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ABSTRACT

What are the characteristics of the process by which an intent is
transformed into a plan and then a program? How is a program debugged?
This paper analyzes these questions in the context of understanding simple
turtle programs.

To understand and debug a program, a description of its intent is
required. For turtle programs, this is a model of the desired geometric
picture. A picture language is provided for this purpose.

Annotation is necessary for documenting the performance of a
program in such a way that the System can examine the procedure's behavior
as well as consider hypothetical lines of development due to tentative
debugging edits. A descriptive framework representing both causality and
teleology is developed.

To understand the relation between program and model, the plan must
be known. The plan is a description of the methodology for accomplishing
the model. Concepts are explicated for translating the global intent of a
declarative model into the local imperative code of a program.

Given the plan, model and program, the system can interpret the
picture and recognize inconsistencies. The description of the
discrepancies between the picture actually produced by the program and the
intended scene is the input to a debugging system. Repair of the program
is based on a combination of general debugging technique and specific
fixing knowledge associated with the geometric model primitives.

In both analyzing the plan and repairing the bugs, the system
exhibits an interesting style of analysis. It is capable of debugging
itself and reformulating its analysis of a plan or bug in response to self-
criticism. In this fashion, it can qualitatively reformulate its theory of
the program or error to account for surprises or anomalies.

Thesis Supervisor: Seymour A. Papert
Professor of Applied Mathematics
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CHAPTER 1 -- INTRODUCTION

1.1 UNDERSTANDING PROGRAMS

What is the process by which an intent is transformed into a plan
and then a program? How is a procedure debugged? This paper analyzes
these questions in the context of understanding simple programs for drawing
pictures. Figure 1.1 and 1.2 illustrate some typical intended drawings and
the the corresponding pictures produced by programs with bugs.

To make concrete our theory of planning and debugging, a computer
monitor called MYCROFT has been designed that is able to repair programs
written by a beginner. In building such a monitor, fundamental problem
solving issues are addressed including simplification, linearity, planning,
annotation and self-criticism. This research provides insight into the
programming process which is useful both for better educating students and
for increasing the competence of machines.

It is important to note at the outset that by "design® I mean that
the system has been described in sufficient detail to be hand-
simulated but that it has not actually been implemented. The
criteria by which the concepts and techniques introduced were
Jjudged was their success on a large number of examples of actual
programs written by beginners. The system was not implemented to
avoid being submerged in details and artificial limitations due to
the idiosyncracies of the particular programming language. Also,
the primary goal of the research has been to find more precise ways
of describing the fundamentals of programming and debugging rather
than to construct a practical system for computer-aided
instruction. Currently, MYCROFT is being implemented in CONNIVER
[McDermott 1972], a LISP-based language with database, pattern-
matching and sophisticated control primitives. The implementation
is being undertaken in order to provide a platform for further
research and will be separately documented in a forthcoming Al
memo.
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1.2 TURTLE PROGRAMS AND LOGO

The pictures of figures 1.1 and 1.2 are drawn by program
manipulation of a graphic device called the turtle. The turtle has a pen
which can leave a track along the turtle's path. Turtles can be either
real physical devices or simulations on a graphic display. I shall limit
myself to display turtles to avoid problems of iﬂprecision due to motors,
drive belts and wheels. Figure 1.3 illustrates the behavior of the turtle
executing the following TRIANGLE procedure:

TO TRIANGLE

10 FORWARD 100
20 RIGHT 120

30 FORWARD 100
40 RIGHT 120

50 FORWARD 100
END

Appendix A provides further details of the turtle language.

Turtles play an important role in the LOGO environment where
children learn mathematics and problem solving by programming display
turtles, physical turtles with various sensors, and music boxes [Papert
1971a, 1971c, 1972a]. Turtle programs have proven to be an excellent
starting point for teaching programming to beginners (of all ages). Hence,
in building a system to understand such programs, we can expect to address
fundamental issues in the epistemology of procedures..

The turtle programs are expressed in LOGO syntax. LOGO's design
goals of clarity and simplicity make it ideal for expressing these programs
in a readable way. The syntax, however, is not of significance for the

problems of understanding these programs. Their important characteristics

are determined by the semantics of turtles.
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Initial State 2 Statement 10
TURTLE T FORWARD 100
AT Executed
HOME
Statement 20 4 Statement 30
RIGHT 120 [y FORWARD 100
Executed Executed
Statement 40 6 Statement 50
RIGHT 120 P FORWARD 100
Executed Executed

FIGURE 1.3
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* 1.3 PICTURE MODELS

To judge the success of a program, MYCROFT requires as input from
the user a description of intent. A declarative language has been designed
to define picture models. These models specify important properties of the
desired final outcome without indicating the details of the drawing
process. The primitives of the model language are geometric predicates for
such properties as connectivity, relative position, length and location.
The following models are typical of those that the user might provide to

describe figure 1.4.

Intended Man

FIGURE 1.4
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MODEL MAN

M1 PARTS HEAD BODY ARMS LEGS

M2 EQUITRI HEAD

M3 LINE BODY

M4 V ARMS, V LEGS

M5 CONNECTED HEAD BODY, CONNECTED BODY ARMS, CONNECTED BODY LEGS
M6 BELOW LEGS ARMS, BELOW ARMS HEAD

END

MODEL V

M1 PARTS L1 L2

M2 LINE L1, LINE L2

M3 CONNECTED L1 L2 (VIA ENDPOINTS)
END

MODEL EQUITRI
M1 PARTS (SIDE 3) (ROTATION 3)
M2 FOR-EACH SIDE (= (LENGTH SIDE) 100)
M3 FOR-EACH ROTATION (= (DEGREES ROTATION) 120)
M4 CONNECTED (SIDE 1) (SIDE 2)
M5 CONNECTED (SIDE 2) (SIDE 3)
M6 CONNECTED (SIDE 3) (SIDE 1)
END.
The MAN and V models are underdetermined: they do not describe, for

example, the actual size of the pictures nor the specific location of the
connection points. The user has latitude in his description of intent
because MYCROFT is designed to debug programs that are almost correct.
Therefore, not only the model, but also the picture drawn by the program
and the definition of the procedure provide clues to the purpose of the

program.

1.4 THE NAPOLEON PROGRAMS
To introduce the system, we will examine its performance on a stick
figure program and its sub-procedures intended to draw figure 1.4. Thesé

programs will be typical of the elementary class of fixed-instruction

programs which MYCROFT understands. A fixed-instruction program is one
wherein the primitives are restricted to constant inputs. Sub-procedures

are allowed; however, no conditionals, variables, recursions, or iterations
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are permitted.

TO NAPOLEON <- (accomplish man)

10 VEE (- (accomplish legs)

20 FORWARD 100 <- (accomplish (piece 1 body))
30 VEE <- (insert arms body)

40 FORWARD 100 <- (accomplish (piece 2 body))
50 LEFT 90 {- (setup heading for head)

60 TRICORN <- (accomplish head)

END

TO VEE <- (accomplish v)

10 RIGHT 45 <- (setup heading for 11)

20 BACK 100 <{- (accomplish 11)

30 FORWARD 100 ¢~ (retrace 11)

40 LEFT 90 {- (setup heading for 12)

50 BACK 100 <- (accomplish 12)

60 FORWARD 100 (- (retrace 12)

END

TO TRICORN <- (accomplish equitri)

10 FORWARD 50 <- (accomplish (piece 1 (side 1)))
20 RIGHT 90 <- (accomplish (rotation 1))
30 FORWARD 100 <- (accomplish (side 2))

40 RIGHT 90 <- (accomplish (rotation 2))
50 FORWARD 100 <- {accomplish (side 3))

60 RIGHT 90 <- (accomplish (rotation 3))
70 FORWARD 50 {- (accomplish (piece 2 (side 1)))
END

These programs have bugs. VEE draws figure 1.5, TRICORN figure 1.6, and

NAPOLEON figure 1.7.

1.5 PLANNING
The "<¢-" comments shown above constitute the plans for these

procedures and explain the purpose of the code in terms of the model. This
commentary is essential both for the system to Judge the success of the
program and to guide the debugging process. From a program-writing point
of view, the plan explains how a declarative model of global intent is to
be translated into the local imperative code of a program.

| The programmer can supply the plan; or, alternatively, MYCROFT can

analyze the model and program and deduce the plan. The latter was the case
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for the above programs. The system initially searches for a linear plan.

This is a very simple but common type of plan in whic¢h the main goals are
achieved independently and interactions are limited to interfaces. An
interesting characteristic of the plan-finding algorithm is that it is
capable of correcting its linear hypothesis in response to anomalies and
thereby recognize more complex types of plans.

Planning expertise is obviously essential to both program-writing
and debugging. It reveals the user's intent, allowing proper recognition
of bugs, and provides guidance on the likely pitfalls of different abstract
planning structures. Plans organized around linearity, preparation,
interrupts, repetition, and global knowledge will be discussed in chapter
2.

1.6 DEBUGGING

Given the plan, model, and program, the system can interpret the
picture and recognize inconsistencies. The description of the
discrepancies between the picture actually produced by the program and the
intended scene is the input to the debugging system. The system recognizes
the following model violations in the NAPOLEON picture.

(NOT (LINE BODY)) ;The body is not a line.

(NOT (EQUITRI TRICORN)) ;The head is not an equilateral triangle.
(NOT (BELOW LEGS ARMS)) ;The legs are not below the arms.

(NOT (BELOW ARMS HEAD)) ;The arms are not below the head.

Repair of the program is based upon a combination of general
debugging techniques and specific imperative knowledge associated with the
geometric model primitives. The debugging techniques include the ability
to rank violations on the basis of debugging complexity; the ability to

analyze errors initially in a modular way but to be prepared to look for
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"second-order" causes due to interactions; and criteria for choosing
between alternative debugging strategies. Imperative geometric knowledge
includes advice as to how to establish a desired geometric relation by such
means as manipulating the turtle's state at interfaces or altering the
scale of sub-pictures. '
This knowledge enables the system to correct the NAPOLEON, VEE and

TRICORN programs. The repair is accomplished in three steps: first the
head is corrected (figure 1.8); then the crooked body is straightened
(figure 1.9); and finally the orientation of the stick figure is fixed
(figure 1.10). The end result is the program shown below which
successfully draws the intended picture (figure 1.4). The underlined
statements are the corrections made by the debugger. The associated
underlined comments represent additions to the plan which explain the
assumptions and purposes of the corrections.

TO NAPOLEON <- (accomplish man)

3 RIGHT 90 <- (setup heading such-that (below legs arms)

(below arms head))
(- (assume (= (entry heading) 270))

10 VEE {- (accomplish legs)

20 FORWARD 100 <- (accomplish (piece 1 body))
30 VEE <{- (insert arms body)

40 FORWARD 100 <- (accomplish (piece 2 body))
50 LEFT 90 {- (setup heading for head)

60 TRICORN <- (accomplish head)

END

TO VEE <- (accomplish v)

(state-transparent vee)
10 RIGHT 45 {- (setup heading)
20 BACK 100 {- (accomplish 11)
30 FORWARD 100 <- (cleanup position)
40 LEFT 90 <{- (setup heading)
50 BACK 100 <- (accomplish 12)
60 FORWARD 100 <- (cleanup position)

70 RIGHT 45 <- (cleanup heading)
END '
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TO TRICORN (- (accomplish equitri)
10 FORWARD 50 <- (accomplish (piece 1 (side 1)))
20 RIGHT 120 <- (accomplish (rotation 1))

(- (= (degrees (rotation 1)) 120)
30 FORWARD 100 <- (accomplish (side 2))
40 RIGHT 120 <~ (accomplish (rotation 2))
{- (= (degrees (rotation 2)) 120)
50 FORWARD 100 <- (accomplish (side 3))
60 RIGHT 120 {- (accomplish (rotation 3))

(- (= (degrees (rotation 3)) 120
70 FORWARD 50 <- (accomplish (piece 2 (side 1)

)
)

1.7 ORGANIZATION

The organization of the monitor system is illustrated in figure
1.11. The main flow of control is represgnted by the solid lines and is
from left to right‘in the flowchart. The dotted lines indicate advice.
The ovals are the major procedures used by MYCROFT and consist of ANNOTATE,
FINDPLAN, INTERPRET and DEBUG. The squares contain data. Input to the
system consists of the turtle program and picture model. Subsequent
processing produces a Cartesian picturg description, a plan, a list of
violations and finally an edited corrected progranm.

The next two chapters investigate the nature of planning and
debugging in the turtle world. This knowledge comprises the foundation of
the research. Subsequent chapters provide details of the algorithms for
finding the plan and for annotating the program's performance. The final
chapter discusses extensions of the basic system to the analysis of more

complex types of programs and to education.
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CHAPTER 2 -- PLANNING

2.1 INTRODUCTION

Picture models describe the intended picture: the turtle program
does the actual drawing. Plans serve as a bridge between the two by
indicating the problem solving strategy for achieving the model. Plans are
a necessary stage in translating a model into an actual program and are
vital knowledge for a debugging system. The abstract structure of a plan
can supply important suggestions about the underlying causes of bugs. In
this chapter, planning knowledge about linearity, preparation, interrupts,
global effects and repetition is discussed. Later chapters consider the
problems of finding the plan and debugging the program using the plan. A
vocabulary for talking about the structure of a procedure is introduced
which is useful for understanding both the design and debugging of

programs.

2.2 A PLANNING VOCABULARY

A main-step is defined as the code required to achieve a particular
sub-goal (sub-picture). A preparatory-step consists of code needed to
setup, cleanup or interface main-steps. Thus, from this point of view, a
program is understood as a sequence of main-steps and preparatory-steps. A
similar point of view is found in [Sussman 1973]. The plan consists of the
purposes linking main- and preparatory-steps to the model: in the turtle
world, the purpose of main-steps is to accomplish (draw) parts'of the
model; and the purpose of preparatoyy-steps is to properly setup or cleanup
the turtle state between main-steps or, perhaps, to retrace over some

© previous vector.
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A modular main-step is a sequence of contiguous code intended to
accomplish a particular goal. This is as opposed to an interrupted main-
step whose code is scattered in pieces throughout the program. In |
NAPOLEON, the main-steps for the legs, arms and head are modular; however,
the body represents an interrupted main-step due to the insertion of the
arms into its midst. The utility of making this distinction is that
modular main-steps can often be debugged in private (i.e. by being run
independently of the remainder of the procedure) while interrupted main-
steps commonly fail because of unforeseen interactions with the interleaved

code associated with other steps of the plan.

2.3 LINEAR PLANS

Linearity is an important design strategy for creating programs.
It has two stages. The first is to break the task into independent sub-
goals and design solutions (modular main-steps) for each. The second is
then to combine these main-steps into a single procedure by concatenating
them into some sequence, adding (where necessary) preparatory-steps to
provide proper interfacing. The virtue of this approach is that it divides
the problem into manageable sub-problems. A disadvantage is that
occasionally there may be constraints on the design of some main-step which
are not recognized when that step is designed independently of the
remainder of the problem. Another disadvantage is that linear design can
fail to recognize opportunities for sub-routinizing a segment of code
useful for accomplishing more than one main-step.

A linear plan will be defined as a plan consisting only of modular

main-steps and preparatory steps: a non-linear plan may include interrupted

main-steps. The plan of the following stick figure program THINMAN (a
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subset of NAPOLEON not containing the arm insert) is linear:

TO THINMAN

10 VEE {- (accomplish legs)

20 FORWARD 100 <- (accomplish body)

50 LEFT 90 {- (setup heading for head)

60 TRICORN <- (accomplish head)

END
THINMAN Picture of NAPOLEON -

turtle starts at HOME

FIGURE 2.1 FIGURE 2.2

The concept of linearity provides the basis for both program
writing and debugging techniques. With respect to program-writing,
constructing procedures using linear simplifications is briefly explored in
the final section of this chapter. With respect to debugging, a “linear"

approach to correcting bugs is the first technique that DEBUG applies and
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it is described in depth in the next chapter. It is mentioned here,
however, to provide a preview of the imperative use of "linearity® for

correcting programs. The first goal in linear debugging is to fix each

main-step independently so that the code satisfids all intended properties
of the model part being accomplished. Following this, the main-steps are
treated as inviolate and relations between model parts are fixed by
debugging preparatory-steps. This is not the only debugging technique
available to the system, but it is a valuable one for (1) ordering the
sequence in which the violations are repaired and (2) limiting the initial
search for the repair-point in the program at which the edit for each

violation should be made.

2.4 INSERTIONS
In programming, an interrupt is a break in normal processing for
the purpose of servicing a surprise. Interrupts represent an important
type of plan: they are a necessary problem solving strategy when a process
must deal with unpredictable events. Typical situations where interrupts
prove'useful include servicing a dynamic display, arbitrating the
conflicting demands of a time-sharing system, and recovering from certain
" types of errors. Interrupts can sometimes be used to recover from illegal
computations caused by undefined procedures, unbound variables, an
incorrect number of inputs or an undefined tag. (These facilities are
available in MACLISP [Moon 1973]). The difficulty in anticipating such
problems makes interrupts particularly useful. The appropriate correction
can be made and the computation recommenced (providing no unrecoverable

side effects have occurred). In the real world, biological creatures may

use an interrupt style of processing to deal with dangers of their
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environment such as predators.
A very simple type of interrupt is one in which the program
associated with the interrupt is performed for its side effects and is

state-transparent, i.e. the machine is restored to its pre-interrupt state

before ordinary processing is resumed. As a result, the main process never
notices the interruption. In the turtle world, an analogous type of
organization is that of an inserted main-step (insertion). It naturally
arises when the turtle, while accomplishing one part of a model (the
interrupted main-step), assumes an appropriate entry state for another part
(the insertion). An obyious planning strategy is to insert a sub-procedure
at the desired point in the execution of the interrupted main-step. Often,
the insertion will be state-transparent: for turtles, this is achieved by
restoring the heading, position and pen state. In the stick-figure example
described in chapter 1, the insertion of the arms into the body by
statement 30 of NAPOLEON is an example of a position- and pen- but not
heading-transparent insertion. Recall that debugging was accomplished by
adding a cleanup step to the responsible sub-proqedure (VEE) that insured

heading transparency.

TO NAPOLEON {- (accomplish man)

10 VEE <{- (accomplish legs)

20 FORWARD 100 {- (accomplish (piece 1 body))
30 VEE <{- (insert arms body)

40 FORWARD 100 <- (accomplish (piece 2 body))
50 LEFT 90 <~ (setup heading)

60 TRICORN {- (accomplish head)

END

Insertions do not share all of the properties of interrupts. For
example, the insertion always occurs at a fixed point in the program rather

than at some arbitrary and unpredictable point in time. Nor does the
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insertion alter the state of the main process as happens in an error
handler. However, if one focuses on the planning process by which the
user's code was written, then the insertion, as an intervention in
accomplishing a main-step, does have the flavor of an interrupt.

Since a plan is relative to the choice of goals, it is important to
observe that the same program may represent different plans depending on
how the model is expressed. The "parts" constitute the sub-goals for
achieving the model and the plan is relative to this division of the
picture into parts. For example, if the model for MAN described the figure
by:

PARTS LEGS, BODY1, ARMS, BODY2, HEAD
then statement 30 of NAPOLEON would represent a main-step for the arms
rather than an insertion and the design of the program would be linear.

Understanding insertions plays a role in debugging. This occurs

through the creation of caveat comments by the plan-finder that warn the

debugger of suspicious code. In particular, if FINDPLAN observes an
insertion that is not transparent, then a caveat is generated. This
occurs, for example, during the analysis of VEE:

30 VEE <- (caveat findplan (not (rotation-transparent insert))).
The non-transparent insertion may have been intended. The user's program
may be preparing for the next main-step within the insertion. Hence,
FINDPLAN does not immediately attempt to correct the anomalous code. The
code is corrected only if subsequent debugging of some model violation
confirms the caveat. The importance of this advice is that in subsequent
debugging, there will often be many possible corrections for a particular
model violation. The caveat is used to increase the plausibility of those

edits that eliminate FINDPLAN's complaint. In this way, the abstract form
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of the plan helps to guide debugging.

2.5 SKELETONS

Another type of insertion plan is one wherein all parts are
inserted with respect to a single picture object, the skeleton. This
object may be itself a model part, an invisible line or simply a point.
The FACE picture of figure 2.3 reveals an "invisible skeleton" in which all
of the parts of the face are drawn in relation to the vertical line of

symmetry passing through the center of the head.

Picture of FACE drawn in
relation to a VERTICAL AXIS

FIGURE 2.3
More than one plan usually exists for achieving a given model.
Another insertion plan common for faces is to draw all of the parts in
relation to the center of the head. See figure 2.4. Here the skeleton is
not a part but simply a point. For this special case where the insertions
are done with respect to a particular turtle state, the state is called the

local home of the plan. A very powerful debugging aid is to recognize that

the turtle is intended to return to the “home" following each main step.
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Picture of FACE drawn in
relation to CENTER of HEAD

FIGURE 2.4

It is illustrated in section 4.2 which describes the debugging of such a
face program.

In an extended system, more complex forms of insertions would have
to be understood. A "recursive-snowflake" is built upon the plan that
successively smaller triangles are recursively inserted into the sides of
their bigger brothers. (The semi-colon commentary shown in the following
programs is provided for the reader's benefit and is not generated by the
system.)

TO SNOW :S :N  ;accomplish snowflake. See figure 2.5.
10 SIDE :S :N ;accomplish (side 1 snowflake)

20 RIGHT 120 ;accomplish (rotation 1 snowflake)

30 SIDE :S :N ;accomplish (side 2 snowflake)

40 RIGHT 120 ;accomplish (rotation 2 snowflake)

50 SIDE :S :N ;accomplish (side 3 snowflake)
END
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TO SIDE :S :N ;accomplish side

10 IF :N=0 THEN FORWARD :S STOP

20 SIDE :S/3 :N-1 ;accomplish first third of side

30 LEFT 60 ;insert vee (30-70) as second third of side
40 SIDE :S/3 :N-1

50 RIGHT 120

60 SIDE :S/3 :N-1

70 LEFT 60

80 SIDE :S/3 :N-1 ;accomplish last third of side

END

2.6 GLOBAL PLANNING

Linearity, preparation and interrupts are general problem-solving
strategies for organizing goals into programs. However, it is important to
remember that domain-dependent knowledge must be available to a debugging '
system. There is the obvious fact that the system must know the semantics
of thé primitives if it is to describe their effects.

Occasionally, domain-dependent knowledge of a more global nature is
used to design non-local strategies for achieving various model predicates.

For example, consider the following typical TRIANGLE program:

TO TRIANGLE <- (accomplish equitri)
10 FORWARD 100 <{- (accomplish (side 1))
20 RIGHT 120 <- faccomplish (rotation 1))
30 FORWARD 100 <{- (accomplish (side 2))
40 RIGHT 120 <- (accomplish (rotation 2))
50 FORWARD 100 <{- (accomplish (side 3))
END

e

Picture of TRIANGLE

FIGURE 2.6
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The responsibility for the fact that (side 1) connects to (side 3) cannot
be assigned to any local piece of code. Rather, the closure of the figure
is due to the geometric theorem that a broken-line formed from n equal line
segments interspersed by equal turtle rotations of 360/n degrees will form
a regular polygon.

Another example of global planning in the turtle world is the
completion of a side through the collinearity of connecting vectors drawn
at different times. An example is the manner in which (SIDE 1) of the

corrected TRICORN procedure is completed.

TO TRICORN ;corrected version
{- (accomplish equitri)
10 FORWARD 50 (- {accomplish (piece 1 (side 1)))
20 RIGHT 120 {- (accomplish (rotation 1))
30 FORWARD 100 {(- {accomplish (side 2))
40 RIGHT 120 {- (accomplish (rotation 2))
50 FORWARD 100 <(- (accomplish (side 3))
60 RIGHT 120 {- (accomplish (rotation 3))
70 FORWARD 50 (- (accomplish (piece 2 (side 1)))
END

Picture drawn by corrected TRICORN

FIGURE 2.7

In this case, the regular polyr~n theorem mentioned above is again used to
justify that the two pieces of (side 1) are connected. In addition, the
fact that the two vectors will have the same heading (and hence be
collinear) is based upon the sum of the rotations occurring between them

being 0 (mod 360). (An important simplifying characteristic of the turtle
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semantics is that each primitive affects only one component of the state;
hence, the occurrence of the FORWARD instructions in TRICORN is irrelevant
to the fact that the two pieces of (side 1) will be parallel.)

Typical bugs of programs based upon global plans are not satisfying
the domain theorem used to justify the global effect or applying the wrong
theorem. This was the case in the original TRICORN procedure in which all

of the rotations were erroneously 90 degrees (figure 2.8). To debug

‘_

Picture drawn by TRICORN

FIGURE 2.8

TRICORN, the geometric fact that the sum of the external rotations of a
regular polygon equals 360 degrees must be known; or, if this general
theorem is not known, then the system must be informed that each rotation
of an equilateral triangle must be 120 degrees. (This was, in fact, the
case in the EQUITRI model.) The conclusion to be drawn is that powerful
debugging systems cannot be based solely on problem-independent téchniques
but must include mechanisms for utilizing different types of knowledge --
some very specific to the application area. For this reason, the debugger
of chapter 3 has access to imperative semantics for geometric primitives
and specific theorems about turtle geometry in addition to general

debugging strategies for correcting programs.



2.7 OPEN-CODING

Planning page 33

In earlier examples, the plan has been indicated by "<-® commentary

which describes the purpose of each statement. This representation is not

adequate for purposes which extend over more than one statement. For

example, in the following "open-coded" program TREE3, the TOP and TRUNK are

accomplished by non-subroutinized code. The code for TOP is not even

contiguous.

MODEL TREE
M1 PARTS TOP TRUNK

Mz
M3

M4 VERTICAL TRUNK

M5 COMPLETELY-BELOW TRUNK TOP

M6 CONNECTED TOP TRUNK

M7 HORIZONTAL (BOTTOM (SIDE TOP))
END

TO

5
10
20
30
40
50
60
70
80
90

LINE TRUNK
EQUITRI TOP

TREE3

RIGHT 30
FORWARD 100
RIGHT 120
FORWARD 100
RIGHT 120
FORWARD 50
LEFT 90
FORWARD 100
BACK 100
RIGHT 90

100 FORWARD 50

END

-
TREE3

FIGURE 2.9

;Semi-colon commentary is provided for
;the reader's benefit and is not generated
;by the system.

;ifirst side of the triangle.

;first half of the third side

yinsert of trunk

;completion of the third side.

To define such plans, PURPOSE statements are used which explicitly mention

the code associated with the planning statement.
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(PURPOSE (TREE3 5) (SETUP HEADING FOR TOP)
(PURPOSE (TREE3 10-50, 100) (ACCOMPLISH TOP))
(PURPOSE (TREE3 60-90) (INSERT TRUNK TOP))

Open-coded sequences are segments of non-subroutinized code
responsible for a given purpose. This is reflected in the code appearing
as a group in the <code> part of a PURPOSE statement. These PURPOSE
statements are MYCROFT's internal representation of the plan. The "<-*
planning commentary represents a pretty-print of these purposes. The Rl
representation for the plan for TREE3 is shown below, with open-coded

sequences displayed as sub-routines named by the sub-model being

accomplished.
TO TREE3 <{- (accomplish tree)
5 RIGHT 30 {- (setup heading)

10 FORWARD 100 <-
20 RIGHT 120 <-

(accomplish (side 1 top)
(accomplish (rotation 1 top)

30 FORWARD 100
40 RIGHT 120
50 FORWARD 50
(60-90) LINE
100 FORWARD 50
END

TO LINE

60 LEFT 90

70 FORWARD 100
80 BACK 100

90 RIGHT 90
END

<- (accomplish (side 2 top)

<- (accomplish (rotation 2 top)

<- (accomplish (piece 1 (side 3 top)))
<- (open-coded insert for trunk)

<- (accomplish (piece 2 (side 3 top)))

<- (accomplish line)
<{- (setup trunk)

<- (accomplish trunk)
<- (cleanup position)
<- (cleanup heading)

Treating programs as labaled statements allows a more flexible

approach to describing the program than the notion that commentary can
exist solely at the interfaces between sub-procedures. This latter point

of view is found in Hewitt's Actor formalism for computation [Hewitt 1973].
It is inadequate, however, to describe the evolution of programs, insertion

type planning structures, or protections.
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The identification of open-coded sequences with a common purpose as
sub-routines is important for subsequent debugging. In TREE3, sub-routine
hames are generated for the triangle code and for the insert of the TRUNK.
Sub-routinization is not solely done for the economy of a single
representation for frequently used code. Perhaps more important is its use
for achieving conceptual modularity. It greatly facilitates debugging and
planning. It allows private debugging techniques (section 3.5). For
example, identifying the lines of the triangle "sub-routine® allows the
system to consider whether the triangle would be.successful if the insert
for the TRUNK was removed. If so, debugging can be focused on the
interactions of the two segments and rely on the assumption of first-order

success, i.e. that the main-steps accomplish their purposes.

2.8 PURPOSE STATEMENTS

The following table summarizes the syntax and vocabulary for the

planning assertions.

PURPOSE <code> <explanation)
Examples of <{code):

(TREE3 5) statement 5 of TREE3.

(TREE3 60-90)

statements 60 through 90 inclusive. Referred
to as an open-coded sequence.

(TREE3 10-50 100) = statements 10 to 50, inclusive, and statement 100.

Examples of <explanation):

(ACCOMPLISH TRUNK)

Draw the trunk.

(INSERT TRUNK TOP) Accomplish the trunk by a state
transparent sub-procedure inside the

code for TOP.
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(ACCOMPLISH (PIECE i (SIDE 1 TRIANGLE))) = Accomplish piece i
of side 1 of the triangle. The
remainder will be accomplished by another
piece of code. Depending on the
intervening program, this indicates
either a global or an insertion plan.

(SETUP HEADING FOR TRUNK) = Set up the state -- in this case
the heading -- in preparation for
accomplishing the trunk.

(SETUP HEADING SUCH-THAT (VERTICAL TRUNK)) = Set up the state --
in this case the heading -- in preparation
for the next step. The "such-that"
indicates the model statement to be
satisfied by the preparation, and is optional.

(RETRACE P1) = Preparatory step in which the <code) is
accomplished in such a way that it
overlaps a visible sub-picture P, making
itself "invisible".
Wherever possible, these assertions will be pretty-printed as "<-"
commentary for ease of reading, although the internal form manipulated by

the system is as given above.

2.9 ROUND PLANS

—_—

The remainder of this chapter proposes extensions to the MYCROFT
system. This section discusses programs containing simple loops and the
next considers the program-writing problem.

The first step in extending the planning vocabulary beyond those
plans used in fixed instruction procedures would be to develop a
description of round-structured programs. These are programs in which a
basic round is repeated some number of times. géggg plans must be
introduced which include a description of simple control patterns such as
an arithmetic counter, increment f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>