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Abstract

The recognition of standard computational structures (clichés) in a
program can help an experienced programmer understand the program.
Based on the known relationships between the clichés, a hierarchical
description of the program’s design can be recovered. We develop and
study a graph parsing approach to automating program recognition in
which programs are represented as attributed dataflow graphs and a
library of clichés is encoded as an attributed graph grammar. Graph
parsing is used to recognize clichés in the code.

We demonstrate that this graph parsing approach is a feasible and
useful way to automate program recognition. In studying this ap-
proach, we have experimented with two medium-sized, real-world sim-
ulator programs. There are three aspects of our study. First, we eval-
uate our representation’s ability to suppress many common forms of
program variation which hinder recognition. Second, we investigate
the expressiveness of our graph grammar formalism for capturing pro-
gramming clichés. Third, we empirically and analytically study the
computational cost of our recognition approach with respect to the
real-world simulator programs.
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Chapter 1

Introduction

Experienced engineers are able to quickly determine the behavior and properties of a com-
plex device by recognizing familiar, standard forms in its design. These standard forms,
which we call clichés [110, 112, 115, 137, 117], are combinations of primitive mechanisms
which engineers use frequently because the combinations have been found useful in prac-
tice. From experience, the engineers have come to expect the clichéd forms to exhibit certain
known behaviors. By relying on this “pre-compiled” knowledge, engineers are able to effi-
ciently understand and build complex devices containing clichéd components without always
reasoning from first principles. Rich [110, 112, 117] has developed a model of engineering
problem solving in which synthesis and analysis methods are based on the recognition and
use of clichés. He calls these inspection methods.

This report deals with automating the recognition of clichés in computer programs.
Clichés in the software engineering domain are stereotypical algorithmic computations and
data structures. Examples of algorithmic clichés are list enumeration, binary search, and
quick-sort. Examples of data-structure clichés are sorted list, priority queue, and hash table.

Several experiments [58, 83, 128, 142] give empirical data supporting the psychological
reality of clichés and their role in understanding programs. In trying to understand a pro-
gram, an experienced programmer may recognize parts of the program’s design by identify-
ing clichéd computational structures in the code. Knowing how these structures implement
other more abstract structures, the programmer can build a hierarchical description of the
program’s design. We call this process program recognition. Program recognition is one
technique, among several, used by programmers in the more general task of understanding

programs.

1.1 Motivations

It is because human software engineers recognize clichés that we would like to automate
program recognition. This gives us both theoretical and practical motivations.

From a theoretical standpoint, automated program recognition is an interesting artificial




intelligence problem. It is an ideal task for studying how programming knowledge and
experience can be represented and used. (However, in automating program recognition, the
goal is not to mimic the cognitive process used by programmers to recognize clichés, but
to mimic only the use of experiential knowledge in the form of clichés to achieve a similar
result of understanding the program.)

Our practical motivation stems from an interest in building automated systems that
assist software engineers with tasks requiring program understanding, such as inspecting,
maintaining, and reusing software. Such collaboration requires that the automated assistant
be able to communicate with engineers in the same way as they communicate with each
other when performing these tasks. They refer to instances of clichés and assume knowledge
of their well-known properties and behaviors. For example, they might discuss changing a
program from using an ordered associative linked list to using a hash table to gain efficiency.
They discuss the change at a high level of abstraction and justify their design decisions
using the established properties of the clichés. They are also able to explain the design of
a program to each other on multiple levels of abstraction. They can convince each other of
the properties or behavior of a program by pointing out the existence of clichés in its design
and then leveraging off the accumulated body of experience surrounding the clichés. The
known properties of the clichés are used directly, rather than constructing formal proofs or
performing formal complexity analyses to establish that the properties hold.

If an automated assistant is to collaborate with human engineers in the same way, it
must share the same knowledge of clichés and their properties. It must be able to recognize
instances of clichés, without requiring the human engineer to explicitly identify and locate
them in a program.

This recognition ability would be a valuable component of automated software tools
and assistants that perform tasks requiring program understanding. They would be able to
explain their understanding of the program in terms familiar to a human engineer. They can
respond to requests from the engineer that are phrased in terms of abstract computational
structures in the program, rather than low-level commands that spell out actions to be
performed on language primitives. (For example, Waters’ KBEmacs [116, 117, 139] shows
how an automated assistant can aid a human engineer while communicating at a high-level
of abstraction. In KBEmacs, this model is constructed as the program is being built. A tool
like KBEmacs can be used to maintain existing code (not written with the help of KBEmacs),
if the clichés from which the code is constructed are recognized.)

Incorporating an automated recognition system into software tools and assistants yields
more than just communications benefits for human-computer interaction. By mimicking the
human engineer’s “short-cut” to understanding a program’s design, an automated recogni-
tion system provides an efficient way to reconstruct design information. It bypasses complex
reasoning about how behaviors and properties arise from a certain combination of language
primitives. The behaviors and properties can be used directly by these tools.

Collaboration between a person and an automated recognition system is mutually ben-




eficial. An automated recognition system provides capabilities which complement the per-
son’s abilities. An automated system has significantly better memory capabilities than a
person. These are valuable in maintaining multiple possible views of the program and in
keeping track of details about what has been found so far. Also, some clichés may be easier
for the computer to recognize because they are hidden or delocalized in the textual code
representation, but are localized in the computer’s internal representation.

On the other hand, people have some capabilities that can greatly aid the recognition
system. They may have access to many different sources of knowledge about the program,
beyond the source code, including its goals or specification, documentation, comments,
execution traces, a model of the problem domain, and typical properties of the program’s
inputs and outputs. Even though some of this information can be incomplete and inaccurate,
it provides an important independent source of expectations about a program’s purpose
and design. These expectations can be used to guide the recognition system by focusing its
search on particular parts of a program for particular clichés.

The person can also provide information not easily recoverable from the code which can
help the recognition system to recognize more of the program. For example, the person
can undo an optimization that takes advantage of an opportune dataflow equality. This
may uncover a dataflow dependency that must exist for a particular cliché to be recognized.
(More concrete instances of the type of information that can help push the recognition of
some clichés through are described in Section 5.2.)

Automated tools are also being developed to aid the human engineer in extracting
design information and generating expectations from many different sources in addition to
the code. An exemplary system is DESIRE, which is being developed by Biggerstaff [12, 13].
A central part of DESIRE is a rich domain model, which contains machine-processable
forms of design expectations for a particular domain as well as informal semantic concepts.
It includes typical module breakdowns and typical terminology associated with programs
in a particular problem domain. Techniques for recognizing patterns of organization and
linguistic idioms in the program are being developed to generate expectations of the typical
concepts associated with these patterns. These expectations can be used to quickly draw
attention to sections of the program where there may be clichés related to a particular
concept in the domain.

Other, more conventional techniques for reverse engineering large programs have focused
on extracting a given system’s module structure. This is typically done by using clustering
[62] and slicing [59, 140, 141] techniques, which bring together parts of a program based on
identifier and procedure names, data dependencies, and call relationships, among other fea-
tures [13, 19, 46, 51, 56, 123, 124, 143]. Programming and maintenance environments, such
as MicroScope [7], Cleveland’s system [20], and Marvel [66], provide tools for performing
various types of dependency, dynamic, and impact analyses and for browsing the results in
the form of call graphs, dataflow graphs, execution histories, and program slices.

These techniques and environments can contribute to a user’s understanding of a pro-




gram. While they alone do not provide a deep understanding, they extract information that
can help a person generate advice and expectations. Based on these, the person can guide
an automated recognition system, so that a deeper understanding may be obtained. The
results of recognition can in turn enhance the capabilities of these automated techniques
by providing a more abstract view of a program. For example, dependencies between more
abstract data objects can be computed and used to create more abstract clusters.

1.2 Toward a Hybrid Program Understanding System

Because program understanding requires many different techniques besides program recog-
nition, and draws upon various sources of knowledge besides the code, program under-
standing systems of the future will be hybrid systems. They will integrate many different
special-purpose components for extracting design information from a program and its asso-
ciated documentation, domain model, etc. The components will communicate with human
engineers, who can provide additional guidance and information.

The benefits of such co-operation between specialists in solving complex problems that
require several, diverse types of knowledge are well known. For example, research in black-
board architectures [37, 63, 99] and hybrid knowledge representatlon systems [113] study
ways of achieving co-operative problem solving.

Figure 1-1 shows a model of a hybrid program understanding system. It is roughly
divided into two complementary processes: expectation-driven (top-down) and code-driven
(bottom-up). The heuristic top-down process uses knowledge such as the program’s goals,
domain model, and documentation to generate expectations about the program’s design.
These can be used to guide the code-driven process, which can confirm, amend, or reject
them by checking them against the code.

Since there are many different types of things an engineer or application tool might
wish to understand about a program, the program understanding system can be directed
by specific questions from the engineer or application.

The details of this hybrid system have not yet been fleshed out. We believe that a
key part of the code-driven component is an automated recognition system. The labels on
the communication links between the expectation-driven and code-driven components are
useful inputs and outputs to a code-driven system based on recognition. However, these do
not entirely specify the communication between, or the nature of, these components. Also,
the diagram is not meant to imply that all the techniques integrated into the hybrid system
are either solely code-driven or expectation-driven. Some may themselves be hybrids.

Some of the questions that must be answered in the design of such a hybrid system
are what techniques should be incorporated and what is the appropriate division of labor
between them? There are also managerial problems in the co-ordination of techniques and
the integration of different types of knowledge and representations [93].

Determining which techniques to incorporate and what their individual responsibilities
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are requires analyzing the candidate techniques to determine their relative strengths, limi-
tations, and computational expense. Our research takes a step toward the long-term goal
of a hybrid program understanding system by exploring the strengths and weaknesses of a
particular program recognition technique.

In particular, we develop and study a graph parsing approach to program recognition.
This approach represents the program in a dataflow graph representation and ‘the cliché
library in a graph grammar and then uses graph parsing to recognize clichés in the code.
The grammar rules capture implementation relationships between the clichés. The parsing
technique yields a hierarchical description of a plausible design of the program in the form
of derivation trees specifying the clichés found and their relationships to each other.

We demonstrate that the flow graph parsing approach is a feasible and useful way to
automate program recognition. We also identify its shortcomings. This information will
help us to make the appropriate division of labor between the integrated components of the
hybrid program understanding system.

To do this, we developed an experimental system that performs recognition on realistic,
medium-sized programs. Given a program and a library of clichés, it finds all occurrences of
the clichés in the program and builds a hierarchical description of the program in terms of
the clichés found. (In general, there may be several such descriptions.) We call our system
GRASPR, which stands for “GRaph-based System for Program Recognition.”

1.3 What is Involved in Automating Program Recognition?

To automatically recognize interesting clichés in real-world programs, a number of issues
must be addressed. This section discusses the key issues.

What are the clichés? We must identify the clichés that programmers use. These
include both general programming clichés that most programmers use (e.g., those found in
textbooks on programming [3, 21, 76]) and domain-specific clichés that are used to solve
particular problems. For the results of recognition to be useful, we also need to collect
the information that is associated with each cliché, such as its behavior, pre- and post-
conditions, complexity, and common design rationale for choosing it. In general, cliché
library acquisition requires domain modeling, which is itself an entire area of active research
[106].

How are clichés and programs encoded? Once clichés are identified, they must be ex-
pressed in a machine-manipulable form which makes relationships between the clichés ex-
plicit. To facilitate recognition, the representation of clichés and programs should suppress
details that obscure the similarity between two instances of the same cliché. A negative
example is a textual representation of clichés and programs. The program text contains
details about how data and control flow is achieved in terms of programming language
constructs. This introduces syntactic variation across programs that achieve the same data

and control flow but use different constructs or different programming languages. Other
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types of variation besides syntactic include variations in the implementations of some ab-
stract cliché, the organization of components, the amount of redundant computation, and
the contiguousness (or localization) of clichés. These are described further in Sections 2.3.1,
5.1, and 5.2. The representation should remove as much variation as possible between two
instances of the same cliché.

How are clichés recognized efficiently? The recognition technique must deal with vari-
ation, allow partial recognition of a program, and have a flexible control strategy. To deal
with the variation that the chosen representation cannot eliminate, the recognition tech-
nique might view the program in multiple ways and at several levels of abstraction, or
introduce transformations to reveal the similarities between programs and clichés.

In addition to dealing with variation, the recognition technique should allow partial
recognition of the program, since programs are rarely constructed entirely of clichés. Unfa-
miliar parts of the program must not deter recognition of the familiar parts.

Finally, the recognition technique should have a flexible control strategy, particularly if
it is expected to interact with other components in a hybrid system. There may be a range
of possible inputs to the recognition system as well as a variety of types of outputs desired
from it. The types of inputs to the recognition system that tend to vary are the advice given
to guide the search for clichés and the expectations and hypotheses generated from external
knowledge sources. These vary depending on the amount of information that already exists
about the program and its development (e.g., in its associated documentation). The input
also changes as the recognition system and expectation-driven components interact. The
task to which recognition is being applied also affects the type of information available
as input. For example, in debugging, verification, or program tutoring applications, a
specification of the program is often available from which strong guidance can be generated,
while this information is often lacking in maintaining old code.

The application task can also place restrictions on the time and space allotted to the
recognition system. For example, a real-time response may be required of the system if a
person is using it interactively as an assistant in maintaining code. In this situation, it may
be more desirable to quickly recognize clichés that are more “obvious” rather than spending
more time to uncover clichés that are more hidden (e.g., by an optimization which must be
undone for them to be revealed). It should be possible to prioritize the search for certain
clichés, so that obvious ones are recognized early, while still reserving a “try harder” phase
in which the more hidden clichés can be found. This allows us to gain efficiency without
permanently sacrificing completeness. _

Not only is it important that the recognition system be responsive to directions and
additional information besides the code, it must have a control strategy that is flexible
enough to perform a variety of recognition tasks. There are many reasons a human engineer
or some application tool may want recognition to be performed, since they typically want
to understand many different things about a program. The recognition task depends on
what needs to be understood. For example, if the recognition system is going to be applied
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to verification, it can use a strategy that finds any complete recognition of the program.
On the other hand, if it were applied to documentation generation, it would be better for
it to produce all possible full, as well as partial, analyses. For applications in which near-
misses of clichés should be recognized, such as debugging, the best partial analysis might
be desired. A flexible control strategy is needed that can be tailored to a variety of different
recognition tasks.

To summarize, the main issues in automating recognition are: acquiring the cliché li-
brary, choosing a representation and efficient technique that tolerates variation, and provid-
ing a flexible control strategy. This report deals primarily with the problems of tolerating
variation and providing a flexible, efficient recognition technique. It deals secondarily with
the cliché acquisition problem by discussing experiences in manually acquiring our cliché
library. It does not discuss aids for acquisition.

1.4 Graph Parsing Approach

There are two key aspects of our approach.

1. Representation shift: Instead of looking for clichés directly in the source code, GRASPR
translates the program and clichés into a language-independent, graphical representa-
tion. The clichés and the relationships between them are encoded in graph grammar

rules.

2. Flexible recognition architecture: Recognition is achieved by parsing the program’s
graphical representation in accordance with the graph grammar encoding of the
clichés. A chart parsing algorithm is used which makes search and control strategies
explicit, enabling them to accept advice and additional information from external

agents.

Figure 1-2 shows GRASPR’s architecture. In keeping with the bottom-up nature of the
recognition process, the figure shows the program and cliché library inputs at the bottom
and the more abstract results of recognition at the top. The recognition process is to be
read upward. This also makes it easier to see how GRASPR fits into the hybrid system shown
in Figure 1-1.

GRASPR translates the program into a flow graph, which is a restricted type of directed
acyclic graph (as is described in Section 3). Basically, the graph represents operations in its
nodes and dataflow dependencies between them in its edges. It is annotated with attributes
which represent additional information about the program, for example, its control flow.

A program is translated into an attributed flow graph in two steps. The first step per-
forms a data and control flow analysis of the program to yield a Plan Calculus representation
of it. The Plan Calculus is a program representation developed by Rich, Shrobe, and Wa-
ters {110, 111, 112, 117, 127, 137] in which a program is captured in an annotated directed

12




(Design
/ Trees)

Advice

i
]
)
Check :
:
]
]
1

*@ + Attributes > = :b-» —+  Constraints

(Flow Graph)

—-— D —30—38>

T (Flow Graph Grammar)
Encode
T Encode
Plan T
T Cliche Library
Translate (Plans and Overlays)

!

Source Code

Figure 1-2: GRASPR’s architecture.

13




graph, called a plan. The structure of this graph explicitly captures both data and control
flow, as well as aggregate data structure accessors and constructors, and recursion. The
second step of the translation encodes the plan in an attributed flow graph representation.

The Plan Calculus is used as a stepping stone in the translation of the program to
an attributed flow graph. The main reason the program is not translated directly to the
flow graph is that the attributes are easier to compute from the plan than to generate in
one shot during the data and control flow analysis. A secondary reason is that GRASPR
is intended as one component of an intelligent software engineering assistant, called the
Programmer’s Apprentice (PA) [117]. By being able to encode plans in its internal flow
graph representation, GRASPR can more easily interface to other components of the PA,
which all share the Plan Calculus representation.

The Plan Calculus is also a representation that has been found useful in representing the
cliché library. It allows relationships between clichés to be captured in the form of overlays.
These represent the knowledge that an instance of one cliché can be viewed as an instance
of another (e.g., a specification cliché and an implementation cliché).

Clichés are translated from a Plan Calculus representation to an attributed flow graph
grammar by a process similar to the encoding of plans in attributed flow graphs. The gram-
mar rules encode the relationships specified in overlays. Each rule also places constraints
on the attributes of any flow graph structurally matching the rule’s right-hand side. These
constraints explicitly encode the variations that are allowed in the values of attributes in
cliché instances.

Once the program and cliché library are encoded in an attributed flow graph and flow
graph grammar, recognition is achieved by parsing the flow graph in accordance with the
grammar. Constraint checking is interleaved with parsing for efficiency (as described in
Sections 3.2.3 and 6.2.2). Essentially, graph parsing matches the dataflow structure of clichés
and constraint checking deals with the other details of clichés that cannot be represented
in the graph structure or are sources of too much variation if graphically represented.

Parsing yields hierarchical descriptions of the program’s design in the form of the possible
derivations of the program’s flow graph from the flow graph grammar that was extracted
from the cliché library. These are called design trees.

By shifting the representation of programs and clichés from text to a flow graph, GRASPR
is able to overcome many of the difficulties of syntactic variation and noncontiguousness.
It abstracts away the syntactic features of the code, exposing the program’s algorithmic
structure. It concisely captures the data and control flow of programs, independent of the
language in which they are written. Also, many clichés that are delocalized in the program
text are much more localized in the flow graph representation.

The graph grammar captures relationships between clichés so that the results of recog-
nition can be given on multiple levels of abstraction. Grammar rules relate abstract clichés
to their implementations. This enables GRASPR to deal with implementation variation: two

implementation clichés can be recognized as the same abstract cliché. The grammar also
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captures commonalities between clichés so that large numbers of clichés can be encoded
more compactly.

In using a graph parsing approach, we are not trying to mimic the recognition process
of human programmers. No claim is being made that formal parsing is a psychologically
valid model of how programmers understand existing programs. For the present work, a
grammar is simply a useful way to encode the programmer’s experiential knowledge about

programming so that parsing can be used for program recognition.

1.5 Goals and Contributions

The goal of this research is to show that graph parsing is a good computational model
for automating program recognition, and to identify its capabilities and limitations. We
demonstrate the following;:

¢ We can encode many interesting programming clichés and the relationships between
them in a flow graph grammar.

e The flow graph formalism provides an effective representation for tolerating many
classes of variation.

e Flow graph parsing can be used to recognize the clichés. The derivation trees that
result provide a useful hierarchical description of the program, over multiple levels of

abstraction.

¢ Limitations in the power of the recognition system to recognize certain clichés can be
alleviated by accepting additional design information from an external agent (such as

a person), who is interacting with it.
o Recognition by flow graph parsing can be performed efficiently in real-world situations.

o The complexity of the recognition process can be controlled if the parser’s control

strategy is sufficiently flexible and responsive to advice from an external agent.

We show these things by experimenting with real-world program examples, which are
medium-sized (in the 500 to 1000 line range) simulation programs written in Common Lisp
by members of a parallel-processing research group at MIT. (Section 2.2 describes them
further.) We are able to express both general programming clichés and clichés from the
simulation domain in a flow graph grammar. GRASPR recognizes these clichés in the example
programs efficiently.

Our experimentation also reveals shortcomings in our graph parsing approach. Many
of the limitations can be compensated for by other techniques and by using other sources
of knowledge which may be available in the context of a hybrid program understanding
system.
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The specific contributions of this research are the following. (This list includes brief
statements of how these contributions advance the state-of-the-art of recognition research.

More details on related research are given in Section 7.3.)

o We develop and use a flow graph grammar formalism in which programs and clichés
can be concisely represented so that much variation is eliminated and relationships

between clichés are encoded.

This graph-based representation has significant advantages over the text-based rep-
resentations used by many other recognition systems, particularly in dealing with

syntactic variation.

o We present a recognition architecture with a general, flexible control structure that can
accept advice and guidance from external agents. The trade-off between recognition
power and computational expense can be explicitly controlled so that some clichés are
recognized quickly, while other more expensive recognitions are postponed to a “try-
harder” phase. The algorithm exhaustively finds all possible recognitions of clichés and
can generate multiple views of a program as well as partial “near-miss” recognitions.

This architecture forms a seed for a hybrid program understanding system.

Other recognition systems are committed to a rigid (often ad hoc) control strategy.
Most search for a single best interpretation of the program, while permanently cutting
off alternatives. They often build heuristics into the system for controlling cost that
are chosen on a trial-and-error basis. They cannot try harder later to incrementally
increase their power. They also cannot generate multiple views of the program when

desired, nor provide partial information when only near-misses of clichés are present.

Some recognition techniques can use information obtained from one or two other
techniques (e.g., theorem proving or dynamic analysis of program executions) with
which they are integrated. Many recognition techniques also take information about
the goals and purpose of the program (in the form of a specification or model program).
While these techniques show the utility of these additional sources of information, they
rely on this information being given as input, rather than accepting it and responding

to it if it becomes available.

¢ We analyze the graph parsing approach to program recognition to determine how it
would fit into the context of a hybrid program understanding system.
We address the questions:
— What types of variations is the technique robust under? What types of variations
are a problem. What other techniques must be used to remove the variation?
— Are graph grammars expressiveness enough to encode programming clichés?

— Is the technique feasible for large programs? How can the cost be controlled?
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The observations we make in this analysis are based on our experiences in applying
GRASPR to the recognition of two example programs. They do not represent com-
plete lists of the capabilities and limitations of the graph parsing approach. Further
experimentation is needed with more programs and in multiple problem domains.

Much of the early work in program recognition provides no analysis of the represen-
tations or techniques used. More recent research includes some empirical analysis,
typically studying the accuracy of recognition and the recognition rates over sets of
programs (usually student programs in program tutoring applications). With the
exception of Hartman’s work [55], discussions of limitations have focused mainly on
practical implementational limitations, rather than on general limitations of the ap-

proach. They also do not describe how additional information or guidance can help.

Our recognition system is able to recognize programs and clichés containing a wide
range of types of program features. In particular, it is able to represent and recognize
programs that contain conditionals, loops with any number of exits, recursion, ag-
gregate data structures, and simple side effects due to assignments. (Suggestions for
future work in dealing with side effects to mutable data structures are given in Sec-
tion 7.2.4.) This allows GRASPR to recognize larger programs than existing recognition
systems. It also enables encoding and recognition of domain-specific clichés as well as
general-purpose ones, since many domain-specific clichés are aggregate data structure
clichés. This allows empirical study of our recognition technique on programs that

are not contrived nor biased toward our work.

With the exception of CPU [84], existing recognition systems cannot handle aggregate
data structure clichés and a majority do not handle recursion. Talus [95] heuristically
handles some side effects to lists and arrays. The largest program recognized by any
existing recognition system is a 300-line database program recognized by CPU. All
other systems work with programs on the order of tens of lines. None deal with
domain-specific clichés, except Laubsch’s system [81, 82].

A secondary contribution is a graph parsing algorithm which is an extension of the
parsers of Lutz [90] and Brotsky [15] to handle a wider class of graph grammars. In
particular, it is able to parse graph grammars that encode aggregation, which hierar-
chically groups graph edges, not just nodes. This algorithm has potential applications
in areas other than program recognition, e.g., circuit verification and plan recognition.

Section 7.2 discusses some applications.

We do not contribute automated aids to the acquisition of the cliché library. However,
we do discuss our experiences in manually acquiring the clichés.

This type of discussion has not appeared in any other work on program recognition
of which we are aware.
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1.6 Outline of Report

Chapter 2 describes the cliché library and our experiences in acquiring it. It also demon-
strates GRASPR’s recognition of these clichés in the example simulation programs. Chapter 3
describes the flow graph formalism which forms the basis of our representation shift. It also
presents a flow graph chart parsing algorithm, which provides a flexible recognition control
strategy. It includes a summary of related work in the general area of graph grammar
formalisms. Chapter 4 gives details of issues that arise in applying flow graph parsing to
program recognition and how GRASPR solves them. Chapter 5 discusses the capabilities and
limitations of the parsing approach in terms of the variations tolerated, and the expressive-
ness of flow graph grammars. Chapter 6 studies the computational cost of our approach,
both empirically and analytically. Finally, Chapter 7 concludes with a summary of the
strengths and weaknesses of the parsing approach, ideas for future work (particularly in the
context of a hybrid syétem), and a brief comparative summary of related work in program

recognition.
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Chapter 2

The Knowledge, Program Corpus,

and Recognition Examples

An important part of automating program recognition is codifying the knowledge that
experienced programmers use to recognize programs. This knowledge is in the form of
algorithmic and data structure clichés. It includes both general-purpose clichés that occur
in programs over all problem domains, as well as those specific to a particular domain.
Our library must capture and express these clichés at a level of abstraction that allows
them to be recognized in a broad range of programs. The ideal is that the clichés be concisely
represented, but efficiently recognized in many forms. Recognition of a cliché should be
immune to many common syntactic and implementational variations. For example, the
same clichés should be recognized in programs that differ only in which syntactic binding
and control constructs they use or in which programming languages they are written. Also,
an abstract clichéd operation that exists in two programs should be recognized in both,
even if the programs differ in which standard implementation of the operation is used.
This chapter discusses the clichés we have captured so far in our library. It also describes
the corpus of programs we chose on which to base both our cliché acquisition and our
empirical study of recognition. Finally, it gives examples of the capabilities of GRASPR in
recognizing these clichés not only in our example corpus, but also in a range of variations
of them. (Chapter 3 discusses the formalism we use to abstractly and concisely capture
our clichés to make this possible.) Our examples provide both a demonstration of what is

feasible as well as motivation for our formalism and recognition technique.

2.1 What are the Clichés?

Our cliché library contains a core set of general-purpose, “utility” clichés, along with a set
of clichés from the domain of sequential simulation. The domain-specific clichés are built on
top of the core utility clichés (i.e., they use utility clichés as components or implementations).

The general-purpose clichés are well-known, widely used algorithms and data structures,
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such as those described in introductory computer science textbooks (e.g., [3, 21, 76]). They
are found in programs across all problem domains. They include common operations on
priority queues, hash tables, lists, and first-in-first-out (FIFO) queues, as well as basic
iteration clichés, such as sequence enumeration, filtering, accumulation, and counting.

The domain-specific clichés in our library are found in programs that sequentially simu-
late parallel systems. More specifically, we have encoded the subset of common algorithms
and data structures found in this domain that are used to sequentially simulate message-
passing parallel systems.

A message-passing system contains a collection of processing nodes which communicate
with each other via messages. Each processing node contains a processor, a network in-
terface, and a block of distributed memory. The message-passing system takes a program
in the form of a set of message handlers and a starting message. The program begins by
sending the starting message to its destination node. The node executes the handler for
that message’s type. In addition to changing the state of the node, this can cause the node
to send messages to other nodes (e.g., to request the value of some variable or to delegate
some sub-tasks). When these messages are handled by their destination nodes, additional
messages might be sent.

It is possible for a message to be received by a node while it is handling another message.
Therefore, each node has a local buffer which accumulates the messages received while the
node is busy. When the node finishes handling a message, if its buffer is non-empty, the
node pulls a message from the buffer and handles it. The buffer is emptied in FIFO order.
This is done to maintain the invariant that two messages received by the same node must
be handled in the order in which they are received.

The behavior just described is simulated by the programs in which our library’s domain-
specific clichés are found. This is a subset of the actual behavior of a real message-passing
system, which also includes routing messages through the network, for example. However,
this simplified model is a typical one simulated in parallel architecture research. The simu-
lation allows statistics to be gathered on such properties as the number of nodes busy over
time (a measure of concurrency), average message execution times, and average message

waiting times.

2.1.1 Simulation Domain Context

It is instructive to see how the domain we have chosen fits into the larger world of simulation
programs. It is a subset of the problem domain of sequential simulation, as opposed to par-
allel simulation, of parallel systems. Our cliché library contains only sequential algorithmic
clichés.

Within the domain of sequential simulation, there are two types of simulators: discrete-
event and continuous. Discrete-event simulators model the behavior of a system over discrete
points in time. Continuous simulators model behavior that is characterized by state that
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changes continuously. (Continuous simulators typically solve a set of differential equations
that express how the system’s state changes over time. Continuous simulation is used, for
example, to study heat dissipation in computer systems.) Our simulation clichés are found
in discrete-event simulators. The discrete points in time at which a message-passing system
can be modeled are when a message is sent, received, or handled.

Within the domain of discrete-event sequential simulation, our class of simulator pro-
grams are most similar to simulators that model queueing systems [91]. In a queueing
system, there is a collection of one or more servers which service tokens (sometimes called
“customers”). There is a notion of arrival time and processing time of tokens; tokens get
buffered in a queue if they arrive while a server is busy. The queueing discipline is typically
first-in, first-out, but it can be a different one if tokens need not be serviced in the order in
which they arrive. A common real-world situation captured by the queueing system model
is the servicing of bank customers by one or more tellers, where the customers wait in a
single line.

The queueing system model (using a FIFO queueing discipline) is similar to the message-
passing multi-processor model. Servers are analogous to processing nodes and servicing a
token is analogous to handling a message. However, there are two key differences. One
is that in the queueing system, servicing a token does not create new tokens which feed
back to the servers. In the message-passing machine model, handling a message can cause
new messages to be sent. The other key difference is that in the queueing system model,
the waiting tokens are not targeted for a particular server to service. Whichever server is
idle when a token is removed from the queue is the one that gets the job. In the message-
passing model, on the other hand, each message is sent to a particular node for handling.
The message’s destination is determined when the message is sent. Qur class of simulator
programs can be seen as modeling a multi-queue multi-server system with feedback (in
which tokens are targeted for particular servers and servers have local FIFO queues for

buffering tokens when the server is busy).

2.1.2 Informal Cliché Acquisition Strategy

In acquiring our domain-specific clichés, we used an informal strategy. (Developing a do-
main modeling methodology for cliché acquisition is beyond the scope of this research.) We
worked in two directions. One was bottom up by manually understanding two program
examples in our domain. (These are described in Section 2.2.) This allowed us to identify
concrete computational structures that were used in the simulators’ designs. The differences
between the two programs in implementing the same high level operation helped us to gen-
eralize our clichés. The similarities between the programs pointed out common components
that some clichés shared. We were fortunate in that the authors of the programs were ac-
cessible for answering our questions about the design of the programs. Their explanations

helped us not only to understand the programs, but also to identify the clichés, since the
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authors often referred to algorithms and data structures that they considered to be typical.

Our second direction was top-down. We read textbooks in the area of simulation, such
as [91, 151], to pick up the vocabulary and descriptions of typical high-level computational
structures that are used. We then mapped these down to portions of the example programs
that embody them.

In identifying the clichés to be captured, we tried to identify the most general form of
each cliché and then express it in a way that canonicalized specializations of it. (This was
done both by using an abstract representation and by providing mechanisms for viewing
specializations as the more general form.) However, sometimes this canonicalization was
not possible and we needed to include specializations of the cliché in the library along with
the generalized forms. In these cases, we relied on empirical frequency of occurrence of the
specialized forms, to avoid enumerating all possible variations (which can be expensive and
incomplete).

This issue came up most frequently in trying to capture clichéd operations on aggre-
gate data structures. We encountered three distinguished types of parts of aggregate data

structures:

e Primary — a part that holds a piece of data directly. (For example, a Hash Table data

structure contains a Buckets part which is usually an array).

e Handle— a part that is used to look up a primary part. (For example, a data structure
might contain a primary part Node that represents a processing node or it might
contain an integer (an identification number) that is used to index into another data

structure to retrieve the structure representing a node.)

¢ Secondary — a piece of data that is an unnecessary part of a data structure in that it
can be computed from a primary part or a handle part of the data structure. These are
usually cached values. (For example, a Circular-Indexed Sequence includes a sequence
part, and two indices which keep track of the bounds on the filled-in portion of the
sequence. It can have an additional secondary part which keeps a running count of
the number of elements in the Circular-Indexed sequence. This part is unnecessary
because it can be computed from the size of the sequence and the boundary indices.)

If we were to capture all aggregate data clichés in their general form — as aggregates
of only primary parts — we would have trouble recognizing them in cases where handles
are used and in cases where secondary (cached) parts are used to circumvent computation
performed on primary parts. So, we capture these specialized forms, but only if they are
common. That is, we capture data clichés that are common optimizations and common
uses of handles.

Sometimes an optimization of some generalized cliché is possible in the particular context
in which it is used, but this optimization is not a common one. Perhaps it takes advantage
of a rare alignment with other clichés or of opportune dataflow equalities. Since it is not

22



common, it is not in the cliché library. (Likewise for handles.) Unless we can undo the
optimization or use of a handle, the recognition of the cliché will be hindered. Section 5.1.5
describes a class of common optimizations which can be undone. Sections 5.2.2 and 5.2.1
discuss some optimizations and uses of handles that should be able to be undone, but which

require advice from an external agent.

2.1.3 Sequential Simulation Clichés

There are two common designs for sequential simulators of parallel systems. One is a
synchronous simulation, which mimics the real system by maintaining a global clock and
simulating the actions of the nodes in “lock-step.” On each tick of the clock, the simulator
“advances” each node by simulating what the node would do in the real system on that
clock tick. In this type of simulation, all simulated nodes are synchronized to the global
clock. At each clock tick, the state of the simulated nodes gives a snapshot of the state of
the system at the time represented by the clock tick.

The other common sequential simulator design is event-driven. In this type of simulator,
there is an agenda of events, which represent work to be done by the nodes. The simulator
iteratively pulls an event from the agenda and performs the work associated with it. This
may cause new events to be generated, which are added to the agenda. The simulation ends
when the agenda is empty. Unlike in synchronous simulation, the actions of the nodes are
simulated asynchronously rather than all being in step with a global clock. The nodes each
keep track of their own local time, which is updated when they process an event.

Our cliché library contains algorithmic and data structure clichés that make up the
designs of event-driven and synchronous simulators for message-passing systems. The next
two sections discuss these designs and the clichés from which they are constructed.

A Common Synchronous Simulation Design

A common design used in synchronous simulators of message-passing systems has data
structures representing processing nodes and messages. (In this discussion, we denote the
data structure representing a node as SYNCH-NODE to distinguish it from the real processing
node. Similarly, MESSAGE denotes the data structure representing a real message.) Each
SYNCH-NODE contains a Local-Buffer part, whose value is a FIFO queue of messages, and a
Memory part which represents the state of the node being represented. Each MESSAGE data
structure contains a Destination-Address which specifies the node to which the message it
represents was sent. It also typically contains a message Type, which is used to look up a
handler for the message, Arguments which are used in executing the handler, and Storage-
Requirements which specify how much local memory space is need to store arguments and
locals during handler execution.

All SYNCH-NODESs are collected in a sequence, called an ADDRESS-MAP, which maps an integer
address to a SYNCH-NODE. The SYNCH-NODE indexed by an integer 7 is the one representing the
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real node whose address is ¢ in the machine being simulated. A global buffer of MESSAGES is
also maintained to help model message delivery delay, as is explained below.

A common algorithm used for synchronous simulation proceeds as follows. The simu-
lation is begun by adding a “start” MESSAGE, which is given as input, to the global MESSAGE

buffer. On each iteration of the simulation, the following actions are taken.

¢ A termination condition is checked and if satisfied, the simulation stops. This condi-
tion is that the global MESSAGE buffer and all the Local-Buffers of the SYNCH-NODEs are
empty.

e The MESSAGEs in the global buffer are “delivered,” which means each is placed in the
Local-Buffer of the SYNCH-NODE to which they were sent (i.e., the SYNCH-NODE in the
ADDRESS-MAP indexed by the MESSAGE’s Destination-Address part).

e Each SYNCH-NODE is polled to see if it has any work to do, i.e., if it has any MESSAGEs in
its Local-Buffer. If so, a MESSAGE is pulled from the buffer (maintaining FIFO order)
and handled. If any new MESSAGEs are sent as a result, they are buffered in the global
MESSAGE buffer.

The global MESSAGE buffer is used to ensure that delivery delay is modeled. Buffering the
MESSAGEs sent during a clock cycle prevents a message from being sent and handled during
the same cycle.

The invariant that messages to the same node are handled in the order in which they are
received is modeled by using a FIFO queue to locally buffer the MESSAGEs that a SYNCH-NODE
must handle. A MESSAGE will not be handled by a SYNCH-NODE until all the MESSAGEs enqueued
on the FIFO queue ahead of it have been handled.

What it means for a MESSAGE to be “handled” (or what action of a processing node
is simulated) by the simulator varies across simulators. It depends on why a simulation
is being performed and which aspects of a message-passing system are of interest. For
example, some simulators might want to simulate the message handler execution on the
node in order to gather statistics about operation frequencies or average message execution
time on each node. Other simulators might only want to simulate message sends that result
from handler execution, in order to gather information about average message waiting times,
typical size of buffers needed, and the number of nodes busy. In addition, the set of message
handling actions that are simulated varies over the machines that are being simulated. The
machine architecture of a real node determines which actions it performs; only these can
be simulated.

We have begun to identify and capture some clichés in the area of simulating node
actions. These include algorithms for looking up and executing message handlers as well
as clichés found in the domain of program execution. Below we discuss the clichés we have

captured so far and Section 5.2 describes the difficulties we encountered in acquiring them.
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Although we have identified some clichés in this area, it is unlikely that the code for
simulating the actions of nodes will always be a cliché. There is a wide variety of reasons to
simulate a message-passing system, resulting in a wide range of node behaviors to mimic.
This variation is reflected in the diverse code responsible for simulating a node’s actions.
So, we also look at the issues involved when an integral part of an algorithmic cliché for
synchronous or event-driven simulation may be filled with unfamiliar, non-clichéd code. It
is difficult to encode such a cliché in a flow graph grammar so that it can be recognized by
graph parsing. This is discussed in Sections 4.1.4 and 5.2.3.

There are many variations of the algorithm described in this section that still achieve
synchronous simulation. For example, on each iteration, our algorithm performs three
actions in the following order: test for termination, deliver messages, and poll and advance
nodes by one step. The other variations of this algorithm in which a different ordering is
used also perform synchronous simulation. However, the current cliché library contains only
the one given above as an algorithmic cliché. Section 5.2 discusses the problems we face in
trying to concisely encode and recognize the other variations.

The algorithm and data structures used in this synchronous simulation design are cap-
tured in our cliché library as clichés. However, the clichés are not flat structures, but are
hierarchically built out of other clichés. The hierarchical organization allows sharing of
common sub-computations among clichés, which helps us avoid redoing work during recog-
nition. This also highlights the salient characteristics between two similar clichés which is
useful in controlling recognition cost and choosing between near-miss recognitions of the
clichés. (However, no static organization can do this perfectly, since saliency is relative.)

Figure 2-1 shows the names of the algorithmic clichés upon which the Synchronous-
Simulation algorithmic cliché is built. Lines connecting the names indicate relationships
between the named clichés. (This is only a portion of the cliché library. Figure 2-3 shows
additional algorithmic clichés used in a common event-driven simulation design which is
described in the next section. Also, the fringe of the trees in Figures 2-1 and 2-3 contain
the names of general-purpose clichés and small triangles to indicate that the sub-tree of
cliché names upon which they are built is not shown. Refer to Figure 2-5 for these cliché
names and how they relate to the other general-purpose clichés in the library.) Figure 2-2
shows the aggregate data clichés in our library and how they relate to each other.

The trees of cliché names are shown only to give a flavor of the structure of the cliché
library. More description of the clichés and details of how they are encoded are given in
Section 4.1.

There are three types of relationships between the clichés in the library. One type of
relationship is composition: Clichés may contain other clichés as parts. (This relation is
shown in the trees of Figures 2-1 and 2-2 as a set of branching lines, grouped by a circular
arc. The root name represents a cliché that is composed of the clichés named by the
branches.)

For example, the aggregate data structure SYNCH-NODE consists of two parts, a Buffer and
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Figure 2-1: Synchronous simulation clichés.
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Figure 2-2: Aggregate data clichés.
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a Memory, each of which is another cliché: a Queue and an Associative Set, respectively.
A similar relationship can occur between algorithmic clichés. The algorithmic cliché of
Synchronous Simulation using a Global Message Buffer is composed of three other clichés:
Queue-Insert, Generate-Global-Buffers-and-Nodes, and Earliest-Simulation-Finished.

The second type of relationship that can occur between two clichés is an implementa-
tion relationship: A cliché may implement a more abstract cliché. For example, a FIFO,
Stack, or Priority Queue can implement a Queue. Poll-Nodes-and-Do-Work is an imple-
mentation of Advance-Nodes. (Lines between cliché names in Figures 2-1 and 2-2 that are
not grouped or starred represent this relationship. Of two clichés connected by a line, the
upper one is implemented by the lower. Branching ungrouped lines represent alternative
implementations of the root.)

The third type of relationship occurs when one cliché is a temporal abstraction of an-
other. Temporal abstraction is a technique developed by Waters [117, 137, 138] and further
extended by Rich and Shrobe [110, 127], in which a clichéd fragment of iterative computa-
tion is viewed more abstractly as an operation on a sequence of values — the sequence of
values that are processed over time, one per iteration. For example, Sum is a temporally
abstract operation that takes a sequence of numerical values and produces their total. This
is a temporal abstraction of a loop fragment in which each iteration computes the sum of
a new value and the result of the sum computed on the previous iteration. The temporal
abstraction of this fragment views the sequence of new values accumulated in the sum as
the input to Sum. (Lines marked with an asterisk in Figure 2-1 indicate that the upper
cliché name is an operation that temporally abstracts the lower iterative cliché.) In Figure
2-1, Generate-Global-Buffers-and-Nodes is an example of a temporally abstract operation.
It takes the initial global MESSAGE buffer and the initial collection of SYNCH-NODEs and creates
a sequence of new global MESSAGE buffers and SYNCH-NODE collections. (This is a temporally
abstract view of the iterative computation performed on each iteration of the simulation in
which MESSAGEs are delivered and SYNCH-NODEs are stepped.)

A Common Event-Driven Simulation Design

This section describes a common event-driven simulator design for message-passing systems.
It has data structures ASYNCH-NODE and MESSAGE, representing processing nodes and messages,
respectively. It also has an EVENT data structure, which represents the arrival of a MESSAGE at
an ASYNCH-NODE. Each ASYNCH-NODE data structure maintains its own local Clock. It also has
a Memory part, holding its state. There is a sequence containing all ASYNCH-NODEs, called
an ADDRESS-MAP, which maps each integer address to an ASYNCH-NODE (as in the synchronous
simulation design). MESSAGEs typically have the same parts as those in the synchronous sim-
ulation design (Destination-Address, Type, Arguments, Storage-Requirements). An EVENT
contains an Object, which is a MESSAGE to be handled, and a Time at which the work to be
done on the object (i.e., handling a message) was scheduled (i.e., when the MESSAGE arrives
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at an ASYNCH-NODE).

A global agenda, called the EVENT-QUEUE, keeps track of EVENTs that need to be processed.
The agenda is implemented as a Priority Queue, in which the EVENT with the earliest Time
has the highest priority.

The event-driven simulator is given an initial EVENT, whose Object is a starting MESSAGE
and whose Time is the MESSAGE’s arrival time. This is added to the EVENT-QUEUE. On each step
of the simulation, the highest priority EVENT is pulled from the EVENT-QUEUE and processed.
Processing an EVENT means simulating the handling of the MESSAGE in the EVENT’s Object
part. The simulated message handling is done in the context of the ASYNCH-NODE that
represents the real node that is the destination of the message. This is looked up using
the Destination-Address part of MESSAGE as an index into the sequence ADDRESS-MAP. (As we
mentioned earlier, the portion of the simulator that simulates a processing node’s message
handling actions varies. Below, we describe an initial set of clichés that may be used.
However, this portion of the simulator is not guaranteed to always be clichéd.)

When an EVENT is processed, the Clock of the destination ASYNCH-NODE for its MESSAGE
Object is updated: the ASYNCH-NODE’s Clock becomes the maximum of its current time
and the arrival time of the MESSAGE (i.e., EVENT’s Time). (The ASYNCH-NODE’s current time
can be later than the arrival time if the simulator is mimicking a real situation in which
the real node was busy when the message arrived. The arrival time can be later than an
ASYNCH-NODE’s current time if in the real situation being simulated, the real node is idle
when the message arrives.)

Handling a MESSAGE can cause other MESSAGEs to be sent. These are added to the
EVENT-QUEUE. The event-driven simulation ends when the EVENT-QUEUE is empty.

An important characteristic of this algorithm is that the MESSAGEs are handled non-pre-
emptively, which means that once an ASYNCH-NODE starts to handle a MESSAGE, it will not be
interrupted, e.g., by receiving another MESSAGE.

Another property of the algorithm is that at each step, the globally earliest unprocessed
MESSAGE received so far is chosen to be handled. Since the EVENT pulled from the EVENT-QUEUE
is always the one with the earliest Time, and since Time is the arrival time of the MESSAGE
in the EVENT’s Object part, the MESSAGE chosen to be handled next is always the one with
the earliest arrival time of the MESSAGEs that have not yet been handled.

These two properties ensure that once a MESSAGE is chosen for handling, no MESSAGEs
will subsequently be generated that have an arrival time earlier than the MESSAGE chosen.
In other words, MESSAGEs are handled in the order they arrive. So the simulator models the
invariant obeyed by the real machine: messages to the same node are handled in the order
in which they are received.

Figure 2-3 shows the structure of the portion of the cliché library that contains the
event-driven simulation cliché and the clichés it is built upon. (For data clichés, refer to
Figure 2-2.)
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Figure 2-3: Event-driven simulation clichés.
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Node Action Simulation Clichés

The two simulators for message-passing parallel systems contain a component that simulates
some or all of the actions that a real processing node takes when handling a message.
Which actions are simulated depends on the behavior of interest for the simulation. We
have begun to collect some clichés that occur in simulators that model message handler
lookup and execution on a node. These clichés are found in the broader domain of program
execution in general, and the domain of program interpretation (or evaluation) in particular
[1]. Figure 2-4 shows the structure of this portion of the library.
The clichés we have collected so far are those for the following.

¢ Looking up a handler based on a MESSAGE’s Type, which is typically an Associative-
Set-Lookup or Property-List-Lookup, depending on how the handlers are stored.

¢ Loading the MESSAGE’s Arguments into the Memory part of an ASYNCH-NODE or SYNCH-
NODE (depending on whether the simulator is event-driven or synchronous). This in-
volves looking up the ASYNCH-NODE or SYNCH-NODE indexed by the MESSAGE’s Destination-
Address, enumerating the Arguments, accumulating them in a sequence, and adding
the sequence to the Memory part (typically an Associative Set).

e Executing the handler on the input data given in the Arguments. An EXECUTION-
CONTEXT data structure is used to keep track of the Node executing the handler (which
is an ASYNCH-NODE or SYNCH-NODE), the Status of the execution (a Symbol), Bindings
of variable names to Memory locations (in an Associative Set), and the Instructions
being executed (which is an Indexed Sequence: a data structure with two parts: a Base
sequence of INSTRUCTIONs and an integer Index which acts as an instruction pointer).
An INSTRUCTION consists of an Operator (symbol), and a set of Arguments (typically
in a list or an adjustable-length sequence), which may be other INSTRUCTIONs.

The handler execution involves iteratively fetching the next instruction to be executed
using the current value of the instruction pointer. A standard Lisp EVALUATE/APPLY
recursion is then used to interpret the INSTRUCTION with respect to the current values
of the variable names stored in Memory. The Operator part of the INSTRUCTION is used
tolook up a Common Lisp function for simulating the actions of the processing node in
applying that operator type to arguments. The EVALUATE/APPLY recursion “evaluates”
an INSTRUCTION by iterating through its Arguments, recursively evaluating each one,
and then applying the function associated with the INSTRUCTION’s Operator to the
results.

We have made a first attempt at capturing the knowledge needed to recognize program
execution clichés. Our experiences in encoding these clichés in the graph grammar helped
us to understand both the strengths and weaknesses of the formalism for expressing certain
types of programming ideas. This is discussed further in Chapter 5.
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Figure 2-4: Node action simulation clichés.
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2.1.4 The General-Purpose Clichés

Figure 2-5 gives an abstract picture of the relationships between the groups of general-
purpose clichés that are contained in the library. Each box represents a set of algo-
rithmic clichés that represent either operations on some aggregate data structure cliché
(e.g., Priority-Queue) or basic iteration or computational clichés (e.g., Sum, Sequence-
Enumeration, Absolute-Value). Each box contains the names of some of the clichés con-
tained in the group it represents.

The arrows between the boxes indicate that the clichés in the source group use the
clichés in the sink group as components, or the clichés in the source group are abstractions
of those in the sink group. For example, the arrow from FIFO to Circular-Indexed-Sequence
(CIS) indicates that clichéd operations on FIFOs can be implemented as clichéd operations
on CISs. The arrow from CIS to Basic-Iteration-Clichés indicates that the operations of
manipulating a CIS use basic iteration clichés as components (e.g., the operation of enumer-
ating a CIS uses a Bounded-Count operation as a component, which generates a sequence
of integers within some interval).

The cliché library does not contain all existing algorithmic clichés that operate on the
data structures mentioned in Figure 2-5. We captured a fair number, but due to time

limitations, we could not collect a complete set.

2.2 Real-World Programs

In studying program recognition, we focused on two programs which were written in Com-
mon Lisp by researchers in a parallel architecture group at MIT. The programs sequentially
simulate the parallel execution of programs by a fine-grain message-passing parallel machine
(which is described in [26]).

One program, called PiSim, simulates the parallel execution of programs in terms of the
operations of a “parallel interface” (Pi) [146, 147]. (A parallel architecture interface sepa-
rates parallel programming model issues from machine hardware issues, in a way analogous
to the von Neumann interface for sequential computers. For more details, see [146].) It uses
the event-driven algorithm and the program interpretation clichés that are in our library.

The other simulator simulates the parallel execution of programs written in a language
called “Concurrent SmallTalk” [25]. We will refer to this simulator as CST. It uses the
synchronous simulation design.

The ¢sT simulator program is actually a module in a larger program which provides a
programming environment for compiling, simulating, tracing, and gathering and displaying
statistics on the execution of Concurrent SmallTalk code. Functions that call the simulator
are not analyzed, neither are the metering, tracing, and plotting functions that it calls.

There are a few important points about the example simulators that are relevant to our
study of recognition. One is that currently, GRASPR is unable to recognize clichés in programs
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that contain operations that destructively modify mutable data structures. Qur plan is to
study the recognition of aggregate data structures, independent of issues concerning side ef-
fects to them, and then attempt to tackle the problems of mutable data structures later. So,
we manually converted the example programs to programs that contain only non-destructive
versions of the data structure operations. For example, we replaced destructive alterations
to data structures with changes to copies of the data structures. We also propagated these
changes to the data structures that pointed to the altered data structure, and so on. We
essentially routed the dataflow by hand so that all aliasing was taken into account. (Section
7.2.4 gives more details. Appendix B contains the original versions of the two simulator
programs, followed by their functional translations.)

In doing the translation, we found that many of the translation steps are automatable.
For certain types of side effects, it may be possible to automatically uncover straightforward
types of aliasing patterns and replace them with their non-destructive counterparts. The
insights we gained should help us extend GRASPR in the future to deal with side effects to
mutable objects, as discussed in Section 7.2.4.

All of the clichés in our current library are “pure” in that they include no destructive
operations (such as RPLACD, RPLACA, or SETF in Common Lisp).

Another important point concerns how the programs simulate message handling. We
mentioned earlier that we have only begun to encode the clichés found in code that is
responsible for simulating a processing node’s action of handling a message. We have
experimented with recognizing these clichés in PiSim, which contains them. However, we
would also like to explore the issues that arise when an integral part of an algorithmic
cliché can be filled with unfamiliar, perhaps loosely constrained code. The CST program
allows us to explore these difficulties because it contains code for simulating a node’s action
that is not clichéd (at least with respect to our current library of clichés). Details of these
difficulties and suggestions for solving them are given in Sections 4.1.4 and 5.2.3.

Our final point is that even though PiSim contains clichéd node action simulation code,
problems still arise in expressing and recognizing certain clichés. This is because part of
the information about how to simulate a node’s action is given as input, rather than being
statically contained in the program. In particular, PiSim takes a set of message handlers as
input. Each handler provides a set of instructions to be executed when handling a certain
type of message. For example, Figure 2-6 gives a handler for a Factorial message, which
iteratively computes the factorial of a single argument (N). (The X is a local variable.) The
instructions in the handlers are written in a language of Machine Operations (e.g., Times,
Branch-Zero). Each Machine Operation has a Common Lisp function associated with it
that specifies how to simulate the actions of the processing node in executing that machine
operation. They are defined in terms of simulator functions. For example, Figure 2-7 shows
the functions that are associated with the operations Times and Branch-Zero.

Like the set of handlers, the definitions of Machine Operations are inputs to PiSim. This
means they are not available for analysis or recognition. The problem that this poses is
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(define-handler Factorial (N) (X)
(print-user "“&running simple loop test~%")
(write (self) X 1)
Loop
(branch-zero (read (self) N) Done)
(write (self) X (times (read (self) X) (read (self) N)))
(write (self) N (minus (read (self) N) 1))
(branch-zero 0 Loop)
Done
(print-user "~&the answer is ~d~%" (read (self) X))
(destroy-segment (self)))

Figure 2-6: A message handler for Factorial.

that the data and control flow of the entire PiSim program cannot be statically computed.
It depends on the input for a particular simulation. The implication of this is that we do
not have complete knowledge about who calls the simulator functions or how their inputs
and outputs are connected. The problems we have encountered as a result are discussed in
Section 5.2.

Choice of Programs: Breaking Out of the Toy Program Rut

In choosing programs to use in our study of recognition, our goal was to break out of the rut
of automating the recognition of “toy” programs, in which most earlier recognition research
has been caught. Both simulator programs (PiSim and ¢ST) do this. Their sizes fall in the
500 to 1000 line range, rather than being on the order of tens of lines, which is the typical
size of programs dealt with in previous recognition research.

Program length is only an approximate indicator of the potential difficulty of recognizing
a program. In addition to choosing larger programs, we have chosen programs not written
by us (the designers of the recognition system). The simulator programs are not contrived
examples. They were written, without bias, to solve a particular real-world problem.

A key advantage of this is that it provides challenges to the recognition approach that
might not be anticipated by us, as developers of it. Even though we may need to change or
simplify the original program to allow recognition to occur, we are aware of the limitation of
our approach that requires this. We also are aware of the type of transformation that should
be made or the advice that should be given to help deal with the shortcoming. (Section
5.2 discusses the limitations observed and Section 5.2.5 summarizes changes made to the
original programs to yield the programs that GRASPR recognizes.)

Additionally, the programs indicate which characteristics of programs are typical. This
helps us in analyzing our recognition technique. For example, recognition by graph parsing

can be expensive if there are excessive amounts of redundant computation, which causes
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(Define-Operation Times (Active-Task X Y)
(multiple-value-bind (New-Time Task-Node New-Task)
(Increment-Time-0f Active-Task 1)
(values (* X Y) New-Task)))

(Define-Operation Branch-Zero (Active-Task Test-Variable Label)
(multiple-value-bind (New-Time Task-Node New-Task)
(Increment-Time-0f Active-Task 1)
(if (zerop Test-Variable)
(values Label
(Make-Task :Handler (Task-Handler New-Task)
:Node (Task-Node New-Task)
:Segment (Task-Segment New-Task)
:IP Label
:Status (Task-Status New-Task)))
(values nil New-Task))))

Figure 2-7: The definition of two Machine Operations.

ambiguity. However, this characteristic is rare in the example simulator programs. Knowing
which characteristics are typical or rare in real-world programs helps us determine which
factors influence the practicality of our approach.

Another aspect of the simulator programs which distinguishes them from the “toy” pro-
grams studied previously is that they contain domain-specific clichés. These go beyond
general-purpose clichés, such as operations on queues, stacks, and hash tables, which have
been the focus of previous recognition research. The programs contain common simulation
algorithms and data structures. By recognizing these clichés, GRASPR provides more useful
program understanding capabilities than if it recognized the general-purpose clichés alone.
This allows us to explore the expressiveness of the graph grammar formalism as a repre-
sentation for domain-specific clichés. (On the other hand, the current cliché library has
been acquired with the example programs in mind. More empirical studies are needed to
evaluate the ability of the existing system to recognize new programs with the same library
and to determine how much the library must change to recognize them.)

The simulator programs also contain a fair amount of unfamiliar code mixed in with
clichéd computational structures. In experimenting with them, we test GRASPR’s abilities
to perform partial recognition, which is required in dealing with any realistic, non-trivial
program.
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2.3 Recognition Examples

Besides identifying the knowledge needed to understand and construct programs, it is im-
portant to capture this knowledge in such a way that it can be applied to a broad range of
programs. In automating program recognition, our goal is to codify programming clichés
at a level of abstraction that allows us to recognize them in programs that vary widely in
such details as syntactic constructs used, programming language chosen, data structure and
subroutine decomposition, and implementational choices. In addition, we provide recogni-
tion techniques that are robust under other types of variation, such as variation due to
function-sharing optimizations and unfamiliar code.

This section gives examples of the recognition capabilities of GRASPR. This serves to
demonstrate what GRASPR can do in terms of the classes of variation it can tolerate. It also
provides motivating examples of the goals we have for our representational formalism and

recognition technique.

2.3.1 Common Program Variations

Program recognition is difficult due to the wide range of possible variations among programs.
An instance of a cliché may appear in a variety of forms. The following is a list of some of
the common types of variation found in programs. (This does not provide a complete list
of the variations we encountered in our empirical recognition studies with PiSim and CST.
Chapter 5 discusses more variations, both those tolerated and not tolerated by our current

system.)

e Syntactic variation in control and binding constructs. There are typically many ways
to achieve the same net flow of data and control. Variable, function, data structure,

and part names vary widely. Also, syntax varies over programming languages.

o Implementation variation. A given abstraction can often be implemented by a set of

different concrete algorithms and data structures.

o Delocalization. Parts of a cliché are sometimes widely scattered throughout the text
of a program, rather than being contiguous.

o Unrecognizable code. Not all programs are constructed completely of clichés. Recog-
nition must be able to ignore an unpredictable amount of unrecognizable code.

o Variation in the organization of components. Programs can be decomposed into sub-
routines in a variety of ways. Also, data structures can aggregate pieces of data in a

multitude of different nested organizations.

¢ Redundancy. Programs may vary in how much computation is repeated in the same
instance of a cliché. For example, when the result of some inexpensive computation
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is needed more than once, the program may simply recompute the value each time it

is needed rather than caching the result in a temporary variable.

¢ Optimizations. A great deal of variation occurs between optimized and unoptimized
programs even though they may contain the same abstract cliché. A common form
of optimization introduces function-sharing in which the implementations of two or

more distinct abstract structures are merged.

2.3.2 Examples of Capabilities

GRASPR is able to recognize both CST and PiSim as sequential simulators of message-passing
parallel systems. It recognizes the synchronous simulation design in €ST and the event-driven
simulation design in PiSim. It also recognizes the message-passing program execution clichés
in the portion of PiSim’s code that simulates handling messages.

The primary output of GRASPR is a forest of design trees. A design tree indicates the
clichés found in the program and how they are related to each other. Figure 2-8 shows a
portion of the design tree produced in recognizing PiSim. Subtrees that are not shown are
collapsed into small triangles below a cliché name. The dashed lines at the tree’s fringe are
links to primitive operations in the source code, which indicate the location of a particular
cliché in the code. The drawing of the design tree is a simplified version of the actual
description produced by GRASPR. The description is simplified (for presentation purposes)
in that only operations are specified in the leaves of the tree, while the actual description
includes information about the data involved in each cliché instance. In general, GRASPR
may produce several design trees, representing recognition of multiple, perhaps overlapping,
clichés in the code.

(The design trees are graph grammar derivation trees, which are described in Section
3.2.2. In general, they may be graphs in that a recognized cliché may be a component or
implementation of two or more higher-level clichés.)

A secondary way to view the output of GRASPR is provided by a tool, called “Para-

> which takes the design trees produced during recognition and generates textual

phraser,’
documentation based on them. Paraphraser knits together schematized textual fragments
associated with the recognized clichés, filling in slots with identifiers taken from the source
code (e.g., *EVENT-QUEUE*). It bases the structure of the text on the relationships between
the clichés.

Figure 2-9 shows some of the documentation generated for the design tree shown in Fig-
ure 2-8. The documentation, although stilted, does describe the important design decisions
in the program and can help a programmer locate relevant objects in the code (via the
identifiers).

One potential benefit of automated program recognition is to use such automatically
produced documentation to maintain poorly documented or undocumented programs. Au-

tomatically produced documentation can be updated whenever the source code changes,
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Figure 2-8: Design tree for PiSim.
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PISIM sequentially simulates a parallel message-passing system.
It is implemented as an Event-Driven Simulation.
1: Event-Driven Simulation asynchronously simulates a collection of
processing nodes handling messages, using an event-driven algorithm. An
event-queue *EVENT-QUEUE* of events is maintained. To start, an initial
event EVENT is inserted in the event-queue. On each step, an event is
pulled off and processed, which may create new events to be added to the
event-queue. The asynchronous nodes (which represent processing nodes)
are collected in an address-map, called *NODES*.
Event-Driven Simulation is composed of a Priority-Queue Insert, a Co-Earliest
Event-Driven Simulation Finished and a Generate Event Queues and Nodes.
2: Priority-Queue Insert inserts EVENT in the priority queue
*EVENT-QUEUE*. An element’s priority P is higher than another’s Q,
if P < Q. If an element already exists in the priority queue with
the same priority, then the new element is inserted into the queue
after the existing element.
Priority—Queue Insert is implemented as an Ordered Associative List Insert.
3: Ordered Associative List Insert inserts EVENT in the
ordered associative list *EVENT-QUEUEx*. ..
2: Co-Earliest Event-Driven Simulation Finished takes a sequence of
event-queues and a sequence of address-maps and returns the address-map
in the sequence of address-maps that corresponds to the first empty
event-queue in the sequence of event-queues.
Co-Earliest Event-Driven Simulation Finished temporally abstracts
Co-Iterative Event-Driven Simulation Finished.
3: Co-Iterative Event-Driven Simulation Finished terminates
the simulation when the current event-queue (*EVENT-QUEUE#)
is empty, returning the current value of the address-map (*NODES*).
The event-queue is implemented as a Priority Queue.
The Event-Driven Simulation Finished Test is implemented as a
Priority Queue Empty.
4: Priority Queue Empty tests whether the priority queue
*EVENT-QUEUE* is empty....
2: Generate Event Queues and Nodes generates event-queues and address-
maps by repeatedly dequeuing the current event-queue and processing
the event dequeued. Processing an event causes new events to be added
to the event-queue and a new address-map to be created. The initial
event-queue is *EVENT-QUEUE* and the initial address-map is *NODES*...
Generate Event Queues and Nodes temporally abstracts Dequeue and
Process Generation....

Figure 2-9: Some of the documentation generated for PiSim.
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solving the pernicious problem of misleading, out-of-date documentation.

The current implementation of Paraphraser is heuristic and fragile. Documentation
generation is not a primary focus of this research. The problem of applying recognition to
program documentation needs further study, perhaps borrowing techniques from natural
language generation.

Besides documentation, there are a variety of ways to present the results of recognition,
depending on how the results will be used. Future work is needed to find the presentation

appropriate for effective interaction with people and other automated tools.

Syntactic Variation

The design tree and documentation shown in Figures 2-8 and 2-9 were produced by
GRASPR in recognizing PiSim. The top-level portion of PiSim is shown in Figure 2-10. (The
source code for data structure definitions and some subroutines are not shown.) Inject is
the top-level function which starts the PiSim simulator. It takes an initial start message
type and the message’s arguments. After some initialization, it creates a Message data
structure, based on information about storage requirements computed from the Handler
that is associated with the message type. It randomly generates a destination address for
the message and computes the message’s arrival time from the destination Node’s current
time. Once the Message is created, an Event is constructed, whose Object part is the Message
and whose Time is the arrival time. The Event is placed on the event-queue *Event-Queue*
and Execute-Events is run to iteratively extract and execute the highest priority event on
the event-queue.

Given a syntactic variation of this code, such as the code in Figure 2-11, GRASPR is able
to recognize the same clichés to produce the same design tree and documentation (mod-
ulo identifiers). Recognition is robust under variations in variable names (Length versus
Memory-Needed), binding and control constructs (cond versus if), and names of data struc-
tures and their parts (Message versus Msg and Message-Destination versus Msg-Dest-Addr).
Start-PiSim also differs from Inject in the ordering of computations in the let binding
clauses. It routes dataflow differently, using fewer local variables. It also passes the event
queue around explicitly, rather than maintaining a global variable. Recognition robustness
is achieved as a result of the representation shift performed by GRASPR which translates both
programs into the same graphical representation. In this representation, syntactic details

are suppressed.

Organization of Components

The representation used by GRASPR also suppresses details of how programs are decom-
posed into subroutines and how aggregate data structures are organized. For example, the
code in Figure 2-12 differs from the original PiSim code shown in Figure 2-10 in structural
organization. It bundles up the initialization and storage requirement computations into

42




(defvar *Event-Queue* nil "this is the global event-queue")
(defvar *Nodes* nil 'this is the node arréy")
(defstruct Message
(Destination nil)
(Length 0)
(Type nil)
(Arguments nil))
(defstruct Event
(Time 0)
(Object nil))
(defun Inject (Type &rest Arguments)
(Make-Nodes)
(Clear—-Nodes)
(Clear-Event-Queue) ;; resets *Event-Queue* to NIL
(let* ((Handler (Get-Handler Type))
(Length (+ (Handler-Arity Handler)
(Handler-Number-0f-Locals Handler)
2))
(Destination (random (Number-0f-Nodes)))
(Arrival-Time (Node-Time (Translate-Node Destination)))
(Message (Make-Message :Destination Destination
:Length Length
:Type Type
:Arguments Arguments))
(Event (Make-Event :Time Arrival-Time
:0bject Message)))
(Enqueue-Event Event)
(Execute-Events)))
(defun Enqueue-Event (New-Event)
(if (or (null *Event-Queuex*)
(< (Event-Time New-Event)
(Event-Time (first *Event-Queue*))))
(setq *Event-Queue*
(cons New-Event *Event-Queue*))
(setq *Event-Queue*
(Insert-Event New-Event *Event-Queuex))))
(defun Execute-Events ()
(cond ((null *Event-Queue*)
*Nodes*)
(t (Execute-Next-Event)
(Execute-Events))))

Figure 2-10: Top-level portion of PiSim code.
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(defvar *P-Nodes* nil "collection of nodes")
(defstruct Msg
(Dest-Addr nil)
(Storage-Length 0)
(Type nil)
(Args nil))
(defstruct Event
(Time 0)
(Object nil))
(defun Start-PiSim (Start-Msg-Type Args)
(Make-Nodes)
(Clear-Nodes)
(let* ((Address (random (Number-0f-Nodes)))
(Msg-Handler (Get-Handler Start-Msg-Type))
(Memory-Needed (+ (Handler-Arity Msg-Handler)
(Handler-Number-0f-Locals Msg-Handler)
2))
(Pending-Events
(Enqueue-Event
(Make-Event :Time (Node-Time (Translate-Node Address))
:0bject (Make-Msg :Dest-Addr Address
:Storage-Length Memory-Needed
:Type Start-Msg-Type
tArgs Args))
nil)))
(Execute-Events Pending-Events)))
(defun Enqueue-Event (New-Event Event-Queue)
(if (or (null Event-Queue)
(< (Event-Time New-Event)
(Event-Time (first Event-Queue))))
(setq Event-Queue
(cons New-Event Event-Queue))
(setq Event-Queue
(Insert-Event New-Event Event-Queue)))
Event-Queue)
(defun Execute-Events (Pending-Events)
(if (null Pending-Events)
*P-Nodes*
(Execute-Events
(Execute-Next-Event Pending-Events))))

Figure 2-11: A syntactic variation of the portion of PiSim shown in Figure 2-10.
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(defvar *Message-Queue* nil "this is the global message queue")
(defvar *Nodes* nil '"this is the node array")
(defstruct Msg

(Destination nil)

(Arrival-Time 0)

(Data nil))

(defstruct Handler-Data

(Type nil)

(Length 0)

(Arguments nil))

(defun Initialize-Simulator ()

(Make-Nodes)

(Clear-Nodes)

(Clear-Message—Queue)) ;; resets *Message-Queue* to NIL

(defun Compute-Storage-Rqmts (Type)
(let ((Handler (Get-Handler Type)))
(+ (Handler-Arity Handler)
(Handler-Number-0f-Locals Handler)
2)))
(defun Inject (Type &rest Arguments)

(Initialize-Simulator)

(let* ((Length (Compute-Storage-Rqmts Type))
(Destination (random (Number-0f-Nodes)))
(Arrival-Time (Node-Time (Translate-Node Destination)))
(Handler-Data (Make-Handler-Data :Type Type

:Length Length
:Arguments Arguments))
(Message (Make-Msg :Destination Destination
:Arrival-Time Arrival-Time
:Data Handler-Data)))
(Enqueue-Message Message)
(Process-Messages)))
(defun Enqueue-Message (Message)
(if (or (null *Message-Queuex)
(< (Msg-Arrival-Time Message)
(Msg-Arrival-Time (first *Message-Queuex))))
(setq *Message-Queue*
(cons Message *Message-Queuex))
(setq *Message-Queue*
(Insert-Message Message *Message-Queuex*))))
(defun Process-Messages ()
(cond ((null *Message-Queue*) *Nodes*)
(t (Process-Next-Message)
(Process-Messages))))

Figure 2-12: An organizational variation of the top-level portion of PiSim.
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subroutines. It also aggregates data differently. The original code defines an Event data
structure with two parts: an Object and a Time. The Object part is filled by a Message
data structure, which has the parts Destination, Length, Type, and Arguments. Pending
Events (containing Messages to be handled) are queued in an *Event-Queuex.

In the variation of this code shown in Figure 2-12, there is no Event data structure.
Instead Msg data structures are placed directly in an event-queue, called *Message-Queue*.
Each Msg contains all the data that is in a Message in the original code and additionally
has an Arrival-Time part, which plays the role of the Time part of Events in the original
code. Some of the data aggregated in Msg is aggregated further into a sub-structure, called
Handler-Data. This structure contains the parts Length, Type, and Arguments found in
Message originally and it is nested inside the Msg data structure, under the Data part.

Despite these differences, GRASPR recognizes the same clichés in this code as in the original
code in Figure 2-10.

It is important that recognition be robust under organizational variations because the
clichés in the current library are themselves organized hierarchically. It is crucial that the
program need not mirror this same organization for the clichés to be recognized in it.

This is because the library organization is not necessarily based on the typical way
these clichés are organized in programs. There are two reasons it is not. One is that there
is not always exactly one “typical” or common decomposition of clichés into subroutines
or nesting of aggregate data structures. The second is that it may be better to base the
library’s organization on other criteria besides what is typical. For example, the organization
might be chosen to emphasize salient parts of clichés to facilitate recognition performance
improvements or to help choose the best partial analysis during near-miss recognition.

On the other hand, information about typical decompositions may provide valuable
expectations about the location of clichés in a program. This can considerably narrow
down the search for clichés, as discussed in Section 6.4.1.

Our representation does not eliminate information about the boundaries of subroutines
and user-defined data structures within the program. It merely suppresses it, so that the or-
ganizational variation does not hinder recognition. It places this information in annotations
on the graphical representation of the program. So, although in general we do not require
that a program’s function and data structure organization match the organization of the
clichés in our library, it is possible to impose constraints on the clichés being recognized,
requiring that they occur within certain boundaries. These boundaries can be heuristically
defined based on information, such as subroutine or data structure decomposition. (See

Section 6.4.1 for more details.)

Delocalized Clichés and Unfamiliar Code

Programs are rarely constructed entirely of clichés. Non-trivial programs are usually a
mix of clichéd computational structures and unfamiliar code. In addition, the clichés are
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(defun cst-start (init-msg)
(send-msg init-msg)
(shell-go))
(defun send-msg (msg)
(setq *step-queue*
(enqueue *step-queue* msg)))
(defun shell-go ()
(cond ((step-done) nil)
(t (step-nodes)
(shell-go))))
(defun step-nodes ()
(when *profilex (profile-step)) HH
(when *log* (log-step)) HH

(when *trace* HH

NN Y

(record-traced-selectors *trace-selectors*)) HH
(deliver-msgs)

)

(when *meter-message-queues* B
(record-message-queue-data)) A
(iteratively-step-nodes 0)
(setq *step-nr* (1+ *step-nr*))))
(defun iteratively-step-nodes (x)
(if (>= x (array-total-size *nodes%*))
nil
(step-node x)
(iteratively-step-nodes (1+ x))))
(defun step-node (node-nr)
(let* ((node (get-node node-nr))
(q (node-queue node)))
(if (queue-empty? q)
nil
(multiple-value-bind (msg new-queue)
(dequeue q)
(setq node
(make-node :queue new-queue
:objects (node-objects node) I
:contexts (node-contexts node)
:busy-count (1+ (node-busy-count node)) ;; ?
:method-cache (node-method-cache node))) ;; ?
(setq *nodes* (copy-replace-elt node node-nr *nodes))
(multiple-value-bind (new-nodes new-step-queue)
(process-msg msg *nodes* *step-queue*)
(setq *nodes* new-nodes
*step-queue* new-step-queue))))))

Figure 2-13: Top-level portion of ¢ST. Question marks indicate unfamiliar code.
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often interleaved with unfamiliar computation as well as with each other. This means that
parts of a cliché may be scattered throughout the text of a program. Both of these factors
make recognition difficult not only to automate, but also for people to do correctly.

GRASPR is able to ignore unfamiliar code to partially recognize the program. It also
addresses the difficulty of recognizing delocalized clichés by employing a program represen-
tation shift from source text to flow graph. Cliché parts that are separated by unrelated
expressions in the text become neighboring nodes in a flow graph.

For example, Figure 2-13 shows the top-level portion of the ¢ST program, which uses the
synchronous simulation design. (The source code for data structure definitions and some
subroutines are not shown.) In addition to the simulation algorithm and data structures,
this code contains calls to functions that perform various metering, logging, and statistics-
gathering operations. These operations are not clichéd, at least with respect to our current
library. The figure indicates unfamiliar portions of the code with question marks. The
clichés in the program are not found in one contiguous section of program text, but are
interrupted with unrelated computations.

Not only are there unfamiliar computations interleaved with the algorithmic clichés, but
there are also parts of data structures that are not recognizable as part of any data cliché.
For example, the data structure node consists of a Queue part (which acts as the local FIFO
buffer in the SYNCH-NODE data cliché) and a Contexts part (which contains a data structure
that has a part corresponding to the Memory part of the SYNCH-NODE). The rest of the parts
of node (Objects, Busy-Count, and Method-Cache) are novel, specific to this program. They
are used for gathering statistics and simulating the action of handling a message.

Despite the delocalization of the clichés and the unfamiliar code, GRASPR is able to
recognize clichéd parts of this program. The design tree and documentation produced are
shown in Figures 2-14 and 2-15 (in abbreviated form).

Implementation Variation

Often, there is more than one clichéd implementation of an abstract operation or data type.
This can introduce variability between programs that on a high level of abstraction perform
the same abstract operation or use the same abstract data types. It is important that
GRASPR be able to recognize the same abstract clichés in these variations.

For example, the CST program uses a FIFO queue to implement the queue of messages
collected on each cycle of the synchronous simulation and then delivered on the next. The
FIFO queue is implemented as a Circular Indexed Sequence, as shown in Figure 2-16.
However, another possible implementation of the queue is a LIFO queue (or stack), as
shown in Figure 2-17.

GRASPR produces the design-tree shown in Figure 2-18 for the code that uses this imple-
mentation. It differs from the tree in Figure 2-14 only in the subtrees that are highlighted
by dotted boxes in the figure. The rest of the tree, including the high-level description of
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Figure 2-14: A portion of design tree produced in recognizing CST.
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CST sequentially simulates a parallel message-passing system.
It is implemented as a Synchronous Simulation.
1: Synchronous Simulation synchronously simulates a collection of processing
nodes handling messages. The synchronous nodes (which represent the
processing nodes) are collected in an address-map, called *NODES*. Each
node maintains a local buffer of pending messages to handle. Synchronous
Simulation is implemented as a Synchronous Simulation using Global
Message Buffer.
2: Synchronous Simulation using Global Message Buffer iteratively advances
each synchronous node in *NODES* by handling one message a piece. It uses
a global message buffer to ensure that nodes advance in lock-step. The
global buffer’s initial value is *STEP-QUEUE*. The simulation starts by
adding an initial message INIT-MSG to *STEP-QUEUE*#. The simulation ends
when no node has work to do (i.e., no more messages to handle) and the
global message buffer *STEP-QUEUE* is empty. As messages are handled, new
messages are created which are buffered on the global message buffer.
Synchronous Simulation using Global Message Buffer is composed
of a Queue Insert, an Earliest Simulation Finished and a Generate
Global Message Buffers and Nodes.
3: Queue Insert enqueues INIT-MSG on the Queue *STEP-QUEUE#, which is
implemented as a FIFO. Queue Insert is implemented as a FIFO Enqueue.
4: FIFO Enqueue enqueues INIT-MSG on the FIFO queue *STEP-QUEUE*,
which is implemented as a Circular Indexed Sequence....
3: Earliest Simulation Finished takes two input sequences: a sequence
of address-maps, starting with *NODES*, and a sequence of global
nessage buffers, starting with *STEP-QUEUE*. It outputs the first
address-map in the input sequence of address-maps that satisfies the
predicate that all nodes in the address-map have empty local buffers
and the corresponding global message buffer is empty.
Earliest Simulation Finished temporally abstracts Synchronous
Simulation Finished?.
4: Iterative Synchronous Simulation Finished tests whether a
synchronous simulation is finished by testing whether the
global buffer and all of the nodes’ local buffers are empty....
3: Generate Global Message Buffers and Nodes generates address-maps
and global message buffers by repeatedly delivering all
messages in the global message buffer *STEP-QUEUE* and
advancing the synchronous nodes in *NODES* by one step each....

Figure 2-15: A portion of the documentation generated for cST.
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the program as a sequential simulation, remains the same.

It is impractical to enumerate all possible implementational variations of an abstract
cliché in the cliché library. The hierarchical organization of the cliché library allows imple-
mentation variation to be represented compactly.

Function-Sharing

Programs can vary widely, depending on which optimizations they make. A type of opti-
mization that occurs frequently in programs is one in which two abstract clichés share some
functional part. In this case, the implementations of the clichés overlap. GRASPR is able to
recognize the two clichés in a program whether or not their implementations overlap.

For example, one of the things the CST program does in gathering statistics is that it
iterates through the nodes and computes the average length of their FIFO queues before
it delivers messages on each clock cycle. Suppose we added the cliché to our library that
performs this operation: it polls the SYNCH-NODEs, keeps a running total of their local buffer
sizes, and divides the sum by the number of SYNCH-NODEs.

This cliché is found in the current CST code in the function avg-queue-length, which
is called by profile-step in step-nodes, as shown in Figure 2-19. The recognition of this
cliché results in the design tree shown in Figure 2-20. (This tree is generated by GRASPR, in
addition to the design tree shown in Figure 2-14.)

Figure 2-21 shows a variation of the CST code in which the function-sharing optimiza-
tion has been introduced. In this code, the average queue length computation has been
moved into the iteration in iteratively-step-nodes that polls nodes and advances each
one in lock step. This function is already iterating through the nodes. So, in addition to
stepping each one, it has been made to keep a running total of their local queue lengths.
Its caller, step-nodes, finishes off the averaging computation. This optimization increases
the program’s efficiency by enumerating the nodes only once.

GRASPR is able to recognize both the queue averaging cliché and the advance nodes cliché
in this optimized program, even though the implementations of the clichés overlap. The
resulting design trees share a sub-tree, as shown in Figure 2-22.

Redundancy

Sometimes a part of a cliché might appear more than once in the same instance of a cliché.
The repeated part is most often some inexpensive computation whose result is needed more
than once. The program may simply repeat this computation, rather than caching the
result in a temporary variable. An example of this occurs in the function Splice-in-Bucket
shown in Figure 2-23, which is used by a hash table insertion function contained in PiSim.
Splice-in-Bucket creates and inserts an entry into a hash table bucket, called Bucket-List,
which is an ordered associative list. It does this by “cdr’ing” down the Bucket-List, looking
for a place to insert the new entry so that the entries remain ordered with respect to their
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(defun cst-start (init-msg)
(send-msg init-msg)
(shell-go))
(defun deliver-msgs ()
(cond ((queue-empty? *step-queue*) nil)
(t (multiple-value-bind (msg new-step-queue)
(dequeue *step-queuex)
(setq *step-queue* new-step-queue)
S
(deliver-msgs))))
(defstruct queue
(head 0)
(tail 0)
(length 0)
(data-size *default-queue-sizex)
(data (make-array *default-queue-size* :adjustable t)))
(defun queue-empty? (queue)
(= (queue-length queue) 0)))
(defun enqueue (queue obj)
(let* ((length (queue-length queue))
(old-size (queue-data-size queue))
(big-enough—-queue (if (< length (1- old-size))
queue
(grow-queue queue))))
(enqueue-base big-enough-queue obj)))
(defun enqueue-base (queue obj)
(let ((old-size (queue-data-size queue)))
(make-queue :head (queue-head queue)
:tail (mod (1+ (queue-tail queue)) old-size)
:length (1+ (queue-length queue))
:data-size (queue-data-size queue)
:data (copy-replace-elt obj
(queue-tail queue)
(queue-data queue)))))
(defun dequeue (queue)
(let ((elt (aref (queue-data queue) (queue-head queue))))
(setq queue (make-queue :head (mod (1+ (queue-head queue))
(queue-data-size queue))
:tail (queue-tail queue)
:length (1- (queue-length queue))
:data-size (queue-data-size queue)
:data (queue-data queue)))
(values elt queue)))

Figure 2-16: Buffer queue implemented as a FIFO, which in turn is implemented as a CIS.
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(defun queue-empty? (queue)
(null queue))
(defun enqueue (queue obj)
(cons obj queue))
(defun dequeue (queue)
(values (car queue)
(cdr queue)))

Figure 2-17: Buffer queue implemented as a stack (LIFO).

Key parts. If an entry exists with the same Key as the new entry (Key), then the existing
entry’s Value part is changed to the new Value. Number-Entries keeps track of the number
of entries in the hash table. It is incremented only if the new entry is inserted, not if an
existing entry is changed.

This function repeats the computation of accessing the first element of Bucket-List, us-
ing car, as indicated in the figure by asterisks. However, the cliché for Ordered-Associative-
List-Insert contains only one part corresponding to these expressions. It matches more
closely the program shown in Figure 2-24. GRASPR is able to recognize Ordered-Associative-
List-Insert in both variations.

2.4 Breadth of Coverage

The clichés captured in our library cover a broad range of programs. The domain-specific
clichés occur in programs in the domain of sequential simulation of message-passing parallel
systems, while our general-purpose utility clichés are found in programs across all domains.

However, the library’s coverage is not absolute. Our “example-driven” cliché acquisition
was based on an extremely small sample set of programs in a particular domain. We make
no claims of fully modeling the simulation domain or even the subset of it that deals with
message-passing systems. Also, our library does not contain all utility clichés used by
experienced software engineers.

Despite these limitations, our library demonstrates the kinds of algorithms and data
structures that can be expressed within a graph grammar formalism. This formalism cap-
tures these clichés at a level of abstraction that enables recognition by graph parsing to be
robust under many common types of program variations.
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Figure 2-18: Design tree for implementational variation in which the buffer is a stack.
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(defun step-nodes ()
(when *profile* (profile-step))

(iteratively-step-nodes 0)
.
(defun profile-step ()

(avg-queue-length)
L)
(defun avg-queue-length ()
(et ((tql 0))
(setq tql (sum-queue-lengths 0 tql))
(/ tql (array-total-size #*nodes*))))
(defun sum-queue-lengths (x tql)
(if (>= x (array-total-size *nodes*))

tql
(sum-queue-lengths
(1+ x)

(+ tql (queue-length (node-queue (get-node x)))))))
(defun iteratively-step-nodes (x)
(if (>= x (array-total-size *nodes*))
nil
(step-node x)
(iteratively-step-nodes (1+ x))))

Figure 2-19: Portion of CST that averages node queue lengths.

Average-Local-Buffer-Size
Enumerate-Nodes+
Compute-Average
Sum Sequence-and- divide sequcnc'e-size
Index-Enumeration ' !
X ! !
Summing \ array-total-size

I
I
|
|
|

_I_

Figure 2-20: Design tree for queue length averaging computation.
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(defun step-nodes ()
(when *profile* (profile-step))

(iteratively-step-nodes 0O 0)
. (/ *total-queue-length#*
(array-total-size *nodes*)) ...
L)
(defun iteratively-step-nodes (x tql)
(cond ((>= x (array-total-size *nodes*))
(setq *total-queue-length* tql)
nil)
(t (step-node x)
(iteratively-step-nodes
(1+ x)
(+ tql (queue-length (node-queue (get-node x)))))))

Figure 2-21: Optimization in which averaging is performed while advancing nodes.
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Figure 2-22: Design tree for optimized code, with shared sub-tree.
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(defun Splice-In-Bucket (Value Key Bucket-List Number-Entries)
(cond ((Empty-or-Low-Priority-Head? Key Bucket-List)
(values (cons (Make-Entry :Key Key :Value Value)
Bucket-List)
(1+ Number-Entries)))
((string= Key
(Entry-Key (car Bucket-List))) HA
(values (cons (Make-Entry :Key Key :Value Value)
(cdr Bucket-List))
Number-Entries))
(t (multiple-value-bind (New-Bucket-List Num-Entries)
(Splice-In-Bucket Value
Key
(cdr Bucket-List)
Number-Entries)
(values (cons (car Bucket-List) ;%
New-Bucket-List)
Num-Entries)))))

Figure 2-23: Code containing a redundant CAR computation.

(defun Splice-In-Bucket (Value Key Bucket-List Number-Entries)
(cond ((Empty-or-Low-Priority-Head? Key Bucket-List)
(values (cons (Make-Entry :Key Key :Value Value)
Bucket-List)
(1+ Number-Entries)))

(t (let ((This-Entry (car Bucket-List))) A
(cond ((string= Key
(Entry-Key This-Entry)) S

(values
(cons (Make-Entry :Key Key :Value Value)
(cdr Bucket-List))
Number-Entries))
(t (multiple-value-bind (New-Bucket-List Num-Entries)
(Splice-In-Bucket Value
Key
(cdr Bucket-List)
Number-Entries)
(values
(cons This-Entry New-Bucket-List) ;; *
Num-Entries)))))))))

Figure 2-24: Code in which the result of CAR is cached and reused.
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Chapter 3

The Flow Graph Formalism

GRASPR is able to tolerate many of the common types of program variations mentioned
in Section 2.3.1 by using a dataflow graph representation for programs and by using a
flow graph grammar to encode programming clichés. Program recognition is achieved by
parsing the dataflow graph in accordance with the flow graph grammar. There are several
advantages to using a graph grammar formalism to represent programs and clichés:

¢ Quasi-canonical form. Dataflow graphs abstract away irrelevant syntactic details and
give the representation programming-language independence.

¢ Localization. Dataflow graphs make dataflow dependencies explicit, imposing a partial
ordering on the program’s operations (rather than the linear, total ordering imposed
by text). The effect is that patterns that are textually delocalized (noncontiguous)
can often become localized in a flow graph where only essential dataflow relationships

are captured.

e Compact representation. Only primitive operations and dataflow between them are
represented by the graph.

¢ Iragmentary patterns can be represented without including unnecessary details.

¢ Hierarchical relationships can be drawn between graphs, with the graph grammar
formalism providing a firm mathematical basis.

In this chapter, we define the flow graph grammar formalism used to represent programs
and clichés. We present the basic formalism first and then describe extensions to it that allow
us to deal with variations due to redundancy versus structure-sharing, and variations in
aggregation organization. We then present a chart parser for flow graphs in this formalism.
Interleaved with the description of the formalism are sections that ground the description
in the concrete application of program recognition. These may help clarify and motivate
the restrictions on flow graphs and graph grammar rules. These sections are unnecessary
for understanding the general description of the formalism, which has a broad range of
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applicability to other problem domains besides program recognition (as discussed in Section

7.4). In the final section, we summarize related graph grammar research.

3.1

Flow Graphs

A flow graph is an attributed, directed, acyclic graph, whose nodes have ports — entry and

exit points for edges. Flow graphs have the following properties and restrictions:

1.

2.

Each node has a type which is taken from a vocabulary of node types.

Each node has two disjoint tuples of ports, called its inputs and outputs. Each port
has a type, taken from a vocabulary of port types. All nodes of the same type have
the same number and type of ports in their input and output port tuples. The size
of the input port tuple of a node is called the input arity of the node, while its output
arity is the size of the node’s output port tuple.

A node’s inputs (or outputs) may be empty, in which case the node is called a source

(or sink, respectively).

Edges do not merely adjoin nodes, but rather edges adjoin ports on nodes. All edges
run from an output port on one node to an input port on another node. The ports
connected by an edge must have the same port type.! (An exception to this is that a
port of the special designated type Any can connect to ports of any type.)

. More than one edge may adjoin the same port. Edges entering the same input port

are called fan-in edges, while edges leaving a common output port are called fan-out

edges.

. Ports need not have edges adjoining them. Any input (or output) port in a ﬂow graph

that does not have an edge running into (or out of) it is called an input (or output)
of that graph.

. Each flow graph has a vocabulary of attributes, which is partitioned into two disjoint

sets of node attributes and edge attributes. Each attribute has a (possibly infinite)
set of possible values. Associated with each node type is a finite subset of the node
attributes. These are the only attributes for which nodes of that type can hold values.
All edges hold a value for each of the edge attributes.

Flow graphs were first defined by Brotsky [15], drawing upon the earlier work on web
grammars [27, 94, 102, 105, 119]. Wills [144, 145] extended Brotsky’s definition so that flow
graphs can include sinks and sources (item 3 above), fan-in and fan-out edges (item 5), and
attributes (item 7).

'In the future, a type hierarchy system may be used to allow ports to be connected if one port’s type is

a subtype of the other’s.
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Figure 3-1: An example attributed flow graph.

Figure 3-1 shows an example flow graph. We refer to nodes by their node type. If
there are two nodes with the same type, we precede the node type with a unique label.
Ports are identified using numeric annotations on the nodes. Each numeric port identifier
is followed by a colon and the port’s type. The edges of the flow graph have been labeled
with subscripted “e”s.

Edge e5 connects two ports of type t3, while edge e4 connects a port of type t4 with one
of type Any. Edges e; and e; fan out of port 2 on node b, while edges es and eg fan into
port 1 of node g. Node d is a sink. Port 1 of node b is an input of the graph and ports 2
and 3 of node g are outputs of the graph. (Pictorially, we emphasize inputs and outputs of
the graph by drawing edge stubs adjoining them.)

In the figure, attribute-value pairs (in the form attribute:value) are shown in italics near
the node or edge which holds a value for the attribute. In this example, all node types have
the node attribute color. The node type ¢g additionally has the attributes age and size
and the node of type g in this particular graph has values 15 and 60, respectively, for these
attributes. All edges have the attribute distance.

Useful Definitions

A flow graph H is a sub-flow graph of a flow graph G if and only if H’s nodes are a subset
of G’s nodes, and H’s edges are the subset of G’s edges that connect only those ports found
on nodes of H.

Isomorphism can be defined between flow graphs using a variation of its standard def-
inition, which accounts for edges adjoining ports, rather than nodes. Two flow graphs Fy
and F; are isomorphic if and only if there is a one-to-one mapping ¢ of the nodes of F}
onto the nodes of F;, such that adjacency is preserved - i.e., the i** output of a node n, is
connected to the 7% input of a node ny in Fy if and only if the i* output of the node d(n1)
is connected to the j** input of the node ¢(n;) in Fy.
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3.2 Flow Graph Grammars

A flow graph grammar is a set of rewriting rules (or productions), each specifying how a
node in a flow graph can be replaced by a particular sub-flow graph. All rules in a flow graph
grammar rewrite a single left-hand side node to a right-hand side flow graph. The grammar
specifies which flow graphs are in a particular set of flow graphs, called the language of the
grammar.

In addition, the flow graph grammar may be attributed: Each rule can specify how
to compute attribute values of the rule’s nodes from the attributes of other nodes in the
rule. Each rule can also impose constraints on the attributes of the rule’s nodes. Every
flow graph in the language of an attributed grammar has attribute values that satisfy the
constraints of the rules generating the flow graph.

More precisely, a flow graph grammar G has four parts: two disjoint sets N and T of
node types, called non-terminals and terminals, respectively, a set P of productions, and
a set S of distinguished non-terminal types, called the start types of G. (By convention,
non-terminal types are denoted by capital letters, while terminal types are in lower case.)

Each production in P consists of the following five parts:

o A flow graph L, called the left-hand side, containing a single node having a non-

terminal type.

A flow graph R, called the right-hand side, containing nodes of non-terminal or ter-

minal types.

An embedding relation C which specifies the correspondence between the ports of L
and R.

o A set of attribute conditions, which impose constraints (in the form of relations) on

the attribute values of nodes and edges in R.

o A set of attribute transfer rules, each of which specifies the value of an attribute of
L’s node in terms of the attributes of the nodes and edges in R.

Sections 3.2.1 and 3.2.3 discuss the embedding relation and the attribute conditions and

transfer rules in more detail.

3.2.1 Embedding Relation

The embedding relation is necessary in flow graph grammar rules (unlike string grammar
rules) to provide connectivity information when an occurrence of a left-hand side is rewritten
during a derivation. It specifies how the ports connected to the left-hand side should be
connected to the right-hand side flow graph; and possibly to each other, when the left-hand

side is replaced by the right-hand side. (It is used in an analogous way in the reverse process
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of reducing an occurrence of a rule’s right-hand side to its left-hand side during recognition
or parsing.)

The embedding relation C is a binary relation on £ x R UL, where £ denotes the set of
left-hand side ports and R denotes the set of right-hand side ports of a rule. A left-hand side
port [; and a right-hand side port or another left-hand side port p; are said to “correspond”
if (I;,p;) € C. The embedding relation is restricted in the following ways.

1. If a left-hand side port corresponds to a right-hand side port, then both ports must
be of the same direction (input or output). If two left-hand side ports correspond to
each other, they must be of opposite directions.

2. More than one right-hand side port and/or left-hand side port may correspond to
the same left-hand side port. However, more than one left-hand side port may not

correspond to the same right-hand side port.

3. Each left-hand side port corresponds to at least one right-hand side or left-hand side
port. (A right-hand side port need not correspond to some left-hand side port.)

The right-hand side ports corresponding to ports on the left-hand side node need not be
inputs or outputs of the right-hand side graph (i.e., they may be connected to other ports
in the graph).

The definition of the embedding relation is extended (as described in Section 3.4.2) to
encode aggregation information. However, the extended relation still obeys these restric-
tions.

When a left-hand side port I3 corresponds with another left-hand side port Iy, the rule
is said to contain a straight-through (abbreviated “st-thru”). We discuss the significance of
st-thrus in the next section, where we describe how the embedding relation is used in the
derivation of flow graphs.

Figure 3-2 shows an example flow graph grammar. In this example, ports are referred
to as subscripted node types (e.g., a; refers to the port labeled 1 on the node with type a).
Port types are not shown. The port correspondences of each rule are indicated pictorially
by matching Greek letters. For example, left-hand side port A; corresponds to right-hand
side port a;. (This grammar does not have attribute conditions or attribute transfer rules,
so they are not shown. See Section 3.2.3 for the details of attribute handling and Figure
3-5 for a complete picture.)

By convention, when a port correspondence involves an internal right-hand side port
(not an input or output of the right-hand side graph), we draw an edge stub coming into
or out of that port. We annotate the edge stub with the port correspondence label. For
example, this is done in drawing the rule for non-terminal A in Figure 3-2. Also, when
two or more right-hand side ports correspond to the same left-hand side port, the edge
stubs from the right-hand side ports are drawn as if they are merged with each other. This
abbreviated notation is used, for example, in depicting the rule for B. (This makes it easier
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Figure 3-2: An example flow graph grammar.

to visualize how the right-hand side of a rule is embedded into a graph when the left-hand
side is expanded during derivation.)

Similarly, st-thrus are depicted as lines which do not adjoin any port, but which may
be merged with an edge stub and/or another st-thru. In drawings, they are annotated with
the pair of correspondence labels associated with the left-hand side ports that correspond.

The rule for F' contains a st-thru, since ports F; and Fy correspond.

3.2.2 Flow Graph Grammar Derivations

A flow graph is derived from a start type S, of a flow graph grammar by starting with a flow
graph containing a single node of type 5, and repeatedly applying the grammar’s rewrite
rules (productions) to the non-terminals in this graph until no non-terminals are left.

Each rewrite rule specifies how an isomorphic occurrence of the rule’s left-hand side L
can be replaced by the rule’s right-hand side graph R. The embedding relation C' of the
rule is used to embed R in the graph once L has been removed. In particular, for each
right-hand side port r; and left-hand side port /; related by C, r; is connected to all of the
ports that were connected to [; before L was removed.

In addition, if a left-hand side input port /; corresponds to a left-hand side output port
l;, then edges are drawn connecting each of the ports connected to /; to each of the ports
connected to [;. In other words, when a rule contains a st-thru, the embedding relation
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between the ports involved, /; and /;, imposes the constraint that the ports adjacent to ;
and /; become connected directly to each other when the left-hand side is rewritten.

For example, a sample derivation of a graph from the grammar of Figure 3-2 is shown in
Figure 3-3. When the non-terminal node A is expanded in the second step of the derivation,
A is removed from the graph, along with the edges adjoining its ports. Then the right-hand
side of the rule for A is added to the graph. Finally, edges are drawn between the right-hand
side ports ay, By, and a; and the ports to which A;, Ay, and As (respectively) had been
connected (i.e., z3, Fy, and F3).

In string grammars, the derivation tree is used as a canonical representation of equivalent
derivations, which abstracts away from the order in which productions are applied in the
derivations. It is useful to make use of a similar representation for flow graph derivations.

As in the string case, a derivation tree has vertices labeled with the node type of a
non-terminal that was expanded during the derivation. However, unlike the string case, the
children of each vertex are related in a partial ordering. The right-hand side graph in the
production for the vertex’s label defines this partial ordering. (Derivation trees are normally
shown without the edges between the nodes of the tree to reduce clutter.) For example, the
derivation sequence of Figure 3-3 is represented by the derivation tree of Figure 3-4.

3.2.3 Attribute Conditions and Transfer Rules

So far, we have discussed the aspects of flow graph grammars that impose structural con-
straints on the flow graphs in their languages, for example, by constraining their node types
and edge connections. This section describes how the non-structural aspects of a flow graph
are constrained. Attributes are used to represent information that cannot be adequately
expressed in the structure of a flow graph. Attribute conditions in grammar rules impose
constraints on these attributes.

The concept of an attributed string grammar was formalized by Knuth [77] as a way to
assign semantics to strings in a context free language. Attribute values are computed from
other attribute values within a rule. This is called attribute evaluation. The attributes that
are computed represent some aspect of the “meaning” of the string being parsed (e.g., the
decimal value of a binary number).

Since then, attribute grammars have been used extensively in such areas as pattern
recognition [16, 17, 39, 48, 86, 135], compiler technology [40, 41, 47, 68, 74, 78, 79], pro-
gramming environments [6, 28], software specification and development [38, 97, 98, 101, 131],
and test case generation [30]. Raiha [107] gives a bibliography of the early papers. These
systems use attribute grammars to deal with nonstructural, semantic properties of a pat-
tern and to reduce the complexity of the grammar. Much of the theoretical work in this
area has focussed on developing efficient attribute evaluation strategies [28, 68, 73, 109],
the complexity of checking that attribute grammars are well-formed [64], and assisting the

writing of attribute grammars which contain complex dependencies among the attributes
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Figure 3-4: An example derivation tree.

[29].

Our flow graph grammars are attributed grammars in the sense that their productions
contain attribute transfer rules for computing attribute values from the attribute values
of other nodes and edges within the rule. (These are also called “semantic rules” [77],
“attribute transfer functions” [16], or “attribute transfer specifications”[145].)

In general, attribute transfer rules can associate the attribute of some node or edge on
either side of a rule with a function for computing its value from the attributes of the other
nodes and edges (on either side) of the rule. Attributes that are computed for the left-hand
side node from the attributes of the right-hand side are called synthesized attributes. Those
that are computed for a right-hand side node or edge from the attributes of the left-hand
side node and/or other nodes and edges in the right-hand side are called inherited attributes.

Currently, the flow graph grammar used by the recognition system uses only synthesized
attributes. This is because our attributed flow graph grammars are not used so much for
computing attribute values, as for imposing constraints on the attributes of the flow graph
being parsed. Inherited attributes are useful if the value of an attribute involves complex
dependencies across the derivation tree. However, the attribute values computed in the
current system are based on simple relationships among attributes. Synthesized attributes
are adequate.

Constraints are imposed on attributes in the form of attribute conditions on grammar
rules. Attribute conditions are relations on the attribute values of the nodes and edges of a
flow graph grammar rule’s right-hand side. They specify constraints that must be satisfied
by the attributes of a flow graph if it is in the language of the grammar. (These are also
called “context conditions” [68], “constraints” [145], and “applicability predicates”[16].)

The attribute conditions and attribute transfer rules of a production are used primarily
during parsing. (They can be used during generation to produce a set of conditions that
must be satisfied by the attribute values of the flow graph generated. However, this is not
how they are typically used.)

A parser for an attributed grammar engages in the following three activities when given
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Attribute-Conditions:
Color(b) = Color(A) = Color(g)
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Color(S) := Color(A)

Attribute-Conditions:
o Distance( <a3 . dl >) < Distance( <h2 . (5 >)

B
o B g Attribute-Transfer Rules:
@ # @ Color(A) := f(Color(a), Color(h))

Figure 3-5: An example attributed flow graph grammar.

a string (or graph, in the case of attributed graph grammars) z:

1. Structural analysis — recover a derivation of z from a start type of the grammar and
create a derivation tree to represent the derivation. If no derivation tree is found,
reject © for membership in the language of the grammar. (This is the usual activity
performed by recognizers for non-attributed grammars.)

2. Attribute evaluation — propagate attribute values throughout the derivation tree in
accordance with the attribute transfer rules. Values for synthesized attributes move
upward as a function of the attribute values of the descendants of a node, while
inherited attribute values move downward from the ancestors.

3. Attribute condition checking — maintain the invariant that if all attribute values are
known for the attributes related by an attribute condition, then the condition must
hold. If a condition fails to hold, reject z.

If the recognizer finishes with an attributed derivation tree for z and all attribute con-
ditions of all productions involved are satisfied, then & is recognized as a member of the
language.

For example, Figure 3-6 shows the derivation tree that would result from parsing the
attributed flow graph in Figure 3-1 in accordance with the grammar of Figure 3-5. The
edges are drawn between the leaves of the derivation tree to show the edge attributes that
are involved in the parse. Dashed arrows show the propagation of attribute values.

The three parsing activities can be interleaved. The interleaving is particularly simple
in our parser, since only synthesized attributes are used. All attribute values of a derivation
node depend only on the attributes of the node’s descendants. Attribute conditions can

be checked as soon as the right-hand side of a rule is recognized. Attribute values can
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Figure 3-6: An attributed derivation tree.

be computed and transferred to the left-hand side node during the reduction of the right-
hand side to the left-hand side. Because the attribute condition checking is folded into the
structural parsing process (i.e., conditions are checked each time a reduction is attempted),
invalid parses can be cut off early.

In the future, if inherited attributes are needed, a more sophisticated attribute evaluation
and condition checking strategy will need to be employed (for example [28, 68, 73, 109]).

3.3 Motivations for Formalism: Program Recognition Ap-

plication

So far, the basics of the flow graph formalism have been described. There are two major
extensions to this formalism that increase the class of low graphs and grammars that can
be succinctly expressed in it. However, before they are described, this section briefly shows
how the basic formalism is used in a particular application domain. This provides some
rationale for the restrictions on the grammar formalism that have been described so far.
(This section is not needed to understand the extensions. It may be read after the extensions
have been discussed.)

We apply the flow graph formalism to the representation of programs and programming
clichés. In particular, flow graphs serve as graphical abstractions of programs, flow graph
grammars encode allowable implementation steps between abstract operations and lower-
level operations, and the derivation trees resulting from parsing give the program’s top-down

design.
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(DEFUN RIGHTP (HYPOTENUSE SIDE1 SIDE2)
(LET* ((HYP-SQ (SQ HYPOTENUSE))
(DIFF (- HYP-SQ
(+ (sq SIDE1)
(sQ SIDE2))))
(DELTA (IF (< DIFF 0)
(NEGATE DIFF)

DIFF)))
(IF (<= DELTA (* HYP-SQ 0.02))
T
NIL)))

Figure 3-7: Testing whether the three input sides form a right triangle.

The flow graph is used to represent the operations of a program and the dataflow between
them. Each non-sink node in a flow graph represents a function, with ports on the node
representing distinct inputs and outputs of the function. The ports’ types are determined
by the signature of the function. Sink nodes represent conditional tests. The edges of a
flow graph represent dataflow constraints between the functions and tests. When the result
of a function is consumed by more than one function, the edges representing the dataflow
fan out. Edges that fan in represent the conditional merging of more than one dataflow.

For example, Figure 3-8 shows the flow graph representing the code shown in Figure
3-7.2 RIGHTP determines whether the inputs could be the lengths of the sides of a right
triangle. It checks whether the square of HYPOTENUSE is approximately equal to the sum of
the squares of SIDE1 and SIDE2.

Two special nodes of type $B$ and $E$, which are not in N UT cap the ends of the
flow graph. These hold ports that represent the input and output values of data consumed
or produced by the code. These nodes make it easy to represent the fan-out of input data
to more than one function and the conditional fan-in of output data. For example, port 1
on $ES§ receives fan-in representing the conditional output of either constant T or NIL.

Attributes on nodes and edges are used to capture characteristics of a program that
cannot be adequately expressed in the structure of a flow graph. Control flow information
is stored in the attributes of the flow graph representing a program. Each node has a
control environment attribute whose value indicates under which conditions the operation
represented by the node is executed. Nodes in the same control environment represent
functions that are all executed under the same conditions. (Section 4.1.1 describes the
vocabulary of attributes and attribute conditions used by the recognition system in more
detail.)

Sink nodes, representing conditional tests, carry two additional attributes, success-ce

*The function RIGHTP is taken from Problem 3-9 (p.42) in [148].
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constant-type: 0.02

success-ce: ce4
Jailure-ce: ceS

ce!cel success-ce: ce2
Jailure-ce: ce3

Figure 3-8: Attributed flow graph for RIGHTP.

and failure-ce. These specify the control environments whose operations are executed when
the conditional test succeeds or fails, respectively.

Each edge holds a ce-from attribute which indicates the control environment in which
the edge carries dataflow. (In Figure 3-8, only ce-from attributes of edges that fan-in are
shown, to reduce clutter. The edges that do not fan-in all have ce; as their ce-from attribute
value.)

Each edge also carries a constant-type attribute whose value is either a constant (such as
T, NIL, 0) or undefined, depending on whether the edge represents dataflow from a constant.
For edges whose source is not a port on node $B$, the constant type is always undefined.
This attribute is not shown in Figure 3-8 for edges for which its value is undefined.

Program clichés are encoded in flow graph grammar rules. Informally, a rule can be seen
as specifying how an abstract operation, represented by the rule’s left-hand side node, is im-
plemented in terms of lower-level operations, represented by the right-hand side flow graph.
(Section 4.1 gives more details of how this is done, as well as other relationships between
clichés, besides implementation relationships, which are captured in grammar rules.)

Figure 3-9 shows a grammar containing a rule that represents the common cliché of
testing whether two numbers are within some “epsilon” of each other. The rules representing
two common implementations of the Absolute Value cliché demonstrate that the grammar
allows us to modularly specify implementation variations. The rules have typical embedding
relations. In the rule for Negate-if-Negative, two right-hand side ports (<; and negate;)
correspond to the same left-hand side port. This represents the constraint that the input
to an isomorphic instance of the right-hand side must come from a source that fans out to
both <; and negate;.

The rule for Negate-if-Negative also has a right-hand side port (<3) that does not
correspond to any left-hand side port. This right-hand side port represents the input coming
from the constant 0. It is important that in our formalism a right-hand side port is not
required to correspond to a left-hand side port, since otherwise we would have to add an
input to Negate-if-Negative to correspond to <. This would destroy the modularity of the
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Attribute—Transfer Rules:

ce := ce(null—test).

success—ce := failure—ce(null—test).
failure—ce := success—ce(null—test).

Negate—if—
Negative

Attribute—Transfer Rules:
ce := ce(Negate—if—Negative).

Square—
1 Root-
of-Square

2

Attribute—Transfer Rules:
ce := ce(Square—Root—of-Square).

(o,B)

1 Negate—if—
Negative

Attribute—Conditions:

1. Second input to *‘<”’  receives constant type = 0.
2. Data flows out from “‘negate’’ in failure—ce(null—test).
3. Data flows straight—through from input to output in success—ce(null—test).

Attribute—Transfer Rules:
ce := ce(null-test).

Square—
1 Root-
of-Square

Attribute—Transfer Rules:
ce := ce(SQRT).

Figure 3-9: Flow graph grammar encoding clichés found in RIGHTP.
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grammar, since the extra input must be propagated up through the rules that use Negate-if-
Negative. We would need to add an input to the Absolute-Value node, but this extra input
would be meaningless for Absolute-Value’s other implementation as Square-Root-of-Square.

The rule for Negate-if-Negative also shows how st-thrus are used to represent clichéd
operations in which some of the input data is not acted upon, but passes directly to the
output.

This grammar also shows typical attribute conditions and attribute transfer rules.
(These are stated informally in English in Figure 3-9. Section 4.1.1 gives a more formal
description of the actual attribute language used in encoding clichés.) A typical attribute
condition placed on an edge’s attribute in a grammar rule is that it must carry dataflow in
a particular control environment (e.g., the failure-ce of some test).

Attribute conditions and transfer rules may refer to attributes of nodes and edges of the
rule’s right-hand side. In addition, they may refer to edges in the input graph whose sources
or sinks match the inputs or outputs of the rule’s right-hand side, or to edges matching st-
thrus. For example, the rule for Negate-if-Negative constrains the input to <, to come from
a constant source of type 0. It also constrains the ce-from attribute of edges whose sources
match negates and of edges matching the st-thru.

3.3.1 The Partial Program Recognition Problem

We formulate the problem of recognizing clichés in programs in terms of solving a parsing
problem for flow graphs. This section defines these problems.

The parsing problem for flow graphs is: Given a flow graph F and a flow graph grammar
G, if F is in the language of G, then produce all possible parses for F (i.e., all possible
derivation trees that yield F).

The subgraph parsing problem for flow graphs is: Given a flow graph F and a flow graph
grammar G, find all possible parses of all sub-flow graphs of F that are in the language of
G.

There are two types of program recognition: total, in which the entire program is rec-
ognized as a single cliché, and partial, in which the program may contain unrecognizable
parts but as much of the program as possible is recognized as one or more clichés.

The total recognition problem for programs is: Given a program and library of clichés,
determine which clichés in the library are instantiated by the program as a whole. (Usually
a single program is recognizable as an instance of only one cliché, but this general definition
includes cases in which a program can be viewed in more than one way.)

The partial recognition problem is: Given a program and a library of clichés, find all
instances of the clichés in the program (i.e., determine which clichés are in the program and
their locations).

In this work, we are more interested in the partial recognition problem for programs.

(The total recognition problem is subsumed by it.) When we say “program recognition” we
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Figure 3-10: Clichés recognized in RIGHTP.

mean partial program recognition.

The partial program recognition problem is solved by formulating it as a subgraph
parsing problem: Given a flow graph F representing the program’s dataflow and a cliché
library encoded as a flow graph grammar G (with all non-terminals that represent clichés
as start types), solve the subgraph parsing problem on F and G.

The derivation trees that are produced are called design trees. The root of the tree
identifies a particular cliché that was recognized and the yield of the tree indicates where
the cliché was found. Intermediate non-terminals in the tree indicate the subclichés that
implement the cliché that was found. Thus, casting partial program recognition as a parsing
problem yields as output not only the set of clichés and their locations, but also relationships
between the cliché instances.

For example, Figure 3-10 shows the design tree produced by partially recognizing the
program RIGHTP, represented as the flow graph in Figure 3-8 and using the graph grammar
of Figure 3-9.

When a program is partially recognized, one or more sub-flow graphs of the program’s
flow graph encoding are recognized as members of the language of the graph grammar which
encodes the cliché library. From the definition of a sub-flow graph, we can see that it is
possible to ignore portions of a flow graph before and after a recognizable sub-flow graph,

as well as portions that fan out from or into an internal port in the sub-flow graph.

3.4 Extensions to the Flow Graph Formalism

The next two sections discuss two major extensions to the flow graph grammar formalism
described so far. The first extension follows closely an extension made by Lutz [90] to a
graph formalism similar to ours, while the second is novel to our research. The extensions
are the following.
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1. We expand the language of a flow graph grammar to include all flow graphs derivable
not only from a start type of the flow graph grammar, but also from flow graphs that
are “share-equivalent” to a sentential form® of the grammar. The notion of share-
equivalence captures the types of variation due to structure-sharing that the extended
formalism abstracts away. In a structure-sharing flow graph, a node plays the role
of more than one node of the same type by generating output that fans out or by

receiving input that fans in.

2. We extend the expressiveness of the flow graph grammar to allow it to capture the
rewriting of a single input (or output) of a non-terminal node into an aggregation of
inputs (or outputs) of a sub-flow graph. We then further expand the language of a
flow graph grammar to include all flow graphs that are “aggregation-equivalent” to
the flow graphs derivable from the grammar. The notion of aggregation-equivalence
defines the variation tolerated in how aggregates are organized.

In the program recognition application, the first extension is needed to deal with varia-
tion due to the common engineering optimization of function-sharing. The second extension
is important in being able to represent and recognize clichéd operations on aggregate data
structures.

These extensions to the formalism are described in this section. However, the mecha-
nisms by which the parsing problem is solved for flow graphs in the extended formalism
are described in Section 3.5, after the parsing process for the basic unextended formalism
is presented.

We make these extensions to remove some forms of variation between semantically equiv-
alent programs that are not abstracted away by the graph representation alone. We essen-
tially do this by imposing an equivalence relation on the graphs representing the programs.
Alternatively, we could impose the equivalence relation at the source text level by trans-
forming program expressions directly. For example, a great deal of work has been done in
the term rewriting area [60, 61, 75]. These techniques are good for canonicalizing localized
parts of a program (e.g., by algebraic simplification and normalization). However, if the
expression that we want to rewrite is delocalized and interleaved with unrelated expres-
sions, we need to first apply subexpression shuffling and copying transformations to localize
it. This is avoided in the graph representation which tends to localize related operations.
Expression-based techniques also fall prey to syntactic variation. It would be useful to
combine the expression-based rewriting techniques with graph-based parsing. One way is
to canonicalize the text as much as possible first and then convert to the graph-based repre-
sentation and parse. Another is to interleave the two (maintaining multiple representations)
so that expression-based simplifications and normalizations can be done to aid recognition

and the graph-based representation can localize expressions to rewrite and abstract away

3A sentential form of a graph grammar is any flow graph that is derivable from a start type of the
grammar by the application of zero or more productions of the grammar.
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Figure 3-11: These flow graphs should all be seen as equivalent.
syntactic differences.

3.4.1 Structure-Sharing

Flow graphs can be used to represent collections of components having inputs and outputs
that are produced or consumed by each other. In using this representation, we would like
to be able to view a flow graph in which two or more components of the same type are
collapsed into a single shared component as being equivalent to a flow graph in which the
two components are not collapsed. See Figure 3-11.

This is important in dealing with variation due to function-sharing, in engineering ap-
plications of the formalism. Function-sharing is a common engineering optimization made
during design, in which one component fulfills more than one purpose. For example, in an
optimized program, two or more functions may be applied to the result of a single (shared)
function application.

We employ a notion of share-equivalence to capture the relationship between flow graphs,
such as those in Figure 3-11. This notion was introduced by Lutz [90] for graphs similar to
ours. Share-equivalence is defined in terms of a binary relation collapses (denoted <1) on
flow graphs. Flow graph Fj collapses flow graph F3 if and only if there are two nodes n;
and ny of the same node type t in F3, having input arity I and output arity O, such that
all of these conditions hold:

1. Either one or both of the following are true:

(a) Vi = 1...I, the i*" input port of n; is connected to the same set of output ports
as the i** input port of n,.

(b) Vj = 1...0, the j** output port of n; is connected to the same set of input ports
as the j** output port of n,.

2. Fi can be created from F; by replacing n; and ny with a new node n3 of type t with
the i** input (resp., output) of n3 connected to the union of the ports connected to
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Figure 3-12: a) A grammar. b) Its core language. ¢) Some flow graphs in its expanded

language.

the it* inputs (resp., outputs) of n; and n,.

3. The attribute values of n; and ny can be “combined.” This is done by applying an
attribute combination function, which is defined for each attribute, to the attribute
values of #; and ny. The attribute combination functions may be partial functions. If
the function is not defined for ny and ny’s attributes, then the attribute values cannot

be combined (and F; does not collapse F3).

For example, in Figure 3-11, Fj collapses F; which collapses F3. Performing the trans-
formation in condition 2 from F3 to Fj is called “zipping up” F3. Its inverse is referred to
as “unzipping”.

The reflexive, symmetric, transitive closure of collapses, <*, defines the equivalence
relation share-equivalent. (In Figure 3-11, Fy, F,, and F; are all share-equivalent.)

The directly derives relation (=) between flow graphs is redefined as follows. A flow
graph F directly derives another flow graph F if and only if either F3 can be produced by
applying a grammar rule to Fy, Fy < Fy, or F5 4 Fj.

As in string grammars, the reflexive, transitive closure of =, is the derives relation (=*).
The language of a flow graph grammar G (denoted L(G)) is the set of all flow graphs, whose
nodes are of terminal type and which can be derived from a start type of G.

Thus, the notion of a language of a flow graph grammar G has been extended to include
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Figure 3-13: a) A grammar. b) A derivation sequence. c) A derivation graph representing

the derivation.

flow graphs that are generated by a series of not only production rule applications but
also zip-up and unzipping transformations. Since a zip-up or unzipping step can happen
anywhere in the derivation sequence, the language of a graph grammar G in this extended
formalism is a superset of the set of flow graphs share-equivalent to flow graphs in the
“core” language of GG in the unextended formalism. For example, the flow graphs in Figure
3-12c are included in the language of the grammar in Figure 3-12a, even though they are
not share-equivalent to either of the flow graphs in the grammar’s core language, shown in
Figure 3-12b.

Both generators and parsers for the language of a flow graph grammar can interleave
zipping and unzipping transformation steps with their usual expansion and reduction steps.
The parser used by the program recognition system reported here simulates the introduction

of these transformations into its reduction sequence, as is described in Section 3.5.1.

Structure-Sharing Derivation “Trees”

The extensions to the language of a flow graph grammar affect how equivalent derivation
sequences are captured in a single canonical tree representation. Because flow graph zip-up
can occur as part of a derivation sequence and this results in a shared subderivation, the
representation of a derivation as a treeis no longer possible. Derivations must be represented
as graphs. For example, see Figure 3-13.

In addition, there may be different derivation graphs, depending on when unzipping

is done in the derivation sequence. For example, Figure 3-14a shows a simple flow graph
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grammar and Figure 3-14b gives two possible derivation sequences. In the first sequence,
the unzipping transformation happens in the second step. In the second derivation se-
quence, this transformation happens in the third step. An unzipping step is represented in
a derivation graph by a vertex that is a group of instances of that vertex, each with its own
sub-derivation. The two derivation sequences are represented by the two derivation graphs
in Figure 3-14c.

We arbitrarily choose those derivation graphs as canonical that represent derivation
sequences in which unzipping occurs at the earliest possible moment in the derivation se-
quence (i.e., unzip a non-terminal before it is expanded). In our example, the derivation

graph on the left is taken as canonical.

3.4.2 Aggregation

Grammar rules in our flow graph formalism specify how a non-terminal node can be rewrit-
ten as a particular grouping of terminal and non-terminal nodes (in the form of a flow
graph). We now extend it to also specify how a single input or output of a non-terminal
node can correspond to an aggregation of the inputs or outputs of a flow graph to which
the non-terminal node is rewritten.

In engineering application domains, this is useful in representing not only how aggrega-
tions of components make up a higher-level component, but also how the inputs and outputs
of the components are aggregated into fewer, more abstract types of inputs and outputs
of the higher-level component. In the programming domain, for example, the Circular In-
dexed Sequence Insert cliché has two inputs: an element to insert and a clichéd aggregate
data structure (the Circular Indexed Sequence). The insert is implemented by a group of
primitive operations with several of their inputs representing the various parts aggregated
by the single Circular Indexed Sequence data type.

This section first considers a way to capture the aggregation of port types without
extending the formalism. This is found to be too intolerant of the variation that may
exist in the way port types are aggregated. However, it provides useful insights into what is
required to handle the variation. In particular, a notion of aggregation-equivalenceis defined
to relate flow graphs that differ only in how they aggregate port types. The language of a
flow graph grammar is expanded to consist of all flow graphs aggregation-equivalent to flow
graphs derivable from a start type of the grammar.

Using Make and Spread Nodes

This section sets up a straw man which is a simple way to capture the aggregation of
port types into a single, more abstract port type without extending the graph grammar
formalism. This technique will work in restricted cases. However, as the next section
shows, it is too intolerant of variations in the organization of aggregates.

A simple way to capture the aggregation of port types into fewer, more abstract port
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types is to use special nodes, called Make and Spread nodes. A Make node represents the
aggregation of input port types into the output port type, while a Spread node represents
the decomposition of the input port type into the output port types.

Each Make node has a tuple of input ports whose types compose the type of the Make’s
single output port. The node type of a Make node is defined by the ordered tuple of its
output ports’ types and its aggregate input port’s type. Two Make nodes match if they
collect the same tuple of input port types into the same aggregate output port type. Spread
nodes are analogous to Make nodes, but have a single input port of aggregate port type
and a tuple of output ports which have types composing the input port’s type.

Make and Spread node types come in pairs, called corresponding pairs. For each Make
node type, there is a corresponding Spread node type (and vice versa) for the same aggregate
type, such that the i** input of the Make corresponds to the i** output of the Spread in that
they have the same port type and represent the same part of the aggregate port type.

Using Make and Spread nodes, we can now write production rules such as the ones
shown in the grammar of Figure 3-15. For example, in the right-hand side of the rule for
A, Spread and Make nodes explicitly show how the inputs and outputs of nodes a and b
are aggregated into the abstract port type P. This port type is the type of both the input
and the output of the left-hand side node A. These types of rule require no extension to
the graph grammar formalism describe in Section 3.2. Fj in Figure 3-16 is the (only) flow
graph in the language of the grammar in Figure 3-15.

To simplify the discussion, we assume right-hand sides only have Spreads and Makes
on fringes and that no nesting of Spreads or Makes occurs on any right-hand side. A flow
graph grammar can always be transformed so that this is true.

We also assume that abstraction monotonically increases as we move up through the
grammar rules. Left-hand side port types are always either aggregates of (i.e., more ab-
stract than) their corresponding right-hand side port types or are of the same type as their
corresponding right-hand side port types. Right-hand side port types are never aggregates
of left-hand side port types. This means no flow graph in the language of a flow graph
grammar has inputs going to a Make node or outputs coming from a Spread node.

Problems Due to the Inflexibility of Makes and Spreads

The flow graph F} in Figure 3-16 is the only one derivable from the start type S. However,
we would like to expand the language of the grammar to include flow graphs that differ
from this one solely in the way port types are aggregated within the graph. In particular,
the organization of aggregated port types may vary in any of the following ways:

1. Port types may be aggregated in any order, since aggregation is commutative. For
example, flow graph F; in Figure 3-16 aggregates types z and y into P in the opposite
order in which Fj does.
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are flow graphs aggregation-equivalent to it.
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2. Aggregations of port types may be nested within other aggregations and the organi-
zation of this nesting does not matter, since aggregation is associative. For example,
flow graph F3 aggregates y and w into type R and then aggregates  and R, while Fy
groups together z and y into P which is then aggregated with w.

3. Port types might not be aggregated at all. For example, flow graph F} is a variation of
flow graph Fj in which no aggregation is done. A special case of this type of variation
is the variation due to the choice of which compositions of Spreads with Makes (and
vice versa) to simplify. For example, flow graph Fj results from the simplification of
Fy’s composition of a Spread with a Make.

Aggregation-Equivalence

We would like the flow graphs F»,..., F5 to be in the language of the grammar of Figure
3-15, not just Fy. To describe the relationship between these flow graphs, we define the
equivalence relation aggregation-equivalent on flow graphs.

First, we need to define the following terms.

o A Make-of-Spread composition is a Spread node connected to a Make node of cor-
responding type via edges between their corresponding part type ports. More pre-
cisely, a Make-of-Spread is a corresponding pair of Make and Spread nodes, such that
Vi = 1,...,m, the i** output of the Spread node connects directly to the ** input of
the Make node and there are no other edges adjoining these ports (where m is the
number of part port types aggregated).

o A Spread-of-Make composition is analogous. It is a Make node connected to a Spread
node of corresponding type via an edge between the Make’s output port and the
Spread’s input port.

Now we can define the reflexive, symmetric, transitive relation aggregation-equivalent.
A flow graph F is aggregation-equivalent to another F, (denoted F; =4 F3) if and only if
there exists a flow graph Fj3, such that F; and F, can each be transformed to a flow graph

isomorphic to F3, using a (possibly empty) sequence of the following transformations:

1. For some corresponding pair of Spread and Make node types, T's and Ths, permute the
outputs of all (Spread) nodes of type T's and the inputs of all (Make) nodes of type
Tar, keeping connections intact and using the same permutation for all the Spreads
and Makes. (The flow graphs F} and F; in Figure 3-16 can be transformed into each
other using this transformation.)

2. For all compositions of Spread nodes, replace the composition sub-flow graph with a
single Spread whose output arity, m, is the number of outputs of the sub-flow graph
and Vi = 1,...,m, the i** output of the new Spread has the same port type and
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Figure 3-17: F3 and Fj can be transformed to this flow graph by flattening nested Makes
and Spreads.

connections as the i** output of the sub-flow graph. Flatten all compositions of Make
nodes analogously. (This can be used to transform Fy to Fg (shown in Figure 3-17)
and F3 to Fg, so F; =4 F3 in Figure 3-16.)

3. For any Make-of-Spread composition, replace the Make-of-Spread composition with
edges from the ports adjacent to the input of the Spread to the ports adjacent to the
output of the Make.

4. For any Spread-of-Make composition, replace the Spread-of-Make composition with
new edges drawn in the following way: Vi = 1, ..., m connect the ports adjacent to the
it" input of the Make to the ports adjacent to the i** output of the Spread (where
m = the Make’s input arity = the Spread’s output arity). (F5 results from applying
this transformation to Fy in Figure 3-16.)

5. Remove any Spread node whose input is an input of the flow graph and remove any
Make node whose output is an output of the flow graph. (F5 can be transformed to
F4 by using this transformation and by removing the Spread-of-Make composition.)

Transformations 1 and 2 allow variation due to commutativity and associativity of ag-
gregation, respectively, while conditions 3 and 4 allow variability in the simplification of
Spread-Make compositions. Transformation 5 is needed to allow flow graphs, like Fy, that
use no aggregation to be in the language of a grammar that aggregates port types.

We will call the first transformation the permutation transformation, since it permutes
the part port tuples of Makes and Spreads. The rest of the transformations are aggregation-
removal transformations. We will call the inverse of aggregation-removal transformations
aggregation-introduction transformations, since they insert Spreads and Makes into a flow
graph.

We can use the aggregation-equivalence relation to expand what we mean by the lan-
guage of a flow graph grammar. If we call the set of flow graphs derivable from the graph
grammar (using the “derives” relation defined in Section 3.4.1) the “core” language of the
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grammar, then we can define the language of the grammar to consist of all flow graphs
aggregation-equivalent to flow graphs in the core language.

Useful Definitions and Facts

A flow graph Fj is said to be less-aggregated than another F, if and only if F} can be
generated from F;, by applying any of the aggregation-removal transformations above. This
relation is transitive. If there is no flow graph less-aggregated than a flow graph F, then F
is said to be minimally-aggregated. '

There is only one minimally-aggregated flow graph less-aggregated than or isomorphic
to a particular flow graph that can be obtained by the aggregation-removal transformations.
(However, there may be more than one minimally-aggregated flow graph less-aggregated or
isomorphic to a particular flow graph F' that is aggregation-equivalent to F. These can be
transformed into one another by applying the permutation transformation.)

Whether the minimally-aggregated flow graph has any Spreads or Makes depends on
whether the formalism allows ports on terminal nodes to have aggregate port types. If
terminal nodes have no ports of aggregate type, then minimally-aggregated flow graphs will
have no Spreads or Makes.

To see this, suppose we have a minimally-aggregated flow graph F, with a Spread or
Make node n. The node n cannot be on F’s fringe since otherwise it could be removed
by Transformation 5 to create a flow graph less-aggregated than F. So, n must be an
internal node. It must also be flat (i.e., it is not nested with another Spread or Make node),
since otherwise Transformation 2 could be applied to create a less-aggregate flow graph.
Since n is internal, its aggregate port p; is connected to another port ps, which must be of
aggregate port type. However, po must be the aggregate port of a node of corresponding
Make or Spread type, since only Spreads and Makes can have ports of aggregate type. This
would mean F contains a Spread-of-Make composition, which means F is not minimally-
aggregated. Therefore, a minimally-aggregated flow graph cannot contain a Spread or Make
node if there are no aggregate port types allowed on terminal nodes.

On the other hand, if terminal nodes have ports of aggregate type, then minimally-
aggregated flow graphs might have one or more Spread or Make nodes. Using reasoning
similar to that above, we can see that all Spread or Make nodes would be internal and flat,
with their aggregate port connected to ports on terminal nodes that are not Spread or Make
nodes.

These facts are useful in developing a recognizer for languages of flow graph grammars
that aggregate port types.

Recognizing Aggregation-Equivalent Flow Graphs

A generator or parser for the language of a flow graph grammar may perform the permu-

tation, aggregation-introduction and aggregation-removal transformations as steps in their
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derivation or reduction sequence. Because there are many possible orderings in which to
apply the transformations and because doing this efficiently involves an extension to the
embedding relation of the graph grammar formalism, it is important to discuss how such a
recognizer is constructed. (A generator for the language is not described here, since we are
more interested in building recognizers for languages than we are in constructing language
generators, for the purposes of program recognition. A generator can easily be imagined by
reversing the recognition process.)

One way a recognizer for the language can work, given an input flow graph F, is in two
stages. The first would apply some sequence of the permutation, aggregation-removal and
aggregation-introduction transformations to F to produce a flow graph F’, while the second
would apply a recognizer for the core language to F’. A flow graph F would be recognized
if a sequence of transformations is found which yields a new flow graph F’ that is accepted
by a recognizer for the core language. Unfortunately, the first stage could involve a great
deal of search to find the appropriate transformation sequence.

A more promising approach is to divide up the stages differently so that no choices need
to be made. In the first stage only aggregation-removal transformations that work “down-
ward” by creating less-aggregated flow graphs are applied until a minimally-aggregated flow
graph is obtained. Then in the second stage, the aggregation-introduction and permutation
transformations are interleaved with the reduction actions of the recognizer for the core
language. The idea is that the grammar rules can provide guidance as to what to aggregate
and how to organize the aggregation so that the flow graph will be recognizable as a member
of the core language. The aggregation guidance is found in the Spreads and Makes of the
rule’s right-hand side. This section gives the details of how the interleaving of recognition
with aggregation-introduction transformations works.

This is explained first for a restricted formalism in which no terminal nodes have ports of
aggregate port type and the union port type Any is a union of only primitive (non-aggregate)
port types. This simplifies the discussion since each minimally-aggregated flow graph in the
language of the graph grammar contains no Spreads or Makes.

Then a second formalism is considered in which the restriction is relaxed to allow the
type Any to be a union of all port types (including aggregate port types). This formalism
is still restricted in that the only (possibly) aggregate port type a (non-Spread, non-Make)
terminal node’s port may have is Any. In this case, the minimally-aggregated flow graphs
in the graph grammar’s language might contain Spreads and Makes. However, as discussed
above, these Spreads and Makes will each be flat and internal. Each Spread node must have
its input aggregate port connected to a port of type Any. The same must be true for each
Make node’s output aggregate port.
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(DEFUN POP-TWICE2 (STK)
(LET* ((FIRST (AREF (STACK-ELTS STK)
(STACK-PTR STK)))
(NEW-STK (MAKE-STACK :ELTS (STACK-ELTS STK)
:PTR (1+ (STACK-PTR STK))))
(SECOND (AREF (STACK-ELTS NEW-STK)
(STACK-PTR NEW-STK)))
(NEWER-STK (MAKE-STACK :ELTS (STACK-ELTS NEW-STK)
:PTR (1+ (STACK-PTR NEW-STK)))))
(VALUES FIRST SECOND NEWER-STK)))

(DEFUN POP-TWICE (A I)
(LET* ((FIRST (AREF A I))
(NEW-I (1+ I))
(SECOND (AREF A NEW-I))
(NEWER-I (1+ NEW-I)))
(VALUES FIRST SECOND A NEWER-I)))

Figure 3-18: Two programs each performing two consecutive Stack Pops.

What the Restrictions Mean in the Program Recognition Application

These two restricted formalisms are sufficient for capturing the types of aggregation that
arise in dataflow graphs representing programs that operate on aggregate data structures.

Allowing only non-aggregate port types on terminals, although restrictive, is still very
useful in representing a wide class of programs and clichés in the program recognition
domain. For example, the minimally aggregated flow graph for both of the programs shown
in Figure 3-18 is given in Figure 3-19. (Attributes are not shown.) Each program can be
recognized as a Stack Pop, followed immediately by another Stack Pop, where the Stack is
implemented as an Indexed Sequence aggregate data cliché whose parts are an Index (an
integer) and a Base (a sequence).

(When we create the minimally-aggregated flow graph representing a program that uses
user-defined aggregate data structures, we remove Spread and Make nodes, which contain
naming information that is useful for presenting the results of recognition. We convert this
information to another form (attributes). See Section 4.2.3 for a discussion of how this
information is used.)

The second less-restrictive formalism is useful in representing programs in which ag-
gregate data structures are collected into primitive data types such as arrays and lists (in
Common Lisp). The accessors and constructors of these primitive data types (e.g., CAR,
CONS, AREF) are primitives. They cannot be treated like Spreads or Makes of aggregate data

structures that have fixed, named parts, because their “parts” are accessed and inserted
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Figure 3-19: The flow graph for the programs POP-TWICE and POP-TWICE2.
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Message

Time:
Integer

Spread-Event

Figure 3-20: Flow graph with a node whose output port is of type Any.

at variable, computed positions. These primitive accessors and constructors have ports of
type Any.

For example, the code fragment (> New-Time (Event-Time (car Event-Queue))) is part
of a program for inserting a user-defined data structure, called an Event, into a Priority
Queue which is implemented as an Ordered Associative List. The Event has parts Time
(an integer) and Object (a Message, which is a user-defined type). The Event is treated as
a priority queue element, whose priority is the Time part. This code fragment is testing
whether the first element of the input list, Event-Queue, has a Time part less than the value
of New-Time (which is the Time of the event being inserted).

The attributed flow graph representing this code fragment is shown in Figure 3-20. Its
CAR has an output of type Any. (Rather than numeric port labels, the Spread in this example
uses mnemonic names, such as Time, for clarity.)

No Aggregate Port Types on Terminals

This section shows how the actions of a recognizer for the core language are interleaved
with aggregation-introduction transformations in a formalism that does not allow ports of
aggregate type on terminal nodes.

Since minimally-aggregated graphs have no Spreads or Makes, the Spreads and Makes
in the right-hand sides of rules cannot be matched. Only a sub-flow graph of the right-
hand side can be matched to nodes in the input graph. This sub-flow graph, called the

89




non-aggregated rhs, consists of the subset of nodes that are not Spreads or Makes and the
subset of edges connecting their ports.

Since right-hand sides of rules are assumed to contain no internal Spreads and Makes,
the non-aggregated rhs is the right-hand side graph minus its boundary Spreads and Makes.
These boundary Spreads and Makes contain valuable information about how the inputs and
outputs of the non-aggregated rhs should be aggregated to recognize a left-hand side that
has aggregate port types. We move this information into the embedding relation. We
remove the boundary Spreads and Makes so the right-hand side of each graph grammar
rule becomes the non-aggregated rhs.

Recall that the embedding relation, as described so far, relates left-hand side ports to
right-hand side ports and other left-hand side ports. (That is, C is a binary relation on
L xRUL, where £ and R are the sets of left- and right-hand side ports, respectively.) A
single left-hand side port can correspond to a non-empty set of right-hand side and left-hand
side ports, while a single right-hand side port can correspond to at most one left-hand side
port.

We extend this embedding relation to relate each left-hand side port to a tuple of right-
hand side and left-hand side port sets, where the position in the tuple is significant. More
precisely, the embedding relation C is now on £ x (2%Y4)" where n varies. (A left-hand side
port and each right-hand side port in the tuple related to it are still said to “correspond”
with each other.)

The right-hand side ports are tupled and related to the left-hand side ports based on
the fringe Spread and Make nodes that are removed from each rule’s right-hand side. When
a Spread node of output arity m is removed, the left-hand side input port corresponding
to its input port becomes related to a tuple in which Vi = 1,...,m the :** element of the
tuple is the set of right-hand side ports (if any) connected to the i** output of the Spread.
Similarly, when a Make node of input arity m is removed, the left-hand side output port
corresponding to its output becomes related to a tuple, in which Vi = 1, .., m, the :** element
of the tuple is the set of right-hand side ports (if any) connected to the i** input of the
Make.

The rule for A in Figure 3-21a becomes the rule shown in Figure 3-21b when Spreads
and Makes are removed. Left-hand side port A; is related to the tuple of right-hand side
ports < {a1,d;},b; >. This is shown by tupling the Greek annotations associated with each
left-hand side port to reflect the aggregation of right-hand side ports corresponding to the
left-hand side port. (For simplicity, elements of tuples that are singleton sets degenerate to
the single element of the set in drawings. Tuples containing one element degenerate to that
one element.)

If any Spread node has an output j that connects directly to an input k of a Make node,
then a st-thru results between the left-hand side ports (I; and l3) that originally corre-
sponded with the input of the Spread and the output of the Make, respectively. Specifically,
the j* element of the tuple corresponding with /; contains l; and the k* element of the
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Figure 3-21: (a) A rule which aggregates port types. (b) The same rule with aggregation

(®)

information moved to the embedding relation.

tuple corresponding with /5 contains /.

This is illustrated in Figure 3-22 where the rule in part (a) is converted to the rule of
part (b) which contains a st-thru. A; corresponds with A, in part y of aggregate port type
P.

Relation To Concrete Application Domain: St-Thrus in Data Aggregation

This case arises quite frequently in the program recognition domain. Operations on ag-
gregate data structures in which all parts of the data structure are used and/or changed
are rare in the simulator programs. Most operations work on only a subset of the parts.
For example, the operation for removing the first element from the clichéd aggregate data
structure Circular Indexed Sequence (abbrev. CIS) accesses only four of its five parts and
changes only two parts. As shown in Figure 3-23, the CIS data structure has a Base, which
is a sequence, a Size, which is an integer, a Fill-Count, which is an integer count of the
number of elements in the CIS, and two index pointers (First and Last), which are positive
integers that specify the indices of the first and last elements in the CIS. The removal op-
eration uses the CIS’s First part as an index into its Base part to retrieve the first element.
Then the First part is updated by being incremented or decremented (depending on the
direction of growth), modulo the Size part. The Fill-Count is also decremented. The Last
part is not used or changed. Also, the Base and Size parts are used but not changed. So,
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Figure 3-22: (a) An edge connects a Spread and Make. (b) This edge becomes a st-thru
when aggregation information is moved to the embedding relation.

there are three st-thrus in the rule for CIS Extract, representing the Last, Base, and Size
parts. The rule for CIS Extract is shown in Figure 3-24. (The CIS part names correspond-
ing to the elements of the tuples of correspondence labels are shown in the lower left-hand

corner.)

Using the Embedding Relation in Reduction

The embedding relation plays a key role in reduction which is at the heart of the recognition
process. A flow graph is recognized if it can be reduced to a single node having a start type.
Reduction steps are analogous to rewriting (or generation) steps. Rather than rewriting
an occurrence of the left-hand side of a rule to a sub-flow graph isomorphic to the rule’s
right-hand side, we reduce an isomorphic occurrence of the right-hand side to an instance
of the left-hand side. In both cases, the embedding relation is used to determine how to
connect the replacement sub-flow graph to the rest of the graph, called the host graph.

The following is only a conceptual description of the reduction mechanism. While a
recognizer can be implemented to perform exactly these actions, it is not necessary that
it do so. In most generators, recognizers, and parsers, the flow graph is not destructively
transformed at each derivation or reduction step. The rewriting or reduction is simulated
in the state of the generator, recognizer, or parser. This allows backtracking and multiple
results to be formed (e.g., for ambiguous grammars).

Recall that the unextended embedding relation is used as follows. When a sub-flow
graph R is reduced to an instance of a rule’s left-hand side L, an edge is created between a

port p; in the host graph and a port L; of L, if and only if p; was connected to a port in R
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that corresponds to L;, according to the embedding relation.

Reduction using the extended embedding relation is more complicated. Several right-
hand side ports may correspond to the same left-hand side port, but we do not want all ports
in the host graph that are connected to these right-hand side ports to become connected to
the left-hand side port when the right-hand side is replaced with the left-hand side. Instead,
before we connect the left-hand side instance up to the ports of the host graph, we insert
Make and Spread nodes into the graph surrounding the left-hand side to bundle up the
inputs and outputs coming from or going to the ports of the host graph.

More specifically, for each left-hand side input port L; having an aggregate port type,
a Make node is inserted. Its output is connected to L; and its 5** input is connected to
the host graph ports that are connected to the right-hand side ports in the :** element of
the tuple corresponding to L;. Likewise, for each left-hand side output port L; having an
aggregate port type, a Spread node is inserted. Ly is connected to the Spread’s input and
the ** output of the Spread is connected to the host graph ports that are connected to the
right-hand side ports in the i** element of the tuple corresponding to Ly.

The Make and Spread nodes specify how the minimally-aggregated flow graph should
be aggregated to recognize it as the left-hand side of the rule. When the reduction results in
a Make-of-Spread composition, the composition is simplified. (Note that Spread-of-Makes
are never created by this action.)

For example, the flow graph grammar of Figure 3-15, which expresses aggregation using
Spreads and Makes, is converted to the flow graph grammar of Figure 3-25, which expresses
aggregation in the embedding relation. A sample reduction sequence using the rules of this
grammar is shown in Figure 3-26.

A flow graph is recognized if it is reduced to a flow graph consisting of node of a start
type of the grammar, with (possibly empty) trees of nested Makes and Spreads, whose roots
are connected to the start type node’s inputs and outputs, respectively.

The reduction transformation described here is simulated by our parser. Spreads and
Makes are not actually added to the graph being parsed (just as the graph being parsed is
not destructively reduced). Section 3.5.2 gives details of how the parser does this simulation.

No Aggregate Port Types on Terminals Except “Any”

We now slightly relax the restriction on our formalism that no terminal nodes have ports
of an aggregate type. We allow ports of type Any on terminal nodes to take on any port
type, including an aggregate port type. In this formalism, the minimally-aggregated flow
graphs in a graph grammar’s language might contain Spreads and Makes which are flat and
internal. We call these residual Spreads or Makes. Each residual Spread node must have its
input aggregate port connected to a port of type Any. Likewise, the output aggregate port
on each residual Make node must connect to a port of type Any.

The main difference this makes to the reduction mechanism is that the simplification
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Figure 3-25: The grammar of Figure 3-15 with aggregation encoded in the embedding

relation.
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Figure 3-26: A reduction sequence using the grammar of Figure 3-25.
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Figure 3-27: The reduction of a sub-flow graph using the rule for D from Figure 3-25.

of Spreads and Makes is not as straightforward. When a sub-flow graph isomorphic to the
right-hand side is reduced to a left-hand side with surrounding Makes and Spreads, the
Makes and Spreads may become connected to residual Spreads and Makes.

A composition of a Make with a Spread node may arise. However, the Make and Spread
will not usually be of corresponding type. The residual Make or Spread may even become
connected to a tree of nested Spreads or Makes, respectively. The usual, straightforward
Make-of-Spread simplification cannot be applied to this composition.

For example, the sub-flow graph containing nodes a, b, and ¢ in Figure 3-27a is reduced
to a non-terminal node of type D, surrounded by Makes and Spreads, using the rule for D
from Figure 3-25. The result of the reduction is shown in Figure 3-27b.

There are two solutions to this. One is built on the other and is more powerful in that
it allows a useful form of partial recognition to be done. The basic solution is to perform
a special-case simplification to the composition. In particular, if all of the outputs of a
residual Spread are connected to inputs of a Make or tree of nested Makes (as they are
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in Figure 3-27), then we can simplify this composition by drawing an edge from each port
connected to the residual Spread’s input to each port connected to the output port of the
Make or of the root of the Make tree. We can simplify compositions involving residual
Makes in an analogous way.

For example, the flow graph in Figure 3-27b would simplify to the one in Figure 3-27c,
which can be recognized as an S, whose rule is in Figure 3-27d.

The main limitation of this basic solution is that it does not enable us to handle a form
of partial recognition that we find crucial in performing partial program recognition. In
particular, we would like to be able to recognize aggregate port types that aggregate only
a subset of the parts that are aggregated by a port type used in the input flow graph.

For example, suppose we have the flow graph shown in Figure 3-28a and we want to
recognize an S in it, whose rule is shown in Figure 3-28b. (Perhaps the flow graph in Figure
3-28a represents a program in which some clichéd operation is being done to some parts (of
type ¢ and y) of a user-defined data structure F, where these parts compose a clichéd data
structure P. At the same time, the user-defined data structure might contain additional
parts (of type m and n)