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Abstract

A key problem in object recognition is selection, namely, the problem of
identifying regions in an image within which to start the recognition pro-
cess, ideally by isolating regions that are likely to come from a single object.
Such a selection mechanism has been found to be crucial in reducing the
combinatorial search involved in the matching stage of object recognition.
Even though selection is of help in recognition, it has largely remained un-
solved because of the difficulty in isolating regions belonging to objects under
complex imaging conditions involving occlusions, changing illumination, and
object appearances.

This thesis presents a novel approach to the selection problem by propos-
ing a computational model of visual attentional selection as a paradigm for
selection in recognition. In particular, it proposes two modes of attentional
selection, namely, attracted and pay attention modes as being appropriate
for data and model-driven selection in recognition. An implementation of
this model has led to new ways of extracting color, texture and line group
information in images, and their subsequent use in isolating areas of the
scene likely to contain the model object. Among the specific results in this
thesis are: a method of specifying color by perceptual color categories for
fast color region segmentation and color-based localization of objects, and a
result showing that the recognition of texture patterns on model objects is
possible under changes in orientation and occlusions without detailed seg-
mentation. The thesis also presents an evaluation of the proposed model
by integrating with a 3D from 2D object recognition system and recording
the improvement in performance. These results indicate that attentional
selection can significantly overcome the computational bottleneck in object
recognition, both due to a reduction in the number of features, and due to a
reduction in the number of matches during recognition using the information
derived during selection. Finally, these studies have revealed a surprising
use of selection, namely, in the partial solution of the pose of a 3D object.
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A little learning is a dangerous thing;

Drink deep, or taste not the Pierian spring;
There shallow draughts intozicate the brain,

And drinking largely sobers us again.

Fired at first sight with what the Muse imparts,
In fearless youth we tempt the heights of Arts,
While from the bounded level of our mind,

Short views we take, nor see the lengths behind;
But more advanced, behold with strange surprise
New distant scenes of endless science rise!

So pleased at first the towering Alps we try,
Mount o’er the vales, and seem to tread the sky,
Th’ eternal snows appear already past,

And the first clouds and mountains seem the last;
But, those attained, we tremble to survey

The growing labors of the lengthened way,

The’ increasing prospect tires our wandering eyes,
Hills peep o’er hills, and Alps on Alps arise!

ALEXANDER POPE
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Chapter 1

Introduction

1.1 The Selection Problem

Exhibiting some understanding of a scene is important for robots to deal effectively
with their environment. This may involve determining which objects are present in a
scene or whether a particular object appears in a given scene. Both these operations
may involve model-based object recognition, that is, recognizing objects from their
stored model descriptions. Most of the approaches to model-based object recognition
have used geometric features to recognize objects. Such methods frequently proceed
by extracting points or edges as features from both the model and a given image
(Figure 1.1) and trying to identify pairings between image data and model features
that are consistent with a rigid transformation of the object model into image coordi-
nates. In the absence of any information about the possible location of the object in
the scene, all feature pairings are possible candidates and the search for the correct
pairings of data and model features becomes combinatorially explosive. Most of this
search is fruitless, especially when pairs of features belonging to separate objects
are tried, and cannot possibly yield a correct transformation. If recognition systems
were provided with information about a set of data features likely to come from a

single object, then the search for the matching features can be focused on relevant
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subsets of features that are likely to yield a correct transformation. Thus in the
image of Figure 1.1b, if it could somehow be determined that the region indicated
in the circle came from a single object and hence all the features contained within
it, then the number of features that need to be looked at would reduce considerably
(from 500 to 50 here). This can cause the number of matches that need to be tried
to be greatly reduced. To get an indication of the amount of reduction in search,
for a reduction in the number of image features from 500 to 50 as in Figure 1.1 and
assuming at least 4 pairs of features for matching, the number of possible matches
reduces from 0(500*50%) to O(50*50*) or by a total of about 10'? when there are 50
model features. Further, it is desirable to order these subsets of data features such
that the more promising ones, i.e., those that are more likely to point to a single
object, are explored first. This can not only increase the likelihood of a good match
being obtained earlier, but is also useful when the task is to recognize as many ob-
jects as possible in a scene. Recognition systems, therefore, have found the need for
a mechanism that can meet these goals, namely, to isolate areas in the image that
are likely to come from a single object, and to order these regions such that the more
promising ones are explored first. The problem of isolation and ordering of regions
likely to come from a single object has been termed the selection problem and has
been realized to be one of the key problems in recognition [59, 58]. It was shown in
(58] that the expected complexity of recognition (using a recognition method called
constrained search) can reduce from exponential to quadratic when all the features
(edges in this case) were known to come from a single object. Other recognition
. methods have also found a need for such information as in the work of [95, 73]. Two
kinds of selection can be distinguished, namely, data-driven and model-driven selec-
tion. In data-driven selection, the isolation of regions is based solely on the image
data and some general a priori knowledge about the scenes, while in model-driven se-
lection, specific information about a model object is used to locate regions in a given
image that are likely to arise from this object. The data-driven selection problem
occurs when there is no specific information (apart from the features for matching)
available about the model object, or when more than one object is being recognized

so that model-independent selection is needed, or when the model object is to be




8 Introduction

indexed from a library of models based on the selected region.

1.2 The Difficulty in Selection

Whether selection is data or model-driven, it is apparent that it differs from the
problem of segmentation, where the goal is to partition the image into regions that
contain a single object. In selection, it is not essential to isolate regions that totally
contain a single object, nor is it necessary to partition the entire image into different
object-containing regions. In addition, the isolated regions are only likely to contain
the object and not guaranteed to do so. It would seem that these differences should
make the selection problem relatively simple. Yet, it has largely remained unsolved.
What makes selection so difficult? In the ideal case, if the appearance of the desired
object in the scene were known, and objects in the scene were nicely separated and
distinguishable from the background, and the illumination conditions were known,
then even simple methods that rely on intensity measurements would work well to
extract salient groups of features. But in reality the appearance of the object is
not known. In addition, illumination conditions and surface geometries of objects
present in a scene can cause problems of occlusion, shadowing, specularities, and
inter-reﬂectioné which are compounded even further by scene clutter. As can be
seen from Figure 1.1b, these conditions make it difficult to isolate regions likely to
come from a single object based on low-level features such as edges and lines. In
data-driven selection particularly, finding a way to extract meaningful structure in a
group of features that also points to their likelihood of coming from a single object is
difficult. Previous approaches to data-driven selection have regarded it as a problem
of grouping data features such as edges, lines and points based on relations such
as parallelism, or collinearity, [95, 125], distance and orientation [76], and regions
enclosed by a group of edges [25]. Here the observation that it is unlikely that a
random collection of features in a scene project to satisfy a relation such as convexity
or parallelism in an image is used to infer that the presence of such a relation points
to a greater likelihood of such features coming from a single object. This inference

is not often valid under occlusions, changes in illumination conditions, and noise in
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Figure 1.1: [llustration of object recognition. (a) A view of @ model object with corner
features (in circles) and edges. (b) A scene in which the object appears: (c)- (d) A
set of matching corner features 11 the model and image respectively that were found
to give the correct transformation. (e) The model overlayed on the image of (b) using

the transformation computed from the corresponding features shown by the big circles

in (c) and (d)-
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(b)

Figure 1.2: Illustration to show that additional information about the object and
scene can help in recognition. Here the model object and scene of Figure 1.1 are
shown in color. The color information can help to separate the object’s edges from
that of the background. But deducing that the colors on the object in the scene of (b)
are the same as those in (a) even though they appear different can be difficult.
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the image measurements with the result that most of the groups obtained are often
unreliable, that is, they do not come from a single object. Even when a description of
the object is available as in model-driven selection, interpreting data features under
these conditions is still difficult.

It would appear that some of these problems would be alleviated if we could use
more powerful model and image descriptors. For example, if we choose to use the
color information in the image for selection, then a single color region is very likely
to come from a single object (unless occlusions of similar colored objects occur) and
would serve the purposes of data and model-driven selection. But extracting color
regions is not easy. Also, finding a description of the color of the model object that
remains stable under a variety of imaging conditions is also difficult. For example,
deducing that the color of the object instance depicted in the scene of Figure 1.2b
is the same as in its medel description shown in Figure 1.2a can be difficult.

1.3 Attentional Selection

While it has proven difficult for machines to perform selection, humans, on the other
hand, seem to have no such problem. We are able to look at a scene and quickly
select some aspect of the scene for further processing. Frequently, such a selection
is restricted to single entities or objects in the scene. This ability to perform a
selection of the scene to focus the later processing is often attributed to the mech-
anism of visual attention [146, 70, 117]. The term attention has been interpreted
in several different ways by past researchers. It has been described variously as a
state of muscular contraction and adaptation, as a pure mental activity, as a limit
on the human capability to carry out elementary mental processes [14, 15], and as
a spotlight that glues the processing of features [149, 146]. All these views agree
though that the end result of utilizing the mechanism of visual attention is to se-
lect a certain portion of the scene on which to concentrate future visual processing.
Accordingly, visual attention can be viewed as a mechanism that by declaring some

aspect of the visual stimulus to be interesting, allows the brain to selectively respond
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Visual Attention Mechanism

Selection Focusing
Module Module

Figure 1.3: The view of visual attention taken in this thesis. The attention mech-
anism is regarded as consisting of a selection module and a focusing module. The
selection module declares some aspect/region of the scene “interesting” and causes

the focusing module to be directed to that region.

to it. In this view, the attention mechanism is thought of as consisting of a selection
module and a focusing module as shown in Figure 1.3. The attentional selection
module is one that declares a region of the scene interesting causing the focusing
module to be directed to that region. This directing of attention may be deliberate
or spontaneous, that is, may or may not be consciously driven. Attention focus
can be directed to aspects/regions of a scene that ’pop’ out [70], [39], or it can be
directed to aspects/regions that are relevant to a task. These two ways of directing
the attention focus may be thought of as two modes of attentional selection, namely,
attracted and pay attention modes respectively. Thus in attract-attentional selection,
the regions/aspects of a scene selected are those that *pop’ out or ’attract’ attention!,
while in pay-attentional selection, the specific task information is used to ’pay’ at-
tention to only those object/aspects of the scene that are relevant to the task. The
attracted-attention mode of selection has been referred to as pre-attentive processing
and is usually considered to precede attention [147, 145, 149]. Here we adopt the
view taken in [70] and consider it as part of the entire attention mechanism.

!Here the term attention is used colloquially
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1.3.1 Attentional selection in object recognition

That visual attention can play a role in object recognition was realized by several
researchers [67, 148, 70]. While most work has projected a role for attention as
enhancing the detectability of an object (that is being attended to), the idea of us-
ing attention to select relevant aspects of a scene to avoid the combinatorial search
in recognition was proposed in [70]. The aim of this thesis is to investigate this
hypothesis further. Specifically, the aim is to develop a computational model of at-
tentional selection, and use it as a paradigm for selection in object recognition. In
particular, we wish to use the attracted-attention and pay-attention modes to serve
as paradigms for data and model-driven selection respectively. Thus data-driven
selection can be achieved by identifying regions in an image that attract attention
(i.e., that are distinctive or salient) with respect to some feature such as color or tex-
ture, while model-driven selection can be achieved by paying attention to the model
object’s features (i.e., using the model features to decide saliency of features in the
image). While it is understandable that paying attention to model features can help
isolate areas in the image that could contain subsets of data features that are likely
to contain a single object (or the specific model object in this case), it is not immedi-
ately apparent how ldcating salient regions can help in serving the goals of selection.
Such a choice is, however, motivated by the following considerations. First, it is often
observed that an object stands out in a scene because of some distinctive features
that are usually localized to some portion of the object. Therefore isolating distinc-
tive regions is more likely to point to a single object than an arbitrary collection of
features. Secondly, a distinctive region, if suitably found, can help in limiting the
number of candidate models from the library that can potentially match the given
data. This is especially true if only a few models in the library satisfy the features
that made the data region distinctive. Lastly, it has often been observed that the
first objects recognized in a scene are those that attract an observer’s attention [70].
Thus ordering the regions by distinctiveness to decide which objects to recognize first
seems to be in keeping with this observation. Finally, a number of other approaches

have also suggested that selection, at least data-driven, can be performed based on
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some measure of saliency, such as the structural saliency of curves [135], or saliency
defined by local differences in contrast, color, or size [48, 97, 39].

1.4 Roadmap

So it appears that attentional selection is a reasonable paradigm for selection in
object recognition both because it can isolate regions likely to come from a (the)
single object and because it also orders the selected regions. But how is attentional
selection achieved? Previous work on attention in psychological, psychophysical and
physiological studies has concentrated more on establishing the capabilities and the
existence of the mechanism rather than explaining how selection can be achieved.
Psychological studies have put forward theories of attention [145, 14, 44, 125, 36, 117],
while psychophysical studies have tried to indicate the effects of attention-mediated
behavior as well as the factors that affect attention [84, 42, 108, 51, 148]. For
example, such studies have observed that the knowledge of the location of the cue
helps in focusing attention faster [42], that an increase in the number of physically
similar distracting stimuli decreases the ability to attend [108], and that there is
a relation between attention and eye movements [51],(148]. Physiological studies
have tried to localize the various regions in the brain where attention can modulate
neuronal response. Cells whose response is affected by the state of attention have
been found to occur in the visual area V4, area 7, and the infero-temporal cortex
(IT) [62, 106, 131, 18]. So while these studies have attempted to establish the
" existence of the attention mechanism, a few computational models have addressed
the question of what constitutes attentional selection (89, 24]. Such models could
explain mainly attract-attentional selection, and lacked enough detail to be amenable
to an implementation. We begin, therefore, by presenting a computational model of
the attentional selection process. This model, presented in Chapter 2, is designed
to exhibit both attract and pay-attentional selection using a single framework. The
thesis then describes an implementation of the model to serve as a paradigm for data
and model-driven selection. Figures 1.4 and 1.5 give a flavor for the selection that

can be performed by the system. Figure 1.4a shows an image of a realistic indoor
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Figure 1.4: ﬂlﬁétmtion of dﬁta-drivén seiection that can be pérforrﬁed by our atten-
tional selection mechanism. (a) An image depicting a scene of objects of different
materials and having occlusions and inter-reflections. (c)-(f) The four most salient
regions detected by the selection mechanism after eztracting the various color regions

in this image as shown in (b).

scene with shadows, inter-reflections, and consisting of many types of objects. The
four most salient regions found by the system in this image are shown in Figures 1.4b-
e. These regions are, therefore, the result of data-driven selection performed by the
system. Figure 1.5 shows an example of model-driven selection being performed by
our system. Figure 1.5a shows a model object and Figure 1.5b shows a scene in
which the model object appears. Finally, Figure 1.5¢ shows a region of the image
that is declared most likely to belong to the model object based on a description of

the object drawn from the view shown in Figure 1.5a. »

The rest of the thesis discusses how such a selection of the scene can be achieved
by presenting an implementation of the model of attentional selection restricted to
three different features, namely, color, texture and parallel-line groups. Chapters 3, 4,

and 5 indicate how data and model-driven selection for object recognition can be
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Figure 1.5: Illustration of model-driven selection that can be performed by our at-
tentional selection mechanism. (a) A model object. (b) A scene in which thevobject
appears in a different pose and is illuminated differently. (c) Region of the scene de-
clared to most likely contain the model object by éztracting a color and tezture-based
description of the object from the view shown in (a).
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performed using these cues individually, which are later combined in Chapter 6 to
complete the description of an implementation of the attentional selection model. In
Chapter 3, we present a method of representing color information called perceptual
color categories as an appropriate representation for the task of selection. These color
categories are used to develop a fast region segmentation algorithm that extracts
perceptual color regions in images. The color regions extracted form the basis for
performing data and model-driven selection. Data-driven selection is achieved by
selecting salient color regions as judged by a color-saliency measure that emphasizes
attributes that seem to be important in human color perception. The approach to
model-driven selection, on the other hand, exploits the color region information in
the model to locate instances of the model in a given image. Here region adjacency
graph-based descriptions of model and image color regions are used to develop a
subgraph matching strategy for model-driven selection. The approach presented
tolerates some of the problems of occlusion, pose and illumination changes that

make a model instance in an image appear different from its original description.

Chapter 4 presents an approach to data and model-driven selection using texture
or pattern on objects as a cue. Here the image is modeled as a short space station-
ary process and texture information is captured in a representation called the linear
prediction (LP) spectrum, to develop a texture region segmentation algorithm that
roughly indicates the different texture regions in the image. A measure of texture
saliency is then developed to select among the various texture regions. It captures
the interplay between regions of different contrast by analyzing their properties such
as area, shape, and relative placement. Next, the problem of using the texture
or pattern information on a 3D object as a cue to perform model-driven selection
is discussed. Here we use the linear prediction spectrum representation again and
show that the recognition of the texture pattern on an instance of the model object
in an image is possible even under changes in orientation and occlusions. Specifi-
cally, we show that as the object undergoes a 3D linear transformation, the linear
prediction spectrum of a planar patch texture on the object undergoes a 2D linear
transformation that is the inverse of the transformation undergone by the texture.

This result is used not only to develop a method of texture recognition by matching
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the LP spectra of model texture and an isolated image region, but also to recover
the transformation. The candidate matching regions are obtained without detailed
segmentation, by using a technique called overlapping window analysis. This analy-
sis, under some conditions, guarantees the existence of a window spanning an image
region containing only the model texture regardless of its position and orientation.
Such a region is sufficient for the recognition of the model texture using the LP

spectrum representation.

Chapter 5 examines the property of closely-spaced parallelism between lines on
objects and exploits it to achieve data and model-driven selection. Specifically, we
present a method of identifying groups of closely-spaced parallel lines in images.
Since the end result here is a grouping of lines based on a constraint, this falls into
the class of grouping methods for recognition. But the grouping scheme presented
generates a linear number of small-sized and reliable groups and meets several of the
desirable requirements of a grouping scheme for recognition. Data-driven selection
is achieved by selecting salient line groups as judged by a saliency measure that
emphasizes the likelihood of the groups coming from single objects. The approach
to model-driven selection, on the other hand, uses the description of closely-spaced
parallel line groups on the model object to selectively generate line groups in the
image that are likely to be the projections of the model groups under a set of allow-
able transformations and taking into account the effect of occlusions, illumination

changes, and imaging errors.

Chapter 6 brings together the work on selection using the individual cues of color,
texture and line groups and places it in the context of the attentional selection model
proposed in Chapter 2. It presents ways in which these three cues can be combined
in both data and model-driven modes to perform an overall selection of the scene.
This completes the description of an implementation of the model of attentional

selection.

The next few chapters deal with the issue of evaluation of the attentional selection
mechanism. Specifically, the pay-attentional selection is evaluated by integrating

with a recognition system and recording the improvement in performance on test
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scenes. Chapter 7 presents details of the recognition system built and its integration
with the developed attentional selection mechanism. The conclusion reached from
the integration studies is that while attentional selection was originally envisaged as a
front-end to a recognition system, information derived during selection could also be
used during the matching stage of recognition. The search reduction possible using
each of the cues individually and in combination was then explored. These estimates
were then borne out in the actual test experiments. These results are presented in
Chapter 8. These indicate that attentional selection can reduce the search involved in
recognition drastically, by not only reducing the number of features to be examined
by removing large portions of the image that are irrelevant, but also reducing the
actual number of matches explored during recognition by providing more constraints
using information derived from selection. Finally, a surprising use of selection in
recognition became apparent from the studies on texture-based selection, namely,

that selection can lead to the partial solution of the pose of a 3d object in an image.

1.5 Conclusions

The thesis presents a novel approach to the selection problem in object recognition
by proposing a computational model of visual attentional selection as a paradigm
for data and model-driven selection. The specific contributions of the thesis lie in
the new ways of processing color, texture and parallel-line groups for performing
data and model-driven selection using the paradigm of attentional selection, and in
demonstrating that such a selection mechanism can drastically reduce the search
involved in object recognition. It is hoped that the proposed model of attentional
selection can be suitable for other tasks besides object recognition that require a
selection of the scene. It is also hoped that the model can give a plausible explanation

of the visual attentional selection in the brain.



Chapter 2

A Computational Model of

Attentional Selection

In this chapter we present a computational model of attentional selection. We adopt
the view that visual attention involves a selection phase followed by a focusing phase
as mentioned in Chapter 1. With this view, questions often unresolved about the
nature of the attention spotlight such as whether it is serial or parallel [107, 69, 150],
external or internal [51, 148], are not of concern as they deal with the focusing phase
of attention. Also, the model of attentional selection to be described here gives
a conceptual view of the processing that may be involved in the selection phase.
Therefore, no claims about a direct mapping of the model into neural architecture
will be made.

2.1 The Computational Model

The proposed computational model of attentional selection is shown in Figure 2.1.
According to this model, the scene represented by the image is first processed by
a set of feature detectors that generate the respective feature maps. Some of the

features that can be detected (apart from brightness) are: color, texture, depth,
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Figure 2.1: The computational model of attentional selection proposed in this thesis
that can demonstrate both attracted and pay attention modes of attentional behavior.
The former behavior is achieved by a simultaneous activation of all feature maps
using default parameters and procedures. The pay attention behavior, on the other
hand, is achieved by a selective activation of feature maps. The two modes are

proposed as paradigms for data and model-driven selection in object recognition.
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edges, curvature, contrast, line information such as parallelism, collinearity, length,
orientation, and others such as shape, size, symmetry, etc. The feature detectors
are algorithms or procedures that are designed to be open ended in that they may
have some parameters that usually have a default value but can be set by the task
at hand. The parameters can be, for example, the sigma of the Gaussian for an edge
detector, or orientation difference thresholds for deciding a set of lines to be parallel
in a parallel-line detector. Some of these features form a hierarchy, such as lines and
corners abstracted into polygons, an instance of the closure property. The model
therefore, allows feature detectors to interact via the medium of feature maps as
indicated by the back arrow from a feature map to a feature detector in Figure 2.1.
The model also allows more than one feature detector to be used to generate a
feature map in the hierarchy. The feature detectors in the model are considered
active units as indicated by circles in Figure 2.1 unlike the feature maps which are
considered passive units and indicated by rectangles in the figure. The activation
of the feature maps is controlled by a central attentional control as indicated in the
figure. On inactivation, some of the feature detectors may produce no output at all
while others may just let the image through without further processing.

Next, the feature maps are processed separately by selection filters that incor-
porate a set of strategies for selecting regions that are distinctive or salient in the
respective feature maps. The result of such a processing is available in the form of
individual saliency maps. When feature maps form a hierarchy, not all of them may 7
be processed by selection filters. The strategies are again algorithms for processing
information in the respective features and may employ intermediate representations.
The choice of a strategy appropriate for a given task is decided by a central control
mechanism. The control mechanism itself obtains information to decide the strategy

from the task, the image, as well as a priori knowledge about the world.

Once the distinctive aspects of a scene along the respective feature dimensions
have been identified, there is a final arbiter module that also houses a set of strategies,
to decide the most significant aspects of the scene based on all the observed features.
Here again, the choice of the strategy is task dependent and is affected by the control
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mechanism. The set of regions finally selected can then be used for further visual

processing, as say, for recognition.

Thus the model suggests that information processing occur in three basic stages:
an elementary feature processing stage, followed by a selection based on individual
features or cues, and finally, an overall selection of the scene based on a combination
of cues. It employs, therefore, three types of representations: feature maps, indi-
vidual saliency maps, and finally, the overall selected regions map. The latter two
maps differ from the elementary feature maps in that they indicate the importance
of some image regions over the others so that not every region of the image may be
represented. Further, the regions here may map to spatially overlapping regions in

the image.

While the above description gives an impression of a passive flow of information,
the model incorporateé considerable flexibility through the control mechanism that
can vary the strategies used to process features at each of the stages. The model
also allows top down task level and a priori information to be combined suitably
with the bottom up information derived by processing the image along the various
feature dimensions. Top-down task level information can influence the processing
of the image through the strategies driving the modules. Thus if the task involved
searching for a particular color, then the image may be analyzed by a feature detector
that looks only for that color rather than extract all the color regions so that the
exact form of the maps could vary based on the task. Finally, the model allows

for both serial and parallel forms of processing. All the feature dimensions can be
processed either serially or in parallel, and within a feature dimension, the image
could be analyzed by serial or parallel algorithms.

Either mode of attentional selection can now be demonstrated within the frame-
work of the model as follows: In the attracted attention mode, all the modules at
all stages are activated and the default strategies residing in these modules are used
for choosing both a distinctive region within a map, and the overall most distinctive
regions. In the pay attention mode, the task dictates what feature maps need to

be activated and in what order. It also affects the choice of strategies in both the
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filtering and arbiter stages. The set of distinctive features chosen for a given scene

can thus be different depending on the mode of operation.

2.2 Relation to Other Computational Models of At-

tention

The above model has some similarities as well as differences with existing computa-
tional models of attention [89, 24]. As in other models, the underlying motivation
has been to use attention as a mechanism of feature-based selection in scene under-
standing. Like other models, it is also based primarily on the psychophysical model
of visual attention by Treisman [145]. In Treisman’s model, incoming information
undergoes a preliminary analysis stage that exposes the physical properties such as
color, orientation lines, brightness, etc. in feature maps. A filtering mechanism then
makes a selection of some part of the scene based on these feature maps. The model
emphasizes a preattentive stage where early representations of the image are formed
and filtered. This is followed by an attentive stage where attention is focussed on the
selected input. In fact, the idea of feature maps to represent the low level processing
of information in the image has been suggested for visual processing in general by
Marr [102], Barrow and Tenenbaum [6] and Treisman [145] among others. While
Marr argued for a primal sketch as a map to expose the image features, Barrow and
Tenenbaum had termed the feature maps as intrinsic images. Although building ab-
straction levels in the form of feature maps helps to expose the information contained
in the image along the various feature dimensions, this alone is not sufficient. They
must be combined to succinctly represent the inferences made by such processing.
In Treisman’s model this was hidden in the concept of the selection filter. Later
computational models of attention tried to elaborate on the working of the selection
filter. In Koch and Ullman’s model [89], selection was done by combining the fea-
ture maps somehow into a single saliency map, and choosing the best (or the most
salient) region by a simple winner-take-all mechanism. The feature maps in this

model besides representing elementary operations on the image, also recorded the
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way in which image locations differed from their surrounding locations. Thus each
feature map tells how conspicuous a given location is in a given scene. In this sense,
it combines the feature map and individual saliency map of our model of attentional
selection. The saliency map in Koch and Ullman’s model combined information in
each individual map into one global measure of conspicuity [153]. A model of at-
tention proposed by Clark and Ferrier [24] later indicated a way of combining the
feature maps into a single saliency map by using a linear combination of weighted
feature values. That is, each feature map is assigned a weighting function that rates
their importance and helps in the selection of relevant features to be incorporated

in the saliency map.

The model proposed in this thesis, though similar in spirit to the previous mod-
els of attention, differs from them in several important respects. At the outset, it
makes explicit the existence of two modes of attentional selection, namely, attract
and pay-attentional selection, and provides a framework for exhibiting both modes
of selection. While all these models suggested a strict bottom-up processing, by con-
sidering pay-attentional selection, this model allows top-down task level information
to influence selection, allowing regions that are not necessarily salient on their own
to become salient if they are desirable/relevant for the current task. Next, because
of the hierarchy of features allowed, the maps need not be retinotopic. For example,
in a color region map, the representation may be in terms of the number of regions
and their spatial relationship rather than a pixel-wise representation of color regions.
Further, because the feature maps are of different types such as color, texture, etc.,
it is not appropriate to combine them all into a single saliency map, until sufficient
abstraction has been built based on these feature maps to allow a common basis for
comparison. This is done in the model by building multiple saliency maps, one for
each feature, and postponing their combination until the arbiter stage. This not only
allows a more flexible way of filtering each feature type as is appropriate for that
domain, but also allows a medium for top-down task level information to permeate
and affect the selection of the salient regions in each of these feature maps. The
combining of feature maps through the arbiter module is thus more general than

the linear combination way of combining cues proposed in Clark and Ferrier’s model
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[24]. Finally, the model separates the control issues from the assembly of feature
maps, thus allowing us to analyze separately their individual roles in making up the

attentional selection mechanism.

2.3 Performance Evaluation

An interesting question associated with the development of a computational model
of attentional selection is how the success of a system implementing the model can be
evaluated. That is, how does one evaluate the nature of selection performed by such
a system? Evaluating an implementation of attract-attention mode is tricky since it
would entail seeing if there is agreement with the selection performed by humans.
That is, when asked to describe the most noticeable regions of a scene, do the regions
selected by the attract-attention mode of the model coincide with the conclusions
of human observers. To test this, psychophysical experiments could be performed
in which eye movements of observers are recorded. The density of fixations can be
taken to be indicative of the saliency of a region. With this method however, the
performance of the system can be judged mostly in cases where the distinctive fea-
tures detected are localized to a small spatial region. Also, it may not be conclusive
since the directing of attention to a region can be independent of eye movements [51].
Even when we cannot evaluate this attention mode by psychophysical experiments, it
may still be interesting to see if such an implementation serves some useful purpose.
~ Since our original motivation was to propose attentional selection as a paradigm for
selection in object recognition, one way to evaluate the attract-attention mode would
be to see if the selected regions satisfy the requirements of data-driven selection in
object recognition, that is, do they come from a single object? And are such regions
useful for reducing the search in object recognition?

Evaluating the pay-attentional selection is easier since it is tied to a task and
requires asking: Did the selection mechanism succeed in selecting regions relevant
to the task? By making the task the recognition of a model object description, we

can turn the implementation of the pay-attention mode into a model-driven selection
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mechanism. Thus the pay-attention selection can be evaluated by integrating with
an object recognition system and testing the performance of the combined system in
reducing the search involved in recognition, as well as the reduction in the number

of false positive and negative identifications.

2.4 Implementing Attentional Selection

In attempting an implementation of the model of attentional selection, several issues
need to be addressed at practically every level of processing, such as: What kind of
features should be chosen? How can they be detected and represented? What are
the different strategies that may be used to select distinctive regions in the individ-
ual feature maps? How should selection based on different features be combined?
Finally, there is the problem of control relating to the activation of various modules
and the interaction between feature maps. These problems are nontrivial as seen
for example in the problem of deciding which region is the most distinctive one in a
map. Thus in a given map, say, a color map, how do we decide which is the most
distinctive color? Is it the intensity, the hue or the predominance of a given color
that is the deciding factor?

The next few chapters discuss an implementation of the model of attentional
selection showing ways in which some of these issues are addressed. Trying to develop
an implementation that exploited all the cues that human attentional selection is
known to do would be difficult. So the implementation was restricted to using
only three cues, namely, color, texture, and parallel-line groups. These provide a
fairly rich subset of features that capture the information present in a scene. Next,
exploring all possible strategies for both individual saliency detection and overall
saliency was again beyond reach. Therefore, we restricted to two kinds of strategies,
one meant for extracting saliency based on data alone, the other by making the
task information to be the description of a model object for recognition. In doing
so we had a restricted implementation of the attentional selection model that also

served as a mechanism for data and model-driven selection in object recognition, thus
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serving our original purpose behind proposing the attentional selection model. The
discussion on the implementation to follow in the next few chapters will therefore be
presented as ways of achieving data and model-driven selection in object recognition

using each of the individual cues, beginning with color.




Chapter 3

Data and Model-driven

Selection using Color Regions

In this chapter we address the problem of using color as a cue to perform data
and model-driven selection in object recognition using the paradigm of attentional
selection. We first motivate the choice of color as a feature to study selection, and
outline the requirements imposed by selection on any method of color specification.
We then examine some of the existing approaches to color specification in images in
the context of selection. Next, we present a method for color specification based on
perceptual color categories and show that it leads to a fast color region segmentation
algorithm. Later, following the attract-attention paradigm for data-driven selection,
a method of finding salient color regions is presented. Finally, a description of model

color regions is developed that is used to perform model-driven selection.

3.1 Role of Color in Selection

Color is known to be a strong cue in attracting an observer’s attention. Several
psychophysical experiments have shown that color is one of the cues that is pre-

attentively perceived [147, 146, 39]. Humans also use color information to search

29
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for specific objects in a scene. It therefore seems natural to use color as a cue for
performing selection in computer vision. But the strong motivation for using color to
perform selection comes from the fact that it provides region information and that,
when specified appropriately, it can be relatively insensitive to variations in normal
illumination conditions and appearances of objects [141]. A color region in the image
almost always comes from a single object (unless the object is occluded by another
of an identical color) so that data features such as edges and points within a color
region form more reliable groups than those obtained by existing grouping methods.
This makes such regions useful for data-driven selection. Because objects tend to
show color constancy under most illumination conditions, color can be a stable cue

to locate objects in scenes, thus making it also suitable for model-driven selection.

3.2 Color Specification for Selection

But how should color be specified? Using the attentional-selection paradigm, both
data and model-driven selection require the extraction of color regions so that any
method of specifying color should lead to the reliable extraction of such regions from
images. For data-driven selection, which merely ranks color regions, it is sufficient
to find a method that can distinguish between two adjacent color regions under the
current imaging conditions (i.e. under the illumination conditions, surface geome-
tries, and occlusions in the given scene). For model-driven selection, on the other
hand, a method of color specification should also be stable, so that the color in the
model description can be reliably detected in a scene taken under different imaging
conditions. If machines could capture the way humans achieve color constancy, that
is, be able to discount spectral variation in the ambient light and assign stable colors
to objects, then this would be sufficient for both data and model-driven selection.
One way to achieve this color constancy, examined in previous approaches, is by
recovering the surface reflectance of objects [91, 101, 68, 55, 151]. When a surface
is imaged, the light falling on the image plane (image irradiance) is related to the
physical properties of the scene being imaged via the image irradiance equation (see
Figure 3.1):
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I(A\r) = p(Ar)F(k,n,s)E(\r). (3.1)

where ) is the wavelength, r is the spatial coordinate and r is its projection in the
image, E(A,r) is the intensity of the ambient illumination, and p(A,r) is the com-
ponent of surface reflectance that depends only on the material properties of the
surface (and hence specifies its “surface color”). Finally, F(k,n,s) is the component
of surface reflectivity that depends on surface geometry, with k,s,n being the viewer
direction, the source direction and the surface normal respectively. Since p(A,r) is
purely a property of a surface, specifying colors of objects by this function has been
considered a way of achieving color constancy. But as can be seen from equation
3.1, the recovery of the surface reflectance function when both F(k,n,s) and E()\,r)
are unknown is an under-determined problem. Most methods, therefore, make some
assumptions about either the surface being imaged [91], or about the illumination
conditions [101, 68, 55, 151], or both [53] so that enough constraints can be obtained
to recover the surface reflectance. In the retinex theory [46, 91] for example, by
assuming the surface to be flat, the surface reflectance could be specified by recov-
ering the lightness! values in three wavelength bands called channels. The lightness
in each channel is recovered by spatial differentiation of image intensity followed by
normalization using the average surface reflectance. Other approaches recover the
reflectance by assuming it can be specified by a linear combination of a few basis re-
flectance functions [101, 160, 151]. Here the reflectance is specified by the coefficients
of the linear combination.

Methods of recovering the surface reflectance (called surface color recovery meth-
ods) work well when the problem is to specify the color of already isolated regions.
But when the problem is to extract the color regions in an image, they do not do
as well and have to make restricting assumptions such as the mondrian assumption
[46] to avoid considering the variation of the spectral reflectance across a surface. A
model that takes this variation into account is the dichromatic reflection model for

dielectric surfaces [133]. For such surfaces, the reflectance can be expressed as a lin-

!Lightness is the estimate of reflectance obtained from the image [66).
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ear combination of a surface reflection and a body reflection component. By allowing
the coefficients of the linear combination to be a function of position, the variation
in the surface reflectance across a surface could be handled. The key observation
here was that the variations tend to cluster along the directions of the body and sur-
face reflection components. This observation was exploited by Klinker to develop an
algorithm for extracting color regions [88]. Here the filtered components of intensity
along three wavelength channels called red, green and blue (to correspond to the
filters used in color cameras) as specified by the triple < R,G,B > (called specific
color henceforth) is expressed as a vector in a 3-dimensional color space called the
rgb-space with axes standing for the pure red, green and blue components as shown
in Figure 3.2. Using the dichromatic reflection model, a color region in the image
maps to a T-shaped cluster in this space with colors of pixels crowded along the
directions of surface and body reflection components. Color region segmentation
was achieved by mapping small portions of the image into color space and analyzing
the T-shaped clusters. But separating the T-shaped clusters in color space from
adjacent color regions in the image is difficult. Moreover this method required the
color of the object to be different from the color of the light source.

Other methods have also tried to specify the color by mapping the image intensity
as expressed by the triple of < R, G, B > values as a point in a color space such as the
rgb-space and analyzing the clusters in the resulting histograms for purposes of color
segmentation [109, 87] and localization [140, 141]. Such clustering approaches suffer
from two main problems. First, distance measures that are used to group a set of
points in a color space do not really capture the perceptual distance between colors.
For example, Figures 3.3b and ¢ show two color patches that are at equal normalized
distance in the rgb-space from the color patch shown in Figure 3.3a when they are
treated as points in this space?. Yet the color patch of Figure 3.3a is perceptually
closer in color to the patch in Figure 3.3c than to the patch in Figure 3.3b. The
second problem with the clustering approaches can be described as the problem of

coordination of information processing in color and image spaces as illustrated in

3The normalized distance between two color patches specified by < ro, go,bo > and < r,g,b >is
computed as  /(

L] — X )3 7o — 2 )
rotgo+bo ,+,+J +(ru+¢o+ba r+9+b) :
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Figure 3.4. Typically, the observation that pixel colors of a colored region all map
to a cluster in color space is turned around to infer that isolating a cluster in color
space can give a single color region in the image. Clearly this is not true when
there is more than one region of the same color. More importantly, while it is true
that a color region may map to a single cluster in color space, any cluster in color
space, even if obtained from a small region of the image, need not correspond to
a single color. This becomes obvious when we observe that any color space (such
as rgb, hsv space [104]), showing the spectrum of visible colors contains boundaries
where perceptual color changes occur, so that a cluster in such a space spanning both
sides of the boundary does not correspond to a region of single color. When this is
not taken into account, a bin in the color space as done in the histogram analysis
methods [109, 141], can span different colors. A dramatic example of this can be
seen by histogramming the rgb space into 216 equal-sized cubical bins (approximately
0.1663 in volume)3. Fiéme 3.5a shows a mondrian of color patches created by picking
points in the rgb color space that fall into one such bin. As can be seen, the colors
within this bin are dramatically different even in hue!. A segmentation algorithm
based on histogram analysis in color space could potentially treat this bin as a single
color (as the bin size is sufficiently small) so that a segmentation of the mondrian
image of Figure 3.5a would be as indicated in Figure 3.5b. Thus it appears that
boundaries where perceptual color changes occur must be found before any cluster
in color space can be interpreted as corresponding to a region in image space. This

observation is the basis of our approach to color specification presented next.

3.3 Perceptual Color Specification by Categories

For the purposes of selection, we propose that it is sufficient if a region could be
specified by its perceived color, that is, the color perceived by humans looking at

an image of the scene, and the effects of artifacts such as specularities could be

3The rgb-space was divided into bins of size 0.166 x 0.166 x 0.166 to give a total of 216 bins to
compare closely to the 220 perceptual color categories that we obtained later.
*This holds even for another color space such as the hsv color space.
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separately accounted, as in [88, 87]. Using the perceptual color, two adjacent color
regions would be distinguished if their perceived colors were different, and this is
sufficient for data-driven selection. Because objects tend to obey color constancy
under most changes in illumination, their perceived color remains more or less the
same thus making it sufficient also for model-driven selection. But can perceptual
color be quantified at all? In general, several effects such as simultaneous color
contrast and color filling, have been known to influence human perception of color
[166]. Fortunately, (as we will explain later), these factors are not very critical for

selection.

We now present a method for specifying perceptual color using the concept of
color categories. The color of pixels in images is described by a triplet <R,G,B>
(referred to as specific color before), representing the filtered components of image
intensity at a point or pixel along three wavelengths corresponding to the red, green
and blue filters of the camera. When all possible triples are mapped into a 3-
dimensional color space with axes standing for pure red, green and blue respectively,
we obtain a color space that represents the entire spectrum of computer recordable
colors. Such a color space must, therefore, be partitionable into subspaces where
the color remains perceptually the same, and is distinctly different from that of
neighboring subspaces. Such subspaces can be called color categories. Now, each
pixel in a color image maps to a point in this color space, and hence will fall into
one of these categories. The perceptual color of this pizel can, therefore, be specified
by this color category. To obtain the perceptual color of regions from the perceptual
color of their constituent pixels, we observe the following. Although the individual
pixels of an image color region may show considerable variation in their specific
colors, the overall color of the region is fairly well-determined by the color of the
majority of pixels (called dominant color henceforth). Therefore, the perceived color
of a region can be specified by the color category corresponding to the dominant color

in the region.

Since color categories capture the perceptual color, two adjacent color regions

would belong to two different categories, making it possible, as we will show later,
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to extract the different color regions. This can make category-based specification
of color suitable for data-driven selection. For model-driven selection, the color
description of the object should remain stable. Since the specific color can change
considerably with imaging conditions, it may cause a change in the color category
too. But by restricting the illumination changes and by handling effects of artifacts
such as specularities and inter-reflections separately, as we will discuss later, the

category-based specification can still be sufficient for model-driven selection.

The category-based specification of perceptual color (of pixels or regions) is a
compromise between choosing the specific color (which is extremely unstable with
respect to changes in illumination conditions, etc. ) and surface color (whose recovery
is hard). Also, since the perceptual categories depend on the color space and are
independent of the image, they can be found in advance and stored in, say, a look-up
table. Finally, a category-based description is in keeping with the idea of perceptual
categorization that has been explored extensively through psychophysical studies 10,
19, 129]. These studies concluded that although humans can discriminate between
several thousand nuances of colors, psychophysically we seem to partition the color

space into relatively few distinct qualitative color sensations or categories [139, 49].

3.3.1 Categorization of color space

The above discussion argued for the viability of an approach that recovers a color to
within a category. Before this can be turned into a computational method of color
recovery one needs to address the issue of how such categories may be found. Pre-
vious work on color categorization involved experiments of naming the color using
a limited vocabulary, or identifying colors using the Munsell color charts [166]. But
for computational color recovery, we need a way to convert the camera recordable
red, green and blue components of colors into computer recordable perceptual color
categories. This was done by performing some rather informal but extensive psy-
chophysical experiments that systematically examined a color space and recorded
the places where qualitative color changes occur, thus determining the number of

distinct color categories that can be perceived. For this, the hue-saturation-value
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ey

6h | &s | 6v | number of bins | number of categories
5 10101/ 7200 220

Table 3.1: Parameters used for the quantization of color space.

color space was used as it specifies a given color in terms of its hue, purity and
brilliance - attributes that have been found to give a perceptual description of color
[80]. The details of these experiments are described in Appendix A and will not
be elaborated here, except to mention the following. The entire spectrum of com-

224 colors) was quantized into 7200 bins corresponding to a

puter recordable colors (
5 degree resolution in hue, and 10 levels of quantization of saturation and intensity
values (see Figure 3.6). The color in each such bin was then observed by displaying
a mondrian (a uniform color patch) of that color on a monitor screen and observ-
ing it under dark room conditions with appropriate monitor calibration. From our
studies, we found about 220 different color categories were sufficient to describe the
color épace. The color category information was then summarized in a color-look-up
table. Although it is true that a finer level of quantization would have yielded more
categories, a smaller set is actually more useful since it gives a reasonably coarse
description of the color of a region thus allowing it to remain the same for some vari-
ations in imaging conditions. In fact, by the above method we can also determine
which categories can be grouped to give an even rougher description of a particular
hue. This was done and stored in a category-look-up table to be indexed using the

color categories given by the color-look-up table.

3.4 Color Region Segmentation

The previous section described how to specify the color of regions, after they have
been isolated. But the more crucial problem is to identify these regions. In this sec-
tion, we show that the perceptual categorization principle can be used to determine
which pixels can be grouped to form regions in an image. If each surface in the scene

were a mondrian, then all its pixels would belong to a single color category, so that
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by grouping spatially close pixels belonging to a category, the desired segmentation
of the image can be obtained. But real surfaces being hardly mondrians, it is rare
that pixels of a region from such surfaces all belong to the same color category. They
could show considerable variation in color with bright and dark pixels intermixed,
and with possibly spurious pixels also being present. We now analyze some of the
color variations across an image that can result from imaging a colored surface in

the scene.

3.4.1 Variation of color across an image of a 3D-surface

In this section we use some assumptions to show that the color variation across an
image of a surface is mostly in intensity. The image irradiance equation given earlier

as equation 3.1 and repeated here for convenience as

I(A\r) = p(A r)F(k,n,s)E()\,r) (3.2)

relates the light falling on the image plane (image irradiance) to the physical prop-
erties of the scene being imaged. Although the image irradiance equation assumes
that all surfaces in a scene reflect light governed by a single reflectivity function,
we can easily reinterpret this equation to represent image irradiance of a single sur-
face. Under the a.ssumptioﬁ of a single light source, the surface illumination E(A, r)
can be separated as a product of two terms E;()) and E;(r), and since F(k,n,s)
is a function of position r it can be expressed as F(r). Then the image irradiance

equation can be re-written as

I\ r) = p(A, £) F(r)E1(A) Ey(T). (3.3)

The surface reflectance and hence the resulting appearance of a surface is deter-
mined by the composition as well as the concentration of the pigments of the material
constituting the surface. For most surfaces, the composition of the pigments can be
considered independent of their concentration so that the spectral reflectance p(),r)

can be written as a product of two terms p;(A) and p,(r). Note that this assumption
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is less restricting than the assumption of homogeneity that has been used before [68].
With this simplification, (and grouping the product of terms dependent on A and r
separately) the image irradiance equation becomes

I(A,7) = H(r)L()). (3.4)

Now, if we consider the filtered version of this signal, i.e., the image irradiance in
three channels, say the red, green and blue channels with their associated transfer
functions hr(A), hg(X), hp(}), the specific color at each pixel location 7 is specified
by the triple <R(r),G(r),B(r)> where

R(») = [J°I(Ar)hr(A)dA = H(r) [;° L(A)hr(A)dA = H(r)R, (3.5)
G(r) = [JIArhe(A)dr = H(r) [ L(A\he(A)dA = H(r)G,  (3.6)
B(r) = [JI(Ar)hs(N)dX = H(xr) [y L(A)hs(A)dA = H(r)By . (3.7)

This shows that under the given assumptions (which include non-homogeneous
surfaces), the color of a surface can vary only in intensity. In practice, even when
the separability assumption on reflectance is not satisfied, or there is more than one
light source in the scene, the general observation is that the intensity and purity of
colors are affected, but the hue still remains fairly constant. In terms of categories,
this means that different pixels in a surface belong to compatible categories, i.e.
have the same overall hue but vary in intensity and saturation. Conversely, if we
group pixels belonging to a single category, then each physical surface is spanned by
multiple overlapping regions belonging to such compatible color categories. These
were the categories that were grouped in the category-look-up-table mentioned in
Section 3.3.1. The next section describes how these concepts can be put together to
give a color image segmentation algorithm.

3.4.2 Color region segmentation algorithm

The algorithm for color image segmentation performs the following steps. (1) First, it
maps all pixels to their categories in color space. (2) It then groups pixels belonging
to the same category, (3) and finally it merges overlapping regions in the image that
are of compatible color categories.
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1. Mapping pixels to categories: This is done by a simple indexing of the color-look-

up-table by the color of the pixel specified in terms of its hue, saturation, and
brightness components. These components can be derived from the specific color as
described in [52]. This step takes time = O(N) where N is the size of the image.

2. Grouping pixels of same category: The image is divided into small non-overlapping

bins of fixed size, (say, 8x8) and the color categories found in the bins are recorded.
The size of the bin can be chosen based on expectations about the average size of
color regions found in natural scenes. Each bin thus has a list of color categories
summarizing the pixel color information in the bin. Neighboring bins that contain a
common color category can be grouped to give a connected component representing
an image region of that color category. Since a bin has several color categories, it
belongs to several connected components that overlap. The actual grouping algo-
rithm we used is a sequential non-recursive labeling algorithm that simultaneously
assembles all the overlapping connected components using the category description
in the bins. This algorithm is an extended version of the labeling algorithm for
binary images described earlier [66], and uses the union-find data structure to ef-
ficiently merge category labels into connected components taking time = O(k? M)
where M = number of windows, and k = maximum number of categories present
in the window (= O(1) for small window-sizes, eg., 8 x 8). The resulting labels are
propagated back to the pixels to give the precise boundaries of color regions of single
color categories. The color of the region is then specified by the color category and

specific color that is the dominant color in the region as described in Section 3.3.

3. Merging overlapping regions: The general problem of determining which regions

overlap in the image can be a computationally intensive operation as it involves
determining which polygonal regions intersect and finding their regions of intersec-
tion. But by using the bin-wise representation of connected components, we can
detect and combine overlapping regions with greater ease. From the discussion in
Section 3.4.1, a shaded region maps to categories in color space that are compatible,
i.e., have the same overall hue. The categories that are compatible are available
from the category look-up-table described in Section 3.3.1. To find all such regions
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that have compatible categories and overlap in image space, the algorithm examines
each window of the image to see if it contains the interior portions of regions of
compatible color categories. Such overlap regions are grouped as in Step 2. This
step again takes O(k*M) time. Finally, the window-level color labels are propagated
back to the corresponding pixels to give an accurate localization of the color region

boundaries.

The algorithm for color image segmentation thus makes only a constant number
of passes through the image, each being linear in the size of the image.

3.4.3 Handling specularities

The above algorithm segments the image into regions according to their perceived
color. As we described before, this is sufficient for data-driven selection. But for
model-driven selection such a description needs to be augmented with the knowledge
of artifacts that occur in the image such as specularities, shadows, or inter-reflections.
Such artifacts can cause a model region to appear fragmented. For example, a sharp
streak of specularity on the surface can cleave its image into two regions. If these
artifacts could be identified and corrected, this can improve the effectiveness of a
color-based model-driven selection system. We now discuss how one of these artifacts,
namely, specularities, can be handled once the color regions have been isolated.
Specularities are present in regions produced by objects in the scene having shiny
surfaces, such as metallic objects and dielectrics. These specularities have a central
bright portion that appears white in most illumination conditions (bright sunlight,
day light, tube light) and tapers off near the specularity boundary merging into the
rest of the body color. Such specular regions and their adjacent colored regions
when projected into a color space form characteristic clusters such as the skewed T
described by Klinker et al. [86] and mentioned in Section 3.2. These clusters can,
therefore, be analyzed to detect and remove highlights using the method described
in that paper.
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3.4.4 Results

Figures 3.7- 3.9 demonstrate the color region segmentation algorithm. Figure 3.7a
shows a 256 x 256 pixel size image of a color pattern on a plastic bag. The folding
on the bag and its plastic material together give a glossy appearance in the image
as can be seen in the big S and Y. The result of Step-2 of the algorithm is shown in
Figure 3.7b, and there it can be seen that the glossy portions on the big blue Y and
the red S cause overlapping color regions. These are merged in Step 3 and the result
is shown in Figure 3.7c. As can be seen in the figure, the algorithm achieves a fairly
good segmentation of the scene for such surfaces. Figure 3.8 shows another image
consisting of colored pieces of cloth with the textured region having several small
colored regions within it. The results of the algorithm (Figure 3.8¢c) show that even
such colored regions can be reliably isolated. Finally, Figure 3.9a shows an image
of a realistic indoor scene with shadows, inter-reflections, and consisting of many
types of objects. The different color regions found in this image are re-colored and
shown in Figure 3.9b. Notice in the segmented image of Figure 3.9b that adjacent
objects of the same perceptual color are merged (grey books). This is to be expected
because the grouping of regions is based on color information alone. More examples
of color region segmentation will be seen in later chapters when color-based selection

is actually used in a recognition system.

3.5 Color-based Data-driven Selection

The segmentation algorithm described above gives a large number of color regions.
Some of these may span more than one object, while some come from the scene clutter
rather than objects of interest in the scene. It would be useful for the purposes of
recognition to order and consider only some of these regions so that by isolating
data subsets from such regions, the search can be focused on key groups of features
thus excluding much of the scene clutter. Using the paradigm of attract-attentional
selection, the color regions can be ordered by their saliency, i.e., by how distinctive

they appear. The method of color-based selection, therefore, is to extract color
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regions from the image, order them based on a measure of color-saliency and then
select a few most salient regions to be given to any recognition system. In this section
we first describe a measure of expressing color saliency, and then examine the utility

of salient-region selection in recognition.

3.5.1 Finding salient color regions in images

In trying to express distinctiveness, one encounters the question: Is distinctiveness
expressible at all? In general, any judgment of distinctiveness has both a sensory and
a subjective component. Thus for example, while most of us can perceive brighter
colors more easily than duller colors, the judgment of which of two hues of the same
brightness and saturation are more salient can be subjective. The aim here is to
focus on the sensory component of distinctiveness and hence extract properties of
regions that are general enough to be perceived by most observers. Accordingly,
we propose that the saliency of a color region be composed of two components,
namely, self-saliency and relative saliency. Self-saliency determines how conspicuous
a region is on its own and measures some intrinsic properties of the region, while
relative saliency measures how distinctive the region appears when there are regions

of competing distinctiveness in the neighborhood.

In order to develop such a measure for color-region saliency, one must ask the
following questions: What features in regions determine their saliency? How can they
be measured to reflect our sensory judgments? Finally, how can they be combined
to give the saliency measure? We now address these questions and derive a measure

of color-saliency.

Features used for measuring self and relative saliency

Since the saliency of a color region depends on the region features used, they must
be carefully selected. Such features should be: (i) perceptually important, (ii) easily

measurable, and (iii) fairly general, to avoid subjective bias.
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1. Color: The color of a region is an intrinsic property and affects a region’s self-
saliency. It is specified by (s(R),v(R)), where s(R) = saturation or purity of the
color of region R, and v(R) = brightness, and 0 < s(R),v(R) < 1.0. The hue of

colors is not considered, to avoid subjective bias.

2. Region size: The size of a region is again an intrinsic property and affects its self-
saliency. It is chosen as a feature based on the observation that regions that are
either very small in extent, or that are large enough to cover the entire field of view,
do not often attract our attention. Also, very large regions can potentially span more
than one object, making them unsuitable for selection. The size feature is expressed
by the normalized size r(R) = Size(R)/Image-size.

3. Color contrast: The color contrast a region shows with its neighbors affects its
relative-saliency. The rationale behind choosing color contrast is that even if a region
has an interesting intrinsic color, it may not be distinctive if all its neighbors also
have equally interesting colors, unless it shows the greatest contrast. It is difficult to
express color contrast in a numerical measure that can account for the variations in
an observer’s judgment with the conditions of observation, size, shape, and absolute
color of the stimuli [166]. In the color contrast measure we chose, we augmented
an empirical color difference formula to predict the observed color differences, with
the knowledge of the hues of the colors derived from their categorical representation.
Specifically, the following difference formula d(Cg,Cr) was used to measure color
difference between two color regions R and T with specific colors Cr = (7, go, bo)T
and Cr = (r,g,b)T as:

P+ (=2 ) (38)

d(Cr,C =\/ 0 -
(Cr.Cr) (7'0+go+bo r+g+b ro+got+bo r+g+b

As this measure does not explicitly take into account the hues of the colors, the
color category-based representation is used to ascertain whether the hues of the two
regions are different, and then the extent of difference is judged using d(Cr,Cr)

in such a way that the contrast between regions of different hue is emphasized.
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This allows the measure to handle simultaneous color contrast to some extent. The

measure is given by ¢(R,T) below:

k1d(Cr,Cr) if R and T are of same hue

(3.9)
k2 + k1d(Cr,Cr) otherwise

¢(R,T) = {

where k; = 22 and k; = 0.5, so that 0 < ¢(R,T) < 1.0.
V2

4. Size contrast: The size contrast is a feature for determining relative saliency and
is chosen because it determines if a region is mostly in the background or in the
foreground. The size contrast of a region R with respect to an adjacent region T is

simply the relative size (area) and is given by

(3.10)

#(R,T) = min (Size(R) SiZe(T))

size(T)’ size(R)

Since a region R has several neighboring regions in general, the color contrast
¢(R) and size contrast t(R) of a region R are measured relative to a best neighbor
The,t for each region, so that ¢(R) = ¢(R, Thest), and t(R) = t(R, Thest). Thest is the
neighboring region that is ranked the highest when all neighbors are sorted first by
size, then by extent of surround, and finally by contrast (size or color contrast as the
case may be).

Combining features for self-saliency:

To determine self-saliency from the chosen features, they are weighted appropriately
to reflect their importance. The self-saliency measure chosen emphasizes purer and
brighter colors over darker and duller colors by choosing the weighting functions for
saturation and brightness as f;(s(R)) = 0.5s(R), and f2(v(R)) = 0.5v(R) respectively.
The size of a region is given a non linear weight to deemphasize both very small and
very large regions as they do not often attract our attention. The corresponding
weighting function has sharp as well as smoothly rising and falling phases determined
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by the breakpoints t,,¢;,%3,t4 as shown in Figure 3.10a and the equation below.®
Here n stands for the region size r(R).

( —inllon) 0<n<t
1-—e ti<n<it
fsi(n) =1 s2—csln(l—n+t2) ta<n<ts (3.11)
sze~c4(n=ts) l3<n<ty
| 0 tg <n<1.0

where t1 = 0.1, ts = 0.4, t3 = 0.5, tg = 0.75, 51 = 0.8, 53 = 1.0, 53 = 0.7, 54 = 107°

24
_ In(1-ty - lnjl—u[ — 32383 _ Ing — af
and ¢; = - 02 = T B T e an) 4 T s and n = size of
region R = r(R).

Combining features for relative saliency

Once again, the chosen features are weighted appropriately to determine relative
saliency. The color contrast is weighted linearly by a function f4(c(R)) = ¢(R),
to emphasize regions showing greater contrast. The relative size is exponentially
weighted by a function fs(t(R)) = 1 — e~ *?®) to favor situations in which a region

and its best neighbor have approximately the same size.®

Finding self and relative saliency

Once the various features determining self and relative saliency are appropriately
weighted, they reinforce each other so that the self and relative saliencies can be
given by simple additive combinations of their individual features. The self-saliency
of aregion R denoted by SS(R) is given as fi(s(R)) + f2(v(R)) + f3(r(R)). Similarly,
the relative saliency of the region R, RS(R) is given by fs(c(R)) + f5(t(R)). Finally,

®Such a function along with the thresholds and rates of change was empirically derived from infor-
mal psychophysical experiments performed using color regions of various sizes. These experiments
are described in Appendix B.

®Once again this function was obtained by performing informal psychophysical experiments.
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the overall saliency of a region R is expressed by a linear combination of self and
relative saliency as SS(R) + RS(R), using the following rationale. Any combination
method should be flexible enough to allow a region to be declared salient if it shows
good contrast (i.e., high relative saliency) even though it may not be interesting
on its own. Conversely, a region that is interesting on its own but fails to become
interesting in the presence of neighboring regions should not be chosen. On the basis
of these observations alone, nonlinear combining methods such as (SS(R) * RS(R))
or max(SS(R), RS(R)) are not suitable. If a region is both interesting on its own
as well as in the presence of other regions in the scene, then it must be given more
importance. All three criteria are satisfied when the two saliency components are

linearly combined. The color saliency of a region R is therefore given by

Color-saliency(R) = f1(s(R)) + f2(v(R)) + fa(r(R)) + fa(c(R)) + fs(t(R)). (3.12)

The saliency measure described above does not completely take into account all
the perceptual effects of simultaneous color contrast, color-filling, etc. Because such
effects do not greatly undermine a region that is already very outstanding (very
salient), and because saliency is being used to rank the regions, we have ignored
these effects.

The color regions in the image can now be ordered using the saliency measure
and a few most significant regions can be retained for selection (called salient regions,
henceforth). The number of salient regions to be retained can be determined when
. the selection mechanism is integrated with a recognition system to perform a specific

task, and is therefore left unspecified here.

Results

We now illustrate the ranking of regions produced by the color saliency measure
derived above. Figures 3.9c- 3.9f show the four most distinctive regions found by
applying the color-saliency measure to all the color regions extracted from the scene
shown in Figure 3.7a. Similarly, Figures 3.7d- 3.7f, 3.8d- 3.8f, 3.11c- 3.11f, show the
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few most salient regions found in their respective scenes. In the experiments done so
far, the color-saliency measure was found to select fairly large bright-colored regions
that showed good contrast with their neighbors, appeared perceptually significant

and came mostly from single objects.

3.5.2 TUse of Salient Color-based Selection in Recognition

Data-driven selection based on salient color regions is primarily useful when the
object of interest has at least one of its regions appearing salient in the given scene.
In such cases, the search for data features that match model features can be restricted
to the salient regions, thus avoiding needless search in other areas of the image. By
selecting salient color regions, we obtain a small number of groups (a region is itself a
group), containing several features. It was shown in [27] that such large-sized groups
are useful for indexing, i.e., to determine which regions from models in a library
could correspond to a given group. But when the task is to recognize a single object,
it is desirable to have small-sized groups. For this, existing grouping techniques
can be applied to the data features found within the color regions to obtain reliable
small-sized groups.

We now estimate the search reduction that can be achieved with such a selection
mechanism. Let (M,N) = total number of features (such as edges, lines, etc. ) in the
model and image respectively. Let (Mg, Ng) = total number of color regions in the
model and image respectively. Let Ng = number of salient regions that are retained
in an image. Let g = average size of a group of data features, within a model or image.
Let (Gpm,GN) = number of groups formed (using any existing grouping scheme) in
the model and image respectively. Finally, let G; be the number of groups in the
salient image region i« Using a method of recognition called the alignment method
[71], at least three corresponding data features are needed to solve for the pose
(appearance) of the model of a rigid object in the image. If no selection of the data
features is done, then the brute-force search required to try all possible triples is
O(M3N3). If selection is done by only grouping methods (i.e., without color region
selection), then the number of matches that need to be tried is O(GprGng3g®) since
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only triples within groups need to be tried. But as we mentioned before, grouping
methods often make mistakes, so that not all groups contain features belonging to
a single object. In at least one such study [25] out of the 150 or so groups isolated,
about 83 groups actually came from single objects. Most of the remaining 67 groups
would not yield any consistent match and would represent fruitless search. Consider
the case when grouping of data features is done within all the color regions. With
this, the grouping is more reliable, and also, the number of groups is smaller (as
groups straddling regions are not considered), so that the overall effect is to reduce
the search. For example, with M = 200, N = 3000, ¢ = 7, and Gy = 30, Gy =
430 (these numbers are typical of indoor scenes), the search reduction assuming 70%
reliability in simple grouping to > 95% reliability in grouping within color regions
is &~ 0.25 * 10° which is a considerable improvement. Consider next when grouping
is restricted to salient color regions. The number of matches further reduces to

O():j-vjl Gn;Gug3g®), since only the groups in the salient regions need be tried.

To obtain an estimate of the number of matches and time taken for matching
in real scenes when color-based selection is used, we recorded the number of regions
(obtained by applying the segmentation algorithm of Section 3.4.2), and the number
of data features within regions in some selected models and scenes (Figures 3.12
and 3.9a show typical examples of models and scenes tried). The regions were ordered
using the color saliency measure and the four most salient regions were retained.
Then search estimates were obtained using the above formulas, and assuming a
grouping scheme that gives a number of groups within regions that is bounded by

the number of features in a region
average size of the groups in a region’

This is a good bound on the number of groups produced using a simple grouping
scheme such as grouping ’¢’ closely-spaced parallel lines in the region that will be
described in Chapter 5. The result of such studies is shown in Table 3.2. As can
be seen from this table, the number of matches is always smaller when salient color

regions are used for selection.
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No selection Only grouping Salient color + grouping
SNo | M N Mg | Ng | Num. Time Num. Time | Num. Time
matches matches matches
1. 229 | 1170 | 1 18 | 1.92x10'® | 610yrs 6.52x10% | 11min | 3.37x10% | 5min
2. 507 | 2655 | 2 20 | 2.4x10'® | 77,341yrs | 3.22x10° | 54min | 1.32x10° | 22min
3. 124 | 2655 | 2 20 | 3.57x10® | 1131yrs 8.05x10® | 13min | 3.3x10® | 5min
4, 507 | 2247 | 2 14 | 1.48x10'® | 46,884yrs | 2.72x10° | 46min | 7.8x10® | 13min

Table 3.2: Search reduction using color-based data-driven selection. The last column
shows the match time when color-based data-driven selection is combined with group-
ing. The color-based selection is done by choosing the four most salient regions. Here
g = 7, Time per match = 1 microsecond, and the grouping method is as described in

tezt.

3.6 Color-based Model-driven Selection

The previous section described a data-driven selection mechanism that was meant
for an object of interest having some salient color regions. This will not be of much
help when the object of interest is not salient in color (but salient in some other
domain, say texture) or is not salient at all. In such cases, the color description of
the model can be used to perform selection. We now describe one such color-based
model-driven selection mechanism. Here, given a color-based description of a model
object, the task is to locate color regions that satisfy this description. The use of
model information to constrain the matching of model features to image features
is not new. Several model-driven search restriction techniques such as generalized
Hough transforms [75], heuristic termination [59], and focal features have evolved
(8, 2, 9]. The emphasis in these methods was on geometric constraints that can
prune the search space during the matching stage of recognition. The approach we
present here, on the other hand, emphasizes some global relational information about
model color regions to prune the search space prior to matching. It also provides
possible correspondences between model and image regions. Such a correspondence

can further reduce the complexity of recognition because the search for pairing model
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features to data features can be restricted now to these corresponding regions rather
than all image regions. Color information in the model object has been used before
to search for instances of the object in the given image of a scene [141, 164]. These
approaches represent model and image color information by color histograms and
perform a match of the histograms. Such approaches usually cause a lot of false
positive identifications, and do not explicitly address some of the problems that
arise in going from a model object to its instance in a scene. Also, since they do not
supply correspondence between model and image regions, they are not as useful for

reducing the search in recognition.

In order for any scheme for model-driven selection to be effective for reducing the
search in recognition, it must meet two requirements: (i) it must be sufficiently se-
lective to avoid many false positive selections that cause needless search for matches,
and (ii) it must be sufficiently conservative to avoid many false negatives, causing
recognition to fail when it should have succeeded. A selection scheme can make false
negatives if it does not adequately take into account the various problems that arise
in going from a model object to its image in the scene. An object may not appear
the same in the scene as it does in the model, because it has undergone pose changes,
or because it is occluded, or its colors appear different in the current illumination
conditions. In addition, artifacts such as specularities, inter-reflections, and shadows
may also cause changes in the appearance of the object. So how can a model-driven
selection mechanism meet these two apparently conflicting requirements? We now
describe an approach to model-driven selection that meets some of these require-
ments. It makes a particular choice of model description and assumes that this is
made available to it for selection. Since this model description affects the way our

approach formulates the color-based model-driven selection problem, it is described

first.

3.6.1 Model Description

The color region information in the model (in an image or view of the model, that

is) is represented as a region adjacency graph (RAG)



Section 3.6 51

MG =< Vrm Em, Cm’ Rma Sm,Brrm Bam > (313)

where V,, = color regions in the model, E,, = adjacencies between color regions,
Cm(u) = color of region u € Vyn, Rpm(u,v) = relative size of region ’v’ with respect
to region u. S,,(u) = size of region u, and B,,, = a bound on the relative size of

regions given by R, and B,,, = a bound on the absolute size of regions given by
Sm.

The above description exploits features of regions that tend to remain more or
less invariant in most scenes where the model appears. Even though the specific
color of the model changes under variations in illumination conditions and pose
changes, the perceived image color remains more or less the same if we restrict to
commonly occurring lighting conditions such as sunlight, daylight, and overhead
room (tube) light(s). In such cases, when the color of a model region is specified by
its color category, then either the category remains the same (for small specific color
changes) or it can change to a compatible color category, i.e. be predominantly of
the same hue. Since the compatible categories are available in the category look-up
table as described in Section 3.3.1, this variation in color can be taken into account
during matching. Similarly, the adjacency information between two color regions
tends to remain more or less invariant in the different appearances of the object, as
long as the two regions are visible in the given image and there are no occlusions.
Finally, the relative size of regions is preserved under changes of scale. But it can
- undergo considerable changes if the pose of the object changes, say when a region
goes partially out of view. The bound on the relative size changes in each pair of
adjacent regions, B,, indicates the extent of pose changes that a selection mechanism
is expected to tolerate. Relative size changes can also occur due to occlusions. By
placing some loose bounds on the absolute size changes as given by B,,,, the model
description restricts the changes that can be tolerated in the presence of occlusions.
For size changes in a region that go beyond the bounds, that region will be considered
no longer recognizable, and then the selection will have to depend on the evidence
for other model regions in the image.
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This description is fairly rich and has some structural information about color
regions that can be used to restrict the number of false positives during selection,
and some constraints on the relative and absolute size changes that can be used to

restrict the number of false negatives made by the selection mechanism.

The above model description is assembled as follows. A model description speci-
fies a color view, that is, a range of 2D views of the model in which one or more of the
color regions described in the model are visible. If the model has some views showing
an entirely different set of color regions, then they must be specified as separate color
views. For each color view, a central model view is chosen and its color regions are
extracted using the segmentation algorithm described in Section 3.4.2. Then their
color, absolute size, relative size and adjacency information are recorded. By not-
ing the relative size changes in different model views constituting a color view, the
bounds B,,, on the relative sizes of regions are obtained. The bound on the absolute

size changes are loosely set to disallow very small or very large scale changes.

Finally, the model color region description gives a way to analogously orga-
nize the color region information in the image as an image region adjacency graph
as Igs = < Vi,Er,Cr,Rr,Sr >, where each term has a meaning analogous to
< Vins EmyCmy Ry Sm > respectively.

3.6.2 Formulation of the color-based model-driven selection prob-
lem

In this section we will formulate the color-based model-driven selection problem as
a type of subgraph matching problem. Given the image region adjacency graph,
the model object, if present in the scene represented in the image, will form a
subgraph in Ig. The location strategy can be regarded as the problem of search-
ing for suitable subgraphs that satisfy the model description. Any such subgraph
I, =< V4, E,,Cyy Ry, Sg > such that |Vl < ||V, ||Egll £ ||Em]|, has associ-
ated with it a node correspondence vector T = {(um,uy)|Vum € Vin,uy € V5 U
{1},{1} is a null match}. Although there are an exponential number of such sub-
graphs, not all of them correspond to model RAG. From the model description a set
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of unary and binary constraints could be derived (as is described later) that make
only some subgraphs feasible. A feasible subgraph is, therefore, a subgraph that has
all its nodes satisfying unary and binary constraints. For model-driven selection,
since it is desirable to have at most one image subgraph matching the model RAG,
we can select from among these subgraphs, a subgraph(s) that in some sense best
satisfies the model description. Here we formulate color-based model-driven selection
as the problem of choosing a feasible subgraph(s), I, that minimizes the following

measure:

V” 22\/(,, vy )EEG, Y (um)=ug,T(vm)=v R,z,. (%n,vm,ug,vg)

SCORE(I,) = (1— Vs )+ 9:99)€Eg, Y (um)=ug, T(vm)=vy “"mg .
%) [Vonll B

: (3.14)

where R.g(Um,Vm,Uq, ;) expresses the change in the relative size when adjacent
model regions (um,v,) are paired to corresponding image regions (ug,v,) and is
given by Rpmg(tm,Vm,uqg,vy) = ﬁ%“%ﬁ%. SCORE(I;) emphasizes
rewards for making as many correspondences as possible as indicated by the first
term, called Match(Jy), and penalties for a mismatch of the relative size, as indicated
by the second term, called Deviation(Z,), which measures the mean square deviation
of the relative sizes. Since the subgraphs are all feasible, the deviation accounts for
occlusions and pose changes in a more refined way than the binary constraints alone.
Another advantage of this measure is that it can be incrementally computed from
individual region matches, so that a branch-and-bound search formulation can be
used to reduce considerably the search involved in finding the best subgraph (i.e. the
one with the lowest score). Finally, the above formulation is based on the hypothesis
that at least one of the regions in the isolated subgraph corresponds to a model
region. It is also designed primarily to locate single instances of the model object
in the image. More instances can be found after removing the regions in the found

instance from the image RAG.
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3.6.3 A color-based model-driven selection mechanism

A color-based model-driven selection mechanism was built using the above formula-
tion. The mechanism essentially uses a search strategy to find the best subgraph.
The result of selection is the correspondence vector associated with the best sub-
graph. The search strategy used the following constraints to restrict the search
among feasible subgraphs.

1. Unary constraints: The color and absolute region size information provided in the

model description were used to develop unary constraints on these features. The color
Cq(ug) of an image region u, is said to match the color Cy,(us) on a model region
U, if these colors belong to the same category or compatible categories (described
in Section 3.3.1). With this scheme, brighter colors (of a given hue) in the model
could potentially match to darker colors of the same overall hue in the image, thus
accounting for a simple lowering in illumination levels. The bounds on the absolute
size provided by B,,, (see equation 3.6.1) act as loose size constraints to rule out
some clearly absurd scale changes (such as, say, a 100 fold increase in the smallest

model region implying a blowup of the model outside the image bounds).

2. Binary constraints: The adjacency (as well as non-adjacency) and relative size

information provided in the model were used as binary constraints to prune some
impossible subgraphs. Specifically, the lack of adjacency in model regions is a pow-
erful constraint, because two adjacent regions in the image cannot correspond to
two regions that are not adjacent in the given color description (assuming a rigid
model)”. Two adjacent regions in the model may, however, not appear adjacent in a
given image due to occlusion. A simple analysis of occlusions could rule out several
false matches in such cases (such as, say, discarding a match if the area spanned by
the occlusion within a rectangle enclosing the candidate non-adjacent image regions
far exceeds the combined size of the corresponding adjacent model regions). The
bound on the relative sizes served as another binary constraint. The bound B,,, was

used to constrain possible matches by requiring Rmg(%m, Um, gy Vg) < Brm(tm,Vm)-

"Notice here that the search is for a given color view of the model.
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3. Searching for the best subgraph

The search for the best subgraph (i.e. the subgraph that minimizes the value of
SCORE in equation 3.14), can in principle, be done by an exhaustive enumeration of
subgraphs. But with the algorithm described below, the search required is reduced
to a large extent. The algorithm used is essentially a variation of the branch and
bound interpretation tree (IT) search [59], with the major difference being that no
verification is done when the search reaches a leaf node (as the task is selection and
not recognition). Each level of the search tree represents a possible match for a
model region (this includes a null match), so that the depth of the search tree is
fixed by the number of nodes in the model RAG. The unary constraints are checked
a priori to prune the breadth of the search tree. A subgraph in the image RAG that
is a potential match for the model RAG is represented by a path in the IT. The value
of SCORE is updated at each node as SCORE;;; = SCORE; — m + ﬁg—j’:ﬁ. By
keeping the lowest value of SCORE so far, search can be cut off below any node with
a Deviation(I;) value greater than the lowest SCORE value. In practice, the unary
and binary constraints prune the search tree considerably so that the average number
of full paths (up to the leaves) explored are few (=~ 50). Finally, after an instance of
the model region has been found in the image, the selected area is removed and the
search repeated on the resulting image RAG to look for more instances of the model
object.

3.6.4 Results

The result of using color-based model-driven selection are illustrated in Figures 3.12
and 3.13. Figure 3.12a shows a model object, and its color description obtained
by using the color-region segmentation algorithm of Section 3.4.2 is shown in Fig-
ure 3.12b. Here the background was removed by a simple threshold on intensities.
This description is used to create a model RAG which is shown in Figure 3.13c.
Figure 3.12c shows a scene in which the model object occurs. The scene shown has
several other objects with one or more of the model colors. Also, the model ap-

pears in a different pose here, being rotated to the left about the vertical axis and
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illuminated from above. Figure 3.13e shows the result of applying the unary color
constraints. For example, the big blue glass matches the small blue flowers based on
color alone. Next, the unary constraint on absurd size changes are used to prune the
possibilities and the result is shown in Figure 3.13f. Finally, the subgraph with the
lowest value of SCORE is shown in Figure 3.13g. As can be seen from this figure,
a region containing most of the model object has been identified even though the
color image segmentation was not perfect (notice the small streak above the white
rim of the cup that merges with the book in the background). More examples of
color-based model-driven selection will be found in Chapter 8 when it is used in a

recognition system.

3.6.5 Search reduction using color-based model-driven selection

The color-based model-driven selection mechanism provides a correspondence of
model regions to some image regions. The matching of model features to image
features can be restricted to within corresponding regions, and this reduces the
number of matches that need to be tried for recognition. To reduce the search fur-
ther, conventional grouping can be performed within the selected color regions, as
described in Section 3.5.2. To estimate the search reduction in this case, we continue
with the analysis done in that section. Let N; be the number of solution subgraphs
given by the selection mechanism, and let I} represent one such subgraph with the
number of nodes = Nj. Let (Gy;,G,;) = the number of groups in region u; of
the solution subgraph Ii, and region v; of the model RAG that corresponds to u;
as implied by the correspondence vector T associated with I,. Then assuming, as
before, the average size of the group = g, the number of matches that need to be
tried are O(Zﬁl Ef_fl Gu;Gy;.9%.¢%). To compare this kind of selection with pure
grouping we can take some typical values of these numbers. Letting M = 200, N
= 3000 (where M and N are the model and image features (line segments here)),
9=1Gm =30,Gny = 430, G,; = 8, Gy, = 5, Ny = 5, N, = 5, we have the
number of matches with grouping alone to be O(G»Gng3g®) ~ 1.56 % 10°, and using
model-driven color-based selection with grouping, the number of matches become




Section 3.6 57

T B B - No selection Onl; grouping Model-driven selection

M N Mp | Nr | Objects | N; | N, Num. Time Num. Time Num. Time
matches matches matches

786 | 3268 | 5 30 | 20 1 (3) 1.69x10° 530000yrs | 6.15x10° | 103min | 4.55x107 45sec

83 | 3078 |1 20 | 14 3 | (11,1) | 1.67x10'® | 528yrs 6.2x10* | 1lmin | 1.7x10% 3min

507 | 2655 | 2 20 | 14 2 | (2) 2.4x10'® | 77,341yrs | 3.22x10° | 54min | 3.72x10% 6min

507 | 2247 | 2 14 | 6 1 | (2) 1.48x10'* | 46,884yrs | 2.72x10° | 46min | 3.16x10° 5min

Table 3.3: Search reduction using color-based model-driven selection. The last col-
umn shows the match time when model-color-based selection is combined with group-
ing. Here g = 7, Time per match = 1 microsecond, and the grouping method is as

described in tezt.

~ 1.25 * 10%. Assuming 1 microsecond as time per match this corresponds to re-
duction in match time from 26 minutes to ~ 2 minutes. By trying several models
and images of scenes where they occurred, we recorded the average number of sub-
graphs generated by the model-driven selection mechanism. The search estimates
were obtained using the above formula for model-driven selection with grouping,
and the formulas for other methods mentioned in Section 3.5.2. The results are
shown in Table 3.3. The bound on the number of groups in a region was the same as
used in Section 3.5.2. As can be seen from the table, the number of matches using
correspondence between model and image color regions is always lower. A curious
feature to note from the table is that it takes less number of matches (and hence
lesser time) for a more complex model (entry 1 in Table 3.3) containing several color
regions, than for a simple object with fewer regions (entry 2 in Table 3.3). This is
understandable since, with a large number of regions, the constraints are stronger

and hence the false matches are fewer.

Discussion: The above studies estimated the search reduction without actually inte-
grating the selection mechanism with a recognition system. Moreover, the estimated
search was based on the assumption that there were no false negatives given by the
selection mechanism. Since the best match rather than an exact match is found,
the selection mechanism is less likely to make false negatives. However, the best
subgraph may not always correspond to the object if there is another object which
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can be described by a similar RAG. In such cases, the model object is usually in the
best few subgraphs so that the false negatives can still be reduced by retaining such
subgraphs.

3.7 Summary

In this chapter we have shown how color can be used as a cue to perform both
data and model-driven selection. Unlike other approaches to color, we have used
the intended task to constrain the kind of color information to be extracted from
images. By restricting the tolerable illumination conditions to commonly occurring
lighting conditions (daylight, room light), the category-based color specification was
found sufficient for selection. The perceptual categorization of colors enabled fast
color image segmentation. This color description of the image formed the basis of
data and model-driven selection. A saliency measure was then developed to rank the
color regions to perform data-driven selection. Lastly, an approach to model-driven
selection was presented that exploited a description of model color regions to locate

instances of the model in the image.
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Figure 3.1: Illustration of the factors contributing to the image irradiance at a point
in the image. The surface reflectance, the surface geometry relative to the illumi-
nation source and observer direction, and the characteristics of the light source all
contribute to the radiance from a surface.
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Figure 3.2: The rgb-color space. The azes here stand for the pure red, green, and
blue components of intensity obtained using the respective filters. _
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(2)

(b)

Figure 3.3: Illustration to show that distance measures in color space do not capture
~ the perceptual distance between colors well. (a) a color patch specified by the triple
of rgb values < 229,114,124 >. (b) - (c) two color patches specified by the triples
< 178,125,147 > and < 229,174,134 > respectively. These patches are equidistant

(a distance of 0.1003) from the patch in (a) using the normalized distance measure

described in tezxt.
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hsv-color space  color cluster image color cluster image

(a) (b)

=

color ciuster image color clusters image

(c) (d)

Figure 3.4: Illustration of the problem of coordination of grouping between color and
image spaces. (a) A uniformly colored image region corresponds to a cluster of a
single color in color space. (b) A cluster in color space need not correspond to a
single region in image space. (c) A cluster in color space need not be of a single
color. (d) A smoothly shaded surface may correspond to several clusters in color

space.
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Figure 3.5: An illustration to show that arbitrarily quantizing a color space as done
in histogrammming a color space can cause perceptually different colors to be grouped
in a single bin. (a) A synthetic image generated from several patches whose colors
belong to a single bin obtained by dividing the rgb-space into small-sized bins of
dimensions 0.166 x 0.166 x 0.166. (b) The segmentation that would be produced using
the histogramming approaches that use such bins. (c) The segmentation produced by
our algorithm using perceptual categories. The segmented regions are shown recolored

in both figures.
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8s

(2) (b)

Figure 3.6: Illustration of the quantization of the hsv-color-space. (a) Hsv-color

model. (b) A cell of the quantized color space using the categorization data shown in
Table 3.1.
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(d) (e) (f)

Figure 3.7: [ilustration of color region segmentation and saliency. (a) Input image

consisting of regions of 3 different colors: red, green and blue against an almost white
background. (b) Result of step 2 of algorithm with regions colored differently from
the original image to show segmentation. (¢) Final segmentation of the image of (a).

(d) — (f) The three most distinctive regions found using the color saliency measure
of Section 3.5.1.
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Figure 3.8: Elustration of color region segmentation and saliency — Another ez-
ample. (a) Input image of a set of colored cloth materials. (b) Regions obtained
at the end of Step 2 of the algorithm (before merging overlapping regions). (c) Fi-
nal segmented image suitable recolored to show the segmented regions. (d) - (f) The

three most distinctive regions found using the color saliency measure given in Section
3.5.1.




66 Data and Model-driven Selection using Color Regions

(b)

(f)

Figure 3.9: [llustration of color region segmentation and color saliency - Another
eéample. (a) Input image depicting a scene of objects of different materials and
having occlusions and inter-reflections. (b) Segmented image using the color region
segmentation algorithm. (c)-(f) The four most distinctive regions detected using the
color-saliency measure. The white portion in the red book appears so because of the

white background.
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Figure 3.10: Graphs of weighting functions used in devising the color-saliency mea-

sure.
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(2) (b) ()

o (@ o (d)

Figure 3.11: Illustration of color region segmentation and color saliency — Last
ezample. (a) Input image depicting a scene of different kinds of objects (cloths
and polished book). (b) The color regions eztracted from (a) using the color region
segmentation algorithm. (c) — (f) The four most distinctive regions detected using

the color saliency measure.
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(a) (b)

Figure 3.12: Illustration of model-driven selection using color. — Model and scene.
" (a) The object serving as the model. (b) Its color regions eztracted using the color

segmentation algorithm. (c) A cluttered scene in which the object appears.
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(f)

Figure 3.13: [llustration of color-based model-driven selection.(a) The object serving
as the model. (b) Its color regions extracted using the color segmentation algorithm.
(c) The color region adjacency graph description of the object of (a). (d) A scene
containing the model object of (a). (e) Regions selected based on unary color con-
straint. (f) regions of (e) pruned after using the unary size constraint. (g) Regions

corresponding to the best subgraph that matched the model specifications.




Chapter 4

Data and Model-Driven

Selection using Texture Regions

The previous chapter indicated how data and model-driven selection could be per-
formed using color. In the absence of color information, or in cases where color is
insufficient to distinguish between objects, texture or the grey-level pattern on an
object can be used to perform a selection of the scene. In this chapter we present an
approach to data and model-driven selection using texture, using again the paradigm
of attentional selection. We begin by discussing why texture is a good cue for selec-
tion, and outline the requirements imposed by selection on any method of texture
analysis. An approach to texture region segmentation that satisfies these require-
ments is then presented. It employs a representation of texture called the linear
prediction spectrum, and a model of the texture image formation process to roughly
isolate texture regions. These regions are subsequently ranked by a measure of
texture saliency in accordance with our approach of extracting salient regions for
data-driven selection. Next, we show that the linear prediction spectrum is also a
suitable representation for model-driven selection as it can solve for the pose of the
texture on a model object when it is present in a given image. Finally, we discuss

the utility of the texture-based selection mechanisms for object recognition.

71
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4.1 Texture in Selection

4.1.1 Role of Texture in Selection

Texture or pattern on objects in a scene often attracts an observer’s attention. Sev-
eral psychophysical experiments have shown that texture like color, is one of cues
that is pre-attentively perceived [147, 39, 78, 79]. We often also remember interesting
patterns on objects and use them to search for such objects in a scene. It therefore,
seems natural to use texture as a cue to select aspects of a scene. A textured region,
if reliably isolated, almost always comes from a single object (or a single part of a
scene) and can serve as a reliable grouping method for data-driven selection. This
reliability can be enhanced when only a few salient texture regions are considered.
Also, such salient texture regions can form fairly large groups of edges, making them
suitable for indexing into a library of models [26]. These features make texture a
useful domain to perform data-driven selection. Because the texture pattern on an
object appears more or less the same, under most illumination conditions, and for
most poses of objects in scenes it can, if appropriately described, be a stable cue to
search for instances of a model object in an image of a scene. This makes texture

suitable also for model-driven selection.

In order for texture to be useful for data-driven selection, a good representation of
texture is needed that can lead to the reliable isolation of the various texture regions
in an image. Reliable isolation, however, does not require precise localization of
boundaries of different texture regions in an image. For data-driven selection, it is
sufficient if we could tell roughly if one portion of the image is sufficiently different

from the adjacent portions with respect to textural information.

For model-driven selection, on the other hand, a stable description of the texture
on the model and a good matching strategy is required that would account for the
illumination and orientation changes, occlusions, etc., that make an instance of the
model object in a given image appear different from its original description. Finally,
for both data and model-driven selection using texture, computational feasibility

should be of concern as selection is only meant to be a preprocessing stage to recog-
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nition. We now review some of the existing methods of texture descriptions in light

of these requirements.

4.1.2 Texture description methods

The problem of texture description has been addressed before for a variety of appli-
cations including texture segmentation [110, 144], classification [163, 161, 122], and
synthesis. These methods can be classified based on whether they examine the spa-
tial domain, the frequency domain, or both, for extracting textural features. Spatial
domain methods often model either stochastic or structural textures. A structural
texture can be characterized by a set of primitives called textons together with a
placement rule for the textons to yield the overall texture. A stochastic texture on
the other hand, does not show easily identifiable primitives, and no apparent deter-
ministic placement rule. For structural textures, the texture descriptors are formed
by extracting textons and computing their density and other statistics [78, 158]. But
the reliable isolation of textons for the purpose of segmentation of such textures has
been found to be difficult. For stochastic textures, a number of techniques are avail-
able such as those that are based on correlation [22] and grey-level co-occurrence
methods [96, 127], that extract features from grey level information and compute
statistics such as first and second order moments, entropy, etc. For most textures,
grey-level-based statistics are insufficient to distinguish between textures since it is
possible to produce two textures that obey similar laws of grey-level placement but
could give rise to perceivably different textures. Further, such methods are usually

sensitive to changes in spatial extent, and illumination conditions.

A number of other approaches have used parametric descriptions of textures
for purposes of texture synthesis, segmentation, and classification [137, 21, 103, 33,
50]. These include autoregressive models [137, 21, 103, 64, 121, 82], auto-regressive
moving average models [142], Gibbs random field models [35], Gaussian markov
random field model [20], and Markov random field models [30, 81, 11]. They differ in
the way spatial dependencies between intensities at neighboring pixels are exploited.

Some of these models have interesting properties. For example, a rotation-invariant




74 Data and Model-Driven Selection using Tezture Regions

autoregressive model was presented in [83], that could have implications for texture
recognition. However, these models have been mostly applied to aerial texture and
textures from the Brodatz album [16]. They have not been applied to the kind
of pattern-like textures