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ABSTRACT: Computational theories of structure from motion [Ullman, 19791 and stereo vision
[Marr and Poggio, 1979] only specify the computation of three-dimensional surface information at
special points in the image. Yet, the visual perception is clearly of complete surfaces. In order to
account for this, a computational theory of the interpolation of surfaces from visual information is
presented.

The problem is constrained by the fact that the surface must agree with the information from
stereo or motion correspondence, and not vary radically between these points. Using the image
iriadiance equation [Horn, 1977], an explicit form of this surface consistency constraint can be derived
{Grimson, 1981¢c].

I'o determine which of two possible surfaces is more consistent with the surface consistency
constraint, one must be able to compare the two surfaces. To de this, a functional from the space
of functions to the real numbers is reguired. In this way, the surface most consistent with the visual
information will be that which minimizes the functional. To ensure that the functional has a unique
rinimal surface. conditions on the form of the functional are derived. In particular, if the finctional
is a complete semi-norm which satisfies the parallciogram law, or the space of functions is a semi-
Hilliert space and the functional is a semi-inner product, then there is a unique (to within an clement
of the null space of the functional) surface which is most consistent with the visual information.

It can be shown, based on the above conditions plus a condition of rotational symmetry, that
there is a vector space of possible functionals which measure surface consistency, this vector space
being spanned by the functional of quadratic variation and the functional of square Laplacian [Brady
and Horn, 1981]. Argumeats based on the null spacces of the respective functionals are used to justity
the choice of the quadratic variation as the optimal functional.

Algorithms for comnputing the surface which minimizes quadratic variation in thz case of exact
surface interpolation and in the case of surface approximation are outlined and illustrated on a series
of syrthetic and actual surface interpolation examples.
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1. Introduction

Although our world has threc spatial dimensions, the projection of light rays onto the retina
presents our visual system with ah image of the world that is inherently two-dimensional. We must
use such images to physically interact with this three-dimensional world, even in situations new to
us, or with objects unknown to us. That we do so easily implies that one of the functions of the
human visual system is to reconstruct a three-dimensional representation of the world from its two-
dimensional projection onto our eyes.

Methods that could be used to eﬂ"cctrthis three-dimensional reconstruction include sterco vision
[Mair and Poggio, 1979; Grimson, 1980, 1981a; Mayhew and Frisby, 1981] and structure from motioﬁ
[Ullman, 1979a]. Both of these methods may be considered as correspondence techniques, since
they rely on establishing a correspondence between identical items in different images, and using the
difference in projection of these items to determine surface shape. That is, correspondence methods
compute surface information by:

(1) Identifying a location in the physical scene in once image;

(2) Identifying the corresponding location in a second image; either a sccond image taken from a
different viewpoint in space (stereo) or a sccond image taken from a different viewpoint in time
(structure from motion); and

(3) Computing a three-dimensional surface value, representing the distance of the point relative to
some base point, based on the difference in the positions of the two corresponding peints in the
images.

Current computational theorics of these processes [Marr and Poggio, 1979; Mayhew and Frisby,
1981; Ullman, 1979a] argue that the correspondence process cannot take place at all points in an
image. Rather, the first stage of the correspondence process is to derive a symbolic description of
points in the image at which the irradiance undergocs a significant change [Marr and Hildreth, 1980].
'This symbolic representation (called the primal sketch [Marr, 1976; Marr and Hildreth, 1980}) forms
the input to the second stage of the process in which the actual correspondence is computed. As a
conseguence of the form of the input, the correspondence process can compute explicit surface infor-
mation only at scaitered points in the image. Yet our perception is clearly of' complete surfaces. (For
example, in Figure 1, a sparse random dot stereogram yields the vivid perception of a square Noating

in space above o backeround plane. rather than acollection of dots suspended in space.) The problem
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Figure 1. A Sparse Random Dot Pattern. Although the density of dots is very small, the perception
obtained upon fusing this pattern is one of two disjoint planes, rather than dots isolated in depth.

to be addressed in this paper is that of computing complete surface representations, by interpolating
an initial representation consisting of sparse surface values.

We will examine this surface interpolation problem at two levels. The first level is to consider
the strictly mathematical question of surface reconstruction, independent of its relevance to the
human visual system. Suppose one is given a visual process which determines surface information
at points corresponding to relevant changes in the images. In general, there will be many possible
surfaces consistent with these initial surface points. For example, consider the boundary conditions
provided by a circular arc, along which the depth is constant. The possible surface consistent with
these known points include a flat disc, a sphere and even the highly convoluted surface formed by a
radial sine function (see Figure 3). How do we distinguish the correct one? Mathematically, we need
to be able to compare two possible surfaces, in order to determine which is “better”. This can be done
by defining a functional © from the space of surfaces to the real numbers, so that comparing surfaces
can be accomplished by comparing corresponding real numbers. Provided O(f) << O(g) whenever
surface fis “better™ than surface g, the “best™ surfice (o fit through the known points is that which
minimizes ©. There are two problems (o solve hiere: (1) What does it mean for S to be “better” than

g7 and () Under what conditions does a unigque “best” surface exist?



Once these questions have been answered and an appropriate functional has been derived, we
can turn to the second level, which is to consider a specific algorithm for finding the surface that
optimizes the functional. Because our intent is to consider models for the interpolation process as it
occurs in the human visual system, we will restrict our attention to biologically feasible algorithins
[Uliman, 1979b; Grimson, 1981b].

The motivation for considering the interpolation problem first mathematically, independent of
the specifics of the human system, and then algorithmically, incorporating specific biological con-
straints, is based on the assumption that one can consider the visuai system as a symbol manipulation
process [Marr 1976, 1981; Marr and Poggio, 1977]. This implies that the meaning of the symbols being
manipulated can be distinguished from the physical embodiment of those symbols. Hence, one can
deal with the mathematical consideration of the information processing which is occurring, independ-
ent of the implementation of that processing (whether in transistors or neurons). The rationale for
this view lics in the belicf that any computational theory should address the fundamental questions
of the information processing necessary to perform the task, and that such computational theories
are independent, to a large cxtent, of the method used to compute them. The initial goal is thus to
determine computational constraints on the interpolation problem, based on the input and output
representations of the process, and based on the structure of the computation required to transform
one representation into the other. Note that a computational theory of the information process-
ing is applicable both to the human visual system, and to applications arcas (such as high-altitude
photomapping, hand-eye coordination systems, industrial robotics, and inspection of manufactured
parts) where it is useful to create a complete specification of surface shape.

While we shall initially concentrate on the mathematical aspects of visual surface interpolation,
the problem is not completely isolated from the human visual system. 1f we view the human carly
visual system as a symbolic manipulator, we can consider visual processing as a series of transfor-
mations from one representation to another [Marr, 1976, 1981]. In particular, three stages can be
identified (scc Ifigure 2). ‘me the images, one transforms to a description, called the primal sketch,
of those locations at which the image irradiances change. Next, primal sketch dcscription's of several
images are matched, cither by the stereo or motion computation, to obtain a description of surface
information at the zero-crossings. This representation is called the raw 231 sketch. Finally, the raw

24D sketch is interpolated to obtain complete surface descriptions, called the full 2413 sketeh [Marr,
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1978; Marr and Nishihara, 1978]. The first two stages have been considered elsewhere [Marr, 1976;
Marr and Hildreth, 1980; Hildreth, 1980; Marr and Poggio, 1979; Grimson, 1980, 1981a, 1981b;
Ullman, 1979a). It is the final stage — the problem of surface interpolation — that is considered here.
to obtain complete surface descriptions, called the full 24D Sketch [Marr, 1978; Marr and Nishihara,
1978]. The first two stages have been considered elsewhere [Marr, 1976; Marr and Hildreth, 1980;
Hildreth, 1980; Marr and Poggio, 1979;"Grimson, 1980, 1981a, 1981b; Ullman, 1979a]. It is the final
stage — the problem of surface interpolation - that is considered here.

The important point is that me form of the input and output representations can influence the
design of the transformation. Here, we shall assume that the input representation consists of explicit
surface information, such as distance or relative distance, along the zero-crossings of the convolved
image (these terms will be given technical definitions in Section 2). The output representation will be
a complete specification of surface information, where by complete, we mean that an explicit distance
value should be computed at every point on some grid representation of the scene. Qur main concetn
in this paper is with the computational constraints nceded to transforin the input representation into
the output representation.

Although surface values at all points of the image are important, there is another aspect of
surface inforination which should also be made explicit in the output’rcbre's‘én'tation. This is the set of
discontinuities in surfaces; the occluding contours, both subjective and objective. Marr [1978] argues
that the 24-D sketch should be a viewer-centered representation which includes both explicit surface
information, such as depth and surface orientation, and explicit contours of surface discontinuities. In
this paper, the concentration is on the problem of creating explicit surface information at all points
of the surface. The question of surface discontinuities will be outlined, and possible algoritbms

suggested, but an implementation of this stage has not been completed.

2. Consequence of the Correspondence Problem

We indicated above that we would concentrate on correspondence ‘méthods which could
offect the three-dimensional surface reconstruction; stereopsis [Marr, 1980; Marr and Poggio, 1979;
Grimson, 1980, 1981a] and structure from motion [Ullman, 1979a]. The three ‘main steps of the
correspondence problem arc: (1) identify a location in the physical scene in one image; (2) ideiitify

the corresponding location in a second image; cither a second image taken from a-different viewpoirit
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(sterco vision), or a second image taken at a later point in time (motion); and (3) compute a three-
dimensional surface value, representing the distance of the point relative to some base point, based on
the difference in the positions of the two corresponding points in the images.

If one can identify a location beyond doubt in the two images, then the correspondence problem
is trivial. It can be demonstrated, however, that both the stereo computation and the motion computa-
tion can take place on very primitive descriptions of the images [Julesz, 1960; Ullman, 1979a]. As
a consequence, the difficulty of the problem, for human vision, lies in the corréspondence problem
— which item in one image matches which item in the other. The reason for this is that for any primi-
tive element from one description, there are liable to be many possible matching elements from the
other descrlptlon This is especially truc if image irradiance values are used as the basic descriptions.
Con51der an image of a matte-painted wall with uniform illumination. Given a small element of that
wall from one image, it is virtually impossible to disti nguish which small element from the other view
matches it. On the other hand, if there is a scratch or texture marking on the wall, it is likely that such
a location can be distinguished in the two views. This suggests that the representation upon which
the correspondence operation takes place should reflect those positions in an image at which some
physical property of the underlying surface is changing. This representation is called the primal sketch
[Marr, 1976; Marr and Hildreth, 1980].

Marr and Hildreth [1980, also Hildreth, 1980] have refined the preceeding intuitive argument
into more rigorous computational arguments, in conjunction with evidence from neurophysiology and
psychophysics. They argue that the primal sketch representation is computed by determining those
locations in an image at which the corresponding surface location undergoes a change in one of its
physical properties, for example, reflectivity, surface orientation, texture or surface material. Such
changes will correspond to a step change in image irradiance, at some scale. There are many ways of
detecting the irradiance changes. Marr and Hildreth argue on various grounds for using the following
scheme:

(1) Convolve the image with a set of filters given by the Laplacian applied to a Gaussian,

V2(r, 0) = (’ ‘;22_) —3

where o is a constant determined from psychophysical data.



(2) Locate all non-trivial zero-crossings in the convolved irradiances. A non-trivial zero-crossing is a
point at which the convolved irradiance values change from positive to negative, or vice versa.
These zero-crossings form the basic representation upon which the later visual processing takes place.
Given this representation of the images, the correspondence problem can now be solved. Both
Ullman’s [1979a] theorv of motion perception and Marr and Poggio’s [1979] theory of stereo vision
perform this computation on such primal sketch descriptions. As a consequence, explicit three-
dimensional surface information (such as distance, or surface orientation) can be computed only at
points corresponding to zcro-cros;ings in the primal sketch. This would yield a sparsc surface repre-
sentation. Yet clearly, our perception is of complete surfaces (see for example Figure 1). In addition,
a “nice” boundary is found for the central square. This implies that once the correspondence problem
is solved, either by the stereo computation or by the motion computation, an interpolation must
be performed between the surface values given at the zero-crossings, to obtain a completc surface

description, and surface discontinuities should be explicitly demarked.

3. The Surface Consistency Constraint

We now turn to the heart of the matter, the computational constraints involved in the process
of creating complete surface specifications, by interpolating between known points. We are given
as basic input to the interpolation process, the zero-crossings of a convolved image, with depth infor-
mation computed along these zero-crossing contours. Suppose one were to attempt to construct a
complete surface description based only on the surface information known along the zero-crossings.
An infinite number of surfaces would consistently fit the boundary conditions provided by these sur-
face values. Yet there must be some way of deciding which surface, or at least which small family
of surfaces. could give rise to the zero-crossing descriptions. This means that there must be some
additional information available from the visual process which, when taken into account, will identify
a class of ncarly indistingl.lislmblc surfaces that represent the visible surfaces of the scene.

in order to determine what information is available from the visual process, one must first
carcfully consider the process by which the zero-crossing contours are generated. The Marr-Hildreth
theory of edge detection [Marr and IHildreth, 1980; Hildreth, 1980} relics on the fact that sudden
changes in the reflectance of a surface, for example, caused by surface scratches or texture markings,

will give rise o zero-crossings in the convolved image. Sudden or sharp changes in orientation or
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shape of the surface will under most circumstances also give rise to zero-crossings. This fact éin be
used to constrain the possible shapes of surfaces which could give rise to particular surface’ values
along zero-crossing contours.

We illustrate the basic argument with an example. Suppose one is given a closed zero-crossing
contour, within which there are no other zero-crossings. An example would be a circular contour,
along which the depth is constant. There are many surfaces which could fit this set of boundary
‘conditions (see Figure 3). One such surface is a flat disk. However, onc could also fit other §iiosth
surfaces to this set of boundary conditions. For example, the highly convoluted surface fortried
by sin (m) would be consistent with the known disparity values. Yet in principle, such a
rapidly varying surface should give rise to other zero-crossings. This follows from the obsctvation that
if the surface orientation undergoes a periodic variation, then it is likely that the irradiance values
will also undergo such a variation. Since the only zero-crossings are at the borders of the object, this
implies that the surface sin (\/m) is not a valid representative surface for this set of boundary
conditions.

Hence, the hypothesis is that the set of zero-crossing contours contains implicit information
about the surface as well as explicit information. If one can detérmine a'set of conditions on the
surface shape that cause inflections in the irradiance values, then one thay be able to detérmine a

likely surface structure, given a set of boundary conditions along the 7ero-crossing contouis,
3.1 No News is Good News

In general, any one of a multitude of widely varying surfaces could fit the boundary cotditiots
imposed along the zero-crossings. To be completely consistent with the imaging process, however,
such surfaces must meet both explicit conditions and implicit conditions. The explicit conditions
are given by the depth or surface orientation values along the zero-crossing contours. ‘The implicit
conditions are that the surface must not impose any zero-crossing contours other than those which
appear in the convolved image. This implicit condition leads to the surface consistency coistraiit,
namely:

The ahsence of zero-crossings constrains the possible surface shapes.
Just as the presence of a zero-crossing tells us that some physical property is changing 4t a given

location, the absence of a zero-crossing tells us the opposite, that no physical property s changing.



Figure 3. Possible Surfaces Fitting Depth Values at Zero-Crossings. Given boundary conditions
of a circular zero-crossing contour, along which the depth is constant, there are many possible
surfaces which could fit the known depth points. Two examples are a flat disk, and the highly

convoluted surface formed by sin (\/ z? 4 yQ), shown here.

and in particular that the surface topography is not changing in a radical manner. We informaily refer
to this cdnstraint as no news is good news, since it says that the surfacc cannot change radically without
informing us of this fact by means of zero-crossings. -

In order to make, explicit any constraints on the shape of the surface for locations in the image
not associated with a zero-crossing, onc must carefully examine the image formation process. Many
factors are involved in the formation of image irradiances. As a consequence, changes in any of those
factors can cause a change in the image irradiances, and hence a zero-crossing in the convolved image.
For example, a change in surface material can correspond to a change in albedo, and hence to a zero-
crossing in the convolved image; a discontinuity in depth can correspond to a change in the illumina-

;
tion striking the surface, and hence o a zero-crossing! and a discontinuity in surface orientation can

correspond to a change in the amount of illumination reflected owiard the viewer, and hence to a

s



THE COMPUTATIONAL PROBLEM 10

zero-crossing. We are interested in showing that the inverse is also true — in particular, that in regions
in which the illumination and albedo are roughly constant, the absence of a zero-crossing implies that
the surface shape cannot be changing in a radical manner. '

The basic result, corresponding to the intuitive argument of Figure 3, is that the probability of a
zero-crossing occurring in regions where the iflumination is roughly constant and the surface material
does not change is a monotonic function of the variation in the orientation of the surface normal.
(An analytic proof may be found in Grimson [1981c].) This provides a constraint on the possible
surfaces that could be interpolated through a set of known points, and is referred to as the surface
consistency constraint. It means that the probability of a zero-crossing increases as the variation in
sui‘facc orientation increases. By inverting this argument, the best surface to fit the known data is that
wliicﬁ minimizes the variation in surface orientation since this surface is most consistent with the zero-

crossings in the convolved image.

4. The Computational Problem

We are now ready to consider the computational problem associated with the task of construct-
ing complete surface specifications consistent with the information contained in the zero-crossings.
The modules of early visual processing, such as stereo or structure-from-motion, provide explicit
ilif()rlnatior1 about the shapes of the surfaces at specific locations in the images, corresponding to the
zero-crossings of the convolved images. The surface consistency constraint indicates implicit informa-
tion about the shapes of the surfaces between the zero-crossings, stating that between known depth
values, the surface cannot change in a radical manncr, since such changes would usually give rise
to additional zero-crossings. These two factors will now be combined, to obtain a complete surface

specification.
4.1 Using The Surface Consistency Constraint

Suppose we are given a set of known depth points. We want a method for finding a surface
to fit through these points that is “most consistent” with the surface consistency constraint. We wifl
find the most consistent surface in two ways. In the surfuce interpolation problem we construct a

surface that exactly fits the set of known points. 'The problem can be relaxed somewhat into a surface
(2]
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approximation problem, by only requiring that the surface approximately fit the known data and be
smooth in some sense.

Given the initial boundary conditions of the known depth values along the zero-crossing con-
tours, there is an infinite sct of possible surfaces that fit through those points. We need to be able to
compare members of this set of all possible surfaces fitting through those points, to determine which
surface is more consistent. If we can do this, then the “most consistent” surface can be found by com-
paring all possible surfaces. A traditional method for comparing surfaces is to assign a real number
to each surface. Then, in order to compare the surfaces, one need only compare the corresponding
real numbers. The assignment of real numbers to possible surfaces is accomplished by defining a
functional, mapping the space of possible surfaces into the real numbers, ©:X + R. This functional
should be such that the more consistent the surface, the smaller the real number assigned to it. In
order to satisfy the surface consistency constraint, the functional should measure variation in surface
orientation. In this case, the most consistent surface will be the surface that is minimal under the
functional. (For further details and background information about the usc of functionals is, see, for

VN example, Rudin [1973])

The key mathematical difficulty is to guarantce the existence and uniqueness of a solution. In
other words, we need to guarantee that there is at least one surface which minimizes the surface
consistency constraint, and to guarantee that any other surface passing through the known points, for
which the functional measure of surface consistency has the same value, is indistinguishable from the
first surface. This issue is not just a mathematical nicety, however, but is essential to the solution
of many computational problems. Suppose we devise an iterative algorithm to solve some problem.
What happens if we cannot guarantee the existence of a solution? The iterative process could be set
off to solve an equation and never converge to an answer — clearly an undesirable state. Further,
suppose a solution exists but is not guaranteed to be unique. Then an iterative process might converge
to one solution when started from one initial point, and converge to another solution when started
from a dificrent initial point. Although small variations in the different solutions might be acceptable,
the solutions should not differ in a manner incousistcm with our intuition about the problem. Thus, in
the case of visual surface interpolation, the real trick is to find a functional which accuratcly measures
the variation in surface orientation, as well as guarantees the existence of a unique best surface (or a

family of indistinguishable surfaces).
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How can we guarantee the existence and uniqueness of a solution? In our particular case of
surface interpolation, we will be using the calculus of variations to determine a system of equations
which the most consistent surface must satisfy, by applying the calculus to the situation of fitting a
~ thin plate through a sct of known points. While this system of equations characterizes the minimal
surface, it does not guarantee uniquencss. The form of the boundary conditions (the set of known
points) will determine the size of the family of minimal surfaces. Unfortunately, determining the
types of input for which a unique solution exists is gencrally very hard. Instcad, we will exploit a
general case of the mathematical existence of a solution with the weakest possible conditions on the
functional. That is, we will determine a weak set of conditions on the functional that are needed to
ensure that a unique most consistent surface, or at least a unique family of surfaces that are most
consistent, will exist. We will show that if the functjohal'is an inner-product on a Hilbert space of
possible surfaces, then a unique most consistent surface will exist. (A Hilbert space is an extension of
normal Euclidean space — basically a vector space in which a dot product operation exists, so that we
can relate the vectors to the real line, and in which functions are usually used in place of the normal
~ notion of vcc_tor.)

In general, it is extremely difficult to find a functional that measures surface consistency and
satisfies the conditions of an inner-product. Hence, we will show that if the functional is a semi-inner
product on a semi-Hilbert space of possible surfaces, then the most consistent surface is unique up to
possibly an element of the null space of the functional. The null space is simply the set of surfaces
that cannot be distinguished by the functional from the surface which is zero everywhere. In this
way, the family of most consistent surfaces can be found. Based on the form of the null space, we
can determine whether or not the differences in minimal surfaces are intuitively indistinguishable, and
what conditions on the known boundary values will guarantce a unique minimal surface, from this
family.

Having derived conditions on the functional, we need to show that there is such a functional.
The surface consistency constraint implics that the functional should measure variation in surface
orientation over an arca of the surface. Although the condition of a semi-inner product is a mathe-
matical requirement needed to guarantee a solution, it does not restrict in an unrcasonable way the
kinds of surfaces we consider, and gives rise io at least two very natural functionals, both of which can

be derived from the calculus of variations: once measures the integral of the square Eaplacian applied
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to the surface and the other measures the quadratic variation of the local z and y components of the
surface orientation. Besides the mathematical justifications, we will also show practical and intuitive
reasons in support of such functionals.

Given that there are at least two possible functionals, are there others? We will show that if we

require a functional that is:

1. amonotonic function of the variation in surface orientation,
2. asemi-inner product, and

3. rotationally symmetric,

then there is a vector space of possible functionals, spanned by the square Laplacian and the quadratic
variation. In other words, there is a family of possible functionals, given by all linear combinations of
these two basic functionals. ’

Given that there is more than one possible functional, how do they differ? Using the calculus
of variations, and some results from mathematical physics, we will show that the surfaces which mini-
mize these functionals will be roughly identical in the interior of a region and will differ only along
the boundaries of a region. As well, the null spaces of the functionals will differ, implying different
familics of most consistent surfaces corresponding to each functional. We know that the minimal
surface is unique up to possibly an element of the null space. Since we require that the sclution
surface cither be unique, or a member of an indistinguishable family of solutions, the size of the null
space is important in judging the value of a functional. Based on this, we will argue that the quadratic
variation is to be preferred over the square Laplacian. If we require that the surface pass through the
known points, we can show that the form of the sterco data will force a unique most consistent surface
for the case of quadratic variation, while this is unlikely for functionals such as the square Laplacian.

Thus, we assert on mathematical grounds that the best functional is one which measures quad-
ratic variation in surface orientation, ;md the most consistent surface to fit to the sterco data is that
which passes through the known points and minimizes the quadratic variation. TIn a later section,
we will see examiples of the types of minimal surfaces obtain’éd under quadratic variation and the
square Laplacian. 1t will be seen that the mathematical distinction in size of null space has a practical
consequence, as the types of surfaces which minimize the square Laplacian will be seen to be inconsis-

tent with our intuitive notion of the best surface to fit to the known points. while the surface which
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minimize the quadratic variation will be seen to be much more consistent with our intuitive notion of

the best surface.
4.1.1 The Problem is Well-Defined

If surfaces are to be compared, by using a functional from the space of surfaces to the real
numbers, with the purpose of finding the surface that best satisfies the surface consistency constraint,
it is necessary to ensure that such a goal is attainable. What conditions on the form of the functional,
or on the structure of the space of functions, are nceded to guarantee the existence of such a “best”
surface? One key constraint on the functional is given by the following theorem. The main point of
the theorem is that in order to ensure that the problem is well-defined the functional should have the

characteristics of a semi-norm.

Theorem 1: Suppose there exists a complete semi-norm © on a space of functions H, and that ©
satisfies the parallelogram law (for definition, see proof of theorem). Then, every nonempty closed convex
set & C H coitains a unique element v of minimal norm, up to an element of the null space. Thus, the

Samily of minimal functions is
{v+s| seS}

where

S={v—-w| weEINN
and N is the null space of the functional
N={u| Ou)=0}.

Proof: [See for example Rudin, 1973]. Any space with a semi-norm defined on it can be
associated with an equivalent normed space. Let W be a subspace of a vector space H. For every

v € H, let w(v) be the coset of W that contains v,
m(v) = {v 4+ wuc W}

These cosets are elements of a vector space H /W called the quotient space of /- module W. In this
space. addition is defined by

w(v) - w{w) - n(v -+ w)
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and scalar multiplication is defined by
an(v) = =(av).

The origin of the space H /W is 7(0) = W. Thus, = is a linear map of H onto H/W with W as its
null space.

Now consider the semi-norm © on the vector space H. Let
N = {v: ©(v) = 0}.

This can casily be shown to be a subspace of H. Let 7 be the quotient map from H onto H /XN, and
define a mapping @ :H/N — R,
O/(n(v)) = O(v).

If 7(v) = w(w) then O(v—w) = 0. Since |O(v) — B(w)| < O(v—w), then &/(7(v)) = O'(n(w))
and ©' is well defined on H /N Tt is straightforward to show that ©' is a normon H /N

Now we can prove the statement of the thecorem. The set E, a subsct of H, can be transformed
into a sétE’ in the quoticnt space H /N while preserving the convexity and closure properties.

The parallelogram law states
[+ w))” + [&'(v — w)]* = 2(0'(0)]" + 2[O'(w)]".

Let
d = inf {®'(v):v € E'}.

Choose a sequence v, € E’ such that ©(v,) — d. By the convexity of E', we know that {(v, 4
um) € E and so [©'(v, -+ vm)]2 > 4d?. If v and w are replaced in the definition of the paral-
lelogram law by v,, and v,,,, then the right hand side tends to 4d2. But [€/(v,, + 'um)]2 > 4d?, so one
must have [@’(vn — v,,l)]‘2 0 to preserve the equality. Thus, {v,,} is a Cauchy sequence in /1 /N.
Since the norm is complete. the sequence must converge to some v € ) with ©(v) = d.

To prove the uniqueness, if v,w € E and ©'(v) = d,®(w) = d then the sequence
{v,w,v,w,...} mustconverge, as we just saw. Thus v == w and the clament is unique.

We have proven that under the norm ©” on the quotient space I1/ N, the set £ has a unique

minimal clement. Hence. the structure of the quoticnt space implies that under the semi-norm © on
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the space H,, the set E' has a unique minimal element v, up to possibly an element of the niufl space N,

In other words, the family of minimal elements is
{v+s| se 5}

where

This theorem specifies one set of mathematical criteria needed to ensure that thefe ‘é¥ists a
unique minimal element. Thus, if the surface consistency constraint could be specified by a functional
that satisfied the conditions of a complete semi-norm, obeying the paraflclogram law, it might be
possible to show that there is a unique coset of “most consistent” surfaces. We would really prefer to
be guaranteed a unique surface, rather than some set of surfaces. One way to tighten the result of the
theorem is to require that the functional is a norm,

Corollary 1.1: [f®© is a complete norm on a space of functionsH, which satisfies the parallelogram
law, then every nonempty closed convex set IE'C H contains a unique element v of minimal norin.

Proof:  If the functional is a norm, the null space is the trivial null space, and the result holds
u‘niQuely. ]

The theorem can be rephrased in terms of the surface interpolation problem as follows.

Corollary 1.2: Let the set of known points be given by
{(ziy ) |1 = 1,...,N}
where the associated depth value is Fy. Let F be a vector space of “possible” functions on R2 and let
U={feF|flz,u)=F i= L,..4N}

so that U is the set of functions that interpolate the known data {7}, Let ® be a semi-riorm, which
measures the “consisiency ™ of a function f € X, that is, we shall say ihat f is “better” than g if ©(f) <
O(g). I/ © is a complete semi-norm aind satisfies the parallelogram law, then there exists a uniyie (1o
within a function of the null space of ©) fiunction s < U that is /(“I'IS'/‘fl’i(’{)iiﬁ'fS‘l("llf and inferolaies ilie

dat Honco the imerpolation problem is well-defined.
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Proof: Clearly U is a convex set since forany f,g € U,
[}‘f + (1 - }‘)g](xi; yi) = (>\ +1— }\)Fz = F;

for any data point (z;, y;). Furthermore, U is closed, since if f, € U and f,, — f, then f(z;, y;) = F;
and f € U. Then the previous corollary states that U has a unique (to within an element of the null

space) element of minimal norm, which is exactly the desired “most consistent” surface. g

This corollary is a translation of Theorem 1 into the problem of interest to us, finding the surface
most consistent with the known data from the stereo algorithm. It specifies a set of conditions under
which the interpolation problem is well-defined. Here, the notion of well-defined refers to finding
a solution to the interpolation problem that is unique, and by unique we mean up to possibly an
element of the null space of the semi-norm. As a conscquence, the extent and structure of the null
space of any semi-norm chosen to incorporate the surface consistency constraint will be important
in determining the utility of that semi-norm. In general, the smaller the null space, the tighter the
constraint on the family of possible surfaces which can interpolate the known data. For example, if
the possible variations in the least inconsistent surface were very large (due to the semi-norm having
a large null space), then the utility of this semi-norm would have to be questioned. On the other
hand, if the null space is small, and the resulting variations in possible least inconsistent surfaces were
small, the semi-norm would have to be given serious consideration. We will see examples of possible
functionals and their null spaces in Section 4.1.4.

Thus, Theorem 1 and Corollary 1.1 specify two different scts of suflicient, but not necessary,
criteria for ensuring differing types of uniqueness. In both cases, the criteria applied directly to the
structure of the functional. Of course, the real trick is to find a functional © which captures our
intuition of val‘iation in surface orientation and meets the requirements needed to guarantee a unique

solution.
4.1.2 The Space of Functions

Theorem 1 describes a set of sufficient conditions for obtaining a unique family of minimal
surfaces. "The fundamental point is that we require a complete parallclogram semi-norm to ensure
a unigue solution. Phese conditions precisely define a semi-inner product, and hence the space of

functions over which we seek aminimum must he a semi-Hilbert space.
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Corollary 1.3: If ¥ is a semi-Hilbert space of possible surfaces, and ©(v) = p(v, v)? is an inner
product semi-norm, where u(v, v)% is the semi-inner product on the space ¥, then there exists a unique
surface in ¥ (possibly to within an element of the null space of the semi-norm) that minimizes the semi-
norm © over all surfaces. _

Proofi By the definition of Hilbert space, the semi-norm is complete. It is casy to show that it
satisfies the parallelogram law from the definition of ©(v) = u(v, v)2. Thus, if the space of functions
is a semi-Hilbert space, then, by Theorem 1, the interpolation problem is guaranteed to have a unique
minimal solution, possibly to within an element of the null space.

Corollary 1.4: If ¥ is a Hilbert space of possible surfaces, and ©(v) = u(v, v)} is an inner
product norm, where u(v, v)% is the inner product on the space ¥, then there exists a unique surface in

that minimizes the norin © over all surfaces. g
4.1.3 The Form of the Functional

The major problem is to determine the functional ©. The surface consistency constraint related
the consistency of a surface to the variation in surface orientation. This forms the first constraitit on
the functional. Theorem 1 states that if the functional is a complete, parallelogram, semi-norm, then
the problem has a well-defined solution. This forms the second constraint on the functional. Thus,
if a functional can be found that is a complete, parallclogram semi-norm, and that is a monotohic
function of the variation in surface orientation, then this functional will constitute an acceptable
‘measure of surface inconsistency. Any surface that is minimal under such a functional would then bé
an acceptable reconstruction of the original surface in space.

The problem may be considered in the following manner. With every point on the surface
[, associate a pair of partial derivatives, f, = p, Jy = ¢, and hence, an orientation. Each point
on the surface may be mapped to a point in a space spanned by p and q axes, the gradient space
[Huffman, 1971; Mackworth, 1973; Horn, 1977]. With cach surface patch, one may then associate a
neighborhood of p-g space by mapping the p and g values associated with cach point on the surface
into gradient space. This neighborhood will be referred (o as the p-g neighborhood spanined by the
surface patch.

The surface consistency constraint implics that the probability of a zero~crossing occuring within

a patcli of the surface is monotonically related to the size of the p-g neighborhood spanned by the
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surface patch. The surface consistency theorem [Grimson, 1981c] embodies a specific method for
measuring this probability. Any functional that is monotonically related to the size of the p-g neigh-
borhood will suffice, however. This is important, since it is also necessary that the functional be a
complete, parallelogram semi-norm. Thus, the problem reduces to specifiying such a complete, paral-
lelogram semi-norm, which monotonically measures the surface consistency constraint by measuring
a monotonic function of the size of the p-¢ neighborhood spanned by each surface patch. To find
the most consistent surface, one need only find the surface that minimizes this functional over each
patch. Note that the surface will be “most consistent” only relative to the functional. T hcre may be
several functionals that are complete, parallelogram, semi-norms and that are monotonic functions of
the variation in surface orientation. Each will give rise to slightly different minimal surfaces.

Of course, there are some constraints on the minimization of the measure of the p-g neighbor-
hood. For example, each surface patch cannot be minimized in isolation. To see this, consider a
cylindrical (or one-dimensional) surface. Between any two adjacent zero-crossing points, the mini-
mization of the variation in surface orientation (related to the size of the ncighborhood in p-q space)
would result in a single point in gradient space, corresponding to a planar surface between the known
depth values. The problem with this simple method of reducing surface inconsistency is that it does
not account for the interaction of surface patches. In particular, such a method would result in
a piecewise planar surface approximation. For any three consecutive zero-crossing points, such a
method would introduce a discontinuity in surface orientation at the middle zero-crossing. This is
unacceptable since the surface is required to be twice differentiable. Thus, there are some constraints
on the manner in which the neighborhoods in p-q space are minimized.

We are thus faced with the following problem. We know from the boundary conditions
provided by the stereo algorithm that the surface must pass through a sct of known depth points
located at the zero-crossings of the convolved images. We further know that at all other points in
the image, the surface cannot change in such a manner as to cause an additional zero-crossing. With
cach surface portion, we can associate a measure of the probability of that surface implying a zero-
crossing in the convolved image intensitics. Since between zero-crossings, there arc no other zero-
crossings, this gives a measure of the inconsistency of this particular surface portion. To choose
the least inconsistent surface, we must reduce this probability, as measured over all portions of the

surface.
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4.1.4 Possible Functionals

In this section, possible functionals © are considered, secking complete, parallelogram semi-
inner products where possible, since this will guarantee that the solution is unique to within the null
space. However, it is important to stress that there may be several viable alternatives. The computa-
tional theory argued that the functional should measure the “consistency” of the surface. The attempt
here is to define a measure based on this. The measure should be in a form that allows the constraints
on the problem to be easily expressed. Also, the measure should be a semi-inner product on a semi-
Hilbert space, in order to ensure a'unique solution. We begin by considering several candidates in

light of these requirements.
Case 1: One Dimension

For ease of discussion, the case of a cylindrical or one-dimensional surface will be considered
first. By a cylindrical (or developable) surface we mean a second differentiable surface oriented along
the y axis such thatdf [y = ¢ = ¢, for some constant c.

Example 1.1: The variation in the normal to the curve is clearly related to its curvature. One
could thus consider using a functional that directly measures curvature and integrates this measure
over an area of the surface. To ensure that the functional is positive, this suggests using a functional of

the form:

3 b
2 2 3
@1(f)={/l€2d8} == /(l%—x;fz?diﬂ )

where & is the curvature of the curve at a point. (Recall that the subscript here implics a partial
derivative, so that f2 = (8%f/8z%)2) Although this is perhaps the most “natural” definition of a
functional, it is not a semi-norm, and hence it is considered to be unacceptable. To see why it is not a

semi-norm, consider the following. If f is in the space of surfaces, then
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This condition will be true only if f; = 0. While this is certainly far too restrictive a condition to
place on the possible surfaces, it does suggest a possible alternative.
Example 1.2: A second choice is the quadratic variation of the gradient, which may be measured

by: ;

Note that it is a close approximation to the curvature of the curve, provided that the gradient f; is
small. © is a semi-norm, so the surface that minimizes this norm will be unique to within an element

of the null space of the semi-norm. The null space of @3 is the set of all linear functions:
N = span{1, z}

where

span{vy, ..., om} = {aiv1 + ... + amvm | ai, .., am € R}.

Not only docs this form of the functional satisfy the mathematical criteria of a complete, paral-
lelogram semi-norm, it has a strong relationship to the “natural” form © (), since the restriction of
small f; is acceptable. Those cases in which f; is not negligible correspond to situations in which the
surface is rapidly curving away from the viewer. These situations are such that the curvature of the
surface will cause it to be invisible in one eye — giving rise to occluding boundaries. In general, we
can assume that the image docs not consist solely of occluding boundarics, so that such occurrences
will be rarc in an image. Moreover, between such points, the surface will satisfy the restriction and the

above semi-norm is well-suited to the interpolation problem.
Case 2: Two Dimensions

To each of the examples of the one-dimensional case, there is an analogous two-dimensional
case.

Example 2.1: As in the one-dimensional case, one possibility is to measure the curvature of the
surface. The curvature of a surface is usually measured in one of two ways.

For any point on the surface, consider the intersection of the surface with a planc containing
the normal to the surface at that point. ‘This intersection defines a curve. and the curvature of that
curve can be measured as the arc-rate of rotation of its tangent. For any point, there are infinitely

many normal sections, cach defining a curve. As the normal section is rotated through 27 radians,
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all possible normal sections will be observed. There are two sections of particular interest, that which
has the maximum curvature and that .which has the minimum. It can be shown that the directions of
the normal scctions corresponding to these sections are orthogonal. These directions are the principal
directions and the curvatures of the normal sections in these directions are the principal curvatures,
denoted &, and xp. It can be shown that the curvature of any other normal section is defined by the
principal curvatures.

There are two standard methods for describing the curvature of the surfacé, in terms of the

principal curvatures. One is the ﬁrst (or mean) curvature of the surface
J = Kq + Kb

The other is the second or Gaussian curvature of the surface
K= Kq * Kb.

For a surface defined by the vector {z, y, f(, y)}, these curvatures are given by

e
R W) AR \/_+f2+f2

fecfyy — I3y
(1+n+n)

Thus, there are two possibilities for the functional. One is to measure the first (or mean)

and

K =

curvature of the surface,

- { [ [ oy

)
2
f’m 1 + f + fl/,j( "‘*‘ fi) - 2frﬁjfry)
3 dzdy
(147247)
As in the one-dimensional case, this is not a semi-norm, since
. . 2 t
(f:raf(l +a? 12,) + Sl +a%2) — 2afra]§/f:ry)
O5(af) = |q : dzdy

3
(1 +-a?f2 4 a? ;21)
= | 4(/f).
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However, if £, and f, are assumed to be small, then it is closely approximated by a semi-norm. In this

o.f) = { [ [ (v) dxdy}&

This is a semi-norm, with null space consisting of all harmonic functions.

case, consider

A second possibility for reducing curvature is to reduce the second or Gaussian curvature,

4
Os5(f) = { / K?dxdy} .

By an argument similar to the above, it can be shown that this is not a semi-norm. Note that by using

the above approximation of small £; and f,, we get the functional

@G(f).= {/ /fzzfyy - fgy dasdy}%.

We will return to this form later.
FExample 2.2: As in the one-dimensional case, one can also consider the quadratic variation. The

quadratic variation in p = f, is given by

/ / (pi +p§) dzdy

and the quadratic variation in ¢ = f, is given by

[ [ (a2 + ) dzay.

If the surface is twice continuously differentiable, then p, = ¢.,, and by combining thesc two varia-

tions, one obtains the quadratic variation:

4
o) = { [ [(r+on,+2) dx_dy} |

Again, as in the one-dimensional case, this is a complete semi-norm that satisfics the parallelogram
law. Hence, the space of interpolation functions has an element of minimal norm, which is unique up

to an element of the null space, where the null space is the set of all lincar functions:
N == span{l, z, y}.

Duchon (1975, 1976) refers to the surfices that minimize this expression as thin plate splines

since the expression €7 relates to the energy ina thin plate foreed o interpolate the data.
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4.2 Where Do We Stand?

We have seen that for the general surface interpolation problem, there are two constraints on thie
possible functionals. One is that the functional must measure a monotonic function of the variation in
surface orientation. The other is that the functional should satisfy the conditions of a complete paral-
lelogram scmi-norm, or equivalently, a semi-inner product. If the functional satisfies these:conditions,
then we know that there will be a unique family of surfaces that minimize this functional and hence
form a family of best possible surfaces to fit through the known information. In the examples sketched

above we saw that there are at least two possible candidates for this functional, namely the square

04(f) = { / / (ng)zd:cdy}%

Laplacian,

and the quadratic variation,

)
01(f) = { / f (724272, + 12, ) dady

There are several points still to consider. Are there other possible functionals? How do the mini-
mal solutions to these functionals differ? What criteria can be applied to determine which functional is
best suited to our surface interpolation problem? What is the best functional under those criteria? In
the remainder of this chapter, we shall consider these questions in déta’il. The point we shall develop is
that the appropriate functional to apply is the quadratic variation, and thus the surface that minimizes

this functional is most consistent with the ixrlagirlg information.
4.3 Are There Other Functionals?

We have determined at Teast two functionals that meet our coﬁdilions. Are there other pdS‘sibiC
functionals, and if so, how do their minimal solutions differ from those of the square Laplacian aiid
the quadratic variation?

To answer this question, we rely on a result of Brady and Horn [1981], which we sketch below.
Recall that the basic conditions on the functional were that it measurcha monotonic function of the
variation in surface orientation, and that it be a semi-inner product. The first requiremeiit suggests

that the tunctional must involve terms that are functions of the second order partial derivatiy es of the
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surface, since such terms will be related to the variation in surface orientation. The second require-
ment is needed to ensure the uniqueness of the solution. Recall that u(f, g) is a semi-inner product
if

L uf,g)=ulef)

2. ulf+gh) = ulf k) + ulg,h),

3. wlaf,g) = au(f,g),

4wl 1) =0,

and that given a semi-inner product u(f, g), one can define the desired functional by ©(f) =
“(f; f)%'

The difficult condition to satisfy is (3), which implies that the semi-inner product should not
contain any constant terms. The conditions taken together imply that we should consider any quad-

ratic form as a possible semi-inner product:

/i(f, g) = //af:czg:ca: + ,Bfa:yg:cy + ’nyygyy +
+6(fwgzy + fngw) + 6(f:rxgyy + fyygza:) + §(fxygyy + fyygzy)'

Thus, the corresponding functional will have the quadratic form:

@(f) = / /afgz + ﬁfiy + 'Yfgy -+ 26f:v:cfmy + 26f:wfyy + 2S'fa:yf;;y-

The final condition we apply to the functional is that it be rotationally symmetric. This follows
from the observation that if the input is rotated, the surface that fits the known data should not change
in form, other than also being rotated.

Minimizing the quadratic form of the functional ©(f) can be considered as finding the mini-

mum over the integral of the function (Af)TM A f where Af is the vector:

Jex
Af =\ fey

and M is the symmetric matrix
a 6 e

M=1|s§ B8 ¢l
€ ¢ 7
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IfR is a rotation matrix, then the condition of rotational symmétry is given by
(RAHM(RAS) = AfTMAT.
Vector algebra implies that we must have’
R'MR=M o R"M = MR!

Equating elements shows that the matrix M must have the form

§+e 0 €
M=] o B 0
€ 0 g—{—e’

There are two important consequences of this fact. The first is that the sct of all possible func-
tionals forms a vector space, since if My and M, satisify the conditions, then so does oM, -+ VM.
The second is that this vector space of operators is spanned by the square Laplacian and the quadratic

variation since:

bte 0 ¢ 101 100
. 3

Oﬂo-_—_eooo+%020.
e 0 Z4e 101 00 1

The first term of the sum corresponds to the square Laplacian while the second corresponds to the
quadratic variation. Thus, fore = 1 and B = 0, the functional reduces to square Laplacian. For
e = 0 and # = 2, the functional reduces to quadratic variation. Finally, if ¢ = fand B = —1
we obtain a functional which correspobds to the approximation to the integral of square Gaussian
curvature derived in Section 4.1.4,

Thus, we have answered our second question. There are other possible functionals, but they are

all linear combinations of the two basic funct.ionals, the square Laplacian and the quadratic Qariatjon.
4.4 How Do the Functionals Differ?

Given that there are many possible functionals, all lincar combinations of the square Laplacian,
©., and the quadratic variation, ©7, we must consider how the solutions to the square Iaplacian and
the quadratic variation differ, In other words, is there any noticeable difference in the surfaces that
minimizes these two functionals, subject to fitting through the stereo data? To answer this question,
we shall rely on the Calculus of Variations, (sce. for example, Courant and Hilbert [1953] and Forsyth

[196ON. The salient points are outlined below.
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4.4.1 Calculus of Variations

The calculus of variations is frequently used to solve problems of mathematical physics, and is
applicable to our surface interpolation problem. In particular, we can use the calculus of variations
to formulate differential equations associated with problems of minimum energy. Suppose we are
given a thin elastic plate, whose equilibrium position is a plane, and whose potential cnergy under
deformation is given by an integral of the quadratic form in the principal curvatures of the plate.
We can consider the interpolation problem as one of determining the surface formed by fitting a
thin clastic plate over a region %- (with boundary T') and through the known points. Using a small

deflection approximation, the potential encrgy is given by

[ L]0 20— ieaty— 2] e
The solution to the interpolation problem is then the surface which has the minimum potential
encrgy.

The calculus of variations can be used to characterize this problem by providing a set of
differential cquations (called the Euler equations) which the solution surface must satisfy. It can be
shown (sce Courant and Hilbert, [1953, p.251]) that the Euler equations for the interior of any region
% are given by

VA = feaer + 2Ureyy + fyygy =0,
except at the known points. Along the boundary contour T' of the region, the solution surface must
satisfy the equations (called the natural boundary conditions):

M(f) = —=V2f + (1 — @)(fr2? + 2yt + fyy92) = 0

P(f) = (%VQ fH (1 —u) gg (fufcnxs + fey(Tnls + zsyn) + fyyy-nys) =0,

where 9/An is a derivative normal to the boundary contour, /s is a derivative with respect to
arclength along the boundary contour and ,, ¥, and z,, y, are the dircction cosines of the tangent
vector and the outward normal respectively. The constant  denotes the tension factor associated with
the elastic material of the plate.

‘There are two subcases of particular interest. In the first case, supposc that the tension factor is

given by p == 1. The encigy cquation reduces to

//}(sz)lz dady
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which is simply the square Laplacian condition derived previously. The Euler equation is the bihar-
monic equation V4f = 0 while the natural boundary conditions are

Vif=0

0 oo,
5.V =0,

along the boundary contour I'. In the second case, suppose that the tension factor is given by y = 0.

‘The energy equation reduces to

/ /% (f2e+ 275, + 12,) dedy

which is simply the quadratic variation condition, also derived previously. The Euler equation is
identical to that of the square Laplacian, namely the biharmonic equation V4f = 0. T he natural

boundary conditions are different, however, They are given by
~V2f - (fes? 4 Ut + fyus?) =0,
Jd 9
%V f+ é; JeaTnzs + fxy(xnys + mﬂ?/n) -+ fyyynys = 0.

In the simple case of a square boundary, oriented with respect to the coordinate axes, the boundary

conditions reduce to:
Jyy=10

2fu_.u + fyyy =0
along the boundary scgments parallel to the z axis, and
Jeo =10
2yyz + feae =0
along the boundary segments parallel to the y axis.

These boundary conditions can be straightforwardly simplified to:

fpy=10

Jeay =10

along the boundary segments parallel to the z axis, and
Jre =0

Juye =0

\

alongthe boundary scements paraflel to the y axis.
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We have thus answered our question. For both the square Laplacian and the quadratic
variation, the Euler equations are identical in the interior. The only difference to be noted in the
extremal solutions to the two functionals will be observed at the boundaries of the surfaces. When we
look at examples of solving these equations, this difference will become important.

There is a second manner in which the minimal solutions to the functionals will differ, in part
related to the difference in boundary conditions of the two solutions. While the form of the minimal
surface under either functional is roughly the same, except at the boundaries, this minimal surface will
be uniquely determined only to within an element of the null space of the functional. This will be an
important factor in determining which functional is best suited to our problem, since we would like
the boundary conditions provided by the stereo data to completely determine a unique solution. The
null spaces of the two functionals differ greatly, since the null space of the quadratic variation is the
space of all linear functions, while the null space of the square Laplacian is the much larger space of

all harmonic functions. W e shall consider the effect of this difference later.
4.5 The Best Functional

Given that the set of possible functionals forms a vector space spanned by the square Laplacian
and the quadratic variation, what criteria can be applied to determine the best functional? Since the
Euler equation for both of these basis operators is the biharmonic equation V4f = 0, the same will
be true of any other operator in the vector space. This implies that aside from boundary conditions at
the edge of the region being interpolated, the surfaces provided by any operator in this space will be
basically the same.

This being the case, the only other characteristic that can distinguish between the possible func-
tionals is the size of their respective null spaces. Let us denote the null space of the square Laplacian
by N} (the space of all' harmonic functions) and the null space of the quadratic variation by Ny (the
space of all lincar functions). Note that N, is a subspace of Nj. Now the null space for any lincar
combination of these two operators must contain at least the space spanned by the intersection of the
two null spaces Ny and Ny. Hence, the null space of any other operator must consist at least of the
lincar functions. Thus, no possible operator can have a null space smaller than that corresponding to

quadratic variation,
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The importance of the null space is that it helps determine the family of surfaces that are mini-
mal under the functional. The requirement we impose on the best functional is that the member of
this family corresponding to the minimal surface be uniquely determined, when combined with the
requirement that the surface must pass through the known points provided by the sterco algorithm.
Clearly the smaller the size of the null space, the fewer the requirements we must impose on’ the
output of the stereo algorithm in order to insure a unique solution.

We may view this criterion in the following manner. Initially, we start with the space of all pos-
sible functions, namely, the space of all second differentiable functions of two real vatiables, denoted
C?(R?). If we restrict our attention to those surfaces that pass through the boundary conditions
[imposed by the stereo or structure-from-motion data, we define a convex subset U of this space. If we

define a functional on this space, the set of surfaces that are minimal under the functional are 'give:n'by
{v4+w| wew}

where
W={v—u| uelU}nN,

for some minimal surface v € U. We are guaranteed a unique solution to the interpolation problem
if W is empty (or equivalently, consists only of the null surface, defined to be zero everywhere).
The key question becomes: can we have two surfaces that fit through the known poinits, have ‘the
same measure of surface consistency (the same value as measured by the functional) and differ by 4n
clement of the null space? If not, we arc’ done, as the minimal surface is then guaranteed to be unique.
Thus, the structure of the boundary conditions provided by the stereo algorithm (or the structure-
from-motion algorithin) may be important in deciding which functional is more suitable. Clearly, the
smaller the subspace of minimal surfaces, the more likely we are to have a unique minimal surface
fitting the known data, as the set W is more likely to be empty.

Recall that the null space of the square Laplacian

o(f) = { / / (vzf)zdxéy}%

is the set of all harmonic functions. We wish to know what form of the botndary conditions iill

unigucly determine the harmonic function, This problem is known as the Dirichlet problem i
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classical analysis, and it has long been known that if the boundary conditions consist of a series of
closed, bounded Jordan curves, then the harmonic function is uniquely determined. These are, of
course, sufficient, but not necessary conditions. It would appear, however, from these conditions
that it is unlikely that the boundary conditions provided by the stereo algorithm will be sufficient to
uniquely determine the component of the null space. This follows from the observation that the stereo
algorithm is capable of providing boundary values at scattered points in the image, corresponding to
the zero-crossings of the convolved image, while the Dirichlet problem is uniquely determined if the
boundary values form a closed, bounded Jordan curve. Thus, in the case of the square Laplacian, the
best we can do is determine a family of most consistent surfaces, which differ by harmonic functions.
Referring back to our earlicr question, we see that in this case, we could have two (or more) surfaces
which fit through the known points, have the same measure of surface consistency, and differ by an
clement of the null space. The variation in such a family of surfaces is not consistent with our intuitive
notion of indistinguishable surfaces, that is, the difference in the shape of two surfaces which have
identical minimal values for the square Laplacian mecasured over the surface can be noticably large.
As a consequence, we consider the square Laplacian to be a poor choice for the functional.

On the other hand, the null space of the quadratic variation

ot =1 [ [(t2r2+ 1) dudy

is the set of all linear functions. The boundar;/ conditions required in this case to uniquely determine
the component of the null space are much simpler. In particular, if the sterco algorithm provides at
least three non-colincar points, the element of the null space is uniquely determined to be the null
surface (the surface which is zero everywhere). It is clear that in almost all imaging situations, the
stereo algorithm will be capable of providing the necessary boundary conditions, and thus the most
consistent surface is uniquely determined.

Thus, we have seen that the only possible functionals that can be used to measure the surface
consistency constraint form a vector space spanned by the square Laplacian operator and the quad-
ratic variation operator. The minimal surface for any suéh operator satisfics the biharmonic equation
in the interior of the region being interpolated, but along the boundarics of the region it may satisfy
different differential equations than the minimal solution of any other operator. In general, this

implies that the solution surfaces corresponding o different operators will generally differ in shape

LEgE
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only near the boundaries. To distinguish between possible operators, we examined the form of their.
null spaces. We showed that the operator with the smallest null space was the quadratic variation,
Further, the stereo data is in general sufficient to uniquely determine the component of the null space
corresponding to the minimal surface. That is, the surface that minimizes the quadratic variation, sub-
ject to passing through the known points provided by the sterco or structure-from-motion algorithms,

is uniquely determined.
4.6 The Computational Problem

By combining the results of the last two chapters, it is now possible to state the computational

theory of the problem of interpolating visual surface information.

The Interpolation of Visual Information: Suppose one is given a representation consisting of
surface information at the zero-crossings of a Primal Sketch description of a scene (this could be either
Srom the Marr-Poggio stereo algorithm, or from the Ullman structure-from-motion algorithm, or both).
Within the context of the visual information available, the best approximation to the original surface in

the scene is given by the minimal solution to the quadratic variation in gradient (or surface orientation)

1
2

o =1 [ [ (st + 12,)daay}

Such approximations are guaranteed lo be uniquely “best” to within an element of the null space of the
Sfunctional ©. In the case of quadratic variation, the null space is the set of all linear functions. Provided
includes at least three non-colinear points, the component of the surface due to the null space is uniquely
determined to be the null surface. Hence, the surface most consistent with the visual information is
uniguely determined. |

It is worth noting that although the above statement is phrased in terms of Zero-Crossings 0b-
tained from images convolved with V2@ filters, the heart of the statement is much broader in scope.
The key point is that to interpolate any surface representation which contains explicit information
only at sparse points in the representation, we need to find the “most conservative”™ surface copsistent
with the input information. This implics that between the known suiface poiuts, the surface should

vary  little as possibic. Thus, whether those knawn points correspond to zero-crossing:., edges. ot
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some other basic descriptor of image changes, the surface interpolation algofithm should construct the
surface which minimizes variation in the surface between the known points. |
It is interesting to compare the criteria for surface interpolation developed here, as well as the

specific theory of surface interpolation stated above with the work of Barrow and Tenenbaum, [1981].

5. Constrained Optimization

Our goal throughout this paper has been to find the surface that best fits the known data
provided by the stereo algorithm or the structure-from-motion algorithm. In the preceeding sections,
we saw that such a “best” surface exists and is characterized as the surface that minimizes the func-
tional of quadratic variation, measured over the surface. The problem we address now is how to find
that minimal surface. What is meant by “finding the minimal surface™? Our goal is to derive an
algorithm that computes explicit surface values (such as depth, or relative depth) at all points on a
discrete grid, m points on a side. (That is, the scene will be partitioned into an m ><. m grid, and to
cach grid point, we want to associated a surface value.) _ |

In general terms, we arc sccking an algorithm to solve an optimization problem — we want to
compute the values of a set of parameters that optimize some function. In our case, the paramcters
correspond to the surface values at the grid points, and the function to be optimized is the measure of

“a discrete correlate to quadratic variation over the surface. We will restrict our attention to the class of
optimization algorithms that satisfy three simple criteria of biological feasibility — parallclism, local-
support, and uniformity. These three criteria, together with the form of the input data — scattered
contours of known points — preclude many of the possible techniques for solving an optimization

problem, but also suggest the use of techniques such as those of mathematical programming.
5.1 The Role of Algorithmic Criteria

An cssential problem for any computational theory about carly visual processing is to determing
the implicit assumptions used by the visual system to perform the computation. These are valid
assumptions about the environment that arc explicitly incorporated into the computation.” Ulliman’s
rigidity assumption in visual motion perception [Ullman, 1979a], Marr and Hildreth’s condition of

linear variation and spatial coincidence assumption [Marr and Hildreth, 19801, and Marr and Poggio’s
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assumptions of uniqueness and continuity [Marr and Poggio, 1979] arc three examples. Such assump-
tions may be considered as computational constraints on the problem.

There is a second set of criteria that may be applied to any theory and, more importantly, to any
algorithm for a theory. They deal with the requirement of biological feasibility, and are important if
one is to describe a model of the human system. They will be termed algorithmic criteria. Ullman
[1979b] has listed a number of such criteria that should apply to any biologically feasible algorithm. A

similar set is briefly sketched here.

Parallelism
The need to process large amounts of input data in short amounts of time implies the use of
computations that can be implemented in a parallel manner, using a large number of intercon-
nected processors.

Local Support
If the number of processors involvcd‘in the computation is large, it becomes infeasible to con-
nect each one to all of the others. Rather, there should only be local connections between the
processors. Here, “local”™ means not only that the number of connections be small, but also that
since the information being processed has a two-dimensional planc as an underlying coordinate
system, the connections should also be local in a spatial sense. If the support of a function,
defined on a two-dimensional grid, is the sct of points on the grid that contribute in a non-
trivial manner to the computation of the function, then our requircment is that the processors
implementing our computation must have local support.

Uniformity |
One final consideration, though not as critical as the first two, concerns the uniformity of the
processors. If it 13 possible, an algorithm that utilizes parallcl networks of identical processors

will be favored over other algorithms. Such a requirement is not crucial, however,

Although the original motivation for such restrictions on an algorithm arises from consideration
of the human visual system and restrictions of biological feasibility, they could apply equally well to
other types of image processing systems. As such, they are taken as general criteria for the computa-
tions to be investigated, regardless of whether the algorithm serves as a model of the human system.

In designing algorithms to solve a particular visual process, the first step is to seek a method that
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solves the problem. Having done so, one can then consider its applicability in light of the criteria

outlined above, and possible modifications to the algorithm in order to satisfy those criteria.
5.2 Mathematical Programming

The surface interpolation problem, as we have developed it, can be viewed as an optimization
problem; that is, the solution to the surface interpolation problem is equivalent to the minimal point
of an objective hypersurface. There is a large body of literature on methods for finding the solution
to optimization problems in general. In considering which one to apply to our problem, we take
two factors into account. The first is the form of the input data supplied by stereo (and possibly
also structure-from-motion). The key point is that the set of known points will generally consist of
a series of zero-crossing contours, along which the depth is known. These contours are not closed,
since the horizontal components will have no disparity value, and hence no depth value, assigned to
them. Further, they tend to be scattered at random rather than distributed uniformly over the grid.
(This removes many methods from further consideration.) The second factor is the architecture of the
possible algorithm, outlined B_v thc algorithmic criteria of the previous section. As a consequence of
these two factors, many of the possible methods, while perfectly valid solutions mathematically, are
not readily applicable to our problem. A comprehensive review of the types of methods may be found
in Schumaker [1976] (see also Grimson [1980, 1981b}).

Given that an algorithm used to solve the visual surface interpolation problem must be local,
parallel and uniform, and must be capable of dealing with scattered input data, one of the best
methods to usc is mathematical programming, and in particular, nonlincar programming. Ullman
[1979b] has shown that many problems of relaxation and constrained optimization can be solved by
focal nonlinear programming processes (sce also Hummel and Zucker [1980)). Indeed, a method
similar to that outlincﬁ here was used by Ullman in solving the motion correspondence problem
[Ullman, 1979a}.

Recall that the problem with which we are faced is to find the surface that minimizes a func-
tional measuring surface consistency. The most likely candidate for this functional is the quadratic
variation. The boundary conditions with which the surface must agree are depth values along
the zero-crossings. given cither by the Marr-Poggio sterco algorithn or the Ullman structure-from-

maotion algorithm. These boundary conditions can be met in onc of two ways. If the surface is
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required to fit exactly through the boundary points, the problem is one of surface interpolation. If
the surface is required only to pass ncar the known points, while minimizing some error function, the
problem is one of surface approximation. In the following sections, both problems will be examined.
Two cases of optimization will be examined: unconstrained optimization, which is applicable
to the approximation problem, and constrained optimization, which is applicable to the intcrpola_fion
problem. Standard algorithms for computing the solution to the optimization problem for each case
are sketched below. For more details on mathematical programming, see for example Luenberger,
[1973]. . '
The Conjugate Gradient Algorithm

Starting at any point xo € E™ define dg = —go = b — Qxp and
X1 = Xk A apdy
o = — g1 g,
CT T dlQd
Q1 = — 8kt + Ol
g, = St Qs
ST

where g = Qx; —b. g

We will apply this algorithm, for the case of unconstrained optimization, to the problem of
visual surface interpolation in the next section. Because the algorithm is solving an unconstrained
optimization problem, it will be applicable to the surface approximation problem, where the surface is
required to pass near, but not necessarily through, the known points.
Gradient Projection Algorithm ‘

The algorithm may be summarized as follows.
1. Find the subspace of active constraints M, and form the matrix A,,.
2. Calculate the projection matrix Py = [] — A;’;(A,,A;f)ﬂ'lAp] and the dircction vector d =
—P.V f(x)7.

3. Ifd 540, find the scalar ¢; that maximizes
{a: x + ad is feasible}

and the scalar ¢y that minimizes

{/(xFal): 0 <a<a)




k1)

as a function of a. Set x to x -+ cod and return to (1).
4, Ifd =0, find 8 = ——(APAZ)HAPV f(x)T. If B; > 0, for all § corresponding to active
incqualities, stop, as x satisfies the Kuhn-Tucker conditions. Otherwise, delete the row from A,
corresponding to the inequality with the most negative component of 8 and return to (2).a

We will apply this algorithm, for the case of constrained optimization, to the problem of visual
surface interpolation in the next section. Because the algorithm is solving a constrained optimization
problem, it will bc applicable to the surface interpolation problem, where the surface is required to

pass through the known points.

6. The Interpolation Algorithm

~ The algorithms of the previous section can now be applied to the problem at hand, the inter-
polation (or approximation) of visual surfaces from the stereo data. Recall that the interpolation

problem was stated as:

The Interpolation of Visual Information: Suppose one is given a representation consisting of
surface information at the zero-crossings of a Primal S ketch description of a scene (this could be either
from the Marr-Poggio stereo algorithm, or from the Ullman structure-from-motion algorithm, or both).
Within the context of the visual information available, the best approximation to the original surface in

the scene is given by the minimal solution to the quadratic variation in gradient

) §
o(s) = { / / (s§I+2sgy+s§y)dzdy} ,

(where s denotes a surface). ‘Such approximations are guaranteed to be uniquely “best” to within an
element of the null space of the functional ©. In the case of quadratic variation, the null space is the
set of all linear functions. Provided the set of known points supplied by the stereo algorithm or by
the structure-from-motion algorithm includes at least three non-colinear points, the component of the
surface due to the null space is uniquely deternined 1o be the null surface. Hence, the surface most
consistent with the visual information is uniquely determined,

We shall consider solving this optimization problcﬁx both in the case of interpolation (the sur-
fice passes exactly through the data) and in the case of approximation (the surface passes near the
data). Although the alyorithms could be cither applied 1o the square Taplacian or to the quadratic

variation, we shall examine only the case of the quadiatic variation, '
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6.1 Conversion to the Image Domain

The problem, as stated, lies clearly within the domain of continuous functions. Yet this is
not appropriate to the case at hand. In-order to establish an algorithm for transforming the visual
information into a representation of the surface shape, a number of conversions must take place.

The first point to note is that the functional ©(s) consists of a square root. (Note that we will use
s to denote the surface which we are fitting to the known points, to distinguish it from the notation
of s used in the previous chapter to denote the objective function.) However, clearly any function
which minimizes the functional ©(s) also minimizes the functional ©%(s), and vice versa, provided
that the functional is always positive in value. Hence, without loss of generality, one may consider the
minimization of

o(s) = / / (s, + 262, + 2,) dzdy.
Throughout this section, this will be the functional to be minimized.

In order to determine the structure of the algorithm, one must address the issue of the form of
the output representation, since that will have a major effect on the actual algorithm. In this case, it
is desired that the surface information be specified only at particular places within the representation
of the scene. This will be accomplished by rcquirihg that the interpolation algorithm compute explicit
depth values at all locations within a Cartesian grid of uniform spacing. Although both the spatial
resolution of the grid and the resolution of the depth information stored within that grid should be
determined, it is considered that such parameters are not critical to the development of the algorithm.
Hence, these parameters will be assigned arbitrary values.

The continuous functional must now be converted to a form applicable to a discrete grid.
Without loss of generality, assume that the grid is of size m % m. Fach point on 'thc grid may be repre-
sented by its coordinate location, so that the point (¢, j) corresponds to the grid pbint lying on the jth
row and the 7 column. At cach point (z, 7) on the grid, a surface value may be represented by s(; 5.
Each such surface value may be considered as an independent variable, subject to the constraints
of the problem, of course. Using either row major order or column major order, these variables
8(4,) may be considered nsy a vector of variables, denoted s = {S((),()),S(()’l), con 3'((171—‘-1),(m—~1))}-
(For clarity, a staightforward transformation from the doubly-indexed grid coordinates into a <ingly-
indexed vector coordinate can be established.  For example. the grid point (¢, 7) can be mapped

to the sector point k == i - 7, and the vector point & can be mapped o the grid point (7,4} -~
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(lk/m) k — m[k/m]).) It is this vector which will be modified using the non-linear programming
algorithms, and the final value of which will form the solution to the optimization problem and thus
correspond to the desired interpolated surface.

Having converted the surface function to a discrete grid format, it is now neécssary to convert
the objective function of the optimizatibn problem to a discrete format. This means that the
differcntial operators must be converted to difference operators. ‘There are many possible dis-
crete approximations to the differential operators. We choose to use the following approximations
[Abramowitz and Stegun, 1965, p. 884].

The second partial derivative in the z dircction may be approximated by

sy 1
) = s — 2500+ 1] + O

where & is the grid spacing, and O(h?) indicates that the approximation is valid to terms of order hZ,

Similarly, the second partial derivative in the y direction may be approximated by

(i, j) ’
o 5 [86,541) — 28(6.5) + &.,i—n) 4- O’

| =

&>

The cross second partial derivative can be approximated by

Psig) 1 2

3z8y = 74715[5(1'+1,j+1) — &it1,j—1) = S(i+1,j—1) §i—1,j—1)] + O(h?).
Note that such approximations have frequently been used in the image processing literature, (for
example, see the reviews of Davis [1975], Rosenfeld and Kak [1976], Pratt [1978]). Little is known of
the affect of these appmxixﬁations on the behavior of the result,

Having converted the surface function and the differential operators, one must convert the
double integral to a discrete cquivalent. This can casily be done, by using a double summation
over the finite difference operators applied to the discrete grid. One minor point is noted. While
it is straightforward to form the discrete equivalent to the double integrals [ [ 2, dzdy and
f f sijda:dy, the cross term 2 f f szy dzdy is handled differently. In particular, consider a second
grid, superimposed on the first, which has twice the spatial resolution of the first (that is, all integer
points are represented as are all points (3, f)) For the cross term, we shall apply the finite difference

opetator to all half integral points on this finer prid. The combination of these operators yields the




THE GRADIENT PROJECTION INTERPOLATION ALGORITHM 40
discrete objective function:

m—2 m—1

2
minimize Z Z (s(z_m) — 28,5+ 3(z+l,_7))

i=1 j=0

- m—1m—2

2
+> 3 (S(z',j——l) — 25 ) +s<z',a'+1))

i=0 j=I

 m—2m—2 2
+230 >0 (S(m') — &(i-t1,5)  Sig+D) +3(i+1,j+1)) :
i=0 j=0 -

Finally, the characterization of the constraints must be considered. The case of interpolation
will be considered first, where the interpolated surface is required to pass through the known points.
Let ¥ = {(i, 7) | there is a known depth value at the grid point (7, )} be the set of grid points
for which a depth value is known. Then the constraints on the optimization problem have the form
8(i.5) — .z) = 0 for all points (2, 7) in the set ¥, and where the ¢(; ;)'s are a set of constants reflecting

the sterco data. Note that the set of constraints are all equality constraints.
6.2 The Gradient Projection Interpolation Algorithm

It is now possible to consider applying the gradient projection method to this problem:

m—2 m—1

2
minimize Z Z (5(1—1,4) — 28@,1) + S(zH,J))

i==1 j==0

m—1m—2 '

2
-+ 20 2 (S(m'—l) — 25,5+ S(i,j+1>)

i=0 j=1 °

m-—2 m-—2

2
+2 A\: 5—1 (9(1 nT 5(i+l,j)“s(i,j+1)+S(i+1,j+1)) .

i=0 j=0
subject to S, — ¢y = 0, Y(¢, 7)€ Y.
To apply the method of gradient projection, it'is necessary to determine the set of active con-
straints, and the projection matrix onto the subspace spanned by the active constraints. Clearly, since

all the conctinints are equuadity constraints, they are all active at every iteration. Thus, the matiix A7

RN




41

(where p = |#]) has rows consisting of a 1 in the position corresponding to the grid point (2, 5) for
(i,4) € $ and 0’s elsewhere. One can easily show that ApAT = I and that ATA, = 65 where by is
a matrix consisting on 0’s except for those rows corresponding to a point in ¥, such rows containing a
1 for the diagonal element. Thus, the projection matrix P = 1 — &5 consists of all 0’s except for the
diagonal elements in those rows corresponding to a grid point not in ¥, such elements being 1. The
effect of the projection matrix P is to ignore any components of the direction vector d corresponding
to a known point, while preserving all other components, unaltered.

Recall that the direction vector d is determined by the projection of the negative gradient of
the objective function. By expanding the double summation and performing the diffcrentiation, the

components of the gradient of the objective function are given, in this case, by the following:

For all elements in the center of the grid, apply the following stencil to the grid representation of the

surface function s:

i ) -
4 —16 4

2 —16 40 —16 2|
4 —16 4

! 2 ]

By this, we mean that given a two-dimensional grid representation of the current surface approxima-
tion, s, the value of the component of the gradient of the objective surface at some point (¢, 5) on the
grid is obtained by applying the above stencil centered over that point (4, 7), multiplying the value of
cach of the stencil points with the value of the surface at that point and summing these products. The
value of the components of the gradiént can be computed in this manner by applying the stencil to all

points in the center of the grid.

Along the outer edges of the grid, the above stencil does not apply. Instead, a careful expansion of the
gradient of the objective function shows that the following stencils should be used.
For clements in the corners of the grid, apply the following stencil (or its appropriate rotations and

reflections) to the grid representation of the surface function s



THE GRADIENT PROJECTION INTERPOLATION ALGORITHM 42

For elements along an outside row of the g'rid, one point removed from the corner, apply the fol-
lowing stencil (or its appropriate rotations and reflections) to the grid representation of the surface

function s:
2

4 —12 4
—8 20 —I12 2|
For elements along an outs}de row of the grid, more than one point removed from any corner, appl_}{
the following stencil (or its appropriate rotations and reflections) to the grid representation of the

surface function s:
2

4 —12 4
(2 —12 22 —12 2
For clements along a row second from the outside of the grid, located one element from each of
two outside rows, apply the following stencil (or its appropriate rotations and reflections) to the grid

representation of the surface function s:

- -

2

4 16 4
—12 36 —16 2|
4 12 4|

For all other elements along a row second from the outs_idc‘of the grid, apply the following stencil ,(Qr

its appropriate rotations and reflections) to the grid representation of the surface function s:

)
4 16 4

9 —16 38 —16 2|

i 4 —12 4 |

Thus, the direction vector has zero valued components at all points corresponding to known
depth values, and non-zero valued components clsewhere, with value given by the result of convoly-
~ ing the above stencils with the current surface approximation. It is interesting to note that the stencil
used in the interior of the grid is a finite difference approximation to the biharmonic cquation Vis ==

0 [Abtanwat, and Stegun, 1965, p.885]. "This should not be surprising. since the Euler cguation,




43

derived previously from the calculus of variations, was precisely this equation. Thus, we see that the
quadratic programming algorithms implicitly solve the Euler equation.

We have determined the form of the direction vector, which specifies the direction in which to
move in order to reduce the objective function and refine the surface approximation. To determine
the amount to move in this direction, it is necessary to determine the minimum value of the objective

function along this direction, that is, to determine the value of @ such that

m—2 m—I1

> (s(i~1,j> — 28,5 + &i+1,5)

i=1 j=0

2
+ad(—1,5 — 2ad( 5 + 0d(i+1,j>)

m—1m—2

i=0 j=1

2
“+ad(; j—1) — 2ad(; ;) + ad(i,j+1))
m—2 m—2

+2 Z E (5(i~,j) — ip1,5) — 8(i,j+1) T &i+1,5+1)

i=0 j=0

2
+-ad(; jy — adgiy1,5) — adgi j+1) -+ ad(i+1,j+1))

is minimized. A straightforward application of calculus determines that this value for a is given by the

. > oy
ratio of @ == ;> where
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m—2 m—1

=y > (S(i—m') — 28,5) + 8(i+1,j))

i=1 j=0

i—1,5) — 2d, 5 + d(i+1,j))

+2 2

=0 j=1

o
S

8, j—1) — 28,5) +‘8(z',j+1))
di,j—1) — 2di,5) + d(z',a'+1))

+22 2,

i=0 =0

m—2 m—2
(S(m') = 8(i+1,§) — 8(i,5+1) T 8(i+1,a'+1))
d(i,g) = d(i-+1,9) — i j+1) + d(i+1,j+1))

and

m—2m

AL

=1

T
<

m—1m—2

+2 2

=0 j=1

2
(d(i-l,j) — 2d; 5+ d(i+l,j))
2
(d(i,j—l) — 2d; ) + d(i,j+1))

. 2
+23 2, (d(,-,j)-—d(,«_+_m — d(i,j+1) +d(i+'1,j+1)) ;

i==0 j==
Thus. the algorithm is completely determined. The steps consist of:

0. Dectermine a feasible initial surface approximation (any surface approximation which contains the
known stereo depth values ¢(; jy at the known points (7, 7) € ¢ will suffice).

1. Compute the gradient of the objective function by convolving the grid rcprcéentation of the cur-
rent surface approximation with the stencils listed above. Compute the direction vector by taking the
negative of the gradient, setting any componceats corresponding to known depth points to zero.

2. Compute the scalar a which specifies the amount to move along the direction vector on the
hypersurface defined by the objective function, by the formula given above.

3. Refine the surface approximation by incrementing the current surface approximation with the

scaled duecion veetor.,

—

e,
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4. Return to step (1) and continue until the magnitudes of all components of the direction vector are

smaller than some constant €.

6.3 Examples of Interpolation

We can demonstrate the effectiveness of the surface interpolation algorithm by considering the
performance of the gradicnt projection algorithm on several examples. Although the previous discus-
sion dcalt specifically with applying the gradient projection algorithm to the quadratic variation, a
similar analysis can be performed for other functionals such as the square Laplacian. (Recall that any
feasible functional was a lincar combination of these two functionals.)

To demonstrate both the effectivehcss of the interpolation algorithm and the differcnce between
the quadratic variation and the square Laplacién, wé consider three synthetic examples in FFigures 4-
6. In Figure 4, the interpolation algorithm is given as boundary conditions a set of closed contours
from a cylillder, orignted parallel to the z-axis. It can be seen that the surfaces obtained by minimizing
the square Laplacian and the quadratic variation differ markedly along the edge of the region. This
is to be expected fof two reasons. In Section 5, we derived the Euler equations for the interpolation
problem, a set of differential equations which must be satisfied by the minimal surface. The Euler
equations for the interior of a region were identical for both the square Laplacian and the quadratic
variation, namely the biharmonic equation. Along the edges of the region, however, the natural
boundary conditions imposed different cquations on the solution surface. This fact is reflected in
Figure 4. The second reason for the different surfaces arises from the form of the stencils obtained
in Section 6.2. The stencils to be applied at the edges of a region in the case of quadratic variation
arc numerically more stable than those to be applied in the case of the square Laplacian. (This may,
in fact, simply be a reflection of the difference in Fuler equations.) In cither case, it can be seen
from Figure 4 that while minimizing the quadratic variation results in a reasonable approximation to a
cylinder, minimizing the square Laplacian yiclds less acceptable results.

In Figure 5, we illustrate a sccond synthetic example. [n this case, the boundary conditions are
points Iying on a hyperbolic paraboloid, choosen at random so that the known points do not form
closed contours. As in the previous case, it can be seen that while the surfaces obtained by minimizing

the two functionals are very similar in the interior of the region, the surfuces differ drastically along
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Figure 4. Synthetic Example. The top figure shows a synthetic set of beundary conditions,
consistent with a cylinder aligned with the axes of the grid. The middle figure shows the surface
obtained by applying the gradient projection algorithm to the square Laplaciun functional. The
bottom figure shows the surface obtained by applving the algorithm to the quadratic variation.

\
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Figure 5. Synthetic Example. The top figure shows a synthetic set of boundary conditions, consistent
with a hyperbolic paraboloid. The points are chosen at random with a density of 10 percent.
The middle figure shows the surface obtained by applying the gradient projection algorithm 10
the square Laplacian functional. The bottom figure shows the surface obtained by applying the

algorithm to the quadratic variation. o
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Figure 6. Synthetic Fxample. The top figure shows o synthetic set of boundary conditions,
consistent with o oviinder not aligned with the axes of the grid. The middic fgure shows the
surface ohtained Ly applving the gradient projection algorithm to the wquare Laplacian functional,
The bottom figure shows the surface obtained by applying the algorithm o the quadeatic varintion.
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the edges of the region. Again, minimizing the quadratic variation yiclds a reasonable approximation
to a hyperbolic paraboloid. '

In Figure 6, we illustrate a third synthetic example. In this case, the boundary conditions are
again taken from a cylinder, here oriented at 45 degrees to the z-axis. As in the previous cylinder
example, the major difference between the two surfaces occurs along the borders of the region and the
minimization of quadratic variation yields a good approximation to the cylinder.

The interpolation algorithm was developed to account for the creation of complete surface
descriptions from the sparse surface information provided by visual modules such as stereo. We can
demonstrate the effectiveness of the interpolation theory by applying the algorithm to different stereo
examples. In Figures 7-10, we illustrate the results of applying the surface interpolation algorithm
to the output of the Grimson implementation [Grimson, 1981a, 1981b] of the Marr-Poggio stereo
theory [Marr and Poggio, 1979] applied to a pair of sterco images. It should be noted that in these ex-
amples the interpolation algorithm was applied directly to the disparity values obtained by the stereo
algorithm, without converting them to depth information. As a conscquence, the displayed surfaces
in the figures will not exactly reflect the shape of the surface, since an additional nonlincar transfor-
mation from disparity to depth is siill required. For the purposes of illustrating the interpolation
algorithm, however, the usc of interpolated disparity values suffices, since the interpolation algorithm
will preserve the gencral shape of the surfaces (that is, the sign of the surface curvature) as well as the
relative differences in depth between different surfaces.

Figure 7 shows four sterco pairs of images, on which the algorithm was tested. Figure 8 shows
the surface obtained for a wedding cake random dot stereogram. The four planar surfaces are clearly
visible, although the effect of a small number of incorrect disparity values at the junctions of adjacent
planes can be seen. Figure 9 shows the surface obtained for a spiral staircase random dot stereogram.
Again, while the general shape of the spiral staircase is clearly apparent, the effect of a small number
of incorrect disparity values can be scen. Figure 10 shows the surface obtained for the natural image
of a coffec jar. As in the previous cascs, the general shape of the surfaces are clearly evident. Not‘
only is the jar sharply separated in disparity from the background plane (which is slightly slanted), but
the overall shape of the jar can be distinguished. Figure 11 shows the surface obtained for the natural

image of the Moore sculpture. As in the case of Figure 10, the general shape of the surface can be
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Fooe 70 Exomples of Sterea fonges. The fignres, from op 0 hation, show the random dot
storenoaie ob aoveedding cabes the randony dot stereopram of o cpival stiitease, o natural image
of o wiee botles and a natural image of o sculpture by Henry Moore,
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Figure 8. The Wedding Cake. The figure shows the surface obtained by processing the sterco
pait with the Grimson implementation of the Marr-Poggio stereo algorithm. and interpolating the

result using the quadratic variation.
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Figure 11. The Moare Sculpture. The figure shows a view of the surface obtained by processing
thie stereo pair of Figure 7 with the Grimson implementation of the Marr-Poggio stereo algorithm,
and interpolating the result using the quadratic variation,

.
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distinguished. Note that because no disparity values can be obtained for the hole in the center of the

sculpture, the interpolation algorithm interpolates across the hole as if it were a uniform surface.
6.4 The Conjugate Gradient Approximation Algorithm

Previous sections have addressed the case of interpolating a surface through the known stereo
depth values. In this section, the case of approximating a surface relative to the known stereo depth
values is considered. There are several reasons for considering an approximation of the known depth
values, rather than an exact fit through them. The first reason is that the accuracy of the sterco data
may not be sufficient for the purpose of surface approximation. In particular, the algorithm outlined
for performing the stereo computation yields disparity matches with an accuracy of one picturc ele-
ment. One must consider if such accuracy is sufficient. As well, one must consider the accuracy
with which the zero-crossing positions reflect the location of a point of interest on an object in the
scene. Since the operators which extract the zero-crossings have a non-infinitesimal spatial extent, it
is possible that the zero-crossing positions undergo slight fluctuations in position, such fluctuations
causing a smail error in the dispaiity matches assigned by the algorithm. The second rcason is that
the stereo algorithm does occasionally make an incorrect match If an exact surface interpolation is
required, such points will incorrectly cause a change in the shape of the surface, and the effect of
such points can spread over a noticcable region of the surface reconstruction. By requiring a surface
approximation, the effect of such “bad” disparity points can be minimized.

The basic notion is to combine a measure of “nearness of fit to the known points” with
a measure of the consistency of the surface with the zero-crossing information. This can be ac-
complished by considering a pcnalt)‘f method unconstrained optimization problem. Here, the objec-

tive function to minimize is )
6(s) = / / (six +s},+ 2siy) dady + 3 (s(z, ¥) — ez, ))*
¥

where the summation takes place over the set ¥ of all points in the representation for which there is a
known sterco depth value ¢(z, y). The effect of this objective function is to minimize a least-squares
fit through the known points, scaled relative to the ()riginal minimization problem. The constant 8
is a scale parameter to be determined by the degree of desired fit. Note that the constraints have, in
(his case. been incorporated directly into the objective function. Hence, the objective function may be

optimized as if it were an unconstrained function.
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The translation of this problem into the image domain yields the following discrete version of

the objective function:

m—2 m—1 |

2
minimize 2 (s(i-—l, 5 — 2865+ 8(i+1,j))

i=1 j=0

m—1m—2

2
+3323 (s(i,j—l)‘— 25(1,5) +3(i.j+1))

i=0 j=1

m-—2 m—2

2
-
+2 37 Z, (s(m‘)-‘ 8(i4-1,5) — &i,j+1) +8(i+1,j+1))

i=0 j=0

85 (6) — i) -
b

It is now possible to consider applying the conjugate gradient method to this problem, Recall

that this method, when applicd to the quadratic case, is considered the minimization of
1
isTQs —bTs.

In this case, the vector b is given by
b= —20¢

where ¢ is a vector whose components are the known depth values ¢(; jy if the corresponding grid
point has such a known value, and 0 otherwise. The matrix Q is given by the discrete stencils outlined
in the previous section, with an added diagonal factor of 8. One can then straightforwardly apply the

conjugate gradient algorithm, with these forms for b and Q. "
6.5 Examples of Approximation

The conjugate gradient algorithm, applied to the surface approximation problem, is
demonstrated by considering a series of examples, illustrated in Figures 12-16. These should be com-
pared to Figures 8-11. As in the case of surface interpolation, the surface approximation algerithm
has been applied to disparity values rather than depth information. Again, the general shape of the
surface and the relative difference in pnsitions of the surfaces have been preserved by the algorithm,

although the exact surface shape has not been reconstructed.
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The objective function of the conjugate gradient algorithm in this case contains two factors,
the quadratic variation of the surface and a least-squares term embodying a type of “smoothness”
requirement. The scalar constant § determines the relative strengths of these two factors. If we let
B be very small, then the smoothness requiremént essentially vanishes and we return to the case of
surface interpolation, discussed previously. The conjugate gradient algorithm then becomes identical
to the gradient projection algorithm. If we let 8 become very large, then the quadratic variation factor
essentially vanishes and the algorithm reduces to a least-squares fitting of a plane to the known points.
Clearly, we require a value of 8 intermediate to these extreme cases. The figures illustrate this tradeoff
between the two factors, as 8 varies. To determine the optimal value for 3, we require an estimate for
the density of incorrect disparity values obtained by the stereo algorithm, so that a value for 8 may
be chosen which smooths out the effect of these incorrect values, while not affecting the shape of the

surface determined by minimizing the quadratic variation.

7. Analysis and Refinements

7.1 Discontinuities

One of the implicit assumptions of the interpolation algorithm is that the picces of surface are
in fact pieces of a single surface. Of course, this will frequently not be the case. In this section, we
consider what modificiations are necessary in order to account for the existence of scveral surfaces
within a scene. In particular, we address the issuc of explicitly computing discontinuities in the surface
representation, and the effects of explicit discontinuitics ’on the form of the reconstructed surface.

One of the problems associated with the failure to make surface discontinuities explicit is that
information about the shape of one surface affects the shape of an adjacent surface. This is illustrated
in Figure 17. A sct of known depth points is given in Figure 17(@). Intuitively, the most likely
surface to fit through these points would be a pair of planes with a discontinuity in depth between
them, sl'mwn in Figure 17(5). However, the requirement that a smooth surface fit through these points
results in a warping and rippling of the surface that is undesirable, as shown in Iigure 17(¢). 'Thus,
the lack of explicit discontinuitics can affect the shapes of the interpolated surfaces in an unacceptable

manner.
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Figure 17. Discontinuitics in the Surfaces. Figure (a) shows a set of known data points. Intuitively,
the correct reconstructed surface would be a pair of planes, with a diccontinuity between them, as
shown in figure (b). 11 the interpolation algorithm atiempts 1o reconstruct a surface through the
houndary points, without a discontinuity, the result is as shown in figure (¢). The sharp change
in depth results in o rippling of the surface.
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In order to make discontinuities explicit, there are several questions to ask about the process.
How are the discontinuitics detected? thre are they placed in the representation? When does the
detection of discontinuities take place in the overall interpolation process? In the next few sections,
we will discuss two possible methods for detecting the discontinuities, and their role in the overall

interpolation.
7.1.1 Occlusions in the Stereo Algorithm

Consider the geometry indicated in Figure 18. There are regions of the left image which will not
have a corresponding region in the right image, and vice versa. Conscquently, any zero-crossings in
this portion of one image will have no counterpart in the other image, and the stereo algorithm should
not assign any match to such zero-crossings. Hence, one possible mechanism for detecting occlusions
would be to search for portions of the image which contain unmatched zero-crossings. Then, the
interpolation can be restricted to take place only over those sections of the image which are bounded
by zero-crossings with known disparity values.

This method would detect the discontinuities before the interpolation, since it uscs stereo in-
formation directly to locate the occlusions. A problem with the method is that it will not detect
all discontinuities, only those in the horizontal direction. Discontinuities that occur in the vertical
direction do not cause occlusions. Hence, any method for detecting discontinuities which relies only

on the unmatched zero-crossings will be incomplete.
7.1.2 The Primal Sketch Revisited

An integral part of most computational theories, proposed as models of aspects of the human
visual system, is the use of computational constraints based on assumptions about the physical world
[Marr, 1976, 1980; Marr and Poggio, 1979; Marr and Hildreth, 1980; Ullman, 1979]. In some of the
computational theories, the constraints arc explicitly checked for validity within the algorithm (e.g.
Ullman’s rigidity constraint in recovering structure from motion). In others, the constraints are simply
assumed to be true, and are not explicitly checked (e.g. Marr and Poggio‘s,uniqucncss constreint in
stereopsis). Can any aspect of the surface consistency constraint be explicitly checked and used by the
algorithm?

The basic notion of the surface consistency constraint is that the surface cannot undergo a radi-

cal change in shape without having an accompanying zero-crossing in the convolved image. Tmplicit
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Figure 18. Occlusions. The upper surface occludes portions of the lower surface in each eye.
These pertions are different for the two eyes. The cross-hatched area of the lower surface indicates
the region of the surface visible to the left eye, but not to the right.

in this constraint is the assumption that the portion of the image being examined in fact corresponds
to a single object. Thus, one could propose that if the shape of the interpolated surface forces a zero-
crossing in a location for which none exists in the Primal Sketch, then such a zero-crossing indicates
a location at which the assumption of a single object is violated. Such zero-crossings could then be
taken as indicative of a surface discontinuity.

Perhaps the simplest method of detecting such discontintuities is again to usc ideas inherent in
the Primal Sketch. Recall that the Primal Sketch created descriptions of points in the image associated
with inflections in intensity, for a range of resolutions. Since the image intensities may be considered
as a type of three-dimensional surface, the Primal Sketch operators essentially detect discontinuities
in the image intensitics for a range of resolutions. Thus, one could apply the same type of analysis
to the detection of surface discontinuities, where now the surface on which the operators apply is the

reconstructed depth surface, rather than the intensity surface,
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It is worth noting that not only should the operators be of the form used in the extraction
of the Primal Sketch, but that it may also be useful to use a range of operators, as in the Primal
Sketch. One reason for using multiple zero-crossing detectors was that surface changes, and hence
intensity changes, could take place over a wide range of scales. This is still true in the case of
surface descriptions, such as have been constructed for the coffee jar or the wedding cake. Thus,
surface discontinuities corresponding to occluding edges will frequently tend to correspond to large
surface changes, while internal surface discontinuities, due to a warping of the surface, will tend
to correspond to small surface changes. By using a range of V2@ operators, one can extract both
occluding contour discontinuities, as well as ripples or warpings of the surface itself.

Note that this method requires that the surface interpolation already take place, before it can be
applied. Since one of the general requirements on an algorithm is that it be rapid, we must consider
the consequence of detecting discontinuities after the interpolation of the surfaces. There are two
main reasons for the explicit detection of discontinuitics. One is that such an explicit representation
of this information will allow higher level processes, such as recognition, or extraction of axes for
three-dimensional shape analysis, to operate more easily, since the process serves to make implicit
information explicit. However, a second reason is to create more accurate surface representations, by
removing the type of effect illustrated in Figure 17(c). If the process used to isolate discontinuities
takes place after interpolation, and if the interpolation process requires the discontinuities to improve
the interpolated surface approximation, one must propose an interpolater which passes over the sur-
face information twice; first to produce an initial description, and second to refine the description
after the detection of discontinuitics. One must then question whether such a two pass process will
affect our constraint of rapid algorithms. Fortunately, the answer is no, since the surface approxima-
tion obtained without explicitly accounting for the discontinuities is very close to the limiting surface
except in the areas of the discontinuities (that is, any effects of the discontinuities are quickly damped

“out as one moves across the surface). Thus, the initial starting position for the sccond pass of the
interpolation algorithm is very close to the limiting surface, and only a few iterations will be needed to

refine the surface approximation.
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7.1.3 Interpolation Over Occluded Regions

Even though occluded regions of the image can only be viewed from one eye, the human system
still associates a depth value with these régions. This has an interesting implication for the interpola-
tion algorithm. For most occluded regions, the only depth information available is at the edges of the
occluded region. Psychophysical experiments have shown that the occ_luded region is always perceived
at the depth of the lower surface. Thus, in Figure 18, the occluded region would be perceived at the
level of the lower surface. Note that this is consistent with the physics of the situation, since if the
occluded region were perceived at the level of the upper surface, then it should in fact be visible to the
right eye, and this is not the case.

This observation suggests that when an occlusion is detected, it is explicitly located along the
occluding boundary corresponding to the edge of the nearer object. This allows the occluded region
itself to be associated with the lower surface, and the interpolation algorithm wi]l fill in surface values
for the occluded region from this lower surface.

This raises an interesting psychophysical prediction. The psychophysical literature has examined
the case of planar surfaces and their occlusions, as in Figure 18. If the interpolation method developed
here is given an explicit discontinuity along one edge of the occluded region, it will correctly fill in
the region as an extension of the lower plane. Of interest is thé case in which the occluded region is
not planar. For example, consider a cylindrical object. [f the interpolation algorithm is given this type
of input, it will fill in the occluded portions of the surfaces as a smooth continuation of the curved
cvlinder. If the interpolation algorithm correctly models interpolation by the human visual system,
then this predicts that the surface perception for human observers in this situation should also be that
of a smooth cylinder. While informal experiments indicate that this is true, the prediction has not yet

been rigourously tested psychophysically.
7.2 Noise Removal

Although in general the Marr-Poggio stereo algorithm is very good at matching zero-crossings
correctly (especially for random dot patterns), incorrect disparity values may sometimes be assigned to
regions of the image. ‘These incorrect values can be considered as noise superimposed on the correct

surface. Since the surface interpolator cxplicitly attempts to fit a surface through all the disparity

0

points, such ndise points can affect the shape of the surface approximation. Indeed, the effect of these

g i e - kel
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noise points can spread over a noticeable portion of the surface, before the nearby disparity values can
damp out its effect. Thus, it would be preferable to remove these noise points, or at least ncutralize
their effect on the approxirr;ated surface shape. One possibility is that if a two pass interpolator is
used, as suggested in the'previous section; the detection of surface discontinuities will isolate such
. noise points from the rest of the surface, and the second pass of the interpolator will adjust the surface
approximation to remove the influence of the noise points on the first pass approximation. Certainly
this will be true for noise points with disparity values far removed from the correct values. For
noise points whose disparity valuqs are only slightly different from the correct surface disparities, the
difference does not really matter. However, the final result would be that the noise points, while being
isolated from the rést of the correct surface, would still remain in the final surface description. It
would be 'preferable to completely remove such points. ‘

Is it possible to identify and remove noise points from the disparity map? If the noise points are
isolated spatially, then it is possible to identify them as undesirable, This follows from the form of the
primal sketch operators. The case to consider is that in which one must distinguish between a set of
neise points in a disparity map and a small object separated in depth from the rest of the scene. For
the small object, the size of the zero-crossing contour is limited by the size of the available operator,
and hence there is a minimum size of zero-crossing contour which the operator will yiéld about the
object. If the number of zere-crossing points which differ significantly from their neighbors is less
than this minimum, one may conclude that the points are noise, and thus remove them. This will

result in an improved surface approximation.
7.3 Acuity

It can be seen from the exaxﬁple of the interpolated coffee jar in Figure 10, that the interpolated
surface contains a bumpy quality which clearly is not consistent with the original object. How can
this be explained? The effect occurs in part bccausé the disparity values are specified only to within a
pixel. This yiclds a fairly coarse disparity map which results in the bumps observed in the interpolated
coffee jar of Figures 14 and 15. Hence, one method of removing the bumps would be to improve
the accuracy of th.c disparities obtainéd by the algorithm. Note that some improvement in disparity
accuracy is necessary if the algorithm is to be consistent with the human system. If we roughly equate

pixels with receptors, then a pixel corresponds to roughly 27 seconds of arc. ‘The implementation of




69

fhe stereo algorithm computed disparity to within a pixel, while humans are capable of stereo acuity
to a resolution of 2 — 10 seconds [Howard, 1919; Woodburne, 1934; Berry, 1948; Tyler, 1977].

In order to account for finer disparity values, it is necessary to localize the zero-crossing to a bet-
ter accuracy than has been done so far. Since the convolution values are only specified at each pixel,
one method for more accurately specifying the zero-crossing positions is to interpolate between the
known convolution values [Crick, Marr and Poggio 1980, Marr, Poggio and Hildreth 1979, Hildreth
1980]. Perhaps the simplest method is to rely on the observation of Hildreth that for most cases,
even a simple linear interpolation will give extremely accurate localization of the zero-crossings. The
addition of finer resolution depth information may improve the performance of the algorithm.

This example also raises a question of scale. Depending on the application of the surface
specification, different amounts of resolution may be required. For example, if the ultimate goal of
the surface specification is to obtain a rough idea of the position and shape of the surfaces ina scene,
the spatial resolution at which surface information must be made explicit may hot be critical. In this
case, the known data from the stereo algorithm may be sampled at a coarser resolution, before the
interpolation takes place. This should result in a smoother surface approximation. Further, although
the reconstructed surface is less exact in terms of fine variation of the surface shape, the overall shape

of the botile is still preserved in this interpolation.
7.4 Psychophysics

We close by listing a series of psychophysical qucstions of relevance to the interpolation process.

(1)  What is the form of the surfacc perceived in occluded regions? In particular, the minimization of
quadratic variation suggests that if a portion of a curved object is occluded, then the surface in
the occluded region should also be curved, and should minimize the quadratic variation across
that region.

(2) Figure 17 suggests that if _dispontinuities are not explicitly demarked in the interpolation
process, a warping of the reconstructed surface (similar to Gibb’s phenomena) will result.
While, in principie, such ripples in the surface ar¢ undesirable, it is worth asking whether the
human system specifically accounts for discontinuitics before interpolation occurs. This may be
rephrased by asking whether in stercoscopic situations similar to F'igurc 17, we perecive a Mach

hand-like warping of the surface in depth?
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(3) We have suggested that there ar,e,,'scveral possible functionals which could be used to determine

the most consistent surface. Based on algorithmic and mathematical arguments, we choose the

quadratic variation. Can we test the shape of the reconstructed surface psycyh_ggh}{_‘siggy,}(?; Ig“
particular, can we distinguish psychophysically b’etwc,c,ny the minim;;ml‘su;fqugle;qgggr‘, quadranc 4
variation and the minimum surface under some other functional, such as the square Laplacian?
Is the reconstructed surface psychophysically consistent with the sggﬁé@_g c’qrgnpuggdrb,y Q}lgagqujg
variation?

(4) What is thé spatial resolution of the reconstructed surface? That is, what is the sgggip% of the
grid upon which the values of the reconstructed surface are computed?
The answers to these questions will help verify or correct the theory of visual surface interpola-

tion dcvclopcd in this paper.

8. Summary.

Computational theorics of motion perception [Ullman, 1979] and stereo vision [Marr and
Poggio, 1979] can only specify the computation of three-dimensional surface information at s,pc}gigl-
points in the image. In order to account for the visual perception of complete surfaces, we have
developed a computational theory of the interpolation of surfaces from visual information.

The problem is constrained by the fact that the surface must agree with the information from
stereo or motion correspondence, and not vary radically between these 150111(5. In Grimson [1981c], an
explicit form of this surface consistency constraint is derived from the image intensity equation [Horn,
1975]. The main point of the surface consistency constraint is that it requires the interpolated §1.1;r§ag§:
to vary as little as possible.

To determine which of two possible surfaces is more consistent with the surface consistency
constraint, one must be able to compare the two surfaces. To do this, a functional from the space
of functions to the real numbers is required, where the functipnal shpulg‘mgasuﬁrg_: some function of
the variation in the surface. In this way, the surface most consistent with the visual information will
be that which minimizes the functional. To ensure that the functional has a unique minimal surface,
conditions on the form of the functional are derived. In particular, if the functional is a complete

semi-norm which satisfics the parallelogram law, or the space of functions is a semi-Hilbert space and
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the functional is a semi-inner product, then there is a unique (to within an element of the null space of
the functional) surface which is most consistent with the visual information.

It can be shown, based on the above conditions plus a condition of rotational symmetry, that
there is a vector space of possible functionals which measure surface consistency, this vector space
being spanned by the functional of quadratic variation and the functional of square Laplacian (Brady
and Horn, 1981). Arguments based on the null spaces of the respective functionals were used to justify
the choice of the quadratic variation as the optimal functional.

~ Algorithms for computing the surface which minimizes quadratic variation in the case of exact
surfac interpolation and in the case of surface approximation were outlined and illustrated on a series

of synthetic and actual surface interpolation examples.
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