library as a new standard plan.

prog
shar

In the typical interaction with the apprentice, as seen in the scenario, the
ammer first develops a design for a segment of code, using the plan library as a
vocabulary of high-level building blocks. As these pieces are woven together,

the apprentice checks that pre-conditions of each segment are satisfied and warns the
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ammer of design bugs if any precondition is violated. When the programmer
res that a total plan has been formulated he asks the apprentice to check whether
plan does achieve the intended goals.

In general the programmer will not begin to code a segment until he has gone
gh this design-checking protocol with the apprentice. Having completed the
n at the level of abstract plans, however, he goes on to write the code. It is at
point that the surface analyzer and the recognition components are called on to
h the code and the already verified plan. If the alignment is made, then the

programmer proceeds knowing that his program accomplishes the things which he had

asked

the apprentice to check.
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Frequently, however, the programmer may find it more convenient to write the
code without going through the design protoco. ~ Under these conditions the
apprentice will have weaker clues and will have to interact with the programmer more
often, asking for specifications and other hints to guide its analysis. In any event,
once the analysis is complete the apprentice will have constructed a recognition
mapping between the code and the plan for the segment; in addition most of this plan
will have pointers back to plan fragments from the library. Thus, the apprentice can
explain the code using the high-level vocabulary of the library.  Furthermore, the
apprentice will have developed and written in the notebook a complete explanation of
the intermodule dependencies, giving it the ability to examine how changes to one of
the sub-segments will affect the behavior of the whole program.

In summary, the plan of an engineered device is a set of logical connections
between the conceptual descriptions of sub-modules, the descriptions of implementation
strategy, and the overall intentions for the device being engineered. These logical
steps explain how each module of the overall device contributes to the higher level
conceptualization as well as why each sub-module is capable of functioning The lack
of such a logical connection in a proposed device would indicate a conceptual failure
or design bug.  Since any engineering discipline builds up a repertoire of standard
plans, understanding an engineered device is largely a matter of recognizing which
standard plans are used and how they are interfaced to achieve their intended goals.

Given that modules of a device may themselves be conceptual constructs with
internal structure, plans provide an abstracting mechanism describing the structure of
the device at a level appropriate to the task at hand. Plans also allow one to describe
and reason about the behavior of incompletely designed devices, since a module's net
behavioral specifications may be used within a larger plan even if there is as yet no
internal plan to accomplish the behavior of the sub-module.

Dependency Directed Reasoning
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Section 2.7: Plans in Maintenance and Explanation
Plans, as outlined above, give a teleological description of program behavior,

acted to a level of description which is convenient to the programmer. It is a
r trivial matter to generate explanations of a program from a plan. Since plans

contgin more information than does the program itself, such explanations will be richer

than

As 1]
abstr
of a

a mere recitation of the code.

My goal, however, is to understand and support the process of program evolution.
have noted, plans capture the relationship between program design choices,
act modularization, and overall intentions. In doing this, they localize the effects
change in design strategy, and specify the teleological requirements which must be

satisfied in any modification of the design.

prog

Since
the ¢
Inser
requi
coun
one (

For (

As a simple case, consider a hash-table insert routine which has been

impljmented using ordered linked-list buckets with a count field. The code for such a

am might be:

(defun insert (item)
(insert-in-bucket (table (hash (key-part item))) item))

(defun insert-in-bucket (bucket item)
(do ({previous-list bucket (cdr previous-tist))
(current-1ist (cdr bucket) (cdr current-1ist)))
({nu11 current-list)(rplacd previous-Tist (Vist item)))
(and (greater-than (car current-1ist) item)
(rplacd previous-1ist (cons item current-1ist))))
(rptaca bucket (1+ (car bucket))))

Suppose that for space efficiency we decide to change to a rehashing scheme.
this change is strictly a design issue dealing with buckets, the plan tells us that
verall structure of the insert module itself will not have to change, but that the
-In-Bucket module as well as the communication between the two modules might
re change. It further tells us that the last line (i.e. the rplaca which bumps the

) is no longer relevant. At first glance one might guess that this is all the help
ould get.

fomplex Program Understanding




46 An Engineering Theory of Evolutionary Design

However, the plan library reveals that there is more structure in common
between the old and new designs. In the library, plans and data-structures are
organized into (tangled) hierarchies where objects lower in the hierarchy inherit
properties from those above them. In both implementations of a hash-table we have
that the buckets are /inear-objects; furthermore, we have a generalized version of the
search-loop, called linear-search-loop which can search any linear-object such as lists or
arrays. The more specific versions of linear-search-loop differ only where the choice
of representation for the particular linear-object is relevant.

This difference appears in the suwp, exwaustion, and TeRMINATION steps. In the re-
hash scheme, suwp is the re-wasw operator and successful termination of the search is
indicated by a special marker (s:..a as nil) indicating that a slot is free.  Exhaustion
of the search might be indicated by the re-wasw routine returning a negative number.
An item is made a member of a bucket in the re-wasw scheme by inserting it in the
array.

In the linked-list version, suw is the cor operation; objects are selected by car,
exhaustion of the list is indicated by the presence of wmi. Successful location of a
place to insert the object is indicated by the presence of a larger element in the next
position.  Using this information, the system guides the programmer to the following
new program (I will discuss this idea further in chapter 13):

(defun insert (item)
(insert-in-bucket (hash (key-part item)) item))

(defun insert-in-bucket (initial-slot item)
{do ((slot initial-slot (rehash slot)))
((minusp slot)(error 'no-slots-left))
(and
(nuld (table siot))(store (table siot) item))))

Typically, the apprentice builds more than one viewpoint of the program during
the recognition process.  During program modification, one or another of these
viewpoints might provide a perspective from which the effect of the modification
appears quite localized. In any event, since the apprentice has a complete record of

all the logical dependencies, it can easily evaluate whether any proposed modification
can damage a desired property.
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Section 2.8: Dependency Directed Reasoning

A plan may be thought of as an abstract program coupled with a logical analysis.
However, it is important to note that this logical analysis need not necessarily be a
"progf" in the sense of a guarantee of correctness. REASON is capable of
condpcting logical arguments which range from the informal or "common sense" to the
rigorpus. In many cases the plan for a program will only contain a "common sense"
or dngineering analysis which is inadequate to guarantee correctness under all
condftions, but which is good enough for purposes of explaining its teleological
strugture. When necessary, REASON can be asked to verify certain modules and can
carry this out with full rigor. We often observe experts making an analysis in exactly
this gvay: First they conduct a common sense analysis to explicate certain facts and to
establish a framework of understanding; once this is accomplished the framework
guides a more formal analysis, keeping it from getting lost in a sea of combinatorics.
It would be desirable for REASON to be able to do something like this.

Another desideratum is than an incremental change in the program should
necegsitate only incremental changes in the analysis of the program. To partially meet
these desiderata REASON was designed as a dependency based system. In a
dem&dency based system every new assertion entered into the data base is

accompanied by a justification stating which other assertions form the logical support
for the new one. The justification itself is an object which the system can inspect
and manipulate,

Assertions in the reasoning system have one of two statuses in or owut. An in
asserfion is one which is believed. An out assertion is one not currently believed. A
specigl module called the Truth Maintenance System (TMS) [Doyle 1978] is responsible
for guaranteeing that all assertions with valid reasons to be believed are in and all
assertions lack valid justifications are owut.

REASON has several uses for dependency based reasoning: management of
abstract models for programs, analysis of program modifications and hypothetical
reasoning during theorem proving. In chapter 12 I will discuss the use of dependency
based reasoning in the the analysis of side-effects. In this situation, REASON first
condpcts a simple analysis assuming that the degree of sharing between complex data
structures is limited.  Various desired properties of the progrém are then proven,
undef this assumption. Sometimes such a cursory analysis is sufficient. However,
when a more careful exploration is desired, the assumption can be removed and

For :Fomplex Program Understanding



48 An Engineering Theory of Evolutionary Design-

replaced by a more cautious assumption or by no assumption at all. The TMS uses
the dependencies to determine what conclusions remain valid under the new
assumptions. In many cases, some of the important properties of the program do not
depend on the assumption and remain in. However, if some property does in fact
depend on the assumption it will go our indicating that the original proof is not still
valid under the conditions of sharing. A more detail proof can then be attempted.

I will now turn to the detailed presentation of the techniques used in REASON.
In chapter 3 I will first discuss the reasoning system per se; chapter 4 will introduce
the task agenda and the system's method of explicit control Chapter 5 will present
the program description techniques in detail. ~ Chapter 6 presents the symbolic
interpreter for the plan formalism and chapter 7 gives an example of how this can be
used in program verification. This chapter is quite tedious and can skipped without
loss of continuity. Chapters 8 and 9 detail the techniques of temporal abstraction and
/its use in analysis by inspection. In chapter 10 a language for describing data
structures is introduced along with a catalogue of data descriptions which REASON
uses. These descriptions are used during program analysis and recognition and are
important to the material which follows on the analysis of side effects. However
Chapter 10 need not be read very carefully to understand the material which follows.
Chapter 11 presents my techniques for reasoning about side effects by making
simplifying assumptions. This material is extremely novel and quite distinct from
verification literature on the same subject. Chapter 12 is a brief discussion of some
concepts which can be used to make the ideas of chapter 11 more powerful Finally,
in chapter 13 many of the previous ideas are combined in a sketch of how REASON
will eventually be able to support program evolution.
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desci
sepat
was

3 The Reasoning System 49
Chapter 3. The Reasoning System

Understanding programs requires a sophisticated reasoning capability. This chapter
ibes REASON's basic deductive system. REASON has its antecedents in two
ate works. The first of these is an earlier program implemented in LISP which
reported on in [Rich & Shrobe, 1976] The current version of REASON is

writ

n in a variant of AMORD [DeKleer, et. al. 1977] a language for constructing

problem solvers. Both systems maintain a dependency network, but the AMORD
systein does so in a cleaner manner, utilizing the Truth Maintenance System
[Doyle, 1978} 1 will begin by reviewing the basic concepts and constructs of the

syste

m.

Section 3.1: Dependencies and Justifications

REASON is implemented in a variant of the language AMORD. I will begin by

reviewing the syntax and basic concepts of this language.

Supp

Imagine a reasoning system which knew that numerical ordering is transitive.
pse also it knew that X was less than Y and that Y was less than Z

Presymably, an "ordinary theorem prover" would then conclude that X was less than

Z.
X is
ordef

]

and
impo|
what

However, the system could in principle deduce more than just this. It knows that
less than Z because it is less than Y which is in turn less than Z and because the
ing is transitive.

REASON like some other newer systems [Doyle, 1978}, [London, 1977), [Stallman
Sussman, 1977] regards the justification for the new fact as an object of great
rtance to the theorem prover itself. The justification for the new fact tells us
other facts the new fact depends on. If we did not believe that X was less than

Y oilothat Y was less than Z or than numerical ordering is transitive then we ought
not |

facts

how
such
is e
expla

For (

believe that X is less than Z. A justification states such a dependency between

REASON's goal is not only to prove properties of a program but to understand
these properties follow from known or assumed properties of sub-modules. Hence
dependencies are a crucial form of information in REASON. When an assertion
tered into REASON's data base, it is always accompanied by a justification
ining why the new assertion is believed. To make this convenient, as each
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assertion is entered into the system's database it is assigned a unique “"fact-name" by
which it may be referenced. For example:

Assertion System-Supplied Fact-Name
(< X Y) F-1
(<Yyz) F-2

The user may add the the fact deduced from the above by calling the ASSERT
function:

(Assert '(< X Z) '(Transitivity F-1 F-2))

AsserT takes two arguments: the new assertion to be added to the data base and the
justification for the assertion which is a list whose first element is a justification type

and whose remaining elements are the fact-names upon which the new assertion
depends.

(Assert <fact> ((justification-type-name> ... (fact-name) L))

One important justification type is remise which, as the name suggests, indicates
that the fact is believed without further justification. A premise justification has no

supporting facts. The three facts about ordering shown above could well have been
entered into the system as follows:

User Types System-Supplied Fact-Name
(Assert '(< X Y) '(Premise)) F-1
(Assert '(< Y Z) '(Premise)) F-2
(Assert '(< X Z) '(Transitivity F-1 F-2) F-3

The rudimentary facility of any logic system is a mechanism for making deductions.
REASON accomplishes this using rules which consist of two elements: a trigger-set and
a body. The trigger-set is a list of patterns each of which has two parts: a facr-name-
variable and an assertion-pattern. The body is a LISP expression which is evaluated in
an environment in which the variables of the patterns are bound to the objects which
they match. The following is a fairly typical REASON rule:
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(rulie| ((:f (Rest :1list-1 :1ist-2)) trigger

{:g (Member :1ist-2 :0bj-1))) set

(assert '(member :1ist-1 :obj-1) '(List-Membership :f :g)))
fact justification

Varipbles are indicated by a leading colon (:).

Here the body is the assert statement. The trigger set is the list:

((:f (Rest :list-1 :list-2))
(:g (Member :1ist-2 :obj-1)))

In these triggers, the leading single variable (:f or :6) is the fact-name variable, the
remdining part of each trigger ( (ResT :LIST-1 :LIST-2) OF  (MEMBER :LIST-2 :08d-1) ) is the
ion pattern. Rules are dealt with in 3 stages.

hen an assertion is added to the data base, all rules with a trigger whose
ion pattern matches the new assertion are triggered,

Bach of the remaining triggers are examined to see if their assertion pattern also
dhes an assertion in the data base. However, these matches must be consistent
with| the variable bindings created by the earlier matches.

(iii) If all of the triggers have a matching assertion, then the rule is applicable and its
body is executed in the binding environment created by the match.

As each trigger is matched to an assertion, the fact-name variable of that trigger
is baund to the fact-name of the matched assertion. This allows the body of the rule
to refer to its triggering facts. In particular, assert statements in the body of the rule
may |include a justification mentioning these facts.

At each moment any assertion has one of two statuses in REASON, it is either
in of out. A fact which is in is believed to be true. An assertion whose negation is
in is| believed to be false. If both an assertion and its negation are in then the data
base|is contradictory and corrective action is required. If neither the assertion nor its
negation is in, then the truth-value of the fact is simply unknown
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assertion negated assertion meaning
in out assertion true
out in assertion false
in in contradiction
out out truth value unknown

Facts which are out may be brought in by asserting the fact with a valid
justification. A fact which is in may be made our using the function retracT to
remove a valid justification. If no valid justification is left, the fact goes our. When
a fact goes out a check is made to see which other facts are affected by the change
of status of the first fact. If the first facts going owr invalidates the support of some
other fact, then the same checks are made recursively, outing all facts which now lack
well founded support.  Similarly, if a fact comes in because new support for it is
discovered, then a check is made to see which other facts are affected. Any facts
whose support is made valid by a change in status of the first fact are brought in
Such ining and oufing of facts is managed by the Truth Maintenance System, which
insures that only facts with well founded support are in. Thus, a fact which has
never been asserted, is by definition out.

The meaning of justifications such as the transitivity justification shown above is
that whenever f-1 and ¢-2 are in then ¢-3 should also be in. If for some reason either

F-1 or F-2 became owt, then ¢-3 would lack support and would also become out (unless
it has other support).

It is frequently necessary to assume that some fact holds even though no reason
exists for believing the fact. This is often done in hypothetical reasoning as when one
proves that a implies 8 by assuming a and deriving 8. Since the assumed fact A has no
simple support (as for example (< x z) above) a different type of justification is
required. One assumes a fact by making it depend on the owmess of its negation;
thus, if the negation of the assumed fact should ever be proved, the assumption will
go out. This is done by the function ASSUME:

(Assume '(Made-of The-Moon Green-Cheese) '(Bill-said-so F-23))
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which states that the system will believe that the moon is made of green cheese as
long jas it has no reason to believe that the moon is not made of green cheese and as
long |as it believes fact f-23 (which presumably is a statement of what Bill told the
system). assume takes two arguments: a fact to assume, and a list whose first element
is an| assumption-type-name (used only for mnemonic value) and whose cor is a list of
fact-pames which indicates the reasons for making the assumption. Whenever all the
fact-pames in this list are in and the negation of the assumption is owt, the assumed
fact is brought in.

his requires the justification built by assuve to have two parts A list of
asserfions upon whose inness the fact depends and a list of assertions upon whose
outness the fact depends. When the above assuve form is invoked it creates the
assertion:

(Not (Made-of The-Moon Green-Cheese)) F-1001

and then justifies the asser‘‘on

F-1002 {Made-of the-moon green-cheese)

by stating that f-1002 depends on f-1ee1's ourness and on f-23's inness.

F-1002 (Made-of The-Moon Green-Cheese) (Bill-said-so (F-23)(F-1001))

The Jjustification of r-1002 is not the same list as the second argument of the assume
which created r-1002.  The justification is built by assue using the information
provigled in its calling arguments. The first list in the justification is the list of facts
inness supports f-1002 and the second list is the our list. This support structure,
was originated in Doyle's TMS [Doyle, 1978), allows the system to believe that
oon is made of green cheese until some deduction provides valid support for

At that point, f-1001, the negation of f-1002, will become in (and thus not oul).

Similarly, if other facts had been deduced from f-1002 they would now lack
rt, since r-10e2 would no longer be in.  The Truth Maintenance system

ates these changes of status until only assertions with well-founded support
remained in ’
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Notice that in the support structure for assumptions, adding a new assertion to
the data base (e.g. the negation of an assumed assertion) can cause an assertion which
is in (the assumed one) to become out. Thus, the number of things believed to be
true can decrease as assertions are added. For this reason, such a support structure is
referred to as non-monotonic. When a contradiction is detected, the system finds
those assertions which are supported by non-monotonic dependencies (ie. on the
outness of others) and brings in one of the assertions upon whose outness they depend.
Since the system maintains the dependencies between facts, it is easy for it to find
only those assumptions which logically are related to the contradiction and to use
these as the candidates for rejection. This avoids the thrashing which was found to
occur in  chronological  backtracking systems such as  Micro-Planner
[Sussman, et. al. 1971] and even in more flexible systems where dependencies were not
explicitly maintained. This process is called dependency-directed backtracking
[Stallman & Sussman, 1977]

Sometimes it is necessary to make an assertion depend on the inness of some
facts and the oumess of a second set of facts. This can be done by calling asserr
with a justification argument whose first element is s. Such a justification should
have three other elementss A mnemonic name, a list of facts upon whose inness the

new fact depends, and a list of facts upon whose ouness the new fact depends. For
example:

(Assert '(Hacker Howie) '(SL MIT-people-hack (F-1) (F-2)))

will create the new assertion F-3 justifying it so that it will be in whenever ¢-1 is in
and f-2 is out. Thus, we would have:

Fact-Name Assertion Justification

F-1 (Hacker Howie) (MIT-people-hack (F-1) (F-2))

A final type of justification arises in the proofs of implications. As mentioned
above, typically one proves (ipiies aB) by assuming A and deriving s. The
justification of (impLies a ), however, is not logically the justification of e. It is,
instead, exactly those facts which were involved in deriving 8 from a which were do
not themselves depend on a  For example, consider the following trivial proof:
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Fact-Name Assertion Justification
F-1 (Implies A C) (Premise)
F-2 (Impiies C D) {Premise)
F-3 A (Assumption)
F-4 c (Modus-Ponens F-3 F-1)
F-5 D (Modus-Ponens F-4 F-2)
F-6 (Implies A D) (Conditional-Proof F-1 F-2)

As I mentioned above, the logical support of f-6 is precisely r-1 and r-2. To calculate
this [the system can trace back through the dependencies to find those facts which
suppprt r-s, the consequent of the implication. These are f-4, and f-2. f-a is, in turn,
suppprted by f-3 and r-1. Of these assertions, we eliminate the hypothesis r-3 plus
those¢ assertions which depend on it. These are ¢-3 and f-4, leaving only r-1 and r-2
which are then the support of f-s. The system is instructed to perform such an
analysis by asserting a fact with a justification whose justification-type is Conditional-

Prodf:

(Assert '(Implies A D) '(Conditional-Proof F-5 F-3))

assert performs a special analysis when given a second argument whose first
element is the justification-type conditional-proof. The first fact-name in a
Co:ritional—Proof justification is the consequent of the implication, the second fact-
name is the hypothesis of the conditional proof argument. assert creates a justification
for the above assertion in which the support for the assertion is the set of facts (such
as fy1 and f-2) upon which the implication relies. Thus, if r-1 were to go out, -6
would lack support and go owur itself.

To facilitate the construction of complex dependency structures the system
inclydes a primitive for creating an assertion which has no justification.  This
primjtive is called assertion and takes a single argument, the assertion to be created.
It returns the fact-name of the new assertion. For example, evaluating

(Assertion '(Hacker Howie))
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will cause a new assertion to be built and assigned a fact-name, say r-2ee1. Since this
new assertion has no valid justification (it has no justification) it is out At some
later time, some rule might decide to give this fact a justification; if this justification
is valid, r-2001 will come in. For example, if we had the following fact and rule:

F-2002 (At-Mit Howie)

(rule ({(:f (At-Mit :person)))
(Assert '(Hacker :person) '(MIT-is-full-of-hackers :f)))

Then the system would assert

F-2001 (Hacker Howie) (MIT-is-full-of-hackers F-20082)

Remember that r-2001 was originally created with no justification. Suppose at that
point another assertion f-2004 was created and made to depend on the owmess of
F-2001, as follows:

(1et ((a (assertion '{Hacker Howie))))
(Assert '(Is-Careful howie) '(SL Hackers-are-loose () (,a))))

[Note: the comma used above is an "unquote" which causes the variable = to be
evaluated even though its inside a quoted form. Also (et is a macro defined in the
standard MacLisp. The first argument to Let is a list of pairs of variables and forms;
each form is evaluated in the enclosing environment and then each variable is bound
to value of its corresponding form. The remaining arguments to ter are forms to be
evaluated in the new environment created by the bindings.]

When r-2001 was first created, it was ouf; therefore r-2004 was in. However,
when the rule above is triggered by r-2002 it executes and brings r-2e01 in. Since r-2004
depends on the outness of ¢-2001 it then goes out. Conversely, if the support for f-2ee2
is ever remove, using retract for example, the f-2001 will go our and r-2004 will come
in.  This allows REASON to use justifications in building its control structures.

I will now turn to the issue of control within the reasoning system.
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Chapter 4: Explicit Control and The Task Network

to b

The traditional weakness of automatic deduction systems is that they are prone
ind searches. The room for exponential explosion is so large that even large

amoynts of a fixed factor overhead are justified if they can cut down the size of the

sear
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space.

The approach I have followed here is to represent all control of the deductive
tss explicitly in a form which can be manipulated by the same mechanisms as
which conduct the logical deductive process itself. Such an approach has been

folloyved in [DeKleer, et. al. 1977}, [McDermott, 1977} This allows the deductive to
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elf-conscious, able to explain what it is doing and why it is doing it. Such a
m can reason about whether it ought to continue to pursue a particular task, or
r abandon it as hopeless or of too little importance to command further resources
attention. A system which is explicit in its control discipline can exhibit
ility which is precluded in more traditional systems which encode their control in
tate of procedures which can not be examined.

This suggests a system which at the very least knows what task it is attending to

and Mhere that task fits into its larger goals. REASON organizes its operation around

ta-structure called the rask-network [McDermott, 1977] which makes this
mation explicit. The task network is represented by assertions in the data-base
to record facts about the program being analyzed.  However, the control
tions in the data-base have a justification structure which ouss them once their
Iness has passed.

A simple example of the use of control assertions in consequent reasoning will

perhllps clarify the discipline used in REASON. In consequent reasoning the system

pts to chain backward from its current goal to sub-goals which interact to imply

main goal and which are (hopefully) closer to facts which are already known
itly.

For any particular goal there might be several different methods for deriving the
pd fact. A particular fact about a list might be derived by backward chaining
bh some implication, or it might be deduced by structural induction. In general
would tend to prefer the simpler method, however, there are cases in which the

opposite would be the better strategy.

For
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This has led to the following protocol A goal is entered into the system by calling

the primitive coaL-assert.  This takes three arguments: The first of these is the
assertion to be proven. The second argument is used to indicate what higher level
task gave rise to this goal. (this is usually some sub-task of the symbolic evaluator,
but for simplicity of presentation I will call this task top-level). The third argument is
a justification (just as would be given to assert). A goal created by coaL-assert should
remain in as long as it is neither refuted nor satisfied and as long as its justification is
valid. To achieve this, coaL-asserT creates two assertions one stating that the goal is
satisfied, the other stating that it is refuted. = REASON builds an assertion stating
the existence of the new goal. This assertion is given a justification which is identical
to the justification passed in as an argument except that the new justification includes
a dependency on the outness of the assertions which state that the goal is satisfied or
refuted. The goal assertion will remain in until the goal is either satisfied or refuted
at which time it will go out.

The assertion of a goal is an implicit request for the proposal of methods which
might be capable of proving the assertion. If the particular goal is of a type for
which a method is known, then the method is proposed. This proposal is given a
justification which points to the goal assertion. A special procedure called the accepror
is responsible for choosing the order in which the various methods for a goal should
be tried. The primitive propose-MeTHoD is used to propose a method; it takes three
arguments: an assertion stating the method to propose, a justification for this assertion,
and a body to execute if the method is ever accepted.

If the desired goal is ever proven, then an assertion is made saying that the goal
is satisfied. If the negation of the goal is ever discovered, an assertion is added
stating that the goal has been refuted. Either of these events causes the original goal
assertion refuted to go out, taking with it all of the dependent control assertions.
However, normal fact assertions will never depend on these control assertions; even

when the control assertion are made to go out, the facts deduced stay in if they are
logically valid.

What makes this protocol possible is a mechanism (developed in [Doyle, 1977)
which establishes well-defined points at which the system may chose which method to
pursue. REASON is a queue based system whose main loop consists of finding pairs
of rules and matching facts. At each iteration one such pair is removed from the
queue and processed, potentially creating new facts and rules and thus new pairs of
matching facts and rules. However, at certain times there will be no such pairs of
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and facts to process. The method proposing and accepting protocol guarantees
new triggering pairs will not be created in an explosive manner, but will rather
hce proposals for actions which must be accepted before new actions can occur.
though the tree of possible methods and sub-goals might be exponentially
sive, the system has the option of choosing which branches to leave unexplored.
png as the system chooses to pursue only a few branches at at time, the queue
run out of pairs frequently.

This is the occasion for the special accertor procedure to be invoked. The
ptor is a procedure run each time the queue runs out. Its purpose is to examine
network of goals and methods, hopefully finding at least one which it deems
h pursuing. The acceptor is allowed to add control assertions to the data base
these are allowed to trigger rules which will, in turn, add assertions to the data
However until it accepts a method, no further work on the goals at hand will
erformed.  This organization, which is still being developed, allows the machinery
e reasoning system to be used in deciding which goals should be pursued. Once
a decision is made, a method is accepted triggering the rules which actually do

the work.

A simple example will illustrate the technique. Suppose we want to prove P and
ave (impLies o P), (ivpLies R @) and R, We would start off by stating that we have

the goal P:

for t

For ¢

F-1 (Implies Q P) (Premise)
F-2 (Implies R Q) (Premise)
F-3 R (Premise)
(GOAL-ASSERT 'P  '(top-level) '(Premise))

Since a goal statement has been entered, the system makes the assumption that

the ﬁloal has as yet been neither satisfied nor refuted. Also it creates a goal statement

e newly created goal and justifies this statement as explained above.
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F-6 (Satisfied F-9) {); no justification, therefore OU!
F-8 (Refuted F-9) (); no justification, therefore OU!
F-9 (Goal P (top-level)) (Sub-goal() (F-6 F-8)) F-6 & F-8 Ol

implies F-9 is n.

Notice that the goal assertion f-9 includes both the fact to be proved and a list of the
super-tasks which have led to the existence of this goal Two rules are also created
by coaL-assert; one watches for the goal becoming true, the other watches for
refutations. Both these rules depend on the fact r-s.

R-1 (Rule ((:f P)) (sat-Rule F-9)
(Assert '(Satisfied F-9)
'(Satisfaction :f)))
R-2 (Rule ((:f (Not P))) (Ref-Rule F-9)
(Assert '(Refuted F-9)
'(Refutation :f)))

The assertion of the goal statement is an implicit request for the proposal of methods
which might achieve the goal. = The various method proposers now come into play.
One obvious method is backward chaining, finding an implication whose consequence is
the desired goal, and then posing the antecedent of the implication as a sub-goal
The following rule proposes the backward chaining method and then conducts the
proof if the method is accepted.

R-10 (Rule ({:fl (Goal :consequent :stack))
(:f2 (Implies :antecedent :consequent)))
(Propose-Method
‘(Method :f1 (Backward-Chain :f2)) '(B-C :fl :f2)

{goal-assert :antecedent '(:consequent . :stack) '(bc-sub-goal 1))

{Rule ((:g (Implies :antecedent :consequent))
(:h :antecedent))
(Assert :consequent (Modus-ponens :g :h)))))

Notice the use of the primitive Propose-Method. This is actually a macro which
expands as follows:
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pse-Method Meth Just body) => (Let ({(:a (Assert meth Just)))
(Rule ({:b (Accepted :a)))
body))

method proposer above leads to the following results:

(Method F-9 (Backward-Chain F-1)) {BC-Meth F-19 F-1)

queue now runs out since there are no other actions possible. At this point the
ror is invoked. Seeing only one method available, the acceptor makes the obvious

choige accepting the method proposed in ¢-11.

The
cont
of M

Noti
justi
is ty
the
and

serie
follo

For

(Accepted F-11) {Acceptor F-11)

acceptance of the method proposed in f-11 allows the method proposer to
nue its work. This creates the following rule which represents the inference rule
[odus-Ponens:

(Rule ((:g (Implies Q P)) ("Rule® F-12 R-10)
(:hQ))
(Assert P (Modus-ponens :g :h)))

ce that when the system created the rule r-11, it automatically generated a
lication for it. New rules are created by the execution of a rue expression which
pically nested within another rule; when this outer rule is triggered by some fact,
new rule is created with a justification indicating dependence on the outer rule
the triggering fact.

The body of the method proposer also creates the new sub-goal o triggering a

3 of assertions similar to those triggered by the original goal r. We get the
Wing:

Complex Program Understanding




62 Explicit Control and The Task Network

F-15 (Satisfied F-18) ()

F-17 (Refuted F-18) ()

F-18 (Goal Q (P top-level)) (Sub-Goal F-12 (F-15 F-17))
R-3  (rule {((:f Q)) (Sat-goal F-18)

(Assert (Satisfied F-18)
(Satisfaction :f)))
R-4 (rute ((:f (not Q))) (Ref-Goal F-18)
(Assert (Refuted F-18)
(Refutation :f)))
F-20 (Method F-18 (Backward-Chain F-2)) (BC-Meth F-18 F-2)

The accertor is now invoked and Method f-2e is accepted.

F-21 (Accepted F-20) (Acceptor F-20)

which in turn triggers the rule for backward chaining, resulting in:

F-22 (Satisfied F-24) ()
F-23 (Refuted F-24) ()
F-24 (goal R (Q P top-level)) (bc-sub-goal (F-21)(F-22 F-23))
R-5 (Rule ((:g (Implies R Q)) ("Rule™ F-21 R-0)
(:h R))

(Assert Q (Modus-ponens :g :h)))

At this point the necessary facts are available allowing rule r-s to run on the fact r-a.
Thus, we obtain:

F-25 Q (Modus-Ponens F-3 F-2)

However, o now triggers the rule r-3 which is watching for an assertion satisfying the
goal r-18 (coaL o (p Top-Lever)). This causes a justification to be added to the satisfied
assertion, f-15, which was created when the goal r-18 was created:
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(Satisfied F-18) (Satisfaction F-23)

However, the goal assertion r-18 depends on the oumess of f-15 and the method and

show

assertions r-2e and f-21 depend on f-16. A quick inspection of the justifications

will show that the following support structure exists at this time:

F-15 =>> F-18 -> F-20 -> F-21 -> R-5

wher|
come

Furt
for q

F-6
whic

abow
with

For

\—» R-3

e a double headed arrow indicates non-monotonic support. Thus, when f-15
s in, all of the other assertions go out. Notice, however, that all of these are

contlol assertions. The fact assertion f-25 ¢ depends only on ¢-3 and r-2; it stays in

ermore, f-25 triggers the rule r-2 which represents the modus-ponens deduction
and (meLies @ P). We obtain:

P (Modus-Ponens F-23 F-1)

efore, this triggers a goal-satisfied rule, this time R-I for the goal F-9:

(Satisfied F-9) (Satisfaction F-24)

h causes the goal assertion r-9 to go out. A similar chain of dependencies to that
£ causes assertions f-11, f-12, and rules r-1, rR-2 to go out as well This leaves us
only the following useful assertions.
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F-1 (Implies Q P) (Premise)

F-2 (Impties R Q) (Premise)

F-3 R (Premise)

F-4 (Subgoal P (top-level)) (Premise)

F-6 (Satisfied F-9) (Satisfaction F-24)
F-15 (Satisfied F-18) (Satisfaction F-23)
F-25 Q (Modus-Ponens F-3 F-2)
F-26 P (Modus-Ponens F-23 F-1)

Of course, this entire deduction might have been achieved more easily by a
simple forward chaining rule for modus ponens. However, I have gone through this
detail to illustrate the steps of the protocol In general, blind forward chaining is a
bad strategy since it allows uncontrolled deductions to lead into endless loops.
Suppose that we added the following facts to the data-base:

(Impiies (Number :x) (number (plus 1 :x)))
(Number 1)

Then the modus ponens rule would trigger infinitely often, filling the data-base with
assertions of the form:

{number 1)
(number (plus 1 1))
(number (plus 1 (plus 1 1)))

Obviously, such infinite counting chains cannot be allowed to occur. On the
other hand, it is desirable to allow some deductions to proceed in a forward manner.
I have so far found it convenient to have both an antecedent and a consequent modus
ponens rule; however, one must, therefore, avoid writing implications such as the one
above. In the particular environment in which REASON operates one rarely wants to
state 1implications like the one above anyhow. As we will see later, most of
REASON's knowledge is expressed in the form of descriptions of data-structures using
a specially designed specification language. This allows the knowledge acquisition
portion of the system to build rules which correspond to these specifications and which
do not engage in uncontrollable forward chaining,
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It should be pointed out that one of the distinct advantages of the regimen of
cit control is that it is quite simple for the system to determine that it is
ging in infinite loops. If, for example, the same pattern appears as a subgoal of

itselff, then the system can decide not to pursue that subgoal by marking it as a loop

and

never accepting it. Similarly it can set itself limits on how deep into a case

analysis it will go before deciding that it's on a losing course. Indeed, although our

wor
abo
curr
"stat|

For

has not yet progressed this far, the reasoning system can, in principle, reason

what that limit ought to be given the particular circumstances it which it
ntly finds itself. This begins to suggest the idea of the reasoning system having a
e of mind".
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Section 4.1 Hypotheticals

The actual protocol is, in fact, more complicated than what I have illustrated so
far. The complication is caused by the use of hypotheticals, particularly in conditional
proofs.  As a paradigmatic case consider the following problem (I will omit the
refutation assertions in this example for the sake of brevity):

Given: (Or A B)
{Implies A C)
(Implies B C)
(Implies C D)
To Show: D

REASON might attack this problem in a manner similar to that employed above,
backward chaining from the goal o to both a and c¢. At this point it recognizes that
case-splitting the disjunction (or a 8) is an appropriate method. This creates a set of
conjunctive sub-goals, in this case, (mmpiies A ) and (impiies 8 ). [Each of these is
proven by the standard conditional proof method, assuming the antecedent and

attempting to prove the consequent. The following is an excerpt of the assertions that
result:
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F-30
F-31
F-32
F-33

F-54
F-55
R-1

F-65
F-67

F-33
F-10d
R-2

F-105
F-118

F-112
F-113

F-122

F-125
F-126
R-3

F-127

F-126.
at w
satisf)
does
goal

For (

(or a b)

(implies a c)
(implies b c)
(implies ¢ d)

(satisfied F-55)
(goal d (top-level))
(Rule ((:f d))
(Assert '(satisfied F-55)
'(Goal-Sat :f)))

(method F-55 (splitting F-30))
(accepted F-65)

{satisfied F-189)
(goal (implies a d) (d (top-level}))
(Rute ((:f (implies a d))
(Assert '(satisfied F-100)
'(Goal-Sat :7)))

{(method F-180 (standard-implication))
(accepted F-105)

a
(Not a)

c

(satisfied F-126)
(goal d ((implies a d) d (top-level)))
(Rule ((:f d))
(Assert '(satisfied F-126)
'(Goal-Sat :f)))

Complex Program Understanding
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(premise)
(premise)
(premise)
(premise)

(); No support, therefore I'm Out
(subgoal (F-47) (F-54) )
(goal-sat F-55)

(method F-55)
(acceptor F-65)

; No support, therefore I'm oWt
(subgoal (F-74) (F-99))
(goal-sat F-188)

(si-method F-100)
(acceptor F-105)

(imp-assump (F-118) (F-113))
()

(mp F-31 F-112)
(); No support, therefore, I'm OUt

(subgoal (F-110)(F-125))
(goal-sat F-126)

(mp F-33 F-122)

67

Notice the rules r-1, r-2 and r-3 which correspond to the goals r-s5, F-100 and
Two of these (r-1 and r-3) are waiting for the same fact (r-127 0 ) to come in
hich time each will rule will assert that its goal (r-55 and ¢-126 respectively) is
ed. This, however, is an obvious mistake. If r-127 o comes in at this stage, this
not imply that o is true, only that o follows from the assumption A Thus, the
.55 should not be satisfied by this occurrence of o. '
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The classic solution to this problem in Al systems such as PLANNER
[Hewitt, 1972] CONNIVER [McDermott 1973}, and QA4 [Rulifson, et. al, 1972] is to
use a context mechanism to represent the “echelon" in which the implication will be
derived. Typically, a new context is created in which the assumption a as well as the
new goal o (or its analogue) are asserted. When the fact o comes in, the satisfied
assertion is added to the new context which is then discarded; only (impLies a o) is
returned to the old context. The problem with this approach is that it is altogether
possible that the fact o derived in this new context might not depend on the
assumption 4, in which case the system ought to assert that the main goal o is satisfied
and terminate the process; the context system is incapable of doing this since the
contexts do not represent logical dependency but only the chronology of the problem
solver's behavior. Lacking any representation of logical dependency, a context system
becomes overly rigid.

REASON instead uses the dependencies maintained by the truth maintenance
system as well as the explicit control assertions to guide itself to appropriate
conclusions. Goal assertions contain within them a goal stack, indicating the chain of
subgoals which led to the current goal  Although each such assertion includes a
(linear) stack, the set of all such assertions is a (potentially non-linear) network, since
the same goal may be reached by several different paths. The stack is included in
goal assertions for two reasons: First it allows two nested occurrences of the same goal
(such as D above) to be distinguished by their goal stacks. Since the two goals are
represented by different assertions we may easily say that only one is satisfied while
leaving the other to remain as an active goal.

The second reason for this representation is connected with the use of
hypotheticals such as the assumption A made in trying to prove (Implies A D). The
goal assertions actually used in REASON are an extension of those I have shown so
far, including not only the goal stack, but also a set of assumptions made as part of
the deduction process. These assumptions are referred to as the conrexr, although this
context should be distinguished from that of CONNIVER or QA4, in that the
assumption set is an unordered set, while CONNIVER and QAd4's contexts are strictly
nested. Every time a new assumption is made for the sake of hypothetical reasoning
(as in proofs of implications or in indirect proofs) the newly assumed fact is added to
the context part of the goal assertion associated with that assumption. To facilitate
this, the primitive coaL-assert takes one more argument than shown above, namely the

assumption context. Thus, the same set of assertions as shown above will now be
represented as follows:
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F-30 (or a b) (premise)

F-31 (implies a c) (premise)

F-32 (implies b c) (premise)

F-33 (implies c d) (premise)

F-54 (satisfied F-55) (): No support, therefore I'm OW!
F-55 (goal d for (top-level) in ()) (subgoal (F-47) (F-54))

R-1 (Rule ((:f d)) (goal-sat F-55)

(Assert '(satisfied F-55)
'(Goal-sat :f)))

F-65 (method F-55 (splitting F-38)) (method F-55)

F-67 (accepted F-65) (acceptor F-65)

F-99 (satisfied F-100) ; No support, therefore I'm OW/
F-100 (goal (implies a d) (subgoal (F-74) (F-99))

for (d (top-level)) in ())

R-2 (Rule ((:f (implies a d)) (goal-sat F-100)
(Assert '{satisfied F-100) ’
'(Goal-Sat :f)))

F-105| (method F-100 (standard-implication)) (si-method F-100)

F-119 (accepted F-185) (acceptor F-185)
F-112|| a (imp-assump (F-118) (F-113))
F-113 (Not a) (): No support, therefore I'm OU!?
F-122 c (mp F-31 F-112)
F-125| (satisfied F-126) (); No support, therefore, I'm OU/
F-126|| (goal d (subgoal (F-110)(F-125))
for ((implies a d) d (top-tevel))
in (a))
R-3 (Rule ((:f d)) © (goal-sat F-126)

(Assert '(satisfied F-126)
'(Goal-Sat :1)))

F-127| d (mp F-33 F-122)

In goal assertions the keyword "for" indicates the subgoal stack while the
keywprd "in" indicates the assumption context. When the fact r-127 b comes in now,
it is possible to determine which goal it actually satisfies. The rule is as follows:
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Given an assertion P which triggers the pattern of a rule which is watching for the
satisfaction of some goal

1. Request the Truth Maintenance System to prepare a list of all assumptions which
support the satisfying fact P.

2. Fetch all goal statements whose goal matches the satisfying fact P.

3. For each goal assertion test whether the assumptions found in step 1 are a subset
of the assumptions listed in the goal assertion's context list.

4. Discard those goal assertions which fail the test in 3.

5. For each of the remaining goal assertions in 4 assert that the fact P satisfies the
goal assertion.

This procedure results in the following assertion when applied to the situation
described above:

F-120 (satisfied F-126) {goal-found f-127 7-112)

However, REASON does not assert that the original goal assertion f-s5 b is satisfied
since it has an empty assumption context while the assertion f-127 depends on the
assumption f-112 A

This process is driven by the rules which watch for the presence of goal-
satisfying facts, yet these rules in the current system are required to be stated in a
more procedural manner than desired. The algorithm we have just stated is one
which determines whether a certain pattern of dependencies obtains and acts only in
that case. Given the philosophy of explicit control in a rule based system, it would be
preferable to include such dependency patterns in the triggering list of a rule, simply
allowing it to run whenever the appropriate combination of support and facts obtains.
Unfortunately, the current mechanisms are considerably too weak to implement these
desiderata and we are forced to employ more awkward mechanisms. What one would
like is to be able to write something like the following:
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(Rule ((:f1 (goal :g for :stack in :context))
(:f2 :g)
(? (subset (assumption-support :f2) :context)))
(assert '(satisfied :f1) '(goal-found :f2)))

e the intention is to treat the third clause as if it were a fact, triggering the rule

wheﬂ]ever the condition expressed in this clause is true. This, however, puts a burden

e truth maintenance system to not only be aware of changes in the in and out
ses of facts, but also to be aware of more complex conditions, signalling these to
reasoning system as well

This poses an interesting research direction for future work which I have not yet
hed.  Is it possible to develop a lexicon of such useful justification patterns and to

extend the truth maintenance system to support the facility just outlined?

The partial solution I have adopted is to have a special kind of rule called a

trigger rule which runs each time all its pattern's come in. The body of this rule is

then

free to perform further checks to determine if it wants to proceed; in particular,

it can investigate the support patterns of various assertions. If these patterns of

supp
can

later
chec

rule
that
ded

ruleu’
for ¢

brt are appropriate, the rule can then add assertions to the data-base. If not, it
simply exit; however, if the triggering patterns of the rule all become in at some

time, then the trigger rule will execute again, allowing the support pattern to be
ked once more.

This treatment of trigger rules is different from normal rules. When a normal
matches a set of facts, it is run on this set of facts exactly once: the first time
all the facts are in.  Normal rules are concerned with truth; they implement
tions which are thereafter maintained by the truth maintenance system. When a
r;uns, its job is to create new facts and to provide the TMS with a justification
ach of these. As we've seen, a justification consists of two sets of facts the in

™

views justifications as permanent implications: the inness of the in antecedents

ante%[dents and the our antecedents. These later are used only in assumptions. The

together with the ourness of the our antecedents implies the inness of the consequent.

For ¢
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Thus, a rule concerned with truth need only run once on any set of triggering
facts since the pattern of support it creates is eternal and can be handled by TMS
without further executions of the rule. Trigger rules are, in contrast, concerned with
utility and control, concepts of much greater plas.icity; they, therefore, require the
additional flexibility of executing any time their trigger facts change status to in.

Once the trigger rule has executed, REASON concludes that the implication
(imp1ies A 0) is proven. This is justified by a conditional proof justification; the
computed support is independent of ¢-112 and includes only -31 (impiies a ¢) and f-33
(Implies C D).

REASON moves on to the second half of the case-split. This proceeds in exactly
the same manner as above. In this half, r-130 s is assumed which leads to f-122 ¢ by
Modus Ponens. The TMS already has a justification which says that if r-122 is in,
then f-127 should be in as well; therefore, r-127 is brought in and the trigger rules run
again. The trigger rule for the first side of the split is our since it depended on the
goal r-ss which, since it is satisfied, is out; the trigger rule for the second side of the
split and for the main goal r-ss are in. This time they conclude that the new sub-
goal v is satisfied; therefore, (mpLies 8 o) is proved. Its conditional proof justification
computes that the support includes only f-32 (mpLies 8 c) and f-33 (1vpLies ¢ o). The
main goal r-ss, however, still cannot be satisfied, since f-127 o still depends on f-138 s,
an assumption not in f-ss's context set.

‘However, the case analysis is now completed; f-127 o has been derived from both
sides of the split. It is asserted with its justification pointing at the disjunction used
for the case analysis and the implications proven on each side of the split.  The
trigger rule associated with f-ss, the main goal, is still in and is triggered once again.
This time it succeeds since the current support of f-127 includes no assumptions at all,
but only the facts r-3o, r-31, F-32, F-33.
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Section 4.2: The Rules Of Inference

In the following pages, I will present the rules of inference currently used in the

experimental system. These should not be regarded as finished products, but as
expefiments along the way. Similar rules may be found in [Doyle, 1977} These rules

are
expl
the

essentially the normal rules of standard logic embedded within the discipline of
icit representation of control information. It should be noted that these rules have
property that no non-control assertion will ever depend on a control assertion;

thus,| the logical validity of normal assertions is independent of the control regime.

The reader should also note that I do not show here those rules which are

respansible for selecting among competing methods. These are still under
development.

Contradiction Signalling

signz#l a contradiction to the TMS if both a fact and its negation are in.

(Rulei((:f p)

(Rule

For

| (:f {(not :p)))
(assert '(and :p (not :p)) '(contradiction :f :g)))

Double Negation Simplification (Not Elimination)

((:r (Not (not :p))))
(assert :p '(double-negation-elim :f)))
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Antecedent Use of If-Then-Else (If-then-else elimination)

If the antecedent of an 1r-then-eLse is in assert the fact for the twen branch. If the
negation of the antecedent is /n, assert the fact for the etse branch.

(rule ((:f (if :cond then :true else :false)))
(rule ((:g :cond))
(assert :true '(if-the-else-true :f :g)))
(rule ((:9 (not :cond)))
(assert :false ‘(if-then-else-false :f :g))))

Modus Ponens (Implication Elimination)

(rute ((:f (implies :a :b))
(:9 :a))
(assert :b '(mp :f :g))))

Quantifiers

The quantifiers used in REASON are slightly different than those of normal logic

systems. The universal quantifier is a restricted quantifier with the force of an
implication, for example:

(For-all (:x) (Member the-table :x)
{not (Key-part :x key-1)))

which states that no member of the table has key equal to key-1.

The existential quantifier is always coupled with a such-that clause which has the
force of a conjunction, e.g.

(There-is (:x) (Member the-table 1x)
such-that (key-part :x key-1))

Each quantified statement includes a list of variables bound by the quantifier; the first

clause of either type of quantified statement must mention all variables in this list; the
second clause may not have any free variables.
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Antecedent Use of Universal Quantification (Universal Elimination).

If an object exists which matches the antecedent of the ror-aL, then assert the
consgquent clause (with the bindings substituted in).

(rule|((:f (for-all :vars :p :q))
(:9 :p))
{assert :q '(for-all :f :g))))

For example, if

(For-811 (:x) (member 1ist-1 :x)
(there-is (:y) (sublist list-1 :y)
such-that (first :y :x)))

is matched against

(Membeér V1ist-1 Object-22)

we would then eliminate from the universal, obtaining

(Therd-is (:y) (sublist Tist-1 :y)
sych-that (first :y Object-22))

For *omplex Program Understanding




76 Explicit Control and The Task Network
Universal Introduction

(rule ((:f (goal (for-all :vars :p :q) for :goal in :context)))
(propose-method
"(Method :f (typical-member)) '(UITM :f)
(et ((subst (ui-build-subs :vars)))
(let {(:newp (instance :p subst))
(:newg (instance :q subst)))
(goal-assert '(implies :newp :newq)
'((for-all :vars :p :q) . :goal)
:context
'(for-all-sub-goal :f})))
(rule ({:g (implies :newp :newq)))
(assert '(for-all :vars :p :q) '(ui :g)))))

Where ui-suo-suss binds each variable in :vars to a newly created anonymous object
(see next section). An anonymous object is one whose identity is unknown; it is a
priori impossible to tell whether an anonymous object is identical to another object.
u1-BuILD-sues also marks each anonymous object it creates as a ui-ossect (using the
object's property list); this mark is used by the existential introduction and elimination
rules to prevent certain logical bugs explained below.
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| Expansion of Existential Quantification on Demand (Existential Elimination)

The |reasoning system occasionally will want to expand an existential, replacing the
variable of the quantified statement by an anonymous object.  However, if the
existential contains ur-ossects (objects created for Universal Introduction) then the
anonymous objects created are marked to show their dependency on the ui-osJects.

(rule|((:f (there-exists :vars :fact such-that tpred)))
(rule ((:g9 (expand :f)))
(et ({:subst (ee-build-subs :vars :pred :fact)))
(Yet ((:new-fact (instance :fact :subst))
{:new-pred (instance :pred :subst)))
(aséert :new-fact ‘(there-is :f))

(assert :new-pred '(there-is :f))))))

wherg ee-suiLo-suss creates a substitution which binds each of the variables in :vars to
a newly created anonymous object. insTance is a function which substitutes these
bindings into its second argument. Expand assertions such as referred to in the above

§

rule are asserted occasionally during symbolic program evaluation.

As mentioned ee-surco-suss marks the newly created anonymous objects for their
dependence on ui-ossects.  For example, if ossect-1 is a ur-ossect and we have the
following:

1

(Therg-is (:y) (Member object-1 :y) such-that (key :y key-1))

and
for
will

xistential elimination creates memser-1, an anonymous object, and substitutes this
:¥, then ee-surio-suss will mark memser-1 to show its dependence on osiect-1.  We
btain the assertions:

(Memb%r object-1 member-1)
(Key member-1 key-1)

and the property list of memser-1 will be marked so that the ui-bepeNpency property of
MEMBER-1 is the list (oBJecT-1).
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Existential Introduction

(rule {(:f {goal (there-is :vars :p such-that :q) for :goal in :context)))
(Propose-Method
'(Method :f (Standard-EI)) '(EISM :f)
(goal-assert :p
"({there-is :vars :p such-that :q) . :goal)
:context
‘(there-is-sub-goal-1 :f))
(rute ((:g :p))
(cond ((ui-object-free :p :vars)
(goal-assert :q
"(:p . :goal)
:context
'‘(there-is-sub-goal-2 :f :g))
(rute ({:h :q))
(Cond ((ui-object-free :q :vars)
(assert '(there-is :vars :p such-that :q)
‘(exist-intro :h :g))))))))))

The function ur-ossect-rree checks to see whether the matching has resulted in a
variable of either :p or :o becoming bound to an expression containing an anonymous
object which is marked with a UI-DEPENDENCY property. If so, this expression
cannot be used to introduce an existential This prevents the classic mistake of using:
(for-al1 (:x) (object :x) (there-is (:y) (object :y) such-that (P :x :y)))

to conclude:
(There-is (:y) (object :y) such-that (for-all (:x) (object :x) (P :x :y)))

(where ossect is a predicate true of everything, and is used merely to fill the first
position of my restricted quantifier notation).

There are some delicate issues of control involved in simultaneous sub-goals which
share variables. These come up in proving existential quantifiers like the ones used
here. [Doyle, 1977] discusses these problems and presents a more advanced solution
than I have used here.
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Expansion of And (And Elimination)

(:f (and :p :q))
(assert :p '(and-elim :f))
(assert :q '(and-eiim :f)))

Disjunctive Elimination (Or Elimination)

is done in two parts. When a disjunct is asserted, it is put into an expanded
so that rules can easily determine whether a particular fact is a clause of the

disjupction. Then, if a clause in a disjunction is ever negated, a new disjunction can
be agserted, including all the other clauses of the old disjunction.

(rule

Set Up Expanded version of Disjunct

((:f (or . :x)))
(do ({dis :x (cdr dis)))
((null dis))
{let ({:dis (disjunct-of :f ,(car dis))))
{assert :dis '(spread-disjuncts :f)))))

The |
not ¢
LET

double quote (") is a macro which produces a list. The items inside the list are
valuated unless preceded by a comma (,). Variables (e.g. :f) are always evaluated.
ontains two parts a set of binding expressions and a body. Each binding

expression contains a variable and an expression. The variable is bound to the value

of t

i
i

expression. The body is executed in the environment created by these bindings.

Do The Actual Work When Appropriate

(rule;((:f (disjunct-of :d :p))

| (:g9 (not :p)))
I(assert '(or . ,(safe-delete :p !:d)) '(disjunctive-elim :f :g)))
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The exclamation point character (!) is a macro which when applied to a fact name
produces a fact statement. Le %d = (Or ... ) in the above. sare-beete is a variant of
the built-in LISP function oecete which does not side-effect its argument.

Simplify singleton or
If the above leads to a disjunction with only one clause, that clause may be asserted.

(rule ((:f (or :p)))
(assert :p '{or-simplification :f)))

The Basic conjunctive goal mechanism:

This is essentially a sub-routine called by other strategies. The routine will try
each of the sub-goals in turn. A later sub-goal will not be tried until the prior sub-
goal is satisfied. A refutation will stop the iteration, asserting that the calling goal is
refuted. Thus, this should be called only when the conjunction of the sub-goals is
equivalent to the calling goal.

The call is made by asserting:

(conjunctive-goals :first :rest :dep :stack :context)

where the arguments have the following meaning:

1. first: the first sub-goal to attempt.

2. rest: the remaining sub-goals to attempt after the first is satisfied.

3. dep: previously accumulated assertions upon which the final goal will depend. Each
time a sub-goal is satisfied, the satisfying fact is added to this argument.

4. stack: the goal stack with which the invocation was made. The first item on this
stack is the immediately dominating goal If all the sub-goals are satisfied, we can
conclude that the first element on the stack is satisfied.

5. context: the assumption context in which this is invoked.
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Conjunctive Sub-Goal Mechanism

((:f (conjunctive-goals :first :rest :dep
(:top . :stack) :context)))
(goal-assert :first '(:top . :stack) :context '(conjunctive-goals if))

i (rule ((:g (not :first)))
(Assert '(Not :top) '(Conj-goal-refutation :g)))

(rule ((:g :first))
(cond
(:rest
(assert
‘{conjunctive-goals (car :rest) (cdr :rest) (:g . :dep)
(:top . :stack) :context)
‘(conjunctive-goal-control :f :h)))
(t
(assert :top '(conjunctive-goals :g . :dep))))))

Proof by cases

a disjunction, creating a case analysis. In each case attempt to show that the
nt clause of the disjunction implies the desired goal This is done by creating a
joal which is the conjunction of these implications. Conjunction Introduction will
e the conjunctive goal mechanism to conduct the proof.

((:9 (goal :p for :goal in :context))
(:h (or . :q)))
(Propose-Method '(Method :g (splitting :h)) '(Split-Meth :g :h)

| (et ((:qf '(and . ,(mapcar ‘(lambda (x) '(implies ,x p)) :q)))

(goal-assert :qf '(:p . :goal) :context
'{use-conj-goals-for-case-split :g :h))))))
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Implication Introduction

(rule ((:f (goal (impiies :a :b) for :goal in :context)))
(Propose-Method '(Method :f (Standard-Imp-Intro)) '(S:iI :f)
(goal-assert :b

‘((implies :a :b) . :goal)
'(:a . :context)
’(imp11es-subgoa1‘:f))

(assume :a '(standard-implies-rules-assumption :f})

(rute ((:h :a)

(:g :b))
(assert '(implies :a :b) '(cp :g (:h))))))

Disjunction Introduction

(Rule ((:f (goal (Or . :d) for :goal in :context)))
(Propose-Method '(Method :f (standard-dis-intro)) '(SBI :f)
(do ((dis :d (cdr dis)))
((Nu11 dis))
(let ((:car-dis (car dis)))
(goal-assert :dis '({Or . :d) . :goal) :context '(disj-intro :7))
(Rule ((:g :car-dis))
(Assert '(Or . :d) '(dis-intro :g)))))))

Conjunction Introduction

(Rule ((:f (goal (And :cf . :cr) for :goal in :context)))
(Propose-Method '(Method :f (standard-conj-intro)) '(SCI :f)
(Assert
"(conjunctive-goals :cf :cr () ((And :cf . tcr) . :goal) :context)
'(Use-conj-goals-for-and-intro :f))))
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4.2 The Rules Of Inference

If-Then-Else Introduction

((:f (goal (If :p then :q else :r) for :goal in :context)))
{Propose-Method '(Method :f (standard i-t-e)) '(SITEI :f)
(Assert
‘{conjunctive-goals (implies :p :q) ((implies (not :p) :r)) ()
((If :p then :q else :r) . :goal) :context)
'(use-conj-goals-for-i-t-e :f))))

Backward Chaining

{((:f (goal :q for :goal in :context))

(:g (implies :p :q)))

(Propose-Method '(Method :f (backward-chaining :g)) '(BC :f :g)
(goal-assert :p '(:q . :goal) :context '(backward-chain :f :g))))

Backward Chaining Through If-then-Else

((:f (goal :q for :goal in :context))

(:9 (If :p then :q else :r)))

{Propose-Method '(Method :f (if-then-back-chain :g)) '(ITESC :f :g)
(goal-assert :p '(:q . :goal) :context '(i-t-e-back-chain :f :g))))

((:f (goa) :r for :goal in :context))
(:g (If :p the :q else :r)))
(Propose-Method '(Method :f (if-else-back-chain :g)) '(1TEBC :f :g)

| (goal-assert '(not :p) '(:r . :goal) :context '(i-t-e-back-chain :f :g))))

Indirect Proof

((:f (goal :p for :goal in :context)))
(Propose-Method '(Method :f (indirect-proof)) '(IP :f)
(Assume '(Not :p) '(Indirect-proof-assumption :f))))
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If this leads to a contradiction and if this contradiction actually depends on the
assumption of (wot :p), then the truth maintenance system will determine that the
assumption is responsible for the contradiction. It will then bring :p in. This will out
the assumption.  This process is called dependency-directed backtracking; it is
described in [Doyle, 1978] and in [Stallman & Sussman, 1977] .

Contrapositive Deduction

(Rule ((:f (Implies :p :q))
{:g (Not :q)))
(Assert '(not :p) '(contrapositive :g :f)))

(Rule ({:f (goal (Not :p) for :goal in :context))
(:g (Implies :p :q)))
{Propose-Method '(Method :f (Contrapositive-chaining :g)) '(CPC :f :g)
(goal-assert '(not :q) '((Not :p) . :goal) :context
‘(contrapositive-back-chain :f :g))))

DeMorgan's Rules

(Not (and abc ... })) => (or (not a) (not b) (not c) ...)
(Not (or abc ... )) => (And (not a) (not b) (not c) ...)

(rute ((:f (not (and . :x))))
(et ((:disj '(or . ,(mapcar '(1ambda (x) '(not ,x)) :x))))
(assert :disj '(de-demorgan :f))))

(rule ((:f (not (or . :x))))
(Vet ((:conj '(and . ,(mapcar '(lambda (x) '(not ,x)) :x))))
(assert :conj '(demorgan-demorgan :f))))
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4.2 The Rules Of Inference

Negation and Quantifiers

For-all :vars :p :q)) <=> (There-is :vars :p such-that (not :q))
There-is :vars :p such-that :q) ¢=> (For-all :vars :p (not :q))

((:f (not (For-all :vars :p :q))))
(Assert '(There-is :vars :p such-that (not :q))
'(negated-for-all :f)))

((:f (not (there-is :vars :p such-that :q))))
(Assert '(For-all :vars :p (not :q))
'(negated-there-is :f)))

((:f (goal (not (For-all :vars :p :q)) for :goal in :context)))
(Propose-Method '(Method :f (standard)) '(Quant :f)
(goal-assert '(there-is :vars :p such-that (not :q))
: '((not (for-all :vars :p :q)) . :goal)
:context
'(negated-for-all-standard-sub-goal :f))))

((:f (goal (not (there-is :vars :p such-that :q)) for: :goal in :context)))
(Propose-Method '(Method :f (standard)) '(Quant :f)
(goal-assert '(for-all :vars :p (not :g))
'((not (there-is :vars :p :q)) . :goal)
:context
'‘(negated-there-is-standard-sub-goal :f))))

Section 4.3: Closing The Reflexive Loop

85

So far I have shown the use of the task agenda only in the context of theorem

proving. However, the protocol shown above is actually the way REASON does
anything which needs to be open to introspective control Tasks other than theorem
proving goals are entered into the system by making a task assertion which is treated
uch the same manner as the coaL assertions. Such assertions stimulate the

in
prop

This
be o
some

sal of methods; methods are chosen by the acceptor just as was shown above.

Frequently some partial ordering must be imposed on the execution of tasks.
is done by asserting a controL-FLow assertion mentioning the two tasks which are to
dered.  Similarly a task can make information available for use by asserting that
object is one of its outputs. This information can be propagated to other tasks

by the assertion of oata-rLow assertions which mention the output port of the first task

For |
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86 Explicit Control and The Task Network
and an input port of some other task.

Of course this is just the primitives which are used to describe programs in the
plan diagram formalism!! 1In fact, I am currently working on building a catalogue of
useful plans for use by REASON itself. These will be coupled with a set of rules
which state that a useful way to accomplish some task is to apply one of the plans
from the catalogue. Of course these plans create sub-tasks and REASON will have to
chose methods to accomplish each of these. However, it is often the case that there
are is an a priori good choice for some of the sub-tasks of a particular plan. Thus,
extremely useful pragmatic information can be provided to the accertor by building
rules which analyze the history of method and plan selection and use this analysis to
select methods. This is roughly the approach followed in [McDermott, 1977}

Although this is so far past the current development of REASON that it now
_ seems to be science fiction, there is yet another advantage to this approach.
REASON s itself a program written to analyze programs; the language in which a
substantial part of REASON is written is the language it is capable of analyzing
Therefore, it is possible for REASON to analyze itself!! (At least in principle, it is
possible).

In later chapters, I will often refer to REASON'S protocols. These are sets of
tasks to be entered into the task agenda; they are represented in the plan language.
In the next section I will develop some more representations used in the reasoning
system; I will then turn to a deeper look at the plan language.

Section 4.4: Equality, Reference and Anonymous Objects

If one wishes to show that a program has a certain property one must show that
whatever inputs the program is given, it will still behave in accordance with the
property. The method used in REASON is to evaluate the behavior of the program
when presented with typical inputs. Anonymous  Objects [Hewitt, 1975],
[Rich & Shrobe, 1976}, [Moore 1975}, (they are called formal objects in
[Sussman, 1975) are used to represent such typical inputs. An anonymous object is
one whose identity is unknown in the sense that given an anonymous object and any

other object, it is @ priori unknown whether or not the two objects are identical (in
the sense of being the same object).
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Anonymous objects provide a convenient stand-in for unknown information of
various kinds. For example, suppose we wanted to say that the third field of the
record input to proceoure-1 is a sorted list. If we did not know exactly what item was
input to proceoure-1 we would have to make up some token to stand for that item and
similarly for the third field of this record. We might do this as follows:

(input the-record procedure-1 Anon-1)
(third-field Anon-1 Anon-2)
(sorted-1ist Anon-2)

Notige, however, that the first two of these predicates are functional, they uniquely

determine their last argument It is, therefore, possible to use a more concise
notatjon:

(sorted-1ist [third-field [input the-record procedure-1]])

Each| expression in brackets (¢ ... 3) is read "the object which satisfies ..." and refers
to the unique object which could appear in the final position of the equivalent
predicate. In fact, such reference expressions can be constructed for predicates which
are Known to be functional in any position. For example, if we knew that there were
a unigue list which contains entry-1 as a member, we could refer to this list as follows:

[Member :1ist Entry-1]

in which the variable :iist indicates the position of the statement which is being
referted to. The reference expressions above are further abbreviations of this notation
in which the last position is the variable and is by convention simply dropped.

Whenever REASON asserts a statement with reference expressions in it, it
attempts to resolve the references. Reference resolution involves two stages: First, if
there|is an object which satisfies the reference expression, that object is substituted for
the reference expression. Second, if no such object exists, an anonymous object is

created to satisfy the reference expression. For example, suppose the following is
asserted:
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F-9 (Left pair-1 [right pair-2])

To process this assertion, REASON must resolve the reference expression

[right pair-2]

Le it must find an assertion matching the pattern

(right pair-2 :obj)

There are two cases. Suppose the data-base already contained the assertion:

F-1 (Right pair-2 The-Answer)

Then the processing would be completed by asserting:

F-2 (Left pair-1 The-answer) (Reference-Resolution F-8 F-1)

If, however, the data-base contained no assertion matching the pattern

(Right Pair-2 :0bj)

then the system would create the anonymous object ossect-1, and assert that it satisfies
the reference expression. Notice that this assertion is not an assumption since it is
not really saying anything new. The reference expression itself only says that there is
some object satisfying the expression; resolving the reference by creating the
anonymous object merely gives this object a name. Since the anonymous object
created to resolve the reference might be equal to any other object, this new assertion
cannot be false; therefore, it is justified as a premise, ie. its truth does not depend on
the truth of any other assertion.

Since resolving the reference expression creates a new assertion, processing may
now proceed as above.
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(Right pair-2 OBJECT-1) (Reference-resolver)
(Left pair-1 OBJECT-1) (Reference-Resolution F-0 F-2)

ourse, there is no restriction on the nesting of reference expressions, so the

proc?ssing is recursive.

two

expre
of ¢
How

F-4

Since

Identification

The use of reference expressions raises the possibility that we might wind up with
distinct names for the same object. For example, in resolving the reference
ssion above we created the anonymous object ossect-1 to stand for the right part
\ir-2 and from this we deduced that the left part of eam-1 is also ossect-1.
ever, suppose that we had the following assertion in the data-base:

(Left pair-1 Left-55) (some-justification ...)

a pair can only have one left part, it must be the case that Lerr-ss and ossect-1

are the same object. We are then faced with the problem of what to do with these

two.

names for the same thing, i.e. the problem of handling equality. REASON uses a

rather unusual tactic in this situation. The standard tactic in most reasoning systems

is to
when
using
elimi
"disa
0BJEC]

build up equivalence classes of equal objects. This however, imposes a price
searching for a match since one must check for variants of the desired assertion
any possible representative of the equivalence class. REASON instead,
nates this possibility by doing the work in advance; it makes one of the objects
ppear”.  In the current example, there is really no further use for the name
-1, since it was merely created as a stand-in when we lacked the information to

know what the right part of rar-2 was. However, we have now deduced that

infor

0BJEC]
To n
objea

mation, so the stand-in is unnecessary.

Since we have learned that ossect-1 is really Lert-ss, we can substitute Lert-ss for
-1 in any assertion in which ossect-1 occurs. This process is called identification.
nake this possiblee REASON maintains an index of which assertions the various
ts occur in; the index is represented by assertions of the form

(Occurs-in <object> <fact-named)
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Needless to say, these assertions are not indexed with more occurs-in assertions. Every
time a new assertion is added to the data-base, this index is updated. When an
identification is required, it is then simple to retrieve the appropriate assertions and
make the substitutions.

However, this process as explained so far would result in another problem.
Namely, every assertion mentioning ossect-1 is now parallelled by an equivalent
assertion mentioning tert-ss. It would be wasted effort for both of these assertions to
be retrieved every time some information was desired. REASON, therefore, maintains
a mark on each assertion, called the wrility mark which serves a function similar to
that of the in-out mark. If an assertion has its utility mark set, then it is regarded as
being useless, no rule will trigger on it and it will not be retrieved by a normal fetch
request. However, it is still regarded as being true.

As REASON goes through the identification process, it sets the utility mark of
each assertion which mentions the anonymous object being identified away (ossect-1 in
this case). Each new assertion depends on both the 10 assertion and the original
assertion from which it was built. In our current example, we have:

F-2 (Right pair-2 OBJECT-1)
F-3 (Left pair-1 OBJECT-1)
F-4 (Left pair-1 Left-55)

As noted, f-3 and f-4 imply that ossect-1 and Lert-ss are identical. Thus, an 10

assertion is derived, initiating the identification process. The following assertions
result:

F-5 (ID OBJECT-1 Left-55) (Part-Identification F-3 F-4)
F-8 (Right pair-2 Left-55) (Identification F-2 F-5)

In addition, both r-2 and r-3 will have their utility mark set The following rules
implement this process:

Dependency Directed Reasoning



(trig

It is
the
the
but
be i
whos

4.4 Equality, Reference and Anonymous Objects 91

Per-ru!e ((:f (Id :0obj-1 :0bj-2))
(:g (occurs-in :obj-1 :fact-1)))
(set-utility-mark :fact-1 'useless) ; mark the fact useless
(tet ((:new-fact (subst :obj-2 :obj-1 :fact-1)))
(assert :new-fact (identification :f :g))))

(rute ((:f (part :obj-type :part-name))
(:9 (type :obj-type :obj)))
(rule ((:h (:part-name :obj :part-1))
(:i (:part-name :obj :part-2)))
(or (eq :part-1 :part-2)
(assert (id :part-1 :part-2)
(part-identification :f :g :h :i)))))

important to understand the distinction made here between the utility mark and
potion of in and out. In and out deal with belief (or logical relationships) while
htility mark is strictly an issue of control (of heuristic value). A fact which is in
whose utility mark is set is still regarded as true (or believed) even though it will
pnored.  This is crucial since the justification for fact r-a above is f-2, a fact
e utility mark is set. If r-2 were regarded as not being believed (as opposed to

simply not being useful) then r-s would have no support and would itself be our. A

fact
will

of a
from

whose utility mark is set may support belief in other facts although its presence
ptherwise be ignored.

Whenever the truth maintenance system notifiess REASON that the belief status
1 10 assertion has changed from in to out, REASON will remove the utility mark
each assertion which had previously been marked.  This situation arises

freq

ently in hypothetical reasoning, when for sake of argument the system

assulnes that two objects are identical, leading to an identification process. Later

whe
the
remd

the system retracts this assumption, the 10 assertion will become out removing
upport for the covered assertions. When the utility mark of an assertion is
ved, the system will run any rule which matches the assertion but which has not

yet executed.
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Section 4.5 Situational Logic

So far I have ignored the need to represent the temporal behavior of programs.
The temporal nature of a fact is indicated by tagging an assertion with a sitwation tag
[McCarthy, 1968] indicating when that assertion is belie: :d to be true; different points
in time are represented by different situation tags. Thus, we might write:

((First 1ist-1 obj-1) situation-1)
((First 1ist-1 obj-2) situation-2)

to indicate that the first object in List-1 is 0ss-1 at one point of time while it is ops-2
at another. This does not imply that oss-1 is identical to oss-2; the actual rule for
identification used in REASON requires that the situations of the two assertions be
identical. '

It is often the case that we need to make reference expressions within this
temporal notation.  This is indicated with a temporal reference expression which is
denoted using braces ({ ... }). For example:

((First list-1 {[first 1ist-2] situation-2) ) situation-1)

says that the object which is the first element of List-1 in situation-1 is also the first
element of List-2 in situation-2.  Notice that it does not follow from this that there is
any situation in which the first element of List-1 is ever the same object as the first
element of List-2. A temporal reference expression has two partss the assertion
expression and the situation expression; either of these may be a simple reference
expression. Temporal reference expressions are handled in essentially the same way as
simple reference expressions discussed above.

Some assertions are frans-situational in that they relate assertions or objects from
different situations. 10 assertions are an obvious example of this. If two objects are
identical, then they are identical in all situations (for all time as it were). Thus, 10
assertions are never situationally tagged.
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Logical connectives may also be used to build trans-situational assertions. For
examjple:

(Or ((first 1ist-1 obj-1) sl) ((Rest list-1 obj-2) s2))

is trans-situational. It is not true in any situation, but rather is an assertion relating
facts| in different situations. These will be important in chapter 11 where I discuss
reasaning about side effects.

REASON also allows assertions to relate the states of objects at different points
of time. Suppose we wished to describe the behavior of the MACLISP wreverse
progtam which reverses a list by changing the pointers in its cells. This program
works by side-effect; we want to say that the list which is the output of this program
is the reverse of the list which is the input. However, we are talking about the same
list in both cases since the program works by side-effect. The output cell is the one
which was the last cell of the input list; after the wreverse program has run, this cell is
the head of the reversed list. Suppose that si is the situation just before the wreverse
program executes and sz is the situation just afterwards. We can then write:

(Reverse ¢[Vist-1 s1]> <[1ist-2 s2]>)

The |expressions within angle brackets (¢[ ... D) is called an object-state expression. It
is read as "the state of ... in situation ... ". If an assertion mentions only object-state
expressions and the situation part of each such expression is the same situation, then
the assertion is equivalent to a situationally tagged assertion mentioning the objects of
each|object-state expression and tagged with the common situation tag. '

(P <[x1 s1 ... Ixi sl ... <[xn s1]>)
<=>
((P x1 ... xi ... xn) sl)

Notige that the reverse assertion above is not reducible to a simple situationally tagged
assertion. However, consider what would happen if the reverse assertion were replaced
by its definition. We define reverse recursively, saying that one list is the reverse of
the gther if the first object of one is the last object of the other and if the rest of
the first list is the reverse of the fragment of the second list beginning with the first
objegt and continuing up to the last (I will be more specific about how such
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definitions are stated in chapter 10). We would then obtain the following:

(Reverse <[11 S1]> <12 s2]>)
<=> (And {First <[11 s1]> [last <[12 s2]> ] )
(Reverse [rest <[11 s1]>] [1eading-fragment <[12 s2]> ]))

this will lead to reference resolution as shown earlier. However, as we begin to
resolve the references we will see that many of the expressions are simple reference
expressions (i.e. without situational tags) which involve only object state descriptions
from a single state.  For example, from the first clause we obtain the following:

[last <[12 s2]> ]

Using the rule stated above this is resolved to:

({(1ast 12 anon-1) s2)

and the value of the reference expression is avon-1. Thus, following the same rule, the
enclosing clause becomes:

((first 11 anon-1) sl)

If we continue this process we will ultimately wind up with only simple situationally
tagged assertions. Actually, we also wind up with a second trans-situational reverse
expression. However, by induction, this will also lead to a set of simple situationally
tagged assertions, none of which are trans-situational. If a defined relation including
object-state descriptions can be reduced to simple assertions which are not trans-
situational, then the relation makes sense as a trans-situational assertion. ReverRse is
such a relation =~ Membership in a data-structure is not; an examination of the

definition of cist-memsersuip for example, shows that any trans-situational use of
membership is incoherent.

A similar reduction can be applied to trans-situational assertions built from
logical connectives in which each clause is tagged with the same situation.
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(Or (Pl sl1) ... (Pi sl) ... (Pn sl1))
(=>
({(Or P1 ... Pi ... Pn) sl)

A similar rule applies to negation:

{not (P s1)) <=> ({(not P) sl)
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Chapter 5: Describing Programs

[ will use two distinct methods of describing program segments. The first of
these, called specs, is a formalism for specifying :. segment's input/output behavior.
The second, called plan-diagrams is used to build a complex segment by connecting
together simpler ones. Intuitively, the specs represent the properties of the program to
be proved and the plan diagram represents the program. Analysis consists of showing
that the behavior which results from a plan diagram is that required by the segment's
specs.

Section 5.1: Specs - I/0 Descriptions

Simple specs consist of 4 sets of clauses: Inputs, Outputs, Expects and Asserts.
The first two of these are simply lists of internal names or porss for the data objects
which are the inputs (outputs) of the segment being specified. The expect clauses are
a set of requirements which must be satisfied at the time the segment is applied to its
inputs.  Typically these are type constraints or simple relationships between the input
objects. Finally, the assert clauses are a set of conditions which are promised to hold
immediately after the segment has finished its execution. The assert clauses may
mention both input and output objects, providing a convenient method for describing
side-effects on the input objects.

We can use the specs formalism to specify a program which calculates the fringe
of a tree as follows:

(defspecs fringe
(Inputs: the-tree)
(Expect: (Object-type the-tree Binary-tree))
(Outputs: the-fringe)
(Assert: (Object-type the-fringe List)
(For-all {:the-node) (leaf-node the-tree :the-node)
{member the-fringe :the-node))
(For-all (:the-node) (member the-fringe :the-node)
{1eaf-node the-tree :the-node))))
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clauses are written in a variant of the predicate calculus which uses the pattern

matching syntax of artificial intelligence languages and which uses the situation tag
notatjon of the situational calculus [McCarthy, 1968} The identifiers preceded by
colong (e.g. :Twe-nooe) are variables; thus, the two quantifiers say that every leaf node
of tljr tree is represented in the output of frinee and conversely that only the leaf

node
on a
input
exam

are represented. Where it is possible to unambiguously omit the situation tag
predicate we do so. This is almost always possible, since the use of distinct
and output names for the same object defines which situation is meant.  For
ple, the first clause of the first quantifier above only mentions input objects and

is, therefore, taken to apply in the input situation. The second clause refers to an

outpt

t object and, therefore, refers to the output situation. In cases where this in not

possibjle the two special symbols sserorer and sarters are available as names of the

input

and output situations. When specs are used in the symbolic evaluation process,

the symbolic evaluator defaults in the appropriate situational tags.

cause

Specs may also have a case structure which reflects the ability of the segment to
control branching. This is done by adding case clauses. For example a test

which checks whether a node is a leaf node can be specified as follows:

This
not

(defspecs leaf?
(inputs: the-node)
(expect: (Object-type the-node binary-tree-node))
(case-1:
(when: (Object-type the-node Leaf)))
(case-2
(when: (not (Object-type the-node Leaf)))))

says that when the input node is a leaf we take one control branch and when it's
e take the second branch. As above, the segment has expect clauses which must

be satisfied. This segment produces no outputs and has no side-effects. There are,

there
cases
specif
outpy

For (

lore, no outputs or assert clauses. Segments have any number of cases and these
may have outputs and assert clauses nested within them. This allows us to
y complicated segments which create control branches as well as producing
ts. A vrookur routine for a complex data-structure might have such specs.
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It is often necessary to state that several segments share the same I/O behavior.
One reason for this is that there are tasks for which several distinct algorithms exist;
these different algorithms lead to distinct segments, but their specs are identical
There is a second need for saying that different segments have identical I/O behavior.
Consider the following code for the fringe program:

(defun fringe {tree)
(fringe-1 tree nil))

(defun fringe-1 (tree acc)
{cond ((1eaf? tree)(cons tree acc))
(t (fringe-1 (left tree)(fringe-1 (right tree))))))

Notice that there are two recursive calls to rringe-1.  Thus, there are three instances
of rrinse which we might want to distinguish for some purposes while still maintaining
the awareness that these segments have a common I/O specification.

The name in a defspecs statement is therefore regarded as a spec-type, rather
than as the specs for any particular segment. If we need to indicate that a segment
has the specs in a defspecs statement, we state that its spec-type is the spec-type-
name in the defspecs clause. Thus, we could say that the two recursive calls in the
fringe program have the same I/0 behavior as follows:

(spec-type left-fringe fringe)
(spec-type right-fringe fringe)

where rerr-rFringe is the recursive call to rrinee for the left sub-tree and RIGHT-FRINGE iS
the recursive call for the right sub-tree. This does not yet allow us to state that

these two instances of rrine have identical internal structure. That is the subject of
the next section.
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Section 5.2: Plan Diagrams

Plan diagrams are a method of building a program segment by linking together
ehaviors of smaller segments. In talking about a plan diagram there will always
main segment (i.e. the segment described by the plan diagram) and a set of sub-
ents which are being linked to form the main segment In turn, some of these

sub-segments will have plan diagrams and internal segments of their own. Thus, there

may

and
a seg
name
two
one

The
data-
conce
two
is pa
the ¢

state

be several levels of aggregation within a plan diagram.

Segments within a plan diagram may be joined by two kinds of links: data-flow
rontrol-flow. Since specs give a unique name to each input and output object of
ment, we may specify how data-flows between segments by stating which object-

of the first segment flows to which object-name of the second. For example
sub-segments at the same level of detail might be linked by having the output of
low as an input to the other.

(dataflow (output <segment-id-1> <object-name-1>)
(input <segment-id-2> Cobject-name-2)>))

data-flow above is referred to as an output-input link; this is the only type of
flow link which can connect two sub-segments of a common plan. When we are
erned with the links between the main segment and its sub-segments there are
pther kinds of data-flow links: Input-Input in which an input of the main segment
ssed directly to a sub-segment as one of its inputs, and Output-Output in which
utput of a sub-segment is passed to the main segment as one of its outputs.

Control-flow links are included for two purposes. A simple control-flow link

5 that one segment must finish its execution before the other segment may begin

ordefed to avoid destructive interference.  Data-flow links imply an ordering

relat
Othe
inter
beha

For

to EH(ecute. This is included so that segments with side-effects can be properly

onship as well, since a segment may not execute until all its inputs have arrived.
r than these constraints there is no ordering .mposed; plan diagrams are always

preted in a (pseudo) parallel manner, even though I use them to analyze the
vior of sequential processes.
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The more complicated use of control-flow links is to specify where control will
go from a segment whose specs split into cases. Conditional-control-flow links connect
a particular case of a segment to its succeeding segment. Thus, if a segment has two
cases (a typical test) there will be one conditional-control-flow link for each case
leading to that segment which should next be evaluated if that particular case is
applicable. A segment which terminates a conditional-control-flow link cannot execute
unless the initiating case of the link is applicable.

TEST
coniitional
controlflow
links
things done things done
in the in the
first case other case
controlflow
link

control rejoins here

JOIN

§

This happens under
all circumstances

Conditional-Control-flow Links

It should be noted that control-flow links are not connected to a particular port of a
segment in the way that a data-flow is. The symbolic interpreter which I will
describe in the next chapter interprets the control-flows, since they are extrinsic to the
segment. The presence of a control-flow is in no way related to any intrinsic
specification of the segment.
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Dne final tool used in plan diagrams is the join which is the inverse of a case-

splitting segment. A join merges several distinct control paths produced by a case

split

from
contr
true

into a single synthesizing control path. The join takes a set of input objects
each control path and produces a set of output ovjects on the synthesizing
ol path. It has a set of input expectations specifying conditions which must hold
pf the input objects flowing to it from each control path and assert conditions

about| the merged output objects. Since the control paths which terminate at a join

are r
more
applic
input

curre
made
paths
that
.of th

follow

For (

equired to originate from a common case splitting segment, it is impossible for
than one of these paths to be active at any one time. Thus, the join is
able when one of its incoming control-flow links is active and the associated
objects are available.

The rringe program employs a typical use of the join. eringe tests whether the

1t node is a leaf. If so, the leaf is accumulated. Otherwise, recursive calls are
on the left and the right nodes, producing an accumulation. These two controls
and their respective accumulations are then synthesized by a join which states
whichever path was taken, the accumulation returned includes all the leaf nodes
2 input node.

We may use these notions to represent the fringe program diagrammatically as
ys:

fomplex Program Understanding




102 Describing Programs

The-Tree The-Accumul ation

Fringe

Do-
NT
ACCUM
) Left-Fringe Right-Fringe
7
]
Join-Fringe
*The-Fringe

Schematic Plan Diagraxﬁ For Fringe

Notice that in the above diagram, the "railroad track" lines represent control-flow,
while the solid lines represent data-flow.

This diagrammatic representation of the program has a direct translation into
specifications, data- and control-flow assertions as shown:
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(dataflow

(dataflow

(dataflow

(dataflow

(dataflow

(dataflow

(dataflow

(datafliow

(dataflow

(datafiow

(dataflow

(dataflow

(dataflow

(dataflow

(dataflow

(Input fringe the-tree)
(Input leaf? the-node))

(input fringe the-tree)

(input process-non-leaf the-tree))

(irput fringe the-accumulation)

(inrput process-non-leaf the-accumulation))

(input fringe the-accumulation)

(input accumulate-fringe the-accumulation))
(input fringe the-tree)

(input accumulate-fringe the-new-element))

(input process-non-leaf the-tree)
(input left the-tree ))
(input process-non-leaf the-tree)
(inrput right the-tree ))

(output right the-node)

(input right-fringe the-tree))

(input process-non-leaf the-accumulation)
(input right-fringe the-accumulation))

(output left the-node)

(input left-fringe the-tree))
(output right-fringe accummulation)
(input left-fringe the-accumulation))

(output left-fringe accumulation)
(output process-non-leaf accumulation))

(output process-non-leaf accumulation)

(input (join-fringe case-2 the-accumulation)))
(output accumulate-fringe the-accumylation)
(input (join-fringe case-1 the-accumulation)))

(output join-fringe the-accumulation)
(output fringe the-accumulation))

(conditional-control-flow

((test-leaf case-2) process-non-leaf))

(conditional-control-flow

((test-leaf case-1) accumulate-fringe))

{control-flow accumulate-fringe (join-fringe case-1))
(control-flow process-non-leaf (join-fringe case-2))
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(spec-type test-leaf leaf?)
(spec-type left-fringe fringe)
(spec-type right-fringe fringe)
(spec-type accumulate-fringe cons)

If two segments are internally identical, ie if they have identical internal
structure then we say that they have the same plan-type. It follows that if seemMent-1
and secMent-2 are of the same plan-type then they are also of the same spec-type.

A plan type is defined using six clauses:

() A list of sub-segment names (we will often refer to these names as roles of the
plan).

(i) A set of type constraints on the sub-segments, ie. a list of what plan-type or
spec-type constraints they satisfy

(iii) A set of data-flow links.

(iv) A set of control-flow (and conditional-control-flow) links.

(v) A set of input names.

(vi) A set of output names.

This may be specified as follows:

(defplan fringe
(sub-segments: test-leaf left-fringe right-fringe
left right accumulate-fringe)
(constraints: (spec-type test-leaf leaf?)
(plan-type left-fringe fringe)
(plan-type right-fringe fringe)
(spec-type accumulate-fringe cons)
(spec-type left left)
(spec-type right right))
(flow-diagram: (dataflow ... )
o))

If two segments have the same plan-type, then their internal structure is identical
to the degree of detail specified in the plan diagram. Thus, their internal temporal
behavior is identical. Notice that the plan diagram for the plan-type rrinee includes
two sub-segments whose plan-type is also frinee. It follows that if we wish to prove
some temporal property of the frine plan-type we may do so by an inductive
argument, assuming that this property holds of the two sub-segments of plan-type
FriNge and deriving the desired property of the main segment. It is important to
remember the distinction between plan-types and spec-types. Knowing a segment's
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spec-type will not help in inductive proofs of it internal temporal properties; spec-type,
in cantrast to plan-type, is strictly concerned with I/O behavior.
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Chapter 6: A Symbolic Interpreter for Plan Diagrams

In this chapter I will describe how REASON proves properties of a plan diagram
through a process called symbolic interpretation [Rich & Shrobe, 1976], [King, 1976),
[Smith & Hewitt, 1975}, [Yonezawa, 1977}  This process is extremely thorough,
recording all dependencies between the various statements in the plan diagram and in
the sub-segments' specs. The mechanisms explained here lay the groundwork for being
able to describe the internal temporal behavior of a segment; this will be used in the
next chapter where I will develop a more powerful set of descriptive tools used in the
process of plan recognition.

Recall from Chapter 4 that a situation is defined to be a point of time during a
computation, and that, in general, facts are true in a particular situation.

(<(Assertion> <Situation))
e.g. ((First 1ist-1 object-1) Situation-1)

An application represents the result of applying a segment to a set of input
objects which satisfy the expectations of the segment, yielding a set of output objects
which satisfy the assert clauses of the segment. An application consists of (i) a
segment, (ii) a set of input objects and a mapping of these objects to the input names
of the segment, (iii) a set of output objects and a mapping of these objects to the
output names of the segment, (iv) an input situation, and (v) an output situation.
This is represented as follows:

(i) {Segment-part (applicationd <(segment-name))
{(ii) (Input <application> {segment-input-object-name) {object))
(iii) (Output Capplication><segment-output-object-name) {object))
(iv) (Input-situation <applicationd (situation))
(v) (Output-situation Capplicationd (situation))

Each of these relations is a function (i.e. uniquely determines its last argument); we
may, therefore, use such descriptions to refer to an object unambiguously, using the
bracket notation defined in Chapter 4:

(comes-before [input-situation application-1] situation-5)
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which says that the input situation of appLication-1 precedes siTuation-s.

A plan diagram for a segment determines those applications which will take place

during the segment's execution. It also determines the set of input and output
situatjons of these applications.  Finally, the plan diagram determines a partial
ordering on these situations which represents the minimal ordering constraint on
segment execution consistent with correct execution. This information can be made
explicit by a symbolic interpretation of the plan diagram.

diagr
How

Given a set of input objects for a main segment we may interpret the plan
dm in the much the same way as a LISP interpreter interprets its code.

ever, since our concern is with the general behavior of the plan diagram, the

input|objects will be symbolic values representing typical inputs. Thus, any behavior
which can be shown to result from applying the segment to these symbohc objects

must

necessarily also be true when applied to any actual input.

I have so far shown specs and plan diagrams as “packages”, ie. as a single large

set of| statements. However, in order to build dependencies correctly, the various sub-

parts
there
separ
expla

curre

of these packages must be accessible as individual statements. REASON,
fore, expands plan diagrams and specs into an internal format in which each
gte idea is represented as an individual fact. We will see how these are used as I
in the symbolic evaluation process.

The interpretation begins by creating an anonymous object to stand for the
nt application of the main segment. For simplicity this name is always chosen as

the plan-type name of the diagram. REASON then proceeds, assigning the input
objects to the appropriate input ports of the main segment.  As each object is
assigned to an input port, the symbolic interpreter adds an assertion to the data-base
stating the assignment. For example, if List-1 is the input object matched to the

input

input

ort THe-currenT-L1sT of application a-1 then REASON would assert
(Input A-1 The-Current-List List-1)

The expect clauses are then substituted into, replacing each of the segment's
port names by the actual input object which is assigned to that port. A

situation is created to serve as the input situation of the main segment and the

substituted expect clauses of the main segment are assumed to hold in this input
situatipn.

’
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Each input port of the main segment is connected via at least one data-flow link
to an input port of some sub-segment. Intuitively, the data-flow link transports the
object from the specified port of the main segment to that of the sub-segment.
Whenever the symbolic evaluator sees that a object is bound to a port which is
connected to the initiating side of a data flow link, it simulates the data-flow by
assigning the same object to the port which terminates the data-flow. The
justification for the assertion stating this assignment points to the data-flow link and
the assertion stating the assignment of the object to the initiating port. For example,
if we had the following:

F-1 (Input A-1 The-Current-List List-1)
F-2 (Segment-Part A-2 Sub-Seg-2)
F-3 (Data-flow (Input A-1 The-Current-List)

(Input Sub-Seg-2 The-New-List))

then REASON would assert:

F-4 (Input A-2 The-New-List List-1) (dflow F-1 F-2 F-3)

When all of a sub-segment's input ports have been assigned input objects the sub-
segment is ready for application, an application name is created and asserted to be the
application name of the current invocation of the sub-segment.

If the segment's spec-type is provided in the plan diagram then application
proceeds as follows: First, a situation is created to serve as the input situation of the
sub-segment, for example:

F-5 (Input-Situation A-2 Situation-2-In)

Next, since the expect clauses of the segment's specs are required to be true in this
input situation, REASON creates a goal to show that each expect clause holds. These
goals are the expect clauses with the input objects substituted for their corresponding
input names. Each such goal assertion has a dependency pointing to (i) all of the
neuT assertions relevant to that clause, (i) the spec clause from which the goal is
built, and (iii) the assertion stating the input situation of the application. If all of the
goals are satisfied the segment is applicable, otherwise the plan has an error. The
assertion that the segment is applicable is justified by a dependency which points to
the satisfied assertions for each expect clause goal Thus, if sus-ses-2 has expects e-1
and e-2 and if sus-ses-2 has spec-type seec-3 then the following assertions are created:
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F-6 (Spec-type Sub-Seg-2 Spec3)

F-7 (Spec-Clause Spec3 Expect Case-8 Clause-1
(E-1 The-New-List))

F-8 (Spec-Clause Spec3 Expect Case-0 Clause-2

(E-2 The-New-List)) .

F-9 (Goal ((E-1 List-1) Situation-2-In) (ExpClause F-7 F-6 F-5 F-4 F-2)
for (Expect-clause-of A-2) in ())

F-10 ‘ (Goal ((E-2 List-1) Situation-2-In) (ExpClause F-8 F-6 F-5 F-4 F-2)

for (Expect-clause-of A-2) in ())

notic¢ the use of the "for" part of the goal assertion to indicate that the higher level
task from which the goal arose is the symbolic interpreter's expect checking routine.

When these goals are satisfied we obtain the following:

F-20 |[satisfied (goal ((E-1 List-1) Situation-2-1In)
for (Expect-clause-of A-2) in ()))

F-21 |(satisfied (goal ((E-2 List-1) Situation-2-1In)
for (Expect-clause-of A-2) in ()))

F-22 |(Applicable A-2) (expects-satisfied F-21 F-20)

hen the segment is shown to be applicable a new situation is created to serve
as the segment's output situation. If the segment's specs specify that any of the
outpyts are new objects (ie created within this segment's execution), then the
interpreter creates object names for these outputs and assigns then to the appropriate
output ports. This is done using an outeur assertion which is similar to that ineut
assertion shown above. The assert clauses of the specs are instantiated, replacing each
(inpuf or output) port name by the name of the object assigned to that port. The
appropriate situational tags are also defaulted into these assertions. These instantiated
assertjons are then asserted with justifications which point to the statement that the
segment is applicable, to the spec-type assertion for this segment, to the assertion
representing the actual spec clause from which this assertion is built, and to the
relevqnt 1wyt and outeur assertions. Suppose that a-2 is determined to be applicable
and that it produces an output named out-tist.  Suppose, further, that the assert
clausgs of this segment specify that its output is to be sorted. Then, REASON would
creat¢ the new object our-List-1 to stand for this output, asserting:
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F-40 (Output-Situation A-2 Situation-2-Out)
F-41 (Output A-2 Out-List OQut-List-1)
F-42 (Spec-clause Spec3 Assert Case-0 Clause-1 (Sorted Out-List))

F-43 ({(Sorted Out-List-1) Situation-2-Out) (Output-Assert F-22 F-42 F-41 F-48 F-6 F-2)

The output ports of the sub-segment just interpreted are linked to other segments
via data-flow links. These may terminate at either input ports of other sub-segments
or at output ports of the main segment. If the data-flow link terminates at another
sub-segment's input port, the object assigned to the output port of the first segment is
then assigned to the input port of the second. This process produces assertions like
those created by the data-flows from the main segment's to sub-segment's input ports..
For example, if the output of a-2 flows to sus-ses-3's sorten-L1sT input we would get the
following assertions:

F-100 (Dataflow (Output Sub-Seg-2 Out-List)
(Input Sub-Seg-3 Sorted-List))

F-101 (Segment-Part A-3 Sub-Seg-3)
F-102 (Input-Situation A-3 Situation-3-1n)

F-103 (Input A-3 Sorted-List Out-List-1) (dflow F-41 F-2 F-100 F-101)

If the terminating sub-segment now has all of its input objects bound, it is ready for
application and we proceed as above.

If a data-flow link leads from a sub-segment output port to an output port of
the main segment, then the object assigned to the sub-segment's port is transported to
the output port of the main segment  Assertions and justification like those above are
created. If object are assigned to all the output ports of the main segment, then
interpretation of the plan diagram is complete and an output situation for the main
segment is created. If the plan diagram correctly implemented the specs of the main
segment, then the assert clause of the main segment should be provable in its output
situation. Goal statements like those created for expect clauses of a sub-segment are
created for the assert clauses of the main segment; these goals are justified in a
manner similar to that above. :

Dependency Directed Reasoning



6 A Symbolic Interpreter for Plan Diagrams 111

So far I have assumed that the spec type of each sub-segment is known.
However, if the segment's spec-type is not known, but rather an internal plan diagram
is provided (i.e. we know its plan but not its specs), then the sub-segment is
interpreted recursively; an output situation and a set of Jutput objects will result.
The |interpretation then continues as above. If both the specs and the plan diagram
for a sub-segment are known, REASON first uses the specs in interpreting the outer
diagram and then returns to the inner diagram, symbolically interpreting it and
show|ng that its specs follow from its plan diagram. As we will see later, this allows
us tg break the task up into smaller pieces; in the case of recursions and loops it
provides a means for stating a "subgoal invariant" [Morris & Wegbreit, 1977}

A subsegment which has cases presents additional complexity.  Like other
segments the segment with case-splits may have expect clauses which must be true for
the gegment to function and asserts which are true no matter which case is taken.
Thes¢ are called the case-0 clauses; if the case-0 expects cannot be proven in the
segment's input situation an error has been detected. If the case-0 expects are shown
to be satisfied, the case-O asserts may be asserted in the output situation. However,
once |the case-0 clauses have been proven it is still necessary to show that at least one
of the other cases is valid. This is done by iterating over the cases attempting to
prove the when clauses of each. As each case is attempted, REASON sets the goal of
showing that each when clause of the case is provable. If these goals are satisfied, the
case is applicable. Before starting however, it assumes that the case is inapplicable so
that junless a proof of applicability is found, REASON prudently assumes that there
are no applicable cases.

ach attempted proof of a when clause can lead to one of three results: a proof
of the clause could be found, a refutation of the clause could be found, or neither of
the above. In many practical cases, the system will be able to know when it has
reached a case of unprovability; typically the inputs to the main segment of a plan
diagrpm are not highly constrained by the expect clauses; for example, a segment
might expect a list as input and then test internally for emptiness, taking different
branghes for the two possibilities. In such cases the system can determine that it
canngt know whether the input list is null or not; instead REASON will immediately
engage in a case-split analysis. This avoids the wasted effort of attempting to make
impogsible proofs.
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If proofs can be found for all the clauses of a case, then the case is applicable.
REASON asserts the case to be applicable with a justification pointing to those facts
which satisfied the when goals. The assert clauses of the case are added to the output
situation and justified as above. If a when clause of a case is refuted, the case is
declared to be inapplicable with a justification pointing to the refuting fact. The next
case is then tried.

The specs used in REASON for case-splitting segments assumes that the cases are
ordered sequentially, i.e. case-2 can only be considered if case-1 is inapplicable, and
similarly for the remaining cases. Thus, the goal of showing the applicability of case-2
includes a subgoal that case-1 is not applicable. case-3 includes the two goals that
case-1 and case-2 are not applicable. However, REASON will not attempt a case
unless it already knows that the prior cases are not applicable (or unless they are of
unknown applicability, as 1 will discuss next). Therefore, REASON already knows the
results for the previous cases and includes these in the dependencies supporting the
assertion which invoked the conjunctive goal mechanism. This builds up a
justification structure which guarantees that no more than one case can have its
applicable assertion in at the same time. Thus, a segment with three cases would
have justifications like the following (Note: wavy lines indicate non-monotonic
dependency).

Dependency Directed Reasoning
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QASE-1 CASE-2 CASE-3
(Satisfied Expect-11 (Satisfied Expect-21 (Satisfied Expect-31
(Satisfied Expect-12) (Satisfied Expect-22) (Satisfied Expect-32)

(Applicable Case-1) (Applicable Case-2) (Appl1cable Case-3)

- I -]
o

(Not (|Applicable Case- 1)) g ot (Jp'l*lca%(e Case )(Not (Apphcab\e Case-3))

eJuted Expemy (Rempec-u)jhe(nefuted Expect- 3%

uted Expect-12) (Refuted Expect-22 (Refuted Expect-32

{Or (Applicable Case-l)k:'r
(Applicable Case-2)
(Applicable Case-3))

(Applicable Seg-1)

(Not (Applicablie Seg-1))

CASE-Q

(Applicable Case-B)\fvh(Not (Applicable Case-8))
(Satijfwed Expect-01) (Refuted Expect-01)
(Satisgfied Expect-01) (Refuted Expect-82)

depe
at a
(disj

Support Structure For Case-Splitting Segment

Notice that this is an "and-or" graph. Individual justifications include
dence on several facts at once (conjunction is indicated by lines joining together

arrow) while several justifications may independently support the same fact
ction is indicated by separate arrows pointing at the same fact). Also notice

that the dependencies guarantee that at most one case will be considered applicable at
a time.

some
claus
least

cases
deper

inputs

owever, the normal circumstance is that each case (except the last) will have
when clause which can be neither proved not refuted; we then say that the
> is of unknown truth value. A case which contains no refuted clauses and at
one clause of unknown truth value is said to be of unknown applicability. These
reflect the possibility that a test might sometimes succeed and sometimes fail,
ding on the input data. Since we are interpreting the plan on symbolic (typical)
5, most segments with case structure will have cases of unknown applicability.
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If a case has unknown applicability then REASON first considers the possibility
that the case is applicable, assuming that all its clauses of unknown truth value are
true.  These are justified by a non-monotonic dependency structure of some
complexity, the purpose of which is to allow the system to select between the cases
later. For the moment I will ignore all aspects of the justifications which are not
related to the case-splitting. Suppose that case-1 of application a3 has a when clause
requiring p, and further suppose that p is not provable @ We want to set up
justifications so that we may easily return later to the assumption that case-1 is
applicable, bringing in the assumption that p holds. Also we want to be able to
switch easily to the assumption that some case other than case-1 holds, bringing in the
assumption (not p).  Therefore p is made to depend non-monotonically on (not p).
Also REASON creates an assertion stating that it should consider case-1 and it makes
p depend monotonically on this assertion.

F-110 (not P) . Note lack of
F-111 (Select Case-1 A3) ; justification
F-112 P (Case-SpYit-Assumption (F-111) (F-110))

However, this is not all that must be done. If case-1 is not to be considered (as
would happen when we go on to look at other cases) we would want (not P) to be
brought /in.  Actually, if there is more than one unknown clause then we want to
bring in the disjunction of all such clauses. Assume there is a second when clause q in
case-1.  Then the justification structure would look like:

F-110 (not P) , no justification
F-111 (Select Case-1 A3) ; no justification
F-112 P (Case-split-Assumption (F-111) (F-118))
F-113 (not Q) ; no justification
F-114 Q (Case-split-Assumption (F-111) (F-113))
F-115 (Or (not P)(not Q)) (Case-Split-Assumption (F-116) (F-111))
F-116 (Select Case-2 A3) ; no justification

If there is a third case, then f.115 should also be brought in whenever this case is
being considered. REASON adds another justification to r-115 as follows:

F-117 (Select Case-3 A3) , no justification
F-115 (Or (not P){not Q)) (Case-Split-Assumption (F-117) (F-111))

Dependency Directed Reasoning
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REASON may now consider any case simply by giving the appropriate
T cAsE-i A3) assertion a justification. When it is through considering the case, it
remove the justification for the select assertion by retracting the justification
rting the select assertion. Notice that if no select assertion is justified, then
of the assumptions are in, representing the most general case where we have no
which case holds.

Once REASON has assumed all clauses of wnknown truth value for a particular
it will have satisfied all the case's when clauses. The case will then be declared
rable and a justification created pointing to all assertions satisfying any of the
clauses, including the assumptions justified by the select assertion. The output
»s of the case are then asserted in the output situation, each being justified by
ssertion declaring the case applicable. Thus, the logical relationship between the
ptions and the output assertions is represented explicitly in the data-base.
y, if there are conditional-control-flow links coming from the current case, these
eclared active with a justification pointing to the assertion which declares the
applicable.  REASON now continues evaluating any segments which terminate the

conthional—control-ﬂow links leaving the segment until it reaches either a JOIN or the

t side of the main segment of the plan diagram.

As REASON goes along the paths started by the conditional-control-flow links, it
ds which cases have yet to be evaluated. Thus, when a terminal segment is

reached it returns to evaluate the remaining cases.

asser
has 1
previ

[t begins by outing the select assertion for the last case evaluated, removing the
ion's justification. It then justifies the select assertion for the next case. This
he effect of assuming the falseness of at least one of those clauses from the
pus case which had unknown truth value. The inapplicability of the previous case

follows from this assumption directly (using proof by cases if there is more than one

claus
appra

‘CASE-1

inves
previ
proce
appli

> of unknown truth value); REASON constructs this proof recording the
priate justifications. Thus, selecting case-2 will out the applicable assertion of

The next case is then evaluated with its select assertion im; ie. REASON
tigates whether the next case's applicability follows from the inapplicability of the
pus case. If the new case has clauses of unknown truth value, then REASON
eds as above, creating non-monotonic justifications for the current case's
rability.  If all the clauses of the new case can be proven, then this case is
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declared applicable. If the case has a clause which is definitely false, the case is
declared inapplicable; REASON then moves on to the next case.

If the last case has clauses of unknown truth vilue, then the segment is declared
inapplicable with a justification pointing at a statement expressing the possibility that
the unproven clauses might be false. This statement is justified so that it depends on
the outness of the clauses of unknown applicability; if something is changed to make
these clauses definitely true, the inapplicable assertion will go our. If the last case has
clauses of unknown truth value, then there is an error which manifests itself as an
intermittent program bug; if the input data happened to be such that an earlier case
would succeed then the program would work, otherwise it would faik  Such
intermittent bugs are among the most distressing problems of programming and it is
desirable to be able to spot them through the process of symbolic evaluation.

Since REASON requires both that at least one case be applicable and that case-e
be applicable in all circumstances, the final action taken in evaluating a case-splitting
segment is to assert the disjunction of all the select assertions and to attempt to prove
the applicable assertion for the segment. This is always done by case-splitting the
disjunction of the select assertions. Thus if there were three cases, we would have:

F-580 (Or (Select Case-1 A3)(Select Case-2 A3)(Select Case-3 A3))
F-581 (Subgoal (And (Or (Applicable Case-1 A3) (Applicable Case-2 A3) (Applicable Case-3 A3))
(Applicable Case-@ A3))
for ((Applicable A3) ...)
in (...))

F-502 (Show (goal (Or (applicable ...))})
by (splitting (OR (select ..)))
for ((Applicable A3) ...) in (...))

This proof proceeds trivially; all the justifications have already been built up. As each
select statement is assumed by the case-splitting mechanism, the corresponding case
becomes applicable and the disjunction in r-se1 is deduced by disjunction introduction.
If the last case had not been found applicable, however, then the appropriate clause
will not come in and the goal will not be deducible REASON complains that it has

found a bug. In any event the final justification structure built up in this process
looks as follows:
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elect Case-1)
Expect-11 ——————y. (Satisfied Expect-11)
Expect-12 ———————=(Satisfied Expect-lZ)l‘#(AppHcabu Case-1)

(not Expect-11) ——p(Refuted Expect-ll)j(Not (Applicable Case-1))
)

(not Expect-12) ——»(Refuted Expect-12

(Splect Case-2) ——3(or (not expect-11)

{Splect Case-3)———3(or (not expect-21)

CASE-P

(Satis
(Satis

For (

{not expect-12))
Expect-2] ——————————> (Satisfied Expect-21 ‘
Expect-22 —————————» (Satisfied Expect-22 k—’(l\ppﬁcab]e Case-2)

(not Expect-21)=——>(Refuted Expect-Zl)——"‘\égNot (Applicable Case-2))
(not Expect-22)——(Refuted Expect-22)

(not expect 22))

Expect- 3] ———————>(Satisfied Expect-3lt
Expect-32 ———————> (Satisfied Expect-32 (Applicable Case-3)

117

(not Expect-31)——(Refuted Expect-31)————>(Not (Applicable Case-3))
(not Expect-32)——>(Refuted Expect-32)

(Or (Applicable Case-1)(Applicable Case-2)(Applicable Case-3)

(Applicable Seg-1)

(Not (Applicable Seg-1))

fied Expect-01) (Applicable Case-0) Refuted Expect-01)
fied Expect-02 (Refuted Expect-92)

(Not (Appliicable Case-0))

(or (Select Case-1)(Select Case-2)(Select Case-3))

Support Structure For Case-splitting With Clauses of Unknown Truth Value
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When a case is declared applicable its output objects are propagated along
control-flow links just as for non case-splitting segments. In addition if there is a
conditional-control-flow link originating at a case then it is active whenever the case
with which it is associated is applicable. A segment which terminates a conditional-
control-flow link is ready for application only if all its incoming control-flow links are
active.

The only primitive of plan diagrams not yet discussed is the join. When the
control-flow link and all inputs leading to a case of a join are available, REASON
creates an anonymous object to stand for the output objects of the join. It then
creates assertions pairing the inputs to the newly created outputs. The pairings are a
set of 10 assertions with the input object and the corresponding output object as
arguments. Each 10 assertion is justified by a secect assertion stating that the current
case of the join is active. This, in turn, is justified by the assertion stating that the
incoming control-flow link is active. Thus, a specific pairing of the join's output to
an input object can only be made if one of the incoming control-flow links is active.

However, a control-flow link terminating at a join must trace back to a case of
a segment at which control was split. The join case can be active only if the
appropriate case of the segment at which control split is applicable. When REASON
first evaluates a case of a join it examines which segment select statements are im; it
then justifies these by a pointer to the case select statement for the join case.
Selecting a join case then brings in all the assumptions relevant to the particular
control path which terminates at that case of the join. The select statements for the
join are quite similar to those for case-splitting segments and may be used in proofs
by cases to prove various properties of the output objects of a join. This is useful
since 't makes it possible to state properties of the output object without making a
commitment to which case is active.

When control reaches a join, REASON does not continue interpreting past the
join. Instead it returns to any case-splitting segment whose analysis has not yet been
completed. This will make other control paths active, activating other incoming cases
of the join. Only when all incoming cases of a join have been activated will
REASON pursue the paths leading away from the join. Before doing so, however, it
makes sure that it has cleaned up the evaluation of all prior case-splits so that
evaluation of the paths leading out from the join does not inadvertently proceed under

the assumption that only a single case of the case-splitting segment need be
considered.
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When all interpretation is completed REASON' attempts to prove that the assert

clausgs of the main segment are satisfied. Again each clause is translated into a goal

and

succe
comp
primi
point

he reasoning mechanisms of the previous chapter are invoked. If the proofs
ed, justifications are built as before. Thus, when all the goals are proved a
lete dependency network is built, linking every satisfied goal back to the
fives of the plan diagram upon which the goal depends. These dependencies
to data-flow and control-flow links, to input assertions of the main segment and

to output assertions of the sub-segments.

Each such proof of a goal can be categorized as either a pre-requisite proof or

an aghieve proof. Pre-requisite proofs are those which establish that a sub-segment's

expec|

r and when clauses are satisfied. Achieve proofs are those proving the assert

clausgs of the main segment. If these are summarized to remove the detail, leaving

only
called

the connections between specs clauses and flow links then we have what we have
purpose links.

We see, therefore, that a symbolic interpretation in REASON leads to

consimerably more information than just the statement that the program does what is

inten
SUmiy
depen
spec

ed. In addition to this data, REASON produces a complete proof and a
ary of this proof into purpose links which quickly indicate the intermodule
dencies in the program. Furthermore, this data is so organized that if a crucial
tlause is changed then all other sub-segments which depended on this clause will

be declared inapplicable. This change of spec status will be signalled by the Truth

Main

respo
cause

enance System as part of its normal ining and oufing of facts REASON
ids to these notices and informs the user of the exact nature of the problem

can
purp
to se
segm

For (

d by the change. Purpose links provide a rapid mechanism whereby REASON
ell without a deeper analysis that a proposed change is not safe. Since the
e links tell whether a spec clause is used in any proof, all REASON must do is

if the clause is involved in any purpose links. If so, the link tells which
nts are affected by the change.
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Chapter 7. An Example of Symbolic Interpretation

To show how the features developed so far interact in the analysis of a
moderately complicated algorithm, let us consider how REASON interprets a routine
for computing the intersection of two sets represented as ordered lists. This algorithm
runs in linear time by only considering the heads of both lists. If the two heads are
identical, then that element should be added to the accumulation. If they are not
identical, then the smaller element cannot also be a member of the other list. Thus,

it can be thrown away and the iteration continued. One possible coding of this
routine is as follows:

(Defun fast-intersect (1ist-1 1ist-2)
(do ((Acc nil)

(Car-11 Nit)

(Car-12 Ni1)

(Uid-1 Ni1)

(Uid-2 Nil))

((Or (Null Tist-1)(Null list-2))

(Reverse Acc))

(Setq Car-11 (car tist-1) Car-12 (car list-2))

(Setq Uid-1 (maknum car-11) Uid-2 (maknum car-12))

(Cond

((Eq Uid-1-Uid-2) (Setq Acc (cons Car-11 Acc))
(Setq 1ist-1 (cdr Vlist-1)

Tist-2 (cdr Vist-2)))
({< Uid-1 Uid-2) (Setq Vist-1 (cdr list-1)))
(t (Setq Vist-2 (cdr 1ist-2))))))

As we mentioned before, the LISP code is first analyzed by a surface flow analyzer
which abstracts out many of the details of surface data and control-flow. In
particular, sero's used to achieve data-flow are translated into data-flow links and
COND's and other control primitives are translated into case structured segments with

conditional-control-flow links. The plan diagram given to REASON for analysis is the
following:
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The specs for this routine are as follows:

(Defspecs Fast-intersect

(Inputs: List-1 List-2)

(Expect: (Object-type List-1 Sorted-1ist)
(Object-type List-2 Sorted-list))

{Outputs: List-3)

(Assert:

(Object-type List-3 Sorted-list)

(For-all (:el)
(And (Member 1ist-1 :el)(Member 1ist-2 :el))
(Member 1ist-3 :el))

(For-all (:el)
(Member 1ist-3 :el)
(And (Member 1ist-1 :el)(Member list-2 :el)))))

These specs refer to descriptions of data objects which I have not yet presented.
These details are developed more extensively in a later chapter. However, all the
notions used here are intuitive. The predicate sorten-L1sT means that the list is sorted
in increasing order by uwioue-toenTiFier (the makwum function of MacLisp).  The
quantified statements in the specs say that all elements of the intersection are in the
outpuf ust and that only these elements are in the output list.

Actually, the inner routine rn does all the work of the program, and is called
recursively. This means that we have to give a specification for this inner routine. In
the next chapter I will develop a method which will remove this need by allowing
REASON to recognize parts of a program as instances of standard plans whose
specifications we already know. The specs for rn1 are:
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ct: (Object-type List-1 Sorted-List)
(Object-type List-2 Sorted-List)
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{Object-type CA Reverse-Sorted-List)

(For-all (:x)

(Or (Member List-1 :x)(Member List-2 :x))

(For-all (:y)
(Member CA :y)

(< [Unique-1d :y] [Unique-Id :x]))))

uts: Final-Accum)
rt:

ect-type Final-Accum Reverse-Sorted-List)

-all (:x)

(And (Member List-1 :x)(Member List-2 :x))

(Member Final-Accum :x))
-all (:x) (Member CA :x)
(Member Final-Accum :x))
-all (:x) (Member Final-Accum :x)
(Or (and (Member List-1 :x)
(Member List-2 :x))
(Member CA :x)))))

Given these specs for fi1, it is an immediate consequence that rast-intersect satisfies it
FasT-INTersecT calls 11 with its two input lists as the two lists, and with w1 as

specs,
the ¢

din

A Input.

Since nothing is a member of i, the second quantified statement in
sserts of f11 is vacuous; similarly the third quantified statement contains a
ction whose second disjunct is vacuous if the ca input is nIL, the other disjunct is

exactly that required by fast-intersect.  Similarly, the expect clauses are met simply;
the input ca is wit, it is a vacuous condition that all elements of L1st-1 and LisT-2
larger uio's than the elements of ca Finally, r11 produces a list in reverse sorted
which is then reversed by rast-intersect, producing the required sorted list as

since
have
order
outpy

t.

I will now describe the actions which the symbolic interpreter takes in evaluating

the above plan diagram. However, going through all of the details would be an overly
cumbersome exercise, so I will try to present this without too much tedium and
repetition. The system begins by creating an input situation and anonymous objects
to stand for the inputs to the program. We will call these s-1N, LIsT-1 and tiIsT-2

respe
gives

For (

us:
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F-1 {(Object-type List-1 Sorted-List) S-1In)
F-2 {(Object-type List-2 Sorted-List) S-In)

Next the system evaluates the segment create-vi which simply asserts that its output is
nit; REASON names the output situation of create-nIL cReaTE-NIL-0uT, thus we have:

F-4 (Output Create-nil The-Null-Object Nil)
F-S ((Object-type Nil Empty-List) Create-Nil-Out)

The data objects are next moved along the data-flow links to the input ports of ri,
the routine which actually does the work. Since there are no side-effects in this
program, all assertions which are true in one situation will be true in all succeeding
situations.  (Side-effects change this drastically; I will discuss the problems of side-
effects in greater detail later). Therefore the following facts are true in the input
situation of 11 which REASON names s-in-1:

F-6 (Input FI1 L1 List-1)

F-7 (Input FI1 L2 List-2)

F-8 (Input FI1 CA Nil)

F-9 ((Object-type List-1 Sorted-List) FIl-In)

F-10 ((Object-type List-1 Sorted-List) FIl-In)

F-11 ((Object-type Nil Empty-List) FIl-In)

F-12 ((Object-type N3l List) FIl-In) (Nil-1Is-List F-11)

As mentioned above, REASON has the specs for rn1 already. So if it can show
that the expects of rn are satisfied, it can use the asserts directly. These expects are,
however, direct conclusions. REASON declares this invocation of r11 applicable,
create an output situation f11-out, and adds the asserts to this situation, getting:
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(Output FI1 Final-Accum Final-Accum-0)
({(Object-type Final-Accum-8 Reverse-Sorted-List) FI1-Out)
(For-all (:x)
((Member NIL :x) FIL1-IN)
{(Member Final-Accum-8 :x) FI1-Out))
(For-all (:x)
(And ((Member List-1 :x) FI1-IN)
((Member List-2 :x) FI1-IN))
({Member Final-Accum-8 :x) FI1-0UT))
(For-all (:x)
({Member Final-Accum-8 :x) FI1-0UT)
(Or (and ({(Member List-1 :x) FI1-IN)
((Member List-2 :x) FI1-IN))
((Member NIL :x) FI1-IN)))

outputs now flow to the reverse segment whose only effect is to change the
t type statement above, producing a sorted list instead of a reverse sorted list.
BON can then immediately show that the desired results hold in the output

situation of FAST-INTERSECT.

must

anon)
REA
accut
curre

F-20
F-21
F-22
F-23

Notig
claus

However, to use the specs of the internal routine r11 with confidence, REASON
demonstrate that its specs follow from its plan diagram; therefore, it creates
rmous inputs for r11 and begins to symbolically evaluate the plan diagram for r11.
SON names the two lists input to r11 List-1 and tist-2 (as above) and the current
nulation ca. The expect clauses of 11 are asserted in the input situation of the
nt application of rn:

((Object-type List-1 Sorted-List) FI1-IN)
((Object-type List-2 Sorted-List) FI1-IN)
((Object-type CA Reverse-Sorted-List) FI1-IN)
(For-all (:x)
(Oor ((Member List-1 :x) FI1-IN)
((Member List-2 :x) FI1-IN))
(For-all (:y)
{(Member CA :y) FI1-IN)
((< [Unique-Id :y] [Unique-Id :x]) FI1-IN)))

e that situation tags have been added to the quantified statements in the spec
s using the simple defaulting rule that clauses mentioning output objects are

assigrﬂ::d to the output situation of the segment. REASON draws a few direct

concl

sions from the above assertions:
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F-25 ((Object-type List-1 List) FI1-IN) (type-inherit F-20)
F-26 ((Object-type List-2 List) FI1-IN) (type-inherit F£-21)
F-27 ((Object-type CA List) FI1-IN) (type-inherit F-22)

REASON now begins the symbolic evaluation of r11. The data-flows lead to the
two tests which must be evaluated immediately upon entrance to r11. The first of
these segments tests whether vist-1 is null. REASON concludes that there is no
relevant information in the situation rri-in. It creates a case-split, assuming in one
case that the list is null and in the other that it is non-null In the non-null case it
must evaluate the second test segment where a similar decision is made = REASON
now has three conditional-control-flows waiting for further evaluation. The first of
these represents the case where vist-1 is null The second represents the case where
neither cist-1 nor vist-2 is null.  The final case is where List-2 is null but tist-1 is
not. However, the first and the third cases both lead to Join-1. Both cases of Join-1
take the same input current-accumutation. Since this input is available the join can be
evaluated immediately. The only action following from the join Join-1 is a second join
somn-3.  This join, however, cannot be evaluated yet since it has another input which
is not available. REASON, therefore, returns to the top of the diagram considering
the case where both lists are non-null This case leads to the sub-segment labeled
REAL-woRk in the diagram.

ReaL-work is invoked after both tests have taken the non-null branch. REASON
brings /n the assumptions of this case, making the following assertions active:

F-30 ((Not (Object-type List-1 Empty-List)) REAL-WORK-IN)
F-31 ({(Not (Object-type List-2 Empty-List)) REAL-WORK-IN)

There are now four segments which may be evaluated immediately: car-1, maknum-1,
car-2, and makvum-2.  The two car segments create output objects representing the first
objects of each list, while the two maknum segments create objects representing the

numbers which are the unique-10's of the first elements of the two lists. This leads to
the following assertions:

F-40 ((First List-1 First-1) CAR-1-0UT) ; justifications here indicate
F-41 ((First List-2 First-2) CAR-2-0UT) ; the fact name of the correct
F-42 ((Unique-id First-1 Number-1) MAKNUM-1-OUT) ; spec clauses from

F-43 ((Unique-id First-2 Number-2) MAKNUM-2-0UT) ; each segment}s specs.
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I shopuld explain that my notation in the plan diagram has been somewhat sloppy.

CAR-1

and car-2 are both segments of spec-type car; it is the specs for this spec-type

whichl REASON wuses and similarly, for makwm-1 and maxwum-2. I should also note at
this ppint that the system makes use of two properties of unique-10's which I have not
yet stated. First, unioue-10's are a one-to-one mapping, so that if the unique-10 of one
object is equal to the unique-1o of a second object, then the two objects are identical

Secongly, since uio's are numbers; any two uio's are either equal, or one of the two is
greatdr than the other.

ollowing the evaluation of the makwum segments, the only segment ready for

evaluation is the test segment labeled -2 which takes as inputs wumser-1 and Numser-2,
anonyimous objects representing the uvio's of the first elements of the two lists. The
test has three cases, corresponding to the possibility that the two numbers are equal,
that the first is smaller, or that the second is smallerr REASON decides that there is
no eyidence available to decide this question and, therefore, creates a case-split.
REA%ON considers the first case first getting the following justification structure:

F-98
F-99
F-100

This

F-

The

((Not (Equal Number-1 Number-2)) =<>?-Out) ; note no
(Select Case-1 =<{>?) ; Justification
((Equal Number-1 Number-2) =7<{)>-Out) (Case-split-assumption (F-99) (F-98))

riggers REASON to conclude that rirst-1 and rirst-2 are identical:

101 (Id First-1 First-2) (One-to-One F-100)

conditional-control-flow link leading from the test ->2 leads to the segment

labeled rv-1.  The data-flows take the object rirst-1 to the cons segment as one input;

the o
specs
whose
systen
these

For (

pject ca is the other input. vList-1 and vist-2 flow to the two cor segments. The
of cons say that it produces a new cons-cee whose left is the object rirst-1 and
right is the object bound to ca which is known to be a list Rules in the

n which represent the definition of list membership make several inferences from
two assertions: ‘
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F-199 (Output Cons-1 The-new-cons C-1) ; Justifications pointing
F-2008 ((Left C-1 First-1) CONS-1-0UT) ; to the spec clauses
F-201 ((Right C-1 Ca) CONS-1-0UT) . ; would go here - they are

F-202 ((Object-type C-1 Cons-cell) CONS-1-OUT) ; omitted for simplicity

F-203 ((Object-type C-1 List) CONS-1-0UT) (1ist-rep f-202 f-201 f-200 f-24)

F-204 ((First C-1 First-1) CONS-1-0UT) (list-rep £-203 f-200)
F-205 ((Rest C-1 Ca) CONS-1-0UT) (1ist-rep f-203 f-201)
F-206 ((Member C-1 First-1) CONS-1-0UT) (1ist-mem f-203 f-204)

F-207 (For-all (:x) (Vist-mem f-283 f-205)
((Member Ca :x) CONS-1-1IN) :
((Member C-1 :x) CONS-1-0UT))

The origin of the rules which make such inferences will be explained in more detail in
the chapter on describing data objects.

The two cor segments produce the obvious output assertions:

F-207 ({(Rest List-1 Rest-1) CDR-1-0UT)
F-208 ((Rest List-2 Rest-2) CDR-1-0UT)

These objects now flow to the recursive call to r11.  So far I have not mentioned any
checking of input expectations since these have all been trivial. f1, however, requires
that its two input lists be sorted, and that its accumuLation input be sorted in reverse
order. These first two requirements are met simply; since rest-1 and Rrest-2 are the
cor's of sorted lists, they themselves are sorted. The condition that c-1 be sorted in
reverse order is also met quite simply. Its cor ca is a reverse-sorted list and input
expectations stated that rirst-1 has a larger maknum than any member of ca  Thus, rn
is applicable and its output assertions can be added to the data base. This creates a
new output rinaL-accum-1 and three quantified statements:
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F-209 ((Object-type Final-Accum-1 Reverse-Sorted-List) FI1-1-Out)

F-218 (For-all (:x)

((Member C-1 :x) FI1-1-IN)

((Member Final-Accum-1 :x) FI1-1-Out))

F-211 {(For-all (:x)

(And ((Member Rest-1 :x) FI1l-1-IN)
((Member Rest-2 :x) FI1-1-IN))

((Member Final-Accum-1 :x) FI1-1-0UT))

F-212 (For-all (:x)

((Member Final-Accum-1 :x) FI1-1-0UT)

(Or (And ((Member Rest-1 :x) FI1-1-IN)

((Member Rest-2 :x) FI1-1-IN))
((Member C-1 :x) FI11-1-IN)))

This |output now flows to the join Joiv-3 which has other unavailable inputs.
REASON, therefore, returns to the next case of the test =2 In this case, it assumes
the negation of the unprovable clause from case-1 and then attempts to prove that the
when |clause of case-2 holds. Thus, REASON assumes that the vio's of the two objects
FIrsT-) and Ffirst-2 are distinct. Since the vio is a one-to-one property this indicates
that first-1 and rirst-2 are distinct. Furthermore, since the vio is a number and since
REASON knows that these two numbers are distinct, it asserts that one of the
numbers must be larger than the other. The following assertions result:

F-299 [[Select Case-2 =¢(>?)

F-98 |[(Not (Equal Number-1 Number-2)) =¢(>?-IN) (Case-split-assumption (F-299) (F-99))
F-301 [Not (Id First-1 First-2)) (UID-Not-= F-98 F-42 F-43)

F-302 [[Or ((< Number-1 Number-2) =(>?-IN) (NumProp F-98)

((< Number-2 Number-1) =¢>?-1IN))

REASON now attempts to prove the when clause of case-2, however, this too can be
seen to be unprovable. It then sets up the next stage of the case-split:

F-303 (Select Case-3 =¢(>?)

F-304 ((Not (< Number-1 Number-2)) =<>?-IN) (Case-Split-Assumption (F-303) (F-99 F-299))
F-305 [( (< Number-1 Number-2) =¢>?-1N) (Case-Split-Assumption (F-299)(F-304 F-99))
F-98 ((Not (Equal Number-1 Number-2)) =¢>?-IN) (Case-split-assumption (F-383)(F-99 F-299))
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Notice that the justifications are so set up that (1) if either case-2 or case-3 is selected
the assertion r-9s will be in (2) if case-2 is selected r-3e5 will be in, unless there is

some reason found to believe its negation; (3) If case-3 is selected r-3es and r-98 will be
n.

The assertion r-3e5 makes case-2 applicable. REASON asserts that case-2 is
applicable and since there are no output assertions to add, it follows the conditional-
control-flow link from case-2 to the segment rw-2 which takes the cdr of its input
tist-1 and then calls f11 recursively. Notice that the pre-requisite conditions of r11 are
met trivially in this case. The cor of LisT-1 must be a sorted list as noted earlier; the
second input is List-2 which is known to be sorted; finally, the current-accumuLano input
is ca which was known to be sorted in reverse order. Thus, f11 is applicable within
this sub-plan as well. The output assertions of this application of r11 which REASON
names fi1-2 are similar to those above:

F-310 ((Object-type Final-Accum-2 Reverse-Sorted-List) FI2-1-Out)
F-311 (For-all (:x)
({Member CA :x) FI1-1-IN)
((Member Final-Accum-2 :x) Fil-1-Out))
F-312 (For-all (:x)
(And ((Member Rest-1 :x) FI2-2-IN)
((Member List-2 :x) F12-2-1IN))
({Member Final-Accum-2 :x) FI2-2-0UT))
F-313 (for-all (:x)
((Member Final-Accum-2 :x) FI2-2-0UT)
(Or (and ((Member Rest-1 :x) FI2-2-IN)
((Member List-2 :x) FI2-2-IN))
{(Member CA :x) F12-2-IN)))

The justification of these assertions which I have omitted for brevity points back
to the relevant spec clause, output object, and applicability assertions. The output of
this segment leads to the join soiv-2 which is waiting for another case's input.
REASON now turns to the final case of =¢<>». As shown above, REASON assumes in
this case that it is false that wumeer-1 is smaller than wumser-2. It then concludes by
disjunction elimination that wumeer-2 is smaller than numger-1:

F-314 ((< Number-1 Number-2) <?-0UT) (Disj-EVlim F-304 F-302)
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Actually, I have been taking a slight liberty in the justifications I have shown since as

each

assertion is moved along a flow link, a new assertion is created with a new
jon tag. I have used the fact name of the original assertion in these

situaLt
justifications as a notational convenience.

[n any event f-314 is all that is needed to conclude that the third case of the test

is applicable. Control therefore flows to rws which produces assertions similar to those

of rv2.

by ry
recur
flows
diagr:

The control-flow link from rw3 to Join-2 is now active.

join-2 produces a single output object which is the join of the output produced
1, rw2, and rwa.  These are the final accumulations produced by the internal
ive calls to r1.. REASON names this output of somv-2 FA This output then
to Join-3 where it is joined with the output of somv-1. Examination of the
im shows that the output of Join-1 is current-acc, the input to the outer rn, since

CURREN
CURREN
diagr:
interp

t-ncc flows to both cases of the join. Thus, the two inputs to Join-3 are Fa and
-acc; REASON names the output of this join FINAL-ACCUM-0. The plan
ym  specifies that this is the output of the main segment fn..  Symbolic
retation is, therefore, complete and REASON now tries to prove the asserts of

the main segment.

accun

There are three things to be proved: (1) All elements of the inversection are
rulated (2) Nothing is lost from the current-accumutation input (3) Nothing

extrapeous is accumulated. I will show the proof of first of these claims. This is

stateg

To b
for t
with

F-1000

For (

formally as follows:

(For-all (:x)
{And ((Member List-1 :x) FI1-IN)
((Member List-2 :x) FI1-IN))
((Member Final-Accum-8 :x) FI1-0UT))

egin the proof of this statement REASON creates an anonymous object to stand
ne variable of the quantified statement and then assumes the antecedent clause
this anonymous object substituted for the variable.

(And {(Member List-1 Obj-1) FI1-IN)
((Member List-2 Obj-2) FI1-IN))
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REASON also establishes the sub-goal for the quantified statement:

F-98  (Goal ((Member Final-Accum-8 Obj-1) FI1-OUT) (Achieve-goal ...))
for ({(For-all (:x)
(And ((Member List-1 :x) FI1-IN)
((Member List-2 :x) FI1-IN))
({Member Final-Accum-0 :x) FI1-0UT))
in ((And ((Member List-1 Obj-1) FI1-IN)
((Member List-2 Obj-2) FI1-IN))))

The antecedent of the quantified statement is then expanded, yielding the two
conjuncts:

F-1001 ((Member List-1 Obj-1) FI1-IN)
F-1002 ((Member List-2 Obj-2) FI1-IN)

however, rules relating to list structure conclude from these that both lists are not
empty.

F-1803 ((Not (Object-type List-1 Empty-List) FI1-IN)) (List-def F-1001)
F-1084 ((Not (Object-type List-2 Empty-LIst) FI1-IN)) (List-def F-1002)

This brings in the applicable assertions for the non-null cases of the two wuL? tests,
which in turn causes the conditional-control-flow link from the nuLL? test to ReAL-work
to be declared active. This in turn brings in the assertion saying that case-1 of Join-3
is applicable; the output of soin-3 is therefore now declared to be 10 to the output of
rea-work which is Fa This triggers the identification mechanisms to create a new
subgoal in which rinaL-accum-o is replaced by ra

F-91 (Goal ((Member FA Obj-1) FI1-0UT)
for ((For-all (:x)
(And ((Member List-1 :x) FI1-IN)
((Member List-2 :x) FI1-IN))
((Member FA :x) FI1-OUT)) (Achieve-goal 1))
in ((And ((Member List-1 Obj-1) FI1-IN)
((Member List-2 Obj-2) FI1-IN))))

The data-base is now quiescent. REASON next expands the antecedents of the
quantified statement.
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(Or ((First List-1 Obj-1) FI1-IN) (F-1001 List-Mem-definition)
((Member [Rest List-1] Obj-1) FI1-IN))

(Or ((First List-2 Obj-1) FI1-IN) (F-1002 List-Mem-definition)
((Member [Rest List-2] Obj-1) FI1-IN))

reference expressions in both expressions can be resolved since r-207 and Ff-208

what the rest of each list is. Notice that although these facts are tagged with

situatjon tag cor-1-out, there are no side-effects in this program and all assertions

exce
to th
facts

those involving newly created objects may be moved back through any segment
beginning of the program. (REASON has a different fact name for the same
in the initial situation, however, for simplicity of presentation I am ignoring this

detail). We obtain:

F-1007

F-1008

(Or ((First List-1 Obj-1) FI1-IN) (Reference-Reselution F-1005 F-207)
((Member Rest-1 Obj-1) FI1-IN))

(Or ((First List-2 Obj-1) FI1-IN) (Reference-Resolution F-1006 F-208)
((Member Rest-2 Obj-1) FI1-IN))

There are now several strategies which REASON might pursue. It could attempt a

proof]

by cases, splitting either of the above disjunctions (¢-1087 or f-1008) or the

disjuniction of select statements associated with either the test =>2 or the join Join-2.

The
from
to sh

F-1009

Howe
First-

F-1018
F-1011

Now

For (

current version of REASON, has a preference for splitting disjunctions arising
the goal, rather than case-split or join oriented disjunctions. REASON attempts

ow the goal f-91 by splitting r-1002. It first assumes:
((First List-1 Obj-1) FIL1-IN) (Case-split-assumption F-1087 ... )
ver, the system has already asserted f-s0 which states that the first of List-1 is

1. Thus, an identification is made, leading to the following:

(1d First-1 0bj-1) (Parts-1d F-1009 F-40)
((Unique-Id Obj-1 Number-1) Maknum-1-Out) (Identification F-101@ F-42)

the system chooses to case-split the second disjunction f-1008. It obtains
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F-1012 ({(First List-2 Obj-1) FI1-IN) (Case-split-assumption F-1008 ...)
F-1013 (Id First-2 Obj-1) (Parts-Id F-1012 F-41)
F-1014 ((Unique-1d Obj-1 Number-2) Maknum-1-Out) (Identification F71013 F-44)

This, in turn creates another identification:

F-1015 (Id Number-1 Number-2) (Func-Prop-Id F-1011 F-1014)

However, f-1015 means that case-1 of the test -<>2 is applicable. Thus, the assertions
pertaining to rw-1 come in since this is the segment which follows from case-1
Further identification follows:

F-1016 ((Member C-1 Obj-1) CONS-1-OUT) (Identification F-206 F-1010)

This last assertion interacts with the quantified statement r-211 to create the new
assertion:

F-1017 ((Member Final-Accum-1 Obj-1) FI1-1-Out) (For-A11 F-211 F-1016)

Finally, since the control-flow coming into case-1 of Join-2 is active, the assertion
stating the applicability of this case comes in. This, in turn, brings in an 10 assertion
stating that rinac-accum-1 is identical to the output of soin-2 which is ra  This triggers
another round of identifications:

F-1018 (Id Final-Accum-1 FA) (Join-Select ...)
F-1019 ((Member FA Obj-1) FI1-1-OUT) (Identification F-1817 F-1018)

This assertion then passes directly through soiv-2 and soin-3 satisfying the desired goal
However, this was only the first case of the second case-split. REASON now revokes

the assumption r-1012 and makes the assumption that oss-1 is a member of rest-2, the
cor of List-2

F-1020 ((Member Rest-2 Obj-1) FI1-IN) (Case-split-assumption F-1008 ...)

Notice that all the identifications triggered by the assumption f-1812 are now out, since
that assumption has been outed by the proof-by-cases mechanism. However,
REASON still has the assertion that oss-1 is identical to rirst-1 since it has not yet
revoked that assumption. Rules relating to list structure trigger, this time concluding
that the unioue-10 of oss-1 is greater than that of rirst-2 since it is a member of the
cor of a sorted list of which rirst-2 is the car
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F-102Y ((> [Unique-Id Obj-1] [Unique-Id First-2]) FI1-IN) (Lists F-1020 F-208 F-41 F-20)

The |reference expressions in the above assertion need to be resolved and both
refergnts are available. We get:

F-1022 ((> Number-1 Number-2) FI1-IN) (Ref-Resolution F-1021 F-1011 F-43)

Ruleg reflecting knowledge about numbers and the one-to-one character of the uio
now |trigger:

F-1023 ((Not (< Number-1 Number-2)) FIl-IN) (Num-Prop F-1822)
F-1024 ((Not (Equal Number-2 Number-1)) FI1-IN) (Num-Prop F-1022)
F-1025 (Not (Id First-2 Obj-1)) (UID-Prop F-1024 F-1811 F-43)

Asseritions f-1025 and F-1023, however, imply that case-1 and case-2 of the test =<>2 are
inapplicable and f-1023 implies that case-3 of the test is applicable. Therefore, rw3 is
the segment to which control is transferred. However, during the symbolic evaluation
of rW3, a quantified statement was created which stated that any object which was

both|a member of vList-1 and rest-2 is a member of rinaL-accuw-3, the output of the
interpal call to r11. We obtain:

F—lOZé {(Member Final-Accum-1 Obj-1) RW3-0UT) (For-Al11 F-1620 F-1009 ...)

As apove, this passes through the joins directly and the desired goal is achieved in this
case.| Thus, REASON has finished proving that if the object oss-1 is the first object

of Lit-1 it will be a member of the final output. REASON now considers the other
case pf the disjunction r-1007. It assumes:

F-102 ((Member Rest-1 Obj-1) FI1-IN) (Case-Split-Assumption F-1087 ...)

whicﬁx triggers a set of deductions similar to those which followed from the assumption
F-1029. REASON again decides to try proof by cases on the disjunction f-100s. The
first case of this proof brings back in the assumption r-1012 which states that the rirst
of L1p1-2 is oss-1. This selects case-2 of the test =¢>7 and rules out the others as above.
The |quantified statement produced by symbolic evaluation of the internal call to r11
within rwz is triggered just as above, leading to the desired conclusion. This leaves

only jone final case to consider. REASON brings in the assumption f-102e, stating that
08J-1is a member of the cor of List-2.
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REASON now has the following four facts i

F-1001 ((Member List-1 Obj-1) FILl-IN)
F-1002 ((Member List-2 Obj-2) FI1-IN)
F-1820 ((Member Rest-2 Obj-1) FI1-IN)
F-1027 ((Member Rest-1 Obj-1) FI1-IN)

The desired goal has not yet been obtained, so REASON finally resorts to splitting
the disjunction associated with somv-2.  First it assumes that case-1 of the join is
selected, /ning the assumption that case-1 of the test =<>2 is selected. Thus rw1 is
active.  However, associated with its internal call to r1i1 is a statement that any
member of both rest-1 and rest-2 will be a member of the output. This will satisfy
the sub-goal as we've seen above. Selecting case-2 of soin-2 will take control to rw2z
which says that any object which is in rest-1 and iisv-2 will be a member of the
output. Finally, Selecting case-3 will lead to rws and the requirement that the object
be in v1st-1 and Rrest-2.  Since osy-2 satisfies all of these requirements it is a member
of the output of JOIN-2 in all cases. Thus, the proof is complete.

The proofs of the other goals follow along similar lines, involving no mechanisms
other than those shown so far. The proof shown above was constructed by the first
implementation of REASON, although some technical details were different. In the
next two chapters I will turn to the issues of categorizing standard plan fragments
which motivated the new implementation effort.
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Chapter 8. The Temporal Viewpoint

The problem with the proof given in the last chapter is that it involved a lot of

work proving things which most programmers would recognize as examples of

things they already know. This puts a premium on the recognition of pre-proven

“plap
that

fragments”. Most previous research on the use of pre-proven schemata such as
of [Gerhart, 1975] has relied on syntactic templates and correctness preserving

transformations on the program syntax. In contrast, the Programmer's Apprentice
represent its knowledge of standard programming techniques in the plan formalism,

using

data-flow and control-flow links to abstract away from the syntax of the

progfamming language. In addition, we use symbolic evaluation and a situational logic

to th

aspes

k about the internal states of the computation.

Two distinct segmentations of a program can be made, each revealing different
s of its teleological structure. The first is a segmentation of the surface

features, called the surface viewpoint which  abstracts out the communication
primitives of the programming language; the second expands the program into a
sequence of situations which are regrouped into the remporal viewpoint. This technique

allov

programs to be described and catalogued in a high-level vocabulary which is

suitable for use as a very-high-level programming language or as a command language
to a programmer's apprentice system.

Section 8.1: A Paradigmatic Example

Consider the following LISP routine which traverses a tree and builds a list of its

leaf podes (i.e. it is a FriNGe program):

For t(

(define fringe (tree)(fringe-1 tree nil))

(define fringe-1 (current-node accumulation)
(cond
((test-leaf current-node)(cons current-node accumulation))
(t (fringe-1 (left current-node)
(fringe-1 (right current-node)
accumulation)))))
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THE-TPEE | ]l. THE-ACCUMULATI0N
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JOIN-FRINGE

\

& THE-FRINGE

The program might be paraphrased as follows: If the cusrent-nooe is a leaf node
then cons it onto accumuiation, the current list of leaf nodes; if it is not then add to
accumucation all those leaf nodes which are daughters of the right node of the current-
Nooe.  Then add to the result of that computation all those leaf nodes which are
daughters of the left node of the current-nooe. If started with the tree as the CURRENT-

nooe and wiL as the accumulation, the program will build a list containing exactly the
leaf nodes of rree.
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A Binary Tree

A standard proof of correctness of the above program would closely follow the
> description, using induction to argue that the right recursive call accumulates all
eaf nodes of the right branch and then that the left recursive call accumulates
thers.  However, such a proof does not make use of knowledge which is second
to most LISP programmers. The rrinee program follows a standard pattern of

double recursion on the branching structure of the tree. In this case the standard

treer

in dl
the |

a pra

not g
Indee
specif

recursion is augmented by the presence of (1) A cons and (2) A second argument

function definition of rrinee-1; the purpose of this argument is to accumulate
t of leaf nodes. Were we to ignore these extra features, we would be left with
gram which does nothing but traverse a tree.

(define traverse-a-tree (tree)
{cond ({test-leaf tree))
(t (traverse-a-tree (left tree))
(traverse-a-tree (right tree)))))

Although the logic underlying this code is a cliche of LISP programming, it is
ossible to specify this segment's behavior using standard input/output descriptions.
d, traverse-a-Tree produces no outputs at all, and thus, has no 1/O behavior to
y- ~ However, the segment does have useful temporal behavior: during its

computation it visits every node of the input tree. Secondly, during its computation

TRAVER
a set
descr
of gr

se-a-teee filters the nodes of the tree into leaf nodes and non-leaf nodes, creating
of control states in which precisely the leaf nodes are available. Thus, the I/0
ptions of Hoare [Hoare, 1969] logic are inadequate for this purposes and a logic
pater strength is needed. Those interested in the logic of computer programming

are now studying such logics [Pnueli, 1977] [Pratt, 1978] although with other purposes
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in mind.

If we ignore the tree-TraversaL part of rrinee, focusing our attention on the rest of
the code's behavior, we can give an equally simple characterization of the temporal
behavior of this fragment of the code. Having noted that rree-traversat produces a set
of control states in which the program visits the leaf nodes, we may then further
observe that the rest of the program acts in these control states. In each such state
there is a cons operation which adds the current leaf node onto the current
accumulation.  This new accumulation is then passed on to either the next occurrence
of a control state in which a leaf node is visited, or if there are no further leaf nodes
the accumulation is passed out of the program as the answer. This process of
sequentially accumulating additional values is also a cliche' of LISP programming which
I will refer to as sequential-cons-accumulation.

This leads to a different view of the rrinee program. We may now regard it as a
“composition” (in the sense of functional composition) of a Tree-TRAVERSAL, @ LEAF-FILTER,
and  a  SEQUENTIAL-cons-accumuLaTion. In  contrast to normal compositions which
communicate by passing a set of data-objects each of which exists as a unified object
at the time of the functional invocation, this composition instead passes remporal
collections of values which can be regarded as a unified object only by abstracting
away from the program's sequential behavior. This view of a recursive program as
being composed of a generator together with a consumer is used in the languages CLU
[Liskov et. al., 1977] and ALPHARD [Wulf et. al.,1976] and is the basis of both the
language APL [Iverson, 1962] and the loop analyzer used in the programmer’s
apprentice project [Waters, 1978}

It would be desirable to be able to construct the following (more natural) proof
of the fringe program: First, we already know that Tree-TraversaL visits every node of
the tree and that it filters out all but the leaf nodes. Second, each such node is
passed to sEQUENTIAL-cONs-accumuLaTioN.  Third, we already know that SEQUENTIAL-CONS-
accumucation will return a list of exactly those objects which it was passed as inputs.
Finally, since the output of sequentiaL-cos-accumutation is the output of rrinee, it follows
that the rrinee program produces a list of exactly the leaf nodes of its input tree.
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Temporal View of Fringe Program
Tree Traversal and Sequential-Cons-Accumulation

The advantage of this method is that we can make use of previously constructed

proofs of the properties of Trec-TRAVERSAL and SEQUENTIAL-CONS-ACCUMULATION: however, in

order
us to

to reap this advantage we will have to construct rules of inference which allow
prove temporal properties of program segments and which tell us when it is

allownble to apply these properties.
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In previous chapters a formalism was developed for describing programs while
abstracting away from the primitives of the programming language, using instead the
notions of segmentation, data, and control-flow. I have also presented a symbolic
interpreter for these descriptions. In designing this symbolic interpreter I was careful
to represent explicitly many items which had only implicit representation in my earlier
system [Rich & Shrobe, 1976] This more explicit representation was created so that I
could easily define and discuss program properties other than simple I/O behavior and
so that program fragments which are characterized by their temporal behavior can be
catalogued.

The symbolic interpreter used in REASON defines the basic notions needed to
build temporal descriptions by connecting segments, situations, and objects into
applications (an application is a segment together with its input and output mappings,
as well as its input and output situations).  As the interpreter goes through its
symbolic evaluation of a plan diagram it records the applications which it encountered
in that process. Since we are interested in the temporal properties of a segment, one
of our main goals will be to discover exactly what applications occur within a
particular segment's execution; knowing this, we will be able to group these
applications into the temporal viewpoint segmentation. However I must first make a
few additional observations about the nesting and grouping of applications.

Intuitively, the application a of sesMent-1 occurs during the application s of
seeMent-2 1f while interpreting s the interpreter will encounter an input situation in
which it applies secMent-1 to some set of inputs. seeMent-1 together with the set of
inputs, the set of outputs, the mappings of these to the input and output names of
sesMENT-1, and the input and output situations constitute the application a

More formally, we say that an application 4 of segment-1 occurs within an
application B of segment-2 if the following conditions hold:

(a) The segment of application a is seewent-1 and the segment of application s is
SEGMENT-2,

(b) sesmMenT-1 is a sub-segment of sesMeNT-2.

(c) Each data-flow link terminating at secwent-1 originates either at an input of
SEGMENT-2 Or at an output of some other application ¢ where ¢ occurs within .

(d) Each data-flow link originating at seemewt-1 terminates at either an output of
SEGMENT-2 Or at an input of some other application ¢ where ¢ occurs within .

(e) Each conditional-control-flow link which terminates at a originates at an

Dependency Directed Reasoning



8.1 A Paradigmatic Example 143

application ¢ which occurs within . Furthermore, the conditional-control-flow link
originates at an applicable case of the segment of c.

relationship is transitive, so that if a is an application within & and s is an

app l,atiqn within ¢, then a is an application within ¢ as well. We express this as
follows:

foll

(application-within A B)

whi# states that a is an application within s.

Frequently it is more useful to talk about applications of segments of a particular
(pla lLor spec) type rather than applications of a particular segment. We use the

ing notation to express this idea:

(application-of-type {plan-type> <application))

The| pbove can be defined by the following equivalence:

We i1
typ
occ
In t
seg

(application-of-type type-1 appl-1)

{plan-type [segment-part appl-1] type-1)

oted earlier that in the rree-traversaL plan there is an application of a segment of
TRee-TRaversaL for every node of the tree. However, some of these applications
within the sub-segment called on the left branch while others involve the right.
Is case, we are concerned not only with applications of the particular surface sub-
ents, but also with applications of all segments of type tree traversal

We say that there is an occurrence of plan-type type-1 within the application A of

segment-1 if:
(i) There is an application s of segment ses-1 within the application a
(ii) The plan-type of ses-1 is Tvpe-1.
We express this as follows:
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(occurrence-within <application-A> <(plan-type> <application-B))

the following equivalence holds:

(occurrence-within appl-1 type-1 appl-2)

(and (application-within appl-1 appl-2)
(application-of-type type-1 appl-2))

We can now state a formal property of the rree-traversat fragment which will be
useful throughout the rest of this discussion, namely that it visits every node:

(For-all (:appl-1) (application-of-type tree-traversal :appl-1)
(For-all (:node) (node [input appl-1 the-treeJ :node)
(There-is (:appl1-2) (occurrence-within appl-1 tree-traversal :appl-2)
such-that (input :appl-2 the-tree :node))))

It is convenient to think of sets of applications actually being aggregated into a
segment.  This is done using the notion of an occurrence set. The occurrence set of
plan-type 1ype-1 within the application A is the set of all applications within A whose
plan-type is type-1. Intuitively, the occurrence set of plan-type type-1 is a virtual
segment consisting of that part of the program's temporal history which includes
applications of a particular type. In an rrinee program, for example, the occurrence
set of type rrince is essentially the tree traversal fragment of the program, consisting
of all the recursive calls to rringe.

Section 8.2! Situations and Orderings

Several rules are used to impose a partial order (representing temporal ordering)
on the situations occurring in a plan diagram. Most obvious are those imposed by the
relationship of the situations to the segments of the plan-diagram. The following rules
capture the constraints that (1) The input situation of a segment precedes its output
situation, (2) The input situation of a main segment precedes the input situation of
any of its sub-segments, (3) The output situation of any sub-segment precedes the
output situation of its main segment.
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(Rule ((:f (Is-a :segment Segment))
(:g (Input-situation :segment :in-sit))
(:h (Output-situation :segment :out-sit)))
(Assert (Comes-before :in-sit :out-sit)
(Seg-sit-order :f :g :h)))

(Rule ((:f (Sub-segment :main-seg :sub-seg))

:gl (Input-situation :main-seg :in-sit-1))
:g2 (Input-situation :sub-seg :in-sit-2))
:hl (Output-situation :main-seg :out-sit-1))

:h2 (Output-situation :sub-seg :out-sit-2)))

P o~~~ o~ o~

(Assert (Comes-before :in-sit-1 tin-sit-2)
(Nested-seg-order :f :gl :g2))
(Assert (Comes-before :out-sit-2 :out-sit-1)

(Nested-seg-order :f :hl :h2)))

Data-flow and control-flow links are the only other constraint ordering the
situations. If there is a data- or control-flow link between two situations then the
outpyt situation of the first segment must precede the input situation of the other.

(Rule ((:f (Dataflow :seg-1 :seg-2))
(:g (Output-situation :seg-1 :out-sit))
(:h (Input-situation :seg-2 :in-sit)))
(Assert (Comes-before :out-sit tin-sit)
(dflow-order :f :g :h)))

(Rule ((:f (Controlflow :seg-1 :seg-2))
(:g (Output-situation :seg-1 :out-sit))
(:h (Input-situation :seg-2 :in-sit)))
(Assert (Comes-before :out-sit :in-sit)
(dflow-order :f :g :h)))

(Rute ((:f (Conditional-Control-flow (:seg-1 :case-1) :seg-2))
(:g (Output-situation :seg-1 :out-sit))
(:h (Input-situation :seg-2 :in-sit)))
(Assert (Comes-before :out-sit :in-sit)
(dflow-order :f :g :h)))
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Since these constraints in general only impose a partial ordering on the situations, plan
diagrams may be thought of as representing a (pseudo) parallel computation which
imposes only the minimal constraints on segment ordering necessary to achieve the
goals of the segment specified by the plan-diagram.

Finally we may define a notion of a situation belonging to a particular
application », namely that it is an input or output situation of some application
occurring within a:

(situation-of-application A sit)
(There-is (:b) (application-within A :b)
such-that (or (input-situation :b sit)
(output-situation :b sit)))

Section 8.3. Temporal Collections

I would like to define the idea of a collection of objects distributed in time,
rather than gathered together in a data-structure.  The motivation of this, as
mentioned earlier, is to be able to describe what a program fragment like Tree-TRAVERSAL
does. I will show that tree-tRaversaL may be regarded as producing such a temporal
collection whose members are exactly the nodes of the input tree.

A temporal collection is a set of pairs of objects and situations such that each
object exists in the situation with which it is paired. We may talk about elements of
the collection and their object and situation parts as follows:

(Element (temporal-collection) C(element))
(Object-part <element)> (object))
(Situation-part (element) (situation))

Since the second two of the predicates are functions, they made be referred to with
the bracket notation.
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C is a temporal collection of the application A if:

very element of ¢ has a situation part which is a situation of application a

(1) é is a temporal collection
|
|

It is easy to create temporal collections by picking applications of sub-segments
h some main segment. For each such sub-segment we can chose an (input)

outpyt object and pair it with the (input) output situation However, it is usually

ocCcC

situaf
exact

collec
withi

(Tem#c

( Tempag
whi
occq

situat
the i
An
colldc
relati

ap
meml|
more

For (

useful to consider an occurrence set of a particular type and to construct the set
2d by those objects which are assigned to a particular input (output) port of each

withi

mor

forr

occ ﬂrence, These objects are then paired with the input (output) situations of each

rence to form a temporal collection.

For example, we may consider the occurrence set of type Tree-TraversaL within any
ration of tree-Traversa.  For each such occurrence, chose the input which is

ion of the occurrence to which it is an input. This temporal collection contains
ly the nodes of the tree input to the outermost application of Tree-TRAVERSAL.

applig
assgned to TReE-TRAVERSAL'S input port the-teee.  Pair each such object with the input

From now on I will use the term temporal collection only to refer to temporal

tions generated by the <name> input (output) of the occurrence set of <plan-type>
n the application o It is denoted as follows:

ral-Collection A The-Tree Tree-Traversal c)
ral-Collection <applicationd> Cinput-name> <plan-type> {collection-name>)

jr says that c¢ is the temporal collection generated by e-tRee input port of the
r

ence set of type TREE-TRAVERSAL.

So far T have talked about a temporal collection as a set of pairs of objects and
ions.  Such pairs are said to be elements of the temporal collection. However,
iterest is usually not with the pairs but only with the object parts of the pairs.
ject is a member of a temporal collection if there is an element of the temporal
tion whose object part is the object in question. Notice that under the element
pnship the temporal collection is a set; we are only interested in the presence of
ir in the collection, not the number of occurrences. However, under the

ership relationship, the temporal collection is a multi-set, with objects occurring
than once.
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As with other data-structures, it is frequently important to have an ordering
relationship on the objects in a temporal collection. The temporal ordering of the
situations provides a natural method for defining such an ordering. ~We say that
element-1 precedes element-2 in the temporal collection C if:

() There is an element of ¢ whose object part is ecement-1 and whose situation part is
SITUATION-1. '

(i) There is an element of ¢ whose object part is ecement-2 and whose situation part is
SITUATION-2.

(ii) situation-1 comes-before srtuation-2.

Notice that since situations are only partially ordered, the elements of a temporal
collection are in general only partially ordered. If the ordering of the elements of a
temporal collection is total, then we say that the collection is a remporal sequence.

Section 8.4: Temporal Collections Inputs and Outputs

We now extend the specification language to allow temporal collections to serve

as segment inputs and outputs. Thus, the specs for Tree-TraversaL may now be stated
as follows:

(defspecs tree-traversal
(Inputs: the-tree)
(Expect: (Object-type the-tree Binary-tree))
(Outputs: the-nodes)
(Assert: (Object-type the-nodes temporal-collection)
(For-all (:the-node) (node the-tree :the-node)
(member the-nodes :the-node))
(For-all (:the-node) (member the-nodes :the-node)
' (node the-tree :the-node))))

Which states that tree-traversaL produces a temporal collection output whose elements
are exactly the nodes of the input tree. ~We can now state the plan diagram
assertions which link the temporal collection generated by the occurrence set of Tree-
TRAVERSAL to the output THe-noDES.
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(defplan tree-traversal
(sub-segments: test-leaf process-non-terminal
process-terminal)
(flow-diagram:

(dataflow
(temporal-collection the-tree leaf? tree-traversal)
(output tree-traversal the-nodes))

)

(constraints:
(spec-type test-leaf leaf?)
(plan-diagram process-non-terminal)

-

It is now possible to prove that the plan diagram for Tree-TraversaL is consistent

its specs.  In doing so REASON uses a form of computational induction,
ning that a temporal property holds of all occurrences of a particular plan type

within the main application. If on the basis of this assumption it can deduce that the

sam

property holds for the main application, then it is legitimate to conclude that the

propgrty is true for any application of that plan-type. (This is actually only weak

corr
of

For (

ctness in the Hoare sense since this does not prove termination). I call this form

mputational induction plan-type computational induction.
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Plan Diagram of Tree Traversal

To begin the proof REASON assumes that there is an arbitrary application Tree-
TRaversaL-1 of a segment of plan-type Tree-TraversaL.  Anonymous objects are chosen to

stand for the input situation of the application. Anonymous objects are also chosen
to stand for the inputs to the application.

(application-of-type tree-traversal tree-traversal-1)
(input tree-traversal-1 the-tree tree-1)
(input-situation tree-traversal-1 sit-1)

Also the input expectations of the Tree-TRaversaL specs are asserted in the input
situation of the application.

((Binary-tree tree-1) sit-1)
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data-flow links in the plan diagram show that test-ear is ready for application.
ABON decides that it is impossible to prove either that tree-1 is a terminal or that
not. Thus, a case-split is created, assuming in the first case that tree-1 is a
inal.  The plan diagram indicates that no other segmencs are applicable and that
rol flows to the main segment's output. The system must prove that the main
)¢nt's assert clauses hold for the delivered output objects.

There is only assert clause and it states that every node of Tree-1 must be present
he output the-nooes which is the temporal collection generated by the occurrence
of test-tear.  This is trivially true since the only node of a terminal node is itself,
he only occurrence of tesr-tear had tree-1 as its input.  Thus, the plan is valid
) the assumption that Tree-1 is a terminal,

[f tRee-1 is non-terminal then case-2 of rvest-Lear is applicable and process-Now-

TERMI
the
the

NpL is ready for application. REASON moves through the plan diagram evaluating
shib-segments in turn. Since REASON has assumed that ree-1 is non-terminal,
segments Lert and rieut are applicable; objects Lert-1 and rieut-1 are created to

repregent their outputs and assertions are added to represent the fact that rerv-1 is the

left

Datd

node of tree-1 and that rieut-1 is the right node.

i
]

(output the-left-node left left-1)
(output the-right-node right right-1)
(left-node tree-1 left-1)
(right-node tree-1 right-1)

flow links then map these objects to Lerr-TraversaL and RieHT-TRAVERSAL which are

applidable since they only require their input to be a binary-tree node. Both Lerr-1

and

occu
(plan

RIGHT-1 are binary-tree nodes since they are nodes of the binary tree tree-1.

REASON next attempts to show that the temporal collection generated by the
rkence set of type iear? includes exactly the nodes of wee-1.  The proof is by
type) computational induction ~REASON assumes that any occurrence o-1 of

planttype rtree-TRaversaL within the main application satisfies the property which it

wish
LEAF?
occu
colle

For

E$ to prove, i.e. that the temporal collection generated by the occurrences of type
within o-1 has exactly the nodes of the input tree as its members. Thus, the
rrences of vear? within Lerr-TraversaL and RiGwT-TRAVERsAL each generate a temporal
ction including exactly the nodes of Lert-1 and rieHT-1.
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Consider an arbitrary node wooe-1 of wee-1. By definition wooe-1 is either TRee-1
itself or a node of the left node of rree-1 or a node of the right node of tree-1. If
Nove-1 is identical to teee-1 then it is the input to test-Lear which is of type Lears. If
Nooe-1 is not identical to tree-1 then it is a node of either LeFt-1 or riewt-1. In either
of these cases;, REASON has shown by induction that it is a member of a temporal
collection generated by the occurrences of type Lear? within LeFT-TRAVERSAL OF RIGHT-
TRaversaL.  Since these occurrences are within a sub-segment of Tree-TRaversaL, they are
sub-segmnents of Tree-traversat itself. Thus all the nodes of rree-1 are in the temporal
collection generated by the occurrence s of Test-Lear. et

Section 8.5: Temporal Collection Data-flows

Temporal collections are a useful abstraction mechanism only if they can serve
not only as outputs of a segment but also as inputs. In this case, data-flows between
segments might involve the flow of a temporal collection output of one segment to a
temporal collection input of a second segment. This single data-flow statement is,
however, an abstraction of the temporal behavior of the plan, summarizing many
identifiable data-flows between sub-segments of the two plans.

For example, in the temporal model of the rringe program we now have a sub-
segment called tree-Traversac which outputs a temporal collection containing the nodes
of its input. This is connected by a data-flow link to sequentiaL-accumuation which
takes a temporal collection input. This single link summarizes the fact that each
occurrence of type Lear? within Tree-TraversaL has a corresponding occurrence of cons in
SEQUENTIAL-ACCUMULATION with a data-flow link connecting the two.

SEQUENTIAL-ACCUMULATION can be given a simple set of specs saying that it takes as

input a temporal collection and returns as output a single object which contains
exactly the same members of the temporal collection.
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(defspecs Sequential-Accumulation
(inputs: collection-1)
(expect: (Object-type collection-1 temporal-collection))
(output: 1ist-1)
(assert: (for-all (:member-1) (member collection-1 :member-1)
(member 1ist-1 :member-1))
(for-all (:member-1) (member 1ist-1 :member-1)
(member collection-1 :member-1))))

The| |internal plan for sequentiaL-accumuiation is intuitively a cascade of cons segments,
each| taking one input from the temporal collection and the other input from the
outpyt of the preceding cons. The first cons takes nit as input and the last delivers its
outijt as the output of the whole segment.

The-Temporal-Col lection

* e 0

\ Sequential -~

Accumulation
C e Seq-
/r'i Seq- ?cc-
Accum- . .. Accum~ |Rcc-
op ’ op 1

Init x \

Sequential-Accumulation with Temporal Collection Input

In describing the tree-TraversaL plan fragment I needed the notion of a temporal
collegtion being generated by the occurrence set of the same plan type.  The
SEQUENTIAL-AccumMuLATION fragment requires an inverse to this idea. We may think of two
distinct types of segments, those which generate a collection of values and those which
utilize the collection. 1In the first kind of segment it is convenient to talk about the
occurrences of segments of a particular type generating a temporal collection; in the
second kind of segment, we require the notion of a temporal collection determining
the Wdccurrences of sub-segments of a particular type. When we say that a segment
takes| a temporal collection as input, we are summarizing the idea that the objects in
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the temporal collection are in a one to one correspondence with the members of an
occurrence set within the segment. We refer to such an occurrence set as the
temporal collection generated occurrence set, which we denote as follows

(tc-gen-occ <plan-type> <{set-of-occurrence-name))

This allows us to represent the flow of objects of a temporal collection to a collection
of occurrences by a single data-flow statement as is done in the statements of the
following plan diagram (which is shown pictorially above):

(defplan sequential-accumulation
(sub-segments: init seq-acc-1)
(flow-diagram:
(dataflow (input sequential-accumulation the-temp-col)
(input seq-acc-1 the-temp-col))
(dataflow (output seg-acc-1 the-answer)
(output sequential-accumulation the-answer))
(dataflow (output init the-empty-1list)
(input seg-acc-1 the-initial-value)))
(constraints:
(plan-type init generate-empty-list)
(plan-diagram seg-acc-1
(sub-segments: accum-op recur)
(constraints:
(spec-type accum-op accumulate-into-1ist)
(plan-type recur seq-acc-1))
(flow-diagram:
(dataflow (input seq-acc-1 the-temp-col)
(input tc-gen-occ accum-op the-current-value))
(dataflow (output accum-op new-1ist)
(input recur current-accum))
(dataflow (output recur the-answer)
(output seq-acc-1 the-answer))))))

Notice that the data-flow links between the various occurrences of accum-op impose a
temporal ordering on their execution which (in this case) is total. We require the
ordering of elements of the temporal collection to be consistent with the ordering of
the segments into which they flow. This is not an issue in the plan for frinee since
the version of tree-TRaversaL we are conmsidering is so abstract that it specifies no
ordering on the elements generated. Its output and hence the input of sequenTIAL-
accumuLaTion is totally unordered; any mapping of the elements input to sequentiaL-

Dependency Directed Reasoning



ACCUM

trave
mapj
xna@|
outp
will
gené

easil]

argi
of a

8.5 Temporal Collection Data-flows 155
ULATION Is consistent with the segment ordering of the occurrences of accum-or.

However, if we were to consider a more specific Tree-TRAversaL, say one which
rses in left-to-right, depth-first order, then there would be restrictions in the
ing; given two nodes, the node which is further to the left in the tree, will be
ved into an earlier occurrence of accum-op and will, therefore, appear earlier in the
1t of seo-acc-1.  This requirement guarantees that the sequeniaL-accumutation plan
not lose ordering constraints which were of significance to the segment which
rated its inputs.

|REASON can prove that the sequentiaL-accumuiation plan satisfies its specs quite

. It once again uses (plan-type) computational induction. In summary, the
ment divides into two parts. The simple part is that if seo-acc-1 satisfies its specs
rcumnulating all the elements of its temporal collection input into the list which is

its other input, then sequenTiaL-accumuiation satisfies its specs trivially since all it does is

to ¢
temp

eate an empty list and then call seq-acc-1 with this list as one argument and the
oral collection as the other.

speg

Now REASON assumes that all internal occurrences of seo-acc-1 satisfy their
It follows that accum-op produces a list containing all members of the current-

accuMpLaion input plus the one additional element which is its other input. This element
is a |member of the temporal collection. The inputs to the recursive call of seq-acc-1
are the new accumulation and the remaining members of the temporal collection. By
the specs of seo-acc-1 this will return a list containing all the objects which were

mer
colle
colle

ACC-1

ers of its list input plus all the objects which were members of the temporal
ption input.  Thus, it produces a list of all the members of the temporal

ttion input to the main program. By induction REASON can conclude that seq-
satisfies its specs.

It follows that a plan which is a functional composition of Tree-TRAvERsAL with

SEQUENTIAL-accumuLATION Will produce a list of the nodes of the tree. If a riLtering plan is

put.
tem|
frin
indee

For|

between them so that only the terminal nodes of the tree are members of the

poral collection output of the filter, then we will have a plan for computing the

e of the tree. It remains to show, however, that our original rrinee program can,
d, be looked at in this way.
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Chapter 9: The Recognition Paradigm

The apprentice depends on a library of pre-analyzed plan fragments for use in
analysis by inspectici. =~ So far, I have presented a formalism which allows these
fragments to be stated in a general and abstract manner. Fragments like Tree- TraveRsaL
Of SEQUENTIAL-AccuMULATION can be easily applied to any programming language and to a
variety of data-structures and syntactic constructs which represent similar temporal
behaviors.

The apprentice uses pre-analyzed plan fragments to help explain parts of
programs, matching sections of program code to particular fragments. If all parts of a
program are mapped onto some plan fragment and if these fragments are connected in
coherent ways and if the entire artifact so constructed implements a desired behavior,
we can then say that the program has been analyzed. In such cases the plan
fragments have been used as if they were proof rules (of a rather macro character),
showing that their preconditions hold and asserting their conclusions.

However, it will often be the case that only some of the code can be mapped
onto fragments in the library of plans. In such cases it would be erroneous to assert
that the program had been verified (or totally understood). Nevertheless, the program
has been partially understood and half a loaf is better than none.

The recognition process proceeds as follows. First, a simple language dependent
process translates the source language program text into a plan diagram.  Such
programs have been developed for LISP by Rich [Rich & Shrobe, 1976] and for
FORTRAN by Waters [Waters, 19771  This diagram, called the surface ﬁlan, is
typically quite unstructured, having only that rudimentary segmentation which is
implied by primitives such as 1r-THen-ELSE, DO, cow, Proceoure-caLL etc. Data-flow links
are  deduced by a symbolic interpretation (developed by Rich in
[Rich & Shrobe, 1976] of primitives such as assignment to variables, nested function
applications etc.  After this translation to plan diagrams, the raw code is not
consulted, although links to it are maintained.

A recognition mapping of this surface plan consists of an aggregation of some of
its original segments into larger segments, a mapping of these to the segments of a
library plan such that all plan-type and spec-type constraints of the library plan are
satisfied by the surface plan segments, and such that the data-flow, control-flow and
conditional-control-flows of the surface plan are consistent with those of the library
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If such a recognition mapping can be constructed, it then follows that any

propérty of the deep plan is also true of the corresponding surface plan.

recog

Actually, the above conditions are slightly too strong. In constructing a

nition mapping it is allowable to ignore some of the inputs or outputs of surface

plan segments. Data-flows connected to such inputs and outputs must also be ignored
as mpst those spec clauses which mention such objects. Within the surface plan, sub-
segments which are connected to ignored inputs must also be ignored. This allows us
to separate a segment's behavior into those parts which involve a set of objects under
consideration and those which do not.

mean
such

When we say that a surface segment satisfies a spec-type of the library plan we
that we can select some of the input and output objects of the surface plan
that the I/0O behavior of the library plan segment can be shown to hold for the

aspe@clt of the surface segment's behavior which involves only the objects selected. A

simil
its ¢

r principle applies to saying that a surface plan segment satisfies the plan type of
rresponding library plan segment.

Notice that a recognition mapping is not required to map every surface plan

segment into a library plan segment. However, if a set of recognition mappings have

been

constructed such that each surface plan segment is in the domain of at least one

completely constructed recognition mapping, then we say that the surface plan has

been

recoj
Follo
notio

We v
instar
the &
carlii
TEST-L
LEFT-IT
spec|
invok

For K

completely recognized.

[ will now proceed to show how the original rrivee program can be completely
nized as a composition Of TREE-TRAVERSAL, LEAF-FILTERING, and SEQUENTIAL-ACCUMULATION.
ving a sketch of this recognition process I will indicate how to extend the
is of recognition so as to gain greater abstraction power.

The construction of the recognition mapping depends on an inductive argument.
yish to show that by ignoring the accumuation input, we may regard FRINGE as an
ce of the rree-traversaL plan. Ignoring the accumuation input forces us to ignore
tcuM-op segment, as well as the accumuation input to the two recursive calls. We
hen construct the straightforward recognition mapping of test-Lear in FriNge to
EAF N TREE-TRAVERSAL, LEFT tO LEFT, RIGHT to RIGHT, and (RIGHT) LEFT-FRINGE to (RIGHT)
Ree-TRaversaL.  Each of these segments except the two rrinee segments satisfy their

ype constraints trivially. For the two rrine segments the induction hypothesis is
ed giving the desired result.
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Recognition of Fringe as a Tree Traversal

This partial recognition tells us that the temporal collection generated by the
occurrence set of type Lear? within rrinee includes exactly the nodes of the input tree.
We now have to construct a partial recognition for the SeQUENTIAL-ACCUMULATION plan.

The recognition mapping identifies the occurrences of the cons segment in rringe
with the accum-ops of sequentiaL-accumuiation; the data-flows from Test-LeaF to the cows are
mapped onto the temporal collection data-flow to the accum-ops. The remaining data-
flows of the library plan for sequentiaL-accumuiation then require us to show that the
first cons in rriNeE receives an empty list as its input, that the output of each
occurrence of cons flows to the next occurrence, and that the output of the last
occurrence of cons flows to the output of the whole segment.

The proof of these claims is a straightforward (plan-type) induction. We assume
that the occurrence set of type cons within each internal application of type fFrINGE is in
fact a sequentiaL-accumuiation.  There are two cases to consider. If the tree input to
FRInGE is a terminal, then there is exactly one occurrence of cows; its inputs are the
terminal node itself and the current-accumuLation input of Frinee; its output is the output
of rrinee. Thus, in this case all the requirements are met and we may regard the
occurrence set of type cons as a SEQUENTIAL-ACCUMULATION.
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Recognition of Fringe as Sequential Accumulation

In the second case, the tree input to rrine is non-terminal and there are two
recugsive occurrences of type fringe. We can assume the induction hypothesis for both
the jLerr-rrinGe and riGuT-FRINGE occCurrences of frinee.  We now construct a case
analysis. By the induction hypothesis the occurrence set of type cons within each
internal application of type rrinee is a sequentiaL-accumuiation. This leaves four special
occurrences of cons, namely the first and last occurrences within Lert-Fringe and RigHT-
FRINGE.  All other occurrences of ¢ons cascade their outputs to the next occurrence and
receive one of their inputs from the previous occurrence.
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The special cases are handled easily (see diagram below). The data-flow from
RIGHT-FRINGE tO LEFT-FRINGE imnplies that all occurrences of cons in rieuT-rRINGE precede all
occurrences of cons in vreFT-rrINGE.  Thus, cons-o, the first occurrence of cons within
RIGHT-FRINGE is the first cons within rrinee; similarly cows-3, the last cons of LeFT-FRINGE iS
the last cons of rringe. But the data-flow links of the rrinee plan states that c-accum-s,
the CcurrRenT-accuMuLATION input to fringe, flows to the CURRENT-ACCUMULATION input to RIGHT-
FRINGE. By the induction hypothesis riut-FriNee iS an instance of SEQUENTIAL-ACCUMULATION,
thus c-accum-o flows to the first cons of riGu-frINGE, iLe to the first cons of FRINGE.
Thus, the current-accumuLation input to rrinee flows to the first occurrence of cons within
FRINGE.

Similarly the data-flow links of the fringe plan state that the output of rrinse is
answer-1, the output of ierr-rringe.  However, since by the induction hypothesis Lert-
FRINGE iS an instance of sequeNTIAL-AccumuLaTION, its output, answer-1, is the output of
cons-3, the last occurrence of cons within both verr-rringe and Fringe itself. Thus,
THE-aNSWER output of rrinee is the output of the last occurrence of cons within FRINGE.

The two remaining special cases are cons-1, the last cons of RIGHT-FRINGE, and Cons-2,
the first cons of cerr-rringt.  The data-flow links of rringe state that ANSwER-8, the
THE-ANSWER output of rienT-FrINGE, flows tO THE-CURRENT-ACCUMULATION input Of LEFT-FRINGE.
Again, by the induction hypothesis since answer-a is the output of riGHT-frINGE, it is also
the output of cons-1, the last cons of RiGHT-FRINGE. Similarly, since it is the input of
LEFT-FRINGE it i also the input of cows-2, the first cons of Lerr-rringe. Thus, the output
of cons-1 flows directly to the input of cows-2, satisfying the induction requirements.
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Details of Recognition: Fringe as Sequential Accumulation

To complete the recognition of rriNGE as a TRe-TRAVERSAL composed with a
SEQUENTIAL-AccumuLATION, the final thing we need to show is that the temporal collection
output of rree-Traversat flows to the temporal collection input of seqQUENTIAL-ACCUMULATION,
In terms of the recognition mapping which has been constructed, this means that the
ral collection generated by the occurrence set of type Lears should flow to the
occufrence set of type cons. Again this is a direct result of a simple inductive
argument. If the input tree is a terminal then the result is trivial, there is exactly one
data-flow between test-Lear, the one occurrence of type Lear? and the one occurrence
e cons. In the non-terminal case, the induction hypothesis says that there is a
temparal collection data-flow between the occurrence set of type rears and the
occugrence set of type cons in both erv-rringe and ricut-Fringe.  But if the input tree is
non+terminal, these are the only occurrences of type cons within rrine. It follows that
the temporal collection input to the occurrence set of type covs within rringe is exactly
the temporal collection generated by the occurrence set of type Lear?  within rriwnee.

For Complex Program Understanding




162 The Recognition Paradigm

Thus, we have succeeded in mapping the rrinse program onto the plan formed by
a composition of Tree-TRaversaL with sequenTIAL-accumuLaTioN.  As noted earlier, an
immediate consequence of this result is the fact that the computed accumuLation contains
exactly the terminal nodes of the tree.

It might seem at first glance that we have developed an extrem.iy cumbersome
technique where simpler methods might suffice. Two factors mitigate against this.
First, much of the work we have shown here is illustrative only and would not be
required in the actual routine recognition of programs like rrinee. The cascade of two
SEQUENTIAL-accumuLaTIONS, for example, is so commonly used that it would be represented
in the plan library as an instance of sequENTIAL-ACCUMULATION. Similarly, the plan library
could include a plan called rree-TRavERsaL-a-acTION representing the general class of
programs which, like rrinee, which traverse a tree and act upon the nodes produced.
Thus, virtually all the work I have shown can be pre-proven and filed away. The
actual recognition would be quite simple and involve little work. It should also be
remembered that properties of Tree-RaversaL and similar cliches are pre-proven. The
apprentice separates the work of analyzing plans from that of analyzing programs,

reducing the program understanding task to the relatively simple task of analysis by
inspection.

Section 9.1: Abstract Flows, Data and Control Pathways

The strength of this method depends on the ability to abstract out details of the
code in order to view the program as an instance of a more abstract but better
understood artifact.  Abstraction techniques allow the plans to achieve greater
generality. So far we have seen techniques for abstracting procedural behavior (specs),
various issues of data-flow (temporal collections) and control-flow (temporal control
sequences). I will now add a further abstraction to the repertoire used in the plan
diagram notation. This new feature called control-and data-pathways will allow the
apprentice to recognize programs as instances of plans to which they bear little

immediate resemblance. This will allow us to represent commonalities at a more
abstract level.
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Consider the following jrogram which computes the fringe of a tree using a
adth first traversal.

up QFringe(tree)
(prog (Acc Node Q)
(setq Q (Empty-Queue)) (Enqueue tree Q))
1p (cond ((Queue-Empty? Q)(return Acc))
(t (setq Node (Dequeue Q))
{cond ((Leaf? Node)(setq Acc (cons Node Acc)))
(t (Enqueue {1eft Node))
(Enqueue (right Node))
(go 1p))))))

Ilr:se examination of the temporal behavior of this program reveals that it is quite
Iar to the rrinee program of the previous section. In both programs there is a
drsal of the nodes of the tree, a filtering of these nodes to select the leaf nodes,
an accumulation of the leaves. This accumulation is the output of both processes.
fact, the only significant difference between the two programs is the order of
grsal of the nodes of the tree. However, since the library plan for rree-TrAVERSAL

malrs no commitment to the order of traversal, it ought to be possible to recognize
I

i€ as an instance of the "fringe plan".

On the other hand, there are obvious superficial differences. Fringe is doubly
gsive in its surface syntax, whereas qFRINGE is a loop (singly recursive). ofrine has
gxplicit queue while rrivee has no similar explicit data-structure. Given the
fficial clues present in orringe, any reasonable recognition process would first guess
RFRINGE IS an instance of the queue-ano-process plan shown below.
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Consider the plan diagram for queue-ano-process. The property of this diagram
which seems most useful is that for any enqueued object there is an occurrence of
pequeve in which this object is dequeued. Furthermore, every object dequeued is input
to an occurrence of action. In summary, there is a sequence of occurrences taking
each enqueued object to an occurrence of actior. Such a sequence of events is merely
an abstract data-flow; when we draw data-flow links in a library plan, what is of
concern is that the object gets from one segment to the other. The actual method of
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trangmission is of little concern as long as we can believe that no significant property

of {

he transmitted object will be lost in the process.

We will call such an abstract data-flow a data-pathway. A data-pathway may be

formally defined as follows:

The
is a

(1)

(ii)
(iii)
(iv)

(v)

te is a data-pathway of Obj-1 from application App-1 to application App-2 if there
set of applications A and a set of data-flow links L such that:

Each data-flow link of L connects two applications of a

Each application of a either initiates or terminates a link of L

Under the temporal ordering imposed by the links of 1, a has both a glb
and and lub.

08J-1 is an output object of ap-1 which flows to an input of the glb

of a

08J-1 is an input object of arr-2z which flows from an output of the lub
of a

These conditions intuitively state that there is a set of causally connected events in
which oss-1 flows out of the first one and into the last. Typically applications will be

que

For

conx rcted by data-flows of an object which contains o0ss-1 as a sub-structure. The

> in the above program plays this role.
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It is easy to prove by computational induction that for any object which is a

member of the input queue of an occurrence of queve-ano-process-1 there will be a data-
pathway to an occurrence of process-memser. It is also easy to stow that ofringe is an
instafice of QUEUE-AND-PROCESS, MAppIng QFRINGE-1 ONtO Q-AND-PROCESS-1 and PROCESS-NODE ORtO

PROCE

will

s-memper.  Thus, for each member of the queue in an application of orringe-1 there
be a data-pathway via a sequence of enqueues and dequeues to an occurrence of

PROCEYS - NODE.

reco

If we regard these data-pathways as data-flows, we may then construct a
gnition mapping between ofrivee and rringe.  If TRee-o, the input node, is non-

terminal then the rest-Lear segment in orrivee will bring control to PRoCESS-NON-TERMINAL.
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will extract verr-o, the left node of tree-o, and wou will make Lerr-e a member of
queue.  riht and wnoer will act similarly on riet-e, the right node of Tree-o.
trol now passes to ofringe-1 (i.e. we return to the beginning of the loop), with
tert-o and rieut-e members of the queue. By our remarks above, each of these
§ via a data-pathway to another occurrence of process-nooe. Let us call these
rences px-1 and px-2 respectively. We can map px-1 onto Lert-FriNge and pn-2 onto
lﬂrnmee, thus completing the recognition of ofrinGe as a rFringe program.

The use of pathways becomes quite important in more complicated queue and
K| based programs such as procedural deduction systems which rely on pattern
fed invocation. In these programs, processes communicate by making assertions in
Ata-base possibly triggering other programs into execution. The notion of a
Way makes the description of this mechanism far more concise than would be
ble otherwise. Furthermore, it allows the system to understand such demon-based
rams in terms of the communications between processes rather than in terms of
mechanism of communication. Pathways are analogous to the sometimes notion of
la and Waldinger [Manna & Waldinger, 1976] in that they speak of control
ning a certain point at some future time, rather than immediately; however, I use

Mays as an abstraction tool which transforms one plan diagram into a second,
2| easily recognized diagram.

Because pathways allow this greater flexibility, all flow statements of a library

nay be matched by pathways implemented in the surface plan. Library plans are
d in terms of data abstractions, specs, purpose links, data and control pathways.
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Section 9.2! Summary

The methodology 1 have outlined relies on developing a library of pre-proven
plan fragments which capture substantial parts of the knowledge of an expert
programmer.  Once such fragments have been catalogued, the effort of program
analysis may be reduced to that of recognition. I have not discussed what heuristics
would guide such a recognition system, interesting work in that direction is being
conducted by Rich [Rich, 1977] and Waters [Waters, 1977} Instead I have
concentrated on the how such a process would interact with the reasoning capabilities
of the program analysis system.

Our method might be challenged on the grounds that it involves as much work
as more standard approaches to program verification. However, this work is factored
in two ways which are highly significant. First, we divide the task into (1) Pre-
proving frequently used standard plan fragments whose logical analysis need never be
repeated, and (2) Recognizing the occurrences of these fragments within more complex
programns.

Second, the recognition process itself is factored into many discrete steps, such
as: (1) Showing that each of the proposed segments of the surface plan satisfies the
type constraints of the library plan, (2) Showing that the data-flows of the surface
plan implement the data-pathways of the conceptual plan. While the total amount of
work involved might be substantial it is separated into "bite sized" pieces; furthermore,
the framework allows the reasoning system to self-consciously concentrate on the
particular goal at hand at that moment. While attempting one particular recognition
all other parts of the program can be ignored.
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Chapter 10: Description of Data-Structures

So far I have presented methods of describing various components of
ramming knowledge; I have also shown thc irious reasoning techniques used in
SON to operate on these descriptions. In this chapter I will develop a language

for describing the static properties of data-structures. In the next chapter (which will

discu
prop

need

ss side-effects) I will describe REASON's methods for reasoning about how
erties of data-structures change.

Knowledge about data-structures is a key component of the knowledge base
ed by the programmer's apprentice system.  This knowledge is used by the

synthesis and recognition systems in a declarative form. In the reasoning part of the

syste

base;

n, descriptions of data-structures are used in a more active or procedural manner.

Data-structures are perhaps the most flexible items in the apprentice's knowledge
programmers routinely devise new data-structures and new methods of

implémenting them. It is crucial that a convenient language be developed for the

desc

iption of data-structures.  This language allows the programmer to tell the

apprentice about new data-structures, their decomposition into parts and the
constraints which these parts must satisfy. Finally, it allows the programmer to devise
new relationships which might be true of the new data-structure and to provide the
apprentice with definitions of these new relations.

The data-description language has two main features, First, it is syntactically

declarative, allowing the programmer to describe objects without having to know the

rule-

pased syntax of the deductive system.  The declaratives are translated by

REABON into rules which actually make the deductions, Second, the description
langupge allows hierarchical knowledge structures and inheritance of properties. An

ALIST

kind

can be described as a special kind of v1st which in turn is described as a special
of Recursive-structure.  Properties are described at the most general level possible.

Typidally the programmer need only state that the structure he is designing is a

speci

4l case of some other (or of several other) structure(s). ~Each aspect of the

inherjted behavior of the newly defined structure is then mapped down from the

parent structure(s). Usually, only a few new properties are involved in the definition
of any new object.
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Section 10.1! The Data-Description Language

At the I~west level, a data-structure is something which has specific parts subject
to certain constraints. For example, a list is usually described as having a rirst and a
ReST subject to the restriction that the rest must be either another vList or a terminator
such as miL. A sinarv-TRee, similarly, has a cerr and a riht where both are required to
be either sinarv-TRees or terminats,  These ideas are represented by two types of
assertions: part and type-restriction:

(Part <(object-type> <part-name))
(Type-restriction (<part-name) (object-type>) <object-typed>)

For example,

(Part List First)
(Part List Rest)
(Type-restriction (Rest List) List)

Object-types are sets of similarly structured objects such as LisT or sinary-TReE and
are subject to the normal set operations of union, intersection, set difference, etc. In
particular, we use the subset relation extensively to build a hierarchy of knowledge.
For example, Lists are Linear-osects, and property-Lists are Lists. This is stated as
follows:

(Subset 1ist linear-object)
(Subset property-list 1ist)

Two useful pieces of information are extracted from such statements by
REASON's rules. First, anything which is a subset of an object-type is itself an
object-type; second, anything which is a member of a subset of an object-type is a
member of the larger type as well

Dependency Directed Reasoning
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(subset :subtype :supertype)))
rt '{object-type :subtype)
‘(subset-implies-type :a)))

((:a (subset :subtype :supertype})
(:b (type :object :subtype)))
(assert '(type :object :supertype)
'(type-chain :a :b)))

Object-types are often combined to yield new types. For example, we might

to have an object-type which includes both ewprv- and wow-empry-L1sts.  This

t-type might be called u1st.  However, it is also useful to distinguish between

and Non-empTY-LisT; therefore, we also have the two specialized object-types called

tist and wow-empty-List.  Obviously, List is the union of the other two object-

in addition the intersection of empry-L1st and Non-ewpry-LisT is the null set. Such

a sityation is so commeon in defining object-types that I have distinguished it with the

speci:

(partj

from

(Subs

(Subsj
(Unian
(Inten

It is
to ko

il name partition. We write this as follows:

tion List into: (Empty-List Non-Empty-List) )

which it follows that:

t Empty-List List)

t Non-Empty-List List)

(Empty-List Non-Empty-List) List)

section (Empty-List Non-Empty-List) Null-Set)

usually insufficient to know only that an object-type is partitioned; we also need
ow how to distinguish between the sub-types. The partition of List into empTy

. and Now-empTY exhibits a very frequent and common method of distinction, namely that

one ¢
invols
LISTS

using
statel

For

f the sub-types has a more detailed part structure. Sometimes, however, a more
ed criterion is used to distinguish sub-types. For example, we may partition
into cvcLic-tist and ACYCLIC-LIST

; a much more complicated criterion. Two syntactic extensions to the partition
nent are provided to facilitate the stating of these restrictions.
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The first of these is the allows clause, written as follows:

(Partition 1ist
into: (empty-list non-empty-list)
(allows: non-empty-list (first rest)))

The allows clause says that the named sub-type (Now-ewpry-LisT, in this case) includes
the part names mentioned in its set of part names; furthermore, this is a distinguishing
characteristic within the given partition. In the example above this means that wow-
EMPTY-LIsTS can be distinguished from ewprv-Lists by the presence of either a Ffirst part
Or a REesT part.

We can now give a simple description of Lisw

(Partition 1ist
into: (empty-1ist non-empty-list)
(allows: non-empty-1ist (first rest)))
(Part List First)
(Part List Rest)
(Type-Restriction (Rest List) List)

similarly we can give a description of sinary-TRees as follows:

(Partition Binary-Tree
into: (Terminal Non-Terminal)
(allows: non-terminal (Left Right)))
(Part Binary-Tree Left)
(Part Binary-Tree Right)
(Type-Restriction (Left Binary-Tree) Binary-Tree)
(Type-Restriction (Right Binary-Tree) Binary-Tree)

If the criterion which distinguishes between sub-types is more complex, we
express this with a dividing criterion clause. For example, we can tell acvcLic-Lists

from cveuic-Lists by the absence of any sub-list which is a sub-list of itself. This is
stated as follows:

(Partition list
into: (acyclic-list cyclic-list)
(dividing-criterion:
(For-A11 (:sub) (sub-list acyclic-list :sub)
(not (proper-sub-1ist :sub :sub)))))
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The data-description language uses several notational conventions which are

showin in this example. The dividing criterion clause above mentions AcvcLic-LIsT.

This

furt
meai
the

use of a rype name within a statement of the data-description language is an

impu]cit quantification over any object of that type. I will explain this notation

er in the next section. In the case of the vivioins-criterion clause, however, the
ing is quite simple. Any object of the partitioned type (say List) which satisfies
pIvIDING-CRITERION (the For-aLL statement) can be deduced to be of the sub-type

mentioned in the criterion (AcvcLic-Lisy).

Now let us move on to other definitional statements. Closely related to the

notion of ear7 is that of inoexeo-part which is used to describe objects like arrays

havin
narmie
almo
PARTS,

( Inde
(Type
Thus
(Objec

(Index
(Type

Some

g many similar sub-structures distinguished by numerical indexing rather than by
- The index is permitted to be any tuple of integers, but in practice I will
st always be talking about single dimensioned inoexen-sTRucTures.  InDExeD-ParTs, like
are subject to type restrictions. This is written as follows:

ed-Part <object-type> <(indexed-part-name))
Restriction (<(indexed-part-name)> Cobject-type>) Cobject-typed)

an array of integers would be described as follows:

t-Type Integer-Array)
ed-Part Integer-Array Item)
Restriction (Item Integer-Array) Integer)

type
not
also
woull
these|

(Requi
(Ite
(Ind

For (

restrictions, however, are of a type which is difficult or awkward to describe as

restrictions. For example, the object used to index an INDEXED-STRUCTURE iS required
pnly to be an integer tuple of the appropriate "a-rity" (a type restriction), it is
required to be within the correct bounds. Describing this as a type restriction
i require the creation of an object-type for every range of integers.  Instead
more complex restrictions may be stated directly with a require statement:

re
Integer-Array index object)
x Integer-Array index))
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which states that if an object is used as the selecting position of an inbexeo-PaRT
statement, then it must be a valid index of the object whose component it selects.
The notion of inoex must, of course, be defined elsewhere (see later section on relation
definitions).  Require statements are invariants which state that any time their first
clause is true, their second clause must be as well Thus, there are two ways to make
use of the information encoded in such a statement. The first is to deduce the
consequent from the antecedent; the second is to require that the consequent hold any
time the antecedent is realized through a side-effect.

TYPE-RESTRICTIONS INdy be regarded as a special case of require statements in which
the antecedent is a parT or INpExeo-parT statement and in which the consequent is an
osyect-Tyre statement. In fact, both types of statements are translated into REASON
rules in a rather straightforward manner which makes this clear. For example, the
above require statement leads to the following:

(Rule ((:a (Item :is :index :obj))
(:b (type :is indexed-structure)))
(Assert '(Index :is :index) '(require :a :b c)))

where ¢ is the fact-name of the require statement. Similarly a rvee-restricTION wWould
be translated into the following:

(Rule ((:a (Left :bt :node))
(:b (type :bt binary-tree)))
(Assert '(Type :node binary-tree) '(type-rest :a :b c)))

where ¢ is the fact-name of the tvre-resTrICTION Statement,

Given these means for describing the component structure of an object-type we
may now go on to define properties and relations of data-objects. Consider a siNarY-
Tree; we would like to describe what it means to be a nooe of such a tree. We do this
with a simple recursive definition: a Nooe Of a NoN-TERMINAL BINARY-TReE is either the Tree
itself or a wooe of the Lert of the TRee or a wooe of the rieht of the tree. The only Nooe
of a rerminaL sInarv-TReE is the Tree itself. this is represented as follows:
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Relation-Definition (node non-terminal binary-tree)
¢=> (or (1id non-terminal binary-tree)
{node [left non-terminal] binary-tree)
(node [right non-terminal] binary-tree)))

Relation-Definition (node terminal binary-tree)
¢(=> (id terminal binary-tree))

Notige that assertions of the data-description language do not use REASON variables

:NON-TERMINAL) but only simple identifiers (e.g. won-terminal). This is a notational

conyenience which is possible since REASON translates these statements into REASON

which do use variables.

There is a second notational shorthand involved here. Each 1oentirier (ie.
ything other than the logical operators and the predicate names) used in a data-
iption statement is an osJect-Tvee (e.g. BINARY-TREE, NoN-TERMINAL, etc.). This allows
‘Hons to be poly-morphic, i.e. one relation (such as memser) may apply to many
rent pairs of object-types. wmemser, for example, is a relation which holds between
and osyects, wasu-TapLes and EentRies, ALists and ooTteo-pairs, etc. The use of
gt-types as the 1oentiFiers of the reation-oeriniTioN restricts the applicability of the
ition to exactly those cases where the objects involved satisfy the type constraints
ied by the 1oentiriers.  (1oentifiers may actually be subscripted object-types such as
gRMINAL-1 In those cases where there is more than one object of a type mentioned
in a single relation). It is important to remember that this notational principle
ies only to statements of the data-description language, not to REASON's rules.
n data-description assertions are translated into the rules of the reasoning system,
requirements implicitly represented by the roenTiriers of the data description

stat¢ment are made explicit as triggers of the rule.

the
thes
aboy

RELATION-DEFINITIONS are used in a number of ways in REASON, corresponding to
Various ways in which implications can be used in logic systems. The simplest of
el is the substitution of a right hand side for the left. REASON translates the
¢ definition into the following rule which will make this substitution if requested

to dg so:

For
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(Rule
((:e (expand ((node :nt :bt) :s))))
(Rule )
((:a ({node :nt :bt) :s))
(:b ((non-terminal :nt) :s))
(:c ((binary-tree :bt) :s)))
(Assert '(Or (id :nt :bt)
((node <[1eft :nt] :s2 :bt) :s)
((node <[right :nt] :s2 :bt) :s))
'(Rel-def :a :b :c F-1))))

In this rule there are two levels of invocation. The outer level is triggered by an
explicit request to expand the assertion. This creates the inner rule which checks to
see if, in fact, the assertion to be expanded is believed and then checks to see if the
TYPE-CoNsTRAINTS are satisfied.  If so, the definition is asserted and justified by the
triggering facts.  However, if the type-constRaINTs are not satisfied then this rule
represents an inappropriate definition and no assertion is made.

A second use of reLaTION-DEFINITIONS is in the antecedent deduction of a relation
such as wmemser from the facts corresponding to the right hand side of the definition.

For example, the following is the standard recursive definition for membership in a
LIST.

F-3 (Relation-definition (Member List Object)
<=> (or (first 1ist object) (member [rest 1ist] object)))

This definition has the following antecedent use: if we know that an object is the
FIRsT Of a vist, or if we know that it is a memser of the rest of the List, then we can

infer that it is a memser of the List.  This corresponds to two rules which REASON
creates from this definition:
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B ((type 21 1ist) :s)))

((:3 ((first :1 :0) :s))
Jert "((member :1 :0) :s) '(Rel-def :a :b F-3)))

((:S ((rest :1 :r) :s))

(ass

Not
into
clau
are

((member :r :0) :s))
((type :1 list) :s)))
grt '((member :1 :0) :s) '(Rel-def :a :b :c :d F-3)))

¢e that in the second rule REASON translated the reference expression [RresT L1sT)
a pattern in the trigger set of the rule. All reference expressions within the
5es of a recation-oeriniTion are handled in this way; recursively nested expressions
brought out to the top level. memser in a wasw-TasLe is such a relation. A HasH-TABLE

is an| inoexeo-structure in which each component (called a sucker) is a set, represented by

som(
into
into

| data-structure.  There is a functional relationship called wasw which maps entries
Inoices of the TasLe.  An entry is a memser of the tasie if it is a memser of the sucker
which it waswes.

F-4 (Relation-Definition (member hashtable entry)

<(=> (member [bucket hashtable [hash entry]] entry))

Thiﬁ definition is translated into the following rule.

Eac
the

For

(Rule
((:al ((Member :b :e) :s5))
(:a2 ((type :e entry) :s))
(:a3 ((type :b bucket) :s))
(:a4 ((hash :e :index) :s))
(:a5 ((bucket :t :index :b) :s))
(:a6 (type :t hashtable) :s))
(assert '((member :t :e) :s)
"(rel-def :al :a2 :a3 :ad4 :a :a6 F-4)))

§5uch rules are built by first replacing the reference expressions by equivalent

exisiantially quantified statements and then transforming the statement in clausal form.

disjunct of the resulting expression is then translated dxrectly into a rule with
S*t of conjuncts forming the trigger set.
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We should note that recations, like parts, are subject to Tvee-restRIcTIONs. These
restrictions are represented with the same notation as tvee-RestRICTIONS on parTs and
INDEXED-PARTS.  For example:

(Type-Restriction (node binary-tree) binary-tree)

which would be translated into a rule as shown earlier.

It is a rather common practice to build up new data-types by imposing
restrictions on already existing types. A common example is that of a LISP
association list (a-L1st for short) which is a List all of whose members are pairs. We
indicate this as follows:

(defining-restriction
{subset alist Vist)
(type-restriction (member alist) pair))

Several distinct types of information are extracted from such a statement, First, there
is the obvious susset relation between aList and tist, and the fact that the tvpe-
ResTRIcTION applies to the aList data-type. A simple rule adds these new facts:

(rule
((:a (defining-restriction :subset-fact :type-res-fact)))
(assert :subset-fact '(def-rest :a))
(assert :type-res-fact '(def-rest :a)))

However, there is u further piece of information in the oerining-resTRICTION which
is used in a consequent (backward chaining) manner. For example, if one wishes to
show that an object is an aList, one possible strategy is to first show that it is a List
and then show that it satisfies the defining restriction of having only rairs for memsers.
The following rule embodies this strategy.
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((:al (goa! ((Object-type :object alist) :s) for :goal in :context))
{:82 (defining-restriction (subset alist Tist) (type-restriction (member alist) pair))))
(propose-method
‘(Method :al (defining-restriction :a2)) '(def-rest :al 1a2)
(Assert
‘(conjunctive-goals (object-type :object list)
((for-all (:e1) ((member :object :el) :s)
((object-type :el pair) :s)))
(:a2)
(((object-type :object alist) :s) . :goal)
:context)
'{defining-restriction :al :a2))))

where the consunctive-coaL mechanism is explained in Chapter 4. Notice that if the

syst
con
FOR-A

=

n does conclude that an object is an aList, this conclusion will not depend on the
ol assertions created during the process but only on the ossect-Tvpe assertion, the

LL assertion, and the oerInINGg-RESTRICTION Statement.

Section 10.2: Parameterized Object Descriptions

| The statements I have shown so far allow us to state specific features of a data-

stru; ure; however, a descriptive method which "chunks" such statements into larger
par# Is of knowledge would be desirable. Such chunks of knowledge can then be

org
in sy
Th
whi

ized into a library of programming skills [Rich & Shrobe, 1976}, [Barstow, 1977]
ch a way that generalities are conveniently captured and specialized as needed.
basic unit of description in this system will be a parameterized object description,
1 is a collection of statements describing the structure of a data-object. The

par3tneters in an object description allow it to describe a family of related data-types.

The
sam
quit
[Wul

|

object-types seT-of-NumMseRs, SET-of-LIsTs, and unResTRIcTED-seTs are all defined by the
parameterized description, only the choice of parameters is changed. This is
similar to features found in CLU [Liskov, et al 1977] and ALPHARD
et al 1976]
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(Object-type-definition Set
(parameters: Members-type (type-restriction: object-type))
(partition Set into: (non-empty-set empty-set)
(Allows: Non-Empty-set (Member)))

(Relation (Member set members-type))

(type-restriction (Member set) Members-type)

(Relation (Union Set Set Set)

(definition: {Union $-1 S-2 §-3)
<=> (Equiv (:e1) {or (member s-1 :el)(member s-2 cel))

(member s-3 :el))))

)

The eouiv quantifier above is merely an abbreviation for two universal quantifiers,
one in each direction. REASON, in fact, treats these as abbreviations, translating
them into the two quantifiers when the object-type definition is read in.

In this definition, ser takes a single parameter which is required to be an object-
type name. This name is then used at various points in the definition, for example in
the tvee-restricTIoN statement. Such parameters act like the arguments to a macro
generator; the type definition for ser may be invoked with a specific parameter causing
a more specific type to be created in which the parameter is instantiated. The
following illustrates the syntax for such invocation:

(set (whose: (members-type: pos-number)))

which means the more specific object-type which consists of sets whose MEMBERS - TYPE
parameter is pos-numeer  Presumably, pos-numser is a valid object-type and therefore this
new type is as well. Inspection of the description indicates that this new object-type
allows only pos-numers as memsers, since the Memsers-Tvpe parameter is used in the vvpe-
RESTRICTION statement. Similarly,

(set (whose: (members-type: neg-number)})

would be the object-type of sets of negative numbers. The convention is made that
unspecified parameters assume a default value of unrestricted, so that the object-type
specified as ser with no parameters is treated as a ser whose MeMaeRrs may be of any
object-type.  Notice that parameters are given with Tvpe-resTRICTIONS; in practice
parameters are usually restricted to be either object-type names or numbers.
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To avoid writing out the rather cumbersome type expressions above I have
uded an is-a statement to give a name to such expressions. Thus, we could write:

prt-type-definition Set-of-Pos-Numbers
8 (set (whose: (members-type: pos-numbers)))))

enever an osJect-Tvpe expression is used (either in 1s-a clauses or elsewhere) an
Antiation process is invoked to add this new object-type into the hierarchy of

obje¢t-types. This invocation process consists of the following steps:

9z

When the definition is first entered an object-type is created whose name is the

nam¢ given in the definition statement and whose parameters are the default values.
This|will be referred to as the base-type, e.g. ser.

The new type is given a name. If used within an 1s-a clause the name is taken

from| the clause. Otherwise, a default name is created.

2.
are

The new type is declared to be a subtype of the base-type. berINING-RESTRICTIONS
gdded to reflect the effect of the specified parameters. For example, in the sev-

NUMB

3

&s.

or-v:z-nunazns object-type, the DeriNING-RESTRICTION is the TYPE-RESTRICTION Of MEMBERS tO POS-

Parameter values are substituted for parameter names, and the new object-type

name is substituted for the base-type name. Each statement within the definition is

then |processed. Those whose parameters are specified are asserted; those with default
valugs are not.

4

If there were unspecified parameters, the partially instantiated object-type

definjtion is added to the catalogue of object-type names. It, in turn, may serve as a

prot

tech

ptype for further instantiation.

t is often convenient to be able to describe a related family of objects, using
iques similar to those above. For example, we might want a parameterized way

of describing numeric-inTervaLs, using the upper and lower bounds as parameters. Each
instgntiation of this description is a particular object (not an object-type, as above),

but
desc

For

ach such object differs only in minor regards from other such objects. Such
riptions are made with a parameterized object description:
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(Object-definition Numeric-Interval
(Parameters: (Upper-bound (type-restriction: Integer)
Lower-bound (type-restriction: Integer))
(restriction: (Less-than Lower-bound Upper-bound)))
(1s-a: (Set (whose: (Members-type: Integers))))
(definition: (Numeric-lInterval (whose: (upper-bound: U)(1ower-bound: L)))
= {:el| (And (Tess-than :el U){(greater-than :el Lynn

Like object-type descriptions, object descriptions take parameters subject to certain
restrictions.  The 1s-a clause allows us to give an object-type name to any object
described by this parameterized description. Finally, the definition clause states an
equality which defines what objects are named by the current description.

Object descriptions are processed as follows:
() A new object-type is created using the name in the description as the type-name.
(for example, numeric-INTERVAL above).
(1) If there is an 1s-a clause, the object-type name is asserted to a sub-type of the
type named in the clause.
(2)  Any invocation of the description which leaves some parameters unspecified
creates a new object-type (for example, numeric-intervals whose lower bound is O).
(3) An invocation which specifies all parameters creates an object which is asserted to
be equal to the object specified in the definijtion clause. Finally, if the parameter-set
for this object is a more specific set than the one used to create the next less specific
object-type, then the object is asserted to be of that object-type. (For example, the
numeric interval whose upper bound is 5 and whose lower bound is 0 would be
asserted to be of the object-type of numeric intervals whose lower bound is O and
whose upper bound is unspecified).

Section 10.3: Implementation and Virtual Objects

One object can be used to simulate the behavior of another. In fact,
implementing more abstract data-structures using simpler ones is a great part of the
effort in symbolic programming. Most often we use data-structures to represent basic
mathematical concepts such as sers, sequences, MAPPINGS, 6RAPHS, and muLTi-sets. However,
there are a host of ways to build any of these representations.  setrs may be
represented by LISTS, ARRAYS, OF HASH-TABLES; MAPPINGS by LISTS-OF-PAIRS, PAIRS -OF - ARRAYS, HASH-
TABLES-OF -PAIRS, etC.
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The data-description language, therefore, requires two further extensions. First
we imust have a means of describing an implementation method; second, we need a
way | of stating that a particular abstract object is implemented using a particular
method. Let us consider the classic example of implementing a srack using an ARRAY
and |a porvter.  (What thesis could be complete without a stack implemented as an
array| and a pointer?) Let us say that we define a stack to be an object with two
parts, a tor and a HisTorY, where the wistorv is required to be another stacx (empry or
non-knpw). We may describe this as follows:

(Impliementation-Method Stack-As-Array

(Abstract-Object: Stack)

(Copkrete-Objects:

(Implementing-Array

(type-restriction:

(Array (whose: (members-type: [Members-type Stack])))))

(Implementing-Pointer

(type-restriction: Integer))

(restriction: (Index Implementing-Array Implementing-Pointer)))
(Repfesent: (Top Stack Object)

{definition: (Top S 0)

¢=> (Item Implementing-Array Implementing-Pointer 0)))

Beféte giving the rest of the method let us look at what we have so far. We say that
one|pbbject may be represented by the behavior of a set of other objects. using the
ABsTRACT-0BJECT and concrete-osdect clauses.  These, of course, include tvee and other
restrictions which establish the pre-requisite conditions of the representation. We then
describe how each of the undefined relations of the abstract object is mapped onto
relations involving the concrete objects. This is done in the reeresent clause using
equivalence statements like those used to define relations.

n implementation method implicitly defines a new object-type, namely objects
of the abstract type which are implemented according to the specific method. This
objedt-type is given the name of the IMPLEMENTATION-METHOD. Thus, we can build the
follc} ing REASON rules which relate properties of objects of the abstract type to
prode rties of objects of the concrete types:
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(rule ((:f1 ((Object-type :S1 Stack-As-Array) :sit))
f2 ({Implementing-Array :S1 :A) :sit))
f3 ((Implementing-Pointer :S1 :1) :sit))
fa ((item :A :1 :0) :sit)))
(Assert '((Top :S1 :0) :sit)
’ "(Implementation :fl :f2 :f3 :f4 :f5)))

(
(
(
(
A

(rule ((:f0 (expand ((top :S1 :0) :sit))))
(rule ((:f1 ((Object-type :S1 Stack-As-Array) :sit))
(:f2 ((Top :S1 :0) :sit)))
(Assert '((item [Implementing-Array :S1]
[Impiementing-Pointer :S1] :0) :sit)
'(Expand-Imp :fl :f2))))

Notice that each concrete object in an iMpLeMENTATION-METHOD iS given a name; this
allows us to refer to the concrete objects by their description e.g. "the IMpLEMENTING-
areay of stack-a1n. This bears such a similarity to the ways in which parts are used
that I refer to this as an implementation part. When a new Methoo is described,
assertions are added to the knowledge base stating what the implementation parts are:

(Implementation-Part Stack-As-Array Implementing-Pointer)
(Implementation-Part Stack-As-Array Implementing-Array)

The corresponding Type-resTrIcTION statements are also added to the knowledge base.
These are then used in exactly the same way as are part statements and their Type-
ResTRICTIONS.  Also notice that the object-type implicitly defined by an iMpLEMENTATION-
METHOD IS a subtype of the abstract type. When a new method is entered into the
system an assertion like the following is added to the data-base:

(Method-for Stack Stack-As-Array)

this triggers the following rule:

(Rule ((:f (Method-for :type-1 :type-2)))
(Assert '(Subset :type-2 :type-1)
'{method-implies-subset :f)))

We still need to define how the wistory (sus-stack) part of the stack is
implemented. Intuitively we want to say that the wistory is the svack implemented by
(1) The same array and (2) The number which is one smaller than that of the current
stack. In the data-description language, therefore, we let the iMPLEMENTATION-METHOD name
be a special operator. A predicate beginning with an IMPLEMENTATION-METHOD name
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inclydes a an object name and a whose clause for each impLEMENTATION-PART-NAME.  For
example,

t

(Stat -As-Array (whose: (Implementing-Array: Al){Implementing-Pointer: N1)) Stack-1)

means that stack-1 is the stack implemented by the array a1 and the number e, using

the

method stack-as-arrav. Thus, we may now describe how the history is represented

by stating:

(Repfeésent: (History Stack Stack)
(definition: (History S1 S2)

{=> (Stack-As-Array {whose:
(Implementing-Array: [Implementing-Array S1])
(Implementing-Pointer:
[plus 1 [Implementing-Pointer S1]])) $2)))

Usitil; the techniques I have shown so far, this is turned into the following rule:

(Rul;

i

RELAT
effeq
The

(

—~

b - N e e

:f1 ((Object-type :S1 Stack-As-Array) :sit))
:f2 ((Implementing-Array :S1 :A) :sit))
:f3 ((Implementing-Pointer :S1 :N1) :sit))
:f4 ((Plus 1 :N1 :N2) :sit))
:f5 ((Object-type :S2 Stack-As-Array) :sit))
:f6 ((Implementing-Array :52 :A) :sit))
:f7 ((Implementing-Pointer :S2 :N2) :sit)))
ssert '((History :S1 :S82) :sit)
"(implementation :f1 :f2 :f3 :f4 :f5 :f6 f7)))

The represent clauses in impLeMENTATION-METHOOS are handled almost exactly like
fon-oeriniTions.  In the next chapter, I will discuss how REASON analyzes side-
s, discussing the problems posed by defined relations extensively at that point.

reader should bear in mind that by defined relations I mean both ReLaTION-

oerIyiTIoNs and the equivalences given in the represent clauses.

' Before moving on to a brief catalogue of object-type descriptions, I should

observe that the terms abstract object and concrete object used in IMPLEMENTATION-METHODS

are

mak|

bit of a misnomer. Indeed, sometimes arravs are used to implement other arravs,
1g the notion of abstract and concrete fuzzy at best. This type of representation

is hidden in the above example about stacks, where we talked about the wistory. This

is, i

For

fact, nothing but another arrav represented as a sus-array of the first.
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It is a well known technique (used in sorting programs for example) to divide a
single array into sus-arravs, using indices to separate the conceptually distinct "virtual”
arrays. Thus, given an array and two numbers (x and 8) which are indices of that
array we can represent another array of size (8 - a) as follows: The 1th element of the
virtual array is the (a+ i)th element of the concrete array. This is expressed as
follows:

(Implementation-method Array-Segment
(Abstract-Object: Array)
(Concrete-Objects:
(Implementing-Array (type-restriction:
{Array (whose: (members-type: [members-type Array])))))
(Lower-Index (type-restriction: Integer))
(Upper-Index (type-restriction: Integer))
(restriction: (> [size Implementing-Array] [size Array])
(Index Implementing-Array Lower-Index)
(Index Implementing-Array Upper-Index)
(> Upper-index Lower-Index)
{Plus lower-index [Size Array] Upper-Index)))
(represent: (item array number object)
(definition: (Item A N Obj)
" (=) (item Implementing-Array [plus lower-bound N] Obj))))
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Section 10.4: A Catalogue of Object Descriptions

187

‘Bo far, I have introduced a number of mechanisms for the description of objects.

In t}lﬁs section I will present a systematic development of REASON's knowledge about

data

First, I will state the basic mathematical knowledge about sers, mappings, etc.

Theh I will define several basic programming data-structures, leading up to L1sts, TReEs

and |4

etc. |1

(Objlc
(pan

(nJr

elationships.

t-type-definition Set

ameters: Members-type (type-restriction: Object-type)
Size (type-restriction: Pos-Number))

tition: Set into: (Non-Empty-Set Empty-Set)

\(
(Re1
(Tyn

(R
o3
(;

(R
(ni«J

For [

allows: Non-Empty-Set (member)))
ation: (Member Set Members-type))
e-restriction (Member Set) Members-type)
triction: (Cardinality Set Size))
ation: (Union Set Set Set)
finition: (Union S-1 S-2 S-3)
<=> (Equiv (:el) (Or (Member S-1 :el)}{Member $-2 :el))
(Member S-3 :el))))
ation: (Intersection Set Set Set)
finition: (Intersection S-1 §-2 S-3)
<=> (Equiv (:el) (And (Member S-1 :e))(Member S-2 :el))
(Member S-3 :el))))
tion: (Set-Minus Set Set Set)
ﬁinition: (Set-Minus S-1 §-2 §-3)

(Member S-3 :e1))))

fomplex Program Understanding

SSOCIATIVE-RETRIEVAL HASH-TABLES like that coded in the scenario.

<=> (Equiv (:el) (And (Member S-1 :el)(Not (Member S-2 :el)))

' will begin by defining set as an object-type with Memsershie, UNION, INTERSECTION,
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(Relation: (Equal Set Set)
(definition: (Equal S-1 §-2)
<=> (Equiv (:el) (Member S-1 :el}
(Member S-2 :el))))
(Relation: (Size Set Pos-Number)
(definition: (Size S N)
<(=> (If (Object-type S Empty-Set)
then (Size S 8)
else (For-all (Member § :el)
(Size [Set-Minus S { :el}]
[(Minus N 1]))))))

Notice that in the definition of size, I introduced the braces (¢ ...;) notation for set
presentation. REASON (using the macro character facilities of MacLisp) translates
this notation into the form which is used internally. Set presentation with braces can
take either of two forms, extensional or intentional; in the former the set is presented
by listing its members within the braces:

{1259}

Intentional presentation defines the members of a set as those objects which satisfy a
formula with one free variable. The variable is given before a vertical bar | and the
sentence afterwards. For example, the set of pigs with wings is presented as follows:

{:x] (and (pig :x)(winged :x))}

In the internal form, these are represented as follows:

(Extensional-Set (List of Objects)> Set)
(Intentional-Set :variable Pred Set)

for example,

(Extensional-Set (1 2 5 9) $-1)
{Intentional-Set :x (and (pig :x)(winged :x)) $-2)

which say respectively that s-1 is the set of the numbers 1 2 5 and 9 and that s-2 is
the set of pigs with wings.
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| The following set of REASON rules interpret these assertions:

(Rule|((:f (Intentional-Set :var :pred :set)))
(Assert '(object-type :set Set) '(Int-Set-Type :f))
(Rulte ((:f :pred))

(Assert '(Member :Set :Var) '(Int-Set-Mem :f :g))))

(Rule||((:f (Intentional-Set :var :pred :set))
(:g (Not :pred)))
(Assert '(Not (Member :set :var)) '(Int-Set-Not-Mem :f :g)))

(Rule|[((:f (Extensional-Set :1ist :set)))
{|(Assert '(object-type :set Set) '(Ext-Set-Type :f))
(Mapc '(Lambda (x)
{Assert '(Member :set ,x) '(Ext-Set-Mem :f)))
1ist))

(Rulé ((:f (show (not (member :set :object)) by (ext-set)

: for :goal in :context))

(:9 (extensional-set :list :set)))

“[{Or (member :object :1ist)

(Assert '(Not (member :set :object)) '(ext-set-not-mem :g))))

(Rule|((:f (goal (Member :set :obj) for :goal in :context))
| (g (Intentional-Set :var :pred :set)))
; (Propose-Method
"(Method :f (Int-Set :g)) '(IntSet :f :g)
{(let ((:new-pred (subst :obj :var :pred)))
(goal-assert :new-pred '((Member :set :obj) . :goal)
:context '(Int-set-subgoal :f :g)))))

wheb the above is a consequent rule which is used only when requested. It simply
statjz that a sufficient sub-goal is to show that the object satisfies the defining
predicate.
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The next mathematical object-type in REASON's knowledge base is mappings:

(Object-type-definition Mapping
{parameters: domain-type (type-restriction: object-type)
range-type (type-restriction: object-type))
(is-a: (Set
(whose: (members-type: (association
(whose: (key-type: domain-type)
(value-type: range-type)))))))
(Relation: (Image Mapping domain-type range-type)
(definition: (Image Map Key Value)
{=> (There-is (:e1) (Member Map :el)
such-that (And (Key :el Key)(Value :el Value)))))
(Relation: (Domain Mapping (Set (whose: (Members-type: domain-type))))
(definition: (Domain Map D)
<=> (1d D {:el| (There-is (:as) (Member Map :as)
such-that (Key :as :el1))})))
(Relation: (Range Mapping (set (whose: (members-type range-type))))
(definition: (Range Map R)
<=> (1d R {:el| (There-is (:as) (Member Map :as)
such-that (Value :as :el))}))

(Relation: (Range-Element Mapping Range-type)
(definition: (Range-element Map R)
{=> (Member [Range Map] R)))
(Relation: (domain-Element Mapping domain-type)
(definition: (domain-element Map R)
<=> (Member [domain Map] R)))

Notice that I used the notion of an association (or parr) in defining a marpine. The
following defines associations:

(Object-type-definition Association
(parameters: Key-type (type-restriction: object-type)
Value-type (type-restriction: object-type))
{parts: Key (type-restriction: Key-type)
Value (type-restriction: Value-type)))

I will now define two more specific kinds of marpines, namely runctions and 1-To-1
MAPP INGS.
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t-type-definition Function
ning-restriction: (subtype function mapping)
triction: (For-all (:d) (domain-element Mapping :d)
(there-is-a-unique (:as) (Member Mapping :as)
such-that (key :as :d))))))

t-type-definition 1-to-1-Mapping
hing-restriction: (sub-type l-to-1-mapping function)
triction: (For-all (:r) (Range-element function :r)
(there-is-a-unique (:as) (member function :as)
such-that (value :as :r))))))

tion.

A seQuence is a mapping from a NUMERIC-INTERVAL tO @ SET:

t-type-definition: Sequence

(Parhmeters: Size (type-restriction: Pos-Integer)

(is-a

Members-type (type-restriction: Object-type))
. (Function
(whose: (domain:
(Numeric-interval
(whose: (lower-limit: @)
(upper-limit: size))))
(range-type: Members-type)))

(renpme: (Range-element to: Member)

mean

(domain-element to: Index))))

has ajready been given in the text; I will repeat it here as well:

For 4(
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e that since funcrions are mappings and 1-To-1-mappINgS are Functions, each of these
be invoked with the oomain-tvee and ranee-Tvre parameters specified in the mapping

Notice that I used a rename clause within the 1s-a expression above. This simply
5 that what was called ranse-eLement in the type runcrion is called memser in the type
seoue!ncs. REASON copies in the old definition, substituting memser for RANGE-ELEMENT.

‘[The description of sequences makes use of the notion of a NuMeric-InTERvAL which
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(Object-definition Numeric-Interval
(Parameters: (Upper-bound (type-restriction: Integer)
Lower-bound (type-restriction: Integer))
(restriction: (Less-than Lower-bound Upper-bound)))
(Is-a: (Set (whose: (Members-type: Integers}))))
{definition: (Numeric-Interval (whose: (upper-bound: U)(lower-bound: L)))
= {:el| (And (less-than :el U)(greater-than :el L))}))

A sequence of particular importance (particularly in describing arravs) is a sequence of
positive integers of a given size. Since I will use such objects in defining arravs I will
need to define a notion of one such sequence being within the bounds established by
another such sequence (e.g. a seouence of indices being within the array bounds).

(Object-type-definition Sequence-of-pos-integers

{Parameters: Size (type-restriction: Pos-Integer))

(Is-a: (Sequence (whose: (Members-type: Pos-Integer)

(Srze: size)))
(rename: Image to: Item))
(Relation : (In-bounds Sequence-of-Pos-integers Sequence-of-Pos-integers)
(definition: (In-bounds S-1 $-2)
<{=> (For-all (:index) (Index S-1 :Index)
(Less-than [Item S-1 :Index] [Item S-2 :index])))))

I will now define arravs as they are found in MacLisp (all dimensions are positive
integers).

(Object-type-definition Lisp-Array
(Parameters: dimension (type-restriction: Pos-Integer)
Upper-bound (type-restriction:
(Sequence-of-Pos-Integers (whose: (size: dimension))))
Members-type (Type-restriction: object-type))
(Indexed-part: Item (type-restriction: Members-type)
(Index-restriction: Index
(type-restriction: (Sequence-of-Pos-Integers (whose: (size: dimension))))
(restriction: {Within-bounds Index Upper-bound))))
(Relation: (Index-of Lisp-Array
(Sequence-of -Pos-Integers (whose: (size: dimension))))
(definition: (Index-of Array Seq)
<=> (Within-bounds Seq Upper-bound))))
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I will now move to a more complicated data-structure, namely hash-coded data-bases.
There are several such systems, the features common to all of them is the use of a

HASHd

(obij

(pa

Ne-Function and an arrav. I will start by defining a wasw function.

gt-type-definition hash
ameters: domain-type (type-restriction: object-type)
size (type-restriction: pos-integer))

i
(is4a: function (whose: (domain-type: domain-type)

The|
item,
part|
basei

(range: (numeric-interval:
(whose: (lower-bound: @)
(upper-bound: size)))))))

simplest hashing system is one which calculates a wasw from the entire data-base
The next simplest is an associative system which calculates the nasw on the xev
of the data-base item. Both these insert the item into a single place in the data-
A more complicated system will be described later.

(Objeqt-type-definition hashtable
(Parjameters: Members-type (type-restriction: object-type)

size (type-restriction: pos-integer)
hash (type-restriction: (hash
(whose: (domain-type: Members-type)
(size: size)))))

(is<4: (lisp-array {(whose: (members-type:

(Req
(dd

Now

(set: (whose: (members-type: Members-type))))
(size: size)))

(rename: item to: bucket-part))

tion: (Member hashtable Members-type)

inition: {Member ht el)

<=> (Member [bucket-part ht [hash e1]] el))))

for the associative version of HASH-TABLES:

For iﬂlomplex Program Understanding
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(Object-type-definition associative-hashtable
(Parameters: key-type (type-restriction: object-type)
value-type (type-restriction: object-type)
size (type-restriction: pos-integer)
hash (type-restriction:
{(hash (whose: (domain-type: Key-type)
(size: size))))
(is-a:
(1isp-array
{whose: {members-type:
(set: (whose: (members-type:
(association (whose: (key-type:key-type)
(value-type: value-type)))))))
(size: size)))
(rename: item to: bucket-part))
(Retlation: (Member hashtable Members-type)
(definition: (Member ht el)
<=> (Member [bucket-part ht [hash [key e1]]] el1))))

So far I have not dealt with recursively defined structures such as Lists, TRees, GRAPHS,
etc. I will develop these by first defining an object-type called recursive-structures. I
will then define L1sts, Trees, etc. as special cases of this object-type.

Dependency Directed Reasoning
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t-type-definition Recursive-structure

tition: Recursive-Structure into: (terminal non-terminal)

(allows: non-terminal (Immediate-children)))

s ~3Lrecurswve structure is always built from the "recurring parts" which are

I

1led the non-terminals and the "stopping parts" which are called terminals.

(pad]reters: value-names (type-restriction: set))
S

Immediate-Children (type-restriction:
(set: (whose:
{members-type: Recursive-structure))))
Values (type-restriction: (association: (whose: (domain: value-names)))))

HM jre definition is parameterized by a set of "values" which are other fields
r

esent at each node, but which are not involved in the recursion

f ow make the basic definitions. The immediate children are the first

evel of recursion, i.e. the nodes pointed to directly by the current node
tion: (immediate-child recursive-structure recursive-structure)

inition: (immediate-child rs-1 rs-2)

<=> (Member [immediate-children rs-1] rs-2)))

proper node 1s one gotten to via an immediate child link.
tion: (proper-node recursive-structure recursive-structure)
inition: (Proper-node rs-1 rs-2)
<=> {(Or (immediate-child rs-1 rs-2)
(there-is (immediate-child rs-1 :ic)
such-that (proper-node :ic rs-2)))))

ode is the transitive closure of immediate child. 1.e. anything you can

voeo

et to by first going to an immediate child and then its immediate child, etc.

(reﬂ tion: (node recursive-structure recursive-structure)

(de

inition: (node rs-1 rs-2)
<=> (or (proper-node rs-1 rs-2)
(1d rs-1 rs-2))))

For }@:omplex Program Understanding
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+s: A terminal node is a node which is a terminal. It stops the recursion.
(relation: (terminal-node recursive-structure recursive-structure)
(definition: (terminal-node rs-1 rs-2)
<=> (and (node rs-1 rs-2)(object-type rs-2 termin.l))))

;+s Non-terminal nodes are the other guys.
(relation: {non-terminal-node recursive-structure recursive-structure)
(definition: (Non-terminal-node rs-1 rs-2)
<=> (and (node rs-1 rs-2)(0Object-type rs-2 non-terminal))))

..y If all the non-terminal nodes have the same number of immediate children,
sss  this number is called the node degree. Lists have node degree 1, binary
;+. trees have node degree 2; some graphs have no degree by this def.
(relation: (Node-degree Recursive-structure Pos-integer)
(definition: (Node-degree RS N)
(=> (For-all (Non-terminal-Node RS :Node)
(Size [Immediate-Children :Node] N))))

M two structures share if they have a common node. This is very important
N for reasoning about side-effects.
(relation: (shares-structure recursive-structure recursive-structure)
(definition: (shares-structure rs-1 rs-2)
¢=> (There-is (proper-node rs-1 :node)
such-that (proper-node rs-2 :node))))

N if you can find a node somewhere in this structure which is a node of itself
N in a non-trivial way (nodes were defined to be nodes of themselves) then the
I structure has cycles. This is usually very bad.

(relation: (has-cycles recursive-structure)
(definition: {has-cycles rs-1)
{=> (There-is (node rs-1 :node)
such-that (proper-node :node :node))))

N Structures can be divided into those with cycies and those without

N notice that structures now have two different partitions.

(partition: recursive-structure into: (cyclic-structure acyclic-structure)
(dividing-criterion: (Has-cycles cyclic-structure)))
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he rule of structural induction can be applied to any acyclic structure
prove that some property holds for all of its nodes.
rule:
: Property
(where: {occurs-in Property :var)

(object-type :var acyclic-structure)))
joals: (for-all (:term)(terminal-node acyclic-structure :term)

,(subst :term :var property))
(for-all (:non-term) (non-terminal-node acyclic-structure :non-term)

(implies

(for-all {(:child)(immediate-child :non-term :child)

,(subst :child :var property))
.(subst :non-term :var property))))))

s the only object-type definition so far where I have found it useful to include a
eute with the definition. The syntax is, therefore, somewhat ad hoc. REASON

buildg a consequent reasoning rule and a method-proposer from this statement. The
method-proposer will trigger if there is a goal statement which includes an object
which is an acvcuic-structure.  If the method is accepted, it creates the two sub-goals

of sh
holds

swing that (1) The property holds for all rerminaL-noves of the object and (2) If it
for all mmmeorate-cuitoren of a wooe then it holds for the wooe itself. Notice the use

of cammas (,) in front of the susst expressions to indicate that they should be
evaluated (i.e. susst is to be invoked as a function; it is not a predicate name).
STRUCT{RAL- INDUCTION 1S also used on sinarv-tRees and Lists, but the rule is simply copied

into

their definitions since they are defined as special kinds of ReCURSIVE-STRUCTURES.

[Boyer & Moore, 1975,77] uses structural induction extensively to prove theorems in

recur

IMMED 1

sive function theory and Pure Lisp.

Next I will define a sinary-Tree as a special kind of acvcLic-recursive-sTructure whose
ATE-CHILDREN IS @ set of two BINARY-TREES.

(Objejt-type—definition Binary-tree

(Par

: Left (type-restriction: binary-tree)
Right (type-restriction: binary-tree))

(Is-a: (Acyclic-structure (whose: (Node-degree: 2)))
(map|: (Immediate-children binary-tree)

int

For (

o: {[Veft binary-tree]{right binary-tree]})))
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Notice the use of the map clause above. Remember that whenever a object is
defined with an 1s-a clause the system copies all the information about the super-type
into the new definition. The mr clause tells REASON that any expression involving
imMepTaTe-cHiLoreN in the definition of Rrecursive-structures should be replaced by an
identical expression involving the extensionally presented set above. This can be
regarded as an equivalence saying that if a sivarv-TRee is thought of as a
RECURSIVE-STRUCTURE then the set of iMMeoiate-cuiLoren is the set composed of the Lerr of
the tree and the rieut of the tree. In a siNaRy-TREe the IMMEDIATE-CHILOREN PART i a
virtual object composed of the two "real" parts, the Lert and the rieut.

Finally, I will define a visv as a data-type with two parts: a rirst and a RresT.
The chain of rests forms a recursive-structure. There is a substantial private
vocabulary associated with vists, which is indicated by the rename clauses. As above,
the map clauses are used to indicate how this structure satisfies the definition of
RECURSIVE-STRUCTURES. A new construct, the singleton type is introduced to take care of
the fact that in LISP the only possible ewprv-LisT is the special object ni.. A
SINGLETON-TYPE consists of one object; therefore, any object known to be of that type is
also know to be the unique object of that type. Finally, several relations peculiar to
L1sTs are introduced.
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t-type-definition List
meters: Members-type (type-restriction: Object-type))
s: First Rest (type-restriction: List))
ition: List into: (Empty-1ist Non-Empty-list)
(altows: Non-Empty-List (first rest member)))
leton-type: Empty-list object: Nil)
Recursive-structure (whose: (Node-degree: 1))
({immediate-children 1ist) into: {[rest tist]})
({values 1ist) into: {(first . [first 1ist])})))
ame: (node to: sublist)
(terminal to: empty-list)
(non-terminal to: non-empty-1ist)
(non-terminal-node to: non-empty-sublist)
(terminal-node to: empty-sublist)))
tion: (Member List Members-type)
inition: (Member L 0)
<=> (Or (First L 0)

{Member [rest L] 0))))
tion: (Length List Pos-Integer)
inition: (Length L N)
<(=> (if (Object-type L Empty-List)

then (id N 9)

else (Length [rest 1ist] [Minus N 1] ))))
tion: (Comes-before-in List Members-type Members-type)
inition: (Comes-before-in L 0-1 0-2)
<=> (There-is (Sublist L :Sub)

Such-That (And (First :Sub 0-1)
(Member [Rest :SubJ 0-2)}))))

BUCKET HASHED tO by any of its TerMINAL-NoODES.
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e that in the mar clause, the vaiues part of the RecursiVE-sTRUCTURE iS mapped onto
piring of the name -rirst» with the rirst part of the visr.

The final object I will present is the CONNIVER-style associative-retrieval
ng system. This is an arrav each of whose items are Lists.
tons which are sinarv-TRees. An asserTion is a memser of the TasLe if it is @ Memser of

The array holds
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(Object-typc-definition Conniver-hash-table
(Parameters: size (type-restriction: pos-integer)
hash (type-restriction:
(hash
(whose:
(domain-type: (pair: (whose: (left: Atom)
(right: Pos-Number))))
(size: size)))))
(is-a: (lisp-array (whose: (members-type:
(set: (whose: (members-type: binary-tree-of-atoms))))
(size: size)))
(rename: item to: bucket-part))
(Relation: (Member hashtable Binary-Tree-of-Atoms)
(definition: (Member ht el)
{=> (for-all (:node) (terminal-node el :node)
(for-all (:pos) (position-in ht :node :index)
(Member [bucket-part ht [hash :node :index]] e1)}))))

The full-blown programmer's apprentice system will have an even more extensive
catalogue of descriptions; however, my point here is not so much to present the
complete catalogue used in REASON, as to show how the reasoning system gets its
information. The compete catalogue used by the apprentice is being worked on by
Rich [Rich, 1977,78] It is also for this reason that I did not include spec-types for
the various operations associated with object-types as is done in data-abstraction

languages. The final catalogue will do so, but for the reasoning system's purposes this
1s not necessary.
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Chapter 11: Reasoning About Side-effects

The ability to change the structure of an object while leaving its identity
unchanged provides a powerful mechanism for modularity ard abstraction in advanced
progrpmming languages such as LISP.  However, precisely because side-effects on
global and shared structures possess such potential power, they also allow enormous
room| for error. When a segment causes a side-effect it saves itself the worry of
communicating with a hoard of other segments which might access the same structure,
but jt does so at the price of requiring an assurance that it is safe to make the
propgsed change. This assurance, unfortunately can only be gained by engaging in a
non-Jocal and expensive form of reasoning.

Simple changes can result in non-trivial results, something every experienced
programmer has learned the hard way. Since complex structures are built from less
complex objects, it follows that a side-effect to a part of a structure can change
properties of the whole structure. Even worse, since complex structures may share
sub-sfructure, a modification to one data structure might change a property of some
other| data structure which had been thought of as a completely separate object. In
reasoning about the results of a particular action, REASON must assess what
properties besides those explicitly stated will also change.

[n the context of common sense reasoning in Al this general problem has been
termed the frame problem in [McCarthy and Hayes, 1967 & 69] and has received a
consiflerable degree of attention [Raphael, 1970], [Hayes, 1971a & bl An example
will jllustrate the problem. Suppose I tell you that the saucer was taken to the
kitchen. If you knew that the cup was on the saucer, then you would probably infer
that |the cup was now in the kitchen; the inference would probably be correct since
there| is a causal relationship between the location of the cup and the location of the
saucer upon which it is placed. However, you would also never think to ask whether

the spucer had changed color when it was removed to the kitchen, since motion has
little ito do with position.

[n common sense reasoning, one has to assume that most things don't change
unles§ there is strong reason to believe that they do. When such assumptions lead to
trouble, one re-examines his current belief system and rearranges things to correspond
to the realities. In the case of program understanding, similar techniques also apply.

Consider the following procedure for swapping the first element of two lists of
numbers without using a temporary variable:

For Complex Program Understanding
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(defun swap (1ist-1 1ist-2)
{rplaca Vlist-1 (- (car Vist-1){car 1ist-2)))
(rplaca tist-2 (+ (car Vist-1)(car 1ist-2)})
(rplaca 1list-1 (- (car list-2)(car Vist-1))))

a brief explanation of this procedure might be helpful. Suppose that the car of LisT-1
is a and the car of t1s1-2 is 8. Then the sequence of additions and subtractions leaves
the following values in the first position of the two lists:

Tist-1 1list-2 reason
inttially a b
first subt a-b b
addition a-b a b+ (a-b)=a
2nd subt b a a-(a-b)=0»b

Interestingly enough, this program has a bug; furthermore, few programmers (even
experts) spot the bug when examining the program. (The reader might try to figure
out what the problem is now before proceeding).

The problem is illustrated by considering what this program will do if called with
the same object for both arguments:

(swap 1ist-23 1ist-23)

Since the formal parameters List-1 and List-2 are bound to the same object, the
procedure fails, putting O into the car of L1s1-23. The fact that most programmers fail
to spot this bug indicates that they are assuming that the two arguments are distinct
lists, even though they have no evidence supporting this assumption.

This indicates that, as in common sense reasoning, programmers use more than
one strategy for analyzing the effect of an action. In the more reckless strategy, one
assumes that things are not changed unless there is reason to believe they do. This
has the advantage of being right most of the time, requiring less effort, and allowing
the programmer to form a "first order” theory of what the code does. In the more
careful strategy, one does the opposite, assuming things are affected unless evidence to

Dependency Directed Reasoning
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dontrary exists. This, has the advantage of never allowing a false conclusion to be

drawp, but the disadvantage of requiring much greater effort, to the extent that it can

prev

gnt one from forming a “first order” understanding. In developing REASON, I

have|experimented with two protocols corresponding to these two forms of analysis. 1

will

present these protocols after presenting some notational preliminaries in this next

section.

Section 11.1: Specifying Side-effects

REASON allows special kinds of spec clauses to facilitate the description of

side-e¢ffects.  The two such basic clauses are sioe-eFFect and New which have the
following format:

The

(Side-Effect changed-object Input-Sit Output-Sit New-clause)
(New New-Object Input-Sit Output-Sit New-Clause)

first of these states that on the transition from the input situation of the segment

to ﬁlle output situation of the segment the cuanceo-osdect is subjected to a side-effect
whic

makes wew-cLause true in the output situation. The second type of assertion

states that a new object is brought into existence (through use of the cons or related

oper
the

*tions) on the transition from the input to the output situation of the segment;
q w object satisfies the property stated in New-cLAUSE.

Within a segment's specs clauses the transition part of these statements is omitted

since | it can unambiguously be inferred by the symbolic interpreter. Thus, in specs

one

talk

ray write

(Side-effect object clause)
{New object clause)

bince a side-effect changes properties of an object we would like a simple way to
dbout the object both before and after the side-effect is performed. We already

have lone mechanism, the object state description (<object situation)) which allows us

to d

igtinguish between input and output states of the object. However, for notational

simplicity we also introduce another method. We allow the outeuts clause to create a

For
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second name for an input object, as follows:

(outputs: (new-name id-to input-name))

This new name is referred to as the owtpur name, whenever it is used in an ASSERT
clause, it implicitly refers to the object in the output situation. Notice that spec
clauses are usually stated without explicit situation tags since these can be provided by
the symbolic interpreter using simple defaulting rules.

The specs for a simple side-effect like reiaco can be stated as follows using this
notation:

(defspecs rplacd
(inputs: a-1ist new-rest)
(expect: (object-type a-list list))
(outputs: (the-new-list id-to a-list))
(assert: (side-effect a-list (rest the-new-1ist new-rest))))

In evaluating a set of specs, the symbolic interpreter builds a mapping which
matches input and output ports to objects. An output port mentioned in an 10-7T0
clause is bound to the same object as is the input port of the clause. In the course
of interpreting the spec clause, the interpreter replaces input and output ports by the
objects to which they are matched. Also the interpreter examines whether there are
any output port names in the clause; if so, and if the clause is not explicitly tagged
with a situation name, the output situation is added in. Thus, assuming that reraco
were applied to List-1 and Rest-1 in s-o, resulting in the new situation s-1, the above
s1oe-eFFecT Clause would actually be asserted as:

(side-effect 1ist-1 S-0 S-1 (rest 1ist-1 rest-1))

This defaulting mechanism is quite useful in describing side-effects which relate some
property which is true of the object on input to some property true upon exit. For
example, we might want to increment by 1 some count field of a particular
data-structure.  We would then say that the count field in the output situation is 1
plus the count field in the input situation. This, of course, involves a reference
expression; the same defaulting rules apply here, if the reference expression mentions
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no opitput port it is defaulted to the input situation.

(defspecs bump
(inputs: a-record)
(expect: ... )
(outputs: (the-new-record id-to a-record))
(assert:
(side-effect a-record
(count the-new-record [plus 1 [count a-record]]))))

Assuming that the segment is applied to recoro-1 in s-o yielding s-1 this is asserted as:

(sideé{effect record-1 S-8 S-1

Notic
input
situdj

(count record-1 {[plus 1 {[count a-record] 5-0} ] $-0}))

e that in making the defaults a reference expression which is resolved in the

situation is regarded as an input name, while one resolved in the output

ion is regarded as an output name and will force any enclosing expression to be

regarded as an output expression. This is not always convenient but it can always be
overtridden by use of explicit object-state descriptions or fully spelled out reference

expre

where

the j
These

of im
strugt

ssions.  For example, the LISP function wreverse may be described as follows:

(defspecs nreverse
(inputs: a-1ist)
(expect: (object-type a-1ist 1ist))
(outputs: new-1ist)
{assert: ((last-cell a-list newlist) #befores)
(reverse <a-1ist *before*)> <new-list *afters>)))

, as mentioned in Chapter 5, serores and +aFTers are special symbols provided by
ymbolic evaluator to stand for the input and output situations of the segment.
specs state that (1) the output list was the last cell of the input list at the time
ocation of the segment and (2) that the output list at the time of output has a
ure which is the reverse of that possessed by the input list at the time of inpuz.
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It should be noted that although the sioe-errect and new clauses are special in the
sense that they are explicitly trans-situational assertions, they are otherwise normal
In particular, sie-errect clauses can be part of a quantified statement. For example,
we might want to say that certain members of a set (those having a particular «ev)
were side-effected to turn on a particular mare. (This is done in one version of a
FasT-INTERSECTION routine). This can be expressed as follows:

(defspecs mark-some

(inputs: the-list the-key)

(expect: (object-type the-list list)

(object-type the-key key))
(outputs: (the-new-1ist id-to the-list))
(assert:
(for-all (:member) (member the-new-list :member)
(implies (key :member the-key) ]
(side-effect :member (marked :member))))))

This quantified statement is treated in exactly the same manner as other statements; it
is asserted after the objects have been substituted for the input and output port
names. Asserting a ror-aLL statement, as we have seen in Chapter 4, creates a rule
which triggers if its pattern is matched. This, in turn will create a rule for the
impLies statement, which triggers if its pattern is matched. If both these patterns are
matched, (which is equivalent to saying that we know about a particular object which
both is a member of the list and has the appropriate key) then the system will

conclude that a side-effect definitely took place, namely that this member of the list
was marked.

Section 11.2: Reasoning About Simple Side Effects

Reasoning about side effects is conceptualized by thinking of the segment as
forming a transition between its input and output situations. Side-effect processing
consists of deducing which properties can be moved across this transition safely; I,
therefore, refer to this process as transition analysis. My general approach of explicitly
recording dependencies suggests that REASON should provide a justification whenever
it decides to move a fact across a transition. Similarly, if it decides not to move a
fact it should justify this decision as well  These recorded dependencies allow
REASON to make an initial decision based on a cursory analysis of the circumstances,
while still reserving for itself the option of reconsidering in more detail at a later
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The basic protocol is as follows: An assertion in the input situation of a

tran$c1|tiou can be moved to the output situation of the transition only if there is an

expli

it assertion declaring it safe to do so. In phase one of the analysis, simple rules

are run to find reasons for not moving a fact. If such cause is found, these rules
asseft| that it is wnsafe to move the fact. At the end of this process each assertion is

asset

d to be safe to move; however, the justification for this safe assertion is

non-thonotonic, depending on the oumess of the corresponding unsafe assertion. Thus,
if axi ' reason for considering the assertion unsafe had been found, the unsafe assertion
will |be in, causing the safe assertion to be out If at the end of this process a safe
assetfion is in for a particular fact, then the fact will be asserted in the output
situétion with its justification pointing to the safe assertion. The following rules carry

out tt

For [(

hese operations:
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The Default Assumer for the Careful Protocol

(rule ({:f (side-effect :object :in-sit :out-sit :new-fact))
(:g (:01d-fact :in-sit))
(:h (transition :in-sit :out-sit)))
(assume '(not (safe :g :in-sit :out-sit))
‘(safety-first :f :g :h)))

The Default Assumer for the Fast and Dirty Protoco!l

(rule ((:f (side-effect :object :in-sit :out-sit :new-fact))
(:g (:01d-fact :in-sit))
(:h (transition :in-sit :out-sit)))
(assume '(safe :g :in-sit :out-sit)
'(reckless-abandon :f :g :h)))

The Safe Fact Mover

{rule ((:f (safe :0ld-fact :in-sit :out-sit))
(:old-fact (:fact :in-sit))
(:g (transition :in-sit :out-sit))
{Assert '(:fact :out-sit) '(safe-from-side-effect :f :g)))

Make The Side-effect Appear In The New Situation

(rule ((:f (side-effect :object :in-sit :out-sit :new-fact)))
(assert '(:new-fact :out-sit)
'(side-effects-happen :f)))

where the last of these merely asserts that the relation stated in the side-effect

assertion is true in the output situation; this is, of course, independent of the safe
assertions.

.I have not yet shown any rules for determining what is safe and what is not.

The simplest such rule is the rule of direct negation which says that a fact which is
explicitly negated by a side-effect is unsafe:
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(rule ((:f (side-effect :obj :in-sit :out-sit (not :fact)))
(:g (:fact :in-sit)))
(Assert '(not (safe :g :in-sit :out-sit))
'{direct-negation :f :g)))

Another simple side-effect rule concerns objects with parts. Suppose that a
recorgl is modified to change one of its parts to a new value. It follows, that the
asseffion stating the old value of the affected part of the record is not a safe
assertion. The following rule states this fact:

(rule ((:f (side-effect :object :in-sit :out-sit
(:part-name :object :new-value)))
(:g ((object-type :object :type) :in-sit))
{:h {part :type :part-name))
{:7 ((:part-name :object :old-value) :in-sit)))
(assert '(not (safe :i :in-sit :out-sit))
'(part-side-effect :f :g :h :i)))

A second rule is that a part-replacing side-effect cannot affect a part assertion
involying a different part-name.

e

(rule ((:fl1 (side-effect :object-1 :s-1 :s-2
( :new-part-name :object-1 :new-part)))
{:f2 {{:01d-part-name :object-2 :old-part) :s-1)))

3 {cond

((eq :old-part-name :new-part-name))

(t

(assert '(safe :f2 :s-1 :5-2)
'(diff-part-side-effect :f1 :f2)))))

rules |also exists for the independence of indexed-part assertions from part side-effects
and |Yice versa.

The next rule is for side-effects to indexed-parts. This rule introduces a new
levell jof complexity due to the presence of incomplete knowledge.  Suppose we have an
object with an indexed structure (for example, an array, a HASH-TABLE, or a record
strugture including an areav) and that this object is modified changing the part indexed
by 1npex-o.  Also suppose that we have an assertion saying what is the part indexed by
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INDEX-1.

S-1
(Ttem Array-1 Index-0 Object-1)

(Side-effect (Item Array-1 Index-1 Object-2))

|

§-2
Then, the side-effect should make the assertion unsafe if the two indices are identical
and leave it unaffected otherwise, as expressed in the following rule:

{(rule ((:f (side-effect :object :in-sit :out-sit
(:indexed-part-name :object :new-index :new-value)))
:g ((object-type :object :type) :in-sit))
:h (indexed-part :type :index-part-name))
11 ((:indexed-part-name :object :old-index :old-value) :in-sit)))
ssert '(if ((equal :o0ld-index :new-index) :input-sit)
then (not (safe :1 :in-sit :out-sit))

@ o~ o~ o~

(

else (safe :1 :in-sit :out-sit))
'(indexed-part-side-effect :f :g :h :1)))

This creates an 1r-Tuen-ecse assertion whose justification points to the statements
relating to the side-effect. If the premise of the ir-tuen-eLse (the equality of the two
indices) is determined to be true (false), then the Tven (eLse) clause of the 1r-THEN-ELSE iS
asserted. Its justification includes the 1f-tHen-eLse assertion and the equaL assertion or
its negation.

Notice, however, that it is altogether possible that neither the premise of the
IF-THEN-ELSE, noOr its negation are present in the data base and thus, that neither a sare
nor an uwnsare assertion will be created. Later in this chapter we will see an example
where, due to hypothetical reasoning, it is not possible to know whether the two
indices are equal or not, since one of them is an anonymous object, standing for a
"typical” index of the array.
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This has a very important impact on the protocol for side-effect processing.
Il that this process goes through two passes, the first of which is "fast and dirty"
rsponding to what most programmers would notice without explicitly considering
v-ball" cases). The second pass is more careful and iucludes an examination of

oddbpll cases of aliasing (like the swap example, shown earlier). The crucial point

here

is that, in the first pass analysis, we consider a fact sare unless evidence to the

contrary is found.

whet
(Le.

If we have an indexed-part side-effect as above, and it cannot be determined
ner the two indices are equal, then the rule shown above will make no assertion,
neither a safe not an unsafe assertion). But in the first pass "fast and dirty"

analysis, this lack of an unsafe assertion will be taken as grounds for assuming that
the 1assertion is safe; it will, therefore, be moved across the transition. This will not
be lagically incorrect, since the justifications for the assumption are explicit and can

be w
pass

ithdrawn; it is, however, not a very useful strategy. Even for a fast and dirty
this strategy is a little too dirty. It would be more useful to say that if it is

possible that the two indices are equal, then we should not consider the assertion sare,

but

should rather do a case analysis, considering separately the two possibilities of

equality and non-equality.

the
possil
possi
facili
asser
also!

F-2 {

For!{

Since the conclusion that the assertion is not sare is based on the possibility that
ndices are equal, we need a way of asserting that this possibility exists; this
vility assertion can then be included in the justification. Because the notion of
ility is used quite frequently, I have developed some syntactic mechanisms to
tate the use of the concept. The starting point is the observation that an
rion is possible as long as its negation is our; of course, if the assertion is in it is
possible.  Thus, the following support structure captures the notion of possibility:

F-3 (Possible ((Equal Index-8 Index-1) S-1))

X

Not ((Equal Index-8 Index-1) S-1)) F-1 ((Equal Index-0 Index-1) S-1)

Complex Program Understanding




212 Reasoning About Side-cffects

This structure is created by calling the function is-rossisLe with f-1 as argument
Calling 1s-possisLe does not make r-1 in nor does it make the negation of r-1 out it
simply creates a support structure which says that if r-1 is in or if r-1's negation, r-2,
is out then r-3 should be in. The result of this is that if r-1 is possible and 1s-possisLE
is called with -1 as argument then the assertion r-3 will be in

Given this, we can extend the rule for indexed-part side-effects to be more
cautious by adding the following to its body:

(is-possible ((equal :old-index :new-index) :input-sit))
{rule ((:f (possible ((equal :old-index :new-index) :input-sit))))
(assert
(not (safe (:indexed-part-name :object :o0ld-index :old-value)
tin-sit :out-sit))
(careful-indexed-part :f)))

This says that if it is at all possible that the indices are equal, then the indexed-part
assertion should not be declared sare. If REASON decides that moving this assertion
is important it can try backward chaining rules on the 1F-thEn-ELSE assertion to create a
case analysis. In one of these cases it will assume that the indices are not equal
This will cause the assertion f-2 (the inequality of the indices) to come in, which will
cause the possibility assertion -3 to go out since its only support is r-2. But this, in
turn, will our the unsare assertion since it depended on f-3. Finally, the 1r-THEN-ELSE
part of the rule shown earlier will trigger, declaring the assertion to be sare.

In the other half of the case analysis, if REASON assumes the indices to be
equal the r1r-then-eLse part of the rule will trigger, leading to the conclusion that the
assertion is not sare. It will still be true that it is possible for the indices to be equal,
so r-1 will stay in as will the wor sare assertion derived from it. In this case,
REASON will have two justifications for believing that the assertion is not sare.

As a further syntactic convenience, I have added an 1r-rossisLe-THEN-ELSE construct,
which is invoked as follows:
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(If-possible (:f fact-1)
then body-1
else body-2)

If HAct-1 is possible, then soov-1 is executed in a binding environment where :f is
bou;li to the possibility assertion for f-1.  If ract-1 is impossible (its negation is in),
then | soov-2 is executed in a binding environment in which :r is bound to the negation
of f-n. This is actually a macro for the following:

(is-possible fact-1)

(rule ((:f fact-1))
body-1)

(rule ((:f (not fact-1)))
body-2)
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Section 11.3: Safe-from and Not Safe-from

There is still a difficulty in the rules as stated. Whereas it is possible for a
single rule to determine that an assertion is not sare by looking at a single side-effect
assertion, it is not possible for it to determine that it is sare. It can only determine
that the particular side-effect being examined doesn't affect the assertion. There
might be other side-effects on this transition, however, which do affect it. It is,
therefore, necessary to be more specific in the notation, introducing a safe from
assertion which states that the assertion is unaffected by a particular side-effect.
Similarly, the negation of such an assertion would state that the particular side-effect
does affect the assertion in question. Thus if we had:

F-1 (Side-effect array-1 s-in s-out (Index array-1 index-1 object-2))
F-2  ((Index array-1 index-@ object-1) s-in)

we could write:

F-4 (Safe-from F-1 F-2)

The sare assertion originally used above can only be deduced if the old assertion is
sare from every side-effect on this transition. ~To make its assumptions explicit,
REASON first gathers up all the side-effects on the transition and explicitly records
the assumption that these are all the side-effects.

F-1 (side-effects-on-transition s-1 5-2 ( ... ))

Also a rule is created which triggers if any other side-effect on this transition is
noticed; this rule will negate the assumption that all the side-effects have been
considered, thus ouring the sare assertion and forcing a re-evaluation of the safety of
the assertion.  Finally, a set of conjunctive goals is established to show that the
assertion is sare from each side-effect on the transition. If these succeed, the
old-assertion is asserted to be sare. The sare assertion is given a justification which
points to each of the sare-rrom assertions gathered in the conjunctive goals, plus the
assertion f-1 above.  This guarantees that if anything is changed (ie. if a new
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ffect is added, or if one is removed) a recalculation of the true dependencies will

An example of this use of sare-rrom assertions is the following “fast and dirty"
for part side-effects which says that a part assertion of one object is independent
k1 side-effects to another object:

((:f1 (side-effect :object-1 :s-in :s-out

(:part-name-1 :object-1 :new-value)))

:f2 ((:part-name-2 :object-2 :old-value) :s-in))
:f3 ((:object-type :object-1 :type-1) :s-in))
:f4 ((:object-type :object-2 :type-2) :s-in))
:fS (part :type-1 :part-name-1))

{:f6 (part :type-2 :part-name-2)))

((equal :object-1 :object-2))
(t (assert '(safe-from :fl :f2)
'(diff-obj-part-side-eff :fl :f2 :f3 :f4 :f5 :£6)))))

Notice that this is a fast and dirty rule, since even if ossect-1 and osJect-2 are
rent object names, it is still possible for them to be anonymous objects which

The careful version of this same rule, makes this possibility

it by adding the following:

p)ssible (:g (id :object-1 :object-2))

((equal :part-name-1 :part-name-2)
(assert '(not (safe-from :fl :f2))
'(poss-id-part-effect :g :fl :f2 :f3 :f4 :f5 :f6)))
(t (assert '(safe-from :fl :f2)
'(diff-obj-part-side-eff :f1 :f2 :f3 :f4 :f5 :16)))))
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Section 11.4: More Complicated Effects

So far the analysis of side-effects has been quite simple considering only
assertions about parts and 1noexeo-parts. These are he most primitive notions in the
system in the sense that they are not defined in terms of any other programming
construct. However, as we saw in our description of programming objects, a host of
more complex notions has been developed to allow programs to be thought of in more
high level terms.

The complex relations which are often used in describing programs are logical
combination of assertions which ultimately depend on the part structure of the objects
implementing the more abstract notion. For example, in hashing systems there is a
notion of membership in the table which is always defined in terms of membership in
one (or more) of the woexeo-parts (suckets) of the table. Similarly, since suckers are
frequently implemented as cists, membership of an object in the sucker reduces to
whether the object is the rirst part or a memser of the rest part of the list.  Thus,
sitnple side-effects to the part structure of an object can result in side-effects to
derived properties of the object. For example, modifying a taLe to set one sucket to
the emprv-List will (potentially) delete several members of the table. The processes
handling side-effects, therefore, must examine the way in which facts in the input
situation of a transition depend on one another and use this as a guide to the
transition analysis. Consider the following fragment from a wasu-TasLe-vELETE program:
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Table Index Kev\\\
Hash-

W Table-
Delete

Fetch-Bucket

Bucket

Associative-
List-
Delete

l Modified Table

Fragment of A Hash Table Delete Routine

+ the List-oecere used here works by side-effect, changing cor pointers so that

do n

its completion, the list will contain exactly those members of its input list which
t have the input key. Suppose that this fragment were part of a larger plan and

that |in some previous situation of this plan we had concluded that entrv-1 was a

memni
by its
the ¢
a me
reaso

side-¢
fragm

er of the tasie since it was a member of sucket-1 which is the bucket hashed to
key xev-1. Finally, let us suppose that extev-1 has the same kev as that input to
wrrent plan fragment. Obviously, REASON ought to conclude that ewtry-1 is not
mber of the rasie after the oecete operation is performed; let us follow its
ning process:

[t follows from the protocol outlined above that in any transition involving no
ffects, all assertions are safe. Thus, any assertion true at entrance to this
ent will cross the transitions for retch-sucker, reaching associative-List-pecete. Let

us c¢all the input and output situations of associaTive-LisT-pELETE s-IN and  s-ouT

respeé

For (

tively. We have the following facts:
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S-1IN

Memher table-1 entry-1)

Key entry-1 key-1)

lhash table-1 key-1 index-1)
hucket table-1 index-1 bucket-1)
Memher bucket-1 entry-1)

s o o,

S-0UT

key-1 bucket-1
ASSOCTIATIVE-LIST-DELETE

R 2
-~

F-6 (side-effect bucket-1
(not (member bucket-1 entry-1)))

Effect of Associative List Delete on Hash Table Member

Notice that the side-effect r-6 makes the assertion r-s in s-in unsare (by direct
negation). We can also use the rules shown so far to determine that f-4 -3 and f-2
are sare from the side-effect f-s; since this is the only side-effect on this transition,
these are safe to move across the transition.

The membership assertion f-1 depends on ¢-2, F-3, F-4 and f-s since it was derived
from these assertions using the relation-definition rule for wasi-tasLe membership. But
f-5, one of these facts, is made unsare by the side-effect on this transition. It would
seem then that we should follow the justification from r-s to f-1, concluding that since
one of its supports has become unsare, f-1 should also be judged unsare. It would
correctly follow that there is no reason to believe that extrv-1 is still a memser of the
TasLe after the side-effect, ie. that the side-effect to f-s has caused a derived
side-effect to f-1.

This suggests using the justifications to guide an analysis of derived side-effects.
It is my feeling that an elegant extension to the TMS dependency system will make
this possible (Doyle, McCallester, and Stallman have all suggested this idea in personal
communications), however, REASON uses a different method, which is motivated by
the fact that the logical connection between facts might not be represented explicitly.
In the example above we assumed that we had deduced that entry-1 was a member of
TasLe-1, and thus we already had a justification recording what facts this assertion
depended on. It was then a simple matter to see that the side-effect which deleted
an entry from one of the table's buckets also effected the membership assertion.
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However, suppose that this membership assertion had not been deduced, but had
been told to us (as an output assertion of some other sub-segment's specs) or that
d been assumed. Then the only justification for the membership assertion would
dependency on the spec clause or on the reason for making the assumption.

clause or assumption reason)

S-In

Bucket-Delete

F-1 F-2
(Member Table Entry-1) [e——> (side-effect
(Not (member bucket-1 entry-1)))

Notic

1

Side-effect on Unexpanded Defined Relation

e that in this circumstance, which is actually much more typical than that shown

earlier, there is no set of justifications linking the membership assertion r-1 to the

asser
were
and

ion negated by the side-effect r-2. However, consider what would happen if f-1
expanded into its definition. This would produce exactly the facts r-2, ¢-3, f-4
F-s which we saw in the earlier example. As these are asserted, they will

establish the logical connection between f-1 and r-5s that we saw earlier.

follo

The key problem, therefore, is for REASON to identify those circumstances in

whicjr' it is necessary to force this expansion of defined relations. Rules of the

ing form would at first glance seem sufficient:

(Rute ((:f1 ((Member :table :entry) :s-in))
(:f2 (Side-effect :table :s-in :s-out
(Not (member :bucket :entry))))
(:f3 ({Object-type :bucket bucket) :s-in)))
(assert (expand ((Member :table :entry) :s-in))
(expand-for-transition-processing :fl :f2 :f3)))

Rules like the one above could be created by analyzing the definition of the

relation involved yielding an expansion rule for each clause involved in the definition.

How¢
the 1

For ¢

ever, I have approached the problem somewhat differently. . This is discussed in
ext section.
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Section 11.5: Determining What’s Affected

As I mentioned earlier defined relations introduce a connection between assertions
which must be analyzed in side-effect processing. For example, let us define vList
membership in the standard way: an object is a memser of a vist if it is either the first
of the List or a memser of the rest of the List. A side-effect changing the rirst of a
LisT might change a membership relation. Similarly, in the above example, we saw
the connection between sucker parts of a TasLe and membership in the taste.

When presented with a relation-definition, REASON produces rules used in
transition processing.

Relation definitions have the form:

(relation objl obj2 ..) <= {compound-expression objl obj2 ... >

where the compound expression is a combination formed from the logical connectives
AND, OR, NOT, FOR-ALL, THERE-IS, IMPLIES, iF-THEN-ELsE.  The compound expression may also
involve the use of reference expressions which, in effect, introduce new objects on the
right hand side of the definition which are not mentioned in the left hand side. For
exatnple:

(Member 1ist object) <=> (Or (First List Object)
(Member [Rest List] Object))

makes reference to the rest of the ist, which is not an object mentioned on the left
hand side. In an expanded form we might write this as:

(Or (First List Object)
(And (Rest List List-1)
(Member List-1 Object)))
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L1sT-1 1S a new object introduced to resolve the reference expression. From this

we cpan extract two forms of information: One is a network of potential dependency
assertions, linking assertions to those side-effects which might make them unsare. The
second form of information is a set of REASON rules wkhich assert sare and unsare
assertjons.  For example, from the definition for List membership we can get the
following potential dependency assertions:

(potential-dependency (member :1ist :object-1)
(first :1ist :object-2))

(potential-dependency (member :1ist :object-1)
(rest :1ist-1 :1ist-2))

(potential-dependency (member :1ist :object)
(not (member :1ist-1 :object)))

Potentiial dependency assertions are the information used to determine that there might

be a
is an

logical connection between a fact and a side-effect. These say that if (1) There
assertion in the input situation which matches the first pattern and (2) There is

a sidg-effect on the transition which matches the second pattern, then it is possible
that the assertion is rendered uwsare by the side-effect. Notice that in the case of
depenidencies on non-functional relations (such as memser) the dependency is on the

negat
asserit
(First
(Firsi
that

howe
omitt
even

systef

transi
on F-

on of the relation. If functional relationships (such as PART Or INDEXED-PART)
jons are involved, a side-effect asserting a new value for the relation, such as
List Foo), Implicitly negates any previous value of the property, such as
List ar); for these relations the dependency pattern is not negated. Also note
we have omitted the object-type information that goes with the assertions;
rer, since these assertions are used only to find things which might be affected,
ng the object-type information will simply allow some assertions to be considered
though they are not affected. This can do no harm, it can only make the
1 overly cautious.

The network of potential dependency assertions is completed by using a

tivity rule to reflect the fact that if ¢-1 depends on f-2, which in turn depends
3, and if f-3 is made unsare by a side-effect, then r-2 and, in turn, r-1 also

become suspect:

For (
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(rule ((:f (potential-dependency :a :b))
{:g (potential-dependency :b :c)))
(assert {potential-dependency :a :c)
(pd-trans :f :g)))

The information in the potential dependency assertions is used by a rule which
monitors transitions looking for facts which might be made uxsare by a side-effect If
such situations are noticed, the rule asserts that the fact is possibly-unsafe. Any fact
which is possisLy-unsare is expanded.

(rule ((:f (potential-dependency :a :b))
(:g (side-effect :object :s-in :s-out :b))
{(:h (:a :s5-in))) :
(Assert '(possible (not (safe-from :g :h)))
‘{pd :f :g :h)))

(Rule ({:h (Possible (not (safe-from :f :g)))))
(Assert '(Expand :g) '(pd-expand :h)))

The rules for developing the potential dependencies are as follows: If the connective is
avp or or then build a potential dependency for each clause of the conjunction or
disjunction.  (vecies p o) is logically equivalent to (or (vot p) @) and is handled
accordingly.  Similarly, 1r-en-ecse is built from iweLies.  The quantified statements
require a brief explanation. If we have

F-10 (For-all :vars :p :q)

then two kinds of side-effects could make r-10 become not true. One is a side-effect
which causes some object which does not satisfy :q to satisfy :¢, creating a counter
example to the universal quantification. The other is a side-effect to an object which
currently satisfies both :» and :o so as to make it no longer satisfy :o. Therefore,
universally quantified statements potentially depend on both :» and :. A similar
argument holds for existential quantification.
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wo points about these rules for determining potential dependency should be

noted, First, these rules only signal the possibility that an assertion is affected by a
side-effect; it is for other more thorough rules to explore whether or not the assertion

actua

Iy is sare or not. This allows a many layered control structure in which one set

of rules notices candidates for examination, and other sets of rules chose to examine

these

so fa

candidates at a level of detail deemed appropriate.

[The second point to be made here, is that the potential dependency rules shown
are actually of the "fast and dirty" variety. Remember that the swap example

showed that different local variable names might, in fact, name the identical object.
Usually people rule out this possibility of "aliasing" to facilitate their analysis.
However, to be completely accurate one must examine all possibilities.

This

The careful version of a rule for List membership, for example, is:

(rule ((:f (side-effect :obj :s-in :s-out (first :obj :new-first)))
(:g9 ((member :obj-2 :old-first) :s-in)))
(If-possible (:h (id :obj :obj-2))
then (Assert '(possible (not (safe-from :f :g)))
'{poss-or-se-careful :f :g :h))))

requires that the system have rules for determining whether objects are identical

or not, and furthermore that it maintain this information rather carefully.
Fortunately, most procedures do not involve a large number of objects so this task is
tractyble. There are several ways in which the system can deduce the non-identity of

objec

ts (we have already discussed ways in which it can determine identity). One rule

is that if an object is newly created in a situation which comes after a situation in
whiclf a second object was known to exist then the two objects are not identical:

For

(rule ((:f (new :object-1 :s-in :s-out :fact))
(:9 (occurs-in :object-2 (:fact-2 :s-other)))
(:h (comes-before :s-other :s-out)))
(assert '(not (id :object-1 :object-2))
'(diff-date-of-birth :f :g :h)))
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A second rule for non-identity uses the disjointness relation between types in the
object-type hierarchy to infer that two objects have different types and are, therefore,
distinct.  Finally, both of these are special cases of the general rule that if a property
holds of one object but not of the other then those objects are distinct.

Once it has been determined that an assertion is possibly affected by a side-effect
it remains to be determined whether the assertion is sare or unsare. A second set of
rules is developed from the relation-definitions, by going through the logical
connectives used in the definitions. For example, a conjunction in which one conjunct
has been side-effected can be deduced to be unsafe. However, a disjunction must be
analyzed further. The following rules conduct this analysis for List membership:

(rule ((:fl (possible (not (safe-from :f2 :f3))))

(:f2 (side-effect :1ist :s-in :s-out (first :list :obj-1)))

(:f3 ((member :1ist :obj-2) :s-in))

(:f4 ({Rest :1ist :rest) :s-in)))

(if-possible (:f5 ((not (Member :rest :obj-2)) :s-in))
then (Assert '(Not (safe-from :f2 :f3))
'(dj-not-safe :fl :f2 :f3 :f4 :f£5))
else (Assert '(safe-from :f2 :f3)

'(dj-safe :f1 :f2 :f3 :f4 :75))))

If it is possible that the old first element of the vist occurred only in the Frirst
position, then it is possible that the side-effect of changing the rirst of the List would
cause that element to cease to be a memser of the Lis.  Thus, a cautious strategy
avoids moving this fact over the transition until more information is known. If it is
ever learned that the object was definitely a memser of the rest of the rist then the
assertion will be declared sare by the second clause of the ir-rossiste rule. In the
mean time, this cautious strategy prevents any defaulting strategy of the first pass
analysis from being too lax.

Notice that side-effect rules such as the one above are triggered by the possibly
unsafe assertion, rather than by the side-effect assertion directly. (The rpossisLy unsaFe
asserTions are created by the poventiac oeeenoency rules).  This allows other rules to
decide which assertions should be worked on. In a later section we will see a set of
rules which rule out possible unsarety, helping the system to avoid useless work.
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Since we want to consider all side-effects which might arise, let us consider an

example in which the above side-effect leads to a derived side-effect. Suppose that in
additjon to the assertions above about List membership, we also had an assertion
stating that the object deleted from the List was a memser of some wasu-TasLe in the
input| situation. Since we have concluded that the List membership assertion was wot
sarg, if it is possisie that this vist is a sucket of the wasu-tase we should conclude that

the

we

sH-TasLe membership assertion is unsare as well  To start this process, however,
ust first state that there has been a side-effect to the List so that the poTenTiAL

oepengency rules may trigger. This is done by a simple rule which translates unsare
asserfions into side-effect assertions.:

(Rule|[((:f (Not (safe-from :f2 :f3)))

The
then
this

(rule

(:f2 (Side-effect :obj :s-in :s-out :se))
(:f3 (:fact :in-sit)))
(assert '(Side-effect :obj :s-in :s-out ((Not :fact) :s-in))
‘(trans-se :f)))

effect of this rule is that every time an assertion is determined to be unsare, it is
treated as a side-effect itself, initiating a consideration of derived side-effects. In
¢ase, this will lead to the triggering of the rule for hash table membership:

((:f1 (possible (not (safe-from :f2 :f3))))
(:f2 (s1de-effect :1ist :s-in :sout (Not (Member :1list :obj))))
(:f3 ((Member :table :object) :s-in))
(:g91 ((key :obj :key-1) :s-in))
(:92 ((hash :table :key-1 :index-1) :s-in)))
(If-Possible (:h ({bucket :table :index-1 :list) :s-in))
then (Assert '(not (safe-from :f2 :f3))
"(se-tab :fl :f2 :f3 :gl :g2 :h))
else (Assert '(safe-from :f2 :f3)
'(se-tab :fl :f2 :f3 :gl :g92 :h))))

Thusg) the side-effect propagates through the various levels of definition. Notice that
wher a definition involves reference expressions, these are handled somewhat specially.
If the side-effect is to a clause within the definition which has reference expressions

insid

> it, (as does the definition for membership in the tist which implements a sucket of

a wagu-TasLe), then these reference expressions are converted to- patterns and moved
outsile the 1r-possisLe expression. However, if the side-effect challenges a reference

expression nested inside other reference expressions, then the outer references must also
be stated in the 1r-possieLe construct.

For
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There are still other logical connectives to consider in the building of side-effect
rules. Universal quantification presents analytic problems similar to those of
disjunction. Consider the definition of being an aList, a vist, all of whose memsers are
PAIRS Whose LEFT parts are atoms:

(Object-type 1ist Alist)
<=> (for-all (:e1) (member Vist :el)
(object-type [1eft :e1] Atom))

As I mentioned above, two different kinds of side-effects can make an assertion of
this form uwsare. A side-effect which entered a new element into the List might
challenge such an assertion (if the xev of the new object isn't an arow). Similarly,
changing the xev of one of the existing elements could undo the truth of the
quantified statement if the new xev is not an aton  Thus, a side-effect rule for
universally quantified statements must trigger in either event and then examine

whether to declare the statement unsare. The following rules do this for the above
definition:

(rute ((:f1 (possible (not (safe-from :f2 :f3))))
(:f2 (side-effect :obj :s-in :s-out (key :obj :key-2)))
(:f3 ((object-type :1ist alist) :s-out)))
(if-possible (:f4 ((member :1ist :obj) :s-in))
then (assert '(not (safe-from :f2 :f3))
'(uq-n-safe-cautious :f1 :f2 :f3 :73))
else (assert '(safe-from :f2 :f3)
'(uq-safe-1 :fl :f2 :f3 :f4))))

(rule ((:f1 (possible (not (safe-from :f2 :f3))))
(:f2 (Side-effect :obj :s-in :s-out (member :1ist :obj)))
(:f3 ((object-type :1ist alist) :sin))
(:f4 ((key :obj :key) :s-in)))
(1f-possible (:f5 ((not {object-type :key atom)) :s-in))
then (Assert '(Not (safe-from :f2 :f3))
‘ *(ug-not-safe-cautious :fl :f2 :f3 :f4 :£5))
else (Assert '(safe-from :f2 :f3)
*(uq-safe-2 :f1 :f2 :f3 :f4 :f5))))

The above rules are examples of the "fast and dirty" type in that they do not
attempt to check for the identity of anonymous objects. A second version of these

rules (along the lines shown earlier for the "second pass" rules) does the extra
checking.
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Section 11.6: An Example

Let us now look at how REASON uses these rules to analyze a wasW-TasLE
on routine which deletes all members of the table with a given kev. One wants
bve three things about this program: (1) The desired elements were deleted, (2)
ng else was deleted, and (3) Nothing extra was added. Each of these is a
rsally quantified statements:

(for-all (:entry) ((member table :entry) in-sit)
(if ((key :entry key-1) in-sit)
then (side-effect ((not (member table :entry)) out-sit))))

(for-all (:entry) ((member table :entry) in-sit)
(1f ((not (key :entry key-1)) in-sit)
then ((member table :entry) out-sit)))

(for-all (:entry) ((member table :entry) out-sit)
((member table :entry) in-sit))

rove the first of these REASON assumes that there is an anonymous object
v which is a member of the table and whose key is the given key (in the input
on). It then attempts to show that the table has been modified so that this
is not a member of the table in the output situation. The following is a
ete plan diagram for the program with accompanying assertions which follow
the symbolic evaluation.
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- 1881 E-1
=41 KEL=] HASH-DELETE
(MEMBER TRBLE-1 ENTRY-R)
~— (KEY ENTRY-A KEY-1)
!
5-1
§-5  HAH (HASH TABLE-1 KEY-1 INDEX-1)
INDEX-1
‘_—8

FETCH-BUCKET
i (BUCKET TABLE-1 INDEX-1 BUCKET-1)

BUCKET -1
5-5
ST-DELETE
s-6] LISTD TABLE-1
BUFET-2 bucket-2 produced
INDEX-1 ) \
S-7

(sides e e ble-1 index-1 bucket-2))
| BucKeT-sT0RE

ME—OUT }
/UPDHTED—THBLE

Plan Diagram for Hash Table Delete

As T described above the membership assertion involving entry-a will pass through each
of the first transitions, but will be stopped by the transition representing the action of
BUCKET-sTORe.  The assertion will then be expanded into its definition:

((Member Table-1 Entry-A) s-in) <=> ((key Entry-A Key-1) s-in)
((hash Table-1 Key-A Index-A) s-in)
((bucket Table-1 Index-1 bucket-1) s-in)
{ (Member bucket-1 Entry-A) s-in)

The support structure for the unsare assertion associated with the membership assertion
is now constructed. This structure makes the sarety of the memsersuip assertion depend
on the sarery of the sucker assertion. But since this assertion is unsare, the membership
assertion is also deduced to be unsare. However, the assertion
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((Member bucket-1 Entry-A) s-in)

move safely up to the vList-peLete routine whose specs say that it creates a new
»t which contains all entries in sucket-1 except those whose key is Kkev-1.  ENTRY-a,

howeer, is asserted to have xev-1 as its key; it is, therefore, not a member of sucker-2,
the qutput of vist-oecere. We have:

({Not (memher bucket-2 entry-A)) s-6)

Noti¢e that this assertion is sare to cross the transition representing the BucKET-STORE

side~
BUCKE

effect, as are the wasw and ey assertions. Thus in s-7, the output situation of
-sTorRe we have:

((Not (member bucket-2 entry-a)) s-7)
((hash table-]) key-1 index-1) s-7)
((key entry-a key-1) s-7)

((bucket table-1 index-1 bucket-2) s-7)

from| which the antecedent inference rule corresponding to the relation-definition for

hash:
infer
We

whic
So w

of t
howe
know
we 3
the

For

rtable membership infers that enrv-a is not a member of the table. Since this
ence depends directly on a side-effect at this transition it is also a side-effect.
hus have:

(Side-effect table-1 s-in s-out
((Not (member table-1 entry-1)) s-out))

h was the sub-goal needed to deduce the desired universally quantified statement.
e have shown that all entries with the given key are deleted.

Now REASON has to show that nothing was deleted which should not have

beenﬂ| Again it creates an anonymous object entry-8 assuming that extrv-8 is a member

e table and that its key is not kev-1. The facts propagate similarly to above;
tver, when REASON tries to expand this assertion it discovers that it does not
y the key of entrv-8 (we only know that its key is not kev-1) and, therefore, that
Iso don't know the index this key hashes to or the bucket which is in that slot of
asLe.  Anonymous objects are created to stand in for all of these.
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((Member table-1 Entry-B) s-in) <=> ((key Entry-B Key-B) s-in)

(
((Hash table-1 Key-B Index-8) s-in)
((bucket table-1 Index-B Bucket-B) s-in)
{(Member Bucket-8 Entry-B) s-in)

The transition processing becomes somewhat more complicated. @~ We have the
following assertions and side-effects involved:

((bucket table-1 Index-B Bucket-B) s-in)

(Side-effect table-1 s-in s-out
{(bucket table-1 index-1 bucket-2) s-out))

The source of the problem is that REASON does not know whether 1inoex-1 and
INDEx-B are equal or not since inoex-8 is an anonymous object. Therefore, REASON
engages in a case analysis, splitting into two cases: (1) 1noex-1 equal to 1noex-s and (2)
mnoex-1 distinct from 1woex-8.  Each of these case gives the desired results rather
directly. If the two indices are distinct then the sucker assertion above is sare.
Similarly, all the other supporting assertions are sare, leading to the result that the
membership assertion itself is sare; i.e. in this case, the membership of entrv-s in the
table is unaffected by the changing of the bucket since it is in a different bucket.

In the other case, inoex-1 is equal to inoex-8 and thus sucker-1 is identical to
sucket-8.  An identification (see Chapter 4) of sucket-8 to sucker-1 is performed, leading
to the conclusion that extrv-8 is a member of sucket-1 in s-in and, therefore, by the
specs of LisT-pELETE, ENTRY-B is also a member of sucket-2 which is then stored into the
TasLe.  As above, this leads to the conclusion that entrv-s is a member of the table in
the output situation.
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Section 11.7: Pseudo Parallelism

As I have mentioned plan diagrams allow a weak form of parallelism. Although
not at this time interested in the extra problems (and vpportunities) presented by
el execution, I have found this parallelism a convenient way of capturing some

generalities of sequential processes. For example, in representing the most general

form

of the siInary-Tree-TRAversaL plan fragment, we found parallelism allowed us to

represent the many possible traversal orderings in a single plan diagram.

into

However, parallelism presents special difficulties when side-effects are introduced
the programming discipline. Consider the plan diagram for MacLisp's nReverse:

CURRENT / PREVIOUS

INREVERSE

f—/

NULL?
YES | NO

f‘\J\./\ ; DO-NON-NULL

CDR RPLACD

=

l
JOIN-LISTS

segm
Indee
these
there

For (

} Surface Viewpoint Plan Diagram for Nreverse

Without a control-flow link ordering the execution of the reiaco and the cor
*nts, there is no guarantee that one segment will execute before the other.
d, there is no information at all in this diagram about the mutual ordering of

two segments. Thus, it is necessary to regard them as executing in parallel and,
fore, capable of destructive interference.
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The plan diagram formalism regards any data-flow as taking a finite amount of
time. In fact, since data-flows might be implemented by a pathway of many segments
as in a queue-ano-process plan, the time involved might be considerable. Therefore, it is
also possible for the reiaco to have a destructive interference with the data-flow to
NREVERSE.

It follows that the transition analysis which I have discussed so far is too simple,
since it has been conducted under the unstated assumption that plan diagrams are
interpreted in a strictly sequential manner. Under this assumption all data flows
preserve all properties and the only transition analysis required is at the transitions
representing segments with side-effects. This will now have to be generalized to take
account of the extra complexity posed by the possibility of parallelism.

This generalization is an absolute necessity for the plan based analysis used in the
programmer's apprentice as a whole, since its approach is to develop a catalogue of
programming cliche's. Many of these cliche's, however, are enumerators such as a
TRAILING-POINTER-ENUMERATION, to which other consumer plans are attached. When viewed
from this perspective, there is an inherent parallelism between the enumerator and

consumer plans. In the case of wnreverse, this parallelism involves side-effects which
must be analyzed correctly.

A transition is redefined to be a pair of situations which are (1) Connected by a
data-flow or a control-flow link, or (2) The input and output situations of a segment.
In general, a fact which holds in the earlier situation of a transition can be moved to
the later situation if (a) It is sare to move the fact across the transition in question
and (b) There is no other transition which could execute during the same time as the
one in question which would render the fact uvsare. To move a fact from one end of
a data-flow link to the other, one must first inspect whether there is some segment

which can execute in parallel with that data-flow and which has a side-effect which
threatens the fact.

To make this inspection easier, before performing the symbolic evaluation of a
plan diagram, REASON first analyzes the data- and control-flows, breaking the
diagram up into separate parhs. These paths can then be separated into sets of
parallel paths. Two transitions one on each of two parallel paths can execute in
parallel.  Once this analysis of the plan diagram into parallel paths is completed, the
transition analysis above can be generalized quite simply. Side-effect rules are now
triggered by the combination of three types of facts (1) The existence of a side-effect,
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(2) The existence of a fact in the earlier situation of a transition and (3) The

possibility that the transition corresponding to the side-effect is on a path parallel to
the ¢one on which the transition occurs:

(Rule ((:f1 (:fact :s-1))
{(:f2 (Transition :s-1 :s-2))
(:f3 (Onpath :path-1 :s5-1 :5-2))
(:f4 (side-effect :obj :s5-3 :s-4 :new-fact))
(:f5 (Onpath :path-2 :s-3 :s-4))
(:f6 (Parallel :path-1 :path-2)))

appropriate transition processing
-)

The Jactual analysis of the plan diagram into paths is rather simple. It begins by
identifying path joining segments and path splitting segments, ie. those segments at
whi¢ﬂ: two flows (data or control) come together at a single segment and those at
which two flows diverge from a single segment. Segment execution can only begin
when all the inputs are present; thus, when two data flows join at a segment a
synchironization point is established. Similarly, since no output leaves a segment until

all the outputs are ready, a synchronization point is established at segment output as
well

Path Splitting Segment

han ~

Path Joining Segment
Path Joining and Splitting
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When a path splitting segment is noticed, two new path names are created, one for
each diverging flow. The splitting segment is declared to be the head of both of
these paths and the paths are declared to be parallel Similarly, when a path joining
segment is noticed it is declared to be the tail of both paths entering it, and these
paths are declared parallel. A segment which is entered by only a single flow, or by
several flows each of which originates at the same segment is declared to be on the
same path as the segment from which the flows came. This last step, however, is
made to depend on the absence of other entering flows, so that if new flows are
added to the diagram, new paths will be recalculated.

Several other rules are also involved in the calculation. For example: Two
segments which are at the terminal end of conditional-control-flow links originating
from the same segment are on separate but non parallel paths. A pair of paths is
parallel if it consists of one path internal to each of two segments where the two
enclosing segments are on parallel paths.

Consider wreverse again; a bug exists if there is no control-flow ordering the
execution of the reiaco and cor segments. In the path analysis, these two segments will
be analyzed to be on parallel paths; this will lead to the conclusion that there might
be destructive interference between the reiaco and the data flow to the cor. The

side-effect rules conclude that it is possible that the flow does not preserve the Rrest
property.

However, this depends on the assumption that there are no further flow links
ordering the two segments. If the programmer should intervene, adding a control-flow
link to make the reiaco follow the execution of the cor, then this assumption will be
violated and the paths incrementally recalculated. In the new calculation of paths the
reLaco will not be on a path parallel to the data-flow to the cor  But then, one of the
facts supporting the unsare declaration will be ou, oufing the unsare assertion itself.
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Chapter 12! Reducing Complexity in Side Effect Analysis

[n describing data-structures I defined a notion of structuresharing in a recursive-

structure.  Much of the complexity in reasoning about side effects occurs in

recur

jively defined structures which share some substructure. Suppose that we know

of the existence of two lists, and one of these is side-effected; given what we have
develpoped so far, we must consider the possibility that this side-effect will change

some

properties of the second list as well However, if we knew that the two

structures were disjoint, then this possibility would be eliminated, reducing the

comp

exity considerably. [Burstall, 1972] introduces some techniques for reasoning

about side-effects which use this notion of disjointness to advantage. I will extend

that

1otion in this chapter.

et us examine in a bit more detail why this is true. The following is a side

effect| rule for list membership:

(Rule

this r

Suppa

(:fl (syde-effect :1ist-1 :s-in :s-out (first :1ist-1 :obj-1)))

(:f2 ((Member :19st-2 :obj-2) :s-in)))

(If-possible (:f3 ((sublist :1ist-2 :1ist-1) :s-in))

then (assert (not (safe-from :fl :f2)) (Vist-mem :f1 :f2 :£3))
else (assert (safe-from :f1 :f2) (Vist-mem :fl :f2 :f3))))

ule is derived from the following definition:

(Relation (Member List Object)
(definition: (Member List Obj)
{=> (Or (First List Obj)
(There-is (:sub) (Sublist List :Sub)
such-that (Member :Sub 0bj)))))

se that we know that vist-1 and wist-2 do not share any structure; we can

determine quite simply that it is not possible for the side-effected list to be a sublist

of th
in the

For C

> other.  This removes the need to conduct a thorough investigation as outlined
preceding sections.
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I will present in this section a hierarchy of classification for side-effects,
properties and the degree of sharing exhibited by recursive-structures. Given that we
have seen how lists and trees can be defined as special kinds of recursive-structures,
this classification will be applicable to most of the useful structures of LISP
programming. The purpose of this classification is to use the level of sharing to limit
the degree to which side-effects to one structure can effect properties of the other.
Similarly, the classification of properties into levels isolates properties of a higher level
from less powerful side-effects.

Actually sharing is not as important as the lack of it: disjointness. 1 have
identified three types of disjointness which have some utility. I have previously
defined structure sharing as having a node in common. Structurally disjoint structures
are those which do not share structure. For lists this means that no sublist (the
transitive closure of cor) of the two lists is shared.

Often we will have non-recursive structures such as hash-tables whose parts are
recursive structures. For such objects, we define structure sharing in the obvious way:
namely two objects share structure if there is a part of the first and a part of the
second which share structure. Thus, a hash-table and a list share structure if one of
the table's buckets shares structure with the list. They are structurally disjoint if
there is no bucket of the table which shares structure with the list.

The next type of sharing is termed value sharing. Recall that the nodes of a
recursive-structure can have other parts (called values) besides those which represent
the immediate-children of the node. A list is a recursive-structure which has a value
at each node called the first. Similarly some types of binary-trees have a value at
each node. (See Chapter 10 for a review of these notions). When there is an object
which is a value of two recursive structures, we say that there is value sharing;
conversely, if there is no such object we say that the structures are value disjoint.
Notice that if two objects share structure, they then must share values; since they
have at least one node in common, the value of this node is a vae of the two
structures; therefore they sware vaves. It follows that if two structures are value
disjoint, they are also structurally disjoint.
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Two objects are rotally disjoint if (1) The objects are both structurally and value
disjoint and (2) All objects pointed to by each node are totally disjoint. For example,
two lists are totally disjoint if they share no sublists, if the members of the lists are
distirlct, and if as well the members of the first list are totally disjoint from the
membpers of the second.

t follows that if two recursive-structures are totally disjoint, then side-effects to
the Jﬂne can not effect the other. Unfortunately, although total disjointness is not
comgjletely rare, it is not the most common event either. In particular, lists frequently
have| common members such as atoms, and are, therefore, not totally disjoint.
However, structure sharing is also reasonably rare. The sharing of list structure
presents enormous opportunities for powerful interactions and thus for bugs; therefore,
most| programmers avoid sharing except in those cases where the power is actually
desirbd. Most side-effects have very limited scope as long as there is no structure
sharing.

To begin, let us classify side-effects in a manner similar to that used for
strudture-sharing. ~ We call side-effects strictly structural if they only affect the
immediate-children property of some node of the structure. ®eiaco is the simplest such
sideeffect, although vLisT-iNserT and LIST-DELETE, NREVERSE, SORT, Ncoxc and various other
built-in functions of MacLisp also are strictly-structural side-effects. Notice that a
strictly structural side-effect to one structure will not affect any property of another
objeft which is structurally disjoint from the first.

We may also identify strictly value side-effects such as reLaca which only change
valug parts of a recursive-structure. If two structures are structurally disjoint, then a
strictly value side-effect to one will not affect properties of the other. A structural
side| effect is one which consists only of strictly structural and strictly value
sidefeffects. A sort program which works by changing both car and cor pointers in a
list fs an example of a structural side-effect. Again if two objects are structurally
disjgint, a structural side-effect to one will not change any property of the second.

Finally, an indirect side effect is one which only changes properties of values of a
recursive-structure. For example, a marking graph traversal procedure which sets the
mark | property of the value of each node is such an indirect side-effect procedure. If
two|objects are value disjoint, then indirect side-effects to one will leave properties of
the jother unchanged.
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We say a structure is iso/ated if it shares structure with no other objects. We
may divide this into the types used above, referring to structural, value, and total
isolation.  Most routines which build new structures such as APPEND, Or LIST create
structurally isolated objects. This is important, since a structurally isolated object is
relatively safe to side-effect; often programs will create a copy of an object and
side-effect the copy as a means of guaranteeing that unwanted interactions do not
result.

Finally we come to a classification of properties. We can notice that some
properties such as sustist or Lenstv only depend on the recursive structure of the
object, and not on the vaues at each node. We call these strictly structural properties.
More commonly, properties such as memo, depend both on the recursive structure and
on the identity of the various vaiues present at each node, but not on any property or
sub-structure of these values; these are called value dependent properties. Finally,
there are properties which depend both on the structure and on mutable properties of
the objects present at each node. memser (as opposed to memg), for example, depends on
the structure of the list as well as on the structure of the objects pointed to by the
list; if the list (a 8 c) is a memser of the list L-1 then the LISP invocation:

(Member '(A B C) L-1)

will return a non-n1L answer, namely the list (a 8 c), which is a member of (-1 If this
list is then reiacad so that its first element is x, then (Memser ‘(A 8 ¢) t-1) will return
miL Let us call such a property a value indirect property.

A side-effect at one level can not effect a property of a lower level. For
example, a value side effect cannot affect a strictly structural property. An indirect

side-effect cannot affect a structural property.

These observations can be summarized by several simple rules of the following
form:
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“ (rule ({:fl (Side-effect :obj-1 :s-in :s-out :se))
(:f2 (Structural-Side-Effect :se))
(:f3 (Structurally-disjoint :obj-1 :obj-2))
(:f4 ((:fact :obj-2) :s-in)))
{Assert (Safe-from ':fl !:f4)
(Structure-disjoint :fl :f2 :f3 :f4)))

(rule ((:f1 (Side-effect :obj-1 :s-in :s-out :se))
f2 (Structural-Side-Effect :se))

f3 (Structurally-isolated :obj-2))

f4 ((:fact :obj-2) :s-in)))

(Assert (Safe-from !:f1 ':f4)

(Structure-isolation :fl :f2 :f3 :f4)))

(
(
(
(
A

Notice that since these rules assert that a particular property is safe, they
ve the need to engage in the more complicated analysis shown in the last chapter.
rge percentage of side effects have very limited range of effect precisely because
is a strong limit on structure sharing. Most of the time ome of the above rules
fire and REASON's work will be done. In some rare cases, the more complex
thorough analysis will be required.

This approach requires a classification of side effects into the various levels and a
ir classification of properties.  Relation-definitions provide the basis for these
fications. To decide whether a property is structural one need only determine

whether it depends on the node property of the object, given that the object can be

view

obje

Since
a val
is th
is a

For (

d as a recursive-structure.  Similarly, if the property depends on any value

poinjer of a node it is a value property. If it depends on properties of the value

ts it is an indirect property. For example, consider the memser relation for Lists:

(Member List Object) <(=> {Or (first List Object)
(Member [rest 1ist] Object))

the property depends on rirst which is the value pointer for lists, the property is
ue property. Also since it involves a recursive definition involving the rest (which
> immediate-child pointer for lists) it is a structural property. IMAGe-IN in a ALIST
ndirect property as shown by its definition:
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( Image-1n Alist Key Value)
Z=> (There-is (:el) (Member Alist :el)
such-that (And (Key :el Key)(Value :el Value)))

Since this definition depends on memser which is both a structural and value property,
1mae-IN Is also a structural and value property. However, in addition it depends on
the ey and vawe parts of wmemsers, which are values; therefore, it is an indirect
property. Side-effects may be categorized using a similar analysis of defined relations.
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Chapter 13. Reasoning About Program Modifications

In the previous chapters I have shown how REASON analyzes a program,

mainfaining an explicit representation of all logical dependencies. Although such an

expli
chap
be o
decis
comy

Mt representation is costly in terms of space consumption, I will show in this
er how that cost is repaid during the process of program modification. It cannot
veremphasized that this concern has been the driving force behind my design
ons. The price of software maintenance is the most rapidly escalating part of
uter costs and the one with the least likelihood of decreasing. An expensive tool

which effects a ten percent reduction in software costs would repay its cost quite

many
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imple

fold.

When REASON has analyzed a program it has a very rich knowledge structure
tating the program text. This structure includes a complete record of the proof
| pre-requisite and achieve goals, purpose links summarizing the inter-relationship
ren the spec clauses of the sub-segments and the main segment, links to
mentation methods, defined relations and other knowledge about the data-objects

of the program, and finally a recognition map connecting fragments of the program to

the s
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tandard plans of the library. Such standard plans, in turn, are organized into

speciElization hierarchies in which, for example, List-enmeration is regarded as a

lization of the enumeration plan for general recursive-structures.

When a program modification is proposed, REASON uses this rich knowledge
ture to discover how far the effect of the proposed modification will propagate.
fally, there is some decomposition of the program in which the change has effect
within a particular segment's boundaries, leaving unchanged most of the logical
ture outside.  For example, if the method of representing a ser is changed from
to areavs, then only the enumeration part of the program will be modified. By
1g at the temporal viewpoint of the program we can regard the enuMeraTION as a
ate segment which produces a temporal-collection of the memsers of the set. This
e in both the new and the old versions of the program. Thus, we know that the
f the program (the part outside the enumeration) is not affected.

The goal in analyzing a program modification is to be able to use the logical
sis of the old program to help understand the new program. As the programmer
the old version, REASON attempts to follow the chains of dependencies to see
requirements of the old structure are no longer met. If there are no such

broken chains, then the modification is merely an addition of some new behavior
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which can be analyzed by the mechanisms of the previous chapters. We will now
look at how REASON determines what is affected.

Most changes are relatively straightforward to analyze. For example, consider
what must be done if a new expect clause is added to a segment  First, the
dependencies linking the expect clauses to the segment's applicable assertion must be
rebuilt to include the new expect. Then a proof of the new expect clause must be
undertaken.  If this succeeds, the segment will be declared applicable and no
interaction with the user is required. If not, the appLicase assertion for the segment
will be out.

The Truth Maintenance System can be requested to signal every time a particular
fact changes status from /n to our or vice versa. As REASON evaluates a plan
diagram it makes such requests for every expect clause of a sub-segment and every
assert clause of the main segment. Also such requests are made for the appLICABLE
assertions for each sub-segment and for the main segment. Thus, when analyzing the
effect of adding a new expect, REASON is first signalled that the sub-segment is no
longer applicable.  If the proof of the new expect clause succeeds, TMS signals that
the status of the applicable assertion is now in  Thus, REASON knows that
everything is alright.  If not, REASON reports that the segment is no longer
applicable.  However, all segments which depend on the modified segment will also
become inapplicable; REASON collects these signals as well What to do with this

information is the province of discourse expertise not yet present in the apprentice
systern.

Removing an assers from a sub-segment presents a similar problem, although
there is a new opportunity. Since REASON has already built purpose links, it is a
simple matter for it to consult these before doing anything else. The purpose links
tell REASON that the asserr provides support for various sub-segment expect clauses
and main segment assert clauses. Each of these is examined to see if they have other
support which is independent of the clause being removed. If each such clause has
independent support then the change has no effect; REASON tells the user that
everything is in order. ~ Otherwise, it issues a warning, saying which dependent
segments are affected. If more information is desired, REASON follows through the
actual justifications to build a trace of the broken proof.
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'|In the case where one clause is deleted and another is asserted, REASON waits

both actions have been performed before checking to see which appLIcABLE
tions have changed status. Otherwise it handles matters as above.

When a data-flow link is changed, the assignment of objects to the segment's
ports to must be updated; those expect clauses which mentioned the affected
must be recreated with the correct objects substituted in. The justifications

linking expect clauses to the segment's apLicasie assertion must then be rebuilt.

REA
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goal}s

rules
every
case
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out g

SON then proceeds as in the case where an expect clause is changed. Notice
in all these cases when a part of the plan diagram is removed, the TMS ours all
and conclusions which followed from the oufed statement.

When a relation of an object-type is redefined, similar effects take place. The
corresponding to the relation definition not only make a deduction, but as with
thing else in REASON, they provide a justification for the deduction. In the
of defined relations, the justification points to the assertion in which the
on-definition is stated. Thus, if the relation is changed, the old definition goes
nd facts following from the definition also lose support.

More commonly, however, the programmer will not change a relation-definition,

but will rather create a new object-type in which a different definition appears. If an

objec
justiﬂ
defip
LISTS;
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(x is
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t of the old object-type was deduced to have a particular property, then the
ication for this will point to the most specific object-type in which the relation is
td. For example, the membership relation for aiists is defined at the level of

the justification, therefore, points to the assertion stating that the object's type
T and not to the assertion stating that it is a auist. In contrast, the imase relation
the imace of v in the aiist -1 if there is a pair whose left is x and whose right is
i that pair is a member of 1-1) is defined at the level of auist; any deduction

g from the imee relation would depend on the assertion stating that the object is

an
whig¢
supp
corr

obje
relati
happ

List. - Thus, if the programmer changes the type of an object, all deductions
~depend on its having an object-type which it no longer holds will lose their
rt and go outr. However, rules corresponding to the definitions of new relations
ponding to the new type might trigger, bringing in new facts. Finally, if the
t is changed from one sub-type to another, it is possible that no important

n is defined at the more specific level and, therefore, nothing significant will
N
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In general, then, the pattern of reasoning at this level is quite clear. A plan
editing program is instructed by the user to add, delete, or change some feature of a
plan diagram or some part of an object description. This action may cause some facts
to change status from in to out or vice versa. If an appLicasLe assertion for either a
sub-segment or the main segment winds up being out after all effects have been
propagated by the TMS, then REASON warns the programmer that an error has been
introduced.
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Section 13.1: Updating The Recognition Map

When the apprentice first analyzes a program, it builds a recognition map
expldining how the program uses standard library plan fragments to achieve its goals.
A program modification will typically force the system to rebuild this map to reflect
the | phew situation.  Fortunately, simple modifications to program structure do not
affegt the recognition map in a drastic manner. For example, consider the following
programn:

(defup Accumulate-Salary (List-of-Emplioyees)
(do ((1 List-of-Employees (cdr 1))
(Sum 0))
((Nu1Y L) Sum)
(Setq Sum (+ Sum (Caar 1)))))

Thig|is a simple, unfiltered summation prosraM. The (1s7 is a list of RECORDS, where

each|recoro has the saiary in the rirst position of the record. This is diagrammed as
follows:

Unfiltered-
List- Summation

.F\‘-—~"'“"\\\\ Enumeration

HuLL? ATy Do-
T > CDR LI5T- SOT;
~ . EHUM Y
- L
pa A
N L

Summation

Unfiltered Summation Program
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Let us consider various simple modifications which might be made to this program.
Suppose, for example, that we put in a test so that we summed only the bi-weekly
employees:

(defun Accumulate-Salary (List-of-Employees)
(do ((1 List-of-Employees (cdr 1))
(Sum 0))
((Null L) Sum)
(cond ((eq (cadar 1) 'bi-weekly)
(Setq Sum (+ Sum (Caar 1}))))))

where the second field of each record is the employee-type. Of course, the effect of
this change is to filter the inputs to the sumwation segment. The recognition proposer
would suggest that the recognition of the sumvation segment is still correct and that the
recognition of the vist-enumMeraTor is still correct. (The recognition proposer [Rich,  1977)
is outside the scope of this thesis). However, the temporal-collection input to the
summaTion segment is now changed; the plan recognizer suggests that the new segment is
a riLTer segment interposed between the enumerator and the summation routine.
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| T — LIST-ENUMERATION
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Filtered Summation Plan

Thus) the recognition of two parts of the plan remains the same; only the riLter

sectign and the temporal-collection data-flows change at all We can easily change
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Understanding of the overall effect of the plan to reflect the addition of the riLter

ly by re-evaluating what collection of objects flow into the sumation segment in
new plan.

The basis for this separation is Water's [Waters, 77] observation that recursive
rams (including loops) can be broken up into a temporal decomposition by
*¢tion of the pattern of data- and control-flow links. Thus, when a recursive
rpn s modified, the system checks to see whether the clues used previously in
Ing the segmentation are still in. If so, it only tries to form segments for the
fode.  Although, my system and Waters' are not yet interfaced into a unified
entice  system, the discipline of explicit recording of all important control
mation can serve to make the interface a matter of less complexity than would
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otherwise result.

Let us consider another simple example showing how these techniques can be
applied.  Suppose that we had a program in which the data was stored as a List and
that for some reason the program was modified to store the data in a sinarv-TRee with
a value at each node. The two programs are:

(defun list-version (1ist)
{do ({1 1ist (cdr))
{sum 0))
({nul1 1))
(cond ({eqg (type-field (car 1)) 'biweekly)
(setq sum (plus sum (salary-field (car 1))))))))

(defun tree-version {tree)

(tree-version-1 tree @))

(defun tree-version-1 (tree sum)
(cond ((eq (type-field tree) 'bi-weekly)
(setq sum (plus sum (salary-field tree)))))
(cond ((non-terminal tree)
(setq sum
(tree-version-1 (left tree)

{tree-version-1 (right tree) sum)))))
Sum)

The second program can be analyzed as a cowposition of a TRee-TRAvERsAL, a FILTER, and a
SEQUENTIAL-summaTion plan.  Similarly, the first program can be separated into a
LisT-enuMeraTION and the same fiiter and sequential-sumwation plan. In making this coding
change many surface details change, however, much of the deep structure of the
program remains constant. As the apprentice analyzes the modification, it will have
to rebuild the recognition mapping since some of the details of the recognition have
changed. However, those details which don't change are represented as facts in the
data base which stay in throughout the whole process. Thus, those deductions which
are based on facts of the analysis which are not changed between the two versions
stay in themselves and do not require any further deductive effort.

Let us look again at an example shown at the beginning of this thesis in which a
HasH-TaBLE is changed from a vinkeo-List representation for the BuckeTs to a REHASHING
scheme in which the cells of the array form the data structure to be searched. We
can easily see that both the List and the set-of-ceLLs form an ACYCLIC RECURSIVE STRUCTURE
of nooe-pecree 1. We call such structures /inear structures and observe that arrays and
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single paths through a tree are also linear structures. The plan library contains a

hierdrchy of plans for traversal of recursive-structures. The most general of which is:
- RECURSIVE-
: STRUCTURE-
terminal? A Do- TRAVERSAL
ves | no ftion-i |
™ Enumerate- ernina
Immediate-
Chi ldren

Each-
of -

Rec-
Trav

]//&
Join-Temporal-Collections

i
|

For| linear-structures there is another more specialized plan which replaces the plan for
enunJLerating the immediate-children by the more simple plan iMeotate cuio which
fetches the unique immediate child of the current node. Thus, we get:
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Linear
Structure
' o
LINEAR-
STRUCTURE -
. TRAVERSAL
terminal?

¥ Do-
Non-

Immediate-Child Term

<

Linear-
Structure-
Traversal

/

vEs | no

"

Join-Temporal-Col lections
1 \

Enumerator Plan for Linear Structures

Notice that this plan is merely a generator of successive sub-structures. In fact, it
includes in its output the terminal element of the linear-structure which in most case
(such as list-traversal) is not useful More specialized versions of the
linear-enumeration plan filter out the terminal We are here concerned with a
particular type of linear-structure, those with a value set of size 1 (Le. we want there
to be a unique first value of each sub-structure). Most often we want to augment the

specialized linear-enumerator with an operation to fetch the first value of the
sub-structure.
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First-
LINERR- Items-
) STRUCTURE-FEnUHeration
i P d TRAVERSAL
terminal? 4 ¥ Do-
R Wi 4 Non-
X N Immediate-Child Term
Linear-
Structure-
Traversal
N |
Join-Temporal-Collections
) \

— 7 _
S \ —
First First o First First
[ (

N ™~

Y,

Enumerator of Values of A Linear Structure

This 'plan can be specialized in many ways depending on the nature of the
lineag-structure. However, the specialization is always concerned with the
representation of the linear-structure; i.e. with the particular means of fetching the
immediate-child and the particular means of fetching the first item of the
sub-structure enumerated. In the two cases we are considering these details are quite

diffefent. In the case of LISP lists, the immediate-child operator is cor and the first
operdtor is car.

However, in the case of the rewasuine scheme, things are a bit more complicated.
The |sub-structures being enumerated are represented by a triple consisting of an
array, an INITIAL-INEx and A current-INoex.  The next sub-structure is the object
implemented by the triple consisting of the same array and initial-index but with a
new current-index which is the rehash of the old current-index. Special provision is
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made for representing the terminal sub-structure. For example, the rehash of the last
index in the sequence can be a negative number; a triple with a negative current-index
is defined to implement a terminal. The first item of any sub-structure is the item of
the array indexed by the current-index.

Thus, the above diagram can be further specialized for these two designs,
replacing the more abstract rirst and immen1aTe-cHILD by car and cor in one case and by
ARRAY-FETCH and rewash in the other. Similarly, the terMinaL-1est in the two programs
must be different since terminals in the two designs are represented differently.
Notice that in the plan which uses rewasw we use triples of objects to represent the
sub-structures flowing between the subsegments. These triples are seen in the surface
plan as separate data-flows involving the array, the initial-index, and the
current-index. Higher level recognition procedures must group these three flows into a
single virtual flow.

This analysis lets us see where the modifications need to be made to effect the
change in representation. For one thing, since the output of either of these more
specialized enumerators is the same temporal-collection of values, we know that the
consumer parts of the plan do not need to change. Thus, the Lookup program in either
version would involve one or the other specialized version of the above plan coupled to
the following standard search plan fragment.

s
-

- |SERARCH

Test? Test?
| n i y | n

W

1 1 1
Join-Hins

\
V

The Standard Search Plan
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The key observation, however, is that the search plan can be seen to have no

depepdencies linking it to the design choice of the data-structure traversed by the

ENUME
ENUME

ator.  Indeed, only the rerminaL-TesT, First and IMMEDIATE-CHILD sub-segments of the
ation plan depend on the design choice.  When the programmer proposes to

change the representation of the bucket from lists to a different type of

linea

-structure, the apprentice, can immediately determine the extent of the effects.

The |entire search part of the plan is safe and the only part of the enuMeration which is
affected is the rirst and rest parts which in the current version are the car and cor
segments, and the termivai-Test which in the current version is the test nu 2. Based on

these

observations, the apprentice can describe in high-level terms what segments need

changing,

[n a more advanced version of the apprentice I expect there to be at least

enough synthesis expertise to chose the correct specialization of Linear-enumMeraTION for
travefsing the rewasweo-cetts data-structure.  The apprentice could use this newly
selected plan to inform the programmer how to change his program to conform to the
new design. In any event, the ability to decompose the program into both temporal

and

surface  viewpoints allows the apprentice to treat the above modifications as

incremental just as would any reasonably skilled programmer.
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Chapter 14: Conclusions
Section 14.1: Good Decisions

REASON's design deviates from that of standard verification systems such as
[Igarashi, et. al, 1973] in many ways. REASON is intended to be a part of an
interactive programmer's apprentice system. It must function in a number of different
contexts including interactive design, plan modification, and verification and it must
service the needs of different communities of programmers using a variety of
languages. These requirements led to several novel design decisions.

In building the apprentice, it seemed essential that the system not be primarily
concerned with the actual program text. The primitives of a programming language
are too low level to worry about during the early (and probably later) stages of
design. Rich and I concluded that the system's formalism should be quite simple,
consisting of program segments connected by control and data flow; these seemed to
be the abstract notions which programming language primitives are intended to
achieve. Also we thought that this formalism would be a convenient one in which to
capture the teleological notions which constitute a plan.

The plan diagram formalism has, so far, done what it was intended to do.
However there are some concepts which it can't handle. The formalism has no place
for a procedure which, like an interpreter, manipulates the representation of another
procedure, converting list structure into new data and control flow links. The notions
of data and control pathways takes us almost to this goal, but more work needs to be
done. Similarly, we currently have no way of describing interrupts or synchronization
primitives. However, these were beyond the scope of our original goals; indeed, the
kinds of programs which we wished to attack are simply and conveniently described
by plan diagrams.

A second novel design choice was to use a symbolic interpreter rather than a
verification condition generator. The apprentice is intended to help a programmer
design systems; this is a somewhat chaotic process in which a programmer might
change his design frequently, moving segments, changing data flows, and adding in
new segments to perform tasks which had been overlooked. To do this effectively,
the programmer will need to have "snapshots" of the computation, so that he can ask
whether a property holds at a particular point of the computation. REASON's use of
situations satisfies this need while adding yet another advantage. The deductive
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ification and partial deductions to be made as the interpretation of the plan

appukatus in REASON is completely integrated with the symbolic interpreter, allowing

procgeds.

simp

A third unusual feature of my approach is that many low level language features
y do not appear in REASON's plan diagram formalism. Assignment to variables

is regarded as a means of implementing a data flow; wite loops, etc. are all captured
by recursion. I have grown to find this means of expressing a program quite natural
and [simple and think that a front end for the system could be engineered to make

plan

diagrams a very natural vehicle for communication between the apprentice and

the programmer.

progt

One future development would be to use a graphics system to allow the
ammer and the apprentice to communicate pictorially; the system would generate

the pssertions of a plan diagram internally. The system would be able to display

stang
progt
on a
plan

ard library plans, modifying and specifying them on command from the
ammer. Systems could be designed by cutting and pasting pictorial plan diagrams
tv screen.  This would require the programmer to learn the vocabulary of the
library, but I think this would be advantageous. The plan library gives names to

the standard patterns of programming; if programmers began to think in terms of such

etc.

emph
work
REA

notic][us, their task would be conceptually simpler. Search, accumulation, tree traversal,

re all more powerful conceptual terms than are while, do, etc.

Another unique feature of the programmer's apprentice project has been our
asis on plan recognition and the development of a plan library. Much of this
is being done in a separate thesis by Rich [Rich, 1977,78), yet its influence on
BON has been considerable. My concern with the remporal viewpoint and the

reasoning needed to support it is motivated by the needs of the plan library. This

devel
progr
is of
stude

ppment has helped us develop a natural and powerful vocabulary for describing
puns.  Even if the rest of the project never reached fruition, the vocabulary itself
great value and might form the basis for introductory programming classes. A
nt who learned to think in terms of standard plans, would probably have a much

easier time astering the basic skills of program design.

For (
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Turning now to my work on the reasoning system there are several decisions
which I feel were positive. The use of Doyle's TMS [Doyle, 1978] as an integrating
mechanism is well justified. The decision to place a great deal of emphasis on defined
relations, allowing the user to state these declarat.vely is another idea which seems
worth the extra effort of having the system translate these declarations into various
kinds of procedures. The work I have begun on reducing the complexity of side
effect analysis seems a quite promising outgrowth of the general approach of
integrating the reasoning system with a knowledge base and an epistemology of
programming concepts,

The main advance I feel that has been made in the current version of REASON
is the task agenda protocol suggested by Doyle [Doyle, 1978b}  Although I have not
vet fully developed the choice making protocols of the system, I believe that this
offers the only route for building a system with evolving capabilities. Hopefully,
future research will provide some insights into how to use this power to advantage.
Finally, I think the initial work on modification reported here is moving in the correct
direction. The use of temporal viewpoint plans to guide the system during
modification sessions is a promising idea.

Although the current version of the system is still being implemented, I did
succeed in getting the first version to do some fairly involved proofs. In the scenario
of this thesis the programmer designs an associative retrieval system along the lines of
Conniver's data base. The first version of REASON successfully completed proofs of
all the routines used in this data base, including the fast intersect routine, the indexer,
and the pattern matcher. In addition, it recorded the dependencies produced during
these proofs and suminarized them into purpose links. It was not overly fast,
however, and it needed most of the 256K available on our PDP-10 to complete the
longest of these proofs. Although this earlier system had some success, it was not the
system I wanted. The newer system combined with the MIT LISP machine hardware
will probably be a far more useful machine.

Dependency Directed Reasoning



14.2 Problems 257
Section 14.2: Problems

I had hoped to implement more of the new system by now; yet each

implementation stands on the shoulders of its predecessor. My experiences in
impl¢nenting the earlier version of the system are worth mentioning. Originally I was
primprily concerned with the efficiency of the system and, therefore, rejected the
alrepdy  existing general purpose problem solving language in favor of building

meg

Ranisms carefully tailored to the special needs of program analysis. As a result I

spent a considerable amount of intellectual effort on issues at too low a level As
time | passed, it became increasingly obvious that I was re-inventing the wheel

com
tree
hype

\J

One particularly painful aspect of this problem was the use of an unduly
glicated context system (see [Rich & Shrobe, 1976). REASON builds a situation
representing the temporal behavior of the program; since it had to engage in
thetical reasoning as well, T implemented an extension of the context mechanism

of Cpnniver [McDermott, 1972] which allowed two dimensions of context. This was

unfdq

pury
impl
poin

The
or d
situs

—d

ftunate; the mechanism was awkward and caused quite a few obscure bugs.

SecclLd, and far more significantly, the context mechanism is inappropriate for my
)

ses. However, since I was taking an incremental approach to the
gmentation, I didn't realize this until late in the first implementation at which
ti I was forced to stick with what I had.

There are two circumstance in which the context mechanism seems unusable.
first of these is plan modification; when a programmer modifies a plan by adding
gleting a segment or by changing a data or control flow link the succession of
fions is changed. In such a circumstance, the context layers must be reorganized,

often| in ways which re precluded by artifacts of the context mechanism. Similarly,

trans

mov
cont

sition analysis is made cumbersome by the context mechanism which automatically
et facts forward.  Some other process must intervene, erasing the fact in the
ext layer at which it ceases to be true. One can only begin to appreciate the

hairy| timing problems this can cause; to fully appreciate it, you should code up such

a sy
orde

sfemn and attempt to develop it.  Finally, there was a representational problem; in
[l to give a justification for a fact in a particular context it was necessary to have

a nate for the context. To understand this name, the system had to have a map of
which names come after which others. The justifications in the old system, therefore,
were | based on the situation tag representation while the reasoning system used

cont

Pkts.  The use of situation tags, TMS, and explicit control assertions is a far

easiefr| discipline to live with.

For
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The current system, however, has some irksome problems also. One of these is
that it appears to be even more space consuming than the first implementation.
Within the next few years the hardware revolution will make this concern irrelevant;
in the mean time, however, experimentation is difficult. A more serious worry is that
the current system's mechanisms for side effect analysis, although correct, are not as
natural as I would like. The truth maintenance system ought to be able to use its
justifications to determine which facts .ould move across a transition. McCallester
and Doyle (private communication) have both suggested ideas for this kind of a
process, but these have not been incorporated into the current design.

There are still important forms of reasoning which are outside of REASON's
scope.  Primary among these is reasoning about termination and the closely related
concern of time complexity. Techniques described later in the literature review such
as "ghost variables” might be quite easily integrated into the current system, but I
have not yet examined this idea thoroughly. Reasoning about space consumption is
another issue which I have not yet addressed at all. Finally, many of the powerful
heuristic ~ techniques for inductive proofs used in some other systems
[Boyer & Moore, 1977] have not yet been integrated into REASON.

Dependency Directed Reasoning
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Section 14.3: Future Directions

I see this work growing in two directions at once. As I indicated in the
oduction, my work can be viewed as a technical stepping stone for future work on
‘onscious systems such as that proposed in [Doyle, 1978b} A next step in that
diton is to build an interpreter for plan diagrams. This is, in principle, quite
Die to do; it can follow the general pattern of the symbolic interpreter of this
is. An interesting exploration would be to implement the symbolic interpreter as a
1| diagram for the actual interpreter. Somewhat short of such fanciful exploration
A begin to develop proof strategies as plan diagrams which are executed by the
npreter. This will allow proof steps to be parts of more macroscopic actions within
ch they play well defined roles. These roles can then be categorized and used as
basis of both general and domain specific strategies. [Doyle, 1978b] discusses these
4 more fully.

REASON seems to have quite a bit of room for development within the
rentice system as well.  First of all, there are numerous tasks described in this
i5 such as modification, and recognition which are not yet integrated into the

syst
not
unc

n.  More interesting, however, are some avenues of exploration which we have
yet developed.  One of these is the use of the reasoning system in more
ppstrained recognition scenarios than I have presented here.

I would like the apprentice to analyze 4 or 5 pages of related LISP functions

with| almost no human intervention. Such a task would involve sophisticated problem

solv
seel
org:
leve
be

[Rig

with
kno

ing strategies drawing on the powers of the reasoning system. In particular, it
that this kind of recognition involves a certain amount of design expertise. One
ization of such a system would have a heuristic recognition component use lower
Il clues to guess what high level design underlies the code. This design would then
laborated by a program synthesis module (now being worked on by Rich
m, 1978]) working cooperatively with the reasoning system.

The next level task I would like to work on is the development of new expertise
iin the apprentice system. Currently, the system relies on a body of programming
Wledge.  As we now envision program synthesis, the apprentice can build a

progfam when it knows plans appropriate for the synthesis task. This can go a long
way |if the knowledge base is extensive and sophisticated. However, introspection
sugggsts that there is more to programming than just pasting together what one

alre

For

pdy knows. A direction of research which seems quite promising is to use the
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reasoning system to develop new plans through logical analysis, analogical reasoning,
etc.  Many of these ideas are being pursued by other researchers in other contexts. I
will indicate these in the next section which reviews the related literature.
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Chapter 15: A Survey of Related Work

dology was worked out by Von Neumann [Von .Neumann, 1963] and that
ition is as old as software itself. In 1966, McCarthy and Painter
arthy & Painter, 1966] presented a proof of correctness for a simple expression

J[W;\ldinger & Levitt, 1973] point out that the first program verification
i
Q
piler.  Foundational techniques using the notion of a state vector (the vector of

currgnt values of all program variables) were presented in [McCarthy, 1962a,b, 63}
Indegd, the formal definition of Algol [McCarthy, 1964] was influenced by a concern

for

provability.

However, the modern interest in verification seems to date back to Floyd's

piongering work [Floyd, 1967] (independently [Naur, 1966] developed similar ideas).
In this method, flowcharts are annotated by assertions which are believed to hold any
time | control passes through the annotated point of the program. An informal

verl

fication may be constructed by dividing the flow chart into control paths, showing

that leach assertion is a logical consequence of the earlier assertions and the intervening
program steps on its path. The pairs of entrance and exit assertions state the I/O
propgrties of the program. Normally, the programmer need only supply these

asse

rtions and one assertion, called the invariant, for each loop. This notion of

corngctness is called partial correctness, since it does not include a proof that the
program terminates. The assertions are called inductive assertions.

Floyd also introduced a method for proving termination of programs. This proof

is copducted separately from the proof of partial correctness and involves constructing
a mdpping between program variables and a well-founded set, i.e. a partially ordered

set

cons

xIIith no infinite descending chains. If a monotonically decreasing mapping can be
ructed then the program must terminate. [Manna, 1969] formalized these results

showing that the partial correctness of the program is equivalent to the satisfiability of

a s

tatement in first order logic and that total correctness is equivalent to the

unsafisfiability of a second statement. Intuitively, the first statement says that there is
a sat of inductive assertions from which a partial correctness proof can be built; the

secarfd statement says that there is no set of assertions which would imply that the
progfam halts with incorrect values.

For
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C.A.R. Hoare [Hoare, 1969] extended Floyd's work by showing how it could be
fit into a formal logical language. Hoare introduced the notation P {A} Q to mean
that if P is true before program A is executed, then Q will be true after A's
execution, (if A terminates). Hoare also presented several rules of inference for this
system such as:

P ->R, R{(A}S,S ->T

P{A) T

In later work, Hoare [Hoare & Wirth, 1973] presented an axiomatization of the
programming language PASCAL using this formalism. The primitives of the language
are defined by partial correctness formulae which, like those above, state how a

language construct will transform a predicate. For example, assignment to a simple
variable is defined by

P {x <- E}) P
E

This states that if P holds after x is assigned E, then P with every occurrence of x
replaced by an occurrence of E is true before the assignment. Hoare's techniques
were taken further in [Dijkstra, 1975, 1976] where Hoare's partial correctness formulae
are extended to Dijkstra's predicate transformers. Where Hoare would write P {A} R,
Dijkstra would write P = wp(A,R), indicating that P is the weakest predicate which
guarantees both that A terminates and that R will hold afterwards. Thus, Dijkstra's
predicate transformers strengthen Hoare's work to deal with total correctness.
Dijkstra also used his notions to define a language with limited non-determinism.
Another extension called the intermittent assertion method [Manna & Waldinger, 1976},
also allows proofs of total correctness; it uses assertions which are not invariants but
which must hold at least once (hence the name intermittent assertion). [Pratt, 1976]
presents foundational work providing a semantic model for these formalisms and a
logic in which the methods of Floyd, Hoare, Dijkstra, etc. can be compared. A host
of literature analyzing the theoretical and computational foundations of these methods

has appeared in recent years such as [Lipton, 1977] and [Jones & Muchnick, 1977] to
chose two at random.
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Floyd's inethod was developed for flow chart programs and uses inductive -

techpiques implicitly. [Manna & Pnueli, 1970] generalized Floyd's techniques to handle

recu

sive programs as well.  Inductive arguments are relied on. Other inductive

techpiques were also developed, including computational induction [Park, 1969],
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sion induction [McCarthy, 1963] and structural induction [Burstall, 1969]; sub-goal
tion, a variant of the inductive assertion method, is presented in [Morris &
breit, 1977]  Structural induction "inducts" on the depth of recursion of the
ram'’s data structures; computational and recursion induction are inductions on the
1 of function calling. Floyd's inductive assertion method is an induction on the
h of the computation path. These methods are surveyed in [Manna, Ness &
min, 1972] and also in [Reynolds, & Yeh, 1976} [Manna, 1974] covers a wide
> of theoretical issues underlying program verification and related fields.

Following Floyd and Hoare's seminal papers a literature began to develop in
n various hand proofs of program correctness were presented. These include
re, 1971] and [London, 1970a,b,c 1971} Attempts to automate the process soon
ved. The first of these was [King, 1969], a very fast verifier of limited power.
s system was coded in assembly language and had built in several special purpose
res for simplifying expressions and for handling systems of linear inequalities.

The second system within the Floyd-Hoare framework was PIVOT, implemented

by ﬂ’eter Deutsch [Deutsch, 1973  Pivot verified programs written in a limited
0

-like language; it works in a manner more similar to my symbolic interpreter
do many of the later systems. PIVOT traversed the program text in forward
(i.e. it started at the beginning and moved towards the end) and interleaved

simpgification of expressions with interpretation of the program text. It also used a

xt mechanisin to record the values of variables and the truth value of clauses.
context mechanism allowed PIVOT to have an incremental view of the
utation's temporal progression. PIVOT had a fixed sequence of deductive
iques which it employed repeatedly. It worked by refutation, trying to reduce

the 'Il\eegation of the goal to a contradiction. It was, thus, more like a resolution

m prover than many of the other verification systems since,

Three further systems followed, inspired largely by the original implementation of
tanford Verifier [Igarashi, et. al., '°73] Igarashi, London and Luckham reduced
's logical system to a core of ru.  which were deduction complete (ie. anything

the flull set could deduce, the core could as well) and which, furthermore, could be

used

deterministically. The Stanford group's set of rules was chosen so that there
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would always be exactly one rule which could be applied at a time. These rules were
used in a backwards manner to create a series of subgoals for the output assertion.
For example, if the program were:

P{(A ... B: x<- E} Q

there would be exactly one rule whose consequent matches the expression within the
braces. For example:

These rules are applied repeatedly until the inside of the braces contains an empty
program.  An implication made from the two formulae surrounding the empty braces
is handed to a theorem prover; if the implication can be proven, the program is
correct.  Originally, the Stanford system used a resolution theorem prover [Allen &
Luckham, 1970), but this was replaced by an algebraic and logical reduction system
implemented by Suzuki [Suzuki, 1975} Further work on the Stanford verifier includes
a technique for proving termination [Luckham & Suzuki, 1975) which inserts in each
loop a “ghost" variable to count the number of repetitions. Termination is proved by
demonstrating an upper bound for the ghost variable. [Luckham & Suzuki , 1976}
extended the proof rules to include more complex data structures including records,
arrays and pointers.  [Nelson & Oppen, 1978] have added a more powerful and
efficient simplifier to the Stanford system.

A second verification system was started at Stanford Research Institute [Elspas,
Levitt, & Waldinger, 1973] which used a verification condition generator similar to
that of Igarashi, et. al.  However, the SRI system was built around a natural
deduction theorem prover of some power, implemented in the language QA4. QA4
has a very powerful collection of data types including sets, bags, and tuples built into
the language which allow the theorem prover to ignore issues like the canonicalization
of arithmetic expressions. QA4 also provides contexts and backtracking facilities for
hypothetical reasoning. (Although Doyle's TMS makes these facilities unnecessary in
REASON, at the time of their incorporation into QA4, ‘they represented a clear step
forward in theorem proving languages). By using QA4, the SRI group was able to
build the theorem prover as a set of small QA4 procedures, grouped into clusters.
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The|SRI system is also reported on in [Waldinger & Levitt, 1974}

A third system was developed jointly between the Information Sciences Institute

at USC and the Automatic Theorem Prover project at the University of Texas [Good,

Lonc

on & Bledsoe, 19751  This system uses a modified version of the Stanford

veriffcation condition generator, a powerful logical and algebraic manipulation package
callei REDUCE [Hearn, 1971] and the theorem prover of [Bledsoe & Bruell, 1973]

The

split

theorem prover is a natural deduction system with special heuristics for case

splitIling, interval arithmetic (based on the technique of [Bundy, 1973), and range
ing in quantified statements [Bledsoe, 1971}  The verifier itself was proven

corrgct (by hand) in [Ragland, 1973}

Two other verification systems of note have been developed; neither of these uses

the Floyd-Hoare framework. The Boyer-Moore theorem prover for recursive function

theot

vy [Boyer & Moore, 1975,77] uses structural induction rather than inductive

asserfions; it states both the program and its specifications in Pure LISP, using
symbolic execution to reduce the expression. Their system contains powerful methods

for ¢
The

hoosing the basis for an induction and for generalizing sub-goals into lemmas.
system has proved impressive theorems in recursive function theory; it has also

veriffed a fast string searching algorithm and an arithmetic simplifier.

proof

The other verification system, [Milner, 1972a,b), [Milner & Weyrauch, 1972] is a
checker for Scott's Logic of Computable Functions (LCF) [Scott, 1972) The

strength of the LCF system is that it operates within a powerful formal logic within
which it is possible to reason about complex procedures which manipulate procedures

as of
are |
assist

jects.  Lisp programs which we would find difficult to handle within our system
andled directly within LCF. The system was implemented as a proof checker to
the human proof constructor. VonHenke has done some work on integrating

abstrpct recursive structures in the system [vonHenke, 19751 In later work, [Gordon,
Milngr, et. al, 1978], the system was extended to facilitate the semi-automatic

gener

Peter
direc

ation of proofs and the integration of new strategies and types.

Of the systems I have mentioned so far, the one most similar to REASON is
Deutsch's PIVOT.  Both systems use symbolic interpretation in a forward
ion and interleave simplification with evaluation. The other Floyd-Hoare systems

use verification condition generators which reduce the entire computation history to a

single
and

For (

first order implication. A symbolic evaluation system quite similar to REASON
Deutsch's PIVOT is described in [Hantler & King, 1976}  Other symbolic
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execution systems have been used in a program testing (as opposed to verification)
environment to form symbolic expressions for the values of program variables. Typical
of these is [King, 1976}, [Clarke, 1976] and [Howden, 1977,78} [Balzer, 1978] uses a
weak forin of symbolic evaluation to fill in the omitted details of an imprecise
program specification.  [Yonezawa, 1977] describes a system quite similar to mine

which is based on that in [Hewitt & Smith, 1975] However, his system was never
implemented.

REASON views programs more dynamically than do many of these other
systems.  During its normal reasoning it moves assertions backward and forward
through the situations, reflecting the dynamic propagation of facts through the
situations of the program. In addition, when used within the recognition system,
REASON takes an even more dynamic view, expanding the program's temporal
behavior and resegmenting this into logical units. This process oriented view more
closely resembles the recent theoretical of Pratt on process logic [Pratt, 1978] and the
work of Pnueli ([Pnueli, 1977] on temporal logics suitable for describing
non-terminating programs like operating systems.
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Section 15.1: Newer Areas of Verification Research

Synthesizing Loop Invariants

There are several areas of current research on verification systems which I would

like fo mention before going on to program understanding research more similar to my

oW1l
Boye

The first of these is the problem of synthesizing loop invariants. The
-Moore system does not need to form loop invariants, but rather uses structural

indudtion on the data structures to achieve the same effect. It has a number of

heuri
auto?x

ptics for choosing which data structure to "induct" on, and works completely
patically.  The Floyd-Hoare systems, however, require some other process, human

or mpachine, to generate the inductive assertions. Although, [Dijkstra, 1976] argues

that!

human programmers ought to generate loop assertions as the first step of

desiéﬂxing their programs, many researchers have found this cumbersome and would

prefe
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to have an automated loop invariant synthesizer.

‘Early research in  this area includes [Cooper, 1971]), [Elspas, 1974]

s, et. al, 1972] in which recurrence relations are generated through use of a
loop counter. [Wegbreit, 1973,74] introduced a number of heuristic techniques
involve strengthening and weakening of assertions.  Typically the original
ion is one known to hold immediately after the loop's exit (this is easily
ated by the normal VCG procedures) or immediately before entrance to the loop.
rthening heuristics include dropping a clause from a disjunction or adding one to

a copjunction.  Wegbreit's techniques were implemented in [German, 1974] and

repor
simil‘:
corre
in th
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fed on in [German & Wegbreit, 1975] [Katz & Manna, 1973,76] have developed
r techniques including some for handling arrays and for strengthening a partially
't loop invariant. [Greif & Waldinger, 1974] have also studied some techniques
s area.

More recent work in automatic synthesis of invariants have included

[Capimin, 1975], implemnentation efforts such as those of [Dershowitz & Manna, 1977)

and |

[Moriconi, 1974] [Cousot & Halbwachs, 1978] presents a method for

autohﬁatically deriving linear inequalities among the variables of loop; these inequalities

may|

progt
deve‘ {

desc

be used as invariants. [Basu & Misra, 1976] have studied some classes of
iuns such as accumulation loops in which the loop invariant is especially easy to
pp automatically. Their work resembles to a small degree [Waters, 1978] work

on IFOP analysis, in that both look for standard patterns within a loop and build a
l

ption of the loop based upon known properties of these standard patterns.

For k‘onrlplex Program Understanding




268 A Survey of Related Work

REASON currently relies exclusively on Waters' techniques plus more advanced
recognition techniques being worked on in [Rich, 1978} I do not yet know whether
this will be completely sufficient, or whether I will have to include some of the
heuristic techniques mentioned above.  Probably, REASON will only use such
techniques as a last resort strategy.

Abstraction Techniques

Another major area of ongoing research is the development of abstraction
techniques which allow the program and its proof to be structured into layers of
smaller procedures.  Various approaches have been taken. [Hoare & Wirth, 1973] in
their axiomatization of PASCAL include a procedure call rule which is the basis for
any form of procedural abstraction. Various technical difficulties with the rule have
been discussed in [Cartwright & Oppen, 1978] and [Guttag, et. al, 1977) However
the ability to refer to a procedure by its specification is only the first step in most
abstraction techniques.

Frequently, abstraction techniques have been concerned with specifying,
implementing, and proving the correctness of abstract data structures. [Hoare, 1972]
introduces a method for proving the correctness of a data structure implementation,
using the notion of an abstraction function to map between the variable of the
concrete space and the variables of the abstract space. [Parnas, 1972] develops a
method for hierarchically specifying a system in which each level of procedure is built
from modules at a lower level. Modules consist of two types of proceduress O
procedures which are allowed to have side effects and V procedures which cannot.
Thus, the values of the various V functions characterize the module's state, and the O
procedures can be specified in terms of their effect on the values of the V functions.
This is quite similar to our method of specifying side effects and has been used in
[Robinson & Levitt, 1977}

Some newer languages such as Alphard [Wulf, et. al, 1976] and CLU
[Liskov, et. al., 1977] have extensive facilities for grouping procedures together into a
"data abstraction” with each procedure representing some of the behavioral capabilities
of the abstract datum. The procedures of the data abstraction share access to the
concrete representation, while procedures outside are, in general, denied such access.
Motivated by these languages, a specification technique, called data algebras, has been
developed in [Guttag, 1975] and [Zilles, 1975] In this technique the data abstraction
is specified by axioms containing equations interrelating the behavior of the functions
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qined in the data abstraction. Verification consists of showing that each module

in the "cluster" preserves each of the axioms. An inductive argument then shows that

the

gxioms are invariants of the cluster since only the modules of the cluster may act

on opjects of the abstract type. This approach is quite different than those we use;
[Yongzawa, 1977] presents an argument for techniques more similar to ours.
[Liskpv & Berzins, 1977] have written a survey of data specification techniques.

Side

com

Effect on Complex Data Structures

A closely related area of research has dealt with the problems of side effects on
ex and shared data structures. [Oppen, 1975] presents an axiom system for

reaspning about Directed Graphs and derived a computability result for this system.

[Yel

witz & Duncan, 1978] also work with the DiGraph model, but develop a much

more| succinct formalism.

Suzuki, 1975] develops axioms for the complex data structures allowed in

PASCAL. In this system each data type is made to appear to be an array, indexed

by p
varig
nota
syml}
to h
have

wher

effeg

ginters of the appropriate data type. This is possible since in PASCAL a pointer
Ible may only reference objects of a single type. Suzuki requires a special
tion for predicates which refers to a recursive data type; they must include
ppls to refer to all the data types involved in the definition. Supposing one wished
dve a predicate stating a well formedness criterion for lists of pairs. This would
to stated as

(Well-formed List-of-Pair-1 P#list P#Pair)

Ir the last two symbols represent the pseudo-arrays of lists and pairs. If a side
is performed on any list or pair, this predicate will be updated by changing one

of the last two symbols in a manner analogous to the standard array rule. Although
logiciglly sound, the system produces large expressions whose intuitive meaning is, at

best,

unclear.  In large interrelated systems, the expressions might well become

intragtable. Suzuki's technique can be viewed as a special case of my

pote

ial-dependency network, in which a very course filter is used to decide if an

assention is threatened by a side effect. Whereas REASON filters for specific types of

side
his s

For

ffects to a particular data type, Suzuki's system filters for any side effect; thus,
tetn will produce unduly complicated expressions.
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[Yonezawa, 1977] uses a formalism which, except for the use of the TMS, is
quite a bit like mine; this is hardly accidental since we shared an office for 2 years
and both worked with Carl Hewitt. His thesis describes a system which uses the
situational calculus to reason about the situational transformation brought about by a
side effect. However, Yonezawa's later interests moved more towards a formalism for

reasoning about parallel procedures and synchronization; his system was never
implemented.
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Section 15.2! Apprentice-Like Systems

[There has been some other research which includes one or another of the

chargncteristics of the programmer's apprentice project.  « will briefly review two

Cnteg
inter:
catalg

pries of these: The first involves some attempt 5 support the programmer in an
ctive design and evolution environment; The second involves some attempt to
gue standard programming knowledge.

Systiems for Evolutionary Design

modif
into

[Goac

Most  developed among the systems which support interactive design and
ication is the system of [Moriconi, 1977} This system, called SID, is integrated

the University of Texas/ISI verification system of
, London & Bledsoe, 1975}  The new feature of this system is an interface

modhﬂle which analyzes proofs constructed by the theorem prover to determine the

depé[x
simpil
on p
are jp
This|

dencies between the verification conditions. These are then represented in a
> network.  The verification conditions are also analyzed so that their dependence
rticular lines of code is recorded in the data base. When program modifications
roposed, the network is examined to see whether any logical link is affected.
s quite similar to the apprentice's purpose links. However, if some dependency is

affedted, both the verification condition generator and the theorem prover must be

called
systel
Main

[Katg

to completely recreate the proof for the modified section of code. Thus, the
n is less incremental in its analysis than is REASON which uses the Truth
enance System to reuse as much of the original reasoning as possible.

“‘Another project of a similar nature is that of [Dershowitz & Manna, 1977] and

& Manna, 19761 In the first of these, analogies between the new and old

versiqns of the program specs are used to generate loop invariants for the new code.

In th
the '4

Mori

schey
our g

For t

> second, a table of dependencies between loop invariants is maintained to aid in
inalysis of modifications. ~ Both of these system seem less developed than
ont's. The Dershowitz and Manna paper has a brief discussion of the use of
ata to capture some programming generalities, but none of these systems have
nphasis on cataloging programming knowledge.

lomplex Program Understanding




272 A Survey of Related Work
Knowledge Based Systems

Several systems have, however, attempted to take a knowledge based approach.
[Schwartz, 1977] proposes to build a set of root programs representing basic
programming techniques and a set of correctness preserving combination rules.
However, this process is to take place in a strictly hierarchical manner; the work is
also intimately tied to the language SETL, in contrast to our attempt to remain
language independent.

[Gerhart, 1975a] proposes to catalogue programming knowledge in the form of
schemata which serve as syntactic templates. Programming knowledge and proof rules
are attached to each template, forming a catalogue of programming knowledge. I feel
that this representation is too low level and language dependent, even though some
generality is regained through wuse of correctness preserving transformations
[Gerhart, 1975b] [Darlington & Burstall, 1973] have also studied the use of
transformations.

An early attempt to catalogue programming knowledge is found in
[Ruth, 1973,76a].  Ruth represented algorithins as grammar's for a parser using an
ATN-like formalism. Each grammar can parse several programs representing different
implementations (including some with standard bugs) of the same algorithm. The
system was developed to parse the programs of beginning students and lacks several
features which seem important in the more complex domains which concern me. The
ATN-like formalism seems overly syntactic and cumbersome for the representation of
the wide range of programming knowledge which I desire to capture. Also, since the
formalism has no means of stating the intrinsic behavior of sub-segments, it has no
ability to represent the purposeful nature of the interconnections between modules.
Later work, [Ruth, 1976b,c] develops an expert system for inventory data bases with
extensive knowledge of file and record organization.

The knowledge based system most similar in approach to the apprentice system is
the PSI system of [Green, et al, 1976,77] (in particular the PECOS sub-system
developed in [Barstow, 77). PECOS is a set of refinement rules for program synthesis
representing a broad range of knowledge about sets, mappings, tuples, arrays, etc.
arranged to capture as much general knowledge as possible.  Although the system has
some implementation and representational problems (it has neither a deductive system,
nor a clear notion of data flow), it does seem to capture a reasonable segment of the
knowledge of the expert programmer in a natural manner. Efficiency knowledge is
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sented in another sub-system called LIBRA, [Kant, 1977} The entire PSI system

has been capable of synthesizing the code for a simple version of a learning program.

[Man
capal
of ih
well|

Anott

A different  type of synthesis system has been developed by

1w & Waldinger, 1977] in which far more reliance is placed on deductive
ilities.  Their system is capable of synthesizing a program to satisfy a given set
put-output specifications. It has rules for loop, recursion, and test formation as
is a method for handling destructive interference between simultaneous sub-goals.
ner ‘recent knowledge based system is the SAFE system of [Balzer, et. al, 1977]

whiglt takes informal program specifications and attempts to translate these into a

precis

be fo

For (

e formal description from which a program may be synthesized.

An excellent treatment of many aspects of program verification and synthesis can
und in [Manna & Waldinger, 1978}
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Section 15.3! Dependency Based Reasoning

This thesis has been interlaced with many references to the works of my close
colleagues at the MIT Al lab. My approach to developing the deductive machinery of
REASON has been influenced heavily by the AI Lab's intellectual atmosphere.
Dependency based systems like [Stallman & Sussman, 1977] and [Doyle, 1978] have
strongly influenced the redesign of REASON. Another dependency based system
which has influence my thought is [London, 1977} [Doyle, 78] surveys much of the
current literature on dependency based systems.

The idea of explicit representation of control as a stepping stone to introspective
systems is  also  heavily influenced by [Doyle, 1978] as well as by
[DeKleer, et. al, 19771  [McDermott, 1976] introduced the task network formalism
which he developed considerably further in his NASL system than I have yet done in
REASON. The idea of this form of organization was called to my attention by Doyle
(private communication).  [Davis 1976] uses a weak form of self reflection in a
backward chaining system.

A strong influence on my approach to handling side effects has been the
considerable Al literature on the frame problem. [McCarthy & Hayes, 1969] and
[Hayes, 1971a,b] are good introductions to this issue. [Raphael, 1970] surveys the
known techniques for handling the problem.

REASON's entire design is shaped by the central importance given to plans
within the apprentice system. HACKER [Sussinan, 1975] introduced many of the
ideas which helped us develop the plan formalism.  Other ideas such as the
categorization of plans into particular types first appeared in [Goldstein, 1974} The
plan formalism as we now use it first appeared in [Rich & Shrobe, 1976} Its current
form was heavily influenced by Waters work in [Waters, 1977] [Sacerdoti, 1975,75a]
developed a similar formalism as part of a plan compilation system. Johan deKleer's
[deKleer, 1976,77] work on understanding electronic circuits and Allen Brown's

[Brown, 1977] work on isolating failures in a circuit have also influence the plan
formalisim.
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L[.\Iiller & Goldstein, 1976a,b,77] have been developing a notion of plan for use in
ing sessions. They have catalogued very general problem solving strategies, whose
they represent in an ATN-like grammar. The grammar is used to parse the
col of a student's coding sessions, so that the computer tutor can provide advise.
milar methodology is used in [Genesereth, 1978] to help experts using the
ISYMA symbolic manipulation system. However, in this case the assumption is
the expert has correctly formulated a plan, but has based his plan on faulty
ledge of the MACSYMA facilities. ~ Genesereth's system functions as a
'SYMA consultant, not a tutor.

The earliest mention of a system like the programmer's apprentice is in
d, 1971}, although verification and related techniques were not yet well enough

developed to do much with the proposal. The pressures of engineering large Artificial

Iute[l
[Hew
PLA

igence systems led to another exploration of the idea in [Winograd, 1973}
itt & Smith, 1975] developed the idea further within the framework of the
SMA - programming language.  Both Hewitt and Smith encouraged me and

provided some initial insights.

is n
but
help
{McC

For|

I began this thesis by placing it within the context of a developing set of

tecthiques which T hope will help develop truly self-conscious systems. This document

intended to answer many of the difficult problems which will lie on that course,

pnly to develop some technical foundations in program understanding which will
those more bold than L Minsky [Minsky, 1968] and McCarthy's

arthy, 1968] ideas of a decade ago, still lie ahead of us, waiting for solution.
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