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Abstract

To use a world model, a mobile robot must be able to determine its own position in
the world. To support truly autonomous navigation, I present MARVEL, a system
that builds and maintains its own models of world locations and uses these models
to recognize its world position from stereo vision input. MARVEL is designed to be
robust wth respect to input errors and to respond to a gradually changing world
by updating its world location models. I present results from real-world tests of the
system that demonstrate its reliability. MARVEL fits into a world modeling system
under development.
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People have always wanted someone else to do the work. First there were slavesi

then indentured servants, and finally immigrant labor. Now that robots are seeing

industrial use, people are asking if a mechanical helper ight be feasible. Even

Newsweek has expressed a desire for a "home helper" robot:

And what of the long-promised home robot? This little electronic
servant capable of deliverin gs a frosty beer from the fridge, picking up the
kids' toys and washing the occasional window,

Michael Rogers
Newsweek

December 25, 1989

It is indeed true that we can build mobile robots that would perform many house-

hold tasks. That same Newsweek writer, however, also put his finger on an important

problem:

... probably won't be a mass-market item in the 90s-unless we mod-
ify our homes to accommodate them. Every room would need to have
tiny radio beacons to tell the robot where it is.

We cannot make a fully autonomous mobile robot. Yet. One requirement for au-

tonomy is that a robot be able to determine where it is. This information is obviously

19
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important for a mobile robot snce it could be anywhere in 'Its environment and the

tasks it must perform depend on just where 'in that environment it is. Because we do

not wish to modify our homes (for example, by installing beacons) to accommodate

this mechanical servant, however, it should be able to determine its location in places

as they exist now.

To achieve true autonomy, a mobile robot must be able to determine its own

location. In the same way that an autonomous robot should not need us to modify

the environment to accommodate it, the robot also should not require us to lead it by

the hand and show it its environment. An autonomous mobile robot should be able to

explore ts environment, remember what it has discovered, and use this 'Information.

In the context of determining where it is, a mobile robot should be able to go to new

places, remember the places it has been, and tell when it is in one of these places

again [Braunegg 1989c].

This thesis describes a system designed and built to support autonomous mobile

robot navigation in exactly the way just outlined. MARVEL (Model building And

Recognition using Vision to Explore Locations) is a system that uses stereo vision

input to sense its environment, builds models of locations it has encountered, uses

these models to recognize when it is once again in these locations, and updates these

models over time. This work recognizes that any sensing system will make mistakes.

Since MARVEL uses 'Its sensor information to build ts own models, the data and

models used for recognition may contain errors. MARVEL deals with these errors

both through a robust recognition system and by updating the information contained

in its models. The model update process also enables MARVEL to deal with an

important aspect of the real world: change. As a location in the environment changes,

the model used to represent that location will become less and less correct unless the

model also changes. MARVEL explicitly reacts to a changing world by updating its

models based on new sensor data. Finally, MARVEL is designed to operate on a

mobile robot. The strategies t uses for recognition take advantage of that mobility.
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Li Problern Description

This thesis gives one answer to an important question in robot navigation: How can

an autonomous mobile robot determine where it 'is, based on data it has collected

and models 'it has built, and do this in spite of a changing world and sensor error?

The answer presented is MARVEL and this chapter gves the background information

necessary to understand this solution.

This work 'is concerned with recognizing locations 'in the world. The words world,

location and position will be used throughout this thesis with specific meanings.

World will be taken to be the environment in which the mobile robot resides, con-

sisting of all the places the robot might be. Location will be taken to mean the place

in which the mobile robot currently resides, such as a room. This use of the word

location follows from the definition [Mish 1986]:

location: a site occupied ... or marked by some distinguishing feature.

Position will be taken to mean the exact spot where the robot can be found in a

locationIincluding the robot's orientation (i.e., rotation) with respect to some fixed

reference point in that location [Mish 1986]:

position: the point occupied by a physical object.

1.1.1 The Problem Domain

As stated earlier, this thesis is concerned wth supporting navigation for a mobile

robot by recognizing locations. Specifically, I address the question of how to support

navigation of an autonomous mobile robot over a long period of time with no human

intervention.

Autonomous Mobile Robot with Long Lifetime

Simply stated, a mobile robot is a self-propelled movable platform. The platform

supports sensors and manipulators or other means to examine and 'Interact with the

world. Mobility allows these sensors and manipulators to be transported to the place
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they are required and then relocated as need be. A typical mobile robot [Brooks

19861 has motor-driven wheels for driving over smooth terrain, the ability to steer,

and often the ability to turn in place. Mobile robots come in a host of shapes sizes

and configurations (e.g., [Nilsson 1969], [Giralt et al. 1983], [Moravec 1983], [Brooks

19861).

Autonomy simply means that the robot should function without human 'Inter-

vention. This smple statement has 'Important consequences, however, if we wsh to

attain true autonomy. First, "no human 'Intervention" implies that no one wll lead

the robot around to "teach" it the world. Thus, the robot must "learn" the world. In

the context of this thesis, the robot must learn how the locations it encounters look

so that it can recognize them when they are encountered once again. This learned

representation 'is a model for that location. Second, o human will tell the robot

if these models are correct, so 'it must update the models on 'Its own, based on the

current sensor data. The correctness of a model is related to how well 'it represents

a given location and how free it is from error. Essentially, then, autonomy can be

thought of as self-sufficiency for the robot.

Long lifetime for a mobile robot means that it will exist for days, weeks, or months

at a tme in its world. This contrasts with mis-sion-level autonomy, where the robot

must only go out, perform a specific task, and (usually) return. The long lifetime

implies that the system must be robust, since there will be many opportunities for it to

fail. Thus, the models built must be generally correct. Also, they must allow changes,

since the locations they represent may change over time. Finally, recognition must

be reliable, since the ability of the robot to fulfill 'Its continuing mission will depend

on its knowing where it is. A long lifetime demands robust systems and provides an

acid test for those systems: over time, if something can fail, it will. Robustness wll

be achieved through good engineering and design and through providing methods for

recovery from error.
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Indoor, Office-Type Environment

Mobile robots can be designed for many different environments, each with its own

set of requirements and constraints. Some general constraint can be placed on the

environment, however, to make the location recognition task possible.

If one looks at the world and then leans over and looks again, the world appears

different. This everyday occurrence implies that MARVEL should have a level floor or

a tilt sensor on board the robot so that views taken of the world at different locations

can be compared based on the same concept of what 'is vertical. Also, we do not

require that the world remain static. A gradually changing world where most of what

is seen toda persists tomorrow 'is allowed and is explicitly considered by the model

update process (Chapter 7.

These smple requirements are met in office-type environments. The floors are

level and the large structures in rooms do not change often or by much. In order

to test the ideas about recognition and model building being explored in this thesis,

then, the robot's world has been limited to 'Indoor, office-type environments. Testing

of the robot, which is described in Chapter 8, was performed in the nnth floor area

of the MIT Artificial Intelligence Laboratory. Extensions to other environments will

be discussed in Chapter 12.)

Stereo Vision

As stated earlier, to explore the investigation of location recognition and model build-

ing and maintenance to support recognition a stereo vision system has been chosen

to supply the input data to MARVEL. This input system is explained more fully in

Chapter 2 but a few of the assumptions and consequences of choosing stereo vision

for acquiring input data wll be detailed here.

Stereo vsion algorithms operate by comparing two different views of the world

taken from different positions. By knowing the displacements between the two viewing

pos'tions, the images can be compared and three-dimensional information obtained

for parts of the world vsible in both images. Specifically, this 'Information is returned

as robot-centered three-dimensional x-, Y-, and z-coordinates of visible parts of the
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world.

The specific stereo algorithm used 'is the Marr-Poggio-Grimson stereo algorithm

[Marr and Poggio 1979] [Grimson 1981] [Grimson 1985], with enhancements [Braunegg

1989a] [Braunegg 1990] (see Chapter 2 This stereo algorithm is based on features

found in the left and right images. The specific features used are 'Intensity edges.

Thus, the algorithm yields a sparse set of three-dimensional data at places in the

world that correspond to these image features.

The 'Information obtained from stereo vision typically has good angular resolu-

tion from the vewpoint. The distance resolution, however, decreases with distance

of the matched features from the vewpoint. These resolution uncertainties are well-

understood [Matthies and Shafer 1986] and are taken into account in the representa-

tion used for the input data (see Chapter 4. Any sensing of the real world, however,

will have errors. There are both errors of commission and errors of omission. Errors

of commission (or hallucinations) occur when the input system returns data that does

not correspond to anything in the world. Errors of omission occur when something 'is

present 'in the world but no data is returned for it. Any system that uses real-world

data, then, must explicitly accept the fact that these errors will occur and must

deal wth them. MARVEL handles these errors through the model update process

(Chapter 7.

In contrast to the standard recognition problem, wherein an outside observer

attempts to recognize an object, a mobile robot is inside of the object (the location)

that 'it 'is trying to recognize. In order to obtain sufficient information about the

location, we assume that the stereo cameras are mounted on a rotatable platform.

Either the robot itself must be able to rotate in place, or the cameras must be mounted

on a turntable on the robot. The consequences of the rotation method used are

discussed in Section 23.5.

1.1.2 A Motivational Example

Given all that has been written above about the problem being addressed in this

thesis, what would be a practical example of this problem in the real world? Some
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day 'in the future you will be able to walk into Sears and buy Cleano-the Kenmore

House Cleaning Mobile Robot. When you get Cleano home, you will unpack it and

turn 'it on. Cleano's job wll be to keep your house clean by vacuuming the rugs and

picking up objects left lying on the floors. Being a fully autonomous robot, Cleano.

learns the layout of your house wthout requiring you to give it a Cook's tour. Since 'it

cannot know the specifics of your house, however, you must tell it certain things. For

example, I would take it to the study and tell it not to clean this room (because my

thesis-in-progress is spread all over the floor). Once given this information, Cleano,

being able to recognize the study again after having seen 'it once, will avoid doing any

work in the study. Taking Cleano to the playroom, I show it the corner of the room

where the toys are kept. Cleano then remembers this specific place 'in this specific

room as the place to return any ob'ects found on the floors. After receiving these

instructions, which are specific to its new home, Cleano goes along merrily about its

business of vacuuming rugs and picking up stray ob'ects without my ever having to

worry about it again. It builds its own map of y house and uses this map to keep

track of which rooms have been cleaned and how long ago this occurred. It uses 'its

recogn ability to keep track of its location 'nd basically never needs my help

again.

1.1.3 Challenges to Such a System

There are certain challenges to anv svstem designed to support navigation by a mobile

robot through recognizing locations. nput errors will occur-MARVEL is robust wth

respect to them. The world will change-MARVEL changes its location models to

respond to these changes. New locations will be encountered-MARVEL builds its

own models to be able to recognize them. Sensing deficiencies will occur-MARVEL

uses various sensing strategies to overcome them. All of these issues and more will

be discussed in the following chapters.
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1.2 Related NVork

Most work to date that has addressed mobile robot travel has ether been concerned

with planning collision-free paths or modeling the world to allow planning of larger-

scale routes through the environment. Little has actually been done to enable a

mobile robot to recognize its current location.

The closest work to MARVEL was that of [Drumheller 1987], which addressed

the localization problem rather than recognition. Using an office-type environment,

Drumheller assumed that the current location was already known. The given task,

then, was to determine the position and orientation of the robot within this location

as accurately as possible. The models used were previously constructed oine and

supplied to the system. 100 range readings from a sonar rangefinder were obtained in

3.6' incremental rotations about the current position. These readings were compared

to the model using the method of [Lozano-Pe'rez and Grimson 1984]. In testing on

real data, 17 of 24 localizations were correct and yielded the robot position within

±1 foot and ±5'. No attempt was made to extend the method to recognition against

a database of models.

There are a few works that specifically addressed the problem of recognizing world

locations, but none fulfilled the goals described earlier. [Kuipers and Byun 1987,

19881 described a smulation of a robot exploration and map-learning system that

has a sonar-based recognition subsystem, but not many details were given. This

system has not yet been extended to real data. [Kadanoff 19871 used infrared coded

beacons to mark world locations. This method is unacceptable where one does not

want to modify the world to accommodate a robot. [Nasr et al. 1987] used high-

level landmarks such as telephone poles to check a robot's progress as it followed a

road. Such easily-identifiable landmarks are rare in office-type or natural outdoor

environments. [Faugeras et al. 1986] used common stereo features in successive views

as their robot moved to correspond the views while map making, but they did not do

independent recognition based on these features.

Some related work is being done on the Hilare mobile robot project at the Labo-
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ratoire dAutomatique et dAnalyse des Systemes (LAAS) in Toulouse, France. Lau-

mond 1984, 19861 defined rules for determining rooms and doorways, but recognition

of a location was solely based on determining the robot's position by following a

previously-constructed world model. The world model used was based on data from

a laser range finder and from optical shaft encoders connected to the robot's wheels

[Chatila and Laumond 19851. No method, however, was given to deal with the cu-

mulative error that would build up in this data. [de Saint ncent 1986, 19871 used

vertical lines from a stereo vsion system for tracking and correcting a robot's position

with respect to a map. The proposed recognition system assumed that known fea-

tures were vsible to constrain the matching problem; also, no recognition algorithm

was given.

Early work in modeling the world centered on cognitive maps, i.e., the representa-

tions that humans use to model the world. [Piaget and Inhelder 1967] performed early

studies on how children represent the world. [Lynch 1960] in his work on cty forms

investigated the cognitive maps that people create and use for urban environments.

[Kuipers 1977] developed a computational model of cognitive maps used for large-

scale environments. This work was motivated in a large part by the work of Lynch.

Unfortunately, Kuipers' work has remained in the realm of computer simulations and

has not been applied to real-world domains (e.g., [Kuipers and Byun 1987, 19881).

In general, cognitive maps as noted above tend to require a great deal of information

from their underlying perception systems and also a comprehensive reasoning facility

to interpret the perceptions. These lower-level systems have not yet reached the level

of sophistication needed to make cognitive maps feasible.

Other schools of thought have approached the problem of world modeling from

the viewpoint of robotics without concern for the representations humans might

use. For example, occupancy grid methods represent the entire world va a two-

or three-dimensional grid, with object locations marked on the grid. The early work

of [Moravec 1983] on the Stanford Cart and the CMU Rover represented the three-

dimensional locations of feature points obtained from a stereo algorithm on such a

grid. Objects were smply represented as clouds of feature points.
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The grid methods can be extended by labeling each cell of the grid as ether

occupied or unoccupied. These labelings can also be associated with a confidence

value. [Moravec and Elfes 1985] have used such a grid method for mapping the world

based on range data from ultrasonic rangefinders. Their implementation used a two-

dimensional grid wth 6-inch square grid cells. Cells were marked as either occupied

or empty, each wth a confidence between zero and one. Information from sensor

readings at various locations was merged with the existing data in the grid map,

based on these confidences. This work was extended by [Serey and Matthies 1986 to

build the world map from a one scanline stereo algorithm.

The preceding grid-based models were two-dimensional. This restriction is com-

mon for ground-based mobile robots whose motions are constrained to take place in

the plane of the floor. Grid methods were extended to three dimensions by [Stewart

1988], however, to model the world nhabited by an underwater robot whose move-

ment has six degrees of freedom. Each cubic volume element, or voxel, of the grid

had an associated feature vector that represented the sensor data within that region.

Video and sonar data were represented, although other sensor 'information, such as

chemical properties and temperature of the seawater, could also be 'Included. The

feature vectors that described this data used stochastic techniques to model the un-

certainty in the measurements and to merge new information with the existing data.

Grid methods have been used successfully for planning robot tra ector ies in small

worlds or 'in small pieces of large worlds, but do not provide the abstract information

needed to plan routes through different locations in a large world. These methods also

depend on maintainin an exact metrical map of the world in the presence of sensor

error and uncertainty. There is an implicit dependence on the ability to perceive all

of the known world from any location 'in it in order to maintain these maps.

Configuration space, frequently used to represent obstacles for manipulation plan-

ning [Lozano-Pe'rez 1983], was used by [Brooks and Lozano-Pe'rez 1985] to find collision-

free paths for a polygonal moving object. In their algorithm, the moving object (the

mobile robot) moved in the plane and thus had one rotational and two translational

degrees of freedom. Obstacles were considered as polygonal objects. This work as-
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sumed a priori knowledge of the locations of the obstacles 'in the environment as well

as the start and goal locations. In this thesis, however, I am concerned wth moving

through environments that have not been previously encountered. Also, configura-

tion space does not provide a high enough level of abstraction to plan routes through

large-scale space that traverse many locations.

Freespace was represented by generalized cones in work done by [Brooks 1983].

The volume swept by the mobile robot as it translated and rotated was characterized

as a function of 'Its orientation. The swept volume of the robot was then compared

'th sweepable volumes of freespace'n the environment to find paths (freeways). This

representation was extended in [Kuan et al. 19851 by representing large open spaces,

which are not naturally described by generalized cylinders, by convex polygons.

The freeway representation was combined wth explicit symbolic reasoning about

uncertain quantities in [Brooks 1984]. In this work, the range of locations that a

robot may occupy after an uncertain movement was represented by an uncertainty

'fold. The uncertainty manifold for the current location of the robot grew due

to cumulative error as the robot moved until there was reason to believe that the

robot had returned to a previously encountered location along its path. The loca-

tion previously stored was used to restrict the current uncertainty manifold and this

restricted uncertainty was back-propagated along the robot's path through the uncer-

tainty manifold stored for previous locations. The mathematics for the uncertainty

man'folds was further developed in [Brooks 1985] and a cylinder approximation 'in

configuration space was given for the manifolds. As with the mapping methods pre-

viously mentioned, freespace/freeways do not allow us to abstract to the notion of a

location thus requiring us to plan all of our movements explicitly before moving at

all.

[Chatila and Laumond 1985] used three kinds of models to represent the world: a

geometric model, a topological model, and a semantic model. The geometric model

contained data directly received from the sensors. This model covered the known

world and the data was referenced to an absolute coordinate frame. The 'information

in this model was updated and maintained "as accurately as possible." The topo-
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logical model represented the topology of the known world and consisted of places

(represented by convex polygons constructed from the geometric model) and con-

nectors (common edges between places). The semantic model consisted of meanings

(labels) for places and was distributed between the geometric and topological models.

As wth any method that attempts to maintain geometric data over the entire known

world, cumulative errors would become a problem as the size of the modeled world

grows. Paths planned between two distant places based on this stored geometrical

data would contain sufficient error to make them difficult to use if not useless.

[Faugeras et al. 19861 addressed the problem of building maps for navigation from

stereo measurements. They described the world in terms of point, line, and plane

primitives obtained from the stereo input. For each position of the robot, they built

a three-dimensional description of the environment that contained the positions and

orientations of these primitives along with uncertainty parameters describing them.

An Extended Kalman Filter was used to relate two different frames of reference via

primitives that the two world representations had in common. The Kalman Flter

enabled them to estimate the transformation between the frames of reference and to

estimate the uncertainty of this transformation. The transformation was then used

to update the descriptions (geometry and uncertainty) of the primitives common to

the world models associated wth the two reference frames. This last step of closing

the loop" by updating the descriptions of the primitives was intended to reduce the

cumulative error associated wth the model as 'it was built over time. The errors

considered however were only those of position. Faugeras, Ayache, and Faverjon

ignored the extraneous data that arise from the output of a stereo vsion system. Both

these extraneous data and objects once present but later missing in the world would

have to be removed from the representation, yet thi's question was not addressed.

For the Kalman Fltering it was also assumed that there was some estimate of the

displacement between the locations of the robot for successive data sets. This implies

that the model for a given location must be complete when it 'is first built. If the same

location were encountered at some future time no method was given to estimate the

robot's position within that location (with respect to the stored model) and so new
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data gathered at this future time could not be incorporated into the stored model.

[Kriegman et al. 1989] described a system using stereo vision to map 'Indoor hall-

ways. The purpose of this system was to provide a representation of a hallway that

w6uld allow a mobile robot to navigate that hallway. This system developed a 2-D

representation by using stereo vsion based only along the horizon lines in the left and

right images. Intensity edges found in the horizon lines were matched and 3-D coor-

dinates were found for them. The system was only interested 'in labeling the locations

of doorways along the hallway walls. Because of this, markings, fuseboxes, etc., whose

edges met the criteria for a door in the one line of stereo were labeled as doorways.

These criteria 'Included restricting assumptions such as contrasting colors to separate

doors from walls and high-contrast door edges. Both these criteria are not met by

the doors in the MIT Al Laboratory, for example, because both the doors and walls

are white and the aluminum doorframes do not yeld high-contrast edges. Because

the system only considered one line (the horizon line) of the image, edge length could

not be used to distinguish door edges from other edges. This same restriction also

prevented the system from detecting any obstacles not at the height of the cameras.

Finally, the modeling system assumed that there would be no extraneous data and

prov'ded no method for removing any such data that the model might acquire.

[Sarachik 19891 described a method of building maps of office-type environments

by finding rooms and the doorways connecting them. The rooms had to be rectangular

and were detected by finding the four wall/ceiling junctions. Doorways were identified

by finding two (door) edges with a more dstant ntervening edge. A world map was

proposed that consisted of a series of rooms connected by doorways. A room's 'Identity

would be determined by its dimensions and the paths that connect it to the rest of the

world model. The "roomfinder" was implemented but seldom ranged all four walls

correctly during one sampling of the room. The "doorfinder" was also 'Implemented,

but only half of the doorways it found were true doorways. The strength of this work

was the ability of the system to determine that 'it was inside a rectangular room,

which it did well for rooms with sufficient wall/cefling contrast.

A method for learning a world model was presented by [Mataric 19901. A ring of
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sonars surrounding a mobile robot determined the distances to the walls of a room

and an onboard compass gave bearings used to help identify the walls. There were

four types of landmarks: left wall, right wall, corridor, and "junk" (the absence of a

landmark). The world was modeled by a graph, each node of which consisted of a

landmark I its average compass bearing a rough length estimate, and a global position

estimate that was derived by integrating the compass measurements. The robot built

a room model by following the walls of a room and creating a new node for each new

landmark (i.e., wall) encountered. Localization wth respect to this model was only

possible up to the determination of which landmark (wall) was nearby. To determine

that it had returned to its starting point after circumnavigating a room, the robot

depended on its global position estimate as well as on the landmark type (e.g., left

wall facing north) of the starting point. No description was given of how this world

model could be extended to represent more than one room or how several room models

could be combined. Also, doors that can be either opened or closed could present

a problem during wall following. Snce a pece of furniture can be mistaken for a

wall this method may not be robust in dealing wth changes 'in a room's furniture

arrangement. Fnally, the method does not provide a way of modeling the open space

in the center of a room.

Other representations of the world have also been used to support path planning.

Visibility graphs store all possible path segments between the vertices of obstacles

(e.g., [Lozano-Pe'rez and Wesley 1979]). Planning is accomplished considering only

these paths. Variants of these continuous paths between object vertices 'Include paths

with continuous tangents and paths with continuous curvature. Vorono' diagrams

have been used for "safest" path planning (e.g., [Brooks 1983]). The Voronoi diagram

consists of all points that are equidistant between adjacent obstacles. Planning is

performed along the set of paths thus formed by these points, yielding paths wth

the maximum clearance between obstacles. Potential fields have also been used for

path planning (e.g., [Arkin 19871). Obstacles are represented as hills 'in the potential

field and the goal position is represented as a valley. Planning 'is then accomplished

by tracing a path through the potential field so as to minimize the "energy" required
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to move from the start position to the bottom of the goal valley. sibility graphs,

Voronoi diagrams, and potential fields all assume a priori knowledge of the world

to be modeled and are thus not well-suited to planning paths through a world that

is being explored. Also, since these methods depend on having the locations of all

ob'ects in the world cumulative errors prevent their use when dealing with large

worlds.

1,3 Goal of the Thesis

This thesis addresses the problem of recognizing world locations to support mobile

robot navigation and how this can be accomplished autonomously. The solution pre-

sented to this problem is a complete, working system named MARVEL. More than

describing a system, however, this thesis addresses issues involved wth the location

recognition problem. Such issues can best be understood through the insights gained

via the design and construction of a systemintended to be a solution to the problem.

Thus, requirements on sensing for location recognition are discussed along with the

specific sensing method chosen. A specific model/data representation is described,

but only after a discussion of the needs that such a representation must fulfill. Con-

sideration. of the model update process lluminates key issues that are incorporated

into the particular algorithm used. In each instance, I present an 'implementation that

addresses the 'issues involved in the specific subproblem. The thesis, then, yields in-

sight 'Into the overall location recognition problem as well as an 'implemented solution

to it.

1,4 Description of IWARVEL

As stated MARVEL 'is a system designed to recognize world locations via stereo

vision based on models of those locations built by the system itself (see Figure 1-1).

MARVEL obtains visual information about the world through a stereo vision input

subsystem. This stereo data is abstracted into a form suitable for recognition. The
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Figure 1-1: MARVEL block diagram.

recognition subsystem compares the current data with stored location models and

decides if a match exists. If so, the data 'is combined with the matched model and

stored back into the model database. The location corresponding to that matched

model is then taken to be the current location. If no match is found, the data is

stored in the model database as the model for a new location. If recognition does not

succeed, but successful recognition is almost obtained, the robot can be commanded

to move slightly to obtain a new view of the current location. This new data is then

combined with the previous data and recognition proceeds against the combined data

set.
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Figure 1-2: An 'image pair taken by MARVEL's stereo input system.

Figure 1-3: Matched stereo edges for the stereo pair in Figure 1-2. Each edge point
is labeled with 'its 3-D coordinates by the stereo system.

1.4.1 Example of the Operation of MARVEL

Subsequent chapters describe MARVEL's various processing steps in depth. A brief

example of the operation of MARVEL 'is presented here to provide context for the

detailed examinations of the various subsystems.

MARVEL's stereo vision input system provides information about the world. A

series of stereo image pairs 'is taken of the area surrounding the robot (e.g., Figure 12)

and features are matched between the images of each pair to derive three-dimensional

information about the surrounding environment (Figure 13). The 3-D information

from each stereo pair is projected to the groundplane and together these projections

form a 2-D representation of the currently visible location. An occupancy-grid data

11 I
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Figure 14: The 2-D grid representation of the stereo data derived from Fgure 13
and from other vews about the robot that have been projected to the groundplane.

Figure 1-5: The initial location model, derived from the data shown in Figure 14.

abstraction is used to represent this 2-D 'Information (Figure 14). The first data

set obtained from each location 'is used to build the initial model for that location

(Figure 1-5). The location models are improved over time as they are used for recog-
ition. The 'improvements are r ion and

eflected through the addit' deletion of model

points and through the adjustment of the weights of the model points. (The shading

of a model point 'Indicates its weight in the figures.)

To recognize the current location of the robot, MARVEL first obtains a set of data

as described above (Figure 1-6). Based on the likely location of the robot, MARVEL

then selects candidate models for recognition (Figure 17). The best alignment of

model to data is found for each candidate (Figure 1-8) and the correct match 'is

chosen (Figure 19). This recognition 'is used to update the model for future use

(Figure 1-10). In the event that no valid match is found, the current location is

determined to be a new location that the robot has encountered. In this case, a
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Figure 16 A data set to be recognized.

location model is created from the current data and entered 'Into the model database.

Thus, MARVEL recognizes previously encountered locations and builds models for

newly encountered locations for later recognition.

1.5 Sun-irnary of Results and Contributions

MARVEL provides a complete, working system for recognizing world locations to sup-

port navigation. The complete system operates autonomously, including the model

building and updating of existing models. This is 'in contrast to most existing recog-

nition systems, which use handcrafted models.) Recognition proceeds using an ag-

gregate set of data, no one part of which is sufficiently distinct to enable recognition

independently. MARVEL responds to a changing world by changing its location

models. MARVEL also deals with sensor and model error by modifying the location

models.

To demonstrate the efficacy of MARVEL, extensive testing was performed and is

reported herein. Over the course of more than 1000 trials, no false positives occurred

while only a small number of false negatives were experienced. Good localization

of the position of the robot in the recognized location was achieved in this testing.

The testing demonstrates the effectiveness of the 'Ideas and methods described in this

thesis.
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Figure 1-8: Recognition against the candidate models shown in Figure 17.
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Figure 1-9: Correct recognition chosen from candidates in Figure 1-8.
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Figure 1-10: Updated location model based on the recognition result shown in Fig-
ure 19.

1.6 Overview of the Thesis

This thesis proceeds in much the same order as MARVEL operates. Chapter 2 d-

cusses the issues of sensing for input data and describes a calibration procedure for

the stereo hardware. Chapter 3 presents the stereo vision algorithm developed for use

in MARVEL. From the stereo data, both the recognition data and the models are au-

tonomously constructed by MARVEL. Capter 4 describes the requirements on the

data representation and shows how both the recognition data and models are derived

from the stereo data input. Chapter gives the details of recognition against a single

location model. Any recognition algorithm should succeed against a single model;

Chapter 6 describes how the fact that MARVEL is intended for use with a mobile

robot can be used to advantage when performing recognition against a database of

models. Since the models are built autonomously, the system must be able to change

these models based on current information about the world. Chapter 7 describes the

model update process, which is based on the recognition information. The testing

methods and results for the recognition process are described in Chapter 8. MAR-
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VEL's location recognition system fits into a larger world modeling system that is

described in Chapter 9 The fact that a mobile robot is being used for the sensing

platform opens up many possibilities for sensing and recognition. These strategies

are discussed in Chapter 10. Finally, the lessons learned from MARVEL are summed

up in Chapter 11, while Chapter 12 discusses future drections for research based on

MARVEL.
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In order to recognize locations information characterizing these locations must be

obtained. MARVEL uses a stereo vision system to obtain three-dimensional data

from the local world surrounding the robot. The properties of such a vision system

are well-understood and with proper calibration, stereo can be used to provide useful

information about the environment.

2A Requiren-lents on Sensing

Data obtained by the robot's sensors must have certain characteristics in order to be

useful for recognizing the location of the robot. Chief among these are that the data

characterize the location, have good localization, and be viewpoint 'independent.

If the recognition system is to have any hope of recognizing a location its 'Input

data must characterize that location. Some quality of the 'individual pieces of data

or of the data as a whole must be unique to the location from which it was derived

so that a comparison can be made to a stored representation (model) of that location

and a match determined. If a unique feature can be found and recognized for each

location, then recognition of the various locations in the robot's world can proceed

quite reliably. Such a method would be fragile, however, as any occlusion or sensor

error that prevented the robot from sensing the dstinguishing feature of a location

would cause recognition to fail. Thus, 'it seems more advantageous to have several

43
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such distinguishing features per location so that the probability of seeing one of them

is increased.

If several features are to be used to recognize a lo cation, then each of these features

must in turn be detected. For a complex feature, however, this detection presents yet

another recognition problem 'in the general sense: the feature must be recognized in

the input data and its position determined. A search procedure is also required to

find the set of these features in the 'Input reliably. Smple features can be detected

much more easily and quickly than complex ones, but the price we pay for simplicity

is a lack of uniqueness-the simpler the location feature, the less it helps to identify

one unique location. With simple features, however, we can afford to find many of

them in a location and use their aggregate to characterize the location. Since there are

many of them, occlusions or input errors on a small number of them will not affect the

recognition process greatly. We would expect that several different locations would

have some of these simple features 'in common, but 'it would be rare that two locations

would share the same aggregate of features. Using an aggregate of smple features

to characterize a location, then, is potentially fast since the features would be easy

to detect, yet robust due to the number of such features used to recognize any given

location.

Location recognition is the main part of the problem that MARVEL is solving.

An important subgoal, however, is the determination of the position of the robot

in the location. For a floor-based mobile robot this position 'is defined 'in terms of

a two-dimensional translation (x and y) and rotation (0) from a reference point 'in

each location. Since position localization is based on the features that are used in

the recognition process, such a localization can only be successful if the aggregate

of the recognition features themselves is well-localized. There are two aspects to

this requirement on the features. Frst, the recognition features must correspond to

physical features that have well-defined, stable positions in the locations. Second the

determination of these feature positions by the input system must have a lmited and

well-understood uncertainty and the determination must also be repeatable. Only

with these two requirements fulfilled can we hope to localize the position of the robot



RIMMMIMMMwom I Popm-mm- . -1 -,-, '' -- � -

2.2. ADVANTAGES AND DISADVANTAGES OF STEREO 45

accurately.

Since the sensing platform is a mobile robot, the data for a given location can

be obtained from almost any position within that location. The features used for

'flon then should be available to the sensors from most of the positions within

a location. More 'importantly, the appearance of these features should not change as

the position of the sensors changes. Without such viewpoint independence, the task

of finding these features and using them for recognition is extremely difficult.

2,2 Advantages and Disadvantages of Stereo

The goal of stereo vision is the determination of 3-D coordinates of part or all of the
' ible world as presented in a pair of images taken from slightly different viewpoin

vis ts.

(For a somewhat dated, but comprehensive, review of the field, see Binford 1982 or

[Poggio and Poggio 1984].) The images are obtained from a pair of vewing positions

'th a known displacement. A typical arrangement s to have two cameras mounted

and separated horizontally by a fixed distance. If a common point in the world

can be determined between the two images obtained, then the relative positions and

orientations of the cameras can be used to determine the 3-D coordinates of that

point. ([Horn 19861 discusses the issues and mathematics of stereo matching and

geometry.) Some stereo algorithms operate on regions (e.g., [Levine et al. 19731,

[Ohta and Kanade 19851, [Witkin et al. 19861) while others operate on visible, sparse

features (e.g., [Moravec 1977], [Marr and Poggio 19791, [Grimson 19811, [Pollard et al.

1985a], [Prazdny 19851, [Ayache et al. 1985], [Drumheller and Poggio 1986]).

Stereo vsion for the determination of 3-D coordinates of world points has well-

known advantages and disadvantages. The uncertainties involved wth 3-D coordinate

determination have been studied (e.g., by [Torre et al. 1985] and [Matthies and Shafer

19861). The nformation obtained from stereo vsion tpically has good angular reso-

lution. The dstance resolution, however, decreases with the dstance of the matched

features from the viewpoint. These uncertainties can be reduced by altering the stereo

geometry, for example by increasing the baseline separation between the cameras or
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using lenses with long focal lengths, but there 'is a tradeoff. Such measures either

increase the overall disparity range 'in a stereo pair, thus making the matching prob-

lem more difficult or narrow the field of view giving less coverage for the area of

interest. It should be clear that stereo methods provide little information for regions

that are vsible in only one of the 'images. This occurs due to occlusion or to the

slightly derent viewing positions of the cameras. Depth 'Information is determined

most accurately for regions of the images wth large variations in intensity and least

accurately for homogeneous regions (due to the lack of information to determine the

correct matches within these regions) [Kass 1988]. While comparisons can be made

between the 3-1) positions of ob ects, or regions vsible in a single stereo pair using

uncalibrated stereo, calibration of the stereo setup is required to obtain accurate 3-1)

information. By evaluating the requirements on the input data for location recogni-

tion, we will see that stereo vision is a good choice for a sensing method for MARVEL.

2.2.1 Marr-Poggio-Grimson Stereo Algorithm

The stereo system used in MARVEL 'is based on the Marr-Poggio-Grimson Stereo

Algorithm [Marr and Poggio 1979] [Crimson 1981] [Grimson 1985]. Details of this

algorithm and the improvements made to it for MARVEL will be discussed 'in Sec-

tion 3 This section considers that stereo algorithm with respect to the requirements

on sensing discussed previously in Section 21.

Stereo Data

The Marr-Poggio-Grimson stereo algorithm provides 3-1) nformation about the vis'_

ble scene in terms of camera-centered world coordinates. World points that are vsible

in both the left and right images and that have been matched by the stereo algorithm

are labeled with x-, y-, and z-coordinates, calibrated in feet. The position (0, 0, 0 is

taken to be on the floor at the base of the robot. The x-axis extends in the positive

direction to the right of the robot, the y-axis forward, and the z-axis upward.
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'V_X vature-Based

The Marr-Poggio-Grimson stereo algorithm is a feature-based algorithm, returning

3-D information at a set of features that are matched between the two images.

These features are 'Intensity edges, found by an edge detector that considers the

zero-crossings of the images convolved wth difference-of-Gaussian filters [Marr and

Hildreth 19801, [Canny 1986], [Deriche 1990]. The resulting 3-D edges are easily

detectable, relatively simple features that can be used for recognition.

Most intensity edges in the 'images correspond to physical edges or markings in

the world. The 3-D edge information obtained from stereo, then, corresponds to

stable features 'in the world. The existence and distribution of these features about

the various world locations serve to 'Identify them and are used by MARVEL for

recognition. (Although 'image intensity edges can also correspond to features, such as

shadow edges, that do not correspond to physical locations on surfaces, these unstable

features are removed from the location models in the model update process-see

Section 71.) The stereo output thus characterizes the world locations, a requirement

mentioned earlier. This will be explained further in Section 23.4.) Snce the output

of the stereo algorithm is based on physical features in the world, any object that

is visible 'in both stereo images can potentially yield nformation that can be used

to recognize the location being vewed. As required above, then, stereo data can be

obtained independently of the viewpoint used to obtain 'It.

Sparse Data

As explained above, 3-D information 'is obtained by the stereo algorithm at only a

sparse set of features visible 'in the images. This sparseness works to our advantage,

however, snce the stereo features only arise from world features that are sufficiently

distinct to be detected and matched between the images. The distribution of these

features about a location characterizes that location, since it is hghly unlikely that

two locations would give rise to sufficiently smilar sets of features that confusion

could result. The feature sets for two such locations would have to agree beyond the

model thresholds used in recognition (Section 53) and the two locations would have
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to be close enough for both to be selected as candidate models from the database

(Chapter 6 for this sort of confusion to occur. In order to demonstrate further the

robustness of Marvel against just such an occurrence, very smilar rooms were used

for testing the system (Section 8.1).

Errors and Uncertainties

Any stereo algorithm has the possibility of returning data resulting from an 'incor-

rect match. One expects, however, the majority of the data from the algorithm to

be correct. The Marr-Poggio-Grimson stereo algorithm Section 31) along with en-

hancements added for this research (Section 34 Section 35) is relatively immune to

this sort of mismatch error. The algorithm yelds good localization of the location fea-

tures, which was one of the requirements listed above. The localization uncertainties

arise mainly from the use of dscrete 'image information in the stereo matching process

and, as mentioned earlier, there is a tradeoff of localization versus ease of matching.

The uncertainties and errors 'in the 'Implemented system are given in Section 23.3.

2,3 Stereo Systern Details

This section details the specifics of the stereo input system used during the testing

of MARVEL. Exactly how these cameras were used to build the stereo input system

and how the stereo image pairs were used to obtain the stereo data will be considered

in terms of five distinct topics:

1. The geometry of the two-camera stereo configuration.

2. The specifications of the stereo configuration and of the cameras.

3. The errors and uncertainties 'Inherent 'in stereo data.

4. The reliability of stereo data.

5. The method of obtaining 360' stereo 'Information around the robot.
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Figure 21: Stereo geometry (top view).

2.3.1 The Stereo Geometry

The cameras were aligned for a horizontal epipolar stereo geometry: the camera

optical axes were parallel and the 'image planes were coplanar with no cyclotorsion

(rotation offset about the otical axes). This geometry simplifies both the matching

process (since any given world point P will appear in the same horizontal scan line

in each 'Image) and the conversion from 'image coordinates and disparity to 3-D world

coordinates [Horn 1986]. The cameras were mounted so that the focal point of the

left camera was directly over the axis of rotation of the robot. This axis of rotation,

then, corresponded to the z-axis of the robot-centered world coordinate system. From

this camera configuration (see Figure 21), the y-direction distance d in millimeters

to a point P that is visible in both images 'is

d fb (2.1)
W6
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where

f = the focal length of the camera lenses, 'in illimeters,

b = the baseline separation of the camera optical axes in millimeters

a = the horizontal pixel coordinate of the left-image point,

0 = the horizontal pixel coordinate of the right-image point,

= - a, the horizontal disparity, in pixels,

w = the width of a pixel, 'in millimeters.

This distance d is the y-coordinate of the point P 'in the robot-centered world coor-

dinate system. If the point P were at infinity, it would appear in the same position

in the left and right 'images i.e., a The disparity a is the displacement

of the image of P in the right image with respect to the left image.

Once the distance d to the point P has been found, the x- and z-coordinates of

the point can be determined for the world coordinate frame. The x-coordinate (in

millimeters) is
= wad (2.2)

f

and the z-coordinate (in millimeters) is

h-yd
Z 4. hc (2-3)

where

h = the height of a pixel, in mllimeters,

-y = the vertical displacement of the left image point from the 'image center, in pixels,

hC = the height of the camera optical axis, in millimeters.

These calculations put the origin of the world coordinate system on the floorplane

directly beneath the focal point of the left camera.
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2.3.2 Stereo System Specifications

The stereo images were obtained using a pair of black-and-white Panasonic WV-CD50

CCD array cameras. The camera video sgnals were then digitized by a custom-

built frame-grabber for processing on a Symbolics 3600 computer. Each camera was

fitted with an 8.5 millimeter lens, which yelded a field of vew of roughly 55'. The

original images were 576 x 454 xels with each pixel 00138 x 00134 millimeters. The

images were downsampled by averaging each group of four pixels into one yielding

an effective image size of 288 x 227 pxels and an effective pixel size of 00276 x

0.0268 millimeters. The pixel sizes were determined by a calibration procedure, which

is discussed 'in Section 24. The baseline separation of the cameras was 4 inches.

(Baseline separations less than roughly 3 inches could not be achieved due to the

limitations of the camera mounts.) For testing, the cameras were mounted 44' inches
8

off of the floor.

2.3.3 Errors and Uncertainties

Errors in the output of a stereo algorithm are due to incorrect matches between the

left and right images. Although steps are taken to avoid such mismatches (see, for

example, Sections 34 and 35), no stereo algorithm is perfect and errors do occur.

During the testing of MARVEL, over 650 stereo pairs of real data were taken and

matched. Less than 5% of these stereo pairs gave rise to matching errors. For the pairs

where errors did occur, less than 1 of the matched points were matched incorrectly.

Perfect image data cannot be obtained from the cameras due to optical system

imperfections. These optical distortions, however, typically affect the projected loca-

tion of a point 'in an image by less than one pixel [Lenz and Tsai 1987]. Discretization

of the images also affects the input data, preventing an exact determination of the

locations of the intensity edges used by the stereo algorithm. For example, if the

horizontal location of an edge point in the left image is determined to be x, then the

actual edge point could lie anywhere between x 0.5 and x - 5 and still be labeled at

position x. The matching right-image edge point has this same uncertainty, yielding



x-coordinate y-coordinate z-coordinate
true min max true min max true min max

0.167 0.150 0183 10-000 9.111 11.081 3.719 3701 3733
0.167 0142 0.191 15-000 13-085 17.572 3.719 3691 3.739
0.167 0134 0.199 11 20.000 16-734 24-850 11 3.719 3680 3.745
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Table 21: Stereo uncertainties due to discretization (in feet).

disparity uncertainty of ±1 pxel. Thi's disparity uncertainty gves rse to an uncer-

tainty in the distance determined for a point which'sits y-coordinate Equation 21),

and thus also leads to an uncertainty in its x- and z-coordinates (Equations 22 and

2.3). For the stereo geometry described above, these uncertainties are summarized

in Table 21 for a world feature point centered between the two cameras at various

distances from the robot. (The uncertainties can be lowered by interpolating the po-

sitions of the zero-crossings to achieve sub-pixel localization of them before matching

[MacVicar-Whelan and Binford 1981].)

2.3.4 Reliable Data

The stereo data obtained from a pair of images corresponds to intensity edges 'in

those images. Most of these 'Intensity edges are caused by the edges of objects 'in

the world. These edges characterize the location 'in which they are found because

they correspond to objects in that location. The recognition algorithm uses both the

existence of these features and their distribution in the location.

The positions of small ob .ects in a room, such as cups and books, tend to change

often. Large ob'ects, such as whiteboards and bookcases, do not move very often.

This observation leads to an important heuristic for these types of scenes:

Heuristic: Large objects tend to have stable positions. Therefore, the

existence and dstribution of these objects in a location may serve to

identify that location.

Also, a known property of stereo algorithms 'is that features that extend perpendicu-

larly to the baseline of the cameras are most easily and accurately matched. This fact,
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along with the heuristic just mentioned, indicates that certain stereo edges will be

more useful for recognition than others. The edges that most accurately characterize

a location are the ones that are long and vertical.

The actual requirement for long, vertical edges that is enforced 'in MARVEL is

not overly strict. Edges must be wthin 25' of vertical. In practice, straight lines are

fit to the 3-D stereo data using a method given by [Pavlidis 1982]. The slopes of these

3-D lines are checked to determine if the edges are sufficiently vertical. The roughly

vertical edges that are longer than 2 feet are then used as the representative data for

the current location.

The fact that stereo supplies accurate 3-D data combined with the domain assump-

tions allows MARVEL to perform some preprocessing on the vertical edges obtained.

Since some floors are reflective (e.g., tile floors), some matched stereo features may

correspond to reflections of ob'ects n the room. The z-coordinates of the reflection

features will be negative, however, due to their apparent positions beneath the floor-

plane. Any such negatives features are eliminated from the data set. By checking

their heights, ceiling features can also be eliminated. Such features are typically light-

ing fixtures that cover a large part of the ceiling area. Due to their locations on the

ce'ling, these features are not reliably 'n the field of view of the cameras and therefore

cannot be counted on for recognition.

The stereo data that is used to represent a location 'is reliable in two different

senses. Frst, because the edges used are roughly vertical, the stereo matching and the

resulting 3-D position determination for them can be performed accurately. Second,

because the edges are relatively long, they correspond to significant objects in the

location. The length helps ensure that a correct stereo match 'is found, since the

match must occur over a large number of edge points. Finally, such long vertical

edges are highly unlikely to be noise edges in the 'images.

2.3.5 3600 View

The field of view encompassed by a stereo pair i's roughly 55'. Considering that parts

of the left image are not visible 'in the right image, and vice versa, one stereo pair
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covers about a 0' field of view, hich represents slightly less than 17 of the available

information surrounding the robot. Since the recognition algorithm is reling on the

distribution of a set of smple features, more data must be obtained by rotating the

cameras to see the other parts of the location. By rotating about the origin of the

robot-centered world coordinate system, information from different viewing directions

can easi'ly be combined. Since the stereo geometry has been arranged so that the z-

axis of the robot-centered world coordinate system passes through the focal point

of the left camera (see Section 23.1), the camera pair should be rotated about the

vertical line passing through the left camera focal point. The question, then, is how

to obtain 3600 coverage from successive stereo pairs. Two different possibilities exist

for obtaining this additional data.

The best solution for obtaining the additional stereo pairs is to have the cameras

mounted on a motor-driven turntable. Such a turntable driven by a stepper motor can

achieve better than a 2 accuracy, while a D.C. motor wth an optical shaft encoder

for position feedback can achieve better than accuracy [Flynn 1990]. A set of eight

stereo pairs can then be taken at 45' rotation to obtain full coverage of the current

location.

If the robot can turn in place (e.g., the robot described by [Brooks 1986]), then

the additional views of the current location can also be obtained by turning the robot

itself. The shaft encoders on the robot wheels supply information about how far the

robot has turned, but there will be some slip between the wheels and the ground.

Also, such a robot typically turns in a very tight circle. (The robot just mentioned

inscribes a I centimeter diameter circle while turning in place.) Thus, the rotation

information available from the robot is not extremely accurate. In this case, smaller

rotations should be used between stereo pairs so that overlapping views are obtained.

The overlaps can then be compared to determine the exact rotation between views.

MARVEL was tested using the second method of obtainin stereo pairs. The

stereo cameras were rotated by 200 between each stereo pair, yielding 18 stereo pairs

per data set for each location. More than half of a given image, then, overlaps with

the one from the previous rotation. This overlap region 'is used to determine the
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rotation between the stereo pairs.

The camera configuration has been arranged so that the focal point of the left

camera is at the center of rotation. The effect of a rotation can thus be approximated

by a smple translation of features in the left 'image. Therefore, the 2-D edges in the

left images from successive stereo pairs are matched to determine the translational

offset between the 'images. This offset 'is then used to determine the actual rotation

of the stereo cameras. The amount of rotation between views can be increased for

sufficiently complex scenes while still retaining enough common features between the

views to allow the actual rotation to be found.

The actual matching between successive stereo pairs is performed on the significant

vertical edges found in each left image. The matches are determined by considering

the 'Intervals between these edge, using a scheme similar to that of [Ohta and Kanade

19851: the match between the edges of the two 'images is chosen that yelds the

most consistent pairings of the intervals. This scheme allows for edges that might

be missing due to input errors. Because the motion of the features is translational,

the matching process is relatively straightforward and the rotations can be reliably

verified.

2.4 Calibration

From the above discussion, it should be apparent that three different types of cali-

bration are needed to obtain reliable information from the stereo system. First, the

cameras need to be adjusted so that their optical axes are parallel to the floorplane.
Second the cameras must be turned to achieve the epipolar stereo geometry. Finall ,

I y

the image centers and the pixel sze of the cameras used must be determined in order

to convert from image coordinates to world coordinates.

Setting the camera optical axes parallel to the floor is relatively simple. A marker

is set at some dstance from the cameras at the same height as the camera lens centers

and the cameras individually tilted up or down as needed to bring the mark to the

image centers. Note that these optical 'image centers need to be determined for each



I I I I

CHAPTER 2 STEREO INPUT56

04 in 0 0 0 0 0 0

IP

0 0 0 0

0 0 0 0 0 0
1 1 L I

Left Image Right Image

4 in

a. b.

Figure 22: Setup for epipolar optical axis calibration. a. Top view. b. Camera
images.

camera/lens pair.

The epipolar geometry requires that the optical axes be parallel and the image

planes be coplanar. A 4 x foot planar test pattern consisting of a set of inch

diameter black dots arranged in a square grid with 4 inch spacing was constructed.

(Recall that the baseline between the cameras was also set to 4 inches.) The cameras

were set roughly parallel at a distance so that the test pattern filled the left 'image.

The left camera was then turned until the spacing between the dots on the left side of

the 'image matched the spacing between the dots on the right side. This sets the left-

camera image plane parallel to the test pattern. The right camera was then turned so

that, when its image was shifted to align its image center with the left image center,

the dots in the left and right images overlapped, but were off by one phase. That 'is,

each dot in the right image that coincided with a dot 'in the left image was actually a

dot on the test pattern lying 4 inches to the right of the corresponding dot seen in the

left image (see Figure 22). The optical axes are then parallel since they are the same

distance apart both at the cameras and at the test pattern. After this procedure, the

image planes of the cameras are within a few millimeters of being coplanar, which

suffices.

The remaining task, then, is to determine the apparent pixel size in the images

and the image centers. The calibration procedure used follows the methods of [Lenz
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and Tsai 19871. (Other interesting and useful work on camera calibration can be

found 'in [Tsai 1986], [Tsai and Lenz 1987], and [Tsai and Lenz 1988].) By pixel size,

we actually mean the horizontal and vertical spacing between pixels but it 'is more

convenient to think in terms of pxel width and height. In typical CCD array cameras,

the discrete information from each row of camera sensor elements is converted to an

analog signal and these analog sgnals from each row are sequentially combined into

an analog video signal. This analog signal is then sampled by an A/D converter and

used to form a dscrete image array that is dsplayed on a CRT screen and used for

processing. It is evident, then, that the height of an 'image pixel 'is the same as the

height of a CCD camera sensor element. The width of an image pixel 'is determined

by comparing the clock frequency of the camera to the sampling frequency of the

A/D converter:
fcWP = e-

fAID

where

WP = the width of an 'image pixel, n millimeters

(actually the horizontal distance between successive pixels),

We = the wdth of an camera sensor element Iin millimeters

(actually the horizontal distance between successive elements),

= the sensor clock frequency of the camera,

fAID = the sampling frequency of the A/D converter.

For the camera and frame grabber described in Section 23, we haveWe 00172

millimeters, f = 9615 MHz, and FAID- 12 MHz, yielding a pixel width of 00138

millimeters. The apparent pxel size is then 00138 x 00134 millimeters (width x

height) for a full 576 x 454 pxel 'image.

The 'image centers were found using the Radial Alignment Constraint described

by [Lenz and Tsai 1987]. The method used is outlined here. Interested readers should

refer to [Lenz and Tsai 1987] for full details.
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Figure 23: Camera imaging geometry with perspective projection and radial lens
distortion.

Figure 23 shows the camera imaging geometry with perspective projection and

radial lens distortion. The world coordinate system is shown at the left, with or' 

0,,. The camera 3-D coordinate system is based at and the image center is at Oi.
I if projected through a perfect

Object point P with world coordinates W, yw� ZW)

pinhole camera, would appear at point P wth image coordinates (X,,,, Y,,). Due to

radial lens distortion, however, it actually appears in the 'image as point P at , Y).

The overall transformation from world point W, YWI ZW) to image point (X, Y)

can be viewed as having four parts [Lenz and Tsai 19871:

1. A rigid body transformation from world coordinates to camera coordinates:

xw tx

Yw + ty

zw i Ltz i

ri r2 r3

r4 r5 r6

r7 r8 rg

(2.4)

2. Perspective projection:
x
- y

xu=f = 
z z

(2-5)

x

y

z i
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3. Radial lens distortion, modeled wth a second-order polynomial:

= Xu (I rR 2)-1 Y = Yu (1 + r,,R 2W (2-6)

w'th

R 2 = x2 + y2.
U u

The determination of the radial lens dstortion is not necessary for our purposes.

The fact that it occurs, however, 'is used to formulate the Radial Alignment

Constraint that is exploited to determine the 'image centers (see below).

4. Camera sensor coordinate to image pixel coordinate conversion.

This is the determination of image pixel sizes and that was discussed earlier.

Note that in Figure 23 the vectors I

I ) (Xu u) I and (X, Y) are radially aligned

when the image center is correct. This alignment holds 'Independently of any radial

lens dstortion, the focal length of the lens, and the z-component of the translation

(t, in Equation 24). This fact forms the basis of the Radial Alignment Constraint

(RAC). The RAC can be stated as

( I ) (XU, u) (X, Y) (2-7)

It follows from Equations 27 and 24 that

X X xwri + ywr2 + zwr3 + tx
(2-8)

Y Y xwr4 + ywr, + zwr6 + tY

The dot test pattern described earlier provides a set of coplanar points at known

world coordinates Pw = (xwjj ywil zwj). By choosing a world coordinate system where

ZWi =:: 0 Equation 28 yields a linear form of the RAC:

Yxwir, + Yy.jr2 + Yitx - Xixwir - Xywir - Xit = (2.9)

Five or more calibration points yelds an overdetermined set of homogeneous equa-



m 1, iona

60 u`nAPTER 2 STEREO INPUT

tions, allowing the unknowns (r, , r2 txl r4l r, ty) to be determined up to a common

scaling factor. Dividing through by ty, we obtain

ri Y r2 t r4 r5
Yixwi + iywi + � , - ix.i- - Xiy.i- Xi = (2.10)

ty ty ty ty ty

An estimate Xi of the x-coordinate of the point (Xi, Y) that is dependent on these

unknowns can then be obtained from Equation 210:

X -r + Wi ZZ +
A WItY ty ty

Xi = i X r4 r- + (2.11)Wi ty + YW ty

Using a least-squares minimization, Equation 211 can be solved for (a La tx r a)ty I ty I ty Ity ) ty
A

by minimizing the error Xi _ Xi. Now, the point image coordinates (Xi, Y) are

measured from some estimate of the optical center of the image (Cx, Cy), which is

taken as the 'image origin. If we change our notation for an 'image point (Xi, Y to

(X + C, Y, + AC.), we can rewrite Equation 210 as

Y (Xw1i ri + YWi r2 + tX) (XWi r4 + Ywi r5 + (2.12)
ty ty ty ty ty

_1ACX (xwi r4 + ywi r5 + 1) + ACY (xwi ri + YWi r2 + -X
ty ty ty ty ty

where the unknowns are (AC, ACy). Using the same set of points, we again have

an overdetermined set of equations that can be solved va least squares, thus im-

proving the estimate of the image origin (optical center) (Cx, Cy). This process is

iteratively repeated, first solving Equation 210 using the new 'image origin and then

Equation 212, until the change in image origin (C, ACy) becomes small.

Using the Radial Alignment Constraint method just described, the 'image centers

were determined for the images of the left and right camera-lens pairs. After less

than ten iterations the image centers were changing by only a fraction of a pixel.

The final 'image centers determined for the full 576 x 454 pixel images were 317.33,

226.00) for the left image and 306-33, 223.67) for the right.
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2 5 S unarnary

We have seen how the task of location recognition leads to certain requirements on

the sensing system used for MARVEL. Stereo vsion has suitable properties for use as

MARVEL's 'input system. The essential characteristics of the chosen stereo algorithm

(the Marr-Poggio-Grimson stereo algorithm) were discussed. The vision hardware

used for the stereo 'Input was described, along with a calibration procedure that

permits accurate 3-D data to be obtained. The implementation of the stereo algorithm

used for MARVEL is explained in the next chapter. This implementation takes a new

approach to stereo feature matching using the Dsparity Space representation. New

strategies for validating correct matches and selecting among ambiguous matches have

also been implemented.



62 CHAPTER 2 STEREO INPUT



I Nip i -I--------- - -- -- --- --

a er

ereo a in in is ari

ace

The Marr-Poggio-Grimson stereo algorithm has been presented as a model of the

human stereo vision process [Marr and Poggio 19791 [Grimson 1981]. The algorithm

was subsequently revised by [Grimson 19851 to improve its performance with no claims

as to the relevance of these revisions to human stereo vision. Proceeding from this

work, we present herein further modifications to the algorithm used to implement this

theory of stereo vision. These modifications 'Involve a change of representation that

makes the constraints of the stereo matching problem more accessible and facilitates

experimentation with methods of feature matching [Braunegg 1989a] [Braunegg 19901.

In the Marr-Poggio-Crimson stereo algorithm, the features that are matched be-

tween left and right images are zero-crossings of the images convolved with difference-

of-Gaussian filters of a range of szes. The matching is performed across a range of

eye fixation positions, with matches in a small area around each fixation position

compressed 'Into a single match that is then further processed. The method of feature

matching presented here, rather than processing matches about individual fixation

points, finds unique matches at each fixation point and then considers the set of

matches across the full range of fixation positions.

63
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3A The 1\4arr-Poggio-Grinason Stereo Algorithrn

The Marr-Poggio-Grimson stereo algorithm as 'Implemented by Grimson consists of

eight steps, outlined below. The steps pertinent to the disparity-space matching

algorithm will be explained more fully 'in the following sections, while a detailed

explanation of the complete algorithm can be found in [Grimson 1985].

0. Loop Over Levels: Iterate from coarser to finer levels of representation. The

level of representation is reflected by the value of the filter width w for the

convolution step.

1. Convolutions: Convolve the left and rght images with G(w) filters.

2. Zero-Crossings: Locate the non-trivial zero-crossings in the convolved im-

ages and mark these zero-crossings with their contrast signs.

3. Loop Over Fixation Position: Iterate over a range of alignments of the left

and right images.

4. Matching: Identify valid feature matches between the left and right

images.

a. Feature-Point Matching: Given a disparity bo, match positive zero-
. -- -crossings against positive ones and negative zero-crossings against

negative ones over a vertical range of c and a horizontal range of

+w about the current alignment.

b. Figural Continuity: Compress the contours matched about 60 from

4.a. into a single representation and eliminate those matched con-

tours whose vertical lengths are less than a threshold.

C. Disparity Updating: For the remaining contours matched about

60 record in the disparity map for the current level the average

disparity of the matched contour points.

5. Loop: Loop to Step 3 and repeat for all possible image alignments.

6. Disambiguation: Use zero-crossing matches from coarser channels to dis-

ambiguate matches at the current level.
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7. Loop: Loop to Step and repeat for next finer level of representation.

8. Consistency: Eliminate zero-crossing matches that are inconsistent with coarser

channel matches.

We propose a modification to the above algorithm at Steps 4 and 5. In the modified

version, feature points are not matched 'in a range about each fixation position, but

rather are matched only at the fixation positions. Fgural continuity is then applied

to the matched contours as they lie across the full range of disparities fixations)

considered. (A figural continuity test was later added to Grimson's 'implementation

as well [Grimson 19891.) Specifically, the new steps of the algorithm are

4. Matching.- Identify valid feature matches between the left and right

images.

a. Feature-Point Matching: Given a disparity bo, match positive zero-

crossings against positive ones and negative zero-crossings against

negative ones over a vertical range of ±c about the current align-

ment. The ± i's used solely to allow for a (possible) slight vertical

misalignment between the 'images.

b. Disparity Updating: For the contours matched at 60 record in the

disparity map for the current level the disparity of the matched

contour points.

5. Loop: Loop to Step 3 and repeat for all ossible image alignments.

5-1. Contour olloiving: Form linked lists of matched contour points 'in the

disparity map for the current level. These linked lists are the candidate

matched contours for their corresponding left-'image contours.

5-2. Contour Validity Checking: Test the matched contours in the current

level's disparity map for validity.

a. Horizontal Segment Extension.- Connect matched contour seg-

ments across regions of horizontal contour points where the hori-

zontal extensions have a disparity gradient less than a threshold,

h.
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b. Figural Continuity: Eliminate those matched contours whose ver-

tical lengths are less than a threshold, f. The contours are followed

without regard to how they vary in disparity.

c. Disparity Gradient: Eliminate segments of matched contours that

vary in disparity by an amount greater than a threshold, g. Recheck

figural ontinuity for any contour from which a segment is removed.

5-3. Matched Contour Disambiguation: Disambiguate contour points with

two or more candidate matches.

a. Contour Subsumption: Eliminate those contour matches that are

subsumed by other matches.

b. Consistent Disparities: Where two or more matches remain for

a contour point, choose the disparity most consistent with the

disparities found for the rest of the contour.

The changes made to the algorithm will be discussed in the following sections At

this point we simply note that the differences lie 'in how the contours are matched and

how the matched contours are checked for validity. The validity checks listed above

are modifications of tests from the original algorithm while the disambiguation tests

are new.

3,2 Disparity Space Contours

The new steps in the stereo matching algorithm involve a change in representation.

In the new algorithm, matched contours are represented as contours 'in disparity

space. Disparity space is a three-dimensional space: the x- and y-dimensions are the

same as in one of the images (typically the left image) (Figure 31) while the third

dimension 'is disparity. Matched contours are plotted as sets of ordered points in

this space. Thus, for any matched pair of contour points (Figure 32), the matched

point 'is explicitly represented in terms of its position in the (left) image and its

perceived disparity (Figure 33). If we were to convert the disparity measurements
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Figure 31: Left and right 'images.

to distance from the cameras (using information about the camera geometry), the

disparity space representation would become a scaled model of the arrangement of

the physical contours in the three-dimensional world.

When performing operations on the matches of 'Individual left-image contours, we

do not need to deal with them 'in the full three-dimensional disparity space. Since

we know where a contour lies 'in the x and y dimensions (the left image location

of the contour), we can consider the matches of this contour in a two-dimensional

plane-the first dimension being distance along the contour and the second disparity

(Figure 34). This disparity-space plane 'is a two-dimensional plane embedded in the

three-dimensional disparity space.

It follows that points of the contour matches are referenced by arc length (based

at the beginning of the contour) and disparity rather than x-coordinate, y-coordinate,

and disparity. Thus, three-dimensional operations on contour matches in disparity

space are reduced to two-dimensional operations 'in the disparity-space planes.

The dsparity space representation for matched contour points has several bene-

fits. By considering a matched contour as a whole, this new representation aids in

the selection of breakpoints for long contours (Section 33-1) and the extension of

matches across horizontal contour segments (Section 34.1). (Long contours often ex-

ist in a difference-of-Caussian filtered 'image due to the requirement that zero-crossings

form closed contours, rather than to the existence of corresponding real-world object

3.2. DISPARITY SPACE CONTOURS 67
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Figure 32: Left- and right-image contours. A single left-'image zero-crossing contour
is shown. For the right 'image the area of possible matches (in dotted lines) for the left-
image contour as disparity varies is shown. Also shown are the right-image contours
that are candidate matches for the chosen left-image contour.

Y
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x

Figure 33: Disparity space, showing the candidate matches for the left-image contour
that appears in the dotted box of Figure 32.
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Figure 34: Disparity-space plane for the left-image contour of Figure 32, showing
the candidate matches. This is the two-dimensional plane embedded in the three-
dimensional disparity space shown in Figure 33.

features.) The representation allows us to implement a cleaner form of the figural

continuity constraint (Section 34.2). It facilitates the application of a dsparity gra-

dient constraint to the whole matched contour or any part thereof (Section 34.3).

Finally, the disparity space representation allows us to check easily for consistent dis-

parities and contour subsumption when disambiguating candidate contour matches

(Sections 35.1 and 35.2).

3,3 \4atching to Yield Disparity Space Contours

Following from [Grimson 1985], we assume that the convolved left and right images,

L C, (x, y) V2 G(w) * L

V2Rcul (x G(w) * R

have been computed. V2G(w) denotes the Laplacian of a Gaussian whose central

negative portion has width w, is the convolution operator, and L and R denote the

left and right images, respectively. For each of these convolved images, the nontrivial

zero-crossings have been located and marked with their contrast signs, yielding the
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bit maps:

L P, (x, y)

LN,, (x, y)

L H,, (x, y)

RP. (x, y)

RN. (x, y)

RH. (x, y)

= positive zero-crossings of LC,,(x, y)

= negative zero-crossings of L C, (x, y)

horizontal zero-crossings of LC,(x, y)

positive zero-crossings of RC.(x, y)

negative zero-crossings. of RC.(x, y)

horizontal zero-crossings of RC,,(x, y).

The zero crossing points LC,, (x, y) and RC,, x, y) can also be grouped according to

the edges, or contours, from which they arise. These left- and right-image contours

are denoted by LE,, ,k( ) and REk(i), respectively, where the contours are numbered

k - 1 2. .. 'in each image and the points along a contour are numbered i 2 .

Now, to find the candidate right-image matches for the k" left-image contour LE,,,,,k

at the current filter width wo, we construct a disparity-space plane

for LE,,o, k (') E L Pwo

for LEwok(') E LNwo

for LEwok(i) E LHwo

elsewhere
over

6min < < 6ax (disparity range),

0 < i < length(LE,,,, k),

where

X X(E(wo, k, i, 6)) is the x-coordinate of E(wo, k, i, ),

Y Y(E(wo, k, i, 6)) is the y-coordinate of E(zvo, k, i, ),

E(wo, k, i, ) is the point in the left 'image plane pxels to the right

along the epipolar line through LEw,, k ),

LEWO'k (i) 'is the i1h point in contour LEw,,,k-

RPwo (Xi Y)

Pwok (1 = RNwo (XI Y)
RHW (XI Y)

0
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The disparity space plane for a left-'image contour thus represents the possible matches

of its points with points in right-image contours, described 'in terms of the disparity

of a match versus the position of the matched left-image contour point along the

contour (Figure 34).

In the case of horizontal epipolar lines, matching the points of horizontal con-

tours 'is ambiguous. For such points, we rely on the Horizontal Segment Extension

of Step 5-2.a for determination of the disparities. The disparity-space planes then

become
RPwo (X� Y) for LEwok(i) E LPwo

Pwolkj6i i) RN, (Xi Y) for LEwok(i) E LNwo.

0 for LEwok (i) E L Hwo

Certain computational advantages are realized by 'implementing the disparity

space contour representation for matching zero-crossings instead of the ±w window

method of [Grimson 1985]. At a given disparity 60, only one point 'in the right image

must be compared with a contour point in the left image. Crimson's method entails

combining 2w + points from the rght image into a single data point and compar-

ing this data point with a contour point in the left image. If we assume horizontal

epipolar lnes 'in the images, the fact that we only match points at a single horizontal

disparity allows us to search for matching points by simply scanning across the right

image over the range of horizontal disparities (see Figure 32). No additional process-

ing is required to consider ±w windows around each fixation position. (We note that

in both algorithms the c vertical range is achieved by overlaying copies of the rght

image at the required vertical offsets and using the resulting image for matching.)

3.3.1 Contour Following in Disparity-Space Planes

Once we have formed the disparity-space plane for a left-image contour, the candidate

matching contours from the rght image are easily found (Step 5-1). We smply scan

the rows of the disparity-space plane until we find a matched point. We then trace

matched points along the contour starting from this matched point, forr'ng a linked

list of matched points. Given matched point Pwok(60, Q, we search for the next
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matched point in the range [Pw,,k(Lb - C], i + 1), P,,,,,,k([b + C1, i + 1)] where c

is a threshold on the maximum jump in disparity between successive contour points

(larger than that allowed by the disparity gradient dscussed in Section 34.3). All of

the candidate matching contours 'in the disparity-space plane are found 'in this way,

poss'bly breaking the original contour into several matched contour pieces. We then

check these candidate matches for validity and disambiguate when multiple matches

have been found for the left-'image contour.

As stated 'in Step 4.a, we consider candidate matches over a vertical range of

±c about the epipolar line along which we expect to find matches. Because of this,

the matched points in a disparity-space plane may form lines that are more than

one pixel wde. We perform a thinning operation on such lines to obtain one pixel

'de candidate matching contours in the d'sparity-space plane. Rather than using a

standard "grass fire" approach to thinning, we bias the thinning algorithm to prefer

lines that vary least in disparity over their lengths. Due to this thinning operation

and the fact that the y-axis of the disparity-space plane represents arc length along

the contour, the resulting candidate matches n the plane form lines that are strictly

monotonic in the vertical axis of the plane.

3.4 Nlatched Contour Validity Checking in

Disparity Space

After obtaining the candidate matching right-'image contours for each left-image con-

tour, we apply several validity tests to each of the candidate contours in disparity

space. These tests are applied to the candidate contours individually and must be

applied to every candidate contour. We cannot assume that a candidate match is

valid simply because it is a unique match for a particular left-'image contour.
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3.4.1 Horizontal Segment Extension

Contour matching cannot be applied to horizontal contour segments when we have

horizontal epipolar lines. If we do not consider horizontal points, however, we may

unintentionally break a long matched contour segment into two or more shorter con-

tour segments. To avoid this problem, we extend contour segments across horizontal

sections where possible (Step 5-2.a). Suppose that a matched contour segment in a

disparity-space plane ends at the point Pw,,,,k(bO, i)- We search the points in the range

[PW,,k( Lbo-jh]jio+j)j Pwokffbo +jh I io +j)] for i = 231... , length(LE,,,k) until

we find a matched contour point. (h 'is the threshold mentioned 'in Step 5-2.a of the

modified algorithm.) If no point is found, we cannot extend the contour. If a point

is found, say at j = j, then the points

Pwok (60 1 io + 1) I Pwok (60+ 2 io + 2 .. Pwok bO in i in)

are added to the contour and we continue to trace the contour in the disparity-space

plane from the pointPw,,,k(60 in, i in) 

Typically, the threshold h is set to the same value as the threshold c mentioned

in Section 33.1 above. The threshold h is the maximum allowable ump in disparity

between contour points where one or both of the points comes from a horizontal

section of the contour.

Horizontal segment extension is facilitated by the disparity space representation
of candidate matches (Figure 35). To extend a match across a horizontal section of

a contour we smply search for the next y-coordinate (in the drection of 'increasing

arc length) until matched points are found. Choose the matched point at this y-

coordinate whose x-coordinate (disparity) is closest to that of the original point. If

any y-coordinates that correspond to non-horizontal contour points are crossed the

extension fails. If we have extended the contour for n points and the difference in

disparity across the extension does not exceed nh, then we accept the extension and

connect the matches across that horizontal contour section.
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contour contour
length length

I
i

I
jjhorizontal iIi

contour I
points I

0disparity

horizontal
contour
points

- ----- disparity

Before After

Figure 35: Contour in a disparity-space plane before and after horizontal segment
extension.

3.4.2 The Figural Continuity Constraint

Arguments based on both the cohesiveness of matter and psychophysical evidence

support the use of figural continuity as a verification criterion for stereo matches

[Mayhew and Frisby 1980] [Mayhew and Fsby 1981], [Prazdny 1985]. In the 'im-

plementation of the figural continuity constraint given by [Grimson 1985], one pixel

wide gaps were allowed in a contour when checking 'Its length. After experimenting

with the stereo algorithm, however, we have found that this allowable gap feature

is rarely used. (Grimson also found this to be true [Grimson 19891.) Therefore, we

have 'Implemented a simplified figural continuity constraint based on the continuous

length of a matched contour (Step 5-2.b). To apply the figural continuity test, we

simply eliminate all matched contours that are vertically shorter than f pxels long.1

Contour points from horizontal segments are not counted in the length of a contour

because they are 'Interpolated between matched contour points instead of resulting

from matched points themselves.

Note that the length of the contour is determined regardless of how the contour

varies in disparity. The Dsparity Gradient test (see the following section) explicitly

considers how a contour varies 'in disparity. The disparity space representation of a

'The threshold f is the figural coniinuity length ad is typically expressed as a fraction of the
width of the central region of the VG filter.
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matched contour allows the figural continuity constraint to be applied to the contour

as a whole. In the original algorithm, the length of a matched contour can only be

checked in a window of width 2w pixels of disparity. As presented by Mayhew and

Frisby, figural continuity should be applied to a matched contour as a whole, not just

to arbitrary pieces of it. With the dsparity space representation for matched contours,

we have separated the length requirement for matched contours from consideration

of how widely they range in disparity.

3.4.3 The Disparity Gradient Constraint

Psychophysical observations have shown the 'Importance of a dsparity gradient limit

for stereopsis [Burt and Julesz 1980a], [Burt and Julesz 1980b]. These observations

were the basis of the PMF stereo algorithm [Pollard et al. 1985a], [Pollard et al.

1985b]. Only a weak condition on the disparity gradient, however, is incorporated

in the original Marr-Poggio-Grimson stereo algorithm. Below we provide an explicit

check of the disparity gradient using the disparity-space representation of contour

matches.

Disparity gradient for a matched contour is drectly 'Interpreted from the slope

of the matched contour 'in the disparity-space plane for the contour. (The x-axis

corresponds to dsparity and the y-axis to arc length along the contour.) Snce the

discrete nature of the representation makes defining and finding gradients difficult, we

define a procedure for finding the gradient of a matched contour over various sections

of the contour (Step 5-2.c). Rather than choose a fixed segment length over which to

calculate the gradient, we let the segment length vary.

To apply the Disparity Gradient constraint to a matched contour, we first obtain a

straight-line approximation [Pav1i'dis 1982] to the contour in the disparity-space plane,

including the horizontal segment extensions, if any Figure 3-6). We let points deviate

from these straight-line segments by two pixels (typically) to allow for positional errors

due to discretization and the VG convolution. Segments wth disparity gradient

greater than g are deleted, while the remaining segments are accepted as valid contour

matches by this processing step.
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contour contour
length length

N

I
I

disparity 0disparity

Contour Contour Approximation

Figure 36: Straight-line approximation to a matched contour in a disparity-space
plane.

It is important to note that Step 5-2.c Disparity Gradient) of the new algorithm

was implicit in Step 4.a of the original algorithm. In the original algorithm, a matched

contour was not permitted to vary by more than 2w pixels across the figural continuity

length. It could vary quite rapidly within these bounds (and thus contain large

disparity gradients), however, and still be accepted. The new algorithm places a

specific limit on how quickly a contour may vary in disparity (i.e., a disparity gradient

limit). This disparity gradient test is dstinct from the figural continuity test and also

does not affect the matching process since we match contours at a particular horizontal

disparity instead of over a range of disparities.

The fact that we explicitly check the disparity gradient along a matched contour

allows us to break the contour into dstinct segments, eliminating parts of the contour

whose disparity gradients are too steep. This situation often occurs on zero-crossing

contours in G images since these contours must be closed. Many times strong zero-

crossing contour segments are closed by weak zero-crossings that do not correspond

to physical features in the real world. Due to the nature of these weak zero-crossing

segments they tend to wander in the 'image, producing matched zero-crossing seg-

ments that vary in disparity. The varying disparity of these weak contour segments

is typically evidenced by high disparity gradients, allowing many of these segments

to be located and eliminated.



Hill limit, � I - ---- -- .. - -- -

3.5. MATCHED CONTOUR DISAMBIGUATION 77

Typically, the threshold g is smaller than the thresholds c and h used in Steps 5-1

and 5-2.a (see Sections 41 and 5.1 above). This is due to the fact that a contour

can vary sharply 'in disparity over a few points but still have a low disparity gradient

overall.

3,5 Aatched Contour Disarnbiguation

After validating the matched contours using the figural continuity and dsparity gra-

dient criteria, ambiguous matches often remain. We attempt to resolve these ambigu-

ities by checking for contour subsumption and consistent disparities along contours.

Afterward, any remaining ambiguities are resolved, if possible, by considering nearby

contour matches from the current and coarser filter channels (as in the original Marr-

Poggio-Grimson stereo algorithm).

3.5.1 Contour Subsumption

When two or more matches are possible for a given contour, one of the matches

frequently subsumes the others. That is, one candidate match extends over a larger

portion of the contour and the portion that it does cover includes some of the other

matches. If this is the case, we accept the subsuming match as the correct one

(Step 5-3.a). This is justified because the base of support for that match is stronger

(hence the longer length of the match) than for the others.

The disparity space representation of contour matches facilitates direct comparison

of the extents of matches of consistent disparities (Figure 37). The starting and

ending points of the matched portions of contours are directly represented in disparity

space. In our implementation of contour subsumption disambiguation, we nitially

require strict subsumption, i.e., the subsuming contour must completely cover the

range of the subsumed contour as well as extend above and below it. This requirement

is relaxed if the subsuming contour extends well beyond one end of the subsumed

contour but falls a few pixels short of the other end.
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contour
length

contour
length

disparity

Figure 37: Contours in a disparity-space plane before and after subsumed contours
are removed.
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where is small.
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contour contour
length length

.. disparity - .. disparity

Before After

Figure 38: Contours in a disparity-space plane before and after ambiguous matches
with inconsistent disparities are eliminated.

3.5.2 Consistent Disparities

To disambiguate remaining contour points with more than one match, we choose the

match whose disparity is most consistent with the disparities found for the rest of

the contour (Step 5-3.b) (Figure 38). Consider a contour point with matches at

disparities 1, 2, ... , 6. Let N8. be the number of points from the same contour

that are unambiguously matched at disparity 6. Assign disparity 6j to the contour

point when maximizes N6 3. for I < j n and N6 > 0. If all of the N8 = ,

1e., there are no unambiguous contour points whose disparity matches one of the

possible disparities of the point in question, then select the match whose disparity is

closest to an unambiguous disparity for the contour: choose . such that mininuzes

16 - I for I < j n over all i. If this minimum distance exceeds a threshold,

i.e., min b - I > c, Vi, j, however, then the ambiguously matched point is left

unmatched at this stage. These remaining ambiguous points wll be disambiguated

by using matched contour information from coarser channels (Step 6.
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3.6 Advantages of the Disparity-Space Approach

The use of the disparity-space plane representation for candidate contour matches has

several advantages over the original Marr-Poggio-Grimson 'Implementation. These

advantages are based on the representation of arc length versus disparity for the

candidate matches of a contour.

With the disparity-space plane representation for the contour matches, the figural

continuity 'is drectly observable from the candidate matches. Using this represen-

tation, the figural continuity constraint i's applied once per matched contour. The

original 'Implementation required thi's constraint to be checked for the matches found

in the ±w range at each fixation position. Even assuming that a matched contour

lies at a single dsparity, the original method would check the figural continuity of

this contour 2w I times.

To check the disparity gradient of a matched contour, we must follow the contourin

the x- and y-coordinates of the original 'image as well as in disparity. By representing

contour matches in disparity-space planes, however, we consider the matched contours

in a two-dimensional space: one dimension is disparity while the second is distance

along the contour. Thus contour points are referenced by disparity and arc length

(based at the beginning of the contour) rather than disparity, x-, and y-coordinates

(Figure 34). We can therefore compare candidates for zero-crossing matches in these

disparity-space planes instead of in a three-dimensional space.

Contour subsumption is easily determined in the disparity-space planes. The

linked lists of points that comprise a match for a contour are parameterized by arc

length, allowing direct comparison of different candidate matches.

Finally, consistency of disparity along a contour can be enforced naturally using

the disparity-space plane representation. This follows from the fact that the matched

contour points are parameterized by disparity in the representation.



�llilima.imwii

3.7. CONCL USIONS 81

3.7 Conclusions

By considering matched contours in disparity space, we are able to improve the Marr-

Poggio-Grimson in several ways. The figural continuity constraint can be applied to

complete matched contours instead of sections of them that are bounded by a fixed

disparity range. An explicit dsparity gradient threshold can be applied to matched

contours and sections of the contours that do not meet this constraint can be removed.

Computational savings are realized by eliminating the horizontal disparity wndow

formerly used in the matching process (Step 4.a), both by allowing a smpler matching

process and by permitting us to apply the figural continuity constraint onl once per

matched contour.

Disambiguation of competing contour matches is facilitated by the disparity-space

plane representation of the matches. The explicit representation of arc length makes

contour subsumption easy to determine. The explicit representation of disparity along

the contour matches allows us to check the consistency of the disparity of candidate

matches in a straightforward manner.

With this new disparity-space plane representation for stereo matching, the task

of the matching problem 'is evident-the best matches appear as long, connected lines

in the disparity-space plane. The explicit representation of arc length and disparity

of the candidate matches aids validation and disambiguation of the matches. Finally,

the unnecessary detail of the actual location of the contours is eliminated for the

matching, validation, and disambiguation operations.

3o8 A Disparity-Space Stereo atching Exairnple

Although the smplified figures shown in this chapter help one to understand the

disparity-space representation and operations it is interesting to see the effects of

these operations on a real stereo image pair. Unfortunately, the limits of black-

and-white reproduction make it difficult to present the depth results of the stereo

algorithm, so only the matched contour points themselves can be shown. Figure 39
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Figure 39: The left and right images of a stereo pair.

Figure 310: Zero-crossing contours from the left and rght images of Figure 11 0

shows a stereo image pair. The zero- crossing contours found for each 'image are shown

in Figure 310. These contours are matched by the stereo algorithm as described in

this chapter. Figures 311 through 316 show the various stages of matching, valida-

tion, and disambiguation for these image contours, starting with the unambiguously

matched left contour points in Fgure 31 1 ie., those points that have a unique match

among the right contour points. The later stages of processing will determine which

of these matches are correct. Figure 316 shows the final set of matched left contour

points, each of which are assigned 3-D coordinates by the stereo algorithm.
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Figure 311: Original unambiguously matched left contour points from Figure 310
(Step 4.

Figure 312: Unambiguous left contour matches after orizontal segment extension
(Step 5-2.a).

I

Figure 313:
(Step 5-2.b).

Left contour matches after imposing figural continuity constraint
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/ I /

Figure 314: Left contour matches after imposing
(Step 5-2.c).

disparity gradient constraint

Figure 315: Left contour matches after eliminating subsumed contours (Step 5-3.a).

Figure 316: Left contour matches after eliminating inconsistent disparities
(Step 5-3.b).
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3,9 S uniniary

This chapter described a novel approach to matching stereo features through the use

of the disparity space representation. This representation was used 'in the frame-

work of the Marr-Poggio-Crimson stereo algorithm. Matching contours in disparity

space is straightforward because the 'Information needed for matching 'is made explicit

in this space. Contour validity checking and disambiguation are also easily accom-

plished through the use of this representation. An example with real data was given

demonstrating the use of the disparity space methods described. The 3-D information

obtained from this stereo algorithm i's used to represent the locations to be recognlZed,

as described in the next chapter.
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It would be wonderful if the sensors available to a mobile robot could give detailed,

blueprint-like floorplans of the rooms 'it encounters. Unfortunately, no such sensors

exist. Given that the output of the stereo vision system chosen for MARVEL consists

of vertical edge features from the current location labeled with 3-D coordinates, how

can this data be used to represent the world? Specifically, the data must permits

the robot to build location models for the rooms it encounters and must also be

amenable to comparison with these models so that the identity of the visible room

can be determined.

4A The Task Is Recognition, Not Navigation

In developing any representation, the first question to ask is, "What task is to be

performed using this data?" Different representations are suitable for dfferent tasks,

and a good representation should make explicit the constraints that the data applies

to the task. As described in Section 2 , the aggregate of a large set of simple features

characterizes a location. Simple features are easily detectable so that effort can be

expended where it belongs-on recognizing the location and not on recognizing the

individual features. By using an aggregate of such features, the dependence on any

87
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one or small number of them is reduced, making the system robust to occlusion. The

stereo system provides just such an aggregate of simple features: a set of 3-D line

segments distributed in space, whose distribution characterizes the location to be

recognized.

One goal of a representation is to provide an abstraction of the raw data from

the 'Input. The abstraction should retain essential information for the task while

hiding or eliminating details that are not needed. Through testing MARVEL 'it

became apparent that 2-D information suffices for accomplishing recognition of rooms

in indoor environments. Other researchers most notably the group at INRIA (Insitut

National de Recherche en Informatique et en Autornatique) 'in France, have been using

3-D stereo data for a mobile robot to determine freespace and identify objects n the

vicinity of the robot [Boissonnat et al. 1988a, 1988b] [Le Bras-Mehlman et al. 19881

[Faugeras et al. 19861. Their work 'is concerned with planning safe paths through the

immediate environment and not with determining where the robot is in a global sense.

The position determination that they accomplish 'is aimed primarily at relating the

current position to the one where a previous data set was obtained. Note however

that other researchers in the field for example [Wells 19891 and [Kriegman et al. 1989],

have come to the same conclusion about world representations for mobile robots as

that presented here and extract 2-D information from 3-D line segment data.

To recognize a room in a building, MARVEL uses the distribution of large ob-

jects about that room, as represented by matched stereo features, to characterize it.

The 'Important aspects of the data are the existence of the room features and their

distribution about the robot. A 2-D representation of the stereo data obtained by

projecting it onto the groundplane contains exactly this essential 'information. The

2-D data 'is further abstracted through the use of an occupancy grid representation.

The simplicity of this method helps make the data robust with respect to partial

occlusion and insensitive to the positional uncertainties of the stereo data, since the

representation is not sensitive to these variations.
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Figure 41: A stereo pair taken from Room 914 n the MIT Artificial Intelligence
Laboratory.

Figure 42: Matched stereo edges for the stereo pair in Figure 41. Each edge point
is labeled with 'Its 3-D coordinates.

4,2 Basis of the 1\4odel Data Representation

As mentioned 'in Chapter 2 the input data for MARVEL is extracted from stereo pairs

of images. For each stereo pair (e.g., Fgure 41 taken from Room 914 'in the MIT

Artificial Intelligence Laboratory), a set of matched 3-D edges are found Figure 4-

2). The significant vertical edges are extracted (Figure 43) and their mdpoints

projected to the groundplane (Figure 44). This process is repeated for each rotation

of the cameras until complete 360' coverage around the robot is obtained (Figure 45).

These projected mdpoints of 3-D vertical edges form the basis of the representation

for the room.

I -16��

I
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Figure 43: Significant vertical edges extracted from the edges in Figure 42.

Figure 44: Projected midpoints of the vertical edges 'in Figure 43. The 'icon 'Indicates
the robot position and orientation.
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Figure 45: Projected feature mdpoints for full 3600 coverage around the robot.
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Figure 46: Occupancy grid squares that contain at least one projected vertical mid-
point from Figure 4-5.

Figure 47: The set of data used to represent Room 914, which was derived from the
projected midpoints of Figure 45.

4.3 Grid-Based Data Abstraction

The data obtained from the stereo input is further abstracted through the use of an

occupancy-gr'd representation [Nilsson 19691 [Moravec and Elfes 19851. A square grid

is imposed on the groundplane over the projected vertical midpoints. Any grid square

that contains a mdpoint is then marked as occupied Figure 46). (The fact that only

midpoints of the vertical edges were projected guarantees that only one square will

be marked per vertical.) The marked 2-D grid squares are used to represent the

input data for the room (Figure 47 shows the data for Room 914). Each grid square

is a data point with an associated 2-D position with respect to the robot-centered

world coordinate system. Notice that the essential character of the input data-the

distribution of features about the robot, has been retained in the grid-based data

abstraction.

Each data point is labeled wth a 2-D (x, y) position. The origin of the data

coordinate system 'is the position of the robot when 'it acquired the data. The initial

a
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direction that the robot was facing defines the positive direction of the y-axis, with
I I I

the positive x-axis extending to the right. The position of the robot n the room,

then, is determined wth respect to the stereo features that 'it finds.

Since MARVEL builds its models autonomously from its 'input data, the model

representation will be very similar to the data representation. In fact, the models are

represented by grid squares, as 'ust described, that are weighted according to their

importance to recognition. The model representation will be described more fully in

Section 45.

Note that this grid-based representation does not look like the rooms that we see.

Once again it is evident that the world 'is defined b the 'Information our sensors give

us and not by our concepts of the world. A world defined by stereo edges will not

be the world populated by people, desks, and bookcases that we know. Through the

grid representation, the world appears to MARVEL to be a collection of points with

fixed positions distributed about the robot.

4,4 Advantages of a Grid-Based Representation

The grid-based representation for a room retains the essential characteristics of the

sensor input that are needed for recognition. Specifically, the existence and distri-

bution of significant stereo features are preserved. The 2-D (floorplane projection)

'tions of the features as determined by the stereo algorithm are represented by the

positions of the data points (the grid squares).

The 2-D nature of the data representation reflects the fact that the mobile robot

travels on the floorplane-its motion degrees of freedom are 2-D translations and rota-

tion. The important task for the robot is room recognition and this task is simplified

by the knowledge that arbitrary 3-D translations and rotations are impossible. Thus,

a full 3-D recognition system would first limit the possible transform space to exactly

the 2-D set of possibilities made explicit by MARVEL's 2-D representation. Two-

dimensional data is also appropriate for MARVEL's subsidiary task of determining

its position (on the floorplane) 'in the recognized room.
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The compression to two dimensions of the three-dimensional stereo data reduces

the complexity of the data. Faster processing algorithms can be designed to deal with

2-D data than with 3-D data due to this complexity reduction. The reduction of the

recognition transformation space from six degrees of freedom to three has already been

mentioned. Hardware speedups based on this reduced complexity are also possible

(Chapter 12).

By compressing the stereo data to two dimensions some insensitivity to occlusion

is obtained. For example, assume that the 3-D edge of a doorway is in a room model.

If a chair occludes part of this edge from a certain vewpoint in the room, then the

recognition system must decide whether the vsible portion of that edge corresponds

to the full edge in the model. Since this decision would be based both on the length

of the edge as well as its position, the visible part of the occluded edge might be small

enough to be labeled a bad match for the model edge. In the 2-D representation, only

the position of the edge is considered and the match is allowed. Obviously, features

that are aligned vertically will be combined in the 2-D representation, but this poses

no problem since only their 2-D positions are being considered.

The grid-based representation has advantages over using the exact 2-D positions

of features when data uncertainty 'is considered. Since the location of a stereo edge

has some uncertainty associated with it, a good deal of effort could be expended by

the recognition system to get the best possible match of model to data. The grid

squares provide a way of capturing this uncertainty in the representation itself. A

one-foot grid size was used 'in the main part of the testing of MARVEL. (Results

with other grid sizes wll be discussed in Section 8.5.) Any displacement of a feature

within this bound is ignored since the feature will still give rise to the same data

square. A larger displacement would result in the instantiation of a neighboring

data square. Since nearby data squares are considered during the matching process

(Chapter 5), data resulting from stereo features with more uncertain positions will

still be considered in the recognition process, albeit less strongly (in agreement with

the lower certainty). The end effect of the grid abstraction-, then, is to reduce the

sensitivity of the recognition system to small perturbations of the positions of the data
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while maintaining sensitivity to the large displacements that occur between different

features.

Since the stereo features are represented by grid squares, nearb features can be

clustered into the same data square. This many-to-one data reduction benefits the

recognition process snce MARVEL does not need to devote processing to determining

to which of several nearby model features a particular data feature corresponds. The

fact that 'it corresponds to one of them suffices since recognition does not hinge on

any one model or data point.

If two or more stereo features fall in the same grid square, that square 'is marked

in the same way as if only one feature had fallen 'in it. No tally is kept of the number

or sizes of features that give rise to a data point. (Take, for example, the case of

a feature that appears in the overlap region shared by subsequent rotations of the

stereo cameras. It might appear at two slightly different 3-D positions due to the

finite stereo accuracy. The fact that these two features fall into the same grid square

should not confer any additional 'Importance on that square.) Equal weighting of

the data points is in keeping with the premise of the recognition algorithm: 'it 'is

the distribution of positions of the data, that is 'important for recognition. Similarly,

MARVEL does not assign an importance to a particular data square based on the

features that caused it because the feature attributes are not a reliable 'Indicator

of their 'Importance to recognition. On the other hand, the mportance of individual

model points to recognition can be determined and thus, the model points are assigned

weights.

There 'is one situation, however, where it would make sense to vary the weights

of the data grid squares. In Chapter 2 it was seen that the 3-D position provided

by a stereo vision algorithm for a vewed ob'ect becomes less certain as the distance

of that object from the viewer 'increases. When this uncertainty exceeds the size of a

grid square, two or more grid squares could be marked to denote the location of the

uncertain stereo feature. The weights and distribution of these marked squares could

be determined according to the probability dstribution of the uncertainty, which 'is

characterized by the stereo geometry [Matthies and Shafer 19861. The total weight of
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Figure 48: The initial model used to represent Room 914, derived from the data
shown in Figure 47.

the data squares used to represent such an uncertain feature would be normalized to

unity so that no special sgnificance would be accorded to this group of points. This

is consistent with the premise that importance should only be accorded to points that

are important to recognition. This importance 'is represented by weights associated

with 'Individual model points.

4,5 Neighted I-Wodels frorn Grid-Based Data

As stated above, the models that MARVEL uses, which are built autonomously from

its input data, must necessarily have a form similar to that data. The models are,

in fact built on a grid representation as is the data. In the models, however, the

grid squares each have an associated weight. This weight reflects the importance of

the model point to the recognition process. Since the robot operates autonomously,

the determination of the importance of the model points must be done by MARVEL

itself and not supplied by an outside agent.

The initial model for a room is simply the first set of data acquired from it and the

coordinate system associated with the model is that of this first data set. The weight

of each model point 'is initialized to unity to reflect the lack of knowledge about the

point's 'Importance to recognition of that room. The initial room model for Room

914, derived from the data of Figure 47, is shown in Figure 48. The model points
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are lightly shaded, indicating their low weights. In other models the more heavily

weighted points will be ndicated by darker shadings.

Through use of a model, t will become apparent that some of its points are

important for recognizing the corresponding room. The model points are emphasized

by increasing their weights. Likewise, some model points will be less 'important or even

extraneous. The weights of these model points will be reduced or the model points

will be eliminated entirely. This process of updating models based on successful

'tion against them will be explained more fully n Chapter 7.

4,6 Sunarnary

The key point of this chapter is that, for a robot, the world 'is defined by the iforma-

tion its sensors provide and not by our (human) concepts and understanding. Given

the form of the 'Input from the stereo system (3-D vertical line segments) and the task

to be performed, a representation was described that makes explicit the essential 'in-

formation in the data that is needed for recognition. The representation chosen 'is an

occupancy grid, which explicitly represents the 2-D positions of the stereo data. The

grid representation provides insensitivity to small perturbations of the data positions

while retaining the position information needed to distinguish separated data points.

The models used for recognition are based on this data and the model representation

is therefore smilar to the data representation. The next chapter will explain how

the grid-based data and weighted model are used to recognize a room in the robot's

world.
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Given a grid-based model and set of data, how can it be determined if the data

matches the model? Since the data and model are both assumed to be coplanar in

the floorplane a 2-D translation and rotation must be found that will best bring

them into correspondence. This correspondence must then be evaluated to determine

if the data indeed corresponds to the model. This chapter discusses the problem

of matching a set of data to a single model and evaluating that match. Chapter 6

discusses recognition of a data set against a database of models.

The recognition process that MARVEL employs has three parts. First, a set of

candidate alignments, each a 2-D transformation consisting of a translation, (X 7 Y I

and rotation, 0, is found for matching the data and odel. The alignments are

evaluated and the best candidate transformations are further refined using a least-

squares minimization technique. The best transformation is then chosen and the

model/data correspondence is evaluated under a set of recognition criteria. If the

criteria are satisfied, the data is considered to be recognized as corresponding to the

model. The accepted transformation then represents te displacement of the robot

from the model coordinate system origin.

97
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5.1 Initial Alignrnents

The transformation space for determining an alignment between a model and a set

of data is three-dimensional (actually toroidal) with degrees of freedom in the x, ,

and directions. Blind search through thi's transformation space to find the correct

alignment, then, is obviousl not the recognition scheme of choice. One could try

every possible matching of model points to data points but this still leads to an

exponential number of possible matches. What is needed 'is a way to choose the

model/data matches that are most likely to be correct so that further rocessing can

be concentrated where the possibility of success is greatest.

Different approaches to the problem of determinin initial alignments of model and

data have been explored by [Ayache and Faugeras 19861, [Bolles and Cain 1982], and

[Ullman 1986], to name a few. The approach used 'in MARVEL is to find larger-scale

groupings of the ndividual model and data points and then to match these groupings

to obtain the candidate model/data alignments. This approach 'is smilar to that of

[Lowe 19871 where perceptual groupings" were used to select primitives that were

likely to arise from the same object 'in a complex scene. The perceptual groupings were

then used to obtain nitial model/data alignments for later verification. In MARVEL,

the groupings consist of linear clusters of data (or model) points.

5.1.1 Linear Data Clusters

Ob'ects in indoor environments tend to lie in straight lines. This is an artifact of the

man-made environment, since furniture, pictures, doorways, etc., tend to He along

walls. MARVEL exploits this situation by searching for linear clusters of data points.

(For a consideration of other possible data point groupings, see Chapter 12.) Linear

clusters of data and model points can be matched to provide initial alignment guesses

for the recognition algorithm.

Given a set of data MARVEL finds all possible linear groupings of data points.

Obviously, any two data points define a lne, but the linear groups found can be

ranked by the number of points they include. The method used to find these inear
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groups is to find all pairs of points and enter the lines that they form into a hash

table, indexed by their p and descriptors, where p is the perpendicular distance of

the line from the origin and 'is the counterclockwise angle between the x-axis and

the line. (For a discussion of the utility of the p-O description of a line, see Chapter 3

of [Horn 19861.)

The hashing procedure uses a Hough bucketing table [Hough 1962] [Ballard and

Brown 1982] indexed on p and 0. The sze of each bucket 'is Ap feet x AO feet, wth

the first bucket extending from p to p Ap and from to AO. All pairs

of points are considered and the p-O lne defined by each acceptable pair is placed into

its corresponding bucket. The Hough buckets (and thus the lnes) are then ranked

according to the number of point pairs that contributed to each bucket.

The bucket size used in the Hough clustering for MARVEL is 1.5 feet x 5'. For

two data points to be acceptable for contributing a line to the Hough clustering, they

had to be between 1.1 and 10 feet apart. The step size of 5' gives good coverage

of the possible lne orientations. The p step size of 1. fet avoids biasing the Hough

clustering toward lines along the rows and columns of the data grid, which are spaced

at foot intervals. The 10 foot maximum distance between lnearly grouped data

points gives a rough locality measure so that accidental alignments of distant points

are largely 'ignored, while the 1.1 foot minimum distance eliminates trivial lines from

adjacent data points. Although all of the lines found by this clustering could be used

in the determination of the alignments for a set of data, processing is focused on the

most reliable alignments by considering only the ten most frequently occurring lines.

Figure 5-1 shows this set of linear clusters for the Room 914 data shown previously

in Figure 47.

The same procedure 'is used to find linear clusters of model points. Snce the

weights of the model points reflect their importance to the recognition process, how-

ever the weights are also taken into account when finding the linear groupings. The

C'vote" added to a Hough bucket by a pair of model points is equal to the product

of the weights of the model points. For example, 'if both model points 'in a pair has

a weight of one, then the line formed by them only counts once. If one of the model
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Figure 5-1: The ten most frequently occurring data point clusters for the Room 914
data previously 'in Figure 47.

points had had a weight of two, then the pair would have produced a vote of two,

ust as if the more heavily weighted model point had been two different model points

at the same position. By taking the model point weights into account, the 'Important

model points more heavily influence the groupings (and thus the initial alignments)

than the less 'Important ones.

5.1.2 Initial Alignments from Linear Cluster Pairs

If a data linear cluster i's aligned with a model linear cluster, there is still one degree

of freedom for the model-data alignment: the model and data can slide" over each

other along the line. A second matching of a model and data line, however, can

eliminate this freedom and fix the alignment of model and data. Since an intersecting

pair of lines defines a unique point and direction, the initial alignments of model and

data are based on matches of pairs of model lines with pairs of data lines.

Each non-parallel pair of linear clusters found for a model or data set determines

a unique point: the intersection point of the lines. When a pair of model lines is

matched wth a pair of data lines, these intersection points are matched and the

model rotated about this point to make the model and data lines colinear. If the

lines of a pair are almost colinear, however, this intersection point is very sensitive
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to small perturbations of the lines. Thus, all possible pairs of the most frequently

occurring lines are found and ranked in decreasing order according to the angle they

form. Pairs forming less than a 20' angle are eliminated outright.) The top ten line

pairs from the model and from the data are then compared to determine the initial

alignments. Each pair defines a unique point, the intersection point, and direction,

the bisector of the two lnes. Actually, each lne pair has two bsectors defining four

directions. The bsector ray that falls in each "quadrant" formed by the line pair is a

possible drection to be associated with the pair. The direction for the pair is chosen

as the bisector ray that falls 'in the same quadrant as the center of mass of all the

data (weighted model) points. If the center of mass is too near the intersection pint,

then each of the four possible direction/intersection point pairs are used.

Given a model line pair and a data line pair, the 2-D translation and rotation

to bring the pairs into alignment are found. (The angles between these pairs of

lines may not match exactly, but 'if they agree within 10 degrees then the match is

accepted.) First, the rotation of the model that will make the bsectors parallel is

determined. Since the bisectors are rays, this rotation can be uniquely determined

so that the rays point in the same direction. Then, for this rotation a translation of

the model 'is found that brings the intersection points into coincidence. Each such

2-D rotation and translation determines an initial alignment for the model and data.

Each alignment can be quickly checked for feasibility: if the model and data points

are sufficiently elongated (eccentricity of an ellipse fit to the points greater than 7,

then an alignment must bring the major axes of the points within 45' to be a feasible

initial alignment. The feasible alignments are ranked based on how well the model

and data angles agree. During testing, the best alignment usually occurred as one of

the first few in this ranking, so only the top ten are kept for further refinement using

a least-squares minimization technique (Section 52).

After obtaining a new set of data for Room 914 from a different position and

orientation 'in the room (Figure 52) a set of initial alignments was found for this

data against the initial Room 914 model (Figure 48). The alignment shown in

Figure 53 led to correct recognition for this data and model. Figure 54 shows an
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Figure 52 A new data set taken from a different position and orientation in Room
914.
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Figure 53: The initial alignment of the data from Fgure 52 with the nitial Room
914 model (Figure 48) that resulted in correct recognition.
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Figure 54: An incorrect 'Initial alignment that was found for matching the data from
Figure 52 wth the initial Room 914 model (Figure 48). It was eliminated 'in later
stages of the recognition process.

example of an initial alignment that was later eliminated because it did not lead to

correct recognition.

5,2 Least-Squares Transforyn Refinernent

The model/data alignments obtained from the linear clusters are only rough guesses

of the correct transform to match model to data. Each alignment must be refined

for maximum model/data coincidence (see below) and then evaluated for goodness of

match (see Section 53).

Given a transform estimate from an nitial alignment, the transform refinement

procedure 'is

1. Improve the initial alignment as much as possible at the current search radius:

(a) Given an initial alignment transform, transform each model point.

(b) Find the closest data point within the current search radius for each trans-

formed model point (if such a data point exists).

(c) Use the set of corresponding data and transformed model points to improve

the transform estimate using a least-squares minimization.

(d) Evaluate the improved transform. If the evaluation criteria are satisfied,
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continue otherwise loop back to Step la for further transform improve-

ment.

2. If this 'is the final search radius, stop. Otherwise, reduce the search radius and

loop back to Step .

The procedure outlined above for the least-squares transform refinement is given in

more detail in Appendix A.

The search radius set used by MARVEL 'is 3 2 1). The initial large search radius

allows matching model and data points to be found for rough nitial alignments. As

the alignments 'improve, the search radius is reduced to eliminate extraneous matches

and permit a better estimate of the model/data transform. As a quick check for

the goodness of an initial alignment, if an alignment does not match at least half of

the weighted model points at the largest search radius, hen that initial alignment is

eliminated from further consideration. This check 'is based on the sum of the weights

of the matched model points instead of a simple count.

The least-squares minimization method used to refine the transform estimates

assumes that the parameters being adjusted are linear. The x- and y-translations are

indeed linear, but this is not the case with the rotation. Instead, the minimization is
done about an operating point I I I

I y, 0), which s the nitial transform estimate. For

small changes in about this point, cos 0 and sin are almost linear. Because they are

not exactly linear, however, the result from the least-squares minimization does not

actually correspond to the minimum error possible between the data points and the

transformed model points. Thus, we repeat the minimization (Steps la through 1d)

using the newly derived transform as the new operating point. This process continues

until the match between data and transformed model points 'is good enough.

The criteria used in Step Id to determine if sufficient improvement in the data/

transformed model match has occurred are based on the weighted transform variance.

The weighted transform variance is the weighted sample variance S' as determined

by summing the weighted squared distances between each model point and 'Its closest

data point, then dividing by the number of model points minus one [Walpole and
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Myers 19781.
)2

s2 wi(di M

where

AM = the transformed model point mi
t A idi = the data point tha matched

w = the weight assigned to model point mi

The weighted transform variance is checked after each teration through the least-

squares minimization. If either the variance becomes small enough (S2 < b or

changes slowly enoughAS2 < b2, the iteration process is stopped and the last trans-

form determined is accepted as the best transform possible for this 'initial alignment

at the current search radius.

The least-squares transform refinement described above is performed on each ini-

tial alignment for the given model/data pair. The final transforms are then evaluated

to determine which yelds the best fit between the model and data points. The best

transform is taken to be the one that best accounts for the model: the weights of

the matched model points are summed and the transform that produces the highest

weighted sum 'is chosen. If two or more transforms produce the same weighted sum of

model points, the one with the smallest transform varianceS2 is chosen as the best

fit.

Note that 'in the transform refinement procedure, all possible matches are found

using the current transform estimate before a transform update is calculated. Some

researchers have been using an incremental approach to refining an initial trans-

form (e.g., [Lowe 1987], [Ayache and Faugeras 19861). This approach was tried for

MARVEL with disastrous results. For a given initial alignment as found above, the

alignment should be most exact at the intersection points of the line groups (the base

point of the alignment) and get progressively worse farther from this point. There-

fore, for the 'incremental approach 'it would be reasonable first to refine the transform

estimate wth model/data matches close to this point and then proceed outward as
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Figure 5-5: An example of how an incremental transform update can take a good
initial transform estimate (a) and render it completely incorrect (b). Model points
are shown as squares and data points as circles.

the transform estimate becomes better. Consider the situation shown in Figure 5-5,

however where the squares are model points, the circles are data points and the

base point of the alignment is at the left. Figure 5-5.a shows the model/data align-

ment immediately after the initial transform estimate has been applied to the model

points. (For clarity, the remaining model and data points are not shown.) If the

transform 'is incrementally improved by first using the left and mddle point matches,

and this improved transform applied to the model points, the left two model points

are shifted slightly to become better matched with their corresponding data points,

while the rightmost model point is drastically rotated away from 'Its corresponding

data point (Figure 5-5.b). The rightmost model point now cannot be matched with

the rightmost data point because of the increased distance between them. What

was a near-perfect initial transform estimate has now become a completely 'incorrect

updated transform. Using both an incremental least-squares transform update and

a Kalman filter approach (which is inherently incremental), just this sort of trans-

form deterioration was observed during the testing of MARVEL. For this reason, all

'ble model/data point matches are found before updating the transform estimate.
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0
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Figure 56: Recognition of Room 914 data set shown in Fgure 52 with the nitial
model of Room 914 from Figure 4-8.

5,3 Transforn-1 Test

After the least-squares transform refinement has been completed for each initial align-

ment of model to data, the transform that best matches the model to the data must

be chosen from the candidates. That best match is chosen as the one that accounts for

the largest part of the model: at the smallest search, radius, all model point matches

are found and the weights of the matched model points are summed. The transform

with the highest sum of matched model point weights 'is chosen as the best match out

of the candidates. This is 'in keeping with the concept that the model point weights

reflect the importance of individual model points to recognition. In the event of a tie,

the transform that matches the most data points is chosen (see Figure 56). Note that

since the data coordinate system ncludes the current position (0, 0) and orientation

(pointing along the positive y-axis) of the robot, this transformation also represents

the position of the robot with respect to the model coordinate system.

The transform found represents the best possible match of the data to the currently

selected model. It still remains to be determined, however if this is the correct model.

Chapter 6 explains how the matches of several models to the data are compared to

choose the correct match, if one exists. (Recall that since one task of a mobile robot

is exploration, the correct model may not yet be in the atabase.)
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5,4 SunaDaary

This chapter discussed the problem of matching a set of data to a sngle model and

evaluating that match. To accomplish this match, initial model/data alignments were

found, based on groupings of the data and weighted model points. The transform

for each initial alignment was then refined based on ndividual points using a least-

squares minimization technique. The best possible match of model to data was then

chosen from this set of candidate transforms. The next chapter will explain how the

correct match (if it exists) is chosen from possible matches to a set of models.
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The procedure for matching a set of data against a single model was discussed in

Chapter 5. This matching process determines the 2-D transform that best fits the

model to the data. It does not, however, determine if the model/data matches correct.

To achieve recognition, MARVEL must compare the current data to a set of candidate

models and then determine which I if any, of the current matches are correct.

As the robot explores its world, MARVEL builds up a database of known locations.

The current location could be one of these new locations or it could be a location

not yet encountered. The recognition process must make this decision. By taking

advantage of the fact that MARVEL operates 'in conjunction with a mobile robot,

however, the full database of models need not be searched. Since the robot is following

a world model (see Chapter 9, its current location estimate constrains the database

search. The candidate models for recognition are limited to the model for the current

(estimated) location and the models for the nearby locations.

Using this limited set of candidate models, MARVEL must decide if the current

location corresponds to a known location. Since the current location might be new to

MARVEL, however, the best-fit model cannot simply be chosen. Instead, 'Independent

model evaluations are made and 'if no model passes the recognition test, then the

location is declared to be a new one and a model for it is built from the current data

109
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and added to the model database.

6A Recognition Test

Unlike many recognition systems, MARVEL cannot depend on having complete and

accurate models. Since the models are built autonomously from 'Input data, they

will often be missing some location features or contain errors that originated in the

stereo system. Also, the models can never completely reflect the 'Important features

in the locations since we allow the locations to change. Thus, to determine how well

a particular model matches the current data, the recognition test considers both how

much of the data is matched by the model and how mch of the model is matched

by the data.

To determine how well the data is matched by a model, MARVEL counts the

number of data points that have a matching model point. This matching process

is performed for the smallest search radius of the least-squares transform refinement

described 'in Section 52 (r = 1). The percentage of the data points matched by the

model is the first recognition criterion.

The number of model points wth a matching data point is used to determine how

well the model is matched by the data. Since some model points are more important

than others to recognition, however, the weights of the, matched model points are

summed to judge the quality of the match. Thi's weighted sum was calculated during

the transform test performed on the model/data match (Section 53), again at search

radius r = . The weighted sum of the matched model points as a fraction of the

total weight of the model is used as the second matching criterion.

To evaluate a model/data match, the percent data matched and the percent

weighted model matched are considered. Each model 'is evaluated 'independently.

For a given model, if at least 80% of the data and 50% of the weighted model are

matched, then that model is recognized and the robot is in the location corresponding

to that model. (The selection of these thresholds 'is discussed 'in Section 82.) If no

model passes these threshold tests, then the robot believes 'it is in a location it has
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Figure 61 A data set to be recognized.

never encountered before and the current set of data 'is used to create a new model

that is entered 'Into the database. In the unlikely event that two models pass the

threshold test (this never occurred during testing), the robot is moved to a different

position 'in the room and a second set of data obtained. This second set of data is

combined with the first and recognition performed with the combined data against

the competing models. The improved data set should remove any ambiguities. This

same method 'is also used if no model passes the recognition test, but one or more are

very close to passing the thresholds (see Section 10.2 for more details).

The data and weighted model recognition thresholds were determined heuristi-

cally by considering recognition results between the available models and data. The

prime consideration in choosing the thresholds was to avoid any false positive recog-

nition occurrences. After these minimum thresholds were determined, the recognition

thresholds were chosen to keep the false negative rate acce itably low (see Section 82)

while staying safely away from the break over into false positive recognition.

6.2 Exaniple

As an example of recognition against the model database, consider the data shown in

Figure 61. The estimated position of the robot is Room 914. Thus, the models for

Room 914 and the nearby locations, Rooms 913 and 915, are chosen as candidates

for recognition from the database (Figure 62). The best match possible is obtained

between the data and each of the candidate models (Figure 63). Each model/data
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Figure 62: Candidate models from the database for recognition of the data set shown
in Figure 61.
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Figure 63: Recognition against the candidate models shown in Figure 62.
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Figure 64: Correct recognition chosen from candidates in Figure 63.

match is evaluated independently to determine which, if any, succeeds. The match

for Room 914 passes the recognition criteria, so the data is recognized as coming from

this room, i.e., the robot's location is determined to be Room 914 Figure 64) A

brief inspection of the match of the data to the Room 914 model should satisfy the

reader that MARVEL made the correct decision. During testing, this set of data was

indeed taken in Room 914.

6,3 S urnniary

This chapter described the procedure for recognizing the current location with re-

spect to a database of models. The choice of candidate models 'is constrained by

the estimate of the current location of the robot. Independent evaluations are made

on this restricted set of models to determine which, if any, match the current set of

data. If no match passes the recognition criteria, then the robot is assumed to be in

a newly-encountered location and a model for it 'is built from the data. If recognition

has succeeded against an existing model, then the current data is used along with the

recognition transform to update that model. This model update process is described

in the next chapter.
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Given successful recognition, the information from the current set of data 'is used with

the recognition transform to update the recognized model. This model maintenance

serves to reinforce the important model features, respond to changes in the loca-

tion represented by the model, and remove errors in the model. Thus, autonomous

operation of a mobile robot is made possible by MARVEL's model update process.

7.1 NVhy Update the 1\4odels?.

The models used for recognition are built autonomously by MARVEL. The ideal

constituents of a model are just those features that are important to recognition.

Since no a priori knowledge of the world is available to MARVEL, however, the

important features cannot be immediately selected from the ones presented by the

input system. Instead, the importance of the various model features is determined by

their use. The more often a model feature is used for recognition, the more important

it is to recognition and the more it should be relied upon.

One of the basic assumptions 'in this thesis is that MARVEL would operate in

a world subject to change. If the appearance of a location changes, then the model

used to represent that location must also change to enable recognition to succeed. If

the world changes slowly enough, then there will be a sufficient number of features 'in

common between the existing model and the current location, as represented by the
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input data, to enable recognition. The current data can then be used to update the

model to be more consistent with the location as it now exists.

The exact amount of change allowed in a location between recognition attempts

depends on the recognition parameters. The change must be small enough so that

the total mismatch caused by the change and any input error does not cause the

recognition test to fail. If the effect of the input errors is lessened through the use of

two or more data sets (Section 10.2), then the amount of change allowed is essentially

quantified by the recognition thresholds. Theoretically, for a 50% model/80% data

'tion threshold (Section 82) a change of up to 20% in the perceived location

features could be tolerated. In practice, the allowable amount of change is affected

by the completeness of the data set, the existence of errors in the model and data,

and the importance of the model features involved. Changes in location features

that correspond to 'Important model features affect recognition more than changes to

relatively nsignificant location features.

Occasionally, the stereo input provides data that, although valid, does not belong

in a location model because of its ephemeral nature. Such data typically corresponds

to non-repeatable effects such as shadow edges or people in the scene. The features

that correspond to these ephemeral events will be incorporated into the model since

no higher-level filtering process exists to recognize and eliminate them. The very

reason that they are not desirable, however, makes them susceptible to removal by

the model update process. Because these features only appear briefly over the life of

the robot, they occur in only one or very few data sets. Since the features are not

reinforced through repeated observation, they do not attain 'importance in the models

and can be eliminated.

The stereo 'Input system, like any sensory input system, will occasionally yeld er-

roneous data. As with the ephemeral event data, these errors will be incorporated into

the models. The temporary nature of these errors allow them also to be acknowledged

as unimportant and removed from the models.
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7.2 Overview of the 1\4odel Update Process

From the discussion above, it 'is apparent that the model update process should

reinforce the 'Importance of model points that are used frequently for recognition.

Without being overly sensitive to occasional occluded data, this process should also

remove model features that do not correspond to current location features. Obviously,

these changes to the models must be based on the currently available data as well as

the existing information contained in the model.

To yield robust recognition a model must well characterize the location it repre-

sents. In terms of recognition, the model features that best characterize a location

are those features that are 'important to achieving successful recognition. This im-

portance is determined autonomously by keeping track of how often the model points

are used in recognition. MARVEL accomplishes this by assigning weights to the

model features based on their frequency of use. These feature weights are incorpo-

rated naturally into the least-squares transform refinement of the recognition process

(Appendix A).

Since the importance of the model points is determined through their use 'in recog-

nition, the model update process should use the current data and recognition result

to update the matched model. The weights of model points that are repeatedly used

for recognition should be increased, while weights of rarely used points should be

decreased. The logical extension of this process is that points that are no longer used

for recognition should be removed from a model entirely. Also, if a new feature is

seen in the data that does not already exist 'in the model, the update process should

add 'it to the model, albeit with a low confidence (weight) since the feature has only

been seen once.

Even though the model should represent the 'Importance of its constituent points

to recognition, the importance of any one point must be lmited. Without such

a maximum weight, a point could become so entrenched in a model that 'it could

essentially never be removed even if the current data repeatedly confirms that 'Its

corresponding location feature no longer exists. This limit on 'importance is reflected
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Figure 71: Functions used to update the weights of model points. a. Linear b. Ex-
ponential

by allowing the model point weights to vary between and .

The rate at which model point weights are updated is determined by the weight

update function. The weight update is based upon the number of times that the point

was seen. The count c for a model point is 'increased by one each time the point is

seen in the data and decreased by one each tme it is not. A linear update function

was used for the main part of the testing of MARVEL (Figure 7-I.a). Given a model

Mj_ = ij-ib whichincorporates the information from data sets Di, D2, . . IDjjj

the weight assigned to the ith model point M in model Mj, based on the information13

from data set D is

< < tr

Wmi, (C tr)= (7-1)
1 t, < C

where t. is the rise tme (the number of times a point must be seen to achieve

full weight) and c is the number of tmes the point has been seen in data sets

Di, D2i . . I Dj. Wth this update, a model point's weight is increased linearly each

time it is used and decreased linearly each time 'it 'is not. The weight of a point 'is

constrained to a maximum value of and a point whose weight decreases to is

removed from the model entirely. The response of the update function is changed by

varying the rse time.

The second update fnction tested had an exponential rise initially, described by
C

a function of the form tc . The second half of the function approaches the maximum
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C

weight of I at an 'inverse exponential rate with the general form I - C tc Figure 7-

Lb). Functions such as the right-hand part of this weighting function are typically

described in terms of their time constant i: after one time constant, the function

has attained 63% of 'Its final value. The rse time of such a function is usually taken

as three time constants, which brings the function to 95% of its final value. For the

weight update function, this time constant must be halved since the right-hand part

of the function only accounts for half of the model point weight rise time t,. Likewise,

the constants associated wth these functions must also be ad'usted 'in order to join

the two exponentials smoothly. The resulting weight update function is

wmij ( t = 

� o = 
1

.5e 0 < c < 
2 (7.2)

C /2
tr 6 t < 

I - 5e- 2 - < t,

I tr C

where the values at c = and c = t, have been forced to and (instead of letting

these values be approached asymptotically). With the exponential update, the weight

of a model point is increased gradually at first under the assumption that points seen

only a few times may be erroneous. The importance of a fully-weighted point is

decreased slowly at first, reflecting a reluctance to discard a model point that has

been useful 'in the past.

In the same way that new location features must be added to the models, features

that no longer exist 'in the locations must be retracted from the models. Points that

are believed to be reliable, however, should not be removed quickly from a model.

Since the reliability of a point is represented by 'its weight, model points are retracted

by decreasing their weights until they simply "fade away." Model point weights are

decreased according to the weight update function by reducing the count c for a

point each tme it is not seen. When the count (and weight) reaches zero, the point

is removed entirely from the model.

Unfortunately, the absence of a location feature cannot be determined immediately

from the 'Input data. A missing feature in the input might have been obscured by
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some occlusion 'in the scene or lost due to an input error. Thus, the lowering of a

model point's count should not happen immediately 'if it is not in the current data.

Instead, a hysteresis is 'imposed so that a point's count is incremented by one each

time the point 'is seen, but decremented by one only if the point was last seen more

than h data sets ago. This is accomplished by keeping an age a for each model point,

which ndicates how many data sets ago the point was last seen. An age of zero

indicates that a point was seen in the current data set. Thus, a hysteresis of h = I

indicates that a model point must have been seen in the current data set or in the

immediately preceding data set to not have 'Its count and weight reduced. If h = 

and t = the update replaces the model wth the current set of data.

With each new data set the information associated wth each model point must

be updated. First, the age of the model point is ether reset or incremented depending

on whether 'it was seen in the new data set:

0 if Mij-1 E Dj
ami,.7 = (7-3)

amjj_1 I otherwise

The count of the number of times that the point was seen is then updated, taken the

age hysteresis 'Into account:

min(t, CMi,,_1 + 1) if mij-1 Dj

Cmili CMij_1 if Mili-1 Dj and amij < h (7-4)

C if mij-1 D and amij > hMij-1 3

MI the

(Any point whose count goes to zero is eli 'nated from the model.) Finally,

weight WMij (Cmij; tr) is determined by Equation 71 or 72.

The two model update parameters t, and h affect how the models change over time.

Larger rise tmes allow stable room features to play a bigger role in the recognition

process. Smaller rse times downplay the importance of existing model points 'in favor

of the 'Incoming location data. A large hysteresis provides a greater insensitivity to

data drop-outs due to occlusion, while a smaller hysteresis allow quick response to

changes in the world. (These two parameters also interact to affect the persistence
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of model points that should be retracted.)- Thus, the rse time and hysteresis should

be chosen based on assumptions about the stability of the world and the reliability

of the input data.

7,3 The 1\4odel Update Algorithyn

The first step 'in the model update algorithm is provided by the recognition module:

the model that corresponds to the data must be found and the transform that best

aligns them determined. The data can then be used to update the model. The model

update algorithm in described in this section, while the details of the algorithm are

given in Appendix B. The linear weight update function was used to generate the

models shown below, with update parameters t = 4 and h = 4.

7.3.1 Model Initialization

An 'initial model smply consists of the data points first collected for a particular

room. The weight of a model point reflects its importance to recognition, but none of

the initial points is known to be more important than any other since no recognition

has been performed using them. Thus, each initial model point weight is initialized

to W,,il (1 t) since the point has only been seen once c,,, = 1).

The initial model for Room 914 is shown in Figure 72 and is derived from the

data points shown 'in Figure 47. The model points are lightly shaded, indicating

their low weights. In other models the more heavily weighted points will be indicated

by darker shadings.

7.3.2 Model Update

The model update algorithm uses the information from a new set of data and its

recognition with a model to refine the model to reflect better the state of the location

it represents. Since a new set of data for the location is in hand, the first step in the

update algorithm is to increase the counts of the existing model points by one.
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Figure 72: The initial model used to represent Room 914.

To combine a new data set D wth the model M -1, the model/data point corre-

spondences must be determined. Recognition provides a 2-D transformation (x, y, 0)

that brings the model and data into correspondence. Using this transformation, the

closest data point to each model point is found. (For testing, the maximum allow-

able distance 6,i,,, was set to the smallest search radius of the least-squares transform

refinement r = I (see Section 52).) The age of each odel point is updated (Equa-

tion 73) based on whether it was matched in the new data set. A model point is

matched if its corresponding data pint is closer than

mij-1 E D if 3dkj G D- such that 11mij- - d

3 kJ II < 6min

The count and weight of each model point mij 'is then updated according to Equa-

tion 74 and Equation 71 or 72. Any points with a current count of zero are removed

from the model.

Finally, new data is added to the model. Any data point that was not matched to

a model point within the maximum distance 6,in) is added to the model with weight

wmij 1; tr) and age amiJ = 0. All of the current data has now been incorporated into

the model. Each model point has been updated by adjusting its age, count, and

weight appropriately or by eliminating it from the model.

Figure 73 shows recognition of the initial model for Room 914 (Figure 72), with

a new set of data. The recognition transform and new data provide the information
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0
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Figure 73: Recognition of the second set of data with the original model for Room
914 Figure 72).

Figure 74: Room 914 Model 2 which is the updated initial model based on the
recognition result shown in Figure 73.

necessary to update the model. Figure 74 shows the result of the first update to the

initial model for Room 914. Comparing this new model with the original, the added

and updated model points are obvious. No points have been retracted at this early

stage in the model evolution. Recognition of a set of data with Room 914 Model 6

is shown in Figure 75 and the resulting updated model in Figure 76. In this model

update, fading and deletion of old model points can be seen as well as reinforcement

of existing points. Appendices C, D, and E show the data sets and model updates

for Rooms 913, 914, and 915, respectively.
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Figure 75-. Recognition of the seventh set of data with the Room 914 Model 6.

IN

Figure 76: Room 914 Model 7 which is the updated Model 6 based on the recognition
result shown in Figure 75.

7.4 S un-n-lary

Given recognition of a current set of data with a model that was built autonomously,

the data should be used to update that model. The update enables the model to

reflect the current state of its represented location as that location changes. Errors

are also removed from the models by the update process. Since the update is based on

recognition data, it should emphasize those model points that were used in recognition

and are therefore 'Important for recognizing the model. These goals are accomplished

by the model update algorithm that was described above. It changes the weights of

model points based on their use 'in recognition so that the recognition algorithm can

be based on the relativeimportance of the points. Theimplemented update algorithm

allows parts of the models to be added and deleted to respond to changing location

features and to deal with the presence of error. By keeping track of how current the

data is that produced the various model points, deletion of old or erroneous model

points can be accomplished without undue sensitivity to occlusions in the input data.

By keeping the models current with the state of the locations and relatively free
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1 1 is

from error, the model update process yields recognition that is more robust than 

poss'ble with static models. Results of testing MARVEL's recognition system using

these evolving, updated models 'is discussed in the next chapter.
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MARVEL was tested on real 'images taken on the nnth floor of the MIT Artificial

Intelligence Laboratory using a stereo system (described in Section 23) mounted on

a movable tripod. The results of this testing demonstrate that MARVEL successfully

supports mobile robot navigation through recognition of world locations. This chapter

describes the test world, explains the testing procedure, and presents the results of

the testing.

8.1 Test Procedure

MARVEL was tested on the ninth floor of the MIT Artificial Intelligence Labora-

tory using the stereo camera setup described in Section 23. The locations used for

recognition were Rooms 913, 9147 915, and the ninth floor playroom, which will be

referred to as Room 9PR. Rooms 913, 914, and 915 were chosen specifically as worst-

case locations to challenge the recognition system. The rooms have almost identical

dimensions 17'8" x 10'5", 17'8" x 10'10", and 17'8" x 0'11", respectively). This sim-

ilarity forces the system to rely on the features found in the rooms and not simply on

the dfferent sizes. Room 9PR was added to the test set of rooms to demonstrate that

MARVEL also performs well when comparing rooms of different szes. (Room 9PR

is 32'6" x 22'3".)

For each of Rooms 913, 914, and 915, twelve sets of data were used. One set

127
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of data was also used for Room 9PR. To build these data sets a total of 1296

images 648 stereo pairs) were taken. For each room, Model I was built from the first

set of data taken 'in that room Section 45), with the position of the robot chosen

arbitrarily. For each of these models, recognition was performed against every set

of data except the one that was used to create the model itself. This first round of

testing therefore comprised 144 recognition trials. For the second round of testing,

Model 2 for each of Rooms 913, 914, and 915 was built from the first two data sets

(Chapter 7 Recognition was then performed for each of these models against all

data sets that were not used to build the model being tested. This second round of

testing comprised 105 trials. This process was continued through Model 11 for each

of Rooms 913, 914, and 915. (For each room, Model 11 was built from the first 11

data sets for that room, leaving one data set for that room not incorporated 'Into the

model.) All told, there were 1059 recognition trials of the recognition system. The

results presented below are based on these trials.

8.2 Recognition Perforrnance

When considering the recognition trials, there are two important questions to ask.

First, how often does 'incorrect recognition occur? Second, how often is correct recog-

n'tion possible, but missed? Incorrect recognition is a false positive. If false positive

recognition occurs while a mobile robot 'is using MARVEL, the robot wll think that

'it is in the recognized location instead of where it actually is. Since the purpose of

MARVEL is to enable a robot to determine 'Its location, this sort of error should be

avoided. Since nothing comes for free, there will obviously be a tradeoff involved in

keeping the number of false positives low. That tradeoff is an increase in the number

of false negatives. This is reasonable, since if MARVEL is to be conservative in declar-

ing a match between model and data, it will occasionally fail to achieve recognition

when the correct model 'is available.

In terms of the operation of a mobile robot, false negative recognition is not very

serious. If a false negative occurs, then MARVEL will not be able to match the current
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data to a model in its database even though the correct model exists. A new room

model will then be built from the current set of data and entered into the database.

The robot will think that it 'is 'in a new room that it has never encountered before.

This room model will be built up as recognition is performed against it, as wll the

other room models. A background process that tries to recognize model versus model

will be running, however, to look for 'ust this occurrence. If 'it finds two models that

match, they will be combined and the world model compacted based on this match

(see Section 10.4).

Although MARVEL 'is designed to avoid false positive recognition, it is always

possible that this might occur. In this case, the mobile robot will think that 'it is in

one particular room when 'it 'is actually in another. This will lead to inconsistencies

in the connections between locations 'in the world model. For example, because of

false positive location recognition, connection information in the world model could

state that a particular doorway in Room A leads to both Rooms and C. Because

these 'Inconsistencies are detectable, the possibility exists of correcting them. A local

exploration of the area mght yield enough structure of the inconsistent part of the

world to resolve the problem. The robot could place a temporary beacon in one of

the nconsistent rooms and then explore the confounded path wth absolute confi-

dence 'in recognizing the original room by the beacon. The most reliable strategy,

however, would be for the robot to ask for help from its human owners to resolve the

inconsistency.

One would expect more errors 'in recognition against the early models, which are

supported by very few data sets, than in recognition against the later models that are

based on many data sets. Testing confirmed that this is 'indeed the case. Figure 8-1

shows that the number of false negative recognition occurrences fell as the model used

for recognition improved. (A matched model threshold of 50% and a matched data

threshold of 80%, as described in Section 61, were used for the testing described in

this below.) Examination of the 144 trials 'involving the initial models, as described

in Section 8.1, shows that there were 33 trials with correct recognition possible and

that only 9 of these resulted 'in a false negative result. This number dropped to 7 false
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Figure 8-1: Graph of the number of false negative recognition occurrences versus the
model used for recognition. Model incorporates the information from one data set,
Model 2 from two data sets, and so on.

negatives out of 30 correct possibilities for the 105 trials using the second models.

This downward trend continued for the remaining trials with the evolving models.

(The decreasing number of trials with correct recognition possible is due to the fact

that data sets that were incorporated into a model were not checked against it 'in the

recognition testing.)

The error rate can be examined by considering the percentage of trials with correct

recognition possible that resulted in a false negative result. The percentages for the

results above are shown in Figure 82. The error rate for the 9 false negatives out of

33 possible correct trials for the initial models was 27%. This rate dropped to 23%

for the trials using the second models 7 out of 30), and continued dropping until

reaching 10% for the fifth model trials. For succeeding models, the false negative

rate stayed less than 10% except for the ninth model trials. The lower error rate

for the fifth and subsequent models 'is to be expected when the specific parameters

(rise tme = 4 hysteresis 4 of the model update algorithm used 'in these tests are

considered. (See Chapter 7 for an explanation of the model update process.) The

weights of the important model points increase steadily over the first several data sets,

but the maximum model point weight cannot be achieved until the fourth model. In

addition, no model points could be retracted until the fifth model. Thus, the fifth

and subsequent models best reflect the rooms they represent.

The rse 'in the false negative rate toward the right sde of the graph in Figure 82

is due to the smaller number of correct recognition trials possible. For example, a
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Figure 82: Graph of the percentage of false negative recognition occurrences versus
the model used for recognition, considering only trials with a correct model/data
match. Model incorporates the information from one data set, Model 2 from two
data sets, and so on.
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single false negative for the ninth model trials yielded a false negative rate of 1%.

Examination of the recognition test results shows that the actual number of false

negatives is low for when the built-up models are used (Figures 8-5 and 86): in the

ninth model trials mentioned, the 11% false negative rate was due to only a single

false negative recognition occurrence. The relatively large percentage is an artifact

of the testing method. For the ninth models, only three data sets that have not been
incor orated into the models remain for each room. Thus the single false negative

p I

recognition occurrence out of nine possible correct recognition trials yielded an 11%

error rate.

As the model and data thresholds are varied, the rate of false negative recognition

also varies. The false negative rate increases as the model threshold is increased. This

increase 'is expected, snce the higher threshold makes it more difficult to obtain an

acceptable match in the presence of noisy data using evolving models that do not

exactly reflect the current state of the locations. Figure 8-3 shows this rate for three

different model thresholds. With a model threshold below 37%, false positive recog-

nition errors occurred. The false negative rate also increases as the data threshold is

increased which 'is expected for the same reasons as the 'increase related to the rise

in the model threshold. This effect is shown in Figure 84 for three different data

thresholds. Below a 69% data threshold, false positives occurred. The actual num-

bers of false negative recognition occurrences are shown in Figure 8-5 for the different

model thresholds (corresponding to Figure 83), and 'in Figure 8-6 for the different

data thresholds (corresponding to Figure 84).

If these recognition results are considered against all of the recognition trials that

were performed, it is seen that the actual chance of false negative recognition is fairly

small. Figure 87 shows this false negative rate. Based on these results, there is only

a 23% chance that MARVEL will return a false positive recognition result when

comparing a data set to the database of models.

For all of the trials reported in this section, no false positive recognition occurred.

Thus, reasonable false negative rates can be achieved through a good choice of the

recognition thresholds while still avoiding incorrect recognition of a data set with an
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Figure 83: Graph showing the effect that varying the matched model threshold has
on the percentage of false negative recognition occurrences, considering only trials
with a correct model/data match. The data threshold is held constant at 80%. The
square data points plot the 40% model threshold, circles 50%, and triangles 60%.
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Figure 84: Graph showing the effect that varying the matched data threshold has
on the percentage of false negative recognition occurrences, considering only trials
with a correct model/data match. The model threshold is held constant at 50%. The
square data points plot the 70% data threshold, circles 80%, and triangles 90%.
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Figure 8-5: Graph showing the effect that varying the matched model threshold has
on the number of false negative recognition occurrences, considering only trials with
a correct model/data match. The data threshold 'is held constant at 80%. The square
data points plot the 40% model threshold, circles 50%, and triangles 60%.
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Figure 86: Graph showing the effect that varying the matched data threshold has on
the number of false negative recognition occurrences, considering only trials with a
correct model/data match. The model threshold is held constant at 50%. The square
data points plot the 70% data threshold, circles 80%, and triangles 90%.
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Figure 87: Graph of the percentage of false negative recognition occurrences versus
the model used for recognition, considering all recognition trials. Model I incorporates
the information from one data set, Model 2 from two data sets, and so on.

existing model.

8,3 Localization Perforynance

A secondary goal of MARVEL is to localize the position of the robot 'in the room that

is recognized. By comparing the known positions of the robot during testing to the

positions determined by the translations and rotations of the recognition transforms,

MARVEL's localization performance can be judged. Localizations were achieved to

within a distance of foot and 10' of the true robot position for successful recog-

nition trials. This performance 'is quite good when the grid size of the model/data

representation and the inherent uncertainty of the stereo data are taken into account

(see below). The localization accuracy is sufficient to bring other task modules (e.g.,

a door finder) to bear on an area of interest. Models incorporating four or more

data sets yielded the best localization results. As was seen above in Section 82, these

models produce fairly reliable recognition since the models have had a chance to build

up the important recognition features. The heavier weights for these repeatably dis-

tinguishable features help in the localization performance.

The localization error can be attributed to a few different sources. First, the

occupancy gr'd representation allows some variation in the transform that brings the

model and data into correct correspondence. Because of the I foot grid width used

for testing, the model and data points were only represented to within ± foot of
2
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their observed locations. This finite resolution limits how precisely the points can be

represented and thus how well they can be matched. The grid resolution, coupled

with the foot final search radius of the matching algorithm, implies that the 'Input

points that gave rise to a model point and a data point could be separated by up

to 2 feet and still be matched. At a distance of 11 feet, that separation would allow

a rotation of just over 11' between the model and the data. Second, there is some

uncertainty associated with the stereo data itself (Section 23.3). At a distance of

15 feet, there is a maximum distance error of 25 feet in the determination of the

true 3-D position of a stereo feature. Finally, due to the 'Imperfect models and data,

a complete match between the two cannot be attained. Counteracting these error

sources is the effect of a large number of model and data points as well as the weights

of the model points.

Because many features are used for recognition (and hence for determination of

the position of the robot), the uncertainties 'in the positions of the individual fea-

tures tend to average out. The effect of these uncertainties 'is also limited snce data

(model) features with large positional errors are typically not close enough to the

corresponding model (data) features to allow a match and hence do not affect the

recognition and localization results. In addition the heavily weighted model points

affect the transformation determination more than the lightly weighted ones. Since

these points are known to be relatively reliable, their emphasis helps the performance

of the recognition process. All of these effects counteract the localization uncertainty

due to the match of any particular model and data point. The results show that using

the aggregate of a set of simple features for recognition (instead of depending on a

few complex features) yields good localization as well as recognition results.

8,4 Running Tinie

MARVEL was tested on a Symbolics 3600 computer. The only special hardware

attached was a frame grabber with associated color display driver and a custom-

built hardware convolver. The stereo algorithm took minute with the hardware
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convolver and 2 minutes, 28 seconds without it to process a pair of 288 x 227 pixel

stereo images. Most of the running tme of the stereo algorithm is devoted to finding

the edges in the 'images-matching the edges took less than 12 seconds. A Canny edge

detector [Canny 1986] was used with the hardware convolver. Without this special-

purpose hardware, the edge detector of [Deriche 1990] a recursive implementation of

the Canny algorithm, was used. As described in Section 23.5, by using an accurate

stereo camera turntable only eight stereo pairs are needed for full 360' coverage around

the robot. Thus, minutes are required to obtain the input data using the hardware

convolver while 19 minutes 44 seconds are needed using only the serial machine.

(The cameras can be turned while the stereo algorithm runs, so no time is lost there.)

A stereo algorithm implemented at the MIT Artificial Intelligence Laboratory on the

Connection Machine, a SIMI) parallel computer, takes approximately seconds to

process a stereo pair [Drumheller and Poggio 19861 [O'Donnell 1990], thus requiring

only 40 seconds to obtain the complete coverage of stereo 'input. A different possibility

for a speedup of the stereo algorithm 'is presented in Chapter 12, based on the fact

that only 2-D stereo data 'is used to build the representations.

The recognition process takes 84 seconds to check a data set against a model.

Most of the processing time was spent performing the arra oerations of the least-

squares minimization process. Instead of writing optimized code, the Symbolics array

utilities were used for the least-squares mnimization. A hardware speedup for this

minimization 'is discussed in Chapter 12.

8,5 Effect of Grid Size

Chapter 4 describes the occupancy grid representation used by MARVEL for both

models and data. For the testing that produced the results described above, grid

squares I foot on each side were used. Other testing was performed with 12 foot,

2 foot, and 3 foot grid squares to investigate the effect of grid size on the recognition

algorithm.

As seen above, the foot grid size yields an acceptable false negative rate while



8.6. RESPONSE TO CHANGING LOCATION FEATURES 139

eliminating false positives. Recognition with the 12 foot grid size had roughly the

same false negative rate. There was less abstraction of the stereo data with this

smaller grid size, however, and the running time rose to 108 seconds due to the larger

number of model and data points. The recognition time fell to 49 seconds with a larger

'd size of 2 feet. At this sze, the false negative rate rose to approximately 30% and

the localization performance deteriorated to roughly 2 feet and 20'. Recognition was

even faster using the 3 foot grid, taking only 30 seconds. This grid size was unusable,

however, due to poor recognition and localization performance.

8,6 Response to Changing Location Features

As mentioned 'in Chapter 1, MARVEL is intended for use 'in a world that experiences

change. Its response to change was explored in two ways. First, the data sets for

the various rooms were collected over the course of six months so that changes that

naturally occurred over this time period were incorporated into the data and models.

These changes can be seen in the differences from model to model in the figures 'in

Appendices C, D, and E. Second, a specific room feature was added and later moved

to a new position so that the action of the model update algorithm could be observed.

This test 'is described next.

A large crate was placed 'in one corner of Room 914 after a few data sets were

taken. Later during the testing, this crate was moved to a different position. The

model points that correspond to the crate are shown circled in Figure 8-8. The

evolution of the representation of the crate can be seen in Models 48 (Appendix D,

Figures D-4 and D-5). The box was then shifted a few feet back into the corner of

the room. The corresponding new model features are shown circled 'in Figure 89.

The buildup of this new position and the fade-out of the old one can be seen 'in

Models 912 (Appendix D Fgure D-6). This example demonstrates that the models

successfully respond to changing room features. New model points are added and

their weights increased for new location features, while model points that no longer

correspond to location features are eventually retracted from the models.
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Figure 8-8: Room 914 Model showin the model points corresponding to the original
position of the crate that was placed in one corner of the room (circled).

�m

Figure 89: Room 914 Model 12 showing the model points corresponding to the new
position of the crate that was placed in one corner of the room (circled). Also note
that the model points corresponding to the old position have mostly faded out.
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The gradual buildup and fade-out of model features 'is controlled by the rise tme

t, and hysteresis h parameters of the model update algorithm. The rise tme controls

how quickly a new feature is accorded importance in the recognition process and how

quickly the importance of an old feature is decreased. The hysteresis controls how

sensitive the update is to the disappearance of model features. These two parameters

combine so that a fully-weighted model point will not be completely retracted until it

has not appeared in t, + h data sets. On the other hand, 'if some movable feature in

a room regularly appears in one of two places, this retraction delay will tend to keep

both feature positions in the room model. The effect 'is much like the persistence of

perception that the human eye experiences: features that go rapidly into and out of

perception will persist in the models. Thus the acceptable rate of change of room

features is proportional to for the full incorporation or removal of points from
tr+h

the models. Partial effects are seen over correspondingly short tme periods.

MARVEL responds to a slowly changing world by altering its location models.

Relatively stable location features become heavily weighted in the models as can be

seen by the heavily weighted model points 'in the figures in Appendices C, D, and E.

Model features are retracted if their corresponding location features disappear (e.g.,

the crate no longer 'in its original position). Finally, as new location features appear,

they are gradually added to the models (e.g., new crate position).

8.7 Response to Variations of the 1\4odel Update

Algorithn-1

The model update algorithm described 'in Chapter 7 contains two free parameters: the

rise time to full weight and the hysteresis (delay) for reducing the weights of the model

points. The rise time affects the influence of new versus old model points, with larger

rise tmes favoring the older model points. The hysteresis determines how old the

information that last contributed to a model point can be before that model point's

importance is lessened. For the testing results described 'in this chapter, the linear

model point weight update was used, with a rise time of 4 and a hysteresis also of 4 In
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addition, the model update algorithm was tested with both the linear and exponential

weight update functions for rise time = 1-8 and hysteresis = 1-5. Appendix G shows

the final model for Room 914 (Model 12) for each of these possibilities using the linear

function, while Appendix H repeats these models using the exponential function.

Comparing the models of the different update functions it 'is apparent that the

newer points are more lightly weighted for the exponential update than for the linear

update. Given that dfference, the following comparisons apply to either method. In

the models wth low hysteresis, some room features are not well-defined. On the other

hand, a high hysteresis leads to persistence of features that no longer exist in the room.

It is also apparent from these examples that longer rise times lead to build-ups and

fade-outs of changing model features. Through all the update possibilities, however,

the overall form of the models remains the same even though individual details differ.

The choice of a rise time and hysteresis 'in the range 35 yelded reasonable results for

this room. In general, the choice of these parameters should be based on assumptions

about the world and the 'Input process (Section 72).

8,8 Free Paranieters

MARVEL uses several free parameters in its various algorithms. Some of these pa-

rameters are used to make the algorithms more efficient, e.g., search cutoffs, while

others affect the final results of the algorithms by changing the representations used.

A complete lsting of the free parameters is given here. This listing should be useful

for researchers who wish to build MARVEL for their own applications.

The grid-square representation involves the choice of the size of a grid square, as

mentioned in Section 43. Results of testing MARVEL with various grid sizes are

given above 'in Section 8.5. The choice of a grid size for the representation involves a

tradeoff between faster processing for fine grids and lower sensitivity to the uncertain

positions of data features for coarse grids.

The determination of the initial alignments in Section 5.1 involved finding linear

groupings of model and data points, taking pairs of these groupings and matching
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model pairs with data pairs. This matching could be performed for all possible

groupings and all possible pairs. To speed up the processing, however, consideration

is limited to the groupings and pairs that are most likely to yield correct alignments.

The lines are ranked by the number of points they contain and the ten lines with the

most support are chosen. Pairs are formed from these lines, ranked according to the

angles they form, and the ten most perpendicular chosen. This selection of the top

ten in each case was based on the observation that the best choices typically occurred

in the top five ranked lines and lne pairs.

The matching of line pairs also involved a determination of how well and how

reliably two pairs matched. The matches are investigated in a ranked order, so the

cutoff parameters for this determination are ancillary to the main algorithm. Since

these cutoffs simply help limit processing to those line pairs that are most likely to

yield good alignments, they can be eliminated entirely wthout affecting the results

that MARVEL produces. The 20' minimum angle for a pair of lines was chosen

arbitrarily to restrict the lines paired to those that have stable intersection points.

The pairs that resulted in correct alignments typically had angles of greater than

45'. Due to noise a model line pair and a data line pair will rarely have the same

angle. The requirement that the pairs agree within 10' simply puts a bound on how

closely they must agree. Testing showed that the angles of correctly matched pairs

were always within this limit. The feasible match check was based on model and data

point sets having eccentricities greater than 7 and major axis alignments better than

45'. Again, this is a quick test to eliminate obviously bad matches and can be left

out entirely.

The lines that form the pairs used in the nitial alignments were found through a

Hough bucketing scheme Section 5.1). As with any such bucketing, the size of the

buckets must be chosen. The bucket size determines how close to colinear the two-

point lines must be to contribute to the same Hough bucket (and thus to the line that

the bucket defines). In addition, buckets that are too small will contain few, 'if any,

lines, while buckets that are too large will cluster lines that are not closely related.

The choice of a 1.5 foot x 5' bucket size was deterr'ned heuristically to balance these
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concerns. The grid nature of the data can lead to a preference for lines along the grid

rows and columns, so a minimum distance of 11 foot between data points that form a

line 'is enforced to avoid this. (The 1 I foot minimum distance is 1 0% greater than the

I foot spacing between grid squares.) The 10 foot maximum distance between data

points that form a line gives a rough locality measure so that accidental alignments

of distant points are largely ignored. The line-defining parameters can be relaxed at

the expense of the generation of more lnes to consider.

The least-squares transform refinement of Section 52 uses a set of search radii

to find matching model and data points. The smallest radius of I foot was chosen

to match the spacing between the grid square centers. The larger radii of 2 and 3

feet were chosen at multiples of this grid spacing. Improvement of the transform is

judged by considering the transform variance, S'. In general, this variance cannot

be reduced to zero so an end condition on the iterative improvement 'is required. If

the variance 'increases at any step of the 'improvement iteration the process should

obviously be stopped. Otherwise lmits were chosen so that the attainment of a small

enough value of the variance or a small enough change in the variance will stop the

transform 'improvement cycle. The limits of S < I and AS < were chosen by

observing the change in the model/data alignment and selecting values that yielded

no vs 'ble alignment improvement.

The percentages of model and data points matched are used as recognition thresh-

olds, as described in Section 61. These thresholds were selected to yield no false

positive recognition occurrences while keeping the false negative rate acceptably low.

Section 82 dscussed the sensitivity of the recognition results to these thresholds.

Finally, the choice of a rise time t, and hysteresis h affect the results of the

model update algorithm (Section 72). The choices of these parameters 'Influence the

responsiveness of the models to new data as opposed to existing data. The results of

testing the model update algorithm with various values of these parameters, as well

'th two different weight update functions was reported in Section 87.

Within reasonable ranges, the choices of these free parameters in MARVEL do

not affect the correctness of the recognition results. Instead, they affect performance
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tradeoffs in the system. Some of the thresholds balance the level of abstraction against

the accuracy of representation in the model and data. Others are search cutoffs, which

gain search speed at the expense of the completeness of the search. In general, the

parameter tuning is used to obtain optimal performance of the system. Reasonable

parameter values based on knowledge of the algorithms and problem domain, however,

will suffice to yeld good results.

8o 9 S amnaary

This chapter described the testing used to demonstrate that MARVEL successfully

supports mobile robot navigation through recognition of world locations. Specific

testing data was presented to demonstrate that MARVEL eectively recognizes lo-

cations based on the models that it has built and determines its position in those

locations based on the recognition results. The false negative recognition rate is kept

acceptably low while still eliminating false positives. The localization 'is sufficiently

accurate that MARVEL can be used to drive the robot close to an area of 'Interest so

that other recognition and task modules can be used to osition the robot exactly.

Running times were presented for the stereo and recognition algorithms. These

times are reasonable for the proof-of-concept work that this thesis describes. Possibil-

ities for speeding up the implementation are discussed 'in Chapter 12. The sensitivity

of MARVEL to variations 'in the recognition and model update parameters was also

considered. Although a range of choices for these parameters provides reasonable

results, the testing shows that the system performance can be tuned through the

parameter value selections. The evolving model for Room 914 was also examined and

found to have a good response to changes in the room features.

To this point, the thesis has discussed MARVEL and its focus on recognizing

world locations. The next chapter describes a world modeling scheme with which

MARVEL is well-suited to work.
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The location (room) models described above are part of a larger world modeling

system under development. The world model represents the known world of the robot

and contains information that allows the robot to navigate between dfferent locations.

This chapter describes the world model and how it uses the location recognition ability

of MARVEL.

The mobile robot's world will be represented by a topological map similar to

that described by [Kuipers 1977]. The world will be represented by locations and

information about how they are connected. Rather than being supplied a priori, this

world model will be built by the robot as it explores its environment. Because the

robot has long-term autonomy, existing for days, weeks, even months at a time 'in

its environment, the amount of tme incurred in building the initial world model is

amortized over the lifetime of the robot. Because the robot builds and maintains its

own world model, it can react to a (gradually) changing world in a way that a robot

depending on a precomputed map cannot. Thus, the world model, coupled with the

location recognition system, will allow a mobile robot to go from its current location

to a desired new location in the much same way that people use maps and books

(e.g., [Baxandall 19831) to plan their daily commutes or vacation excursions.

147
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9.1 Introduction

Much of the current research 'in navigation planning and world modeling for mobile
au ion ove

robots concerns i-ssion-level autonomy, 'i.e., tonomous operat' r a lmited

time frame for the accomplishment of a specific goal. This chapter 'is concerned wth

world model to support long-term autono i.(� , autonomous operation of a mobile

robot over a period of days, weeks, or months for the continued achievement of a set

of goals. For example, a mobile robot was designed to "live" in the MIT Artificial

Intelligence Laboratory, continually collecting empty soda cans and returning them

to a central repository [Connell 19891.

In mobile robots with mission-level autonomy, the world model acquired while on

the mission 'is typically limited. The world model need only be extensive and detailed

enough to allow the accomplishment of the mission's goal. Any further effort put into

building a more extensive world model than is needed to achieve the goal would be

wasted. Obviously a robot autonomous at the level of a, single mission cannot take

advantage of what 'it has learned about the environment to achieve further goals since

there are none. Thus, common sense dictates that only the minimum amount of effort

necessary for successful completion of the mission can be devoted to representing the

environment. On the other hand, a mobile robot that must exist in its environment

for long periods of time to accomplish a number of goals can afford to devote more

of its efforts to modeling the world. Although acquiring the world knowledge may

involve a large effort initially, the resulting store of knowledge can be used throughout

the lfetime of the robot, enabling it to achieve its goals more efficiently overall than

if it had not built an extensive world model.

Once the world model has been constructed, only a relatively small amount of

effort is required to update this model as the robot goes about its business. The

largest part of the world modeling task involves building the structure of the model

and filling in the descriptive information. Updates to the model entail only local

modifications to the structure and descriptions, which are much less costly than the

initial construction of the model. When the effort to build the model and update
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it over tme is amortized over the life of a long-term autonomous mobile robot, the

average amount of effort during the robot's life that is devoted to the world model is

fairly small.

An autonomous mobile robot must be able to maintain the world model however

in the face of sensing error, its own positional uncertainty, and limited resolution

of both the sensors and the representation. Other researchers have addressed the

problem of maintaining the consistency of a world model as a robot moves through

its environment [Brooks 19851 [Chatila and Laumond 1985] [Faugeras et al. 19861

[Moravec and Elfes 19851. Due to the errors and uncertainties mentioned above, the

difficulties encountered are usually a direct result of an attempt to preserve exact

metrical knowledge about the world. This chapter describes how qualitative world

knowledge (instead of exact metrical information) can be used to build a consistent

world model that supports navigation planning.

One of the most interesting problems involved i the creation and use of such a

qualitative world model (and 'Indeed in the use of any world model) for navigation

is the need to recognize previously-encountered world locations. Practical considera-

tions such as finite world model resolution and errors inherent in any sensing of the

world lead to the conclusion that no world model can be followed indefinitely without

eventually recalibrating, i.e., comparing the robot's current position to the model

and either verifying the position or, failing in the verification, finding the current

world location in the world model. Thus, a world-location recognizing system such

as MARVEL is essential to any navigation scheme that uses a world model.

9,2 Navigation Planning

Mobile robot navigation 'is the locomotion of a robot through an environment without

collision in order to achieve some goal. Navigation planning, then, consists of two

distinct facets: planning routes through the world to achieve a goal and planning

paths through the environment 'Immediately around the robot to avoid obstacles.

Navigation planning on a global scale 'is route planning. Routes are planned
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between specific locations in the world and are described 'in terms of the locations

that they encounter and the pathways that they traverse. For example, the route

from the bedroom to the study might be described as follows: Go out the bedroom

door and turn right. Proceed down the hallway and into the living room. Go through

the door at the far end of the living room to enter the study. This route planning

can be performed oine before the robot begins a trip.

When traversing a route such as described above, a robot must avoid obstacles,

e.g., chairs, tables, people, etc. The exact path around these obstacles cannot be

planned ahead of time since the locations of these objects can change. Thus, the

planning of paths around specific obstacles is left until the obstacles are actually

visible (to the sensors). This planning "of the moment" is also used to refine the

planned route by taking into account the robot's current location and the world that

'it perceives. For example, the robot may know where to expect a doorway, but to

pass through it the robot adjusts its heading according to where it actually perceives

the doorway.

9,3 Requirernents on a Vorld 1\4odel

From the discussion above, it is evident that global features of the world must be rep-

resented to support route planning as well as local features to support path planning.

Since the types of planning to be supported and the world knowledge they require

are of different scale, a two-level representation is appropriate.

For global route planning a robot depends on a stored model of the world. There-

fore, the global world model should represent 'Information that is invariant under

typical world perturbations. Also, for robustness the 'Information represented should

be invariant wth respect to sensing modality and sensor precision. Global route

planning depends heavily on the invariance of connectivity of locations in the world.

Connectivity 'Information is typically acquired experientially. For example, a path

would be known to exist between A and because the robot had previously traveled

between these two locations. Route planning also requires information about order-
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ing, e.g., that location lies between locations A and C along a particular path.

Directional information is also needed, along the lines of "When at location A and

with a particular orientation, location lies to the left."

Exact metrical information is neither required nor even desirable. Since all dis-

tance measurements are subject to error and are bounded by the limitations of sen-

sor accuracy, dstance measurements are best expressed 'in qualitative terms such as

medium far short etc., where terms such as these represent overlapping ranges

that can confidently be assigned to measurements even in the presence of uncertainty.

The same sort of arguments apply to exact direction headings. Realistically, no mat-

ter how confidently a robot expects that a corridor lies 90' to the left, it should go

down the corridor lying closest to that direction rather than run into a wall.

To help identify locations and determine the robot's position with respect to the

locations, a recognition model is associated with each location 'in the world model.

These recognition models allow the robot to check 'Its progress along its planned

route and to orient itself near known locations. The model building and recognition

capabilities provided by MARVEL serve just this purpose.

For local path planning, a stored memory of the world should not be depended

upon since the exact locations of obstacles can change. Instead, paths are planned

around obstacles 'in the immediate area of the robot based on its perception of this

area. Thus, only a limited region around the robot need be represented accurately,

noting the locations of the robot and nearby obstacles. In this way, the problem of

maintaining the consistency of this accurate positional information wth respect to

other regions of the world model is explicitly avoided. A possible approach to local

path planning 'is outlined in Section 94.2.

9.4 The orld 1\4odel

Locations, paths, features, etc., have been mentioned with respect to the world map.

How should these or other pieces of information [Lynch 19601 [Kuipers 19771 be rep-

resented? Local, viewer-centered 'Information has also been mentioned-what of its
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representation? A two-level world model 'is described below that 'incorporates this

large-scale and small-scale information and that supports both the global route plan-

ning and local path planning facets of navigation planning.

9.4.1 The Topological Map

The part of the world model that represents large-scale space 'is the topological map.

The topological map contains nformation about how the different parts of space are

related and what they contain. This information allows the robot to plan routes

through the world and verify its position as it travels along them. The topological

map is built by the robot as it explores the world and is based on information that

the robot has gathered about the world.

The topological map is a simple graph structure consisting of locations and con-

nections Figure 91) [Kuipers 1977]. A location is a distin uished place 'in the world

and has finite spatial extent. The position of a location is determined by 'its con-

nections to other locations. A connection is simply a navigable transition between

two locations. Locations have labels, recognition models (from MARVEL), and other

information associated with them.

Locations can be determined as salient or important locations 'in the environment

in a number of wa s. Locations where a change in drection of travel is or can be

made are obvious candidates for locations, e.g., corners and intersections. Choice

points such as intersections are obviously 'Important for navigation since they mark a

transition out of a homogeneous region. Intersections are also 'important since sepa-

rately known paths are related via their common intersection. Transitions are features

in the world that demarcate locations; for example, a doorway or a transition from a

narrow corridor to a large open area separates two different locations. Locations can

also be identified by their 'Importance to a given task.

Different locations can be distinguished by their different characterizing features.

Crossing a typical transition, e.g., passing through a doorway or rounding a corner,

causes a sudden change 'in the perceivable features around the robot. Thus, the robot

can determine that it has entered a new location because 'it wll be presented with a



1539.4. THE WORLD MODEL

A

I

B

c

a. b.

Figure 91: The topological map. a. A sample world. b. The topological map for
the sample world. Squares denote locations and lnes denote connections.

new set of features. Other sensor systems could also be used to determine if the robot

has crossed such a transition. For example, sonars pointing out from the sides of the

robot could report if it has passed through a narrow doorway (into another room).

Connections between locations are known because they are experienced. That is,

a mobile robot will know that a connection exists between two locations by virtue of

the fact that it has traveled between those locations. Information about a connection,

such as the locations it links, its position in each of those locations, and the direction

of travel through the connection with respect to a linked location, is acquired as the

robot traverses the connection and is stored in the representations of the locations

linked by the connection.

The topological map allows the problems of accumulated error 'in a world model

to be avoided. This 'is accomplished by storing qualitative, rather than quantitative,

information 'in the topological map. Connectivity relations between locations in the

world are explicitly represented, but distance and direction data are stored as ranges,

reflecting the uncertainty inherent in these quantities. The uncertainties about world

locations that result from cumulative error are resolved by using MARVEL's recog-
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nition system to verify the robot's location with respect to the topological map.

Finally, the topological map allows the robot to overcome the loop problem: How

can a robot travel away from a starting point so that 'it is no longer visible, then

return to that point via a different route, while building a world map that has the

starting point in correspondence wth the final point? Cumulative error makes this

problem extremely difficult if the world representation being built is an exact model

of the world. Even 'if a recognition system 'is used to supplement an exact model,

there is still a problem with exact models. Suppose the robot attempts to travel

a loop and eventually arrives at a point that 'it recognizes as the world location

from which it started. If, due to cumulative error, the model location for this points

does not correspond to the starting point, the exact metrical information of the

world model must be changed to make the two points coincide. There 'is then the

decision of which stored measurements to alter. The "ripple effect" must also be

dealt with as these alterations affect the metrical relationships between locations

that lie along the loop path and other world locations. In using the topological map,

however, the robot explicitly depends on MARVEL's recognition system to aid in

determining 'Its location. The connectivity information in this world model is not

affected by cumulative error since this sort of error is of a metrical, not topological,

nature. Working world modeling systems reported in the literature have all operated

in essentially "open fields," that i's areas where all parts of the world are visible from

any part of it (e.g., [Moravec and Elfes 1985]). Systems have been described that can

navigate and model a loop in the world [Chatila and Laumond 1985], but it is not

clear that the 'implemented systems have ever successfully done so.

Location Recognition

The robot needs to be able to identify known locations as it travels through the world.

MARVEL supplies this capability through building, maintaining, and using world

location models for recognition. After the topological map has been built, the problem

of recognizing a location 'is simplified through the use of a very important constraint

the robot has an estimate of 'Its location. Thus, the location model features and the
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robot's position wth respect to the paths just traversed serve to identify a location.

The model lets the robot determine when it has reached the location to which it is

traveling- they are rarely needed for 'Independent location identification.

Location models can, however, be used by the robot to locate itself if for some

reason it becomes lost or confused. If the current location data does not allow a

unique match wth one of the known models, the topological map itself can be used

to determine the current location: by moving from its current location and finding

other locations and their features, the robot can build up a small map of the local

area. This local map can be matched against the world map to determine the robot's

location, with additional nformation added to the local map through exploration

until a unique match 'is determined.

Since the topological map will be used to ad in location recognition, it must

be possible to associate recognition models with each location in the map. The

models will be added to the map as the map is built, used to identify locations as

the robot moves through previously-mapped parts of the world, and updated as the

world changes or additional 'information about various locations is acquired. The

topological map, then, will contain information about individual world locations as

well as the relationships between locations.

Since stereo features describe the existence of and relationships between salient

parts of the visible environment, they also characterize world locations. Thus, stereo

data 'is used by MARVEL to recognize locations. This data can also provide suffi-

ciently detailed 'Information to accomplish local path planning.

9.4.2 The Viewmap

The most detailed part of the world model 'is the viewrnap, which describes as ac-
curately as possible the environment immediatel around the robot as perceived b

Y Y

the sensors. The viewmap is used to plan a path for the next motion of the robot.

Because this motion may involve some backtracking, part of the area that the robot

has just traveled through, but that is no longer visible, is kept 'in the representation.

No attempt is made to store the whole world in this detailed representation, however:
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only the world immediately surrounding the robot is considered. Thus, the problems

of cumulative error are kept to a minimum. Because the viewmap is not stored the

next time the robot comes to the same area, obstacles can change position between

visi' its to an area wthout affecting the integrity of the representation. The design

of this representation reflects the fact that although the robot can plan a general

route based on its recollection of the world, the planning of a specific trajectory must

depend on the current state of the world immediately around the robot [Braunegg

1989b].

The viewmap is constructed from 3-D information received from the stereo vsion

system (Chapter 3 The following discussion assumes that three-dimensional 'Infor-

mation of the area is required for performing some of the robot's non-navigational

tasks. If this 'is not the case, the projection of the three-dimensional nformation onto

a two-dimensional ground plane will suffice. First, the matched stereo segments are

triangulated in the image plane without regard to their depth, ensuring that each

stereo segment appears in the triangulation. Next, the scene 'is 'Interpolated in depth

based on this triangulation. Finally, following the work of [Moravec and Elfes 1985]

in two dimensions and [Stewart 1988] in three dimensions, space is segmented 'into

cubes by imposing a three-dimensional grid on the area to be represented. All cubes

lying between the three-dimensional triangular patches and the viewer are declared to

be freespace and the cubes occupied by the patches are declared to be non-freespace.

Unmarked cubes represent unknown regions. (See Figure 92.)

After a movement of the robot, another view of the world is obtained and posi-

tioned in correspondence with the previous one via the stereo features) to determine

the translation and rotation of the robot. The freespace and non-freespace found

from this additional view are then combined wth the 'Information obtained from the

previous views to produce a more complete map of the area around the robot. Ac-

cumulated error due to the inexact determination of the movement of the robot is

minimized by limiting the viewmap's domain to the area immediately around the

robot.

The information obtained from stereo is sub'ect to missing and extraneous data.
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Figure 92: The viewmap. a. Surfaces (denoted by lines) perceived by the robot
(square). b. The viewmap representing freespace (dots), non-freespace (X's), and
the robot (square).

These errors are handled by marking freespace and non-freespace cubes wth confi-

dence levels. When updating the viewmap, overlapping freespace or non-freespace

regions have their confidences reinforced (increased), while information from the cur-

rent view that contradicts the (non-)freespace labeling stored in the map reduces the

confidences 'in the labels. Stereo data also has an inherent positional uncertainty that

can be represented by labeling non-freespace cubes in a region around the stereo data

according to the error bounds obtained from the stereo geometry.

Once constructed the viewmap contains sufficient information to plan paths in the

visible area near the robot. Obstacles are 'Identified by marked cubes while freespace

is indicated by empty ones. The occupied status of the cubes can be updated as

the robot moves along its path and the viewmap need only be maintained for a

relatively small area around the robot. (As stated earlier, cumulative error precludes

maintaining this sort of metrical map over large regions of the world.)
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9 5 S urnniary

This chapter described a world modeling scheme that 'is supported by the location

recognition ability of MARVEL. The two different aspects of navigation planning

were discussed: global route planning and local path planning. These two types of

planning have different requirements on the representations they use. The require-

ments on global route planning led to the choice of a topological map to represent the

large-scale world. This map consists of world locations and the connections linking

them. Exact metrical information 'is avoided 'in this representation to obviate the cu-

mulative error problem. The topological map can be followed by the robot as it travels

through the world, using MARVEL to verify its location with respect to the map. For
a lewmap repr

local path planning, viewmap is used. The v esents detailed metrical

information, but only in a limited area surrounding the robot. The topological map

and the viewmap, coupled with MARVEL's ability to model and recognize locations

form a complete world modeling system that supports autonomous navigation and

exploration of a mobile robot through its world. The next chapter describes how the

mobility that a mobile robot provides can be used to advantage in MARVEL's model

building, maintenance and location recognition.
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MARVEL is designed to support the navigation of a mobile robot through recognizing

world locations. One can take advantage of the fact that the sensing platform 'is mobile

to achieve recognition as well as for building and maintaining the location models.

Several strategies for accomplishing these tasks using the mobile robot are discussed

below.

1011 Several Data Sets to Build Initial 1\4odels

As was seen 'in Chapter 8, the recognition performance of MARVEL 'increases as the

models are built up over time. The greatest improvement in performance occurs over

the first several model updates. Rather than letting these updates occur over time,

the robot can build better initial models by taking several data sets the first time it

encounters a room.

If several data sets wll be obtained to build an ntial room model the robot

should be positioned near the center of the room to acquire the first data set. (The

room center can be estimated by considering the stereo data or input from other

onboard sensors such as a ring of sonar detectors.) This central initial position,

which will be used as the origin of the model, yelds a broad coverage of the room

features. If four more sets of data are then acquired, one from near each corner of

the room, more detailed information about the different areas of the room, wth a
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lessened chance of occlusion, will be obtained. The five sets of data should bring the

false negative rate below 10% for subsequent recognition (Section 8.2). Recognition

for these first sets of data used to build the nitial model can be performed reliably

since the robot 'is known to be in the same room: good estimates of the different

positions of the robot can be obtained from the onboard odometry and used 'in place

of the nitial recognition alignments described 'in Section 5.1.

10,2 The Alrnost Recognized" Problern

In the unlikely event that two models pass the recognition threshold test (this never

occurred during testing), the robot can be moved to a different position in the same

room and a second set of data can be obtained. This second set of data is combined

ith the first then recognition 's performed with the combined data agains the

competing models. Due to the greater amount of detail, the improved data set should

remove any ambiguities. (More sets of data can also be obtained, if needed.) This

same method 'is also used if no model passes the recognition test, but one or more are

very close to passing the thresholds.

Before collecting the second set of data, the competing models can be compared

to find where they differ the most. The robot can then be moved near this region

so that the most accurate data obtained will be for this distinguishing region of the

room. The robot can also be moved to search out missing data that would confirm

or deny recognition that almost passed the threshold tests.

10.3 Overcorning Lighting Deficiencies and

Occlusions

The robot can be moved to overcome image acquisition problems that the stereo

system might be experiencing, as evidenced by deficiencies in the data obtained. For

example, the scene lighting might be bad 'in an area of the room due to shadowing from

the robot or specularities, on room ob'ects leading to gaps in the data or obviously
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extraneous data points. These effects can be overcome by changing the position of

the robot in the room. Likewise, occlusions that are preventing the robot from seeing

some of the room features can be eliminated by moving the robot and taking another

set of images. These options are not available to a fixed-position vision system.

10.4 Database Conipaction

As discussed 'in Section 82, two models wll occasionally be developed for the same

location due to a false negative recognition. If the initial room models are built from

several data sets and then checked against the existing models before adding them to

the database, however, these improved initial models will often be sufficiently detailed

to be recognized as corresponding to a known model. The database of models can

then be compacted by combining these two models into one, with the corresponding

parts of the topological world model combined (Chapter 9.

If, in spite of the detailed initial models, extraneous models are entered into the

database, they can be removed later by a "cleanup" background process. When the

robot is moving, 'Its recognition subsystem (MARVEL) will be idle. During this idle

time the cleanup process can be checking for matches of model against model. Since

the models will be improved over time as they are updated, the extraneous models

'11 eventuall have enough detail to be recognized as corresponding to the same

location. This condition can also be checked explicitly if two different models pass

the threshold tests during recognition of a data set, as mentioned 'in Section 10.2.

Finally, the mobile robot's topological world map and its ability to explore the

world can be used together to find models that correspond to the same location As

mentioned in Section 94.1, by moving from its current location and finding neigh-

boring locations, the robot can build up a small map of the local area. This local

map can be matched against the world map to determine the robot's location, with

additional information added to the local map through exploration until a unique

match is determined.
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010,5 The Co:mputational Expense of Location

Recognition

Location recognition 'is needed by the robot for three purposes: location verification

(normal robot operation), topological map compaction, and location determination

(when the robot 'is "lost"). The amount of processing required for the location recog-

nition task associated wth each of these purposes is different. As it turns out, the

more computationally expensive location recognition occurs at times when the robot

is able to devote correspondingly larger amounts of processing time to the recognition

process.

Quick location recognition is required when the robot 'is trying to determine if it

has reached an intermediate or goal location. In this case the robot 'is aided by the

constraint that 'it knows where it expects to be. Thus, the search over topological

map locations that ight match the robot's current location 'is limited to just a few

candidates and the search is correspondingly fast.

Location recognition is also needed to realize that two places in the topological

map are the same location in order to compact the map. This identification es-

sentially requires matching each newly-discovered location with all previously-known

locations. Fortunately, the result of this identification is not required immediately

after encountering a new location. The compaction of the topological map can take

place as the robot moves about the world. This compaction can effectively run as a

background process, wth processing time devoted to the compaction when there are

no more pressing needs.

Finally, location recognition 'is occasionally needed to determine the absolute iden-

tity of the robot's location. This need can arise 'if the robot becomes lost or if it is

shut off and carried to a new location in its world. The first step would be, of course,

to compare the location features from the current scene with the features of all the

known locations in the topological map. The currently vewed features might not,

however, uniquely identify a single known location. In this case, the robot would

explore the world around its current location, building up a second topological map
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for use 'in identifying that location. Although the subgraph isomorphism problem is

NP-complete [Garey and Johnson 19791, determination of the robot's position can

be based on a matching of both the locations and the structures of the two topo-

logical maps. It will not take much exploration to build up a new topological map

that uniquely matches the main world map both through isomorphism of the map

structures and through consistent location recognition. Also, as more of the new topo-

logical map 'is built up and matched against the stored topological map, the search

for matching locations 'is constrained by the valid matches of the two map structures.

Since the robot is lost and cannot do any useful work until it has located itself wth

respect to its 'Internal map, the time required to explore the local world and perform

the map and location matching is well spent.

10.6 Sunanaary

This chapter discussed some of the strategies that can be used by MARVEL to take

advantage of the fact that the sensing platform 'it uses is a mobile robot. Most of

these strategies rely on the fact that multiple sets of data for a single location can

be obtained from different positions in that location. Reliable initial models can

be built from several sets of data taken from the same room. Competition between

models for recognition with a single set of data can be settled with additional data for

that location. Likewise, recognition that almost succeeds can be verified or rejected

based on nformation from other positions in the same room. Input problems that

are due to the specific position of the robot can be overcome by simply moving the

robot. Local explorations allow the robot to compare its surroundings to the world

topological map to achieve data compaction or recovery from a totally "lost" state.

Finally, the computational expense of these various strategies is 'in agreement with

the time available to accomplish them. The next chapter summarizes the work that

has been presented on MARVEL.
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The research described in this thesis was undertaken to answer the question, "How

can an autonomous mobile robot determine where it is, based on data 'it has collected

and models it has built, and do this in spite of a changing world and sensor error?"

This question led to several areas of nquiry, each addressed in this thesis. First,

how can useful information about the world be obtained to enable a mobile robot

to determine its location? Second, how can this information be used to construct

models of locations that can be used for recognition? Third, how can recognition be

achieved so that the robot can determine its location in the world and its position in

that location? Fourth, how can the models be maintained over tme to reflect new

information about the world and to eliminate errors that may occur? Finally, how

can the mobile platform that the robot provides be used to ad 'in the recognition

task?

1 Surnniary

The solution presented to the general question of location recognition is an imple-

mented system named MARVEL. Through designing, building, and testing MAR-

VEL, each of the subsidiary questions above was also addressed and answered.

An examination of the input requirements for the location recognition task led to

the choice of a stereo vision 'input system. The stereo data provides a sparse set of
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simple edge features whose distribution characterizes the location from which they are

derived. Roughly vertical edges are extracted from the stereo data since they provide

the most accurate 3-D information available in the input. Large features from this set

are preferred because they tend to correspond to large objects wth stable positions.

This set of simple features precludes an undesirable dependence on any single feature

and allows relatively simple processing to find the location features.

The 2-D projection of the stereo features was found to retain sufficient informa-

tion about their distribution for location recognition to succeed. This nformation is

represented in an occupancy grid data abstraction that is used both as recognition

data and as a basis for constructing location models. The relative simplicity of this

data abstraction aids in the autonomous construction of the location models required

for recognition. The models are also grid-based, with each grid point labeled with a

weight that reflects 'its importance to the recognition process.

Recognition is achieved by comparing the current 'input data to existing models.

Initial candidate alignments of model and data are found b considering matches of

linear groupings of model and data points. A least-squares minimization technique is

then used to achieve the best model/data match possible for each initial alignment.

These candidate matches are compared and the best transformation of model to data

is chosen for each candidate model. Using independent tests, the model that matches

the data is then selected. If no model matches the data, a new location model is

created from it.

If recognition succeeds, the current data and the recognition transform are used to

update the matched model. These updated models provide two distinct advantages

over static models. First, the models change over time to reflect the current state of

the locations they represent. Second, the updates remove error that may have entered

the models through the autonomous model building process.

The mobility of the robot can be used to make the recognition task easier. Since

the estimated location of the robot is known, the recognition process need only con-

sider that location and other nearby locations. The mobility of the robot also allows

several data sets to be combined into the initial models, thus making them more re-
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liable. Finally, the ability to move the robot to obtain a different view of the current

location provides a way of dealing wth problems such as obstructions and lighting

deficiencies.

The recognition system described in this thesis was implemented and tested in

real-world locations. The testing demonstrates that locations can be recognized and

models can be built and maintained by an autonomous system. The real-world testing

also ensured that the difficult problems were not abstracted away through the use of

oversimplified simulation data.

MARVEL provides a location recognition system that fits naturally 'into a larger

world modeling framework. The topological map world model was described along

with the part that MARVEL would play 'in it. The topological map avoids the

problems associated with cumulative error by representing the world as locations and

their connections instead of relying on exact metrical information.

11,2 Cornparison to Previous NVork

The support that MARVEL provides for mobile robot navigation can be compared

to the research done by others in the field that was mentioned in Section 12. This

comparison shows the advances that MARVEL provides over previous work.

The system that [Drumheller 19871 built used sonar to localize the position of a

robot wthin a known room to within ±1 foot and ±5'. MARVEL uses stereo vision

to accomplish the localization to within ± foot and ±0', but also recognizes the

robot's location. [Faugeras et al. 19861 used stereo to localize the position of a robot,

but this localization was accomplished wth respect to the 'Immediately preceding

views of the room that the robot obtained. MARVEL, on the other hand, localizes

the robot with respect to a room model instead of by tracking room features as the

robot moves.

The system of [Kadanoff 1987] used infrared beacons to achieve recognition, while

MARVEL does not require any changes to the environment. Also, MARVEL uses

simple recognition primitives that do not require specific domain knowledge, 'in con-
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trast to the work of [Nasr et al. 1987] that depended on high-level domain-specific

landmarks. Fnally, recognition by the Hilare mobile robot [Laumond 1984, 19861 was

achieved by tracking the robot's movement wth respect to a world model (and must

therefore take odometry errors nto account), whereas MARVEL performs recogn'_

tion against location models and only uses the world model to select the candidate

locations for recognition.

[Kuipers 1977] and [Kuipers and Byun 1987, 1988] described a world modeling

system similar to the one presented in Chapter 9 Neither the mapping nor the

location recognition described 'in these works has yet been tested on real data, whereas

MARVEL's recognition, model building, and model maintenance capabilities have

been tested 'in various locations in our laboratory. The world modeling system based

on stereo data that [Faugeras et al. 19861 described did not provide a way of detecting

or removing errors that would be 'incorporated into the models due to erroneous data

(see [Braunegg 1989b]). Also, at each step the system proceeded incrementally from

the last view of the world and did not address the question of how to use stored data

from a scene that was encountered some tme ago. MARVEL specifically adjusts 'its

recognition models to detect and remove errors and achieves recognition based on

models that were constructed at various times over the course of the robot's travels.

MARVEL also updates these models based on currently available information to allow

for changes 'in the vsible world, while [Faugeras et al. 19861 seemed to assume a static

world.

The work of [Sarachik 1989] successfully determined that the robot was in a rect-

angular room. The recognition of that room, however, depended principally on the

topological structure of the world model since the room dimensions could not be

determined reliably. MARVEL provides robust room recognition and position local-

ization wthin the room that is independent of the world model, which is only used to

limit the location model search space. MARVEL also does not depend on the rooms

being rectangular, does not require a salient wall/ceiling junction or constant ceiling

height, and does have possible extensions to non-office environments.

[Mataric 1990] presented a system that modeled an office environment by following
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and representing 'Its walls. Individual walls could be identified, but the room itself

could not be recognized. This recognition is one of the main purposes of MARVEL.

Localization could be accomplished only up to determining which wall the robot

was beside with the robot constrained to be next to a wall), whereas MARVEL

can determine the position and orientation of the robot anywhere in the room. The

graph-based world model used was more complex that MARVEL's since the nodes of

the graph represented the walls of the rooms 'Instead of just the rooms themselves.

To support navigation, MARVEL recognizes world locations and does so using

models that it builds and updates autonomously. The system also addresses some

of the deficiencies 'in previous work in this area. MARVEL as a whole as well as

through its constituent parts, contributes to the state of the art in the field of mobile

robot navigation.

11,3 Contributions and Conclusions

The main contribution of this thesi's is the large, working system that was built

from several different pieces to support mobile robot navigation successfully through

location recognition. Not only did the system have to accomplish this goal, but it had

to do so autonomously, a requirement for any exploratory mobile robot and a desirable

quality for mobile robots in general. By addressing an interesting problem, this thesis

takes the areas of stereo vision, model building, model maintenance, recognition, and

sensing strategies and pulls them together into a coherent whole. In addition to

satisfying the goal of autonomous location recognition, the thesis 'is 'Itself a study

in how dsparate areas of expertise are brought together to form a coherent, robust

system.

Starting with a well-known algorithm, a complete stereo vision input system was

designed and built for MARVEL. Not only were improvements made to the stereo

algorithm itself, but practical aspects 'in the use of stereo vsion bad to be addressed,

such as camera and stereo calibration, selection of stereo geometry parameters (e.g.,

camera separation), selection of camera parameters (e.g., the lens focal lengths, bal-
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ancing the inherent tradeoff between field of view and available image detail), and

registration of successive stereo pairs at different rotations. All of these considerations

had to be brought together to build a robust vision system that could supply input

data to the larger model building and system.

A representation for the room data had to be designed that would support recog-

nition, allow the autonomous construction and updating of models, and be derivable

from the input data by the system itself. The representation choice was crucial since

it was the thread that tied the various pieces of the system together. Once the spe-

cific representation was chosen, the parameter values for this data abstraction had

to be selected to balance effectively the competing concerns of simplicity, detail, and

computability.

The design of MARVEL's recognition algorithm had to consider not only perfor-

mance issues but also the requirements of the algorithm on the data and models

needed to drive it. The data had to be readily derivable from the stereo input sys-

tem. The search parameters had to be selected keeping in mind the precision of the

data and model representations. Also, the algorithm 'in general had to reflect the

philosophy of MARVEL: that it 'is the aggregate of the model and data features that

is 'important for achieving recognition.

The most important contribution of this thesis is the autonomous building and

maintenance of models for recognition. This 'is interesting because many recogni-

tion systems rely on handcrafted models that are assumed to be perfect. This thesis

prov'des a method for autonomous model building and explicitly assumes that the

models will contain errors characterized by both missing and extraneous data. Au-

tonomous model maintenance over tme 'is important because it provides a way of

dealing wth error in the models as well as responding to changes in the locations

that are modeled. Without model maintenance, only static entities locations in this

thesis ob'ects in general) can be modeled and recognized.

The model building and maintenance ideas implemented, however, had to fit

within the general framework of MARVEL. Recognition had to support the self-

improving models, while the resulting updated models had to support further recog-
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n I'on. Both of these requirements had to be met within the framework of a repre-

sentation. that was derivable from the input data.

Finally, recognition and model building were bound together with the 'input sys-

tem through the development of strategies that took advantage of the mobile robot

platform of MARVEL. Deficiencies 'in the data, in the models, or 'in recognition

could drive the search for new input to support these tasks. This interdependency,

expressed through various sensing, recognition, and model-building strategies, points

out the prime consideration 'in the construction of each piece of the overall system:

no part of MARVEL is 'Independent of the other parts. The system as a whole had

to be considered 'in the design, implementation, and testing of each part of MARVEL

to accomplish the primary goal the autonomous recognition of world locations.

In conclusion, this thesis has presented MARVEL, an implemented system that

supports mobile robot navigation by recognizing locations. The system is designed

to operate autonomously with no specific a priori world knowledge. It uses stereo

vision to obtain information about the world and builds data representations from

this information. The data representations are 'in turn used to build models of the

world locations that are encountered. The models are compared with newly acquired

input data to recognize the robot's current location. The model for this location is

then updated based on the recognition and the new data. These location recognition,

model building, and model maintenance capabilities that MARVEL provides fit nat-

urally 'Into a larger world modeling system that 'is under development for use wth an

autonomous mobile robot. Various strategies that take advantage of the mobility of

the robot and the 'Information in the world model are used by MARVEL for achieving

recognition. All of these pieces combine to make MARVEL a complete, tested system

that supports navigation by a mobile robot by recognizing world locations.
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MARVEL is a complete location recognition system that has been designed, imple-

mented, and tested. As wth all interesting work, however, research into one question

leads to others, solutions to problems suggest different paths for solving them, and

the knowledge gained through designing, building, and testing a system can always

be extended. To finish the discussion of the location recognition system MARVEL,

which is the focus of this thesis, several areas of further work are presented below.

12A Recognition Algorithn-i I-1provernents

The recognition algorithm described 'in Chapter uses linear groupings of data. Other

methods of grouping can also be used to determine the initial alignments of model

and data Jacobs- 1988]. The model and data points might be associated based on

other structures, such as curves, or by proximity. Properties of these structures or

groupings could then be used to determine 'initial alignments of model and data.

The initial alignments are used to overcome the problem of local minima that

occurs in the least-squares minimization process for recognition. Methods such as

simulated annealing could be explored for finding the correct solution to the mini-

mization independently of the initial match.

The data MARVEL uses for recognition is based on vertical stereo features, with

all sufficiently long verticals in the floor-to-ceiling range treated equally. Height in-
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formation associated with these verticals could be preserved for use in recognition.

One way of accomplishing this 'is to form several representations for each set of data,

based on the height ranges of the verticals that were seen. For example, three rep-

resentations, based on features found in low, middle, and high height ranges could

be used. With this scheme, data features lying near the floor would not be matched

against model features found near the ceiling. The szes of these overlapping height

ranges would determine how close two features should be 'in the vertical (z) drection

to be considered as candidates for matching. This height 'Information could also be

used to determine where occlusions are expected. For example, low features would be

expected to occlude other low features, but not high features. The low features might

be furniture in a room and the high features paintings on the walls. These expected

occlusions could be taken into account when determining what parts of the models

and how much of the models must be matched in order to achieve recognition.

12,2 1\4odel Building and 1\4aintenance

In-iproven-ients

The weights of a model's points are determined by their use in recognizing that model.

The weights could also be adjusted based on te 'importance of individual points to

distinguishing one model from another. This MIght lead to a set of weights for the

points of a model, wth the particular weights used depending on which other models

were being considered for recognition.

The age of a model point, which affects how its weight is increased or decreased,

is based on a count of the data sets in which it was seen. A true age based on an

internal clock could also be used in this regard. A model that has not been used 'in a

long while would then be suspect (its point weights lowered) due to the assumption

that much could have changed in the long time since the model was last verified.

Both a linear and an exponential model point weight update function were dis-

cussed in Chapter 7 The use of other fnctions is also possible. Different methods of

retracting model points could also be explored. One obvious candidate is the complete
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retraction of a model point if 'it 'is not seen after a suitable hysteresis delay.

12.3 Real-Tiiue Perforn-lance

MARVEL was designed, 'Implemented, and tested to explore the 'issues of world lo-

cation recognition, model building, and model maintenance. The implementation

focused on proof of concept rather than practicality for a mobile robot. Some possi-

bilities exist, however, for achieving "real-time" performance of MARVEL by speeding

up the stereo processing and the least-squares minimization of the recognition module.

The 3-D stereo data is pro'ected to two dimensions before being used for model

building and recognition. By using cylindrical lenses and single-scanline cameras,

the compression to 2-1) can be accomplished optically and a single-scanline stereo

algorithm performed. The Mobile Robot Group at the MIT Artificial Intelligence

Laboratory has implemented such a stereo system that operates at higher than tele-

vision frame rates, which is the usual standard for real-time operation [Viola 1901.

If this method 'is used, however, room features other than long, vertical edges will be

matched. Therefore, the utility of the features detectable in these compressed 'images

for location recognition must be investigated.

The least-squares minimization process consists of a large set of array operations.

These can be modeled as vector operations and implemented on Digital Signal Pro-

cessing (DSP) 'Integrated circuit chips for fast processing.

0 0
12,4 Integration with Other Systerns

A mobile robot will be called on to perform many tasks 'in its environment. The robot

can be looked upon as a mobile platform that transports the systems that execute

these tasks. By determining the robot's location and its position and orientation

within that location, MARVEL allows the robot to bring these systems to bear where

they are needed. Specific information about the positions in the locations that are

important for these tasks can be included in MARVEL's location models. It 'is also
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possible that some of the information gathered by MARVEL can be drectly used

to help perform these tasks. For 'Instance, MARVEL obtains 2-D 'images of and 3-D

stereo 'information about its surroundings. This 'Information can also be used as input

to the task systems. The position of the robot, as determined by MARVEL, provides

important information for a system designed to find certain objects (e.g., intruders)

in the robot's world. For example, the position nformation can be used by this

search system to determine its next course of action. The whole area of interaction

between MARVEL and other onboard systems is open for future research, wth many

possibilities provided by these other systems and the tasks they perform.

12.5 Input front Other Sensors

MARVEL was tested using 'Input from a stereo vision system. Other sensors could

also provide well-localized information about features 'in the world that could be used

for recognition. Obvious candidates for use with a mobile robot include sonar and

laser ranging. The power requirements and obtrusive nature of these active sensing

systems would have to be taken into account when designing the robot, of course.

Information from derent sensors could also be combined. For instance, stereo's good

angular resolution and variable depth resolution is complemented well by the good

depth resolution and wide angular resolution of sonar data.

12.6 Extensions to Other Environnients

MARVEL was discussed 'in the context of an indoor, office-type environment. Work

needs to be done to extend MARVEL to other domains. One domain of interest would

be outdoor areas. MARVEL's use of isolated features for recognition 'is amenable to

such an extension through the redefinition of the features. Objects such as barns,

houses, and trees could be detected and used by MARVEL. As wth the vertical

stereo edges, the distribution of these features about the robot would supply the

information necessary to recognize its location.



12.7. SUMMARY 177

12,7 Surnrnary

This chapter dscussed several possible extensions to MARVEL. Improvements to the

recognition algorithm were suggested, centering around the use of other groupings to

obtain the initial model/data alignments. Different methods of building and main-

taining the models were mentioned, based on other methods of incorporating new

data into existing models. Some hardware speedups of the stereo vision and recog-

nition modules of MARVEL are possible. Information from sonar and other sensors

could be 'incorporated into the location models. Finally, ways of extending MARVEL

to other environments should be 'Investigated, based on the use of sparse yet robust

features 'in the locations to be recognized.

Although any of the extensions mentioned above could be explored further, as

described in this thesis MARVEL is a complete, working system. The stereo input,

model building, recognition, and model maintenance facets of MARVEL have all been

implemented. The testing of these various pieces and the system as a whole demon-

strate that MARVEL indeed supports mobile robot navigation through recognizing

world locations.
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model/data initial alignments. The mathematics for this least-squares minimization

is presented in this chapter.

Given an initial transformation to = xo) yo I Oo I a set of model points M, and a

set of data points D, and a set of search radii frij, select the largest search radius

r = ro. Transform each model point:

A

mix
A

M =

A

M.
- ty -

- sin Oo mix XO

Cos 0 J Lrniy J + L YO JI
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vector in terms of their x- and y-coordinates:

- A

I
I

m --

- A

Mix

A

mly

A

rn2x = f (to) = f (o I YO I 00) (A.1)

I

A

M2y

XO

Yo

XO

I o

+ MJX COS 0

+ sin 0

+ M2x COS 0

+ M2xsin Oo

mly sin 00 

+ mly COS 0

M2ysin 0

+ m2y COS 0 I

Ideally, the transformed model points will exactly coincide with the data points:

A

Mix

A

mly

rn2x

A

M2y

-dix -

dly

d2x

d2y

= d.

Since the initial transform estimate is not exact, however, they will not coincide. We

wish to obtain a new transform estimate

XO Ax

t = to At Yo + Ay

00 AO

that will bring and d closer together. (Due to noise we will not in general, be

able to make the transformed model points coincide with the data points.) If is the

set of transformed model points due to transform to, then these same model points

due to tj wll be
A 

M M
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where A is the change 'in the model points due to At.

The difference between the new set of transformed model point coordinates and

the data point coordinates 'is

A 'A Ae = M M - d

= ( M - d) + M^. (A.2)

Recall from Equation A.1 that

A

M = fm (to) = fill xo, yo, 00).

AFor small A M" M M I
I A ;�' d The chain rule then mplies that

A AM

where Jo is the Jacobian matrix

- 9rhlx
c')x

ax

ax

i9x

a?�h X
i9y

ay

.9y

ay

a7hijk 
ao

ao

.90

ao

Jo =

to

Thus, the error term can be expressed as

e = - d) + JoAt.

To refine the transform estimate by adjusting At, we must minimize this error. Note

that an assumption from the chain rule is that for small AO about the 'Initial guess

rotation ao is approximately linear, thus letting us apply the least-squares ini-

= fill X0 I y I 00)

- a fm Ax afm Ay afm AO
ax to ay to go to

= JAt
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mization.

The weights of each model point can be used to 'influence the 'Importance of

matching the individual model points. The error vector e is

Cix

ei,

L- jI I

mix - dix

mi - diy

L- j

.9x AX + ay Ayo + ao 00

aihiy AX0 + Ay + A00,9x ay ao

L i

I

I

where the components e., and eiy result from the match of transformed model point
Ami. If wi is the weight of model point mi, then the squared errors associated with

the coordinates of 'mi should be weighted. If we let

W=

I

Wl 0 0 0 ... 0

0 W, 0 0 0

0 0 W2 0 ... 0

0 0 0 W2 - 0

0 0 0 0 .. Wn

I

I

then Equation A.2 becomes

T + jAt]T We We-[(M--d) M - d) + JoAt],

the weighted squared error. Letting h - d, we have

T je We [h + OAt]T W [h + JoAt]

T AtT TWjOAt +,AtTjTWj- h Wh JTWh - h O'At.

Note that for I -ml > 3 this system of equations is overdetermined. We wish to mini-

mize this weighted squared error with respect to At, so taking the partial derivative
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and setting it equal to zero

T(9e We
= _ jT Wh - jT Wh + 2OTWJOA = 

aAt 0 0

yields

At = JTWJo]-'JTWh.

Repeatedly using this least-squares mnimization, we iterate to refine the trans-

form

ti+j = ti At

until ether the weighted transform variance is small enough or is changing slowly

enough

S < 1 or AS2 < 62-

The weighted transform variance is used to determine how well the current transform

matches the model points to the data points. It is the weighted sample variance '

as determined by summing the weighted squared distances between each model point

and its closest data point, then dividing by the number of model points nus one

[Walpole and Myers 1978].

A )2w-(d - MS2
n -

where

A

M = the transformed model point mi

di = the data point that matched

wi the weight assigned to model point mi

This process 'is then repeated for successively smaller search radii ri. The trans-

form found at the smallest search radius is considered to be the best transform for

the gven 'Initial alignment.
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For a set of refined model/data transforms that were determined from a set of

initial alignments, the transform selected as best matching the model to the data is

the one that max'rrnzes the percentage of model matched 1IM11 . If two transforms

match the same number of model points, the one with the smallest sample variance

S' 'is chosen.
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This appendix presents the algorithm used to update the models that was described

in Chapter 7 The transform mapping data points to model points is assumed to

correspond to correct recognition of the data. The following notation is used:

D set of transformed data points Idl

M set of current model points f rnj

tr rise time of weight update function

h weight reduction hysteresis

am age of model point m

cm count of model point 

Wm= W (c; t. = weight of model point 

185



1.9-ONWO I Moog III II, I'll I

186 APPENDIX B. MODEL UPDATE ALGORITHM

B,1 1\4odel Initialization Data Set 

M +- 

loop for d E D

m +- d

a . <-- 0

Cm +- 

Wm +- Wm 1; tr)

M < M + m

endloop
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B,2 1\4odel Update Data Sets 2-n

Mnew 0

Consider each current model point in turn

loop for E M

Update model point age

Am Am I

bmin 00

Find closest data point

loop for d E D

'if m - d < min

then

bmi. lid - mil

dmin d

endif

endloop

; Evaluate if matched data point is close enough

if <

then

Update model point properties based on match

am �- 0

cm rmn(t,, cm + 1)

Wm Wm (cm; t)

Mnew - Mnew + 

,-; Remove this data point from further consideration

D - D - d
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else

Update model point properties based on no match

if am h

then

Point exceeds hysteresis, so fade it

cm +- cm 

i f C > 

Wm +- Wm (cm; t)

Mnew - Mnew + rn

endif

else

Point does not exceed hysteresis, so keep it as is

Mnew - Mnew + ?n

endif

endif

endloop,

Add unmatched data points to model

loop for d E D

M d

am 0

Cm I

Wm +- Wm (1; t')

Mnew - Mnew + rn

endloop

Make the current model now be the updated model

M +- M.'W
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This appendix contains data taken from Room 913 in the MIT Artificial Intelligence

Laboratory and the resulting models. Model I was created from Data Set 1. Model 2

is the update of Model I based on recognition wth Data Set 2 Model 3 'is the update

of Model 2 based on recognition with Data Set 3 and so on. The weight of a model

point 'is 'Indicated by 'Its darkness. Low weight points are shown as light grey squares

while darker squares denote more heavily weighted model points. The model updates

used the linear weight update of Equation 71 with rise time t = and hysteresis

h = 4.

189
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Figure C-1: Room 913 data sets 14.
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This appendix contains data taken from Room 914 in the MIT Artificial Intelligence

Laboratory and the resulting models. Model I was created from Data Set 1. Model 2

is the update of Model based on recognition with Data Set 2. Model 3 is the update

of Model 2 based on recognition with Data Set 3 and so on. The weight of a model

point is ndicated by 'Its darkness. Low weight points are shown as light grey squares

while darker squares denote more heavily weighted model points. The model updates

used the linear weight update of Equation 71 with rse time t = and hysteresis

h 4.
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This appendix contains data taken from Room 915 in the MIT Artificial Intelligence

Laboratory and the resulting models. Model I was created from Data Set 1. Model 2

is the update of Model based on recognition with Data Set 2 Model 3 is the update

of Model 2 based on recognition with Data Set 3 and so on. The weight of a model

point is indicated by 'Its darkness. Low weight points are shown as light grey squares

while darker squares denote more heavily weighted model points. The model updates

used the linear weight update of Equation 71 with rise tme t = and hysteresis

h 4.
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This appendix contains a data set taken from Room 9PR (the 9t' floor playroom) in

the MIT Artificial Intelligence Laboratory and the resulting model.
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Figure F- 1: Room 9PR data set.

Figure F-2: Room 9PR model.
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This appendix shows the effect of varying the parameters of the linear model update

algorithm described in Chapter 7 The figures show the final Room 914 model (Model

12) built from the data sets of Appendix D. For the models shown in the figures, the

rise time t, was varied between and 8. Each figure shows the models for a sngle

hysteresis h, ranging from I to .
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Figure G-1: Examples of the final Room 914 model using the linear update algorithm
with Hysteresis = and various rise times.
a. Rise Time = I b. Rise Time = 2 c. Rse Time = 3 d. Rise Time 4
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Figure G-2: Examples of the final Room 914 model using the linear update algorithm
with Hysteresis = and various rise times.
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Figure G-3: Examples of the final Room 914 model using the linear update algorithm
with Hysteresis = 2 and various rise times.
a. Rise Time I b. Rise Time = 2 c. Rise Time = 3 d. Rise Time = 4
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Figure G-4: Examples of the final Room 914 model using the linear update algorithm
with Hysteresis = 2 and various rise times.
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Figure G-6: Examples of the final Room 914 model using the linear update algorithm
with Hysteresis = 3 and various rise times.
a. Rise Time = b. Rise Time = 6 c. Rise Time = 7 d. Rise Time = 
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Figure G-7: Examples of the final Room 914 model using the linear update algorithm
with Hysteresis = 4 and various rise times.
a. Rise Time = I b. Rise Time = 2 c. Rise Time = 3 d. Rise Time = 4
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Figure G-8: Examples of the final Room 914 model using the linear update algorithm
with Hysteresis = 4 and various rise times.
a. Rise Time 5 b ise Time = 6 c. Rise Time = 7 d. Rise Time = 
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Figure G-9: Examples of the final Room 914 model using the lnear update algorithm
'th Hysteres's = and various rise times.
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Figure G-10: Examples of the final Room 914 model using the linear update algorithm
with Hysteresis = and various rise times.
a. Rise Time = b. Rise Time = 6 c. Rise Time 7 d. ise Time = 
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This appendix shows the effect of varying the parameters of the exponential model

update algorithm described 'in Chapter 7 The figures show the final Room 914 model

(Model 12) built from the data sets of Appendix D. For the models shown in the

figures, the rise tme t, was varied between I and 8. Each figure shows the models

for a single hysteresis h, ranging from to .
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Figure H-1: Examples of the final Room 914 model using the exponential update
algorithm wth Hysteresis = I and various rse times.
a. Rise Time = I b Rise Time = 2 c. Rise Time = 3 d Rise Time = 4
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Figure H-2: Examples of the final Room 914 model using the exponential update
algorithm wth Hysteresis = and various rise times.
a. Rise Time = b. Rise Time 6 c. Rise Time = 7 d Rise Time = 
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Figure H-3-. Examples of the final Room 914 model using the exponential update
algorithm with Hysteresis 2 and various rise tmes.
a. Rise Time 1 b. Rise Time 2 c. Rise Time 3 d. Rise Time 4
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Figure H-4: Examples of the final Room 914 model using the exponential update
algorithm wth Hysteresis = 2 and various rise times.
a. Rise Time = b. Rise Time 6 c. Rise Time 7 d Rise Time = 
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Figure H-5: Examples of the final Room 914 model using the exponential update
algorithm with Hysteresis = 3 and, various rise times.
a. Rise Time = I b. Rise Time 2 c. Rise Time = 3 d. Rse Time = 4
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Figure H-6: Examples of the final Room 914 model using the exponential update
algorithm with Hysteresis = 3 and various rise times.
a. Rise Time = b. Rise Time = 6 c. Rise Time = 7 d. Rise Time = 
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0

b.

Figure H-7: Examples of the final Room 914 model using the exponential update
algorithm with Hysteresis = 4 and various rise times.
a. Rise Time = I b. Rise Time = 2 c. Rise Time = 3 d Rise Time = 4
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Figure H-8: Examples of the final Room 914 model using the exponential update
algorithm wth Hysteresis = 4 and various rse times.
a. Rise Time = b Rise Time = 6 c. Rise Time = 7 d. Rise Time = 
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Figure H-9: Examples of the final Room 914 model using the exponential update
algorithm wth Hysteresis and various rise times.
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Figure H-10: Examples of the final Room 914 model using the exponential update
algorithm with Hysteresis and various rise times.
a. Rise Time = b Rise Time 6 c. Rise Time = 7 d Rise Time = 

X-XI

xe
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Block 20 continued:

by updating its world location models. I present results from real-world tests of the

system that demonstrate 'Its reliability. MARVEL fits 'Into a world modeling system
under development,


